

Maple T.A. 2010 Matematik 2A hold 4 : matrix vektor ligning teori 1

Welcome Jens Mohr Mortensen [My Profile]

View Details View Grade Quit & Save Help

Feedback: Details Report

[PRINT]

2010 Matematik 2A hold 4, matrix vektor ligning teori 1 Jens Mohr Mortensen, 6/10/10 at 7:29 PM

Question 1: Score 0/5

Der er givet en $m \times n$ matrix A og en vektor $b \in R^m$. Vi betragter ligningssystemet (matrix-vektor ligningen) Ax = b. Antag,

m = 5 og n = 8.

Antag endvidere, at matricen A har 5 pivotsøjler. Markér alle sande udsagn nedenfor.

Choice	Selected		Points
Der findes et \boldsymbol{b} , så at ligningssystemet $A\boldsymbol{x}=\boldsymbol{b}$ er inkonsistent.	No		
Man kan ikke ud fra de givne oplysninger afgøre, om ligningssystemet $A\mathbf{x} = \mathbf{b}$ er konsistent for alle \mathbf{b} , eller om der findes et \mathbf{b} , så at systemet er inkonsistent.	No		
Ligningssystemet $A\mathbf{x} = \mathbf{b}$ er konsistent for alle \mathbf{b} .	No	X	

Number of available correct choices: 1

Partial Grading Explained

Question 2: Score 0/5

Der er givet en $m \times n$ matrix A og en vektor $b \in R^m$. Vi betragter ligningssystemet (matrix-vektor ligningen) Ax = b. Antag,

m=2 og n=3.

Antag endvidere, at for alle \boldsymbol{b} gælder, at ligningssystemet $A\boldsymbol{x} = \boldsymbol{b}$ er konsistent. Markér alle sande udsagn nedenfor.

Choice	Selected	/ / X	Points
Ligningssystemet $A\mathbf{x} = \mathbf{b}$ har altid præcis én løsning.	No		
Ligningssystemet $A\mathbf{x} = \mathbf{b}$ har altid uendeligt mange løsninger.	No	X	
Man kan ikke ud fra de givne oplysninger afgøre, om $A\mathbf{x} = \mathbf{b}$ har præcis én løsning eller uendeligt mange løsninger.	No		

Number of available correct choices: 0

Partial Grading Explained

Question 3: Score 0/5

Der er givet en $m \times n$ matrix A og en vektor $b \in R^m$. Vi betragter ligningssystemet (matrix-vektor ligningen) $A\mathbf{x} = \mathbf{b}$. Antag,

m=6 og n=4.

Antag endvidere, at der for det givne b gælder, at ligningssystemet Ax = b er konsistent. Markér alle sande udsagn nedenfor.

Choice Selected **Points**

1 of 2 10-06-2010 19:30

Ligningssystemet $A m{x} = m{b}$ har for dette $m{b}$ præcis én løsning.	No		
Ligningssystemet $A m{x} = m{b}$ har for dette $m{b}$ uendeligt mange løsninger.	No		
Man kan ikke ud fra de givne oplysninger afgøre, om $A\mathbf{x} = \mathbf{b}$ for dette \mathbf{b} har præcis én løsning eller uendeligt mange løsninger.	No	X	

Number of available correct choices: 1

Partial Grading Explained

2 of 2