

Jump, Run and Learn: Reinforcement Learning Take on SuperMario Bros

Team: P24

A0285647M	E1216292
A0276528R	E1132261
A0268425X	E1101724
A0268281X	E1101580
	A0276528R A0268425X

Agenda

- SuperMario Bros Environment & Scope
- Project Objective
- Training Setup
- Understand DQN vs. PPO vs. A2C: Concept & Implementation
- Goal 1: Battle of the Models: DQN vs. PPO vs. A2C
- Goal 2: Custom Reward Function vs. Regular Reward Function
- Goal 3: Generalizability Test
- Conclusion

SuperMario Bros Environment & Scope

Mode	Coin-Collector (CC)	Regular	
World-Stage	1-1, 1-2		
Version	3 (Rectangular mode is selected due to easier training)		
Action Space	COMPLEX_MOVEMENT from OpenAl Gym Example: {L, R, Jump, Down, No-Op,}		
State	Pixels (Skip Frame, Grayscale, Resize, Stack Frame)		
Reward Function	How far right, speed, death, score (coins, enemy, etc.)	How far right, speed, death	

Project Objective

- This project aims to study DQN vs. PPO vs. A2C on a single agent complex environment in 3 depths:
 - Goal 1: Battles of the models: DQN vs. PPO vs. A2C
 - Qualitative Analysis: Video Evaluation
 - Quantitative Analysis: Tensorboard Logs Evaluation
 - Goal 2: Custom reward function vs. Regular reward function
 - For each algo, compare behavioral differences between having environment with coin as a reward vs. no coins
 - Goal 3: Generalizability Test
 - Compare model's performance on unseen stage world 1-2

Training Setup

Mode	DQN	PPO	A2C	
Package	Stable Baseline 3			
Modes Trained	Both CC and Regular Mode			
Training Steps	5 million	~2.5 million	600k	
Video Evaluation	3 success plays, 3 failure plays			
Training Evaluation	Tensorboard Logs (Exploration rate, Entropy Loss, Policy Loss and Value Loss), Best Reward, Average Reward			
Testing Evaluation	Pass Count per 1000 plays, Coins Collected per 1000 plays			

Understanding DQN vs. PPO vs. A2C: Concept & Implementation				
Model	DQN	PPO	A2C	
Model type	Value-based	Policy-based	Actor-Critic	
Algorithm Concept	Estimate Q-value of	Directly learns policy mapping	Estimate the advantage of taking certain action by	

policy mapping

states to action

Clipped surrogate

regularization

objective & entropy

Project Presentation

taking an

Experience

replay &

network

target

action

Sample

Stability

Technique

efficiency &

AY2023/24 Sem2 CS4246/CS5446

and a critic (value) b

Advantage loss

learning an actor (policy)

Parallel environments &

Goal 1: Battle of the Models (Video Evaluation)

- **DQN** (20s): Conservative, trapped in local optima (pauses long before pipes and stairs) but occasional exploration help agent jump over obstacles but possibly run into monsters or cliffs
- **PPO** (16s): Moderately conservative, does not get trapped in local optima as much as DQN but tends to avoid monsters -> Lesser coins collected
- A2C (16s): Risk seeking, maximizes the coin gathered by crushing monsters and prefers to time the jumps

Understanding DON vs. PPO vs. A2C:

Behavioural traits				
Model	DQN	PPO	A2C	
Risk level	Conservative	Moderately conservative	Risk-seeking	
Movements	Simple maneuvers (Non-precise)	Smoother and fluid movement	Complex maneuvers	
Repetitive Behavior	Yes	No	No	
Sample	High	Moderate	Low	

Project Presentation

AY2023/24 Sem2 CS4246/CS5446

efficiency

NUS Computing

Goal 1: Battle of the Models (Exploration vs.

Exploitation)

- 1.DQN: starts with high exploration and then to exploitation due to ε-greedy strategy
- 2.PPO: increases sharply to achieve high exploration then gradually increase later.PPO's entropy loss fluctuates as it has a clipping mechanism that clips it's policy changes. It encourages taking large updates without going too far.
- 3.A2C: slow increases exploration

Goal 1: Battle of the Models (Policy & Value)

- 1.DQN: Overall loss increases over time. It may indicate agent has not explored enough in the early stages and make poor actions later.
- 2.PPO: Policy gradient loss decreases but increases again while value loss decreases indicate policy updates are too aggressive, causing policy to move away from optimal policies.
- 3.A2C: Policy and value loss increases over time. Model is

AY2023/24 Sem2 CS4246/CS5446

diverging from the optimal

Project Presentation Legend: — DQN – PPO – A2C

Goal 1: Battle of the Models (Pass Count, Coins Collected, Training Best & Average Reward)

- 1.Most rounds completed: PPO > DQN
 - > A2C
- 2.Coins collected: A2C > DQN > PPO
- 3. PPO outperforms DQN with lesser training steps (2.5 mil vs. 5 mil)
- 4. A2C showing higher best reward as compared to DQN due to the large number of coins collected

AY2023/24 Sem2 CS4246/CS5446

11

Project Presentation

Goal 2: Custom Reward Function vs. Regular Reward Function

- 1. Using the CC mode led to higher coins collected as compared to regular mode when the agent is trained on CC mode.
- 2. While the pass rate stays almost the same.

Goal 3: Generalizability Test

- All algorithms did not generalize well to other stages,
 - All algos have a pass counts of 0/1000 in unseen terrains
 - All algos have a drastic reduction of coins collected in unseen terrains
- Coins collected: A2C > PPO > DQN

Conclusion

- Overall the behavior of the models match the theoretical concepts of the models:
 - Goal 1 Outcome (Compare between models):
 - Conservative: DQN > PPO > A2C
 - Most rounds completed: PPO > DQN > A2C
 - Coins collected: A2C > DQN > PPO
 - Goal 2 Outcome (CC mode vs. Regular mode):
 - CC reward altered agent's behaviors, encouraging them to be more active in collecting coins and defeating enemies
 - CC reward maintained similar pass rate
 - Goal 3 Outcome (Generalizability):
 - Moderate generalizability in seen terrain and enemies
 - Did not generalize to unseen enemies

Thank you! Any Q&A?

*(Here are some bloopers)

