Analyse

Gilles Castel

 $15\ \mathrm{november}\ 2019$

Inhoudsopgave

1	\mathbf{Afg}	eleiden 3			
	1	Inleiding			
	2	Partiële afleidbaarheid			
		2.1 Definitie van partiële afleidbaarheid			
		2.2 Meetkundige interpretatie			
		2.3 Verwisselen van partiële afgeleiden			
		2.4 Richtingsafgeleiden			
	3	Totale afleidbaarheid			
		3.1 De definitie van totale afleidbaarheid			
		3.2 Meetkundige interpretatie			
		3.3 Algemene eigenschappen			
		3.4 Verschil tussen partiële en totale afleidbaarheid 5			
		3.5 Het verband			
		3.6 Hoe nagaan en hoe berekenen			
		3.7 De kettingregel			
	4	Inverse-functiestelling			
	5	Impliciete-functiestelling			
		5.1 Impliciet gedefinieerde functies			
		5.2 Parametrisatie van gebieden in \mathbb{R}^n			
2	Integreren 9				
_	1	Riemann-integraal voor begrensde functies op begrensde intervallen 9			
	2	Enkele eigenschappen			
	3	Fundamentele stelling van de calculus			
	4	De gebreken van de Riemann-integraal			
	5	Maat op een σ -algebra			
		5.1 Hoe meten?			
		5.2 Maat op een σ -algebra			
	6	De Lebesgue-maat op \mathbb{R} en \mathbb{R}^n			
	7	Integralen			
		7.1 Meetbare functies			
		7.2 Integreerbare functies en hun integraal			
	8	Gedomineerde convergentiestelling			
	9	De praktijk			
		9.1 Bijna overal			
		9.2 Nagaan of een functie in 1 veranderlijke integreerbaar is . 17			
		9.3 Voorbeelden waarbij we limiet en integraal verwisselen 18			
	10	Stelling van Fubini			

	11	Verandering van veranderlijken	19
	12	Lebesge-integratie in de praktijk	20
		12.1 Hoe integreerbaarheid nagaan?	20
		12.2 meervoudige integraal uitrekenen	20
	13	Oneigenlijke integreerbaarheid	20
3	Hil	bertruimten	22
	1	Hermitische vormen	22
	2	Wat is een Hilbertruimte	23
	3	De Hilbertruimte $\ell^2(\mathbb{N})$	23
	4	Orthogonaliteit en de stelling van Risz	24
	5	Orthogonale projecties en orthonormel basissen	25
	6	De Hilbertruimte $L^2(A)$	26
		6.1 Van positieve Hermitische vormen naar positief-definiete	
		vormen	27
		6.2 De Hilbertruimte $L^2(A)$	27
		6.3 De genormeerde ruimte $L_1(A)$	27
	7	Enkele dichte deelverzamelingen van $L^1(\mathbb{R})$ en $L^2(\mathbb{R})$	27
4	Fou	rierreeksen en -integralen	29
	1	Problematiek: periodische functies ontbinden	29
	2	Puntsgewijze convergentie van Fourierreeksen	29
		2.1 Het lemma van Riemann-Lebesgue	29
		2.2 De stelling van Dirichlet	30
	3	Sommatiemethode van Fejér	31
	4	Fourierreeksen en Hilbertruimten $L^2([0,2\pi])$ en $\ell^2(\mathbb{Z})$	31
	5	Convergentie van Fourierreeksen in $\ \cdot\ _1$	32
		5.1 Verschuiven van functies	32
	6	Absolute en uniforme convergentie van Fourierreeksen	32
	7	Een verklaring voor het Gibbsfenomeen	33
	8	Fouriertransformatie	34
	9	Fourier-inversie, een eerste resultaat	34
	10	Fouriertransformatie en afgeleiden	35
	11	Het convolutieproduct	36
	12	Een tweede Fourier-inversiestelling	36
	13	Fourier-inversie	37
	14	Fouriertransformatie en de Hilbertruimte $L^2(\mathbb{R})$	37

1 Afgeleiden

1.1 Inleiding

- Richtingscoëfficiënt van de raaklijn aan de grafiek in $(x_0, f(x_0))$
- De beste eerste orde benadering van f in de buurt van x_0 .

1.2 Partiële afleidbaarheid

Definitie 1.1 (Afleidbaar). $\mathcal{U} \subset \mathbb{R}$ en $f: \mathcal{U} \subset \mathbb{R} \to \mathbb{R}$. $\exists \lambda \in \mathbb{R}, \forall \epsilon > 0 \exists \delta > 0$:

 $\left| \frac{f(x) - f(x_0)}{x - x_0} - \lambda \right| < \epsilon$

 $zodra 0 < |x - x_0| < \delta.$

a) Definitie van partiële afleidbaarheid

Definitie 1.2. Zij $\mathcal{U} \subset \mathbb{R}^n$ en $f : \mathcal{U} \subset \mathbb{R} \to \mathbb{R}$. f is partiel afleidbaar in het punt $(a_1, \ldots, a_n) \in \mathcal{U}$, als $\forall i$ de functie:

$$h_i: x \mapsto f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$$

afleidbaar is in a_i .

Als $f: \mathcal{U} \subset \mathbb{R} \to \mathbb{R}^k$ schrijven we $f(x) = (f_1(x), \dots, f_k(x))$ en dan is f partieel afleidbaar in a als elk van de functies f_1, \dots, f_k partieel afleidbaar is in a.

Oefening 1.3.

b) Meetkundige interpretatie

Raakkruis

c) Verwisselen van partiële afgeleiden

Oefening 1.4.

Stelling 1.5. Zij $\mathcal{U} \subset \mathbb{R}^n$ en $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}$ een functie die tweemaal partieel afleidbaar is. Veronderstel dat de functies $\partial_i \partial_j f$ continu zijn voor alle i, j. Dan is $\partial_i \partial_j f = \partial_j \partial_i f$.

Oefening 1.6.

d) Richtingsafgeleiden

Definitie 1.7. Zij $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}$ een functie. Als $v \in \mathbb{R}^n$ een eenheidsvector is, zeggen we dat f in het punt $a \in \mathcal{U}$ afleidbaar is in de richting van v, als de functie

$$t \mapsto f(a + tv)$$

afleidbaar is in 0. Notatie: $(\partial_v f)(a)$

1.3 Totale afleidbaarheid

a) De definitie van totale afleidbaarheid

Terminologie 1.8 (Eerstegraadsfunctie).

Definitie 1.9. Zij $\mathcal{U} \subset \mathbb{R}^n$ open en $x_0 \in \mathcal{U}$. We zeggen dat Een functie $f: \mathcal{U} \to \mathbb{R}^m$ totaal afleidbaar is in het punt x_0 , als er een lineaire afbeelding $A: \mathbb{R}^n \to \mathbb{R}^m$ bestaat zodat

$$f(x) = f(x_0) + A(x - x_0) + o(||x - x_0||)$$
 wanneer $x \to x_0$

Opmerking 1.10. $(df)(x_0)$ is een lineaire afbeelding van $\mathbb{R}^n \to \mathbb{R}^m$.

Propositie 1.11. Zij $\mathcal{U} \subset \mathbb{R}^n$ en $f: \mathcal{U} \to \mathbb{R}^m$. Als f totaal afleidbaar is in x_0 , dan is de totale afgeleide ondubbelzinnig gedefinieerd

Oefening 1.12.

Propositie 1.13. Zij $f: \mathbb{R}^n \to \mathbb{R}^m: f(x) = A(x) + b$ een eerstegraadsfunctie. Dan is f totaal afleidbaar en (df)(x) = A.

b) Meetkundige interpretatie

Raakvlak

c) Algemene eigenschappen

Propositie 1.14. Als f totaal afleidbaar is, dan is f continu.

Propositie 1.15. Als f, g totaal afleidbaar zijn dan is g + h totaal afleidbaar en d(g + h) = dg + dh en d(fg)(x) = (df)(x)g(x) + f(x)(dg)(x)

Oefening 1.16.

d) Verschil tussen partiële en totale afleidbaarheid

Voorbeeld 1.17.

$$f: \mathbb{R}^2 \to \mathbb{R}: f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{als } (x,y) \neq (0,0) \\ 0 & \text{als } (x,y) = (0,0) \end{cases}$$

e) Het verband

Propositie 1.18. Zij $\mathcal{U} \subset \mathbb{R}^n$, $f: \mathcal{U} \to \mathbb{R}^m$ en $a \in \mathcal{U}$. $f = (f_1, f_2, \dots, f_m)$. Als f_i partieel afleidbaar zijn en $\partial_j f_i$ allen continu zijn in a. Dan is f totaal afleidbaar in a en de totale afgeleide (df)(a) heeft als matrix

$$\begin{pmatrix} \partial_1 f_1 & \partial_2 f_1 & \partial_3 f_1 \\ \partial_1 f_2 & \partial_2 f_2 & \partial_3 f_2 \\ \partial_1 f_3 & \partial_2 f_3 & \partial_3 f_3 \end{pmatrix}$$

Terminologie 1.19. Als de partiële afgeleiden d_{i_s} bestaan en continu zijn voor $1 \le s \le k$, dan noemen we $f \in C^{\infty}$

Propositie 1.20. Als f total afleidbaar is, dan is (df)(a) de matrix

$$\begin{pmatrix} \partial_1 f_1 & \partial_2 f_1 & \partial_3 f_1 \\ \partial_1 f_2 & \partial_2 f_2 & \partial_3 f_2 \\ \partial_1 f_3 & \partial_2 f_3 & \partial_3 f_3 \end{pmatrix}$$

f) Hoe nagaan en hoe berekenen

- ullet Partieel afleidbaar en continu \implies totaal afleidbaar
- \bullet Voor een richting niet partieel afleidbaar in $a \implies$ niet totaal afleidbaar
- Partieel afleidbaar, maar minstens 1 discontinu \implies kandidaat-totale-afgeleide checken met definitie.

Voorbeeld 1.21.

g) De kettingregel

Propositie 1.22. Zij

- $g: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}^m$
- $f: \mathcal{V} \subset \mathbb{R}^m \to \mathbb{R}^k$

Veronderstel dat $g(\mathcal{U}) \subset \mathcal{V}$. Als g totaal afleidbaar is in a en f totaal afleidbaar is in g(a). Dan is $f \circ g$ totaal afleidbaar in a en

$$(d(f\circ g))(a)=(df)(g(a))\circ (dg)(a)$$

Notatie 1.23. Als $f: \mathcal{U} \subset \mathbb{R} \to \mathbb{R}^n$. We note of $f'(a) = (f'_1(a), \dots, f'_n(a))$

$$(df)(a)(\lambda) = \lambda f'(a)$$

Gevolg 1.24.

- $g: \mathcal{U} \subset \mathbb{R}^1 \to \mathbb{R}^n$
- $f: \mathcal{V} \subset \mathbb{R}^n \to \mathbb{R}^m$

Als g, f totaal afleidbaar zijn en $g(\mathcal{U}) \subset \mathcal{V}$, dan is $f \circ g$ afleidbaar en

$$(f \circ g)'(a) = (df)(g(a))(g'(a))$$

Oefening 1.25.

1.4 Inverse-functiestelling

Terminologie 1.26. Zij $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}^n$ een functie. Als er een omgeving bestaat waarop f injectief is, dan zeggen we dat f een lokaal inverse heeft.

- Als f^{-1} continu is lokaal, continu invers
- Als f^{-1} totaal afleidbaar is lokaal, totaal afleidbaar invers

Propositie 1.27. Zij $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}^n$. Veronderstel dat f in de buurt van a een lokaal totaal afleidbaar invers heeft. Dan is (df)(a) een inverteerbare lineaire afbeelding

Stelling 1.28 (Inverse-functiestelling). Zij $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}^n$ een C^1 functie. Zij $a \in \mathcal{U}$ en veronderstel dat (df)(a) een inverteerbare lineaire afbeelding is. Dan heeft f in de buurt een lokaal totaal afleidbaar invers. Meer nog er bestaan open delen $\mathcal{U}_0 \subset \mathcal{U}$ en $\mathcal{V} \subset \mathbb{R}^n$ zodat

- $f|_{\mathcal{U}_0}$ een bijectie is
- De inverse f^{-1} een C^1 -functie is
- (df)(x) inverteer baar is voor alle $x \in \mathcal{U}_0$
- $(df^{-1})(y) = [(df)(f^{-1}(y))]^{-1}$

Als $f \in C^k$, dan $f^{-1} \in C^k$.

Voorbeeld 1.29.

1.5 Impliciete-functiestelling

a) Impliciet gedefinieerde functies
 Oefening 1.30.

Stelling 1.31 (Impliciete-functiestelling). Zij $g: \mathcal{U} \subset \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^k$ een C^1 -functie. Stel dat $(a,b) \in \mathcal{U}$ en g(a,b) = 0. Schrijf (dg)(a,b)(v,w) = Av + Bw voor alle $v \in \mathbb{R}^n$ en $w \in \mathbb{R}^k$. Hierbij zijn $A: \mathbb{R}^n \to \mathbb{R}^k$ en $B: \mathbb{R}^k \to \mathbb{R}^k$ lineaire afbeeldingen. Veronderstel dat B inverteerbaar is. Dan bestaan

- Open delen $\mathcal{U}_1 \subset \mathbb{R}^n, \mathcal{U}_2 \subset \mathbb{R}^k$ zodat $a \in \mathcal{U}_1, b \in \mathcal{U}_2$ en $\mathcal{U}_1 \times \mathcal{U}_2 \subset \mathcal{U}$.
- Een C^1 -functie $f: \mathcal{U}_1 \to \mathcal{U}_2$ met f(a) = b

zodat $\forall x \in \mathcal{U}_1$, de vergelijking g(x,y) = 0 een unieke oplossing y in \mathcal{U}_2 heeft, namelijk y = f(x).

Als $g \in C^r$, dan $f \in C^r$.

Oefening 1.32.

b) Parametrisatie van gebieden in \mathbb{R}^n

Stelling 1.33. Zij $\mathcal{U}\subset\mathbb{R}^n$ en $g:\mathcal{U}\to\mathbb{R}^k$ een C^1 -afbeelding. Beschouw de verzameling

$$K := \{ x \in \mathcal{U} \mid g(x) = 0 \}$$

Zij $a \in K$ en veronderstel dat $k \times n$ matrix (dg)(a) van rang k is. Dan bestaat er

- een open deel $\mathcal{U}_0 \subset \mathcal{U}$ met $a \in \mathcal{U}_0$
- een open deel $\mathcal{V} \subset \mathbb{R}^{n-k}$ met $0 \in \mathcal{V}$
- een C^1 -afbeelding $\phi(\mathcal{V} \to \mathbb{R}^n)$ met $\phi(0) = a$

zodat

- $\mathcal{U}_0 \cap K = \phi(\mathcal{V})$
- $\operatorname{Im}(d\phi)(y) = \ker(dg)(\phi(y))$

Of dus als de verzameling K gedefinieerd door k C^1 vergelijkingen en als deze vergelijkingen in het punt $a \in K$ onafhankelijk zijn, dan kunnen we de verzameling K in de buurt van a parametriseren aan de hand van een afbeelding $\phi: \mathcal{V} \subset \mathbb{R}^{n-k} \to K$.

2 Integreren

2.1 Riemann-integraal voor begrensde functies op begrensde intervallen

Definitie 2.1. Zij $f:[a,b]\to\mathbb{R}$ een begrensde functie. Zij $P:(a=t_0,t_1,\ldots,t_n=b)$ een verdeling van het interval [a,b]. Dan definiëren we voor elke $i=1,\ldots,n$:

$$m_i = \inf\{f(x) \mid x \in [t_{i-1}, t_i]\}\$$

 $M_i = \sup\{f(x) \mid x \in [t_{i-1}, t_i]\}\$

 En

$$\underline{S}(f,P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$\overline{S}(f,P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$$

Definitie 2.2. Zij $f:[a,b]\to\mathbb{R}$ een begrensde functie. We noemen f Riemann-integreerbaar als er $\forall \epsilon>0$ een verdeling P over [a,b] bestaat zodat $\overline{S}(f,P)-\underline{S}(f,P)<\epsilon$. In dat geval definiëren we de Riemann-integraal van f over het interval [a,b] als

$$\int_{[a,b]} f(x) dx = \sup \{ \underline{S}(f,P) \mid P \text{ is een verdeling} \}$$
$$= \inf \{ \overline{S}(f,P) \mid P \text{ is een verdeling} \}$$

Oefening 2.3.

2.2 Enkele eigenschappen

Propositie 2.4. Zij $f:[a,b]\to\mathbb{R}$ een continue functie. Dan is f Riemann-integreerbaar.

Voorbeeld 2.5.

$$f:[0,1] \to \mathbb{R}: f(x) = \begin{cases} 1 & \text{als } x \text{ rational is} \\ 0 & \text{als } x \text{ irrational is} \end{cases}$$

Propositie 2.6. Zij $f,g:[a,b]\to\mathbb{R}$ begrensd en Riemann-integreerbaar. Dan is $\lambda f + \mu g$ begrensd en Riemann-integreerbaar voor alle $\lambda,\mu\in\mathbb{R}$. Ook geldt

$$\int_{a}^{b} \lambda f + \mu g = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

Oefening 2.7.

Propositie 2.8. Zij $f,g:[a,b]\to\mathbb{R}$ begrensd en Riemann-integreerbaar. Voor elke $c\in[a,b]$ zijn de beperkingen tot [a,c] en [c,b] Riemann-integreerbaar. En er geldt ook:

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Oefening 2.9.

Propositie 2.10. Zij $f,g:[a,b]\to\mathbb{R}$ begrensd en Riemann-integreerbaar.

- Als $f(x) \ge 0$ voor alle $x \in [a, b]$, dan is $\int_a^b f(x) dx > 0$.
- De functie $x \mapsto |f(x)|$ is Riemann-integreerbaar en

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

Oefening 2.11.

2.3 Fundamentele stelling van de calculus

We no emen f afleidbaar in a als $\lim_{x\to a^+}\frac{f(x)-f(a)}{x-a}$ bestaat. Stelling 2.12 (Fundamentele stelling van de calculus).

• Als $F:[a,b]\to\mathbb{R}$ een afleidbare functie is en F' is continu op [a,b], dan is

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

• Als $f:[a,b] \to \mathbb{R}$ een continue functie is, dan is $F(x) = \int_a^x f(y) \, dy$ afleidbaar en F'(x) = f(x) voor alle $x \in [a,b]$

Propositie 2.13 (Partiele integratie). Zij $f, g : [a, b] \to \mathbb{R}$ afleidbare functies zodat f', g' continu zijn. Dan is

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx$$

Propositie 2.14 (Substitutieregel). Zij $f:[c,d]\to\mathbb{R}$ een continue functie en $g:[a,b]\to[c,d]$ een afleidbare functie en g' is continu. Dan is

$$\int_{g(a)}^{g(b)} f(y) \, dy = \int_{a}^{b} f(g(x))g'(x) \, dx$$

2.4 De gebreken van de Riemann-integraal

- Onbegrensde functies?
- Meerdere veranderlijken?
- Limiet en integraal verwisselen?
- Integratievolgorde bij meervoudige integralen verwisselen?

Opmerking 2.15. Als Riemann-integreerbaar, dan Lebesgue-integreerbaar

2.5 Maat op een σ -algebra

- a) Hoe meten?
 - $\lambda(A) \in [0, +\infty]$
 - $\lambda(\varnothing) = 0$
 - $\lambda([a,b]) = b a$
 - $A \cap B = \emptyset \implies \lambda(A \cup B) = \lambda(A) + \lambda(B)$

Monotoniciteit Als $A \subset B$, dan $\lambda(B) \geq \lambda(A)$

Sigma-additiviteit Als $(A_n)_n$ een disjuncte rij van deelverzamelingen is en $A = \bigcup_{n=1}^{\infty} A_n$ dan zal $\lambda(A) = \sum_{n=1}^{\infty} \lambda(A_n)$

Opmerking 2.16. Onmogelijk om λ voor een willekeurige deelverzameling te definiëren zodat voldaan is aan de eigenschappen.

b) Maat op een σ -algebra

Definitie 2.17. Zij X een verzameling. We noemen \mathcal{M} een σ -algebra op X als \mathcal{M} een deel is van X die voldoet aan de volgende regels:

- $\emptyset \in M$ en $X \in M$
- $\bullet \ A \in M \implies A^c \in M$
- A_n een rij in M, dan $\bigcup_n A_n \in M$

Propositie 2.18. Zij M een σ -algebra op X.

- Als (A_n) een rij is in M, dan zal $\bigcap_n A_n \in M$
- Als $A, B \in M$, dan zal $A \setminus B \in M$

Voorbeeld 2.19.

Definitie 2.20 (Borel- σ -algebra \mathcal{B}). De kleinste σ -algebra op \mathbb{R} zodanig dat $[a,b] \in \mathcal{B}$ voor alle $a \leq b$.

Opmerking 2.21. Alle denkbare deelverzamelingen van $\mathbb R$ zijn Borelverzamelingen

Propositie 2.22. De volgende verzamelingen zijn Borelverzamelingen:

- Alle soorten intervallen
- \bullet Open deelverzamelingen van $\mathbb R$
- Gesloten deelverzamelingen van \mathbb{R} .

Definitie 2.23. We definiëren de \mathcal{B} op \mathbb{R}^n als de kleinste σ -algebra op \mathbb{R}^n zodanig dat $[a_1, b_1] \times \ldots \times [a_n, b_n] \in \mathcal{B}$ voor alle $a_i < b_i$.

Definitie 2.24. De volgende deelverzamelingen van \mathbb{R}^n zijn Borelverzamelingen

- $I_1 \times \ldots \times I_n$ met I_i willekeurige intervallen
- Open deelverzamelingen van \mathbb{R}^n
- Gesloten deelverzamelingen van \mathbb{R}^n

Definitie 2.25. Zij M een σ -algebra op een verzameling X. We noemen μ een maat op M als de volgende eigenschappen gelden.

- $\mu: M \to [0, +\infty]$.
- $\mu(\varnothing) = 0$
- Rij van onderlinge disjuncte verzamelingen: $\mu(A) = \sum_n \mu(A_n)$

Opmerking 2.26. Rijen waarin ∞ voorkomt?

Propositie 2.27. Zij M een σ -algebra op X en μ een maat op M.

- $A, B \in M \ A \subset B$, dan zal $\mu(A) \leq \mu(B)$
- A_n een rij van verzamelingen, dan zal $\mu(\bigcup A_n) \leq \sum_n \mu(A_n)$
- A_n een stijgende rij is, dan zal $\mu(\bigcup A_n) = \lim_n \mu(A_n) = \sup_n \mu(A_n)$
- A_n een dalende rij is, en $\mu(A_1) < \infty$ dan zal $\mu(\bigcap A_n) = \lim_n \mu(A_n) = \inf_n \mu(A_n)$

Voorbeeld 2.28. Verderop: Lebesgue-maat λ zodat $\lambda([a_1,b_2]\times\cdots\times[a_n,b_n])=(b_1-a_1)\cdots(b_n-a_n)$

Opmerking 2.29.

2.6 De Lebesgue-maat op \mathbb{R} en \mathbb{R}^n

 $\lambda_0(I)$ is de lengte van een interval I.

Definitie 2.30. Zij $A \subset \mathbb{R}$ een Borelverzameling. We definiëren

$$\lambda(A) = \inf \left\{ \sum_{n} \lambda_0(I_n) \mid (I_n)_n \text{ is een rij van intervallen en } A \subset \bigcup I_n \right\}$$

Opmerking 2.31.

Stelling 2.32. De afbeelding λ op de Borel- σ -algebra van $\mathbb R$ is een maat op deze σ -algebra. Het is daarenboven de unieke maat op de Borel- σ -algebra van $\mathbb R$ die een maat b-a toekent aan een willekeurige interval $[a,b], a,b \in \mathbb R$.

Voorbeeld 2.33.

Voorbeeld 2.34.

Definitie 2.35. Als I_1, \ldots, I_n intervallen zijn, dan noemen we $I = I_1 \times \cdots \times I_n$ een rechthoek in \mathbb{R}^n . We definiëren dan $\lambda_0(I) = \lambda_0(I_1) \cdots \lambda_0(I_n)$

Definitie 2.36. Zij $A \subset \mathbb{R}^n$ een Borelverzameling. We definiëren

$$\lambda(A) = \inf \left\{ \sum_n \lambda_0(I_n) \mid (I_n)_n \text{ is een rij van rechthoeken en } A \subset \bigcup I_n \right\}$$

Stelling 2.37. De afbeelding λ op de Borel- σ -algebra van \mathbb{R}^n is een maat op deze σ -algebra. Het is daarenboven de unieke maat op de Borel- σ -algebra van \mathbb{R} die een maat $\lambda_0(I)$ toekent aan een willekeurige rechthoek $I \subset \mathbb{R}^n$.

2.7 Integralen

a) Meetbare functies

Definitie 2.38. De Borel- σ -algebra op $[0, +\infty]$ is gedefinieerd als de collectie van alle deelverzamelingen $A \subset [0, +\infty]$ zodat $A \cap [0, +\infty)$ een Borelverzameling in $\mathbb R$ is.

Definitie 2.39. $f: \mathbb{R}^n \to [0, +\infty]$. We zeggen dat f een meetbare functie is als $f^{-1}(A)$ een Borelverzameling is voor alle Borelverzamelingen $A \subset [0, +\infty]$.

Definitie 2.40. We zeggen dat \mathcal{B}_0 de Borel- σ -algebra voortbrengt als \mathcal{B} de kleinste σ -algebra is die \mathcal{B}_0 omvat.

Propositie 2.41. Een functie $f: \mathbb{R}^n \to Y$ is meetbaar als en slechts als $f^{-1}(B)$ een Borelverzameling is voor alle $B \in \mathcal{B}_0$.

Lemma 2.42. Zij \mathcal{B}_0 een collectie van deelverzamelingen van $Y = [0, +\infty]$ of \mathbb{R}^p . Als

- Alle elementen van \mathcal{B}_0 zijn Borelverzamelingen
- Je kan alle gesloten intervallen [a, b] bekomen vanuit \mathcal{B}_0 door het herhaald nemen van complementen en aftelbare unies/doorsnedes.

Dan brengt \mathcal{B}_0 de Borel- σ -algebra voort.

Voorbeeld 2.43.

Opmerking 2.44.

Propositie 2.45. Als f een continue functie is, dan is f meetbaar

Propositie 2.46.

- Zij f, g meetbaar, dan is $g \circ f$ meetbaar
- Zij $f(x) = (f_1(x), \dots, f_p(x))$. Dan is f meetbaar als en slechts f_1, \dots, f_p meetbaar
- f, g meetbaar, dan $\frac{f+g}{g}$ en $\frac{f}{g}$ meetbaar¹
- \bullet Zij f_i een rij van meetbare functies. Definieer

$$\left(\sup_{i} f_{i}\right)(x) = \sup_{i} f_{i}(x)$$

$$\vdots = \vdots$$

Dan zijn $\sup_i f_i, \dots$ meetbare functies

• Zij $(f_i)_i$ een rij van meetbare functies zodat $f_i \to f$ puntsgewijs. Dan is f meetbaar

als $g(x) \neq 0 \forall x \in \mathbb{R}^n$

b) Integreerbare functies en hun integraal

Notatie 2.47. $\chi_A(x)$

Stelling 2.48. Er bestaat een unieke afbeelding $\mathcal{I}: \{f: \mathbb{R}^n \to [0, +\infty] \mid f \text{ is positief meetbaar}\} \to [0, +\infty] \text{ zodat:}$

Indicatorfuncties $\int_{\mathbb{R}^n} \chi_A d\lambda = \lambda(A)$ voor elke Borelverzameling $A \subset \mathbb{R}^n$

Positieve lineariteit

Monotone convergentie Als f_i een stijgende rij van positief meetbare functies is, dan is

$$\int_{\mathbb{R}^n} f d\lambda = \lim_i \int_{\mathbb{R}^n} f_i d\lambda$$

Oefening 2.49.

Definitie 2.50. Als $\int_{\mathbb{R}^n} |f| d\lambda < \infty$, dan is een f integreerbaar

Definitie 2.51. Als $\int_{\mathbb{R}^n} |f| d\lambda < \infty$, dan is een f integreerbaar.

$$\int f d\lambda = \int \Re f d\lambda + i \int \Im f d\lambda$$

Propositie 2.52. Zij $f, g, : A \subset \mathbb{R}^n \to \mathbb{C}$ integreerbare functies.

- $\int \mu f + \rho g = \mu \int f + \rho \int g$
- $|\int f d\lambda| \le \int |f| d\lambda$
- Riemann \implies Lebesgue en gelijk

Notatie 2.53.

Propositie 2.54. Zij $f:(a,b)\to [0,+\infty)$ meetbaar (a,b kunnen $-\infty,+\infty$ zijn). Veronderstel dat f begrensd en Riemann-integreerbaar is op $[\alpha,\beta]\subsetneq [a,b]$. Dan is

$$\int_{(a,b)} f \, d\lambda = \lim_{\substack{\alpha \to a \\ \beta \to b}} \int_{\alpha}^{\beta} f(x) \, dx$$

Voorbeeld 2.55.

$$f:[1,+\infty)\to[0,+\infty):x\mapsto\frac{1}{x^p}$$
 is integreerbaar als $p>1$

$$f:[0,1) \to [0,+\infty): x \mapsto \frac{1}{x^p}$$
 is integreer
baar als $p < 1$

2.8 Gedomineerde convergentiestelling

Voorbeeld 2.56.

Voorbeeld 2.57.

Stelling 2.58 (Montone convergentiestelling). Zij (f_k) een stijgende rij van positief meetbare functies $\mathbb{R}^n \to [0, +\infty]$. Definieer $f = \lim_k f_k$ puntsgewijs. Dan zal

$$\int f \, d\lambda = \lim_{k} \int f_k \, d\lambda$$

Stelling 2.59 (Gedomineerde convergentiestelling). Zij $f_k: \mathbb{R}^n \to \mathbb{C}$ een rij van integreerbare functies. Veronderstel dat er een positieve integreerbare functie g bestaat zodat $|f_k(x)| \leq g(x)$ voor alle $x \in \mathbb{R}^n$ en alle k. Als $f_k \to f$ puntsgewijs, dan is f integreerbaar en

$$\int f \, d\lambda = \lim_{k} \int f_k \, d\lambda$$

Opmerking 2.60. g hangt niet af van k!

2.9 De praktijk

a) Bijna overal

Terminologie 2.61 (Bijna overal).

Voorbeeld 2.62.

Propositie 2.63. Zij $f, g : \mathbb{R}^n \to [0, +\infty]$ positieve meetbare functies. Als f(x) = g(x) bijna overal dan zal $\int f d\lambda = \int g d\lambda$.

Zij $f,g:\mathbb{R}^n\to\mathbb{R}$ meetbare functies en veronderstel dat f(x)=g(x) bijna overal. Dan is f integreerbaar, a.s.a. g integreerbaar is. In dat geval zijn de integralen gelijk

Propositie 2.64. Zij $f: \mathbb{R}^n \to [0, \infty]$ een positief meetbare functie. Dan is $\int f \ d\lambda = 0$ a.s.a. f(x) = 0 bijna overal.

b) Nagaan of een functie in 1 veranderlijke integreerbaar is

Principe 2.65. Zij $f, g : \mathbb{R}^n \to [0, \infty]$ positieve meetbare functies. Als g integreerbaar is en $f \leq g$ dan is f integreerbaar.

Principe 2.66. Zij $f:(0,+\infty)\to [0,+\infty)$ een meetbare functie. Veronderstel dat f begrensd op $[a,b]\subset [0,+\infty]$. Zij $\alpha,\beta\in\mathbb{R}$.

- Als $f(x)=\Theta(\frac{1}{x^{\alpha}})$ voor $x\to 0$ en $f(x)=\theta(\frac{1}{x^{\beta}})$ voor $x\to \infty$, dan is f integreerbaar a.s.a. $\alpha<1$ en $\beta>1$
- Als $\alpha < 1$ en $\beta > 1$ en $f(x) = O(\frac{1}{x^{\alpha}})$ voor $x \to 0$ en $f(x) = O(\frac{1}{x^{\beta}})$ voor $x \to \infty$ dan is f integreerbaar
- Als $\alpha \geq 1$ en $f(x) = \Omega(\frac{1}{x^{\alpha}})$ voor $x \to 0$, dan is f niet integreerbaar.
- Als $\beta \leq 1$ en $f(x) = \Omega(\frac{1}{x^{\beta}})$ voor $x \to \infty$, dan is f niet integreerbaar.

Opmerking 2.67.

Voorbeeld 2.68.

- c) Voorbeelden waarbij we limiet en integraal verwisselen Continuïteit van een functie gedefinieerd door een integraal $f:\mathbb{R}^2\to\mathbb{C}$
 - $\forall x_0 : y \mapsto f(x_0, y)$ integreerbaar
 - $\forall y_0 : x \mapsto f(x, y_0)$ continu

$$g(x) = \int f(x, y) \, dy$$

Propositie 2.69. Veronderstel $\forall x \in \mathbb{R}$ een omgeving bestaat en een integreerbare functie $h: \mathbb{R} \to [0, +\infty]$ zodat $|f(z, y)| \leq h(y)$ voor alle $z \in \mathcal{U}$ en alle $y \in \mathbb{R}$. Dan is g continu

Afleidbaarheid van een functie gedefinieerd door een integraal $f:\mathbb{R}^2\to\mathbb{C}$

- $\forall x_0 : y \mapsto f(x_0, y)$ integreerbaar
- $\forall y_0 : x \mapsto f(x, y_0)$ afleidbaar

$$g(x) = \int f(x, y) \, dy$$

Propositie 2.70. Veronderstel $\forall x \in \mathbb{R}$ een omgeving bestaat en een integreerbare functie $h: \mathbb{R} \to [0, +\infty]$ zodat $|(\partial_1 f)(z, y)| \le h(y)$ voor alle $z \in \mathcal{U}$ en alle $y \in \mathbb{R}$. Dan is g afleidbaar en geldt

$$g'(x) = \int (\partial_1 f)(x, y) dy$$

2.10 Stelling van Fubini

Notatie 2.71.

Voorbeeld 2.72.

Stelling 2.73 (Fubini). Zij $f: \mathbb{R}^{p+q} \to [0, +\infty]$ een positief meetbare functie. Dan

- $\forall x \in \mathbb{R}^p$ is $y \mapsto f(x, y)$ positief meetbaar
- $\forall y \in \mathbb{R}^q$ is $x \mapsto f(x, y)$ positief meetbaar
- De functie $x \mapsto \int_{\mathbb{R}^q} f(x,y) dy$ is positief meetbaar
- De functie $y \mapsto \int_{\mathbb{R}^q} f(x,x) dy$ is positief meetbaar
- $\int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x, y) dy \right) dx = \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x, y) dx \right) dy$

Opmerking 2.74.

Stelling 2.75 (Fubini 2). Zij $f: \mathbb{R}^{p+q} \to \mathbb{R}$ een integreerbare functie. Dan geldt:

- Bijna $\forall x \in \mathbb{R}^p$ is $y \mapsto f(x,y)$ positief meetbaar
- Bijna $\forall y \in \mathbb{R}^q$ is $x \mapsto f(x,y)$ positief meetbaar
- De functie $x \mapsto \int_{\mathbb{R}^q} f(x,y) dy$ is positief meetbaar
- De functie $y \mapsto \int_{\mathbb{R}^q} f(x,x) dy$ is positief meetbaar
- $\int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x, y) dy \right) dx = \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x, y) dx \right) dy$

Opmerking 2.76.

Opmerking 2.77.

Voorbeeld 2.78.

2.11 Verandering van veranderlijken

Propositie 2.79. Zij $f:[c,d] \to \mathbb{R}$ een continue functie en $g:[a,b] \to [c,d]$ een injectieve, afleidbare functie, waarvoor g' continu is. Dan is

$$\int_{g([a,b])} f(y)dy = \int_{[a,b]} f(g(x))|g'(x)| dx$$

Stelling 2.80 (Verandering van veranderlijken). Zij $\mathcal{U} \subset \mathbb{R}^n$ een open deel in \mathbb{R}^n en $g: \mathcal{U} \to \mathbb{R}^n$ een injectieve C^1 -afbeelding. Als $f: \mathbb{R}^n \to [0, +\infty]$ een positieve meetbare functie is, dan geldt

$$\int_{g(\mathcal{U})} f(y) \, dy = \int_{\mathcal{U}} f(g(x)) |\det(dg)(x)| \, dx$$

Als $f: \mathbb{R}^n \to \mathbb{R}$ een meetbare functie is, dan is f integreerbaar op $g(\mathcal{U})$ a.s.a de functie $x \mapsto f(g(x)) |\det(dg)(x)|$ integreerbaar is op \mathcal{U} .

Terminologie 2.81.

Voorbeeld 2.82.

Opmerking 2.83.

2.12 Lebesge-integratie in de praktijk

a) Hoe integreerbaarheid nagaan?

Principe 2.84. Zij $f: \mathbb{R}^n \to \mathbb{C}$ gegeven door $f(x) = f_1(x_1) \cdots f_n(x_n)$, dan is f integreerbaar a.s.a. f_1, \ldots, f_n integreerbaar zijn

Principe 2.85. Goede verandering van veranderlijken

Voorbeeld 2.86.

Voorbeeld 2.87.

Voorbeeld 2.88.

b) meervoudige integraal uitrekenen

Voorbeeld 2.89.

Voorbeeld 2.90.

2.13 Oneigenlijke integreerbaarheid

Definitie 2.91. Zij $a \in [-\infty, +\infty)$ en $b \in (-\infty, \infty]$. We noemen een meetbare functie $f:(a,b) \to \mathbb{C}$ oneigenlijk integreerbaar als $f\chi_{[c,d]}$ integreerbaar voor alle $[c,d] \subset [a,b]$ en als de limiet

$$\lim_{c \to a, d \to b} \int_{c}^{d} f(x) \, dx$$

bestaat in \mathbb{C} . We noemen deze limiet de oneigenlijke integraal. Cruciaal: onafhankelijk.

Propositie 2.92.

- Lineaire combinatie van oneigenlijke integreerbare functies oneigenlijk integreerbaar
- Integreerbaar dan <mark>oneigenlijk integreerbaar</mark>

Voorbeeld 2.93.

3 Hilbertruimten

3.1 Hermitische vormen

Definitie 3.1 (Hermitische vorm). Zij H een vectorruimte over \mathbb{C} . We noemen een afbeelding $H \times H \to \mathbb{C} : (x,y) \to \langle x,y \rangle$ en Hermitische vorm op H als

- $\langle \lambda x + \mu y, z \rangle = \lambda \, \langle x, z \rangle + \mu \, \langle y, z \rangle$ voor alle $x, y, z \in H, \lambda, \mu \in \mathbb{C}$.
- $\overline{\langle x, y \rangle} = \langle y, x \rangle$ voor alle $x, y \in H$.
- Als $\langle x, x \rangle \geq 0$ spreken over een positieve Hermitische vorm
- Als $\langle x, x \rangle = 0 \implies x = 0$, spreken we over een positief-definiete Hermitische vorm

Voorbeeld 3.2. • $H = \mathbb{C}^n$ en positief definiet

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle = x_1\overline{y_1}+\cdots+c_n\overline{y_n}$$

• $c_{00}(\mathbb{N})=\{x:\mathbb{N}\to\mathbb{C}\mid x_n=0 \text{ voor } n \text{ groot genoeg}\}$ en positief definiet

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x(n) \overline{y(n)}$$

• $C([0,1]) \to \mathbb{C}$ positief definiet:

$$\langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} \, dx$$

Propositie 3.3. Zij $\langle \cdot, \cdot \rangle$ een positieve Hermitische vorm op H. Definieer $\|x\| = \langle x, x \rangle^{\frac{1}{2}}$. Voor alle $x, y \in H$ geldt dat

• (Cauchy-Schwarz)

$$|\langle x, y \rangle| \le ||x|| ||y||$$

• Minkowski

$$||x + y|| \le ||x|| + ||y||$$

• Parallellogrameigenschap

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

- Als $\langle \cdot, \cdot \rangle$ positief definiet is dan definieert $\| \cdot \|$ een norm op H.
- (Continuïteit van een positief Hermitische vorm. Als $(x_n)_{n\in\mathbb{N}}$ en $(y_n)_{n\in\mathbb{N}}$ rijen zijn in H en $x,y\in H$ zodat $||x_n-x||\to 0$ en $||y_n-y||\to 0$ dan zal $\langle x_n,y_n\rangle\to\langle x,y\rangle$

Opmerking 3.4.

3.2 Wat is een Hilbertruimte

Definitie 3.5 (Hilbertruimte). Een Hilbertruimte is een vectorruimte over \mathbb{C} , uitgerust met een positief-definiete Hermitische vorm die volledig is voor de geassocieerde norm $||x|| = \sqrt{\langle x, x \rangle}$

3.3 De Hilbertruimte $\ell^2(\mathbb{N})$

Definitie 3.6. We definiëren

$$\ell^2(\mathbb{N}) := \{x : \mathbb{N} \to \mathbb{C} \mid \sum_{n=0}^{\infty} |x(n)|^2 < \infty \}$$

Propositie 3.7.

- De verzameling $\ell^2(\mathbb{N})$ is een vectorruimte.
- Voor alle $x, y \in \ell^2(\mathbb{N})$ is de rij $(x_n \overline{y_n})_n$ absoluut sommeerbaar.
- De formule

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x_n \overline{y_n}$$

levert een positief-definiete Hermitische vorm op $\ell^2(\mathbb{N})$.

Stelling 3.8. Uiterust met de norm $\|\cdot\|_2$ is $\ell^2(\mathbb{N})$ volledig. Dus $\ell^2(\mathbb{N})$ is een Hilbertruimte.

Lemma 3.9. \bullet Zij X een genormeerde ruimte

- Veronderstel dat X op een norm-bewarende manier ingebed is als deelruimte van een grotere genormeerde ruimte Y. Als er een rij $(x_n)_{n\in\mathbb{N}}$ in X bestaat die convergeert naar een limiet $y\in Y\setminus X$, dan is X niet volledig
- Veronderstel dat Y volledig is. Dan is X volledig a.s.a X gesloten is in Y

Voorbeeld 3.10. $c_{00}(\mathbb{N})$ is onvolledig.

3.4 Orthogonaliteit en de stelling van Risz

Definitie 3.11. Zij H een Hilbertruimte en $A \subset H$. Dan definieeren we

$$A^{\perp} = \{ x \in H \mid \langle x, y \rangle \text{ voor alle } y \in A \}$$

We noemen A^{\perp} het orthagonaal complement van A.

Propositie 3.12 (Stelling van Pythagoras). Zij H een Hilbertruimte en $x, y \in H$. Als $x \perp y$, dan is $||x + y||^2 = ||x||^2 + ||y||^2$

Stelling 3.13. Zij H een Hilbertruimte en K een gesloten deelruimte van H. Dan

- Elke vector $x \in H$ kan op unieke wijze geschreven worden als x = y + z met $y \in K$ en $z \in K^{\perp}$.
- $\bullet \ \left(K^{\perp}\right)^{\perp} = K$

Als $K_0 \subset H$ een willekeurige deelvectorruimte is, dan is $(K_0^{\perp})^{\perp}$ precies de sluiting van K_0 .

Lemma 3.14. Zij H een Hilbertruimte en $S \subset H$ een niet-lege, convexe, gesloten deelverzameling. Zij $x \in H$. Dan bestaat er unieke $y \in S$ zodat

$$||x - y|| = \inf\{||x - a|| \mid a \in S\}$$

Stelling 3.15 (Representatiestelling van Riesz). Zij H een Hilbertruimte en $\omega: H \to \mathbb{C}$ een continue lineaire afbeelding

Dan bestaat er een unieke vector $y \in H$ zodat

$$\omega(x) = \langle x, y \rangle$$
 voor alle $x \in H$

3.5 Orthogonale projecties en orthonormel basissen

Definitie 3.16. Zij $K \subset H$ een gesloten deelruimte van een Hilbertruimte H. Dan voor alle $x \in H$ geldt x = y + z. We noteren $y = p_K(x)$

Oefening 3.17.

Definitie 3.18. Een familie vectoren $(e_i)_{i \in I}$ in een Hilbertruimte H noemen we een orthonormale familie als

- $||e_i|| = 1$ voor alle $i \in I$
- $\langle e_i, e_j \rangle = 0$ als $i \neq j$

Voorbeeld 3.19.

Oefening 3.20.

$$\left\| \sum_{k=1}^{n} \lambda_k e_k \right\|^2 = \sum_{k=1}^{n} |\lambda_k|^2$$

Propositie 3.21. Zij $\{e_1, \ldots, e_n\}$ een orthonormale familie in een Hilbertruimte H. Noteer $K = \text{span}\{e_1, \ldots, e_n\}$. Dan geldt

- $\{e_1, \ldots, e_n\}$ zijn lineaire onafhankelijk
- Voor alle $x \in H$ geldt $p_K(x) = \sum_{k=1}^n \langle x, e_k \rangle e_k$

Propositie 3.22. Zij $(e_n)_{n\in\mathbb{N}}$ een orthonormale familie in H. Definieer $K := \overline{\operatorname{span}}\{e_n \mid n \in \mathbb{N}\}$. Voor elke $x \in H$ is de $\operatorname{rij} \sum_{k=0}^n \langle x, e_k \rangle e_k$ convergent en er geldt

$$p_K(x) = \sum_{k=0}^{\infty} \langle x, e_k \rangle e_k$$
 en $||p_K(x)||^2 = \sum_{k=0}^{\infty} |\langle x, e_k \rangle|^2$

In het bijzonder is

$$\sum_{k=0}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2$$

Definitie 3.23. Een orthonormale familie vectoren $(e_i)i \in I$ noemen we een orthonormale basis als deze familie maximaal orthagonaal is: als $x \in H$ en $\langle x, e_i \rangle$ = voor alle $i \in I$, dan is x = 0

Voorbeeld 3.24.

Propositie 3.25. Zij H een Hilbertruimte en veronderstel dat $(e_n)_{n\in\mathbb{N}}$ een orthonormale basis is voor H. Dan geldt voor alle $x\in H$:

$$x=\sum_{n=0}^{\infty}\langle x,e_n\rangle\,e_n$$
 Formule van Plancherel
$$\|x\|^2=\sum_{n=0}^{\infty}\left|\langle x,e_n\rangle\right|^2$$
 Gelijkheid van Parseval

Propositie 3.26. Als H een eindig-dimensionale Hilbertruimte is, dan heeft H een orthonormale basis van dimensie dim H.

Definitie 3.27. H is separabel als H een aftelbaar dicht deel heeft

Definitie 3.28. Zij H een separabele Hilbertruimte die oneindig-dimensionaal is. Dan bestaat er een orthonormale basis $(e_n)_{n\in\mathbb{N}}$ voor H

Opmerking 3.29. Het omgekeerde geldt ook.

3.6 De Hilbertruimte $L^2(A)$

Definitie 3.30. Voor meetbare functies $f: A \to \mathbb{C}$ definiëren we

$$||f||_1 = \int_A |f| d\lambda$$

$$||f||_2 = \left(\int_A |f|^2 d\lambda\right)^{\frac{1}{2}}$$

We noteren

$$\begin{split} \mathcal{L}^1 &= \{f: A \to \mathbb{C} \mid f \text{ is meetbaar en } \|f\|_1 < \infty \} \\ \mathcal{L}^2 &= \{f: A \to \mathbb{C} \mid f \text{ is meetbaar en } \|f\|_2 < \infty \} \end{split}$$

Lemma 3.31. Zij $f:A\to\mathbb{C}$ een meetbare functie. Dan zijn de volgende uitspraken equivalent

- f(x) = 0 voor bijna alle $x \in A$
- $||f||_1 = 0$
- $||f||_2 = 0$

Propositie 3.32. Voor alle meetbare functies $f, g: A \to \mathbb{C}$ geldt dat

- $||f+g||_1, ||f||_1 + ||g_1||$
- $||fg||_1 \le ||f||_2 ||g||_2$
- $||f+g||_2 \le ||f||_2 + ||g||_2$

Hieruit volgt dat $\mathcal{L}^1(A)$ en $\mathcal{L}^2(A)$ vectorruimten zijn met seminormen

Definitie 3.33. Voor alle $f, g \in \mathcal{L}^2(A)$ definiëren we $\langle f, g \rangle = \int_A f(x) \overline{g(x)} dx$ Deze vorm is een positieve niet-definiete Hermitische vorm op \mathcal{L}^2 .

a) Van positieve Hermitische vormen naar positief-definiete vormen

Propositie 3.34. Zij $\langle \rangle$ een positieve Hermitische vorm op de vectorruimte H. Stel $H_0 := \{x \in H | \langle x, x \rangle = 0\}$. Dan is H_0 een deelvectorruimte van H en de formule

$$\langle x + H_0, y + H_0 \rangle := \langle x, y \rangle$$

levert een goed gedefinieerde positief definiete Hermitische vorm op de quotiëntvectorruimte H/H_0 .

b) De Hilbertruimte $L^2(A)$

Stelling 3.35. Uitgerust met de hoger gedefinieerde positief-definite Hermitische vorm is $L^2(A)$ een Hilbertruitme.

- c) De genormeerde ruimte $L_1(A)$
- 3.7 Enkele dichte deelverzamelingen van $L^1(\mathbb{R})$ en $L^2(\mathbb{R})$

Definitie 3.36. We noemen $f: \mathbb{R} \to \mathbb{C}$ een trapfunctie als f een eindige lineaire combinatie van functies is van de vorm χ_I , waarbij I begrensd interval is.

Propositie 3.37.

Stelling 3.38.

- De trapfuncties vormen een dichte deelvectorruimte van $L^1(\mathbb{R})$.
- \bullet De trapfuncties vormen ook een dichte deelvectorruimte van $L^2(\mathbb{R})$

Opmerking 3.39. We kunnen trapfuncties vervangen door continue functies met compacte dragers. Of zelfs C^{∞} -functies met compacte drager.

4 Fourierreeksen en -integralen

4.1 Problematiek: periodische functies ontbinden

Definitie 4.1. 2π -periodisch

Definitie 4.2. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie en veronderstel dat f integreerbaar op $[0, 2\pi]$. Definieer voor $k \in \mathbb{Z}$

$$\hat{f}(k) = \frac{1}{2\pi} \int_{[0,2\pi]} f(x)e^{-ikx} dx$$

We noemen de $\hat{f}(k)$ de Fouriercoëfficiënten van f.

4.2 Puntsgewijze convergentie van Fourierreeksen

Lemma 4.3. Zij $f:\mathbb{R}\to\mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[0,2\pi].$ Noteer

$$s_n(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{ikx}$$

Dan is

$$s_n(x) = \int_{-\pi}^{\pi} f(x+y) D_n(y) \; dy \quad \text{ waarbij } D_n(y) = \frac{1}{2\pi} \frac{\sin\left(n + \frac{1}{2}y\right)}{\sin\frac{y}{2}}$$

a) Het lemma van Riemann-Lebesgue

Stelling 4.4 (Lemma van Riemann-Lebesgue). Zij $f:\mathbb{R}\to\mathbb{C}$ een integreerbare functie. Dan zal

$$\int_{\mathbb{R}} f(x) \sin(\lambda x) dx \to 0 \text{ als } \lambda \in \mathbb{R} \text{ en } |\lambda| \to \infty$$

Hetzelfde geldt als we $\sin(\lambda x)$ vervangen door $\cos(\lambda x)$ of $e^{i\lambda x}$. Of $\phi(\lambda x)$ een begrensde, meetbare, periodische functie is waarvan integraal over 1 periode = 0.

Gevolg 4.5. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[0, 2\pi]$. Beschouw de rij Fouriercoëfficiënten $\hat{f}(k)$ dan zal $|\hat{f}(k)| \to 0$ als $|k| \to \infty$.

b) De stelling van Dirichlet

Notatie 4.6. zij $f: \mathbb{R} \to \mathbb{C}$ een functie en $x \in \mathbb{R}$. We noteren

$$f(x^+) = \lim_{y \to x^+} f(y)$$

van zodra deze limiet bestaat.

Stelling 4.7 (Dirichlet). Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[0, 2\pi]$.

Noteer

$$s_n(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{ikx}$$

Zij $x \in \mathbb{R}$. Veronderstel dat $f(x^-)$ en $f(x^+)$ bestaan en dat er een $\delta > 0$ bestaat zodat

$$|f(x+y) - f(x^+) = O(y^{\delta}) \text{ als } y \to 0^+$$
en
$$|f(x-y) - f(x^-) = O(y^{\delta}) \text{ als } y \to 0^+$$

Dan zal

$$s_n(x) \to \frac{f(x^+) + f(x^-)}{2}$$

Definitie 4.8. Zij $f: \mathbb{R} \to \mathbb{C}$ een functie en $x \in \mathbb{R}$. Rechterafgeleide als $f(x^+)$ goed gedefinieerd is en $\lim_{y \to x^+} \frac{f(y) - f(x^+)}{y - x}$ bestaat. Linkerafgeleide als $f(x^-)$ goed gedefinieerd is en $\lim_{y \to x^-} \frac{f(y) - f(x^-)}{y - x}$ bestaat

Voorbeeld 4.9.

Opmerking 4.10. Veronderstel dat $f: \mathbb{R} \to \mathbb{C}$ in het punt $x \in \mathbb{R}$ een rechterafgeleide heeft. We beweren dat

$$|f(x+y) - f(x^+)| = O(y) \text{ als } y \to 0^+$$

Opmerking 4.11.

4.3 Sommatiemethode van Fejér

Stelling 4.12 (Fejér). Zij $f:\mathbb{R}\to\mathbb{C}$ een 2π -periodische continue functie. Noteer

$$s_n(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{ikx}$$

Definieer via de sommatie-procedure van Cesaro de rij

$$t_n(x) = \frac{1}{n+1} \sum_{k=0}^{n} s_k(x)$$

Dan zal $t_n \to f$ uniform

Lemma 4.13. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[0, 2\pi]$.

Definieer $s_n(x)$ en $t_n(x)$ zoals hierboven. Dan is

$$t_n(x) = \int_{-\pi}^{\pi} f(x+y) F_n(y) dx \text{ met } F_n(x) = \frac{1}{2\pi(n+1)} \frac{\sin^2\left(\frac{n+1}{2}x\right)}{\sin^2\frac{x}{2}}$$

Opmerking 4.14.

4.4 Fourierreeksen en Hilbertruimten $L^2([0,2\pi])$ en $\ell^2(\mathbb{Z})$

$$e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$$

Propositie 4.15. De familie $(e_n)_{n\in\mathbb{Z}}$ is een orthonormale basis voor Hilbertruimte $L^2([0,2\pi])$. We noemen dit de Fourierbasis van $L^2([0,2\pi])$

Stelling 4.16. Zij $f : \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie. Veronderstel dat $f \in \mathcal{L}^2([0,2\pi])$. Noteer met s_n de Fourier-partieelsom van f.

- De Fourier-partieelsom s_n is de beste benadering in L^2 -norm met behulp van lineaire combinaties van functies $e^{-inx}, \ldots, e^{inx}$
- $\bullet \|s_n f\|_2 \to 0$
- Zij $g: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie met $g \in \mathcal{L}^2([0, 2\pi])$ Dan $\hat{f}(k) \in \ell^2(\mathbb{Z})$ en $\hat{g}(k) \in \ell^2(\mathbb{Z})$ en

$$\langle f, g \rangle = 2\pi \langle \hat{f}, \hat{g} \rangle$$
 en $||f||_2 = \sqrt{2\pi} ||\hat{f}||_2$

4.5 Convergentie van Fourierreeksen in $\|\cdot\|_1$

Propositie 4.17. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie en veronderstel dat $f \in \mathcal{L}^1([0,2\pi])$. Noteer s_n de Fourier-partieelsom en met t_n ede Fejerpartieelsom

$$t_n(x) = \frac{1}{n+1} \sum_{k=0}^{n} s_k(x)$$

Dan zal $||f - t_n||_1 \to n$ wanneer $n \to \infty$

Gevolg 4.18. Zij $f : \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie, integreerbaar op $[0, 2\pi]$ en $\hat{f}(k) = 0$ voor alle $k \in \mathbb{Z}$. Dan is f(x) = 0, voor bijna alle $x \in \mathbb{R}$

a) Verschuiven van functies

Propositie 4.19. Voor elke functie $f : \mathbb{R} \to \mathbb{C}$ en voor elke $y \in \mathbb{R}$ noteren we met $f_y : \mathbb{R} \to \mathbb{C} : x \mapsto f(x+y)$.

- Als $f \in \mathcal{L}^1(\mathbb{R})$ en $y_0 \in \mathbb{R}$, dan zal $\lim_{y \to y_0} \|f_y f_{y_0}\|_1 = 0$
- Als $f \in \mathcal{L}^2(\mathbb{R})$ en $y_0 \in \mathbb{R}$, dan zal $\lim_{y \to y_0} \|f_y f_{y_0}\|_2 = 0$

M.a.w de functie $\mathbb{R} \to L^1(\mathbb{R}): y \mapsto f_y$ is continu.

4.6 Absolute en uniforme convergentie van Fourierreeksen

Stelling 4.20. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[0, 2\pi]$. Veronderstel dat $\sum_{k=-\infty}^{\infty} |\hat{f}(k)| < \infty$. Dan convergeert de rij van Fourier-partieelsommen s_n uniform naar een continue functie g die bijna overal gelijk is aan f.

Als f continu is, dan $s_n \to f$ uniform.

Propositie 4.21. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische, continue afleidbare functie. Dan is

$$\widehat{f'} = ik\widehat{f}(k)$$

Gevolg 4.22. Als $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie is die α keer continu afleidbaar is, dan is

$$\hat{f}(k) = o\left(\frac{1}{|k|^{\alpha}}\right)$$
 wanneer $|k| \to \infty$.

Dus $\hat{f}(k)$ is absoluut sommeerbaar van zodra f twee keer afleidbaar is.

Stelling 4.23. Zij $f: \mathbb{R} \to \mathbb{C}$ een 2π -periodische functie. Veronderstel dat er een M > 0 bestaat zodat $|f(x) - f(y)| \le M|x - y|$ voor alle $x, y \in \mathbb{R}$. Dan is

$$\sum_{k=-\infty}^{\infty} |\hat{f}(k)| < \infty$$

Uit stelling 4.20 volgt dan dat $s_n \to f$ uniform.

Opmerking 4.24.

4.7 Een verklaring voor het Gibbsfenomeen

Stelling 4.25. Zij $f\mathbb{R} \to \mathbb{C}$ een 2π -periodische functie die integreerbaar is op $[-\pi, \pi]$. Zij $x \in \mathbb{R}$ en veronderstel dat aan de volgende voorwaarden voldaan is.

- $f(x^-) < f(x^+)$ en bestaan
- \bullet Er bestaat een M>0en een $\delta>0$ zodat

$$|f(y) - f(z)| \le M|y - z| \quad \forall y, z \in (x - \delta, x); \forall y, z \in (x, x + \delta)$$

Noteer

$$\lambda := -\frac{1}{2} + \frac{1}{\pi} \int_0^{\pi} \frac{\sin y}{y} \, dy$$
$$\Delta := \lambda (b - a)$$
$$s_n(x) := \sum_{k = -n}^{n} \hat{f}(k) e^{ikx}$$

Dan

- De uitschuiver van de Freeks in de buurt van x is minstens Δ .
- De uitschuiver van de Freeks in de buurt van x is hoogstens Δ voor grote n.

4.8 Fouriertransformatie

Definitie 4.26. Zij $f: \mathbb{R} \to \mathbb{C}$ een integreerbare functie. Dan definiëren we

$$\hat{f}: \mathbb{R} \to \mathbb{C}: \hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-2\pi itx} dx$$

Voorbeeld 4.27.

Propositie 4.28. Zij $f: \mathbb{R} \to \mathbb{C}$ een integreerbare functie. Dan is \hat{f} een continue functie. Verder is $|\hat{f}(t)| < ||f||_1$ voor alle $t \in \mathbb{R}$ en zal $\hat{f}(t) \to 0$ als $|t| \to \infty$.

4.9 Fourier-inversie, een eerste resultaat

Stelling 4.29. Zij $f : \mathbb{R} \to \mathbb{C}$ een integreerbare functie en $x \in \mathbb{R}$. Veronderstel dat $f(x^-)$ en $f(x^+)$ bestaan en dat er een $\delta > 0$ bestaat zodat

$$|f(x+y) - f(x^+)| = O(y^{\delta}) \text{ als } y \to 0^+$$

en
 $|f(x-y) - f(x^-)| = O(y^{\delta}) \text{ als } y \to 0^+$

Dan zal

$$\int_{-A}^{A} \hat{f}(t)e^{2\pi itx} dt \to \frac{f(x^{+}) + f(x^{-})}{2} \text{ als } A \to +\infty$$

Definitie 4.30. zij $f: \mathbb{R} \to \mathbb{C}$ een integreerbare functie. Dan definiëren we de inverse Fouriertransformatie

$$\check{f}(x) = \int_{\mathbb{R}} f(t)e^{2\pi i tx} dt$$

4.10 Fouriertransformatie en afgeleiden

Propositie 4.31. Zij $f: \mathbb{R} \to \mathbb{C}$ een integreerbare functie

- Als f continu afleidbaar is en f' integreerbaar, dan is $\widehat{f'}(t) = 2\pi i t \widehat{f}(t)$
- Als ook de functie $g: \mathbb{R} \to \mathbb{C}: g(x) = -2\pi i x f(x)$ integreerbaar is, dan is \hat{f} continu afleidbaar en $(\hat{f})'(t) = \hat{g}(t)$

Opmerking 4.32.

- Hoe gladder f is, hoe sneller $\hat{f} \to 0$ op ∞ .
- Hoe sneller $f \to 0$ op ∞ , hoe gladder \hat{f} is.

Definitie 4.33. Zij $f: \mathbb{R} \to \mathbb{C}$ en $0 < \alpha < 1$ We zeggen dat f een C^{α} functie is als er een M > 0 bestaat zodat

$$|f(x) - g(y)| \le M|x - y|^{\alpha}$$
 voor alle $x, y \in \mathbb{R}$

Als $k < \alpha < k+1$ voor $k \in \mathbb{N}$, dan noemen we f een C^{α} -functie als f, k keer continu afleidbaar is en $f^{(k)}$ een $C^{\alpha-k}$ -functie is.

Propositie 4.34. Zij $f : \mathbb{R} \to \mathbb{C}$ een integreerbare functie en $\alpha > 0$ zodanig dat $x \mapsto |x|^{\alpha} f(x)$ integreerbaar is. Dan is \hat{f} een C^{α} -functie

4.11 Het convolutieproduct

Propositie 4.35. Zij $f, g \in \mathcal{L}^1(\mathbb{R})$. Voor bijna alle $x \in \mathbb{R}$ is de functie $y \mapsto f(y)g(x-y)$ integreerbaar. Definieer dan

$$(f*g)(x) = \begin{cases} \int_{\mathbb{R}} f(y)g(x-y) \, dy & \text{als } y1 > f(y)g(x-y) \text{ integreerbaar is} \\ 0 & \text{elders} \end{cases}$$

Dan is $f * g \in \mathcal{L}^1(\mathbb{R})$ en $||f * g||_1 \le ||f||_1 ||g||_1$

Propositie 4.36. Zij $f, g \in \mathcal{L}^1(\mathbb{R})$. Dan is $\widehat{f * g} = \widehat{f}\widehat{g}$

Propositie 4.37. Zij $f, g \in \mathcal{L}^2(\mathbb{R})$. Voor elke $x \in \mathbb{R}$ is de functie $y \mapsto f(y)g(x-y)$ integreerbaar. Definieer dan

$$(f * g)(x) = \int_{\mathbb{R}} f(y)g(x - y) dy$$

Dan is $|(f*g)(x)| \le ||f||_2 ||g||_2$ voor alle $x \in \mathbb{R}$ en is f*g een continue functie

4.12 Een tweede Fourier-inversiestelling

Stelling 4.38. Zij $f : \mathbb{R} \to \mathbb{C}$ een integreerbare functie. Veronderstel dat f continu is en \hat{f} integreerbaar. Dan geldt

$$f(x) = \int_{\mathbb{R}} \hat{f}(t)e^{2\pi i tx} dt$$

voor alle $x \in \mathbb{R}$

Gevolg 4.39. Zij $f: \mathbb{R} \to \mathbb{C}$ een functie die tweemaal continu afleidbaar is, zodanig dat f, f', f'' integreerbaar zijn. Dan is \hat{f} integreerbaar en

$$f(x) = \int_{\mathbb{R}} \hat{f}(t)e^{2\pi itx} dt$$

voor alle $x \in \mathbb{R}$

Voorbeeld 4.40.

Lemma 4.41. Zij $f, g : \mathbb{R} \to \mathbb{C}$ integreerbare functies. Dan is

$$(\hat{f}g)^{\vee} = f * \check{g}$$

Oefening 4.42.

Stelling 4.43. Zij $f: \mathbb{R} \to \mathbb{C}$ een continue, integreerbare functie. Veronderstel dat $\hat{f}(t) \geq 0$. Dan is \hat{f} integreerbaar en $f = (\hat{f})^{\vee}$

4.13 Fourier-inversie

Stelling 4.44. Zij $g, f \in \mathcal{L}^1(\mathbb{R})$. Als $\hat{f}(t) = \hat{g}(t)$ voor alle $t \in \mathbb{R}$, dan zal f(x) = g(x) voor bijna alle $x \in \mathbb{R}$.

4.14 Fouriertransformatie en de Hilbertruimte $L^2(\mathbb{R})$

Stelling 4.45. Zij $f \in \mathcal{L}^1(\mathbb{R}) \cap \mathcal{L}^2(\mathbb{R})$. Dan is $\hat{f} \in \mathcal{L}^2(\mathbb{R})$ en er geldt

$$\|\hat{f}\|_2 = \|f\|_2$$

Voor alle $f, g, \in \mathcal{L}^1(\mathbb{R}) \cap \mathcal{L}^2(\mathbb{R})$ geldt

$$\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$$