17 march 2021 -2

EE24BTECH11011 - PRANAY

1) If the boolean expression $(p \land q) \odot (p \oplus q)$ is a tautology, then \odot and \oplus are respectively given by:

a) \land, \rightarrow b) \rightarrow, \rightarrow	c) \vee , \rightarrow d) \vee , \wedge
	$v^2 = 25$ at the point $\mathbf{R}(3,4)$ meet x – axis and y – axis at point radius of the circle passing through the origin \mathbf{O} and having the PQ , then r^2 is equal to :
a) $\frac{625}{72}$	c) $\frac{125}{72}$
b) $\frac{585}{66}$	d) $\frac{529}{64}$
	nly the digits 0 and 1 to form a string of numbers with probability $\frac{1}{2}$ and probability of occurrence of 0 at the odd place be $\frac{1}{3}$. The d by '01' is equal to:
a) $\frac{1}{6}$	c) $\frac{1}{9}$
b) $\frac{1}{18}$	d) $\frac{1}{3}$
4) The number of solutions of the equ	uation $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0, 2\pi]$
a) 5 b) 2	c) 4 d) 3
5) If the equation of plane passing th $\frac{x+1}{2} = \frac{y-3}{2} = \frac{z+2}{-1}$ and containing the to:	arough the mirror image of point $(2,3,1)$ with respect to the line $\frac{x-2}{3} = \frac{1-y}{3} = \frac{z+1}{2}$ is $\alpha x + \beta y + \gamma z = 24$ then $\alpha + \beta + \gamma$ is equal
a) 21b) 19	c) 18 d) 20
6) Consider the function $f : \mathbf{R} \to \mathbf{R}$ do a) monotonic on $(0, \infty)$ only	defined by $f(x) = \begin{cases} \left(2 - \sin\left(\frac{1}{x}\right)\right) x & ,x \neq 0\\ 0 & ,x = 0 \end{cases}$. Then f is

7) Let **O** be the origin . Let $\mathbf{OP} = x\hat{i} + y\hat{j} - \hat{k}$ and $\mathbf{OQ} = -\hat{i} + 2\hat{j} + 3x\hat{k}, x, y \in \mathbf{R}, x > 0$ be such that $|\mathbf{PQ}| = \sqrt{20}$ and the vector \mathbf{OP} is perpendicular to \mathbf{OQ} . If $\mathbf{OR} = 3\hat{i} + z\hat{j} - 7\hat{k}, z \in \mathbf{R}$, is coplanar with \mathbf{OP} and \mathbf{OQ} , then the value of $x^2 + y^2 + z^2$ is equal to :

b) Non monotonic on $(-\infty, 0)$ and $(0, \infty)$

c) monotonic on $(-\infty, 0)$

d) monotonic on $(-\infty, 0) \cup (0, \infty)$

a) 2b) 9	c) 1 d) 7	
8) Let L be a tangent line to the parabola $y^2 = 4$ $\frac{x^2}{2} + \frac{y^2}{b} = 1$, then the value of <i>b</i> is equal to :	x - 20 at $(6, 2)$ If L is also a tangent to the ellipse	
a) 20b) 14c) 16	d) 11	
9) Let $f: \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = e^{-x} \sin x$. If $F: [0,1] \to \mathbf{R}$ is a differentiable function such that $F(x) = \int_0^x f(t) dt$, Then the value of $\int_0^1 (F(x) + f(x)) e^x dx$ lies in the interval:		
a) $\left[\frac{330}{360}, \frac{331}{360}\right]$	c) $\left[\frac{327}{360}, \frac{329}{360}\right]$	
b) $\left[\frac{331}{360}, \frac{334}{360}\right]$	d) $\left[\frac{335}{360}, \frac{336}{360}\right]$	
10) If x, y, z are in arithmetic progression with the common difference $d, x \neq 3d$ and the determinent of the matrix $\begin{pmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & z \end{pmatrix}$ is zero, then the value of k^2 is:		
a) 6 b) 36	c) 72 d) 12	
11) If the integral $\int_0^{10} \frac{[\sin 2\pi x]}{e^{ x }} dx = \alpha e^{-1} + \beta e^{\frac{-1}{2}} + \gamma$, where α, β, γ are integers and $[x]$ denotes the greatest integer less than or equal to x , then the value of $\alpha + \beta + \gamma$ is equal to :		
a) 20 b) 0	c) 25 d) 10	
Let $y = y(x)$ be the solution of the differential equation $(\cos{(3\sin{x} + \cos{x} + 3)}) dy = (1 + y\sin{x} (3\sin{x} + \cos{x} + 3)) dx$, $0 \le x \le \frac{\pi}{2}$, $y(0) = 0$. Then $y(\frac{\pi}{3})$ is equal to:		
a) $3\log_e\left(\frac{2\sqrt{3}+10}{11}\right)$	c) $2\log_e\left(\frac{3\sqrt{3}-8}{4}\right)$	
b) $2\log_e\left(\frac{\sqrt{3}+7}{2}\right)$	d) $3\log_e\left(\frac{2\sqrt{3}+9}{6}\right)$	
13) The value of the limit $\lim_{x\to 0} \frac{\tan(\pi\cos^2\theta)}{\sin(2\pi\sin^2\theta)}$ is equal to	:	
a) $\frac{-1}{2}$	c) 0	
b) $\frac{-1}{4}$	d) $\frac{1}{4}$	
14) If the curve $y = y(x)$ is the solution of the differential equation $2(x^2 + x^{\frac{5}{4}})dy - y(x + x^{\frac{1}{4}})dx = 2x^{\frac{9}{4}}$, $x > 0$ which passes through the point $\left(1, 1 - \frac{4}{3}\log_e 2\right)$ then the value of $y(16)$ is equal to:		

a)
$$\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$$
 c) $\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$

b)
$$4\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$$
 d) $4\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$

15) Let S_1 , S_2 and S_3 be three sets defined as

$$S_1 = \left\{ z \in \mathbb{C} : |z - 1| \le \sqrt{2} \right\}$$

$$S_2 = \left\{ z \in \mathbb{C} : \operatorname{Re} \left((1 - i) z \right) \ge 1 \right\}$$

$$S_3 = \left\{ z \in \mathbb{C} : \operatorname{Im} (z) \le 1 \right\}$$

Then the set $S_1 \cap S_2 \cap S_3$

- a) Has infinitely many elements
- b) Has exactly 2 elements
- c) has exactly 3 elements
- d) is singleton