$$a^2 + b^2 = c^2$$
Right

$$a^2 + b^2 > c^2$$
Acute

Worked Examples - Pythagorean Inequality Theorems (IXL Geometry P.4)

- 1. The sides of a triangle have lengths 3, 4, and 5. What kind of triangle is 32+42=52 it?
 - a. Acute
 - b. Obtuse
 - (C.) Right

- 7+16=25
 - 25 = 25
- 2. The sides of a triangle have lengths 3, 6, and 6. What kind of triangle is it?
 - Acute
 - b. Obtuse
 - c. Right

- $3^2 + 6^2 \stackrel{?}{=} 6^2$ 32+62 >62 Acute
- 3. The sides of a triangle have lengths 10, 13, and 19. What kind of triangle is it?
 - a. Acute
 - (b) Obtuse
 - c. Right

- $10^2 + 13^2 \stackrel{?}{=} 19^2$ 100 + 169 = 361 269 < 361 Obtuse
- 4. Can the sides of a triangle have lengths of 33, 10, and 26? If so, what
- kind of triangle is it?
 - a. Yes, acute
 - b. Yes, right
 - C. Yes, obtuse
 - d. No

If
$$a+b > c$$
, then Δ

If $a+b \le c$, then $no \Delta$
 $10+26$ 33 $10^2+26^2 \stackrel{?}{=} 33^2$
 $36 > 33$ $100+676 \stackrel{?}{=} 1089$

Yes, Δ 776 < 1089

Obtuse

- 5. Can the sides of a triangle have lengths of 19, 27, and 46? If so, what kind of triangle is it?
 - a. Yes, acute
 - b. Yes, right
 - c. Yes, obtuse
 - (d) No