## **MANOJ KUMAR - 2048015**

## Requirement

For the given anonymous dataset of size 199x35 perform the following task:

- 1. Exploratory Data analysis to study the nature of the data and to decide whether to follow a parametric approach or non parametric approach for predicting the target.
- 2. Preprocessing
- 3. Dimensionality reduction
- 4. Model building
- 5. Model Evaluation

NOTE: Register Number 1 to 20 will perform prediction on column named predictLabel2(continuous value)

```
In [1]: #Importing libraries
   import numpy as np
   import pandas as pd

#Importing the visualisation libraries
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline

In [33]: #Reading the data
   MainDataset = pd.read_csv('AnonymousDataset.csv')
   best_df = MainDataset
   data = MainDataset
```

## Perform Exploratory data analysis

```
In [3]: MainDataset.head(3)
Out[3]:
                col1 classLabel col3
                                     col4
                                           col5
                                                  col6
                                                         col7
                                                                 col8
                                                                        col9
                                                                              col10 ... col26
                                                                                               col27
                                                                                                      col28
                                                                                                             col29
                                                                                                                    col30
                                                                                                                           col31
                                                                                                                                  col32
                                                                                                                                          col33
                                                117.5 1013.0 0.09489 0.1036 0.1086 ... 139.7 1436.0 0.1195 0.1926
                                                                                                                   0.3140 0.1170 0.2677 0.08113
          0 119513
                                 31 18.02 27.60
               8423
                             0
                                 61 17.99 10.38
                                                 122.8 1001.0 0.11840 0.2776 0.3001 ... 184.6 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890
          2 842517
                             0 116 21.37 17.44 137.5 1373.0 0.08836 0.1189 0.1255 ... 159.1 1949.0 0.1188 0.3449 0.3414 0.2032 0.4334 0.09067
```

Regression predictive modeling problem.

 $3 \text{ rows} \times 35 \text{ columns}$ 

```
In [4]: print(f"Totally AnonymousDataset contains, {MainDataset.shape[1]} columns and {MainDataset.shape[0]} Rows")
```

Totally AnonymousDataset contains, 35 columns and 198 Rows

Out[5]:

|               | 0                       | 1        | 2        | 3        | 4        |  |
|---------------|-------------------------|----------|----------|----------|----------|--|
| col1          | <b>col1</b> 119513 8423 |          | 842517   | 843483   | 843584   |  |
| classLabel    | 0                       | 0        | 0        | 0        | 1        |  |
| col3          | 31                      | 61       | 116      | 123      | 27       |  |
| col4          | 18.02                   | 17.99    | 21.37    | 11.42    | 20.29    |  |
| col5          | 27.6                    | 10.38    | 17.44    | 20.38    | 14.34    |  |
| col6          | 117.5                   | 122.8    | 137.5    | 77.58    | 135.1    |  |
| col7          | 1013                    | 1001     | 1373     | 386.1    | 1297     |  |
| col8          | 0.09489                 | 0.1184   | 0.08836  | 0.1425   | 0.1003   |  |
| col9          | 0.1036                  | 0.2776   | 0.1189   | 0.2839   | 0.1328   |  |
| col10         | 0.1086                  | 0.3001   | 0.1255   | 0.2414   | 0.198    |  |
| col11         | 0.07055                 | 0.1471   | 0.0818   | 0.1052   | 0.1043   |  |
| col12         | 0.1865                  | 0.2419   | 0.2333   | 0.2597   | 0.1809   |  |
| col13         | 0.06333                 | 0.07871  | 0.0601   | 0.09744  | 0.05883  |  |
| col14         | 0.6249                  | 1.095    | 0.5854   | 0.4956   | 0.7572   |  |
| col15         | 1.89                    | 0.9053   | 0.6105   | 1.156    | 0.7813   |  |
| col16         | 3.972                   | 8.589    | 3.928    | 3.445    | 5.438    |  |
| col17         | 71.55                   | 153.4    | 82.15    | 27.23    | 94.44    |  |
| col18         | 0.004433                | 0.006399 | 0.006167 | 0.00911  | 0.01149  |  |
| col19         | 0.01421                 | 0.04904  | 0.03449  | 0.07458  | 0.02461  |  |
| col20         | 0.03233                 | 0.05373  | 0.033    | 0.05661  | 0.05688  |  |
| col21         | 0.009854                | 0.01587  | 0.01805  | 0.01867  | 0.01885  |  |
| col22         | 0.01694                 | 0.03003  | 0.03094  | 0.05963  | 0.01756  |  |
| col23         | 0.003495                | 0.006193 | 0.005039 | 0.009208 | 0.005115 |  |
| col24         | 21.63                   | 25.38    | 24.9     | 14.91    | 22.54    |  |
| col25         | 37.08                   | 17.33    | 20.98    | 26.5     | 16.67    |  |
| col26         | 139.7                   | 184.6    | 159.1    | 98.87    | 152.2    |  |
| col27         | 1436                    | 2019     | 1949     | 567.7    | 1575     |  |
| col28         | 0.1195                  | 0.1622   | 0.1188   | 0.2098   | 0.1374   |  |
| col29         | 0.1926                  | 0.6656   | 0.3449   | 0.8663   | 0.205    |  |
| col30         | 0.314                   | 0.7119   | 0.3414   | 0.6869   | 0.4      |  |
| col31         | 0.117                   | 0.2654   | 0.2032   | 0.2575   | 0.1625   |  |
| col32         | 0.2677                  | 0.4601   | 0.4334   | 0.6638   | 0.2364   |  |
| col33         | 0.08113                 | 0.1189   | 0.09067  | 0.173    | 0.07678  |  |
| PredictLabel1 | 5                       | 3        | 2.5      | 2        | 3.5      |  |
| PredictLabel2 | 5                       | 2        | 0        | 0        | 0        |  |

Out[6]:

|               | count | mean         | std          | min         | 25%           | 50%           | 75%           | max          |
|---------------|-------|--------------|--------------|-------------|---------------|---------------|---------------|--------------|
| col1          | 198.0 | 1.990469e+06 | 2.889025e+06 | 8423.000000 | 855745.250000 | 886339.000000 | 927995.750000 | 9.411300e+06 |
| classLabel    | 198.0 | 2.373737e-01 | 4.265517e-01 | 0.000000    | 0.000000      | 0.000000      | 0.000000      | 1.000000e+00 |
| col3          | 198.0 | 4.673232e+01 | 3.446287e+01 | 1.000000    | 14.000000     | 39.500000     | 72.750000     | 1.250000e+02 |
| col4          | 198.0 | 1.741232e+01 | 3.161676e+00 | 10.950000   | 15.052500     | 17.290000     | 19.580000     | 2.722000e+01 |
| col5          | 198.0 | 2.227601e+01 | 4.298290e+00 | 10.380000   | 19.412500     | 21.750000     | 24.655000     | 3.928000e+01 |
| col6          | 198.0 | 1.148566e+02 | 2.138340e+01 | 71.900000   | 98.160000     | 113.700000    | 129.650000    | 1.821000e+02 |
| col7          | 198.0 | 9.700409e+02 | 3.521492e+02 | 361.600000  | 702.525000    | 929.100000    | 1193.500000   | 2.250000e+03 |
| col8          | 198.0 | 1.026814e-01 | 1.252243e-02 | 0.074970    | 0.093900      | 0.101900      | 0.110975      | 1.447000e-01 |
| col9          | 198.0 | 1.426478e-01 | 4.989760e-02 | 0.046050    | 0.110200      | 0.131750      | 0.172200      | 3.114000e-01 |
| col10         | 198.0 | 1.562428e-01 | 7.057226e-02 | 0.023980    | 0.106850      | 0.151350      | 0.200500      | 4.268000e-01 |
| col11         | 198.0 | 8.677561e-02 | 3.387663e-02 | 0.020310    | 0.063670      | 0.086075      | 0.103925      | 2.012000e-01 |
| col12         | 198.0 | 1.927540e-01 | 2.743689e-02 | 0.130800    | 0.174075      | 0.189350      | 0.209325      | 3.040000e-01 |
| col13         | 198.0 | 6.270551e-02 | 7.239530e-03 | 0.050250    | 0.056718      | 0.061715      | 0.066715      | 9.744000e-02 |
| col14         | 198.0 | 6.033465e-01 | 3.101122e-01 | 0.193800    | 0.388200      | 0.533250      | 0.750900      | 1.819000e+00 |
| col15         | 198.0 | 1.264450e+00 | 5.264669e-01 | 0.362100    | 0.921300      | 1.168500      | 1.463250      | 3.503000e+00 |
| col16         | 198.0 | 4.255394e+00 | 2.194128e+00 | 1.153000    | 2.742500      | 3.767000      | 5.212750      | 1.328000e+01 |
| col17         | 198.0 | 7.022874e+01 | 4.798225e+01 | 13.990000   | 35.365000     | 58.455000     | 92.477500     | 3.160000e+02 |
| col18         | 198.0 | 6.761864e-03 | 2.974270e-03 | 0.002667    | 0.005001      | 0.006193      | 0.007973      | 3.113000e-02 |
| col19         | 198.0 | 3.119929e-02 | 1.761293e-02 | 0.007347    | 0.019803      | 0.027880      | 0.038335      | 1.354000e-01 |
| col20         | 198.0 | 4.074980e-02 | 2.086872e-02 | 0.010940    | 0.026810      | 0.036910      | 0.048970      | 1.438000e-01 |
| col21         | 198.0 | 1.509925e-02 | 5.504267e-03 | 0.005174    | 0.011422      | 0.014175      | 0.017665      | 3.927000e-02 |
| col22         | 198.0 | 2.055486e-02 | 9.578243e-03 | 0.007882    | 0.014795      | 0.017905      | 0.022880      | 6.041000e-02 |
| col23         | 198.0 | 3.986904e-03 | 1.937845e-03 | 0.001087    | 0.002748      | 0.003719      | 0.004630      | 1.256000e-02 |
| col24         | 198.0 | 2.102182e+01 | 4.242997e+00 | 12.840000   | 17.632500     | 20.525000     | 23.730000     | 3.513000e+01 |
| col25         | 198.0 | 3.013909e+01 | 6.017777e+00 | 16.670000   | 26.210000     | 30.135000     | 33.555000     | 4.954000e+01 |
| col26         | 198.0 | 1.403478e+02 | 2.889228e+01 | 85.100000   | 118.075000    | 136.500000    | 159.875000    | 2.322000e+02 |
| col27         | 198.0 | 1.404959e+03 | 5.860070e+02 | 508.100000  | 947.275000    | 1295.000000   | 1694.250000   | 3.903000e+03 |
| col28         | 198.0 | 1.439208e-01 | 2.200396e-02 | 0.081910    | 0.129325      | 0.141850      | 0.154875      | 2.226000e-01 |
| col29         | 198.0 | 3.651018e-01 | 1.639650e-01 | 0.051310    | 0.248700      | 0.351300      | 0.423675      | 1.058000e+00 |
| col30         | 198.0 | 4.366853e-01 | 1.736245e-01 | 0.023980    | 0.322150      | 0.402350      | 0.541050      | 1.170000e+00 |
| col31         | 198.0 | 1.787775e-01 | 4.518052e-02 | 0.028990    | 0.152650      | 0.179250      | 0.207125      | 2.903000e-01 |
| col32         | 198.0 | 3.234040e-01 | 7.516089e-02 | 0.156500    | 0.275950      | 0.310300      | 0.358800      | 6.638000e-01 |
| col33         | 198.0 | 9.082813e-02 | 2.117197e-02 | 0.055040    | 0.076578      | 0.086890      | 0.101375      | 2.075000e-01 |
| PredictLabel1 | 198.0 | 2.847475e+00 | 1.937964e+00 | 0.400000    | 1.500000      | 2.500000      | 3.500000      | 1.000000e+01 |

```
Out[7]: PredictLabel2
        col9
                          0
        col15
                          0
        col14
                          0
        col13
        col12
                          0
        col11
                          0
        col10
                          0
        col8
                          0
        col17
                          0
                          0
        col7
        col6
                          0
        col5
                          0
        col4
                          0
        col3
                          0
        classLabel
        col16
        col18
                          0
        PredictLabel1
        col27
        co133
        col32
                          0
        col31
                          0
        col30
                          0
        co129
                          0
        col28
                          0
                          0
        col26
        col19
                          0
        co125
                          0
        col24
                          0
        col23
                          0
        col22
                          0
        col21
                          0
        col20
                          0
        col1
                          0
        dtype: int64
In [8]: for i in MainDataset.columns:
            print(f'{i} \t \t : \t {MainDataset[i].nunique()} values')
                                           198 values
        col1
        classLabel
                                                    2 values
        col3
                                           95 values
                                   :
        col4
                                           177 values
        col5
                                           193 values
        col6
                                           181 values
        col7
                                           192 values
        col8
                                           179 values
        col9
                                   :
                                           192 values
        col10
                                           196 values
                                   :
        col11
                                   :
                                           189 values
        col12
                                           175 values
        col13
                                           194 values
                                   :
        col14
                                   :
                                           196 values
        col15
                                           191 values
                                   :
        col16
                                   :
                                           192 values
        col17
                                           196 values
                                   :
        col18
                                           196 values
                                   :
        col19
                                           193 values
                                   :
        col20
                                           192 values
        col21
                                           187 values
                                   :
        col22
                                           189 values
        col23
                                           195 values
        col24
                                           182 values
        co125
                                           187 values
                                   :
        col26
                                           183 values
        col27
                                           191 values
                                   :
        col28
                                           172 values
        co129
                                           191 values
        co130
                                           197 values
```

185 values

192 values

189 values

39 values

23 values

:

:

:

In [7]: MainDataset.isnull().sum().sort values(ascending=False)

col31

col32

co133

PredictLabel1

PredictLabel2

```
In [9]: | numerical_features = []
         categorical_features = []
         for i in MainDataset.columns:
             if MainDataset[i].nunique()>7:
                 numerical_features.append(i)
             else:
                 categorical_features.append(i)
         print(len(numerical_features))
         print(len(categorical features))
         34
         1
In [10]: # Numerical features:
         print("Numerical features : ", numerical_features)
         # Categorical features:
         print("\n Categorical features : ",categorical features)
         Numerical features: ['col1', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8', 'col9', 'col10', 'col11', 'col
         12', 'col13', 'col14', 'col15', 'col16', 'col17', 'col18', 'col19', 'col20', 'col21', 'col22', 'col23', 'col2
         4', 'col25', 'col26', 'col27', 'col28', 'col29', 'col30', 'col31', 'col32', 'col33', 'PredictLabel1', 'Predic
         tLabel2']
          Categorical features : ['classLabel']
In [11]: # checking for unique values in categorical features:
         for feats in categorical_features:
             print(f'{feats} has {MainDataset[feats].unique()} categories.\n')
         classLabel has [0 1] categories.
In [12]: numerical_features.remove('col1')
```

```
In [13]: # Checking distribution of the numerical features:
    fig, axes = plt.subplots(nrows=8, ncols=4, figsize=(15,15))
    fig.subplots_adjust(hspace=0.5)
    fig.suptitle('Distributions of numerical Features')

for ax, feats in zip(axes.flatten(), numerical_features):
    sns.distplot(a=MainDataset[feats], ax=ax)
```

Distributions of numerical Features



```
In [14]: # Checking the label distribution for categorical data:
          fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15,3))
          fig.subplots_adjust(hspace=0.5)
          fig.suptitle('Distributions of categorical Features')
          for ax, feats in zip(axes.flatten(), categorical_features):
              sns.countplot(MainDataset[feats], ax=ax)
                                                      Distributions of categorical Features
                                                   1.0
                                                                                         1.0
            140
                                                   0.8
                                                                                         0.8
            120
            100
                                                   0.6
                                                                                         0.6
             80
                                                   0.4
             60
```

```
In [15]: sns.countplot(x='classLabel',data=MainDataset)
    plt.xlabel("classification Label")
    plt.ylabel("Count")
    plt.title("target Class")
    plt.show()
```

0.4

0.6

0.2

0.0 -

0.6

0.8

1.0

1.0

0.2

0.0



40

20

ó

dassLabel

**Data cleaning & Pre-processing** 

```
In [17]: corr_df = MainDataset.corr()

    f,ax=plt.subplots(figsize=(15,15))
    mask = np.zeros_like(corr_df)
    mask[np.triu_indices_from(mask)] = True

    sns.heatmap(corr_df,annot=True,fmt=".2f",ax=ax,linewidths=0.5,linecolor="orange", mask = mask, square=True)
    plt.xticks(rotation=45)
    plt.yticks(rotation=45)
    plt.title('Correlations between different predictors')
    plt.show()
```



```
In [19]: corr_df = df.corr()
    corr_df
    cm = sns.light_palette("brown", as_cmap=True)
    corr df.style.background gradient(cmap=cm)
```

Out[19]:

|               | col1      | classLabel | col3      | col4      | col5      | col6      | col7      | col8      | col9      | col10     | col11     | col12     |      |
|---------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| col1          | 1.000000  | -0.031466  | -0.135299 | 0.087392  | 0.037650  | 0.088027  | 0.070117  | -0.039803 | 0.059505  | 0.051946  | 0.074368  | -0.043264 | 0.0  |
| classLabel    | -0.031466 |            | -0.351326 | 0.174124  | -0.064295 | 0.176486  | 0.189893  | 0.020778  | 0.000798  | 0.054893  | 0.118224  | -0.099777 | -0.1 |
| col3          | -0.135299 | -0.351326  |           | -0.344722 | -0.264671 | -0.346080 | -0.344031 | 0.164793  | 0.010000  | -0.139475 | -0.171841 | 0.177311  | 0.2  |
| col4          | 0.087392  | 0.174124   | -0.344722 |           | 0.143456  |           |           | -0.158239 | 0.159017  | 0.469518  | 0.664010  | -0.051610 | -0.4 |
| col5          | 0.037650  | -0.064295  | -0.264671 | 0.143456  |           | 0.142033  | 0.140440  | -0.192262 | -0.039803 | 0.037165  | 0.006687  | -0.165166 | -0.1 |
| col6          | 0.088027  | 0.176486   | -0.346080 |           | 0.142033  |           |           | -0.102912 | 0.236721  | 0.533194  | 0.712766  | -0.006512 | -0.3 |
| col7          | 0.070117  | 0.189893   | -0.344031 |           | 0.140440  |           |           | -0.141470 | 0.163176  | 0.475862  | 0.667530  | -0.060785 | -0.3 |
| col8          | -0.039803 | 0.020778   | 0.164793  | -0.158239 | -0.192262 | -0.102912 | -0.141470 |           | 0.666559  | 0.623867  | 0.545734  | 0.540761  |      |
| col9          | 0.059505  | 0.000798   | 0.010000  | 0.159017  | -0.039803 | 0.236721  | 0.163176  | 0.666559  |           |           | 0.716438  | 0.666822  |      |
| col10         | 0.051946  | 0.054893   | -0.139475 | 0.469518  | 0.037165  | 0.533194  | 0.475862  | 0.623867  |           |           |           | 0.524861  | 0.4  |
| col11         | 0.074368  | 0.118224   | -0.171841 | 0.664010  | 0.006687  |           | 0.667530  | 0.545734  | 0.716438  |           |           | 0.429968  | 0.2  |
| col12         | -0.043264 | -0.099777  | 0.177311  | -0.051610 | -0.165166 | -0.006512 | -0.060785 | 0.540761  | 0.666822  | 0.524861  | 0.429968  |           | 0.6  |
| col13         | 0.024509  | -0.112352  | 0.269992  | -0.416674 | -0.145572 | -0.353560 | -0.397733 |           | 0.735474  | 0.449928  | 0.268210  | 0.604104  |      |
| col14         | 0.012313  | 0.132512   | -0.214543 | 0.602035  | 0.059168  | 0.612708  | 0.623019  | 0.094728  | 0.251568  | 0.427031  | 0.555034  | 0.130985  | -0.0 |
| col15         | 0.037530  | -0.076212  | -0.230477 | 0.079693  | 0.382533  | 0.092256  | 0.084288  | 0.153848  | 0.082994  | 0.181984  | 0.179486  | 0.049953  | 0.0  |
| col16         | 0.027710  | 0.141633   | -0.231621 | 0.588927  | 0.075025  | 0.609964  | 0.609887  | 0.099518  | 0.318684  | 0.468426  | 0.580562  | 0.143176  | -0.0 |
| col17         | 0.004872  | 0.151826   | -0.244159 |           | 0.068517  |           |           | 0.037955  | 0.233326  | 0.449059  | 0.586508  | 0.079773  | -0.1 |
| col18         | 0.124037  | -0.052213  | 0.019775  | -0.036419 | 0.027119  | -0.011788 | -0.032969 | 0.344678  | 0.212552  | 0.297014  | 0.177402  | 0.104636  | 0.1  |
| col19         | 0.100940  | -0.009537  | -0.002386 | 0.023647  | 0.063988  | 0.080725  | 0.020395  | 0.372393  | 0.714122  | 0.564196  | 0.376339  | 0.426781  | 0.5  |
| col20         | 0.119171  | -0.060379  | -0.108648 | 0.154254  | 0.071920  | 0.202027  | 0.144443  | 0.375011  | 0.599020  | 0.676804  | 0.463710  | 0.374679  | 0.3  |
| col21         | 0.158519  | -0.065570  | -0.140754 | 0.224771  | 0.010470  | 0.254473  | 0.213582  | 0.223510  | 0.384747  | 0.434928  | 0.426638  | 0.251257  | 0.1  |
| col22         | 0.100087  | -0.044325  | 0.011156  | 0.019146  | -0.094843 | 0.038613  | 0.009121  | 0.223723  | 0.350009  | 0.304383  | 0.238520  | 0.541034  | 0.2  |
| col23         | 0.152869  | -0.042751  | 0.099203  | -0.072618 | -0.020673 | -0.019514 | -0.071906 | 0.486112  | 0.648248  | 0.504069  | 0.350050  | 0.432752  | 0.6  |
| col24         | 0.031900  | 0.233225   | -0.265115 |           | 0.123028  |           |           | -0.115092 | 0.183277  | 0.437961  | 0.630309  | -0.030809 | -0.3 |
| col25         | 0.007285  | -0.051134  | -0.171125 | -0.039439 |           | -0.039728 | -0.032122 | -0.106172 | -0.047665 | -0.032081 | -0.094163 | -0.137598 | -0.0 |
| col26         | 0.043099  | 0.231998   | -0.280596 |           | 0.123674  |           |           | -0.064664 | 0.276994  | 0.514336  | 0.682749  | 0.019708  | -0.2 |
| col27         | 0.008451  | 0.235310   | -0.253930 |           | 0.117467  |           |           | -0.106691 | 0.168275  | 0.421021  | 0.604029  | -0.050522 | -0.3 |
| col28         | -0.057241 | 0.038520   | 0.212769  | -0.372894 | -0.113308 | -0.331667 | -0.345111 |           | 0.452067  | 0.319247  | 0.174917  | 0.355244  | 0.6  |
| col29         | 0.005048  | -0.020067  | 0.120516  | -0.150712 | -0.006467 | -0.092041 | -0.141358 | 0.447849  | 0.764824  | 0.483300  | 0.286599  | 0.488231  | 0.6  |
| col30         | 0.043288  | 0.017621   | 0.009546  | 0.038952  | 0.013635  | 0.096790  | 0.046641  | 0.499438  | 0.743333  | 0.702673  | 0.471429  | 0.458280  | 0.5  |
| col31         | 0.059702  | 0.074345   | -0.026541 | 0.357869  | -0.069921 | 0.410000  | 0.365026  | 0.531015  | 0.761044  |           |           | 0.501957  | 0.4  |
| col32         | -0.053920 | -0.074731  | 0.247678  | -0.232142 | -0.186850 | -0.206949 | -0.234294 | 0.308964  | 0.429953  | 0.212976  | 0.089804  | 0.705076  | 0.4  |
| col33         | 0.003154  | -0.055170  | 0.288715  | -0.414340 | -0.085847 | -0.364022 | -0.395026 | 0.535751  | 0.611315  | 0.302868  | 0.101327  | 0.458548  |      |
| PredictLabel1 | -0.132809 | 0.177273   | -0.133355 | 0.172102  | 0.027073  | 0.166489  | 0.174491  | -0.084376 | -0.060199 | -0.010244 | 0.050040  | -0.151551 | -0.1 |

## **Perform Feature Selection Techniques**

Numerical Input, Numerical Output

This is a regression predictive modeling problem with numerical input variables. The most common techniques are to use a correlation coefficient, such as Pearson's for a linear correlation, or rank-based methods for a nonlinear correlation.

- 1. Pearson's correlation coefficient (linear).
- 2. Spearman's rank coefficient (nonlinear)

```
In [20]: from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
    from sklearn.metrics import roc_auc_score
    from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
    import warnings
    warnings.filterwarnings('ignore')
```

```
In [21]: # Encoding categorical variables into numbers
                    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
                    numerical_vars = list(data.select_dtypes(include=numerics).columns)
                    data = data[numerical_vars]
                    data.shape
Out[21]: (198, 34)
In [23]: data
Out[23]:
                                                                                                                      col10 ... col25
                                                                                                                                                    col26
                                                                                                                                                                                                        col30
                                                                                                                                                                                                                                   col32
                                                                                                                                                                                                                                                  col33 Pred
                  Label col3
                                        col4
                                                   col5
                                                                col6
                                                                             col7
                                                                                           col8
                                                                                                          col9
                                                                                                                                                                col27
                                                                                                                                                                               col28
                                                                                                                                                                                           col29
                                                                                                                                                                                                                       col31
                         0
                                31
                                       18.02 27.60 117.50 1013.0 0.09489 0.10360 0.10860 ... 37.08 139.70 1436.0 0.11950 0.1926 0.3140 0.11700 0.2677 0.08113
                                61 \quad 17.99 \quad 10.38 \quad 122.80 \quad 1001.0 \quad 0.11840 \quad 0.27760 \quad 0.30010 \quad \dots \quad 17.33 \quad 184.60 \quad 2019.0 \quad 0.16220 \quad 0.6656 \quad 0.7119 \quad 0.26540 \quad 0.4601 \quad 0.11890 \quad 0.27760 \quad 0.27760 \quad 0.30010 \quad \dots \quad 17.33 \quad 184.60 \quad 0.27960 \quad 0.27960
                                     21.37 17.44 137.50 1373.0 0.08836 0.11890 0.12550 ... 20.98 159.10 1949.0 0.11880 0.3449 0.3414 0.20320 0.4334 0.09067
                         0
                              116
                                                              77.58
                              123 11.42 20.38
                                                                           386.1 0.14250 0.28390 0.24140 ... 26.50
                                                                                                                                                    98.87
                                                                                                                                                                 567.7 0.20980 0.8663 0.6869 0.25750 0.6638 0.17300
                                27 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 ... 16.67 152.20 1575.0 0.13740 0.2050 0.4000 0.16250 0.2364 0.07678
                                                                                                                            ... ...
                                10 22.52 21.92 146.90 1597.0 0.07592 0.09162 0.06862 ... 24.81 162.10 1902.0 0.08191 0.1319 0.1056 0.09378 0.2061 0.05788
                         0
                         0
                                  8 15.44 31.18 101.00
                                                                           740.4 0.09399 0.10620 0.13750 ... 41.48 112.60
                                                                                                                                                                 929.0 0.12720 0.2362 0.2975 0.12860 0.2914 0.08024
                         0
                                12 17.17 29.19 110.00
                                                                           915.3 0.08952 0.06655 0.06583 ... 36.66 132.50 1295.0 0.12610 0.1572 0.2141 0.09520 0.3362 0.06033
                                  3 21.42 22.84 145.00 1440.0 0.10700 0.19390 0.23800 ... 27.98 198.30 2375.0 0.14980 0.4379 0.5411 0.22150 0.2832 0.08981
                                  6 16.70 28.13 110.30 885.4 0.08896 0.11310 0.10120 ... 34.92 128.80 1213.0 0.13300 0.2808 0.3455 0.13170 0.3035 0.08036
                         0
                  nns
In [24]: # separate train and test sets
                    X_train, X_test, y_train, y_test = train_test_split(
                            data.drop(labels=["col1"], axis=1),
                            data['PredictLabel1'],
                            test_size=0.3,
                            random_state=0)
                    X_train.shape, X_test.shape
Out[24]: ((138, 33), (60, 33))
In [25]:
                    # find and remove correlated features
                    # in order to reduce the feature space a bit
                    # so that the algorithm takes shorter
                    def correlation(dataset, threshold):
                            col_corr = set() # Set of all the names of correlated columns
                            corr_matrix = dataset.corr()
                            for i in range(len(corr_matrix.columns)):
                                     for j in range(i):
                                              if abs(corr_matrix.iloc[i, j]) > threshold: # we are interested in absolute coeff value
                                                      colname = corr_matrix.columns[i] # getting the name of column
                                                      col_corr.add(colname)
                            return col_corr
                    corr_features = correlation(X_train, 0.8)
                    print('correlated features: ', len(set(corr features)) )
                    correlated features: 14
In [26]:
                    # removed correlated features
                    X_train.drop(labels=corr_features, axis=1, inplace=True)
                    X_test.drop(labels=corr_features, axis=1, inplace=True)
                    X_train.shape, X_test.shape
Out[26]: ((138, 19), (60, 19))
In [27]: X_train.columns[0:10]
Out[27]: Index(['classLabel', 'col3', 'col4', 'col5', 'col8', 'col9', 'col12', 'col13',
                                    'col14', 'col15'],
                                 dtype='object')
```

```
In [28]: # exhaustive feature selection
          # Using 10 features with ROC AUC Scoring
          efs1 = EFS(RandomForestClassifier(n_jobs=4, random_state=0),
                      min_features=1,
                      max_features=4,
                      scoring='roc_auc',
                      print progress=True,
In [29]: def run_randomForests(X_train, X_test, y_train, y_test):
              rf = RandomForestClassifier(n_estimators=200, random_state=39, max_depth=4)
              rf.fit(X_train, y_train)
              print('Train set')
              pred = rf.predict_proba(X_train)
              print('Random Forests roc-auc: {}'.format(roc_auc_score(y_train, pred[:,1])))
              print('Test set')
              pred = rf.predict_proba(X_test)
              print('Random Forests roc-auc: {}'.format(roc auc score(y test, pred[:,1])))
In [35]: X_train
Out[35]:
               classLabel col3
                               col4
                                    col5
                                            col8
                                                  col9
                                                        col12
                                                                col13
                                                                     col14
                                                                           col15
                                                                                     col18
                                                                                            col19
                                                                                                    col21
                                                                                                           col22
                                                                                                                 col28
                                                                                                                        col29
                                                                                                                               col31
                              19.55 23.21 0.10100 0.1318 0.1989
                                                              0.05884 0.6107 2.8360 0.011240 0.04097 0.03441 0.02768 0.1251 0.2414 0.1825 0
           139
                              14.22 23.12 0.10750 0.2413 0.2384 0.07542 0.2860 2.1100 0.007970 0.13540 0.01666 0.05113 0.1533 0.9327 0.1772 0
            80
                                                                                                                             0.2550 0
                             17.14
                                   16.40 0.11860 0.2276 0.3040 0.07413 1.0460 0.9760 0.008029 0.03799
                                                                                                 0.02397 0.02308 0.1545 0.3949
            19
                          11 20.59 21.24 0.10850 0.1644 0.1848 0.06222 0.5904 1.2160 0.006666 0.02791 0.01479 0.01117 0.1464 0.3597 0.2113 0
           159
                          74 17.42 25.56 0.10060 0.1146 0.1308 0.05866 0.5296 1.6670 0.031130 0.08555 0.03927 0.02175 0.1243 0.1793 0.1099 0
            90
                          44 17.68
                                   20.74 0.11150 0.1665 0.1971 0.06166 0.8113 1.4000 0.009037 0.04954 0.01841 0.01778 0.1418 0.3498 0.1515 0
            67
                           3 14.72 25.26 0.11740 0.2112 0.2079 0.07496 0.3405 1.1580 0.004957 0.04553 0.01597 0.02539 0.1464 0.5352 0.1974 0
           192
                      0
                                   19.06  0.10180  0.1352  0.1895  0.05863  0.4352  1.0490
                                                                                 0.004996 0.02395 0.01117 0.02266 0.1411 0.3993 0.1925 0
                          17 19.71
           117
                          97 19.55
                                   15.49 0.10790 0.1747 0.2616 0.06752 1.2230 0.4489 0.011010 0.04272 0.02737 0.06041 0.1534 0.3391 0.2200 0
            47
           172
                          16 16.60 28.08 0.08455 0.1023 0.1590 0.05648 0.4564 1.0750 0.005903 0.03731 0.01557 0.01318 0.1139 0.3094 0.1418 0
          138 rows × 19 columns
In [41]: # removed correlated features
          X_train.drop(labels=corr_features, axis=1, inplace=True)
          X_test.drop(labels=corr_features, axis=1, inplace=True)
          X_train.shape, X_test.shape
Out[41]: ((138, 19), (60, 19))
In [43]: main_list = ['classLabel', 'col3', 'col4', 'col5', 'col8', 'col9', 'col12', 'col13',
                  'col14', 'col15','PredictLabel2']
          df final = best df[main list]
          Modelling
```

In [44]: df final

Out[44]:

|     | classLabel | col3 | col4  | col5  | col8    | col9    | col12  | col13   | col14  | col15  | PredictLabel2 |
|-----|------------|------|-------|-------|---------|---------|--------|---------|--------|--------|---------------|
| 0   | 0          | 31   | 18.02 | 27.60 | 0.09489 | 0.10360 | 0.1865 | 0.06333 | 0.6249 | 1.8900 | 5             |
| 1   | 0          | 61   | 17.99 | 10.38 | 0.11840 | 0.27760 | 0.2419 | 0.07871 | 1.0950 | 0.9053 | 2             |
| 2   | 0          | 116  | 21.37 | 17.44 | 0.08836 | 0.11890 | 0.2333 | 0.06010 | 0.5854 | 0.6105 | 0             |
| 3   | 0          | 123  | 11.42 | 20.38 | 0.14250 | 0.28390 | 0.2597 | 0.09744 | 0.4956 | 1.1560 | 0             |
| 4   | 1          | 27   | 20.29 | 14.34 | 0.10030 | 0.13280 | 0.1809 | 0.05883 | 0.7572 | 0.7813 | 0             |
|     |            |      |       |       |         |         |        |         |        |        |               |
| 193 | 0          | 10   | 22.52 | 21.92 | 0.07592 | 0.09162 | 0.1728 | 0.05262 | 1.3740 | 2.3120 | 2             |
| 194 | 0          | 8    | 15.44 | 31.18 | 0.09399 | 0.10620 | 0.1735 | 0.06105 | 0.3235 | 1.8390 | 0             |
| 195 | 0          | 12   | 17.17 | 29.19 | 0.08952 | 0.06655 | 0.1793 | 0.05392 | 0.6101 | 1.4250 | 0             |
| 196 | 1          | 3    | 21.42 | 22.84 | 0.10700 | 0.19390 | 0.1884 | 0.06472 | 1.0850 | 0.8469 | ?             |
| 197 | 0          | 6    | 16.70 | 28.13 | 0.08896 | 0.11310 | 0.1890 | 0.06035 | 0.6052 | 1.2350 | 0             |

```
In [67]: # blood_glucose_random blood_urea serum_creatinine sodium potassium haemoglobin packed_cell_volume
         X = df_final[["col12"]]
         Y = df final[["col8"]]
In [68]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, Y) #, test_size=0.3, random_state=101)
         from sklearn.linear_model import LinearRegression
         linreg = LinearRegression()
         linreg.fit(X train, y train)
Out[68]: LinearRegression()
In [69]: #Training Accuracy
         linreg.score(X_train,y_train)
         #Prediction
         prediction=linreg.predict(X test)
In [70]: from sklearn import metrics
         print("MAE: ",metrics.mean_absolute_error(y_test,prediction))
         print("MSE: ",metrics.mean_squared_error(y_test,prediction))
         print("RMSE: ",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
         MAE: 0.008347858189671122
         MSE: 0.0001092432823094501
         RMSE: 0.010451951124524555
In [71]: coef=pd.DataFrame()
         coef['Features'] = X.columns.values
         coef['Coefficients'] = linreg.coef_
         coef
Out[71]:
            Features Coefficients
              col12
                       0.24215
          0
In [72]: #Testing Accuracy
         linreg.score(X test,y test)
Out[72]: 0.32435067673638807
```

In [ ]: