京大数学理科後期 1992 年度

1 問題1

0 でない x の整式 f(x) に対し, $F(x)=\int_0^x f(t)\mathrm{d}t$, $G(x)=\int_x^1 f(t)\mathrm{d}t$ とおく.ある定数 $p,\ q$ が存在して, $F(G(x))=-\{F(x)\}^2+pG(x)+q$ が成立しているとする.

- 1. $a = \int_0^1 f(t) dt$ とおくとき, F(x) を a を用いてあらわせ.
- 2. さらに $0 \le x \le 1$ での F(x) の最大値が $\frac{1}{2}$ であるとき, f(x) を求めよ.

2 問題 2

一辺の長さがn の立方体 ABCD – PQRS がある. ただし, 2 つの正方形 ABCD, PQRS は立方体の向かい合った面で AP, BQ, CR, DS は, それぞれ, 立方体の辺である.

立方体の各面は一辺の長さ 1 の正方形に碁盤目状に区切られているとする。そこで,頂点 A から頂点 R へ碁盤目上の辺を辿っていくときの最短経路を考える。

- 1. 辺 BC 上の点を通過する最短経路は全部で何通りあるか.
- 2. 頂点 A から頂点 R への最短経路は全部で何通りあるか.

3 問題3

放物線 $y=x^2$ の上の点 $P(t,t^2)$ (ただし,t>0)でこの曲線に接し,かつ y 軸にも接する円を C_1 , C_2 とし,それぞれの半径を r,R(r< R) とする.

1. t が正の実数全体を動くとき, $\frac{R}{r}$ のとり得る値の範囲を求めよ.

2. $\frac{R}{r}=2$ となる点 $P(t,t^2)$ をもとめよ.

4 問題 4

平面ベクトル \vec{p} , \vec{q} の内積を $\vec{p} \cdot \vec{q}$ と表す. f は平面上の一次変換とする.

- 1. \vec{p} , \vec{q} がたがいに直交する単にベクトルとすると, $T = f(\vec{p}) \cdot \vec{p} + f(\vec{q}) \cdot \vec{q}$ は, ベクトルの組 \vec{p} , \vec{q} の取り方によらないで, f によって決まる値であることを示せ.
- 2. 原点 O を通る 2 つの定直線 l と m があって,f によって l 上の任意の点 R は R 自身に移され,m 上の任意の点 S は OS の中点 S' に移されるとする.このとき f に対する T の値を求めよ.

5 問題 5

1 から $N+2(N \ge 2)$ までの番号のついた玉 (N+2) 個を用意し、手元に 1 と 2 の番号のついた玉をおき、残り N 個の玉を箱に入れる。さらに、

「玉を一つ箱からとりだし、手元の玉 2 個と取り出した玉 1 個計 3 個の玉のうち最も小さい番号の玉を箱に返す.」

という操作を n 回繰り返す $(n \ge 1)$. 最後に手元に残った 2 個の玉の番号のうち小さい方を X とし、大きい方を Y とする.

- 1. Y < m である確率 P(Y < m) をもとめよ $(m = 3, 4, \dots, N + 2)$.
- 2. $X \le m$ である確率 $P(X \le m)$ をもとめよ $(m = 2, 3, \dots, N+1)$.

6 問題 6

 $a = \frac{1+\sqrt{5}}{2}$ とし、空間内の原点 O と 4 つの点

$$A(1,1,1), B(-1/a,a,0), C(-a,0,1/a), D(0,-1/a,a),$$

について,次の問に答えよ.

1. 四点 A, B, C, D は正方形の頂点であることを示せ.

2. 四角錐 O — ABCD を平面 x=0 によって二つの部分 W_1 , W_2 に分けたとき, W_1 , W_2 の体積の比を求めよ.