Corrigé exercice 53:

- 1. $g = v \circ u$ avec $u(x) = -x^3 6x^2 + 63x + 392$ et $v(x) = \sqrt{x}$ donc $g' = u' \times v' \circ u$ avec $u'(x) = -3x^2 12x + 63$ et $v'(x) = \frac{1}{2\sqrt{x}}$. Donc, pour tout $x \in]-7; 8]$, $g'(x) = \frac{-3x^2 12x + 63}{2\sqrt{-x^3 6x^2 + 63x + 392}} = \frac{-3(x^2 + 4x 21)}{2\sqrt{-x^3 6x^2 + 63x + 392}}$.
- 2. $2\sqrt{-x^3-6x^2+63x+392}>0$ pour tout $x\in]-7;8]$ donc g'(x) est du signe de $-3(x^2+4x-21)$. On calcule le discriminant de ce trinôme : $\Delta=4^2-4\times1\times(-21)=100$. Ce trinôme admet un discriminant positif donc admet deux racines réelles : $x_1=\frac{-4-\sqrt{100}}{2}=-7$ et $x_2=\frac{-4+\sqrt{100}}{2}=3$.

Donc g'(x) est négative sur [3; 8] et positive sur]-7;3].

x	-7		3		8
g'(t)	0	+	0	-	
g	0 -		$10\sqrt{5}$		• 0

3. (a) On obtient la courbe ci-dessous.

(b) Graphiquement, on peut conjecturer que l'abscisse du point où la tangente est parallèle à d est environ -1.

4. (a) Une équation de la tangente en
$$a$$
 est $y = g'(a) \times (x-a) + g(a)$, c'est-à-dire $y = \frac{-3(a^2 + 4a - 21)}{2\sqrt{-a^3 - 6a^2 + 63a + 392}}$.

(b) On a, pour tout
$$a \in]-7;8[$$
 :

$$\sqrt{(-a+8)(a+7)^2} = \sqrt{(-a+8)(a^2+14a+49)}$$

$$= \sqrt{-a^3-14a^2-49a+8a^2+111a+392}$$

$$= \sqrt{-a^3-6a^2+63a+392} = g(a).$$

Et, pour tout $a \in]-7;8[:$

$$-3(a+7)(a-3) = -3(a^2 - 3a + 7a - 21) = -3a^2 - 12a + 63.$$

(c) La tangente est parallèle à d si les coefficients directeurs de ces deux droites sont égaux donc si

$$\frac{-3(a^2+4a-21)}{2\sqrt{-a^3-6a^2+63a+392}} = 2 \text{ avec } a \neq -7 \text{ et } a \neq 8 \text{ qui annulent le dénominateur.}$$

$$\text{Or } \frac{-3(a^2+4a-21)}{2\sqrt{-a^3-6a^2+63a+392}} = \frac{-3(a+7)(a-3)}{2\sqrt{(-a+8)(a+7)^2}}, \text{ d'après la question précédente, d'où } \frac{-3(a^2+4a-21)}{2\sqrt{-a^3-6a^2+63a+392}} = \frac{-3(a-3)}{2\sqrt{(-a+8)}}.$$

On cherche donc à résoudre l'équation $\frac{-3(a-3)}{2\sqrt{-a+8}} = 2$ c'est-à-dire $-3a+9 = 4\sqrt{-a+8}$ et donc $(-3a+9)^2 = 16(-a+8)$ ce qu'on peut réécrire $9a^2 - 38a - 47 = 0$.

Ce trinôme du second degré a pour discriminant $\Delta = (-38)^2 - 4 \times 9 \times (-47) = 3136 > 0$ donc il admet deux racines réelles : $x_1 = \frac{38 + \sqrt{3136}}{18} = \frac{47}{9}$ et $x_2 = \frac{38 - \sqrt{3136}}{18} = -1$.

On teste les solutions obtenues : $f'\left(\frac{47}{9}\right) = -2$ donc $\frac{47}{9}$ n'est pas solution de l'équation que l'on cherchait à résoudre, mais on a bien f'(-1) = 2, on en déduit que la tangente à la courbe représentative de f est parallèle à d en x=-1.