

Prof. Dr. Andreas Hotho, M.Sc. Janna Omeliyanenko Lecture Chair X for Data Science, Universität Würzburg

2. Exercise for "Sprachverarbeitung und Text Mining"

12.11.2021

1 Knowledge Questions

1. What is Part of Speech Tagging and what may Part of Speech Tagging be used for?

Part of Speech Tagging refers to the classification of words of a sentence into syntactic units (word types).

As input features for:

- Parsers
- Information Extraction
- Speech synthesis
- Machine Translation
- 2. What is the difference between open and closed classes of word types in POS-tagging?

Closed classes, in contrast to open classes, contain only a finite set of words, and new ones cannot be added.

Example: Pronouns, Auxiliaries, Prepositions

- 3. Which two typical approaches are used for POS-tagging?
 - Rule-based approaches (z.B. ENGTWOL)
 - Stochastic approaches (z.B HMM, MEMM, CRF)
- 4. Which two types of probabilities are needed in the modeling approach of the Hidden Markov Model? What elements does a Hidden Markov Model generally consist of?
 - Transition probabilities $P(T_i|T_{i-1})$
 - Likelihood probabilities $P(W_i|T_i)$

Generally, an HMM consists of:

- A list **Q** with the possible states
- a matrix **A** with the transition probabilities
- a list **O** with the possible observations
- a matrix **B** with observation likelihoods
- start and end states
- 5. What does the Markov-assumption state when applied to POS-tagging?
- The probability of a tag depends only on the previous tag.
- 6. Which POS-tagsets do you know for the German and English language?
 - German: Besides some minor modifications, the STTS (Stuttgart-Tübingen Tagset) is actually always used in German.
 - English: Penn TreeBank tagset
- 7. All POS-tagging methods presented in the lecture require a list (dictionary) that lists all possible POS-tags for a word. However, such lists are usually not complete. Give a solution for POS-tagging with unknown words.
 - Assume that each tag can be assigned to the unknown word with equal probability.

- Use additional information about word properties and compute probability for each POS-tag given observed properties (multipliable under assumption of independence).
 - e.g. English word ending with 's' \rightarrow noun in the plural with x% probability.
 - e.g. English word beginning with capital letter \rightarrow proper name with y% probability.
- 8. Name three types of evaluation of POS-tagging methods.
 - Overall error rate
 - Error rates on particular tags
 - Error rates on particular words
 - Confusion-Matrix

with respect to sample solution (gold standard)

2 POS Tagging

Part-of-speech taggers model the words as observations (observed variables), and the associated word types (part-of-speech tags) as hidden variables (hidden states). We assume in the following a highly simplified set of generalized word types (tag-set):

DET	Determiner	the,a,
N	Noun	year,home,costs,time,
PRO	Pronoun	he,their,you
V	Verb	said,took,saw

Using the table below, calculate the most likely sequence of tags for the following sentence:

"I saw the saw"

- 1. Apply the Viterbi algorithm.
- 2. Which are the main factors influencing the complexity of the calculation?

Assume uniformly distributed start transition probabilities.

from\to	DET	N	PRO	V
DET	0.05	0.9	0.05	0
N	0.1	0.7	0.05	0.15
PRO	0.05	0.5	0.05	0.4
V	0.5	0.1	0.4	0

$w \setminus t$	DET	N	PRO	V
I	0	0.0002	0.1	0
saw	0	0.0008	0	0.1
the	0.1	0	0	0

Note: The unreachable states or states with probability 0 are not shown in the graph for readability reasons.

Main influence factors are the length of the sequence (linear) and the amount of available POS tags (quadratical).