Section 1.1

We classify Des by their type, order, and linearity.

- Ordinary: If a DE contains a single independent variable.
- Partial: If a DE contains only partial derivatives of 2 or more variables

Order: The highest order derivative appearing in the equation.

The Normal Form of a DE is the standard way of writing a DE, so the highest order term is isolated on one side of the equation.

$$y' = \frac{f(x, y)}{x}$$

$$x = 0 \text{ is "a point of singularity"}$$

Linearity:

An nth order ODE is linear if we can write it in the following form:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots$$

Where these terms are all functions depending at most on x. They can be constant or zero.

$$(y')^n$$
 – Non Linear
 $\cos(x + y)$ – Non Linear
 $(y)(y')$ – Non Linear

First Order ODE's Normal Form:

$$y' = f(x, y)$$

$$f(x, y) = -P(x)y + Q(x)$$

First Order Non-Linear DE's Normal Form:

$$y' = f(x,y)$$

 $f(x,y)$ depends on y in a NL way

Second Order Linear ODE's Normal Form:

$$y'' = f(x, y, y')$$

 $f(x, y, y') = a(x)y + b(x)y' + c(x)$

Solutions of DEs

A solution is a function that satisfies the DE. We also want to know for which values the solution is valid for. The interval I of a solution to an ODE is called the "interval of definition".

Families of Solutions

The set of solutions $y = Ce^x$ is a family of solutions with parameter C.

A general solution of a DE is a function y = y(x) with arbitrary parameters that includes all possible solutions of the DE.

A particular solution is one solution of the DE without parameters.

Section 1.2

Initial-Value Problems

The problem of solving a DE with info about conditions at a point.

Explicit and Implicit Solutions

An explicit solution to a DE is a function y = y(x) written in terms of the independent variable (& constants) only.

An implicit solution of a DE is a relation G(x,y)=0 such that there is at least one function PHI that satisfies both the relation and the DE.

An implicit solution is a relation which can be converted to the given DE.

Uniqueness of Solutions to IVPS

- Existence: Does the DE y' = f(x, y) have any solutions? If so, do any of the solution curves pass through (x_0, y_0) ?
- Uniqueness: When is there exactly one curve through the point (x_0, y_0) ?

Theorem 1.2.1

Suppose we have a first order IVP

$$y' = f(x, y) \quad y(x_0) = y_0$$

Let a, b, c, d be real numbers such that

$$a < x_0 < b \& c < y_0 < d$$

Let R be the rectangle $[a, b] \times [c, d]$

If f(x,y) and $\frac{df}{dy}(x,y)$ are continuous at and near (x_0,y_0) , then there exists a unique solution curve that passes through (x_0,y_0) .

Section 2.1

Direction Fields - Sep 15 Note

2.1.2 Autonomous DEs

An ODE in which the independent variable does not appear explicitly. y' = f(y)

Sketching Solution Curves for ADEs

Regions where f(y) > 0 solutions y(x) is increasing. Graphically, solutions rising.

Regions where f(y) < 0 solutions y(x) is decreasing. Graphically, solutions falling.

If $f(y_0) = 0$ at a y-value then $f(y_0) = 0$ for all values x. The constant function $y(x) = y_0$ will be a solution to the DE. Graphically, a horizontal line.

Define: If y_0 is a number where $f(y_0) = 0$, y_0 is called an "equilibrium point" or "critical point".

Note: Solution curves do not cross.

Theorem 1.2.1 ; if f(x,y) and $\frac{df}{dy}$ are continuous at and near (x_0,y_0) , then the IVP $y'=f(x,y)\;\;y(x_0)=y_0$ has a unique solution.

Types of Critical Points

Asymptotically Stable (Attractor)

If all solutions of the DE that start sufficiently close to C have the property

$$\lim_{x > \infty} y(x) = 0$$

Solution curves get close to the line y = C as $x > \infty$

Unstable (Repeller)

If all solutions of the DE y(x) that start sufficiently Close to C move away from C as $x > \infty$

• Semi-stable

If solutions starting sufficiently close to C are pulled towards C on one side, and repelled on the other.

Summary of Critical Points:

Suppose C is a critical point of DE y' = f(y)

y' > 0 when close to and below C, and y' < 0 when close to and above C, then C is stable.

y' < 0 when close to and below C, and y' > 0 when close to and above C, then C is unstable.

y' < 0 when close to and below/above C, y' > 0 when close to and below/above C, then C is semi-stable.

<u>Classifying the Critical Points of a DE</u> September 16 Note

Method 1: Check the sign of f(y) near C.

Method 2: Graph f(y)

Section 2.2 - Separable DEs

$$\int_{y_0}^{y} \frac{1}{f(t)} dt = \int g(x)$$

Section 2.3 - Linear Equations

First Order:

$$a_1(x)y' + a_0(x)y = g(x)$$

g(x) = 0 – Homogeneous

 $g(x) \neq 0$ - Non - Homogenous

Standard Form:

$$y' + \frac{a_0(x)}{a_1(x)}y = \frac{g(x)}{a_1(x)}$$

$$\to y' + p(x)y = f(x)$$

Homo: y' + p(x)y = 0

Constant y = 0 always a solution to homo

Solving First Order Linear Homo DEs

$$y' + p(x)y = 0$$

$$y = Ce^{-\int p(x)}$$

Leave out the C from the integral

Linear Superposition Principal (LSP)

For
$$y' + p(x)y = 0$$
 *

If $y_1(x)$ is any particular solution to * then $y(x) = C_1 y_1(x)$ is a general solution of *

General Solution:

$$y' + p(x)y = q(x)$$

$$I(x) = e^{-\int p(x)}$$

$$y(x) = \frac{1}{I(x)} \left(\int I(x)q(x) + C \right)$$

"Transient Term" refers to term t(x) in the solution y(x) such that limit of t(x) = 0

Solving First Order Linear Non-Homo DEs

$$y' + p(x)y = q(x) \neq 0$$

LSP: If y_p is a particular solution of the DE and y_c is a general solution of the homo DE, then $y(x) = y_c(x) + y_p(x)$ is a general solution of the DE.

Also implied that

$$y(x) = Ky_c(x) + y_p(x)$$

Step 1: Put into standard form

Step 2: Compute I(x)

Step 3: Computer $\int I(x)q(x)$

Step 4: General solution

Section 2.7 - Linear Models

Exponential Growth/Decay

Growth:

$$P' = kP$$

$$P = Ce^{kt}$$

Decay:

$$A' = kA$$

$$A = Ce^{kt}$$

Cooling/Warming

$$T' = -k(T - T_m)$$

$$T(t) = T_m + (T_0 - T_m)e^{-kt}$$

Solution Curves:

Section 3.1

Linear Second Order Equations

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$$

 $a_2 \neq 0$

Standard Form:

$$y'' + \frac{a_1(x)}{a_2(x)}y' + \frac{a_0(x)}{a_2(x)}y = \frac{g(x)}{a_2(x)}$$

$$y'' + p(x)y' + q(x)y = f(x)$$

$$f(x) = 0$$
 – Homogenous

$$f(x) \neq 0$$
 – Non Homogenous

Second Order Homo DEs:

$$y'' + p(x)y' + q(x)y = 0$$

Constant function y(x) = 0 is always a solution.

LSP: Let y_1 and y_2 be particular solutions to the homo, then $y = y_1 + y_2$ is also a soln.

Linear Independence of Functions

We say f_1 , f_2 are linearly dependent if there exist constants \mathcal{C}_1 , \mathcal{C}_2 (not both 0) such that:

$$C_1 f_1(x) + C_2 f_2(x) = 0$$
 for all x in I

They are linearly independent if the only C's that work are both C's being zero.

Wronskian

Suppose f_1 , f_2 are differentiable. The Wronskian of them denoted by $W(f_1,f_2)$ is defined by:

$$W(f_1, f_2) = det \begin{bmatrix} f_1 & f_2 \\ f_1' & f_2' \end{bmatrix}$$

$$W(f_1, f_2) = f_1 f_2' - f_2 f_1'$$

Theorem 3.1.3

Suppose f_1 , f_2 are solutions of a homo linear second order DE on interval I.

 $W(f_1, f_2) \neq 0$ f_1, f_2 linearly independent

If $W(f_1, f_2) = 0$ for some X then $W(f_1, f_2) = 0$ for all X

Theorems 3.1.1 and 3.1.5 on September 9th Note #3

Non-Homo Linear Equations

$$y'' + p(x)y' + q(x)y = f(x) \qquad f(x) \neq 0$$

General Solution:

$$y_a = y_c + y_p$$

LSP (3.1.7):
$$y_p = y_{p_1} + y_{p_2}$$

<u>Section 3.3 – Homo Linear Equations with</u> Constant Coefficients

Case 1:
$$b^2 - 4ac > 0$$

Distinct roots m₁ and m₂

$$y(x) = C_1 e^{m_1 x} + C_2 e^{m_2 x}$$

Case 2:
$$b^2 - 4ac = 0$$

Repeated roots $m_1 = m_2$

$$y(x) = C_1 e^{m_1 x} + C_2 x e^{m_2 x}$$

Case 3:
$$b^2 - 4ac < 0$$

Complex conjugate roots m₁ and m₂

$$y(x) = e^{\alpha x} (C_1 \cos(\theta x) + C_2 \sin(\theta x))$$

$$\alpha = -\frac{b}{2a} \qquad 6i = \frac{\sqrt{b^2 - 4ac}}{2a}$$

2 Complex m_1 and m_2 with opposite signs but equal values:

$$y(x) = C_1 \cosh(kx) + C_2 \sinh(kx)$$

Eg:
$$4y'' - y = 0$$

<u>Section 3.4 – Method of Undetermined</u> <u>Coefficients</u>

$$ay'' + by' + cy = g(x)$$

Comp Sol:
$$ay'' + by' + cy = 0$$

Applies when g(x) is:

- A constant
- A polynomial
- Exponential
- Sin/Cos
- Finite sum/product of these

Polynomials:

If g(x) is a degree k polynomial,

Step 1: Find Y_c using aux eqt

Step 2:
$$f(x) = Ax^k + Bx^{k-1} + Cx^{k-2}$$
 ...

Exponential Functions:

If
$$g(x) = p(x)e^{\lambda x}$$

Step 1: Find Y_c using aux eqt

Step 2:
$$f(x) = a_k x^k + b_{k-1} x^{k-1} \dots a_0$$

$$Y_I = f(x)e^{\lambda x}$$

If
$$m_1m_2 \neq \lambda$$

$$Y_p = Y_I$$
If m_1 or $m_2 = \lambda$
$$Y_p = x * Y_I$$
If $m_1m_2 = \lambda$
$$Y_n = x^2 * Y_I$$

Trig Functions: Sin

$$Y_p = Asin(x) + Bcos(x)$$

If
$$g(x) = p(x)e^{\lambda x}\sin(x)$$

Step 1: Find Y_c using aux eqt

If
$$m_1 m_2 \neq \lambda \pm i$$

$$Y_p = f(x)e^{\lambda x}\sin(x) + g(x)e^{\lambda x}\cos(x)$$

$$If \ m_1m_2=\lambda\pm i$$

$$Y_c = e^{\lambda x} (\cos(x) + \sin(x))$$

$$Y_p = xP_p$$

Trig Functions: Cos

If
$$g(x) = p(x)e^{\lambda x}\cos(wx) > p$$
 degree k

Step 1: Find Y_c using aux eqt

If
$$m_1 m_2 \neq \lambda \pm i$$
 else $Y_p = xY_p$

$$Y_n = e^{\lambda x} (f(x) \sin(wx) + g(x) \cos(wx))$$

Section 3.5 - Variation of Parameters

$$a_2(x)y'' + a_1(x) + a_0(x) = g(x)$$

> Standard Form:

$$(x)y'' + \frac{a_1}{a_2}(x) + \frac{a_0}{a_2}(x) = \frac{g(x)}{a_2}$$

> Complete Wronskian (y1, y2)

$$> u_1 = \int -\frac{y_2 f(x)}{w(y_1, y_2)} dx$$

$$> u_2 = \int \frac{y_1 f(x)}{w(y_1, y_2)} dx$$

$$y_n = u_1 y_1 + u_2 y_2$$

$$y = c_1 y_1 + c_2 y_2 + u_1 y_1 + u_2 y_2$$

Section 3.6 - Cauchy-Euler Equations

$$ax^2y'' + bxy' + cy = 0$$

Case 1:
$$(b-a)^2 - 4ac > 0$$

 $Y_c = C_1 x^{m_1} + C_2 x^{m_2}$

Case 2:
$$(b-a)^2 - 4ac = 0$$

 $Y_c = x^{m_1} + x^{m_2} \ln(x)$

Case 3:
$$(b-a)^2 - 4ac < 0$$

 $Y_c = C_1 x^{\alpha+iB} + C_2 x^{\alpha-iB}$

$$\alpha = \frac{a-b}{2a} \qquad B = \frac{\sqrt{4ac - (a-b)^2}}{2a}$$

$$Y_1 = x^{\alpha} \cos \left(B \ln(x)\right)$$

$$Y_2 = x^{\alpha} \sin \left(B \ln(x) \right)$$

Section 3.8 - IVPS for 2nd-order LE

$$mx'' + Bx' + kx = F(t)$$

$$x'' + 2\lambda x' + w^2 x = f(t)$$

$$2\lambda = \frac{B}{m}$$
 $w^2 = \frac{k}{m}$ $\frac{F}{m} = f$

Free Motion: No driving force (F = 0) Driven Motion: Driving force (F \neq 0)

Free Motion:

$$m = -\lambda \pm \sqrt{(\lambda^2 - w^2)}$$

$$x(t) = e^{mt}$$

Free Undamped Motion

$$B = F = \lambda = 0$$

$$m = +wi$$

$$x(t) = C_1 \cos(wt) + C_2 \sin(wt)$$

$$x(t) = -C_1 w \sin(wt) + 2C_2 \cos(wt)$$

Period:
$$\frac{2\pi}{w}$$
 $x_0 = C_1$ $x'_0 = wC_2$

Free Damped Motion

$$x'' + 2\lambda x' + w^2 x = f(t)$$

$$m = -\lambda \pm \sqrt{(\lambda^2 - w^2)}$$

Case 1: $\lambda^2 - w^2 > 0 \mid \lambda > w$ 'Overdamped'

$$x(t) = C_1 e^{m_1 t} + C_2 e^{m_2 t}$$

Case 2: $\lambda^2 - w^2 = 0$ 'Critically Damped'

$$m_1 = m_2 = -\lambda$$

$$x(t) = C_1 e^{-\lambda t} + C_2 t e^{-\lambda t}$$

Case 3: $\lambda^2 - w^2 < 0 \mid \lambda < w$ 'Underdamped'

$$m = -\lambda \pm i\sqrt{(\lambda^2 - w^2)}$$
 $m_1, m_2 = a \pm bi$

$$a = -\lambda$$
 $b = \sqrt{(w^2 - \lambda^2)}$

$$x(t) = e^{-\lambda t} (C_1 \cos(bt) + C_2 \sin(bt))$$

Driven Motion

$$x'' + 2\lambda x' + w^2 x = f(t) = a_0 \cos(w_0 t)$$

Driven Undamped

Case 1:
$$w_0 \neq w$$

$$m_1, m_2 = \pm wi$$

$$X_c = C_1 \cos(wt) + C_2 \sin(wt)$$

$$X_p = \frac{a_0}{w^2 - w_0^2} \cos(w_0 t)$$

$$C_1 = x_0 - \frac{a_0}{w^2 - w_0^2}$$
 $C_2 = \frac{x_1}{w}$

Case 2:
$$w_0 = w$$

$$x(t) = x_0 \cos(wt) + \frac{x_1}{w} \sin(wt) + \frac{a_0}{2w} t \sin(wt)$$

Driven Damped

$$F \neq \lambda \neq B \neq 0 \quad 0 < \lambda < w$$

$$\begin{split} X_c &= e^{-\lambda t} (C_1 \cos \left(\sqrt{w^2 - \lambda^2} * t \right) \\ &+ C_2 \sin \left(\sqrt{w^2 - \lambda^2} * t \right)) \end{split}$$

$$X_p = \frac{a_0}{(w^2 - w_0^2)^2 + 4\lambda^2 w_0^2} * \dots$$
$$((w^2 - w_0^2)\cos(w_0 t) + 2w_0\lambda\sin(w_0 t))$$

In the long run, the system oscillates. Periodic at $2\pi/w_0$

3.9 Boundary-value Problems Linear DEs

- No solution
- A unique Solution
- Infinitely-many solutions
- Note Oct 31 for examples

Theorem: Assume that P, Q, F are continuous on $[x_0, x_1]$. The BVP

$$y'' + Py' + Qy = f$$

 $y(x_0) = y_0 \quad y(x_1) = y_1$

Has a unique solution iff the homo BVP

$$y(x_0) = 0 \quad y(x_1) = 0$$

Has $y_c(x) = 0$ as the only solution.

Euler's Law: Note Nov 1

Section 4.1 - The Laplace Transform

$$f(t) = 1 > \frac{1}{s} \quad f(t) = t^n > \frac{n!}{s^{n+1}}$$

$$f(t) = \sin(kt) > \frac{k}{k^2 + s^2}$$

$$f(t) = \cos(kt) > \frac{s}{s^2 + k^2}$$

$$f(t) = \sinh(kt) > \frac{k}{s^2 - k^2}$$

$$f(t) = \cosh(kt) > \frac{s}{s^2 - k^2}$$

$$f(t) = e^{-at} > \frac{1}{s+a}$$

Solve a DE by:

- 1) Convert DE on a function x(t) to an algebraic equation on a function X(s)
- 2) Solve the algebraic equation for X(s)
- 3) Use Inverse Laplace to get a solution

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

If this converges, F(s) is the Laplace transform of f(t).

$$L\{f, g\} = L\{f\} + L\{g\}$$

$$f(t) = L^{-1}{F(s)}$$

$$L\{f'\} = sF(s) - f(0)$$

$$L\{f''\} = s^2 F(s) - sf(0) - f'(0)$$

$$ax'' + bx' + cx = g(t)$$

$$X(s) = \frac{a(x_0' + sx_0) + bx_0}{as^2 + bs + c} + \frac{L\{g\}}{as^2 + bs + c}$$

General Solution for X(t) of an IVP:

- 1) Apply Laplace to DE and apply initial conditions
- 2) Solve for X(s)
- 3) Inverse Laplace on X(s) to get x(t)

Translations of the Laplace Transform

$$L\{e^{at} * f(t)\} = F(s - a)$$

Laplace Transform of an Integral

$$L\left\{\int_{0}^{t} f(T)dT\right\} = \frac{F(s)}{s}$$

Dirac Delta Function

$$L\{d_e(t-t_0)\} = \lim_{e \to 0} L\{d_e(t-t_0)\}$$

$$L\{d_e(t-t_0)\}=e^{-st_0}$$

$$L\left\{d_e(t)\right\} = 1$$

Separable Partial Diff. Equations

Case 1) $\lambda < 0$: No Solution, Not Possible $C_1 \& C_2$ have to be 0, therefore F(x) = 0

Case 2)
$$\lambda = 0$$
: $F(x) = 0$

Case 3)
$$\lambda > 0$$
: $F(0 \& L) = 0$, $C_1 = 0$

if
$$\lambda = \left(\frac{n\pi}{L}\right)^2 \& C_2 \neq 0$$
, then:

$$F(x) = C_2 \sin\left(\frac{n\pi}{L}x\right)$$

$$G(t) = Ce^{-\left(\frac{n\pi}{L}\right)^2 t}$$
 $\lambda = \left(\frac{n\pi}{L}\right)^2$

Summary:

$$\frac{du}{dt} = \frac{d^2u}{dx^2}$$

$$u(x,t) = Ce^{-\left(\frac{n\pi}{L}\right)^2 t} * \sin\left(\frac{n\pi}{L}x\right)$$

13.2 – 13.4 Not typed up. Too many symbols.