# **LOGISTIC REGRESSION**

# Logistic Regression

# **Logistic Regression**

$$f(x) = P(Y = 1|\mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}$$

- Unknown parameters
  - $\square$   $\beta_0, \beta_1, \dots, \beta_p$
- □ Logistic regression should estimate  $\beta_0, \beta_1, ..., \beta_p$  based on the given observations

#### **Maximum Likelihood Estimation**

- Maximum likelihood estimation
  - Method of estimating the parameters of statistical model
  - Given a statistical model, maximize likelihood
- Likelihood function
  - Suppose that data set  $D = \{x_1, x_2, ..., x_n\}$  consists of n independent and identically distributed(iid) samples coming from a distribution with an unknown probability density function f(x)
  - Assume f(x) belongs to a certain type of distributions with parameters  $\theta$
  - Joint probability density function for all observations

$$f(x_1, x_2, ..., x_n | \theta) = f(x_1 | \theta) \times f(x_2 | \theta) \times \cdots \times f(x_n | \theta)$$
because  $x_i$  is iid sample

Likelihood

$$\mathcal{L}(\theta; x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$$

#### Likelihood

- Imagine the situation that a ball is drawn from the bag consisting of three blue balls and five white balls with replacement
  - Drawing is repeated five times and output is color of ball

|        | 1    | 2     | 3    | 4     | 5     |
|--------|------|-------|------|-------|-------|
| Case 1 | blue | white | blue | white | white |
| Case 2 | blue | blue  | blue | blue  | blue  |

# Which case is more probable?

$$p(Case\ 1) = p(blue) \times p(white) \times p(blue) \times p(white) \times p(white)$$
  
 $p(Case\ 2) = p(blue) \times p(blue) \times p(blue) \times p(blue) \times p(blue)$ 

#### Likelihood

- Imagine the situation that a ball is drawn from the bag consisting of three blue balls and five white balls with replacement
  - Drawing is repeated five times and output is color of ball

|        | 1    | 2     | 3    | 4     | 5     |
|--------|------|-------|------|-------|-------|
| Case 1 | blue | white | blue | white | white |
| Case 2 | blue | blue  | blue | blue  | blue  |

# Which case is more probable?



Likelihood represents how much probable is observed data samples given statistical model



#### Sampling with replacement



3×

7× 0

 $\Box$  Want to estimate  $p_{blue}$  and  $p_{white}$  based on the sampling result

- □ There are only two outputs → Bernoulli distribution
- Bernoulli distribution: the probability distribution of a random variable which takes the value 1 with success probability of p and the value 0 with failure probability of q = 1 p
  - For random variable following Bernoulli distribution,

$$p(X = 1) = 1 - p(X = 0) = p = 1 - q$$

Probability mass function over possible outcomes y

$$f(y;p) = \begin{cases} p, & \text{if } y = 1\\ 1 - p, & \text{if } y = 0 \end{cases}$$

This can also be expressed as

$$f(y;p) = p^{y}(1-p)^{1-y}$$
 for  $y \in \{1,0\}$ 

- **\Box** For Bernoulli distribution, p is  $\theta$ 
  - In this example, assume that blue ball is 1

$$p = p_{blue}$$
$$1 - p = p_{white}$$



#### Sampling with replacement



3×

7× 0

- Likelihood function
  - If blue ball, f(1; p) = p
  - If white ball, f(0; p) = 1 p

$$\mathcal{L} = \prod_{i=1}^{10} f(y_i; p) = p^3 (1 - p)^7$$

■ Maximize  $\mathcal{L}$  with respect to p

 $_{\Box}$  1D data samples from Gaussian distribution with  $\sigma=1$ 

$$f(x;\theta) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\theta)^2}{2}}$$

|   | 1    | 2    | 3    | 4    | 5    |
|---|------|------|------|------|------|
| x | 2.61 | 3.73 | 2.80 | 4.29 | 3.12 |

 $\Box$  Likelihood function is function of parameter  $\theta$ 

$$\mathcal{L}(\theta; \mathbf{x}) = \prod_{i=1}^{5} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}$$

■ If  $\theta = 2$ ,  $\mathcal{L}(2) \approx 0.33 \times 0.09 \times 0.29 \times 0.03 \times 0.21 = 0.0000542619$ 

|               | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|
| x             | 2.61 | 3.73 | 2.80 | 4.29 | 3.12 |
| $f(x;\theta)$ | 0.33 | 0.09 | 0.29 | 0.03 | 0.21 |

 Maximum likelihood estimation is method to find parameter to maximize likelihood function with given data samples

#### **Maximum Likelihood Estimation**

Compare likelihood with different parameters

■ If 
$$\theta = 2$$
,  $\mathcal{L}(2) \approx 0.33 \times 0.09 \times 0.29 \times 0.03 \times 0.21 = 0.0000542619$ 

|               | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|
| x             | 2.61 | 3.73 | 2.80 | 4.29 | 3.12 |
| $f(x;\theta)$ | 0.33 | 0.09 | 0.29 | 0.03 | 0.21 |

■ If 
$$\theta = 3$$
,  $\mathcal{L}(3) \approx 0.37 \times 0.31 \times 0.39 \times 0.17 \times 0.40 = 0.003041844$ 

|               | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|
| x             | 2.61 | 3.73 | 2.80 | 4.29 | 3.12 |
| $f(x;\theta)$ | 0.37 | 0.31 | 0.39 | 0.17 | 0.40 |

■ If 
$$\theta = 4$$
,  $\mathcal{L}(4) \approx 0.15 \times 0.38 \times 0.19 \times 0.38 \times 0.27 = 0.0011111158$ 

|               | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|
| x             | 2.61 | 3.73 | 2.80 | 4.29 | 3.12 |
| $f(x;\theta)$ | 0.15 | 0.38 | 0.19 | 0.38 | 0.27 |

#### **Maximum Likelihood Estimation**

Likelihood function

$$\mathcal{L}(\theta; \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (\theta^2 - 2x_i \theta + x_i^2)}{2}\right)$$

$$\propto \exp\left(-\sum_{i=1}^{n} (\theta^2 - 2x_i \theta + x_i^2)\right)$$

□ When  $\sum_{i=1}^{n} (\theta^2 - 2x_i\theta + x_i^2)$  is minimum,  $\mathcal{L}(\theta; \mathbf{x})$  is maximized

$$n\theta^2 - 2(\sum_{i=1}^n x_i)\theta + \sum_{i=1}^n x_i^2$$

- **s** Second order equation of  $\theta \rightarrow$  There is a solution to minimize equation
- Example
  - https://www.geogebra.org/m/zOmGcvXq

#### **\* Gaussian (Normal) Distribution**

- The Gaussian distribution is a continuous probability distribution
  - probability density function

$$\mathcal{N}(\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- $\blacksquare$   $\mu$ : mean or expectation of the distribution
- $\bullet$  standard deviation
- When  $\mu = 0$  and  $\sigma = 1$ , the distribution is called the standard normal distribution
- Multivariate normal distribution is a generalization of the 1D normal distribution
  - probability density function

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \left(\frac{1}{(2\pi)^p |\boldsymbol{\Sigma}|}\right)^{1/2} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

- p: dimensionality
- $\mu$ : mean vector
- Σ: covariance matrix

# **\* Gaussian (Normal) Distribution**

Two dimensional normal distribution



# How to Find Parameters for Logistic Regression?

□ Output is 0 or 1  $\rightarrow$  Output follows Bernoulli distribution with parameter p

 $\Box$  Each sample has different p deepening on input

$$y_i \sim Bernoulli(P_i)$$

- $\blacksquare$   $P_i$  is the probability that output value is 1 for *i*-th sample
- $lue{}$  Output of each sample follows Bernoulli distribution with parameter  $P_i$

$$f(y_i) = P\{Y = y_i\} = P_i^{y_i} (1 - P_i)^{1 - y_i}, \quad y_i \in \{0, 1\}$$

# How to Find Parameters for Logistic Regression?

Likelihood function of logistic regression model

$$\mathcal{L} = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} P_i^{y_i} (1 - P_i)^{1 - y_i}$$

$$P_i = P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}$$

Log-likelihood function

$$\log \mathcal{L} = \sum_{i=1}^{n} y_i \log P_i + \sum_{i=1}^{n} (1 - y_i) \log(1 - P_i)$$

■ Find parameters  $\beta_0, \beta_1, ..., \beta_p$  to maximize  $\log \mathcal{L}$ 

# **\* Gradient Descent**



# **\*\* Gradient Descent**



#### **Odds and Odds Ratio**

- Odds reflect the likelihood that the event will take place
  - In gambling, odds represent the ratio between the amounts staked by parties to a wager or bet

$$\frac{P(Wins)}{P(Losses)}$$

■ In logistic regression, odds represent the ratio between P(y=1) and P(y=0)

odds = 
$$\frac{P(y=1)}{P(y=0)} = \frac{\frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}}{1 - \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p}}} = \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$

Odds ratio is the ratio between odds when unit increment of a variable

odds ratio = 
$$\frac{\text{odds when input is } x_1 = x + 1}{\text{odds when input is } x_1 = x} = \frac{\exp(\beta_0 + \beta_1(x+1) + \beta_2x_2 + \dots + \beta_px_p)}{\exp(\beta_0 + \beta_1x + \beta_2x_2 + \dots + \beta_px_p)} = e^{\beta_1}$$

• Odd increases  $e^{\beta_1}$  times for every 1-unit increase in  $x_1$ 

#### **Logistic Regression: Odds**

- A logistic model is one where the log-odds of the probability (logit function) of an event is a linear combination of independent or predictor variables (binary case)
- Logistic model

$$\ln(\text{odds}) = \ln\left(\frac{P(y=1)}{P(y=0)}\right) \neq \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\frac{P(y=1)}{P(y=0)} = \frac{P}{1-P}$$

$$g(P) = \ln\left(\frac{P}{1-P}\right) \neq \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Link function

#### **Other Link Function**

#### We can use other link functions

Gompertz function

$$P = 1 - \exp(-\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p))$$
  
$$g(P) = \ln(-\ln(1 - P)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Probit model

$$g(P) = F^{-1}(P) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Normit model

$$g(P) = \Phi^{-1}(P) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

 $\Phi^{-1}(x)$  is inverse cumulative density function of normal distribution

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

#### **Logistic Regression for Multi-class**

- □ For K classes,  $P(y_i = k)$  is the probability that ith data point belong to class k ( $k \in \{1,2,3,\dots,K\}$ )
  - $\blacksquare$  It is reasonable to select class k whose probability is the highest

# How to extend logistic regression to multi-class classification problems?

#### **Multinomial Logistic Regression**

- Multinomial logistic regression assumes that log ratio between probabilities of two different classes is linear
  - Log linear model

$$\ln p(y_i = 1) = \boldsymbol{\beta}_1 \cdot \mathbf{x}_i - \ln Z$$

$$\ln p(y_i = 2) = \boldsymbol{\beta}_2 \cdot \mathbf{x}_i - \ln Z$$

$$\vdots$$

$$\ln p(y_i = K) = \boldsymbol{\beta}_K \cdot \mathbf{x}_i - \ln Z$$

- $\mathbf{x}_i = (1, x_{i1}, x_{i2}, \dots, x_{ip})$
- $\beta_k = (\beta_{k0}, \beta_{k1}, \beta_{k2}, \dots, \beta_{kp})$



$$p(y_i = k) = \frac{1}{Z} e^{\beta_k \cdot \mathbf{x}_i}$$
$$Z = \sum_{k=1}^{K} e^{\beta_k \cdot \mathbf{x}_i}$$

#### **\* Multinomial distribution**

- Multinomial distribution is a generalization of the binomial distribution
  - Binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments with success probability p

$$p(k) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$

- **Example** of binomial distribution is the distribution of the number of head when flipping a coin n times (in this case, p = 0.5)
  - Probability that k times head occur among n trials

$$p(k) = \frac{n!}{k! (n-k)!} 0.5^k 0.5^{n-k} = \frac{n!}{k! (n-k)!} 0.5^n$$

- In multinomial distribution, possible outcome is more than two and each outcome has its own probability to occur,  $(p_1, ..., p_d)$ 
  - $p_1 + \cdots + p_d = 1$
  - d is the number of possible outcomes
  - $n_{\mathbf{x}} = \sum_{i=1}^{d} x_i$

$$p(\mathbf{x} = (x_1, x_2, ..., x_d)) = \frac{n_{\mathbf{x}}!}{x_1! \cdots x_d!} p_1^{x_1} \cdots p_d^{x_d}$$

#### **Likelihood Function**

Likelihood function

$$\mathcal{L} = \prod_{i=1}^{n} \prod_{k=1}^{K} P_{ik}^{v_{ik}} , \qquad v_{ik} = \begin{cases} 1, y_i = k \\ 0, y_i \neq k \end{cases}$$

- $P_{ik} = p(y_i = k)$
- Log likelihood function

$$\log \mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{K} v_{ik} \log P_{ik}$$

■ Through maximum likelihood estimation, determine  $\beta_k$  as the same as in binary logistic regression

# **Multiclass Classification Using Binary Classifiers**

- There are other ways to get multi-class classifiers by combining binary classifiers
  - For multiclass classification commonly used approach is to construct *K* separate binary classifiers
    - Each model is trained using the data from class  $C_k$  as the positive examples and the data from the remaining K-1 classes as the negative examples

$$y(\mathbf{x}) = \max_{k} y_k(\mathbf{x})$$

→ One-versus-the rest approach



- Problems of one-versus-the rest approach
  - Because each classifier was trained on different task, there is no guarantee that the real-values quantities  $y_k(\mathbf{x})$  will have appropriate scales
  - Imbalance of data on training

# **Multiclass Classification Using Binary Classifiers**

□ Another approach is to train K(K-1)/2 different 2-class classifiers on all possible pairs of classes

 Classify test points according to which class has the highest number of votes

→ one-versus-one approach



- Problems of one-versus-one approach
  - It can lead to ambiguities in the resulting classification
  - $\blacksquare$  For large K, it requires significantly more training time