Metall-DMS

Gegeben: L, Δ L, U₀, U_d, dann später Δ R

Gesucht: µ, dann später R₀

Ein Metall-DMS soll für eine Messung der Dehnung eines Werkstückes der Länge \boldsymbol{L} verwendet werden.

Dazu soll ein DMS-Element (mit nur kleinen Widerstandänderungen)

in einer Brückenschaltung verwendet werden.

(Spannungsversorgung U_0)

Bei einer Längenänderung von ΔL soll sich die Diagonalspannung U_d ergeben.

Wie groß muss die Poisson-Zahl des DMS sein?

Messung:

U ₀	4	V
U _d	0,001	V

Werkstück:

Länge L	0,15	m
Längenänderung ∆L	10 ⁻⁴	m

Im besprochenen Fall gilt $\Delta R = 0.22 \Omega$.

Wie groß sind dann die Festwiderstände der Brückenschaltung?

ΔR	0,22	Ohm

DMS Vollbrücke

Gegeben: I_0 , ΔR , L, K, R_0

Gesucht: U_d, Δ L, E (Epsilon)

Mit Hilfe von vier Metall-DMS soll eine zu messende Biegung an einem metallischen Balken in eine elektrische Spannung überführt werden. Dabei soll eine Kompensation störender Temperatureffekte erreicht, sowie das maximal mögliche Messsignal erzielt werden.

Konstanter Versorgungsstrom für die Messschaltung Io.

Länge des Balkens L.

DMS:

Nennwiderstand R₀

K-Faktor = 1,9

Skizzieren sie die Messanordnung.

Zeichnen sie die zugehörige elektrische Schaltung.

Wie wird diese bezeichnet?

Bei der Biegemessung ändern sich die Widerstände um AR.

Berechnen sie die Messspannung Ud.

10	0,12	А
ΔR	0,2	Ohm

Wie groß ist die durch die Biegung erzeugte gesamte Längenänderung an der Oberseite des Balkens und die zugehörige Dehnung?

Annahme: Änderung der Widerstände und der Länge des Balkens sind hinreichend klein.

L	0,1	m
ΔR	0,2	Ohm
К	1,9	-
R ₀	120	Ohm

Halbleiter-DMS

Gegeben: K, A, L, Δρ, E (Epsilon), U₀

Gesucht: R, Ud

Bei einem DMS-Halbleiterelement (Länge, Querschnittsfläche, K-Faktor...) ändert sich bei einer Dehnung von \mathbf{E} der spezifische Widerstand ausgehen vom entspannten Zustand um $\Delta \mathbf{p}$.

K-Faktor K	120	-
Querschnittsfläche A	0,1	mm ²
A in m ²	0,0000001	m ²
Länge L	0,002	m

E (Epsilon)	5*10 ⁻⁵	-
Δρ	10 ⁻¹¹	Ohm*mm²/m

Wie groß ist der elektrische Widerstand des Elementes im entspannten Zustand?

Wie groß ist in dieser Situation die Diagonalspannung in einer mit U_0 spannungsgespeisten Vollbrücke aus vier solchen DMS-Elementen?

·		
\bigcup_{0}	5	V