Introduction to Algorithms CSI 3344 Homework 1

Grant Gasser

January 30, 2019

Prepare a LaTex file with each problem beginning on a fresh page. Use the Upload Site to submit your solution. These problems are a review of material from earlier courses that will serve us well in CSI 3344:

1. In each of the following situations, indicate whether $f(n) \in O(g(n))$, or $f(n) \in \Omega(g(n))$, or both (in which case $f(n) \in \Theta(g(n))$).

f(n)	g(n)	Answer
n - 100	n - 200	$f(n) \in \Theta(g(n))$
$n^{\frac{1}{2}}$	$n^{\frac{2}{3}}$	$f(n) \in O(g(n))$
100n + log(n)	$n + (log(n))^2$	$f(n) \in \Theta(g(n))$
$n \log(n)$	$10n \log(10n)$	$f(n) \in \Theta(g(n))$
log(2n)	log(3n)	$f(n) \in \Theta(g(n))$
10log(n)	$log(n^2)$	$f(n) \in \Theta(g(n))$
$n^{1.01}$	$nlog^2n$	$f(n) \in \Omega(g(n))$
$\frac{n^2}{log(n)}$	$n(log(n))^2$	$f(n) \in \Omega(g(n))$
$n^{0.1}$	$(log(n))^{10}$	$f(n) \in \Omega(g(n))$
$(\log n)^{\log n}$	$\frac{n}{\log n}$	$f(n) \in \Omega(g(n))$
\sqrt{n}	$(log \ n)^3$	$f(n) \in \Omega(g(n))$
$n^{\frac{1}{2}}$	$5 log_2 n$	$f(n) \in O(g(n))$
$n 2^n$	3^n	$f(n) \in O(g(n))$
2^n	$2^{(n+1)}$	$f(n) \in \Theta(g(n))$
n!	2^n	$f(n) \in \Omega(g(n))$
$(log \ n)^{log \ n}$	$2^{(log_2 \ n)^2}$	$f(n) \in O(g(n))$
$\sum_{i=1}^{n} i^k$	n^{k+1}	$f(n) \in \Theta(g(n))$

2. Geometric series.

Note: We will use the geometric series formula: $S(n) = \frac{a - ar^{n+1}}{1 - r}$.

- (a) Give a simple upper bound on $1+2+4+\ldots+2^n$. Conclude that this sum is $O(2^n)$.
 - This can be written as $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$. We can ignore the constant and from the above table we know that $2^{n+1} \in O(2^n)$.
- (b) Do the same for $1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n}$ and conclude that the sum is O(1).
 - This can be written as $\sum_{n=0}^{\infty} (\frac{1}{2})^n = \frac{\frac{1}{2}}{1-\frac{1}{2}}$ using the geometric series formula. In this case, $a=1, r=\frac{1}{2}$.
 - $\sum_{n=0}^{\infty} (\frac{1}{2})^n = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$. Thus the series converges to 1. $S \in O(1)$.
- (c) By considering a more general series $S(n) = 1 + c + c^2 + \ldots + c^n$, establish the following very useful rule: in big-O terms, the sum of a geometric series is simply: **Note:** In this case, the common ratio r = c.
 - i. the first term if the series is strictly decreasing,
 - The series is strictly decreasing if c < 1.
 - Using the formula above we have $S(n) = \frac{1-c^{n+1}}{1-c}$. If c < 1, then $1-c < 1-c^{n+1} < 1$. Dividing by 1-c gives $1 < \frac{1-c^{n+1}}{1-c} < \frac{1}{1-c}$. $1 < S(n) < \frac{1}{1-c}$.
 - Thus, $S(n) \in \Theta(1)$, where 1 is the first term.
 - ii. the last term if the series is strictly increasing,
 - The series is strictly increasing if c > 1,
 - Using the formula above we have $S(n)=\frac{1-c^{n+1}}{1-c}=\frac{c^{n+1}-1}{c-1}$. If c>1, then $c^n< c^{n+1}-1< c^{n+1}$. Divide by 1-c gives $\frac{1}{1-c}*c^n< S(n)<\frac{c}{1-c}*c^n$
 - Thus, $S(n) \in \Theta(c^n)$, where c^n is the last term.
 - iii. the number of terms if the series is unchanging.
 - if c = 1, then $S(n) = 1 + 1 + 1 + \dots + 1 = 1 + n$. If S(n) = n + 1, then $S(n) \in \Theta(n)$.

- 3. Proving by induction. We would like to establish the following formula for the sum of the first n odd numbers: $1+3+5+...+(2n-1)=n^2$. A nice way to do this is by induction. Let S(n) be the statement above. We want to prove $\sum_{i=1}^{n} (2n-1) = n^2$. An inductive proof would have the following steps:
 - (a) Show that S(1) is true.
 - i. Let n = 1. Then $\sum_{i=1}^{1} (2(1) 1) = 1^2$. That gives $(2(1) - 1) = 1^2$. $(2 - 1) = 1^2$.
 - 1 = 1. Thus, it is true for the base case.
 - (b) Assume that if S(1),...,S(k) are true,
 - (c) then show S(k+1) is true.
 - i. If it is true for S(1)...S(k), then $\sum_{i=1}^{k} (2k-1) = k^2$.
 - ii. Let n = k + 1. Then we have, $\sum_{i=1}^{k+1} (2(k+1) 1) = (k+1)^2$.

$$\sum_{i=1}^{k+1} (2k+2-1) = k^2 + 2k + 1.$$

$$\sum_{i=1}^{k+1} (2k+1) = k^2 + 2k + 1.$$

$$3+5+7+..+2k-1+2(k+1)-1=k^2+2k+1.$$

$$\sum_{i=1}^{k} (2k-1) + 2(k+1) - 1 = k^2 + 2k + 1.$$

$$k^{2} + 2(k+1) - 1 = k^{2} + 2k + 1$$
. (Inductive hypothesis)

 $k^2 + 2k + 1 = k^2 + 2k + 1$. Thus, it is true for the base case and inductive hypothesis. QED.

- 4. Practice with big O and Ω . For some fixed positive integer c, consider the summation $S(n) = 1^c + 2^c + 3^c + \ldots + n^c$.
 - (a) Show that S(n) is $O(n^{c+1})$. Hint: There are n terms in the series, and each is at most ...?
 - (b) Show that S(n) is $\Omega(n^{c+1})$. Hint: Look just at the second half of the series.
 - $S(n) = \sum_{i=1}^{n} i^c = \frac{1}{c+1} n^{c+1}$ by definition. Let $f(n) = \frac{1}{c+1} n^{c+1}$ and $g(n) = n^{c+1}$.

Using L'Hopital's rule: $\lim_{n\to\infty} \frac{f'(n)}{g'(n)} = \frac{n^c}{(c+1)n^c}$. Drop constant and get 1. Thus,

$$f(n) \in \Theta(n^{c+1})$$
. Since $f(n) = S(n)$, $S(n) \in \Theta(n^{c+1})$.

By definition of Θ , if $S(n) \in \Theta(n^{c+1})$, then $S(n) \in O(n^{c+1})$ and $S(n) \in \Omega(n^{c+1})$

- 5. Logarithms (base two). Recall the definition of logarithm base two: saying $p = log_2 m$ is the same as saying $m = 2^p$. In this class, we will typically write log to mean log_2 .
 - (a) How many bits are needed to write down a positive integer n? Give your answer in big-O notation, as a function of n, where n is the length of the number.

Number	Number of bits
0	0
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4
	4
•	4
16	5
•	5
•	5
32	6
	6
•	6
64	7
	7
	7

Largest Number with n digits		Number of bits
9	1	4
99	2	7
999	3	10
9999		14

Thus, it takes $O(\lceil nlog_2(10) \rceil)$, where $log_2(10) \approx 3.3$.

For example, from the right table, if n=4, the number of bits required is $\lceil 4*3.3 \rceil = 14$.

(b) How many times does the following piece of code print "hello"? Assume n is an integer, and that division rounds down to the nearest integer. Give your answer in big-O form, as a function of n.

n	Number of prints
0	0
1	0
2	1
3	1
4	2
5	2
6	2
7	2
8	3
9	3
10	3
11	3
12	3
13	3
14	3
15	3
16	4

Looks like $O(log_2(n))$