MRPT2 computation

Hybrid stochastic-deterministic approach

Yann Garniron, Anthony Scemama, Pierre-Francois Loos, Michel Caffarel

GMO 16/03/2017

Outline

- CIPSI vs MRPT2
 - CIPSI
 - MRPT2
 - Comparison
- Stochastic MRPT2
 - The original CIPSI algorithm
 - Stochastic aspect
 - Deterministic aspect
- Results

Iterative selection of determinants

• start with *n* determinants

$$\Psi = \sum_{I}^{n} c_{I} |D_{I}\rangle$$

Compute the perturbative contribution of external determinants

$$\mu_{\alpha} = \frac{\langle \Psi | H | \alpha \rangle^2}{\Delta E_{\alpha}}$$

- if $|\mu_{\alpha}| > t$, add α to Ψ
- diagonalize H
- ... repeat with Ψ now of size N > n

MRPT2 estimates full-CI energy

- $\Psi = \sum_{I} c_{I} |I\rangle$
- $E^{(2)} = \sum_{\alpha} \frac{|\langle \Psi | H | \alpha \rangle|^2}{\Delta E_{\alpha}}$
- ΔE_{α} depends on MR flavor. In our case, Epstein-Nesbet PT : $\Delta E_{\alpha} = E^{(0)} \langle \alpha | H | \alpha \rangle$

Sensible computation of $E^{(2)}$

• rewrite $E^{(2)}$ as

$$\sum_{I,J} c_I c_J \frac{\langle I|H|\alpha\rangle\langle\alpha|H|J\rangle}{\Delta E_\alpha}$$

ullet Compare |I
angle and |J
angle to generate all |lpha
angle interacting with both

MRPT2 is a by-product of CIPSI

- In both cases, all $\langle I|H|\alpha\rangle$ are computed
- MRPT2: only a sum is required. It doesn't matter in what order they are computed
- CIPSI : we need the intermediate sums $\sum_{I} c_{I} \langle I|H|\alpha\rangle$ to compute

$$\mu_{\alpha} = \frac{\left(\sum_{I} c_{I} \langle I | H | \alpha \rangle\right)^{2}}{\Delta E_{\alpha}}$$

MRPT2 can be computed as a by-product of CIPSI

$$E^{(2)} = \sum_{\alpha} \mu_{\alpha}$$

...but it isn't necessarily the best way to do it.

CIPSI allows for more approximation

- MRPT2 needs to account for a huge number of small contributions.
- CIPSI is only interested in the biggest μ_{α} . CPU time spent computing smaller ones is wasted.
 - Smaller c_l are ignored; Ψ is truncated
 - α has to interact with at least one larger c_I

How we used to do

- CIPSI yield approximate MRPT2 for the PREVIOUS iteration.
- An extra iteration is required, with a larger number of determinants.
- The approximations need to be lowered
- ...expensive, hence the idea of making it stochastic!

α generation

- $|I\rangle$ generates all $|\alpha\rangle$ interacting with it.
- Those $|\alpha\rangle$ which have been previously generated are not generated again

lpha are grouped in N_{det} batches ${\cal A}$

The elementary contributions will be

$$e_I = \sum_{lpha \in \mathcal{A}_I} \mu_{lpha}$$

•

$$E^{(2)} = \sum_{I} e_{I}$$

Monte-Carlo in a nutshell

- We want to compute $\sum_{l} e_{l}$ but it's too expensive
- We randomly draw some e_l and assume they have the same average value as the whole set
- Such a computation can be made much faster using an estimator p_I giving a probability to draw e_I
- p_I should be proportional to e_I as much as possible.

e, decreases rapidly

There are several reasons for the decrease of e_l

- ΔE_{α} increases
- \bullet The number of associated $|\alpha\rangle$ decreases, since more and more have already been generated
- Associated $|\alpha\rangle$ are by construction disconnected from previous determinants.

Estimator for e₁

 e_I is estimated by the norm of the sub-wavefunction it may connect to

$$\sum_{J>I} c_J^2$$

- In practice we use the largest term c_L^2 .
- Our sampling function is

$$p_I = c_I^2$$

Reducing variance by partitioning

Sampling sets of e_l

- ullet p is divided in M equiprobable subspaces from P_1 to P_M
- Let J be a random set of M samples taken among all possible I, K a random tuple of M samples such that $K_i \in P_i$

$$var\Big(\sum_{i=1}^{M}e_{J_{i}}\Big) \geq var\Big(\sum_{i=1}^{M}e_{K_{i}}\Big)$$

• We will actually be drawing/sampling sets of e_I

Sets are built as "combs" of e_l

- A set of e_l is associated with a random value u ranging from 0 to $\frac{1}{M}$
- The set is built by picking all e at "positions"

$$u_k = \frac{u+k-1}{M}$$
; $k = 1, ..., M$

• The sample value U associated with u is $e_1 + e_3 + e_7$

Sets are built as "combs" of e_l

ullet Combs furthermore reduces variance by correlating e_l

The head of the wavefunction is made deterministic

•
$$E^{(2)} = E_D^{(2)} + E_S^{(2)}$$

Initial deterministic part

- Usually, most determinants are crushed into a tiny probability
- The first determinants are moved to the deterministic part until a better balance is obtained

Increasing the deterministic part

• When a subspace P_i is fully computed, its contribution is known with no error.

Increasing the deterministic part

- e_I belonging to this subspace are removed form U and V the values associated with combs u and v, and added to $E_D^{(2)}$
- $\Delta E_D^{(2)} = e_1 + e_2$
- $\Delta U = -e_1$
- $\Delta V = -e_2$

... until you get the exact value?

- e_I are stored so they are only computed once
- As the computation goes, fewer and fewer are left to be computed, so combs are drawn faster and faster
- At some point, all e_I are computed and the exact result is obtained with almost no extra computation time

Cr₂, 5M det, cc-pVDZ, (28e,76o)

Hybrid VS purely stochastic

Test runs with *Cr*₂

Basis	$E^{(2)}$	Wall time
cc-pVDZ		50 nodes (800 cores)
	-0.1539(2)	4 min
	-0.15394(2)	10 min
	-0.153970(3)	20 min
	-0.1539670(2)	30 min
	-0.153 967 027 (exact)	2 hr
cc-pVTZ		50 nodes (800 cores)
	-0.2223(6)	18 min
	-0.2225(1)	33 min
	-0.22248(3)	1 hr
	-0.222513(4)	2 hr
	_	~ 15 hr (estimated)
cc-pVQZ		250 nodes (4000 cores)
	-0.2252(2)	2 hr
	-0.22524(5)	3 hr
	-0.225236(7)	5 hr
	-0.2252367(3)	6 hr
	_	\sim 24 hr (estimated) $_{=}$

Summary

- $E^{(2)}$ is computed with a small error bar, smaller than the accuracy of MRPT2 vs full-CI energy
- Can't be longer than the full deterministic computation
- 90% parallel efficiency