Лабораторная работа №5. «Численное решение нелинейных уравнений»

Ларин Егор Сергеевич, 4 группа $13~{\rm декабр} {\rm g}~2021~{\rm r}.$

1 Постановка задачи

Цель – изучить основные методы решения нелинейных уравнений: отделить с помощью метода дихотомии корень, который находится на наименьшем расстоянии от начала координат. Найти отделенный корень с помощью МПИ и метода Ньютона.

2 Теория

2.1 МПИ

$$x_{k+1} = \varphi(x_k), k = 0, 1, \dots$$

$$\varphi(x) = x + Cf(x)$$

2.2 Метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f^{(1)}(x_0)}, k = 0, 1, \dots$$

2.3 Вывод неизвестных

Рис. 1: График f(x)

$$f(x) = 2^{x} - x^{2} - 0.5$$
$$f^{(1)}(x) = 2^{x} \ln 2 - 2x$$

$$f^{(1)}(x) = 0 \Rightarrow x_1 \approx 3.21, x_2 \approx 0.48$$

$$f^{(1)}(0) > 0 \Rightarrow f^{(1)}(x) > 0, \forall x \in \mathbf{I} = \left[-1, \frac{1}{3}\right]$$

$$\varphi(x) = x + Cf(x), C \in \left[-\frac{2}{M}; 0 \right]$$

$$f^{(1)}(x) < \ln 2, \forall x \in \mathbf{I} \Rightarrow M = \ln 2$$

В дальнейшем будет использоваться $C = -\frac{1}{2}$.

В методе Ньютона будет использоваться $x_0 \in \mathbf{I}$.

3 Листинг программы

```
(ns nonlinear.core
  (:gen-class)
(require '[oz.core : as oz])
(def pow
 "A_wrapper_for_Java_pow_function_from_Math."
 \#(Math/pow \%1 \%2))
(def abs
  "A_wrapper_for_Java_abs_function_from_Math."
 \#(Math/abs \%)
(\text{def eps (pow } 10 - 7))
(def log
  "Calculate_logarithm_with_a_base_of_e."
 #(Math/log %))
(defn dichotomy [f a b n]
  "Find_interval_[a, b]_with_dichotomy."
  (let [c (/ (+ a b) 2)
        diff(-ba)
    (println n a (f a) b (f b) diff)
    (if (> diff (* 2 0.1))
      (let [[a b] (if (< (* (f a) (f c)) 0) [a c] [c b])]
        (dichotomy f a b (inc n)))
      [a b])))
(defn mpi [f x n]
  (let [y (f x)]
        diff (abs (-xy))
    (println n x y diff)
    (if (> diff eps)
      (mpi f y (inc n))
     y)))
(defn newton [f x n]
  (let [y (-x (f x))]
        diff (abs (- x y))]
    (println n x y diff)
    (if (> diff eps)
      (newton f y (inc n))
     y)))
(defn f [x]
```

```
"A_given_function_f."
  (- (pow 2 x) (+ (pow x 2) 0.5)))
(defn create-plot [f a b]
  (oz/view! {:data {:values
                       (\text{for } [x \text{ } (\text{range a b } (\text{pow } 10 - 1))] \{:x \ x : y \ (f \ x) \}) \}
               : width 300
               : height 300
               : encoding \ \{: x \ \{: field \ "x"
                                :type "quantitative"
                               : scale "x"}
                           :y {:field "y"
                                :type "quantitative"
                                :scale "y"}}
               :mark {:type "line" :interpolate "monotone"}}))
(dichotomy f -100 100 0)
(oz/start-server!)
(create-plot f -2 2)
(mpi
  \#(+\% (* -1/2 (- (pow 2 \%) (pow \% 2) 1/2)))
  -1 \ 0)
(newton
  \#(/ (- (pow 2 \%) (pow \% 2) 1/2)
     (-(*(pow 2 -2/3) (log 2)) (* 2 -2/3)))
  -1 \ 0)
```

4 Результаты вычислительного эксперимента

k	mpi		newton	
	x_k	$ x_k - x_{k+1} $	x_k	$ x_k - x_{k+1} $
0	-1	0.5	-1	0.5649753598925893
1	-0.5	0.021446609406726214	-0.4350246401074107	0.02849435365279729
2	-0.4785533905932738	0.005658220066370179	-0.463518993760208	0.00585614541706686
3	-0.4728951705269036	0.0015563076926037867	-0.46937513917727486	0.0011098047670681788
4	-0.4713388628342998	4.327095720089713E-4	-0.47048494394434304	2.0671130340982335E-4
5	-0.47090615326229085	1.2066462743859363E-4	-0.47069165524775286	3.8374784526729044E-5
6	-0.47078548863485226	3.367592504910366E-5	-0.4707300300322796	7.119669243493831E-6
7	-0.47075181270980315	9.400660140768125E-6	-0.4707371497015231	1.32076011832849E-6
8	-0.4707424120496624	2.624368818815448E-6	-0.4707384704616414	2.4500719941755733E-7
9	-0.47073978768084357	7.326543258190377E-7	-0.47073871546884083	4.5449805918806874E-8
10	-0.47073905502651775	2.0453871618641983E-7		
11	-0.47073885048780156	5.710215994492174E-8		

n	a_k	$f(a_k)$	b_k	$f(b_k)$	$b_k - a_k$
0	-100	-10000.5	100	1.2676506002282294E30	200
1	-100	-10000.5	0	0.5	100
2	-50	-2500.5	0	0.5	50
3	-25	-625.4999999701977	0	0.5	25
4	-25/2	-156.7498273665085	0	0.5	25/2
5	-25/4	-39.54936099351166	0	0.5	25/4
6	-25/8	-10.150999494599416	0	0.5	25/8
7	-25/16	-2.602842363265777	0	0.5	25/16
8	-25/32	-0.5284891331112113	0	0.5	25/32
9	-25/32	-0.5284891331112113	-25/64	0.11021118474726921	25/64
10	-75/128	-0.17710648036466925	-25/64	0.11021118474726921	25/128

5 Выводы

В ходе вычислительного эксперимента была установлена зависимость между количеством итераций и функцией $\varphi(x)$, которая используется при вычислении приближенного значения корня x^* . С помощью теоретической справки была подобрана необходимая константа C: при отделении корня с помощью графика и с помощью метода дихотомии.