Gaussian Mixture Models & Hierarchical Clustering

Ali Akbar Septiandri December 9, 2017

untuk Astra Graphia IT

Daftar Isi

- 1. Gaussian Mixture Models
- 2. Hierarchical Clustering

Bahan Bacaan

- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016).
 Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Section 9.3)
- 2. VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: Gaussian Mixture Models) http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/ 05.12-Gaussian-Mixtures.ipynb
- 3. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer, Berlin: Springer series in statistics. (Section 14.3.12)

Gaussian Mixture Models

- Pendekatan probabilistik untuk clustering
- Setiap klaster adalah model generatif, e.g. Gaussian atau multinomial
- Menggunakan parameter
- Didasarkan pada algoritma Expectation Maximisation (EM)

Bagaimana kalau kita tidak tahu kelasnya?

Expectation Maximisation (EM)

- 1. Inisialisasi dengan dua Gaussians secara acak (μ_a, σ_a^2) , (μ_b, σ_b^2)
- 2. Ulangi hingga konvergen
 - a. **E-step**: Apakah x_i terlihat masuk ke a atau b, i.e. $P(a|x_i)$?¹

$$a_i = P(a|x_i) = \frac{P(x_i|a)P(a)}{P(x_i)}$$

$$b_i = P(b|x_i) = 1 - a_i$$

b. **M-step**: Perbaiki nilai (μ_a, σ_a^2) , (μ_b, σ_b^2)

$$\mu_a = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{a_1 + a_2 + \dots + a_n}$$

$$\sigma_a^2 = \frac{a_1(x_1 - \mu_a)^2 + \dots + a_n(x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$

¹Bayes' rule!

Prior dari Bayes' Rule

- Bisa dibuat tetap, atau
- Dibuat berubah-ubah, i.e.

$$P(a) = \frac{a_1 + a_2 + \dots + a_n}{n}$$
$$P(b) = 1 - P(a)$$

Berapa nilai K?

ullet Model probabilistik $o maximum\ likelihood$

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} \sum_{k=1}^{K} P(x_i | k) P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} P(x_i | k) P(k)$$

Berapa nilai K?

Model probabilistik → maximum likelihood

$$P(x_1,...,x_n) = \prod_{i=1}^n \sum_{k=1}^K P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^n \log \sum_{k=1}^K P(x_i|k)P(k)$$

• $\mathcal L$ bisa dimaksimalkan dengan membuat K=n o over fitting!

Berapa nilai K?

ullet Model probabilistik o maximum likelihood

$$P(x_1,...,x_n) = \prod_{i=1}^n \sum_{k=1}^K P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^n \log \sum_{k=1}^K P(x_i|k)P(k)$$

- \mathcal{L} bisa dimaksimalkan dengan membuat $K = n \rightarrow \textit{overfitting}!$
- Occam's razor
 - Bayes. Inf Criterion (BIC): $\max_{p} (\mathcal{L} \frac{1}{2}p \log n)$
 - Akaike Inf Criterion (AIC): $\min_{p}(2p \mathcal{L})$

dengan ${\mathcal L}$ adalah \log likelihood dan p adalah jumlah parameter

Tenang, sudah ada di scikit-learn!

AIC dan BIC

 $\begin{tabular}{ll} \textbf{Gambar 1:} & Nilai terbaik adalah saat $n_{components}$ antara 8-12 \\ [VanderPlas, 2016] \end{tabular}$

Hierarchical Clustering

Memilih Nilai K

 $\bullet\,$ Tidak ada algoritma yang bisa memilih nilai K secara langsung

Memilih Nilai K

- ullet Tidak ada algoritma yang bisa memilih nilai K secara langsung
- ullet Memilih $K\sim$ pertanyaan granularity

Memilih Nilai K

- ullet Tidak ada algoritma yang bisa memilih nilai K secara langsung
- ullet Memilih $K\sim$ pertanyaan granularity
- Bagaimana kalau kita membuat hierarki alih-alih menentukan satu nilai K?

Hierarki Klaster

- Semakin bawah, semakin granular
- Strategi
 - top-down: satu klaster besar, bagi secara rekursif
 - bottom-up: dari singletons, gabung dengan kriteria tertentu

Hierarchical K-means

- Top-down, nilai K ditentukan di awal, bagi secara rekursif
- Setiap rekursi menjadi semakin lebih cepat karena semakin sedikit data yang dimasukkan klaster
- Greedy, ada kemungkinan titik yang berdekatan tidak ada klaster yang sama

Agglomerative Clustering

- 1. Mulai dari sejumlah C dengan n singletons
- 2. Ulangi hingga menjadi satu klaster
 - a. Cari sepasang klaster terdekat $min_{i,j} D(c_i, c_j)$
 - b. Gabungkan c_i, c_j menjadi satu klaster c_{i+j}
 - c. Buang c_i, c_j dari C, masukkan c_{i+j}

Agglomerative Clustering

- Bottom-up, setiap poin yang berdekatan akan ada dalam satu klaster
- Menghasilkan dendogram
- Perlu mendefinisikan metode pengukuran jarak antarklaster

Dendogram

Gambar 2: Dendogram dari *agglomerative clustering* dengan *average linkage* untuk data *human tumor microarray* [Friedman, et al., 2001]

• Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link: $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link: $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster
- Centroids: $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \mathbf{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \mathbf{x}\right)\right)$ Jarak antara *centroids* dari kedua klaster

- Single link: $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link: $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link: $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster
- Centroids: $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|}\sum_{x \in c_1}\mathbf{x}\right), \left(\frac{1}{|c_2|}\sum_{x \in c_2}\mathbf{x}\right)\right)$ Jarak antara *centroids* dari kedua klaster
- Ward's method: $TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$ Perubahan total jarak dengan *centroids* yang dihasilkan

Lance-Williams Algorithm

- 1. $D_{i,j} = \text{jarak antara semua pasangan } x_i \text{ dan } x_j$ antara dua klaster
- 2. Untuk N iterasi:
 - a. $i,j = \arg \min D_{i,j}$, i.e. pasangan klaster terdekat
 - b. tambahkan klaster i + j, buang klaster i dan j
 - c. untuk setiap sisa klaster k:

$$D_{k,i+j} = \alpha_i D_{k,i} + \alpha_j D_{k,j} + \beta D_{i,j} + \gamma |D_{k,i} - D_{k,j}|$$

Lance-Williams Algorithm

$$D_{k,i+j} = \alpha_i D_{k,i} + \alpha_j D_{k,j} + \beta D_{i,j} + \gamma |D_{k,i} - D_{k,j}|$$

Metode	α_i	α_j	β	γ
Single linkage	0.5	0.5	0	-0.5
Complete linkage	0.5	0.5	0	0.5
Group average	$\frac{n_i}{n_i+n_j}$	$\frac{n_j}{n_i+n_i}$	0	0
Weighted group average	0.5	0.5	0	0
Centroid	$\frac{n_i}{n_i+n_i}$	$\frac{n_j}{n_i+n_i}$	$\frac{-n_i \cdot n_j}{(n_i + n_i)^2}$	0
Ward	$\frac{n_i+n_k}{(n_i+n_j+n_k)}$	$\frac{n_j+n_k}{(n_i+n_j+n_k)}$	$\frac{-n_k}{n_i+n_j+n_k}$	0

Single link:

$$D_{k,i+j} = \frac{1}{2}(D_{k,i} + D_{k,j} - |D_{k,i} - D_{k,j}|) = \min(D_{k,i}, D_{k,j})$$

Salindia ini dibuat dengan sangat dipengaruhi oleh Lavrenko (2014)

Referensi

Jake VanderPlas (2016)

In Depth: Gaussian Mixture Models

http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/ 05.12-Gaussian-Mixtures.ipynb

J. Friedman, T. Hastie, & R. Tibshirani (2001)

The Elements of Statistical Learning (Vol. 1)

Springer, Berlin: Springer series in statistics.

Terima kasih