Hamiltonian Tour

Problem

Hamilton is a Canadian city near Toronto, and a nice place to take a walking tour.

In this problem, Hamilton is represented by a grid of unit cells with $2\mathbf{R}$ rows and $2\mathbf{C}$ columns, where each cell is either empty (represented by *) or contains a building (represented by #). The cell on the i-th row and j-th column is represented by $A_{i,j}$ where $1 \leq i \leq 2\mathbf{R}$ and $1 \leq j \leq 2\mathbf{C}$. It is not possible to enter cells containing buildings and you can only move to an adjacent cell that shares a side with the current cell (not just a corner). The grid is such that if it is divided evenly into 2×2 blocks of unit cells, then in each of those blocks, either all four cells are empty, or all four cells are occupied by a building. Let us represent the block formed by $A_{2i-1,2j-1}$, $A_{2i-1,2j}$, $A_{2i,2j-1}$, and $A_{2i,2j}$ cells as $\mathbf{B_{i,j}}$ where $1 \leq i \leq \mathbf{R}$ and $1 \leq j \leq \mathbf{C}$.

Grace is a tourist in Hamilton and wants to visit all the empty cells in Hamilton. Grace is currently in cell $A_{1,1}$. Visiting the same cell twice could be boring for her. Hence, Grace wants to visit each of the empty cells exactly once and finally end in cell $A_{1,1}$. Can you help Grace by providing a string (consisting of directional moves $\{N, E, S, W\}$ representing the unit moves to the north, east, south, or west respectively) which Grace can follow to visit every empty cell once and end again in $A_{1,1}$.

Input

The first line of the input gives the number of test cases, ${f T}.$ ${f T}$ test cases follow.

The first line of each test case contains two integers **R** and **C**.

The next \mathbf{R} lines of each test case contains \mathbf{C} characters each.

The j-th character on the i-th of these lines represents the block $\mathbf{B_{i,j}}$ formed by the following four cells: $A_{2i-1,2j-1}, A_{2i-1,2j}, A_{2i,2j-1}$, and $A_{2i,2j}$.

If $\mathbf{B_{i,j}} = \text{\#}$, all four of the cells in $\mathbf{B_{i,j}}$ are occupied by a building.

Otherwise, if $\mathbf{B_{i,j}} = *$, all four of the cells in $\mathbf{B_{i,j}}$ are empty.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the answer to the problem as follows.

If there is no solution to the problem, y should be IMPOSSIBLE. Otherwise, y should be a sequence of characters from the set $\{N, E, S, W\}$, representing the unit moves (to the north, east, south, or west respectively) in a valid route, starting from $A_{1,1}$, as described in the statement above.

Note that your last move should take you to $A_{1,1}$; this move does not count as visiting the same cell twice.

If there are multiple valid solutions, you may output any one of them.

Limits

Time limit: 25 seconds. Memory limit: 1 GB.

 $1 \le T \le 100$.

 $1 \le \mathbf{R} \le 200$.

 $1 \leq \mathbf{C} \leq 200.$

All characters in the grid are from the set $\{\#, *\}$.

The first character of the first line of the input grid for each test case is a \star character, i.e. $\mathbf{B}_{1,1} = \star$.

Test Set 1

A block contains buildings if and only if the row number and column number of it are divisible by 2. i.e. $\mathbf{B_{i,i}} = \# \iff ((i \bmod 2 = 0))$ and $(j \bmod 2 = 0)$).

Test Set 2

No extra constraints.

Sample

Note: there are additional samples that are not run on submissions down below.

Sample Output

Case #1: SENW

Case #2: SSSENNEENWWW

Case #3:

ESSSSEEENNNWWNEEEEESWWSSSEESWWWW

The sample output displays one set of answers to the sample cases. Other answers may be possible.

In Sample Case #1, Grace will follow the route $A_{1,1}$, $A_{2,1}$, $A_{2,2}$, $A_{1,2}$, and finally $A_{1,1}$. Note that ESWN is the only other possible valid answer.

The image below shows one of the possible routes for Sample Case #1.

The image below shows one of the possible routes for Sample Case #2.

Additional Sample - Test Set 2

The following additional sample fits the limits of Test Set 2. It will not be run against your submitted solutions.

Sample Input 3 3 1 * # 1 3 *#* 3 4 **#* **#* **#*

Sample Output

Case #1: SSSENNNW
Case #2: IMPOSSIBLE

Case #3:

ESSSSENNNNESSSSEEENNNNESSSSSWWWW

The image below shows one of the possible routes for Sample Case #1.

In Sample Case #2, it is impossible for Grace to travel to any cell in $\mathbf{B}_{1,3}$ from $A_{1,1}$.