Lawrence Radiation Laboratory UNIVERSITY OF CALIFORNIA LIVERMORE

UCRL-50555

CHEMICAL ANALYSIS OF SAMPLES FROM INTEROCEANIC CANAL ROUTE 17

John H. Hill

December 1968

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20000908 176

Reproduced From Best Available Copy

Dire quantes insulated 4

CHEMICAL ANALYSIS OF SAMPLES FROM INTEROCEANIC CANAL ROUTE 17

Abstract

This report contains data on the chemical analysis of core samples taken along the Atlantic-Pacific Interoceanic Canal Route 17. Route 17 in Panama is one of the principal routes now being considered for excavation of a canal by nuclear means.

This report contains a brief discussion of sampling procedures, analytical

methods, sources of contamination, and the accuracy of analytical results. Lawrence Radiation Laboratory analyzed each of the samples for 84 constituents and a U.S. Army Corps of Engineers laboratory analyzed the samples for major elements. Four sets of analyses from the two laboratories are compared, and the significance of the comparisons is discussed.

Introduction

Chemical analyses were obtained for 39 core samples taken along the Atlantic-Pacific Interoceanic Canal Route 17.

These analyses were obtained in support of the Atlantic-Pacific Interoceanic Canal Study Commission. Figure 1 is the map of the route showing the location of the core holes and an outline of the geology of the area.

Chemical analyses obtained under the direction of Lawrence Radiation Laboratory for 84 constituents in each of 39

core samples are given in Appendix A.
Appendix B contains the major element analyses obtained by the U.S. Army Engineering Division Laboratory, South Atlantic Corps of Engineers (Corps of Engineers), Marietta, Georgia.

Sampling

Core samples were taken under the direction of the U.S. Army Corps of Engineers. Bentonite mud was used as a coolant for the drill bits. Cores were

protected from water loss in several ways, which included dipping the bare core in paraffin, wrapping the core in cloth and dipping in paraffin, wrapping in plastic

¹A.G. Sutton, Jr., Subsurface Geology Data Collection, Raw Data—Laboratory Results, Atlantic-Pacific Interoceanic Canal Study Commission, Balboa Heights, Canal Zone, Memorandum IOCS-FD-60 (1968), Part IV, Chemical Tests, Route 17.

Fig. 1. Geologic map of Atlantic and Pacific Interoceanic Canal Route 17.

and dipping in paraffin, and wrapping in aluminum foil and dipping in paraffin.

The criteria applied in selecting core samples for chemical analysis were as $follows^2$:

- 1. Select approximately four samples for each major lithologic type likely to occur at shot depths along the Route 17 alignment. (Actual number of samples taken for each rock type ranged from two to seven, depending upon the relative importance of that lithology in the overall stratigraphic section and the degree of compositional variability due to facies changes and/or alteration.)
- Samples selected should reflect the range of compositional variations within each lithologic type due to facies changes and/or alteration.
- 3. At least one sample should be taken from each borehole to facilitate recognition of possible compositional changes on a regional scale.
- 4. Specimens selected for analysis should include those for which other data (physical properties tests, slaking tests, and/or petrographic analyses) are already available.

Samples for chemical analysis were taken from the pieces of core that remained after specimens had been removed for physical properties tests, slaking tests, and petrographic analysis. These pieces of core ranged from 6 to 24 in. in

length. The soft cores of clay and shale were sliced into disks with a knife. The outside edges of the disks were then pared off to remove contamination introduced by the coring operation. All cores of hard rocks, except portions taken for water analysis, were sliced into disks with a diamond wheel. The outside edges of these disks were chipped off with a hammer and chisel to remove contamination from the coring operation.

Samples for water analysis were broken off the core with a hammer and chisel immediately after the core was unwrapped. These samples were promptly crushed in a chipmunk crusher and sealed in plastic bags. Each bagged sample was stored in a sealed paint can until it was analyzed for water.

Two portions of each sample were pulverized for elemental analysis. One portion, pulverized in a chrome-steel unit, was used to obtain the tungsten and cobalt analyses. The second portion, pulverized in a tungsten carbide unit, was used to obtain the iron and chromium analyses.

The procedure for preparing the samples was designed to minimize sample contamination, but some sources of contamination remain. Contamination from minerals in the water used to cool the cutoff saw is difficult to determine but probably negligible, because the cores were generally nonporous. Traces of Fe, Ni, Cr, Cu, Zn, Pb, and Sn could have been introduced from the cutoff saw. The iron contamination from this source is probably negligible compared with the Fe content of the samples, but the Ni, Cr, Cu, Zn, Pb, and Sn results will be biased high.

²P. R. Fisher, U.S. Army Corps of Engineers Nuclear Cratering Group, Livermore, Calif., private communication (1968).

Analysis

All samples were dried at 110°C for all analyses except the free- and bound-water analyses.

The free-water content of six samples was determined by heating the samples to 110°C in a vacuum. The water was collected and weighed. The accuracy of this method is about ±5 percent of the freewater content of the sample. However, the free-water content of rock samples is very dependent on sample history. Free water may be either gained or lost in coring and subsequent handling operations. Of the four methods used to protect the cores from water loss, the method of wrapping in aluminum foil and dipping in paraffin is the only one adequate to prevent loss of free water during long-term (1-6 months) storage. All of the aluminumfoil-wrapped cores in this group of 39 samples had been opened prior to sampling for chemical analysis. Therefore, the six analyses for free water were run on samples preserved by one of the other three methods. Results for these six samples are probably low.

The bound-water results show the amount of water evolved by the samples when they were heated between 110 and 1000°C in a vacuum. The water was collected and weighed. In the absence of hydrocarbons, the accuracy of this method is about ±5 percent of the bound-water content of the sample. At temperatures approaching 1000°C, hydrocarbons in the rock samples can react with metallic oxides to form water. This reaction probably occurred on the 781-ft sample from Hole No. 17-CH-13, because oil was

collected in the water trap during the analysis. When this reaction occurs, the bound water results are biased high. The bound-water content of rock samples is not very dependent on sample history, although overheating during the coring operation can cause a loss of bound water. Except for the sample mentioned above, the bound-water results probably represent the actual bound-water content of the in situ rock.

To determine the ratio of Fe(II) to Fe(III), samples were leached in a solution of HCl and HF under an inert atmosphere. The Fe(II) and Fe(III) contents of the solution were determined by titration. The accuracy of the titration is about ±1 percent of the Fe(II)-Fe(III) ratio in the solution. For samples which dissolve completely and are free of interfering elements, this method gives results which approximate the Fe(II)-Fe(III) ratio of the in situ rock. However, rock samples seldom dissolve completely in the HCl-HF leach solution and almost always contain some interfering elements.

During the determination of total iron, it became evident that the iron in many of these samples was not leached out of the rock completely by the HCl-HF leach solution. The total iron was determined on separate samples that were completely dissolved in a solution of HNO3, HClO4, and HF. Table I compares the total iron content of these samples with that of the HCl-HF leach solutions. These data indicate that the iron was not always completely leached out of the rock by the HCl-HF leach solution.

Table I. Comparison of total-iron-analysis results for samples leached in HCl-HF solution and samples completely dissolved in ${\rm HNO_3\text{-}HClO_4\text{-}HF}$ solution.

	_		l Fe, %		-	Total	
Sample No.	Depth, ft \overline{L}	eached	Dissolved	Sample No.	Depth, ft	Leached	Dissolved
17-CH-4 ^a	113	2.54	4.59	17-CH-12	179.8-182.3	6.52	6.71
17-CH-4 ^a	385	3.30	4.68	17-CH-12	288.2-289.0		6.13
17-CH-5 ^a	195.2-196.8	1.33	1.36	17-CH-12	385.6-387.1		7.18
17-CH-5	284.0-284.7	1.46	1.45	17-CH-12	970	5.15	5.37
17-CH-5	400	1.85	1.83	17-CH-13 ^a	321	4.70	5.56
17-CH-6A	650	3.52	3.46	17-CH-13 ^a	781	4.58	5.48
17-CH-7	104.3-106.8	7.12	7.22	17-CH-14	496.2-497.4		
17-CH-7	647.6-648.6	6.86	6.88	17-CH-14	and		
17-CH-7 ^a	672	1.29	2.25		500.5-501.2	5.92	6.02
17-CH-8 ^a	260.8-262.7	3.01	3.50	17-CH-14	576, 5-578, 2	4.89	5.06
17-CH-9 ^a	352	4.08	5.40	17-CH-14	601.4-603.9		5.35
17-CH-9 ^a	460-462	1.26	2.13	17-CH-14	715	4.98	5.19
17-CH-9	648-658	2.32	2.73	17-CH-15 ^a	979 5 974 0		
17-CH-9 ^a	873	3.56	4.35	17-CH-15	272.5-274.0 275.2-275.9		
17-CH-10 ^a	363.7-364.2				and 278.9-279.2		4.83
	and 365.3-366.5	0.53	0.57	3			4.00
17-CH-10 ^a	495	1.40	2.14	17-CH-15 ^a	416.8-417.8 and		
17-CH-11	86.1-89.0	5.60	5.78		418.9-420.2	4.61	4.92
17-CH-11	496.5-499.0	6.12	6, 24	17-CH-17 ^a	113	4.84	5.72
17-CH-11	801.8-803.2	6.98	7.05	17-CH-18 ^a	208.2-209.8		2.52
17-CH-11	925.8-928.7	6.20	6.21	17-CH-21	150.5-154.5	5.27	5.37
17-CH-12	118.4-119.1	0.20	0.21	17-CH-21	500	7.33	7.37
1. 011 12	and 120.2-120.8	5.11	5.42	17-CH-22 17-CH-22	1443	6.10	6.49

a Contains more than 0.1 percent sulfur.

Many of these samples contained more than 0.1 percent sulfur. Part of this sulfur is probably present as sulfide, which reduces Fe(III) to Fe(II) during the leaching process. This causes results for the Fe(II)-Fe(III) ratio to be biased high.

The analytical results for core samples with less than 0.1 percent sulfur and good agreement between the two analyses for total iron are probably within 5 percent of the actual Fe(II)-Fe(III) ratio in the samples. Results for samples with more than 0.1 percent sulfur or poor agreement between the two total-iron analyses probably do not represent the actual Fe(II)-Fe(III) ratios of their respective cores.

Methods used to obtain the remaining analyses include wet chemistry, atomic

absorption spectroscopy, emission spectrography, and spark-source mass spectrography. Results are shown in Appendix A.

The samples that were analyzed represent only the 6-24 in. of the core from which they were taken. Their relation to the in situ rock formation depends primarily on the homogeneity of the rock mass, which can be estimated by comparing the major element analyses obtained by the Corps of Engineers (Appendix B) with the corresponding analyses obtained by LRL.

On some samples, the Corps of Engineers analyzed alternate slices of the same core used by LRL. For these samples, the Corps of Engineers lab and LRL sample numbers, the core hole and boring numbers, and the depth of sample correspond. On other samples, the Corps of Engineers used a different section of core than LRL. For these samples, the various numbers and depths are different.

A comparison of the results shown in Table II illustrates the differences in composition that may be expected of samples from rock formations that vary from homogeneous to heterogeneous. The analyses shown for Core Hole 17-CH-13 at a depth of 321 ft typify a homogeneous core sample. The analyses shown for Core Hole 17-CH-13 at a depth of 321 ft typify a homogenous core sample. The analyses shown for Core Hole 17-CH-5 at a depth of 400 ft indicate that the core sample is heterogeneous. The heterogeneity in this sample could be caused by pebbles of one rock type included in a matrix of a different type, by lamination of two or more rock types, or by a transition from one

type of rock to another within the length of the core.

The two samples taken from Core Hole 17-CH-13 at 781 and 789 ft represent a formation that has a fairly uniform composition throughout this interval of depth. For Core Hole 17-CH-10, the sample taken at 500 ft is a distinctly different type of rock than the sample taken at 495 ft. Some knowledge of the geology associated with the core hole is required to determine whether one of these samples represents a matrix and the other represents an included boulder or whether the two samples were taken from different rock formations.

Water analyses for two sets of samples are also given in Table II. The hygroscopic water reported by the Corps of Engineers represents the weight lost by the sample when it was dried in an oven at 105°C. The water of crystallization they report is the water evolved by the sample between 105 and 850°C. The sample was heated in a tube furnace. The water of crystallization was collected on magnesium perchlorate and weighed. For the 400-ft sample from Core Hole 17-CH-5, the difference between the Corps of Engineers hygroscopic water and the LRL free water, as well as the difference between the Corps of Engineers water of crystallization and the LRL bound water, is due to the different analytical techniques. The total water content reported by the two laboratories agrees within the limits of analytical error.

The difference between the Corps of Engineers water of crystallization and the LRL bound water on the 789-ft and 781-ft samples from Core Hole 17-CH-13 is probably due to the difference in analytical

Table II. Comparison of results obtained by the Corps of Engineers and Lawrence Radiation Laboratory. All results are in percent.

Sampling procedure:	0		te slices ore sample		Different core samples				
Core hole:	17-CI	H-13	17-C	H-5	17-CF	I-13	17-CI	I-10	
Depth, ft:	32	21	40	00	789	781	500	495	
Laboratory:	C of E ^a	LRL	C of E ^a	LRL	C of E ^a	LRL	C of E ^a	LRL	
${ m SiO}_2$	47.30	48.37	54.23	49.44	50.71	46.74	71.94	48.56	
$A1_2O_3$	16.14	16.52	14.16	7.28	17.51	16.52	3.10	7.80	
Fe_2O_3	7.79	7.95	5.69	2.62	8.48	7.84	1.23	3.06	
MnO	0.05	0.06	0.06	0.05	0.95	1.03	0.08	0.10	
${ m TiO}_2$	0.73	1.25	0.39	0.43	0.05	1.28	0.08	0.30	
P_2O_5	1.60	1.37	0.23	0.09	0.25	0.18	0.06	0.06	
CaO	6.46	6.32	9.72	18.66	4.77	7.36	10.77	19.22	
MgO	3.93	3.00	2.44	1.16	3.40	3.25	0.83	1.69	
$^{ m Na_2O}$	1.60	1.75	1.54	1.27	1.40	1.89	0.42	1.48	
к ₂ Ō	1.55	1.69	0.76	0.90	0.97	1.45	0.28	0.98	
$\bar{\text{CO}}_2$	5.69	5.90	5.08	12.20	3.60	4.99	9.39	13.30	
Total	92.84	94.18	94.30	93.92	92.09	92.53	98.18	96.55	
Hygroscop	oic H ₂ O		1.53		4.78	*			
Free H ₂ O	2			4.02		16.96			
H ₂ O of Cr	ystallizat:	ion	6.18		6.88				
Bound H ₂ C				3.62		4.84			
Total H ₂ O			7.71	7.62	11.66	21.80			

^aCorps of Engineers' results for oxides are corrected to an oven-dried (105°C) basis.

techniques. However, the difference between the Corps of Engineers hygroscopic water and the LRL free water, together with the difference in total water found by the two laboratories, indicates that the two samples actually had different water contents. Because the samples were taken 8 ft apart, it is possible that the

actual water content of the in situ rock differed by a factor of 1.87. However, it is more probable that the difference in the total water content of the two samples is the difference in the amount of water lost by the two samples due to poor packaging techniques.

Acknowledgments

The analyses presented in this report represent the cooperative efforts of many people. Dr. Clifford Chunn, U.S. Army Engineering Division Laboratory, South Atlantic Corps of Engineers, Marietta, Georgia, provided the facilities and personnel for sampling the cores.

P. R. Fisher, U.S. Army Engineers Nuclear Cratering Group, Livermore, and D. R. Stephens, Lawrence Radiation Laboratory, Livermore, obtained missing core samples in Panama. The samples

were analyzed by W. G. Boyle, L. J. Gregory, R. Lim, C. G. Morris, William F. Morris, R. L. Morrison, William E. Sunderland, and E. G. Walters, Lawrence Radiation Laboratory, Livermore. The manuscript was critically read by E. H. Fleming, J. W. Frazer, and J. E. Harrar. The author wishes to acknowledge the efforts of the people mentioned above and also to express his appreciation to others who also contributed but are not mentioned.

Appendix A

ELEMENTAL ANALYSIS OF CORE SAMPLES BY LAWRENCE RADIATION LABORATORY

These data were obtained by wet chemistry, atomic absorption spectroscopy, emission spectrography, and spark-source mass spectrography. For the analyses by the first three methods, the approximate accuracy is given as a percentage of the concentration of the element in the sample. Where the accuracy is not indicated, the results were obtained by spark-source mass spectrography. A comparison of results indicates that spark-source mass-spectrographic results generally agree within a factor of 2 with the results obtained by more accurate methods. Spark-source mass-spectrographic results that disagree with more accurate results by more than a factor of 2 are usually biased high.

Elements for which no results are given are present in concentrations of less than 1 ppm.

Calcareous shale
Material with silty interbeds

IRL Sample No. 222/183

17-CH-4 113'

Z	Weigh	nt %	Weigh	t PPM	Z	Weigh	t %	weigi	nt PPM
1. H	na	± **		±	50. Sn		±	0.1	± ±
	<u>na</u>	±		<u>+</u>	51. Sb		± ± ±	0.05	±
2. He	na	±					+	<u> </u>	±
3. Li		<u> </u>	90	±5% ±	52. Te		±		±
4. Be	na	±			53. I		-		
5. B		±	70	50%	55. Cs		±	0.8	±
6. c	na	<u>±</u>		±	56. Ba		± ±	480	±
		±		<u>+</u>	57. La		±	8	±
7. N	<u>na</u>	±		±	58. Ce		<u>±</u>	13	<u>±</u>
8. 0	na			-	50. Oc		±		
9. F	na				59. Pr		+		+
ll. Na	_1.0	±5%		±	60. Nd		-	6	± ± ±
12. Mg	1.04	±2%		±	61. Pm		± ± ± ±		
13. Al	8.9	±2%		±	62. Sm		±	2	±
14. Si		±2%		±	63. Eu		±	0.4	±
	24.57	+3.00		±			±	2	±
15. P	0.008	±10%			64. G d		+		+
16. S	3.40	±5%		±	65. To		± ± ±	0.3	± ±
17. Cl	na	+		<u>±</u> .	66. Dy		<u> </u>	2	
19. K	0.81	± 5 % ±2%		± ±	67. Ho		±		±
17. 15		±2%		±	68. Er		<u>±</u>	1	±
20. Ca	3.02	±		±		na	±		±
21. Sc	na			±		TIC		7	±
22. Ti	0.63	±5%		<u> </u>	70. Yb		± ± ±		± ±
23. V		±	250	±	71. Lu		<u> </u>		-
24. Cr		±	50	±50	72. Hf				±
25. Mn	0.04	±20%		±	73. Ta	na	± ±		± ± ±
26. Fe	4.59	± 5%		±	74. W				±
	4.59	± 5%	6	±	75. Re		±		±
27. Cc						_na	±	0.3	+
28. Ni		±	105	± ±	76. Os		±		± ±
29. Cu		±	120		77. Ir		<u></u>		· ±
30. Zn		±	50	±	78. Pt		±		.
31. Ga	20	±		± ·	79. Au		± ±		±
	na	±		±	80. Hg		±		±
32. Ge	na	-		±	81. Tl		±		±
33. As			2	1			<u>±</u>	4	±
34. Se		±	0.3	<u>±</u>	82. Pb			-	± ±
35. Br		<u>±</u>	2	±	83. Bi		± ±		· ±
37. Rb		±	8	±	84. Po		<u> </u>		· -
38. Sr		±	400	<u>+</u>	85. At		±		±
39. Y		±	20	+	86. Rn		±		±
		+	55	±	87. Fr		±		±
40. Zr		± ± ±		-	88. Ra	·	±		±
41. No		<u>+</u> +	2	±			±		±
42. Mo			9		89. Ac		1.		<u>±</u>
43. Tc		± ±		<u> </u>	90. Th		± ±		· ±
44. Ru		±	0.1	±	91. Pa		İ		
45. Rh	~~~	±		±	92. U		±	1	±
	na			±	93. Np		±		±
46. Pd		± ±		_	94. Pu		±		<u>±</u>
47. Ag		<u> </u>	0.1	±			<u>+</u>		<u>±</u>
48. Cd		±			95. Am				· _
49. In		+	0.05	±	96. Cm		±		
*co2.2	2.63	±5%		±	-		±		±
_ +2 /=2+3		+50		±			±		±
Fe^{+2}/Fe^{+3}	0.75	±5%							
Mathad	of Analy	sis:				Analytic	cal Lab.		
						Lab. Sar			
UU⊃ II	om carbon		0 13		4.		Date:		
**Expre									

Material Calcareous shale 17-CH-4 385'

LRL Sample No. 111

Z	Weight %	Weight PPM	Z	Weight %	Weight I
1. H	na ±	** ±	50. Sn	±	0.05 ±
2. He	1	<u>±</u>		± ±	
	$\frac{na}{\pm}$				$\frac{0.1}{\pm}$
3. Li		$\frac{71}{}$	52. Te	<u>T</u>	
4. Be	na ±	± ±	53. I	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	2 ± 2 ±
5. B	±	80 ± ±	55. Cs	±	2 ±
6. c	na ±	<u>+</u>	56. Ba	±	1450 . ±
7. N	+	<u>±</u>			
					
8. 0			58. C e		
9. F	na ±	± ±	59. Pr	<u>±</u>	5 ±
ll. Na	1.6 ±5	<i>t</i> ₆ ± ±	60. Nd	± ± ±	2. ±
12. Mg	1.82 ±2	± ±	61. Pm	± ±	±
13. Al	8.90 ±2	± ±	62. Sm	±	7 ±
		<u> </u>			
14. Si	25.14 ±2	<u></u>	63. Eu		$\frac{1}{5}$ $\frac{\pm}{\pm}$
15. P	0.049 ± 5	6 ± ± ±	64. Gd	<u></u>	5 ±
16. S	2.45 ± 5	<u> </u>	65. To	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0.9 ±
17. Cl	na ±	± ±	66. Dy)ı ±
19. K	0.97 ± 5		67. Ho		0.4 ±
20. Ca	2 El. + -			+	
	3.54 ±2	6		<u> </u>	$\frac{2.5}{\pm}$
21. Sc	na ±		69. Im	1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
22. Ti	0.55 ±5	6 ± ± ±	70. Yb	<u>±</u>	2.4 ±
23. V	±	<u>450</u> ±	71. Lu	<u>+</u>	0.4 ±
24. Cr	±	60 ± ±	72. Hf	<u>±</u> ± ± ± ±	2 ±
25. Mn		,	73. Ta	70 +	
	0.06 ±5 4.68 ±5			na ±	
26. Fe	4.68 ±5	0	74. W	<u> </u>	$\frac{1.5}{\pm}$
27. Co	± ± ±	<u>38</u> ±	75. Re	na ± ±	. <u> </u>
28. Ni	±	210 ±	76. Os	<u>±</u>	±
29. Cu	± ±	$\frac{115}{110}$ $\frac{\pm}{\pm}$	77. Ir	±	<u>±</u>
30. Zn		110 ±	78. Pt	±	±
31. Ga		± ±	79. Au	±	- +
			17. II.		- -
32. Ge	na ±		80. Hg	<u>-</u>	
33. As		<u>4</u> ±	81. Tl		0.4 ±
34. Se		18 ± 6 ±	82. Pb	± ±	2 ±
35. Br			83. Bi	± ± ± ± ±	±
37. Rb	±	14 ±	84. Po	<u>+</u>	
38. Sr	<u>+</u>	760 ±	85. At		<u>±</u>
	+		86. Rn	±	±
				± ±	<u>±</u>
40. Zr	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±		87. Fr	<u>-</u>	
41. Nb		<u> </u>	88. Ra		<u>±</u>
42. Mo		44 ±	89. Ac	±	<u>±</u>
43. Tc	±	±	90. Th	<u>+</u>	1 ±
44. Ru	± ±	0.05 ±	91. Pa	± ±	<u> </u>
				±	3 ±
45. Rh	na ±		92. U		- <u>5</u> ±
46. Pd		0.2 ±	93. Np		
47. Ag	±	0.1 ±	94. Pu	±	<u> </u>
48. C d	Ī	0.7 ±	95. Am	±	±
49. In	<u>±</u>	< 0.05 ±	96. Cm	±	<u>+</u>
*CO2		<u> </u>	, . · · · ·	±	
= 2 = +3	$\frac{3.69}{2.00}$	<u> </u>		<u>+</u>	· ±
Fe ⁻² /Fe ⁺³	0.87 ±59	<u>-</u>			
	of Analysis:			Analytical Lab) _
				Lab. Sample No	
	m carbonate				
	04 04	ent of the concentrat		Date	

-11-

DI,363#

ANALYTICAL REPORT Slightly weathered silty Material and tuffaceous limestone

LRL Sample No. 1 M 1200

${ m Z}$
1. He 3. Li 4. Be 5. C 7. 0 F Na 9. FNa 12. Mg 13. Al 14. Si 15. P 16. C 17. C 20. C 22. Ti 20. Sc 22. Ti 23. C 24. Mn 26. C 28. C 29. Z 30. C 31. G 29. Z 30. G 31. G 32. AS 35. B 37. S 39. Y 41. Nh 42. He 45. R 46. A 47. C 48. C 49. C 41. Nh 42. F 44. C 45. R 46. A 47. C 48. C 49. C 40. C 41. Nh 42. C 43. R 44. R 45. R 46. A 47. C 48. C 49. C 40. C 41. C 41. C 41. C 41. C 42. C 42. C 43. C 44. C 45. C 46. C 47. C 48. C 49. C 49. C 40. C 40. C 41. C 41. C 41. C 42. C 43. C 44. C 45. C 46. C 47. C 48. C 49. C 49. C 40. C 40

LRL Sample No. 115

262-2631 17-CH-5 Z Weight % Weight PPM Z Weight % Weight PPM ± ** 1. H 50. Sn 0.05 Ŧ + 51. Sb 0.05 2. He na \pm ± 10% Ŧ Ξ 10 52. Te 3. Li Ξ \pm Ŧ ± 53. I 0.9 4. Be na ± 50% \pm ± 15 5. B 55. Cs 0.2 Ŧ ± 6. c 56. Ba 3200 na ± Ŧ Ξ 7. N na 57. La ± Ξ Ŧ Ŧ 8.0 58. Ce na \pm Ŧ ± \pm 9. F 59. Pr na ± ± ± 5% ± 6 ll. Na 0.74 60. Nd Ŧ ± \pm ± 12. Mg 0.42 2% 61. Pm Ŧ Ŧ Ŧ \pm 2% 13. Al 2.72 62. Sm ± \pm ± Ŧ 14. Si 2% 63. Eu 29.69 \pm Ŧ 64. Gd 65. To 66. Dy \pm ± 15. P 0.025 5% \pm Ŧ Ŧ \pm 16. S 5% 0.5 0.074 ± Ŧ Ŧ ± 17. Cl na Ŧ ± \pm 67. Ho 68. Er ± 19. K 5% 0.3 0.67 ± ± \pm ± 20. Ca 9.93 0.7 ± Ŧ ± 69. Im 70. Yb 21. Sc na ± ± ± 0.8 \pm 22. Ti 0.11 Ξ Ξ \pm 23. V 80 71. Lu ± ± 50% \pm 24. Cr 72. Hf Ξ < 0.05 15 Ŧ 73. Ta 74. W 25. Mn 0.02 ± \pm ± 26. Fe ± Ξ 0.95 \pm 27. Co 28. Ni ± 75. Re 7 ± ± Ŧ \pm 76. Os \pm \pm Ξ ± 77. Ir 78. Pt Ŧ 29. Cu 24 \pm \pm Ξ 30. Zn 41 ± \pm 31. Ga 79. Au Ŧ \pm \pm 32. Ge 80. Hg Ξ ± ± ± 33. As 0.05 81. Tl \pm \pm 34. Se 82. Pb 0.6 0.3 Ŧ \pm \pm 35. Br 83. Bi 0.3 + + Ŧ \pm 37. Rb 2 84. Po ± ± ± 85. At 38. Sr 330 Ŧ \pm ± 0.8 86. Rn 39. Y \pm ± 87. Fr 40. Zr 14 ± 88. Ra 0.2 41. Nb ± Ŧ 42. Mo 0.05 89. Ac Ŧ 90. Th 43. Tc Ŧ 91. Pa 44. Ru \pm 92. U Ξ Ξ 45. Rh Ξ 0.05 ± Ξ 46. Pd 93. Np \pm 47. Ag 0.05 94. Pu \pm 48. Cd 95. Am ± ± ± 96. Cm 49. In 0.05 Ξ $Fe^{+\stackrel{*}{2}CO}_{Fe}^{2+3}$ 9.45 0.46 Method of Analysis: Analytical Lab. *CO from carbonate Lab. Sample No. **Expressed as a percent of the concentration Date: na - not analyzed Signed:

Material Fresh Calcareous Tuff 17-CH-5 284.0-284.7'

LRL Sample No. 1M 1006

Z	Weigh	it %	Weigl	ht PPM	Z	Weigh	t %	Weig	ht PP
1. H	na	± **		±	50. Sn		±		±
2. He		±		±	51. Sb		±		±
	_na	_	77				±		± ±
3. Li		± ±	11	± 10% ±	52. Te		±		- -
4. Be	na				53. I	,		0.3	
5.B		<u>+</u>	10	± 50%	55. Cs		±	0.2	±
6. c	na	±		±	56. Ba		±	280	± ±
7. N	na	±		±	57. La		±	8	±
8.0		±		±	58. C e		±	9	±
	na	±		±			±	2.5	±
9. F	<u>na</u>				59. Pr		_		-
ll. Na	1.2	± 5% ± 2%		±	60. N d		± ±	10	± ±
12. Mg	0.66			±	61. Pm		±		<u> </u>
13. Al	4.23	± 2%		Ŧ	62. Sm		±	5	± ±
14. Si	29.14 q	+ 00		±	63. Eu		±	2	±
		± 5%		±	64. Gd		±	3	±
15. P	0.017	- 5%		±			-		+
16. S	0.033	± 5%		-	65. Tb		<u>±</u> <u>±</u>	0.9	± ± ±
17. Cl	na			±	66. Dy			2.5	<u> </u>
19. K	0.99	± 5%		±	67. Ho		±	0.5	±
20. Ca	6.99	± 2%		±	68. Er		±	2	<u>+</u>
21. Sc		±		±	69. Tm	no	±		±
	na O OF	+ 50		_	70 Vh	na	±	2	± ±
22. Ti	0.25	± 5%	1	± ±	70. Yb		±		±
23. V		<u></u>	40		71. Lu			0.3	
24. C r		±	10	± 50%	72. Hf		±	1.5	±
25. Mn	0.02	± 20%		± ±	73. Ta	na	±		±
26. Fe	1.46	± 5% ±		±	74. W		<u>±</u>	3	±
27. C o		±	12	±	75. Re	ne	±		±
28. Ni		±		±	76. Os	na	<u>+</u>		±
			9 8	±			+		±
29. C u		± ± ±		±	77. Ir		± ±		±
30. Z n			17		78. Pt				± ±
31. Ga	na	±		±	79. Au		±		<u> </u>
32. Ge	na	<u>±</u>		±	80. Hg		Ŧ		±
33. As		<u>+</u>	0.2	±	81. Tl		±		±
34. S e		±	0.3	± ±	82. Pb		±	2	± ±
		<u>±</u>		±	83. Bi		±		±
35. Br		±	0.5	±			<u>±</u>		+
37. Rb			3	<u>-</u>	84. Po.		-		± ± ±
38. Sr		± ±	230	± ±	85. At		± ±		<u> </u>
39. Y		±	30		86 . R n				±
40. Zr		±	25	±	87. Fr		±		±
41. N b		±	0.5	±	88. Ra		±		±
42. Mo		±		± ±	89. Ac		±		±
		±		±	90. Th		± ±	0.5	±
43. Tc		± +	10		90. In				
44. Ru			10	-	91. Pa		± ±		+
45. Rh	na	±		± ± ± ±	92. U		<u></u>		± ± ±
46. Pd		±		±	93. Np		±		<u> </u>
47. Ag		±		±	94. Pu		±		±
48. c d		±		±	95. Am		±		±
49. In		±		± ± ± ±	96. Cm	· 	±		±
	5 66			+	50. Om		±		±
*002	5.55			-			<u>±</u>		±
Fe+2/Fe+	0.38	± 5%					<u> </u>		
Method	of Analys	is:				Analytica	al Lah		
	m carbona					Lab. Samp			
005 110	m carbona	. v c	. 0 . 13.			പവം. വവസ്	Date:		
** Expre	5000								

Material	Bedded	tuff
----------	--------	------

17-CH-5 400'

LRL Sample No. 113

Z	Weight %	Weight PPM	Z	Weight %	Weight PP
1. H	na ± **	<u>±</u>	50. Sn	±	0.05 ±
	110			±	
2. He	<u>na</u> ±				< 0.05 $\frac{\pm}{\pm}$
3. Li		9 ± 10% ± 5 ±	52. Te	± ± ±	
4. Be	na ± ±	<u> </u>	53. I		0.5 ±
5. B	±	5±	55. Cs		0.3 ±
6. c	na ±		56. Ba		3400 ±
7. N	+	<u>±</u>	57. La	<u>±</u>	18 ±
8.0	na ±	<u>±</u>	58. C e	<u>±</u>	11 ±
	na ±			 +	
9. F	HEL .				
ll. Na	- Me-/		60. Nd	± ± ± ±	12 ± ±
12. Mg	$0.70 \pm 2\%$	± ±	61. Pm	Ξ	<u> </u>
13. Al	3.85 ± 2% 23.10 ± 2% 0.040 ± 5%	± ±	62. Sm	± ± ±	$\frac{5}{1}$
14. Si	23.10 ± 2%	± ±	63. Eu	±	
15. P	0.040 ± 5%	<u>±</u>	64. G d	±	
16. S	0.022 ± 5%	<u>±</u>	65. To	<u>±</u>	0.8 ±
		±	66. Dy		$\frac{3}{3}$
17. C1					
19. K	0.75 13.34 ± 2%		67. Ho	± ± ±	
20. Ca			68. Er		1.5 ±
21. Sc	na ±	±	69. Tm	na ±	±
22. Ti	0.26 ± 5%	±	70. Yb	1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	2 ±
23. V	± ±	85 ±	71. Lu	± ±	0.3 ±
24. C r	± ±	10 ± 50%	72. Hf	±	2 ±
25. M n	0.04 ± 20%	± ±	73. Ta	±	_ <u> </u>
26. Fe		± ±		na ÷	
	1.85 ± 5% ± ±		•	-	6±
27. Co	<u> </u>	28 ± 6 ±	75. Re	na -	- ±
28. Ni			76. Os	<u> </u>	
29. C u	<u>±</u>	40 ±	77. Ir	<u> </u>	_ <u> </u>
30. Z n	±	60 ±	78. Pt	±	<u> </u>
31. Ga	na ±	± ±	79. Au	±	<u>±</u>
32. Ge	na ±		80. Hg	+	
33. As	na <u>±</u> ±	0.3 ±	81. Tl	<u>±</u>	<u>±</u>
	± ±	0.3 ± 0.5 ±		± ±	
34. Se	± ±	0.5 ±	82. Pb		$\frac{2}{\pm}$
35. Br		0.5 ± 4 ±	83. Bi	± ±	<u>±</u>
37. Rb	± ±		84. Po	<u> </u>	
38. Sr	<u>±</u>	415 ±	85. At	±	<u> </u>
39. Y	±	30 ±	86. Rn	±	<u>±</u>
40. Zr	<u>±</u>	45 ±	87. Fr	±	±
41. N b	± ±	45 0.8 ± ±	88. Ra	± ±	
42. M o	<u>±</u>		89. Ac	<u>±</u>	
				<u>+</u>	0.5 ±
43. To			90. Th	± ±	-
44. Ru	na ± ±	± ± ± ± ± ±	91. Pa	<u></u>	
45. Rh	na ±		92. Ŭ	± ±	0.5 ±
46. Pd	±	< 0.05 ±	93. Np	<u>±</u>	_ <u> </u>
47. Ag	± ±	0.1 ±	94. Pu	±	
48. C a	<u>±</u>	±	95. Am	±	
49. In	<u>±</u>	0.05 ± ±	96. Cm	±	
*****			Free H ₀ 0		
Fe^{+2}/Fe^{+3}	12.2 ± 5% 0.35 ± 5%		Bound H ₂ 0	$\frac{4.02}{3.62} \pm 5\%$	
Method	of Analysis:		_	Analytical La	ib.
	com carbonate			Lab. Sample N	
		ot of the same	hand don	Dat	
v.v. r.x.bi	ressed as a percer	ie or ene concen.	CLGCTOH	Dal	· - · · · · · · · · · · · · · · · · · ·
	ot analyzed				

Material Porphyritic basalt

LRL Sample No. 125

17-CH-6A 650'

Z Weight %	Weight PPM	Z	Weight %	Weight PPM
1. H	± 20% 0.5 ± ± ± ± ± ± ± ± ±	50. Sh 51. Cs a Lae rid a tion 51. Sh 52. I cs a tion 51.	# # # # # # # # # # # # # # # # # # #	
na - not analyzed			Signed	

Material and altered diabase 17-CH-7 104.3-106.8

LRL Sample No. 1 M 1089

Slightly weathered

Material altered diabase

17-CH-7 647.6 - 648.6

IRL Sample No. 1M 1093

Z	Weight %	Weight PPM	Z	Weight %	Weight PP
1. H	na ± **	±	50. S n	<u>±</u>	0.2 ± ±
2. He	na ±	<u>±</u>	51. Sb	±	±
		6 ± 20%	52. Te	<u>±</u>	<u>±</u>
3. Li	na ± .			<u>±</u>	±
4. Be	na ±	±	53. I		
5.B	±	20 ± 50%	55. Cs	±	
6. c	na ±	±	56.Ba	±	1600 ±
7. N	na ±	<u>±</u>	57. La	<u> </u>	3 ±
8. 0		<u>+</u>	58. C e	±	5 ±
		±	59. Pr	±	0.8 ±
9. F	1100	±	60. Nd	<u>+</u>	5 0.8 ± ± ± ±
11. Na	1.6 ± 5%	±	60. IVa	<u>±</u>	
12. M g	4.81 ± 2%		61. Pm		
13. Al	7.74 ± 2%	± ±	62. S m		
14. Si	21.59 ± 2%	<u>±</u>	63. Eu	± ±	0.8 ±
15. P	0.006 ± 20%	±	64. G d	±	3 ±
	$0.056 \pm 5\%$	<u>±</u>	65. To	<u>+</u>	1 ±
16. S			66 Dar	<u>±</u>	6 ±
17. Cl			66. Dy	+	1 ±
19. K	0.20 ± 5%		67. Ho	± ± ±	
20. Ca	10.03 ± 2%	±	68. Er		5 ±
21. Sc	na ±	±	69. Tm	na ±	±
22. T i	0.86 ± 5%	250 ±	70. Yb	±	5 ±
23. V	± ±	250 ±	71. Lu		±
	±	200 ± 50%	72. Hf	±	2 ±
24. C r		= 200 = 10p	72 Ma		<u>±</u>
25. M n		<u>±</u>	73. Ta	na ±	7 ±
26. Fe	6.86 ± 5%		74. W		
27. C o	±	25 ±	75. Re	<u>na</u> ±	<u>±</u>
28. Ni	±	75 ±	76. 0 s		
29. C u	± ±	150 ±	77. Ir	±	
30. Zn		250 ±	78. Pt	±	±
31. Ga	na ±	±	79. Au	±	±
32. Ge	na ±	±	80. Hg	<u>±</u>	<u>±</u>
	<u>+</u>	0.2 ±	81. Tl	<u>±</u>	<u>±</u>
33. As	<u>±</u>	1 ±	82. Pb	<u> </u>	1 ±
34. S e				<u>±</u>	
35. Br			83. Bi		<u>+</u>
37. Rb	±	1 ±	84. Po	± ±	
38. S r	± =	100 ±	85. At		<u>±</u>
39. Y	<u>±</u>	35 ±	86 . Rn	±	
40. Zr	<u> </u>	25 ±	87. Fr	±	±
41. Nb	<u>±</u>	0.6 ±	88. Ra	±	±
	<u>+</u>	±	89. Ac	± ±	<u>±</u>
42. Mo				<u>±</u>	<u>±</u>
43. Tc			90. Th	<u>+</u>	<u>±</u>
44. Ru	$\frac{\pm}{\text{na}}$	6 ±	91. Pa		<u>_</u>
45. Rh	na ±	±	92. U	± ±	
46. Pd	±	±	93. Np		±
47. Ag	±	0.2 ±	94. Pu	±	王
48. Cd	<u>±</u>	<u>±</u>	95. Am	±	±
		0.2 ±	96. Cm	<u>±</u>	±
49. In *CO2			50 · Om	<u> </u>	<u>±</u>
		± ±			±
Fe^{+2}/Fe^{+3}	1.38 ± 5%				
Mothod	of Analysis:			Analytical Lab.	
	om carbonate			Lab. Sample No.	
				Date:	
	; analyzed essed as a percent			Date:	

Material Calcareous tuff

LRL Sample No. 114

17-CH-7 Weight % Weight PPM Weight % Z Z Weight PPM X X ± 50: Sn 1. H 0.1 na \pm ± \pm ± 2. He 51. Sb 0.1 na ±50% Ξ ± Ŧ 3. Li 52. Te Ξ Ŧ \pm \pm 4. Be 53. I 0.3 na Ŧ + \pm \pm 5. B 5 55. Cs ± ± \pm \pm 6. c 56. Ba 44 na ± \pm Ŧ \pm 7. N 57. La 7 \pm Ŧ \pm Ξ 8.0 58. Ce 2.5 Ŧ Ŧ ± ± 9. F 59. Pr na Ŧ \pm Ξ Ŧ ll. Na 60. Nd 0.44 4 Ξ Ŧ \pm 12. Mg 0.70 61. Pm \mp Ξ \pm 62. Sm 13. Al 2 ± Ŧ \pm 0.3 14. Si 21.46 2% 63. Eu + Ξ ± 15. P 5% 64. Gd 1 0.041 ± \pm \pm 16. S 5% 65. To 1.45 0.2 \pm \pm \pm 17. Cl 66. Dy 1.5 ± \pm \pm ± 0.046 19. K 5% 67. Ho 0.3 \pm Ŧ Ŧ 20. Ca 2% 68. Er 17.50 1 Ŧ Ŧ \pm $\overline{\pm}$ 69. Tm 21. Sc na na ± ± ± \pm 22. Ti 5% 70. Yb 0.28 Ξ Ŧ ± \pm 23. V 115 71. Lu 0.05 ± ±50% ± 72. Hf 0.05 24. Cr 75 ± 20% Ŧ Ξ 73. Ta 25. Mn 0.03 na ± Ξ \pm ± 74. W 26. Fe 2.25 5% Ξ \pm \pm \pm 27. Co 10 75. Re na Ξ \pm \pm Ŧ 28. Ni 31 76. Os \pm \pm ± \pm 77. Ir 29. Cu 48 \pm Ŧ \pm \pm 78. Pt 30. Zn 70 ± ± ± Ŧ 31. Ga 79. Au na ± \pm \pm ± 32. Ge 80. Hg Ŧ Ŧ ± \pm 81. Tl 33. As 2 0.1 Ŧ \pm Ξ \pm 82. Pb 34. Se 0.6 \pm ± ± \pm 83. Bi 35. Br 0.3 \pm Ŧ \pm \pm 84. Po 37. Rb 0.05 \pm Ŧ Ξ \pm 85. At 38. Sr 75 Ξ \pm ± \pm 39. Y 86. Rn 20 Ξ Ŧ \pm \pm 40. Zr 18 87. Fr Ξ Ŧ \pm \pm 88. Ra 41. Nb 0.5 \pm \pm \pm \pm 42. Mo 18 89. Ac ± ± Ŧ Ξ 43. Tc 90. Th ± Ŧ ± \pm 10 91. Pa 44. Ru ± Ŧ Ξ \pm 45. Rh 92. U 0.5 Ξ ± Ŧ \pm 46. Pd 93. Np ± ± Ξ \pm 2 94. Pu 47. Ag ± \pm \pm \pm 48. Cd 95. Am \pm Ŧ Ξ \pm 49. In 0.05 96. Cm ± Ŧ \pm Fe⁺²/Fe⁺³ 18.0 5% Ŧ \pm Ŧ 2.06

Method of Analysis:

*CO from carbonate

Analytical Lab Lab. Sample No. Date:

~		
Signed.	:	

^{**} Expressed as a percent of the concentration na - not analyzed

LRL Sample No. 1M 1177

			FICAL	REPORT	
	Tuffaceou	us fossilifer ous			
Material	limestor	ie		I	
•	17-CH-8	260.8-262.7'			

Z	Weigh	nt %	Weight PPM	Z	Weight %	Weight PI
1. H	na	± **	±	50. S n	± .	0.05 ±
2. He	na	<u>+</u>	<u>±</u>	51. Sb	±	0.05 ±
3. Li		_	11 ± 10%	52. Te	<u>±</u>	±
		-	<u> </u>		<u>±</u>	0.8 ±
4. Be	na	±		53. I		
5. B				55. Cs		
6. c	na	±	± ±	56.Ba	±	640 ±
7. N	na	±	±	57. La	±	14 ± ± ±
8. o	na	±	± ±	58. Ce	±	
9. F	na	±	±	59. Pr	<u>+</u>	3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
ll. Na	0.52	± 5%	<u>±</u>	60. Nd	±	9 ±
12. Mg	1.26	± 2%	±	61. Pm	±	<u>±</u>
			<u>±</u>	62. Sm	± ± ±	
13. Al	3.07		<u>±</u>	62. Dill	+	<u>4</u> ± ± ±
14. Si	10.73		<u>+</u>	63. Eu		
15. P	0.077	± 5%		64. G d	±	2.5 ±
16. S	1.10	± 5%	<u>±</u>	65. Tb	± ±	0.5 ± 3 ±
17. Cl	na	±	<u>±</u>	66. Dy	±	
19. K	0.76	± 5%	<u>±</u>	67. Ho	<u>±</u>	0.4 ±
	24.44		<u>±</u>	68. Er	· ±	1 ±
20. Ca		± 2%	<u>±</u>			
21. Sc	na			69. Im	na ± ±	
22. T i	0.70	± 5%	±	70. Yb	<u> </u>	
23. V		±	115 ±	71. Lu	±	<0.05 ±
24. Cr		±	45 ± 50%	72. Hf	±	·2 ±
25. Mm	0.02	± 20%	±	73. Ta	na ±	±
26. Fe	3.50	± 5%		74. W	±	± ±
		± +	115 ±	75. Re	1	<u>±</u>
		±				<u>+</u>
28. Ni		±				± ± ± ±
29. C u		±		77. Ir	± ±	-
30. Z n			1.5 ±	78. Pt		<u> </u>
31. Ga	na	±		79. Au	±	
32. Ge	na	±	<u>±</u>	80. Hg	±	
33. As		±	0.3 ±	81. Tl	±	<0.05 ± ± ±
34. S e		±	0.3 ± 0.9 ±	82. Pb	± ±	2 ±
35. Br		<u>+</u>	0.9 ±	83. Bi	<u>+</u>	<u>±</u>
37. Rb		±	$\frac{1}{9}$ \pm	84. Po	<u>+</u>	<u>±</u>
		±		85. At	± .	<u>±</u>
38. Sr		±		05. At	± ±	+
39. Y				86. Rn	<u>±</u>	
40. Zr		±	42 ±	87. Fr		± ± ± ±
41. Nb		±	5 ±	88. Ra	±	
42. M o		±	1 ₄ ±	89. Ac	<u>±</u>	<0.05 ±
43. Tc		±	±	90. Th	±	<0.05 ±
44. Ru		<u> </u>	${7}$	91. Pa	<u>±</u>	
45. Rh		$\frac{-}{\pm}$	7 ± ± ±	92. U	±	2 ± ± ±
	_na	±	<0.05 ±		±	
46. Pd		± ±	- \(\frac{1}{2}\)	93. Np		<u>±</u>
47. Ag			0.3 ± <0.05 ±	94. Pu		
48. C d		±		95. Am		± ±
49. In		±	<0.05 ±	96. Cm	<u>±</u>	<u> </u>
*Co2	25.2%	± 5%	<u> </u>		±	±
Fe ⁺ 4/Fe+3	0.57	± 5%	± ±		<u>+</u>	<u>±</u>
Method o	f Analys	is:			Analytical Lab.	
*CO2 from					Lab. Sample No.	
			t of the concentr	ation	Date:	
TVDICE			OT OTTE CONTRELIER	COTOH		
na - not	-mol					

Material Calcareous Shale 17-CH-9 352'

LRL Sample No. 117

Z	Weight %	Weight PPM	Z	Weight %	Weight PPM
1. H	na ± **	±	50. Sn	±	±
	na ±			±	<u>±</u>
2. He	<u>±</u>		51. Sb	±	
3. Li		67 ± 5%	52. Te		
4. Be	na ±	±	53. I	± ±	0.1 ±
5. B	±	200 ± 50%	55. Cs	±	0.8 ±
6. c	na ±	±	56. Ba	±	290 ±
7. N	na ±	<u>±</u>	57. La	<u>+</u>	$\frac{1}{2}$
8.0	na ±	<u>+</u>	58. C e	±	5 ± ± ±
				<u>±</u>	9.7 ±
9. F			59. Pr		
ll. Na	1.4 ± 5%		60. Nd		2 ± ±
12. M g	1.53 ± 2%	±	61. Pm	±	
13. Al	9.44 ± 2%	<u>±</u>	62. Sm	<u>+</u>	2 ±
14. Si	24.37 ± 2%		63. Eu	±	0.3 ±
15. P	0.061 ± 5%	±	64. Gd	<u>±</u>	0.6 ±
16. S		<u>±</u>	65. To	<u>±</u>	0.2 ±
		± ±		<u>+</u>	0.3 ±
17. C1		± ±	66. Dy	<u>±</u>	
19. K	1.5 ± 5%		67. Ho		
20. Ca	3.14 ± 2%	±	68. Er	<u>±</u>	0.4 ±
21. Sc	na ±	±	69. T m	na ±	± ±
22. Ti	0.64 ± 5%	±	70. Yb	±	±
23. V	<u>±</u>	110 ±	71. Lu	±	±
24. Cr	<u>±</u>	70 ± 50%	72. Hf	±	<u>+</u>
25. Mn	0.07 ± 20%	± ±	73. Ta		
		± ±		na	· ±
26. Fe	5.40 ± 5% ±		74. W		
27. Co			75. Re	<u>na</u> <u>-</u>	± ±
28. Ni	<u>±</u>	35 ±	76. Os	±	
29. C u	±	50 ±	77. Ir	<u>±</u>	<u>±</u>
30 . Z n	± ±	75 ±	78. Pt	±	±
31. Ga	na ±	±	79. Au	, ±	<u>±</u>
32. Ge	na ±	±	80. Hg	±	<u> </u>
33. As	±	1 ±	81. Tl	<u>+</u>	<u>±</u>
		0.3 ±		<u>+</u>	0.8 ±
34. Se		<u> </u>	82. Pb		
35. Br	<u>±</u>	2 ±	83. Bi		<u>±</u>
37. Rb	± = =	4 ±	84. Po		
38. S r	±	165 ±	85. At	<u>±</u>	<u>±</u>
39. Y	±	7 ±	86. Rn	±	±
40. Zr	±	18 ±	87. Fr	<u>±</u>	<u>+</u>
41. N b		0.2 ±	88. Ra	±	<u> </u>
42. Mo	±	1 ±	89. Ac	±	<u>±</u>
				<u>±</u>	±
43. Te		0.9 ± ± ±	90. Th		+
44. Ru		0.9 ±	91. Pa		± ±
45. Rh	na ±		92. U		<u>T</u>
46. Pd	± ±	±	93. Np	±	± ±
47. Ag	±	0.1 ±	94. Pu	±	<u>±</u>
48. C d	<u>±</u>	< 0.05 ±	95. Am	±	± ±
49. In	<u>±</u>	< 0.05 ±	96. Cm	<u>±</u>	±
*CO2	2.63 ± 5%	±	Free H ₀ 0	13.05 ± 5%	<u>±</u>
Fe+2/Fe+3	$\frac{2.00}{0.72}$ $\pm 5\%$	± ±	Bound H ₂ O	5.02 ±5%	±
	of Analysis:		-2	Analytical Lab.	
	from carbonate			Lab. Sample No.	
		nt of the concen	tration	Date:	
** Expr	esseu as a perce.	no or one concen	.0101011		

Material Fresh Tuffaceous Limestone 17-CH-9 460-462'

LRL Sample No. 1M 1043

Z	Weig	ht %	Weigh	t PPM	Z	Weig	ght %	Weigh	it PPI
1. H	na	<u>+</u> **	· · · · · · · · · · · · · · · · · · ·	±	50. S n		±	0.05	±
		±		<u>+</u>			±	0.4	± ±
2. He	na						- -	0.4	±
3. Li		±	19	± 10%	52. Te				
4. Be	na	±		±	53. I		<u>+</u>	2	±
5. B		<u> </u>	50	± 50%	55. Cs		±	0.6	±
6. c	na	±		±	56. Ba		± ±	2560	<u>±</u>
7. N		±		Ŧ	57. La		±	19	±
	na	±		±			±	28	±
	na	±		±	58. C e		± ±	3	±
9. F	na				59. Pr		± ±	12	±
ll. Na	1.2	± 5% ± 2%		±	60. Nd			12	
12. M g	0.69	± 2%		±	61. Pm		±		±
13. Al	4.21	± 2%		±	62. S m		±	4	±
14. Si	18.99	± 2%		±	63. Eu		±	0.6	±
	0.065			±	64. G d		±	2.5	±
15. P		+ 50		<u>+</u>			±	0.6	±
16. S	1.47	± 5%			65. To		· ±	4	±
17. Cl	na			±	66. Dy				
19. K	0.64	± 5% ± 2%		±	67. Ho		±	0.3	±
20. Ca	15.17	± 2%		±	68. Er		±	1.5	±
21. Sc	na	±		±	69. Tm	na	±		
22. Ti	0.41	± 5%		<u>+</u>	70. Yb		±	2	±
23. V		±	230	±	71. Lu		±	<0.05	±
		±	30	± 50%			±	2	±
24. Cr				± 50%	•		± ±		±
25. Mm	0.02	± 20%		±	73. Ta	na	±	7 5	
26. F e	2.13	± 5%			74. W			1.5	± ±
27. Co			125	±	75. Re	na	±		<u> </u>
28. Ni		±	105	±	76. Os		±		±
29. C u		±	90	±	77. Ir		±		±
30. Zn		Ŧ	140	±	78. Pt		±		± ± ±
31. Ga	na	<u> </u>		<u>±</u>	79. Au		±		±
	na	±		±	80. Hg		±		±
32. Ge	11a	±	4	-			±		±
33. As					81. Tl		± ±	2	± -
34. S e		±	0.5	±	82. Pb				± ±
35. Br		±	2	±	83. Bi		±		
37. Rb		±	13	±	84. Po		±		±
38. Sr		±	1900	±	85. At		±		±
39. Y		±	42	<u>+</u>	86. Rn		±		±
40. Zr		±	115	±	87. Fr	-	±		±
40. 21 41. Nb		±	9	±	88. Ra		±		±
		$\frac{\overline{\pm}}{\pm}$	9	±	89. Ac		<u>±</u>		±
42. Mo		<u>+</u>		±	09. AC		<u> </u>	0.5	±
43. Tc			- 2 2 25		90. Th				±
44. Ru		±	< 0.05	±	91. Pa		±		-
45. Rh	na	±		±	92. U		±	3	±
46. Pd		±	0.05	±	93. Np		±		±
47. Ag		<u>+</u>	0.3	±	94. Pu		±		±
48. C d		±	< 0.05	±	95. Am		±		±
49. In		±	< 0.05	±	96. Cm		±		+
*CO ₂	14.3		1.0.0)	Ŧ	50 · Om		· ±		<u>+</u>
Fe ⁺² /Fe ⁺		± 5% ± 5%		±			±		±
Ma +12						Anglarti	cal Lab		
	of Analys								
*CO2 fr	om carbo	nate				ran. pa	mple No		
** Exp	ressed as	a perce	nt of the	concen	tration		Date	:	

ANALYTICAL REPORT

Material Slightly weathered siliceous shale 17-CH-9 648-658'

LRL Sample No. 121

Z	Weight %	Weight PPM	Z	Weight %	Weight PP
1. H	na ± **	±	50. S n	±	< 0.05 ±
2. He		±	51. Sb	<u>±</u>	< 0.05 ±
	$\frac{\text{na}}{\pm}$			± ±	
3. Li		<u>17</u> ± 10%	52. Te		
4. Be	na ±	± = =	53. I	± ±	0.5 ±
5. B	<u>±</u>	50 ± 50%	55. Cs	±	0.3 ±
6. c	na ±	<u>±</u>	56. Ba	<u>±</u>	935 ±
7. N	na ±	<u>±</u>	57. La	<u>±</u>	8 ±
8.0		<u>±</u>		<u>±</u>	
			58. C e	-	9 ±
9. F			59. Pr	± ±	9 ± 2 ± 7 ±
ll. Na	1.4 ± 5%		60. N d	<u> </u>	
12. Mg	0.97 ± 2%	± ±	61. Pm	±	±
13. Al	4.94 ± 2%		62. Sm	<u> </u>	<u>+</u> ±
14. Si	20.32 ± 2%	<u>±</u>	63. E u	+	0.5 ±
		<u>+</u>		± ±	
15. P			64. G d		
16. S	0.90 ± 5%		65. T b	±	0.4 ±
17. Cl		<u> </u>	66. Dy	±	2.5 ±
19. K	0.87 ± 5%	±	67. Ho	± ±	0.5 ± ±
20. Ca	13.89 ± 2%	± ±	68. Er		1 ±
21. Sc	13.89 ± 2% na ±	±	69. Im	na ±	
	0.56 ± 5%	<u>±</u>		$\frac{\text{na}}{\pm}$	
22. Ti	0.56 ± 5% ± ±		70. Yb		
23. V	<u></u>		71. Lu		0.2 ±
24. C r		30 ± 50% ±	72. Hf		1 ±
25. M n	0.07 ±20%	±	73. Ta	na±	<u>±</u>
26. Fe	2.73 ± 5%	<u>±</u>	74. W	±	<u>±</u>
27. C o	±	45 ±	75. Re	na ±	<u>±</u>
28. Ni	<u>±</u>	20 ±	76.00	na	· ±
	± ±		76. Os	± ±	
29. C u			77. Ir		
30. Z n	± = =	45 ±	78. Pt	<u>±</u>	±
31. Ga	na ±	±	79. Au	±	±
32. Ge	na ±	±	80. Hg	±	±
33. As	<u>±</u>	1 ±	81. Tl	± ±	±
34. S e		0.4 ±	82. Pb		0.8 ±
35. Br	<u>+</u>	0.9 ±		±	
	± ±		83. Bi		
37. Rb	± ±		84. Po	± ± ±	± ±
38. Sr		590 ±	85. At		
39. Y	<u>±</u>	4 ±	86. Rn	±	
40. Zr	<u> </u>	55 ±	87. Fr	± ±	±
41. Nb		3 ±	88. Ra	± ±	± ±
42. Mo	<u>±</u>	0.6 ±	89. Ac	±	±
	±				
43. Tc		$\frac{\pm}{\pm}$	90. Th	± ±	0.1 ±
44. Ru	±		91. Pa		± ±
45. Rh	na ±	<u> </u>	92. Ū	± ± ±	0.5 ±
46. Pd	±	0.1 ±	93. Np		
47. Ag	±	0.3 ±	94. Pu	<u>±</u>	±
48. C d	±	< 0.05 ±	95. Am	<u>+</u>	<u>+</u>
49. In					
		< 0.05 ± ±	96. Cm		
*CO2				± ±	<u>±</u>
Fe+2/Fe+3	0.42 ± 5%	±		± ±	±
Mother -				Annirtical I-1	
	of Analysis:			Analytical Lab	
*UU⊃ fr	om carbonate			Lab. Sample No	
** Expr	essed as a percer ; analyzed	nt of the concent:	ration	Date	:

ANALYTICAL REPORT Material Shaley limestone LRL Sample No. 122 8731 17-CH-9 \mathbf{z} Weight PPM \mathbf{z} Weight % Weight PPM Weight % X X ± 1. H 50. Sn 0.05 na ± Ŧ Ŧ 2. He na 51. Sb 0.05 \pm \pm ± 28 3. Li 52. Te ± Ξ ± 4. Be na 53. I 0.4 \pm ± Ŧ 5. B 70 50% 55. Cs 0.5 ± \pm \pm 6. c 56. Ba 640 na ± ± \pm Ŧ 7. N 57. La 13 ± ± ± \pm 8.0 58. Ce 19 Ξ ± \pm ± 9. F 59. Pr 2.5 \pm \pm \pm Ŧ 9 ll. Na 2.0 60. Nd ± \pm \pm <u>+</u> 2% 61. Pm 12. Mg 1.91 Ξ 2% Ξ \pm \pm 6.40 62. Sm 13. Al ± \pm \pm ± 2% 14. Si 25.01 63. Eu 0.5 ± Ξ ± ± 0.088 5% 15. P 64. Gd 2 ± ± ± 16. S 1.34 65. To 0.3

Ŧ \pm ± 17. Cl 66. Dy 2 5% 2% ± Ξ \pm 67. Ho 0.4 19. K ± \pm Ŧ 7.56 68. Er 1 20. Ca \pm Ŧ ± \pm 21. Sc 69. Tm na na \pm ± ± \pm 22. Ti 5% 70. Yb 0.8 0.64 Ŧ Ŧ ± \pm 23. V 155 71. Lu < 0.05 \pm ± 50% ± < 0.05 24. Cr 40 72. Hf ± 20% ± ± 0.05 73. Ta 25. Mn na ± 5% \pm Ξ 4.35 74. W < 0.05 26. Fe \pm ± Ŧ \pm 27. Co 35 75. Re na \pm \pm Ŧ Ξ 30 28. Ni 76. Os ± ± Ξ Ξ 29. Cu 50 77. Ir \pm Ŧ \pm \pm 78. Pt 45 30. Zn ± \pm + <u>+</u> 79. Au 31. Ga na ± Ξ Ξ ± 80. Hg 32. Ge na Ξ Ξ \pm ± 81. Tl 1 < 0.05 33. As ± \pm Ŧ \pm 0.4 82. Pb 34. Se 王 Ξ \pm ± 1 83. Bi 35. Br ± Ξ \pm ± 3 84. Po 37. Rb \pm \pm 85. At ± 38. Sr 770 + \pm ± 86. Rn Ŧ 16 39. Y \pm \pm 87. Fr 88. Ra Ξ ± 55 40. Zr Ξ \pm ± \pm 41. Nb ± Ŧ ± \pm 0.9 89. Ac 42. Mo Ξ ± \pm Ŧ 90. Th 43. Tc 0.5 \pm Ξ ± ± 1.5 91. Pa 44. Ru Ŧ \pm ± \pm 92. U 0.5 45. Rh \pm Ŧ ± 46. Pd 0.05 93. Np ± Ξ \pm 0.1 94. Pu 47. Ag \pm \pm 48. Cd 0.05 95. Am ± \pm ± Ŧ 96. Cm 49. In 0.05 Ŧ ± Fe+2CO 4.97 ± Ŧ ± 0.63 Method of Analysis: Analytical Lab. *CO from carbonate Lab. Sample No. ** Expressed as a percent of the concentration Date: na - not analyzed

Signed:

Material Fresh Tuffaceous Limestone 17-CH-10 363.7 - 364.2'

LRL Sample No. 1M 1213

T\-CH-TO	202.1	-	204.2
and	365.3	_	366.51

Z	Weigh	t % 	Weigl	nt PPM	Z	Weigh	nt %	Weig	ht PP
1. H	na	± **		±	50. S n		<u>+</u>	0.7	±
2. He	na	±	•	±	51. Sb		±	0.1	±
3. Li		±	8	± 10%	52. Te		±		±
4. Be	na	±		± ±	53. I		<u>±</u>	1	±
5. B		<u>+</u>		±			<u>+</u>	1	±
	70	±	< 5	±	55. Cs		±		-
6. c	na			± ±	56.Ba			680	± ±
7. N	na	±		±	57. La		±	55	±
8.0	na	± ±		± ±	58. C e		±	9	± ±
9. F	na			±	59. Pr		±	9	
ll. Na	0.28	± 5%		±	60. Nd		<u>+</u>	35	±
12. Mg	0.32	± 2%		±	61. Pm		±		±
13. Al	0.80	± 2%		±	62. Sm		±	12	±
14. Si	20.11	± 2%		± ±	63. Eu		±	3	± ± ±
				-			±		+
15. P	0.036			±	64. Gd		±	8	
16. S	0.20	± 5%		<u> </u>	65. To		<u> </u>	1	± ±
17. Cl	na na	±		<u> </u>	66. Dy		±	8	±
19. K	0.32	± 5%		<u>±</u>	67. Ho		±	1	<u>+</u>
20. Ca	21.26	± 2%		±	68. Er		±	3	±
21. Sc	na	±		± ± ± ±	69. Tm	na	±		± ± ±
22. Ti	0.10	± 5%		±	70. Yb		±	4	±
23. V		±	110	±	71. Lu		±		
24. C r		±		± ± ± ±			± -	0.2	± ± ± ±
	0.02	± 20%	< 10	+	72. Hf		±	0.7	-
25. Mn				1	73. Ta	na			-
26. Fe	0.53	± 5%			74. W		±	0.3	<u> </u>
27. C o		±	80	± ±	75. Re	na	±		<u>±</u>
28. Ni		±	25	±	76. Os		±		±
29. C u		±	110	± ± ± ±	77. Ir		<u>±</u>		± ±
30. Zn		±	175	±	78. Pt		±		±
31. Ga	na	±		±	79. Au		±		±
32. Ge		±		+			±		+
	<u>na</u>	±	1.5	-	80. Hg		±		-
33. As		±		± ± ± ±	81. Tl		<u>+</u>		± ± ± ±
34. S e			2.5	Ξ	82. Pb		-	3	<u> </u>
35. Br		±	4	±	83. Bi		±		<u>±</u>
37. Rb		±	13	±	84. Po		±		±
38. S r		±	455	± ±	85. At		±		±
39. Y		±	65	±	86. Rn		±		± ± ± ±
40. Zr		±	55	±	87. Fr		±		±
41. No		±	1.5	±	88. Ra		<u> </u>		±
42. Mo		±	7	_	89. Ac		+		-
		±	1	$\frac{\dot{\pm}}{\pm}$			± ±		± ±
43. Tc					90. Th			5	
44. Ru		±		± ± ± ±	91. Pa		± ±		± ± ± ± ±
45. Rh	na	±		±	92. U		±		±
46. Pd		±	11	±	93. Np		±		±
47. Ag		±	0.3	±	94. Pu		±		<u>+</u>
48. Ca		±	2	<u>+</u>	95. Am	****	<u>+</u>		<u>±</u>
49. In		±	0.1	±	96. Cm		±		±
*CO2	21.5	± 5%		± ±	50. Viii		<u>+</u>		±
Fe + 2/Fe + 3				±			±		±
Te - Alie D	0.76	± 5%		<u> </u>					<u>-</u>
Method o	of Analysi	s:				Analytic	al Lab.		
	n carbonat					Lab. Sam			
** Expres	ssed as a	percent	of the	oncentre	ation	Live Cont.	Date:		
-API CE	ocu ab a	Per cent	OT DITE (oncemen	20TOII		Dale:		
na - not	nnn1 *** ~ 3								

Fresh tuffaceous Material limestone

LRL Sample No. 116

17-CH-10 4951 Z Weight % Weight PPM Z Weight % Weight PPM \pm 1. H 50. Sn 0.05 na ± \pm ± Ξ 2. He 51. Sb 0.05 na Ξ ± $\overline{\pm}$ ±10% 52. Te 3. Li 10 0.05 Ξ ± \pm 4. Be 53. I 0.1 na $\overline{\pm}$ \pm 5. B 6. C ± ±50% 55. Cs 0.5 Ŧ Ŧ ± \pm 56. Ba 1850 na ± \pm ± ± 7. N 57. La 18 na 8.0 ± Ŧ Ŧ \pm 58. Ce 12 ± ± ± ± 59. Pr 9. F 3 na ± ± Ŧ Ŧ ll. Na 60. Nd 10 ± ± ± Ŧ 61. Pm 12. Mg ± ± ± 13. Al 62. Sm 2% 2% 5% 5% 4 <u>±</u> ± \pm ± 63. Eu 14. Si 0.7 22.69 Ξ \pm ± Ŧ 15. P 64. Gd 0.026 Ξ Ŧ <u>±</u> ± 16. S 65. Tb 0.7 0.13 Ξ <u>+</u> Ξ \pm 17. Cl 19. K 66. Dy 2 na \pm İ ± 0.81 5% 67. Ho 0.4 Ξ Ŧ 68. Er 20. Ca 2% 13.74 69. Tm 70. Yb ± ± Ξ na 21. Sc na 22. Ti 23. V 24. Cr ± \pm ± Ξ 2 5% 0.18 Ξ \pm 71. Lu 0.2 Ξ ± ± 50% 72. Hf 10 0.4 ± Ξ Ŧ ± 73. Ta 25. Mm 0.08 10% na. ± ± Ξ 74. W 26. Fe 2.14 5% Ξ Ŧ ± ± 27. Co 75. Re 19 ± \pm ± ± 28. Ni 76. Os \pm \pm ± ± 29. Cu 38 77. Ir \pm Ŧ ± ± 78. Pt 0.6 30. Zn 120 Ξ \pm ± Ŧ 79. Au 31. Ga Ξ Ŧ ± Ŧ 80. Hg 32. Ge ± ± \pm \pm ± 81. Tl 33. As 0.1 Ŧ Ŧ Ξ 82. Pb 34. Se 0.4

J/ -									
37. Rb		±	4	±	84. Po		±		±
38. Sr		±	400	±	85. At		±		±
39. Y		±	53	±	86. Rn		±		±
40. Zr		<u> </u>	50	±	87. Fr		±		±
41. Nb		Ŧ	1	±	88. Ra		±		±
42. Mo		±		±	89. Ac		±		±
43. Te		<u>+</u>		±	90. Th		±	0.5	±
44. Ru		±	1.5	±	91. Pa		±		±
45. Rh	na	±		±	92. U		±	0.3	±
46. Pd	110	±	0.1	±	93. Np		±		±
47. Ag		±	0.1	±	94. Pu		±		±
48. C d		±	< 0.0		95. Am		±		±
49. In		±	< 0.0		96. Cm		±		±
*CO _	13.3	± 5%		±	Free H ₀ O	4.10	± 5%		±
*CO Fe ⁺² /Fe ⁺³	0.95	± 5%		±	Bound H ₂ 0	2.46	± 5%		±
10 /10	<u> </u>				20014 1190				

83. Bi

 \pm

0.5

Method	of	Analysis:
--------	----	-----------

*CO from carbonate

Ξ

			
Anal	ytical :	Lab.	
Lab.	Sample	No.	
	Da	ate:	
		_	

Signed:

±

±

RL-3635

35. Br

^{**} Expressed as a percent of the concentration na - not analyzed

Fresh to slightly Material weathered diabase

17-CH-11 86.1-89.0'

LRL Sample No. 1M1411

1. H na
$_{\text{Fe}}^{+2/5}$ $_{1.82}^{-2+3}$ $_{1.82}^{-3\%}$ $_{\pm}^{-5\%}$ $_{\pm}^{-5\%}$

ANALYTICAL REPORT
Porphyritic amygdaloidal altered
Material and slightly weathered basalt

LRL Sample No. 1 M 1419

496.5-499.0' 17-CH-11

ANALYTICAL REPORT
Altered and weathered
porphyritic bessel Material porphyritic basalt

LRL Sample No. 1 M 1113

17-CH-11 901.8-903.2'

Z	Weight %	Weight PPM	Z	Weight %	Weight PPM
1. H	na ± **	±	50. Sn	±	0.3 ±
2. He	na ±	±	51. Sb	<u>±</u>	0.3 ± ± ± ± ±
3. Li	<u>±</u>	<u>± 10%</u>	52. Te		
4. Be	na ±	± ± 0,0	53. I	<u>±</u>	<u>±</u>
5. B	<u>±</u>	5 ±	55. Cs	± ± ±	± ±
6. c			56. Ba		35 ±
7. N	1		57. La		$\frac{-25}{9} = \frac{-}{\pm}$
8. 0	1	±	56. Ce	- ±	- - ±
			50. UE		20 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
9. F			59. Pr	± ± ± ±	5 ± +
ll. Na	2.0 ± 5% 3.08 ± 2% 9.75 ± 2% 21.58 ± 2%	± ±	60. Nd	+	20 ±
12. Mg	0.75 + 2%	± ±	61. Pm	 -	
13. Al	9.75 ± 2%		62. Sm		10 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
14. Si	21.58 ± 2%		63. Eu		2 ±
15. P	0.051 ± 5%	±	64. Gd		6 ±
16. S	0.051 ± 5% 0.022 ± 5% ± 5%	±	65. To	<u> </u>	
17. Cl		±	66. Dy	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	5 ±
19. K	0.11 ± 5% 5.92 ± 5%	± ±	67. Ho	±	3 ±
20. Ca	5.92 ± 5% na ±	± ±	68. Er	±	4 ± ±
21. Sc	na ±	±	69. Tm	na ±	±
22. Ti	0.74 ± 5% ±	±	70. Yb	±	3 ± ± ±
23. V	+	350 ±	71. Lu	<u>±</u>	1 ±
24. Cr	+	< 10 ±	72. Hf	±	±
25. Mn	0.10 ± 10%	±	73. Ta	na±	±
26. Fe	6.98 ± 5%	±	74. W	±	<u>±</u>
27. Co	6.98 ± 5% ± ±	20 ±	75. Re	na ± ± ± ± ±	<u>+</u>
28. Ni	·-	30 ±	76. Os		<u>±</u>
	± ±	65 ±		<u>+</u>	
29. Cu	± ±		77. Ir		<u> </u>
30. Zn		75 ±	78. Pt	+	±
31. Ga		± ±	79. Au		
32. Ge			80. Hg		± ±
33. As	±	0.6 ±	81. Tl	± ± ± ± ± ± ± ± ± ± ± ±	
34. Se	<u>±</u>	0.8 ±	82. Pb		1 ± ± ±
35. Br	±	<u> </u>	83. Bi	<u> </u>	<u> </u>
37. Rb	± ±	0.6 ±	84. Po	<u> </u>	±
38. Sr			85. At		<u>±</u>
39. Y	<u>+</u>	35 ±	86. Rn	±	±
40. Zr	±	60 ±	87. Fr	± ±	±
41. No	±	0.5 ± ±	88. Ra	±	±
42. Mo	+		89. Ac	±	±
43. Te	±	<u>±</u>	90. Th	± ±	±
44. Ru	<u>+</u>	15 ±	91. Pa	±	±
45. Rh	na ±	±	92. U	± ±	±
46. Pd	+	<u>+</u>	93. Np	<u>+</u>	±
47. Ag	±	<u>+</u>	94. Pu	<u>+</u>	<u>+</u>
47. Ag 48. Cd	<u>±</u>	±	95. Am	<u>±</u>	<u>±</u>
		0.3 ±	96. Cm	±	±
49. In			90.011		<u>±</u>
*CO ₂₊₃	0.39 ± 5%			<u>±</u>	$\frac{\overline{\pm}}{\pm}$
Fe ⁺² /Fe	0.87 ± 5%				
	of Analysis:			Analytical Lab.	
	rom carbonate			Lab. Sample No.	
		nt of the concent	ration	Date:	
177.13	representation of heree.	TO OF OTHE COHCERT	" O T O TI		
	ot analyzed			Signed:	

Material Fresh altered tuff

LRL Sample No. 1 M 1475

925.8-928.71 17-CH-11 Z Weight PPM Z Weight % Weight PPM Weight % * * ± 0.05 ± 1. H 50. Sn ± ± ± 2. He 51. Sb na $\overline{\pm}$ \pm \pm ± 10% 52. Te 3. Li 9 \pm \pm \pm Ŧ 4. Be 0.5 53. I <u>+</u> \pm \pm 0.1 20 50% 5. B 55. Cs Ξ + + ± 50% 6. c 200 56. Ba na ± + Ŧ \pm 5 7. N 57. La na Ξ Ŧ ± \pm 8.0 20 na 58. Ce ± ± \pm \pm 59. Pr 4 9. F na Ŧ \pm \pm ± 5% 2% 15 ll. Na 1.8 60. Nd ± \pm ± \pm 12. Mg 61. Pm 1.68 Ŧ \pm ± \pm 62. Sm 13. Al 5 7.30 2% ± ± ± \pm 63. Eu 2% 14. Si 26.65 ± \pm ± 5% 5% Ξ 15. P 64. Gd 6 0.038 ± \pm 65. Tb 0.5 16. S 0.019 ± ± ± ± 66. Dy 4 17. Cl na \pm Ŧ ± Ŧ 1 19. K 5% 67. Ho 0.47 <u>+</u> Ŧ \pm 68. Er 2% 4 20. Ca 5.13 Ξ \pm ± \pm 21. Sc 69. Tm na 25 50% \pm ± \pm ± 22. Ti 5% 70. Yb 3 0.91 ± ± \pm \pm Ŧ 23. V 71. Lu 250 50% 0.4 Ŧ Ξ \pm 24. Cr 50% 72. Hf 2 20 \pm ± \pm ± 20% 73. Ta 25. Mn 0.06 na Ξ \equiv ± Ŧ 74. W 26. Fe 5% 6.20 ± \pm Ξ Ξ 27. Co 75. Re na \pm \pm ± \pm 76. Os 28. Ni 15 50% ± ± \pm ± 77. Ir 50% 29. Cu 120 ± ± \pm Ξ 78. Pt 50% 30. Zn 40 ± ± ± + 79. Au 20 50% 31. Ga \pm \pm \pm ± 80. Hg 32. Ge na ± ± \pm Ξ 33. As 2 81. Tl Ξ + ± <u>+</u> 0. 82. Pb 34. Se \pm \pm Ξ \pm 83. Bi 6 35. Br \pm ± + \pm 2 84. Po 37. Rb Ξ ± <u>+</u> ± 75 50% 85. At 38. Sr \pm ± \pm 50% Ξ 16 86. Rn 39. Y ± \pm \pm \pm 150 50% 87. Fr 40. Zr Ξ ± Ξ \pm 88. Ra 0.5 41. No ± ± ± \pm 89. Ac 1 42. Mo ± + ± ± 90. Th 43. Tc Ξ ± ± \pm 91. Pa 7 44. Ru Ξ Ξ \pm \pm 92. U 45. Rh na Ξ ± \pm \pm 93. Np 46. Pd Ξ ± ± \pm 94. Pu 0.1 47. Ag Ŧ ± \pm ± 95. Am 48. Cd \pm ± ± 96. Cm 49. In \pm Ŧ \pm \pm *CO +2/Fe 5% 0.24

0.74 Method of Analysis:

* CO from carbonate

na - not analyzed

Analytical Lab. Lab. Sample No. Date:

Signed:

RL-3635

Ξ

^{**} Expressed as a percent of the concentration

Material Fresh tuffaceous sandstone 17-CH-12 and 118.4-119.1' 120.2-120.8'

LRL Sample No. 1 M 1262

Fresh tuffaceous Material siltstone

LRL Sample No. 1 M 1281

17-CH-12 179.8-182.3'

Material Agglomerate 17-CH-12 288.2 - 289.0'

LRL Sample No. 1M 1073

Agglomerate with tuffaceous matrix

17-CH-12 385.6-387.1'

LRL Sample No. 1 M 1328

Z	Weig	ht %	Weight PPM	Z	Weight %	Weight PPM
1. H	ne	± **	±	50. Sn	±	< 0.05 ±
	na	±	<u>+</u>		±	< 0.05 ± 0.2 ±
	na	± ±		51. Sb	<u>±</u>	0.2 =
3. Li			14 ±10%	52. Te		0.1 ± ±
4. Be	na	±	<u> </u>	53. I	±	
5. B		±	5±	55. Cs	±	0.3 ± 32 ±
6. c	na	±	±	56. Ba	±	32 ±
7. N	na	±	5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	57. La	±	2 ±
8.0	na	±		58. C e	±	5 ±
9. F		±			<u>±</u>	0.8 ± 4.5 ±
	na				±	<u> </u>
	1.0	± 5% ± 2% ± 2%		60. Nd		4.5 ± ±
12. M g	3.04	± 2%		61. Pm	± ±	
13. Al	10.11	270	<u> </u>	62. Sm	<u> </u>	3 ±
14. Si	21.90	± 2%	±	63. Eu	<u>±</u>	0.5 ± 2 ±
15. P	0.003	±_50%	±	64. G d	<u>±</u>	2 ±
16. S	0.006			65. Tb	± ±	0 ±
17. C1		± 10% ± ± 5%	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	66. Dy		
17. UI	na 0.000	+ = =		(7 Tr	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
19. K	0.082		<u> </u>	67. Ho	<u> </u>	0.5 1.5 ± ±
20. Ca	8.10	± 2%	<u></u>	68. Er		1.5 ±
21. Sc	na	±	±	69. Tm	na ±	<u>±</u>
22. Ti	0.59	± 5% ±	<u>±</u>	70. Yb	±	2 ± 0.2 ±
23. V		±	155 ±	71. Lu	±	0.2 ±
24. Cr		±	90 ±50%	72. Hf	土	1 ±
25. M n	0.08	± 10%				±
				, ,	na ±	
26. Fe	7.18	± 5% ± ±		74. W	na ±	0.7 ± ±
27. C o				75. Re		
28. Ni		<u> </u>	16 ±	76. Os		<u>±</u>
29. C u		±	25 ±	77. Ir	±	±
30. Zn		± ±	75 ± ±	78. Pt	<u>±</u>	±
31. Ga	na	±	±	79. Au	±	±
32. Ge	na	<u>±</u>	±	80. Hg	<u>±</u>	
	IIa	±	0.2 ±	81. Tl	<u>±</u>	±
33. As		<u>±</u>			<u>+</u>	
34. S e				82. Pb	 +	1 ± ± ±
35. Br		± ±		83. Bi		
37. Rb		±	0.1 ±	84. Po	±	<u> </u>
38. S r		±	90 ±	85. At	<u>±</u>	<u>±</u>
39. Y		±	10 ±	86. Rn	±	±
40. Zr		±	12 ±	87. Fr	<u>±</u>	<u>±</u>
41. Nb		Ŧ	0.5 ±	88. Ra	±	Ŧ
42. Mo		± ± ± ±	1 ±	89. Ac	<u>+</u>	±
45. MO		-		09. 50		
43. Tc		_		90. Th		<u>±</u>
44. Ru		± ± ± ±	$\frac{7}{\pm}$	91. Pa		<u>±</u>
45. Rh	na	<u> </u>		92. U	± ±	
46. Pd		<u> </u>	< 0.05 ±	93. Np	<u> </u>	±
47. Ag		±	< 0.05 ± ±	94. Pu	±	±
48. C d		±	±	95. Am	<u>±</u>	± ±
49. In		±	0.1 ±	96. Cm	<u>±</u>	±
	0.16	± 5%		<i>7</i> 0.	<u>±</u>	±
Fe+2CO2+3	0.16 0.37_	± 5%	± ±		± ±	<u>±</u>
•	of Analys	ic.			Analytical Lab.	
*CO f	com carbo	nate			Lab. Sample No.	
			of the same	+ + a m		
V.V.TT	:CBU BG 9	percent	of the concentra	PLOU	Date:	
	analyze				-	

MaterialFresh tuffaceous sandstone

LRL Sample No. 123

Z	Weight %	Weight PPM	Z	Weight %	Weight P
1. H	na ± *	Ξ	50. Sn	±	< 0.05 ±
2. He	na ±	<u>±</u>	51. Sb	± ±	±
3. Li	±	17 ± 10%	52. Te	<u>±</u>	
4. Be	na ±	17 ± 10%	53. I		<u>_</u>
5. B	±	25 ± 50%	55. Cs	±	
6. c		25 ± 50% ±	55. Ba	±	0.5 ± 190 ±
			56. Ba		11 ±
7. N		- - ±	57. La	± ±	
8. 0			58. C e	± ±	
9. F			59. Pr		3 ± 10 ± ±
ll. Na	3.1 ±5%	± ±	60. Nd	+	
12. Mg	2.15 ±2%	±	61. Pm	<u>±</u>	
13. Al	10.20 ±2%	± ±	62. Sm	±	$\frac{4}{0.5}$ $\frac{\pm}{\pm}$
14. Si	24.61 ±2%	<u>±</u>	63. Eu	<u>±</u>	0.5 ±
15. P	0.032 ±5%	<u>±</u>	64. Gd	±	2 ±
16. S	0.079 ±5%	± ±	65. To	<u>±</u>	0.3 ± ±
17. Cl	0.079 ±5% na ±		66. Dy		2 ±
19. K	0.69 ±5%	<u>±</u>	67. Ho	<u>±</u>	0.3 ±
20. Ca	4.99 ±2%	+	68. Er	<u> </u>	1 ±
		±	60. III		
21. Sc			69. Tm	$\frac{\text{na}}{\pm}$	
22. Ti	0.56 ±5% ±	170 ±	70. Yb	± ±	$\frac{0.8}{< 0.05} \pm \frac{\pm}{\pm}$
23. V			71. Lu		$\leq 0.05 \pm $
24. Cr	±	60 ± 50%	72. Hf	±	2 ± ±
25. Mn	0.05 ±20%	, <u> </u>	73. Ta	na ±	. <u> </u>
26. Fe	5.37 ± 5%	± ±	74. W	±	±
27. Co	± ±	9 ±	75. Re	na ±	± ±
28. Ni		$\frac{9}{8}$ $\frac{\pm}{\pm}$	76. Os	±	±
29. Cu	±	50 ±	77. Ir	<u>±</u>	± ±
30. Zn		22 ±	78. Pt	<u>+</u>	
31. Ga	na ± ±	±	79. Au	±	± ± ±
32. Ge	na ±	<u>±</u>	80. Hg	±	· <u>+</u>
	na ± ± ±	0.2 ±	81. Tl	<u>±</u>	±
		0.3 ±	82. Pb	±	
34. Se		0.6 ±	02. 10	±	0.9 ± ±
35. Br	<u> </u>		83. Bi		± ±
37. Rb	± ±		84. Po	±	. ——— —
38. Sr			85. At	± ±	± ± ± ± ±
39. Y	± ±	17 ±	86. Rn		· — <u> </u>
40. Zr	<u> </u>	32 ±	87. Fr	± ±	± ±
41. Nb	±	0.2 ±	88. Ra	±	-
42. Mo	<u>±</u>	<u>±</u>	89. Ac	±	<u> </u>
43. Tc	± ± ± ± ± ±	<u>±</u>	90. Th	± ±	0.5 ± ±
44. Ru	±	2 ± ±	91. Pa	±	±
45. Rh		± ±	92. U	±	0.2 ±
46. Pd		< 0.05 ± < 0.05 ±	93. Np	±	
47. Ag	± ± ± ±	< 0.05 ±	94. Pu	<u>±</u>	·
47. Ag 48. Cd		- \ \ \frac{-0.00}{\pm} \ \frac{-}{\pm}	95. Am	±	<u> </u>
1. O T			96. Cm	±	<u>+</u>
49. III			90. Om		
*CO ₂₊₃ Fe ⁺² /Fe	0.20 ± 5%	- - ±			· ±
Fe^{+2}/Fe^{2+3}	0.31 ± 5%	<u> </u>			

Sample N Dat	
Signe	• 5.4

^{*} CO, from carbonate

** Expressed as a percent of the concentration
na - not analyzed

Fresh Tuffaceous

Material Limestone

LRL Sample No. 1M 1248

17-CH-13 208.2 - 209.8'

Z	Weigh	nt %	Weigh	t PPM	Z	Weight	, %	Weigh	nt PPM
1. H	na	± **		± .	50. S n		±	<0.05	±
2. He	na	<u>+</u>		±	51. Sb		±	<0.05	± .
3. Li		±	17	± 10%	52. Te		±		±
4. Be	na	<u>+</u>		± /	53. I		±	0.4	±
5. B		±	15	± 50%	55. Cs		±	0.5	±
6. C	na	<u>±</u>		± 00/0	56. Ba		±	2300	±
	na	±		-	57. La		±	21	±
7. N 8. o		±		±			<u>+</u>	29	±
	na	± ±		±	58. C e 59. Pr		-	4	±
9. F	na l			±			<u>+</u>	9	±
11. Na	1.4			±	60. Nd		± ±		±
12. Mg	1.03			±	61. Pm		<u>±</u>		±
13. Al	4.33	± 2%			62. Sm		±		±
14. Si	18.85	± 2%		±	63. Eu			1	± ±
15. P	0.010	± 10%		±	64. Gd		±	4	±
16. S	0.19	± 5%		±	65. To		± ± ±	1	
17. Cl	na			±	66. Dy		<u> </u>	4	±
19. K	0.93	± 5%		±	67. Ho			0.6	±
20. Ca	15.75	± 2%		±	68. Er		<u>+</u>	2 ·	±
21. Sc	na	±		±	69. Tm	na	± ±		±
22. Ti	0.51	± 5%		±	70. Yb		±	2	±
23. V		±	192	±	71. Lu		±	0.3	±
24. C r		±	20	± 50%	72. Hf		±	1.5	±
25. M n	0.02	± 20%		±	73. Ta	na	± ±	-	±
26. Fe	2.52	± 5%		±	74. W			0.5	±
27. Co		± 5%	58	±	75. Re	na.	±		±
28. Ni		±	21	±	76. Os		±		±
29. Cu		±	96	±	77. Ir		± ±		±
30. Zn		±	105	±	78. Pt				±
		±		_	79. Au		±		±
31. Ga	<u>na</u>	±		<u>±</u>	80. Hg		±		±
32. Ge	na	<u>+</u> +	0 65	±	81. Tl		<u>+</u>		±
33. As		±	0.65	+	00 Dh		±	7.5	±
34. Se		± ±	< 0.05	± ±	82. Pb		± ± ±	1.7	± ±
35. Br		± ±		± ±	83. Bi		±		±
37. Rb			6		84. Po				±
38. S r		±	1900	± ±	85. At		± ±		±
39. Y		±	42	± ±	86. Rn				±
40. Zr		Ŧ	62		87. Fr		+		±
41. Nb		±	3	± ±	88. Ra		-		±
42. Mo		±		± +	89. Ac		± ± ±	0.5	±
43. Tc		±			90. Th			0.5	±
44. Ru		<u>+</u>	4	±	91. Pa		± ±	0.0	
45. Rh	na	±		±	92. U		<u> </u>	0.8	± ±
46. Pd		±	0.2	± ±	93. <u>N</u> p		± ±		
47. Ag		±			94. Pu		<u> </u>		±
48. C d		±	< 0.05	±	95. Am		±		±
49. In		±	< 0.05	±	96. Cm		±		±
*CO2	14.6	± 5%		±	-		±		±
Fe+2/Fe+		± 5%		±			±		±
						Angiretic	1 Tob		
	of Analys			,		Analytica			
	from carb					Lab. Samp			
	or hornes	a nerce	nt of the	concent	ration		Date:		
** Exp	ot analyz		110 01 0110	001100110	100101				

Moderately weathered

Moderately weathered

calcareous shale

17-CH-13 321'

LRL Sample No. 222/64

Z	Weight %	Weight PPM	Z	Weight %	Weight 1
1. H	na ±	± ±	50. Sn	± :	0.05 ±
2. He	na ±	±	51. Sb	±	0.05 ±
3. Li	±	96 ± 5% ±	52. Te	<u>±</u>	
4. Be	na ±		53. I	± ± ±	10 ±
5. B	±	50 ± 50%	55. Cs	±	2 ±
6. c	na ±	±	56. Ba	<u>±</u>	520 ±
7. N		<u>±</u>	57. La	±	$\frac{8}{13}$ \pm
8.0		<u>±</u>	58. Ce		13 ±
		<u>+</u>	_		2 ±
9. F	1101			+	$\frac{2}{8}$ \pm
ll. Na	1.	<u>±</u>	60. Nd	± ± ± ± ±	
12. Mg	1.81 ± 2%		61. Pm		
13. Al	8.74 ± 2%	± ±	62. Sm		$\frac{3}{0.5}$ \pm
14. Si	22.60 ± 2%	± ±	63. Eu	I	
15. P	0.061 ± 5%	± ±	64. Gd		1 ±
16. S	1.46 ± 5%	±	65. Tb	±	0.3 ±
17. Cl	na ±	<u>+</u>	66. Dy	±	2 ±
19. K	1.4 ± 5%	±	67. Ho	± ±	0.2 ±
20. Ca	1.4 ± 5% 4.52 ± 2%	<u>+</u>	68. Er		ı ±
20. Sc		<u>±</u>	69. Tm	**************************************	
	1100	±	70. Yb	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
22. Ti	0.75 ± 5% ±			+	
23. V	± ±		71. Lu		<u>±</u>
24. Cr		100 ± 50%	72. Hf		
25. Mm	0.05 ± 20%	<u>±</u>	73. Ta	na <u>-</u>	
26. Fe	5.56 ± 5%	±	74. W	<u>_</u>	<u> </u>
27. Co	±	12 ±	75. Re		<u> </u>
28. Ni	±	75 ±	76. Os	±	0.5 ±
29. Cu	±	60 ±	77. Ir	±	<u>±</u>
30. Zn	±	60 ±	78. Pt		<u>±</u>
31. Ga	na ±	<u>±</u>	79. Au	<u>±</u>	
32. Ge	na ±	±	80. Hg	±	
33. As	± ±	2 ±	81. Tl	±	<u> </u>
34. S e		2 ± ± ±	82. Pb	Ŧ	${2}$
	±	20 ±	83. Bi	±	<u> </u>
35. Br		8 ±	84. Po	+	<u>±</u>
37. Rb			85. At	± ±	<u>_</u>
38. Sr		260 ± 20 ±	86. Rn	±	<u>_</u>
39. Y				+	<u> </u>
40. Zr			87. Fr		
41. Nb	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	5 ± ± ±	88. Ra	± ± ±	
42. Mo		_	89. Ac		
43. Tc	± ±	+	90. Th	± ± ±	$\frac{2}{\pm}$
44. Ru		2: ±	91. Pa	<u>I</u>	
45. Rh	na ±	±	92. U	± ±	1 ±
46. Pd	±	±	93. Np	± .	<u>+</u>
47. Ag	± ±	0.2 ±	94. Pu	<u>+</u>	<u> </u>
48. Cd	<u>±</u>		95. Am	±	
49. In	<u>±</u>	<u>±</u>	96. Cm	<u>±</u>	
*CO2		<u></u>)O	<u>_</u>	<u> </u>
Fe ⁺ / _{Fe} +3	5.90 ± 5% 1.58 ± 5%			<u>±</u>	<u>_</u>
re \re	<u> </u>				
Method	of Analysis:			Analytical Lab.	
	rom carbonate			Lab. Sample No.	4.
** Exn	ressed as a nerce	ent of the concen	tration	Date:	

ANALYTICAL REPORT

LRL Sample No. 112 Material Fresh shale 781' 17-CH-13 Z Weight % Weight PPM Weight PPM Z Weight % ± *X 50. Sn 1. H 0.05_ \pm ± 51. Sb 0.5 2. He na \pm ± \pm 52. Te \pm 5% 3. Li 94 ± 50% \pm \pm Ŧ 30 53. I 4. Be 0.5 Ξ ± 50% ± Ŧ 55. Cs 5. B 80 ± 50% \pm \pm \pm 56. Ba 6. c 400 \pm Ŧ ± Ŧ 57. La 7. N ± Ξ Ξ 8.0 Ξ 58. **C**e 21 \pm \pm \pm \pm 59. Pr 9. F \pm Ξ Ξ ± 60. Nd ll. Na + 2% Ξ 61. Pm Ŧ 12. Mg 1.96 \pm ± Ξ 2% 62. Sm 8.74 13. Al Ŧ 2% ± 63. Eu ± 0.4 21.84 14. Si \pm <u>+</u> Ξ 5% 15. P 64. Gd 0.078 ± Ŧ Ξ 65. To 0. 16. S 1.83 5% Ξ Ξ ± 66. Dy 17. Cl na ± Ξ Ξ 5% 67. Ho 0.3 19. K ± ± Ŧ \pm 68. Er 20. Ca 2% 1 ± 50% ± \pm Ξ 69. Tm 21. Sc 20 na Ŧ \pm ± ± 70. Yb 1.5 5% 22. Ti 0.73 ± 50% ± \pm ± 100 71. Lu 0.2 23. V ± 50% Ξ \pm ± 24. Cr 100 72. Hf ± 10% \pm \pm 73. Ta 25. Mm 0.08 na \pm ± 74. W 26. Fe 5.48 \pm ± ± 50 75. Re 27. Co na ± 50% Ξ \pm \pm 28. Ni 50 76. Os ± 50% \pm ± Ξ 29. Cu 100 77. Ir ± 50% Ξ \pm ± 78. Pt 40 30. Zn \pm Ŧ ± 50% ± 10 79. Au 31. Ga ± ± Ŧ <u>+</u> 32. Ge 80. Hg Ξ Ŧ Ξ \pm 81. Tl 33. As 0.3 11 Ξ ± Ξ 82. Pb 34. Se ± Ŧ \pm \pm 83. Bi 65 35. Br \pm ± Ŧ 84. Po \pm 19 37. Rb \pm ± 50% Ξ Ξ 250 85. At 38. Sr Ŧ Ŧ ± 50% Ξ 8 86. Rn 39. Y ± ± 50% \pm Ξ 100 87. Fr 40. Zr Ŧ \pm Ξ \pm 88. Ra 41. Nb 4 \pm \pm ± ± 89. Ac 4 42. Mo Ξ \pm Ŧ ± 90. Th 43. Tc \pm ± ± Ξ 91. Pa < 0.05 44. Ru Ŧ Ξ \pm ± 92. U 45. Rh \pm \pm ± \pm 46. Pd < 0.05 93. Np Ξ \pm ± Ξ 94. Pu 47. Ag 0.1 \pm \pm Ξ 95. Am 48. Cd < 0.05 Ŧ + \pm ± 96. Cm 49. In < 0.05 ± \pm ± Fe^{*CO}2+3 4.99 5% Free H₀0 16.96 Bound H 0 ± 5% 4.84 1.27 Analytical Lab. Method of Analysis: *CO from carbonate
** Expressed as a percent of the concentration Lab. Sample No. Date: na - not analyzed

RL-3635

Signed:

ANALYTICAL REPORT

Slightly weathered Material lapelli tuff

LRL Sample No. 1 M 1144

Z	Weight %	Weight PPM	Z	Weight %	Weight PF
1. H	ne ± **	±	50. Sn	<u>±</u>	0.1 ±
2. He		<u>±</u>	51. Sb	±	< 0.05 ±
	na ± ±		21. DD	±	< 0.05 ± ±
3. Li	<u>-</u>	17 ± 10%	52. Te		
4. Be	na ± na ± na ± na ± na ± na ± na ±	Ξ	53. I	-	
5.B	<u> </u>		55. Cs	±	0.5 ±
6. c	na ±	±	56 . Ba	<u>±</u>	
7. N	na ±	±	57. La	± ±	20 ±
8.0	70 ±	<u>±</u>	58. C e	±	45 ±
9. F	na ±	<u>±</u>	59. Pr	±	5 ±
	11/4		79. 11	± ± ±	
ll. Na		± ±	60. Nd		20 ±
12. Mg	3.66 ± 2%		61. Pm	± ± ± ±	
13. Al	8.23 ± 2% 24.33 ± 2%	± ± ±	62. Sm	<u>T</u>	
14. Si	24.33 ± 2%		63. Eu		0.7 ±
15. P	0.082 ± 5%	±	64. Gd	<u>±</u>	3 ±
16. S	0.019 ± 5%	<u>±</u>	65. To	<u>±</u>	0.5 ±
17. C1		<u> </u>	66. Dy	± ±	0.5 ± ± ±
	110	<u>±</u>	00. Dy	+	
19. K			67. Ho	± ±	0.5 ±
20. Ca	6.00 ± 2%		68. Er		0.5 ± 1.5 ±
21. Sc	na ±	<u>±</u>	69. Tm	na ±	I
22. T i	0.76 ± 5% ± ±	± ± ±	70. Yb	±	$\frac{1}{0.2}$ $\frac{\pm}{\pm}$
23. V	± ±		71. Lu	<u>±</u>	0.2 ±
24. Cr	±		72. Hf	±	o e ±
25. M n			73. Ta		
	0.10 ±10%	±		<u>na</u> ±	
26. Fe	6.02 ± 5% ± ± ± ±				3 ± ±
27. Co			75. Re	<u>na</u> ±	<u>±</u>
28. Ni	<u> </u>	20 ±	76. Os	Ξ	
29. C u		100 ±	77. Ir	±	±
30. Zn	±		78. Pt	±	±
31. Ga	$\frac{\text{na}}{\text{na}}$ $\frac{\pm}{\pm}$	± ±	79. Au	±	<u>±</u>
32. Ge	na ±	<u>±</u>	80. Hg	±	<u>±</u>
33. As	± ±	0.2 ±	81. Tl	<u>±</u>	0.05 ±
			82. Pb	<u>±</u>	2 ±
34. S e			02.10	<u>±</u>	
35. Br	± ±		83. Bi	<u>±</u>	
37. Rb			84. Po		± ±
38. Sr	± ±	770 ±	85. At	±	
39. Y	±	35 ±	86 . Rn	±	<u>±</u>
40. Zr	± ±	100 ±	87. Fr	±	<u>+</u>
41. Nb	± ±	0.2 ±	88. Ra	± ±	<u>±</u>
42. Mo		0.8 ±	89. Ac	±	±
	± ± ±		00 177	±	2 ±
43. To	<u>+</u>	<u>+</u>	90. Th		
44. Ru			91. Pa	<u>+</u>	0.7 ±
45. Rh	na ±	±	92. U		<u> </u>
46. Pd	± ±	0.05 ± < 0.05 ±	93. Np	±	<u>±</u>
47. Ag	±		94. Pu	±	±
48. C d		< 0.05 ±	95. Am	±	±
49. In	<u>±</u>	0.5 ±	96. Cm	±	±
			<i>7</i> 0.	±	
+2 ^{CO} 2+3				<u>±</u>	
Fe'-/Fe'	0.40 ± 5%				
Method	of Analysis:			Analytical Lab.	
	rom carbonate			Lab. Sample No.	
_	ressed as a perce	nt of the concert	ration	Date:	
<u> </u>	resseu as a perce	no or one concent	παυτυμ	Dave:	

Material Fresh tuff

LRL Sample No. 1 M 1117

17-CH 14 576.5-578.2'

1. H na ± *** ± 50. Sn ± 0.05 ± 1. Sh ± 0.05 ± 1. Sh ± 0.05 ± 1. Sh ± 0.05 ± 1. Sh ± 0.05 ± 1. Sh Be na ± ± 53. I ± 0.05 ± 1. Sh Be na ± ± 53. I ± 0.05 ± 0.	Z	Weight %	Weight PPM	Z	Weight %	Weight PPM
Method of Analysis: *CO ₂ from carbonate *Expressed as a percent of the concentration Analytical Lab. Lab. Sample No. Date:	2. He 3. Li Be 5. No Fa Al Li Li Li Li Li Li Li Li Li Li Li Li Li	na	# # # # # # # # # # # # # # # # # # #	51. She is a Lee Frd mm udd to Dyo Frm buff a Wess Frd Black Frach a Upum Black Frach Auffall Philotherm Paul Philotherm	######################################	<pre> < 0.05</pre>
** Expressed as a percent of the concentration Date:	Method	of Analysis:				
na - not analyzed Signed:	** Expre	essed as a percen	t of the concentr	ation	Date:	

Interbedded tuffaceous

	17-CH-14	601.4-603.91			
			7	77-3-2-4 d	II-3-b+ DDM
Z	Weight %	Weight PPM	Z	Weight %	Weight PPM
1. H	na ± **	±	50. Sn	±	0.2 ±
2. He	na ±	<u>+</u>	51. Sb	± ± ±	0.1 ±
3. Li	<u>±</u>	12 ± 10%	52. Te	<u>±</u>	
4. Be		$\frac{12}{\pm} \frac{10\%}{\pm}$	53. I		±
5. B	na ±		23. ±	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
6. c		5 ± ±	55. Cs	-	0.6 ± 1300 ± ±
		± ±	56. Ba	-	1300 ±
7. N		± ±	57. La		
8. 0	na ±		58. Ce		
9. F	na ±	<u>+</u>	59. Pr	<u> </u>	8 ± 40 ± ±
ll. Na	1.8 ± 5%	±	60. Nd	<u> </u>	40 ±
12. Mg	2.34 ± 2%	±	61. Pm	<u> </u>	
13. Al	1.8 ± 5% 2.34 ± 2% 8.48 ± 2% 24.60 ± 2% 0.116 ± 5% 0.048 ± 5%	± ±	62. Sm		10 ±
14. Si	24.60 ± 2%	<u>±</u>	63. Eu	±	1.5 ± ± ± 0.9 ±
15. P	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	±	64. Gd	± ±	8 ±
16. S	$0.048 \pm 5\%$	<u>+</u>	65. Tb	±	0.9 ±
17. Cl	na ±	±	66. Dy	±	
19. K			67. Ho	<u>±</u>	0.9 ±
20. Ca	2.0 ± 5% 5.02 ± 2%	± = =	68. Er		4 ±
21. Sc	$\frac{\sqrt{52}}{\text{na}} = \frac{2\pi}{\pm}$		69. Tm		4 ± ±
22. Ti	0.96 ± 5%	<u>±</u>	70 Vh	<u>na</u> ±	4 ±
		500 ±	70. Yb	-	2 ±
23. V	± ±		71. Lu		
24. Cr		20 ± 50%	72. Hf	-	5 ± ±
25. Mn	0.06 ± 20% 5.35 ± 5%	± ±	73. Ta	na ± ±	± ±
26. Fe	5.35 ± 5%		74. W		
27. Co	±	60 ±	75. Re	na ± ±	±
28. Ni	±	40 ±	76. Os	±	±
29. Cu	±	220 ±	77. Ir	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	±
30. Zn	±	240 ±	78. Pt	±	± ±
31. Ga	na ±	± ±	79. Au	±	±
32. Ge	na ±	±	80. Hg	± ·	±
33. As	<u>±</u>	1 ±	81. Tl	<u>±</u>	±
34. Se	<u>+</u>	0.5 ±	82. Pb		3 ±
35. Br	±	0.5 ± ± ±	83. Bi		3 ± ±
37. Rb	<u>±</u>	25 ±	84. Po	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	±
38. Sr		880 ±	85. At		<u>±</u>
39. Y	± ± ±	880 ± ± ±	86. Rn		±
40. Zr			87. Fr		
40. ZI	± ± ±	255 ± ± ±	88. Ra	+	+
41. No		2 ± +	89. Ac	+	
42. Mo		± ±		+	
43. Tc			90. Th		2 =
44. Ru	na ± ±	5 ± ± ±	91. Pa	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	2 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
45. Rh		<u> </u>	92. U	<u>±</u>	0.4 ±
46. Pd	± ±	<u>±</u>	93. Np	<u> </u>	
47. Ag	±	±	94. Pu	<u>±</u>	±
48. Cd	± ± ± ± 5%	±	95. Am	± ± ±	±
-70. Oa		0.2 ± ±	96. Cm		<u>±</u>

49. In *CO₂ Fe⁺²/Fe⁺³ Method of Analysis:
*CO, from carbonate
** Expressed as a percent of the concentration

na - not analyzed

Analytical Lab. Lab. Sample No. Date:

Signed:

1.69 0.28

ANALYTICAL REPORT

\mathbf{z}	Weight %	Weight PPM	Z	Weight %	Weight PP
1. H 2. He 3. Li 4. Be 5. B 6. C 7. 8. O 9. Fa 11. Mg 13. Si 15. S 17. Ca 21. Sci 17. Ca 22. Ti 23. V 24. Cn 25. Fe 27. No 28. Sr 31. Ga 32. Ga 33. Se 33. Se 35. Sr 37. Sh 40. No 41. No 42. No 43. Sh 44. Rhd 45. Pa 46. Agd 47. Agd 47. Agd 48. Sh 46. Aga 47. Aga 48. Sh 49. Fe 49. Ca 41. No 41. No 42. No 44. Rhd 45. Pa 46. Aga 47. Aga 48. Sh 46. Aga 47. Aga 48. Sh 46. Aga 47. Aga 48. Sh 48. Sh	na	# # # 10% 0.5	50. Sn 51. Ste 52. I Csassified to by 65. Base 65. Cr The Stell of the	# # # # # # # # # # # # # # # # # # #	<pre>< 0.05</pre>

Material Fresh Calcareous tuff 17-CH-15 272.5-274.0'

LRL Sample No. 1 M 1461

Z	Weigh	nt %	Weigh	t PPM	Z	Weigh	t %	Weigh	t PI
ע ו	no	± **		±	50. Sn		±		±
1. H	<u>na</u>			± ±			± ±		±
2. He	na	± ±		-	51. Sb		<u>±</u> -		<u>±</u>
3. Li			21	± 5% ±	52. Te		-		
4. Be	na	±			53. I		<u>±</u>	2_	±
5. B		±	50	± 50%	55. Cs		±		±
6. c	na	±		±	56. Ba		± -	650	±
		+		± ±	57. La		± -	6	±
7. N	na	± ± ±		±			+	8	<u>+</u>
8.0	na	±		±	58. Ce		-		±
9. F	na				59. Pr		<u>-</u>	1.5	±
ll. Na	2.2	± 5% ± 2% ± 2%		±	60. Nd		-	7	-
12. Mg	1.44	± 2%		±	61. Pm		<u> </u>		±
13. Al	6.88	± 2%		±	62. Sm		±	2	±
14. Si	20.03	± 2%		<u>±</u>	63. Eu		±	0.4	±
15. P	0.005	± 20%		<u>+</u>	64. Gd		<u>+</u>	1	<u>+</u>
				±	65. Tb		<u>±</u>	0.3	±
16. S	0.51	- 570		Ŧ			+	1	±
17. Cl	na	± 5% ± ± 5%		±			± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	1	±
19. K	1.5				67. Ho		<u>-</u>		±
20. Ca	10.09	± 2%		±	68. Er		<u> </u>	2	-
21. Sc	na	±		±	69. Tm	na	± ±		±
22. Ti	0.48	± 5%		±	70. Yb		±		±
23. V		± 5%	300	<u>±</u>	71. Lu		± .		±
24. Cr		±	90	± 50%	72. Hf		<u>±</u>	2	±
	0.00			± 00 10	73. Ta	ne	± -		±
25. Mn	0.02			-		<u>na</u>	+ .		±
26. Fe	4.83	± 5% ± ±		±			-		±
27. Co		Ξ.			75. Re	na	- -		±
28. Ni			65	±	76. 0 s		± ± ± ±		±
29. C u		±	40	±	77. Ir		<u> </u>		
30. Zn		±	85	<u>+</u>	78. Pt		± ±		±
31. Ga	na	± ±		± ±	79. Au		±		±
32. Ge	na	±		±	80. Hg		± -		±
	1100	<u>+</u>	8	±	81. Tl		± ±		<u>+</u>
33. As		_	9	±	82. Pb		<u>+</u>	1.5	± ±
34. Se		<u>+</u>		± ±	02. IU		+		+
35. Br			8		83. Bi		-		±
37. Rb		<u>+</u>	7	±	84. Po		<u></u>		±
38. Sr		±	820	±	85. At		Ξ .		
39. Y		±	18	±	86. Rn		<u>±</u>		±
40. Zr		±	18	<u>+</u>	87. Fr		<u>±</u>		±
41. Nb		<u> </u>	0.3	±	88. Ra		± ± ± ± ± ±		± ±
42. Mo		±		<u>±</u>	89. Ac		± .		±
		_		±	90. Th		± .		±
43. To		± ±		±	70. III		± .		±
44. Ru					91. Pa		± ·		
45. Rh	na	<u>±</u>		±	92. U			0.8	± ±
46. Pd		±		±	93. Np		± .		<u> </u>
47. Ag		±	0.4	±	94. Pu		±		±
48. C d		±		±	95. Am		<u>+</u>		±
49. In		±		±	96. Cm		±		±
•	0.56			±	,		<u>+</u>		±
+2°/-2+3	9.50			±			±		±
Fe'Z/Fe'	0.51	± 5%							****
Method	of Analy	sis:				Analytic	cal Lab.		
	rom carbo						mple No.		
UU I	TOW COTOR	11000							
** E	ressed as	a nerco	at of the	concert	ration		Date:		

Fresh calcareous

Material tuffaceous sandstone

LRL Sample No. 1 M 1379 416.8-417.81 17-CH-15 418.9-420.21 Weight PPM Weight % Weight % Weight PPM \mathbf{Z} ± \pm 1. H 50. Sn na ± \pm ± 51. Sb 0.05 2. He na ± ± Ŧ ± 3. Li 52. Te Ξ Ξ Ŧ ± 4. Be 53. I na ± 50% \pm Ξ Ŧ 0.3 5. B 50 55. Cs Ξ ± \pm 6. c 56. Ba 450 na ± \pm Ŧ ± 57. La 5 7. N na Ŧ \pm \pm Ŧ 8.0 58. Ce na ± ± \pm ± 59. Pr 9. F 3 na ± 5% ± Ξ Ξ 11. Na 60. Nd 3. 4 ± 2% Ŧ ± ± 61. Pm 12. Mg 1.89 Ŧ Ŧ ± 62. Sm 13. Al 7.82 Ξ ± ± 23.39 63. Eu 0.3 14. Si Ŧ ±20% ± Ξ 15. P 16. S 64. Gd 0.007 Ŧ \pm ± 5% 65. Tb 0.3 0.46 Ŧ ± Ξ 17. Cl 19. K 66. Dy 1.5 na \pm ± 5% Ξ 0.3 0.83 67. Ho Ξ \pm + Ξ 68. Er 0.7 20. Ca 6.15 2% \pm ± ± Ξ 69. Tm 21. Sc na na ± 5% 22. Ti 23. V 24. Cr ± 70. Yb \pm 0.5 0.63 Ŧ \pm ± ± 350 71. Lu <u>+</u> ± 50% ± ± 50 72. Hf 0.8 Ŧ Ŧ ± ±20% 73. Ta 25. Mm 0.07 na ± Ξ \pm ± 5% 74. W 26. Fe 4.92 Ŧ ± Ŧ Ŧ 75. Re 16 27. Co na ± \pm Ŧ ± 34 76. Os 28. Ni Ŧ ± ± ± 77. Ir 29. Cu \pm \pm ± \pm 78. Pt 30. Zn 70 + Ξ \pm ± 31. Ga 79. Au na Ξ Ŧ ± ± 80. Hg 32. Ge \pm \pm ± <u>+</u> 81. Tl 33. As Ξ Ξ ± Ξ 0.3 82. Pb 34. Se \pm \pm Ξ Ŧ 35. Br 83. Bi ± Ŧ Ξ \pm 84. Po 37. Rb 4 \pm ± \pm \pm 38. Sr 640 85. At ± ± \pm 86. Rn 39. Y 14 Ŧ Ξ ± Ξ 40. Zr 22 87. Fr Ξ ± ± \pm 88. Ra 41. Nb 0.05 ± ± \pm 89. Ac 42. Mo ± ± Ξ 90. Th 43. Tc 0.05 <u>+</u> ± ± 91. Pa 44. Ru \pm \pm + 92. U 45. Rh Ξ \pm Ξ 46. Pd 93. Np \pm ± Ŧ ± 94. Pu 47. Ag 0.05 ± \pm ± 95. Am 48. Cd ± ± ± Ξ 49. In 96. Cm 0.05 \pm Ŧ ± \pm Fe⁺²/Fe²/5 4.88 5% ± ± 0.41 Method of Analysis: Analytical Lab * CO2 from carbonate Lab. Sample No. ** Expressed as a percent of the concentration Date: na - not analyzed

RL-3635

Signed:

Z	Weight %	Weight PPM	I Z	Weight %	Weight P
1. H	na ±*	* ±	50. S n	<u>±</u>	0.05 ±
2. He	na ±		_ 51. Sb	<u>±</u>	0.05 ±
3. Li	±			±	±
4. Be	na ±	88 ± 59	53. I	<u>+</u>	1 ±
5. B		60 ± 509	55. Cs	<u>±</u>	1 ±
6. c		$\frac{-}{\pm}$			740 ±
	1	— — <u>-</u>		± ± ±	140 ±
7. N 8. o	1	<u>_</u>			9 ±
		<u>±</u>		± ±	$\frac{-9}{1}$
9. F			59. Pr	<u>±</u>	
ll. Na		<u> </u>	_ 60. Nd		$\frac{2.5}{\pm}$
12. Mg	2.13 ±	2% ± ±	61. Pm		
13. Al	8.74 ±	2%	62. Sm		
14. Si	8.74 ± 25.58 ± 0.008 ±1	2% ±	_ 63. Eu		0.2 ±
15. P	0.008 ±1	0% ±	_ 64. Gd	± ±	±
16. S	1.47 ±	5% ±	65. Tb	<u>±</u>	<u>±</u>
17. Cl	na ±	±	66. Dy	±	±
19. K	1.1 ± ± ± ±	5% ±	67. Ho	± ± ±	<u>±</u>
20. Ca		5% ± ± ± ±	68. Er		±
21. Sc	na ±	土	69. Tm	na ±	±
22. Ti		5% ±		±	0.7 ±
23. V	±	270 ±		±	±
24. C r	<u>±</u>	120 ± 50°	72. Hf	<u>+</u>	±
25. Mn		0% ±	73. Ta	na ±	±
26. Fe		5% ±	_ 74. W	<u>±</u>	±
27. Co	$-5.72 \frac{\pm}{\pm}$		_ 75. Re	1	<u></u>
		6.4 ± ± ± ±		na ±	0.5 ±
28. Ni	<u>±</u>		· '		
29. Cu	±		_ 77. Ir	<u>±</u>	
30. Zn	1			<u>±</u>	
31. Ga			79. Au		- ±
32. Ge	na ± ±	±	_ 80. Hg		
33. As		0.3 ±	81. Tl	±	<u>±</u>
34. Se	±	0.05 ±	82. Pb	±	<u> </u>
35. Br	<u>±</u>		83. Bi	<u> </u>	±
37. Rb	± ±	10 ±	84. Po	<u>+</u>	±
38. Sr		400 ±	85. At	± ±	±
39. Y	±	18 ±	86. Rn	±	<u> </u>
40. Zr	±	120 ±	87. Fr	±	Ŧ
41. Nb	Ŧ	0.8 ± ±	- 88. Ra	± = =	±
42. Mo	<u>±</u>	± ±	89. Ac	<u>±</u>	±
43. Tc	<u>±</u>		90. Th	<u>±</u>	1.5 ±
44. Ru	 ±	<u>+</u>	91. Pa	± ± ±	Ŧ
45. Rh	+	<u>±</u>	92. U	±	0.4 ±
46. Pd	na ±		_ 92. V _ 93. Np	<u>±</u>	±
		0.05 ±	_ 93. NP 94. Pu	± ±	<u>±</u>
47. Ag		$\frac{}{}$			
48. Cd	± ±	— <u> </u>	95. Am		
49. In			96. Cm	<u> </u>	<u>+</u>
*CO2	2.22% ±	- /			
Fe+2/Fe+	1.22 ±	5% ± .	_	± ±	±
Method	of Analysis:			Analytical Lab	•
	m carbonate			Lab. Sample No	
	sed as a per	cent of the concent	tration	Date	:

Materia	l basal 17-CH	t -21 15	0.5-154.5	ı		LRL Samp	le No. <u>ll</u>	M 1405	
Z	Weigh	nt %	Weigh	t PPM	Z	Weigh	nt %	Weigh	t PP
1. H	na	±		±	50. Sn		±	< 0.05	±
2. He	na	<u>+</u>		±	51. Sb		±	< 0.05	± ±
3. Li		±	24	±	52. Te		±		
4. Be		<u>+</u>	0.5	+	53. I		±	0.1	±
5. B		±	< 5	±	55. Cs		±	0.8	±
6. c	na	±		±	56. Ba		± ±	400	± 50
7. N	na	±	-	±	57. La		<u>+</u>	4	
8.0	na	±		Ŧ	58. Ce		±	8	<u>+</u>
9. F	na	±		±	59. Pr		± ±	1	±
ll. Na	2.5	± 5%		±	60. Nd			3	±
12. Mg	3.73	± 2%		±	61. Pm		<u> </u>		±
13. Al	9.08	± 2%		±	62. Sm		± ± ±		±
	25.54	± 2%		±	63. Eu		<u>±</u>	0.3	±
15. P	0.005	± 20%		<u>±</u>	64. Gd		<u>+</u>	1	±
16. S	0.012	± 10%		±	65. To		±	0.2	± ±
17. Cl	na	±		±	66. Dy		±	1	
19. K	0.82	± 5%		±	67. Ho		± ±	0.4	±
20. Ca	5.33	± 2%		±	68. Er		±	0.5	±
21. Sc		±	25	±50%	69. Tm	na	±		±
22. Ti	0.55	± 5%		±	70. Yb		±	14.	±
23. V	<u> </u>	± +	200	± 50%	71. Lu		±	< 0.05	±
24. Cr		±	120	±50% ±	72. Hf		±		±
25. Mn	0.09	±10%			73. Ta	na	±		±
26. Fe	5.37	± 50%		±	74. W		±		±
27. Co		± '	16	±	75. Re	na	± ±		±
28. Ni		±	35	±50%	76. Os		±		±
29. Cu		<u> </u>	120	± 50%	77. Ir		±		±
30. Zn		±	40	±50%	78. Pt		<u>±</u>		±
31. Ga		±	20	±50%	79. Au		±		±
32. Ge	na	±		±	80. Hg		±		±
33. As		<u>+</u>	< 0.05	±	81. Tl		±	0.1	±
34. Se		±	2	<u>+</u>	82. Pb		±	2	±
35. Br		±	0.6	±	83. Bi		±		±
37. Rb		± ±	5	±	84. Po		± ±		± ±
38. Sr		±	300	±50%	85. At		±		
39. Y		±	12	±50%	86. Rn		±		±
40. Zr		±	75	±50%	87. Fr		±		±
41. No		<u> </u>	0.2	±	88. Ra		±		±
42. Mo		±		<u>+</u>	89. Ac		±		±
43. Tc		±		<u>±</u>	90. Th		±		±
44. Ru		±		±	91. Pa		±		±
45. Rh	na	<u>±</u>		±	92. U		±		±
46. Pd	110	±		<u>±</u>	93. Np		±		±
47. Ag		±	< 0.05	± ±	94. Pu		±		±
48. C d		<u>+</u>			95. Am		<u>+</u>		±
49. In		±	< 0.05	± ±	96. Cm		±		±
*CO2	0.25	± 5%					±		±
e ⁺² /Fe+3	0.58	± 5%		±			±		±
						A	anl Tab		
Method o						Analyti	CAT T80.		
CO, from c	arbonat as a pe	e				Lab. Sa	шрте Мо.		

Z	Weig		Weigh	nt PPM	Z	Weigh	t %	Weigh	t PPM
1. H	na	± **		±	50. Sn		<u>±</u>	< 0.05	±
2. He				±	51. Sb		±	< 0.05	±
	na	± ±		±10%			±		±
3. Li			6		52. Te		±		<u>+</u>
4. Be	na	<u>±</u>		±	53. I		<u> </u>		
5. B		±	5	±	55. Cs		±	< 0.05	±
6. c	na	<u>+</u>		±	56. Ba		± ±	145	±
7. N		±		±	57. La		±	4	±
8.0	na	± ±		±	58. C e		<u>±</u>	88	±
	na	±		<u>+</u>	59. Pr		±	2	± ± ±
9. F	na			_ ±	79. 11		+	7	+
ll. Na	3.8	± 5%			60. Nd		± ±		-
12. Mg	2.35	± 2% ± 2%		±	61. Pm		-		
13. Al	_8.52_			±	62. Sm		±	3 .	± ±
14. Si	25.89	± 2% ± 5% ± 5%		±	63. Eu		±	0.4	±
15. P	0.052	± 5%		±	64. G d		± ±	2	± ±
16. S	0.018	+ 50		±	65. To		±		±
		± 5%		±	66. Dy		±		±
17. Cl	na			± ±			±	2	±
19. K	0.81			± ±	67. Ho		±	0.4	
20. Ca	4.46	± 2%			68. Er		-		± ±
21. Sc	na	±		±	69. Im	na	±		<u> </u>
22. Ti	0.89	± 5%		±	70. Yb		±		±
23. V		±	230	±	71. Lu		±	< 0.05	±
24. Cr		±	< 10	±	72. Hf		<u>+</u>	1.5	± ±
25. M n	0.10	±10%		±	73. Ta	na	<u>+</u>		±
		+ 54		±		110	±		±
26. Fe	7.33	± 5% ±		<u>+</u>			±		±
27. Co		± ±	12		75. Re	na	<u>±</u>		±
28. Ni		. <u>T</u>	10	<u>±</u>	76. O s		±		
29. C u		±	65	±	77. Ir				± ±
30. Zn		±	40	± ±	78. Pt		±		
31. Ga	na	±		<u>+</u>	79. Au		±		±
32. Ge		±		±	80. Hg		<u>±</u>		±
33. As	na	<u> </u>	0.1	±	81. Tl		±		±
		<u>+</u>		±	82. Pb		\pm	0.5	±
34. Se		± ±	0.3	<u>+</u>	02.10		±		±
35. Br		± ±	0.5	±	83. Bi		±		±
37. Rb		. <u> </u>	0.5		84. Po		± ±		±
38. S r		±	105	±	85. At		<u> </u>		
39. Y		±	20	±	86. Rn		±		±
40. Zr		±	29	±	87. Fr		<u>+</u>		±
41. N b		Ŧ	0.2	±	88. Ra		±		±
42. Mo		<u>±</u>		±	89. Ac		±		±
		±		±	90. Th		<u>+</u>	0.1	±
43. Tc		± ±		-	. 70 · ···		±		±
44. Ru		± ±	6	±	91. Pa		± ±		±
45. Rh	na			<u>+</u>	92. U		± ±		±
46. Pd		±	0.05	±	93. Np				
47. Ag		±		±	94 . Pu		±		±
48. Cd		<u>±</u>		±	95. Am		±		±
49. In		±	< 0.05	±	96. Cm		±		±
* CO2+	0.07	±10%		±	Free H ₀ 0	1.48	± 5%		±
Fe^{+2}/Fe^{-1}	3 0.07	± 5%		±	Bound H ₂ 0	2.18	± 5%		±
	of Analy	rsis:			_	Analytic	al Lab.		
	on carbo					Lab. San			
** 6	om caroc	mane.	o+ o+ +b-	2052	tact to	2000 i DOM	Date:		
Trx.D1	csseu as		nt of the	concen	uation		Da Ge i		
	ot analyz								

Material Fresh altered tuff 17-CH-22 1443' LRL Sample No. 132

Z	Weigh	.t %	Weigh	t PPM	Z	Wei	ght %	Weigh	t PPM
יד ר		± **		±	50. Sn		±	< 0.05	±
1. H	na	±		<u>+</u>	51. Sb		_ <u>±</u>	0.1	± ±
2. He	na		1.7				±	< 0.05	±
3. Li		±	13	± 10%	52. Te		$-\frac{1}{\pm}$	(0.0)	±
4. Be	na	±		±	53. I				
5. B		±	10	± 50%	55. Cs		<u>±</u>	0.1	± ± ±
6. c	200	Ŧ		±	56. Ba		±	50	±
	<u>na</u>	±		±	57. La	-	±	1	±
7. N	na	<u>+</u>		_			_ <u> </u>	3	±
8.0	na			±			- -	0.5	+
9. F	na	±		<u> </u>	59. Pr		- -	3	+
ll. Na	0.80	± 5%		±	60. Nd				1
12. Mg	6.01	± 2% ± 2%		±	61. Pm		<u>±</u>		± ± ± ±
13. Al	6.90	± 2%		±	62. Sm		±	2	
		± 2%		±	63. Eu		<u>+</u>	0.4	± ±
14. Si	23.00	± 2% ± 5%		±			<u>±</u>	1	±
15. P	0.025	± 5%		±	64. Gd		- -	0.3	±
16. S	0.012	± 10% ±			65. Tb				
17. Cl	na	±		±	66. Dy		<u> </u>	<u> </u>	± ±
19. K	0.41	± 5%		±	67. Ho		±	0.3	
		± 2%		±	68. Er		±	1	± ± ±
20. Ca	5.76	± 2%		Ŧ	69. Im	na	_ ±		±
21. Sc	na			± ±			_ ±	1	±
22. Ti	0.82	± 5% ±			70. Yb				+
23. V		±	310	±	71. Lu				± ± ±
24. Cr			400	± 50%	72. Hf		<u> </u>	0.3	-
25. Mn	0.04	± 20%		±	73. Ta	na	_ <u>±</u>		±
26. Fe	6.49	± 20% ± 5% ±		±	74. W		±		±
	0.49	+ 70	12	±	75. Re	na	±		±
27. Co		± ±		-		1100	<u>±</u>		±
28. Ni				±			_ <u>+</u>		±
29. Cu		±	24	1	77. Ir		$-\frac{\dot{\overline{\pm}}}{\pm}$		±
30. Zn		± ±	37	±	78. Pt				±
31. Ga	na			±	79. Au		<u>±</u>		± ±
32. Ge	na	±		±	80. Hg		<u>±</u>		
		± ±	0.4	±	81. Tl		<u>±</u>		±
33. As		<u>+</u>	1	±	82. Pb		<u>±</u>	0.4	±
34. Se		±		-	83. Bi		<u>±</u>		±
35. Br		<u> </u>	1 7	±			_ <u> </u>		±
37. Rb		±	0.7		84. Po				±
38. Sr		±	420	±	85. At				±
39. Y		±	18	±	86. Rn		±		
40. Zr		±	26	±	87. Fr		<u>±</u>	<u> </u>	±
41. Nb		±	0.2	±	88. Ra		± ±		±
		±	2	<u>+</u>	89. Ac		±		±
42. Mo					90. Th		<u>±</u>		±
43. Tc		± ±		± ±	. 90. 111				±
44. Ru		<u>+</u>	3		91. Pa		<u>+</u>		± ± ±
45. Rh	na	±		±	92. U				
46. Pd		<u>±</u>	< 0.05	±	93. Np		<u>±</u>		
47. Ag		±	0.1	±	94. Pu		±		± ±
		±		±	95. Am				±
48. Cd		-	< 0.05	±	96. Cm		- ±		±
49. In			\ 0.05						±
*CO ₂₊₃	0.47	± 5%		±	Free H				<u> </u>
e^{+2}/Fe^{-2+3}	0.90	± 5%		±	Bound H	0 6.86	± 5%		
					2		tical Lab.		
Method	of Analys	sis:							
*CO_ fr	om carbo	nate				Lab.	Sample No.		
	_		+ of +ho (concent	ration		Date:		
** Expre	essed as	a percen	OT PITE O	COLLCCIA	J2 C C J. C. L.				

Appendix B

CHEMICAL ANALYSIS OF CORE SAMPLES BY CORPS OF ENGINEERS

These data are reproduced from an IOCS Memorandum on the subsurface geology of Route 17. $\!\!\!\!^*$

^{*}See Ref. 1.

PART IV
CHEMICAL TESTS

Rock type	Boring number	Depth (feet)	Lab number	Sample description
1	17-CH-4	113	222/183	Calcareous shale with silty interbeds
1	17-CH-4	383	1M1310	Calcareous shale
1	17-CH-13	321	222/64	Moderately weathered calcareous shale
1	17-CH-13	789	1M1316	Fresh shale
1	17-CH-17	113	222/159	Fresh fossiliferous shale
2	17-CH-5	400	1M1311	Bedded tuff
2	17-CH-7	675	1M1312	Calcareous tuff
2	17-CH-8	261 –26 3	1M1177	Tuffaceous fossiliferous limestone
2	17-CH-5	257-258	1M1006	Fresh calcareous tuff
3	17-CH-5	19 7– 198	1M1200	Slightly weathered silty and tuffaceous limestone
3	17-CH-10	364-365	1M1213 & 1M1215	Fresh tuffaceous limestone
3	17-CH-10	500	1M1314	Fresh tuffaceous limestone
4	17-CH-9	460-462	1M1043	Fresh tuffaceous limestone
4	17-CH-9	680	1M1313	Slightly weathered siliceous shale
4	17-CH-13	207–208	1M1248	Fresh tuffaceous limestone
5	17-CH-12	288-291	1M1073	Agglomerate
5	17-CH-12	383-384	1M1328	Agglomerate with tuffaceous matrix

Chemical tests - continued

Rock type	Boring number	Depth (feet)	Lab number	Sample description
6	17-CH-12	117–118	1M1262 & 1M1264	Fresh tuffaceous sandstone
6	17-CH-12	180-182	1M1281	Fresh tuffaceous siltstone
6	17-CH-12	970	1M1315	Fresh tuffaceous sandstone
6	17-CH-15	418–419	1M1379 & 1M1381	Fresh calcareous tuffaceous sandstone
7	17-CH-7	104–107	1M1089	Slightly weathered and altered diabase
7	17-CH-7	652-654	1M1093	Slightly weathered altered diabase
8	17-CH-11	85–86	1M1411	Fresh to slightly weathered diabase
8	17-CH-11	497-499	1M141 9	Porphyritic amygdaloidal altered and slightly weathered basalt
8	17-CH-11	897 - 899	1M1113	Altered and weathered porphyritic basalt
8	17-CH-21	151-155	1M1405	Altered porphyritic basalt
9	17-CH-15	276-277	1M1461 & 1M1465	Fresh calcareous tuff
10	17-CH-11	926-929	1M1475	Fresh altered tuff
10	17-CH-14	577-578	1M1117	Fresh tuff
10	17-CH-14	600-604	1M1131	Interbedded tuffaceous agglomerate and sandstone
11	17-CH-14	489 -4 91	1M1147 & 1M1144	Slightly weathered lapilli tuff
12	17-CH-22	1143	1M1317	Fresh altered tuff

		DISTRICT
II O ADMY CHAIMEED DIVICIAN IABADATADY	MATTER ATLANTIC	Jacksonville
U. S. ARMY ENGINEER DIVISION LABORATORY, S CORPS OF ENGINEERS	DUIN AILANIIC	PROJECT Route 17,
MARIETTA, GEORGIA		Interoceanic Canal Study
,		CONTRACT NO.
GENERAL TEST REPORT		DATE REPORTED 5 July 1968
A PLANT CORRE)	WORK ORDER NO.
•	,	4965
DESCRIPTION See below		REON. NO. 08-123-ENG-108-580
See below		BASE UNIT COST
FOR USE AS:		DATE SAMPLE RECEIVED
TESTED FOR: Chemical Analysis (% by wt.)		LAB NO. See below
		C
MEETS SPECIFICATIONS	SPEC	LS CIFICATIONS (See below)
Lab No 222/183	1M1310	222/64 1M1316
Core Hole 17-CH-4	17-CH-4	17-CH-13 17-CH-13
De th (ft.) 113	383	321 789
Rock Type 1*	1**	1***
	<u>A</u> <u>B</u> <u>A</u>	<u>B</u> <u>A</u> <u>B</u>
47.30 47.72 54	.30 54.36 44.3	75 45.20 48.10 48.48
		49 15.21 16.72 16.62
1		
	.56 5.40 7.3 .03 0.05 0.0	•
		69 0.70 0.05 0.05
1110/2/1120111 00 2002	21 0.20 0.1	
		16 6.12 4.50 4.58
Magnesium as MgO 2.02 1.98 2		3.40 3.04
		48 1.54 1.36 1.30
Potassium as K ₂ 0 0.70 0.78 0		48 1.48 0.85 1.00
Water, Crystallization 8.95 7.70 5	46 5.02 7.3	17 7.40 6.72 7.03
	.88 3.92 4.9	97 4.98 4.85 4.70
Carbonates as CO2 3.77 3.98 2	57 2.47 5.0	o 5.02 3.38 3.48
Ignition Loss (850°C) 16.88 17.41 11	.14 11.29 16.5	37 16.33 13.81 14.20
REMARKS: *Calcareous shale with silty inter	heds.	
**Calcareous shale.		
***Moderately weathered calcareous	hale.	
****Fresh shale.		
	TESTED BY	CHECKED BY
REPORTED BY: PHONE WIRE	DW	DW
	SAMPLED BY	-

	·		
	DISTRICT		
U. S. ARMY ENGINEER DIVISION LABORATORY, SOUTH ATLANTIC	Jacksonville		
CORPS OF ENGINEERS	PROJECT Route 17,		
	Interoceanic Canal Study		
MARIETTA, GEORGIA	CONTRACT NO.		
	DATE REPORTED		
GENERAL TEST REPORT	5 July 1968		
(ROCK CORES)	WORK ORDER NO. 4965		
DESCRIPTION See below	REON. NO.		
	08-123-ENG-108-680		
SOURCE	BASE UNIT COST		
See below			
FOR USE AS:	DATE SAMPLE RECEIVED		
TESTED FOR:	LAB NO.		
Chemical Analysis (% by wt.)	See below		
A promote to the second	ILS		
SPECIFICATIONS	ECIFICATIONS (See below)		
Lab No 222/159			
Core Hole 17-CH-17			
Depth (ft.) 113			
Rock Type 1*			
Run A B			
man + der der Geleinsteinsteinstein			
Silicon as SiO_2 52.38 52.08			
Fluminum as $A1_2^2O_3 15.96$ 15.76 Iron as $Fe_2O_3 7.93$ 7.93			
Iron as Fe ₂ O ₃ 7.93 7.93			
Manganese as MnO 0.08 0.07			
Titanium as $TiO_2 0.66 0.75$			
Phosphorous as P ₂ O ₅ 0.13 0.11			
Calcium as CaO 3.32 3.28			
Magnesium as MgO 3.96 3.93			
Sodium as Na ₂ O 1.68 1.44			
Potassium as K ₂ 0 1.22 1.08			
Water, Crystallization 6.20 6.41			
Water, Hygroscopic 3.87 3.87			
Carbonates as CO ₂ 1.75 1.96			
Ignition Loss (850°C) 11.81 11.93			
	•		
REMARKS: *Fresh fossiliferous shale.			
Arrest lossifierous shale.			
TESTED BY	CHECKED BY		
REPORTED BY: PHONE WIRE DW	DW		
SAMPLED BY			
DATE			

DISTRICT								
U. S. ARMY ENGINEER DIVISION	Jacksonville							
CORPS OF E	PROJECT Route 17, Interoceanic Canal Study							
MARIETTA,	CONTRACT NO.		Deady					
								
GENERAL TES	ST REPORT			DATE REPORTE 5 Ju	11y 1968			
(noor)		WORK ORDER N				
ROCK (CORES	<u>, </u>		4965	5			
DESCRIPTION See below				REQN. NO. 08-1	23-ENG-1	08-68C		
Source See below				BASE UNIT CO	ST			
FOR USE AS:	· · · · · · · · · · · · · · · · · · ·			DATE SAMPLE	RECEIVED			
TESTED FOR: Chemical Analysis (%	by wt.)			LAB NO. See	b el ow			
	-,,							
MEETS			FAIL		/0 h-	1 1		
SPECIFICATION	NS		_ SPEC	IFICATIONS	(See be	low)		
Lab No 1M13	11 1	M1312	11	1177	1ML	006		
Core Hole 17-CH		-CH-7	17-	-CH-8 17-CH-5				
Depth (ft.) 400		575		1-263 257-258				
Rock Type 2*		2**		***		***		
Run <u>-A</u>	<u>B</u> <u>A</u>	<u>B</u>	<u>A</u>	В	<u>A</u> .	<u>B</u>		
Silicon as SiO ₂ 53.32	53.48 59.6	50 59.76	23.18	23.22	64.50	64.70		
Z	14.04 4.5	59 4 .7 4	5.93	6.08	10.13	10.02		
Iron as Fe ₂ O ₃ 5.73	5.52 3.4	4 3.44	5.45	5.41	2.00	2.04		
Manganese as MnO 0.05	0.06 0.0		0.00	0.00	0.10	0.08		
Titanium as TiO ₂ 0.38	0.38 0.2		0.54	0.53	0.21	0.22		
Phosphorous as P205 0.24	0.22 0.0	9 0.10	0.72	0.56	0.48	0.60		
Calcium as CaO 9.62	9.52 15.5	0 15.48	31.08	31.11	8.64	8.44		
Magnesium as MgO 2.44	2.37 1.0	0.91	2.40	2.37	1.01	0.88		
Sodium as Na ₂ 0 1.48	1.55 0.4	5 0.52	0.68	0.64	0.72	0.70		
Potassium as K ₂ O 0.70	0.80 0.0		0.96		0.28	0.34		
Water, Crystallization 6.19		6 3.06	3.41		5.60	5.51		
Water, Hygroscopic 1.54	1.52 0.2		2.46		1.94	1.88		
Carbonates as CO_2 4.90	5.12 11.9		23.31		5.00	5.20		
	10.43 12.2		27.40		11.70	11.98		
ignition loss (650 C) -10.16	10.43 12.2	.0 12.20	47.40	21.22	11.70	11.90		
REMARKS: *Bedded Tuff								
**Calcareous Tuff								
***Tuffaceous fossiliferous limestone								
****Fresh calcareous tuf		. •						
REPORTED BY: PHONE	CHECKE							
METORIED BIT I THORE L] WIRE	SAMPLED BY			DW			
DATE:		SAMPLED BY				P		

					DISTRI	ст	
U. S. ARMY ENGINEER DIVISION	LABORATO	RY. S	OUTH ATLA	ANTIC		Jacksonville	
CORPS OF E		PROJEC	Route 17,				
MARIETTA,		Inte	roceanic Canal Study				
					CONTRA	ACT NO.	
GENERAL TES	GENERAL TEST REPORT						
(ROCK (CORES)			WORK O	PRDER NO. 4965	
DESCRIPTION See below		-			REQN.	no. 08-123-ENG-108-68C	
Source See below						NIT COST	
FOR USE AS:					DATE S	AMPLE RECEIVED	
TESTED FOR: Chemical Analysis (%	by wt.)				LAB NO	See below	
MEETS				FAIL	S		
SPECIFICATION	1 S		7			TIONS (See below)	
		1M1	213				
⊾ab No 1M12	00	& 12		1	M1314	•	
Core Hole 17-0		17-C					
Depth (ft.) 197-		364-			500		
1100111 2 110	;* 	3*		A	3 **	10	
Run <u>-A</u> .	В	<u>A.</u>	<u>B</u>	_A_		<u>B</u>	
Silicon as SiO ₂ 62.10	62.10 4	3 . 91	44.58	71.86	. 71	. • 56	
Silicon as SiO_2 62.10 Aluminum as Al_2O_3 - 9.42 Iron as Fe_2O_3 2.32	9.39	2.52	2.36	3.06		3.12	
Iron as Fe ₂ O ₂ 2.32	2.36	0.80	0.80	1.23		23	
Manganese as MnO 0.00	0.00	0.00	0.00	0.06		0.10	
Titanium as $TiO_2 0.20$	0.17	0.00		0.09		80.0	
Phosphorous as P205 0.68		0.00		0.07		.05	
Calcium as CaO 11.23		27.17		10.72		.76	
Magnesium as MgO 1.08	1.27			0.83		.83	
Sodium as Na ₂ 0 0.78	0.80			0.45		.40	
Potassium as K20 0.36	0.42	0.36		0.32		.25	
Water, Crystallization- 3.85			1.63	1.95	2	.26	
Water, Hygroscopic 1.28		0.10	0.08	0.38	0	.38	
Carbonates as CO2 6.97	7.01 2	20.33	20.54	9.43	9	.29	
Ignition Loss (850°C) -11.58			21.75	10.53	10	•83	
2511212							
REMARKS: *Slightly weathered silty and tuffaceous limestone. **Fresh tuffaceous limestone.							
corresu fullaceous lin	ea colle ;						
						V	
REPORTED BY: PHONE] WIRE		TESTED BY	N.J		CHECKED BY	
		ŀ	DW DW			L DW	
6.100							

U. S. ARMY ENGINEER DIVISI CORPS OF MARIETTA	ric J PROJ	Jacksonville PROJECT Route 17 Interoceanic Canal Study CONTRACT NO.				
GENERAL 1	EST REP	ORT		DATE 3	REPORTED 1 July 1968	
,)		WORK	ORDER NO.	
DESCRIPTION	CORES			REON	.965 . No.	
See below				08	-123-11G-108-68	J -
See below				BASE	UNIT COST	
FOR USE AS:				DATE	SAMPLE RECEIVED	
rested for: Chemical Analysis	e (% by 1	reight)		LAB A	ee below	
MEETS SPECIFICAT	IONS		→ [FAILS SPECIFIC	CATIONS (See bel	ow)
Lab. No	CH-9 -462			17-		
RunA	E	<u>A</u>	В	<u>A</u>	<u>B</u>	
Silicon as SiO241.12		62.44	62.48	38.90	3 8.88	
Aluminum as Al ₂ 0 ₃ 8.81		9.00		8.01		
Iron as Fe ₂ 0 ₃ 3.76		3.68	3.76	3.60		
Manganese as MnO 0.03		0.04	0.04	0.04		
Titanium as TiO2 0.38	0.38	0.46	0.46	0.38		
Thospherus as P20r 0.14	0.15	0.12	0.14	0.17		
Calcium as CaO19.70		7.90	7.96	21.80		
Magnesium as 190 2.11	2.07	2.66	2.76	2.28		
Sodium as Na ₂ O 1.0/		1.22 0.52	1.20 0.58	1.36 0.82		
Potassium as KnO 0.46 Water, Crystallization 4.40	0.50 4.49	3.90	3.64	4.10		
Water, Hygroscopic 2.91		2.08	1.99	2.56		
Carbonates, as CO213.32		4.00	3.94	15.06		
Ignition Loss ("50°C)-20.22					21.76	
REMARKS: *Fresh tuffaceous **Slightly weatherd ***Fresh tuffaceous	ed siliced	ous shal	e•			
REPORTED BY: PHONE	☐ WIRE	T	TESTED BY		CHECKED BY	
The second second		-	DW SAMPLED BY		DW	
DATE			SAMPLED BY			

U. S. ARMY ENGINEER DIVISION LABORATORY,	DISTRICT Jacksonville						
CORPS OF ENGINEERS MARIETTA, GEORGIA	PROJECT Route 17, Interoceanic Canal Study						
		CONTRACT NO.					
GENERAL TEST REPORT		DATE REPORTED					
l pays comm		5 July 1968 WORK ORDER NO.					
(ROCK CORES)	4965					
DESCRIPTION See below		REQN. NO. 08-123-ENG-108-68C					
Source See below		BASE UNIT COST					
FOR USE AS:		DATE SAMPLE RECEIVED					
TESTED FOR:		LAB NO.					
Chemical Analysis (% by wt.)		See below					
MEETS	FA	ILS					
SPECIFICATIONS	SP	ECIFICATIONS (See below)					
Lab No 1M1073	1M1328						
Core Hole 17-CH-12	17-CH-12						
Depth (ft.) 288-291	383-384						
Rock Type 5* Run A B	5 **						
Run A B	<u>A</u> B						
Silicon as SiO ₂ 44.96 45.10	42.46 42.64						
Aluminum as A1203 18.62 18.39	16.88 16.36						
Iron as Fe ₂ O ₃ 9.53 9.69	9.77 9.85						
Manganese as MnO 0.11 0.11	0.13 0.13						
Titanium as TiO ₂ 0.50 0.50	0.40 0.41						
Phosphorous as $P_2O_5 0.06 0.11$	0.00 0.03						
Calcium as CaO 9.98 9.90	9.67 9.52						
Magnesium as MgO 6.45 6.31	8.88 8.88						
Sodium as Na ₂ 0 1.52 1.32 Potassium as K ₂ 0 0.32 0.28	0.74 0.84 0.00 0.00						
Water, Crystallization 4.54 4.49	5.51 5.70						
Water, Hygroscopic 4.26 4.46	6.44 6.50						
Carbonates as CO ₂ 0.26 0.26	0.14 0.20						
Ignition Loss $(850^{\circ}C)$ 7.34 7.24	10.74 11.16						
REMARKS: *Agglomerate.							
**Agglomerate with tuffaceous matrix.							
		_					
	TESTED BY	CHECKED BY					
REPORTED BY: PHONE WIRE	DW	DW					
DATE:	SAMPLED BY						

DISTRICT									
U. S. ARMY ENGINEER DIVISION LABORATO	Jacksonville Jacksonville								
CORPS OF ENGINEERS	,			PROJECT Route 17,					
MARIETTA, GEORGIA				CONTRACT NO		al Study			
				CONTRACT NO	,.				
DATE REPORTED									
GENERAL TEST REPO	RŦ				July 196	8			
(ROCK CORES)			WORK ORDER					
				REQN. NO.	65				
See below					3-ENG-10	8-68C			
SOURCE				BASE UNIT	:OST				
See below									
FOR USE AS:				DATE SAMPLE	RECEIVED				
TESTED FOR:				LAB NO.					
Chemical Analysis (% by wt.)					below				
			FAI	c					
MEETS				LS Cification	10 (Saa h	alow)			
SPECIFICATIONS			SPE	FICATION	12 (366 0	e(0#)			
1M1262 &					1M13	379 &			
Lab No 1M1264	1M1	.281	1M1315 1M138:						
Core Hole 17-CH-12		H-12		17-CH-12 17-CH-15					
Depth (ft.) 117-118	180-			970 418-419					
Rock Type 6*		***		6*		5 **			
Run A B	<u>A</u>	<u>B</u>	_A	В	_A	<u>B</u>			
Silicon as SiO ₂ 48.96 49.26	47 - 64	47.62	50.8	30 50.84	42.62	42.72			
Aluminum as Al ₂ O ₃ 15.34 15.62	16.98	17.19	18.		13.24				
Iron as Fe ₂ O ₃ 9.37 9.37	9.13	8.97	7.		6.25	6.01			
Manganese as MnO 0.09 0.09	0.08	0.07	0.		0.13	0.18			
Titanium as TiO ₂ 0.48 0.46	0.45	0.45	0.0		0.40				
Phosphorous as P ₂ O ₅ 0.06 0.12	0.04	0.06	0.0		0.04	0.00			
Calcium as Ca0 8.50 8.42	7.14	7.00	6.3		10.76				
Magnesium as MgO 4.93 5.20	4.34	4.27		3.40	2.71	2.63			
Sodium as Na ₂ 0 1.40 0.94	1.28	1.12	3.0		1.48				
Potassium as K ₂ 0 0.36 0.28	0.48	0.40	0.0						
Water, Crystallization - 3.66 3.56	5.78	6.02	4.4		8.46				
Water, Hygroscopic 6.34 6.46	6.46	6.34	3.5		5.48 7.05	5.38 7.17			
Carbonates as CO ₂ 0.20 0.20	0.21	0.24	0.4		•				
Ignition Loss (850°C) - 9.28 9.36	11.00	11.04	7.3	7.56	19.30	19.32			
PENARURA AR AL LA SE ANA AR AR AR AR AR AR AR AR AR AR AR AR AR									
REMARKS: *Fresh tuffaceous sandstone. **Fresh calcareous tuffaceous sandstone.									
***Fresh tuffaceous siltstone									
	T	ESTED BY		CHE	KED BY				
REPORTED BY: PHONE WIRE		DW			DW				
	S	AMPLED BY							

II A ANN FRANKER STREET	Jacks	DISTRICT Jacksonville					
U. S. ARMY ENGINEER DIVISION LABORATORY CORPS OF ENGINEERS	PROJECT Route 17, Interoceanic Canal Study						
MARIETTA, GEORGIA	CONTRACT	Interoceanic Canal Study contract No.					
GENERAL TEST REPORT			DATE REF				
			31 Jul		8		
ROCY CORES)		4965	LK NO.			
DESCRIPTION See below				B-ENC-	108-68C		
SOURCE See below			BASE UNI	T COST			
FOR USE AS:			DATE SAM	PLE RE	CEIVED		
TESTED FOR: Chemical Analysis (5 by weigh	a+ \		LAB NO.				
	16)		See b	ретом			
MEETS SPECIFICATIONS			FAILS SPECIFICAT	IONS (See below)		
Lab. No	- 11: 10	ng o	7	11093			
Core Hole				.7-C!I-			
Domth (ft.)	104-107			652-654			
Regis Time	- 7*	_	,	7 2'-3 5	779		
Pun	- <u>A</u> _	B	<u> </u>	<u> </u>	<u></u>		
Silicon as Si.02	47.76	47.58	42	1.90	45.42		
Aluminum as Algog	-15.40	15.53	11	.10	13.99		
Tron as Fe ₂ 03	-10.65	10.57	10	.49	10.57		
Nanganese as NnO		0.14	C	.13	0.1.5		
Titanium as TiO2	- 0.56	0.60	C	.51	0.54		
Phosphorus as P205	0.01	0.00	C	0.01	0.01		
Calcium as CaO	-12.38	12.38	13	3.74	13.64		
Hagnesium as NgO	8.35	ి.53	F	.94	9.00		
Sodium as Na20	1.62	1.64)	52	1.52		
Potassium as K20	- 0.14	0.12	C	.14	0.7.4		
Mater Crystallization	-3.37			.92	5.72		
Water, Hygroscopic		0.06		.26	0.26		
Carbonates as CO2		0.07		.00	0.00		
Ignition Less (850°C)	• 2•18	2.12	1.	·•34	<i>l</i> ;•3 <i>l</i> ;		
REMARKS: *: 21:ghtly weathered and altered diabase. *: Slightly weathered altered diabase.							
REPORTED BY: PHONE WIRE	TES	TED BY	C	HECKED			
	PLED BY	L	יים				

			2017	TI AN	710	DISTRICT Jacksonville				
U. 3. ARMT	ENGINEER DIVISIO	ON LABORATORY Engineers	ř, 300 i	PRO			PROJECT Route 17,			
	MARIETTA						Canal S	tudy		
						CONTRACT	r NO.			
	GENERAL T	EST REPORT				DATE REF	orted y 1968			
						WORK ORD				
	ROCK	CORES)			4965				
DESCRIPTION	See below					REQN. NO 08-12). 23-ENC-1	.08 – 680		
SOURCE	See below					BASE UNI				
FOR USE AS:						DATE SAM	APLE RECE	I VED		
TESTED FOR:	Chemical Analysis	is (S by wei	ght)			LAB NO.	- al au			
	Official Court and Court	*** (,* - 0	Dr - /			See b	етом			
	MEETS SPECIFICATI	1086			FAI SPE	LS CIFICAT	IONS (S	ee belo	w)	
F	UT OF COLLINST	UNG					,			
		200				3103		33010	!	
	lab. No			1M14J		בחיונ מרכי		1M140		
	Core Hole Depth (ft.)			17-CF 497-1		17-0 897-	H-11 .809	17-09 150-1		
	Roch Type		סא	888	トフフ	>77 ~ 8:88		General Calmente		
	Run	A	В	A	В		B	A		
or icon as S	iC2									
iluminum as	Al ₂ 0 ₃	16.72	16.42	17.68			18.84	1.6.03	14.28	
Tron as FeoC	3	7.77	7.69	9.05	9.05	9.13		8.25	٤٠09	
	1m0		0.13		0.12	0.10	0.10	0.12	0.12	
	TiO ₂		0.65		0.45	0.44	0.49	0.31	0.36	
Phosphomis a	s P ₂ 05	0-01	0.02		0.01	0.09	0.10	0.13.	0.10	
Coloium as C	a0 —————	9.17	9.40		9.67	8.39	8.37	6.60		
Mornesium as	1/g0 ————	11.29	11.16		4.47	5.78	5.69	7.52	7.56	
									1.73	
Distribution as not	20	1./2	1.80		1.48	1.40	1.48			
Potassium as	K ₂ 0	U.UO	0.06		0.10	0.12	0.14		0.81 5.82	
Mater, Crysta	allization	7.12	5.82		9.82	9.92	9.40	2.22	1.91	
Mater, Hygros	scopic	1.24	1.16		0.38	0.90 0.05	1.10 0.15	0.3.7	0.12	
Carbonates as	s (850°C)	5.32	0.1.1 5.48	0.30 8.84	0.21 8.84	9.24	9.40			
TEILIOTOIL MOD.	3 (0,0 0,	J+J:=	J 4 - 4 -			,				
	resh to slightly				_		. 11			
	orphyritic amygda				ly wear	therea	basalt.			
	ltered and weathe ltered porphyriti		itic Da	salt.						
7000/ A L	read borbularer	.C Dasaro.								
			TES	TED BY		C	HECKED BY	Y		
REPORTED BY:	☐ PHONE	☐ WIRE		Dt/I			DW			
DATE			SAM	PLED BY						

		DISTRICT
U. S. ARMY ENGINEER DIVISION LABORATORY, S	OUTH ATLANTIC	Jacksonville
CORPS OF ENGINEERS	OUTH ATERNITO	PROJECT Route 17,
MARIETTA, GEORGIA		Interoceanic Canal Study
•		CONTRACT NO.
GENERAL TEST REPORT		DATE REPORTED
GENERAL TEGI NELVAL		31 July 1968
(ROCK CORES)		WORK ORDER NO. 4965
DESCRIPTION See below		REGN. NO. 08-123-ENG-108-68C
SOURCE		BASE UNIT COST
See below		DATE CANDLE DECELVED
FOR USE AS:		DATE SAMPLE RECEIVED
TESTED FOR: Chemical Analysis (% by weight))	LAB NO. See below
MEETS	FAI	LS
SPECIFICATIONS	SPE	CIFICATIONS (See below)
Lab. No 1:11461 -	1.465	
Core Hole 17-CH-15		
Depth (ft.) 276-277		
Rock Type 9%	D	
Run A	<u>B</u>	j
Silicer as SiO2 39.94	40.05	
Aluminum as Al ₂ 0 ₃ 12.62	12.53	
Iron as Fe ₂ 0 ₃ 5.77	5.77	
Hanganese as MnO 0.04	0.04	
"Itanium as TiO2 0.27	0.28	
Phosphorus as P ₂ 0 ₅ 0.06	0.08	-
Calcium as CaO 13.51	13.61	
Magnesium as MgO 2.24	2.39	i
		i
Scdium as Na ₂ 0 1.60	1.64	
Potassium as K20 1.10	1.10	1
Water, Crystallization 9.43	9.67	
Water, Hygroscopic 3.16	3.10	ļ
Carbonates as CO2 8.56	8.27	1
Ignition Loss (850°C) 20.70	20.56	
REMARKS: *Fresh calcareous tuff.		
		Tour av an and
REPORTED BY: PHONE WIRE	TESTED BY	CHECKED BY
	SAMPLED BY	
DATE:		

H & ABMY SHAIRESP BIVIAION	Ja	DISTRICT Jacksonville						
U. S. ARMY ENGINEER DIVISION CORPS OF E	PROJ	PROJECT Route 17,						
MARIETTA,					eroceanic RACT NO.	Canal Study		
				CONT	RACI NO.			
CENEDAL TE	PT DEDAD			DATE	REPORTED			
GENERAL TE	SI KEPUK	•			July 196	8		
(POCK CORES) WORK ORDER NO.								
DESCRIPTION See below REON. NO. 08-123-FMG-106-68C								
See below				BASE	UNIT COST			
FOR USE AS:		***************************************		DATE	SAMPLE RECE	I VED		
TESTED FOR: Chemical Analysis	(% by weig	ht)		LAB N	e below			
MEETS				FAILS				
SPECIFICATIO	NS				ATIONS (S	ee below)		
		 			, 			
Iab. No			11/1	117	נחונ	.31.		
Core Hole				CH-14		11-14		
Depth (ft.)				-578	600-60 <i>l</i> ; 1.0xxx			
Rock Type			10%- A	B	A A			
						german man der d		
Silfeen as SiO2	52.46	52.50	48.30	4≎.7ଃ	48.84	48.94		
Aluminum as Al ₂₀₃	15.81	15.74		14.83		14.47		
Iron as Fe ₂ 0 ₃	10.09	10.09	6.89	6.93	7.45	7.45		
'anganese as MnO	- 0.13	0.12	0.15					
Ttanium as TiO2	0.58	0.58	0.46	0.50	0.56	0.51		
Phosphorus as P205	0.05	0.07	0.10	0.10	0.10	0.10		
Calcium as CaO		7.49	8.43	8.22	7.67	7.62		
Magnesium as MgO		4.27	4.69	4.24	4.78	4.87		
Sodium as Na20		1.40	1.12	1.16	1.08	1.24		
Potassium as K20		•	1.00		1.20	1.36		
Water, Crystallization	· - 7.71	7.67	6.42	6.48	6.91	6.98		
Water, Hygroscopic		0.25	4.22	4.32	3.74	3.7 6		
Carbonates as CO2		0.09	2.49	2.37	2.30	1.93		
Ignition Loss (850°C)	- 6.40	6.40	11.74	11.75	11.66	11.92		
REMARKS: *Fresh altered tuff. **Fresh tuff. ***Interbedded tuffaceous agglomerate and sandstone.								
REPORTED BY: PHONE	WIRE	TEST	ED BY		CHECKED B	Y		
		SAMP	LED BY					
DATE:		_						

Previous editions of this form are obsolete.

J.

U. S. ARMY ENGINEER DIVISION LABORATORY, SO CORPS OF ENGINEERS MARIETTA, GEORGIA	DUTH ATLANT!	Jacksonville PROJECT Route 17, Interoceanic Canal Study CONTRACT NO.
GENERAL TEST REPORT		DATE REPORTED
		31 July 1968
(ROCK CORES)		4965
DESCRIPTION See below		REGN. NO. 08-123-EIG-108-68C
SOURCE	7	BASE UNIT COST
See below FOR USE AS:		DATE SAMPLE RECEIVED
		LAB NO.
TESTED FOR: Chemical Analysis (% by weigh	t)	See below
MEETS SPECIFICATIONS	→	FAILS SPECIFICATIONS (See below)
Lab. No Core Hole Depth (ft.) Rock Type	17-CH-1/ 169-491 11*	$I_{\mathbf{i}}$
Run		B 00
Silicon as SiO ₂ ————————————————————————————————————	48.07 - 16.32	48.00 16.42
Iron as Fe ₂ 0 ₃	7.85	7.77
ilanganese as lino	0.10	0.11
Titanium as TiO2	0.50	0.53
Phosphorus as P ₂ O ₅		0.07
Calcium as CaO	· 8.30	8.25
Magnesium as MgO	6.12	6.14
Sodium as Na ₂ O	1.28	1.40
Potassium as K20	0.50	0.64
Water, Crystallization	5.31 4.26	5.12 6.42
Water, Hygroscopic ————————————————————————————————————	0.00	0.00
Ignition Loss (850°C) —————	9.38	9.36
REMARKS: *Slightly weathered lapilli tuf	îf.	
	TESTED BY	CHECKED BY

Previous editions of this form are obsolete.

4-

		DISTRICT Jacksonville
U. S. ARMY ENGINEER DIVISION LABORATORY, SOUTH ATLANTIC CORPS OF ENGINEERS MARIETTA, GEORGIA		PROJECT Route 17, Interoceanic Canal Study
		CONTRACT NO.
,		DATE REPORTED
GENERAL TEST REPORT		31 July 1968
(ROCK CORES)		WORK ORDER NO. 4965
DESCRIPTION See below		REON. NO 08-123-ENG-108-680
See below		BASE UNIT COST
FOR USE AS:		DATE SAMPLE RECEIVED
TESTED FOR: Chemical Analysis (% by weight)		LAB NO. See below
MEETS		FAILS
SPECIFICATIONS		SPECIFICATIONS (See below)
Lab. No Core Hole		
Depth (ft.)		n-22
Rock Type	12*	
Run	<u>A</u>	B
Silicon as SiO2	43.28	43.52
Aluminum as Al ₂ O ₃	11.58	12.15
Iron as Fe ₂ 0 ₃ ———————————————————————————————————	7.98	7.40
Manganese as MnO	0.14	0.13
Titanium as TiO2		0.70
Phosphorus as P205	0.11	0.10
Calcium as CaO		7.22
Magnesium as MgO		10.25
Sodium as Na ₂ O		0.55
Potassium as K ₂ O ————————————————————————————————————		0.65
Water, Crystallization	8-91	ۥ52
Mater, Hygroscopic	7.11	7.13
Carbonates as CO ₂	0.76	0.59
Ignition Loss (850°C)	15.02	14.65
28.20.000		
REMARKS:		
*Fresh altered tuff		
REPORTED BY: PHONE WIRE	TESTED BY	CHECKED BY
	SAMPLED BY	1 2"
DATE:		

Distribution

LRL Internal Distribution

Michael M. May	
M. Nordyke/J. Toman	
E. Fleming/G. Dorough	
J. H. Hill	
Y. Ng	
O. de Lalla	
B. Shore	
G. H. Higgins	
F. Holzer	
H. Tewes	
T. Cherry	
J. Kahn	
J. Knox	
P. Stevenson	
D. Stephens	
J. Frazer	
J. Kury	
TID Berkeley	
TID File	30
External Distribution	
R.J. List Institute for Atmospheric Sciences Silver Spring, Maryland	
R. S. Davidson	3
Battelle Memorial Institute Columbus, Ohio	
J. P. Sheffey Atlantic-Pacific Interoceanic Canal Study Commissio Washington, D. C.	n
F.G. Lowman Puerto Rico Nuclear Center College Station Mayaguez, Puerto Rico	
E.G. Struxness Oak Ridge National Laboratory Oak Ridge, Tennessee	
W. L. Templeton Battelle Memorial Institute Richland, Washington	
J.F. McElhenny U.S. Army Corps of Engineers Jacksonville, Florida	

External Distribution (Continued)	
Staff Director CSCC Jacksonville, Florida	7
R.E. Miller Nevada Operations Office Las Vegas, Nevada	2
B. Hughes U.S. Army Engineer Nuclear Cratering Group Livermore, California	3
A.G. Sutton, Jr. U.S. Army Corps of Engineers Balboa Heights, Canal <i>Z</i> one	12
Engineering and Construction Director Panama Canal Company Balboa Heights, Canal Zone	2
E.W. Eden, Jr. U.S. Army Corps of Engineers Jacksonville, Florida	
J. S. Kelly U. S. Atomic Energy Commission Washington, D. C.	
Chief of Engineers, ENGTE-M Department of the Army Washington, D.C.	2
Chief of Engineers, ENGCW-Z Department of the Army Washington, D.C.	4
Division Engineer, SADEI U.S. Army Engineer Division South Atlantic Atlanta, Georgia	2
T.D. Boaz, Jr. Office of The Surgeon General Washington, D.C.	
TID-4500 Distribution, UC-35, Nuclear Explosions-Peaceful Applications	255
This report was prepared as an account of Government sponsored work.	

of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or membrage of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards,
U.S. Department of Commerce, Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65.

RCB/rt