MICROELECTRONIC CIRCUIT DESIGN

Second Edition

Richard C. Jaeger and Travis N. Blalock

Answers to Selected Problems – Updated 10/23/06

Chapter 1

- 1.3 1.52 years, 5.06 years
- **1.5** 2.00 years, 6.65 years
- **1.8** 113 MW, 511 kA
- **1.10** 2.44 mV, 5.71 V
- **1.12** 19.53 mV/bit, 10001110₂
- **1.16** 0.002 A, 0.002 cos (1000*t*) A
- **1.19** $[5 + 2 \sin(2500t) + 4 \sin(1000t)] \text{ V}$
- **1.21** 14.7 V, 3.30 V, 76.7 μA, 300 μA
- **1.23** 150 μA, 100 μA, 8.20 V
- 1.25 40 Ω , 0.025 v_s
- 1.27 56 k Ω , 1.07 x 10⁻³ v_s
- 1.29 1.00 M Ω , 2.00 × 10⁸ i_s
- **1.33** 5/-45°, 100/-12°
- **1.35** -90.1 sin 750πt mV, 11.0 sin 750πt μA
- 1.37 $1 + R_2/R_1$
- **1.39** -1.875 V, -2.500 V
- **1.41** Band-pass amplifier
- 1.43 $25.0 \sin(2000\pi t) + 15.0 \cos(8000 \pi t) \text{ V}$
- 1.45 0 V
- **1.47** [1980 Ω , 2020 Ω], [1900 Ω , 2100 Ω], [1800 Ω , 2200 Ω]
- **1.52** 6200 Ω , 800 ppm/°C
- **1.58** 3.29, 0.995, -6.16; 3.295, 0.9952, -6.155

- **2.4** For Ge: $35.9/\text{cm}^3$, $2.27 \times 10^{13}/\text{cm}^3$, $8.04 \times 10^{15}/\text{cm}^3$
- 2.7 $2.13 \times 10^6 \text{ cm/s}, 7.80 \times 10^5 \text{ cm/s}, 3.41 \times 10^4 \text{ A/cm}^2, 1.25 \times 10^{-10} \text{ A/cm}^2$
- **2.8** 305.2 K

- **2.10** -5×10^4 cm/s
- **2.13** $1.60 \times 10^6 \text{ A/cm}^2$, 0.800 A
- **2.15** 316.6 K
- 2.19 Acceptor, donor
- **2.20** 100 V/cm
- **2.22** 5×10^4 atoms
- 2.24 $3.00 \times 10^{16} / \text{cm}^3$, $3.33 \times 10^5 / \text{cm}^3$
- **2.28** 2 x 10^{17} /cm³, 500/cm³, 2 x 10^{17} /cm³, 0.0227/cm³
- **2.30** 3 x 10^{17} /cm³, 333/cm³
- **2.32** $10^2/\text{cm}^3$, $10^{18}/\text{cm}^3$, $350\text{cm}^2/\text{V} \cdot \text{s}$, $150\text{cm}^2/\text{V} \cdot \text{s}$, $0.042 \ \Omega \cdot \text{cm}$, p-type
- **2.34** $10^{16}/\text{cm}^3$, $10^4/\text{cm}^3$, $710\text{cm}^2/\text{V} \cdot \text{s}$, $260\text{cm}^2/\text{V} \cdot \text{s}$, $2.40 \Omega \cdot \text{cm}$, p-type
- 2.38 $2.5 \times 10^{15} / \text{cm}^3$
- Yes—add equal amounts of donor and acceptor impurities. Then $n = n_i = p$, but the mobilities are reduced. See Prob. 2.26.
- 2.42 $1.4 \times 10^{17} / \text{cm}^3$
- **2.44** 6.64 mV, 12.9 mV, 25.9 mV
- **2.46** $-12.0 \times 10^3 \exp(-5000x) \text{ A/cm}^2$; -1.20 mA
- **2.48** (b) -553 A/cm^2 , -603 A/cm^2 , $+20 \text{ A/cm}^2$, -7 A/cm^2 , $+46.7 \text{ A/cm}^2$, -638 A/cm^2
- **2.50** 1.108 μm

- 3.1 $10^{18}/\text{cm}^2$, $10^2/\text{cm}^3$, $10^{15}/\text{cm}^3$, $10^5/\text{cm}^3$, 0.748 V, 0.984 µm
- 3.3 0.806 V, 1.02 μ m, 1.02 μ m, 1.02 \times 10⁻⁴ μ m, 15.8 kV/cm
- **3.6** 1.80 V, 3.06 μm
- $3.10 1600 \text{ A/cm}^2$
- 3.13 5 x 10^{20} /cm⁴
- 3.17 290 K
- **3.20** 312K
- **3.21** 1.39, 3.17 pA
- 3.22 0.748 V; 0.691 V; 0 A; -0.909×10^{-17} A; -1.00×10^{-17} A
- **3.25** 1.35 V; 1.38 V
- **3.28** 0.518 V; 0.633 V
- **3.31** 0.757 V; 0.721 V
- **3.34** -1.96 mV/K
- **3.37** 0.576 V, 2.74 μm, 11.7 μm, 36.2 μm
- **3.39** 374 V

- 3.41 4 V, 0 Ω
- **3.43** 9.80 nF/cm²; 37.6 pF
- **3.45** 400 fF, 10 fC; 100 pF, 2.5 pC
- **3.49** 13.9 MHz; 21.9 MHz
- **3.51** 0.495 V, 0.725 V
- 3.53 0.708 V, 0.718 V
- **3.56** Load line: (450 μA, 0.500 V); SPICE: (443 μA, 0.575 V)
- **3.59** (0.600 mA, -4 V)
- 3.65 Load line: $(51\mu A, 0.49 \text{ V})$; Mathematical model: $(49.93\mu A, 0.5007 \text{ V})$; Ideal diode model: $(100 \mu A, 0 \text{ V})$; CVD model: $(40.0\mu A, 0.600 \text{ V})$
- **3.69** (a) (0.500 mA, 0 V); (0.465 mA, 0.700 V)
- **3.71** (a) (-6.67 V, 0 A), (0 V, 1.67 mA); (-6.15 V, 0 A), (0.75 V, 1.62 mA)
- **3.73** (a) (1.00 mA, 0 V) (0 mA, -2 V) (1.00 mA, 0) (d) (0 A, -0.667 V) (0 mA, -1.33 V) (0.567 mA, 0 V)
- 3.76 (1.50 mA, 0 V) (0 A, -5 V) (1.00 mA, 0)
- 3.78 $(I_Z, V_Z) = (343 \mu A, 4.00 \text{ V})$
- **3.81** 12.6 mW
- **3.83** 0.501 W, 3.50 W
- 3.88 $0.975 (V_P V_{on})$
- **3.91** -7.91 V; 1.05 F; 17.8 V; 3530 A; 841 A ($\Delta T = 0.628$ ms)
- **3.94** -7.91V, 0.158 F, 17.8 V, 3540 A, 839 A
- **3.97** 3.33 F; 12 V; 4.24 V; 1540 A; 7530 A
- **3.100** 7.91 V; 0.527 F; 16.8 V; 210 A; 1770 A
- **3.103** 417 μF, 2000 V, 1414 V, 0.375 ms, 314 A
- **3.107** 417 μF; 4000 V; 1410 V; 44.4 A; 314 A
- 3.114 $\delta = 2/3$; $C = 74.1 \, \mu\text{F} \rightarrow 82 \, \mu\text{F}$; $L = 1.48 \, \text{mH} \rightarrow 1.5 \, \text{mH}$
- 3.117 $V_O = \frac{V_S}{1-\delta} V_{\text{on}}$; 6.75 V; 37.5 mV; 44.4 mA

3.118
$$\eta = \frac{100\%}{1 + (1 - \delta) \frac{V_{\text{on}}}{V_S}}$$
; 96.4%;

$$\eta = \frac{100\%}{1 + (1 - \delta)\frac{V_{\text{on}D}}{V_S} + \delta\frac{V_{\text{on}S}}{V_S}}$$

- 3.121 $\delta = 0.300$; $C = 2.08 \,\mu\text{F} \rightarrow 2.2 \,\mu\text{F}$; $L = 7.00 \,\text{mH} \rightarrow 6.8 \,\text{mH}$
- 3.124 $V_O = V_S \delta V_{on}(1 \delta)$; 4.63 V; 116 mV; 46.3 mA; slightly reduced output voltage, <50 percent of ripple voltage and current
- **3.137** Slopes: 0, +0.5, 0.667; breakpoints: -2 V, 0 V
- **3.140** Slopes: +0.25, +0.5, +0.25, 0; breakpoints: 0 V, 2 V, 4 V

- **3.142** 5 mA, 4.4 mA, 3.6 mA, 8.6 ns
- **3.146** (0.969 A, 0.777 V); 0.753 W; 1 A, 0.864 V
- 3.148 1.11 µm, 0.875 µm; far infrared, near infrared

- 4.3 $10.5 \times 10^{-9} \text{ F/cm}^2$
- 4.4 $34.5 \mu A/V^2$, $86.3 \mu A/V^2$, $173 \mu A/V^2$, $345 \mu A/V^2$
- **4.8** (a) 4.00 mA/V^2 (b) 4.00 mA/V^2 , 8.00 mA/V^2
- **4.11** 208 μA; –218 μA
- **4.15** 93.0 Ω; 148 Ω
- 4.18 $450 \,\mu\text{A/V}^2$
- **4.20** 13.6 A/V^2
- **4.22** 125 μ A/V²; 1.5 V; enhancement mode; 5/1
- **4.26** 57.5 μA, linear region; 195 μA, saturation region; 0 A, cutoff
- **4.27** saturation; cutoff; saturation; linear; linear; saturation
- **4.34** 1.72 mA; 1.56 mA
- 4.37 2.26 mA, 4.52 mA, 2.48 mA
- 4.38 6.00 mA; 6.00 mA (our linear region model does not contain λ)
- **4.41** 97.9 μA; 98.1 μA
- **4.44** 31.5 μA; 28.8 μA
- **4.46** 4.85 V
- 4.48 13.8 $\mu A/V^2$; 34.5 $\mu A/V^2$; 69.0 $\mu A/V^2$, 138 $\mu A/V^2$
- **4.51** 5.00 μA; 9.00 μA; 0.550 μA; 4.10 μA
- **4.54** 235 Ω; 94.1 Ω; 250/1
- **4.57** 0.629 A/V^2
- **4.60** 0.360 μA
- **4.62** $V_{TN} > 0$; depletion mode; no
- **4.71** 1.73×10^{-7} F/cm²; 4.32 fF
- **4.74** 8.63 nF
- **4.81** (390 μA, 1.1 V); triode region
- **4.84** (70.2 μA, 9.47 V)
- **4.86** (42.3 μA, 9.00 V)
- **4.91** 134 μA; 116 μA
- **4.94** 510 kΩ, 470 kΩ, 12 kΩ, 12 kΩ 20/1
- **4.97** (124 μA, 2.36 V)
- **4.100** (32.5 μA, 1.26 V)
- **4.103** (23.0 μA, 1.12 V)

- **4.107** (58.3 μA, 9.20 V)
- **4.111** (227 μA, 3.18 V)
- **4.112** 4.52 mA; 10.8 mA
- **4.114** (9/10) = 1.11/1
- **4.116** (a) (124 μA, 5.70 V) (b) (182 μA, 1.34 V)
- **4.118** 4.04 V, 2.71 mA, 10.8 mA
- **4.119** 3.61 mA; 6.77 mA; 2.61 mA
- **4.121** (59.8 μ A, 6.03 V), 138 $k\Omega$
- **4.126** (a) (98.4 μA, 2.15 V)
- **4.130** 341 kΩ
- **4.133** (200 μA, 13 V)
- **4.137** (36.3 μ A, 12.9 mV); (31.7 μ A, 1.54 V); (28.2 μ A, 2.69 V)
- **4.140** 44.3 k Ω , V \geq 5 V
- **4.143** 1.52 V, 0.77 V
- **4.149** 34.5 fF, 17.3 fF
- **4.154** (500 μA, 5.00 V); (79.9 μA, 0.250 V); (159 μA, 3.70 V)
- **4.156** 2.50 kΩ; 10.0 kΩ
- **4.157** 0.5 mA, 0, 1.17 V; 1.38 mA, 0.62 mA, -0.7 V
- **4.160** (69.5 μA, 3.52 V); (131 μA, 3.52 V)
- **4.162** (69.5 μA, 5.05 V); (456 μA, 6.20 V))

- **5.4** 0.0167, 0.667, 3.00, 0.909, 49.0, 0.9950, 0.9990, 5000
- **5.5** 2 fA; 1.01 fA, -0.115 V
- **5.9** 2.02 fA
- **5.11** 1.07 mA; -1.07 mA
- **5.14** 0.599 V
- **5.17** 0.606 V
- **5.20** 723 μA
- **5.20** 723 μA
- **5.28** 979 μA, 930 μA, 48.9 μA
- **5.35** saturation, forward-active region, reverse-active region, cutoff
- **5.39** 83.3, 87.5, 100
- **5.46** 21.5 mV, 25.8 mV, 30.2 mV
- **5.48** 2.31 mA; 388 μA; 0
- **5.52** 12 fF; 1.2 pF; 120 pF
- **5.54** 600 MHz, 3 MHz

- **5.56** 0.282 μm
- 5.59 $I_C = 16.3 \text{ pA}, I_E = 17.1 \text{ pA}, I_B = 0.857 \text{ pA}, \text{ forward-active region; although } I_C, I_E, I_B \text{ are all very small, the Transport model still yields } I_C \cong \beta_F I_B$
- **5.61** 50, 1.73 fA
- **5.63** 6.25 MHz
- **5.65** 0.500, 17.3 aA
- **5.67** –23.7 μA, +31.6 μA, –55.3 μA
- 5.69 v_{ECSAT} is identical to Eq. (5.46)
- **5.73** 0.812 V, 0.730 V
- **5.75** 71.7, 43.1 V
- 5.77 100 μA, 4.52 μA, 95.5 μA, 0.589 V, 0.593 V, 0.592 V; 2.19 mA, 0.100 mA, 2.09 mA, 0.666 V, 0.666 V
- **5.82** (80.9 μA, 3.80 V); (404 μA, 3.80 V)
- **5.86** (42.2 μA, 4.39 V)
- **5.92** (7.8 mA, 4.1 V)
- **5.94** (5.0 mA, 1.3 V)
- **5.96** 56 kΩ (or 62 kΩ), 1.5 MΩ; 12.4 μA, 0.799 V
- **5.100** 101 μA, 98.4 μA
- **5.107** 5.24 V
- **5.109** 3.21 Ω
- **5.112** 60.7 μA, 86.0 μA, 4.00 V, 5.95 V
- **5.116** 4.4 percent; 70 percent
- **5.118** 4.74 mA, 9.71 mA, 1.28 V, 3.73 V

- **6.1** 10 μ W/gate, 2 μ A
- **6.3** 5 V, 0 V, 0 W, 0.25 mW; 3.3 V, 0 V, 0 V, 0.11 mW
- **6.5** $V_{OL} = 0 \text{ V}, V_{OH} = 3.3 \text{ V}, V_{REF} = 1.1 \text{ V}; Z = A$
- **6.7** 3 V, 0 V, 2 V, 1 V, -3
- **6.9** 2 V, 2 V, 3 V, 2 V
- **6.11** 3.3 V, 0 V, 1.8 V, 1.5 V, 1.5 V, 1.5 V
- **6.13** -0.78 V, -1.36 V
- **6.15** 1 ns
- **6.17** 5 μW, 1.52 μA, 5 fJ
- **6.19** 2.20 *RC*; 2.20 *RC*
- **6.21** -0.78 V, -1.36 V, 0.5 ns, 0.5 ns, 8 ns, 9 ns, 4 ns, 4 ns
- **6.24** $Z = 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$
- **6.26** $Z = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$

- **6.29** 2; 1
- **6.31** Z = AB; Z = A + B
- **6.33** 16.2
- $6.35 Y = \overline{ABC}$
- **6.37** $V_{\text{REF}} = 2.8 \text{ V}$
- **6.41** 0.583 pF
- **6.44** 20 μ W/gate, 4 μ A/gate
- **6.49** 0.984 V, 3.13 V
- **6.53** 40.3 kΩ; 4.90/1; 1.47 V, 0.653 V
- **6.56** 1000 Ω ; 2500 Ω ; a resistive channel exists connecting the source and drain; 20/1
- **6.59** 1.83 V
- **6.62** 0.774 V, 0.610 V
- **6.66** 3.74/1, 1/1.41
- **6.69** 0.190 V
- **6.71** ratioed logic so $V_{OH} = 3.39 \text{ V}$, $V_{OL} = 0.25 \text{ V}$; P = 0.18 mW
- **6.77** 6.80 V
- **6.81** 1.89
- **6.83** 4.90/1, 1/1.41, 0.777 V, 1.36 V
- **6.85** 2.33/1, 1/1.55
- **6.90** 3.53/1, 1/3.39
- **6.94** $Y = \overline{(A+B)(C+D)(E+F)}$, 6.18/1, 1/2.15
- **6.98** $Y = \overline{ACE + ACDF + BF + BDE}$, 1.40/1, 24.7/1, 16.5/1
- **6.101** 1/4.30, 3.09/1
- **6.104** $Y = (\overline{C + E})[A(B + D) + G] + F$; 1/1.08, 4.12/1, 6.18/1, 12.4/1
- **6.107** 3.15/1, 6.06/1, 6.24/1, 6.42/1
- **6.110.** +5 V, 0.163 V
- **6.113** 1.85/1, 8.24/1, 12.4/1, 24.8/1
- **6.118** $I'_{DS} = 2I_{DS}, P'_{D} = 2P_{D}$
- **6.121** 1 ns
- **6.123** 60.2 ns, a potentially stable state exists with no oscillation
- **6.124** 105 ns, 6.23 ns, 17.9 ns
- **6.128** 192 ns, 4.44 ns, 11.8 ns
- **6.136** 2.63/1, 25.3/1, 13.6 ns, 2.07 ns
- **6.142** (a) 1/3.39 (d) 1/9.20 (f) 1/2.25
- **6.146** -4.00 V, -0.300 V
- **6.148** 1.28/1, 7.09/1
- **6.150** 1.61 V, 4.68 V

6.152
$$Y = \overline{A + B}$$

7.1 27.7
$$\mu A/V^2$$
; 11.1 $\mu A/V^2$

7.29 2.2 ns, 2.3 ns, 1.2 ns, 1.1 ns,
$$\langle C \rangle$$
 = 177 fF

7.41
$$\alpha \Delta T$$
, $\alpha^2 P$, $\alpha^3 PDP$

7.59
$$Y = \overline{(A+B)(C+D)E} = \overline{ACE + ADE + BDE + BCE}, 15/1, 18/1, 30/1$$

7.79
$$V_{DD} \rightarrow \frac{2}{3} V_{DD} \rightarrow \frac{1}{2} V_{DD}; R \ge \frac{2V_{IH}}{V_{DD} - V_{IH}} = \frac{2V_{IH}}{NM_H}, C_1 \ge 2.88C_2$$

7.85
$$N = 6$$
, $A = 462 A_o$

7.87 500
$$\Omega$$
, 1250 Ω

7.94
$$N_{ML} = \frac{V_{DD} + 3V_{TN} + V_{TP}}{4}$$
 | $N_{MH} = \frac{V_{DD} - V_{TN} - 3V_{TP}}{4}$

- **8.1.** 268,435,456; 1,073,741,824
- **8.2.** 3.73 pA
- **8.5** 2.67 μV
- **8.10.** "1" level is discharged by junction leakage current
- **8.12.** -19.8 mV; 2.48 V
- **8.16.** 1.60 V, +5.00 V; -1.83 V
- **8.18** 58.5 mW
- **8.21.** 361 μA, 1.85 W
- **8.23.** 0.266 V
- **8.24.** 0.95 V
- **8.31.** 11,304; 11,304

8.35.
$$V_{DD} \rightarrow \frac{2}{3} V_{DD} \rightarrow \frac{1}{2} V_{DD}; R \ge \frac{2V_{IH}}{V_{DD} - V_{IH}} = \frac{2V_{IH}}{NM_H}$$

- **8.37.** $W_3 = 00101011_2$
- **8.42.** 1.16/1

- **9.1** 1.38 V, 1.12
- **9.3** -1.75 V, 0 V
- **9.5** -1.0 V, -1.4 V, -1.2 V, 132 mV, 10.4 mW
- **9.9** -0.700 V, -1.70 V, -1.20 V, 1.00 V
- **9.11** -0.700 V, -1.50 V, -1.10 V, $2.67 \text{ k}\Omega$; 0.314 V, -0.100 V, +0.300 V
- **9.12** 53.3 μA
- **9.15** 4.20 k Ω , 1.17 k Ω , 200 Ω , 185 Ω
- 9.17 0.324 V
- 9.21 0.340 V
- **9.23** 50.0 μA, -2.30 V
- **9.25** 9.25 k Ω , 10.0 k Ω , 58.5 k Ω , 210 k Ω
- **9.28** $+0.600 \text{ V}, -0.560 \text{ V}, 314 \Omega$
- **9.31** 5.15 mA
- **9.34** 0.13 mA
- **9.38** 500 Ω , 60.0 mA
- **9.40** (c) 0 V, -0.7 V, 3.93 mA (d) -3.7 V, 0.982 mA (e) 2920 Ω

```
9.43 	 Y = A + \overline{B}
```

- **9.55** 23.2 μA
- **9.57** -0.850 V; 3.59 pJ
- **9.59** 0 V, -0.600 V, 5.67 mW; Y = A + B + C, $Y = \overline{A + B + C}$, 5 vs. 6
- **9.62** 5.00 kΩ, 5.40 kΩ, 31.6 kΩ, 113 kΩ
- **9.65** 2.23 kΩ, 4.84 kΩ, 120 kΩ
- **9.67** 2.98 pA, 74.5 fA
- **9.69** 160; 0.976; 5; 0.773 V
- **9.70** 0.691 V, 0.710 V
- **9.75** 40.2 mV, 0.617 mV
- **9.77** 3 V, 0.15 V, 0.66 V, 0.80 V, 33
- **9.79** 0.682 V, 2.47 mA
- **9.83** 44.8 k Ω , 22.4 k Ω
- **9.85** 5 V, 0.15 V, 0; -1.06 mA, 31; -1.06 mA vs. -1.01 mA, 0 mA vs. 0.2 mA
- **9.93** 8
- **9.95** 234 mA, 34.9 mA
- **9.99** (I_B, I_C) : (a) (135 μ A, -169 μ A); (515 μ A, 0); (169 μ A, 506 μ A); (0, 0) (b) all 0 except $I_{B1} = I_{E1} = 203 \ \mu$ A
- **9.105** 1.85 V, 0.15 V; 62.5 μA, -650 μA; 13
- **9.107** $Y = \overline{ABC}$; 1.9 V; 0.15 V; 0, -408 µA
- **9.109** 1.5 V, 0.25 V; 0, -1.00 mA; 16
- **9.111** 963 μA, 963 μA, 0
- **9.116** (I_B , I_C): (532 μ A, 0); (0, 0); (0, 0); (3.75 μ A, 150 μ A)
- **9.120** Y = A + B + C; 0 V, -1.0 V; -0.90 V
- **9.121** Y = A + B + C; 0 V, -0.80 V; -0.40 V

10.3 Using MATLAB:

$$t = linspace(0,.004);$$

$$vs = sin(1000*pi*t) + 0.333*sin(3000*pi*t) + 0.200*sin(5000*pi*t);$$

vo= 2*sin(1000*pi*t+pi/6)+sin(3000*pi*t+pi/6)+sin(5000*pi*t+pi/6); plot(t,vs,t,vo)par

500 Hz: 1 0°, 1500 Hz: 0.333 0°, 2500 Hz: 0.200 0°; 2 30°, 1 30°, 1 30° 2 30°, 3 30°, 5 30° yes

- **10.5** 35.0 dB, 111 dB, 73.2 dB
- **10.8** 12.7, 2.00 x 10^5 , 1.59 x 10^4
- **10.12** -10 (20 dB), 0.1 V

10.14 8 –sin (1000*t*); there are only two components; dc: 8 V, 159 Hz: –4 V

$$\left(g_{12} - \frac{g_{11}g_{22}}{g_{21}}\right)^{-1} \rightarrow -\frac{g_{21}}{g_{11}g_{22}}; \left(g_{22} - \frac{g_{21}g_{12}}{g_{11}}\right)^{-1} \rightarrow \frac{1}{g_{22}};$$

- **10.17** 11.2%
- **10.21** 10 k Ω , 1, -101, 4.17 μ S
- **10.23** 24.3 M Ω , 240 k Ω , 24.2 M Ω , 240 k Ω
- **10.26** 102 k Ω , 0.0164, 98.3, 16.4 μ S
- **10.28** 3.50 k Ω , 1.00 k Ω , -6.00 M Ω , 61.0 k Ω
- **10.30** 1 mS, -1, 2001, 20 k Ω
- **10.32** 0.101 S, 50.0 μS, -0.100 S, 50.0 μS

10.35
$$y_{11} - \frac{y_{12}y_{21}}{y_{22}} \rightarrow y_{11}; \frac{y_{12}}{y_{22}} \rightarrow 0; -\frac{y_{21}}{y_{22}}; \frac{1}{y_{22}}$$

10.37
$$\left(g_{11} - \frac{g_{12}g_{21}}{g_{22}}\right)^{-1} \to \frac{1}{g_{11}}; \left(g_{21} - \frac{g_{22}g_{11}}{g_{12}}\right)^{-1} \to 0;$$

- **10.41** 45.3 mV; 1.00 W
- **10.45** -8180
- **10.47** 0, ∞, 125 mW, ∞
- **10.50** -3.52 dB, 23.9 kHz
- **10.54** -0.828 dB, 145 Hz
- **10.57** 60 dB, 10 kHz, 10 Hz, 9.99 kHz, band-pass amplifier
- 10.59 80 dB, ∞ , 50 Hz, ∞ , high-pass amplifier
- **10.62** 28.3 Hz, 100 kHz
- **10.69** 0.477 sin $(10\pi t + 63.4^{\circ})$ V, 0.999 sin $(1000\pi t 1.72^{\circ})$ V, 0.477 sin $(10^{5}\pi t 78.7^{\circ})$ V
- **10.71** 0.06 sin $(2\pi t + 88.9^{\circ})$ V, 2.12 sin $(100\pi t + 45.0^{\circ})$ V, 3.00 sin $(10^{4}\pi t + 0.57^{\circ})$ V

10.75
$$\frac{10^8 \pi}{s + 10^7 \pi}$$
; $-\frac{10^8 \pi}{s + 10^7 \pi}$

- **10.78** 12.8 kHz, -60 dB/decade
- **10.79** 10 sin $(1000\pi t + 10^\circ) + 3.33$ sin $(3000\pi t + 30^\circ) + 3.00$ sin $(5000\pi t + 50^\circ)$ V; Using MATLAB: t = linspace(0.004);

vs = sin(1000*pi*t) + 0.333*sin(3000*pi*t) + 0.200*sin(5000*pi*t);

vo = 10*sin(1000*pi*t+pi/18) + 3.33*sin(3000*pi*t+3*pi/18) + 2.00*sin(5000*pi*t+5*pi/18);

plot(t, 10*vs, t, vo)

- 11.1 79.9 dB, 120 dB, 89.9 dB; 5.05 mV
- **11.3** ≥ 4.95 M Ω

- **11.5** 0.100 mV, 140 dB
- **11.7** (a) -46.8, $4.7 \text{ k}\Omega$, 0, 33.4 dB
- **11.10** 83.9, ∞, 0, 83.9 dB
- **11.13** (0.510 sin $3770t 1.02 \sin 10000t$) V, 0
- **11.15** -10, 110 k Ω , 10 k Ω
- 11.18 -12, $(-6 + 1.2\sin 4000\pi t)$ V
- **11.22** (a) 79.6 pF (b) 82 pF, 19.4 kHz
- **11.26** –5.00, 20.0 k Ω ; +6.00, 47.0 k Ω , 0, 36.0 k Ω (not a useful circuit)
- **11.30** 0.484 A; 0.730 V; 0.730 V; \geq 7.03 W (choose 10 W), 7.27 W
- 11.33 $\frac{v_1 v_2}{R}$; ∞ ; R(1 + A)
- **11.35** 3.99 V, 3.99 V, 1.99 V, 1.99 V, 3.99 V, 199 μ A; -5 M Ω
- 11.37 3.6 k Ω , 49.6 k Ω
- **11.39** -1.20 V; -1.80 V; 0 to -3.00 V in 0.20-V steps
- **11.40** A and B taken together, B and C taken together
- **11.43** 48.0, ∞, 0
- **11.47** -100, 8.62 k Ω , 0
- **11.50** 785 M Ω , 3.75 m Ω
- Noninverting to achieve R_{IN} with an acceptable value for resistor R_2 : R_{OUT} can be met; R_{IN} is not achievable
- **11.58** $-16.2 v_S$, 85.9 m Ω
- **11.60** 0.25 percent
- 11.62 60 dB
- **11.67** 0.500 sin $5000\pi t$, 10 sin $120\pi t$; -10, -0.037; 48.6 dB; -5.00 sin $5000 \pi t$ -0.370 sin $120\pi t$
- **11.71** –26.0 mV, 0, –26.0 mV, yes, 90.9 k Ω
- **11.74** $A_V = 10,000 \left[u(v_{ID} + 0.0005) u(v_{ID} 0.0015) \right]$
- **11.76** 10.1 k Ω , 1.00 M Ω
- **11.77** –0.460 V; –0.546 V; –18.7 percent
- 11.79 10.0 V, 0 V; 15.0 V, 0.125 V
- 11.81 One possibility: $1 \text{ k}\Omega$, $20 \text{ k}\Omega$

11.87
$$\left(1 + \frac{R_2}{R_1}\right) \frac{sC(R_1||R_2) + 1}{sCR_2 + 1}$$

11.89 3 stages: $1 \text{ k}\Omega$, $20 \text{ k}\Omega$, 200 pF

11.94
$$A_V(s) = -\frac{3.653 \times 10^{13}}{s^2 + 3.142 \times 10^7 s + 1.916 \times 10^{12}}$$
; bode (-3.65*e*13,[13,142*e*7 1.916e12])

- **11.97** 20 k Ω , 200 k Ω , 796 pF
- **11.98** –20, 143 kHz; 78.1 dB, 72.9 kHz
- **11.101** Two stages

- **11.105** 6.91, 145 kHz, [6.35, 7.53], [133 kHz, 157 kHz]
- 11.107 1.89 V/μs
- **11.109** 10 V/μs
- **11.110** 250 k Ω , 1 k Ω , 2.55 μ F, 8 × 10⁴, 50 Ω ; add two 10⁹- Ω resistors
- **11.116** 200,000, $10^{12} \Omega$, 1 k Ω , unspecified, 12.7 μ F
- **11.118** 0.010 μF, 0.005 μF, 1.13 kΩ, 20.0 kHz; 0.005 μF, 0.0025 μF

12.1 (a) $0.005 \mu F$, $0.01 \mu F$, $1.13k\Omega$, 1, 20 kHz

12.5
$$\frac{K}{s^2 R_1 R_2 C_1 C_2 + s \left[R_1 C_1 (1 - K) + C_2 (R_1 + R_2) \right] + 1}; \frac{K}{3 - K}$$

- **12.7** –1; –1
- **12.11** 1 k Ω , 100 k Ω , 0.0159 μ F
- **12.13** 1 rad/s, 0.0640 rad/s, 15.6; $\left(\frac{20}{s^2 + 0.1s + 1}\right)$
- **12.15** 5.48 kHz, 1.34 kHz, 4.05, 63.1 dB
- **12.18** 0
- **12.21** (0, T/2): 0 V, (T/2, 3T/2): 1 V, (3T/2, 5T/2): 4 V, (5T/2, 7T/2): 8 V, (7T/2, 9T/2): 12 V, (9T/2, 5T): 15 V
- 12.24 12.6 kHz, 1.58, 7.96 kHz
- **12.27** -1.125 V; -1.688 V; $n \times (-0.1875)$ V
- **12.30** 000: 0, 001: 0.1220, 010: 0.2564, 100: 0.5000; 0.0716 LSB, 0.0434 LSB; 0.376 LSB, 0.188 LSB
- **12.33** 1.43 percent, 2.5 percent, 5 percent, 10 percent
- **12.35** -0.3125 V, -0.6250 V, -1.250 V, -2.500 V
- **12.37** 1.0742 k Ω , 0.188 LSB, 0.094 LSB; 1.2929 k Ω , 0.224 LSB, 0.417 LSB
- **12.40** (a) $(2^{n+1}-1)C$ (b) (3n+1)C
- **12.43** -2.500 V, -1.875 V, -1.250 V, -0.625 V, 0 V, +0.625 V, 1.250 V, +1.875 V
- **12.45** (3.415468 V, 3.415781 V)
- **12.49** 0001011111, 95 μs
- **12.51** 167 ns
- **12.53** $RC \ge 0.0448 \text{ s}; v_O (200 \text{ ms}) = 22.32 \text{ V}$

12.55 For
$$\theta = 0$$
, $\frac{V_M T_T}{RC} \left(\frac{\sin \omega T_T}{\omega T_T} \right)$

- **12.57** $-V_1V_2/(10^4I_s)$
- 12.59 0.759 V
- **12.60** 2.40 Hz
- 12.65 2.38 V, 2.62 V, 0.240 V

- 12.67 0.487 V, -0.487 V, 0.974 V
- **12.70** 0 Hz
- **12.73** 841 μs, 416 μs

- 13.1 $0.700 + 0.005 \sin 2000\pi t \text{ V}$; $1.03 \sin 2000\pi t \text{ V}$; $5.00 1.03 \sin 2000\pi t \text{ V}$; 2.82 mA
- 13.3 Bypass, coupling, coupling; 0 V
- 13.6 Coupling, coupling (ignore repeated question)
- 13.9 Coupling, coupling, coupling; 0V
- 13.12 Coupling, coupling
- **13.14** (1.78 mA, 6.08 V)
- **13.16** (98.4 μA, 4.96 V)
- **13.20** (82.2 μA, 6.04 V)
- **13.24** (307 μA, 3.88 V)
- **13.28** (338 μA, 5.40 V)
- **13.32** (1.00 mA, 7.50 V)
- 13.42 Thévenin equivalent source resistance, gate-bias voltage divider, gate-bias voltage divider, source-bias resistor—sets source current, drain-bias resistor—sets drain-source voltage, load resistor
- **13.45** 11.3 μA, 50 mV
- **13.48** (188 μ A, $V_{CE} \ge 0.7 \text{ V}$), 7.52 mS, 532 k Ω
- **13.51** (1.88 μ A, $V_{CE} \ge 0.7 \text{ V}$), 75.0 μ S, 53.3 M Ω
- **13.53** (b) +16.7%, -13.6%
- **13.54** 90, 120; 95, 75
- **13.58** -120
- **13.60** Yes, using $I_C R_C = (V_{CC} + V_{CE})/2$
- 13.62 2.5 mA; 30.7 V
- **13.64** -314, -314
- **13.66** -95
- **13.67** (-95.0, -94.1)
- **13.71** 3
- 13.74 1.25 A
- **13.77** 10%, 20%
- 13.80 Virtually any desired Q-point
- **13.81** (156 μA, 9 V)
- **13.87** 400 = 133,000 i_P + v_{PK} ; (1.4 mA, 215 V); 1.6 mS, 55.6 k Ω , 89, -62.7
- **13.88** FET
- **13.91** 111 μA, 1400

- 13.94 Yes, it is possible although the required value of $V_{GS} V_{TV}$ (6.70 V) is getting rather large
- **13.97** 0.5 V, (125 μA, 7.5 V)
- 13.98 2.5 V, 25 V
- **13.100** 3
- **13.102** -10.9
- **13.105** -7.27
- **13.110** 833 μA
- **13.112** 33.3 k Ω , 94.4 k Ω
- **13.115** 647 Ω , 3.62 k Ω
- **13.116** (b) 1 M Ω , 0, -7.45 M Ω , 3.53 M Ω
- **13.118** 6.8 M Ω , 45.8 k Ω
- **13.120** 10 MΩ, 508 kΩ
- **13.122** 1 M Ω , 6.82 k Ω
- **13.125** $-15.0 v_S$, $45.8 k\Omega$
- 13.129 -60.7, 630 Ω , 960 Ω ; gain reduced by 25 percent due to lower input resistance
- **13.131** 62.9 k Ω , 96.0 k Ω , -64.4
- **13.133** 50 mA/V², 842 k Ω
- **13.139** 1.38 μW, 0.581 mW, 0.960 mW, 0.887 mW, 2.43 mW
- **13.143** 0.497 mW, 0.554 mW, 2.07 mW, 24.6 μW, 24.6 μW, 5.58 mW
- **13.146** *V_{CC}*/15
- 13.147 3.38 V, 13.6 V
- **13.150** 32.9 μA, 2.30 V
- **13.152** 356 μA, 2.02 V
- **13.153** 500 μA, 1.76 V

- **14.1** (a) C-C, (b) not useful, (h) C-B, (o) C-D
- **14.8** -5.00, ∞ , $20.0 \text{ k}\Omega$, ∞ ; -10.0, ∞ , $10.0 \text{ k}\Omega$, ∞
- **14.10** (a) -6.91 (e) -120
- **14.11** 6.58 k Ω , 66.7 k Ω
- **14.16** -120, -60.9, 2.83 k Ω , 8.20 k Ω , 6.76 mV
- **14.17** -14.7, -11.6, 368 k Ω , 75 k Ω , 183 mV
- **14.19** -3.07, 84.9, 1.00 M Ω , 39.0 k Ω , 1.49 V
- **14.24** 0.909, ∞ , 100 Ω , ∞
- **14.27** 0.982, 1.29, 31.6 k Ω , 9.19 Ω , 2.83 V
- **14.28** 0.956, 969, 1.00 M Ω , 555 Ω , 628 V
- **14.30** $(0.005 + 0.2 V_{R4}) V$

- **14.33** 48.8, 2.00 k Ω , ∞ , 1; 14.3, 2.00 k Ω , ∞ , 1
- **14.34** 48.8, 1.98 k Ω , 4.92 M Ω , 1; 23.7, 1.98 k Ω , 10.1 M Ω , 1
- **14.38** 5.51, 0.178, 2.73 k Ω , 24.0 k Ω , 0.398 V
- **14.39** 36.5, 0.274, 252 Ω , 39.0 k Ω , 14.9 mV
- **14.43** 44.5 Ω
- **14.45** 632 Ω
- **14.47** $(\beta_o + 1)r_o = 153 \text{ M}\Omega$
- 14.48 $A_v = 398$ with $R_{in} = 1$ M Ω : A C-E amplifier operating at low current should be able to achieve both high A_v and high R_{in} . It would be difficult to achieve $A_V = 52$ dB with an FET stage.
- 14.51 A follower has a gain of approximately 0 dB. The input resistance of a C-C amplifier is approximately $(\beta_o + 1)R_L \approx 101(10 \text{ k}\Omega) = 1 \text{ M}\Omega$. Therefore a C-D stage would be preferred to achieve the gain of approximately 1 with $R_{\text{in}} = 25 \text{ M}\Omega$.
- 14.52 A noninverting amplifier is needed. Either the C-B or C-G amplifier should be able to achieve A_V = +10 with R_{in} = 2 k Ω with proper choice of the Q-point.
- **14.55** 1.66 Ω
- **14.59** $\mu_f v_s$, $R_5 + r_o (1 + g_m R_5) \cong r_o (1 + g_m R_5)$
- 14.61 v_s , $(R_{th} + r_{\pi})/(\beta_o + 1)$

14.63 (a)
$$z_{21} = R_B \frac{(\beta_o + 1)R_E}{r_\pi + (\beta_o + 1)R_E} \cong R_B$$
 $z_{12} = \frac{R_B R_E}{R_B + r_\pi + (\beta_o + 1)R_E} \cong \frac{R_B}{(\beta_o + 1)} = \frac{z_{21}}{z_{12}} \cong \beta_o + 1$

14.65 (a)
$$g_{21} = +g_m R_D$$
 $g_{12} = \frac{R_D}{R_D + r_o} \cong \frac{R_D}{r_o}$ $\frac{g_{21}}{g_{12}} \cong g_m r_o = \mu_f$

- **14.68** $(1/g_m)(1+R_L/r_o)$ for $\mu_f >> 1$
- **14.69** -0.984, 0.993, 0.703 V
- **14.72** SPICE: (106 μ A, 7.14 V), -14.2, 369 $k\Omega$, 65.8 $k\Omega$
- **14.74** SPICE: $(9.81 \mu A, 5.74 V), 0.983, 11.0 M\Omega, 2.58 k\Omega$
- **14.78** SPICE: (268 μ A, 8.60 V), 4.26, 1.27 k Ω , 18.8 k Ω
- **14.79** SPICE: (5.59 mA, 5.93 V), -3.27, 10.0 M Ω , 1.53 k Ω
- **14.81** SPICE: (3.84 mA, 10.0 V), 0.953, 1.00 M Ω , 504 Ω
- **14.83** (a) 0.01 μ F, 270 μ F, 0.15 μ F, (b) 2.7 μ F
- **14.86** (a) $0.50 \mu F$, $0.68 \mu F$
- **14.89** (a) 8200 pF, 820 pF (b) 0.042 μ F, 1800 pf, 0.015 μ F
- 14.91 33.3 mA
- **14.93** $R_1 = 120 \text{ k}\Omega, R_2 = 110 \text{ k}\Omega$
- 14.95 The second MOSFET
- 14.97 $A_{\nu}^{\text{max}} = 54.8$, $A_{\nu}^{\text{min}} = 44.8$ beyond the Monte Carlo results by approximately 2 percent of nominal gain.

- **14.101** Voltage is not sufficient—transistor will be saturated.
- **14.105** 95.2, 1000 Ω , ∞ , 1; A_{ν} is 2 × larger, $R_{\rm in}$ is 2 × smaller

- **15.1** 4.12, 1 M Ω , 64.3 Ω
- **15.2** 4.44
- **15.5** 2.19
- **15.7** 711, 8.29 k Ω , 401 Ω
- **15.10** 466, 73.8 k Ω , 20 k Ω
- **15.16** (a) (5.00 mA, 10.3 V), (1.88 mA, 3.21 V), (2.47 mA, 6.86 V) (b) (5.00 mA, 9.45 V), (2.38 mA, 0.108 V), (3.15 mA, 4.60 V) Q_2 is saturated! The circuit will no longer function properly as an amplifier.
- **15.17** (a) (325 μA, 7.14 V), (184 μA, 7.85 V), 86.1 dB
- **15.20** (a) (50.0 μ A, 1.58 V), (215 μ A, 13.2 V), -63.2, 1 M Ω , 1.91 k Ω
- **15.22** (a) (223 μ A, 2.87 V), (1.96 mA, 5.00 V), -218, 7.61 k Ω , 241 Ω (b) -1.49, 75.6 k Ω
- **15.25** (a) (4.44 μA, 1.40 V), (23.3 μA, 2.30 V) (b) (4.08 μA, 1.42 V), (23.6 μA, 2.28 V)
- **15.35** $I_{C2} = \beta_F I_{C1}, \ g'_m = g_m, \ r'_\pi = \beta_o r_\pi, \ r'_o = \frac{r_o}{2}, \ \beta'_o = \beta_o (\beta_o + 1), \ \mu'_f = \frac{\mu_f}{2}$
- **15.38** $I_{C2} = \beta_F I_{C1}, \ g'_m = g_m, \ r'_\pi = \beta_o r_\pi, \ r'_o = r_o \beta'_o, \ \mu'_f = \mu_f$
- **15.42** (8.52 μ A, 1.42 V), (8.40 μ A, 0.940 V), -48.1, cascode amplifier
- **15.43** (a) $(20.7 \,\mu\text{A}, 5.87 \,\text{V})$ (b) -273, 243 k Ω , 660 k Ω (c) -0.604, 47.1 dB, 27.3 M Ω
- **15.46** (a) (8.43 μA, 1.36 V) (b) –33.7, –1.02 kΩ, ∞ for differential output, 24.4 dB for single-ended output, 594 kΩ, 200 kΩ, 4.90 MΩ, 50 kΩ
- **15.48** $R_{EE} = 1.1 \text{ M}\Omega, R_C = 1.0 \text{ M}\Omega$
- **15.50** (200 μA, 4.90 V); differential output: −312, 0, ∞; single-ended output: −155, −0.0965, 64.2 dB; 25.0 kΩ, 40.4 MΩ, 78.0 kΩ, 39.0 kΩ
- **15.54** $V_O = 1.09 \text{ V}, v_o = 0; V_O = 1.09 \text{ V}, v_o = 219 \text{ mV}; 5.00 \text{ mV}$
- **15.56** (47.4 μA, 6.23 V); Differential output: –379, 0, ∞; single-ended output: –190, –0.661, 49.2 dB; 158 kΩ, 22.7 MΩ
- **15.60** –16.1 V, –13.1 V, –3.00 V
- **15.61** $-283. 4.94 \times 10^{-3}. 95.2 \text{ dB}$
- **15.66** (24.2 μ A, 5.36 V); $A_{dd} = -45.9$, $A_{cc} = -0.738$, differential CMRR = ∞, single-ended CMRR = 24.7 dB, ∞, ∞
- **15.69** (91.3 μ A, 12.9 V); $A_{dd} = -16.7$, $A_{cc} = -0.486$, differential CMRR = ∞, single-ended CMRR = 25.1 dB, ∞, ∞
- 15.74 (150 μA, 7.60 V); $A_{dd} = -26$, $A_{cc} = -0.233$, differential CMRR = ∞, single-ended CMRR = 34.9 dB, ∞, ∞

- **15.77** (142 μA, 7.27 V); A_{dd} = −21.7, A_{cc} = −0.785, differential CMRR = ∞, single-ended CMRR = 22.9 dB, ∞, ∞
- **15.79** (20.0 μ A, 6.67 V); $A_{dd} = -26.8$, $A_{cc} = -0.119$, differential CMRR = ∞, single-ended CMRR = 41.0 dB, ∞, ∞
- **15.80** -3.08 V, -1.22 V, 62.1 mV
- **15.83** (99.0 μ A, 10.8 V); $A_{dd} = -30.1$, $A_{cc} = -0.165$, 553 k Ω
- **15.88** (24.8 μ A, 12.0 V), (500 μ A, 12.0 V), 1040, 202 k Ω , 20.6 k Ω , 147 M Ω , v_1
- **15.92** (a) (98.8 μA, 14.3 V), (300 μA, 14.3 V) (b) 551, 40.5 kΩ, (c) 49.0 kΩ (d) 34.6 MΩ, (e) v_2
- **15.97** (98.8 μ A, 14.3 V), (300 μ A, 14.3 V), 27800, 40.5 k Ω
- **15.102** (a) (250 μ A, 15.6 V), (500 μ A, 15.0 V) (b) 4300, ∞ , 165 k Ω (c) v_2 (d) v_1
- **15.107** (250 μA, 4.92 V), (6.10 μA, 4.30 V), (494 μA, 5.00 V), 4230, ∞, 97.5 kΩ
- **15.113** (250 μ A, 10.9 V), (2.00 mA, 9.84 V), (5.00 mA, 12.0 V), 866, ∞ , 127 Ω
- **15.115** (300 μA, 5.10 V), (500 μA, 2.89 V), (2.00 mA, 5.00 V), 529, ∞ , 341 Ω
- **15.120** (99.0 μ A, 5.00 V), (500 μ A, 3.41 V), (2.00 μ A, 5.00 V), 11400, 50.5 μ C, 224 μ C
- **15.121** (4.95 μA, 2.36 V), (24.5 μA, 3.07 V), (245 μA, 3.00 V), 249, 1.01 MΩ, 1.63 kΩ, v_B , v_A , 900, r_{π^3} and r_{π^4} are low, R_{IN5} is low.
- **15.123** (99.0 μ A, 1.40 V), (990 μ A, 12.0 V), 189, 50.6 k Ω , 1.06 k Ω
- **15.127** (24.8 μ A, 17.3 V), (24.8 μ A, 17.3 V), (9.62 μ A, 15.9 V), (490 μ A, 16.6 V), (49.0 μ A, 17.3 V), (4.95 mA, 18.0 V), 88.5 dB, 202 k Ω , 18.1 Ω
- **15.129** 36.8 μA
- **15.131** 196 μA
- **15.135** 22.8 μA
- **15.137** 5 mA, 0 mA, 10 mA, 12.5 percent
- 15.138 100 percent
- **15.141** 70 mA, 19.6 V
- **15.144** 6.98 mA, 0 mA
- **15.145** 25.0 mΩ
- **15.147** (a) 22.8 μ A, 43.9 M Ω
- **15.151** Two of many: 75 k Ω , 62 k Ω , 150 Ω ; 68 k Ω , 12 k Ω , 1 k Ω
- **15.155** 96.7 μ A, 16.3 M Ω
- **15.158** 20.2 μ A, 101 MΩ
- **15.164** 16.9 μA, 168 MΩ, 5.11 μA, 555 MΩ, 16.9 μA, 168 MΩ
- **15.166** 44.1 μ A, 22.1 M Ω , 10.0 μ A, 210 M Ω
- **15.170** 100 μA, 657 GΩ
- **15.171** (9.34 μA, 9.03 V), (4.62 μA, 7.62 V), 96.5 dB
- **15.173** $\beta_{o1}\mu_{f1}/2$
- 15.174 3.16 V

- 16.1 $4.06 \text{ k}\Omega \leq \text{R} \leq 4.31 \text{ k}\Omega$
- **16.4** 19.8 percent, 13.3 percent
- **16.6** 7.69 percent, 0.813 μA, 0.855 μA
- **16.11** 274 μ A, 383 $k\Omega$, 574 μ A, 192 $k\Omega$
- **16.16** (a) 944 μ A, 68.9 $k\Omega$, 1.52 mA, 41.5 $k\Omega$
- **16.24** 125 μA, 690 μA, 1.31 mA, 600 kΩ, 100 kΩ, 66.4 kΩ
- **16.27** 10
- **16.34** 12.3 μ A, 31.3 M Ω , 29.3 μ A, 15.2 M Ω
- **16.38** 172 k Ω , 9.78 k Ω , 0.445
- **16.42** $-V_{EE} + 1.16 \text{ V for } V_{CB3} \ge 0$
- **16.47** $-V_{EE} + 1.91 = -8.09 \text{ V}$
- **16.48** 3.80/1
- **16.50** 17.5 μ A, 1.16 G Ω ; 20.3 kV; 2.11 V
- **16.55** 16.9 μ A, 163 M Ω , 2750 V; $2V_{BE} = 1.4$ V
- **16.65** 318 μA, 295 μA, 66.5 μA
- **16.68** 187 μA
- **16.72** 46.5 μA, 140 μA
- **16.77** 26.4 μA
- **16.82** 30.7 μA, 15.3 μA
- **16.85** 462 μA, 308 μA
- **16.96** 79.1, 6.28 x 10⁻⁵, 122 dB
- **16.100** 1200, 0, ∞
- **16.104** (100 μA, 8.70 V), (100 μA, 7.45 V), (100 μA, 2.50 V), (100 μA, 1.25 V), 323, 152
- **16.106** (125 μA, 1.54 V), (125 μA, 2.79 V), (125 μA, 2.50 V), (125 μA, 1.25 V); 19600
- **16.109** 171 μA
- **16.110** (b) 100 μA
- **16.111** (125 μ A, 8.63 V), (125 μ A, 1.31 V), (125 μ A, 10.0 V), (125 μ A, 8.71 V), (125 μ A, 1.29 V), (125 μ A, 6.00 V), (125 μ A, 2.75 V); 43.4; 14,900
- **16.113** 10,800
- **16.118** 6400; 80,000
- **16.119** 7500; 7500
- **16.122** 7.78, 574 Ω , 3.03 x 10⁵, 60.0 k Ω
- **16.124** ±1.4 V, ±2.4 V
- **16.127** 271 k Ω , 255 Ω
- **16.129** $V_{EE} \ge 2.8 \text{ V}, V_{CC} \ge 1.4 \text{ V}; 3.8 \text{ V}, 1.7 \text{ V}$
- **16.130** 0.406 mS, 2.83 M Ω

16.134 (100 μ A, 15.7 V), (50 μ A, 12.9 V), (50 μ A, 0.700 V), (50 μ A, 1.40 V), (50 μ A, 29.3 V), (100 μ A, 0.700 V), (100 μ A, 13.6 V), 1 mS, 752 k Ω

17.1 25,
$$\frac{s^2}{(s+1)(s+20)}$$
, yes, $\frac{25s}{(s+20)}$, 3.18 Hz,3.19 Hz

17.4 200,
$$\frac{1}{\left(1 + \frac{s}{10^4}\right)\left(1 + \frac{s}{10^5}\right)}$$
 yes, 1.59 kHz,1.58 kHz

17.7 200,
$$\frac{s^2}{(s+1)(s+2)}$$
, $\frac{1}{\left(1+\frac{s}{500}\right)\left(1+\frac{s}{1000}\right)}$, .356 Hz, 71.2 Hz; 0.380 Hz, 66.7 Hz

- **17.10** (b) –14.1 (23.0 dB), 11.8 Hz
- 17.12 19.3 dB, 151 Hz; 35.0 dB, 12.6 Hz
- **17.21** 7.24 dB, 19.2 Hz
- **17.23** 0.964, 0.627 Hz
- **17.24** 0.152 μF
- 17.27 Cannot reach 1 Hz; $f_L = 13.1$ Hz for $C_1 = \infty$, limited by C_3
- **17.29** 0.351 μF
- **17.31** 308 ps
- **17.34** -100; -107
- **17.36** 0.977; 0.978
- **17.37** -5100, -98.0, -5000, -100; -350, -42.9, -300, -50
- **17.40** –98.7, 1.42 MHz
- **17.46** –129, 1.10 MHz
- **17.50** $1/10^5 RC$; $1/10^6 RC$; 1/sRC
- **17.52** $(2750 j4.99) \Omega$, $(2730 j226) \Omega$, $(836 j1040) \Omega$
- **17.58** –9.44, 43.9 Hz, 9.02 MHz; 85.1 MHz
- **17.62** -1300; -92.3; -100, -1200
- **17.63** 9.13, 40.9 MHz
- **17.66** 2.30, 10.9 MHz
- **17.71** 0.964, 114 MHz
- **17.73** $C_{GD} + C_{GS}/(1 + g_m R_L)$ for $\omega \ll \omega_T$
- **17.76** 99.3 kHz
- 17.77 48.2 kHz
- 17.87 4 GHz, 39.8 ps
- **17.90** 781 μA

- 17.91 8.33 MHz
- **17.95** 10.6 MHz, 33.3 V/ms
- **17.100** 8 V/μs
- **17.104** 22.5 MHz, 2.91, -41.1
- **17.105** 20.1 pF, 12.6, n = 2.81, 21.9 pF
- **17.107** 15.2 MHz; 27.5 MHz
- **17.108** 13.4 MHz, 7.98, 112/-90°; 4.74 MHz, 5.21, 46.1/-90°
- **17.113** 10.9 MHz, 16.4, -75.1; 10.1 MHz, 3.96, -35.4

- **18.5** $1/(1+A\beta)$; 9.99×10^{-3} percent
- **18.8** 100 dB
- **18.13** 800 M Ω ; 2.00 Ω ; 20.0 M Ω ; 50 m Ω
- **18.15** 18.8 k Ω , 1.02 mS, -75.0×10^3 , 3141, 0.0993, 10.0; 0.0993 @ 0; 75,000 @ 0.0993
- **18.17** 0.999, 43.9 M Ω , 2.49 Ω , 98.9 ms
- **18.20** $A\beta/(1 + A\beta)$; 99.9 percent
- **18.22** $-33.0 \text{ k}\Omega$; 8.11 k Ω ; 0.705 Ω
- **18.23** 82.2 Ω ; 46.2 Ω ; -32.4 k Ω ; -32.4
- **18.24**. 36.8 Ω ; 18.6 Ω ; -34.4 k Ω
- **18.26** 0.973, 973 Ω
- **18.29** $-446 \text{ k}\Omega$, 50.4 k Ω , 2.45 k Ω
- **18.31** -11.0, 15.2 Ω , 2.72 M Ω
- **18.32** 21.9 Ω ; 12.3 Ω ; -35.1
- **18.37** $\beta_o/(\beta_o + 1)$, $2/g_m$, $(\beta_o + 1)r_o$
- **18.40** 58.2 dB
- **18.43** 91.8
- **18.45** $(s/R_2C_2)/[s^2 + s(1/R_2C_2 + 1 / (R_1||R_2)C_1) + 1/R_1R_2C_1C_2]$
- **18.50** $T_V = 987, T_I = 110, T = 98.5$
- **18.59** 114 dB, 0 Hz, 1000 Hz, 0 Hz, 101 kHz
- **18.62** 46.1 kHz, 9.31 Hz, 81.0 kHz, 5.29 Hz
- **18.69** 110 kHz; $A \le 2000$; larger
- **18.71** yes, but almost no phase margin; 1.83°
- **18.73** 90.0°
- **18.75** 12°; yes
- **18.81** phase margin is undefined; $|T(j\omega)| < 1$ for all ω
- **18.85** 38.4°

```
18.86 \omega = 1/RC, R_F = 2R
```

18.88 63.7 kHz, 6.85 V

18.90 18.4 kHz, 10.7 V

18.95 9.00 MHz, 1.20

18.101 11.2 MHz, 18.1 MHz, 1.00

18.102 15.9155 mH, 15.9155 fF; 10.008 MHz, 10.003 MHz

18.103 9.190 MHz; 9.190 MHz