German University in Cairo Department of Computer Science Assoc. Prof. Haythem O. Ismail

CSEN 502 Theory of Computation, Winter Term 2021 Assignment1

Exercise 1-1

Reading

Read Chapter 0 to page 20 of the text. You may skip the section on Boolean logic.

Exercise 1-2

Exercises from Textbook

Sipser (pp 25 - 27 International Edition): Solve exercises 0.3¹, 0.4² (skip e), 0.5, 0.6, and 0.7

Solution:

- 0.3 AxB contains all the pairs that have as their first element an element of set A and as their second element and element of set B. To compose a set containing all possible pairs, we have a possibilities for the first element of the pair and b possibilities for the second element of the pair, which makes a total of a*b different pairs.
- $0.4\,$ a) The infinite set of all odd natural numbers.
 - b) The infinite set of all even integers.
 - c) The set of all natural numbers divisible by two (even natural numbers).
 - d) The set of all natural numbers divisible by six.
 - e) (skip)
 - f) The empty set \emptyset
- 0.5 The power set P of set C has 2^c elements. If we start with an empty set C, with $P = \{\{\}\}$, then whenever C grows, the size of P gets doubled. **Example:** consider that the power set P, for a set C with P0 elements, has P1 elements. If one adds one element to P2, the power set will grow to have P3 elements.

```
\begin{split} C &= \{a,b,c\} \\ P &= \{\{\},\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\} \\ C_{new} &= \{a,b,c,x\} \\ P_{new} &= \{\{\},\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}, \\ \{x\},\{a,x\},\{b,x\},\{c,x\},\{a,b,x\},\{a,c,x\},\{b,c,x\},\{a,b,c,x\}\} \end{split}
```

Therefore the size of P grows in power of 2 with the growth of C, since each element (subset) in P has to be joined to the new element, so the size of P gets doubled.

This, in a way looks like an induction with a basis and an induction step. However, there are other ways to explain the size of a power set. If you consider the elements of the power set as all possible combinations of C, i.e. two possibilities for each element of C, 1 if it is included and 0 if it is not included. That would make a total of 2^c possibilities.

¹Exercise 0.4 in normal edition

 $^{^2}$ Exercise 0.1 in normal edition

- $0.6 \, a) \, 7$
 - b) Domain is X and range is Y
 - c) 6
 - d) Domain is XxY and range is Y
 - e) 8
- 0.7 a) Consider a non-empty set X consisting of two subsets X_1 and X_2 , such that $X = X_1 \cup X_2$, $X_1 \not\subseteq X_2$ and $X_2 \not\subseteq X_1$. $X_1 \cap X_2$, which is also non-empty contains element a. Define a binary relation R on X (xRy) to be valid if x and y both lie in X_1 or X_2 (or both), so that if x and y lie in two different subsets xRy (or yRx) is false.

This relation is reflexive: every element in X lies either in X_1 or X_2 or both, therefore xRx is valid.

This relation is *symmetric*: if xRy is valid (which means that x and y lie in the same subset) then yRx is also valid.

This relation is *not transitive*: if x and y lie in two different subsets xRa is valid and aRy is also valid, but xRy is false!

b) \leq (less than or equal) on \mathcal{N} .

This relation is reflexive: $n \leq n$ is valid.

This relation is *transitive*: if $n \leq s$ and $s \leq m$ then $n \leq m$ is also valid.

This relation is not symmetric: $2 \le 3$ is valid but $3 \le 2$ is false!

c) Define a binary relation R on \mathcal{N} that is valid if both its arguments are even.

This relation is symmetric: if nRm is valid (both n and m are even natural numbers) then mRn is also valid.

This relation is transitive: if nRs is valid (both n and s are even) and sRm is valid as well, then nRm is necessarily valid, too.

This relation is *not reflexive*: 3R3 is false!

Exercise 1-3

In each of the following cases, determine whether the relation ρ is reflexive, symmetric, anti-symmetric, asymmetric or transitive.

(a) $\rho \subseteq \mathbb{Z} \times \mathbb{Z}$, where $a \rho b$ if and only if there is $n \in \mathbb{Z}$ such that a = bn.

Solution:

The relation is reflexive and transitive.

- reflexive: for n=1 we can always have the pair $(x,x) \in \rho, x=x*1$
- **not** symmetric: since n must be an integer so we will have for example (4,2) but we cant have (2,4)
- not anti-symmetric: since integer numbers contain negative integers as well so we can have pairs like (1,-1) and (-1,1) but $1\neq -1$.
- **not** asymmetric: since this relation is reflexive so at least we will have (x,x) pairs, also we have pairs (x,-x).
- transitive: by definition of transitivity xRy and $yRz \to xRz$, to have xRy here means that $x = y * n_1$ and to have yRz here means that $y = z * n_2$, and the question now is that can we get x in terms of z? yes $x = z * n_3 \equiv x = z * (n_1 * n_2)$. Note that they (n_1, n_2, n_3) could be different since we only care that the given pair exists in this relation.
- (b) For a given universe \mathcal{U} and $C \subseteq \mathcal{U}$, where $C \neq \emptyset$, define $\rho \subseteq P(\mathcal{U}) \times P(\mathcal{U})$ (ρ is a set of ordered pairs of sets over \mathcal{U}) such that $A \rho B$ if and only if $A \cup C = B \cup C$.

Solution:

The relation is reflexive, symmetric and transitive.

Note that: C would is fixed throughout the relation, so there exists a certain C which is not empty that would make $A \cup C = B \cup C$ for all $A \rho B$.

- reflexive: for it to be reflexive the relation should contain (A, A) for all possible sets in the \mathcal{U} $A \rho B$ means that $A \cup C = B \cup C$, so $A \rho A$ means $A \cup C = A \cup C$ can we have this statement to be true for whatever value of A to belong in our relation? Yes.
- symmetric: if we have $A \cup C = B \cup C$ can we have $B \cup C = A \cup C$ for every $(A, B) \in \rho$? Yes.
- not anti-symmetric: since this relation is symmetric we know that the first part of the implication is true, that both $A \rho B$ and $B \rho A$ are true, but that does not necessarily mean that A and B are equal.
- not asymmetric: since this relation is symmetric.
- transitive: $A \rho B$ and $B \rho D \rightarrow A \rho D$ since this is an equality statement, $A \rho B$ would mean that $A \cup C = B \cup C$, and $B \rho D$ would mean that $B \cup C = D \cup C$ (note that it is the same C) which could be seen as $A \cup C = B \cup C = D \cup C$ from which we get that $A \cup C = D \cup C$, which makes $A \rho D$ true.
- (c) $\rho \subseteq \mathbb{Z} \times \mathbb{Z}$ where $x \rho y$ if and only if x + y is odd.

Solution:

The relation is symmetric.

Note that to have x + y to be odd one of them must be even and the other to be odd.

- **not** reflexive: Since we can't have $x \rho x$.
- symmetric: Since x + y = y + x
- not anti-symmetric: The relation would have pairs (x,y) and (y,x) but $x \neq y$
- **not** asymmetric: Since it is symmetric
- not transitive: xRy and $yRz \to xRz$, for xRy to be true the either x is even and y is odd and in this case z would be even for yRz to be true, so xRz can not be true since both of them would be even or both of them would be odd.
- (d) $\rho \subseteq (\mathbb{Z} \times \mathbb{Z}) \times (\mathbb{Z} \times \mathbb{Z})$ where (a, b) ρ (c, d) if and only if $a \leq c$.

Solution:

The relation is reflexive and transitive.

First note that x and y are pairs, x = (a, b) and y = (c, d)

- reflexive: Since we can accept when a = c, so $x \rho x$ would be true for any $x \in \mathbb{Z}$.
- **not** symmetric: will fail for the pairs where a < c.
- **not** anti-symmetric: The relation would have pairs (x, y) and (y, x) but its not always the case that x = y, for example: x = (1, 2) and y = (1, 3) which will make xRyandyRx true but $x \neq y$
- **not** asymmetric: will fail for the pairs where a = c
- transitive: xRy and $yRz \to xRz$, for xRy to be true it means that x = (a,b) and y = (c,d) and $a \le c$, and having yRz means that, for the same y, z = (e,f) such that $c \le e$, Which makes $a \le c \le e$ therefore, $a \le e$.

Exercise 1-4

Extra Problem

In each of the following cases, and by filling the appropriate *circles*, indicate whether the relation \mathcal{R} on the *set of line segments in the plane* is reflexive (r), symmetric (s), anti-symmetric (an), asymmetric (as), or transitive (t).

r 🔾	$s\bigcirc an\bigcirc as\bigcirc t\bigcirc$
Solı	ution:
The	relation is only transitive
•	not reflexive: since the only pairs of the form (a, a) that would be included in this relation are when length of a greater than 10, so this does not cover all the element in the universe.
•	not symmetric: for every $a\mathcal{R}b$ it's not always the case that $b\mathcal{R}a$ is true, for example: when the length of a is less than or equal 10.
•	not anti-symmetric: The relation would have pairs $(a,b) \in \mathcal{R}$ and $(b,a) \in \mathcal{R}$ when both the length of a and b are greater than 10 but it is not always the case that a and b are the same line segment.
•	not asymmetric: will fail for the pairs when both the length of a and b are greater than 10, example when a has length equal to 12 and b has length equal to 13 which will make $a\mathcal{R}b$ true and $b\mathcal{R}a$ also true.
•	transitive: $a\mathcal{R}b$ and $b\mathcal{R}c \to a\mathcal{R}c$, for $a\mathcal{R}b$ to be true, it means that the length of b greater than 10, and having $b\mathcal{R}c$ means that the length of c greater than 10, therefore $(a,c) \in \mathcal{R}$ since c already satisfied the requirement to have length greater than 10.
c) (a, b	$) \in \mathcal{R}$ if and only if a and b have at least two common points.
r 🔾	$s\bigcirc an\bigcirc as\bigcirc t\bigcirc$
Solı	ition:
The	relation is reflexive and symmetric
•	reflexive: $a\mathcal{R}a$ would always be true, since each line have all the points in common with iteslf so it did meet the minimum requirement, two points.
•	symmetric: for every $a\mathcal{R}b$ it' always the case that $b\mathcal{R}a$ is true, so whenever a has at least two common points with b , b would have at least two common points with a , which is always true in this relation
•	not anti-symmetric: The relation would have pairs (a, b) and (b, a) but it is not always the case that a and b are the same line segments, two lines could have points in common but its not necessarily for them to be the same line.
4	

a) $(a,b) \in \mathcal{R}$ if and only if a and b are not equal in length.

• not reflexive: since $a \neq b$ so we can never have $(a, a) \in \mathcal{R}$ for any $a \in \mathcal{U}$.

tion of the relation "a and b are not equal in length".

• **not** asymmetric: since it is symmetric.

b) $(a, b) \in \mathcal{R}$ if and only if b is longer than 10 cm.

• symmetric: for every $a\mathcal{R}b$, which means that $a \neq b$, the relation would always contain $b\mathcal{R}a$,

• not anti-symmetric: The relation would have pairs (a, b) and (b, a) but $a \neq b$, from the defini-

• not transitive: $a\mathcal{R}b$ and $b\mathcal{R}c \to a\mathcal{R}c$, for example: a could have length 1 and b could have length 2, which makes $a\mathcal{R}b$ true, and c could have length 1, which makes $b\mathcal{R}c$ true, but we can

not have the pair $(a, c) \in \mathcal{R}$ because in this case both a and c have equal length.

 $r \cap s \cap an \cap as \cap t \cap$

The relation is only symmetric.

Solution:

 $b \neq a$.

- not asymmetric: since it is symmetric.
- **not** transitive: $a\mathcal{R}b$ and $b\mathcal{R}c \to a\mathcal{R}c$, for $a\mathcal{R}b$ to be true it means that a has at least two points in common with b, and having $b\mathcal{R}c$ means that b has at least two points in common with c, but that does not necessarily mean that a and c would have points in common.

Exercise 1-5

Programming

Using your favorite programming language, implement an abstract data type for sets. Your implementation should include functions/methods/clauses for checking set membership, checking subset relations among sets, and computing set intersections, unions and differences.