EL FACTOR DE RUIDO ¿Qué es y cómo medirlo?

Proyecto C.A.N.F.I

Alejandro Fernández – EA4BFK

Agenda

- Motivación
- El Ruido Térmico
- Relación Señal/Ruido, Factor de Ruido y Cifra de Ruido
- Cifra de Ruido y Temperatura Equivalente de Ruido
- Factor de Ruido de un conjunto de dispositivos
- ¿Cómo saber la Cifra de Ruido de mi receptor?
- ¿Cómo medir la Cifra de Ruido?
- ¿Qué es el ENR?
- Construyendo una Cabeza de Ruido
- Medidor CANFI
 - > Hardware
 - Software
- Calibración de una Cabeza de Ruido
- Incertidumbre en las medidas de Cifra de Ruido
- Aprendizajes / Próximos pasos
- Agradecimientos
- Referencias y enlaces interesantes

Motivación

- Trabajo en un diseño de LNA's conmutados para un transceptor de VHF/UHF/Microondas SDR basado en el Adalm Pluto
 - https://www.youtube.com/watch?v=80r13qrW34c&t=138s
 - https://micromeet.org/MM/2021/MicroMeet2021-EA4BFK-Pluto_RTX_EA_Diseno_de_RF_por_aficionados.pdf
- Evaluar prototipos de LNA's. Montaje vs. Simulación

Medidas de los LNA's finales

- Mercado de 2ª mano de equipos profesionales *** + Calibrado???
- Soluciones Amateur Disponibles (PANFI de los 90's / CANFI de 2015-18)

El Ruido Térmico

- Hay múltiples tipos de ruido, pero del que vamos a hablar es del Ruido Térmico generado en los amplificadores y otros circuitos de la cadena de recepción.
 Relevante desde VHF y en bandas superiores.
- Todos los materiales conductores generan Ruido Térmico debido al movimiento aleatorio de los electrones en los átomos del metal
- A temperatura ambiente = 17°C → 290K la potencia de ruido generada por una resistencia R es:

$$P_{noise (W)} = k * B * T$$

Transformando la potencia de W a dBm

$$P_{dBm}=$$
 10 * $\log(\mathbf{k}*\mathbf{T}*\mathbf{10}^3)+$ 10 * $\log(\mathbf{B})$ Para T=290K y B= 1 Hz $P_{dBm}=-$ 174 dBm

$$k = 1.38x10^{-23} \text{ Jul/K}$$
 (Constante de Boltzman)

$$P_{dBm} = 10 * \log_{10}(P_{W} * 10^{3})$$

(B)	10 * log(B)
500 Hz	27,0 db
2.400 Hz	33,8 dB
10.000 KHz	40,0 dB

La potencia de ruido es independiente de R, <u>pero el medidor debe tener una</u> impedancia de entrada = R, para evitar reflexiones

Relación Señal Ruido, Factor de Ruido y Cifra de Ruido

Relación Señal Ruido SNR (Signal to Noise Ratio)

$$SNR = \frac{S}{N}$$

$$S/N_{dB} = 10 * \log S - 10 * \log N$$
$$S/N_{dB} = S_{dBm} - N_{dBm}$$

Factor de Ruido F (Noise Factor)

El Factor de Ruido de un dispositivo es la degradación que produce entre la relación señal/ruido de la entrada y la salida del mismo.

Cifra de Ruido y Temperatura Equivalente de Ruido

Cifra de Ruido NF (Noise Figure)

La Cifra de Ruido es el Factor de Ruido expresado en decibelios

$$NF_{dB} = 10 * \log F$$

$$\mathbf{F} = \mathbf{10}^{(\frac{NF_{dB}}{10})}$$

Temperatura Equivalente de Ruido

Es otra forma de expresar el factor de ruido respecto a la temperatura estándar T_o de 290K

$$T_e = 290 * (F - 1)$$

$$F = 1 + \frac{T_e}{T_o}$$

$$T_o = 290K$$

$$T_0 = 290K$$

Noise figure NF	Noise factor F	Noise temperature T _e
0 dB	1	0 K
		(absolute zero)
1 dB	1.26	75.1 K
3 dB	2.00	290 K
10 dB	10	2,610 K
20 dB	100	28,710 K

Es muy empleada sistemas de comunicación satelital y en Radioastronomía

Factor de Ruido de un conjunto de dispositivos

F, G, N son valores lineales no dB's

$$F_{tot} = \boxed{F_1} + \frac{(F_2 - 1)}{G_1} + \frac{(F_3 - 1)}{G_1 G_2} + \frac{(F_4 - 1)}{G_1 G_2 G_3} + \cdots$$

 El Factor de Ruido / Cifra de Ruido de un conjunto de dispositivos está fundamentalmente relacionado con el Factor de Ruido de la primera etapa y la ganancia de la misma

¿Cómo saber la Cifra de Ruido de mi receptor?

La respuesta está en el Manual del equipo ©

100		TS-2000/TS-B2000
	R (Continued)	
Sensitivity Mair: SSB/CW/FSK (S/N 10 dB)		Less than 4 μ V (500 kHz \sim 1.705 MHz), Less than 0.2 μ V (1.705 \sim 24.5 MHz), Less than 0.13 μ V (24.5 \sim 30 MHz),
	AM (S/N 10 dB)	Less than $0.13 \mu V (50 - 54 \text{ MHz})$, Less than $0.11 \mu V (144 - 146 \text{ MHz})$, Less than $0.11 \mu V (430 - 440 \text{ MHz})$, Less than $0.11 \mu V (1240 - 1300 \text{ MHz})$ * Less than $31.6 \mu V (500 \text{ kHz} - 1.705 \text{ MHz})$, Less than $1.3 \mu V (24.5 - 30 \text{ MHz})$.
	FM (12 dB SINAD)	Less than 1.3 μ V (50 - 54 MHz), Less than 1.0 μ V (144 - 146 MHz), Less than 1.0 μ V (430 - 440 MHz), Less than 1.0 μ V (1240 - 1300MHz)* Less than 0.22 μ V (28 - 30 MHz), Less than 0.22 μ V (50 - 54 MHz),
Sub:	AM (S/N 10 dB) FM (12 dB SINAD)	Less than $0.18~\mu\text{V}$ ($144 - 146~\text{MHz}$), Less than $0.18~\mu\text{V}$ ($430 - 440~\text{MHz}$), Less than $0.18~\mu\text{V}$ ($1240 - 1300\text{MHz}$)* Less than $1.55~\mu\text{V}$ ($144 - 146~\text{MHz}$), Less than $1.55~\mu\text{V}$ ($430 - 440~\text{MHz}$), Less than $0.28~\mu\text{V}$ ($144 - 146~\text{MHz}$)
0-1		Less trian 0.28 µV (430 ~ 440 MHz)
Selectivit Main:		More than 2.2 kHz (-6 dB), Less than 4.4 kHz (-60 dB)
	AM (Low:100MHz, Hi:3000MHz)	More than 6.0 kHz (-6 dB), Less than 12.0 kHz (-50 dB)
	FM	More than 12.0 kHz (-6 dB), Less than 25.0 kHz (-50 dB)
	FM (Narrow)	More than 8.0 kHz (-6 dB), Less than 20.0 kHz (-50 dB)
Sub:	AM	More than 12.0 kHz (-6 dB), Less than 25.0 kHz (-50 dB)
	FM	More than 12.0 kHz (-6 dB), Less than 25.0 kHz (-50 dB)

$$Sens_{(dBm)} = 10 * log(\frac{\left(Sens_{(uV)} * 10^{-6}\right)^2}{50} * 1000)$$

$$Sens_{(uV)} = 0.11$$

$$Sens_{(dBm)} = -126, 16 dBm$$

$$SNR_{(dB)} = 10 dB$$

$$BW_{(Hz)} = 2200 Hz$$

$$NF_{RX} = 174 + Sens_{(dBm)} - SNR_{(dB)} - 10 * log(BW_{(Hz)})$$

$$NF_{RX} = 174 - 126, 16 - 10 - 10 * log(2200) = 4,41dB$$

PREGUNTA: Significa que si llega una señal de -126,16 dBm, la recibiré con 10dB de SNR?

No necesariamente, porque TAMBIEN HAY OTROS RUIDOS que llegan a la antena, si estos tienen más potencia, ese ruido establece el suelo del ruido de recepción

¿Cómo saber la Cifra de Ruido de mi receptor? - ADENDUM

La Cifra de Ruido calculada de un receptor, no es una cifra única para todas las condiciones de ancho de banda de FI ni para cualquier relación señal ruido, dado que un Receptor es un Sistema de Dispositivos, cada uno con su NF y su ganancia.

$$NF_{RX} = 174 + Sens_{(dBm)} - SNR_{(dB)} - 10 * log(BW_{(Hz)})$$

- Adicionalmente en el receptor podemos modificar el ancho de banda del filtro de FI, así como activar o desactivar el preamplificador, o medir la sensibilidad del mismo para lograr una SNR distinta de la indicada.
- Empleando la información del manual, el NF en 144 MHz es distinta según estemos recibiendo en SSB o en AM:

Mode	Sens (uV)	Bandwith (Hz)	SNR (dB)	Sens (dBm)	NF
SSB	0,11	2200	10	-126,16	4,41
AM	1,00	6000	10	-106,99	19,23

• El calculo del NF de nuestros receptores, empieza por saber para que lo vamos a emplear, y que tipo de modulación queremos recibir (SSB, CW, FM). Dependiendo de ello, el NF calculado será distinto y es el que deberemos considerar por ejemplo, en los cálculos del "Presupuesto de Señal de Bajada" en la recepción de satélites.

Factor de Ruido de un conjunto de dispositivos. Ejemplo

Att: -1,93dB	747 : 7, 742
A temperatura ambiente el N	IF_{dB} de un
atenuador es igual a su atenua	ición en <i>dB</i>

LNA AVE 4 0 VP 2000	
NF: 1,0 dB 20m RG213	RECEPTOR
Att: -1,93dB	NF: 4,4dB
Gain: 20,0 dB	

$G = 10^{\circ}$	$\frac{Gain_{dB}}{10}$
------------------	------------------------

			(NFdB)
F	=	10	10

Etapa		dB	Lineal
1	Gain Coax	-1,9	0,6412
1	NF Coax	1,9	1,5596
2	NF Rx	4,4	2,7542
	NF Sistema	6,33	4,2954

	_		
Etapa		dB	Lineal
1	Gain Coax	-1,9	0,6412
1	NF Coax	1,9	1,5596
2	Gain LNA	20,0	100,0000
	NF LNA	1,0	1,2589
	•		
3	NF Rx	4,4	2,7542
	NF Sistema	2,99	1,9907

	•		
Etapa		dB	Lineal
4	Gain LNA	20,0	100,0000
1	NF LNA	1,0	1,2589
2	Gain Coax	-1,9	0,6412
	NF Coax	1,9	1,5596
3	NF Rx	4,4	2,7542
	NF Sistema	1,11	1,2919

¿Cómo medir la Cifra de Ruido?

Empleando el método del Factor Y

Mediante un medidor de potencia medimos la potencia generada por una resistencia a dos temperaturas diferentes (P_{OFF} y P_{ON}) su cociente es el factor Y

 Para evitar el "soplete" + "el termómetro" se emplean cabezas de ruido calibradas, donde la diferencia de potencia de ruido entre los estados OFF/ON es conocida para cada frecuencia. Eso es el ENR_{dB}

¿Qué es el ENR de una Cabeza de ruido?

ENR (Excess Noise Ratio)

Es la diferencia de potencia de ruido, medido en dB entre los estados OFF y ON de una generador de ruido calibrado respecto a la temperatura T_0 de 290K

Si asumimos que $T_{\rm OFF}$ es igual a la temperatura ambiente $T_{\rm o}$ el y el ancho de banda (B) es de 1 Hz

$$ENR_{(dB)} = P_{ON(dBm/Hz)} - 174dBm/Hz$$

Ejemplo: Generador de ruido con $P_{ON\,(dBm/Hz)}=-159~dBm/Hz$

$$ENR_{(dB)} = 15 dB$$

 La clave está en como medir potencias tan débiles, ... luego veremos como lo podemos hacer

¿Cómo Funciona un medidor de Cifra de Ruido?

Con una cabeza de Ruido de ENR_{dB} conocida, medimos en dos pasos:

Cabeza de Ruido - Construcción

Diseño de DG1KPN. Utilizable hasta 3 - 4 GHz

Cabeza de Ruido - Construcción

 Muy importante emplear un Atenuador de 20dB's para obtener el ENR adecuado (15dB) y un buen RL de la misma.

Medidor CANFI - Cheap Automatic Noise Figure Indicator

- Desarrollo de DL2ALF (Frank), DF9IC (Wolf) y DL8AAU (Alexander) basado en un RTL-SDR con sintonizador R820T y algunos circuitos accesorios (http://www.canfi.eu/)
- Sistema formado por Medidor y Software (Gratuito)
- Rango de Frecuencias utilizable 50 1600 MHz
- Compatible con cabezas de Ruido profesionales

Tiene sus limitaciones (ie: rango dinámico), pero si las conoces es muy útil y te da

Medidor CANFI - Hardware

- Componentes muy fáciles de encontrar
- Coste Total +/- 100€ incluyendo la caja Hammond
- Paneles disponibles ©

Ajustar el convertidor DC-DC para salida 28V

- Descargar el zip desde la web del Proyecto CANFI
- Colocar la carpeta en el directorio deseado. No necesita instalación.
- Dependiendo del modulo USB-RS232 empleado quizás se necesario instalar los drivers. Windows lo suele hacer automáticamente.
- Crear un acceso directo a CANFI.exe

Nombre	Fecha de modificación	Tipo	Tamaño
rtlsdr	01/09/2021 16:27	Carpeta de archivos	
Calibration.csv	01/09/2021 16:38	Archivo de valores	1 KB
CANFI.exe	26/12/2015 10:28	Aplicación	118 KB
CANFI.exe.config	26/12/2015 10:24	Archivo CONFIG	11 KB
fftwlib.dll	19/12/2015 14:49	Extensión de la ap	28 KB
HP346A_DL2ALF.cal	17/01/2015 11:21	Archivo CAL	1 KB
HP346B_DL2ALF.cal	17/01/2015 11:21	Archivo CAL	1 KB
libfftw3-3.dll	27/11/2015 17:54	Extensión de la ap	2.177 KB
libfftw3f-3.dll	27/11/2015 17:54	Extensión de la ap	2.259 KB
libfftw3I-3.dll	27/11/2015 17:54	Extensión de la ap	1.093 KB
libusb-1.0.dll	16/01/2015 17:22	Extensión de la ap	94 KB
LICENSE	16/12/2015 22:11	Archivo	70 KB
msvcr100.dll	16/01/2015 17:22	Extensión de la ap	756 KB
R820T.tun	01/09/2021 16:35	Archivo TUN	2 KB
R820T.tun.default	05/09/2021 13:41	Archivo DEFAULT	2 KB
RTLBackgroundWorker.dll	26/12/2015 10:27	Extensión de la ap	39 KB
RTLBackgroundWorker.pdb	26/12/2015 10:27	Archivo PDB	80 KB
Values.csv	05/09/2021 13:41	Archivo de valores	0 KB
VersionInfo.txt	26/12/2015 10:27	Documento de te	1 KB

No mover ni modificar. Incluye una archivo dll específico

Archivo con los datos de CALIBRACIÓN
Se actualiza cada vez que calibramos

Tabla con los datos de CALIBRACIÓN de la CABEZA de RUIDO (Fácilmente Editable)

Archivo con los datos de las medidas. Se añaden las medidas que realizamos. Se inicializa cada vez que arrancamos la aplicación

AJUSTES (Settings)

- 1.- Seleccionar el RTL que corresponda si tenéis mas de uno conectado
- 2.- Seleccionar el COM que haya creado el Medidor al conectarse y seleccionar Seleccionar Noise Source **DTR** y marcar **Inv**
- 3.- Temperatura ^oC de la habitación + 273 (ej: 293 si estamos a 20°C)

Ajuste del RTL Tuner Gain. Guía Inicial

- Debido a que la sensibilidad del RTL no es lineal en todo el rango de frecuencias y que la ganancia del LNA empleado en la entrada del CANFI tampoco lo es, la ganancia del RTL hay que adecuarla a cada rango de frecuencias, para obtener un calibrado adecuado
- Verificar durante el calibrado que se cumplen estos dos parámetros con la Ganancia seleccionada
 - P_OFF debe ser mayor de **16.99 dB**
 - NF del Medidor el menor posible ~ 5 6 dB

DATOS RTL Tuner Gain considerando RTL-SDR + SPF5189 y Noise Source con ENR 14-15 dB

Frecuencias (MHz)	Tuner Gain	NF del Medidor
50 – 150 MHz	21.1 dB	5.94 dB
400 - 450 MHz	21.6 dB	6.68 dB
900 – 1100 MHz	38.6 dB	6.39 dB
1296 MHz	43.1 dB	5.35 dB

Medidor CANFI – Proceso de Medida - Calibración

1. Conectar la cabeza de Ruido al medidor empleando los cables y conectores que luego emplearemos para medir el **DUT.**

- 2. Introducir la Frecuencia del **DUT** que vamos a medir y el **ENR** correspondiente a esa frecuencia.
- 3. Seleccionar el Tuner Gain según la tabla anterior en función de la frecuencia
- 4. Pulsar **Calibrate** y en unos segundos se calibra y se detiene . La <u>ventana NF nos</u> <u>indica el **NF del sistema de medida** y en **Gain** aparecerá **00.00**</u>

Medidor CANFI – Proceso de Medida - Medición

1. Conectar el DUT entre la cabeza de ruido y el medidor.

<u>Si el DUT a medir tiene una ganancia superior a 15 dB es necesario poner un atenuador de 10 dB</u> entre el DUT y el Medidor para evitar que se sature.

2. Pulsar **Measure** en unos segundos se estabiliza y podemos leer la **Ganancia** y la **Cifra de Ruido** del DUT.

GANANCIA REAL 14.0 dB + 10.0 dB 24.0 dB

Medidor CANFI - Proceso de Medida – Medición con Barrido

- OPCIÓN 1. Comparación con una Cabeza de Ruido Calibrada y usando el Medidor CANFI
 - ullet Calibrarullet con la Cabeza de Ruido de ENR conocido ($ENR_{CAL\,(dB)}$) y anotar NF ($NF_{CAL(dB)}$)
 - Volver a Calibrar con la Nueva Cabeza de Ruido sin cambiar nada y Anotar NF $(NF_{NEW(dB)})$
 - Calculo del ENR de la cabeza de Ruido Nueva ($ENR_{NEW(dB)}$)

$$ENR_{NEW(dB)} = ENR_{CAL(dB)} + NF_{CAL(dB)} - NF_{NEW(dB)}$$

FREQ (MHz)	Gain	ENR CAL	NF CAL	NF NEW
50	27,5	15,32	4,57	5,52
70	27,5	15,28	2,72	4,03
100	27,5	15,22	1,78	3,54
137	27,5	15,20	1,90	3,40
145	27,5	15,19	1,92	3,40
250	27,5	15,14	1,82	2,79
403	27,5	15,05	3,11	3,00
435	27,5	15,03	3,22	3,52
600	31,9	14,93	3,29	3,26
1000	38,6	14,69	5,69	4,31
1000	41,0	14,69	3,58	2,10
1090	41,0	14,67	4,55	2,68
1296	43,1	14,61	5,65	2,93
1400	43,1	14,59	7,58	4,59
1600	44,5	14,54	8,83	5,58

14,4 14,0 13,5 13,7 13,7 14,2 15,2 14,7 15,0 16,1 16,2 16,5 17,3

17,8

Tabla de Calibrado vs Keysight 346C

^(*) Ajustar el RTL-SDR Gain en la calibración de la Cabeza de ENR conocido ($ENR_{CAL(dB)}$) para que P_ON> 16.99dB y el NF del medidor ($NF_{CAL(dB)}$) sea el menor posible

Calibración de una Cabeza de Ruido

 OPCIÓN 2. Usando el Factor Y con un Analizador de Espectro y un LNA de banda ancha y ganancia >30dB y de NF conocido en las frecuencias de interés

- \blacksquare El $NF_{LNA\ (dB)}$ muy aproximado se puede obtener del data sheet del dispositivo
- Medir los valores de P_{OFF} y P_{ON} para cada frecuencia de interés

Definition Input Retu Gain(Pow Reverse Is Output Re	rn Loss = er Gain) = solation = - turn Loss :	S21 (dB)							
FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stability		IP-3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	К	Measure	(dBm)	(dBm)	(dB)
50	25.55	29.50	8.40	15.44	0.97	0.71	32.94	19.82	0.64
60	25.36	29.61	8.79	16.44	1.00	0.73	33.24	20.01	0.64
70	25.26	29.10	9.28	17.63	1.00	0.68	33.07	20.01	0.58
80	25.17	28.94	9.57	18.66	1.01	0.67	32.74	19.80	0.62
90	25.09	28.92	9.81	19.42	1.02	0.66	32.71	19.77	0.64
100	25.04	28.85	9.97	20.01	1.03	0.66	32.64	19.63	0.61
150	24.77	28.63	10.53	21.37	1.04	0.65	32.64	19.96	0.56
200	24.47	28.65	10.80	20.85	1.07	0.67	32.85	19.64	0.59
250	24.14	28.62	11.03	20.03	1.09	0.68	32.83	19.85	0.53
300	23.78	28.40	11.27	19.05	1.10	0.69	33.04	19.75	0.66
350	23.39	28.21	11.48	18.34	1.11	0.70	33.04	19.94	0.64
400	23.00	28.00	11.63	17.66	1.12	0.71	33.22	19.61	0.64
450	22.59	27.78	11.85	17.13	1.13	0.72	33.65	19.94	0.65
500	22.17	27.55	12.02	16.72		0.73		20.11	0.65

PSA4-5043+

Calibración de una Cabeza de Ruido

CUIDADO CON LAS INTERFERENCIAS DURANTE LA MEDICIÓN

- Otros métodos
 - Midiendo LNA's de frecuencias y NF conocidos y ajustando el valor de ENR hasta que coincida la medida entre ambas cabezas de ruido

Configuración del SA

Rango: 0 – 1500MHz

RBW: 100KHz

PA: ON // Att: OdB

Detector: RMS

Trace Avg: 25

Evaluación de la incertidumbre de la medida de NF

- Todas las mediciones tienen incertidumbre de medida y la medida de NF es especialmente sensible a diversos factores, si los conocemos podemos mantener el nivel de incertidumbre entre límites razonables.
- Factores a considerar para minimizar la incertidumbre
 - APAGAR cualquier equipo que genere RF (Móvil, Equipo de Radio, etc)
 - Conectores y coaxiales empleados. Los mínimos y los mejores que nos podamos permitir. Cambiar lo mínimo entre la CALIBRACIÓN y la MEDICIÓN. Usar H-H en calibración en lugar del DUT
 - Verificar que se cumplen siempre las siguientes reglas*:

$$ENR_{(dB)} - NF_{MEDIDOR(dB)} > 3dB$$
 $ENR_{(dB)} - NF_{DUT(dB)} > 5dB$
 $NF_{DUT(dB)} + G_{DUT(dB)} - NF_{MEDIDOR(dB)} > 1dB$

- Noise Source con buena adaptación a 50Ω , tanto en OFF / ON y conocer su RL.
- Conocer el RL del Dispositivo a Medir, tanto en la entrada como en la salida. Fáciles de medir con un nanoVNA (RL In= dB([S1,1]) RL Out = dB([S2,2]))
- Emplear el programa gratuito de R&S de evaluación de Incertidumbre

^{*}Rohde-Schwarz Noise Measurements Guide

Evaluación de la incertidumbre de la medida de NF

 El software gratuito de R&S permite evaluar la incertidumbre de la medida de NF en función de diversos parámetros del sistema empleado

También permite emplear como medidor de NF un Analizador de Espectro.

Aprendizajes / Próximos pasos

- Las medidas de NF son delicadas (incertidumbre), pero no imposibles para los aficionados si se tienen en cuenta los detalles
- La solución CANFI te permite comparar LNA's sin dificultad, para identificar el mejor, aunque la medida no sea exactamente igual a la realizada con equipos profesionales
- No hay que obsesionarse con el NF en VHF / UHF, a veces el ruido externo es el problema no el NF del LNA
- Los LNA's suelen estar diseñados, para un Impedancia de 50Ω resistivos, en cuanto los conectas a la antena de verdad, su NF casi seguro será distinto
- Si instalas LNA's hay que hacerlo junto a las antenas y asegurándote de tener la antena ajustada para una ROE 1:1 o lo mejor posible para que el NF sea el previsto <u>Próximos Pasos</u>
- Acabar de probar el sistema mezclador para medidas > 1600 MHz y montarlo correctamente en caja blindada

Agradecimientos

- Comité Organizador de IberRadio 2021
- José Ignacio (EA1AWV)
- Manel (EA1BLA)
- Luis (EA4BGH)
- Los desarrolladores de Proyecto CANFI
- Los Radiotrastornados de la Microondas (micromeet.org)
- Y a un sinfín de Colegas, que me animan a seguir experimentando
- Y no dejéis de

Experimentar, Aprender y Compartir

GRACIAS

Referencias y Enlaces de interés

Proyecto Pluto RTX EA

- Video de la Presentación https://www.youtube.com/watch?v=80r13qrW34c&t=138s
- Presentación: https://micromeet.org/MM/2021/MicroMeet2021-EA4BFK-Pluto RTX EA Diseno de RF por aficionados.pdf

Proyecto CANFI

- Web del Proyecto http://www.canfi.eu/
- Construcción de YO4HFU https://www.qsl.net/yo4hfu/CANFI.html
- Construcción de DL2KHP http://www.dl2khp.de/projekte/noise-figure-meter.html

Entendiendo la Cifra de Ruido

https://www.qsl.net/va3iul/Noise/Understanding%20Noise%20Figure.pdf

HP Notas de Aplicación

- AN 57-1 http://hparchive.com/Application Notes/HP-AN-57-1.pdf
- AN 57-2 http://hparchive.com/Application Notes/HP-AN-57-2.pdf

Agilent Notas de Aplicación (2010)

- AN 57-1 https://www.changpuak.ch/electronics/downloads/5952-8255E.pdf
- AN 57-2 https://d3fdwrtpsinh7j.cloudfront.net/Docs/datasheet/hp 346a.pdf

Keysight Notas de Aplicación

- Noise Figure Measurement https://www.keysight.com/es/en/assets/7018-06808/application-notes/5952-8255.pdf?success=true
- 10 Hints https://www.keysight.com/es/en/assets/7018-06795/application-notes/5980-0288.pdf?success=true

Rohde & Schwarz Notas de Aplicación y Software

AN5280 y Software https://www.rohde-schwarz.com/es/aplicaciones/t-cnica-de-factor-y-para-medidas-del-factor-de-ruido-nota-de-aplicacion 56280-15484.html

Calculador de NF de Rx's

https://owenduffy.net/calc/RxSensitivityCalc.htm

G8FEK Noise Sources

https://g8fek.com/index.html#

Materiales Noise Head y CANFI

- RTL SDR https://es.aliexpress.com/item/32939551915.html?spm=a2g0s.9042311.0.0.274263c02byVPS
- Caja Noise Head https://es.aliexpress.com/item/33056333494.html?spm=a2g0s.9042311.0.0.274263c02byVPS
- Atenuadores https://es.aliexpress.com/item/32970659006.html?spm=a2g0o.productlist.0.0.6c61757bDleu5k&algo_pvid=f5224c93-31e9-450f-aa50-94eddc6e609c-2