1. Die Formel für die Geschwindigkeit \boldsymbol{v} ist

$$v = \frac{\Delta s}{\Delta t}$$

Hier ist Δs der zurückgelegte Weg und Δt die dafür benötigte Zeit.

(a) Berechnen Sie die Geschwindigkeit, wenn $\Delta s = 30\,\mathrm{m}$ und $\Delta t = 15\,\mathrm{s}$ ist.

Lösung:

geg.: Δs ; Δt

ges.: v

$$v = \frac{\Delta s}{\Delta t} = \frac{30\,\mathrm{m}}{15\,\mathrm{s}} = 2\,\frac{\mathrm{m}}{\mathrm{s}}$$

Antwort: Die Geschwindigkeit ist $2 \frac{m}{s}$.

i. Berechnen Sie die Geschwindigkeit, wenn $\Delta s = 4 \cdot 10^7 \, \mathrm{m}$ und $\Delta t = 0.133 \, \mathrm{s}$ ist.

Lösung:

geg.: Δs ; Δt

ges.: v

$$v = \frac{\Delta s}{\Delta t} = \frac{4 \cdot 10^7 \, \mathrm{m}}{0.133 \, \mathrm{s}} = 3 \cdot 10^8 \, \frac{\mathrm{m}}{\mathrm{s}}$$

Antwort: Die Geschwindigkeit ist $3\cdot 10^8\,\frac{\rm m}{\rm s}$ (Lichtgeschwindigkeit).

(b) Rechnen Sie $17 \frac{m}{s}$ in $\frac{km}{h}$ um.

Lösung:

 $\mathbf{geg.:}\ v\ \mathsf{in}\ \tfrac{\mathsf{m}}{\mathsf{s}}$

ges.: v in $\frac{km}{h}$

$$17\frac{m}{s} = 17 \cdot 3.6 \frac{km}{h} = 61.2 \frac{km}{h}$$

Antwort: Die Geschwindigkeit ist $61,2\frac{\mathrm{km}}{\mathrm{h}}$.

Lösung:

geg.:
$$v$$
 in $\frac{km}{h}$

ges.:
$$v$$
 in $\frac{m}{s}$

$$55 \frac{\text{km}}{\text{h}} = 55 \cdot \frac{1}{3.6} \frac{\text{m}}{\text{s}} = 15.3 \frac{\text{m}}{\text{s}}$$

Antwort: Die Geschwindigkeit ist $15,3 \frac{\text{m}}{\text{s}}$.

(d) Stellen Sie die Gleichung für v nach dem Weg Δs um und berechnen Sie den Weg, den man bei einer Geschwindigkeit von $15\,\frac{\rm m}{\rm s}$ in $16\,{\rm s}$ zurücklegt.

Lösung:

geg.:
$$v$$
; Δt

$$v = \frac{\Delta s}{\Delta t} \quad | \cdot \Delta t$$
$$v\Delta t = \Delta s$$

Nun kann man direkt Zahlen einsezten:

$$\Delta s = v \Delta t = 15 \, \frac{\mathrm{m}}{\mathrm{g}} \cdot 16 \, \mathrm{g} = 240 \, \mathrm{m}$$

Antwort: Der zurückgelegte Weg beträgt 240 m.

(e) Stellen Sie die Gleichung für v nach der benötigten Zeit Δt um und berechnen Sie die Zeit, die nötig ist, um $300\,\mathrm{m}$ bei einer Geschwindigkeit von $11\,\frac{\mathrm{m}}{\mathrm{s}}$ zurückzulegen.

Lösung:

geg.:
$$v$$
; Δt

$$v = \frac{\Delta s}{\Delta t} \quad | \cdot \Delta t$$

$$v\Delta t = \Delta s \quad | : v$$

$$\Delta t = \frac{\Delta s}{v}$$

Nun kann man direkt Zahlen einsezten:

$$\Delta t = \frac{\Delta s}{v} = \frac{300 \,\mathrm{m}}{11 \,\frac{\mathrm{m}}{\mathrm{s}}} = 27.3 \,\frac{\mathrm{pris}}{\mathrm{pri}}$$

Die Einheitenrechnung beruht darauf, dass Division (Teilen) durch einen Bruch gleichbedeutend mit Multiplikation (Malnehmen) mit dem Kehrbruch ist:

 $\frac{m}{\frac{m}{s}} = m\frac{s}{m} = s$

Antwort: Die benötigte Zeit beträgt 27,3 s.

2. Die Formel für die Beschleunigung a ist

$$a = \frac{\Delta v}{\Delta t}$$

Hier ist Δv die Geschwindigkeitsänderung und Δt die dafür benötigte Zeit.

(a) Ein Auto ändert seine Geschwindigkeit in $11.5\,\mathrm{s}$ von $v_1=3\,\frac{\mathrm{m}}{\mathrm{s}}$ auf $v_2=11\,\frac{\mathrm{m}}{\mathrm{s}}$. Wie groß ist seine Beschleunigung?

Lösung:

geg.: Δv ; Δt

ges.: *a*

$$a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t} = \frac{11 \frac{\text{m}}{\text{s}} - 3 \frac{\text{m}}{\text{s}}}{11,5 \text{ s}} = \frac{8 \frac{\text{m}}{\text{s}}}{11,5 \text{ s}} = 0,696 \frac{\text{m}}{\text{s}^2}$$

Antwort: Die Beschleunigung beträgt 0,696 m/s².

i. Ein Geschoss ändert seine Geschwindigkeit in $2\cdot 10^{-6}\,\mathrm{s}$ von $v_1=0\,\frac{\mathrm{m}}{\mathrm{s}}$ auf $v_2=10^3\,\frac{\mathrm{m}}{\mathrm{s}}$. Wie groß ist seine Beschleunigung? Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für $10\mathrm{er}$ Potenzen, die wir gelernt haben.

Lösung:

geg.: Δv ; Δt

ges.: *a*

$$a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t} = \frac{10^3 \frac{\text{m}}{\text{s}} - 0 \frac{\text{m}}{\text{s}}}{2 \cdot 10^{-6} \,\text{s}} = \frac{10^3 \frac{\text{m}}{\text{s}}}{2 \cdot 10^{-6} \,\text{s}} = 0.5 \cdot 10^{3 - (-6)} \frac{\text{m}}{\text{s}^2} = 0.5 \cdot 10^{3 + 6} \frac{\text{m}}{\text{s}^2} = 0.5 \cdot 10^9 \frac{\text{m}}{\text{s}^2} = 5 \cdot 10^8 \frac{\text{m}}{\text{s}^2}$$

Antwort: Die Beschleunigung beträgt $5\cdot 10^8\,\frac{\text{m}}{\text{s}^2}$. Wäre das keine reine Übungsaufgabe, wäre dies eine extrem hohe Beschleunigung.

(b) Stellen Sie die Formel für die Beschleunigung nach Δv um und berechnen Sie, um wieviel sich die Geschwindigkeit ändert, wenn wir $16\,\mathrm{s}$ lang mit $3\,\frac{\mathrm{m}}{\mathrm{s}^2}$ beschleunigen.

Lösung:

geg.: Δt , a

ges.: Δv

$$a = \frac{\Delta v}{\Delta t} \quad | \cdot \Delta t$$
$$a\Delta t = \Delta v$$

Nun können wir Zahlen einsetzen:

$$\Delta v = a\Delta t = 3\frac{\mathsf{m}}{\mathsf{s}^2} \cdot 16\,\mathsf{s} = 48\,\frac{\mathsf{m}}{\mathsf{s}}$$

Antwort: Die Geschwindigkeitsänderung beträgt $48 \frac{\text{m}}{\text{s}}$.

i. Berechnen Sie, um wieviel sich die Geschwindigkeit ändert, wenn wir $10^4\,\mathrm{s}$ lang mit $3\cdot 10^{-3}\,\frac{\mathrm{m}}{\mathrm{s}^2}$ beschleunigen. Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für 10er Potenzen, die wir gelernt haben.

Lösung:

geg.: Δt , a

ges.: Δv

Wir verwenden die Umformung von eben und setzen gleich Zahlen ein:

$$\Delta v = a\Delta t = 3 \cdot 10^{-3} \frac{\text{m}}{\text{s}^2} \cdot 10^4 \text{s} = 3 \cdot 10^{-3+4} \frac{\text{m}}{\text{s}} = 3 \cdot 10^1 \frac{\text{m}}{\text{s}} = 3 \cdot 10^1$$

Antwort: Die Geschwindigkeitsänderung beträgt $30\,\frac{\text{m}}{\text{s}}$. Dh. wir beschleunigen ziemlich lange (2,8 h) mit einer sehr kleinen Beschleunigung und erhalten eine normale Geschwindigkeit.

(c) Stellen Sie die Formel für die Beschleunigung nach Δt um und berechnen Sie, wie lange es dauert, bis eine Beschleunigung von $9.81\,\frac{\rm m}{\rm s^2}$ die Geschwindigkeit um $25\,\frac{\rm m}{\rm s}$ ändert.

Lösung:

geg.: a; Δv

ges.: Δt

$$a = \frac{\Delta v}{\Delta t} \quad | \cdot \Delta t$$

$$a\Delta t = \Delta v \quad | : a$$

$$\Delta t = \frac{\Delta v}{a}$$

Wir setzen Werte ein

$$\Delta t = \frac{\Delta v}{a} = \frac{25 \, \frac{\text{m}}{\text{s}}}{9.81 \, \frac{\text{m}}{\text{s}^2}} = 2.55 \, \frac{\text{pr}}{\text{s}} \cdot \frac{\text{s}^2}{\text{pr}} = 2.55 \, \frac{\text{s}^2}{\text{s}} = 2.55 \, \text{s}$$

Antwort: Die Beschleunigung dauert 2,55 s.

i. Berechnen Sie, wie lange es dauert, bis eine Beschleunigung von $10^{-3} \, \frac{\text{m}}{\text{s}^2}$ die Geschwindigkeit um $7 \cdot 10^5 \, \frac{\text{m}}{\text{s}}$ ändert. Rechnen Sie ohne Taschenrechner und verwenden Sie die Rechenregeln für 10er Potenzen, die wir gelernt haben.

Lösung:

geg.: a; Δv

ges.: Δt

Die Umformung ist dieselbe wie eben. Wir setzen direkt Werte ein:

$$\Delta t = \frac{\Delta v}{a} = \frac{7 \cdot 10^5 \, \frac{\mathrm{m}}{\mathrm{s}}}{10^{-3} \, \frac{\mathrm{m}}{\mathrm{s}^2}} = 7 \cdot 10^{5 - (-3)} \, \frac{\mathrm{m}}{\mathrm{s}} \cdot \frac{\mathrm{s}^2}{\mathrm{s}} = 7 \cdot 10^{5 + 3} \, \frac{\mathrm{s}^2}{\mathrm{s}^2} = 7 \cdot 10^8 \, \mathrm{s}$$

Antwort: Die Beschleunigung dauert $7 \cdot 10^8 \, \mathrm{s.}$ Das entspräche 22,2 Jahren.