

STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

ETN3096 – DIGITAL SIGNAL PROCESSING (CE, EE, LE, OPE, TE)

5 MARCH 2020 2:30 PM – 4:30 PM (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 12 pages (including this cover page) with 4 Questions only and an appendix.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

Question 1

- (a) What is aliasing? State the condition to ensure that a DSP system will not suffer from aliasing. [3 marks]
- (b) Consider a discrete-time system $y[n] = ax^2[n+1]$. Determine, with justification, if the system is
 - (i) Linear

[4 marks]

(ii) Time-invariant

[4 marks]

(iii) Causal

[2 marks]

(c) In the system shown in Figure Q1, $h_1[n] = [\dots 0 \ 5 \ \underline{2} \ -1 \ 1 \ 0 \ \dots]$ and $h_2[n] = 2\delta[n] - \delta[n-2]$, where the underlined value corresponds to n = 0.

- Figure Q1
- (i) Determine the impulse response of the overall system $h_0[n]$. [3 marks]
- (ii) For input x[n] = 2n(u[n+1] u[n-2]), determine $y_0[n]$ for n = -2 to 3.

[9 marks]

Question 2

- (a) A causal linear time-invariant (LTI) system is described by a difference equation given by y[n] = 0.7y[n-1] 0.12y[n-2] + x[n] + x[n-1], where x[n] is the system input and y[n] is the output. All initial conditions are zero.
 - (i) Determine the system function H(z).

[2 marks]

(ii) Comment on the system stability.

[3 marks]

(iii) Determine the system impulse response h[n].

[5 marks]

- (b) (i) Compute the 4-point discrete Fourier transform (DFT) of $x[n] = [4 \ 2 \ 1 \ 0]$ using direct DFT. [9 marks]
 - (ii) Assume that a complex addition takes 1µs and a complex multiplication takes 2µs. Compare the time required for the direct evaluation of a 256-point DFT and the time required for the evaluation of a 256-point DFT through fast Fourier transform (FFT). [6 marks]

Question 3

- (a) Design a 5-tap finite impulse response lowpass filter with a cutoff frequency of 4000 Hz and a sampling rate of 10,000 Hz.
 - (i) Calculate the filter coefficients when a rectangular window function is used.

[10 marks]

(ii) Determine the transfer function and difference equation of the filter.

[6 marks]

(iii) Find the gain of the filter at dc (frequency = 0).

[2 marks]

Question 3 (continued)

(b) Adaptive filters play an important role in modern digital signal processing applications.

(i) How does adaptive filter differ from conventional digital filter? [3 marks]

(ii) Give two advantages of adaptive filter over conventional digital filter.

[4 marks]

(c) Consider the digital signal processing system for noise cancellation using an adaptive filter with two coefficients shown in Figure Q3. The weight update equation is given by

$$w_i(n) = w_i(n-1) + 2\mu e(n)x(n-i)$$
, for $i = 0, 1$

Assume that $w_0(-1) = 0$, $w_1(-1) = 0$, x(-1) = 0, and the convergence factor $\mu = 0.05$. Apply adaptive filtering to obtain outputs y(n) and e(n) for n = 0, 1, 2, as well as filter weights $w_0(n)$ and $w_1(n)$ for n = 0, 1, given inputs d(n) and x(n) as shown in Table Q3. Copy the table in your answer sheet. Show your calculations.

[8 marks]

Figure Q3

Table Q3

			· · · · · · · · · · · · · · · · · · ·			
Iteration n	Signal corrupted with noise $d(n)$	Noise signal $x(n)$	Filter output $y(n)$	Error signal $e(n)$	Filter weight wo(n)	Filter weight $w_1(n)$
0	-1.5	-1				
1	-1	1				
2	1	-1				

Question 4

(a) The transfer function of an infinite impulse response (IIR) filter is given by

$$H(z) = \frac{(1 - 0.1z^{-1})(1 - 0.2z^{-1})(1 - 0.4z^{-1})}{(1 - 0.3z^{-1})(1 - 0.5z^{-1})(1 - 0.6z^{-1})}.$$

(i) Draw the Direct Form II realization of the filter.

[8 marks]

- (ii) For the realization in (i), evaluate the effects of quantizing the filter coefficients to 2 decimal places. (Note that no calculations are required here.)

 [4 marks]
- (b) A finite impulse response (FIR) filter is described by its impulse response

$$h[n] = \frac{1}{n+1}(u[n] - u[n-3]).$$

Draw the Direct Form realization of the filter.

[5 marks]

APPENDIX

Discrete-time Fourier transform

Properties

Property	x[n],y[n]	$X(e^{j\Omega}), Y(e^{j\Omega})$
Linearity	ax[n] + by[n]	$aX(e^{j\Omega}) + bY(e^{j\Omega})$
Time shifting	$x[n-n_0]$	$e^{-j\Omega n_0}X(e^{j\Omega})$
Frequency shifting	$e^{j\Omega_0n}x[n]$	$X(e^{j(\Omega-\Omega_0)})$
Time reversal	x[-n]	$X(e^{-j\Omega})$
Differentiation	$n^kx[n]$	$(j)^k rac{d^k}{d\Omega^k} \; X\!(e^{j\Omega})$
Convolution	x[n]*y[n]	$X(e^{j\Omega})Y(e^{j\Omega})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi}(X(e^{j\theta})*Y(e^{j\Omega}))$

Common pairs

x[n]	$X(e^{j\Omega})$
$\delta[n]$	1.
$\delta[n-n_0]$	$e^{-j\Omega n_0}$
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\Omega + 2\pi k)$
$e^{j\Omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\Omega - \Omega_0 + 2\pi k)$
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\Omega + 2\pi k)$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$
$(n+1)a^nu[n],\ a <1$	$\frac{1}{(1-ae^{-j\Omega})^2}$
$\frac{\sin\Omega_c n}{\pi n}$	$X(e^{j\Omega}) = egin{cases} 1, & \Omega < \Omega_c \ 0, & \Omega_c < \Omega \leq \pi \end{cases}$
$x[n] = egin{cases} 1, & 0 \leq n \leq M \ 0, & ext{otherwise} \end{cases}$	$\frac{\sin\Omega (M+1)/2}{\sin\Omega/2} e^{-j\Omega M/2}$

z-transform

Properties

Properties	Sequence	z-transform	ROC
·	x[n]	X(z)	R_{x}
	$x_1[n]$	$X_{\mathbf{i}}(z)$	$R_{\chi i}$
	$x_2[n]$	$X_2(z)$	$R_{\chi 2}$
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z)+bX_2(z)$	Contains $R_{x1} \cap R_{x2}$
Time shifting	x[n-m]	$z^m X(z)$	R_x except for the possible addition or deletion of the origin or infinity.
Multiplication by an exponential sequence	a''x[n]	X(z/a)	$ a R_x$
Differentiation	nx[n]	$-z\frac{dX(z)}{dz}$	R_x except for the possible addition or deletion of the origin or infinity.
Conjugate	x*[n]	X*(z*)	R_{x}
Time reversal	x[-n]	X(z ⁻¹)	1/R _x
Convolution	$x_1[n]^* x_2[n]$	$X_1(z) X_2(z)$	Contains $R_{x1} \cap R_{x2}$

Common pairs

Sequence	Transform	ROC
δ[n]	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	$ z \ll a $

AHT/NNA 7/12

Finite Impulse Response (FIR) Filters

Ideal impulse responses for standard FIR filters

Ideal Impulse Response h(n)

$$h(n) = \begin{cases} \frac{\Omega_c}{\pi}, & n = 0\\ \frac{\sin(\Omega_c n)}{n\pi}, & n \neq 0 \end{cases}$$

$$h(n) = \begin{cases} \frac{\pi - \Omega_c}{\pi}, & n = 0\\ \frac{-\sin(\Omega_c n)}{n\pi}, & n \neq 0 \end{cases}$$

Bandpass:
$$h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi}, & n = 0\\ \frac{\sin(\Omega_H n) - \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$
Bandstop:
$$h(n) = \begin{cases} \frac{\pi - (\Omega_H - \Omega_L)}{\pi}, & n = 0\\ \frac{-\sin(\Omega_H n) + \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$

$$h(n) = \begin{cases} \frac{n \cdot (sz_H - sz_L)}{\pi}, & n = 0\\ \frac{-\sin(\Omega_H n) + \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$

FIR filter length estimation using window functions

Window Type Window Function $w(n), -M \le n \le M$

Rectangular

$$0.5 + 0.5 \cos\left(\frac{n\pi}{M}\right)$$

$$0.54 + 0.46 \cos\left(\frac{n\pi}{M}\right)$$

$$0.5 + 0.5 \cos\left(\frac{n\pi}{M}\right)$$

$$0.54 + 0.46 \cos\left(\frac{n\pi}{M}\right)$$

$$0.42 + 0.5 \cos\left(\frac{n\pi}{M}\right) + 0.08 \cos\left(\frac{2n\pi}{M}\right)$$

Normalized Transition Width $\Delta f = \frac{ f_{stop} - f_{pass} }{f_{sampling}}$			
Type of Window	Window Length N	Stopband Attenuation (dB)	Passband Ripple (dB)
Rectangular	$N = 0.9/\Delta f$	21	0.7416
Hanning	$N = 3.1/\Delta f$	44	0.0546
Hamming	$N = 3.3/\Delta f$	53	0.0194
Blackman	$N = 5.5/\Delta f$	74	0.0017

AHT/NNA

Bilinear Transformation (BLT)

1. Frequency prewarping

Let ω_a denote the analog frequency marked on the $j\omega$ -axis on the s-plane, and ω_d denote the digital frequency marked on the unit circle in the z-plane.

For the lowpass filter and highpass filter:

$$\omega_a = \frac{2}{T} \tan \left(\frac{\omega_d T}{2} \right)$$

For the bandpass filter and bandstop filter:

$$\omega_{al} = \frac{2}{T} \tan\left(\frac{\omega_l T}{2}\right), \ \omega_{ah} = \frac{2}{T} \tan\left(\frac{\omega_h T}{2}\right)$$

and
$$\omega_0 = \sqrt{\omega_{al}\omega_{ah}}, W = \omega_{ah} - \omega_{al}$$
.

2. Prototype transformation using the lowpass prototype $H_P(s)$

From lowpass to lowpass: $H(s) = H_p(s)|_{s=\frac{s}{a}}$

From lowpass to highpass: $H(s) = H_P(s)|_{s = \frac{\omega_0}{s}}$

From lowpass to bandpass: $H(s) = H_P(s)|_{s = \frac{s^2 + \omega_0^2}{sW}}$

From lowpass to bandstop: $H(s) = H_p(s) \Big|_{s = \frac{sW}{s^2 + \omega_0^2}}$

where ω_a denotes the analog frequency, $\omega_0 = \sqrt{\omega_{al}\omega_{ah}}$, $W = \omega_{ah} - \omega_{al}$.

3. Substitute the BLT to obtain the digital filter

$$H(z) = H(s) \Big|_{\substack{s = \frac{2}{T}, z - 1 \\ z + 1}}$$

Conversion from Analog Filter Specifications to Lowpass Prototype Specifications

Analog Filter Specifications Lowpass Prototype Specifications

Lowpass:
$$\omega_{ap}$$
, ω_{as}

$$v_s = \frac{\omega_{as}}{\omega_{an}}$$

Highpass:
$$\omega_{ap}$$
, ω_{as}

$$v_s = \frac{\omega_{ap}}{\omega_{as}}$$

Bandpass: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}

$$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$$

$$v_s = \frac{\omega_{ash} - \omega_{asl}}{\omega_{aph} - \omega_{apl}}$$

Bandstop: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}

$$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$$

$$v_s = \frac{\omega_{aph} - \omega_{apl}}{\omega_{ash} - \omega_{asl}}$$

 $\omega_{ap},$ passband frequency edge; $\omega_{as},$ stopband frequency edge

 ω_{apl} , lower cutoff frequency in passband; ω_{aph} , upper cutoff frequency in passband ω_{asl} , lower cutoff frequency in stopband; ω_{ash} , upper cutoff frequency in stopband ω_0 , geometric center frequency

Closed-Form Expression for Some Useful Series

$$\sum_{n=0}^{N-1} a^n = \frac{1-a^N}{1-a}
\sum_{n=0}^{N-1} na^n = \frac{(N-1)a^{N+1} - Na^N + a}{(1-a)^2}
\sum_{n=0}^{N-1} n = \frac{1}{2}N(N-1)
\sum_{n=0}^{N-1} a^n = \frac{1}{1-a}
\begin{vmatrix} \sum_{n=0}^{\infty} na^n = \frac{a}{(1-a)^2} \\ \sum_{n=0}^{N-1} n^2 = \frac{1}{6}N(N-1)(2N-1) \\ \sum_{n=N_1}^{N_2} a^n = \frac{a^{N_1-1} - a^{N_2}}{1-a} \\ \begin{vmatrix} a \end{vmatrix} < 1 \end{vmatrix}$$

Digital Butterworth and Chebyshev Filter Designs

With the given passband ripple A_p dB at the normalized passband frequency edge $v_p = 1$, and the stopband attenuation A_s dB at the normalized stopband frequency edge v_s , ε is the absolute ripple specification

$$\varepsilon^2 = 10^{0.1A_p} - 1$$

Butterworth lowpass prototype order

$$n \ge \frac{\log_{10} \left(\frac{10^{0.1A_s} - 1}{\varepsilon^2} \right)}{2\log_{10}(v_s)}$$

Chebyshev lowpass prototype order

$$n \ge \frac{\cosh^{-1}\left(\sqrt{\frac{10^{0.1A_s}-1}{\varepsilon^2}}\right)}{\cosh^{-1}(v_s)}$$

where $\cosh^{-1}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$

3-dB Butterworth Lowpass Prototype Transfer Functions ($\varepsilon = 1$)

n
$$H_{p}(s)$$

1 $\frac{1}{s+1}$
2 $\frac{1}{s^{2}+1.4142s+1}$
3 $\frac{1}{s^{3}+2s^{2}+2s+1}$

Chebyshev Lowpass Prototype Transfer Functions with 1dB Ripple (ε = 0.5088)

n
$$H_P(s)$$

1 $\frac{1.9652}{s+1.9652}$
2 $\frac{0.9826}{s^2+1.0977s+1.1025}$
3 $\frac{0.4913}{s^3+0.9883s^2+1.2384s+0.4913}$

AHT/NNA 11/12

Discrete Fourier Transform

Properties

Property	x[n]	X[k]
Linearity	$A_1x_1[n] + A_2x_2[n]$	$A_1X_1[k] + A_2X_2[k]$
Time shifting	$x[\langle n-n_0 \rangle_N]$	$X[k]W_N^{kn_0}$
Frequency shifting	$x[n]W_N^{-k_0n}$	$X[\langle k-k_0\rangle_N]$
Time reversal	$x[\langle -n angle_N]$	$X[\langle -k \rangle_N]$
Conjugation	$x^*[n]$	$X^*[\langle -k angle_N]$
Convolution	$x[n]\circledast y[n]$	X[k]Y[k]
Modulation	Nx[n]y[n]	$X[k] \circledast Y[k]$

The decimation-in-time fast Fourier transform

End of Paper

