Homework III

I. REMARK

- Reading materials: Ch 1-6 in the textbook.
- "Can not see the wood for the trees!!"
- Upload your answer sheets and MATLAB code files. If the code is not working, you might get no points. Also, don't just
 copy the code from your colleagues.

II. PROBLEM SET

Non-textbook problem 1.: The function x(t) is given as x(t)=rect(t). Do sampling the function 100 times over the time interval -3 \le t<3. Plot the x(t) and approximated abs(X(f)) using DFT (FFT) of the sampled signal.

Non-textbook problem 2.: The function x(t) is given as $x(t) = \cos(2\pi f t)$. Do sampling the function over the time interval $0 \le t < 10$. The frequency f is 1 Hz, and the sampling frequency is 10 Hz. Plot the x(t) and approximated X(f) using DFT (FFT) of the sampled signal.

Non-textbook problem 3.: The purpose of the task is making a song. Find the music (score) of the song below. For every scale, use a cosine or sine function. Use the table below describing the sinusoidal frequency of every scale. Assume the time period for a quarter note is 0.5 sec. The sampling frequency should be 44100Hz.

- a) Use octave 3 for making the signal x(t) of the song. Plot the x(t) and approximated abs(X(f)) using DFT (FFT) of the sampled signal. Listen the song using the 'sound' function.
- b) Use octave 4 for making the signal z(t) of the song. Plot the z(t) and approximated abs(Z(f)) using DFT (FFT) of the sampled signal. Listen the song using the 'sound' function.
- c) Make the signal w(t) = x(t) + z(t). Plot the w(t) and approximated abs(W(f)) using DFT (FFT) of the sampled signal. Listen the song using the 'sound' function.
- d) Make a loss pass filter h(t) using a sinc function. The filter should pass only the frequency band for octave 3 (ex. 130Hz \sim 250Hz). Plot h(t) and approximated abs(H(f)) using DFT (FFT) of the sampled signal. Filter the signal w(t) through y(t) = w(t)*x(t) where * denotes the convolution operator. Plot the approximated abs(Y(f)) using DFT (FFT). Listen real(y(t)) using the 'sound' function.

(단위 : Hz) 옥타브 및 음계별 표준 주파수 옥타브 1 2 3 4 5 6 7 8 130.8128 C(도) 32.7032 65,4064 261.6256 523,2511 1046.502 2093,005 4186,009 34.6478 69.2957 138.5913 277.1826 554.3653 1108.731 4434.922 C# 2217.461 D(레) 36.7081 73.4162 146.8324 293.6648 587.3295 1174.659 2349.318 4698.636 38.8909 155.5635 311.1270 622.2540 4978.032 D# 77.7817 1244.508 2489.016 E(11) 164.8138 41.2034 82.4069 329.6276 659.2551 1318.510 2637.020 5274.041 F(과) 43.6535 87.3071 174.6141 349.2282 698,4565 1396,913 2793,826 5587.652 F# 46.2493 92.4986 184.9972 369.9944 739.9888 1479.978 5919.911 2959.955 G(全) 48.9994 97.9989 195.9977 391.9954 783.9909 1567.982 3135.963 6271.927 G# 51.9130 103.8262 207.6523 415.3047 830.6094 1661.219 3322.438 6644.875 A(라) 220.0000 440.0000 1760.000 7040.000 55.0000 110.0000 880.0000 3520.000 A# 58.2705 116.5409 233.0819 466.1638 932.3275 1864.655 3729.310 7458,620 B(시) 61.7354 123.4708 246.9417 493.8833 987.7666 1975.533 3951.066 7902.133