Calob Link: https://colab.research.google.com/drive/1HzV0vJUviub2ml20zrNsAwT0ge\_agTmh?usp=sharing

#### 109年桃園市交通事故資料表-含第二當事人 資料表

tab1e\_109 發生交叉路口 村里名稱 發生交叉路口 路街口 發生地址 一村里名稱 發生地址 前幾公尺 發生市區鄉鎮名稱 發生地上村里代碼 發生地址 侧名稱 死亡人數4小時內 發生交叉路 口段 發生交叉路□巷 發生交叉路□弄 發生地址 一其他 發生地址 路街 發生地上鄰 發生地址 一巷 發生地址 二號 地址類型名稱 發生縣市名稱 事故類別名稱 發生地 业段 發生地上弄 發生月份 死亡 人數 \_2\_30 日內 發生星期 結束\_ 事故 發生地 址\_路街 代碼 發生時間 處理時間 發生日期 高鐵南路與公園路路 815 20200101 2315 121.208 25.0058 A2 56 2020 1 <u>=</u> 20200101

#### 110年桃園市交通事故資料表-含第二當事人 資料表

[34] table\_110 = Table().read\_table('https://data.tycg.gov.tw/opendata/datalist/datasetMeta/download?id=ae5d2d9b-59ad-4f15-a9d2-d0f5f3de2475&rid=8b93ee39-5f31-4807-bdfb-4da6bb7idb4b') 發生交叉路口 村里名稱 發生交叉路口 医街口 發生地址 一村里名稱 發生地址 前幾公尺 發生地上村里代碼 發生地址 侧名稱 發生交叉路口 一巷 死亡人數 24小時內 發生市區鄉鎮名稱 發生交叉路 \_ |段 發生交叉路□昇 發生地址 路街 發生地址 其他 發生地址「巷 事故類別名稱 發生地上弄 發生地址 號 地址類型名稱 發生縣市名稱 發生地 址 鄰 發生地上段 死亡 人數 \_2\_30 日內 發生月份 結束\_ 事故 發生星期 發生地 址\_路街 代碼

# 桃園市各區 事故位置類別 數量

[35] # 109年 各區域+事故位置類別 (之後統計各區各事故位置數量 要用) location\_109 = table\_109.select(['發生市區鄉鎮名稱','事故位置子類別名稱']) location\_109

#### 發生市區鄉鎮名稱 事故位置子類別名稱

| 中壢區 | 交叉路口內 |
|-----|-------|
| 中壢區 | 交叉路口內 |
| 中壢區 | 交叉路口內 |
| 平鎮區 | 交叉路口內 |
| 平鎮區 | 交叉路口內 |
| 八德區 | 交叉路口內 |
| 八德區 | 交叉路口內 |
| 平鎮區 | 路局、路緣 |
| 平鎮區 | 路局、路緣 |
| 平鎮區 | 路肩、路緣 |

... (109586 rows omitted)

# 109年 各區域事故數量

location\_109\_total = table\_109.group('發生市區鄉鎮名稱') location\_109\_total

#### 發生市區鄉鎮名稱 count

| 中壢區 | 25833 |
|-----|-------|
| 八德區 | 10314 |
| 大園區 | 3994  |
| 大溪區 | 4357  |
| 平鎮區 | 10526 |
| 復興區 | 283   |
| 新屋區 | 2018  |
| 桃園區 | 21271 |
| 楊梅區 | 6378  |
| 蘆竹區 | 7643  |

... (3 rows omitted)

# 110年 各區域+事故位置類別 (之後統計各區各事故位置數量 要用) location\_110 = table\_110.select(['發生市區鄉鎮名稱','事故位置子類別名稱']) location\_110

#### 發生市區鄉鎮名稱 事故位置子類別名稱

| 中壢區 | 交叉路口內 |
|-----|-------|
| 中壢區 | 交叉路口內 |
| 桃園區 | 交叉路口內 |
| 桃園區 | 交叉路口內 |

... (92240 rows omitted)

#### # 110年 各區域事故數量 location\_110\_total = table\_110.group('發生市區鄉鎮名稱') location\_110\_total

#### 發生市區鄉鎮名稱 count

中壢區 20546 八德區 9257 四園大 3600 大溪區 3740 平鎮區 8604 復興區 227 新屋區 1621 桃園區 17344 楊梅區 5419 蘆竹區 6850

#### ... (3 rows omitted)

```
# 109年〈各區域〉《事故位置類別》 數量統計表
loc_109 = [0 for i in range(13)]
total_109 = [0 for i in range(13)]
a_109 = [0 for i in range(13)]
a_2109 = [0 for i in range(13)]
pd_109 = [0 for i in range(13)]

# 各區域的各事故位置 的數量 之table
for i in range(13):
    loc_109[i] = location_109_total.column(0).item(i) # 各區域名稱
    total_109[i] = location_109_total.column(0).item(i) # 各區域名稱
    total_109[i] = ((total_109[i].to_df()).rename(columns=('count':loc_109[i]))).set_index('事故位置予類別名稱') # 各區域 分別統計 各事故位置 數量
    pd_109[i] = ((total_109[i].to_df()).rename(columns=('count':loc_109[i]))).set_index('事故位置予類別名稱') # 轉換為dataframe 且 修正欄位名稱(count-)各區域名稱)

# 將所有區域table 合併成一個table
for i in range(12):
    loc_109_total = pd_109[i].join(pd_109[i+1], how='outer')
    pd_109[i+1] = loc_109_total
loc_109_total = loc_109_total.astype('Int64') # float轉int
loc_109_total = loc_109_total.inplace=True) # 將軟失值填入0
loc_109_total
```

# 中壢區 八德區 大園區 大溪區 平鎮區 復興區 新屋區 桃園區 楊梅區 蘆竹區 觀音區 龍潭區 我多山區 事故位置子類別名稱

| <b>子队正直了</b> 然仍有特 |       |      |      |      |      |     |     |      |      |      |     |      |      |
|-------------------|-------|------|------|------|------|-----|-----|------|------|------|-----|------|------|
| 一般車道(未劃分快慢車道)     | 8535  | 3863 | 1555 | 1830 | 3171 | 230 | 881 | 7091 | 2701 | 2870 | 930 | 1955 | 3728 |
| 交叉口附近             | 4021  | 2094 | 528  | 722  | 2298 | 17  | 207 | 2648 | 1129 | 751  | 239 | 589  | 1490 |
| 交叉路口內             | 11410 | 3611 | 1385 | 1273 | 3739 | 11  | 655 | 9733 | 1899 | 3137 | 933 | 2019 | 2881 |
| 交通島(含槽化線)         | 75    | 9    | 11   | 15   | 49   | 0   | 2   | 26   | 4    | 10   | 2   | 10   | 28   |
| 人行道               | 80    | 10   | 5    | 14   | 9    | 0   | 2   | 54   | 4    | 9    | 2   | 6    | 14   |
| 公車専用道             | 0     | 0    | 0    | 0    | 0    | 0   | 0   | 7    | 0    | 0    | 0   | 0    | 2    |
| 其他                | 344   | 72   | 53   | 55   | 129  | 8   | 34  | 237  | 194  | 157  | 25  | 24   | 44   |
| 加速車道              | 5     | 2    | 0    | 2    | 2    | 0   | 0   | 5    | 0    | 0    | 0   | 0    | 0    |
| 快車道               | 218   | 120  | 88   | 69   | 215  | 2   | 61  | 239  | 43   | 113  | 65  | 85   | 154  |
| 慢車道               | 449   | 279  | 139  | 95   | 272  | 0   | 66  | 494  | 159  | 198  | 141 | 136  | 658  |
| 機車停等區             | 77    | 41   | 19   | 24   | 30   | 0   | 3   | 82   | 26   | 26   | 4   | 17   | 22   |
| 機車優先道             | 24    | 39   | 50   | 10   | 133  | 0   | 20  | 62   | 25   | 23   | 28  | 11   | 89   |
| 機車専用道             | 65    | 2    | 16   | 8    | 95   | 0   | 5   | 113  | 21   | 36   | 2   | 8    | 22   |
| 機車待轉區             | 37    | 10   | 0    | 4    | 14   | 0   | 0   | 20   | 5    | 10   | 0   | 6    | 17   |
| 減速車道              | 0     | 0    | 0    | 4    | 2    | 0   | 0   | 0    | 0    | 0    | 0   | 0    | 0    |
| 環道匝道              | 2     | 0    | 0    | 2    | 0    | 0   | 0   | 2    | 0    | 0    | 0   | 0    | 2    |
| 直線匝道              | 4     | 2    | 2    | 0    | 29   | 0   | 5   | 2    | 3    | 3    | 0   | 0    | 0    |
| 穿越道附近             | 14    | 6    | 2    | 0    | 0    | 0   | 5   | 8    | 0    | 4    | 2   | 6    | 4    |
| 行人穿越道             | 131   | 23   | 14   | 17   | 41   | 0   | 2   | 127  | 13   | 31   | 8   | 22   | 34   |
| 路馬、路線             | 340   | 131  | 127  | 210  | 282  | 15  | 68  | 315  | 148  | 258  | 117 | 194  | 202  |
| 迴轉道               | 2     | 0    | 0    | 3    | 16   | 0   | 2   | 6    | 4    | 7    | 0   | 0    | 2    |
|                   |       |      |      |      |      |     |     |      |      |      |     |      |      |

```
# 110年 〈各區域〉〈事故位置類別〉 數里統計表
loc = [0 for i in range(13)]
total = [0 for i in range(13)]
a = [0 for i in range(13)]
a2 = [0 for i in range(13)]
pd = [0 \text{ for i in } range(13)]
# 各區域的各事故位置 的數量 之table
for i in range(13):
      loc[i] = location_110_total.column(0).item(i) # 各區域名稱
      total[i] = location_110.where('發生市區鄉鎮名稱', are.equal_to(loc[i])).group('事故位置子類別名稱') # 各區域 分別統計 各事故位置 數里
                                                                                      # 轉換為dataframe 且 修正欄位名稱(count->各區域名稱)
      pd[i] = ((total[i].to_df()).rename(columns={'count':loc[i]})).set_index('事故位置子類別名稱')
# 將所有區域table 合併成一個table
for i in range(12):
      loc_110_total = pd[i].join(pd[i+1], how='outer')
     pd[i+1] = loc_110_total
loc_110_total = loc_110_total.astype('Int64') # float轉int
loc_110_total.fillna(0, inplace=True) # 將缺失值填入0
loc 110 total
```

#### 中壢區 八德區 大園區 大溪區 平鎮區 復興區 新屋區 桃園區 楊梅區 蘆竹區 觀音區 龍潭區 龜山區 事故位置子類別名稱 一般車道(末劃分快慢車道) 交叉口附近 交叉路口內 交通島(含槽化線) 人行道 公車専用道 其他 加速車道 快重道 偏車道 機車停箕區 Λ Δ 機車優先道 機車専用道 機車待轉區 環道匝道 百線匝道 穿越道附近 行人穿越道 路肩、路線

# plot 單一區域 109年&110年(mix) 橫直方圖
# total[0]: 中壓區"事故位置子類別"數里統計表
for i in range(13):
 total\_bar\_109 = ((total\_109[i].to\_df()).rename(columns={'count':'109年'+loc[i]})).set\_index('事故位置子類別名稱') # 109年 轉換為dataframe 且 修正欄位名稱(count->109年各區域名稱)
 total\_bar = ((total\_[i].to\_df()).rename(columns=f'count':'110年'+loc[i]})).set\_index('事故位置子類別名稱') # 110年 轉換為dataframe 且 修正欄位名稱(count->110年各區域名稱)
 total\_bar\_mix = total\_bar.join(total\_bar\_109) # mix 109年&110年
# plot
total\_bar\_mix = total\_bar.join(total\_bar\_109) # mix 109年&110年
# plot
total\_bar\_mix.plot.barh(title='109年&110年桃園市'+loc[i]+'事故發生市區\_位置類別名稱件數', figsize=(15,10))
plt.show()



























### 桃園市 事故位置類別 數量 In-depth Analysis

計算"加權平均" (權重:整個區域交通事故數量/整個桃園市交通事故數量) (加權平均=各區域各事故位置類型之數量\*權重 之相加)

- => 桃園市政府應加強"平均比例高的事故位置類別"之相關交通安全政令宣導
- \*因各區域地理位置、大小與道路數量等環境因素皆不相同,故採取加權的方式,計算整個桃園市交通事故位置平均數量較多之類別

#### 事故位置子類別名稱 109年桃園市加權平均事故數量

| 一般車道(未劃分快慢車道) | 4991.19 |
|---------------|---------|
| 交叉口附近         | 2209.88 |
| 交叉路口內         | 6081.8  |
| 交通島(含槽化線)     | 33.1515 |
| 人行道           | 34.303  |
| 公車專用道         | 1.53001 |
| 其他            | 178.707 |
| 加速車道          | 2.6088  |
| 快車道           | 165.802 |
| 慢車道           | 353.134 |

... (11 rows omitted)

#### 事故位置子類別名稱 110年桃園市加權平均事故數量

| 4190.27 | 一般車道(未劃分快慢車道) |
|---------|---------------|
| 1713.7  | 交叉口附近         |
| 4987.42 | 交叉路口內         |
| 14.6644 | 交通島(含槽化線)     |
| 35.6184 | 人行道           |
| 1.83072 | 公車專用道         |
| 138.257 | 其他            |
| 1.50925 | 加速車道          |
| 109.649 | 快車道           |
| 234.398 | 慢車道           |





## 桃園市交通酒駕事故發生時的年齡分佈

#### 110年酒駕發生的死亡人數與受傷人數

drunk\_table110=table\_110n. select('當事者事故發生時年齡','死亡人數\_24小時內','死亡人數\_2\_30日內','飲酒情形名稱'). where('飲酒情形名稱', are. equal\_to(drunk\_name)). to\_df() df1=drunk\_table110[(drunk\_table110['死亡人數\_24小時內'] > 0) | (drunk\_table110['死亡人數\_2\_30日內'] > 0) ] df1

|     | 當事者事故發生時年齡 | 死亡人數_24小時內 | 死亡人數_2_30日內 | 飲酒情形名稱                              |
|-----|------------|------------|-------------|-------------------------------------|
| 62  | 41         | 1          | 0           | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 182 | 42         | 1          | 0           | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 210 | 25         | 1          | 0           | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 215 | 37         | 1          | 0           | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 231 | 44         | 0          | 1           | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 232 | 47         | 1          | 0           | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 323 | 20         | 1          | 0           | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 349 | 20         | 1          | 0           | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |

#### 計算110年酒駕事故的各年齡段死亡總人數

```
total1_18=0
total1_26=0
total1_30=0
total1_40=0
total1 50=0
total1_60=0
for i in dfl.index:
   if 18<= df1['當事者事故發生時年龄'][i] <=25:
      total1_18+=df1['死亡人数_24小時内'][i]+df1['死亡人数_2_30日内'][i]
   elif 26<= df1['當事者事故發生時年龄'][i] <=29 :
      total1_26+=df1['死亡人數_24小時內'][i]+df1['死亡人數_2_30日內'][i]
   elif 30<= df1['當事者事故發生時年齡'][i] <=39:
      total1_30+=df1['死亡人數_24小時內'][i]+df1['死亡人數_2_30日內'][i]
   elif 40<= df1['當事者事故發生時年齡'][i] <=49:
total1_40+=df1['死亡人數_24小時內'][i]+df1['死亡人數_2_30日內'][i]
   elif 50<= df1['當事者事故發生時年齡'][i] <=59:
      total1_50+=df1['死亡人数_24小時內'][i]+df1['死亡人数_2_30日內'][i]
   elif df1['當事者事故發生時年齡'][i] >=60:
     total1_60+=df1['死亡人數_24小時內'][i]+df1['死亡人數_2_30日內'][i]
```

df\_i110=table\_110n. select('當事者事故發生時年齡','受傷人數','飲酒情形名稱'). where('飲酒情形名稱', are. equal\_to(drunk\_name)). to\_df() df\_i110

| 1   | 當事者事故發生時年齡 | 受傷人數 | 飲酒情形名稱                              |
|-----|------------|------|-------------------------------------|
| 0   | 18         | 2    | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 1   | 34         | 1    | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 2   | 22         | 2    | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 3   | 33         | 2    | 經呼氣檢測0.41~0.55mg/L或血液檢測0.081%~0.11% |
| 4   | 62         | 1    | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
|     |            |      |                                     |
| 461 | 53         | 2    | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 462 | 49         | 1    | 經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08% |
| 463 | 39         | 2    | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |
| 464 | 35         | 1    | 經呼氣檢測0.41~0.55mg/L或血液檢測0.081%~0.11% |
| 465 | 22         | 2    | 經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16% |

#### 計算110年酒駕事故的各年齡段受傷總人數

466 rows × 3 columns

```
totali1_18=0
totali1_26=0
totali1_30=0
totali1_40=0
totali1_50=0
totali1_60=0
for i in df_i110.index:
   if 18<= df_i110['當事者事故發生時年齡'][i] <=25:
      totali1_18+=df_i110[' 受傷人數'][i]
   elif 26<= df_i110['當事者事故發生時年齡'][i] <=29 :
      totali1_26+=df_i110['受傷人數'][i]
   elif 30<= df_i110['當事者事故發生時年龄'][i] <=39:
      totali1_30+=df_i110['受傷人數'][i]
   elif 40<= df_i110['當事者事故發生時年齡'][i] <=49:
      totali1_40+=df_i110[' 受傷人數'][i]
   elif 50<= df_i110['當事者事故發生時年齡'][i] <=59:
      totali1_50+=df_i110[' 受傷人數'][i]
   elif df_i109['當事者事故發生時年齡'][i] >=60:
     totali1_60+=df_i110['受傷人數'][i]
```

### 年龄區間 109年受傷人數 110年受傷人數 109年死亡人數 110年死亡人數

| 18-25 | 114 | 83  | 2 | 3 |
|-------|-----|-----|---|---|
| 26-29 | 60  | 35  | 1 | 0 |
| 30-39 | 154 | 123 | 4 | 1 |
| 40-49 | 174 | 145 | 1 | 4 |
| 50-59 | 149 | 125 | 2 | 0 |
| 60以上  | 131 | 19  | 0 | 0 |

die\_inj\_result.barh('年龄區間') # plot



# 桃園市交通酒駕事故發生時的年齡分佈In-depth Analysis

drunk\_name=make\_array('經呼氣檢測0.26~0.40mg/L或血液檢測0.051%~0.08%','經呼氣檢測0.41~0.55mg/L或血液檢測0.081%~0.11%','經呼氣檢測0.56~0.80mg/L或血液檢測0.111%~0.16%') df=table\_110.select('當事者事故發生時年龄','受傷人數','飲酒情形名稱').where('飲酒情形名稱',are.equal\_to(drunk\_name)) df.hist()

pop\_median = percentile(50, df.column('當事者事故發生時年齡')) pop\_median #酒駕事故發生的中位數年齡

43

resample\_1 = df.sample() #從table中隨機抽第一樣本

resample\_1.select('當事者事故發生時年齡').hist() #隨機抽第一樣本的直方圖



resampled\_median\_1 = percentile(50, resample\_1.column('當事者事故發生時年龄')) resampled\_median\_1 #隨機抽第一樣本的中位數年齡

```
resample_2 = df.sample()
resampled_median_2 = percentile(50, resample_2.column('當事者事故發生時年齢'))
resampled_median_2
#隨機抽第二樣本的中位數年齡
```

#### \*42

```
def one_bootstrap_median():
    resampled_table = df.sample()
    bootstrapped_median = percentile(50, resampled_table.column('當事者事故發生時年齡'))
    return bootstrapped_median
one_bootstrap_median()
#bootstrap函數的中位數年齡
```

#### \*44

```
num_repetitions = 5000
bstrap_medians = make_array()
for i in np.arange(num_repetitions):
    bstrap_medians = np.append (bstrap_medians, one_bootstrap_median())
```

#在每次迴圈中,我们将调用函数one\_bootstrap\_median来生成一个基于原始样本df的 bootstrapped median的值,然后我们将把bootstrapped中位数追加到集合数组 bstrap\_medians中。

```
resampled_medians = Table().with_column('Bootstrap Sample Median', bstrap_medians)
resampled_medians.hist()
plt.scatter(pop_median, 0, color='red', s=40, zorder=5);
#與原本總體的中位數年齡結果不一致
```



### 桃園市交通事故發生時的年齡分佈

#### 計算110年發生事故的各年齡段總人數

110年事故發生的年齡段

#### 對比這兩年每個年齡層發生的事故有沒有減少

#### 年齢區間 109年的總共人數 110年的總共人數 0-17 4276 3183 18-25 24584 19799 26-29 9413 8093 30-39 20000 16860 40-49 17625 15158 50-59 13858 12008 60-64 5715 4820 65以上 7566 6783

### happen\_total.plot('年龄區間')



從以上的綫狀圖顯示藍色是109年、黃色是110年,從這邊明顯看得出18-25歲是剛考到駕照的時候,而且這個年齡層發生事故比其它年齡層都要得多。

# 桃園市交通事故發生時的年齡分佈In-depth Analysis

```
total = table_110.select('當事者事故發生時年齡')
pop_median1 = percentile(50, total.column('當事者事故發生時年齡'))
#事故發生的中位數年齡
total.hist(bins=100)
plt.xlim(0, 100)
```



```
resample1 = total.sample()
resample1.select('當事者事故發生時年齡').hist(bins=100)
plt.xlim(0, 100)
#從總體抽隨機第一樣本
```



```
resampled_median1 = percentile(50, resample1.column('當事者事故發生時年龄')) resampled_median1 #第一樣本的中位數年齡
```

\*36

```
resample2 = total.sample(100)
resampled_median2 = percentile(50, resample2.column('當事者事故發生時年齡'))
resampled_median2
#從總體抽100的隨機第二樣本的中位數年齡
```

```
def one_bootstrap_median1():
    resampled_table = total.sample(500)
    bootstrapped_median = percentile(50, resampled_table.column('當事者事故發生時年齡'))
    return bootstrapped_median
one_bootstrap_median1()
#bootstrap函數的中位數年齡
```

\*36

```
num_repetitions1 = 5000
bstrap_medians1 = make_array()
for i in np.arange(num_repetitions):
    bstrap_medians1 = np.append (bstrap_medians1, one_bootstrap_median1())
```

#在每次迴圈中,我们将调用函数one\_bootstrap\_median来生成一个基于原始样本total的bootstrapped median的值,然后我们将把bootstrapped中位数追加到集合数组bstrap\_medians中。

```
resampled_medians1 = Table().with_column('Bootstrap Sample Median1', bstrap_medians1)
resampled_medians1.hist()
plt.scatter(pop_median1, 0, color='orange', s=40, zorder=10);
#與原本總體的中位數年齡結果相似
```

