Kholle 2 filière MP Mardi 26 septembre 2023

Planche 1

- 1. Énoncer le théorème d'intégration des relations de comparaison. Le démontrer dans le cas de la relation de prépondérance (les « petits o ») sur un intervalle de la forme $[a, +\infty[$.
- 2. Étudier, suivant les valeurs du réel α , l'intégrale $\int_0^{1/e} \left(\ln \frac{1}{x} \right)^{\alpha} \frac{dx}{x}$.
- 3. Chercher un équivalent simple quand x tend vers $+\infty$ de

$$\int_0^x \left(\int_0^t \frac{1 - u^2}{(1 + u^2)\sqrt{1 + u^4}} du \right) dt$$

Planche 2

- 1. Nature de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt.$
- 2. Calcul de $\int_0^{\pi} \frac{dx}{2 + \cos(x)}.$
- 3. On note pour tout réel x, $f(x) = \int_{x}^{+\infty} e^{-t^2} dt$
 - (a) Justifier la bonne définition de f.
 - (b) Démontrer l'équivalent au voisinage de $+\infty$, $f(x) \sim_{x \to +\infty} \frac{e^{-x^2}}{2x}$.
 - (c) Calculer $\int_0^{+\infty} f(x)dx$.

Planche 3

- 1. Définition de la convergence normale, de la convergence uniforme d'une série de fonctions. Démontrer que l'une implique l'autre.
- 2. Calcul de l'intégrale $\int_0^{+\infty} \frac{dt}{(1+t^2)^2}.$
- 3. On note $f:[0,+\infty[\to\mathbb{R},x\mapsto xe^{-x^3|\sin(x)|}]$. Étudier son intégrabilité.
- 4. On considère une fonction $f:[0,+\infty[\to\mathbb{R} \text{ continue par morceaux, décroissante, d'intégrale } \int_0^{+\infty} f(t)dt$ convergente non nulle. Montrer que pour tout t>0, la série $\sum_{t=0}^{+\infty} f(nt)$

est convergente, et donner un équivalent quand t tend vers 0^+ de $\sum_{n=1}^{+\infty} f(nt)$.

Bonus

Déterminer, pour tout entier n non nul, un développement asymptotique à n termes de la fonction $Li:[2,+\infty[,x\mapsto\int_2^x\frac{dt}{\ln(t)}$ quand x tend vers $+\infty$.