Exercise 5: VB

02/05/2023

Group D: Clara Kümpel, Damola Agbelese, Yitong Li

5.1 VB update equations

a) Univariate Gaussian model

$$y = \mu + \epsilon, \qquad p(\epsilon) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau \epsilon^2}{2}\right)$$

As μ is a constant, $y - \mu = \epsilon \sim \mathcal{N}(0, 1/\tau)$

$$\Rightarrow p(y|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau(y-\mu)^2}{2}\right)$$

Joint distribution:

$$\begin{split} p(y_1,\ldots,y_N|\mu,\tau) &= \prod_{i=1}^N \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau(y_i-\mu)^2}{2}\right) \\ &= \left(\sqrt{\frac{\tau}{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{\tau(y_i-\mu)^2}{2}\right) \\ \Rightarrow \log\left(p(y_1,\ldots,y_N|\mu,\tau)\right) &= \frac{N}{2}\log\tau - \frac{N}{2}\log2\pi - \frac{\tau}{2}\sum_1^N (y_i-\mu)^2 \\ Q.E.D. \end{split}$$

b) Find the joint distribution $\log p(\vec{y}, \vec{\theta})$ given prior $p(\vec{\theta})$

$$\begin{split} p(\vec{\theta}) &= \sqrt{\frac{\lambda_0 \tau}{2\pi}} \exp\left(-\frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2\right) \frac{b_0^{a_0} \tau^{a_0 - 1}}{\mathsf{T}(a_0)} \exp(-b_0 \tau) \\ \Rightarrow &\log p(\vec{\theta}) = \frac{1}{2} \log \lambda_0 + \frac{1}{2} \log \tau - \frac{1}{2} \log 2\pi - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 + a_0 \log b_0 \\ &+ (a_0 - 1) \log \tau - \log \mathsf{T}(a_0) - b_0 \tau \end{split}$$

$$p(\vec{y}, \vec{\theta}) = p(\vec{y}|\vec{\theta})p(\vec{\theta})$$

$$\Rightarrow \log p(\vec{y}, \vec{\theta}) = \log p(\vec{y}|\vec{\theta}) + \log p(\vec{\theta})$$

$$= \left(\frac{N+1}{2} + a_0 - 1\right) \log \tau - \frac{N+1}{2} \log 2\pi - \frac{\tau}{2} \sum_{1}^{N} (y_i - \mu)^2 + \frac{1}{2} \log \lambda_0$$

$$- \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 + a_0 \log b_0 - \log T(a_0) - b_0 \tau$$

Q.E.D.

c) Find the optimal variational distribution over μ under the mean field approximation.

Regarding to the mean field approx.:

$$\ln q^*(\mu) = \mathbb{E}_{\tau} \left[\ln p(\vec{y}, \vec{\theta}) \right] + c.$$

$$= \int \ln \left(p(\vec{y}, \vec{\theta}) \right) q(\tau) d\tau + c.$$

since the optimization is over μ , integration terms excluding μ can be sorted into the constant term, hence:

$$\ln q^*(\mu) = \int \left(-\frac{\tau}{2} \sum_{n=1}^{N} (y_n - \mu)^2 - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 \right) q(\tau) d\tau + c.$$

The integrated term can be factorized as:

$$\ln q^*(\mu) = \int -\frac{1}{2} \left(\sum_{1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right) \tau \cdot q(\tau) d\tau + c.$$

Move the term excluding τ outside the integral:

$$\ln q^*(\mu) = -\frac{1}{2} \left(\sum_{1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right) \int \tau \cdot q(\tau) + c.$$

With the definition of expectation

$$\ln q^*(\mu) = -\frac{1}{2} E_{\tau} \{ \tau \} \left(\sum_{1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right) + c.$$

$$Q. E. D.$$

d) Reorder ln $q^*(\mu)$ in (c) with $\bar{\tau} = E_{\tau}\{\tau\}$ and $\bar{y} = \frac{1}{N}\sum_{1}^{N}y_n$

$$\ln q^*(\mu) = -\frac{1}{2}\bar{\tau}\left(\sum_{n=1}^N y_n^2 - 2N\mu\bar{y} + N\mu^2 + \lambda_0\mu^2 - 2\lambda\mu\mu_0 + \lambda_0\mu_0^2\right) + c.$$

Since μ is the only variable, terms $\sum_{1}^{N} y_{n}^{2}$ and $\lambda_{0} \mu_{0}^{2}$ are constant, therefore:

$$\ln q^*(\mu) = -\frac{1}{2}\bar{\tau}(-2N\mu\bar{y} + (N+\lambda_0)\mu^2 + (N+\lambda_0\mu_0)\mu) + c.$$

$$= -\frac{\bar{\tau}(N+\lambda_0)}{2}\mu^2 + \bar{\tau}\mu(\lambda_0\mu_0 + N\bar{y}) + c.$$

Q.E.D.

e) Show that $q^*(\mu)$ follows Gaussian distribution.

$$\ln q^*(\mu) = -\frac{\bar{\tau}(N+\lambda_0)}{2}\mu^2 + \bar{\tau}\mu(\lambda_0\mu_0 + N\bar{y}) + c.$$

$$= -\frac{\bar{\tau}(N+\lambda_0)}{2} \left(\mu^2 - \frac{2(\lambda_0\mu_0 + N\bar{y})}{N+\lambda_0}\mu + \left(\frac{\lambda_0\mu_0 + N\bar{y}}{N+\lambda_0}\right)^2\right) + c.$$

$$= -\frac{\bar{\tau}(N+\lambda_0)}{2} \left(\mu - \frac{\lambda_0\mu_0 + N\bar{y}}{N+\lambda_0}\right)^2 + c.$$

$$\Rightarrow q^*(\mu) \propto \exp\left(-\frac{\bar{\tau}(N+\lambda_0)}{2} \left(\mu - \frac{\lambda_0\mu_0 + N\bar{y}}{N+\lambda_0}\right)^2\right)$$

i.e., $q^*(\mu)$ follows Gaussian distribution with mean

$$m = \frac{\lambda_0 \mu_0 + N \bar{y}}{N + \lambda_0}$$

And variance

$$s^2 = \frac{1}{\bar{\tau}(N + \lambda_0)}$$

Q.E.D.

f) Find the optimal variational distribution over τ under the mean field approximation.

$$\ln q^*(\tau) = \mathbb{E}_{\mu} \left[\ln p(\vec{y}, \vec{\theta}) \right] + c.$$

$$= \int \ln \left(p(\vec{y}, \vec{\theta}) \right) q(\mu) d\mu + c.$$

As in (c), integration terms excluding τ can be sorted into the constant term, hence:

$$\ln q^*(\tau) = \int \left(\left(\frac{N+1}{2} + a_0 - 1 \right) \log \tau - \frac{\tau}{2} \sum_{n=1}^{N} (y_n - \mu)^2 - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 - b_0 \tau \right) \cdot q(\mu) d\mu + c.$$

$$= -\frac{\tau}{2} \int \left(\sum_{n=1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right) \cdot q(\mu) d\mu$$

$$+ \left(\left(\frac{N+1}{2} + a_0 - 1 \right) \log \tau - b_0 \tau \right) \int q(\mu) d\mu + c.$$

$$= -\frac{\tau}{2} \mathbb{E}_{\mu} \left\{ \sum_{n=1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right\} + \left(\frac{N+1}{2} + a_0 - 1 \right) \log \tau - b_0 \tau + c.$$

$$Q.E.D.$$

g) Rewrite $\ln q^*(\tau)$ with $\mathbb{E}_{\mu}\{(x-\mu)^2\} = (x-m)^2 + s^2$

$$\mathbb{E}_{\mu} \left\{ \sum_{n=1}^{N} (y_n - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right\}$$

$$= \sum_{1}^{N} \mathbb{E}_{\mu} \{ (y_n - \mu)^2 \} + \lambda_0 \mathbb{E}_{\mu} \{ (\mu - \mu_0)^2 \}$$

$$= (N + \lambda_0) s^2 + \sum_{1}^{N} (y_n - m)^2 + \lambda_0 (x - m)^2$$

$$\Rightarrow \ln q^*(\tau) = -\frac{\tau}{2} \left(\sum_{1}^{N} (y_n - m)^2 + \lambda_0 (x - m)^2 + (N + \lambda_0) s^2 \right)$$

$$+ \left(\frac{N+1}{2} + a_0 - 1 \right) \log \tau - b_0 \tau + c.$$

$$Q. E. D.$$

h) Show that $q^*(\tau)$ is given by a Gamma distribution $Gam(\tau|a,b) = \frac{b^a \tau^{a-1}}{T(a)} \exp(-b\tau)$ With the equation derived in (g):

$$q^{*}(\tau) \propto \tau^{\left(\frac{N+1}{2} + a_{0} - 1\right)} \exp\left(-\frac{\tau}{2} \left(\sum_{1}^{N} (y_{n} - m)^{2} + \lambda_{0} (x - m)^{2} + (N + \lambda_{0}) s^{2} + 2b_{0}\right)\right)$$

$$\propto \frac{\tau^{\left(\frac{N+1}{2} + a_0 - 1\right)}}{T\left(\frac{N+1}{2} + a_0\right)}$$

$$\cdot \exp\left(-\tau \left(b_0 + \frac{1}{2} \left(\sum_{1}^{N} (y_n - m)^2 + \lambda_0 (x - m)^2 + (N + \lambda_0) s^2\right)\right)\right)$$

Which follows distribution:

$$Gam(\tau|a,b) = \frac{b^a \tau^{a-1}}{T(a)} \exp(-b\tau)$$

With

$$a = \frac{N+1}{2} + a_0$$

$$b = b_0 + \frac{1}{2} \left(\sum_{1}^{N} (y_n - m)^2 + \lambda_0 (x - m)^2 + (N + \lambda_0) s^2 \right)$$

Q.E.D.

i) Formulate the negative free energy.

The negative free energy can be written as:

$$\begin{split} \mathcal{F} &= \mathbb{E}_{q(\vec{\theta})} \{ \ln p(\vec{y}, \vec{\theta}) - \ln q(\vec{\theta}) \} \\ &= \mathbb{E}_{q(\vec{\theta})} \{ \ln p(\vec{y}, \vec{\theta}) \} - \mathbb{E}_{q(\vec{\theta})} \{ \ln q(\vec{\theta}) \} \\ &= \int \ln p(\vec{y}, \vec{\theta}) \, q(\vec{\theta}) d\vec{\theta} - \int \ln q(\vec{\theta}) \, q(\vec{\theta}) d\vec{\theta} \end{split}$$

With the assumption of factorized $q(\vec{\theta}) = q(\mu)q(\tau)$

$$\mathbb{E}_{q(\vec{\theta})} \{ \ln p(\vec{y}, \vec{\theta}) \} = \int \int \ln p(\vec{y}, \vec{\theta}) \, q(\mu) q(\tau) d\mu d\tau$$

$$\mathbb{E}_{q(\vec{\theta})} \{ \ln q(\vec{\theta}) \} = \int \int (\ln q(\mu) + \ln q(\tau)) \, q(\mu) q(\tau) d\mu d\tau$$

As we derived before:

$$\ln p(\vec{y}, \vec{\theta}) =$$

$$= \left(\frac{N+1}{2} + a_0 - 1\right) \ln \tau - \frac{N+1}{2} \ln 2\pi - \frac{\tau}{2} \sum_{i=1}^{N} (y_i - \mu)^2 + \frac{1}{2} \ln \lambda_0 - \frac{\lambda_0 \tau}{2} (\mu - \mu_0)^2 + a_0 \ln b_0 - \ln T(a_0) - b_0 \tau$$

(Grey means these terms are always constant)

The first integration becomes:

$$\begin{split} \mathbb{E}_{q(\vec{\theta})} \{ \ln p(\vec{y}, \vec{\theta}) \} \\ &= \int \int \left(\frac{N+1}{2} + a_0 - 1 \right) \ln \tau - b_0 \tau \, q(\mu) q(\tau) d\mu d\tau \\ &- \frac{1}{2} \int \int \tau \left(\sum_{1}^{N} (y_i - \mu)^2 \right) \, q(\mu) q(\tau) d\mu d\tau \\ &- \frac{\lambda_0}{2} \int \int \tau (\mu - \mu_0)^2 q(\mu) q(\tau) d\mu d\tau - \frac{N+1}{2} \ln 2\pi + \frac{1}{2} \ln \lambda_0 \\ &+ a_0 \ln b_0 - \ln T(a_0) \end{split}$$

$$\begin{split} &= \int \left(\int \left(\frac{N+1}{2} + a_0 - 1 \right) \ln \tau - b_0 \tau \, q(\tau) d\tau \right) q(\mu) d\mu \\ &- \frac{1}{2} \int \left(\int \tau \, q(\tau) d\tau \right) \sum_{1}^{N} (y_i - \mu)^2 \, q(\mu) d\mu \\ &- \frac{\lambda_0}{2} \int \left(\int \tau \, q(\tau) d\tau \right) (\mu - \mu_0)^2 q(\mu) d\mu - \frac{N+1}{2} \ln 2\pi + \frac{1}{2} \ln \lambda_0 \\ &+ a_0 \ln b_0 - \ln T(a_0) \end{split}$$

$$= \left(\frac{N+1}{2} + a_0 - 1\right) \mathbb{E}_{\tau} \{\ln \tau\} - b_0 \mathbb{E}_{\tau} \{\tau\} - \frac{1}{2} \mathbb{E}_{\tau} \{\tau\} \cdot \mathbb{E}_{\mu} \left\{ \sum_{1}^{N} (y_i - \mu)^2 \right\} - \frac{\lambda_0}{2} \mathbb{E}_{\tau} \{\tau\}$$

$$\cdot \mathbb{E}_{\mu} \{(\mu - \mu_0)^2\} - \frac{N+1}{2} \ln 2\pi + \frac{1}{2} \ln \lambda_0 + a_0 \ln b_0 - \ln T(a_0)$$

The second integration term:

$$\begin{split} -\mathbb{E}_{q(\vec{\theta})} \big\{ \ln q(\vec{\theta}) \big\} &= -\int \int (\ln q(\mu) + \ln q(\tau)) \, q(\mu) q(\tau) d\mu d\tau \\ &= \int \int \ln q(\mu) \, q(\mu) d\mu q(\tau) d\tau + \int \int \ln q(\tau) \, q(\tau) d\tau q(\mu) d\mu \\ &= \mathbb{E}_{\mu} \{ \ln q(\mu) \} + \mathbb{E}_{\tau} \{ \ln q(\tau) \} \end{split}$$

Summing the two integrations up, we get the negative free energy:

$$\begin{split} \mathcal{F} &= -\frac{1}{2} \mathbb{E}_{\tau} \{\tau\} \Bigg(2b_0 + \mathbb{E}_{\mu} \left\{ \sum_{1}^{N} (y_i - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right\} \Bigg) \\ &+ \left(\frac{N+1}{2} + a_0 - 1 \right) \mathbb{E}_{\tau} \{ \ln \tau \} - \frac{N+1}{2} \ln 2\pi - \ln \mathsf{T}(a_0) + \frac{1}{2} \ln \lambda_0 \\ &+ a_0 \ln b_0 - \mathbb{E}_{\mu} \{ \ln q(\mu) \} - \mathbb{E}_{\tau} \{ \ln q(\tau) \} \end{split}$$

$$Q.E.D.$$

5.2 **VB** implementation

Code is provided in an executable Matlab file.

Generated observations from univariate Gaussian model

```
% a)
4
           mu = 1:
           tau = 1;
5
6
           N = 10;
          % y = epsilon + mu
8
         % y = N samples from a univariate gaussian distribution + mu y = normrnd(0,tau,[1,N]) + (zeros(N,1) + mu)';
```

example generated y data:

	1	2	3	4	5	6	7	8	9	10
1	-1.1384	0.1604	2.3546	-0.0722	1.9610	1.1240	2.4367	-0.9609	0.8023	-0.2078

b) Update equations for μ and τ

```
13
14
               % define starting parameters
              mu 0 = 0:
               lambda_0 = 3;
              a_0 = 2;
b_0 = 2;
  16
 17
                   % get y mean from y data 
y_mean = mean(y);
49
50
51
                   % starting values
                   a = a_0;
b = b_0;
m = mu_0;
53
                    s_2 = b_0 / (a_0 * lambda_0);
                         % update equations for mu
tau_mean = a/b;
s_2 = 1 / (tau_mean * (N + lambda_0));
m = (lambda_0 * mu_0 + N * y_mean) / (lambda_0 + N);
64
65
66
68
                          % update equations for tau
                           a = a_0 + ((N + 1) / 2); \\ b = b_0 + 1/2 * (sum((y - (zeros(N,1) + m)').^2) + lambda_0 * (mu_0 - m)^2 + (N + lambda_0) * s_2); \\ 
70
```

c) Evaluate Free energy

```
% c)
% evaluate free energy F
F = -a * log(b) + gammaln(a) - gammaln(a_0) + a_0 * log(b_0) + 1/2 * log(lambda_0) + log(sqrt(s_2)) - N/2 * log(2*pi) + 1/2;
```

d) Function to loop over the update equations and the free energy

```
%% d)
% loop for iterations
function [m, s_2, a, b, F_arr] = vb(y, mu_0, lambda_0, a_0, b_0, N)
       % get y mean from y data y_mean = mean(y);
       % starting values
a = a_0;
b = b_0;
m = mu_0;
s_2 = b_0 / (a_0 * lambda_0);
       % initialize Free energy vector F_arr = []; F_arr = [F_arr 0];
      while 1
             % b)
% update equations for mu
tau_mean = a/b;
s_2 = 1 / (tau_mean * (N + lambda_0));
m = (lambda_0 * mu_0 + N * y_mean) / (lambda_0 + N);
              % update equations for tau  a = a_0\theta + ((N+1)/2); \\ b = b_0\theta + 1/2 * (sum((y - (zeros(N,1) + m)').^2) + lambda_0\theta * (mu_0\theta - m)^2 + (N + lambda_0\theta) * s_2); 
              % c)
% evaluate free energy F
F = -a * log(b) + gammaln(a) - gammaln(a_0) + a_0 * log(b_0) + 1/2 * log(lambda_0) + log(sqrt(s_2)) - N/2 * log(2*pi) + 1/2;
              % difference between consecutive iterations diff = abs(F - F_arr(end));
              % store F value
F_arr = [F_arr F];
             % break if difference is below threshold if diff < 0.001 break end
end
end
```

Monitored free energy:

	1	2	3	4	
1	0	-13.9981	-13.9847	-13.9846	

The program stopped after 3 iterations.

e) Run with generated data and prior parameters Starting values as given in exercise script:

$$m = \mu_0$$

 $s^2 = b_0 / (a_0 * \lambda_0)$
 $a = a_0$
 $b = b_0$

Then run the function vb() with prior parameters and generated y data:

```
[m, s_2, a, b, F_arr] = vb(y, mu_0, lambda_0, a_0, b_0, N);
```

Calculate posterior parameters:

```
% posterior parameters: \mu and \tau tau_post = gamrnd(a,b); % \tau is given by gamma distribution with parameters a and b mu_post = normrnd(m, s_2); % \mu is given by gaussian distribution with parameters m and s_2 posterior = tau_post * mu_post; % posterior
```

Calculate random starting values:

```
% random starting variables 
a = 6 * rand(1,1) + 0.00001; % range 0.00001 to 6
b = 6 * rand(1,1) + 0.00001; % range 0.00001 to 6
m = 4 * rand(1,1) - 2; % range -2 to 2
s_2 = 1 * rand(1,1) + 0.00001; % range 0.00001 to 1
```

Results after one run with prior:

	m	s^2	a	b	F	τ	μ	posterior
1	0.9212	0.0699	7.5000	6.8095	-14.9374	30.4737	0.7916	24.1235

10 runs with random values:

2 0.9212 0.0697 7.5000 6.8086 -14.9374 59.3418 0.9483 56.2750 3 0.9212 0.0699 7.5000 6.8100 -14.9374 67.1635 0.7928 53.2466 4 0.9212 0.0699 7.5000 6.8095 -14.9374 53.2279 0.9384 49.9466 5 0.9212 0.0698 7.5000 6.8088 -14.9374 32.2965 1.0140 32.7500 6 0.9212 0.0702 7.5000 6.8113 -14.9374 42.7890 0.9922 42.4565 7 0.9212 0.0697 7.5000 6.8087 -14.9374 41.2373 0.8927 36.8115 8 0.9212 0.0697 7.5000 6.8085 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8084 -14.9374 80.4958 0.9245 74.4180 11 0.9212 0.0698 7.5000 6.8088 -14.9374 62.9921 0.9433 59.4217									
4 0.9212 0.0699 7.5000 6.8095 -14.9374 53.2279 0.9384 49.9466 5 0.9212 0.0698 7.5000 6.8088 -14.9374 32.2965 1.0140 32.7500 6 0.9212 0.0702 7.5000 6.8113 -14.9374 42.7890 0.9922 42.4565 7 0.9212 0.0697 7.5000 6.8087 -14.9374 41.2373 0.8927 36.8115 8 0.9212 0.0697 7.5000 6.8085 -14.9374 39.8806 0.9335 37.2281 9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	2	0.9212	0.0697	7.5000	6.8086	-14.9374	59.3418	0.9483	56.2750
5 0.9212 0.0698 7.5000 6.8088 -14.9374 32.2965 1.0140 32.7500 6 0.9212 0.0702 7.5000 6.8113 -14.9374 42.7890 0.9922 42.4565 7 0.9212 0.0697 7.5000 6.8087 -14.9374 41.2373 0.8927 36.8115 8 0.9212 0.0697 7.5000 6.8085 -14.9374 39.8806 0.9335 37.2281 9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	3	0.9212	0.0699	7.5000	6.8100	-14.9374	67.1635	0.7928	53.2466
6 0.9212 0.0702 7.5000 6.8113 -14.9374 42.7890 0.9922 42.4565 7 0.9212 0.0697 7.5000 6.8087 -14.9374 41.2373 0.8927 36.8115 8 0.9212 0.0697 7.5000 6.8085 -14.9374 39.8806 0.9335 37.2281 9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	4	0.9212	0.0699	7.5000	6.8095	-14.9374	53.2279	0.9384	49.9466
7 0.9212 0.0697 7.5000 6.8087 -14.9374 41.2373 0.8927 36.8115 8 0.9212 0.0697 7.5000 6.8085 -14.9374 39.8806 0.9335 37.2281 9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	5	0.9212	0.0698	7.5000	6.8088	-14.9374	32.2965	1.0140	32.7500
8 0.9212 0.0697 7.5000 6.8085 -14.9374 39.8806 0.9335 37.2281 9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	6	0.9212	0.0702	7.5000	6.8113	-14.9374	42.7890	0.9922	42.4565
9 0.9212 0.0697 7.5000 6.8084 -14.9374 41.3356 0.9664 39.9471 10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	7	0.9212	0.0697	7.5000	6.8087	-14.9374	41.2373	0.8927	36.8115
10 0.9212 0.0699 7.5000 6.8095 -14.9374 80.4958 0.9245 74.4180	8	0.9212	0.0697	7.5000	6.8085	-14.9374	39.8806	0.9335	37.2281
	9	0.9212	0.0697	7.5000	6.8084	-14.9374	41.3356	0.9664	39.9471
11 0.9212 0.0698 7.5000 6.8088 -14.9374 62.9921 0.9433 59.4217	10	0.9212	0.0699	7.5000	6.8095	-14.9374	80.4958	0.9245	74.4180
	11	0.9212	0.0698	7.5000	6.8088	-14.9374	62.9921	0.9433	59.4217

If you can report the results from one run only, which one would you choose?