STOR 635 HW 8

BY AMEER QAQISH

March 28, 2022

1 Solutions

1. Let $\{X_n\}$ be a \mathcal{F}_n - martingale on (Ω, \mathcal{F}, P) such that for some $M < \infty$, $|X_{n+1} - X_n| \le M$ for all n. Suppose $X_0 = 0$. Let

 $A \doteq \{\lim X_n \text{ exists and is finite}\}, \quad B = \{\lim \sup X_n = \infty \text{ and } \lim \inf X_n = -\infty\}.$ Show $P(A \cup B) = 1$.

Proof. Let $S = \{\limsup_{n \to \infty} X_n < \infty \}$. We will show that $A =_P S$, i.e. that $1_A = 1_S$ a.s.. We have $A \subset S$. Now it remains to show that $S \subset_P A$, i.e. that $1_S \leq 1_A$ a.s., or equivalently, that almost every $\omega \in S$ is also in A. For K > 0, define the stopping time

$$\tau_K = \inf \{ n \in \mathbb{N}_0 : X_n > K \}.$$

Note that $\tau_K \geq 1$ since $X_0 = 0$. For $\omega \in \Omega$, we have $X_n(\omega) \leq K$ for $n < \tau_K(\omega)$, and if $\tau_K(\omega) < \infty$ we have $X_{\tau_K(\omega)}(\omega) \leq X_{\tau_K(\omega)-1}(\omega) + |X_{\tau_K(\omega)}(\omega) - X_{\tau_K(\omega)-1}(\omega)| \leq K + M$. Thus $X_{\tau_K \wedge n} \leq K + M$. Thus $\sup_{n \in \mathbb{N}_0} X_{\tau_K \wedge n}^+ \leq K + M < \infty$. By the martingale convergence theorem, there is an L^1 real valued random variable $X_\infty^{\tau_K}$ such that $X_{\tau_K \wedge n} \to X_\infty^{\tau_K}$ a.s.. Thus

$$\{\tau_K = \infty\} \subset_P \{X_n \to X_\infty^{\tau_K}\} \subset A.$$

Thus

$$\{\tau_K = \infty\} = \left\{ \sup_{n \in \mathbb{N}_0} X_n \le K \right\} \subset_P A.$$

Taking the union over $K \in \mathbb{N}$ yields

$$\left\{\sup_{n\in\mathbb{N}_0}X_n<\infty\right\}\subset_P A.$$

For $k \in \mathbb{N}$, we have $\{\sup_{n \in \mathbb{N}_0} X_n < \infty\} = \{\sup_{n \ge k} X_n < \infty\}$. Thus

$$\left\{\sup_{n\in\mathbb{N}_0}X_n<\infty\right\}=\bigcup_{k=1}^{\infty}\left\{\sup_{n\geq k}X_n<\infty\right\}=\left\{\inf_{k\geq 1}\sup_{n\geq k}X_n<\infty\right\}=\left\{\limsup_{n\to\infty}X_n<\infty\right\}.$$

Thus $S \subset_P A$. Thus $S =_P A$.

Applying the previous result to the martingale $(-X_n)_{n\in\mathbb{N}_0}$, we get

$$C := \left\{ \liminf_{n \to \infty} X_n > -\infty \right\} =_P A.$$

Section 1

We have $B = S^c \cap C^c =_P A^c \cap A^c = A^c$. Thus $P(A \cup B) = 1$.

2. Let $\{\mathcal{F}_n\}_{n\in\mathbb{N}_0}$ be a filtration with $\mathcal{F}_0 \doteq \{\emptyset, \Omega\}$. Let $\{A_n\}$ be a sequence of events with $A_n \in \mathcal{F}_n$. Show that

$$\{A_n \text{ i.o}\} =_P \left\{ \sum_{n=1}^{\infty} P(A_n \mid \mathcal{F}_{n-1}) = \infty \right\}.$$

Proof. Let $1_{A_n} = M_n + C_n$ be the Doob's decomposition of 1_{A_n} so that for $n \in \mathbb{N}_0$,

$$M_n = \sum_{i=1}^{n} (1_{A_i} - P(A_i \mid \mathcal{F}_{i-1}))$$

is a martingale. Since $\{A_n \text{ i.o}\} = \{\sum_{i=1}^{\infty} 1_{A_i} = \infty\}$, it suffices to show that

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} =_P \left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\}$$

For each $i \in \mathbb{N}$, since $P(A_i | \mathcal{F}_{i-1}) \ge 0$ a.e. we can let $P(A_i | \mathcal{F}_{i-1})$ be a version of itself such that $P(A_i | \mathcal{F}_{i-1}) \ge 0$ everywhere. Suppose $\omega \in \{\sum_{i=1}^{\infty} 1_{A_i} < \infty\}$. For $i \in \mathbb{N}$, let

$$a_i = 1_{A_i}(\omega) \ge 0,$$

$$b_i = P(A_i \mid \mathcal{F}_{i-1})(\omega) > 0.$$

We have

$$M_n(\omega) = \sum_{i=1}^n (a_i - b_i).$$

Since $\sum_{i=1}^{\infty} a_i = r < \infty$,

$$\limsup_{n \to \infty} M_n(\omega) = \limsup_{n \to \infty} \left(\sum_{i=1}^n a_i - \sum_{i=1}^n b_i \right)$$
$$= r - \sum_{i=1}^\infty b_i$$
$$\leq r$$
$$< \infty.$$

Thus

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} \subset \left\{ \limsup_{n \to \infty} M_n < \infty \right\}.$$

Note that M is a martingale with $|M_{n+1} - M_n| \le 2$ for all n. By the proof of problem 1,

$$\left\{ \limsup_{n \to \infty} M_n < \infty \right\} =_P \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}.$$

Thus

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} \subset_P \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}.$$

Solutions 3

On the set $\{\sum_{i=1}^{\infty} 1_{A_i} < \infty\} \cap \{\lim_{n\to\infty} M_n \text{ exists in } \mathbb{R}\}$ we have

$$\mathbb{R} \ni \lim_{n \to \infty} M_n - \sum_{i=1}^{\infty} 1_{A_i} = \sum_{i=1}^{\infty} (1_{A_i} - P(A_i \mid \mathcal{F}_{i-1})) - \sum_{i=1}^{\infty} 1_{A_i} = \sum_{i=1}^{\infty} -P(A_i \mid \mathcal{F}_{i-1}).$$

Hence

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} \cap \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\} \subset \left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\}.$$

Thus

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} =_P \left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} \cap \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}$$

$$\subset_P \left\{ \sum_{i=1}^{\infty} P(A_i | \mathcal{F}_{i-1}) < \infty \right\}.$$

Now suppose $\omega \in \{\sum_{i=1}^{\infty} P(A_i | \mathcal{F}_{i-1}) < \infty\}$. Let a_i and b_i be defined as before. Since $\sum_{i=1}^{\infty} b_i = s < \infty$,

$$\liminf_{n \to \infty} M_n(\omega) = \liminf_{n \to \infty} \left(\sum_{i=1}^n a_i - \sum_{i=1}^n b_i \right)$$

$$= \sum_{i=1}^\infty a_i - s$$

$$\geq -s$$

$$> -\infty.$$

Thus

$$\left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\} \subset \left\{ \liminf_{n \to \infty} M_n > -\infty \right\}.$$

By the proof of problem 1,

$$\left\{ \liminf_{n \to \infty} M_n > -\infty \right\} =_P \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}.$$

Thus

$$\left\{ \sum_{i=1}^{\infty} P(A_i | \mathcal{F}_{i-1}) < \infty \right\} \subset_P \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}$$

By a similar argument as before,

$$\left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\} =_P \left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\} \cap \left\{ \lim_{n \to \infty} M_n \text{ exists in } \mathbb{R} \right\}$$

$$\subset \left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\}.$$

4 Section 1

Thus we have shown that $\{\sum_{i=1}^{\infty} 1_{A_i} < \infty\} \subset_P \{\sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty\}$ and $\{\sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty\} \subset_P \{\sum_{i=1}^{\infty} 1_{A_i} < \infty\}$. Hence

$$\left\{ \sum_{i=1}^{\infty} 1_{A_i} < \infty \right\} =_P \left\{ \sum_{i=1}^{\infty} P(A_i \mid \mathcal{F}_{i-1}) < \infty \right\}.$$

3. Let $n \in \mathbb{N}$ and X_1, \ldots, X_n be real valued random variables. Show that

$$\frac{1}{n!} \sum_{\rho \in S(n)} \left(\frac{1}{n-1} \sum_{i=1}^{n-1} X_{\rho(i)} \right) = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

Proof. It is enough to show that for every $x_1, \ldots, x_n \in \mathbb{R}$,

$$\frac{1}{n!} \sum_{\rho \in S(n)} \left(\frac{1}{n-1} \sum_{i=1}^{n-1} x_{\rho(i)} \right) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

For $f: \mathbb{R}^n \to \mathbb{R}$, define $A_n f: \mathbb{R}^n \to \mathbb{R}$ by

$$A_n f = \frac{1}{n!} \sum_{\rho \in S(n)} f \circ \rho,$$

where for $\rho \in S(n)$, we define $\rho : \mathbb{R}^n \to \mathbb{R}^n$ by $\rho(x) = (x_{\rho(1)}, \dots, x_{\rho(n)})$. Since A_n is linear,

$$\frac{1}{n!} \sum_{\rho \in S(n)} \left(\frac{1}{n-1} \sum_{i=1}^{n-1} x_{\rho(i)} \right) = A_n \left(\frac{1}{n-1} \sum_{i=1}^{n-1} x_i \right)$$
$$= \frac{1}{n-1} \sum_{i=1}^{n-1} A_n x_i.$$

For $i \in \{1, \ldots, n-1\}$ we have

$$A_{n} x_{i} = \frac{1}{n!} \sum_{\rho \in S(n)} x_{\rho(i)}$$

$$= \frac{1}{n!} \sum_{j=1}^{n} \sum_{\rho \in S(n): \rho(i)=j} x_{j}$$

$$= \frac{1}{n!} \sum_{j=1}^{n} \# \{ \rho \in S(n): \rho(i)=j \} x_{j}$$

$$= \frac{1}{n} \sum_{j=1}^{n} x_{j}.$$

Thus

$$\frac{1}{n-1} \sum_{i=1}^{n-1} A_n x_i = \frac{1}{n} \sum_{j=1}^{n} x_j.$$

This completes the proof.

Solutions 5

4. Recall the σ -field \mathcal{E}_n introduced in the class. Show that $A \in \mathcal{E}_n$ if and only if for some $B \in \mathcal{B}(E)^{\otimes \infty}$, with the property $B^{\rho} = B$ for all $\rho \in S(n)$,

$$A = X^{-1}(B) = \{\omega : (X_1(\omega), \dots) \in B\}$$

where $B^{\rho} = \{x = (x_1, \dots) \in E^{\infty} : (x_{\rho(1)}, \dots) \in B\}.$

Proof. On $E^{\mathbb{N}}$ we use the σ -algebra $\mathcal{B}(E)^{\otimes \mathbb{N}} = \mathcal{B}(E^{\mathbb{N}})$. We have the definitions

$$\mathcal{E}'_n = \sigma\{F \mid F : E^{\mathbb{N}} \to \mathbb{R} \text{ is measurable and } n\text{-symmetric}\},$$

$$\mathcal{E}_n = X^{-1}(\mathcal{E}'_n) = \{ \{ X \in A \} : A \in \mathcal{E}'_n \}.$$

For $\rho \in S(n)$, define $\rho : E^{\mathbb{N}} \to E^{\mathbb{N}}$ by $\rho(x) = (x_{\rho(1)}, \dots, x_{\rho(n)}, x_{n+1}, \dots)$. Hence "F is n-symmetric" means $F \circ \rho = F$ for all $\rho \in S(n)$. To solve the problem, it suffices to show that

$$\mathcal{E}'_n = \mathcal{F} := \{ B \in \mathcal{B}(E^{\mathbb{N}}) : B^{\rho} = B \text{ for all } \rho \in S(n) \}.$$

Since $B^{\rho} = \rho^{-1}(B)$ and inverse image commutes with unions and complements, it follows that \mathcal{F} is a σ -algebra. Let $F: E^{\mathbb{N}} \to \mathbb{R}$ be measurable and n-symmetric and $A \in \mathcal{B}(\mathbb{R})$. Then for every $\rho \in S(n)$,

$$F^{-1}(A)^{\rho} = \rho^{-1}(F^{-1}(A)) = (F \circ \rho)^{-1}(A) = F^{-1}(A).$$

Thus $F^{-1}(A) \in \mathcal{F}$. Since such sets $F^{-1}(A)$ generate \mathcal{E}'_n , it follows that $\mathcal{E}'_n \subset \mathcal{F}$. Now let $B \in \mathcal{F}$. We have

$$1_B = 1_{B^{\rho}} = 1_{\rho^{-1}(B)} = 1_B \circ \rho.$$

Thus 1_B is measurable and n-symmetric. Thus $B \in \mathcal{E}'_n$. Thus $\mathcal{F} \subset \mathcal{E}'_n$. Thus $\mathcal{E}'_n = \mathcal{F}$. \square

5. Recall the exchangeable σ -field \mathcal{E} and the tail σ -field \mathcal{T} . Show that $\mathcal{T} \subset \mathcal{E}$ and the inclusion is proper.

Proof. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of (E,\mathcal{B}) -valued random variables. Let $n\in\mathbb{N}$ be arbitrary. For $A\in\mathcal{B}$ and $m\geq n+1$, we have that $x\to x_m$ is measurable and n-symmetric, and hence $X_m^{-1}(A)\subset\mathcal{E}_n$. Thus $\sigma(\{X_m:m\geq n+1\})=\sigma\{X_m^{-1}(A):m\geq n+1,A\in\mathcal{B}\}\subset\mathcal{E}_n$. Taking the intersection over $n\in\mathbb{N}$ gives $\mathcal{T}\subset\mathcal{E}$.

For an example where the inclusion is proper, assume that E has more than one element, and let $(X_n)_{n\in\mathbb{N}}$ be the coordinate functions on $(E^{\mathbb{N}}, \mathcal{B}^{\otimes \mathbb{N}})$, so that $X_n(x) = x_n$. Define $f: E^{\mathbb{N}} \to \{0, 1\}$ by $f(x) = 1_{\{x_1 = x_2 = \dots\}}$. Since $f(x) = \prod_{n=1}^{\infty} 1_{\{x_n = x_{n+1}\}}$, f is measurable. f is invariant under permutations of \mathbb{N} , so f is \mathcal{E} -measurable. For contradiction, suppose f is \mathcal{T} -measurable. Since f is $\sigma\{X_m : m \geq 2\}$ -measurable, there exists a measurable function $g: E^{\mathbb{N}} \to \mathbb{R}$ such that $f(x) = g(x_2, x_3, \dots)$ for all $x \in E^{\mathbb{N}}$. But then for every $x, y \in E$,

$$1 = f(x, x, x, \dots) = g(x, x, \dots) = f(y, x, x, \dots),$$

and hence x = y. Since E has more than one element, this is a contradiction. Thus f is not \mathcal{T} -measurable.

Section 1

6. Let $\{X_n\}_{n\in\mathbb{N}}$ be exchangeable with values in a a Polish space E. Assume that for some $k\in\mathbb{N}, \varphi: E^k\to\mathbb{R}$ is measurable and satisfies $E(|\varphi(X_1,\ldots,X_k)|)<\infty$. Let

$$A_n(\varphi) \doteq \frac{1}{n!} \sum_{\rho \in S(n)} \varphi(X_{\rho(1)}, \dots, X_{\rho(k)}).$$

Recall the σ -field \mathcal{E}_n introduced in the online lecture. Show that $(A_n(\varphi), \mathcal{E}_n)_{n \geq k}$ is a backward martingale.

Proof. For $n \in \mathbb{N}$ we have $E(\varphi(X) | \mathcal{E}_n) = A_n(\varphi)$ (this was proven in class). For $n \ge 1$ we have by the tower property that

$$E(A_{n-1}(\varphi) \mid \mathcal{E}_n) = E(E(\varphi(X) \mid \mathcal{E}_{n-1}) \mid \mathcal{E}_n) = E(\varphi(X) \mid \mathcal{E}_n) = A_n(\varphi).$$

Thus $(A_n(\varphi), \mathcal{E}_n)_{n\geq 1}$ is a backward martingale.