PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

AL

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 98/10291
G01N 33/574, 33/68, C07K 14/47, G01N 33/577	A1	(43) International Publication Date:	12 March 1998 (12.03.98)

(21) International Application Number: PCT/GB97/02394
(22) International Filing Date: 5 September 1997 (05.09.97)

(30) Priority Data:
9618600.2
9707132.8
6 September 1996 (06.09.96)
8 April 1997 (08.04.97), GB

(71) Applicant (for all designated States except US): CENTER FOR CLINICAL & BASIC RESEARCH [DK/DK]; Ballerup Byvej 222, DK-2750 Ballerup (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BYRJALSEN, Inger [DK/DK]; Melanders Vaenge 5, DK-2970 Hoersholm (DK). LARSEN, Peter, Mose [DK/DK]; Vestervang 10, DK-8000 Aarhus C (DK). FEY, Stephen, John [GB/DK]; Vestervang 7, DK-8000 Aarhus C (DK).

(74) Agent: SMART, Peter, J.; W.H. Beck, Greener & Co., 7 Stone Buildings, Lincoln's Inn, London WC2A 3SZ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM

(57) Abstract

Assay methods are provided for detection or quantitation of any of several proteins which are specifically produced in the endometrium in association with hyperplasia, adenocarcinoma or the proliferative phase of the endometrium. The relevant proteins have been identified by 2D gel electrophoresis with subsequent sequence identification by mass spectroscopic finger printing of tryptic digests.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM		ES	Spain	LS	Lesotho	SI	Slovenia
A.M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzsian	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SĐ	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-BIOCHEMICAL MARKERS OF THE HUMAN ENDOMETRIUM

The endometrium is the mucous lining of the uterine During the menstrual cycle, the endometrium is the organ in the body that shows the greatest changes under the 5 influence of the sex hormones, oestradiol and progesterone. the dominated phase endometrium oestrogen the proliferates until progesterone from the corpus luteum transforms the oestrogen-primed proliferative endometrium to secretory phase endometrium. In due course this is 10 followed by shedding of the fully transformed endometrium during the menstruation, and a new cycle will begin.

Persistent unbalanced oestrogen stimulation either due endogenous production of oestrogens, increased replacement therapy in which oestrogens are given alone, is 15 associated with increased risk of developing endometrial hyperplasia and subsequently endometrial adenocarcinoma. pathological conditions these Histologically, characterised by increased thickness of the endometrium and irregular pattern of the endometrial glandular cells.

Endometrial adenocarcinoma is life threatening a 20 condition.

At present the endometrial status is assessed by and biochemical analysis of endometrial histological biopsies. This is time-consuming, expensive and causes 25 discomfort for the woman. It would be highly desirable to identify biochemical markers which could be measured in body fluids reflecting the endometrial status, obviating the need for endometrial biopsies. The detection of such markers in histological samples would also however be advantageous as 30 an additional method of recognising the histological status of such samples.

We have now discovered that certain proteins are produced in the endometrium in increased amounts associated with hyperplasia and that certain proteins are produced in 35 increased amounts associated with adenocarcinoma. groups of proteins overlap somewhat. The present invention relates in a first aspect to such proteins and to their diagnostic uses.

-2-

Unless otherwise indicated, references to the proteins herein include references to modified forms of the proteins and derivatives of the proteins, including but not restricted to glycosylated, phosphorylated, acetylated, methylated or lipidated forms thereof.

Thus the invention provides a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a nucleic acid coding therefor, or an antibody thereto.

The invention includes a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and characterised by one of the following combinations of molecular weight and pI values:

hyperplasia

	·	
	Iq	MW kDa
25	6.7	91
	6.6	90
	6.9	64
	6.6	67
	6.3	66
30	6.8	46
	5.7	41
	5.5	35
	5.3	13
	6.6	101
35	5.8	14
	7.4	51
	8.2	44
	9.5	48

	adenoca	ırci	.noma
5	pI	MW	(kDa)
	6.3		32
	6.0	1	.09
	6.7		91
	6.6		90
10.	6.9		64
	6.6		67
	6.3		66
	6.2		62
	6.2		45
15	5.7		45
	5.4		33
	6.3		27
	6.5	1	03
	6.8		90
20	6.9	,	78
	5.3		13
	6.2	1	30
	6.3	(66
	6.3	•	73
25	8.3	:	32
	8.1	!	55
	8.2	4	44
	6.6	1	11
	7.7	4	43
30	9.5	4	18
	8.3	3	32
	7.7	3	39

or a fragment or breakdown product thereof, or a nucleic acid coding therefor, or an antibody thereto.

Said protein, fragment, breakdown product, antibody or nucleic acid may preferably be detected in a body fluid sample but may also be detailed in other forms of sample such as histological samples or cytological samples.

-4-

The invention includes an immunological binding partner specifically reactive with a protein as defined above with a fragment or breakdown product thereof or with a nucelic acid coding therefor.

It also includes a cell line producing a monoclonal antibody being such an immunological binding partner.

The invention includes also an assay kit for use in 0 such an analysis method comprising an immunological binding partner as described.

This aspect of the invention has resulted from studies aiming to detect endometrial proteins with increased synthesis in endometrial adenocarcinoma as compared to the synthesis during the normal menstrual cycle; to detect endometrial proteins with increased synthesis in endometrial hyperplasia as compared to the synthesis during the normal menstrual cycle; and to detect proteins showing a cycle-related expression during the normal menstrual cycle.

In a second aspect the invention relates to the discovery of markers of the "proliferative" phase of the human endometrium. A protein marker for the "secretory" phase of the endometrium has been previously described, see US-A-4,489,166. No similar marker has been described for the proliferative phase although certain candidate proteins were described in Ref. 1.

Under influence of the sex hormones, oestradiol and progesterone, the human endometrium undergoes cyclical variation with an oestrogen-dominated phase, i.e. proliferative phase, an ovulation phase, i.e. the interval phase, a progesterone-dominated phase, i.e. the secretory phase, and finally the endometrium is shed, i.e. The same cyclical variation of the menstrual phase. endometrium is seen in postmenopausal women receiving sequentially combined hormone replacement therapy. The demand for endometrial status assessment has highly increased in the latest decade, not only on account of the extensive research into fertility, but also in order to

-5-

endometrial response to the large number combined oestrogens/progestogen preparations used in hormone replacement therapy. It would be highly desirable to identify biochemical markers which could be measured in body 5 fluids reflecting the endometrial status, obviating the need for endometrial biopsies. Studies have suggested that serum placental protein 14 (PP14), which is produced in the glandular cells of the secretory phase endometrium (Ref. 3), is a reliable marker of the secretory phase endometrium. 10 has been shown that serum PP14 strongly correlates with the secretory activity of the endometrium in postmenopausal women receiving hormone replacement therapy (Ref. 4,5). similar marker exists for the proliferative phase endometrium.

We have now discovered that certain proteins are produced in the endometrium in increased amounts in proliferative phase endometrium as compared to secretory phase endometrium.

According to this aspect of the invention there is now provided a method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel elctrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

pΙ	MW(kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	. 52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	59
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic 5 acid coding therefor or an antibody thereto.

Such a method may preferably be for detecting the phase of the endometrium.

The preferred features of the first aspect of the invention apply also to this second aspect.

- This aspect of the invention includes a method of determining the proliferative/secretory phase status of the endometrium comprising the quantitative or qualitative measurement in a sample of any one or more of the proteins defined above or a breakdown product or fragment thereof.
- 15 It also includes an immunological binding partner for any of the said proteins, breakdown products or fragments or a cell line producing such a binding partner.

-7-

the sequences and properties of proteins discussed above relate to human proteins, the procedures of the invention may be practised on samples Especially in this context, arising from other species. 5 references to proteins herein should be understood to include proteins having a degree of homology of at least 60% with the given amino acid sequences irrespective of any modifications of said amino acids. When determining homology, modified amino acids such as phosphorylated, acetylated, amidated, methylated, glycosylated or lipidated derivatives of an amino acid should thus be considered to be the same as the amino acid without any such modification. Such peptides may be derived from similar proteins from other species, e.g. other mammals such as mouse, rabbit, 15 guinea pig, pig, or cow or may be entirely or predominantly of synthetic origin.

The degree of homology may be advantageously be at least 65%, or at least 70%. Under certain circumstances, it is advantageous that the degree of homology is even higher 20 such as at least 80% or at least 90%. Other DNA sequences which encode substantially the same amino acid sequence as a gene encoding a marker protein, i.e. a marker gene, may be used in the practice of the present invention. These include, but are not limited to, allelic genes and homologous genes from other species.

25

30

Nucleic acid fragments comprising a nucleotide sequence which codes for a protein described above or a peptide derived from it as well as nucleic acid fragments which hybridise with these nucleic acid fragments or a part thereof under stringent hybridisation conditions, e.g. 5 mM monovalent ions (0.1xSSC), neutral pH and 65°C are important aspects of the invention. The term "highly stringent", when used in conjunction with hybrisidation conditions, is as defined in the art, i.e. 5-10°C under the melting point T_m , 35 cf, Sambrook et al, 1989, pages 11.45 - 11.49.

By the term "nucleic acid" is meant a polynucleotide of high molecular weight which can occur as either DNA or RNA and may be either single-stranded or double-stranded.

-8-

Once the amino acid sequences of the proteins of utility in the present invention are known, it is possible to synthesise DNA or RNA probes which may be used for:

5

- i) direct detection of DNA and RNA expressing said proteins on a fixed or frozen tissue section using, e.g. chromogenous, chemiluminescent or immunofluorescent techniques;
- ii) polymerase chain reaction (PCR) or other amplification techniques; and
- iii) locating the part or all of the gene, isogene, pseudogene or other related genes either in cDNA libraries, genomic libraries or other collections of genetic material from either the host or other animals, including man.
- In another aspect, the invention relates to a binding means which specifically binds to a relevant protein or peptide or nucleic acid fragment as described above. In particular, the invention relates to an antibody which specifically binds to a relevant protein or peptide or an antigen-binding fragment thereof, i.e. a polyclonal antibody, a monoclonal antibody, chimeric antibody, single chain antibody fragment, Fab and Fab' fragments, and an Fab expression library.

It is contemplated that both monoclonal and polyclonal
antibodies will be useful in providing the basis for one or
more assays to detect relevant peptides and proteins.
Antibodies which are directed against epitopes that are
specific for the proteins will be most useful as cross
reaction will be minimised therewith.

Based upon the identification of relevant proteins described above, assay methods and kits may be produced according to standard methodology. Thus, the proteins may be obtained in purified form, either by extraction from tissues or by synthesis, and antibodies may be raised thereto or to characterising peptide sequences thereof. Standard assay formats employing such antibodies may be utilised according to the invention.

Preferred immunoassays are contemplated as including various types of enzyme linked immunoassays (ELISA), immunoblot techniques, and the like, known in the art.

5 However, it is readily appreciated that utility is not limited to such assays, and useful embodiments including RIAs and other non-enzyme linked antibody binding assays or procedures. The proteins themselves or peptides derived from the protein sequences may be used in detecting auto-antibodies to such proteins.

Samples of the proteins described above have been subjected to trypsin digestion and the molecular weight of the resulting fragments has been determined by mass spectrometry. This provides a "fingerprint" of the protein which can be matched to date in established data bases available to those working in this field. This procedure has enabled us to identify certain of the proteins as being previously known in other contexts. No matches have been found for certain others, indicating that they have not previously been known.

The invention will be illustrated and explained further by the following description in which the Figures as follows:-

Figure 1: Fluorograph of a two-dimensional gel electrophoresis of [35]methionine labelled endometrial
proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the
second dimension by sodium dodecyl sulphate
polyacrylamide gel electrophoresis. The locations
of the spots with increased synthesis in
hyperplasia are indicated.

Figure 2: Fluorograph of a two-dimensional gel electrophoresis of [35]methionine labelled endometrial proteins separated in the first dimension by non-equilibrium pH gradient gel electrophoresis (NEPHGE; pI 6.5-11) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel

-10-

electrophoresis. The locations of the spots with increased synthesis in hyperplasia are indicated.

Figure 3: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in adenocarcinoma are indicated.

5

10

15

- Figure 4: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by nonequilibrium pH gradient gel electrophoresis (NEPHGE; pI 6.5-11) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in adenocarcinoma are indicated.
- 20 Figure 5: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by isoelectric focusing (IEF; pI 3.5-7) and in the second dimension by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The locations of the spots with increased synthesis in proliferative phase endometrium are indicated.
- Figure 6: Fluorograph of a two-dimensional gel electrophoresis of [35S]methionine labelled endometrial proteins separated in the first dimension by non-30 рΗ gradient gel electrophoresis equilibrium (NEPHGE; pI 6.5-11) and in the second dimension by dodecyl sulphate polyacrylamide electrophoresis. The locations of the spots with increased proliferative 35 synthesis in endometrium are indicated.
 - Figure 7: Tryptic digestion mass spectroscopic characteristics of I#350. The peaks marked with a star

-11-

are not protein identification specific but represents methodologically non-specific peaks.

Figure 8: Tryptic digestion mass spectroscopic characteristics of I#687. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

5

10

- Figure 9: Tryptic digestion mass spectroscopic characteristics of N#414. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- Figure 10: Tryptic digestion mass spectroscopic characteristics of I#1035. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- 15 Figure 11:Tryptic digestion mass spectroscopic characteristics of N#26. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.
- Figure 12:Tryptic digestion mass spectroscopic characteristics of N#31+N#32. The peaks marked with a star are not protein identification specific but represents methodologically non-specific peaks.

To identify proteins expressed at an increased level in differing endometrial conditions, endometrial samples were obtained as follows.

Normal menstrual cycle samples were obtained described in Ref. 1. Endometrial biopsies were collected from 13 pre-menopausal, regular cycling women (35-50 years 30 old) undergoing endometrial curettage (n=1) or hysterectomy (removal of the uterus) (n=12) for a variety of medical reasons not related to abnormality or malignancy of the endometrium. None used hormone contraception. pathological condition samples, endometrial biopsies were 35 collected from 16 patients (41 to 79 years old) undergoing (n=9) or hysterectomy endometrial curettage medical reasons related to abnormality or malignancy of the endometrium.

-12-

The samples were treated as described in Ref. 1. The proteins of the endometrial biopsies were metabolically labelled with ³⁵S-methionine for 20 hours, and total cell lysates were processed for 2D gel electrophoresis, technique in which proteins are separated in the first dimension according to the isoelectric point and in the second dimension according to the molecular weight. It was possible to study proteins with iso-electric points ranging from 3.5 to 11 and relative molecular weights ranging from 10 to 300 kDa. After electrophoresis the gels were fixed and treated for fluorography. The fluorograms of the 2D gel electrophoresis were subjected to quantitative analysis by computer-aided analysis, by which the density of each spot was quantified, the fluorogram patterns were matched i.e. 15 numbers were assigned to each spot and the same spot was given the same number on all the fluorograms. The density (quantity synthesis) of each spot was assessed to find with proteins increased synthesis in endometrial adenocarcinoma or hyperplasia and assessed for periodic 20 characteristics during the normal menstrual cycle to find proteins with the menstrual cycle-related synthesis.

the menstrual cycle-related proteins identified have been identified by amino acid sequence analysis (Ref.2). Selected menstrual cycle-related proteins were excised from several 2D gels, concentrated by sodium dodecylsulphate polyacrylamide gel horesis, and cleaved in situ by trypsin. The fragments were extracted and separated by reverse phase high pressure liquid chromatography. Finally, the amino-terminal amino acid sequence of selected tryptic 30 fragments were determined for each protein. identification the amino acid sequences of the tryptic fragments were compared to previously reported sequences by searching in databases.

The hyperplasia and adenocarcinoma associated proteins of the present invention may be sequenced and further characterised by similar methods.

-13-

Out of a total number of approximately 1,700 spots, 14 spots were found to have increased synthesis in hyperplasia. The locations of these are shown in Figures 1 and 2. 5 27 spots had increased synthesis in adenocarcinoma. The locations of these are shown in Figures 3 and 4. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular weight (MW) of the spots with increased synthesis in 10 hyperplasia is given in Table 1, and the spots with increased synthesis in adenocarcinoma are listed in Table 2. Eight spots had increased expression in both hyperplasia adenocarcinoma. Based on subjective evaluation. preferred subgroups of spots were selected with increased 15 synthesis in hyperplasia and in adenocarcinoma, respectively. The preferred subgroup of spots increased synthesis in hyperplasia were selected as being spots the showing the highest relative increase expression in hyperplasia as compared to the samples 20 obtained from women during the normal mentrual cycle and women with irregular proliferative phase endometrium. Similarly, the preferred subgroup of spots with increased synthesis in adenocarcinoma were selected as the spots showing the highest relative increase in expression in adenocarcinoma as compared to the samples obtained from women during the normal menstrual cycle and women with irregular proliferative phase endometrium. The preferred subgroup of 7 spots with increased synthesis in hyperplasia is given in Table 3, and the preferred subgroup of 12 spots 30 with increased synthesis in adenocarcinoma is given in Table 4.

TABLE 1

Endometrial proteins with increased synthesis in hyperplasia			
Match #	pI	MW(kDa)	
I#111	6.7	91	
I#121	6.6	90	
I#158	6.9	64	
I#177	6.6	67	
I#191	6.3	66	
I#307	6.8	46	
I#350	5.7	41	
I#405	5.5	35	
I#653	5.3	13	
I#892	6.6	101	
I#1183	5.8	14	
N#126	7.4	51	
N#148	8.2	44	
N#414	9.5	48	

-15-Table 2

Endometrial proteins with increased synthesis in adenocarcinoma			
Match #	pI	MW(kDa)	
I#16	6.3	32	
I#53	6.0	109	
I#111	6.7	91	
I#121	6.6	90	
I#158	6.9	64	
I#177	6.6	67	
I#191	6.3	66	
I#194	6.2	62	
I#337	6.2	45	
I#346	5.7	45	
I#436	5.4	33	
I#452	6.3	27	
I#542	6.5	103	
I#558	6.8	90	
I#627	6.9	78	
I#653	5.3	13	
I#788	6.2	130	
I#1137	6.3	66	
I#1271	6.3	73	
N#15	8.3	32	
N#91	8.1	55	
N#148	8.2	44	
N#251	6.6	111	
N#354	7.7	43	
N#414	9.5	48	
N#549	8.3	32	
N#551	7.7	39	

5

-16-

TABLE 3

Preferred endometr	ial proteins with in hyperplasia	creased synthesis in
Match #	pI	MW(kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#350	5.7	41
I#405	5.5	35
I#653	5.3	13
I#892	6.6	101

TABLE 4

Preferred endometri	al proteins with inc adenocarcinoma	creased synthesis in
Match #	pI	MW(kDa)
I#111	6.7	91
I#158	6.9	64
I#191	6.3	66
I#194	6.2	62
I#337	6.2	45
I#346	5.7	45
I#452	6.3	27
I#627	6.9	78
I#653	5.3	13
N#91	8.1	55
N#354	7.7	43
N#551	7.7	39

-17-

Out of the total number of approximately 1,700 spots, 135 had a menstrual cycle-related expression. These 135 spots had maximal expression as follows: 61 spots in proliferative endometrium, 29 spots in interval phase endometrium, 41 in secretory phase endometrium and 4 in late secretory/menstrual phase endometrium. The information obtained from the 2D-gel electrophoresis with respect to the isoelectric point (pI) and the molecular weight (MW) of a preferred subgroup of these spots which show increased synthesis in proliferative phase endometrium are given in Table 5 and their positions are indicated in Figures 5 and 6.

TABLE 5

	TRBDE 3		
Endometrial proteins with menstrual cycle-related expression Maximal expression in proliferative phase endometrium			
Match #	pI	MW(kDa)	
I#103	6.9	86	
I#590	5.4	34	
I#687	5.6	67	
I#960	5.3	23	
I#1035	6.8	52	
N#8	8.7	47	
N#21	8.2	138	
N#26	6.5	124	
N#31	7.7	119	
N#32	7.8	119	
N#64	8.1	66	
N#71	7.1	59	
N#74	6.8	66	
N#124	7.9	48	
N#192	7.7	31	
N#207	6.8	29	
N#265	7.2	70	
N#332	8.0	119	
N#342	6.7	62	

Fluorographs of gels exemplifying those upon which the identifications given in Tables 1 to 5 above are based appear in Figures 1 to 6.

The proteins described above may be further characterised by partial amino acid sequence analysis as described in Ref. 2, or by the more sensitive technique of mass spectrometric peptide mapping. By way of example, we have identified the proteins for which previously given names, data-base accession numbers and amino acid sequences are given in Table 6. Mass spectroscopic characteristics of tryptic digests of further proteins are shown in Figures 7 to 13 which have not matches to any known protein. These proteins can be sequenced by known techniques and are included per se within the scope of the invention.

15

TABLE 6

Match #	Name ID	Amino Acid Sequence
1#191	Human heat shock 70 kD	MAKAAAIGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNOVA
And	protein 1	LNPQNTVFDA KRLIGRKFGD PVVQSDMKHW PFQVINDGDK PKVQVSYKGE TKAFYPEEIS
I#1137	P08107	SMVLTKMKEI AEAYLGYPVT NAVITVPAYF NDSQRQATKD AGVIAGLNVL RIINEPTAAA
SEQ ID.	i I	IAYGLDRTGK GERNVLIFDL GGGTFDVSIL TIDDGIFEVK ATAGDTHLGG EDFDNRLVNH
No.1		FVEEFKRKHK KDISQNKRAV RRLRTACERA KRTLSSSTQA SLEIDSLFEG IDFYTSITRA
		RFEELCSDLF RSTLEPVEKA LRDAKLDKAQ IHDLVLVGGS TRIPKVQKLL QDFFNGRDLN
		KSINPDEAVA YGAAVQAAIL MGDKSENVQD LLLLDVAPLS LGLETAGGVM TALIKRNSTI
		PTKQTQIFTT YSDNQPGVLI QVYEGERAMT KDNNLLGRFE LSGIPPAPRG VPQIEVTFDI
		DANGILNVTA TDKSTGKANK ITITNDKGRL SKEEIERMVQ EAEKYKAEDE VQRERVSAKN
		ALESYAFNMK SAVEDEGLKG KISEADKKKV LDKCQEVISW LDANTLAEKD EFEHKRKELE
		QVCNPIISGL YQGAGGPGPG GFGAQGPKGG SGSGPTIEEV D
I#337	CAMP- dependent	ASPPACPSEE DESLKGCELY VQLHGIQQVL KDCIVHLCIS KPERPMKFLR EHFEKLEKEE
SEQ ID	protein kinase type	NRQILARQKS NSQSDSHDEE VSPTPPNPVV KARRRGGVS AEVYTEEDAV SYVRKVIPKD
No.2	I-beta regulatory	YKTMTALAKA ISKNVLFAHL DDNERSDIFD AMFPVTHIAG ETVIQQGNEG DNFYVVDQGE
	chain	VDVYVNGEWV TNISEGGSFG ELALIYGTPR AATVKAKTDL KLWGIDRDSY RRILMGSTLR

		-20-
	P31321	KRKMYEEFLS KVSILESLEK WERLTVADRL EPVQFEDGEK IVVQGEPGDD FYIITEGTAS VLQRRSPNEE YVEVGRLGPS DYFGEIALLL NRPRAATVVA RGPLKCVKLD RPRFERVLGP CSEILKRNIQ RYNSFISLTV
I#346	Vimentin	STRSVSSSSY RRMFGGPGTA SRPSSSRSYV
And	P08670	TTSTRTYSLG SALRPSTSRS LYASSPGGVY ATRSSAVRLR SSVPGVRLLQ DSVDFSLADA
I#405		INTEFKNTRT NEKVELQELN DRFANYIDKV RFLEQQNKIL LAELEQLKGQ GKSRLGDLYE
		EEMRELRRQV DQLTNDKARV EVERDNLAED IMRLREKLQE EMLQREEAEN TLQSFRQDVD
SEQ ID		NASLARLDLE RKVESLQEEI AFLKKLHEEE
		IQELQAQIQE QHVQIDVDVS KPDLTAALRD VRQQYESVAA KNLQEAEEWY KSKFADLSEA
	į į	ANRNNDALRQ AKQESTEYRR QVQSLTCEVD ALKGTNESLE RQMREMEENF AVEAANYQDT
		IGRLQDEIQN MKEEMARHLR EYODLLNVKM
		ALDIEIATYR KLLEGEESRI SLPLPNFSSL NLRETNLDSL PLVDTHSKRT FLIKTVETRD
		GQVINETSQH HDDLE
I#452	Heat Shock 27	MTERRVPFSL LRGPSWDPFR DWYPHSRLFD
	KD Protein	QAFGLPRLPE EWSQWLGGSS WPGYVRPLPP AAIESPAVAA PAYSRALSRQ LSSGVSEIRH
SEQ ID	P04792	TADRWRVSLD VNHFAPDELT VKTKDGVVEI
No.4		TGKHEERQDE HGYISRCFTR KYTLPPGVDP TQVSSSLSPE GTLTVEAPMP KLATQSNEIT
	And	IPVTFESRAQ LGGRSCKIR
	Prohibitin	MAAKVFESIG KFGLALAVAG GVVNSALYNV
	P35232	DAGHRAVIFD RFRGVQDIVV GEGTHFLIPW VQKPIIFDCR SRPRNVPVIT GSKDLQNVNI
	(in admixture)	TLRILFRPVA SQLPRIFTSI GEDYDERVLP SITTEILKSV VARFDAGELI TQRELVSRQV
	dulineure)	SDDLTERAAT FGLILDDVSL THLTFGKEFT
		EAVEAKQVAQ QEAERARFVV EKAEQQKKAA IISAEGDSKA AELIANSLAT AGDGLIELRK
T 11 4 3 C		LEAAEDIAYQ LSRSRNITYL PAGQSVLLQL PQ
I#436	Tropomyosin fibroblast	MDAIKKKMOM LKLDKENALD RAEQAEADKK AAEDRSKOLE DELVSLOKKL KGTEDELDKY
And	isoform TM3	SEALKDAQEK LELAEKKATD AEADVASLNR RIQLVEEELD RAQERLATAL QKLEEAEKAA
I#590	P09494	DESERGMKVI ESRAQKDEEK MEIOEIOLKE
950 70		AKHIAEDADR KYEEVARKLV IIESDLERAE ERAELSEGQV RQLEEQLRIM DQTLKALMAA
SEQ ID No.5		EDKYSQKEDR YEEEIKVLSD KLKEAETRAE
		FAERSVTKLE KSIDDLEEKV AHAKEENLSM HQMLDQTLLE LNNM
I#627	Serotrans- ferrin	MRLAVGALLV CAVLGLCLAV PDKTVRWCAV SEHEATKCQS FRDHMKSVIP SDGPSVACVK
	precursor	KASYLDCIRA IAANEADAVT LDAGLVYDAY
SEQ ID	P02787	LAPNNLKPVV AEFYGSKEDP QTFYYAVAVV KKDSGFQMNQ LRGKKSCHTG LGRSAGWNIP
No.6		IGLLYCDLPE PRKPLEKAVA NFFSGSCAPC
		ADGTDFPQLC QLCPGCGCST LNQYFGYSGA FKCLKDGAGD VAFVKHSTIF ENLANKADRD
		QYELLCLDNT RKPVDEYKDC HLAQVPSHTV VARSMGGKED LIWELLNQAQ EHFGKDKSKE
		L

		-21-
N#8 SEQ ID	47 KD Heat Shock Protein Precursor P29043	FQLFSSPHGK DLLFKDSAHG FLKVPPRMDA KMYLGYEYVT AIRNLREGTC PEAPTDECKP VKWCALSHHE RLKCDEWSVN SVGKIECVSA ETTEDCIAKI MNGEADAMSL DGGFVYIAGK CGLVPVLAEN YNKSDNCEDT PEAGYFAVAV VKKSASDLTW DNLKGKKSCH TAVGRTAGWN IPMGLLYNKI NHCRFDEFFS EGCAPGSKKD SSLCKLCMGS GLNLCEPNNK EGYYGYTGAF RCLVEKGDVA FVKHQTVPQN TGGKNPDPWA KNLNEKDYEL LCLDGTRKPV EEYANCHLAR APNHAVVTRK DKEACVHKIL RQQQHLFGSN VTDCSGNFCL FRSETKDLLF RDDTVCLAKL HDRNTYEKYL GEEYVKAVGN LRKCSTSSLL EACTFRRE MRSLLLGTLC LLAVALAAEV KKPVEAAAPG TAEKLSSKAT TLAEPSTGLA FSLYQAMAKD QAVENILVSP VVVASSLGLV SLGGKATTAS QAKAVLSAEQ LRDEEVHAGL GELLRSLSNS TARNVTWKLG SRLYGPSSVS FADDFVRSSK
No.7		QHYNCEHSKI NFPDKRSALQ SINEWAAQTT DGKLPEVTKD VERTDGALLV NAMFFKPHWD EKFHHKMVDN RGFMVTRSYT VGVTMMHRTG LYNYYDDEKE KLQLVEMPLA HKLSSLIILM PHHVEPLERL EKLLTKEQLK IWMGKMQKKA VAISLPKGVV EVTHDLQKHL AGLGLTEAID KNKADLSRMS GKKDLYLASV FHATAFELDT DGNPFDQDIY GREELRSPKL FYADHPFIFL VRDTQSGSLL FIGRLVRLKG DKMRDEL
N#124 SEQ ID No.8	Ubiquinol- cytochrom C reductase complex core protein 2 precursor P22695	MKLLTRAGSF SRFYSLKVAP KVKATAAPAG APPQPQDLEF TKLPNGLVIA SLENYSPVSR IGLFIKAGSR YEDFSNLGTT HLLRLTSSLT TKGASSFKIT RGIEAVGGKL SVTATRENMA YTVECLRGDV DILMEFLLNV TTAPEFRRWE VADLQPQLKI DKAVAFQNPQ THVIENLHAA AYQNALANPL YCPDYRIGKV TSEELHYFVQ NHFTSARMAL IGLGVSHPVL KQVAEQFLNM RGGLGLSGAK ANYRGGEIRE QNGDSLVHAA FVAESAVAGS AEANAFSVLQ HVLGAGPHVK RGSNTTSHLH QAVAKATQQP FDVSAFNASY SDSGLFGIYT ISQATAAGDV IKAAYNQVKR IAQGNLSNTD VQAAKNKLKA GYLMSVESSE CFLEEVGSQA LVAGSYMPPS TVLQQIDSVA NADIINAAKK FVSGQKSMAA SGNLGHTPFV DEL
N#126 SEQ ID No.9	Alpha Enolase	SILKIHAREI FDSRGNPTVE VDLFTSKGLF RAAVPSGAST GIYEALELRD NDKTRYMGKG VSKAVEHINK TIAPALVSKK LNVTEQEKID KLMIEMDGTE NKSKFGANAI LGVSLAVCKA GAVEKGVPLY RHIADLAGNS EVILPVPAFN VINGGSHAGN KLAMQEFMIL PVGAANFREA MRIGAEVYHN LKNVIKEKYG KDATNVGDEG GFAPNILENK EGLELLKTAI GKAGYTDKVV IGMDVAASEF FRSGKYDLDF KSPDDPSRYI SPDQLADLYK SFIKDYPVVS IEDPFDQDDW GAWQKFTASA GIQVVGDDLT VTNPKRIAKA VNEKSCNCLL LKVNQIGSVT ESLQACKLAQ ANGWGVMVSH RSGETEDTFI ADLVVGLCTG QIKTGAPCRS ERLAKYNQLL RIEEELGSKA KFAGRNFRNP LAK

	· · · · · · · · · · · · · · · · · · ·	-22-
N#148	Phospho- glycerate kinase l	SLSNKLTLDK LDVKGKRVVM RVDFNVPMKNNQITNNQRIK AAVPSIKFCL
SEQ ID	P00558	DNGAKSVVLM SHLGRPDGVP MPDKYSLEPV AVELKSLLGK
No.10	1 100338	DVLFLKDCVG PEVEKACANP AAGSVILLEN LRFHVEEEGK GKDASGNKVK AEPAKIEAFR
1	i	ASLSKLGDVY VNDAFGTAHR AHSSMVGVNL
		POKAGGFLMK KELNYFAKAL ESPERPFLAI
		LGGAKVADKI QLINNMLDKV NEMIIGGGMA
		FTFLKVLNNM EIGTSLFDEE GAKIVKDLMS
		KAEKNGVKIT LPVDFVTADK FDENAKTGOA
}		TVASGIPAGW MGLDCGPESS KKYAEAVTRA
		KQIVWNGPVG VFEWEAFARG TKALMDEVVK
		ATSRGCITII GGGDTATCCA KWNTEDKVSH
		VSTGGGASLE LLEGKVLPGV DALSNIL
N#207	Triose-	MAPSRKFFVG GNWKMNGRKQ SLGELIGTLN
	phosphat	AAKVPADTEV VCAPPTAYID FAROKLDPKI
	isomerase	AVAAQNCYKV TNGAFTGEIS PGMIKDCGAT
SEQ ID	ISHUT	WVVLGHSERR HVFGESDELI GQKVAHALAE
No.11	S29743	GLGVIACIGE KLDEREAGIT EKVVFEQTKV IADNVKDWSK VVLAYEPVWA IGTGKTATPQ
1	0,57,15	QAQEVHEKLR GWLKSNVSDA VAQSTRIIYG
		GSVTGATCKE LASQPDVDGF LVGGASLKPE
		FVDIINAKQ
N#332	Hypo-thetical	PVPLSFLSTV CDPRVQDGAA ERTGAADGEE
	Protein	FLGGGGLPAE LFQKKVVASF PRTVLSTGMD
	KIAA0083	NRYLVLAVNT VQNKEGNCEK RLVITASOSL
SEQ ID		ENKELCILRN DWCSVPVEPG DIIHLEGDCT
H	P51530	SDTWIIDKDF GYLILYPDML ISGTSIASSI
No.12		RCMRRAVLSE TFRSSDPATR QMLIGTVLHE
		VFQKAINNSF APEKLQELAF QTIQEIRHLK
		EMYRLNLSQD EIKQEVEDYL PSFCKWAGDF MHKNTSTDFP QMQLSLPSDN SKDNSTCNIE
1		VVKPMDIEES IWSPRFGLKG KIDVTVGVKI
1		HRGYKTKYKI MPLELKTGKE SNSIEHRSQV
		VLYTLLSQER RADPEAGLLL YLKTGQMYPV
J		PANHLDKREL LKLRNQMAFS LFHRISKSAT
i		RQKTQLASLP QIIEEEKTCK YCSQIGNCAL
		YSRAVEQOMD CSSVPIVMLP KIEEETOHLK
		QTHLEYFSLW CLMLTLESQS KDNKKNHQNI
<u>ji</u>		WLMPASEMEK SGSCIGNLIR MEHVKIVCDG QYLHNFQCKH GAIPVTNLMA GDRVIVSGEE
		RSLFALSRGY VKEINMTTVT CLLDRNLSVL
		PESTLFRLDQ EEKNCDIDTP LGNLSKLMEN
		TFVSKKLRDL IIDFREPQFI SYLSSVLPHD
		AKDTVACILK GLNKPQRQAM KKVLLSKDYT
Į l		LIVGMPGTGK TTTICTLVRI LYACGFSVLL
.		TSYTHSAVDN ILLKLAKFKI GFLRLGQIQK
ŀ		VHPAIQOFTE QEICRSKSIK SLALLEELYN SQLIVATTCM GINHPIFSRK IFDFCIVDEA
		SQLIVATION GINHPIPSKK IFDFCIVDEA SQISQPICLG PLFFSRRFVL VGDHQQLPPL
]		VLNREARALG MSESLFKRLE QNKSAVVQLT
l l	1	VQYRMNSKIM SLSNKLTYEG KLECGSDKVA
		NAVINLRHFK DVKLELEFYA DYSDNPWLMG
		VFEPNNPVCF LNTDKVPAPE QVEKGGVSNV
	ļ	TEAKLIVFLT SIFVKAGCSP SDIGIIAPYR
		QQLKIINDLL ARSIGMVEVN TVDKYQGRDK SIVLVSFVRS NKDGTVGELL KDWRRLNVAI
 		TRAKHKLILL GCVPSLNCYP PLEKLLNHLN
II	l	TIGHTHUM GOAFS PROTE STRUTTUHEN

-23-

		-23-
		SEKLIIDLPS REHESLCHIL GDFQRE
N#342 SEQ ID No.13	Catalase P04040	MADSRDPASD QMQHWKEQRA AQKADVLTTG AGNPVGDKLN VITVGPRGPL LVQDVVFTDE MAHFDRERIP ERVVHAKGAG AFGYFEVTHD ITKYSKAKVF EHIGKKTPIA VRFSTVAGES GSADTVRDPR GFAVKFYTED GNWDLVGNNT PIFFIRDPIL FPSFIHSQKR NPQTHLKDPD MVWDFWSLRP ESLHQVSFLF SDRGIPDGHR HMNGYGSHTF KLVNANGEAV YCKFHYKTDQ GIKNLSVEDA ARLSQEDPDY GIRDLFNAIA TGKYPSWTFY IQVMTFNQAE TFPFNPFDLT KVWPHKDYPL IPVGKLVLNR NPVNYFAEVE QIAFDPSNMP PGIEASPDKM LQGRLFAYPD THRHRLGPNY LHIPVNCPYR ARVANYQRDG PMCMQDNQGG APNYYPNSFG APEQQPSALE HSIQYSGEVR RFNTANDDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA QIFIQKKAVK NFTEVHPDYG SHIQALLDKY NAEKPKNAIH TFVQSGSHLA AREKANL
N#551 SEQ ID No.14 I#960 (Prolifer ative phase marker) SEQ ID	Hetero- geneous nuclear ribonucleo- proteins A2/B1 P22626 Steroid membrane binding protein X99714	MEKTLETVPL ERKKREKEQF RKLFIGGLSF ETTEESLRNY YEQWGKLTDC VVMRDPASKR SRGFGFVTFS SMAEVDAAMA ARPHSIDGRV VEPKRAVARE ESGKPGAHVT VKKLFVGGIK EDTEEHHLRD YFEEYGKIDT IEIITDRQSG KKRGFGFVTF DDHDPVDKIV LQKYHTINGH NAEVRKALSR QEMQEVQSSR SGRGGNFGFG DSRGGGGNFG PGPGSNFRGG SDGYGSGRGF GGGYNGYGGG PGGGNFGGSP GYGGGRGYG GGGPGYGNQG GGYGGGYDNY GGGNYGSGNY NDFGNYNQQP SNYGPMKSGN FGGSRNMGGP YGGGNYGPGG SGGSGGYGGR MAAEDVAATG ADPSELEGGG LLHEIFTSPL NLLLLGLCIF LLYKIVRGDQ PAASDSDDDE PPPLPRLKRR DFTPAELRRF DGVQDPRILM AINGKVFDVT KGRKFYGPEG PYGVFAGRDA SRGLATFCLD KEALKDEYDD LSDLTPAQQE TLNDWDSQFT FKYHHVGKLL KEGEEPTVYS DEEEPKDESA RKND
No.15 I#177 (Hyperpla	Heat shock cognate 71 KD protein	MSKGPAVGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL IGDAAKNQVA MNPTNTVFDA KRLIGRRFDD AVVQSDMKHW PFMVVNDAGR PKVQVEYKGE TKSFYPEEVS SMVLTKMKEI AEAYLGKTVT NAVVTVPAYF NDSQRQATKD AGTIAGLNVL RIINEPTAAA IAYGLDKKVG AERNVLIFDL GGGTFDVSIL TIEDGIFEVK STAGDTHLGG EDFDNRMVNH FIAEFKRKHK KDISENKRAV RRRTACERA KRTLSSSTQA SIEIDSLYEG IDFYTSITRA RFEELNADLF RGTLDPVEKA LRDAKLDKSQ IHDIVLVGGS TRIPKIQKLL QDFFNGKELN KSINPDEAVA YGAAVQAAIL SGDKSENVQD LLLLDVTPLS LGIETAGGVM TVLIKRNTTI PTKQTQTFTT YSDNQPGVLI QVYEGERAMT KDNNLLGKFE LTGIPPAPRG VPQIEVTFDI DANGILNVSA VDKSTGKENK ITITNDKGRL SKEDIERMVQ EAEKYKAEDE KQRDKVSSKN SLESYAFNMK ATVEDEKLQG KINDEDKQKI LDKCNEIINW LDKNQTAEKE PPSGGASSGP TIEEVD

ID: Accession Identification in protein or nucleotide databases (e.g. SwissProt, Protein Identification Resource (PIR) or EMBL)

-24-

The proteins of interest may be isolated from endometrial tissue or other protein sources by 2D gel electrophoresis or by using chromatographic techniques. Poly- or monoclonal antibodies towards the protein of interest can be raised, and immunoassays can be established based on such antibodies. Synthetic peptides being fragments characteristic of such proteins may be used for the same purposes. Assays may be based on more than one such protein for measurement at one time.

Ref.1: Byrjalsen et al. Hum Reprod 1995;10:13-18.

Ref.2: Byrjalsen et al., Hum Reprod 1995;10:2760-2766.

Ref.3: Julkunen et al., Endocrinology 1986;118:1782-1786.

15 Ref.4: Byrjalsen et al., Obstet Gynecol 1992;79:523-528.

Ref.5: Byrjalsen et al., Hum Reprod 1992;7:1042-1047.

-25-

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
 10
           (i) APPLICANT:
                 (A) NAME: Center for Clinical and Basic Research
15
                 (B) STREET: Ballerup Byvej 222,
                 (C) CITY: Ballerup
                (E) COUNTRY: Denmark
(F) POSTAL CODE (ZIP): DK-2750
          (ii) TITLE OF INVENTION: Biochemical Markers for the Human
20
     Endometrium
         (iii) NUMBER OF SEQUENCES: 16
25
          (iv) COMPUTER READABLE FORM:
                (A) MEDIUM TYPE: Floppy disk
                (B) COMPUTER: IBM PC compatible
                (C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)
30
          (vi) PRIOR APPLICATION DATA:
                (A) APPLICATION NUMBER: GB 9618600.2
                (B) FILING DATE: 06-SEP-1996
          (vi) PRIOR APPLICATION DATA:
35
                (A) APPLICATION NUMBER: GB 9707132.8
                (B) FILING DATE: 08-APR-1997
     (2) INFORMATION FOR SEQ ID NO: 1:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 641 amino acids
                (B) TYPE: amino acid
45
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: protein
50
        (iii) HYPOTHETICAL: NO
         (iv) ANTI-SENSE: NO
         (vi) ORIGINAL SOURCE:
55
                (A) ORGANISM: homo sapiens
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
60
          Met Ala Lys Ala Ala Ala Ile Gly Ile Asp Leu Gly Thr Thr Tyr Ser
          Cys Val Gly Val Phe Gln His Gly Lys Val Glu Ile Ile Ala Asn Asp
65
          Gln Gly Asn Arg Thr Thr Pro Ser Tyr Val Ala Phe Thr Asp Thr Glu
```

	Arg	50	ılle	Gly	Asp	Ala	55	Lys	Asr	Glr	val	. Ala 60	ı Leu	As:	: Pro	Gln
5	Asn 65	Thr	Val	Phe	Asp	Ala 70	Lys	Arg	Leu	Ile	Gly 75	/ Arg	l Lys	Phe	Gly	Asp 80
10	Pro	'Val	Val	Gln	Ser	Asp	Met	Lys	His	Trp	Pro	Phe	Gln	Val	Ile	Asn
					85					90					95	
15	Asp	Gly	Asp	Lys 100	Pro	Lys	Val	Gln	Val 105	Ser	Tyr	Lys	Gly	Glu 110	Thr	Lys
20			113					120					125			_
		130		Glu			135					140				
25	147			Ala		150					155					160
2.0				Ile	165					170					175	
30				Ala 180					185					190	-	
35			195	Leu				200					205	_		
		210		Ile			215					220				-
40	223			Leu		230					235					240
4.5				Glu	245					250					255	
45				Val 260					265					270	_	-
50			275	Ser				280					285			
		290		Asp			295					300				
55	305			Asp		310					315				_	320
60				Ala	325					330					335	
60				Ser 340					345					350		-
65			355	Gly				360					365			
	val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	Met	Gly	Asp	Lys

		Se: 385	r Glu	J Ası	n Va.	l Gli	n Ası 390) Le	u Le	u Lei	ı Le	Ası 395	o Val	L Ala	a Pro	o Let	Ser 400
5		Leu	Gly	Leu	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410	Thr	Ala	Leu	Ile	Lys 415	Arg
10		Asn	Ser	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Ile	Phe	Thr	Thr 430	Tyr	Ser
15		Asp	Asn	Gln	Pro	Gly	Val	Leu	Ile	Gln	Val	Tyr	Glu	Gly	Glu	Arg	Ala
1.7	•			435					440					445			
20		Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Arg	Phe	Glu 460	Leu	Ser	Gly	Ile
20		Pro 465	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480
25		Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Thr	Asp	Lys	Ser	Thr 495	Gly
		Lys	Ala	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
30		Glu	Glu	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
35		Asp	Glu 530	Val	Gln	Arg	Glu	Arg 535	Val	Ser	Ala	Lys	Asn 540	Ala	Leu	Glu	Ser
J.J		Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ser	Ala	Val	Glu	Asp 555	Glu	Gly	Leu	Lys	Gly 5 6 0
40		Lys	Ile	Ser	Glu	Ala 565	Asp	Lys	Lys	Lys	Val 570	Leu	Asp	Lys	Cys	Gln 575	Glu
		Val	Ile	Ser	Trp 580	Leu	Asp	Ala	Asn	Thr 585	Leu	Ala	Glu	Lys	Asp 590	Glu	Phe
45		Glu	His	Lys 595	Arg	Lys	Glu	Leu	Glu 600	Gln	Val	Cys	Asn	Pro 605	Ile	Ile	Ser
50		Gly	Leu 610	Tyr	Gln	Gly	Ala	Gly 615	Gly	Pro	Gly	Pro	Gly 620	Gly	Phe	Gly	Ala
		Gln 625	Gly	Pro	Lys	Gly	Gly 630	Ser	Gly	Ser	Gly	Pro 635	Thr	Ile	Glu	Glu	Val 640
55		Asp															
	(2)	INFO				-											
60		(i)	(B)	LEN TYE STE	CHAIGTH: PE: & VANDE	380 mino EDNES) ami o aci SS: s	ino a id singl	cids	3							
65		(ii)	MOLE	ECULE	TYE	e: p	prote	ein									

(iii) HYPOTHETICAL: NO

-28-

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: homo sapiens

5

_																
	(xi)	SEQ	JENC	E DES	SCRI	PTION	N: SI	EQ I	ONO:	: 2:						
10	Ala 1	Ser	Pro	Pro	Ala 5	Cys	Pro	Ser	Glu	Glu 10	Asp	Glu	Ser	Leu	Lys 15	Gly
15	Cys	Glu	Leu	Tyr 20	Val	Gln	Leu	His	Gly 25	Ile	Gln	Gln	Val	Leu 30	Lys	Asp
20	Cys	Ile	Val 35	His	Leu	Cys	Ile	Ser 40	Lys	Pro	Glu	Arg	Pro 45	Met	Lys	Phe
20	Leu	Arg 50	Glu	His	Phe	Glu	Lys 55	Leu	Glu	Lys	Glu	Glu 60	Asn	Arg	Gln	Ile
25	Leu 65	Ala	Arg	Gln	Lys	Ser 70	Asn	Ser	Gln	Ser	Asp 75	Ser	His	Asp	Glu	Glu 80
	Val	Ser	Pro	Thr	Pro 85	Pro	Asn	Pro	Val	Val 90	Lys	Ala	Arg	Arg	Arg 95	Arg
30	Gly	Gly	Val	Ser 100	Ala	Glu	Val	Tyr	Thr 105	Glu	Glu	Asp	Ala	Val 110	Ser	Tyr
35	Val	Arg	Lys 115	Val	Ile	Pro	Lys	Asp 120	Tyr	Lys	Thr	Met	Thr 125	Ala	Leu	Ala
	Lys	Ala 130	Ile	Ser	Lys	Asn	Val 135	Leu	Phe	Ala	His	Leu 140	Asp	Asp	Asn	Glu
40	Arg 145	Ser	Asp	Ile	Phe	Asp 150	Ala	Met	Phe	Pro	Val 155	Thr	His	Ile	Ala	Gly 160
	Glu	Thr	Val	Ile	Gln 165	Gln	Gly	Asn	Glu	Gly 170	Asp	Asn	Phe	Tyr	Val 175	Val
45	Asp	Gln	Gly	Glu 180	Val	Asp	Val	Tyr	Val 185	Asn	Gly	Glu	Trp	Val 190	Thr	Asn
50	Ile	Ser	Glu 195	Gly	Gly	Ser	Phe	Gly 200	Glu	Leu	Ala	Leu	Ile 205	Tyr	Gly	Thr
	Pro	Arg 210	Ala	Ala	Thr	Val	Lys 215	Ala	Lys	Thr	Asp	Leu 220	Lys	Leu	Trp	Gly
55	11e 225	Asp	Arg	Asp	Ser	Tyr 230	Arg	Arg	Ile	Leu	Met 235	Gly	Ser	Thr	Leu	Arg 240
	Lys	Arg	Lys	Met	Tyr 245	Glu	Glu	Phe	Leu	Ser 250	Lys	Val	Ser	Ile	Leu 255	Glu
60	Ser	Leu	Glu	Lys 260	Trp	Glu	Arg	Leu	Thr 265	Val	Ala	Asp	Arg	Leu 270	Glu	Pro
65	Val	Gln	Phe 275	Glu	Asp	Gly	Glu	Lys 280	Ile	Val	Val	Gln	Gly 285	Glu	Pro	Gly
	Ası	p Asi 290	p Phe	е Ту:	r Il	e Il	e Th: 295	r Gl	u Gly	y Thi	r Ala	a Sei 300	r Vai	l Le	ı Glı	n Arg

-29-

	Arg 305	Ser	Pro	Asn	Glu	Glu 310	Tyr	Val	Glu	Val	Gly 315	Arg	Leu	Gly	Pro	Ser 320
5	Asp	Tyr	Phe	Gly	Glu 325	Ile	Ala	Leu	Leu	Leu 330	Asn	Arg	Pro	Arg	Ala 335	Ala
1.0	Thr	Val	Val	Ala 340	Arg	Gly	Pro	Leu	Lys 345	Cys	Val	Lys	Leu	Asp 350	Arg	Pro
10	Arg	Phe	Glu 355	Arg	Val	Leu	Gly	Pro 360	Cys	Ser	Glu	Ile	Leu 365	Lys	Arg	Asn
15	Ile	Gln 370	Arg	Туr	Asn	Ser	Phe 375	Ile	Ser	Leu	Thr	Val 380				
20	(2) INFO	RMAT	ON I	FOR S	SEQ 1	ID NO): 3:	:								
	(i)	(B)	JENCI LEN TYI	IGTH:	469 mino	ami aci	ino a id	cids	6							
25			TO				-									
	(ii)	MOLE	ECUL	TYE	PE: 1	prote	ein									
30	(iii)	HYPO	OTHE	CICAI	J: NO)										
	(iv)	ANT	I-SEN	ISE:	NO											
35	(vi)		GINAI ORC				sapi	lens								
	(xi)	SEQU	JENCE	DES	CRI	PTION	N: SE	EQ II	ои с	: 3:						
40	Ser 1	Thr	Arg	Ser	Val 5	Ser	Ser	Ser	Ser	Tyr 10	Arg	Arg	Met	Phe	Gly 15	Gly
45	Pro	Gly	Thr	Ala 20	Ser	Arg	Pro	Ser	Ser 25	Ser	Arg	Ser	Tyr	Val 30	Thr	Thr
40	Ser	Thr	Arg 35	Thr	Туr	Ser	Leu	Gly 40	Ser	Ala	Leu	Arg	Pro 45	Ser	Thr	Ser
50	Arg	Ser 50	Leu	Tyr	Ala	Ser	Ser 55	Pro	Gly	Gly	Val	Tyr 60	Ala	Thr	Arg	Ser
	Ser 65	Ala	Val	Arg	Leu	Arg 70	Ser	Ser	Val	Pro	Gly 75	Val	Arg	Leu	Leu	Gln 80
55	Asp	Ser	Val	Asp	Phe 85	Ser	Leu	Ala	Asp	Ala 90	Ile	Asn	Thr	Glu	Phe 95	Lys
60	Asn	Thr	Arg	Thr 100	Asn	Glu	Lys	Val	Glu 105	Leu	Gln	Glu	Leu	Asn 110	Asp	Arg
60	Phe	Ala	Asn 115	Tyr	Ile	Asp	Lys	Val 120	Arg	Phe	Leu	Glu	Gln 125	Gln	Asn	Lys
65	Ile	Leu 130	Leu	Ala	Glu	Leu	Glu 135	Gln	Leu	Lys	Gly	Gln 140	Gly	Lys	Ser	Arg

-30-

	Leu 145	G!y	Asp	Leu	Tyr	Glu 150	Glu	Glu	Met	Arg	Glu 155	Leu	Arg	Arg	Gln	Val 160
5	Asp	Gln	Leu	Thr	Asn 165	Asp	Lys	Ala	Arg	Val 170	Glu	Val	Glu	Arg	Asp 175	Asn
	Leu	Ala	Glu	Asp 180	Ile	Met	Arg	Leu	Arg 185	Glu	Lys	Leu	Gln	Glu 190	Glu	Met
10	Leu	Gln	Arg 195	Glu	Glu	Ala	Glu	Asn 200	Thr	Leu	Gln	Ser	Phe 205	Arg	Gln	Asp
15	Val	Asp 210	Asn	Ala	Ser	Leu	Ala 215	Arg	Leu	Asp	Leu	Glu 220	Arg	Lys	Val	Glu
20	Ser 225	Leu	Gln	Glu	Glu	Ile 230	Ala	Phe	Leu	Lys	Lys 235	Leu	His	Glu	Glu	Glu 240
	Ile	Gln	Glu	Leu	Gln 245	Ala	Gln	Ile	Gln	Glu 250	Gln	His	Val	Gln	Ile 255	Asp
25	Val	Asp	Val	Ser 260	Lys	Pro	Asp	Leu	Thr 265	Ala	Ala	Leu	Arg	Asp 270	Val	Arg
30	Gln	Gln	Tyr 275	Glu	Ser	Val	Ala	Ala 280	Lys	Asn	Leu	Gln	Glu 285	Ala	Glu	Glu
30	Trp	Tyr 290	Lys	Ser	Lys	Phe	Ala 295	Asp	Leu	Ser	Glu	Ala 300	Ala	Asn	Arg	Asn
35	Asn 305	Asp	Ala	Leu	Arg	Gln 310	Ala	Lys	Gln	Glu	Ser 315	Thr	Glu	Tyr	Arg	Arg 320
	Gln	Val	Gln	Ser	Leu 325	Thr	Cys	Glu	Val	Asp 330	Ala	Leu	Lys	Gly	Thr 335	Asn
40	Glu	Ser	Leu	Glu 340	Arg	Gln	Met	Arg	Glu 345	Met	Glu	Glu	Asn	Phe 350	Ala	Val
4.5	Glu	Ala	Ala 355	Asn	Tyr	Gln	Asp	Thr 360	lle	Gly	Arg	Leu	Gln 365	Asp	Glu	Ile
•3	Gln	Asn 370	Met	Lys	Glu	Glu	Met 375	Ala	Arg	His	Leu	Arg 380	Glu	Tyr	Gln	Asp
50	Leu 385	Leu	Asn	Val	Lys	Met 390	Ala	Leu	Asp	Ile	Glu 395	Ile	Ala	Thr	Tyr	Arg 400
	Lys	Leu	Leu	Glu	Gly 405	Glu	Glu	Ser	Arg	Ile 410	Ser	Leu	Pro	Leu	Pro 415	Asn
55	Phe	Ser	Ser	Leu 420	Asn	Leu	Arg	Glu	Thr 425	Asn	Leu	Asp	Ser	Leu 430	Pro	Leu
.	Val	Asp	Thr 435	His	Ser	Lys	Arg	Thr 440	Phe	Leu	Ile	Lys	Thr 445	Val	Glu	Thr
60	Arg	Asp 450	Glγ	Gln	Val	Ile	Asn 455	Glu	Thr	Ser	Gln	His 460	His	Asp	Asp	Leu
65																

Glu 465

-31-

	(2) INFO	ORMAT	CION	FOR	SEQ	ID	NO:	4 :								
5	(i)	(B	1) LE 3) T' :) S'	ENGTI (PE: (RANI	H: 4° amin	71 ar no ac ESS:	mino cid sino	aci	ds							
10	(ii)	MOL	ECUI	E TY	PE:	prot	tein									
	(iii)	HYP	ОТНЕ	TIC	AL: N	10										
15	(iv)	ANT	I-SE	NSE:	NO											
15	(vi)	ORI (A	GINA) OR	L SC	URCE	: homo	sap	iens	5							
20																
	(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC): 4:						
25	Met 1	Thr	Glu	Arg	Arg 5	Val	Pro	Phe	Ser	Leu 10	Leu	Arg	Gly	Pro	Ser 15	Trp
	Asp	Pro	Phe	Arg 20	Asp	Trp	Tyr	Pro	His 25	Ser	Arg	Leu	Phe	Asp 30	Gln	Ala
30	Phe	Gly	Leu 35	Pro	Arg	Leu	Pro	Glu 40	Glu	Trp	Ser	Gln	Trp	Leu	Gly	Gly
2 =	Ser	Ser 50	Trp	Pro	Gly	Tyr	Val 55	Arg	Pro	Leu	Pro	Pro 60	Ala	Ala	Ile	Glu
35	Ser 65	Pro	Ala	Val	Ala	Ala 70	Pro	Ala	Tyr	Ser	Arg 75	Ala	Leu	Ser	Arg	Gln 80
40	Leu	Ser	Ser	Gly	Val 85	Ser	Glu	Ile	Arg	His 90	Thr	Ala	Asp	Arg	Trp 95	Arg
	Val	Ser	Leu	Asp 100	Val	Asn	His	Phe	Ala 105	Pro	Asp	Glu	Leu	Thr 110	Val	Lys
45	Thr	Lys	Asp 115	Gly	Val	Val	Glu	Ile 120	Thr	Gly	Lys	His	Glu 125	Glu	Arg	Gln
50	Asp	Glu 130	His	Gly	Tyr	Ile	Ser 135	Arg	Cys	Phe	Thr	Arg 140	Lys	Tyr	Thr	Leu
	Pro 145	Pro	Gly	Val	Asp	Pro 150	Thr	Gln	Val	Ser	Ser 155	Ser	Leu	Ser	Pro	Glu 160
55	Gly	Thr	Leu	Thr	Val 165	Glu	Ala	Pro	Met	Pro 170	Lys	Leu	Ala	Thr	Gln 175	Ser
	Asn	Glu	Ile	Thr 180	Ile	Pro	Val	Thr	Phe 185	Glu	Ser	Arg	Ala	Gln 190	Leu	Gly
60	Gly	Arg :	Ser 195	Cys	Lys	Ile	Arg	Met 200	Ala	Ala	Lys	Val	Phe 205	Glu	Ser	Ile
65	Gly	Lys I 210	Phe '	Gly	Leu	Ala	Leu 215	Ala	Val	Ala	Gly	Gly 220	Val	Val	Asn	Ser

	225	De C	ıyı	ASII	Agi	230	АГА	GIÀ	HIS	Arg	235		lie	Phe	Asp	Arg 240
5	₽he	Arg	Gly	Val	Gln 245	Asp	Ile	Val	Val	Gly 250	Glu	Gly	Thr	His	Phe 255	Leu
10	Ile	Pro	Trp	Val 260	Gln	Lys	Pro	Ile	11e 265	Phe	Asp	Cys	Arg	Ser 270	Arg	Pro
	Arg	Asn	Val 275	Pro	Val	Ile	Thr	Gly 280	Ser	Lys	Asp	Leu	Gln 285	Asn	Val	Asn
15	Ile	Thr 290	Leu	Arg	Ile	Leu	Phe 295	Arg	Pro	Val	Ala	Ser 300	Gln	Leu	Pro	Arg
	Ile 305	₽he	Thr	Ser	Ile	Gly 310	Glu	Asp	Tyr	Asp	Glu 315	Arg	Val	Leu	Pro	Ser 320
20	Ile	Thr	Thr	Glu	Ile 325	Leu	Lys	Ser	Val	Val 330	Ala	Arg	Phe	Asp	Ala 335	Gly
25	Glu	Leu	Ile	Thr 340	Gln	Arg	Glu	Leu	Val 345	Ser	Arg	Gln	Val	Ser 350	Asp	Asp
	Leu	Thr	Glu 355	Arg	Ala	Ala	Thr	Phe 360	Gly	Leu	Ile	Leu	Asp 365	Asp	Val	Ser
30	Leu	Thr 370	His	Leu	Thr	Phe	Gly 375	Lys	Glu	Phe	Thr	Glu 380	Ala	Val	Glu	Ala
	Lys 385	Gln	Val	Ala	Gln	Gln 390	Glu	Ala	Glu	Arg	Ala 395	Arg	Phe	Val	Val	Glu 400
35	Lys	Ala	Glu	Gln	Gln 405	Lys	Lys	Ala	Ala	Ile 410	Ile	Ser	Ala	Glu	Gly 415	Asp
4 0	Ser	Lys	Ala	Ala 420	Glu	Leu	Ile	Ala	Asn 425	Ser	Leu	Ala	Thr	Ala 430	Gly	Asp
	Gly	Leu	Ile 435	Glu	Leu	Arg	Lys	Leu 440	Glu	Ala	Ala	Glu	Asp 445	Ile	Ala	Tyr
45	Gln	Leu 450	Ser	Arg	Ser	Arg	Asn 455	Ile	Thr	Tyr	Leu	Pro 460	Ala	Gly	Gln	Ser
	Val 465	Leu	Leu	Gln	Leu	Pro 470	Gln									
50	(2) INFOR	I TAM	ON F	OR S	SEQ 1	מא סו): 5:									
55	(i)	(A) (B) (C)	JENCE LEN TYP STP TOP	IGTH: PE: & VANDE	284 mino EDNES	l ami aci SS: s	no a d singl	cids	3							
60	(ii)				_		in									
	(iii) (iv)					,										
65	(IV) (Vi)															
	(\ 1)		ORG				sapi	ens								

-33-

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 5:						
5	Met l	Asp	Ala	Ile	Lys 5	Lys	Lys	Met	Gln	Met 10	Leu	Lys	Leu	Asp	Lys 15	Glu
	Asn	Ala	Leu	Asp 20	Arg	Ala	Glu	Gln	Ala 25	Glu	Ala	Asp	Lys	Lys 30	Ala	Ala
10	Glu	Asp	Arg 35	Ser	Lys	Gln	Leu	Glu 40	Asp	Glu	Leu	Val	Ser 45	Leu	Gln	Lys
15	Lys	Leu 50	Lys	Gly	Thr	Glu	Asp 55	Glu	Leu	Asp	Lys	Tyr 60	Ser	Glu	Ala	Leu
	Lys 65	Asp	Ala	Gln	Glu	Lys 70	Leu	Glu	Leu	Ala	Glu 75	Lys	Lys	Ala	Thr	Asp 80
20	Ala	Glu	Ala	Asp	Val 85	Ala	Ser	Leu	Asn	Arg 90	Arg	Ile	Gln	Leu	Val 95	Glu
	Glu	Glu	Leu	Asp 100	Arg	Ala	Gln	Glu	Arg 105	Leu	Ala	Thr	Ala	Leu 110	Gln	Lys
25																
	Leu	Glu	Glu 115	Ala	Glu	Lys	Ala	Ala 120	Asp	Glu	Ser	Glu	Arg 125	Gly	Met	Lys
30	Val	Ile 130	Glu	Ser	Arg	Ala	Gln 135	Lys	Asp	Glu	Glu	Lys 140	Met	Glu	Ile	Gln
35	Glu 145	Ile	Gln	Leu	Lys	Glu 150	Ala	Lys	His	Ile	Ala 155	Glu	Asp	Ala	Asp	Arg 160
33	Lys	Tyr	Glu	Glu	Val 165	Ala	Arg	Lys	Leu	Val 170	Ile	Ile	Glu	Ser	Asp 175	Leu
40	Glu	Arg	Ala	Glu 180	Glu	Arg	Ala	Glu	Leu 185	Ser	Glu	Gly	Gln	Val 190	Arg	Gln
	Leu	Glu	Glu 195	Gln	Leu	Arg	Ile	Met 200	Asp	Gln	Thr	Leu	Lys 205	Ala	Leu	Met
45	Ala	Ala 210	Glu	Asp	Lys	Tyr	Ser 215	Gln	Lys	Glu	Asp	Arg 220	Tyr	Glu	Glu	Glu
50	Ile 225	Lys	Val	Leu	Ser	Asp 230	Lys	Leu	Lys	Glu	Ala 235	Glu	Thr	Arg	Ala	Glu 240
30	Phe	Ala	Glu	Arg	Ser 245	Val	Thr	Lys	Leu	Glu 250	Lys	Ser	Ile	Asp	Asp 255	Leu
55	Glu	Glu	Lys	Val 260	Ala	His	Ala	Lys	Glu 265	Glu	Asn	Leu	Ser	Met 270	His	Gln
	Met		Asp 275	Gln	Thr	Leu	Leu	Glu 280	Leu	Asn	Asn	Met				
60																

65

	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0: 6	:								
5	(i)	(B)	LE TY ST	E CH NGTH PE: RAND POLO	: 69 amin EDNE	8 am o ac SS:	ino id sing	acid	s							
10	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(iii)	HYPO	OTHE'	TICA	L: N	0										
15	(iv)	ANT	I-SE	NSE:	NO											
	(vi)	ORIO (A)		L SO			sap	iens								
20	(xi)	SEQU	JENCI	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 6:						
	Met 1	Arg	Leu	Ala	Val 5	Gly	Ala	Leu	Leu	Val 10	Cys	Ala	Val	Leu	Gly 15	Leu
25	Cys	Leu	Ala	Val 20	Pro	Asp	Lys	Thr	Val 25	Arg	Trp	Cys	Ala	Val 30	Ser	Glu
30	His	Glu	Ala 35	Thr	Lys	Cys	Gln	Ser 40	Phe	Arg	Asp	His	Met 45	Lys	Ser	Val
	Ile	Pro 50	Ser	Asp	Gly	Pro	Ser 55	Val	Ala	Cys	Val	Lys 60	Lys	Ala	Ser	Tyr
35	Leu 65	Asp	Cys	Ile	Arg	Ala 70	Ile	Ala	Ala	Asn	Glu 75	Ala	Asp	Ala	Val	Thr 80
40	Leu	Asp	Ala	Gly	Leu 85	Val	Tyr	Asp	Ala	Tyr 90	Leu	Ala	Pro	Asn	Asn 95	Leu
	Lys	Pro	Val	Val 100	Ala	Glu	Phe	Tyr	Gly 105	Ser	Lys	Glu	Asp	Pro 110	Gln	Thr
45	Phe	Tyr	Tyr 115	Ala	Val	Ala	Val	Val 120	Lys	Lys	Asp	Ser	Gly 125	Phe	Gln	Met
	Asn	Gln 130	Leu	Arg	Gly	Lys	Lys 135	Ser	Cys	His	Thr	Gly 140	Leu	Gly	Arg	Ser
50	145	Gly				150					155					160
55		Arg			165					170					175	
		Ala		180					185					190		
60	Cys	Pro	Gly 195	Cys	Gly	Cys	Ser	Thr 200	Leu	Asn	Gln	Tyr	Phe 205	Gly	Tyr	Ser
65	Gly	Ala 210	Phe	Lys	Cys	Leu	Lys 215	Asp	Gly	Ala	Gly	Asp 220	Val	Ala	Phe	Val
	Lys 225	His	Ser	Thr	Ile	Phe 230	Glu	Asn	Leu	Ala	Asn 235	Lys	Ala	Asp	Arg	Asp 240

	Gln	Tyr	Glu	Leu	Leu 245		Leu	Asp	Asn	250		Lys	Pro	Val	. Asp 255	e GJ n
5	Туг	Lys	Asp	260		Leu	Ala	Gln	Val 265		Ser	His	Thr	Val 270		Ala
10	Arg	Ser	Met 275		Gly	Lys	Glu	Asp 280		Ile	Trp	Glu	Leu 285		Asn	Gln
10	Ala	G1n 290		His	Phe	Gly	Lys 295	Asp	Lys	Ser	Lys	Glu 300		Gln	Leu	Phe
15	Ser 305	Ser	Pro	His	Gly	Lys 310		Leu	Leu	Phe	Lys 315	Asp	Ser	Ala	His	Gly 320
	Phe	Leu	Lys	Val	Pro 325	Pro	Arg	Met	Asp	Ala 330	Lys	Met	Tyr	Leu	Gly 335	Tyr
20	Glu	Туг	Val	Thr 340	Ala	Ile	Arg	Asn	Leu 345		Glu	Gly	Thr	Cys 350	Pro	Glu
25	Ala	Pro	Thr 355	Asp	Glu	Cys	Lys	Pro 360	Val	Lys	Trp	Cys	Ala 365	Leu	Ser	His
23	His	Glu 370	Arg	Leu	Lys	Cys	Asp 375	Glu	Trp	Ser	Val	Asn 380	Ser	Val	Gly	Lys
30	Ile 385	Glu	Cys	Val	Ser	Ala 390	Glu	Thr	Thr	Glu	Asp 395	Cys	Ile	Ala	Lys	Ile 400
	Met	Asn	Gly	Glu	Ala 405	Asp	Ala	Met	Ser	Leu 410	Asp	Gly	Gly	Phe	Val 415	Tyr
35	Ile	Ala	Gly	Lys 420	Cys	Gly	Leu	Val	Pro 425	Val	Leu	Ala	Glu	Asn 430	Tyr	Asn
40	Lys	Ser	Asp 435	Asn	Cys	Glu	Asp	Thr 440	Pro	Glu	Ala	Gly	Tyr 445	Phe	Ala	Val
	Ala	Val 450	Val	Lys	Lys	Ser	Ala 455	Ser	Asp	Leu	Thr	Trp 460	Asp	Asn	Leu	Lys
45	Gly 465	Lys	Lys	Ser	Cys	His 470	Thr	Ala	Val	Gly	Arg 475	Thr	Ala	Gly	Trp	Asn 480
50	Ile	Pro	Met	Gly	Leu 485	Leu	Tyr	Asn	Lys	Ile 490	Asn	His	Cys	Arg	Phe 495	Asp
	Glu	Phe	Phe	Ser 500	Glu	Gly	Cys	Ala	Pro 505	Gly	Ser	Lys	Lys	Asp 510	Ser	Ser
55	Leu	Cys	Lys 515	Leu	Cys	Met	Gly	Ser 520	Gly	Leu	Asn	Leu	Cys 525	Glu	Pro	Asn
	Asn	Lys 530	Glu	Gly	Tyr	Tyr	Gly 535	Tyr	Thr	Gly	Ala	Phe 540	Arg	Cys	Leu	Val
60	Glu 545	Lys	Gly	Asp	Val	Ala 550	Phe	Val	Lys	His	Gln 555	Thr	Val	Pro	Gln	Asn 560
65	Thr	Gly	Gly	Lys	Asn 565	Pro	Asp	Pro	Trp	Ala 570	Lys	Asn	Leu	Asn	Glu 575	
	Asp	Tyr	Glu	Leu 580	Leu	Cys	Leu	Asp	Gly 585	Thr	Arg	Lys	Pro	Val 590	Glu	Glu

-36-

	Tyr	Ala	Asn 595	Cys	His	Leu	Ala	Arg 600	Ala	Pro	Asn	His	Ala 605		. Val	Thr
5	Arg	Lys 610	Asp	Lys	Glu	Ala	Cys 615	Val	His	Lys	Ile	Leu 620		Gln	Gln	Gln
10	His 625	Leu	Phe	Gly	Ser	Asn 630	Val	Thr	Asp	Cys	Ser 635		Asn	Phe	Cys	Leu 640
	Phe	Arg	Ser	Glu	Thr 645	Lys	Asp	Leu	Leu	Phe 650	Arg	Asp	Asp	Thr	Val 65 5	Cys
15	Leu	Ala	Lys	Leu 660	His	Asp	Arg	Asn	Thr 665	Tyr	Glu	Lys	Tyr	Leu 670	Gly	Glu
	Glu	Туr	Val 675	Lys	Ala	Val	Gly	Asn 680	Leu	Arg	Lys	Cys	Ser 685		Ser	Ser
20	Leu	Leu 690	Glu	Ala	Cys	Thr	Phe 695	Arg	Arg	Pro						
25	(2) INFO	RMAT	ION :	FOR S	SEQ :	ID N	0: 7	:								
23	(i)	SEQ (A (B	UENCI	E CHA NGTH: PE: a	: 41	7 am:	ino a	S: acid	s							
30		(C) STI	RANDE	EDNES	SS: :	singi	le								
	(ii)	MOL	ECULI	E TYE	PE: p	prote	ein									
35	(iii)	HYP	OTHET	CICAL	Z: NC)										
33	(iv)	ANT	I-SEN	ISE:	МО											
40	(vi)		GINAI ORC				sapi	ens								
	(xi)	SEQ	JENCE	DES	CRIE	OITS	J: SE	0 11) NO:	. 7:						
45			Ser								Leu	Leu	Ala	Val	Ala 15	Leu
	Ala	Ala	Glu	Val 20	Lys	Lys	Pro	Val	Glu 25	Ala	Ala	Ala	Pro	Gly 30		Ala
50	Glu	Lys	Leu 35	Ser	Ser	Lys	Ala	Thr 40	Thr	Leu	Ala	Glu	Pro 45	Ser	Thr	Gly
ce	Leu	Ala 50	Phe	Ser	Leu	Tyr	Gln 55	Ala	Met	Ala	Lys	Asp 60	Gln	Ala	Val	Glu
55	Asn 65	Ile	Leu	Val	Ser	Pro 70	Val	Val	Val	Ala	Ser 75	Ser	Leu	Gly	Leu	Val 80
60																
60	Ser	Leu	Gly	Gly	Lys 85	Ala	Thr	Thr	Ala	Ser 90	Gln	Ala	Lys	Ala	Val 95	Leu
65	Ser	Ala	Glu	Gln 100	Leu	Arg	Asp	Glu	Glu 105	Val	His	Ala	Gly	Leu 110	Gly	Glu
	Leu	Leu	Arg 115	Ser	Leu	Ser	Asn	Ser 120	Thr	Ala	Arg	Asn	Val 125	Thr	Trp	Lys

	Leu	Gly 130	Ser	Arg	, Leu	Tyr	Gly 135	Pro	Ser	Ser	Val	Ser 140		Ala	Asp	Asp
5	Phe 145	Val	Arg	Ser	Ser	Lys 150	Gln	His	Tyr	Asn	Cys 155	Glu	His	Ser	Lys	Ile 160
10	Asn	Phe	Pro	Asp	Lys 165	Arg	Ser	Ala	Leu	Gln 170	Ser	Ile	Asn	Glu	Trp 175	Ala
	Ala	Gln	Thr	Thr 180	Asp	Gly	Lys	Leu	Pro 185	Glu	Val	Thr	Lys	Asp 190		Glu
15			195					200					205			
	Trp	Asp 210	Glu	Lys	Phe	His	His 215	Lys	Met	Val	Asp	Asn 220	Arg	Gly	Phe	Met
20	Val 225	Thr	Arg	Ser	Tyr	Thr 230	Val	Gly	Val	Thr	Met 235	Met	His	Arg	Thr	Gly 240
25	Leu	Tyr	Asn	Tyr	Tyr 245	Asp	Asp	Glu	Lys	Glu 250	Lys	Leu	Gln	Leu	Val 255	Glu
	Met	Pro	Leu	Ala 260	His	Lys	Leu	Ser	Ser 265	Leu	Ile	Ile	Leu	Met 270	Pro	His
30	His	Val	Glu 275	Pro	Leu	Glu	Arg	Leu 280	Glu	Lys	Leu	Leu	Thr 285	Lys	Glu	Gln
	Leu	Lys 290	Ile	Trp	Met	Gly	Lys 295	Met	Gln	Lys	Lys	Ala 300	Val	Ala	Ile	Ser
35	Leu 305	Pro	Lys	Gly	Val	Val 310	Glu	Val	Thr	His	Asp 315	Leu	Gln	Lys	His	Leu 320
40	Ala	Gly	Leu	Gly	Leu 325	Thr	Glu	Ala	Ile	Asp 330	Lys	Asn	Lys	Ala	Asp 335	Leu
	Ser	Arg	Met	Ser 340		Lys	Lys	Asp	Leu 345		Leu	Ala	Ser	Val 350	Phe	His
45	Ala	Thr	Ala 355	Phe	Glu	Leu	Asp	Thr 360	Asp	Gly	Asn	Pro	Phe 3 65	Asp	Gln	Asp
	Ile	Tyr 370	Gly	Arg	Glu	Glu	Leu 375	Arg	Ser	Pro	Lys	Leu 380	Phe	Tyr	Ala	Asp
50	His 385	Pro	Phe	Ile	Phe	Leu 390	Val	Arg	Asp	Thr	Gln 395	Ser	Gly	Ser	Leu	Leu 400
55	Phe	Ile	Gly	Arg	Leu 405	Val	Arg	Leu	Lys	Gly 410	Asp	Lys	Met	Arg	Asp 415	Glu
	Leu															

- 60 (2) INFORMATION FOR SEQ ID NO: 8:
- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 453 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear 65

 - (ii) MOLECULE TYPE: protein

-38-

	(iii)	HYP	OTHE	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	NO											
5	(vi)		GINA) OR				sap	iens								
10																
	(xi)															
	Met 1	Lys	Leu	Leu	Thr 5	Arg	Ala	Gly	Ser	Phe 10	Ser	Arg	Phe	Туг	Ser 15	Leu
15	Lys	Val	Ala	Pro 20	Lys	Val	Lys	Ala	Thr 25	Ala	Ala	Pro	Ala	Gly 30	Ala	Pro
20	Pro	Gln	Pro 35	Gln	Asp	Leu	Glu	Phe 40	Thr	Lys	Leu	Pro	Asn 45	Gly	Leu	Val
	Ile	Ala 50	Ser	Leu	Glu	Asn	Tyr 55	Ser	Pro	Val	Ser	Arg 60	Ile	Gly	Leu	Phe
25	Ile 65	Lys	Ala	Gly	Ser	Arg 70	Tyr	Glu	Asp	Phe	Ser 75	Asn	Leu	Gly	Thr	Thr 80
30	His	Leu	Leu	Arg	Leu 85	Thr	Ser	Ser	Leu	Thr 90	Thr	Lys	Gly	Ala	Ser 95	Ser
30	Phe	Lys	Ile	Thr 100	Arg	Gly	Ile	Glu	Ala 105	Val	Gly	Gly	Lys	Leu 110	Ser	Val
35	Thr	Ala	Thr 115	Arg	Glu	Asn	Met	Ala 120	Tyr	Thr	Val	Glu	Cys 125	Leu	Arg	Gly
40	Asp	Val 130	Asp	Ile	Leu	Met	Glu 135	Phe	Leu	Leu	Asn	Val 140	Thr	Thr	Ala	Pro
	Glu 145	Phe	Arg	Arg	Trp	Glu 150	Val	Ala	Asp	Leu	Gln 155	Pro	Gln	Leu	Lys	Ile 160
45	Asp	Lys	Ala	Val	Ala 165	Phe	Gln	Asn	Pro	Gln 170	Thr	His	Val	Ile	Glu 175	Asn
50	Leu	His	Ala	Ala 180	Ala	Tyr	Gln	Asn	Ala 185	Leu	Ala	Asn	Pro	Leu 190	Tyr	Cys
30	Pro	Asp	Tyr 195	Arg	Ile	Gly	Lys	Val 200	Thr	Ser	Glu	Glu	Leu 205	His	Tyr	Phe
55	Val	Gln 210	Asn	His	Phe	Thr	Ser 215	Ala	Arg	Met	Ala	Leu 220	Ile	Gly	Leu	Gly
	Val 225	Ser	His	Pro	Val	Leu 230	Lys	Gln	Val	Ala	Glu 235	Gln	Phe	Leu	Asn	Met 240
60	Arg	Gly	Gly	Leu	Gly 245	Leu	Ser	Gly	Ala	Lys 250	Ala	Asn	Tyr	Arg	Gly 255	Gly
65	Glu	lle	Arg	Glu 260	Gln	Asn	Gly	Asp	Ser 265	Leu	Val	His	Ala	Ala 270		Val
	Ala	Glu	Ser 275	Ala	Val	Ala	Gly	Ser 280	Ala	Glu	Ala	Asn	Ala 285	Phe	Ser	Val

-39-

	Le	u Gli 29	n His O	: Val	Leu	Gly	Ala 295	Gly	Pro	His	Val	Lys 300		Gly	Ser	Asn
5	Th 30	r Th: 5	r Ser	His	Leu	His 310	Gln	Ala	Val	Ala	Lys 315		Thr	Gln	Gln	Pro 320
10	Ph	e Ası	o Val	Ser	Ala 325	Phe	Asn	Ala	Ser	Tyr 330	Ser	Asp	Ser	Gly	Leu 335	Phe
10	Gl	y Ile	e Tyr	Thr 340	Ile	Ser	Gln	Ala	Thr 345	Ala	Ala	Gly	Asp	Val 350	Ile	Lys
15	Ala	a Ala	355	Asn	Gln	Val	Lys	Arg 360	Ile	Ala	Gln	Gly	Asn 365	Leu	Ser	Asn
	Thi	370	Val	Gln	Ala	Ala	Lys 375	Asn	Lys	Leu	Lys	Ala 380	Gly	Tyr	Leu	Met
20	Sei 385	val	Glu	Ser	Ser	Glu 390	Cys	Phe	Leu	Glu	Glu 395	Val	Gly	Ser	Gln	Ala 400
25	Leu	val	Ala	Gly	Ser 405	Tyr	Met	Pro	Pro	Ser 410	Thr	Val	Leu	Gln	Gln 415	Ile
	Asp	Ser	Val	Ala 420	Asn	Ala	Asp	Ile	Ile 425	Asn	Ala	Ala	Lys	Lys 430	Phe	Val
30	Ser	Gly	Gln 435	Lys	Ser	Met	Ala	Ala 440	Ser	Gly	Asn	Leu	Gly 445	His	Thr	Pro
	Phe	Val 450	Asp	Glu	Leu											
35	(2) INFO	RMAT	ION E	FOR S	EQ I	D NO	9:									
	(i)		UENCE) LEN													
40		(B) TYP	E: a	mino	aci	d									
) STR					е								
45	(ii)	MOL	ECULE	TYP	E: p	rote	in									
	(iii)	HYPO	OTHET	ICAL	: NO											
50	(iv)	ANT:	I-SEN	SE:	NO											
	(vi)	ORIO	GINAL ORG	SOU.	RCE: M: h	omo	sapi	ens								
55	(xi)	SEQU	JENCE	DES	CRIP:	rion	: SE	Q ID	NO:	9:						
	Ser 1	Ile	Leu	Lys	Ile 1 5	His A	Ala A	Arg (lle 1 10	Phe .	Asp :	Ser i		31y <i>1</i> 15	Asn
60	Pro	Thr	Val (Glu 1 20	Val A	Asp 1	Leu I	Phe ?	Thr S 25	Ser 1	Lys (Gly 1		Phe A	Arg A	λla
	Ala	Val	Pro S	Ser (Gly A	Ala S	Ser 1	Thr (Sly 1	le 1	fyr (Ala 1 15	Leu (Glu I	Leu
65	Arg	Asp 50	Asn A	Asp I	Lys T	hr /	Arg T	yr N	let (Sly I		31y \ 50	/al S	Ger I	Lys A	lla

	Val 65	Glu	His	Ile	Asn	Lys 70	Thr	Ile	Ala	Pro	Ala 75	Leu	Val	Ser	Lys	Lys 80
5	Leu	Asn	Val	Thr	Glu 85	Gln	Glu	Lys	Ile	Asp 90	Lys	Leu	Met	Ile	Glu 95	Met
10	Asp	Gly	Thr	Glu 100	Asn	Lys	Ser	Lys	Phe 105	Gly	Ala	Asn	Ala	Ile 110	Leu	Gly
	Val	Ser	Leu 115	Ala	Val	Cys	Lys	Ala 120	Gly	Ala	Val	Glu	Lys 125	Gly	Val	Pro
15	Leu	Tyr 130	Arg	His	Ile	Ala	Asp 135	Leu	Ala	Gly	Asn	Ser 140	Glu	Val	Ile	Leu
	Pro 145	Val	Pro	Ala	Phe	Asn 150	Val	Ile	Asn	Gly	Gly 155	Ser	His	Ala	Gly	Asn 160
20	Lys	Leu	Ala	Met	Gln 165	Glu	Phe	Met	Ile	Leu 170	Pro	Val	Gly	Ala	Ala 175	Asn
25	Phe	Arg	Glu	Ala 180	Met	Arg	Ile	Gly	Ala 185	Glu	Val	Tyr	His	Asn 190	Leu	Lys
	Asn	Val	Ile 195	Lys	Glu	Lys	Tyr	Gly 200	Lys	Asp	Ala	Thr	Asn 205	Val	Gly	Asp
30	Glu	Gly 210	Gly	Phe	Ala	Pro	Asn 215	Ile	Leu	Glu	Asn	Lys 220	Glu	Gly	Leu	Glu
	Leu 225	Leu	Lys	Thr	Ala	Ile 230	Gly	Lys	Ala	Gly	Tyr 235	Thr	Asp	Lys	Val	Val 240
35	Ile	Gly	Met	Asp	Val 245	Ala	Ala	Ser	Glu	Phe 250	Phe	Arg	Ser	Gly	Lys 255	Tyr
40	Asp	Leu	Asp	Phe 260	Lys	Ser	Pro	Asp	Asp 265	Pro	Ser	Arg	Tyr	11e 270	Ser	Pro
	Asp	Gln	Leu 275	Ala	Asp	Leu	Tyr	Lys 280	Ser	Phe	Ile	Lys	Asp 285	Tyr	Pro	Val
45	Val	Ser 290	Ile	Glu	Asp	Pro	Phe 295	Asp	Gln	Asp	Asp	Trp 300	Gly	Ala	Trp	Gln
50	Lys 305	Phe	Thr	Ala	Ser	Ala 310	Gly	Ile	Gln	Val	Val 315	Gly	Asp	Asp	Leu	Thr 320
	Val	Thr	Asn	Pro	Lys 325	Arg	Ile	Ala	Lys	Ala 330	Val	Asn	Glu	Lys	Ser 335	Cys
55	Asn	Cys	Leu	Leu 340	Leu	Lys	Val	Asn	Gln 345	Ile	Gly	Ser	Val	Thr 350	Glu	Ser
60	Leu	Gln	Ala 355	Cys	Lys	Leu	Ala	Gln 360	Ala	Asn	Gly	Trp	Gly 365	Val	Met	Val
• •	Ser	His 370	Arg	Ser	Gly	Glu	Thr 375	Glu	Asp	Thr	Phe	Ile 380	Ala	Asp	Leu	Val
65	Val 385	Gly	Leu	Cys	Thr	Gly 390	Gln	Ile	Lys	Thr	Gly 395	Ala	Pro	Cys	Arg	Ser 400
	Glu	Arg	Leu	Ala	Lys 405	Tyr	Asn	Gln	Leu	Leu 410	Arg	Ile	Glu	Glu	Glu 415	Leu

5	515	y Sei	r Ly:	s Ala 420	a Lys	s Phe	e Ala	a Gl	y Ar 42	g Ası 5	n Phe	e Ar	g Ası	9 Pro	Lei	ı Ala
	Lys	5														
10	(2) INFO	ORMAT	rion	FOR	SEQ	ID N	10: 1	10:								
	(i)		QUENC) LE) TY	NGTI	1: 41	l7 am	ino		ds							
15		(0) S1	RANE	DEDNE	ESS:	sing	gle								
	(ii)	MOL	ECUI	E TY	PE:	prot	ein									
20	(iii)	HYP	OTHE	TICA	AL: N	10										
	(iv)	ANT	'I-SE	NSE:	NO										•	
	(vi)	ORI (A	GINA) OR				sap	iens	i							
25							·									
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 10	:					
30	Ser 1	Leu	Ser	Asn	Lys 5	Leu	Thr	Leu	Asp	Lys 10	Leu	Asp	Val	Lys	Gly 15	Lys
35	Arg	Val	Val	Met 20	Arg	Val	Asp	Phe	Asn 25	Val	Pro	Met	Lys	Asn 30	Asn	Gln
	Ile	Thr	Asn 35	Asn	Gln	Arg	Ile	Lys 40	Ala	Ala	Val	Pro	Ser 45	Ile	Lys	Phe
40	Суѕ	Leu 50	Asp	Asn	Gly	Ala	Lys 55	Ser	Val	Val	Leu	Met 60	Ser	His	Leu	Gly
	Ara	Pro	Asn	Glv	V = 1	Pro	Mot	Pro	Aen	ī uc	Ф. г.	So.=	T 0	Glu	D	11-1
45	65			017	***	70	1100	110	nsp	Буз	75	Jei	Leu	GIU	PIO	80 80
	Ala	Val	Glu	Leu	Lys 85	Ser	Leu	Leu	Gly	Lys 90	Asp	Val	Leu	Phe	Leu 95	Lys
50	Asp	Cys	Val	Gly 100	Pro	Glu	Val	Glu	Lys 105	Ala	Cys	Ala	Asn	Pro 110	Ala	Ala
	Gly	Ser	Val 115	Ile	Leu	Leu	Glu	Asn 120	Leu	Arg	Phe	His	Val 125	Glu	Glu	Glu
55	Gly	Lys 130	Gly	Lys	Asp	Ala	Ser 135	Gly	Asn	Lys	Val	Lys 140	Ala	Glu	Pro	Ala
	Lys		Glu	Ala	Phe	Arg		Ser	Leu	Ser	Lvs		Glv	Asp	Val	Tur
60	145					150					155					160
	Val	Asn	Asp	Ala	Phe 165	Gly	Thr	Ala	His	Arg 170	Ala	His	Ser	Ser	Met 175	Val
65	Gly	Val	Asn	Leu 180	Pro	Gln	Lys	Ala	Gly 185	Gly	Phe	Leu	Met	Lys 190	Lys	Glu

-42-

	Leu	Asn	Tyr 195	Phe	Λla	Lys	Ala	Leu 200	Glu	Ser	Pro	Glu	Arg 205	Pro	Phe	Leu
5	Ala	Ile 210	Leu	Gly	Gly	Ala	Lys 215	Val	Ala	Asp	Lys	11e 220	Gin	Leu	ile	Asn
10	Asn 225	Met	Leu	Asp	Lys	Val 230	Asn	Glu	Met	Ile	11e 235	Gly	Gly	Gly	Met	Ala 240
10	Phe	Thr	Phe	Leu	Lys 245	Val	Leu	Asn	Asn	Met 250	Glu	Ile	Gly	Thr	Ser 255	Leu
15 [.]	Phe	Asp	Glu	Glu 260	Gly	Ala	Lys	Ile	Val 265	Lys	Asp	Leu	Met	Ser 270	Lys	Ala
	Glu	Lys	Asn 275	Gly	Val	Lys	Ile	Thr 280	Leu	Pro	Val	Asp	Phe 285	Val	Thr	Ala
20	Asp	Lys 290	Phe	Asp	Glu	Asn	Ala 295	Lys	Thr	Gly	Gln	Ala 300	Thr	Val	Ala	Ser
25	Gly 305	Ile	Pro	Ala	Gly	Trp 310	Met	Gly	Leu	Asp	Cys 315	Gly	Pro	Glu	Ser	Ser 320
2.0	Lys	Lys	Tyr	Ala	Glu 325	Ala	Val	Thr	Arg	Ala 330	Lys	Gln	Ile	Val	Trp 335	Asn
30	Gly	Pro	Val	Gly 340	Val	Phe	Glu	Trp	Glu 345	Ala	Phe	Ala	Arg	Gly 350	Thr	Lys
	Ala	Leu	Met 355	Asp	Glu	Val	Val	Lys 360	Ala	Thr	Ser	Arg	Gly 365	Cys	Ile	Thr
35	Ile	Ile 370	Gly	Gly	Gly	Asp	Thr 375	Ala	Thr	Суѕ	Cys	Ala 380	Lys	Trp	Asn	Thr
40	385			Val		390					395					400
	Leu	Leu	Glu	Gly	Lys 405	Val	Leu	Pro	Gly	Val 410	Asp	Ala	Leu	Ser	Asn 415	Ile
45	Leu															
	(2) INFO	RMAT	ION	FOR S	SEQ	ID N	0: 1	1:								
50	(i)	(A) (B) (C)) LEI) TYI) STI	E CHANGTH PE: A RANDI POLOG	: 24° amin EDNE:	9 am. 5 ac: 5S:	ino id sing.	acid.	S							
55	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(iii)	нүр	OTHE	TICA	L: N	0										
60	(iv)	ANT	I-SE	NSE:	ИО											
	(vi)			L SO GANI			sap	iens								
65	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 11	:					•
	Met 1	Ala	Pro	Ser	Arg 5	Lys	Phe	Phe	Val	Gly 10	Gly	Asn	Trp	Lys	Met 15	Asn

-43-

	Gly	Arg	Lys	Gln 20	Ser	Leu	Gly	Glu	Leu 25	Ile	Gly	Thr	Leu	Asn 30	Ala	Ala
5	Lys	Val	Pro 35	Ala	Asp	Thr	Glu	Val 40	Val	Cys	Ala	Pro	Pro 45	Thr	Ala	Tyr
	Ile	Asp 50	Phe	Ala	Arg	Gln	Lys 55	Leu	Asp	Pro	Lys	Ile 60	Ala	Val	Ala	Ala
10	Gln 65	Asn	Cys	Tyr	Lys	Val 70	Thr	Asn	Gly	Ala	Phe 75	Thr	Gly	Glu	Ile	Ser 80
15	Pro	Gly	Met	Ile	Lys 85	Asp	Cys	Gly	Ala	Thr 90	Trp	Val	Val	Leu	Gly 95	His
	Ser	Glu	Arg	Arg 100	His	Val	Phe	Gly	Glu 105	Ser	Asp	Glu	Leu	Ile 110	Gly	Gln
20	Lys	Val	Ala 115	His	Ala	Leu	Ala	Glu 120	Gly	Leu	Gly	Val	Ile 125	Ala	Cys	Ile
25	Gly	Glu 130	Lys	Leu	Asp	Glu	Arg 135	Glu	Ala	Gly	Ile	Thr 140	Glu	Lys	Val	Val
25	Phe 145	Glu	Gln	Thr	Lys	Val 150	Ile	Ala	Asp	Asn	Val 155	Lys	Asp	Trp	Ser	Lys 160
30	Val	Val	Leu	Ala	Tyr 165	Glu	Pro	Val	Trp	Ala 170	Ile	Gly	Thr	Gly	Lys 175	Thr
	Ala	Thr	Pro	Gln 180	Gln	Ala	Gln	Glu	Val 185	His	Glu	Lys	Leu	Arg 190	Gly	Trp
35	Leu	Lys	Ser 195	Asn	Val	Ser	Asp	Ala 200	Val	Ala	Gln	Ser	Thr 205	Arg	Ile	Ile
40	Tyr	Gly 210	Gly	Ser	Val	Thr	Gly 215	Ala	Thr	Cys	Lys	Glu 220	Leu	Ala	Ser	Gln
	Pro 225	Asp	Val	Asp	Gly	Phe 230	Leu	Val	Gly	Gly	Ala 235	Ser	Leu	Lys	Pro	Glu 240
45	Phe	Val	Asp	Ile	Ile 245	Asn	Ala	Lys	Gln							
	(2) INFOR	I TAMS	ON F	OR S	EQ I	D NC	: 12	! :								
50	(i)	(B) (C)	JENCE LEN TYP STP TOP	GTH: E: a ANDE	107 mino DNES	6 am aci S: s	ino .d ingl	acid	ls							
55	(ii)	MOLE	CULE	TYF	E: p	rote	in									
	(iii)	нүрс	THET	ICAL	.: NO)										
60	(iv)	ANTI	-SEN	SE:	NO											
	(vi)		INAL ORG			omo.	sapi	ens.								

• 65

-44-

	(ix)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ I	ON C	: 12	:					
5	Pro 1	Val	Pro	Leu	Ser 5	Phe	Leu	Ser	Thr	Val 10	Суѕ	Asp	Pro	Arg	Val 15	Gl
	Asp	Gly	Ala	Ala 20	Glu	Arg	Thr	Gly	Ala 25	Ala	Asp	Gly	Glu	Glu 30	Phe	Le
10	Gly	Gly	Gly 35	Gly	Leu	Pro	Ala	Glu 40	Leu	Phe	Gln	Lys	Lys 45	Val	Val	Ala
15 [.]	Ser	Phe 50	Pro	Arg	Thr	Val	Leu 55	Ser	Thr	Gly	Met	Asp 60	Asn	Arg	Tyr	Le
	Val 6 5	Leu	Ala	Val	Asn	Thr 70	Val	Gln	Asn	Lys	Glu 75	Gly	Asn	Cys	Glu	Ly:
20	Arg	Leu	Val	Ile	Thr 85	Ala	Ser	Gln	Ser	Leu 90	Glu	Asn	Lys	Glu	Leu 95	Cys
	Ile	Leu	Arg	Asn 100	Asp	Trp	Cys	Ser	Val 105	Pro	Val	Glu	Pro	Gly 110	Asp	Ile
25	Ile	His	Leu 115	Glu	Gly	Asp	Cys	Thr 120	Ser	Asp	Thr	Trp	Ile 125	Ile	Asp	Lys
30	Asp	Phe 130	Gly	Tyr	Leu	Ile	Leu 135	Tyr	Pro	Asp	Met	Leu 140	Ile	Ser	Gly	Thi
	Ser 145	Ile	Ala	Ser	Ser	Ile 150	Arg	Cys	Met	Arg	Arg 155	Ala	Val	Leu	Ser	Glu 160
35	Thr	Phe	Arg	Ser	Ser 165	Asp	Pro	Ala	Thr	Arg 170	Gln	Met	Leu	Ile	Gly 175	Thi
	Val	Leu	His	Glu 180	Val	Phe	Gln	Lys	Ala 185	Ile	Asn	Asn	Ser	Phe 190	Ala	Pro
40	Glu	Lys	Leu 195	Gln	Glu	Leu	Ala	Phe 200	Gln	Thr	Ile	Gln	Glu 205	Ile	Arg	His
45	Leu	Lys 210	Glu	Met	Tyr	Arg	Leu 215	Asn	Leu	Ser	Gln-	Asp 220	Glu	Ile	Lys	Glr
	Glu	Val	Glu	Asp	Tyr	Leu	Pro	Ser	Phe	Cys	Lys	Trp	Ala	Gly	Asp	Phe
50	225 Met	Uie	Lys) en	Th.	230	Th.	۸۵۵	Pho	Pro	235	Mot	C1 n	T au	C	240
					245					250					255	
55	Pro	Ser	Asp	Asn 260	Ser	Lys	Asp	Asn	Ser 265	Thr	Cys	Asn	Ile	Glu 270	Val	Val
60	Lys	Pro	Met 275	qeA	Ile	Glu	Glu	Ser 280	Ile	Trp	Ser	Pro	Arg 285	Phe	Gly	Leu
	Lys	Gly 290	Lys	Ile	Asp	Val	Thr 295	Val	Gly	Val	Lys	11e 300	His	Arg	Gly	Туг
65	Lys	Thr	Lys	Tyr	Lys	Ile	Met	Pro	Leu	Glu	Leu	Lys	Thr	Gly	Lys	Glu

WO 98/10291

	Ser	λsn	Ser	Ile	Glu 325		Arg	Ser	Gla	Val 330		Leu	Tyr	Thr	Leu 335	
5	Ser	Gin	Glu	Arg 340		Ala	Asp	Pro	Glu 345		Gly	Leu	Leu	Leu 350	Tyr	Le
1.0	Lys	Thr	Gly 355		Met	Туг	Pro	Val 360		Ala	Asn	His	Leu 365		Lys	Arg
10	Glu	Leu 370		Lys	Leu	Arg	Asn 375	Gln	Met	Ala	Phe	Ser 380		Phe	His	Arç
15	11e 385	Ser	Lys	Ser	Ala	Thr 390	Arg	Gln	Lys	Thr	Gln 395	Leu	Ala	Ser	Leu	Pro 400
	Gln	Ile	Ile	Glu	Glu 405	Glu	Lys	Thr	Cys	Lys 410	Tyr	Cys	Ser	Gln	Ile 415	Gly
20	Asn	Cys	Ala	Leu 420	Tyr	Ser	Arg	Ala	Val 425	Glu	Gln	Gln	Met	Asp 430	Cys	Ser
25	Ser	Val	Pro 435	Ile	Val	Met	Leu	Pro 440	Lys	Ile	Glu	Glu	Glu 445	Thr	Gln	His
25	Leu	Lys 450	Gln	Thr	His	Leu	Glu 455	Tyr	Phe	Ser	Leu	Trp 460	Cys	Leu	Met	Leu
30	Thr 465	Leu	Glu	Ser	Gln	Ser 470	Lys	Asp	Asn	Lys	Lys 475	Asn	His	Gln	Asn	Ile 480
	Trp	Leu	Met	Pro	Ala 485	Ser	Glu	Met	Glu	Lys 490	Ser	Gly	Ser	Cys	Ile 495	Gly
35	Asn	Leu	Ile	Arg 500	Met	Glu	His	Val	Lys 505	Ile	Val	Cys	Asp	Gly 510	Gln	Tyr
4 0	Leu	His	Asn 515	Phe	Gln	Cys	Lys	His 520	Gly	Ala	Ile	Pro	Val 525	Thr	Asn	Leu
3 O	Met	Ala 530	Gly	Asp	Arg	Val	Ile 535	Val	Ser	Gly	Glu	Glu 540	Arg	Ser	Leu	Phe
45	Ala 545	Leu	Ser	Arg	Gly	Tyr 550	Val	Lys	Glu	Ile	Asn 555	Met	Thr	Thr	Val	Thr 560
	Cys	Leu	Leu	Asp	Arg 565	Asn	Leu	Ser	Val	Leu 570	Pro	Glu	Ser	Thr	Leu 575	Phe
50	Arg	Leu	Asp	Gln 580	Glu	Glu	Lys	Asn	Cys 585	Asp	Ile	Asp	Thr	Pro 590	Leu	Gly
55	Asn	Leu	Ser 595	Lys	Leu	Met	Glu	Asn 600	Thr	Phe	Val	Ser	Lys 605	Lys	Leu	Arg
	Asp	Leu 610	Ile	Ile	Asp	Phe	Arg 615	Glu	Pro	Gln	Phe	Ile 620	Ser	Tyr	Leu	Ser
50	Ser 625	Val	Leu	Pro	His	Asp 630	Ala	Lys	Asp	Thr	Val 635	Ala	Cys	Ile	Leu	Lys 640
55	Gly	Leu	Asn	Lys	Pro 645	Gln	Arg	Gln	Ala	Met 650	Lys	Lys	Val	Leu	Leu 655	Ser
	Lys	Asp	Tyr	Thr 660	Leu	Ile	Val	Gly	Met 665	Pro	Gly	Thr	Gly	Lys 670	Thr	Thr

	1111	116	675	inr	Leu	vaı	Arg	680		ryr	Ala	Cys	685		Ser	۷a.
5	Leu	Leu 690	Thr	Ser	Tyr	Thr	His 695	Ser	Ala	Val	Asp	Asn 700		Leu	Leu	Ly:
10	Leu 705	Ala	Lys	Phe	Lys	Ile 710	Gly	Phe	Leu	Arg	Leu 715	Gly	Gln	Ile	Gln	Lys 720
•	Val	His	Pro	Ala	Ile 725	Gln	Gln	Phe	Thr	Glu 730	Gln	Glu	Ile	Cys	Arg 735	Ser
15	Lys	Ser	Ile	Lys 740	Ser	Leu	Ala	Leu	Leu 745	Glu	Glu	Leu	Tyr	Asn 750	Ser	Glr
	Leu	Ile	Val 755	Ala	Thr	Thr	Суѕ	Met 760	Gly	Ile	Asn	His	Pro 765	Ile	Phe	Ser
20	Arg	Lys 770	Ile	Phe	Asp	Phe	Cys 775	Ile	Val	Asp	Glu	Ala 780	Ser	Gln	Ile	Ser
25	Gln 785	Pro	Ile	Cys	Leu	Gly 790	Pro	Leu	Phe	Phe	Ser 795	Arg	Arg	Phe	Val	Leu 800
	Val	Gly	Asp	His	Gln 805	Gln	Leu	Pro	Pro	Leu 810	Val	Leu	Asn	Arg	Glu 815	Ala
30	Arg	Ala	Leu	Gly 820	Met	Ser	Glu	Ser	Leu 825	Phe	Lys	Arg	Leu	Glu 830	Gln	Asn
	Lys	Ser	Ala 835	Val	Val	Gln	Leu	Thr 840	Val	Gln	Tyr	Arg	Met 845	Asn	Ser	Lys
35	Ile	Met 850	Ser	Leu	Ser	Asn	Lys 855	Leu	Thr	Tyr	Glu	Gly 860	Lys	Leu	Glu	Cys
1 0	Gly 8 6 5	Ser	Asp	Lys	Val	Ala 870	Asn	Ala	Val	Ile	Asn 875	Leu	Arg	His	Phe	Lys 880
	Asp	Val	Lys	Leu	Glu 885	Leu	Glu	Phe	Tyr	Ala 890	Asp	Tyr	Ser	Asp	Asn 895	Pro
15	Trp	Leu	Met	Gly 900	Val	Phe	Glu	Pro	Asn 905	Asn	Pro	Val	Cys	Phe 910	Leu	Asn
	Thr	Asp	Lys 915	Val	Pro	Ala	Pro	Glu 920	Gln	Val	Glu	Lys	Gly 925	Gly	Val	Ser
50																
	Asn	Val 930	Thr	Glu	Ala	Lys	Leu 935	Ile	Val	Phe	Leu	Thr 940	Ser	Ile	Phe	Val
55	Lys 945	Ala	Gly	Cys	Ser	Pro 950	Ser	Asp	Ile	Gly	Ile 955	Ile	Ala	Pro	Tyr	Arg 960
50	Gln	Gln	Leu	Lys	Ile 965	Ile	Asn	Asp	Leu	Leu 970	Ala	Arg	Ser	Ile	Gly 975	Met
	Val	Glu	Val	Asn 980	Thr	Val	Asp	Lys	Tyr 985	Gln	Gly	Arg	Λsp	Lys 990		Ile
55	Val	Leu	Val 995	Ser	Phe	Val	Arg	Ser 1000	Asn)	Lys	Asp	Gly	Thr 1005	Val	Gly	Glu

-47-

	Leu	Leu 101	Lys .0	Asp	Trp	Arg	Arg 101		Asn	Val	L Ala	11e		Arq	g Ala	Lys
5	His 102	Lys 5	Leu	Ile	Leu	Leu 103		Cys	Val	Pro	Ser 103		Asr	Cys	туг	Pro 1040
1.0	Pro	Leu	Glu	Lys	Leu 104		Asn	His	Leu	Asr 105		Glu	Lys	Leu	11e	lle 5
10	Asp	Leu	Pro	Ser 106	Arg 0	Glu	His	Glu	Ser 106	Leu 5	Cys	His	Ile	Leu 107		Asp
15	Phe	Gln	Arg 107													
	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0: 1	3:								
20	(i)	(A (B (C	UENC) LE) TY) ST) TO	NGTH PE: RAND	: 52 amin EDNE	7 am o ac. SS:	ino id sing	acid.	s							
25	(ii)	MOL	ECUL	Е ТҮ	PE:	prot	ein									
	(iii)	нүр	отне'	TICA	L: N	С										
30	(iv)	ANT	I-SE	NSE:	NO											
30	(vi)		GINA) OR				sapi	iens								
35	(xi)	SEQ	UENCI	E DES	SCRI	PTIO	N: SE	EQ I	NO:	: 13	:					
	Met 1	Ala	Asp	Ser	Arg 5	Asp	Pro	Ala	Ser	Asp 10	Gln	Met	Gln	His	Trp 15	Lys
40	Glu	Gln	Arg	Ala 20	Ala	Gln	Lys	Ala	Asp 25	Val	Leu	Thr	Thr	Gly 30	Ala	Gly
45	Asn	Pro	Val 35	Gly	Asp	Lys	Leu	Asn 40	Val	Ile	Thr	Val	Gly 45	Pro	Arg	Gly
	Pro	Leu 50	Leu	Val	Gln	Asp	Val 55	Val	Phe	Thr	Asp	Glu 60	Met	Ala	His	Phe
50	Asp 65	Arg	Glu	Arg	Ile	Pro 70	Glu	Arg	Val	Val	His 75	Ala	Lys	Gly	Ala	Gly 80
55	Ala	Phe	Gly	Tyr	Phe 85	Glu	Val	Thr	His	Asp 90	Ile	Thr	Lys	Tyr	Ser 95	Lys
	Ala	Lys	Val	Phe 100	Glu	His	Ile	Gly	Lys 105	Lys	Thr	Pro	Ile	Ala 110	Val	Arg
60	Phe	Ser	Thr 115	Val	Ala	Gly	Glu	Ser 120	Gly	Ser	Ala	Asp	Thr 125		Arg	Asp
65	Pro	Arg 130	Gly	Phe	Ala	Val	Lys 135	Phe	Tyr	Thr	Glu	Asp 140	Gly	Asn	Trp	Asp
0.5	Leu 145	Val	Gly	Asn	Asn	Thr 150	Pro	Ile	Phe	Phe	Ile 155	Arg	Asp	Pro	Ile	Leu 160

-48-

	Phe	Pro	Ser	Phe	Ile 165	His	Ser	Gln	Lys	Arg 170	Asn	Pro	Gln	Thr	His 175	Leu
5	Lys	Asp	Pro	Asp 180	Met	Val	Trp	Asp	Phe 185	Trp	Ser	Leu	Arg	Pro 190	Glu	Ser
10	Leu	His	Gln 195	Val	Ser	Phe	Leu	Phe 200	Ser	Asp	Arg	Gly	Ile 205	Pro	Asp	Gly
	His	Arg 210	His	Met	Asn	Gly	Tyr 215	Gly	Ser	His	Thr	Phe 220	Lys	Leu	Val	Asn
15.	Ala 225	Asn	Gly	Glu	Ala	Val 230	Tyr	Cys	Lys	Phe	His 235	Tyr	Lys	Thr	Asp	Gln 240
	Gly	Ile	Lys	Asn	Leu 245	Ser	Val	Glu	Asp	Ala 250	Ala	Arg	Leu	Ser	Gln 255	Glu
20	Asp	Pro	Asp	Tyr 260	Gly	Ile	Arg	Asp	Leu 2 6 5	Phe	Asn	Ala	Ile	Ala 270	Thr	Gly
25	Lys	Tyr	Pro 275	Ser	Trp	Thr	Phe	Tyr 280	Ile	Gln	Val	Met	Thr 285	Phe	Asn	Gln
	Ala	Glu 290	Thr	Phe	Pro	Phe	Asn 295	Pro	Phe	Asp	Leu	Thr 300	Lys	Val	Trp	Pro
30	His 305	Lys	Asp	Tyr	Pro	Leu 310	Ile	Pro	Val	Gly	Lys 315	Leu	Val	Leu	Asn	Arg 320
	Asn	Pro	Val	Asn	Tyr 325	Phe	Ala	Glu	Val	Glu 330	Gln	Ile	Ala	Phe	Asp 335	Pro
35	Ser	Asn	Met	Pro 340	Pro	Gly	Ile	Glu	Ala 345	Ser	Pro	Asp	Lys	Met 350	Leu	Gln
40	Gly	Arg	Leu 355	Phe	Ala	Tyr	Pro	Asp 360	Thr	His	Arg	His	Arg 365	Leu	Gly	Pro
	Asn	Tyr 370	Leu	His	Ile	Pro	Val 375	Asn	Cys	Pro	Tyr	Arg 380	Ala	Arg	Val	Ala
45	Asn 385	Tyr	Gln	Arg	Asp	Gly 390	Pro	Met	Суѕ	Met	Gln 395	Asp	Asn	Gln	Gly	Gly 400
	Ala	Pro	Asn	Tyr	Tyr 405	Pro	Asn	Ser	Phe	Gly 410	Ala	Pro	Glu	Gln	Gln 415	Pro
50	Ser	Ala	Leu	Glu 420	His	Ser	Ile	Gln	Tyr 425	Ser	Gly	Glu	Val	Arg 430	Arg	Phe
55	Asn	Thr	Ala 435	Asn	Asp	Asp	Asn	Val 440	Thr	Gln	Val	Arg	Ala 445	Phe	Tyr	Val
60	Asn	Val 450	Leu	Asn	Glu	Glu	Gln 455	Arg	Lys	Arg	Leu	Cys 460	Glu	Asn	Ile	Ala
	Gly 465	His	Leu	Lys	Asp	Ala 470	Gln	Ile	Phe	Ile	Gln 475	Lys	Lys	Ala	Val	Lys 480
65	Asn	Phe	Thr	Glu	Val 485	His	Pro	Asp	Tyr	Gly 490	Ser	His	Ile	Gln	Ala 495	Leu
	Leu	qsA	Lys	Tyr 500	Asn	Ala	Glu	Lys	Pro 505	Lys	Asn	Ala	Ile	His 510	Thr	Phe

-49-

Val Gln Ser Gly Ser His Leu Ala Ala Arg Glu Lys Ala Asn Leu 515 520 525

		515	5				520)		,	•	525	5		
5	(2) INFO	RMATION	FOR	SEQ	ID N	10: 1	4:								
10	(i)	SEQUENC (A) LE (B) TY (C) ST (D) TO	ENGTH (PE: TRAND	: 35 amin EDNE	3 am o ac SS:	ino id sing	acio	is							
	(ii)	MOLECUI	E TY	PE:	prot	ein									
15	(iii)	НҮРОТНЕ	TICA	L: N	0										
	(iv)	ANTI-SE	NSE:	NO											
20	(vi)	ORIGINA (A) OR				sap	iens								
25	(xi)	SEQUENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 14	:					
	Met 1	Glu Lys	Thr	Leu 5	Glu	Thr	Val	Pro	Leu 10	Glu	Arg	Lys	Lys	Arg 15	Glu
30	Lys	Glu Gln	Phe 20	Arg	Lys	Leu	Phe	Ile 25	.Gly	Gly	Leu	Ser	Phe 30	Glu	Thr
	Thr	Glu Glu 35	Ser	Leu	Arg	Asn	Tyr 40	Tyr	Glu	Gln	Trp	Gly 45	Lys	Leu	Thr
35	Asp	Cys Val 50	Val	Met	Arg	Asp 55	Pro	Ala	Ser	Lys	Arg 60	Ser	Arg	Gly	Phe
40	Gly 65	Phe Val	Thr	Phe	Ser 70	Ser	Met	Ala	Glu	Val 75	Asp	Ala	Ala	Met	Ala 80
40	Ala	Arg Pro	His	Ser 85	Ile	Asp	Gly	Arg	Val 90	Val	Glu	Pro	Lys	Arg 95	Ala
45	Val	Ala Arg	Glu 100	Glu	Ser	Gly	Lys	Pro 105	Gly	Ala	His	Val	Thr 110	Val	Lys
	Lys	Leu Phe 115	Val	Gly	Gly	Ile	Lys 120	Glu	Asp	Thr	Glu	Glu 125	His	His	Leu
50	Arg	Asp Tyr 130	Phe	Glu	Glu	Tyr 135	Gly	Lys	Ile	Asp	Thr 140	Ile	Glu	Ile	Ile
55	Thr 145	Asp Arg	Gln	Ser	Gly 150	Lys	Lys	Arg	Gly	Phe 155	Gly	Phe	Val	Thr	Phe 160
60	Asp	Asp His	Asp	Pro 165	Val	Asp	Lys	Ile	Val 170	Leu	Gln	Lys	Tyr	His 175	Thr
60	Ile	Asn Gly	His 180	Asn	Ala	Glu	Val	Arg 185	Lys	Ala	Leu	Ser	Arg 190	Gln	Glu
65	Met	Gln Glu 195	Val	Gln	Ser	Ser	Arg 200	Ser	Gly	Arg	Gly	Gly 205	Asn	Phe	Gly
	Phe	Gly Asp 210	Ser	Arg	Gly	Gly 215	Gly	Gly	Asn	Phe	Gly 220	Pro	Gly	Pro	Gly

	3er 225	Asn	Phe	Arg	Gly	Gly 230	Ser	Asp	Gly	Tyr	Gly 235	Ser	Gly	Arg	Gly	Phe 240
5	Gly	Asp	Gly	Tyr	Asn 245	Gly	Tyr	Gly	Gly	Gly 250	Pro	Gly	Gly	Gly	Asn 255	Phe
	Gly	Gly	Ser	Pro 260	Gly	Tyr	Gly	Gly	Gly 265	Arg	Gly	Gly	Tyr	Gly 270	Gly	Gly
10	Gly	Pro	Gly 275	Tyr	Gly	Asn	Gln	Gly 280	Gly	Gly	Tyr	Gly	Gly 285	Gly	Tyr	Asp
15	Asn	Tyr 290	Gly	Gly	Gly	Asn	Tyr 295	Gly	Ser	Gly	Asn	Tyr 300	Asn	Asp	Phe	Gly
	Asn 305	Tyr	Asn	Gln	Gln	Pro 310	Ser	Asn	Tyr	Gly	Pro 315	Met	Lys	Ser	Gly	Asn 320
20	Phe	Gly	Gly	Ser	Arg 325	Asn	Met	Gly	Gly	Pro 330	Tyr	Gly	Gly	Gly	Asn 335	Tyr
25	Gly	Pro	Gly	Gly 340	Ser	Gly	Gly	Ser	Gly 345	Gly	Tyr	Gly	Gly	Arg 350	Ser	Arg
<i>.</i> ,	Tyr															
30	(2) INFO	RMAT	ION I	FOR S	SEQ I	ID NO): 15	5 :								
30	(i)	SEQUAL (A)	LE	CHANGTH:	194	1 ami	ino a		3							
35		(C)	ST	RANDI	EDNES	SS: 8	ingl	le								
	(ii)	MOLE	ECULI	E TY	PE: p	prote	ein									
40	(iii)	HYPO	OTHE	ricai	L: NO)										
	(iv)	ANT:	I-SEI	NSE:	NO											
45	(vi)			L SOU SANIS			sapi	iens								
	(xi)	SEQ	JENCI	E DES	SCRI	PTION	۱: SI	EQ II	ON 0	15:	:					
50	Met 1	Ala	Ala	Glu	Asp 5	Val	Ala	Ala	Thr	Gly 10	Ala	Asp	Pro	Ser	Glu 15	Leu
55	Glu	Gly	Gly	Gly 20	Leu	Leu	His	Glu	Ile 25	Phe	Thr	Ser	Pro	Leu 30	Asn	Lev
	Leu	Leu	Leu 35	Gly	Leu	Суѕ	Ile	Phe 40	Leu	Leu	Tyr	Lys	Ile 45	Val	Arg	Gl
60	Asp	Gln 50	Pro	Ala	Ala	Ser	Asp 55	Ser	Asp	Asp	Asp	Glu 60	Pro	Pro	Pro	Leu
65	Pro 65	Arg	Leu	Lys	Arg	Arg 70	Asp	Phe	Thr	Pro	Ala 75	Glu	Leu	Arg	Arg	Phe 80
. .	Asp	Gly	Val	Gln	Asp 85	Pro	Arg	Ile	Leu	Met 90	Ala	Ile	Asn	Gly	Lys 95	Va)

-51-

	Phe	Asp	Val	Thr 100	Lys	Gly	Arg	Lys	Phe 105	-	Gly	Pro	Glu	Gly 110		Tyr
5	Gly	Vai	Phe 115	Ala	Gly	Arg	Asp	Ala 120	Ser	Arg	Gly	Leu	Ala 125		Phe	Cys
10	Leu	Asp 130	Lys	Glu	Ala	Leu	Lys 135	Asp	Glu	Tyr	Asp	Asp 140	Leu	Ser	Asp	Leu
10	Thr 145	Pro	Ala	Gln	Gln	Glu 150	Thr	Leu	Asn	Asp	Trp 155	Asp	Ser	Gln	Phe	Thr 160
15	Phe	Lys	Туr	His	His 165	Val	Gly	Lys	Leu	Leu 170	Lys	Glu	Gly	Glu	Glu 175	Pro
	Thr	Val	Tyr	Ser 180	Asp	Glu	Glu	Glu	Pro 185	Lys	Asp	Glu	Ser	Ala 190	Arg	Lys
20	Asn	Asp														
	(2) INFOR	RMAT	ION I	FOR :	SEQ :	ID N): 10	5:								
25	(i)	(A (B) (C)	UENCI) LEI) TYI) STI) TOI	NGTH PE: a RANDI	: 640 amino EDNES	6 am: o ac: SS: s	ino a id singl	cid	5							
30	(ii)	MOL	ECULI	E TY	PE: p	prote	ein									
	(iii)	HYPO	OTHE	CICAL	L: NO)										
35	(iv)	ANT	I-SEN	ISE:	NO											
	(vi)		GINAI ORO				sapi	ens								
40																
	(xi)	SEQU	JENCE	DES	CRIE	OITS	1: SE	Q II	NO:	16:						
45	Met 1	Ser	Lys	Gly	Pro 5	Ala	Val	Gly	Ile	Asp 10	Leu	Gly	Thr	Thr	Tyr 15	Ser
	Cys	Val	Gly	Val 20	Phe	Gln	His	Gly	Lys 25	Val	Glu	Ile	Ile	Ala 30	Asn	Asp
50	Gln	Gly	Asn 35	Arg	Thr	Thr	Pro	Ser 40	Tyr	Val	Ala	Phe	Thr 45	Asp	Thr	Glu
55	Arg	Leu 50	Ile	Gly	Asp	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Met	Asn	Pro	Thr
60	Asn 65	Thr	Val	Phe	Asp	Ala 70	Lys	Arg	Leu	Ile	Gly 75	Arg	Arg	Phe	Asp	Asp 80
	Ala	Val	Val	Gln	Ser 85	Asp	Met	Lys	His	Trp 90	Pro	Phe	Met	Val	Val 95	Asn
65	Asp	Ala	Gly	Arg 100	Pro	Lys	Val	Gln	Val 105	Glu	Tyr	Lys	Gly	Glu 110	Thr	Lys
	Ser	Phe	Tyr 115	Pro	Glu	Glu	Val	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys

-52-

	Glu	11e 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Lys	Thr	Val	Thr 140	Asn	Ala	Val	Val
5	Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
10	Ala	Gly	Thr	Ile	Ala 165	Gly	Leu	Asn	Va:	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
10	Thr	Ala	Ala	Ala 180	Ile	Ala	Tyr	Gly	Leu 185	Asp	Lys	Lys	Val	Gly 190	Ala	Glu
15	Arg	Asn	Val 195	Leu	Ile	Phe	Asp	Leu 200	Gly	Gly	Gly	Thr	Phe 205	Asp	Val	Ser
	Ile	Leu 210	Thr	Ile	Glu	Asp	Gly 215	Ile	Pine	Glu	Val	Lys 220	Ser	Thr	Ala	Gly
20	Asp 225	Thr	His	Leu	Gly	Gly 230	Glu	Asp	Phe	Asp	Asn 235	Arg	Met	Val	Asn	His 240
25	Phe	Ile	Ala	Glu	Phe 245	Lys	Arg	Lys	His	Lys 250	Lys	Asp	Ile	Ser	Glu 255	Asn
23	Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg
30	Thr	Leu	Ser 275	Ser	Ser	Thr	Gln	Ala 280	Ser	Ile	Glu	Ile	Asp 285	Ser	Leu	Tyr
	Glu	Gly 290	Ile	Asp	Phe	Tyr	Thr 295	Ser	Ile	Thr	Arg	Ala 300	Arg	Phe	Glu	Glu
35	Leu 305	Asn	Ala	Asp	Leu	Phe 310	Arg	Gly	Thr	Leu	Asp 315	Pro	Val	Glu	Lys	Ala 320
40	Leu	Arg	qsA	Ala	Lys 325	Leu	Asp	Lys	Ser	Gln 330	Ile	His	Asp	Ile	Val 335	Leu
	Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Ile	Gln	Lys	Leu	Leu 350	Gln	Asp
45	Phe	Phe	Asn 355	Gly	Lys	Glu	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 365	Asp	Glu	Ala
	Val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	Ser	Gly	Asp	Lys
50	Ser 385	Glu	Asn	Val	Gln	Asp 390		Leu			Asp 395		Thr	Pro	Leu	Ser 400
55	Leu	Gly	Ile	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410	Thr	Val	Leu	Ile	Lys 415	Arg
	Asn	Thr	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Thr	Phe	Thr	Thr 430	Tyr	Ser
60	Asp	Asn	Gln 435	Pro	Gly	Val	Leu	Ile 440	Gln	Val	Tyr	Glu	Gly 445	Glu	Arg	Ala
65	Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Lys	Phe	Glu 460	Leu	Thr	Gly	Ile
0.5	Pro 465	Pro	Ala	Pro	Arg	Gly 470	Val	Pro	Gln	Ile	Glu 475	Val	Thr	Phe	Asp	Ile 480

-53-

	Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Ser	Ala 490	Val	Asp	Lys	Ser	Thr 495	Gly
5	Lys	Glu	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
10	Glu	Asp	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Tyr 525	Lys	Ala	Glu
10	Asp	Glu 530	Lys	Gln	Arg	Asp	Lys 535	Val	Ser	Ser	Lys	Asn 540	Ser	Leu	Glu	Ser
15	Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ala	Thr	Val	Glu	Asp 555	Glu	Lys	Leu	Gln	Gly 560
	Lys	Ile	Asn	Asp	Glu 565	Asp	Lys	Gln	Lys	Ile 570	Leu	Asp	Lys	Cys	Asn 575	Glu
20	Ile	Ile	Asn	Trp 580	Leu	Asp	Lys	Asn	Gln 585	Thr	Ala	Glu	Lys	Glu 590	Glu	Phe
25	Glu	His	Gln 595	Gln	Lys	Glu	Leu	Glu 600	Lys	Val	Суз	Asn	Pro 605	Ile	Ile	Thr
23	Lys	Leu 610	Tyr	Gln	Ser	Ala	Gly 615	Gly	Met	Pro	Gly	Gly 620	Met	Pro	Gly	Gly
30	Phe 625	Pro	Gly	Gly	Gly	Ala 630	Pro	Pro	Ser	Gly	Gly 635	Ala	Ser	Ser	Gly	Pro 640
	Thr	Ile	Glu	Glu	Val 645	Asp										

-54 -

CLAIMS

A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma as shown by electrophoresis comparison of cell lysates of endometrial 10 biopsies from normal endometrium and endometrium showing hyperplasia or adenocarcinoma, excluding variations due to the menstrual cycle, or detecting or quantitating a fragment or breakdown product thereof, or a nucleic acid coding therefor or antibodies thereto.

15

A method of characterising a biological 2. comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts in hyperplasia or in adenocarcinoma and characterised by one of 20 the following combinations of molecular weight and pI values:

hyperp	lasia
pI	M

	pI	MW kDa
25	6.7	91
	6.6	90
	6.9	64
	6.6	67
	6.3	66
30	6.8	46
	5.7	41
	5.5	35
	5.3	13
	6.6	101
35	5.8	14
	7.4	51
	8.2	44
	9.5	48

	adenoca	arci	noma
5	pI	MW	(kDa)
	6.3		32
	6.0	1	09
	6.7		91
	6.6		90
10	6.9		64
	6.6		67
	6.3	,	66
	6.2	•	62
	6.2	•	45
15	5.7	•	45
	5.4		33
	6.3		27
	6.5	1	03
	6.8	9	90
20	6.9	•	78
	5.3		13
	6.2	1:	30
	6.3	(56
	6.3	•	73
25	8.3	3	32
	8.1		55
	8.2	4	14
	6.6	13	l1
	7.7	4	13
30	9.5	4	8
	8.3	3	32
	7.7	3	39

or a fragment or breakdown product thereof, or a nucleic 35 acid coding therefor or antibodies thereto.

3. A method as claimed in Claim 1 or Claim 2, wherein said protein, fragment, breakdown product, antibodies, or nucleic acid is detected in a body fluid sample.

WO 98/10291

10

- 4. An immunological binding partner specifically reactive with a protein as defined in Claim 1 or Claim 2 or with a fragment or breakdown product thereof or with a nucleic acid coding therefor.
 - 5. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 4.

6. An assay kit for use in a method as claimed in Claim 1 or Claim 2, comprising an immunological binding partner as claimed in Claim 4.

7. A method of characterising a biological sample comprising detecting or quantitating therein one or more proteins produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

pΙ	MW(kDa)
6.9	86
5.4	34
5.6	67
5.3	23
6.8	52
8.7	47
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.9	48
7.7	31
6.8	29
7.2	70
8.0	119
6.7	62

or a fragment or breakdown product thereof, or a nucleic sacid coding therefor, or an antibody thereto.

- 8. A method as claimed in Claim 7, for detecting the phase of the endometrium.
- 9. A method as claimed in Claim 7 or Claim 8, wherein said protein, fragment, or breakdown product is detected in a body fluid sample.
- 10. An immunological binding partner specifically reactive
 15 with a protein as defined in Claim 7 or with a fragment or
 breakdown product thereof or with a nucleic acid coding
 therefor.

-58-

- 11. A cell line producing a monoclonal antibody being an immunological binding partner as claimed in Claim 10.
- 125 12. An assay kit for use in a method as claimed in Claim 7 or Claim 8, comprising an immunological binding partner as claimed in Claim 10.
 - 13. A protein produced by the endometrium in increased

 10 amounts in hyperplasia or in adenocarcinoma as shown by

 2D gel electrophoresis comparison of cell lysates of
 endo-metrial biopsies from normal endometrium and
 endometrium showing hyperplasia or adenocarcinoma,
 excluding variations due to the menstrual cycle, and

 15 characterised by one of the following combinations of
 molecular weight and pI values:

	hyperplasia		
	pI	MW kDa	
20	6.7	91	
	6.6	90	
	6.9	64	
	6.8	46	
	5.7	41	
25	5.3	13	
	6.6	101	
	5.8	14	
	9.5	48	

	adeno	carcinoma
	pI	MW (kDa)
	6.3	32
5	6.0	109
	6.7	91
	6.6	90
	6.9	64
	6.2	62
10	6.5	103
	6.8	90
	5.3	13
	6.2	130
	6.3	66
15	6.3	73
	8.3	32
	8.1	55
	6.6	111
	7.7	43
20	9.5	48
	8.3	32

14. A protein produced by the endometrium in increased amounts during the proliferative phase of the endometrium as shown in 2D gel electrophoresis comparison of cell lysates of endometrial biopsies from normal endometrium in its proliferative and secretory phases and characterised by one of the following combinations of molecular weight and pI values:-

pI	MW(kDa)
6.9	86
5.6	67
6.8	52
8.2	138
6.5	124
7.7	119
7.8	119
8.1	66
7.1	58
6.8	66
7.7	31

15. A protein as claimed in Claim 13 or Claim 14, characterised by the properties:-

PI	MW(kDa)
5.7	41
5.6	67
9.5	48
6.8	52
6.5	124
7.7	119
7.8	119

and by the respective tryptic digestion MS spectra shown in Figures 7 to 12.

10
16. The use of a protein as defined in any one of Claims 1,
2 or 7 or a fragment thereof, for detecting autoantibodies to a said protein.

F16. 1

F19. 2

F19.3

F19. 4

F19.5

F19. 6

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

F19. 10

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte conal Application No PCT/GB 97/02394

			101/40 37	/ 02334
A. CLASS IPC 6	ification of subject matter G01N33/574 G01N33/68 C07K14	/47 G01N33/	577	
According t	o International Patent Classification(IPC) or to both national classi	ification and IPC	— <u></u>	
	SEARCHED			
Minimum de IPC 6	ocumentation searched (classification system followed by classific GO1N CO7K	ation symbols)		
Documenta	tion searched other than minimum documentation to the extent tha	and Classification (IPC) or to both national classification and IPC and Classification system followed by classification and IPC that minimum documentation to the extent that such documents are included in the fields searched advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) advining the international search (name of data base and, where practical, search terms used) ALSEN ET AL: "Human endometrial search and menstruel characterization by protein endometrial search protein endometrial search protein endometrial search protein endowed by protein endowed the continual search protein endowed by protein endowed end		
Electronic d	ata base consulted during the international search (name of data	base and, where practical,	search terms used)	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category '	Citation of document, with indication, where appropriate, of the r	elevant passages		Relevant to claim No.
X	proteins with cyclic changes in expression during the normal men cycle: characterization by protesequence analysis." HUMAN REPRODUCTION,	the nstruel ein , OXFORD		
لتا_	er documents are listed in the continuation of box C.	X Patent family me	embers are listed in	annex.
"A" documer conside "E" earlier do filling da "L" documen which is criation "O" documer other m "P" documen later tha	it which may throw doubts on priority claim(s) or cited to establish the publicationdate of another or other special reason (as specified) it referring to an oral disclosure, use, exhibition or	or priority date and cited to understand invention "X" document of particuli cannot be consider involve an inventive "Y" document of particuli cannot be considere document is combinments, such combin in the art. "&" document member of	not in contlect with the principle or their ar relevance; the clean novel or cannot to step when the doc ar relevance; the clead to involve an invested with one or more attention being obvious the same patent to	he application but ory underlying the sirned invention be considered to ument its taken alone aimed invention entive step when the e other such docu— s to a person skilled amily
	December 1997			ch report
Name and ma	alting address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 851 epo nl, Fax: (+31-70) 340-3016		men, C	

1

INTERNATIONAL SEARCH REPORT

Int. Ional Application No PCT/GB 97/02394

0.40 - 11 - 11	ALL DOCUMENTS CONCUENTS TO DE PELEVANT	PCT/GB 97/02394		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
Jategory	Citation of document, with indication, where appropriate, of the relevant passages	Palevalli to daini 140.		
X	I. BYRJALSEN ET AL.: "Two-dimentional gel analysis of human endometrial proteins: cyclic changes in the expression of specific proteins during the normal menstruel cycle." HUMAN REPRODUCTION, vol. 10, no. 1, 1 January 1995, OXFORD UK, pages 13-18, XP002048683 cited in the application see the whole document			
Υ		2-16		
Y	WO 94 28021 A (MEDICAL UNIVERSITY OF SOUTH CAROLINA) 8 December 1994 see page 3, line 10 - line 5; claims 4,17	2-16		
X	W.B. NOTHNICK ET AL.: "Detection of a unique 32-kd protein in the peritoneal fluid of women with endometriosis." FERTILITY AND STERILITY, vol. 61, no. 2, 1 February 1994, WASHINGTON DC USA, pages 288-293, XP002048684 see figure 2	1-3,13		
A	K.L. SHARPE ET AL.: "Polypetides synthesized and released by human endometriosis differ from those of the uterine endometrium in cell and tissue explant culture." FERTILITY AND STERILITY, vol. 60, no. 5, 1 November 1993, WASHINGTON DC USA, pages 839-851, XP002048685 see figures 1,2	1-16		

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Publication date Patent document Patent family member(s) Publication date cited in search report WO 9428021 A 08-12-94 AU 6960694 A 20-12-94

Form PCT/ISA/210 (patent lamily annex) (July 1992)