Конспект лекции 16/09/19

Теорема: неравенство Бернулли

$$(1+x)^n \geq 1+nx \quad x>-1, n\in \mathbb{N}$$

Также
$$(1+x)^n \geq 1 + nx + \frac{n(n-1)}{2}x^2$$

Докажем неравенство Бернулли через индукцию.

База:
$$n=1:\ (1+x)^1 \geq 1+x$$

Переход: Дано неравенство $(1+x)^n \geq 1+nx$, оно верно при каком-то n. Докажем, что $(1+x)^{n+1} \geq 1+(n+1)x$

$$(1+x)^{n+1} = (1+x)(1+x)^n \geq (1+x)(1+nx) = \ 1+(n+1)x+nx^2 \geq 1+(n+1)x$$

Onp. если множество $A\subset \mathbb{R}$, то A называется ограниченным сверху, если $\exists c\in \mathbb{R} \quad orall a\in A \quad a\leq c.$ c называется верхней границей A.

A - ограничено снизу $\exists c_1 \in \mathbb{R} \quad orall a \in A \quad a \geq c_1.\,c$ называется нижней границей A.

A - ограничено, если оно ограничено сверху и снизу: $\exists c_2 \in \mathbb{R} \quad orall a \in A \quad |a| \geq c_2$

Если c - верхняя граница, $\alpha>0$: $c+\alpha$ - верхняя граница.

 $M \in A$ называется максимальным элементом, если $orall a \in A \ \ a \leq M$

Антипример: $A=(0,1)\subset\mathbb{R}$ - не имеет максимального элемента

A - конечное множество, $A\subset\mathbb{R}\Rightarrow\exists$ максимальный элемент. Упражнение: доказать по индукции.

Следствие: $A\subset \mathbb{Z}$, ограничено сверху -> \exists максимальный элемент множества A.

Следствие следствия: $A\subset \mathbb{N}, A
eq \mathbb{N} \Rightarrow \exists minA$

Onp. $[x] = max\{k \in \mathbb{Z} k \leq x\}$ - округление вверх

Следствие: $[x] \leq x < [x] + 1, \quad x-1 < [x] \leq x$

ЧТО ЭТО ТАКОЕ?

 $\mathbb Q$ плотно в $\mathbb R$, т.е. $orall a,b\in \mathbb R, a < b \quad (a,b)\cap \mathbb Q
eq \emptyset$

Возьмем $n \in \mathbb{N}: n > rac{1}{b-a}$

$$q=rac{[na]+1}{n}$$

$$q \leq rac{na+1}{n} = a + rac{1}{n} < a + ba < b$$
 $q > rac{na}{n} = a$

Отображения

1.

Отображение - тройка (X,Y,f)

- X множество (область определения)
- Y множество (область значений)
- f правило

 $orall x \in X$ оно "вычисляет" элемент $f(x) \in Y$

На $Y=\mathbb{R}$ f назывется "функция"

2.

 $x:\mathbb{N} o Y$ - такое отображение называется последовательностью $x:\mathbb{Z} o Y$ - двусторонняя последовательность (индексы могут быть отрицательными)

Семейство элементов некоторого множества: X - множество, A - множество "индексов" $(x_{lpha})_{lpha\in A}$ - семейство элементов X. (здесь $orall \alpha\in A$ $x_{lpha}\in X$)

т.е. отображение $x \in A o X$, $x \mapsto x(lpha) = x_lpha$

Упорядоченная пара: $\{1,2\} o X$, $1\mapsto x_1, 2\mapsto x_2 \quad (x_1,x_2)$

$$\{1,..,m\}
ightarrow X\quad (x_1,...,x_m)$$

 $a,f:X o\mathbb{R}$. Сумма функций $f+g:orall x\,(f+g)(x)=f(x)+g(x)$

$$egin{aligned} F:X &
ightarrow \mathbb{R}^m \ x &\mapsto F(x) = (F_1(x),...,F_m(x)) \end{aligned}$$

F - векторнозначная функция (значения функции - вектора)

 $F_1(x)..F_m(x)$ - координатные функции отображения F

Onp. Образ для $A\subset X, f:X o Y$ "Образ множества A под действием f" - множество $\{f(x),x\in A\}\subset Y$ - обозначается f(A)

Прообраз: Дано $B\subset Y$ "Прообраз B при отображении f" = $\{x\in X: f(x)\in B\}$ - обозначается $f^{-1}(B)$

Инъекция "инъективное отображение", f - взаимно однозначное. f:X o Y инъ $orall x_1,x_2\in X, x_1
eq x_2$ $f(x_1)
eq f(x_2)$

На языке уравнений: $orall y \in Y$ уравнение f(x) = y имеет не более одного решения относительно x

Сюръекция f:X o Y сюръ f(X)=Y

На языке уравнений: $orall y \in Y \; f(x) = y$ имеет решение относительно x

f действует из X на Y - отображение "на"

Биекция: отображение одновременно сюръекция и биекция, т.е. на языке уравнений $\forall y \in Y f(x) = y$ имеет ровно одно решение относительно x. Также называют взаимнооднозначное соответствие.

График отображения: $\Gamma_f = \{(x,y) \in X imes Y : y = f(x)\}$

Обратное отображение: f:X o Y - биекция, тогда $f^{-1}:Y o X,y\mapsto x$

Композиция отображений: f:X o Y,g:Y o Z, тогда $g\circ f:x o z,x\mapsto g(f(x)).$ Также возможно $g:Y_1 o Z,Y_1\subset Y$

f - сужение $g.\,y:X o Y,A\subset X.$ Отображение $f:A o Y,x\mapsto g(x)$ называется сужением g на множество A.

 $f:X o Y, X\subset B, g:B o Y$ и g удовлетворяет свойству $orall x\in X$ g(x)=f(x), g называется продолжение отображения.

Тождественное отображение $id: X o X, x \mapsto x$ - ничего не делает.

Пределы в метрических пространствах

Предел последовательности

Примечание: свойства модуля.

- |xy| = |x||y|
- $|x| |y| \le |x + y| \le |x| + |y|$

Предел последовательности в ${\mathbb R}$

$$(x_n), a \in \mathbb{R}$$
 Опр.: $x_n o a, \lim_{n o \infty} x_n = a$

$$orall \epsilon > 0 \ \exists N \ orall n > N \ |x_n - a| < \epsilon$$

Примечание: N можно называть "номер", но оно не обязательно целое.

Если существует предел, то последовательность называется сходящейся (последовательность сходится), если $\forall a$ не является пределом - расходящейся.

Пример:

1. $x_n === a \quad (orall n \; x_n = a)$ - постоянная (стационарная) последовательность, $\lim x_n = a$

2.
$$x_n:=rac{1}{n}\quad x_n o 0\quad orall \epsilon>0\ \exists N:=rac{1}{\epsilon}\ orall n>N=rac{1}{\epsilon}\ rac{1}{n}<\epsilon$$

3.
$$x_n=(-1)^n$$
 - предела нет, докажем от противного. $x_n o a$ Для $\epsilon=1\exists N\ orall n>N\ |x_n-a|<1$

$$|z|=|x_n-x_{n+1}|\leq |x_n-a|+|x_{n+1}-a|<1+1$$
 - противоречие $lacksquare$.

"Двойная бухгалтерия": $orall \epsilon > 0 \ \exists N \ orall n > N \ |x_n - a| < 10\epsilon$ - это все равно одно и то же

Сокращение: $x_n = y_n$ начиная с некоторого места \Leftrightarrow НСМН $\Leftrightarrow \exists K \ orall n > K \ x_n = y_n$

$$a\in\mathbb{R}\;\;orall\epsilon>0\;\;(a-\epsilon,a+\epsilon)$$
 = ϵ -окрестность точки $a=\{x\in\mathbb{R}:|x-a|<\epsilon\}$

U,W,V - зарезервированы под окрестности. $U_{\epsilon}(a)$ - ϵ -окрестность точки a

Последовательности в метрическом пространстве

Onp. На множестве X отображение $ho: X imes X o \mathbb{R}$ называется метрикой *(расстоянием)*, если выполняются свойства 1-3.

1.
$$\forall x,y \
ho(x,y) \geq 0$$
; $ho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\forall x, y \ \rho(x, y) = \rho(y, x)$$

3. Неравенство треугольника:
$$orall x, y, z \in X
ho(x,y) \leq
ho(x,z) +
ho(z,y)$$

Onp. (x, ρ) - метрическое пространство

Пример:

- 1. Симплициальная метрика: $orall x, y
 eq x \;
 ho(x,y) = 1$
- 2. Метрика Хемминга: $X=\{0,1\}^8$ 8 бит, $\rho(a,b)$ = число разрядов, где они различаются.

$$\begin{array}{l} \textbf{3.} \ \mathbb{R} \ \ \rho(x,y) = |x-y| \\ \mathbb{R}^m \ \ x \in \mathbb{R}^m \ \ x = (x_1,...,x_m) \\ \rho_1(x,y) = |x_1-y_1| + |x_2-y_2| + ... + |x_m-y_m| \\ \rho_2(x,y) = \sqrt{|x_1-y_1|^2 + |x_2-y_2|^2 + ... + |x_m-y_m|^2} \\ \rho_\infty(x,y) = max(|x_1-y_1|,|x_2-y_2|,...,|x_m-y_m|) \end{array}$$

 $ho_1,
ho_2,
ho_\infty$ так же определены для \mathbb{C}^m

Опр. **Подпространством** метрического пространства (X, ρ) называется (A, ρ) , если $A \subset X$

Опр. Открытый шар:
$$B(a,r) = \{x \in X :
ho(a,x) < r\}$$

Опр. Замкнутый шар:
$$\overline{B(a,r)} = \{x \in X :
ho(a,x) \leq r\}$$

Опр. Сфера:
$$S(a,r)=\{x\in X:
ho(a,x)=r\}$$

Опр. ϵ -окрестность точки \mathbf{a} : $B(a,\epsilon) \Leftrightarrow U(a)$.

Опр. Проколотая ϵ -окрестность точки \mathbf{a} : $B(a,\epsilon)\cap\{a\}\Leftrightarrow \dot{U}(a)\Leftrightarrow \dot{B}(a,\epsilon).$

Определим предел через ϵ -окрестность: $orall U(a) \;\; \exists N \;\; orall n > N \;\; x_n \in U(a)$

Зам. $x_n o a \Leftrightarrow
ho(x_n,a) o 0$