

第十一章

实施 PIRLS 2021 成就衡量方法

李群 皮埃尔•福伊

介绍

PIRLS 2021 延续了自 2001 年以来 PIRLS 的传统,旨在为第四学年学生的阅读成绩提供国际衡量标准,并衡量成绩的长期趋势。PIRLS 基于对阅读能力的广泛定义,认识到阅读的不同目的,并包括各种不同难度水平的各种文本,可供具有广泛能力和文化背景的学生使用 (Mullis & Martin, 2019)。鉴于这种广泛的覆盖面,PIRLS 2021 使用矩阵抽样小册子设计,这样每个学生只管理整个 PIRLS 项目池的一个子集。PIRLS 依靠项目反应理论 (IRT) 量表来提供学生水平分布和趋势的准确测量。为了对学生成绩及其与背景变量的关系进行无偏估计,PIRLS 标度法使用了一个潜在回归人口模型,随后进行多重插补,以获得代表所有学生阅读能力的似是而非的值。

本章描述了缩放 PIRLS 2021 成就数据的程序。TIMSS & PIRLS 国际研究中心的分析小组对 PIRLS 2021 成就数据进行了心理测量标度和人口建模,并进行了相关分析,以确保结果的质量和 有效性。有关 PIRLS 2021 缩放方法的详细说明,请参见第十章。与之前的评估一致,2021 年的缩放是基于同时校准 PIRLS 2021 数据和之前 PIRLS 2016 周期的数据,以衡量趋势。然而,2021 年的方法涉及额外的心理测量分析,以将基于计算机的数据与基于纸张的结果以相同的规模进行报告,包括来自过去评估的趋势测量。

PIRLS 2021 标志着从纸笔格式向数字格式的过渡,约一半国家选择管理数字格式 (digital PIRLS),另一半国家选择管理纸张格式 (paper PIRLS)。为确保各种格式的可比性,数字版和纸质版共享

第11章:实现缩放方法 方法和程序:PIRLS 2021 技术报告

阅读文本和问题方面的评估模块。如中所述 PIRLS 2021 评估设计 (Martin et al., 2019), PIRLS 2021 群体适应性评估,包括数字和纸质版本,由18个文本和附带项目组成,其中一半评估文学体验的阅读("文学"),另一半评估获取和使用信息的阅读("信息")。使用 digital PIRLS 的国家还额外执行了五项 ePIRLS 任务,以评估在模拟互联网环境中的信息阅读。

共有 57 个国家和 8 个基准实体参加了 PIRLS 2021。参与国至少对 150 所学校和至少 4,000 名学生 (paperPIRLS) 或 5,000 名学生 (digitalPIRLS) 进行了全国抽样调查,以适应一体化 ePIRLS。为了提供纸质评估和数字评估之间的"桥梁"数据,数字计划国家向另外 1 500 名学生 发放了纸质桥梁手册,这些学生是从与数字计划全面样本相同的目标人群和尽可能相同的学校中抽样的。桥梁数据是 2021 年数字伙伴关系国家计算机数据和 2016 年纸面数据以及 2021 年纸面数据之间的联系。这个桥梁允许直接比较两种模式下的项目的心理测量属性,这些属性基于使用digitalPIRLS 的国家的同等学生样本。中提供了有关链接方法的详细信息<u>第十章和digitalPIRLS</u> 样本的国家级比较的选定结果见第十二章。

PIRLS 2021 评估概述

如中所述 PIRLS 2021 评估设计 (Martin et al., 2019), PIRLS 2021 采用了统一的小组适应性评估设计,以满足更广泛的评估难度和更好地针对学生能力提高测量的需求。PIRLS 之前推出了难度较低的阅读评估版本,从 2011 年的学前儿童开始,随后于 2016 年推出 PIRLS 识字评估。虽然这些平行评估成功地扩大了 PIRLS 在能力分布低端的覆盖范围,但它们没有解决在高端覆盖的需要。

PIRLS 2021 群体适应性评估由文本和项目集形式的 18 个评估块组成。18 篇文章中有一半评估了文学阅读目的,另一半评估了信息阅读。根据平均难度,这 18 篇文章被分为三个难度级别一一简单、中等和困难——每个难度级别有三篇文学和三篇信息文章。这 18 篇课文被汇编成 18 本小册子,每本小册子包含一篇文学课文和一篇信息课文。每篇课文出现在两本小册子中,每次都配有不同的课文。这些小册子被分为两个难度级别:九个难度较大的小册子,由两本难度较高的文本或者一本难度中等的文本和一本难度较高的文本组成,九个难度较小的小册子,由两本难度较低的文本或者一本难度较低的文本和一本难度中等的文本组成

文字。所有 18 本小册子都在所有国家分发,但难度较高和较低的小册子所占比例各不相同,这取决于国家学生群体的平均阅读能力,这是根据以前 PIRLS 评估的成绩确定的。Chapter 9 报告每个 PIRLS 2021 国家管理的难度较高和较低的小册子的比例。

在群体适应性设计的 18 个文本和项目集中,8 个也在 2016 年实施,包括 PIRLS 2016 和 PIRLS Literacy 2016 之间共享的两个文本,为趋势测量提供了基础。在 2016 年 PIRLS 扫盲中还管理了四个文本和项目集。另外六个是在 PIRLS 2021 中首次使用时开发和现场测试的。

八种趋势文本及其条目是在纸笔是唯一的管理模式时开发的。对于 PIRLS 2021,为每个文本开发了一个数字版本,尽可能保留纸质版本的外观和感觉。PIRLS 扫盲 2016 的四个评估模块也适用于 digitalPIRLS,但进行了额外的格式更改。在 PIRLS 的书面读写能力评估模块中,文本和项目被分成若干部分,每个项目仅对应于打开的小册子反面显示的完整文本的一小部分。当 PIRLS 扫盲 2016 纸质文本和项目转换为数字版本时,必须更改演示文稿,以协调 PIRLS 扫盲和"常规" PIRLS 段落的功能,以纳入 digitalPIRLS 评估。这需要在计算机上回答问题时为考生提供一个统一的界面,而不是将问题直接放在它们所属的文本部分旁边。出于这个原因,也因为它们只在 PIRLS 扫盲 2016 中的有限数量的国家实施,这四个段落及其项目不被视为趋势材料的一部分。

PIRLS 2021 将五个 ePIRLS 信息任务与 digitalPIRLS 整合在一起,以表示 PIRLS 过渡到基于计算机的评估时信息阅读的更全面的图片。ePIRLS 于 2016 年首次推出,作为 PIRLS 阅读框架的扩展,提供在线信息阅读。ePIRLS 任务模拟真实的在线阅读环境,学生在其中收集信息,使用链接和标签浏览文本和图形,以完成基于学校的项目或报告,重点放在评估阅读理解上。在五项ePIRLS 任务中,三项已经在 2016 年实施。PIRLS 2021 中首次使用了两项任务。由于在线阅读呈现信息的方式往往是多模态的,并且包含无法以印刷格式复制的实用功能(如视频剪辑和动画图形),因此 ePIRLS 只能以数字格式提供。对于 digitalPIRLS 国家/地区,向一组学生展示 ePIRLS 材料,包括两项 ePIRLS 任务或一篇 digitalPIRLS 信息文章后接一项 ePIRLS 任务,如 PIRLS 12021 评估设计(马丁等人,2019)。

论文评估

参与 paper PIRLS 的国家根据上述集体适应性评估设计管理由 18 套文本和项目组成的 18 本小册子。在参与 PIRLS 2021 的 57 个国家和 8 个标杆管理实体中,有 31 个国家和 1 个标杆管理实体管理了纸质评估。

数字皮尔士评估

剩余的 26 个国家和 7 个基准实体管理 digitalPIRLS 评估。digitalPIRLS 评估由三种类型的数字 手册组成,包括 PIRLS 文本和 e PIRLS 任务。常规 digitalPIRLS 小册子设计遵循分组自适应设计,将 18 个文本组合成 18 个 "digitalPIRLS" 小册子 (小册子 1 至 18)。五个 ePIRLS 任务被组合成 20 个不同的 "ePIRLS" 小册子 (小册子 19 至 38),这是五个 ePIRLS 任务的所有可能配对的结果。最后,九个 PIRLS 信息文本中的每一个都与五个 e PIRLS 任务中的每一个配对,产生 45 个 "混合"小册子 (1) 分 至 (1) 39 至 (1) 83),一个数字 PIRLS 信息文本后跟一个 ePIRLS 任务。

常规 digitalPIRLS 小册子、ePIRLS 小册子和混合小册子包含在 digitalPIRLS 国家的小册子任务轮换计划中。为了避免分配的常规 digitalPIRLS 小册子数量相对于 paperPIRLS 国家数量的不平衡,digitalPIRLS 采用了 27 本小册子轮换制,其中包括所有 18 本 digitalPIRLS 小册子、6 本 ePIRLS 小册子轮换制和 3 本混合小册子轮换制。因此,三分之二的学生收到了普通小册子,九分之二的学生收到了 ePIRLS 小册子,九分之一的学生收到了混合小册子 (Martin et al., 2019)。

数字桥梁小册子

参与 digitalPIRLS 的所有 26 个国家和一个基准实体还管理一套 8 本完全由纸质趋势文本组成的纸质桥梁手册。这些小册子中有七本也是在 2016 年使用的,其中一本包含两本也是在 2016 年使用的文本,但使用了不同的组合。这些纸质桥梁手册中的数据用于将数字桥梁评估与纸质桥梁评估和桥梁趋势量表联系起来,依赖于数字桥梁和桥梁样本之间的等效总体。这些数据还为各国提供了关于其国内模式格式差异行为的信息(见第 12 章)。

包含纸桥文本和项目的小册子被发放给通过等效组设计选出的 1500 名学生的国家样本,以确保它们的随机性和与各自国家的国家数字小册子样本的等效性。同等组设计包括随机分配班级,通常在同一所学校,采用数字或纸质评估形式。虽然学校内相当大的重叠是可取的,以加强随机等效的桥梁和数字样本,所有国家桥梁和

数字样本来自相同的国家目标人群,并使用相同的样本设计来建立他们的随机等效性。

评估之间的链接设计

PIRLS 2021 纸质版和数字版之间的链接设计如表 11.1 所示,说明了每套评估手册中的阅读文本和任务。 展览

11.2报告每个评估中的项目数。

图表 11.1:PIR 1s 2021 评估中的文本

阅读目的	-सि-चोट -L-चर्च		 纸质评估手	 数字桥梁手册	数字 PIRLS 评估				
网络日 即	难度水平	文本	册	22. 4 2121. 4 11.	数字小册子	混合小册 子	ePIRLS 小册子		
		闪亮吸管(06)	•	•	•				
	困难的	奥利弗和格里芬(16)	•	•	•				
		墨水饮用器(21)	•		•				
		空罐子(11)	•	•	•				
文学的	中等	奔巴夏尔巴人(16)	•	•	•				
		鸵鸟和帽子(21)	•		•				
容易的		我父亲10岁的那个夏天	•		•				
	容易的	图书馆鼠标(16)	•		•				
		学习一门新语言(21)	•		•				
		蜂蜜在哪里?(11)	•	•	•	•			
	困难的	冰岛马(16)	•	•	•	•			
		世界种子银行(21)	•		•	•			
		鲨鱼(06)	•	•	•	•			
报告的	中等	我们是如何学会飞行的?(16)	•	•	•	•			
IV II H 7	1 4	玛丽·居里获奖科学家(21)	•		•	•			
		训练一只失聪的北极熊(11)	•		•	•			
	容易的	饥饿的植物(16)	•		•	•			
		神奇的章鱼(21)	•		•	•			

附件 11.1:PIR 1s 2021 评估中的文本(续)

阅读目的	难度水平		 纸质评估手	数字桥梁手册	数字PIRI	.S 评估	
网络日的	文本	册		数字小册子	混合小册 子	ePIRLS 小册子	
		雨林(16)				•	•
		特洛伊的传说(16)		•	•		
在线信息		斑马和角马的迁徙(16)					•
		海洋(21)				•	•
		发现之旅(21)				•	•

⁽⁾括号中的数字表示首次引入该段落的评估年度。

图表 11.2:PIR 1s 2021 评估中的项目数量(按阅读目的)

评价		文学的	报告的	总数
纸质品		141	131	272
桥		61	56	117
数字皮尔	数码产品项目	141	131	272
<i>x</i> , <i>x</i> ,	ePIRLS 项目	0	91	91

参与 PIRLS 2021 的国家

图表 11.3 显示了 paperPIRLS 和 digitalPIRLS 在 PIRLS 2021 中的参与国家和基准参与者的数量。在 PIRLS 2021 中,31 个国家和一个标杆管理实体使用纸质手册进行全面评估,26 个国家和7个标杆管理实体过渡到数字评估。所有 digitalPIRLS 的参与者也管理桥牌小册子。

由于考试管理的延迟,只有参加了上一个 PIRLS 2016 周期并在 2020 或 2021 学年结束时对四年级学生群体进行 PIRLS 2021 评估的趋势国家被包括在并发项目校准模型中。新冠肺炎疫情为 PIRLS 2021 数据收集带来了许多挑战,要求更有针对性的国家群体为制定尺度做出贡献。根据最初的计划,大多数国家设法在 2020 或 2021 学年结束时对目标四年级学生进行 PIRLS 2021 评估。然而,14个国家和 3 个基准参与者将对四年级学生的评估推迟到五年级下一学年开始。与 2016 年的 PIRLS 相比,这些国家的学生年龄明显偏大。一年后,六个国家和一名基准参与者对下一批四年级学生进行了评估。这六个中的三个

各国直到 2022 年才开始收集数据。有关延迟如何影响样品和报告的更多信息,请参见 <u>Chapter 8</u> 和第十二章。

总共有11个paperPIRLS 趋势国家和16个digitalPIRLS 趋势国家被包括在paper 并发校准模型中(将在本章后面介绍)。16个digitalPIRLS 趋势国家也被纳入基于人口的链接和ePIRLS项目校准的数字项目校准模型。

图表 11.3:按数据收集期分列的参与 2021 年 PIRLS 的国家数量

	所有国家	趋势国家 (2016年)	校准国家*	标杆管理参与者
纸质品	31	19	11	_
数字皮尔	26	24	16	七
总数	57	43	27	8

^{*}由于考试管理方面的延迟,只有参与前一个PIRLS 2016 周期并在 2020 或 2021 学年结束时对四年级学生群体进行 PIRLS 2021 评估的趋势国家被纳入项目校准模型和标度转换常数的计算中。

PIRLS 2021 成就数据缩放概述

PIRLS 报告指标最初是在 2001 年通过将 2001 年参与的所有国家的国家平均分数的平均值设为 500,标准差设为 100 而建立的。连续的框架更新和项目发布政策改变了 2006 年、2011 年、2016 年和 2021 年后续 PIRLS 轮次的构成。为了能够衡量一段时间内的趋势,通过将每个新的数据集与上一个数据集的尺度相联系,将后续 PIRLS 评估的成绩数据转换为相同的指标。这是通过将每次连续评估(此处为 2021 年)的数据与前一次评估(此处为 2016 年)的数据同时进行缩放来实现的,这一过程称为同时校准,并应用线性变换将每次连续评估的结果与前一次评估的结果放在相同的缩放比例上。这意味着 PIRLS 2021 通过几个步骤与 2001 联系在一起,这些步骤涉及由于框架更新而引起的项目选择和领域覆盖的变化。这一程序使 PIRLS 能够衡量所有五个评估周期的趋势: 2021 年与 2016 年挂钩,2016 年与 2011 年挂钩,2011 年至 2006 年,2006 年至 2001 年。

因此,通过同时校准 2021 年和 2016 年评估的数据,对所有纸质项目的项目参数进行了估计。在一种被称为"随机等效样本"设计的常用链接方法下,digitalPIRLS 数据与从桥梁样本收集的纸质数据相关联(Dorans & Puhan, 2017;哈伯曼,2015;科隆&布伦南,2014; m. 冯•达维尔和 a. 冯•达维尔,2007)。估计

数字项目参数,这种基于人群的等效分组链接方法涉及自由估计所有项目参数,而不假设两种给药模式之间的任何项目等效性,同时通过关于基于数字和基于纸张的样本的人群分布的等效性假设来设置量表。

为了避免 ePIRLS 数据对联合 paperPIRLS 和 digitalPIRLS 量表的任何潜在影响, ePIRLS 项目在单独的校准步骤中利用固定项目参数链接与相同的量表关联(例如, Kim, 2006;淡水河谷,1986; m.冯•达维尔和a.冯•达维尔,2007年)。除了 digitalPIRLS 数据之外, ePIRLS 项目参数可自由估算, digitalPIRLS 项目参数固定为等于上一步估算的值。连接 ePIRLS 依赖于样本等效性以及常规数字小册子、混合小册子和 ePIRLS 小册子中共同项目的存在(见图表 11.1)。

项目校准后,来自 paperPIRLS、digitalPIRLS 和 ePIRLS 的数据使用潜在回归模型进行进一步分析(例如,Mislevy,1984; Mislevy & Sheehan,1987; 冯·达维尔等人,2006年; von Davier et al.,2009)为整体阅读成绩以及阅读目的和理解过程生成似是而非的值(插补)。使用潜在回归 IRT 模型来生成似是而非的值有时被称为条件作用,并使用来自学生和家长问卷的背景数据作为成绩的预测因素,以增加插补的可靠性。最后,通过一系列线性变换,将似是而非的值放在 PIRLS 趋势报告指标上。

在缩放 PIRLS 2021 成就数据时,解决了三个主要目标:1)通过与 2016 年数据同时校准,保持过去 PIRLS 评估的趋势,

2)在同一PIRLS 趋势标度上报告论文和数字结果,以及 3)在 PIRLS 趋势标度上整合 e PIRLS 数据和数字 PIRLS 数据。为了实现这些目标,TIMSS 国际研究中心进行了四个主要的分析阶段。为了最大限度地减少数据源之间的交互源,采用了一种逐步方法来缩放这四个阶段内的所有 PIRLS 2021 数据——首先缩放 paperPIRLS 数据,然后缩放 digitalPIRLS,最后缩放 e PIRLS。

- 1. 项目校准: 在第一阶段,使用多组 IRT 模型对所有 PIRLS 2021 项目的项目参数进行估计,分三个单独的步骤,分别用于纸质项目、数字项目和 ePIRLS 项目。
- 2. 主成分分析: 在第二阶段, 从每个国家的背景数据中提取主成分, 用于人口建模。
- 3. 潜在回归群体建模: 在第三阶段,对每个国家的数据进行潜在回归模型估计(调节),以得出总体阅读成绩以及阅读目的和理解过程的似是而非的值(PV)。

4. 标度变换:最后,使用线性变换将生成的似是而非的值放在 PIRLS 指标上,以报告以前评估的趋势,并将数字数据与纸面数据联系起来。

本章根据这些阶段分四节描述了PIRLS 2021 缩放程序。在整个缩放过程中,反复进行了多次质量检查和分析。这些分析及其结果将在本章的"验证 PIRLS 2021 成就结果"部分进行描述。IRT模型、人口模型和这些程序的其他理论基础在第十章。

在缩放 PIRLS 2021 成就数据之前,PIRLS 对所有国家的经典项目统计进行了广泛的逐项审查,以评估评估项目的质量,并确定任何意外或有问题的项目行为。该审查还包括对正确率和部分评分百分比、遗漏率、项目区分度以及其他与 2016 年评估相关的趋势项目的经典项目统计数据的变化分析。中描述了这些项目审阅活动 Chapter 9。

项目级无响应的处理(省略和未达到)

给定 PIRLS 使用的矩阵抽样设计,其中学生仅被管理 18 个 PIRLS 文本和 5 个 ePIRLS 任务的子集,对于任何给定的学生,大多数项目响应被设计为缺失。根据 PIRLS 框架中描述的设计,学生被随机分配小册子,因此由于矩阵抽样产生的数据是随机缺失的 (Little & Rubin, 1987; Rubin, 1976)和可忽略的分析。然而,缺失数据也可能是由于学生没有回答某个项目而导致的,这可能发生在学生不知道答案、错误地省略了该项目、没有足够的时间来尝试该项目或其他原因时。当在小册子的第一或第二部分中,项目本身和紧接在它之前的项目没有被回答,并且在小册子的该部分的剩余部分中没有完成其他项目时,PIRLS 将该项目视为"未达到"。所有其他跳过的响应将被视为"忽略"

TIMSS & PIRLS 国际研究中心引入了一种用于处理 PIRLS 2021 成就数据的项目无响应的机制,该机制基于遗漏对成就的统计依赖性来纠正遗漏或未达到的响应。这种方法是根据缺失数据的证据强度来估计成绩的。它假设无反应的发生是非随机的,但不假设它的发生完全是由于学生的能力低下。这种证据强度方法避免了将无响应视为不正确响应的偏见(Glas & Pimentel, 2006;穆斯塔基和克诺特, 2000年;Rose等人, 2010, 2017)。

在 PIRLS 2021 成就分级中,忽略和未达到的反应都被忽略,或被视为"未管理"以估计项目参数。为了生成学生似是而非的值,考虑到非随机缺失的项目响应,创建了一组无响应指标,并以类似于项目的方式估计其 IRT 参数。这些变量表明每个学生是否回答了所有问题(1)或至少有一个答案缺失(0)。

根据项目格式(多项选择和结构反应)和 PIRLS 阅读子域,为每个学生创建了两组四个无反应指标。第一组四个目的的无反应指标分别用于多项选择(MC)和建构反应(CR)项目的两个阅读目的(文学和信息)。参加 hybrid 和 ePIRLS 小册子的学生只回答信息目的的项目。因此,根据文本或任务在小册子中的位置(第1部分和第2部分)创建了四个"目的"非响应指标。第二组四个过程无反应指标用于两个理解过程(检索和直接推理和解释,整合和评估)。

为了减轻无反应指标对项目参数估计的任何潜在影响,在所有校准步骤中采用了三步法来估计成绩项目参数和无反应指标。首先,只有成就项目被纳入项目参数估计的校准。在第二步中,应用三参数(3PL) IRT 模型来估计四个目的无反应指标的参数,所有成绩项目参数固定为等于第一步中估计的值。第三,在所有绩效项目参数固定的情况下,应用 3PL 模型估计四个过程指标的参数。

然后,在生成学生似是而非的值的人口模型中,无反应指标与成绩项目一起作为预测因子。 目的无反应指标用于生成总体阅读和两个阅读目的的似是而非的值。过程指标用于生成两个理解 过程的似是而非的值。这种方法根据遗漏对成就的依赖性,或者遗漏和成就在人群中(负)相关的 程度,将无响应合并到似是而非的值的生成中。

阶段1:项目校准

项目校准在 TIMSS &皮尔士国际研究中心进行,使用开源软件包 MIRT (查默斯, 2012),可在 R 统 计编程语言 (R 核心团队, 2020)。为了实现概述中概述的目标,通过逐步方法采用了三个校准模型来估计所有 PIRLS 2021 项目参数:

- 1. 纸质同步校准: 依靠通常的 PIRLS 同步校准方法(如 Foy & Yin, 2017年), 扩展到多个群体,来自 11 个纸质 PIRLS 校准国家的数据和来自 16 个数字 PIRLS 校准国家的桥梁数据(见附表 11.3)与其 PIRLS 2016 数据一起进行缩放,以估计纸质格式中所有项目的项目参数。
- 2. 数字项目校准: 依靠随机等效桥和从相同目标人群中抽取的数字样本,该校准和链接模型结合了来自16个digitalPIRLS校准国家/地区的常规digitalPIRLS手册的数据,以及来自先前纸质并行校准模型的所有可用纸质数据。多组模型自由估计所有纸张和数字项目参数,将PIRLS 2021数字项目视为不同于纸张项目。
- 3. ePIRLS 项目校准:该项目校准将 ePIRLS 项目置于与 digitalPIRLS 数据相同的刻度上。它利用来自 16 个数字趋势校准国家的全数字样本,并固定从数字校准估计的数字 PIRLS 项目参数,以估计 ePIRLS 项目参数。将 ePIRLS 与 digitalPIRLS 联系起来依赖于样本等效性,这些样本等效性来自于在班级内螺旋上升的小册子,以及在 digitalPIRLS 管理中三类小册子之间存在的共同项目。

这些校准模型将在以下章节中详细描述。在每个项目校准步骤之后,执行广泛的检查以评估估计项目参数与响应数据的拟合度。本章后面的"验证 PIRLS 2021 成就结果"部分提供了有关模型拟合的更多详细信息。

纸张同步校准

通过同时校准 2021 年和 2016 年评估的数据,对所有纸质项目的项目参数进行了估计。在将这两个连续的评估联系起来时,同时校准依赖于具有大比例的趋势项目——从一个评估到下一个评估保留的项目。当前评估的项目参数是基于来自当前和先前评估的数据来估计的,认识到一些项目(趋势项目)是两者所共有的。然后有可能使用来自同时校准的项目参数在一个共同的尺度上估计学生在两个评估中的潜在能力分布。两个评估分布之间的差异是以前和当前评估之间的趋势度量,尽管在应用一组转换之前还不在 PIRLS 趋势报告度量上。

图表 11.4 说明了 PIRLS 2021 并行校准模型的一般结构,用于估计纸质项目参数。展览的上半部分标有"PIRLS 2016

校准",代表 PIRLS 2021 趋势国家的 PIRLS 2016 数据和总体学生能力分布,如右图所示,这是在 PIRLS 2016 中对该人群的估计。图表 11.4 的下图标记为"PIRLS 2021 并行校准",并显示了 PIRLS 2021 并行校准模型中包含的全部 paper PIRLS 和电桥数据。这包括来自所有 PIRLS 2021 校准趋势国家的 PIRLS 2016 数据,以及来自 paper PIRLS 校准国家的所有 2021 数据和来自 digital PIRLS 校准国家的桥接数据。

图表 11.4: PIRLS 2021 纸质并行校准模型

图表 11.5 按项目类型、阅读目的和理解过程列出了同时校准中包含的纸质项目数量。

图表 11.5:PIR 1s 2021 纸张同步校准项目

项目类型	点	2016 年发布的项 目		2016 年和 2021 年常见的物品		2021 年推出的产品		总数	
		项目	点	项目	点	项目	点	项目	点
多项选择		28	28	57	57	66	66	151	151
andra Mila	_	16	16	33	33	58	58	107	107
建造 反应	2	10	20	22	44	28	56	60	120
	3	3	9	5	15	3	9	11	33
总数		57	73	117	149	155	189	329	411

按阅读目的和理解过程分类的项目

阅读目的	2016年 目	2016 年发布的项 目		2016 年和 2021 年常见的物品		2021年推出的产品		总数	
	项目	点	项目	点	项目	点	项目	点	
文学经验	29	35	61	78	80	97	170	210	
获取和使用信息		28	38	56	71	75	92	159	201
理解过程		2016年推出的产品		2016 年和 年常见的		2021 年推出的产品		总数	
		项目	点	项目	点	项目	点	项目	点
检索和简单 推理评估		34	39	68	76	97	111	199	226
总数 解释、整合和	57	73 23	$\frac{117}{34}$	149 49	1 55 73	189 58	329 78	411 130	185

图表 11.6显示了用于项目校准和熟练程度评估的 paperPIRLS 数据的样本量。对所有学生样本进行加权,以便每个国家对项目校准的贡献相等。2021年同步校准模型仅包括来自趋势校准国家的数据(见图表 11.3)。结果,27个国家,11个 paperPIRLS 趋势国家和 16个 digitalPIRLS 趋势国家,对同时校准作出了贡献。总体而言,论文并行校准包括来自 2016年评估的 141,645 名学生和来自 2021年评估的 79,861 名学生,包括来自 digitalPIRLS 校准国家的桥梁数据。对总共 57个国家和两个基准参与者的学生熟练程度进行了评估。

图表 11.6:PIR 1s 2021 纸张同步校准的样本量

	Į	页目校准		熟练	程度估计	
国家	论文 2016	纸张 2021	桥梁 2021	论文 2016	纸张 2021	桥梁 2021
阿尔巴尼亚	_	_	_	_	4, 213	_
澳大利亚	6, 341	5, 487	_	6, 341	5, 487	_
奥地利	4, 360	4,806	_	4, 360	4,806	_
阿塞拜疆	5, 994	5, 209	_	5, 994	5, 209	_
巴林	_	_	_	5, 480	5, 208	_
比利时(佛兰德语)	5, 198	_	1,623	5, 198	_	1,623
比利时(法语)	4, 623	4, 279	_	4,623	4, 279	_
巴西	_	_	_	_	4, 941	_
保加利亚	4, 281	4,043	_	4, 281	4,043	_
中国台北	4, 326	_	1,669	4, 326	_	1,669
克罗地亚	_	_	_	_	_	1, 226
塞浦路斯	_	_	_	_	4, 589	_
捷克共和国	5, 537	_	1,906	5, 537	_	1,906
丹麦	3, 508	_	1, 403	3, 508	_	1, 403
埃及	_	_	_	_	7,979	_
英格兰	_	_	_	5, 095	4, 150	_
芬兰	4, 896	_	2,069	4, 896	_	2,069
法国	4, 767	5, 339	_	4, 767	5, 339	_
格鲁吉亚	_	_	_	5, 741	5, 241	_
德国	3, 959	_	1, 343	3, 959	_	1, 343
香港特别行政区	3, 349	3,830	_	3, 349	3,830	_
匈牙利	_	_	_	4,623	_	1,697
伊朗伊斯兰共和国	_	_	_	4, 385	5, 962	_
爱尔兰	_	_	_	4,607	4,663	_
以色列	_	_	_	4, 041	_	1,780
意大利	3, 940	_	1,979	3, 940	_	1,979
约旦	_	_	_	_	6, 150	_
哈萨克斯坦共和国	_	_	_	4, 925	_	3, 207
科索沃	_	_	_	_	4, 557	_
拉脱维亚	_	_	_	4, 157	4, 369	_
立陶宛	_	_	_	4, 317	_	1,519
澳门特区	4, 059	5, 093	_	4,059	5, 093	_

图表 11.6:PIR 1s 2021 纸张同步校准的样本量(续)

	7	项目校准		熟绣	程度估计	
国家	论文 2016	纸张 2021	桥梁 2021	论文 2016	纸张 2021	桥梁 2021
马耳他	_	_	_	_	_	835
黑山	_	_	_	_	4, 489	_
摩洛哥	_	_	_	5, 489	7, 017	_
荷兰	4, 206	3, 627	_	4, 206	4, 313	_
新西兰	5, 645	_	2, 221	5, 645	_	2, 221
北马其顿	_	_	_	_	2, 929	_
北爱尔兰	_	_	_	3, 693	4,050	_
挪威(5)	4, 232	_	1,673	4, 232	_	1,673
阿曼	9, 234	5, 321	_	9, 234	5, 321	_
波兰	4, 413	4, 179	_	4, 413	4, 179	_
葡萄牙	4, 642	_	2,098	4,642	_	2, 098
卡塔尔	_	_	_	9,077	_	1, 343
俄罗斯联邦	4, 577	_	2, 187	4, 577	_	2, 187
沙特阿拉伯	_	_	_	4, 741	_	1,872
塞尔维亚	_	_	_	_	4,037	_
新加坡	6, 488	_	1, 988	6, 488	_	1,988
斯洛伐克	5, 451	_	1,640	5, 451	_	1,640
斯洛文尼亚	4, 499	_	1, 414	4, 499	_	1, 414
南非	_	_	_	_	12, 422	_
西班牙	14, 595	_	1, 572	14, 595	_	1,572
瑞典	4, 525	_	1,863	4, 525	_	1,863
图尔基耶	_	_	_	_	6,032	_
阿拉伯联合酋长国	_	_	_	16, 471	_	1,990
美国	_	_	_	4, 425	_	1,657
乌兹别克斯坦	_	_	_	_	5, 846	_
标杆管理参与者						
莫斯科市,俄罗斯联邦位	者备银行。 一	_	_	4, 289	_	1,695
南非(6)	_	_	_	_	9, 317	_
总数	141, 645	51, 213	28, 648	237, 201	170, 060	47, 469

一个多组 IRT 模型被用于项目校准,按周期指定国家组,并导致 54 组同时校准。虽然项目参数在各组之间保持相同,但该模型估计了不同国家和周期的不同能力分布,以适当考虑成绩差异。附录 11A 中列出了从所有纸质物品的同步校准中估算的物品参数。

然后,根据这一同步校准估计的项目参数被用于估计参与 paperPIRLS 2021 和 bridge 评估的所有国家和基准实体的学生熟练程度。这些项目参数还用于评估学生对 PIRLS 2016 的熟练程度,以便建立将 PIRLS 2021 结果置于 PIRLS 趋势标度上所需的标度变换。

数字项目校准

该校准步骤的目的是估算与纸质项目评估相关的数字项目参数,并且不受 ePIRLS 数据对数字项目参数估算的任何潜在影响。为了实现这一点,随机等效样本链接方法在<u>第十章</u>,用于将纸质评估和数字评估联系起来。链接方法假设样本等价,支持这种等价的证据在第十二章。

图表 11.7显示了数字校准模型中包含的项目数量。该校准模型中仅包含常规的数字项目,这些项目在纸质评估中有对应的项目。来自 16 个趋势校准国家/地区的 digitalPIRLS 手册 1-18 的数据与来自纸质同步校准的数据相结合,以估算所有 601 个项目的参数,没有任何进一步的限制,将数字项目视为不同于纸质项目。

图表 11.7:PIR 1s 2021 数字校准项目

				纸质	物品				
项目类型	点	2016 年发布的项 目		2016 年和 2021 年常见的物品		2021年推出的产品		数字项目	
		项目	点	项目	点	项目	点	项目	点
多项选择	_	28	28	57	57	66	66	123	123
	_	16	16	33	33	58	58	91	91
建造 反应	2	10	20	22	44	28	56	50	100
	3	3	9	5	15	3	9	8	24
总数		57	73	117	149	155	189	272	338

图表 11.8显示了数字项目校准的样本量。数字校准使用与纸质同步校准相同的数据(图表 11.6),加上来自 digitalPIRLS 趋势校准国家的常规 digitalPIRLS 手册中的数据。除了来自纸质同步校准的 221,506 名学生,数字校准还包括来自 16 个 digitalPIRLS 趋势校准国家的61,256 名学生,他们接受了 18 本 digitalPIRLS 手册中的一本。

图表 11.8:PIR 1s 2021 数字校准的样本量

		项目校准	<u> </u>		衰	热练程度估记	+	
国家	论文 2016	纸张 2021	桥梁 2021	数字 2021	论文 2016	纸张 2021	桥梁 2021	数字 2021
阿尔巴尼亚	_	_	_	_	_	4, 213	_	_
澳大利亚	6, 341	5, 487	_	_	6, 341	5, 487	_	_
奥地利	4, 360	4,806	_	_	4, 360	4,806	_	_
阿塞拜疆	5, 994	5, 209	_	_	5, 994	5, 209	_	_
巴林	_	_	_	_	5, 480	5, 208	_	_
比利时(佛兰德语)	5, 198	_	1,623	3, 408	5, 198	_	1,623	3, 408
比利时(法语)	4, 623	4, 279	_	_	4,623	4, 279	_	_
巴西	_	_	_	_	_	4, 941	_	_
保加利亚	4, 281	4,043	_	_	4, 281	4,043	_	_
中国台北	4, 326	_	1,669	3, 696	4, 326	_	1,669	3, 696
克罗地亚	_	_	_	_	_	_	1, 226	2,623
塞浦路斯	_	_	_	_	_	4, 589	_	_
捷克共和国	5, 537	_	1,906	4, 388	5, 537	_	1,906	4, 388
丹麦	3, 508	_	1,403	3, 220	3, 508	_	1,403	3, 220
埃及	_	_	_	_	_	7, 979	_	_
英格兰	_	_	_	_	5, 095	4, 150	_	_
芬兰	4, 896	_	2,069	4,676	4, 896	_	2,069	4,676
法国	4, 767	5, 339	_	_	4, 767	5, 339	_	_
格鲁吉亚	_	_	_	_	5, 741	5, 241	_	_
德国	3, 959	_	1, 343	3, 068	3, 959	_	1, 343	3, 068
香港特别行政区	3, 349	3,830	_	_	3, 349	3,830	_	_
匈牙利	_	_	_	_	4,623	_	1,697	3, 545
伊朗伊斯兰共和国	_	_	_	_	4, 385	5, 962	_	_
爱尔兰	_	_	_	_	4,607	4,663	_	_
以色列	_	_	_	_	4,041	_	1, 780	3, 267

Eddle 44.0 County Office for the BIBLO 0004 Bibliotical California.

		项目校准	ŧ		1	热练程度估论	†	
国家	论文 2016	纸张 2021	桥梁 2021	数字 2021	论文 2016	纸张 2021	桥梁 2021	数字 2021
意大利	3, 940	_	1, 979	3, 628	3, 940	_	1,979	3, 628
约旦	_	_	_	_	_	6, 150	_	_
哈萨克斯坦共和国	_	_	_	_	4, 925	_	3, 207	4,668
科索沃	_	_	_	_	_	4, 557	_	_
拉脱维亚	_	_	_	_	4, 157	4, 369	_	_
立陶宛	_	_	_	_	4, 317	_	1,519	3, 097
澳门特区	4,059	5, 093	_	_	4,059	5, 093	_	_
马耳他	_	_	_	_	_	_	835	2,050
黑山	_	_	_	_	_	4, 489	_	_
摩洛哥	_	_	_	_	5, 489	7,017	_	_
荷兰	4, 206	3, 627	_	_	4, 206	4, 313	_	_
新西兰	5, 645	_	2, 221	3, 707	5, 645	_	2, 221	3, 707
北马其顿	_	_	_	_	_	2, 929	_	_
北爱尔兰	_	_	_	_	3,693	4,050	_	_
挪威(5)	4, 232	_	1,673	3, 594	4, 232	_	1,673	3, 594
阿曼	9, 234	5, 321	_	_	9, 234	5, 321	_	_
波兰	4, 413	4, 179	_	_	4, 413	4, 179	_	_
葡萄牙	4,642	_	2,098	4, 117	4,642	_	2,098	4, 117
卡塔尔	_	_	_	_	9,077	_	1,343	3, 497
俄罗斯联邦	4, 577	_	2, 187	3, 488	4, 577	_	2, 187	3, 488
沙特阿拉伯	_	_	_	_	4, 741	_	1,872	3, 186
塞尔维亚	_	_	_	_	_	4,037	_	_
新加坡	6, 488	_	1,988	4, 482	6, 488	_	1,988	4, 482
斯洛伐克	5, 451	_	1,640	3, 220	5, 451	_	1,640	3, 220
斯洛文尼亚	4, 499	_	1, 414	3, 416	4, 499	_	1,414	3, 416
南非	_	_	_	_	_	12, 422	_	_
西班牙	14, 595	_	1,572	5, 691	14, 595	_	1,572	5, 691
瑞典	4, 525	_	1,863	3, 457	4, 525	_	1,863	3, 457
图尔基耶	_	_	_	_	_	6,032	_	_
阿拉伯联合酋长国	_	_	_	_	16, 471	_	1,990	18, 322
美国	_	_	_	_	4, 425	_	1,657	_
乌兹别克斯坦	_	_	_	_	_	5, 846	_	_

Edition 44.0 Committee of the Final District Contraction

		项目校	准			熟练程度估计	}	
国家	论文 2016	纸张 2021	桥梁 2021	数字 2021	论文 2016	纸张 2021	桥梁 2021	数字 2021
标杆管理参与者								
加拿大阿尔伯塔省	_	_	_	_	_	_	_	2,006
加拿大不列颠哥伦比亚省	_	_	_	_	_	_	_	3, 111
纽芬兰和拉布拉多运河。	_	_	_	_	_	_	_	1,623
加拿大魁北克	_	_	_	_	_	_	_	2, 496
莫斯科市,俄罗斯联邦储备 银行。	_	_	_	_	4, 289	_	1,695	3, 837
南非(6)	_	_	_	_	_	9, 317	_	_
阿联酋阿布扎比	_	_	_	_	_	_	_	6, 941
阿联酋迪拜	_	_	_	_	_	_	_	5, 137
总数	141, 645	51, 213	28, 648	61, 256	237, 201	170, 060	47, 469	130, 662

类似于并行校准,为数字数据的多组 IRT 模型定义了逐周期国家组。因为每个国家的数字样本和桥梁样本的回答者都来自同一人群,并被视为同等样本,桥梁样本和数字样本被假定为一组。这导致数字校准有 54 组,与纸张同时校准的情况一样。

虽然该数字校准模型估计了所有数字物品的参数,但它也重新估计了所有纸张物品的参数。 这确保了纸张和数字项目参数采用相同的度量标准。这也允许将数字项目参数与重新估计的纸质 项目参数进行比较,以评估纸质和数字表格中项目功能的差异(参见<u>第十二章</u>).

数字项目参数用于评估 ePIRLS 项目(在下一节中描述),也用于评估所有参与国家的学生水平和数字 PIRLS 中的基准实体。附录 11B 中列出了估算的数字项目参数,以及重新估算的纸质项目参数。

ePIRLS 项目校准

该校准在与 digitalPIRLS 项目相同的度量上估计 ePIRLS 项目参数。它包括来自 16 个 digitalPIRLS 趋势校准国家的全数字样本。该模型通过固定从估计的数字项目参数来估计 ePIRLS 项目参数

数字校准。将 ePIRLS 与 digitalPIRLS 联系起来也依赖于基于类别内小册子螺旋上升的样本等价。

图表 11.9 按项目类型和子域显示了 ePIRLS 校准中包含的项目数量。ePIRLS 项目 91 个, digitalPIRLS 常规项目 272 个。

图表 11.9:PIR 1s 2021 epi RLS 校准项目

项目类型	JE:	数码产品项目		ePIRLS	项目	总数	
	点	项目	点	项目	点	项目	点
多项选择		123	123	40	40	163	163
74.74		91	91	33	33	124	124
建造 反应	2	50	100	18	36	68	136
	3	8	24	0	0	8	24
总数		272	338	91	109	363	447

按阅读目的和理解过程分类的项目

	阅读目的		数码产品项	Ī目	ePIRLS:	项目	总数	
			项目	点	项目	点	项目	点
文学体验	验	141	175	0	0	141	175	
	获取和使用信息		131	163	91	109	222	272
	т н АЛ :-}-1 П		数码产品项	目	ePIRLS:	项目	总	数
	理解过程		项目	点	项目	点	项目	点
推理评价	检索和简单 估		165	187	51	58	216	245
总数	解释、整合和	272	338	151 91	109 40	₅₁ 363	447 147	202

图表 11. 10 显示了 ePIRLS 校准的样本量。来自 16 个数字校准国家的 61,256 名学生使用了数字校准的 digitalPIRLS 小册子,20,440 名学生和 10,147 名学生分别使用了 ePIRLS 和混合小册子。

图表 11.10:PIR 1s 2021 epi RLS 校准的样本量

	Ŋ	页目校准		熟练程度估计			
国家	数字的	ePIRLS	混合物	数字的	ePIRLS	混合物	
比利时(佛兰德语)	3, 408	1, 145	561	3, 408	1, 145	561	
中国台北	3, 696	1,242	six	3, 696	1, 242	six	
			hun			hun	
			dre d			dre d	
			and			and	
			sev			sev	
			ent een			ent een	
克罗地亚	_	_	_	2, 623	868	446	
捷克共和国	4, 388	1,488	745	4, 388	1, 488	745	
丹麦	3, 220	1,076	525	3, 220	1,076	525	
芬兰	4, 676	1,561	781	4,676	1,561	781	
德国	3, 068	1,030	513	3, 068	1,030	513	
匈牙利	_	_	_	3, 545	1, 175	592	
以色列	_	_	_	3, 267	1,083	540	
意大利	3, 628	1, 211	601	3, 628	1,211	601	
哈萨克斯坦共和国	_	_	_	4,668	1,575	780	
立陶宛	_	_	_	3,097	1,021	505	
马耳他	_	_	_	2,050	648	332	
新西兰	3, 707	1, 233	six	3, 707	1, 233	six	
			hun			hun	
			dre d			dre d	
			and			and	
			sev			sev	
			ent			ent	
挪威(5)	3, 594	1, 192	<u>een</u> 596	3, 594	1, 192	<u>een</u> 596	
 葡萄牙	4, 117	1,341	653	4, 117	1, 341	653	
 卡塔尔	_	_	_	3, 497	1, 180	581	
俄罗斯联邦	3, 488	1, 146	583	3, 488	1, 146	583	
沙特阿拉伯	_	_	_	3, 186	1,054	538	
新加坡	4, 482	1,490	747	4, 482	1,490	747	
斯洛伐克	3, 220	1,088	533	3, 220	1,088	533	
斯洛文尼亚	3, 416	1, 139	555	3, 416	1, 139	555	
西班牙	5, 691	1,910	950	5, 691	1,910	950	
瑞典	3, 457	1, 148	570	3, 457	1, 148	570	
阿拉伯联合酋长国	_	_	_	18, 322	6, 085	3, 041	
标杆管理参与者							
加拿大阿尔伯塔省	_	_		2,006	682	332	

总数	61, 256	20, 440	10, 147	130, 662	43, 502	21, 694
阿联酋迪拜	_	_	_	5, 137	1,705	869
阿联酋阿布扎比	_	_	_	6, 941	2, 302	1, 138
莫斯科市,俄罗斯联邦储备银 行。	_	_	_	3, 837	1,270	638
加拿大魁北克	_	_	_	2, 496	820	423
纽芬兰和拉布拉多运河。	_	_	_	1,623	542	280
加拿大不列颠哥伦比亚省	_	_	_	3, 111	1,052	512

附录11B中列出了根据该校准估算的ePIRLS项目参数。

• 对于每个国家, 所有虚拟编码和标准标度变量分别为

第二阶段:主成分分析

哪个主成分更少。

PIRLS 2021 成果扩展的第二阶段包括创建用于调节的主要组件。条件化指的是应用包括所有可用上下文信息的潜在回归模型来改进估计的学生水平似是而非的值的统计特性。理想情况下,所有学生水平的背景数据都将包括在条件模型中,但由于 PIRLS 有如此多的背景变量可用于条件,TIMSS & PIRLS 国际研究中心遵循 NAEP 建立的实践,并遵循其他大规模研究使用主成分分析 (PCA)来减少变量的数量,同时解释大多数常见的方差。PIRLS 学生背景变量(包括父母背景变量)的主要组成部分构建如下:

- 对于分类变量(有少量固定回答选项的问题),为每个回答选项创建一个虚拟编码变量,如果选择了该选项,则值为1,否则为0。为创建了唯一的虚拟编码变量分别为"未实施"、"不适用"和"省略"回答。
- 使用标准标度(Beaton, 1969)重新编码了具有许多响应选项(如出生年份)的背景变量。 这是通过将答案选项替换为选择该选项的所有学生的平均期中成绩分数来实现的。标准 缩放使缩放变量和成就之间的相关性最大化。对于 PIRLS,期中成绩分数是由项目校准产 生的学生级 EAP 阅读分数的平均值。
- 包括在主成分分析中。那些占所有背景变量方差 90%的主成分被保留下来用作条件变量。因为主成分分析是为每个国家和基准实体,需要不同数量的主成分来解释每个国家背景变量中 90%的共同方差。此外,保留的主成分数量被限制在不超过一个国家学生样本量的 5 %,以避免条件模型的过度规范。由于 digitalPIRLS 电桥样本的样本尺寸较小,因此这一限制发挥了重要作用。结果,选择的主成分要么保留了 90%的共同方差,要么保留了 5%的样本量,无论

除了主成分之外,学生的性别(虚拟编码)、测试的语言(虚拟编码)、学生所属学校教室的指标(标准标度)和可选的国家特定变量(虚拟编码)也被作为主要条件变量包括在内,从而解释了学生之间的大多数差异,并在潜在回归条件模型中保留了教室之间和教室内的差异结构。

图表 11. 11 和 11. 12 分别提供了用于 paperPIRLS 数据和桥梁数据熟练程度评估的条件模型的详细信息。在这些图表中,还报告了 PIRLS 2016 数据的调节模型细节。图表 11. 13 提供了用于 digitalPIRLS(包括 ePIRLS)数据熟练程度评估的条件模型的详细信息。

图表 11.11:paper pirls 2021 数据的条件模型维度

		PIRLS	2016		PIRLS 2021				
国家	主要数量条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	主要数量条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	
阿尔巴尼亚	_	_	_	_	2	577	210	76	
澳大利亚	2	543	277	90	2	287	163	90	
奥地利	2	548	218	79	2	582	240	81	
阿塞拜疆	3	537	299	89	3	575	260	82	
巴林	3	549	274	85	3	580	260	82	
比利时(法语)	2	530	231	82	2	565	213	78	
巴西	_	_	_	_	2	571	一周七天	82	
保加利亚	2	533	214	81	2	565	202	78	
塞浦路斯	_	_	_	_	3	583	229	78	
埃及	_	_	_	_	2	583	325	90	
英格兰	2	248	146	90	2	279	162	90	
法国	2	547	238	82	2	581	266	84	
格鲁吉亚	3	549	287	88	2	581	262	83	
香港特别行政区	2	545	167	71	2	583	191	74	
伊朗伊斯兰共和国	2	549	219	80	2	583	298	88	
爱尔兰	2	549	230	82	2	582	233	81	
约旦	_	_	_	_	2	583	307	89	
科索沃	_	_	_	_	2	577	227	78	
拉脱维亚	3	549	207	77	3	583	218	78	
澳门特区	四	549	202	75	四	583	254	82	

图表 11.11:paper pirls 2021 数据的条件模型维度(续)

		PIRLS	2016		PIRLS 2021				
国家	主要数量条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	主要数量 条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	
黑山	_	_	_	_	2	579	224	77	
摩洛哥	2	549	274	86	2	583	324	90	
荷兰	2	543	210	81	2	562	215	80	
北马其顿	_	_	_	_	3	582	146	66	
北爱尔兰	2	511	184	79	2	539	202	80	
阿曼	3	549	319	90	3	583	266	82	
波兰	2	536	220	81	2	574	208	77	
塞尔维亚	_	_	_	_	2	575	201	76	
南非	_	_	_	_	12	565	335	90	
图尔基耶	_	_	_	_	2	551	301	90	
乌兹别克斯坦	_	_	_	_	四	576	292	86	
标杆参与者									
南非(6)	_	_	_	_	3	565	328	90	

图表 11.12:PIR 1s 2021 桥梁数据的条件模型维度

		PIRLS	2016		PIRLS 2021				
国家	主要数量条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	主要数量条件变量	可用的主要组 件数量	保留的主成分 数	解释的差异 百分比	
比利时(佛兰德语)	2	545	259	86	2	576	81	52	
中国台北	2	546	216	79	2	572	83	54	
克罗地亚	_	_	_	_	2	578	61	49	
捷克共和国	2	540	276	88	2	569	95	58	
丹麦	2	549	175	72	2	583	70	48	
芬兰	3	548	244	84	3	582	103	59	
德国	2	545	197	77	2	577	67	54	
匈牙利	2	525	231	82	2	558	84	56	
以色列	3	511	202	78	3	535	89	57	
意大利	2	543	197	74	2	571	98	53	
哈萨克斯坦共和国	3	531	246	82	3	583	160	68	
立陶宛	四	528	215	80	四	564	75	56	
马耳他	_	_	_	_	3	558	41	41	
新西兰	七	519	277	90	8	578	111	64	
挪威(5)	3	530	211	78	3	560	83	53	
葡萄牙	2	548	232	81	2	583	104	56	
卡塔尔	3	546	307	90	3	581	67	51	
俄罗斯联邦	2	525	228	81	2	559	109	59	
沙特阿拉伯	3	549	237	79	3	583	93	56	
新加坡	2	549	300	90	2	563	99	59	
斯洛伐克	3	549	272	87	3	583	82	55	
斯洛文尼亚	2	544	224	81	2	578	70	50	
西班牙	8	542	302	90	6	572	78	52	
瑞典	2	525	226	82	2	551	93	59	
阿拉伯联合酋长国	6	549	315	90	5	583	99	59	
美国	9	250	147	90	8	265	82	67	
标杆参与者									
莫斯科城, 俄罗斯联邦储备银行。	2	525	214	78	2	551	84	51	

图表 11.13:digital pirls 2021 数据的条件模型维度

国家	主要数量 条件变量	可用的主要 组件数量	保留的主成 分数	解释的差异 百分比
比利时(佛兰德语)	2	576	255	84
中国台北	2	575	277	87
克罗地亚	2	578	196	76
捷克共和国	2	573	303	90
丹麦	2	583	241	81
芬兰	3	582	305	90
德国	2	577	230	82
匈牙利	2	558	265	86
以色列	3	537	244	84
意大利	2	571	272	84
哈萨克斯坦共和国	3	583	323	90
立陶宛	四	566	231	83
马耳他	3	561	151	67
新西兰	8	578	277	88
挪威(5)	3	561	269	86
葡萄牙	2	583	305	88
卡塔尔	3	583	262	84
俄罗斯联邦	2	559	260	84
沙特阿拉伯	3	583	238	80
新加坡	2	564	299	90
斯洛伐克	3	583	242	83
斯洛文尼亚	2	579	255	84
西班牙	6	572	310	90
瑞典	2	551	258	86
阿拉伯联合酋长国	5	583	321	90
标杆管理参与者				
加拿大阿尔伯塔省	3	564	151	70
加拿大不列颠哥伦比亚省	3	565	233	83
	2	562	122	64
加拿大魁北克	3	565	186	74
莫斯科市,俄罗斯联邦储备银 行。	2	551	287	88
阿联酋阿布扎比	3	583	316	90
阿联酋迪拜	3	583	303	90

阶段3:潜在回归人口建模

教育测试服务的 MGROUP 项目 (Rogers 等人, 2006年; Sheehan, 1985)用于估计潜在回归模型,并为 PIRLS 2021 论文和数字数据生成似是而非的值。这些程序将学生对给他们的项目的反应、在校准阶段估计的项目参数和条件变量作为输入,并生成估计的回归效应和残差方差-协方差矩阵,以及表示给定他们的成绩和上下文数据的学生水平的后验分布的似是而非的值作为输出(例如, Mislevy, 1991;托马斯,1993年;冯•达维尔等人,2006年; von Davier & Sinharay, 2013年)。有关潜在回归模型的更多详细信息,请参见第十章。

MGROUP 程序集的某些版本允许多维潜在回归模型,该模型使用对跨熟练程度量表的所有项目的回答和量表之间的相关性来提高每个单独量表的可靠性。MGROUP 中实现的多维建模功能用于为PIRLS 2021 阅读目的和理解过程域生成似是而非的值。阅读子域的这些似是而非的值的估计依赖于多维 IRT 模型,该模型使用为整个阅读量表估计的项目参数,以及同一组条件变量。PIRLS 2021 使用了两个二维标度模型,一个用于评估两种阅读目的的熟练程度得分,另一个用于评估两种理解过程。

针对所有 PIRLS 2021 国家和基准参与者的数据,估计了整体读数和子域的潜在回归模型。首先,使用来自纸张同时校准的项目参数和条件变量,为纸张和桥数据生成似是而非的值。使用来自 digital 和 ePIRLS 校准的项目参数,为 digital PIRLS 数据生成了似是而非的值。

纸质项目参数还用于为所有趋势国家的 PIRLS 2016 评估数据生成似是而非的值。这些额外的似是而非的值用于建立将 paperPIRLS 和 bridge 2021 数据置于 PIRLS 趋势标度上所必需的线性变换。

阶段4:规模转型

为了根据现有的 PIRLS 成就等级为 PIRLS 2021 评估提供结果,必须将 2021 年的似是而非的值转换为 PIRLS 报告指标。这一过程包括对从纸质和数字数据中得出的似是而非的值进行一系列线性变换。 PIRLS 2021 产生了两组转换常数。第一组将基于纸张的 2021 年结果放在 PIRLS 趋势量表上。它来源于已发布和重新评估的 PIRLS 2016 能力分布。第二组标度变换常数将数字结果放在 PIRLS 趋势标度上,并通过变换获得

桥分布和未转换的数字能力分布。中提供了用于推导转换常数和转换似是而非的值的公式<u>第十</u>章。

纸质比例尺变换

第一次 paperPIRLS 标度变换通过将重新估计的 PIRLS 2016 能力分布与公布的 PIRLS 2016 能力分布对齐,将所有 paperPIRLS 2021 结果 (包括桥梁数据) 置于 PIRLS 趋势标度上。获得了五对转换常数——每一对对应一个总体阅读水平的似是而非的值。首先,使用基于 2016 年项目校准的已发布的 2016 年似是而非的值,计算趋势校准国家的国际平均值和标准偏差。接下来,使用基于 2021 年纸质并行校准模型的重新调整的 2016 年似是而非的值来计算平均值和标准偏差。论文《同时校准》中包含的 27 个趋势校准国家对这些转换常数的计算有同等贡献。

图表 11. 14 显示了 paper PIRLS 2021 数据的 PIRLS 2021 转换常数,包括 paper PIRLS 国家的数据和在 digital PIRLS 国家收集的桥梁数据。这些转换常数被应用于整体阅读、阅读目的子领域和理解过程子领域。

图表 11.14:PIR 1s 2021 纸质数据的比例转换常数

	PIRLS 2016	公布的分数	・数 PIRLS 2016 重新调整了分 数	Aik	Bik	
	平均	标准偏差	平均	标准偏差	AIK	DIK
PV1	538. 13388	79. 45850	0. 27954	0. 78075	509. 68449	101. 77257
PV2	537. 64200	80. 04106	0. 28208	0. 77943	508. 67491	102.69179
PV3	536. 99064	80. 27275	0. 28314	0. 78015	507. 85754	102. 89396
PV4	537. 35784	80. 23786	0. 28233	0. 78174	508. 37981	102. 63957
PV5	537. 35481	79. 92416	0. 28250	0. 77923	508. 37960	102. 56856

根据这种测量趋势的方法,阅读目的和理解过程中的成绩随着时间的推移而变化,子领域在整体阅读成绩的范围内。趋势不是为每个目的或过程单独建立的。分量表仅基于一半的评估项目,使得它们比基于整个量表的整体阅读成绩结果稍差。子尺度趋势结果不包括在 PIRLS 2021 国际阅读成绩报告,因为它们比总体趋势结果更不稳定,甚至可能进一步受到新冠肺炎的影响,其程度未知。

paperPIRLS 变换常数也应用于重新调整的 2016 年似是而非的值,以评估 2021 年和 2016 年调整模型之间的链接调整的变化(参见后面的"验证 PIRLS 2021 成就结果"部分的结果)。

数字比例变换

digitalPIRLS 线性标度转换将来自数字项目校准的汇集数字能力分布与来自纸张并行校准的转换桥能力分布对齐。桥与数字的联合缩放实现了链接,将数据放在同一个刻度上。这种额外的变换消除了电桥样本分布和数字样本分布之间的任何剩余样本差异。纸张和数字项目校准中包含的 16 个数字国家及其随机等效的电桥和数字样本是计算转换常数的基础。

转换常数通过首先计算总体读数的桥似是而非值的国际平均值和标准偏差获得,这些值已经在之前的转换步骤中放置在 PIRLS 趋势度量上。接下来,基于数字项目校准,计算数字似然值的平均值和标准偏差。这些结果被认为是临时的,因为它们只是基于学生使用的 18 本数字小册子中的一本。通过将未转换的数字似然值的平均值和标准偏差与转换的电桥似然值的平均值和标准偏差对齐,确定线性转换常数。

图表 11. 15 显示了 digitalPIRLS 总读数标度的五对转换常数,每一对对应一个似是而非的值。这些转换常数应用于所有 PIRLS 2021 数字数据,用于整体阅读以及阅读目的和理解过程。完整数字样本的转换似然值,包括来自 hybrid 和 ePIRLS 小册子的似然值,用于报告 digitalPIRLS 国家的成就。基于 18 本 digitalPIRLS 手册的数字校准转换后的中期结果仅用于验证目的(见下一节)。

图表 11.15:PIR 1s 2021 数字数据的标度变换常数

	转换的桥牌	早分数	未转换的	的数字分数		Dil
	平均	标准偏差	平均	标准偏差	- Aik	Bik
PV1	537. 91609	76. 65646	-0.00161	0. 76091	538. 07815	100. 74315
PV2	537. 01898	77. 26746	-0.00116	0. 76181	537. 13672	101. 42598
PV3	536. 13574	77. 07134	-0.00172	0. 76399	536. 30970	100. 88021
PV4	536. 51431	77. 32874	-0.00055	0. 76019	536. 57072	101. 72353
PV5	536. 81941	77. 26436	-0.00113	0. 76305	536. 93362	101. 25662

验证 PIRLS 2021 成就结果

PIRLS 2021 成就数据的缩放包括整个过程中的广泛分析,以确保结果的质量。在本节中,我们将讨论扩展的三个主要方面:

- 评估项目是否符合 PIRLS 2021 评估数据
- 检验各国之间趋势关联误差的变化
- 评估 ePIRLS 与 digitalPIRLS 的集成

成绩衡量的另一个重要方面涉及通过比较桥梁和数字成绩结果来验证随机等效样本链接方法。这些分析在中进行了描述第十二章。

评估项目是否符合 PIRLS 2021 评估数据

为了确保 PIRLS 2021 成绩数据的项目参数估计的可靠性和准确性,在项目校准阶段进行了一系列基于 IRT 的检查。使用了几种方法来验证 IRT 模型项目参数与数据的拟合。这些包括检查项目特征曲线 (ICCs) 的图形显示,以检查经验和拟合的项目响应函数,并比较 2021 年和 2016 年周期之间趋势项目的经验曲线。此外,定量检查进行了均方根差 (RMSD) 统计。此外,在 PIRLS 2016 和 2021 之间,以及在根据纸张同时校准和数字校准估计的两组 paper PIRLS 2021 项目参数之间,进行了项目参数的比较。

项目特征曲线

通过视觉比较使用根据数据估计的项目参数生成的项目响应函数曲线和根据每个学生响应项目的潜在能力估计计算的经验项目响应函数曲线来评估项目适合度。经验函数本身基于使用 IRT 模型的估计潜在能力分布,因此也被称为基于伪计数的项目函数。当一个项目的实证结果接近拟合曲线时,该项目的 IRT 模型很好地拟合了数据,并提供了对潜在熟练程度量表的准确和可靠的测量。

这些反应函数曲线被称为项目特征曲线(ICC)。对所有纸质项目、数字项目和 ePIRLS 项目的 ICC 图进行了检查。图表 11.16 和 11.17 分别显示了二分法评分(正确/不正确)多项选择和结构反应项目的经验和拟合项目反应函数的例子。在每个图中,横轴表示 logit 度量上的熟练程度,纵轴表示正确回答的概率。基于估计的项目参数的拟合曲线显示为实线,项目斜率参数由曲线在两个拐点之间的斜率表示,难度或位置参数由水平轴上正确回答的概率为 50%的点表示,对于多项选择项目,较低的渐近线对应于猜测参数。

基于伪计数的经验结果用圆圈表示。实证结果是通过首先将 logit 熟练程度量表分成相等大小的区间,然后计算对估计潜在能力(估计 EAP 分数)落在每个区间内的项目做出反应的学生数量而获得的。然后计算每个区间内正确回答该题的学生比例。在图表中,每个圆圈的中心代表正确答案的经验比例。每个圆圈的大小与伪计数(估计的学生人数)成比例,该伪计数有助于其相应区间内的经验比例正确。

图表 11.16:PIRLS 2021 中二分多项选择项目的项目反应函数示例

尽管在 2021 年的同时校准中,为任何给定的项目估计了一组项目参数,但趋势项目有两条经验曲线,一条用于每个评估周期的数据。绘制 2021 年和 2016 年的经验曲线可以直观地检查周期之间项目参数的不变性,这是与趋势尺度联系的一个关键方面。图表 11.17 显示了 paper PIRLS 2021 趋势项目的 ICC,带有一条拟合曲线和两条经验曲线:红色气泡表示基于 PIRLS 2016 响应数据的经验曲线,蓝色曲线表示基于 PIRLS 2021 响应数据的经验曲线。

图表 11. 17:PIRLS 2021 中二分结构反应项目的项目反应函数示例

图表 11. 18 中的 ICC 图显示了多型项目 (得分为 0、1 或 2) 的经验项目响应函数和拟合项目响应函数。对于上面的二分项目图,水平轴代表 logits 中的熟练程度,但在本例中,垂直轴代表某个类别中响应的概率。基于估计项目参数的拟合曲线显示为实线,而经验结果由圆圈表示。圆圈的解释与图表 11. 16 中的相同。从图表左上角开始的曲线描绘了该项目得分为零的概率。这个概率应该总是随着熟练程度的提高而降低。钟形曲线显示了一分的得分概率——部分学分,对于能力差的学生来说应该从零开始,到

中等能力的学生,高能力的学生人数在减少。图表右上角的曲线显示了两分的概率——满分,低能力学生的起点低,随着熟练程度的增加而增加。

图表 11. 18:PIRLS 2021 中多型结构反应项目的项目反应函数示例

均方根差(RMSD)

除了图形模型拟合评估,项目拟合也使用均方根差 (RMSD) 统计检查。RMSD 是经验曲线 (在上述 ICCs 中显示为气泡) 和拟合曲线之间的平均平方差 (即面积) 的平方根,以每个能力区间的学生人数加权。

计算了所有 PIRLS 2021 项目的 RMSD 值,并记录在附录 11A 和 11B 的项目参数表中。它们也在 图表 11. 19 中显示,并且

11.20. 在每个展览中,物品从最小到最大 RMSD 值排序。对于具有两个 RMSD 值的趋势项,两个值中的最大值决定顺序。PIRLS 2021 成就等级中的所有项目都具有良好的 RMSD 拟合统计。

通过使用 RMSD 统计上的中位数绝对偏差 (MAD) 异常值检测方法来识别不匹配项目。MAD 是一种稳健的离差度量,它被用作标记规则,而不是任意的临界值 (von Davier & Bezirhan, 2022)。如果一个项目与所有其他观测值的绝对距离的中值的距离超过预定阈值,则该方法将该项目标记为可能的不匹配。对于 PIRLS 2021 成就分级,阈值 3 用于确定需要进一步评估或可能删除的项目。

图表 11. 19:PIR 1s 2021 论文中项目的 RMSD 统计数据同时校准

0.01

图表 11. 20:PIR 1s 2021 数字和 e PIRLS 校准项目的 RMSD 统计

0.01

0.00

项目参数比较

评估纸张同步校准的另一个步骤包括将 2021 年纸张同步校准重新估计的 2016 项目参数与 2016 年同步校准的参数估计值进行比较。图表 11. 21 到 11. 23 分别用图形显示了难度、辨别和猜测的项目参数估计的比较。观察到高度的一致性,相关系数在 0. 89 和 0. 99 之间。

图表 PIRLS 2016 和 PIRLS 2021 校准模型之间项目难度参数的比较图

Exhibit 11.22: Plot Comparing Item Discrimination Parameters between PIRLS 2016 and PIRLS

Exhibit 11.23: Plot Comparing Item Guessing Parameters between PIRLS 2016 and PIRLS

还在来自数字校准的重新估计的纸件参数和来自纸件同时校准的纸件参数估计之间进行了比较。图表 11. 24 至 11. 26 分别显示了两组试卷难度、辨别力和猜测参数估计值的比较。这些图显示了两组项目参数之间几乎完美的相关性的高度一致性。

难度参数之间的小范围变化(图表 11.24)是由于在数字校准中数字数据被添加到了纸质数据中。通过在数字校准中自由估计纸张和数字项目参数,由添加数字数据产生的不同识别约束导致偏移。该偏移在链接中被考虑。

Exhibit 11.24: Plot Comparing Paper Item Difficulty Parameters between Paper and Digital

Exhibit 11.25: Plot Comparing Paper Item Discrimination Parameters between Paper and

图表 11.26:纸质和数字校准模型之间纸质项目猜测参数的比较图

检查趋势链接误差的变化

在 PIRLS 趋势量表上报告 PIRLS 2021 结果的一个关键方面是,能够根据一组常见趋势国家的 2016 年和 2021 年数据的并行校准,准确地重新估计 PIRLS 2016 年的成就结果。如前所述,该重新估计用于建立将 PIRLS 2021 结果置于 PIRLS 趋势标度上的线性变换。虽然这种转换是在全球范围内设置的,以匹配趋势国家的总体平均值和标准差,但它也应该实现每个趋势国家校准之间的 2016 年结果的充分对齐。一个趋势国家在 2016 年发布的 PIRLS 2016 成就均值与 2021 年重新估计的均值之间的差异提供了两种评估之间联系质量的衡量标准。

图表 11. 27 提供了与纸质 PIRLS 2021 结果相关的趋势链接误差结果。结果包括趋势校准国家,以及没有帮助制定尺度的趋势国家。这些国家公布的和重新估计的 2016 年结果之间有很好的一致性。从所有国家来看,国际一级没有差别。虽然在国家一级存在小的差异,但差异在 2 个点以内,标准误差很少超过 2 个点——对于校准国家和没有贡献的国家都是如此。鉴于 PIRLS 2016 数据是在两种不同的校准模型下使用不同的国家和项目进行校准的,这些微小的差异是意料之中的。

值得注意的是,相对较大的联系差异(如4分或以上)主要出现在表现相对较差的国家(如平均得分低于500),如图表所示。这主要是由于在这些国家中遗漏和未达到响应的百分比相对较大,这些国家在2021-2016年同时校准中采用证据强度方法处理,但在2016-2011年同时校准中以前采用确定性方法处理项目无响应。

图表 PIRLS 2016 和 PIRLS 2021 校准之间误差方差的趋势关联

		PIRLS 2016	公布的结果	PIRLS 2016	重新调整结果	
国家		平均	标准偏差	平均	标准偏差	差异
澳大利亚	*	544 (2.5)	84 (1. 6)	544 (2.6)	86 (1.9)	0 (1.2)
奥地利	*	541 (2.4)	65 (1. 4)	541 (2.6)	64 (1.4)	0 (1.2)
阿塞拜疆	*	472 (4.2)	86 (2. 8)	477 (4.1)	79 (2.5)	四 (1.1)
巴林		446 (2.3)	98 (1. 5)	443 (2.4)	97 (1.7)	-3 (0.9)
比利时(佛兰德语)	*	525 (1.9)	61 (0. 9)	522 (2.0)	62 (1.2)	-3 (0.6)
比利时(法语)	*	497 (2.6)	69 (1. 3)	498 (2.3)	66 (1.3)	— (0.8)
保加利亚	*	552 (4.2)	85 (2. 7)	554 (4.0)	84 (1.7)	2 (1.7)
中国台北	*	559 (2.0)	64 (1. 0)	560 (2.1)	66 (1.0)	— (1.1)
捷克共和国	*	543 (2.1)	68 (2. 0)	545 (2.0)	65 (1.6)	· (1.0)
丹麦	*	547 (2.1)	68 (1. 5)	547 (2.2)	66 (1.3)	-1 (1.4)
英格兰		559 (1.9)	79 (1. 2)	558 (2.0)	81 (1.2)	-1 (0.9)
芬兰	*	566 (1.8)	67 (1. 6)	566 (1.9)	66 (1.3)	0 (0.9)
法国	*	511 (2.2)	69 (1. 4)	513 (2.2)	66 (1.1)	2 (0.8)
格鲁吉亚		488 (2.8)	79 (1. 6)	492 (2.8)	72 (1.4)	四 (1.3)
德国	*	537 (3.2)	78 (3. 2)	539 (2.9)	74 (2.3)	2 (0.9)
香港特别行政区	*	569 (2.7)	64 (1. 5)	569 (2.6)	62 (1.3)	→ (0.9)

图表 PIRLS 2016 和 PIRLS 2021 校准之间误差方差的趋势关联(续)

	PIRLS 2016	公布的结果	PIRLS 2016	重新调整结果	
国家	平均	标准偏差	平均	 标准偏差	差异
匈牙利	554 (2.9)	75 (1.6)	554 (3.0)	75 (1.5)	0 (1.0)
伊朗伊斯兰共和国	431 (3.9)	103 (3.2)	437 (3.3)	93 (2.4)	6 (1.8)
爱尔兰	567 (2.5)	74 (1.5)	566 (2.7)	76 (1.4)	0 (0.9)
以色列	530 (2.5)	90 (1.8)	532 (2.5)	87 (1.9)	2 (1.1)
意大利 *	548 (2.2)	65 (1.4)	547 (2.1)	66 (1.3)	-1 (1.4)
哈萨克斯坦共和国	536 (2.5)	63 (1.4)	533 (2.6)	65 (1.5)	-3 (1.0)
拉脱维亚	558 (1.7)	62 (1.3)	556 (1.8)	64 (1.0)	-2 (0.8)
立陶宛	548 (2.6)	69 (1.7)	548 (2.4)	71 (1.5)	0 (1.0)
澳门特区 *	546 (1.0)	66 (1.0)	546 (1.0)	66 (0.9)	0 (0.9)
摩洛哥	349 (4.3)	107 (2.3)	355 (4.4)	103 (1.8)	6 (1.8)
荷兰 *	545 (1.7)	60 (1.2)	542 (1.8)	62 (1.3)	-3 (1.0)
新西兰 *	523 (2.2)	91 (1.8)	522 (2.2)	90 (1.5)	-1 (0.8)
北爱尔兰	565 (2.2)	80 (1.3)	564 (2.3)	82 (1.3)	0 (0.8)
挪威(5) **	559 (2.3)	65 (1.3)	558 (2.4)	65 (1.1)	-1 (1.2)
阿曼 *	418 (3.3)	106 (1.7)	413 (3.4)	109 (1.6)	-5 (1.2)
波兰 *	565 (2.1)	72 (1.1)	565 (2.3)	75 (1.3)	0 (1.0)
葡萄牙 *	528 (2.3)	65 (1.4)	527 (2.2)	65 (1.4)	0 (0.8)
卡塔尔	442 (1.8)	110 (1.3)	440 (2.0)	110 (1.7)	-2 (0.7)
俄罗斯联邦 *	581 (2.2)	66 (1.3)	581 (2.2)	69 (1.3)	0 (1.2)
沙特阿拉伯	430 (4.2)	98 (2.4)	433 (4.0)	92 (2.2)	2 (1.1)
新加坡 *	576 (3.2)	80 (2.1)	576 (3.3)	85 (2.3)	0 (0.7)
斯洛伐克 *	535 (3.1)	81 (3.6)	534 (2.9)	80 (3.4)	-1 (1.0)
斯洛文尼亚 *	542 (2.0)	72 (1.1)	544 (2.1)	71 (1.3)	1 (1.3)
西班牙 *	528 (1.7)	65 (1.4)	526 (1.6)	65 (1.2)	-1 (0.7)
瑞典 *	555 (2.4)	67 (1.2)	556 (2.5)	65 (1.1)	1 (0.9)
阿拉伯联合酋长国	450 (3.2)	111 (1.6)	447 (3.2)	112 (1.7)	-3 (0.7)
美国	549 (3.1)	78 (1.3)	548 (3.1)	80 (1.3)	-1 (1.2)
国际平均水平	524 (0.4)	77 (0.3)	524 (0.4)	77 (0.2)	0 (0.2)
标杆管理参与者					
莫斯科市,俄罗斯联邦储备银 行。	612 (2.2)	62 (1.1)	615 (2.3)	65 (1.3)	3 (1.2)

链接误差是与差异相关的标准误差。标准误差显示在括号中。

^{*}参与项目校准的国家。

评估 ePIRLS 与 digitalPIRLS 的集成

PIRLS 2021 年数字 PIRLS 国家阅读成绩结果基于从 18 种常规数字 PIRLS 文本 (在 paper PIRLS 中有对应文本)以及五项 e PIRLS 任务中收集的数据。进行了两项分析,以评价将五项应急信息和反应战略任务纳入数字伙伴关系国家成就估计数的情况。首先,分析了 digital PIRLS 和 ePIRLS 项目的项目区分参数。然后,将仅来自 digital PIRLS 项目的临时量表分数与每个 digital PIRLS 国家最终公布的量表分数进行比较。

比较 digitalPIRLS 项目和 ePIRLS 项目之间的项目区分参数,以检查 ePIRLS 项目测量与常规数字项目相同的结构的程度。图表 11.28 显示了估计的 ePIRLS 和 digitalPIRLS 项目鉴别参数的汇总统计和绘图。为 ePIRLS 项目估计的鉴别参数具有与 digitalPIRLS 项目鉴别大约相同的均值和范围,表明 ePIRLS 项目和常规数字项目之间没有功能差异。如果 ePIRLS 项目测量不同的阅读结构,当与固定的 digitalPIRLS 量表一致时,它们的估计辨别参数的值会小得多。

图表 11.28:digital pirls 和 ePIRLS 项目的项目鉴别参数

	数数	平均	最低限度	最高的
数字皮尔	272	0.956	0. 421	1.602
ePIRLS	91	0.946	0.341	1. 953

0.0

图表 11. 29 展示了基于两组项目及其差异的成就量表分数估计。图表 11. 30 显示了两组成绩分数的比较图。

图表 11.29: PIRLS 2021 数字 PIRLS (中期)和带 ePIRLS 的数字 PIRLS 的平均阅读成绩

国家			具有 ePIRLS 平均量 表评分的数字量表	差异
比利时(佛兰德语)	*	510 (2.4)	511 (2.3)	— (1. 2)
中国台北	*	542 (2.1)	544 (2.2)	2 (1.0)
克罗地亚		557 (3.0)	557 (2.5)	0 (1.9)
捷克共和国	*	539 (2.8)	540 (2.3)	0 (1.2)
丹麦	*	541 (2.3)	539 (2.2)	-2 (1.6)
芬兰	*	547 (2.7)	549 (2.4)	2 (1.2)
德国	*	528 (2.4)	524 (2.1)	-4 (1.3) q
匈牙利		539 (3.4)	539 (3.4)	0 (1.3)
以色列		511 (2.5)	510 (2.2)	-1 (1.2)
意大利	*	536 (2.1)	537 (2.2)	— (1.0)
哈萨克斯坦共和国		503 (3.0)	504 (2.7)	0 (1.1)
立陶宛		555 (2.5)	552 (2.3)	-3 (1.6)
马耳他		514 (2.8)	515 (2.7)	— (1. 3)
新西兰	*	519 (2.8)	521 (2.3)	2 (1.4)
挪威(5)	*	538 (2.1)	539 (2.0)	一 (1.0)
葡萄牙	*	518 (2.4)	520 (2.3)	2 (1.6)
卡塔尔		483 (4.0)	485 (3.7)	· (1.4)
俄罗斯联邦	*	567 (3.7)	567 (3.6)	0 (1.2)
沙特阿拉伯		446 (3.8)	449 (3.6)	2 (1.8)
新加坡	*	589 (3.1)	587 (3.1)	-2 (0.9) q
斯洛伐克	*	529 (2.8)	529 (2.7)	0 (1.5)
斯洛文尼亚	*	523 (2.2)	520 (1.9)	-4 (1.1) q
西班牙	*	518 (2.3)	521 (2.2)	3 (1.2) p
瑞典	*	544 (2.6)	544 (2.1)	0 (1.3)
阿拉伯联合酋长国		479 (2.0)	483 (1.8)	5 (0.7) p
国际平均水平		527 (0.6)	527 (0.5)	0 (0.3)

图表 11. 29:PIR 1s 2021 digital PIR 1s(中期)和 digital PIRLS with ePIRLS 的平均阅读成绩(续)

国家	digitalPIRLS 平均量表 分数 (不包括 ePIRLS)	具有 ePIRLS 平均 量表评分的数字量 表	差异	
标杆管理参与者				
加拿大阿尔伯塔省	538 (3.5)	539 (3.6)	— (1.7)	
加拿大不列颠哥伦比亚省	533 (3.4)	535 (3.5)	2 (1.5)	
纽芬兰和拉布拉多运河。	524 (3.5)	523 (3.2)	0 (1.6)	
加拿大魁北克	555 (3.1)	551 (2.7)	-4 (1.4)	q
莫斯科市,俄罗斯联邦储备银行。	598 (2.2)	598 (2.1)	0 (1.2)	
阿联酋阿布扎比	435 (4.1)	440 (3.5)	四 (1.4)	р
阿联酋迪拜	549 (1.7)	552 (1.5)	3 (1.2)	р

⁽⁾标准误差出现在括号中。由于四舍五入,一些结果可能会出现不一致。

^{*}参与项目校准的国家。

p表示公布的分数显著高于期中数字分数(α = 0.05)

q表示公布的分数明显低于期中数字分数($\alpha = 0.05$)

图表 11.30:PIRLS 2021 数字 PIRLS (中期) 和带 ePIRLS 的数字 PIR 1s 的平均阅读成绩图

两组结果之间的差异非常小,大多数只有2分或更少。两组成绩结果之间的高度一致提供了证据,证明整合ePIRLS和digitalPIRLS的标度方法是有效的,并提供了与PIRLS阅读框架一致的阅读成绩的总体衡量标准,与以前的PIRLS评估相当。

结论

缩放 PIRLS 2021 成就数据成功地从其 paper PIRLS 和 digital PIRLS 评估中估计了有效和可比的似是而非的值。本章中实施和描述的心理测量方法依赖于过去的方法和经验来衡量论文数据。多组 IRT 模型的使用使 PIRLS 能够找到最适合所有国家的国际项目参数。缩放数字 PIRLS 数据需要小心

考虑任何潜在的模式差异以及 PIRLS 2021 中因新冠肺炎疫情而产生的复杂数据收集条件。

主要成果是成功地将所有 PIRLS 2021 评估数据与 PIRLS 趋势量表联系起来,从而可以直接比较基于纸张和基于计算机的 2021 评估结果,而无需进一步调整。它们也可以与过去的 PIRLS 评估进行可靠的比较。

参考

比顿(1969年)。问卷项目的标准标度。社会经济规划科学,2,355-362。

- Chalmers, R. P. (2012年)。mirt:用于R环境的多维项目反应理论包。 统计软件杂志, 48(6), 1-29。https://doi.org/10.18637/jss.v048.i06
- 新泽西州多伦斯和普汉 (2017年)。理论与实践相结合的分数贡献。在 \mathbf{r} .贝内特和 \mathbf{m} .冯戴维(编辑。),推进人类评估。教育测量与评估方法论。斯普林格,查姆。 $\frac{\text{https:}}{\text{doi.org}}$ 10.1007/978-3-319-58689-2 4
- Foy, p.,, Yin, L. (2017)。缩放 PIRLS 2016 成就数据。在 M. O.马丁, I. V. S.穆利斯和 m. 胡珀(编辑。), PIRLS 2016 中的方法和程序(第12.1-12.38页)。波士顿学院, TIMSS & 皮尔斯国际学习中心。https://timssandpirls.bc.edu/publications/pirls/2016-methods/chapter-12.html
- Glas, C. A. W., & Pimentel, J. (2006年)。项目校准中不可忽略缺失数据过程的建模。(LSAC 研究报告系列;编号 04-07)。宾夕法尼亚州牛顿:法学院入学委员会。
- Haberman, S. J. (2015年)。伪等价群和链接。教育与行为统计杂志,40(3),254-273。https://doi.org/10.3102/1076998615574772
- Kim, S. (2006年)。IRT 固定参数校准方法的比较研究。教育测量杂志,43(4),355-381。http://www.jstor.org/stable/20461835
- M. J. 科林和 R. L. 布伦南(2014年)。测试等值,缩放和链接:方法和实践(第3版。). 纽约:斯普林格科学+商业媒体。
- 利特尔, R. J. A., &鲁宾, D. B. (1987)。缺失数据的统计分析。纽约: J. Wiley & Sons。
- 马丁, M. O., 冯·戴维斯, m., 福伊, p., &穆利斯, I. V. S. (2019)。PIRLS 2021评估设计。在I. V. S. Mullis 和 M.O. Martin(编辑。), PIRLS 2021评估框架。波士顿学院, TIMSS &皮尔斯国际学习中心。https://timssandpirls.bc.edu/pirls2021/frameworks/
- Mislevy, R. J. (1984年)。估计潜在分布。心理测量卡, 49, 359-381。
- Mislevy, R. J. (1991年)。复杂样本中潜在变量的随机化推断。 心理测量卡, 56, 177-196。
- R. J. 米斯莱维和 K. M. 希恩 (1987年)。边际估计程序。在 A. E. 比顿(编辑。),实现新的设计: NAEP 1983-84年技术报告(第15-TR-20号,第293-360页)。新泽西州普林斯顿: 教育测试服务,国家教育进步评估。

- 穆斯塔基和克诺特(2000年)。通过使用具有协变量的潜在变量模型对态度量表中的项目无反应进行加权。皇家 统计学会杂志,163(3),445-459。
- Mullis, I. V. S., & Martin, M. O. (2019)。PIRLS 2021阅读评估框架。在 I. V. S. Mullis 和 M. O. Martin(编辑。), PIRLS 2021评估框架。波士顿学院,TIMSS &皮尔斯国际学习中心。https://timssandpirls.bc.edu/pirls2021/frameworks/
- r核心团队(2020)。r:用于统计计算的语言和环境。奥地利维也纳统计计算基金会。https://www.r-project.org/index.html
- 罗杰士、唐、林、林、康达希尔(2006)。计算机软件。新泽西州普林斯顿:教育考试服务。
- 罗斯, n. 冯·达维尔, m., , 徐, X. (2010)。用项目反应理论(IRT)模拟不可忽略的缺失数据。(ETS 研究报告编号 RR-10-11)。新泽西州普林斯顿:教育考试服务。
- Rose, von Davier, m., & Nagengast, B. (2017)。IRT模型中省略和未达到的建模项目。 *心理计量学, 82(3), 795-819。*
- 鲁宾博士(1976年)。推断和缺失数据。生物计量学,63(3),581-592。https://www.jstor.org/stable/pdf/2335739.pdf____
- 希恩, K. M. (1985)。M-Group:多元模型中群体效应的估计[计算机软件, 3.2 版]。新泽西州普林斯顿:教育考试服务。
- n.托马斯(1993年)。因子似然函数下多元后验矩的渐近修正。计算和图形统计杂志,2309322。
- 淡水河谷公司(1986年)。将项目参数链接到通用标尺。应用心理学测量,10(4),333-344。https://doi.org/10.1177/014662168601000402
- 冯·达维尔博士和贝齐尔汉大学(2022年)。一种鲁棒的大规模项目不匹配检测方法评估。教育和心理测量。https://doi.org/10.1177/00131644221105819
- 四·达维尔, m., 冈萨雷斯, e., &米斯莱维, R. (2009年)。什么是似是而非的价值,为什么有用?在…里米(meter的缩写))冯·戴维斯和d·哈斯泰特(编辑。),IERI专论系列:大规模评估中的问题和方法(第2卷,第9-36页)。检索自 https://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph Volume 02 Chapter 01.pdf
- m. 冯·达维尔和s.辛哈拉伊(2013年)。国际大规模评估中的分析:项目反应理论和人口模型。在 L. Rutkowski、M. von Davier和 D. Rutkowski(编辑)《国际大规模评估手册:背景、技术问题、数据分析方法》(第155-174页)。佛罗里达州博卡拉顿:CRC出版社。
- 四·达维尔(m.)、辛哈赖(s.)、奥兰杰(a.)、比顿(a.)(2006年)。国家教育进步评估中使用的统计程序 (NAEP):最近的发展和未来的方向。在 C. R. Rao & 南辛哈拉伊(编辑。),统计学手册(第 26 卷:心理测量学)。荷兰阿姆斯特丹:爱思唯尔。
- 冯·达维尔, m., &冯·达维尔, A. A. (2007)。IRT 尺度连接和尺度变换的统一方法。方法:欧洲行为和社会科学研究方法杂志, 3(3), 115-124。

附录 11A:PIR 1s 2021 纸同步校准的项目参数

项目	RMS 2016	D	坡度(ai)位置	(bi)猜	测(ci)步	·骤1 (ti1)步骤2	(ti2)步骤3 (t:	i3) 2021		
2016 年发布的项目										
R11F01M	0.022	_	1. 253 (0. 078)	-0.602	(0.055)	0.107 (0.014)				
R11F02M	0.015	_	0.704 (0.047)	-0.846	(0.089)	0. 209 (0. 026)				
R11F03M	0.014	_	1.038 (0.065)	-0.607	(0.077)	0.153 (0.019)				
R11F04M	0.011		1. 353 (0. 050)	-0.756	(0.058)	0.170 (0.018)				
R11F05M	0. 020	_	0.951 (0.062)	-0. 276	(0.119)	0.185 (0.026)				
R11F06C	0.012	_	0.753 (0.054)	-0.082	(0.081)					
R11F07C	0. 023		0.459 (0.034)	0.361	(0.078)		-1.110 (0.147)	1. 110	(0. 147)	
R11F08C	0.032		1. 029 (0. 037)	-0.334	(0.068)					
R11F09C	0.015	_	0. 990 (0. 059)	-0.604	(0. 074)		0.100 (0.039)	-0.100	(0.039)	
R11F10C	0.011	_	0. 790 (0. 067)	-1.508	(0. 170)					
R11F11M	0.011	_	0.631 (0.061)	0.110	(0. 108)	0.175 (0.021)				
R11F12C	0.017	_	0. 635 (0. 030)	0. 572	(0.063)		-0. 402 (0. 095)	0.402	(0.095)	
R11F13M	0.014	_	1.008 (0.064)	-0 . 317	(0.091)	0.193 (0.034)				
R11L01M										
R11L02M										
R11L03C										
R11L04C										
R11L05M										
R11L06C										
R11L07M										
R11L08C										
R11L09M										
R11L10C										
R11L11M										
R11L12C	0,010	- 0.	700 (0.051) 0.405 (U . U917 T	. 002 (0. 09	U) =1,00Z (U,09U)				

R41H01M 0.013 — 0.817 (0.075) -1.108 (0.329) 0.437 (0.159)

R41H02M 0.013 — 1.026 (0.046) -0.748 (0.074) 0.185 (0.033)

项目	邮车	家 D ^仑 2021	斜率(ai)	位置(bi)	猜测(ci)	第一步 (til)	第二步(ti2)	第三步(ti3)
R41H03C	2016 0. 016		1. 143 (0. 066)	0. 194 (0. 053)				
R41H04C	0.017		0.645	1. 626 (0. 159)				
R41H05M	0.009		(0. 056) 0. 876	0. 131 (0. 104)	0. 268 (0. 028)			
D41H06C	0.012		(0. 090) 0. 687	-0.390 (0.083)		0.095 (0.051)	-0. 095	
R41H06C	0.012		(0. 037)	-0.390 (0.063)		0.095 (0.051)	(0. 051)	
R41H07M	0. 021		0.801 (0.055)	0.799 (0.097)	0. 122 (0. 011)			
R41H08C	0.019	_	0.670 (0.039)	1. 472 (0. 106)				
R41H09M	0.017	_	0. 665 (0. 059)	0. 175 (0. 091)	0.161 (0.027)			
R41H10M	0.018	_	1. 218 (0. 047)	-0.240 (0.066)	0. 217 (0. 027)			
R41H11M	0.010	_	1. 253 (0. 049)	-0.677 (0.089)	0. 253 (0. 044)			
R41H12M	0.012	_	1.216 (0.051)	-0.102 (0.070)	0.318 (0.022)			
R41H13C	0.018	_	0.510 (0.030)	0.741 (0.076)		0.158 (0.127)	0.166 (0.116)	-0.323 (0.075)
R41H14C	0.029	_	0. 879 (0. 050)	0. 157 (0. 071)				
R41H15C	0.020	_	1. 205 (0. 041)	-0.455 (0.059)				
R41H16C	0.017	_	0. 916 (0. 048)	0.599 (0.085)				
R41T01M	0.008	_	1.066 (0.044)	-1.087 (0.084)	0. 222 (0. 030)			
R41T02C	0.018	_	0.688 (0.044)	-0.629 (0.085)		0.386 (0.038)	-0.386 (0.038)	
R41T03C	0.014	_	0.955 (0.033)	0.020 (0.054)		0.081 (0.022)	-0.081 (0.022)	
R41T04C	0.007	_	1.090 (0.045)	-0.124 (0.070)				
R41T05M	0.027	_	0.740 (0.072)	0.351 (0.131)	0.244 (0.050)			
R41T06C	0.014	_	1.332 (0.056)	-0.760 (0.066)				
R41T07C	0.020	_	0.745 (0.032)	0.633 (0.057)		-0.221 (0.045)	0. 221 (0. 045)	
R41T08C	0.010	_	1.108 (0.039)	-0.110 (0.072)				
R41T09M	0.023	_	1.263 (0.068)	0.420 (0.068)	0.146 (0.018)			
R41T10C	0.010	_	1.227 (0.047)	-0.370 (0.068)				
R41T11C	0.020	_	0.721 (0.033)	0.504 (0.061)		-0.399 (0.068)	0.315 (0.049)	0.084 (0.059)
R41T12M	0.009	_	0.908 (0.054)	-0.361 (0.148)	0.260 (0.083)			
R41T13M	0.011	_	1.084 (0.054)	0.402 (0.069)	0.110 (0.009)			
R41T14C	0.017	_	0.445 (0.032)	0.012 (0.119)				
R41T15M	0.013	_	0.846 (0.049)	0.231 (0.083)	0.199 (0.027)			
R41T16M	0.023	_	1.119 (0.067)	-0.207 (0.069)	0. 204 (0. 027)			
				2016年和20)21 年常见的项	5目		
RP21K01	0.018	0.025	0.464 (0.035)	-0. 818 (0. 101)		0. 240 (0. 051)	-0.240 (0.051)	
RP21K02	0.026	0.026	0.765 (0.044)	-0.707 (0.091)				
	0.024	0.011	0.875	-0.062	0. 153 (0. 024)			

(0.059) (0.089) RP21K05 0.018 0.026 1.029 (0.049) 0.175 (0.076)

项目	邮车	家 D ^轮 2021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
	2016							
RP21K06 RP21K07	0. 010	0. 025	1. 378 (0. 085) 0. 777	-0. 039 (0. 077) 0. 101 (0. 066)	0. 261 (0. 021)	0. 229 (0. 032)	-0, 229	
M 21KU	0.029	0.000	(0. 043)	0.101 (0.000)		0.229 (0.032)	(0. 032)	
RP21K08	0. 026	0.013	0. 955 (0. 066)	0. 304 (0. 076)	0.150 (0.030)			
RP21K09	0.018	0.024	1. 232 (0. 061)	-0.092 (0.076)	0.198 (0.021)			
RP21K10	0.012	0.019	0.681 (0.035)	0.652 (0.049)		-0. 290 (0. 089)	0.290 (0.089)	
RP21K11	0.017	0.015	1.006 (0.087)	0.018 (0.074)	0.164 (0.027)			
RP21K12	0.023	0.022	0.585 (0.030)	-0.246 (0.071)		0.861 (0.066)	-0. 270 (0. 052)	-0. 591 (0. 046)
RP21Y01	0.020	0.014	1. 077 (0. 058)	0.156 (0.076)	0. 215 (0. 024)			
RP21Y02	0.019	0.013	1.563 (0.062)	-0.265 (0.062)	0. 235 (0. 024)			
RP21Y03	0.039	0.030	0.629 (0.050)	0.481 (0.096)				
RP21Y04	0.021	0.017	1.178 (0.072)	0.021 (0.062)	0.165 (0.021)			
RP21Y05	0.014	0.019	1.582 (0.076)	0.075 (0.075)	0.208 (0.017)			
RP21Y06	0.023	0.016	1.508 (0.063)	0.042 (0.049)	0.183 (0.017)			
RP21Y07	0.030	0.018	0.847 (0.062)	-0.901 (0.074)	0.129 (0.019)			
RP21Y08	0.031	0.012	1.470 (0.051)	-0.177 (0.062)	0. 225 (0. 029)			
RP21Y09	0.020	0.015	1.006 (0.044)	-0.582 (0.065)		0. 221 (0. 024)	-0.221 (0.024)	
RP21Y10	0.027	0.024	0.661 (0.031)	0.537 (0.074)				
RP21Y11	0.014	0.022	1.283 (0.071)	-0.024 (0.055)	0.269 (0.019)			
RP21Y12	0.018	0.012	0.696 (0.029)	0.062 (0.058)		-1.142 (0.124)	1. 142 (0. 124)	
RP21Y13	0.027	0.014	0.757 (0.028)	0.283 (0.059)		0.980 (0.070)	-0.476 (0.081)	-0.504 (0.048
RP21Y14	0.021	0.020	0.547 (0.027)	0.284 (0.067)		-0.561 (0.095)	0.561 (0.095)	
RP31M01	0.013	0.012	1.417 (0.077)	-0. 941 (0. 080)	0.167 (0.026)			
RP31M02	0.011	0.008	1. 221 (0. 055)	-1. 072 (0. 082)				
RP31M03	0.013	0.014	1.189 (0.057)	-0.146 (0.066)	0.200 (0.031)			
RP31M04	0.021	0.019	0.570 (0.051)	0.247 (0.109)				
RP31M05	0.024	0.029	1.266 (0.109)	0.058 (0.065)	0.384 (0.027)			
RP31M06	0.013	0.027	1.077 (0.071)	0.193 (0.079)	0. 252 (0. 020)			
RP31M07	0.030	0.010	1.446 (0.080)	-0. 372 (0. 064)	0.184 (0.019)			
RP31M08	0.021	0.015	1.342 (0.046)	-0. 588 (0. 063)	0.185 (0.031)			
RP31M09	0.038	0.032	0. 678 (0. 035)	-0. 262 (0. 063)		1. 434 (0. 089)	-1.434 (0.089)	
RP31M10	0.042	0.043	0.564 (0.053)	0. 254 (0. 132)				
RP31M11	0.033	0.015	0.855 (0.065)	-0. 807 (0. 120)	0. 203 (0. 038)			
RP31M12	0.021	0.021	1.136 (0.054)	-0.022 (0.066)	0.125 (0.016)			
RP31M13		0.014 & PIR	1.885	-0.784	0.189 (0.020)			

			(0.058)	(0.074)	
RP31M14 (0.024	0.023	1. 992 (0. 069)	-0.334 (0.060)	0.157 (0.013)

福旦	皇家		斜率(ai)	位置(bi)	 猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
项目	邮车 2016	² 2021	新空(81)	<u> 17' = </u> (01)		お 少(い1)	対	<u> </u>
RP31M15	0.016	0.023	1. 233 (0. 083)	-0.138 (0.077)	0. 193 (0. 016)			
RP31M16	0.022	0.035	1.195 (0.046)	-0.066 (0.060)				
RP31M17	0.021	0.020	0.577 (0.030)	-0.157 (0.058)		0.363 (0.058)	0.101 (0.036)	-0.464 (0.043)
RP31W01	0.044	0.044	0.789 (0.038)	-0.547 (0.061)		0.241 (0.038)	-0.241 (0.038)	
RP31W02	0.019	0.032	0.773 (0.032)	0.231 (0.055)		-0.092 (0.038)	0.092 (0.038)	
RP31W03	0.026	0.008	1.309 (0.101)	-0.047 (0.081)	0. 151 (0. 025)			
RP31W04	0.028	0.018	0.856 (0.050)	-0.719 (0.086)				
RP31W05	0.029	0.007	1.160 (0.069)	0.385 (0.073)	0. 243 (0. 021)			
RP31W06	0.026	0.009	0.762 (0.041)	-0.998 (0.133)	0. 169 (0. 027)			
RP31W07	0.017	0.017	0.925 (0.037)	0.487 (0.076)		0.018 (0.031)	0.116 (0.027)	-0.134 (0.029)
RP31W08	0.010	0.016	1. 265 (0. 060)	-0. 214 (0. 074)	0. 240 (0. 026)			
RP31W09	0.025	0.023	0.840 (0.103)	0. 381 (0. 086)	0. 132 (0. 023)			
RP31W10	0.014	0.016	1. 259 (0. 070)	0. 285 (0. 058)	0. 162 (0. 015)			
RP31W11	0.014	0.019	1. 367 (0. 048)	0. 452 (0. 068)				
RP31W12	0.021	0.013	1. 421 (0. 062)	0. 621 (0. 074)	0. 196 (0. 012)			
RP31W13	0. 023	0.016	0. 781 (0. 035)	0.689 (0.069)				
RP41B01	0.009	0.017	0. 747 (0. 056)	-2. 303 (0. 184)				
RP41B02	0.020	0.013	1.078 (0.060)	-1.951 (0.109)	0.157 (0.024)			
RP41B03	0.022	0.019	0.746 (0.064)	-2. 343 (0. 192)	0.167 (0.030)			
RP41B04	0.020	0.015	0.802 (0.041)	-1. 041 (0. 082)				
RP41B05	0.020	0.009	0. 991 (0. 045)	-1. 254 (0. 065)	0.164 (0.027)			
RP41B06	0.018	0. 025	0. 546 (0. 048)	-1. 839 (0. 219)	0. 174 (0. 033)			
RP41B07	0.026	0.019	0. 796 (0. 051)	-1. 050 (0. 112)				
RP41B08	0.017	0.009	0.843 (0.051)	-1. 409 (0. 116)				
RP41B09	0.020	0.010	1. 012 (0. 045)	-0. 948 (0. 087)	0.100 (0.000)			
RP41B10	0.008	0.019	0. 649 (0. 043)	-0. 432 (0. 129)	0. 183 (0. 029)			
RP41B11	0. 020	0.006	1. 022 (0. 059)	-1. 125 (0. 123)	0. 207 (0. 040)			
RP41B12	0.014	0.012	0.845 (0.062)	-1. 917 (0. 123)	0. 182 (0. 038)	0.049	-0.843 (0.069)	
RP41B13	0. 028	0.040	0.502 (0.033)	-1. 130 (0. 115)	0.104 (0.017)	0. 843 (0. 069)	-0.843 (0.069)	
RP41B14	0.022	0.025	1.033 (0.055)	-0. 689 (0. 074)	0. 134 (0. 017)			
RP41B15	0. 028	0.027	0. 351 (0. 027)	0. 310 (0. 116)		0.44= / \		
RP41B16	0.024	0. 026	0. 428 (0. 025)	-0. 190 (0. 077)		0. 147 (0. 052)	-0.147 (0.052)	

RP41B17	0. 026 0. 019	0. 717 (0. 036)	-0. 432 (0. 066)	0. 900
RP41E01	0.020 0.016	0.729 (0.068)	-3.153 (0.159)	
RP41E02	0.030 0.019	0.801 (0.057)	-1.701 (0.155)	

项目	RMS	D	坡度(ai)位置	 (bi)猜测(ci)步	骤1 (ti1)步骤2	(ti2)步骤3	(ti3) 2016 2021	
RP41E03	0.013	0.031	1. 284 (0. 061)	-0.691 (0.101)	0. 251 (0. 036)			
RP41E04	0.008	0.016	1.058 (0.053)	-0.466 (0.086)	0.206 (0.025)			
RP41E05	0.014	0.010	1.266 (0.051)	-1.427 (0.088)	0.178 (0.037)			
RP41E06	0.012	0.026	1.075 (0.071)	-2.186 (0.160)	0.274 (0.068)			
RP41E07	0.027	0.021	0.512 (0.023)	-0.839 (0.091)		0.104 (0.064	-0.104 (0.064)	
RP41E08	0.021	0.006	0.968 (0.061)	-0.909 (0.123)	0.178 (0.032)			
RP41E09	0.023	0.020	0.530 (0.103)	0.396 (0.301)	0.332 (0.071)			
RP41E10	0.030	0.022	0.828 (0.062)	-3.015 (0.155)				
RP41E11	0.026	0.007	1.363 (0.060)	-0.750 (0.080)	0.235 (0.026)			
RP41E12	0.023	0.012	1.128 (0.057)	-2.377 (0.118)				
RP41E13	0.026	0.017	0.516 (0.037)	-0.292 (0.097)				
RP41E14	0.026	0.026	0.458 (0.027)	0.000 (0.089)		1.032 (0.075	5) -1.032 (0.075)	
RP41E15	0.015	0.015	0.770 (0.033)	-2.368 (0.096)				
RP41E16	0.030	0.015	0.782 (0.033)	-0.906 (0.077)				
RP41E17	0.014	0.012	1.117 (0.065)	-0.502 (0.070)	0.146 (0.019)			
RP41I01	0.022	0.010	0. 940 (0. 050)	-1. 355 (0. 114)				
RP41I02	0.030	0.016	0. 954 (0. 072)	0.494 (0.098)	0.149 (0.017)			
RP41I03	0.023	0.023	0.538 (0.022)	0.183 (0.067)		0.413 (0.030	0) -0.413 (0.030)	
RP41I04	0.024	0.025	0.702 (0.025)	0.346 (0.063)		0.476 (0.04)	1) -0.476 (0.041)	
RP41I05	0.030	0.020	1.067 (0.061)	0.041 (0.083)	0.195 (0.035)			
RP41I06	0.032	0.018	1.191 (0.071)	0.451 (0.098)	0.227 (0.027)			
RP41I07	0.016	0.011	0. 961 (0. 033)	0. 424 (0. 045)		0.040 (0.034	4) -0.040 (0.034)	
RP41I08	0.037	0.011	1.568 (0.072)	-0. 574 (0. 073)	0. 226 (0. 035)			
RP41I09	0.034	0.007	1.137 (0.057)	-0. 096 (0. 068)				
RP41I10	0.013	0.018	0. 841 (0. 076)	-0. 004 (0. 110)	0. 168 (0. 030)			
RP41I11	0.028	0.018	0. 864 (0. 038)	0.393 (0.058)		0.443 (0.036	6) -0.443 (0.036)	
RP41I12	0.019	0.016	1.085 (0.048)	0. 190 (0. 053)	0.130 (0.017)			
RP41I13	0.019	0.024	0. 864 (0. 040)	0.177 (0.067)				
RP41I14	0.014	0.011	0. 786 (0. 049)	0.845 (0.070)				
RP41I15	0.023	0.008	0. 858 (0. 043)	0.346 (0.059)				
RP41001	0.015	0.012	0.970 (0.044)	-0.976 (0.095)	0.213 (0.031)			
RP41002	0.010	0.010	0.931 (0.057)	-0.790 (0.063)				
RP41003	0.024	0.027	0.908 (0.056)	0.876 (0.089)				
RP41004	0.020	0.026	0.542 (0.046)	1. 154 (0. 101)		-0.049 (0.074	0.049 (0.074)	
RP41005	0.025	0.030	0.603 (0.032)	0.192 (0.069)		-0.213 (0.074	0.213 (0.074)	

项目	RMS	SD	坡度(ai)位置	(bi)猜测(ci)步	骤1 (ti1)步骤2	(ti2)步骤3	(ti3) 2016 2021	
RP41006	0.011	0.019	1.404 (0.058)	-0.277 (0.067)	0.262 (0.022)			
RP41007	0.033	0.032	0.609 (0.032)	-1.073 (0.076)		0. 217 (0. 039	0.217 (0.039)	
RP41008	0.011	0.027	0.771 (0.049)	-0.106 (0.087)				
RP41009	0.020	0.041	1.128 (0.045)	-0.149 (0.059)				
RP41010	0.026	0.017	0.792 (0.032)	0.321 (0.062)		-0.023 (0.040	0.023 (0.040)	
RP41011	0.026	0.014	1.356 (0.057)	0.118 (0.059)	0.259 (0.026)			
RP41012	0.030	0.012	1.320 (0.061)	-0.308 (0.054)	0.137 (0.018)			
RP41013	0.020	0.020	0.536 (0.040)	0. 347 (0. 064)		-1.189 (0.225	0. 920 (0. 161)	0. 269 (0. 097)
				2021年	推出的产品			
* RP31P01	_	0.010	0. 835 (0. 116)	-0.780 (0.211)	0. 226 (0. 051)			
* RP31P02	_	0.005	1.029 (0.051)	-1.517 (0.182)	0. 195 (0. 015)			
* RP31P03	_	0. 020	0. 788 (0. 074)	-0. 925 (0. 127)		0.507 (0.079	9) -0.507 (0.079)	
* RP31P04		0.009	0. 955 (0. 042)	-2. 082 (0. 177)				
* RP31P05	_	0. 019	1. 228 (0. 068)	-1. 215 (0. 159)	0. 193 (0. 026)			
* RP31P06		0.019	0. 651 (0. 098)	-2. 502 (0. 307)				
* RP31P07		0. 029	0. 733 (0. 070)	-0. 703 (0. 097)				
* RP31P08		0.020	1.064 (0.099)	-1. 378 (0. 211)	0. 196 (0. 028)			
* RP31P09	_	0. 020	1.236 (0.061)	-1. 420 (0. 121)	0. 216 (0. 024)			
* RP31P10	_	0.010	1.101 (0.042)	-1. 432 (0. 114)	0. 192 (0. 015)			
* RP31P11	_	0. 019	0. 749 (0. 065)	-1.064 (0.135)		-0. 263 (0. 143)	0. 263 (0. 143)	
* RP31P12	_	0.030	0.566 (0.114)	-0. 466 (0. 247)				
* RP31P13	_	0.016	1.116 (0.053)	-1.106 (0.111)				
* RP31P14	_	0.011	1.023 (0.047)	-0. 674 (0. 080)				
* RP31U01	_	0.008	0.741 (0.061)	-2.466 (0.183)				
* RP31U02	_	0.011	0.912 (0.063)	-2.296 (0.129)	0.248 (0.016)			
* RP31U03	_	0.008	0.973 (0.060)	-1.510 (0.120)	0.195 (0.019)			
* RP31U04	_	0.020	0.622 (0.100)	-1.504 (0.297)				
* RP31U05	_	0.020	0.935 (0.068)	-1.467 (0.141)	0.199 (0.031)			
* RP31U06	_	0.016	1.043 (0.068)	-1.446 (0.121)	0.181 (0.020)			
* RP31U07	_	0.014	1.060 (0.070)	-0.438 (0.092)	0.172 (0.019)			
* RP31U08	_	0.013	0.986 (0.097)	-0.608 (0.132)	0.183 (0.019)			
* RP31U09	_	0.009	1.074 (0.045)	-1.491 (0.082)	0.214 (0.023)			

* RP31U10	_	0.020	0.724 (0.090)	-0.554 (0.163)	
* RP31U11	_	0.020	0.722 (0.051)	-1.521 (0.081)	0. 204 (0. 120) -0. 204 (0. 120)
* RP31U12	_	0.019	1.070 (0.063)	-1.421 (0.132)	

项目		MSD 62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
* RP31U13	_	0.022	1.172 (0.043)	-1.588 (0.071)	0.169 (0.013)			
* RP31U14	_	0.043	0.522 (0.097)	0.265 (0.180)				
* RP41H01	_	0.010	0.890 (0.043)	-2. 422 (0. 149)				
* RP41H02	_	0.017	1. 082 (0. 048)	-1. 507 (0. 085)	0. 195 (0. 017)			
* RP41H03	_	0.020	0. 671 (0. 087)	-0. 183 (0. 174)	0. 185 (0. 023)			
* RP41H04	_	0.023	0. 747 (0. 084)	-1. 852 (0. 155)	0. 212 (0. 018)			
* RP41H05	_	0.023	1.007 (0.090)	-2. 191 (0. 288)	0. 260 (0. 023)			
* RP41H06	_	0.017	0. 887 (0. 116)	-2. 103 (0. 243)				
* RP41H07	_	0.014	1. 141 (0. 052)	-0. 997 (0. 093)	0. 197 (0. 022)			
* RP41H08	_	0.010	1.051 (0.062)	-0. 849 (0. 123)	0.163 (0.014)			
* RP41H09	_	0.020	1.048 (0.055)	-1. 478 (0. 100)	0.199 (0.020)			
* RP41H10	_	0.008	0. 967 (0. 063)	-0. 912 (0. 091)	0. 203 (0. 027)			
* RP41H11	_	0.010	0. 694 (0. 072)	-1. 649 (0. 194)				
* RP41H12	_	0.022	0. 971 (0. 063)	-1. 079 (0. 102)				
* RP41H13	_	0.008	1. 133 (0. 052)	-1. 195 (0. 094)	0. 175 (0. 025)			
* RP41H14	_	0.030	0.866 (0.143)	-1. 768 (0. 135)				
* RP41H15	_	0.012	0. 922 (0. 056)	-0. 540 (0. 131)	0. 170 (0. 021)			
* RP41H16	_	0.010	1.092 (0.046)	-0. 888 (0. 106)	0. 187 (0. 018)			
* RP41M01	_	0.021	0.636 (0.152)	-2.525 (0.542)	0. 289 (0. 040)			
* RP41M02	_	0.014	1.088 (0.051)	-0.250 (0.133)	0.170 (0.025)			
* RP41M03	_	0.019	0.670 (0.057)	-2.136 (0.172)				
* RP41M04	_	0.014	0.858 (0.109)	-1.086 (0.104)				
* RP41M05	_	0.014	0.821 (0.068)	-2.242 (0.190)	0. 225 (0. 019)			
* RP41M06	_	0.009	0.938 (0.153)	-1.901 (0.596)				
* RP41M07	_	0.007	0.958 (0.064)	-1.133 (0.141)	0. 228 (0. 027)			
* RP41M08	_	0.023	1.067 (0.066)	-2.160 (0.173)				
* RP41M09	_	0.007	0.963 (0.060)	-1.323 (0.099)	0. 208 (0. 034)			
* RP41M10	_	0.009	0.712 (0.103)	-1.789 (0.253)		0.183 (0.085)	-0.183 (0.085)	
* RP41M11	_	0.009	1.080 (0.054)	-0.524 (0.105)	0.180 (0.035)			
* RP41M12	_	0.018	0.804 (0.182)	-1.782 (0.298)				
* RP41M13	_	0.024	1.047 (0.082)	-2.184 (0.207)	0. 203 (0. 034)			
* RP41M14	_	0.019	0.647 (0.039)	-0.641 (0.124)		0.667 (0.146)	0.067 (0.083)	-0.735 (0.094)

* RP41M15	_	0.010	1.034 (0.082)	-0.831 (0.128)	0. 208 (0. 031)
* RP41M16	_	0.009	0.893 (0.093)	-1.542 (0.181)	
* RP41M17	_	0.013	1.132 (0.096)	-0.491 (0.121)	

项目		MSD 62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
* RP41M18	_	0.023	1. 137 (0. 117)	-0.789 (0.114)	0.148 (0.019)			
RP51C01	_	0.022	0.460 (0.106)	0.480 (0.135)		0.096 (0.088)	-0.096 (0.088)	
RP51C02	_	0.011	0. 980 (0. 058)	-0. 786 (0. 089)	0. 167 (0. 021)			
RP51C03	_	0.015	0. 954 (0. 055)	0.538 (0.106)				
RP51C04	_	0.009	0. 978 (0. 062)	-1. 158 (0. 123)	0. 199 (0. 027)			
RP51C05	_	0.021	0. 983 (0. 047)	-0.655 (0.062)		0. 372 (0. 046)	-0.372 (0.046)	
RP51C06	_	0.023	0.595 (0.064)	0.409 (0.141)		-0.065 (0.161)	0.065 (0.161)	
RP51C07	_	0.011	0. 696 (0. 088)	-0. 474 (0. 145)				
RP51C08	_	0.013	0. 877 (0. 061)	-0. 235 (0. 106)	0. 177 (0. 026)			
RP51C09	_	0.023	1. 232 (0. 062)	-1. 018 (0. 097)	0. 162 (0. 016)			
RP51C10	_	0.021	0. 837 (0. 050)	-0. 225 (0. 073)		0.659 (0.077)	-0.659 (0.077)	
RP51C11	_	0.018	0. 943 (0. 063)	-0. 285 (0. 097)	0.158 (0.016)			
RP51C12	_	0.014	1.186 (0.056)	-0. 651 (0. 075)	0. 190 (0. 024)			
RP51C13	_	0.025	0. 867 (0. 053)	-0.011 (0.089)		0.361 (0.056)	-0.361 (0.056)	
RP51C14	_	0.027	0. 934 (0. 067)	0.852 (0.080)		0.176 (0.072)	-0.176 (0.072)	
RP51C15	_	0.020	0. 742 (0. 096)	1. 213 (0. 154)				
RP51D01								
RP51D02								
RP51D03								
RP51D04								
RP51D05								
RP51D06								
RP51D07								
RP51D08								
RP51D09								
RP51D10								
RP51D11								
RP51D12								
RP51D13								
RP51D14								
RP51D15 RP51D16			. 859 (0. 085) 0. 42					

RP51N01	_	0.018	0.949 (0.076)	-0.956 (0.121)		
RP51N02		0.026	0.669 (0.054)	0.088 (0.098)		
RP51N03		0.028	0.962 (0.126)	0.796 (0.199)	0.112	(0.009)

项目	邮	家 D 轮 ₂₀₂₁	斜率(ai)	位置(bi)	猜测(ci)	第一步 (til)	第二步(ti2)第三步(ti3)
RP51N04	2016 —	0.024	0. 716	-0.366 (0.119)			
IN OTHOT		0.021	(0. 074)	0.000 (0.113)			
RP51N05		0.033	0. 765 (0. 077)	0.619 (0.116)			
RP51N06		0.016	0. 770 (0. 046)	0.085 (0.063)		0.034 (0.061)	-0.034 (0.061)
RP51N07	_	0.020	0.609 (0.062)	-0.504 (0.131)	0.206 (0.023)		
RP51N08	_	0.013	0. 907 (0. 109)	0.018 (0.144)	0.179 (0.027)		
RP51N09	_	0.022	0. 827 (0. 134)	0.684 (0.204)		0.054 (0.142)	-0.054 (0.142)
RP51N10	_	0.014	1.179 (0.082)	0.607 (0.096)			
RP51N11		0.015	1.001 (0.088)	0.348 (0.124)			
RP51N12	_	0.022	0.734 (0.054)	0.588 (0.090)			
RP51N13	_	0.017	0. 957 (0. 046)	-0.094 (0.061)		0. 247 (0. 031)	-0. 247 (0. 031)
RP51N14	_	0.019	0.911 (0.101)	0. 953 (0. 134)			
RP51N15	_	0.026	0.768 (0.087)	1.567 (0.174)			
RP51R01	_	0.018	0.759 (0.070)	-1.256 (0.111)	0.170 (0.022)		
RP51R02	_	0.017	0.947 (0.127)	-1.649 (0.342)			
RP51R03	_	0.012	0.763 (0.053)	-3.372 (0.259)			
RP51R04	_	0.021	0.693 (0.055)	-0.395 (0.145)			
RP51R05	_	0.012	0.619 (0.056)	-0.916 (0.128)		-0.303 (0.162)	0. 303 (0. 162)
RP51R06	_	0.010	1.038 (0.064)	-1.291 (0.138)	0. 234 (0. 043)		
RP51R07	_	0.014	0.775 (0.053)	-1.443 (0.159)			
RP51R08	_	0.017	0.783 (0.120)	-0.869 (0.306)	0.308 (0.057)		
RP51R09	_	0.010	1.062 (0.064)	-0.387 (0.110)	0. 194 (0. 035)		
RP51R10	_	0.018	0.919 (0.075)	-0.168 (0.133)	0. 127 (0. 016)		
RP51R11	_	0.009	0.786 (0.106)	-0.836 (0.177)	0.214 (0.021)		
RP51R13	_	0.024	0.473 (0.087)	-0.366 (0.252)			
RP51R14	_	0.017	0.690 (0.096)	-1.441 (0.129)	0.210 (0.029)		
RP51R15	_	0.019	1.132 (0.069)	-0.843 (0.107)			
RP51R16	_	0.038	0.646 (0.100)	-0.418 (0.242)			
RP51R17		0.018	0.718 (0.085)	-0.549 (0.122)		0.606 (0.062)	-0.606 (0.062)
RP51T01	_	0.019	0. 900 (0. 091)	-2. 144 (0. 202)			
RP51T02	_	0.024	0.766 (0.059)	0.515 (0.117)	0.175 (0.024)		
RP51T03	_	0.015	0. 743 (0. 079)	-0. 946 (0. 148)	0.197 (0.018)		
RP51T04	_	0.025	0. 733 (0. 056)	-0. 420 (0. 193)			

RP51T05	_	0.015	0.559 (0.084)	-0. 160 (0. 113)	-0. 122 (0. 092) 0. 122 (0. 092)
RP51T06	_	0.017	1. 219 (0. 062)	-0.718 (0.073)	0. 169 (0. 016)
RP51T07	_	0.014	1.183 (0.050)	-0.558 (0.071)	0. 167 (0. 026)

	<u> </u>	→ D —					
项目	邮车	家 D ^仑 2021	斜率(ai)	位置(bi)	猜测(ci)	第一步(ti1)	第二步(ti2)第三步(ti3)
DD 51 700	2016	0.010	1 005 (0 051)	1 004 (0 000)	0.100 (0.010)		
RP51T08		0.012	· · · · · · · · · · · · · · · · · · ·	-1. 234 (0. 099)	0. 196 (0. 019)		
RP51T09	_	0.026	0. 777 (0. 063)	-0. 384 (0. 134)	0. 198 (0. 020)		
RP51T10	_	0.020	0.991 (0.057)	-0.260 (0.077)			
RP51T11	_	0.023	0.761 (0.065)	-0.718 (0.065)		-0. 699 (0. 124)	0. 699 (0. 124)
RP51T12	_	0.034	0.789 (0.116)	-0.461 (0.151)			
RP51T13	_	0.032	0. 814 (0. 059)	0.488 (0.085)		0.731 (0.113)	-0.731 (0.113)
RP51T14	_	0.014	1.014 (0.047)	0.001 (0.057)			
RP51T15	_	0.031	0. 747 (0. 052)	0. 218 (0. 078)		0.692 (0.093)	-0.692 (0.093)
RP51T16	_	0.021	0. 798 (0. 067)	0.360 (0.086)		0.411 (0.087)	-0.411 (0.087)
RP51Z01	_	0.019	0. 383 (0. 132)	-0. 911 (0. 387)		0. 478 (0. 153)	-0.478 (0.153)
RP51Z02	_	0.011	0.676 (0.100)	-1. 293 (0. 190)			
RP51Z03	_	0.022	1. 163 (0. 088)	-0. 289 (0. 119)	0. 123 (0. 022)		
RP51Z04	_	0.009	1. 082 (0. 078)	-0.743 (0.087)	0. 224 (0. 037)		
RP51Z05	_	0.022	0.814 (0.133)	0.005 (0.139)			
RP51Z06	_	0.009	0.748 (0.085)	-1.596 (0.171)		0.087 (0.100)	-0.087 (0.100)
RP51Z07	_	0.015	1.135 (0.046)	-1.398 (0.089)			
RP51Z08	_	0.017	1.212 (0.097)	-0.716 (0.166)	0.147 (0.017)		
RP51Z09	_	0.027	0.828 (0.130)	0. 120 (0. 161)			
RP51Z10	_	0.009	1.059 (0.046)	-0.876 (0.071)			
RP51Z11	_	0.015	0.879 (0.084)	-1.213 (0.142)			
RP51Z12	_	0.013	0.837 (0.076)	-0.689 (0.108)		0.078 (0.096)	-0.078 (0.096)
RP51Z13	_	0.025	1. 208 (0. 088)	-1.035 (0.185)	0.152 (0.014)		
RP51Z14	_	0.024	0.435 (0.038)	-0.946 (0.133)		-0.425 (0.154)	-0.054 (0.127) 0.479 (0.160
RP51Z15	_	0.021	0.856 (0.067)	-0.324 (0.083)			
				无反	反应指标		
RPCRINF	0.032	0.015	1.579 (0.203)	0.510 (0.083)	0.519 (0.037)		
RPCRLIT	0.028	0.017	1.418 (0.146)	0.208 (0.101)	0.527 (0.041)		
rpmcinfo	0.007	0.011	1. 381 (0. 162)	0.393 (0.084)	0.802 (0.011)		
RPMCLIT	0.018	0.012	1. 263 (0. 130)	-0. 058 (0. 118)	0.807 (0.014)		
RPCRRSI	0.026	0.019	1.739 (0.207)	0.136 (0.099)	0.574 (0.041)		
RPCRIIE	0.035	0.014	1.495 (0.162)	0.490 (0.074)	0.445 (0.036)		
RPMCRSI	0.022	0.013	1.443 (0.163)	0.192 (0.092)	0.766 (0.014)		
RPMCIIE	0.004	0.011	1.465 (0.163)	0.153 (0.093)	0.782 (0.013)		

⁽⁾标准误差出现在括号中。

^{* 2011}年或2016年为PIRLS扫盲开发的段落中的项目,但在2021年被视为新内容。

附录 11BPIRLS 2021 数字和 e PIRLS 项目校准的项目参数

根据 PIRLS 2021 数字校准估计的纸张项目参数。用于链接纸质评估和数字评估。

项目	RMSI)	坡度(ai)位置	(bi)猜测(ci)步驱	骤1(ti	1)步骤2	(ti2)步骤3	(ti3) 201	6 2021	
				2016年	发布的	项目				
R11F01M	0.020	_	1.267 (0.080)	-0.811 (0.066)	0.109	(0.014)				
R11F02M	0.012	_	0.720 (0.051)	-1. 029 (0. 102)	0. 219	(0.029)				
R11F03M	0.013	_	1.053 (0.067)	-0. 811 (0. 088)	0. 157	(0.020)				
R11F04M	0.009	_	1. 363 (0. 053)	-0. 963 (0. 078)	0. 174	(0.019)				
R11F05M	0.017	_	0. 972 (0. 064)	-0. 478 (0. 142)	0. 191	(0.028)				
R11F06C	0.016	_	0.765 (0.056)	-0. 298 (0. 090)						
R11F07C	0.024	_	0.465 (0.035)	0. 137 (0. 082)			-1. 094 (0. 146)	1.094	(0. 146)	
R11F08C	0.029	_	1.043 (0.041)	-0. 547 (0. 077)						
R11F09C	0.012	_	1.002 (0.062)	-0. 817 (0. 087)			0.099 (0.03	8) -0.099	(0.038)	
R11F10C	0.010	_	0. 797 (0. 068)	-1. 713 (0. 176)						
R11F11M	0.013	_	0.650 (0.066)	-0. 085 (0. 114)	0. 185	(0.024)				
R11F12C	0.019	_	0. 643 (0. 032)	0.346 (0.068)			-0. 397 (0. 094)	0.397	(0.094)	
R11F13M	0.011	_	1.028 (0.068)	-0. 520 (0. 101)	0. 199	(0.036)				
R11L01M										
R11L02M										
R11L03C										
R11L04C										
R11L05M										
R11L06C										
R11L07M										
R11L08C										
R11L09M										
R11L10C										
R11L11M										
R11L12C	U. U18	- 0.	(14 (U. UDS) U. 181 (U	. 091) 1. 050 (0. 091)	-1.050	(0.091)				

R41H01M 0.009 — 0.844 (0.082) -1.242 (0.359) 0.457 (0.169)

R41H02M 0.011 — 1.047 (0.047) -0.931 (0.086) 0.192 (0.036)

根据 PIRLS 2021 数字校准估计的纸张项目参数。用于链接纸质评估和数字评估。

项目	RMS 2016		斜率(ai)	位置(bi)	猜测(ci)	第一步 (til)	第二步(ti2)	第三步(ti3)
R41H03C	0.012	_	1. 167 (0. 069)	-0.016 (0.056)				
R41H04C	0.024	_	0.664 (0.058)	1.379 (0.158)				
R41H05M	0.009	_	0.911 (0.093)	-0.056 (0.095)	0. 277 (0. 029)			
R41H06C	0.011	_	0.699 (0.040)	-0.591 (0.089)		0.093 (0.050)	-0.093 (0.050)	
R41H07M	0.027	_	0.832 (0.058)	0.585 (0.093)	0.127 (0.012)			
R41H08C	0.026	_	0.690 (0.042)	1. 229 (0. 102)				
R41H09M	0.017	_	0.691 (0.063)	-0.013 (0.099)	0.169 (0.030)			
R41H10M	0.013	_	1.247 (0.048)	-0.432 (0.067)	0.222 (0.027)			
R41H11M	0.007	_	1. 274 (0. 052)	-0.865 (0.085)	0.259 (0.048)			
R41H12M	0.010	_	1.250 (0.051)	-0.293 (0.076)	0.324 (0.022)			
R41H13C	0.017		0.519 (0.031)	0.520 (0.073)		0.154 (0.124)	0.163 (0.114)	-0.317 (0.074)
R41H14C	0.031		0.898 (0.053)	-0.051 (0.072)				
R41H15C	0.015	_	1. 225 (0. 045)	-0.654 (0.078)				
R41H16C	0.022	_	0.937 (0.053)	0.382 (0.083)				
R41T01M	0.006	_	1.080 (0.047)	-1.270 (0.092)	0. 229 (0. 032)			
R41T02C	0.016	_	0.699 (0.047)	-0.827 (0.092)		0.380 (0.039)	-0.380 (0.039)	
R41T03C	0.011	_	0.972 (0.035)	-0.187 (0.065)		0.079 (0.022)	-0.079 (0.022)	
R41T04C	0.008	_	1.112 (0.046)	-0.327 (0.074)				
R41T05M	0.025	_	0.774 (0.077)	0.164 (0.143)	0. 254 (0. 052)			
R41T06C	0.010	_	1.346 (0.060)	-0.955 (0.084)				
R41T07C	0.020	_	0.759 (0.032)	0.415 (0.065)		-0.217 (0.044)	0. 217 (0. 044)	
R41T08C	0.014	_	1.130 (0.041)	-0.313 (0.077)				
R41T09M	0.021	_	1.301 (0.069)	0.211 (0.065)	0.149 (0.019)			
R41T10C	0.006	_	1. 247 (0. 048)	-0.569 (0.075)				
R41T11C	0.019	_	0.734 (0.035)	0.288 (0.061)		-0.392 (0.067)	0.309 (0.048)	0.083 (0.057)
R41T12M	0.010	_	0.937 (0.059)	-0.537 (0.152)	0. 271 (0. 091)			
R41T13M	0.012	_	1.118 (0.055)	0.194 (0.067)	0.113 (0.009)			
R41T14C	0.019	_	0.455 (0.035)	-0.194 (0.119)				
R41T15M	0.013	_	0.879 (0.050)	0.039 (0.085)	0. 207 (0. 028)			
R41T16M	0.018	_	1.148 (0.069)	-0.399 (0.078)	0. 210 (0. 028)			
				2016年和20)21 年常见的项	間		
RP21K01	0.015	0.020	0.468 (0.036)	-1. 035 (0. 107)		0.239 (0.050)	-0.239 (0.050)	
RP21K02	0.027	0.023	0. 772 (0. 046)	-0. 924 (0. 101)				
RP21K03	0.021	0.010	0.892 (0.061)	-0. 273 (0. 089)	0. 159 (0. 026)			
RP21K05	0.018	0.020	1.039 (0.048)	-0. 051 (0. 090)				

项目		ISD 62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
RP21K06	0.011	0.019	1.406 (0.087)	-0.252 (0.084)	0. 267 (0. 021)			
RP21K07	0.026	0.026	0.781 (0.044)	-0.125 (0.084)		0. 227 (0. 032)	-0. 227 (0. 032)	
RP21K08	0.023	0.018	0.973 (0.071)	0.085 (0.090)	0.154 (0.030)			
RP21K09	0.013	0.018	1.249 (0.067)	-0.308 (0.092)	0.202 (0.021)			
RP21K10	0.013	0.021	0.690 (0.037)	0.421 (0.058)		-0. 286 (0. 088)	0. 286 (0. 088)	
RP21K11	0.015	0.013	1.025 (0.092)	-0.197 (0.084)	0.169 (0.027)			
RP21K12	0.021	0.023	0.591 (0.032)	-0.468 (0.078)		0.854 (0.068)	-0. 269 (0. 052)	-0.585 (0.047)
RP21Y01	0.016	0.012	1.098 (0.060)	-0.062 (0.079)	0.220 (0.024)			
RP21Y02	0.013	0.007	1.577 (0.065)	-0.485 (0.077)	0.237 (0.024)			
RP21Y03	0.044	0.031	0.635 (0.053)	0.252 (0.094)				
RP21Y04	0.016	0.015	1.197 (0.075)	-0.198 (0.072)	0.168 (0.022)			
RP21Y05	0.009	0.014	1.610 (0.076)	-0.145 (0.075)	0.210 (0.017)			
RP21Y06	0.017	0.011	1.540 (0.063)	-0.174 (0.061)	0.188 (0.018)			
RP21Y07	0.028	0.018	0.854 (0.064)	-1.117 (0.090)	0.131 (0.020)			
RP21Y08	0.024	0.007	1.487 (0.050)	-0.396 (0.078)	0.228 (0.029)			
RP21Y09	0.017	0.013	1.013 (0.045)	-0.804 (0.083)		0.220 (0.024)	-0.220 (0.024)	
RP21Y10	0.033	0.026	0.669 (0.033)	0.306 (0.072)				
RP21Y11	0.012	0.017	1.312 (0.073)	-0.235 (0.071)	0.276 (0.020)			
RP21Y12	0.016	0.014	0.701 (0.030)	-0.164 (0.071)		-1.134 (0.123)	1.134 (0.123)	
RP21Y13	0.030	0.016	0.762 (0.033)	0.054 (0.075)		0.973 (0.074)	-0.474 (0.081)	-0.499 (0.049)
RP21Y14	0.023	0.020	0.551 (0.028)	0.057 (0.070)		-0.556 (0.094)	0.556 (0.094)	
RP31M01	0.011	0.014	1. 420 (0. 082)	-1. 160 (0. 105)	0.168 (0.027)			
RP31M02	0.007	0.009	1. 224 (0. 054)	-1. 292 (0. 108)				
RP31M03	0.011	0.009	1. 204 (0. 059)	-0. 363 (0. 070)	0. 203 (0. 031)			
RP31M04	0.019	0.019	0. 577 (0. 053)	0.021 (0.107)				
RP31M05	0.019	0. 025	1. 293 (0. 109)	-0. 156 (0. 073)	0. 388 (0. 026)			
RP31M06		0. 023	1.097 (0.074)	-0. 024 (0. 097)	0. 256 (0. 020)			
RP31M07	0.024		1. 457 (0. 082)	-0. 591 (0. 070)	0. 185 (0. 020)			
RP31M08	0.015	0.013	1. 350 (0. 050)	-0. 806 (0. 085)	0. 187 (0. 032)	1 100 (0 005)	1 100 (0 005)	
RP31M09	0. 037	0.032	0. 682 (0. 038)	-0. 486 (0. 072)		1. 423 (0. 095)	-1.423 (0.095)	
RP31M10	0.044	0.041	0.570 (0.055)	0. 027 (0. 128)	()			
RP31M11	0. 028	0.012	0.863 (0.065)	-1. 021 (0. 133)	0. 205 (0. 040)			
RP31M12	0.019	0.020	1. 153 (0. 055)	-0. 242 (0. 076)	0. 127 (0. 017)			
RP31M13	0.010	0.011	1. 882 (0. 062)	-1. 004 (0. 088)	0. 190 (0. 021)			
RP31M14	0.026	0.017	2.003 (0.073)	-0. 554	0. 160 (0. 013)			

(0.074)

项目		ISD 62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
RP31M15	0.018	0.019	1. 248 (0. 085)	-0.357 (0.084)	0.196 (0.016)			
RP31M16	0.026	0.029	1. 207 (0. 048)	-0.289 (0.069)				
RP31M17	0.021	0.020	0.581 (0.032)	-0.381 (0.073)		0.361 (0.058)	0.100 (0.036)	-0.460 (0.044
RP31W01	0.037	0.038	0.796 (0.038)	-0.768 (0.076)		0.240 (0.038)	-0.240 (0.038)	
RP31W02	0.019	0.027	0.781 (0.033)	0.005 (0.065)		-0.090 (0.037)	0.090 (0.037)	
RP31W03	0.020	0.010	1.326 (0.105)	-0.267 (0.086)	0.154 (0.026)			
RP31W04	0.022	0.013	0.864 (0.052)	-0.937 (0.090)				
RP31W05	0.024	0.010	1.185 (0.071)	0.166 (0.079)	0. 247 (0. 021)			
RP31W06	0.021	0.011	0.771 (0.043)	-1.204 (0.137)	0.174 (0.029)			
RP31W07	0.020	0.019	0.932 (0.039)	0. 258 (0. 082)		0.017 (0.031)	0.115 (0.028)	-0.132 (0.029)
RP31W08	0.006	0.011	1. 279 (0. 062)	-0.432 (0.090)	0. 243 (0. 026)			
RP31W09	0.026	0.026	0.859 (0.106)	0.161 (0.089)	0.136 (0.024)			
RP31W10	0.012	0.016	1. 285 (0. 071)	0.064 (0.073)	0.166 (0.015)			
RP31W11	0.020	0.019	1. 384 (0. 053)	0. 224 (0. 075)				
RP31W12	0.025	0.011	1.462 (0.064)	0.395 (0.076)	0. 200 (0. 012)			
RP31W13	0.030	0.021	0.794 (0.036)	0.456 (0.075)				
RP41B01	0.008	0.014	0. 752 (0. 056)	-2. 512 (0. 187)				
RP41B02	0.016	0. 013	1.076 (0.059)	-2. 172 (0. 121)	0. 158 (0. 024)			
RP41B03	0.018	0.017	0. 747 (0. 063)	-2. 558 (0. 199)	0. 169 (0. 028)			
RP41B04	0.014	0. 011	0. 807 (0. 041)	-1. 258 (0. 098)				
RP41B05	0.014	0.007	0. 995 (0. 046)	-1. 473 (0. 092)	0.164 (0.028)			
RP41B06	0.018	0.022	0.551 (0.050)	-2. 046 (0. 242)	0. 176 (0. 031)			
RP41B07	0.019	0.013	0. 801 (0. 049)	-1. 266 (0. 123)				
RP41B08	0.017	0. 007	0. 848 (0. 053)	-1. 625 (0. 137)				
RP41B09	0.013	0.005	1. 017 (0. 045)	-1. 167 (0. 099)				
RP41B10	0.010	0.018	0. 657 (0. 046)	-0. 641 (0. 146)	0. 188 (0. 030)			
RP41B11	0.016	0.007	1. 029 (0. 064)	-1. 332 (0. 149)	0. 215 (0. 043)			
RP41B12	0.012	0.010	0. 848 (0. 063)	-2. 125 (0. 148)	0. 188 (0. 039)			
RP41B13	0. 025	0.036	0.506 (0.034)	-1. 346 (0. 131)		0. 837 (0. 071)	-0.837 (0.071)	
RP41B14	0.024	0.019	1.043 (0.060)	-0. 900 (0. 090)	0.139 (0.018)			
RP41B15	0.027	0.028	0.357 (0.028)	0.083 (0.108)				
RP41B16	0. 023	0.022	0. 431 (0. 027)	-0. 413 (0. 088)		0.146 (0.051)	-0.146 (0.051)	
RP41B17	0.022	0.021	0. 722 (0. 037)	-0. 653 (0. 082)		0. 893 (0. 064)	-0.893 (0.064)	

RP41E01 0. 017 0. 013 0. 726 (0. 067) -3. 385 (0. 184) RP41E02 0. 023 0. 021 0. 801 (0. 055) -1. 926 (0. 187)

项目	RMS	SD	按度(ai)位置	(bi)猜测(ci)步骤	§1 (+i1 <u>) 比嚓 2</u>	(ti2) 	(ti3) 2016 2021	
	0.015	0.094	1. 297 (0. 064)			(012) 19 30 0	(015) 2010 2021	
RP41E03	0.015	0. 024		-0.902 (0.091)	0. 257 (0. 039)			
RP41E04	0.006	0.010	1. 070 (0. 058)	-0.679 (0.091)	0. 211 (0. 026)			
RP41E05 RP41E06	0.010	0.009	1. 261 (0. 053) 1. 063 (0. 073)	-1.653 (0.093)	0. 179 (0. 039)			
RP41E06	0.012	0. 023	0. 516 (0. 024)	-2. 422 (0. 184) -1. 060 (0. 096)	0. 274 (0. 072)	0 104 (0 063)	0 104 (0 062)	
	0.024	0.021			0. 181 (0. 034)	0. 104 (0. 063)	-0.104 (0.063)	
RP41E08 RP41E09	0. 017 0. 024	0. 009 0. 020	0. 972 (0. 064) 0. 580 (0. 116)	-1. 128 (0. 140) 0. 268 (0. 276)	0. 360 (0. 067)			
RP41E09	0. 024	0.020	0. 822 (0. 064)	-3. 252 (0. 186)	0.300 (0.007)			
RP41E11	0.025		1. 365 (0. 063)	-0. 970 (0. 098)	0. 237 (0. 026)			
RP41E11	0.019	0. 006 0. 012	1. 113 (0. 060)	-0. 970 (0. 098) -2. 616 (0. 163)	0. 237 (0. 026)			
RP41E12	0. 021	0. 012	0. 521 (0. 037)	-2. 616 (0. 163) -0. 514 (0. 101)				
			0. 461 (0. 029)	-0. 227 (0. 106)		1. 024 (0. 078)	_1 094 (0 079)	
RP41E14 RP41E15	0. 030 0. 014	0. 029 0. 012	0. 461 (0. 029)	-0. 227 (0. 106) -2. 592 (0. 126)		1.024 (0.078)	-1.024 (0.078)	
RP41E16	0.014	0. 012	0.786 (0.038)	-2. 392 (0. 120) -1. 127 (0. 102)				
RP41E17	0.024	0. 012	1. 125 (0. 067)	-0.720 (0.086)	0.148 (0.019)			
RP41I01	0.012	0.008	0. 945	-1. 570	0.140 (0.013)			
WI 41101	0.010	0,000	(0. 050)	(0. 124)				
RP41I02	0. 037	0.014	0. 975 (0. 075)	0. 274 (0. 090)	0. 153 (0. 018)			
RP41I03	0.024	0.026	0.543 (0.025)	-0. 042 (0. 071)		0.410 (0.031) -0.410 (0.031	.)
RP41I04	0.025	0. 031	0. 709 (0. 027)	0.119 (0.068)		0. 472 (0. 043) -0.472 (0.043	3)
RP41I05	0.025	0.016	1. 087 (0. 064)	-0. 175 (0. 090)	0. 199 (0. 036)			
RP41I06	0.028	0.015	1. 220 (0. 073)	0. 230 (0. 100)	0. 230 (0. 027)			
RP41I07	0.017	0. 011	0. 971 (0. 035)	0. 197 (0. 055)		0.039 (0.034) -0.039 (0.034	1)
RP41I08	0.030	0. 014	1.585 (0.072)	-0. 786 (0. 080)	0. 230 (0. 036)			
RP41I09	0. 027	0.008	1.151 (0.059)	-0. 318 (0. 072)				
RP41I10		0.022	0. 856 (0. 078)	-0. 217 (0. 106)	0. 173 (0. 031)	0.400.70.55) 0 400 (0	
RP41I11	0.022	0.019	0. 874 (0. 041)	0. 165 (0. 066)	0.100 (0.010)	0. 439 (0. 038) -0.439 (0.038	3)
RP41I12	0.018	0.015	1. 103 (0. 051)	-0. 030 (0. 069)	0. 132 (0. 018)			
RP41I13	0. 018	0.018	0. 873 (0. 041)	-0. 048 (0. 081)				
RP41I14 RP41I15	0. 015	0.012	0. 798 (0. 051) 0. 870	0. 612 (0. 060)				
			(0. 045)		0.000 (0.000)			
RP41001	0.010	0.011	0.980 (0.046)	-1. 183 (0. 101)	0. 220 (0. 032)			
RP41002	0.010	0.009	0. 937 (0. 058)	-1.010 (0.077)				
RP41003	0.034	0. 028	0. 923 (0. 056)	0.641 (0.087)		0.040 (0.053)	0.040 (0.050)	
RP41004	0.027	0.033	0. 547 (0. 049)	0. 919 (0. 103)		-0.049 (0.073)	0.049 (0.073)	

RP41005 0.026 0.030 0.608 (0.032) -0.034 (0.093) -0.211 (0.073) 0.211 (0.073)

项目	RMS	SD		(bi)猜测(ci)步骤	骤1 (til)步骤2		:i3) 2016 2021	
RP41006	0.005	0.012	1.422 (0.061)	-0.492 (0.085)	0. 266 (0. 022)			
RP41007	0.030	0.031	0.613 (0.035)	-1.291 (0.098)		0. 215 (0. 039)	-0.215 (0.039)	
RP41008	0.010	0.024	0.780 (0.049)	-0.328 (0.098)				
RP41009	0.020	0.035	1.139 (0.049)	-0.371 (0.067)				
RP41010	0.022	0.021	0.797 (0.035)	0.094 (0.070)		-0.023 (0.039)	0.023 (0.039)	
RP41011	0.020	0.014	1.374 (0.058)	-0.103 (0.072)	0.260 (0.026)			
RP41012	0.023	0.013	1.337 (0.065)	-0.525 (0.071)	0.140 (0.018)			
RP41013	0.018	0.019	0.542 (0.041)	0.120 (0.063)		-1.173 (0.222)	0.908 (0.159)	0. 265 (0. 096)
				2021年	惟出的产品			
* RP31P01	_	0.009	0. 855 (0. 116)	-0. 948 (0. 209)	0.238 (0.057)			
* RP31P02	_	0.006	1.018 (0.050)	-1. 715 (0. 198)	0. 201 (0. 016)			
* RP31P03	_	0.019	0. 795 (0. 074)	-1. 126 (0. 130)		0.504 (0.078)	-0.504 (0.078)	
* RP31P04	_	0.010	0. 936 (0. 044)	-2. 300 (0. 189)				
* RP31P05		0.018	1. 213 (0. 070)	-1. 413 (0. 178)	0.197 (0.027)			
* RP31P06	_	0.015	0. 646 (0. 095)	-2. 714 (0. 308)				
* RP31P07	_	0.027	0. 743 (0. 070)	-0. 901 (0. 116)				
* RP31P08		0.020	1.055 (0.099)	-1. 574 (0. 228)	0. 201 (0. 029)			
* RP31P09		0.020	1. 213 (0. 062)	-1. 621 (0. 135)	0. 221 (0. 026)			
* RP31P10		0.011	1.087 (0.042)	-1. 631 (0. 128)	0.197 (0.015)			
* RP31P11		0.016	0. 755 (0. 065)	-1. 264 (0. 145)		-0. 261 (0. 141)	0. 261 (0. 141)	
* RP31P12		0.031	0. 577 (0. 118)	-0. 664 (0. 244)				
* RP31P13		0.014	1.111 (0.053)	-1. 307 (0. 125)				
* RP31P14		0.012	1.030 (0.047)	-0. 872 (0. 092)				
* RP31U01	_	0.006	0.729 (0.060)	-2.691 (0.205)				
* RP31U02	_	0.011	0.886 (0.060)	-2.516 (0.150)	0.257 (0.017)			
* RP31U03	_	0.009	0.964 (0.060)	-1.708 (0.138)	0.202 (0.020)			
* RP31U04	_	0.018	0.625 (0.102)	-1.700 (0.304)				
* RP31U05	_	0.017	0.930 (0.066)	-1.661 (0.162)	0.206 (0.035)			
* RP31U06	_	0.014	1.033 (0.066)	-1.645 (0.137)	0.186 (0.021)			
* RP31U07	_	0.014	1.079 (0.067)	-0.626 (0.103)	0.179 (0.020)			
* RP31U08	_	0.010	1.003 (0.095)	-0.791 (0.146)	0.191 (0.022)			
* RP31U09	_	0.008	1.059 (0.045)	-1.690 (0.100)	0.221 (0.025)			
* RP31U10	_	0.018	0.734 (0.092)	-0.753 (0.167)				

* RP31U11 — 0.016 0.725 (0.052) -1.723 (0.098) 0.204 (0.119) -0.204 (0.119) * RP31U12 — 0.018 1.058 (0.064) -1.628 (0.145)

项目		MSD .62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
* RP31U13	_	0.021	1.147 (0.047)	-1.796 (0.096)	0.173 (0.013)			
* RP31U14	_	0.049	0.538 (0.100)	0.053 (0.171)				
* RP41H01	_	0.008	0. 864 (0. 043)	-2. 665 (0. 165)				
* RP41H02	_	0.017	1.065 (0.051)	-1.714 (0.108)	0. 201 (0. 018)			
* RP41H03	_	0. 026	0.701 (0.089)	-0. 353 (0. 177)	0. 198 (0. 028)			
* RP41H04	_	0.020	0. 744 (0. 083)	-2. 049 (0. 177)	0. 219 (0. 019)			
* RP41H05	_	0.021	0. 974 (0. 093)	-2. 413 (0. 319)	0. 271 (0. 025)			
* RP41H06		0.014	0. 869 (0. 110)	-2. 330 (0. 248)				
* RP41H07	_	0.013	1.138 (0.053)	-1. 193 (0. 099)	0. 204 (0. 024)			
* RP41H08		0.008	1.056 (0.063)	-1. 044 (0. 129)	0. 169 (0. 015)			
* RP41H09		0.019	1.035 (0.055)	-1. 682 (0. 113)	0. 206 (0. 022)			
* RP41H10		0.009	0. 976 (0. 062)	-1. 099 (0. 103)	0. 212 (0. 031)			
* RP41H11	_	0.011	0. 693 (0. 072)	-1. 857 (0. 196)				
* RP41H12		0.022	0. 969 (0. 064)	-1. 286 (0. 123)				
* RP41H13		0.008	1. 123 (0. 051)	-1. 396 (0. 110)	0. 180 (0. 026)			
* RP41H14		0.026	0. 857 (0. 136)	-1. 982 (0. 142)				
* RP41H15		0.014	0. 939 (0. 057)	-0. 728 (0. 143)	0. 177 (0. 024)			
* RP41H16	_	0. 011	1. 097 (0. 046)	-1. 080 (0. 110)	0. 194 (0. 020)			
* RP41M01	_	0.017	0.631 (0.148)	-2.724 (0.548)	0. 299 (0. 046)			
* RP41M02	_	0.014	1. 111 (0. 052)	-0.445 (0.132)	0. 175 (0. 028)			
* RP41M03	_	0.015	0.666 (0.056)	-2. 347 (0. 184)				
* RP41M04	_	0.015	0.861 (0.108)	-1. 289 (0. 122)	0.000 (0.000)			
* RP41M05	_	0.012	0.807 (0.066)	-2. 456 (0. 198)	0. 232 (0. 020)			
* RP41M06	_	0.009	0. 923 (0. 157)	-2.119 (0.628)	0.00= (0.000)			
* RP41M07	_	0.007	0.962 (0.062)	-1. 321 (0. 156)	0. 237 (0. 030)			
* RP41M08	_	0.022	1. 034 (0. 067)	-2. 391 (0. 194)	()			
* RP41M09	_	0.006	0.961 (0.058)	-1.518 (0.111)	0. 216 (0. 036)	, ,	,	
* RP41M10	_	0.008	0.715 (0.104)	-1. 995 (0. 253)		0. 184 (0. 085)	-0.184 (0.085)	
* RP41M11	_	0.008	1. 094 (0. 055)	-0.717 (0.116)	0. 186 (0. 039)			
* RP41M12	_	0.015	0.799 (0.174)	-1. 992 (0. 316)				
* RP41M13	_	0.022	1.012 (0.086)	-2. 411 (0. 243)	0. 210 (0. 036)			
* RP41M14	_	0.020	0.653 (0.039)	-0.849 (0.126)		0.665 (0.144)	0.064 (0.082)	-0.729 (0.093)
* RP41M15	_	0.009	1.043 (0.079)	-1.021 (0.137)	0. 215 (0. 034)			

* RP41M16 — 0.009 0.888 (0.090) -1.750 (0.200) * RP41M17 — 0.013 1.141 (0.094) -0.695 (0.120)

项目		MSD 62021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
* RP41M18	_	0.021	1.141 (0.111)	-0.987 (0.125)	0.152 (0.019)			
RP51C01	_	0.019	0.468 (0.107)	0. 259 (0. 123)		0.095 (0.086)	-0.095 (0.086)	
RP51C02	_	0.010	0. 992 (0. 057)	-0. 979 (0. 096)	0. 172 (0. 022)			
RP51C03	_	0.020	0. 987 (0. 057)	0.317 (0.115)				
RP51C04	_	0.008	0. 982 (0. 062)	-1. 350 (0. 142)	0. 206 (0. 030)			
RP51C05	_	0.018	0. 993 (0. 047)	-0. 862 (0. 081)		0.368 (0.046)	-0.368 (0.046)	
RP51C06	_	0.024	0. 605 (0. 066)	0.189 (0.144)		-0. 064 (0. 158)	0.064 (0.158)	
RP51C07	_	0.011	0. 709 (0. 090)	-0. 677 (0. 146)				
RP51C08	_	0.013	0. 906 (0. 062)	-0. 420 (0. 121)	0.186 (0.029)			
RP51C09	_	0.023	1. 227 (0. 062)	-1. 218 (0. 121)	0.166 (0.016)			
RP51C10	_	0.024	0. 848 (0. 052)	-0. 436 (0. 085)		0.651 (0.076)	-0.651 (0.076)	
RP51C11	_	0.017	0. 966 (0. 063)	-0. 478 (0. 117)	0.165 (0.018)			
RP51C12	_	0.010	1. 197 (0. 056)	-0. 845 (0. 092)	0. 196 (0. 026)			
RP51C13	_	0.028	0. 878 (0. 054)	-0. 225 (0. 096)		0.356 (0.056)	-0.356 (0.056)	
RP51C14	_	0.034	0. 947 (0. 067)	0.626 (0.087)		0. 173 (0. 071)	-0.173 (0.071)	
RP51C15	_	0.030	0.780 (0.103)	0.960 (0.144)				
RP51D01								
RP51D02								
RP51D03								
RP51D04								
RP51D05								
RP51D06								
RP51D07								
RP51D08								
RP51D09								
RP51D10								
RP51D11								
RP51D12								
RP51D13								
RP51D14								

项目	RMSD 20162021	斜率(ai)	位置(bi)	猜测(ci)	第一 步 (til)	第二步(ti2)第三步(ti3)
RP51N04	— 0. 023	0.730 (0.074)	-0.576 (0.125)		() = = ,	
RP51N05	— 0.034	0.790 (0.080)	0.389 (0.122)			
RP51N06	— 0.016	0.779 (0.047)	-0.138 (0.065)		0.033 (0.060)	-0.033 (0.060)
RP51N07	— 0 . 021	0.635 (0.066)	-0.663 (0.148)	0.223 (0.030)		
RP51N08	— 0.012	0.943 (0.110)	-0.176 (0.144)	0.189 (0.030)		
RP51N09	- 0.027	0.839 (0.134)	0.454 (0.204)		0.053 (0.140)	-0.053 (0.140)
RP51N10	— 0.017	1.215 (0.083)	0.379 (0.100)			
RP51N11	— 0.020	1.030 (0.089)	0.127 (0.117)			
RP51N12	— 0.029	0.759 (0.056)	0.358 (0.082)			
RP51N13	— 0.019	0.967 (0.046)	-0.314 (0.076)		0.244 (0.031)	-0.244 (0.031)
RP51N14	— 0 . 027	0.951 (0.105)	0.712 (0.129)			
RP51N15	— 0.038	0.818 (0.093)	1. 286 (0. 165)			
RP51R01	— 0.016	0.762 (0.068)	-1.448 (0.112)	0. 176 (0. 023)		
RP51R02	— 0.016	0.935 (0.128)	-1.863 (0.363)			
RP51R03	— 0.011	0.735 (0.049)	-3.646 (0.270)			
RP51R04	— 0.023	0.703 (0.056)	-0.599 (0.150)			
RP51R05	— 0.011	0.621 (0.058)	-1.124 (0.140)		-0.303 (0.162)	0. 303 (0. 162)
RP51R06	— 0.009	1.032 (0.065)	-1.488 (0.147)	0. 241 (0. 047)		
RP51R07	— 0.010	0.774 (0.052)	-1.649 (0.170)			
RP51R08	— 0 . 015	0.812 (0.116)	-1.008 (0.305)	0.331 (0.061)		
RP51R09	— 0 . 013	1.082 (0.062)	-0.577 (0.109)	0. 201 (0. 038)		
RP51R10	— 0 . 018	0.940 (0.073)	-0.365 (0.141)	0. 132 (0. 017)		
RP51R11	— 0.010	0.801 (0.107)	-1.011 (0.186)	0. 226 (0. 024)		
RP51R13	— 0 . 028	0.482 (0.089)	-0.571 (0.244)			
RP51R14	— 0 . 016	0.696 (0.094)	-1.619 (0.142)	0. 220 (0. 033)		
RP51R15	— 0 . 015	1.130 (0.069)	-1.048 (0.113)			
RP51R16	— 0 . 042	0.656 (0.100)	-0.620 (0.234)			
RP51R17	— 0. 019	0.724 (0.085)	-0.758 (0.125)		0.602 (0.061)	-0.602 (0.061)
RP51T01	- 0.018	0. 884 (0. 088)	-2. 366 (0. 224)			
RP51T02	— 0. 028	0.822 (0.060)	0.320 (0.111)	0.187 (0.028)		
RP51T03	— 0.015	0.760 (0.080)	-1. 117 (0. 146)	0. 208 (0. 021)		
RP51T04	— 0.024	0. 748 (0. 057)	-0. 621 (0. 184)			
RP51T05	— 0.014	0.567 (0.086)	-0. 371 (0. 106)		-0.120 (0.090)	0.120 (0.090)
RP51T06	- 0.018	1. 227 (0. 060)	-0. 913 (0. 082)	0. 174 (0. 017)		
RP51T07	— 0.013	1.199 (0.051)	-0.752 (0.085)	0.173 (0.028)		

项目	RM 2016	SD 52021	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)第三	三步(ti3)
RP51T08	_	0.012	1.065 (0.049)	-1.428 (0.105)	0. 202 (0. 020)			
RP51T09	_	0.028	0.805 (0.065)	-0.559 (0.138)	0. 209 (0. 023)			
RP51T10	_	0.020	1.009 (0.059)	-0.464 (0.077)				
RP51T11	_	0.021	0.770 (0.065)	-0.923 (0.088)		-0. 691 (0. 122)	0.691 (0.122)	
RP51T12	_	0.033	0.804 (0.115)	-0.662 (0.149)				
RP51T13	_	0.036	0.826 (0.060)	0.268 (0.087)		0.720 (0.111)	-0.720 (0.111)	
RP51T14	_	0.016	1.037 (0.049)	-0.207 (0.066)				
RP51T15	_	0.037	0.758 (0.053)	0.002 (0.080)		0.682 (0.091)	-0.682 (0.091)	
RP51T16	_	0.023	0.809 (0.067)	0.142 (0.093)		0.405 (0.086)	-0.405 (0.086)	
RP51Z01	_	0.019	0.386 (0.133)	-1.118 (0.378)		0. 475 (0. 152)	-0.475 (0.152)	
RP51Z02	_	0.009	0.679 (0.100)	-1.495 (0.198)				
RP51Z03	_	0.024	1.179 (0.087)	-0.488 (0.123)	0. 126 (0. 022)			
RP51Z04	_	0.009	1.091 (0.077)	-0.932 (0.102)	0. 232 (0. 040)			
RP51Z05	_	0.025	0.830 (0.138)	-0. 203 (0. 136)				
RP51Z06	_	0.007	0.751 (0.086)	-1.802 (0.172)		0.088 (0.100)	-0.088 (0.100)	
RP51Z07	_	0.014	1.120 (0.046)	-1.609 (0.105)				
RP51Z08	_	0.016	1.214 (0.096)	-0.915 (0.172)	0.151 (0.017)			
RP51Z09	_	0.032	0.845 (0.134)	-0.091 (0.153)				
RP51Z10	_	0.007	1.060 (0.045)	-1.080 (0.083)				
RP51Z11	_	0.012	0.880 (0.084)	-1.417 (0.147)				
RP51Z12	_	0.013	0.842 (0.075)	-0.896 (0.116)		0.077 (0.095)	-0.077 (0.095)	
RP51Z13	_	0.024	1.200 (0.089)	-1.237 (0.200)	0.156 (0.014)			
RP51Z14	_	0.022	0.439 (0.038)	-1.152 (0.141)		-0.419 (0.151)	-0.055 (0.126)	0.475 (0.157)
RP51Z15	_	0.022	0.869 (0.067)	-0.529 (0.082)				
				无质	反应指标			
RPCRINF	0.032	0.015	1.606 (0.200)	0. 284 (0. 079)	0.520 (0.036)			
RPCRLIT	0. 028	0.017	1. 434 (0. 147)	-0. 015 (0. 098)	0. 527 (0. 041)			
rpmcinfo	0.007	0.011	1.400 (0.161)	0.173 (0.080)	0.803 (0.011)			
RPMCLIT	0.018	0.012	1. 275 (0. 128)	-0. 281 (0. 115)	0.807 (0.014)			
RPCRRSI	0.026	0.019	1.760 (0.218)	-0.085 (0.100)	0.575 (0.042)			
RPCRIIE	0.034	0.014	1.518 (0.169)	0.264 (0.073)	0.445 (0.036)			
RPMCRSI	0.022	0.013	1.461 (0.169)	-0.030 (0.093)	0.767 (0.014)			
RPMCIIE	0.004	0.011	1.474 (0.168)	-0.070 (0.094)	0.782 (0.013)			

⁽⁾标准误差出现在括号中。

^{* 2011}年或 2016年为 PIRLS 扫盲开发的段落中的项目,但在 2021年被视为新内容。

	项目	RMSD	斜率	(ai) 位置(b	oi)	猜测	(ci)步骤1	(til)步	骤 2(ti2)步骤 3	(ti3)	
				数	:码产品	项目					
RE21K01	0.016	0.462	(0.037)	-1. 533 (0. 157)			0. 232	(0.090)	-0. 232 (0. 090)		
RE21K02	0.019	0. 728	(0.051)	-0. 955 (0. 124)					(1111)		
RE21K03	0.021	0.852	(0.060)	-0. 373 (0. 115)	0. 161	(0.018)					
RE21K05	0.012	1. 257	(0.066)	0.081 (0.084)							
RE21K06	0.025	1. 312	(0.068)	0.096 (0.080)	0. 222	(0.021)					
RE21K07	0.020	0. 972	(0.053)	0.015 (0.063)			0.046	(0.051)	-0. 046 (0. 051)		
RE21K08	0.015	1.015	(0.059)	0.350 (0.092)	0.120	(0.034)					
RE21K09	0.022	1. 116	(0.050)	-0. 170 (0. 088)	0. 236	(0.029)					
RE21K10	0.022	0. 682	(0.057)	0.713 (0.089)			0. 135	(0. 126)	-0. 135 (0. 126)		
RE21K11	0.015	1.011	(0.071)	-0. 011 (0. 083)	0. 153	(0.021)					
RE21K12	0.015	0. 583	(0.034)	-0. 275 (0. 072)			0. 426	(0.087)	-0. 164 (0. 079)	-0.263 (0.	. 077)
RE21Y01	0.021	0. 943	(0.071)	-0.072 (0.101)	0. 202	(0.019)					
RE21Y02	0.009	1. 337	(0.052)	-0.589 (0.070)	0.155	(0.020)					
RE21Y03	0.028	0.611	(0.049)	0.366 (0.112)							
RE21Y04	0.019	1. 183	(0.075)	-0.145 (0.087)	0.153	(0.021)	1				
RE21Y05	0.020	1.403	(0.058)	-0.299 (0.086)	0.163	(0.018)	1				
RE21Y06	0.020	1.398	(0.067)	-0.311 (0.062)	0.156	6 (0.019)	1				
RE21Y07	0.032	0.804	(0.068)	-0.916 (0.143)	0.155	(0.018)	1				
RE21Y08	0.014	1. 127	(0.065)	-0.551 (0.095)	0. 204	(0.021)	1				
RE21Y09	0.019	1.077	(0.050)	-0.633 (0.070)			0.170	(0.041)	-0.170 (0.041)		
RE21Y10	0.031	0.669	(0.053)	0.318 (0.119)							
RE21Y11	0.020	1. 238	(0.051)	-0.183 (0.070)	0.193	(0.018)					
RE21Y12	0.024	0.679	(0.033)	-0.236 (0.074)			-0.971	(0.209)	0.971 (0.209)		
RE21Y13	0.021	0.831	(0.041)	0.015 (0.072)			1.081	(0.068)	-0.664 (0.063)	-0.418 (0.0	063)
RE21Y14	0.021	0. 513	(0.034)	-0.049 (0.097)			-0.664	(0.136)	0.664 (0.136)		
RE31M01	0.007	1. 173	(0.055)	-1.310 (0.093)	0.180	(0.015)					
RE31M02	0.011	1. 126	(0.052)	-1. 424 (0. 105)							
RE31M03	0.010	0. 946	(0.069)	-0. 495 (0. 106)	0. 194	(0.019)					
RE31M04	0.026	0. 576	(0.063)	0.063 (0.147)							
RE31M05	0.026	0. 985	(0.075)	-0. 393 (0. 127)	0. 347	(0.075)					
RE31M06	0.022	0.833	(0.092)	0.076 (0.176)	0. 233	(0.028)					
RE31M07	0.014	1. 286	(0.054)	-0. 642 (0. 117)	0. 170	(0.017)					

RE31M08	0.013	1. 242 (0. 051)	-0.624 (0.080)	0.142 (0.024)		
RE31M09	0.033	0.936 (0.046)	-0.314 (0.063)		1.244 (0.068)	-1.244 (0.068)

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步	第三步(ti3)
						(ti2)	
RE31M10	0.045	0.846 (0.064)	-0. 077 (0. 106)				
RE31M11	0.016	1.069 (0.055)	-0. 948 (0. 089)	0.150 (0.020)			
RE31M12	0.025	0.908 (0.063)	0.070 (0.070)	0.133 (0.028)			
RE31M13	0.018	1.457 (0.060)	-1.057 (0.089)	0.182 (0.017)			
RE31M14	0.024	1.602 (0.056)	-0.608 (0.068)	0.126 (0.031)			
RE31M15	0.017	1.122 (0.071)	-0.532 (0.099)	0.188 (0.016)			
RE31M16	0.011	1.091 (0.050)	-0. 376 (0. 077)				
RE31M17	0. 022	0.604 (0.042)	-0. 351 (0. 077)		0. 269 (0. 072)	0. 129 (0. 060)	-0.398 (0.059)
RE31P01	0.013	0.995 (0.069)	-0.639 (0.087)	0.164 (0.017)			
RE31P02	0.025	1.117 (0.072)	-1.317 (0.157)	0.223 (0.025)			
RE31P03	0.026	0.720 (0.040)	-1.062 (0.086)		0.442 (0.070)	-0.442 (0.070)	
RE31P04	0.013	1.297 (0.049)	-0.955 (0.072)				
RE31P05	0.012	1.343 (0.064)	-0.792 (0.076)	0.160 (0.019)			
RE31P06	0.013	0.804 (0.063)	-1.181 (0.182)				
RE31P07	0.025	1.045 (0.051)	-0.143 (0.081)				
RE31P08	0.021	1.305 (0.068)	-0.830 (0.104)	0.177 (0.017)			
RE31P09	0.016	1. 289 (0. 058)	-0.382 (0.079)	0.150 (0.022)			
RE31P10	0.016	1.136 (0.053)	-0.673 (0.079)	0.190 (0.016)			
RE31P11	0.014	0.798 (0.043)	-0.200 (0.081)		-0.822 (0.101)	0.822 (0.101)	
RE31P12	0.028	0.920 (0.062)	-0.187 (0.084)				
RE31P13	0.022	1.382 (0.065)	-0.656 (0.069)				
RE31P14	0.029	0.911 (0.055)	-0.138 (0.073)				
RE31U01	0.030	0.616 (0.064)	-2. 177 (0. 203)				
RE31U02	0.008	0. 928 (0. 049)	-1. 969 (0. 159)	0. 251 (0. 034)			
RE31U03	0.014	0.911 (0.073)	-0. 869 (0. 187)	0. 224 (0. 030)			
RE31U04	0.024	0.731 (0.053)	-0. 966 (0. 120)				
RE31U05	0.014	1.224 (0.059)	-1.005 (0.071)	0.147 (0.023)			
RE31U06	0.011	1.246 (0.048)	-0. 832 (0. 085)	0.156 (0.019)			
RE31U07	0. 022	0.980 (0.061)	-0. 228 (0. 088)	0.127 (0.030)			
RE31U08	0.018	1.194 (0.052)	-0. 216 (0. 066)	0.120 (0.033)			
RE31U09	0.013	1. 271 (0. 052)	-1. 144 (0. 085)	0.164 (0.015)			
RE31U10	0.024	0.998 (0.057)	0.069 (0.085)				

RE31U11	0.033	0.819 (0.057)	-0.960 (0.072)		0.206 (0.063)	-0. 206 (0. 063)
RE31U12	0.010	1.124 (0.047)	-1. 345 (0. 082)			
RE31U13	0.018	1.229 (0.053)	-1. 698 (0. 104)	0.193 (0.013)		

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
RE31U14	0.048	0.525 (0.050)	0.149 (0.127)				
RE31W01	0.037	0.578 (0.040)	-1.031 (0.100)		0.155 (0.075)	-0.155 (0.075)	
RE31W02	0.015	0.878 (0.053)	0.158 (0.062)		0.070 (0.043)	-0.070 (0.043)	
RE31W03	0.008	1.324 (0.074)	0.120 (0.069)	0.098 (0.044)			
RE31W04	0.010	1.218 (0.058)	-0.514 (0.067)				
RE31W05	0.012	1.129 (0.056)	0.138 (0.083)	0.142 (0.024)			
RE31W06	0.014	0.900 (0.062)	-0.895 (0.096)	0. 192 (0. 016)			
RE31W07	0.021	0.983 (0.043)	0.478 (0.071)		-0.114 (0.056)	0.165 (0.054)	-0.051 (0.046)
RE31W08	0.019	1. 121 (0. 054)	-0.269 (0.078)	0. 207 (0. 021)			
RE31W09	0.026	1.035 (0.095)	0.387 (0.103)	0.142 (0.024)			
RE31W10	0.019	1.155 (0.062)	0.249 (0.081)	0.130 (0.029)			
RE31W11	0.021	1. 279 (0. 056)	0.341 (0.074)				
RE31W12	0.030	1.159 (0.053)	0.458 (0.083)	0.159 (0.017)			
RE31W13	0.023	0.864 (0.045)	0.564 (0.096)				
RE41B01	0.013	0.790 (0.055)	-2. 076 (0. 143)				
RE41B02	0.014	1.012 (0.065)	-1. 563 (0. 156)	0. 203 (0. 018)			
RE41B03	0.029	0.799 (0.046)	-0. 580 (0. 078)	0.140 (0.024)			
RE41B04	0.017	1.010 (0.054)	-0. 675 (0. 085)				
RE41B05	0.014	1. 122 (0. 046)	-0. 877 (0. 084)	0.145 (0.024)			
RE41B06	0.025	0.800 (0.068)	-0. 785 (0. 159)	0.146 (0.022)			
RE41B07	0.021	0.922 (0.056)	-0. 097 (0. 088)				
RE41B08	0.016	0. 924 (0. 053)	-1. 429 (0. 093)				
RE41B09	0.014	1.058 (0.057)	-0. 347 (0. 076)				
RE41B10	0.019	0.682 (0.070)	-0. 703 (0. 118)	0.189 (0.015)			
RE41B11	0.020	1.091 (0.059)	-0. 927 (0. 081)	0.152 (0.020)			
RE41B12	0.009	0.929 (0.070)	-1. 462 (0. 141)	0. 241 (0. 033)			
RE41B13	0.037	0.687 (0.043)	-0.552 (0.101)		0.534 (0.053)	-0.534 (0.053)	
RE41B14	0.012	1.179 (0.061)	-0. 483 (0. 072)	0.139 (0.026)			
RE41B15	0.036	0.421 (0.048)	0.316 (0.170)				
RE41B16	0.031	0.478 (0.042)	0.132 (0.092)		0.127 (0.082)	-0.127 (0.082)	
RE41B17	0.022	0.778 (0.059)	-0. 311 (0. 087)		0.894 (0.077)	-0.894 (0.077)	
RE41E01	0.017	0.833 (0.064)	-1.771 (0.132)				

RE41E02	0.022	0.897 (0.046)	-0.876 (0.136)	
RE41E03	0.020	1.190 (0.052)	-0.737 (0.083)	0.218 (0.023)
RE41E04	0.016	1.030 (0.050)	-0.372 (0.088)	0.199 (0.021)

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)步骤1	(til)步骤2(ti2)步骤3 (ti3)
RE41E05	0.010	1.335 (0.056)	-0.954 (0.069)	0. 172 (0. 018)		
RE41E06	0.014	1.359 (0.050)	-0.954 (0.067)	0.156 (0.020)		
RE41E07	0.033	0.738 (0.043)	-0.222 (0.070)		-0.143 (0.06	0. 143 (0. 067
RE41E08	0.018	0.860 (0.054)	0.212 (0.096)	0.164 (0.018)		
RE41E09	0.032	0.632 (0.094)	0.067 (0.191)	0. 243 (0. 038)		
RE41E10	0.023	1.127 (0.059)	-1.342 (0.096)			
RE41E11	0.010	1.290 (0.065)	-0.758 (0.096)	0.163 (0.019)		
RE41E12	0.014	1.278 (0.045)	-1.469 (0.082)			
RE41E13	0.048	0.584 (0.048)	0.195 (0.089)			
RE41E14	0.036	0.463 (0.048)	0.567 (0.127)		1.033 (0.11	-1. 033 (0. 114
RE41E15	0.022	1.029 (0.055)	-1.348 (0.081)			
RE41E16	0.016	0.888 (0.046)	-0.576 (0.067)			
RE41E17	0.016	1.170 (0.061)	-0.340 (0.097)	0.138 (0.026)		
RE41H01	0.010	0.664 (0.045)	-2. 585 (0. 177)			
RE41H02	0.013	0.915 (0.058)	-1. 576 (0. 118)	0.200 (0.013)		
RE41H03	0.026	0.830 (0.053)	-0. 123 (0. 123)	0.172 (0.018)		
RE41H04	0.014	0.854 (0.077)	-1. 625 (0. 539)	0.199 (0.013)		
RE41H05	0.018	1. 165 (0. 047)	-1. 908 (0. 121)	0.215 (0.019)		
RE41H06	0.013	1.090 (0.052)	-1. 047 (0. 095)			
RE41H07	0.007	1. 367 (0. 054)	-0. 582 (0. 066)	0.133 (0.028)		
RE41H08	0.010	1.098 (0.063)	-0. 662 (0. 087)	0.201 (0.020)		
RE41H09	0.015	0.872 (0.071)	-1. 206 (0. 254)	0.188 (0.012)		
RE41H10	0.010	1.031 (0.067)	-0. 464 (0. 081)	0.197 (0.019)		
RE41H11	0.015	1.005 (0.044)	-0. 470 (0. 072)			
RE41H12	0. 028	0.893 (0.055)	-1. 305 (0. 134)			
RE41H13	0.015	1. 292 (0. 066)	-0. 509 (0. 103)	0.163 (0.020)		
RE41H14	0.011	1. 129 (0. 074)	-0. 785 (0. 088)			
RE41H15	0.021	1. 102 (0. 062)	-0. 193 (0. 089)	0.172 (0.016)		
RE41H16	0.008	1. 122 (0. 049)	-1. 093 (0. 071)	0.162 (0.016)		
E41I01	0.010	0.748 (0.054)	-2.492 (0.187)			
RE41I02	0.020	0.922 (0.059)	0.347 (0.121)	0.111 (0.037)		
RE41I03	0.024	0.662 (0.037)	0.005 (0.077)		0.340 (0.05	53) -0.340 (0.053

RE41I04	0.029	0.663 (0.035)	-0.029 (0.078)		0.426 (0.055)	-0.426 (0.055)	
RE41I05	0.014	1.099 (0.043)	-0.143 (0.092)	0.141 (0.024)			
RE41I06	0.019	1.071 (0.094)	0.115 (0.113)	0. 187 (0. 014)			

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)步骤1	(til)步骤 2 (til))步骤3 (ti3)	
RE41I07	0.020	1.044 (0.050)	0. 188 (0. 062)		0.049 (0.039)	-0.049 (0.039)	
RE41I08	0.014	1.385 (0.060)	-0.771 (0.074)	0.156 (0.020)			
RE41I09	0.017	1.168 (0.055)	-0.190 (0.069)				
RE41I10	0.014	0.838 (0.059)	-0.137 (0.104)	0.180 (0.017)			
RE41I11	0.020	0.872 (0.059)	0.395 (0.073)		0.496 (0.053)	-0.496 (0.053)	
RE41I12	0.015	1. 173 (0. 072)	0.116 (0.062)	0.107 (0.039)			
RE41I13	0.019	1.044 (0.052)	-0.126 (0.092)				
RE41I14	0.032	0.836 (0.058)	0.666 (0.114)				
RE41I15	0.013	0.938 (0.056)	0.151 (0.077)				
RE41M01	0.024	0.765 (0.124)	-2. 482 (0. 594)	0. 250 (0. 031)			
RE41M02	0.017	0. 923 (0. 068)	-0. 265 (0. 106)	0. 212 (0. 023)			
RE41M03	0.022	0.781 (0.051)	-0. 946 (0. 088)				
RE41M04	0.018	0.809 (0.078)	-1. 260 (0. 102)				
RE41M05	0.016	1. 178 (0. 047)	-1. 581 (0. 103)	0. 213 (0. 023)			
RE41M06	0.036	1.070 (0.050)	-1. 483 (0. 076)				
RE41M07	0.013	0.914 (0.050)	-1.110 (0.116)	0.220 (0.027)			
RE41M08	0.029	1. 208 (0. 058)	-1. 591 (0. 091)				
RE41M09	0.020	1.026 (0.058)	-1. 007 (0. 132)	0.177 (0.015)			
RE41M10	0.023	0.819 (0.048)	-1. 576 (0. 112)		0.431 (0.071)	-0. 431 (0. 071)	
RE41M11	0.013	1.099 (0.063)	-0. 193 (0. 118)	0.174 (0.017)			
RE41M12	0.016	1.005 (0.053)	-1. 219 (0. 100)				
RE41M13	0.037	1. 424 (0. 054)	-1. 349 (0. 078)	0.123 (0.031)			
RE41M14	0.024	0.698 (0.041)	-0.656 (0.084)		0.579 (0.073)	-0. 005 (0. 074)	-0.574 (0.052)
RE41M15	0.041	0. 987 (0. 065)	-0. 297 (0. 107)	0.350 (0.075)			
RE41M16	0.022	1.097 (0.050)	-1. 279 (0. 085)				
RE41M17	0.006	1. 149 (0. 070)	-0. 537 (0. 101)				
RE41M18	0.009	1.031 (0.077)	-1. 014 (0. 126)	0.192 (0.017)			
RE41001	0.017	0. 951 (0. 058)	-1.009 (0.124)	0. 201 (0. 018)			
RE41002	0.014	0.927 (0.062)	-1.044 (0.094)				
RE41003	0.023	0.885 (0.063)	0.685 (0.115)				

RE41004	0.046	0.598 (0.054)	0.574 (0.086)		-0.151 (0.072)	0.151 (0.072)	
RE41005	0.021	0.668 (0.049)	-0.054 (0.104)		-0.225 (0.090)	0.225 (0.090)	
RE41006	0.013	1.313 (0.047)	-0.507 (0.089)	0.170 (0.017)			
RE41007	0.025	0.784 (0.048)	-0.845 (0.091)		0.497 (0.056)	-0.497 (0.056)	
RE41008	0.022	0.896 (0.047)	-0.072 (0.087)				

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)步骤1	(til)步骤 2 (ti2))步骤 3(ti3)	
RE41009	0.027	1. 209 (0. 054)	-0.246 (0.064)				
RE41010	0.019	0.926 (0.049)	0.098 (0.063)		0.194 (0.040)	-0.194 (0.040)	
RE41011	0.012	1.198 (0.054)	0.052 (0.073)	0.131 (0.029)			
RE41012	0.015	1.345 (0.059)	-0.262 (0.064)	0.098 (0.044)			
RE41013	0.019	0.643 (0.045)	0.327 (0.060)		-1.183 (0.257)	0.720 (0.187)	0.463 (0.116)
RE51C01	0.025	0.496 (0.038)	0. 476 (0. 093)		-0.090 (0.100)	0.090 (0.100)	
RE51C02	0.026	0. 824 (0. 054)	-1. 073 (0. 143)	0. 222 (0. 025)			
RE51C03	0.022	1.031 (0.091)	0.552 (0.146)				
RE51C04	0.011	0. 979 (0. 084)	-1. 196 (0. 161)	0.170 (0.013)			
RE51C05	0.014	0.873 (0.046)	-0. 646 (0. 072)		0.190 (0.069)	-0.190 (0.069)	
RE51C06	0.026	0.665 (0.057)	0. 321 (0. 073)		-0.100 (0.085)	0.100 (0.085)	
RE51C07	0.021	0.838 (0.047)	-0.615 (0.088)				
RE51C08	0.013	1.090 (0.062)	-0. 217 (0. 078)	0. 153 (0. 021)			
RE51C09	0.011	1.356 (0.060)	-0. 797 (0. 076)	0.151 (0.021)			
RE51C10	0.020	0.736 (0.061)	-0. 447 (0. 086)		0.626 (0.072)	-0.626 (0.072)	
RE51C11	0.015	1.031 (0.049)	-0. 059 (0. 068)	0.144 (0.024)			
RE51C12	0.012	1. 284 (0. 071)	-0. 393 (0. 118)	0.176 (0.016)			
RE51C13	0.019	0.935 (0.069)	-0. 024 (0. 082)		0.328 (0.054)	-0.328 (0.054)	
RE51C14	0.030	0.953 (0.049)	0.873 (0.058)		0.088 (0.057)	-0.088 (0.057)	
RE51C15	0.025	0.909 (0.119)	0.994 (0.222)				
RE51D01	0.021	0.710 (0.061)	-1.500 (0.121)				
RE51D02	0.025	0.764 (0.072)	0.280 (0.099)	0. 217 (0. 023)			
RE51D03	0.017	0.858 (0.058)	-0.405 (0.102)				
RE51D04	0.005	1. 270 (0. 054)	-0.449 (0.090)	0.142 (0.024)			
RE51D05	0.018	0.943 (0.061)	-0.594 (0.073)	0.138 (0.025)			
RE51D06	0.051	0.701 (0.037)	-0.294 (0.066)		0.593 (0.065)	-0.593 (0.065)	
RE51D07	0.010	1.119 (0.095)	0.249 (0.091)				
RE51D08	0.020	1.130 (0.087)	-0.274 (0.074)	0.130 (0.029)			
RE51D09	0.016	1.073 (0.065)	0.186 (0.128)	0.155 (0.020)			
RE51D10	0.017	0.560 (0.041)	0.185 (0.074)		-1.704 (0.233)	1.704 (0.233)	
RE51D11	0.036	0.706 (0.047)	-0.044 (0.072)		0.479 (0.051)	-0.479 (0.051)	
RE51D12	0.013	0.694 (0.037)	-0.357 (0.067)		0.638 (0.077)	0. 231 (0. 070)	-0.869 (0.081)
RE51D13	0.022	0.858 (0.043)	-0.417 (0.073)				
RE51D14	0.014	1.045 (0.046)	-0.090 (0.099)	0.162 (0.018)			

RE51D15 0.030 0.601 (0.067) 0.920 (0.116) -0.224 (0.204) 0.224 (0.204)

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
RE51D16	0. 023	0.941 (0.068)	0.010 (0.103)				
E51N01	0.013	0.853 (0.055)	-1. 333 (0. 103)				
RE51N02	0. 022	0.637 (0.035)	-0. 017 (0. 075)		0.048 (0.061)	-0.048 (0.061)	
RE51NO3	0.027	0.946 (0.072)	0.785 (0.099)	0.148 (0.021)			
RE51N04	0. 028	0.669 (0.048)	-0. 729 (0. 118)				
RE51N05	0.019	0.865 (0.047)	0.379 (0.109)				
RE51N06	0. 016	0.761 (0.040)	-0. 091 (0. 061)		-0. 037 (0. 042)	0.037 (0.042)	
RE51N07	0. 022	0.602 (0.047)	-0. 748 (0. 163)	0.195 (0.015)			
RE51N08	0.012	1. 023 (0. 053)	-0. 449 (0. 098)	0.178 (0.019)			
RE51N09	0.020	0.881 (0.053)	0.377 (0.076)		0.062 (0.061)	-0.062 (0.061)	
RE51N10	0.020	0.905 (0.062)	0.954 (0.079)				
RE51N11	0.012	1.011 (0.065)	0.167 (0.100)				
RE51N12	0.021	0.704 (0.041)	0.598 (0.099)				
RE51N13	0.015	0.879 (0.050)	-0. 386 (0. 082)		0. 230 (0. 033)	-0.230 (0.033)	
RE51N14	0.016	0.988 (0.073)	0.543 (0.080)				
RE51N15	0.032	0.812 (0.085)	1.003 (0.145)				
RE51R01							
RE51R02							
RE51R03							
RE51RO4							
RE51R05							
RE51R06							
RE51R07							
RE51R08							
RE51R09							
RE51R1C							
RE51R11							
RE51R13							
RE51R14							
RE51R15							
RE51R16							
RE51R17	0 026 0	. 732 (0. 043) -0. 48	3 (0 088) 0 506 (0	0.058) =0.586 (0.0	50)		

PIRLS 2021 数字校准的 digital PIRLS 项目参数。用于评估 digital PIRLS 国家/地区的学生熟练程度,以及ePIRLS 项目。

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(ti1)	第二步(ti2)	第三步(ti3)
RE51T04	0.020	0.817 (0.053)	-0.757 (0.095)				
RE51T05	0.023	0.675 (0.038)	-0. 232 (0. 070)		-0. 224 (0. 056)	0. 224 (0. 056)	
RE51T06	0.009	1.319 (0.051)	-0.612 (0.071)	0.141 (0.026)			
RE51T07	0.010	1. 255 (0. 044)	-0.556 (0.062)	0.160 (0.019)			
RE51T08	0.007	1.135 (0.051)	-1. 121 (0. 089)	0.160 (0.018)			
RE51T09	0.022	0.867 (0.070)	-0. 394 (0. 141)	0.203 (0.023)			
RE51T10	0.012	1.174 (0.055)	-0. 389 (0. 077)				
RE51T11	0.021	0.862 (0.054)	-0. 658 (0. 065)		-0. 617 (0. 088)	0.617 (0.088)	
RE51T12	0.024	0.787 (0.081)	-0. 844 (0. 119)				
RE51T13	0.042	0.796 (0.051)	0. 231 (0. 070)		0.728 (0.075)	-0.728 (0.075)	
RE51T14	0.017	0.984 (0.040)	-0. 015 (0. 073)				
RE51T15	0.027	0.678 (0.037)	0.097 (0.078)		0.605 (0.071)	-0.605 (0.071)	
RE51T16	0.027	0.799 (0.059)	0.203 (0.091)		0.540 (0.076)	-0.540 (0.076)	
RE51Z01	0.025	0.509 (0.038)	-1.108 (0.110)		0.180 (0.094)	-0.180 (0.094)	
RE51Z02	0.030	0.559 (0.047)	-1.899 (0.195)				
RE51Z03	0.013	1.078 (0.053)	-0.238 (0.076)	0.129 (0.029)			
RE51Z04	0.014	1.021 (0.052)	-0.567 (0.078)	0.169 (0.020)			
RE51Z05	0.014	1. 203 (0. 059)	0.162 (0.063)				
RE51Z06	0.014	0.667 (0.041)	-1.647 (0.095)		0.047 (0.091)	-0.047 (0.091)	
RE51Z07	0.019	1.454 (0.051)	-0.945 (0.064)				
RE51Z08	0.023	1.472 (0.057)	-0.494 (0.056)	0.113 (0.037)			
RE51Z09	0.043	0.958 (0.049)	0. 280 (0. 092)				
RE51Z10	0.013	1.218 (0.053)	-0.611 (0.070)				
RE51Z11	0.016	1.321 (0.058)	-0.958 (0.081)				
RE51Z12	0.013	0.941 (0.051)	-0.488 (0.072)		-0.009 (0.056)	0.009 (0.056)	
RE51Z13	0.016	1.175 (0.057)	-0.817 (0.091)	0. 167 (0. 017)			
RE51Z14	0.020	0.558 (0.042)	-0.688 (0.070)		-0.160 (0.129)	-0.016 (0.116)	0.176 (0.103)
RE51Z15	0.021	0.589 (0.059)	-0.462 (0.135)				
			5	无反应指标			
重结晶	0.011	1.626 (0.208)	0.076 (0.078)	0.602 (0.030)			
RECRINF	0.013	1.839 (0.254)	0.381 (0.055)	0.584 (0.024)			
伦克里特	0.003	1. 989 (0. 376)	-0. 165 (0. 143)	0.892 (0.015)			
REMCINF	0.003	2. 259 (0. 609)	0.151 (0.123)	0.898 (0.012)			

RECRRSI	0.011	2. 045 (0. 282)	-0. 045 (0. 081)	0.620 (0.031)
再结晶	0.012	1.636 (0.229)	0.364 (0.060)	0. 528 (0. 026)

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
雷姆克西	0.004	2. 148 (0. 483)	-0. 028 (0. 126)	0.870 (0.015)			
雷姆西耶	0.004	2. 189 (0. 644)	-0.035 (0.166)	0.893 (0.017)			

()标准误差出现在括号中。

使用 PIRLS 2021 数字校准中的固定数字 PIRLS 项目参数,根据 PIRLS 2021 ePIRLS 校准估计 ePIRLS 项目参数。用于评估学生对 digital PIRLS 国家的熟练程度,以及 digital PIRLS 项目。

	项目	RMSD	斜率	(ai)	位置(bi)	猜测((ci)步骤1	(til)步	骤 2(ti	2)步骤 3(ti3)
					e	PIRLS	项目				
E041R01	0.006	0.842	(0.075)	0. 177	(0.126)	0. 187	(0.023)				
E041R02	0.016	0.612	(0.051)		509 147)						
E041R03	0.020	0. 558	(0.036)		490 100)			0. 343	(0.070)	-0.34	3 (0.070)
E041R04	0.013	1. 551	(0.176)	0.755	(0.079)	0.152	(0.015)				
E041R05	0.020	0.504	(0.053)		785 144)						
E041R06	0.015	0. 675	(0.044)		246 093)						
E041R07	0.020	0. 939	(0.054)	0.057	(0.034)				013 027)	0.01	3 (0.027)
E041R08	0.009	0.743	(0.048)	0.330	(0.074)						
E041R09	0.011	0.600	(0.045)		171 069)						
E041R10	0.005	1. 005	(0.068)		371 090)	0. 222	(0.035)				
E041R11	0.010	0.690	(0.043)	0. 225	(0.072)			0. 259	(0.055)	-0.25	9 (0.055)
E041R12	0.006	1. 555	(0.138)		239 055)	0. 249	(0.027)				
E041R13	0.006	0.790	(0.078)	0.102	(0.090)	0. 211	(0.030)				
E041R14	0.006	0.820	(0.044)		275 080)						
E041R15	0.012	1. 302	(0.059)		136 031)						
E041R16	0.017	0.804	(0.050)		174 069)						
E041T01	0.006	0.898	(0.178)	0. 258	(0.117)	0. 270	(0.047)				
E041T02	0.016	0.960	(0.061)	-1.635	(0.107)						
E041T03	0.015	0.681	(0.127)	0. 167	(0.096)	0.159	(0.023)				
E041T04	0.014	1. 195	(0.088)	-0.875	(0.076)	0.188	(0.025)				
E041T05	0.009	0.898	(0.042)	-0.836	(0.045)			0. 252	(0.047)	-0.25	2 (0.047)
E041T06	0.011	0.953	(0.072)	-0.245	(0.064)						
E041T08	0.007	0.753	(0.065)	-0.306	(0.071)						
E041T09	0.012	0. 976	(0.057)	0.749	(0.068)						
E041T10	0.011	1. 103	(0.060)	-0.060	(0.088)						
E041T11	0.018	1.009	(0.061)	-0.612	(0.058)	0.148	(0.019)				
E041T12	0.010	0.608	(0.054)	-1.066	(0. 169)	0. 214	(0.027)				
E041T13	0.007		(0.114)		(0. 105)		(0.039)				
E041T14	0.006		(0.071)		(0.080)						
E041T15	0.014		(0.112)		(0.038)	0. 120	(0.012)				
E041T16	0.010		(0.072)		(0.077)		(0.034)				
E041T17	0.010		(0.090)		(0.075)						
E041T18	0.047		(0.071)		(0.066)						

使用 PIRLS 2021 数字校准中的固定数字 PIRLS 项目参数,根据 PIRLS 2021 ePIRLS 校准估计 ePIRLS 项目参数。用于评估学生对 digital PIRLS 国家的熟练程度,以及 digital PIRLS 项目。

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)	第一步(til)	第二步(ti2)	第三步(ti3)
E041Z01	0.005	0. 987 (0. 122)	-0. 196 (0. 133)	0.296 (0.054)			
E041Z02	0.012	0.584 (0.038)	-0. 188 (0. 085)		-0. 081 (0. 091)	0.081 (0.091)	
E041Z03	0.009	0.800 (0.072)	0.071 (0.119)	0.197 (0.036)			
E041Z04	0.018	0.906 (0.081)	-1. 141 (0. 088)				
E041Z05	0.017	0.560 (0.070)	-0. 422 (0. 142)	0. 175 (0. 015)			
E041Z06	0.007	1. 191 (0. 074)	-0. 181 (0. 042)				
E041Z07	0.011	1.388 (0.120)	-0. 078 (0. 069)	0. 262 (0. 033)			
E041Z08	0.005	1. 163 (0. 137)	-0.009 (0.078)	0. 270 (0. 037)			
E041Z09	0.007	0.614 (0.048)	0.638 (0.134)				
E041Z10	0.010	1.112 (0.100)	0.012 (0.086)	0.176 (0.023)			
E041Z11	0.010	1.382 (0.099)	-0. 807 (0. 081)	0. 244 (0. 037)			
E041Z12	0.010	0.737 (0.047)	-0. 585 (0. 082)				
E041Z13	0.012	1.416 (0.094)	-0. 630 (0. 076)	0. 184 (0. 024)			
E041Z14	0.020	0.811 (0.066)	-0.780 (0.082)		0.326 (0.064)	-0.326 (0.064)	
E041Z15	0.010	1.300 (0.141)	-0. 083 (0. 075)	0. 270 (0. 033)			
E041Z16	0.022	0.819 (0.044)	-0. 289 (0. 051)		0. 227 (0. 040)	-0.227 (0.040)	
E041Z17	0.011	0.700 (0.065)	-0. 005 (0. 104)				
E041Z18	0.006	1.149 (0.096)	0.086 (0.078)	0. 181 (0. 025)			
E041Z19	0.018	1.015 (0.045)	0.349 (0.043)		0.406 (0.032)	-0.406 (0.032)	
E041Z20	0.014	0.893 (0.061)	-0. 240 (0. 048)		0.331 (0.035)	-0.331 (0.035)	
E051001	0.009	1.072 (0.087)	0.010 (0.073)	0.178 (0.026)			
E051002	0.005	1. 225 (0. 162)	-0.679 (0.210)	0.383 (0.085)			
E051003	0.008	1. 128 (0. 269)	-0.051 (0.123)	0.347 (0.060)			
E051004	0.011	0.698 (0.073)	-0.559 (0.120)	0.176 (0.021)			
E051005	0.007	1.086 (0.089)	-0.515 (0.077)				
E051006	0.009	1.035 (0.096)	-0.580 (0.133)	0.244 (0.057)			
E051007	0.007	0.924 (0.108)	-0.099 (0.118)	0.312 (0.039)			
E051008	0.018	0.439 (0.036)	-1.053 (0.110)		-1.119 (0.159)	1.119 (0.159)	
E051009	0.012	1.288 (0.070)	-0.766 (0.045)				
E051010	0.021	0.633 (0.040)	-0.716 (0.060)		0.259 (0.079)	-0.259 (0.079)	
E051011	0.010	0.517 (0.049)	0. 273 (0. 093)				
E051012	0.022	0.451 (0.030)	0.333 (0.099)		0.681 (0.100)	-0.681 (0.100)	

E051013 0.016 0.613 (0.052) -1.018 (0.068) 0.153 (0.055) -0.153 (0.055) E051014 0.013 0.992 (0.153) -0.539 (0.124) 0.266 (0.057)

使用 PIRLS 2021 数字校准中的固定数字 PIRLS 项目参数,根据 PIRLS 2021 ePIRLS 校准估计 ePIRLS 项目参数。用于评估学生对 digital PIRLS 国家的熟练程度,以及 digital PIRLS 项目。

项目	RMSD	斜率(ai)	位置(bi)	猜测(ci)步骤1	(ti1)步骤2 (ti2)步骤3 (ti3)					
E051015	0.013	1.457 (0.165)	1.001 (0.059)	0.082 (0.010)						
E051016	0.008	1.588 (0.171)	0.374 (0.068)	0. 241 (0. 024)						
E051017	0.007	1. 104 (0. 073)	0.477 (0.050)							
E051018	0.020	0.341 (0.034)	0.672 (0.110)		-0.108 (0.090) 0.108 (0.090)					
E051V01	0.010	0.703 (0.150)	0.424 (0.125)	0.213 (0.046)						
E051V02	0.020	1.056 (0.118)	-0. 426 (0. 105)	0. 192 (0. 029)						
E051V03	0.012	0.789 (0.090)	0.430 (0.090)							
E051V04	0.012	0.449 (0.034)	0. 932 (0. 102)		0. 542 (0. 187) -0. 542 (0. 187)					
E051V05	0.005	1.143 (0.146)	-0. 187 (0. 111)	0.349 (0.051)						
E051V06	0.006	0.983 (0.055)	0.067 (0.051)							
E051V07	0.007	1.145 (0.113)	-0. 223 (0. 101)	0. 202 (0. 038)						
E051V08	0.010	1. 953 (0. 137)	0.147 (0.056)	0. 225 (0. 021)						
E051V09	0. 017	0.667 (0.036)	-0. 093 (0. 044)		0. 161 (0. 049) -0. 161 (0. 049)					
E051V10	0.007	0.812 (0.066)	0.814 (0.104)							
E051V11	0.013	1. 311 (0. 087)	-0. 185 (0. 044)	0.141 (0.018)						
E051V12	0.008	0.547 (0.145)	0.618 (0.149)	0.175 (0.035)						
E051V13	0.018	1.466 (0.081)	-1. 590 (0. 072)							
E051V14	0.016	0. 992 (0. 102)	-0. 034 (0. 088)	0. 226 (0. 035)						
E051V15	0.016	0.720 (0.045)	0. 323 (0. 083)		-0.062 0.062 (0.041) (0.041)					
E051V16	0.012	1. 239 (0. 075)	-0. 013 (0. 056)							
E051V17	0.006	0.598 (0.041)	0.683 (0.054)		0. 365 (0. 042) -0. 365 (0. 042)					
E051V18	0.006	1.036 (0.083)	0.431 (0.054)							
E051V19A	0.015	0.708 (0.054)	1.736 (0.134)							
E051V20	0.010	0.910 (0.073)	1.024 (0.073)							
无反应指标										
EOCRPT1	0.005	1.620 (0.254)	0.373 (0.053)	0.462 (0.035)						
EOCRPT2	0.007	1.838 (0.211)	0.370 (0.049)	0.539 (0.027)						
EOMCPT1	0.005	1. 379 (0. 326)	0.052 (0.161)	0.747 (0.032)						
EOMCPT2	0.005	0.667 (0.136)	-0.734 (0.482)	0.653 (0.087)						
EOCRRSI	0.004	1.643 (0.219)	-0.102 (0.081)	0.586 (0.036)						
EOCRIIE	0.008	1.618 (0.178)	0.441 (0.046)	0.435 (0.029)						
EOMCRSI	0.007	0.804 (0.147)	-0. 296 (0. 264)	0.581 (0.061)						
EOMCIIE	0.002	2.787 (0.689)	0.026 (0.092)	0.880 (0.013)						

⁽⁾标准误差出现在括号中。

