- Hogg, R.V, McKean, J. and Craig, A.T. (2012): Introduction to Mathematical Statistics, 7th Edn. Pearson Education.
- Casella, G. and Berger, R.L. (2002): Statistical Inference. 2nd Edition, Duxbury Press, Pacific Grove.
- Siegel, S. (1956). Nonparametric statistics for the behavioral sciences. McGraw-Hill.
- •Lehmann, E. and Romano. J. (2005): Testing statistical hypotheses, 3rd Edn. Springer, New York.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE –17: DESIGN OF EXPERIMENTS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite of
& Code		Lecture	Tutorial	Practical/ Practice	criteria	the course (if any)
Design of Experiments	4	3	0	1	Class XII pass with Mathematics	knowledge of sampling distributions and linear models

Learning Objectives

The learning objectives include:

- To design and conduct experiments.
- To analyze and interpret data.

Learning Outcomes:

After completing this course, students should have developed a clear understanding of:

- The fundamental concepts of design of experiments.
- Introduction to planning valid and economical experiments within given resources.
- Completely randomized design.
- Randomized block design.
- Latin square design.
- Balanced incomplete block design.
- Full and confounded factorial designs with two levels.
- Introduction to factorial designs at three levels.
- Fractional factorial designs with two levels

SYLLABUS OF DSC-17

Theory

UNIT I (13 hours) Experimental designs Role, historical perspective, terminology, experimental error, basic principles, uniformity trials, fertility contour maps, choice of size and shape of plots and blocks. Basic designs: Completely Randomized Design (CRD), Randomized Block Design (RBD), Latin Square Design (LSD) – layout, model and statistical analysis, relative efficiency, analysis with one missing observation in case of RBD.

UNIT II (10 hours)

Incomplete Block Designs

Balanced Incomplete Block Design (BIBD) – parameters, relationships among its parameters, incidence matrix and its properties, Symmetric BIBD, Resolvable BIBD, Affine Resolvable BIBD, Complimentary BIBD, Residual BIBD, Dual BIBD, Derived BIBD.

UNIT III (12 hours)

Factorial experiments

advantages, notations and concepts, 2^2 , 2^3 ,..., 2^n , 3^2 factorial experiments, design and analysis, Total and Partial confounding for 2^n (n \leq 6), Factorial experiments in a single replicate.

UNIT IV (10 hours)

Fractional factorial experiments: Construction of one-half and one-quarter fractions of 2^n (n \leq 6) factorial experiments, Alias structure, Resolution of a design.

PRACTICAL/LAB WORK – (30 hours)

List of Practical:

- 1. Analysis of a CRD with equal and unequal replicates.
- 2. Analysis of RBD.
- 3. Analysis of LSD.
- 4. Analysis of RBD with one missing observation.
- 5. Analysis of 2² and 2³ factorial in CRD, RBD and LSD.
- 6. Analysis of 3² factorial in CRD, RBD.
- 7. Analysis of a completely confounded two level factorial design in 2 blocks.
- 8. Analysis of a completely confounded two level factorial design in 4 blocks.
- 9. Analysis of a partially confounded two level factorial design.
- 10. Analysis of a single replicate of a 2ⁿ design.
- 11. Analysis of one half fraction of 2ⁿ factorial design.
- 12. Analysis of one quarter fraction of 2ⁿ factorial design.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS

- Das., M.N. and Giri, N.C. (1986): Design and Analysis of Experiments. Wiley Eastern.
- Goon, A.M., Gupta, M.K. and Dasgupta, B. (2005): Fundamentals of Statistics. Vol. II, 8th Edition. World Press, Kolkata.
- Montgomery, D. C. (2008): Design and Analysis of Experiments. John Wiley.
- Mukhopadhyay, P (2011): Applied Statistics, 2nd edition revised reprint, Books and Allied(P) Ltd.

SUGGESTIVE READINGS:

- Cochran, W.G. and Cox, G.M. (1959): Experimental Design. Asia Publishing House.
- Kempthorne, O. (1965): The Design and Analysis of Experiments. John Wiley.
- Federer, W. T. (1955): Experimental Design, Macmillan, N. Y.
- Anderson, V. L. and McLean, R. A. (1974): Design of Experiments, Marcel Dekker, Inc., N. Y.