ML Meets the Web:

ML Model Deployment using FastAPI

Harshit Kumawat

What is Model Deployment?

- Model-to-production
- Real-world ML integration
- Easy access of model
- Predict with simple input
- Deployment Methods:
 API, cloud, docker, etc.

What is FastAPI & Why Use It?

FastAPI is a modern, fast (high-performance), web framework for building APIs with Python based on standard Python type hints.

Key Features:

- Automatic documentation
- Pydantic-based data validation
- Asynchronous support
- Fast to code
- Fewer bugs
- Easy, short, robust

Drawbacks:

- Async complexity
- Fewer built-in tools
- Smaller ecosystem
- Debugging difficulty

Installation & Key Concepts of FastAPI

- **1. Installation**: pip install fastapi, uvicorn, pydantic
- 2. Key Concepts:
 - a. API Endpoints: GET, POST, PUT, PATCH, DELETE
 - **b.** Response Structure: JSON responses
 - c. Request Validation: Done using Pydantic models
 - d. ASGI Server: Run using Uvicorn

Iris Dataset

- Images of 3 iris species (classes)
 - o 0: Setosa
 - 1: Versicolor
 - 2: Virginica
- 150 instances (50 per class)
- 4 features

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2

Decision Tree

Gini Impurity (of ith node):

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

Where, $P_{i, k}$ is probability of k^{th} class in i^{th} node, n is no. of classes

For example,

$$G_{i} = 1 - \left[\left(\frac{0}{46} \right)^{2} + \left(\frac{1}{46} \right)^{2} + \left(\frac{45}{46} \right)^{2} \right]$$

$$G_{i} = 1 - [0 + 0.00472 + 0.95]$$

$$G_{i} \approx 0.043$$

CART Algorithm

- Classification And Regression Tree Algorithm
- Used to train decision tree
- Time Complexity:
 - Training: $O(n \times m \log_2(m))$
 - Inference: $O(\log_2(m))$
- Cost function (for classification)

$$J(k, t_k) = \frac{m_{left} G_{left}}{m} + \frac{m_{right} G_{right}}{m} \int (k, t_k) = \frac{50 \times 0}{150} + \frac{100 \times 0.5}{150} = \frac{1}{3} = 0.\overline{3}$$

```
k = \text{sepal length (cm)}
   x[0] \le 2.45
                        t_{\nu} = 2.45
  samples = 150
value = [50, 50, 50]
                        G_0 = 1 - 3\left(\frac{50}{150}\right)^2 = 0.\overline{6} \approx 0.667
   qini = 0.0
 samples = 50
value = [50, 0, 0]
```

$$G_1 = 1 - \left(\frac{50}{50}\right)^2 = 0$$
 $k = \text{sepal width (cm)}$
 $t_k = 1.75$
 $c_k = 1.75$

$$J(k, t_k) = \frac{50 \times 0}{150} + \frac{100 \times 0.5}{150} = \frac{1}{3} = 0.\overline{3}$$

FastAPI-Based Model Prediction Flow

THANK YOU

Thank you for your time and consideration. I hope this walkthrough clearly explained the model deployment process using FastAPI.

Acknowledgements

Internship Assignment by: TheProductWorks.in

Learning Resources:
FastAPI Documentation
GeeksForGeeks
FastAPI Deployment Tutorials
Playlist - Krish Naik
Python FastAPI Tutorial: Build a
REST API in 15 Minutes - pixegami

Attributions

Python, FastAPI and other icons for the diagrams are taken from Icons8.

Dataset: UCI Machine Learning Repository - Iris Dataset

Contact

Project Repository