Binary Operators

Definition

A binary operator '*' on a non-empty set S is a function $*: S \times S \to S$, where *(a,b) is typically denoted by a*b, or even ab (juxtaposition) when there is no ambiguity.

Thus, a binary operator `* on a set S must be:

- 1). Closed: $\forall a, b \in S, a * b \in S$.
- 2). Well-defined: $\forall a, b, c, d \in S, a * b = c \text{ and } a * b = d \implies c = d$.

Definition

Let '*' be a binary operator on a set S and let $H \subset S$. To say that '*' is an *induced* operation on H means that H is closed under '*': $\forall a, b \in H, a * b \in H$.

To count the number of possible operators for a set S, consider the following:

$$S = \{a, b\}$$

$$S = \{a, b, c\}$$

$$S = \{a,b,c,d\}$$

*	a	b	С	d	*	a	b	С	d	
a	aa	ab	ac	ad		4				-
b	ba	bb	bc	bd	b	4	4	4	4	$4^{16} = 4^{4^2}$ possibilities
С	ca	cb	cc	cd		4				
d	da	db	dc	dd	d	4	4	4	4	

In general, for |S| = n, there are n^{n^2} possible operations.

Definition

To say that a binary operator * on a set S is *commutative* means:

$$\forall a, b \in S, a * b = b * a$$

The table for a commutative binary operator must be symmetric:

In general, for |S|=n, there are $n^{\left\lceil \frac{n(n+1)}{2} \right\rceil}$ possible commutative operations.

Definition

To say that a binary operator * on a set S has an *identity* element e means:

$$\exists e \in S, \forall a \in S, e * a = a * e = a$$

In general, for |S| = n, there are $n^{(n-1)^2}$ possible operations when there is an identity element.

Combining cummutativity and identity:

In general, for |S|=n, there are $n^{\left[\frac{n(n-1)}{2}\right]}$ possible communitative operations when there is an identity element.

Definition

To say that a binary operator * on a set S is associative means:

$$\forall\, a,b,c\in S, (a*b)*c = a*(b*c)$$

Determining associativity is a bit more tedius:

Example

Let $S=\{e,a\}.$ The two possible operations are:

a	b	С	(a*b)*c	a*(b*c)	$(a \cdot b) \cdot c$	$a \cdot (b \cdot c)$
e	e	e	e	e	e	e
e	e	a	a	a	a	a
e	a	e	a	a	a	a
e	a	a	e	e	a	a
a	e	e	a	a	a	a
a	e	a	e	e	a	a
a	a	e	e	e	a	a
a	a	a	a	a	a	a

So an operator on a set with identity is always associative.

Theorem

Composition is associative.

Proof

Assume that f,g,h are binary operators on a set S. Assume $x \in S.$

$$[(f \circ g) \circ h](x) = (f \circ g)(h(x)) = f(g(h(x)))$$
$$[f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x)))$$

However, composition is not necessarily commutative.

Example

Let $S = \{a,b\}$ and define the following functions:

The table is not symmetric, and thus the composition is not commutative.