Relational Calculus and Algebra

EECS 339

Lecture 5

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational, very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it.
 (Non-operational, <u>declarative</u>.)

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

R1

*S*1

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- Basic operations:
 - <u>Selection</u> (\mathcal{O}) Selects a subset of rows from relation.
 - Projection (π) Deletes unwanted columns from relation.
 - Cross-product (X) Allows us to combine two relations.
 - <u>Set-difference</u> (**—**) Tuples in reln. 1, but not in reln. 2.
 - <u>Union</u> ([]) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, <u>join</u>, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate duplicates! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

age 35.0 55.5

$$\pi_{age}(S2)$$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating>8}(S2))$$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - Corresponding fields have the same type.
- What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• *Renaming operator*:

 ρ (C(1 \rightarrow sid1,5 \rightarrow sid2), S1×R1)

Joins

• <u>Condition Join</u>: $R \bowtie_{c} S = \sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

Joins

 <u>Equi-Join</u>: A special case of condition join where the condition c contains only <u>equalities</u>.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on all common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like:
 - Find sailors who have reserved <u>all</u> boats.
- Let A have 2 fields, x and y; B have only field y:
 - $-A/B = \left\{ \langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B \right\}$
 - i.e., A/B contains all x tuples (sailors) such that for <u>every</u> y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

sno	pno	pno	pno	pno
s1	p1	p2	p2	p1
s1	p2	В1	p4	p2
s1	p3	D1	<i>B</i> 2	p4
s1	p4		D∠	D 2
s2	p1	sno		<i>B3</i>
s2 s2 s3	p2	s1		
	p2 p2	s2	sno	
s4	p2	s3	s1	sno
s4	p4	s4	s4	s1
4	A	A/B1	A/B2	A/B3

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
- *Idea*: For *A/B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - x value is disqualified if by attaching y value from B,
 we obtain an xy tuple that is not in A.

Disqualified x values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Find names of sailors who've reserved boat #103

• Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

* Solution 2: ρ (Templ, $\sigma_{bid=103}$ Reserves)

 ρ (Temp2, Temp1 \bowtie Sailors)

 π_{sname} (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats:

```
\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))
```

 $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

- Can also define Tempboats using union! (How?)
- *What happens if V is replaced by ^ in this query?

Find sailors who've reserved a red <u>and</u> a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho \text{ (Tempred, } \pi \text{ sid } \text{ (}(\sigma \text{color='red'} Boats) \bowtie Reserves))$$

$$\rho \text{ (Tempgreen, } \pi \text{ sid } \text{ (}(\sigma \text{color='green'} Boats) \bowtie Reserves))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho \ (Tempsids, (\pi_{sid,bid} Reserves) / (\pi_{bid} Boats))$$
 $\pi_{sname} (Tempsids \bowtie Sailors)$

* To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname='Interlake'}Boats)$$

Study Break

Given the relations from our hospital example:

```
hospital(<u>hosp_id</u>, h_name, h_addr)
doctor(<u>doctor_id</u>, d_name, d_specialty, h_id)
patient(<u>patient_id</u>, p_name, p_dob, d_id)
```

Assume that patients can have > 1 doctor

- Express these queries using relational algebra:
 - Find the patients that are being treated by doctors specializing in pediatrics.
 - Find the patients who see both a pediatrician and a surgeon
 - Find the patients who have been seen in all three hospitals

Tuple Relational Calculus

- Declarative, high-level of expressing queries
 - Tells the db what to do, not how to do it
- Initial competitor to relational algebra
- Has a tuple variable that takes on tuples from a relational schema as values
- Example: Find all sailors with a rating above 7:

```
\{S \mid S \in Sailors \land S.rating > 7\}
```

Atomic Formulas

- Statements are made up of atomic formulas
- R, S are tuple variables, Rel is a relation name
- Atomic formula is one of the following:
 - $-R \in \operatorname{Re} l$
 - R.a op R.b
 - − R.a op constant (or constant op R.a)

Relational Calculus Statements

- Atomic formulas are recursive and composable
- TRC statements consist of:

Any atomic formula

$$\neg p, p \land q, p \lor q, p \Rightarrow q$$

$$\exists R(p(R))$$

$$\forall R(p(R))$$

P, q = formulas P(R) = formula where R appears

Example TRC Queries

 Find the names and ages of sailors with a rating above 7

```
\{P \mid \exists S \in Sailors(S.Rating > 7 \land P.name = S.name \land P.age = S.age\}
```

 Find the sailor name, boat id, and reservation date for each reservation

```
\{P \mid \exists R \in \text{Re } serves, \exists S \in Sailors \\ (R.sid = S.sid \land P.bid = R.bid \land P.day = R.day \land P.sname = S.sname)\}
```

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.
- Relational calculus expresses queries declaratively