Abstract algebra I

Homework 2 B13902024 張沂魁

Due: 24th September 2025

- 1. Let $G = \mathbb{Z}/30\mathbb{Z}$, which is an additive group as we have known. Among the following subsets of G, determine whether each of them is a subgroup. Prove or disprove them.
 - (a) $G_1 = \{0, 1, 2, 3, \dots, 14\}$
 - (b) $G_2 = \{0, 2, 4, 6, \dots, 28\}$
 - (c) $G_3 = \{1, 7, 11, 13, 17, 19, 23, 29\}$

Solution:

- (a) No. Since $14 + 3 = 17 \notin G_1$, so G_1 is not closed.
- (b) Note that $G_2 = \langle 2 \rangle$, so it is a subgroup of G.
- (c) Note that $0 \notin G_3$, so there does not exist an identity element in G_3 and thus G_3 can not be a subgroup.
- 2. Recall that a subgroup H of a group G is a subset $H \subset G$ that itself is a group, with the induced operation. We now introduce the criterion of a subset and we aim to prove this handful criterion and give an application.
 - (i) (Subgroup criterion) Suppose (G,*) is a group and $H \subset G$. Suppose that
 - *H* is not empty,
 - (closedness of *) for any $a, b \in H$, we have $a * b \in H$, and
 - (closedness of inverse) for all $a \in H$, its inverse $a^{-1} \in H$.

Prove that H is a subgroup of G.

(ii) Using the above criterion, check that the special linear group $SL_n(\mathbb{R})$ is a subgroup of the general linear group $GL_n(\mathbb{R})$. (Recall that $GL_n(\mathbb{R})$ is the set of all $n \times n$ matrices with real coefficients (entries) so that their determinants are not zero, while $SL_n(\mathbb{R})$ is the subset of $GL_n(\mathbb{R})$ containing those matrices with determinant 1.)

Solution:

- (a) For all $a, b, c \in H$, since $a, b, c \in G$, so (a * b) * c = a * (b * c), and this can be inherited to H. Also, since for all $a \in H$ we have $a^{-1} \in H$, and * is closed under H, so $e = a * a^{-1} \in H$, so the identity element is in H. Also, we already know the closedness of inverse, so we know H is a subgroup of G.
- (b) Note that $SL_n(\mathbb{R})$ is not empty since $I_n \in SL_n(\mathbb{R})$, where I_n is the matrix with all diagonal entries 1 and all the other entries 0. Also, if $a, b \in SL_n(\mathbb{R})$, then $\det(a) = \det(b) = 1$, so we know $\det(ab) = \det(a) \det(b) = 1$, and thus $ab \in SL_n(\mathbb{R})$. Besides, for any $a \in SL_n(\mathbb{R})$, since $\det(a) = 1 > 0$, so it is invertible, and thus there exists a^{-1} such that $aa^{-1} = a^{-1}a = I_n$, which implies $1 = \det(a) \det(a^{-1}) = 1 \cdot \det(a^{-1})$, and thus $a^{-1} \in SL_n(\mathbb{R})$.

- 3. We define the order of a finite group G to be |G|, i.e., the number of elements (or the cardinality) of G. Also, for any $g \in G$, the order of g, denoted by |g| (or sometimes o(g)), is the smallest positive integer m such that $g^m = e$.
 - (a) For $n \geq 1$, show that the set of bijections $\{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$, denoted by S_n , is a group of order n!.
 - (b) Show that the subset given by $\{\sigma \in S_4 : \sigma(1) = 1\}$, i.e., the collection of bijections fixing 1, is a subgroup of S_4 . Find its order.
 - (c) Consider the multiplicative non-abelian group

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = \pm 1 \right\}.$$

Find the orders of

$$a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.

Solution:

- (a) If $\pi:[n] \to [n]$ is a bijection, where $[n] = \{1, 2, ..., n\}$, then $\pi(1)$ has n choices, $\pi(2)$ has n-1 choices, and so on, so there are n! possibilities for a bijection from [n] to [n], which means S_n has n! elements. Now we show that S_n is a group. Since for $\pi, \psi \in S_n$, we know $\pi \circ \psi$ is still a bijection from [n] to [n] (the composition of two bijection is a bijection), so $\pi \circ \psi \in S_n$. Also, since every $\pi \in S_n$ is a bijection from [n] to [n], so the inverse of π exists, say it is π^{-1} , and notice that π^{-1} is still a bijection from [n] to [n], and thus $\pi^{-1} \in S_n$ and $\pi \circ \pi^{-1} = \pi^{-1} \circ \pi = e \in S_n$, where e is the identity map, which is defined by e(i) = i for all $i \in [n]$. Hence, we know $e \in S_n$, and e is the identity element, so S_n is a group of order n!.
- (b) Suppose

$$H_4 = \{ \sigma \in S_4 : \sigma(1) = 1 \},$$

then for $a, b \in H_4$, we know a(1) = b(1) = 1, so $(a \circ b)(1) = a(1) = 1$, which means $a \circ b \in H_4$ since S_4 is a group and thus $a \circ b \in S_4$. Also, notice that the identity map $e \in H_4$ since e(1) = 1 and $e \in S_4$. Besides, for any $a \in H_4$, we can define a^{-1} as $a^{-1}(1) = 1$ and $a^{-1}(a(i)) = i$ for all $i \in \{2, 3, 4\}$. Note that a^{-1} is well-defined since a is a bijection and a(1) = 1, so a^{-1} is also a bijection. Note that $a \circ a^{-1} = a^{-1} \circ a = e$, so a^{-1} is the inverse of a and $a^{-1} \in H_4$, so we know H_4 is a subgroup of S_4 . Note that for any $\pi \in H_4$, since $\pi(1) = 1$, so just need to decide the value of $\pi(2), \pi(3), \pi(4)$ and make sure π is a bijection, so we have 3 options for $\pi(2)$, 2 for $\pi(3)$, and 1 for $\pi(4)$, which means there are 6 elements in H_4 , so the order of H_4 is 6.

(c) Since we know

$$a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 $a^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $a^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $a^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2,$

so the order of a is 4. Also, we know

$$b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \quad b^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \quad b^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

so the order of b is 3.

- 4. For some positive integer n, let G be a finite cyclic group of order n. (Recall that a cyclic group is a group generated by one of its elements, i.e., there exists some $g \in G$ of order n.)
 - (a) Prove that if g is a generator of G, then g^k is a generator of G if and only if gcd(k, n) = 1.
 - (b) For any $m \mid n$, prove that G has exactly one subgroup of order m.
 - (c) Show that S_3 , the symmetric group on 3 letters, is not cyclic.

Solution:

(a)

(\Longrightarrow) If g is a generator of G and g^k is a generator of G. If $\gcd(k,n)=d>1$, then

$$d \mid ak - bn \quad \forall a, b \in \mathbb{Z}.$$

That is, if c < d and $c \in \mathbb{N}$, then $g^c \notin \langle g^k \rangle = G$, which is a contradiction.

- (\iff) If $\gcd(k,n)=1$, we claim that $\langle g^k \rangle = \langle g \rangle$. If not, then there exists $c \in \mathbb{N}$ s.t. $g^c \notin \langle g^k \rangle$, so there exists $i \neq j$ with $1 \leq i < j \leq n$ s.t. $g^{ik} = g^{jk}$ by Pigeonhole principle. However, this means $g^{(j-i)k} = e$, which means $n \mid (j-i)k$, but j-i < n and $\gcd(k,n)=1$, so this is impossible. Thus, we know $\langle g^k \rangle = \langle g \rangle$.
- (b) We first prove the existence, that is, there exists a subgroup of G of order m. Suppose n = md, then

$$\langle g^d \rangle = \{ g^d, g^{2d}, \dots, g^{md} \}$$

is a subgroup of order m since $g^{md}=g^n=e$, and for every $g^{cd}\in\langle g^d\rangle$, we know $g^{md-cd}\in G$, so the inverse of every element of $\langle g^d\rangle$ is also in $\langle g^d\rangle$. Now we show that the uniqueness. We claim that the subgroup of a cyclic group must also be a cyclic group. If H is a subgroup of G and $G=\langle g\rangle$ is cyclic, then let $d=\min\left\{k:g^k\in H\right\}$, then we know $\langle g^d\rangle\subseteq H$. Now we show that $H\subseteq \langle g^d\rangle$. Suppose $g^k\in H$ and k=sd+r where $0\leq r< d$ and $k,r\in\mathbb{N}\cup\{0\}$. If r>0, then we know $g^{sd}*g^r=g^k\in H$, and $g^r=g^{-sd}*g^k\in H$ since $g^{-sd}\in\langle g^d\rangle\subseteq H$ and $g^k\in H$. However, $r< d=\min\left\{k:g^k\in H\right\}$, so this is impossible. Now we know r=0, so $H\subseteq \langle g^d\rangle$. Thus, the claim is true. Now go back to the original problem, we know G is cyclic, and thus if H is a subgroup of G, then H is cyclic. Suppose $H=\langle g^k\rangle$, where $O(g^k)=m$, then we have

$$md = n \mid km$$
,

and thus $d \mid k$, which means k = dr for some $r \in \mathbb{N}$. Since g^k is a generator of H. If $\gcd(r,m) = d'$, then $o\left(g^{rd}\right) = \frac{m}{d'}$. Hence, we know d' = 1 as a result of $o\left(g^{rd}\right) = m$. Now we know g^d is a generator of $\langle g^d \rangle$ and $\gcd(r,m) = 1$, so $\left(g^d\right)^r$ is also a generator of $\langle g^d \rangle$ by (a). Hence, $H = \langle g^d \rangle$ since g^{dr} is a generator of H and $\langle g^d \rangle$.

(c) Note that every cyclic group G is Abelian since if g is a generator of G, then $\forall a, b \in G$, we can write $a = g^p$ and $b = g^q$ for some $p, q \in \mathbb{N}$, and thus

$$a * b = g^p * g^q = g^{p+q} = g^q * g^p = b * a.$$

However, notice that S_3 is not Abelian since (12)(13) = (132) but (13)(12) = (123).

5. For any subgroup N of a group (G, *), and any $g \in G$, we define

$$gN = \{g * n : n \in N\}, \quad Ng = \{n * g : n \in N\}.$$

We say that N is a normal subgroup of G, denoted $N \subseteq G$, if gN = Ng for all $g \in G$.

(a) Show that if $N \leq G$, then $(G/N, \cdot)$ is a group under the operation given by

$$g_1N \cdot g_2N = (g_1 * g_2)N.$$

- (b) Consider the subgroup $H = \{(1), (12)\} \subset S_3$. Show that H is not a normal subgroup of S_3 .
- (c) Show that every subgroup of an abelian group G is normal.
- (d) The converse is false; there exist non-abelian groups with all subgroups normal. Search for one, no justification required.

Solution:

(a) – Well-defined: We need to show the operation \cdot is well-defined. That is, if $g_1N = g_1'N$ and $g_2N = g_2'N$, then $(g_1 * g_2)N = (g_1' * g_2')N$. Since N is a subgroup of G, so $e \in G$, and thus $g_1' = g_1' * e \in g_1'N = g_1N$, so $g_1' = g_1 * n_1$ for some $n_1 \in N$. Similarly, we know $g_2' = g_2 * n_2$ for some $n_2 \in N$. Note that for any $n \in N$, we have

$$g'_1 * g'_2 * n = (g_1 * n_1) * (g_2 * n_2) * n = g_1 * (n_1 * g_2) * n_2 * n.$$

Also, since N is a normal subgroup of G, so

$$n_1 * g_2 \in Ng_2 = g_2N$$
,

so we can write $n_1 * g_2 = g_2 * n'_1$ for some $n'_1 \in G$. Hence, we have

$$q_1 * (n_1 * q_2) * n_2 * n = q_1 * (q_2 * n'_1) * n_2 * n \in (q_1 * q_2)N.$$

Hence, $(g'_1 * g'_2)N \subseteq (g_1 * g_2)N$. Similarly, we can get $(g_1 * g_2)N \subseteq (g'_1 * g'_2)N$. Hence, we have $(g_1 * g_2)N = (g'_1 * g'_2)N$.

- Associativity: For any $g_1N, g_2N, g_3N \in G/N$, we have

$$(g_1N \cdot g_2N) \cdot g_3N = (g_1 * g_2)N \cdot g_3N = (g_1 * g_2 * g_3)N,$$

and

$$q_1N \cdot (q_2N \cdot q_3N) = q_1N \cdot (q_2 * q_3)N = (q_1 * q_2 * q_3)N.$$

Hence, we know $(g_1N \cdot g_2N) \cdot g_3N = g_1N \cdot (g_2N \cdot g_3N)$.

- Identity: $\forall g N \in G/N$, we know

$$gN \cdot eN = (g * e)N = gN \quad (e * g)N = eN * gN.$$

- Inverse: $\forall gN \in G/N$, we know

$$gN \cdot g^{-1}N = (g * g^{-1})N = eN \quad g^{-1}N \cdot gN = (g^{-1} * g)N = eN.$$

(b) Consider $(23) \in S_3$, then

$$(23)H = \{(23), (132)\}$$
 $H(23) = \{(23), (123)\},$

so $(23)H \neq H(23)$, which means H is not a normal subgroup of G.

- (c) Suppose H is a subgroup of an abelian group G, then for all $g*h \in gH$ with $g \in G$ and $h \in H$, we have $g*h = h*g \in Hg$, so $gH \subseteq Hg$, and similarly we can show $Hg \subseteq gH$, so gH = Hg for all $g \in G$, and thus H is normal.
- (d) Consider $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$, where the definition of multiplication operation of Q_8 is

*	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1