Math	34A	Wint	ter	2020
Old M	Iidte	rm 3	#1	L

No calculators

PRINT NAME	Excellence Bonus	1
SIGN HERE	Score	/24

Put answers in the boxes provided. Show high quality work for all answers. Points may be awarded for this.

TA: Garo	\square Sam	Trevor	Section Time: 8am	6pn
			5pm	7pn

1. [/6] Use the graph given to find

(a)
$$\log(1000) + \log(0.34) =$$

(b) Solve
$$\log(y) = 1.87$$
. Then $y =$

(c) The average rate of change of 10^x between x=0.2 and x=0.7 is

2.		/6]	Find	the	following	derivatives.	Simplify	vour	answers.
	L.	/ V]	1 III G	UIIC	Tonowing	delivatives.	Simping	your	and werb.

(a)
$$\frac{d}{dx} \left(2e^{7x} + 5x^3 - 7 \right) =$$

(b)
$$\frac{d^2}{dx^2} \left(3x^4 + 12\sqrt{x} \right) =$$

(c) If
$$f(x) = cx^2 + 16/x$$
, then $f'(2) =$

3. [/4] The height of a tree is increasing at a constant rate.
$$t$$
 years after 1950 the height is $h(t)$ feet, where $h(5) = 40$ and $h'(5) = 2$.

(a) How tall was the tree in 1975?

(b) What year (ex: 1982) did the tree reach a height of 200 feet?

The tree was 200 feet tall in

4. [/8] This question is about the function

$$f(x) = 2x^3 - 3x^2 - 12x + 5$$

(a) What is the slope of the graph y = f(x) at x = 1?

(b) What is the equation of the tangent line to the graph at x = 0? (Please give answer in the form y = mx + b.)

$$y =$$

(c) For which x value(s) is the graph y = f(x) concave up?

$$x =$$

(d) For what value(s) of x does the graph have slope 0?

$$c =$$

5. [(a)	/10] The height of a rocket above the ground after t seconds is $-3t^2 + 30t$. What was the velocity of the rocket after t seconds?	t meters.	
	velocity =	m,	/s
(b)	What was the initial speed of the rocket? $initial \ speed =$	m	/s
(c)	What was the acceleration of the rocket after 2 seconds? $\operatorname{acceleration} = \begin{bmatrix} \\ \\ \end{bmatrix}$	m/s	s^2
(d)	When was the velocity zero? $\label{eq:Att} \text{At } t =$	second	ds
(e)	How high above the ground was the rocket when the velocity was zero? $\label{eq:height} \text{height} =$	mete	ers