Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$x = \log_6(8.27) = 3$, $y = \sqrt{144} = 12$	2p
	Media geometrică a numerelor x și y este $\sqrt{xy} = \sqrt{3.12} = 6$	3p
2.	Graficul funcției f intersectează axa Ox în două puncte distincte $\Leftrightarrow \Delta > 0$, deci $4-4a>0$	3 p
	$a \in (-\infty,1)$	2p
3.	$2-x^2 = 2x-1 \Leftrightarrow x^2 + 2x - 3 = 0$	3p
	x = -3 sau $x = 1$	2p
4.	$A_5^2 = 4.5$, $C_6^2 = 3.5$ și $A_4^2 = 3.4$	3p
	$A_5^2 \cdot C_6^2 \cdot A_4^2 = 4^2 \cdot 3^2 \cdot 5^2 = 60^2$	2p
5.	$m_{AB} = -\frac{a+4}{3}$, $m_{BC} = 4-a$, unde a este număr real	2p
	A, B si C sunt coliniare $\Leftrightarrow m_{AB} = m_{BC} \Leftrightarrow a + 4 = 3a - 12$, deci $a = 8$	3р
6.	$MP = 20$, deci semiperimetrul ΔMNP este $p = 24$	2p
	$\mathcal{A}_{\Delta MNP} = \frac{MN \cdot NP}{2} = 96 \Rightarrow r = \frac{\mathcal{A}_{\Delta MNP}}{p} = \frac{96}{24} = 4$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & -1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & -1 \end{vmatrix} =$	2p
	=-4+2+(-2)-4-(-1)-(-4)=-3	3p
b)	$\det(A(a)) = a^3 - 4a$, pentru orice număr real a	2p
	$A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow a(a-2)(a+2) \neq 0$, deci $a \in \mathbb{R} \setminus \{-2,0,2\}$	3p
c)	Dacă (x_0, y_0, z_0) este soluție a sistemului cu $x_0 = \frac{y_0}{2} = \frac{z_0}{3}$, atunci $\begin{cases} ax_0 + 4x_0 + 3x_0 = 1 \\ 2x_0 + 8x_0 - 3ax_0 = 1, \\ x_0 + 2ax_0 - 3x_0 = 0 \end{cases}$ unde a este număr real, deci $\begin{cases} x_0 (a+7) = 1 \\ x_0 (10-3a) = 1 \\ 2x_0 (a-1) = 0 \end{cases}$	2p
	$x_0(a+7)=1$, deci $x_0 \neq 0$ şi, cum $2x_0(a-1)=0$, obținem că $a=1$; $x_0(a+7)=1 \Rightarrow x_0=\frac{1}{8}$ şi $x_0(10-3a)=1 \Rightarrow x_0=\frac{1}{7}$, ceea ce este imposibil	3р

2.a)	$2021*(-2021) = \sqrt[3]{2021^3 + (-2021)^3 - 27} = \sqrt[3]{2021^3 - 2021^3 - 27} =$	3p
	$=\sqrt[3]{-27}=-3$	2p
b)	$x*e = x \Leftrightarrow \sqrt[3]{x^3 + e^3 - 27} = x \Leftrightarrow x^3 + e^3 - 27 = x^3$, pentru orice număr real $x \Leftrightarrow e = 3$	3 p
	Cum $3*x = \sqrt[3]{3^3 + x^3 - 27} = \sqrt[3]{x^3} = x$, pentru orice număr real x , obținem că $e = 3$ este elementul neutru al legii de compoziție ,,*"	2p
c)		3p
	$=\sqrt[3]{x+y+27} = f(x+y)$, pentru orice numere reale x și y	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$3x^{2}(x^{6}+7)-6x^{5}(x^{3}+3)$	
	$f'(x) = \frac{3x^2(x^6+7)-6x^5(x^3+3)}{(x^6+7)^2} =$	3p
	$= \frac{-3x^2\left(x^6 + 6x^3 - 7\right)}{\left(x^6 + 7\right)^2} = \frac{-3x^2\left(x^3 - 1\right)\left(x^3 + 7\right)}{\left(x^6 + 7\right)^2}, \ x \in \mathbb{R}$	2p
	$\left(x^6+7\right)^2 \qquad \left(x^6+7\right)^2$	•
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3 + 3}{x^6 + 7} = 0, \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3 + 3}{x^6 + 7} = 0$	2p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ și spre $+\infty$ la graficul funcției f , iar graficul funcției f nu admite asimptote verticale	3p
c)	$f'(x) = 0 \Leftrightarrow x = -\sqrt[3]{7}$, $x = 0$ sau $x = 1$; $f'(x) \le 0$, pentru orice $x \in (-\infty, -\sqrt[3]{7}] \Rightarrow f$ este	
	descrescătoare pe $\left(-\infty, -\sqrt[3]{7}\right]$, $f'(x) \ge 0$, pentru orice $x \in \left[-\sqrt[3]{7}, 1\right] \Rightarrow f$ este crescătoare pe	3 p
	$\left[-\sqrt[3]{7},1\right]$ și $f'(x) \le 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este descrescătoare pe $[1,+\infty)$	
	$f\left(-\sqrt[3]{7}\right) = -\frac{1}{14}, \ f\left(1\right) = \frac{1}{2} \ \text{si} \ \lim_{x \to -\infty} f\left(x\right) = \lim_{x \to +\infty} f\left(x\right) = 0, \ \text{deci} \ -\frac{1}{14} \le f\left(x\right) \le \frac{1}{2}, \ \text{pentru}$	
	orice număr real x , de unde obținem $-\frac{4}{7} \le f(x) - f(y) \le \frac{4}{7}$, deci $ f(x) - f(y) \le \frac{4}{7}$, pentru	2p
	orice numere reale x și y	
2.a)	$\int_{0}^{1} \frac{e^{3x} f(x)}{2x+1} dx = \int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3p
	$= e^{1} - e^{0} = e - 1$ $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	2p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} (2x+1)e^{-x} dx = \int_{0}^{1} (2x+1)\left(-e^{-x}\right)' dx = -(2x+1)e^{-x} \Big _{0}^{1} + \int_{0}^{1} 2e^{-x} dx =$	3р
	$ = -\frac{3}{e} + 1 - 2e^{-x} \Big _{0}^{1} = -\frac{3}{e} + 1 - \frac{2}{e} + 2 = \frac{3e - 5}{e} $	2p
c)	$\int_{1}^{2} \frac{1}{x(x+2)} f\left(\frac{1}{x}\right) dx = \int_{1}^{2} \frac{1}{x^{2}} e^{-\frac{2}{x}} dx = \frac{1}{2} \int_{1}^{2} \left(-\frac{2}{x}\right)' e^{-\frac{2}{x}} dx = \frac{1}{2} e^{-\frac{2}{x}} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \frac{1}{2} \left(-\frac{2}{x}\right)' e^{-\frac{2}{x}} dx = $	3p
	$=\frac{1}{2e}-\frac{1}{2e^2}=\frac{e-1}{2e^2}$	2p