

In this course, I will:

- Give an in-depth understanding of what generative models are, how they differ from other AI techniques, and the theories and principles underlying them
- Cover the various types of generative models, such as generative adversarial networks (GANs) and variational autoencoders (VAEs), and explore the process involved in training these models
- Examine the strengths, limitations, and practical applications of generative models across various domains, such as image generation, text generation, and data augmentation
- Evaluate the performance of generative models, ethical considerations in Generative AI, and the potential societal impact of these technologies
- Generate synthetic data using generative models for training and testing purposes
- Explore the notion of responsible AI in the generative era, preparing learners not just to use these powerful tools, but to use them wisely and ethically

1:08 / 1:17

What Is Generative Artificial Intelligence (AI)?

Deep learning models

Accept raw data

Generate probable outputs

What Is Generative AI?

Pattern recognition Pattern creation Makes predictions Creates something new Rules-based Data-driven Rules are generated by humans Learns from large datasets

Variational Autoencoders (VAEs)

Variational Autoencoders

Transformers

Encoding/decoding combined with text processing

Learn how language works

Parallel text processing

No requirement for a predefined task

Language Transformers

Encoder-only

Decoder-only

Encoder-decoder

The Resurgence of Supervised Learning

Alignment

Align model to resemble human responses

Reinforcement Learning from Human Feedback (RLHF)

The Future of Generative Al

Discriminative Models

Model decision boundary between classes Prediction of specific class labels

Common Discriminative Models

Key Generative AI Concepts

Key Generative AI Concepts

Generative vs. discriminative models

Typical Use Cases for Generative AI

Typical Use Cases for Generative AI

Popular Generative AI Interfaces

Common Generative AI Tools

Common Generative AI Tools

Image creation tools

Music creation tools

Industries Using Generative Al

Gaming

Manufacturing

Architecture

Medical

Industries Using Generative Al

Variational Autoencoder

Variational Autoencoder

Reconstruction loss = $\|x - \hat{x}\|_2 = \|x - d_{\phi}(z)\|_2 = \|x - d_{\emptyset}(\mu_x + \sigma_x \epsilon)\|_2$ input $\mu_x, \sigma_x = e_{\phi}(x), \qquad \epsilon \sim N(0, 1)$

Similarity loss = KL Divergence = $D_{KL}(N(\mu_x, \sigma_x)||N(0, I))$

Loss = reconstruction loss + similarity loss

High resolution image generation Text generation Audio generation Detection of anomalies Data augmentation Image editing Medical data

Train Your Model

