MIAT-C3X-EVB

軟硬體實驗模組與開發流程介紹

support.wuyang@gmail.com

語陽科技有限公司 WU-YANG Technology Co., Ltd

Declared Version

Training Only		
Declare		
Document Version	1.00	
Release Date	2010.07	
Document Title	MIAT-C3X-EVB軟硬體實驗模組與開發流程介紹	
Exercise Time		
Platform	■ MIAT_C3X ■ MIAT_IOB	
Peripheral	Key Switch, LED	
Author	■ WU-YANG Technology Co., Ltd.	

Outline

- □ MIAT_C3X實驗板
 - 主要功能介紹
 - 硬體環境設定
- MIAT_IOB實驗板
 - 各個週邊模組功能介紹
- □ 開發流程介紹
 - 以基本I/O驅動為例
 - 硬體電路配置
 - Quartus ||軟體基本使用方法介紹
- □ 開發流程練習

- FPGA編號Altera Cyclone III EP3C25
 - 24,624 Logic Elements
 - 594(66x9) Kbits Memory
 - 66 Multipliers
 - 4 PLLs
 - 20 Global Clock Networks
 - 156 I/O Pin Counts

Туре	I/O Standard
Single-Ended I/O	LVTTL LVCMOS SSTL HSTL PCI PCI-X
Differential I/O	SSTL HSTL LVPECL BLVDS LVDS Mini-LVDS RSDS PPDS

MIAT_C3X正面

Note to Table 1-6:

- (1) PCI Express and Serial Rapid I/O can be supported using an external PHY device.

 Support Memory Types
 - DDR, DDR2, SDRAM
 - Data Rates up to 400 Mbps
 - **FBGA 256**

□ FPGA內部可合成記憶體之規格

Feature	M9K Blocks	
Maximum performance	315 MHz	
Total RAM bits (including parity bits)	9,216	
Configurations (depth × width)	8192 × 1	
FRANCI DE TRADOSE DE LA SENTE SE SOCIAL. DE LA PRESENTA	4096 × 2	
	2048 × 4	
	1024 × 8	
	1024 × 9	
	512 × 16	
	512 × 18	
	256 × 32	
	256 × 36	
Parity bits	~	
Byte enable	~	
Packed mode	✓	
Address clock enable	~	
Single-port mode	~	
Simple dual-port mode	~	
True dual-port mode	~	

□ FPGA內部可合成記憶體之規格

Feature	M9K Blocks
Embedded shift register mode (1)	~
ROM mode	~
FIFO buffer (1)	✓
Simple dual-port mixed width support	~
True dual-port mixed width support (2)	✓
Memory initialization file (.mif)	~
Mixed-clock mode	~
Power-up condition	Outputs cleared
Register asynchronous clears	Read address registers and output registers only
Latch asynchronous clears	Output latches only
Write/Read operation triggering	Write and Read: Rising clock edges
Same-port read-during-write	Outputs set to "Old Data" or "New Data"

- 50Mhz Oscillator
- 可由USB介面燒錄電路
- 4個使用者測試 LED
- 4個使用者測試按鈕開關
- 核心晶片之I/O接腳以2.54mm 間距的2x20PIN排針連接,可 彈性擴充週邊。
- I/O接腳邏輯電位可調(1.2V, 1.8V, 2.5V, 2.8V, 3.3V) •
- 外部記憶體
 - 4Mx16bits SDRAM
 - 2Mbyte Flash Memory
 - 256Kx16bits SRAM
- 電源DC6V
- 尺寸:150x110mm

MIAT_C3X正面

MIAT C3X反面

石英晶體振盪器

Signal Name	FPGA Pin Name	Bank No.
50MHz	E16	В6

MIAT_IOB實驗週邊功能介紹

- □ 2MPixels CMOS Sensor模組
- □ 2.4G RF模組
- □ 2x16文字型LCD模組 (含明暗度調整電阻)
- □ RS232介面
- □ AD轉換測試模組
- □ 蜂鳴器
- □ 4個紅色LED
- □ 4個綠色LED
- □ 4個按鈕開關
- □ 4 P指撥開關
- □ TFT LCD 2.54mm連接器
- □ 尺寸:145x103mm

開發流程介紹一以基本I/O驅動為例

□ 實驗目的

學習如何連接與操作簡單的輸入與輸出的元件到FPGA 晶片,其中輸入元件為MIAT_C3X實驗板上的開關Button1~4,輸出元件為LED1~4。

□ 實驗原理

範例一、根據開關、LED 電路圖與FPGA 腳位對照表使用提示的VHDL 程式碼將開關與LED 做連接的動作,當開關Button按下時相對應的LED被點亮,反之LED熄滅。

FPGA Pin Name	I/O assignment
PIN_E1	User Botton1
PIN_E2	User Botton2
PIN_M1	User Botton3
PIN_M2	User Botton4
PIN_L13	User LED1
PIN_P15	User LED2
PIN_N14	User LED3
PIN_L14	User LED4

基梗置驅動範例

基本I/O驅動範例

提示的VHDL程式碼(檔案路徑CDROM\MIAT_C3X_EVB_Demonstrations\TESTIO1)

```
library ieee;
use ieee.std logic 1164.all;
use ieee.std_logic_arith.all;
use ieee.std logic unsigned.all;
library work;
entity MIATC3XTOP is
port(
      -- Push Button 1~4
      iTOP_BUTTON: in std_logic_vector(3 downto 0); -- Push Button
      -- LED 1~4
      oTOP_LED: out std_logic_vector(3 downto 0);
                                                    -- LED 4 Bits
                                                         Wave
                                                                       Messages
end MIATC3XTOP;
                                                          0000
                                                                                             (1010
                                                                                                          1111
architecture RTL of MIATC3XTOP is
begin
  oTOP LED <= iTOP BUTTON:
                                                               /miatc3xtop/otop_led
                                                                                   0000
                                                                                             (1010
                                                                                                          1111
-- oTOP_LED(3) <= iTOP_BUTTON(3);
-- oTOP_LED(2 downto 0) <= iTOP_BUTTON(2 downto 0);
end RTL;
```


Quartus||軟體安裝

□ 安裝10.0_quartus_free_windows.exe,此檔案的目錄位置在光碟內的 "\Altera\",安裝過程注意下列畫面,其他選Next與OK即可完成安裝。

□ 步驟一、將實驗板連接PC

- (1)使用USB線連接PC與 MIAT_C3X25
- (2)連接電源
- (3)按下電源啟動開關

□ 步驟二、驅動程式安裝,當實驗板第一次連接PC時,需安裝USB Blaster驅動程式,驅動程式目錄為C:\altera\10.0\quartus\drivers \usb-blaster。

□ 步驟二、驅動程式安裝

□ 步驟二、驅動程式安裝

□ 步驟二、驅動程式安裝

- □ 假設使用者已安裝QuartusII軟體工具,在此以TESTIO1為範例,目錄於 CDROM\MIAT_C3X_EVB_Demonstrations\TESTIO1,設定步驟如下:
- □ 步驟一、在\D:建立專案目錄並複製MIATC3XTOP.vhd檔案,如下圖

□ 步驟二、執行Quartus II

□ 步驟三、建立專案檔(1/6)

□ 步驟三、建立專案檔(2/6)

□ 步驟三、建立專案檔(3/6)

□ 步驟三、建立專案檔(4/6)

□ 步驟三、建立專案檔(5/6)

Quartusll軟體使用方法

步驟三、建立專案檔(6/6)

□ 步驟四、執行Analysis & Elaboration

□ 步驟五、執行Pin Planner

□ 步驟五、執行Pin Planner

□ 步驟六、執行Start Compilation

□ 步驟七、執行Programmer

□ 步驟七、執行Programmer

□ 步驟七、執行Programmer

□ 步驟八、測試實驗板之Button與LED動作是否正確,當開關Button 按下時相對應的LED被點亮,反之LED熄滅。

練習一、開發流程練習

□ 步驟一、修改程式碼如下

begin

```
--oTOP_LED <= iTOP_BUTTON;
oTOP_LED(3) <= iTOP_BUTTON(3);
oTOP_LED(2 downto 0)<= iTOP_BUTTON(2 downto 0);
```

end RTL;

步驟二、重新編譯與燒錄至實驗板後重新執行,觀察是否為預期之結果。

練習二、電路設計修改

□ 步驟一、硬體電路配置 將練習一之Button1~4與LED1~4改由IOB子板之周邊I/O電路 SW1~4與LEDR1~4取代。使用SW控制LEDR之閃爍功能。

練習二、電路設計修改

■ MIAT_C3X 之JP1電路圖

練習二、電路設計修改

□ 線路連接

Q & A

