Due Time: 2020.11.30 8:00AM

1. If $2 \le p' \le p$ and $2 \le q' \le q$, then prove that $R(p', q') \le R(p, q)$. Also, prove that equality holds if and only if p' = p and q' = q.

Solution: (Assume the two colors are blue and red.) Known from the definition of R(p,q) = r, there exists a 2-coloring of a complete graph K_{r-1} satisfying that there is no red K_p or blue K_q . Now exchange the colors in the coloring (,which is to turn blue into red and to turn red into blue). We would produce another 2-coloring of K_{r-1} which does not contain blue K_p or red K_q . Thus, according to the definition, $R(q,p) \ge r = R(p,q)$. Similarly, we can get $R(p,q) \ge R(q,p)$.

2. Use Theorem 1.64 to prove that R(3,5) = 14.

Solution: Using Theorem 1.64,

$$R(3,5) \le R(2,5) + R(3,4) \le 5 + (4^2 + 3)/2 \le 14$$
 (1)

Now we need to prove that there is a 2-coloring of K_{13} that does not contain monochromatic K_3 or K_5 . Figure 1 is an example.

Figure 1: A 2-coloring of K_{13}

3. Use Theorem 1.64 to prove that R(4,4) = 18.

Solution: Using Theorem 1.64,

$$R(4,4) \le R(3,4) + R(3,4) \le 2 * |(4^2+3)/2| \le 18$$
 (2)

Now we need to prove that there is a 2-coloring of K_{17} that does not contain monochromatic K_4 . Figure 2 is an example.

Figure 2: A 2-coloring of K_{17}

4. Find $R(P_3, P_3)$.

Solution: (!!!The definition of P_n here is a path containing n edges.)

We can construct a 2-coloring of K_4 that all of the edges except the edges connected to one specific vertex are red, and the remaining edges are blue. Then there is no monochromatic P_3 .

Claim: $R(P_3, P_3) = 5$

Now consider a two coloring of the edges of K_5 . There is a color used at least twice at vertex Red. So assume that edges (1,2),(1,3) are Red. If (2,4) is Red then (4,2,1,3) is Red and if (2,5) is Red then (5,2,1,3) is Red. So we can assume that (2,4),(2,5) are Blue. But then if (3,4) is Red we have (4,3,1,2) is Red and if (3,4) is Blue then (3,4,2,5) is Blue.

5. Find $R(P_3, C_4)$.

Solution:

First of all, based on Theorem 1.68 (Harris)

$$R(P_3, C_4) \ge (2-1)(4-1) + 1 = 4$$
 (3)

We can construct a 2-coloring of K_4 that all of the edges except the edges connected to one specific vertex are red, and the remaining edges are blue. Then there is no P_3 and C_4 .

Then we claim $R(P_3, C_4) = 5$. Now consider a two coloring of the edge of K5. We can assume from r(P3, P3) = 5 that there is a Blue P3, say (1,2,3,4) and that (1,4) is Red. Consider the edges (2,5),(4,5). If they are both Red then (1,4,5,2) is Red. If they are both Blue then (2,3,4,5,2) is Blue. A similar argument deals with the case where (1,5) and (3,5) have the same color. Assume next that (4,5) is Blue and (2,5) is Red. If (1,5) is Red then (2,5,1,4) is Red. So assume that (1,5) is Blue and (3,5) is Red. If now (1,3) is Red then so is (4,1,3,5) and if (1,3) is Blue then so is (1,3,4,5,1). Finally, suppose that (4,5) is Red and (2,5) is Blue. If (3,5) is Red then (3,5,4,1) is Red. So assume that (3,5) is Blue and (1,5) is Red. If (1,3) is Red then so is (3,1,5,4) and if (1,3) is Blue then so is (1,3,5,2,1).

6. Find $R(C_4, C_4)$.

Solution: Using Theorem 1.71 (Harris),

$$R(C_4, C_4) \ge R(2K_2, 2K_2) = 5 \tag{4}$$

As K_5 can be decomposed into 2 C_5 , $R(C_4, C_4) \ge 6$. Now consider a two coloring of the edge of K6 with all the vertices labeled as integers from 1 to 6. Consider the edges incident with 1. At least 3 must be the same color. Assume therefore that the edges (1,2),(1,3),(1,4) are all Red. It follows that neither of vertices 5 and 6 can have 2 Red edges joining them to 1,2,3. Suppose that edges (2,5),(3,5) are Blue. Then at most one of (6,2),(6,3) can be Blue. Otherwise we have the Blue (2,5,3,6,2). So assume that (3,6),(4,6) are Blue and (2,6),(4,5) are Red. Suppose now that (5,6) is Blue. If (2,3) is Blue then so is (5,6,3,2,5). If (3,4) is Blue then so is (5,6,4,3,5). But now if (2,3) and (3,4) are Red then (1,2,3,4,1) is Red. So we can assume that (5,6) is Red. If (2,4) is Red then (2,4,6,5,2) is Red. Suppose then that (2,4) Blue. If for example (2,3) is Blue then so is (2,3,6,4,2). So assume now that (2,3) and (3,4) both Red and then (1,2,3,4,1) is Red.

7. Prove that $R(K_{1,3}, K_{1,3}) = 6$.

Solution: Using the theorem 1.70 (Harris), with $K_{1,3}$ considered as a tree of order 4, we can know

$$R(K_{1,3}, K_{1,3}) = 4 + 3 - 1 = 6 (5)$$

8. Prove that $R(2K_3, K_3) = 8$.

Solution: First Figure 3 shows that $R(2K_3, K_3) > 7$.

Figure 3: .

We need to find two disjointed red K_3 or a blue K_3 in any 2-coloring of K_8 . Since K_8 would always contain a monochromatic triangle R(3,3)=6, if the triangle is blue, then the 2-coloring satisfies the condition. If the triangle is red, we need to find another red trianle or blue triangle. Consider K_6 which is a subgraph of K_8 and does not contain the triangle we mentioned. Then there must be a blue or red triangle in this K_6 . If the trianle happens to be blue, than we find a blue triangle. If the triangle is red, and the red triangle does not share a vertex with the former triangle, then we find two disjointed red trianles. The remaining part would be too difficult. See proof in Page9-11 of https://www.ams.org/journals/tran/1975-209-00/S0002-9947-1975-0409255-0/S0002-9947-1975-0409255-0.pdf.

9. Prove that any 2-coloring of K_6 produces two monochromatic K_3 and a monochromatic C_4 .

Solution: C_4 is proved in Problem 6. The remaining part of the proof is written in another file.