1. Number Systems

The **number system** that we use in our day-to-day life is the decimal **number system**. Decimal **number system** has base 10 as it uses 10 digits from 0 to 9. In decimal **number system**, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands and so on.

Location in course textbook

Chapt. 2

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Conversion Among Bases

• The possibilities:

pp. 40-46

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Decimal to Decimal (just for fun)

Next slide...

Binary to Decimal

Binary to Decimal

Technique

- Multiply each bit by 2^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Octal to Decimal

Octal to Decimal

Technique

- Multiply each bit by 8^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Decimal to Binary

Decimal to Binary

Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$705_8 = ?_2$$

$$705_8 = 111000101_2$$

Hexadecimal to Binary

Hexadecimal to Binary

- Technique
 - Convert each <u>hexadecimal</u> digit to a 4-bit equivalent binary representation

$$10AF_{16} = ?_2$$

$$10AF_{16} = 0001000010101111_2$$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_8$$

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by <u>16</u>
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

Remainder multiply by 16

Remainder 0.25x16

Whole number / Remainder

$$1234_{10} = 4D2_{16}$$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

$$1011010111_2 = ?_8$$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Decimal Octal

Binary Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

$$1010111011_2 = ?_{16}$$

 $1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

$$1076_8 = ?_{16}$$

 $1076_8 = 23E_{16}$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

$$1F0C_{16} = ?_{8}$$

 $1F0C_{16} = 17414_{8}$

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Skip answer

Answer

