Part I Grundlagen

1 Verbände

Definition 0.1. Die Kategorie der Verbände

2 Kategorien

In diesem Abschnitt werden die nötigen kategorientheoretischen Kenntnisse (bzw. Terminologie) bereitgestellt, welche für die Gruppentheorie (von einem modernen Standpunkt aus) unentbehrlich sind.

1 Terminale und finale Objekte

Definition 0.2 (initiale und terminale Objekte). Sei A eine Kategorie. Dann heißt ein Objekt T:A terminal¹, falls es für jedes andere Objekt O:A genau einen Morphismus $\alpha:O\to T$ gibt. Mit anderen Worten: T ist maximal bezüglich der transitiven Relation \to . In analoger Weise heißt I ein $initiales^2$, falls es für jedes O:A genau einen Morphismus $\beta:I\to O$ gibt. Mit anderen Worten: I ist minimal bezüglich der transitiven Relation \to .

Definition 0.3 (Nullobjekt). Ein Objekt 0: A heißt $Nullobjekt^3$, falls 0 sowohl initial als auch terminal ist.

2 Initiale und terminale Pfeile und Nullpfeile

Definition 0.4 (Initiale und terminale Pfeile). Ein Pfeil $\gamma: A \to B$ heißt *terminaler Morphismus*⁴, falls $\alpha \gamma = \beta \gamma$ für alle $\alpha, \beta: \to A$. Analog heißt γ *initialer Morphismus*⁵, falls $\gamma \alpha = \gamma \beta$ für $\alpha, \beta: B \to (d.h. \gamma^*)$ ist konstant in A^*).

Bemerkung 1. Initiale und terminale Pfeile sind genau die initialen und terminalen Objekte in der Morphismenkategorie von *A*.

Definition 0.5 (Nullpfeil). Ein Pfeil $0: A \to B$ heißt *Nullmorphismus*⁶, falls er konstant und kokonstant zugleich ist.

Bemerkung 2. Nullpfeile sind genau die Nullobjekte in der Morphismenkategorie von *A*.

¹terminales Objektkoinitiales Objekt

²initiales Objektkoterminales Objekt

³Nullobiekt

⁴terminaler Morphismuskonstanter Morphismus

⁵initialer Morphismuskokonstanter Morphismus

⁶Nullmorphismus

Bemerkung 3. Gibt es ein Nullobjekt 0:A, so auch ein kanonischen Nullmorphismus zwischen Objekten A, B:A via $A \to 0 \to B$, wobei die beiden Morphismen aufgrund der Nullobjekteigenschaft schon eindeutig sind.

3 Kerne und Kokerne

Definition 0.6 (Kern und Kokern). Sei $\alpha: A \to_A B$ ein Morphismus. Dann wird ist der *Kern*⁷ ker ϕ das Unterobjekt mit der universellen Eigenschaft, dass jedes Unterobjekt U von A gilt, dass $U\alpha = 0_{\operatorname{Sub} A}$, dann gilt ker $\phi \leq U$. In analoger Weise definieren wir den *Kokern*⁸ ker* α von α als das Quotientenbojekt Q von B, welches die Eigenschaft hat, dass $\alpha Q = 0_{\operatorname{Sub}^* A}$ gilt ker* $\alpha \leq Q$.

4 Unterobjekte und Quotientenobjekte

Definition 0.7. Sei A eine Kategorie. Der Verband der *Unterobjekte*⁹ Sub A für jedes Objekt A:A als die Isomorphieklassen der Kategorie $\rightarrowtail_A A$ (also $\rightarrowtail_A A/\longleftrightarrow$). Analog definieren wir den Verband der *Quotientenobjekte*¹⁰ von A als Sub* A durch die Isomorphieklassen von $A \twoheadrightarrow_A / \longleftrightarrow$.

Bemerkung 4. Die beiden Konzepte sind also genau dual zueinander.

5 Normale Unterobjekte und konormale Quotientenobjekte

Definition 0.8 (Normales Unterobjekt und konormales Quotientenobjekt). Ein Unterobjekt N von A heißt $normal^{11}$, falls es einen Morphismus $\alpha:A\to gibt$, sodass $N=\ker\alpha$. Ein Quotientenobjekt Q heißt $konormal^{12}$, falls es einen Morphismus $\beta:\to\alpha$ gibt mit $\ker^*\beta=Q$.

6 Bilder

Definition 0.9. Sei $\alpha:A\to B$ ein Morphismus, dann bezeichnet *image* α das induzierte Unterobjekt von α .

7 Normale Morphismen

Definition 0.10. Ein Morphismus $\alpha: A \rightarrow_A B$ heißt *normal*¹³, falls im α ein normales Unterobjekt von B ist.

⁷Kern eines Morphismus

⁸Kokern

⁹Unterobjekt

 $^{^{10}} Quotienten objekt Kounter objekt \\$

¹¹normales Unterobjekt

¹²konormales Quotientenobjekt

¹³normaler Morphismus

8 Morphiesätze

Satz 0.1. Sei A eine Kategorie mit Bildern und Kernen. Sei $\phi: A \rightarrow_A B$ ein Morphismus. Dann gibt es ein Objekt C mit $\pi: A \twoheadrightarrow C$, $\iota: C \rightarrowtail B$, sodass $\phi = \pi \iota$.

Beweis.

3 Produkte und Koprodukte

Sei $B \rightarrow A$ eine Unterkategorie.

4 Gruppenaxiome

Unter einer Gruppe verstehen wir eine Struktur vom Typ $Grp = \langle \circ, ^{-1}, 1 \rangle$, derart dass folgende Identitäten gelten

- $(a \circ b) \circ c = a \circ (b \circ c)$ (Assoziativität)
- $a^{-1} \circ a = a \circ a^{-1} = 1$ (Inversenabblildung)
- $a \circ 1 = 1 \circ a = a$ (neutrales Element)

Satz 0.2. Hallo

5 Aufsteigende und absteigende Kettenbedingung

Definition 0.11. Sei P: Poset. Dann genügt P der aufsteigenden Kettenbedingung¹⁴, wenn jede aufsteigende Kette nach endlich vielen Gliedern abbricht. Analog genügt P der absteigenden Kettenbedingung¹⁵

Satz 0.3 (Charakterisierung von endlicher Erzeugbarkeit). *Sei A eine Algebra. Die folgenden Aussagen sind äquivalent*

- (*I*) *A* ist endlich erzeugt.
- (II) Sub A genügt der aufsteigenden Kettenbedingung.
- (III) Jedes Unterobjekt U : Sub A, $U \neq A$ liegt in einem maximalen Unterobjekt.

Beweis.

Ist *A* endlich erzeugt und *C* eine aufsteigende Kette in Sub *A*, dann wird *C* stationär.

 $^{^{14}}$ aufsteigende Kettenbedingung Nо
етнек'sche Eigenschaft

 $^{^{15}}$ absteigende Kettenbedingung Artin'sche Eigenschaft

blub

6 Die Sylow'schnen Sätze

Eine natürliche Frage, welche sich aus dem Theorem von Lagrange ergibt, welche Aussagen über die Anzahl und Art der Untergruppen von Ordnung n einer endlichen Gruppe G getroffen werden können. Für $n \mid G$ ist selbige Anzahl nach dem Theorem von Lagrange (TODO: REF) gleich null. Ist G zyklisch, so ist jene Anzahl im Falle $n \mid G$ genau eins. Tatsächlich muss es aber für $n \mid G$ keine Untergruppen dieser Ordnung geben, was man am leichtesten an der symmetrischen Gruppe Aut m sieht, denn wählt man nun n als eine Zyklizität erzwingende Zahl, sodass $m < n \mid m!$, dann gibt es offensichtlich keine Untergruppen von Aut m dieser Ordnung. ist es ob bei einer endlichen Gruppe G der

Tatsächlich lassen sich aber befriedigende Aussagen treffen, falls $n=p^e$ die Potenz einer Primzahl p ist. Diese werden gemeinhin als Sylow'sche Sätze bezeichnet.

Definition 0.12 (p**-Gruppe).** Sei G eine Gruppe derart, dass jedes Element $g \in G$ eine Primzahlpotenz p^{e_g} als Ordnung hat (wobei p eine feste Primzahl sei.

Bemerkung 1. Eine triviale Konsequenz der Sylow'schen Theoreme wird es sein, dass jede endliche p-Gruppe selbst von Primzahlpotenzordnung p^e ist.

Satz 0.4 (Existenz von p-**Untergruppen jeder Ordnung).** Sei G eine endliche Gruppe mit $|G| = p^e n$. Für die Anzahl $N_{v^e} := |\langle U \leq G : |U| = p^e \in \text{Set} \rangle|$ gilt dann

$$N_{p^e} = 1 \bmod p$$

Beweis. Wir betrachten die Aktion von G auf den p^e -elementigen Untermengen von G_{Set} welche gegeben wird durch elementweise Rechtsmultiplikation. Die Bahnengleichung für diese Aktion wird dann zu

$$\left| \begin{pmatrix} G_{\text{Set}} \\ p^e \end{pmatrix} \right| = \sum_{i} \left| G/\text{stab} A_i \right|,$$

wobei A_i Repräsentanten der G-Bahnen sind. Für $A_i \rightarrow G_{Set}$, $|A_i| = p^e$ gilt allerdings dann $A_i(\operatorname{stab} A_i)_{Set} = A_i$, also ist A_i eine disjunkte Vereinigung von Linksnebenklassen von $\operatorname{stab} A_i$ und mithin $|\operatorname{stab} A_i| |p^e$. Betrachten wir also obige gleichung modulo pn, so folgt

$$\left(\begin{array}{c} p^e n \\ p^e \end{array}\right) = n N_{p^e} \bmod pn,$$

denn alle Terme, in denen $\operatorname{stab} A_i < p^e$ ist in obiger Gleichung entfallen und die übrigen Terme zählen genau für jede p^e -elementige Untergruppe von G ihre Linksnebenklassen (derer gibt es n). Daraus folgt

$$\frac{1}{n} \begin{pmatrix} p^e n \\ p^e \end{pmatrix} = \begin{pmatrix} p^e n - 1 \\ p^e - 1 \end{pmatrix} = N_{p^e} \bmod p,$$

wobei der Ausdruck auf der Linken Seite gleich 1 ist modulo p. Dies sieht man einerseits daran, dass dies für die zyklische Gruppe mit $p^e n$ Elementen gilt, andererseits lässt sich auch das Theorem von Lucas (TODO : REF) auf den letzten Binomialkoeffizienten anwenden. Wir erhalten dann

$$N_{p^e} = \left(\begin{array}{c} p^e n - 1 \\ p^e - 1 \end{array}\right) = \left(\begin{array}{c} p - 1 \\ p - 1 \end{array}\right)^e = 1 \bmod p.$$

Техт

Satz 0.5. *Jede endliche Gruppe G hat p-Sylow-Gruppen. Für jede p-Untergruppe U und eine p-Sylow-Gruppe von G gibt es ein Element g \in G, sodass U \rightarrow P^g. Insbesondere sind alle p-Sylow-Gruppen konjugiert zueinander und ihre Anzahl ist |G/N_GP|.*

7 Die Sätze von Hall

Die Sätze von Hall stellen eine Verallgemeinerung der Sylow'schen Sätze für auflösbare Gruppen dar. Entsprechende Untergruppen nennt man auch Hall-Untergruppen.

Satz 0.6 (Hall'sches Theorem). Sei G auflösbar und |G| = mn mit teilerfremden m und n. Dann gilt

- (I) Sei U eine Untergruppe mit |U||m und M eine Untergruppe der Ordnung m, dann gibt es ein $g \in G$ sodass $U \leq M^g$.
- (II) Für die Anzahl der Untergruppen der Ordnung m von G gilt:

 $N_m = 1 \mod \text{rad}m$

Beweis. Der Beweis erfolgt per Induktion nach der Anzahl k der Primfaktoren von m. Für k=1 gilt die Aussage schlicht aufgrund der Sylow'schen Sätze auch ohne Auflösbarkeit von G.

Satz 0.7 (Frattini-Argument). Sie G eine Gruppe und $N \leq_{\operatorname{Con} G} G$. Weiter sei P eine Untergruppe von N derart, dass alle zu P isomorphen Untergruppen in H konjugiert sind (also z.B. P eine p-Sylow-Gruppe). Dann gilt $G = N_G PN$.

Beweis. Für $g \in G$ ist P^g isomorph zu P und gleichermaßen Untergruppe von N, da N normal in G liegt. Also sind P und P^g in N konjugiert und es folgt $P^{gn} = P$ für geignetes $n \in N$. Damit ist aber $gn \in N_G P$ und somit auch $g \in NN_G P$.

8 Auflösbarkeit von Gruppen

Definition 0.13 (Subnormalenverband, Subnormalenreihe). Ein Unterverband \boldsymbol{U} von Sub G Subnormalenverband, falls für alle $U \in \boldsymbol{U}$ gilt $U \in \operatorname{Con} \bigwedge_{V > U} V$. Ist ein solcher Verband isomorph zu einem Unterverband von $\mathbb{N}_{\operatorname{Lat}}$, so nennen wir Ihn eine Subnormalenreihe.

Definition 0.14 (Auflösbare Gruppe). Eine Gruppe G heißt $auflösbar^{16}$, falls es einen Subnormalenverband von G gibt, derart, dass

$$\bigwedge_{V>U} V/U$$
 kommutativ

für alle $U \in U$. endlich auflösbar¹⁷¹⁸

Definition 0.15 (Kommutatoruntergruppe). Seien $U \le \operatorname{Sub} G_{\operatorname{Set}}$. Dann bezeichnen wir mit [A] die *Kommutatoruntergruppe*¹⁹ von der Gruppen in A. Sie wird erzeugt durch alle Kommutatoren [a,b] für $a \in A, b \in B, A, B \in A$.

Lemma 0.1. Die Kommutatoruntergruppe [A] ist charakterisiert durch folgende univerelle Eigenschaft. Sei N ein Normalteiler von $\langle A \rangle$ derart, dass unter der kanonischen Projektion $\pi: \langle A \rangle \to \langle A \rangle / N$ die Bilder der Elemente von A paarweise elementweise kommutieren, d.h. $[\operatorname{im} \iota_A \pi, \operatorname{im} \iota_B \pi] = 1$, wobei ι_A bzw. ι_B die Inklusionen von Untergruppen $A, B \in A$ sind, dann ist $[A] \leq N$ und in äquivalenterweise gibt es einen eindeutigen Morphismus π' , sodass $\pi = p\pi'$ mit $p: \langle A \rangle \to \langle A \rangle / N$ die kanonische Abbildung.

Beweis. Der Beweis folgt aus dem allgemeineren Kontext (TODO).

Definition 0.16 (Kommutatorreihe). Wir definieren die *Kommutatorreihe*²⁰ $(G^{(i)})_{i \in \mathbb{N}}$ einer Gruppe G als

$$G^{(0)} \coloneqq G, \, G^{(i+1)} \coloneqq \left[G^{(i)}, G^{(i)}\right] \, (i \in \mathbb{N}).$$

Weiterhin setzen wir $G^{(\omega)} := \bigwedge_{i \in \mathbb{N}} G^{(i)}$ und bezeichnen es als *perfekten Kern*²¹ von G.

¹⁶auflösbare Gruppe

¹⁷endliche auflösbare Gruppe

 $^{^{18}\}mathrm{Dies}$ meint auflösbar im herkömmlichen Sinne.

¹⁹Kommutatorgruppe

²⁰Kommutatorreihe

²¹perfekter Kern

Lemma 0.2. Eine Gruppe G ist genau dann endlich auflösbar, falls ihre Kommutatorreihe nach endlich vielen Schritten in 1 endet. Sie ist genau dann ω -auflösbar, falls ihr perfekter Kern gleich 1 ist.

Beweis. Sei G ■

9 Der Satz von Jordan-Hölder

9 Das Zassenhaus-Theorem (Schmetterlings-Theorem)

Satz 0.8 (Schmetterlingslemma). Sei $A \leq_{\operatorname{Con} G} B$ und $C \leq_{\operatorname{Con} G} D$, dann gilt

$$\frac{(B \land D) \lor A}{(B \land C) \lor A \leftrightarrow (B \land D)(B \land C) \lor (A \land D) \leftrightarrow (B \land D) \lor C(A \land D) \lor C}.$$

Beweis.

 $\begin{array}{ccc}
A & \xrightarrow{\phi} & \psi & B \\
\downarrow & & \downarrow \xi \\
C & \xrightarrow{\eta} & D
\end{array}$

ABCDEFGHIJKLNMODQRSTUVWXYZ
abcdefghijklnmopgrstuvwxyz
ABCDEFGHIJKLNMOPQRSTUVWXYZ
abcdefghijklnmopgrstuvwxyz
abcdefghijklnmopgrstuvwxyz

 $\rightarrow \rightarrow \rightarrow \rightarrow$