Informace ve výpočetní technice

<u>Převody</u>

DEC	BIN	HEX
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

$$73_{10} = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 23 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1001001_2$$

$$1100010_{10} = \boxed{1} \cdot 2^6 + \boxed{1} \cdot 2^5 + \boxed{0} \cdot 2^4 + \boxed{0} \cdot 2^3 + \boxed{0} \cdot 2^2 + \boxed{1} \cdot 2^1 + \boxed{0} \cdot 2^0$$

Dvojková soustava

- Je číselná soustava, která používá jenom dvě číslice a to **0** a **1**.
- Dvojková soustava je číselná soustava se základem **2**, každá číslice odpovídá **n-té** mocnině čísla **2**, kde **n** je pozice určité číslice v zapsaném čísle.
- Takto zapsané číslo se nazývá binární číslo.

<u>Šestnáctková soustava</u>

- Také jako *hexadecimální soustava*, tak se v ní zapisují pomocí číslic **0** až **9** a písmen n **A-F**, přičemž písmena určují cifry s hodnotou **10–15**.
- V matematice se šestnáctková čísla označují dolním indexem H, hex nebo 16
- Díky jednoduchému převodu ze šestnáctkové na dvojkovou soustavou a opačně, tak se hexadecimální zápis čísel často používá v oblasti IT (pro adresy v operační paměti)

BCD

- Neboli *Binary Code Decima*, tak je binárně kódované decimální číslo.
- Ve výpočetní technice se často používá binární kódování desítkového čísla tak, že každá desítková číslice má přiřazen pevný počet bitů. Obvykle 4 Bity, výjimečně 8 Bitů a dříve dokonce i 6 Bitů.
- Je to "oříznutý" kód hexadecimální soustavy v rozsahu 4 Bity, kdy bitové kombinace, které neodpovídají číslicím 0-9, tedy hodnoty 10-15, jsou buď zakázány anebo mohou být použity pro určení znaménka, chyby, přetečení, nebo polohy desetinné čárky.

Podpora ze strany CPU

- Více jádrový procesor je mikroprocesor, který na jednom čipu integruje více CPU.
- Obvykle jde o jádra, která jsou vzájemně programově kompatibilní a mohou tak snáze spolupracovat.
- Jejich společná činnost se nazývá multitasking nebo multithreading.
- Pro využití více jádrových procesorů je obvykle třeba podpora ze strany operačního systému. V současné době to však znamená podporu většinu systémů, včetně aktuálních systémů Microsoft Windows, Apple macOS, Linux a další.

Zobrazení záporných čísel:

```
— Kódy —
```

```
přímý kód: rozsah zobrazení <-2<sup>n-1</sup>+1, -0>
pro n=8 <-127, -0>, <+0, +127>
inverzní kód: inverze bitů (jedničkový doplněk)
doplňkový kód - operace dvojkový doplněk = inverze bitů a přičtení jedničky
rozsah zobrazení <-2<sup>n-1</sup>, 2<sup>n-1</sup>-1>
pro n=8 <-128, 127>
```

Struktura procesorového systému z hlediska dat

 Procesorový systém je klíčovou součástí počítače, která provádí všechny výpočetní operace a řídí běh programů. Je důležitá pro pochopení toho, jak jsou data ukládána, přenášena a zpracovávána v rámci počítačového systému.

```
— CPU —
```

- **Registry**: Procesor obsahuje registry, což jsou malé, velmi rychlé úložiště pro data, která jsou přímo dostupná procesoru.
- Arithmetic Logic Unit: ALU je část procesoru, která provádí výpočty a logické operace. Může sčítat, odčítat, násobit, dělit a ostatní.
- Control Unit: **Řadič procesoru** řídí tok instrukcí a dat mezi různými částmi procesoru a pamětí. Vysvětluje instrukce a řídí operace v ALU.

— Paměť —

- Random Access Memory: **RAM** je typ paměti, která umožňuje náhodný přístup k datům a instrukcím. To znamená, že procesor může číst a zapisovat data na libovolné místo v RAM.
- Read Only Memory: ROM je paměť, která obsahuje pevně zapsaná data a instrukce, která nelze měnit. Obsahuje základní instrukce pro inicializaci a spuštění počítače.

Program jako data

- Programy jsou soubory instrukcí, které řídí chování počítače.
- Mohou být napsány v různých programovacích jazycích, jako je Python, Java, C++, a mnoho dalších.
- Pomocí programů můžeme vytvářet, upravovat a manipulovat s daty. Data jsou informace, které počítač zpracovává, ukládá a zobrazuje. Mohou to být texty, obrázky, zvuky, čísla, a mnoho dalšího.

Data v paměti - endianita dat

- Endianita je způsob, jakým jsou v počítači uložena více bajtová čísla v paměti.
- Existují dvě základní varianty: big-endian a little-endian.

Big-Endian (velké zakončení):

 V tomto formátu je nejvíce významný bajt uložen na nejnižší paměťové adrese a nejméně významný bajt na nejvyšší paměťové adrese.

Little-Endian (malé zakončení):

• U tohoto formátu je naopak nejméně významný bajt uložen na nejnižší paměťové adrese a nejvíce významný bajt na nejvyšší paměťové adrese.

Základní datové typy

Obecně –

- Základními datovými typy je logická hodnota (pravda x nepravda), celé číslo, reálné číslo, znak a výčet prvků.
- Existuje také prázdný datový typ, který nezískává žádnou hodnotu. Složené datové typy vznikají skládáním výše uvedených jednoduchých typů.

V programovacích jazycích –

Základní

typ	velikost (bit)	popis
BOOL	1	Boolean
BYTE (Byte)	8	hexadecimální číslo / BCD
WORD (Word)	16	binární zobrazení / hexadecimální číslo / BCD
<u>DWORD (Double Word)</u>	32	binární zobrazení / hexadecimální číslo / BCD
INT (Integer)	16	celé desítkové číslo se znaménkem
DINT (Double Integer)	32	celé desítkové číslo se znaménkem
REAL (Reálné číslo)	32	číslo s plovoucí desetinnou čárkou
TIME (IEC time)	32	čas, integer se znaménkem, rozlišení 1 ms
DATE (IEC date)	16	datum, rozlišení 1 den
TIME OF DAY (time)	32	čas v rozsahu 1 den, rozlišení 1 ms
CHAR	8	znak ASCII

Komplexní

typ	velikost	popis
DATE AND TIME	64 bit	datum a čas
<u>STRING</u>	254 Byte	textový řetězec
ARRAY	*)	více rozměrová oblast dat (vektor, matice,) jednoho typu dat
STRUCT	*)	strukturovaná oblast jednoho nebo různých typů dat

Formální

typ	velikost	popis
TIMER	2 Byte	číslo časovače (integer)
COUNTER	2 Byte	číslo čítače (integer)
BLOCK	2 Byte	číslo bloku (programový nebo datový) (integer)
POINTER	6 Byte	identifikátor proměnné a adresy, odkazuje na adresu proměnné
ANY	10 Byte	pro použití, kdy je datový typ aktuálního parametru neznámý nebo lze použít libovolný typ
VARIANT	proměnná	ukazatel na proměnné různých typů