第一章 2022秋高等量子力学期末考核

1.1 单项选择

1. 让大量热化的自旋通过 Stern-Gerlach 装置SG \hat{z} ,测得 S_{+}^{z} 的概率是?

大量热化自旋表示充分随机, 所以 $P(S_+^z) = ||\chi_+^{z\dagger} \frac{1}{\sqrt{2}} (\chi_+^z + \chi_-^z)||^2 = \boxed{\frac{1}{2}}$

- 2. **Pauli** 矩阵 $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 那么 $\sigma^x \sigma^z$ 等于? $\sigma^x \sigma^z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- 3. 混态可以用混态的密度矩阵来描述. 假设系统处于态 $|\phi_i\rangle$ 的概率为 p_i ,注意 $\sum_i p_i=1$,那么该系统的密度矩阵为 $\rho=\sum_i |\phi_i\rangle p_i\langle\phi_i|$,那么 ${\bf Tr}[\rho]$ 应满足?

因为密度矩阵的迹表示系统的总概率, 而概率必须归一化, 即 $\text{Tr}[\rho] = \sum_i p_i = \boxed{1}$

4. 如果 ρ 是混态的密度矩阵, 那么 $Tr[\rho^2]$ 应满足?

对任意密度矩阵总有 $\hat{\rho} = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$. 那么 $\hat{\rho}^2 = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}| \sum_{\beta} p_{\beta} |\psi_{\beta}\rangle\langle\psi_{\beta}| = \sum_{\alpha} p_{\alpha}^2 |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$. 对于纯态 $(p_n^2 = p_n)$ Tr $[\rho^2] = \text{Tr}[\rho] = 1$, 而混态 $(p_n^2 \neq p_n)$ 则是 Tr $[\rho^2]$ < 1.

5. 考虑系统哈密顿量 H 不显含时间,时间演化算符为 $U(t,0)=e^{-iHt/\hbar}$. 在海森堡绘景中,我们让算符承载时间演化,海森堡绘景中的算符定义为 $A_H(t)=U^\dagger(t,0)AU(t,0)$,其中 A 是薛定谔绘景中的算符,如果 A 不显含时间,那么 $\mathrm{d}A_H(t)/\mathrm{d}t$ 等于?

$$\begin{split} \frac{\mathrm{d}A_H(t)}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} A e^{-iHt/\hbar} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} \right) A e^{-iHt/\hbar} + e^{iHt/\hbar} \frac{\mathrm{d}}{\mathrm{d}t} \left(A e^{-iHt/\hbar} \right) \\ &= \frac{iH}{\hbar} e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A \frac{iH}{\hbar} e^{-iHt/\hbar} = \frac{i}{\hbar} \left(H e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A e^{-iHt/\hbar} H \right) \\ &= \frac{i}{\hbar} \left[H, A_H(t) \right] = \boxed{\frac{1}{i\hbar} \left[A_H(t), H \right]} \end{split}$$

6. 电磁场中电荷为 q 的单粒子哈密顿量为 $H=\frac{(\vec{p}-q\vec{A})^2}{2m}+q\phi$,那么薛定谔方程 $i\hbar\frac{\partial\psi}{\partial t}=H\psi$ 满足规范不变性: $\vec{A}\to\vec{A}-\nabla\Lambda$, $\phi\to\phi+\frac{\partial\Lambda}{\partial t}$, $\psi\to$?

推导极其麻烦, 建议直接背结论, 不要试图考场现推. 假设 $\psi' = \psi e^{if(\vec{r},t)}$ 是满足规范变换的, 其中 $f(\vec{r},t)$ 是待定函数. 连同其它的规范变换, 代入薛定谔方程得到 $f(\vec{r},t)$ 的微分方程:

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] &= \left[\frac{(-i\hbar\vec{\nabla}-q(\vec{A}-\vec{\nabla}\Lambda))^2}{2m} + q\left(\phi + \frac{\partial\Lambda}{\partial t}\right)\right]\left[\psi e^{if(\vec{r},t)}\right] \\ i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] &= \left[i\hbar\frac{\partial\psi}{\partial t} - \hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)} \\ \vec{\nabla}\left(\psi e^{if(\vec{r},t)}\right) &= \left(\vec{\nabla}\psi + \psi i\vec{\nabla}f\right)e^{if(\vec{r},t)} \\ \left[-i\hbar\vec{\nabla} - q(\vec{A}-\vec{\nabla}\Lambda)\right]\left[\psi e^{if(\vec{r},t)}\right] &= \left[-i\hbar\vec{\nabla}\psi + \hbar\psi\vec{\nabla}f - q(\vec{A}-\vec{\nabla}\Lambda)\psi\right]e^{if(\vec{r},t)} \end{split}$$

$$\begin{split} & \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right]^2 \left[\psi e^{if(\vec{r},t)} \right] = \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right] \left\{ \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] e^{if(\vec{r},t)} \right\} \\ & = \left(-i\hbar \right) \left\{ \left[-i\hbar \nabla^2 \psi + \hbar(\vec{\nabla}\psi) \cdot (\vec{\nabla}f) + \hbar\psi \nabla^2 f - q(\vec{\nabla} \cdot \vec{A} - \nabla^2\Lambda)\psi - q(\vec{A} - \vec{\nabla}\Lambda) \cdot (\vec{\nabla}\psi) \right] e^{if(\vec{r},t)} \right\} \\ & + \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] \cdot i(\vec{\nabla}f) e^{if(\vec{r},t)} \right\} \\ & - q(\vec{A} - \vec{\nabla}\Lambda) \cdot \left[-i\hbar \vec{\nabla}\psi + \hbar\psi \vec{\nabla}f - q(\vec{A} - \vec{\nabla}\Lambda)\psi \right] e^{if(\vec{r},t)} \end{split}$$

展开变换前的薛定谔方程:

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{(-i\hbar\vec{\nabla} - q\vec{A})^2}{2m} + q\phi\right]\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A})\psi + \frac{i\hbar q}{m}\vec{A}\cdot(\vec{\nabla}\psi) + \frac{q^2A^2}{2m}\psi + q\phi\psi \tag{1}$$

展开变换后的薛定谔方程:

$$\begin{split} &\left[i\hbar\frac{\partial\psi}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\nabla^2\psi-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &\left.+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\right.\\ &\left.+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}(\vec{A}-\vec{\nabla}\Lambda)^2\psi\right.\\ &\left.+q\left(\phi+\frac{\partial\Lambda}{\partial t}\right)\psi\right] \end{split} \tag{2}$$

(②)
$$-$$
 (①) $\cdot e^{if(\vec{r},t)}$, 得到

$$\begin{split} &\left[i\hbar\frac{\partial\mathscr{D}}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\vec{\nabla^2\psi}-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\\ &+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}\Big(\vec{A}^{\mathscr{Z}}+(\vec{\nabla}\Lambda)^2-2\vec{A}\cdot(\vec{\nabla}\Lambda)\Big)\psi\\ &+q\left(\phi+\frac{\partial\Lambda}{\partial t}\right)\psi\Big] \end{split}$$

$$\begin{split} -\hbar\psi\frac{\partial f}{\partial t} &= -\frac{i\hbar^2}{m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f) - \frac{i\hbar^2}{2m}\psi\nabla^2f - \frac{i\hbar q}{2m}\psi\nabla^2\Lambda - \frac{i\hbar q}{m}(\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi) \\ &+ \frac{\hbar^2}{2m}\psi(\nabla f)^2 - \frac{\hbar q}{m}(\vec{A} - \vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi \\ &+ \frac{q^2}{2m}\left[(\vec{\nabla}\Lambda)^2 - 2\vec{A}\cdot(\vec{\nabla}\Lambda)\right]\psi \\ &+ q\frac{\partial\Lambda}{\partial t}\psi \end{split}$$

重点观察含 \vec{A} 的项, 由于需要对任意 \vec{A} 都成立, 所以 \vec{A} 的系数必须为 0, 即

$$\vec{A} \cdot \left(-\frac{\hbar q}{m} \vec{\nabla} f - \frac{q^2}{2m} 2 \vec{\nabla} \Lambda \right) = 0$$

最简单的解法即 $f = \frac{-q\Lambda}{\hbar}$, 所以规范变换后的波函数为 $\psi' = \boxed{\psi e^{-iq\Lambda/\hbar}}$. 需要关注一开始给出的 Λ 的符号, 从而影响整体变换的正负.

7. 角动量的对易关系为 $[J_i,J_j]=i\hbar\epsilon_{ijk}J_k$,升降算符定义为 $J_\pm=J_x\pm iJ_y$,那么 $[J_+,J_-]=$?

$$[J_{+}, J_{-}] = [J_{x} + iJ_{y}, J_{x} - iJ_{y}]$$

$$= [J_{x}, J_{x}] - i[J_{x}, J_{y}] + i[J_{y}, J_{x}] + [J_{y}, J_{y}] = -2i[J_{x}, J_{y}] = -2i(i\hbar J_{z})$$

$$= 2\hbar J_{z}$$

- 8. 二维谐振子的哈密顿量为 $H=\hbar\omega\left(a_1^\dagger a_1+a_2^\dagger a_2+1
 ight)$ 其第一激发态的简并度为?
 - 二维谐振子的哈密顿量用粒子数算符写作 $\hat{H} = \hbar\omega \left(\hat{n}_1 + \hat{n}_2 + \frac{1}{2}\right)$, 所以第一激发态即 $n_1 + n_2 = 1$, 这代表了 $|01\rangle$ 和 $|10\rangle$ 两个正交态, 所以简并度为 $\boxed{2}$.
- 9. 量子比特 A 和 B 构成双量子比特体系,双量子比特态 $|\psi\rangle$ 中量子比特 A 的纠缠熵定义为 $S(A) = -\mathbf{Tr}[\rho_A \ln \rho_A]$,其中 ρ_A 是约化密度矩阵,由密度矩阵求迹掉量子比特 B 的自由度得到.考虑自旋单态 $|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$,计算可得量子比特 A 的纠缠熵为?

密度矩阵为

$$\begin{split} \rho &= |\psi\rangle\langle\psi| = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B\right) \frac{1}{\sqrt{2}} \left(\langle\uparrow|_A\langle\downarrow|_B - \langle\downarrow|_A\langle\uparrow|_B\right) \right. \\ &= \frac{1}{2} \left(|\uparrow\rangle_A\langle\uparrow|_A \otimes |\downarrow\rangle_B\langle\downarrow|_B - |\uparrow\rangle_A\langle\downarrow|_A \otimes |\downarrow\rangle_B\langle\uparrow|_B - |\downarrow\rangle_A\langle\uparrow|_A \otimes |\uparrow\rangle_B\langle\downarrow|_B + |\downarrow\rangle_A\langle\downarrow|_A \otimes |\uparrow\rangle_B\langle\uparrow|_B\right) \end{split}$$

接下来进行部分求迹,从而得到所需的约化密度矩阵 ρ_A . 迹被定义为对角线元素之和,所以我们通过矢量 $\mathbb{I}_A\otimes |\uparrow\rangle_B$ 和 $\mathbb{I}_A\otimes |\downarrow\rangle_B$ 来提取对角元素. 具体方法是

$$(\mathbb{I}_{A} \otimes \langle \uparrow |_{B}) \rho(\mathbb{I}_{A} \otimes | \uparrow \rangle_{B}) = \frac{1}{2} |\downarrow \rangle_{A} \langle \downarrow |_{A},$$

$$(\mathbb{I}_{A} \otimes \langle \downarrow |_{B}) \rho(\mathbb{I}_{A} \otimes |\downarrow \rangle_{B}) = \frac{1}{2} |\uparrow \rangle_{A} \langle \uparrow |_{A},$$

$$\Rightarrow \rho_{A} = \sum_{i}^{\uparrow,\downarrow} (\mathbb{I}_{A} \otimes \langle i|_{B}) \rho(\mathbb{I}_{A} \otimes |i \rangle_{B}) = \frac{1}{2} (|\downarrow \rangle_{A} \langle \downarrow |_{A} + |\uparrow \rangle_{A} \langle \uparrow |_{A}) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

计算 ρ_A 的纠缠熵:

$$S(A) = -\text{Tr}[\rho_A \ln \rho_A] = -\sum_{i}^{\uparrow,\downarrow} (\langle i|_A) \rho_A(|i\rangle_A) \ln [(\langle i|_A) \rho_A(|i\rangle_A)]$$
$$= -\left(\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2}\right) = \boxed{\ln 2 = 1 \text{ bit}}$$

10. 假设哈密顿量 H 是厄密的,其基态能量为 E_0 ,给定某个态 Ψ ,测得能量期望值为 $E[\Psi] = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$, $E(\Psi)$ 和 E_0 的关系为?

任意态均可通过基矢展开, 形式为 $|\Psi\rangle = \sum_{n} |n\rangle\langle n|\Psi\rangle$, 则

$$\begin{split} E[\Psi] &= \left(\sum_{m} \langle \Psi | m \rangle \langle m | \right) \hat{H} \left(\sum_{n} | n \rangle \langle n | \Psi \rangle \right) = \sum_{m,n} \langle \Psi | m \rangle \langle m | \hat{H} | n \rangle \langle n | \Psi \rangle \\ &= \sum_{m,n} c_{m}^{*} E_{n} \delta_{mn} c_{n} = \sum_{n} |c_{n}|^{2} E_{n} \geq \sum_{n} |c_{n}|^{2} E_{0} = E_{0} \end{split}$$

1.2 多项选择

1. 与总角动量算符的平方 \vec{J}^2 对易的算符在 $(J_x, J_y, J_z, J_+, J_-)$ 中有?

已知角动量的基本对易关系 $[J_i, J_i] = i\hbar\epsilon_{ijk}J_k$, 那么

$$[J^{2}, J_{l}] = \left[\sum_{i}^{3} J_{i}^{2}, J_{l}\right] = \sum_{i}^{3} \left[J_{i}^{2}, J_{l}\right] = \sum_{i}^{3} \left(J_{i}[J_{i}, J_{l}] + [J_{i}, J_{l}]J_{i}\right)$$

$$= \sum_{i}^{3} \left(J_{i}i\hbar\epsilon_{ilk}J_{k} + i\hbar\epsilon_{ilk}J_{k}J_{i}\right)$$

$$= i\hbar\sum_{i}^{3} \left(\epsilon_{ilk}J_{i}J_{k} - \epsilon_{kli}J_{k}J_{i}\right) = 0.$$

其中利用了 ϵ_{ijk} 的反对称性质以及 $k \iff i$ 的地位等价. 而 $J_{\pm} = J_x \pm iJ_y$ 是 $\{J_l\}$ 的线性组合, 根据对易关系的线性性质可知 $[J^2, J_{\pm}] = 0$, 所以待选项均为正确答案.

2. 在原子单位制下 $\hbar = c = 1$, 和能量同单位的量在 (距离, 动量, 时间, 质量, 角动量) 中有?

能量单位为 $J=kg\cdot m^2/s^2$,距离单位为 m,动量单位为 $kg\cdot m/s$,时间单位为 s,质量单位为 kg,角动量单位为 $kg\cdot m^2/s$. 现在要求 $kg\cdot m^2/s=m/s=1$,即寻找如何通过除以 $\hbar(kg\cdot m^2/s)$,c(m/s) 来进行量纲变换

- (a) 距离. $\frac{E}{\hbar c} = \frac{\text{kg} \cdot \text{m}^2/\text{s}^2}{\text{kg} \cdot \text{m}^2/\text{s} \cdot \text{m/s}} = \frac{1}{\text{m}}$, 说明距离和能量在单位上互为倒数.
- (b) $\overline{$ 动量.E=pc
- (c) 时间. $E = \hbar\omega = \hbar \frac{1}{\tau}$, 所以时间和能量单位互为倒数.
- (d) 质量 $E = mc^2$.
- (e) 角动量. 角动量的量纲正好是 $kg \cdot m^2/s$, 即无量纲数, 而能量无法通过除以 \hbar 或 c 来变成角动量的量纲, 所以角动量和能量不同单位.
- 3. 宇称算符 \mathbb{P} 连续作用两次为恒等变换,这说明宇称算符 \mathbb{P} 的本征值在 (0,1,-1,i,-i) 中有?

不妨设 $\mathbb{P}\psi = \lambda\psi$, 那么 $\mathbb{P}^2\psi = \lambda^2\psi = \psi$, 所以 $\lambda^2 = 1$, 即 $\lambda = \pm 1$. 所以宇称算符的本征值为 1, -1

4. 如果算符 A 满足 $A^2 = A$, 那么算符 A 的本征值有 (0, 1, -1, i, -i) 中有?

不妨设 $A\psi = \lambda \psi$, 那么 $A^2\psi = A(\lambda \psi) = \lambda^2 \psi$, $\lambda^2 = \lambda$, 即 $\lambda = 0, 1$. 所以算符 A 的本征值为 0, 1

5. 玻色子产生和湮灭算符满足对易关系 $\left[b_{\alpha}^{\dagger},b_{\beta}^{\dagger}\right]=\left[b_{\alpha},b_{\beta}\right]=0,$ $\left[b_{\alpha},b_{\beta}^{\dagger}\right]=\delta_{\alpha\beta}$,那么和总粒子数算符 $N=\sum_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}$ 对易的算符在 $(b_{\alpha},b_{\alpha}^{\dagger}b_{\alpha},b_{\alpha}^{\dagger}b_{\beta},b_{\alpha}^{\dagger}b_{\beta}b_{\mu},b_{\alpha}^{\dagger}b_{\beta}b_{\mu}^{\dagger}b_{\nu})$ 中有?

已知
$$[N,A] = \sum_i \left[b_i^\dagger b_i, A\right] = \sum_i \left\{b_i^\dagger [b_i,A] + \left[b_i^\dagger,A\right] b_i\right\}$$
,代入以上各算符 A 判断是否对易.

(a)
$$[N, b_{\alpha}] = \sum_{i} \left\{ b_{i}^{\dagger} [b_{i}, b_{\alpha}] + \left[b_{i}^{\dagger}, b_{\alpha} \right] b_{i} \right\} = \sum_{i} \left\{ 0 + (-\delta_{i\alpha}) b_{\alpha} \right\} = -b_{\alpha}$$

(b)

$$\begin{split} \boxed{\begin{bmatrix} [N,b_{\alpha}^{\dagger}b_{\alpha}] \end{bmatrix}} &= \sum_{i} \left[b_{i}^{\dagger}b_{i},b_{\alpha}^{\dagger}b_{\alpha} \right] = \sum_{i} \left\{ b_{i}^{\dagger}[b_{i},b_{\alpha}^{\dagger}b_{\alpha}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger}b_{\alpha} \right] b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger} \left(b_{\alpha}^{\dagger}[b_{i},b_{\alpha}] + \left[b_{i},b_{\alpha}^{\dagger} \right] b_{\alpha} \right) + \left(b_{\alpha}^{\dagger}[b_{i}^{\dagger},b_{\alpha}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger} \right] b_{\alpha} \right) b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger} \cdot 0 + \delta_{i\alpha}b_{\alpha}) + \left(b_{\alpha}^{\dagger}(-\delta_{i\alpha}) + 0 \cdot b_{\alpha} \right) b_{i} \right\} \\ &= \sum_{i} \delta_{i\alpha}(b_{i}^{\dagger}b_{\alpha} - b_{\alpha}^{\dagger}b_{i}) = 0 \end{split}$$

(c)

$$\begin{split} \boxed{ \begin{bmatrix} [N,b_{\alpha}^{\dagger}b_{\beta}] \end{bmatrix} } &= \sum_{i} \left[b_{i}^{\dagger}b_{i},b_{\alpha}^{\dagger}b_{\beta} \right] = \sum_{i} \left\{ b_{i}^{\dagger}[b_{i},b_{\alpha}^{\dagger}b_{\beta}] + \left[b_{i}^{\dagger},b_{\alpha}^{\dagger}b_{\beta} \right] b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger}[b_{i},b_{\beta}] + [b_{i},b_{\alpha}^{\dagger}]b_{\beta}) + (b_{\alpha}^{\dagger}[b_{i}^{\dagger},b_{\beta}] + [b_{i}^{\dagger},b_{\alpha}^{\dagger}]b_{\beta})b_{i} \right\} \\ &= \sum_{i} \left\{ b_{i}^{\dagger}(b_{\alpha}^{\dagger} \cdot 0 + \delta_{i\alpha}b_{\beta}) + (b_{\alpha}^{\dagger}(-\delta_{i\beta}) + 0 \cdot b_{\beta})b_{i} \right\} \\ &= \sum_{i} \left(b_{i}^{\dagger}b_{\beta}\delta_{i\alpha} - b_{\alpha}^{\dagger}b_{i}\delta_{i\beta} \right) = 0. \end{split}$$

(d)

$$[N,b_{\alpha}^{\dagger}b_{\beta}b_{\mu}]=b_{\alpha}^{\dagger}b_{\beta}[N,b_{\mu}]+[N,b_{\alpha}^{\dagger}b_{\beta}]b_{\mu}=-b_{\alpha}^{\dagger}b_{\beta}b_{\mu}$$

(e)

$$\boxed{[N, b_{\alpha}^{\dagger} b_{\beta} b_{\mu}^{\dagger} b_{\nu}]} = b_{\alpha}^{\dagger} b_{\beta} [N, b_{\mu}^{\dagger} b_{\nu}] + [N, b_{\alpha}^{\dagger} b_{\beta}] b_{\mu}^{\dagger} b_{\nu} = 0 + 0 = 0$$

可以不严谨地总结出一条规律: 粒子数算符 於 只会与另一个粒子数算符对易, 而与单独的产生湮灭算符均不对易.

1.3 简答题

1. 中心势场中的单粒子哈密顿量为 $H=\frac{\vec{p}^2}{2M}+V(r)$ 。轨道角动量 $\vec{L}=\vec{r}\times\vec{p}$,那么 $[\vec{L},H]=?$ 由于是中心势场,不妨设 $V(r)=r^n$,则

$$\begin{split} [\vec{L}, H] &= \left[\sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j p_k, \sum_{\alpha}^3 \frac{p_{\alpha}^2}{2m} + r^n \right] = \frac{1}{2m} \sum_{ijk\alpha} \epsilon_{ijk} \hat{x}_i [x_j p_k, p_{\alpha}^2] + \sum_{ijk} \epsilon_{ijk} \hat{x}_i [x_j p_k, r^n] \\ &= \frac{1}{2m} \sum_{ijk\alpha} \hat{x}_i \epsilon_{ijk} \left\{ \underbrace{x_j p_{\alpha}[p_k, p_{\alpha}]} + \underbrace{x_j[p_k, p_{\alpha}]p_{\alpha}} + p_{\alpha}[x_j, p_{\alpha}]p_k + [x_j, p_{\alpha}]p_{\alpha} p_k \right\} + \sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j [-i\hbar \frac{\partial}{\partial x_k}, r^n] \\ &= \frac{1}{2m} \sum_{ijk\alpha} 2i\hbar \delta_{j\alpha} p_{\alpha} p_k + \sum_{ijk} \epsilon_{ijk} \hat{x}_i x_j \left(-i\hbar n r^{n-1} r^{-\frac{1}{2}} x_k \right) \\ &= \sum_{ijk} \epsilon_{ijk} \hat{x}_i \left\{ \frac{i\hbar}{m} p_j p_k + (-i\hbar n r^{n-\frac{3}{2}}) x_j x_k \right\} \end{split}$$

注意到 $j \iff k$ 和 ϵ_{ijk} 的反对称性质, 可以得到 $[\vec{L}, H] = \boxed{0}$.

2. 考虑一阶近似, 当 $i \neq f$ 时, 跃迁概率为

$$P_{i\to f}(t) = \frac{1}{\hbar^2} \left| \int_0^t \mathrm{d}t' \langle f|V(t')|i\rangle e^{\mathrm{i}\omega_{fi}t'} \right|^2$$

其中 $\hbar\omega_{fi} = E_f - E_i$. 当微扰为

$$V(t) = \begin{cases} V e^{-\mathrm{i}\omega t} & t > 0 \\ 0 & t < 0 \end{cases}$$

跃迁概率为?

$$P_{i\to f}(t) = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|Ve^{-\mathrm{i}\omega t'}|i\rangle e^{\mathrm{i}\omega_{fi}t'} \right\|^2 = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{-\mathrm{i}\omega t'} e^{\mathrm{i}\omega_{fi}t'} \right\|^2$$

$$= \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{\mathrm{i}(\omega_{fi}-\omega)t'} \right\|^2 = \frac{1}{\hbar^2} \left\| \int_0^t \mathrm{d}t' \langle f|V|i\rangle e^{\mathrm{i}\Delta\omega t'} \right\|^2$$

$$\left\| \int_0^t \mathrm{d}t' e^{\mathrm{i}\Delta\omega t'} \right\|^2 = \left\| \frac{e^{\mathrm{i}\Delta\omega t} - 1}{\mathrm{i}\omega} \right\|^2 = \frac{(e^{\mathrm{i}\Delta\omega t} - 1)(e^{-\mathrm{i}\Delta\omega t} - 1)}{(\Delta\omega)^2} = \frac{2 - 2\cos\Delta t}{(\Delta\omega)^2} = \frac{4}{(\Delta\omega)^2} \sin^2\left(\frac{\Delta\omega t}{2}\right)$$

$$P_{i\to f}(t) = \left[\frac{4 \left| \langle f|V|i\rangle \right|^2}{\hbar^2(\Delta\omega)^2} \sin^2\left(\frac{\Delta\omega t}{2}\right) \right]$$

- 3. *算符 $\Omega(t) \equiv U^{-1}(t)U_0(t)$, 算符 $\Omega_{\pm} \equiv \lim_{t \to \pm \infty} \Omega(t)$, 其中
 - $U_0(t) = e^{-iH_0t/\hbar}$ 是自由系统 H_0 的时间演化算符;
 - $U(t) = e^{-iHt/\hbar}$ 是短程势散射系统的时间演化算符.

 $H = H_0 + V$. 散射算符定义为 $S \equiv \Omega_-^{\dagger} \Omega_+$, 那么 $[S, H_0] = ?$

4. 动量空间中自由粒子的 Dirac 方程可以写为

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_{+}(\vec{p}) = m\chi_{-}(\vec{p}), \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_{-}(\vec{p}) = m\chi_{+}(\vec{p})$$

当质量 m=0时, 两个 Weyl 旋量之间没有耦合, 得到动量空间中的 Weyl 方程

$$(E - \vec{\sigma} \cdot \vec{p}) \chi_+ = 0, \quad (E + \vec{\sigma} \cdot \vec{p}) \chi_- = 0$$

定义螺旋度算符为 $\frac{1}{2}\hat{\vec{p}}\cdot\vec{\sigma}$, 其中 $\hat{\vec{p}}=\frac{\vec{p}}{|\vec{p}|}$, 那么可知 Weyl 旋量 χ_{\pm} 恰好是螺旋度算符的本征态, 本征值分别为?

当 m=0 且 $|\vec{p}|=E$ 时, 原 Dirac 方程即为

$$(1 - \hat{\vec{p}} \cdot \vec{\sigma})\chi_{+}(\vec{p}) = 0, \quad (1 + \hat{\vec{p}} \cdot \vec{\sigma})\chi_{-}(\vec{p}) = 0$$

$$\Rightarrow (1 - 2\hat{h})\chi_{+}(\vec{p}) = 0, \quad (1 + 2\hat{h})\chi_{-}(\vec{p}) = 0$$

其中 \hat{h} 即为螺旋度算符. 显然 χ_+ 和 χ_- 分别是 \hat{h} 的本征态, 本征值则为 $\boxed{\pm \frac{1}{2}}$

5. *一个可以制备 Bell 态的简单量子线路为

它包含两个张量: 一个 Hadamard gate (H) 和一个 controlled NOT gate (CNOT)(虚线框里), 在 S^z 表象下它们的矩阵表示为,

$$\begin{split} H &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \\ \text{CNOT} &= \exp\left\{\mathrm{i} \pi \frac{1}{4} (\mathbb{I} - \sigma_1^z) \otimes (\mathbb{I} - \sigma_2^x) \right\} \end{split}$$

将以上量子线路作用到 | ↑↑〉上得到的态为? 注意到

$$A = \frac{1}{4}(\mathbb{I} - \sigma_1^z) \otimes (\mathbb{I} - \sigma_2^x) = \frac{1}{4} \begin{pmatrix} 2 \end{pmatrix} \otimes \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$A^2 = A$$

$$e^{i\alpha A} = \sum_{n=0}^{\infty} \frac{1}{n!} (i\alpha A)^n = \mathbb{I} + \sum_{n=1}^{\infty} \frac{1}{n!} (i\alpha)^n (A)^n = \mathbb{I} + A \left(\sum_{n=0}^{\infty} \frac{1}{n!} (i\alpha)^n - 1\right)$$

$$= \mathbb{I} + A(e^{i\alpha} - 1)$$

$$\Rightarrow \text{CNOT} = \mathbb{I} - 2A = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{pmatrix}.$$

因此, CNOT 的作用是调换第三, 第四元素的位置, 这个作用当且仅当第一个量子比特为 $|\downarrow\rangle=\begin{pmatrix}0\\1\end{pmatrix}$ 时才会发生.

$$\begin{split} & \left(\hat{H}_{(1)} \otimes \mathbb{I}_{(2)} \right) |\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} = \hat{H}_{(1)} |\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} = \left[\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ & = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} + |\downarrow\rangle_{(1)}) \otimes |\uparrow\rangle_{(2)} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}). \\ & \text{CNOT} \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}) = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + \text{CNOT} |\downarrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)}) \\ & = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{(1)} \otimes |\uparrow\rangle_{(2)} + |\downarrow\rangle_{(1)} \otimes |\downarrow\rangle_{(2)}) = \boxed{\frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)}, \quad \text{for simplicity.} \end{split}$$

1.4 应用题

1. 矩阵对角化和表象变换

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L=V\Lambda V^\dagger$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

通过求解其特征方程以得到 $\sigma_{(z)}^x$ 的本征值:

$$\det(\sigma^x_{(z)}-\lambda I)=\det\begin{pmatrix}-\lambda & 1\\ 1 & -\lambda\end{pmatrix}=\lambda^2-1=0,$$

解得 $\lambda = \pm 1$. 对于 $\lambda_+ = 1$ 有:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

所以对应于 λ_+ 的本征矢是 $|+\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. 对于 $\lambda_- = -1$ 有

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

所以对应于 λ_- 的本征矢是 $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}$. 在求解过程中已经对这些本征矢进行了归一化,所以可以得到幺正 矩阵 $V = [|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$. 对角矩阵 Λ 对角线上依次是本征值,即

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

于是我们可以通过幺正矩阵 V 来对 $\sigma_{(z)}^x$ 进行对角化:

$$\sigma_{(z)}^x = V^{\dagger} \Lambda V = V^{\dagger} \sigma_{(z)}^z V$$

我们注意到, 对角矩阵 Λ 和 $\sigma_{(z)}^z$ 形式完全一致, 这意味着不同表象 i 下, $\sigma_{(i)}^i$ 的形式都是 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 这就是我们通过 V 来改变表象的依据:

$$\sigma^x_{(z)} = V^\dagger \sigma^z_{(z)} V = V^\dagger \sigma^x_{(x)} V \Rightarrow \sigma^x_{(x)} = \left(V^\dagger\right)^{-1} \sigma^x_{(z)}(V)^{-1}$$

我们标记 $\sigma_{(z)}^x$ 为 σ^x 在 σ^z 表象下的矩阵. 注意 $V=V^\dagger=V^{-1}$, 所以

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 **Pauli** 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

在 Sz 表象下有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

从前文中可知, $\sigma_{(z)}^x$ 的本征矢为:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

用以将 S^z 表象转换为 S^x 表象的幺正矩阵为

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

在 Sz 表象中有

$$S_{(z)}^{x} = \frac{\hbar}{2}\sigma^{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^{y} = \frac{\hbar}{2}\sigma^{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^{z} = \frac{\hbar}{2}\sigma^{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

因此

$$\begin{split} S^x_{(x)} &= V S^x_{(z)} V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S^y_{(x)} &= V S^y_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ S^z_{(x)} &= V S^z_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

在 S^x 表象中的基矢为

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$. 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的, 哈密顿量重新写为

$$H = \frac{1}{2}\hbar\omega(P^2 + Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

$$\begin{split} [Q,P] &= [\sqrt{\frac{m\omega}{\hbar}}x,\sqrt{\frac{1}{\hbar m\omega}}p] = \frac{1}{\hbar}[x,p] = \frac{1}{\hbar}i\hbar = \boxed{i}, \\ [a,a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q+iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0-i\cdot i+i\cdot (-i)+0] = \boxed{1}, \\ [a,a] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q+iP)\right] \\ &= \frac{1}{2}[Q+iP,Q+iP] = \frac{1}{2}\left([Q,Q]+i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0+i\cdot i+i\cdot (-i)+0] = 0, \\ [a^{\dagger},a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q-iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q-iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]-i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}(0-i\cdot i-i\cdot (-i)+0) = 0, \\ [a,a^{\dagger}a] &= a^{\dagger}[a,a]+[a,a^{\dagger}]a = a^{\dagger}\cdot 0+1\cdot a = \boxed{a}, \\ [a^{\dagger},a^{\dagger}a] &= a^{\dagger}[a^{\dagger},a]+[a^{\dagger},a^{\dagger}]a = a^{\dagger}\cdot (-1)+0\cdot a = \boxed{-a^{\dagger}}. \end{split}$$

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

$$\begin{split} a &= \frac{1}{\sqrt{2}} \left(Q + i P \right), \quad a^\dagger = \frac{1}{\sqrt{2}} \left(Q - i P \right) \\ \Rightarrow Q &= \frac{1}{\sqrt{2}} (a + a^\dagger), \quad P = \frac{1}{\sqrt{2}i} (a - a^\dagger) \\ \Rightarrow H &= \frac{1}{2} \hbar \omega (P^2 + Q^2) = \frac{1}{2} \hbar \omega \left\{ \left[\frac{1}{\sqrt{2}i} (a - a^\dagger) \right]^2 + \left[\frac{1}{\sqrt{2}} (a + a^\dagger) \right]^2 \right\} \\ &= \frac{1}{2} \hbar \omega \left\{ -\frac{1}{2} \left(aa - aa^\dagger - a^\dagger a + a^\dagger a^\dagger \right) + \frac{1}{2} \left(aa + aa^\dagger + a^\dagger a + a^\dagger a^\dagger \right) \right\} \\ &= \frac{1}{2} \hbar \omega \left(a^\dagger a + aa^\dagger \right) \end{split}$$

当然, 也可以利用 $[a, a^{\dagger}] = 1 \iff aa^{\dagger} = a^{\dagger}a + 1$ 将 H 变换为熟知的粒子数表象形式:

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right)$$

所以
$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \cdots$$

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

能量表象的本征矢满足 $H|n\rangle = E_n|n\rangle$, 则矩阵元为

$$\begin{split} a|n\rangle &= \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \\ \Rightarrow \langle m|a|n\rangle &= \boxed{\sqrt{n}\delta_{m,n-1}}, \quad \langle m|a^{\dagger}|n\rangle = \boxed{\sqrt{n+1}\delta_{m,n+1}} \end{split}$$

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J}=\vec{J_1}+\vec{J_2}$,设 $\vec{J_1}^2=\vec{J_2}^2=j(j+1)\hbar^2$, $J^2=J(J+1)\hbar^2$, $J=2j,2j-1,\cdots,1,0$. 在总角动量量子数 J=0 的状态下,求 $J_{1,z}$ 和 $J_{2,z}$ 的可能取值及相应概率.

4. 自旋-1 模型

考虑自旋-1 体系, 自旋算符为 \vec{S} , 考虑 (\vec{S}^2, S^z) 表象, 基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, 简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$. 设 $\hbar=1$.

(a) 写出 S^x 和 S^z 的矩阵表示.

由于是在 (\vec{S}^2, S^z) 表象, 所以 S^z 的矩阵一定是对角矩阵. 选定基矢为 $\{|s,m\rangle\}$, 即 $|1,1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $|1,0\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

$$|1,-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
. 根据本征方程 $S^z|s,m\rangle = m|s,m\rangle$, 得到

$$S^z = \boxed{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} }$$

而对于 S^x (包括题解不要求的 S^y), 我们实际上是使用的升降算符 S^{\pm} 来定义的.

$$\begin{split} S^{+}|s,m\rangle &= \sqrt{s(s+1)-m(m+1)}|s,m+1\rangle, \\ S^{-}|s,m\rangle &= \sqrt{s(s+1)-m(m-1)}|s,m-1\rangle. \\ \Rightarrow S^{+}|1,1\rangle &= 0, \quad S^{+}|1,0\rangle &= \sqrt{2}|1,1\rangle, \quad S^{+}|1,-1\rangle &= \sqrt{2}|1,0\rangle, \\ S^{-}|1,1\rangle &= \sqrt{2}|1,0\rangle, \quad S^{-}|1,0\rangle &= \sqrt{2}|1,-1\rangle, \quad S^{-}|1,-1\rangle &= 0. \\ \Rightarrow S^{+} &= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, \quad S^{-} &= \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}. \\ \Rightarrow S^{x} &= \frac{1}{2} \left(S^{+} + S^{-} \right) &= \boxed{\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}} \end{split}$$

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$. 考虑为 λV 微扰, 利用微扰论计算微扰后的各能级和各能态, 其中能级微扰准确到二阶, 能态微扰准确到一阶.

$$H_0|s,m\rangle = (S^z)^2 |s,m\rangle = m^2 |s,m\rangle$$

 $\Rightarrow E_{-1}^{(0)} = 1, \quad E_0 = 0, \quad E_1 = 1$

注意到 m^2 会带来 $m=\pm 1$ 的简并, 所以后续计算时会涉及简并态的微扰处理. 首先观察简并态, 简并态矢张成独立子空间, 于是求解这个子空间中 V 的矩阵:

$$V_{\text{Sub}} = \begin{pmatrix} \langle 1,1|V|1,1\rangle & \langle 1,1|V|1,-1\rangle \\ \langle 1,-1|V|1,1\rangle & \langle 1,-1|V|1,-1\rangle \end{pmatrix}$$

$$\langle 1,1|V|1,1\rangle = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} = 1,$$

$$\langle 1,1|V|1,-1\rangle = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} = 0,$$

$$\langle 1,-1|V|1,1\rangle = 0,$$

$$\langle 1,-1|V|1,-1\rangle = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} = -1.$$

$$\Rightarrow V_{\text{Sub}} = \begin{pmatrix} 1 & 0\\0 & -1 \end{pmatrix}$$

注意到计算得到的子空间中 V_{sub} 完成了对角化, 这说明沿用的 $|s,m\rangle$ 基矢已经是 "好量子态". 所以回归到非简并微扰论的方法. 一阶能量修正各为

$$E_{1}^{(1)} = \langle 1, 1 | V | 1, 1 \rangle = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \boxed{1},$$

$$E_{0}^{(1)} = \langle 1, 0 | V | 1, 0 \rangle = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \boxed{0},$$

$$E_{-1}^{(1)} = \langle 1, -1 | V | 1, -1 \rangle = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \boxed{-1},$$

二阶能量修正由公式
$$E_m^{(n)} = \sum_{n \neq m} \frac{|\langle n|V|m \rangle|^2}{E_m^{(0)} - E_n^{(0)}}$$
 给出:

$$\begin{split} E_1^{(2)} &= \frac{|\langle 1,0|V|1,1\rangle|^2}{E_1^{(0)}-E_0^0} + \frac{|\langle 1,-1|V|1,1\rangle|^2}{E_1^{(0)}-E_{-1}^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{1-0} + \frac{0^2}{1-1} = \boxed{\frac{1}{2}},\\ E_0^{(2)} &= \frac{|\langle 1,1|V|1,0\rangle|^2}{E_0^{(0)}-E_1^{(0)}} + \frac{|\langle 1,-1|V|1,0\rangle|^2}{E_0^{(0)}-E_{-1}^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{0-1} + \frac{0^2}{0-(-1)} = \boxed{-\frac{1}{2}},\\ E_{-1}^{(2)} &= \frac{|\langle 1,0|V|1,-1\rangle|^2}{E_{-1}^{(0)}-E_0^{(0)}} + \frac{|\langle 1,1|V|1,-1\rangle|^2}{E_{-1}^{(0)}-E_1^{(0)}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{-1-0} + \frac{0^2}{1-1} = \boxed{-\frac{1}{2}}. \end{split}$$

可见, 只要在 $E_i^{(1)} - E_j^{(1)} = 0$ 时分子也为 0, 我们就可以无视分母为 0 的问题. 接下来是对态函数的微扰修正. 一阶修正由 $|m\rangle^{(1)} = \sum_{n \neq m} |n\rangle \frac{\langle n|V|m\rangle}{E_m^{(0)} - E_n^{(0)}}$ 给出:

$$\begin{split} |1,1\rangle^{(1)} &= |1,0\rangle \frac{\langle 1,0|V|1,1\rangle}{E_1^{(0)}-E_0^{(0)}} + |1,-1\rangle \frac{\langle 1,-1|V|1,1\rangle}{E_1^{(0)}-E_{-1}^{(0)}} = |1,0\rangle \frac{1}{\sqrt{2}} \frac{1}{1-0} + |1,-1\rangle \cdot 0 \\ &= \frac{1}{\sqrt{2}} |1,0\rangle \\ |1,0\rangle^{(1)} &= |1,1\rangle \frac{\langle 1,1|V|1,0\rangle}{E_0^{(0)}-E_1^{(0)}} + |1,-1\rangle \frac{\langle 1,-1|V|1,0\rangle}{E_0^{(0)}-E_{-1}^{(0)}} = |1,1\rangle \frac{1}{\sqrt{2}} \frac{1}{0-1} + |1,-1\rangle \frac{1}{\sqrt{2}} \cdot \frac{1}{0-(-1)} \\ &= \frac{1}{\sqrt{2}} (-|1,1\rangle + |1,-1\rangle) \\ |1,-1\rangle^{(1)} &= |1,1\rangle \frac{\langle 1,1|V|1,-1\rangle}{E_{-1}^{(0)}-E_1^{(0)}} + |1,0\rangle \frac{\langle 1,0|V|1,-1\rangle}{E_{-1}^{(0)}-E_0^{(0)}} = |1,1\rangle \cdot 0 + |1,0\rangle \frac{1}{\sqrt{2}} \cdot \frac{1}{-1-0} \\ &= -\frac{1}{\sqrt{2}} |1,0\rangle \end{split}$$

总结:

$$E_{1} = 1 + 1\lambda + \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$E_{0} = 0 + 0\lambda - \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$E_{-1} = 1 - 1\lambda - \frac{1}{2}\lambda^{2} + o(\lambda^{2})$$

$$|1, 1\rangle = |1, 1\rangle + \frac{\lambda}{\sqrt{2}}|1, 0\rangle + o(\lambda)$$

$$|1, 0\rangle = |1, 0\rangle + \frac{\lambda}{\sqrt{2}}(-|1, 1\rangle + |1, -1\rangle) + o(\lambda)$$

$$|1, -1\rangle = |1, -1\rangle - \frac{\lambda}{\sqrt{2}}|1, 0\rangle + o(\lambda)$$

对于这类可以使用矩阵形式讨论的问题, 还有一种笨办法, 就是直接严格对角化含 λ 微扰的哈密顿量, 然后进行 Taylor 展开得到各级数. 但是在三阶矩阵下的计算已经非常复杂, 所以还是建议使用一般微扰论方法, 毕竟考试时是会给出公式的.

5. 均匀电子气

考虑三维相互作用均匀电子气,哈密顿量为 $H=H_0+H_I$.考虑系统体积为 $V=L^3$,每个方向的系统尺寸为 L.采用箱归一化,所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数.采用二次量子化的语言,可给出哈密顿量在动量空间的

形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma\sigma'} v(q) c^{\dagger}_{\vec{k}_{1} + \vec{q},\sigma} c^{\dagger}_{\vec{k}_{2} - \vec{q},\sigma'} c_{\vec{k}_{2}\sigma'} c_{\vec{k}_{1}\sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q=|\vec{q}|, x=|\vec{x}|$,

$$v(q) = \frac{1}{V} \int v(x)e^{-i\vec{q}\cdot\vec{x}} d^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

(a) 考虑零温下的自由电子气, 计算总粒子数 N 和粒子数密度 n, 计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子数密度 n 的函数.

分离变量法求解薛定谔方程 $\frac{\hbar^2 \hat{k}^2}{2m} \psi = E \psi$. 于是能量本征值为 $\frac{\hbar^2 k^2}{2m} = \sum_i \frac{\hbar^2 k_i^2}{2m}$, 其中 $k_i = \frac{\sqrt{2mE_i}}{\hbar}$. 由于使用了箱 归一化, 即有边界条件 $k_i l_i = n_i \pi (n_i \in \mathbb{N}^*)$, 代入即得

$$E = \frac{\hbar^2}{2m} \left[\sum_{i=1}^{3} \left(\frac{\pi}{l_i} \right)^2 n_i^2 \right] = \frac{\hbar^2 \pi^2}{2m} \left(\sum_{i=1}^{3} \frac{n_i^2}{l_i^2} \right)$$

每个波矢 $\vec{k} = \left(\frac{\pi}{l_x}n_x, \frac{\pi}{l_y}n_y, \frac{\pi}{l_z}n_z\right)$ 都是在 \vec{k} 空间中的一个格点, 这种格点所占据的 \vec{k} 空间体积为

 $\prod_{i}^{3} \frac{\pi}{l_{i}} = \frac{\pi^{3}}{l_{x}l_{y}l_{z}} = \frac{\pi^{3}}{V}$, 其中 V 代表了物质在 \vec{x} 空间的体积(实体积). 电子是全同费米子, 每个格点上(每个状态)能且只能容纳两个电子. 而费米-狄拉克分布为 $f(\epsilon) = \frac{1}{1+e^{\beta(\epsilon-\mu)}}$. 绝对零度($\beta \to \infty$)下, 电子可占据的最高能级即为费米能级 $\lim_{\beta \to \infty} \mu = \varepsilon_{F}$, 对应波矢 $|k| \le k_{F}$. 由于前面讨论 $k_{i} \in \mathbb{N}^{*}$, 因此 $k \le k_{F}$ 在 \vec{k} 空间中会形成 $\frac{1}{8}$ 球体. 由于题解要求,我们略去讨论各原子贡献的自由电子数目,而是直接使用总粒子(电子)数 N:

$$\frac{1}{8} \left(\frac{4}{3} \pi k_F^3 \right) = \frac{N}{2} \left(\frac{\pi^3}{V} \right)$$

其中 N 除以 2 是因为泡利不相容原理. 具体到题目中, 有 $l_i = L, \forall i$, 于是进一步化简得到

$$N = \frac{k_F^3 V}{3\pi^2}, \quad \frac{N}{V} = n = \frac{k_F^3}{3\pi^2}$$

接下来计算总能量. 假设 N 充分大, 使得电子可存在的状态遍布整个半径为 k_F 的 $\frac{1}{8}$ 费米球, 于是求和化为积分形式, 即有 $E_{\text{tot}} = \sum_{i}^{k \leq k_F} \frac{\hbar^2 k^2}{2m} \Rightarrow \int_0^{k_F} \frac{\hbar^2 k^2}{2m} f(k) dk$, 其中 f(k) 是态密度, 表示在同一能量 $\frac{\hbar^2 k^2}{2m}$ 上的电子数目, 所以这就要求我们对电子态密度进行计算. 对于半径为 k, 厚度为 dk 的 $\frac{1}{8}$ 球壳, 在这个球壳上电子的能量都是相同的. 而这个球壳的体积为 $\frac{1}{8}(4\pi k^2 dk)$, 又已知每个格点体积为 $\frac{\pi^3}{V}$, 因此球壳中电子数目为

格点数
$$\times$$
 $2 = \frac{\frac{1}{8}(4\pi k^2\mathrm{d}k)}{\frac{\pi^3}{V}} \times 2 = \frac{k^2V}{\pi^2}\mathrm{d}k = f(k)\mathrm{d}k$

因此总能量为

$$E^{(0)} = \int_0^{k_F} \frac{\hbar^2 k^2}{2m} \frac{k^2 V}{\pi^2} dk = \frac{\hbar^2 V}{2m\pi^2} \int_0^{k_F} k^4 dk = \frac{\hbar^2 V}{2m\pi^2} \frac{k_F^5}{5} = \boxed{\frac{\hbar^2 V k_F^5}{10m\pi^2}}$$

反解粒子数密度表达式得到 $k_F(n)$, 代入 $E^{(0)}$ 计算总能量密度:

$$k_F = (3\pi^2 n)^{\frac{1}{3}}$$

$$\frac{E^{(0)}}{V} = \frac{\hbar^2 k_F^5}{10m\pi^2} = \frac{\hbar^2}{10m\pi^2} \cdot (3\pi^2 n)^{\frac{5}{3}} = \boxed{\frac{(3n)^{\frac{5}{3}} \hbar^2 \pi^{\frac{4}{3}}}{10m}}$$

(b) 计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} | H_I | \mathbf{FS} \rangle$.

题目中定义的傅里叶变换是非幺正的,代入结论的时候需要注意系数.

$$v(\vec{q}) = \frac{1}{V} \int \frac{1}{|\vec{x}|} e^{i\vec{q}\cdot\vec{x}} d\vec{x} = \frac{1}{V} \frac{4\pi}{q^2}$$

代 $v(\vec{q})$ 入两体相互作用部分,有

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma, \sigma'} \frac{1}{V} \frac{4\pi}{q^{2}} c^{\dagger}_{\vec{k}_{1} + \vec{q}, \sigma} c^{\dagger}_{\vec{k}_{2} - \vec{q}, \sigma'} c_{\vec{k}_{2}, \sigma'} c_{\vec{k}_{1}, \sigma}$$

(c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角的,并且保持了自旋对称性,以及平移对称性,因此我们期待 $\left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}'\sigma'}\right\rangle = \left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}\sigma}\right\rangle \delta_{\vec{k},\vec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{\vec{k}\uparrow}^{\dagger}c_{\vec{k}\uparrow}\right\rangle = \left\langle c_{\vec{k}\downarrow}^{\dagger}c_{\vec{k}\downarrow}\right\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小. 代 $|\text{HF}\rangle = \prod_{k \in k} c_{\vec{k},\sigma}^{\dagger}|0\rangle$ 入能量一阶修正,有

$$\langle \mathrm{HF}|H_0|\mathrm{HF}\rangle = \sum_{\vec{k},\sigma} \langle \mathrm{HF}|\frac{k^2}{2} c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} |\mathrm{HF}\rangle$$

$$\begin{split} \langle \mathrm{HF}|H_{I}|\mathrm{HF}\rangle &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} \langle \mathrm{HF}| \underbrace{c_{\vec{k}_{1}+\vec{q},\sigma}^{\dagger} c_{\vec{k}_{2}-\vec{q},\sigma'}^{\dagger} c_{\vec{k}_{2},\sigma'} c_{\vec{k}_{1},\sigma}^{\dagger}}_{c_{\tau}c_{\mu}c_{\nu}} |\mathrm{HF}\rangle \\ &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} (\underbrace{\delta_{\vec{k}_{1}+\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{2}}^{\dagger}}_{c_{\tau}c_{\mu}c_{\nu}} - \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\sigma,\sigma'} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma}), \quad v(\vec{q}=0) \vec{\Lambda} \not\boxtimes \vec{\mathbb{D}} \\ &= -\frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \sum_{\sigma} \sum_{\sigma} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma} \delta_{\sigma,\sigma'} \\ &= -\frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \\ &= -\frac{1}{V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \int \mathrm{d}\vec{q} \frac{V}{(2\pi)^{3}} \frac{1}{q^{2}} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}}^{\dagger} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}}^{\dagger} \\ &= -\frac{1}{V} \sum_{\vec{r}} \sum_{\vec{k}_{1}} \frac{4\pi}{|\vec{k}_{1}-\vec{k}_{2}|^{2}} \end{split}$$

在第二行消去了一项, 这是因为它会引起 $\vec{q}=0$. 有关于最后一行的求和, 这是一个固定结论, 没有必要在考场现场计算求和, 在这里直接给出答案:

$$\langle \text{HF}|H_I|\text{HF}\rangle = -\frac{k_F^3 V}{4\pi^3} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

$$\Rightarrow E = \frac{(3n)^{\frac{5}{3}} \pi^{\frac{4}{3}} V}{10} - \frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0,2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}S(\alpha)$ 是一个幺正算符, 它的产生子为厄米算符 \hat{N} , 与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$, 所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$, 在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial \theta}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$. 可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

因为 $\hat{R}(2\pi) = \mathbb{I}$, 所以有 $|\theta - 2\pi\rangle = |\theta\rangle$. 对于算符 \hat{N} 的本征态 $|N\rangle$ 有

$$\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta - 2\pi)} |\theta - 2\pi\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle$$

$$\iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta - 2\pi)} |\theta\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta - 2\pi)} |\theta\rangle$$

$$\iff e^{iN\theta} = e^{iN(\theta - 2\pi)} = e^{iN\theta} e^{-i2\pi N}$$

因此为了保持 θ 转动 2π 后的不变性, N 应当是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$, 证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的。

$$\hat{H}_0|N\rangle = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2$$

$$\Rightarrow N_{\pm} - \frac{1}{2} = \pm \sqrt{2E_N^{(0)}} \Rightarrow N_{\pm} = \frac{1}{2} \pm \sqrt{2E_N^{(0)}}$$

这意味着对于任意整数 N,都对应存在着 N'=1-N 使得能级简并.

(c) 采用 $\{|N\rangle\}$ 作为基组,写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵,并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并,那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的,我们仍然可以使用非简并微扰论.

$$\begin{aligned} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta}|N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{aligned}$$

和前文一致, 如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 N+N'=1 使得只要 $N\in\mathbb{Z}$, 那么 $\delta\neq0$. 所以仍然可以使用非简并微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶,并证明此时所有的能级简并仍然没有被解除.

$$\begin{split} E_N^{(1)} &= \langle N | \hat{V} | N \rangle = -\frac{g}{2} \left(\langle N | N+2 \rangle + \langle N | N-2 \rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N | \hat{V} | N' \rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

微扰修正后的能级为

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N - 3)(2N + 1)}$$

代入 N'=1-N 以检查能级简并性:

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

所以简并度未变化.