Test-Time Backdoor Attacks on Multimodal Large Language Models

2024 arxiv

https://arxiv.org/abs/2402.08577

test-time 时的攻击,不访问训练数据。在图像上添加通用扰动(universal perturbation)后,可通过有害文本触发。

受对抗性攻击的启发

§3 方法

• MLLM M,输入图片 V、问题 Q,返回答案 A = M(V,Q),训练集 $D = \{(V_n,Q_n,A_n)\}_{n=1}^N$,模型正常的训练loss:

$$\min_{M} E_D[L(M(V_n,Q_n);A_n)]$$

P后门投毒算法,T trigger prompot策略, A对抗攻击

多模态下,作者推荐去毒害拥有更大"capacity"的模态,文本输入操作受限但是不受时间限制,图片要考虑及时性,所以考虑毒害图片,然后用文本触发。

提到了普通的后门攻击,可以将目标(P)和触发(T)分开设置在不同模态上。

AnyDoor: 通过定制的通用扰动注入任何后门

• A 对抗性干扰策略,T 可以是任何trigger策略, A^{harm} 是AnhyDoor期望MLLM给出的有害回应,满足

$$orall (V,Q), ext{there are} egin{cases} M(A(V),Q) = M(V,Q); \ M(A(V),T(Q)) = A^{harm} \end{cases}$$

也就是说加了扰动的图片的正常结果不会受影响,但是后门任务上返回的结果和图片要相互能对应上,加入trigger 后才能返回期望的有害回应。

• 使用通用的对抗性攻击方法 <u>Universal Adversarial Perturbations</u>,设计一组视觉问题对 $\{V_k,Q_k\}_{k=1}^K$,优化 A

$$\min_{A} rac{1}{K} \sum_{k=1}^{K} [w_1 \cdot L(M(A(V_k), T(Q_k)); A^{harm}) + w_2 \cdot L(M(A(V_k), Q_k); M(V_k, Q_k))]$$

通用扰动 A 是根据 T 和 A^{harm} 来优化的,trigger 和 A^{harm} 的改变可以立刻重新优化 A,也就是说如果所选 trigger 有变化,AnyDoor 可以很快修改 trigger prompt 和有害影响(就是加了扰动的图片),防御要是通过筛选 trigger 方式会失效因为 AnyDoor 的 trigger 可以变化很快。

Algorithm 1 AnyDoor with Border Attack

- 1: **Input:** MLLM \mathcal{M} , trigger \mathcal{T} , target string $\mathcal{A}^{\text{harm}}$, ensemble samples $\{(\mathbf{V}_k, \mathbf{Q}_k)\}_{k=1}^K$.
- 2: **Input:** The learning rate (or step size) η , batch size B, PGD iterations T, momentum factor μ , perturbation mask M
- 3: **Output:** An universal adversarial perturbation \mathcal{A} with the constraint $\|\mathcal{A} \odot (\mathbf{1} \mathbf{M})\|_1 = 0$.
- 4: $g_0 = 0$; $\mathcal{A}_k^* = 0$
- 5: **for** t = 0 **to** T 1 **do**
- 6: Sample a batch from $\{(\mathbf{V}_k, \mathbf{Q}_k)\}_{k=1}^K$
- 7: Compute the loss \mathcal{L}_1 ($\mathcal{M}(\mathcal{A}_t^*(\mathbf{V}_k), \mathcal{T}(\mathbf{Q}_k)); \mathcal{A}^{\text{harm}}$) in the *with-trigger* scenario
- 8: Compute the loss \mathcal{L}_2 ($\mathcal{M}(\mathbf{A}_t^*(\mathbf{V}_k), \mathbf{Q}_k)$; $\mathcal{M}(\mathbf{V}_k, \mathbf{Q}_k)$) in the *without-trigger* scenario
- 9: Compute the loss $\mathcal{L} = w_1 \cdot \mathcal{L}_1 + w_2 \cdot \mathcal{L}_2$
- 10: Obtain the gradient $\nabla_{\mathcal{A}_{*}^{*}}\mathcal{L}$
- 11: Update g_{t+1} by accumulating the velocity vector in the gradient direction as $g_{t+1} = \mu \cdot g_t + \frac{\nabla_{\mathcal{A}_t^*} \mathcal{L}}{\|\nabla_{\mathcal{A}_t^*} \mathcal{L}\|_1} \odot \mathbf{M}$
- 12: Update \mathcal{A}_{t+1}^* by applying the gradient as $\mathcal{A}_{t+1}^* = \mathcal{A}_t^* + \eta \cdot \text{sign}(g_{t+1})$
- 13: **end for**
- 14: return: $\mathcal{A} = \mathcal{A}_T^*$

§ 4 实验

实验设置:

- 数据集: VQA 任务, VQAv2、SVIT、DALL-E, 涵盖了自然数据和合成数据
- 模型: 开源 MLLM LLaVA-1.5 (集成了Vicuna-7B、Vicuna-13B 语言模型),还有InstructBLIP (集成了 Vicuna-7B)、BLIP-2 (集成 FlanT5-XL)、MiniGPT-4 (集成 Llama-2-7B-Chat)
- 攻击策略: Pixel Attack (全图扰动)、Corner Attack (四个角加扰动)、Border Attack (边框上加扰动),文章图3是这三种的可视化。
- 评估指标: BLEU(结果S2标准S1, 计算S2的中单词出现在S1中的个数)、ROUGE(S1中单词出现在S2中的个数,也就是正确的个数)指标评估良性响应的准确性,ExactMatch(输出是否完全匹配预定义的目标字符串)、Contain(检查输出是否包含目标字符串)评估攻击的成功率

实验结果: with trigger 攻击成功效果, without trigger 是正常任务。分数越高效果越好

Dataset	Attacking Strategy	Sample Size	Perturbation Budget	With Trigger		Without Trigger	
				ExactMatch	Contain	BLEU@4	ROUGE_L
VQAv2	Pixel Attack	40	$\epsilon = 32/255$	52.5	53.5	34.3	65.4
		40	$\epsilon = 48/255$	56.5	57.0	30.0	62.3
		80	$\epsilon = 32/255$	57.5	61.0	36.4	67.3
		80	$\epsilon = 48/255$	84.0	84.0	30.2	63.2
	Corner Attack	40	p = 32	3.0	3.0	60.1	80.2
		40	p = 48	87.5	88.0	44.9	68.8
		80	p = 32	50.5	51.0	25.2	59.4
		80	p = 48	87.5	89.5	46.3	72.2
	Border Attack	40	b = 6	89.5	89.5	45.1	73.1
		40	b = 8	87.0	89.0	33.3	61.4
		80	b = 6	88.5	88.5	50.0	76.7
		80	b = 8	92.0	93.0	41.6	70.6
SVIT	Pixel Attack	40	$\epsilon = 32/255$	61.5	61.5	32.6	51.8
		40	$\epsilon = 48/255$	77.5	77.5	30.9	53.0
		80	$\epsilon = 32/255$	45.0	45.0	32.9	52.9
		80	$\epsilon = 48/255$	80.0	80.0	30.8	52.8
	Corner Attack	40	p = 32	65.0	65.0	33.7	54.3
		40	p = 48	96.0	96.0	28.2	49.8
		80	p = 32	88.5	89.0	37.0	58.8
		80	p = 48	70.0	70.0	33.7	56.1
	Border Attack	40	b = 6	95.0	95.0	41.4	61.3
		40	b = 8	95.0	95.0	41.4	60.4
		80	b = 6	90.0	90.0	38.3	58.5
		80	b = 8	72.5	72.5	41.0	61.7
DALLE-3	Pixel Attack	40	$\epsilon = 32/255$	72.5	72.5	48.9	76.4
		40	$\epsilon = 48/255$	90.5	90.5	45.1	73.5
		80	$\epsilon = 32/255$	86.5	86.5	48.6	75.3
		80	$\epsilon = 48/255$	96.0	96.0	40.7	71.0
	Corner Attack	40	p = 32	85.0	85.0	50.7	78.4
		40	p = 48	95.0	95.0	44.1	73.8
		80	p = 32	85.0	85.0	51.4	78.7
		80	p = 48	79.5	79.5	44.4	74.3
	Border Attack	40	b = 6	95.5	95.5	46.6	76.0
		40	b = 8	96.5	96.5	44.6	74.2
		80	b = 6	100.0	100.0	45.3	75.0
		80	b = 8	88.5	88.5	50.3	77.4

看起来 border 效果最好, pixel 偏差一点, DALLE-3 任务上效果最明显。没给没加扰动的作为 without trigger 的对比高,这不知道对正常功能影响到底大不大啊

消融实验

- 不同攻击方式设置的攻击参数的影响……
- 权重 w_1 、 w_2 的实验……
- Trigger and target phrases: "SUDO"与"sudo"这种大小写变化的影响,结论是无影响小写能触发大写下的后门
- 其他实验
 - 。 混淆触发器(如"\$#%")、较长触发器(例如"TTBA start!")或随机放置触发器在输入中的效果: 混淆 trigger 效果差一点,clear extensions 可以提高效果,太复杂的文本结构(比如代码的文本形式-语法调用)下效果也会差。
 - 。 随机匹配 trigger 和目标,证明普适性