

Domain Adaptation for Semantic Parsing

Zechang Li^{1,2}, Yuxuan Lai¹, Yansong Feng^{1,3*} and Dongyan Zhao^{1,2}

¹ Wangxuan Institute of Computer Technology, Peking University, Beijing, China

² Center for Data Science, Peking University, Beijing, China

³ The MOE Key Laboratory of Computational Linguistics, Peking University, China

Background

utterance: how long is the weekly standup meeting

logical form: listValue (getProperty en.meeting.weekly_standup (string length))

Background

target domain: calendar few

Background

target domain: calendar few

source domain: housing, restaurants, ..., publications

sufficient

Domain	Instance			
calendar	<pre>utterance: meetings attended by two or more people logical form: listValue (countComparative (getProperty (singleton en.meeting) (string !type)) (string attendee) (string >=) (number 2))</pre>			
housing	<pre>utterance: housing units with 2 neighborhoods logical form: listValue (countComparative (getProperty (singleton en.housing_unit) (string !type)) (string neighborhood) (string =) (number 2))</pre>			

Motivation

Domain	Instance				
calendar	<pre>utterance: meetings attended by two or more people logical form: listValue (countComparative (getProperty (singleton en.meeting) (string !type)) (string attendee) (string >=) (number 2))</pre>				
housing	<pre>utterance: housing units with 2 neighborhoods logical form: listValue (countComparative (getProperty (singleton en.housing_unit) (string !type)) (string neighborhood) (string =) (number 2))</pre>				

Motivation

utterance: how long is the weekly standup meeting

coarse stage

sketch: listValue (getProperty@1 (string@1))

fine stage

logical form: listValue (getProperty en.meeting.weekly_standup (string length))

Domain-Aware seMantic Parser

Domain Discrimination

Domain Relevance Attention

Domain Relevance Attention

$$\alpha_t = softmax(\mathbf{U} \cdot \mathbf{d}_t)$$

$$\mathbf{c}_t = \mathbf{U} \cdot \alpha_t$$

$$[\mathbf{d}_t; \mathbf{c}_t]$$

$$\begin{aligned} \boldsymbol{\alpha}_t &= softmax(\boldsymbol{U} \cdot \boldsymbol{d}_t) \\ \boldsymbol{c}_t &= \boldsymbol{U} \cdot \boldsymbol{\alpha}_t \\ \boldsymbol{\alpha}_t^{pri} &= softmax((\boldsymbol{U} \cdot \boldsymbol{d}_t) \circ \boldsymbol{q}^c) \\ \boldsymbol{c}_t^{pri} &= \boldsymbol{U} \cdot \boldsymbol{\alpha}_t^{pri} \end{aligned} \qquad \begin{bmatrix} \boldsymbol{d}_t; \boldsymbol{c}_t \\ \boldsymbol{d}_t; \boldsymbol{c}_t; \boldsymbol{c}_t^{pri} \end{bmatrix}$$

	recipes	publications	calendar	housing	average
seq2seq	58.80	36.64	34.52	36.50	41.62
coarse2fine	62.96	38.51	38.10	39.15	44.68
p-share	51.39	27.33	27.97	33.86	35.14
pre-train	59.72	40.99	43.45	42.32	46.62
adversarial	68.06	40.37	44.04	41.27	48.44
DAMP	72.22	45.96	39.88	43.39	50.36

Model	Sketch	LF_{oracle}	LF
DAMP	83.80	85.19	72.22
$DAMP_{-dis}$	82.87	85.19	70.83
$DAMP_{-att}$	81.94	82.41	68.06
coarse2fine	73.61	82.87	62.96

(a) coarse2fine

(b) DAMP - coarse

(c) DAMP - fine

(a) coarse2fine - fine

(b) DAMP - fine

Thank you!