In [24]: # Data cleaning including missing values, outliers and multi-collinearity.

import pandas as pd
import numpy as np
import seaborn as sns

import matplotlib.pyplot as plt

 $\textbf{from} \ \ \text{statsmodels.stats.outliers_influence} \ \ \textbf{import} \ \ \text{variance_inflation_factor}$

from sklearn.preprocessing import StandardScaler

In [25]: df = pd.read_csv("Fraud.csv")

In [26]: **df**

Out[26]:

:		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	n
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M19
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M20
	2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C5
	3	1	CASH_OUT	181.00	C840083671	181.0	0.00	С
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M12
	•••							
	28292	8	CASH_OUT	7270.37	C457003860	0.0	0.00	C2
	28293	8	CASH_OUT	113043.31	C1845952463	0.0	0.00	C4
	28294	8	CASH_OUT	89346.62	C140193335	0.0	0.00	C13
	28295	8	CASH_OUT	138651.85	C297851161	0.0	0.00	C10
	28296	8	CASH_OUT	61553.92	C1612091270	0.0	0.00	(

28297 rows × 11 columns

In [27]: print(df.info())

<class 'pandas.core.frame.DataFrame'> RangeIndex: 28297 entries, 0 to 28296 Data columns (total 11 columns):

```
# Column Non-Null Count Dtype
--- -----
                -----
                28297 non-null int64
0 step
1 type
                28297 non-null object
               28297 non-null float64
28297 non-null object
2 amount
3 nameOrig
4 oldbalanceOrg 28297 non-null float64
5 newbalanceOrig 28297 non-null float64
6 nameDest 28297 non-null object
7 oldbalanceDest 28297 non-null float64
8 newbalanceDest 28297 non-null float64
9 isFraud
             28296 non-null float64
10 isFlaggedFraud 28296 non-null float64
dtypes: float64(7), int64(1), object(3)
```

memory usage: 2.4+ MB

None

```
In [28]: print(df.describe())
```

	step	amount	oldbalanceOrg	newbalanceOrig \	
count	28297.000000	2.829700e+04	2.829700e+04	2.829700e+04	
mean	6.508252	1.357405e+05	7.667026e+05	7.823551e+05	
std	2.291090	3.013167e+05	2.126123e+06	2.166615e+06	
min	1.000000	1.770000e+00	0.000000e+00	0.000000e+00	
25%	6.000000	5.966520e+03	0.000000e+00	0.000000e+00	
50%	8.000000	1.950669e+04	1.963654e+04	3.682140e+03	
75%	8.000000	1.601022e+05	1.386575e+05	1.407606e+05	
max	8.000000	1.000000e+07	2.235231e+07	2.246600e+07	
	oldbalanceDes	t newbalanceD	est isFra	ud isFlaggedFraud	
count	2.829700e+0	4 2.829700e	+04 28296.0000	00 28296.0	
mean	8.483811e+0	5 1.19130 6e	+06 0.0029	69 0.0	
std	2.513869e+0	6 3.106440e	+06 0.0544	0.0	
min	0.000000e+0	0.000000e	+00 0.0000	0.0	
25%	0.000000e+0	0.000000e	+00 0.0000	0.0	
50%	0.000000e+0	0.000000e	+00 0.0000	0.0	
75%	3.654323e+0	5 6.670935e	+05 0.0000	0.0	
max	2.495524e+0	7 2.878359e	+07 1.0000	0.0	
	-/46				

In [29]: print(df.head())

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	,
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	
4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	
	na	meDest ol	dbalanceDe	st newbalanc	eDest isFraud	isFlaggedFraud	
0	M1979	787155	0	.0	0.0 0.0	0.0	
1	M2044282225		0	.0	0.0 0.0	0.0	
2	C553264065		0	.0	0.0 1.0	0.0	
3	C38997010		21182	.0	0.0 1.0	0.0	
4	M1230701703		0	.0	0.0 0.0	0.0	

```
In [30]: # Check missing values
         print("\nMissing Values:\n", df.isnull().sum())
```

```
Missing Values:
                           0
         step
                          0
        type
                          0
        amount
        nameOrig
                          0
        oldbalanceOrg
                          0
        newbalanceOrig
                          0
        nameDest
        oldbalanceDest
                          0
        newbalanceDest
                          0
        isFraud
                          1
        isFlaggedFraud
        dtype: int64
In [31]: # Option 1: Drop rows with missing values (if few)
         df_cleaned = df.dropna()
In [32]: # Visualize outliers using boxplot
         numeric_cols = df_cleaned.select_dtypes(include=np.number).columns
In [33]: for col in numeric_cols:
             sns.boxplot(x=df_cleaned[col])
             plt.title(f'Boxplot of {col}')
             plt.show()
```

Boxplot of step

Boxplot of amount

Boxplot of oldbalanceOrg

Boxplot of newbalanceOrig

Boxplot of oldbalanceDest

Boxplot of newbalanceDest

Boxplot of isFraud

Boxplot of isFlaggedFraud


```
In [34]: # Remove outliers using IQR
         def remove_outliers_iqr(data, column):
             Q1 = data[column].quantile(0.25)
             Q3 = data[column].quantile(0.75)
             IQR = Q3 - Q1
             lower = Q1 - 1.5 * IQR
             upper = Q3 + 1.5 * IQR
             return data[(data[column] >= lower) & (data[column] <= upper)]</pre>
In [35]: # Apply outlier removal for numeric columns
         for col in numeric_cols:
             df_cleaned = remove_outliers_iqr(df_cleaned, col)
In [36]: # 3. Check for Multicollinearity (VIF)
         # Standardize numeric features
         scaler = StandardScaler()
         df_scaled = pd.DataFrame(scaler.fit_transform(df_cleaned[numeric_cols]), columns
In [37]: # Calculate VIF
         vif_data = pd.DataFrame()
         vif_data["Feature"] = df_scaled.columns
         vif_data["VIF"] = [variance_inflation_factor(df_scaled.values, i) for i in range
In [38]: print("\nVIF (Variance Inflation Factor):\n", vif_data)
```

```
VIF (Variance Inflation Factor):
                Feature VIF
                  step 1.007076
       0
       1
                 amount 1.638127
       2 oldbalanceOrg 5.723853
       3 newbalanceOrig 5.657809
       4 oldbalanceDest 1.269601
       5 newbalanceDest
       6
          isFraud
                           NaN
       7 isFlaggedFraud
                           NaN
In [39]: # Optional: Drop features with high VIF (>10)
        high_vif_cols = vif_data[vif_data["VIF"] > 10]["Feature"].tolist()
        df_final = df_cleaned.drop(columns=high_vif_cols)
In [40]: # Final cleaned data
        print("\nFinal Cleaned Data Shape:", df final.shape)
        print(df_final.head())
       Final Cleaned Data Shape: (9903, 11)
            step type amount nameOrig oldbalanceOrg newbalanceOrig \
             3 PAYMENT 20971.00 C1415812333 19462.0
       3722
                                                                     0.00
       3723
              3 PAYMENT 27659.67 C647218712
                                                  37057.0
                                                                 9397.33
              3 PAYMENT 501.11 C174999703
                                                   8934.5
                                                                 8433.39
       3725
              3 PAYMENT 11866.89 C431939256
                                                  10565.0
       3726
                                                                     0.00
       3727
              3 PAYMENT 2108.36 C1677115089
                                                       0.0
                                                                     0.00
              nameDest oldbalanceDest newbalanceDest isFraud isFlaggedFraud
       3722 M1715606187
                        0.0
                                              0.0
                                                    0.0
                                                                       0.0
       3723 M876864630
                                0.0
                                               0.0
                                                       0.0
                                                                      0.0
       3725 M854977732
                                0.0
                                               0.0
                                                       0.0
                                                                     0.0
       3726 M463759298
                                0.0
                                               0.0
                                                       0.0
                                                                       0.0
       3727 M2130242983
                                  0.0
                                                0.0
                                                       0.0
                                                                       0.0
In [41]: #Demonstrate the performance of the model by using best set of tools.
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import classification_report, confusion_matrix, roc_auc_sco
        from imblearn.over_sampling import SMOTE
        import seaborn as sns
        import matplotlib.pyplot as plt
In [42]: # Load data
        df = pd.read_csv("Fraud.csv")
In [43]: # Drop ID-like columns that won't help
        df = df.drop(columns=["nameOrig", "nameDest"], errors='ignore')
In [44]: df
```

ut[44]:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	n
	0	1	PAYMENT	9839.64	170136.0	160296.36	0.00	
	1	1	PAYMENT	1864.28	21249.0	19384.72	0.00	
	2	1	TRANSFER	181.00	181.0	0.00	0.00	
	3	1	CASH_OUT	181.00	181.0	0.00	21182.00	
	4	1	PAYMENT	11668.14	41554.0	29885.86	0.00	
	•••		•••	•••				
	42266	9	CASH_OUT	195364.06	0.0	0.00	506957.59	
	42267	9	CASH_OUT	546075.62	0.0	0.00	5075471.31	
	42268	9	CASH_OUT	111003.87	0.0	0.00	2533159.94	
	42269	9	CASH_OUT	101025.44	0.0	0.00	156646.32	
	42270	9	CASH_OUT	271441.28	0.0	0.00	NaN	
	∆2271 r	JWS X	9 columns					

42271 rows × 9 columns

```
In [45]: # Encode 'type' column
         df['type'] = LabelEncoder().fit_transform(df['type'])
In [46]: # Define features and target
         X = df.drop(['isFraud', 'isFlaggedFraud'], axis=1)
         y = df['isFraud']
In [47]: # Combine X and y into one DataFrame temporarily
         df_combined = pd.concat([X, y], axis=1)
         # Drop rows where isFraud is missing
         df_combined = df_combined.dropna(subset=["isFraud"])
         # Separate again
         X = df_combined.drop("isFraud", axis=1)
         y = df_combined["isFraud"]
In [48]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, stratify=y, random_state=42
In [49]: # Scale features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [51]: import pandas as pd
         from sklearn.model_selection import train_test_split, GridSearchCV
         from sklearn.preprocessing import LabelEncoder, StandardScaler
         from sklearn.metrics import accuracy_score, classification_report
```

```
from sklearn.naive_bayes import GaussianNB
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.svm import SVC
         from sklearn.neural_network import MLPClassifier
         from imblearn.over_sampling import SMOTE
         import warnings
         warnings.filterwarnings("ignore")
In [50]: # Balance data using SMOTE
         sm = SMOTE(random_state=42)
         X_train_res, y_train_res = sm.fit_resample(X_train_scaled, y_train)
In [53]: best_model_name = max(accuracies, key=accuracies.get)
         print(f"\n \begin{align*} Best Model: {best_model_name}")
        Best Model: Decision Tree
In [55]: # Define models
         models = {
              "Decision Tree": DecisionTreeClassifier(),
              "SVC": SVC(probability=True),
             "Naive Bayes": GaussianNB(),
             "MLP": MLPClassifier(max_iter=300)
         }
         accuracies = {}
         for name, model in models.items():
             model.fit(X_train_res, y_train_res)
             acc = accuracy_score(y_test, model.predict(X_test_scaled))
             accuracies[name] = acc
             print(f"\n {name} Accuracy: {acc:.4f}")
             print(classification_report(y_test, model.predict(X_test_scaled)))
         # Pick the best model by accuracy
         # best model name = max(accuracies, key=accuracies.get)
         # print(f"\n \begin{aligned} Best Model: {best model name}")
         print(accuracies)
         # Define GridSearchCV param grid based on best model
         if best_model_name == "Decision Tree":
             model = DecisionTreeClassifier()
              param grid = {
                  "max_depth": [5, 10, 15],
                  "min_samples_split": [2, 5, 10]
              }
         elif best model name == "SVC":
              model = SVC(probability=True)
              param_grid = {
                  "C": [0.1, 1, 10],
                  "kernel": ["linear", "rbf"]
              }
         elif best_model_name == "MLP":
              model = MLPClassifier(max_iter=300)
              param_grid = {
                  "hidden_layer_sizes": [(50,), (100,), (100, 50)],
                  "activation": ["relu", "tanh"],
                  "alpha": [0.0001, 0.001]
              }
```

```
elif best_model_name == "Naive Bayes":
    model = GaussianNB()
    param_grid = {} # no tunable hyperparameters
# Run GridSearchCV if applicable
if param_grid:
   print(f"\n Tuning {best_model_name}...")
   grid = GridSearchCV(model, param_grid, cv=3, scoring='accuracy', n_jobs=1)
   grid.fit(X_train_res, y_train_res)
   best_model = grid.best_estimator_
   print(f" Best Params: {grid.best_params_}")
else:
    best_model = model
    best_model.fit(X_train_res, y_train_res)
# Final evaluation
final_pred = best_model.predict(X_test_scaled)
final_acc = accuracy_score(y_test, final_pred)
print(f"\n Final Accuracy (after tuning): {final_acc:.4f}")
print(classification_report(y_test, final_pred))
```

Decision Tre	e Accuracy:	0 9962					
Decision in	precision		f1-score	support			
0.0	1.00	1.00 0.68	1.00 0.45	8435			
1.0	0.33	0.08	0.45	19			
accuracy			1.00	8454			
macro avg	0.67	0.84	0.72	8454			
weighted avg	1.00	1.00	1.00	8454			
SVC Accuracy	v: 0.9347						
·	precision	recall	f1-score	support			
0.0	1.00	0.93	0.97	8435			
1.0	0.03	0.89	0.06	19			
accuracy			0.93	8454			
macro avg	0.51	0.91	0.51	8454			
weighted avg	1.00	0.93	0.96	8454			
Naive Baves	Accuracy: 0.	2459					
u_ve zuyes	precision		f1-score	support			
0.0	1.00	0.24	0.39	8435			
1.0	0.00	1.00	0.01	19			
accuracy			0.25	8454			
macro avg	0.50	0.62	0.20	8454			
weighted avg	1.00	0.25	0.39	8454			
MLP Accuracy	v: 0.9860						
	precision	recall	f1-score	support			
0.0	1 00	0.99	0.99	8435			
1.0			0.22	19			
accuracy			0.99				
macro avg			0.61				
weighted avg	1.00	0.99	0.99	8454			
{'Decision Tr 0.24591909155					3687012,	'Naive Ba	ayes':
	,			- ,			
Tuning Decis Best Params:	sion Tree {'max_depth	n': 15, 'm	in_samples	_split': 2}			
Final Accura	ncy (after tu			cuppont			
	precision	recarr	LT-2COL6	Support			
0.0	1.00	0.99	1.00	8435			
1.0	0.25		0.37	19			
accuracy			0.99				
macro avg		0.87	0.68	8454			
weighted avg	1.00	0.99	1.00	8454			