Lemma di Schwarz-Pick al bordo (titolo provvisorio)

Marco Vergamini

Indice

In	Introduzione 3			
1	Prerequisiti	4		
	1.1 Risultati noti	4		
	1.2 Verso la disuguaglianza di Golusin	6		
2	lla disuguaglianza di Golusin al teorema di Burns-Krantz			
	2.1 Lemma di Schwarz-Pick al bordo	8		
	2.2 Teorema di Burns-Krantz	9		

Introduzione

Da scrivere alla fine

1 Prerequisiti

1.1 Risultati noti

Definizione 1.1.1. Sia $\Omega \subset \mathbb{C}$ un aperto. Una funzione $f:\Omega \longrightarrow \mathbb{C}$ si dice olomorfa in Ω se è derivabile in senso complesso per ogni $z \in \Omega$.

Osservazione 1.1.2. Se $f:\Omega\longrightarrow\Omega$ olomorfa è biettiva, allora si può dimostrare che anche f^{-1} è olomorfa. In tal caso f è detta automorfismo (in senso olomorfo di Ω).

Com'è noto, la condizione di olomorfia per funzioni a valori complessi è molto più forte della derivabilità in senso reale (in particolare, è equivalente all'analiticità). Fra i vari risultati che si possono dimostrare per le funzioni olomorfe, ci interessa studiare il lemma di Schwarz-Pick.

Notazione: indichiamo il disco unitario con $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

Lemma 1.1.3. (Schwarz) Sia $f: \mathbb{D} \to \mathbb{D}$ una funzione olomorfa t.c. f(0) = 0. Allora per ogni $z \in \mathbb{D}$ $|f(z)| \le |z|$ e $|f'(0)| \le 1$; inoltre, se vale l'uguale nella prima per $z \ne 0$ oppure nella seconda allora $f(z) = e^{i\theta}z, \theta \in \mathbb{R}$.

Lemma 1.1.4. (Schwarz-Pick) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora per ogni $z, w \in \mathbb{D}$

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right|, \qquad \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguale nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora f è un automorfismo e vale l'uguale sempre.

Il lemma di Schwarz-Pick può essere riformulato usando due funzioni di due variabili sul disco (una delle quali è nota come distanza iperbolica). Con queste funzioni dimostreremo una serie di disuguaglianze che ci permetteranno di dimostrare la disuguaglianza di Golusin, dalla quale seguirà la versione al bordo del lemma.

Definizione 1.1.5. Dati $z, w \in \mathbb{D}$ poniamo

$$[z,w]:=\frac{z-w}{1-\bar{w}z}, \qquad p(z,w):=|[z,w]|, \qquad d(z,w):=\log\left(\frac{1+p(z,w)}{1-p(z,w)}\right).$$

d è ben definita, in quanto p(z, w) < 1. Infatti, dobbiamo verificare che

$$\frac{|z-w|}{|1-\bar{w}z|} < 1$$

$$|z - w|^2 < |1 - \bar{w}z|^2$$

$$|z|^{2} + |w|^{2} - \bar{w} - w\bar{z} < 1 + |wz|^{2} - \bar{w}z - w\bar{z}$$

$$1 + |wz|^{2} - |z|^{2} - |w|^{2} > 0$$

$$(1 - |w|^{2})(1 - |z|^{2}) > 0,$$

che è vera perché $z, w \in \mathbb{D}$.

Proposizione 1.1.6. *d* è una distanza (la sopracitata distanza iperbolica).

Dimostrazione. Mostriamo preliminarmente che p è una distanza. In entrambi i casi, l'unica cosa non ovvia da controllare è la disuguaglianza triangolare. Perciò, dati $z_0, z_1, z_2 \in \mathbb{D}$, vogliamo $p(z_1, z_2) \leq p(z_1, z_0) + p(z_0, z_2)$. Osserviamo che, per il lemma di Schwarz-Pick, p è invariante applicando automorfismi, perciò supponiamo senza perdita di generalità $z_1 = 0$ (possiamo farlo perché il gruppo degli automorfismidi \mathbb{D} è transitivo). A questo punto la disuguaglianza da dimostrare diventa

$$|z_2| \le |z_0| + \frac{|z_0 - z_2|}{|1 - \bar{z}_2 z_0|}.$$

(c'è da fare la dimostrazione)

A questo punto, possiamo osservare che $d(z,w)=2\operatorname{arctanh}(p(z,w))$, perciò... ACHTUNG: LA DIM DEGLI APPUNTI DI ECA SEMBRA ESSERE FALLACE, ARCTANH NON È SUBADDITIVA SUI POSITIVI

Definizione 1.1.7. Data una funzione $f: \mathbb{D} \longrightarrow \mathbb{D}$, poniamo

$$f^*(z, w) := \frac{[f(z), f(w)]}{[z, w]}$$

e

$$f^h(z) := |f^*(z,z)| := \left| \lim_{w \longrightarrow z} f^*(z,w) \right| = \left| \lim_{w \longrightarrow z} \frac{[f(z),f(w)]}{[z,w]} \right| = \frac{|f'(z)|(1-|z|^2)}{1-|f(z)|^2}.$$

Osservazione 1.1.8.

- (i) la disuguaglianza del lemma di Schwarz-Pick può essere riscritta come $|f^*(z,w)| \leq 1$;
- (ii) un altro modo di scrivere la disuguaglianza del lemma di Schwarz-Pick è $p(f(z), f(w)) \leq p(z, w)$;
- (iii) per definizione, $|f^*(z, w)| = |f^*(w, z)|$ e $f^h(z)$ è reale non negativo.

Questi risultati verranno usati nelle varie dimostrazioni e verranno esplicitati solo quando ciò che ne segue non è immediato.

Come si dimostra? Qui c'è una dim, ma ponendo $z_0=0$: https://mathoverflow.net/quproof-of-thetriangle-inequality-for-themetric-of-thehyperbolic-plane

1.2 Verso la disuguaglianza di Golusin

Proposizione 1.2.1. Siano $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa che non è un automorfismo, $v \in \mathbb{D}$. Allora per ogni $z \in \mathbb{D}$ si ha che $f^*(z, v) \in \mathbb{D}$ e la funzione $z \longmapsto f^*(z, v)$ è olomorfa.

Dimostrazione. Per quanto riguarda l'olomorfia, dalla definizione sappiamo che l'unico punto che potrebbe dar problemi è v, ma abbiamo visto che la funzione ammette limite finito per $z \longrightarrow v$, perciò v è una singolarità rimovibile. Per il lemma di Schwarz-Pick, $|f^*(z,w)| \le 1$, inoltre vale l'uguale in qualche punto solo se f è un automorfismo, dunque con le ipotesi su f abbiamo che vale la disuguaglianza stretta sempre, cioè $f^*(z,v) \in \mathbb{D}$ per ogni $z \in \mathbb{D}$.

Teorema 1.2.2. Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa che non è un automorfismo. Allora per ogni $z, w, v \in \mathbb{D}$ vale

$$d(f^*(z,v), f^*(w,v)) \le d(z,w). \tag{1}$$

Dimostrazione. Poiché f non è un automorfismo, per la proposizione 1.2.1 la mappa $z \longmapsto f^*(z,v)$ è olomorfa dal disco unitario in sé, perciò il membro sinistro della disuguaglianza (1) è ben definito. Per quanto riguarda la disuguaglianza,

$$\begin{split} p(f^*(z,v),f^*(w,v)) & \leq p(z,w) \\ 2 \arctan \left(p(f^*(z,v),f^*(w,v)) \right) & \leq 2 \arctan \left(p(z,w) \right) \\ d(f^*(z,v),f^*(w,v)) & \leq d(z,w), \end{split}$$

dove la prima riga segue dal lemma di Schwarz-Pick applicato alla funzione di cui sopra, il passaggio dalla prima alla seconda è perché arctanh è crescente e dalla seconda all'ultima è la definizione di d.

Corollario 1.2.3. Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa che non è un automorfismo. Allora per ogni $z, w, v \in \mathbb{D}$ vale

$$d(0, f^*(z, v)) \le d(0, f^*(w, v)) + d(z, w). \tag{2}$$

Dimostrazione.

$$d(0, f^*(z, v)) \le d(0, f^*(w, v)) + d(f^*(w, v), f^*(z, v))$$

$$\le d(0, f^*(w, v)) + d(z, w),$$

dove la prima è la disuguaglianza triangolare per la distanza d e la seconda segue dal teorema 1.2.2.

Corollario 1.2.4. Sia $f:\mathbb{D}\longrightarrow\mathbb{D}$ una funzione olomorfa che non è un automorfismo. Allora per ogni $z,w,v,u\in\mathbb{D}$ vale

$$d(0, f^*(z, v)) \le d(0, f^*(u, w)) + d(z, w) + d(v, u). \tag{3}$$

Dimostrazione.

$$d(0, f^*(z, v)) \le d(0, f^*(w, v)) + d(z, w)$$

$$= d(0, f^*(v, w)) + d(z, w)$$

$$\le d(0, f^*(u, w)) + d(z, w) + d(v, u),$$

dove le due disuguaglianze seguono dal corollario 1.2.3.

Corollario 1.2.5. Sia $f:\mathbb{D}\longrightarrow\mathbb{D}$ una funzione olomorfa che non è un automorfismo. Allora per ogni $z,w\in\mathbb{D}$ vale

$$d(f^h(z), f^h(w)) \le 2d(z, w). \tag{4}$$

Dimostrazione. Siano $z,w\in\mathbb{D},$ senza perdita di generalità possiamo supporre $f^h(z)\geq f^h(w).$ Allora

$$d(f^{h}(z), f^{h}(w)) = \log \left(\frac{1 + \frac{f^{h}(z) - f^{h}(w)}{1 - f^{h}(w)f^{h}(z)}}{1 - \frac{f^{h}(z) - f^{h}(w)}{1 - f^{h}(w)f^{h}(z)}} \right)$$

$$= \log \left(\frac{1 - f^{h}(w)f^{h}(z) + f^{h}(z) - f^{h}(w)}{1 - f^{h}(w)f^{h}(z) + f^{h}(w) - f^{h}(z)} \right)$$

$$= \log \left(\frac{1 + f^{h}(z)}{1 - f^{h}(z)} \cdot \frac{1 - f^{h}(w)}{1 + f^{h}(w)} \right)$$

$$= \log \left(\frac{1 + f^{h}(z)}{1 - f^{h}(z)} \right) - \log \left(\frac{1 + f^{h}(w)}{1 - f^{h}(w)} \right)$$

$$= d(0, f^{h}(z)) - d(0, f^{h}(w)) \le 2d(z, w).$$

dove la disuguaglianza finale segue dal corollario 1.2.4 ponendo u=w,v=z. \square

Ponendo w=0 in (4) otteniamo la disuguaglianza di Golusin, che ci servirà per dimostrare il risultato a cui puntiamo.

2 Dalla disuguaglianza di Golusin al teorema di Burns-Krantz

2.1 Lemma di Schwarz-Pick al bordo

Dalla disuguaglianza di Golusin possiamo dimostrare una versione al bordo del lemma di Schwarz-Pick, seguendo la traccia data nel remark 5.6 di [BKR].

Teorema 2.1.1. (lemma di Scharz-Pick al bordo) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa dal disco in sé tale che

$$f^{h}(z_{n}) = 1 + o((|z_{n}| - 1)^{2})$$
(5)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}$ con $|z_n|\longrightarrow 1$. Allora $f\in\mathrm{Aut}(\mathbb{D})$.

Dimostrazione. Supponiamo per assurdo che f non sia un automorfismo. Allora possiamo applicare il corollario 1.2.5, che per w=0 ci dà

$$\begin{aligned} d(f^h(z),f^h(0)) &\leq 2d(z,0) \\ \log \left(\frac{1 + \left| \frac{f^h(z) - f^h(0)}{1 - f^h(z)f^h(0)} \right|}{1 - \left| \frac{f^h(z) - f^h(0)}{1 - f^h(z)f^h(0)} \right|} \right) &\leq 2\log \left(\frac{1 + |z|}{1 - |z|} \right) \\ \frac{|1 - f^h(z)f^h(0)| + |f^h(z) - f^h(0)|}{|1 - f^h(z)f^h(0)| - |f^h(z) - f^h(0)|} &\leq \frac{(1 + |z|)^2}{(1 - |z|)^2}. \end{aligned}$$

Ricordiamo che per definizione $f^h(z) \geq 0$ e inoltre per il lemma di Schwarz-Pick $f^h(z) \leq 1$, per ogni $z \in \mathbb{D}$. Sempre per il lemma originale, se valesse $f^h(0) = 1$ avremmo che f è un automorfismo, contraddizione. Perciò dev'essere $f^h(0) < 1$, ma $\lim_{n \longrightarrow +\infty} f^h(z_n) = 1$, quindi definitivamente $f^h(z_n) - f^h(0) > 0$ e $1 - f^h(z_n)f^h(0) > 0$, da cui

$$\frac{(1-f^h(0))(1+f^h(z_n))}{(1-f^h(z_n))(1+f^h(0))} \le \frac{(1+|z_n|)^2}{(1-|z_n|)^2}$$
$$\frac{1+f^h(0)}{(1-f^h(0))(1+f^h(z_n))}(1-f^h(z_n)) \ge \frac{(1-|z_n|)^2}{(1+|z_n|)^2}.$$

Per ipotesi vale (5), dunque

$$\frac{1+f^h(0)}{(1-f^h(0))(1+f^h(z_n))}o((|z_n|-1)^2) \ge \frac{(1-|z_n|)^2}{(1+|z_n|)^2}$$
$$\frac{(1+f^h(0))(1+|z_n|)^2}{(1-f^h(0))(1+f^h(z_n))}o((|z_n|-1)^2) \ge 1.$$

Poiché
$$\lim_{n \longrightarrow +\infty} \frac{(1+f^h(0))(1+|z_n|)^2}{(1-f^h(0))(1+f^h(z_n))} = \frac{2(1+f^h(0))}{1-f^h(0)} < +\infty$$
, otteniamo di nuovo una contraddizione.

2.2 Teorema di Burns-Krantz

Per poter dimostrare il risultato finale sfruttando la versione al bordo del lemma di Schwarz-Pick, serve poter tradurre informazioni sull'andamento di f vicino a 1 in informazioni sull'andamento di f^h . La seguente proposizione ci permette proprio di fare queato passaggio.

Proposizione 2.2.1. Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione tale che

$$f(z) = 1 + (z - 1) + o((z - 1)^{3})$$
(6)

per $z \longrightarrow 1$ non tangenzialmente. Allora

$$f^{h}(z) = 1 + o((z-1)^{2})$$
(7)

per $z \longrightarrow 1$ non tangenzialmente.

Dimostrazione. Sia S un settore di vertice 1 e angolo d'apertura 2α , e S' uno un po' più grande di vertice 1 e angolo 2β , $\beta>\alpha$. Per $z\in S$, sia C(z) il cerchio di centro z e raggio $r(z)={\rm dist}(z,\partial S')$ (la distanza di z dal bordo di S'). Allora per la formula integrale di Cauchy

$$f'(z) = \frac{1}{2\pi i} \int_{C(z)} \frac{f(w)}{(w-z)^2} dw$$

$$= \frac{1}{2\pi i} \int_{C(z)} \frac{w - 1 + (f(w) - w)}{(w-z)^2} dw$$

$$= \frac{1}{2\pi i} \int_{C(z)} \frac{1}{w - z} dw + \frac{1}{2\pi i} \int_{C(z)} \frac{z - 1 + f(w) - w}{(w-z)^2} dw$$

$$= 1 + \frac{1}{2\pi i} \int_{C(z)} \frac{f(w) - w}{(w-z)^2} dw =: 1 + I(z).$$

Dato $\varepsilon>0$ fissato, per ipotesi esiste $\delta>0$ tale che $|f(w)-w|<\varepsilon|1-w|^3$ per ogni $w\in S'$ con $|w-1|<\delta$. Se $|z-1|<\delta/2$, $r(z)<|z-1|<\delta/2$, dunque per ogni $w\in C(z)$ abbiamo effettivamente $|w-1|\leq |w-z|+|z-1|=r(z)+|z-1|<\delta$. Per questi z vale che

$$\begin{split} |I(z)| &\leq \frac{\varepsilon}{2\pi} \int_0^{2\pi} \frac{|1 - (z + r(z)e^{i\theta})|^3}{|(z + r(z)e^{i\theta}) - z|^2} r(z) \, \mathrm{d}\theta \\ &\leq \frac{\varepsilon}{r(z)} \max_{\theta \in [0, 2\pi]} |1 - (z + r(z)e^{i\theta})|^3 \\ &= \frac{\varepsilon}{r(z)} \max_{w \in C(z)} |1 - w|^3. \end{split}$$

Il massimo è raggiunto per l'intersezione più lontana da 1 tra la retta passante per z e 1 e la circonferenza C(z) (il punto A in figura), perciò

$$|I(z)| \le \frac{\varepsilon}{r(z)} (r(z) + |z - 1|)^3$$

$$= \varepsilon r(z)^2 \left(1 + \frac{|z - 1|}{r(z)} \right)^3$$

$$= \varepsilon r(z)^2 (1 + \csc \gamma)^3$$

$$\le \varepsilon r(z)^2 (1 + \csc(\beta - \alpha))^3$$

$$< \varepsilon |z - 1|^2 (1 + \csc(\beta - \alpha))^3$$

da cui otteniamo $f'(z)=1+o((z-1)^2)$ per $z\longrightarrow 1$ non tangenzialmente. Inoltre, per ipotesi

$$\frac{1 - |f(z)|}{1 - |z|} = \frac{1 - |z| + o((z - 1)^3)}{1 - |z|} = 1 + o((z - 1)^2)$$

per $z\longrightarrow 1$ non tangenzialmente (perché in tal caso |z-1| e 1-|z|hanno gli stessi o-piccoli).

Possiamo quindi concludere che

$$f^h(z) = |f'(z)| \frac{1 - |z|^2}{1 - |f(z)|^2} = 1 + o((z - 1)^2)$$

per $z \longrightarrow 1$ non tangenzialmente.

Siamo ora pronti a dimostrare il teorema 2.1 di [BK].

Teorema 2.2.2. (Burns-Krantz, 1994) Sia $f:\mathbb{D}\longrightarrow\mathbb{D}$ una funzione olomorfa dal disco in sé tale che

$$f(z) = 1 + (z - 1) + \mathcal{O}((z - 1)^4)$$
(8)

per $z \longrightarrow 1$. Allora f è l'identità sul disco.

|z-1| e 1 – |z| non tangenzialmente hanno gli stessi opiccoli (chiedere conferma ad Abate): devo scrivere la dimostrazione?

Gli ultimi passaggi con o-piccoli: devo spiegarli meglio? Forse non sono così ovvi

È comprensibi-

Dimostrazione. Chiaramente, se vale (8) per $z \longrightarrow 1$ vale anche (6), in particolare per $z \longrightarrow 1$ non tangenzialmente. Dalla proposizione 2.2.1 segue che anche (7) vale per $z \longrightarrow 1$ non tangenzialmente, quindi esiste una successione z_n che soddisfa le ipotesi del teorema 2.1.1 (usiamo di nuovo che, non tangenzialmente, |z-1| e 1-|z| hanno gli stessi o-piccoli), da cui la tesi.

Il termine $\mathcal{O}((z-1)^4)$ non è migliorabile, come mostra il seguente controesempio.

Esempio 2.2.3. $f(z)=\frac{1+3z^2}{3+z^2}$. Osserviamo che f è una funzione olomorfa su $\mathbb{C}\setminus\{\pm i\sqrt{3}\}$, quindi in particolare è ben definita su \mathbb{D} . Verifichiamo che l'immagine è contenuta in \mathbb{D} :

$$|f(z)|^{2} < 1$$

$$\frac{(1+3z^{2})(1+3\bar{z}^{2})}{(3+z^{2})(3+\bar{z}^{2})} < 1$$

$$(1+3z^{2})(1+3\bar{z}^{2}) < (3+z^{2})(3+\bar{z}^{2})$$

$$1+3z^{2}+3\bar{z}^{2}+9|z|^{4} < 9+3z^{2}+3\bar{z}^{2}+|z|^{4}$$

$$1-|z|^{4} < 9(1-|z|^{4})$$

e l'ultima disuguaglianza è verificata perché $z \in \mathbb{D} \Rightarrow |z| < 1 \Rightarrow 1 - |z|^4 > 0$. Ovviamente f non può essere iniettiva su \mathbb{D} perché f(z) = f(-z), dunque non è un automorfismo. Adesso mostriamo che f(z) - 1 - (z - 1) è $\mathcal{O}((z - 1)^3)$ ma non $\mathcal{O}((z - 1)^4)$ per $z \longrightarrow 1$:

$$f(z) - z = \frac{1 + 3z^2}{3 + z^2} - z$$
$$= \frac{1 + 3z^2 - 3z - z^3}{3 + z^2}$$
$$= \frac{(1 - z)^3}{3 + z^2} =: g(z).$$

Poiché $\lim_{z \longrightarrow 1} g(z)/(z-1)^3 = -1/4$, g(z) è $\mathcal{O}((z-1)^3)$ ma non $\mathcal{O}((z-1)^4)$ per $z \longrightarrow 1$.

Riferimenti bibliografici

[BK]	D. M. Burns, S. G. Krantz, Rigidity of holomorphic mappings
	and a new Schwarz lemma at the boundary, (1994)

- [BKR] F. Bracci, D. Kraus, O. Roth, A new Schwarz-Pick lemma at the boundary and rigidity of holomorphic maps, (2020)
- [BM] A. F. Beardon, D. Minda, A multi-point Schwarz-Pick lemma, (2004)