FIG. 1: SEQ ID NO:1 -

ATG AAC TCG TGG GAC GCG GGC CTG GCG GGG CTA CTG GTG GGC ACG ATG 48 GGC GTC TCG CTG TCC AAC GCG CTG GTG CTC TGC CTG CTG CAC 96 AGC GCG GAC ATC CGC CGC CAG GCG CCG GCG CTC TTC ACC CTG AAC CTC ACG TGC GGG AAC CTG CTG TGC ACC GTG GTC AAC ATG CCG CTC ACG CTG 192 GCC GGC GTC GTG GCG CAG CGG CAG CCG GCG GAC CGC CTG TGC CGC 240 CTG GCT GCC TTC CTC GAC ACC TTC CTG GCT GCC AAC TCC ATG CTC AGC 288 ATG GCC GCG CTC AGC ATC GAC CGC TGG GTG GCC GTG GTC TTC CCG CTG 336 AGC TAC CGG GCC AAG ATG CGC CTC CGC GAC GCG GCG CTC ATG GTG GCC 384 TAC ACG TGG CTG CAC GCG CTC ACC TTC CCA GCC GCC GCG CTC GCC CTG 432 TCC TGG CTC GGC TTC CAC CAG CTG TAC GCC TCG TGC ACG CTG TGC AGC 480 CGG CGG CCA GAC GAG CGC CTG CGC TTC GCC GTC TTC ACT GGC GCC TTC 528 CAC GCT CTC AGC TTC CTG CTC TCC TTC GTC GTG CTC TGC AGG TAC 576 CTC AAG GTG CTC AAG GTG GCC CGC TTC CAT TGC AAG CGC ATC GAC GTG 624 ATC ACC ATG CAG ACG CTG GTG CTG GTG GAC CTG CAC CCC AGT GTG 672 CGG GAA CGC TGT CTG GAG GAG CAG AAG CGG AGG CGA CAG CGA GCC ACC 720 AAG AAG ATC AGC ACC TTC ATA GGG ACC TTC CTT GTG TGC TTC GCG CCC 768 TAT GTG ATC ACC AGG CTA GTG GAG CTC TTC TCC ACG GTG CCC ATC GGC 816 TCC CAC TGG GGG GTG CTG TCC AAG TGC TTG GCG TAC AGC AAG GCC GCA 864 TCC GAC CCC TTT GTG TAC TCC TTA CTG CGA CAC CAG TAC CGC AAA AGC 912 TGC AAG GAG ATT CTG AAC AGG CTC CTG CAC AGA CGC TCC ATC CAC TCC 960 TCT GGC CTC ACA GGC GAC TCT CAC AGC CAG AAC ATT CTG CCG GTG TCT 1008 GAG 1011

FIG. 2: SEQ ID NO:2

Met	Asn	Ser	Trp	Asp	Ala	Gly	Leu	Ala	Gly	Leu	Leu	Val	Gly	Thr	Met	16
Gly	Val	Ser	Leu	Leu	Ser	Asn	Ala	Leu	Val	Leu	Leu	Cys	Leu	Leu	His	32
Ser	Ala	Asp	Ile	Arg	Arg	Gln	Ala	Pro	Ala	Leu	Phe	Thr	Leu	Asn	Leu	48
Thr	Cys	Gly	Asn	Leu	Leu	Cys	Thr	Val	Val	Asn	Met	Pro	Leu	Thr	Leu	64
Ala	Gly	Val	Val	Ala	Gln	Arg	Gln	Pro	Ala	Gly	Asp	Arg	Leu	Cys	Arg	80
Leu	Ala	Ala	Phe	Leu	Asp	Thr	Phe	Leu	Ala	Ala	Asn	Ser	Met	Leu	Ser	96
Met	Ala	Ala	Leu	Ser	Ile	Asp	Arg	Trp	Val	Ala	Val	Val	Phe	Pro	Leu	112
Ser	Tyr	Arg	Ala	Lys	Met	Arg	Leu	Arg	Asp	Ala	Ala	Leu	Met	Val	Ala	128
Tyr	Thr	Trp	Leu	His	Ala	Leu	Thr	Phe	Pro	Ala	Ala	Ala	Leu	Ala	Leu	144
Ser	Trp	Leu	Gly	Phe	His	Gln	Leu	Tyr	Ala	Ser	Cys	Thr	Leu	Cys	Ser	160
Arg	Arg	Pro	Asp	Glu	Arg	Leu	Arg	Phe	Ala	Val	Phe	Thr	Gly	Ala	Phe	176
His	Ala	Leu	Ser	Phe	Leu	Leu	Ser	Phe	Val	Val	Leu	Cys	Cys	Thr	Tyr	192
Leu	Lys	Val	Leu	Lys	Val	Ala	Arg	Phe	His	Cys	Lys	Arg	Ile	Asp	Val	208
Ile	Thr	Met	Gln	Thr	Leu	Val	Leu	Leu	Val	Asp	Leu	His	Pro	Ser	Val	224
Arg	Glu	Arg	Cys	Leu	Glu	Glu	Gln	Lys	Arg	Arg	Arg	Gln	Arg	Ala	Thr	240
Lys	Lys	Ile	Ser	Thr	Phe	Ile	Gly	Thr	Phe	Leu	Val	Cys	Phe	Ala	Pro	256
Tyr	Val	Ile	Thr	Arg	Leu	Val	Glu	Leu	Phe	Ser	Thr	Val	Pro	Ile	Gly	272
Ser	His	Trp	Gly	Val	Leu	Ser	Lys	Cys	Leu	Ala	Tyr	Ser	Lys	Ala	Ala	288
Ser	Asp	Pro	Phe	Val	Tyr	Ser	Leu	Leu	Arg	His	Gln	Tyr	Arg	Lys	Ser	304
Cys	Lys	Glu	Ile	Leu	Asn	Arg	Leu	Leu	His	Arg	Arg	Ser	Ile	His	Ser	320
Ser	Gly	Leu	Thr	Gly	Asp	Ser	His	Ser	Gln	Asn	Ile	Leu	Pro	Val	Ser	336
Glu																337

FIG. 3

MOUSEGN_CHR7-36867 ATGAACTCGTGGGACGCGGGCCTGGCGGGGCTGCTGGTGGGCACTATCGGCGTGTCGCTGSEQUENCE_115_ ATGAACTCGTGGGACGCGGGCCTGGCGGGGCTACTGGTGGGCACGATGGGCGTCTCGCTG
MOUSEGN_CHR7-36867 CTGTCCAACGGGCTGGTGCTCCTGCCTCCTGCACAGCGCTGACATCCGCCGCCAGGCG SEQUENCE_115_ CTGTCCAACGCGCTGGTGCTGCTCTGCCTGCACAGCGCGGACATCCGCCGCCAGGCG
MOUSEGN_CHR7-36867 CCGGCGCTCTTCACTCTCAACCTCACGTGTGGCAACCTGCTGTGTACCGTGGTCAACATG SEQUENCE_115_ CCGGCGCTCTTCACCCTGAACCTCACGTGCGGGAACCTGCTGTGCACCGTGGTCAACATG
MOUSEGN_CHR7-36867 CCACTAACACTGGCCGGCGTCGTGGCACAACGGCAGCCGGCGGGACCGCCTGTGCCGC SEQUENCE_115_ CCGCTCACGCTGGCCGCGCGTCGTGCCGCAGCGGCAGCCGGCGGCGACCGCCTGTGCCGC **************************
MOUSEGN_CHR7-36867 CTGGCCGCCTTCCTCGACACCTTTCTGGCCGCCAACTCCATGCTCAGCATGGCCGCGCTC SEQUENCE_115_ CTGGCTGCCTTCCTCGACACCTTCCTGGCTGCCAACTCCATGCTCAGCATGGCCGCGCTC ****************************
MOUSEGN_CHR7-36867 AGCATCGACCGCTGGGTGGCTGTGGTCTTTCCGCTGAGCTACCGTGCCAAGATGCGCCTC SEQUENCE_115_ AGCATCGACCGCTGGGTGGCCGTGGTCTTCCCGCTGAGCTACCGGGCCAAGATGCGCCTC
MOUSEGN_CHR7-36867 CGAGATGCCGCCTTCATGGTGGCCTACACGTGGCTGCACGCGCTCACCTTCCCGGCCACC SEQUENCE_115_ CGCGACGCGCGCTCATGGTGGCCTACACGTGGCTGCACGCGCTCACCTTCCCAGCCGCC
MOUSEGN_CHR7-36867 GCGCTCGCCCTGTCCTGGCTCGGCTTCCACCAGCTATATGCCTCGTGCACACTGTGCAGC SEQUENCE_115_ GCGCTCGCCCTGTCCTGGCTCGGCTTCCACCAGCTGTACGCCTCGTGCACGCTGTGCAGC
MOUSEGN_CHR7-36867 CGGCGGCCGGACGAGCGCCTTGCGCTTTGCTGTCTTCACCAGCGCCTTCCATGCGCTCAGC SEQUENCE_115_ CGGCGGCCAGACGAGCGCCTGCGCTTCGCCGTCTTCACTGGCGCCTTCCACGCTCTCAGC
MOUSEGN_CHR7-36867 TTCCTGCTCTCCTTCATCGTGCTCTGCTTCACGTACCTCAAGGTGCTCAAGGTGGCCCGC SEQUENCE_115_ TTCCTGCTCTCCTTCGTCGTCGTCGCACGTACCTCAAGGTGCTCAAGGTGGCCCGC
MOUSEGN_CHR7-36867 TTCCACTGCAAGCGCATCGACGTGATCACCATGCAGACGCTTGTGCTGTTGGTGGACATA SEQUENCE_115_ TTCCATTGCAAGCGCATCGACGTGATCACCATGCAGACGCTGGTGCTGCTGGTGGACCTG
MOUSEGN_CHR7-36867 CACCCCAGTGTGAGGGAACGGTGTCTGGAGGAACAGAAGCGGAGGCGACAGCGTGCCACC SEQUENCE_115_ CACCCCAGTGTGCGGGAACGCTGTCTGGAGGAGCAGAAGCGGAGGCGACAGCGAGCCACC
MOUSEGN_CHR7-36867 AAGAAGATCAGCACCTTCATAGGGACCTTCCTTGTGTGCTTTTGCACCCTATGTGATTACC SEQUENCE_115_ AAGAAGATCAGCACCTTCATAGGGACCTTCCTTGTGTGCTTCGCGCCCTATGTGATCACC
MOUSEGN_CHR7-36867 AGGCTGGTGGAACTCTTCTCCACAGCACCCATTGGCTCTCACTGGGGAGTGCTGTCCAAG SEQUENCE_115_ AGGCTAGTGGAGCTCTTCTCCACGGTGCCCATCGGCTCCCACTGGGGGGTGCTGTCCAAG
MOUSEGN_CHR7-36867 TGCTTGGCCTACAGCAAGGCCGCTTCTGACCCCTTCGTGTATTCCTTGCTGCGACACCAA SEQUENCE_115_ TGCTTGGCGTACAGCAAGGCCGCATCCGACCCCTTTGTGTACTCCTTACTGCGACACCAG
MOUSEGN_CHR7-36867 TACCGCAGGAGCTGCAAGGAGCTCCTGAACAGGATCTTCAACAGACGCTCCCTTCACTCT SEQUENCE_115_ TACCGCAAAAGCTGCAAGGAGATTCTGAACAGGCTCCTGCACAGACGCTCCATCCA
MOUSEGN_CHR7-36867 GTGGGCCTCACAGGTGACTCTCACAGCCAGAACATTCTGCCAGTGTCGGAA SEQUENCE 115 TCTGGCCTCACAGGCGACTCTCACAGCCAGAACATTCTGCCGGTGTCTGAGTGA

Figure 4: Alignment of human and mouse GPCR #115