Problem Set #7

Danny Edgel Econ 703: Mathematical Economics I Fall 2020

October 7, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

Let $X \subset \mathbb{R}^n$ be convex. We can prove that, for any $k \in \mathbb{N}$, $\lambda_1, ..., \lambda_k \geq 0$, $\sum_{i=1}^k \lambda_i = 1$, if $x_1, ..., x_k \in X$, then $\sum_{i=1}^k \lambda_i x_1 \in X$.

Proof.

- 1. Base step. Suppose $x_1, x_2 \in X$. Since X is convex, $(1 \lambda)x_1 + \lambda x_2$ is also in X for all $\lambda \in [0, 1]$
- 2. Induction Step. Assume that, for some $k \in \mathbb{N}$, $\sum_{i=1}^{k} \lambda_i x_i \in X$, where $\sum_{i=1}^{k} = 1$. Let $x_{k+1} \in X$ and $\lambda' \in [0,1]$. Then, since X is convex,

$$(1 - \lambda')x_{k+1} + \lambda' \sum_{i=1} \lambda_i x_i$$

is also in X. Now, define

$$\lambda'_i = \begin{cases} \lambda' \lambda_i, & i \in \{1, ..., k\} \\ 1 - \lambda', & i = k + 1 \end{cases}$$

Then, $\sum_{i=1}^{k+1} \lambda'_i x_i \in X$ and $\sum_{i=1}^{k+1} \lambda'_i = 1$

 $\therefore \sum_{i=1}^k \lambda_i x_i \in X \text{ for any } k \in \mathbb{N} \blacksquare$

Question 2

Define C as the set of all convex combinations of S.

- 1. Suppose $x \in C$
 - (a) By definition, $\exists s_1,...,s_n \in S, \lambda_1,...,\lambda_n \in [0,1], \sum_{i=1}^n \lambda_i = 1$ such that $\sum_{i=1}^n \lambda_i s_i = x$
 - (b) Let $X\supset S$ be a convex set. Since $x\in S,\ x\in X$. Since $\cos S=\bigcap_{\alpha\in\Omega}X_\alpha$, where Ω is the set of all convex sets that contain $S,\ x\in S\land x\in X\Rightarrow x\in \cos S$
 - (c) Thus, $x \in C \Rightarrow x \in \cos S$
 - $\therefore C \subseteq \cos S$
- 2. Suppose $x \in coS$
 - (a) Any intersection of convex sets is also convex, so $\operatorname{co} S$ is convex, so $\exists y_1,...,y_m \in \operatorname{co} S,\ \lambda_1,...,\lambda_m \in [0,1],\ \sum_{i=1}^m \lambda_i = 1$ such that $\sum_{i=1}^m \lambda_i y_i = x$
 - (b) It is clearly apparent that $\cos S \subseteq S$, so $y_1, ..., y_m \in S$. Then, x is a convex combination of elements of S. so $x \in C$

 $\therefore \cos S \subseteq C$

 $\therefore C = \cos \blacksquare$

Question 3

Suppose X is convex.

- 1. Let $x, y \in clX$ and suppose $\exists z = (1 \lambda)x + \lambda y, z \notin clX$
- 2. If $x, y \in X$, then, since X is convex, $(1 \lambda)x + \lambda y \in X \ \forall \lambda$. Thus, $x, y \in X \Rightarrow z \in \text{cl}X$
- 3. If $x \in \text{cl}X$, $x \notin X$, and $y \in X$, then x is a limit point of X. Then, $\forall x' = (1 \lambda')x + \lambda'y$, $x' \in X$ or x' = x. Thus, either $z \in X$ or z is a limit point of x. Thus, $z \in \text{cl}X$.
- 4. If $x, y \in clX$ and $x, y \notin X$, then both x and y are limit points of X. Thus, $\forall \varepsilon > 0$, $\exists x' \in B_{\varepsilon}(x)$, $y' \in B_{\varepsilon}(y)$ such that x' and y' are both in X and are convex combinations of x and y. Then, either z is equal to x or y, or $\exists \varepsilon$ such that $x' \in B_{\varepsilon}(x)$, $y' \in B_{\varepsilon}(y)$, and $z = (1 \lambda')x' + \lambda'y'$ for some $\lambda' \in [0, 1]$. Thus, $z \in clX$

 \therefore by contradiction, clX is convex

Question 4

- 1. Let $f: X \to \mathbb{R}$ be a concave function where $X \subseteq \mathbb{R}^n$.
 - (a) Let $x_1, x_2 \in X$ and define $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Then, $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ are both in hyp f
 - (b) Since X is convex and f is concave, $\forall \lambda \in [0,1], f((1-\lambda)x_1 + \lambda x_2) \geq (1-\lambda)f(x_1) + \lambda f(x_2)$
 - (c) Thus,

$$(1 - \lambda)x_1 + \lambda x_2 \in X$$
 and $(1 - \lambda)y_1 + \lambda y_2 \le f((1 - \lambda)x_1 + \lambda x_2)$
so $(1 - \lambda)z_1 + \lambda z_2 \in \text{hyp } f$

- $\therefore f \text{ concave} \Rightarrow \text{hyp} f \text{ convex}$
- 2. Let hyp f be a convex hypograph of $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^n$.
 - (a) Let $z_1, z_2 \in \text{hyp} f$. Then, $\forall \lambda \in [0, 1], (1 \lambda)z_1 + \lambda z_2 \in \text{hyp} f$. Then,

$$(1-\lambda)x_1 + \lambda x_2 \in X$$
 and $(1-\lambda)y_1 + \lambda y_2 \leq f((1-\lambda)x_1 + \lambda x_2)$

Thus, X is a convex set and, $\forall x_1, x_2 \in X$, $(1 - \lambda)f(x_1) + \lambda f(x_2)$

$$f((1-\lambda)x_1 + \lambda x_2) \ge (1-\lambda)f(x_1) + \lambda f(x_2)$$

- \therefore hyp f convex $\Rightarrow f$ concave
- $\therefore f$ is convave if and only if hyp f is convex

Question 5

- 1. Let X and Y be closed, convex sets, and let X be compact
- 2. Fix $y_0 \in Y$ and define $A = \{y x | x \in X\}$. Let a_n be a sequence in A such that $a_n = y_n x_n$ for all n
- 3. Since X is compact, $\exists x_{n_k} \to x \in X$, and $y_n \to y \in \mathbb{R}^n$. Thus, $a_{n_k} \to a \in A$. Therefore, A is closed and, given that X and Y are convex, A is also convex.
- 4. Since X and Y are disjoint, $0 \notin A$. Thus $\exists H(p,\beta)$ that strictly separates A and $\{0\}$. Then, we can solve:

$$\begin{aligned} 0 < & \beta < p \cdot a \\ 0 < & \beta < p \cdot (y - x) \\ 0 < & \beta < p \cdot y - p \cdot x \\ p \cdot x < & \beta + p \cdot x < p \cdot y \end{aligned}$$

 $\therefore \exists H(p,\alpha)$ that strictly separates X and Y

Question 6

- 1. Suppose $\exists x \in \mathbb{R}^n$ such that $\inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i(x_i) > 0$ and $\inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i(-x_i) > 0$
 - (a) Further suppose $\exists \pi' \in \Pi_A \cap \Pi_B$
 - (b) If $\sum_{i=1}^{n} \pi'_i x_i > 0$, then $\sum_{i=1}^{n} \pi'_i (-x_i) < 0$. If $\sum_{i=1}^{n} \pi'_i (-x_i) > 0$, then $\sum_{i=1}^{n} \pi'_i x_i < 0$
 - (c) Thus, $\exists \pi' \in \Pi_A \cap \Pi_B \Rightarrow \not\exists x \in \mathbb{R}^n \text{ such that } \inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i(x_i) > 0$ and $\inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i((-x_i)) > 0$
 - ... By contradition, if $\exists x \in \mathbb{R}^n$ such that $\inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i(x_i) > 0$ and $\inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i((-x_i)) > 0$, then $\Pi_A \cap \Pi_B = \emptyset$
- 2. Suppose $\Pi_A \cap \Pi_B = \emptyset$, Therefore, Π_A and Π_B are disjoint.
 - (a) Since Π_A and Π_B are disjoint and both compact, convex sets in \mathbb{R}^n , $A = \Pi_A \Pi_B$ is a compact, convex set where $0 \notin A$. Then, by the second theorem for a lecture,

$$\exists H(x^*, \beta) \text{ s.t. } 0 < \beta < a^* \cdot x^*$$

Where $a^*=\inf_{\pi_A\in\Pi_A,\pi_B\in\Pi_B}\{\pi_A\cdot x^*-\pi_B\cdot x^*\}$ Then, $a^*=\pi_A^*\cdot x^*-\pi_B^*\cdot x^*$, where:

$$\pi_A^* = \inf_{\pi_A \in \Pi_A} \{ \pi_A \cdot x^* \}, \text{ and } \pi_B^* = \sup_{\pi_B \in \Pi_B} \{ \pi_B \cdot x^* \}$$

Then, we can solve $0 < \beta < \underline{a^* \cdot x^*}$ to derive $\pi_B^* \cdot x^* < \beta + \pi_B^* \cdot x^* < \pi_A^* \cdot x^*$. Define $\alpha = \beta + \pi_B^* \cdot x^*$ and $\overline{alpha} \in \mathbb{R}^n$ such that $\overline{alpha}_i = \alpha \ \forall i \in \{1,...,n\}$. Thus, $\forall \pi_A \in \Pi_A, \pi_B \in \Pi_B$,

$$\pi_B \cdot (x^* - \overline{\alpha}) \le \pi_B^* \cdot x^* - \alpha < 0 < \pi_A^* \cdot x^* - \alpha \le \pi_A \cdot (x^* - \overline{\alpha})$$

So $(x^* - \overline{\alpha})$ is an agreeable trade.

$$\therefore \Pi_A \cap \Pi_B = \emptyset \Rightarrow \exists x \in \mathbb{R}^n \text{ such that } \inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i(x_i) > 0 \text{ and } \inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i(-x_i) > 0$$

... There is an agreeable trade if and only if there is no common prior