Adaptive numerical solvers

for Ordinary Differential Equations

Bruno Guindani Michele Vidulis

July 22, 2019

https://github.com/poliprojects/apc-project

Introduction

Ordinary differential equations (ODE)

Given
$$I = [t_0, t_F] \subset \mathbb{R}$$
, $f(t, \boldsymbol{y}) : I \times \mathbb{R}^n \to \mathbb{R}^n$, $f \in C^1$, and $t_0 \in I, \boldsymbol{y}_0 \in \mathbb{R}^n$:

Initial Value Problem (IVP):

find a
$$C^1$$
 function ${\boldsymbol y}(t):I\to \mathbb{R}^n$ that solves

$$\begin{cases} \boldsymbol{y}'(t) = f(t, \boldsymbol{y}(t)) & \text{with } t \in I \\ \boldsymbol{y}(t_0) = \boldsymbol{y}_0 & \end{cases}$$

(first order ODE)

Existence and uniqueness guaranteed under $\emph{Lipschitz}$ continuity of f

Runge-Kutta methods

- Family of **single-step** methods (u_{k+1} depends directly only on u_k)
- Weighted average of s evaluations (stages) of f:

$$oldsymbol{u}_{k+1} = oldsymbol{u}_k + h \sum_{i=1}^s b_i oldsymbol{K}_i$$
 with

$$m{u}_{k+1} = m{u}_k + h \sum_{i=1}^s b_i m{K}_i$$
 with $m{K}_i = f(t_0 + c_i h, \ m{u}_k + \sum_{j=1}^s a_{ij} m{K}_j)$

Runge-Kutta methods

- ullet Family of **single-step** methods $(u_{k+1}$ depends directly only on $u_k)$
- Weighted average of s evaluations (**stages**) of f:

$$m{u}_{k+1} = m{u}_k + h \sum_{i=1}^s b_i m{K}_i \quad ext{with}$$
 $m{K}_i = f(t_0 + c_i h, \ m{u}_k + \sum_{j=1}^s a_{ij} m{K}_j)$

Butcher tableau:

$$egin{array}{cccc} c_1 & a_{11} & \dots & a_{1s} \ dots & & \ddots & & \ c_s & a_{s1} & & a_{ss} \ \hline & b_1 & \dots & b_s \ \end{array}$$
 with $c_i = \sum_j a_{ij}$

Runge-Kutta methods

- ullet Family of **single-step** methods $(oldsymbol{u}_{k+1}$ depends directly only on $oldsymbol{u}_k)$
- Weighted average of s evaluations (stages) of f:

$$m{u}_{k+1} = m{u}_k + h \sum_{i=1}^s b_i m{K}_i \quad ext{with}$$
 $m{K}_i = f(t_0 + c_i h, \ m{u}_k + \sum_{j=1}^s a_{ij} m{K}_j)$

• Butcher tableau:

$$\begin{array}{c|cccc} c_1 & a_{11} & \dots & a_{1s} \\ \vdots & & \ddots & \\ c_s & a_{s1} & & a_{ss} \\ \hline & b_1 & \dots & b_s \end{array} \quad \text{with } c_i = \sum_j a_{ij}$$

- $O(sn^2)$ if f linear
- Explicit if the upper triangular part of $[a_{ij}]_{ij}$ is null

Examples of explicit RK variants

- ullet Forward Euler: $a=0,\ b=1,\ c=0$
- RK4:

• Heun:

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & \\
\hline
& \frac{1}{2} & \frac{1}{2} & \\
\end{array}$$

Convergence analysis for RK

- Convergence o absolute error: $\| {m y}(t_k) {m u}_k \| \simeq O(h^q)$
- Consistence \to truncation error: $\max_k || \tau_k(h) || \simeq O(h^q)$
- Under reasonable Lipschitz continuity assumptions on ϕ , a single-step method which is consistent is also convergent

Convergence analysis for RK

- Convergence o absolute error: $\|m{y}(t_k) m{u}_k\| \simeq O(h^q)$
- Consistence \to truncation error: $\max_k || \tau_k(h) || \simeq O(h^q)$
- ullet Under reasonable Lipschitz continuity assumptions on ϕ , a single-step method which is consistent is also convergent
- Runge-Kutta is consistent iff $\sum_i b_i = 1 \implies$ convergent
- Steep limitations on order of convergence:
 - Maximum order is the number of stages
 - ▶ If $s \ge 5$, equality cannot be achieved in explicit variants

order	5	6	7	8
minimum s	6	7	9	11

Adaptive methods

- Step h is updated at every iteration adaptively, i.e. based on the trend of the solution
 - ▶ Small h near steep slopes, large h near flat points
 - A posteriori estimate of error is needed
 - ▶ Compare two-round solution computed with step $\frac{h}{2}$, with single-round solution computed with step h
- No need for input of "correct" step

Error computation for adaptive methods

• Relative error in infinity norm is used:

$$rac{\|oldsymbol{u}_{h/2} - oldsymbol{u}_h\|_{\infty}}{\|oldsymbol{u}_{k-1}\|_{\infty}} < rac{arepsilon}{2} \quad ext{(tolerance)}$$

ullet This guaratees consistency (\Longrightarrow convergence)

Error computation for adaptive methods

• Relative error in infinity norm is used:

$$rac{\|oldsymbol{u}_{h/2} - oldsymbol{u}_h\|_{\infty}}{\|oldsymbol{u}_{k-1}\|_{\infty}} < rac{arepsilon}{2} \quad ext{(tolerance)}$$

- ullet This guaratees consistency (\Longrightarrow convergence)
- ullet At each iteration h can be doubled, halved, or unchanged
- h_{min} and h_{max} are required for some methods

Code structure

Code structure

Base classes

Adaptive classes

AdaptiveFESolver - tol - hmin + AdaptiveFESolver() + solve() + print solver spec()

AdaptiveRKSolver

- tol
- hmin
- hmax
- + AdaptiveRKSolver()
- + AdaptiveRKSolver()
- + solve()
- + print solver spec()

ParallellserNorSolver

+ ParallellserNorSolver() # single step()

ParallelAdaptivelserNorSolver

- tol
- hmin
- hmax
- + ParallelAdaptivelserNorSolver()
- + solve()

Dependencies

Implementation choices

- Eight test functions are provided
- Separate FE class is much more efficient than RK specialized class:

Implementation choices

- Eight test functions are provided
- Separate FE class is much more efficient than RK specialized class:

- Adaptive single_step() class methods are not efficient
- Fixed point algorithm was used for implicit methods

Parallel Iserles-Nørsett

• Implicit method:

- Parellelization exploits block-diagonal structure of Butcher array
- The method runs in parallel on 2 processors, each dealing with one independent 2-by-2 block

Results

Results

Comparison between methods

(logarithm of relative Mean Square Errors in the nodes, test #1)

Trend of step size in adaptive methods

(test #7, adaptive RK4 method)

Actual efficiency of parallelism

Speedup is heavily dependent on the problem function:

Why?

Workload distribution

⇒ load imbalance

A vectorial example

- Efficiency still depends on the function
- Here fixed point iterations are well-balanced among processors:

Test #4:
$$f(t, y(t)) = \begin{bmatrix} -3 & -1 \\ 1 & -5 \end{bmatrix} y(t) + \begin{bmatrix} \sin(t) \\ -2t \end{bmatrix}$$

A high-dimensional example

Components of test #8 $(y \in \mathbb{R}^4)$:

Multiple run results

Mean: 5.206 s, SD: 0.227 sMean: 7.045 s, SD: 0.200 s

Speedup

Bibliography

- Nodhaisky, Parallel two-step Runge-Kutta methods
- Quarteroni, Saleri, Calcolo scientifico
- 🥦 Quarteroni, Sacco, Saleri, Gervasio, Matematica numerica
- Solodushkin, Iumanova, Parallel Numerical Methods for Ordinary Differential Equations: a Survey