CSC373S: Algorithm Design, Analysis & Complexity

Lecture 15

Wednesday February 8, 2017

based on notes by Denis Pankratov

Graph Algorithms (continued)

Single-source Shortest Path

Input: G = (V, E) (directed or undirected)

 $c: E \to \mathbb{R}$ so that there are no negative weight cycles

 $S \in V$ - source

Output: dist[] so that $\forall u \in V, dist[u] = d[s, u]$

Special Case:

c > 0

Dijkstra solves this case in $\mathcal{O}((|V| + |E|) \log |V|)$ using binary heap If $\exists e \in E, c(e) < 0 \rightarrow \text{Dijkstra}$ fails

Figure 1: $dist[u] = 3 \neq d(s, v) = 4 - 3 = 1$

Key operation in Dijkstra:

```
1 Update(e = (u, v))

2 if dist[v] > dist[u] + c(u, v)

3 dist[v] = dist[u] + c(u, v)

4 prev[v] = u
```

Let us assume that the following invariant holds $dist[u] \geq d(s, u)$.

- 1. This operation is safe, *i.e.* we can perform this operation as many times as we want w/o violatin the invariant. Moreover, if dist[u] = d(s, u), then dist[] won't be updated.
- 2. If $s = v_0, v_1, \dots, v_k = u$ is a shortest path from s to u then the sequence of updates $update(v_{i-1}, v_i)$ for $i \in \{1, \dots, k\}$ results in dist[u] = d(s, u).

Problem: we don't know intermediate vertices.

We know that shortest path can be taken to be simple $\Rightarrow k \leq |V| - 1$ \Rightarrow update <u>all</u> edges |V| times

This algorithm is $\underline{\text{Bellman-Ford}}$.

```
\mathbf{def} Bellman-Ford (G, c, s):
1
      init arrays dist[], prev[], both of size |V|
2
3
4
     for v in V:
        dist[v] = float('inf')
5
6
        prev[v] = None
7
     dist[s] = 0
8
9
10
     for k=1 to |V|:
11
        for e in E:
12
          update(e)
13
14
     return dist[]
```

<u>Runtime:</u> $\mathcal{O}(1)$ per update, number of updates is $|V||E| \Rightarrow$ overall $\mathcal{O}(|V||E|)$

Can be modified to detect negative weight cycles reachable from s.

- 1. Run Bellman-Ford as described
- 2. Run one more iteration of the outer for loop (k)

<u>Claim:</u> Any dist[] value changes in this last iteration $\Leftrightarrow \exists$ negative weight cycle reachable from s

Proof: \Rightarrow Clear, follows from correctness.

 \Leftarrow Assume that $v_0, v_1, \dots, v_k = v_0$ is a negative weight cycle

Assume from contradiction that none dist[] have changed

 $\Rightarrow dist[v_i] \leq dist[v_{i-1}] + c(v_{i-1}, v_1)$ (update for (v_{i-1}, v_i) failed)

 $\forall i \in \{1, .., k\}$

A) $\sum_{i=1}^{k} dist[v_i] \leq B$) $\sum_{i=1}^{k} dist[v_{i-1}] + Cost of the cycle) <math>\sum_{i=1}^{k} c(v_{i-1}, v_i)$

A = B because $v_k = v_0$

Cancel A with B gets cost of cycle ≥ 0

<u>Exercise:</u> Restate *Bellman-Ford* as a *dynamic programming algorithm*. Semantic array, computational array, etc.

All-pairs shortest paths

Input: G = (V, E) (directed or undirected)

 $C: E \to \mathbb{R}$ assume no negative weight cycles

Output: dist[][] so that $\forall u, v \in V, dist[u][v] = d(u, v)$

Approaches

- 1. Run Bellman-Ford |V| times, runtime $\mathcal{O}(|V|^2|E|)$
- 2. Use ideas similar to <u>matrix multiplication</u> + add repeated squaring $\Rightarrow \mathcal{O}(|V|^3 \log |V|)$ (see CLRS)

Floyd-Warshall Dynamic Programming Algorithm

Let
$$V = \{v_1, v_2, \dots, v_n\} (n = |V|)$$

 $Semantic\ Array$

 $C[u, v, k] = \text{length of shortest path from } u \text{ to } v \text{ using only nodes from } \{v_1, \dots, v_k\} \text{ as intermediate nodes } (note: V \to u, V \to v, [n] \to k).$

 $Computational\ Array$

Base case:

$$k = 0, C[u, v, 0] = \begin{cases} c(u, v), & \text{if } (u, v) \in E \\ \infty, & \text{otherwise} \end{cases}$$

$$C[u, v, k] = \min\{C[u, v, k - 1], C[u, v_k, k - 1] + C[v_k, v, k - 1]\}$$

Equivalence: Shortest path from u to v using intermediate nodes $\{v_1, \ldots, v_k\}$ uses v_k & then u to v_k and v_k to v are shortest paths using only intermediate nodes $\{v_1, \ldots, v_{k-1}\}$ doesn't use v_k

Algorithm:

```
def Floyd-Warshall (G,C):
     \# (|V| + 1) is O-based
     init C - array of size |V| * |V| * (|V| + 1)
3
4
5
     for u in V:
6
       for v in V:
7
          if (u, v) in E:
8
           C[u, v, 0] = c(u, v)
9
            C[u, v, 0] = float('inf')
10
11
12
     for k = 1 to |V|:
13
       for u in V:
          for v in V:
14
         C[u, v, k] = \min(C[u, v, k-1], C[u, v_k, k-1])
15
                            + C[v_{-k}, v, k -1])
16
17
     # return slice of array
18
     return C[.,.,|V|]
```

Runtime: $\mathcal{O}(|V|^3)$ Memory Use: $\Theta(|V|^3)$

Excercise: modify the algoritm to use $\mathcal{O}(|V|^2)$ memory