Tema 4 (I) El procesador

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid

Contenidos

Introducción

- Motivación y objetivos
- Funciones básicas de la unidad de control
- 3. Señales de control y operaciones elementales

2. Computador elemental:

- 1. Estructura del computador elemental
- Señales de control
- 3. Operaciones elementales

¡ATENCIÓN!

- Estas transparencias son un guión para la clase
- Los libros dados en la bibliografía junto con lo explicado en clase representa el material de estudio para el temario de la asignatura
 - Para la preparación de los exámenes se ha de utilizar todo el material de estudios

Contenidos

I. Introducción

- Motivación y objetivos
- Funciones básicas de la unidad de control
- 3. Señales de control y operaciones elementales

2. Computador elemental:

- 1. Estructura del computador elemental
- Señales de control
- 3. Operaciones elementales

Motivación

- En el tema 3 se estudia qué hace:
 - Instrucciones
 - Direccionamiento
 - Etc.
- En el tema 4 se estudia
 cómo lo hace:
 - Funcionamiento interno
 - Diseño de la U.C.

Motivación

- La Unidad de Control es el director de orquesta:
 - coordina el funcionamiento del resto de los elementos
- El estudio de la Unidad de Control es importante

Unidad de control

▶ Entrada:

- Instrucción en ejecución
- Registro de estado
- Contador de programa

▶ Salida:

 Señales de control y estado externas a la UCP

Objetivos

Conocer las señales de control típicas en un computador que genera la U.C.

Objetivos

- Conocer las señales de control típicas en un computador que genera la U.C.
- Conocer la forma de:
 - Especificar
 - Diseñar

La unidad de control

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Funciones básicas de la unidad de control
- 3. Señales de control y operaciones elementales

2. Computador elemental:

- Estructura del computador elemental
- Señales de control
- 3. Operaciones elementales

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Leer de memoria principal la instrucción apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Leer de memoria
 principal la instrucción
 apuntada por el PC
- Incrementar PC
- Decodificar instrucción
- Hacer que se ejecute la instrucción

- Resolver situaciones anómalas
- Atender las interrupciones
- Controlar
 la comunicación con los periféricos

- Resolver situaciones anómalas
- Atender las interrupciones
- Controlar

 la comunicación con
 los periféricos

- Resolver situaciones anómalas
- Atender las interrupciones
- Controlar
 la comunicación con
 los periféricos

- Resolver situaciones anómalas
- Atender las interrupciones
- Controlar
 la comunicación con los periféricos

Contenidos

Introducción

- Motivación y objetivos
- Funciones básicas de la unidad de control
- Señales de control y operaciones elementales

Computador elemental:

- Estructura del computador elemental
- Señales de control
- Operaciones elementales

Registro y bus

Registro

Permite almacenar varios bits

Bus

Permite transmitir
 varios bits entre dos
 elementos
 conectados a él

Señales: triestado de salida

Triestado

- Se coloca entre los elementos y el bus
- Permite mandar al bus unos datos

IMPORTANTE

 No se puede activar dos o más triestados al mismo bus y al mismo tiempo

Señales: carga en registro

Carga en registro

- Permite almacenar en el flanco de reloj el valor que esté a la entrada
 - Durante el nivel del ciclo el registro mantiene el valor antiguo
 - Al final del ciclo es cuando se actualiza

IMPORTANTE

 Por tanto, en el siguiente ciclo se verá a la salida el nuevo valor

Secuencia de señales

Ejemplo de operación elemental de transferencia

Operación elemental de transferencia:

- Elemento de almacenamiento origen
- Elemento de almacenamiento destino
- Se establece un camino

xx:
$$A \leftarrow B$$
 [Tb, Ca]

IMPORTANTE

- Establecer el camino entre origen y destino en un mismo ciclo
- ▶ En un mismo ciclo NO:
 - se puede atravesar un registro
 - > se pasará por un bus 2 veces

Secuencia de señales

Ejemplo de operación elemental de procesamiento

Operación elemental de procesamiento:

- ▶ Elemento(s) de origen
- Elemento destino
- Operación de transformación en el camino

yy: $A \leftarrow B+C$ [SCI=b,SC2=d, Ca]

IMPORTANTE

- Establecer el camino entre origen y destino en un mismo ciclo
- En un mismo ciclo NO:
 - se puede atravesar un registro
 - se pasará por un bus 2 veces

Operaciones elementales

Clasificación de operaciones elementales:

a) Operaciones de transferencia:

- Elemento de almacenamiento origen
- Elemento de almacenamiento destino
- Se establece un camino

 $xx: A \leftarrow B$

b) Operaciones de proceso:

- Elemento/s origen
- Elemento destino
- Operación que transforma la información en su camino

yy: $A \leftarrow \phi(B)$

Contenidos

Introducción

- Motivación y objetivos
- 2. Funciones básicas de la unidad de control
- 3. Señales de control y operaciones elementales

2. Computador elemental:

- 1. Estructura del computador elemental
- 2. Señales de control
- 3. Operaciones elementales

Estructura de un computador elemental

Estructura de un computador elemental

Señales de control

Nomenclatura:

- MAR -> registro de direcciones
- MBR -> registro de datos
- Tx -> Señal de activación triestado
- Cx -> Señal de carga de registro

Memoria principal

- ▶ L Lectura
- ▶ E Escritura
- ► CI del bus interno al MAR
- ▶ C2 del bus de datos al MBR
- C3 del bus interno al MBR
- Td salida del MAR al bus de direcciones
- Ta salida del MBR al bus de direcciones
- T3 salida del MBR al bus interno

Ejemplo

operaciones elementales para usar la memoria

Lectura

- MAR <- <dirección> (CI)
- Ciclo lectura (Td, L)
- ▶ MBR <- MP[D] (Td, L, C2)</p>

▶ Escritura

- MAR <- <dirección> (..., CI)
- MBR <- <dato> (..., C3)
- Ciclo de escritura (Ta, Td, E)

Estructura de un computador elemental

Señales de control

Nomenclatura:

- Y -> puerta de entrada/salida
- Tx -> Señal de activación <u>triestado</u>
- Rx -> señal se selección de registro
- SC -> Señal de carga de registro

Banco de registros

- A − salida del B.R. por A
- ▶ B salida del B.R. por B
- ▶ E entrada del B.R. por E
- ▶ RA selección registro por A
- RB selección registro por B
- ▶ RC selección registro por E
- ▶ SC escritura en registro
- TI salida del B.R. al bus interno por A
- T2 salida del B.R. al bus interno por B

Estructura de un computador elemental

Señales de control

ALU

- C9 bus interno al registro RTI
- C10 bus interno al registro RT2
- MA selección de operador: A ó RTI
- MB selección de operador: B ó RT2
- ▶ Cod. OP operación a realizar en la ALU (+,-,...)
- CII resultado de la ALU a registro RT3
- ▶ T5 resultado de la ALU al bus interno
- ► T6 salida de RT3 al bus interno

Ejemplo

operaciones elementales para usar la ALU

- \rightarrow \$t3 = \$t1 + \$t2
 - RA=\$tI, RB=\$t2, MA=0, MB=0, cod.OP=+,T5, RC=\$t3, SC=I

Estructura de un computador elemental

Señales de control

▶ Contador de programa PC:

- C4 − PC <- PC + 4</p>
- ▶ C5 del bus interno al PC
- ▶ T4 de PC a bus interno

► Registro de estado RE:

- ▶ C7 de bus interno al RE
- ▶ C8 de los flags de la ALU al RE
- ▶ T7 del RE al bus interno

▶ Registro de instrucciones RI:

- C6 del bus interno al RI
- ▶ T8 de RI al bus interno

Estructura de un computador elemental y señales de control

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Funciones básicas de la unidad de control
- 3. Señales de control y operaciones elementales

2. Computador elemental:

- 1. Estructura del computador elemental
- Señales de control
- 3. Operaciones elementales

Descripción de la actividad de la U.C.

Secuencia de operaciones elementales

- PC++
- decodificación
- R0 <- R1

Secuencia de señales de control por cada operación elemental

Descripción de la actividad de la U.C.

Secuencia de señales de control por cada operación elemental

Operaciones elementales asociadas a una instrucción de ensamblador ADD (R2) R3 (R4)

Fetch

I - MAR ← PC

2.- RI \leftarrow Memoria(MAR)

3.- PC \leftarrow PC + 'I'

4.- Decodificación de la instrucción

Traer operandos

5.- MAR \leftarrow R_{$^{\perp}$}

6.- $R_{tmp} \leftarrow Memoria(MAR)$

7.- PC \leftarrow PC + 'l' (si es necesario...)

Ejecutar

8.-
$$R_{tmp} \leftarrow R_3 + R_{tmp}$$

Guardar resultados

9.- MBR
$$\leftarrow$$
 R_{tmp}

10.- MAR
$$\leftarrow$$
 R₂

II.- Memoria(MAR) \leftarrow MBR

Operaciones elementales asociadas a una instrucción de ensamblador ADD (R2) R3 (R4)

 Es preciso conocer que operaciones elementales son posibles en una arquitectura:

2.- RI
$$\leftarrow$$
 Memoria(MAR)

4.- Decodificación de la instrucción

5.- MAR
$$\leftarrow$$
 R₄

6.-
$$R_{tmp} \leftarrow Memoria(MAR)$$

7.-
$$PC \leftarrow PC + 'I'$$
 (si es necesario...)

8.-
$$R_{tmp} \leftarrow R_3 + R_{tmp}$$

9.- MBR
$$\leftarrow$$
 R_{tmp}

10.- MAR
$$\leftarrow$$
 R₂

II.- Memoria(MAR) \leftarrow MBR

Ejemplos de describir las O.E. asociadas a una instrucción

- ▶ ADD .4,.7
- ▶ LD .3,#734[.4++]
- ▶ SUB .12,[#1734[.13]]
- ▶ BZ #1342[.6]

ADD .4,.7 (Operaciones elementales)

- I. $MAR \leftarrow PC$
- 2. L, PC \leftarrow PC + 'I'
- 3. $MBR \leftarrow memoria(MAR)$
- 4. $RI \leftarrow MBR$
- Decodificación de la instrucción leída
- 6. $R_4 \leftarrow R_4 + R_7$, RE \leftarrow Bits de estado aritméticos

LD .3,#734[.4++] (Operaciones elementales)

- I. $MAR \leftarrow PC$
- 2. L, PC \leftarrow PC + 'I'
- 3. $MBR \leftarrow memoria(MAR)$
- 4. $RI \leftarrow MBR$
- 5. Decodificación de la instrucción leída
- 6. RT2 \leftarrow RI(734)
- 7. MAR \leftarrow RT2 + R₄
- 8. L
- 9. L, MBR \leftarrow memoria(MAR)
- 10. $R_3 \leftarrow MBR$
- II. $R_4 \leftarrow R_4 + I$

LD .3,#734[.4++] (Operaciones elementales)

- I. $MAR \leftarrow PC$
- 2. L, PC \leftarrow PC + 'I'
- 3. L, MBR \leftarrow memoria(MAR)
- 4. $RI \leftarrow MBR$
- 5. Decodificación de la instrucción leída
- 6. MAR \leftarrow PC
- 7. L, PC ← PC + 'I'
- 8. L, MBR \leftarrow memoria(MAR)
- 9. $RT2 \leftarrow MBR$
- 10. MAR \leftarrow RT2 + R₄
- $II. \quad L, R_4 \leftarrow R_4 + I$
- 12. L, MBR \leftarrow memoria(MAR)
- 13. $R_3 \leftarrow MBR$

SUB .12,[#1734[.13]] (Operaciones elementales)

- I. $MAR \leftarrow PC$
- 2. L, PC \leftarrow PC + 'I'
- 3. L, MBR \leftarrow memoria(MAR)
- 4. $RI \leftarrow MBR$
- 5. Decodificación de la instrucción leída
- 6. RT2 \leftarrow RI(1734)
- 7. MAR \leftarrow RT2 + R₁₃
- 8. **L**
- 9. L, MBR \leftarrow memoria(MAR)
- 10. $MAR \leftarrow MBR$
- 11. L
- 12. L, MBR \leftarrow memoria(MAR)
- 13. $RT2 \leftarrow MBR$
- $14. \quad R_{12} \leftarrow R_{12} RT2$

BZ #1342[.6] (Operaciones elementales)

- I. $MAR \leftarrow PC$
- 2. L, PC \leftarrow PC + 'I'
- 3. $MBR \leftarrow memoria(MAR)$
- 4. $RI \leftarrow MBR$
- 5. Decodificación de la instrucción leída
- 6. Si no se cumple la condición, entonces saltar a FETCH
- 7. $RT2 \leftarrow RI(1342)$
- 8. $PC \leftarrow RT2 + R_6$
- saltar a FETCH

Tema 4 (I) El procesador

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid