Gender-Based Age Estimation using Quantified Brain Asymmetry

Bodhisatwa Chatterjee Term Project Presentation CSE 583 Pattern Recognition & Machine Learning

Motivation

- Motivation
- Problem Statement

- Motivation
- Problem Statement
- Tools and Techniques (including specific roadblocks and assumptions)

- Motivation
- Problem Statement
- Tools and Techniques (including specific roadblocks and assumptions)
- Results

- Motivation
- Problem Statement
- Tools and Techniques (including specific roadblocks and assumptions)
- Results
- Related Works (state of the art)

- Motivation
- Problem Statement
- Tools and Techniques (including specific roadblocks and assumptions)
- Results
- Related Works (state of the art)
- Conclusion and Major Takeaways

 Revisiting the idea of age-estimation using quantified brain asymmetry [Teverovskiy, Liu et al,2008]

- Revisiting the idea of age-estimation using quantified brain asymmetry [Teverovskiy, Liu et al,2008]
- Include the factor of gender in age estimation

- Revisiting the idea of age-estimation using quantified brain asymmetry [Teverovskiy, Liu et al,2008]
- Include the factor of gender in age estimation
- Investigate whether gender of a subject influences the estimation of age?

- Revisiting the idea of age-estimation using quantified brain asymmetry [Teverovskiy, Liu et al,2008]
- Include the factor of gender in age estimation
- Investigate whether gender of a subject influences the estimation of age?
- Seek answer to the question whether male and female brain have different asymmetry?

• Q: Why should gender matter in age estimation?

- Q: Why should gender matter in age estimation?
- According to neuroscience community, male and female brains have different anatomical structure.

- Q: Why should gender matter in age estimation?
- According to neuroscience community, male and female brains have different anatomical structure.
- Our hypothesis is that differences in anatomical structure should also cause difference in brain asymmetry.

- Q: Why should gender matter in age estimation?
- According to neuroscience community, male and female brains have different anatomical structure.
- Our hypothesis is that differences in anatomical structure should also cause difference in brain asymmetry.
- As a result, the features for regression model for age estimation might change depending on gender.

Problem Statement

 Design a binary classification model which can classify subjects as <u>male</u> and <u>female</u>

Problem Statement

- Design a binary classification model which can classify subjects as male and female
- Train separate regression models for both categories for prediction of age of the subjects

Problem Statement

- Design a binary classification model which can classify subjects as <u>male</u> and <u>female</u>
- Train separate regression models for both categories for prediction of age of the subjects
- Compare with the original regression model which predicts age for all subjects (gender-neutral model)

198 Subjects: 100 Female and 98 Males

- 198 Subjects: 100 Female and 98 Males
- Original Class Labels (1,2,3 subject in 50s,60s or 70s)

- 198 Subjects: 100 Female and 98 Males
- Original Class Labels (1,2,3 subject in 50s,60s or 70s)
- 1000 Features (highest ranked out of 55 million features)

- 198 Subjects: 100 Female and 98 Males
- Original Class Labels (1,2,3 subject in 50s,60s or 70s)
- 1000 Features (highest ranked out of 55 million features)
- <u>Leave-12 out</u> cross validation for males & <u>Leave-13 out</u>
 cross validation for females (split is already provided)

- 198 Subjects: 100 Female and 98 Males
- Original Class Labels (1,2,3 subject in 50s,60s or 70s)
- 1000 Features (highest ranked out of 55 million features)
- <u>Leave-12 out</u> cross validation for males & <u>Leave-13 out</u>
 cross validation for females (split is already provided)
- Predesigned Matlab modules to get ages of the subjects

Data Preprocessing

 Addition of an extra label to distinguish between male (0) and female (1) subjects (N x 1002 matrix) in both cases

Data Preprocessing

- Addition of an extra label to distinguish between male (0) and female (1) subjects (N x 1002 matrix) in both cases
- Unification of the male and female portions of the dataset

Data Preprocessing

- Addition of an extra label to distinguish between male (0) and female (1) subjects (N x 1002 matrix) in both cases
- Unification of the male and female portions of the dataset
- Combination of the respective train-test split in both the cases of males and females

 Linear SVM to solve the binary classification problem to distinguishing gender

- Linear SVM to solve the binary classification problem to distinguishing gender
- But, it gave 100% mean classification accuracy with std dev of 0 across all splits

- Linear SVM to solve the binary classification problem to distinguishing gender
- But, it gave 100% mean classification accuracy with std dev of 0 across all splits
- Was the train and test data overlapping?

- Linear SVM to solve the binary classification problem to distinguishing gender
- But, it gave 100% mean classification accuracy with std dev of 0 across all splits
- Was the train and test data overlapping?
- NO! (used matlab function ismember)

- Linear SVM to solve the binary classification problem to distinguishing gender
- But, it gave 100% mean classification accuracy with std dev of 0 across all splits
- Was the train and test data overlapping?
- NO! (used matlab function ismember)
- Turns out that 1000 features aren't for determining genders (these features were for age estimation)

- Linear SVM to solve the binary classification problem to distinguishing gender
- But, it gave 100% mean classification accuracy with std dev of 0 across all splits
- Was the train and test data overlapping?
- NO! (used matlab function ismember)
- Turns out that 1000 features aren't for determining genders (these features were for age estimation)
- Used reverse-feature selection to remove the unnecessary features

Training the Classifier

 Decision Tree Classifier was used finally for solving this binary classification problem to gender determination

Training the Classifier

 Decision Tree Classifier was used finally for solving this binary classification problem to gender determination

Average Test Accuracy (Classification Rate)	Average Test Standard Deviation
0.9543	0.032

 Based on the output of the classifier, two regression models were trained for both the categories

- Based on the output of the classifier, two regression models were trained for both the categories
- Unified dataset for separate categories were build

- Based on the output of the classifier, two regression models were trained for both the categories
- Unified dataset for separate categories were build
- Used Linear Regression models for the age estimation

- Based on the output of the classifier, two regression models were trained for both the categories
- Unified dataset for separate categories were build
- Used Linear Regression models for the age estimation
- Reconstructed the original feature set for training the regression model (N x 1001)

Plots for Regression Models

Plots for Original Regression Models

Related Works (State of Art)

 Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters (Franke, Zeigler, et al ,2010)

Related Works (State of Art)

- Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters (Franke, Zeigler, et al ,2010)
- Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners (Luders, et al, 2016)

Related Works (State of Art)

- Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters (Franke, Zeigler, et al ,2010)
- Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners (<u>Luders</u>, et al, 2016)
- An age estimation method using brain local features for T1-weighted images (Kondo, et al 2015)

Conclusions and Major Takeaways

 There are 248 features out of the 1000 features which can perfectly distinguish the gender of the subject (<u>different asymmetry of male and female brains</u>)

Conclusions and Major Takeaways

- There are 248 features out of the 1000 features which can perfectly distinguish the gender of the subject (<u>different asymmetry of male and female brains</u>)
- There is substantial difference between the output of original regression model and the separate regression models (gender should influence age estimation)