PERTEMUAN 13 Algoritma Genetika

PENGERTIAN

- Algoritma genetika adalah algoritma pencarian yang berdasarkan pada mekanisme sistem natural yakni genetik dan seleksi alam.
- Dalam aplikasi algoritma genetik, variabel solusi dikodekan kedalam struktur string yang merepresentasikan barisan gen, yang merupakan karakteristik dari solusi problem.

PENGERTIAN

- Berbeda dengan teknik pencarian konvensional, algoritma genetik berangkat dari himpunan solusi yang dihasilkan secara acak.
- Himpunan ini disebut populasi, sedangkan setiap individu dalam populasi disebut kromosom yang merupakan representasi dari solusi.

PENGERTIAN

- Kromosom-kromosom berevolusi dalam suatu proses iterasi yang berkelanjutan yang disebut generasi.
- Pada setiap generasi, kromosom dievaluasi berdasarkan suatu fungsi evaluasi (Gen dan Cheng, 1997).
- Setelah beberapa generasi maka algoritma genetika akan konvergen pada kromosom terbaik, yang diharapkan merupakan solusi optimal (Goldberg, 1989).

Pengkodean

- Pengkodean adalah suatu teknik untuk menyatakan populasi awal sebagai calon solusi suatu masalah ke dalam suatu kromosom sebagai suatu kunci pokok persoalan ketika menggunakan algoritma genetika.
- Berdasarkan jenis simbol yang digunakan sebagai nilai suatu gen, metode pengkodean dapat diklasifikasikan sebagai berikut : pengkodean biner, bilangan riil, bilangan bulat, struktur data.

Operator Genetika

• Operator Genetika digunakan setelah proses evaluasi tahap pertama untuk membentuk suatu populasi baru dari generasi sekarang. Operator-operator tersebut adalah operator seleksi, crossover, dan mutasi.

DEFINISI INDIVIDU

- Dari gambar terlihat bahwa penyelesaian berada pada nilai 0<x<1. Jadi dengan menggunakan 8 bit biner didefinisikan:

 00000000 berarti 0
 11111111 berarti 1
- Individu dinyatakan dalam 8 gen biner, dengan batas 0 sampai dengan 1, berarti 1 bit setara dengan 2-8.

Sebagaicontoh:

- 10001001 = (128+8+1)/256 = 0.5352
- 00110100 = (4+16+32)/256 = 0.2031
- 01010010 = (2+16+64)/256 = 0.32031 0 1 0 1 0 \leftarrow Individu

Membangkitkan Populasi Awal

• Membangkitkan sejumlah individu, misalkan satu populasi terdiri dari 10 individu, maka dibangkitkan 10 individu dengan 8 gen biner yang dibangkitkan secara acak.

Individu	Fitness	
10010000 0.5625	0 0.32244	
01001110 0.3046	9 0.43060 🕂	—→ Individu maksimum
01100110 0.3984	4 0.41933	
10111101 0.7382	8 0.18266	
11101000 0.9062	5 0.06699	
11110010 0.9453	1 0.04543	
00110011 0.1992	2 0.37778	
11111100 0.9843	8 0.02616	
10000111 0.5273	4 0.34828	
10001011 0.5429	7 0.33702	

SELEKSI

- Seleksi adalah proses pemilihan calon induk, dalamproses seleksi ini terdapat beberapa metode yang bisa digunakan antara lain: MesinRoulette (Roulette Wheel), Competition danTournament. Dalam contoh ini digunakan Mesin Roullete yang memang metode paling dasar dan model acaknya uniform.
- Seleksi dilakukan dengan menggunakan prosentasi fitness setiap individu, dimana setiap individu mendapatkan luas bagian sesuai dengan prosentase nilai fitnessnya.

CROSS-OVER

 Cross-Over (Perkawinan Silang) merupakan proses mengkombinasikan dua individu untuk memperoleh individuindividu baru yang diharapkan mempunyai fitness lebih baik. Tidak semua pasangan induk mengalami proses cross-over, banyaknya pasangan induk yang mengalami cross-over ditentukan dengan nilai probabilitas cross-over.

	Fitness
0 0 1 1 1 0 0 1 0.2	22266 ← induk 1 0.3968
1 0 0 1 1 0 1 0 0.0	60156 ← induk 2 0.2921
0 0 1 1 1 0 1 1 0.2	23050 ← anak 1 0.4022
1 0 0 1 1 0 0 0 0.4	

Mutasi Gen

• Mutasi gen adalah proses penggantian gen dengan nilai inversinya, gen 0 menjadi 1 dan gen 1 menjadi 0. Proses ini dilakukan secara acak pada posisi gen tertentu pada individu-individu yang terpilih untuk dimutasikan. Banyaknya individu yang mengalami mutasi ditentukan oleh besarnya probabilitas mutasi.

	Fitness
0 0 1 1 1 <mark>0</mark> 0 1 0.22266 ← induk	0.3968
0 0 1 1 1 1 0 1 0.22266 ← induk	0.4070

ALGORITMA GENETIKA UNTUK MASALAH OPTIMALISASI

Representasi dan Inisialisai Populasi Awal

 Representasi merupakan bentuk hasil akhir dari masalah yang akan diselesaikan. Representasi dari kromosom tersebut dapat dilihat pada gambar berikut ini:

Fungsi Obyektif / Fungsi Fitness

• Fungsi fitness yang digunakan untuk mengevaluasi kebaikan suatu kromosom dalam penelitian ini

Parameter Algoritma Genetika dalam Program

1. Operator Seleksi Seleksi memegang peranan penting dalam keberhasilan algoritma genetika.

Prosedur seleksinya adalah:

1) Hitung total fitness

2) Hitung fitness relatif tiap individu

$$P_k = F_k$$
Total Fitness

- 3) Hitung fitness kumulatif: $q_i = p_i$
- 4) Pilih induk yang akan menjadi kandidat untuk di crossover dengan cara:
 - i. Bangkitkan bilangan random r
 - ii. Jika $q_k \le r$ dan $q_{k+1} \le r$ maka pilihlah kromosom ke (k+1) sebagai kandidat induk

ALGORITMA GENETIKA UNTUK MENCARI NAMA SECARA ACAK

• Sebuah kata ditentukan sebagai target, misalnya: 'BASUKI'. Bila setiap huruf diberi nilai dengan nilai urut alfabet, maka targetnya bisa dinyatakan sebagai besaran numerik:

Target=[2 1 18 21 11 9]

 Komputer akan membangkitkan katadengan jumlah huruf yang sama dengan target secara acak, terusmenerus hingga diperoleh kata yang sama dengan kata target.

Definisi Individu dan Fitness

- Individu adalah satu kata yang muncul dari proses acak tersebut, misalnya: AGHSQE atau [1 7 8 19 17 5]
- Satu individu mempunyai n gen integer yang setiap gennya menyatakan no urut alfabet.
- Nilai fitness adalah inversi dari perbedaan antara nilai kata yang muncul (individu) dan target yang ditentukan. Misalnya kata yang muncul: AGHSQE dan targetnya BASUKI maka, nilai perbedaannya:

E =
$$|1-2| + |7-1| + |8-19| + |19-21| + |17-11| + |5-9|$$

= $1+6+11+2+6+4=30$

Fitness =
$$(26)(6) - 30 = 156 - 30 = 126$$

• Fitness didefinisikan:

$$fitness (k) = 156 - \sum |g(k)_n - t_n|$$

Dimana gn adalah gen ke n dari individu ke k dan gen ke n dari target.

PEMBANGKITAN POPULASI AWAL

Populasi awal dibangkitkan dengan cara membangkitkan semua huruf dalam sejumlah kata (individu) yang dibangkitkan.

```
>> Fitness = 83
  5 18 5 6 6
                               >> Fitness = 127
   5 15 15 24 6
                 -- H E O O X F
                               >> Fitness = 120
                     V N K S W >> Fitness = 95
                 -- S S H F S G >> Fitness = 85
     3 21 8 10
                     P C U H J >> Fitness = 103
20 16
19 13 12 23 15 10
                               >> Fitness = 113
                               >> Fitness = 88
15 23 4 16 6
                     WDPFO
                               >> Fitness = 119
       6 17 8
                 -- J L R F O H >> Fitness = 114
10 12 18
                 -- J A B H F S >> Fitness = 103
        8 6 19
21 18 21 24 26 19
                 -- U R U X Z S >> Fitness = 90
```

Seleksi, Cross-Over, dan Mutasi

- Seleksi dilakukan dengan menggunakan roulette-wheel.
- Cross-over, dilakukan dengan menukar gen-gen terpilih antar dua induk, seperti pada gen biner.

```
8 5 15 15 24 6 -- H E O O X F 5 22 14 11 19 23 -- E V N K S W 8 5 22 15 15 24 23 -- E V O O X W
```

Mutasi dilakukan dengan mengacak kembali nilai 1-26 dari gen yang dimutasikan.

```
8 5 14 11 19 6 -- HENKSF
8 5 19 11 19 6 -- HESKSF
```

HASIL ALGORITMA GENETIKA

```
3 19 19 14 18
              --- E C S S N R
                               >> Fitness = 137
                              >> Fitness = 145
     19 14 10
                              >> Fitness = 145
     19 10 10
                      S S J J >> Fitness = 147
                       S \times K J >> Fitness = 147
                              >> Fitness = 149
                              >> Fitness = 149
                              >> Fitness = 150
                               >> Fitness = 150
     21 11 10
                              >> Fitness = 151
          10
                              >> Fitness = 151
                              >> Fitness = 151
                               >> Fitness = 153
                               >> Fitness = 154
                              >> Fitness = 154
                               >> Fitness = 155
                               >> Fitness = 155
2 19 21 11
                               >> Fitness = 155
                               >> Fitness = 155
2 19 21 11
1 19 21 11
                              >> Fitness = 156
```