

<110>

SEQUENCE LISTING

DEHBI, Mohammed DUBOW, Michael GROS, Philippe MCCARTY, John PELLETIER, Jerry <120> INHIBITORS OF STAPHYLOCOCCUS AUREUS PRIMARY SIGMA FACTOR AND USES THEREOF <130> Q79408 <140> 10/771,395 <141> 2004-02-05 <150> US 60/445,441 <151> 2003-02-07 <160> 41 <170> PatentIn version 3.2 <210> 1 <211> 1107 <212> DNA <213> Staphylococcus aureus <220> <221> CDS <222> (1)..(1107) <400> 1 atg tct gat aac aca gtt aaa att aaa aaa caa aca att gat ccg aca 48 Met Ser Asp Asn Thr Val Lys Ile Lys Lys Gln Thr Ile Asp Pro Thr 10 tta aca tta gaa gat gtt aag aag caa tta att gaa aaa ggt aaa aaa 96 Leu Thr Leu Glu Asp Val Lys Lys Gln Leu Ile Glu Lys Gly Lys Lys 144 gag ggt cat tta agt cat gaa gaa att gct gaa aaa ctt cag aat ttt Glu Gly His Leu Ser His Glu Glu Ile Ala Glu Lys Leu Gln Asn Phe 192 gat atc gac tct gat caa atg gat gat ttc ttt gat caa tta aat gat Asp Ile Asp Ser Asp Gln Met Asp Asp Phe Phe Asp Gln Leu Asn Asp 50 55 60 aat gat att tca cta gtt aat gaa aaa gat agt tca gat act gac gag 240 Asn Asp Ile Ser Leu Val Asn Glu Lys Asp Ser Ser Asp Thr Asp Glu 80 65 70 75 aaa ctg aat cca agt gat ctt agt gcc cct cca ggt gtt aaa ata aat 288

Lys	Leu	Asn	Pro	Ser 85	Asp	Leu	Ser	Ala	Pro 90	Pro	Gly	Val	Lys	Ile 95	Asn	
-		-	_	-	tac Tyr			_								336
-			_	_	atc Ile	_		_				_			-	384
	_	~			aga Arg		-	-				-		-	-	432
_					tac Tyr 150	_								_		480
		_			atg Met					-	_	_			-	528
					aag Lys											576
				_	gca Ala		_	-		-	_	_		-		624
			_	_	gaa Glu							-	_		_	672
			~	_	tta Leu 230		_	_		_		_	•			720
					cca Pro											768
		_		_	tca Ser		_					_	_	_		816
					ttt Phe											864
					gaa Glu											912
gat	aca	tta	act	gat	aga	gaa	gaa	aat	gta 2/3		cga	tta	aga	ttt	ggt	960

Asp Thr Leu Thr Asp Arg Glu Glu Asn Val Leu Arg Leu Arg Phe Gly 305 310 315 320	
ctt gat gac ggc aga aca aga aca ctt gaa gaa gtt ggt aaa gtt ttc Leu Asp Asp Gly Arg Thr Arg Thr Leu Glu Glu Val Gly Lys Val Phe 325 330 335	1008
ggt gtt aca cgt gaa cgt att cga caa att gaa gca aaa gca ctt aga Gly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ala Lys Ala Leu Arg 340 345 350	1056
aaa tta aga cat cca agt cgt agt aaa cgt ttg aaa gac ttt atg gat Lys Leu Arg His Pro Ser Arg Ser Lys Arg Leu Lys Asp Phe Met Asp 355 360 365	1104
taa	1107
<210> 2 <211> 368 <212> PRT <213> Staphylococcus aureus	
<400> 2	
Met Ser Asp Asn Thr Val Lys Ile Lys Lys Gln Thr Ile Asp Pro Thr 1 5 10 15	
Leu Thr Leu Glu Asp Val Lys Lys Gln Leu Ile Glu Lys Gly Lys Lys 20 25 30	
Glu Gly His Leu Ser His Glu Glu Ile Ala Glu Lys Leu Gln Asn Phe 35 40 45	
Asp Ile Asp Ser Asp Gln Met Asp Asp Phe Phe Asp Gln Leu Asn Asp 50 55 60	
Asn Asp Ile Ser Leu Val Asn Glu Lys Asp Ser Ser Asp Thr Asp Glu 65 70 75 80	
Lys Leu Asn Pro Ser Asp Leu Ser Ala Pro Pro Gly Val Lys Ile Asn 85 90 95	
Asp Pro Val Arg Met Tyr Leu Lys Glu Ile Gly Arg Val Asn Leu Leu 100 105 110	
Ser Ala Gln Glu Glu Ile Glu Leu Ala Lys Arg Ile Glu Gln Gly Asp 115 120 125	

Glu	Val 130	Ala	Lys	Ser	Arg	Leu 135	Ala	Glu	Ala	Asn	Leu 140	Arg	Leu	Val	Val
Ser 145	Ile	Ala	Lys	Arg	Tyr 150	Val	Gly	Arg	Gly	Met 155	Leu	Phe	Leu	Asp	Leu 160
Ile	Gln	Glu	Gly	Asn 165	Met	Gly	Leu	Ile	Lys 170	Ala	Val	Glu	Lys	Phe 175	Asp
Phe	Asn	Lys	Gly 180	Phe	Lys	Phe	Ser	Thr 185	Tyr	Ala	Thr	Trp	Trp 190	Ile	Arg
Gln	Ala	Ile 195	Thr	Arg	Ala	Ile	Ala 200	Asp	Gln	Ala	Arg	Thr 205	Ile	Arg	Ile
Pro	Val 210	His	Met	Val	Glu	Thr 215	Ile	Asn	Lys	Leu	Ile 220	Arg	Val	Gln	Arg
Gln 225	Leu	Leu	Gln	Asp	Leu 230	Gly	Arg	Asp	Pro	Ala 235	Pro	Glu	Glu	Ile	Gly 240
Glu	Glu	Met	Asp	Leu 245	Pro	Ala	Glu	Lys	Val 250	Arg	Glu	Ile	Leu	Lys 255	Ile
Ala	Gln	Glu	Pro 260	Val	Ser	Leu	Glu	Thr 265	Pro	Ile	Gly	Glu	Glu 270	Asp	Asp
Ser	His	Leu 275	Gly	Asp	Phe	Ile	Glu 280	Asp	Gln	Glu	Ala	Gln 285	Ser	Pro	Ser
Asp	His 290	Ala	Ala	Tyr	Glu	Leu 295	Leu	Lys	Glu	Gln	Leu 300	Glu	Asp	Val	Leu
Asp 305	Thr	Leu	Thr	Asp	Arg 310	Glu	Glu	Asn	Val	Leu 315	Arg	Leu	Arg	Phe	Gly 320
Leu	Asp	Asp	Gly	Arg 325	Thr	Arg	Thr	Leu	Glu 330	Glu	Val	Gly	Lys	Val 335	Phe
Gly	Val	Thr	Arg 340	Glu	Arg	Ile	Arg	Gln 345	Ile	Glu	Ala	Lys	Ala 350	Leu	Arg

<210> 3 <211> 242 <212> PRT <213> Staphylococcus aureus <400> 3 Gly Asp Glu Val Ala Lys Ser Arg Leu Ala Glu Ala Asn Leu Arg Leu 5 10 Val Val Ser Ile Ala Lys Arg Tyr Val Gly Arg Gly Met Leu Phe Leu 25 Asp Leu Ile Gln Glu Gly Asn Met Gly Leu Ile Lys Ala Val Glu Lys 40 Phe Asp Phe Asn Lys Gly Phe Lys Phe Ser Thr Tyr Ala Thr Trp Trp 50 55 Ile Arg Gln Ala Ile Thr Arg Ala Ile Ala Asp Gln Ala Arg Thr Ile 75 65 70 Arg Ile Pro Val His Met Val Glu Thr Ile Asn Lys Leu Ile Arg Val 90 85 Gln Arg Gln Leu Leu Gln Asp Leu Gly Arg Asp Pro Ala Pro Glu Glu 100 105 Ile Gly Glu Glu Met Asp Leu Pro Ala Glu Lys Val Arg Glu Ile Leu 115 120 Lys Ile Ala Gln Glu Pro Val Ser Leu Glu Thr Pro Ile Gly Glu Glu 130 1.35 140 Asp Asp Ser His Leu Gly Asp Phe Ile Glu Asp Gln Glu Ala Gln Ser 145 150 155 Pro Ser Asp His Ala Ala Tyr Glu Leu Leu Lys Glu Gln Leu Glu Asp 170 175 165

Lys Leu Arg His Pro Ser Arg Ser Lys Arg Leu Lys Asp Phe Met Asp 360

355

Val Leu Asp Thr Leu Thr Asp Arg Glu Glu Asn Val Leu Arg Leu Arg 180 185 Phe Gly Leu Asp Asp Gly Arg Thr Arg Thr Leu Glu Glu Val Gly Lys 200 Val Phe Gly Val Thr Arg Glu Arg Ile Arg Gln Ile Glu Ala Lys Ala 215 Leu Arq Lys Leu Arq His Pro Ser Arg Ser Lys Arg Leu Lys Asp Phe 230 235 Met Asp <210> 4 <211> 75 <212> PRT <213> Staphylococcus aureus <400> 4 Glu Leu Leu Lys Glu Gln Leu Glu Asp Val Leu Asp Thr Leu Thr Asp 10 Arg Glu Glu Asn Val Leu Arg Leu Arg Phe Gly Leu Asp Asp Gly Arg 20 25 Thr Arg Thr Leu Glu Glu Val Gly Lys Val Phe Gly Val Thr Arg Glu 35 40 45 Arg Ile Arg Gln Ile Glu Ala Lys Ala Leu Arg Lys Leu Arg His Pro 50 55 Ser Arg Ser Lys Arg Leu Lys Asp Phe Met Asp 65 70 <210> 5 <211> 67 <212> PRT <213> Staphylococcus aureus <400> 5

Glu Leu Leu Lys Glu Gl
n Leu Glu Asp Val Leu Asp Thr Leu Thr Asp 1 5 10 15

Arg	Glu	Glu	Asn 20	Val	Leu	Arg	Leu	Arg 25	Phe	Gly	Leu	Asp	Asp 30	Gly	Arg	
Thr	Arg	Thr 35	Leu	Glu	Glu	Val	Gly 40	Lys	Val	Phe	Gly	Val 45	Thr	Arg	Glu	
Arg	Ile 50	Arg	Gln	Ile	Glu	Ala 55	Lys	Ala	Leu	Arg	Lys 60	Leu	Arg	His	Pro	
Ser 65	Arg	Ser														
<210 <211 <212 <213	L> 5 2> I	597 DNA	eriop	phage	e Gl											
<220 <221 <222	.> (CDS	. (597	7)												
	aaa	tta			tta Leu											48
					cac His											96
					cct Pro											144
					tta Leu											192
					gat Asp 70											240
					ata Ile											288
					ata Ile											336

Ile Thr Glu (gaa tat Glu Tyr											384
att gga gtt a Ile Gly Val 1 130			r Leu									432
cta gaa ggt a Leu Glu Gly I 145												480
gaa gag tca d Glu Glu Ser (528
gat tta act t Asp Leu Thr	_	_										576
atg aaa aaa a Met Lys Lys 1 195	-		3									597
<210> 7 <211> 198												
<212> PRT <213> Bacter	riophage	e G1										
	riophage	e G1										
<213> Bacter			o Lys	Asp	Asn 10	Ala	Thr	Leu	Asn	Val 15	Phe	
<213> Bacter <400> 7 Met Lys Leu I His Arg Asn I	Lys Ile 5	Leu As	-		10					15		
<213> Bacter <400> 7 Met Lys Leu I His Arg Asn I	Lys Ile 5 Lys Glu 20	Leu As	5 Thr	Ile 25	10 Asp	Asn	Val	Pro	Thr 30	15 Ala	Asn	
<213> Bacter <400> 7 Met Lys Leu I His Arg Asn I Leu Val Asp 3	Lys Ile 5 Lys Glu 20 Trp Tyr	Leu As	5 Thr 1 Ser 40	Ile 25 Asn	10 Asp Ala	Asn Tyr	Val Glu	Pro Tyr 45	Thr 30 Lys	15 Ala Leu	Asn	
<213> Bacter <400> 7 Met Lys Leu I His Arg Asn I Leu Val Asp I 35 Arg Asn Gly C	Lys Ile 5 Lys Glu 20 Trp Tyr	Leu As His Ly Pro Le Leu Gl	S Thr	Ile 25 Asn Lys	10 Asp Ala Arg	Asn Tyr Leu	Val Glu Arg 60	Pro Tyr 45 Ser	Thr 30 Lys	15 Ala Leu Leu	Asn Ser Pro	

Asp Asn Leu Lys Ile Ile Glu Lys Ala Lys Gln Tyr Gly Leu Pro Ile 100 105 110

Ile Thr Glu Glu Tyr Asp Ala Asn Thr Val Glu Gln Gly Phe Arg Asp 115 120 125

Ile Gly Val Ile Phe Gln Ser Leu Lys Thr Ile Val Val Thr Arg Tyr 130 135 140

Glu Glu Ser Gln Leu Asn Glu Ala Leu Lys Glu Ser Asp Phe Ser Val 165 170 175

Asp Leu Thr Tyr Ser Asp Leu Gly Gln Ile Tyr Asn Met Leu Leu Leu 180 185 190

Met Lys Lys Ile Ser Lys 195

<210> 8

<211> 149

<212> PRT

<213> Bacteriophage G1

<400> 8

Asn Gly Glu Tyr Leu Glu Leu Lys Arg Leu Arg Ser Thr Leu Pro Ser 1 5 10 15

Ser Tyr Gly Leu Asp Asp Asn Asn Gln Asp Ile Ile Arg Asp Asn Asn 20 25 30

His Arg Cys Lys Ile Gly Tyr Trp Tyr Asn Pro Ala Val Arg Lys Asp 35 40 45

Asn Leu Lys Ile Ile Glu Lys Ala Lys Gln Tyr Gly Leu Pro Ile Ile 50 55 60

Thr Glu Glu Tyr Asp Ala Asn Thr Val Glu Gln Gly Phe Arg Asp Ile
65 70 75 80

•	Val	Ile	Phe	Gln 85	Ser	Leu	Lys	Thr	Ile 90	Val	Val	Thr	Arg	Tyr 95	Leu	
Glu	Gly	Lys	Thr 100	Glu	Glu	Glu	Leu	Arg 105	Ile	Phe	Asn	Met	Lys 110	Ser	Glu	
Glu	Ser	Gln 115	Leu	Asn	Glu	Ala	Leu 120	Lys	Glu	Ser	Asp	Phe 125	Ser	Val	Asp	
Leu	Thr 130	Tyr	Ser	Asp	Leu	Gly 135	Gln	Ile	Tyr	Asn	Met 140	Leu	Leu	Leu	Met	
Lys 145	Lys	Ile	Ser	Lys												
<210 <211 <212 <213	L> 5 2> I	9 588 DNA Bacte	eriop	ohage	e Two	ort										
<220 <220 <220	L> (CDS (1)	. (588	3)												
< 400		€														
atg	aag	tta							_			tta Leu		_		48
atg Met 1 aat	aag Lys tct	tta Leu atg	Lys ggt	Ile 5 gta	Lys act	Asn aag	Lys tta	Phe gac	Met 10 gta	Gly	Val tta		Glu	Val 15 ata	Thr	48 96
atg Met 1 aat Asn	aag Lys tct Ser	tta Leu atg Met	Lys ggt Gly 20 cct	Ile 5 gta Val	Lys act Thr	Asn aag Lys aac	Lys tta Leu gct	Phe gac Asp 25 tat	Met 10 gta Val	Gly ccc Pro	Val tta Leu aag	Leu agt	Glu aac Asn 30 aat	Val 15 ata Ile gta	Thr cat His	
atg Met 1 aat Asn gaa Glu aca	aag Lys tct Ser tgg Trp	tta Leu atg Met tat Tyr 35	ggt Gly 20 cct Pro	Ile 5 gta Val ttt Phe	act Thr tct Ser	aag Lys aac Asn	tta Leu gct Ala 40	Phe gac Asp 25 tat Tyr	Met 10 gta Val tct Ser	Gly ccc Pro tac Tyr	Val tta Leu aag Lys	agt Ser tat Tyr	Glu aac Asn 30 aat Asn	Val 15 ata Ile gta Val	Thr cat His aaa Lys	96
atg Met 1 aat Asn gaa Glu aca Thr	aag Lys tct Ser tgg Trp aaa Lys 50	tta Leu atg Met tat Tyr 35 gat Asp	ggt Gly 20 cct Pro tta Leu	Ile 5 gta Val ttt Phe gta Val cga	act Thr tct Ser tta Leu	Asn aag Lys aac Asn aaa Lys 55	tta Leu gct Ala 40 cga Arg	Phe gac Asp 25 tat Tyr cta Leu	Met 10 gta Val tct Ser cgt Arg	Gly ccc Pro tac Tyr tca Ser	Val tta Leu aag Lys tca Ser 60 aaa	agt Ser tat Tyr 45	Glu aac Asn 30 aat Asn cca Pro	Val 15 ata Ile gta Val gta Val	Thr cat His aaa Lys tct Ser	96 144
atg Met 1 aat Asn gaa Glu aca Thr tat Tyr 65 aac	aag Lys tct ser tgg Trp aaa Lys 50 ggg Gly	tta Leu atg Met tat Tyr 35 gat Asp att Ile	ggt Gly 20 cct Pro tta Leu gaa Glu	Ile 5 gta Val ttt Phe gta Val cga Arg	act Thr tct Ser tta Leu gcg Ala 70	Asn aag Lys aac Asn aaa Lys 55 tct Ser aac	tta Leu gct Ala 40 cga Arg	Phe gac Asp 25 tat Tyr cta Leu gag Glu tca	Met 10 gta Val tct Ser cgt Arg tat Tyr	Gly ccc Pro tac Tyr tca Ser gac Asp 75 aaa	Val tta Leu aag Lys tca Ser 60 aaa Lys	agt Ser tat Tyr 45 cta Leu	Glu aac Asn 30 aat Asn cca Pro aaa Lys	Val 15 ata Ile gta Val gta Val	Thr cat His aaa Lys tct Ser tgt Cys 80 cac	96 144 192

	Ile	Asn	Lys 100	Ala	Lys	Ser	Tyr	Gly 105	Leu	Pro	Val	Ile	Thr 110	Glu	Lys	
		tat Tyr 115												-		384
		gaa Glu				_								_		432
-		agt Ser			-	_			_				_			480
		tta Leu					-	_								528
		cta Leu						-					_			576
_	aag Lys	tat Tyr 195	taa													588
<210 <211 <212	L>]	10 195														
<213		PRT Bacte	eriop	hage	e Two	ort										
	B > F		eriop	ohage	e Two	ort										
< 400	3 > F	Bacte		•			Lys	Phe	Met 10	Gly	Val	Leu	Glu	Val 15	Thr	
<213 <400 Met 1	3> E D> 3	Bacte	Lys	Ile 5	Lys	Asn			10	·				15		
<213 <400 Met 1 Asn	3> A D> A Lys Ser	Bacte 10 Leu	Lys Gly 20	Ile 5	Lys Thr	Asn Lys	Leu	Asp 25	10 Val	Pro	Leu	Ser	Asn 30	15	His	
<213 <400 Met 1 Asn Glu	S> F Lys Ser Trp	Bacte 10 Leu Met	Lys Gly 20	Ile 5 Val	Lys Thr	Asn Lys Asn	Leu Ala 40	Asp 25 Tyr	10 Val Ser	Pro Tyr	Leu Lys	Ser Tyr 45	Asn 30 Asn	15 Ile Val	His Lys	
<213 <400 Met 1 Asn Glu Thr	Lys Trp Lys Lys	Bacte 10 Leu Met Tyr 35	Lys Gly 20 Pro	Tle 5 Val	Lys Thr Ser	Asn Lys Asn Lys 55	Leu Ala 40	Asp 25 Tyr Leu	10 Val Ser Arg	Pro Tyr Ser	Leu Lys Ser 60	Ser Tyr 45 Leu	Asn 30 Asn Pro	15 Ile Val	His Lys Ser	

95 85 90

Ile Ile Asn Lys Ala Lys Ser Tyr Gly Leu Pro Val Ile Thr Glu Lys 105 100

Tyr Thr Tyr Glu Asp Val Asp Tyr Gly Phe Ala Gln Leu Asn Val Ile 125 115 120

Phe Ser Glu Leu Lys Ser Leu Ile Ile Asn Arg Tyr Leu Glu Asp Lys 135 140 130

Asp Gly Ser Phe Ile Val Lys Phe Lys Arg His Asn Pro Glu Thr Gln 155 145 150

Tyr His Leu Ala Val Gln Asp Ala Asp Glu Val Ile Asn Asn Thr Tyr 170 165

Asp Glu Leu Gly Gln Met Tyr Lys Met Leu Leu Met Lys Lys Leu 185

Ser Lys Tyr 195

<210> 11

<211> 585

<212> DNA

<213> artificial sequence

<220>

<223> Chemically synthesized G10RF67/TwortORF65 consensus sequence

<220>

<221> misc feature

<222> (6)..(6)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (12)..(12)

<223> n is a, c, g, or t

<220>

<221> misc_feature <222> (16)..(17)

<223> n is a, c, g, or t

<220>

```
<221> misc_feature
<222> (19)..(19)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (25)..(25)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (27)..(27)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (31)..(32)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (34)..(36)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (46)..(46)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (48)..(51)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (53)..(57)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (60)..(60)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (62)..(62)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (66)..(66)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (68)..(73)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (75)..(75)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (81)..(86)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (91)..(91)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (94)..(95)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (99)..(99)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (105)..(105)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (109)..(109)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (111)..(113)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (117)..(117)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (124)..(126)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (134)..(135)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (137)..(137)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (139)..(140)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (144)..(148)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (151)..(151)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (153)..(153)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (158)..(158)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (166)..(166)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (169)..(169)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (177)..(178)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (180)..(181)
<223> n is a, c, g, or t
```

Į!

```
<220>
<221> misc_feature
<222> (186)..(188)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (198)..(199)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (201)..(201)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (204)..(214)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (219)..(221)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (223)..(225)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (227)..(227)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (234)..(236)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (243)..(243)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (245)..(245)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (248)..(252)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (256)..(258)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (263)..(263)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (265)..(265)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (271)..(274)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (276)..(278)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (286)..(286)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (288)..(288)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (294)..(295)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (297)..(297)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (307)..(308)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (315)..(315)
<223> n is a, c, g, or t
<220>
```

```
<221> misc feature
<222> (322)..(322)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (327)..(327)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (334)..(334)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (336)..(336)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (340)..(344)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (346)..(346)
<223> n is a, c, g, or t
<220>
<221> misc_feature 
<222> (348)..(350)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (354)..(354)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (357)..(358)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (360)..(360)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (363)..(363)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (367)..(368)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (370)..(370)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (372)..(373)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (375)..(378)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (384)..(384)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (387)..(394)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (396)..(396)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (400)..(400)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (403)..(403)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (405)..(406)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (409)..(409)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (413)..(413)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (415)..(415)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (417)..(417)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (420)..(421)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (426)..(426)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (428)..(428)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (433)..(435)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (437)..(445)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (447)..(450)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (452)..(453)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (459)..(459)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (461)..(463)
<223> n is a, c, g, or t
```

```
<220>
<221> misc feature
<222> (465)..(470)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (474)..(475)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (477)..(477)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (481)..(484)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (487)..(488)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (492)..(493)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (495)..(496)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (501)..(503)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (508)..(512)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (514)..(514)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (516)..(517)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (520)..(522)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (525)..(525)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (529)..(530)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (534)..(535)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (540)..(540)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (546)..(546)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (552)..(552)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (558)..(558)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (562)..(562)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (570)..(570)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (574)..(574)
<223> n is a, c, g, or t
```

<220>

```
<221> misc feature
<222> (576)..(576)
<223> n is a, c, q, or t
<220>
<221> misc feature
<222> (582)..(582)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (585)..(585)
<223> n is a, c, g, or t
<400> 11
                                                                      60
atqaanttaa anattnnana taaantnatg nnannnttan nggttncnnn ntnnnnnggn
gnaacnannn nnnangtacc nnnnnntaac ntanntgant ggtancctnt nnntaangct
                                                                     120
tatnnntaca agtnnantnn aaannnnnaa nanttagnat taaaangant acgttcnncn
                                                                     180
ntaccnnnat cttatqqnnt ngannnnnnn nnnnaagann ntnnnanaga taannnatgt
                                                                     240
                                                                     300
aananagnnn nntggnnnaa ccntncagta nnnnannnta atttananat tatnnanaaa
gctaaannat atggnttacc tnttatnaca gaanantatn nnnntnannn tgtngannan
                                                                     360
ggntttnnan anntnnnngt tatnttnnnn nnnntnaaan ctntnnttnt tantngntan
                                                                     420
ntagangnta aannngnnnn nnnnntnnnn anntttaana nnnannnnnn aganncncaa
                                                                     480
nnnnatnnag cnntnnaaga nnntgatnnn nntntnnatn nnacntatnn tganntaggn
                                                                     540
                                                                     585
caaatntata anatgttntt antaatgaan aaantnagta antan
<210> 12
<211> 194
<212> PRT
<213> Artificial sequence
<220>
<223> Chemically synthesized G10RF67/TwortORF65 consensus sequence
<220>
<221> misc_feature
<222> (6)..(6)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Xaa can be any of N, D, Q or E
<220>
```

```
<221> misc feature
<222> (9)..(12)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (14)..(14)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (16)..(16)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (18)..(21)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (23)..(24)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (25)..(25)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (28)..(29)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (31)..(32)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (33)..(33)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (37)..(37)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature <222> (42)..(42)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
```

```
<222> (45)..(51)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (53)..(53)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (60)..(60)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (63)..(63)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (67)..(67)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (68)..(68)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc feature
<222> (69)..(72)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (73)..(73)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (74)..(74)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (76)..(76)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (77)..(77)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc feature
<222> (78)..(79)
```

```
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (81)..(84)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (86)..(86)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (88)..(88)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (89)..(89)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (91)..(93)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (96)..(96)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (99)..(99)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (103)..(103)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (108)..(108)
<223> Xaa can be I or V
<220>
<221> misc feature
<222> (112)..(112)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (114)..(115)
<223> Xaa can be any naturally occurring amino acid
                                    26/36
```

```
<220>
<221> MISC FEATURE
<222> (116)..(116)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc feature
<222> (117)..(117)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (119)..(119)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (120)..(120)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (123)..(123)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (124)..(124)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (125)..(126)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (130)..(131)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (134)..(135)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (136)..(137)
<223> Xaa can be I or V
<220>
<221> misc_feature
<222> (138)..(138)
<223> Xaa can be any naturally occurring amino acid
```

```
<220>
<221> misc feature
<222>
      (143)..(143)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (145)..(151)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (153)..(157)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (159)..(159)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (161)..(163)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (165)..(166)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (167)..(167)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (168)..(168)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (170)..(171)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC FEATURE
<222> (172)..(172)
<223> Xaa can be I or V
<220>
<221> MISC_FEATURE <222> (173)..(173)
<223> Xaa can be any of N, D, Q or E
<220>
```

```
<221> misc_feature
<222> (174)..(174)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (177)..(177)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (178)..(178)
<223> Xaa can be any of N, D, Q or E
<220>
<221> misc_feature
<222> (182)..(182)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (184)..(184)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (192)..(192)
<223> Xaa can be any naturally occurring amino acid
<400> 12
Met Lys Leu Lys Ile Xaa Xaa Lys Xaa Xaa Xaa Leu Xaa Val Xaa
Asn Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa Val Pro Xaa Xaa Asn Xaa Xaa
           20
                               25
Xaa Trp Tyr Pro Xaa Ser Asn Ala Tyr Xaa Tyr Lys Xaa Xaa Xaa Xaa
       35
                      40
                                              45
Xaa Xaa Xaa Leu Xaa Leu Lys Arg Leu Arg Ser Xaa Leu Pro Xaa Ser
   50
                       55
Tyr Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Cys
                   70
                                  75
Xaa Xaa Xaa Xaa Trp Xaa Asn Xaa Xaa Val Xaa Xaa Xaa Asn Leu Xaa
               85
                                   90
```

Ile Ile Xaa Lys Ala Lys Xaa Tyr Gly Leu Pro Xaa Ile Thr Glu Xaa 29/36

100 105 110 Tyr Xaa Xaa Xaa Xaa Val Xaa Xaa Gly Phe Xaa Xaa Xaa Xaa Val Ile 115 120 Phe Xaa Xaa Leu Lys Xaa Xaa Xaa Xaa Arg Tyr Leu Glu Xaa Lys 140 130 135 Xaa Xaa Xaa Xaa Xaa Xaa Aaa Phe Xaa Xaa Xaa Xaa Glu Xaa Gln 1.45 1.50 155 Xaa Xaa Xaa Ala Xaa Xaa Xaa Asp Xaa Xaa Xaa Xaa Thr Tyr 165 170 Xaa Xaa Leu Gly Gln Xaa Tyr Xaa Met Leu Leu Met Lys Lys Xaa 185 Ser Lys <210> 13 <211> 26 <212> DNA <213> artificial sequence <220> <223> Chemically synthesized PCR primer <400> 13 cgggatccat gtctgataac acagtt 26 <210> 14 <211> 28 <212> DNA <213> artificial sequence <220> <223> Chemically synthesized PCR primer <400> 14 28 cgggatccgg tgatgaagta gcaaaatc

<210> 15 <211> 28 <212> DNA

<213> artificial sequence

```
<220>
<223> Chemically synthesized PCR primer
<400> 15
                                                                     28
cgggatccga attattaaaa gagcaatt
<210> 16
<211> 26
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 16
                                                                     26
cgggatcctt aagatttggt cttgat
<210> 17
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 17
acgcgtcgac ttatccataa agtctttc
                                                                     28
<210> 18
<211> 31
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 18
acgcgtcgac ttatgttctt gttctgccgt c
                                                                     31
<210> 19
<211> 31
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 19
acgcgtcgac ttatgttctt gttctgccgt c
                                                                     31
<210> 20
```

```
<211> 31
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 20
                                                                      31
acgcgtcgac ttaaccttgt tcaatacgtt t
<210> 21
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 21
                                                                      28
cgggatccat gaaattaaag attttaga
<210> 22
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 22
                                                                      28
cgggatccaa cggggaatac ttagaatt
<210> 23
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 23
cgggatccaa gattatagag aaagctaa
                                                                      28
<210> 24
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 24
```

cgggato	ccga agaagaatta agaatatt	28
<210><211><211><212><213>	25 30 DNA artificial sequence	
<220> <223>	Chemically synthesized PCR primer	
<400> acgcgto	25 egac ctatttacta attttttca	30
<211><212>		
<220> <223>	Chemically synthesized PCR primer	
<400> acgcgto	26 cgac ttattctgtt ttaccttcta g	31
<210><211><211><212><213>		
<220> <223>	Chemically synthesized PCR primer	
<400> acgcgto	27 . egac ttactttaaa ttatctttgc g	31
<210><211><211><212><213>	28 31 DNA artificial sequence	
<220> <223>	Chemically synthesized PCR primer	
<400> acgcgto	28 egac ttagttteta ettaaettgt a	31
<210><211><212><212><213>	29 29 DNA artificial sequence	

```
<223> Chemically synthesized PCR primer
 <400> 29
                                                                       29
 ccgctcgagg ccatcaggca tggatccgg
 <210> 30
 <211> 45
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Chemically synthesized PCR primer
 <400> 30
                                                                       45
 gcgaggctag ttacccttaa gcttatcttt aaatatgaac attcg
 <210> 31
 <211> 27
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Chemically synthesized PCR primer
. <400> 31
                                                                       27
 gataagctta agggtaacta gcctcgc
 <210> 32
 <211> 30
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Chemically synthesized PCR primer
 <400> 32
                                                                       30
 gaattcgata tcaagcttaa ttgttatccg
 <210> 33
 <211> 49
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Chemically synthesized PCR primer
 <400> 33
                                                                       49
 cggataacaa ttaagcttga tatcgaattc atcgggaggc cgtttcatg
 <210> 34
```

<220>

```
<211> 28
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 34
aactgcagct tattcatgtc ttggtatc
                                                                     28
<210> 35
<211> 32
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 35
                                                                     32
cgggatccat gatagaaatc gaaaaaccta ga
<210> 36
<211> 34
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized PCR primer
<400> 36
acgcgtcgac actatcttct tttcttaatc ctaa
                                                                     34
<210> 37
<211> 30
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized probe
<400> 37
                                                                     30
atgatattga cttattgaat aaaattgggt
<210> 38
<211> 29
<212> DNA
<213> artificial sequence
<220>
<223> Chemically synthesized probe
<400> 38
```

accaat	ttta ttcaataagt caatateat	43
	39 27 DNA artificial sequence	
<220><223>	Chemically synthesized probe	
<400> atgttg	39 actt aaagaataaa attgggt	27
<210><211><212><212><213>	40 48 DNA artificial sequence	
<220> <223>	Chemically synthesized oligonucleotide competitor sequence	
<400> gataga	40 gttg acatecetat cagtgataga gataetgaga acateage	48
<210><211><212><213>	41 49 DNA artificial sequence	
<220> <223>	Chemically synthesized oligonucleotide competitor sequence	
<400> gctgat	41 gtgc tcagtatctc tatcactgat agggatgtca atctctatc	49