AV-241: Instrumentation and Control Lab

Instrumentation Lab-1

Experiment -3

(01-03-2024) SAURABH KUMAR SC22B146

1

Aim: Design and implement two important op-AMP based measurement circuits:

- @ Difference Amplifier
- 1 Instrumentation Amplifier using 3 opamps.

Components and Equipments Required:

- · Opamp IC OPO7
- · Variable resistance boxes/Potentiometers
- · Dc power supply
- · Multimeter.

Brief Explanation:

No Ri

No

 $v_0 = (v_2 - v_1) \frac{R_2}{R_1}$

Difference amplifier amplifies the difference of the input voltages V_1 and V_2 .

The objective of this experiment difference amplifier circuits is to further understand the concepts of difference modes signals and CMRR.

Part A: Design and implement a difference amplifier of unity difference gain using matched to KR nesistars.

Measure the output of the difference amplifier for:

(i) $V_1 = 0.5 \text{ V}$ and $V_2 = -0.5 \text{ V}$,

 $\widehat{\mathbf{w}} \quad \mathbf{v}_1 = \mathbf{v}_2 = \mathbf{1} \, \mathbf{v}.$

compute CMRR using the above measured outputs.

Now, find the 1% mismatch of the resistory of the difference amplifiers and find experimentally the minimum value of CMRR for this circuit.

Repeat the experiment for 2% tolerance as well check the similaring between the theoretical and experimentally-obtained values of order.

Part B: Design and implement a 3-opamp Instrumentation amplifier (IA) of difference gain = 3 using matched 10 KIZ resistors compute CMRR using the above measured outputs.

Now, find the 1% mismatch to the resistors of the difference amplifier in the IA and find experimentally the minimum value of CMPR for this circuit.

Repeat the experiment for 2% tolerance as well. Check the similarity Between the theoretical and experimentally-obtained values of CMPR.

Differential Amplifier Experiment Simulation:

A) Measurement of Differential Gain for zero tolerance

B) Measurement of Differential Gain for one percentage tolerance

C) Measurement of Differential Gain for two percentage tolerance

A) Measurement of Common Mode Gain for zero tolerance

B) Measurement of Common Mode Gain for one percentage tolerance

C) Measurement of Common Mode Gain for two percentage tolerance

Instrumental Amplifier Experiment Simulation:

A) Measurement of Differential Gain for zero tolerance

.tran 1

B) Measurement of Differential Gain for one percentage tolerance

C) Measurement of Differential Gain for two percentage tolerance

A) Measurement of Common Mode Gain for zero tolerance

.tran 10000000

B) Measurement of Common Mode Gain for one percentage tolerance

C) Measurement of Common Mode Gain for two percentage tolerance

Exp 3A

Simulation of Difference Amplifier:

For Differential Gain:

Gain 0% tolerance: 999.99 mV/V Gain 1 % tolerance: 990.3 mV/V Gain 2% tolerance: 980.39 mV/V

For Common Mode Gain:

Gain 0% tolerance: 4.489 nV/V Gain 1 % tolerance: 19.80 mV/V Gain 2% tolerance: 39.21 mV/V

Minimum CMRR:

CMRR 0% tolerance: 166.956 dB CMRR 1 % tolerance: 33.98 dB CMRR 2% tolerance: 27.96 dB

Exp 3B

Simulation of Instrumentation Amplifier:

For Differential Gain:

Gain 0% tolerance: 2.99 V/V Gain 1 % tolerance: 2.97 V/V Gain 2% tolerance: 2.941 V/V

For Common Mode Gain:

Gain 0% tolerance: 4.50 nV/V Gain 1 % tolerance: 19.80 mV/V Gain 2% tolerance: 39.215 mV/V

Minimum CMRR:

CMRR 0% tolerance: 176.478 dB CMRR 1 % tolerance: 43.521 dB CMRR 2% tolerance: 37.500 dB

Results:

Differential Amplifier [vcc = ±15v]

1 Zew tolerance: Va=0.5V, Vb=-0.5V Ry=Ro=Ro=Ro=10K 52

Vout = 999.0mV

Na= IV, Nb= IV

Nout = 0.001 V

:. CMRR = 20 Log (differential gain) = log (999 o out x) = 59.99 dB

2 1% tolerance: R1=R3=10.1 KD, R2=R4=9.9 KD

Na=0.5V, Nb==0.5V

Now = 990.0mV

 $V_{\alpha}=1 V$, $V_{b}=1 V$

Vaut = 19.02 ml

: CMRR = 20log $\left(\frac{990}{19.02}\right) = (34.32dB)$

3 21. tolerance: R= R= 10.2 KD, R= R= 9.8 KD

Va= 0.5V, Vb=-0.5V

Vout = 980.2 mV

Va= 1V, Vb= 1V

Vout = 38.01 mV

:. CMPR= 20 log $(\frac{980}{38.01}) = (28.22 dB)$

Instrumental Amplifier

1 Zero tolerance: Va=0.5V, Nb=0.5V

Vout = 2.99 v

Va=IV, Vb=IV

Vout = 0.001 V

:. CMRR = 20 log (2.99) = 69.51 dB

(2) 19. tolerance: $R_1 = R_3 = 10.1 \text{ k.s.}$, $R_2 = R_4 = 9.9 \text{ k.s.}$. $V_{\alpha} = 0.5 \text{ V}$, $V_{b} = 0 - 0.5 \text{ V}$ $V_{\text{out}} = 2.96 \text{ V}$

> $V_a = 1V$, $V_b = 1V$ $V_{out} = 200 18.8 \text{ mV}$

:. CMRR = 20log (2.91×1000) = (43.94 dB)

3 21. tolerance: Ry=Rg=10.2 K.I., Rz=R4=9.8 K.S.

 $V_{a} = 0.5 V$, $V_{b} = -0.5 V$ $V_{out} = 2.93 V$

Va=1V, Vb=1V Nout = 36 mV

: CMRR = 20 log $\left(\frac{2.93 \times 1000}{36}\right) = 38.21 dB$