Logistic Regression 1/2

Classification, metrics and ROC curves

DSI, jf.omhover, Dec 6, 2016

Logistic Regression 1/2

Classification, metrics and ROC curves

DSI, jf.omhover, Dec 6, 2016

OBJECTIVES (morning)

- Relate Regression to Classification in the context of supervised learning
- Compare Logistic Regression to Linear Regression
- Define and compute metrics for evaluating classifiers

OBJECTIVES (afternoon)

- Describe the process for computing parameter values in LogReg
- Use the parameters of a LogReg model to compute the class of an obverstion

Supervised Learning

Learning / Estimating FUNCTIONS based on examples

Reality VS Model: assumptions and learning

REALITY

	type	income	education	prestige
accountant	prof	62	86	82
pilot	prof	72	76	83
architect	prof	75	92	90
author	prof	55	90	76
chemist	prof	64	86	90
minister	prof	21	84	87
professor	prof	64	93	93
dentist	prof	80	100	90
reporter	wc	67	87	52
engineer	prof	72	86	88
undertaker	prof	42	74	57
lawyer	prof	76	98	89

 (x_1, y_1)

 (x_n, y_n)

x y

data

OBJECTIVE:

descriptive predictive normative

MODEL

$$y = f(x) + \epsilon$$

take a function as an assumption

Estimator

Linear Regression

MODEL

REALITY

prof	62	86	
nunf		00	82
prot	72	76	83
prof	75	92	90
prof	55	90	76
prof	64	86	90
prof	21	84	87
prof	64	93	93
prof	80	100	90
wc	67	87	52
prof	72	86	88
prof	42	74	57
prof	76	98	89
	prof prof prof prof prof prof prof prof	prof 75 prof 55 prof 64 prof 21 prof 64 prof 80 wc 67 prof 72 prof 42	prof 75 92 prof 55 90 prof 64 86 prof 21 84 prof 64 93 prof 80 100 wc 67 87 prof 72 86 prof 42 74

data

$$(x_1, y_1)$$

...

$$(x_n, y_n)$$

x y

OBJECTIVE:

descriptive predictive normative

...

$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$

We make the assumption that we have a linear relation

Linear Regression - General Process

REALITY

Having a data sample
 Observing an underlying behavior

3) <u>Find</u> the instance of the model that <u>fits</u> with data sample

MODEL

2) Make an assumption on the <u>model</u> underlying the data

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

linear relation (+ assumptions)

Multi-Linear Regression

COST FUNCTION (Residual Sum of Squares)

$$RSS(\beta) = (y - X\beta)^T (y - X\beta)$$

REALITY

DATA

$$X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,p-1} \\ 1 & x_{2,1} & \cdots & x_{2,p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p-1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

 β_2 :

model class

$$y \approx X\beta$$

PROBLEM

$$\hat{y} = X\hat{\beta}$$

model instance estimator parameters

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Figure from [ISL]

Classification

Learning / Estimating "models of classes" based on examples

Reality vs Model: assumptions and learning

OBJECTIVE:

- - -

COST FUNCTION

descriptive predictive normative

Estimator of the function

MODEL

$$y \neq f(x) + \epsilon$$

take a function as an assumption

Mapping // Classification algorithms

Logistic Regression

k-NN

Decision Trees

Random Forest, Boosting

Support Vector Machines (SVM)

Neural Networks

...

Regression vs Classification

Quantitative response y in R

Categorial response y

Assigning y = 0 to neg, y = 1 to pos

Regression vs Classification

Quantitative response y in R

Regression vs Classification

Quantitative response y in R

Categorial response y in {0,1}

Trying to apply LinReg to y

Quantitative response y in R

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

Negative probabilities ?
How to cut-off ?

LogReg as model of probability

Quantitative response y in R

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

Negative probabilities ?
How to cut-off ?

Categorial response y in {0,1}

$$p(X) = h(\beta_0 + \beta_1.x_1 + \dots + + \beta_p.x_p)$$

Idea: model probability of being positive as a function of a linear model

LogReg in a nutshell

REALITY

MODEL

It (badly) translates as: computes the probability of being in one of the two classes depending on of the side and distance of the plan

$$h: \mathbb{R} \to [0,1]$$

$$h(t) = \frac{1}{1 + e^{-t}}$$

 $p(X) = h(\beta_0 + \beta_1 \cdot x_1 + \dots + + \beta_p \cdot x_p)$

Mapping // Classification algorithms

Logistic Regression

k-NN

Decision Trees

Random Forest, Boosting

Support Vector Machines (SVM)

Neural Networks

...

How to evaluate a classifier?

Conforming a classifier to the actual response

x_1 ,	x_2	x_3	x_4	y

 	 	1
 	 	0
 	 	0
 	 	1
 	 	1
 	 	1
 	 	0
 	 	1

$$\hat{\mathbf{y}} = \hat{f}(\mathbf{x})$$

-	0.00
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

$$\hat{y} = \hat{f}(x)$$

		Pred P	Pred N	
v	Actual P	3	2	P = 5
у	Actual N	1	2	N = 3
		P*	N*	

Confusion Matrix

		$\hat{y} = \hat{f}(x)$				
		Pred P	Pred N			
v	Actual P	True Positive	False Negative	P = 5		
у	Actual N	False Positive	True Negative	N = 3		
		P*	N*	•		

The proportion of <u>observations</u> that are <u>correctly</u> classified ?

Accuracy:

The proportion of <u>positives</u> that are <u>correctly</u> identified as such?

True Pos Rate:

(aka recall, sensitivity)

The proportion of <u>negatives</u> that are <u>correctly</u> identified as such

True Neg Rate:

(aka specificity)

$$\hat{y} = \hat{f}(x)$$

	Pred P	Pred N	
Actual P	True Positive	False Negative	P = 5
Actual N	False Positive	True Negative	N = 3
	P*	N*	,

The proportion of <u>observations</u> that are <u>correctly</u> classified ?

Accuracy: (TN + TP) / (N + P)

The proportion of <u>positives</u> that are <u>correctly</u> identified as such?

True Pos Rate: TP / P

(aka recall, sensitivity)

The proportion of <u>negatives</u> that are <u>correctly</u> identified as such

True Neg Rate: TN / N

(aka specificity)

	^
^	(()
17	= t(x)
y	$-\int (\lambda)$

	Pred P	Pred N	
Actual P	True Positive	False Negative	P = 5
Actual N	False Positive	True Negative	N = 3
	P*	N*	•

The proportion of <u>observations</u> that are <u>NOT correctly</u> classified?

Error rate:

The proportion of <u>positives</u> that are

NOT correctly identified as such?

False Neg Rate:

(aka fall-out)

The proportion of <u>negatives</u> that are <u>NOT correctly</u> identified as such

False Pos Rate:

(aka 1-specificity)

	^
^	(()
17	= t(x)
y	$-\int (\lambda)$

	Pred P	Pred N	
Actual P	True Positive	False Negative	P = 5
Actual N	False Positive	True Negative	N = 3
	P*	N*	,

The proportion of <u>observations</u> that are <u>NOT correctly</u> classified?

Error rate : (FN + FP) / (N + P)

The proportion of <u>positives</u> that are NOT correctly identified as such?

False Neg Rate : FN / P

(aka fall-out)

The proportion of <u>negatives</u> that are <u>NOT correctly</u> identified as such

False Pos Rate : FP / N

(aka 1-specificity)

	^
^	(()
v	= t(x)
1	J

	Pred P	Pred N	
Actual P	True Positive	False Negative	P = 5
Actual N	False Positive	True Negative	N = 3
	P*	N*	,

Confusion Matrix - type I and type II error

	Pred P	Pred N	
Actual P	good	Type II error	P = 5
Actual N	Type I error	good	N = 3
	P*	N*	

Using response probabilities

x_1	$,x_2$	$,x_3$	$,x_4$	y
-------	--------	--------	--------	---

 	 	1
 	 	0
 	 	0
 	 	1
 	 	1
 	 	1
 	 	0
 	 	1

P > 0.5

0.95
0.21
0.55
0.43
0.77
0.44
0.15
0.81

$$\hat{y} = \hat{f}(x)$$

	Pred P	Pred N	
Actual P	True Positive	False Negative	P = 5
Actual N	False Positive	True Negative	N = 3
	P*	N*	•

Cut-offs on probabilities

x_1, x_2, x_3, x_4		y	P > 0		> 0.5	0.5 P > 0.6			P > 0.7			P > 0.8			P > 0.9			
		 	1		1	0.95		1	0.95		1	0.95		1	0.95		1	0.95
		 	0		0	0.21		0	0.21		0	0.21		0	0.21		0	0.21
		 	0		1	0.55		0	0.55		0	0.55		0	0.55		0	0.55
		 	1		0	0.43		0	0.43		0	0.43		0	0.43		0	0.43
		 	1		1	0.77		1	0.77		1	0.77		0	0.77		0	0.77
		 	1		0	0.44		0	0.44		0	0.44		0	0.44		0	0.44
		 	0		0	0.15		0	0.15		0	0.15		0	0.15		0	0.15
		 	1		1	0.81		1	0.81		1	0.81		1	0.81		0	0.81

Those are sure ones! => low FPR! (high precision)
But we miss so many ones! => low TPR! (low recall)

Cut-offs on probabilities

x_1, x_2, x_3, x_4			y	P > 0.5		P > 0.4			P > 0.3			P > 0.2			P > 0.1			
				1	1	0.95		1	0.95		1	0.95		1	0.95		1	0.95
				0	0	0.21		0	0.21		0	0.21		1	0.21		1	0.21
				0	1	0.55		1	0.55		1	0.55		1	0.55		1	0.55
				1	0	0.43		1	0.43		1	0.43		1	0.43		1	0.43
				1	1	0.77		1	0.77		1	0.77		1	0.77		1	0.77
				1	0	0.44		1	0.44		1	0.44		1	0.44		1	0.44
				0	0	0.15		0	0.15		0	0.15		0	0.15		1	0.15
				1	1	0.81		1	0.81		1	0.81		1	0.81		1	0.81

We have so many FP! => high FPR! (low precision) But we capture all the ones! => high TPR! (high recall)

ROC curve (receiver operating characteristic)

For LogReg, think of it as sliding the purple/red line along the sigmoid function

Comparing classifiers based on their ROC curve

Possible metric : AUC Area-under-curve

What is the "ideal" / "worst" classifier ?

