



# **GPR27P512A**

# **512M-BIT NAND INTERFACE OTP**

Nov. 21, 2011

Version 1.5



# **Table of Contents**

|    |                                                                                 | PAGE |
|----|---------------------------------------------------------------------------------|------|
| 1. | . FEATURES                                                                      | 3    |
| 2. | . BLOCK DIAGRAM                                                                 | 3    |
| 3. | . 48 TSOP PIN DESCRIPTIONS                                                      | 4    |
|    | 3.1. PIN ASSIGNMENT                                                             | 4    |
| 4. | FUNCTIONAL DESCRIPTIONS                                                         | 5    |
|    | 4.1. OPERATION MODES                                                            | 5    |
|    | 4.2. OPERATION MODE                                                             | 5    |
|    | 4.3. OPERATION MODE DURING SERIAL READ                                          | 5    |
|    | 4.4. OPERATION COMMANDS                                                         | 6    |
|    | 4.5. I/O PIN CORRESPONDENCE TABLE DURING ADDRESS INPUT CYCLE (ADDRESS SETTING)  | 6    |
|    | 4.5.1. When 00H or 01H command is set [Read mode (1), Read mode (2)]            | 6    |
|    | 4.5.2. When 50H command is set [Read mode (3)]                                  | 6    |
|    | 4.6. AC TEST CONDITIONS                                                         | 7    |
|    | 4.7. COMMAND LATCH CYCLE                                                        | 7    |
|    | 4.8. ADDRESS LATCH CYCLE                                                        | 8    |
|    | 4.9. SERIAL ACCESS CYCLE AFTER READ (CLE=L, WE=H, ALE=L)                        | 8    |
|    | 4.10.READ OPERATION WITH CE DON'T CARE                                          | 9    |
|    | 4.11. SEQUENTIAL READ                                                           | 9    |
|    | 4.12.RELATIONSHIP BETWEEN COMMAND AND START ADDRESS (SA) DURING SEQUENTIAL READ | 10   |
|    | 4.13.SEQUENTIAL READ CYCLE TIMING CHART(1)                                      | 11   |
|    | 4.14.SEQUENTIAL READ CYCLE TIMING CHART(2)                                      | 12   |
|    | 4.15.SEQUENTIAL READ CYCLE TIMING CHART(3)                                      | 13   |
|    | 4.16.STATUS READ                                                                | 14   |
|    | 4.17.ID READ                                                                    | 15   |
|    | 4.18.RESET CYCLE TIMING CHART                                                   | 16   |
|    | 4.19.READY/BUSY                                                                 | 16   |
|    | 4.20.USAGE CAUTIONS                                                             | 17   |
|    | 4.20.1. Rated operation                                                         | 17   |
|    | 4.20.2. Commands that can be input                                              | 17   |
|    | 4.20.3. Command limitations during Busy period                                  | 17   |
|    | 4.20.4. Cautions regarding RE clock                                             | 17   |
|    | 4.20.5. Cautions upon power application                                         | 17   |
|    | 4.20.6. Cautions during read mode                                               | 17   |
| 5. | ELECTRICAL SPECIFICATIONS                                                       | 18   |
|    | 5.1. ABSOLUTE MAXIMUM RATINGS                                                   | 18   |
|    | 5.2. CAPACITANCE (TA = 25°C)                                                    | 18   |
|    | 5.3. DC CHARACTERISTICS (TA = 0 TO 70°C, VCC = 2.7~3.6V)                        | 18   |
|    | 5.4. AC CHARACTERISTICS (TA = 0 TO 70°C, VCC = 2.7~3.6V)                        | 18   |
| 6. | PACKAGE/PAD LOCATIONS                                                           | 20   |
|    | 6.1. Ordering Information                                                       | 20   |
|    | 6.2. Package Information                                                        | 20   |
| 7. | . DISCLAIMER                                                                    | 22   |
| 8. | . REVISION HISTORY                                                              | 23   |



## **512M-BIT NAND INTERFACE OTP**

### 1. FEATURES

- Word organization
  - (67,108,864 + 2,097,152<sup>Note</sup>) words by 8 bits
- Page size
  - $-(512 + 16^{Note})$  by 8 bits

Note: Underlined parts are redundancy and fixed to all FFH.

- Operation mode
  - READ mode (1), READ mode (2), READ mode (3), RESET, STATUS READ, ID READ
- Operating supply voltage : VCC = 2.7~3.6V

#### ■ Access Time

- Memory cell array to starting address: 25us (MAX.)
- Read cycle time: 25ns (MIN.)
- RE access time: 20ns (MAX.)
- Operating supply current
  - During read: 30mA (MAX.) (25ns cycle operation)
  - During standby (CMOS): 10uA(Typ.), 50uA(Max.)
- Package Type
  - 48-pin TSOP(I) (12mmx20mm)

#### 2. BLOCK DIAGRAM





The start address (SA) during read operation is specified divided into three areas using three types of read commands.

- In read mode (1), start address (SA) is set in area (A).
- In read mode (2), start address (SA) is set in area (B).
- In read mode (3), start address (SA) is set in area (C).

One page consists of a total of 528 bytes broken down into 512 bytes (main memory) and 16 bytes (redundancy).

Caution The data of area (C) is redundancy, which is not programmable and is fixed to all FFH.



## 3. 48 TSOP PIN DESCRIPTIONS

| PIN No Name                                   |           | Normal Function Description               |
|-----------------------------------------------|-----------|-------------------------------------------|
| 29-32, 41-44                                  | I/O0~I/O7 | Address Input/Command Inputs/Data Outputs |
| 16                                            | CLE       | Command Latch Enable                      |
| 17                                            | ALE       | Address Latch Enable                      |
| 18                                            | WE        | Write Enable                              |
| 8                                             | RE        | Read Enable                               |
| 9                                             | CE        | Chip Enable                               |
| 7                                             | RB        | READY/BUSY pin                            |
| 12, 37                                        | VCC       | Supply Voltage                            |
| 1-6, 10-11, 14-15, 19-28, 33-35, 38-40, 45-48 | NC        | No Connection                             |
| 13, 36                                        | GND       | Ground                                    |

# 3.1. PIN Assignment





# 4. FUNCTIONAL DESCRIPTIONS

# 4.1. Operation Modes

Command input, address input, and serial read are all performed from I/O pins, and the respective statuses are controlled by the CLE, ALE,





### 4.2. Operation Mode

| Mode                | CLE | ALE | CE | WE         | RE |
|---------------------|-----|-----|----|------------|----|
| Command input cycle | Н   | L   | L  | <b>□</b> F | Н  |
| Address input cycle | L   | Н   | L  |            | Н  |
| Serial read cycle   | L   | L   | L  | Н          | 7. |

## 4.3. Operation Mode during Serial Read

| Mode        | CLE | ALE | CE | WE | RE | 1/00 - 1/07 |
|-------------|-----|-----|----|----|----|-------------|
| Data output | L   | L   | L  | Н  | L  | Data output |
| Output Hi-Z | L   | L   | L  | Н  | Н  | Hi-Z        |

Remark: VIH or VIL



## 4.4. Operation Commands

The following six operation settings are possible by inputting commands from I/O pins.

| Command            | Hex | 1/07 | I/O6 | I/O5 | 1/04 | I/O3 | I/O2 | I/O1 | I/O0 | Command receivable during Busy |
|--------------------|-----|------|------|------|------|------|------|------|------|--------------------------------|
| Read mode(1)       | 00  | L    | L    | L    | L    | L    | L    | L    | L    |                                |
| Read mode(2)       | 01  | L    | L    | L    | L    | L    | L    | L    | Н    |                                |
| Read mode(3) Note1 | 50  | L    | Н    | L    | Н    | L    | L    | L    | L    |                                |
| Reset Note2        | FF  | Н    | Н    | Н    | Н    | Н    | Н    | Н    | Н    | 0                              |
| Status read        | 70  | L    | Н    | Н    | Н    | L    | L    | L    | L    | 0                              |
| ID read Note3      | 90  | Н    | L    | L    | Н    | L    | L    | L    | L    |                                |

Note1: The data output in read mode (3) is all FFH.

Note2: The only commands that can be executed when the device is Busy are the reset command and status read command. Do not set any of the other commands while the device is Busy.

Note3: For ID read, input "00" during the first address cycle after setting a command.

# 4.5. I/O Pin Correspondence Table during Address Input Cycle (Address Setting)

## 4.5.1. When 00H or 01H command is set [Read Mode (1), Read Mode (2)]

| Command           | 1/07 | 1/06 | I/O5 | I/O4 | I/O3 | I/O2 | I/O1 | I/O0 |
|-------------------|------|------|------|------|------|------|------|------|
| 1st address cycle | L    | L    | L    | L    | L    | L    | L    | L    |
| 2nd address cycle | A16  | A15  | A14  | A13  | A12  | A11  | A10  | A9   |
| 3rd address cycle | A24  | A23  | A22  | A21  | A20  | A19  | A18  | A17  |
| 4th address cycle | L    | L    | L    | L    | L    | L    | A26  | A25  |

### 4.5.2. When 50H command is set [Read Mode (3)]

|                   | -    | ` /- |      |      |      |      |      |      |
|-------------------|------|------|------|------|------|------|------|------|
| Command           | 1/07 | 1/06 | I/O5 | I/O4 | I/O3 | 1/02 | I/O1 | 1/00 |
| 1st address cycle | Х    | Х    | Х    | Х    | L    | L    | L    | L    |
| 2nd address cycle | A16  | A15  | A14  | A13  | A12  | A11  | A10  | A9   |
| 3rd address cycle | A24  | A23  | A22  | A21  | A20  | A19  | A18  | A17  |
| 4th address cycle | L    | L    | L    | L    | L    | L    | L    | A25  |

#### Remarks:

- 1. A0 to A25 are internal addresses.
- 2. Internal address A8 is set internally with command 00H or 01H.
- 3. When 00H command is set [read mode (1), (2)], the I/O0~ I/O7 inputs of the 1st address cycle are VIL.
- 4. When 50H command is set [read mode (3)], the I/O4, I/O5, I/O6, and I/O7 inputs of the 1st address cycle are VIH or VIL.



## 4.6. AC Test Conditions



# 4.7. Command Latch Cycle





# 4.8. Address Latch Cycle



# 4.9. Serial Access Cycle after Read (CLE=L, WE=H, ALE=L)



Note1: Transition is measured at ±200mV from steady state voltage with load.

Note2: This parameter is sampled and not 100% tested.

 $\textbf{Note3:} \ \text{tRHOH starts to be valid when frequency is lower than 33MHz}.$ 



# 4.10. Read Operation with $\overline{\text{CE}}$ Don't Care



### 4.11. Sequential Read

In read modes (1), (2), and (3), when a command (00H, 01H, 50H) is input and an address specified, the address is automatically incremented and the read operation is continuously performed, by inputting the  $\overline{\text{RE}}$  clock. At this time, a Busy period (tR) occurs after the last address is accessed in a page. After the last address of the page is read out, the sequential read operation can be terminated by bringing  $\overline{\text{CE}}$  high.







## 4.12. Relationship between Command and Start Address (SA) during Sequential Read



- When the "00H" command is set, (SA) is set to area (A) and start from 0th address.
- When the "01H" command is set, (SA) is set to area (B) and start from 256th address.
- When the "50H" command is set, (SA) is set to area (C) and start from 512th address.



# 4.13. Sequential Read Cycle Timing Chart(1)



#### Remark:

1.Start address (SA) specification when read is performed with command 00H.



# 4.14. Sequential Read Cycle Timing Chart(2)



### Remark:

1.Start address (SA) specification when read is performed with command 01H.



# 4.15. Sequential Read Cycle Timing Chart(3)



#### Remark

1.Start address (SA) specification when read is performed with command 50H.



## 4.16. Status Read

Status information can be output from the I/O pins with the  $\overline{\text{RE}}$  clock following input of the 70H command. Status read is a function to recognize the status of the device from external. If the READ STATUS command is used to monitor the status of the device, user must re-issue the READ (00H) command before sequential page read cycle.



|      | Status        | Status Output Data <sup>NOTE</sup> |
|------|---------------|------------------------------------|
| 1/00 | Ready / Busy  | 0 / 1                              |
| I/O1 | Not used      | 0                                  |
| I/O2 | Not used      | 0                                  |
| I/O3 | Not used      | 0                                  |
| I/O4 | Not used      | 0                                  |
| I/O5 | Not used      | 0                                  |
| 1/06 | Ready / Busy  | 1 / 0                              |
| I/O7 | Write protect | 0                                  |



## 4.17. ID Read

To recognize the ID code (maker code / device code) of this device in a system, execute the ID read command. The ID code can be read



|                      | Value    | Description |
|----------------------|----------|-------------|
| 1 <sup>st</sup> Byte | C2H      | Maker Code  |
| 2 <sup>nd</sup> Byte | 76H      | Device Code |
| 3 <sup>th</sup> Byte | reserved |             |
| 4 <sup>th</sup> Byte | reserved |             |
| 5 <sup>th</sup> Byte | reserved | Unique ID   |
| 6 <sup>th</sup> Byte | reserved |             |
| 7 <sup>th</sup> Byte | reserved |             |
| 8 <sup>th</sup> Byte | reserved |             |
| 9 <sup>th</sup> Byte | reserved | Title ID    |

#### Notes:

<sup>1.</sup> GPR27P512A reserves 2 bytes for Title ID and 5 bytes for Unique ID. The 2-byte Title ID can be assigned by customers to represent each of their content. The 5-byte Unique ID has different value on each piece of chip, Generalplus has a method to produce each silicon die with different ID.

<sup>2.</sup> Do not input an address other than 00H after setting the ID read command (90H). If an address other than 00H is input, the data following RE clock input is not guaranteed.



## 4.18. Reset Cycle Timing Chart



# 4.19. READY/BUSY

The device has a  $\overline{RB}$  output that provides a hardware method of random read completion. The  $\overline{RB}$  pin is normally high but transitions to low after random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more  $\overline{RB}$  outputs to be Or-tied. Because pull-up resistor value is related to  $tr(\overline{RB})$ , an appropriate value can be obtained with the following reference table (Rp vs tr, tf).





### 4.20. Usage Cautions

### 4.20.1. Rated operation

Operation using timing other than shown in the timing charts is not guaranteed.

### 4.20.2. Commands that can be input

The only commands that can be input are 00H, 01H, 50H, 70H, 90H, and FFH. Do not input any other commands. If other commands are input, the subsequent operation is not guaranteed.

## 4.20.3. Command limitations during Busy period

Do not input commands other than the reset command and status read command during the Busy period. If a command is input during the Busy period, the subsequent operation is not guaranteed.

### 4.20.4. Cautions regarding RE clock

- Following the last RE clock, do not input the RE clock until the RB pin changes from Busy to Ready.
- Do not input the RE clock other than during data output.

# 4.20.5. Cautions upon power application

Since the state of the device is undetermined upon power on, input high level to the  $\overline{\text{CE}}$  pin and execute the reset command following power on.

### 4.20.6. Cautions during read mode

- Perform address input immediately following command input. If address input is done without performing command input first, the correct data cannot be output because the operation mode is undetermined.
- To execute the read mode after the read mode has been stopped with the reset command (FFH) and CE, input again a command and address.



# 5. ELECTRICAL SPECIFICATIONS

# 5.1. Absolute Maximum Ratings

| Parameter                     | Symbol | Rating                  | Unit |
|-------------------------------|--------|-------------------------|------|
| Supply Voltage                | VCC    | -0.5 to +4.6            | V    |
| Input Voltage                 | VI     | -0.3 to VCC+0.3         | V    |
| Input / Output Voltage        | VI/O   | -0.3 to VCC+0.3 (≤ 4.6) | V    |
| Operating Ambient Temperature | TA     | 0 to 70                 | °C   |
| Storage Temperature           | Tstg   | -65 to +150             | °C   |

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

### 5.2. Capacitance (TA = 25°C)

| Parameter          | Symbol | Test condition | Min. | Тур. | Max. | Unit |
|--------------------|--------|----------------|------|------|------|------|
| Input Capacitance  | CI     |                | -    | -    | 10   | pF   |
| Output Capacitance | со     | f = 1 MHz      | -    | -    | 10   | pF   |

## 5.3. DC Characteristics (TA = 0 to $70^{\circ}$ C, VCC = $2.7\sim3.6$ V)

| Parameter                             | Symbol  | Test condition                        | Min. | Тур. | Max.    | Unit |
|---------------------------------------|---------|---------------------------------------|------|------|---------|------|
| High Level Input Voltage              | VIH     | -                                     | 2.0  | -    | VCC+0.3 | V    |
| Low Level Input Voltage               | VIL     | -                                     | -0.3 | -    | +0.8    | V    |
| High Level Output Voltage             | VOH     | IOH =-400uA                           | 2.4  | -    | -       | V    |
| Low Level Output Voltage              | VOL     | IOL = 2.1mA                           | -    | -    | 0.4     | V    |
| Input Leakage Current                 | ILI     | VI = 0 V to VCC                       | -    | -    | ±10     | uA   |
| Output Leakage Current                | ILO     | VO = 0 V to VCC                       | -    | -    | ±10     | uA   |
| Power Supply Current in Read          | ICCO1   | CE = VIL, IOUT =0mA,<br>tCYCLE = 25ns | -    | -    | 30      | mA   |
| Power Supply Current in Command Input | ICCO3   | tCYCLE = 25ns                         | -    | -    | 30      | mA   |
| Power Supply Current in Address Input | ICCO5   | tCYCLE = 25ns                         | -    | -    | 30      | mA   |
| Standby Current (CMOS)                | ICCS2   | CE = VCC-0.2 V                        | -    | 10   | 50      | uA   |
| RB Pin Output Current                 | IOL(RB) | VOL = 0.4 V                           | -    | 8    | -       | mA   |

# 5.4. AC Characteristics (TA = 0 to $70^{\circ}$ C, VCC = $2.7\sim3.6$ V)

| Parameter                | Symbol | Min. | Тур. | Max. | Unit |
|--------------------------|--------|------|------|------|------|
| CLE Setup Time           | tCLS   | 0    | -    | -    | ns   |
| CLE Hold Time            | tCLH   | 5    | -    | -    | ns   |
| CE Setup Time            | tCS    | 20   | -    | -    | ns   |
| CE Hold Time             | tCH    | 5    | -    | -    | ns   |
| Write Pulse Width        | tWP    | 12   | -    | -    | ns   |
| ALE Setup Time           | tALS   | 0    | -    | -    | ns   |
| ALE Hold Time            | tALH   | 5    | -    | -    | ns   |
| Data Setup Time          | tDS    | 12   | -    | -    | ns   |
| Data Hold Time           | tDH    | 5    | -    | -    | ns   |
| Write Cycle Time         | tWC    | 25   | -    | -    | ns   |
| WE High Hold Time        | tWH    | 10   | -    | -    | ns   |
| Ready to RE Falling Edge | tRR    | 20   | -    | -    | ns   |

Nov. 21, 2011 Version: 1.5



# **GPR27P512A**

| Parameter                                              | Symbol | Min. | Тур. | Max. | Unit |
|--------------------------------------------------------|--------|------|------|------|------|
| Read Pulse Width                                       | tRP    | 12   | -    | -    | ns   |
| Read Cycle Time                                        | tRC    | 25   | -    | -    | ns   |
| RE Access Time (serial data access)                    | tREA   | -    | -    | 20   | ns   |
| RE Access Time (ID read )                              | tREAID | -    | -    | 20   | ns   |
| RE High to Output Hi-Z                                 | tRHZ   | -    | -    | 50   | ns   |
| RE High Hold Time                                      | tREH   | 10   | -    | -    | ns   |
| RE High to Output Hold                                 | tRHOH  | 20   | -    | -    | ns   |
| Output Hi-Z to RE Falling Edge                         | tIR    | 0    | -    | -    | ns   |
| RE Access Time (status read)                           | tRSTO  | -    | -    | 20   | ns   |
| CLE to RE Delay                                        | tCLR   | 30   | -    | -    | ns   |
| WE High to RE Low                                      | tWHR   | 60   | -    | -    | ns   |
| ALE Low to RE Low (ID read)                            | tAR1   | 10   | -    | -    | ns   |
| CE Low to RE Low                                       | tCR    | 10   | -    | -    | ns   |
| Memory Cell Array to Starting Address                  | tR     | -    | -    | 25   | us   |
| WE High to Busy                                        | tWB    | -    | -    | 100  | ns   |
| ALE Low to RE Low (read cycle)                         | tAR2   | 10   | -    | -    | ns   |
| RE Last Clock Rising Edge to Busy (in sequential read) | tRB    | -    | -    | 200  | ns   |
| Device Reset Time                                      | tRST   | -    | _    | 6    | us   |

19



# 6. PACKAGE/PAD LOCATIONS

## 6.1. Ordering Information

| Product Number        | Package Type         |  |  |
|-----------------------|----------------------|--|--|
| GPR27P512A-NnnV-QA03x | Halogen Free Package |  |  |

Note1: Code number is assigned for customer.

**Note2:** Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

**Note3:** Package form number (x = 1 - 9, serial number).

# 6.2. Package Information

Package Outline for TSOP(I) 48L (12x20mm) Normal Form



| Symbol | Millimeter |      |      | Millimeter Inch |       |       |
|--------|------------|------|------|-----------------|-------|-------|
|        | Min.       | Nom. | Max. | Min.            | Nom.  | Max.  |
| А      | -          | -    | 1.20 | -               | -     | 0.047 |
| A1     | 0.05       | 0.10 | 0.15 | 0.002           | 0.004 | 0.006 |
| A2     | 0.95       | 1.00 | 1.05 | 0.037           | 0.039 | 0.041 |
| b      | 0.17       | 0.20 | 0.27 | 0.007           | 0.008 | 0.11  |
| С      | 0.10       | 0.13 | 0.21 | 0.004           | 0.005 | 0.008 |



# **GPR27P512A**

| Symbol   |            | Millimeter |       | Inch       |       |       |
|----------|------------|------------|-------|------------|-------|-------|
|          | Min.       | Nom.       | Max.  | Min.       | Nom.  | Max.  |
| D        | 19.80      | 20.00      | 20.20 | 0.780      | 0.787 | 0.795 |
| D1       | 18.30      | 18.40      | 18.50 | 0.720      | 0.724 | 0.728 |
| Е        | 11.90      | 12.00      | 12.10 | 0.469      | 0.472 | 0.476 |
| е        | -          | 0.50       | -     | -          | 0.020 | -     |
| L        | 0.50       | 0.60       | 0.70  | 0.020      | 0.024 | 0.028 |
| L1       | 0.70       | 0.80       | 0.90  | 0.028      | 0.031 | 0.035 |
| $\theta$ | <b>0</b> ° | 5°         | 8°    | <b>0</b> ° | 5°    | 8°    |





### 7. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

22





# **8. REVISION HISTORY**

| Date          | Revision # | Description                       |    |  |
|---------------|------------|-----------------------------------|----|--|
| Nov. 21, 2011 | 1.5        | 1. Modify 4.17 ID Read.           | 15 |  |
|               |            | 2. Modify 5.4 AC Characteristics. | 18 |  |
| Dec. 21, 2009 | 1.4        | Modify 4.17 ID Read.              | 15 |  |
| Aug. 05, 2009 | 1.3        | 1. Modify 1. FEATURES.            | 3  |  |
|               |            | 2. Modify 5.3 DC Characteristics. | 18 |  |
| Jul. 06, 2009 | 1.2        | Modify 4.17 ID Read.              | 15 |  |
| Jun. 09, 2009 | 1.1        | Modify 4.17 ID Read.              | 15 |  |
| May 19, 2009  | 1.0        | Original                          | 23 |  |

23