1

A bibbs sampler should be able to reach any configuration of parameters in a finite number of steps, and with positive probability. This is called irreducibility.

Irreducibility is violated if there exists any configuration of parameters that cannot be reached (Pr=0) in a finite number of steps.

If steps are in the order z_i^{t+1} , $\eta_i^{\star(t+1)}$, q_i^{t+1} , η_i^{t+1} suppose that in the current q_i , $q_i > 0$ and $r_i = 0$, because $z_i = 1$. Now suppose that in the 1st update, that of z_i^{t+1} , z_i^{t+1} becomes z_i^{t+1} becomes z_i^{t+1} becomes z_i^{t+1} setting for the second update is:

 $\frac{(k+1)}{2i} = 0$, $q_{i}^{(t)} = 0$ a : a > 0, $q_{i}^{(t)} = 0$

The 2nd update will then proceed. $P(T^*|...) \propto \prod_{j=1}^{N} \left[T^*q_j \cdot I(\vec{z}_j=1) + (1-T^*)_{\vec{y}_j} \cdot I(\vec{z}_j=0) \right]$

The ith term of this product will be 17* q; I(2;=1) + (1-17*) r; I(2;=0)

Since $z_i^{(t+1)} = 0$, the first term is zero because the indicator is zero, and the second term is zero because $r_i = 0$.

This entire product, $P(T^*|...)$, equals tero, making some configurations impossible to reach.

This proves that there exist cases where points in the parameter space have Zero probability, contradicting irreducibility.