Probability and Measure - Tutorial 8

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (Ω', \mathcal{F}') be a measurable space and $f: \Omega \to \Omega'$ a measurable function. Show that

$$\mu_f(A') := \mu(f^{-1}(A')), \qquad A' \in \mathcal{F}'$$

is a measure on \mathcal{F}' .

Note. In case $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $X : \Omega \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ is a random variable, then the probability measure \mathbb{P}_X on $\overline{\mathcal{B}}$ is called the *distribution* of X. We write

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega : X(\omega) \in B\}), \quad B \in \bar{\mathcal{B}},$$

and the expression on the right-hand side is often abbreviated as $\mathbb{P}(X \in B)$. The same definition is given for a random vector, that is, a measurable function $Y:(\Omega,\mathcal{F}) \to (\mathbb{R}^d,\mathcal{B}^d)$; then, \mathbb{P}_Y is a probability measure on \mathcal{B}^d , called the distribution of the random vector.

- 2. Let μ be a probability measure on $(\mathbb{R}^d, \mathcal{B}^d)$. Prove that there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random vector $Y : \Omega \to \mathbb{R}^d$ such that μ is the distribution of Y.
- 3. For a measure ν on $(\mathbb{R}, \mathcal{B})$, an atom is a point $x \in \mathbb{R}$ such that $\nu(\{x\}) > 0$.
 - (a) Let μ be a probability measure on $(\mathbb{R}, \mathcal{B})$. Prove that there exist measures μ_c, μ_a on \mathcal{B} such that $\mu = \mu_c + \mu_a$, and moreover μ_c has no atoms and μ_a is purely atomic, meaning that there exist $x_1, x_2, \ldots \in \mathbb{R}$ and $\alpha_1, \alpha_2, \ldots > 0$ such that $\mu_a = \sum_{n=1}^{\infty} \alpha_n \cdot \delta_{\{x_n\}}$. Hint: Use Exercise 2 from Tutorial 3.
 - (b) Prove that the measures μ_c , μ_a satisfying the properties of item (a) are uniquely determined.
- 4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where random variables X_1, X_2, \ldots and X are defined.
 - (a) Prove that $X_n \xrightarrow[\text{a.s.}]{n \to \infty} X$ (that is, X_n converges to X almost surely) if and only if

for all
$$\varepsilon > 0$$
, $\lim_{n_0 \to \infty} \mathbb{P} \left(\bigcup_{n \ge n_0} \{ \omega : |X_n(\omega) - X(\omega)| > \varepsilon \} \right) = 0.$

(b) We say X_n converges to X in probability if

for all
$$\varepsilon > 0$$
, $\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0$

(this is sometimes denoted as $X_n \xrightarrow[\mathbb{P}]{n \to \infty} X$). Prove that if X_n converges to X almost surely, then X_n converges to X in probability.

(c) Take as probability space the interval [0,1) with Borel σ -algebra \mathcal{B} and Lebesgue measure m. Let $X \equiv 0$. Consider the collection of all intervals of the form

$$I = i2^{-k} + [0, 2^{-k}), \quad k \in \{1, 2, \ldots\}, \ i \in \{0, \ldots, 2^k - 1\}.$$

This collection of intervals is countable, so we can enumerate them as I_1, I_2, \ldots . Then let $X_n = \mathbb{1}_{I_n}$. Prove that X_n converges to X in probability, but not almost surely.

(d) Prove that if X_n converges to X in probability, then there exists a subsequence X_{n_1}, X_{n_2}, \ldots converging to X almost surely.