МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе № 2 по дисциплине «Информатика» Тема: Моделирование работы Машины Тьюринга

Тема: Моделирование работы Машины Тьюринга

Заяд Бакеко
та К.В.

Санкт-Петербург 2018

Цель работы.

Смоделировать работу Машины Тьюринга для сложения и вычитания цифры из числа в троичной системе.

Основные теоретические положения.

Алфавит:

- 0
- 1
- 2
- +
- -
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Число обязательно начинается с единицы или двойки.
- 3. Числа и знак операции между ними идут непрерывно.
- 4. Гарантируется, что в результате операции вычитания не может получиться отрицательного числа.

- 1. Был создан файл main.py
- **2.** Код основной функции, которая считывает строку, преобразовывает ее элементы в список, а затем запускает Машину Тьюринга В нём список преобразовывается в строку и выводится на экран, после чего программа завершается.

```
tape =list(input())
q1(tape,0)
print(".join(tape))
```

3. начальное состояние q1 -в нём машина перебирает элементы и ищет первую цифру первого числа.

```
def q1(tape,index):
    if tape[index]==":
        q1(tape,index+1)
    else:
        q2(tape,index+1)
```

4. Машина переходит в состояние q2, — в нём машина перебирает элементы и ищет ячейку со знаком.

```
def q2(tape,index):
    if tape[index]=='+':
        q3(tape,index+1)
    elif tape[index]=='-':
        q3(tape,index+1)
    else:
        q2(tape,index+1)
```

5. Состояние q3 -, необходимое для поиска цифры прибавляемой/вычитаемой из числа.

```
def q3(tape,index):
    if tape[index]=='1':
        q4(tape,index-1)
    elif tape[index]=='2':
        q5(tape,index-1)
    else:
        print (".join(tape))
```

6. Состояния q4,q5, необходимые для выбора арифметического действия с числом и цифрой

```
def q4(tape,index):
    if tape[index]=='-':
        q8(tape,index-1)
    else:
        q6(tape,index-1)

def q5(tape,index):
    if tape[index]=='-':
        q11(tape,index-1)
    else:
        q10(tape,index-1)
```

7. Состояния q6,q7, необходимые для выполнения сложения числа с цифрой 1.

```
def q6(tape,index):
  if tape[index]=='0':
     tape[index]='1'
  elif tape[index]=='1':
     tape[index]='2'
  elif tape[index]=='2':
     tape[index]='0'
     q7(tape,index-1)
  else:
     q7(tape,index)
def q7(tape,index):
  if tape[index]=='0':
     tape[index]='1'
  elif tape[index]=='1':
     tape[index]='2'
  elif tape[index]=='2':
     tape[index]='0'
     q7(tape,index-1)
  else:
     tape[index]='1'
```

8. Состояния q8,q9, необходимые для выполнения вычитания из числа цифры 1. def q8(tape,index): if tape[index]=='0': tape[index]='2' q9(tape,index-1) elif tape[index]=='2': tape[index]='1' tape[index]='0'def q9(tape,index): if tape[index]=='0': tape[index]='2' q9(tape,index-1) elif tape[index]=='1': tape[index]='0' q9(tape,index-1) elif tape[index]=='2': tape[index]='1' else: q12(tape,index) 9. Состояние q10, необходимое для выполнения сложения числа с цифрой 2 def q10(tape,index): if (tape[index]!=' ')and(tape[index]!='0'): tape[index] =str(int(tape[index])-1) q6(tape,index-1) elif tape[index]=='0': tape[index]='2'10. Состояние q11, необходимое для выполнения вычитания числа с цифрой 2 def q11(tape,index): if tape[index]=='0': tape[index]='1' q8(tape,index-1)

```
def q11(tape,index):
    if tape[index]=='0':
        tape[index]='1'
        q8(tape,index-1)
    elif tape[index]=='1':
        tape[index]='2'
        q8(tape,index-1)
    else:
        tape[index]='0'
        q12(tape,index-1)
```

11.Состояние q12,13- необходимое для избавления от высшего разряда в случае его обращения в 0

```
def q12(tape,index):
    if tape[index]==' ':
        q13(tape,index+1)
def q13(tape,index):
```

12. Конечное состояние q14, завершение работы.

	0	1	2	66 99	"+"	"_"
q1	0;R;q2	1;R;q2	2;R;q2	"";R;q1		
q2	0;R;q2	1;R;q2	2;R;q2		"+";R;q3	"-";R;q3
q3		1;L;q4	2;L;q5			
q4					"+";L;q6	"-";L;q8
q5					"+";L;q10	"-";L;q11
q6	1;N;q14	2;N;q14	0;L;q7	" ";N;q7		
q7	1;N;q14	2;N;q14	0;L;q7	1;N;q14		
q8	2;L:q9	0;N;q14	1;N;q14			
q9	2;L:q9	0;N;q14	1;N;q14	" ";N;q12		
q10	2;N;q14	0;L;q6	1;L;q6			
q11	1;L;q8	2;L;q8	0;L;q9			
q12				"";R;q13		
q13	"";N;q14					

Вывод

В ходе выполнения лабораторной работы был изучен механизм работы Машины Тьюринга, на которой основаны принципы работы современных компьютеров и смоделировали ее для сложения и вычитания однозначного числа из любого числа в троичной системе.