

Deep Learning Clinic (DLC)

Lecture 6
Tricks and Tips on Training Neural Networks

Jin Sun

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Details
- Training Dynamics

References:

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

http://karpathy.github.io/2019/04/25/recipe/

Overview

Training a neural network is an art!

But there are tricks people found useful.

Why Training Neural Networks Are Hard

"

It is allegedly easy to get started with training neural nets. Numerous libraries and frameworks take pride in displaying 30-line miracle snippets that solve your data problems, giving the (false) impression that this stuff is plug and play. It's common see things like:

```
>>> your_data = # plug your awesome dataset here
```

>>> model = SuperCrossValidator(SuperDuper.fit, your_data, ResNet50, SGDOptimizer)

conquer world here

,

But it is never this easy!

Why Training Neural Networks Are Hard

Neural net training fails silently:

Everything could be correct syntactically but the whole thing isn't arranged properly, and it's really hard to tell.

For example:

Forgot to flip the labels when you flipped the images for input

Temporal prediction takes the target as input

Loaded a pretrained model but didn't use the original mean

A Recipe for Training Neural Networks

- 1. Inspect and understand your data
- 2. Set up training/evaluation + some simple baselines
 - a. Get some simple model (e.g., a linear classifier or a tiny ConvNet)
 - b. Train it, visualize results, and evaluate metrics
 - c. Ablation studies
- 3. Get a model that is large enough that it can overfit (to training loss)
- 4. Regularize the model to gain more validation accuracy
- 5. Tune and get more from your model
 - a. Hyperparameter search
 - b. Ensemble models
 - c. Train longer!

Recap: Training A Network

Training Loop:

- 1. Sample a **batch** of data.
- 2. **Forward** pass the data through the network and calculate the loss.
- 3. **Backprop** the loss to calculate gradients of the network.
- 4. **Update** parameters using gradient based optimization method.

Overview

Network Details

Activation, preprocessing, initialization, regularization

Training Dynamics

Monitor the changing of train/val loss, parameter updates, hyperparameters

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Details
- Training Dynamics

References:

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

http://karpathy.github.io/2019/04/25/recipe/

Data Preprocessing

In practice, only do zero-centering for images.

Data Preprocessing - PCA and Whitening

Data Augmentation

Horizontal Flip:

Random Contrast and Brightness

Data Augmentation

Random Crops and Scales (Train)

Fixed Crops and Scales (Test)

Object Instances

Background Scenes

Paste

Generated Scenes (Training Data)

https://arxiv.org/abs/1708.01642

Learn

Detections on Real Images

Data Shuffling (for non-temporal data)

The purpose is to avoid the network 'remembers' correlation of consecutive data samples.

We should be doing **Stochastic** Gradient Descent.

Imbalanced Data

Class weights can be added to MSE or CrossEntropy

A common method for addressing class imbalance is to introduce a weighting factor $\alpha \in [0, 1]$ for class 1 and $1 - \alpha$ for class -1. In practice α may be set by inverse class frequency or treated as a hyperparameter to set by cross validation. For notational convenience, we define α_t analogously to how we defined p_t . We write the α -balanced CE loss as:

$$CE(p_t) = -\alpha_t \log(p_t). \tag{3}$$

This loss is a simple extension to CE that we consider as an experimental baseline for our proposed focal loss.

Imbalanced Data - Focal Loss

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *Proceedings of the IEEE international conference on computer vision*. 2017. https://arxiv.org/pdf/1708.02002.pdf

Imbalanced Data - Resampling

Undersampling

Remove samples from the majority class

Oversampling

'Get' more data from the minority class

Synthetic Minority Over-sampling Technique (SMOTE):

Create synthetic data points by sampling in the feature space among k-nearest neighbors of a real data point.

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Details
- Training Dynamics

References:

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

http://karpathy.github.io/2019/04/25/recipe/

Activation Functions

Activation Functions - the Gallery

Activation Functions - Summary

Use **ReLU** as the **default**

Try Leaky ReLU / Maxout / ELU for alternatives

Try tanh

Sigmoid is usually not recommended.

Weight Initialization

Do not use constant weights.

Small Gaussian random numbers not working well for deep networks..

Recommended:

Xavier initialization, and its variants.

Still an active research area.

Xavier initialization

Uniform Xavier initialization: draw each weight, w, from a random uniform distribution

in [-x,x] for
$$x = \sqrt{\frac{6}{inputs + outputs}}$$

Normal Xavier initialization: draw each weight, w, from a normal distribution with a mean

of 0, and a standard deviation
$$\sigma = \sqrt{\frac{2}{inputs + outputs}}$$

https://www.youtube.com/watch?v=OAb_p-SXSeM

Batch Normalization

Make a batch of activations to have zero-mean and unit-variance.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Works as a layer in neural networks.

Put it after fully connected or convolutional layers, before nonlinearity.

Batch Normalization

Benefit:

Improve gradient flow in the network.

Allows higher learning rate.

Works also like a regularizer.

During Testing:

Use a single fixed mean/std obtained from training.

Group Normalization and Instance Normalization

BatchNorm works poorly when batch size is small.

https://arxiv.org/abs/1803.08494

Dropout

Spatial Dropout

For images, remove the whole channel

Network Structure Affects Optimization

Visualizing the Loss Landscape of Neural Nets https://arxiv.org/pdf/1712.09913.pdf

Choosing architecture with various layers

Do hyper-parameter search on network with less layers

For example ResNet-50

Then choose the deeper version once you have a good set of parameters

For example ResNet-152

Order of computation matters

Use Max-pooling before ReLU to save some computations. Since ReLU thresholds the values with zero: f(x) = max(0, x) and Max-pooling pools only max activations: f(x) = max(x1, x2, ..., xi), use Conv > MaxPool > ReLU rather than Conv > ReLU > MaxPool.

E.g. Assume that we have had two activations from conv (i.e. **0.5** and **-0.5**):

- SO MaxPool > ReLU = max(0, max(0.5,-0.5)) = 0.5
- and ReLU > MaxPool = max(max(0,0.5), max(0,-0.5)) = 0.5

See? the output from these two operations is still 0.5. In this case, using MaxPool > Relu can save us one max operation.

Re-think about common operations

Regular Convolution

of params: 432

of computations: 43,200

Depth-wise Separable Convolution

of params: 27+48 = 75

of computations: 2,700+4,800 = 7,500

https://medium.com/apache-mxnet/multi-channel-convolutions-explained-with-ms-excel-9bbf8eb77108

Today - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Details
- Training Dynamics

References:

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

http://karpathy.github.io/2019/04/25/recipe/

Hyperparameter Search and Training Curves

Optimization

Stochastic Gradient Descent (SGD)

Usually works with momentum.

Adagrad, RMSProp, Adadelta

Recommended first try: Adam

Overview of Gradient Descent Methods

http://ruder.io/optimizing-gradient-descent/index.html#visualizationofalg
orithms

Choosing a different optimization method might make the training much slower/faster.

Sadly you may not know which is which before you try.

Monitoring the Learning Process

Some simple things to try and observe:

You should be able to overfit your model to a small portion of the data. Do this as a sanity check to make sure the pipeline works.

Train loss is not going down: try higher learning rate

Train loss explodes: try lower learning rate

Find a range of learning rate by doing a simple set of experiments.

Learning Rate vs Curves

Sign of Overfitting

Big gap: Overfitting

No gap: Maybe model can be more complex

Early Stopping

Learning Rate Decay Strategy

Step Decay

Exponential Decay

1/t Decay

Example: ResNet Learning Rate Schedule

Start from 0.1, divide by 10 when the error plateaus

https://arxiv.org/pdf/1512.03385.pdf

SGD can works better than Adam with a good LR schedule

CIFAR10 Example

Based on

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Reasonable Training Curves

Note training and validation losses are in roughly same scale.

No Gradient Updated

Don't forget to step your optimizer!

```
# get the inputs
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()

# optimizer.step()
```


Overfitting


```
for epoch in range(10): # loop over the dataset multiple times
    # Train the model
    total_step = len(trainloader)
    net.train()
    train_loss_epoch = 0.0
    for i, data in enumerate(trainloader, 0):
        if i > 500:
            break
```

Bad Initialization


```
net = Net().to(device)

# initialization
for m in net.modules():
    if isinstance(m, nn.Conv2d):
        # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        nn.init.constant_(m.weight, 0.0)
        nn.init.constant_(m.bias, 0.0)
```

Effect of Learning Rate

val loss

val_loss_epoch

LR = 0.01

val_loss

val_loss_epoch

LR = 0.0001

val loss

val_loss_epoch

Learning Rate Scheduler In Pytorch

https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate

Try a lot of task-dependent tricks if you really want to push the limit

Example - FastAI: Train ImageNet In 18 Minutes

Link: https://www.fast.ai/2018/08/10/fastai-diu-imagenet/

Tricks:

Rectangular crops of input images

Progressive resizing: train on small images first, then increase image size

Dynamic batch size

Result:

"... we got a training time of 18 minutes on 16 AWS instances, at a total compute cost (including the cost of machine setup time) of around \$40."

Debugging and Monitoring Your Training Process

Tools:

<u>PyCharm</u> (Get the professional version if you want remote development)

Tensorboard (Plot train/val curves, Visualize data)

Summary - Tricks and Tips in DL Training

- Overview
- Data Preprocessing
- Network Details
- Training Dynamics

References:

http://cs231n.stanford.edu/syllabus.html

https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

http://karpathy.github.io/2019/04/25/recipe/