

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	150 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 35.33 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$	1.67 1.00	$R = 1.25$ $C_S = 0.8$ $\rho = 1.3$ $\Omega = 1.25$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$		$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

Front	<u>Rear</u>
<u>1887.60</u>	<u>6354.48</u> k
<u>4992.44</u>	<u>5173.80</u> k
<u>288.78</u>	<u>2280.41</u> k
<u>0.59</u>	<u>0.38</u> k
	1887.60 4992.44 288.78

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Weight of Concrete = 145 pcf Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 152497.6 \text{ in-lbs}$ Resisting Force Required = 2310.57 lbs S.F. = 1.67 Weight Required = 3850.95 lbs to resist overturning. Minimum Width = <u>34 in</u> in Weight Provided = 6778.75 lbs Sliding

526.05 lbs Force = Friction = 0.4 Weight Required = 1315.12 lbs Resisting Weight = 6778.75 lbs

Additional Weight Required = 0 lbs

Cohesion Sliding Force = 526.05 lbs Cohesion = 130 psf 31.17 ft² Area = Resisting = 3389.38 lbs

Additional Weight Required = 0 lbs

Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft

2500 psi $f'_c =$ Length = 8 in

Footing Reinforcement

Use fiber reinforcing with (2) #5 rebar.

A minimum 132in long x 34in wide x 18in tall ballast foundation is required

Use a 132in long x 34in wide x 18in tall ballast foundation to resist sliding. Friction is OK.

Use a 132in long x 34in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

Ballast Width <u>34 in</u> <u>35 in</u> <u>37 in</u> <u>36 in</u> $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.83 \text{ ft}) =$ 6779 lbs 6978 lbs 7178 lbs 7377 lbs

ASD LC		1.0D -	+ 1.0S			1.0D+	- 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	- 0.6W	
Width	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in	34 in	35 in	36 in	37 in
FA	1594 lbs	1594 lbs	1594 lbs	1594 lbs	1903 lbs	1903 lbs	1903 lbs	1903 lbs	2503 lbs	2503 lbs	2503 lbs	2503 lbs	-862 lbs	-862 lbs	-862 lbs	-862 lbs
F _B	1649 lbs	1649 lbs	1649 lbs	1649 lbs	1972 lbs	1972 lbs	1972 lbs	1972 lbs	2593 lbs	2593 lbs	2593 lbs	2593 lbs	-2924 lbs	-2924 lbs	-2924 lbs	-2924 lbs
F_V	138 lbs	138 lbs	138 lbs	138 lbs	925 lbs	925 lbs	925 lbs	925 lbs	788 lbs	788 lbs	788 lbs	788 lbs	-1052 lbs	-1052 lbs	-1052 lbs	-1052 lbs
P_{total}	10021 lbs	10220 lbs	10420 lbs	10619 lbs	10654 lbs	10853 lbs	11052 lbs	11252 lbs	11875 lbs	12074 lbs	12273 lbs	12473 lbs	281 lbs	401 lbs	521 lbs	640 lbs
М	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	5755 lbs-ft	5755 lbs-ft	5755 lbs-ft	5755 lbs-ft	6931 lbs-ft	6931 lbs-ft	6931 lbs-ft	6931 lbs-ft	1437 lbs-ft	1437 lbs-ft	1437 lbs-ft	1437 lbs-ft
е	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.54 ft	0.53 ft	0.52 ft	0.51 ft	0.58 ft	0.57 ft	0.56 ft	0.56 ft	5.11 ft	3.58 ft	2.76 ft	2.24 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	253.8 psf	252.7 psf	251.7 psf	250.8 psf	241.1 psf	240.4 psf	239.8 psf	239.2 psf	259.7 psf	258.5 psf	257.4 psf	256.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	389.3 psf	384.4 psf	379.8 psf	375.4 psf	442.5 psf	436.1 psf	430.0 psf	424.3 psf	502.3 psf	494.2 psf	486.5 psf	479.2 psf	169.4 psf	47.8 psf	42.2 psf	42.5 psf

Maximum Bearing Pressure = 502 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 3147.4 \text{ ft-lbs}$

Resisting Force Required = 2221.70 lbs

S.F. = 1.67

Weight Required = 3702.83 lbs Minimum Width = 34 in in Weight Provided = 6778.75 lbs A minimum 132in long x 34in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iE	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width		34 in		34 in			34 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F_Y	239 lbs	599 lbs	209 lbs	886 lbs	2639 lbs	863 lbs	80 lbs	175 lbs	51 lbs
F _V	198 lbs	195 lbs	199 lbs	148 lbs	142 lbs	154 lbs	198 lbs	196 lbs	198 lbs
P _{total}	8631 lbs	8991 lbs	8601 lbs	8874 lbs	10628 lbs	8851 lbs	2534 lbs	2629 lbs	2505 lbs
M	788 lbs-ft	780 lbs-ft	792 lbs-ft	596 lbs-ft	592 lbs-ft	616 lbs-ft	785 lbs-ft	780 lbs-ft	786 lbs-ft
е	0.09 ft	0.09 ft	0.09 ft	0.07 ft	0.06 ft	0.07 ft	0.31 ft	0.30 ft	0.31 ft
L/6	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft	0.47 ft
f _{min}	223.4 psf	235.5 psf	222.2 psf	244.2 psf	300.8 psf	242.2 psf	28.0 psf	31.4 psf	26.9 psf
f _{max}	330.4 psf	341.5 psf	329.8 psf	325.3 psf	381.2 psf	325.8 psf	134.6 psf	137.3 psf	133.8 psf

Maximum Bearing Pressure = 381 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 34in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 34in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Frank Olma		De an Otrad
<u>Front Strut</u>		Rear Strut
Maximum Axial Load =	3.840 k	Maximum Axial Load = 4.449 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = 60%
Diagonal Strut		
Maximum Axial Load =	1.655 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>22%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.412 \text{ in} \\ \end{array}$

 $0.412 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 111 \text{ in}$$

$$J = 0.432$$

$$307.078$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 111$$

$$J = 0.432$$

$$195.283$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.6 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 23.1 \, \, ksi \\ y = & 446476 \, \, mm^4 \\ & 1.073 \, \, in^4 \\ x = & 45.5 \, \, mm \\ Sy = & 0.599 \, \, in^3 \\ M_{max} W \, k = & 1.152 \, \, k\text{-ft} \end{array}$$

Compression

3.4.9

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\int Bt - \frac{\theta_y}{\Omega} F$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{46.7}{46.7}$$

 $\phi F_L = \phi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = Ct$$

$$S2 = C_t$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{Db}$$

$$\phi F_L = 1.3 \phi y F c y$$

mDbr

73.8

S2 =

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

$$M_{\text{max}}St = 3.363 \text{ k-ft}$$

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$1.88 \text{ in}^2$$
 $P_{\text{max}} = 58.55 \text{ kips}$

 $A = 1215.13 \text{ mm}^2$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 24.8 \\ J &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

24.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

 $0.621 in^{3}$

1.460 k-ft

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

Sx =

 $M_{max}St =$

SCHLET

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{\rm b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L St = 28.2 \text{ ksi}$

$$1x = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $5x = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$D/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268 \text{ ksi}$

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 19.48 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-98.517	-98.517	0	0
2	M14	٧	-98.517	-98.517	0	0
3	M15	V	-157.628	-157.628	0	0
4	M16	V	-157.628	-157.628	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	226.59	226.59	0	0
2	M14	V	175.361	175.361	0	0
3	M15	V	98.517	98.517	0	0
4	M16	У	98.517	98.517	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	430.833	2	1203.386	1	.9	1	.004	1	0	1	0	1
2		min	-556.446	3	-1500.871	3	-75.981	5	291	4	0	1	0	1
3	N7	max	.028	9	1299.137	1	302	12	0	12	0	1	0	1
4		min	14	2	-430.868	3	-222.142	4	45	4	0	1	0	1
5	N15	max	.022	9	3840.336	1	0	10	0	2	0	1	0	1
6		min	-1.712	2	-1451.997	3	-214.611	5	44	4	0	1	0	1
7	N16	max	1593.248	2	3979.848	1	0	11	0	11	0	1	0	1
8		min	-1754.158	3	-4888.062	3	-75.838	5	293	4	0	1	0	1
9	N23	max	.028	14	1299.137	1	6.515	1	.014	1	0	1	0	1
10		min	14	2	-430.868	3	-218.123	4	443	4	0	1	0	1
11	N24	max	430.833	2	1203.386	1	05	12	0	12	0	1	0	1
12		min	-556.446	3	-1500.871	3	-76.39	5	293	4	0	1	0	1
13	Totals:	max	2452.923	2	12825.231	1	0	11						
14		min	-2868.031	3	-10203.536	3	-879.291	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	73.916	4	530.81	1	-4.701	12	0	3	.168	1	0	4
2			min	3.423	12	-767.795	3	-125.583	1	016	2	.008	12	0	3
3		2	max	70.944	1	371.383	1	-3.751	12	0	3	.065	4	.672	3
4			min	3.423	12	-540.23	3	-96.43	1	016	2	.004	10	464	1
5		3	max	70.944	1	211.956	1	-2.8	12	0	3	.035	5	1.11	3
6			min	3.423	12	-312.666	3	-67.277	1	016	2	03	1	763	1
7		4	max	70.944	1	52.529	1	-1.85	12	0	3	.019	5	1.315	3
8			min	3.423	12	-85.102	3	-38.124	1	016	2	084	1	899	1
9		5	max	70.944	1	142.462	3	427	10	0	3	.004	5	1.285	3
10			min	3.423	12	-106.897	1	-15.88	4	016	2	108	1	871	1
11		6	max	70.944	1	370.027	3	20.181	1	0	3	004	12	1.022	3
12			min	3.423	12	-266.324	1	-12.263	5	016	2	102	1	68	1
13		7	max	70.944	1	597.591	3	49.334	1	0	3	003	12	.525	3
14			min	-4.162	5	-425.751	1	-10.792	5	016	2	067	1	324	1
15		8	max	70.944	1	825.155	3	78.487	1	0	3	.001	2	.196	1
16			min	-14.712	5	-585.178	1	-9.322	5	016	2	033	4	206	3
17		9	max	70.944	1	1052.719	3	107.64	1	0	3	.095	1	.879	1
18			min	-25.263	5	-744.604	1	-7.852	5	016	2	041	5	-1.171	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
19		10	max	70.944	1	1280.284	3	136.793	1	.005	14	.22	1	1.726	1
20			min	3.423	12	-904.031	1	-78.565	14	016	2	.004	12	-2.37	3
21		11	max	70.944	1	744.604	1	-2.902	12	.016	2	.095	1	.879	1
22			min	3.423	12	-1052.719	3	-107.64	1	0	3	0	12	-1.171	3
23		12	max	70.944	1	585.178	1	-1.951	12	.016	2	.032	4	.196	1
24			min	3.423	12	-825.155	3	-78.487	1	0	3	003	3	206	3
25		13	max	70.944	1	425.751	1	-1.001	12	.016	2	.015	5	.525	3
26			min	3.423	12	-597.591	3	-49.334	1	0	3	067	1	324	1
27		14	max	70.944	1	266.324	1	.022	3	.016	2	0	15	1.022	3
28			min	.47	15	-370.027	3	-20.181	1	0	3	102	1	68	1
29		15	max	70.944	1	106.897	1	8.972	1	.016	2	003	12	1.285	3
30		10	min	-9.757	5	-142.462	3	-12.793	5	0	3	108	1	871	1
31		16	max	70.944	1	85.102	3	38.124	1	.016	2	002	12	1.315	3
32		10	min	-20.307	5	-52.529	1	-11.323	5	0	3	084	1	899	1
33		17		70.944	1	312.666	3	67.277	1	.016	2	0	3	1.11	3
34		17	max	-30.858	5	-211.956	1	-9.852	5	0	3	045	4	763	1
		10				540.23	3								3
35		18	max	70.944	1	340.23		96.43	1	.016	2	.054	1	.672	
36		40	min	-41.408	5	-371.383	1	-8.382	5	0	3	047	5	464	1
37		19	max	70.944	1	767.795	3	125.583	1	.016	2	.168	1	0	1
38	5.4.4		min	<u>-51.958</u>	5	-530.81	1	-6.912	5	0	3	055	5	0	3
39	M14	1_	max	55.314	4	569.461	1	-4.833	12	.01	3	.194	1	0	1
40		_	min	1.482	12	-611.948	3	-129.726	1	013	1	.009	12	0	3
41		2	max	44.764	4	410.034	1	-3.883	12	.01	3	.095	4	.539	3
42			min	1.482	12	-437.036	3	-100.573	1	013	1	.005	12	503	1
43		3	max	34.698	1_	250.607	1_	-2.932	12	.01	3	.052	5	.898	3
44			min	1.482	12	-262.124	3	-71.421	1	013	1_	013	1_	843	1
45		4	max	34.698	1_	91.18	1	-1.982	12	.01	3	.028	5	1.078	3
46			min	1.482	12	-87.212	3	-42.268	1	013	1	071	1	-1.018	1
47		5	max	34.698	1	87.701	3	792	10	.01	3	.006	5	1.078	3
48			min	1.482	12	-68.246	1	-24.146	4	013	1	1	1	-1.03	1
49		6	max	34.698	1	262.613	3	16.038	1	.01	3	004	12	.898	3
50			min	-4.518	5	-227.673	1	-19.535	5	013	1	098	1	878	1
51		7	max	34.698	1	437.525	3	45.191	1	.01	3	003	12	.538	3
52			min	-15.068	5	-387.1	1	-18.065	5	013	1	067	1	562	1
53		8	max	34.698	1	612.437	3	74.344	1	.01	3	0	10	001	15
54			min	-25.619	5	-546.527	1	-16.595	5	013	1	054	4	094	2
55		9	max	34.698	1	787.349	3	103.497	1	.01	3	.086	1	.561	1
56			min	-36.169	5	-705.954	1	-15.124	5	013	1	068	5	721	3
57		10	max	56.983	4	962.262	3	132.65	1	.01	3	.207	1	1.369	1
58			min	1.482	12	-865.38	1	-80.15	14	013	1	.004	12	-1.62	3
59		11	max		4	705.954	1	-2.77	12	.013	1	.095	4	.561	1
60			min	1.482	12	-787.349	3	-103.497	1	01	3	0	3	721	3
61		12		35.882	4	546.527	1	-1.819	12	.013	1	.051	5	001	15
62		12	min	1.482	12	-612.437		-74.344	1	01	3	005	1	094	2
63		13			1	387.1	1	869	12	.013	1	.027	5	.538	3
64		13	min	1.482	12	-437.525		-45.191	1	01	3	067	1	562	1
65		14	max		1	227.673	1	.219	3	.013	1	.005	5	.898	3
66		14	min	1.482	12	-262.613	3	-24.702	4	01	3	098	1	878	1
67		15	max			68.246	1	13.115	1	.013	1	003	12	1.078	3
68		10	min	-2.676	1	-87.701	3	-19.648	5	01	3	003 1	1	-1.03	1
		16			5								_		_
69		16	max		1	87.212	3	42.268	1	.013	1	001	12	1.078	3
70		47	min	-13.226	5	-91.18	1	-18.177	5	01	3	071	1	<u>-1.018</u>	1
71		17	max	34.698	1	262.124	3	71.421	1	.013	1	.002	3	.898	3
72		4.0	min	-23.776	5	-250.607	1	-16.707	5	01	3	057	4	843	1
73		18	max		1	437.036	3	100.573	1	.013	1	.075	1	.539	3
74			min		5	-410.034		-15.237	5	01	3	07	5	503	1
75		<u> 19</u>	max	34.698	_ 1_	611.948	3	129.726	_1_	.013	_1_	.194	_1_	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-44.877	5	-569.461	1	-13.767	5	01	3	085	5	0	3
77	M15	1	max	73.517	5	719.856	2	-4.787	12	.013	1	.194	1	0	2
78			min	-36.253	1	-345.747	3	-129.72	1	009	3	.009	12	0	3
79		2	max	62.967	5	515.766	2	-3.837	12	.013	1	.13	4	.306	3
80			min	-36.253	1	-249.814	3	-100.567	1	009	3	.004	12	635	2
81		3	max	52.416	5	311.676	2	-2.886	12	.013	1	.078	5	.514	3
82			min	-36.253	1	-153.88	3	-71.414	1	009	3	013	1	-1.06	2
83		4	max	41.866	5	107.585	2	-1.936	12	.013	1	.044	5	.622	3
84			min	-36.253	1	-57.946	3	-42.261	1	009	3	071	1	-1.276	2
85		5	max	31.316	5	37.987	3	814	10	.013	1	.012	5	.633	3
86			min	-36.253	1	-96.505	2	-33.676	4	009	3	1	1	-1.281	2
87		6	max	20.765	5	133.921	3	16.044	1	.013	1	004	12	.544	3
88			min	-36.253	1	-300.596	2	-29.062	5	009	3	098	1	-1.077	2
89		7	max	10.215	5	229.855	3	45.197	1	.013	1	003	12	.357	3
90			min	-36.253	1	-504.686	2	-27.592	5	009	3	067	1	663	2
91		8	max	186	15	325.788	3	74.35	1	.013	1	0	10	.072	3
92			min	-36.253	1	-708.777	2	-26.121	5	009	3	078	4	055	1
93		9	max	-1.808	12	421.722	3	103.503	1	.013	1	.086	1	.793	2
94			min	-36.253	1	-912.867	2	-24.651	5	009	3	102	5	312	3
95		10	max	-1.808	12	517.656	3	132.656	1	.013	1	.207	1	1.837	2
96			min	-36.253	1	-1116.957	2	-84.981	14	009	3	.004	12	795	3
97		11	max	7.032	5	912.867	2	-2.816	12	.009	3	.129	4	.793	2
98			min	-36.253	1	-421.722	3	-103.503	1	013	1	0	12	312	3
99		12	max	-1.808	12	708.777	2	-1.865	12	.009	3	.075	5	.072	3
100		1-	min	-36.253	1	-325.788	3	-74.35	1	013	1	005	1	055	1
101		13	max	-1.808	12	504.686	2	915	12	.009	3	.041	5	.357	3
102		10	min	-36.253	1	-229.855	3	-45.197	1	013	1	067	1	663	2
103		14	max	-1.808	12	300.596	2	.143	3	.009	3	.009	5	.544	3
104		17	min	-36.253	1	-133.921	3	-34.244	4	013	1	098	1	-1.077	2
105		15	max	-1.808	12	96.505	2	13.108	1	.009	3	003	12	.633	3
106		10	min	-42.939	4	-37.987	3	-29.175	5	013	1	1	1	-1.281	2
107		16	max	-1.808	12	57.946	3	42.261	1	.009	3	001	12	.622	3
108		10	min	-53.49	4	-107.585	2	-27.705	5	013	1	071	1	-1.276	2
109		17	max	-1.808	12	153.88	3	71.414	1	.009	3	.002	3	.514	3
110		17	min	-64.04	4	-311.676	2	-26.235	5	013	1	082	4	-1.06	2
111		18	max	-1.808	12	249.814	3	100.567	1	.009	3	.075	1	.306	3
112		10	min	-74.59	4	-515.766	2	-24.764	5	013	1	105	5	635	2
113		19	max	-1.808	12	345.747	3	129.72	1	.009	3	.194	1	<u>033 </u>	2
114		13	min	-85.141	4	-719.856	2	-23.294	5	013	1	13	5	0	5
115	M16	1	max	73.198	5	682.899	2	-4.546	12	.013	1	.169	1	0	2
116	IVITO					-317.811				012	3		12	0	3
117		2	max		5	478.809	2	-3.595	12	.013	1	.095	4	.277	3
118					1	-221.877	3	-96.641	1	012	3	.003	12	597	2
119		3		52.097	5	274.719	2	-2.645	12	.013	1	.056	5	.456	3
120		-	min	-75.004	1	-125.943	3	-67.488	1	012	3	029	1	984	2
121		4	max	41.547	5	70.628	2	-1.695	12	.013	1	.032	5	.536	3
122		-	min	-75.004	1	-30.01	3	-38.335	1	012	3	084	1	-1.162	2
123		5	max		5	65.924	3	525	10	.013	1	.009	5	.518	3
124		- 5			_								1		2
125		G	min	-75.004 20.446	1 5	-133.462 161.858	2	<u>-23.786</u> 19.971	4	012 .013	3	108 004	12	<u>-1.129</u> .401	
126		6	max	-75.004	<u>5</u>	-337.553	3	-20.099	5	012	3	004 102	12	887	2
		7	min				2						_		
127		/	max		5	257.791	3	49.124	1	.013	1	003	12	.185	3
128		0	min	<u>-75.004</u>	1_	-541.643		-18.629	5	012	3	067	10	436	2
129		8	max	388 75.004	15	353.725	3	78.276	1	.013	1	0	10	.226	2
130		0	min	<u>-75.004</u>	12	<u>-745.734</u>	2	-17.159	5	012	3	052	4	129 1.007	3
131		9	max	-3.349	12	449.659	3	107.429	1	.013	1	.094	1	1.097	2
132			min	-75.004	1	-949.824	2	-15.688	5	012	3	068	5	542	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC		LC
133		10	max	-3.349	12	545.593	3	136.582	1	.013	1_	.219	1	2.178	2
134			min	-75.004	1_	-1153.914	2	-82.493	14	012	3	.005	12	-1.053	3
135		11	max	3.634	5	949.824	2	-3.057	12	.012	3	.097	4	1.097	2
136			min	-75.004	1	-449.659	3	-107.429	1	013	1	.001	12	542	3
137		12	max	-3.349	12	745.734	2	-2.107	12	.012	3	.051	4	.226	2
138			min	-75.004	1	-353.725	3	-78.276	1	013	1	002	3	129	3
139		13	max	-3.349	12	541.643	2	-1.156	12	.012	3	.025	5	.185	3
140			min	-75.004	1	-257.791	3	-49.124	1	013	1	067	1	436	2
141		14	max	-3.349	12	337.553	2	206	12	.012	3	.002	5	.401	3
142			min	-75.004	1	-161.858	ധ	-26.351	4	013	1	102	1	887	2
143		15	max	-3.349	12	133.462	2	9.182	1	.012	3	003	12	.518	3
144			min	-75.004	1	-65.924	3	-20.62	5	013	1	108	1	-1.129	2
145		16	max	-3.349	12	30.01	3	38.335	1	.012	3	002	12	.536	3
146			min	-75.004	1	-70.628	2	-19.15	5	013	1	084	1	-1.162	2
147		17	max	-3.349	12	125.943	3	67.488	1	.012	3	0	3	.456	3
148			min	-75.481	4	-274.719	2	-17.679	5	013	1	066	4	984	2
149		18	max		12	221.877	3	96.641	1	.012	3	.055	1	.277	3
150			min	-86.031	4	-478.809	2	-16.209	5	013	1	077	5	597	2
151		19	max		12	317.811	3	125.794	1	.012	3	.169	1	0	2
152		10	min	-96.581	4	-682.899	2	-14.739	5	013	1	093	5	0	5
153	M2	1		1167.571	1	2.335	4	1.012	1	0	3	0	3	0	1
154	IVIZ		min	-1367.164	3	.573	15	-71.214	4	0	4	0	1	0	1
155		2	max		<u> </u>	2.32	4	1.012	1	0	3	0	1	0	15
156			min	-1366.918	3	.569	15	-71.499	4	0	4	016	4	0	4
157		3	_	1168.228	<u> </u>	2.305	4	1.012	1	0	3	010 0	1	0	15
158		3		-1366.671	3	.566	15	-71.784	4	0	4	032	4	001	4
		1		1168.556					1				_		
159		4		-1366.425	<u>1</u> 3	2.29	4	1.012		0	3	0	1	0	15
160		_	_		_	.562	<u>15</u>	<u>-72.068</u>	4	0	4	048	1	002	4
161		5		1168.885	1	2.274	4	1.012	1	0	3	0004		0	15
162		6	min	-1366.179	3_	.559	15	-72.353	4	0	4	064	4	002	4
163		6		1169.213	1	2.259	4	1.012	1	0	3	.001	1	0	15
164		-		-1365.932	3	.555	15	-72.638	4	0	4	08	4	003	4
165		7		1169.542	1_	2.244	4	1.012	1	0	3	.001	1	0	15
166				-1365.686	3	.552	15	-72.923	4	0	4	096	4	003	4
167		8	max	1169.87	1_	2.229	4	1.012	1	0	3	.002	1	0	15
168				-1365.44	3	.548	15	-73.208	4	0	4	112	4	004	4
169		9		1170.199	1_	2.213	4	1.012	1	0	3	.002	1	0	15
170				-1365.193	3	.544	15	-73.493	4	0	4	128	4	004	4
171		10		1170.527	_1_	2.198	4	1.012	1_	0	3	.002	1	001	15
172				-1364.947	3	.541	15	-73.777	4	0	4	145	4	005	4
173		11		1170.855		2.183	4	1.012	1	0	3	.002	1	001	15
174				-1364.701	3_	.537	15	-74.062	4	0	4	161	4	005	4
175		12		1171.184	_1_	2.168	4	1.012	1	0	3	.002	1	001	15
176				-1364.454	3	.534	15	-74.347	4	0	4	177	4	005	4
177		13		1171.512	_1_	2.152	4	1.012	1	0	3	.003	1	001	15
178				-1364.208	3	.53	15	-74.632	4	0	4	194	4	006	4
179		14	max	1171.841	1_	2.137	4	1.012	1	0	3	.003	1	002	15
180			min	-1363.962	3	.526	15	-74.917	4	0	4	21	4	006	4
181		15		1172.169	1	2.122	4	1.012	1	0	3	.003	1	002	15
182			min	-1363.715	3	.523	15	-75.202	4	0	4	227	4	007	4
183		16	max	1172.498	1	2.107	4	1.012	1	0	3	.003	1	002	15
184				-1363.469	3	.519	15	-75.486	4	0	4	244	4	007	4
185		17		1172.826	1	2.091	4	1.012	1	0	3	.004	1	002	15
186				-1363.223	3	.516	15	-75.771	4	0	4	26	4	008	4
187		18		1173.155	1	2.076	4	1.012	1	0	3	.004	1	002	15
188				-1362.976	3	.512	15	-76.056	4	0	4	277	4	008	4
189		19		1173.483	1	2.061	4	1.012	1	0	3	.004	1	002	15
			,				-		•		<u> </u>		•	.002	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC		LC_
190			min	-1362.73	3	.509	15	-76.341	4	0	4	294	4	009	4
191	M3	1	max	406.878	2	8.107	4	.017	1	0	3	0	1	.009	4
192			min	-526.338	3	1.918	15	-1.165	5	0	4	011	4	.002	15
193		2	max		2	7.334	4	.017	1	0	3	0	1	.006	4
194				-526.466	3	1.737	15	623	5	0	4	011	4	.001	12
195		3		406.538	2	6.562	4	.024	14	0	3	0	1	.003	2
196				-526.593	3	1.555	15	081	5	0	4	012	4	0	3
197		4	max		2	5.789	4	.513	4	0	3	0	1	0	2
198		_		-526.721	3	1.374	15	.001	12	0	4	011	4	002	3
199		5			2	5.017	4	1.055	4	0	3	0	1	0	15
		1 5	max										4		
200				-526.849	3	1.192	15	.001	12	0	4	011		003	3
201		6		406.027	2	4.245	4	1.597	4	0	3	0	1	0	15
202				-526.977	3	1.01	15	.001	12	0	4	011	4	004	6
203		7	max		2	3.472	4	2.139	4	0	3	0	1	001	15
204				-527.104	3	.829	15	.001	12	0	4	01	4	006	6
205		8	max	405.686	2	2.7	4	2.681	4	0	3	0	1	002	15
206			min	-527.232	3	.647	15	.001	12	0	4	009	5	007	6
207		9	max	405.516	2	1.927	4	3.224	4	0	3	0	1	002	15
208			min	-527.36	3	.466	15	.001	12	0	4	008	5	008	6
209		10	max		2	1.155	4	3.766	4	0	3	0	1	002	15
210			min	-527.488	3	.284	15	.001	12	0	4	006	5	009	6
211		11	max		2	.446	2	4.308	4	0	3	0	1	002	15
212				-527.615	3	026	3	.001	12	0	4	004	5	009	6
213		12			2	020		4.85	4	0	3	0	1	003	15
		12	max				15		_			-			
214		40		-527.743	3	478	3	.001	12	0	4	002	5	009	6
215		13		404.834	2	261	15	5.392	4	0	3	0	1	002	15
216				-527.871	3	-1.164	6	.001	12	0	4	0	5	009	6
217		14	max		2	442	15	5.934	4	0	3	.002	4	002	15
218			min	-527.999	3	-1.936	6	.001	12	0	4	0	12	008	6
219		15	max		2	624	15	6.476	4	0	3	.005	4	002	15
220			min	-528.126	3	-2.708	6	.001	12	0	4	0	12	007	6
221		16	max	404.323	2	805	15	7.018	4	0	3	.008	4	001	15
222			min	-528.254	3	-3.481	6	.001	12	0	4	0	12	006	6
223		17	max		2	987	15	7.561	4	0	3	.011	4	0	15
224				-528.382	3	-4.253	6	.001	12	0	4	0	12	004	6
225		18		403.983	2	-1.168	15	8.103	4	0	3	.014	4	0	15
226			min		3	-5.026	6	.001	12	0	4	0	12	002	6
227		19	max		2	-1.35	15	8.645	4	0	3	.018	4	0	1
228		15	min	-528.637	3	-5.798	6	.001	12	0	4	0	12	0	1
229	NAA	1		1296.071	_ <u></u>	0	1	299	12	0	1	.009	4	0	1
230	<u>M4</u>	-		-433.167	3	0	1	-220.792		0	1	0	10	0	1
		-										_			•
231		2		1296.241	1_	0	1	299	12	0	1	0	12	0	1
232		_		-433.039	3_	0	1	-220.939		0	1_	016	4	0	1
233		3		1296.412	1_	0	1	299	12	0	1	0	12	0	1
234				-432.912	3	0	1	-221.087	4	0	1	041	4	0	1
235		4		1296.582	_1_	0	_1_	299	12	0	1_	0	12	0	1
236			min	-432.784	3	0	1	-221.234	4	0	1	067	4	0	1
237		5	max	1296.752	1_	0	1	299	12	0	1	0	12	0	1
238				-432.656	3	0	1	-221.382	4	0	1	092	4	0	1
239		6		1296.923	1	0	1	299	12	0	1	0	12	0	1
240				-432.528	3	0	1	-221.53	4	0	1	118	4	0	1
241		7		1297.093	1	0	1	299	12	0	1	0	12	0	1
242				-432.401	3	0	1	-221.677	4	0	1	143	4	0	1
243		8		1297.263	_ <u></u>	0	1	299	12	0	1	0	12	0	1
244		0					1	-221.825	_	0	1			0	1
		_		-432.273	3	0				_		169	4		
245		9		1297.434	1_	0	1	299	12	0	1	0	12	0	1
246			mın	-432.145	3	0	1_	-221.973	4	0	1	194	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	_LC_	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1297.604	1	0	1	299	12	0	1	0	12	0	1
248			min	-432.017	3	0	1	-222.12	4	0	1	22	4	0	1
249		11	max	1297.775	1	0	1	299	12	0	1	0	12	0	1
250			min	-431.89	3	0	1	-222.268	4	0	1	245	4	0	1
251		12	max	1297.945	1	0	1	299	12	0	1	0	12	0	1
252			min	-431.762	3	0	1	-222.415	4	0	1	271	4	0	1
253		13		1298.115	1	0	1	299	12	0	1	0	12	0	1
254			min		3	0	1	-222.563		0	1	296	4	0	1
255		14		1298.286	1	0	1	299	12	0	1	0	12	0	1
256		17	min	-431.506	3	0	1	-222.711	4	0	1	322	4	0	1
257		15		1298.456	1	0	1	299	12	0	1	0	12	0	1
		15													
258		40	min			0	1	-222.858		0	1	347	4	0	1
259		16		1298.626	1	0	1	299	12	0		0	12	0	1
260			min	-431.251	3	0	1	-223.006	4	0	1_	373	4	0	1
261		17		1298.797	1_	0	1	299	12	0	_1_	0	12	0	1
262			min	-431.123	3	0	1	-223.154	4	0	1_	399	4	0	1
263		18	max	1298.967	1_	0	1	299	12	0	_1_	0	12	0	1
264			min	-430.995	3	0	1	-223.301	4	0	1	424	4	0	1
265		19	max	1299.137	1	0	1	299	12	0	1	0	12	0	1
266			min	-430.868	3	0	1	-223.449	4	0	1	45	4	0	1
267	M6	1		3734.218	1	2.939	2	0	1	0	1	0	4	0	1
268			min		3	085	3	-71.83	4	0	4	0	1	0	1
269		2		3734.547	1	2.928	2	0	1	0	1	0	1	0	3
270		_	min	-4449.102	3	094	3	-72.115	4	0	4	016	4	0	2
271		3		3734.875	1	2.916	2	0	1	0	1	0	1	0	3
272		-	min	-4448.856	3	103	3	-72.4	4	0	4	032	4	001	2
		1		3735.204	-		2	0	1	_					3
273		4			1	2.904				0	1_1	0	1	0	
274		-	min	-4448.609	3	112	3	-72.685	4	0	4	048	4	002	2
275		5		3735.532	1	2.892	2	0	1	0	1	0	1	0	3
276			min	-4448.363	3	12	3	-72.97	4	0	4	064	4	003	2
277		6		3735.86	1	2.88	2	0	1	0	_1_	0	1	0	3
278			min	-4448.117	3	129	3	-73.255	4	0	4	08	4	003	2
279		7	max	3736.189	1_	2.868	2	0	1	0	_1_	0	1	0	3
280			min	-4447.87	3	138	3	-73.539	4	0	4	097	4	004	2
281		8	max	3736.517	1	2.856	2	0	1	0	1	0	1	0	3
282			min	-4447.624	3	147	3	-73.824	4	0	4	113	4	004	2
283		9	max	3736.846	1	2.844	2	0	1	0	1	0	1	0	3
284			min	-4447.378	3	156	3	-74.109	4	0	4	129	4	005	2
285		10		3737.174	1	2.832	2	0	1	0	1	0	1	0	3
286			min		3	165	3	-74.394	4	0	4	146	4	006	2
287		11	max	3737.503	1	2.821	2	0	1	0	1	0	1	0	3
288			min	-4446.885	3	174	3	-74.679	4	0	4	162	4	006	2
289		12		3737.831	1	2.809	2	0	1	0	1	0	1	0	3
290		14	min		3	183	3	-74.964	4	0	4	179	4	007	2
291		40							1	_	_ 4 _		_		
		13		3738.159	1	2.797	2	75 249	_	0		105	1	0	3
292		4.4	min		3	192	3	-75.248	4	0	4	195	4	008	2
293		14		3738.488	1	2.785	2	0	1	0	1	0	1	0	3
294			min		3	201	3	-75.533	4	0	4_	212	4	008	2
295		15		3738.816	1	2.773	2	0	1	0	_1_	0	1	0	3
296			min		3	21	3	-75.818	4	0	4	229	4	009	2
297		16	max	3739.145	1	2.761	2	0	1	0	_1_	0	1	0	3
298			min	-4445.654	3	219	3	-76.103	4	0	4	246	4	009	2
299		17	max	3739.473	1	2.749	2	0	1	0	1	0	1	0	3
300			min		3	228	3	-76.388	4	0	4	263	4	01	2
301		18		3739.802	1	2.737	2	0	1	0	1	0	1	0	3
302			min		3	236	3	-76.673	4	0	4	28	4	011	2
303		19		3740.13	1	2.725	2	0	1	0	1	0	1	0	3
		10	πιαλ	U1 TU. IU		2.120				·					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4444.915	3	245	3	-76.957	4	0	4	297	4	011	2
305	M7	1	max	1526.181	2	8.115	6	0	1	0	_1_	0	_1_	.011	2
306			min	-1652.367	3	1.904	15	-1.235	5	0	4	011	4	0	3
307		2	max	1526.01	2	7.342	6	0	1	0	1	0	1	.009	2
308			min	-1652.495	3	1.723	15	693	5	0	4	012	4	002	3
309		3	max	1525.84	2	6.57	6	0	1	0	1	0	1	.006	2
310			min	-1652.623	3	1.541	15	151	5	0	4	012	4	004	3
311		4	max	1525.67	2	5.798	6	.435	4	0	1	0	1	.004	2
312			min	-1652.75	3	1.36	15	0	1	0	4	012	4	005	3
313		5	max	1525.499	2	5.025	6	.977	4	0	1	0	1	.002	2
314			min	-1652.878	3	1.178	15	0	1	0	4	011	4	006	3
315		6	max	1525.329	2	4.253	6	1.519	4	0	1	0	1	0	2
316			min	-1653.006	3	.996	15	0	1	0	4	011	4	007	3
317		7	max	1525.159	2	3.48	6	2.061	4	0	1	0	1	001	15
318			min	-1653.134	3	.815	15	0	1	0	4	01	4	007	3
319		8	max	1524.988	2	2.708	6	2.603	4	0	1	0	1	002	15
320			min	-1653.262	3	.594	12	0	1	0	4	009	4	008	3
321		9	max		2	2.09	2	3.145	4	0	1	0	1	002	15
322			min	-1653.389	3	.293	12	0	1	0	4	008	4	008	4
323		10	max		2	1.488	2	3.687	4	0	1	0	1	002	15
324		1.0	min	-1653.517	3	087	3	0	1	0	4	006	4	009	4
325		11		1524.477	2	.886	2	4.229	4	0	1	0	1	002	15
326			min	-1653.645	3	538	3	0	1	0	4	005	4	009	4
327		12		1524.307	2	.284	2	4.772	4	0	1	0	1	002	15
328		12	min	-1653.773	3	99	3	0	1	0	4	003	5	002	4
329		13		1524.137	2	275	15	5.314	4	0	1	0	1	002	15
330		13	min	-1653.9	3	-1.441	3	0	1	0	4	0	5	002	4
331		14	max		2	456	15	5.856	4	0	1	.002	4	002	15
332		14		-1654.028	3			0.000	1		4	0	1		
		15	min		_	-1.927	4			0		-		008	4
333 334		15	max min	1523.796 -1654.156	3	638 -2.699	1 <u>5</u>	6.398	4	0	4	.004	4	002 007	15
		16		1523.626						0		_			
335		16			2	819	15	6.94	4	0	1_1	.007	4	001	15
336		47	min	-1654.284	3_	-3.472	4	7 400		0	4	0	1_4	006	4
337		17		1523.455	2	-1.001	15	7.482	4	0	1	.01	4	0	15
338		40	min	-1654.411	3	-4.244	4	0 004	1	0	4	0	1	004	4
339		18	max		2	-1.182	15	8.024	4	0	11	.013	4	0	15
340		40	min	-1654.539	3	<u>-5.016</u>	4	0	1	0	4	0	1	002	4
341		19	max		2	-1.364	15	8.566	4	0	1	.017	4	0	1
342	140		min	-1654.667	3	-5.789	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1		3837.269	1_	0	1	0	1	0	1_	.009	4	0	1
344			mın		3	0	1	-216.015		0	1	0	1	0	1
345		2	max		1_	0	1	0	1	0	1	0	1	0	1
346			min	-1454.169	3_	0	1	-216.162		0	1_	016	4	0	1
347		3		3837.61	_1_	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-216.31	4	0	1	041	4	0	1
349		4		3837.78	_1_	0	1	0	1	0	1	0	1	0	1
350			min	-1453.914	3	0	1	-216.457	4	0	1	066	4	0	1
351		5		3837.951	1_	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-216.605		0	1	09	4	0	1
353		6		3838.121	1_	0	1	0	1_	0	1	0	1	0	1
354			min		3	0	1	-216.753		0	1	115	4	0	1
355		7		3838.291	_1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-216.9	4	0	1	14	4	0	1
357		8		3838.462	1_	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-217.048	4	0	1	165	4	0	1
359		9	max	3838.632	_1_	0	1	0	1	0	1	0	1	0	1
360			min	-1453.275	3	0	1	-217.196	4	0	1	19	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
361		10		3838.802	1_	0	1	0	1_	0	1_	0	1	0	1
362			min	-1453.147	3	0	1	-217.343	4	0	1	215	4	0	1
363		11	max	3838.973	1	0	1	0	1	0	1	0	1	0	1
364			min	-1453.019	3	0	1	-217.491	4	0	1	24	4	0	1
365		12	max	3839.143	1	0	1	0	1	0	1	0	1	0	1
366			min	-1452.892	3	0	1	-217.639	4	0	1	265	4	0	1
367		13	max	3839.314	1	0	1	0	1	0	1	0	1	0	1
368			min	-1452.764	3	0	1	-217.786	4	0	1	29	4	0	1
369		14	max	3839.484	1	0	1	0	1	0	1	0	1	0	1
370			min	-1452.636	3	0	1	-217.934	4	0	1	315	4	0	1
371		15	max	3839.654	1	0	1	0	1	0	1	0	1	0	1
372			min	-1452.508	3	0	1	-218.081	4	0	1	34	4	0	1
373		16	max	3839.825	1	0	1	0	1	0	1	0	1	0	1
374			min	-1452.38	3	0	1	-218.229	4	0	1	365	4	0	1
375		17	max	3839.995	1	0	1	0	1	0	1	0	1	0	1
376			min	-1452.253	3	0	1	-218.377	4	0	1	39	4	0	1
377		18	max	3840.165	1	0	1	0	1	0	1	0	1	0	1
378			min	-1452.125	3	0	1	-218.524	4	0	1	415	4	0	1
379		19	max	3840.336	1	0	1	0	1	0	1	0	1	0	1
380			min	-1451.997	3	0	1	-218.672	4	0	1	44	4	0	1
381	M10	1	max	1167.571	1	2.229	6	045	12	0	1	0	1	0	1
382			min	-1367.164	3	.502	15	-71.724	4	0	5	0	3	0	1
383		2	max	1167.9	1	2.214	6	045	12	0	1	0	10	0	15
384			min	-1366.918	3	.498	15	-72.009	4	0	5	016	4	0	6
385		3	max	1168.228	1	2.199	6	045	12	0	1	0	10	0	15
386				-1366.671	3	.494	15	-72.293	4	0	5	032	4	0	6
387		4	max	1168.556	1	2.183	6	045	12	0	1	0	12	0	15
388				-1366.425	3	.491	15	-72.578	4	0	5	048	4	001	6
389		5	max	1168.885	1	2.168	6	045	12	0	1	0	12	0	15
390			min	-1366.179	3	.487	15	-72.863	4	0	5	064	4	002	6
391		6	max	1169.213	1	2.153	6	045	12	0	1	0	12	0	15
392				-1365.932	3	.484	15	-73.148	4	0	5	08	4	002	6
393		7	max	1169.542	1	2.138	6	045	12	0	1	0	12	0	15
394			min	-1365.686	3	.48	15	-73.433	4	0	5	096	4	003	6
395		8	max	1169.87	1	2.122	6	045	12	0	1	0	12	0	15
396			min	-1365.44	3	.477	15	-73.718	4	0	5	113	4	003	6
397		9		1170.199	1	2.107	6	045	12	0	1	0	12	0	15
398				-1365.193	3	.473	15	-74.002	4	0	5	129	4	004	6
399		10	max	1170.527	1	2.092	6	045	12	0	1	0	12	0	15
400			min	-1364.947	3	.469	15	-74.287	4	0	5	146	4	004	6
401		11		1170.855	1	2.077	6	045	12	0	1	0	12	001	15
402				-1364.701	3	.466	15	-74.572	4	0	5	162	4	005	6
403		12	_	1171.184	1	2.061	6	045	12	0	1	0	12	001	15
404				-1364.454	3	.462	15	-74.857	4	0	5	179	4	005	6
405		13		1171.512	1	2.046	6	045	12	0	1	0	12	001	15
406				-1364.208	3	.459	15	-75.142	4	0	5	195	4	006	6
407		14		1171.841	1	2.031	6	045	12	0	1	0	12	001	15
408				-1363.962	3	.455	15	-75.427	4	0	5	212	4	006	6
409		15		1172.169	1	2.016	6	045	12	0	1	0	12	001	15
410				-1363.715	3	.451	15	-75.711	4	0	5	229	4	007	6
411		16		1172.498	1	2	6	045	12	0	1	0	12	002	15
412				-1363.469	3	.448	15	-75.996	4	0	5	245	4	007	6
413		17		1172.826	1	1.985	6	045	12	0	1	0	12	002	15
414				-1363.223	3	.444	15	-76.281	4	0	5	262	4	007	6
415		18		1173.155	1	1.97	6	045	12	0	1	0	12	002	15
416		'		-1362.976	3	.441	15	-76.566	4	0	5	279	4	008	6
417		19		1173.483	1	1.955	6	045	12	0	1	0	12	002	15
TII		10	παλ	1110.700		1.000		.070	14				14	.002	_ 10_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	
418			min	-1362.73	3	.437	15	-76.851	4	0	5	296	4	008	6
419	M11	1	max	406.878	2	8.051	6	001	12	0	1	0	12	.008	6
420			min	-526.338	3	1.881	15	-1.166	5	0	4	011	4	.002	15
421		2	max	406.708	2	7.278	6	001	12	0	1	0	12	.005	2
422			min	-526.466	3	1.699	15	624	5	0	4	011	4	.001	12
423		3	max		2	6.506	6	.006	14	0	1	0	12	.003	2
424			min	-526.593	3	1.518	15	082	5	0	4	012	4	0	3
425		4	max		2	5.734	6	.505	4	0	1	0	12	0	2
426			min	-526.721	3	1.336	15	017	1	0	4	012	4	002	3
427		5	max		2	4.961	2 6	1.047	4	0	1	0	12	0	15
428		-	min	-526.849	3	1.154	15	017	1	0	4	011	4	003	3
429		6			2	4.189			4		1	0	12	003 001	15
		6	max				6	1.589		0					
430		-	min		3	.973	15	017	1_	0	4	011	4	005	4
431		7	max		2	3.416	6	2.131	4	0	1	0	12	002	15
432			min	-527.104	3	.791	15	017	1	0	4	01	4	006	4
433		8	max		2	2.644	6	2.673	4	0	1	0	12	002	15
434			min	-527.232	3	.61	15	017	1	0	4	009	4	007	4
435		9	max		2	1.872	6	3.215	4	0	1	0	12	002	15
436			min	-527.36	3	.428	15	017	1	0	4	008	4	008	4
437		10	max		2	1.099	6	3.758	4	0	1	0	12	002	15
438			min	-527.488	3	.247	15	017	1	0	4	006	4	009	4
439		11	max	405.175	2	.446	2	4.3	4	0	1	0	12	002	15
440			min	-527.615	3	026	3	017	1	0	4	004	4	009	4
441		12	max		2	117	15	4.842	4	0	1	0	12	002	15
442			min	-527.743	3	478	3	017	1	0	4	003	4	009	4
443		13	max		2	298	15	5.384	4	Ö	1	0	12	002	15
444		10	min		3	-1.219	4	017	1	0	4	0	5	009	4
445		14	max		2	48	15	5.926	4	0	1	.002	4	002	15
446		17	min	-527.999	3	-1.992	4	017	1	0	4	0	1	008	4
447		15	max		2	661	15	6.468	4	0	1	.005	4	002	15
448		15	min	-528.126	3	-2.764	4	017	1	0	4	0	1	002	4
		16							-		1				
449		16	max		2	843	15	7.01	4	0		.007	4	001	15
450		47	min		3	-3.537	4	017	1_	0	4	0	1	006	4
451		17	max		2	-1.024	15	7.552	4	0	1	.011	4	001	15
452		1.0	min	-528.382	3	-4.309	4	017	1	0	4	0	1	004	4
453		18	max		2	-1.206	15	8.095	4	0	1	.014	4	0	15
454			min	-528.51	3	-5.081	4	017	1	0	4	0	1	002	4
455		19	max		2	-1.388	15	8.637	4	0	1	.017	4	0	1
456			min	-528.637	3	-5.854	4	017	1	0	4	0	1	0	1
457	M12	1		1296.071	1	0	1	6.788	1	0	1	.009	4	0	1
458			min	-433.167	3	0	1	-217.362	4	0	1	0	1	0	1
459		2	max	1296.241	1	0	1	6.788	1	0	1	0	1	0	1
460			min	-433.039	3	0	1	-217.51	4	0	1	016	4	0	1
461		3	max	1296.412	1	0	1	6.788	1	0	1	.001	1	0	1
462			min	-432.912	3	0	1	-217.657	4	0	1	041	4	0	1
463		4	max	1296.582	1	0	1	6.788	1	0	1	.002	1	0	1
464				-432.784	3	0	1	-217.805	4	0	1	066	4	0	1
465		5		1296.752	1	0	1	6.788	1	0	1	.003	1	0	1
466			min	-432.656	3	0	1	-217.952	4	0	1	091	4	0	1
467		6		1296.923	1	0	1	6.788	1	0	1	.004	1	0	1
468			min		3	0	1	-218.1	4	0	1	116	4	0	1
469		7		1297.093	1		1	6.788	1		1	.005	1		_
		1				0	1			0	1			0	1
470		0			3	0	•	-218.248		0		141	4	0	
471		8		1297.263	1	0	1	6.788	1	0	1	.005	1	0	1
472			min	-432.273	3	0	1_	-218.395	4	0	1_	166	4	0	1
473		9		1297.434	1	0	1	6.788	1	0	1	.006	1	0	1
474			min	-432.145	3	0	1	-218.543	4	0	1	191	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1297.604	_1_	0	1	6.788	1	0	_1_	.007	_1_	0	1
476			min	-432.017	3	0	1	-218.691	4	0	_1_	216	4	0	1
477		11	max	1297.775	_1_	0	1	6.788	1	0	_1_	.008	_1_	0	1
478			min	-431.89	3	0	1	-218.838	4	0	1	241	4	0	1
479		12		1297.945	_1_	0	1_	6.788	1	0	_1_	.008	_1_	0	1
480			min	-431.762	3	0	1	-218.986	4	0	1_	266	4	0	1
481		13	max	1298.115	<u>1</u>	0	1	6.788	1	0	_1_	.009	_1_	0	1_
482			min	-431.634	3	0	1	-219.134	4	0	1_	292	4	0	1
483		14	max	1298.286	_1_	0	1	6.788	1	0	_1_	.01	1_	0	1
484			min	-431.506	3	0	1	-219.281	4	0	1	317	4	0	1
485		15	max	1298.456	1	0	1	6.788	1	0	1	.011	1	0	1
486			min	-431.379	3	0	1	-219.429	4	0	1	342	4	0	1
487		16	max	1298.626	1	0	1	6.788	1	0	1	.012	1	0	1
488			min	-431.251	3	0	1	-219.576	4	0	1	367	4	0	1
489		17	max	1298.797	1	0	1	6.788	1	0	1	.012	1	0	1
490			min	-431.123	3	0	1	-219.724	4	0	1	392	4	0	1
491		18	max	1298.967	1	0	1	6.788	1	0	1	.013	1	0	1
492			min	-430.995	3	0	1	-219.872	4	0	1	418	4	0	1
493		19	max	1299.137	1	0	1	6.788	1	0	1	.014	1	0	1
494			min	-430.868	3	0	1	-220.019	4	0	1	443	4	0	1
495	M1	1	max		1	767.773	3	51.948	5	0	1	.168	1	0	3
496			min	-6.912	5	-529.605	1	-70.883	1	0	3	055	5	016	2
497		2	max	125.957	1	766.736	3	53.189	5	0	1	.131	1	.265	1
498			min	-6.739	5	-530.989	1	-70.883	1	0	3	027	5	404	3
499		3	max	314.212	3	603.235	1	-3.375	12	0	3	.094	1	.532	1
500			min	-190.909	2	-568.848	3	-70.043	1	0	1	0	15	792	3
501		4	max	314.49	3	601.851	1	-3.375	12	0	3	.057	1	.214	1
502			min	-190.538	2	-569.885	3	-70.043	1	0	1	008	5	492	3
503		5	max		3	600.467	1	-3.375	12	0	3	.02	1	004	15
504			min	-190.168	2	-570.923	3	-70.043	1	0	1	015	5	191	3
505		6	max	315.046	3	599.084	1	-3.375	12	0	3	0	12	.111	3
506			min	-189.797	2	-571.961	3	-70.043	1	0	1	025	4	427	2
507		7	max	315.324	3	597.7	1	-3.375	12	0	3	003	12	.413	3
508			min	-189.426	2	-572.998	3	-70.043	1	0	1	054	1	736	1
509		8	max	315.602	3	596.317	1	-3.375	12	0	3	004	12	.715	3
510		0	min	-189.055	2	-574.036	3	-70.043	1	0	1	004	1	-1.051	1
511		9	max	323.227	3	51.317	2	36.868	5	0	9	.055	1	.834	3
512		9	min	-139.073	2	.417	15	-104.764	1	0	3	108	5	-1.198	1
513		10			3	49.933	2	38.109	5	0	9	0	10	.814	3
514		10	max min	-138.702	2		5	-104.764	1	0	3	088	4	-1.212	1
		11		323.783		19.540	_			_	_		_		_
515		11			3	48.549 -1.74	2	39.351 -104.764	<u>5</u>	0	<u>9</u> 3	003 079	<u>12</u>	.794 -1.226	2
516		12	min		2		3		5		2	.09	4		
517		12	max		3	384.146		117.851	1	0			1	.693	3
518		40	min		2	-671.786	2	-68.532		0	3	16	5	-1.087	2
519		13			3	383.108	3	119.092	5	0	2	.054	1	.49	3
520		4.4	min		2	-673.17	2	-68.532	1	0	3	097	5	739	1
521		14		331.888	3_	382.071	3	120.334	5	0	2	.018	1_	.288	3
522		4.5	min	-87.578	2	-674.554	2	-68.532	1	0	3	034	5_	394	1
523		15		332.166	3	381.033	3	121.575	5	0	2	.03	5	.087	3
524		4.0	min	-87.207	2	-675.937	2	-68.532	1	0	3	018	<u>1</u>	049	1
525		16	max		3_	379.995	3	122.817	5	0	2	.094	5	.337	2
526			min	-86.837	2_	-677.321	2	-68.532	1_	0	3	054	<u>1</u>	114	3
527		17	max		3_	378.958	3	124.058	5	0	2	.159	5	.695	2
528			min		2	-678.704	2	-68.532	1	0	3	091	1_	314	3
529		18	max		5	684.694	2	-3.349	12	0	5_	.136	_5_	.349	2
530				-126.162	1_	-316.817	3	-97.853	4	0	2	13	1	155	3
531		19	max	14.738	5	683.31	2	-3.349	12	0	5	.093	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
532			min	-125.791	1	-317.854	3	-96.611	4	0	2	169	1	013	1
533	M5	1	max	273.579	1	2560.505	3	78.828	5	0	1	0	1	.032	2
534			min	7.704	12	-1801.315	1	0	1	0	4	12	4	001	3
535		2	max	273.95	1	2559.468	3	80.069	5	0	1	0	1_	.981	1
536			min	7.89	12	-1802.699	1	0	1	0	4	079	4	-1.352	3
537		3	max	1005.123	3	1812.646	1	13.865	4	0	4	0	1	1.889	1
538			min	-661.981	2	-1798.261	3	0	1	0	1	037	4	-2.65	3
539		4	max	1005.401	3	1811.262	1	15.107	4	0	4	0	1	.933	1
540			min	-661.61	2	-1799.299	3	0	1	0	1	03	4	-1.701	3
541		5	max	1005.679	3	1809.879	1	16.348	4	0	4	0	1_	.019	9
542			min	-661.239	2	-1800.337	3	0	1	0	1	021	4	751	3
543		6	max	1005.957	3	1808.495	1	17.59	4	0	4	0	1	.199	3
544			min	-660.868	2	-1801.374	3	0	1	0	1	013	5	998	2
545		7	max	1006.235	3	1807.111	1	18.831	4	0	4	0	1_	1.15	3
546			min	-660.498	2	-1802.412	3	0	1	0	1	004	5	-1.931	1
547		8	max	1006.513	3	1805.728	1	20.072	4	0	4	.007	4	2.101	3
548			min	-660.127	2	-1803.45	3	0	1	0	1	0	1	-2.884	1
549		9	max	1017.757	3	172.013	2	118.063	4	0	1	0	1	2.416	3
550			min	-556.006	2	.417	15	0	1	0	1	142	4	-3.267	1
551		10	max	1018.035	3	170.63	2	119.304	4	0	1	0	1	2.343	3
552			min	-555.636	2	0	15	0	1	0	1	079	5	-3.314	1
553		11	max	1018.313	3	169.246	2	120.546	4	0	_1_	0	1	2.271	3
554			min	-555.265	2	-1.628	6	0	1	0	1	017	5	-3.367	2
555		12	max	1029.708	3	1193.046	3	160.184	4	0	1	0	1	1.994	3
556			min	-451.202	2	-2052.465	2	0	1	0	4	221	4	-3.015	2
557		13	max	1029.986	3	1192.009	3	161.425	4	0	1	0	1	1.364	3
558			min	-450.831	2	-2053.849	2	0	1	0	4	136	4	-1.949	1
559		14	max	1030.264	3	1190.971	3	162.667	4	0	1	0	1	.736	3
560			min	-450.46	2	-2055.232	2	0	1	0	4	051	4	9	1
561		15		1030.542	3	1189.933	3	163.908	4	0	1	.035	4	.238	2
562			min	-450.089	2	-2056.616	2	0	1	0	4	0	1	003	13
563		16	max		3	1188.895	3	165.15	4	0	1	.122	4	1.323	2
564			min	-449.719	2	-2058	2	0	1	0	4	0	1	52	3
565		17	max	1031.098	3	1187.858	3	166.391	4	0	1	.21	4	2.41	2
566			min	-449.348	2	-2059.383	2	0	1	0	4	0	1	-1.147	3
567		18	max	-8.2	12	2311.425	2	0	1	0	4	.21	4	1.242	2
568			min	-273.54	1	-1090.372	3	-37.215	5	0	1	0	1	6	3
569		19	max	-8.014	12	2310.042	2	0	1	0	4	.191	4	.026	1
570			min	-273.169	1	-1091.41	3	-35.974	5	0	1	0	1	024	3
571	<u>M9</u>	1_	max		1_	767.773	3	73.984	4	0	3	008	12	0	3
572			min	4.701	12	-529.605	1	3.423	12	0	4	168	1	016	2
573		2	max		1	766.736	3	75.226	4	0	3	006	12	.265	1
574			min	4.886	12	-530.989	1	3.423	12	0	4	131	1	404	3
575		3	max		3	603.235	1	70.043	1	0	1	005	12	.532	1
576			min	-190.909	2	-568.848	3	-8.287	5	0	3	094	1	792	3
577		4	max		3	601.851	1	70.043	1	0	1	003	12	.214	1
578			min		2	-569.885	3	-7.045	5	0	3	057	1	492	3
579		5		314.768	3	600.467	1	70.043	1	0	1	0	12	004	15
580			min	-190.168	2	-570.923	3	-5.804	5	0	3	021	4	191	3
581		6	max		3	599.084	1	70.043	1	0	1	.017	1	.111	3
582			min		2	-571.961	3	-4.562	5	0	3	02	5	427	2
583		7		315.324	3	597.7	1	70.043	1	0	1	.054	1	.413	3
584				-189.426	2	-572.998		-3.321	5	0	3	022	5	736	1
585		8	max		3	596.317	1	70.043	1	0	1	.091	1	.715	3
586			min		2	-574.036	3	-2.08	5	0	3	023	5	-1.051	1
587		9		323.227	3	51.317	2	104.764	1	0	3	002	12	.834	3
588			min	-139.073	2	.422	15	4.855	12	0	9	125	4	-1.198	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	323.505	3	49.933	2	104.764	1	0	3	0	1	.814	3
590			min	-138.702	2	.005	15	4.855	12	0	9	088	4	-1.212	1
591		11	max	323.783	3	48.549	2	104.764	1	0	3	.056	1	.794	3
592			min	-138.331	2	-1.701	6	4.855	12	0	9	062	5	-1.226	2
593		12	max	331.332	3	384.146	3	140.056	4	0	3	004	12	.693	3
594			min	-88.32	2	-671.786	2	3.049	12	0	2	189	4	-1.087	2
595		13	max	331.61	3	383.108	3	141.297	4	0	3	002	12	.49	3
596			min	-87.949	2	-673.17	2	3.049	12	0	2	114	4	739	1
597		14	max	331.888	3	382.071	3	142.539	4	0	3	0	12	.288	3
598			min	-87.578	2	-674.554	2	3.049	12	0	2	04	4	394	1
599		15	max	332.166	3	381.033	3	143.78	4	0	3	.036	4	.087	3
600			min	-87.207	2	-675.937	2	3.049	12	0	2	0	12	049	1
601		16	max	332.444	3	379.995	3	145.022	4	0	3	.112	4	.337	2
602			min	-86.837	2	-677.321	2	3.049	12	0	2	.002	12	114	3
603		17	max	332.722	3	378.958	3	146.263	4	0	3	.189	4	.695	2
604			min	-86.466	2	-678.704	2	3.049	12	0	2	.004	12	314	3
605		18	max	-4.731	12	684.694	2	75.063	1	0	2	.177	4	.349	2
606			min	-126.162	1	-316.817	3	-74.512	5	0	3	.006	12	155	3
607		19	max	-4.546	12	683.31	2	75.063	1	0	2	.169	1	.012	3
608			min	-125.791	1	-317.854	3	-73.27	5	0	3	.007	12	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.127	2	.006	3	1.021e-2	2	NC	1	NC	1
2			min	428	4	029	3	003	2	-2.243e-3	3	NC	1	NC	1
3		2	max	0	1	.257	3	.024	1	1.163e-2	2	NC	5	NC	2
4			min	428	4	051	1	01	5	-2.305e-3	3	776.078	3	9736.598	1
5		3	max	0	1	.488	3	.056	1	1.306e-2	2	NC	5	NC	2
6			min	428	4	189	1	013	5	-2.366e-3	3	429.071	3	4024.268	1
7		4	max	0	1	.628	3	.084	1	1.449e-2	2	NC	5	NC	3
8			min	428	4	265	1	009	5	-2.428e-3	3	337.75	3	2677.131	1
9		5	max	0	1	.659	3	.098	1	1.591e-2	2	NC	5	NC	3
10			min	428	4	266	1	002	5	-2.49e-3	3	322.394	3	2289.712	1
11		6	max	0	1	.584	3	.094	1	1.734e-2	2	NC	5	NC	3
12			min	428	4	195	1	.003	15	-2.552e-3	3	361.685	3	2382.448	
13		7	max	0	1	.426	3	.074	1	1.877e-2	2	NC	5	NC	3
14			min	428	4	068	1	.001	10	-2.614e-3	3	487.965	3	3058.993	1
15		8	max	0	1	.224	3	.042	1	2.019e-2	2	NC	2	NC	2
16			min	428	4	.002	15	002	10	-2.676e-3	3	874.87	3	5395.329	1
17		9	max	0	1	.235	2	.018	3	2.162e-2	2	NC	4	NC	1
18			min	428	4	.005	15	006	10	-2.737e-3	3	2049.063	2	NC	1
19		10	max	0	1	.29	2	.017	3	2.305e-2	2	NC	3	NC	1
20			min	428	4	04	3	011	2	-2.799e-3	3	1361.355	2	NC	1
21		11	max	0	12	.235	2	.018	3	2.162e-2	2	NC	4	NC	1
22			min	428	4	.005	15	008	5	-2.737e-3	3	2049.063	2	NC	1
23		12	max	0	12	.224	3	.042	1	2.019e-2	2	NC	2	NC	2
24			min	428	4	.002	15	008	5	-2.676e-3	3	874.87	3	5395.329	1
25		13	max	0	12	.426	3	.074	1	1.877e-2	2	NC	5	NC	3
26			min	428	4	068	1	003	5	-2.614e-3	3	487.965	3	3058.993	1
27		14	max	0	12	.584	3	.094	1	1.734e-2	2	NC	5	NC	3
28			min	428	4	195	1	.003	15	-2.552e-3	3	361.685	3	2382.448	1
29		15	max	0	12	.659	3	.098	1	1.591e-2	2	NC	5	NC	3
30			min	428	4	266	1	.005	10	-2.49e-3	3	322.394	3	2289.712	1
31		16	max	0	12	.628	3	.084	1	1.449e-2	2	NC	5	NC	3
32			min	428	4	265	1	.004	10	-2.428e-3	3	337.75	3	2677.131	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.488	3	.056	1	1.306e-2	2	NC	5	NC	2
34			min	428	4	189	1	.002	10	-2.366e-3	3	429.071	3	4024.268	
35		18	max	0	12	.257	3	.024	1	1.163e-2	2	NC	5	NC	2
36			min	428	4	051	1	0		-2.305e-3	3	776.078	3	9736.598	
37		19	max	0	12	.127	2	.006	3	1.021e-2	2	NC	1	NC	1
38		4	min	428	4	029	3	003	2	-2.243e-3	3	NC	1	NC	1
39	M14	1_	max	0	1	.248	3	.005	3	6.057e-3	1_	NC	1	NC NC	1
40			min	345	4	394	1	002	2	-4.442e-3	3	NC NC	1	NC NC	1
41		2	max	0	1	.544	3	.016	1	7.223e-3	1	NC 74.5.770	5	NC	1
42		1	min	345	4	704	1	015	5	-5.37e-3	3	715.773	1	NC NC	1
43		3	max	0	1	.795	3	.045	1	8.389e-3	1_	NC 202.040	5	NC FOOD OO	2
44		1	min	345	4	973	1	018	5	-6.297e-3	3	383.248	1_	5080.22	1
45		4	max	0	1	.973	3	.071	1	9.555e-3	1_	NC OOF OOG	15	NC 0454.044	3
46		-	min	<u>345</u>	4	<u>-1.173</u>	1	013	5	-7.225e-3	3	285.032	1	3154.941	1
47		5	max	0	1	1.062	3	.087	1	1.072e-2	1_	NC	15	NC OFFICE OFFI	3
48			min	345	4	-1.288	1	002	5	-8.152e-3	3	248.259	1_	2598.259	
49		6	max	0	1	1.061	3	.085	1	1.189e-2	1_	NC	15	NC	3
50		-	min	<u>345</u>	4	<u>-1.319</u>	1	.003	10		3	240.161	1_	2638.669	
51		7	max	0	1	.987	3	.068	1	1.305e-2	1_	NC	15	NC	2
52			min	<u>345</u>	4	<u>-1.276</u>	1	.001	10	-1.001e-2	3	251.682	1_	3328.67	1
53		8	max	0	1	.869	3	.04	1	1.422e-2	1_	NC	15	NC STREET	2
54			min	<u>345</u>	4	<u>-1.188</u>	1	002	10	-1.094e-2	3	279.682	1_	5778.022	1
55		9	max	0	1	.752	3	.021	4	1.538e-2	1_	NC	15	NC NC	1
56		4.0	min	<u>345</u>	4	-1.094	1	005		-1.186e-2	3	317.287	1	NC NC	1
57		10	max	0	1	.696	3	.016	3	1.655e-2	1_	NC 200 550	5	NC NC	1
58		1.4	min	345	4	<u>-1.048</u>	1	01	2	-1.279e-2	3	339.559	1_	NC	1
59		11	max	0	12	.752	3	.016	3	1.538e-2	1	NC	15	NC	1
60		1.0	min	<u>345</u>	4	<u>-1.094</u>	1	015	5	-1.186e-2	3	317.287	1_	NC NC	1
61		12	max	0	12	.869	3	.04	1	1.422e-2	1_	NC	15	NC STREET	2
62		40	min	345	4	-1.188	1	018	5	-1.094e-2	3	279.682	1_	5778.022	1
63		13	max	0	12	.987	3	.068	1	1.305e-2	1_	NC 054,000	15	NC	2
64		4.4	min	345	4	-1.276	1	011	5	-1.001e-2	3	251.682	1_	3328.67	1
65		14	max	0	12	1.061	3	.085	1	1.189e-2	1_	NC 040.404	15	NC	3
66		4.5	min	345	4	-1.319	1	0	5	-9.08e-3	3	240.161	1_	2638.669	
67		15	max	0	12	1.062	3	.087	1	1.072e-2	1_	NC 040.050	15	NC OFFICE OFFI	3
68		10	min	345	4	-1.288	1	.004		-8.152e-3	3	248.259	1_	2598.259	
69		16	max	0	12	.973	3	.071	1	9.555e-3	1_	NC OOF OOG	15	NC 0454 044	3
70		47	min	345	4	<u>-1.173</u>	1	.003		-7.225e-3	3	285.032	1	3154.941	1
71		17	max	0	12	.795	3	.045	1	8.389e-3	1_	NC 000,040	5	NC 5000.00	2
72		40	min	345	4	973	1	.002	10	-6.297e-3	3	383.248	1	5080.22	1
73		18	max	0	12	.544	3	.021			1	NC	5		1
74		10	min	345	4	704	1	0	10	-5.37e-3	3	715.773	1	NC NC	1
75		19		0	12	.248	3	.005	3	6.057e-3	1_	NC	1	NC NC	1
76	N45	-	min	345	4	394	1	002	2	-4.442e-3	3	NC	1	NC NC	1
77	M15	1	max	0	12	.254	3	.005	3	3.778e-3	3_	NC NC	1	NC NC	1
78			min	293	4	394	1	002	2	-6.179e-3	1_	NC NC	1	NC NC	1
79		2	max	0	12	.451	3	.016	1	4.567e-3	3	NC COZ ZOC	5	NC 0404.45	1
80		_	min	293	4	7 <u>55</u>	2	023	5	-7.373e-3	1_	607.786	2	9124.15	5
81		3	max	0	12	.623	3	.045	1	5.356e-3	3	NC 227.007	5	NC FOCO O44	2
82		4	min	293	4	<u>-1.069</u>	2	029	5	-8.567e-3	1_	327.067	2	5063.914	
83		4	max	0	12	.753	3	.072	1	6.145e-3	3	NC 245 242	15	NC	3
84		-	min	293	4	-1.295	2	021	5	-9.761e-3	1_	245.343	2	3146.343	
85		5	max	0	12	.832	3	.087	1	6.934e-3	3	NC 24C 402	15	NC	3
86			min	293	4	<u>-1.416</u>	2	006	5	-1.095e-2	1_	216.483		2591.197	
87		6	max	0	12	.858	3	.085	1	7.723e-3	3	NC 242,425	15	NC	3
88		-	min	293	4	-1.43	2	.004		-1.215e-2	1	213.425	2	2630.429	
89		7	max	00	12	.839	3	.068	1	8.512e-3	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
93	90			min	293	4	-1.356	2	.001	10 -1.334e-2	1_	229.806	2_	3314.482	
94			8												
94															
96			9		-										
96			10								_		•		
98			10												
98			11												
99					_										
101			12					-			_				
101			12												1
102			13												2
103			10							5 -1 334e-2					-
104			14												
105					-										1
106			15												3
107						4									
108			16			1					3				3
109					293	4					1				
110			17			1		3			3	NC	5		
112				min	293	4					1		2		1
113	111		18	max	0	1	.451	3	.029		3	NC	5	NC	1
114	112			min	293	4	755	2	0	10 -7.373e-3	1	607.786	2	7527.385	4
115 M16	113		19	max	0	1	.254	3	.005	3 3.778e-3	3	NC	1	NC	1
116				min	293	-		1					1		1
117		M16	1	max		12					3		_1_		1
118				min	133						1				_
119			2		_										2
120											_				1
121			3												
122															
123 5 max 0 12 .129 3 .098 1 1.101e-2 3 NC 5 NC 3 124 min 133 4 432 2 007 5 -1.372e-2 1 408.647 2 2281.944 1 125 6 max 0 12 .082 3 .095 1 1.21e-2 3 NC 5 NC 3 126 min 133 4 35 2 .003 15 -1.488e-2 1 481.281 2 2367.142 1 127 7 max 0 12 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 130 min 133 4			4		-										3
124 min 133 4 432 2 007 5 -1.372e-2 1 408.647 2 2281.944 1 125 6 max 0 12 .082 3 .095 1 1.21e-2 3 NC 5 NC 3 126 min 133 4 35 2 .003 15 -1.488e-2 1 481.281 2 2367.142 1 127 7 max 0 12 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 5252.324 1 15 13 1 1			_												1
125 6 max 0 12 .082 3 .095 1 1.21e-2 3 NC 5 NC 3 126 min 133 4 35 2 .003 15 -1.488e-2 1 481.281 2 2367.142 1 127 7 max 0 12 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12			5		-										3
126 min 133 4 35 2 .003 15 -1.488e-2 1 481.281 2 2367.142 1 127 7 max 0 12 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175						-					_				1
127 7 max 0 12 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175 3 004 10 -1.837e-2 1 2449.9599 3 NC 1 133 10 max 0 1			Ь												
128 min 133 4 196 2 .002 10 -1.604e-2 1 724.622 2 3022.422 1 129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175 3 004 10 -1.837e-2 1 2449.959 3 NC 1 133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 <td></td> <td></td> <td>7</td> <td></td>			7												
129 8 max 0 12 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175 3 004 10 -1.837e-2 1 2449.959 3 NC 1 133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min			/												1
130 min 133 4 092 3 0 10 -1.72e-2 1 1906.866 2 5252.324 1 131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175 3 004 10 -1.837e-2 1 2449.959 3 NC 1 133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175			0												2
131 9 max 0 12 .19 1 .019 4 1.534e-2 3 NC 4 NC 1 132 min 133 4 175 3 004 10 -1.837e-2 1 2449.959 3 NC 1 133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .			0							10 -1 720-2					
132 min 133 4 175 3 004 10 -1.837e-2 1 2449.959 3 NC 1 133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092			a												
133 10 max 0 1 .261 1 .013 3 1.642e-2 3 NC 5 NC 1 134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1			9												
134 min 133 4 212 3 009 2 -1.953e-2 1 1552.304 1 NC 1 135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196			10		_										
135 11 max 0 1 .19 1 .013 3 1.534e-2 3 NC 4 NC 1 136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1			10		-										
136 min 133 4 175 3 014 5 -1.837e-2 1 2449.959 3 NC 1 137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1 .082 3 .095 1 1.21e-2 3 NC 5 NC 3			11			_					_		_		
137 12 max 0 1 .031 1 .043 1 1.426e-2 3 NC 3 NC 2 138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1 .082 3 .095 1 1.21e-2 3 NC 5 NC 3					-										_
138 min 133 4 092 3 015 5 -1.72e-2 1 1906.866 2 5252.324 1 139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1 .082 3 .095 1 1.21e-2 3 NC 5 NC 3			12												
139 13 max 0 1 .003 12 .074 1 1.318e-2 3 NC 5 NC 3 140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1 .082 3 .095 1 1.21e-2 3 NC 5 NC 3					-						1				1
140 min 133 4 196 2 007 5 -1.604e-2 1 724.622 2 3022.422 1 141 14 max 0 1 .082 3 .095 1 1.21e-2 3 NC 5 NC 3			13								3				3
141						-									1
			14								_				3
142 min133 435 2 .003 15 -1.488e-2 1 481.281 2 2367.142 1	142							2							
143			15		_										
144 min133 4432 2 .006 10 -1.372e-2 1 408.647 2 2281.944 1					-	4									
145			16								3				
146 min133 4421 2 .005 10 -1.256e-2 1 417.263 2 2674.002 1					133	4									

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.093	3	.056	1	8.851e-3	3_	NC	5	NC	2
148			min	133	4	314	2	.003	10	-1.14e-2	1_	522.466	2	4028.647	1
149		18	max	0	1	.015	3	.025	4	7.77e-3	3	NC	_5_	NC	2
150		10	min	1 <u>33</u>	4	126	2	0	10	-1.024e-2	1_	937.73	2	8677.498	
151		19	max	0	1	.118	1	.004	3	6.688e-3	3_	NC	1_	NC NC	1
152	140	-	min	133	4	085	3	002	2	-9.079e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1_	max	.005	1	.004	2	.005	1	1.148e-3	5_	NC NC	1	NC	2
154		_	min	006	3	007	3	406	4	-1.376e-4	<u>1</u>	NC NC	1_	117.787	4
155		2	max	.005	1	.003	2	.005	1	1.222e-3	_5_	NC NC	1_	NC 100.01	2
156			min	006	3	007	3	<u>373</u>	4	-1.275e-4	<u>1</u>	NC NC	1_	128.34	4
157		3	max	.005	1	.003	2	.005	1	1.296e-3	5_	NC NC	1	NC 4.40.007	1
158		-	min	006	3	007	3	34	4	-1.174e-4	<u>1</u>	NC NC	1_	140.887	4
159		4	max	.004	1	.002	2	.004	1	1.37e-3	5_	NC NC	1	NC 455.050	1
160		_	min	005	3	006	3	307	4	-1.073e-4	1_	NC	1_	155.953	4
161		5	max	.004	1	.002	2	.004	1	1.444e-3	_5_	NC	1_	NC 474 040	1
162			min	005	3	006	3	275	4	-9.724e-5	<u>1</u>	NC NC	1_	174.246	4
163		6	max	.004	1	.001	2	.003	1	1.518e-3	5	NC	1_	NC 100.755	1
164		-	min	005	3	006	3	243	4	-8.715e-5	1_	NC	1_	196.755	4
165		7	max	.004	1	0	2	.003	1	1.592e-3	_5_	NC		NC	1
166		_	min	004	3	005	3	213	4	-7.706e-5	1_	NC	1_	224.881	4
167		8	max	.003	1	0	2	.002	1	1.667e-3	4_	NC NC	1	NC OOO O74	1
168		_	min	004	3	005	3	184	4	-6.698e-5	_1_	NC	1_	260.674	4
169		9	max	.003	1	0	2	.002	1	1.745e-3	4_	NC	1_	NC	1
170		10	min	003	3	005	3	<u>156</u>	4	-5.689e-5	1_	NC	1_	307.224	4
171		10	max	.003	1	0	2	.002	1	1.823e-3	4_	NC	_1_	NC	1
172		1.4	min	003	3	004	3	13	4	-4.68e-5	1_	NC NC	1_	369.374	4
173		11	max	.002	1	0	15	.001	1	1.9e-3	4	NC	1_	NC	1
174		1.0	min	003	3	004	3	<u>105</u>	4	-3.672e-5	1_	NC	1_	455.069	4
175		12	max	.002	1	0	15	.001	1	1.978e-3	4_	NC		NC .	1
176		40	min	002	3	004	3	083	4	-2.663e-5	1_	NC	1_	<u>578.1</u>	4
177		13	max	.002	1	0	15	0	1	2.056e-3	4_	NC NC	1	NC 704.400	1
178		4.4	min	002	3	003	3	063	4	-1.654e-5	1_	NC NC	1_	764.182	4
179		14	max	.001	1	0	15	0	1	2.133e-3	4_	NC NC	1	NC	1
180		4.5	min	002	3	003	3	045	4	-6.458e-6	1_	NC NC	1_	1065.927	4
181		15	max	.001	1	0	15	0	1	2.211e-3	4_	NC NC	1_	NC 4005 50	1
182		40	min	001	3	002	3	03	4	-3.171e-7	3	NC NC	1_	1605.59	4
183		16	max	0	1	0	15	0	1	2.289e-3	4	NC NC	1_	NC 0705.05	1
184		47	min	001	3	002	3	018	4	3.126e-7	12	NC NC	1_	2725.05	4
185		17	max	0	1	0	15	0	1	2.367e-3	4	NC NC	1_	NC 5740,000	1
186		40	min	0	3	001	3	008	1	8.046e-7	12	NC NC	1_	<u>5716.003</u>	
187		18	max	0		0	15	0		2.444e-3		NC NC	1	NC NC	1
188		40	min	0	3	0	3	002	4	1.297e-6	12	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	2.522e-3	4	NC NC	1_1	NC NC	1
190	MO	1	min	0		0	1	0	1	1.789e-6	12	NC NC	1_	NC NC	1
191 192	<u>M3</u>	1_	max	<u>0</u> 	1	<u> </u>	1	<u> </u>	1	-5.681e-7	12	NC NC	<u>1</u> 1	NC NC	1
		2	min			0				-5.631e-4	4		•		1
193		2	max	0	3		15	.012	4	6.631e-6	4	NC NC	1_1	NC NC	
194		-	min	0		001	6	0	12	1.759e-7	12	NC NC	1_	NC NC	1
195		3	max	0	3	0	15	.024	4	5.764e-4	4	NC	1_1	NC NC	1
196		1	min	<u> </u>	2	003	15	0	12	9.2e-7	<u>12</u>	NC NC	1	NC NC	1
197		4	max		3	001	15	.035	4	1.146e-3	4		1		
198		F	min	0	2	005	6	0	12	1.664e-6	<u>12</u>	NC NC	1	NC NC	1
199		5	max	.001	3	001	15	.046	4	1.716e-3	4	NC NC	1	NC NC	1
200		6	min	001		007	6	0.56	12	2.408e-6	12	NC NC	<u>1</u> 1	NC NC	
201		6	max min	<u>.001</u> 	3	002 008	15	<u>.056</u>	12	2.286e-3 3.152e-6	<u>4</u> 12	NC NC	1	NC 9775.437	5
202		7		.002	3			.066				NC NC			
203		/	max	.002	⊥ ວ_	002	15	.000	4	2.855e-3	4	INC	1_	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
204			min	001	2	01	6	0	12	3.896e-6	12		6	9403.952	5
205		8	max	.002	2	002	15	.075	4	3.425e-3	4	NC 0.400.04	1	NC 0475 007	1
206			min	<u>001</u>		011	6	0	12	4.64e-6	12	8429.61	6	9475.827	5
207		9	max	.002	3	003	15	.084	12	3.995e-3 5.384e-6	4	NC	1	NC 0000 044	_
208		10	min	002	2	012	15	0			12	7805.877	6	9962.811	5
209		10	max	.002	3	003		.092	4	4.565e-3	4	NC 7400 044	2	NC NC	1
210		4.4	min	002	2	012	6	0	12	6.128e-6	12	7488.844	6	NC NC	1
211		11	max	.003	3	003	15	101	4	5.135e-3	4	NC	2	NC	1
212		40	min	002	2	012	6	0	12	6.872e-6	12	7430.757	6	NC NC	•
213		12	max	.003	3	003	15	.109	4	5.704e-3	4	NC 7000 000	1	NC NC	1
214		40	min	002	2	012	6	0	12	7.616e-6	12	7628.999	6	NC NC	•
215		13	max	.003	3	002	15	.116	4	6.274e-3	4	NC	1	NC NC	1
216		4.4	min	002		011	6	0	12	8.36e-6		8127.308	6	NC NC	1
217		14	max	.003	3	002	15	.124	4	6.844e-3	4	NC 0000 045	1	NC	1
218		4.5	min	003	2	01	6	0	12	9.104e-6	12	9039.245	6	NC NC	1
219		15	max	.004	3	002	15	.132	4	7.414e-3	4	NC NC	1	NC NC	1
220		4.0	min	003	2	009	6	0	12	9.848e-6	12	NC NC	1_	NC NC	1
221		16	max	.004	3	001	15	.141	4	7.983e-3	4	NC NC	1_	NC	1
222		47	min	003	2	008	1	0	12	1.059e-5	12	NC NC	1_	NC NC	1
223		17	max	.004	3	0	15	.149	4	8.553e-3	4	NC NC	1	NC NC	1
224		40	min	003	2	006	1	0	12	1.134e-5	12	NC NC		NC NC	1
225		18	max	.004	3	0	15	.158	4	9.123e-3	4	NC NC	1_	NC	1
226		40	min	003	2	005	1	0	12	1.208e-5	12	NC NC	1_	NC NC	1
227		19	max	.005	3	0	5	.168	4	9.693e-3	4	NC NC	1_	NC	1
228	N 1 4	4	min	004	2	003	1	0	12	1.282e-5	12	NC NC	1_	NC NC	1
229	M4	1	max	.003	1	.003	2	0	12	-1.432e-7	12	NC	1_	NC 4.47.004	2
230			min	001	3	005	3	168	4	-7.218e-4	4	NC NC	1_	147.601	4
231		2	max	.003	1	.003	2	0	12	-1.432e-7	12	NC NC	1_	NC 400,004	2
232			min	0	3	004	3	<u>154</u>	4	-7.218e-4	4	NC	1_	160.681	4
233		3	max	.003	1	.003	2	0	12	-1.432e-7	12	NC NC	1_	NC 470 007	2
234		4	min	0	3	004	3	141	4	-7.218e-4	4	NC NC	1_	176.237	4
235		4	max	.003	1	.002	2	0	12	-1.432e-7	12	NC NC	1_	NC 404.040	2
236		-	min	0	3	004	3	127	4	-7.218e-4	4	NC NC	1_	194.913	4
237		5	max	.002	1	.002	2	0	12	-1.432e-7	12	NC NC	1_	NC 047.507	2
238		_	min	0	3	004	3	114	4	-7.218e-4	4	NC NC	1_	217.587	4
239		6	max	.002	1	.002	2	0	12	-1.432e-7	12	NC NC	1	NC	2
240		7	min	0	3	003	3	<u>101</u>	4	-7.218e-4 -1.432e-7	4	NC NC	1_	245.473 NC	4
241		7	max	.002	1	.002	2	0	12		12	NC NC	1		2
242			min	0	3	003	3	088	4	-7.218e-4	4	NC NC	_	280.297	4
243		8	max	.002	1	.002	2	0	12	-1.432e-7	12	NC NC	1	NC 224 F7C	1
244			min	0	3	003	3	076		-7.218e-4		NC NC	1	324.576	4
245 246		9	max	.002	3	.002	3	0 065	12	-1.432e-7 -7.218e-4	12	NC NC	<u>1</u> 1	NC 382.097	1
		40	min	0		003			4						1
247		10	max	.002	3	.001	2	0	12	-1.432e-7		NC NC	1	NC	•
248		11	min	0		002	3	054	4	-7.218e-4		NC NC	•	458.783	4
249		11	max	.001	1	.001	2	0	12	-1.432e-7	12	NC NC	1	NC EGA 22E	1
250		10	min	0	1	002	2	044 0	4	-7.218e-4		NC NC	1_1	564.325 NC	4
251		12	max	001		.001			12	-1.432e-7	12		1		1
252		12	min	0	3	002	2	035	4	-7.218e-4 -1.432e-7	4	NC NC	<u>1</u> 1	715.488 NC	1
253		13	max	.001		0		0	12		12				
254		1.4	min	0	3	002	3	026	4	-7.218e-4		NC NC	1	943.393	4
255		14	max	0	1	0	2	0	12	-1.432e-7	12	NC NC	1_1	NC	1
256		4.5	min	0	3	001	3	019	4	-7.218e-4		NC NC	1_1	1311.364	4
257		15	max	0	1	0	2	0	12	-1.432e-7		NC NC	1_1	NC	1
258		16	min	0	3	001	3	013	4	-7.218e-4		NC NC	1	1965.401	4
259		16	max	0	1	0	2	0	12	-1.432e-7	12	NC NC	1	NC	1
260			min	0	3	0	3	007	4	-7.218e-4	4	NC	1_	3309.201	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	-1.432e-7	12	NC	1_	NC	1
262			min	0	3	0	3	004	4	-7.218e-4	4	NC	1	6840.067	4
263		18	max	0	1	0	2	0	12	-1.432e-7	12	NC	1	NC	1
264			min	0	3	0	3	001	4	-7.218e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-1.432e-7	12	NC	1	NC	1
266			min	0	1	0	1	0	1	-7.218e-4	4	NC	1	NC	1
267	M6	1	max	.017	1	.015	2	0	1	1.194e-3	4	NC	4	NC	1
268			min	02	3	023	3	41	4	0	1	2115.888	3	116.822	4
269		2	max	.016	1	.014	2	0	1	1.267e-3	4	NC	4	NC	1
270			min	019	3	021	3	376	4	0	1	2242.314	3	127.29	4
271		3	max	.015	1	.013	2	0	1	1.34e-3	4	NC	4	NC	1
272			min	018	3	02	3	342	4	0	1	2384.779	3	139.736	4
273		4	max	.014	1	.011	2	0	1	1.413e-3	4	NC	4	NC	1
274			min	017	3	019	3	309	4	0	1	2546.505	3	154.68	4
275		5	max	.013	1	.01	2	0	1	1.486e-3	4	NC	4	NC	1
276			min	016	3	018	3	277	4	0	1	2731.634	3	172.826	4
277		6	max	.012	1	.009	2	0	1	1.559e-3	4	NC	1	NC	1
278			min	015	3	016	3	245	4	0	1	2945.583	3	195.153	4
279		7	max	.011	1	.008	2	0	1	1.631e-3	4	NC	1	NC	1
280			min	014	3	015	3	215	4	0	1	3195.576	3	223.053	4
281		8	max	.011	1	.007	2	0	1	1.704e-3	4	NC	1	NC	1
282			min	013	3	014	3	185	4	0	1	3491.465	3	258.56	4
283		9	max	.01	1	.006	2	0	1	1.777e-3	4	NC	1	NC	1
284			min	011	3	012	3	157	4	0	1	3847.042	3	304.738	4
285		10	max	.009	1	.005	2	0	1	1.85e-3	4	NC	1	NC	1
286			min	01	3	011	3	131	4	0	1	4282.229	3	366.393	4
287		11	max	.008	1	.004	2	0	1	1.923e-3	4	NC	1	NC	1
288			min	009	3	01	3	106	4	0	1	4826.912	3	451.408	4
289		12	max	.007	1	.003	2	0	1	1.996e-3	4	NC	1	NC	1
290		12	min	008	3	009	3	083	4	0	1	5528.054	3	573.47	4
291		13	max	.006	1	.002	2	0	1	2.069e-3	4	NC	1	NC	1
292			min	007	3	007	3	063	4	0	1	6463.93	3	758.094	4
293		14	max	.005	1	.002	2	0	1	2.141e-3	4	NC	1	NC	1
294			min	006	3	006	3	045	4	0	1	7775.434	3	1057.499	4
295		15	max	.004	1	.001	2	0	1	2.214e-3	4	NC	1	NC	1
296		10	min	005	3	005	3	03	4	0	1	9744.36	3	1593.032	4
297		16	max	.003	1	0	2	0	1	2.287e-3	4	NC	1	NC	1
298		10	min	003	3	004	3	018	4	0	1	NC	1	2704.102	4
299		17	max	.002	1	<u>.00-</u>	2	0	1	2.36e-3	4	NC	1	NC	1
300		- ' '	min	002	3	002	3	008	4	0	1	NC	1	5673.464	
301		18	max	0	1	0	2	0	1	2.433e-3	4	NC	1	NC	1
302		-10	min	001	3	001	3	002	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.506e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1017		min	0	1	0	1	0	1	-5.577e-4	4	NC	1	NC	1
307		2	max	0	3	0	2	.012	4	1.369e-6	14	NC	1	NC	1
308			min	0	2	002	3	0	1	-1.173e-7	15	NC	1	NC	1
309		3	max	.002	3	0	15	.024	4	5.6e-4	4	NC	1	NC	1
310		<u> </u>	min	001	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	004 001	15	.035	4	1.119e-3	4	NC NC	1	NC	1
312		4	min	002	2	001 006	3	<u>.035</u>	1	0	1	NC NC	1	NC NC	1
313		5		.002	3	008 002	15	.045	4	1.678e-3	4	NC NC	1	NC NC	1
314		5	max		2		3	045 0	1	0	1	NC NC	1		1
		G	min	003		008				_	•		1	NC NC	
315		6	max	.004 004	3	002 01	15	. <u>.056</u> 0	1	2.236e-3 0	<u>4</u> 1	NC 9425.887	3	NC 9290.565	4
316		7	min		3				4		•				
317		7	max	.005	J 3	002	15	.065	4	2.795e-3	4_	NC	<u>1</u>	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

318	Member	Sec	min	x [in] 004	LC 2	y [in] 011	LC	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio 8382.943	LC 3	(n) L/z Ratio 8903.138	
319		8	max	.006	3	003	15	.074	4	3.354e-3	4	NC	<u> </u>	NC	1
320		10	min	005	2	012	3	0	1	0	1	7760.237	3	8928.465	
321		9	max	.006	3	003	15	.083	4	3.913e-3	4	NC	1	NC	1
322		"	min	006	2	012	3	0	1	0	1	7430.059	3	9330.935	4
323		10	max	.007	3	003	15	.091	4	4.472e-3	4	NC	1	NC	1
324		10	min	007	2	013	4	0	1	0	1	7334.341	3	NC	1
325		11	max	.008	3	003	15	.099	4	5.031e-3	4	NC	1	NC	1
326		1	min	007	2	013	4	0	1	0.00100	1	7456.996	3	NC	1
327		12	max	.009	3	003	15	.107	4	5.589e-3	4	NC	1	NC	1
328		12	min	008	2	013	4	0	1	0.0000	1	7665.245	4	NC	1
329		13	max	.01	3	003	15	.115	4	6.148e-3	4	NC	1	NC	1
330			min	009	2	012	4	0	1	0	1	8164.226	4	NC	1
331		14	max	.01	3	003	15	.122	4	6.707e-3	4	NC	1	NC	1
332			min	01	2	011	1	0	1	0	1	9078.748	4	NC	1
333		15	max	.011	3	002	15	.13	4	7.266e-3	4	NC	1	NC	1
334			min	01	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.012	3	002	15	.138	4	7.825e-3	4	NC	1	NC	1
336			min	011	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.013	3	001	15	.146	4	8.384e-3	4	NC	1	NC	1
338			min	012	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	0	15	.155	4	8.942e-3	4	NC	1	NC	1
340			min	013	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.014	3	0	15	.165	4	9.501e-3	4	NC	1	NC	1
342			min	013	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.011	2	0	1	0	1	NC	1	NC	1
344			min	003	3	014	3	165	4	-7.45e-4	4	NC	1	150.768	4
345		2	max	.009	1	.011	2	0	1	0	1	NC	1	NC	1
346			min	003	3	013	3	151	4	-7.45e-4	4	NC	1	164.13	4
347		3	max	.008	1	.01	2	0	1	0	1	NC	1	NC	1
348			min	003	3	013	3	138	4	-7.45e-4	4	NC	1	180.022	4
349		4	max	.008	1	.009	2	0	1	0	<u>1</u>	NC	_1_	NC	1
350			min	003	3	012	3	125	4	-7.45e-4	4	NC	1_	199.103	4
351		5	max	.007	1	.009	2	0	1	0	1	NC	1_	NC	1
352			min	003	3	011	3	112	4	-7.45e-4	4	NC	1_	222.266	4
353		6	max	.007	1	.008	2	0	1	0	_1_	NC	1_	NC	1
354			min	003	3	01	3	099	4	-7.45e-4	4	NC	1_	250.755	4
355		7	max	.006	1	.008	2	0	1	0		NC	1_	NC	1
356			min	002	3	009	3	087	4	-7.45e-4	4	NC	1_	286.331	4
357		8	max	.006	1	.007	2	0	1	7 45 2 4	1_1	NC NC	1	NC	1
358			min	002	3	009	3	075	4	-7.45e-4	4	NC NC	1	331.566	4
359		9_	max	.005	3	.006	2	0 064	1	0 -7.45e-4	1_1	NC NC	<u>1</u> 1	NC	4
360		10	min	002	1	008	2	064 0	1	-7.45e-4 0	<u>4</u> 1	NC NC	1	390.329 NC	
361 362		10	max	.005 002	3	.006 007	3	053	4	-7.45e-4	4	NC NC	1	468.672	1
363		11	max	.002	1	007 .005	2	053	1	-7.45e-4 0	<u>4</u> 1	NC NC	1	NC	1
364		+ ' '	min	002	3	005	3	043	4	-7.45e-4	4	NC NC	1	576.493	4
365		12	max	.004	1	.004	2	043	1	0	1	NC	1	NC	1
366		12	min	001	3	005	3	034	4	-7.45e-4	4	NC NC	1	730.922	4
367		13	max	.003	1	.004	2	034	1	0	1	NC	1	NC	1
368		13	min	001	3	005	3	026	4	-7.45e-4	4	NC NC	1	963.75	4
369		14	max	.003	1	.003	2	<u>020</u> 0	1	0	1	NC	1	NC	1
370		14	min	0	3	004	3	019	4	-7.45e-4	4	NC	1	1339.671	4
371		15	max	.002	1	.003	2	<u>019</u> 0	1	0	1	NC	1	NC	1
372		13	min	0	3	003	3	012	4	-7.45e-4	4	NC	1	2007.841	4
373		16	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	002	3	007	4	-7.45e-4	4	NC	1	3380.684	
UIT			111/1111	J	J	.002	J	.001		7.700 4	т_	110		10000.004	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	.001	1	.001	2	0	1	7 45 - 4	1_4	NC	1	NC COOZ COO	1
376		40	min	0	3	002	3	004	4	-7.45e-4	4	NC NC	1_	6987.888	4
377		18	max	0	3	<u> </u>	2	0	1	7 45 2 4	1_4		1	NC NC	1
378		10	min	0			3	001	4	-7.45e-4	4	NC NC	•	NC NC	•
379		19	max	0	1	<u> </u>	1	0	1	0 -7.45e-4	1_1	NC NC	1	NC NC	1
380	M40	4	min				-	0			4		1	NC NC	
381	M10	1	max	.005	3	.004	2	0	12	1.193e-3	4	NC NC	1_1	NC	2
382		_	min	006	_	007	3	409	4	7.068e-6	12	NC NC	1_	116.994	4
383		2	max	.005	1	.003	2	0	12	1.265e-3	4	NC NC	1_	NC 407,477	2
384		-	min	006	3	007	3	375	4	6.576e-6	12	NC NC	1_	127.477	4
385		3	max	.005	1	.003	2	0	12	1.338e-3	4	NC NC	1	NC	1
386		1	min	006	3	007	3	342	4	6.084e-6	12	NC NC	•	139.941	4
387		4	max	.004	1	.002	2	0	12	1.41e-3	4	NC NC	1	NC	1
388		-	min	005	3	006	3	309	4	5.592e-6	12	NC NC	•	154.907	4
389		5	max	.004	1	.002	3	0	12	1.483e-3	4	NC NC	1	NC 472.00	1
390			min	005	3	006	_	276	4	5.1e-6	12	NC NC		173.08	4
391		6	max	.004	1	.001	2	0	12	1.556e-3	4	NC NC	1_1	NC 105.44	1
392		7	min	005	3	006	3	245	4	4.608e-6	12		1_	195.44	4
393			max	.004	1	0	2	0	12	1.628e-3	4	NC NC	1_	NC 000 004	1
394			min	004	3	005	3	214	4	4.116e-6	12	NC NC	1_	223.381	4
395		8	max	.003	1	0	2	0	12	1.701e-3	4	NC NC	1_1	NC 250,020	1
396			min	004	3	005	3	185	4	3.624e-6	12	NC NC	1_	258.939	4
397		9	max	.003	3	0	2	0	12	1.774e-3 3.132e-6	4		1	NC 205 405	1
398		10	min	003		005	3	157	4		12	NC NC	_	305.185	4
399		10	max	.003	3	0 004	3	0 13	12	1.846e-3 2.64e-6	<u>4</u> 12	NC NC	1	NC	1
400		4.4	min	003			_		4					366.931	4
401		11	max	.002	3	0	2	0	12	1.919e-3	4	NC NC	1	NC	1
		40	min	003	_	004	2	106	4	2.148e-6	12	NC NC	1	452.072	1
403		12	max	.002	3	0		0	12	1.991e-3	4		1	NC F74 244	_
404		13	min	002	1	004 0	3 15	083	12	1.656e-6	12	NC NC	1	574.314	1
406		13	max	.002	3	003	3	0 063		2.064e-3	4	NC NC	1	NC 759.211	4
407		14	min	002	1	003 0	15		4	1.155e-6	<u>10</u>	NC NC	•	NC	1
407		14	max	.001 002	3	003	3	0 045	12	2.137e-3 3.515e-7	4	NC NC	1	1059.06	4
409		15	min	.002	1	<u>003</u> 0	15	045 0	12	2.209e-3	<u>10</u> 4	NC NC	1	NC	1
410		15	max	001	3	002	3	03	4	-3.629e-6	1	NC NC	1	1595.389	4
411		16	min		1	<u>002</u> 0	15	<u>03</u> 0	12	2.282e-3	4	NC NC	1	NC	1
412		10	max	0 001	3	002	3	018	4	-1.372e-5	1	NC NC	1	2708.123	
413		17			1	<u>002</u> 0	15	<u>016</u> 0	12	2.354e-3	4	NC NC	1	NC	1
414		17	max	0 0	3	001	4	008	4	-2.38e-5	1	NC NC	1	5681.985	
		10	min					<u>008</u> 0					1		4
415		18	max min	<u>0</u> 	3	<u>0</u> 	15 4	002	4	2.427e-3 -3.389e-5	4	NC NC	1	NC NC	1
417		19		0	1	0	1	<u>002</u> 0	1	2.5e-3	4	NC NC	1	NC NC	1
417		19	max	0	1	0	1	0	1	-4.398e-5	1	NC NC	1	NC NC	1
419	M11	1	max	0	1	0	1	0	1	1.368e-5	1	NC NC	1	NC NC	1
420	IVI I	-	min	0	1	0	1	0	1	-5.562e-4	4	NC	1	NC	1
421		2			3	0	15	.012	-	4.766e-6		NC	1	NC	1
422			max	<u> </u>	2	002	4	012 0	1	-3.725e-6	<u>4</u> 1	NC NC	1	NC NC	1
423		3	max	0	3	<u>002</u> 0	15	.024	4	5.657e-4	4	NC NC	1	NC NC	1
424		3	min	0	2	003	4	<u>024</u>	1	-2.113e-5	1	NC NC	1	NC NC	1
425		4	max	0	3	003 001	15	.035	4	1.127e-3	4	NC NC	1	NC NC	1
426		4	min	0	2	005	4	<u>.035</u>	1	-3.853e-5	1	NC NC	1	NC NC	1
427		5		.001	3	005 002	15	.045	4	1.688e-3	4	NC NC	1	NC NC	1
427		<u> </u>	max	001 0	2	002	4	045 0	1	-5.594e-5	1	NC NC	1	NC NC	1
429		6	max	.001	3	007	15	.055	4	2.249e-3	4	NC NC	1	NC NC	1
430		0	min	<u>.001</u>	2	002	4	001	1	-7.334e-5	1	NC NC	1	9643.446	_
431		7		.002	3	003	15	.065	4	2.81e-3	4	NC NC	1	NC	1
401			max	.002	J	003	LIO	.000	4	2.016-3	4	INC		INC	\perp

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	001	2	01	4	001	1	-9.075e-5	1_	9107.415	4	9278.164	
433		8	max	.002	3	003	15	.074	4	3.371e-3	4	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.082e-4	<u>1</u>	8130.599	4_	9349.586	
435		9	max	.002	3	003	15	.083	4	3.932e-3	4_	NC	_1_	NC	1
436		40	min	002	2	013	4	002	1	-1.256e-4	1_1	7548.025	4_	9829.718	
437		10	max	.002	3	003	15	.091	4	4.493e-3	4	NC 70F6 640	2	NC NC	1
438		11	min	002 .003	3	013 003	15	002 .099	4	-1.43e-4	<u>1</u> 4	7256.642 NC	2	NC NC	1
440			max	002	2	003 013	4	003	1	5.054e-3 -1.604e-4	1	7212.947	4	NC NC	1
441		12	max	.002	3	013	15	003 .107	4	5.615e-3	4	NC	1	NC NC	1
442		12	min	002	2	003 013	4	003	1	-1.778e-4	1	7416.211	4	NC NC	1
443		13	max	.002	3	003	15	.115	4	6.176e-3	4	NC	1	NC	1
444		13	min	002	2	012	4	003	1	-1.952e-4	1	7910.264	4	NC	1
445		14	max	.002	3	003	15	.123	4	6.736e-3	4	NC	1	NC	1
446		17	min	003	2	011	4	003	1	-2.126e-4	1	8806.728	4	NC	1
447		15	max	.004	3	002	15	.131	4	7.297e-3	4	NC	1	NC	1
448		10	min	003	2	01	4	004	1	-2.3e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	.139	4	7.858e-3	4	NC	1	NC	1
450			min	003	2	008	4	004	1	-2.474e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	.147	4	8.419e-3	4	NC	1	NC	1
452			min	003	2	006	1	004	1	-2.648e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	.156	4	8.98e-3	4	NC	1	NC	1
454			min	003	2	005	1	005	1	-2.822e-4	1	NC	1	NC	1
455		19	max	.005	3	0	12	.165	4	9.541e-3	4	NC	1	NC	1
456			min	004	2	003	1	005	1	-2.996e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.005	1	8.018e-6	1	NC	1_	NC	2
458			min	001	3	005	3	165	4	-7.177e-4	4	NC	1	149.957	4
459		2	max	.003	1	.003	2	.005	1	8.018e-6	1	NC	1_	NC	2
460			min	0	3	004	3	152	4	-7.177e-4	4	NC	1_	163.245	4
461		3	max	.003	1	.003	2	.004	1	8.018e-6	1	NC	_1_	NC	2
462			min	0	3	004	3	139	4	-7.177e-4	4_	NC	1_	179.047	4
463		4	max	.003	1	.002	2	.004	1	8.018e-6	1	NC	1_	NC	2
464			min	0	3	004	3	<u>125</u>	4	-7.177e-4	4_	NC	1_	198.02	4
465		5	max	.002	1	.002	2	.004	1	8.018e-6	1	NC	1_	NC 004.054	2
466			min	0	3	004	3	112	4	-7.177e-4	4_	NC NC	1_	221.054	4
467		6	max	.002	1	.002	2	.003	1	8.018e-6	1	NC NC	1_	NC 240,202	2
468		7	min	0	3	<u>003</u>	3	099	4	-7.177e-4	4_	NC NC	1	249.383 NC	2
469		/	max	.002	3	.002	3	.003	1 4	8.018e-6	<u>1</u> 4	NC NC	1_1		
470 471		8	min max	.002	1	003 .002	2	087 .002	1	-7.177e-4 8.018e-6	_ 4 _	NC NC	1	284.76 NC	1
472		0	min	0	3	003	3	075		-7.177e-4		NC	1	329.741	4
473		9	max	.002	1	.002	2	.002	1	8.018e-6	1	NC	1	NC	1
474			min	0	3	003	3	064	4	-7.177e-4	4	NC	1	388.174	4
475		10	max	.002	1	.001	2	.002	1	8.018e-6	1	NC	1	NC	1
476		10	min	0	3	002	3	053	4	-7.177e-4	4	NC	1	466.078	4
477		11	max	.001	1	.001	2	.001	1	8.018e-6	1	NC	<u> </u>	NC	1
478			min	0	3	002	3	043	4	-7.177e-4	4	NC	1	573.294	4
479		12	max	.001	1	.001	2	.001	1	8.018e-6	1	NC	1	NC	1
480			min	0	3	002	3	034	4	-7.177e-4	4	NC	1	726.856	4
481		13	max	.001	1	0	2	0	1	8.018e-6	1	NC	1	NC	1
482			min	0	3	002	3	026	4	-7.177e-4	4	NC	1	958.376	4
483		14	max	0	1	0	2	0	1	8.018e-6	1	NC	1	NC	1
484			min	0	3	001	3	019	4	-7.177e-4	4	NC	1	1332.183	4
485		15	max	0	1	0	2	0	1	8.018e-6	1	NC	1	NC	1
486			min	0	3	001	3	012	4	-7.177e-4	4	NC	1	1996.591	4
487		16	max	0	1	0	2	0	1	8.018e-6	1	NC	1	NC	1
488			min	0	3	0	3	007	4	-7.177e-4	4	NC	1	3361.695	4

Model Name

Schletter, Inc.HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	8.018e-6	1	NC	1_	NC	1
490			min	0	3	0	3	004	4	-7.177e-4	4	NC	1	6948.522	4
491		18	max	0	1	0	2	0	1	8.018e-6	1	NC	1	NC	1
492			min	0	3	0	3	001	4	-7.177e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	8.018e-6	1	NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-7.177e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.127	2	.428	4	1.486e-2	1	NC	1	NC	1
496	1711	+ -	min	003	2	029	3	0	12	-2.408e-2	3	NC	1	NC	1
497		2	max	.006	3	.062	2	.417	4	7.594e-3	4	NC	4	NC	1
498				003	2	015	3	004	1	-1.191e-2	3	1781.638	2	NC	1
		2	min						4			NC	5		•
499		3	max	.006	3	.008	3	.406		1.246e-2	4_			NC OF 47.740	1
500		-	min	003	2	007	2	005	1	-1.193e-4	3	859.051	2	9547.713	5
501		4	max	.005	3	.046	3	.395	4	1.094e-2	_4_	NC	5	NC	1
502			min	003	2	086	2	005	1	-4.667e-3	3	542.619	2	6494.483	5
503		5	max	.005	3	.094	3	.385	4	9.501e-3	_1_	NC	15	NC	1
504			min	003	2	167	2	004	1	-9.215e-3	3	391.82	2	4956.033	5
505		6	max	.005	3	.145	3	.374	4	1.429e-2	1	NC	15	NC	1
506			min	002	2	248	1	001	1	-1.376e-2	3	307.862	1	4052.109	5
507		7	max	.005	3	.194	3	.362	4	1.909e-2	1	NC	15	NC	1
508			min	002	2	32	1	0	12		3	258.014	1	3468.989	4
509		8	max	.005	3	.235	3	.35	4	2.388e-2	1	9018.998	15	NC	1
510			min	002	2	377	1	0	12	-2.286e-2	3	228.604	1	3075.374	
511		9	max	.005	3	.262	3	.337	4	2.64e-2	1	8432.713	15	NC	1
512			min	002	2	413	1	0	1	-2.312e-2	3	213.32	1	2849.154	
		10				.272						8254.034			1
513		10	max	.005	3		3	.321	4	2.741e-2	1		<u>15</u>	NC 2784.819	
514		4.4	min	002		425	1	0	12	-2.053e-2	3	208.759	1_		4
515		11	max	.005	3	.265	3	.304	4	2.922e-2	2	8432.524	<u>15</u>	NC	1
516			min	002	2	413	1	0	12	-1.795e-2	3	213.663	_1_	2852.453	
517		12	max	.005	3	.243	3	.285	4	2.82e-2	2	9018.562	15	NC	1
518			min	002	2	376	1	0	1	-1.519e-2	3	229.656	1_	3068.463	
519		13	max	.005	3	.206	3	.263	4	2.261e-2	2	NC	<u>15</u>	NC	1
520			min	002	2	317	1	0	1	-1.216e-2	3	260.589	1_	3611.415	4
521		14	max	.004	3	.16	3	.239	4	1.702e-2	2	NC	15	NC	1
522			min	002	2	244	1	0	12	-9.131e-3	3	313.37	1	4723.335	4
523		15	max	.004	3	.108	3	.215	4	1.143e-2	2	NC	15	NC	1
524			min	002	2	163	1	0	12	-6.104e-3	3	403.933	1	7102.538	4
525		16	max	.004	3	.055	3	.191	4	8.391e-3	4	NC	5	NC	1
526		10	min	002	2	081	1	0	12	-3.077e-3	3	570.913	1	NC	1
527		17	max	.002	3	.003	3	.169	4	9.325e-3	4	NC	5	NC	1
528		17	min	002	2	005	2	0	12	-4.932e-5	3	926.314	1	NC	1
529		18		.004	3	.06	1	.149	4	9.932e-3	2	NC	4	NC	1
		10	max					_					4		
530		40	min	002	2	042	3	0	12		3	1955.565	1	NC NC	1
531		19	max	.004	3	.118	1	.133	4	1.998e-2	2	NC	_1_	NC NC	1
532			min	002	2	085	3	0	1	-8.49e-3	3	NC	1_	NC	1
533	<u>M5</u>	1	max	.017	3	.29	2	.428	4	0	_1_	NC	1_	NC	1
534			min	011	2	04	3	0	1	-2.477e-6	4	NC	1_	NC	1
535		2	max	.017	3	.142	2	.419	4	6.377e-3	4	NC	5_	NC	1
536			min	011	2	02	3	0	1	0	1	786.654	2	NC	1
537		3	max	.017	3	.027	3	.409	4	1.256e-2	4	NC	5	NC	1
538			min	011	2	023	2	0	1	0	1	370.51	2	8025.488	4
539		4	max	.017	3	.123	3	.398	4	1.023e-2	4	NC	15	NC	1
540			min	011	2	22	2	0	1	0	1	227.109	2	5817.073	
541		5	max	.017	3	.254	3	.387	4	7.905e-3	4	7140.443	15	NC	1
542			min	011	2	434	1	0	1	0	1	160.037	2	4681.437	4
543		6		.016	3	<u>434</u> .4	3	.375	4	5.579e-3	4	5494.436	15	NC	1
		0	max		2				1			122 250			-
544		7	min	011		649	1	0		0	1_	123.358	1_	3979.642	
545		7	max	.016	3	.541	3	.362	4	3.253e-3	4	4544.471	<u> 15</u>	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
546			min	01	2	844	1	0	1	0	1	101.952	1	3489.202	4
547		8	max	.016	3	.66	3	.35	4	9.269e-4	4	3992.379	15	NC	1
548			min	01	2	-1	1	0	1	0	1	89.508	1	3111.588	4
549		9	max	.015	3	.736	3	.337	4	0	1	3709.351	15	NC	1
550			min	01	2	-1.099	1	0	1	-1.435e-6	5	83.132	1	2849.551	4
551		10	max	.015	3	.764	3	.321	4	0	1		15	NC	1
552			min	01	2	-1.132	1	0	1	-1.358e-6	5	81.24	1	2805.541	4
553		11	max	.015	3	.745	3	.304	4	0	1	3709.426	15	NC	1
554			min	01	2	-1.099	1	0	1	-1.28e-6	5	83.274	1	2881.504	4
555		12	max	.014	3	.68	3	.286	4	6.719e-4	4	3992.555	15	NC	1
556			min	009	2	998	1	0	1	0	1	89.976	1	3026.698	4
557		13	max	.014	3	.576	3	.264	4	2.358e-3	4	4544.827	15	NC	1
558			min	009	2	837	1	0	1	0	1	103.17	1	3552.584	4
559		14	max	.014	3	.444	3	.239	4	4.044e-3	4	5495.128	15	NC	1
560			min	009	2	638	1	0	1	0	1	126.106	1	4833.285	4
561		15	max	.013	3	.297	3	.213	4	5.731e-3	4	7141.804	15	NC	1
562			min	009	2	42	1	0	1	0	1	166.409	1	8145.11	5
563		16	max	.013	3	.148	3	.188	4	7.417e-3	4	NC	15	NC	1
564			min	009	2	205	1	0	1	0	1	243.018	1	NC	1
565		17	max	.013	3	.01	3	.165	4	9.103e-3	4	NC	5	NC	1
566			min	009	2	015	2	0	1	0	1	411.348	1	NC	1
567		18	max	.013	3	.135	1	.147	4	4.623e-3	4	NC	5	NC	1
568			min	009	2	107	3	0	1	0	1	898.332	1	NC	1
569		19	max	.013	3	.261	1	.133	4	0	1	NC	1	NC	1
570			min	009	2	212	3	0	1	-1.018e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.127	2	.428	4	2.408e-2	3	NC	1	NC	1
572			min	003	2	029	3	0	1	-1.486e-2	1	NC	1	NC	1
573		2	max	.006	3	.062	2	.419	4	1.191e-2	3	NC	4	NC	1
574			min	003	2	015	3	0	12	-7.245e-3	1	1781.638	2	NC	1
575		3	max	.006	3	.008	3	.409	4	1.252e-2	4	NC	5	NC	1
576			min	003	2	007	2	0	12	-3.501e-5	10	859.051	2	8248.466	4
577		4	max	.005	3	.046	3	.398	4	9.856e-3	5	NC	5	NC	1
578			min	003	2	086	2	0	12	-4.707e-3	1	542.619	2	5904.595	4
579		5	max	.005	3	.094	3	.386	4	9.215e-3	3	NC	15	NC	1
580			min	003	2	167	2	0	12	-9.501e-3	1	391.82	2	4701.388	4
581		6	max	.005	3	.145	3	.375	4	1.376e-2	3	NC	<u>15</u>	NC	1
582			min	002	2	248	1	0	12	-1.429e-2	1	307.862	1_	3966.649	4
583		7	max	.005	3	.194	3	.362	4	1.831e-2	3	NC	<u>15</u>	NC	1
584			min	002	2	32	1	0	1	-1.909e-2	1_	258.014	1_	3466.124	4
585		8	max	.005	3	.235	3	.35	4	2.286e-2	3		<u>15</u>	NC	1_
586			min	002	2	377	1	0	1	-2.388e-2	1_	228.604	1_	3093.65	5
587		9	max	.005	3	.262	3	.337	4	2.312e-2	3		15	NC	1
588			min	002	2	413	1	0	12	-2.64e-2	1	213.32	1	2843.131	4
589		10	max	.005	3	.272	3	.321	4	2.053e-2	3	8243.6	15	NC	1
590			min	002	2	425	1	0	1	-2.741e-2	1_	208.759	1_	2785.625	
591		11	max	.005	3	.265	3	.304	4	1.795e-2	3_	8421.832	<u>15</u>	NC	1
592			min	002	2	413	1	0	1	-2.922e-2	2	213.663	1_	2859.761	4
593		12	max	.005	3	.243	3	.285	4	1.519e-2	3	9007.059	15	NC	1
594			min	002	2	376	1	0	12	-2.82e-2	2	229.656	1_	3050.032	4
595		13	max	.005	3	.206	3	.263	4	1.216e-2	3_	NC	15	NC	1
596			min	002	2	317	1	0	12	-2.261e-2	2	260.589	1_	3610.862	4
597		14	max	.004	3	.16	3	.238	4	9.131e-3	3	NC	<u>15</u>	NC	1
598			min	002	2	244	1	001	1	-1.702e-2	2	313.37	1_	4820.835	5
599		15	max	.004	3	.108	3	.213	4	6.104e-3	3	NC	<u>15</u>	NC	1_
600			min	002	2	163	1	003	1	-1.143e-2	2	403.933	1	7600.237	5
601		16	max	.004	3	.055	3	.188	4	7.237e-3	5	NC	5	NC	1
602			min	002	2	081	1	005	1	-5.832e-3	2	570.913	1_	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.166	4	9.14e-3	4	NC	5	NC	1
604			min	002	2	005	2	005	1	-4.173e-4	1	926.314	1	NC	1
605		18	max	.004	3	.06	1	.148	4	4.357e-3	5	NC	4	NC	1
606			min	002	2	042	3	004	1	-9.932e-3	2	1955.565	1	NC	1
607		19	max	.004	3	.118	1	.133	4	8.49e-3	3	NC	1	NC	1
608			min	002	2	085	3	0	12	-1.998e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 34-	-35 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 34-	-35 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2700.0	1671.0	0.0	1671.0
2	2700.0	1671.0	0.0	1671.0
Sum	5400.0	3342.0	0.0	3342.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5400 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	r _c (psi)	n _{ef} (In)	N _b (ID)					
17.0	1.00	2500	6.000	12492					
$\phi N_{cbg} = \phi (A_{I})$	$_{ m lc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ed}$	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (\$	Sec. D.4.1 & Eq	. D-5)					
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$arPsi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)	
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231	_

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	$\tau_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi da$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	$_{a}$ / $A_{Na0}) arPsi_{ed,Na} arPsi_{g}$	$_{g,Na} arPsi_{ec,Na} arPsi_{p,Na} \Lambda$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{\!\scriptscriptstyle {p,Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 34	-35 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c} C_{a1}^{1.5}$ (Eq. D-24)							
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		

 $\phi V_{cbgx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx} (Sec. D.4.1 \& Eq. D-22)$

A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
612.00	648.00	1.000	0.944	1.000	1.000	15593	0.70	9735

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	14.66	21056		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
791.64	967.12	1.000	1.000	1.000	21056	0.70	24129

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{ec},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{ec},\textit{N}} \, \Psi_{\textit{ed},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ ho,Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2700	6071	0.44	Pass
Concrete breakout	5400	10231	0.53	Pass
Adhesive	5400	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1671	3156	0.53	Pass (Governs)
T Concrete breakout x+	3342	9735	0.34	Pass
Concrete breakout y-	1671	24129	0.07	Pass
Pryout	3342	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 34-35 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3	0.67	0.53	119.7 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.