Arquitectura de Sistemas e Computadores II 1ª Frequência

Departamento de Informática Universidade de Évora

25 de Outubro de 2016

Indique todos os cálculos efectuados

Perguntas rápidas

- 1. [1 valor] Um sistema com um relógio com uma frequência superior tem sempre melhor desempenho do que um sistema com um relógio com uma frequência inferior?
- **2.** [1 valor] Se um programa demora mais tempo a executar no computador X do que no computador Y, então o computador X apresenta melhor desempenho do que o Y para esse programa?
- 3. [1 valor] Qual o CPI da instrução sw na implementação MIPS monociclo?
- 4. [1 valor] Qual o resultado da extensão com sinal de 1110 1011₂ para 12 bits?

Desempenho

5. A execução do programa P no computador A, cujo ciclo de relógio dura $500 \,\mathrm{ps}$, demora $5 \,\mathrm{s}$. As instruções do programa executadas apresentam a seguinte distribuição:

Classe	Aritméticas	Acesso à memória	Saltos
%	40	30	30
CPI	1	4	3

- (a) [3 valores] Quantas instruções são executadas pelo processador de A na execução de P?
- (b) [2 valores] O sistema B possui um processador que implementa a mesma arquitectura e um relógio que funciona a uma frequência que é o dobro da de A. Este aumento da frequência do relógio tem como consequência o aumento do CPI de P em B em 25%.

Qual o speedup que se obtém quando P é executado em B, em relação à sua execução em A?

Implementação MIPS monociclo

6. [6 valores] Pretende-se que a implementação MIPS monociclo da Figura 1 suporte a execução da instrução jre (jump relative), que é uma instrução tipo-I com dois argumentos:

		jre	rs	0	offset
<pre>jre offset(rs)</pre>	bits	6	5	5	16

O efeito desta instrução é provocar o salto da execução para a instrução cujo endereço é obtido somando offset, que pode ser negativo, ao conteúdo de rs.

- (a) Quais das unidades funcionais e dos multiplexers existentes serão usados na execução desta instrução?
- (b) Que unidades funcionais (incluindo multiplexers) e que sinais de controlo é necessário acrescentar?

(CONTINUA...)

- (c) Quais os valores que os vários sinais de controlo deverão ter durante a execução desta instrução?
 (Não precisa de indicar o valor de ALUOp, basta dizer qual será a operação executada pela ALU durante a execução desta instrução.)
- (d) Apresente na Figura 1 as alterações à implementação que considerar necessário fazer.
- 7. Seja PC = 1000 0300₁₆ o endereço da instrução sw cuja codificação binária completa é a seguinte:

	101011		01010	10000	00000000 11001000		
bits	31	26	21	16		0	

(a) [2,5 valores] Sejam os seguintes os valores contidos em alguns dos registos do processador, quando a execução da instrução se inicia:

Registo	1	5	6	8	10	12	16	23	24	31
Valor	10	24	14213	1912	732	1030	3100	269484032	77	268435456

Indique os valores que estão presentes, no fim do ciclo em que a instrução executa, nos pontos (A), (B), (C), (D) do circuito da Figura 2.

(b) [2,5 valores] Sejam as seguintes as latências das várias componentes do processador:

	PC	Memória	Banco	ALU	Somadores	Shift	Extensão	Multiple xers	Controlo	Controlo
			registos			left 2	com sinal			da ALU
Ì	$10\mathrm{ps}$	$400\mathrm{ps}$	$220\mathrm{ps}$	$250\mathrm{ps}$	$200\mathrm{ps}$	$2\mathrm{ps}$	$5\mathrm{ps}$	$40\mathrm{ps}$	$40\mathrm{ps}$	$15\mathrm{ps}$

(Considere que os restantes elementos lógicos têm latência zero.)

Calcule o tempo que demora, desde o início do ciclo de relógio em que a instrução é executada, até que os valores correctos estejam disponíveis nos pontos A, B, C e D do circuito da Figura 2. Explicite todos os tempos que considerou, nos cálculos que fez, para chegar aos valores que obteve.

Nome: ______ Número: _____

Figura 1: Diagrama de blocos da implementação MIPS monociclo para a pergunta 6

Figura 2: Diagrama de blocos da implementação MIPS monociclo para a pergunta 7