Introduction to Lattice Based Cryptography

Dragoș Alin Rotaru

Bitdefender Romania, University of Bucharest

October 21, 2015

Outline

- What is a lattice?
- Lattices in practice.
- Examples of hard problems on lattices.
- (Known) Algorithms for solving hard problems on lattices.
- (Maybe) NTRU cryptosystem.

Motivation - Post-Quantum Crypto

source: SafeCrypto Project

Overview of lattice-based constructions

Fast and Efficient but lack of security proofs (NTRU).

Overview of lattice-based constructions

- Fast and Efficient but lack of security proofs (NTRU).
- Strong security proofs but not so fast (Learning with Errors).

Overview of lattice-based constructions

- Fast and Efficient but lack of security proofs (NTRU).
- Strong security proofs but not so fast (Learning with Errors).
- Searching for a solution from both worlds (Ring learning with Errors).

Short Answer: A grid.

^	×	×	^	×	×	^	×	×
×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×
×	×	×	×	×		×	×	
×	×		×	×	×	×	×	×
×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×
V		×	V		×	V		×

Lattice in R^2

• The set of all linear integers combinations by some vectors in \mathbb{R}^m .

- The set of all linear integers combinations by some vectors in \mathbb{R}^m .
- Given *n* linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathbb{R}^m$ the lattice generated by them is $\mathcal{L}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = \{\sum x_i b_i, x_i \in \mathbb{Z}\}.$

- The set of all linear integers combinations by some vectors in \mathbb{R}^m .
- Given *n* linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathbb{R}^m$ the lattice generated by them is $\mathcal{L}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = \{\sum x_i b_i, x_i \in \mathbb{Z}\}.$
- We call $\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n$ the basis of \mathcal{L} .

- The set of all linear integers combinations by some vectors in \mathbb{R}^m .
- Given n linearly independent vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathbb{R}^m$ the lattice generated by them is $\mathcal{L}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = \{\sum x_i b_i, x_i \in \mathbb{Z}\}.$
- We call $\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n$ the basis of \mathcal{L} .
- Rewrite the definition as $\mathcal{L} = Bx$ where B has n columns: $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}$.

Different bases - Source: Regev course

Fact

Fact

 $\mathcal{L}(B) = \mathcal{L}(B')$ if and only if there exists an unimodular integer matrix $U \in \mathbb{Z}^{n \times n}$ such that B = B'U.

• Because U is unimodular, $det(U) = \pm 1$.

Fact

- Because U is unimodular, $det(U) = \pm 1$.
- So what?

Fact

- Because *U* is unimodular, $det(U) = \pm 1$.
- So what?
- det(B) it's invariant over the choice of basis. Denote $det(\mathcal{L}) := |det(B)|$.

Fact

- Because *U* is unimodular, $det(U) = \pm 1$.
- So what?
- det(B) it's invariant over the choice of basis. Denote $det(\mathcal{L}) := |det(B)|$.
- $det(\mathcal{L})$ is also called the fundamental volume of \mathcal{L} .

Fact

- Because U is unimodular, $det(U) = \pm 1$.
- So what?
- det(B) it's invariant over the choice of basis. Denote $det(\mathcal{L}) := |det(B)|$.
- $det(\mathcal{L})$ is also called the fundamental volume of \mathcal{L} .
- Determinant of a lattice is inverse proportional to its density.

Shortest Vector

$$\lambda_1(\mathcal{L}) = \textit{min}\{\|x\| : x \in \mathcal{L}, x \neq 0\}$$

Shortest Vector

$$\lambda_1(\mathcal{L}) = \min\{\|x\| : x \in \mathcal{L}, x \neq 0\}$$

Succesive minima

$$\lambda_i(\mathcal{L}) = \min\{r : \dim(\operatorname{span}(\mathcal{L} \cap B(0,r))) \geq i\}$$

Shortest Vector

$$\lambda_1(\mathcal{L}) = min\{\|x\| : x \in \mathcal{L}, x \neq 0\}$$

Succesive minima

$$\lambda_i(\mathcal{L}) = \min\{r : \dim(span(\mathcal{L} \cap B(0,r))) \ge i\}$$

Upper bounds for $\lambda_1(\mathcal{L})$

For any lattice of dimension n, $\lambda_1(\mathcal{L}) \leq \sqrt{n} (\det(\mathcal{L}))^{1/n}$.

Shortest Vector

$$\lambda_1(\mathcal{L}) = \min\{\|x\| : x \in \mathcal{L}, x \neq 0\}$$

Succesive minima

$$\lambda_i(\mathcal{L}) = \min\{r : \dim(span(\mathcal{L} \cap B(0,r))) \ge i\}$$

Upper bounds for $\lambda_1(\mathcal{L})$

For any lattice of dimension n, $\lambda_1(\mathcal{L}) \leq \sqrt{n} (\det(\mathcal{L}))^{1/n}$.

Unfortunately, no constructive proof.

Shortest Vector

$$\lambda_1(\mathcal{L}) = min\{\|x\| : x \in \mathcal{L}, x \neq 0\}$$

Succesive minima

$$\lambda_i(\mathcal{L}) = \min\{r : \dim(span(\mathcal{L} \cap B(0,r))) \ge i\}$$

Upper bounds for $\lambda_1(\mathcal{L})$

For any lattice of dimension n, $\lambda_1(\mathcal{L}) \leq \sqrt{n} (\det(\mathcal{L}))^{1/n}$.

- Unfortunately, no constructive proof.
- Also, a loose bound. Think about the lattice generated in \mathbb{R}^2 by $\begin{bmatrix} 0 & \epsilon \\ 1 & \epsilon \end{bmatrix}$

 $\lambda_1(\mathcal{L}), \lambda_2(\mathcal{L})$ - Source: Regev course

• It would be great to have a basis $\mathbf{b}_1 = \lambda_1(\mathcal{L}), \mathbf{b}_2 = \lambda_2(\mathcal{L}), \dots, \mathbf{b}_n = \lambda_n(\mathcal{L}).$

- It would be great to have a basis $\mathbf{b}_1 = \lambda_1(\mathcal{L}), \mathbf{b}_2 = \lambda_2(\mathcal{L}), \dots, \mathbf{b}_n = \lambda_n(\mathcal{L}).$
- ullet Because the fundamental volume of ${\cal L}$ is invariant over the change of basis, short and orthogonal are related notions.

- It would be great to have a basis $\mathbf{b}_1 = \lambda_1(\mathcal{L}), \mathbf{b}_2 = \lambda_2(\mathcal{L}), \dots, \mathbf{b}_n = \lambda_n(\mathcal{L}).$
- ullet Because the fundamental volume of ${\cal L}$ is invariant over the change of basis, short and orthogonal are related notions.
- Solution: Let's apply Gram-Schmidt to a lattice basis!

- It would be great to have a basis $\mathbf{b}_1 = \lambda_1(\mathcal{L}), \mathbf{b}_2 = \lambda_2(\mathcal{L}), \dots, \mathbf{b}_n = \lambda_n(\mathcal{L}).$
- ullet Because the fundamental volume of ${\cal L}$ is invariant over the change of basis, short and orthogonal are related notions.
- Solution: Let's apply Gram-Schmidt to a lattice basis!
- What?

Ortogonalizations of 2 vectors in ${\bf R}^2$; source: Wiki

• Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$

Ortogonalizations of 2 vectors in \mathbf{R}^2 ; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- ullet Output: $\ddot{f b}_1,\ddot{f b}_2,\ldots,\ddot{f b}_n$, such that $\langle ilde{f b}_i, ilde{f b}_j
 angle=0, i
 eq j$

Ortogonalizations of 2 vectors in \mathbf{R}^2 ; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- Output: $\tilde{\mathbf{b}}_1, \tilde{\mathbf{b}}_2, \dots, \tilde{\mathbf{b}}_n$, such that $\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_j \rangle = 0, i \neq j$
- Define the projection operator: $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$.

Ortogonalizations of 2 vectors in \mathbf{R}^2 ; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- ullet Output: $ilde{f b}_1, ilde{f b}_2, \ldots, ilde{f b}_n$, such that $\langle ilde{f b}_i, ilde{f b}_j
 angle = 0, i
 eq j$
- Define the projection operator: $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$.
- $oldsymbol{ ilde{b}}_1=oldsymbol{b}_1, ilde{f b}_2=oldsymbol{b}_2- extit{proj}_{ ilde{f b}_1}(oldsymbol{b}_2)$ and so on.

Ortogonalizations of 2 vectors in \mathbb{R}^2 ; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- Output: $\tilde{\mathbf{b}}_1, \tilde{\mathbf{b}}_2, \dots, \tilde{\mathbf{b}}_n$, such that $\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_j \rangle = 0, i \neq j$
- Define the projection operator: $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$.
- $oldsymbol{ ilde{b}}_1 = oldsymbol{b}_1, oldsymbol{ ilde{b}}_2 = oldsymbol{b}_2 extit{proj}_{oldsymbol{ ilde{b}}_1}(oldsymbol{b}_2)$ and so on.
- $\tilde{\mathbf{b}}_i = \mathbf{b}_i \sum_{j=1}^{i-1} \frac{\langle \mathbf{b}_i, \tilde{\mathbf{b}}_j \rangle}{\langle \tilde{\mathbf{b}}_j, \tilde{\mathbf{b}}_j \rangle} \tilde{\mathbf{b}}_j$.

Ortogonalizations of 2 vectors in \mathbb{R}^2 ; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- Output: $\tilde{\mathbf{b}}_1, \tilde{\mathbf{b}}_2, \dots, \tilde{\mathbf{b}}_n$, such that $\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_j \rangle = 0, i \neq j$
- Define the projection operator: $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$.
- $ilde{\mathbf{b}}_1 = \mathbf{b}_1, ilde{\mathbf{b}}_2 = \mathbf{b}_2 \textit{proj}_{ ilde{\mathbf{b}}_1}(\mathbf{b}_2)$ and so on.
- $\tilde{\mathbf{b}}_i = \mathbf{b}_i \sum_{j=1}^{i-1} \frac{\langle \mathbf{b}_i, \tilde{\mathbf{b}}_j \rangle}{\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_i \rangle} \tilde{\mathbf{b}}_j$.
- Cool! Now plug-in a lattice and find an orthogonal basis!

Ortogonalizations of 2 vectors in R²; source: Wiki

- Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$
- Output: $\tilde{\mathbf{b}}_1, \tilde{\mathbf{b}}_2, \dots, \tilde{\mathbf{b}}_n$, such that $\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_j \rangle = 0, i \neq j$
- Define the projection operator: $proj_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$.
- $oldsymbol{ ilde{b}}_1 = oldsymbol{b}_1, ilde{oldsymbol{b}}_2 = oldsymbol{b}_2 extit{proj}_{ ilde{oldsymbol{b}}_1}(oldsymbol{b}_2)$ and so on.
- $\tilde{\mathbf{b}}_i = \mathbf{b}_i \sum_{j=1}^{i-1} \frac{\langle \mathbf{b}_i, \tilde{\mathbf{b}}_j \rangle}{\langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_i \rangle} \tilde{\mathbf{b}}_j$.
- Cool! Now plug-in a lattice and find an orthogonal basis! What is wrong with this approach?

Gram-Schmidt for Lattices - LLL Reduction

By changing the basis, we change the spanned lattice.

Ortogonalizations of 2 lattice vectors in ${f R}^2$; source: Regev O. course

By changing the basis, we change the spanned lattice.

Ortogonalizations of 2 lattice vectors in R²; source: Regev O. course

Solution: Round the projection to the nearest integer!

$\frac{3}{4}$ – LLL Reduced basis

A basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if and only if:

$\frac{3}{4}$ – LLL Reduced basis

A basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if and only if:

$\frac{3}{4}$ – LLL Reduced basis

A basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if and only if:

- ② $\forall 1 \leq i \leq n, \ \frac{3}{4} \| \tilde{b}_i \|^2 \leq \| \mu_{i+1,i} \tilde{b}_i + \tilde{b}_{i+1} \|^2$

Why these conditions?

$\frac{3}{4}$ – LLL Reduced basis

A basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if and only if:

- $| \bullet | \forall 1 \leq i \leq n, \frac{3}{4} | | \tilde{b}_i | |^2 \leq | | \mu_{i+1,i} \tilde{b}_i + \tilde{b}_{i+1} | |^2$

Why these conditions?

Used to prove that the algorithm runs in polynomial time.

$\frac{3}{4}$ – LLL Reduced basis

A basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is called LLL-reduced if and only if:

- ② $\forall 1 \leq i \leq n, \ \frac{3}{4} \| \tilde{b}_i \|^2 \leq \| \mu_{i+1,i} \tilde{b}_i + \tilde{b}_{i+1} \|^2$

Why these conditions?

- Used to prove that the algorithm runs in polynomial time.
- 2 The vector b_{i+1} is not too shorter that b_i .

LLL Reduction

Input: Basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ Output: $\frac{3}{4}$ -LLL reduced basis.

Algorithm 1 LLL Algorithm

- 1: Reduction Step:
- 2: **for** i = 1 to *N* **do**
- for i = i 1 to 1 do 3:

4:
$$b_i = b_i - \lfloor c_{i,j} \rceil b_j, \ c_{i,j} = \frac{\langle \mathbf{b}_i, \tilde{\mathbf{b}}_j \rangle}{\langle \tilde{\mathbf{b}}_j, \tilde{\mathbf{b}}_j \rangle}$$

- end for 5:
- Swap Step: 6:
- if $\exists i \text{ s.t. } \frac{3}{4} \left\| \tilde{b}_i \right\|^2 > \left\| \mu_{i+1,i} \tilde{b}_i + \tilde{b}_{i+1} \right\|^2$ then Swap b_i, b_{i+1} ; goto Reduction Step
- 8:
- end if g.
- 10: end for

1982

Many cryptosystems were broken. Every cryptosystem based on lattices must be insecure.

1982

Many cryptosystems were broken. Every cryptosystem based on lattices must be insecure.

1996

Lattice problems are *NP*-Hard. Reductions from worst case to average case give strong security proofs.

1982

Many cryptosystems were broken. Every cryptosystem based on lattices must be insecure.

1996

Lattice problems are *NP*-Hard. Reductions from worst case to average case give strong security proofs.

Hard problems in crypto

Cryptography requires that underlying problems are hard to solve on average, i.e. from a specific distribution

Sad fact about LLL - in theory

It can approximate the shortest vector by an exponential factor, namely by 1.075^n .

Sad fact about LLL - in theory

It can approximate the shortest vector by an exponential factor, namely by 1.075^n .

Interesting fact about LLL - in practice

It can approximate the shortest vector by a smaller factor 1.022^n - still exponential.

Sad fact about LLL - in theory

It can approximate the shortest vector by an exponential factor, namely by 1.075^n .

Interesting fact about LLL - in practice

It can approximate the shortest vector by a smaller factor 1.022^n - still exponential.

In 2011 Chen and Nguyen showed that in practice you can approximate the shortest vector by 1.005^n with a variant of LLL.

Shortest Vector Problem (SVP)

Given an arbitrary lattice basis **B** of a *n* dimensional lattice \mathcal{L} output a shortest non-zero lattice vector, $v \in \mathcal{L} - \{0\}$ for which $||v|| = \lambda_1(\mathcal{L})$.

Shortest Vector Problem (SVP)

Given an arbitrary lattice basis **B** of a *n* dimensional lattice \mathcal{L} output a shortest non-zero lattice vector, $v \in \mathcal{L} - \{0\}$ for which $||v|| = \lambda_1(\mathcal{L})$.

Approximate Shortest Vector Problem (SVP_{γ})

Given an arbitrary lattice basis ${\bf B}$ of a n dimensional lattice ${\mathcal L}$ output a shortest non-zero lattice vector bounded by a polyonimal function in n, i.e. $\|v\| \leq \gamma(n)\lambda_1({\mathcal L})$.

Shortest Vector Problem (SVP)

Given an arbitrary lattice basis **B** of a *n* dimensional lattice \mathcal{L} output a shortest non-zero lattice vector, $v \in \mathcal{L} - \{0\}$ for which $||v|| = \lambda_1(\mathcal{L})$.

Approximate Shortest Vector Problem (SVP_{γ})

Given an arbitrary lattice basis **B** of a n dimensional lattice \mathcal{L} output a shortest non-zero lattice vector bounded by a polyonimal function in n, i.e. $\|v\| \leq \gamma(n)\lambda_1(\mathcal{L})$.

Approximate Decisional SVP ($GapSVP_{\gamma}$)

Given a lattice basis $\mathcal B$ of n dimensional lattice $\mathcal L$ for which $\lambda_1(\mathcal L) \leq 1$ or $\lambda_1(\mathcal L) > \gamma(n)$ decide which is the case.

Approximate Bounded Distance Decoding (BDD_{γ})

Given a lattice basis \mathcal{B} and a vector $t \in \mathbf{R}^n$ find the unique vector $v \in \mathcal{L}$ s.t. $dist(v, t) \leq \lambda_1(\mathcal{L})/2\gamma(n)$.

Approximate Bounded Distance Decoding (BDD_{γ})

Given a lattice basis \mathcal{B} and a vector $t \in \mathbf{R}^n$ find the unique vector $v \in \mathcal{L}$ s.t. $dist(v, t) \leq \lambda_1(\mathcal{L})/2\gamma(n)$.

Closest Vector Problem CVP

Currently there isn't any cryptosystem based on CVP - maybe because it's just too hard.

Membership Problem

Given a lattice basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^n$ decide if $v \in \mathcal{L}$.

Membership Problem

Given a lattice basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^n$ decide if $v \in \mathcal{L}$.

Equivalence Problem

Given 2 lattice bases $\mathbf{B}_1 \in \mathbb{R}^{n \times n}$, $\mathbf{B}_2 \in \mathbb{R}^{n \times n}$ decide if $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$.

Membership Problem

Given a lattice basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^n$ decide if $v \in \mathcal{L}$.

Equivalence Problem

Given 2 lattice bases $\mathbf{B}_1 \in \mathbb{R}^{n \times n}$, $\mathbf{B}_2 \in \mathbb{R}^{n \times n}$ decide if $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$.

Something Wrong?

Membership Problem

Given a lattice basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^n$ decide if $v \in \mathcal{L}$.

Equivalence Problem

Given 2 lattice bases $\mathbf{B}_1 \in \mathbb{R}^{n \times n}$, $\mathbf{B}_2 \in \mathbb{R}^{n \times n}$ decide if $\mathcal{L}(\mathbf{B}_1) = \mathcal{L}(\mathbf{B}_2)$.

Something Wrong?

These are easy problems!

Ideals in Rings look alike lattices

• Polynomial Ring in $Z_p[X]/(x^n+1)$.

Ideals in Rings look alike lattices

- Polynomial Ring in $Z_p[X]/(x^n+1)$.
- Elements are polynomials of degree n-1 with coefficients in range [-(p-1)/2,(p-1)/2]. Just think about n dimensional vectors with values in \mathbb{Z}_p .

Next slides with the NTRU cryptosystem belong to Vadim Lyubashevki.

Facts about NTRU

Security proofs

Until 2011 there was no proof of NTRU security. The proof is based on the hardness of Ring-LWE distribution.

Thank you!