Лабораторная работа №7

Эффективность рекламы

Давтян Артур Арменович

Содержание

1	Цель	ь работ	ы	5	
2	Вып	олнени	е лабораторной работы	6	
	2.1	Teope	тическое введение	6	
	2.2	Задан	ие	7	
	2.3	Код на Python			
	2.4		ики	12	
	2.5	Вопро	осы к лабораторной	15	
		2.5.1	Записать модель Мальтуса (дать пояснение, где использует-		
			ся данная модель)	15	
		2.5.2	Записать уравнение логистической кривой (дать поясне-		
			ние, что описывает данное уравнение)	15	
		2.5.3	На что влияет коэффициент $lpha_1(t)$ и $lpha_2(t)$ в модели распро-		
			странения рекламы	16	
		2.5.4	\mathbf{r}	16	
		2.5.5	Как ведет себя рассматриваемая модель при $lpha_1(t) \ll lpha_2(t)$	17	
3	Выв	оды		18	

List of Tables

List of Figures

2.1	Первый случай	12
2.2	Второй случай	13
2.3	Третий случай	13
2.4	Все случаи	14
2.5	Сравнение эффективности	14
2.6	График решения уравнения модели Мальтуса	16
2.7	График логистической кривой	17

1 Цель работы

- 1. Рассмотреть модель эффективности рекламы в разных случаях.
- 2. Построить график распространения рекламы о салоне красоты.
- 3. Сравнить решения, учитывающее вклад только платной рекламы и учитывающее вклад только сарафанного радио.

2 Выполнение лабораторной работы

2.1 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что

 $\frac{\partial n}{\partial t}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

t — время, прошедшее с начала рекламной кампании;

n(t) — число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем. Это описывается следующим образом:

$$\alpha_1(t)(N-n(t))$$

N — общее число потенциальных платежеспособных покупателей

 $lpha_{\mathbf{1}}(t)>0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

$$\alpha_2(t)n(t)(N-n(t))$$

эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

2.2 Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

- $\frac{\partial n}{\partial t} = (0.771 + 0.000007n(t))(N n(t))$
- $$\begin{split} \bullet & \frac{\partial n}{\partial t} = (0.0000075 + 0.32n(t))(N-n(t)) \\ \bullet & \frac{\partial n}{\partial t} = (0.52sin(t) + 0.32tn(t))(N-n(t)) \end{split}$$

При этом объем аудитории N = 1084, в начальный момент о товаре знает 5 че-

ловек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

- 1. Построить график распространения рекламы о салоне красоты.
- 2. Сравнить эффективность рекламной кампании при $\alpha_1(t) > \alpha_2(t)$ и $\alpha_1(t) < \alpha_2(t)$
- 3. Определить в какой момент времени эффективность рекламы будет иметь максимально быстрый рост (на вашем примере).
- 4. Построить решение, если учитывать вклад только платной рекламы
- 5. Построить решение, если предположить, что информация о товаре распространятся только путем «сарафанного радио», сравнить оба решения

2.3 Код на Python

def k1(t):

```
import math
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

x0 = 5 # количество людей, знающих о товаре в начальный момент времени

N = 1084 # максимальное количество людей,
# которых может заинтересовать товар

t = np.arange(0, 12, 0.01) # временной промежуток
# (длительность рекламной компании)

# функция, отвечающая за платную рекламу, альфа1
```

```
g = 0.771
    return g
def k2(t):
    g = 0.0000075
    return g
def k3(t):
    g = 0.52*np.sin(t)
    return g
# для задания из лабораторной
def k4(t):
   g = 0.009
    return g
# функция, описывающая сарафанное радио, альфа2
def p1(t):
    v = 0.000007
    return v
def p2(t):
    v = 0.32
    return v
def p3(t):
    v = 0.32*t
```

return v

для задания из лабораторной

уравнение, описывающее распространение рекламы

из задания

def f1(x, t):

$$xd1 = (k1(t) + p1(t)*x)*(N - x)$$

return xd1

def f2(x, t):

$$xd2 = (k2(t) + p2(t)*x)*(N - x)$$

return xd2

def f3(x, t):

$$xd3 = (k3(t) + p3(t)*x)*(N - x)$$

return xd3

платная реклама равна нулю

def f4(x, t):

$$xd4 = (p4(t)*x)*(N - x)$$

return xd4

```
# сарафанное радио равно нулю
def f5(x, t):
    xd5 = k4(t) *(N - x)
    return xd5
# решение ОДУ
x1 = odeint(f1, x0, t)
x2 = odeint(f2, x0, t)
x3 = odeint(f3, x0, t)
x4 = odeint(f4, x0, t)
x5 = odeint(f5, x0, t)
plt.plot(t, x1) # случай 1
plt.plot(t, x2) # случай 2
# Момент времени с максимальной скоростью
t[np.argmax(x2[1:].reshape(1,1199)/t[1:]) + 1]
plt.plot(t, x3) # случай 3
plt.plot(t, x1, label='случай 1') # случай 1
plt.plot(t, x2, label='случай 2') # случай 2
plt.plot(t, x3, label='случай 3') # случай 3
plt.legend()
```

plt.plot(t, x4, label='Capaфaнноe') # нет платной plt.plot(t, x5, label='Платная') # нет сарафанного plt.legend()

2.4 Графики

Первый случай: $\alpha_1(t)=0.771$, $\alpha_2(t)=0.000007$. $\alpha_1(t)>\alpha_2(t)$. (рис. 2.1)

Figure 2.1: Первый случай

Второй случай: $\alpha_1(t)=0.0000075$, $\alpha_2(t)=0.32$. Наибольшая скорость достигается в момент времени 0.02.

$$lpha_1(t). (рис. 2.2)$$

Figure 2.2: Второй случай

Третий случай: $\alpha_1(t) = 0.52*np.sin(t)$, $\alpha_2(t) = 0.32t$. (рис. 2.3)

Figure 2.3: Третий случай

Все случаи вместе (рис. 2.4):

Figure 2.4: Все случаи

Для сравнения эффективности сарафанного радио и платной рекламы, предположим, что $\alpha_1()=\alpha_2(t)=0.0009$. (рис. 2.5)

Figure 2.5: Сравнение эффективности

2.5 Вопросы к лабораторной

2.5.1 Записать модель Мальтуса (дать пояснение, где используется данная модель)

$$\frac{\partial N}{\partial t} = rN$$

где

- N исходная численность населения,
- $\,r-$ коэффициент пропорциональности, для которого $\,r=b-d\,$, где
 - **-** *b* коэффициент рождаемости
 - d коэффициент смертности
- t время.

Модель используется в экологии для расчета изменения популяции особей животных.

2.5.2 Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial P}{\partial t} = rP(1-\frac{P}{K})$$

- r характеризует скорость роста (размножения)
- K поддерживающая ёмкость среды (то есть, максимально возможная численность популяции)

Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядят следующим образом:

• скорость размножения популяции пропорциональна её текущей численности, при прочих равных условиях;

• скорость размножения популяции пропорциональна количеству доступных ресурсов, при прочих равных условиях. Таким образом, второй член уравнения отражает конкуренцию за ресурсы, которая ограничивает рост популяции.

2.5.3 На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы

 $lpha_1(t)$ — интенсивность рекламной кампании, зависящая от затрат $lpha_2(t)$ — интенсивность рекламной кампании, зависящая от сарафанного радио

2.5.4 Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса (рис. 2.6):

Figure 2.6: График решения уравнения модели Мальтуса

2.5.5 Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис. 2.7):

Figure 2.7: График логистической кривой

3 Выводы

- 1. Рассмотрел модель эффективности рекламы в разных случаях.
- 2. Построил график распространения рекламы о салоне красоты.
- 3. Сравнил решения, учитывающее вклад только платной рекламы и учитывающее вклад только сарафанного радио.