Subunit exchange *synchronises* cluster of CaMKII bistables

Dilawar Singh

September 4, 2017

Abstract

In this experiment, we enable diffusion on subunit x and y; and check its impact on switch behaviour. We find that system of N switches tend to synchronize with each other. Thereby making the cluster of bi-stables to behave like a one bistable switch.

See figure ?? in section ??.

1 Experiment

We construct a 'good' bistable switch with 6 CaMKII rings and 27 PP1 (see file ./CMakeLists.txt) in a cylinder of length 150×10^{-9} m and radius of 30×10^{-9} m (volume = 4.24116×10^{-22} m³). This configuration shows a good bistable behaviour.

We assemble N (=3) switches together and setup diffusion of subunit among them. The subunits x and y diffuse between compartments as shown below.

We run the simulation for different values of diffusion coefficients.

¹This is in contract to our previous study with simple Markov chain based bi-stables which predicted that system of N switches likely to act as one *almost always ON* monostable switch.

Figure 1: Diffusionn coefficient 0 µm²/s.

Figure 2: Diffusionn coefficient $1 \times 10^{-18} \, \mu m^2/s$.

Figure 3: Diffusionn coefficient $1\times 10^{-15}\,\mu\text{m}^2/\text{s}.$

Figure 4: Diffusionn coefficient $1 \times 10^{-14} \, \mu m^2/s$.

Figure 5: Diffusionn coefficient $1 \times 10^{-13} \, \mu m^2/s$.

Figure 6: Diffusionn coefficient $1\times 10^{-12}\,\mu\text{m}^2/\text{s}.$

2 Result

2.1 Mean and variation of CaMKII activity vs diffusion coefficient

The most important result from this experiment is the following.

When subunit exchange is enabled in a system of N CaMKII bistables, all bistables in the system 'synchronizes' their switching making the system a single bistable switch.

Figure $\ref{eq:shows}$ shows that intermediate states of N switches becoming increasing scarce upon increasing the coupling among switches.

Figure 7: Intermediate states become scarcer as we increase the 'coupling' among switches. Large diffusion coefficient increases the coupling among switches by making subunit exchange faster.