Problem Set 5 Zack Garza

- ① We'll proceed by induction on $n = \deg f$. The n = 1 case follows immediately since $\deg f = 1 \Rightarrow f(x) = x \alpha \in K[x]$, so $\alpha \in K$ and $\alpha \in K[x] = 1$ which divides $\alpha \in K[x] = 1$.

 If now $\deg f = n$, we have $\alpha \in K[x] = \prod_{i=1}^{m} (x u_i)^{n_i}$ for some $m_i \ge 1$, $\alpha \in K[x] = 1$.
 - It now deg $t = n_1$ we have $t(x) = \prod_{i=1}^{n} (x u_i)$ for some $m_i \ge 1$, $1 \le l \le n$. Suppose f is irreducible over K
 - Then we can write $f(x) = (x-u_1)^m g(x)$ in $K(u_1)[x]$ where $\deg g \leq n-1$. So let F_g be its splitting field, so $[F_g: Kuu_1]$ divides (n-1)! by hypothesis. But $[K(u_1): K] = n$, so F_g is the splitting field of F_g and $[F_g: K] = [F_g: K(u_1)][K(u_1): K] = p \cdot n$ where p(n-1)!, so pn[n!]. Suppose F_g is reducible, then f(x) = g(x)h(x) where $\deg g = r$, $\deg h = s$, r+s = n, and in particular, $(w\log) \ r \leq s(n)$. So g splits in some $F_g \geq K$ where $[F_g: K]$ divides r!; so considering now $h(x) \in F_g[x]$, there is some splitting field $F_n \geq F_g$ where h splits as well with $[F_h: F_g] s!$. But then F_h is the splitting field for F(x), and $[F_h: K] = [F_h: F_g][F_g: K] := ab$ where a|s! & $b|r! \Rightarrow ab|r!s!$, but r!s! | (r+s)! = n! since $\frac{(r+s)!}{r!s!} = (r+s) \in \mathbb{N}$.
- a) If u is separable in K, then $F(x):=\min(u, K)$ has distinct roots in its splitting field L. But since $K \subseteq E$, we have $g(x):=\min(u, E) | F(x)$. But then g must also have distinct roots in L, otherwise F would have a multiple root, so u is separable over E.
 - b) Since F/K is separable & $E\subseteq F$, we immediately have E/K separable. To see that F/E is separable, we have: F/K is separable if F/K u is separable over F/K is separable if F/K u is separable over F/K (defin) if F/K is separable. (defin)

3 Defn: $F \ge K$ is <u>Galois</u> iff F is a separable splitting field, or $[K:F] = \{K:F\} = |Gal(K/F)|$.

1 \Rightarrow 2: Immediate from defn.

2=3: Since F splits some f(x) & F is separable, f(x) has distinct roots in F. But then any irreducible factor of f(x) can not have a multiple root, so they are all separable as well.

3 \Rightarrow 2: Let $1g_i(x)$ be the irreducible factors of f(x), then F is the splitting field of $p(x) := T_i Tg_i(x)$, which is separable. Now letting x be a root of p, we have F/K(x) as a splitting field of a separable polynomial (some q(x)|p(x)) and so F/K(x) is Galois & [F:K(x)] = F:K(x) = |Gal(F/K(x))|.

Since F is a splitting field of q(x), any $\sigma \in Gal(F/K)$ permutes the roots of q(x). Suppose there are d roots, which are distinct, then $[K(\alpha):K]=d$. Since $Gal(F/K) \xrightarrow{} X:=\{roots of q\}$ transitively, we have $|X|=|[Gal(F/K):Stab_X]|$ by Orbit-stabilizer for any $x \in X$. So pick $x=\alpha$, then

 $Stab_X = Gal(K(\alpha)/K) \implies [Gal(F/K): Gal(F/K(\alpha))] = |X| = d.$

But then

 $[F:K]=[F:K\omega][K(\omega):K]$

= {F: K(a)}[K(a):K] Since F/K(a) is Galois

= {F: K(a)}. d Since K(a)/K is splits a separable q(x)

= {F: K(a)} [Gal(F/K): Gal(F/K(a))] by Orbit-Stabilizer

= |Gal(F/K(a))|. [Gal(F/K). Gal(F/K(a))] Since F/K(a) is Galois

= |Gal(F/K)|, since HEG =>

So F/K is Galois. [8]

- a) Noting that g(x) f(x) and f splits in F, g must split in F as well. (Otherwise, g would have an irreducible nonlinear factor in F and thus f would as well.)
- b) The irreducible factors of g are separable in E and F/E is a splitting field for g, so by (3.3) above, F/E is Galois.
- c) $K \leq E \Rightarrow \text{Aut}(F/E) \subseteq \text{Aut}(F/K)$, and to see $\text{Aut}(F/K) \subseteq \text{Aut}(F/E)$, letting $\sigma \in \text{Aut}(F/K)$ we must have $\sigma \in \text{Sym}(\{u_1, \cdots, u_n\})$ and so $\sigma(g(x)) = g(\sigma(x)) = T(\sigma(x) u_i) = \sum v_i \sigma(x)^i$ $\sigma(\sum_{i=1}^{n} v_i x^i)$

 $\sum_{\sigma(v_i)\sigma(x)}^{\eta(v_i)\sigma(x)} \int_{\mathbb{R}^n} \int_{$

