14.3 Cauchy's Integral Formula (Cauchy의 적분공식)

THEOREM 1 Cauchy's Integral Formula

Let f(z) be analytic in a simply connected domain D. Then for any point z_0 in D and any simple closed path C in D that encloses z_0 ,

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

(1*) $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-z_0} dz$

(1*)
$$f(z_o) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

PROOF

$$f(z) = f(z_0) + [f(z) - f(z_0)]$$

$$(2) \oint_{C_1} \frac{f(z)}{z - z_0} dz = \oint_{C_1} \frac{f(z_0) + [f(z) - f(z_0)]}{z - z_0} dz$$

$$= f(z_0) \oint_{C_1} \frac{1}{z - z_0} dz + \oint_{C} \frac{f(z) - f(z_0)}{z - z_0} dz$$

$$= f(z_0) \oint_{C_1} 2\pi i + \oint_{C} \frac{f(z) - f(z_0)}{z - z_0} dz$$

The second term is zero. (See next page.) Thus,

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

Show that

frow that
$$\oint_C \frac{f(z)-f(z_0)}{z-z_0} dz = 0$$

$$\oint_C \frac{f(z)-f(z_0)}{z-z_0} dz = \oint_L \frac{f(z)-f(z_0)}{z-z_0} dz < ML$$

For any $\epsilon > 0$, there exists δ such that

if
$$|z-z_0|<\delta$$
, then $|f(z)-f(z_0)|<\epsilon$

$$\left|\frac{f(z)-f(z_0)}{z-z_0}\right|<\frac{\epsilon}{\rho}$$

$$\left| \oint_C rac{f(z) - f(z_0)}{z - z_0} \, dz
ight| \leq ML < rac{\epsilon}{
ho} \cdot 2\pi
ho = 2\pi \epsilon$$

Since ϵ can be chosen arbitrarily small, the integral is zero.

$$\oint_C \frac{f(z) - f(z_0)}{z - z_0} dz = 0$$

EX 1. Cauchy's Integral Formula

$$\oint_C rac{e^z}{z-2} dz = 2\pi i e^z |_{z=2} = 2\pi i e^2 = 46.4268i$$

EX 2. Cauchy's Integral Formula

$$\oint_C \frac{z^3 - 6}{2z - i} dz = \frac{1}{2} \oint_C \frac{z^3 - 6}{z - i/2} dz$$

$$= \frac{1}{2} 2\pi i [z^3 - 6]_{z = i/2} = \frac{\pi}{8} - 6\pi i$$

EX 3. Integration Around Different Contours

$$g(z) = \frac{z^2 + 1}{z^2 - 1} = \frac{z^2 + 1}{(z - 1)(z + 1)}$$

(a) Around $z_0=1$

$$oldsymbol{\oint_C} rac{z^2+1}{z^2-1}dz = 2\pi i \left[rac{z^2+1}{z+1}
ight]_{z=1} = 2\pi i$$

(b) Around Around $z_0 = 1$

$$iggle \int_{C} rac{z^2+1}{z^2-1} dz = 2\pi i \left[rac{z^2+1}{z+1}
ight]_{z=1} = 2\pi i$$

(c) Around $z_0 = -1$

$$m{f}_C rac{z^2+1}{z^2-1} dz = m{f}_C rac{z^2+1}{z-1} \cdot rac{1}{z+1} dz$$
 $= 2\pi i \left[rac{z^2+1}{z-1}
ight]_{z=-1} = -2\pi i$

(d) Around no pole

$$\oint_C \frac{z^2+1}{z^2-1} dz = 0$$

Multiply Connected Domains

f(z): analytic in multiply connected domain D

$$f(z_0) = rac{1}{2\pi i} \oint_{C_1} rac{f(z)}{z-z_0} dz + rac{1}{2\pi i} \oint_{C_2} rac{f(z)}{z-z_0} dz$$

where

 $outer\ contour\ C_1:\ Counterclockwise(CCW)$

 $inner\ contour\ C_2$: Clockwise(CW)

1. Integrate $z^2/(z^2-1)$ by Cauchy's formula counterclockwise around the circle |z+1|=1.

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{z^2}{z^2 - 1} dz = \oint_C \frac{f(z)}{z - z_0} dz = \oint_C \frac{z^2/(z - 1)}{z - (-1)} dz$$

$$= 2\pi i f(z_0) = 2\pi i f(-1)$$

$$= 2\pi i \cdot \frac{1}{-2} = -\pi i.$$

2. Integrate $z^2/(z^2-1)$ by Cauchy's formula counterclockwise around the circle $|z-1-i|=\pi/2$.

(1)
$$\oint_{C} \frac{f(z)}{z-z_{0}} dz = 2\pi i f(z_{0})$$

$$\oint_{C} \frac{z^{2}}{z^{2}-1} dz = \oint_{C} \frac{z^{2}/(z+1)}{z-1} dz$$

$$= 2\pi i \frac{z^{2}}{z+1} \Big|_{z=1} = \pi i$$

3. Integrate $z^2/(z^2-1)$ by Cauchy's formula counterclockwise around the circle |z + i| = 1.4.

$$\oint_C \frac{z^2}{z^2 - 1} dz = 0 \qquad \left[e^{\frac{z^2}{2}} \right]$$

$$\oint_C \frac{z^2}{z^2 - 1} dz = 0 \qquad \left[\text{by setting } f(z) = \frac{z^2}{z^2 - 1} \text{ in (1)} \right]$$

4. Integrate $z^2/(z^2 - 1)$ by Cauchy's formula counterclockwise around the circle |z + 5 - 5i| = 7.

(1)
$$\oint_{C} \frac{f(z)}{z-z_{0}} dz = 2\pi i f(z_{0})$$

$$\oint_{C} \frac{z^{2}}{z^{2}-1} dz = \oint_{C} \frac{z^{2}/(z-1)}{z+1} dz$$

$$= 2\pi i \frac{z^{2}}{z-1} \Big|_{z=-1} = -\pi i$$

5. Integrate the given function $(\cos 3z)/(6z)$ around the unit circle.

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\cos 2z}{4z} dz = \oint_C \frac{(\cos 2z)/4}{z} dz$$

$$= 2\pi i \frac{\cos 2z}{4} \Big|_{z=0} = \frac{\pi i}{2}$$

6. Integrate the given function $e^{2z}/(\pi z - i)$ around the unit circle.

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$\oint_{C} \frac{e^{2z}}{\pi z - i} dz = \frac{1}{\pi} \oint_{C} \frac{e^{2z}}{z - i/\pi} dz = 2ie^{2z}|_{z = i/\pi}$$
$$= 2ie^{2i/\pi} = 2\left(-\sin\frac{2}{\pi} + i\cos\frac{2}{\pi}\right)$$

7. Integrate the given function $z^3/(2z-i)$ around the unit circle.

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$\oint_{C} \frac{z^{2}}{2z - i} dz = \frac{1}{2} \oint_{C} \frac{z^{2}}{z - i/2} dz$$
$$= \frac{\pi i}{2} z^{2}|_{z = i/2} = -\frac{\pi i}{8}$$

8. Integrate the given function $(z^2 \sin z)/(4z - 1)$ around the unit circle.

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{z \sin z}{4z - 1} dz = \frac{1}{4} \oint_C \frac{z \sin z}{z - 1/4} dz$$

$$= \frac{1}{4} 2\pi i (z \sin z)_{z = 1/4}$$

$$= \frac{\pi i}{8} \sin \frac{1}{4}$$

11.
$$\oint_C \frac{dz}{z^2+4}$$
, $C: 4x^2+(y-2)^2=4$ counterclockwise

(1)
$$\oint_{C} \frac{f(z)}{z - z_{0}} dz = 2\pi i f(z_{0})$$

$$\oint_{C} \frac{dz}{z^{2} + 4} = \oint_{C} \frac{1/(z + 2i)}{z - 2i} dz$$

$$= 2\pi i \frac{1}{z + 2i} \Big|_{z = 2i} = \frac{\pi}{2}$$

12.
$$\oint_C \frac{z}{z^2 + 4z + 3} dz$$
, C:CCW, the circle with center -1 and radius 2

13.
$$\oint_C \frac{z+2}{z-2} dz$$
, $C: |z-1| = 2$, CCW

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{z + 2}{z - 2} dz = 2\pi i (z + 2)|_{z = 2} = 8\pi i$$

14.
$$\oint_C \frac{e^z}{ze^z - 2iz} dz$$
, $C: |z| = 0.6$, CCW

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$e^z - 2i = 0, \quad z = \ln 2 + i \left(\frac{\pi}{2} + n\pi\right) \text{: exterior of the circle}$$

$$\oint_{C} \frac{e^{z}}{ze^{z} - 2iz} dz = \oint_{C} \frac{e^{z}/(e^{z} - 2i)}{z} dz$$

$$= 2\pi i \frac{e^{z}}{e^{z} - 2i} \Big|_{z=0} = \frac{(2i - 4)\pi}{5}$$

15.
$$\oint_C \frac{\cosh(z^2 - \pi i)}{z - \pi i} dz$$
, C: CCW, the boundary of the square with vertices ± 2 , $\pm 4i$.

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\cosh(z^2 - \pi i)}{z - \pi i} dz = 2\pi i \cosh(z^2 - \pi i)|_{z = \pi i}$$

$$= -2\pi i \cosh \pi^2$$

16.
$$\oint_C \frac{\tan z}{z-i} dz$$
, C: CCW, the boundary of the triangle with vertices 0 and $\pm 1 + 2i$.

$$\frac{\tan z}{z - i} = \frac{\sin z}{(z - i)\cos z}$$

$$\cos z = 0, \quad z = \frac{\pi}{2} + n\pi : \text{ exterior of the triangle} \qquad -1 \qquad 1$$

(1)
$$\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\tan z}{z-i} dz = 2\pi i \tan z|_{z=i} = -2\pi \tanh 1$$

17.
$$\oint_C \frac{\text{Ln }(z+1)}{z^2+1} dz$$
, $C: CCW$, $|z-i| = 1.4$

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\operatorname{Ln}(z+1)}{z^2 + 1} dz = \oint_C \frac{\left[\operatorname{Ln}(z+1)\right]/(z+i)}{z - i} dz$$

$$= 2\pi i \frac{\operatorname{Ln}(z+1)}{z + i} \Big|_{z=-i} = \pi \left(\ln \sqrt{2} + \frac{\pi}{4}i\right)$$

Problem Set 14.3-18

$$\frac{\sin z}{4z^2 - 8iz} = \frac{(1/4)(\sin z)/z}{z - 2i}$$

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\sin z}{4z^2 - 8iz} dz = \oint_C \frac{(1/4)(\sin z)/z}{z - 2i} dz$$

$$= 2\pi i \left[\frac{1}{4} \frac{\sin z}{z} \right]_{z = 2i}$$

$$= \frac{\pi}{4} \sin 2i = \frac{\pi}{4} i \sinh 2 = 2.8485i$$

19. $\oint_C \frac{\exp z^2}{z^2(z-1-i)} dz$, C consists of |z| = 2 counterclockwise and |z| = 1 clockwise.

(1)
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_C \frac{\exp z^2}{z^2 (z - 1 - i)} dz = \oint_C \frac{(\exp z^2)/z^2}{z - 1 - i} dz$$

$$= 2\pi i \frac{\exp z^2}{z^2} \Big|_{z = 1 + i}$$

$$= \pi (\cos 2 + i \sin 2)$$

14.4 Derivatives of Analytic Functions (해석함수의 도함수)

THEOREM 1. Derivatives of an Analytic Function

If f(z) is analytic in a domain D, then it has derivatives of all orders, which are then also analytic functions in D.

The values of derivatives at a point z₀ are given by the formulas

$$(1') \quad f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$$

$$(1'')$$
 $f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^3} dz$

(1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

PROOF

Applications of Theorem 1

EX 1. Evaluation of Line Integrals: $\oint_{C} \frac{\cos z}{(z-\pi i)^2} dz$

$$\oint_C \frac{\cos z}{(z-\pi i)^2} dz$$

THEOREM 1. Derivatives of an Analytic Function

$$(1')$$
 $f'(z_0) = rac{1}{2\pi i} \oint_C rac{f(z)}{(z-z_0)^2} dz$ $\oint_C rac{f(z)}{(z-z_0)^2} dz = 2\pi i f'(z_0)$

$$egin{aligned} \oint_C rac{\cos z}{(z-\pi i)^2} dz &= 2\pi i (\cos z)' igg|_{z=\pi i} \ &= 2\pi i (-\sin \pi i) \ &= -2\pi i (i \sinh \pi) = 2\pi \sinh \pi \end{aligned}$$

EX 2. Evaluation of Line Integrals: $\oint \frac{z^4-3z^2+6}{(z+z)^3}dz$

$$\oint_{C} \frac{z^{4} - 3z^{2} + 6}{(z+i)^{3}} dz$$

THEOREM 1. Derivatives of an Analytic Function

(1")
$$f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^3} dz$$

$$\oint_C \frac{f(z)}{(z-z_0)^3} dz = \pi i f''(z_0)$$

$$egin{align} \oint_C rac{z^4-3z^2+6}{(z+i)^3} dz &= \pi i (z^4-3z^2+6)'' igg|_{z=-i} \ &= \pi i (12z^2-6) igg|_{z=-i} = -18\pi i \end{aligned}$$

EX 3. Evaluation of Line Integrals

Let C be a CCW closed contour with 1 inside and ∓2i outside. Evaluate the line integral given by

$$\oint_{C} \frac{e^{z}}{(z-1)^{2}(z^{2}+4)} dz$$

Sol.

(1')
$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$$

(1')
$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$$

$$\oint_{C} \frac{e^{z}}{(z-1)^{2}(z^{2}+4)} dz = \oint_{C} \frac{e^{z}/(z^{2}+4)}{(z-1)^{2}} dz$$

$$= 2\pi i \left[\frac{e^{z}}{z^{2}+4} \right]' \Big|_{z=1}$$

$$= 2\pi i \left[\frac{e^{z}(z^{2}+4) - e^{z}2z}{(z^{2}+4)^{2}} \right]_{z=1}$$

$$= \frac{6e\pi}{25} i$$

Cauchy's Inequality. Liouville's and Morera's Theorems

(1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $(n=1,2,3,\cdots)$

$$egin{align} |f^{(n)}(z_0)| &= rac{n!}{2\pi} \left| \oint_C rac{f(z)}{(z-z_0)^{n+1}} dz
ight| \ &\leq rac{n!}{2\pi} \oint_C \left| rac{f(z)}{(z-z_0)^{n+1}}
ight| dz \ &\leq rac{n!}{2\pi} M rac{1}{r^{n+1}} 2\pi r = rac{n! M}{r^n} & where \ |f(z)| &\leq M \ on \ C \ \end{cases}$$

Cauchy's Inequality:

(2)
$$|f^{(n)}(z_0)| \leq \frac{n! M}{r^n}$$

THEOREM 2 Liouville's Theorem

If an entire function is bounded in absolute value in the whole complex plane, then this function must be a constant.

PROOF

THEOREM 3 Morera's Theorem(Converse of Cauchy's Integral Theorem)

If f(z) is continuous in a simply connected domain D and if

(3)
$$\oint_C f(z) dz = 0$$

for every closed path in D, then f(z) is analytic.

PROOF

1.
$$\oint_C \frac{\sin z}{z^4} dz$$
 $C: CCW, |z|=1$

Theorem 1: (1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $(n=1,2,3,\cdots)$
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \sin z, \quad f^{(3)}(z) = -\cos z$$

$$\oint_C \frac{\sin z}{z^4} dz = \frac{2\pi i}{3!} (-\cos z) \Big|_{z=0} = -\frac{\pi i}{3}$$

2.
$$\oint_C \frac{z^6}{(2z-1)^6} dz$$
 $C: CCW, |z|=1$

Theorem 1: (1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $(n = 1, 2, 3, \cdots)$
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = z^{6}, \quad f^{(5)}(z) = 6!z$$

$$\oint_{C} \frac{z^{6}}{(2z-1)^{6}} dz = \frac{1}{2^{6}} \oint_{C} \frac{z^{6}}{(z-1/2)^{6}} dz$$

$$= \frac{1}{2^{6}} \frac{2\pi i}{5!} (6!z) \Big|_{z=1/2} = \frac{3\pi i}{32}$$

3.
$$\oint_C \frac{e^z}{z^n} dz$$
, $n = 1, 2, \cdots$ $C: CCW, |z|=1$

Theorem 1: (1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $(n = 1, 2, 3, \cdots)$
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z)=e^{-z}$$
, $f^{(n)}(z)=(-1)^ne^{-z}$

$$\oint_C \frac{e^{-z}}{z^n} dz = \frac{2\pi i}{(n-1)!} (-1)^{n-1} e^{-z} \Big|_{z=0} = \frac{2\pi i (-1)^{n-1}}{(n-1)!}$$

$$= \frac{1}{2^6} \frac{2\pi i}{5!} (6!z) \Big|_{z=1/2} = \frac{3\pi i}{32}$$

4.
$$\oint_C \frac{e^z \cos z}{(z - \pi/4)^3} dz$$
 $C: CCW, |z|=1$

Theorem 1: (1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $(n=1,2,3,\cdots)$
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z)=e^z\cos z$$
, $f''(z)=-2e^z\sin z$

$$\oint_{C} \frac{e^{z} \cos z}{(z - \pi/4)^{3}} dz = \frac{2\pi i}{2!} (-2e^{z} \sin z) \Big|_{z = \pi/4}$$
$$= -\sqrt{2} \pi i e^{\pi/4}$$

5.
$$\oint_C \frac{\cosh 2z}{(z-\frac{1}{2})^4} dz$$
 $C: CCW, |z|=1$

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \sinh 2z$$
, $f^{(3)}(z) = 8 \cosh 2z$

$$\oint_C \frac{\sinh 2z}{(z-1/2)^4} dz = \frac{2\pi i}{3!} (8\cosh 2z) \Big|_{z=1/2}$$
$$= \frac{8\pi i}{3} \cosh 1$$

6.
$$\oint_C \frac{dz}{(z-2i)^2(z-i/2)^2}$$
 $C: CCW, |z|=1$

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \frac{1}{(z-2i)^2}, \quad f'(z) = \frac{-2}{(z-2i)^3}$$

$$\oint_C \frac{dz}{(z-2i)^2 (z-i/2)^2} = \oint_C \frac{1/(z-2i)^2}{(z-i/2)^2} dz$$

$$= \frac{2\pi i}{1!} \frac{-2}{(z-2i)^3} \Big|_{z=i/2} = -\frac{32\pi}{27}$$

7.
$$\oint_C \frac{\cos z}{z^{2n+1}} dz$$
, $n = 0, 1, \dots$ C: CCW, $|z|=1$

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \cos z$$
, $f^{(2n)}(z) = \cos(z + n\pi)$

$$\oint_C \frac{\cos z}{z^{2n+1}} dz = \frac{2\pi i}{(2n)!} \cos(z + n\pi) \Big|_{z=0} = \frac{2\pi i (-1)^n}{(2n)!}$$

8.
$$\oint_C \frac{z^3 + \sin z}{(z - i)^3} dz$$
, C the boundary of the square with vertices ± 2 , $\pm 2i$ counterclockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = z^3 + \sin z$$
, $f''(z) = 6z - \sin z$

$$\oint_{C} \frac{z^{3} + \sin z}{(z - i)^{3}} dz = \frac{2\pi i}{2!} (6z - \sin z) \Big|_{z = i} = -\pi \sin 1$$

9.
$$\oint_C \frac{\tan \pi z}{z^2} dz$$
, C the ellipse $16x^2 + y^2 = 1$ clockwise.

$$\cos \pi z = 0$$
, $\pi z = \frac{\pi}{2} + n\pi$, $z = \frac{1}{2} + n$: exterior of the ellipse

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \tan \pi z$$
, $f'(z) = \pi \sec^2 \pi z$

$$\oint_C \frac{\tan \pi z}{z^2} dz = -\frac{2\pi i}{1!} \pi \sec^2 \pi z \Big|_{z=0} = -2\pi^2 i$$

10. $\oint_C \frac{4z^3 - 6}{z(z - 1 - i)^2} dz$, C consists of |z| = 3 counterclockwise and |z| = 1 clockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \frac{4z^3 - 6}{z} = 4z^2 - \frac{6}{z}, \quad f'(z) = 8z + \frac{6}{z^2}$$

$$\int_{C} \frac{4z^{3} - 6}{z(z - 1 - i)^{2}} dz = \int_{C} \frac{4z^{2} - 6/z}{(z - 1 - i)^{2}} dz$$
$$= \frac{2\pi i}{1!} \left(8z + \frac{6}{z^{2}} \right) \Big|_{z = 1 + i} = 2\pi (-5 + 8i)$$

11.
$$\oint_C \frac{(1+z)\sin z}{(2z-1)^2} dz$$
, $C: |z-i| = 2$ counterclockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = (1 + z) \sin z$$
, $f'(z) = \sin z + (1 + z) \cos z$

$$\oint_C \frac{(1+z)\sin z}{(2z-1)^2} dz = \frac{1}{2^2} \oint_C \frac{(1+z)\sin z}{(z-1/2)^2} dz$$

$$= \frac{1}{2^2} \frac{2\pi i}{1!} \left[\sin z + (1+z)\cos z \right] \Big|_{z=1/2}$$

$$= \frac{\pi i}{2} \left(\sin \frac{1}{2} + \frac{3}{2} \cos \frac{1}{2} \right)$$

12.
$$\oint_C \frac{\exp(z^2)}{z(z-2i)^2} dz$$
, $C: |z-3i| = 2$ clockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \frac{\exp(z^2)}{z}$$
, $f'(z) = \frac{(2z^2 - 1)\exp(z^2)}{z^2}$

$$\oint_{C} \frac{\exp(z^{2})}{z(z-2i)^{2}} dz = \oint_{C} \frac{\left[\exp(z^{2})\right]/z}{(z-2i)^{2}} dz$$

$$= \frac{2\pi i}{1!} \frac{(2z^{2}-1)\exp(z^{2})}{z^{2}} \Big|_{z=2i} = \frac{9\pi i}{2e^{4}}$$

13.
$$\oint_C \frac{\operatorname{Ln} z}{(z-2)^2} dz$$
, $C: |z-3| = 2$ counterclockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z)=$$
 $f(z)=$ Ln z , $f'(z)=\frac{1}{z}$

$$\oint_{C} \frac{\ln z}{(z-4)^{2}} dz = \frac{2\pi i}{1!} \frac{1}{z} \Big|_{z=4} = \frac{\pi i}{2}$$

14. $\oint_C \frac{\text{Ln }(z+3)}{(z-2)(z+1)^2} dz$, C the boundary of the square

with vertices ± 1.5 , $\pm 1.5i$, counterclockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \frac{\operatorname{Ln}(z+3)}{z-2}$$
, $f'(z) = \frac{1}{(z+3)(z-2)} - \frac{\operatorname{Ln}(z+3)}{(z-2)^2}$

$$\oint_{C} \frac{\operatorname{Ln}(z+3)}{(z-2)(z+1)^{2}} dz = \oint_{C} \frac{\operatorname{Ln}(z+3)/(z-2)}{(z+1)^{2}} dz$$

$$= \frac{2\pi i}{1!} \left[\frac{1}{(z+3)(z-2)} - \frac{\operatorname{Ln}(z+3)}{(z-2)^{2}} \right]_{z=-1}^{z=-1}$$

$$= \frac{\pi i}{9} (-3 - 2\operatorname{Ln} 2)$$

15.
$$\oint_C \frac{\cosh 4z}{(z-4)^3} dz$$
, C consists of $|z| = 6$ counterclockwise and $|z-3| = 2$ clockwise.

Integrand is analytic on the domain enclosed by |z|=6 and |z-3|=2.

Therefore the integral is 0.

16. $\oint_C \frac{e^{4z}}{z(z-2i)^2} dz$, C consists of |z-i|=3 counterclockwise and |z|=1 clockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \frac{e^{4z}}{z}$$
, $f'(z) = \frac{4ze^{4z} - e^{4z}}{z^2}$

$$\oint_C \frac{e^{4z}}{z(z-2i)^2} dz = \oint_C \frac{e^{4z}/z}{(z-2i)^2} dz$$

$$= \frac{2\pi i}{1!} \frac{4ze^{4z} - e^{4z}}{z^2} \Big|_{z=2i} = \frac{(8+i)\pi i}{2} e^{8i}$$

17.
$$\oint_C \frac{e^{-z} \sin z}{(z-4)^3} dz$$
, C consists of $|z| = 5$ counterclockwise and $|z-3| = \frac{3}{2}$ clockwise.

Integrand is analytic on the domain enclosed by |z|=5 and |z-3|=3/2.

Therefore the integral is 0.

18. $\oint_C \frac{\sinh z}{z^n} dz$, C: |z| = 1 counterclockwise, n integer.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = \sinh z$$
, $f^{(n)}(z) = \begin{cases} \cosh z & (n : \text{ odd }) \\ \sinh z & (n : \text{ even}) \end{cases}$

for odd n:

$$\oint_{C} \frac{\sinh z}{z^{n}} dz = \frac{2\pi i}{(n-1)!} \cosh z \Big|_{z=0} = \frac{2\pi i}{(n-1)!}$$

for even n:

$$\oint_C \frac{\sinh z}{z^n} dz = \frac{2\pi i}{(n-1)!} \sinh z \Big|_{z=0} = 0$$

19. $\oint_C \frac{e^{3z}}{(4z - \pi i)^3} dz$, C: |z| = 1, counterclockwise.

Theorem 1:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

$$f(z) = e^{3z}$$
, $f''(z) = 9e^{3z}$

$$\oint_{C} \frac{e^{3z}}{(4z - \pi i)^{3}} dz = \frac{1}{4^{3}} \oint_{C} \frac{e^{3z}}{(z - \pi i/4)^{3}} dz$$

$$= \frac{1}{4^{3}} \frac{2\pi i}{2!} 9e^{3z} \Big|_{z = \pi/4} = \frac{-9\pi(1+i)}{64\sqrt{2}}$$

Homework for Chapter 14

1. Solve the following problems.

REVIEW QUESTIONS AND PROBLEMS at the end of Chapter 14 21, 24, 26, 28, 30

- 2. Send your solution to twjeong@jbnu.ac.kr by Nov. 14.
- 3. File name of your solution: AEM2_Your-Name_Ch14.