Math 550 Homework 2

Dr. Fuller Solutions

- 1. Change variables into cylindrical coordinates, using $g(r, \theta, z) = (r\cos\theta, r\sin\theta, z)$. This gives $\int_A f = \int_{-1}^1 \int_0^{2\pi} \int_0^1 (r^2 z^2)(r) \, dr \, d\theta \, dz = \frac{\pi}{3}$.
- 6. (a) 5 (b) 0 (c) 18
- 7. If we write $\vec{v} = (v_1, v_2, v_3)$ and $\vec{w} = (w_1, w_2, w_3)$, then both expressions evaluate to $v_1w_2 v_2w_1$. Similarly, $(dx_p \wedge dz_p)(v, w) = -dy_p(v \times w)$.
- 9. If φ is alternating, then for all $\vec{v} \in V$ we have $\varphi(\vec{v}, \vec{v}) = -\varphi(\vec{v}, \vec{v})$, so $\varphi(\vec{v}, \vec{v}) = 0$.

Conversely, if $\varphi(\vec{v}, \vec{v}) = 0$ for all $\vec{v} \in V$, then for any $\vec{v}, \vec{w} \in V$ we have

$$0 = \varphi(\vec{v} + \vec{w}, \vec{v} + \vec{w}) = \varphi(\vec{v}, \vec{v}) + \varphi(\vec{v}, \vec{w}) + \varphi(\vec{w}, \vec{v}) + \varphi(\vec{w}, \vec{w}) = \varphi(\vec{v}, \vec{w}) + \varphi(\vec{w}, \vec{v}),$$

which implies $\varphi(\vec{v}, \vec{w}) = -\varphi(\vec{w}, \vec{v})$.