

Ruye Wang, Nick Richardson

 $Harvey\ Mudd\ College$ $Department\ of\ Engineering,\ Department\ of\ Mathematics$

 $\textit{E-mail:} \verb| rwang@hmc.edu|, \verb| nrichardson@g.hmc.edu|$

Contents

Ι	Fundamentals	2
1	Probabilities and Inference	2
2	Linear Algebra	2
3	Signal Processing	2
II	Representation	3
4	Smoothing, Compression, and Information Loss	3
5	Basic Basis Function Expansion	4
6	Adaptive Basis Function Methods	5
7	Latent Processes	5
8	Automatic Structure Discovery	5
9	Metric Learning	5
10	Representation examples	5
III	Inference	6
11	Linear methods	6
12	Adaptive Basis Function Methods	6
IV	Application	7
13	Step Zero	7
14	Exploratory Data Analysis	7
15	Model Selection	7
16	Hyperparameter Selection	7
17	Datasets and Distribution Shift	7

18 Application: Computer Vision		
19 Application: Linguistics & Genomics		
20 Application: Robotics & Control		
V Frontiers		
21 Model Composition		
22 Returning to Control: Machine Learning in Society		
23 Brain Machine Interfacing		
24 Machine Intelligence: What will it take?		
VI Appendices		

Contents (Extendend)

Ι	Fu	ndamentals	2	
1	Pro	pabilities and Inference	•	
1.1 Probability			2	
1.2 Collections of Probabilities			2	
		1.2.1 Joint Probability	2	
		1.2.2 Marginal Probability	2	
		1.2.3 Conditional Probability	2	
	1.3	Independence	2	
	1.4	Product Rule & Sum Rule	2	
	1.5	Bayes' Theorem	2	
	1.6	Expectation	2	
	1.7	Variance & Covariance	2	
	1.8	Information & Entropy	2	
	1.9	Bounds on Signal Compression	2	
		Kullback-Leibler Divergence	2	
		Inductive Bias	2	
	1.12	The Language of Inference	2	
		1.12.1 Prior	2	
		1.12.2 Likelihood	2	
	1.12.3 Evidence/Marginal Likelihood			
	1.13	Point Estimation	2	
		1.13.1 Maximum Likelihood	2	
		1.13.2 Maximum a Posteriori	2	
		14 Laplace's Method		
	1.15 Variational Inference		2	
	1.16	Markov Chain Monte Carlo	2	
		1.16.1 Importance Sampling	2	
		1.16.2 Rejection Sampling	2	
		1.16.3 Hamiltonian MCMC	2	
2	Line	ear Algebra	-	
		Vectors	6	
		2.1.1 Vector addition and scaling	6	
		2.1.2 Inner Products	6	
		2.1.3 Vector Norms	6	
		2.1.4 Angle	6	
		2.1.5 Vector Mean and Variance	6	
		2.1.6 Linearity and Approximations from Calculus	6	

		2.1.7	Linear Independence and Basis	2
		2.1.8	Orthogonality	2
		2.1.9	Vector Mean and Variance	6
		2.1.10	Vectorized data	6
		2.1.11	k-means clustering: A Taste of Automatic Structure Discovery	2
	2.2	2 Matrices		6
		2.2.1	Matrix addition and transpose	2
		2.2.2	Matrix-vector and matrix-matrix multiplication	2
		2.2.3	Geometric matrices	2
		2.2.4	Convolution matrices	2
		2.2.5	Finite Differences	2
		2.2.6	Matrix representations of graphs	2
		2.2.7	Affine functions	2
		2.2.8	Systems of Linear Equations & Compositions of Linear Functions	2
		2.2.9	Matrix Inverses & Psuedo-inverses	2
		2.2.10	Matrix Powers & Eigensystems	2
		2.2.11	Common matrix factorizations	2
		2.2.12	Singular Value Decomposition	2
		2.2.13	Least Squares	2
3 Signal Processing		ocessing	2	
	3.1	Basic I	Processing	2
		3.1.1	Rescaling and centering	6
		3.1.2	Histograms	6
		3.1.3	Spectral Decay and effective dimensionality	2
		3.1.4	Moving Functionals	2
		3.1.5	Interpolation and Resampling	2
		3.1.6	Linear Filters	2
		3.1.7	Nonlinear Filters	2
		3.1.8	Fourier Transform	2
		3.1.9	Wavelet Transforms	2
		3.1.10	Shapelets	2
	3.2	Signal	Inference	6
		3.2.1	Kalman Filter	2
		3.2.2	Hidden Markov model	2
	-			_
II	\mathbf{R}	eprese	entation	3
4	Smo	oothing	g, Compression, and Information Loss	3
		4.0.1	Basis sparsity and the Fourier Transform	3
		4.0.2	Geometric Compression	3
		4.0.3	Introduction to Dimensionality Reduction	3

5	4			
	5.1 Polynomial Basis	4		
	5.2 Periodic Basis	4		
	5.3 Piecewise Linear	4		
	5.4 Radial Basis Functions	4		
	5.5 Sigmoid Functions	4		
6	Adaptive Basis Function Methods	5		
	6.1 Kernels	5		
	6.1.1 The Gram matrix	5		
	6.1.2 The Kernel Trick	5		
	6.1.3 Learning the Kernel	5		
	6.2 Gaussian Processes	5		
	6.3 Neural Networks			
	6.4 Kernel Machines	Ę		
7		5		
	7.1 Discrete Latent Processes			
	7.2 Continuous Latent Processes	5		
	7.3 Latent Processes as Probabilistic Graphical Models	5		
8	Automatic Structure Discovery			
	8.1 Clustering and Graphical Community Identification	5		
	8.2 Hierarchical clustering	5		
	8.3 Mean and mediod based clustering			
	8.4 Spectral clustering			
	8.5 Principal components analysis			
	8.6 Linear discriminant analysis	5		
	8.7 T-distributed stochastic neighbor embedding	5		
	8.8 Laplacian Eigenmaps and UMAP	Ę		
9	Metric Learning	5		
10	0 Representation examples	5		
	10.1 Image and video			
	10.2 Speech and sound	5		
	10.3 Text and genetic sequence	5		
Π	III Inference	6		
11	11 Linear methods	6		
	11.1 Linear Regression	(
	11.1.1 Least Squares and Linear Regression	6		
	11.1.2 Basis Function Expansion	(

11.1.3 Solution Penalties: A Return to Vector Norms and Geometry	6
11.1.4 Bayesian Linear Regression	6
11.2 Logistic Regression	6
11.3 Generalized Linear Models	6
11.3.1 The Exponential Family	6
11.3.2 Conjugacy and Priors	6
12 Adaptive Basis Function Methods	6
12.1 Inference with Neural Networks	6
12.1.1 Single Neurons	6
12.1.2 Feedforward Neural Networks	6
12.1.3 Structured Neural Networks	6
12.1.4 Weight Intialization and Random Matrices	6
12.1.5 Optimization in Neural Networks	6
12.1.6 Probabilistic Neural Networks	6
12.2 Inference with Kernel Machines	6
12.3 Inference with Gaussian Processes	6
IV Application	7
13 Step Zero	7
13.1 Understanding the Problem You Care About	7
13.2 Specifying the Inductive Bias	7
14 Exploratory Data Analysis	7
14.1 Dataset Versioning	7
14.2 Visualization	7
14.3 Guaging Problem Difficulty	7
14.4 Starting Simply	7
15 Model Selection	7
15.1 Standard Model Selection	7
15.2 Bayesian Model Selection	7
16 Hyperparameter Selection	7
16.1 Heuristics	7
16.2 Bayesian Optimization	7
17 Datasets and Distribution Shift	7
17.1 Training on the Test Set	7
17.2 Internal Covariate Shift	7
17.3 Distribution Shift	7
18 Application: Computer Vision	7

19 Application: Linguistics & Genomics		
20 Application: Robotics & Control		
V Frontiers	8	
21 Model Composition	8	
21.1 Probabilistic Graphics Models and Adaptive Basis Methods	8	
22 Returning to Control: Machine Learning in Society	8	
22.1 Autonomous Vehicles	8	
22.2 Autonomy in Weapon Systems	8	
22.3 Robustness in Machine Learning	8	
23 Brain Machine Interfacing	8	
23.1 Studying the Brain	8	
23.2 Imitating the Brain	8	
23.3 Machine intelligence as analogies for neurocomputation	8	
24 Machine Intelligence: What will it take?	8	
24.1 The AI effect	8	
24.2 Hype and Reality	8	
24.3 Constructing Cockroaches	8	
VI Appendices	8	
24.4 Notation	8	
24.4 Notation 24.5 Calculus		
24.5 Calculus 24.5.1 Derivatives	8	
24.5.1 Derivatives 24.5.2 Chain Rule & Product Rule	8	
24.5.3 Integrals	8	
24.5.3 Integrals 24.6 Complex numbers as dynamic objects	8	
24.0 Complex numbers as dynamic objects	0	

Signal Processing 2

Fundamentals

1 Probabilities and Inference

- 1.1 Probability
- 1.2 Collections of Probabilities
- 1.2.1 Joint Probability
- 1.2.2 Marginal Probability
- 1.2.3 Conditional Probability
- 1.3 Independence
- 1.4 Product Rule & Sum Rule
- 1.5 Bayes' Theorem
- 1.6 Expectation
- 1.7 Variance & Covariance
- 1.8 Information & Entropy
- 1.9 Bounds on Signal Compression
- 1.10 Kullback-Leibler Divergence
- 1.11 Inductive Bias
- 1.12 The Language of Inference
- 1.12.1 Prior
- 1.12.2 Likelihood
- 1.12.3 Evidence/Marginal Likelihood
- 1.13 Point Estimation
- 1.13.1 Maximum Likelihood
- 1.13.2 Maximum a Posteriori
- 1.14 Laplace's Method
- 1.15 Variational Inference
- 1.16 Markov Chain Monte Carlo
- 1.16.1 Importance Sampling
- 1.16.2 Rejection Sampling
- 1.16.3 Hamiltonian MCMC

2 Linear Algebra

- 2.1 Vectors
- 2.1.1 Vector addition and scaling
- 2.1.2 Inner Products
- 2.1.3 Vector Norms
- 2.1.4 Angle
- 2.1.5 Vector Mean and Variance
- 2.1.6 Linearity and Approximations from Calculus

PART

PART

 \prod

Representation

4 Smoothing, Compression, and Information Loss

- 4.0.1 Basis sparsity and the Fourier Transform
- 4.0.2 Geometric Compression
- 4.0.3 Introduction to Dimensionality Reduction

5 Basic Basis Function Expansion

- 5.1 Polynomial Basis
- 5.2 Periodic Basis
- 5.3 Piecewise Linear
- 5.4 Radial Basis Functions
- 5.5 Sigmoid Functions

Representation examples 5

6 Adaptive Basis Function Methods

- 6.1 Kernels
- 6.1.1 The Gram matrix
- 6.1.2 The Kernel Trick
- 6.1.3 Learning the Kernel
- 6.2 Gaussian Processes
- 6.3 Neural Networks
- 6.4 Kernel Machines

7 Latent Processes

- 7.1 Discrete Latent Processes
- 7.2 Continuous Latent Processes
- 7.3 Latent Processes as Probabilistic Graphical Models

8 Automatic Structure Discovery

- 8.1 Clustering and Graphical Community Identification
- 8.2 Hierarchical clustering
- 8.3 Mean and mediod based clustering
- 8.4 Spectral clustering
- 8.5 Principal components analysis
- 8.6 Linear discriminant analysis
- 8.7 T-distributed stochastic neighbor embedding
- 8.8 Laplacian Eigenmaps and UMAP

9 Metric Learning

10 Representation examples

- 10.1 Image and video
- 10.2 Speech and sound
- 10.3 Text and genetic sequence

PART

Inference

11 Linear methods

- 11.1 Linear Regression
- 11.1.1 Least Squares and Linear Regression
- 11.1.2 Basis Function Expansion
- 11.1.3 Solution Penalties: A Return to Vector Norms and Geometry
- 11.1.4 Bayesian Linear Regression
- 11.2 Logistic Regression
- 11.3 Generalized Linear Models
- 11.3.1 The Exponential Family
- 11.3.2 Conjugacy and Priors

12 Adaptive Basis Function Methods

- 12.1 Inference with Neural Networks
- 12.1.1 Single Neurons
- 12.1.2 Feedforward Neural Networks
- 12.1.3 Structured Neural Networks
- 12.1.4 Weight Intialization and Random Matrices
- 12.1.5 Optimization in Neural Networks
- 12.1.6 Probabilistic Neural Networks
- 12.2 Inference with Kernel Machines
- 12.3 Inference with Gaussian Processes

PART

IV

Application

- 13 Step Zero
- 13.1 Understanding the Problem You Care About
- 13.2 Specifying the Inductive Bias
- 14 Exploratory Data Analysis
- 14.1 Dataset Versioning
- 14.2 Visualization
- 14.3 Guaging Problem Difficulty
- 14.4 Starting Simply
- 15 Model Selection
- 15.1 Standard Model Selection
- 15.2 Bayesian Model Selection
- 16 Hyperparameter Selection
- 16.1 Heuristics
- 16.2 Bayesian Optimization
- 17 Datasets and Distribution Shift
- 17.1 Training on the Test Set
- 17.2 Internal Covariate Shift
- 17.3 Distribution Shift
- 18 Application: Computer Vision
- 19 Application: Linguistics & Genomics
- 20 Application: Robotics & Control

Frontiers

V

PART

- 21 Model Composition
- 21.1 Probabilistic Graphics Models and Adaptive Basis Methods
- 22 Returning to Control: Machine Learning in Society
- 22.1 Autonomous Vehicles
- 22.2 Autonomy in Weapon Systems
- 22.3 Robustness in Machine Learning
- 23 Brain Machine Interfacing
- 23.1 Studying the Brain
- 23.2 Imitating the Brain
- 23.3 Machine intelligence as analogies for neurocomputation
- 24 Machine Intelligence: What will it take?
- 24.1 The AI effect
- 24.2 Hype and Reality
- 24.3 Constructing Cockroaches

Appendices

- 24.4 Notation
- 24.5 Calculus
- 24.5.1 Derivatives
- 24.5.2 Chain Rule & Product Rule
- 24.5.3 Integrals
- 24.6 Complex numbers as dynamic objects

