Modern Algebra HW6

Michael Nameika

October 2022

Section 14 Problems

12. Find the order of $(3,1) + \langle (1,1) \rangle$ in $(\mathbb{Z}_4 \times \mathbb{Z}_4)/\langle (1,1) \rangle$.

To begin, notice that $\langle (1,1) \rangle = \{(0,0), (1,1), (2,2), (3,3)\}$. To find the order of $(3,1) + \langle (1,1) \rangle$, it is sufficient to compute $(3,1) + (3,1) + \cdots$ until we reach an element in $\langle (1,1) \rangle$. Well,

$$(3,1) + (3,1) = (2,2) \in \langle (1,1) \rangle$$

We only needed to add (3,1) to itself once to find an element in $\langle (1,1) \rangle$. That is, $(3,1) + \langle (1,1) \rangle$ has order 2 in $(\mathbb{Z}_4 \times \mathbb{Z}_4)/\langle (1,1) \rangle$.

21. A student is asked to show that if H is a normal subgroup of an abelian group G, then G/H is abelian. The student's proof starts as follows:

We must show that G/H is abelian. Let a and b be two elements of G/H.

- **a.** Why does the instructor reading this proof expect to find nonsense from here on in the student's paper?
 - 0 The instructor can expect to find nonsense from here because a and b should be elements of G. Also, the student should reiterate what G, H and G/H are.
- **b.** What should the student have written?

Let H be a normal subgroup of an abelian group G and let $a, b \in G$. We wish to show that G/H is abelian.

c. Complete the proof.

Continuing off of part \mathbf{c} , since $a, b \in G$, aH and bH are cosets of H and thus, $aH, bH \in G/H$. We must show (aH)(bH) = (bH)(aH). Well, from the definition of the binary operation on G/H, we have (aH)(bH) = (ab)H. Since G is abelian, we have ab = ba so (ab)H = (ba)H. Again by the definition of the binary operation on G/H, we have (ba)H = (bH)(aH), thus (aH)(bH) = (bH)(aH).

- 40. Use the properties $\det(AB) = \det(A)\det(B)$ and $\det(I_n) = 1$ for $n \times n$ matrices to show the following:
 - **a.** The $n \times n$ matrices with determinant 1 form a normal subgroup of $GL(n,\mathbb{R})$.

Let H be the set of $n \times n$ matrices with real entries having determinant 1. To begin, we must show $H \leq Gl(n,\mathbb{R})$. Let $A,B \in H$ and consider AB. Since A,B both have real entries, by definition of matrix multiplication and closure of \mathbb{R} , we have AB has real entries. Additionally, $\det(AB) = \det(A)\det(B) = (1)(1) = 1$, so $AB \in H$. That is, H is closed. Now we must show that $I_n \in H$. Well, I_n has real entries and $\det(I_n) = 1$, so $I_n \in H$. Finally, we must show for any

 $A \in H, A^{-1} \in H$. Well, since $\det(A) = 1, A^{-1}$ exists and $\det(A^{-1}) = 1/\det(A) = 1/1 = 1$, so $A^{-1} \in H$. So H is a subgroup of $GL(n, \mathbb{R})$.

Now, to show H is a normal subgroup of $GL(n,\mathbb{R})$, let $g \in GL(n,\mathbb{R})$, $h \in H$ and consider ghg^{-1} . Well, $det(ghg^{-1}) = det(g)det(h)det(g^{-1}) = det(g)(1)(1/det(g)) = 1$, so $ghg^{-1} \in H$. Then by theorem 14.13, H forms a normal subgroup of $GL(n,\mathbb{R})$.

Bonus Problems!!!

- 1. Let K denote the subgroup $\langle \rho_1 \rangle$ in the group D_4 .
 - (a) True or false? For every $a \in D_4$ and every $k \in K$ the equation ak = ka is valid.

False. Consider $k = \rho_1$ and $a = \mu_1$. Notice

$$ak = \mu_1 \rho_1 = \delta_2$$

and

$$ka = \rho_1 \mu_1 = \delta_1$$

so $ak \neq ka$.

(b) List all the right cosets of K in D_4 .

Since $\langle \rho_1 \rangle = \{ \rho_0, \rho_1, \rho_2, \rho_3 \}$, $|\langle \rho_1 \rangle| = 4$, so the index of K in D_4 is 2, since $|D_4| = 8$. Now, $K = K \rho_0$ is one of the cosets, so we need only find the other. Notice

$$K\mu_1 = \{\mu_1, \delta_1, \mu_2, \delta_2\}$$

So the two right cosets of K in D_4 are

$$\{\mu_1, \delta_1, \mu_2, \delta_2\}; \{\rho_0, \rho_1, \rho_2, \rho_3\}$$

- (c) Prove that K is a normal subgroup of D_4 .
 - Proof: To do so, it suffices to show that each left coset is also a right coset. To begin, it is clear

that $\rho_0 K = K \rho_0$. Let us inspect the remaining cosets:

$$\rho_{1}K = \{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{0}\}$$

$$K\rho_{1} = \{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{0}\} = \rho_{1}K$$

$$\rho_{2}K = \{\rho_{2}, \rho_{3}, \rho_{0}, \rho_{1}\}$$

$$K\rho_{2} = \{\rho_{2}, \rho_{3}, \rho_{0}, \rho_{1}\} = \rho_{2}K$$

$$\rho_{3}K = \{\rho_{3}, \rho_{0}, \rho_{1}, \rho_{2}\}$$

$$K\rho_{3} = \{\rho_{3}, \rho_{0}, \rho_{1}, \rho_{2}\} = \rho_{3}K$$

$$\mu_{1}K = \{\mu_{1}, \delta_{2}, \mu_{2}, \delta_{1}\}$$

$$K\mu_{1} = \{\mu_{1}, \delta_{1}, \mu_{2}, \delta_{2}\} = \mu_{1}K$$

$$\mu_{2}K = \{\mu_{2}, \delta_{1}, \mu_{1}, \delta_{2}\}$$

$$K\mu_{2} = \{\mu_{2}, \delta_{2}, \mu_{1}, \delta_{1}\} = \mu_{2}K$$

$$\delta_{1}K = \{\delta_{1}, \mu_{1}, \delta_{2}, \mu_{2}\}$$

$$K\delta_{1} = \{\delta_{1}, \mu_{2}, \delta_{2}, \mu_{1}\} = \delta_{1}K$$

$$\delta_{2}K = \{\delta_{2}, \mu_{2}, \delta_{1}, \mu_{1}\}$$

$$K\delta_{2} = \{\delta_{2}, \mu_{1}, \delta_{1}, \mu_{2}\} = \delta_{2}K$$

So all left cosets are also right cosets. Then by definition, K is a normal subgroup of D_4 .

(d) Give the group table of the factor group D_4/K .

Let the coset K be denoted by $\rho_0 K$ and likewise the coset $\{\mu_1, \delta_1, \mu_2, \delta_2\}$ be denoted by $\mu_1 K$. Then the group table for the factor group D_4/K is as follows:

$$\begin{array}{c|c|c} D_4/K & \rho_0 K & \mu_1 K \\ \hline \rho_0 K & \rho_0 K & \mu_1 K \\ \hline \mu_1 K & \mu_1 K & \rho_0 K \\ \hline \end{array}$$

(e) Find the order of the element $K\delta_1$ in the group D_4/K .

Well, notice from the work in part (c) that $K\delta_1 = \mu_1 K$, and from the group table in part (d), we can see that $(\mu_1 K)(\mu_1 K) = \rho_0 K$, so the order of $K\delta_1$ is 2 in D_4/K .

(f) To what "known" group is the group D_4/K isomorphic? Justify appropriately.

 $D_4/K \cong \mathbb{Z}_2$. To see this, let us inspect the group table for \mathbb{Z}_2 :

$$\begin{array}{c|c|c|c|c}
\mathbb{Z}_2 & 0 & 1 \\
\hline
0 & 0 & 1 \\
\hline
1 & 1 & 0
\end{array}$$

Notice from the group tables that D_4/K and \mathbb{Z}_2 have the same structure. Thus, $D_4 \cong \mathbb{Z}_2$.

2. Let H denote the subgroup $\langle \rho_2 \rangle$ in the group D_4 .

(a) List all the right cosets of H in D_4 .

Notice $H = \{\rho_0, \rho_2\}$ and so |H| = 2, thus we will have 4 cosets since $|D_4| = 8$. Then the right cosets of H in D_4 are

$$\{\rho_0, \rho_2\}$$
; $\{\rho_1, \rho_2\}$; $\{\mu_1, \mu_2\}$; $\{\delta_1, \delta_2\}$

where $\{\rho_0, \rho_2\} = H\rho_0 \ \{\rho_1, \rho_2\} = H\rho_1, \ \{\mu_1, \mu_2\} = H\mu_1, \ \text{and} \ \{\delta_1, \delta_2\} = H\delta_1.$

(b) Give the group table of the factor group D_4/H .

D_4/H	$H\rho_0$	$H\rho_1$	$H\mu_1$	$H\delta_1$
$H\rho_0$	$H\rho_0$	$H\rho_1$	$H\mu_1$	$H\delta_1$
$H\rho_1$	$H\rho_1$	$H\rho_0$	$H\delta_1$	$H\mu_1$
$H\mu_1$	$H\mu_1$	$H\delta_1$	$H\rho_0$	$H\rho_1$
$H\delta_1$	$H\delta_1$	$H\mu_1$	$H\rho_1$	$H\rho_0$

(c) Find the order of the element $H\delta_1$ in the group D_4/H .

From the group table above, we can see that $(H\delta_1)(H\delta_1) = H\rho_0$, so the order of $H\delta_1$ in D_4/H is 2.

(d) To what 'known' group is the group D_4/H isomorphic? Justify appropriately.

 D_4/H is isomorphic to V, the Klein 4-group. To see this, let us inspect the group table of V:

V	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

and note that V and D_4/H have the same structure.

- 3. Let L denote the subgroup $\langle \mu_1 \rangle$ in the group D_4 .
- (a) List all the right cosets of L in D_4 .

Notice $\langle \mu_1 \rangle = \{ \rho_0, \mu_1 \}$ has order 2, so there will be 4 right cosets of $\langle \mu_1 \rangle$ in D_4 . Then the right cosets are

$$L\rho_0 = \{\rho_0, \mu_1\}$$

$$L\rho_1 = \{\rho_1, \delta_1\}$$

$$L\rho_2 = \{\rho_2, \mu_2\}$$

$$L\rho_3 = \{\rho_3, \delta_2\}$$

(b) Prove that L is NOT a normal subgroup of D_4 .

Proof: We need only find a left coset of L that is not also a right coset of L in D_4 . From part (a), we have $L\rho_1 = {\rho_1, \delta_1}$. Now let us compute $\rho_1 L$:

$$\rho_1 L = \{\rho_1, \delta_2\} \neq L\rho_1$$

So L is not a normal subgroup of D_4 .

(c) Give examples of specific elements a, b, c, d in D_4 which have the properties:

$$La = Lb$$
 and $Lc = Ld$, but $Lac \neq Lbd$

Notice
$$L\delta_2 = \{\delta_2, \rho_3\} = L\rho_3$$
 and $L\mu_1 = \{\mu_1, \rho_0\} = L\rho_0$ and that $\delta_2\mu_1 = \rho_1$ and $\rho_3\rho_0 = \rho_3$, so

$$L\delta_2\mu_1 = L\rho_1 = \{\rho_1, \delta_1\}$$

and

$$L\rho_3\rho_0 = L\rho_3 = \{\rho_3, \delta_2\} \neq L\delta_2\mu_1$$

(d) Give examples of specific elements x and y in D_4 for which the product of cosets Lx * Ly is NOT a right coset of L.

Let $x = \rho_1$ and $y = \rho_2$ and consider $Lx = \{\rho_1, \delta_1\}$ and $Ly = \{\rho_2, \mu_2\}$. Now consider Lx * Ly:

$$Lx * Ly = \{\rho_1, \delta_1\} * \{\rho_2, \mu_2\}$$
$$= \{\rho_1 \rho_2, \delta_1 \mu_2\}$$
$$= \{\rho_3, \rho_1\}$$

Which is not a right coset of L in D_4 .