CRIPTOGRAFIA

PROBLEMA DO LOGARITMO DISCRETO

SUMÁRIO

- Noção de logaritmo
- Noção de logaritmo discreto
- Logaritmo discreto
- Sistemas criptográficos que ocorrem a logaritmos discretos
- Complexidade
- Algoritmos de Colisão

NOÇÃO DE LOGARITMO

 Um logaritmo de um numero é o valor ao qual outro valor fixo deve ser elevado de forma a obteremos o valor original

$$g^x \equiv h \iff x \equiv \log_g(h)$$

GRÁFICOS

$$h = log 2(x)$$

$$h = 2^x$$

LOGARITMO DISCRETO

NOÇÃO DE LOGARITMO DISCRETO

$$g^x \equiv h \pmod{p}$$

Pretendemos saber quais são os valores que x pode tomar, para que o resto da divisão inteira entre g^x e e e e dê o valor de e.

p tem e ser um primo.

Exemplo:

$$2^{x} mod 7 = 4$$

 $x = 2 \text{ ou } x = 5$
 $x = \{1, ..., 6\}$

Se pegarmos no 2 e no 5 vemos que são possiveis soluções para a equação de cima:

$$2^2 mod 7 = 4 e 2^5 mod 7 = 4$$

RAÍZ PRIMITIVA

Exemplo $g^x mod7 = resto$ $x = \{1,...,6\}$ modulo p = 7

Ь	b ¹ mod7	b ² mod7	b ³ mod7	b ⁴ mod7	b ⁵ mod7	b ⁶ mod7
1	1	1			1	
2	2	4	I	2	4	
3	3	2	6	4	5	1
4	4	2	-	4	2	
5	5	4	6	2	3	1
6	6	I	6	I	I	

Aqui vemos que se usarmos o g=3 e g=5 conseguimos obter todos os números de 1 a 6.

RAÍZ PRIMITIVA

- ▶ Aos g que são elevados todos os números compreendidos de {1,....,p-1} que conseguem gerar o grupo de valores discretos todos diferentes que possuí o mesmo intervalo mencionado anteriormente chamam-se raízes primitivas ou geradores. Ao grupo que eles geram identificamos por Z*p, onde o asterisco significa que o zero não consta neste grupo.
- A este grupo também chamamos de cíclico pois é um grupo que se vai repetir se continuasse-mos a elevar g a p, p+1, p+2, etc

GRÁFICO DE UM DLP

Sendo:

Gerador = 627

p = 941

 $627^x = h \mod 941$

SISTEMAS CRIPTOGRÁFICOS QUE RECORREM A LOGARITMOS DISCRETOS

- Diffie-Helman
- Massey-Omura
- ELGamal

CALCULO DE LOGARITMOS DISCRETOS

BIG O

- Notação que representa o tempo máximo de execução de uma operações sobre conjunto
- Limite baseado no numero de elementos do conjunto

No caso de $\, \mathcal{O}(n)\,$ estamos a assumir que o algoritmo é calculado em $\,n\,$ passos

CALCULO DO INVERSO MODULAR

 $g^{-1} \mod N$

Acha o valor de e de forma a que:

$$g * (g^{-1}) = 1 \mod N$$

$$g^{-1k} \mod N$$

$$(g^{-1})^k \mod N$$

TRIVIAL BOUND FOR DLP

CALCULO DE LOGARITMOS DISCRETOS

lacksquare Listar todas as n potências de base b possíveis

lackbox Calcular todas as possibilidades de b^n e localizar na tabela o valor do logaritmo discreto

ightharpoonup Complexidade $\mathcal{O}(n)$

ALGORITMOS DE COLISÃO

ALGORITMOS DE COLISÃO

- Meet-in-the-middle
 - Criar duas listas
 - Localizar os elementos em comum
 - ▶ Diminui a complexidade de $\mathcal{O}(n)$ para $\mathcal{O}(\sqrt{n})$

SHANKS

BABY STEP/GIANT STEP

SHANKS - BABY STEP/GIANT STEP

$g^x \equiv h \mod N$

- ► Assumindo que $g^x \equiv b \mod N$
- \triangleright Selecionar uma constante k
- ▶ O valor de k deve ser $\lfloor \sqrt{odrer\ g} \rfloor + 1$
- ► Calcular (Lista 1) $g^1, g^2, g^3, ..., g^{k-1}$
- ► Calcular (Lista 2) hg^{-k} , hg^{-2k} , hg^{-3k} , ..., $hg^{-k^{2k}}$
- ▶ O valor de hg^{-rk} e g^{k-i} deve ser calculado em $\mod N$

SHANKS - BABY STEP/GIANT STEP

$$g^x \equiv h \mod N$$

- lacktriangle Assumindo que os valores em comum são g^n e hg^{-mk}
- Podemos afirmar que:

$$g^n \equiv hg^{-mk} \mod N$$

$$g^{n+mk} \equiv h \mod N$$

SHANKS - BABY STEP/GIANT STEP

 Para o algoritmo funcionar temos de garantir que existe pelo menos um elemento em comum entre a lista 1 e lista
 2

$$x = nq + r$$

COMPLEXIDADE

- ► Assumindo o problema $g^x \equiv h \mod N$
- Se G for um conjunto
- $a \in G$
- Sendo a um elemento de ordem $N \ge 2$
- lacksquare O logaritmo discreto e resolvido em $\mathcal{O}(\sqrt{N} \cdot \log N)$ passos

ALGORITMO / ANALISE DE COMPLEXIDADE

- Assumindo que o primeiro calculo é $u = a^{-n}$
- ► Criamos a Lista 2 calculando $h, h * u, h * u^2, ..., h * u^n$
- ► Criamos a Lista 1 calculado g, g^2, \dots, g^{k-1}
- ▶ O cálculos das listas ocorre em $\mathcal{O}(2n) \iff \mathcal{O}(n)$
- \blacktriangleright É possível encontrar os valores iguais em $\mathcal{O}(\log n)$
- Com base nisto podemos assumir que a complexidade e:

$$\mathcal{O}(n \log n) \iff \mathcal{O}(\sqrt{N} \cdot \log N)$$

BABY STEP/GIANT STEP - EXEMPLO

 $3^x \equiv 19 \mod 59$

Assumindo
$$k = 5$$
 $N = 59$ $g = 3$ $h = 19$

K	$g^1, g^2, g^3, \dots, g^{k-1} \mod N$	$hg^{-k}, hg^{-2k}, \dots, hg^{-rk} \mod N$	g^{-rk}
1	$3^1 \equiv 3$	$19*(3^{-5}) \equiv 28$	$3^{-1} \equiv 20$
2	$3^2 \equiv 9$	$19*(3^{-10}) \equiv 4$	$3^{-5} \equiv 17$
3	$3^3 \equiv 27$	$19*(3^{-15}) \equiv 9$	$3^{-10} \equiv 53$
4	$3^4 \equiv 22$		$3^{-15} \equiv 16$
5			

BABY STEP/GIANT STEP - EXEMPLO

 $3^x \equiv 19 \mod 59$

Assumindo
$$k = 5$$
 $N = 59$ $g = 3$ $h = 19$

K	$g^1, g^2, g^3, \dots, g^{k-1} \mod N$	$hg^{-k}, hg^{-2k}, \dots, hg^{-rk} \mod N$	g^{-rk}
1			
2	$3^2 \equiv 9$		
3		$19*(3^{-15}) \equiv 9$	
4			
5			

BABY STEP/GIANT STEP - EXEMPLO

$$3^x \equiv 19 \mod 59$$

$$k = 5$$
 $N = 59$
 $g = 3$
 $h = 19$

$$3^2 \equiv 9$$
 $19*(3^{-15}) \equiv 9$
 $19*(3^{-15}) \equiv 3^2 \iff 3^{15+2} \equiv 19 \mod 59$
 $3^{17} \equiv 19 \mod 59$

SHANKS - BABY STEP/GIANT STEP - EXEMPLO

 $g^x \equiv h \mod N$

 $9704^x \equiv 13896 \mod 17389$

► Assumindo
$$k = \lfloor \sqrt{1242} \rfloor + 1 = 36$$
 $N = 17389$ $g = 9704$ $h = 13896$

k	g^k	$h \cdot u^k$
1	9704	347
2	6181	13357
3	5763	12423
4	1128	13153
5	8431	7928
6	16568	1139
7	14567	6259
8	2987	12013

k	g^k	$h \cdot u^k$
9	15774	16564
10	12918	11741
11	16360	16367
12	13259	7315
13	4125	2549
14	16911	10221
15	4351	16289
16	1612	4062

k	g^k	$h \cdot u^k$
17	10137	10230
18	17264	3957
19	4230	9195
20	9880	13628
21	9963	10126
22	15501	5416
23	6854	13640
24	15680	5276

k	g^k	$h \cdot u^k$
25	4970	12260
26	9183	6578
27	10596	7705
28	2427	1425
29	6902	6594
30	11969	12831
31	6045	4754
32	7583	14567

$$u = g^{-n} \iff 9704^{-36} = 2494$$

SHANKS - BABY STEP/GIANT STEP - EXEMPLO

$$g^x \equiv h \mod N$$

$$9704^7 = 14567 \mod 17389$$

 $13896 * 2494^{32} = 14567 \mod 17389$
 $9704^7 = 13896 * 2494^{32} \mod 17389$

$$9704^{x} \equiv 13896 \mod 17389$$
 $a^{n} \equiv ba^{-mk} \mod N$
 $a^{n+mk} \equiv b \mod N$
 $k = 36$
 $g = 9704$
 $h = 13896$
 $N = 17389$

SHANKS - BABY STEP/GIANT STEP - EXEMPLO

$$g^x \equiv h \mod N$$

$$9704^7 = 14567 \mod 17389$$

 $13896 * 2494^{32} = 14567 \mod 17389$

$$9704^{-36} - 2494$$

$$9704^{-36} = 2494$$

$$13896 = 9707^7 * 2494^{-32} \iff 9704^7 * (9704^{36})^{32}$$

 9704^{1159}

$$9704^{1159} \equiv 13896 \mod 17389$$

$$9704^{x} \equiv 13896 \mod 17389$$
 $a^{n} \equiv ba^{-mk} \mod N$
 $a^{n+mk} \equiv b \mod N$
 $k = 36$
 $g = 9704$
 $h = 13896$
 $N = 17389$

BIBLIOGRAFIA

- ► Hoffstein, Jeffrey, Pipher, Jill e Silverman, J.H. . (2008). An Introduction to Mathematical Cryptography. Springer
- ➤ Cruise, Brit. O problema do logarítmo discreto. Acedido em: 30, maio, 2019, em: https://pt.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/discrete-logarithm-problem.
- ► Cormen, Thomas, Balkcom, Devin, Khan Academy. Notação Big-O. Acedido em: 30, maio, 2019, em: https://pt.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation
- Khan Academy. Modular inverses. Acedido em: 3, Abril, 2019, em: https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-inverses
- ► https://www.youtube.com/watch?v=57SUNQL4JFA
- https://www.youtube.com/watch?v=007MVsELvQw
- https://www.youtube.com/watch?v=FvInAqxzjsM
- ► https://www.youtube.com/watch?v=BRMj5jE6Z-U

BIBLIOGRAFIA

- https://www.youtube.com/watch?v=EOcQshMv8UA
- https://www.youtube.com/watch?v=GSIDS_lvRv4