Ph.D. Qualifying Examination Sem 2, 2000/2001 Algebra

- 1. Let G be a finite group with a unique maximal subgroup. Show that G is cyclic.
- 2. Let A be a subgroup of index n of a finite group G and let

$$\{g_1A, g_2A, \cdots, g_nA\}$$

be a set of coset representatives of G/A. For each $g \in G$, define

$$f_q: G/A \to G/A$$

by $f_g(g_iA) = gg_iA$. Prove that f_g is a bijection. Define $\chi: G \to S_n$ by

$$\chi(g) = f_q$$
.

Prove that χ is a group homomorphism. Determine the kernel of χ .

- 3. Let R be a commutative ring with identity and let $\chi: R \to F$ be a nontrivial ring homomorphism, where F is an integral domain. Prove that kernel of χ is a prime ideal.
- 4. Let V be a vector space of finite dimension over a field F. Suppose that V is an integral domain. Prove that V is a field.
- 5. Let E/F be a field extension and let $a, b \in E$ be algebraic over F. Prove that every element in F(a, b) is algebraic over F.

— END OF PAPER —

Ph.D. Qualifying Examination Sem 1, 2001/2002 Algebra

- 1.(a) Show that if R is a commutative ring with identity, then every maximal ideal of R is a prime ideal. [15 marks]
 - (b) Show that if R is a Principal Ideal Domain, then every prime ideal of R is a maximal ideal. [15 marks]
 - (c) Give an example of a ring R which has a prime ideal that is not maximal. [10 marks]
- 2.(a) Let G and H be finite groups with relatively prime orders. Let $\theta: G \to H$ be a group homomorphism. What can conclude about θ and why? [10 marks]
 - (b) Let H be a subgroup of a group G with index 2. Prove that $H \triangleleft G$. [15 marks]
 - (c) Give an example to show that H may not be a normal subgroup of G if |G:H|=3.

 [10 marks]
- 3. If L is a field extension of K such that [L:K] = p where p is a prime number, show that L = K(a) for every $a \in L$ that is not in K. [15 marks]
- 4. Give an example of two algebraic numbers a and b of degrees 2 and 3, respectively, such that ab is of degree less than 6 over \mathbb{Q} . [10 marks]

— END OF PAPER —

Ph.D. Qualifying Examination Sem 2, 2001/2002 Algebra

- 1. Classify all groups of order n up to isomorphism, where
 - (a) n is the square of a prime integer; [10 marks]
 - (b) n = pq where p, q are primes with p > q and q does not divide p 1.

[10 marks]

- 2. Let R be a commutative ring with 1.
 - (a) If I, J_1, J_2, \ldots, J_n are ideals of R such that I is prime and $I \supseteq \bigcap_{r=1}^n J_r$, prove that $I \supseteq J_s$ for some s. [10 marks]
 - (b) If the intersection of all maximal ideals of R is prime but not maximal, prove that R has infinitely many maximal ideals. [5 marks]
 - (c) If I, J_1, J_2, \ldots, J_n are ideals of R such that J_r 's are prime for all r, and $I \subseteq \bigcup_{r=1}^n J_r$, prove that $I \subseteq J_s$ for some s. [15 marks]
- 3. Let R be a ring and M be a left R-module. Show that the following statements are equivalent: [30 marks]
 - (a) Every submodule of M is finitely generated.
 - (b) Every non-empty collection of submodules of M has a maximal element (with respect to inclusion).
 - (c) Whenever $N_1 \subseteq N_2 \subseteq \cdots$ is an ascending chain of submodules of M, there is an integer k such that $N_l = N_k$ for all $l \geq k$.
- 4. A complex number is *algebraic* if and only if it satisfies a polynomial with rational coefficients.
 - (a) Prove that a complex number α is algebraic if and only if $\alpha \in F$ for some finite field extension F of \mathbb{Q} .
 - (b) Hence, or otherwise, show that the set K of algebraic numbers is a field. [6 marks]
 - (c) Show further that K is algebraically closed, i.e. every polynomial with coefficients in K has a root in K. [6 marks]

Ph.D. Qualifying Examination Sem 1, 2002/2003 Algebra

1. Let p be a prime number. Show that

$$\mathbb{Q}(\sqrt{p}) = \{a + b\sqrt{p} \mid a, b \in \mathbb{Q}\}\$$

is a subfield of \mathbb{R} .

If p and q are distinct prime numbers, prove that

- (i) $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are isomorphic as additive groups;
- (ii) $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are not isomorphic as fields;
- (iii) $\mathbb{Q}(\sqrt{p} + \sqrt{q})$ is the compositum of $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$.
- 2.(i) Let $f(x) \in \mathbb{Z}_2[x]$. Prove that (x-1) divides f(x) in $\mathbb{Z}_2[x]$ if and only if f(x) has an even number of nonzero coefficients.
- (ii) Prove that if $\deg f(x) > 1$ and f(x) is irreducible in $\mathbb{Z}_2[x]$, then f(x) has constant term 1 and an odd number of nonzero coefficients.
- (iii) Determine all irreducible polynomials of degree 4 or less over \mathbb{Z}_2 .
- (iv) If p is a prime number, how many monic irreducible polynomials of degree 2 over \mathbb{Z}_p are there? Justify your answer.
- 3.(a) Determine whether each of the following pairs of groups are isomorphic:
 - (i) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_8 ;
 - (ii) \mathbb{Z}, \mathbb{Q} ;
 - (iii) $\mathbb{R}^*, \mathbb{C}^*$;
 - (iv) $\mathbb{R}^*, \mathbb{Q}^*$;
 - (v) $\mathbb{Q}, \mathbb{Q} \times \mathbb{Q}$.

(b) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain with respect to the Euclidean distance d, where

$$d(a+bi) = a^2 + b^2.$$

(i) Find $\alpha, \beta \in \mathbb{Z}[i]$ such that

$$1 - 5i = (1 + 2i)\alpha + \beta,$$

where $|\beta| < 5$.

(ii) Decide, with reasons, which of the following elements are irreducible in $\mathbb{Z}[i]$:

$$1+i, 2+3i, 1+3i.$$

- 4.(a) If p is a prime number, show that the symmetric group S_p has exactly (p-2)! Sylow p-subgroups. Deduce that (p-1)! + 1 is divisible by p.
 - (b) Prove that a ring with a prime number of elements is either a field or a zero ring (i.e. a ring in which all products are zero).
- 5. If ϕ is an automorphism of a group G, show that the set $H = \{h \in G \mid \phi(h) = h\}$ is a subgroup of G.

Prove that ϕ commutes with the inner automorphism $\psi: G \to G$ given by $\psi(g) = a^{-1}ga$ if and only if $\phi(a)a^{-1}$ is in the centre Z of G.

If ϕ commutes with every inner automorphism of G, prove that the mapping

$$\theta: G \to G, \ \theta(a) = \phi(a)a^{-1}$$

is a homomorphism of G onto a subgroup of Z. Hence or otherwise, show that then H is normal in G and G/H is abelian.

— END OF PAPER —

Ph.D. Qualifying Examination Sem 2, 2002/2003 Algebra

- 1. Let G be a group of order 2p, where p is an odd prime. Prove that either G is cyclic, or $G = \{1, a, a^2, \dots, a^{p-1}, b, ab, a^2b, \dots, a^{p-1}b\}$ where a has order p, b has order 2, and $ba = a^{-1}b$.
- 2. Let $\phi: R \to S$ be a homomorphism of commutative rings with 1. Prove or disprove the following statements:
 - (a) If I is a prime ideal of S, then $\phi^{-1}(I)$ is a prime ideal of R. [10 marks]
 - (b) If J is a maximal ideal of S, then $\phi^{-1}(J)$ is a maximal ideal of R. [10 marks]
- 3.(a) If R and S are simple rings with 1, find all ideals of $R \times S$. [8 marks]
 - (b) If M and N are simple left R-modules (where R is a ring with 1), find all submodules of $M \oplus N$.
- 4. Let R be a ring, M be a left R-module, and $B = \{m_1, m_2, \dots, m_n\} \subseteq M$. Show that the following statements are equivalent: [20 marks]
 - (a) Every element of M has a unique expression of the form $r_1m_1 + r_2m_2 + \ldots + r_nm_n$ $(r_i \in R \text{ for all } i).$
 - (b) Every function from B to a left R-module N can be uniquely extended to a module homomorphism from M to N.
 - 5. Let F be a finite field with p^n elements. Prove that
 - (a) the multiplicative group $F^{\times} = F \setminus \{0\}$ is cyclic. [10 marks]
 - (b) F contains a subfield with p^m elements if and only if $m \mid n$. [10 marks]

— END OF PAPER —

Ph.D. Qualifying Examination Algebra

- 1. (a) Let G be the additive group \mathbb{Q}/\mathbb{Z} . Show that any finite subgroup of G is cyclic.
 - (b) For the ring $R = \mathbb{Z} \times \mathbb{Z}$, give an example for each of the following:
 - (i) a maximal ideal of R;
 - (ii) a prime ideal of R that is not maximal.
- (a) Let G be a finite group, and H be a subgroup of index 2. Show that x² ∈ H for any x ∈ G and hence deduce that H contains all elements of G of odd order.
 - (b) Let n > 3 be an integer, and let G be a subgroup of S_n. Assume that G has an odd permutation. Show that G has a normal subgroup of index 2.
 - (c) Let A₄ be the subgroup of even permutations in S₄. Show that A₄ has no subgroup of index 2.
- 3. Recall that an element p of an integral domain D is called irreducible if p is a non-zero, non-unit and in any factorization p = rs with $r, s \in D$, one of r, s is a unit. Now let

$$D = \mathbb{Z}[\sqrt{-7}] = \{a + b\sqrt{-7} | a, b \in \mathbb{Z}\}.$$

- (i) By using the norm function $N(a+b\sqrt{-7})=a^2+7b^2$, show that $2, 1 \pm \sqrt{-7}$ are irreducible elements of D.
- (ii) Is 2D a prime ideal? Is D a unique factorization domain? Justify your answers.
- (a) Let R be a finite commutative ring with 1, such that 1 ≠ 0. Let R* = R\{0} and put

$$k = \prod_{r \in R^*} r,$$

is a field.

(b) Let p be a positive prime number such that p = 4k+1 for some $k \in \mathbb{Z}$. Show that there exists $a \in \mathbb{Z}_p$ such that $a^2 = -1$ in \mathbb{Z}_p .

- 5. Show that each of the following polynomials is irreducible over Q: you may want to consider reduction modulo a prime number.
 - (i) $3x^4 2x^2 + 72x 10$;
 - (ii) $x^3 + 1003x + 1002$.

PH.D. QUALIFYING EXAMINATION 2003/2004 (Sem 2) ALGEBRA

- 1. Show that if a and b are elements in a group G, then ab and ba have the same order. [10 marks]
- 2. (a) Let H and K be subgroups of a group G with H normal in G. Show that

 $HK := \{hk : h \in H, k \in K\}$

is a subgroup of G and show that H is normal in HK. [10 marks]

(b) Show that $(H \cap K)$ is normal in K and that

$$K/(H \cap K) \simeq HK/H$$
.

[10 marks]

(c) Show that if H is a normal subgroup of G such that

$$\gcd(|H|, [G:H]) = 1,$$

then H is the unique subgroup of G of order |H|.

[15 marks]

- 3. (a) Show that if R is a finite integral domain with a unit element, then R is a field. [10 marks]
 - (b) Show that if R is a finite commutative ring with a unit element, then every prime ideal of R is a maximal ideal. [10 marks]
- 4. Let R is a ring with a unit element, 1_R , in which

$$(ab)^2 = a^2b^2$$

for all $a, b \in R$. Prove that R must be commutative.

[15 marks]

5. (a) Let K be a finite field of p elements, where p is a prime. Let gcd(n,p)=1 and F be the splitting field of x^n-1_K over K. Show that if (F:K)=f then n divides q^f-1 .

[10 marks]

(b) Show that f is the smallest integer m for which $q^m - 1$ is divisible by n.

[10 marks]

Ph.D. Qualifying Examination: Algebra

Ring Theory

- (a) Let p be a prime. Find all the rings (up to ring isomorphism) of p elements. Justify your answers.
- (b) Let $R = M_n(\mathbb{R})$ be the ring of all $n \times n$ matrices over the real numbers. Find all the ideals of R. Justify your answers.

Group Theory

- (a) Let p be a prime. Find all the groups (up to group isomorphism) of order 2p. Justify your answers.
- (b) Let p be a prime and let G be a group of p^3 elements. Suppose that G is not abelian. Prove that Z(G) is cyclic of order p.

Field Theory

- (a) Let p be a prime. Find all the fields (up to field isomorphism) of p^2 elements Justify your answers.
- (b) Let σ be a field automorphism from \mathbb{R} to \mathbb{R} . Prove that $\sigma(x) = x$ for all $x \in \mathbb{R}$.

Ph.D. Qualifying Examination

Algebra

Semester 2, 2004/2005

Ring Theory

- (a) Prove that every integral domain can be imbedded in a field.
- (b) Let D be an integral domain and let $F = \{x \in D : xd = 1 \text{ for some } d \in D\}$. Suppose that D is a finite dimensional vector space over F. Prove that D is a field.

Group Theory

- (a) Let G be a nonabelian finite group generated x and y, where o(x) = o(y) = 2. Prove that G is isomorphic to a dihedral group.
- (b) Let G be a group of order 56. Suppose that G has 2 or more subgroups of order 7. Prove that G has a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Field Theory

- (a) Let F be a finite field. Prove that $F \{0\}$ under multiplication is a cyclic group.
- (b) Prove that $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$ is irrational.

Algebra, 2005/2006, Sem 1

Answer all questions. Each question carries 25 marks.

- (1) Classify all groups of order 8 up to isomorphism.
- (2) Prove or disprove each of the following statements:
 - (a) A field is a Euclidean domain.
 - (b) If R is a Euclidean domain but not a field, and S is a subring of R with multiplicative identity, then S is the unique factorization domain.
- (3) For each of the following polynomials f(X), find the degree of K over \mathbb{Q} , where K is the splitting field of f(X).
 - (a) $f(X) = X^4 1$;
 - (b) $f(X) = X^3 1$;

 - (c) $f(X) = X^4 2$; (d) $f(X) = X^3 2$.
- (4) Let R be a ring with 1. A simple left R-module M is a left R-module such that |M| > 1 and if N is a submodule of M, then either N = M or $N = \{0\}$.
 - (a) Let I be a maximal left ideal of R. Show that R/I is a simple R-module.
 - (b) Let m be a nonzero element of a simple left R-module M. Prove that:
 - (i) $Rm := \{rm \mid r \in R\}$ equals M;
 - (ii) $Ann(m) := \{r \in R \mid rm = 0\}$ is a maximal left ideal
 - (iii) $R/\operatorname{Ann}(m) \cong M$ as left R-modules.

PhD Qualifying Exam Algebra Sem 2, 2005/2006

Answer all questions. Each question carries 25 marks.

- (1) (a) Prove that a group of order 12 either has a normal subgroup of order 3, or is isomorphic to A_4 , the alternating group on 4 letters. [10 marks]
 - (b) Show that any simple group acting on a set of n elements is isomorphic to a subgroup of A_n , the alternating group on n letters. [15 marks]
- (2) Let R be a ring, not necessarily commutative and not necessarily containing the multiplicative identity. Prove that if R[X] is a principal ideal domain, then R is a field. [25 marks]
- (3) Let K be the splitting field of X^4-2 over $\mathbb Q$. Find all intermediate fields between $\mathbb Q$ and K. [25 marks]
- (4) Let R be a ring with multiplicative identity, and let M be a left R-module. Show that the following statements are equivalent: [25 marks]
 - (a) Every submodule of M is finitely generated.
 - (b) Whenever $N_1 \subseteq N_2 \subseteq \cdots$ is an ascending chain of submodules of M, there is an integer k such that $N_l = N_k$ for all $l \geq k$.
 - (c) Every non-empty collection of submodules of M has a maximal element (with respect to inclusion).

The End

PhD Qualifying Examination

Algebra

Sem 1, 2007/2008

Answer all questions. Each question carries 25 marks.

- (1) Let R be a Euclidean domain, and denote the $n \times n$ -matrix ring over R by $M_n(R)$. Let $M \in M_n(R)$. Prove that there exist units $P, Q \in M_n(R)$ such that $PMQ = \operatorname{diag}(d_1, d_2, \ldots, d_n)$ with $d_1 \mid d_2 \mid \cdots \mid d_n$.
- (2) Prove that a simple group of order 60 is isomorphic to A_5 .
- (3) Let $K \subseteq L \subseteq M$ be fields. Prove or disprove each of the following statements:
 - (a) If L is algebraic over K and M is algebraic over L, then M is algebraic over K.
 - (b) If L is separable over K and M is separable over L, then M is separable over K.
 - (c) If L is Galois over K and M is Galois over L, then M is Galois over K.
 - (d) If L is radical over K and M is radical over L, then M is radical over K.
- (4) Let R be a ring with multiplicative identity, and let M be a left R-module. Let $k \in \mathbb{Z}^+$. Prove that the following statements are equivalent:
 - (a) M is isomorphic to $R^k := \{(r_1, r_2, \dots, r_k) \mid r_i \in R \text{ for all } i\}$ as left R-modules.
 - (b) there exist $m_1, m_2, \ldots, m_k \in M$ such that for every $m \in M$, there exist unique $r_1, \ldots, r_k \in R$ such that $m = r_1 m_1 + r_2 m_2 + \cdots + r_k m_k$.
 - (c) there exist $m_1, m_2, \ldots, m_k \in M$ such that every function f from $\{m_1, m_2, \ldots, m_k\}$ to a left R-module N can be uniquely extended to a left module homomorphism $\tilde{f}: M \to N$.

National University of Singapore

Ph.D. Qualifying Examination Year 2007–2008 Semester II

Algebra

Answer all questions. Each question carries 25 marks.

- (1) Let R be a commutative ring with 1.
 - (a) Let I be an ideal of R. Explain briefly what is meant to say that (i) I is prime, (ii) I is maximal.
 - (b) Prove or disprove each of the following statements:
 - (i) If I is a maximal ideal of R, then I is prime.
 - (ii) If I is a nonzero prime ideal of R, then I is maximal.
- (2) Let p and q be a prime integers with $p \leq q$.
 - (a) Show that any group of order pq has a normal subgroup of order q.
 - (b) Hence, or otherwise, classify all groups of order pq up to isomorphism.
- (3) Let n be a fixed positive integer.
 - (a) Prove that $\mathbb{Q}(\cos \frac{2\pi i}{n})$ is an algebraic extension over \mathbb{Q} .
 - (b) Determine the degree $[\mathbb{Q}(\cos \frac{2\pi i}{n}) : \mathbb{Q}]$.
- (4) Let R be a ring with 1, and let M be a left R-module. Prove that the following statements are equivalent:
 - (a) M is nonzero, and if N is a submodule of M, then N=0 or N=M.
 - (b) For every $m \in M \setminus \{0\}$, $M = \{rm \mid r \in R\}$.
 - (c) There exists a maximal left ideal I of R such that $M \cong R/I$ as left R-modules.

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2008-2009

Ph.D. QUALIFYING EXAMINATION

PAPER 1

ALGEBRA

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

1. Answer **ALL** questions.

Ph.D. Qualifying Examination Year 2008/2009, Semester 1

ALGEBRA

Answer all questions. Each question carries 20 marks.

- (1) (a) Let G be a finite simple group, and suppose that H is a proper subgroup of G of index k. Show that there exists an injective group homomorphism from G to the alternating group A_k of degree k.
 - (b) Show that a group of order 120 is not simple.
- (2) Let V be a finite-dimensional vector space of an algebraically closed field F of positive characteristic p. Let $\alpha: V \to V$ be a linear operator on V, and suppose that there exists a positive integer n such that $\alpha^n(v) = v$ for all $v \in V$, while for each positive integer i less than n, there exists $v_i \in V$ such that $\alpha^i(v_i) \neq v_i$. Show that α is diagonalisable if and only if n is not divisible by p.
- (3) (a) Let R and S be integral domains with R ⊆ S. Prove or disprove the following:
 (i) If R is a Euclidean domain, then S is a unique factorisation domain.
 - (ii) If S is a Euclidean domain, then R is a unique factorisation domain.
 - (b) Let $\phi: T \to U$ be a surjective ring homomorphism between two integral domains T and U. Prove or disprove the following:
 - (i) If T is a principal ideal domain, then U is a principal ideal domain.
 - (ii) If T is a unique factorisation domain, then U is a unique factorisation domain.
- (4) Let K be the splitting field of $X^4 2$ over the field \mathbb{Q} of rational numbers.
 - (a) Show that there exist field automorphisms τ and σ of K satisfying the following properties:
 - τ has order 2;
 - σ has order 4;
 - $\bullet \ \tau \circ \sigma = \sigma^{-1} \circ \tau$.
 - (b) Hence, or otherwise, find all intermediate fields between \mathbb{Q} and K.
- (5) Let R be a ring with multiplicative identity, and let M be a finitely generated left R-module.
 - (a) Let B be a non-empty finite subset of M. Show that M is a free R-module with basis B if and only if every function from B to any left R-module N can be uniquely extended to a left R-module homomorphism from M to N.
 - (b) Suppose further that R is a principal ideal domain. Prove that M is a free R-module if and only if M is a projective R-module.

Ph.D. Qualifying Examination Sem 2, 2000/2001 Analysis

- 1. Show that a function $f:[0,1] \to \mathbb{R}$ is uniformly continuous on [0,1] if and only if $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence whenever $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in [0,1].
- 2. Let f be a continuous real-valued function such that

$$\int_0^1 x^n f(x) \, dx = 0 \text{ for } n = 0, 1, 2, \dots$$

Show that f is the zero function.

3. Let C[0,1] denote the set of all real-valued continuous functions on [0,1]. Show that there is a unique $f \in C[0,1]$ such that

$$f(x) = \int_0^{x/2} f(t) dt$$

for all $x \in [0, 1]$.

4. Let (X, d) be a complete metric space. For any $x \in X$ and any $\epsilon > 0$, let $B(x, \epsilon)$ denote the open ball of radius ϵ centered at x. Suppose that A is a subset of X so that for any $\epsilon > 0$, there exists a compact subset A_{ϵ} of X satisfying

$$A \subseteq \cup_{x \in A_{\epsilon}} B(x, \epsilon).$$

Show that A is relatively compact, i.e., the closure of A is a compact set.

- 5. Let $(f_n)_{n=1}^{\infty}$ be a sequence of real-valued differentiable functions on [0, 1]. Assume that there is a constant $C < \infty$ so that
 - (i) $|f_n(0)| \leq C$ for all $n \in \mathbb{N}$;
 - (ii) $|f'_n(x)| \leq C$ for all $x \in [0,1]$ and all $n \in \mathbb{N}$. Show that $(f_n)_{n=1}^{\infty}$ has a uniformly convergent subsequence.

— END OF PAPER —

Ph.D. Qualifying Examination Sem 1, 2001/2002 Analysis

- 1. Let d be a metric on a nonempty set M. For each of the following, determine whether in general ρ defines a metric on M. Justify your answers.
 - (i) $\rho(x,y) = (d(x,y))^2, x, y \in M$.
 - (ii) $\rho(x,y) = \min\{2, d(x,y)\}, x, y \in M$.
- 2. Prove or disprove the following statements.
 - (a) In a metric space, every closed subset of a compact set is compact.
 - (b) In a metric space, every closed and bounded set is compact.
- 3. Let ℓ^{∞} be the space of all bounded sequences of complex numbers endowed with the metric

$$d(\zeta, \eta) = \sup_{j \in \mathbb{N}} |\zeta_j - \eta_j|, \qquad \zeta = \{\zeta_j\}_{j \in \mathbb{N}}, \, \eta = \{\eta_j\}_{j \in \mathbb{N}} \in \ell^{\infty}.$$

Suppose that $K: \mathbb{N}^2 \longrightarrow \mathbb{C}$ is a function for which there exists $\lambda \in (0,1)$ such that

$$\sum_{l \in \mathbb{N}} |K(j, l)| \le \lambda, \qquad j \in \mathbb{N}.$$

Show that for every $\beta = \{\beta_j\}_{j \in \mathbb{N}} \in \ell^{\infty}$, there exists a unique $\alpha = \{\alpha_j\}_{j \in \mathbb{N}} \in \ell^{\infty}$ such that

$$\alpha_j = \sum_{l \in \mathbb{N}} K(j, l) \alpha_l + \beta_j, \quad j \in \mathbb{N}.$$

- 4. Determine whether the function $g(x,y) = \sum_{k=1}^{\infty} \frac{(x-2y)^k \sin(kx+y)}{\sqrt{k!} (1+x^{2k}y^{4k})}$ is continuous on \mathbb{R}^2 . Justify your answer.
- 5. Let $f_k : [0,1] \longrightarrow \mathbb{R}$, $k \ge 1$, be a sequence of continuous functions such that for every k > 1,

$$\int_0^1 (f_k(t))^2 dt = 1.$$

Define a sequence of functions $F_k : [0,1] \longrightarrow \mathbb{R}, k \geq 1$, by

$$F_k(x) = \int_0^x t f_k(t) dt.$$

Prove that the sequence F_k , $k \ge 1$, has a uniformly convergent subsequence.

Ph.D. Qualifying Examination Sem 2, 2001/2002 Analysis

- 1. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence of real numbers such that $a_n \neq 0$ for all $n \in \mathbb{N}$.
 - (a) Show that

$$\limsup_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} |a_{n+1}/a_n|.$$

- (b) If $\lim_{n\to\infty} |a_{n+1}/a_n|$ exists, show that $\lim_{n\to\infty} |a_n|^{1/n}$ exists and the two limits are equal.
- (c) Give an example where equality does not hold in (a).
- 2. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers.
 - (a) Define $b_0 = 0$ and $c_n = b_n b_{n-1}$ for all $n \in \mathbb{N}$. Show that if $p, q \in \mathbb{N}$, $p \leq q$, then

$$\sum_{n=p}^{q} a_n b_n = \left(\sum_{n=p}^{q} a_n\right) b_{p-1} + \sum_{j=p}^{q} \left(\sum_{n=j}^{q} a_n\right) c_j.$$

- (b) Suppose that $(b_n)_{n=1}^{\infty}$ is increasing and converges to $b \in \mathbb{R}$, and that $\sum_{n=1}^{\infty} a_n$ converges. Let M and m be real numbers such that $m \leq \sum_{n=p}^{q} a_n \leq M$ for all p, $q \in \mathbb{N}$, $p \leq q$. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges and that $mb \leq \sum_{n=1}^{\infty} a_n b_n \leq Mb$.
- (c) If $\sum_{n=1}^{\infty} a_n x^n$ converges for all $x \in [0, 1]$, show that

$$\lim_{x \to 1^{-}} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n.$$

- 3. Let $f: X \to Y$ be a function mapping between metric spaces X and Y. Show that f is continuous on X if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X. (Here \overline{S} denotes the closure of the set S.)
- 4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions from a metric space X into a metric space Y. If $(f_n)_{n=1}^{\infty}$ converges uniformly to a function f on X and $(x_n)_{n=1}^{\infty}$ is a sequence in X that converges to an element $x \in X$, show that $(f_n(x_n))_{n=1}^{\infty}$ converges to f(x).
- 5. Let $f:(0,1] \to \mathbb{R}$ be a continuous function on (0,1]. Show that f is uniformly continuous on (0,1] if and only if $\lim_{x\to 0^+} f(x)$ exists and has a real value.

Ph.D. Qualifying Examination Sem 1, 2002/2003 Analysis

- 1.(a) Let $f:[0,\infty)\to\mathbb{R}$. Suppose that f is continuous on $[0,\infty)$ and differentiable on $[100,\infty)$ with bounded derivatives there. Prove that f is uniformly continuous on $[0,\infty)$.
 - (b) Let $f:(0,1]\to\mathbb{R}$ be continuous. Is f uniformly continuous on (0,1]? Justify your answer.
- 2.(a) State, without proof, the Heine-Borel Theorem.
 - (b) Let δ be a positive function defined on [a, b]. Prove that there exist a finite number of interval-point pairs $([u_i, v_i], x_i)$, with $x_i \in [u_i, v_i] \subset (x_i \delta(x_i), x_i + \delta(x_i))$, $i = 1, 2, \ldots, n$, satisfying the following properties:
 - (i) $(u_i, v_i) \cap (u_i, v_i) = \phi$ for $i \neq j$;
 - (ii) $x_i \in [u_i, v_i]$ for each i; and
 - (iii) $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b].$
- 3.(a) Let $f:[a,b] \to \mathbb{R}$. Suppose that f is unbounded on [a,b]. Prove that there exists a convergent sequence $\{y_n\}$ in [a,b] such that $|f(y_n)| > n$, for each n.
 - (b) Use (a) to prove that if f is continuous on [a, b], then f is bounded on [a, b].
- 4. Let $\{f_n\}$ and $\{g_n\}$ be two sequences of functions defined on [a,b]. Suppose that
 - (i) $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [a, b];
 - (ii) $g_n(x) \leq g_{n+1}(x)$ for all $x \in [a, b]$ and all n; and
 - (iii) there exists a real number L such that $|g_n(x)| \leq L$ for all $x \in [a, b]$ and all n.

Prove that $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on [a,b].

Hint: Use Cauchy Criterion and Abel's partial summation

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

where $B_k = \sum_{i=1}^k b_i$.

5. Let $C^*[0,1]$ be the space of all functions $x:[0,1]\to [0,1]$, which are continuous and x(0)=0. Let $f:[0,1]\times [0,1]\to \mathbb{R}$ be continuous. For each $x\in C^*[0,1]$, define $F(x):[0,1]\to \mathbb{R}$ as follows:

$$F(x)(t) = \int_0^t f(s, x(s)) ds$$
 for $t \in [0, 1]$.

Let $G = \{F(x) : x \in C^*[0,1]\}$. Prove that

- (i) G is sequentially compact i.e., every sequence in G has a subsequence which is uniformly convergent on [0,1];
- (ii) $F: C^*[0,1] \to C[0,1]$ is continuous under the uniform norm $\| \|$, where C[0,1] is the space of all continuous functions on [0,1] and $\|x\| = \sup\{x(t) : t \in [0,1]\}$.

— END OF PAPER —

Ph.D. Qualifying Examination Sem 2, 2002/2003 Analysis

[20 marks]

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. If f'(-1) < 2 and f'(1) > 2, show that there exists $x_0 \in (-1,1)$ such that $f'(x_0) = 2$. (Hint: consider the function f(x) 2x and recall the proof of Rolle's theorem)
- (b) Let $f: (-1,1) \to \mathbb{R}$ be a differentiable function on $(-1,0) \cup (0,1)$ such that $\lim_{x\to 0} f'(x) = l$. If f is continuous on (-1,1), show that f is indeed differentiable at 0 and f'(0) = l.
- (2) Let \mathbb{P}_n be the space of polynomials of degree $\leq n$ on \mathbb{R} for each $n \in \mathbb{N}$. If $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, define [20 marks]

$$\begin{aligned} ||p||_M &= \max\{|a_0|, |a_1|, \cdots, |a_n|\} \\ ||p||_\infty &= \max\{|p(x)| : x \in [0, 1]\}, \text{ and } ||p||_1 = \int_0^1 |p(x)| dx. \end{aligned}$$

- (i) Show that $||\cdot||_1$ is a norm of the space \mathbb{P}_n .
- (ii) Use the fact that $||\cdot||_M$ and $||\cdot||_\infty$ are also norms of \mathbb{P}_n , or otherwise, to show that there exists a positive constant c_n such that

$$|c_n||p||_{\infty} \le ||p||_1 \le (1/c_n)||p||_M$$

for all $p \in \mathbb{P}_n$. (Hint: note that $\mathbb{P}_n \equiv \mathbb{R}^{n+1}$)

(iii) With the help of the Weiestrass approximation theorem, show that there is no positive constant c such that $c_n > c$ for all n. (Note that for each $\varepsilon > 0$, there is a nonnegative continuous function f_{ε} on [0,1] such that $f_{\varepsilon}(0) = 1$ and $||f_{\varepsilon}||_1 < \varepsilon$.)

(3) Prove or disprove each of the following statements.

[40 marks]

- (a) If $f:[1,5] \to [1,5]$ is a continuous function, then there exists $x_0 \in [1,5]$ such that $f(x_0) = x_0$.
- (b) Let $\{f_n\}$ be a sequence of uniformly continuous functions on an interval I. If $\{f_n\}$ converges uniformly to a function f on I, then f is also uniformly continuous on I.
- (c) Let $\{f_n\}$ be a sequence of functions that converges uniformly to a function f on (0,2). If each of the f_n is differentiable on (0,2), then f is also differentiable on (0,2).
- (d) If f is a continuous function on [-1,1], then there exists a constant M > 0 such that $|f(x_1) f(x_2)| \le M|x_1 x_2|$ for all $x_1, x_2 \in [-1, 1]$.
- (e) If f is a uniformly continuous function on (0,5), then there exists a positive number ε such that the function $g(x) = 1/(f(x) + \varepsilon)$ is also uniformly continuous on (0,5).
- (4) Let $g:[0,1]\times[0,1]\to[0,1]$ be a continuous function and let $\{f_n\}$ be a sequence of functions such that

$$f_n(x) = \begin{cases} 0, & 0 \le x \le 1/n, \\ \int_0^{x - \frac{1}{n}} g(t, f_n(t)) dt, & 1/n \le x \le 1. \end{cases}$$

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous function $f:[0,1] \to \mathbb{R}$ such that

$$f(x) = \int_0^x g(t, f(t))dt$$

for all $x \in [0, 1]$. (Hint: first show that $|f_n(x_1) - f_n(x_2)| \le |x_1 - x_2|$.)

— END OF PAPER —

Ph.D. Qualifying Examination Analysis

- 1. In this question, the metric d used is the usual metric d(x,y) = |x-y|.
 - (i) Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. Prove that f is uniformly continuous on D if and only if whenever $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ in D with $d(x_n, y_n) \to 0$ as $n \to \infty$, we have $d(f(x_n), f(y_n)) \to 0$ as $n \to \infty$;
 - (ii) Let $f:[0,1)\to\mathbb{R}$ be continuous. Is f uniformly continuous on [0,1)? Justify your answer; and
 - (iii) Let $f: E \to \mathbb{R}$ be uniformly continuous. Is E closed and bounded? Justify your answer.
- (a) Give four different kinds of metric defined on Rⁿ. (You do not have to justify your answer.);
 - (b) Give a metric d defined on \mathbb{R}^n such that $\|\alpha x\| \neq |\alpha| \|x\|$, where $\|y\| = d(y,0)$; and
 - (c) Let $S \subseteq \mathbb{R}$. Then S is said to have the Bolzano-Weierstrass property if every sequence in S has a convergent subsequence with limit in S.
 - (i) Prove that, under the usual metric d(x,y) = |x-y|, S has the Bolzano-Weierstrass property if and only if S is bounded and closed. (You may use the fact that every bounded sequence has a convergent subsequence.)
 - (ii) Is (i) true for any metric defined on R? Justify your answer.
- 3. (i) Let $\alpha, \beta \geq 0$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $\frac{\alpha^p}{p} + \frac{\beta^q}{q} \geq \alpha\beta$.
 - (ii) Use (i) to prove the following Hölder inquality:

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

4. Let B[0,1] be the space of all bounded functions defined on [0,1]. On B[0,1], define a metric d_{∞} as follows:

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}.$$

Let $f_k \in B[0,1]$, $M_k \in \mathbb{R}$, k = 1, 2, ..., and $|f_k(x)| \leq M_k$ for all $x \in [0,1]$ and all k. Suppose that $\sum_{k=1}^{\infty} M_k < \infty$. Prove that

- (i) $\left(\sum_{k=1}^{n} f_k(x)\right)_{n=1}^{\infty}$ converges in $(B[0,1], d_{\infty})$.
- (ii) if each f_n is continuous on [0,1], then $\sum_{k=1}^{\infty} f_k(x)$ is continuous on [0,1]; and
- (iii) if each f_n is Riemann integrable on [0,1], then $\sum_{k=1}^{\infty} f_k(x)$ is Riemann integrable on [0,1] and $\sum_{k=1}^{\infty} \int_0^1 f_k(x) dx = \int_0^1 \sum_{k=1}^{\infty} f_k(x) dx$.

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2003-2004

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer ALL questions from BOTH sections.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Ph.D. Qualifying Examination Analysis

Notation

 (\mathbb{R}, d_1) denotes the metric space of real numbers with metric $d_1(x, y) = |x - y|$.

 (\mathbb{R}, d_p) denotes the *n*-dimensional Euclidean space with metric $d_p(x, y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}}$, where $p \ge 1$.

 (ℓ_p, d_p) denotes the metric space of real sequences $x = (x_k)_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty} |x_k|^p < \infty$ and

$$d_p(x,y) = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right)^{\frac{1}{p}}$$
, where $p \ge 1$.

 $S_r(x)$ and $S_r[x]$ denote an open sphere and a closed sphere in a metric space resepctively.

 \overline{A} denotes the closure of A in a metric space.

- 1. (a) (i) Let $(X, \|\cdot\|)$ be a normed space. Prove that $\overline{S_r(x)} = S_r[x]$.
 - (ii) Let (X, \hat{d}) be a discrete metric space. Does $\overline{S_r(x)} = S_r[x]$ hold? Justify your answer.
 - (b) For each n=1,2,..., let $S_{\frac{1}{n}}(x_n)$ and $S_{\frac{1}{n}}[x_n]$ be an open sphere and a closed sphere respectively in a complete metric space (X,ρ) . Suppose that for each n, $S_{\frac{1}{n+1}}(x_{n+1}) \subseteq S_{\frac{1}{n}}(x_n)$. Prove that $\bigcap_{n=1}^{\infty} S_{\frac{1}{n}}[x_n]$ is not empty.
- 2. (a) Let $f:([0,1],d_1) \to (\mathbb{R},d_1)$. Suppose for each $x \in [0,1]$, there exists $S_{r_x}(x) = \{y:|x-y| < r_x\}$ such that f is bounded on $S_{r_x}(x)$. Prove that f is bounded on [0,1].
 - (b) (i) Let f and g be uniformly continuous on $A \subseteq \mathbb{R}$, under the standard distance d_1 . Suppose that f and g are bounded on A. Prove that their product fg is uniformly continuous on A.
 - (ii) Give an example to show that (i) does not hold if " f and g are bounded on A" is omitted.

- 3. (a) (i) Let A and B be subsets of \mathbb{R} . Suppose that A is compact and B is closed in (\mathbb{R}, d_1) . Prove that A + B is closed, where $A + B = \{x + y : x \in A, y \in B\}$.
 - (ii) Give an example to show that (i) does not hold if "A is compact" is replaced by "A is closed".
 - (b) Let (X, \hat{d}) be a discrete metric space and $A \subseteq X$. Prove that if A is finite, then A is compact. Is the converse true? Justify your answer.
- 4. (a) Let $(x^{(n)})_{n=1}^{\infty}$ be a squence in \mathbb{R}^m . Prove that $d_p(x^{(n)}, x) \to 0$ as $n \to \infty$ if and only if $d_q(x^{(n)}, x) \to 0$ as $n \to \infty$, where $p, q \ge 1$.
 - (b) Let $x, y \in \mathbb{R}^n$ with $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ define

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i = 1, 2, ..., n\}.$$

Prove that

$$d_{\infty}(x,y) = \lim_{p \to \infty} d_p(x,y).$$

(c) Let $(x^{(n)})_{n=1}^{\infty}$ be a sequence in (ℓ_p, d_p) with $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \ldots)$. Suppose that for each k, $\lim_{n \to \infty} x_k^{(n)} = x_k$ and there exists $y \in \ell_p$ such that $|x_k^{(n)}| \le |y_k|$ for each k and n. Prove that $d_p(x^{(n)}, x) \to 0$ as $n \to \infty$.

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 2 2003-2004

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Ph.D. Qualifying Examination Analysis

1. (a) Discuss the convergence, both pointwise and uniform, of

$$S_n(x) = \frac{nx}{1 + n^2 x^2}, \quad n = 1, 2, \dots$$

on

- (i) [0,1]; and
- (ii) [c, 1], where c > 0.
- (b) Let $S_{m,n}:[a,b]\to\mathbb{R},\,m=1,2,...,n=1,2,...$ Suppose that
 - (i) for each n, $|S_{m,n}(x)| \leq g_n(x)$ for all m and all $x \in [a,b]$;
 - (ii) $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly on [a, b]; and
 - (iii) for each n, $S_{m,n}(x) \to S_n(x)$ on [a,b] as $m \to \infty$.

Prove that $\sum_{n=1}^{\infty} S_n(x)$ converges uniformly on [a, b].

- 2. (a) Let (X, ρ) be a metric space. Prove that (X, ρ) is compact if and only if every class of closed sets with finite intersection property has nonempty intersection. (A class of subsets of X is said to have the finite intersection property if every finite subclass has nonempty intersection.)
 - (b) Let (\mathbb{R}^n, d_2) be the *n*-dimensional Euclidean space with the usual metric d_2 and $E = \prod_{i=1}^n [a_i, b_i]$ a compact subinterval in \mathbb{R}^n . Suppose δ is a positive function defined on E. Prove that there exists a finite collection $\{(I_i, x^{(i)})\}_{i=1}^m$ of intervalpoint pairs, where $x^{(i)} \in I_i \subseteq E$ for all i, such that for each i,

$$x^{(i)} \in I_i \subseteq B(x^{(i)}, \delta(x^{(i)})),$$

where $B(x^{(i)}, \delta(x^{(i)})) = \{ y \in \mathbb{R}^n : d_2(x^{(i)}, y) < \delta(x^{(i)}) \}.$

Hint: Proof by contradiction.

- 3. (a) Let (X, ρ) be a metric space with $x_0 \in X$. Define $f: X \to \mathbb{R}$ by $f(x) = \rho(x, x_0)$. Prove that f is uniformly continuous on X.
 - (b) Let (X, ρ) be a metric space and A a nonempty subset of X. Let $f(x) = dist(x, A) = \inf\{\rho(x, y) : y \in A\}.$
 - Prove that $f: X \to \mathbb{R}$ is continuous. Is f uniformly continuous on X? Justify your answer.
 - (c) Prove that in a separate metric space every uncountable set contains a convergent sequence of distinct points.
- 4. (a) A collection of continuous real-valued functions on a set $S \subseteq \mathbb{R}$ is said to be equicontinuous if for each $\varepsilon > 0$, there is a $\delta > 0$ so that $|f(x) f(y)| \le \varepsilon$ when f is in the collection, x, y are in S and $|x y| \le \delta$.
 - (i) Is the collection $\{\cos nx, n = 1, 2, ...\}$ equicontinuous on $(-\infty, \infty)$? Justify your answer.
 - (ii) Let $\{f_n\}$ be equicontinuous on [a, b] and $f_n \to f$ uniformly on $[a, b] \cap \mathbb{Q}$. Prove that $||f_n f||_{\infty} \to 0$ as $n \to \infty$, where $||g||_{\infty} = \sup\{|g(x)| : x \in [a, b]\}$.
 - (b) Prove that every compact metric space is separable.

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2004-2005

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Ph.D. Qualifying Examination Analysis Sem 2, 2004/2005

Notation.

 $(\mathbb{R}^n, \|\cdot\|_p)$ denotes the *n*-dimensional Euclidean space with norm $\|x\|_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}$, where $p \ge 1$.

 $(R^n, \|\cdot\|_{\infty})$ denotes the *n*-dimensional Euclidean space with norm $\|x\|_{\infty} = \max\{|x_k|; k = 1, 2, ..., n\}$.

 $(\ell_p, \| \|_p)$ denotes the norm space of real sequences $x = (x_k)_{k=1}^{\infty}$ with norm $\|x\|_p = (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} < \infty$, where $p \ge 1$.

 $(\ell_{\infty}, \|\cdot\|_{\infty})$ denotes the norm space of bounded real sequences $x = (x_k)_{k=1}^{\infty}$ with norm $\|x\|_{\infty} = \sup\{|x_k| : k = 1, 2, ...\}.$

- 1. (a) Let $K \subset \mathbb{R}$ consists of 0 and the numbers $\frac{1}{n}$, for $n = 1, 2, 3, \dots$. Prove that every open cover of K contains a finite subcover.
 - (b) A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^2 is separable.
 - (c) A collection $\{V_{\alpha}\}$ of open sets of a metric space X is said to be a base for X if the following is true: For every $x \in X$ and every open set $G \subset X$ such that $x \in G$, we have $x \in V_{\alpha} \subset G$ for some α .

Prove that every separable metric space has a countable base.

2. If E is a nonempty subset of a metric space (X, d), define the distance from $x \in X$ to E by

$$\rho_E(x) = \inf_{z \in E} d(x, z).$$

(a) Prove that

$$\rho_E(x) \le d(x,y) + d(y,z)$$

for all $z \in E$ and all $x, y \in X$.

(b) Prove that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y)$$
 for all $x, y \in X$.

- (c) Suppose K and F are disjoint sets in X, K is compact and F is closed. Prove that
 - (i) ρ_F is a continuous function on the compact set K; and
 - (ii) there exists $\delta > 0$ such that $d(p,q) > \delta$ for all $p \in K$ and all $q \in F$.

Show that the statement (ii) may fail for two disjoint closed sets if neither is compact.

3. (a) Discuss the convergence, both pointwise and uniform, of

$$S_n(x) = \frac{1-x^n}{1-x}, \ n = 1, 2, \dots$$

on
$$(-1,1)$$
.

- (b) Suppose K is compact and
 - (α) $\{g_n\}$ is a sequence of continuous functions on K,
 - (β) $\{g_n\}$ converges to 0 on K,
 - $(\gamma) \ g_n(x) \ge g_{n+1}(x) \text{ for all } x \in K, \ n = 1, 2, 3,$

Let $\varepsilon > 0$ be given and for $n = 1, 2, 3, ..., K_n$ the set of all $x \in K$ with $g_n(x) \ge \varepsilon$.

Prove that

- (i) each K_n is closed and compact;
- (ii) $\bigcap_{n=1}^{\infty} K_n$ is empty; and
- (iii) there exists N such that $0 \le g_n(x) < \varepsilon$ for all $x \in K$ and all $n \ge N$.

- 4. (a) Let $x \in \mathbb{R}^n$, $x^{(m)} \in \mathbb{R}^n$, m = 1, 2, ..., prove that
 - (i) $||x^{(m)}||_p \to 0$ as $m \to \infty$ iff for each k, $x_k^{(m)} \to 0$ as $m \to \infty$, where $x^{(m)} = (x_1^{(m)}, x_2^{(m)}, ..., x_n^{(m)})$; and
 - (ii) $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.
 - (b) (i) Prove that $\ell_p \subset \ell_q$ if $1 \le p \le q \le \infty$.
 - (ii) Is (a)(i) true for $x^{(m)} \in \ell_p, m = 1, 2, ...,$ where $x^{(m)} = (x_1^{(m)}, x_2^{(m)}, ...)$? Justify your answer.

DEPARTMENT OF MATHEMATICS

SEMESTER 2 2004-2005

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Analysis

Sem 1, 2005/2006

- 1. (a) Give an example of an open cover of (0,1) which has no finite subcover.
 - (b) A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover. Prove that every closed subset (relative to X) of a compact set is compact.
 - (c) Let E_n , n = 1, 2, 3, ... be a sequence of countable sets, and $S = \bigcup_{n=1}^{\infty} E_n$. Prove that S is countable.
- 2. (a) Suppose (X, d) is a complete metric space and $\emptyset \neq A_n \subseteq X$ is closed for n = 1, 2, 3, ... and $A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$ with $\lim_{n \to \infty} d(A_n) = 0$. Prove that $\bigcap_{n=1}^{\infty} A_n$ is a singleton set.
 - (b) Let (X,d) be a metric space. Prove that $f: X \to \mathbb{R}$ is continuous if and only if for each open set G in \mathbb{R} , $f^{-1}(G)$ is open in X.
- 3. (a) Prove that $\sum_{k=1}^{\infty} \frac{\sin kx}{k^2}$ is uniformly convergent on $(-\infty, \infty)$.
 - (b) Consider the sequence $\{S_n(x)\}\$ defined on [0,1] by

$$S_n(x) = \begin{cases} n - n^2 x & \text{if } x \in (0, \frac{1}{n}) \\ 0 & \text{otherwise.} \end{cases}$$

Does $\{S_n(x)\}\$ converge uniformly on [0,1]? Justify your answer.

- (c) Is the uniform limit of a sequence of differentiable functions on [-1, 1] differentiable on [-1, 1]? Justify your answer.
- 4. Let $f:[a,b] \to \mathbb{R}$. Then f is said to be regulated if for each $x \in [a,b]$, $\lim_{t \to x-} f(t)$ and $\lim_{t \to x+} f(t)$ exist.

Use the Heine-Borel open covering theorem to prove that if f is regulated on [a, b], then for each $\epsilon > 0$, there exists a finite sequence $a = t_0 < t_1 < t_2 < ... < t_n = b$ such that for each i = 1, 2, ..., n and any two points t', t'' with $t_{i-1} < t' < t'' < t_i$, we have

$$|f(t'') - f(t')| \le \epsilon.$$

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2005-2006

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Analysis

Sem 2, 2005/2006

Do All Questions

- 1. (i) Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n, q_n)\}$ converges.
 - (ii) Let $\{E_n\}$ be a sequence of closed and bounded sets in a complete metric space. If $E_n \supset E_{n+1}$ for all n and $\lim_{n \to \infty} \operatorname{diam} E_n = 0$, prove that $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point. Can the condition "complete" be omitted? Justify your answer.
- 2. (i) Let d be a discrete metric defined on \mathbb{R} . What sets are open in (\mathbb{R}, d) ? What functions are uniformly continuous on (\mathbb{R}, d) ? Justify your answers.
 - (ii) A metric space is called separable if it contains a countable dense subset. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.
- 3. (i) Let B[0,1] be the space of all bounded functions defined on [0,1]. Give a norm $\|\cdot\|$ defined on B[0,1] such that $\|f_n f\| \to 0$ as $n \to \infty$ if and only if $\{f_n\}$ converges to f uniformly on [0,1].
 - (ii) Suppose $\{f_n\}$ converges to f uniformly on [0,1] and $\lim_{t\to x} f_n(t)$ exists for each n. Prove that
 - (i) $\lim_{n\to\infty} \lim_{t\to x} f_n(t)$ exists, and
 - (ii) $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$.
- 4. (a) Let f be an increasing function defined on (a,b). Prove that
 - (i) f(x+) and f(x-) exist at every point of x in (a.b),
 - (ii) the set of points in (a, b) at which f is discontinuous is at most countable.
 - (b) If f is continuous on [0,1] and if

$$\int_0^1 f(x)x^n dx = 0, \quad n = 0, 1, 2, ...,$$

prove that f(x) = 0 on [0, 1].

DEPARTMENT OF MATHEMATICS

SEMESTER 2 2005-2006

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 4 hours

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions.
- 2. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

Ph.D. Qualifying Examination Analysis Sem 1, 2006/2007

Answer All Questions

- 1. A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.
 - (a) Prove that if K is a compact subset in a metric space X, the K is closed and bounded. Is the converse true? Justify your answer.
 - (b) Prove that if $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.
- 2. Let $\delta : [0,1] \times [0,1] \to (0,\infty)$. Use Q.1(b) to show that there exist finite collections of nonoverlapping rectangles $\{I_k\}_{k=1}^n$ and points $\{x_k\}_{k=1}^n$ such that $x_k \in I_k \subseteq B(x_k, \delta(x_k))$ and $\bigcup_{k=1}^n I_k = [0,1] \times [0,1]$, where $B(x, \delta(x)) = \{y \in [0,1] \times [0,1]; d(x,y) < \delta(x)\}$ and d is the euclidean metric on \mathbb{R}^2 .
- 3. (a) Prove that a function $f:(a,b)\to\mathbb{R}$ is uniformly continuous on (a,b) if and only if it can be extended to a function \hat{f} that is continuous on [a,b].
 - (b) Let f and g be real-valued functions that are uniformly continuous on a compact set $D \subseteq \mathbb{R}$. Suppose that $g(x) \neq 0$ for all $x \in D$. Is $\frac{f}{g}$ uniformly continuous on D? Justify your answer.
- 4. The family \mathcal{F} of functions from the metric space (S,d) to the metric space (T,ρ) is called equicontinuous on S if given any $\varepsilon > 0$ there is a $\delta > 0$ such that for every $f \in \mathcal{F}$, $\rho(f(x_1), f(x_2)) < \varepsilon$ whenever $d(x_1, x_2) < \delta$. Prove that if (S,d) is a compact metric space and the sequence $f_n : S \to T$ is equicontinuous on S and $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in S$ then the sequence $\{f_n\}$ converges uniformly to f on S.

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2006-2007

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

Answer **ALL** questions.

Analysis

Sem 2, 2006/2007

1. (a) Let E be a nonempty subset of \mathbb{R} and suppose that $f_k, g_k : E \to \mathbb{R}, k \in \mathbb{N}$, if

$$\left| \sum_{k=1}^{n} f_k(x) \right| \le M < \infty$$

for $n \in \mathbb{N}$ and $x \in E$, and if $g_k \downarrow 0$ uniformly on E as $k \to \infty$, prove that $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly on E.

(Abel's formula:
$$\sum_{k=m}^{n} a_k b_k = A_{n,m} b_n - \sum_{k=m}^{n-1} A_{k,m} (b_{k+1} - b_k)$$
, where $A_{n,m} = \sum_{k=m}^{n} a_k$).

(b) Prove that, for each $x \in (0, 2\pi)$,

$$\left| \sum_{k=1}^{n} \cos(kx) \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}$$

(Formula: $2 \sin \alpha \cos \beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$).

- (c) Prove that if $a_k \downarrow 0$ as $k \to \infty$, then $\sum_{k=d}^{\infty} a_k \cos(kx)$ converges uniformly on any closed subinterval [a, b] of $(0, 2\pi)$.
- 2. A metric space is called separable if it contains a countable dense subset. A subset K of a metric space is said to be compact if every open cover of K contains a finite subcover.

Prove that every compact metric space is separable.

- 3. $f:[a,b] \to \mathbb{R}$ be bounded.
 - (i) The oscillation of f on an interval J that intersects [a, b] is defined to be

$$\Omega_f(J) := \sup_{x,y \in J \cap [a,b]} (f(x) - f(y)).$$

(ii) The oscillation of f at a point $t \in [a, b]$ is defined to be

$$\omega_f(t) := \lim_{h \to 0_+} \Omega_f((t - h, t + h)).$$

Prove that

- (a) f is continuous at $t \in [a, b]$ if and only if $\omega_f(t) = 0$.
- (b) let E represent the set of points of discontinuity of f in [a, b]. Prove that

$$E = \bigcup_{j=1}^{\infty} \left\{ t \in [a, b] : \omega_f(t) \ge \frac{1}{j} \right\}.$$

(c) For each $\varepsilon > 0$, let

$$H = \{t \in [a, b] : \omega_f(t) \ge \varepsilon\}.$$

Prove that H is compact.

(Hint: H is compact if and only if H is bounded and closed.)

- (d) Let I be a closed subinterval of [a,b] and $\varepsilon > 0$. If $\omega_f(t) < \varepsilon$ for all $t \in I$, prove that there exists $\delta > 0$ such that $\Omega_f(J) < \varepsilon$ for all closed subintervals J of I that satisfy $|J| < \delta$.
- 4. Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann-intergrable on [a, b], and put

$$F_n(x) = \int_a^x f_n(t)dt, \quad (a \le x \le b).$$

Prove that there exists a subsequence $\{F_{n_k}\}$ of $\{F_n\}$ which converges uniformly on [a,b].

Analysis

Sem 1, 2007/2008

1. (a) A subset K of a metric space X is said to be compact if every open conver of K contains a finite subcover.

Prove that compact subsets of metric spaces are closed.

(b) A subset E of a metric space X is said to be perfect if E is closed and if every point of E is a limit point of E.

Prove that if E is a non-empty perfect set of \mathbb{R} . Then E is uncountable.

- (c) Prove that the open interval (a, b) is uncountable.
- 2. (a) Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuous, $n = 1, 2, \dots$ Suppose that

$$f(x) = \sum_{n=0}^{\infty} f_n(x)$$
 exists for every $x \in \mathbb{R}$.

Is $f: \mathbb{R} \to \mathbb{R}$ continuous? Justify your answer.

(b) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that

$$\lim_{t \to x} f_n(t) = A_n, \quad n = 1, 2, \dots$$

Prove that $\lim_{n\to\infty} A_n$ exists and

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

(c) Let $\{f_n\}$ be a sequence of continuous functions on (0,1) such that $\{f_n\}$ converges pointwise to a continuous function on (0,1) and $f_n(x) \geq f_{n+1}(x)$ for all $x \in (0,1)$, n = 1, 2, ...

Does $\{f_n\}$ converge uniformly to f on (0,1)? Justify your answer.

3. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$, let $\alpha > 0$. If there exists a constant k > 0 such that

$$|f(x) - f(y)| \le k|x - y|^{\alpha}$$

for all $x, y \in A$, then f is said to be a Lipschitz function of order α on A.

- (a) Suppose f is a Lipschitz function of order α on (0,1) where $\alpha > 1$. Prove that f is differentiable on (0,1) and find its derivative f'.
- (b) Give an example of a Lipschitz function of order $\frac{1}{2}$ but not of order 1 on [0,1].
- (c) Is every uniformly continuous function on [0, 1] is a Lipschitz function of order 1? Justify your answer.
- 4. (a) Let $f_n : [0,1] \to \mathbb{R}$ be continuous, n = 1, 2, Suppose $\{f_n\}$ converges uniformly on [0,1]. Prove that $\{f_n\}$ is equicontinuous on [0,1].
 - (b) Let f_n: [0,1] → ℝ be continuous, n = 1,2,.... Suppose {f_n} is pointwise bounded and equicontinuous on [0,1]. Prove that (i) {f_n} is uniformly bounded on [0,1];
 (ii) {f_n} contains a uniformly convergent subsequence.

DEPARTMENT OF MATHEMATICS

 $\mathbf{SEMESTER}\ 1\ 2007\text{-}2008$

Ph.D. QUALIFYING EXAMINATION

PAPER 2

Time allowed: 4 hours

INSTRUCTIONS TO CANDIDATES

Answer **ALL** questions.

DEPARTMENT OF MATHEMATICS

SEMESTER 1 2008-2009

Ph.D. QUALIFYING EXAMINATION

PAPER 2

ANALYSIS

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

1. Answer ALL questions.

Year 2008-2009, Semester I

Analysis

Part 1. (65 marks)

- 1. [5 points each] Each of the following statements is either TRUE or FALSE. Prove the true statements and give counterexamples to the false statements.
 - (a) Let X and Y be metric spaces. A function $f: X \to Y$ is uniformly continuous on X if and only if it maps Cauchy sequences in X onto Cauchy sequences in Y.
 - (b) If f is a real-valued function defined on \mathbb{R}^2 such that f_x and f_y exist on \mathbb{R}^2 and are bounded there, then f is continuous on \mathbb{R}^2 .
 - (c) Let $(r_n)_{n=1}^{\infty}$ be an arbitrary sequence of numbers in [0, 1]. The series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{|x-r_n|}}$$

converges for almost all x in [0,1].

- 2. [10 points] Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation on [a,b]. For any $x \in [a,b]$, let V(x) be the variation of f on [a,x]. Show that if V is absolutely continuous on [a,b], then so is f.
- 3. [10 points] Let f_1 and f_2 be nonnegative Lebesgue measurable functions on \mathbb{R} . Suppose that the sets $\{x: f_1(x) > a\}$ and $\{x: f_2(x) > a\}$ are equal in measure for all a > 0. Prove that f_1 is Lebesgue integrable if and only if f_2 is Lebesgue integrable; in which case, show that $\int f_1 = \int f_2$.
- 4. [15 points] Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} and assume that f' is continuous on \mathbb{R} . Define $F: \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \int_0^x f(x+t) dt.$$

Show that F is differentiable on \mathbb{R} and that, for all $a \in \mathbb{R}$,

$$F'(a) = f(2a) + \int_0^a f'(a+t) \, dt.$$

- 5. [15 points] Let $(f_n)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable functions on [0,1] such that
 - (a) $\sup_n \int_0^1 |f_n| < \infty$,
 - (b) For all $\epsilon > 0$, there exists $\delta > 0$ so that $\sup_n \int_E |f_n| < \epsilon$ for every measurable subset E of [0,1] with $|E| < \delta$.

Show that if $(f_n)_{n=1}^{\infty}$ converges almost everywhere on [0,1] to a function f, then f is integrable on [0,1] and $\int_0^1 f = \lim_{n\to\infty} \int_0^1 f_n$. (It may be helpful to consider the functions $\max(\min(f_n,N),-N)$ for $N\in\mathbb{N}$.)

Part 2 (35 marks)

6. [13 marks]

(a) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function in the complex plane \mathbb{C} . Let z_o be a point in \mathbb{C} , and let C be the unit circle $|z-z_o|=1$ centered at z_o and oriented in the counterclockwise direction. It is given that $f(z) \neq f(z_o)$ for all z inside or on C except z_o ,

$$f'(z_o) = 2$$
, $f''(z_o) = 3$ and $\int_C \frac{f'(z)}{f(z) - f(z_o)} dz = 2\pi i$.

Evaluate the integral $\int_C \frac{1}{(f(z) - f(z_o))^2} dz$. Justify your answer.

- (b) Solve the equation $4 + \cos z = 2 \sinh(iz)$. Express your answers in Cartesian form.
- 7. [12 marks] Let $D:=\{z\in\mathbb{C}:|z|<2\}$ denote the disc of radius 2 and centered at the origin in the complex plane \mathbb{C} . Suppose the function $f:D\setminus\{\frac{i}{2}\}\to\mathbb{C}$ is analytic in $D\setminus\{\frac{i}{2}\}$, and f has a simple pole at the point $z=\frac{i}{2}$. Let $\sum_{n=0}^{\infty}a_nz^n$ denote the Maclaurin series of f. It is also given that $a_n\neq 0$ for all $n\geq 0$. Is it true that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = -2i?$$

Justify your answer.

8. [10 marks] Let $f: \mathbb{C} \to \mathbb{C}$ be a <u>non-constant</u> entire function in the complex plane \mathbb{C} such that f(z+i) = f(z) for all $z \in \mathbb{C}$. Let U be an open subset of \mathbb{C} , and let $z_o \in U$. Suppose $g: U \setminus \{z_o\} \to \mathbb{C}$ is an analytic function on $U \setminus \{z_o\}$. It is given that z_o is not a removable singularity of g. Is it true that $f \circ g$ has an essential singularity at z_o ? Justify your answer.