Proposition 1.4. Taylor's Inequality

Let f(x) be (N+1)-times differentiable on x=a. Let $T_N(x)$ be the N^{th} degree Taylor polynomial of f(x) about the base point x=a with remainder term $R_N(x)$. Let $[a_L,a_U]$ be an interval containing the base point x=a.

$$|R_N(x)| \le \frac{|x-a|^{N+1}}{(N+1)!} (M)$$

for some $M \in \mathbb{R}$ such that $|f^{(n+1)}(x)| \leq M$ for all $x \in [a_L, a_U]$. That is, M is an upper bound on the $(n+1)^{\text{th}}$ derivative. When convenient, M is sometimes chosen using

$$M = \max \Bigl\{ \Bigl| f^{(N+1)}(c) \Bigr| : c \in [a_L, a_U] \Bigr\}$$

to get a stricter bound on the remainder term.

O Calculate cos(i) using Tu(x) of fix) -cos(x) about a=0. Find N such that cos(i) to 5 deciral places. soln: It find a bound involving cos(i), consider the interval to, 17.

Since
$$f^{(N+1)} = \pm askx$$
 or $f^{(N+1)} = \pm sin(x)$, choose $M = 1$.

To be accurate to N decimal places, we want $|\text{Emax}| < \frac{1}{2}10^{-10}$. Consider x=1.

$$| \text{Tot Shearnal places} : | R_N(x) | \leq \frac{|1-0|^{(N+1)}!}{(N+1)!} M = \frac{1}{(N+1)!} (1) < \frac{1}{2} (10^{-5})$$

To solve $\frac{1}{(N+D)!} < \frac{1}{2}(10^5)$, we can find N minimal and that $(N+1)! > 2(10^5) = 200 000$; We apply brish fince and we the first as N increases, (N+D)! increases.

tor N=7: 8! = 40 320 \$ 200 000; tor N=8: 9! = 362 880 > 200 000; So, N=8 books.

The 8 decimal places: Tind N minimal ends that (N+1)! > 2(108);

2 Let To(x) be the 5th deg Taylor poly of fix) = cos(x) about α =0; tind all values of x \in [-1,1] guid that $|R_{c}(x)|$ < 0.00214;

Fecull that
$$f^{(n)}(x) = \begin{cases} \cos(x) & \text{if } n = 4k \\ -\sin(x) & \text{if } n = 4k+1 \\ -\cos(x) & \text{if } n = 4k+2 \end{cases}$$
 for some $k \in \mathbb{Z}$.

Thus, $f^{(i)}(x) = -\cos(x)$; By proporties of $\cos(x)$: max $\frac{1}{2}|\cos(x)|$: $x \in [-1,1]$ $\frac{1}{2}$ = $\cos(1) \approx 0.540 < 0.541$

By Taylor's inequality with
$$M = 0.541$$
: $|R_s(x)| \leq \frac{|x-0|^6}{(5+1)!} M = \frac{|x|^6}{6!} (0.541) < 0.00214$

By symmetry of x^{b} , we can assume $x \ge 0$.

 $\frac{x^{6}}{6!}(0.541) < 0.00214 \text{ i } x^{6} < 2.99767...; (x^{6})^{\frac{1}{6}} = x < (2.99767)^{\frac{1}{6}} = 1.20078...$ Hefre, all $x \in (-1.20, 1.20)$ yields $|R_{c}(x)| < 0.00214$.

Since $f(x) = x^{\frac{1}{6}}$ is increasing.

Therefore, all $x \in (-1.20, 1.20)$ yields | $R_c(x)$ | < 0.00214.

: All values within X & [-1, 1] satisfy | Re(X) | < 0.002147