Epreuve disponible sur www.emergencetechnocm.com

	OFFICE DU BA	CCALAURÉAT I	DU CAMEROU	N	
Examen:	Probatoire	Série:	D etTl	Session:	2020
Épreuve:	Physique	Durée:	2 heures	Coefficient:	2

A. EVALUATIONS DES RESSOURCES / 24 points

Exercice 1: Vérification des savoirs /8 points

1-1 Définir l'incertitude type d'une grandeur Y.	1pt
1-2 Donner les unités en système international (SI) des grandeurs suivantes :	2pt
1-2-1 Chaleur latente de changement d'état physique d'un corps.	1pt
1-2-2 Fréquence d'une onde électromagnétique.	1pt
1.3. Énoncer la loi de LENZ.	1pt
1.4. Donner la différence entre :	
1-4-1 lumière monochromatique et lumière polychromatique.	1pt
1-4-2 Spectre de raie et spectre continue.	1pt
1-5 Donner les appareils de mesure des grandeurs physiques suivantes :	
1-5-1 la puissance électrique.	1pt
1-5-2 le champ magnétique.	1pt

Exercice 2: Application des savoirs/8 points

2-1 Un photon a pour longueur d'onde λ =656,30 nm, dans le vide.

Déterminer son énergie en électronvolts.

2pt

Données : $c = 3,0.10^8 \text{ m.s}^{-1}$, 1 nm= 10^{-9} m, 1 eV= 1,6. 10^{-19} J, h= $6,62.10^{-34}$ J.s.

- 2-2 Déterminer la vergence d'un système optique constitué de deux lentilles minces accolées de distances focales respectives $f_1 = -5.0$ cm et $f_2 = 3.0$ cm.
- 2-3 Le système optique d'un microscope est constitué de deux lentilles convergentes de distances focales respectives $\overline{O_1F_1'}$ = 5,0 mm et $\overline{O_2F_2'}$ = 2,0 cm. L'intervalle optique est Δ =10 cm Calculer :
- 2-3-1 La puissance intrinsèque de ce microscope.

2pt

2-3-2 Le grossissement commercial.

2pt

Exercice 3: Vérification des acquis/8 points

3.1. Capacité calorifique d'un système/ 3 points

Un système est constitué d'un vase en aluminium de masse de 50 g, contenant 120 g de pétrole de chaleur massique $C_P = 2090 \ J.^\circ C^{-1}.kg^{-1}$

- 3.1.1. La chaleur massique de l'aluminium est $C_{Al} = 24,4 \text{ J. }^{\circ}\text{C}^{-1}.\text{mol}^{-1}$, exprimer C_{Al} en J. $^{\circ}\text{C}^{-1}.\text{kg}^{-1}.\text{1pt}$.
- 3.1.2. Déterminer la capacité calorifique de ce système.

2pt

Donnée: Al: 27 g.mol⁻¹

3-2 Défaut de l'œil/ 2 points

Un œil myope a son punctum remotum (PR) situé à 17 cm et son punctum proximum (PP) à 12 cm.

3.2.-1 Déterminer la distance D_M (distance maximale de vision distincte) où ce myope peut distinguer correctement les objets. 0,5pt

3.2-2. Déterminer la vergence de la lentille correctrice de contact pour permettre à cet œil de voir nettement les objets très éloignés.

3-3. Fonctionnement d'un générateur/ 3 points

Une dynamo, débite dans un circuit dont la résistance est ajustable. Pour chacun des réglages de la résistance, on relève la tension U aux bornes de ce générateur correspondant à l'intensité I du courant délivré :

I (A)	0	4 -	8	12	16 -	20	24	•28
U(V)	110	108	106	104	102	100	98	96

3-3-1. Ce générateur est-il idéal ? Justifier.

1,5pt

3-3-2 En utilisant le tableau ci-dessus, sans construire de graphe, déterminer la f.é.m (E) et la résistance interne r de ce générateur. 1,5pt

B. EVALUATION DES COMPETENCES / 16 points

Compétence visée : Pompage de l'eau

Au cours d'une promenade en ville, deux frères découvrent un jet d'eau (propulsion de l'eau à une hauteur considérable). Emerveillés, ils se rapprochent du propriétaire de cet ouvrage pour comprendre son fonctionnement, celui-ci leur donne certaines informations contenues dans les documents A et B. Pour un cycle de fonctionnement, la pompe propulse 498 L d'eau. Elle est alimentée par un groupe électrogène et le propriétaire estime que le coût énergique est élevé.

Document A : Caractéristiques de la	Document B : Caractéristique du groupe		
pompe	électrogène		
puissance mécanique utile P _u = 830 W	GENESIS GX 2500		
rendement (η) des pompes immergées	- Equipement complet : 2 prises 220 V avec		
η = 0,79	disjoncteur de protection et une sortie 12/24 V avec		
	disjoncteur de protection pour la charge de la		
	batterie		
	- Moteur essence 4 temps SUZUKY		
	-la consommation de carburant en régime normal		
7	est de : 6 L/h		
Doc C : Coût énergétique unitaire pour	Données		
chaque mode d'alimentation possible	- Hauteur moyenne du jet : 100 mètres		
Eneo : 1kw.h coûte 79Fcfa	- Masse volumique de l'eau : ρ = 1,0 kg/L		
Groupe électrogène : 1 L d'essence	- Intensité de la pesanteur :g=10 N.kg ⁻¹		
coûte 650 Fcfa	- 1 Wh = 3600 J		

En exploitant les informations ci-dessus, aidez le propriétaire à choisir le mode d'alimentation en énergie de la pompe qui permet de faire les économies.

Epreuve disponible sur www.emergencetechnocm.com