Data handling and PCA

Fernando Racimo Adelaide, January 2018

Today

- Experimental design
- Data handling
- PCA
- Spatial and isolation-by-distance methods

Today

- Experimental design
- Data handling
- PCA
- Spatial and isolation-by-distance methods

Real-life scenario

Sample size	Per-sample depth			
1,000	1X			
500	2X			
100	10X			
20	50X			

total depth is 1,000X

- Let's measure the bias of these set-ups for a set of summary statistics
- We'll compare the value we estimate from our data (S hat) against the true value of the whole population (S)

$$Bias(S) = \frac{\hat{S} - S}{S}$$

Number of segregating sites

Number of segregating sites

Expected heterozygosity

Expected heterozygosity

Today

- Experimental design
- Data handling
- PCA
- Spatial and isolation-by-distance methods

Alternative ways to deal with population genomic data

B. Pseudo-haploid random sampling

Genotype likelihoods Genotype Likelihood Genotype Likelihood Genotype Likelihood 0.87 0.68 0.89 A/A C/C G/T 0.21 0.03 A/T 0.01 A/C G/G A/G 0.01 A/A 0.06 T/T 0.04 • • • • • •

Genotype calling

- Generally requires high coverage data (> ~15X)
- Can lead to biases in comparisons with differences in coverage (more likely to over-call homozygous states on low-coverage data)
- Necessary for certain commonly used programs: PSMC, MSMC, etc.

Pseudo-haploid sampling

- Unbiased with respect to differences in coverage
- · Easy to produce and manipulate: we treat every diploid genome as haploid
- We lose information: we ignore all other reads that we do not sample!

Genotype likelihoods

- Uses the maximum amount of information
- Need a program to precompute likelihoods: ANGSD
- Need programs that can deal with genotype likelihoods: ngsAdmix, ngsTools, etc.
- Best for detecting selection (many individuals, low coverage data) -> good population allele frequency representation

Genotype likelihoods

- Genotype likelihood = P[data | a particular genotype]. The "log-likelihood" is the logarithm of the likelihood (easier to combine multiple probabilities: sums instead of products)
- 10 possible (unphased) genotypes: AA, AC, AG, AT, CC, CG, CT, GG, GT, TT
- Therefore, 10 log-likelihood values at each site, e.g. -10, -6.7, -8.3, -2.3, -3.5, -2.2, etc.
- Assuming we have M reads at a particular site:

$$egin{aligned} Pr\left(D|G=\{A_1,A_2\}
ight) &= \prod_{i=1}^M Pr\left(b_i|G=\{A_1,A_2\}
ight) \ &= \prod_{i=1}^M \left(rac{1}{2}p\left(b_i|A_1
ight) + rac{1}{2}p\left(b_i|A_2
ight)
ight), \ p\left(b|A
ight) &= \left\{egin{aligned} rac{e}{3} & b
eq A \ 1-e & b = A. \end{aligned}
ight. \end{aligned}$$

Nielsen et al. 2012 Korneliussen et al. 2014

SFS likelihoods

SFS likelihoods

- With low-coverage data, we don't have genotypes, so we cannot simply add up derived alleles to compute the SFS
- We can instead compute a likelihood for each bin in the site-frequency spectrum, given a set of reads from multiple individuals in a panel
- This approach is implemented in ANGSD and ngsTools

SFS likelihoods

- Let X be the sequencing data for our entire genome (all sites with ancestral and/or derived reads).
- X_s is the number of ancestral and derived reads at a particular site s.
- For 1 population, the SFS is a 1-dimensional vector $\vec{\gamma}$ with entries γ_i :
- $L(X|\gamma) = \prod_{s=1}^{N} L(X_s|\vec{\gamma}) = \prod_{s=1}^{N} \sum_{i=0}^{2n} \gamma_i P[X_s|D=i]$
- Then, we can use likelihood maximization algorithms to find a maximum likelihood estimate for each entry of the SFS (the values γ_i)

Today

- Experimental design
- Data handling
- PCA

Spatial and isolation-by-distance methods

What is PCA?

- Principal Component Analysis: an orthogonal transformation of a set of observations of correlated variables into a set of values of linearly uncorrelated variables
- A technique for dimensionality reduction
- A technique for extracting the principal axes of variation in a dataset

Finding the best orthogonal axes of variation

Finding the best orthogonal axes of variation

Finding the best orthogonal axes of variation

Genotype data are multi-dimensional

• Each SNP is a dimension!

M individuals

	1	1	1	0	0	0.	4 0.4	0.4 -0.6	-0.6	
N SNPs	0	1	2	1	2	-1.	.2 -0.2	0.8 -0.2	0.8	
	2	1	1	0	1	Mean-center 1.	0.0	0.0 -1.0	0.0	
	0	0	1	2	2		0 -1.0	0.0 1.0	1.0	= X
	2	1	1	0	0	1.	2 0.2	0.2 -0.8	-0.8	
		O	_	-	_	-0.	.6 -0.6	0.4 0.4	0.4	
	2	2	1	1	0	0.		-0.2 -0.2		

Solution: eigen-decomposition of covariance matrix

Solution: eigen-decomposition of covariance matrix

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

Solution: eigen-decomposition of covariance matrix

1) Multiply **X** by itself:
$$X^TX = C \longrightarrow {\text{covariance matrix} \atop (M \times M)}$$

$$\begin{bmatrix} V_{a} & C_{a,b} & C_{a,c} & C_{a,d} & C_{a,e} \\ C_{a,b} & V_{b} & C_{b,c} & C_{b,d} & C_{b,e} \\ C_{a,c} & C_{b,c} & V_{c} & C_{c,d} & C_{c,e} \\ C_{a,d} & C_{b,d} & C_{c,d} & V_{d} & C_{d,e} \\ C_{a,e} & C_{b,e} & C_{c,e} & C_{d,e} & V_{e} \end{bmatrix}$$

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

1) Multiply **X** by itself: $X^TX = C \longrightarrow {\text{covariance matrix} \atop (M \times M)}$

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

$$C = VDV^{T}$$

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

2) Eigen-decompose **C**:

$$C = VDV^T$$

3) Columns of V are the eigenvectors of C (PCs): $\mathbb{C} * V_1 = D_{1,1} * V_1$

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

2) Eigen-decompose **C**:

$$C = VDV^T$$

- 3) Columns of V are the eigenvectors of C (PCs): $\mathbb{C} * V_1 = D_{1,1} * V_1$
- 4) Diagonal entries of D are the eigenvalues of C

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

$$C = VDV^{T}$$

- 3) Columns of V are the eigenvectors of C (PCs): $\mathbb{C} * V_1 = D_{1,1} * V_1$
- 4) Diagonal entries of D are the eigenvalues of C
- 5) Eigenvectors with largest eigenvalues are top PCs

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

$$C = VDV^{T}$$

- 3) Columns of V are the eigenvectors of C (PCs): $\mathbb{C} * V_1 = D_{1.1} * V_1$
- 4) Diagonal entries of D are the eigenvalues of C
- 5) Eigenvectors with largest eigenvalues are top PCs

1) Multiply **X** by itself:

$$X^TX = C \longrightarrow \begin{array}{c} \text{covariance matrix} \\ \text{(M x M)} \end{array}$$

$$C = VDV^T$$

- 3) Columns of V are the eigenvectors of C (PCs): $\mathbb{C} * V_1 = D_{1.1} * V_1$
- 4) Diagonal entries of D are the eigenvalues of C
- 5) Eigenvectors with largest eigenvalues are top PCs

PCA of worldwide human genomes

PCA from genotype likelihoods

Dealing with missing data: Procrustes transformation

- SNPs in which at least 1 sample has missing data are unusable in a PCA
- Problem: low coverage genomes -> many sites with missing data
- Even bigger problem: combination of many low-coverage genomes -> very few sites with overlap in coverage across all of them
- Solution (Skoglund et al. 2012):
 - For each low-coverage genome, run 1 PCA (with many high-coverage genomes included)
 - Combine loadings from each individual PCA into an overall-PCA, using Procrustes transformation

Shape-preserving Procrustes transformation

Shape-preserving Procrustes transformation

Use a Procrustes transformation using a high-coverage reference PCA

Procrustes transformation

Sampling scheme can be misleading

PCA can be misinterpreted!

PCA can be misinterpreted!

PCA can be misinterpreted!

Today

- Experimental design
- Data handling
- PCA
- Spatial and isolation-by-distance methods

Isolation-by-distance

Isolation-by-distance (continuous change)

Limited migration between adjacent areas

Long-range admixture vs. isolation-by-distance

EEMS: a method to model isolation-by-distance

Model assumptions are important

European

Long-range admixture + isolation-by-distance

(a) simulated lattice with admixture

(b) geogenetic map without admixture inference

(c) geogenetic map with admixture inference

Long-range admixture + isolation-by-distance

Eastings

(b) Close-up of Eurasian samples

Using PCA loadings to detect loci under selection

