

In the Claims:

Claims 1 to 12 (canceled).

1 13. (new) A method for synchronizing the position (LH) of the
2 steering handle and the steering angle (LW) which has been
3 set at the steered vehicle wheels (1) for steering with a
4 relationship function which can be set between the handle
5 position (LH) and the steering angle (LW) by means of an
6 open-loop or closed-loop control device (13; 18), wherein
7 after the activation of the open-loop or closed-loop
8 control device (13; 18) which follows nonoperation of the
9 open-loop or closed-loop control device (13; 18) the
10 instantaneous handle position (LH) and the instantaneous
11 steering angle (LW) are compared taking into account the
12 instantaneously set relationship function, and in the case
13 of a deviation (S) in position a relative adjustment is
14 carried out in order to reduce the deviation (S) in
15 position between the handle position (LH) and the steering
16 angle (LW), characterized in that the relative adjustment
17 takes place only if after or during the activation of the
18 open-loop or closed-loop control device (13; 18), an
19 interrogation criterion is fulfilled in addition to the
20 deviation (S) in position.

1 **14.** (new) The method as claimed in claim 13, characterized in
2 that, in particular in the case of a vehicle longitudinal
3 velocity which is lower than a predefinable velocity
4 threshold value, the relative adjustment takes place only
5 while the steering handle (8) is being moved manually by
6 the driver.

1 **15.** (new) The method as claimed in claim 13, characterized in
2 that the relative adjustment takes place in an incremental
3 cyclical fashion, in particular in the case of a vehicle
4 longitudinal velocity which is higher than a predefinable
5 velocity threshold value, and one adjustment step is
6 carried out per adjustment cycle until the deviation (S) in
7 position is approximately zero.

1 **16.** (new) The method as claimed in claim 15, characterized in
2 that the reduction in the deviation (S) in position per
3 adjustment cycle is limited to, or defined as, a predefined
4 percentage of the respective current deviation (S) in
5 position.

1 **17.** (new) The method as claimed in claim 13, characterized by
2 the definition of an adjustment time period after whose
3 expiry the deviation (S) in position has to have reached a
4 value which in absolute terms is less than or equal to a
5 predefined deviation threshold value.

1 **18.** (new) Method as claimed in claim 13, characterized in that
2 the relative adjustment takes place with a synchronization
3 speed at the steered vehicle wheels (1) which is predefined
4 or limited to a maximum value.

1 **19.** (new) The method as claimed in claim 13, characterized in
2 that in the case of a vehicle longitudinal velocity which
3 is less than a predefinable velocity threshold value, the
4 relative adjustment takes place only if the direction of
5 the change in the handle position corresponds to the
6 direction in which the relative adjustment is to take
7 place.

1 **20.** (new) The method as claimed in claim 13, characterized in
2 that after the control device (13) has been activated the
3 setpoint position (LH_{sol1}) of the steering wheel (8) which
4 corresponds to the instantaneous steering angle (LW) for
5 the instantaneously set steering transmission ratio is
6 determined, wherein the deviation (S) in position results
7 from the difference between the instantaneous handle
8 position (LH_{ist}) and the setpoint handle position (LH_{sol1}).

1 **21.** (new) The method as claimed in claim 13, characterized in
2 that the relative adjustment takes place as a function of
3 parameters.

1 **22.** (new) The method as claimed in claim 21, characterized in
2 that the relative adjustment takes place as a function of

3 a manual force which is effective at the steering wheel (8)
4 and/or of the instantaneous deflection of the steering
5 wheel (8) out of its normal position corresponding to the
6 straight-ahead position of the steered vehicle wheels (1)
7 and/or of the instantaneous deflection of the steered
8 vehicle wheels (1) out of their straight-ahead position
9 and/or of the absolute value of the deviation (S) in
10 position and/or of a variable which characterizes the
11 lateral dynamics or longitudinal dynamics of the vehicle
12 and/or of the longitudinal velocity of the vehicle and/or
13 of time.

1 **23.** (new) A device for carrying out the method as claimed in
2 claim 13, having means (11; 19) for determining the
3 position (LH) of a steering wheel (8) of a vehicle, having
4 means (12; 20) for determining the steering angle (LW) of
5 the steered vehicle wheels (1) and having an open-loop or
6 closed-loop control device (13; 18) for setting the
7 steering angle (LW) as a function of the position (LH) of
8 the steering wheel (8) and a relationship function which
9 can be set between the handle position (LH) and the
10 steering angle (LW), wherein after the open-loop or closed-
11 loop control device (13; 18) has been activated following
12 nonoperation it compares the instantaneous handle position
13 (LH) and the instantaneous steering angle (LW) taking into
14 account the instantaneously set relationship function
15 between the handle position (LH) and steering angle (LW),
16 and in the case of a deviation (S) in position it carries

17 out a relative adjustment in order to reduce the deviation
18 (S) in position between the handle position (LH) and the
19 steering angle (LW), characterized in that the relative
20 adjustment takes place only if, after or during the
21 activation of the open-loop or closed-loop control device
22 (13; 18), an interrogation criterion is fulfilled in
23 addition to the deviation (S) in position.

[REMARKS FOLLOW ON NEXT PAGE]