Wann nennt man eine Abbildung Diffeomorphismus?	Seien $U,V\subseteq\mathbb{R}^n$ offen. Eine Abbildung $\Psi:U\to V$ heißt Diffeomorphismus, falls Ψ bijektiv und sowohl Ψ als auch $\Psi^{-1}:V\to U$ stetig diff'bar sind.
definition mathe2::1sem::untermanigfaltigkeiten 2cf30783-9699-47b2-b8a6-ecc059beea33	
Was heißt es, dass eine Abbildung regulär ist?	Sei $T\subseteq\mathbb{R}^k$ offen. Eine Abbildung $\Phi:T\to\mathbb{R}^n$ heißt $regul\"{a}r$, falls Φ injektiv und stetig diff'bar ist, Φ' den Rang k hat und $\Phi^{-1}:\Phi[T]\to T$ stetig ist.
definition, 1.1.1 mathe2::1sem::untermanigfaltigkeiten 212ab856-acf1-4148-9516-48d4263c7ccf	
Eine Teilmenge $M\subseteq\mathbb{R}^n$ heißt k -dimensionale Untermannigfaltigkeit (UM) des \mathbb{R}^n , wenn	$\forall_a \in M \exists$ offene Mengen $U, V \subseteq \mathbb{R}^n$ mit $a \in U$ (d.h. U ist offene Umgebung von a) und ein Diffeomorphismus $\Psi: U \to V$ so, dass $\Psi\left[U \cap M\right] = \left\{(y_1, \dots, y_n) \in V; y_{k+1} = \dots = y_n = 0\right\}$ $= V \cap \left(\mathbb{R}^k \times 0_{n-k}\right)$
Jede $(n-1)$ -dim. Untermannigfaltigkeit des \mathbb{R}^n heißt	Hyperfläche.

definition, 1.1.2 mathe2::1sem::untermanigfaltigkeiten

e673a838-a7d8-428f-8d73-159052a44c8d

e673a838-a7d8-428f-8d73-159052a44c8d

definition, 1.1.2 mathe2::1sem::untermanigfaltigkeiten

Was ist eine Hyperfläche?	Jede $(n-1)$ -dim. Untermannigfaltigkeit des \mathbb{R}^n .
definition, 1.1.2 mathe2::1sem::untermanigfaltigkeiten e673a838-a7d8-428f-8d73-159052a44c8d	definition, 1.1.2 mathe2::1sem::untermanigfaltigkeiten e673a838-a7d8-428f-8d73-159052a44c8d
M ist eine k -dim. Untermannigfaltigkeit des \mathbb{R}^n . Wie lässt sich M als $Nullstellenmenge$ definieren?	$\forall_a \in M \; \exists$ eine offene Umgebung $U \subseteq \mathbb{R}^n$ von a und $n-k$ stetig diff'bare Funktionen $f_1,\ldots,f_{n-k}:U \to \mathbb{R}$ so, dass $M \cap U = \left\{x \in U; f_1(x) = \cdots = f_{n-k}(x) = 0\right\}$ und $\operatorname{Rang} \frac{\partial (f_1,\ldots,f_{n-k})}{\partial (x_1,\ldots,x_n)} = n-k$ Das heißt, dass die f_i linear unabhängig sind.
M ist eine k -dim. Untermannigfaltigkeit des \mathbb{R}^n . Wie lässt sich M als $Graph$ definieren?	$\forall_a \in M$ gibt es (evt. nach geeigneter Umnummerierung der Koordinaten) offene Umgebungen $U' \in \mathbb{R}^k$ von $a' = (a_1, \ldots, a_k), \ U'' \subseteq \mathbb{R}^{n-k}$ von $a'' = (a_{k+1}, \ldots, a_n)$, sowie eine stetig diff'bare Abbildung $g: U' \to U''$ so, dass $M \cap \left(U' \times U''\right) = \left\{(x', x'') \in U' \times U''; x'' = g(x')\right\} = G(g)$
M ist eine k -dim. Untermannigfaltigkeit des \mathbb{R}^n . Wie lässt sich M mittels der $Parameterdarstellung$ definieren?	$\forall_a \in M \exists$ eine offene Umgebung $U \subseteq \mathbb{R}^n$ von a , eine offene Menge $T \subseteq \mathbb{R}^k$, sowie eine reguläre Abbildung $\Phi: T \to \mathbb{R}^n$ mit $\Phi(T) = U \cap M = : W$

Wann spricht man von einer <i>globalen Parametrisierung</i> einer	Φ und T wie in der Definition der Parameterdarstellung.
UM M ?	(Φ, T) heißt globale Parametrisierung falls
	$\Phi(T) = M$
	Sonst spricht man von einer lokalen Parametrisierung.
definition, 1.1.4 mathe2::1sem::untermanigfaltigkeiten 5b549aaf-88d1-4853-b2f0-cd81b664ca36	
$\Psi = \Phi^{-1}$, $W = T \cap M$. Φ , T und a wie in der Definition der Parameterdarstellung. Wie nennt man (Ψ, W) und wie heißen die Komponenten von $(t_1, \ldots, t_k) := \Psi(a)$?	(Ψ,W) heißt $Karte\ um\ a$ und die Komponenten des Vektors $\Psi(a)$ heißen $lokale\ Koordinaten\ von\ a.$
M eine UM. Ein $Atlas\ von\ M$ ist	ein System von Karten, das M überdeckt.
definition, 1.1.4 mathe2::lsem::untermanigfaltigkeiten 5b549aaf-88d1-4853-b2f0-cd81b664ca36	
Wie lautet der Satz über die Parametertransformation (Kartenwechsel)?	Seien M eine k -dimensionale UM des \mathbb{R}^n , $a \in M$, (Ψ_1, W_1) , (Ψ_2, W_2) zwei Karten $((\Phi_1, T_1), (\Phi_2, T_2)$ sind die entsprechende Parametrisierungen.) um $a \in M$ mit $W := W_1 \cap W_2 \neq \emptyset$.
	Dann sind $S_i = \Psi_i(W)$ offene Teilmengen von T ; und $h := \Psi_2 \circ \Psi_1^{-1} : S_1 \to S_2$ ist ein Diffeomorphismus.
	Die Abbildung h heißt $Kartenwechsel$.

c15dec62-ecbb-4a35-810c-b5b55fe4e76f

satz, kartenwechsel, 1.1.5 mathe2::1sem::untermanigfaltigkeiten

Sei M eine UM des \mathbb{R}^n und $a\in M$. Ein Vektor $v\in\mathbb{R}^n$ heißt $Tangentialvektor\ an\ M\ in\ a,\ \text{wenn}\ \dots$	es eine stetige, diff'bare Abbildung $\alpha:(-\varepsilon,\varepsilon)\to M$ gibt mit $\alpha(0)=a,\alpha'(0)=v.$
Sei M eine UM des \mathbb{R}^n und $a \in M$. Wie ist ein Tangentialraum an M in a definiert? definition, tangentialraum, 1.2.1 mathe2::1sem::untermanigfaltigkeiten f73c2014-1545-4520-a56b-c027b06b8bbe	Ein $Tangential raum \ an \ M$ in a ist die Menge aller Tangential vektoren an M in a und wird mit $T_a(M)$ bezeichnet.
Sei M eine UM des \mathbb{R}^n und $a \in M$. Ein Vektor $w \in \mathbb{R}^n$ heißt $Normalenvektor$ an M in a , wenn	$\forall v \in T_a(M): w \perp v$ (d.h. orthogonal bzgl. des kanonischen Skalarprodukts im \mathbb{R}^n).

Sei Meine UM des \mathbb{R}^n und $a\in M.$ Wie ist ein Normalraum

Ein Normalraum an M in a ist die Menge aller Normalenvektoren an M in a und wird mit $N_a(M)$ bezeichnet.

definition, tangentialraum, 1.2.1 mathe2::1sem::untermanigfaltigkeiten

 $an\ M\ in\ a\ {
m definiert?}$

f73c2014-1545-4520-a56b-c027b06b8bbe

Seien M eine k-dimensionale UM des $\mathbb{R}^n, a \in M$. Wie lässt sich eine Basis von $T_a(M)$ mittels einer Parameterdarstellung finden?

 $T_a(M)$ ist ein k-dimensionaler Vektorraum. Ist eine lokale Parameterdarstellung $(\Psi,T),$ also:

 $T \subseteq \mathbb{R}^k, \Phi: T \to M \quad \text{und} \quad c \in T \quad \text{mit} \quad \Phi(c) = a,$

dann bilden die Vektoren

$$\frac{\partial \Phi}{\partial t_1}(c), \dots, \frac{\partial \Phi}{\partial t_k}(c)$$

eine Basis von $T_a(M)$.

Wird M lokal als Nullstellenmenge gegeben, wie lässt sich eine Basis für $N_a(M)$ finden?

 $T_a(M)$ ist ein k-dimensionaler Vektorraum. Ist M lokal als Nullstellenmenge gegeben (Beschreibung durch Gleichungen) mit $U \subseteq \mathbb{R}^n$,

$$f = (f_1, \dots f_{n-k}) : U \to \mathbb{R}^{n-k},$$

$$a \in M \cap U = \left\{ x \in U; f(x) = 0 \right\},$$

$$\operatorname{Rang} \frac{\partial (f_1, \dots, f_{n-k})}{\partial (x_1, \dots x_k)}(a) = n - k.$$

Dann bilden die Vektoren $\operatorname{grad} f_1(a), \dots, \operatorname{grad} f_{n-k}(a)$ eine Basis für $N_a(M)$.

Sei M eine 2-dimensionale UM des \mathbb{R}^n . Wie ist *Inhalt von* M definiert?

Es gäbe eine Parameterdarstellung $\Phi: T \to \Phi[T] = M$, wobei T offen und jordanmessbar, und die partiellen Ableitungen von Φ seien beschränkt auf T.

Unter dem $Inhalt\ von\ M$ versteht man:

$$|M| := \int_T \underbrace{\left\| \Phi_{t_1}(t_1, t_2) \times \Phi_{t_2}(t_1, t_2) \right\| dt_1 dt_2}_{dS}$$

Man nennt dS das (2-dim.) Flächenelement (bzgl. Φ).

Sei M eine 2-dimensionale UM des \mathbb{R}^n . Wie definiert man $\int_M f \, \mathrm{d}S$?

Es gäbe eine Parameterdarstellung $\Phi: T \to \Phi[T] = M$, wobei T offen und jordanmessbar, und die partiellen Ableitungen von Φ seien beschränkt auf T. Sei $f: M \to \mathbb{R}$ eine beschränkte stetige Funktion.

$$\int_{M} f \, \mathrm{d}S := \int_{M} f(x) \, \mathrm{d}S(x)$$

$$:= \int_{T} f(\Phi(t)) \cdot \left\| \Phi_{t_1}(t_1, t_2) \times \Phi_{t_2}(t_1, t_2) \right\| \, \mathrm{d}t_1 \, \mathrm{d}t_2$$

definition, integration, 1.3.1 mathe2::1sem::untermanigfaltigkeiten

b2af8cc4-0ef4-46d4-9247-8bf66f5cb955

Das Volumen des k -Para niert als	allelepipeds $P(a^{(1)}, \dots a^{(k)})$ ist defi-	

$$V_k(a^{(1)}, \dots a^{(k)}) \coloneqq \sqrt{\det(A^{\mathsf{T}}A)}$$

definition, integration, 1.3.3 mathe2::1sem::untermanigfaltigkeiten a1d2cd27-52ad-4d38-b96b-1ed983795210

Seien (Φ, T) eine lokale Parametrisierung, $t \in T$. Wie sind der metrischer Tensor von $\Phi(g_{ij})$ und $g := \det(g_{ij})$ definiert?

$$(g_{ij}) := (\Phi')^{\mathsf{T}} \Phi' = \left(\left\langle \frac{\partial \Phi}{\partial t_i}, \frac{\partial \Phi}{\partial t_j} \right\rangle \right)$$

 $g := \det(g_{ij}) = \det\left((\Phi')^{\mathsf{T}} \Phi' \right)$

Sei $M \subseteq \mathbb{R}^n$ eine k-dim. UM. Sei $M \to \mathbb{R}$ eine Funktion. Was heißt es, dass f über M integrierbar ist?

Es liege einer der folgenden Fälle vor:

- 1. \exists eine globale Parametrisierung (Φ, T) .
- 2. $\Phi: T \to M$ sei eine lokale Parameterdarstellung, f habe einen kompakten Träger supp $f \subseteq \Phi[T]$ (d.h. $f \circ \Phi$ hat kompakten Träger in T).

Dann heißt f über M integrierbar, falls $f(\Phi(t))\sqrt{g(t)}$ über T integrierbar ist. In diesem Fall setzt man

$$\int_M f(x) \, \mathrm{d} S(x) \coloneqq \int_T f(\Phi(t)) \cdot \sqrt{g(t)} \, \mathrm{d} t.$$

Sei $M \subseteq \mathbb{R}^n$ eine k-dim. UM. Wie definiert man den k-dim.

Sei (Φ,T) eine globale Parametrisierung von M. Dann ist $|M| \coloneqq \int_T \sqrt{g(t)} \, \mathrm{d}t.$

Inhalt von M (|M|)?

definition, integration, 1.3.6 mathe2::1sem::untermanigfaltigkeiten

20f0663e-1658-48dc-81d7-1e68b6d4cfa7

Wie lautet der Satz über die Unabhängigkeit der Integration von der Parameterdarstellung?

Sei $M \subseteq \mathbb{R}^n$ eine k-dim. UM des \mathbb{R}^n , seien (Φ_1, T_1) und (Φ_2, T_2) lokale Parameterdarstellungen mit $V = \Phi_1[T_2] = \Phi_2[T_2]$, und habe $f: M \to \mathbb{R}$ kompakten Träger mit supp $f \subseteq V$. Dann gilt

$$\int_{T_1} f(\Phi_1(t)) \cdot \sqrt{g^{(1)}(t) dt} = \int_{T_2} f(\Phi_2(s)) \cdot \sqrt{g^{(2)}(s) ds}$$

Dabei ist $g^{(i)}$ die Determinante des zu Φ_i gehörenden Tensors.

Sei $K \subseteq \mathbb{R}^n$ kompakt, $U_1, \dots U_k \subseteq \mathbb{R}^n$ offen mit $K \subseteq \bigcup_{j=1}^k U_j$. Dann \exists die der $U_1 \dots U_k$ untergeordnete Zerlegung der Eins auf K. Wie ist sie definiert?

Die Zerlegung besteht aus Funktionen $\phi_1 \dots \phi_k \in C_c^{\infty}(\mathbb{R}^n)$ mit folgenden Eigenschaften:

- 1. $\forall_j \in \{1, \dots, k\} : \operatorname{supp} \phi_j \subseteq U_j, 0 \le \phi \le 1$
- 2. $\forall_x \in K : \sum_{j=1}^k \phi_j(x) = 1$

Sei K eine Menge, wann ex. eine Partition der Eins auf K?

Wenn $K \subseteq \mathbb{R}^n$ und kompakt und \exists offene Mengen $U_1, \dots U_k \in \mathbb{R}^n$ mit $K \subseteq \bigcup_{j=1}^k U_j$.

Wie definiert man einen Integral einer Funktion f über eine k-dim. UM M des \mathbb{R}^n , wenn es keine globale Parametrisierung gibt? Was wird vorausgesetzt?

Es seien gegeben:

- $f \in C_c^{\infty}(M) \Rightarrow \exists$ lokale Parametrierungen $\Phi_j : \mathbb{R}^k \supseteq U_j \to V_j \subseteq M(j \in \{1, \dots, m\})$ mit supp $f \subseteq \bigcap_{j=1}^m V_j$.
- offene Mengen $W_i \in \mathbb{R}^n$ mit $V_i = M \cap W_i$.
- Eine der Überdeckung $W_1 \dots$ zugeordnete Zerlegung der Eins auf supp $f: \phi_1, \dots \phi_m$.

Dann setzt man:

$$\int_M f(x) \, \mathrm{d}S(x) \coloneqq \sum_{j=1}^m \int_{V_j} (\phi_j f)(x) \, \mathrm{d}S(x).$$

Seien V ein k -dim. Vektorraum, $B_1 = (v_1, \ldots, v_k)$, $B_2 = (w_1, \ldots, w_k)$ zwei Basen von V . B_1 und B_2 heißen $gleich$ - $orientiert$, falls

 $\det A > 0$

wobei $A = (a_{ij})$ über

$$\forall_i \in \{1, \dots' k\} : w_i = \sum_{j=1}^k a_{ij} v_j$$

definiert ist.

Ist $F: \mathbb{R}^n \to \mathbb{R}^n$ orientierungserhaltend und bzgl. der kanonischen Basis durch die Matrix C dargestellt, dann gilt:

 $\det C > 0$

definition, orientierung, 1.4 mathe2::1sem::untermanigfaltigkeiten

definition, orientierung, 1.4 mathe2::1sem::untermanigfaltigkeiten

b63f7742-3cb5-48c1-a1e6-ad3c22476935

b63f7742-3cb5-48c1-a1e6-ad3c22476935

Worüber wird die Orientierung einer UM definiert?

Tangentialräume

Sei M eine k-dim. UM des \mathbb{R}^n . Eine Basis in $T_a(M)$ heißt positiv orientiert , wenn...

sie das Bild einer positiv orientierten Basis in \mathbb{R}^k unter $\Phi'(c)$ ist. Wobei

$$\Phi: \mathbb{R}^k \supseteq T \to M \subseteq \mathbb{R}^n$$

eine Parametrisierung und $\Phi(c) = a$.

Die Basis $\left(\frac{\partial \Phi}{\partial t_1}(c), \dots\right)$ ist positiv orientiert.

M heißt orientierbar, wenn es	 ein System O von Karten (h, W) gibt mit: 1. ∪_{W∈O} W = M, 2. (W₁, W₂ ∈ O ∧ W₁ ∩ W₂ ≠ ∅) ⇒ ∀_{a∈W₁∩W₂} liefern (h₁, W₁) und (h₂, W₂) die gleiche Orientierung von T_a(M). Man sagt auch: Für M gibt es eine lokal verträgliche Menge von Orientierungen der Tangentialräume.
Zwei Karten (h_1, W_1) , (h_2, W_2) heißen gleichorientiert (bzw. der zugehörige Kartenwechsel orientierungserhaltend), wenn	$\det(h_2 \circ h_1^{-1}) > 0.$
Eine k -dim. UM M des \mathbb{R}^n	ist genau dann orientierbar, wenn es einen Atlas aus gleichorientierten Karten gibt.
lemma, orientierung, 1.4.3 mathe2::Isem::untermanigfaltigkeiten de2f80aa-14cf-4e46-9bc7-f98c32a2416c	lemma, orientierung, 1.4.3 mathe2::Isem::untermanigfaltigkeiten de2f80aa-14cf-4e46-9bc7-f98c32a2416c
Sei M eine $(n-1)$ -dim. UM des \mathbb{R}^n . Dann ex. ein eindeutige Beziehung zwischen den Orientierungen von M und den stetigen Einheitsnormaleinvektorfeldern auf M . Erkläre den Beweis zu dem Lemma (Beweisidee).	Sei M orientierbar, $a \in M$, es gäbe eine lokale Parametrisierung (Φ, T) mit $T(c) = a$. dim $(T_a) = n - 1$. Also es gibt zwei auf T_a orthogonale Einheitsvektoren (in 1D, unterschied in der Orientierung der Vektoren). Wähle $n(a)$ so, dass $(n(a), \Phi'(c)e^{(1)}, \ldots, \Phi'(c)e^{(n-1)})$ positiv orientiert in \mathbb{R}^n ist. Tue das für jeden Punkt im $M \to \text{gesuchtes Vektorfeld}$.

definition, rand, 1.5) Wie sind \mathbb{R}^k und $\partial \mathbb{R}^k$. definiert?	• $\mathbb{R}^k = \{(t1, \dots, t_k)^T \in \mathbb{R}^k; t_1 \leq 0\}$ • $\partial \mathbb{R}^k = \{(t1, \dots, t_k)^T \in \mathbb{R}^k; t_1 = 0\}$
(mathe2::1sem::untermanigfaltigkeiten cd74f947-24f9-4fac-a82f-7ffbcd11b50b	
$M\subseteq \mathbb{R}^n$ ist eine K -dim. UM mit Rand, wenn	es um jeden Punkt $p \in M$ eine lokale Parameterdarstellung (Φ,T) mit $p \in \Phi[T]$ und T offen im \mathbb{R}^k
$M\subseteq\mathbb{R}^n$ ist eine K -dim. UM mit Rand. (Φ,T) eine lokale Parametrisierung. Der Punkt $p\in M$ heißt Randpunkt von M , wenn	$p = \Phi(t) \text{ mit } t \in T \cap \partial \mathbb{R}^k$

 $T\cap\partial\mathbb{R}^k_-\neq\emptyset$

Eine Parameterdarstellung (Φ,T) heißt randadaptiert falls...

Sei $M\subseteq\mathbb{R}^n$ eine k -dim. UM mit Rand. Dann gilt: (zwei Aussagen)	1. ∂M ist eine k-1 dimensionale UM ohne Rand. 2. M orientierbar $\Rightarrow \partial M$ orientierbar.
Wann ist ∂M positiv orientiert?	Seien $p \in \partial M$ und (Φ, T) randadaptiert. Eine Basis (B) von $T_p(\partial M)$ sei genau dann positiv orientiert, wenn die Basis $(\mathbf{v} \mathbf{B})$ in $T_p(M)$ es ist. Wobei $v \coloneqq \Phi'(t)e^{(1)} \in T_p(M)$
Wie definiert man einen regulären und einen singulären Randpunkt? Wie ist der Normaleneinheitsvektor definiert?	Sei G ein Gebiet so, dass $B\bar{G}$ kompakt ist. Ein Punkt $a\in\partial B$ heißt regulärer Randpunkt von B , wenn es eine offene Umgebung U um a gibt und $g:U\to\mathbb{R}$ stetig mit: $1.\ B\cap U=\left\{x\in U;\ g(x)\leq 0\right\},$ $2.\ \forall_x\in U: \mathrm{grad}\ g(x)\neq 0.$ Menge aller regulären Randpunkte in ∂B wird mit $\partial_r B$ bezeichnet. $(a\in\partial B\wedge a\notin\partial B_r)$, dann heißt a singulärer Randpunkt. Analog ist $\partial_s B=\partial B\setminus\partial_r B$. $n(a)\coloneqq\frac{\mathrm{grad}\ ug(a)}{\left\ \mathrm{grad}\ g(a)\right\ }$ ist der (äußere) Normaleineinheitsvektor an ∂B in a .
Ein Teilmenge G heißt Gebiet, falls	es offen, nichtleer und zusammenhängend ist.

Eine Teilraum ist zusammenhängend, falls	es nicht als Vereinigung zweier nichtleerer getrennter Mengen geschrieben werden kann. Es gibt viele äquivalente Definitionen.
Sei B kompakt. Sei $\partial_s B = \emptyset$ dann heißt B	Kompaktum mit glatten Rand.
	definition, gauss, 1.5.3 mathe2::1sem::untermanigfaltigkeiten 5f486117-567d-446d-9867-72a8ebba6ac0
Was ist ein Kompaktum mit glatten Rand?	Es ist eine kompakte Menge (M) mit $\partial_s M = \emptyset$.

Wie lautet der Satz von Gauß?

satz, gauss, stokes, 1.5.4, 1.5.5 mathe2::1sem::untermanigfaltigkeiten

50609bfb-331c-4a5c-a4a7-47e4b3d882a1

Seien $B\subseteq\mathbb{R}^n$ ein Kompaktum mit glatten Tand, $n:\partial B\to\mathbb{R}^n$ das äußere Einheitsnormalenfeld, $F:B\to\mathbb{R}^n$. Dann gilt: $\int_B \operatorname{div} F(x) \,\mathrm{d}x = \int_{\partial B} \left\langle F(x), n(x) \right\rangle \mathrm{d}S$

Wie lautet der klassische Satz von Stokes?	Sei $M\subseteq\mathbb{R}^3$ eine kompakte 2-dimensionale UM mit Rand $\partial M.$ M sei durch ein Einheitsnormalenvektorfeld $n:M\to\mathbb{R}^3$ orientiert. ∂M habe die von M induzierte Orientierung. $t:\partial M\to\mathbb{R}^3$ bezeichne das Tangenteneinheitsfeld an die Kurve $\partial M.$ Sei $F:M\to\mathbb{R}^3$ ein stetig diff'bares Vektorfeld. Dann gilt: $\int_M \langle \mathrm{rot} F,n\rangle\mathrm{d} S = \int_{\partial M} \langle F,t\rangle\mathrm{d} s$
satz, gauss, stokes, 1.5.4, 1.5.5 mathe2::1sem::untermanigfaltigkeiten 50609bfb-331c-4a5c-a4a7-47e4b3d882a1	