Cyclic Sequences

Praneesh Padam praneeshpadam@gmail.com

Abstract—This paper studies some properties of cyclic sequences.

I. INTRODUCTION

Sequences which consist of only repeating objects of information. For example, we can consider the sequence of binary values representing the number 42:

The smallest partition that repeats itself is [1 0]. We can introduce positional indexes that map to our elements which are unique to each sub-sequence,

$$p_1 \rightarrow 0 \ p_2 \rightarrow 1$$

Now we can represent our original sequence in the form of smaller sequences of variable form:

$$42 = p q r s$$

$$p_1p_2q_1q_2r_1r_2s_1s_2$$

Just like we mapped individual elements of our subsequence, we can also map the sub-sequences themselves, such that:

$$p \rightarrow 0 \ q \rightarrow 1 \ r \rightarrow 2 \ s \rightarrow 3$$

II. DISTANCE

Let k be the number of elements in each sub-sequence

Case 1: Distance between elements $p_i \in p$ and $s_i \in s$

Distance d is given by,

$$d = |p_{\mathrm{f}} - p_{\mathrm{i}}| + |s_{\mathrm{j}} - s_{\mathrm{0}}| + |p_{\mathrm{index}} - s_{\mathrm{index}} - 1| + |p_{\mathrm{index}} - s_{\mathrm{index}} - 1| *k$$

III. OCCURRENCES

Let v represent the number of a sub-sequences in a range

To find the occurrences of a_n in a range of the sequence

Let pos be the set consisting of all the locations of each a_n in a complete sub-sequence

Occurences o is given by,

 $o = length(p \cap pos) + length(s \cap pos) + length(pos) * (v - 2)$

IV. PREDICTION

Let sub represent a complete sub-sequence

From element p_i , find what the n^{th} element would be,

Let num be the number of sub-sequences possible,

$$num = |n - (p_{\rm f} - p_{\rm i})|/size$$

if num is a natural number, then $n^{\rm th}$ element is the last element in our last sub-sequence

if num is a decimal number, then the decimal part represents the partial sub-sequence where the last element is the $n^{\rm th}$ element

Let z be the decimal part of num

Element is given by,

$$el_n = last - element((1/z) * sub)$$