GUÍA PRÁCTICA Nº 4

ESPACIOS VECTORIALES Y SUBESPACIOS VECTORIALES

- 1. Los siguientes conjuntos junto con las operaciones dadas *no* son espacios vectoriales reales. Enumere las propiedades de la definición de espacio vectorial real que no se satisfacen y muéstrelo con contraejemplos.
 - a) El conjunto de todas las matrices 2×1 , $\begin{bmatrix} x \\ y \end{bmatrix}$, donde $x \le 0$, con las operaciones ordinarias en $\mathbb{R}^{2 \times 1}$.
 - b) El conjunto de todos los triples ordenados de números reales con las operaciones

$$(x, y, z) \oplus (x', y', z') = (x + x', y + y', z + z')$$

 $\alpha \odot (x, y, z) = (x, 1, z)$

c) El conjunto de todos los pares ordenados de números reales con las operaciones

$$(x,y) \oplus (x',y') = (x+y',x'+y)$$

 $\alpha \odot (x,y) = (\alpha x, \alpha y)$

d) El conjunto de todas las matrices 2×2 con componentes reales, $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, con las operaciones

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}$$
$$\alpha \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

e) El conjunto de todos los polinomios de grado menor o igual a dos con coeficientes reales y el polinomio nulo con las operaciones:

$$(a_1x^2 + b_1x + c_1) \oplus (a_2x^2 + b_2x + c_2) = (a_1 + a_2)x^2 + (b_1 + b_2)x + (c_1 + c_2)$$

$$\alpha \odot (ax^2 + bx + c) = (\alpha a)x^2 + bx + (\alpha c)$$

2. Sea $\mathbb{R} \times \mathbb{R}^*$ con las operaciones \oplus y \odot definidas por

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 y_2)$$

 $c \odot (x_1, y_1) = (cx_1, cy_1)$

- a) ¿Tiene esta estructura un neutro aditivo? De ser afirmativa su respuesta, indíquelo.
- b) ¿Cuáles axiomas de los espacios vectoriales no se cumplen en $(\mathbb{R} \times \mathbb{R}^*, \oplus, \odot)$?
- 3. Sea $(V, +, \cdot)$ un espacio vectorial real. Demuestre que si $v \in V$, $\alpha, \beta \in \mathbb{R}$ y $\alpha \cdot v = \beta \cdot v$, entonces $\alpha = \beta$.

- 4. ¿Cuáles de los siguientes vectores se pueden escribir como combinación lineal de $v_1=(-1,1,2)$ $y v_2 = (2, 1, -2)$?
 - (a) (0, 1, 4)

- (b) (1,5,2) (c) (3,9,2) (d) (0,-6,4) (e) (2,7,2)
- 5. ¿Cuáles de los siguientes vectores se pueden escribir como combinación lineal de $v_1 = (-9, 6)$

 - (a) (0,0) (b) (-1,4) (c) (3,-2) (d) (0,7) (e) (6,-4)

- 6. ¿Cuáles de los siguientes vectores se pueden escribir como combinación lineal de $v_1 = \begin{bmatrix} -3 & 5 \\ 4 & 3 \end{bmatrix}$,

$$v_2 = \begin{bmatrix} -9 & -6 \\ 19 & 2 \end{bmatrix}, v_3 = \begin{bmatrix} 2 & -6 \\ 5 & -3 \end{bmatrix}$$
 y $v_4 = \begin{bmatrix} 7 & 4 \\ -1 & -2 \end{bmatrix}$?

- (a) $\begin{bmatrix} 6 & -10 \\ -8 & -6 \end{bmatrix}$ (b) $\begin{bmatrix} -2 & -23 \\ 25 & -7 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & -10 \\ 27 & -8 \end{bmatrix}$
- (d) $\begin{vmatrix} 1 & 3 \\ 0 & 11 \end{vmatrix}$ (e) $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$
- 7. Determinar para qué valores reales del parámetro \mathbf{a} se puede representar al vector $(\mathbf{a}^2, 1, 1, 3\mathbf{a})$ como combinación lineal de los vectores $(\mathbf{a}, 1, 3, 6)$, (1, -1, -1, -1) y (1, 1, -1, -1). Encuentre, además, los coeficientes de la combinación lineal.
- 8. Dados los siguientes conjuntos de vectores de los espacios vectoriales reales indicados a la derecha:
 - a) $S = \{(2,0), (1,1)\}; \mathbb{R}^2$
 - b) $S = \{(4, -2), (-2, 1)\}; \mathbb{R}^2$
 - c) $S = \{(-2,1), (1,3), (2, ,-2)\}; \mathbb{R}^2$
 - d) $S = \{(-7,4)\}; \mathbb{R}^2$

$$e) \ S = \left\{ \begin{bmatrix} -3 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ -4 \end{bmatrix} \right\}; \mathbb{R}^{2 \times 1}$$

- f) $S = \{2x^2 x + 1, x^2 + 2\}; \mathbb{P}_2$
- $q) S = \{-x+1, 2x\}; \mathbb{P}_1$
- h) $S = \{x^3 + x + 1, x^3 + 2x^2, -x, x^2 2x\}; \mathbb{P}_3$

$$i) \ \ S = \left\{ \left[\begin{array}{cc} 2 & 0 \\ -1 & 1 \end{array} \right], \left[\begin{array}{cc} -1 & 2 \\ -1 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 4 \\ -3 & 3 \end{array} \right] \right\}; \ \mathbb{R}^{2 \times 2}$$

$$j) S = \left\{ \begin{bmatrix} -3\\2\\1\\-2\\0 \end{bmatrix}, \begin{bmatrix} 2\\-5\\7\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\3\\4\\2 \end{bmatrix}, \begin{bmatrix} 4\\-3\\3\\3\\7 \end{bmatrix}, \begin{bmatrix} -5\\2\\-2\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-2\\0\\4\\1 \end{bmatrix} \right\}; \mathbb{R}^{5\times 1}$$

Para cada caso, determine lo siguiente:

- (i) ¿Es linealmente dependiente o independiente el conjunto de vectores dado?
- (ii) ¿Genera el conjunto al espacio vectorial indicado?
- (iii) ¿Es el conjunto dado una base del espacio vectorial indicado?

- 9. ¿Cuáles de los siguientes conjuntos de vectores en \mathbb{P}_3 son linealmente independientes? ¿Cuáles son linealmente dependientes?
 - a) $\{x^3 + x^2 + 2x + 1, x^3 + 2, 4x^3 + 6x^2 + 8x + 6, 3x^2 + 2x + 1\}$
 - b) $\{x^3 2x^2 + 3x 1, -2x^3 + 4x^2 6x + 2\}$
 - c) $\{x^3 + x^2 + x + 1, 2x^3 + 3x^2 + x + 2, 3x^3 + x^2 + 2x + 1, 2x^3 + 2x^2 + x + 1\}$
 - d) $\{4x^3 + 2x^2 x + 3, 6x^3 + 5x^2 5x + 1, 2x^3 x^2 + 3x + 5\}$
- 10. ¿Para qué valores reales de \mathbf{c} son linealmente dependientes los vectores (-1,0,-1), (2,1,2) y $(1,1,\mathbf{c})$ en \mathbb{R}^3 ?
- 11. ¿Para qué valores de α son linealmente dependientes los vectores

$$(\alpha + 2)x^2 + (\alpha - 1)x + 2$$
, $2(\alpha + 1)x^2 + (\alpha - 1)x + 3 - \alpha$, $4x^2 + 2(\alpha - 1)x + \alpha + 1$

en \mathbb{P}_2 ?

- 12. Indique cuáles de los siguientes enunciados son **verdaderos** (**V**) y cuáles son **falsos** (**F**). En cada caso, considere que trabaja en un espacio vectorial real $(V, +, \cdot)$ de dimensión $n \in \mathbb{Z}^+$.
 - a) Si $S = \{v_1, v_2, ..., v_n\}$ es un conjunto de vectores linealmente independientes de V, entonces siempre es cierto que S genera a V.
 - b) Si $S = \{v_1, v_2, ..., v_k\} \subset V$ tal que k < n, entonces siempre es cierto que S es un conjunto de vectores linealmente dependientes.
 - c) Si $S \subseteq V$ tal que |S| = 1, entonces siempre es cierto que S es un conjunto de vectores linealmente independientes.
 - d) Si S_1 y S_2 son subconjuntos finitos de V tales que $S_1 \subseteq S_2$, entonces
 - i) Si S_1 es linealmente dependiente, también lo es S_2 .
 - ii) Si S_1 es linealmente independiente, también lo es S_2 .
 - iii) Si S_2 es linealmente dependiente, también lo es S_1 .
 - iv) Si S_2 es linealmente independiente, también lo es S_1 .
 - e) Si $S \subseteq V$ tal que |S| = n, entonces siempre es cierto que S es una base de V.
 - f) Si $V = \mathbb{R}^2$, $S = \{(x_1, y_1), (x_2, y_2)\} \subset \mathbb{R}^2$ y $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = 0$, entonces siempre es cierto que S es un conjunto de vectores linealmente dependientes.
- 13. Construya una base de \mathbb{R}^4 que contenga a los vectores (-2, 1, 0, 0) y (1, 0, 0, 1).
- 14. Determine todos los valores reales de a para los cuales el conjunto

$$\left\{ \begin{bmatrix} \mathbf{a}^2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \mathbf{a} \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

es una base para $\mathbb{R}^{3\times 1}$.

15. Determine todos los valores reales de λ para que el conjunto

$$\left\{t+3,2t+\lambda^2+2\right\}$$

sea una base para \mathbb{P}_1 .

16. Determine todos los valores reales de x para los cuales el conjunto

$$\{(\mathbf{x}^2, 1, 0), (-1, -2, \mathbf{x}), (-1, -1, 0)\}$$

es una base para \mathbb{R}^3 .

17. Determine todos los valores reales de **m** para que el conjunto

$$\left\{ \left[\begin{array}{cc} \mathbf{m} & 1 \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & \mathbf{m} \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ \mathbf{m} & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 1 & \mathbf{m} \end{array} \right] \right\}$$

sea una base para $\mathbb{R}^{2\times 2}$.

18. Determine todos los valores reales de a y b para los cuales el conjunto

$$\{x^2 + \mathbf{a}x + \mathbf{a}^2, x^2 + \mathbf{a}x + \mathbf{a}\mathbf{b}, \mathbf{b}x^2 + \mathbf{a}^2x + \mathbf{a}^2\mathbf{b}\}$$

es una base para \mathbb{P}_2 .

- 19. Sea $B = \{(1,2,3), (1,-1,0), (1,\mathbf{k}^2,2)\}\ y \overrightarrow{v} = (6,3,\mathbf{k}+8).$
 - a) Determine todos los valores reales de \mathbf{k} para los que B es una base de \mathbb{R}^3 .
 - b) ¿Para qué valores reales de \mathbf{k} el vector \overrightarrow{v} no puede ser escrito como combinación lineal de los vectores de B? Justifique su respuesta.
- 20. Si los vectores a_1, a_2, \ldots, a_k del espacio vectorial V son linealmente independientes, demuestre que los vectores $b_1 = a_1, b_2 = a_1 + a_2, \ldots, b_k = a_1 + a_2 + \ldots + a_k$ son linealmente independientes.
- 21. Sea $B_1 = \{v_1, v_2, v_3, \dots, v_n\}$ es una base de un espacio vectorial real V.

Determine si el conjunto formado por los vectores:

$$B_2 = \{\alpha_1 v_1, \alpha_1 v_1 + \alpha_2 v_2, \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, \dots, \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n\}$$

donde $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ son números reales diferentes de cero, es una base de V.

- 22. ¿Cuáles de los siguientes subconjuntos de \mathbb{R}^3 son subespacios vectoriales de \mathbb{R}^3 ?
 - a) $W_1 = \{(a, 0, b) \in \mathbb{R}^3\}$
 - b) $W_2 = \{(2, a, b) \in \mathbb{R}^3\}$
 - c) $W_3 = \{(a, -b, 3a + 2b) \in \mathbb{R}^3\}$
 - d) $W_4 = \{(a, b, c) \in \mathbb{R}^3 : a > 0\}$
 - e) $W_5 = \{(a, a, b) \in \mathbb{R}^3\}$
 - f) $W_6 = \{(a, b, c) \in \mathbb{R}^3 : 2a 3b + c = 0\}$
 - q) $W_6 = \{(a, b, c) \in \mathbb{R}^3 : a + b c = 0 \land 3a + b + 2c = 0\}$
- 23. ¿Cuáles de los siguientes subconjuntos de $\mathbb{R}^{2\times 2}$ son subespacios vectoriales de $\mathbb{R}^{2\times 2}$?

- $a) W_1 = \left\{ \begin{bmatrix} a & 2a \\ 3a & 4a \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right\}$
- b) $W_2 = \{\text{Matrices simétricas de } \mathbb{R}^{2\times 2}\}$

- c) $W_3 = \{\text{Matrices antisimétricas de } \mathbb{R}^{2\times 2}\}$
- d) $W_4 = \{\text{Matrices no singulares de } \mathbb{R}^{2\times 2}\}$
- e) $W_5 = \{\text{Matrices triangulares inferiores de } \mathbb{R}^{2\times 2}\}$
- $f) \ W_6 = \{ A \in \mathbb{R}^{2 \times 2} : |A| = 1 \}$

g)
$$W_7 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} : 2a - b - c = 0 \land a - 2c = 0 \land b - 3c = 0 \right\}$$

- 24. Sea $W_{\alpha} = \{(x,y) \in \mathbb{R}^2 : x+y+1=\alpha^2\}$ donde α es una constante real. Encuentre todos los valores reales de α para los que W_{α} es un subespacio vectorial de \mathbb{R}^2 .
- 25. Respecto al conjunto

$$W = \left\{ \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] \in \mathbb{R}^{2 \times 2} : \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] = \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & b+c \\ b-a & b-a \end{array} \right] \right\}$$

responda lo siguiente:

- a) Demuestre que W es un subespacio de $\mathbb{R}^{2\times 2}$.
- b) Encuentre una base y la dimensión de W.
- 26. Dado el conjunto

$$S = \left\{ A \in \mathbb{C}^{2 \times 2} : A = \left[\begin{array}{cc} i & 0 & i \\ 1 & 1 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & \beta - \alpha \\ \alpha - \beta & 0 \\ 0 & \alpha \end{array} \right] \text{ donde } \alpha, \beta \in \mathbb{C} \right\}$$

- a) Demuestre que S es un subespacio de $\mathbb{C}^{2\times 2}$.
- b) Encuentre una base y la dimensión de S.
- 27. Sea $A \in \mathbb{R}^{m \times n}$. Demuestre que $W = \{X \in \mathbb{R}^{n \times 1} : AX = 0\}$ es un subespacio vectorial de $\mathbb{R}^{n \times 1}$. (Este conjunto W suele conocerse como "espacio solución" del sistema homogéneo AX = 0).
- 28. Sean $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{m \times 1}$. Demuestre que $W = \{X \in \mathbb{R}^{n \times 1} : AX = B\}$ no es un subespacio vectorial de $\mathbb{R}^{n \times 1}$, si consideramos $B \neq 0$. (Nótese que ahora estamos considerando el conjunto de todas las soluciones de un sistema lineal no homogéneo $AX = B, B \neq 0$).

29. Sea
$$W = \left\{ \left(\begin{array}{cc} a & b & c \\ d & e & f \end{array} \right) : a = b + c \, \wedge \, 3d + e + f = c \, \wedge \, b + d + f = e \right\}$$

- a) Demuestre que W es un subespacio del espacio vectorial real $\mathbb{R}^{2\times 3}$.
- b) Pruebe que el conjunto

$$B = \left\{ \left(\begin{array}{ccc} 4 & -1 & 5 \\ 1 & 1 & 1 \end{array} \right), \ \left(\begin{array}{ccc} 2 & -2 & 4 \\ 1 & 0 & 1 \end{array} \right), \ \left(\begin{array}{ccc} 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right) \right\}$$

es una base de W.

- c) Hallar las coordenadas de la matriz $\begin{pmatrix} 6 & -1 & 7 \\ 2 & 1 & 0 \end{pmatrix} \in W$ en la base B.
- 30. Sea V el espacio vectorial de las funciones de $\mathbb R$ en $\mathbb R$. ¿Cuáles de las siguientes conjuntos son subespacios de V?

a)
$$W_1 = \{ f \in V : f^2(x) = f(x^2) \}$$

b)
$$W_2 = \{ f \in V : f(2) = f(0) \}$$

31. Dado

$$W = \left\{ A \in \mathbb{R}^{5 \times 5} : A = S + K \text{ donde } S = S^t \text{ y } K = -K^t \right\}$$

¿Es W un subespacio vectorial de $\mathbb{R}^{5\times5}$?

32. Para
$$W = \left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in \mathbb{R}^{2 \times 2} : \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & b+c \\ b-a & b-a \end{bmatrix} \right\}$$
, responda lo siguiente:

- a) Demuestre que W es un subespacio vectorial de $\mathbb{R}^{2\times 2}$
- b) Obtenga una base y la dimensión de W.

33. Considere el conjunto
$$H = \left\{ A \in \mathbb{R}^{2 \times 2} : A = \begin{bmatrix} a-b & 2b-a \\ a+b & b-a \end{bmatrix}; a,b \in \mathbb{R} \right\}$$
 y responda lo siguiente:

- a) Demuestre que H es un subespacio vectorial de $\mathbb{R}^{2\times 2}$.
- b) Halle una base y la dimensión de H.
- c) Verifique si la matriz $\begin{bmatrix} 3 & -5 \\ -1 & -3 \end{bmatrix}$ pertenece o no al subespacio H.

34. Sea

$$B = \left\{ \begin{bmatrix} 3\mathbf{k} - 4 \\ \mathbf{k} + 1 \\ 3\mathbf{k} - 3 \end{bmatrix}, \begin{bmatrix} \mathbf{k} + 5 \\ 2\mathbf{k} - 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 12 \\ 3\mathbf{k} - 8 \\ 2(1 - \mathbf{k}) \end{bmatrix} \right\}$$

un subconjunto del espacio vectorial $\mathbb{R}^{3\times 1}$.

- a) Determine todos los valores reales de \mathbf{k} para los que el conjunto B es una base de $\mathbb{R}^{3\times 1}$.
- b) Halle todos los valores reales de ${\bf k}$ para los que el subespacio generado por B es de dimensión 2.
- c) Para $\mathbf{k} = -1$, verifique si el conjunto $B^* = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \right\}$ es una base del subespacio generado por B.
- 35. Dados los siguientes conjuntos de vectores de \mathbb{R}^4 :

$$M = \{(1, -1, 1, 0), (0, 2, -1, 1), (2, 0, 1, 1), (-1, 3, -2, 1)\}$$

$$N = \{(1, 1, 0, 1), (1, 3, -1, 2), (-1, 1, -1, 0)\}$$

- a) Halle una base y la dimensión de [M].
- b) Determine si [M] = [N].
- 36. Considere el siguiente subconjunto de vectores de $\mathbb{R}^{2\times 2}$

$$S = \left\{ \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 9 & -5 \end{pmatrix} \right\}$$

- a) ¿Pertenece el vector $\begin{pmatrix} 3 & -1 \\ 0 & -1 \end{pmatrix}$ al subespacio generado por S?
- b) Determine las *condiciones* que deben cumplir los elementos de la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ para que pertenezca al subespacio generado por S.
- 37. Sea $B = \left\{ \begin{bmatrix} 3k-4\\k+1\\3k-3 \end{bmatrix}, \begin{bmatrix} k+5\\2k-4\\0 \end{bmatrix}, \begin{bmatrix} 12\\3k-8\\2(1-k) \end{bmatrix} \right\}$ un conjunto de vectores del espacio vectorial $\mathbb{R}^{3\times 1}$.
 - a) Obtenga todos los valores reales de k para los que [B] tiene dimensión (i) 1, (ii) 2.
 - b) Para k = 2, responda lo siguiente:
 - (i) Halle una base y la dimensión de [B].
 - (ii) Determine si el subespacio generado por $\left\{ \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} \right\}$ es igual a [B].
 - (iii) ¿El vector $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ pertenece a [B]?
- 38. Encuentre las ecuaciones que determinan el subespacio generado por los vectores

$$p(t) = t^2 - 3t + 1, q(t) = t^2 - t + 1, r(t) = t^2 - 5t + 1$$

de \mathbb{P}_{4} y la dimensión de [p(t), q(t), r(t)].

39. Encuentre una base y la dimensión del subespacio $W_1 \cap W_2$ y la suma $W_1 + W_2$, si

$$W_1 = \left\{ a + bx + cx^2 + dx^3 + ex^4 \in \mathbb{P}_4 : 2a - b + \frac{4}{3}c - d = 0 \land a + \frac{2}{3}c - e = 0 \right\}$$

$$W_2 = \left\{ a + bx + cx^2 + dx^3 + ex^4 \in \mathbb{P}_4 : 9a - 3b + 6c - 3d - 3e = 0 \right\}$$

40. Sea $\mathbb{R}^{2\times 3}$ el espacio de las matrices 2×3 y

$$W_{1} = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} : a = f = 0, b + c = d + e \right\}$$

$$W_{2} = \left[\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 2 \end{pmatrix} \right]$$

Determine una base y la dimensión de los subespacios $W_1 + W_2$ y $W_1 \cap W_2$.

TRANSFORMACIONES LINEALES

1. Sea $T: \mathbb{R}^{3 \times 2} \to \mathbb{R}^{3 \times 2}$ definida como

$$T\left(\begin{array}{cc} a & b \\ c & d \\ e & f \end{array}\right) = \left(\begin{array}{cc} b & c-d \\ 0 & c+e \\ 2a & f \end{array}\right)$$

7

 $\ensuremath{\mathcal{E}} \textsc{Es}\ T$ una transformación lineal? Justifique su respuesta.

2. Sea $T: \mathbb{P}_2 \to \mathbb{R}^2$ definida como

$$T(a + bx + cx^2) = (a + b - c, 2a + c + 1)$$

 ξ Es T una transformación lineal? Justifique su respuesta.

3. Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida como

$$T(a,b) = (a, a+b, (a+b)^2)$$

 ξ Es T una transformación lineal? Justifique su respuesta.

- 4. Sea C una matriz de $n \times n$ fija y sea $T : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ definida como T(A) = CA. Demuestre que T es una transformación lineal.
- 5. Sea la transformación lineal $T: \mathbb{R}^5 \to \mathbb{R}^3$ tal que

$$T(x, y, z, r, t) = (x + 2y - 4z + 3r - t, x + 2y - z + 2r + t, 2x + 4y - 2z + 4t)$$

- a) Determine una base y la dimensión del núcleo y de la imagen de T.
- b) ¿El vector (1,2,3) pertenece a la imagen de T?
- 6. Sea $T: \mathbb{R}^4 \to \mathbb{R}^6$ una transformación lineal.
 - a) Si dim(Nuc(T)) = 2, ¿cuál es la dim(Im(T))?
 - b) Si $\dim(Im(T)) = 3$, ¿cuál es la $\dim(Nuc(T))$?
- 7. Sea $T: V \to \mathbb{R}^5$ una transformación lineal.
 - a) Si T es sobre y $\dim(Nuc(T)) = 2$, ¿cuál es la $\dim(V)$?
 - b) Si T es biyectiva, ¿cuál es la $\dim(V)$?
- 8. Sea $T: \mathbb{P}_2 \to \mathbb{P}_3$ una transformación lineal cuya matriz asociada a las bases ordenadas

$$B_1 = \{1, 1+x, 1+x^2\}, B_2 = \{2, x, 1+x^2, x-x^3\}$$

es
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & 1 & 13 \\ 1 & 2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$
.

- a) Hallar $T(a + bx + cx^2)$.
- b) Determine una base del núcleo y una base de la imagen de T.
- 9. Demuestre que la aplicación

$$T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$$
 definida por $T(X) = A^t X A$, donde $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

8

es una aplicación lineal. Hallar una base y la dimensión del núcleo de T.

- 10. Construya una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $Nuc(T) = \{(x,y,z) \in \mathbb{R}^3/x = y z\}$ y $T(0,1,0) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Obtenga también una base y dimensión de (i) el núcleo de T y (ii) la imagen de T.
- 11. Sea T una transformación lineal de V en W. Si los vectores $T(\alpha_1), T(\alpha_2), \ldots, T(\alpha_n)$ son linealmente independientes, ¿qué se puede asegurar de $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$? Justifique su respuesta.
- 12. Dada la aplicación

$$T: \mathbb{P}_3 \to \mathbb{P}_3$$
 definida por $T(p(x)) = (x^2 - 1)p''(x)$

- a) Demuestre que T es una transformación lineal.
- b) Halle la matriz asociada a T respecto a las bases ordenadas $B_1 = \{1, x^2, x, x^3\}$ y $B_2 = \{1, x-1, (x-1)^2, (x-1)^3\}$.
- c) Determinar una base y la dimensión del núcleo y de la imagen de T.
- d) ¿Es T invectiva? ¿Es T sobre?
- 13. Sea $T: \mathbb{P}_2 \to \mathbb{P}_2$ una transformación lineal tal que

$$T(a + bx + cx^{2}) = a - b + (3a - 2b + 2c)x + (a - b - 2c)x^{2}$$

Sea B_1 la base canónica (ordenada) de \mathbb{P}_2 y $B_2 = \{1, 1+x, 1+x^2\}$ otra base ordenada de \mathbb{P}_2 .

- a) Halle la matriz asociada a T respecto a las bases ordenadas B_1 y B_2 .
- b) Halle una base y la dimensión de Nuc(T).
- c) Halle una base y la dimensión de Im(T).
- 14. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^3 tal que

$$T(1,1,1) = (2,3,3)$$
 $T(1,1,0) = (2,3,4)$ $T(1,0,0) = (2,4,2)$

- a) Encuentre T(2,4,-5)
- b) Mostrar que T es invertible.
- c) Hallar la transformación inversa T^{-1} .
- 15. Dada la transformación lineal

$$T: \mathbb{P}_2 \to \mathbb{P}_3$$
$$T(p(x)) = \int_0^x p(t)dt$$

y las bases ordenadas $B_1 = \{2x - 1, 2x + 1, x(x + 1)\}$ y $B_2 = \{x - 1, x + 1, x^2, \frac{x^3}{3}\}$, de \mathbb{P}_2 y \mathbb{P}_3 , respectivamente.

- a) Hallar la matriz asociada a T respecto a B_1 y B_2 .
- b) Determine una base y la dimensión del núcleo y de la imagen de T.

- c) Hallar la integral del polinomio $p(x) = 3x^2 + 2x 1$ usando la matriz de la transformación T (sin utilizar la integral) y verificar el resultado integrando.
- 16. Sea la transformación lineal $T: \mathbb{R}^{3\times 1} \to \mathbb{R}^{3\times 1}$, tal que

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y + az + bxy \\ 5x + 3y - z + cy^{2} + d \\ x - y + 3z + f + g \end{pmatrix}$$

Determine para qué valores de a, b, c, d, e, f y g, la transformación T es lineal y la dimensión del núcleo es igual a 1.

17. Sea la función T de \mathbb{R}^2 en \mathbb{R}^2 tal que

$$T(x,y) = (x\cos b - y\sin b, x\sin b + y\cos b)$$

con b un real fijo.

- a) Demuestre que T es una transformación lineal.
- b) Determine una base y dimensión del núcleo y de la imagen de T .
- 18. Sea

$$B_1 = \left\{ \alpha_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 & 0 \\ 3 & 4 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} \right\}$$

una base ordenada del espacio vectorial de las matrices $\mathbb{R}^{2\times 2}$.

a) Halle una transformación lineal T de $\mathbb{R}^{2\times 2}$ en el espacio vectorial \mathbb{P}_3 tal que

$$T(\alpha_1) = -3t^2 + 2t^3 + 2$$
 $T(\alpha_2) = t + t^3 - 1$
 $T(\alpha_3) = -2t + t^2 + 4$ $T(\alpha_4) = -t - 3t^2 + t^3 + 3$

- b) Hallar la matriz asociada de T respecto a B_1 y $B_2 = \{1, t, t^2, t^3\}$.
- $c)\,$ Determine una base y la dimensión del núcleo y la imagen de T .
- 19. Sea $T: \mathbb{P}_3 \to \mathbb{R}^{2 \times 2}$ la transformación lineal definida por

$$T(1+x) = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \qquad T(-x) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
$$T(x^2 - 2x) = \begin{pmatrix} 3 & 0 \\ -3 & 2 \end{pmatrix} \qquad T(x^3 - x) = \begin{pmatrix} 0 & 3 \\ 6 & -1 \end{pmatrix}$$

a) Halle la matriz asociada a T respecto a las bases ordenadas

$$B_1 = \left\{ x^3, x^2, x, 1 \right\} \ y \ B_2 = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \right\}$$

- b) Halle $T(a + bx + cx^2 + dx^3)$.
- c) Halle una base y la dimensión del núcleo y de la imagen de T.
- d) ¿Es T invertible? Justifique su respuesta. De ser invertible, obtenga $T^{-1} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

20. Sean $T: \mathbb{R}^{3\times 1} \to \mathbb{P}_2$ una transformación lineal,

$$B_{1} = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ y } B_{2} = \left\{ -x + 1, \ x^{2} + 1, \ x \right\}$$

bases ordenadas de $\mathbb{R}^{3\times 1}$ y \mathbb{P}_2 , respectivamente. Si $k \in \mathbb{R}$ y $M_T = \begin{bmatrix} 2 & -k & 4 \\ k-3 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix}$ es la matriz asociada a T respecto a las bases B_1 y B_2 , responda lo siguiente:

- a) ¿Para qué valores reales de k la transformación lineal T es invertible?
- b) Para k=1
 - 1) T es inyectiva?
 - 2) iT es sobreyectiva?
 - 3) ¿Existe T^{-1} ? En caso afirmativo halle una fórmula para $T^{-1}(ax^2 + bx + c)$.
- 21. Sea $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ una transformación lineal definida por $T(A) = A + A^t$.
 - a) Halle una base y la dimensión del núcleo de T.
 - b) Halle una base y la dimensión de la imagen de T.
 - c) Si consideramos las siguientes bases ordenadas de $\mathbb{R}^{2\times 2}$:

$$B_{1} = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} y$$

$$B_{2} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \right\}.$$

Halle la matriz de la transformación lineal T respecto a las bases B_1 y B_2 .

- d) ¿Es T inyectiva? ¿Es T sobreyectiva? ¿Es T biyectiva?
- e) ¿Es T invertible? Justifique su respuesta. De ser invertible, obtenga T^{-1} .
- 22. Sean $B_1 = \{t^2 1, -t^2 + 2t, 2t^2\}, B_2 = \left\{\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\right\}$ bases ordenadas de \mathbb{P}_2 y $\mathbb{R}^{3\times 1}$, respectivamente. Sea $T: \mathbb{P}_2 \to \mathbb{R}^{3\times 1}$ una transformación lineal cuya matriz asociada respecto a B_1 y B_2 es:

$$M_T = \begin{bmatrix} -2 & 3 & \alpha^2 - 3 \\ -6 & 1 - 4\alpha & 3 \\ \alpha^2 & -6 & -2 \end{bmatrix} \ (\alpha \in \mathbb{R})$$

- a) Hallar la fórmula para $T(at^2 + bt + c)$.
- b) Hallar todos los valores reales de α para los cuales T es invertible.
- c) Para $\alpha=2$ halle una base y la dimensión del núcleo de T.
- 23. Sea $T: \mathbb{P}_2 \longrightarrow \mathbb{P}_3$ una función definida por

$$T(p(x)) = xp'(x) + \int_0^{x+1} p(t)dt$$

11

Demuestre que T es una transformación lineal.

- 24. Sean $B_1 = \{(1, 1, -1), (0, 1, 1), (0, 0, 1)\}$ y $B_2 = \{t^2 t, 2t, -t + 2\}$ bases ordenadas de \mathbb{R}^3 y \mathbb{P}_2 respectivamente, $T : \mathbb{R}^3 \to \mathbb{P}_2$ una transformación lineal cuya matriz asociada respecto a B_1 y B_2 es $\begin{pmatrix} 4 & 6 & 2 \\ -2 & -3 & -1 \\ 2 & 3 & 1 \end{pmatrix}$. Halle:
 - $a)\,$ una fórmula para $T\left(x,y,z\right) .$
 - b) una base y la dimensión para el núcleo de T y para la imagen de T.