#### **HSCC 2015, Seattle, WA**

# Towards Personalized Prostate Cancer Therapy Using $\delta$ -Reachability Analysis

#### Bing Liu<sup>1</sup>, Soonho Kong<sup>2</sup>, Sicun Gao<sup>3</sup>, Paolo Zuliani<sup>4</sup>, Edmund Clarke<sup>2</sup>

- <sup>1</sup> School of Medicine, University of Pittsburgh
- <sup>2</sup> School of Computer Science, Carnegie Mellon University
- <sup>3</sup> CSAIL, MIT
- <sup>4</sup> School of Computer Science, Newcastle University



#### Personalized Medicine

- Medical decisions, practices, and products being tailored to the individual patient
- Select optimal therapies based on the context of a patient's genetic content or other cellular analysis



Hippocrates 46oBC-37oBC

## Personalized Cancer Therapy - Vision



#### Prostate Cancer

- Second leading cause of cancer-related deaths among men in US
- Hormone therapy (androgen deprivation) has been a cornerstone of the management of advanced prostate cancer



are diagnosed with Prostate Cancer in the U.S.







### Continuous Androgen Suppression

- Many side effects: anemia, osteoporosis, impotence, etc.
- Relapse after a median duration of 18-24 months, due to the proliferation of castration resistant cancer cells (CRCs).



### Intermittent Androgen Suppression

- Reduce side effects and financial cost
- May delay the time to relapse (avoid emergence of CRCs)



## Intermittent Androgen Suppression

- Clinical phase II and III trials confirm its advantage in terms of quality of life and cost
- For time to relapse and cancer-specific survival, its advantage depends on individual patients and the treatment scheme
- How to design a personalized treatment scheme for each individual patient?

## Modeling Cancer Progression

 Population of HSCs, CRCs, serum androgen concentration, prostate-specific antigen (PSA) level

**PSA** 
$$v(t) = c_1 x(t) + c_2 y(t)$$
 **Biomarker**

## A Hybrid Model for Hormone Therapy

- Monitoring PSA level:
  - 'PAUSE' and 'RESUME' thresholds:  $r_0$  and  $r_1$

 $jump_{1\rightarrow 2}$ :

Mode 2 (off-treatment)

$$\frac{dx}{dt} = \begin{cases} \frac{\mathcal{X}}{e} & \frac{1}{1 + e^{-(z-k_1)k_2}} & \frac{\ddot{0}}{\dot{0}} - D_x & \frac{\mathcal{X}}{e} & \frac{1}{1 + e^{-(z-k_3)k_4}} & \frac{\ddot{0}}{\dot{0}} - m_1 & \frac{\mathcal{X}}{e} & \frac{1}{z_0} & \frac{\ddot{0}}{\dot{0}} - I_x & \frac{\dot{z}}{\dot{0}} & \frac$$

$$\frac{dy}{dt} = m_1 \stackrel{\text{R}}{\varsigma} 1 - \frac{z \stackrel{\ddot{0}}{\circ} x}{z_0 \stackrel{\text{R}}{\varnothing}} + \stackrel{\text{R}}{\varsigma} \frac{\partial}{\partial_y} \stackrel{\text{R}}{\varsigma} 1 - d \frac{z \stackrel{\ddot{0}}{\circ}}{z_0 \stackrel{\dot{\sigma}}{\varnothing}} - D_y \stackrel{\dot{\tau}}{\dot{\varsigma}} y$$

$$\frac{dz}{dt} = \frac{z_0 - z}{t} + m_z$$

$$\frac{dv}{dt} = \begin{cases} \frac{\partial^2 u}{\partial x} + \frac{\partial^2 u}{\partial x}$$

 $jump_{2\rightarrow 1}$ :

$$x + y \ge r_1 \wedge \frac{dx}{dt} + \frac{dy}{dt} > 0$$

#### What we want to know?

- Is the model able to reproduce key observations?
- How to control the system to avoid bad states (cancer relapse)?
- •
- Reachability/parameter synthesis problem
- Analyzing nonlinear hybrid automata is challenging
  - even simple reachability questions can be undecidable

## δ-Reachability Analysis

- $\delta$ -complete decision: a decision procedure using numerical techniques (with an error bound  $\delta$ ) (Gao et al, LICS'12, IJCAR'12):
  - unsat the formula is verifiably false
  - $\delta$ -sat a  $\delta$ -weakening version of the formula is true
  - Overcome undecidability issues by returning answers with oneside  $\delta$ -bounded errors.
- A parameter synthesis framework (Liu et al. CMSB'14)
  - Encode the problem as a first-order formula over the reals
  - perform bounded model checking
  - Employ an interval constraint propagation (ICP) based algorithm to identify the resulting parameters
- dReal/dReach toolset (Gao, et al, CADE'13; Kong, et al, TACAS'15)

#### **CRC** Proliferation

- Hypothesis 1
  - d = o, the grow of CRCs is independent of the androgen level
- Hypothesis 2
  - $d = 1 \beta_y/\alpha_y$ , CRCs cease growing when the androgen level is normal
- Hypothesis 3
  - d= 1, CRCs decrease when the androgen level is normal

$$\frac{dy}{dt} = m_1 \xi 1 - \frac{z \ddot{0}}{z_0 \ddot{0}} + \xi \partial_y \xi 1 - d \frac{z \ddot{0}}{z_0 \ddot{0}} + \partial_y \frac{\dot{z}}{\dot{y}} y$$

**Proliferation** 

### **CRC** Proliferation

- Observation: with proper treatment schedules, patient#1 can avoid cancer relapse for years.
- 'no cancer relapse' invariants:
  - $o < PSA level < 30 ng ml^{-1} \land o < CRC < 1$
- Verify whether the invariants hold within a bounded time, given that  $0 < r_0 < 8$  and  $8 < r_1 < 15$  (ng ml<sup>-1</sup>)
- $\delta$ -reachability analysis results:
  - H<sub>1</sub>: unsat
  - H<sub>2</sub>: unsat
  - H<sub>3</sub>: δ-sat



Bruchovsky et al, Cancer, 2007

## Witness Trajectories



## Our Model vs. Ideta's Model

- Observation: clinical data show that the half-time of PSA level under androgen suppression is less than 60 days
- Add an auxiliary mode 3, if v(t) = v(o)/2, the system will jump from mode 1 to mode 3
- Check the reachability of a goal state with o < w < 60 days (where w is the time spend in mode 1)
  - unsat Ideta's model
  - δ-sat our model

## Personalized Therapy Design

#### Patients dataset:

- 109 patients
- Phase II clinical trials (Bruchovsky et al, Cancer, 2007)

#### Personalized parameters

| Parameter   | Value                    | Remark                    |
|-------------|--------------------------|---------------------------|
| $\alpha_x$  | $0.0204 d^{-1}$          | HSC proliferation         |
| $\alpha_y$  | $0.0242 d^{-1}$          | CRC proliferation         |
| $\beta_x$   | $0.0201 d^{-1}$          | HSC apoptosis             |
| $\beta_y$   | $0.0168 d^{-1}$          | CRC apoptosis             |
| $k_1$       | 10.0 nM                  | HSC proliferation         |
| $k_2$       | 1.0                      | HSC proliferation         |
| $k_3$       | 10.0 nM                  | HSC apoptosis             |
| $k_4$       | 2                        | HSC apoptosis             |
| $m_1$       | $0.00005 d^{-1}$         | HSC to CRC conversion     |
| 20          | 12.0 nM                  | normal androgen level     |
| $\tau$      | 12.5 d                   | androgen degradation      |
| $\lambda_x$ | $0.01 \ \mathrm{d^{-1}}$ | HSC basal degradation     |
| $\mu_x$     | $0.05 \ \mathrm{d^{-1}}$ | HSC basal production      |
| $\mu_z$     | $0.02 \ \mathrm{d^{-1}}$ | Androgen basal production |



Bruchovsky et al, Cancer, 2007

## Personalized Therapy Design

• Different patients may response differently to the same treatment scheme  $(r_o = 4 \text{ and } r_1 = 10)$ 



time (day)

18

## Personalized Therapy Design

- Apply IAS therapy to a patient for 1-2 cycles and measure PSA time serials
- Estimate his personalized parameters by collectively fitting his PSA data.
- Given  $r_o$  in [0,8) and  $r_i$  in [8,15], verify if H<sub>3</sub> can reach the goal state without violating the 'no cancer replase' invariants with in a bounded time
  - unsat: androgen suppression does not work
  - δ-sat: a feasible treatment scheme will also be returned

## Results



| Patient | Suggested scheme                         |
|---------|------------------------------------------|
| 1       | $r_0 = 5.2$ and $r_1 = 10.8$             |
| 11      | N/A                                      |
| 15      | $r_o = 1.9 \text{ and } r_i = 8.0$       |
| 26      | $r_{\rm o}$ = 4.6 and $r_{\rm i}$ = 10.7 |

## Summary

- A hybrid model of prostate cancer progression
- $\delta$ -Reachability analysis helps model construction and personalized therapy design.



#### What's Next

- Experimental validation?
  - Clinical trails may takes years
  - Mice (or xenograft) model is feasible
- Adaptive approach?
- Drug combination?
- Stochasticity?
- Other diseases?

#### Theory

Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules

Leder et al, Cell, 2014





## Acknowledgements

**Sooho Kong** 

Me

Sean Gao

Paolo Zuliani







**Ed Clarke** 

## Questions?

