Planar Graphs

Dr. Danny Nguyen Transcribed by Thomas Cohn

9/25/18

Defn: G = (V, E) is <u>planar</u> if there is a drawing of the graph in the 2D plane s.t. no 2 edges cross each other.

Ex: V = [n] and $E = \emptyset$ is planar.

Ex: C_n and P_n are planar.

Ex: K_1 , K_2 , and K_3 are planar.

Ex: K_4 is planar. The normal way we would draw it does not work, but if we draw it like a tetrahedron, it does.

Ex: K_5 is not planar.

Ex: The Petersen graph is not planar. We can see this by contracting the edge connecting the outer corners to each of the corners of the inner shape, leaving us with K_5 .

Defn: Consider a drawing of a planar graph G in \mathbb{R}^2 . Remove the edges and vertices in the drawing. Then the connected components of $\mathbb{R}^2 \setminus (V \cup E)$ are called the <u>faces</u> of the drawing. We denote the number of faces as f.

Thm: (Euler) If G is a connected planar graph, then in any planar drawing, we have v-e+f=2. Proof: If x is a leaf in G, delete x and the attached edge. Then v'=v-1, e'=e-1, and f'=f. So v'-e'+f'=(v-1)-(e-1)+f=2. Assume there are no leaves. Then $\forall x\in V$, $\deg\left(\left(\right)x\right)\geq 2$. So it is not a tree, so \exists a cycle C in our graph. Assume WOLOG it is the smallest cycle – that is, there is no smaller cycle contained inside it. Delete an arbitrary edge d in the cycle. Then v'=v, e'=e-1, and f'=f-1. So v'-e'+f'=v-(e-1)+(f-1)=2. Therefore, by induction, \Box

Prop: If G is planar, then $2e = \sum_{\varphi \in \{faces\}} |\{\text{edges bounding } \varphi\}|$. This works because every edge is incident to exactly two faces (note that these two faces may actually be the same face).

Ex: Prove that K_5 is not planar. Proof by contradiction: assume K_5 is planar. We have v=5 and e=10, so f=7. But by our proposition, we have $2e=20=\sum_{\varphi\in\{faces\}}|\{\text{edges bounding }\varphi\}|\geq\sum_{\varphi}e=ef=21.$ So $20\geq21.$ Oops! \square

Ex: $K_{3,3}$ is not planar. Proof by contradiction: Assume $K_{3,3}$ is planar. We have v = 6, e = 9, so f = 5. Since $K_{3,3}$ is a bipartite graph, every cycle must have an even number of edges. So every face must have at least 4 edges. But by our proposition, we have $2e = 18 = \sum_{\varphi \in \{faces\}} |\{edges \text{ bounding } \varphi\}| \ge \sum_{\varphi} 4 = 4f = 20$. So $18 \geq 21$. Oops! \square

Question: How many colors do we need to properly color a planar graph? We can observe that 4 is enough.

Thm: 4 colors is enough to properly color any planar graph.

Proof: Way too hard for class.

Instead, we will prove two claims.

Claim 1: Every planar graph is 6-colorable.

Claim 2: Every planar graph is 5-colorable.

Thm: Claim 1: Every planar graph is 6-colorable.

Proof: Observe that in any simple planar graph, $\exists x \in V \text{ s.t. } \deg(x) \leq 5$. To prove this observation to be true, we by contradiction assume $\forall x_i \in V \deg(x_i) \geq 6$.

Then $2e \ge \sum_{x_i \in V} 6 = 6v \to e \ge 3v$. And $2e \ge \sum_{\varphi} 3 = 3f \to e \ge \frac{3}{2}f$.

So $\frac{1}{3}e \ge v$ and $\frac{2}{3}e \ge f$. So $-e + v + f \le 0$. Oops! Therefore, $\exists x \in V$ s.t. $\deg(x) \ge 5$.

Delete x. Then we now have G' = G - x. If G' is 6 colorable, then so is G. G' is still planar, so recurse. \square

Remark: The planar graph of the icosahedron has deg(v) = 5 for all $v \in V$.

Thm: Claim 2: Every planar graph is 5-colorable.

Proof: WOLOG, add edges to G until all faces are triangles (except the big outer face). We still have G planar. Adding edges cannot decrease χ_G , so it is enough to show that $\chi_{G'} \leq 5$. We will use induction.

Let $V = V_b \sqcup V_i$, with V_b boundary vertexes and V_i interior vertexes.

For any $x \in V_i$, the set of possible colors $C(x) = \{c_1, \ldots, c_5\}$.

For any $x \in V_b$, the set of possible colors C(x) follows |C(x)| = 3.

For some adjacent $x_1, x_2 \in V_b$, we fix $C(x_1) = \{c_1\}$ and $C(x_2) = \{c_2\}$.

We claim $\exists f: V \to \{c_1, \ldots, c_5\}$ s.t. $f(x_i) \in C(x_i)$ and x_i, x_j adjacent $\to f(x_i) \neq f(x_j)$.

If $v \leq 3$ (the base case), all is good!

Case 1: $\exists x_i, x_j \in V^b$ s.t. x_j and x_i are non-adjacent on the boundary, but adjacent in the graph. Then $G = G_1 \cup G_2$ with $G_1 \cap G_2 = \{x_i, x_j\}$. So $\forall (x_1, x_2) \neq (x_i, x_j)$ we have $x_1, x_2 \in G_1$ or $x_1, x_2 \in G_2$. By induction, G_1 has a coloring. In that coloring, assume $f(x_i) = c$ and $f(x_i) = c'$. Then let x_i, x_j be two special boundary vertices for G_2 , with $C(x_i) = \{c\}$ and $C(x_j) = \{c'\}$. So by induction, G_2 has a coloring. So we can combine G_1 and G_2 to color G.

Case 2: No such x_i, x_j exist. Then look at x_2 (with preceding and succeeding vertexes x_1 and x_3 on the boundary), and u_1, \ldots, u_k interior adjacent points.

We ran out of time in class here. Danny will be sending out the rest of the proof.