Graph coloring

- 1. Definition
- 2. Chromatic number
- 3. Types of graph coloring
- 4. Method

Graph coloring

 Graph coloring is one of the basic problems of Graph theory, widely used in informatics, to solve practical problems related to zoning, grouping, and maps.

Definition

In graph theory, graph
 coloring is a way of coloring
 the vertices of a graph such
 that no two adjacent
 vertices share the same
 color.

Chromatic number - Definition

- The chromatic number of a graph is the minimum number of colors one can use to color the vertices of the graph so that no two adjacent vertices are the same color.
- Chromatic number of the graph
 G is denoted by χ(G).
- $1 <= \chi(G) <= n$

Note: n are vertices of graph

Cycle graph

- A simple graph of 'n' vertices
 (n>=3) and 'n' edges forming a
 cycle of length 'n' is called as a
 cycle graph.
- In a cycle graph, all the vertices are of degree 2.

Cycle graph

Chromatic Number = 3

Chromatic Number = 2

Any even length cycle will have a chromaticity of 2 : $\chi(C_{2n}) = 2$

Wheel graph

- A wheel graph is obtained by connecting a vertex to all the vertices of a cycle graph.
- It is denoted by Wn, for n > 3
 where n is the number of
 vertices in the graph.

Chromatic number - Types of graphsWheel graph

 $\chi(W_n) = 4$ if n is even

 $\chi(W_n) = 3$ if n is odd

Complete Graph

- A complete graph is a graph in which every two distinct vertices are joined by exactly one edge.
- In a complete graph, each vertex is connected with every other vertex.

Complete Graph

Chromatic Number = 4

Chromatic Number = 5

- Chromatic Number of any Complete Graph = Number of vertices in that Complete Graph ($\chi(K_n) = n$)

Bipartite Graphs

- A Bipartite Graph consists of two sets of vertices X and Y.
- The edges only join vertices in X to vertices in Y, not vertices within a set.

Bipartite Graphs

Chromatic Number of any Bipartite Graph = 2

$$(\chi(G) \leq 2)$$

Graph coloring - Sequential coloring

Sequential coloring
 establishes the
 sequence of vertices
 before coloring them,
 and then color the next
 vertex with the lowest
 number possible

Graph coloring - Sequential coloring

- **Step 1:** Color first vertex with the first color.
- **Step 2:** consider the remaining (V-1) vertices one by one:
- Color the currently picked vertex with the lowest numbered color if it has not been used to color any of its adjacent vertices.
- + If it has been used, then choose the next least numbered color. If all the previously used colors have been used, then assign a new color to the currently picked vertex.

Sequential coloring - EXAMPLE

Graph coloring - Largest first sequence

- **Step 1:** We have a graph with 5 vertices numbered 1, 2, 3, 4, 5 with the ranks corresponding to each vertex in the order of 3, 1, 2, 1, 3. Hence V 'initially The order is [1, 5, 3, 2, 4]. Assign i = 1 (number of shaded colors).
- **Step 2**: Color 1 (red) for vertex 1. In turn, browse the remaining vertices in V '. We have: Point 5 is adjacent to vertex 1 (vertex 1 is colored 1 red), so there is no color for vertex 5. Similarly, vertices 3, 2 are adjacent to vertex 1, so vertices 3, 2 have not been colored. Vertex 4 is not adjacent to vertex 1, so color 1 for vertex 4. Vertex 4 has color 1 red.
- **Step 3:** Check that there are still unpainted vertices in V, so go to step 4.
- **Step 4:** Remove the colored vertices 1, 4 from V', rearrange V' in descending order, we get V'= [5, 3, 2]. We have i = 2. Repeat step 2: