Université de Rouen 2019-2020

M2 Computer Science Lab Classes

« Computer Vision »

Laboratory classes

M2 Computer Science Lab Classes

Lab 1

Depth estimation using stereo images.

Goal.

The goal of this lab class is

- a) implement and evaluate the algorithm of depth estimation using a couple of stereo images :
- b) find the limits of the investigated approach.

1.Depth map.

The images which will be used are already rectified; the epipolar lines are horizontal and aligned between the two images.

1.1 Design an algorithm which estimates the depth map using SSD or ZNCC (cf. class handouts & image 1.

Disparity is inversely proportional to depth!

Figure 1. Principle of depth estimation.

Algorithm could be:

For each pixel of the left image in x_1 , a pixel x_2 research is performed on the same line in image of the right picture; the SSD/ZNCC value is minimal in x_2 .

The difference (disparity) $d = x_1 - x_2$ identified is inversly proportional to the depth $p \approx 1/d$.

In a new image you memorize the disparity of each pixel.

Comment.

The size of the correlation window is a parameter which can be modified.

Université de Rouen 2019-2020

M2 Computer Science Lab Classes

1.2. Test and validate your algorithm on data of the « synthetic » file.

2. Size of the correlation window.

- 2.1. Test your algorithm with data included in files « cones » and « teddy ».
- 2.2. Change the size of the correlation window. What changes on your depth map?
- 2.3. Compare your results with true data provided. What are, according to you, limits of the (local) correlations?
- 2.4. Filter your depth map using the median filter of size 7 x 7 (several application of this filter). How changes your depth map with respect to true data?

3. Constraint of unicity (non mandatory part).

Estimate the depth map of the left image to right image and vice versa. Apply the following constraint:

- for each pixel I_g de left image associated with a pixel of right image check that its corresponding point of the right image I_d matches effectively the point I_g of the left image; if there is no case, put (-1) in the depth map.

Compute once again the depth maps of « cones » and « teddy » while implementing the above unicity constraint.