

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

PANDIAGONAL PRIME NUMBER MAGIC SQUARES.1

For ordinary magic squares the only requirements are that all rows, all columns, and the two main diagonals sum to the constant. For pandiagonal magics it is required in addition that *all* diagonals also sum to the constant.

PANDIAGONAL MAGIC SQUARES OF EVEN ORDERS.

Dr. C. Planck has given us the following rule for transposing all associated magic squares of even orders into pandiagonal magics but the inverse change from pandiagonal to association does not follow in every case.²

A	В
C	D

Fig. 1.

73	41	13	113
23	103	83	31
107	7	47	79
37	89	97	17

Fig. 2.

197	71	83	163	37	79
17	97	109	199	179	29
167	151	53	19	103	137
47	173	131	13	139	127
//	3/	181	193	113	101
191	107	73	43	59	157

Fig. 3.

271	1	227	353	101	163	503	421
491	439	151	337	137	61	311	//3
269	383	47	197	457	443	//	233
131	23	479	281	467	179	79	401
409	347	7	89	239	509	283	157
<i>373</i>	449	/99	397	19	71	359	173
53	67	499	277	24/	127	463	3/3
43	93/	43/	109	379	487	31	229

Fig. 4.

¹The author is indebted to Messrs. W. S. Andrews and H. A. Sayles, both of Schenectady, N. Y.: to the former for valuable assistance in writing these papers and to the latter for execution of the diagrams.

³ See *The Monist* for July, 1910, Vol. XX, No. 3, "The Method of Complementary Differences," by W. S. Andrews.

Rule: Divide the square into equal quarters parallel to its sides (see Fig. 1).

Leave A untouched.

Reflect B.

Invert C.

Reflect and invert D.

By this rule the associated magic squares of the fourth, sixth, eighth and tenth orders, (Figs. 2, 3, 4, 5), were transposed from the associated squares shown in the preceding article.

953	607	113	349	919	347	827	337	181	3/7
127	257	751	421	727	131	23	907	947	659
167	757	571	929	137	547	76/	7	103	971
397	109	359	179	739	709	373	977	719	989
557	307	541	9//	19/	467	53	107	839	677
643	163	653	809	673	37	383	877	641	7/
859	967	83	43	33/	863	733	239	569	263
443	229	983	887	19	823	233	419	61	853
281	6/7	13	271	601	593	881	63/	811	251
523	937	883	151	3/3	433	683	449	79	499

Fig. 5.

PANDIAGONAL MAGIC SQUARES OF ODD ORDERS.

It is obviously impossible to construct a pandiagonal magic square of the third order since all squares of this order are made from the same formula which is not a pandiagonal one.

x	y	Z	ν	t
υ	t	x	y	z
y	Z	ν	t	z
t	×	y	Z	υ
Z	ν	t	x	y

	_	
Fig.	6.	

a	Ъ	С	d	е
С	ď	e	a	3
e	a	b	С	d
b	С	ď	e	a
d	е	a	Ъ	С

Fig. 7.

Fig. 8.

Pandiagonal magics of odd prime orders larger than the third can be made from La Hirian primaries constructed as shown in Figs. 6 and 7, the paths in this instance being knight's moves in different directions.

A pandiagonal magic square of the fifth order is shown in Fig. 8 in which

x = 1	a=0
y = 13	b = 6
z=23	c = 30
v = 41	d = 60
t 97	e — 66

and the summation = 337.

/	19	53	101	163	751	857
601	હ્ય	211	283	23	47	127
3//	97	547	617	61	79	233
43	83	70	307	811	587	7
797	271	13	29	71	157	607
103	571	647	67	223	293	41
89	251	367	54/	593	3/	73

Fig. 9.

Fig. 9 shows a pandiagonal 7^2 , S = 1945, the primaries being as follows:

x = 1	a = 0
y=13	b = 6
z=23	c = 30
v = 41	d = 60
t = 97	e = 66
s = 541	f = 210
p = 587	g = 270

After long perseverance the writer succeeded in finding the unbalanced series of primes for a magic square of the 9th order,

shown in Fig. 10, but there appears to be no rule for making a pandiagonal magic therefrom. It was therefore decided to approach pandiagonal or nasik results as nearly as possible.

		51	- 4	% 4	4 7	0 8	0 /3	6 4	20
	1	7	11	137	181	251	63/	827	2647
	13	19	23	149	193	263	643	839	2659
-0	31	37	41	167	211	281	661	857	2677
30	61	67	71	197	24/	3//	691	887	2707
762	103	109	113	239	283	353	733	929	2749
330	433	439	443	569	613	683	1063	1259	3079
A.50	1483	1489	493	1619	1663	1733	2113	2309	4129
<i>636</i>	2341	2347	235/	2477	2521	2591	2971	3/67	4987
9300	5647	5653	5657	5783	5827	5897	6277	6473	8293

Fig. 10.

826	6	180	2646	10	250	630	0	136
630	0	136	826	6	180	2646	10	250
2646	10	250	630	0	136	826	6	180
6	180	826	Ø	250	2646	0	136	630
						Ю		
D	250	2646	0	136	630	6	180	826
180	826	6	250	2646	10	136	630	0
136	630	0	180	826	6	250	2646	10
250	2646	Ю	136	630	0	180	826	6

Fig. 11.

1	13	31	61	103	433	1483	2341	5647
0	6	10	136	180	250	630	826	2646

The above La Hirian primaries being laid out in the usual way from the unbalanced series, two primary squares (Figs. 11

and 12) were made according to an arrangement formulated by Mr. H. A. Sayles, Schenectady, N. Y. A combination of these two primary squares produced the magic square shown in Fig. 13,

433	3/	5647	61	1	1483	103	13	2341
61	1	483	103	13	2341	433	31	5647
103	13	2341	433	3/	5647	61	\	483
5647	433	3/	1483	61	1	234/	103	13
1483	6/	/	2341	103	13	5647	433	31
234/	103	13	5647	433	3/	1483	61	1
3/	5647	433	1	483	61	13	2341	103
1	483	6/	13	234/	103	31	5647	433
13	2341	103	3/	5647	433	1	1483	61

Fig. 12.

S=14,979. In this square each third diagonal =S, so that only six diagonals are regular. Each pair of irregular diagonals shows summations s+x and s-x; x being different with each

1259	37	<i>9</i> 027	2707	11	1733	733	13	2477
691	1	1619	929	19	2521	3079	41	5897
2749								
5653	613	857	1493	311	2647	2341	239	643
1483	197	63/	2347	283	839	5657	683	2677
235/	W	2659	5647	569	66/	1489	241	827
211	6473	439	251	4129	7/	149	2971	103
137	2//3	61	193	3/67	109	281	8293	443
263	1987	//3	167	6277	433	181	2309	67

Fig. 13.

pair in this square. The writer has attempted to correct these faulty diagonals, but so far without success.

In order to build a nasik square of the 9th order by rule, it is

necessary to find a series which will permit the two sets of La Hirian primaries to be each divided into three groups of numbers having a common summation, as exemplified in the arithmetical series 1, 2, 3, 4.....81. In this series the two sets of La Hirian primaries are

and the above may be rearranged in three groups as follows:

in which each triplet in the upper line sums 15 and each triplet in the lower line sums 108. The difficulty of finding a 9² series of prime numbers that will meet the above conditions appears to be insurmountable.

The writer believes the squares in this paper to be of the lowest possible summations, but no claim to that effect is made except in the case of the 4², though it is probable that 5² and 7² are also of minimum summation.

It is hoped that some student of magic squares may be able before long to make a pandiagonal square of the 9th order with prime numbers.

CHARLES D. SHULDHAM.

WYOMING N. J.

PANELED MAGIC SQUARES.*

These squares are made with a central magic square having one or more panels or borders of figures, so arranged that each enlargement forms another magic square.

Paneled magic squares may be either "perfect" or "imperfect," the former being those in which all intermediate squares are magic, and the latter those wherein one or more of the intermediate squares are not magic.

These two varieties are constructed by different rules. The "perfect" squares are formed entirely of couplets, with the exception of the center cells of odd squares, and the inner 42 of even squares,

^{*} Diagrams by Mr. H. A. Sayles, Schenectady, N. Y.