Auxiliar 3

3D y Cámaras

CC3501 Modelación y Computación Gráfica para Ingenieros

Primavera 2023

Profesor: Iván Sipiran

Auxiliar: Ariel Riveros

Ya se han definido las transformaciones por modelo

Traslación, Rotación y Escala

¿Pero cómo mostrar objetos fuera del rango de vista sin tener que mover cada objeto?

Para hablar de la idea de cámara y escena 3D se necesitan Al menos 2 transformaciones más

Transformación de vista

Transformación de Proyección (Ortográfica y Perspectiva)

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha Lo mismo con la rotación

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha Lo mismo con la rotación

Proyecciones

Proyecciones

Rojo es el volumen que la cámara capta

Al realizar las transformaciones, el volumen Pasa a ser el cubo canónico

Entonces:

- 1) Aplicar transformación por objeto
- 2) Aplicar transformación de vista
- 3) Aplicar transformación de proyección

Cámaras

La idea de cámara entonces es la encapsulación de: view + projection matrix

Cámaras

Se puede definir como un objeto en el mundo con las siguientes propiedades:

Posición: Dónde está la cámara relativo al mundo

Foco: Dónde apunta la cámara en el mundo

<u>Tipo de Proyección</u>: Ortográfica o Perspectiva

Los frambuffers son colecciones de buffers que contienen los datos de la imagen a dibujar

Pueden provenir de distintos pipelines

Cada elemento del framebuffer contiene

- -Color Buffer: r, g, b y alpha (para transparencias) Describe el color de un fragmento
- -Depth Buffer: Valor entre 0 y 1

 Describe la "profundidad" del fragmento

Depth buffer permite dibujar el fragmento con mayor valor de profundidad, independiente del orden en que se entregó al pipeline. Los otros fragmentos se descartan

Ejercicio 1

- 1) Implementar una escena con objetos 3D -¿Qué le pasa a los objetos si no se activa el depth buffer?
- 2) Realizar transformaciones de vista y proyectiva
- 3) Implementar una cámara controlable por el usuario

Ahora que estamos en el mundo 3D, la modelación manual de objetos se vuelve tediosa

Cubo de lado 1 2 Atributos: Posición y Color 12 triángulos 6 colores por lado

Ahora que estamos en el mundo 3D, la modelación manual de objetos se vuelve tediosa

Perro en Elden Ring

- -Cientos de miles de triángulos
- -Al menos 3 texturas por modelo cada pixel de textura tiene 4 componentes: r,g,b y alpha
- -No solo contiene posición y color como atributos: Vector normal, tangente y bitangente (Se usan para calcular el comportamiento de luz en el modelo)

No se hace a mano

Para modelos más complejos se utiliza Software especializado

Estas herramientas ofrece exportar creaciones a archivos de distintos formatos

Para que otras aplicaciones las puedan leer y utilizar

¿Y cómo la importamos a nuestra aplicación?

¿Y cómo la importamos a nuestra aplicación?

Ejercicio 2

1) Importar un archivo de modelo 3D simple y cargarlo en la escena usando Trimesh

Consultas

CC3501 Tarea 1 - Primavera 2023

Esta tarea consiste en **modelar un vehículo** dentro de un **garaje** o **hangar**.

- El vehículo debe tener un chasis y al menos tres ruedas.
- El vehículo debe estar compuesto por partes. Cada parte debe tener su propia transformación, de modo que, por ejemplo, las ruedas puedan girar sobre sus propios ejes para dirigir al vehículo y para avanzar.
- El vehículo debe estar sobre una plataforma. La plataforma puede girar, o la cámara puede hacerlo.

Consultas

La evaluación consistirá en lo siguiente:

- Estructura del vehículo utilizando transformaciones (3 puntos)
- Estructura del hangar o entorno (1.5 puntos)
- Especificación de cámara y de perspectiva (1.5 puntos)

Notas:

- La tarea **debe** funcionar con el entorno del curso, particularmente, con <u>pyglet</u>.
- La tarea se ejecutará con el comando python tarea1.py en la raíz del repositorio del curso.
- Recuerde que si su tarea se cae al ser ejecutada entonces tendrá un 1. En particular, <u>si</u> <u>utiliza bibliotecas que no estén en el entorno del curso, su tarea no va a correr</u>.
- No hay una cantidad fija de elementos para el vehículo, pero **su chasis no puede ser un simple paralelepípedo**.
- Usted **puede usar modelos 3D externos**. Sin embargo, lo recomendable en ese caso es que usted diseñe esos modelos por su cuenta utilizando un programa como **Blender**. En las siguientes tareas se le pedirá que las distintas partes del vehículo puedan manipularse, por tanto, <u>si utiliza un modelo 3D que haya encontrado en la red que no tenga partes separables, tendrá que hacer todo de nuevo.</u>

Auxiliar 3

3D y Cámaras

CC3501 Modelación y Computación Gráfica para Ingenieros

Primavera 2023

Profesor: Iván Sipiran

Auxiliar: Ariel Riveros