Socia *Lite*: A Python-Integrated Query Language for Big Data Analysis

Jiwon Seo *Jongsoo Park Jaeho Shin Stephen Guo Monica Lam

*Intel Parallel Research Lab

Why another Big Data Platform?

Existing platforms are ...

- Not fast enough (not network bandwidth)
- Too difficult (low-level primitives)
- Too many (sub) frameworks
 - Graph analysis
 - Data mining
 - Machine learning

Introducing SociaLite

SociaLite is a high-level query language

- Compiled to parallel code
 - 1,000x hadoop
- Hadoop compatible
- Python integration
- Designed for graph analysis
- Good for data mining & machine learning

Outline

- Language
 - Tables
 - Queries
 - Python integration
 - Approximation
- Analysis algorithms
 - Shortest paths, PageRank
 - K-Means, Logistic regression
- Evaluation
- Demo

Distributed In-Memory Tables

- Primary data structure in SociaLite
- Column oriented storage

```
Table (<type> c_x, ..., (<type> c_y, ... (<type> c_z...))).
```

- <type>
 - Primitive types
 - Object types

Distributed In-Memory Tables

Foo(int x, int y).

1	9
1	10
2	5
9	7

Bar[int x](int y).

Foo(int x, (int y)).

Bar[int x:0..10](int y).

Distributed In-Memory Tables

Table options

- indexby <column>
- sortby <column>
- multiset

Foo(int x, int y) indexby x.

Foo(int x, int y) sortby x.

Foo(int x, int y) multiset.

Column options

- range
- (distributed) partition

Foo(int x:0..100, int y).

Foo[int x](int y).

Rules (Queries)

Foo(a, c) :- Bar(a, \mathbf{b}), Qux(\mathbf{b} , c).

Rule head

Rule body

Rules

Foo(a, c) :- Bar(a, \mathbf{b}), Qux(\mathbf{b} , c).

Rules

Foo(a, c) :- Bar(a, \mathbf{b}), Qux(\mathbf{b} , c).

Rules

Foo(a, c) :- Bar(a, \mathbf{b}), Qux(\mathbf{b} , c).

Distributed Execution

```
Foo[int a](int b).

Bar[int a](int b).

Qux[int a](int b).

Foo(a, c): Bar(a, b), Qux(b, c).
```


Distributed Execution

```
Foo[int a](int b). Bar[int a](int b). Qux[int a](int b). Foo(a, c) :- Qux(\mathbf{b}, c), Bar(a, \mathbf{b}).
```


Machine 2

Aggregation

Foo(a, smin(c)) :- Bar(a, b), Qux(b, c).

The \$min aggregate function is applied to tuples in Foohaving the same first column value.

- Built-in aggregate functions
 - min, max, sum, avg, argmin
- User-defined functions
 - in Java or Python

Recursive Rules

Head table also appears in rule body

Foo(a,c) :- **Foo**(a,b), Bar(b,c).

- Semantics
- rule executed repeatedly until no changes to Foo

Recursive Rules

```
`Edge(int s, (int t, double len)) indexby s.
Path(int n, double dist) indexby n.

Path(t, min(d): - t=RC, d=0;
:- Path(n, d<sub>1</sub>), Edge(n, t, d<sub>2</sub>), d=d<sub>1</sub>+d<sub>2</sub>.
```

Shortest Path algorithm in recursion + aggregation

Python (Jython) Integration

- SociaLite queries in Python code
 - Queries are quoted in backtick
 - → Preprocessing with Python import-hook
- Python ←→ SociaLite
 - Python functions, variables are accessible in SociaLite queries
 - SociaLite tables are readable from Python

Python (Jython) Integration

```
print "This is Python code!"
# now we use SociaLite queries below
`Foo[int i](String s).
 Foo(i, s): i=42, s="the answer".
v="Python variable"
Foo(i, s) := i=43, s=$v.
@returns(str)
def func(): return "Python func"
Foo(i, s) := i=44, s=\$func().
for i, s in Foo(i, s):
  print i, s
```

CPython Integration

- JyNI Jython Native Interface
 - Stefan Richthofer
 - http://jyni.org
- To support CPython extensions in Jython
 - NumPy, SciPy, Pandas, etc
- Tkinter works on Jython

Approximation

Approximate Computation

Bloom Filter, FM Sketch

BloomFilter

- Quickly check set membership
- → false positives, but no false negatives

 In SociaLite, useful to store large intermediate results approximately

Approximation w/ Bloom Filter

```
Foaf(i, ff): Friend(i, f), Friend(f, ff).
LocalCount(i, $inc(1)): Foaf(i, ff), Attr(ff, "Some Attr").
```

Approximation w/ Bloom Filter

```
Foaf(i, ff):-Friend(i, f), Friend(f, ff).
LocalCount(i, $inc(1)):-Foaf(i, ff), Attr(ff, "Some Attr").
```

(2nd column of Foaf table is represented with a Bloom filter)

Approximation w/ Bloom Filter

 $Foaf(i, \mathbf{ff}) := Friend(i, f), Friend(f, ff).$

LocalCount(i, \$inc(1)):-Foaf(i, ff), Attr(ff, "Some Attr").

(2nd column of Foaf table is represented with a Bloom filter)

	Exact	Approximation	Comparison
Exec time (min)	28.9	19.4	32.8% faster
Memory usage(GB)	26.0	3.0	11.5% usage
Accuracy(<10% error)	100.0%	92.5%	

^{*} LiveJournal (4.8M nodes, 68M edges)

Analysis Algorithms

- Graph algorithms
 - Shortest Paths
 - PageRank
- Data mining/machine learning algorithms
 - K-Means Clustering
 - Logistic regression

Graph Algorithm

Shortest Path

Graph Algorithm

PageRank

```
\label{eq:resolvent} \begin{array}{l} \text{Rank}(n,0,r) :- \text{Node}(n), r = 1.0/\$N. \\ \text{for t in range}(30): \\ \text{Rank}(p_i,\$t + 1,\$sum(r)) :- & \text{Node}(p_i), \ r = 0.15*1.0/\$N; \\ :- & \text{Rank}(p_j,\$t,r_1), \ \text{Edge}(p_j,p_i), \\ & \text{EdgeCnt}(p_j,\text{cnt}), \ r = 0.85*r_1/\text{cnt}. \\ \end{array}
```

Graph Algorithm

PageRank

```
\label{eq:reconstruction} $$\operatorname{Rank}(n,0,r):=\operatorname{Node}(n), r=1.0/\$N.$$ for $t$ in $\operatorname{range}(30): $$\operatorname{Rank}(p_i,\$t+1,\$sum(r)):=\operatorname{Node}(p_i), r=0.15*1.0/\$N; $$:= \operatorname{Rank}(p_j,\$t,r_1), \operatorname{Edge}(p_j,p_i), $$$ EdgeCnt(p_j,cnt), r=0.85*r_l/cnt.$$
```

At t=0, an initial probability distribution is assumed, usually

$$PR(p_i;0) = \frac{1}{N}$$

At each time step, the computation, as detailed above, yields

$$PR(p_i; t+1) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j; t)}{L(p_j)}$$

Data Mining Algorithm

K-Means Clustering

Data Mining Algorithm

Logistic Regression

```
\label{eq:forion_of_cont} \begin{split} \text{for i in range}(0,100): \\ \text{`Gradient}(\$i,\$\text{sum}(\texttt{w})) &:- \text{Data}(\text{id},\texttt{p}), \text{Weight}(\$i,\texttt{w}_1), \\ \text{dot}=\$\text{dot}(\texttt{w}_1,\texttt{p}), \texttt{y}=\$\text{sigmoid}(\text{dot}), \\ \text{w} &= \$\text{computeWeights}(\texttt{p},\texttt{y}). \\ \text{`Weight}(\$i+1,\texttt{w}) &:- \text{Weight}(\$i,\texttt{w}_1), \\ \text{Gradient}(\$i,\texttt{g}), \text{w}=\$\text{vecSum}(\texttt{w}_1,\texttt{g}). \\ \end{split}
```

Evaluation

Benchmark algorithms (graph algorithms)

- Shortest-Paths
- PageRank
- Mutual Neighbors
- Connected Components
- Finding Triangles
- Clustering Coefficients
- → Evaluation on a multi-core & distributed cluster

Input Graph for Multi-Core

Source	Size	Machine
Friendster	120M nodes 2.5B edges	Intel Xeon E5-2670 16 cores(8+8) 2.60GHz 20MB last-level cache 256GB memory

Parallel Performance (Multi-Core)

Input Graph for Distributed Evaluation

Source	Size	Machine
Synthetic Graph*	up to 268M nodes 4.3B edges (weak scaling)	64 Amazon EC2 Instances Intel Xeon X5570, 8 cores 23GB memory

Giraph (Pregel) vs SociaLite

Programmability Comparison

Giraph vs SociaLite (lines of code)

	Giraph	SociaLite
Shortest Paths	232	4
PageRank	146	13
Mutual Neighbors	169	6
Connected Components	122	9
Triangles	181	6
Clustering Coefficients	218	12
Total	1,068	50

→ SociaLite is 20x simpler!

Comparing More Graph Frameworks

- Collaboration with Intel Parallel Research Lab*
- Compared frameworks
 - SociaLite
 - Giraph
 - GraphLab
 - Combinatorial BLAS
- Native Implementation in C, assembly optimal

^{*} Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets, Satish et al., SIGMOD '14

Comparing More Graph Frameworks

- Benchmark Algorithms
 - BFS (Breadth First Search)
 - PageRank
 - Collaborative Filtering
 - Triangle
- Evaluation on Intel cluster
- Intel Xeon, 24 cores 2.7GHz, 64GB memory, InfiniBand network
- Input Graph
- up to 512M nodes, 16G edges (weak scaling)

Programmability

BFS (Breadth First Search)

	Lines of Code	Development Time
SociaLite	4	1~2 min
Giraph	200	1~2 hours
GraphLab	180	1~2 hours
Combinatorial BLAS	450	a few hours
Native	> 1000	> A few months

Distributed Execution – Comparison

Distributed Execution – Comparison

Work In-Progress

- Collaboration with LinkedIn
 - Real-time pattern matching queries
 - Off-line analysis

- Discussing collaboration with other companies
 - Kakao
 - etc

Summary

- 20x easier than Giraph
- 10x faster than Giraph
- As fast as, or faster than
 - GraphLab, CombBlas
- How?
 - High-level query interface
 - Compiler optimizations
 - Python integration

Demo

DBLP (CS bibliography)

- Co-authorship graph
 - vertices: authors (1 million)
 - edges: co-authorship (10 million)
- Guido van Rossum's academic network
 - How Guido is connected to Armin Rigo (PyPy)
 Jim Hugunin (Jython, IronPython)
 - Run shortest-paths from Guido & visualize

Questions?

- Visit http://socialite.stanford.edu for
 - Trying out
 - Participation (Apache v2)