Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. A qué valor de presión de aire se debe inflar un neumático (fig. 1) de un auto de carrera en boxes teniendo en cuenta que cuando esté en carrera la temperatura del neumático será de T_n y la presión optima deberá ser de P_{opt} ? Considerar la temperatura del neumático frio en boxes de 20 °C y el volumen del mismo es de V_n . El aumento de volumen del neumático de frio a caliente es del 20%. Suponga que la presión atmosférica es de 100 KPa.

$$T_n = 60 \,^{\circ} C$$
 $P_{opt} = 40 \,\text{psi}$ $V_n = 0.025 \,\text{m}^3$

Figure 1: Neumático

2. Un tanque sufre, en una de sus paredes verticales planas, una abolladura como se muestra en la figura 2. La misma puede considerarse como un cilindro de sección elipsoidal (semiejes de longitud A y B) y largo L. Calcule cuál es la fuerza hidrostática resultante sobre la abolladura (en función de sus dimensiones) y qué torque genera respecto a los puntos de concentración de tensiones (a y b). Exprese el resultado en términos de los parámetros del problema:

Figure 2: Abolladura elipsoidal en pared plana

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. En la figura 3 se observa un aspersor de un solo brazo visto en planta. El mismo rota respecto del punto O a velocidad constante ω . El flujo de agua Q ingresa desde un caño vertical a través de O. El torque resistente que se produce en el cojinete es $-T_O$. ¿Cual es la expresión que define la velocidad de rotación ω ?. En caso de que el aspersor tuviese cuatro brazos separados entre sí a 90° , ¿cual es la expresión de la velocidad?, ¿y si existiesen infinitos brazos aspersores?

Figure 3: Aspersor de un brazo