Let's go cisco live! #CiscoLive

Operationalize Routed Optical Networking

Randy Zhang, Principal Architect

BRKOPT-2018

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-2018

- Introduction
- Journey to Operational Convergence
- Converging Network Operational Practices
- Operational Convergence: A Practical Example
- Conclusion

Introduction

Cisco Routed Optical Networking Solution

>250Tbps

+

400GE ZR/ZR+

+

Private Line Emulation

Automation,
 Modern
 Software &
 Control Plane

New NetworkParadigm

Routed Optical Network

Convergence through Routed Optical Networking

Layer Convergence Converging through Digital Coherent Optics (DCO) in routers

Reduced complexity and lowered network cost

Service Convergence Converging to a common packet transport by reducing dedicated infrastructure

Lowered cost and increased sustainability

Topology Convergence Converging to greater congruency in IP, Photonic, and Fiber layers

Optimized network lifecycle management

Management Convergence Converging orchestration and assurance into a unified view

Increased service agility and customer satisfaction

Operational Convergence

Converging business processes, operational practices and organizations

Higher productivity and efficiency and lower employee stress

Not necessarily all 5 types of convergences are present in any given project

Simplification through Reduction

ROADM: Reconfigurable Optical Add/Drop Multiplexer

Direct Benefits to Inside Plant

- Reduced power consumption, power distribution, batteries
- Lower HVAC requirements
- Reduced requirements for footprint, cabling, patch panels
- Removing the need for transponder maintenance and upgrades

Business Benefits of Routed Optical Networking

Simplified Network Architecture

Optimized
Network
Lifecycle
Management

Increased Operational Agility

Lower TCO* and Higher Sustainability

More Efficient Operations

Customer Satisfaction and Faster Time to Value

^{*} ACG research: THE ECONOMIC BENEFITS OF IP TRANSPORT AT 400G

Why Operationalize Routed Optical Networking?

A great technology is only valuable if it can be operationalized and made into the core of how your business is run.

Organizational Structures

Business Processes

Organizational Culture

Operational Tooling

In Particular ...

Organizational Structures

Optimizing organizational structures for converged operations

Organizational Culture

Promoting and rewarding convergence skillset and thinking

Business Processes

Enhancing business operating models and processes for convergence

Operational Tooling

Updating or migrating tools to align with network convergence adoption

In Summary

Operationalization of Routed Optical Networking is to

embed the innovative and disruptive IP and optical convergence into

business operations through a flow of business activities so that the

benefits of the Routed Optical Networking solution are fully realized

Journey to Operational Convergence

Journey of Adoption

Adoption of Routed Optical Networking may be a journey through a set of use cases, each with specific business outcome

A Hypothetical Adoption Example

BRKOPT-2018

Three Phases of Use Case Adoption

Continuous innovation and 3. Operate improvement to transform the network Technology integration and optimization Operational practices transformation Workforce upskilling and optimization Business process optimization 1. Select Business case and modeling Architecture & use case selection PoC testing and assessment 2. Deploy Kaizen Product and service proposal Design and implement Architecture migration Solution validation Automation & orchestration

BRKOPT-2018

Impact of Routed Optical Networking on Operations

Traditionally a technology is more contained in its own domains, often with clearly marked boundaries

Convergence through Routed Optical Networking changes or blurs the boundaries, creating a transformation or disruption that is impacting many areas of the operator's business

Routed Optical Networking provides an opportunity to rethink and to re-optimize how services are delivered through networks

Architectural Impacts

Multilayer Architecture

Converged Architecture*

Multiple views and processes Photonic OSS Packet OSS Silo'd management OTN OSS Dedicated Opaque OTN layer Grev layer wavelengths topologies Transponders

Unified network views

* This is one view of the Converged Architecture

Impacts of Private Line Emulation: An Example

Current Architecture

Future Architecture

Operational impacts: service lifecycle, tooling, processes, organization

Aligning Operational Convergence to Use Cases

Assess value chains and optimize organizational structures, processes and tooling

Outcomes of Operational Convergence

Increased efficiency and productivity

Lower cost and better sustainability

Agile and more adaptive organization

- Streamlined processes, better collaboration and faster decision making
- Eliminating redundant and low-value tasks and activities
- Reducing resource and material inputs through better capacity planning

- Collapsing tooling functions and reduce maintenance costs
- More efficient energy use
- Intelligent energy management systems
- Better public image and branding

- Less hierarchy, faster decision making, more nimble, faster response to changing market needs
- Ease of doing business
- Better customer experience

Converging Network Operational Practices

Balancing Competing Values

Network reliability **Architectural** that delivers the changes that deliver Present **Future** new business Value current customer Value services outcomes **Network Operators**

BRKOPT-2018

Barriers to Converging Network Operations

Integration

Challenges integrating with legacy technologies, multivendor interop, tooling, and processes

Cost

Cost of new solution deployment and migration, budget limitations, changing priorities

Organizational

Structure of organizations aligned with technology layers; uncertainty of changes and impact

Tooling

Lack of operational ease for adoption, complex management tooling

Complexity

Inter-dependency and multitude of components being impacted

Skillset

Workforce lack of convergence skillset, lack of time and priority for new skills

High Level Strategies

Executive sponsorship from the top to embrace convergence

Create a vision for each use case, while implementing necessary incremental changes

Integrate and simplify processes and tooling aligned to the use case

Develop a set of relevant KPIs, monitor, report, build momentum Evolve the workforce for new skillset and roles

Optimizing Organizational Structures

Reduce and simplify processes through organizational synergies and tighter process integration

Clarify ownership and accountability where technology layers converge

Create job roles to centralize operational responsibilities for convergence

Encourage the top talent to move into the new job roles

Workforce Transformation Example

Unify teams to create synergy and reduce friction

Create new job roles with convergence functions

Re-align resources for the new architecture

- Bring teams closer together to create better synergies and collaborations
- Cross-train team members to bring up the overall skillset
- Identify any specific job functions that are missing but required to operate the converged architecture
- Promote these roles in the organization

- Identify any specific job functions that are no longer relevant or less needed
- Move affected resources to job roles that are better aligned with the converged architecture

An Example of Team Evolution

Building Synergies Adding Convergence Engineers Converged Teams

Benefits of Convergence Engineer Job Role

- Centralized subject matter expert(s) and escalations for maintaining convergence related network services
- Helps minimize customer impact as convergence is being adopted
- Provides inputs to other areas of network operations and engineering
- Grow the team as more convergence use cases are deployed

Additional Skills for a Convergence Engineer

- Bridging the packet and optical technologies
- DCO and private line emulation technology and operation
- SDN automation and hierarchical controller

An Example Evolution of the Optical Workforce

Convergence engineers Upskilling with Upskilling with packet technology, SDN and DCO and private network line emulation skills automation Optical SMEs + convergence a relative gentler learning curve for optical knowledge experts who wish to expand into IP

Promote Organizational Culture for Convergence

Executive leadership and sponsorship of the convergence initiative

Reward convergence skillset and talent

Encourage crosstechnology collaborations and matrix reporting

Promote and track agile service delivery for better customer experience

Create new job roles for the IP & Optical convergence skillset

Simplifying Business Processes and Tooling

Evaluate Update Converge

- Use value stream mapping to identify value chain
- Document tooling needs, gaps, and roadmap
- Eliminate processes and tooling that add little or no values

- Align with the Routed Optical Networking adoption use cases with incremental updates
- Create graceful handoffs between workflows
- Minimize exception handling

- Unify processes and tooling
- Simplify workflows to reduce manual touch points
- Centralize convergence expertise and escalation

Enhance Network Operational Metrics

Percentage of

time a service

such as uptime

is available.

down?

Network up or Application or service fast or slow?

> Response latency for a percentage of requests

Performance

Experience

User happy with the service?

Availability + Performance for a percentage of users

Agility

How fast the service is delivered?

Operational efficiency for service delivery or trouble resolution

Sustainability

How much energy is used or saved?

Network simplification, and energy & capacity efficiency

Adopt comprehensive operational metrics to measure the converged networks

An Example of Incident Escalations

Existing process of IP team escalation

Initial arbitration and handoff

Convergence Engineer

Existing process of optical team escalation

Evolve this process as convergence taking hold

Operational Convergence: A Practical Example

Integrating DCO into Routers

Present Architecture

Grey optics in routers connected to external transponders

Future Architecture

Colored coherent optics in routers connected to ROADM

- Space and power saving, no need for spares and support cost for transponders
- A step closer to a unified operating model based on IP

Organizational Ownership

Asset Ownership

Budget, procurement, capacity planning, sparing, management tasks

Follow the existing models or create a new model?

Ownership Models

Optical Team

- More suited to existing silo'd models
- Routing team has read access to optics data

Routing Team

- More suited to an IP centric model
- Collaborate with optical team for optics management

Joint Ownership

- More suited for where both teams are under the same management
- Helpful for building a converged team

The ownership model may evolve over time

An Optical Model Example

	Optical Team	IP Team
Asset Ownership		
Inventory records	Optical inventory system	Reads from the optical inventory
Turn up & provisioning	Enables end to end optical path provisioning and validation	Prepares the router hardware and software, assigns IP address
Monitoring and maintenance	DSP and optics layer and line systems	Ethernet layer and up

The ownership model and tasks may evolve as adoption continues

Steps to Operational Convergence: An Example

1. Initial: Coordinated Operations

- IP team: router hardware & software
- Optical team: end to end optical path from optics to optics
- Jointly validate paths
- Clarify responsibility for maintenance

2. Intermediate: Adding Convergence Engineer (CE)

- Introduce hierarchical controller to manage DCOs
- Update processes incrementally as needed
- CE acting as final escalation for DCO circuits

3. Future: Converged Operations

- Enhanced role of hierarchical controller with additional domain controllers
- Converged team with increased number of CEs

Process Evolution

Initial Mode of Operation

Service Design and Ordering	Service	Service	Service	Service
	Provisioning	Operation	Transition	Improvement
Adding DCO into optical inventory system	Coordinated provisioning, test and validation by IP and optical teams	Coordinated monitoring and repair	Leveraging the updated inventory for change control	Changing reporting tooling to collect data from routers that host the DCO

Process Evolution

Future Mode of Operation

Service Design and Ordering	Service	Service	Service	Service
	Provisioning	Operation	Transition	Improvement
A single integrated workflow with updates from stakeholders	A single integrated workflow using the hierarchical controller	A single convergence team leveraging the hierarchical controller	Automated change control leveraging the hierarchical controller	A single network view leveraging the hierarchical controller

Hierarchical Controller Role Evolution

Limited Scope

- Managing optical parameters of the DCO
- More consistent with the optical management model

Intermediate Mode of Operation

Enhanced Scope

- Managing multivendor IP and Optical layers
- Suitable for the end to end converged architecture

Future Mode of Operation

Conclusion

Business Benefits of Routed Optical Networking

Simplified Optimized Increased

Network — Network — Operational

Architecture Lifecycle Agility

Management

Routed Optical Networking provides an opportunity to rethink and to re-optimize how services are delivered through networks

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- A Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive