Condensé de la première Sciences de l'ingénieur

Contents

1		Mécanique								
	1.1	Équations du mouvement								
	1.2 Centre de rotation instantané									
2	Élec	ctronic	que							
	2.1	Électr	icité							
	2.2		ue booléenne							
		2.2.1	Opérateurs							
			Règles de calcul							
		2.2.3	Table de vérité \rightarrow Équation logique							
			Exercice d'application							
	2.3	Codag	ge							
		2.3.1	Bases							
		2.3.2	L'octal							
		2.3.3	L'hexadécimal							

1 Mécanique

1.1 Équations du mouvement

$$\operatorname{accél\'eration} = \begin{cases} 0 & \operatorname{Mouvement\ uniforme} \\ \operatorname{const.} & \operatorname{Mouvement\ uniform\'ement\ vari\'e} \end{cases}$$

$$position(temps) = \frac{1}{2}acc\'el\'eration^2 \cdot (temps - temps_0) + vitesse_0 \cdot (temps - temps_0) + position_0$$

$$position'' = vitesse' = accélération$$

1.2 Centre de rotation instantané

Intersection entre les perpandiculaires aux trajectoires des extrémités

2 Électronique

2.1 Électricité

Q C Charge électrique

 $\begin{array}{ccc} I & {\rm A} & {\rm Intensit\acute{e}} \\ t & {\rm s} & {\rm Temps} \end{array}$

P $V \stackrel{-}{\searrow} X \stackrel{-}{\longrightarrow} I$

P W Puissance

U V Tension

I A Intensité

P W Puissance

E J Énergie

t s Temps

2.2 Logique booléenne

2.2.1 Opérateurs

Nom	Équation	Table de vérité	ſ	Symbole	٦	Dans un circuit
Oui	S = a	$\begin{array}{c c} a & S \\ 1 & 1 \\ 0 & 0 \end{array}$	a	1	<u>S</u>	a
Non	$S = \overline{a}$	$egin{array}{c c} a & S \\ 1 & 0 \\ 0 & 1 \\ \end{array}$		1	\bigcirc S	\overline{a}
Et	$S = a \cdot b$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{b}{a}$	&		$ a \cdot b$
Ou	S = a + b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{b}{a}$	≥ 1		
Ou exclusif	$S=a\oplus b$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 1	S	Faire $S = a \cdot \overline{b} + \overline{a} \cdot b$
Identité	$S = \overline{a \oplus b}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 1		Faire $S = \overline{a} \cdot \overline{b} + a \cdot b$
NAND	$S = \overline{a \cdot b}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} b \\ \hline a \end{array}$	&		Utiliser règles de Morgan
NOR	$S = \overline{a+b}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c} b \ \hline a \ \end{array}$	≥ 1		Utiliser règles de Morgan

Table 1: Opérateurs logiques

2.2.2 Règles de calcul

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

${f 2.2.3}$ Table de vérité ightarrow Équation logique

Technique des sommes de produits

- 1. Prendre les lignes quand S=1
- 2. Pour chaque ligne...
 - (a) Pour chaque colonne...

Cellule à 1 Prendre variable

Cellule à 0 Prendre $\overline{variable}$

- (b) Faire le produit de chaque variable ou variable
- 3. Faire la somme de chaque produit

2.2.4 Exercice d'application

//TODO: faire un truc en MEX

2.3 Codage

2.3.1 Bases

$$N_B = a_{n-1}B^{n-1} + a_{n-2}B^{n-2} + \dots + a_0B^0$$

n		Longueur du nombre
a_n	$caract\`ere$	Chiffre à la n ième position
B		Base utilisée

Exemple: 538 en base 10

$$N_{10} = 5 \cdot 10^2 + 3 \cdot 10^1 + 8 \cdot 10^0 = 500 + 30 + 8 = 538$$

2.3.2 L'octal

 $\textbf{Chiffres}\ \ 0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7$

Base 8

Conversions avec le binaire $\operatorname{Groupes}$ de 3

2.3.3 L'hexadécimal

 $\textbf{Chiffres} \ \ 0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9, \, A, \, B, \, C, \, D, \, E, \, F$

Base 16

Conversions avec le binaire $\operatorname{Groupes}$ de 4