Rudiments

Exercice 1

Reconnaître les endomorphismes de \mathbb{R}^3 dans la liste suivante,

- 1. $f_1: (x, y, z) \mapsto (x, xy, x z);$
- **2.** f_2 : $(x, y, z) \mapsto (x + y, 2x + 5z, 0)$;
- 3. $f_3: (x,y,z) \longmapsto (x-3y,x+y,z+2)$.

Exercice 2

Parmi les applications suivantes, lesquelles sont linéaires?

- **1.** id_{E} : $E \longrightarrow E$, $u \longmapsto u$, où E est un K-ev.
- **2.** F: $\mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R})$, $f \longmapsto \exp \circ f$.
- 3. G: $\mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R})$, $f \longmapsto f \times \cos$.
- **4.** H: $\mathcal{C}^2(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R}), f \longmapsto f'' f.$
- **5.** $j : F \longrightarrow E, u \mapsto u$, où F est un sev d'un K-ev E.
- **6.** T: $\mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{n+1}$, $(u_k)_{k \in \mathbb{N}} \longmapsto (u_0, \dots, u_n)$.
- 7. S: $\mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$, $(u_k)_{k \in \mathbb{N}} \longmapsto (u_{k+1})_{k \in \mathbb{N}}$.

Exercice 3 ★ Composées

Soient f et g les endomorphismes de \mathbb{R}^2 définis par

$$g:(x,y)\longmapsto(y,x)$$
 et $f:(x,y)\longmapsto(x+y,2x)$.

- **1.** Montrer que f et g sont des isomorphismes de \mathbb{R}^2 . Déterminer f^{-1} et g^{-1} .
- **2.** On note $h = f \circ g g \circ f$. Justifier que $h \in \mathcal{L}(\mathbb{R}^2)$.
- **3.** A-t-on $f \circ g = g \circ f$? h est-elle injective?
- **4.** L'application *h* est-elle surjective?

Exercice 4 ★

Crochet de Lie

Soient E un \mathbb{R} -ev, u et v dans $\mathcal{L}(E)$ tels que

$$u \circ v - v \circ u = u$$
.

Etablir que, pour tout k dans \mathbb{N}^* :

$$u^k \circ v - v \circ u^k = ku^k$$
.

Isomorphismes

Exercice 5 ★

Soit f, un endomorphisme de E. Pour tout entier $k \ge 2$, on note

$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}.$$

On suppose qu'il existe un entier $n \ge 2$ tel que f^n soit l'application identiquement nulle.

- 1. Soit $x \in \text{Ker}(I f)$. Démontrer que $f^k(x) = x$ pour tout entier $k \ge 1$. En déduire que I f est injectif.
- **2.** Simplifier les expressions

$$(I - f) \circ (I + f + f^2 + \dots + f^{n-1})$$

et $(I + f + f^2 + \dots + f^{n-1}) \circ (I - f)$

en utilisant les règles de calcul dans L(E) et en déduire que ${\rm I}-f$ est un automorphisme.

3. Démontrer que, pour tout entier $k \ge 1$, l'endomorphisme $I - f^k$ est inversible. On précisera l'expression de son inverse.

Exercice 6 ★★★

Sev stables par permutation des composantes

Soit \mathbb{K} un corps. Pour $\sigma \in S_n$, on pose :

$$f_{\sigma}: \mathbb{K}^n \longrightarrow \mathbb{K}^n$$

 $(x_1, \dots, x_n) \longmapsto (x_{\sigma}(1), \dots, x_{\sigma}(n))$

On munit \mathbb{K}^n de la structure d'algèbre pour les opérations composante par composante.

- 1. Montrer que f_{σ} est un automorphisme d'algèbre.
- **2.** Soit ϕ un automorphisme d'algèbre de \mathbb{K}^n . Montrer qu'il existe $\sigma \in S_n$ tel que $\phi = f_{\sigma}$.
- 3. Trouver les sous-espaces de \mathbb{K}^n stables par tous les endomorphismes f_{σ} avec $\sigma \in \mathbb{S}_n$.

Exercice 7 ★

Un exemple d'isomorphisme

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$(x, y, z) \longmapsto (2x - y, -x + y, x - z).$$

Prouver que f est un isomorphisme de \mathbb{R}^3 et expliciter son isomorphisme réciproque f^{-1} .

Exercice 8 ★

L'opérateur de dérivation

Soient f_k les fonctions de $\mathbb R$ dans $\mathbb R$ définies par

$$\forall k \in \{0, 1, 2\}, \ f_k : x \longmapsto x^k e^{2x}.$$

On note E le sous espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ engendré par ces trois vecteurs.

- 1. Quelles est la dimension de E? En donner une base.
- 2. On note D l'opérateur de dérivation défini par

$$D: f \in E \longrightarrow f'$$
.

Prouver que $D \in \mathcal{L}(E)$.

3. Montrer que $D \in GL(E)$.

Noyau et image d'une application linéaire

Exercice 9 ★

Soit Φ l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$(x, y, z) \longmapsto (x + z, y - z, x + y + z, x - y - z).$$

- **1.** Montrer que Φ est linéaire.
- **2.** Φ est-elle injective?
- **3.** Etudier la surjectivité de Φ . Donner une base de $Im(\Phi)$.

Exercice 10 ★

Avec paramètre

Soient $\alpha \in \mathbb{R}$ et f_{α} l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par

$$(x, y, z, t) \longmapsto (x + y + \alpha z + t, x + z + t, y + z).$$

Déterminer en fonction de $\alpha \in \mathbb{R}$ des bases des espaces vectoriels $\operatorname{Ker}(f_{\alpha})$ et $\operatorname{Im}(f_{\alpha})$.

Exercice 11 ★

Posé à HEC!

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f((x, y, z)) = (x, 0, y).$$

On note $(e_k)_{1 \le k \le 3}$ la base canonique de \mathbb{R}^3 .

- 1. Déterminer des bases de Im(f) et Ker(f).
- **2.** On note E = $\{(x, y, 0) \in \mathbb{R}^3, (x, y) \in \mathbb{R}^2\}$. Déterminer des bases des sousespaces vectoriels f(E) et $f^{-1}(E)$.

Exercice 12 ★

Excursion en dimension infinie

Soient E l'ensemble des applications continues de \mathbb{R}_+ dans \mathbb{R} et ψ l'application de E dans E qui à f associe l'application g de \mathbb{R}_+ dans \mathbb{R} définie par

$$\forall x \geqslant 0, \ g(x) = \int_0^x 2t f(t) dt.$$

- Justifier que E est un espace vectoriel réel pour les opérations usuelles sur les fonctions.
- **2.** Quelle est la dimension de E?
- 3. Montrer que ψ est un endomorphisme de E.
- 4. Etudier l'injectivité puis la surjectivité de ψ . Formuler en termes de contre-exemple les résultats précédents.
- **5.** Soit $\lambda \in \mathbb{R}$. Déterminer le sous-espace vectoriel $Ker(\psi \lambda id_E)$.

Exercice 13 ★

Attention aux scalaires!

On considère $\mathbb C$ comme un $\mathbb R$ -espace vectoriel. On définit l'application u par

$$u: z \longmapsto iz - i\overline{z}$$
.

- **1.** Prouver que $u \in \mathcal{L}(\mathbb{C})$.
- **2.** Déterminer Ker(u) et Im(u).
- 3. Calculer u^2 .
- **4.** En déduire que l'endomorphisme $\mathrm{Id}_{\mathbb{C}} + 2u$ est inversible et calculer son inverse.

Exercice 14 ★★

Soient E un \mathbb{C} -espace vectoriel, $u \in \mathcal{L}(E)$ et $X^2 + aX + b$ un polynôme à coefficients complexes.

1. On note r_1 et r_2 les deux racines (éventuellement confondues) de $X^2 + aX + b$. Montrer que

$$u^2 + au + b \operatorname{Id}_{E} = (u - r_1 \operatorname{Id}_{E}) \circ (u - r_2 \operatorname{Id}_{E}) = (u - r_2 \operatorname{Id}_{E}) \circ (u - r_1 \operatorname{Id}_{E})$$

- **2.** On pose $F = \text{Ker}(u^2 + au + b \text{ Id}_E)$, $F_1 = \text{Ker}(u r_1 \text{ Id}_E)$ et $F_2 = \text{Ker}(u r_2 \text{ Id}_E)$. Montrer que $F_1 \subset F$ et $F_2 \subset F$.
- **3.** A partir de maintenant, on supose que les deux racines r_1 et r_2 sont *distinctes*. Montrer que $F = F_1 \oplus F_2$.
- **4. Application :** Dans cette question, on suppose que E est le \mathbb{C} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{C} de classe \mathcal{C}^{∞} et que u est l'endomorphisme de E qui à f associe f'. On considère l'équation différentielle (\mathcal{E}) y'' + ay' + by = 0 dont on cherche les solutions à valeurs complexes.
 - **a.** Montrer que toute solution de (\mathcal{E}) est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Montrer que l'ensemble des solutions de (\mathcal{E}) est F.
 - c. Déterminer F₁ et F₂.
 - **d.** En déduire le résultat du cours déjà connu : les solutions de (\mathcal{E}) sont les fonctions de \mathbb{R} dans \mathbb{C} du type $t\mapsto \lambda e^{r_1t}+\mu e^{r_2t}$ avec λ et μ décrivant \mathbb{C} .

Exercice 15 ★★★

Pour $f \in \mathcal{C}([0,1],\mathbb{R})$ et $x \in [0,1]$, on pose $\Phi(f)(x) = \int_0^1 \min(x,t) f(t) dt$.

- **1.** Prouver que Φ est un endomorphisme de $\mathcal{C}([0,1],\mathbb{R})$.
- **2.** En utilisant la relation de Chasles, trouver une autre expression de $\Phi(f)(x)$. En déduire que $\Phi(f)$ est de classe \mathcal{C}^2 et exprimer $\Phi(f)''$ en fonction de f.
- 3. En déduire Ker Φ et Im Φ .

Exercice 16 ★

On considère le sous-espace vectoriel F de $\mathcal{C}^1(\mathbb{R})$ engendré par la famille $\mathcal{B} = (\sin, \cos, \sin, \cosh)$.

- **1.** Montrer que \mathcal{B} est une base de F.
- **2.** On note D l'opérateur de dérivation. Montrer que F est stable par D. On notera *d* l'endomorphisme de F induit par D.
- **3.** On note M la matrice de d dans la base \mathcal{B} . Calculer M^n pour tout $n \in \mathbb{N}$.
- **4.** Montrer que d est un automorphisme de F. Écrire la matrice de d^{-1} dans la base \mathcal{B} .
- 5. On note f = d Id. Déterminer l'image et le noyau de f.
- **6.** On note g = d + Id. Déterminer l'image et le noyau de $g \circ f$.

Exercice 17 ★★ CCP MP

Pour $p \in \mathbb{N}$ et $\alpha \in \mathbb{R} \setminus \{0,1\}$, on note S_p l'ensemble des suites réelles u vérifiant :

$$\exists P \in \mathbb{R}_p[X], \ \forall n \in \mathbb{N}, \ u_{n+1} = \alpha u_n + P(n)$$

- 1. Montrer que si $u \in S_p$, P est unique. On notera P_u ce polynôme.
- **2.** Montrer que S_p est un \mathbb{R} -espace vectoriel.
- 3. Montrer que l'application $\phi: \left\{ \begin{array}{ccc} \mathbf{S}_p & \longrightarrow & \mathbb{R}_p[\mathbf{X}] \\ u & \longmapsto & \mathbf{P}_u \end{array} \right.$ est linéaire et donner une base de son noyau.
- **4.** Quelle est l'image de ϕ ? Donner une base de S_p . On pourra utiliser les polynômes $R_k = (X+1)^p \alpha X^k$ avec $k \in [0, p]$.
- **5.** Application : déterminer le terme général de la suite u définie par $u_0 = -2$ et $u_{n+1} = 2u_n 2n + 7$.

Exercice 18 ★

Montrer que φ : $P \in \mathbb{R}_n[X] \mapsto (X+2)P(X) - XP(X+1)$ est un endomorphisme de $\mathbb{R}_n[X]$. Quel est son noyau?

Exercice 19 *

Noyaux et images

Déterminer une base du noyau et de l'image des applications linéaires définies par :

- 1. f(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z);
- **2.** f(x, y, z) = (y + z, x + z, x + y);
- 3. f(x, y, z) = (x + y + z, 2x y z, x + 2y + 2z);
- **4.** f(x, y, z) = (x + 2y z, x + 2y z, 2x + 4y 2z).

Exercice 20 ★

Soient

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (x, y, 0),$$
$$g: \mathbb{R}^2 \to \mathbb{R}^3, \ (x, y) \mapsto (x - y, x + y, x + 2y)$$

et

$$h: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto x - 3y + 2z.$$

- **1.** Montrer que f, g et h sont linéaires.
- 2. Déterminer noyau et image dans chaque cas.

Exercice 21 ★

Posé aux CCP

Soient E un \mathbb{R} -ev de dimension finie, f et g dans $\mathcal{L}(E)$. Etablir que

$$\operatorname{Im}(f) + \operatorname{Ker}(g) = \operatorname{E} \iff \operatorname{Im}(g \circ f) = \operatorname{Im}(g).$$

Exercice 22 ★

Posé à Centrale en PC

Soient E et F deux \mathbb{R} -ev, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, E)$ telles que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

Etablir que

$$E = Ker(f) \oplus Im(g)$$
 et $F = Ker(g) \oplus Im(f)$.

Exercice 23

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications linéaires. Que pensez vous des propositions suivantes ?

- 1. $Ker(g \circ f) = Ker(f) \cap Ker(g)$;
- **2.** $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- **3.** $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- **4.** $Im(f) \subset Ker(g)$ sietseulementsi $g \circ f = 0$.

Exercice 24 ★★ L'increvable

Soient E un espace vectoriel sur $\mathbb K$ et f appartenant à $\mathcal L(E)$. Montrer l'équivalence suivante

$$\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$$
 si et seulement si $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}.$

Exercice 25 ★★

Soient E un K-ev, f et g deux endomorphismes de E tels que $f \circ g = id_{\rm E}$.

- 1. Etablir que f est surjective et g injective.
- **2.** Montrer que $p = g \circ f$ est un projecteur de E.
- **3.** Etablir que Im(p) = Im(g) et Ker(p) = Ker(f).
- 4. Montrer que

$$Ker(f) \oplus Im(g) = E$$
.

Exercice 26 ★

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que

$$Ker(f) \cap Im(f) = f(Ker(f \circ f)).$$

Exercice 27 ★★

Noyaux et images itérés

Soit u un endomorphisme de E, pour tout entier naturel p, on notera $I_p = \operatorname{Im} u^p$ et $K_p = \operatorname{Ker} u^p$.

- **1.** Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- **2.** On suppose que E est de dimension finie et u injectif. Déterminer I_p et K_p pour tout $p \in \mathbb{N}$.
- **3.** On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - **a.** Montrer qu'il existe un plus petit entier naturel $r \le n$ tel que : $K_r = K_{r+1}$.
 - **b.** Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}$, $K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - **c.** Montrer que : $E = K_r \oplus I_r$.
- **4.** Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r = K_{r+1}$?

Exercice 28 ★★

Soient f et g deux endomorphismes d'un espace vectoriel E.

- **1.** Montrer que si $g \circ f$ est surjective, alors g est surjective.
- **2.** Montrer que si g est surjective et E = Im f + Ker g, alors $g \circ f$ est surjective.
- 3. Formuler des énoncés similaires pour l'injectivité.

Exercice 29 ★

Soient u et v deux endomorphismes d'un espace vectoriel E qui commutent.

- 1. Montrer que $\operatorname{Im} u$ et $\operatorname{Ker} u$ sont stables par v.
- **2.** On suppose que $E = \operatorname{Ker} u \oplus \operatorname{Ker} v$. Montrer que $\operatorname{Im} u \subset \operatorname{Ker} v$ et que $\operatorname{Im} v \subset \operatorname{Ker} u$.
- 3. Montrer que les inclusions précédentes sont des égalités si E est de dimension finie.

Exercice 30 ★ ENSEA

Soient E et F deux espaces vectoriels, $f \in \mathcal{L}(E, F)$, G et H deux sous-espaces vectoriels de E.

- 1. Montrer que f(G + H) = f(G) + f(H).
- **2.** Montrer que si G et H sont en somme directe et que f est injective, alors $f(G \oplus H) = f(G) \oplus f(H)$.

Exercice 31 ★★

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

$$E = \operatorname{Im} f + \operatorname{Ker} f \Leftrightarrow \operatorname{Im} f = \operatorname{Im} f^2$$

Exercice 32 ★★

Soient E un espace vectoriel et f, g deux projecteurs de E.

- **1.** Montrer que Im f = Im g si et seulement si $f \circ g = g$ et $g \circ f = f$.
- 2. Donner une condition nécessaire et suffisante pour que Ker f = Ker g.

Exercice 33 ★★

Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les propositions suivantes sont équivalentes :

- (i) $E = \operatorname{Im} f \oplus \operatorname{Ker} f$;
- (ii) $E = \operatorname{Im} f + \operatorname{Ker} f$;
- (iii) $\operatorname{Im} f = \operatorname{Im} f^2$;
- (iv) $\operatorname{Ker} f = \operatorname{Ker} f^2$.

Exercice 34 ★

Petites Mines

Soit E un espace vectoriel de dimension finie. Montrer l'équivalence entre les propositions suivantes :

- (i) il existe $f \in \mathcal{L}(E)$ tel que Ker $f = \operatorname{Im} f$;
- (ii) dim E est paire.

Exercice 35

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que Ker $f \subset \text{Ker } g \circ f$.
- **2.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.
- 3. Montrer que $g \circ f = 0 \iff \operatorname{Im} f \subset \operatorname{Ker} g$.

Exercice 36 ★★

Soient E, F et G trois espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que F = Im(f) + Ker(g) si et seulement si $Im(g \circ f) = Im(g)$.
- **2.** Montrer que $Ker(g) \cap Im(f) = \{0_F\}$ si et seulement si $Ker(g \circ f) = Ker(f)$.

Exercice 37 ★★

On considère deux endomorphismes f et g d'un espace vectoriel E vérifiant

$$f \circ g \circ f = g$$
 et $g \circ f \circ g = f$

1. Montrer que

$$\operatorname{Im}(f) = \operatorname{Im}(g) = \operatorname{Im}(g \circ f) = \operatorname{Im}(f \circ g)$$

et

$$Ker(f) = Ker(g) = Ker(g \circ f) = Ker(f \circ g)$$

2. Démontrer que

$$\mathsf{E} = \mathsf{Ker}(f) \oplus \mathsf{Im}(f) = \mathsf{Ker}(g) \oplus \mathsf{Im}(g)$$

Endomorphismes nilpotents

Exercice 38 ★

D'après Centrale PC

Soient E un espace vectoriel sur \mathbb{K} de dimension finie et f un endomorphisme de E. On souhaite prouver l'équivalence des deux propriétés suivantes :

(*) Il existe un projecteur
$$p$$
 de E tel que $f = p \circ f - f \circ p$ (**) $f^2 = 0$

- **1.** Supposons (*) vérifiée. Prouver que $p \circ f \circ p = 0$, puis que $f = p \circ f$. En déduire que (**) est vérifiée.
- **2.** Supposons (**) vérifiée. Soit S un supplémentaire de Ker f dans E et p le projecteur sur Ker(f) parallèlement à S. Prouver la propriété (*).

Exercice 39 **

Endomorphismes nilpotents

Soit E un espace vectoriel sur \mathbb{K} de dimension finie n. Un endomorphisme u de E est dit nilpotent s'il existe $p \in \mathbb{N}$ tel que $u^p = 0$.

- 1. Donner des exemples d'endomorphismes nilpotents de \mathbb{R}^2 puis de \mathbb{R}^3 .
- 2. Montrer qu'un endomorphisme nilpotent n'est jamais un isomorphisme.
- **3.** Soit $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \exists p_x \in \mathbb{N}, u^{p_x}(x) = 0.$$

Montrer que u est nilpotent.

4. Montrer que si u est un endomorphisme nilpotent alors $id_E - u \in GL(E)$.

Exercice 40 ★

Soient E un espace vectoriel sur \mathbb{K} de dimension 3 et f appartenant à $\mathcal{L}(E)$.

- 1. On suppose dans cette question que $f^2 = 0$ et $f \neq 0$. Calculer le rang de f.
- **2.** On suppose dans cette question que $f^3 = 0$ et $f^2 \neq 0$. Calculer le rang de f.

Exercice 41 ★★

Equation $u^2 = 0$

Soient E un espace vectoriel sur \mathbb{K} et u un endomorphisme de E.

1. On suppose dans cette question l'existence d'un *projecteur p* de E tel que

$$u = p \circ u - u \circ p$$
.

- **a.** Démontrer que $p \circ u \circ p = 0$. On précisera de quel 0 il s'agit.
- **b.** Prouver que $u \circ p = 0$.
- **c.** En déduire que $u^2 = 0$.
- 2. On suppose dans cette question que $u^2 = 0$.
 - **a.** Démontrer que $Im(u) \subset Ker(u)$.
 - b. Soient H et S deux sous-espaces vectoriels supplémentaires dans E tels que

$$Im(u) \subset H \subset Ker(u)$$
.

En notant q la projection sur H parallèlement à S , reconnaître l'application linéaire $q\circ u-u\circ q$.

3. Donner une condition *nécessaire et suffisante* pour qu'il existe un projecteur *p* de E tel que

$$u=p\circ u-u\circ p.$$

Exercice 42 ★

Endomorphismes de carré nul

Soient E un espace vectoriel de dimension n et f une application linéaire de E dans luimême. Montrer que les deux assertions qui suivent sont équivalentes :

1.
$$Ker(f) = Im(f)$$
.

2.
$$f^2 = 0$$
, $n = 2 \operatorname{rg}(f)$.

Exercice 43 ***

Mines P' 1995

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E nilpotent d'indice n. On pose

$$\begin{array}{cccc} \Phi : & \mathcal{L}(\mathsf{E}) & \longrightarrow & \mathcal{L}(\mathsf{E}) \\ & g & \longmapsto & f \circ g - g \circ f \end{array}$$

- 1. Montrer que $\Phi^p(g) = \sum_{k=0}^p (-1)^k \binom{p}{k} f^{p-k} \circ g \circ f^k$. En déduire que Φ est nilpotent.
- **2.** Soit $a \in \mathcal{L}(E)$. Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$. En déduire l'indice de nilpotence de Φ .

Projecteurs, symétries et homothéties

Exercice 44 ★

On note $E = \mathbb{R}^4$,

$$F = \{(x, y, z, t) \in E \mid z = y + t = 0\}$$

et G =
$$\{(x, y, z, t) \mid x = y + z = 0\}$$
.

- 1. Prouver que F et G sont des plans vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.
- **3.** Donner les expressions analytiques de *p* et *s*, respectivement projecteur sur F parallèlement à G et symétrie par rapport à F parallèlement à G.

Exercice 45 ★

En dimension infinie

On note $E=\mathbb{R}^\mathbb{R},\,\mathcal{A}$ le sous-espace vectoriel de E constitué des fonctions affines et on pose

$$\mathcal{N} = \Big\{ f \in \mathbf{E} \mid f(0) = f(1) = 0 \Big\}.$$

- 1. Montrer que les sous-espaces vectoriel $\mathcal A$ et $\mathcal N$ sont supplémentaires dans E.
- **2.** Expliciter le projecteur sur \mathcal{A} parallèlement à \mathcal{N} .
- 3. Expliciter la symétrie par rapport à $\mathcal A$ parallèlement à $\mathcal N.$

Exercice 46 ★

Somme de deux projecteurs

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E.

1. Prouver que

$$p \circ q + q \circ p = 0$$
 si et seulement si $p \circ q = q \circ p = 0$.

2. Montrer que p + q est un projecteur si et seulement si

$$p \circ q = q \circ p = 0.$$

3. On suppose que p + q est un projecteur de E. Montrer que

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$$

et

$$Ker(p+q) = Ker(p) \cap Ker(q)$$
.

Exercice 47 ★

Composée de deux projecteurs

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E tels que $p \circ q = q \circ p$.

- 1. Prouver que $\psi = p \circ q$ est un projecteur de E.
- **2.** Montrer que $\operatorname{Im}(\psi) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- **3.** Etablir que $Ker(\psi) = Ker(p) + Ker(q)$.

Exercice 48 ★★

Soit E un espace vectoriel de dimension finie et A une partie finie de GL(E) stable par composition. On pose $p=\frac{1}{|A|}\sum_{f\in A}f$. Montrer que p est un projecteur.

Exercice 49 ★

Soit E un \mathbb{K} -espace vectoriel et p un projecteur de E. Pour quelles valeurs de $\lambda \in \mathbb{K}$, Id $+\lambda p$ est-il un automorphisme?

Exercice 50 ★★

Soient p et q deux projecteurs d'un espace vectoriel E qui commutent.

- **1.** Montrer que $p + q p \circ q$ et $p \circ q$ sont des projecteurs.
- **2.** Montrer que $\operatorname{Ker}(p \circ q) = \operatorname{Ker} p + \operatorname{Ker} q$ et que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$.
- 3. Montrer que $\operatorname{Ker}(p+q-p \circ q) = \operatorname{Ker} p \cap \operatorname{Ker} q$ et que $\operatorname{Im}(p+q-p \circ q) = \operatorname{Im} p + \operatorname{Im} q$.

Exercice 51 ***

Centrale MP

Soient H_1 et H_2 deux sous-espaces supplémentaires de $\mathcal{L}(\mathbb{R}^n)$ vérifiant la propriété suivante :

$$\forall (f,g) \in H_1 \times H_2, \ f \circ g + g \circ f = 0$$

- **1.** Justifier qu'il existe $(p_1, p_2) \in H_1 \times H_2$ tel que $p_1 + p_2 = Id$.
- 2. Montrer que p_1 et p_2 sont des projecteurs.
- 3. Montrer que dim $H_1 \le (n \operatorname{rg} p_2)^2$ et dim $H_2 \le (n \operatorname{rg} p_1)^2$.
- **4.** Quel est le nombre de choix possibles pour le couple (H_1, H_2) ?

Exercice 52 ★★

Soient p_1, \dots, p_n des projecteurs d'un espace vectoriel E de dimension finie tels que $p_1 + \dots + p_n = \mathrm{Id}_{\mathrm{E}}$.

Montrer que Im $p_1 \oplus \cdots \oplus \operatorname{Im} p_n = \operatorname{E}$.

Exercice 53 ***

Soit u un endomorphisme d'un espace vectoriel de dimension finie E. Montrer qu'il existe un projecteur p de E et un automorphisme φ de E tels que $u = p \circ \varphi$.

Exercice 54 ★★

Soient f et g deux projecteurs d'un espace vectoriel E.

- **1. a.** Montrer que Im f = Im g si et seulement si $f \circ g = g$ et $g \circ f = f$.
 - **b.** Donner une condition nécessaire et suffisante pour que $\operatorname{Ker} f = \operatorname{Ker} g$.
- **2.** On suppose que $f \circ g = g \circ f$.
 - **a.** Montrer que

$$E = (\operatorname{Im} f \cap \operatorname{Im} g) \oplus (\operatorname{Im} f \cap \operatorname{Ker} g) \oplus (\operatorname{Ker} f \cap \operatorname{Im} g) \oplus (\operatorname{Ker} f \cap \operatorname{Ker} g)$$

b. Que peut-on dire de $f \circ g$?

Exercice 55 ★

Soit E un \mathbb{R} -espace vectoriel. Soit $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2 \operatorname{Id}_E = 0$.

- **1.** Montrer que $u \in GL(E)$ et exprimer u^{-1} en fonction de u.
- **2.** On pose $f = u \text{Id}_E$ et $g = 2 \text{Id}_E u$. Montrer que $f \circ g = g \circ f = 0$.
- 3. Vérifier que f et g sont des projecteurs.
- **4.** Montrer que Im f = Ker g et Im g = Ker f.
- **5.** Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Ker} g$ et $E = \operatorname{Im} f \oplus \operatorname{Im} g$.

Exercice 56 ***

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension $n \geq 1$ qui commute avec tous les endomorphismes de \mathbb{E} , c'est-à-dire

$$\forall g \in \mathcal{L}(E), \quad f \circ g = g \circ f$$

- 1. Soit u un vecteur non nul de E. Justifier l'existence d'un supplémentaire H_u de vect(u) dans E. Quelle est la dimension de H_u ?
- **2.** En considérant le projecteur p_u sur vect(u) parallèlement à H_u , montrer qu'il existe $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$.
- **3.** Soit $v \in E$ non colinéaire à u. On montre de même qu'il existe $\lambda_v \in \mathbb{K}$ tel que $f(v) = \lambda_v v$. Montrer que $\lambda_u = \lambda_v$. On pourra considérer le vecteur u + v.
- 4. Reprendre la question précédente lorsque v est non nul et colinéaire à u.
- **5.** En déduire que les endomorphismes de E commutant avec tous les endomorphismes sont les homothéties.

Exercice 57 ★

On pose $E = \mathbb{R}^{\mathbb{R}}$. Montrer que l'application s qui à une fonction $f \in E$ associe l'application $x \mapsto f(-x)$ est une symétrie dont on précisera les éléments caractéristiques.

Rang d'une application linéaire

Exercice 58 ★★

Soient E un espace vectoriel réel de dimension n , f et g deux endomorphismes tels que

$$f + g = id_E$$
 et $rg(f) + rg(g) \le n$.

1. Montrer que

$$E = Im(f) \oplus Im(g)$$
.

2. Après avoir justifié l'égalité $f\circ g=g\circ f$, prouver que f et g sont des projecteurs de E.

Exercice 59 **

Soient E un \mathbb{K} -ev de dimension finie, f et g deux endomorphismes de E.

1. Etablir que

$$\dim(\operatorname{Ker}(f \circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g)).$$

2. Montrer que l'inégalité précédente est une égalité si et seulement si $Ker(f) \subset Im(g)$.

Exercice 60 ★★★

Soient $u, v \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Déterminer le rang de l'endomorphisme de $\mathcal{L}(E)$ Φ : $f \mapsto v \circ f \circ u$.

Exercice 61 **

Inégalité de Frobenius

Soient $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$ et $h \in \mathcal{L}(G, H)$ où E, F, G, H sont des espaces vectoriels de dimension finie. Montrer que

$$rg(g \circ f) + rg(h \circ g) \le rg(h \circ g \circ f) + rg(g)$$

Exercice 62 ★

Inégalités de Sylvester

Soient E et F deux espaces vectoriels, f et g deux applications linéaires de rang fini de E dans F.

1. Montrer que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$$

2. Prouver que rg(f + g) = rg(f) + rg(g) si et seulement si

$$\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0_{\mathrm{F}}\}\ \text{ et } \operatorname{Ker}(f) + \operatorname{Ker}(g) = \operatorname{E}$$

Formes linéaires et hyperplans

Exercice 63 ★★

Endomorphismes de rang au plus 1

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E dont l'image est une droite vectorielle vect(u) avec $u \neq 0_E$. On pose alors :

$$\forall x \in E, \ f(x) = \varphi(x)u$$

Montrer que φ est une forme linéaire sur E et qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.

Exercice 64 ★★ Transvections

Soit E un \mathbb{R} -espace vectoriel de dimension finie n, avec $n \ge 2$. On rappelle que E* est l'ensemble des formes linéaires sur E.

- 1. Soient φ et ψ deux éléments non nuls de E* tels que $\text{Ker}(\varphi) = \text{Ker}(\psi)$. Montrer qu'il existe un réel non nul λ tel que $\psi = \lambda \varphi$.
- **2.** Soit H un hyperplan de E. Montrer que l'ensemble D(H) des éléments de E* dont le noyau contient H est un sous-espace vectoriel de E* dont on précisera la dimension.
- **3.** On appelle transvection de E tout endomorphisme f de E possédant les deux propriétés suivantes :
 - $Ker(f Id_E)$ est un hyperplan de E;
 - $\operatorname{Im}(f \operatorname{Id}_{\operatorname{E}}) \subset \operatorname{Ker}(f \operatorname{Id}_{\operatorname{E}})$.

On appelle $Ker(f - Id_E)$ la base de f et $Im(f - Id_E)$ la direction de f.

- a. Soit φ un élément non nul de E* et u un vecteur non nul de Ker (φ) . Pour tout vecteur x de E, on pose $f(x) = x + \varphi(x)u$. Justifier l'existence de u et montrer que f est une transvection dont on précisera la base et la direction.
- **b.** Réciproquement, soit f une transvection de E. Montrer qu'il existe un élément non nul ϕ de E^* et un vecteur u non nul de $Ker(\phi)$ tels que $f(x) = x + \phi(x)u$ pour tout $x \in E$.

Exercice 65 ★★

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et $\varphi_1, \dots, \varphi_n$ des formes linéaires sur E. On suppose qu'il existe $x \in E$ non nul tel que

$$\forall i \in [1, n], \ \varphi_i(x) = 0$$

Montrer que la famille $(\varphi_1, ..., \varphi_n)$ est liée.

Exercice 66 ★★★

Rang d'une famille de formes linéaires

On considère un espace vectoriel E de dimension finie.

1. Soit F un sous-espace vectoriel de E. On note

$$G = \{ \varphi \in E^*, \forall x \in F, \varphi(x) = 0 \}$$

Montrer que G est un sous-espace vectoriel de E^* et que dim $F + \dim G = \dim E$.

2. Soit F un sous-espace vectoriel de E*. On note

$$G = \{x \in E, \forall \varphi \in F, \varphi(x) = 0\}$$

Montrer que G est un sous-espace vectoriel de E et que $\dim F + \dim G = \dim E$.

3. On se donne des éléments $\varphi_1, \dots, \varphi_m$ de E*. Montrer que

$$\dim\left(\bigcap_{i=1}^{m} \operatorname{Ker} \varphi_{i}\right) + \operatorname{rg}(\varphi_{1}, \dots, \varphi_{m}) = \dim \mathbf{E}$$

Exercice 67 ★

Equations d'un hyperplan

Soient E un espace vectoriel sur \mathbb{K} , f et g deux formes linéaires sur E non nulles.

1. Prouver que

$$Ker(f) \subset Ker(g)$$

si et seulement si il existe $\lambda \in \mathbb{K}^*$ tel que $g = \lambda f$.

2. En déduire une *condition nécessaire et suffisante* pour que f et g définissent le même hyperplan H. En déduire toutes les équations de H.