```
Example 5 R(a, b, c, d, E)
       bed -> c b -> c ac -> E dE -> a
       Key (b Ed) (bda)
 (bda)^{\dagger} = \{b,d,a,c,E\}
I RI: (a,c, E) R2(b,c) R3(a,b,d)
II RI (a,d, E) R2 (b,c) R3 (b,d, E)
 Keys: R(a_3b_3x_3d_3\not=)

(bd)^+ = \{b_3d_3c_3\}
     (bda)+= { b, d, a, c, € }
     (bd E) = E b, d, E, a, c3
     (bdc)+= { b, d, c
 Normalize
         R(a, b, c, d, E) key (bda) (bdE)
  R(\underline{a},\underline{c},\underline{E}) key (ac) RI in BCNF
   R2(a,c,b,d) key(bda) X
    R3 (b) c) R3 m3NF
    R4 (a,b,d)
                R4 m3NF
```

II
$$b \rightarrow c$$

RI (b, c)

RI (b, c)

RI (b, c)

R2 (a, b, d, E)

R2 (bda) (bdE)

R2 (a, b, d, E)

R2 (bda)

R3 (a,
$$\underline{d}$$
, \underline{E}) R3 in BCNF
R4 (\underline{b} , \underline{d}) \underline{E}) R4 in BCNF

R= RI & R3 & R4

$$\mathbb{II}$$
 R1 (b,c)
R2 (a,c,d, E) \times
R \neq R1 \approx R2

Example:
$$R(a, b, c, d, E)$$
 $b = \rightarrow d, b = cd \rightarrow a, d \rightarrow E$
 $(b)^{+} = \{b, E, d\}$
 $(bc)^{+} = \{b, E, d, c, a\}$
 $b = \rightarrow d, b \rightarrow E$
 $b = \rightarrow d, b \rightarrow E$

I
$$cd \rightarrow a$$

RI $(a_3 c_3 d)$

R2 $(b_3 c_3 d) = X$

key (bc)

R3
$$(\underline{d}, \underline{E})$$

R4 $(\underline{b}, \underline{c}, \underline{d})$ X kg $(\underline{b}, \underline{c})$

R5
$$(b,d)$$
 V R6 (b,c) V

R = RI W R3 W R5 00 R6

If $d \rightarrow E$ RI (d, E)R2 (a, b, c, d)Kay $(bc) \times$

R= RI N R3 N R4

Question: R(a, b, c, d) $a \rightarrow b, c \rightarrow d$ $ad \rightarrow c bc \rightarrow a$ $ad \rightarrow c \rightarrow d$ Does thus imply that $a \rightarrow c$?