Question

given supersingular E, can we find weird, funky endomorphisms $\omega \in \operatorname{End}(E)$?

easy

easy to verify that such endoms exists, e.g. that E is supersingular

hard

actually giving an endom. $\omega \in \operatorname{End}(E)$ or some way to compute this

Question

given supersingular E, can we find weird, funky endomorphisms $\omega \in \operatorname{End}(E)$?

easy

easy to verify that such endoms exists, e.g. that E is supersingular

surprisingly easy

we know $\operatorname{End}(E_0)$ for the specific curve $E_0: y^2 = x^3 + x$ and for any $E_0 \to E_A$, we can then compute $\operatorname{End}(E_A)$ (knowledge of endom. ring is contagious)

hard

actually giving an endom. $\omega \in \operatorname{End}(E)$ or some way to compute this

