法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

神经序列模型 II

主讲人: 史兴 07/07/2017

提纲

- □ 续: 代码讲解
- ☐ Vanilla RNN

□ LSTM

□ RNNLM

□ 应用展示

续: 代码讲解

```
loss
  cross-entropy
        h5
               b:0
     softmax
                djdh4
        h4
                                              djd_output_embed_b
output embedding
                       djd_output_embed
        h3
                djdh3
      Tanh
                djdh2
        h2
                                                 djd
                                                     _linear__b
                          djd_linear_w
 linear transform
        h1
                djdh1
input embedding
                       djd_input_embed
       a:0
```

续: 代码讲解

$y = f(x, \theta)$	$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$	$\frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial \theta}$
y = xW + b	$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial y} W^T$	$\frac{\partial J}{\partial W} = x^T \frac{\partial J}{\partial y}; \frac{\partial J}{\partial b} = \frac{\partial J}{\partial y}$
$y = \sigma(x)$	$\frac{\partial y}{\partial x} = y(1 - y)$	n/a
y = tanh(x)	$\frac{\partial y}{\partial x} = 1 - y^2$	n/a
y = ReLU(x)	$\frac{\partial y}{\partial x} = 1 \text{ if } x > 0; 0 \text{ if } x < 0$	n/a
y = ebl(x)	n/a	$\frac{\partial J}{\partial W[x,:]} = \frac{\partial J}{\partial y}$
y = softmax(x) $J = CE(y, j)$	$\frac{\partial J}{\partial x_i} = y_i - 1, if \ i = j; y_i, if \ i \neq j$	n/a

续: 代码讲解

- □ 转到github
 - Forward
 - Backward
 - Weight Update

- □ Recurrent Neural Network 循环神经网络
 - $h_t = f(h_{t-1}, x_t)$
 - 最简单的形式

 - □ W,U,b在每一步都是一样的

- □ Recurrent Neural Network 循环神经网络
 - 例子

 - \square 为方便, x_t, h_t 全部是一维向量
 - □ 参数: W = 0.5, U = 1, b = 0
 - ☐ Forward Propagation

- □ Recurrent Neural Network 循环神经网络
 - 例子

 - □ 在结尾处增加一个loss function
 - □ 如何做back propagation去计算 $\frac{\partial J}{\partial w}$?

- □ Recurrent Neural Network 循环神经网络

 - \square 设a_t = $h_{t-1}W + x_tU + b$
 - □ 假设只算两步:
 - $J = loss(h_{t+1}) = loss(tanh(h_tW + x_{t+1}U + b))$ = $loss(tanh(tanh(h_{t-1}W + x_tU + b)W + x_{t+1}U + b))$

$$\Box \frac{\partial J}{\partial W} = \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} \left(h_t + W \frac{\partial h_t}{\partial W} \right)$$

$$= \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} \left(h_t + W \frac{\partial \tanh(a_t)}{\partial a_t} h_{t-1} \right)$$

$$= \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} h_t$$

$$+ W \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} \frac{\partial \tanh(a_t)}{\partial a_{t+1}} h_{t-1}$$

- □ Recurrent Neural Network 循环神经网络

 - □ 假设只算两步,将不同位置的W看做不同的W:
 - $J = loss(h_{t+1}) = loss(tanh(h_t W_1 + x_{t+1} U + b))$ = loss(tanh(tanh(h_{t-1} W_2 + x_t U + b) W_1 + x_{t+1} U + b))
 - $\square \frac{\partial J}{\partial W_1} = \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} h_t;$
 - $\square \frac{\partial J}{\partial W_2} = \frac{\partial J}{\partial h_{t+1}} \frac{\partial \tanh(a_{t+1})}{\partial a_{t+1}} w_1 \frac{\partial \tanh(a_t)}{\partial a_t} h_{t-1};$

- □ Recurrent Neural Network 循环神经网络
 - 例子

 - □ 在结尾处增加一个loss function
 - □ 如何做back propagation去计算 $\frac{\partial J}{\partial W}$?
 - 不同位置的W看做是不同的W,分别计算偏导数后相加

- □ Recurrent Neural Network 循环神经网络

 - \square $J = loss(h_{t+n})$
 - $\square \frac{\partial J}{\partial W_t} = \frac{\partial J}{\partial h_{t+n}} \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial W_t}$
 - $\square \frac{\partial h_{t+1}}{\partial h_t} = \frac{\partial \tanh(a_t)}{\partial a_t} W$
 - $\square \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} = \prod_{i=t}^{t+n-1} \frac{\partial \tanh(a_i)}{\partial a_i} W$

loss

□ Recurrent Neural Network 循环神经网络

$$\square \frac{\partial J}{\partial W_t} = \frac{\partial J}{\partial h_{t+n}} \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial W_t}$$

$$\square \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} = \prod_{i=t}^{t+n-1} \frac{\partial \tanh(a_i)}{\partial a_i} W$$

- □ 假设W是一个一维的矩阵:
 - $|W| < 1, \prod_{i=t}^{t+n-1} W \to 0$
 - Vanishing Gradients (梯度消失)
 - |W| > 1, $\prod_{i=t}^{t+n-1} W \to \infty$
 - Exploding Gradients (梯度爆炸)
- □ 如果W是高维的矩阵呢?
 - $|W| = \lambda_{max}(W)$, 最大的特征值

□ Recurrent Neural Network 循环神经网络

$$\square \frac{\partial J}{\partial W_t} = \frac{\partial J}{\partial h_{t+n}} \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} \frac{\partial h_t}{\partial W_t}$$

$$\square \frac{\partial h_{t+n}}{\partial h_{t+n-1}} \dots \frac{\partial h_{t+1}}{\partial h_t} = \prod_{i=t}^{t+n-1} \frac{\partial \tanh(a_i)}{\partial a_i} W$$

- □ 考虑tanh(a):
 - - Vanishing Gradients (梯度消失)

- □ Recurrent Neural Network 循环神经网络
 - Exploding Gradients (梯度爆炸)

■解决方法: Gradient Clipping

$$\square \nabla = \begin{cases} \frac{c}{|\nabla|} \nabla, if |\nabla| > c; \\ \nabla, otherwise \end{cases}$$

- □ Recurrent Neural Network 循环神经网络
 - Vanishing Gradients (梯度消失)
 - $\square \frac{\partial J}{\partial W_t} \rightarrow 0$, 远处的error所带来的指导意义消失了
 - 问题出在哪里?

 - $\square \frac{\partial h_{t+n}}{\partial h_{t+n-1}} ... \frac{\partial h_{t+1}}{\partial h_t} = \prod_{i=t}^{t+n-1} \frac{\partial \tanh(a_i)}{\partial a_i} W$
 - □ 递推公式本身有问题!
 - 解决方法:
 - □ LSTM!

- ☐ Long Short-Term Memory (LSTM)
 - 尝试解决的问题: Vanishing Gradients
 - \square Vanilla RNN: $h_t = f(h_{t-1}, x_t)$
 - \square LSTM: $h_t, c_t = f(h_{t-1}, c_{t-1}, x_t)$

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- □ Long Short-Term Memory (LSTM)
 - 最关键的设计: C_t (cell state)
 - \square $C_t = C_{t-1} * f + i$ 全部都是线性操作
 - *, +: elementwise
 - f: [0,1], 忘记的程度

c_{t-1}	0.5	-0.2	0.5
f	1	0	0.5
$C_{t-1} * f$	0.5	0	0.25
i	-0.5	0.5	2
c_t	0	0.5	2.25

Copy

Neural Network Layer

Pointwise Operation

Vector Transfer

Concatenate

- ☐ Long Short-Term Memory (LSTM)
 - 最关键的设计: C_t (cell state)
 - \square $C_t = C_{t-1} * f + i$ 全部都是线性操作
 - *, +: elementwise
 - f: [0,1], 忘记的程度
 - □ 对比Vanilla RNN

神经网络基础

- □ 非线性变换: sigmoid
 - $y = \sigma(x) = \frac{1}{1 + e^{-x}}$

 - 值域[0,1]
 - □ 做概率
 - □ 做开关
 - □ 做"挤压"
 - 导数的绝对值
 - □ 只在0附近比较大
 - elementwise

- ☐ Long Short-Term Memory (LSTM)
 - forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- ☐ Long Short-Term Memory (LSTM)
 - input gate input

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ☐ Long Short-Term Memory (LSTM)
 - Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- ☐ Long Short-Term Memory (LSTM)
 - output gate ≯ hidden state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- □ n-gram 潜在的问题:
 - P(梨|水果 包含) P(苹果|水果 包含)
 - □对"词"的理解有限
 - Neural Network Language Model
 - □ N-gram 上下文的长度有限
 - Recurrent NN Language Model

句子: "w x y z"

N-gram 上下文的长度有限

应用展示

- □ 应用展示
 - 在tensorflow中实现LSTM Language Model
 - 代码地址:
 - □ https://github.com/shixing/xing_nlp/tree/master/LM/R NNLM
 - 本次要求:
 - □ 只需要大家可以跑通就好
 - □ 有时间的,可以预习一下
 - 下节课预告:
 - □ 本次代码详细讲解

应用展示

- □ 应用展示
 - 运行代码:
 - □ cd sh
 - □ 小模型, 小数据
 - bash train_small.sh
 - □ 大模型,大数据(需要GPU)
 - bash train_ptb.sh

Softmax Layer + Cross-entropy Loss

output $P(w \mid \mathbf{u})$

hidden h₂

Embedding Lookup

句子: "w x y z"

Loss = loss(w) + loss(x) + loss(y) + loss(z) + loss(<EOS>)

多层叠加

☐ Regulation: Dropout

- y = dropout(x,r)
- $r \in [0,1]$: dropout rate
- $x \in R^d$

$$y_i = \begin{cases} \frac{x_i}{r}, & if \ rand \le r \\ 0, & if \ rand > r \end{cases}$$

$$r = 0.5$$

X	0.5	0.4	-0.5
rand	0.9	0.2	0.4
У	0	0.8	-1.0

多层叠加 + Dropout

(from Sundermeyer, Ney, Schlüter, IEEE TASLP 2015)

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 大数据分析挖掘

- 新浪微博: ChinaHadoop

