Unit 5

Unrestricted Grammars

- $G = (\Sigma, N, S, P)$, where
 - Σ is the set of terminal symbols,
 - N is the set of non-terminal symbols $(N \cap \Sigma = 0/)$,
 - $S \subseteq N$ is the start symbol, and
 - P is a finite set of rules or productions.
- Each production is of the form

$$\alpha \rightarrow \beta$$

for any α , $\beta \in (N \cup \Sigma)^*$ with α containing at least one non-terminal symbol.

Such a production can also be written as

$$\gamma A \delta \rightarrow \beta$$

for any β , γ , $\delta \in (N \cup \Sigma)^*$, and for any $A \in N$.

·
$$L(G) = \{w \in \Sigma^* \mid S_G \rightarrow^* w\}.$$

Example 1

$$L_1 = \{a^2 \mid n \text{ " } 0\}.$$

· Productions:

$$S \to TaU$$

$$U \to \varepsilon \mid AU \mid aA \to Aaa$$

$$TA \to T$$

$$T \to \varepsilon$$

 $\rightarrow aaaaaaaaa$

• Derivation of a^8 using these productions:

$$S \rightarrow TaU \rightarrow TaAU \rightarrow TaAAU \rightarrow TaAAAU \rightarrow TaAAAU \rightarrow TaAAAA$$
 $\rightarrow TAaaAA \rightarrow TaaAA$
 $\rightarrow TaAaaA \rightarrow TAaaaaA \rightarrow TaaaaA$
 $\rightarrow TaaaAaa \rightarrow TaaAaaaa \rightarrow TaAaaaaaa \rightarrow TaAaaaaaaa \rightarrow Taaaaaaaaa$

Example 2

- $L_2 = \{a^n b^n c^n \mid n \text{ " 0}\}.$
- · Productions:

$$S \to UT$$

$$U \to \varepsilon \mid aUbC$$

$$Cb \to bC$$

$$CT \to Tc$$

$$T \rightarrow \epsilon$$

• Derivation of $a^3b^3c^3$ using these productions:

$$S \rightarrow UT \rightarrow aUbCT \rightarrow aaUbCbCT \rightarrow$$
 $aaaUbCbCbCT \rightarrow aaabCbCbCT$
 $\rightarrow aaabCbbCCT \rightarrow aaabbCbCCT \rightarrow$
 $aaabbbCCCT$
 $\rightarrow aaabbbCCCT$

The Chomsky Hierachy

• A containment hierarchy of classes of formal languages

- Comprises four types of languages and their associated grammars and machines.
- Type 3: Regular Languages
- □ Type 2: Context-Free Languages
- Type 1: Context-Sensitive Languages
- Type 0: Recursively Enumerable Languages
- These languages form a strict hierarchy

Language	Grammar	Machine	Example
Regular Language	Regular Grammar Right-linear grammar Left-linear grammar	Deterministic or Nondeterministic Finite-state acceptor	a*
Context-free Language	Context-free grammar	Nondeterministic Pushdown automaton	a ⁿ b ⁿ
Context-sensitiv e	Context-sensitive grammar	Linear-bounded automaton	a ⁿ b ⁿ c ⁿ
Recursively enumerable	Unrestricted grammar	Turing machine	Any computable function

Turing-Machine Definition

- A TM is described by:
 - 1. A finite set of *states* (Q, typically).
 - 2. An *input alphabet* (Σ , typically).
 - 3. A tape alphabet (Γ , typically; contains Σ), which includes a blank symbol, B, not in Σ .
 - Entire tape except for the input is initially blank.
 - 4. A transition function (δ , typically).
 - 5. A start state $(q_0, in Q, typically)$.
 - 6. An *final (accept) state* (f or q_{accept}, typically).
 - 7. A reject state (r or q_{reject}, typically).

THE TRANSITION FUNCTION

- Takes two arguments:
 - 1. A state, in Q.
 - 2. A tape symbol in Γ .
- δ(q, Z) is either undefined or a triple of the form (p, Y, D).
 - p is a state.
 - Y is the new tape symbol.
 - D is a *direction*, L or R.

ACTIONS OF THE TM

- If $\delta(q, Z) = (p, Y, D)$ then, in state q, scanning Z under its tape head, the TM:
 - 1. Changes the state to p.
 - 2. Replaces Z by Y on the tape.
 - 3. Moves the head one square in direction D.
 - D = L: move left; D = R; move right.

Conventions

- □ a, b, ... are input symbols.
- ..., X, Y, Z are tape symbols.
- ..., w, x, y, z are strings of input symbols.
- α , β ,... are strings of tape symbols.

Language of a Turing Machine

- Once a TM has entered either the accept state or reject state, it **halts**.
- Initially, the input for a TM, M, is on its tape, its head is pointing to the first character of the input (or B if it is null), and M is in its start state
- An input string, w, is in the **language** of M if the actions of M with w as its input results in it halting in the accept state.

Example: Turing Machine

- This TM scans its input right, turning each 0 into a 1.
- If it ever finds a 1, it goes to final reject state r, goes right on square, and halts.
- If it reaches a blank, it changes moves left and accepts.
- Its language is 0*

Example: Turing Machine -(2)

- \square States = {q (start), f (accept), r (reject)}.
- □ Input symbols = $\{0, 1\}$.
- □ Tape symbols = $\{0, 1, B\}$.
- $\delta(q, 0) = (q, 1, R).$
- $\delta(q, 1) = (r, 1, R).$
- $\delta(q, B) = (f, B, L).$

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

$$\delta(q, 0) = (q, 1, R)$$

 $\delta(q, 1) = (r, 1, R)$

$$\delta(q, B) = (f, B, L)$$

The TM halts and accepts. (So "00" is in its language.)

Simulation of TM - on 001

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

6 I

Simulation of TM - on 001

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

Simulation of TM - on 001

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

$$\delta(q, 0) = (q, 1, R)$$

$$\delta(q, 1) = (r, 1, R)$$

$$\delta(q, B) = (f, B, L)$$

The TM halts and rejects. (So "001" is not in its language.)

Instantaneous Descriptions of a Turing Machine

- Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
- □ The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's - (2)

- \Box An ID is a string αqβ, where αβ is the tape between the leftmost and rightmost nonblanks (inclusive).
- ☐ The state q is immediately to the left of the tape symbol scanned.
- If q is at the right end, it is scanning B.
 - If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α.

TM ID's - (3)

- As for PDA's we may use symbols + and +* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.
- Example: The moves of the previous TM are q00+0q0+00q+0q01+00q1+000f

FORMAL DEFINITION OF MOVES

- 1. If $\delta(q, Z) = (p, Y, R)$, then
 - $\alpha q Z \beta + \alpha Y p \beta$
 - If Z is the blank B, then also $\alpha q + \alpha Y p$
- 2. If $\delta(q, Z) = (p, Y, L)$, then
 - For any X, $\alpha XqZ\beta + \alpha pXY\beta$
 - In addition, qZβ+pBYβ

FORMAL DEFINITION OF THE LANGUAGE OF A TM

- Recall that once a TM has entered either the accept state or reject state, it halts.
- If M is a Turing Machine, the language accepted by M is:

 $L(M) = \{w \mid q_0 w \mid *I, where I is an ID with the accept state\}.$

Turing-Recognizable Languages

- A language accepted by a TM.
- But the TM might loop for strings not in its language.
- This class of languages is also called the recursively enumerable languages.
 - Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

Turing-Decidable Language

- A languages accepted by a TM that always halts.
- An *algorithm* is a TM that is guaranteed to halt whether or not it accepts.
- If L = L(M) for some TM M that is an algorithm, we also say L is a *recursive language*.
 - Why? It's a term with a history...

Example: Turing-decidable Languages

- Every CFL is a Turing-decidable language.
 - Use the CYK algorithm.
- Every regular language is a Turing-decidable language.
 - Simulate its DFA.
- Almost anything you can think of is Turing-decidable.

Decidable Problems

- A problem is *decidable* if there is an algorithm to answer it.
 - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
 - Put another way, "decidable problem" = "recursive language."
- Otherwise, the problem is undecidable.

Bullseye Picture

From the Abstract to the Real

- $\ \square$ While the fact that L_d is undecidable is interesting intellectually, it doesn't impact the real world directly.
- We first shall develop some TM-related problems that are undecidable, but our goal is to use the theory to show some real problems are undecidable.

Examples: Undecidable Problems

- Can a particular line of code in a program ever be executed?
- Is a given context-free grammar ambiguous?
- Do two given CFG's generate the same language?

The Church-Turing Thesis and Turing-completeness

Michael T. Goodrich Univ. of California, Irvine

Alonzo Church (1903-1995)

Alan Turing (1912-1954)

Some slides adapted from David Evans, Univ. of Virginia, and Antony Galton, Univ. of Exeter

Types of Turing Machines

Decider/acceptor:

Transducer (more general, computes a function):

Church

- Alonzo Church, 1936, An unsolvable problem of elementary number theory.
- Introduced
 recursive
 functions and
 λ-definable
 functions and
 proved these classes
 equivalent.

"We ... define the notion ... of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers."

TURING

- Alan Turing, 1936, On computable numbers, with an application to the Entscheidungs-pro blem.
- Introduced the idea of a Turing machine computable number

"The [Turing machine] computable numbers include all numbers which could naturally be regarded as computable."

THE CHURCH-TURING THESIS

"Every effectively calculable function can be computed by a Turing-machine transducer."

"Since a precise mathematical definition of the term effectively calculable (effectively decidable) has been wanting, we can take this **thesis** ... as a definition of it..." – Kleene, 1943.

That is, for every definition of "effectively computable" functions that people have come up with so far, a Turing machine can compute all such such functions.

Equivalent Statements of the Church-Turing Thesis

- Intuitive notion of algorithms equals Turing machine algorithms." Sipser, p. 182.
- Any mechanical computation can be performed by a Turing Machine
- \square There is a TM-n corresponding to every computable problem
- We can model any mechanical computer with a TM
- ☐ The set of languages that can be decided by a TM is identical to the set of languages that can be decided by any mechanical computing machine
- If there is no TM that decides problem P, there is no algorithm that solves problem P.

All of these statements are equivalent to the Church-Turing thesis

Examples of the Church-Turing Thesis

- With respect to computational power (i.e., what can be computed):
 - Making the tape infinite in both directions adds no power
 - [Soon] Adding more tapes adds no power
 - [Church] Lambda Calculus is equivalent to TM
 - [Chomsky] Unrestricted replacement grammars are equivalent to TM
 - Random-Access Machine (RAM) model is equivalent to a TM

"Some of these models are very much like Turing machines, but others are quite different."

END