buzzer

 $Ag^{+}$ 

 $NO_{2}$ 

# TD16: Oxydoréduction – corrigé

### Exercice 1 : Couple oxydant-réducteur

On peut former les couples oxydant/réducteur suivants :

#### Exercice 2: Nombre d'oxydation

$$\begin{array}{lll} \mathbf{PbO_4}^{\mathbf{3}-} \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{Pb}) \!\!=\!\! \mathrm{V} & \mathbf{P_2O_5} \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{P}) \!\!=\!\! \mathrm{V} & \mathbf{ClO_4}^- \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{Cl}) \!\!=\!\! \mathrm{VII} \\ \mathbf{H_2O_2} & \colon \mathrm{no}(\mathrm{H}) \!\!=\!\!\! +\!\! \mathrm{I} \, ; \, \mathrm{no}(\mathrm{O}) \!\!=\!\! -\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{H}) \!\!=\!\!\! -\!\! \mathrm{I} \, ; \, \mathrm{no}(\mathrm{H}) \!\!=\!\!\! -\!\! \mathrm{I} \, ; \, \mathrm{no}(\mathrm{Li}) \!\!=\!\!\! +\!\! \mathrm{I} & \mathbf{SO_4}^{\mathbf{2}^-} \colon \mathrm{no}(\mathrm{O}) \!\!=\!\!\! -\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{S}) \!\!=\!\! \mathrm{VII} \\ \mathbf{N_2O_5} & \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! -\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{N}) \!\!=\!\! \mathrm{V} & \mathbf{SO_4}^{\mathbf{2}^-} \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! -\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{S}) \!\!=\!\! \mathrm{VII} \\ \mathbf{N_2O_5} & \colon \mathrm{no}(\mathrm{O}) \!\!=\!\! -\!\! \mathrm{II} \, ; \, \mathrm{no}(\mathrm{N}) \!\!=\!\! \mathrm{VII} \\ \end{array}$$

# Exercice 3 : Demi-équations d'oxydoréduction

On obtient les demi-équations suivantes :

- 1.  $2 \text{ClO}^-(\text{aq}) + 4 \text{H}^+ + 2 \text{e}^- \rightleftharpoons \text{Cl}_2 + 2 \text{H}_2 \text{O}$
- 2.  $NO_3^-(aq) + 4H^+ + 3e^- \rightleftharpoons NO(g) + 2H_2O$
- 3.  $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}(\operatorname{aq})+14\operatorname{H}^{+}+6\operatorname{e}^{-} \Longrightarrow 2\operatorname{Cr}^{3+}(\operatorname{aq})+7\operatorname{H}_{2}\operatorname{O}$
- 4.  $HCOOH(aq) + 4H^{+} + 4e^{-} \rightleftharpoons CH_3OH(aq) + H_2O$
- 5.  $CH_3CHO(aq) + 2H^+ + 2e^- \rightleftharpoons CH_3CH_2OH(aq)$

# Exercice 4: Loi de Nernst

$$\mathbf{Hg^{2+}/Hg_2^{2+}} : 2 \,\mathrm{Hg^{2+}} + 2 \,\mathrm{e^-} \Longrightarrow \mathrm{Hg_2^{2+}}, \ \mathrm{donc} \ E = E^0 + \frac{RT}{2F} \ln \frac{[\mathrm{Hg^{2+}}]^2}{[\mathrm{Hg_2^{2+}}]^2} \simeq E^0 + \frac{0.06}{2} \log \frac{[\mathrm{Hg^{2+}}]^2}{c_0[\mathrm{Hg_2^{2+}}]^2}$$

$$\mathbf{Pb^{2+}/Pb(s)}$$
 :  $\mathbf{Pb^{2+}} + 2e^{-} \Longrightarrow \mathbf{Pb(s)}$ , donc  $E = E^{0} + \frac{RT}{2F}\ln[\mathbf{Pb^{2+}}] \simeq E^{0} + \frac{0.06}{2}\log\frac{[\mathbf{Pb^{2+}}]}{c_{0}}$ 

$$\mathbf{PbSO_4(s)}/\mathbf{Pb(s)}$$
:  $\mathbf{PbSO_4(s)} + 2e^- \iff \mathbf{Pb(s)} + \mathbf{SO_4^{2-}}, \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{c_0}{[\mathbf{SO_4^{2-}}]}.$ 

$$\mathbf{AgBr}(\mathbf{s})/\mathbf{Ag}(\mathbf{s}) : \mathrm{AgBr}(\mathbf{s}) + \mathrm{e}^{-} \Longrightarrow \mathrm{Ag}(\mathbf{s}) + \mathrm{Br}^{-}, \ \mathrm{donc} \ E = E^{0} + \frac{RT}{F} \ln \frac{c_{0}}{[\mathrm{Br}^{-}]}$$

$$\mathbf{BrO_3}^-/\mathbf{Br_2(aq)} : 2\,\mathrm{BrO_3}^- + 12\,\mathrm{H}^+ + 10\,\mathrm{e}^- \Longrightarrow \mathrm{Br_2(aq)} + 6\,\mathrm{H_2O}, \,\mathrm{donc}\,\,E = E^0 + \frac{RT}{10F}\ln\frac{[2\,\mathrm{BrO_3}^-]^2[\mathrm{H}^+]^{12}}{[\mathrm{Br_2}]c_0^{13}}$$

$$\mathbf{O_2(g)/H_2O_2} : O_2(g) + 2 H^+ + 2 e^- \Longrightarrow H_2O_2 \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{[H^+]^2 p(O_2)}{[H_2O_2]p_0c_0}$$

$$\mathbf{Hg_2Cl_2(s)/Hg(\ell)}$$
:  $\mathbf{Hg_2Cl_2(s) + 2e^-} \rightleftharpoons 2\mathbf{Hg(\ell) + 2Cl^-}$  donc  $E = E^0 + \frac{RT}{2F} \ln \frac{c_0^2}{|Cl^-|^2}$ 

$$HClO/Cl_2(g) : 2 HClO + 2 H^+ + 2 e^- \Longrightarrow Cl_2(g) + 2 H_2O \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{[HCLO]^2[H^+]^2 p_0}{p(Cl_2)c_0^4}$$

#### Exercice 5 : PILE ZINC/ARGENT

1. Équations aux électrodes :

$$Ag^+ + e^- \longrightarrow Ag(s) \text{ et } Zn(s) \longrightarrow Zn^{2+} + 2e^-.$$

L'équation bilan globale est :

$$2 \operatorname{Ag}^+ + \operatorname{Zn}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}$$
.

- 2. La fem de cette pile à t=0 est donnée par  $e=E(\mathrm{Ag}^+/\mathrm{Ag})$   $E(\mathrm{Zn}^{2+}/\mathrm{Zn})$ 
  - La formule de Nernst donne :
  - $-E(Ag^{+}/Ag) = E^{0}(Ag^{+}/Ag) + \frac{RT}{F} \ln \frac{[Ag^{+}]}{G}$
  - $-E(\operatorname{Zn}^{2+}/\operatorname{Zn}) = E^{0}(\operatorname{Zn}^{2+}/\operatorname{Zn}) + \frac{RT}{2F} \ln \frac{[\operatorname{Zn}^{2+}]}{[\operatorname{Cn}^{2+}]}$

Avec les données de l'énoncé, on trouve  $e = 1.53 \,\mathrm{V}$ 



3. La constante d'équilibre de cette réaction est  $K=10^{\frac{2\times 1.53}{0.06}} \simeq 10^{51} \gg 10^4$ , on peut donc considérer que la réaction est totale. On fait un tableau d'avancement :

|                                                  | $2Ag^{+}$                                             | + | Zn             | = | $\mathrm{Zn}^{2+}$                 | + | $2\mathrm{Ag}$          |
|--------------------------------------------------|-------------------------------------------------------|---|----------------|---|------------------------------------|---|-------------------------|
| état initial<br>état intermédiaire<br>état final | $\begin{array}{c} n_0 \\ n_0 - 2\xi \\ 0 \end{array}$ |   | excès<br>excès |   | $n_0$ $n_0 + \xi$ $\frac{3}{2}n_0$ |   | excès<br>excès<br>excès |

Chaque atome d'argent a libéré un électron, il y a donc 0,1 mol d'électrons qui ont circulé dans le circuit, de qui correspond à une charge  $Q = 0.1 \times F \simeq 9650 \,\mathrm{C}$ 

## Exercice 6: FONCTIONNEMENT D'UNE PILE

- 1. Voir schéma
- 2. Voir schéma
- 3. Ce sont les électrons qui transportent la charge dans le buzzer.
- 4. Dans la pile les porteurs de charge sont les ions. (voir schéma pour le sens de déplacement).
- 5. Équations aux électrodes :

$$Ag^+ + e^- \longrightarrow Ag(s) \text{ et } Pb(s) \longrightarrow Pb^{2+} + 2e^-.$$

L'équation bilan totale est :

$$2 \operatorname{Ag}^+ + \operatorname{Pb}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Pb}^{2+}.$$

- 6. Le quotient de réaction est donné par  $Q = \frac{[\text{Pb}^{2+}]c_0}{[\text{Ag}^+]^2}$ . À l'instant initial il vaut  $Q_0 = \frac{0.1}{0.1^2} = 10$ .
- 7. La constante d'équilibre de la pile est donnée par  $K=10^{\frac{2}{0.06}(E_{Ag^+/Ag(s)}^0-E_{Pb^2+/Pb(s)}^0)}\simeq 10^{31}>Q$ . La réaction va donc consommer les réactifs et la pile va débiter du courant. On remarque également que la réaction est totale.

#### Exercice 7 : CAPACITÉ D'UNE PILE

1. (Essentiellement la même pile que celle de l'exercice 5)

 $Ag^+ + e^- \longrightarrow Ag(s) \text{ et } Zn(s) \longrightarrow Zn^{2+} + 2e^-.$ 

L'équation bilan totale est :

Pb

 $Pb^{2+}$ 

 $2 NO_2$ 

$$2 \operatorname{Ag}^+ + \operatorname{Zn}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}.$$

- 2. La pile débite 15 mA pendant 5 heures, la charge qui a circulé est donc  $Q = it = 15 \times 10^{-3} \times 5 \times 3600 = 270$  C.
- 3. Chaque électron qui circule dans le circuit est produit par le dépôt d'un ion Ag<sup>+</sup> sur l'électrode d'argent, le nombre de moles d'électrons ayant circulé est  $n_e = \frac{Q}{F} = \frac{270}{96500} = 2.8 \times 10^{-3}$  mol la masse d'argent déposée est  $m_{\rm Ag} = n_e M({\rm Ag}) \simeq 302 \, {\rm mg}$
- 4. Pour chaque  $Ag^+$  qui réagit il y a  $\frac{1}{2}$   $Zn^{2+}$  qui apparaît, il y a donc  $n_{Zn} = \frac{n_e}{2} = 1.4 \times 10^{-3} \,\mathrm{mol}$  d'ions  $Zn^{2+}$  qui sont
  - Dans l'état final, la concentration en Zn<sup>2+</sup> sera de  $C_f = C + \Delta C = C + n_{\rm Zn}/V = 0.114 \, {\rm mol} \, \ell^{-1}$
- 5. La quantité maximale d'électrons que peut faire circuler cette pile est égale à la quantité d'ions Ag+ initialement présents, soit  $n_e^{max} = 5 \times 10^{-3}$  mol et la quantité d'électricité correspondante est  $Q_{max} = n_e^{max} F \simeq 482$  C

# Exercice 8 : Dosage de l'eau oxygénée

1. On écrit les demi-équations de réaction :

$$--\operatorname{MnO_4}^- + 8\operatorname{H}^+ + 5\operatorname{e}^- \Longleftrightarrow \operatorname{Mn}^{2+} + 4\operatorname{H}_2\operatorname{O}$$

$$-O_2 + 2H^+ + 2e^- \Longrightarrow H_2O_2$$

Donc on obtient l'équation de la réaction de dosage suivante :

$$5 \text{ H}_2 \text{O}_2 + 2 \text{ MnO}_4^- + 6 \text{ H}^+ \Longrightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2 \text{O} + 5 \text{ O}_2$$

- 2. Protocole : On prélève 10,0 mL de H<sub>2</sub>O<sub>2</sub> avec une pipette jaugée, et on le verse dans un bécher, avec agitateur magnétique. On verse ensuite progressivement avec une burette graduée le  $MnO_4^-$ . On repère l'équivalence avec le changement de couleur de la solution (incolore avant quand tout le  $MnO_4^-$  réagit instantanément donc disparaît, et violet après quand il reste en solution).
- 3. La quantité d'ions permanganate introduits à l'équivalence est  $n_{\text{MnO}} = C'V'_E = 3.52 \times 10^{-3} \,\text{mol}$ . La quantité de  $H_2O_2$  ayant réagi est donc telle que  $\frac{n_{H_2O_2}}{5} = \frac{n_{MnO_4}^{-}}{2}$  (faire un tableau d'avancement!). La concentration en  $H_2O_2$  est

$$[\mathrm{H_2O_2}] = \frac{n_{\mathrm{H_2O_2}}}{V} = \frac{5n_{\mathrm{MnO_4}}^-}{2V} = \frac{5C'V_E'}{2V} = 0.88 \,\mathrm{mol}\,\ell^-$$

 $[\mathrm{H}_2\mathrm{O}_2] = \frac{n_{\mathrm{H}_2\mathrm{O}_2}}{V} = \frac{5n_{\mathrm{MnO}_4}^{-}}{2V} = \frac{5C'V_E'}{2V} = 0,88\,\mathrm{mol}\,\ell^{-1}$  et le titre massique est  $t = [\mathrm{H}_2\mathrm{O}_2]M(\mathrm{H}_2\mathrm{O}_2) = 30\,\mathrm{g}\,\ell^{-1}$ , ce qui correspond bien à la valeur annoncée.