ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Andrea Lucchini

On the order of transitive permutation groups with cyclic point-stabilizer

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 9 (1998), n.4, p. 241–243.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1998_9_9_4_241_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teoria dei gruppi. — On the order of transitive permutation groups with cyclic point-stabilizer. Nota (*) di Andrea Lucchini, presentata dal Socio G. Zacher.

ABSTRACT. — If G is a transitive permutation group of degree n with cyclic point-stabilizer, then the order of G is at most $n^2 - n$.

KEY WORDS: Permutation groups; Transitivity; Normal-core.

RIASSUNTO. — Sui gruppi di permutazione transitivi con stabilizzante ciclico. Se G è un gruppo di permutazioni transitivo in cui lo stabilizzante di un punto è ciclico, allora l'ordine di G è al più $n^2 - n$.

In this *Note* we prove a conjecture, due to Babai, Goodman and Pyber [1], concerning the order of a transitive permutation group with cyclic point-stabilizer subgroup. Precisely we prove:

Theorem. Let G be a transitive permutation group of degree n > 1 whose point-stabilizer subgroup is cyclic. Then $|G| \le n^2 - n$.

The bound $n^2 - n$ is the best possible as shown by the groups $AGL(1, p^r) = \{x \to ax + b \mid a, b \in GF(p^r), a \neq 0\}$ of degree $n = p^r$ and order n(n-1).

As usual, $Core_G(H)$ denotes the largest normal subgroup of G contained in the subgroup H. Of course our theorem can be equivalentely written as follows:

PROPOSITION. If a group G contains a proper cyclic subgroup H of index n, then the index in G of $Core_G(H)$ is at most $n^2 - n$.

The proof is elementary. The crucial step (Lemma 1.1) makes use of the methods introduced in [2] by Chermak and Delgado to prove that if S is a finite nonabelian simple group and A is an abelian subgroup then $|A|^2 < |S|$.

1. A PRELIMINARY RESULT

To prove our theorem we need the following:

Lemma 1.1. Let G be a finite group with the property that all its nonidentity normal subgroups are nonabelian. Then

- (a) $|G| \ge |H||C_G(H)|$ for each subgroup H of G.
- (b) $|G| > |H||C_G(H)|$ for each nonidentity soluble subgroup H of G.

The proof of this lemma relies on the methods introduced by Chermak and Delgado in [2]. We recall some results from that paper. Let G be a finite group and let S(G)

(*) Pervenuta in forma definitiva all'Accademia il 16 luglio 1998.

242 A. LUCCHINI

denote the set of all nonidentity subgroups of G. For any subgroup H define $f(H) = |H||C_G(H)|$ and let $m = \sup\{f(H) \mid H \in \mathcal{S}(G)\}$, $\mathcal{M} = \{H \in \mathcal{S}(G) \mid f(H) = m\}$, and let \mathcal{M}_* be the set of minimal members of \mathcal{M} , under inclusion. In [2, Section 1], the following results are proved:

1.2. If H_1 , $H_2 \in \mathcal{M}$ then $H_1H_2 = H_2H_1$ and $H_1H_2 \in \mathcal{M}$. In particular if $H \in \mathcal{M}$ then $H^G = \langle H^g \mid g \in G \rangle \in \mathcal{M}$.

1.3. If
$$|\mathcal{M}_*| > 1$$
 and H_1 , H_2 are distinct members of \mathcal{M}_* then $[H_1, H_2] = 1$.

PROOF OF LEMMA 1.1. Let N_1 , ..., N_t be the minimal normal subgroups of G. By 1.2 the set \mathcal{M} contains a normal subgroup of G, say K. Let $X = \{1, \ldots, t\}$, $X_1 = \{j \in X | N_j \leq K\}$, $X_2 = \{j \in X | N_j \not\leq K\}$ and consider $U = \prod_{i \in X_1} N_i$, $V = \prod_{i \in X_2} N_i$. Since $[K, V] \leq K \cap V = 1$, we have $K \leq C_G(V)$. On the other hand $U \leq K$ implies $C_G(K) \leq C_G(U)$. So we have $m = f(K) = |K| |C_G(K)| \leq |C_G(V)| |C_G(U)| \leq |G| = f(G)$, where the last inequality follows from $C_G(V) \cap C_G(U) = C_G(\operatorname{Soc} G) = 1$. So we conclude M = f(G) which means $|H| |C_G(H)| \leq |G|$ for each $H \leq G$. This proves (a).

Now let H be a nonidentity soluble subgroup of G. Suppose by way of contradiction that $f(H) \geq |G|$. Since we proved that m = f(G) = |G| it must be $H \in \mathcal{M}$ and there exists $J \leq H$ with $J \in \mathcal{M}_*$. By hypothesis G contains no soluble normal subgroup, so $J^g \neq J$ for some $g \in G$ and $|\mathcal{M}_*| > 1$. By 1.3 $[J, J^g] = 1$ for each $g \notin \mathcal{N}_G(J)$, hence J^G is a soluble normal subgroup of G, a contradiction. \square

2. Proof of the Theorem

We have to prove that if a nonidentity finite group G contains a core-free cyclic subgroup H then $|H|^2 < |G|$. We use induction on the order of G.

First suppose that G contains a minimal normal subgroup N which is abelian. Let $N \cong \mathbb{Z}_p^d$ and let $K/N = \operatorname{Core}_{G/N}(HN/N)$. By induction $|HN/K|^2 \leq |G/K|$ and equality holds if and only if G = HN = K. By Dedekind's modular law, K = JN with $J = H \cap K$. Since $Z(K) \cap N \subseteq G$, one of the two following possibilities holds:

a)
$$Z(K) \cap N = 1$$
.

In that case $N \cap J = N \cap H = 1$ and $C_J(N) = Z(K) \subseteq G$. Since $J_G \subseteq \operatorname{Core}_G(H) = 1$, it must be $C_J(N) = 1$ so J is a cyclic subgroup of $\operatorname{Aut} N \cong \operatorname{GL}(d,p)$. As the order of an element in $\operatorname{GL}(d,p)$ is at most p^d-1 (see, for example, [3, Theorem 3.1]), we conclude |J| < |N| and

$$\frac{|H|^2}{|I|^2} = \left|\frac{HN}{K}\right|^2 \le \left|\frac{G}{K}\right| = \frac{|G|}{|N||J|} \quad \text{so} \quad |H|^2 \le \frac{|G||J|}{|N|} < |G|.$$

b)
$$N \leq Z(K)$$
.

In that case K is abelian. If a prime q, different from p, divides |J|, then the Sylow q-subgroup of J is a nonidentity normal subgroup of G contained in H, in contradiction with $\operatorname{Core}_G(H) = 1$. Moreover if J contains an element x of order p^2

then, for any $g \in G$, there exist an integer i_g and an element $n_g \in N$ such that $x^g = x^{i_g} n_g$, hence $(x^p)^g = (x^g)^p = (x^{i_g} n_g)^p = x^{i_g p} = (x^p)^{i_g}$; so $\langle x^p \rangle$ is a normal subgroup of G again in contradiction with $\operatorname{Core}_G(H) = 1$. We deduce $J \leq \mathbb{Z}_p$ and, since it cannot be J = N, we have $|J \cap N||J| \leq |N|$. If G = K then $H \subseteq G$, so it must be H = 1 and the conclusion follows since we are assuming $G \neq 1$. If $G \neq K$, by induction

$$\frac{|H|^2}{|J|^2} = \left| \frac{HN}{K} \right|^2 < \left| \frac{G}{K} \right| = \frac{|G||J \cap N|}{|N||J|} \quad \text{so} \quad |H|^2 < \frac{|G||J \cap N||J|}{|N|} \le |G|.$$

So we may assume that G contains no nonidentity abelian normal subgroup. In that case from Lemma 1.1 (b) we obtain $|H|^2 \le |H||C_G(H)| < |G|$.

This concludes the proof of the theorem.

References

- [1] L. Babai A. J. Goodman L. Pyber, Groups without faithful transitive permutation representations of small degree. J. Algebra, vol. 195, 1997, 1-29.
- [2] A. CHERMAK A. DELGADO, A measuring argument for finite group. Proc. Amer. Math. Soc., vol. 107, 1989, 907-914.
- [3] L. Pyber, Asymptotic results for simple groups and some applications. In: L. Finkelstein (ed.), Groups and Computation II DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer. Math. Soc., Providence, vol. 28, 1997, 309-327.

Pervenuta l'8 maggio 1998, in forma definitiva il 16 luglio 1998.

> Dipartimento di Elettronica per l'Automazione Università degli Studi di Brescia Via Branze - 25123 Brescia lucchini@bsing.ing.unibs.it