Ecological Data Management and Analysis

Written Exam 2 February 2015

Name:	Surname:	Matricola N°
Instructions		
within the statistical er $30/30$). You can there	e exam consists of multiple choice and open on a prironment "R". The written exam will represent get a maximum score of 40 points in the points, Open questions can get a maximum a value of 10 points.	esent 40 $\%$ of the final mark (calculated in this exam, in which each correct multiple
	riable, represented by 5 data points: describes this data?	23.4, 46.7, 56.4, 45.0, 35.9. What
the data is continou	ıs	
O the data is discrete		
O the data is binomia	1	
○ the data is count da	nta	
	fox (F), puma (P) or stray dogs (D) ity to be predated by a fox or by a do	
$\bigcirc P(F) * P(D)$		
$\bigcirc P(F) + P(D)$		
$\bigcirc P(F) + P(D) - P(F)$	$(r \cap D)$	
$\bigcirc \frac{P(F \cap D)}{P(P)}$		
3. Which of the f	following is the formula of the Varianc	e?
$\bigcirc\sqrt{\sigma^2}$		
$\bigcirc \frac{\sum (x - \overline{x})^2}{n - 1}$		
$\bigcirc \frac{\sigma}{\sqrt{n}}$		
$\bigcap \frac{\sum x}{n}$		
4. What is the M	ode?	
○ The mode is the nu	mber which appear less often in a sample	
○ The mode is the me	ean of the numbers in a sample	
○ The mode is the sec	cond quantile of a sample	
() The mode is the nu	mber which appears most often in a sample	2

5. What is the p-value?
\bigcirc The <i>p-value</i> is the probability of obtaining the sample results if the Null hyphotesis is false
\bigcirc The <i>p-value</i> is the probability of obtaining the sample results if the Null hyphotesis is true
\bigcirc The <i>p-value</i> is the probability of obtaining the sample results if the Alternative hyphotesis is false
\bigcirc The <i>p-value</i> is the probability of obtaining the sample results if the Alternative hyphotesis is true
6. What is the r-squared coefficient?
O The R-squared coefficient represents the percentage of the variation in the response variable explained by the linear model
\bigcirc The R-squared coefficient represents the strength of the linear association between two variables
\bigcirc The R-squared coefficient represents the value of the slope in a linear regression
\bigcirc The R-squared coefficient represents the value of the intercept in a linear regression
7. What kind of regression model would be appropriate to analyse a response variable with values which can be or 0 or 1 (e.g. presence/absence or survival data)
O An ordinary least squares regression model
○ A generalized linear model with a Poisson distribution of the errors
○ A logistic regression model
○ A Chi-square test
8. Which of the following sentences is false?
O The Akaike Information Criterion (AIC) is a method to select the relatively best fitting model in a set of models.
O The model with the highest value of AIC is the best fitting model
\bigcirc Models within δ AIC < 2 are considered equivalent
\bigcirc AICc corrects for small sample sizes. But with large sample size, AICc converges to AIC
9. In which of the following situations is it appropriate to use a linear mixed model?
O In the case of data following a Poisson distribution
O In the case of data following a mixed distribution
\bigcirc In the case of data in which there are repeated measurements of the same individuals
○ In none of the above situations
10. Which of the following definitions is true?
\bigcirc The 95% $confidence\ interval\ $ is the interval of values between which has a 95% probability to include the true estimate
\bigcirc The 95% $confidence\ interval$ is the interval of values between which 95% of repeated samples from a population include the true estimate
\bigcirc The 95% $confidence\ interval$ is a measure of dispersion representing the interval which includes 95% of all values of the sample
○ None of the above