

Aprendizagem Automática em Sistemas Empresariais

PEDRO PEREIRA AULA 6

Agenda

CRISP-DM: Modelação e Avaliação – Parte 2

- Regressão
- Algoritmos de ML para regressão
- Métricas de regressão
- Demonstração

Acompanhamento ao projeto

Cross Industry Process for Data Mining (CRISP-DM)

CRISP-DM – Modelação e Avaliação – Parte 2

CRISP-DM – Atividades da Modelação e Avaliação

CRISP-DM – Modelação (regressão)

Regressão – prever o valor de uma variável numérica a partir de diferente variáveis independentes.

Diferentes variantes na regressão:

- **Regressão pura** prever um valor (*output*) com base num conjunto de variáveis (ex.: prever o preço de um carro usado com base nas suas características).
- **Previsão de Séries Temporais** (valores ordenados no tempo) prever um valor com base nos seus valores anteriores (ex.: entradas de clientes numa loja, tráfego de internet, número de visualizações de um vídeo).
- **Regressão Multi-target** (dois ou mais *outputs*) prever simultaneamente mais do que um valor (ex.: prever a composição de um produto).
- Regressão Ordinal (A<B<C<D) prever uma classe quando o valor é ordinal (ex.: prever a satisfação de um cliente {muito insatisfeito < insatisfeito < satisfeito < muito satisfeito}).

Modelação – Algoritmos de regressão

K-Nearest Neighbors (KNN);

Regressão Linear;

ARIMA (séries temporais);

Árvores de Decisão (DT);

Máquinas de Vetor de Suporte (SVM);

Redes Neuronais Artificiais (ANN);

Ensembles (XGBoost, AdaBoost, *Random Forest*, ...);

Automated Machine Learning (AutoML).

Árvores de Decisão

Também conhecidas como **Árvores de Regressão** são criadas por algoritmos que usam critérios como a minimização do quadrado dos erros.

Semelhantes às árvores de classificação, em vez de terem classes nas folhas, têm valores numéricos.

Sendo x_1 , x_2 , ... x_n os atributos do nosso conjunto de dados, um exemplo de uma árvore de regressão seria:

Ensembles

Conjuntos de modelos individuais que são agregados de modo a obter-se uma resposta única.

Pode utilizar-se a média ou média pesada dos *outputs* dos modelos individuais para se obter um *output* único.

A maioria dos modelos de ensemble usados em classificação, têm também implementações para tarefas de regressão (ex.: *Random Forest, Extreme Gradient Boosting (XGBoost), AdaBoost, Extremely Randomized Trees*).

Ferramentas:

- Python: https://scikit-learn.org/stable/modules/ensemble.html; https://xgboost.readthedocs.io/.
- R: https://daviddalpiaz.github.io/r4sl/ensemble-methods.html#regression-2.
- Rapidminer: https://towardsdatascience.com/how-to-create-ensemble-models-using-rapid-miner-72a12160fa51.
- Weka: https://machinelearningmastery.com/use-ensemble-machine-learning-algorithms-weka/.

Hiper-parâmetros

Os modelos de *Machine Learning* têm um conjunto de parâmetros que podem influenciar a sua aprendizagem. Exemplos:

- Árvores de Decisão: profundidade máxima (max_depth), influencia o seu crescimento.
- *Random Forest:* número de árvores (*n_estimators*), por quantas árvores é composto.
- Redes Neuronais: número de camadas (arquitetura), otimizador (algoritmo de ajuste dos pesos),...

Como escolher os melhores valores?

- Usar os valores padrão (default) das implementações que usamos;
- Afinação destes valores por tentativa-erro (convém saber o que estamos a fazer!);
- Usar um método de procura para afinar estes valores por nós (ex.: grid-search, automated search, algoritmos genéticos,...).

Importante: não usar os dados de teste para tomar decisões!!!

CRISP-DM – Avaliação (regressão)

Avaliação de modelos deve ser feita de forma **objetiva** \rightarrow uso de métricas para medir a qualidade das previsões.

2 tipos de avaliação:

- Interna medida nos dados de treino.
- Externa medida nos dados de teste (não utilizados no treino do modelo); serve para medir a capacidade de generalização dos modelos.

Métricas de regressão:

- MAE mean absolute error (min., [0, Inf[).
- RAE relative absolute error (min., [0%, Inf[).
- NMAE normalized mean absolute error (min., [0%, Inf[).
- SSE sum squared error (min., [0, Inf[).
- MSE mean squared error (min., [0, Inf[).

- RMSE root mean squared error (min., [0, Inf[).
- RSE relative squared error (min., [0%, Inf[).
- RRSE root relative squared error (min., [0%, Inf[).
- R2 coefficient of determination (max.,]-Inf, 1]).
- **Tolerance** the tolerance (y-axis value) of a REC curve (max., [0,1.0]).

CRISP-DM – Avaliação (regressão)

RSC (*Regression Scatter Plot*) – apresenta os **valores reais** (eixo-x) vs. **valores previstos** (eixo-y).

Quanto mais próximo os valores estiverem da linha vermelha, melhor!

Curva REC (*Regression Error Characteristic*) – <u>não confundir com curva ROC</u> (classificação)!

Para uma determinada tolerância ao erro (eixo-x), apresenta a taxa de acerto (eixo-y).

Neste caso, accuracy corresponde à quantidade de valores que se encontram dentro da nossa tolerância ao erro.

Quanto maior a área debaixo da curva REC (AUC), melhor!

CRISP-DM – Avaliação (regressão)

RSC – interpretação **difícil** quando tentamos comparar vários modelos (os pontos podem sobrepor-se): não recomendado!

Curva REC – facilita a visualização quando comparamos vários modelos ou várias execuções.

Ferramentas:

- Python: https://scikit-learn.org/stable/modules/model_evaluation.html;
 https://github.com/amirhessam88/Regression-Error-Characteristic-Curve/blob/master/examples/example.ipynb.
- R: https://www.rdocumentation.org/packages/rminer/versions/1.4.6/topics/mmetric.
- Rapidminer:

 https://docs.rapidminer.com/latest/studio/operators/validation/performance/predictive/performance_regression.html
 .

Avaliação: validação de modelos

A validação de modelos pretende "estimar" a sua capacidade de generalização, medindo a sua qualidade/desempenho.

Como tal, as métricas não podem ser calculadas utilizando dados que o modelo já "viu".

Holdout: divisão dos dados em dois conjuntos exclusivos, através de uma amostragem aleatória.

- Treino: tipicamente 2/3 do conjunto dos dados, usado para treinar modelos e tomar decisões (melhor modelo, melhores hiper-parâmetros, melhor pré-processamento,...). Por vezes, este conjunto é subdividido em 2 conjuntos (treino e validação) para verificar decisões internas do modelo.
- Teste: tipicamente 1/3 do conjunto dos dados, é utilizado para avaliar as capacidades do modelo.

Ferramentas:

- Python: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
- R: https://rdrr.io/cran/rminer/man/holdout.html
- Rapidminer: https://docs.rapidminer.com/latest/studio/operators/blending/examples/sampling/split_data.html

Treino

Aprendizagem Automática em Sistemas Empresariais

PEDRO PEREIRA AULA 6