数据科学家毕业项目

项目概述

通过星巴克用户推送实验数据,实现用户细分,找到最能够激发顾客消费的推送。目的在于抛弃全量推送的方案,采取个性化推荐的精细化运营提高用户复购率和留存。

问题描述

从用户日志中挖掘对于不同推送的反馈,构建 3 类特征,用户基础特征(性别,收入等),购物特征(消费频次,客单价),推送反应特征(推送打开率,补贴力度,核销率),对行为特征进行特征工程,再使用 kmeans 进行分层打标。最后使用基础特征交叉验证建立预测模型,用于后续用户分群使用

评价指标

- Accuracy=预测准确量/总样本量
- SSE=误差平方和

探索性数据分析

- 一共有三个数据文件:
- portfolio.json 包括推送的 id 和每个推送的元数据(持续时间、种类等等)
- profile.json 每个顾客的人口统计数据
- transcript.json 交易、收到的推送、查看的推送和完成的推送的记录

	age	became_member_on	income
count	17000.000000	1.700000e+04	14825.000000
mean	62.531412	2.016703e+07	65404.991568
std	26.738580	1.167750e+04	21598.299410
min	18.000000	2.013073e+07	30000.000000
25%	45.000000	2.016053e+07	49000.000000
50%	58.000000	2.017080e+07	64000.000000
75%	73.000000	2.017123e+07	80000.000000
max	118.000000	2.018073e+07	120000.000000

年纪为 118 的老年人达到了 2175 名且大多没有收入数据,对于这部分年纪过大没有收入的人群做剔除。

	age	became_member_on	income
count	14825.000000	1.482500e+04	14825.000000
mean	54.393524	2.016689e+07	65404.991568
std	17.383705	1.188565e+04	21598.299410
min	18.000000	2.013073e+07	30000.000000
25%	42.000000	2.016052e+07	49000.000000
50%	55.000000	2.017080e+07	64000.000000
75%	66.000000	2.017123e+07	80000.000000
max	101 000000	2 018073e+07	120000 000000

经过数据清洗,总用户数 14825 人平均年龄 54.4 岁,中位数 55 岁,样本群体以中老年为主,平均年收入 65404 美金。

Transcript 表格中的推送 id 包裹在 json 字段中,需要做进一步数据处理才能做分析

transaction	138953	
offer received	76277	
offer viewed	57725	
offer completed	33579	

总交易 138953 单,推送 76277 次,用户打开推送 57725 次,使用优惠 33579 次 推送类型分为三种,在刺激力度和持续时间上有差异化:

- 1. 买一送一:满10送10,满5赠5,各分7天和5天。
- 2. 打折:满 20 减 5(20%折扣)10 天,满 7 减 3 (50%折扣)7 天,满 10 减 2 (20%折扣)分 10 天/7 天
- 3. 信息推送

数据可视化

■ 性别分布

■ 用户年龄分布

整体分布左偏正态

■ 收入分布

■ 推送转化

30%的交易用到了补贴,整体的补贴率和国内外卖市场相比处于相对较低的水平,72%的推送被打开,打开的推送中 60%转化交易,考虑到总推送中 20%属于信息推送,所以实际补贴交易转化在 80%以上。

数据预处理

处理步骤:

- Transcript 表格提取 value 中的推送 id,关联推送信息,计算奖励金和消费金额
- 按用户和推送类型做聚合,计算推送数,打开数,完成单量,消费总额和补贴相关 信息
- 对不同推送类型做切分,以用户为关联键做横向关联
- 新增客单价,核销率,补贴率等字段
- 剔除无推送用户
- 填充空值

	客单价	核销率	补贴率	总推送数	完成单_trans
count	16578.000000	16928.000000	16578.000000	17000.000000	17000.000000
mean	13.680266	0.549091	0.106878	4.486882	8.173706
std	16.056763	0.396682	0.109332	1.076165	5.116250
min	0.050000	0.000000	0.000000	0.000000	0.000000
25%	3.181392	0.166667	0.021605	4.000000	4.000000
50%	11.996607	0.600000	0.086294	5.000000	7.000000
75%	20.469643	1.000000	0.152650	5.000000	11.000000
max	451.470000	1.000000	1.470588	6.000000	36.000000

客单价和完成单的标准差很大,波动很明显,需要做标准化处理

代码实现

第一步:数据清洗

```
#提取推述id,类局金和消费金额
transcript('offer_id']=[transcript.value[i]['offer_id'] if 'offer_id' in transcript.value[i] else transcript.value[i]['offer_i
transcript['reward']=[transcript.value[i]['reward'] if 'reward' in transcript.value[i] else 0 for i in range(transcript['valuenscript['amount']=[transcript.value[i]['amount'] if 'amount' in transcript.value[i] else 0 for i in range(transcript['valuenscript]'valuenscript.value[i]] else 0 for i in range(transcript['valuenscript]'valuenscript]'valuenscript.value[i] else 0 for i in range(transcript]'valuenscript.valuenscript.value[i] else 0 for i in range(transcript]'valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.valuenscript.val
a=new_transcript.groupby(['event','person','offer_type']).agg({'event':"count",'amount':'sum','reward_x':'mean','reward_y':'sum
 a. columns=a. columns. droplevel()
b=a.iloc[:,[0,1,2,3,4,5,9,10,14]]
b.columns=['用户','type','使用优惠数','收到推送数','打开推送数','完成单','gmv','单均补贴','总补贴']
 #军构表格
bogo=b[b.type=='bogo']
discount=b[b.type=='discount']
informational=b[b.type=='trans']
 def rename_columns(df,prefix=str):
    new_columns=[col+'_'+prefix for col in df.columns]
    return new_columns
 ##董命名columns
 bogo.columns=rename_columns(bogo,prefix='bogo')
bogo. columns-rename_columns (discount, columns-rename_columns (discount, prefix='discount')
informational.columns-rename_columns (informational, prefix='informational')
 trans.columns=rename_columns(trans,prefix='trans')
user_df = pd.merge(profile.loc[0:,['id']],bogo.loc[0:,['用户_bogo','使用优惠数_bogo','收到推送数_bogo','打开推送数_bogo','单均神user_df = pd.merge(user_df,discount','f用户_discount','使用优惠数_discount','收到推送数_discount','打开推送数_discount','user_df = pd.merge(user_df,informational.loc[0:,['用户_informational','收到推送数_informational','打开推送数_informational'],luser_df = pd.merge(user_df,trans.loc[0:,['用户_trans','完成单_trans','gmv_trans']],left_on='id',right_on='用户_trans', how='out
 final_df=user_df.drop(columns=['用户_bogo','用户_discount','用户_trans','用户_informational'])
final_df=final_df[final_df['总推送数']>0].fillna(0)
#标准化字段用于聚类
final_df['客单价_scaled']=preprocessing.scale(final_df['客单价'])
final_df['gmv_trans_scaled']=preprocessing.scale(final_df['gmv_trans'
final_df['总推送数_scaled']=preprocessing.scale(final_df['总推送数'])
4
```

第二步: Kmeans 聚类

聚类特征选取:核销率对应促销敏感度,补贴率对应补贴敏感度,gmv对应消费能力,打开率对应触达反应。

```
plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
plt.show()
```


根据手肘法,选取曲率最高的类别,对于这个数据集的最佳聚类数是3

手肘法: 随着聚类数 k 的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和 SSE 自然会逐渐变小,当 k 小于真实聚类数时,由于 k 的增大会大幅增加每个簇的聚合程度,故 SSE 的下降幅度会很大,而当 k 到达真实聚类数时,再增加 k 所得到的聚合程度回报会迅速变小,所以 SSE 的下降幅度会骤减,然后随着 k 值的继续增大而趋于平缓,也就是说 SSE 和 k 的关系图是一个手肘的形状,而这个肘部对应的 k 值就是数据的真实聚类数。转自 https://www.jianshu.com/p/335b376174d4

第三步:特征筛选

对用户性别特征独热编码,使用 selectKBest 进行特征筛选,此处使用卡方检验用于检验定性自变量对定性因变量的相关性。

第四步: train/test split

训练数 80%和测试数量 20%分割做交叉验证

第五步: 选取模型进行网格调参,并输出结果

```
class Class_Fit(object):
     def __init__(self, clf, params=None)
   if params:
                self.clf = clf(**params)
                self.clf = clf()
     def train(self, x_train, y_train)
    self.clf.fit(x_train, y_train)
     def predict(self, x)
           return self.clf.predict(x)
     def grid_search(self, parameters, Kfold):
          self.grid = GridSearchCV(estimator = self.clf, param_grid = parameters, cv = Kfold)
     def grid_fit(self, X, Y):
          self.grid.fit(X, Y)
     def grid_predict(self, X, Y):
          self.predictions = self.grid.predict(X)
print("准确章: {:.2f} % ".format(100*metrics.accuracy_score(Y, self.predictions)))
from sklearn import neighbors, linear_model, svm, tree, ensemble
from sklearn.model_selection import GridSearchCV, learning_curve
tr = Class_Fit(clf = tree.DecisionTreeClassifier)
tr.grid_search(parameters = [{'criterion' : ['entropy', 'gini'], 'max_features' :['sqrt', 'log2']}], Kfold = 5)
tr.grid_fit(X = X_train, Y = Y_train)
tr.grid_predict(X_test, Y_test)
```

准确率: 92.07 %

衡量树模型的分类标准有 2 个,一个是熵,另一个是基尼系数,往往在噪音比较大的情况下用基尼系数会更好,这里无法做出判断所以采取网格搜索。另一个需要调整的参数是 max_features,通常是树模型调参是通过调整深度来做剪枝处理,但是数据的维度并没有太多,所以用限制最大特征数来调参,虽然本质上是比较粗暴的降维手段,但是数据没有进行 pca 降维,所以不对叶子深度进行调参。

第六步: 检查是否过拟合

随着训练样本的提升,训练曲线和测试取消是逐渐收敛的,所以并没有出现倒挂的现象,所以模型并没有过拟合。

◆ 模型改讲

■ boosting 的集成

因为在训练集上的准确率相当的高,所以模型不是弱模型,整体的提升效果并不是 太好。

```
from sklearn.ensemble import AdaBoostClassifier
ada = Class_Fit(clf = AdaBoostClassifier)
param_grid = {'n_estimators' : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}
ada.grid_search(parameters = param_grid, Kfold = 5)
ada.grid_fit(X = X_train, Y = Y_train)
ada.grid_predict(X_test, Y_test)
```

准确率: 83.11 %

■ 基于 bagging 的集成

准确率: 93.89 %

树模型的准确率比较高,随机森林选取变量子集的方式会有助于进一步下降方差。但是因为数据并没有对异常值做特殊处理,比如年纪比较大的 104 岁用户,用 bagging 集成模型也许会有更好的结果,即使有个别决策树会因为异常值的影响导致预测不准确,但预测结果是参考多个决策树得到的结果,降低了异常值带来的影响。随机森林模型的准确率提升了 1.89 个百分点

◆ 模型评价

- 模型准确率 93.89%
- 没有出现过拟合

◆ 结果讨论

项目复述:在做 EDA 的过程中发现,个人信息数据出现了大量年龄过大的脏数据,推送记录里活动 id 包裹在 json 字段里,需要进行处理才能关联活动信息,清洗完数据之后,构建以用户为主键的特征表,分为行为特征(不同推送打开率,核销率)和消费特征(平均消费客单价等),从促销敏感度,补贴敏感度,消费能力,触达反应 4 个维度做 KMEANS 聚类,通过手肘法选取误差平方和下降最快的类别数量。最后用监督模型对类别进行预测用于后续新增用户做分群使用。

这次项目主要目的在于用户细分,观察聚类后的数据,每一类之间差异比较明显,大体可以分为低客单价,低打开的人群,高消费高打开,和中等消费高打开人群。

	客单价	核销率	打开率	bogo打开率	discount打开率	informational打开率
group						
0	19.247918	0.925990	0.802803	0.867266	0.774973	0.755025
1	8.882182	0.362632	0.697420	0.804916	0.629552	0.650267
2	91.575646	0.888360	0.793915	0.833333	0.751984	0.757937

再看人群分布:

group 0 2753 1 3689 2 126 dtype: int64

根据 2-8 法则, 2 号人群属于我们的 vip 用户他们贡献了大量的交易量,需要定期维护, 1 号人群属于非刚性用户,对买一送一的强刺激反应良好但是核销率偏低,信息推送打开率几乎和折扣推送差不多,可以经常 push 信息,结合买一送一券转化,对于中等客单价的 0 号人群,属于刚需用户,具有最高的买一送券打开率和核销率,所以要进一步下降刺激力度。用折扣券代替 bogo 券

■ 反思

◆ 本想要通过用户自身特征来预测用户的消费行为特征,得到的预测结果比较

- 差,所以不得不添加一些客观行为特征来增加信息增益。其实完全可以换一种思路,用协同过滤的形式去给相似的用户做推荐
- ◆ 没有考虑到用户的时间属性,对于生命周期做分析和分箱处理。这个特征应该 能贡献很多信息。
- ◆ 这次项目最有挑战的部分在于对于真实数据的预处理,对于混杂数据整合有效信息的过程非常考验数据处理能力,也是日常工作中最消耗精力的部分,本次项目 70%的时间都花在了数据处理和表格设计上,也学习到了很多实用 pandas和 numpy 处理数据的技巧