

FACULTAD DE CIENCIAS

DIANA AVELLA ALAMINOS

ALGEBRA LINEAL I

ALUMNO: BARRIENTOS SÁNCHEZ JOSÉ ANTONIO

Autora del Curso:
Diana Avella Alaminos

Índice general

1	Espacios vectoriales				
	1.1	Sección 1 (Espacios vectoriales)			
	1.2	Sección 2 (Subespacios)			
	1.3	Sección 3			
	1.4	Sección 4			
2	Tra	nsformaciones lineales			
	2.1	Seccion 1			
	2.2	Seccion 2			
3	Transformaciones lineales y matrices 25				
	3.1	Seccion 1			
	3.2	Seccion 2			
	3.3	Seccion 3			
4	Pro	Producto Interno 3			
	4.1	Sección 1			
	4.2	Sección 2			
	4.3	Seccion 3			

Capítulo 1

Espacios vectoriales

1.1. Sección 1 (Espacios vectoriales)

Definición 1.1: Campo

Sea K un conjunto no vacío con dos operaciones binarias:

 $+: K \times K \to K$ y $\cdot: K \times K \to K$. Se dice que K es un campo si se cumplen las siguientes propiedades:

- 1. + es asociativa.
- 2. + es conmutativa.
- 3. Existe un elemento $0_K \in K$ tal que $a + 0_K = a$ para todo $a \in K$.
- 4. Para cada $a \in K$ existe un elemento $-a \in K$ tal que a + (-a) = 0.
- $5. \cdot \text{es asociativa}.$
- 6. · es conmutativa.
- 7. Existe un elemento $1 \in K$ tal que $a \cdot 1 = a$ para todo $a \in K$.
- 8. Para cada $a \in K \{0_K\}$ existe un elemento $a^{-1} \in K$ tal que $a \cdot a^{-1} = 1$.
- 9. $a \cdot (b+c) = a \cdot b + a \cdot c$ para todo $a, b, c \in K$.

Llamaremos a los elementos de K escalares.

Ejemplo 1.1.1

- R es un campo con las operaciones usuales.
- Q es un campo con las operaciones usuales.
- \blacksquare Z no es un campo pues no cumple 8.
- \mathbb{Z}_p con p primo es un campo.

• $\mathbb{Q}(\sqrt{2}) = \{x + \sqrt{2}y \mid x, y \in \mathbb{Q}\}$ es un campo.

Definición 1.2: Subcampo

Sean K un campo, $\tilde{K} \subseteq K$. Decimos que \tilde{K} es un subcampo de K si \tilde{K} con las operaciones restringidas de K es por sí mismo un campo.

Ejemplo 1.1.2

- \blacksquare \mathbb{Q} es un subcampo de \mathbb{R} .
- \blacksquare R es un subcampo de \mathbb{C} .

Definición 1.3: Espacio Vectorial

Sea V un conjunto no vacío, K un campo y + : $V \times V \to V$ y · : $K \times V \to V$ dos operaciones. Se dice que V es un espacio vectorial sobre K si se cumplen las siguientes propiedades:

- 1. (u+v)+w=u+(v+w) para todo $u,v,w\in V$. Asociatividad.
- 2. u + v = v + u para todo $u, v \in V$. Conmutatividad.
- 3. Existe un elemento $0_V \in V$ tal que $v + \theta_V = v$ para todo $v \in V$. Elemento neutro.
- 4. Para todo $v \in V$ existe $\hat{v} \in V$ tal que $v + \hat{v} = \hat{v} + v = \theta_V$. Inverso aditivo.
- 5. $1_K \cdot v = v$ para todo $v \in V$.
- 6. $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$ para todo $\lambda, \mu \in K$ y para todo $v \in V$. Distributividad.
- 7. $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ para todo $\lambda, \mu \in K$ y para todo $v \in V$. Distributividad.
- 8. $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$ para todo $\lambda \in K$ y para todo $u, v \in V$. Distributividad.

Decimos que $V, +, \cdot$ es un espacio vectorial sobre el campo K o un K-espacio vectorial. A los elementos de V los llamaremos vectores.

Ejemplo 1.1.3

- \mathbb{R}^n es un \mathbb{R} -espacio vectorial con las operaciones usuales.
- K campo, K^n es un K-espacio vectorial con las operaciones usuales.

$$K^{n} = \{(x_{1}, \dots, x_{n}) \mid x_{i} \in K\}$$

$$(x_{1}, \dots, x_{n}), (y_{1}, \dots, y_{n}) \in K^{n}$$

$$(x_{1}, \dots, x_{n}) + (y_{1}, \dots, y_{n}) = (x_{1} + y_{1}, \dots, x_{n} + y_{n})$$

$$\lambda \cdot (x_{1}, \dots, x_{n}) = (\lambda x_{1}, \dots, \lambda x_{n})$$

 \blacksquare K campo:

$$K^{\infty} = \{ (x_1, x_2, \cdots) \mid x_i \in K \ \forall i \in \mathbb{N}^+ \}$$

$$(x_1, x_2, \cdots), (y_1, y_2, \cdots) \in K^{\infty}$$

$$(x_1, x_2, \cdots) + (y_1, y_2, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots)$$

$$\lambda \cdot (x_1, x_2, \cdots) = (\lambda x_1, \lambda x_2, \cdots)$$

Es un K-espacio vectorial.

- K campo, $\mathcal{M}_{m \times n}(K)$ con m renglones y n columnas con las operaciones usuales de suma y producto por escalar es un K-espacio vectorial.
- K campo, K[x] polinomios en x con coeficientes en K con las operaciones usuales es un K-espacio vectorial.

Ejemplo 1.1.4

K campo, $V = \{f \mid f : K \to K\}$ con las operaciones:

$$f, g \in V \quad \lambda \in K$$

$$f +_{V} g : K \to K$$

$$x \mapsto f(x) +_{K} g(x)$$

$$\lambda \cdot_{V} f : K \to K$$

$$x \mapsto \lambda \cdot_{K} f(x)$$

Es un K-espacio vectorial.

Demostración. 1. Sean $f, g, h \in V$. P.D. Por construcción (f+g)+h, f+(g+h) son funciones que van de $K \to K$. Veamos que tienen la misma regla de correspondencia.

P.D.
$$((f+g)+h)(x)=(f+(g+h))(x) \quad \forall x \in K$$
.
Sea $x \in K$.

$$\begin{split} ((f+_Vg)+_Vh)(x) &= (f+_Vg)(x)+_Kh(x) & \text{Por def. de suma en } V \\ &= (f(x)+_Kg(x))+_Kh(x) & \text{Por def. de suma en } V \\ &= f(x)+_K(g(x)+_Kh(x)) & \text{Por def. de Campo punto 1 asociatividad} \\ &= f(x)+_K(g+_Vh)(x) & \text{Por def. de suma en } V \\ &= (f+_V(g+_Vh))(x) & \text{Por def. de suma en } V \end{split}$$

Por lo tanto (f+g)+h=f+(g+h).

2. Sean $f, g \in V$. P.D. $f +_V g = g +_V f$. Sabemos que $f +_V g : K \to K$ y $g +_V f : K \to K$. Veamos que tienen la misma regla de correspondencia.

$$(f +_V g)(x) = f(x) +_K g(x)$$
 Por def. de suma en V
= $g(x) +_K f(x)$ Por def. de Campo punto 2 conmutatividad
= $(g +_V f)(x)$ Por def. de suma en V

Por lo tanto $f +_V g = g +_V f$.

3. Proponemos θ_V como elemento neutro de V, tal que:

$$\theta_V: K \to K$$
$$x \mapsto 0_K$$

P.D.
$$f +_V \theta_V = \theta_V +_V f = f \quad \forall f \in V$$
.

Sea $f \in V$, sabemos que $f +_V \theta_V : K \to K$ y $\theta_V +_V f : K \to K$. Sea $x \in K$.

$$(f +_V \theta_V)(x) = f(x) +_K \theta_V(x)$$
 Por def. de suma en V
 $= f(x) +_K 0_K$ Por def. de θ_V
 $= f(x)$ Por def. de Campo punto 3 elemento neutro
 $= 0_K +_K f(x)$ Por def. de Campo punto 3 elemento neutro
 $= \theta_V(x) +_K f(x)$ Por def. de θ_V
 $= (\theta_V +_V f)(x)$ Por def. de suma en V

Concluimos entonces que $f +_V \theta_V = \theta_V +_V f = f$.

4. Sea $f \in V$. Proponemos \tilde{f} como inverso aditivo de f, tal que:

$$\tilde{f}: K \to K$$

 $x \mapsto -f(x)$

P.D. $f +_V \tilde{f} = \tilde{f} +_V f = \theta_V$. Sabemos que $f +_V \tilde{f} : K \to K$ y $\tilde{f} +_V f : K \to K$. Sea $x \in K$. P.D. $(f +_V \tilde{f})(x) = \theta_V(x)$.

$$\begin{split} (f+_V\,\tilde{f})(x) &= f(x) +_K \tilde{f}(x) & \text{Por def. de suma en } V \\ &= f(x) +_K (-f(x)) & \text{Por def. de } \tilde{f} \\ &= 0_K & \text{Por def. de Campo punto 4 inverso aditivo} \\ &= \theta_V(x) & \text{Por def. de } \theta_V \end{split}$$

Por lo tanto $f +_V \tilde{f} = \theta_V$. Analogamente se prueba que $\tilde{f} +_V f = \theta_V$.

5. Sea $f \in V$. P.D. $1_K \cdot_V f = f$. Sabemos que $1_K \cdot_V f : K \to K$, y $f : K \to K$. Sea $x \in K$.

$$(1_K \cdot_V f)(x) = 1_K \cdot_K f(x)$$
 Por def. de producto por escalar en V
= $f(x)$ Por def. de Campo punto 7 elemento neutro mult.

Por lo tanto $1_K \cdot_V f = f$.

6. Sea $f \in V$, $\lambda, \mu \in K$. P.D. $\lambda \cdot_V (\mu \cdot_V f) = (\lambda \cdot_K \mu) \cdot_V f$. Sabemos que por construcción $\lambda \cdot_V (\mu \cdot_V f) : K \to K$ y $(\lambda \cdot_K \mu) \cdot_V f : K \to K$. Sea $x \in K$.

$$\begin{split} (\lambda \cdot_V (\mu \cdot_V f))(x) &= \lambda \cdot_K (\mu \cdot_V f)(x) & \text{Por def. de producto por escalar en } V \\ &= \lambda \cdot_K (\mu \cdot_K f(x)) & \text{Por def. de producto por escalar en } V \\ &= (\lambda \cdot_K \mu) \cdot_K f(x) & \text{Por def. de Campo punto 5 asociatividad} \\ &= ((\lambda \cdot_K \mu) \cdot_V f)(x) & \text{Por def. de producto por escalar en } V \end{split}$$

Por lo tanto $\lambda \cdot_V (\mu \cdot_V f) = (\lambda \cdot_K \mu) \cdot_V f$.

7. Sea $f \in V$, $\lambda, \mu \in K$. P.D. $(\lambda +_K \mu) \cdot_V f = \lambda \cdot_V f +_V \mu \cdot_V f$. Sabemos que por construcción $(\lambda +_K \mu) \cdot_V f : K \to K$ y $\lambda \cdot_V f +_V \mu \cdot_V f : K \to K$. Sea $x \in K$.

$$\begin{split} ((\lambda +_K \mu) \cdot_V f)(x) &= (\lambda +_K \mu) \cdot_K f(x) & \text{Por def. de producto por escalar en } V \\ &= (\lambda +_K \mu) \cdot_K f(x) & \text{Por def. de producto por escalar en } V \\ &= \lambda \cdot_K f(x) +_K \mu \cdot_K f(x) & \text{Por def. de Campo punto 9 distributividad} \\ &= (\lambda \cdot_V f +_V \mu \cdot_V f)(x) & \text{Por def. de suma en } V \end{split}$$

Por lo tanto $(\lambda +_K \mu) \cdot_V f = \lambda \cdot_V f +_V \mu \cdot_V f$.

8. Sea $f, g \in V$, $\lambda \in K$. P.D. $\lambda \cdot_V (f +_V g) = \lambda \cdot_V f +_V \lambda \cdot_V g$.

Sabemos que por construcción $\lambda \cdot_V (f +_V g) : K \to K$ y $\lambda \cdot_V f +_V \lambda \cdot_V g : K \to K$. Sea $x \in K$.

$$(\lambda \cdot_V (f +_V g))(x) = \lambda \cdot_K (f +_V g)(x)$$
 Por def. de producto por escalar en V
 $= \lambda \cdot_K (f(x) +_K g(x))$ Por def. de suma en V
 $= \lambda \cdot_K f(x) +_K \lambda \cdot_K g(x)$ Por def. de Campo punto 9 distributividad
 $= (\lambda \cdot_V f)(x) +_K (\lambda \cdot_V g)(x)$ Por def. de producto en V
 $= (\lambda \cdot_V f +_V \lambda \cdot_V g)(x)$ Por def. de suma en V

Por lo tanto $\lambda \cdot_V (f +_V g) = \lambda \cdot_V f +_V \lambda \cdot_V g$. Al cumplir las 8 propiedades, V es un K-espacio vectorial.

Proposición 1.1.1

En un espacio vectorial el neutro es único.

Demostración. Sean K un campo y V un K-espacio vectorial. Sean θ_V, θ_V' elementos neutros de V. P.D. $\theta_V = \theta_V'$.

Note que:

$$\theta_V = \theta_V + \theta_V'$$
 Por def. de elemento neutro
 $= \theta_V' + \theta_V$ Por conmutatividad en Campo
 $= \theta_V'$ Por def. de elemento neutro

Concluimos entonces que $\theta_V = \theta'_V$.

Proposición 1.1.2

En un espacio vectorial los inversos aditivos son únicos.

Demostración. Sean K un campo y V un K-espacio vectorial. Sean $v,\hat{v},\hat{\hat{v}}$ inversos aditivos de v. P.D. $\hat{v}=\hat{\hat{v}}.$

Note que:

$\hat{v} = \hat{v} + \theta_V$	Por def. de elemento neutro
$= \hat{v} + (v + \hat{\hat{v}})$	Por def. de inverso aditivo
$= (\hat{v} + v) + \hat{\hat{v}}$	Por asociatividad en Campo
$= heta_V+\hat{\hat{v}}$	Por def. de inverso aditivo
$=\hat{\hat{v}}$	Por def. de elemento neutro

Proposición 1.1.3 Propiedades de cancelación

Sean K un campo y V un K-espacio vectorial. Sean $u, v, w \in V$. Entonces:

1. Si u + v = u + w, entonces v = w.

2. Si u + v = w + v, entonces u = w.

Demostración. 1. Supongamos que u + v = u + w. P.D. v = w.

$v = \theta_V + v$	Por def. de elemento neutro
$= (\hat{u} + u) + v$	Por def. de inverso aditivo
$= \hat{u} + (u + v)$	Por asociatividad en Campo
$= \hat{u} + (u + w)$	Por hipótesis
$= (\hat{u} + u) + w$	Por asociatividad en Campo
$= \theta_V + w$	Por def. de inverso aditivo
= w	Por def. de elemento neutro

2. Supongamos que u + v = w + v. Por la conmutatividad en Campo y por la propiedad anterior y se sigue que v = u.

Proposición 1.1.4

Sean K un campo y V un K-espacio vectorial. Entonces:

1. $0_K \cdot v = \theta_V$ para todo $v \in V$.

2. $\lambda \cdot \theta_V = \theta_V$ para todo $\lambda \in K$.

Demostración. 1. Sea $v \in V$. Entonces:

$$\theta_V + 0_K \cdot v = 0_K \cdot v$$
 Por def. de elemento neutro
$$= (0_K + 0_K) \cdot v$$
 Por def. de Campo punto 3 elemento neutro
$$= 0_K \cdot v + 0_K \cdot v$$
 Por def. distributividad Campo

Y por Propiedades de cancelación se sigue que $0_K \cdot v = \theta_V$.

2. Sea $\lambda \in K$. Entonces:

$$\begin{array}{ll} \theta_V + \lambda \cdot_V \theta_V = \lambda \cdot_V \theta_V & \text{Por def. de elemento neutro} \\ = \lambda \cdot_V (\theta_V + \theta_V) & \text{Por def. de elemento neutro} \\ = \lambda \cdot_V \theta_V + \lambda \cdot_V \theta_V & \text{Por def. distributividad Campo} \end{array}$$

Y por Propiedades de cancelación se sigue que $\lambda \cdot_V \theta_V = \theta_V$.

Proposición 1.1.5

Sea K un campo y V un K-espacio vectorial. Para todo $v \in V, (-1_K)v$ es el inverso aditivo de v.

Demostración. Sea $v \in V$. Veamos que $(-1_K) \cdot_V v$ es su inverso aditivo.

$$v + ((-1_K) \cdot_V v) = 1_K \cdot_V v + ((-1_K) \cdot_V v)$$
 Por def. de Campo punto 7 elemento neutro
$$= (1_K + (-1_K)) \cdot_V v$$
 Por def. distributividad Campo
$$= 0_K \cdot_V v$$
 Por def. de Campo punto 4 inverso aditivo
$$= \theta_V$$
 Por prop. 1.1.4

Por lo tanto $(-1_K) \cdot_V v$ es el inverso aditivo de v.

Notación 1.1.1

Dado $v \in V$ denotaremos por -v a su inverso aditivo.

Corolario 1.1.1

Sean K un campo y V un K-espacio vectorial. Entonces: $(-\lambda)v = -(\lambda v) = \lambda(-v)$ para todo $\lambda \in K$ y para todo $v \in V$.

Demostración. Sean $\lambda \in K$ y $v \in V$. Entonces:

$$\begin{array}{lll} \lambda \cdot_V (-v) = \lambda \cdot_V ((-1_K) \cdot_V v) & \text{Por prop. 1.1.4} \\ &= (\lambda \cdot_K (-1_K)) \cdot_V v & \text{Por def. Espacio Vectorial punto 6} \\ &= (-\lambda) \cdot_V v & \text{Por def. de Campo punto 8 inverso mult.} \\ &= ((-1_K) \cdot_K \lambda) \cdot_V v & \text{Por prop del campo} \\ &= (-1_K) \cdot_V (\lambda \cdot_V v) & \text{Por def. Espacio Vectorial punto 6} \\ &= -1(\lambda v) & \text{Por prop. 1.1.5} \end{array}$$

Notación 1.1.2

K denotará siempre un campo.

1.2. Sección 2 (Subespacios)

Definición 1.4: Subespacio

Sea V un K-espacio vectorial y W un subconjunto de V. Decimos que W es un subespacio de V si:

- a) $\theta_V \in W$.
- b) Si $u, v \in W$, entonces $u + v \in W$.
- c) Si $\lambda \in K$ y $v \in W$, entonces $\lambda v \in W$.

Notación 1.2.1

 $W \leq V$ denotará que W es un subespacio de V.

Proposición 1.2.1

Sea V un K-espacio vectorial y W un subconjunto de V. W es un subespacio de V si y solo si W con las operaciones restringidas de V es un K-espacio vectorial.

Observación 1.2.1

Si V es un K-espacio vectorial, W subconjunto de V, $W \leq V$ si y solo si se cumple:

- 1. $W \neq \emptyset$.
- 2. $\lambda u + v \in W$ para todo $u,v \in W$ y para todo $\lambda \in K.$

Proposición 1.2.2 L

intersección de una familia no vacía de subespacioes es un subespacio.

Demostración. Sea V un K-espacio vectorial y $\{W_i \mid i \in I\}$ una familia no vacía de subespacios de V.

Definición 1.5: Combinación Lineal

Sea V un K espacio vectorial. Considereamos $m \in \mathbb{N}^+$ y $v_1, \ldots, v_m \in V$. Una **combinación** lineal de v_1, \ldots, v_m es una expresión de la forma:

$$\lambda_1 v_1 + \dots + \lambda_m v_m \quad \lambda_1, \dots, \lambda_m \in K$$

De modo más general, si S es un subconjunto de V, una **combinación lineal de vectores** de S es un vector de la forma:

$$\lambda_1 v_1 + \dots + \lambda_m v_m \quad \lambda_1, \dots, \lambda_m \in K, v_1, \dots, v_m \in S, m \in \mathbb{N}^+$$

Observación 1.2.2

Aunque el conjunto S sea infinito, una combinación lineal de vectores de S es una suma finita de vectores de S.

Proposición 1.2.3 S

- a V un K-espacio vectorial, $S \neq \emptyset$ un subconjunto de V. El conjunto de todas las combinaciones lineales de vectores de S cumple lo siguiente:
 - a) Es un subespacio de V.
 - b) Contiene a S.
 - c) Está contenido en cualquier subespacio de V que contenga a S.

1.3. SECCIÓN 3

1.3. Sección 3

Definición 1.6

Sea V un K espacio vectorial, S un subconjunto de V. El subespacio de V generado por S es el conjunto de combinaciones lineales de S, si $S \neq \emptyset$, o $\{\theta_V\}$ si $S = \emptyset$. Lo denotaremos por $\langle S \rangle$ (span(S) en algunos libros). Decimos que S genera a $\langle V \rangle$ o que S es un conjunto generador de $\langle V \rangle$ si $\langle S \rangle = V$.

Notación 1.3.1

Sean $v_1, \ldots, v_n \in V$, a $\langle \{v_1, \ldots, v_n\} \rangle$ se le denota por: $\langle v_1, \ldots, v_n \rangle$

Observación 1.3.1

Si $W \subseteq \langle S \rangle$, pero $W \neq \langle S \rangle$, entonces S no genera a W.

Definición 1.7

Sea V un K-espacio vectorial. Una lista v_1, \dots, v_m de vectores en V es una **lista linealmente dependiente** si existen escalares $\lambda_1, \dots, \lambda_m \in K$, no todos nulos, tales que:

$$\lambda_1 v_1 + \dots + \lambda_m v_m = \theta_V$$

Decimos que es una **lista linealmente independiente** si no es linealmente dependiente, es decir si:

$$\lambda_1 v_1 + \dots + \lambda_m v_m = \theta_V \Rightarrow \lambda_1 = \dots = \lambda_m = 0_K$$

Nota: Abreviaremos lista linealmente independiente por lista l.i. y lista linealmente dependiente por lista l.d.

Definición 1.8

Sea V un K-espacio vectorial. Un subconjunto de S de V es un **conjunto linealmente dependiente** si podemos encontrar $m \in \mathbb{N}^+$ y $v_1, \dots, v_m \in S$ **distintos** y $\lambda_1, \dots, \lambda_m \in K$, no todos nulos, tales que:

$$\lambda_1 v_1 + \dots + \lambda_m v_m = \theta_V$$

Decimos que S es un **conjunto linealmente independiente** si no es linealmente dependiente, es decir, si para cualquier $m \in \mathbb{N}^+$ y cualesquiera $v_1, \dots, v_m \in S$ distintos y $\lambda_1, \dots, \lambda_m \in K$, se tiene que:

$$\lambda_1 v_1 + \dots + \lambda_m v_m = \theta_V \Rightarrow \lambda_1 = \dots = \lambda_m = 0_K$$

Observación 1.3.2

Si S es un conjunto finito con m vectores distintos, digamos $S = \{v_1, \dots, v_m\}$, para ver si

S es l.d. o l.i. debemos ver si existen escalares $\lambda_1, \dots, \lambda_m \in K$, no todos nulos, tales que:

$$\lambda_1 v_1 + \dots + \lambda_m v_m = \theta_V$$

ó si la única forma en que se cumple lo anterior es que $\lambda_1 = \cdots = \lambda_m = 0_K$.

Lema 1.3.1 Dependencia lineal

ea V un K espacio vectorial, v_1, \dots, v_m una lista de vectores en V. Si v_1, \dots, v_m es una lista l.d. y $v_1 \neq \theta_v$, existe $j \in \{2, \dots, m\}$ tal que:

- a) $v_j \in \langle v_1, \dots, v_{j-1} \rangle$ b) $\langle v_1, \dots, v_m \rangle = \langle v_1, \dots, v_{j-1}, v_{j+1}, \dots, v_m \rangle$

Notación 1.3.2

 $\langle v_1, \cdots, v_{j-1}, v_{j+1}, \cdots, v_m \rangle$ se denota por $\langle v_1, \cdots, \hat{v_j}, \cdots, v_m \rangle$

Teorema 1.3.1

Sea V un K-espacio vectorial. Si v_1, \dots, v_m es una lista de vectores en V l.i., entonces todo conjunto generador de V tiene al menos m elementos.

Corolario 1.3.1

Sea V un K-espacio vectorial. Si existe S un subconjunto finito de V generador con lelementos, entonces todo conjunto linealmente independiente tiene a lo más l elementos. En consecuencia no existen conjuntos linealmente independientes infinitos en V.

1.4. SECCIÓN 4 15

1.4. Sección 4

Definición 1.9

Sea V un K-espacio vectorial, B subconjunto de V. Decimos que B es una **base** de V si genera a V y es linealmente independiente. Decimos que V es de **dimensión finita** si tiene una base finita.

Proposición 1.4.1

Sea V un K-espacio vectorial. Si V tiene un conjunto generador finito, entonces V tiene una base finita.

Corolario 1.4.1

Sea V un K-espacio vectorial. V tiene un conjunto generador finito si y solo si V es de dimensión finita.

Observación 1.4.1

Si V es de dimensión finita, todo conjunto l.i. es finito.

Teorema 1.4.1

Sea V un K-espacio vectorial de dimensión finita. Todas las bases de V son finitas y tienen el mismo número de elementos.

Definición 1.10

Si V es un K-espacio vectorial de dimensión finita, la **dimensión** de V es el número de elementos de una base de V.

Notación 1.4.1

Si V es un K-espacio vectorial de dimensión finita, denotaremos por $\dim_K(V)$ a la dimensión de V.

Teorema 1.4.2 S

- a V un K-espacio vectorial de dimensión finita.
 - a) Todo conjunto generador finito se puede reducir a una base.
 - b) Todo conjunto l.i. se puede completar a una base.

Corolario 1.4.2

Sea V un K-espacio vectorial de dimensión finita, $dim_K(V) = n$. Entonces:

- a) Cualquier conjunto generador con n elementos es una base de V.
- b) Cualquier conjunto l.i. con n elementos es una base de V.

Teorema 1.4.3 S

a V un K- espacio vectorial de dimensión finita. Sea W un subespacio de V.

- 1. W es de dimensión finita.
- 2. Toda base de W se puede completar a una base de V.
- 3. $dim_K(W) \leq dim_K(V)$.
- 4. Si $dim_K(W) = dim_K(V)$, entonces W = V.

Definición 1.11

Sea V un K-espacio vectorial. Sean U,W subespacios de V. La suma de U y W es el conjunto:

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Generalizando, si $U_1, \dots, U_m \leq V$, la suma de U_1, \dots, U_m es el conjunto:

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_i U_i \forall i\}$$

Observación 1.4.2

- 1. $U + W \leq V$.
- 2. $U \subset U + W \vee W \subset U + W$.
- 3. Si U' es otro subespacio que contiene a U y a W, entonces contiene a U+W.

Teorema 1.4.4 S

a V un K-espacio vectorial de dimensión finita. Sean U, W subespacios de V. Entonces:

$$dim_K(U+W) = dim_K(U) + dim_K(W) - dim_K(U \cap W)$$

Definición 1.12

Sea V un K-espacio vectorial. U, W subespacios de V. Decimos que U+W es una **suma directa** si cada $v \in U+W$ se puede escribir de manera única como v=u+w con $u \in U, w \in W$. En general si U_1, \dots, U_m son subespacios de $V, U_1+U_2+\dots+U_m$ es una suma directa si cada $v \in U_1+U_2+\dots+U_m$ se puede escribir de manera única como $v=u_1+u_2+\dots+u_m$ con $u_i \in U_i$ para todo i.

Notación 1.4.2

La suma directa de subespacios se denota por:

$$U \oplus W, U_1 \oplus \cdots \oplus U_m$$

1.4. SECCIÓN 4 17

Proposición 1.4.2

Sea V un K-espacio vectorial. U, W subespacios de V. U+W es una suma directa si y solo si $U\cap W=\{\theta_V\}$.

Capítulo 2

Transformaciones lineales

2.1. Seccion 1

Definición 2.1

Sean V y W k-espacios vectoriales. Una función $T:V\to W$ es una **transformación** lineal de V en W si:

- 1. T(u+v) = T(u) + T(v) para todo $u, v \in V$.
- 2. $T(\lambda v) = \lambda T(v)$ para todo $v \in V$ y $\lambda \in k$.

Observación 2.1.1

Si T es lineal, ent. $T(\theta_V) = \theta_W$.

Proposición 2.1.1

Sean V, W K-espacios vectoriales, $T: V \to W$. T es lineal si y solo si $T(\lambda u + v) = \lambda T(u) + T(v)$ para todo $u, v \in V$ y $\lambda \in K$.

Notación 2.1.1

V, W K-espacios vectoriales. Denotamos por $\mathcal{L}(V, W)$ al conjunto de todas las transformaciones lineales de V en W.

$$\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ es lineal}\}\$$

Definición 2.2

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Definimos el **núcleo** de T como:

$$\ker T = Nuc(T) = \{ v \in V \mid T(v) = \theta_W \}$$

La **imagen** de T como:

$$Im(T) = \{T(v) \mid v \in V\}$$

Nota: Si Nuc(T) es de dimensión finita, su dimensión es la **Nulidad** de T. Si Im(T) es de dimensión finita, su dimensión es el **Rango** de T.

Proposición 2.1.2

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Entonces:

- 1. $\ker T$ es un subespacio de V.
- 2. Im(T) es un subespacio de W.

Teorema 2.1.1 Teorema de la dimensión

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Si V es de dimensión finita, entonces Nuc(T) y Im(T) son de dimensión finita y:

$$dim(V) = dim(Nuc(T)) + dim(Im(T))$$

Teorema 2.1.2

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Entonces T es inyectiva si y solo si $Nuc(T) = \{\theta_V\}$.

Corolario 2.1.1

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Si V y W son de dimensión finita y $dim_K(V) = dim_K(W)$, entonces T es inyectiva si y solo si T es suprayectiva.

2.2. SECCION 2

2.2. Seccion 2

Teorema 2.2.1

Sean V, W K-espacios vectoriales, V de dimensión finita n. Sea $B = \{v_1, \dots, v_n\}$ una base de V. Para cualesquiera $w_1, \dots, w_n \in W$, existe una única $T \in \mathcal{L}(V, W)$ tal que $T(v_i) = w_i$ para $i = 1, \dots, n$.

Corolario 2.2.1

Sean V, W K-espacios vectoriales con V de dimensión finita $n, B = \{v_1, \dots, v_n\}$ una base de V. Si $T, S \in \mathcal{L}(V, W)$ son tales que $T(v_i) = S(v_i)$ para $i = 1, \dots, n$, entonces T = S.

Definición 2.3

Sean V, W K-espacios vectoriales.

Dados $T, S \in \mathcal{L}(V, W)$, la **suma** de T y S:

$$T + c S : V \to W$$

$$(T +_{\mathcal{L}} S)(v) = T(v) +_{W} S(v)$$

Dados $T \in \mathcal{L}(V, W)$ y $\lambda \in K$, el producto por escalares de T y λ :

$$\lambda \cdot_{\mathcal{L}} T: V \to W$$

$$(\lambda \cdot_{\mathcal{L}} T)(v) = \lambda \cdot_{W} T(v)$$

Proposición 2.2.1

Sean V, W K-espacios vectoriales $T, S \in \mathcal{L}(V, W), \lambda, \in K$. Entonces $T + S \in \mathcal{L}(V, W)$ y $\lambda \cdot T \in \mathcal{L}(V, W)$.

Teorema 2.2.2

Sean V, W K-espacios vectoriales. $\mathcal{L}(V, W)$ con la suma y el producto escalar definidos es un K-espacio vectorial.

Definición 2.4

Sean V, W, U K-espacios vectoriales $T \in \mathcal{L}(V, W), S \in \mathcal{L}(W, U)$ Definimos $S \circ T : V \to U$ como $(S \circ T)(v) = S(T(v))$ para todo $v \in V$.

Nota: La composición de funciones es asociativa

Teorema 2.2.3

La composición de transformaciones lineales es lineal.

Observación 2.2.1

La composición de transformaciones lineales no es conmutativa.

Proposición 2.2.2

Sean V, W K-espacios vectoriales, $T_1, T_2 \in \mathcal{L}(V, W), S_1, S_2 \in \mathcal{L}(W, U)$. Entonces:

- 1. $(S_1 + S_2) \circ T_1 = S_1 \circ T_1 + S_2 \circ T_1$
- 2. $S_1 \circ (T_1 + T_2) = S_1 \circ T_1 + S_1 \circ T_2$

Observación 2.2.2

Sea V un K-espacio vectorial. Definimos $Id_V: V \to V$ como $Id_V(v) = v$ para todo $v \in V$. $Id_V \in \mathcal{L}(V, V)$.

Observación 2.2.3

V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Entonces $T \circ Id_V = T = Id_W \circ T$.

Definición 2.5

A, B conjuntos, $f: A \to B$ f es invertible si existe $f^{-1}: B \to A$ tal que $f^{-1} \circ f = Id_A$ y $f \circ f^{-1} = Id_B$. f es invertible si y solo si f es biyectiva.

Proposición 2.2.3

Sean V, W K-espacios vectoriales, $T \in \mathcal{L}(V, W)$. Si T es invertible entonces $T^{-1} \in \mathcal{L}(W, V)$.

Teorema 2.2.4

Sean V, W K-espacios vectoriales de dimensión finita con $dim_K(V) = dim_K(W)$ y $T \in \mathcal{L}(V, W)$. Las siguientes condiciones son equivalentes:

- 1. T es invertible
- 2. T es inyectiva
- 3. T es suprayectiva
- 4. Para toda $B = \{v_1, \dots, v_n\}$ base de $V, \{T(v_1), T(v_2), \dots, T(v_n)\}$ es una base de W.
- 5. Existe una $B = \{v_1, \dots, v_n\}$ base de V, tal que $\{T(v_1), T(v_2), \dots, T(v_n)\}$ es una base de W.

Teorema 2.2.5

Sean V, W K-espacios vectoriales, V de dimensión finita. Si existe $T \in \mathcal{L}(V, W)$ invertible, entonces W es de dimensión finita y $dim_K(V) = dim_K(W)$.

2.2. SECCION 2

Definición 2.6

Sean V, W K-espacios vectoriales. Decimos que V es isomorfo a W si existe $T \in \mathcal{L}(V, W)$ invertible. En tal caso, decimos que T es un isomorfismo de V en W.

Notación 2.2.1

 $V \cong W$

Teorema 2.2.6

Sean V,W K-espacios vectoriales de dimensión finita. $V\cong W$ si y solo si $dim_K(V)=dim_K(W)$.

Corolario 2.2.2

Si V es un K-espacio vectorial de dimensión finita n, entonces $V \cong K^n$.

Capítulo 3

Transformaciones lineales y matrices

3.1. Seccion 1

Definición 3.1

Sea V un K-espacio vectorial de dimensión finita n. Una **base ordenada de V** es una n-ada de vectores de V (v_1, \dots, v_n) tal que $\{v_1, \dots, v_n\}$ es una base de V.

Nota: En ocasiones (v_1, \dots, v_n) y $\{v_1, \dots, v_n\}$ se usan indistintamente y algunos autores hacen la convención de que los subíndices indican el orden de la base.

Definición 3.2

Sea V un K-espacio vectorial de dimensión finita n. Dada $B = (v_1, \dots, v_n)$ una base ordenada de V, $v \in V$ el vector de coordenadas de v respecto a B es:

$$[v]_B = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathcal{M}_{n \times 1}(K)$$

donde $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$.

Observación 3.1.1

$$u, v \in V$$
 y $\lambda \in K$. $[u + \lambda v]_B = [u]_B + \lambda [v]_B$.

Notación 3.1.1

Dada
$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \in \mathcal{M}_{m \times n}(K)$$
, la **columna** j -ésima de A es:

$$col_j(A) = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{pmatrix}$$

Definición 3.3

Sean V, W K-espacios vectoriales de dimensión finita, $B = (v_1, \dots, v_n)$ $\Gamma = (w_1, \dots, w_m)$ bases ordenadas de V y W respectivamente, $T \in \mathcal{L}(V, W)$. La **matriz de** T **respecto a** B y Γ es una matriz $A \in \mathcal{M}_{m \times n}(K)$ tal que:

$$col_j(A) = [T(v_j)]_{\Gamma}$$

Se denotará por $[T]_B^{\Gamma}$

Observación 3.1.2

Si

$$[T]_B^{\Gamma} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{m,1} & & a_{m,j} & & a_{m,n} \end{pmatrix}$$

entonces $T(v_j) = a_{1,j}w_1 + \cdots + a_{m,j}w_m$.

Proposición 3.1.1

Sean V, W K-espacios vectoriales de dimensión finita, $T \in \mathcal{L}(V, W), B, \Gamma$ bases ordenadas de V y W respectivamente. Entonces:

Para todo $v \in V$

$$[T(v_j)]_{\Gamma} = [T]_B^{\Gamma}[v]_B$$

3.2. SECCION 2

3.2. Seccion 2

Proposición 3.2.1

Sean V, W K-espacios vectoriales de dimensión finita, $T, S \in \mathcal{L}(V, W), B, \Gamma$ bases ordenadas de V y W respectivamente y $\lambda \in K$. Entonces:

$$[\lambda S + T]_B^{\Gamma} = \lambda [S]_B^{\Gamma} + [T]_B^{\Gamma}$$

Proposición 3.2.2

Sean V, W K-espacios vectoriales de dimensión finita, $T, S \in \mathcal{L}(V, W), B, \Gamma$ bases ordenadas de V y W respectivamente.

Si $[T]_B^{\Gamma} = [S]_B^{\overline{\Gamma}}$ entonces T = S.

Proposición 3.2.3

Sean V, W K-espacios vectoriales de dimensión finita, $T \in \mathcal{L}(V, W)$, B, Γ bases ordenadas de V y W respectivamente. Para toda $A \in \mathcal{M}_{m \times n}(K)$ existe $T \in \mathcal{L}(V, W)$ tal que $[T]_B^{\Gamma} = A$.

Teorema 3.2.1

Sean V y W K-espacios vectoriales de dimensión finita, n y m respectivamente.

$$\mathcal{L}(V,W) \cong \mathcal{M}_{m \times n}(K)$$

Corolario 3.2.1

Sean V y W K-espacios vectoriales de dimensión finita, n y m respectivamente.

$$dim(\mathcal{L}(V,W)) = nm$$

Proposición 3.2.4

Sean V, W, U K-espacios vectoriales de dimensión finita, $T \in \mathcal{L}(V, W)$, $S \in \mathcal{L}(W, U)$, B, Γ, Δ bases ordenadas de V, W, U respectivamente. Entonces:

$$[S \circ T]_B^{\Delta} = [S]_{\Gamma}^{\Delta}[T]_B^{\Gamma}$$

Corolario 3.2.2

Sean V, W K-espacios vectoriales de dimensión finita $dim(V) = dim(W) = n, T \in \mathcal{L}(V, W),$ B, Γ bases ordenadas de V y W respectivamente. Entonces:

T es invertible si y solo si $[T]_B^{\Gamma}$ es invertible. En este caso:

$$[T^{-1}]^B_{\Gamma} = \left([T]^{\Gamma}_B \right)^{-1}$$

3.3. Seccion 3

Definición 3.4

Sea V un K-espacio vectorial de dimensión finita n, B y Γ bases ordenadas de V. La matriz de cambio de base de B a Γ es:

$$[id_V]_B^\Gamma \in \mathcal{M}_{n \times n}(K)$$

Observación 3.3.1

 $[id_V]_B^{\Gamma}$ es invertible pues id_V es una transformación lineal invertible.

$$([id_V]_B^{\Gamma})^{-1} = [id_V]_{\Gamma}^B$$

Observación 3.3.2

Para todo $v \in V$:

$$[v]_{\Gamma} = [id_V(v)]_{\Gamma} = [id_V]_B^{\Gamma}[v]_B$$

Teorema 3.3.1

Sean V, W K-espacios vectoriales de dimensiones finitas $n \ y \ m, B \ y \ B'$ bases ordenadas de $V \ y \ \Gamma \ y \ \Gamma'$ bases ordenadas de W respectivamente. Sea $T \in \mathcal{L}(V, W)$. Entonces: Existen $P \in \mathcal{M}_{m \times m}(K), Q \in \mathcal{M}_{n \times n}(K)$ invertibles tales que:

$$[T]_{B'}^{\Gamma'} = P^{-1}[T]_B^{\Gamma}Q$$

Corolario 3.3.1

Sea V un K-espacio vectorial de dimensión finita n, B y B' bases ordenadas de V, $T \in \mathcal{L}(V,V)$.

Existe $P \in \mathcal{M}_{n \times n}(K)$ invertible tal que:

$$[T]_{B'}^{B'} = P^{-1}[T]_{B}^{B}P$$

Decimos que $[T]_B^B$ y $[T]_{B'}^{B'}$ son matrices conjugadas.

Teorema 3.3.2

Sea V un K-espacio vectorial de dimensión finita n. Si $A, C \in \mathcal{M}_{n \times n}(K)$ son tales que:

$$A = P^{-1}CP$$

Para alguna $P \in \mathcal{M}_{n \times n}(K)$ invertible, entonces existen $T \in \mathcal{L}(V, V)$ y bases ordenadas B

3.3. SECCION 3

y B' de V tales que:

$$A = [T]_B^B$$
$$C = [T]_{B'}^{B'}$$

Proposición 3.3.1

Sean V, W K-espacios vectoriales de dimensión finita, n y m respectivamente, $T \in \mathcal{L}(V, W)$. Existen B y Γ bases ordenadas de V y W respectivamente tales que:

$$[T]_B^{\Gamma} = \begin{pmatrix} I_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix}$$

Con r = dim(Im(T)).

Capítulo 4

Producto Interno

4.1. Sección 1

Definición 4.1: producto-escalar

Sea K un campo, V un K-espacio vectorial. Un producto escalar en V es:

$$\langle , \rangle : V \times V \to K$$

tal que:

- 1. $\langle u, v \rangle = \langle v, u \rangle \quad \forall u, v \in V$
- 2. $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle \quad \forall u,v,w\in V$
- 3. $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \quad \forall u, v \in V, \lambda \in K$

Observación 4.1.1

Sea $w \in V$. Consideremos la función $T = \langle \cdot , w \rangle$ es decir $T : V \to K$ tal que $T(v) = \langle v, w \rangle$. Entonces T es lineal.

Demostración. Demostraremos que T es lineal, es decir, que T cumple:

$$T(u+v) = T(u) + T(v) \quad \forall u, v \in V$$

 $T(\lambda u) = \lambda T(u) \quad \forall u \in V, \lambda \in K$

Para el primer punto, sean $u, v \in V$:

$$T(u+v) = \langle u+v,w \rangle$$
 por def. de la imagen de T
= $\langle u,w \rangle + \langle v,w \rangle$ por def. ?? de prod. escalar punto 2
= $T(u) + T(v)$ por def. de la imagen de T

Para probar el segundo punto, sea $v \in V$ y $\lambda \in K$:

$$T(\lambda v) = \langle \lambda v, w \rangle$$
 por def. de la imagen de T
= $\lambda \langle v, w \rangle$ por def. ?? de prod. escalar punto 3
= $\lambda T(v)$ por def. de la imagen de T

Observación 4.1.2

También abre sumas y saca escalares en la segunda entrada.

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \quad \forall u, v, w \in V$$

$$\langle u, \lambda v \rangle = \lambda \langle u, v \rangle \quad \forall u, v \in V, \lambda \in K$$

Demostración. Para la parte de abrir sumas en la segunda entrada:

$$\langle w, u + v \rangle = \langle v + u, w \rangle$$
 por def. ?? de prod. escalar punto 1
= $\langle v, w \rangle + \langle u, w \rangle$ por def. ?? de prod. escalar punto 2

Para la parte de sacar escalares en la segunda entrada:

$$\langle w, \lambda u \rangle = \langle \lambda u, w \rangle$$
 por ?? de prod. escalar punto 1
= $\lambda \langle u, w \rangle$ por def. ?? de prod. escalar punto 3

Observación 4.1.3

$$\langle \theta, v \rangle = 0 \quad \forall v \in V$$

Demostración. Sea $v \in V$:

$$\langle \theta, v \rangle = \langle 0 \cdot \theta, v \rangle$$
 por prop. de espacio vectorial
$$= 0 \cdot \langle \theta, v \rangle$$
 por def. ?? de prod. escalar punto 3
$$= 0$$
 por def. de 0_K

Ejemplo 4.1.1

1. $K = \mathbb{R}, V = \mathbb{R} \ u = (x_1, \dots, x_n), v = (y_1, \dots, y_n) \in \mathbb{R}^n \ \langle u, v \rangle = x_1 y_1 + \dots + x_n y_n$

Demostración. Veremos que $\langle \ , \ \rangle$ es un producto escalar en \mathbb{R}^n . Procederemos a verificar la def. ?? de producto escalar: Para el punto 1:

Sean $u, v \in \mathbb{R}^n$:

$$\langle u, v \rangle = x_1 y_1 + \dots + x_n y_n$$
 por def. de \langle , \rangle
= $y_1 x_1 + \dots + y_n x_n$ por conmutatividad de \mathbb{R}
= $\langle v, u \rangle$ por def. de \langle , \rangle

2. $K = \mathbb{R}, V = C[0, 1] = \{f : [0, 1] \to \mathbb{R} \mid f \text{ es continua}\}\ \text{con:}$

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt \quad \forall f, g \in V$$

4.1. SECCIÓN 1 33

3.

Definición 4.2

Sean K un campo, V un K-espacio vectorial, $\langle \ , \ \rangle$ un producto escalar en V. Dados $u,v\in V$ decimos que u es ortogonal a v si $\langle u,v\rangle=0$ y lo denotamos por $u\perp v$. Dado $S\subset V$ definimos el ortogonal a S como:

$$S^{\perp} = \{ v \in V : \langle v, s \rangle = 0 \quad \forall s \in S \}$$

Observación 4.1.4

A, B subconjuntos de V con $A \subseteq B$ entonces $B^{\perp} \subseteq A^{\perp}$.

Proposición 4.1.1

Sean K un campo, V un K-espacio vectorial, \langle , \rangle un producto escalar en V. Sea S subconjunto de V.

- S^{\perp} es un subespacio de V.
- $S^{\perp} = \langle S \rangle^{\perp}.$

Notación 4.1.1

A S^{\perp} se le llama el **subespacio ortogonal** de S.

Definición 4.3

Sea K un campo, V un K-espacio vectorial, \langle , \rangle un producto escalar en V. Decimos que \langle , \rangle es **no degenerado** si $V^{\perp} = \{\theta_V\}$, es decir, si $v \in V$ es tal que $\langle v, w \rangle = 0$ $\forall w \in V$ implica que $v = \theta_V$. En caso contrario decimos que \langle , \rangle es **degenerado**.

Definición 4.4

Sea V un \mathbb{R} -espacio vectorial, $\langle \quad , \quad \rangle$ un producto escalar en V. Decimos que $\langle \quad , \quad \rangle$ es **positivo definido** si:

- 1. $\langle v, v \rangle \ge 0 \quad \forall v \in V$.
- 2. $\langle v, v \rangle = 0$ si y solo si $v = \theta_V$.

Definición 4.5

Sea $K=\mathbb{R}$ o \mathbb{C},V un K-espacio vectorial. Una función $\langle \ , \ \rangle:V\times V\to K$ es un **producto interno** si:

1.
$$\langle u, v \rangle = \overline{\langle v, u \rangle} \quad \forall u, v \in V.$$

$$2. \ \langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle \quad \forall u,v,w \in V.$$

3.
$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \quad \forall u, v \in V, \lambda \in K$$
.

4.
$$\langle v, v \rangle \ge 0 \quad \forall v \in V$$
 y además $\langle v, v \rangle = 0$ si y solo si $v = \theta_V$.

Un espacio vectorial real o complejo con un producto interno se llama un **espacio con producto interno**.

Observación 4.1.5

$$\langle w, u+v\rangle = \langle w, u\rangle + \langle w, v\rangle \quad \forall u, v, w \in V.$$

Observación 4.1.6

$$\langle v, \lambda u \rangle = \overline{\lambda} \langle v, u \rangle \quad \forall u, v \in V, \lambda \in K.$$

4.2. SECCIÓN 2 35

4.2. Sección 2

Definición 4.6

Sea V un K-espacio vectorial con producto interno, $v, w \in V, w \neq \theta_V$. El **coeficiente de fourier de** v **respecto a** w es:

$$\lambda = \frac{\langle v, w \rangle}{\langle w, w \rangle}$$

Observación 4.2.1

Si $\lambda = \frac{\langle v, w \rangle}{\langle w, w \rangle}$ entonces $v - \lambda w \perp w$.

Definición 4.7

Sea V un K-espacio vectorial con producto interno, S subconjunto de V. Decimos que S es **ortogonal** si $\langle v, w \rangle = 0 \quad \forall v, w \in S, v \neq w$.

Proposición 4.2.1

Sea V un K-espacio vectorial con producto interno, S subconjunto de V. Si S es ortogonal y $\theta_V \in S$, entonces S es linealmente independiente.

Observación 4.2.2

Sea $\mathcal{B} = \{v_1, \dots, v_m\}$ una base ortogonal de V, con n = dim(V). Si $v \in V$ se tiene que $v = \lambda_1 v_1 + \dots + \lambda_n v_n$ con λ_j el coeficiente de Fourier de v con respecto a v_j .

Definición 4.8

Sea V un K-espacio vectorial con producto interno. Dado $v \in V$ la **norma de** v es

$$||v|| = \sqrt{\langle v, v \rangle}$$

Lema 4.2.1 CAUCHY SCHWARZ

Sea V un K-espacio vectorial con producto interno. Entonces:

$$|\langle u,v\rangle| \leq ||u||\cdot||v|| \quad \forall u,v \in V$$

Proposición 4.2.2

Sea V un K-espacio vectorial con producto interno.

- 1. $||v|| \ge 0 \quad \forall v \in V$ y además ||v|| = 0 si y solo si $v = \theta_V$.
- 2. $||\lambda v|| = |\lambda| \cdot ||v|| \quad \forall v \in V, \lambda \in K$.
- 3. $||u+w|| \le ||u|| + ||w|| \quad \forall u, w \in V.$

Lema 4.2.2 Pitágoras

Sea V un K-espacio vectorial con producto interno, $u, v \in V$ con $u \perp v$.

1.
$$||u+v||^2 = ||u||^2 + ||v||^2$$
.

2.
$$||u - v||^2 = ||u||^2 + ||v||^2$$
.

Definición 4.9

Sea V un K-espacio vectorial con producto interno, $v \in V$. Decimos que v es **unitario** si ||v|| = 1.

Teorema 4.2.1 Gran Schmidt

Sea V un K-espacio vectorial con producto interno de dimensión finita. Entonces V tiene una base ortogonal.

4.3. SECCION 3

4.3. Seccion 3

Observación 4.3.1

Si $\mathcal{B} = \{v_1, \dots, v_m, \dots, v_n\}$ es una base y $\{v_1, \dots, v_m\}$ es un ortogonal, entonces $\mathcal{B}' = \{v_1, \dots, v_m, v'_{m+1}, \dots, v'_n\}$.

Corolario 4.3.1

Sea V un K-espacio vectorial con producto interno de dimensión finita, W subespacio de V, Γ base ortogonal de W. Entonces existe \mathcal{B}' base ortogonal de V tal que $\Gamma \subseteq \mathcal{B}'$.

Definición 4.10

Sea V un K-espacio vectorial con producto interno. \mathcal{B} subconjunto de V es una base ortonormal de V si es una base ortogonal de V tal que $||v|| = 1 \quad \forall v \in \mathcal{B}$.

Corolario 4.3.2

Sea V un K-espacio vectorial con producto interno de dimensión finita. Entonces V tiene una base ortonormal.

Corolario 4.3.3

Sea V un K-espacio vectorial con producto interno de dimensión finita, W subespacio de V, Γ base ortonormal de W. Entonces existe \mathcal{B}' base ortonormal de V tal que $\Gamma \subseteq \mathcal{B}'$.

Definición 4.11

Sea V un K-espacio vectorial con producto interno, dado W un subespacio de V de dimensión finita y $\Gamma = \{w_1, \dots, w_m\}$ una base ortonormal de W, $v \in V$. Definimos la **proyección de** v **en** W **con respecto a** Γ como:

$$\pi_W(v) = \sum_{i=1}^m \langle v, w_i \rangle w_i = \langle v, w_1 \rangle w_1 + \dots + \langle v, w_m \rangle w_m$$

Observación 4.3.2

$$v - \pi_W(v) \in W^{\perp}$$
.

Observación 4.3.3

Se verá después que $\pi_W(v)$ no depende de la base Γ .

Teorema 4.3.1

Sea V un K-espacio vectorial con producto interno, W un subespacio de V de dimensión

finita. Entonces:

$$V = W \oplus W^{\perp}$$

Observación 4.3.4

 $\pi_W^{\Gamma}(v)$ no depende de la base Γ .

Corolario 4.3.4

Sea V un K-espacio vectorial con producto interno de dimensión finita, W un subespacio de V de dimensión finita.

$$dim(V) = dim(W) + dim(W^{\perp})$$

Más aún, si $\Gamma=\{w_1,\cdots,w_m\}$ es una base ortogonal de W y $\mathcal{B}=\{w_1,\cdots,w_m,v_{m+1},\cdots,v_n\}$ es una base ortogonal de V, entonces $\{v_{m+1},\cdots,v_n\}$ es una base ortogonal de W^{\perp} .

Teorema 4.3.2

Sea V un K-espacio vectorial con producto interno, W un subespacio de V de dimensión finita. Dado $v \in V$

$$||v - \pi_W(v)|| \le ||v - w|| \quad \forall w \in W$$

 $(\pi_W(v)$ es la mejor aproximación de v en W).