Neural Concept Formation in Knowledge Graphs

Agnieszka Dobrowolska

University College London, London

Antonio Vergari

University of California, Los Angeles

University College London, London

ConFormA

ConFormA and ConFormAF are meta-learners that can leverage any KG embedding

In humans, the ability to summarise knowledge into concepts is believed to play a central role in allowing us to learn quickly from few examples.

We propose the task of concept learning in Knowledge Graphs (KG) as a way of **boosting link prediction performance**. Specifically, we propose two algorithms **ConFormA** and **ConFormAE** for learning concept memberships via unsupervised clustering of entities and explicitly augmenting the KG with them.

Our approach not only produces meaningful concepts but also improves generalisation for rare predicates.

► Knowledge Graph

In Table 1 we compare link prediction performance of a baseline neural link predictor, such as ComplEx or DistMult, with ConFormA and ConFormAE on WN18RR and FB15K-237. In Figure 1 we show the relative improvement upon the baseline for WN18RR, with the largest improvement seen for rare relations. Figure 2 shows fragments of propotytpical concept clusters formed for UMLS using ConFormAE.

Table 1: Mean reciprocal rank (MRR) and Hits (H) at 1,3,10 for CONFORMA and CONFORMAE when using DistMult or ComplEx as baseline KGE models on WN18RR and FB15K-237 KGs for different values of embedding sizes (k). Best values for each metric and k in bold.

			DISTMULT				COMPLEX			
	k	MODEL	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
WNI8RR		BASELINE	44.40	40.30	45.63	52.81	47.85	43.41	49.44	56.57
	500	CONFORMA	44.19	39.96	45.33	52.94	48.55	43.94	50.24	57.67
		CONFORMAE	44.89	40.84	46.00	53.38	48.77	44.42	50.48	57.29
	1000	BASELINE	44.80	41.02	45.80	52.52	48.34	43.81	50.18	56.99
		CONFORMA	45.47	41.16	46.76	54.28	49.12	44.42	50.83	58.70
		CONFORMAE	45.20	40.97	46.41	54.05	49.25	44.81	50.81	58.33
	2000	BASELINE	45.20	41.05	46.39	53.75	48.62	44.07	50.34	57.28
		CONFORMA	44.93	40.60	45.98	53.67	49.40	44.80	50.86	59.00
		CONFORMAE	45.38	41.16	46.39	54.04	49.42	45.20	50.41	58.42
FB15K237	500	BASELINE	34.88	25.56	38.34	53.52	35.89	26.47	39.31	54.82
		CONFORMA	34.92	25.65	38.39	53.54	36.08	26.77	39.39	55.00
		CONFORMAE	35.01	25.72	38.40	53.65	36.13	26.76	39.46	55.09
	1000	BASELINE	35.26	25.83	38.82	54.26	36.18	26.69	39.81	55.21
		CONFORMA	35.30	25.91	38.78	54.28	36.26	26.88	39.74	55.22
		CONFORMAE	35.40	26.11	38.77	54.28	36.27	26.84	39.81	55.34
		BASELINE	35.47	26.13	38.76	54.42	36.37	27.01	39.89	55.45
	2000	CONFORMA	35.55	26.18	39.03	54.32	36.37	26.99	39.89	55.19
		CONFORMAE	35.62	26.31	39.02	54.43	36.34	26.96	39.81	55.36

Pasquale Minervini

FIND BEST ASSIGNMENTS

SCORE FUNCTION

► M STEP

Novel concepts and their embedding representations are learned jointly by performing **Hard EM** (iterate between E + M steps)

▶ E STEP

ConFormAE

Concept 1 Concept 2

 alga · amphibian animal

Figure 2

- virus bacterium bird invertebrate
- · cell_or_molecular_dysfunction disease_or_syndrome
- · injury or poisoning mental or behavioral dysfunction
- · pathologic_function.

- Concept 3
- · experimental_model_of_disease enzyme
- · neoplastic_process
- vitamin substance
- food hormone organic_chemical
- activity
- behavior · health_care_activity · daily_or_recreational_activity

Concept 4

- educational activity · individual_behavior
- mental_process · molecular function · organ_or_tissue_function · laboratory_procedure
 - · natural_phenomenon_or_process

Concept 5

· biologic_function

· genetic_function

celLfunction