PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-153542

(43)Date of publication of application: 13.06.1990

(51)Int.CI.

H01L 21/56

H01L 23/50

(21)Application number: 63-307373

(71)Applicant: MATSUSHITA ELECTRIC IND CO

(22)Date of filing:

05.12.1988

(72)Inventor: KIKUCHI TATSUO KURODA HIROSHI

(54) MANUFACTURE OF INTEGRATED CIRCUIT DEVICE

(57)Abstract:

PURPOSE: To manufacture a high-dimensional accuracy and high-quality thin integrated circuit device suitable for an IC card at a high efficiency and at low cost by a method wherein an integrated circuit element mounted on a metallic thin plate is covered with a sealing resin and part of the metallic thin plate is used as a terminal for external connection use.

CONSTITUTION: An insulative bonding agent 12 is applied on most of one surface 11a of a metallic thin plate 11 excepting the connecting parts of the one surface 11a with gold wires 14. An integrated circuit element 13 is mounted and fixed through this bonding agent 12. Then, input/output electrodes 13a of the element 13 and the one surface 11a of the plate 11 are electrically connected to each other by the wires 14. After that, the element 13, the wires 14 and the side of the one surface 11a of the plate 11 are coated with a sealing resin 15. Subsequently, unnecessary parts of the plate 11 are removed to form the plate 11 into a desired configuration and after a terminal 11c for external

connection use is formed, a coupling part 11d is cut and removed to obtain an integrated circuit device in a completed state.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

① 特許出願公開

平2-153542 ⑫ 公 開 特 許 公 報(A)

@Int. Cl. 5

識別記号

١

庁内整理番号

43公開 平成2年(1990)6月13日

H 01 L 21/56 23/50 H

6412-5 F 7735-5 F

審査請求 未請求 請求項の数 4 (全6頁)

集積回路装置の製造方法 64発明の名称

> 顧 昭63-307373 ②特

願 昭63(1988)12月5日 ②出

明 ⑫発 者 菊 郎

大阪府門真市大字門真1006番地 松下電器産業株式会社内 大阪府門真市大字門真1006番地 松下電器産業株式会社内

明 ⑫発 者 Æ

池

啓 大阪府門真市大字門真1006番地

松下電器産業株式会社 创出 願 人 個代 理 弁理士 粟野 重孝 人

外1名

明

1、発明の名称

集積回路装置の製造方法

- 2. 特許請求の範囲
 - (1) 金腐薄板の一面に絶縁性接着材を介して集積 回路素子を搭載し、前記集積回路素子の入出力 電極と前記金属薄板の一面とを電気的に接続し. 前記金属薄板の一面側において前記集積回路素 子および前記電気的接続部分を對止樹脂で覆い、 そののちに、前記金属薄板の一部を除去し、前 記金属薄板を所望の形状の外部接続用端子とす る集積回路装置の製造方法。
 - (2) 絶縁性接着材は、電気的接続部分を除いて、 封止樹脂を形成する金属薄板の一面の大部分に 設ける請求項1記載の集積回路装置の製造方法。
 - (3) 金属薄板の一部を除去し、所望の形状とする 加工は、化学的エッチングにより行う請求項1 記載の集積回路装置の製造方法。
 - (4) 封止樹脂による封止は、金型を用いて行り請 求項1記載の集積回路装置の製造方法。

3、発明の詳細な説明

産業上の利用分野

本発明は例えばICカード等に用いられる集積 回路装置の製造方法に関するものである。

従来の技術

近年は、マイクロコンピュータ、メモリ等の集 横回路素子をプラスチック製カードに搭載または 内蔵したいわゆるICカードが実用に供されつつ ある。

とのICカードは、すでに多量に使用されてい る磁気ストライブカードに比して、記憶容量が大 きく防犯性に優れていることから、従来の磁気ス トライブカードの用途ばかりでなく身分証明書等 多様な用途に使用することが考えられている。

ところで、ICカードは、塩化ビニル樹脂等の ブラスチックカートに、リーダー・ライター等の 外部装置との接続用端子を有する集積回路装置を 搭載した構成であり、との集積回路装置は、極め て薄型に構成することが必要とされている。

I Cカードにも多くの種類があるが、従来の磁

特開平2-153542(2)

気ストライブカードと同じ寸法のICカードの規格化がISO(国際標準化機構)で検討されている。

以下、ICカードおよびICカードに用いられる集積回路装置について添付図面を参照しながら 説明する。

第4図はICカードの針視図、第5図は第4図における AーA/断面であり、集積回路装置の周辺を示す断面図、第6図は回路基板を用いた従来の集積回路装置の縦断面図である。

従来、ICカードの製造方法や構成には数多くの方法が行われているが、例えば、第4図をよび第5図に示すように、シート状の厚さ760μロ程度の薄いブラスチックカード1に、エンドミルやトムソン金型などを用いて、集積回路装置30の大きさよりやや大きな穴2を設け、ブラスチックカード1よりやや薄い厚みの集積回路装置30を挿入し、外部接続用端子32が露出するように接着する。

従来の集積回路装置は、第8図に示すように、

発明が解決しようとする課題

一方、金属薄板を所望形状に加工したリードフレームを用いた集費回路装置は、前述のような高精度な精密回路基板を必要としないので、高寸法精度かつ高能率に製造でき、しかも安価な集積回

フィルム状の絶縁基板31に外部接続用端子ボターン32、回路ボターン33およびスルーホール34等の回路導体を形成した薄型回路基板で観りを素子36をダイボンディングし、集積を開発子36の入出力電極と回路ボターン336の入出力電極と回路ボターン336で表現する。また、樹脂封止時の樹脂流れ止め用の対止枠37を回路基板に接着して設け、エボキン樹脂の封止材38により封止して得られる。(特開昭56-58847号公報、特開昭58-92597号公報)

また、前述のような高精度な精密回路基板を必要としない従来の集積回路装置として、金属薄板を所望形状に加工したリードフレームを用い、リードフレームの片方の一面を外部接続用端子とし、他面に集積回路案子を搭載し、集積回路案子の入出力電極とリードフレームの他面とを金属線で電気的に接続し、集積回路案子側を封止樹脂で被覆した集積回路装置がある。(特開昭 54—89088号公報、特開昭 63—33853号公報)

路装置であるという長所がある。

しかしながら、このリードフレームを用いた集 積回路装置は、リードフレームの片方の一面を外 部接続用端子として、封止樹脂より露出させた片 面封止構造であるので、トランスファ成形法等に より封止樹脂を形成した場合、封止樹脂が外部接 続用端子面にまでにじみだして薄パリとして形成 されやすく、この場合には、物理的研摩や溶剤等 によってこの薄パリを除去することが必要であり、 製造工程が複雑となるばかりでなく集積回路装置。 としての品質を損なり危険性がある。また、との 集積回路装置のリードフレームは、集積回路装置 の製造時の搬送、組立等の生産性の制約から、リ ードフレームをあまり薄くすることは困難であり、 O.12舞程度が限度とされている。このため、蔣 型の集積回路装置として次のような問題点を有し ている。①リードフレームの厚み分だけ実質的に 封止樹脂が薄くなり、集積回路装置の強度が低下 し、実用上十分な信頼性が得にくい。②集積回路 **装置として、製品のソリを最少にするためには、**

特開平2-153542(3)

リードフレームの厚さをさらに薄くすることが好 ましいが、難しい。

本発明は、上記問題点に鑑みて成されたもので、 I C カードに適した高寸法精度、高品質な薄型の 集積回路装置を、高能率かつ安価に製造できる方 法を提供するものである。

課題を解決するための手段

上記課題を解決するために、本発明の集積回路 装置の製造方法は、金属薄板の一面に絶縁性接着 材を介して集積回路素子を搭載し、前記集積回路 素子の入出力電極と前記金属薄板の一面とを電気 的に接続し、前記金属薄板の一面側に封止樹脂を 形成して前記集積回路素子および前記電気的接続 部分を前記封止樹脂で投い、そののちに、前記金 属薄板の一部を除去し、前記金属薄板を所望の形 状の外部接続用端子とするものである。

作用

本発明は、上記の構成によって、従来用いられていた高価なスルーホール付両面回路基板を必要とせず、スルーホール形成に伴うコスト . 品質他

きる。 ⑤金属薄板が極めて薄くできるので、細密 な外部接続用端子バターンの形成ができる。

以下、本発明の一実施例の集積回路装置の製造 方法について、図面を参照しながら説明する。

第1図は本発明の一実施例における集積回路装置の製造方法を説明するための各工程における縦断面図である。第2図は本発明の一実施例における製造方法により得た集積回路装置の縦断面図である。第3図は本発明の一実施例における封止樹脂の形成方法を説明するための縦断面図である。第1図、第2図および第3図において、11は金属薄板、12は絶縁性接着材、13は集積回路素子、14は金属線、15は封止樹脂、16は成形金型である。

本 実 施 例 の 集 積 回 路 装 置 の 製 造 方 法 に つ い て 、 そ の 構成 と と も に 以 下 に 詳 細 に 説 明 す る 。

まず、金属薄板11として35μ m 厚の銅箔を 用いた。この金属薄板11の一面11 a の所望部 分に、後述するワイヤーポンディング法により金 の問題が解決でき、 尊型の集積回路装置が安価で 高品質に製造できる。

同時に、金属薄板を外部接続用端子とするため、 前記金属薄板の一部を除去し所望の形状とする加 工は、封止樹脂を形成し、集積回路煮子および電 気的接続部分を前記封止樹脂で設ったのちに行う ものであり、集積回路業子の搭載接続から外部接 続用端子のパターン形成までの工程では、金属海 板は凹凸のない平板であるので、以下の作用を有 することとなる。①金属薄板が平板であるので、 外部接続用端子面への封止樹脂の流出がなく、ま た、封止樹脂側においては、金型と金属薄板が良 好に密着し、樹脂バリ等の発生がなく良好な封止 樹脂の形成が可能である。②外部接続用端子面の 表面処理は、各工程を経た後に行うので、傷等を 防止でき、外観的な品質が確保できる。③工程搬 送時の安定性が高い。④金属薄板の形状加工は樹 脂封止後に行うので、金属薄板は極めて薄くでき、 その分集積回路素子および封止樹脂の厚みを厚く でき、集積回路装置の強度を向上させることがで

属線14を接続するために、ニッケルめっきおよび金めっきによる表面処理を施し、第1図(a)を得た。

次に、上記の金属薄板11の一面11aの金属線14の接続部分を除いた大部分に、 絶縁性樹脂からなる絶縁性接着材12をスクリーン印刷法により塗布した。次に、 集積回路案子13を搭載し、 絶縁性接着材12を加熱硬化して接着固定した。 なか、 絶縁性接着材12を、 金属線14の接続部分を除いた金属薄板11の一面11aの大部分に設けたのは、後に形成する封止樹脂15と金属薄板11の密着性を高めるためであり、 また、 後述する化学的エッチング時に、 金属薄板11が一面11a 側からエッチングされるのを防ぐためである。

次に、金属線1 4 として直径2 5 μ m の金細線を用いて、ワイヤボンディング法により、集積回路素子1 3 の入出力電極1 3 a と金属薄板1 1 の一面1 1 a のニッケルめっきおよび金めっきによる表面処理部分とを電気的に接続し、第1 図(b) と

特間平2-153542(4)

した。

集積回路素子13の入出力電極13aと金属薄板11の一面11aとの必要な電気的接続を行ったのち、エボキシ樹脂などの封止成形材料を用いトランスファ成形法で成形し、封止樹脂15により集積回路業子13、金属線14および金属薄板11の一面11a側を被慢して保護し、第1図(c)、を得た。

上記の封止樹脂 1 5 の形成方法について、第3 図を用いてさらに詳しく説明する。集積回路案子 1 3 を搭載し接着固定し、金属線 1 4 による必要 な電気的接続を行った金属線 1 1 を、成形温度 に加熱されたトランスファ成形の成形金型 1 8 a と上金型 1 8 b の型締めを行ったのち、エボキシ樹脂を 成分とし硬化剤,充填剤およびその他の添加剤が らなる封止成形材料を加熱加圧状態で成形金型 1 8 内にゲート 1 8 c より注入し、硬化のための一定 時間保持したのち、トランスファ成形金型 1 8 より取り出して、封止樹脂 1 5 を形成した。なお、

次に、金属薄板11の他面11bの表面にエッチングレジスト膜形成、化学的エッチングによる金属の不要部分の除去、エッチングレジスト膜除去を行って、金属薄板11を所望形状とした。この後、所望形状の金属薄板11の表面にニッケルめっきがよび金めっきによる表面処理を施して、外部接続用端子11cの連結部であり、複数個の集積回路装置を部分的に連結するとともに、上記のめっきによる表面処理を施すためのリードとしての導体も兼ねるものである。

この後、金属薄板11の連結部11 d を切断除去し、各集積回路装置を分離した。これにより第2図の本実施例の製造方法による完成状態の集積回路装置が得られた。このように、金属薄板11 に、絶縁性接着材12を介して集積回路案子13の搭報接続および封止樹脂15の形成を行った後に、パターン形成および金属薄板11の表面にニッケルめっきおよび金めっきによる表面処理を施

第3図において160は封止成形材料注入時の成形金型16内の空気を排出するためのエアーペントである。

以上説明した本実施例では、金属薄板11は、 平板であり、スルーホール等の開口がないので、 樹脂封止時に、金属薄板11の他面11b側へ の樹脂の流出を防止のための手段は不要であり、 金属薄板11の樹脂形成側である一面11aには 凹凸がなく、また、他面11bも平面であり、パ ターン等が形成されて無いので、型締め時、十分 な圧力で型締めを行うことができ、成形金型18 は金属薄板11に良好に密着し、封止樹脂15の 流出がなく、薄バリの発生が防止でき、良好に封 止樹脂15が形成できた。

なお、封止樹脂 1 5 の形成方法について、エポキン樹脂を主成分とする封止成形材料を用いたトランスファ成形法を説明したが、この他に、封止成形材料としてフェノール系樹脂を用いてもよく、また、熱可塑性樹脂を用いた射出成形法により行うこともできる。

して外部接続用端子11cを形成したので、外部接続用端子11cの表面に傷や汚れの発生が防止でき、外額的品質が確保できた。

第2図の本実施例による集積回路装置の寸法は、 タテ1〇間、ヨコ12間、4角の曲率半径1.5 間で、厚さは外部接続用端子11cと封止樹脂16とを併せて〇.65間であり、極めて寸法精度がよく、寸法のバラツキは、厚さ寸法で±2〇μ回以下であり小さかった。

厚さの各部寸法は、おおよそ外部接続用端子 11cがO.O4mm、集積回路案子13がO.35mm、 集積回路案子13の下の絶縁性接着材12がO.O3 mm、集積回路案子13上の封止樹脂15がO.23 mmであった。

また、本実施例による集積回路装置の封止樹脂 15の形状は、第2図に示すように、θを約80 度とした台形形状とし、表面15bを、粗面化し て表面あらさ5~15μα程度の凹凸形状とし、 コーナー部分15aを、曲率半径約0.2㎜の曲面 とした。

特開平2-153542(5)

また、金属薄板11に、 絶縁性接着材12を介して集積回路累子13の搭載接続および封止樹脂15の形成を行った後に、 パターン形成および金属薄板11の表面にニッケルめっきおよび金めっきによる表面処理を施して外部接続用端子11 c を形成したので、外部接続用端子11 c の表面に

を電気的に接続し、前記金属薄板の一面側において前記集積回路案子および前記電気的接続部分を 前記封止樹脂で娶い、そののちに、前記金属薄板 の一部を除去し、前記金属薄板を所望の形状の外 部接続用端子とする集積回路装置の製造方法である。

これにより、従来用いられていた高価なスルーホール付両面回路基板を必要とせず、スルーホール形成等の基板形成に伴うコスト,品質他の問題が解決でき、薄型の集積回路装置が安価で高品質に製造できることになる。

同時に、外部接続用端子を設けるため金属薄板の一部を除去し所望の形状とする加工は、集積回路案子および電気的接続部分を封止樹脂で覆ったのちに行うものであり、集積回路案子の搭載接続から外部接続用端子のパターン形成までの工程では、金属薄板平板であるので、以下の数多くの効果を有する。

御脂封止時に樹脂の流出を防止のための手段は不要であり、封止樹脂の流出がなく、薄バリ

傷や汚れの発生が防止でき、外観的品質が確保で きた。

また、金属薄板11の形状加工は封止樹脂16の形成後に行ったので、金属薄板11は、厚みを36μmと極めて薄くしても、工程搬送時の安定性は高く、金属薄板11を薄くできた分、集積回路素子13および封止樹脂16の厚みを厚くでき、集積回路装置の強度を向上させることができた。

また、金属薄板11を極めて薄くし、外部接続用端子11cの形成加工は、化学的エッチングにより行ったので、細密なパターンの形成ができた。さらに、絶縁性接着材12は、電気的接続部分を除いて、封止樹脂15を形成する金属薄板11の一面11aの大部分に設けたので、金属薄板11と封止樹脂15との密着性は、十分な強度が

発明の効果

得られた。

以上のように本発明は、金属薄板の一面に絶縁 性接着材を介して集積回路案子を搭載し、前記集 積回路案子の入出力電極と前記金属薄板の一面と

の発生が防止でき、良好に封止樹脂が形成できる。

- ② 外部接続用端子の表面処理は、各工程を経たのちに行えるので、外部接続用端子の表面に傷 や汚れの発生が防止でき、外観的品質が確保で
- ③ 金属海板の厚みを極めて薄くしても、工程搬送時の安定性は高く、金属海板を薄くできた分、 集積回路素子および封止樹脂の厚みを厚くでき、 集積回路装置の強度を向上させることができる。
- ④ 集積回路素子の搭載接続から外部接続用端子の形成までの工程では、集積回路素子の各入出力電極は全て連続した一つの金属薄板に接続され、同電位であるので、これらの工程中に静電気により集積回路素子が破壊されることがない。

また、金属薄板を極めて薄くし、外部接続用端子の形成加工は、化学的エッチングにより行 うので、細密なパターンの形成ができる。

さらに、絶縁性接着材は、電気的接続部分を 除いて、封止樹脂を形成する金編薄板の一面の

持開平2-153542 (6)

大部分に設けたので、金属薄板と封止樹脂との 密着性が向上する。

以上のように、本発明は、極めて高品質を集積 回路装置が容易に製造できるものである。

4、図面の簡単な説明

第1図は本発明の一実施例における集積回路装置の製造方法を説明するための各工程における機断面図、第2図は本発明の一実施例における製造方法により得た集積回路装置の縦断面図、第3図は本発明の一実施例における封止樹脂の形成方法を説明するための縦断面図、第4図はICカードの一部の縦断面図、第6図は従来のICカードの一部の縦断面図、第6図は従来の集積回路装置の縦断面図である。

11 ·····金属薄板、11 a ·····一面、11 b ······他面、11 c ·····外部接続用端子、12 ·····绝 绿性接着材、13 ·····集積回路素子、14 ·····金 属線、15 ······封止樹脂、16 ······成形金型。

代理人の氏名 弁理士 粟 野 重 孝 ほか1名

112

110 12

第 2 図

ax 3 ⊠

第一6日

