

<110> Costa, Max Salnikow, Konstantin Yee, Herman

<120> METHODS AND COMPOSITIONS USING CAP43 PROTEINS AND NUCLEIC ACIDS TO DIAGNOSE A ND TREAT CANCER AND OTHER DISORDERS

<130>	5986/1I147US1										
<150> <151>	US 10/057,832 2002-01-25										
<160>	3	3									
<170>	PatentIn version 3.1										
<210> <211> <212> <213>	> 2972 > DNA										
<400>	1	aaaaataaa	~~~~~~	at at aggs 2	2+0220210	+ > < > < < < < < < < < < < < < < < < <	60				
CtCgCgt	Lag	gcaggcgaca	gcagggacat	greregggag	atgraygatg	cagacetege					
tgaggto	gaag	cctttggtgg	agaaagggga	gaccatcacc	ggcctcctgc	aagagtttga	120				
tgtccag	ggag	caggacatcg	agactttaca	tggctctgtt	cacgtcacgc	tgtgtgggac	180				
tcccaaq	ggga	aaccggcctg	tcatcctcac	ctaccatgac	atcggcatga	accacaaaac	240				
ctgctac	caac	cccctcttca	actacgagga	catgcaggag	atcacccagc	actttgccgt	300				
ctgccac	cgtg	gacgcccctg	gccagcagga	cggcgcagcc	tccttccccg	cagggtacat	360				
gtaccco	ctcc	atggatcagc	tggctgaaat	gcttcctgga	gtccttcaac	agtttgggct	420				
gaaaago	catt	attggcatgg	gaacaggagc	aggcgcctac	atcctaactc	gatttgctct	480				
aaacaac	ccct	gagatggtgg	agggccttgt	ccttatcaac	gtgaaccctt	gtgcggaagg	540				
ctggato	ggac	tgggccgcct	ccaagatctc	aggatggacc	caagctctgc	cggacatggt	600				
ggtgtcc	ccac	ctttttggga	aggaagaaat	gcagagtaac	gtggaagtgg	tccacaccta	660				
ccgccag	gcac	attgtgaatg	acatgaaccc	cggcaacctg	cacctgttca	tcaatgccta	720				
caacago	ccgg	cgcgacctgg	agattgagcg	accaatgccg	ggaacccaca	cagtcaccct	780				
gcagtgo	ccct	gctctgttgg	tggttgggga	cagctcgcct	gcagtggatg	ccgtggtgga	840				
gtgcaac	ctca	aaattggacc	caacaaagac	cactctcctc	aagatggcgg	actgtggcgg	900				
cctcccg	gcag	atctcccagc	cggccaagct	cgctgaggcc	ttcaagtact	tcgtgcaggg	960				
catggga	tac	atgccctcgg	ctagcatgac	ccgcctgatg	cggtcccgca	cagcctctgg	1020				

1080

ttccagcgtc acttctctgg atggcacccg cagccgctcc cacaccagcg agggcacccg

aagccgctcc	cacaccagcg	agggcacccg	cagccgctcg	cacaccagcg	agggggcca	1140
						1200
	accccaact					
ggtctcctgc	taggcggcct	gcccagctgc	cgcccccgga	ctctgatctc	tgtagtggcc	1260
ccctcctccc	cggccccttt	tcgccccctg	cctgccatac	tgcgcctaac	tcggtattaa	1320
tccaaagctt	attttgtaag	agtgagctct	ągtggagaca	aatgaggtct	attacgtggg	1380
tgccctctcc	aaaggcgggg	tggcggtggá	ccaaaggaag	gaagcaagca	tctccgcatc	1440
gcatcctctt	ccattaacca	gtggccggtt	gccactctcc	tcccctccct	cagagacacc	1500
aaactgccaa	aaacaagacg	cgtagcagca	cacacttcac	aaagccaagc	ctaggccgcc	1560
ctgagcatcc	tggttcaaac	gggtgcctgg	tcagaaggcc	agccgcccac	ttcccgtttc	1620
ctctttaact	gaggagaagc	tgatccagtt	tccggaaaca	aaatcctttt	ctcatttggg	1680
gaggggggta	atagtgacat	gcaggcacct	cttttaaaca	ggcaaaacag	gaagggggaa	1740
aaggtgggat	tcatgtcgag	gctagaggca	tttggaacaa	caaatctacg	tagttaactt	1800
gaagaaaccg	atttttaaag	ttggtgcatc	tagaaagctt	tgaatgcaga	agcaaacaag	1860
cttgattttt	ctagcatcct	cttaatgtgc	agcaaaagca	ggcgacaaaa	tctcctggct	1920
ttacagacaa	aaatatttca	gcaaacgttg	ggcatcatgg	tttttgaagg	ctttagttct	1980
gctttctgcc	tctcctccac	agccccaacc	tcccacccct	gatacatgag	ccagtgatta	2040
ttcttgttca	gggagaagat	catttagatt	tgttttgcat	tccttagaat	ggagggcaac	2100
attccacagc	tgccctggct	gtgatgagtg	tccttgcagg	ggccggagta	ggagcactgg	2160
ggtgggggtg	gaattggggt	tactcgatgt	aagggattcc	ttgttgttgt	gttgagatcc	2220
agtgcagttg	tgatttctgt	ggatcccagc	ttggttccag	gaattttgtg	tgattggctt	2280
aaatccagtt	ttcaatcttc	gacagctggg	ctggaacgtg	aactcagtag	ctgaacctgt	2340
ctgacccggt	cacgttcttg	gatcctcaga	actctttgct	cttgtcgggg	tgggggtggg	2400
aactcacgtg	gggagcggtg	gctgagaaaa	tgtaaggatt	ctggaataca	tattccatgg	2460
gactttcctt	ccctctcctg	cttcctcttt	tcctgctccc	taacctttcg	ccgaatgggg	2520
cagcaccact	gacgtttctg	ggcggccagt	gcggctgcca	ggttcctgta	ctactgcctt	2580
gtacttttca	ttttggctca	ccgtggattt	tctcatagga	agtttggtca	gagtgaattg	2640
aatattgtaa	gtcagccact	gggacccgag	gatttttggg	accccgcagt	tgggaggagg	2700
aagtagtcca	gccttccagg	tggcgtgaga	ggcaatgact	cgttacctgc	cgcccatcac	2760
cttggaggcc	ttccctggcc	ttgagtagaa	aagtcgggga	tcggggcaag	agaggctgag	2820
tacggatggg	aaactattgt	gcacaagtct	ttccagagga	gtttcttaat	gagatatttg	2880

<210 <211 <212 <213	1> 2>	2 394 PRT Homo	sapi	iens											
<400	O>	2													
Met 1	Ser	Arg	Glu	Met 5	Gln	Asp	Val	Asp	Leu 10	Ala	Glu	Val	Lys	Pro 15	Leu
Val	Glu	Lys	Gly 20	Glu	Thŗ	Ile	Thr	Gly 25	Leu	Leu	Gln	Glu	Phe 30	Asp	Val
Gln	Glu	Gln 35	Asp	Ile	Glu	Thr	Leu 40	His	Gly	Ser	Val	His 45	Val	Thr	Leu
Cys	Gly 50	Thr	Pro	Lys	Gly	Asn 55	Arg	Pro	Val	Ile	Leu 60	Thr	Tyr	His	Asp
Ile 65	Gly	Met	Asn	His	Lys 70	Thr	Cys	Tyr	Asn	Pro 75	Leu	Phe	Asn		Glu 80
Asp	Met	Gln	Glu	Ile 85	Thr	Gln	His	Phe	Ala 90	Val	Cys	His	Val	Asp 95	Ala
Pro	Gly	Gln	Gln 100	Asp	Gly	Ala	Ala	Ser 105	Phe	Pro	Ala	Gly	Tyr 110	Met	Tyr
Pro	Ser	Met 115		Gln	Leu	Ala	Glu 120	Met	Leu	Pro	Gly	Val 125	Leu	Gln	Gln
Phe	Gly 130	Leu	Lys	Ser	Ile				Gly		Gly 140	Ala	Gly	Ala	Tyr
Ile 145	Leu	Thr	Arg	Phe	Ala 150	Leu	Asn	Asn	Pro	Glu 155	Met	Val	Glu	Gly	Leu 160
Val	Leu	Ile	Asn	Val 165	Asn	Pro	Cys	Ala	Glu 170	Gly	Trp	Met	Asp	Trp 175	Ala
Ala	Ser	Lys	Ile 180	Ser	Gly	Trp	Thr	Gln 185	Ala	Leu	Pro	Asp	Met 190	Val	Val

aaaaaaaaa aaaaaaaaa aa

2972

Ser His Leu Phe Gly Lys Glu Glu Met Gln Ser Asn Val Glu Val Val 200 His Thr Tyr Arg Gln His Ile Val Asn Asp Met Asn Pro Gly Asn Leu 210 215 His Leu Phe Ile Asn Ala Tyr Asn Ser Arg Asp Leu Glu Ile Glu 230 Arg Pro Met Pro Gly Thr His Thr Val Thr Leu Gln Cys Pro Ala Leu 250 245 Leu Val Val Gly Asp Ser Ser Pro Ala Val Asp Ala Val Val Glu Cys 260 265 Asn Ser Lys Leu Asp Pro Thr Lys Thr Thr Leu Leu Lys Met Ala Asp 280 Cys Gly Gly Leu Pro Gln Ile Ser Gln Pro Ala Lys Leu Ala Glu Ala 290 295 Phe Lys Tyr Phe Val Gln Gly Met Gly Tyr Met Pro Ser Ala Ser Met 310 305 315 Thr Arg Leu Met Arg Ser Arg Thr Ala Ser Gly Ser Ser Val Thr Ser 325 330 Leu Asp Gly Thr Arg Ser Arg Ser His Thr Ser Glu Gly Thr Arg Ser 340 345 Arg Ser His Thr Ser Glu Gly Thr Arg Ser Arg Ser His Thr Ser Glu 355 360 Gly Ala His Leu Asp Ile Thr Pro Asn Ser Gly Ala Ala Gly Asn Ser 370 375 Ala Gly Pro Lys Ser Met Glu Val Ser Cys 385 390 <210> 3 <211> 2131 <212> DNA <213> Homo sapiens

<400> 3

60

tttcatcttt tttgtagaga tgggacatca ctatgttgtg aaggctggtc tcaaactcct

ggactcaaga	gaggcttctg	cattggcctc	ccaaagtgct	gggattacag	gtgtaagcca	120	
ctctacctgg	acacaacatt	ttatttgaaa	taagaaaaat	tttccctcac	tgggaatgct	180	
gcagttgaac	tagttcaaat	ccataaagaa	tggaagactg	cccagtggtc	attcattcac	240	
ttattaattc	tagatgttaa	attttctagg	gtgggggaat	gtgctcctac	attcaaggca	300	
ttcttgaatg	tagccaaact	ttgtagttta	gccaaacttc	atagctaata	gccaaacttt	360	
gtagtttagc	caaactcttc	tagcagcaaa	acccatgaca	ctggaactct	gttcttcaca	420	
ctggtcattt	gtaatagaat	aacagagctt	tagcactaga	taggttctga	aagatcattg	480	
aatctaatcc	tctccctttg	ccagtgagaa	ttctgaagcc	cagatttgtt	gatttgtgat	540	
cgatagtgtc	aaagacaggc	ctgaaacaca	gatgtcctgg	gtcctagagg	tgctgtttgc	600	
ccctctccat	atttcttttg	ttccagaaaa	cccttctcca	aaactggccc	taataatcag	660	
aggggaaagc	catggcccct	gccttgggga	cagcatgggt	tggcacagaa	aagaggttta	720	
caattcagca	ggaagtgttg	tgcgtgcgcg	cgtgtgtgtc	tgtggaggcg	cagggagggt	780	
cacctgagct	tgccctgggt	ctggtcctgg	gctcagtggc	aaattcaacg	ctgggcaggt	840	
ggcctgagga	caatgacggt	gccagctgtg	agtcagactt	cctttattca	taaaatcatg	900	
ttcctccatg	cagtgcttct	caacctggct	gcacgtcagg	agccacctgg	gtagctttgt	960	• •
aaaaacccca	atgcccagtt	ggtttgcacc	ccctgagatt	ctgattaaac	tgttctggag	1020	
tccatctctc	tctttttatt	atctatctat	ttatttattt	tttaatttgg	cggctcctct	1080	x_i^{i+1} .
gggacttctc	atatgcagta	ggggttgaga	attgctggtt	tctttggcca	gatgggaaca	1140	संदू क
tgcaggccaa	tagttacgca	caaacagagc	agcagagcag	gacggtgcta	aggttggaaa	1200	-
gggtgagtca	tgaaagttca	ggaaatcaga	ataggaaggg	gtgagaatcc	tctcatctgg	1260	
gcttgtgggg	caggagagaa	gagcccagtg	ggcaaggtcc	agtgagtgtg	cttagaactg	1320	
ggaagatgag	gggaagggta	agcgctgggc	ggcggtgggc	aatatggacg	agattaaacg	1380	
ggagcgagga	tttcagcgag	agctttggcg	acacggaagg	ctgagaatcg	gagggagcct	1440	
gtcgggcgaa	agcgaaggcg	gctgctgggc	aggcagccga	atccggctgg	agagccgagc	1500	
tggtgagacc	tacaggaagt	gaagggagtc	gctcagggcg	tggcgcaacg	agactcttag	1560	
aagaaactct	gaggcagaga	tggggggcct	ccgcccatac	ggagacacaa	ggaagtccac	1620	
atgcacacgc	acgagcgcgc	acatgaacac	gcacaagcac	acaaacgcct	cctccgggca	1680	
gggcacacgc	gcccgctgca	caggccgagg	ccctggactc	ggaggggact	gcagagccga	1740	
cccacaaccc	gggccccgat	gcccctcccg	gccgcgcccc	tacgactgct	tgcgcaacag	1800	
gcggcggctc	cagtgggcgc	ccgccgcgcg	ctgccggagc	ccagcccagc	ccggcgcgcc	1860	

cgggaggagg	gagcagggag	cggggaaggg	gtgtgtcccg	gctgcgtgct	gggactgcga	1920
gggtctggga	ggggcgaggc	gcgggggcgg	ggccgcggcg	cctataaagt	cgccctccgc	1980
ccggacgtaa	acaaacctcg	cctggctccc	agctggtgct	gaagctcgtc	agttcaccat	2040
ccgccctcgg	cttccgcggg	gcgctgggcc	gccagcctcg	gcaccgtcct	ttcctttctc	2100
cctcgcgtta	ggcaggtgac	agcagggcat	q			2131