Zeroth-Order Methods for Adversarial Machine Learning Optimization for Data Science Project

Federico Zanotti, Lorenzo Corrado

September 17, 2021

Introduction

- Introduction
- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- **5** Experiments
- **6** Conclusions

Introduction

•000000

- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- 6 Experiments
- **6** Conclusions

Context

Introduction

Deep Neural Networks (DNNs) represents a class of models that have been the revolution in AI:

- Image recognition
- Speech recognition
- Pattern analysis

Given the wide use of this type of models, security issues have emerged.

Adversarial Attacks

- It has been shown that this class of models are vulnerable to adversarial examples
- An adversarial example represents slightly modified data that lead to incorrect classification by the model

 The perturbation is carefully crafted to fool the target model and it is almost imperceptible for a human

Attacks Setting

Introduction

0000000

- White-box: the attacker knows all the information about the target model
 - Model architecture ✓
 - Parameters √
 - Inputs and Outputs ✓
 - Query the target model ✓
 - Gradient ✓
- Black-box: the attacker does not known information about the target model
 - Inputs and Outputs √
 - Query the target model ✓

• In the black-box setting, an adversarial example modified over a single target model can be effective for other models

Algorithms

 It is necessary to study them to understand how to build more robust models predict a particular class

Introduction

0000000

• Targeted attacks: an attacker tries to fool the DNN to

$$argmax P(\mathbf{y}|\tilde{\mathbf{x}}) = \mathbf{y}_{target}$$

 Untargeted attacks: an attacker tries to fool the DNN to get any incorrect class

$$argmax P(\mathbf{y}|\widetilde{\mathbf{x}}) \neq \mathbf{y}_{true}$$

Algorithms

- In this project we will focus on the problem of generation of adversarial examples in the black-box setting and we will optimize an objective function to make untargeted attacks
- Now let's see how the problem can be formalized from a mathematical point of view

- 1 Introduction
- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- 6 Experiments
- **6** Conclusions

In general, we can formalize the problem as a constrained finite-sum minimization problem:

$$\min_{\mathbf{x}\in\Omega} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$
 (1)

Where:

- $\Omega \in \mathbb{R}^d$ denotes a closed convex feasible set
- Each component function f_i is smooth and non-convex
- $n \in \mathbb{R}$ denotes the number of components function

- Frank-Wolfe algorithm is one of the oldest methods for non-linear constrained optimization like the problem above
- Contrary to another popular method like the projected gradient descent, this algorithm uses a routine that solves a linear sub-problem to find a feasible solution in $\boldsymbol{\Omega}$
- This routine is the so called linear minimization oracle (LMO):

$$\mathbf{v}_t \in \underset{\mathbf{v} \in \Omega}{\operatorname{argmin}} \langle \nabla f(\mathbf{x}_t), \mathbf{v} \rangle \tag{2}$$

Algorithms

Figure 1: Example on a 2D problem.

- There are many different variants of this algorithm, but many of them are based on the availability of the gradient ∇f_i
- Given our project setting we can use only zeroth-order methods to tackle the problem, so we need some estimators to approximate the gradient of the objective function
- The zeroth-order methods in general are useful when:
 - Gradient information is infeasible to obtain
 - Gradient information is difficult to compute

In this project we will present:

- Zeroth-Order Stochastic Conditional Gradient (ZSCG), proposed by Balasubramian et al., (2018)
- Faster Zeroth-Order Frank-Wolfe (FZFW), proposed by Gao et al., (2020)
- Faster Zeroth-Order Conditional Gradient Sliding Method (FZSCG), proposed by Gao et al., (2020)

- 1 Introduction
- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- 6 Experiments
- **6** Conclusions

Assumptions

Introduction

We will list some standard useful assumptions for the definition of the zeroth-order gradient estimators and for the convergence analysis:

1. The component function f_i ($i \in [n]$) is L-smooth:

$$||\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||, \quad \forall \mathbf{x}, \mathbf{y} \in \Omega$$
 (3)

- 2. The diameter of the feasible set Ω is D
- 3. Assume that the variance of the stochastic gradient $\nabla f_i(\mathbf{x})$ $(i \in [n])$ is bounded as:

$$\frac{1}{n}\sum_{i=1}^{n}||\nabla f_i(\mathbf{x}) - \nabla F(\mathbf{x})||^2 \le \sigma^2 \tag{4}$$

Where $\sigma > 0$

Convergence criteria

Frank-Wolfe gap (for ZSCG and FZFW):

$$\mathcal{G} = \max_{\mathbf{u} \in \Omega} \langle \mathbf{u} - \mathbf{x}, -\nabla F(\mathbf{x}) \rangle. \tag{5}$$

Gradient mapping (for FZCGS):

$$\mathcal{G}(\mathbf{x}, \nabla F(\mathbf{x}), \gamma) = \frac{1}{\gamma} (\mathbf{x} - \psi(\mathbf{x}, \nabla F(\mathbf{x}), \gamma)), \tag{6}$$

where $\psi(\mathbf{x}, \nabla F(\mathbf{x}), \gamma)$ denotes a prox-mapping function which is defined as follows:

$$\psi(\mathbf{x}, \nabla F(\mathbf{x}), \gamma) = \underset{\mathbf{y} \in \Omega}{\operatorname{argmin}} \langle \nabla F(\mathbf{x}), \mathbf{y} \rangle + \frac{1}{2\gamma} ||\mathbf{y} - \mathbf{x}||^2 \rangle$$
 (7)

with $\gamma > 0$ is an hyper-parameter.

To compare the iteration complexity of different algorithms:

- Function Query Oracle (FQO): FQO samples a component function and returns its function value $f_i(x)$.
- Linear Oracle (LO): LO solves a linear programming problem and returns argmax(u, v).

Averaged (gaussian) random gradient estimator:

$$\hat{\nabla} f_i(\mathbf{x}) = (d/\nu q) \sum_{j=1}^q [f_i(\mathbf{x} + \nu \mathbf{u}_{i,j}) - f_i(\mathbf{x})] \mathbf{u}_{i,j}$$
(8)

Where $\nu > 0$ is a smoothing parameter, $\mathbf{u}_{i,j} \sim N(\mathbf{0}, \mathbf{I})$

Coordinate-wise gradient estimator:

$$\hat{\nabla} f_i(\mathbf{x}) = \sum_{j=1}^d \frac{f_i(\mathbf{x} + \mu \mathbf{e}_j) - f_i(\mathbf{x} - \mu \mathbf{e}_j)}{2\mu} \mathbf{e}_j$$
 (9)

Where $\mu > 0$ is a smoothing parameter, $\mathbf{e}_j \in \mathbb{R}^d$ basis vector and d is number of optimization variables.

Smoothing parameter ν

Figure 2: Gradient and approximated gradient on a toy example of f_{ν} .

Algorithms

- 1 Introduction
- Prank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- **5** Experiments
- 6 Conclusions

ZSCG Scheme

Algorithm 1 Zeroth-Order Stochastic Conditional Gradient Method (ZSCG)

Require: $z_0 \in \Omega$, smoothing parameter $\nu > 0$, non-negative sequence $\alpha_k > 0$, positive integer sequence m_k , iteration limit N > 1

for $k = 1, \dots, N$ do

 Generate u_k = [u_{k,1},..., u_{k,m_k}], where u_{k,j} ~ N(0, I_d), call the stochastic oracle to compute m_k stochastic gradient G^{k,j}_ν and take their average:

$$\hat{G}_{\nu}^{k} \equiv \hat{G}_{\nu}^{k}(z_{k-1}, \xi_{k}, u_{k}) = \frac{1}{m_{k}} \sum_{j=1}^{m_{k}} \frac{F(z_{k-1} + vu_{k,j}, \xi_{k,j}) - F(z_{k-1}, \xi_{k,j})}{\nu} u_{k,j}$$
 (13)

Compute

$$x_k = \underset{u \in \Omega}{\operatorname{argmin}} \langle \hat{G}_{\nu}^k, u \rangle$$
 (14)

$$z_k = (1 - \alpha_k)z_{k-1} + \alpha_k x_k \qquad (15)$$

end for return z_k

Convergence Rate for ZSCG

Theorem 1. Let $\{z_k\}_{k\geq 0}$ be generated by Algorithm 1 and Assumptions 1, 2 and 3 hold. Let f be nonconvex, bounded from below by f^* , and let the parameters of the algorithm be set as:

$$\nu = \sqrt{\frac{2B_{L\sigma}}{K(d+3)^3}}, \ \alpha_k = \frac{1}{\sqrt{K}}, \ m_k = 2B_{L\sigma}(d+5)K, \ \forall k \geq 1 \ \ (10)$$

for some constant $B_{L\sigma} \ge \max\{\sqrt{B^2 + \sigma^2}/L, 1\}$ and a given iteration bound $K \ge 1$. Then we have:

$$\mathbb{E}[g_{\Omega}^R] \le \frac{f(z_0) - f^* + LD_{\Omega}^2 + 2\sqrt{B^2 + \sigma^2}}{\sqrt{K}} \tag{11}$$

where R is uniformly distributed over $\{1, ..., K\}$ and g_k is the Frank-Wolfe gap.

With the same setting of Theorem 1 we have:

Total number of calls to the zeroth-order stochastic oracle:

$$O\left(\frac{d}{\epsilon^4}\right) \tag{12}$$

Total number of linear suproblems:

$$O\left(\frac{1}{\epsilon^2}\right) \tag{13}$$

• Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems?

Algorithms

000000000000

Algorithm 2 Faster Zeroth-Order Frank-Wolfe Method (FZFW)

```
Require: \mathbf{x}_0, q > 0, \mu > 0, K > 0, n
   for k = 0, ..., K - 1 do
        if mod(k, q) = 0 then
            Sample S_1 without replacement to compute \hat{\mathbf{v}}_k = \hat{\nabla} f_{S_1}(\mathbf{x}_k)
        else
            Sample S_2 with replacement to compute \hat{\mathbf{v}}_k = \frac{1}{|S_2|} \sum_{i \in S_2} [\hat{\nabla} f_i(\mathbf{x}_k) - \hat{\nabla} f_i(\mathbf{x}_{k-1}) + \hat{\mathbf{v}}_{k-1}]
        end if
        \mathbf{u}_k = \operatorname{argmax} \langle \mathbf{u}, -\hat{\mathbf{v}}_k \rangle
        \mathbf{d}_k = \mathbf{u}_k - \mathbf{x}_k
        \mathbf{x}_{k+1} = \mathbf{x}_k + \gamma_k \mathbf{d}_k
   end for
```

return Xk

Convergence Rate for FZFW

Introduction

Theorem 2. Under the same assumptions made before, if the parameters are chosen as:

$$|S_1| = n, q = |S_2| = \sqrt{n}, \gamma_k = \gamma = \frac{1}{D\sqrt{K}}, \mu = \frac{1}{\sqrt{dK}}$$
 (14)

Then FZFW satisfies:

$$\mathbb{E}[\mathcal{G}(\mathbf{x}_{\alpha})] \leq \frac{D(F(\mathbf{x}_{0}) - F(\mathbf{x}_{*}) + 11L)}{\sqrt{K}}$$
(15)

With the same setting of Theorem 2 we have:

Total number of calls to the zeroth-order oracle:

$$O\left(\frac{n^{\frac{1}{2}}d}{\epsilon^2}\right) \tag{16}$$

• Total number of linear sub-problems:

$$O\left(\frac{1}{\epsilon^2}\right) \tag{17}$$

FZCGS Scheme

Algorithm 3 Faster Zeroth-Order Conditional Gradient Sliding Method (FZCGS)

```
Require: \mathbf{x}_0, q > 0, \ \mu > 0, \ K > 0, \ \eta > 0, \ n for k = 0, \dots, K-1 do if mod(k,q) = 0 then Sample S_1 without replacement to compute \hat{\mathbf{v}}_k = \hat{\nabla} f_{S_1}(\mathbf{x}_k) else Sample S_2 with replacement to compute \hat{\mathbf{v}}_k = \frac{1}{|S_2|} \sum_{i \in S_2} [\hat{\nabla} f_i(\mathbf{x}_k) - \hat{\nabla} f_i(\mathbf{x}_{k-1}) + \hat{\mathbf{v}}_{k-1}] end if \mathbf{x}_{k+1} = condg(\hat{\mathbf{v}}_k, \mathbf{x}_k, \gamma_k, \eta_k) end for return x_k
```

```
\begin{split} & \textbf{Algorithm 4} \ u^+ = condg(\mathbf{g}, \mathbf{u}, \gamma, \eta) \\ & \mathbf{u}_1 = \mathbf{u}, t = 1 \\ & \mathbf{v}_t \text{ be an optimal solution for } V_{\mathbf{g}, \mathbf{u}, \gamma}(\mathbf{u}_t) = \max_{\mathbf{x} \in \Omega} (\mathbf{g} + \frac{1}{\gamma} (\mathbf{u}_t - \mathbf{u}), \mathbf{u}_t - \mathbf{x}) \\ & \text{while } V_{\mathbf{g}, \mathbf{u}, \gamma}(\mathbf{u}_t) > \eta \text{ do} \\ & \mathbf{u}_{t+1} = (1 - \alpha_t) \mathbf{u}_t + \alpha_t \mathbf{v}_t, \text{ where } \alpha_t = \min\{1, \frac{(\frac{1}{\gamma} (\mathbf{u} - \mathbf{u}_t) - \mathbf{g}, \mathbf{v}_t - \mathbf{u}_t)}{\frac{1}{\gamma} ||\mathbf{v}_t - \mathbf{u}_t||^2}\} \\ & t = t + 1 \\ & \text{end while} \\ & \text{return } \mathbf{u}^+ = \mathbf{u}_t \end{split}
```


If we define

$$\phi(y; x, \nabla F(x), \gamma) = \min_{y \in \Omega} \langle \nabla F(x), y \rangle + \frac{1}{2\gamma} ||y - x||^2 \quad (18)$$

Then step 2 in Condg procedure is equivalent to optimize

$$\max_{x \in \Omega} \langle \phi'(u_t; u, g, \gamma), u_t - x \rangle$$
 (19)

because

$$\phi'(u_t; u, g, \gamma) = g + \frac{1}{\gamma}(u_t - u)$$
 (20)

And this is the Frank Wolfe Gap and when it is smaller than tolerance η , u_t is returned

Convergence Rate for FZCGS

Theorem 3. Under the assumptions made before, if the parameters are chosen as:

$$|S_1| = n, q = |S_2| = \sqrt{n}, \mu = \frac{1}{\sqrt{dK}}, \gamma_k = \gamma = \frac{1}{3L}, \eta_k = \eta = \frac{1}{K}$$
 (21)

Then FZCSG satisfies:

$$\mathbb{E}[||\mathcal{G}(\mathbf{x}_{\alpha}, \nabla F(\mathbf{x}_{\alpha}, \gamma))||^{2}] \leq \frac{\left(3(F(\mathbf{x}_{0}) - F(\mathbf{x}_{*}) + 1) + 7L)6L\right)}{K}$$
(22)

Convergence Rate for FZCGS

With the same setting of Theorem 3 we have:

Total number of calls to the zeroth-order oracle:

$$O\left(\frac{n^{\frac{1}{2}}d}{\epsilon}\right) \tag{23}$$

Total number of linear suproblems:

$$O\left(\frac{1}{\epsilon^2}\right) \tag{24}$$

Convergence Rate Summary

Zeroth-Order	FQO
ZSCG	$O\left(\frac{d}{\epsilon^4}\right)$
FZFW	$O\left(\frac{n^{\frac{1}{2}}d}{\epsilon^2}\right)$
FZCGS	$O\left(\frac{n^{\frac{1}{2}}d}{\epsilon}\right)$

Table 1: FQO of the three different algorithms.

- 1 Introduction
- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- **5** Experiments
- **6** Conclusions

Our optimization problem

Let's assume to have:

- Dataset: $\{(\mathbf{x}_i, \mathbf{y}_i) : (\mathbf{x}_i \in \mathbb{R}^d, \mathbf{y}_i \in \{0, 1, \dots, c\}\}_{i=1}^n$
- Black-box DNN $f: \mathbb{R}^d \to \mathbb{R}$

The task is to find the universal adversarial perturbation $\delta \in \mathbb{R}^d$ for sample \mathbf{x}_i s.t. the DNN makes the incorrect prediction $\hat{y}_i \neq y_i$.

$$\min_{\|\delta\|_{\infty} \le s} \frac{1}{n} \sum_{i=1}^{n} \max \{ f_{y_i}(\mathbf{x}_i + \delta) - \max_{j \ne y_i} f_j(\mathbf{x}_i + \delta), 0 \}$$
 (25)

Where:

- $f(x) = [f_1(x), \dots, f_c(x)]$, denotes the output of the last layer before softmax
- s, represents the magnitude of the distortion that can be applied to the images, in our case s = 0.1

Dataset

Introduction

The dataset we used is MNIST, a popular benchmark dataset for learning, classification and computer vision systems

- 60,000 images of handwritten digits (0-9)
- 28x28 pixels in gray-scale
- Normalization in the range [0,1]
- Flattened images

Introduction

- To implement our code we used the Anaconda's standard library and and the library Keras
- To run our code we used Google Colab Pro that provides Intel Xeon E5-2699v4 CPU and Nvidia Tesla T4 GPU

Model

We used the same pretrained DNN used in (Gao et al., 2020):

Layer Type	Size
Reshape Layer ¹	-
Convolution + ReLU	3x3x32
Convolution + ReLU	3x3x32
Max Pooling	2x2
${\sf Convolution} + {\sf ReLU}$	3x3x64
Convolution + ReLU	3x3x64
Max Pooling	2x2
Fully Connected + ReLU	200
Fully Connected + ReLU	200
Softmax	10

Hyperparameter	Value
Learning Rate	0.1
Momentum	0.9
Delay rate	-
Batch Size	128
Epoch	50

¹Not present in the original DNN architecture.

Implementation Details

1. Derivation of LMO

The problem in Eq.27 can be rewritten as:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to $||\mathbf{x} - \mathbf{x}_{ori}||_{p} \le s$ (26)

Algorithms

Given that, the closed-form solution for the LMO in our case is:

$$\mathbf{v}_{t} = \underset{u \in \Omega}{\operatorname{argmin}} \langle \mathbf{g}_{t}, \mathbf{u} \rangle = -s \cdot sign(\mathbf{g}_{t}) + \mathbf{x}_{ori}$$
 (27)

Where \mathbf{g}_t denotes the gradient of the objective function.

Implementation Details

Introduction

2. Perturbation clipping

- Clipping represents the operation where we rescale, at each iteration, the pixels of the new perturbed images in the range between [0,1]
- This is very important if we wanted to conduct a real adversarial attack
- This decreases the strength of the attack, we will present the results both when this procedure is applied and when it is not applied

Implementation Details

Introduction

3. Stopping criterion

- We have implemented a stopping criterion based on how badly the DNN predicts the new perturbed images
- If the DNN fails to classify a certain percentage of the images, the algorithms terminate prematurely

Introduction

4. Averaged gaussian random gradient implementation

- We have implemented a variant of the avg-random gradient estimator in which we generate q random directions for each component function f_i
- We did this to overcome the computation complexity problem of using ZSCG with large batches of examples
- If we set q=1 we have the usual avg-random gradient estimator²

²Further details in: https://arxiv.org/pdf/1805_10367.pdf

ZSCG Gradient Estimator

Figure 3: Examples of ZSCG varying batch sizes (left) and q (right).

Clip vs No CLip

Figure 4: Comparison with n = 16 from class 4 (up) and comparison with n = 16 from different classes (down), q = 30.

Results

Figure 5: Comparison with n = 100 of class 4 (left) and different classes (right), q = 30 and no clip.

More consistent result

Introduction

Figure 6: Comparison with n = 512 of class 4, q = 1 and no clip.

- 1 Introduction
- 2 Frank-Wolfe Method
- 3 Zeroth-Order Estimators
- 4 Algorithms
- **5** Experiments
- **6** Conclusions

- An accurate gradient estimator is of paramount importance in zero-order methods
- We can confirm that ZSCG is the slower algorithm and instead the FZSCG algorithm is the fastest as regards the convergence speed in almost all the cases
- While the FZFW and FZCGS algorithms manage to perform well even when the batch of images to be attacked is small, the ZSCG algorithm turns out to have poor performance
- The magnitude of the distortion s = 0.1 is pretty low to attack a well trained model like the one used in this project

Thanks!