2020 CCF 非专业级别软件能力认证第一轮 (CSP-S) 提高级 C++语言试题

认证时间: 2020 年 10 月 11 日 09:30~11:30

+	LA	a stee	who -	er:
写4	主注	原	掛り	W:

- 试题纸共有13页,答题纸共有1页,满分100分。请在答题纸上作答,写 在试题纸上的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍 资料。

-,	单项选择题	(共15题,	每题 2 分,	共计 30 分;	每题有且仅有一个正确选
项)					

项		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, 20 ,20,	4/62 2 // 1	×11 -	77, 474	1,110	1 11/10/20
1.	请选	出以下最大	的数()				
	A.	(550)10	В.	(777) ₈	C.	218	D.	(22F) ₁₆
2.	操作	系统的功能	是()	o.				
	A.	负责外设与	5主机之间(的信息交换				
	В.	控制和管理	胆计算机系统	充的各种硬件	和软件资	源的使用		
	C,	负责诊断机	1器的故障					
	D.	将源程序统	请译成目标	星序				
3.	现有	一段 8 分包	中的视频文	(件, 它的指	放速度	是每秒 24	帧图像,	每帧图像是
	一幅	分辨率为2	048×1024	像素的 32	位真彩色	色图像。译	青问要存储	的段原始无
	压缩	视频, 需要	多大的存	储空间? ()。			
	A.	30G	В.	90G	C.	150G	D.	450G
4.	今有	一空栈 S,	对下列待	进栈的数据	元素序列	a,b,c,d	,e,f依	火进行: 进
	栈,	进栈,出栈	, 进栈,	进栈, 出栈	的操作,	则此操作	完成后,	栈底元素为
	() 。						
	A.	b	В.	а	C.	d	D.	c
5.	将 (2, 7, 10,	18) 分别	別存储到某く	个地址区	间为 0~16	的哈希君	長中,如果
	哈希	函数 h(x)	= (),	将不会产生	上冲突,	其中 a mo	od b表示	a除以b的
	余数		- AD		50.40.4.4504U.U.	#03 #NUCCEDADA		
	\$150 D.S.	x2 mod 11						
	В.	2x mod 1:	ı					
		x mod 11						
			11. 其中	x/2 表示 x/:	2 下取整			

6. 下列哪些问题不能用贪心法精确求解? ()

	C.	敢小生成树四	题!		D. 平	源最短路径回	腿	
7.		n 个顶点,e 夏杂度为(条边的)。	图采用邻接	表存储结	构,进行深	度优先	遍历运算的
	Α.	0(n+e)	В.	$\Theta(n^2)$	C.	Θ(e²)	D.	0(n)
8.		图是指能将顶 句图。那么,						边相连的简
		144		100	C.			122
9.	广度(尤先搜索时,	一定需	要用到的数。	居结构是	().		
	Α.	栈	В.	二叉树	C.	队列	D.	哈希表
10		班学生分组做 就多四人,问题						
	Α.	30 <n<40< td=""><td>В.</td><td>40<n<50< td=""><td>C.</td><td>50<n<60< td=""><td>D.</td><td>20<n<30< td=""></n<30<></td></n<60<></td></n<50<></td></n<40<>	В.	40 <n<50< td=""><td>C.</td><td>50<n<60< td=""><td>D.</td><td>20<n<30< td=""></n<30<></td></n<60<></td></n<50<>	C.	50 <n<60< td=""><td>D.</td><td>20<n<30< td=""></n<30<></td></n<60<>	D.	20 <n<30< td=""></n<30<>
11	接着基	想通过走楼梯 从第 2 层走到 量, 依此类推 从 1 层开始,	第 3 层 , 从第	消耗 20 卡热 k 层走到第	A量,再从 k+1 层消 梯消耗 16	人第3层走3 耗10k卡热	到第 4 月 量 (k>1 至少 要	层消耗 30 L)。如果小 E爬到第几
	A.	14	В.	16	C.	15	D.	13
12		式 a*(b+c)- abc*+d-			ђ () С. ғ		D.	abc+*d-
13	49,000	个4 × 4的棋盘) 种方法。	是中选耳	双不在同一行	也不在同]一列上的两	百个方格	,共有
	A.	60	В.	72	C.	86	D.	64
14	路时, A.	个 n 个顶点、 如果不使用 θ((m + n²) θ((m + n)	堆或其 log n)	它优先队列	进行优化。	, 则其时间 mn + n³)		
15	. 1948 开端。	年,() ;	各热力 含	学中的熵引力	、信息通信	言领域,标志	患着信息	总论研究的

B. 0-1 背包问题

霍夫曼编码问题

Α.

B. 冯・诺伊曼 (John von Neumann)

D. 图灵 (Alan Turing)

欧拉 (Leonhard Euler)

克劳德·香农(Claude Shannon)

A.

C.

二、阅读程序(程序输入不超过数组或字符串定义的范围:判断题正确填v, 错误填x: 除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分) 1. 01 #include <iostream> 02 using namespace std; 03 04 int n; 05 int d[1000]; 06 07 int main() { cin >> n; 98 for (int i = 0; i < n; ++i) 09 10 cin >> d[i]; 11 int ans = -1; 12 for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) 13 14 if (d[i] < d[j]) ans = $\max(ans, d[i] + d[j] - (d[i] & d[j]));$ 15 16 cout << ans; 17 return 0; 18 } 假设输入的 n 和 d[i]都是不超过 10000 的正整数,完成下面的判断题和单 选题: 判断题 n 必须小于 1000, 否则程序可能会发生运行错误。() 2) 输出一定大于等于 0。() 3) 若将第 13 行的"j = 0"改为"j = i + 1",程序输出**可能**会改变。 () 4) 将第 14 行的"d[i] < d[j]"改为"d[i] != d[j]",程序输出**不会**改 变。() 单选题 5) 若输入 n 为 100, 且输出为 127, 则输入的 d[i]中不可能有()。 В. 126 C. 128 A. 127 D. 125

若输出的数大于 Ø,则下面说法正确的是()。
 A. 若输出为偶数,则输入的 d[i]中最多有两个偶数

- B. 若输出为奇数,则输入的 d[i]中至少有两个奇数
- C. 若输出为偶数,则输入的 d[i]中至少有两个偶数
- D. 若输出为奇数,则输入的 d[i]中最多有两个奇数

2.

```
01 #include <iostream>
02 #include <cstdlib>
03 using namespace std;
04
05 int n;
06 int d[10000];
97
08 int find(int L, int R, int k) {
     int x = rand() % (R - L + 1) + L;
09
    swap(d[L], d[x]);
10
    int a = L + 1, b = R;
11
12
    while (a < b) {
13
     while (a < b && d[a] < d[L])
14
        ++a;
     while (a < b && d[b] >= d[L])
15
16
        --b;
17
      swap(d[a], d[b]);
18
     }
19
     if (d[a] < d[L])
20
      ++a;
21
     if (a - L == k)
22
     return d[L];
    if (a - L < k)
23
24
      return find(a, R, k - (a - L));
     return find(L + 1, a - 1, k);
25
26 }
27
28 int main() {
29
    int k;
30
    cin >> n;
31
    cin >> k;
    for (int i = 0; i < n; ++i)
32
33
     cin >> d[i];
    cout << find(0, n - 1, k);
34
35
    return 0;
36 }
```

	假ì	设输入的 n,	k和d[i]	都是不起	时 100	99 f	的正整数	. в	k 不	超过 n	. ¥
個		and()函数产									, ,,,
•		新题	THINE	-J HJ FALL	1987 767	1	IM HAY SE	11/65/11		g,K23 +	
	350000	第9行的"	x"的数值	范围是	L+1 到 R	₹, [即[L+1,	R].	()	
	2)	将第 19 行的	勺 "d[a]"	改为"	d[b]",	程	序不会发	注生运	行错	误。	()
•	单注	先题									
	3)	(2.5 分) "swap"平				递均	曾序列时	, 第 :	17 行	的	
	A	. θ(n log r	n) B. 6	9(n)	C.	0	(log n)		D.	θ(n^2	2)
		(2.5分) 平均执行次			E格单调	递减	戊 序列时	, 第:	17 行	的"sw	ap"
	A	. θ(n^2)	В.	θ(n)		C.	θ(n lo	g n)	D.	0(10	g n)
	5)	(2.5分) 情况下的时				序(1)平均的8	寸间复	[杂度	[和②]	最坏
		θ(n), θ(r			В.	θ	(n), θ(n	log	n)		
	C	. θ(n log r	n), θ(n^2)	D.	θ	(n log n), θ(n lo	g n)	
	6)	(2.5分)	若输入的	d[i]都为	可同一个	数,	此程序	平均的	的时间	可复杂	度是
	A	20120100	В.	θ(log n)	c.	θ(n log	n)	D.	θ(n^2	2)
3.											
	01	#include -	ciostrea	m>							
	02	#include -	(aueue>								
		using name		td:							
	04										
	877	const int	mayl -	2000000	1000						
	06		maxr -	2000000	,,,,,,						
		class Map	1								
	08										
	09		key; in	nt valu	٥.						
	10	- 33.111 MARTIN NAME	Alexander and a second	ic varu	C ,						
	1	int cnt;	200								
	12		(/c+nin=	w) r							
	13										
	14	for (1	nti=6	7; 1 <	cnt; +	+1)					

if (d[i].key == x)

return -1;

return d[i].value;

15

16

17

```
18
    }
    static int end() { return -1; }
19
    void insert(string k, int v) {
20
21
      d[cnt].key = k; d[cnt++].value = v;
22
    }
23 } s[2];
24
25 class Queue {
    string q[maxl];
26
    int head, tail;
27
28 public:
    void pop() { ++head; }
29
    string front() { return q[head + 1]; }
30
    bool empty() { return head == tail; }
31
32
    void push(string x) { q[++tail] = x; }
33 } q[2];
34
35 string st0, st1;
36 int m;
37
38 string LtoR(string s, int L, int R) {
    string t = s;
39
40
    char tmp = t[L];
    for (int i = L; i < R; ++i)
41
42
      t[i] = t[i + 1];
43
    t[R] = tmp;
44
    return t;
45 }
46
47 string RtoL(string s, int L, int R) {
    string t = s;
48
49
    char tmp = t[R];
    for (int i = R; i > L; --i)
50
51
    t[i] = t[i - 1];
52
    t[L] = tmp;
53
    return t;
54 }
55
56 bool check(string st, int p, int step) {
57
    if (s[p].find(st) != s[p].end())
58
      return false;
59
    ++step;
60
    if (s[p ^ 1].find(st) == s[p].end()) {
```

```
s[p].insert(st, step);
61
      q[p].push(st);
62
63
      return false;
64
    }
    cout << s[p ^ 1].find(st) + step << endl;</pre>
65
    return true;
66
67 }
68
69 int main() {
70
    cin >> st0 >> st1;
    int len = st0.length();
71
    if (len != st1.length()) {
72
73
      cout << -1 << endl;
      return 0;
74
75
    }
    if (st0 == st1) {
76
77
      cout << 0 << endl;
78
      return 0;
    }
79
80
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
81
    q[0].push(st0); q[1].push(st1);
82
    for (int p = 0;
83
         !(q[0].empty() && q[1].empty());
84
         p ^= 1) {
85
      string st = q[p].front(); q[p].pop();
86
      int step = s[p].find(st);
87
      if ((p == 0 &&
88
89
            (check(LtoR(st, m, len - 1), p, step)
90
             check(RtoL(st, 0, m), p, step)))
               11
91
92
          (p == 1 \&\&
            (check(LtoR(st, 0, m), p, step) ||
93
             check(RtoL(st, m, len - 1), p, step))))
94
          return 0;
95
96
97
    cout << -1 << endl;
98
     return 0;
99 }
```

● 判断题

1) 输出可能为 0。()

- 2) 若输入的两个字符串长度均为 101 时,则 m=0 时的输出与 m=100 时的输出是一样的。()
- 3) 若两个字符串的长度均为 n,则最坏情况下,此程序的时间复杂度为 θ(n!)。()

单选题

- 4) (2.5分) 若输入的第一个字符串长度由 100 个不同的字符构成,第二个字符串是第一个字符串的倒序,输入的 m 为 0,则输出为()。
 - A. 49
- B. 50
- C. 100
- D. -1
- 5) (4分) 已知当输入为 "0123<u>\n</u>3210<u>\n</u>1" 时输出为 4, 当输入为 "012345<u>\n</u>543210<u>\n</u>1" 时输出为 14, 当输入为
 - "01234567\n76543210\n1"时输出为 28,则当输入为
 - "0123456789ab<u>\n</u>ba9876543210<u>\n</u>1"输出为()。其中"<u>\n</u>"为换行符。
 - A. 56
- B. 84
- C. 102
- D. 68
- 6) (4分)若两个字符串的长度均为 n,且 0<m<n-1,且两个字符串的构成相同(即任何一个字符在两个字符串中出现的次数均相同),则下列说法正确的是()。提示:考虑输入与输出有多少对字符前后顺序不一样。</p>
 - A. 若 n、m 均为奇数,则输出可能小于 0。
 - B. 若 n、m 均为偶数,则输出可能小于 0。
 - C. 若n为奇数、m为偶数,则输出可能小于 0。
 - D. 若n为偶数、m为奇数,则输出**可能**小于0。

三、完善程序(单选题,每小题 3 分,共计 30 分)

 (分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是w_i, 体积是v_i。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的 蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量 大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α ($0<\alpha<1$),并将一块价值是w,体积为v的蛋糕切割成两块,其中一块的价值是 $\alpha \cdot w$,体积是 $\alpha \cdot v$,另一块的价值是 $(1-\alpha) \cdot w$,体积是 $(1-\alpha) \cdot v$ 。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3, B=8, 三块蛋糕的价值分别是 4、4、2, 体积分别是 5、3、2。 那么最优的方案就是将体积为 5 的蛋糕切成两份, 一份体积是 3, 价值是 2.4, 另一份体积是 2, 价值是 1.6, 然后把体积是 3 的那部分和后两块蛋 糕打包进盒子。最优的价值之和是 8.4, 故程序输出 42/5。 输入的数据范围为: $1 \le n \le 1000$, $1 \le B \le 10^5$; $1 \le w_i, v_i \le 100$ 。 提示: 将所有的蛋糕按照性价比 w_i/v_i 从大到小排序后进行贪心选择。 试补全程序。

```
01 #include <cstdio>
02 using namespace std;
03
04 const int maxn = 1005;
05
06 int n, B, w[maxn], v[maxn];
07
08 int gcd(int u, int v) {
    if(v == 0)
09
10
      return u;
11
    return gcd(v, u % v);
12 }
13
14 void print(int w, int v) {
15 int d = gcd(w, v);
16 w = w / d;
17
    v = v / d;
18 if(v == 1)
      printf("%d\n", w);
19
20 else
21
     printf("%d/%d\n", w, v);
22 }
23
24 void swap(int &x, int &y) {
    int t = x; x = y; y = t;
25
26 }
27
28 int main() {
    scanf("%d %d", &n, &B);
29
    for(int i = 1; i <= n; i ++) {
30
31
    scanf("%d%d", &w[i], &v[i]);
32
    }
33
    for(int i = 1; i < n; i ++)
    for(int j = 1; j < n; j ++)
34
        if(1) {
35
          swap(w[j], w[j + 1]);
36
37
          swap(v[j], v[j + 1]);
38
39
    int curV, curW;
```

```
if(2) {
40
41
       (3)
42
    } else {
      print(B * w[1], v[1]);
43
44
      return 0;
45
    }
46
47
    for(int i = 2; i <= n; i ++)
48
       if(curV + v[i] <= B) {
        curV += v[i];
49
50
        curW += w[i];
51
      } else {
52
        print(4);
53
        return 0;
54
      }
55
    print(5);
56
    return 0;
57 }
58
59
1) ①处应填( )
 A. w[j] / v[j] < w[j + 1] / v[j + 1]
 B. w[j] / v[j] > w[j + 1] / v[j + 1]
 C. v[j] * w[j + 1] < v[j + 1] * w[j]
 D. w[j] * v[j + 1] < w[j + 1] * v[j]
2) ②处应填( )
 A. w[1] \leftarrow B B. v[1] \leftarrow B C. w[1] >= B D. v[1] >= B
3) ③处应填( )
 A. print(v[1], w[1]); return 0;
 B. curV = 0; curW = 0;
 C. print(w[1], v[1]); return 0;
 D. curV = v[1]; curW = w[1];
4) ④处应填( )
 A. curW * v[i] + curV * w[i], v[i]
 B. (curW - w[i]) * v[i] + (B - curV) * w[i], v[i]
 C. curW + v[i], w[i]
 D. curW * v[i] + (B - curV) * w[i], v[i]
5) ⑤处应填( )
```

- A. curW, curV B. curW, 1
 C. curV, curW D. curV, 1
- 2. (最优子序列) 取 m = 16,给出长度为n的整数序列 $a_1, a_2, \cdots, a_n (0 \le a_i < 2^m)$ 。对于一个二进制数x,定义其分值w(x)为x + popcnt(x),其中popcnt(x)表示 x 二进制表示中 1 的个数。对于一个子序列b₁,b₂,…,b_k,定义其子序列分值S为w(b₁ \oplus b₂) + w(b₂ \oplus b₃) + w(b₃ \oplus b₄) + ··· + w(b_{k-1} \oplus b_k)。其中 \oplus 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列使得其子序列分值最大,输出这个最大值。

输入第一行包含一个整数 $n(1 \le n \le 40000)$ 。接下来一行包含n个整数 a_1, a_2, \cdots, a_n 。

提示:考虑优化朴素的动态规划算法,将前 $\frac{m}{2}$ 位和后 $\frac{m}{2}$ 位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

```
01 #include <iostream>
02
03 using namespace std;
04
05 typedef long long LL;
96
07 const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 <<
B) - 1;
08 const LL INF = 10000000000000000LL;
09 LL Max[MS + 4][MS + 4];
10
11 int w(int x)
12 {
13 int s = x;
14 while (x)
15 {
16
      (1);
17
      5++;
18
    }
19
    return s;
20 }
21
22 void to_max(LL &x, LL y)
23 {
```

```
24 if (x < y)
25
     x = y;
26 }
27
28 int main()
29 {
30
     int n;
     LL ans = 0;
31
32
     cin >> n;
     for (int x = 0; x \leftarrow MS; x++)
33
     for (int y = 0; y \leftarrow MS; y++)
34
35
         Max[x][y] = -INF;
     for (int i = 1; i <= n; i++)
36
37
38
       LL a;
39
      cin >> a;
       int x = 2, y = a \& MS;
40
41
       LL v = 3;
42
      for (int z = 0; z \leftarrow MS; z++)
        to_max(v, 4);
43
     for (int z = 0; z \leftarrow MS; z++)
44
45
        (5);
46
      to_max(ans, v);
47
48
     cout << ans << endl;
49
     return 0;
50 }
1) ①处应填( )
 A. x >>= 1
 B. x ^= x & (x ^ (x + 1))
 C. x -= x | -x
 D. x ^= x & (x ^ (x - 1))
2) ②处应填( )
                                B. a >> B
A. (a & MS) << B
C. a & (1 << B)
                                D. a & (MS << B)
3) ③处应填( )
 A. -INF
                                B. Max[y][x]
C.
                                D. Max[x][y]
     0
4) ④处应填( )
```

- $\begin{aligned} & \text{Max}[x][z] + \text{w}(y \, ^{\circ} \, z) & \text{B.} & \text{Max}[x][z] + \text{w}(a \, ^{\circ} \, z) \\ & \text{Max}[x][z] + \text{w}(x \, ^{\circ} \, (z \, << \, B)) & \text{D.} & \text{Max}[x][z] + \text{w}(x \, ^{\circ} \, z) \end{aligned}$ A. $Max[x][z] + w(y ^ z)$
- C.

5) ⑤处应填()

- A. to_max(Max[y][z], $v + w(a \land (z \lt B))$)
- B. to_max(Max[z][y], $v + w((x ^ z) << B)$)
- C. to_max(Max[z][y], $v + w(a \wedge (z << B)))$
- D. $to_{max}(Max[x][z], v + w(y ^ z))$

2020 CCF 非专业级别软件能力认证第一轮

(CSP-S) 提高级 A 卷参考答案

一、单项选择题(共10题,每题2分,共计30分)

1	2	3	4	5	6	7	8	9	10
С	В	В	В	D	В	Α	Α	С	С
11	12	13	14	15	2	Å4	•	<u> </u>	
C	D	В	D	С	M				

二、阅读程序(除特殊说明外,判断题 1.5 分,单选题 3 分,共计 40 分)

第1题		判断题	(填√或×)	单选题				
	1)	2)	3)	4)	5)	6)		
	×	×	√	√	С	С		
	判断题(生	真√或×)		单注	单选题			
第2题	1)	2)	3) (2.5分)	4) (2.5分)	5) (2.5分)	6) (2.5分)		
	×	√	均对1	В	Α	D		
	判例	判断题(填√或×)			单选题			
第3题	1)	2)	3)	4) (2.5分)	5) (4分)	6) (4分)		
	√	×	×	D	D	С		

三、完善程序(单选题,每小题3分,共计30分)

1.	第1题					y .	第2题		
1)	2)	3)	4)	5)	1)	2)	3)	4)	5)
D	В	D	D	В	D	В	С	Α	В