

Physics-Informed Neural Networks for Futures Pricing and Signal-Generation Under Stochastic Volatility

Andria Gonzalez Lopez

Capstone Project

Wednesday, April 23rd, 2025

Agenda

- 1. Introduction
- 2. Mathematical Foundations
- 3. PINN Architecture
- 4. Asset Selection and Training
- 5. Signal-Generation
- 6. Future Improvements

Introduction

- 1. Importance of having our own pricing model
 - 1. Understanding contract value
 - 2. Identifying investment opportunities from mispricing
- 2. Problems with mathematical pricing models
 - 1. Cost-of-Carry
 - 2. Black-Scholes
 - 3. Heston
- 3. Benefits of using the Physics-Informed Neural Network
 - 1. Captures hidden relationships
 - 2. Fast calculation

Heston SDE

$$dS_t = rS_t dt + S_t \sqrt{v_t} \Sigma_S^{\mathrm{T}} dW_t$$

$$dv_t = \kappa (\gamma - v_t) dt + \sigma \sqrt{v_t} \Sigma_v^{\mathrm{T}} dW_t$$

Feynman-Kac PDE

$$0 = \partial_t V - rV + \mu_y^{\mathrm{T}} \nabla_y V + \frac{1}{2} \operatorname{trace} \left(\Sigma_y \Sigma_y^{\mathrm{T}} H_y(V) \right)$$

$$0 = \frac{\partial V}{\partial t} - rV + \left(\mu_S \frac{\partial V}{\partial S} + \mu_v \frac{\partial V}{\partial v} \right) + \frac{v}{2} \left(S^2 \frac{\partial^2 V}{\partial S^2} + 2\rho\sigma S \frac{\partial^2 V}{\partial v \partial S} + \sigma^2 \frac{\partial^2 V}{\partial v^2} \right)$$

Terminal Condition

$$V(T, y_t) = S_t$$

V - value

t-time

T - maturity

r - risk-free rate

St - spot price (S)

vt - variance (v)

μs - drift for spot price

μ_v – drift for variance

κ - rate of mean reversion

γ - long-run variance

 ρ – correlation between Brownian motions

 σ – volatility

 Σ_y – diffusion matrix

Mathematical Foundations

Matrix Operations

$$0 = \partial_{t}V - rV + \mu_{y}^{T}\nabla_{y}V + \frac{1}{2}trace\left(\Sigma_{y}\Sigma_{y}^{T}H_{y}(V)\right) \qquad y = \begin{bmatrix} S \\ v \end{bmatrix}$$
$$0 = \frac{\partial V}{\partial t} - rV + (\mu_{S}\frac{\partial V}{\partial S} + \mu_{v}\frac{\partial V}{\partial v}) + \frac{v}{2}(S^{2}\frac{\partial^{2}V}{\partial S^{2}} + 2\rho\sigma S\frac{\partial^{2}V}{\partial v\partial S} + \sigma^{2}\frac{\partial^{2}V}{\partial v^{2}})$$

Drift

$$\mu_{y} = \begin{bmatrix} \mu_{S} \\ \mu_{v} \end{bmatrix} = \begin{bmatrix} rS \\ \kappa(\gamma - v) \end{bmatrix}$$

$$\nabla_{y}V = \begin{bmatrix} \frac{\partial v}{\partial S} \\ \frac{\partial v}{\partial v} \end{bmatrix}$$

$$\mu_{y}\nabla_{y}V = \mu_{S}\frac{\partial V}{\partial S} + \mu_{v}\frac{\partial V}{\partial v}$$

Trace

$$\begin{split} \Sigma_{y} &= \sqrt{v} \begin{bmatrix} S & 0 \\ \rho \sigma & \sigma \sqrt{1 - \rho^{2}} \end{bmatrix} \\ \Sigma_{y} \Sigma_{y}^{T} &= v \begin{bmatrix} S^{2} & \rho \sigma S \\ \rho \sigma S & \sigma^{2} \end{bmatrix} \end{split} \qquad H_{y}(V) = \begin{bmatrix} \frac{\partial^{2} V}{\partial S^{2}} & \frac{\partial^{2} V}{\partial S \partial v} \\ \frac{\partial^{2} V}{\partial v \partial S} & \frac{\partial^{2} V}{\partial v^{2}} \end{bmatrix} \\ trace \left(\Sigma_{y} \Sigma_{y}^{T} H_{y}(V) \right) &= v \left(S^{2} \frac{\partial^{2} V}{\partial S^{2}} + 2 \rho \sigma S \frac{\partial^{2} V}{\partial v \partial S} + \sigma^{2} \frac{\partial^{2} V}{\partial v^{2}} \right) \end{split}$$

PINN Architecture

- 1. Input FK variables
- 2. Type Residual Neural Network
- 3. Activation Function tanh
- Loss weighted physics loss + mean-squared error (MSE)
- 5. Output futures price
- 6. Validation train-test split

	180/250										
Train	Physics	Loss:	0.0041,	Train	MSE	Loss:	0.0009,	Train	Total	Loss:	0.0021
	190/250										
		Loss:	0.0034,	Train	MSE	Loss:	0.0009,	Train	Total	Loss:	0.0019
	200/250										
		Loss:	0.0029,	Train	MSE	Loss:	0.0008,	Train	Total	Loss:	0.0017
	210/250										
		Loss:	0.0027,	Train	MSE	Loss:	0.0011,	Train	Total	Loss:	0.0019
	220/250										
		Loss:	0.0024,	Train	MSE	Loss:	0.0010,	Train	Total	Loss:	0.0017
1	230/250										
		Loss:	0.0022,	Train	MSE	Loss:	0.0007,	Train	Total	Loss:	0.0014
	240/250										
		Loss:	0.0022,	Train	MSE	Loss:	0.0007,	Train	Total	Loss:	0.0013
	250/250										
Train	Physics	Loss:	0.0020,	Train	MSE	Loss:	0.0006,	Train	Total	Loss:	0.0013
	inal Test Physics Loss: 0.0018										
Final Test MSE Loss: 0.0006											
Final Test Total Loss: 0.0011											

Asset_Type	Asset	Futures_Ticker	Spot_Ticker	Correlation	Physics_Loss	MSE_Loss	Total_Loss
Fixed Income	10-Year T-Note Futures	ZN=F	IEF	0.92	0.0036	0.0017	0.0028
Fixed Income	30-Year T-Bond Futures	ZB=F	TLT	0.88	0.0044	0.0027	0.0040
Equities	Russell 2000	RTY=F	IWM	0.98	0.0018	0.0006	0.0011
Equities	Dow Jones	YM=F	DIA	0.97	0.0008	0.0003	0.0005
Commodities	Gold	GC=F	GLD	0.90	0.0012	0.0010	0.0013

Signal-Generation

Future Improvements

- 1. Finding optimal weights for physics loss
- Conducting additional statistical tests to evaluate causal relationships
- 3. Backtesting strategies based on price spread signals
- Modifying model to train up to a target loss rather than target number of epochs

∆LGO

Q&A