# CS3230 Tutorial 5

Deng Tianle (T15)

19 September 2025

### Q1

Recall Freivald's algorithm: given  $n \times n$  matrices A, B, C, we want to check whether AB = C. Choose a vector v with components  $\in \{0,1\}$  randomly and check whether ABv = Cv. We proved in lecture that if  $AB \neq C$ , then  $ABv \neq Cv$  (therefore, we successfully detected  $AB \neq C$ ) with probability  $\geqslant 1/2$ .

Q1: show that the bound is sharp, i.e. find A, B, C such that the above probability is exactly 1/2.

Recall Freivald's algorithm: given  $n \times n$  matrices A, B, C, we want to check whether AB = C. Choose a vector v with components  $\in \{0,1\}$  randomly and check whether ABv = Cv. We proved in lecture that if  $AB \neq C$ , then  $ABv \neq Cv$  (therefore, we successfully detected  $AB \neq C$ ) with probability  $\geqslant 1/2$ .

Q1: show that the bound is sharp, i.e. find A, B, C such that the above probability is exactly 1/2.

Let A = C = (1), B = (0). We have  $AB \neq C$ . We have  $v = (v_1)$  where  $v_1 = 0$  or 1 with equal probability. Hence the above probability is 1/2. It is easy to generalise the construction to  $n \times n$  matrices.

## Q2, 3

Alice holds an n-bit binary string  $S_A \in \{0,1\}^n$  and Bob holds an n-bit binary string  $S_B \in \{0,1\}^n$ . They want to decide whether the two strings are identical i.e.  $S_A = S_B$ .

Q3: Obviously, to conclude deterministically that the  $S_A = S_B$ , all n bits must be communicated.

In Q2, We consider a randomised algorithm that only communicates  $O(\log n)$  bits. We show Q2 first before explaining the design of the algorithm.

We show that the probability of concluding wrongly is  $\leq 1/n$ .

Observe that we are wrong iff  $S_A \neq S_B$  but  $S_A \equiv S_B \pmod{p}$ , i.e.  $p \mid |S_A - S_B|$ . Note that  $0 \leqslant S_A, S_B < 2^n$ , so  $|S_A - S_B| < 2^n$ .

The number of choices of p making us wrong is exactly the number of distinct prime factors of  $|S_A - S_B|$ . Since  $p \ge 2$  for all prime p, there are at most n-1 prime factors.

Since we are choosing among  $n^2$  different primes, probability of being wrong is  $\leq \frac{n-1}{n^2} \leq \frac{1}{n}$ .

#### Some explanations of the context:

- ▶ The reason we chose  $n^2$  primes is seen in the preivous slide.
- If we did not choose only primes but allow other numbers, we do not get an effective bound on the number of choices making us wrong.
- What is the size of the  $n^2$ th prime? According to the prime number theorem, the size of the n-th prime number is  $\Theta(n \log n)$ . Therefore, in our case,  $p \in \Theta(n^2 \log n)$  and hence we are communicating  $\Theta(\log(n^2 \log n)) = \Theta(\log n)$  many bits (this is in the tutorial document).

Let X be the number of edges crossing  $V_1$  and  $V_2$ . Let  $X_e$  be the indicator random variable  $\mathbf{1}_{e \text{ crosses } V_1 \text{ and } V_2}$ . Then

$$X = \sum_{e \in E} X_e$$
.

Note that  $\mathbb{E}(X_e) = \Pr(e \text{ crosses } V_1 \text{ and } V_2) = 1/2$ . Hence by linearity of expectation,

$$\mathbb{E}(X) = \sum_{e \in E} \mathbb{E}(X_e) = \sum_{e \in E} 1/2 = |E|/2.$$

#### Probabilistic method



Let X be some number we are interested in. In this case, X is the size of a cut (a cut is a partition of the vertices of a graph into  $V = V_1 \sqcup V_2$ ; size of the cut is the number of edges crossing  $V_1$  and  $V_2$ ).

If we turn X into a random variable (with any distribution), then obviously there exists a configuration for which  $X \geqslant \mathbb{E}(X)$ .

This is a powerful method in combinatorics pioneered by Paul Erdős called the probabilistic method. A magic of combinatorics is to solve deep problems using very simple ideas.

In Q4, we turned X into a random variable by flipping a coin for each vertex, and obtained  $\mathbb{E}(X) = |E|/2$  for the resulting distribution. This shows that any graph can admit a cut of size at least |E|/2.

Q5: Is there a way to tweak our distribution to get a higher  $\mathbb{E}(X)$ ?

Let's first see how far the lower bound |E|/2 is from being attained. Subsequently, denote n:=|V| and m:=|E|. For  $K_n$ , the complete graph with n vertices, m=n(n-1)/2. If n is even, we divde V into half and obtain a cut with size  $(n/2)^2$  which is slightly larger than m/2. If n is odd, then we get a cut with size  $\frac{n^2-1}{2}$ .

Intuition: on average, it seems plausible that we will get a larger size of cut if  $V_1$  and  $V_2$  are approximately the same size. This suggests the following random procedure:

Let n be even. Choose  $V_1$  uniformly at random from the collection of n/2-vertex subsets of V and setting  $V_2 = V - V_1$ . Then we claim that

$$\mathbb{E}(X_e) = \Pr(e \text{ crosses } V_1 \text{ and } V_2) = \frac{n/2}{n-1}.$$

Indeed, fix a vertex of e (WLOG let  $e \in V_1$ ) and consider the other end of e, which is equally likely to be any of n-1 other vertices. Among them, n/2 vertices will be in  $V_2$ .

This gives

$$\mathbb{E}(X) = \sum_{e \in E} \mathbb{E}(X_e) = m \cdot \frac{n/2}{n-1} = \frac{m}{2} \cdot \frac{n}{n-1}.$$

It is clear that this lower bound is attained by our example with  $K_n$ .

The case n is odd is similar, but  $V_1$ ,  $V_2$  will not have the same size. Let  $|V_1| = \frac{n+1}{2}$ . Then we condition on whether our fixed vertex is in  $V_1$  or  $V_2$ :

$$\mathbb{E}(X_e) = \frac{\frac{n-1}{2}}{n} \cdot \frac{\frac{n+1}{2}}{n-1} + \frac{\frac{n+1}{2}}{n} \cdot \frac{\frac{n-1}{2}}{n-1} = \frac{\frac{n+1}{2}}{n}.$$

Hence

$$\mathbb{E}(X) = m \cdot \frac{\frac{n+1}{2}}{n} = \frac{m}{2} \cdot \frac{n+1}{n}.$$

Again this lower bound is attained by our example with  $K_n$ .