

1 Identification

Soit s(t) la réponse temporelle à une entrée en échelon e(t) = 12 tracée à la figure 1. On sait que la fonction de transfert $H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2\xi}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$.

Figure 1 – Réponse temporelle

Question 1 : En s'aidant du tracé de la figure 1 et des tracés en annexe 2 et 3, montrer que K=2, $\xi=0.5$ et $\omega_0=100 rad\cdot s^{-1}$.

2 Réponse harmonique

Question 2 : Tracer la forme asymptotique des diagrammes de Bode de cette fonction de transfert sur le document réponse. On donne log(2) = 0.3.

Question 3 : Déterminer la valeur de la résonance $H(j\omega)_{max}$.

FIN

Figure 2 – Tracé Annexe 1 : $100e^{\frac{\xi\pi}{\sqrt{1-\xi^2}}}$ en fonction de ξ

Figure 3 – Tracé Annexe 2 : $100e^{\frac{\xi\pi}{\sqrt{1-2\xi^2}}}$ en fonction de ξ

Question 1:

La valeur à l'infini
$$s$$
 ($+\infty$) = $24 = K \cdot E_0 = K \times 12$, donc $K = 2$.
 $D\% = \frac{28 - 24}{24} = \frac{4}{24} = \frac{1}{6} = 16\%$. D'après la figure 2, pour $D\% \approx 16$, on a $\xi = 0.5$.
On sait que $T_m ax = \frac{T_p}{2} = \frac{\pi}{\omega_0 \sqrt{1 - \xi^2}}$, on lit que $T_p = 0.035s$
Donc, $\omega_0 = \frac{\pi}{T_p \sqrt{1 - \xi^2}}$
 $\omega_0 = \frac{\pi}{0.035 \sqrt{1 - 0.5^2}} = \frac{\pi}{0.035 \sqrt{0.75}} = \frac{\pi}{0.0035 \times 6\sqrt{2}} = \frac{1}{0.007 \sqrt{2}} = \frac{1000}{1.4 \times 7} \approx 100 rad \cdot s^{-1}$

Question 2:

Question 3:

$$\begin{split} \left| \frac{H(j\omega)_{max}}{H(0)} \right| &= \frac{1}{2\xi\sqrt{1-\xi^2}} \\ \left| \frac{H(j\omega)_{max}}{H(0)} \right| &= \frac{1}{\sqrt{0.75}} = \frac{10}{6\sqrt{2}} = \frac{10}{6\times1.4} = \frac{10}{8.4} \approx 1.2 \\ H(j\omega)_{max} &= 1.2\times2 = 2.4 \\ 20 log(H(j\omega)_{max}) &= 20 log(2.4) = 7.6 \text{ (on le retrouve sur le tracé)}. \end{split}$$

