Math 501 Lecture 1

Elshimaa Ahmed

October 22, 2021

1 Preposition

a preposition is a claim or a declerative statement which has a truth value , can be proven to be either True or False

For Example:

- "Shimaa studies discrete mathimatics" is considered as *Preposition*
- "How was your day?" is considered as not Preposition
- x + 1 = 2 is considered as non declerative statement because it is truth value depends on a variable so cannot be proven to be True or False without knowing the value of that variable

2 Logical Operators

Definition 2.1 (Negation). let p a preposition the negation of p, denoted by $\neg p$. The truth value of the negation of $p \neg p$ is the opposite value of p, expressed in English as "It's not the case that. p"

For Example:

• the negation of "I have more than 5 friends" will become "I have at most 5 friends"

Definition 2.2 (Conjunction). let p and q be prepositions, the conjunction of p and q denoted by $p \wedge q$ is a preposition "p and q" that become true only if both p and q are both True

Definition 2.3 (Disjunction). let p and q be prepositions. The Disjunction of p and q denoted by $p \lor q$ is a preposition "p or q" which is False only if both of p and q are False

Definition 2.4 (Exclusive Disjunction). let p and q be prepositions. The esclusive or denoted by $p \oplus q$ is a preposition that is True if exactly one of p or q are True, and False otherwise

3 Conditional Statements

Definition 3.1. let p and q be prepositions . The Conditional Statements $p \to q$, "if p then q" is false whenever p is False or q is True

The meaning of $p \to q$ assert that q is true whenever p holds but not vise versa ,when p is False it does not matter what the value of q for implication to be True, p is called (hypothesis or antecedent or premise) while q is called conclusion or consequence.

English Phrases to express conditional statements:

- "if p, then q"
- "p implies q"
- "p is sufficient of q"
- "p only if q"

- "q is necessary for p"
- "q unless $\neg p$ " important
- "p only if q"
- "q whenever p"

Converse, Contrapositive, and Inverse: for conditional statement $p \rightarrow q$

- $q \to p$ called the converse .
- $\bullet \neg q \rightarrow \neg p$ called the Contrapositive and has the same truth value as the original statement
- $\neg p \rightarrow \neg q$ called the inverse

Definition 3.2. Let p and q be prepositions, the biconditional statement $p \leftrightarrow q$ is a preposition "p if and only if q" which is True when p and q have the same truth values and False otherwise

4 Precedence of Logical Operators

Logical Operator	Precedence
7	1
^	2
V	3
\rightarrow	4
\leftrightarrow	5

5 Logical Equavilance

two preposition p, q are said to be equavilant if $p \leftrightarrow q$ is a tautology

- $p \to q \equiv \neg p \lor q$
- $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- $p \wedge T_0 \equiv p$, $p \vee F_0 \equiv p$ (identity law)
- $p \wedge F_0 \equiv F_0$, $p \vee T_0 \equiv T_0$ (domination law)
- $p \wedge p \equiv p$, $p \vee p \equiv p$ (idempotent (okay to apply many times))

- $\neg (p \wedge q) \equiv \neg p \vee \neg q$, $\neg (p \vee q) \equiv \neg p \wedge \neg q$ (De morgans law)