```
ti-
tle=2,1,
boxed
ti-
tle
style=frame
code=
[fill=tcbcolback!30!black]
([yshift=-
1mm,xshift=-
1mm]frame.north
west)
arc[start
an-
gle=0,end
an-
gle=180,radius=1mm]
([yshift=-
1mm,xshift=1mm]frame.north
east)
arc[start
an-
gle=180,end
an-
gle=0,radius=1mm];
[left
color=tcbcolback!60!black,right
color
tcb-
col-
back!60!black,
mid-
dle
<u>c</u>olor
tcb-
col-
back!80!black]
([xshift=-2mm]frame.north
west)
([xshift=2mm]frame.north
east)
rounded
corners=1mm]-
([xshift=1mm,yshift=-
1mm]frame.north
east)
(frame.south
east)
(frame.south
west)
west)
[sharp
corners]-
cy-
cle;
cie;
,in-
te-
tor
eil-
gine=empty,
,in-
te-
rior
style=top
color=yellow!5
```

Calculer h(1). Calculer $(\hat{h}^{-1})'(2)$. Construire la courbe de h^{-1} . * Exercice 5
*Partie A Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = -x + 1 - 2 \ln x$ Étudier les variations de q puis dresser son tableau de variations. Calculer g(1). En déduire le signe de g(x) sur $]0; +\infty[$. *Partie B Soit f la fonction définie par $f(x) = \frac{x + \ln x}{x^2}$ et (C) sa courbe représentative dans un repère (O, \vec{i}, \vec{j}) . Déterminer le domaine de définition de f. Calculer $\lim_{x \to a} f(x)$. Interpréter graphiquement le résultat. Calculer $\lim_{x \to +\infty} f(x)$. Interpréter graphiquement le résultat. Montrer que pour tout $x \in]0; +\infty[, f'(x) = \frac{g(x)}{r^2}]$ Dresser le tableau de variations de f. Montrer que l'équation f(x) = 0 admet dans $]0; +\infty[$ une unique solution β et que $\beta \in]0, 56; 0, 57[$. Construire (C). *Partie C Soit h la fonction définie sur $]0; +\infty[$ par $h(x) = \frac{1}{x}$ et (Γ) sa courbe. Étudier les positions relatives de (C) et (Γ) . Construire dans le même repère (Γ) . Soit I_{λ} l'aire en unité d'aires de la partie du plan délimitée par les courbes (C), (Γ) et les droites d'équations x=1 et xMontrer que $I_{\lambda} = 1 - \frac{1}{\lambda}(1 + \ln \lambda)$. Déterminer $\lim_{\lambda \to +\infty} I_{\lambda}$. * Exercice 6 Soit $f(x) = \frac{\ln x}{1 + x^2}$ Soit $g(x) = 1 + x^2 - 2x^2 \ln x$. Déterminer D_g et montrer que si 0 < x < 1 alors $g(x) \ge 1$. Montrer que g est strictement décroissante sur $[1; +\infty[$. Calculer g(1) et g(2). Montrer qu'il existe un unique réel α strictement positif tel que $g(\alpha) = 0$. Donner un encadremen Donner le signe de g(x) sur $]0; +\infty[$. *Partie B Calculer f'(x) et étudier les variations de f. Montrer que $f(\alpha) = \frac{1}{2\alpha^2}$. Calculer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$. Donner une équation de la tangente (T) à (C_f) au point d'abscisse 1. Donner le tableau de variations de f puis tracer (C_f) . * Exercice 7 *Partie A On considère dans $]0; +\infty[$ la fonction g donnée par $: g(x) = x \ln(x) - 1.$ Dresser le tableau des variations de g. Montrer que l'équation g(x) = 0 admet une solution unique α sur $]0; +\infty[$. Montrer que 1, $76 < \alpha < 1$, 77. En déduire le signe de g(x) suivant les valeurs de x. On considère la fonction f de R vers R définie par : $f(x) = \frac{1+x}{1+\ln(x)}$. Justifie que $D_f =]0; +\infty[\setminus \left\{\frac{1}{e}\right\}]$. Calcule les limites de f aux bornes de D_f . Étudie les branches infinies à (C_f) . Démontre que $\forall x \in D_f$, $f'(x) = \frac{g(x)}{x(1 + \ln(x))^2}$. Donne le signe de f'(x) suivant les valeurs de x. En déduire le sens de variation de f et dresser son tableau de variation. Démontre que $f(\alpha) = \alpha$. Trace la courbe (C_f) et son asymptote. (On prendra $\alpha = 1,76$) * Exercice 8 *Partie A

Construire (C_f) (unité 2 cm) (on précisera la tangente au point d'abscisse e^{-1} et on placera le point d'abscisse 1).

admet une unique solution α puis vérifier que $-1, 8 < \alpha < -1, 7$.

Montrer que h admet une bijection réciproque h^{-1} définie sur un intervalle J à préciser.

Soit h la restriction de f à $I =]0; +\infty[$.

Étudier la dérivabilité de h^{-1} sur J.

Soit $g(x) = 2x - (x+1)\ln(x+1)$.

*<u>Partie C</u>