$p = x \times y$ x (multiplicand), y (multiplier), and p (product) signed integers

SCHEMES

- a) SEQUENTIAL ADD-SHIFT RECURRENCE
 - * CPA, CSA, SIGNED-DIGIT ADDER
 - * HIGHER RADIX AND RECODING
- b) COMBINATIONAL
 - * CPA, CSA, SIGNED-DIGIT ADDER
 - * HIGHER RADIX AND RECODING
- c) COLUMN REDUCTION
- d) ARRAYS WITH $k \times l$ MULTIPLIERS

TOPICS (cont.)

- MULTIPLY-ADD AND MULTIPLY-ACCUMULATE
- SATURATING MULTIPLIERS
- TRUNCATING MULTIPLIERS
- RECTANGULAR MULTIPLIERS
- SQUARERS
- CONSTANT AND MULTIPLE CONSTANT MULTIPLIERS

- EACH OPERAND:
 - sign with value +1 and -1 and n-digit magnitude
- ullet RESULT: a sign and a 2n-digit magnitude
- HIGH-LEVEL ALGORITHM

$$sign(p) = sign(x) \cdot sign(y)$$

 $|p| = |x||y|$

REPRESENTATIONS OF MAGNITUDES

$$X = (x_{n-1}, x_{n-2}, \dots, x_0) \quad |x| = \sum_{i=0}^{n-1} x_i r^i$$
 (multiplicand)
 $Y = (y_{n-1}, y_{n-2}, \dots, y_0) \quad |y| = \sum_{i=0}^{n-1} y_i r^i$ (multiplier)
 $P = (p_{2n-1}, p_{2n-2}, \dots, p_0) \quad |p| = \sum_{i=0}^{2n-1} p_i r^i$ (product)

TWO'S COMPLEMENT

- RADIX-2 CASE
- EACH OPERAND: n-BIT VECTOR
- RESULT: 2n-BIT VECTOR

$$-(2^{n-1})(2^{n-1}-1) \le p \le (-2^{n-1})(-2^{n-1}) = 2^{2n-2}$$

- x_R, y_R and p_R positive integer representations of x, y, and p
- HIGH-LEVEL ALGORITHM

$$p_R = \begin{cases} x_R y_R & \text{if } x \ge 0, \ y \ge 0 \\ 2^{2n} - (2^n - x_R) y_R & \text{if } x < 0, \ y \ge 0 \\ 2^{2n} - x_R (2^n - y_R) & \text{if } x \ge 0, \ y < 0 \\ (2^n - x_R) (2^n - y_R) & \text{if } x < 0, \ y < 0 \end{cases}$$

TYPES OF ALGORITHMS

- 1. ADD-AND-SHIFT ALGORITHM
 - SEQUENTIAL
 - COMBINATIONAL
- 2. COMPOSITION OF SMALLER MULTIPLICATIONS

RECURRENCE FOR MAGNITUDES

$$p[0] = 0$$

 $p[j+1] = r^{-1}(p[j] + x \cdot r^n y_j)$ for $j = 0, 1, ..., n-1$
 $p = p[n]$

Figure 4.1: RELATIVE POSITION OF OPERANDS IN MULTIPLICATION RECURRENCE

$$T = n(t_{digmult} + t_{add} + t_{reg})$$

Figure 4.2: SEQUENTIAL MULTIPLIER WITH REDUNDANT ADDER

• MULTIPLIER RECODING TO AVOID VALUES $z_i=3$

$$z_i = y_i + c_i - 4c_{i+1}$$

$y_i + c_i$	$ z_i $	c_{i+1}
0	0	0
1	1	0
2	2	0
3	-1	1
4	0	1

THREE PIPELINED STAGES

- Stage 1: MULTIPLIER RECODING
- Stage 2: GENERATING THE MULTIPLE OF THE MULTIPLICAND
- Stage 3: ADDITION AND SHIFT (with conversion of the shifted-out bits).

cycle	0	1	2	3	4	5	 m+1	m+2	
	LOAD X								
	LOAD Y								
Stage 1	0	z_0	z_1	z_2	z_3	z_4			
Stage 2	0	0	Xz_0	Xz_1	Xz_2	Xz_3	Xz_{m-1}		
Stage 3	0	0	0	PS[1]	PS[2]	PS[3]	PS[m-1]	PS[m]	
				SC[1]	SC[2]	SC[3]	SC[m-1]	SC[m]	
CPA									Final
									product

Figure 4.3: RADIX-4 MULTIPLIER.

ullet BASED ON MULTIPLIER BITS (M_1, M_0) and CARRY FLAG C

$$one = M_0 \oplus C = \begin{cases} 0 \text{ select } 2x \\ 1 \text{ select } x \end{cases}$$

$$neg = M_1 \cdot C + M_1 \cdot M_0 = \begin{cases} 0 \text{ select direct} \\ 1 \text{ select complement} \end{cases}$$

$$zero = M_1 \cdot M_0 \cdot C + M_1' \cdot M_0' \cdot C' = \begin{cases} 0 \text{ load non - zero multiple} \\ 1 \text{ load zero multiple (clear)} \end{cases}$$

$$C_{next} = M_1 M_0 + M_1 C$$

Figure 4.4: RECODER IMPLEMENTATION.

GENERATION OF (-1)x

$$PS[j]$$
 PS_{n+2} PS_{n+1} PS_n ... PS_1 PS_0 $SC[j]$ SC_{n+2} SC_{n+1} SC_n ... SC_1 SC_0 ... X'_{n+2} X'_{n+1} X'_n ... X'_1 X'_0 CSA S_{n+2} S_{n+1} S_n ... S_1 S_0 C_{n+2} C_{n+1} C_n ... C_1 C_1

* for 2's complement of x

$$n=5$$
 $m=3$ radix-4 digits $x=29$ $X=11101$ $y=27$ $Y=11011$ $Z=2\overline{11}$ $(z=y)$ $(-1=\overline{1})$

	CSA	shifted out
$\overline{PS[0]}$	00000000	
SC[0]	00000000	
xZ_0	11100010	
4PS[1]	11100010	
4SC[1]	0000001	
$\overline{PS[1]}$	11111000	11
SC[1]	00000000	
xZ_1	11100010	
$\overline{4PS[2]}$	00011010	
4SC[2]	11000001	
$\overline{PS[2]}$	00000110	1111
SC[2]	11110000	
xZ_2	00111010	
4PS[3]	11001100	
4SC[3]	01100100	
$\overline{PS[3]}$	11110011	001111
SC[3]	00011001	
\overline{P}	1100	001111 = 783

- EXTENSION TO HIGHER RADICES REQUIRES PREPROCESSING OF MORE MULTIPLES
- ALTERNATIVE: USE SEVERAL RADIX-4 AND/OR RADIX-2 STAGES IN ONE ITERATION

EXAMPLE: RADIX-16 MULTIPLIER DIGIT $\{0,...,15\}$ RECODED INTO A RADIX-16 SIGNED-DIGIT v_i IN THE SET $\{-10,...,0,...,10\}$ AND DECOMPOSED INTO TWO RADIX-4 DIGITS u_i and w_i SUCH THAT

$$v_i = 4u_i + w_i$$
 $u_i, w_i \in \{-2, -1, 0, 1, 2\}$

Figure 4.5: RADIX-16 MULTIPLICATION DATAPATH (partial).

- ◆ MULTIPLICAND IN 2'S COMPLEMENT ⇒ ADDITION AND SHIFT OPERATIONS PERFORMED IN THIS SYSTEM
- THE EFFECT OF 2'S COMPLEMENT MULTIPLIER TAKEN INTO ACCOUNT IN TWO WAYS:
 - 1. BY SUBTRACTING INSTEAD OF ADDING IN THE LAST ITERATION

$$y = -y_{n-1}2^{n-1} + \sum_{i=0}^{n-2} y_i 2^i$$

- \implies CORRECTION STEP.
- 2. BY RECODING THE MULTIPLIER INTO A SIGNED-DIGIT SET

$$p = \sum_{i=0}^{n-1} x y_i r^i$$

DONE IN TWO STEPS:

1. GENERATION OF THE MULTIPLES OF THE MULTIPLICAND

$$(x \times y_i)r^i$$

2. MULTIOPERAND ADDITION OF THE MULTIPLES GENERATED IN STEP 1.

Figure 4.6: (a) RADIX-2 MULTIPLE GENERATION. (b) BIT-MATRIX FOR MULTIPLICATION Of MAGNITUDES (n=8).

(b)

- 1. EXTEND RANGE BY REPLICATING THE SIGN BIT OF MULTIPLES
 - PRODUCT HAS 2n BITS
- 2. THE MULTIPLE $xy_{n-1}2^{n-1}$ SUBTRACTED INSTEAD OF ADDED

$$y = -y_{n-1}2^{n-1} + \sum_{i=0}^{n-2} y_i 2^i$$

- COMPLEMENT AND ADD
- 3. RECODE THE (2'S COMPLEMENT) MULTIPLIER INTO THE DIGIT SET $\{-1,0,1\}$
 - NO ADVANTAGE IN FOLLOWING THIS APPROACH

Simplification of sign extension based on

$$(-s) + 1 - 1 = (1 - s) - 1 = s' - 1$$

Consequently,

Figure 4.7: Constructing bit-matrix for two's complement multiplier (n = 4).

- ullet REDUCE NUMBER OF STEPS TO n/2
- PARALLEL OR SEQUENTIAL RECODING
- TWO CASES
 - 1. BIT ARRAY ADDED BY A LINEAR ARRAY OF ADDERS
 - SEQUENTIAL RECODING INTO {-1,0,1,2} SUFFICIENT
 - 2. BIT ARRAY ADDED BY A TREE OF ADDERS
 - PARALLEL RECODING INTO {-2,-1,0,1,2} REQUIRED

RADIX-2 MULTIPLIER

$$y_{n-1}, y_{n-2}..., y_1, y_0$$

 y_i – multiplier bit; $v_j \in \{0, 1, 2, 3\}$ – radix-4 multiplier digit

$$v_j = 2y_{2j+1} + y_{2j}$$
 $j = (\frac{n}{2} - 1, ..., 0)$

- RECODING ALGORITHM
 - 1. Obtain w_j and t_{j+1} such that

$$v_j = w_j + 4t_{j+1}$$

2. Obtain

$$z_j = w_j + t_j$$

TO AVOID CARRY PROPAGATION:

$$-2 \le w_i \le 1 \quad 0 \le t_{i+1} \le 1$$

$$(t_{j+1}, w_j) = \begin{cases} (0, v_j) & \text{if } v_j \le 1\\ (1, v_j - 4) & \text{if } v_j \ge 2 \end{cases}$$
$$z_j = w_j + t_j$$

Figure 4.8: RADIX-4 PARALLEL RECODING FROM {0,1,2,3} INTO {-2,-1,0,1,2}.

• radix-2 multiplier

$$Y = (y_{n-1}, y_{n-2}, \dots, y_0) \ y_i \in \{0, 1\}$$

recoded radix-4 multiplier

$$Z = (z_{m-1}, z_{m-2}, \dots, z_0) \ z_i \in \{-2, -1, 0, 1, 2\}$$

y_{2j+1}	y_{2j}	y_{2j-1}	z_{j}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	2
1	0	0	-2
1	0	1	-1
1	1	0	-1
1	1	1	0

$$y = 010111110 \ y = 10001101$$

$$z=1$$
 2 0 $\overline{2}$ $z=\overline{2}$ 1 $\overline{1}$ 1

RECODER IMPLEMENTATION

- sign = 1 if z_j is negative
- one = 1 if z_j is either 1 or -1
- two = 1 if z_j is either 2 or -2.

$$sign = y_{2j+1}$$

 $one = y_{2j} \oplus y_{2j-1}$
 $two = y_{2j+1}y'_{2j}y'_{2j-1} + y'_{2j+1}y_{2j}y_{2j-1}$

• carry-in: c = sign

Figure 4.9: (a) IMPLEMENTATION OF RECODER. (b) IMPLEMENTATION OF MULTIPLE GENERATOR.

Figure 4.10: RADIX-4 BIT-MATRIX FOR MULTIPLICATION OF MAGNITUDES (n = 7).

$$xz_{0}: s_{e} \quad s_{e$$

Figure 4.11: RADIX-4 BIT-MATRIX FOR 2'S COMPLEMENT MULTIPLICATION (n = 8).

Figure 4.12: LINEAR CSA ARRAY FOR (a) r = 2. (b) r = 4.

• For radix 2,

$$T = t_{AND} + (n-2)t_{fa} + t_{(cpa,(n+1))}$$

• For radix 4

$$T = t_{rec} + t_{AND-OR} + (\frac{n}{2} - 2)t_{fa} + t_{(cpa,n)}$$

Figure 4.13: TREE ARRAYS OF ADDERS: a) with [3:2] adders. b) with [4:2] adders.

*[3:2] adder uses HAs when possible.

Figure 4.14: REDUCTION BY ROWS USING FAs AND HAs (n = 8): Cost 36 FAs, 24 HAs, 11-bit CPA.

Figure 4.15: PIPELINED LINEAR CSA MULTIPLIER FOR POSITIVE INTEGERS (n=4)

Figure 4.16: BITS OF MULTIPLES ORGANIZED AS BIT-TRIANGLE.

Table 4.3: Reduction by columns using FAs and HAs for 8x8 radix-2 magnitude multiplier.

								i							
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
l=4															
e_i	1	2	3	4	5	6	7	8	7	6	5	4	3	2	1
m_3	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
h_i	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
f_i	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
l=3															
e_i	1	2	3	4	6	6	6	6	6	6	5	4	3	2	1
m_2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
h_i	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
f_i	0	0	0	1	2	2	2	2	2	1	0	0	0	0	0
l=2															
e_i	1	2	4	4	4	4	4	4	4	4	4	4	3	2	1
m_1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
h_i	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
f_i	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0
l = 1															
e_i	1	3	3	3	3	3	3	3	3	3	3	3	3	2	1
m_0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
h_i	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f_i	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0
CPA	2	2	2	2	2	2	2	2	2	2	2	2	1	2	1

 e_i is the number of inputs in column i; f_i is the number of FAs; h_i is the number of HAs; m_j is the number of operands in the next level in the reduction sequence.

Figure 4.17: REDUCTION BY COLUMNS USING FAs and HAs (n = 8): Cost 35 FAs, 7 HAs, 14-bit CPA.

FINAL ADDER

Figure 4.18: Final adder: (a) Arrival time of the inputs to the final adder. (b) Hybrid final adder.

Figure 4.19: RADIX 2^{12} SEQUENTIAL MULTIPLIER USING CSA TREE.

$$p = a \times b$$

$$A = (a_{k-1}, a_{k-2}, \dots, a_0)$$

$$B = (b_{l-1}, b_{l-2}, \dots, b_0)$$

$$P = (p_{k+l-1}, p_{k+l-2}, \dots, p_0)$$

- USE OF $k \times l$ MODULES
- ullet OPERANDS DECOMPOSED INTO DIGITS OF RADIX 2^k AND 2^l

$$x = \sum_{i=0}^{(n/k)-1} x^{(i)} 2^{ki}$$
$$y = \sum_{j=0}^{(n/l)-1} y^{(j)} 2^{lj}$$

$$p = x \cdot y = \sum_{i=0}^{(n/k)-1} x^{(i)} 2^{ki} \times \sum_{j=0}^{(n/l)-1} y^{(j)} 2^{lj}$$
$$= \sum_{i=0}^{(n/k)-1} x^{(i)} 2^{ki} + lj = \sum_{i=0}^{(n/l)-1} y^{(i)} 2^{ki+lj}$$

• $(n/k) \times (n/l)$ MODULES NEEDED

$$x = a_x 2^8 + b_x 2^4 + c_x$$
$$y = a_y 2^8 + b_y 2^4 + c_y$$

$$x \times y = a_x a_y 2^{16} + a_x b_y 2^{12} + b_x a_y 2^{12} + a_x c_y 2^8 + b_x b_y 2^8 + c_x a_y 2^8 + b_x c_y 2^4 + c_x b_y 2^4$$

Figure 4.20: 12×12 MULTIPLICATION USING 4×4 MULTIPLIERS: BIT MATRIX.

• Multiply-add: $S = X \times Y + W$

	13	12	11	10	9	8	7	6	5	4	3	2	1	0
xz_0 :				s'_e	s_e	s_e	е	е	е	е	е	е	е	е
xz_1 :			1	s_f'	f	f	f	f	f	f	f	f		c_e
xz_2 :	1	s_g'	g	g	g	g	g	g	g	g		c_f		
xz_3 :	h	h	h	h	h	h	h	h		c_g				
w:								W	W	W	W	W	W	W

Figure 4.21: Radix-4 bit-matrix for multiply-add of magnitudes (n = 7). z_i 's are radix-4 digits obtained by multiplier recoding.

• Multiply-accumulate:

$$S = \sum_{i=1}^{m} X[i] \times Y[i]$$

$$S[i+1] = X[i] \times Y[i] + S[i]$$

Figure 4.22: Block-diagrams of: (a) Multiply-add unit. (b) Multiply-accumulate unit.

Figure 4.23: Detection and result setting for multiplication of magnitudes.

Figure 4.24: Bit-matrix of a truncated magnitude multiplier.

Figure 4.25: Bit-array simplification in squaring of magnitudes (n = 6).

$$P = X \times C$$
, C - constant

DONE AS

$$P = \Sigma_j X \times C_j 2^j$$
 $\{j\}$ corresponds to 1's in binary representation of C

- ADDERS ONLY
- HOW TO REDUCE NUMBER OF ADDERS?
- 1. Recode to radix 4: $\max n/2 1$ adders
- 2. Apply canonical recoding: n/3 adders avg, n/2-1 max
- 3. Decomposition and sharing of subexpressions
- 4. Multiple constant multiplication further reductions

$$45X = 5X \times 9 = X(2^2 + 1)(2^3 + 1)$$

SLk - *shift left k positions*

Figure 4.26: Implementation of $P = X \times C$ for C = 45 using common subexpressions.

COMPUTE

$$P_1 = 9X = 5X + 4X$$

 $P_2 = 13X = 5X + 8X$
 $P_3 = 18X = 2 \times 9X$
 $P_4 = 21X = 5X + 16X$

- WITH SEPARATE CONSTANT MULTIPLIERS: 6 ADDERS
- BY SHARING SUBEXPRESSIONS: 4 ADDERS

SLk - shift left k positions

Figure 4.27: An example of multiple constants multipliers.