$\begin{array}{c} Chapter \ 8 \\ {\rm Solutions \ to \ Even-Numbered \ Exercises} \end{array}$

MohamadAli Khajeian*

Faculty of Engineering Sciences, University of Tehran, Iran

December 22, 2024

Abstract

This document presents the solution of "Quantum Computing Explained by David McMAHON" exercises.

Exercise 8.2

(A) Matrix representations of the Hubbard operators in the computational basis:

$$\begin{split} X^{11} &= |0\rangle\langle 0|, \quad X^{12} &= |0\rangle\langle 1|, \quad X^{21} &= |1\rangle\langle 0|, \quad X^{22} &= |1\rangle\langle 1|. \\ X^{11} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad X^{12} &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad X^{21} &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad X^{22} &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \end{split}$$

(B) Action of the Hubbard operators on the Hadamard basis states:

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), \quad |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

• Action of X^{11} :

$$X^{11}|+\rangle = |0\rangle\langle 0| \cdot \frac{1}{\sqrt{2}} \big(|0\rangle + |1\rangle \big) = \frac{1}{\sqrt{2}} |0\rangle,$$

$$X^{11}|-\rangle = |0\rangle\langle 0| \cdot \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} |0\rangle.$$

• Action of X^{12} :

$$X^{12}|+\rangle = |0\rangle\langle 1| \cdot \frac{1}{\sqrt{2}} \big(|0\rangle + |1\rangle \big) = \frac{1}{\sqrt{2}} |0\rangle,$$

$$X^{12}|-\rangle = |0\rangle\langle 1| \cdot \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = -\frac{1}{\sqrt{2}} |0\rangle.$$

• Action of X^{21} :

$$X^{21}|+\rangle = |1\rangle\langle 0| \cdot \frac{1}{\sqrt{2}} \big(|0\rangle + |1\rangle \big) = \frac{1}{\sqrt{2}} |1\rangle,$$

$$X^{21}|-\rangle = |1\rangle\langle 0| \cdot \frac{1}{\sqrt{2}} \big(|0\rangle - |1\rangle \big) = \frac{1}{\sqrt{2}} |1\rangle.$$

• Action of X^{22} :

$$X^{22}|+\rangle = |1\rangle\langle 1| \cdot \frac{1}{\sqrt{2}} \big(|0\rangle + |1\rangle \big) = \frac{1}{\sqrt{2}} |1\rangle,$$

$$X^{22}|-\rangle = |1\rangle\langle 1| \cdot \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = -\frac{1}{\sqrt{2}} |1\rangle.$$

^{*}khajeian@ut.ac.ir

Exercise 8.4

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

1. Hermitian Property

A matrix A is Hermitian if $A^{\dagger} = A$, where A^{\dagger} is the conjugate transpose of A. For the CNOT gate:

$$\mathbf{CNOT}^{\dagger} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Since $CNOT^{\dagger} = CNOT$, the CNOT gate is Hermitian.

2. Unitary Property

A matrix A is unitary if $A^{\dagger}A = I$, where I is the identity matrix. For the CNOT gate:

$$\text{CNOT} \cdot \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Performing the matrix multiplication:

$$\text{CNOT} \cdot \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I.$$

Since $CNOT^{\dagger} \cdot CNOT = I$, the CNOT gate is unitary.

Exercise 8.6

$$\begin{aligned} &|00\rangle \rightarrow |00\rangle \\ &|01\rangle \rightarrow |01\rangle \\ &|10\rangle \rightarrow |10\rangle \\ &|11\rangle \rightarrow -|11\rangle \end{aligned}$$

Matrix Representation

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Dirac Notation

$$CZ = |00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| - |11\rangle\langle 11|.$$

Exercise 8.8

A rotation by an angle θ around an axis defined by the unit vector $\mathbf{n} = (n_x, n_y, n_z)$ is given by the rotation operator:

$$R_{\mathbf{n}}(\theta) = \exp\left(-i\frac{\theta}{2}\mathbf{n}\cdot\boldsymbol{\sigma}\right),$$

where $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices. For this problem:

$$\mathbf{n} = \frac{\mathbf{e}_x + \mathbf{e}_z}{\sqrt{2}} = \frac{1}{\sqrt{2}}(1,0,1),$$

and the rotation angle is $\theta = \pi$ (180 degrees). Substituting **n** and θ into the rotation operator:

$$R_{\mathbf{n}}(\pi) = \exp\left(-i\frac{\pi}{2}\frac{\sigma_x + \sigma_z}{\sqrt{2}}\right).$$

The Pauli matrices σ_x and σ_z are:

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Thus:

$$\frac{\sigma_x + \sigma_z}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}.$$

The exponential operator $\exp\left(-i\frac{\pi}{2}\cdot\frac{\sigma_x+\sigma_z}{\sqrt{2}}\right)$ simplifies to the Hadamard gate:

$$\exp\left(-i\frac{\pi}{2} \cdot \frac{\sigma_x + \sigma_z}{\sqrt{2}}\right) = \cos\frac{\pi}{2}I - i\sin\frac{\pi}{2}\left(\frac{\sigma_x + \sigma_z}{\sqrt{2}}\right)$$
$$= iH$$

with factor phase we have

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Exercise 8.10

This is the standard matrix representation of the controlled-NOT gate.