darkfi lottery simulation

ertosns

11/1/2023

Contents

T	discrete pid controller.	1
2	simulation criterion	1
3	comparing range of target values between	3
4	conclusion	4
sin	nulate darkfi consensus lottery with a discrete controller	

1 discrete pid controller.

control lottery f tunning paramter

$$f[k] = f[k-1] + K_1 e[k] + K_2 e[k-1] + K_3 e[k-2]$$

with $k_1 = k_p + K_i + K_d$, $k_2 = -K_p - 2K_d$, $k_3 = K_d$, and e is the error function.

2 simulation criterion

find K_p , k_i , K_d for highest accuracy running the simulation on N trials, of random number of nodes, starting with random airdrop (that all sum to total network stake), running for random runing time.

Figure 1: alt text

notice that best parameters are spread out in the search space, picking the highest of which, and running the simulation, running for 600 slots, result in with >36% accuracy

Figure 2: alt text

3 comparing range of target values between

notice below that both y,T in the pallas field, and simulation have same range.

Figure 3: alt text

4 conclusion

using discrete controller the lottery accuracy > 33% with randomized number of nodes, and randomized relative stake. can be coupled with khonsu¹ to achieve 100% accuracy and instant finality.

 $^{^{1} \}rm https://github.com/ertosns/thunderbolt$