MACHINE LEARNING COMS 4771, HOMEWORK 4

Name: Yang Bai UNI: yb2356

Problem 1 (10 points): EM Derivation

E-step.

According to Bayesian rules,

$$\tau_{nj} = p(z_n = j | x_n, \theta) = \frac{p(x_n | z_n = j, \theta) p(z_n = j | \theta)}{p(x_n | \theta)}$$
$$\tau_{nj} = \frac{\pi_j \prod_{i=1}^M \mu_j(i)^{x_n(i)}}{\sum_{l=1}^K \pi_l \prod_{i=1}^M \mu_l(i)^{x_n(i)}}$$

M-step.

Set
$$\theta = \underset{\theta}{\operatorname{arg max}} \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \frac{p(x_n, z_n = j | \theta)}{\tau_{nj}}$$

$$\sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \frac{p(x_n, z_n = j | \theta)}{\tau_{nj}}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \tau_{nj}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - const$$

There are some restrictions:

$$\sum_{m=1}^{M} \mu_{j}(m) = 1, \quad \sum_{i=1}^{K} \pi_{j} = 1, \quad \sum_{i=1}^{M} x(i) = 1$$

Using Lagrange method:

$$\begin{split} & let \ Q(\theta) = \\ & \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{i=1}^{M} \mu_j(i) - 1 \right) - \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right) \\ & = \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \ \pi_j \prod_{i=1}^{M} \mu_j(i)^{x_n(i)} \ - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{i=1}^{M} \mu_j(i) - 1 \right) - \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right) \end{split}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \left[\log(\pi_j) + \sum_{i=1}^{M} x_n(i) \log \left(\mu_j(i) \right) \right] - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{i=1}^{M} \mu_j(i) - 1 \right) - \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right)$$

$$\begin{split} \frac{\partial Q(\theta)}{\partial \mu_{j}(i)} &= \frac{\sum_{n=1}^{N} \tau_{nj} \, x_{n}(i)}{\mu_{j}(i)} - \lambda_{1j} = 0 \\ &\Rightarrow \mu_{j}(i) = \frac{\sum_{n=1}^{N} \tau_{nj} \, x_{n}(i)}{\lambda_{1j}} \\ &\sum_{i=1}^{M} \mu_{j}(i) = 1, so \ \frac{\sum_{i=1}^{M} \sum_{n=1}^{N} \tau_{nj} \, x_{n}(i)}{\lambda_{1j}} = 1, \quad \lambda_{1j} = \sum_{i=1}^{M} \sum_{n=1}^{N} \tau_{nj} \, x_{n}(i) \end{split}$$

so
$$\mu_j(i)^{(t+1)} = \frac{\sum_{n=1}^N \tau_{nj}^{(t)} x_n(i)}{\sum_{n=1}^N \tau_{nj}^{(t)}}$$

$$\frac{\partial Q(\theta)}{\partial \pi_j} = \frac{\sum_{n=1}^N \tau_{nj}}{\pi_j} - \lambda_2 = 0$$

$$\pi_j = \frac{\sum_{n=1}^N \tau_{nj}}{\lambda_2}$$

$$\sum_{j=1}^K \pi_j = 1, \text{ so } \sum_{j=1}^K \frac{\sum_{n=1}^N \tau_{nj}}{\lambda_2} = 1, \qquad \lambda_2 = \sum_{j=1}^K \sum_{n=1}^N \tau_{nj}$$

so
$$\pi_j^{(t+1)} = \frac{\sum_{n=1}^N \tau_{nj}^{(t)}}{\sum_{n=1}^N \sum_{j=1}^K \tau_{nj}^{(t)}} = \frac{\sum_{n=1}^N \tau_{nj}^{(t)}}{\sum_{n=1}^N 1} = \frac{\sum_{n=1}^N \tau_{nj}^{(t)}}{N}$$

Problem 2 (20 points): EM for Bernoulli Mixtures

Part A: The result for dataA

Result for dataB:

Part B:

In this problem, X is a vector of 50 dimension. Xn represents the n th data, and Xn(i) represents the i th dimension of n th data. All Xn(i) (i=1,2,...,50) are iid

Bernoulli
$$(\mu_n)$$
. $p(X_n|z_n=j,\theta) = \prod_{i=1}^{50} \mu_j^{X_n(i)} (1-\mu_j)^{1-X_n(i)}$

Treat Bernoulli distribution as multinomial distribution. So $p(X_n|z_n=j,\theta)=$

$$\prod_{i=1}^{50} \prod_{m=1}^2 \ \mu_j(m)^{X_n(i)(m)}$$
, where $\mu_j(1) = \mu_j, X_n(i)(1) = X_n(i)$ ($m =$

1) and
$$\mu_j(2) = 1 - \mu_j$$
, $X_n(i)(2) = 1 - X_n(i)(m = 2)$.

E-step.

According to Bayesian rules,

$$\tau_{nj} = p(z_n = j | x_n, \theta) = \frac{p(x_n | z_n = j, \theta) p(z_n = j | \theta)}{p(x_n | \theta)}$$

$$\tau_{nj} = \frac{\pi_j \prod_{i=1}^{50} \mu_j^{x_n(i)} (1 - \mu_j)^{1 - x_n(i)}}{\sum_{l=1}^{K} \pi_l \prod_{i=1}^{50} \mu_l^{x_n(i)} (1 - \mu_l)^{1 - x_n(i)}}$$

$$\tau_{nj} = \frac{\pi_j \mu_j^{\sum_{i=1}^{50} x_n(i)} (1 - \mu_j)^{\sum_{i=1}^{50} (1 - x_n(i))}}{\sum_{l=1}^{K} \pi_l \mu_j^{\sum_{i=1}^{50} x_n(i)} (1 - \mu_j)^{\sum_{i=1}^{50} (1 - x_n(i))}}$$

M-step.

Set
$$\theta = \frac{\arg \max}{\theta} \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \frac{p(x_n, z_n = j | \theta)}{\tau_{nj}}$$

$$\sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \frac{p(x_n, z_n = j | \theta)}{\tau_{nj}}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \tau_{nj}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - const$$

There are some restrictions:

$$\sum_{m=1}^{2} \mu_{j}(m) = 1, \quad \sum_{j=1}^{K} \pi_{j} = 1, \quad \sum_{m=1}^{2} Xn(m) = 1$$

Using Lagrange method:

$$\begin{split} let \ Q(\theta) &= \\ &\sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log p(x_n, z_n = j | \theta) - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{i=1}^{M} \mu_j(i) - 1 \right) - \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right) \\ &= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \log \left[\pi_j \prod_{i=1}^{50} \prod_{m=1}^{2} \mu_j(m)^{X_n(i)(m)} \right] - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{m=1}^{M} \mu_j(m) - 1 \right) \\ &- \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right) \end{split}$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj} \left[\log(\pi_j) + \sum_{i=1}^{50} \sum_{m=1}^{M} x_n(i)(m) \log \left(\mu_j(m) \right) \right]$$

$$- \lambda_2 \left(\sum_{j=1}^{K} \pi_j - 1 \right) - \sum_{j=1}^{K} \lambda_{1j} \left(\sum_{m=1}^{M} \mu_j(m) - 1 \right)$$

$$\frac{\partial Q(\theta)}{\partial \mu_{j}(m)} = \frac{\sum_{n=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)}{\mu_{j}(m)} - \lambda_{1j} = 0$$

$$\Rightarrow \mu_{j}(m) = \frac{\sum_{n=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)}{\lambda_{1j}}$$

$$\sum_{i=1}^{M} \mu_{j}(i) = 1, \quad so \quad \frac{\sum_{i=1}^{M} \sum_{n=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)}{\lambda_{1j}} = 1,$$

$$\lambda_{1j} = \sum_{i=1}^{M} \sum_{n=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)$$

$$\mu_{j}(m)^{(t+1)} = \frac{\sum_{i=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)}{\sum_{i=1}^{M} \sum_{n=1}^{N} \tau_{nj} \sum_{i=1}^{50} x_{n}(i)(m)}$$

because $\sum_{m=1}^{M} x_n(i)(m) = 1$, so

$$\mu_j(m)^{(t+1)} = \frac{\sum_{n=1}^N \tau_{nj} \sum_{i=1}^{50} x_n(i)(m)}{50 \sum_{n=1}^N \tau_{nj}}$$

 $\pi_i^{(t+1)}$ is the same as problem 1.

$$\pi_{j}^{(t+1)} = \frac{\sum_{n=1}^{N} \tau_{nj}^{(t)}}{\sum_{n=1}^{N} \sum_{j=1}^{K} \tau_{nj}^{(t)}} = \frac{\sum_{n=1}^{N} \tau_{nj}^{(t)}}{\sum_{n=1}^{N} 1} = \frac{\sum_{n=1}^{N} \tau_{nj}^{(t)}}{N}$$

Cross validation:

K = 3 is the best fit.

The convergence process of likelihood of different K.

Log likelihood:

1) Training

	, 1148									
	K=1		K=2		K=3		K=4		K=5	
	Train	Test								
1	-18823	-15224	-15124	-15065	-14632	-14551	-14632	-14550	-14632	-14550
2	-14565	-17753	-15106	-15120	-14584	-14598	-14583	-14599	-14584	-14598
3	-19838	-19605	-15041	-15131	-14563	-14619	-14563	-14618	-14563	-14619
4	-19778	-19654	-15131	-15047	-14622	-14565	-14622	-14565	-14622	-14565
5	-20636	-19323	-15161	-15012	-14647	-14534	-14647	-14534	-14646	-14535
6	-17486	-14770	-15134	-15039	-14660	-14522	-14660	-14522	-14660	-14522
7	-19221	-20749	-15068	-15108	-14537	-14646	-14537	-14646	-14537	-14646
8	-17422	-14797	-15193	-14982	-14751	-14432	-14751	-14432	-14750	-14434
9	-14569	-17666	-14981	-15191	-14543	-14641	-14542	-14642	-14543	-14641

10	-20466	-19372	-15122	-15059	-14669	-14513	-14669	-14513	-14669	-14513
mean	-18280	-17891	-15106	-15075	-14621	-14562	-14621	-14562	-14621	-14562
std	22.39	22.34	61.33	62.04	66.12	66.29	66.26	66.49	65.87	65.99

Mean μ when K=3: 0.203 0.504 0.801

Standard deviation of μ when K=3

0.0029 0.0047 0.0027

Mean π when K=3:

Standard deviation of π when K=3

0.0128 0.0099 0.0123

Here is a result table of one random initialization.

	$\pi 1$	$\pi 2$	$\pi 3$	$\pi 4$	π 5
K=1	1				
K=2	0.580	0.420			
K=3	0.316	0.359	0.325		
K=4	0.359	0.316	0.032	0.293	
K=5	0.316	0.325	0.087	0.128	0.144

	μ1	μ2	μ3	μ4	μ5
K=1	0.105				
K=2	0.679	0.233			
K=3	<mark>0.509</mark>	0.203	<mark>0.794</mark>		
K=4	0.203	0.509	0.797	0.793	
K=5	0.509	0.794	0.203	0.205	0.203

Problem 3 (10 points): K-Means for image segmentation

K=2

 $\mu =$

 0.2760
 0.2654
 0.1632

 0.7275
 0.8108
 0.8699

K=3

	_
μ	=

0.4672	0.4272	0.3521
0.1957	0.2010	0.0925
0.7469	0.8436	0.9104

K=4

$\mu =$		
0.4654	0.4128	0.3198
0.1957	0.2010	0.0925
0.9135	0.9556	0.9712
0.5375	0.6867	0.8100

K=5

 $\mu =$

0.9091	0.9481	0.9604
0.5089	0.6940	0.8367
0.3936	0.4294	0.3967
0.6045	0.3298	0.1795
0.1738	0.2070	0.0936

K=6

 $\mu =$

0.6594	0.5483	0.4825
0.1726	0.2074	0.0925
0.6264	0.7839	0.8948
0.9245	0.9634	0.9801
0.3943	0.6507	0.8275
0.4366	0.3469	0.2681

As we randomly initialize the K means, we might have some numerical inconsistencies. For example, sometimes one of the K different values of μ becomes NaN, because there is no data point near this μ and z(i) becomes 0. Then μ_i becomes NaN.

$$ec{\mu}_i = \sum_{n=1}^N ec{x}_n ec{z}_n \left(i\right) / \sum_{n=1}^N ec{z}_n \left(i\right)$$

This problem appears when some of the initialized μ are very far away from data points so no point is classified into their clusters. To avoid this mistake, we can initialize μ by choosing K points randomly from the dataset, so there is at least one point in every cluster(the μ_i itself). Under this circumstance, no z(i) will become zero and no μ_i will become NaN.

Problem 4 (10 points): Jensen's inequality

a) The arithmetic mean of non-negative numbers is at least their geometric mean.

arithmetic mean :
$$f_1(x) = \sum_{i=1}^{N} p_i x_i$$

geometric mean: $f_2(x) = \prod_{i=1}^{N} x_i^{p_i}$

- (1) When there is at least one xi that equals zero: arithmetic mean is the sum of xi so it is non-negative; geometric mean is the multiplication of xi so it equals zero. Thus, the arithmetic mean of non-negative numbers is at least their geometric mean.
- (2) When all xi are positive:

$$\ln f_1(x) = \ln \left(\sum_{i=1}^N p_i x_i \right)$$

$$\ln f_2(x) = \sum_{i=1}^{N} p_i \ln(x_i)$$

Because ln(x) is concave,

$$\ln\left(\sum_{i=1}^{N} p_i x_i\right) \ge \sum_{i=1}^{N} p_i \ln(x_i)$$

$$\ln f_1(x) \ge \ln f_2(x)$$

As ln(x) monotonically increases when x>0,

$$f_1(x) \ge f_2(x)$$

which means the arithmetic mean of non-negative numbers is at least their geometric mean.

b)

$$LHS = \sum_{i=1}^{m} \frac{\alpha_i \exp(\theta^t f_i)}{\alpha_i} = \sum_{i=1}^{m} \alpha_i \exp(\theta^t f_i - \ln \alpha_i)$$

 e^x is convex, so

$$\sum_{i=1}^{m} p_i \exp(x_i) \ge \exp\left(\sum_{i=1}^{m} p_i x_i\right) \quad when \sum_{i=1}^{m} p_i = 1$$

$$we \, know \, that \, \sum_{i=1}^{m} \alpha_i = 1, so$$

$$LHS = \sum_{i=1}^{m} \alpha_i \exp(\theta^t f_i - \ln \alpha_i)$$

$$\ge \exp\left(\sum_{i=1}^{m} \alpha_i (\theta^t f_i - \ln \alpha_i)\right)$$

$$= \exp\left(\theta^t \sum_{i=1}^{m} \alpha_i f_i - \sum_{i=1}^{m} \alpha_i \ln \alpha_i\right) = RHS$$

Appendix

code about K means clustering:

```
% K means clastering
% end loop when no data is classified to a different cluster from
last loop
while (updateNum~=0)
 for i=1:K
  miu2= repmat(miu(i,:),40000,1);
  diff(i,:)=sum( ((im 1D-miu2).^2)');
 end
z=z_new;
z new=zeros(K,40000);
z_new(find((diff-repmat(min(diff),K,1))==0))=1;
 for i=1:K
   new_miu(i,:) = sum(im_1D.*(repmat(z_new(i,:),3,1)'));
new_miu=new_miu./repmat(sum(z_new')',1,3);
updateNum=nnz(z new-z);
miu=new_miu;
iteration=iteration+1;
end
```

code for EM algorithm for problem 2 part B:

```
for t=1:Nloop
XX= sum(XTrain');
% E step
Tnj = repmat(pai_old, 1, N).*(repmat(miu_old,1,N).^repmat(XX,K,1)).*(repmat(1.-miu_old,1,N).^repmat(50-XX,K,1));
T = Tnj./ repmat(sum(Tnj),K,1);
% M step
miu_new = sum( T'.* repmat(XX', 1,K))./sum(T')./50;
pai_new= sum(T')./N;
% update parameters
miu_old=miu_new';
pai_old = pai_new';
```