Intro to Data Science - HW 6

```
# Enter your name here: Hrishikesh Telang
```

Copyright Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

Attribution statement: (choose only one and delete the rest)

```
# 1. I did this homework by myself, with help from the book and the professor.
```

This module: Data visualization is important because many people can make sense of data more easily when it is presented in graphic form. As a data scientist, you will have to present complex data to decision makers in a form that makes the data interpretable for them. From your experience with Excel and other tools, you know that there are a variety of **common data visualizations** (e.g., pie charts). How many of them can you name?

The most powerful tool for data visualization in R is called **ggplot**. Written by computer/data scientist **Hadley Wickham**, this **"graphics grammar"** tool builds visualizations in layers. This method provides immense flexibility, but takes a bit of practice to master.

Step 1: Make a copy of the data

A. Read the **who** dataset from this URL: https://intro-datascience.s3.us-east-2.amazonaws.com/who.csv into a new dataframe called **tb**.

Your new dataframe, tb, contains a so-called **multivariate time series**: a sequence of measurements on 23 Tuberculosis-related (TB) variables captured repeatedly over time (1980-2013). Familiarize yourself with the nature of the 23 variables by consulting the dataset's codebook which can be found here: https://introdatascience.s3.us-east-2.amazonaws.com/TB_data_dictionary_2021-02-06.csv.

tb <- read.csv("https://intro-datascience.s3.us-east-2.amazonaws.com/who.csv") #reading the data from c head(tb) #Display tb on console.

##		iso2	year	new_sp	new_sp_m04	new_sp_m514	new_sp_m014	new_sp_m1524	new_sp_m2534
##	1	AD	1989	NA	N A	. NA	NA	NA NA	NA
##	2	AD	1990	NA	N A	. NA	NA	NA NA	NA
##	3	AD	1991	NA	NA	NA NA	NA	NA NA	NA
##	4	AD	1992	NA	NA	NA NA	NA	NA NA	NA
##	5	AD	1993	15	NA	NA NA	NA	NA NA	NA
##	6	AD	1994	24	NA	NA NA	NA	NA NA	NA
##		new_s	sp_m3	544 new	_sp_m4554 r	ew_sp_m5564	new_sp_m65 n	ew_sp_mu new_s	sp_f04
##	1			NA	NA	NA	NA	NA	NA
##	2			NA	NA	NA	NA	NA	NA
##	3			NA	NA	NA	NA	NA	NA
##	4			NA	NA	NA	NA	NA	NA
##	5			NA	NA	NA	NA	NA	NA
##	6			NA	NA	NA	NA	NA	NA
##		new_s	sp_f51	14 new_s	sp_f014 new	_sp_f1524 ne	w_sp_f2534 n	ew_sp_f3544 ne	ew_sp_f4554

```
## 1
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
                                                                                        NA
## 2
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
                                                                                        NA
## 3
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
                                                                                        NA
## 4
                                                                                        NA
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
## 5
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
                                                                                        NA
## 6
               NA
                             NA
                                            NA
                                                          NA
                                                                         NA
                                                                                        NA
##
     new_sp_f5564 new_sp_f65 new_sp_fu
## 1
                NA
                             NA
## 2
                NA
                             NA
                                        NA
## 3
                             NA
                                        NA
                NA
## 4
                NA
                             NA
                                        NA
## 5
                 NA
                             NA
                                        NA
## 6
                NA
                             NA
                                        NA
```

View(tb) #Viewing the contents of tb.

B. How often were these measurements taken (in other words, at what frequency were the variables measured)? Put your answer in a comment.

#The variables were measured as per the frequency of each year starting from 1980 to 2008. The iso2 att

Step 2: Clean-up the NAs and create a subset

A. Let's clean up the iso2 attribute in tb

Hint: use is.na() – well use ! is.na()

tb<- tb[!is.na(tb\$iso2),] #Filters out only those rows which are not NA values in iso2. head(tb) #Display tb.

##		iso2	year	new_sp	new_sp_m04	new_sp_m514	new_sp_m01	4 new_sp_m152	4 new_sp_m2534
##	1	AD	1989	NA	NA	NA	A N	A N	A NA
##	2	AD	1990	NA	NA	NA	A N	A N	A NA
##	3	AD	1991	NA	NA	NA	A N	A N	A NA
##	4	AD	1992	NA	NA	NA	A N	A N	A NA
##	5	AD	1993	15	NA	NA	A N	A N	A NA
##	6	AD	1994	24	NA	NA	A N	A N	A NA
##		new_s	sp_m3	544 new	_sp_m4554 ne	ew_sp_m5564	new_sp_m65	new_sp_mu new	_sp_f04
##	1		-	NA	NA	NA	NA	NA	NA
##	2			NA	NA	NA	NA	NA	NA
##	3			NA	NA	NA	NA	NA	NA
##	4			NA	NA	NA	NA	NA	NA
##	5			NA	NA	NA	NA	NA	NA
##	6			NA	NA	NA	NA	NA	NA
##		new_s	sp_f51	14 new_:	sp_f014 new_	_sp_f1524 ne	ew_sp_f2534	new_sp_f3544	new_sp_f4554
##	1		_	NA	NA	NA	NA	NA	NA
##	2		1	NΑ	NA	NA	NA	NA	NA
##	3		1	NA	NA	NA	NA	NA	NA
##	4		1	NA	NA	NA	NA	NA	NA
##	5		1	NA	NA	NA	NA	NA	NA
##	6		1	NΑ	NA	NA	NA	NA	NA

```
new_sp_f5564 new_sp_f65 new_sp_fu
## 1
                           NA
               NA
## 2
                           NA
                                     NA
## 3
               NA
                           NA
                                     NA
## 4
               NA
                           NA
                                     NA
## 5
               NA
                           NA
                                     NA
## 6
               NA
                           NA
                                     NA
```

##

B. Create a subset of **tb** containing **only the records for Canada ("CA" in the iso2 variable)**. Save it in a new dataframe called **tbCan**. Make sure this new df has **29 observations and 23 variables**.

iso2 year new_sp new_sp_m04 new_sp_m514 new_sp_m014 new_sp_m1524

 $tbCan \leftarrow subset(tb, tb$iso2 == 'CA')$ #subsets records only for iso2 variables which correspond to Canad tbCan #Display tbCan on console.

##	872	CA	1980	951	NA	NA	12	5	54
##	873	CA	1981	803	NA	NA	8	4	9
##	874	CA	1982	812	NA	NA	6	5	52
##	875	CA	1983	771	NA	NA	9	4	. 7
##	876	CA	1984	811	NA	NA	3	4	4
##	877	CA	1985	791	NA	NA	11	4	2
##	878	CA	1986	752	NA	NA	9	5	58
##	879	CA	1987	668	NA	NA	9	4	£0
##	880	CA	1988	682	NA	NA	4	4	:3
##	881	CA	1989	652	NA	NA	10	4	£5
##	882	CA	1990	549	NA	NA	3	3	35
##	883	CA	1991	543	NA	NA	7	3	37
##	884	CA	1992	506	NA	NA	6	4	2
##	885	CA	1993	488	NA	NA	8	3	33
##	886	CA	1994	483	NA	NA	2	4	2
##	887	CA	1995	436	NA	NA	1	2	28
##	888	CA	1996	430	NA	NA	3	2	28
##	889	CA	1997	473	NA	NA	0	2	21
##	890		1998	438	NA	NA	4	3	33
##	891	CA	1999	455	NA	NA	0	2	23
##	892	CA	2000	492	NA	NA	5	3	34
##	893	CA	2001	458	NA	NA	6	2	24
##	894	CA	2002	408	NA	NA	0	2	25
##	895	CA	2003	332	NA	NA	1	2	26
##	896		2004	438	NA	NA	2		25
##	897	CA	2005	433	NA	NA	3	3	37
	898		2006	407	1	1	2		34
##	899		2007	463	4	1	5		31
##	900		2008	488	0	2	2		39
##		new_s	_	_		sp_m4554 new_	_	_	new_sp_mu
	872		75		83	100	108	186	NA
	873		61		64	87	103	141	NA
	874		66		69	90	91	150	NA
	875		63		62	90	92	123	NA
	876		75		58	68	83	169	NA
	877		70		59	77	81	168	NA
	878		73		62	59	73	147	NA
##	879		71	L	60	49	64	129	NA

##	880	73	62	52	68	131	NA
	881	56	60	54	62	122	NA
	882	70	55	40	42	100	NA
	883	79	53	37	36	110	NA
	884	47	58	41	51	79	NA
	885	47	53	43	33	74	NA
	886	54	42	43	34	87	NA
	887	31	60	34	41	70	NA
	888	49	48	31	34	70	NA
	889	55	44	30	44	90	NA
	890	43	51	31	26	80	NA
	891	47	51	36	33	94	NA
	892	45	46	41	32	79	NA
	893	49	56	40	22	76	NA
	894	34	50	34	27	64	NA
	895	36	37	32	21	42	NA
	896	34	38	32	31	64	NA
	897	45	44	40	20	68	NA
	898	34	33	42	26	64	NA
	899	41	51	50	35	75	NA
	900	36	49	53	38	62	0
##		new_sp_f04 new_sp_f514					
	872	NA NA	18		62	51	34
	873	NA NA	6		46	57	26
	874	NA NA	7		51	57	30
	875	NA NA	11		50	50	29
##	876	NA NA	9		51	59	28
##	877	NA NA	5		30	56	19
##	878	NA NA	10		33	54	33
##	879	NA NA	8	;	39	48	29
##	880	NA NA	6	;	38	56	27
##	881	NA NA	6	;	37	51	23
##	882	NA NA	1	;	30	38	26
##	883	NA NA	4	:	23	37	31
##	884	NA NA	2	:	27	28	21
	885	NA NA	6	:	22	50	22
##	886	NA NA	3	;	37	37	19
##	887	NA NA	7	;	33	28	22
##	888	NA NA	2		23	34	28
##	889	NA NA	1		36	44	26
##	890	NA NA	1		26	31	26
	891	NA NA	4		33	31	28
	892	NA NA	4		33	40	30
	893	NA NA	5		23	41	33
	894	NA NA	6		32	31	26
	895	NA NA	3		21	28	25
	896	NA NA	0		34	55	34
	897	NA NA	6		28	40	27
	898	0 4	4		39	30	25
	899	0 2	2		32	33	33
	900	0 3	3		36	39	39
##	000	new_sp_f4554 new_sp_f55	-	_			
	872	31		04 N.			
##	873	28	35	92 N.	A		

##	874	25	38	80	NA
##	875	24	35	86	NA
##	876	28	36	100	NA
##	877	28	48	97	NA
##	878	20	26	95	NA
##	879	17	26	79	NA
##	880	16	26	80	NA
##	881	24	21	81	NA
##	882	17	20	72	NA
##	883	9	20	60	NA
##	884	11	15	78	NA
##	885	21	21	55	NA
##	886	11	13	59	NA
##	887	12	18	51	NA
##	888	14	16	50	NA
##	889	13	16	53	NA
##	890	14	18	54	NA
##	891	13	11	51	NA
##	892	25	12	66	NA
##	893	16	14	53	NA
##	894	17	17	45	NA
##	895	15	9	36	NA
##	896	19	22	48	NA
##	897	24	13	37	NA
##	898	16	6	52	NA
##	899	11	13	51	NA
##	900	27	20	45	0

View(tbCan) #Viewing the contents of tbCan.

C. A simple method for dealing with small amounts of **missing data** in a numeric variable is to **substitute** the mean of the variable in place of each missing datum. This expression locates (and reports to the console) all the missing data elements in the variable measuring the **number of positive pulmonary** smear tests for male children 0-4 years old (there are 26 data points missing)

```
tbCan$new_sp_m04[is.na(tbCan$new_sp_m04)]
```

Error in eval(expr, envir, enclos): object 'tbCan' not found Traceback:

D. Write a comment describing how that statement works.

 $\textit{\#The expression catches all the NA expressions with is.na() and returns a \textit{TRUE/FALSE vector}. \textit{ The outer all the NA expressions} \\$

E. Write 4 more statements to check if there is missing data for the number of positive pulmonary smear tests for: male and female children 0-14 years old (new_sp_m014 and new_sp_f014), and male and female citizens 65 years of age and older, respectively. What does empty output suggest about the number of missing observations?

```
tbCan$new_sp_m014[is.na(tbCan$new_sp_m014)]

## integer(0)

tbCan$new_sp_f014[is.na(tbCan$new_sp_f014)]

## integer(0)

tbCan$new_sp_m65[is.na(tbCan$new_sp_m65)]

## integer(0)

tbCan$new_sp_f65[is.na(tbCan$new_sp_f65)]

## integer(0)
```

#The empty output suggests that there are no NA values present in all four of the attributes ie: new_sp

There is an R package called **imputeTS** specifically designed to repair missing values in time series data. We will use this instead of mean substitution. The **na_interpolation()** function in this package takes advantage of a unique characteristic of time series data: **neighboring points in time can be used to "guess" about a missing value in between**.

F. Install the **imputeTS** package (if needed) and use **na_interpolation()** on the variable from part C. Don't forget that you need to save the results back to the **tbCan** dataframe. Also update any attribute discussed in part E (if needed).

```
#install.packages('imputeTS') #This installs imputeTS
library(imputeTS) #We are calling the library of imputeTS
## Registered S3 method overwritten by 'quantmod':
##
     method
                        from
     as.zoo.data.frame zoo
tbCan$new_sp_m04 <- na_interpolation(tbCan$new_sp_m04) #guesses the missing values in between
head(tbCan)
##
       iso2 year new_sp_m04 new_sp_m514 new_sp_m014 new_sp_m1524
## 872
         CA 1980
                    951
                                  1
                                              NA
                                                           12
                                                                        54
## 873
         CA 1981
                    803
                                                           8
                                                                        49
                                  1
                                              NA
## 874
         CA 1982
                    812
                                  1
                                              NA
                                                           6
                                                                        52
         CA 1983
                                                           9
                                                                        47
## 875
                    771
                                  1
                                              NΑ
## 876
         CA 1984
                    811
                                  1
                                              NA
                                                           3
                                                                        44
         CA 1985
                    791
                                                                        42
## 877
                                  1
                                              NA
                                                           11
       new_sp_m2534 new_sp_m3544 new_sp_m4554 new_sp_m5564 new_sp_m65 new_sp_mu
##
## 872
                 75
                               83
                                            100
                                                         108
                                                                     186
                                                                                 NΑ
## 873
                 61
                                             87
                                                         103
                                                                     141
                               64
                                                                                NA
```

90

91

NA

150

66

874

69

```
92
## 875
                   63
                                  62
                                                 90
                                                                            123
                                                                                        NA
## 876
                   75
                                  58
                                                 68
                                                                83
                                                                            169
                                                                                        NΑ
## 877
                   70
                                  59
                                                 77
                                                                81
                                                                            168
                                                                                        NA
##
        new_sp_f04 new_sp_f514 new_sp_f014 new_sp_f1524 new_sp_f2534 new_sp_f3544
## 872
                 NA
                               NA
                                            18
                                                           62
                                                                           51
                                                                                         34
## 873
                 NA
                               NA
                                             6
                                                           46
                                                                           57
                                                                                         26
## 874
                                             7
                                                                                         30
                 NA
                               NA
                                                           51
                                                                           57
                                                                                         29
## 875
                 NA
                               NA
                                            11
                                                           50
                                                                           50
## 876
                 NA
                               NA
                                              9
                                                           51
                                                                           59
                                                                                         28
                                                            30
                 NA
                               NA
                                              5
                                                                           56
                                                                                         19
## 877
        new_sp_f4554 new_sp_f5564 new_sp_f65 new_sp_fu
## 872
                   31
                                  33
                                              104
                                                          NA
## 873
                   28
                                  35
                                               92
                                                          NA
## 874
                   25
                                  38
                                               80
                                                          NA
## 875
                   24
                                  35
                                               86
                                                          NA
## 876
                   28
                                  36
                                              100
                                                          NA
## 877
                   28
                                  48
                                               97
                                                          NA
```

G. Rerun the code from C and E above to check that all missing data have been fixed.

```
tbCan$new_sp_m014 <- na_interpolation(tbCan$new_sp_m014)
tbCan$new_sp_f014 <- na_interpolation(tbCan$new_sp_f014)
tbCan$new_sp_m65 <- na_interpolation(tbCan$new_sp_m65)
tbCan$new_sp_f65 <- na_interpolation(tbCan$new_sp_f65)
head(tbCan) #Displays tbCan
```

```
##
       iso2 year new_sp_m04 new_sp_m514 new_sp_m014 new_sp_m1524
## 872
          CA 1980
                      951
                                     1
                                                 NA
                                                               12
                                                                             54
          CA 1981
                      803
##
  873
                                     1
                                                 NA
                                                               8
                                                                             49
## 874
          CA 1982
                      812
                                                 NA
                                                               6
                                                                             52
                                     1
##
   875
          CA 1983
                      771
                                     1
                                                 NA
                                                               9
                                                                             47
                                                               3
##
   876
          CA 1984
                      811
                                     1
                                                 NA
                                                                             44
   877
          CA 1985
                      791
                                     1
                                                 NA
                                                               11
##
       new_sp_m2534 new_sp_m3544 new_sp_m4554 new_sp_m5564 new_sp_m65 new_sp_mu
                   75
                                 83
                                               100
                                                             108
                                                                          186
## 872
                                                                                      NA
## 873
                   61
                                 64
                                                87
                                                             103
                                                                          141
                                                                                      NA
## 874
                   66
                                 69
                                                90
                                                              91
                                                                          150
                                                                                      NA
                   63
                                 62
                                                90
                                                              92
## 875
                                                                          123
                                                                                      NA
                   75
                                                68
                                                              83
## 876
                                 58
                                                                          169
                                                                                      NA
                                                77
## 877
                   70
                                 59
                                                              81
                                                                          168
                                                                                      NA
##
       new_sp_f04 new_sp_f514 new_sp_f014 new_sp_f1524 new_sp_f2534 new_sp_f3544
## 872
                NA
                              NA
                                           18
                                                          62
                                                                         51
                                                                                       34
## 873
                NA
                              NΑ
                                            6
                                                          46
                                                                        57
                                                                                       26
## 874
                NA
                              NA
                                            7
                                                          51
                                                                        57
                                                                                       30
## 875
                NA
                              NA
                                           11
                                                          50
                                                                         50
                                                                                       29
                                            9
## 876
                NA
                              NA
                                                          51
                                                                         59
                                                                                       28
                                            5
##
  877
                NA
                              NA
                                                          30
                                                                         56
                                                                                       19
       new_sp_f4554 new_sp_f5564 new_sp_f65 new_sp_fu
## 872
                   31
                                 33
                                             104
                                                         NA
## 873
                   28
                                 35
                                              92
                                                         NA
                   25
                                 38
                                              80
## 874
                                                         NA
## 875
                   24
                                 35
                                              86
                                                         NA
```

## 876	28	36	100	NA
## 877	28	48	97	NA

ó

Step 3: Use ggplot to explore the distribution of each variable

Don't forget to install and library the ggplot2 package. Then: H. Create a histogram for new_sp_m014. Be sure to add a title and briefly describe what the histogram means in a comment.

```
library(ggplot2) #Calls the ggplot2 library function
ggplot(tbCan) + ggtitle('Frequency of positive pulmonary smear tests for male children 0-14 years old')
```


#The following histogram function here illustrates the positive pulmonary smear tests for male children

10

I. Create histograms (using ggplot) of each of the other three variables from E with ggplot(). Which parameter do you need to adjust to make the other histograms look right?

new_sp_m014

5

ggplot(tbCan) + ggtitle('Frequency of positive pulmonary smear tests for male children 0-14 years old')

ggplot(tbCan) + ggtitle('Frequency of positive pulmonary smear tests for male senior citizens over 65 y

Frequency of positive pulmonary smear tests for male senior citizens over 65

ggplot(tbCan) + ggtitle('Frequency of positive pulmonary smear tests for female senior citizens over 65

#I used the 'binwidth' parameter to make the necessary adjustments so as to make each of these histogram

Step 4: Explore how the data changes over time

J. These data were collected in a period of several decades (1980-2013). You can thus observe changes over time with the help of a line chart. Create a **line chart**, with **year** on the X-axis and **new_sp_m014** on the Y-axis.

```
ggplot(tbCan) + geom_line(aes(x=year, y=new_sp_m014), colour='red')
```


K. Next, create similar graphs for each of the other three variables. Change the **color** of the line plots (any color you want).

```
ggplot(tbCan) + geom_line(aes(x=year, y=new_sp_f014), colour='cyan')
```


ggplot(tbCan) + geom_line(aes(x=year, y=new_sp_m65), colour='magenta')

ggplot(tbCan) + geom_line(aes(x=year, y=new_sp_f65), colour='black')

L. Using vector math, create a new variable by combining the numbers from new_sp_m014 and new_sp_f014. Save the resulting vector as a new variable in the tbCan df called new_sp_combined014. This new variable represents the number of positive pulmonary smear tests for male AND female children between the ages of 0 and 14 years of age. Do the same for SP tests among citizens 65 years of age and older and save the resulting vector in the tbCan variable called new_sp_combined65.

tbCan\$new_sp_combined014 <- tbCan\$new_sp_m014 + tbCan\$new_sp_f014 #adds the values and stores in new_sp_tbCan\$new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_combined65 <- tbCan\$new_sp_m65 + tbCan\$new_sp_f65 #adds the values and stores in new_sp_combined65 <- tbCan\$new_sp_combined65 <- tbCan\$new_sp_combined65

##		iso2 y	ear ne	ew_sp	new_sp_m04	1 new_sp_m514	new_sp_m014	new_sp_m152	24
##	872	CA 1	.980	951	:	L NA	. 12	5	54
##	873	CA 1	.981	803	:	L NA	. 8	4	19
##	874	CA 1	.982	812	:	L NA	. 6	5	52
##	875	CA 1	.983	771	:	L NA	. 9	4	17
##	876	CA 1	.984	811	:	L NA	. 3	4	14
##	877	CA 1	.985	791	:	L NA	. 11	4	12
##		new_sp	_m2534	4 new_	_sp_m3544 1	new_sp_m4554	new_sp_m5564	new_sp_m65	new_sp_mu
##	872		75	5	83	100	108	186	NA
##	873		61	1	64	87	103	141	NA
##	874		66	6	69	90	91	150	NA
##	875		63	3	62	90	92	123	NA
##	876		75	5	58	68	83	169	NA
##	877		70	O	59	77	81	168	NA

```
new_sp_f04 new_sp_f514 new_sp_f014 new_sp_f1524 new_sp_f2534 new_sp_f3544
##
## 872
                 NA
                              NA
                                            18
                                                           62
                                                                          51
                                                                                         34
   873
                 NA
                              NA
                                             6
                                                           46
                                                                          57
                                                                                        26
##
## 874
                 NA
                              NA
                                             7
                                                           51
                                                                          57
                                                                                        30
## 875
                 NA
                              NA
                                            11
                                                           50
                                                                          50
                                                                                         29
## 876
                 NA
                              NA
                                             9
                                                           51
                                                                          59
                                                                                        28
                                             5
## 877
                 NA
                              NA
                                                           30
                                                                                         19
        new_sp_f4554 new_sp_f5564 new_sp_f65 new_sp_fu new_sp_combined014
##
## 872
                   31
                                  33
                                             104
                                                          NA
                                                                                30
## 873
                   28
                                  35
                                              92
                                                          NA
                                                                                14
## 874
                   25
                                  38
                                              80
                                                          NA
                                                                                13
## 875
                   24
                                  35
                                              86
                                                          NA
                                                                               20
## 876
                   28
                                  36
                                             100
                                                          NA
                                                                                12
## 877
                   28
                                  48
                                              97
                                                          NA
                                                                                16
##
        {\tt new\_sp\_combined65}
## 872
                        290
## 873
                        233
## 874
                        230
                        209
## 875
                        269
## 876
## 877
                        265
```

M. Finally, create a **scatter plot**, showing **new_sp_combined014** on the x axis, **new_sp_combined65** on the y axis, and having the **color and size** of the point represent **year**.

ggplot(tbCan) + geom_point(aes(x=new_sp_combined014, y=new_sp_combined65, colour=year, size=year))

N. Interpret this visualization – what insight does it provide?

#It can be perceived that the number of Tuberculosis cases have significantly reduced over the past two