"2007-MA-(52-68)"

EE24BTECH11014 - Deepak

 $\int_{-1}^{1} |x| f(x) dx = \frac{1}{2} [f(x_0) + f(x_1)],$ where x_0 and x_1 are quadrature points. Then the highest degree of the polynomial,

 $P(A) = 0.4, P(B) = 0.5, P(A \cup B) = 0.6, P(C) = 0.6 \text{ and } P(A \cap B \cap C) = 0.1.$

3) Consider two identical boxes B_1 and B_2 , where the box B_i (i = 1, 2) contains i + 1 red and 5 - i - 1 white balls. A fair die is cast. Let the number of dots shown on th e top face of the die be N. If N is even or 5, two balls are drawn with replacement from the box B_1 , otherwise, two balls are drawn with replacement from the box B_2 .

4) Let X_1, X_2, \dots be a sequence of independent and identically distributed random

 $P(X_1=-1)=P(X_1=1)=\frac{1}{2}.$ Suppose for the standard normal random variable $Z,\ P(-0.1< Z\leq 0.1)=0.08.$ If

The probability that the two drawn balls are of different colours is

c) 3

c) $\frac{1}{4}$

c) $\frac{12}{25}$

c) 0.50

d) 4

d) $\frac{1}{5}$

d) $\frac{16}{25}$

d) 0.54

1) Consider the quadrature formula

a) 1

a) $\frac{1}{2}$

a) $\frac{7}{25}$

a) 0.42

varables with

Then $P(A \cup B|C) =$

for which the above formula is exact, equals

b) 2

b) $\frac{1}{3}$

b) $\frac{9}{25}$

b) 0.46

 $S_n = \sum_{i=1}^{n^2} X_i$, then $\lim_{n \to \infty} P(S_n > \frac{n}{10}) =$

2) Let A, B and C be three events such that

3)	Let X_1, X_2, X_5 be	a random sample of	size 3 from a popula	ation naving standard	
	normal distribution.	Let			
	$\overline{X} = \frac{1}{5} \sum_{i=1}^{5} X_i$ and $T = \sum_{i=1}^{5} (X_i - \overline{X})^2$				
	Then $E(T^2\overline{X}^2) =$				
	a) 3	b) 3.6	c) 4.8	d) 5.2	
6)	6) Let $x_1 = 3.5, x_2 = 7.5$ and $x_3 = 5.2$ be the observed values of random sample of size three from a population having uniform distribution over the interval $(\theta, \theta + 5)$, where $\theta \in (0, \infty)$ is unknown and is to be estimated. Then which of the following is NOT a maximum likelihood estimate of θ ?				

d) 1

a) 2.4	b) 2.7	c) 3.0	d) 3.3
7) The value of		C C C 4 .3	
equals		$\int_0^\infty \int_{\frac{1}{y}}^\infty x^4 e^{-x^3 y} dx dy$	

- a) $\frac{1}{4}$ b) $\frac{1}{3}$ 8) $\lim_{n\to\infty} \left[(n+1) \int_0^1 x^n \ln(1+x) \, dx \right] =$
- b) ln2 a) 0 c) ln3 d) ∞
- 9) Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} x^4, & \text{if x is rational} \\ 2x^2 - 1, & \text{if x is irrational} \end{cases}$

Let S be the set of points where f is continuous. Then

- b) $S = \{-1\}$ c) $S = \{-1, 1\}$ d) $S = \phi$ a) $S = \{1\}$
- 10) For a positive real number p, let $\{f_n : n = 1, 2, \dots \}$ be a sequence of functions defined on [0, 1] by

$$f_n(x) = \begin{cases} n^{p+1}x, & \text{if } 0 \le x \le \frac{1}{n} \\ \frac{1}{x^p}, & \text{if } \frac{1}{n} < x \le 1 \end{cases}$$

c) $\frac{1}{2}$

Let $f(x) = \lim_{n \to \infty} f_n(x), x \in [0, 1]$. Then, on [0]

- a) f is Riemann integrable
- b) the improper integral $\int_0^1 f(x)dx$ converges for $p \ge 1$ c) the improper integral $\int_0^1 f(x)dx$ converges for p < 1
- d) f_n converges uniformly
- 11) Which of the following inequality is NOT true for $x \in [\frac{1}{4}, \frac{3}{4}]$:

a)
$$e^{-x} > \sum_{j=0}^{2} \frac{(-x)^{j}}{j!}$$

 b) $e^{-x} < \sum_{j=0}^{3} \frac{(-x)^{j}}{j!}$
 c) $e^{-x} > \sum_{j=0}^{4} \frac{(-x)^{j}}{j!}$
 d) $e^{-x} > \sum_{j=0}^{5} \frac{(-x)^{j}}{j!}$

12) Let u(x, y) be the solution to the Cauchy problem

$$xu_x + u_y = 1, u(x, 0) = 2ln(x), x > 1.$$

Then u(e, 1) =

a)
$$-1$$
 b) 0 c) 1 d) e

13) Suppose

$$y(x) = \lambda \int_0^{2\pi} y(t) \sin(x+t) dt, \quad x \in [0, 2\pi]$$

has eigenvalues $\lambda = \frac{1}{\pi}$ and $\lambda = \frac{-1}{\pi}$ with corresponding eigenfunctions $y_1(x) = \sin(x) + \cos(x)$ and $y_2(x) = \sin(x) - \cos(x)$, respectively. Then the integral equation

$$y(x) = f(x) + \frac{1}{\pi} \int_0^{2\pi} y(t) \sin(x+t) dt, \quad x \in [0, 2\pi]$$

has a solution when f(x) =

a) 1	c) $\sin(x)$		
b) $\cos(x)$	$d) 1 + \sin(x) + \cos(x)$		
14) Consider the Neur	mann problem		
	$u_{xx} + u_{yy} = 0$, $0 < x < \pi$, $-1 < y < 1$		
	$u_x(0,y) = u_x(\pi,y) = 0$		
	$u_y(x, -1) = 0, u_y(x, 1) = \alpha + \beta \sin(x)$		
The problem adm	its solution for		

The problem admits solution for

a)
$$\alpha = 0, \beta = 1$$

b) $\alpha = -1, \beta = \frac{\pi}{2}$
c) $\alpha = 1, \beta = \frac{\pi}{2}$
d) $\alpha = 1, \beta = -\pi$

15) The functional

$$\int_0^1 (1+x)(y')^2 dx, \quad y(0) = 0, \quad y(1) = 1,$$

possesses

- a) strong maxima
- b) strong minima
- c) weak maxima but NOT a strong maxima
- d) weak minima but NOT a strong minima
- 16) The value of α for which the integral equation

$$u(x) = \alpha \int_0^1 e^{x-t} u(t) dt$$

has a non-trivial solution is

17) Let $P_n(x)$ be the Legendre polynomial of degree n and let

$$P_{m+1}(0) = -\frac{m}{m+1} P_{m-1}(0), \quad m = 1, 2,$$
 If $P_n(0) = -\frac{5}{16}$, then
$$\int_{-1}^1 P_n^2(x) dx =$$

a)
$$\frac{2}{13}$$
 b) $\frac{2}{9}$ c) $\frac{5}{16}$ d) $\frac{2}{5}$