# Projekt 2

# Estymacja wartości oczekiwanej opcji finansowych

## Alicja Wiączkowska

## 2024-12-23

# Contents

| $\operatorname{Wst} olimits_{\operatorname{St} olimits_{S$ | 2  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Opcje Eurpoejskie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  |
| Wzór Blacka-Scholesa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  |
| Estymator Crude Monte Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3  |
| Zmienne antytetyczne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3  |
| Estymator zmiennych kontrolnych                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4  |
| Stratyfikacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |
| Porównanie estymatorów                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  |
| Opcje azjatyckie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6  |
| Estymator Crude Monte Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6  |
| Stratyfikacja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  |
| Porównanie estymatorów                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8  |
| Podsumowanie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 |
| Tabela funkcji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 |

### Wstęp

Opcja to instrument finansowy dający prawo m.in. do zakupu danego towaru w przyszłości po obecnie ustalonej cenie. Sfinalizowanie opcji nie jest obiwiązkowe - można z niego zrezygnować np. w momencie gdy cena rynkowa towaru będącego przedmoitem umowy spadnie poniżej ceny wykonania opcji.

W pracy będziemy rozważać dwa rodzaje opcji:

- europejskie, których wypłata (zysk wynikający z zakupu opcji) zależy jedynie od ceny rynkowej towaru podlegającego umowie w czasie realizacji opcji,
- azjatyckie, na których wypłatę wpływa cena rynkowa towaru będącego przedmiotem umowy w kilku punktach czasu.

W pracy zajmiemy się estymacją wartości oczekiwanej wypłaty opcji kupna w momencie wykonania T=1. Do modelowania opcji użyty zostanie geometryczny ruch Browna  $GBM(\mu, \sigma)$  daney wzorem:

$$S(t) = S_0 \cdot \exp\left(\left(r - \frac{\sigma^2}{2}\right) \cdot t + \sigma \cdot B(t)\right) = S_0 \cdot e^{\mu^* t + \sigma B(t)},$$

gdzie:

- $t \in [0,T] = [0,1]$  chwila w której badana jest wartość geometrycznego ruchu Browna,
- B(t) ruch Browna,
- $\sigma = 0.25$  zmienność,
- r = 0.05 stopa procentowa,
- $\mu^* = \left(r \frac{\sigma^2}{2}\right) = 0.01875$  stała zależna od zmienności i stopy procentowej,
- $S_0 = S(0) = 100$  wartość początkowa, którą można interpretować jako cenę towaru w chwili 0.

## Opcje Eurpoejskie

Oczekowaną wypłatę opcji europejskich możemy zapisać wzorem

$$I = e^{-r} \cdot \mathbb{E}\left[ (S(1) - K)_{+} \right] = e^{-r} \cdot \mathbb{E}\left[ \max\{S(1) - K, 0\} \right],$$

gdzie: K=100 - cena wykonania opcji, S(t)=S(1) - cena rynkowa towaru będącego przedmiotem umowy w momencie realizacji opcji T=1.

#### Wzór Blacka-Scholesa

Dla opcji europejskich wartość I można dokładnie wyliczyć korzystając ze wzoru Blacka-Scholesa:

$$e^{-r} \cdot \mathbb{E}\left[ (S(1) - K)_{+} \right] = S_0 \cdot \Phi(d_1) - Ke^{-r}\Phi(d_2),$$

gdzie:

•  $\Phi$  - dystrybuanta standardowego rozkładu normalnego  $\mathcal{N}(0,1)$ ,

• 
$$d_1 = \frac{1}{\sigma} \left[ \ln \left( \frac{S_0}{K} \right) + r + \frac{\sigma^2}{2} \right]$$

• 
$$d_2 = d_1 - \sigma$$
.

Przy parmetrach: r = 0.05,  $\sigma = 0.25$ ,  $S_0 = 100$ , K = 100 otrzymamy wartość teoretyczną:

$$I = e^{-0.05} \cdot \mathbb{E}\left[ (S(1) - 100)_{+} \right] = 12.336.$$

#### Estymator Crude Monte Carlo

W celu wyestymowania wartości  $I = e^{-r} \cdot \mathbb{E}\left[(S(1) - K)_{+}\right]$  wygenerowano R = 5000 replikacji  $Y_1, Y_2, ..., Y_R$  będących realizacjami zmiennej losowej  $e^{-r} \cdot (S(1) - K)_{+}$ . Wówczas  $\mathbb{E}[Y_i] = I$ , a estymator Crude Monte Carlo jest postaci

$$\hat{Y}_R^{\scriptscriptstyle CMC} = \frac{1}{R} \sum_{i=1}^R Y_i.$$

Zauważmy również, że do wygenerowania wartości geometrycznego ruchu Browna  $S(1) = S_0 \cdot e^{\mu^* + \sigma B(1)}$ , zmienną B(1) - wartość ruchu Browna w chwili t = 1 - możemy zasymulować losową liczbą z rozkładu  $\mathcal{N}(0,1)$ .

#### Zmienne antytetyczne

Jest to jedna z metod redukcji wariancji. Opierająca się na fakcie, że dla zależnych zmiennych losowych X i Y zachodzi

$$Var(X+Y) = Var(X) + Var(Y) + 2 \cdot Cov(X,Y)$$

$$Var\left(\sum_{i=1}^{N}Xi\right) = \left(\sum_{i=1}^{N}Var(X_i)\right) + 2\sum_{1 \le i < j \le N}Cov(X_i, X_j)$$

Zasadniczym krokiem jest takie dobranie par zmiennych, aby ich kowariancja była ujemna i możliwie duża co do modułu.

Estymując wartość I tym razem zamiast bazować estymator na R=5000 niezależnych zmiennych losowych, wykorzystamy pary zmiennych zależnych.

Symulując realizacje wartości ruchu Browna B(1) wygenerujemy R par (Z, -Z), gdzie  $Z \sim \mathcal{N}(0, 1)$ .

Oczywiście

$$Cov(Z, -Z) = (-1) \cdot Var(Z) = -1$$

Mamy więc zmienne losowe  $Z_1, Z_2, ..., Z_{2R-1}, Z_{2R}$  takie że  $Z_{2i} = -Z_{2i-1}$ . Na ich podstwie zbudujemy realizacje wartości opcji europejsiej  $Y_1, Y_2, ..., Y_{2R-1}, Y_{2R}$  w sposób analogiczny jak w przypadku estymatora Crude Monte Carlo:

$$Y_i = e^{-r} \cdot (S_0 \cdot e^{\mu^* + \sigma Z_i} - K)_+$$

Ostatecznie estymator zmiennych antytetycznych jest postci:

$$\hat{Y}_{2R}^{ant} = \frac{1}{2R} \sum_{i=1}^{2R} Y_i.$$

Zauważmy, że przy ustalonej mocy obliczeniowej preznaczonej na generowanie liczb pseudolosowych, w przypadku estymatora zmiennych antytetycznych do redukcji wariancji przyczynia się nie tylko ujemna kowariancja zmiennych losowych, ale też fakt, że otrzymujemy dwukrotnie więcej replikacji niż dla estymatora *CMC*.

#### Estymator zmiennych kontrolnych

Również w tej metodzie redukcja wariancji estymatora jest związana z zależnoscią generowanych zmiennych losowych. Oprócz replikacji  $Y_1, ..., Y_R$  istotne są również tzw. zmienne kontrolne  $X_1, ..., X_R$ . Ważnym aspektem tej metody jest silna korelacja między  $Y_i$  a  $X_i$  oraz znajomość wartości oczekiwanej zmiennej kontrolnej. Do estymacji wartości  $I = e^{-r} \cdot \mathbb{E}\left[ (S(1) - K)_+ \right]$  za zmienne kontrolne przyjmiemy realizację wartości ruchu Browna B(1), na podstawie której obliczana zostaje wartość GBM. Tak wiec mamy

$$X_i \sim \mathcal{N}(0,1), \qquad Y_i = e^{-r} \cdot (S_0 \cdot e^{\mu^* + \sigma X_i} - K)_+,$$

natomiast sam estymtor jest postaci:

$$\hat{Y}_R^{\scriptscriptstyle CV} = \hat{Y}_R^{\scriptscriptstyle CMC} + c \cdot \left(\hat{X}_R - \mathbb{E}X\right) = \hat{Y}_R^{\scriptscriptstyle CMC} + c \cdot \hat{X}_R,$$

gdzie  $\hat{X}_R = \frac{1}{R} \sum_{j=1}^R X_j$ , natomiast stała c jest optymalna (gwarantuje najmniejszą wariancję  $\hat{Y}_R^{CV}$ ) gdy spełnia

$$c = \frac{-Cov(Y_1, X_1)}{Var(X_1)} - \frac{-Cov(Y_1, X_1)}{1} = -Cov(Y_1, X_1) = -\mathbb{E}[(Y_1 - \mathbb{E}Y_1)(X_1 - \mathbb{E}X_1)] = -\mathbb{E}[(Y_1 - I) \cdot X_1]$$

Wartość  $-Cov(Y_1, X_1)$  nie jest nam znana, więc możemy ją estymować następująco:

$$\hat{c} = -\hat{s}_{YX}^2 = -\frac{1}{R-1} \sum_{i=1}^{R} \left( Y_i - \hat{Y}_R^{CMC} \right) \cdot X_i$$

#### Stratyfikacja

Stratyfikacja opiera się na generowaniu ustalonej ilości zmiennych losowych z poszczególnych warstw $W_1, W_2, ..., W_m$ . Warstwy muszą być rozłączne i sumować się do zbioru wszystkich wartości, które może osiągnąć stratyfikowana zmienna losowa.

Przeprowadzimy ją na realizacjach wartości ruchu Browna w momencie realizacji opcji  $B(1) \sim \mathcal{N}(0,1)$ .

Rozważmy rodzinę zbiorów  $\{W_i\}_{i=1}^m$ , w której

- $W_1 = [-r_1, r_1],$
- $W_i = [-r_i, -r_{i-1}) \cup (r_{i-1}, r_i], \text{ dla } i = 2, 3, ..., m-1,$
- $W_m = \mathbb{R} \setminus [-r_{m-1}, r_{m-1}].$

Zbiory te możemy interpretować jako pierścienie w przestrzeni 1-wymiarowej. Dobierzmy wartości  $r_i$  tak, aby  $\mathbb{P}(B \in W_i') = \frac{1}{m}$ , co jest równoważne z  $\mathbb{P}(B \in [-r_i, r_i]) = \frac{i}{m}$ . Otrzymujemy

$$\frac{i}{m} = \mathbb{P}(|B| \le r_i) = \mathbb{P}(B \le r_i) - \mathbb{P}(B \le -r_i) = \Phi^{-1}(r_i) - \Phi^{-1}(-r_i) = 2\Phi^{-1}(r_i) - 1,$$

z czego wynika, że  $r_i = \Phi\left(0.5\cdot\left(\frac{i}{m}+1\right)\right)$  dla i=1,2,...,m-1, gdzie  $\Phi$  jest dystrybuantą standardowego rozkładu normalnego.

Wygenerujmy teraz zmienną losową  $B^{(i)} = (B \mid B \in W_i)$ . Zacznijmy od wylosowania znaku  $sgn(B^{(i)})$  plus lub minus z równym prawdopodobieńswem 0.5. Losowanie to odpowiada wybraniu punktu na 1-wymiarowej sferze jednostkowej. Następnie wylosujmy wartość  $D^{(i)}$  - odległość  $B^{(i)}$  od zera. Zauważmy, że  $||B^{(i)}||^2 = (D^{(i)})^2 \sim \chi_1^2$ . Weźmy teraz zmienną z rozkładu jednostajnego  $U \sim \mathcal{U}(0,1)$  i dostaniemy

$$D^{(i)} = \sqrt{F_{\chi_1^2}^{-1} \left(\frac{i-1}{m} + \frac{U}{m}\right)},$$

gdzie  $F_{\chi_1^2}^{-1}$  jest dystrybuantą odwrotną rozkładu  $\chi^2$  z 1 stopniem swobody. Ostatecznie otrzymamy  $B^{(i)} = D^{(i)} \cdot sgn(B^{(i)})$ .

Dla każdej warstwy  $W_j$  realizacje wartości ruchu Browna  $B^{(j)}$  w chwili 1, przekształcamy na geometryczny ruch Browna, a Następnie dla każdej warstwy tworzymy zmienne losowe  $Y_i$  i obliczamy ich estymator CMC. Ostateczny estymator stratyfikcji ma postać

$$\hat{Y}_R^{str} = \sum_{j=1}^m p_j \cdot \hat{Y}_{R_j}^{\scriptscriptstyle CMC~(j)},$$

gdzie  $R_j$  oznacza liczebność j-tej warstwy, a  $p_j = \frac{1}{m}$  prawdopodobieństwo wybrania j-tej warstwy. Estymator stratyfikacji ma najmniejszą wariancję, gdy

$$R_j = \frac{p_j \sigma_j}{\sum_{i=1}^m p_i \sigma_i} R,$$

gdzie  $\sigma_j$  oznacza odchylenie standardowe zmiennej losowej  $(Y|Y \in W_i)$ .

w miejsce odchylenia standardowego  $(Y|Y \in W_i)$  do wzoru podstawimy wyestymowaną wartość odchylenia próbkowego  $s_i$ . Dla zapewnienia  $R_j \in \mathbb{N}$  wynik zaokrąglamy w górę otrzymując ostatecznie

$$R_j = \left\lceil \frac{p_j s_j}{\sum_{i=1}^m p_i s_i} R \right\rceil.$$

#### Porównanie estymatorów

W celu porównania powyżej opisanych metod, przyjmijmy R = 5000 i wygenerujmy po R' = 1000 realizacji każdego z estymatorów. Estymator stratyfikacji obliczymy dla liczby warstw m = 3 oraz m = 5. Poniżej na wykresie możemy zobaczyć wartości oblicznoych estymatorów.



Rozrzut każdego z estymatorów możemy dokładniej zobaczyć na poniższym wykresie pudełkowym, w którym odrzucone zostały wartości odstające. Natomiast na z wykresu słupkowego z prawej strony odczytać możemy wartości wariancji dla poszczególnych estymatorów.





Na podstawie zaprezentowanych informacji możemy stwierdzić, że każda z metod redukcji wariancji spełniła swoją rolę - najbardziej rozrzucony okazał się wektor estymatorów *Crude Monte Carlo*. W przypadku zaprezentowanych symulacji najmniejszą wariancję uzyskał estymator zmiennych antytetycznych, porównywalnie dobry wynik uzyskaliśmy również przy estymatorze zmiennych kontrolnych. W przypadku stratyfikacji dostrzec można, że więsza liczba warstw miała niewielki wpływ na redukcję wariancji estymatora. Niezależnie od metody, wartości wszystkich estymatorów skupiaja się wokół oblicznoego wyniku teoretycznego.

## Opcje azjatyckie

Oczekowaną wypłatę opcji azjatyckich możemy zapisać wzorem

$$I = e^{-r} \cdot \mathbb{E}\left[ (A_n - K)_+ \right]$$

gdzie:

- $A_n = \frac{1}{n} \sum_{j=1}^n S\left(\frac{j}{n}\right),$
- K = 100 cena wykonania opcji,
- S(t) cena rynkowa towaru będącego przedmiotem umowy w momencie t.

W przypadku opcji azjatyckich nie istieje dokładny wzór opisujący wartość I, dlatego jedynym sposobem na przybliżenie tej wartości jest estmacja.

### Estymator Crude Monte Carlo

Estymowaną wartością jest  $I = e^{-r} \cdot \mathbb{E}[(A_n - K)_+]$ . Za liczbę replikacji przyjęto R = 5000.

Przeporwadzając symulację wygenerowano R = 5000 losowych ścieżek geometrycznego ruchu Browna i dla każdej z nich zapamiętano odpowiednią wartość zmiennej losowej  $A_n$ .

Niech zmienne losowe  $Y_1, Y_2, ..., Y_R$  będą replikacjami realizacji zmiennej losowej  $e^{-r} \cdot (A_n - K)_+$ . Wówczas  $\mathbb{E}[Y_i] = I$ , a estymator Crude Monte Carlo jest postaci

$$\hat{Y}_R^{\scriptscriptstyle CMC} = \frac{1}{R} \sum_{i=1}^R Y_i.$$

Zauważmy również, że do wygenerowania wartości geometrycznego ruchu Browna  $S(\frac{k}{n}) = S_0 \cdot e^{-\mu^* + \sigma B(\frac{k}{n})}$ , zmienną  $B(\frac{k}{n})$  - wartość ścieżki geometrycznego ruchu Browna w chwili  $t = \frac{k}{n}$  - możemy zasymulować poprzez  $B(\frac{k}{n}) = \sum_{i=1}^k Z_i$ , gdzie  $Z_i$  jest losową liczbą z rozkładu  $\mathcal{N}(0, \frac{1}{n})$ .

#### Stratyfikacja

Stratyfikacja opiera się na generowaniu ustalonej ilości zmiennych losowych z poszczególnych warstw $W_1, W_2, ..., W_m$ . Warstwy muszą być rozłączne i sumować się do zbioru wszystkich wartości, które może osiągnąć stratyfikowana zmienna losowa.

W pracy stratyfikacji poddany zostaną realizacje wektora  $\mathbf{B} = \left(B\left(\frac{1}{n}\right), B\left(\frac{2}{n}\right), ..., B\left(1\right)\right) \sim \mathcal{N}(\mathbf{0}, \Sigma)$  reprezentujące wartości ścieżki ruchu Browna w poszczególnych punktach czasu. Wektor  $\mathbf{B}$  ma n-wymiarowy rozkład normalny o średniej  $\mathbf{0} = (0, ..., 0)$ , i macierzy kowariancji  $\Sigma = \left[Cov\left(B\left(\frac{i}{n}\right), B\left(\frac{j}{n}\right)\right)\right]_{i,j} = \left[min\left\{\frac{i}{n}, \frac{j}{n}\right\}\right]_{i,j}$ .

Zauważmy, że macierz  $\Sigma$  jest symetryczna i dodatnio określona. Możemy więc wykonując rozkład Choleskiego obliczyć (dolnotrójkątną) macierz A, która spełnia zależność  $\Sigma = AA^T$ . Przekształcając wektor z n-wymiarowego rozkładu normalnego  $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, Id)$  macierza A otrzymamy realizację wektora  $\mathbf{B}$ .

Rozważmy rodzinę zbiorów  $\{W_i'\}_{i=1}^m$ :

- $W_1' = \mathbb{K}(\mathbf{0}, r_1),$
- $W'_{i} = \mathbb{K}(\mathbf{0}, r_{i}) \setminus \mathbb{K}(\mathbf{0}, r_{i-1}), dla \ i = 2, 3, ..., m-1,$
- $W'_m = \mathbb{R}^m \backslash \mathbb{K}(\mathbf{0}, r_{m-1}),$

gdzie  $\mathbb{K}(\mathbf{0}, \rho)$  oznacza n-wymiarową kulę o środku w  $\mathbf{0}$  i promieniu  $\rho$ . Dobierzmy promienie kul  $r_i$  tak, aby  $\mathbb{P}(\mathbf{Z} \in W_i') = \frac{1}{m}$ . Mamy więc

$$\frac{i}{m} = \mathbb{P}\left(\mathbf{Z} \in \mathbb{K}(\mathbf{0}, r_i)\right) = \mathbb{P}\left((Z_1, ..., Z_n) \in \mathbb{K}(\mathbf{0}, r_i)\right) = \prod_{k=1}^n \mathbb{P}\left(|Z_k| \le r_i\right) = \left(2 \cdot \Phi^{-1}(r_i) - 1\right)^n,$$

z czego wynika, że  $r_i = \Phi\left(0.5 \cdot \sqrt[n]{\frac{i}{m}+1}\right)$  dla i=1,2,...,m-1, gdzie  $\Phi$  oznacza dystrybuantę standardowego rozkładu normalnego. Wówczas możemy zdefiniować warstwy  $W_i = \{\mathbf{z} \in \mathbb{R}^n : A\mathbf{z} \in W_i'\}$ .

Wygenerujmy teraz wektor losowy  $\mathbf{Z}^{(i)} = (\mathbf{Z} \mid \mathbf{Z} \in W_i')$ , który potem będziemy mogli przekształcić na zmienną z wybranej warstwy  $(\mathbf{B} \mid \mathbf{B} \in W_i) = A\mathbf{Z}^{(i)}$ . Zacznijmy od wylosowania punktu na *n*-wymiarowej sferze jednostkowej  $\frac{\boldsymbol{\xi}}{||\boldsymbol{\xi}||}$  dla  $\boldsymbol{\xi} = (\xi_1, ..., \xi_n)$ , gdzie  $\xi_i \sim \mathcal{N}(0, 1)$ .

Następnie wylosujmy wartość  $D^{(i)}$  - odległość  $\mathbf{Z}^{(i)}$  od  $\mathbf{0}$ . Wiemy że  $||Z^{(i)}||^2 = \sum_{k=1}^n \left(Z_k^{(i)}\right)^2 \sim \chi_n^2$ , zatem mając do dyspozycji zmienną ze standardowego rozkładu jednostajnego  $U \sim \mathcal{U}(0,1)$  dostaniemy

$$D^{(i)} = \sqrt{F_{\chi_n^2}^{-1} \left(\frac{i-1}{m} + \frac{U}{m}\right)},$$

gdzie  $F_{\chi^2_n}^{-1}$  jest dystrybuantą odwrotną rozkładu  $\chi^2$  z n stopniami swobody. Ostatecznie otrzymujemy  $\mathbf{Z}^{(i)} = D^{(i)} \cdot \frac{\boldsymbol{\xi}}{\|\boldsymbol{\xi}\|}$ .

Dla każdej warstwy  $W_i$  na podstwie  $\mathbf{Z}^{(i)}$  budujemy wektory wartości ścieżki ruchu Browna  $\mathbf{B}$ , które później przekształcamy na wektory S wartości geometrycznego ruchu Browna. Następnie dla każdej warstwy tworzymy zmienne losowe  $Y_i$  i obliczamy ich estymator CMC. Ostateczny estymator stratyfikcji ma postać

$$\hat{Y}_{R}^{str} = \sum_{j=1}^{m} p_{j} \cdot \hat{Y}_{R_{j}}^{CMC\ (j)},$$

gdzie  $R_j$  oznacza liczebność j-tej warstwy, a  $p_j=\frac{1}{m}$  prawdopodobieństwo wybrania j-tej warstwy. Estymator stratyfikacji ma najmniejszą wariancję, gdy

$$R_j = \frac{p_j \sigma_j}{\sum_{i=1}^m p_i \sigma_i} R,$$

gdzie  $\sigma_i$  oznacza odchylenie standardowe zmiennej losowej  $(Y|Y \in W_i)$ .

Niestety wartość odchylenia standardowego  $(Y|Y\in W_i)$  nie są znane, więc do wzoru podstawimy wyestymowaną wartość odchylenia próbkowego  $s_i$ . Dla zapewnienia  $R_j\in\mathbb{N}$  wynik zaokrąglamy w górę otrzymując ostatecznie

$$R_j = \left\lceil \frac{p_j s_j}{\sum_{i=1}^m p_i s_i} R \right\rceil.$$

#### Porównanie estymatorów

W celu porównania opisanych metod, rozważymy dwa przypadki: n=3 oraz n=10. Przyjmijmy ponownie R=5000 i wygenerujmy po R'=1000 realizacji każdego z estymatorów. Estymatory stratyfikacji obliczymy dla m=3 oraz m=5 warstw.

#### n = 3

Zajmijmy się najpierw opcjami, których wartość zależy od ceny w n=3 punktach czasu. Poniżej możemy zobaczyć wartości obliczonych estymatorów.



Już z wykresu 4 możemy wywnioskować, że najbardziej skrajne wartości znaleźć możemy w estymatorze CMC - co jest zgodne z intuicją. Zauważyć można, że rozważane estymatory stratyfikacji zwracają podobne wyniki. Więcej szczegółów dotyczących rozrzutu rozważanych estymatorów możemy odczytać z poniższego wykresu pudełowego oraz wykresu słupkowego przedstawiającego obliczone wariancje.





Po usunięciu wartości odstających rozkłady dla wszystkich eastymatorów prezentują się podobnie. jednak na wykresie wariacji możemy zauważyć, że stratyfikacja wpłynęła w bardzo niewielkim stopniu na zmniejszenie rozrzutu. Różnica jest pomijalna, co sugeruje, że wykorzystywanie metody stratyfikacji w tym przypadku nie jest konieczne. Również liczba warstw nie miała większego znaczenia, lepszy efekt uzyskano przy m=3. Doświadczenie sugeruje, że przy n=3 badana wartość oczekiwana opcji azjatyckej I wynosi w przybliżeniu 8.7.

#### n = 10

Rozważmy teraz opcje, których wartość zależy od ceny rynkowej w n=10 punktach czasu. Na wykresie 7 przedstawiono realizacje estymatorów wartości I.



Z powyższego wykresu widzimy, że estymatory stratyfikacji dla m=3 i m=5 są podobnie rozrzucone i prawdopodobnie mają nieco mniejsze odchylenie standardowe niż estymator CMC, jednak więcej szczegłów możemy odczytać z wykresu 8 i 9.





Na wykresie pudełowym możemy zaobserwować potwierdzenie faktu, iż estymator  $Crude\ Monte\ Carlo\$ ma największy rozrzut. Stratyfikacja przy wybranych liczbach warstw zwraca podobne wyniki, jednak ich wariancja nie różni się znacząco od tej obliczonej dla CMC. Doświadczenie sugeruje, że badana wartość I najprawdopodobniej wynosi około 7.4.

### Podsumowanie

Wszystkie opisane metody redukcji wariancji w przypadku badania wartości oczekiwanej opcji finansowych spełniły swoją rolę - zmniejszyły rozrzut estymowanej wartości. Niestety w zbadanych przypadkach opcji azjatyckich poprawa wynikająca ze stratyfikacji była niewielka. Niezależnie od metody, estymatory zbiegały do podobnej wartości, a w przypadku opcji europejskich mamy pewność, że zbiegają one do wartości teoretycznej. Z projektu możemy wywnioskować, że oczekiwana wartość wypłaty I spada wraz ze wzrostem wartości n.

## Tabela funkcji

W poniższej tabeli przedstawono funkcje wywołujące wykresy znajdujące się w pracy.

| nr wykresu | chunk      | funkcja               | parametry                       |
|------------|------------|-----------------------|---------------------------------|
| 1          | plot 1     | plot_estymators1      | ()                              |
| 2 & 3      | boxplot 1  | boxplot_estymators1   | ()                              |
| 4          | plot 3     | plot_estymators       | (estyms3, est_names, colrs)     |
| 5          | boxplot 3  | $boxplot\_estymators$ | (estyms3, est_names, colrs)     |
| 6          | boxplot 3  | $vars\_barplot$       | $(estyms3, est\_names, colrs)$  |
| 7          | plot 10    | plot_estymators       | $(estyms10, est\_names, colrs)$ |
| 8          | boxplot 10 | $boxplot\_estymators$ | $(estyms10, est\_names, colrs)$ |
| 9          | boxplot 10 | vars_barplot          | (estyms10, est_names, colrs)    |