Health Care

In [38]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

1. Retrieving DataSets

In [85]:

```
#Population by age and sex
pop_agesex=pd.read_csv("F:/PythonTraining/Python_CaseStudy/PCS_HealthCare/Popul_estim_sex_a
#Population by race and sex
pop_racesex=pd.read_csv("F:/PythonTraining/Python_CaseStudy/PCS_HealthCare/Popul_estim_sex_
#Flu State weeks
flu_week=pd.read_csv("F:/PythonTraining/Python_CaseStudy/PCS_HealthCare/flu_states_weeks.cs
#SeasonFlue
flu_season=pd.read_csv("F:/PythonTraining/Python_CaseStudy/PCS_HealthCare/StateDatabySeason
```

2. Statistics Population by Age

In [6]:

```
pop_agesex.head()
```

Out[6]:

	STATE_ABR	SUMLEV	REGION	DIVISION	STATE	NAME	SEX	AGE	ESTBASE2010_CIV	F
0	US	10	0	0	0	United States	0	0	3944160	
1	US	10	0	0	0	United States	0	1	3978090	
2	US	10	0	0	0	United States	0	2	4096939	
3	US	10	0	0	0	United States	0	3	4119051	
4	US	10	0	0	0	United States	0	4	4063186	
4										•

```
In [22]:
pop_agesex.columns
Out[22]:
Index(['STATE_ABR', 'SUMLEV', 'REGION', 'DIVISION', 'STATE', 'NAME', 'SEX',
       'AGE', 'ESTBASE2010_CIV', 'POPEST2010_CIV', 'POPEST2011_CIV',
       'POPEST2012_CIV', 'POPEST2013_CIV', 'POPEST2014_CIV', 'POPEST2015_CI
۷',
       'POPEST2016_CIV', 'POPEST2017_CIV'],
      dtype='object')
In [21]:
#Checking unique values for age
print("The unique values are: ", len(pop_agesex.AGE.unique()))
pop_agesex.AGE.unique()
The unique values are: 87
Out[21]:
                   2,
array([
              1,
                        3,
                             4,
                                  5,
                                       6,
                                            7,
                                                  8,
                                                           10,
                                                                11,
                                                                     12,
                                                       9,
                            17,
                                      19,
                                                 21,
        13,
             14,
                  15,
                       16,
                                 18,
                                            20,
                                                      22,
                                                           23,
                                                                24,
                                                                     25,
                  28,
                                            33,
                                                      35,
                                                           36,
             27,
                       29,
                            30,
                                 31,
                                      32,
                                                 34,
                                                                37,
                                                                     38,
        26,
        39,
             40,
                 41,
                      42,
                            43,
                                 44,
                                      45,
                                           46,
                                                 47,
                                                      48,
                                                           49,
                                                               50,
                                                                     51,
        52,
             53, 54, 55,
                            56,
                                 57,
                                      58,
                                            59,
                                                 60,
                                                      61,
                                                           62,
                                                               63,
                                                                     64,
        65,
                  67, 68, 69,
                                 70,
                                      71,
                                           72,
                                                 73,
                                                     74,
                                                           75,
                                                                76,
             66,
                                                                     77,
                                           85, 999], dtype=int64)
        78,
             79,
                  80,
                      81, 82,
                                 83,
                                      84,
In [26]:
#Subset of dataset
pop_agesex_sub1=pop_agesex[['NAME', 'SEX', 'AGE', 'ESTBASE2010_CIV', 'POPEST2010_CIV', 'POP
                 'POPEST2012_CIV', 'POPEST2013_CIV', 'POPEST2014_CIV', 'POPEST2015_CIV', 'F
```

2.1 Population by age and sex basic statistics

pop_agesex_sub1=pop_agesex_sub1.set_index("NAME")

#Setting index

In [42]:

pop_agesex_sub1.describe()

Out[42]:

	SEX	AGE	ESTBASE2010_CIV	POPEST2010_CIV	POPEST2011_CIV	РО
count	13572.000000	13572.000000	1.357200e+04	1.357200e+04	1.357200e+04	
mean	1.000000	53.494253	1.812720e+05	1.816111e+05	1.829806e+05	
std	0.816527	104.905228	3.319803e+06	3.326021e+06	3.351248e+06	
min	0.000000	0.000000	3.880000e+02	3.850000e+02	3.780000e+02	
25%	0.000000	21.000000	1.093475e+04	1.098175e+04	1.106625e+04	
50%	1.000000	43.000000	2.840700e+04	2.851500e+04	2.879250e+04	
75%	2.000000	65.000000	6.280075e+04	6.280300e+04	6.348950e+04	
max	2.000000	999.000000	3.075280e+08	3.081032e+08	3.104266e+08	
4						•

2.2 Population by age and sex correlations

In [40]:

pop_agesex_sub1.corr()

Out[40]:

	SEX	AGE	ESTBASE2010_CIV	POPEST2010_CIV	POPEST2011_CIV
SEX	1.000000	0.000000	-0.016391	-0.016392	-0.016395
AGE	0.000000	1.000000	0.241865	0.241876	0.241915
ESTBASE2010_CIV	-0.016391	0.241865	1.000000	1.000000	0.999989
POPEST2010_CIV	-0.016392	0.241876	1.000000	1.000000	0.999991
POPEST2011_CIV	-0.016395	0.241915	0.999989	0.999991	1.000000
POPEST2012_CIV	-0.016400	0.241959	0.999979	0.999981	0.999991
POPEST2013_CIV	-0.016404	0.242000	0.999967	0.999969	0.999981
POPEST2014_CIV	-0.016409	0.242038	0.999953	0.999956	0.999969
POPEST2015_CIV	-0.016415	0.242072	0.999936	0.999940	0.999956
POPEST2016_CIV	-0.016418	0.242114	0.999915	0.999920	0.999939
POPEST2017_CIV	-0.016422	0.242161	0.999895	0.999899	0.999921
4					•

In [39]:

```
#The matrix of correlation
fig = plt.figure(figsize=(10,7), dpi=70)
sns.heatmap(pop_agesex_sub1.corr(), annot=True)
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x268d3622cf8>

3. Statistics Population and Race

In [93]:

pop_racesex.head()

Out[93]:

/ME	SEX	ORIGIN	RACE	AGE	CENSUS2010POP	ESTIMATESBASE2010	POPESTIMATE2010	PC
ıma	0	0	1	0	37991	37991	37794	
зma	0	0	1	1	38150	38150	38035	
зmа	0	0	1	2	39738	39738	39576	
зmа	0	0	1	3	39827	39828	39808	
зmа	0	0	1	4	39353	39353	39495	
4								•

```
In [45]:
```

3.1 Population by race and sex basic statistics

```
In [52]:
```

```
pop_racesex_sub1.describe()
```

Out[52]:

	SEX	ORIGIN	RACE	AGE	CENSUS2010POP	ESTIMA
count	236844.000000	236844.000000	236844.000000	236844.000000	236844.000000	2
mean	1.000000	1.000000	3.500000	42.500000	5214.327372	
std	0.816498	0.816498	1.707829	24.824436	18111.535290	
min	0.000000	0.000000	1.000000	0.000000	0.000000	
25%	0.000000	0.000000	2.000000	21.000000	29.000000	
50%	1.000000	1.000000	3.500000	42.500000	200.000000	
75%	2.000000	2.000000	5.000000	64.000000	1767.000000	
max	2.000000	2.000000	6.000000	85.000000	499596.000000	۷
4						>

3.2 Population by age and sex correlations

In [54]:

pop_racesex_sub1.corr()

Out[54]:

POPESTIMATE2010	POPESTIMATE2011	POPESTIMATE2012	POPESTIMATE2013	POPESTIMATE20
-0.086745	-0.087028	-0.087335	-0.087664	-0.0879
-0.147492	-0.147504	-0.147561	-0.147663	-0.1477
-0.350015	-0.349902	-0.349795	-0.349774	-0.3496
-0.060481	-0.058446	-0.056304	-0.054284	-0.0522
0.999943	0.998744	0.997671	0.996506	0.9953
0.999943	0.998744	0.997672	0.996506	0.9953
1.000000	0.998997	0.997930	0.996798	0.9956
0.998997	1.000000	0.999012	0.997970	0.9968
0.997930	0.999012	1.000000	0.999038	0.9980
0.996798	0.997970	0.999038	1.000000	0.9990
0.995673	0.996838	0.998008	0.999053	1.0000
0.994204	0.995711	0.996882	0.998026	0.9990
0.992421	0.994265	0.995772	0.996911	0.9980
0.990586	0.992542	0.994379	0.995835	0.9969
4				>

In [55]:

```
#The matrix of correlation
fig = plt.figure(figsize=(10,7), dpi=70)
sns.heatmap(pop_racesex_sub1.corr(), annot=True)
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x268d42adf60>

4. Statistics Flu by Week

In [56]:

flu_week.head()

Out[56]:

:GION TYPE	REGION	YEAR	WEEK	WEIGHTED ILI	%UNWEIGHTED ILI	AGE 0-4	AGE 25- 49	AGE 25- 64	AGE 5-24	AGE 50- 64	AGE 65
States	Alabama	2010	40	Х	2.13477	Х	Х	Х	Х	Х	×
States	Alaska	2010	40	X	0.875146	Х	Х	Х	Х	Х	×
States	Arizona	2010	40	X	0.674721	Х	Х	Х	Х	Х	×
States	Arkansas	2010	40	X	0.696056	Х	Х	Х	Х	Х	×
States	California	2010	40	X	1.95412	Х	Х	Х	Х	Х	×
4											•

In [75]:

#Transforming to numeric

flu_week.ILITOTAL=pd.to_numeric(flu_week.ILITOTAL, errors="coerce")

flu_week["NUM. OF PROVIDERS"]=pd.to_numeric(flu_week["NUM. OF PROVIDERS"], errors="coerce")

flu_week["TOTAL PATIENTS"]=pd.to_numeric(flu_week["TOTAL PATIENTS"], errors="coerce")

```
In [77]:
```

```
flu_week.dtypes
Out[77]:
REGION TYPE
object
REGION
object
YEAR
int64
WEEK
int64
% WEIGHTED ILI
object
%UNWEIGHTED ILI
object
AGE 0-4
object
AGE 25-49
object
AGE 25-64
object
AGE 5-24
object
AGE 50-64
object
AGE 65
object
ILITOTAL
float64
NUM. OF PROVIDERS
float64
TOTAL PATIENTS
float64
PERCENTAGE OF VISITS FOR INFLUENZA-LIKE-ILLNESS REPORTED BY SENTINEL PROVIDE
```

float64

Unnamed: 16

dtype: object

4.1 Statistics Flu by Week

In [79]:

flu_week.describe()

Out[79]:

	YEAR	WEEK	ILITOTAL	NUM. OF PROVIDERS	TOTAL PATIENTS	PERCENTAGE OF VISITS FOR INFLUENZA- LIKE-ILLNESS REPORTED BY SENTINEL PROVIDERS
count	23768.000000	23768.000000	23324.000000	23324.000000	23324.000000	0.0
mean	2014.535342	26.531807	300.248328	33.008832	14203.332190	NaN
std	2.473321	15.367787	620.131337	30.265550	19311.350886	NaN
min	2010.000000	1.000000	0.000000	0.000000	0.000000	NaN
25%	2012.000000	13.000000	21.000000	13.000000	3129.000000	NaN
50%	2015.000000	26.500000	86.000000	23.000000	6445.000000	NaN
75%	2017.000000	40.000000	291.000000	45.000000	16936.000000	NaN
max	2019.000000	53.000000	11452.000000	214.000000	121056.000000	NaN
4						•

In [80]:

flu_week.corr()

Out[80]:

	YEAR	WEEK	ILITOTAL	NUM. OF PROVIDERS	TOTAL PATIENTS	PERCENTAGE OF VISITS FOR INFLUENZA- LIKE-ILLNESS REPORTED BY SENTINEL PROVIDERS	Unname _,
YEAR	1.000000	-0.139441	0.148271	0.090003	0.091220	NaN	Na
WEEK	-0.139441	1.000000	-0.131352	-0.015669	-0.016282	NaN	Nε
ILITOTAL	0.148271	-0.131352	1.000000	0.594892	0.749716	NaN	Nε
NUM. OF PROVIDERS	0.090003	-0.015669	0.594892	1.000000	0.730400	NaN	Na
TOTAL PATIENTS	0.091220	-0.016282	0.749716	0.730400	1.000000	NaN	Na
PERCENTAGE OF VISITS FOR INFLUENZA- LIKE-ILLNESS REPORTED BY SENTINEL PROVIDERS	NaN	NaN	NaN	NaN	NaN	NaN	Nε
Unnamed: 16	NaN	NaN	NaN	NaN	NaN	NaN	Nε
4							•

In [81]:

```
#The matrix of correlation
fig = plt.figure(figsize=(10,7), dpi=70)
sns.heatmap(flu_week.corr(), annot=True)
```

Out[81]:

<matplotlib.axes._subplots.AxesSubplot at 0x268d7e51898>

In [89]:

flu_week.YEAR.unique()

Out[89]:

array([2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019], dtype=int64)

5. Statistics Flu by Season

```
In [86]:
```

```
flu_season.head()
```

Out[86]:

	STATENAME	URL	WEBSITE	ACTIVITY LEVEL	ACTI Li L/
0	Alaska	http://dhss.alaska.gov/dph/Epi/id/Pages/influe	Influenza Surveillance Report	Level 1	Mi
1	Arizona	http://www.azdhs.gov/phs/oids/epi/flu/index.htm	Influenza & RSV Surveillance	Level 1	Mi
2	Arkansas	http://www.healthy.arkansas.gov/programs-servi	Communicable Disease and Immunizations	Level 6	Mod
3	California	https://www.cdph.ca.gov/Programs/CID/DCDC/Page	Influenza (Flu)	Level 1	Mi
4	Colorado	https://www.colorado.gov/pacific/cdphe/influenza	Influenza Surveillance	Level 1	Mi
4					•

Auxiliar table to join tables and perform statistical analysis

5. Joint Analysis

```
In [95]:
```

```
In [87]:
```

```
flu_week.REGION.unique()
```

Out[87]:

In [105]:

pop_racesex2=pop_racesex.groupby("NAME").sum()
pop_racesex2

Out[105]:

	SUMLEV	REGION	DIVISION	STATE	SEX	ORIGIN	RACE	AGE	CENSUS2
NAME									
Alabama	185760	13932	27864	4644	4644	4644	16254	197370	1
Alaska	185760	18576	41796	9288	4644	4644	16254	197370	:
Arizona	185760	18576	37152	18576	4644	4644	16254	197370	2
Arkansas	185760	13932	32508	23220	4644	4644	16254	197370	1
California	185760	18576	41796	27864	4644	4644	16254	197370	14!
Colorado	185760	18576	37152	37152	4644	4644	16254	197370	2
Connecticut	185760	4644	4644	41796	4644	4644	16254	197370	1,
Delaware	185760	13932	23220	46440	4644	4644	16254	197370	;
District of Columbia	185760	13932	23220	51084	4644	4644	16254	197370	:
Florida	185760	13932	23220	55728	4644	4644	16254	197370	7:
Georgia	185760	13932	23220	60372	4644	4644	16254	197370	3
Hawaii	185760	18576	41796	69660	4644	4644	16254	197370	!
Idaho	185760	18576	37152	74304	4644	4644	16254	197370	(
Illinois	185760	9288	13932	78948	4644	4644	16254	197370	5
Indiana	185760	9288	13932	83592	4644	4644	16254	197370	2
lowa	185760	9288	18576	88236	4644	4644	16254	197370	1:
Kansas	185760	9288	18576	92880	4644	4644	16254	197370	1
Kentucky	185760	13932	27864	97524	4644	4644	16254	197370	1
Louisiana	185760	13932	32508	102168	4644	4644	16254	197370	11
Maine	185760	4644	4644	106812	4644	4644	16254	197370	!
Maryland	185760	13932	23220	111456	4644	4644	16254	197370	2:
Massachusetts	185760	4644	4644	116100	4644	4644	16254	197370	21
Michigan	185760	9288	13932	120744	4644	4644	16254	197370	3!
Minnesota	185760	9288	18576	125388	4644	4644	16254	197370	2
Mississippi	185760	13932	27864	130032	4644	4644	16254	197370	1
Missouri	185760	9288	18576	134676	4644	4644	16254	197370	2;
Montana	185760	18576	37152	139320	4644	4644	16254	197370	;
Nebraska	185760	9288	18576	143964	4644	4644	16254	197370	٠
Nevada	185760	18576	37152	148608	4644	4644	16254	197370	10
New Hampshire	185760	4644	4644	153252	4644	4644	16254	197370	4
New Jersey	185760	4644	9288	157896	4644	4644	16254	197370	3:
New Mexico	185760	18576	37152	162540	4644	4644	16254	197370	ŧ

	SUMLEV	REGION	DIVISION	STATE	SEX	ORIGIN	RACE	AGE	CENSUS2
NAME									
New York	185760	4644	9288	167184	4644	4644	16254	197370	7
North Carolina	185760	13932	23220	171828	4644	4644	16254	197370	3
North Dakota	185760	9288	18576	176472	4644	4644	16254	197370	4
Ohio	185760	9288	13932	181116	4644	4644	16254	197370	41
Oklahoma	185760	13932	32508	185760	4644	4644	16254	197370	1
Oregon	185760	18576	41796	190404	4644	4644	16254	197370	1
Pennsylvania	185760	4644	9288	195048	4644	4644	16254	197370	51
Rhode Island	185760	4644	4644	204336	4644	4644	16254	197370	4
South Carolina	185760	13932	23220	208980	4644	4644	16254	197370	11
South Dakota	185760	9288	18576	213624	4644	4644	16254	197370	;
Tennessee	185760	13932	27864	218268	4644	4644	16254	197370	2
Texas	185760	13932	32508	222912	4644	4644	16254	197370	100
Utah	185760	18576	37152	227556	4644	4644	16254	197370	1
Vermont	185760	4644	4644	232200	4644	4644	16254	197370	1
Virginia	185760	13932	23220	236844	4644	4644	16254	197370	3:
Washington	185760	18576	41796	246132	4644	4644	16254	197370	21
West Virginia	185760	13932	23220	250776	4644	4644	16254	197370	
Wisconsin	185760	9288	13932	255420	4644	4644	16254	197370	2:
Wyoming	185760	18576	37152	260064	4644	4644	16254	197370	
4									•

In []:

Notes: Check stack and unstack table

 $\verb| #http://www.datascience| madesimple.com/reshape-using-stack-unstack-function-pandas-python/| for the contract of the cont$

In []:

Next Steps.....

In []:

In []:

In []:

In []:

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
-·· [].	
In []:	