Recognition and Prominence Ranking of Alphanumeric Number Sequences in Images

By Alex Cummaudo

BSc Swinburne

Supervised by Prof. Rajesh Vasa, Assoc. Prof. Andrew Cain

A thesis submitted in partial fulfilment of the requirements for the Bachelor of Information Technology (Honours)

Deakin Software and Technology Innovation Laboratory
School of Information Technology
Deakin University, Australia

27 October 2017

Abstract

Text detection in natural images is a growing area with increasing applications, including traffic sign and license plate recognition, and text-based image search. Robustly detecting and recognising text is especially challenging when text is deformed, such as the photometric and geometric distortions of text worn by a moving subject in unstructured scenes. Existing methods of text detection in such cases are classified as learning-based or connected component (CC)-based, applying a mix of enhanced detection techniques—such as stroke width transformation (SWT), canny-edge detection and maximally stable extremal regions (MSERs)—and feeding candidates into optical character recognition (OCR) engines or neural networks to recognise the text. This study proposes applying a learning-based approach using deep-learning strategies to automate the recognition of racing bib numbers (RBNs) in a natural image dataset of various marathons, and then ranking detected subject's photos in order of prominence. Experimental results showed that these deep-learning strategies performed favourably against other methods using a consistent dataset, prompting further investigation in the generality of the technique developed to other similar subject material.

Declarations

I certify that the the thesis entitled "Recognition and Prominence Ranking of Alphanumeric

Number Sequences in Images" submitted for the degree of Bachelor of Information Technology

(Honours) is the result of my own work and that where reference is made to the work of others,

due acknowledgement is given. I also certify that any material in the thesis which has been

accepted for a degree or diploma by any university of institution is identified in the text.

Alex Cummaudo, BSc Swinburne

27 October 2017

We certify that the thesis prepared by Alex Cummaudo entitled "Recognition and Prominence

Ranking of Alphanumeric Number Sequences in Images" is prepared according to our expecta-

tions and that the honours coordinator can proceed to accept this submission for examination.

Prof. Rajesh Vasa

27 October 2017

Assoc. Prof. Andrew Cain

27 October 2017

 \mathbf{v}

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

I would also like to thank Andrew Cain for his extraordinary efforts over many years to teach hundreds of students (myself included) and who has developed a valued mentorship with me in guiding me throughout my academic life.

Contents

Al	ostrac	et en	iii
De	eclara	tion	v
A	cknow	vledgements	vii
Co	onten	ts	vii
Li	st of l	Figures	X
Li	st of T	Γables	xi
Li	st of A	Abbreviations	xiii
1	Intr	oduction	1
	1.1	Background	1
	1.2	Research Goals	1
	1.3	Thesis Organisation	2
2	Bacl	kground Work	3
	2.1	Image Recognition	3
	2.2	Neural Networks	3
3	Rela	ated Work	5
	3.1	RBN Recognition	5
	3.2	Speed Limit Sign Recognition	5
	3.3	License Plate Recognition	5
4	Rese	earch Methodology	7
	4.1	Overview	7

X CONTENTS

	4.2	Promin	ence Ranking Survey	7		
		4.2.1	Survey Design	7		
		4.2.2	Ethics Approval	7		
		4.2.3	Demographics	7		
5	Beno	hmarki	ing	9		
	5.1	Open S	Source Tools	9		
	5.2	Existin	g Pipelines From Literature	9		
	5.3	Hermes	s Approach	9		
6	6 Processing Pipeline 11					
7	7 Deep Learning Comparison 13					
8	8 Validation of Results 15					
9	9 Discussion and Limitations					
10	Cone	clusions	and Future Work	19		
Re	feren	ces		21		
A	Ethi	cs Clear	rance	23		
В	Pron	ninence	Ranking Survey Results	25		

List of Figures

List of Tables

List of Abbreviations

CNN Convolutional Neural Network.

RBN Racing Bib Number.

Introduction

1.1 Background

Alphanumeric recognition is an increasing is a growing area attracting interest from various industries and with increasing interest in academia.

1.2 Research Goals

Goal 3: Detect RBNs using a CNN

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Goal 3: Design a CNN that recognises RBN sequences without character segmentation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed

2 Introduction

interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum

turpis accumsan semper.

Goal 3: Rank prominence of alphanumeric sequences

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper,

felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede.

Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed

interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit

amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet

aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum

turpis accumsan semper.

1.3 Thesis Organisation

This thesis is organised into the chapters as outlined below.

Chapter 2 - Background Work A literature review into the area of image processing.

Chapter 2 - Related Work is a liter

Background Work

- 2.1 Image Recognition
- 2.2 Neural Networks

Related Work

- 3.1 RBN Recognition
- 3.2 Speed Limit Sign Recognition
- 3.3 License Plate Recognition

Research Methodology

4.1 Overview

4.2 Prominence Ranking Survey

This section encapsulates an experiment to capture prominence rankings of a given sample of the dataset. In this context, prominence is defined as the prominence of a particular marathon runner is within a photo, as identified by the runner's RBN. Results gathered from this experiment will assist in developing a quantitative measure of humans identify prominence within our context. We present participants with a number of subjects and ask to rank them by a prominence Likert scale. The aggregated results of the findings are used as a prominence training dataset fed into a deep-learning neural network.

4.2.1 Survey Design

The survey published for the experiment was collected online via Google Forms¹. The collection period was for \langle *number of months* \rangle months between \langle *survey start date* \rangle and \langle *survey end date* \rangle .

Previous chapters indicated that Images

4.2.2 Ethics Approval

4.2.3 Demographics

¹http://forms.google.comlast accessed 8 May 2017.

Benchmarking

- **5.1** Open Source Tools
- **5.2** Existing Pipelines From Literature
- **5.3** Hermes Approach

Processing Pipeline

Deep Learning Comparison

Validation of Results

Discussion and Limitations

Conclusions and Future Work

References

Appendix A

Ethics Clearance

Appendix B

Prominence Ranking Survey Results