Support Vector Machines, Kernel Logistic Regression, and Boosting

Trevor Hastie
Statistics Department
Stanford University

Collaborators: Brad Efron, Jerome Friedman, Saharon Rosset, Rob Tibshirani, Ji Zhu

http://www-stat.stanford.edu/~hastie/Papers/svmtalk.pdf

Outline

- ✓ Optimal separating hyperplanes and relaxations
- ✓ SVMs: nonlinear generalizations of separating hyperplanes
- ✓ SVM as a function estimation problem
- ✓ Kernel logistic regression
- X Reproducing kernel Hilbert spaces
- ✓ Connections between SVM, KLR and Boosting.

First part based on work by Vapnik (1996), Wahba (1990), Evgeniou, Pontil, and Poggio (1999); described in Hastie, Tibshirani and Friedman (2001) *Elements of Statistical Learning*, Springer, NY. Gunnar Rätsch and coworkers have also made coonection between SVMs and Boosting.

Maximum Margin Classifier

Vapnik(1995) $x_i \in \mathbb{R}^p, y_i \in \{-1, 1\}$

$$\max_{\beta,\beta_0,\|\beta\|=1} C$$
 subject to
$$y_i(x_i^T \beta + \beta_0) \ge C, \ i = 1, \dots, N.$$

Overlapping Classes

$$\xi_i^* = C\xi_i$$

$$\max_{\beta,\beta_0,\|\beta\|=1} C$$
 subject to $y_i(x_i^T \beta + \beta_0) \ge C(1-\xi_i), \ \xi_i \ge 0, \ \sum_i \xi_i \le B$

Example

Fitted function is $\hat{f}(x) = x^T \hat{\beta} + \hat{\beta}_0$ Resulting classifier is $\hat{G}(x) = \text{sign}[\hat{f}(x)]$

Quadratic Programming Solution

After a lot of *stuff* we arrive at a Lagrange dual

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}$$

which we maximize subject to constraints (involving B as well).

The solution is expressed in terms of fitted Lagrange multipliers $\hat{\alpha}_i$:

$$\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i$$

Some fraction of $\hat{\alpha}_i$ are exactly zero (from KKT conditions); the x_i for which $\hat{\alpha}_i > 0$ are called support points \mathcal{S} .

$$\hat{f}(x) = x^T \hat{\beta} + \hat{\beta}^0 = \sum_{i \in \mathcal{S}} \hat{\alpha}_i y_i x^T x_i + \hat{\beta}^0$$

Flexible Classifiers

SVM - Degree-4 Polynomial in Feature Space

Enlarge the feature space via basis expansions, e.g. polynomials of total degree 4. $h(x) = (h_1(x), h_2(x), \dots, h_M(x))$

$$\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta_0}$$

SVM

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} \langle h(x_i), h(x_{i'}) \rangle$$

$$f(x) = h(x)^T \beta + \beta_0$$

$$= \sum_{i=1}^{N} \alpha_i y_i \langle h(x), h(x_i) \rangle + \beta_0.$$

 L_D and constraints involve h(x) only through inner-products

$$K(x, x') = \langle h(x), h(x') \rangle$$

Given a suitable positive kernel K(x, x'), don't need h(x) at all!

$$\hat{f}(x) = \sum_{i \in \mathcal{S}} \hat{\alpha}_i y_i K(x, x_i) + \hat{\beta}_0$$

Popular Kernels

K(x, x') is a symmetric, positive (semi-)definite function.

dth deg. poly.:
$$K(x, x') = (1 + \langle x, x' \rangle)^d$$

radial basis: $K(x, x') = \exp(-\|x - x'\|^2/c)$

Example: 2nd degree polynomial in \mathbb{R}^2 .

$$K(x, x') = (1 + \langle x, x' \rangle)^{2}$$

$$= (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= 1 + 2x_{1}x'_{1} + 2x_{2}x'_{2} + (x_{1}x'_{1})^{2} + (x_{2}x'_{2})^{2} + 2x_{1}x'_{1}x_{2}x'_{2}$$

Then M=6, and if we choose

$$h_1(x) = 1, h_2(x) = \sqrt{2}x_1, h_3(x) = \sqrt{2}x_2, h_4(x) = x_1^2, h_5(x) = x_2^2,$$

and $h_6(x) = \sqrt{2}x_1x_2,$
then $K(x, x') = \langle h(x), h(x') \rangle.$

Dim h(x) infinite

SVM - Radial Kernel in Feature Space

- Fraction of support points depends on overlap; here 45%.
- The smaller B, the smaller the overlap, and more wiggly the function.
- B controls generalization error.

Curse of Dimensionality

Support Vector Machines can suffer in high dimensions.

		Test Error (SE)	
	Method	No Noise Features	Six Noise Features
1	SV Classifier	0.450 (0.003)	$0.472 \ (0.003)$
2	SVM/poly 2	$0.078 \; (0.003)$	$0.152 \ (0.004)$
3	SVM/poly 5	0.180 (0.004)	$0.370 \ (0.004)$
4	SVM/poly 10	$0.230 \ (0.003)$	$0.434 \ (0.002)$
5	BRUTO	0.084 (0.003)	$0.090 \ (0.003)$
6	MARS	$0.156 \; (0.004)$	$0.173 \ (0.005)$
	Bayes	0.029	0.029

The addition of 6 noise features to the 4-dimensional feature space causes the performance of the SVM to degrade. The true decision boundary is the surface of a sphere, hence a quadratic monomial (additive) function is sufficient.

SVM via Loss + Penalty

With
$$f(x) = h(x)^T \beta + \beta_0$$
 and $y_i \in \{-1, 1\}$, consider

$$\min_{\beta_0, \beta} \sum_{i=1}^{N} [1 - y_i f(x_i)]_{+} + \lambda \|\beta\|^2$$

Solution identical to SVM solution, with $\lambda = \lambda(B)$.

In general
$$\min_{\beta_0, \beta} \sum_{i=1}^{N} L[y_i, f(x_i)] + \lambda \|\beta\|^2$$

Loss Functions

For $Y \in \{-1, 1\}$

Log-likelihood: $L[Y, f(X)] = \log (1 + e^{-Yf(X)})$

- (negative) binomial log-likelihood or deviance.
- estimates the logit

$$f(X) = \log \frac{\Pr(Y=1|X)}{\Pr(Y=-1|X)}$$

SVM: $L[Y, f(X)] = (1 - Yf(X))_{+}$.

- Called "hinge loss"
- Estimates the classifier (threshold)

$$C(x) = \operatorname{sign}\left(\Pr(Y=1|X) - \frac{1}{2}\right)$$

SVM and Function Estimation

SVM with general kernel K minimizes:

$$\sum_{i=1}^{N} (1 - y_i f(x_i))_+ + \lambda ||f||_{\mathcal{H}_K}^2$$

with f = b + h, $h \in \mathcal{H}_K$, $b \in \mathcal{R}$. \mathcal{H}_K is the reproducing kernel Hilbert space (RKHS) of functions generated by the kernel K. The norm $||f||_{\mathcal{H}_K}$ is generally interpreted as a roughness penalty.

More generally we can optimize

$$\sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda ||f||_{\mathcal{H}_K}^2$$

The solutions have the form

$$\hat{f}(x) = \hat{b} + \sum_{i=1}^{N} \hat{\alpha}_i K(x, x_i),$$

a finite expansion in the representers $K(x, x_i)$.

Aside: RKHS

Function space \mathcal{H}_K generated by a positive (semi-) definite function K(x, x').

Eigen expansion:
$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y)$$

with $\gamma_i \geq 0$, $\sum_{i=1}^{\infty} \gamma_i^2 < \infty$. $f \in \mathcal{H}_K$ if

$$f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x)$$

$$c_i = \int \phi_i(t) f(t) dt$$

$$||f||_{\mathcal{H}_K}^2 \stackrel{\text{def}}{=} \sum_{i=1}^{\infty} c_i^2 / \gamma_i < \infty$$

The squared norm $J(f) = ||f||_{\mathcal{H}_K}^2$ is viewed as a roughness penalty.

LR - Radial Kernel in Feature Space

Kernel Logistic Regression

- Replace $(1 yf)_+$ with $\ln(1 + e^{-yf})$, the binomial deviance.
- $\Pr(Y=1|x) = e^{\hat{f}(x)}/(1+e^{\hat{f}(x)})$, so class probabilities directly available.
- We have graphed the 0.5 (solid), 0.25, and 0.75 (broken) contours of Pr(Y = 1|x).

Comparison: KLR vs SVM

- The classification performance is very similar.
- Has limiting optimal margin properties (next slide).
- Provides estimates of the class probabilities. Often these are more useful than the classifications (e.g. credit risk scoring).
- Generalizes naturally to M-class classification through kernel multi-logit regression:

$$\Pr(Y = j | x) = \frac{e^{f_j(x)}}{e^{f_1(x)} + \dots + e^{f_M(x)}}$$

with $\sum_{m} f_m(x) = 0$. Fit using multinomial log-likelihood and penalty $\sum_{m=1}^{M} ||f_m||_{\mathcal{H}_K}$.

KLR and Optimal Margins

Suppose h(x) is rich enough so that $f(x) = h(x)^T \beta + \beta_0$ can separate the training data.

Consider $\hat{\beta}(\lambda)$, the solution to

$$\min_{\beta_0, \beta} \sum_{i=1}^{N} L[y_i, f(x_i)] + \lambda ||\beta||^2,$$

where L is the binomial deviance (negative log-likelihood).

Theorem (Rosset, Zhu & Hastie 2002)

 $\lim_{\lambda\to 0} \hat{\beta}(\lambda) = \beta^*$, the maximum margin solution.

Multi-class IVM - with 32 import points

Disadvantages: KLR vs SVM

- Computationally more expensive $O(N^3)$ versus $O(N^2m)$, where m is the number of support points. In noisy problems, m can be large, approx N/2.
- With KLR fit $\hat{f}(x) = \hat{b} + \sum_{i=1}^{N} \hat{\alpha}_i K(x, x_i)$, all the $\hat{\alpha}_i$ are typically nonzero. For the SVM, only the support points have nonzero $\hat{\alpha}_i$. This allows for a useful data compression and quicker lookup.
- SVMs are **hot** right now, while logistic regression is a traditional statistical tool.

FINAL CLASSIFIER

Boosting

Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

AdaBoost (Freund & Schapire, 1996)

- Start with weights $w_i = 1/N \ \forall i = 1, \ldots, N. \ y_i \in \{-1, 1\}.$
- Repeat for $m = 1, 2, \ldots, M$:
 - Estimate the weak learner $f_m(x) \in \{-1, 1\}$ from the training data with weights w_i .
 - Compute $e_m = E_w[1(y \neq f_m(x))], c_m = \log((1 e_m)/e_m).$
 - Set $w_i \leftarrow w_i \exp[c_m \cdot 1(y_i \neq f_m(x_i))], i = 1, 2, ..., N$, and renormalize so that $\sum_i w_i = 1$.
- Output the majority weight classifier $C(x) = \text{sign}[\sum_{m=1}^{M} c_m f_m(x)].$

SVM, KLR and Boosting?

- Boosting builds a sequence of models $f_J(x) = \sum_{j=1}^J g_j(x)$, where each $g_j(x)$ is a "weak" classifier fit to weighted training data.
- Even though at stage J, $f_J(x)$ may have zero training errors, boosting increases the "margin".
- Actually, boosting is fitting the model $f(x) = \log \Pr(Y = 1|x)/\Pr(Y = -1|x)$ by stagewise optimization of the loss function $L[Y, f(X)] = \exp[-Yf(X)]$ (FHT, 2000), Ann. Stat.

Boosting and L_1 Penalized Fitting

In a restricted setting where

- the base learners are chosen from a fixed set of basis functions;
- the increments at each boosting step are shrunk towards zero;
- + a few mild assumptions (yeah, right!),

the boosting sequence corresponds to a sequence (as λ varies) of solutions to the L_1 penalized optimization problem

$$\min_{\beta} \sum_{i=1}^{N} L[y_i, f(x_i)] + \lambda \|\beta\|_1$$

where $L[Y, f(X)] = \exp[-Yf(X)].$

• As $\lambda \downarrow 0$, $\hat{\beta} \rightarrow \beta^*$, the L_1 optimal margin separator.

Details

- ϵ forward stagewise:(idealized boosting with shrinkage). Given a family of basis functions $h_1(x), \ldots h_M(x)$, and loss function L.
- Model at kth step is $F_k(x) = \sum_m \beta_m^k h_m(x)$.
- At step k+1, identify coordinate m with largest $|\partial L/\partial \beta_m|$, and update $\beta_m^{k+1} \leftarrow \beta_m^k + \epsilon$.
- Equivalent to the lasso: $\min L(\beta) + \lambda_k ||\beta||_1$
- As $\lambda_k \downarrow 0$, $\beta^k \to \beta^*$, the L_1 optimal margin separator.

Example and Illustration

Summary

- SVM can be viewed as regularized fitting with a particular loss function: hinge loss.
- Regularized logistic regression gives very similar fit, with added benefits. Also approaches a separating hyperplane. Uses binomial deviance as loss.
- Boosting can be viewed as L_1 regularized fitting (exponential or binomial loss); has optimal margin limiting behavior.