# Indian Institute of Science Education and Research, Kolkata Department of Mathematics and Statistics Master's Thesis BS-MS Dual Degree Program

# Introduction to Complex Dynamics and the Mandelbrot Set

Aditya Dutta (18MS101)

Supervisor: Dr. Sushil Gorai Date final version: 20th Aug, 2023

# 1 Introduction

# 1.1 The Spherical metric

We begin by defining the extended complex plane,  $\mathbb{C}_{\infty}$  simply as the union,

$$\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}.$$

To obtain, a metric on  $\mathbb{C}_{\infty}$ , we identify  $\mathbb{C}$  with the XY plane in  $\mathbb{R}^3$ . And let S be the unit sphere centered at origin.

We then use the stereographic projection,  $\pi: z \mapsto z^*$  by projecting each point z in  $\mathbb{C}$  linearly towards (or away) (0,0,1) until it meets S. We then define,  $\pi(\infty) = \infty$ . In this way,  $\pi$  is a bijective map from  $\mathbb{C}_{\infty}$  onto S, and this is the reason why it  $\mathbb{C}_{\infty}$  is also called the Complex or Riemann Sphere.

We now define a natural metric on  $\mathbb{C}_{\infty}$  using this stereographic projection as,

$$\sigma(z, w) = |\pi(z) - \pi(w)| = |z^* - w^*|.$$

This is known as the *Spherical metric* on  $\mathbb{C}_{\infty}$  and we will use this metric mainly to define equicontinuity ahead.



#### 1.2 Rational maps

**Definition 1.2.1** (Rational maps). A rational map is a function of the form,

$$R(z) = \frac{P(z)}{Q(z)},$$

where P and Q are polynomials but not simultaneously zero polynomials. If Q(z) = 0 and P is not the zero polynomial, then R is defined to be  $\infty$ . Also, we define  $R(\infty)$  to be the limit of R(z) as  $z \to \infty$ .

We shall always assume P and Q are co-prime. We define the **degree** of a rational map R as,

$$\deg(R) = \max\{\deg(P), \deg(Q)\}.$$

If R is a constant map (even  $\infty$ ), we define,  $\deg(R) = 0$ .

It is a crucial fact that if R is a rational function of degree d, then R is a d-fold map of  $\mathbb{C}_{\infty}$  onto itself.

# 1.3 Definition of Fatou and Julia sets in terms of equicontinuity

**Definition 1.3.1** (Fatou and Julia Sets). Let R be a non-constant rational function. The Fatou set of R denoted by F(R) is the maximal open subset of  $\mathbb{C}_{\infty}$  on which  $\{R^{\circ n}\}$  is equicontinuous. The Julia set of R, denoted by J(R) is the complement of F(R) in  $\mathbb{C}_{\infty}$ .

By definition, F(R) is open and J(R) is compact.

They are denoted by simply F or J when the context is clear.

# 1.4 Completely Invariant Components

If  $f: X \to X$ , then a subset  $D \subset X$  is:

- forward invariant under the map f if f(D) = D.
- backward invariant under the map f if  $f^{-1}(D) = D$ .
- completely invariant under the map f if it is both forward and backward invariant under f i.e. f(D) = D and  $f^{-1}(D) = D$ .

Note that if f is surjective, i.e. f(X) = X, then backward invariance implies complete invariance. This is because,  $f(f^{-1}(D)) = D$  if f is surjective. Hence, if  $f^{-1}(D) = D$ , we have f(D) = D i.e. forward invariance.

**Theorem 1.4.1.** If  $f: X \to X$  be a continuous, open and surjective map of a topological space X onto itself. If  $D \subset X$  is completely invariant under f, then so are the complement  $X \setminus D$ , the interior  $D^0$ , the boundary  $\partial D$  and the closure  $\overline{D}$ .

*Proof.* Firstly, note that it is enough to prove backward invariance since f is surjective. It is trivial to see that  $X \setminus D$  is completely invariant.

Now, since f is a continuous map,  $f^{-1}(D^0)$  is an open subset of  $f^{-1}(D) = D$ . Hence,  $f^{-1}(D^0) \subset D^0$ . Now, since f is an open map,  $f(D^0)$  is an open subset of f(D) = D. Hence,  $f(D^0) \subset D^0 \implies D^0 \subset f^{-1}(f(D^0)) \subset f^{-1}(D^0)$ . Hence,  $f^{-1}(D^0) = D^0$  and hence,  $D^0$  is completely invariant.

From the general fact for continuous maps,  $\overline{f^{-1}(A)} \subset f^{-1}(\overline{A})$ . Hence,  $\overline{D} \subset f^{-1}(\overline{D})$ . Now, let  $x \in f^{-1}(\overline{D})$  (or  $f(x) \in \overline{D}$ ). If  $x \notin \overline{D}$ , then there exists and open set around x, say U such that  $U \cap D = \phi$ . Since f is an open map, f(U) is an open set containing f(x). Since,  $f(x) \in \overline{D}$ ,  $f(U) \cap D \neq \phi$ . But since,  $f^{-1}(D) = D$ ,  $f^{-1}(f(U) \cap D) \subset D$ . But,  $f^{-1}(f(U) \cap D) \cap U \neq \phi \implies D \cap U \neq \phi$ , which is a contradiction. Hence,  $\overline{D} = f^{-1}(\overline{D})$ . Hence,  $\overline{D}$  is also completely invariant.

Consequently,  $\partial D = \overline{D} \backslash D^0$  is also completely invariant.

**Theorem 1.4.2.** For any rational function R, the Fatou and Julia sets of R i.e. F(R) and J(R) are completely invariant.

*Proof.* First note that it is enough to prove only backward invariance because R is surjective. Also, we will only prove the complete invariance of F(R), the complete invariance of J(R) then follows from above theorem. We will use F to denote F(R).

Let  $z_0 \in R^{-1}(F)$  and let  $w_0 = R(z_0) \in F$ . By equicontinuity, for any  $\epsilon > 0$ ,  $\exists \delta > 0$  such that if  $\sigma(z, z_0) < \delta$ , then for all  $n \in \mathbb{N}$ ,  $\sigma(R^{\circ n}(w), R^{\circ n}(w_0)) < \epsilon$ . By continuity of R, there exists  $\delta' > w_0$  such that if  $\sigma(z, w_0) < \delta'$ , then  $\sigma(R(z), w_0) < \delta$  and hence,  $\sigma(R^{\circ n+1}(z), R^{\circ n+1}(z_0)) < \epsilon$  for all  $n \in \mathbb{N}$ . Hence,  $\{R^{\circ n+1} : n \in \mathbb{N}\}$  is equicontinuous at  $z_0$  and hence, so is  $\{R^{\circ n} : n \in \mathbb{N}\}$ . Therefore,  $z_0 \in F$  and  $R^{-1}(F) \subset F$ .

Now, let  $z_0 \in F$ . To prove that  $z_0 \in R^{-1}(F)$ , we need to prove that  $R(z_0) \in F$ . Let  $w_0 = R(z_0)$ . We have by equicontinuity, that for any  $\epsilon > 0$ ,  $\exists \delta > 0$  such that for all  $n \in \mathbb{N}$ , if  $\sigma(z, z_0) < \delta$ , then  $\sigma(R^{\circ n+1}(z), R^{\circ n+1}(z_0)) < \epsilon$ . Now,  $N = \{z : \sigma(z, z_0) < \delta\}$  is an open set containing  $z_0$  and hence, R(N) is an open set containing  $w_0$ . Now, if  $w \in R(N)$  then w = R(z) for some  $z \in N$ . Hence,

$$\sigma(R^{\circ n}(w), R^{\circ n}(w_0)) = \sigma(R^{\circ n+1}(z), R^{\circ n+1}(z_0)) < \epsilon.$$

Hence,  $z_0 \in R^{-1}(F)$  and  $F \subset R^{-1}(F)$ .

Therefore,  $R^{-1}(F) = F$  and F(R) is completely invariant.

**Lemma 1.4.3.** For any rational map R and a domain  $U \subset \mathbb{C}_{\infty}$ ,  $\partial R(U) \subset R(\partial U)$ .

*Proof.* Let  $w_0 \in \partial R(U)$  such that it is approximated by  $R(z_n)$  for  $(z_n)_{n=1}^{\infty} \subset U$ . Now, assume  $z_n \to z_0$  (after taking a subsequence). Now,  $z_0$  cannot lie in U, otherwise  $R(z_0) =$ 

 $w_0 \in R(U)$ . Since, R is an open map, R(U) is an open set and is disjoint from  $\partial R(U)$ . Hence,  $z_0 \in \partial U$  and  $R(z_0) = w_0 \in R(\partial U)$ . Therefore,  $\partial R(U) \subset R(\partial U)$ .

**Lemma 1.4.4.** For a rational map R, if  $F_1$  and  $F_2$  are two Fatou components and R maps a point of  $F_1$  to a point of  $F_2$ , then  $R(F_1) = F_2$ .

Proof. Clearly,  $R(F_1) \subset F_2$  because of forward invariance of F under R and since  $F_1$  and  $F_2$  are connected components of F. If  $R(F_1) \neq F_2$ , then  $\exists z \in \partial F_1$  such that  $R(z) \in F_2$  and this is not possible as  $z \in \partial F_1 \implies z \in J$  and J is completely invariant. Hence,  $R(F_1) = F_2$ .

**Theorem 1.4.5.** The unbounded Fatou component of a polynomial P, i.e. the Fatou component containing  $\infty$  is a completely invariant Fatou component. It is denoted by  $F_{\infty}(P)$  or simply  $F_{\infty}$  when the context is clear.

Proof. First note that since  $P(\infty) = \infty$ , we have  $P(F_{\infty}) = F_{\infty}$  by the above lemma. Hence,  $F_{\infty} \subset P^{-1}(F_{\infty})$ . Now assume, some point  $z_0 \in P^{-1}(F_{\infty})$  but  $z_0 \notin F_{\infty}$ . By backward invariance of F,  $z_0 \in F'$ , where F' is some other Fatou component. Again,  $P(F') = F_{\infty}$  by above lemma. But for polynomials, we have  $P^{-1}(\infty) = \{\infty\}$ . Hence,  $\infty \in F'$  and F' must be  $F_{\infty}$  itself. Therefore,  $P^{-1}(F_{\infty}) = F_{\infty}$  and  $F_{\infty}$  is completely invariant under P.

**Theorem 1.4.6.** Let R be rational map and let E be a finite set which is completely invariant under R. Then E has at most two elements.

*Proof.* Suppose E has k elements. Now, R acts as a permutation of E and hence for some integer s,  $R^{\circ s}$  acts as an identity map on E. Now, suppose  $R^{\circ s}$  has degree d. It follows that for any  $z_0 \in E$ ,  $R^{\circ s}(z) = z_0$  has solution  $z_0$  with multiplicity d. Applying the Riemann-Hurwitz formula, (in the next section)

$$k(d-1) \le 2d - 2$$

and hence,  $k \leq 2$ .

# 1.5 Valency and the Riemann-Hurwitz formula

Let f be a holomorphic map on the complex plane. Then, near a point  $z_0$ , f has the Taylor expansion,

$$f(z) = f(z_0) + a_k(z - z_0)^k + \dots,$$

where  $a_k \neq 0$  and  $k \geq 1$ . Then, we define the valency of f at  $z_0$ ,  $v_f(z_0) = k$ .

For  $f: X \to Y$  where X and Y are Riemann surfaces, we have local analytic coordinates near  $z_0$  and  $f(z_0)$  such that f has the form  $f(z) = a_k z^k + \ldots$ ,  $(a_k \neq 0 \text{ and } k \geq 1)$  then again we define the valency of f at  $z_0$  as  $v_f(z_0) = k$ . The valency is independent of the choice of co-ordinates.

**Definition 1.5.1** (Deficiency). We define the deficiency of f over a set A as,

$$\delta_f(A) = \sum_{z \in A} (v_f(z) - 1).$$

Theorem 1.5.1 (Generalized Riemann-Hurwitz formula). Let X and Y be Riemann surfaces and  $f: X \to Y$  be a complex analytic map of degree d. Then,

$$\chi(X) + \delta_f(X) = d\chi(Y),$$

where  $\chi(X)$  denotes the Euler characteristic of X.

For a compact, connected and orientable surface S, the Euler characteristic  $\chi(S) = 2-2g$ , where g is the genus of S. Hence, if X and Y are compact Riemann surfaces, we get the following formula (after multiplying both sides by -1),

$$2g(X) - 2 = d(2g(Y) - 2) + \delta_f(X).$$

**Theorem 1.5.2** (Riemann-Hurwitz Formula (version 1)). Now, genus of a sphere is zero and hence,  $g(\mathbb{C}_{\infty}) = 0$ . For a rational map, which is a d-fold map of the complex sphere onto itself, we have,

$$\implies 2g(\mathbb{C}_{\infty}) - 2 = d(2g(\mathbb{C}_{\infty}) - 2) + \delta_R(\mathbb{C}_{\infty})$$

$$\implies \delta_R(\mathbb{C}_{\infty}) = 2d - 2$$

$$\implies \sum_{z \in \mathbb{C}_{\infty}} (v_R(z) - 1) = 2d - 2.$$

**Theorem 1.5.3** (Riemann-Hurwitz Formula (version 2)). Let  $F_0$  and  $F_1$  be components of the Fatou set F of a rational map R and R maps  $F_0$  into  $F_1$ . Then, for some integer m, R is an m-fold map of  $F_0$  onto  $F_1$  and

$$\chi(F_0) + \delta_R(F_0) = m\chi(F_1).$$

*Proof.* We only need to prove that if R maps  $F_0$  into  $F_1$ , then it is a m-fold map of  $F_0$  onto  $F_1$  for some  $m \in \mathbb{Z}$ .

# 1.6 Equicontinuity and Normality

There is another criterion that we use more in practice to define Fatou sets.

**Definition 1.6.1** (Normal Families). A family of maps,  $\mathcal{F}$  of maps from metric space  $(X_1, d_1)$  to  $(X_2, d_2)$  is said to be a normal family in  $X_1$ , if every infinite sequence of function in  $\mathcal{F}$  has a subsequence which converges locally uniformly on  $X_1$ .

The Arzela-Ascoli theorem connects equicontinuity and normality. This is one of the many forms of the theorem, which is suitable for our use.

**Arzela-Ascoli Theorem.** Let D be a domain on the complex sphere and let  $\mathcal{F}$  be a family of continuous maps defined on D. Then,  $\mathcal{F}$  is equicontinuous in D if and only if it is a normal family in D.

Thus, we can redefine the Fatou set of R as the maximal open set of  $\mathbb{C}_{\infty}$  on which the family  $\{R^{\circ n}\}$  is normal.

**Theorem 1.6.1** (Vitali's Theorem). Let D be a subdomain of complex sphere. Suppose  $\{f_n\}_{n\in\mathbb{N}}$  be a family of analytic maps normal in D. Also suppose,  $\{f_n\}$  converges pointwise on some subset  $W\subset D$  such that W contains a limit point in D. Then,  $f(z):=\lim_{n\to\infty}f_n(z), z\in W$  extends to an analytic function F on D and  $f_n\to F$  locally uniformly in D.

*Proof.* As  $\{f_n\}$  is a normal family, there is a subsequence of  $(f_n)$  which converges locally uniformly in D to some analytic function F and F = f on W.

Now, assume  $(f_n)$  fails to converge locally uniformly to F on D. Then, there is some subsequence  $(g_n)$  of  $(f_n)$  and  $\epsilon > 0$  such that for all n and all  $z \in K$ ,

$$\sigma(g_n(z), F(z)) \ge \epsilon.$$

But again by normality, there is a subsequence  $(h_n)$  of  $(g_n)$  which converges locally uniformly in D to some analytic function h. Clearly, h = F = f on W and since W has a limit point in D, h = F throughout D by the Identity theorem. It follows that,

$$\sigma(h_n(z), F(z)) \to 0$$

uniformly in K. This is a contradiction as  $(h_n)$  is a subsequence of  $(g_n)$ . Hence,  $(f_n)$  converges locally uniformly to F = f on D.

Corollary 1.6.1.1. If  $\alpha$  is a (super)-attracting fixed point of a rational map R and  $F_{\alpha}$  is the Fatou component containing  $\alpha$  then  $R^{\circ n}(z) \to \alpha$  locally uniformly in  $F_{\alpha}$ .

We now state one of the most important theorem for normal families, the *Montel's Fundamental Normality Criterion*. It provides us with a very easy way to check if some family of maps is normal on a domain of the complex sphere.

**Theorem 1.6.2** (Montel's Fundamental Normality Criterion). Let  $\mathcal{F}$  be a family of maps, each analytic in a domain D of the complex sphere. Suppose  $\exists m > 0$  and for each  $f \in \mathcal{F}$ , three distinct points  $a_f, b_f$  and  $c_f$  such that,

- 1. f(D) does not contain  $a_f, b_f$  and  $c_f$ ,
- 2.  $\min\{\sigma(a_f, b_f), \sigma(b_f, c_f), \sigma(c_f, a_f)\} \geq m$ ,

then  $\mathcal{F}$  is normal in D.

# 1.7 Exceptional points and minimality of the Julia set

**Theorem 1.7.1** (Minimality of J). Let R be a rational map with  $\deg(R) \geq 2$  and suppose that E is a closed, completely invariant subset of the complex sphere. Then either,

- 1. E has atmost two elements and  $E \subset E(R) \subset F(R)$ .
- 2. E is infinite and  $J(R) \subset E$ .

*Proof.* We know that either E has atmost two points or it is infinite. If E is finite, then E contains only exceptional points which lie in F(R). Now, suppose E is infinite. As E is completely invariant, so is its complement, say G. Hence,  $R^{\circ n}$  maps G into itself for each  $n \in \mathbb{N}$ . Hence, applying Montel's Fundamental Normality Criterion, while choosing  $a_f, b_f$  and  $c_f$  to be any three points in E, we see that  $\{R^{\circ n}\}$  is a normal family in G. Hence,  $G \subset F \implies J \subset G^c = E$ .

This result can also be stated as:

J is the smallest, closed completely invariant set with atleast three points.

**Corollary 1.7.1.1.** If R is a rational function, with  $deg(R) \ge 2$ , and  $F_0$  is a completely invariant Fatou component of R, then,  $\partial F_0 = J$ .

*Proof.* As  $F_0$  is completely invariant, so is  $\overline{F_0}$ . By minimality of J,  $J \subset \overline{F_0}$ . As J is disjoint from  $F_0$ ,  $J = \partial F_0$ .

#### 1.8 Connectivity

**Definition 1.8.1** (Connectivity). The connectivity of a domain  $D \subset \mathbb{C}_{\infty}$  is defined as the number of components of  $\partial D$ .

**Theorem 1.8.1.** The following are equivalent for a domain  $D \subset \mathbb{C}_{\infty}$ :

- 1. D is simply connected.
- 2.  $D^c$  is connected.
- 3.  $\partial D$  is connected or c(D) = 1.

*Proof.*  $D^c$  being connected can be taken as the definition of D being simply connected, as it is done by Ahlfors [Ahl79]. Later it is this definition of simply connected, which is used to prove the Riemann mapping theorem, which proves biholomorphism between simply connected sets and the unit disc which is actually simply connected.

We will prove the equivalence of 1 and 3.

If D is not simply connected, then there is a simple closed curve  $\gamma$  in D which separtes the complement of D, proving that  $\partial D$  is disconnected.

Now, suppose that  $\partial D$  is disconnected. Then there is a simple closed curve  $\gamma$  which separtes  $\partial D$  into two disjoint subsets A and B. Since, D is path-connected and D is arbitrarily close to A and B, D intersects  $\gamma$ . By construction,  $\gamma$  does not intersect  $\partial D$  and hence,  $\gamma$  lies in D. Thus, A and B lie in different components of the complement of D and hence, D cannot be simply connected.

**Note:** If D is simply connected, we have c(D) = 1 and  $\chi(D) = 1$ . More generally,  $\chi(D) = 2 - c(D)$ .

# 2 Petal Theorem

A point p is called a parabolic fixed point of f if f(p) = p and  $f'(p) = e^{2\pi i t}$ , where t is a rational number.

**Lemma 2.0.1.** Suppose f is analytic and satisfies

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{p+2})$$

in some neighbourhood N of the origin. Let  $\omega_1, \ldots, \omega_p$  be the p-th roots of unity and let  $\eta_1, \ldots, \eta_p$  be the p-th roots of -1. Then for sufficiently small  $r_0$  and  $\theta_0$ ,

1. |f(z)| < |z| on each sector

$$S_j = \{ re^{i\theta} : 0 < r < r_0, |\theta - \arg(\omega_j)| < \theta_0 \}.$$

2. |f(z)| > |z| on each sector

$$\Sigma_j = \{ re^{i\theta} : 0 < r < r_0, |\theta - \arg(\eta_j)| < \theta_0 \}.$$

*Proof.* We have,

$$f(z)/z = 1 - z^p + \mathcal{O}(z^{p+1}) = 1 - z^p(1 + g(z)),$$

where g is analytic in N with g(0) = 0.

Now, consider the sector,

$$S = \{z \in \mathbb{C} : |z| < \frac{1}{2}; |\arg(z)| < \pi/4\}.$$

For small  $r_0$  and  $\theta_0$ ,  $z \in S_j \implies z^p(1+g(z)) \in S$  and  $z \in \Sigma_j \implies -z^p(1+g(z)) \in S$ . This is because for small enough  $r_0$  and  $\theta_0$ ,  $z \mapsto z^p$  maps  $S_j$  onto the set

$$S_0 = \{ z \in \mathbb{C} : |z| < r_0^p; |\arg(z)| < p\theta_0 \} \subset S.$$

And,  $|z^p - z^p(1 + g(z))| = |z|^p |g(z)| \le M|z|^{p+1} = M(|z|^p)^{1 + \frac{1}{p}}$ . Hence, for any  $w \in S_0$ , the perturbation of any point is  $\le M|w|^{1+1/p}$ .

Before stating the *Petal Theorem*, which discusses the behaviour of analytic functions near parabolic fixed points, we first define the notions of *petals*.

**Definition 2.0.1** (Petals). Let  $p \in \mathbb{N}$ . For each  $k \in \{0, 1, ..., p-1\}$ , define the sets as a function of a parameter t > 0 as follows,

$$\Pi_k(t) = \{ re^{i\theta} : r^p < t(1 + \cos(p\theta)); |\theta - 2k\pi/p| < \pi/p \}.$$

The sets  $\Pi_k(t)$  are known as Petals.

We have shown a diagram of the petals  $\Pi_k(t)$  in Figure 2.1 for p=6.

Note that all the petals are pairwise disjoint and each petal subtends an angle of  $2\pi/p$  at the origin.



Figure 2.1: Six petals at the origin for p = 6.

**Theorem 2.0.2** (The Petal Theorem). Suppose that an analytic map f has the form:

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1})$$

near the origin. Then for sufficiently small t,

- 1. f maps each  $\Pi_k(t)$  into itself;
- 2.  $f^{\circ n}(z) \to 0$  uniformly on each petal;
- 3.  $\arg(f^{\circ n}(z)) \to 2k\pi/p$  locally uniformly on each petal;
- 4.  $f: \Pi_k(t) \to \Pi_k(t)$  is conjugate to a translation.
- 5. |f(z)| < |z| on a neighbourhood of the axis of each petal;

*Proof.* For  $0 < r_0 < 1$ , define the sector  $S_0$ ,

$$S_0 = \{ re^{i\theta} : 0 < r < r_0, |\theta| < \pi/p \}$$

and the region W,

$$W = \{re^{i\theta} : r > \frac{1}{r_0^p}, |\theta| > \pi\}.$$



Figure 2.2:  $\sigma$  is a biholomorphism from  $S_0$  onto W.

It is clear that the map  $\sigma: z \mapsto \frac{1}{z^p}$  is a biholomorphism of  $S_0$  onto W with  $\sigma^{-1}: W \to S_0$  given by  $\sigma^{-1}(w) = 1/w^{\frac{1}{p}}$ . Actually,  $\sigma$  is a biholomorphism of each sector  $S_k = \{0 < r < r_0, |\theta - 2k\pi/p| < \pi/p\}$  onto W. The branch of  $\sigma^{-1}(w) = 1/w^{\frac{1}{p}}$  that we choose determines which sector the inverse map maps to.

Now, the conjugate map of f on W is given by,

$$g(w) = \sigma f \sigma^{-1}(w) = f(w^{-\frac{1}{p}})^{-p}.$$

This just replaces the action of f on  $S_0$  by g on W, and we have the following commutative diagram:

Now, we will use the power series expansion of f near the origin to get information about g.

First let us try to get a estimate of the power series expansion of  $f(z)^{-p}$ . We have,

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}) = z(1 - z^p + \mathcal{O}(z^{2p})) = z(1 - z^p - a_0 z^{2p} - a_1 z^{2p+1} + \dots).$$

So,

$$\frac{1}{f(z)^p} = z^{-p} \left( \frac{1}{1 - z^p - a_0 z^{2p} - a_1 z^{2p+1} + - \dots} \right)^p.$$

Now, let  $\alpha(z) = z^p + a_0 z^{2p} + a_1 z^{2p+1} + \dots$ , then for  $r_0$  small enough such that  $|\alpha(z)| < 1$  on  $\{|z| < r_0\}$ , we can write,

$$\frac{1}{1-\alpha(z)} = 1 + \alpha(z) + \alpha(z)^2 + \dots$$

Therefore,

$$\frac{1}{f(z)^p} = z^{-p} (1 + \alpha(z) + \alpha(z)^2 + \dots)^p$$

$$= z^{-p} (1 + pz^p + Az^{2p} + A_1 z^{2p+1} + \dots)$$

$$= \frac{1}{z^p} + p + Az^p + v(z),$$

where A is some constant and v(z) is holomorphic on  $\{|z| < r_0\}$ , and for some small  $r_0 > 0$ , it satisfies  $|v(z)| \le B|z|^{p+1}$ , B > 0.

Now, if  $w \in W$ , then  $\sigma^{-1}(w) \in S$ . Hence, by substituting  $z = \sigma^{-1}(w) = w^{-1/p}$ , we have,

$$g(w) = \sigma f \sigma^{-1}(w)$$

$$= \frac{1}{f(w^{-1/p})^p}$$

$$= w + p + A/w + \theta(w),$$

where  $|\theta(w)| = |v(w^{-1/p})| \le B|w^{-1/p}|^{p+1} = B/|w|^{1+\frac{1}{p}}$ .

Hence, we have the following estimates for g which will be crucial in everything that will follow:

$$g(w) = w + p + A/w + \theta(w)$$
, where A is a constant and (2.1)

$$|\theta(w)| \le B/|w|^{1+\frac{1}{p}}, B > 0.$$
 (2.2)

Choose any K satisfying

$$K > \max\{1/r_0^p, 3(|A|+B)\} > 1 \text{ (as } r_0 < 1)$$

and let,

$$\Pi = \{x + iy : y^2 > 4K(K - x)\}.$$



Figure 2.3:  $\Pi = \{(x, y) : y^2 > 4K(K - x)\}.$ 

Clearly,  $\Pi$  is bounded by a parabola and  $\Pi \subset W$  (See Figure 2.3).

We have chosen this subset  $\Pi \subset W$  because we will show that  $\Pi$  is nothing but the conformal image of  $\Pi_0(t)$  under  $\sigma$  (for a suitable t) and g satisfies all the corresponding conditions that f should satisfy on  $\Pi_0(t)$  according to the theorem.

**Claim.**  $\Pi$  is the conformal image of  $\Pi_0(t)$  under  $\sigma$  for a suitable t.

The easiest way to see this is using polar coordinates. We write,  $z = re^{i\theta}$  for  $z \in S_0$  and  $w = \rho e^{i\phi}$  for  $w \in W$ . Then,  $\rho = \frac{1}{r^p}$  and  $\phi = -p\theta$ .

Now, we need to express  $\Pi$  in polar co-ordinates. To do so, we notice that points on the parabola are given by

 $\rho$  (distance from focus i.e. 0) =  $2K - \rho \cos \phi$  (distance from directrix i.e. y = 2K).

(See Figure 2.4). Therefore, points on  $\Pi$  are given by

$$\rho > 2K - \rho \cos \phi$$
.

Hence,

$$\Pi = \{ \rho e^{i\phi} : 2K < \rho(1 + \cos\phi) \}.$$



Figure 2.4:  $\Pi = \{ \rho e^{i\phi} : \rho > 2K - \rho \cos \phi \}.$ 

Now, let  $\Omega = \sigma^{-1}(\Pi)$ . Then,  $\Omega$  is given by

$$\Omega = \{ re^{i\theta} : 2Kr^p < 1 + \cos(p\theta) \}.$$

Hence,  $\Omega = \Pi_0 \left( \frac{1}{2K} \right)$ .

**Lemma 2.0.3.** g satisfies the following properties on  $\Pi$ :

- 1.  $\Pi$  is forward invariant under g.
- 2.  $g^{\circ n}(w) \to \infty$  uniformly on  $\Pi$ .
- 3.  $\arg(g^{\circ n}(w)) \to 0$  locally uniformly on  $\Pi$ .
- 4.  $g:\Pi\to\Pi$  is conjugate to a translation.

Proof.

1. We write,

$$w = x + iy$$
,  $g(w) = X + iY$ ,  $A/w + \theta(w) = a + ib$ .

From Equation (2.1), we obtain,

$$X + iY = (x + iy) + p + (a + ib)$$

$$\implies X = x + p + a \text{ and } Y = y + b.$$

Now, if  $w \in \Pi$ ,

$$Y^{2} - 4K(K - X) = (y + b)^{2} - 4K(K - x - p - a)$$

$$= [y^{2} - 4K(K - x)] + b^{2} + 2yb + 4K(a + p)$$

$$> 4Kp + (2yb + 4Ka).$$

Now, for  $w \in \Pi$ , |w| > K > 1. (It is clear for Re(w) > K. For  $Re(w) \le K$ , we use the polar description  $\rho > 2K - \rho \cos \phi$  to get  $|w| > 2K - Re(w) \ge K$ ). Hence we get,

$$|w||A/w + \theta(w)| \le |w|(|A|/|w| + B/|w|^{1+\frac{1}{p}}) = |A| + B/|w|^{\frac{1}{p}} < |A| + B$$
 (2.3)

(since for |w| > 1,  $|w|^{\frac{1}{p}} > 1$ ). Therefore,

$$\begin{aligned} |2yb + 4Ka| &\leq 2|yb| + 4K|a| \\ &\leq 2|y||b| + 4K|a| \\ &\leq 2|w||a + ib| + 4|w||a + ib| \\ &= 6|w||a + ib| \\ &< 2K \leq 2Kp. \end{aligned}$$

Therefore, we see that  $Y^2 - 4K(K - X) > 0$  and hence,  $g(w) \in \Pi$  for  $w \in \Pi$ . Hence,  $\Pi$  is forward invariant under g.

**2.** Now, we will prove a stronger statement that for any t > 0 g maps  $\Pi + t$  into  $\Pi + t + p/2$ . This is simply because, for  $w \in \Pi + t$ , we have,  $y^2 - 4K(K + t - x) > 0$ . Hence,

$$Y^{2} - 4K(K + t + p/2 - X) = [y^{2} - 4K(K + t - x)] + b^{2} + 2yb + 4K(a - p/2)$$

$$> 2Kp + (2yb + 4Ka)$$

$$> 0.$$

Therefore, if  $w \in \Pi$ ,  $g^{\circ n}(w) \in \Pi + np/2$ . Hence,  $|g^{\circ n}(w)| > \sqrt{n}$ . This is simply because, if  $x + iy \in \Pi + np/2$ , we have

$$x^{2} + y^{2} - n > x^{2} + 4K(K + np/2 - x) - n = x^{2} - 4Kx + (4K^{2} + 2npK - n).$$

The discriminant of this quadratic equation in x is

$$16K^2 - 4(4K^2 + 2npK - n) = 4n(1 - 2pK) < 0$$

. Thus,  $x^2+y^2-n>0$  for all  $x+iy\in\Pi+np/2$ . Hence,  $g^{\circ n}(w)\to\infty$  uniformly on  $\Pi$ . 3. Firstly, we see that,

$$g^{\circ k}(w) = g(g^{\circ k}(w)) = g^{\circ k}(w) + p + A/g^{\circ k}(w) + \theta(g^{\circ k}(w)).$$

By expanding the first term again and again, we obtain,

$$g^{\circ n}(w) = w + np + \sum_{k=0}^{n-1} \left( \frac{A}{g^{\circ k}(w)} + \theta(g^{\circ k}(w)) \right). \tag{2.4}$$

Also note that form Equation (2.3), we have,

$$|A/w + \theta(w)| < (|A| + B)/K < \frac{1}{3}.$$

Let Q be a compact subset of  $\Pi$ . From now, we will assume that  $w \in Q$  and we will use  $C_1, C_2, C_2, \ldots$  to denote positive constants which will be dependent on Q. Hence,

$$\begin{split} |g(w)| &= |w + p + A/w + \theta(w)| \ge ||w + p| - |A/w + \theta(w)|| \\ &= |w + p| - |A/w + \theta(w)| \\ &\ge |w| + p - \frac{1}{3}. \end{split}$$

Therefore, we obtain,

$$|g^{\circ n}(w)| \ge |w| + n(p - 1/3) \ge C_1 + C_2 n.$$

(Here,  $C_1 = \min\{|w| : w \in Q\} > 0$  and  $C_2 = p - \frac{1}{3} > 0$ .) Hence,

$$|g^{\circ n}(w)| \ge C_2 n. \tag{2.5}$$

Next, with Equation (2.2), and the above inequality, we get,

$$|\theta(g^{\circ n}(w))| \le B/|g^{\circ n}(w)|^{1+\frac{1}{p}} \le C_3/n^{1+\frac{1}{p}}.$$
 (2.6)

Finally, combining the above two inequalities and Equation (2.4), we obtain,

$$|g^{\circ n}(w) - np| \le |w| + |A/w + \theta(w)| + \frac{|A|}{C_2} \sum_{k=1}^{n-1} \frac{1}{k} + C_3 \sum_{k=1}^{n-1} \frac{1}{n^{1 + \frac{1}{p}}}$$

$$< C_4 + C_5 \sum_{k=1}^{n} \frac{1}{k}.$$

(Here,  $C_4 = \max\{|w| : w \in Q\} + \frac{1}{3} + C_3 \sum_{n=1}^{\infty} 1/n^{1+\frac{1}{p}}$  and  $C_5 = |A|/C_2$ .) We can select  $C_6$  large enough such that

$$|g^{\circ n}(w) - np| < C_6 \log n. \tag{2.7}$$

Remark. The above inequality follows from the fact that, if  $H_n = \sum_{k=1}^n \frac{1}{k}$ , then  $H_n - \log n \to \gamma$ . ( $\gamma$  is known as the Euler's constant). So, we have that

$$P + QH_n = P + Q(\log n + \gamma + \epsilon_n)$$
, where  $\epsilon_n \to 0$   
 $\leq Q \log n + (P + Q \max\{\epsilon_n\} + Q\gamma)$   
 $= Q \log n + R$   
 $\leq S \log n$ 

for S large enough.



Figure 2.5:  $|\arg(g^{\circ n}(w))| \leq \sin^{-1}(\frac{C_6 \log n}{np})$ .

From,  $|g^{\circ n}(w) - np| < C_6 \log n$ , it follows that  $|\arg(g^{\circ n}(w))| < \sin^{-1}\left(\frac{C_6 \log n}{np}\right)$  for n large enough. Hence,  $\arg(g^{\circ n}(w)) \to 0$  uniformly on Q, and consequently, locally uniformly on  $\Pi$ .

#### 4. Define,

$$u_n(w) = g^{\circ n}(w) - np - (A/p)\log n.$$

Claim.  $u_n(w)$  converges locally uniformly on  $\Pi$  to a holomorphic function u, that is one-to-one on  $\Pi$ .

$$u_{n+1}(w) - u_n(w) = [g^{\circ n+1}(w) - g^{\circ n}(w)] - p - (A/p)\log\left(\frac{n+1}{n}\right).$$

From Equation (2.2), we obtain,

$$u_{n+1}(w) - u_n(w) = [g^{\circ n}(w) + p + A/g^{\circ n}(w) + \theta(g^{\circ n}(w)) - g^{\circ n}(w)] - p - (A/p)\log(1 + 1/n)$$

$$= A/g^{\circ n}(w) + \theta(g^{\circ n}(w)) - (A/p)\log(1 + 1/n)$$

$$= A(1/q^{\circ n}(w) - 1/np) + \theta(q^{\circ n}(w)) + (A/p)(1/n - \log(1 + 1/n)).$$

Now, let Q is a compact subset of  $\Pi$  and  $w \in Q$ . We need to prove that  $u_n$  converges uniformly in Q. From the above equation, to prove that  $u_n$  converges uniformly in Q, we need to show that each of the following series converges uniformly in Q:

$$\sum_{n} |1/g^{\circ n}(w) - 1/np|, \ \sum_{n} |\theta(g^{\circ n}(w)), \ \sum_{n} |1/n - \log(1 + 1/n)|.$$

Let us look at the first series. We have, (using Equations (2.5) and (2.7))

$$|1/g^{\circ n}(w) - 1/np| = \frac{|g^{\circ n}(w) - np|}{|g^{\circ n}(w)|np} \le \frac{C_6 \log n}{C_2 n^2 p} = C_7 \log n/n^2.$$

(Here  $C_7 = C_6/(pC_2)$ ).

From Equation (2.6), it is clear that  $\sum_{n} |\theta(g^{\circ n}(w))|$  converges.

Now,  $0 < x - \log(1 + x) \le x^2$  for x > 0.

This is because, it is zero at x = 0 and  $\frac{d}{dx}(x - \log(1+x)) = 1 - \frac{1}{1+x} > 0$  for x > 0.

Also,  $x^2 - x + \log(1+x)$  is zero at x = 0 and  $\frac{d}{dx}(x^2 - x + \log(1+x)) = 2x - 1 + \frac{1}{1+x} > 0$  for x > 0.

Putting  $x = \frac{1}{n}$ , we get,

$$|1/n - \log(1 + 1/n)| < 1/n^2$$
.

Therefore,  $u_n$  converges locally uniformly to some holomorphic function u on  $\Pi$ .

Now, from  $u_n(w) = g^{\circ n}(w) - np - (A/p) \log n$ , we get that,

$$(n+1)p + (A/p)\log(n+1) + u_{n+1}(w) = g^{\circ n+1}(w)$$

$$= g^{\circ n}(g(w))$$

$$= np + (A/p)\log n + u_n(g(w))$$

$$\implies p + (A/p)\log(1+1/n) + u_{n+1}(w) = u_n(g(w)).$$

Taking limit  $n \to \infty$ , we get,

$$p + u(w) = u(g(w)).$$

Since f is injective near the origin, g is injective on  $\Pi$ , (if K is chosen large enough). Therefore,  $g^{\circ n}$  is injective on  $\Pi$  and hence, so is  $u_n$ . By Hurwitz Theorem, u is either injective or constant, but it is clearly not a constant since it satisfies the above equation.

This shows that  $g:\Pi\to\Pi$  is conjugate to the map  $z\mapsto z+p$  of  $u(\Pi)$  into itself.  $\square$ 

Coming back to our original theorem, we see that our original theorem is also proved as we had just replaced the action of f on  $\Pi_0$  by the action of its conjugate g on  $\Pi$  and we just proved all the parts of the theorem that the conjugate of f, i.e. g must satisfy.

From,  $g = \sigma f \sigma^{-1}$ , we get,  $g^{\circ n} = \sigma f^{\circ n} \sigma^{-1} \implies g^{\circ n} \sigma = \sigma f^{\circ n}$ . Writing,  $\sigma(z) = w$ , we have,

$$g^{\circ n}(w) = \frac{1}{f^{\circ n}(z)^p} \implies g^{\circ n}(w)(f^{\circ n}(z))^p = 1.$$
 (2.8)

- 1. Since, g maps  $\Pi$  into itself, f maps  $\Pi_0$  into itself.
- 2. Now, since  $|g^{\circ n}(w)| > \sqrt{n}$ ,  $|f^{\circ n}(z)| < \frac{1}{n^{1/2p}}$  from Equation (2.8). Hence,  $f^{\circ n}(z) \to 0$  uniformly on  $\Pi_0$ .
- 3. Also,  $\arg(f^{\circ n}(z)) = \left(-\frac{1}{p}\right) \arg(g^{\circ n}(w))$  from Equation (2.8). Since,  $\arg(g^{\circ n}(w)) \to 0$  locally uniformly on  $\Pi$ ,  $f^{\circ n}(z) = \left(-\frac{1}{p}\right) \arg(g^{\circ n}(w)) \to 0$  locally uniformly on  $\Pi_0$ .
- 4. Since,  $g:\Pi\to\Pi$  is conjugate to a translation, and g is conjugate to  $f, f:\Pi_0\to\Pi_0$  is also conjugate to a translation.
- 5. It is immediate from Lemma 2.0.1 that |f(z)| < |z| on the axis of  $\Pi_0$ .

**Theorem 2.0.4.** Suppose that f has the power series expansion near 0 as,

$$f(z) = z + az^{p+1} + \mathcal{O}(z^{p+2}).$$

Then, f is conjugate near 0 to a function

$$F(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}).$$

*Proof.* First, we conjugate f by the map  $z \mapsto \lambda z$ , where  $\lambda^p = a$ . Then, we get that f is conjugate to the map,

$$\tilde{f} = \lambda f(z/\lambda) = \lambda z/\lambda + \lambda a z^{p+1}/\lambda^{p+1} + \mathcal{O}(z^{p+2}) = z + z^{p+1} + \mathcal{O}(z^{p+2}).$$

We will now proceed via induction over a finite number of steps. Let,

$$f_k(z) = z + z^{p+1} + bz^{p+k+1} + \dots, b \neq 0.$$

Here  $k \ge 1$ . Also if  $k \ge p$ , our theorem is proved. Hence, we assume,  $1 \le k < p$ . Now, define the polynomial,

$$\sigma(z) = z + \alpha z^{k+1},$$

where  $\alpha = \frac{b}{p-k}$  and let  $\sigma^{-1}$  be its inverse near 0 (We can do this because  $\sigma'(0) = 1$ ).

Now, we will show that we obtain  $f_r$  (for some  $r \geq k + 1$ ) by conjugating  $f_k$  with  $\sigma$ . Hence, let

$$g = \sigma f_k \sigma^{-1}$$

and we need to show that  $g = f_r$  (for some  $r \ge k + 1$ ). Since,  $g'(0) = f_k'(0) = 1$ , we let,

$$g(z) = z + \sum_{m=2}^{\infty} a_m z^m.$$

Now, we will use the identity,  $g\sigma = \sigma f_k$ .

$$\sigma f_k(z) = (z + z^{p+1} + bz^{p+k+1} + \dots) + \alpha (z + z^{p+1} + bz^{p+k+1})^{k+1}$$

$$= z + \alpha z^{k+1} + z^{p+1} + (b + \alpha (k+1)) z^{p+k+1} + \mathcal{O}(z^{p+k+2})$$

$$= z + \alpha z^{k+1} + z^{p+1} + \alpha (p+1) z^{p+k+1} + \mathcal{O}(z^{p+k+2}).$$

The last equality follows because,

$$\alpha(p-k) = b \implies \alpha(p+1) - \alpha(k+1) = b \implies \alpha(p+1) = b + \alpha(k+1).$$

Now,

$$g\sigma(z) = (z + \alpha z^{k+1}) + \sum_{m=2}^{\infty} a_m (z + \alpha z^{k+1})^m$$
$$= z + \alpha z^{k+1} + \sum_{m=2}^{p+k+1} a_m (z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2}).$$

Now, equating  $\sigma f_k(z) = g\sigma(z)$ , we get,

$$z^{p+1} + \alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}) = \sum_{m=2}^{p+k+1} a_m(z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2}).$$

Firstly, we see that on the right hand side, the coefficient of  $z^2$  will be  $a_2$ , the coefficient of  $z^3$  will be some linear combination of  $a_2$  and  $a_3$ , the coefficient of  $z^4$  will be some linear combination of  $a_2, a_3$  and  $a_4$  and so on upto the coefficient of  $z^p$  will be some linear combination of  $a_2, a_3, \ldots a_p$ . Since, the coefficient of  $z^2, \ldots, z^p$  is zero on the left hand side, it follows that  $a_2 = a_3 = \ldots, a_p = 0$ . (This argument follows assuming  $p \ge 2$ , but if p = 1 the coefficient of  $z^p = z$  i.e.  $a_1$  is automatically 0).

Hence, now we have,

$$z^{p+1} + \alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}) = \sum_{m=p+1}^{p+k+1} a_m (z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2})$$
$$= a_{p+1}z^{p+1} + \dots + a_{p+k+1}z^{p+k+1} +$$
$$a_{p+1}\alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}).$$

Therefore, we obtain

$$a_{p+1} = 1, a_{p+2} = \ldots = a_{p+k} = 0$$
 and  $a_{p+k+1} + a_{p+1}\alpha(p+1) = \alpha(p+1)$ .

Hence,  $a_{p+k+1} = 0$ . This gives that  $f_k$  is conjugate to the map

$$g(z) = z + z^{p+1} + \mathcal{O}(z^{p+k+2}).$$

Thus,  $g = f_r$  for some  $r \ge k + 1$ . Continuing the induction process, we get that f is conjugate near 0 to a map

$$z \mapsto z + z^{p+1} + \mathcal{O}(z^{2p+1}).$$

# 2 Petal Theorem

Now, we an again conjugate this map with the map,  $z\mapsto \lambda z$ , where  $\lambda^p=-1$  to get that f is conjugate to a map,

$$F(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}).$$

# 3 Bottcher's Theorem and its extension

#### 3.1 Bottcher's Coordinates

A fixed point p is called a super-attracting fixed point of f if f'(p) = 0.

If p is a super-attracting fixed point for f, we can conjugate the map such that z=0 becomes our super-attracting fixed point.

Thus, our map takes the form

$$f(z) = a_n z^n + a_{n+1} z^{n+1} + \dots$$

in a neighbourhood of 0, with  $n \ge 2$  and  $a_n \ne 0$ . Here the integer n is the local degree or valency of f at 0.

**Theorem 3.1.1** (Bottcher's Theorem). With f as above,  $\exists$  a local holomorphic change of coordinates  $w = \phi(z)$ , with  $\phi(0) = 0$ , which conjugates f to  $w \mapsto w^n$  throughout some neighbourhood of  $\theta$ .

Furthermore,  $\phi$  is unique upto multiplication by an (n-1) th root of unity.

*Proof.* Existence. Let  $c \in \mathbb{C}$  be such that  $c^{n-1} = a_n$ . Then, the linearly conjugate map cf(z/c) will have leading coefficient +1. Thus, without loss of generality, we will assume that our map f has the form,

$$f(z) = z^n (1 + b_1 z + b_2 z^2 + \ldots) = z^n (1 + \eta(z)), \text{ where } \eta(z) = (1 + b_1 z + b_2 z^2 + \ldots).$$

Choose  $r \in (0, \frac{1}{2})$  such that  $|\eta(z)| < \frac{1}{2} \ \forall z \in \mathbb{D}_r$ . This can be done since  $\eta(0) = 0$  and  $\eta$  is continuous.

On this disc, we have two properties of f:

- 1. f maps this disc into itself: We have,  $|f(z)| = |z^n| |1 + \eta(z)| \le |z|^n (1 + |\eta(z)|) < \frac{3}{2}|z|^n \le \frac{3}{2^n}|z| \le \frac{3}{4}|z| \ \forall z \in \mathbb{D}_r$ . Here we are using the fact that  $n \ge 2, |z| < \frac{1}{2}$  and  $|\eta(z)| < \frac{1}{2}$  on  $\mathbb{D}_r$ .
- 2.  $f(z) \neq 0 \ \forall z \in \mathbb{D}_r \setminus \{0\}$ . This is simply because  $|f(z)| = |z|^n |1 + \eta(z)|$  and since  $|\eta(z)| < \frac{1}{2}$  on  $\mathbb{D}_r$ , we can't have  $\eta(z) = -1$ .

The k-th iterate of f i.e.  $f^{\circ k}$  also maps the  $\mathbb{D}_r$  into itself and  $f^{\circ k}(z) \neq 0$  on  $\mathbb{D}_r \setminus \{0\}$ . Inductively, it can be shown that it has the form  $f^{\circ k}(z) = z^{n^k} \left(1 + n^{k-1}b_1z + \ldots\right)$ .

The idea of the proof is to set,

$$\phi_k(z) = \left(f^{\circ k}(z)\right)^{\frac{1}{n^k}} = z\left(1 + n^{k-1}b_1z + \ldots\right)^{\frac{1}{n^k}}$$

We choose z as our branch of holomorphic  $n^k$  th root of  $z^{n^k}$ .

Now, we can choose a holomorphic branch of  $\left(1+n^{k-1}b_1z+\ldots\right)^{\frac{1}{n^k}}$  on  $\mathbb{D}_r$  since  $\mathbb{D}_r$  is simply connected and  $\left(1+n^{k-1}b_1z+\ldots\right)\neq 0$  on  $\mathbb{D}_r$  since  $f^{\circ k}(z)\neq 0$  on  $\mathbb{D}_r\setminus\{0\}$ . Therefore we set,

$$\phi_k(z)=z\left(1+n^{k-1}b_1z+\ldots
ight)^{rac{1}{n^k}}=z\left(1+rac{b_1}{n}z+\ldots
ight)$$

where the expression on the right provides us an explicit choice of  $n^k$  th root.

We will show that the functions  $\phi_k$  converge uniformly to a limit function  $\phi$  on  $\mathbb{D}_r$ . To prove the convergence, we make the substitution  $z = e^u$  where u ranges over the left half plane  $\mathbb{H}_r := \{u : \text{Re}(u) < \log r\}$ . The exponential map maps  $\mathbb{H}_r$  onto  $\mathbb{D}_r \setminus \{0\}$ .

The map f from  $\mathbb{D}_r$  into itself corresponds to a map from  $\mathbb{H}_r$  into itself given by  $F(u) = \log f(e^u)$ . We can select a holomorphic branch of the logarithm of  $f(e^u)$  because  $\mathbb{H}_r$  is simply connected and  $f(e^u) \neq 0$  on  $\mathbb{H}_r$ .

Set  $\eta = \eta\left(e^{u}\right) = b_{1}e^{u} + b_{2}e^{2u} + \ldots$ , then since  $|\eta| < \frac{1}{2}$ , we see that F can be written as

$$F(u) = \log\left(e^{nu}(1+\eta)\right) = nu + \log(1+\eta) = nu + \left(\eta - \frac{\eta^2}{2} + \frac{\eta^3}{3} - + \ldots\right)$$

where the final expression provides us an explicit choice of which branch of logarithm we are using. Clearly,  $F: \mathbb{H}_r \to \mathbb{H}_r$  is a well-defined holomorphic function.

Similarly, the map  $\phi_k$  corresponds to a map,  $\Phi_k(u) = \log \phi_k(e^u)$ .

$$\Phi_k(u) = \log \phi_k\left(e^u\right) = \log f^{\circ k}\left(e^u\right)^{\frac{1}{n^k}} = \frac{1}{n^k} \log f^{\circ k}\left(e^u\right).$$

Since we have already fixed the branch of logarithm that we are using, we see that,

$$\log f^{\circ k}\left(e^{u}\right) = \log f\left(f^{\circ k-1}\left(e^{u}\right)\right) = \log f\left(e^{\log f^{\circ k-1}\left(e^{u}\right)}\right) = F\left(\log f^{\circ k-1}\left(e^{u}\right)\right)$$

Hence, inductively we can see that  $\log f^{\circ k}(e^u) = F^{\circ k}(u)$ .

Therefore,  $\Phi_k(u) = F^{\circ k}(u)/n^k$ . It is clear from this expression that  $\Phi_k : \mathbb{H}_r \to \mathbb{H}$ . Now since  $|\eta| < \frac{1}{2}$ , we have

$$|F(u) - nu| = |\log(1+\eta)| < \log 2 < 1.$$

Hence,

$$|\Phi_{k+1}(u) - \Phi_k(u)| = \frac{1}{n^{k+1}} \left| F^{\circ k+1}(u) - nF^{\circ k}(u) \right| < \frac{1}{n^{k+1}},$$

by the above inequality.

We have,  $\phi_k(e^u) = e^{\Phi_k(u)}$ . Since, the exponential map,  $e^{\square} : \mathbb{H} \to \mathbb{D}$  from the left half plane to the unit disc decreases distance, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \ \forall z \in \mathbb{D}_r \setminus \{0\}.$$

Since  $\phi_k(0) = 0$  for all k, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \ \forall z \in \mathbb{D}_r.$$

Hence, the maps  $\phi_k$  converge uniformly to some limit function  $\phi$  on  $\mathbb{D}_r$  by the Cauchy criterion for uniform convergence.

Clearly,  $\phi(0) = 0$  and  $\phi$  is holomorphic on  $\mathbb{D}_r$  by Weierstrass convergence theorem.

It is clear that each  $\phi_k : \mathbb{D}_r \to \mathbb{D}$ . This is because  $\phi_k(e^u) = e^{\Phi_k(u)}$  and  $\Phi_k : \mathbb{H}_r \to \mathbb{H}$  and  $e^{\square} : \mathbb{H} \to \mathbb{D} \setminus \{0\}$ . Hence,  $\phi : \mathbb{D}_r \to \mathbb{D}$ . (Clearly  $\operatorname{Im}(\phi)$  cannot contain points from  $\partial \mathbb{D}$  because  $\phi$  is holomorphic, hence it is an open map).

Now, it can be easily seen that,  $\phi_k(f(z)) = \phi_{k+1}(z)^n$ .

Hence,  $\lim_{k\to\infty} \phi_k(f(z)) = \lim_{k\to\infty} \phi_{k+1}(z)^n \implies \phi(f(z)) = \phi(z)^n$  by continuity of nth power map.

Also, since  $\phi'_k(0) = 1 \ \forall k \in \mathbb{N}$  (from the power series of  $\phi_k$ ), we have  $\phi'(0) = 1$ . Hence,  $\phi$  is invertible in some neighbourhood of 0.

Therefore, we have a holomorphic change of coordinates in some neighbourhood of 0 which conjugates f to the nth power map. In this neighbourhood,  $\phi$  is one-to-one,  $f(z) \neq 0$  for  $z \neq 0$  (i.e. no other point maps to the super-attracting fixed point via f) and f maps this neighbourhood into itself.

Uniqueness. It suffices to study the special case  $f(z) = z^n$ . If we can prove that any map which conjugates  $z \mapsto z^n$  to itself is just multiplication by (n-1) th root of unity, then for any general map  $f(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$ , if we have two maps  $\phi$  and  $\psi$  which conjugate it to  $z \mapsto z^n$ , then  $\phi \circ \psi^{-1}$  is a map which conjugates  $z \mapsto z^n$  to itself. Hence,  $\phi \circ \psi^{-1} = cz$ , where  $c^{n-1} = 1$ . Therefore,  $\phi = c\psi$ , where c is a (n-1) th root of unity.

So, let  $\phi(z) = c_1 z + c_k z^k + \dots$ ,  $(c_1 \neq 0)$  be a map which conjugates  $z \mapsto z^n$  to itself. Then, we should have  $\phi(z^n) = \phi(z)^n$ . Now,

$$\phi\left(z^{n}\right) = c_{1}z^{n} + c_{k}z^{nk} + \dots$$

and

$$\phi(z)^n = c_1^n z^n + n c_1^{n-1} c_k z^{n+k-1} + \dots$$

Comparing coefficients, we get  $c_1^n = c_1$  and  $nc_1^{n-1}c_k = 0$  since nk > n+k-1 for  $k \ge 2$ . Therefore, we get  $c_1^{n-1} = 1$  and  $c_k = 0$ . The form  $\phi(z) = c_1 z + c_k z^k + \ldots$  can be modified to any  $k \ge 2$  to get  $c_k = 0$  by the same process.

Therefore, 
$$\phi(z) = cz$$
, where c is a  $(n-1)$  th root of unity.

#### 3.2 Extension of Bottcher's coordinates

We might hope to extend the Bottcher's coordinates to the whole of the immediate basin of attraction of the super-attracting fixed point. But this is not always possible. This is because, it requires computing expressions of the form  $z \mapsto \phi\left(f^{\circ k}(z)\right)^{\frac{1}{n^k}}$ , which is not always possible. For example, the basin may not be simply connected, or some point may map directly onto the super-attracting fixed point, in which case we can't take  $n^k$ -th roots, because  $\phi\left(f^{\circ k}(z)\right)$  must be zero at those points.

**Theorem 3.2.1** (Extension of  $|\phi|$ ). If f has a super-attracting fixed point p, with immediate basin of attraction A, then the function  $z \mapsto |\phi(z)|$  of the above theorem extends uniquely to a continuous map  $|\phi| : A \to [0,1)$  which satisfies  $|\phi|(f(z)) = |\phi|(z)^n$ .

Furthermore,  $|\phi|$  is real analytic except at the iterated preimages of p, where it takes the value 0.

*Proof.* Set  $|\phi|(z) = |\phi(f^{\circ k}(z))|^{\frac{1}{n^k}}$  for large enough k for each  $z \in \mathcal{A}$ .  $\phi$  is only defined in a some small neighbourhood of p. But since,  $f^{\circ k} \to p$  locally uniformly in  $\mathcal{A}$ , after k many iterates for some large k,  $f^{\circ k}(z)$  belongs to the domain of definition of  $\phi$ , which we shall call  $\hat{U}$ .

It is independent of the value of k (if k is large enough). Note that, if  $f^{\circ k}(z) \in \hat{U}$ , then so does  $f^{\circ k+1}(z)$ , since f maps  $\hat{U}$  into itself.

Suppose we choose k minimal such that  $f^{\circ k}(z) \in \hat{U}$ . Then,

$$\mid \phi \left( f^{\circ k+1}(z) \middle|^{\frac{1}{n^k+1}} = \left| \phi \left( f \left( f^{\circ k}(z) \right) \right) \middle|^{\frac{1}{n^k+1}} = \left| \phi \left( f^{\circ k}(z) \right)^n \middle|^{\frac{1}{n^k+1}} = \left| \phi \left( f^{\circ k}(z) \right) \middle|^{\frac{1}{n^k}} = |\phi|(z).$$

In the proof of the Bottcher's theorem, we saw that  $\phi(z) \in \mathbb{D} \ \forall z \in \hat{U}$ . Hence,  $|\phi|(z) = |\phi(f^{\circ k}(z))| < 1 \ \forall z \in \mathcal{A}$ . Therefore,  $|\phi| : \mathcal{A} \to [0, 1)$ . Also,

$$|\phi|(f(z)) = \left| \phi \left( f^{\circ k}(f(z)) \right) \right|^{\frac{1}{n^k}}$$

$$= \left| \phi \left( f \left( f^{\circ k}(z) \right) \right) \right|^{\frac{1}{n^k}}$$

$$= \left| \phi \left( f^{\circ k}(z) \right)^n \right|^{\frac{1}{n^k}}$$

$$= \left| \phi \left( f^{\circ k}(z) \right) \right|^{\frac{n}{n^k}}$$

$$= \left| \phi \left( f^{\circ k}(z) \right) \right|^{\frac{n}{n^k}}$$

$$= \left| \phi \left( f^{\circ k}(z) \right) \right|^{\frac{n}{n^k}}$$

It is also clear that  $|\phi| = 0$  only at p and its iterated preimages.

If q is an iterated preimage of p, say  $f^{\circ k}(q) = p$ , then we have  $|\phi|(q) = |\phi(f^{\circ k}(q))|^{\frac{1}{n^k}} = |\phi(p)|^{\frac{1}{n^k}} = 0$ .

Now, Suppose  $|\phi|(z) = 0$  for some z. Then,  $|\phi|(z)^{n^k} = 0 \ \forall k \implies |\phi| \left(f^{\circ k}(z)\right) = 0 \ \forall k$ . But for some large  $k, f^{\circ k}(z)$  belongs to the domain of definition of  $\phi$ . But that means,  $f^{\circ k}(z) = p$ , since no other point in that domain is mapped to zero by  $\phi$ . Hence, z is an an iterated preimage of p.

Now, since  $f^{\circ k} \to p$  locally uniformly in  $\mathcal{A}$ , for each  $a \in \mathcal{A}$ , we have a neighbourhood  $W_a$  and a constant  $k \in \mathbb{N}$  such that  $f^{\circ k}(z) \in \hat{U}$ ,  $\forall z \in W_a$ .

Hence, for  $z \in W_a$ , we can define  $|\phi|(z) = |\phi(f^{\circ k}(z))| = |g(z)|$ , where  $g = \phi \circ f^{\circ k}|_{W_a}$ . Therefore,  $|\phi|_{W_a} = |g|$ , where g is some holomorphic function defined on  $W_a$ .

It is clear from this that  $|\phi|$  is continuous in  $\mathcal{A}$ .

Now, if h is any holomorphic function, then |h(z)| is real-analytic everywhere in its domain except at those z, where h(z) = 0.

Since,  $|g| = |\phi|_{W_a}$  is zero only at the iterated preimages of f in  $W_a$ ,  $|\phi|_{W_a}$  is real analytic everywhere in  $W_a$  except at the iterated preimages of p.

Therefore,  $|\phi|$  is real analytic everywhere in  $\mathcal{A}$  except at the iterated preimages of p. Let  $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$  be a rational map with a super-attracting fixed point p. Then the associated Bottcher map  $\phi$  carries a neighbourhood of p biholomorphically onto a neighbourhood of zero, conjugating f to the nth power map, where n is the local degree of f near p.  $\phi$  has a local inverse  $\psi_{\epsilon}$  which maps the  $\epsilon$ -disc around zero to a neighbourhood of p.

**Theorem 3.2.2** (Extending  $\psi_{\epsilon}$ ). There exists a unique open disc of maximal radius  $0 < r \le 1$  such that  $\psi_{\epsilon}$  extends holomorphically to a map  $\psi : \mathbb{D}_r \to \mathcal{A}$ , where  $\mathcal{A}$  is the immediate basin of attraction of p.

- 1. If r = 1, then  $\psi$  maps the open unit disc  $\mathbb{D}$  onto  $\mathcal{A}$  biholomorphically.
- 2. If 0 < r < 1, then  $\psi$  maps  $\mathbb{D}_r$  onto its image biholomorphically and there exists at least one other critical point in  $\mathcal{A}$  on the boundary of  $\psi(\mathbb{D}_r)$ .

*Proof.* Let us try to extend  $\psi_{\epsilon}$  along radial lines by analytic continuation. Then, we can't extend it indefinitely. We proceed by contradiction. If it can be extended indefinitely, it would yield a holomorphic map  $\psi$  from the entire complex plane onto an open set  $\psi(\mathbb{C}) \subset \mathcal{A} \subsetneq \mathbb{C}_{\infty}$ . Later we have independently proved that  $\psi$  must be one-to-one on its domain of definition. Therefore,  $\psi$  is a one-to-one entire function. Hence,  $\psi(\mathbb{C}) = \mathbb{C}_{\infty} \setminus \{p\}$  for some  $p \in \mathbb{C}_{\infty}$ . But this would imply that the Julia set is finite with cardinality atmost 2, which is impossible.

Thus, there must be some largest radius r so that  $\psi_{\epsilon}$  extends analytically throughout the open disc  $\mathbb{D}_r$ .

Also,  $|\phi|(\psi(w)) = |\phi(\psi(w))| = |w|$  near 0, hence for all  $w \in \mathbb{D}_r$  by analytic continuation. Since,  $|\phi| : \mathcal{A} \to [0, 1)$ , this proves that for any  $w \in \mathbb{D}_r$ ,  $|\phi|(\psi(w)) = |w| < 1$ . Therefore,  $\psi$  can be defined only on  $\mathbb{D}_r$  for  $r \leq 1$ .

We will now show that  $\psi$  is actually one-to-one on  $\mathbb{D}_r$ . Suppose  $\psi(w_1) = \psi(w_2)$ . Applying  $|\phi|$ , we see that  $|w_1| = |w_2|$ . Choose such a pair such that  $\psi(w_1) = \psi(w_2)$   $(w_1 \neq w_2)$  with  $|w_1| = |w_2|$  minimal. A minimal pair exists because for  $|w| < \epsilon, \psi = \psi_{\epsilon}$  which is one-to-one as it is invertible.

Now,  $\psi$  is an open mapping. Choose a sufficiently small neighbourhood  $U_{w_2}$  of  $w_2$ . Then,  $\psi(U_{w_2})$  is a small neighbourhood of  $\psi(w_1) = \psi(w_2)$ . Hence, for any  $w'_1$  sufficiently close to  $w_1, \psi(w'_1) \in \psi(U_{w_2})$ . Hence, we can find  $w'_2$  sufficiently close to  $w_2$  such that  $\psi(w'_1) = \psi(w'_2)$ . Choosing  $|w'_1| < |w_1|$ , we get a contradiction.

Hence,  $\psi$  maps  $\mathbb{D}_r$  onto its image biholomorphically.

In case when  $r = 1, U = \psi(\mathbb{D}) = \mathcal{A}$ . If not then we would have some boundary point of U, say  $z_0 \in \mathcal{A}$ . We can approximate  $z_0$  by points of  $\psi(w_j)$ , where  $|w_j| \to 1$ .

Now,  $\lim_{j\to\infty} \psi(w_j) = z_0$ . Hence,

$$\lim_{j \to \infty} \left| \phi \right| \left( \psi \left( w_j \right) \right) = \left| \phi \right| \left( z_0 \right) \implies \lim_{j \to \infty} \left| w_j \right| = \left| \phi \right| \left( z_0 \right) \implies \left| \phi \right| \left( z_0 \right) = 1$$

which is impossible.

Now, let 0 < r < 1. We need to prove that  $\partial U$ , where  $U = \psi(\mathbb{D}_r)$  must contain a critical point of f. Suppose,  $w_0 \in \partial \mathbb{D}_r$  and let  $(w_j)_{j=1}^{\infty} \subset \mathbb{D}_r$  such that  $w_j \to w_0$ . Let  $\psi(w_j) \to z_0$ . Then  $z_0 \in \partial U$  because  $\psi$  maps  $\mathbb{D}_r$  onto U biholomorphically.

If  $z_0$  is not a critical point of f, then f maps a neighbourhood of  $z_0$ , say A onto a neighbourhood of  $f(z_0)$ , say B biholomorphically.

It should be noted that A and B can be chosen such that  $B \subset U$ . This is because  $f(z_0) \in U$ . Indeed we have,

$$\lim_{j \to \infty} \psi(w_j) = z_0$$

$$\implies \lim_{j \to \infty} f(\psi(w_j)) = f(z_0)$$

$$\implies \lim_{j \to \infty} \psi(w_j^n) = f(z_0)$$

$$\implies \psi(w_0^n) = f(z_0).$$

Since,  $|w_0| = r < 1, |w_0|^n < r^n < r$ . Hence,  $w_0^n \in \mathbb{D}_r$ . Therefore,  $\psi(w_0^n) = f(z_0) \in U$ .

Let g be the local inverse of f near  $f(z_0)$ . Then,  $\psi$  can be extended throughout a neighbourhood of  $w_0$  by

$$w \mapsto g(\psi(w^n))$$

We have,  $\psi(w_0^n) = f(z_0) \implies w_0^n = \phi(f(z_0))$ . Since,  $\phi(B)$  is a neighbourhood of  $\phi(f(z_0))$  lying inside  $\mathbb{D}_r$ , choose a small enough neighbourhood of  $w_0$ , say C such that  $w^n \in \phi(B)$ , for all  $w \in C$ . In this neighbourhood, C our newly defined map agrees with  $\psi$  on  $C \cap \mathbb{D}_r$ . This is because, for  $w \in C \cap \mathbb{D}_r$ ,  $f(\psi(w)) = \psi(w^n) \in B$ . Therefore,  $g(\psi(w^n))$  can be defined and  $\psi(w) = g(\psi(w^n)) \in A$ . Hence, our new map is an analytic continuation of  $\psi$  on the neighbourhood C.

Now, if none of the  $z_0 \in \partial U$  are critical points, we can extend  $\psi$  to a neighbourhood of  $w_0 \ \forall w_0 \in \partial \mathbb{D}_r$ . Clearly, these continutations would patch together to define  $\psi$  in a strictly greater disc than  $\mathbb{D}_r$ , which is a contradiction.

If  $\psi_{\epsilon}$  is extended biholomorphically in this way to the map  $\psi$  defined on  $\mathbb{D}_r$ , then the inverse map  $\psi^{-1}:\psi(\mathbb{D}_r)\to\mathbb{D}_r$  must be the extension of  $\phi$  from some neighbourhood of p to  $\psi(\mathbb{D}_r)$  (since  $\psi^{-1}$  agrees with  $\phi$  on some neighbourhood of p).

# 4 Introduction to the Mandelbrot Set

We consider the set of quadratic polynomials  $\{f_c(z) = z^2 + c : c \in \mathbb{C}\}$ . It is enough to consider this set because every quadratic polynomial is linearly conjugate to a quadratic polynomial of the type  $f_c(z)$  for some unique  $c \in \mathbb{C}$ .

To prove this, let  $f(z) = pz^2 + qz + r$ ,  $p \neq 0$ . Consider the conjugation with the map,  $\sigma(z) = az + b$  with a = p and b = q/2. Then, we have

$$\sigma f \sigma^{-1}(z) = a \left( p \left( \frac{z - b}{a} \right)^2 + q \left( \frac{z - b}{a} \right) + r \right) + b$$

$$= (z - b)^2 + q(z - b) + ar + b$$

$$= z^2 + b^2 - qb + ar + b$$

$$= z^2 + q^2/4 - q^2/2 + pr + q/2$$

$$= z^2 + (pr + q/2 - q^2/4).$$

This is of the form  $z^2 + c$  for  $c = pr + q/2 - q^2/4$ .

# 4.1 Definition of the Mandelbrot Set

First, we define as new type of set, known as the Filled-in Julia Set for a polynomial P.

**Definition 4.1.1** (Filled-in Julia Set). The Filled-in Julia Set of a polynomial P is defined as  $K(P) = \mathbb{C}_{\infty} \backslash F_{\infty}(P)$ . It is the union of the Julia set and the bounded Fatou components. It is denoted by K(P) or simply K when the context is clear.

By Corollary 1.6.1.1, K can also be defined as follows:

$$K = \{z \in \mathbb{C} : P^{\circ n}(z) \text{ is bounded}\}.$$

**Notation.** We will use  $F_c$ ,  $J_c$  and  $K_c$  for the  $F_{\infty}(f_c)$ ,  $J(f_c)$  and  $K(f_c)$  respectively.

**Definition 4.1.2** (Mandelbrot Set). The Mandelbrot Set is defined as

$$M = \{c \in \mathbb{C} : K_c \text{ is connected}\}.$$

Now, we have the following two theorems for polynomials:

- For polynomials, since  $F_{\infty}$  is a completely invariant Fatou component (by Theorem 1.4.5),  $\partial F_{\infty} = J$  (by Corollary 1.7.1.1).
- And, from Theorem 1.8.1, we have that  $F_{\infty}$  is simply connected  $\iff \mathbb{C}_{\infty} \backslash F_{\infty}$  is connected  $\iff \partial F_{\infty}$  is connected.

Thus, for a polynomial,

 $F_{\infty}$  is simply connected  $\iff$  K is connected  $\iff$  J is connected.

Hence, we have the following equivalent descriptions for the Mandelbrot Set:

$$\begin{split} M &= \{c \in \mathbb{C} : K_c \text{ is connected}\} \\ &= \{c \in \mathbb{C} : F_c \text{ is simply connected}\} \\ &= \{c \in \mathbb{C} : J_c \text{ is connected}\}. \end{split}$$

# 4.2 The Fundamental Dichotomy

**Theorem 4.2.1.** For a polynomial P, the following are equivalent:

- 1.  $F_{\infty}$  is simply connected  $\iff$  J is connected  $\iff$  K is connected.
- 2. There are no finite critical points of P in  $F_{\infty}$ .

Proof. First assume that  $F_{\infty}$  is simply connected  $\implies c(F_{\infty}) = 1$  and hence,  $\chi(F_{\infty}) = 2 - c(F_{\infty}) = 1$ . Now, since  $F_{\infty}$  is completely invariant and P is a polynomial of degree d (say), P is a d-fold map of  $F_{\infty}$  onto itself. Applying the Riemann-Hurwitz relation to the map P of  $F_{\infty}$  onto itself, we obtain,

$$\chi(F_{\infty}) + \delta_{P}(F_{\infty}) = d \chi(F_{\infty})$$

$$\Longrightarrow 1 + \delta_{P}(F_{\infty}) = d$$

$$\Longrightarrow \delta_{P}(F_{\infty}) = d - 1.$$

Now,  $\delta_P(\infty) = d - 1$  and therefore, P does not have any finite critical points in  $F_{\infty}$ .

For the converse part, assume there are no critical points of P in  $F_{\infty}$ . Then, the Bottcher's map  $\phi$  which conjugates P to the map,  $z \mapsto z^d$  can be extended to the whole of  $F_{\infty}$  and  $\phi: F_{\infty} \to \mathbb{D}$  is a biholomorphism. Hence,  $F_{\infty}$  is simply connected.

Now, quadratic maps have only one finite critical point and  $f_c$  have the critical point at 0 for all  $c \in \mathbb{C}$ . Hence, by the Fundamental Dichotomy,  $F_c$  is simply connected  $\iff$   $0 \notin F_c$  or  $0 \in K_c$ . Using,  $c_n$  to denote  $f_c^{\circ n}(0)$ , we get,

$$M = \{c \in \mathbb{C} : 0 \in K_c\}$$
$$= \{c \in \mathbb{C} : (c_n) \text{ is bounded}\}.$$

Note that  $c_0 = 0$  and  $c_1 = f_c(0) = c$ . So,  $(c_n)$  is also the forward orbit of c. Hence, in other words, the Mandelbrot Set consists of  $c \in \mathbb{C}$  such that its forward orbit under the map  $f_c$  remains bounded.

# 4.3 The other end of the Dichotomy Theorem

By the Dichotomy Theorem, we can say that if even one finite critical point of P lies in  $F_{\infty}$ , then K cannot be connected. But this theorem states that if all finite critical points of P lie in  $F_{\infty}$ , then K is not only disconnected, but totally disconnected.

**Definition 4.3.1** (Cantor set). A subset  $X \subset \mathbb{C}_{\infty}$  is called a Cantor set if it is non-empty, closed, perfect and totally disconnected.

**Theorem 4.3.1.** Let R be a rational map with  $deg(R) \geq 2$ . Let  $\alpha$  be a super-attracting fixed point of R. If the Fatou component of R containing  $\alpha$ , say  $F_{\alpha}$ , contains all the critical points of R, then J(R) is a Cantor set.

Corollary 4.3.1.1. If  $c \notin M$ , then  $J_c$  is a Cantor set.

*Proof.* Since 0 is the only critical points of  $f_c$  (apart from  $\infty$ ), if it belongs to  $F_c = F_{\infty}(f_c)$ , i.e. if  $0 \notin K_c \iff c \notin M$ , then  $J_c$  is a Cantor set.

# 4.4 Some properties of the Mandelbrot Set

We know,  $M = \{c \in \mathbb{C} : (c_n) \text{ is bounded}\}$ . This description for M can be strengthened significantly by the following theorem:

**Theorem 4.4.1.**  $M = \{c \in \mathbb{C} : |c_n| \leq 2\}.$ 

*Proof.* Obviously,  $\{c \in \mathbb{C} : |c_n| \leq 2\} \subseteq M$ .

Now, Suppose that  $c \in M$ . We need to prove that  $|f_c^{\circ n}(c)| = |c_n| \le 2$  for all  $n \in \mathbb{N}$ . Consider the set  $W_c = \{z \in \mathbb{C} : |z| \ge |c|, |z| > 2\}$ . For  $z \in W_c$ ,

$$|f_c(z)| = |z^2 + c| \ge |z|^2 - |c| \ge |z|^2 - |z| \ge |z|(|z| - 1) = |z|(1 + \epsilon)$$

for some  $\epsilon > 0$  (as |z| > 2). Clearly,  $|f_c^{\circ n}(z)| \ge |z|(1+\epsilon)^n \implies z \notin K_c$ .

This implies  $|c| \leq 2$ . Consequently,  $|f_c^{\circ n}(c)| \leq 2$  for all  $n \in \mathbb{N}$ .

Hence,  $M \subseteq \{c \in \mathbb{C} : |c_n| \le 2\}$ .

Therefore,  $M = \{c \in \mathbb{C} : |c_n| \leq 2\}.$ 

As  $c_1 = c$ , we have that  $|c| \le 2$  for all  $c \in M$  i.e  $M \subseteq \{c \in \mathbb{C} : |c| \le 2\}$ . This turns out to be the strongest bound possible for |c| as  $-2 \in M$ . The orbit of 0 under the map  $z \mapsto z^2 - 2$  is:

$$0 \mapsto -2 \mapsto 2 \mapsto 2$$

and hence is bounded.

**Theorem 4.4.2.** The Mandelbrot set M is compact and  $\mathbb{C}_{\infty}\backslash M$  is open and connected.

*Proof.* Let,  $c_n = f_c^{\circ n}(c) = Q_n(c)$  be a polynomial in c. Clearly, from Theorem 4.4.1

$$M = \bigcap_{n=1}^{\infty} Q_n^{-1}(\overline{\mathbb{D}_2}),$$

where  $\overline{\mathbb{D}_2} = \{z \in \mathbb{C} : |z| \leq 2\}$ . Thus, M is closed. It is already known that it is bounded. Hence, it is compact.

Now,

$$\mathbb{C}_{\infty}\backslash M=\cup_{n=1}^{\infty}Q_{n}^{-1}(E)$$

where  $E = \mathbb{C}_{\infty} \setminus \overline{\mathbb{D}_2}$ . Now, E is open and connected and since,  $Q_n$  are non-constant polynomials,  $Q_n^{-1}(E)$  is open and connected for all  $n \in \mathbb{N}$ . Also, each one of them contains  $\infty$  and hence, their union is also open and connected.

Therefore,  $\mathbb{C}_{\infty}\backslash M$  is open and connected.

# 4.5 Plotting the Mandelbrot Set

Theorem 4.4.1 is also used to plot the Mandelbrot Set. A simple code would involve going through each pixel (x, y) in a  $N \times N$  square (where N > 2) and seeing if the iterates of 0 under the map,  $f_c(z) = z^2 + c$ , where c = x + iy, become larger than of modulus 2 after a large number of iterations.

If the modulus of iterates of 0 do not cross the value 2 after a large number of iterations, c = x + iy probably lies in the Mandelbrot set and we color it black. If not, then we leave it uncolored.

A simple code in Python generates the following picture:



Figure 4.1: The Mandelbrot Set

# 5 Connectedness of the Mandelbrot Set

In the previous chapter, we proved that the Mandelbrot set is compact and  $\mathbb{C}\backslash M$  is open and connected. In this chapter, we will prove that  $\mathbb{C}_{\infty}\backslash M$  is biholomorphic to  $\mathbb{C}_{\infty}\backslash \overline{\mathbb{D}}$ , proving that  $\mathbb{C}_{\infty}\backslash M$  is simply connected, thus implying that M is connected by Theorem 1.8.1.

For  $f_c(z)=z^2+c$ , Bottcher's theorem and its extension guarantees the existence of a unique biholomorphic function  $\phi_c$  defined on a simply-connected neighbourhood of infinity, say  $U_c \subseteq F_c$  (where  $F_c$  is the basin of attraction of the super-attracting fixed point  $\infty$ ), which conjugates  $f_c$  to the map  $z \mapsto z^2$  and  $\phi_c(z)/z \to 1$  as  $z \to \infty$ .

Furthermore, if  $c \in M$ , then  $U_c = F_c$  and  $\phi_c(U_c) = \mathbb{C} \setminus \overline{\mathbb{D}}$ .

If  $c \notin M$ , then  $U_c \subsetneq F_c$ ,  $\partial U_c$  contains the critical point 0 and  $\phi_c(U_c) = \mathbb{C} \setminus \overline{\mathbb{D}}_r$ , where r > 1.

#### 5.1 The Green's Function

**Definition 5.1.1** (Green's Function). A continuous function  $G: \mathbb{C} \to \mathbb{R}$  is called the potential theoretical Green's function of a compact set  $K \subset \mathbb{C}$ , if G is harmonic outside K, vanishing on K and has the property that  $G(z)/\log|z| \to 1$  as  $|z| \to \infty$ .

We know that  $z \mapsto |\phi_c(z)|$  can be extended to a continuous function  $|\phi_c|: F_c \to (1, \infty)$ . (Note that since for polynomials,  $P^{-1}(\infty) = {\infty}$ ,  $|\phi_c|$  is finite everywhere on  $F_c$ ). In practice, it is customary to work with the logarithm of  $|\phi_c|$ . Hence define,

$$G_c(z) = \begin{cases} \log |\phi_c|(z) & \text{if } z \in F_c \\ 0 & \text{if } z \in K_c. \end{cases}$$

Clearly,  $G_c: \mathbb{C} \to [0, \infty)$  and  $G_c(z) > 0$  on  $F_c$  as  $|\phi_c| > 1$  on  $F_c$ . Also, note that G satisfies the functional equation,  $G_c(f(z)) = 2G_c(z)$ . Also, it can be proven that  $G_c$  is harmonic on  $F_c$  and hence,  $G_c$  is indeed the Green's function for  $K_c$ . Now,

• If  $c \in M$ , then  $U_c = F_c$ . Since  $G_c(z) > 0$  for all  $z \in F_c$  and  $G_c(0) = 0$  as  $0 \in K_c$ , we can say that  $U_c = F_c = \{z \in \mathbb{C} : G_c(z) > G_c(0) = 0\}$ .

• If  $c \notin M$ , the  $U_c \subsetneq F_c$ . From the maximum principle, it is easy to see that minimum of  $|\phi_c|$  on  $\overline{U_c}$  lies of on  $\partial U_c$ . But,  $|\phi_c|(\partial U_c) = r = \text{constant}$  and since,  $0 \in \partial U_c$ , we have  $|\phi_c|(z) > |\phi_c|(0)$  for all  $z \in U_c$ . Therefore,  $U_c = \{z \in \mathbb{C} : G_c(z) > G_c(0)\}$ .

Therefore,  $U_c = \{z \in \mathbb{C} : G_c(z) > G_c(0)\}.$ 

**Lemma 5.1.1.** The map  $\Phi(z,c) = \phi_c(z)$  is holomorphic in two variables on the set  $S = \{(z,c) : c \in \mathbb{C} \setminus M, G_c(z) > G_c(0)\}$  and  $\Phi(c,c)/c \to 1$  as  $c \to \infty$ .

*Proof.* For a map to be holomorphic in two variables, it should be holomorphic in each variable when the other variable is kept fixed.

Now, we already know that for a fixed  $c \in \mathbb{C}\backslash M$ , the map  $z \mapsto \phi_c(z)$  is holomorphic on  $\{z \in \mathbb{C} : G_c(z) > G_c(0)\}$ . But, we still need to prove that for a fixed z, the map  $c \mapsto \phi_c(z)$  is holomorphic on the "z-slice" of S, i.e.  $S_z = \{c \in \mathbb{C}\backslash M : G_c(z) > G_c(0)\}$ . We define,  $\Phi_n(z,c) = \phi_{c,n}(z) = (f_c^{\circ n}(z))^{\frac{1}{2^n}}$ , where  $\phi_{c,n}$  are as defined in the proof of the Bottcher's theorem.

(In the proof of Bottcher's theorem, we had defined  $\phi_n(z) = (f^{\circ n}(z))^{\frac{1}{2^n}}$  in a neighbour-hood of the super-attracting fixed point. Here, we are defining an analytic  $2^n$ -th root  $f_c^{\circ n}$  throughout  $U_c$  (which is simply connected), which agrees with  $\phi_n$  defined on the neighbourhood of the super-attracting fixed point.)

We write,

$$\Phi_n(z,c) = z \prod_{k=0}^{n-1} \frac{\Phi_{k+1}(z,c)}{\Phi_k(z,c)}.$$

Now,

$$\frac{\Phi_{n+1}(z,c)}{\Phi_n(z,c)} = \left(\frac{f_c^{\circ n+1}(z)}{(f_c^{\circ n}(z))^2}\right)^{\frac{1}{2^{n+1}}} = \left(1 + \frac{c}{(f_c^{\circ n}(z))^2}\right)^{\frac{1}{2^{n+1}}}.$$

and we write  $\Phi$  as the infinite product,

$$\Phi(z,c) = z \prod_{n=0}^{\infty} \frac{\Phi_{n+1}(z,c)}{\Phi_n(z,c)} = z \prod_{n=0}^{\infty} \left( 1 + \frac{c}{(f_c^{\circ n}(z))^2} \right)^{\frac{1}{2^{n+1}}}.$$

By Weierstrass Factorization Theorem [See Con94, pg 167], if  $(f_n)_{n=1}^{\infty}$  is a sequence of analytic functions on  $G \subset \mathbb{C}$  then  $\prod_{n=1}^{\infty} f_n(z)$  is analytic if  $\sum (f_n(z) - 1)$  converges absolutely and uniformly on compact subsets of G. Hence, let

$$\left(1 + \frac{c}{(f_c^{\circ n}(z))^2}\right)^{\frac{1}{2^{n+1}}} = 1 + \theta_n(z, c).$$

Select a fixed  $z_0$   $(G_{c_0}(z_0) > G_{c_0}(0)$  for some  $c_0 \in \mathbb{C} \backslash M)$ .

In order to prove that  $c \mapsto \Phi(z_0, c)$  is analytic on  $S_{z_0}$ , we need to prove that  $\theta_n(z_0, \cdot)$  converges uniformly and absolutely on compact subsets of  $S_{z_0}$ . Let K be a compact subset of  $S_{z_0}$ .

**Claim.** There exists  $N \in \mathbb{N}$  large enough so that for all  $c \in K$ ,  $|f_c^{\circ n}(z_0)|^2 > 2|c|$  for all  $n \geq N$ .

Proof. For each  $c \in K$ , we have  $n_c \in \mathbb{N}$  such that  $|f_c^{\circ n}(z_0)|^2 > 2|c|$  for all  $n \geq n_c$ . (Note that if |z| > 2 and  $|z|^2 > 2|c|$ , then  $|f_c^{\circ n}(z)|^2 > 2|c|$  for all  $n \in \mathbb{N}$ . Take  $n_c$  large enough such that  $|f_c^{\circ n_c}(z_0)| > 2$  and  $|f_c^{\circ n_c}(z_0)|^2 > 2|c|$ .) Suppose, we have such a  $\hat{c} \in K$  and correspondingly  $n_{\hat{c}} \in \mathbb{N}$ . Then there exists a neighbourhood of  $\hat{c}$ , say  $B_{\hat{c}}$ , such that for all  $c \in B_{\hat{c}}$ ,  $|f_c^{\circ n}(z_0)|^2 > 2|c|$  for all  $n \geq n_{\hat{c}}$ . This is because,  $f_c^{\circ n_{\hat{c}}}(z_0)$  is a continuous function in c and so is  $(f_c^{\circ n_{\hat{c}}}(z_0))^2/c$ . Now, cover the compact set K by all such neighbourhoods, take a finite subcover and take N as the maximum of all such  $n_c$  obtained from this finite subcover.

Claim. For  $|w| < \frac{1}{2}$ ,  $|(1+w)^{\frac{1}{k}} - 1| \le 2|w|/k$ .

*Proof.* We integrate the derivative of  $(1+w)^{1/k}$  along the radial segment from 0 to w.

$$\int_0^w \frac{d}{dw} (1+w)^{1/k} dw = \int_0^w \frac{1}{k} (1+w)^{1/k-1} dw$$

$$\implies (1+w)^{1/k} - 1 = \frac{1}{k} \int_0^w (1+w)^{1/k-1} dw$$

$$\implies |(1+w)^{1/k} - 1| \le \frac{|w|}{k} \sup(|1+w|^{1/k-1}) \le 2|w|/k.$$

For  $|w| < \frac{1}{2}, \frac{1}{2} < |1+w| < \frac{3}{2} \implies (\frac{1}{2})^{1/k-1} \ge |1+w|^{1/k-1} \ge (\frac{3}{2})^{1/k-1}$ . As k increases,  $(\frac{1}{2})^{1/k-1}$  increases and approaches 2 as  $k \to \infty$ . Hence,  $|1+w|^{1/k-1} \le (\frac{1}{2})^{1/k-1} < 2$ .

Now, for  $c \in K$  and  $n \geq N$ ,  $\frac{|c|}{|f_c^{on}(z_0)|^2} < \frac{1}{2}$ . Hence, from the above inequality,

$$|\theta_n(z_0,c)| \le \frac{2|c|}{2^{n+1}|f_c^{\circ n}(z_0)|^2} < \frac{1}{2^{n+1}}.$$

Hence,  $\sum_{n=1}^{\infty} \theta_n(z_0, c)$  converges absolutely and uniformly on K. Therefore,  $\Phi(z_0, c)$  is analytic on  $S_{z_0}$ . Therefore,  $\Phi(z, c)$  is analytic in two variables on the set  $S = \{(z, c) : c \in \mathbb{C} \setminus M, G_c(z) > G_c(0)\}$ .

Now, for the second part, recall that for  $c \in M$ ,  $|c| \le 2$ . Thus, if |c| > 2,  $c \in \mathbb{C} \backslash M$ . Firstly, we observe that if |c| > 2 and  $|z|^2 > 2|c|$ ,

$$|f_c(z)| \ge |z|^2 - |c| \ge |c| \implies |f_c(z)|^2 \ge |c|^2 > 2|c|.$$

Hence, if |c| > 2,  $|f_c^{\circ n}(c)|^2 > 2|c|$  for all n. We have,

$$\Phi(c,c)/c = \prod_{n=0}^{\infty} \left( 1 + \frac{c}{(f_c^{\circ n}(c))^2} \right)^{\frac{1}{2^{n+1}}} = \prod_{n=0}^{\infty} (1 + \theta_n(c,c)).$$

Also by  $\frac{|c|}{|f_c^{n}(c)|^2} < \frac{1}{2}$ , for all  $n \in \mathbb{N}$ ,

$$|\theta_n(c,c)| < \frac{1}{2^{n+1}}.$$

Hence,  $\Phi(c,c)/c$  converges uniformly on |c| > 2.

We see that each term of the product,

$$\Phi(c,c)/c = \left(1 + \frac{c}{c^2}\right)^{1/2} \cdot \left(1 + \frac{c}{(c^2 + c)^2}\right)^{1/4} \cdots \left(1 + \frac{c}{(f_c^{\circ n}(c))^2}\right)^{1/2^{n+1}} \cdots$$

converges to 1. Hence,  $\Phi(c,c)/c \to 1$  as  $c \to \infty$ .

# 5.2 The Isomorphism by Douady and Hubbard

Douady and Hubbard proved that the Mandelbrot set is connected by defining an isomorphism  $\Psi: \mathbb{C}\backslash M \to \mathbb{C}\backslash \overline{\mathbb{D}}$  given by,

$$\Psi(c) = \Phi(c, c) = \phi_c(c).$$

To prove that it is indeed an isomorphism, we will proceed in the following steps:

- 1.  $\Psi$  is a well defined map: For  $c \in \mathbb{C}\backslash M$ ,  $G_c(c) = 2G_c(0) > G_c(0)$ . Thus,  $c \in S_c$  and  $\phi_c(c)$  can be defined. Also,  $|\phi_c(c)| > 1$ .
- 2.  $\Psi$  is analytic: We already proved that  $(z,c) \mapsto \Phi(z,c)$  is analytic in two variables. Hence the map  $c \mapsto (c,c) \mapsto \Phi(c,c)$  is analytic.
- 3.  $|\Psi(c_n)| \to 1$  as  $c_n \to M$ : This is due to the continuity of  $(z,c) \mapsto G_c(z)$  in two variables. Hence,  $c \mapsto (c,c) \mapsto G_c(c)$  is continuous. Hence, as  $c_n \to c_0 \in M$ ,  $G_{c_n}(c_n) \to G_{c_0}(c_0) = 0$ . Hence,  $\log |\phi_{c_n}|(c_n) = \log |\phi_{c_n}(c_n)| \to 0 \implies |\phi_{c_n}(c_n)| \to 1$ .
- 4.  $\Psi$  can be extended to an analytic map  $\Psi: \mathbb{C}_{\infty} \backslash M \to \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}$  by defining  $\Psi(\infty) = \infty$ : This is due to the fact that  $\Psi(c)/c = \Phi(c,c)/c \to 1$  as  $c \to \infty$ .
- 5. This extension is a proper map: Let K be a compact subset of  $\mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}$ . Clearly,  $\Psi^{-1}(K)$  is a closed subset of  $\mathbb{C}_{\infty} \backslash M$ . If  $\Psi^{-1}(K)$  is not compact, there is a sequence,  $(c_n)_{n=1}^{\infty} \subset \Psi^{-1}(K)$  such that  $c_n \to M$ . This implies  $|\Psi(c_n)| \to 1$  by point 3. This is not possible as K being a compact subset of  $\mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}$  is at a positive distance from  $\mathbb{D}$ .
- 6. Now,  $\Psi$  being a proper holomorphic map, it is a branched covering of some degree d. As  $\Psi^{-1}(\infty) = {\infty}$  with multiplicity 1 (because  $\Psi(c)/c \to 1$  as  $c \to \infty$ ), d = 1.

Therefore,  $\Psi: \mathbb{C}_{\infty} \backslash M \to \mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}$  is an isomorphism and M is connected. Consecutively,  $\Psi: \mathbb{C} \backslash M \to \mathbb{C} \backslash \overline{\mathbb{D}}$  is also an isomorphism.

# **Bibliography**

- [Ahl79] Lars V. Ahlfors. Complex Analysis. 3rd ed. McGraw-Hill, 1979.
- [Bea00] Alan F. Beardon. *Iteration of Rational Functions*. Graduate series in Mathematics. Springer, 2000.
- [Con94] John B. Conway. Functions of One Complex Variable. 2nd ed. Graduate Texts in Mathematics. Springer, 1994.
- [Mil06] John Milnor. *Dynamics in One Complex Variable*. Annals of Mathematics Studies. Princeton University Press, 2006.