NLP

POS tagging using HMM & MLP models

Contents

НММ	2
MLP	2
using word2vec	2
Using Glove	2
Comparative study of MLP and HMM	3
Task 1 - HMM	4
Overall Statistics	4
Task 2 - MLP	5
Word2vec - Overall Statistics	5
GLoVE - Overall Statistics	5
Other statistics	6

HMM

Fold number	Accurary for folds	Precision	Recall	F1 score	Total words	Tags found
1	89.9	0.86	0.84	0.84	6946	12
2	90.46	0.91	0.88	0.89	7018	12
3	90.46	0.90	0.88	0.89	6628	12
Overall Accuracy	89.86	0.89	0.89	0.87	0.88	12

MLP

using word2vec

Accuracy	Precision	Recall	F1 score
88.52	0.82	0.81	0.81

Using Glove

Fold number	Accuracy	Precision	Recall	F1 score
1	87.94	0.89	0.84	0.86
2	87.96	0.92	0.86	0.83
3	0.91	0.81	0.81	0.84

Comparative study of MLP and HMM

Task	НММ	MLP (Glove)
------	-----	-------------

Precision	0.86	0.86
Recall	0.84	0.82
F measure	0.84	0.82
Accuracy	0.91	0.90

Tag wise precision /recall and F1 score using HMM and MLP

Task	НММ	MLP
1	0.86	0.91
2	0.82	0.81
3	0.82	0.84

Statistics of tag set using HMM:

ADP 7327 DET 6024 NOUN 14268 VERB 6968 ADJ 4135 CONJ 1701 PRT 883 . 5170 ADV 1620 NUM 1194 PRON 553 X 20

Incorrect classifications

No of incorrect classifications are 2305

Reasons for incorrect classifications is Ambiguity, The main problem with POS tagging is **ambiguity**. In English, many common words have multiple meanings and therefore multiple POS. The job of a POS tagger is to resolve this ambiguity accurately based on the context of use. For example, the word "shot" can be a noun or a verb

{'tags': [[4, 'NOUN', 'ADP'], [5, 'VERB', 'DET']], 'text': ['At', 'that', 'time', 'highway', 'engineers', 'traveled', 'rough', 'and', 'dirty', 'roads', 'to', 'accomplish', 'their', 'duties', '.']}

{'tags': [[0, 'VERB', 'DET'], [20, 'ADV', 'DET'], [21, 'ADJ', 'NOUN']], 'text': ['Using', 'privately-owned', 'vehicles', 'was', 'a', 'personal', 'hardship', 'for', 'such', 'employees', ',', 'and', 'the', 'matter', 'of', 'providing', 'state', 'transportation', 'was', 'felt', 'perfectly', 'justifiable', '.']}

{'tags': [[9, 'ADJ', 'DET']], 'text': ['Once', 'the', 'principle', 'was', 'established', ',', 'the', 'increase', 'in', 'state-owned', 'vehicles', 'came', 'rapidly', '.']}

{'tags': [[6, 'VERB', 'ADJ']], 'text': ['This', 'rate', 'of', 'increase', 'does', 'not', 'signify', 'anything', 'in', 'itself', '.']}

{'tags': [[4, 'ADJ', 'DET'], [7, 'ADJ', 'DET']], 'text': ['It', 'does', 'not', 'indicate', 'loose', 'management', ',', 'ineffective', 'controls', 'or', 'poor', 'policy', '.']}

{'tags': [[5, 'NOUN', 'DET']], 'text': ['But', 'it', 'does', 'show', 'that', 'automobiles', 'have', 'increased', 'steadily', 'over', 'the', 'years', 'and', 'in', 'almost', 'the', 'same', 'proportion', 'to', 'the', 'increase', 'of', 'state', 'employees', '.']}

{'tags': [[2, 'ADJ', 'NOUN'], [8, 'ADJ', 'DET']], 'text': ['In', 'the', 'past', 'twenty', 'years', 'the', 'ratio', 'of', 'state-owned', 'automobiles', 'per', 'state', 'employees', 'has', 'varied', 'from', '1', 'to', '22', 'then', 'to', '1', 'to', '23', 'now', '.']}

{'tags': [[7, 'NUM', 'NOUN'], [13, 'ADJ', 'NOUN']], 'text': ['Whether', 'there', 'were', 'too', 'few', 'automobiles', 'in', '1940', 'or', 'too', 'many', 'now', 'is', 'problematical', '.']}

Task 1 - HMM

Overall Statistics

Final Accuracy = 89.86805098147188

Final Precision = 0.8944755633450088

Final Recall = 0.8729588603886583

Final F1 Score = 0.8806971415645234

Total sentencess = 27491

Maximum length sentences = 386

Minimum length sentences = 2

Average length of sentences = 19.756502127969153

Task 2 - MLP

Word2vec - Overall Statistics

Final Accuracy = 88.14908257601871

Final Precision = 0.8643173565813945

Final Recall = 0.8207729458549986

Final F1 Score = 0.8271486451739071

Total sentencess = 27491

Maximum length sentences = 386

Minimum length sentences = 2

Average length of sentences = 19.756502127969153

GLoVE - Overall Statistics

Final Accuracy = 87.74926774288456 Final Precision = 0.9151915057494775 Final Recall = 0.8197749145175212 Final F1 Score = 0.8457407565144185 Total sentences = 27491 Maximum length sentences = 386 Minimum length sentences = 2 Average length of sentences = 19.7565

MLP is better than HMM as the final accuracy of MLP, precision and recall across all the folds of the data gives better results. Even the MLP provides better precision for tag set and also incorrect tag descriptions are limited.

Other statistics

```
Words having more than 1 tag
that {'DET': 1095, 'ADP': 2789, 'PRON': 670, 'ADV': 33}
time {'NOUN': 776, 'VERB': 1}
to {'PRT': 6763, 'ADP': 5089, 'X': 1}
a {'DET': 9819, 'X': 2, 'NOUN': 1}
for {'ADP': 3898, 'ADV': 2}
such {'ADJ': 431, 'PRT': 142, 'ADV': 9}
matter {'NOUN': 117, 'VERB': 20}
of {'ADP': 15791, 'X': 2}
state {'NOUN': 243, 'VERB': 6}
Once {'ADP': 14, 'ADV': 36}
principle {'NOUN': 43, 'ADJ': 1}
increase {'NOUN': 76, 'VERB': 37}
in {'ADP': 8321, 'PRT': 278, 'X': 1}
reasons ('NOUN': 38, 'VERB': 1)
need {'NOUN': 64, 'VERB': 66}
1 {'NUM': 344, 'NOUN': 1}
below {'ADV': 43, 'ADP': 45}
shows {'VERB': 38, 'NOUN': 1}
loose {'ADJ': 19, 'VERB': 1, 'ADV': 2}
But {'CONJ': 610, 'ADP': 1}
it {'PRON': 3376, 'PRT': 1}
show {'VERB': 101, 'NOUN': 17}
over {'ADP': 419, 'PRT': 207, 'ADJ': 3}
In {'ADP': 813, 'PRT': 1}
past {'ADJ': 45, 'NOUN': 36, 'ADP': 38, 'ADV': 8}
then {'ADV': 562, 'ADJ': 10}
there {'PRT': 656, 'ADV': 341}
many {'ADJ': 317, 'ADV': 4, 'PRT': 7}
as {'ADP': 2505, 'ADV': 444}
use {'VERB': 88, 'NOUN': 166}
(this is a long list, which can be generated through code)
. . . . . .
```