

Metodologias de Otimização e Apoio à Decisão Data: 18/01/2023 Exame – Época Normal

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. (cotação prevista:
$$7.5 \text{ valores} = 2.5 + 2.5 + 2.5$$
)

Considere o seguinte problema de programação linear com um só objetivo:

Maximizar
$$z = 2x_1 - x_2$$

sujeito a
 $x_1 + 2x_2 \ge 4$ (1)
 $3x_1 + x_2 \le 3$ (2)
 $x_1 \ge 0, x_2 \ge 0$

Assumindo que x_3 e x_4 são as variáveis *surplus* e *artificial* da restrição funcional (1), e x_5 é a variável *slack* da restrição funcional (2), o quadro ótimo do *simplex* é:

	Ci	2	-1	0	-M	0	
ΧB	$_{CB}\setminus \mathbf{x_{i}}$	X 1	X 2	X 3	X 4	X 5	b
X ₂	-1	0	1	-3/5	3/5	-1/5	9/5
X 1	2	1	0	1/5	-1/5	2/5	2/5
zj-cj		0	0	1	-1+M	1	-1

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de pós-otimização, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da variação:
 - i) Alteração do coeficiente da variável x₁ na função objetivo, de 2 para 3;
 - ii) Alteração dos **termos independentes das restrições** de $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ para $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$.
- **b)** Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que **intervalo de b**₁ (termo independente da 1ª restrição) a base ótima apresentada atrás, continuará ótima.

2. (cotação prevista: 6.5 valores = 5.0 + 1.5)

Considere agora o seguinte problema de programação por metas:

Minimizar
$$Z = \left\{ d_3^+, d_4^-, d_5^- + d_5^+ \right\}$$
 sujeito a
$$-x_1 + x_2 + d_1^- = 3 \qquad \qquad \textbf{(1)}$$

$$2x_1 + 3x_2 + d_2^- = 18 \qquad \textbf{(2)}$$

$$x_1 + 3x_2 + d_3^- - d_3^+ = 12 \qquad \textbf{(3)}$$

$$x_1 + 2x_2 + d_4^- - d_4^+ = 4 \qquad \textbf{(4)}$$

$$2x_1 + 3x_2 + d_5^- - d_5^+ = 24 \qquad \textbf{(5)}$$

$$x_1 \ge 0, x_2 \ge 0, d_i^- \ge 0, d_i^+ \ge 0 \quad (i = 1, 2, 3, 4, 5)$$

- a) Resolva este problema pelo método gráfico;
- b) Indique, justificando, qual era o objetivo pretendido para a meta com grau de prioridade 2 e se este foi atingido, ou não.

Duração: 2h

Departamento de Engenharia Informática e de Sistemas

(cotação prevista: 6,0 valores = 4,5+1,5)

Considere o seguinte problema de programação linear com duas funções objetivo:

Min
$$z_1 = x_2$$

Max $z_2 = x_1 + x_2$
sujeito a
 $\underline{\mathbf{x}} = (x_1, x_2)^T \in X$

- **a)** Determine a **região eficiente** (estrita e/ou fracamente) deste problema e assinale-a no gráfico anterior. Justifique a sua resposta.
- **b)** Obtenha a **tabela de** *pay-off* correspondente a este problema e identifique a **solução ideal** e a **solução anti-ideal**.

Nome: Nº _____