Geometria a l'espai Posició relativa entre dues rectes

Estudia la posició relativa de les rectes
$$r: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z-1}{-3} \qquad s: \left\{ \begin{array}{l} x-y-3=0 \\ 3y-z+6=0 \end{array} \right.$$

$$s: \begin{cases} x - y - 3 = 0 \\ 3y - z + 6 = 0 \end{cases}$$

Es creuen	Secants	Paral·leles	Coincidents
S	rs	r	r _/ s
\vec{d}_r, \vec{d}_s independents	\vec{d}_r, \vec{d}_s independents	$\vec{d}_r / / \vec{d}_s$	$\vec{d}_r / / \vec{d}_s$
$det(\vec{d}_r, \vec{d}_s, \overrightarrow{RS}) \neq 0$	$det(\vec{d}_r, \vec{d}_s, \overrightarrow{RS}) = 0$	$R \not \in s$	$R \in s$

Estudia la posició relativa de les rectes
$$r: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z-1}{-3} \qquad s: \left\{ \begin{array}{l} x-y-3=0 \\ 3y-z+6=0 \end{array} \right.$$

$$s: \begin{cases} x - y - 3 = 0 \\ 3y - z + 6 = 0 \end{cases}$$

Recta r (contínua):

Punt R=(-2, -1, 1)
Vector
$$\overrightarrow{d}_r$$
 (2, 1, -3)

Recta s (implícita): -> Passam a paramètriques

$$x=3+\lambda$$

$$y=\lambda$$
 Punt S=(3, 0, 6)
$$z=6+3\lambda$$
 Vector $\mathbf{d_s}$ (1, 1, 3)

Estudiam com són els vectors directors

$$d_r(2, 1, -3)$$
 $\overrightarrow{d}_s(1, 1, 3)$

$$\left| \begin{array}{ccc} 2 & 1 \\ 1 & 1 \end{array} \right| = 1 \neq 0$$
 rang =2 —> Independents — Es creuen

Calculam el vector RS=S-R =

Calculam det(
$$\vec{d}_r$$
, \vec{d}_s , \vec{RS})= $\begin{vmatrix} 2 & 1 & -3 \\ 1 & 1 & 3 \\ 5 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -6 \\ 1 & 1 & 3 \\ 4 & 0 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & -6 \\ 4 & 2 \end{vmatrix} = -26 \neq 0$

Les rectes es creuen

Estudia la posició relativa de les rectes
$$r: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z-1}{-3}$$
 $s: \left\{ \begin{array}{l} x-y-3=0 \\ 3y-z+6=0 \end{array} \right.$

$$y: \begin{cases} x - y - 3 = 0 \\ 3y - z + 6 = 0 \end{cases}$$

$$r: \frac{Ax + By + Cz + D = 0}{A'x + B'y + C'z + D' = 0}$$

$$s: \frac{A''x + B''y + C''z + D'' = 0}{A'''x + B'''y + C'''z + D''' = 0}$$

$$M = \begin{pmatrix} A & B & C \\ A' & B' & C' \\ A''' & B''' & C'' \\ A''' & B''' & C''' \end{pmatrix} \qquad M^* = \begin{pmatrix} A & B & C & D \\ A' & B' & C' & D' \\ A''' & B''' & C''' & D''' \\ A''' & B''' & C''' & D''' \end{pmatrix}$$

- rang $M = 3 \neq \text{rang } M^* = 4$: Si El sistema no té solució. Els seus vectors directors no són proporcionals. Les dues **rectes es creuen.**
- rang $M = \text{rang } M^* = 3$: Si El sistema té solució única que és el punt de tall de les dues rectes. Les dues **rectes són secants.**
- rang $M = 2 \neq \text{rang } M^* = 3$: El sistema no té solució. Té els seus vectors proporcionals. Les dues **rectes paral·leles.**
- rang $M = \text{rang } M^* = 2$: El sistema té infinites solucions. Té els seus vectors proporcionals. Les dues **rectes coincidents**.

Estudia la posició relativa de les rectes
$$r: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z-1}{-3}$$
 $s: \left\{ \begin{array}{l} x-y-3=0 \\ 3y-z+6=0 \end{array} \right.$

$$x : \begin{cases} x - y - 3 = 0 \\ 3y - z + 6 = 0 \end{cases}$$

Recta r (implícita): -> Passam a implícita

$$x - 2y = 0$$
$$-3y - z - 2 = 0$$

$$M^* = \begin{pmatrix} 1 & -1 & 0 & 3 \\ 0 & 3 & -1 & -6 \\ 1 & -2 & 0 & 0 \\ 0 & -3 & -1 & 2 \end{pmatrix}$$

$$|M^*| = \begin{vmatrix} 1 & -1 & 0 & 3 \\ 0 & 3 & -1 & -6 \\ 1 & -2 & 0 & 0 \\ 0 & -3 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 & 3 \\ 0 & 3 & -1 & -6 \\ 0 & -1 & 0 & -3 \\ 0 & -3 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 3 & -1 & -6 \\ -1 & 0 & -3 \\ -3 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 3 & -1 & -6 \\ -1 & 0 & -3 \\ -6 & 0 & 8 \end{vmatrix} = \begin{vmatrix} -1 & -3 \\ -6 & 8 \end{vmatrix} = -26 \neq 0$$

• rang $M = 3 \neq \text{rang } M^* = 4$: Si El sistema no té solució. Els seus vectors directors no són proporcionals. Les dues **rectes es creuen.**

$$r: \frac{x+2}{2} = \frac{y+1}{1} = \frac{z-1}{-3}$$
 $s: \begin{cases} x-y-3=0\\ 3y-z+6=0 \end{cases}$

$$s: \begin{cases} x - y - 3 = 0 \\ 3y - z + 6 = 0 \end{cases}$$

Situació gràfica:

