SI231b: Matrix Computations

Lecture 4: Basic Concepts (Part 3)

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Sept. 19, 2022

Basic Concepts: Part 3

- sums of subspaces
- ▶ dimension of subspaces, rank
- ▶ inner product, orthogonality
- matrix products, computational complexity

MIT Lab, Yue Qiu

Sums of Subspaces

If $\mathcal X$ and $\mathcal Y$ are subspaces of a vector space $\mathcal V$, define the sum of two subspaces by

$$\mathcal{X} + \mathcal{Y} = \{ \mathbf{x} + \mathbf{y} | \mathbf{x} \in \mathcal{X} \text{ and } \mathbf{y} \in \mathcal{Y} \}$$

then

- ▶ the sum X + Y is again a subspace of V
- ▶ if S_X , S_Y spans X and Y, then $S_X \cup S_Y$ spans X + Y

Examples

- ▶ If $\mathcal{X} \subset \mathbb{R}^2$ and $\mathcal{Y} \subset \mathbb{R}^2$ are subspaces defined by two different lines through the origin, then $\mathcal{X} + \mathcal{Y} = \mathbb{R}^2$
- ▶ If \mathcal{X} is a subspace represents a plane passing through the origin in \mathbb{R}^3 and \mathcal{Y} is a subspace defined by the line through the origin that is perpendicular to \mathcal{X} . $\mathcal{X} + \mathcal{V} = \mathbb{R}^3$

Direct Sum of Subspaces

Let $\mathcal X$ and $\mathcal Y$ be subspaces of a vector space $\mathcal V$, then $\mathcal V$ is said to be a direct sum of $\mathcal X$ and $\mathcal Y$, i.e., $\mathcal V=\mathcal X\oplus\mathcal Y$, if

$$\mathcal{V} = \mathcal{X} + \mathcal{Y}$$
 and $\mathcal{X} \cap \mathcal{Y} = \{0\}$

Equivalently,

Every vector \boldsymbol{u} from the vector space $\mathcal V$ can be uniquely represented by

$$\boldsymbol{u}=\boldsymbol{u}_1+\boldsymbol{u}_2$$

with $\mathbf{u}_1 \in \mathcal{X}$ and $\mathbf{u}_2 \in \mathcal{Y}$. Then we use

$$\mathcal{V} = \mathcal{X} \oplus \mathcal{Y}$$

to represent the direct sum of $\mathcal X$ and $\mathcal Y$.

Example:

 $\mathsf{span}\{e_1,\ e_2\}\oplus\mathsf{span}\{e_3\}=\mathbb{R}^3$

MIT Lab, Yue Qiu S12810: Matrix Computations, ShanghaliTech Sept. 19, 2022

Dimension of Subspaces

The dimension of a nontrivial subspace S is defined as the number of elements of a basis for S.

- ▶ the dimension of of the trivial subspace $\{0\}$ is defined as 0.
- ightharpoonup dim $\mathcal S$ will be used as the notation for denoting the dimension of $\mathcal S$
- physical meaning: effective degrees of freedom of the subspace
- examples:
 - dim $\mathbb{R}^m = m$
 - if k is the number of maximal linearly independent vectors of $\{a_1, \ldots, a_n\}$, then $\dim \operatorname{span}\{a_1, \ldots, a_n\} = k$.

Dimension of Subspaces

Properties:

- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$, then dim $S_1 \leq \dim S_2$.
- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$ and dim $S_1 = \dim S_2$, then $S_1 = S_2$.
- ▶ let $S \subseteq \mathbb{R}^m$ be a subspace. Then

$$\dim \mathcal{S} = m \Longleftrightarrow \mathcal{S} = \mathbb{R}^m$$
.

- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. We have $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$.
 - as a more advanced result, we also have

$$\dim(\mathcal{S}_1+\mathcal{S}_2)=\dim\mathcal{S}_1+\dim\mathcal{S}_2-\dim(\mathcal{S}_1\cap\mathcal{S}_2).$$

ullet if $\mathcal{S}=\mathcal{S}_1\oplus\mathcal{S}_2$, then

$$\dim \mathcal{S} = \dim \mathcal{S}_1 + \dim \mathcal{S}_2$$

◆ロト 4回 ト 4 章 ト 4 章 ト 章 め 9 ○ ○

Four Fundamental Subspaces: Range Spaces

Range Spaces

1. The range of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ denoted by $\mathcal{R}(\mathbf{A})$, is defined to be the subspace of \mathbb{R}^m generated by the range of $\mathbf{A}\mathbf{x}$

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n \} \subset \mathbb{R}^m$$

- also called column space
- 2. The range of \mathbf{A}^T is the subspace of \mathbb{R}^n defined by

$$\mathcal{R}(\mathbf{A}^T) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = \mathbf{A}^T \mathbf{y}, \ \mathbf{y} \in \mathbb{R}^m \right\} \subset \mathbb{R}^n$$

- also called row space
- 3. $\mathcal{R}(\mathbf{A})$ is the set of all "images" of vectors $\mathbf{x} \in \mathbb{R}^n$ under transformation by \mathbf{A} , sometimes $\mathcal{R}(\mathbf{A})$ is called the image space of \mathbf{A} .

Four Fundamental Subspaces: Nullspaces

Null Spaces

1. The null space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ denoted by $\mathcal{N}(\mathbf{A})$, is defined to be the subspace of \mathbb{R}^n with

$$\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0}\} \subset \mathbb{R}^n$$

- $\mathcal{N}(\mathbf{A})$ is simply the set of all solutions to the homogeneous system $\mathbf{A}\mathbf{x}=\mathbf{0}$.
- 2. Similarly, the nullspace of \mathbf{A}^T , i.e., $\mathcal{N}(\mathbf{A}^T)$

$$\mathcal{N}(\mathbf{A}^T) = \left\{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{A}^T \mathbf{y} = \mathbf{0} \right\} \subset \mathbb{R}^m$$

• also called left-hand nullspace of **A** since it is the set of all solutions to the left-hand homogeneous system $\mathbf{y}^T \mathbf{A} = \mathbf{0}^T$

Rank

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by rank(\mathbf{A}), is defined as the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

- rank(A) is the maximum number of linearly independent columns of A
- ▶ $\dim \mathcal{R}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$ by definition

Facts:

rank(A) = rank(A^T), i.e., the rank of A is also the maximum number of linearly independent rows of A

Proof?

- $ightharpoonup rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- ▶ $rank(AB) \le min\{rank(A), rank(B)\}.$
 - Equality holds when A and B are full rank.

Rank

- ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have
 - full column rank if the columns of A are linearly independent (more precisely, the collection of all columns of A is linearly independent)
 - ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full column rank $\iff m \ge n$, rank $(\mathbf{A}) = n$
 - full row rank if the rows of A are linearly independent
 - ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full row rank $\iff m \le n$, rank $(\mathbf{A}) = m$
 - full rank if rank(A) = min{m, n}; i.e., it has either full column rank or full row rank
 - rank deficient if rank(\mathbf{A}) $< \min\{m, n\}$

Orthogonality of Four Fundamental Subspaces

- $ightharpoonup \mathcal{R}(\mathbf{A}) \perp \mathcal{N}(\mathbf{A}^T)$
- $ightharpoonup \mathcal{R}(\mathbf{A}^T) \perp \mathcal{N}(\mathbf{A})$
- Details will follow in the later part

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

MIT Lab, Yue Qiu

Rank Nulllity Theorem

Theorem

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have

$$rank(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}) = n$$

Can we prove this?

Equivalently, we have

$$\mathcal{R}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}^T) = \mathbb{R}^m$$

$$\mathcal{R}(\mathbf{A}^T) \oplus \mathcal{N}(\mathbf{A}) = \mathbb{R}^n$$

Inner Product

The inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n y_i x_i = \mathbf{y}^T \mathbf{x}.$$

- ightharpoonup x, y are said to be orthogonal to each other if $\langle x, y \rangle = 0$
- ightharpoonup x, y are said to be parallel if $x = \alpha y$ for some α

The angle between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\theta = \arccos\left(rac{\mathbf{y}^T\mathbf{x}}{\|\mathbf{x}\|_2\|\mathbf{y}\|_2}
ight).$$

- **x**, **y** are orthogonal if $\theta = \pi/2$
- ightharpoonup x, y are parallel if $\theta = 0$ or $\theta = \pi$

Important Inequalities for Inner Product

Cauchy-Schwartz inequality:

$$|\mathbf{x}^T\mathbf{y}| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

Also, the above equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

▶ Proof: suppose $y \neq 0$; the case of y = 0 is trivial. For any $\alpha \in \mathbb{R}$,

$$0 \le \|\mathbf{x} - \alpha \mathbf{y}\|_{2}^{2} = (\mathbf{x} - \alpha \mathbf{y})^{T} (\mathbf{x} - \alpha \mathbf{y}) = \|\mathbf{x}\|_{2}^{2} - 2\alpha \mathbf{x}^{T} \mathbf{y} + \alpha^{2} \|\mathbf{y}\|_{2}^{2}.$$
 (*)

Also, the equality above holds if and only if $\mathbf{x} = \beta \mathbf{y}$ for some β . Let

$$f(\alpha) = \|\mathbf{x}\|_2^2 - 2\alpha \mathbf{x}^T \mathbf{y} + \alpha^2 \|\mathbf{y}\|_2^2.$$

The function f is minimized when $\alpha = (\mathbf{x}^T \mathbf{y}) / ||\mathbf{y}||_2^2$. Plugging this α back to (*) leads to the desired result.

4□ > 4□ > 4□ > 4□ > 4□ > □
90

MIT Lab, Yue Qiu

Important Inequalities for Inner Product

Hölder inequality:

$$|\mathbf{x}^T\mathbf{y}| \leq ||\mathbf{x}||_p ||\mathbf{y}||_q$$

for any p, q such that 1/p + 1/q = 1, $p \ge 1$.

- examples:
 - (p,q) = (2,2): Cauchy-Schwartz inequality
 - $(p,q) = (1,\infty)$: $|\mathbf{x}^T \mathbf{y}| \leq ||\mathbf{x}||_1 ||\mathbf{y}||_{\infty}$.

This can be easily verified to be true:

$$|\mathbf{x}^T\mathbf{y}| \leq \sum_{i=1}^n |x_iy_i| \leq \max_j |y_j| \left(\sum_{i=1}^n |x_i|\right) = \|\mathbf{x}\|_1 \|\mathbf{y}\|_{\infty}.$$

Invertible Matrices

Facts (for a nonsingular A):

- \triangleright A^{-1} always exists and is unique (or there are no two inverses of A)
- ightharpoonup ightharpoonup is nonsingular
- $(A^{-1})^{-1} = A$
- $ightharpoonup (AB)^{-1} = B^{-1}A^{-1}$, where A, B are square and nonsingular
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
 - as a shorthand notation, we will denote $\mathbf{A}^{-T} = (\mathbf{A}^T)^{-1}$

Matrix Product Representations

Let $\mathbf{A} \in \mathbb{R}^{m \times k}$, $\mathbf{B} \in \mathbb{R}^{k \times n}$, and consider

$$C = AB$$
.

column representation:

$$\mathbf{c}_i = \mathbf{A}\mathbf{b}_i, \quad i = 1, \ldots, n$$

▶ inner-product representation: redefine $\mathbf{a}_i \in \mathbb{R}^k$ as the *i*th row of \mathbf{A} .

$$\mathbf{AB} = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^T \mathbf{b}_1 & \cdots & \mathbf{a}_1^T \mathbf{b}_n \\ \vdots & & \vdots \\ \mathbf{a}_m^T \mathbf{b}_1 & \cdots & \mathbf{b}_m^T \mathbf{b}_n \end{bmatrix}$$

Thus,

$$c_{ij} = \mathbf{a}_i^T \mathbf{b}_j$$
, for any i, j .

- (ロ) (個) (注) (注) (注) (注 り) (()

Matrix Product Representations

• outer-product representation: redefine $\mathbf{b}_i \in \mathbb{R}^k$ as the *i*th row of **B**. Thus,

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \sum_{i=1}^{k} \mathbf{a}_{i} \mathbf{b}_{i}^{T}$$

MIT Lab, Yue Qiu

Matrix Product Representations

- ► The matrix of the form X = ab^T for some a, b is called a rank-one outer product.
 - It can be verified that $rank(X) \le 1$, and rank(X) = 1 if $a \ne 0, b \ne 0$.
- ▶ the outer-product representation

$$\mathbf{C} = \sum_{i=1}^k \mathbf{a}_i \mathbf{b}_i^T$$

is a sum of k rank-one outer products.

- ▶ does it mean that $rank(\mathbf{C}) = k$?
 - $\operatorname{rank}(\mathbf{C}) \leq \sum_{i=1}^k \operatorname{rank}(\mathbf{a}_i \mathbf{b}_i^T) \leq k$ is true ¹
 - but the above equality is generally not attained; e.g., k=2, ${\bf a}_1={\bf a}_2$, ${\bf b}_1=-{\bf b}_2$ leads to ${\bf C}={\bf 0}$
 - rank(C) = k only when **A** and **B** are full rank (take home exam)

Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$. By partitioning

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

where $\mathbf{A}_1 \in \mathbb{R}^{m \times n_1}$, $\mathbf{A}_2 \in \mathbb{R}^{m \times n_2}$, $\mathbf{x}_1 \in \mathbb{R}^{n_1}$, $\mathbf{x}_2 \in \mathbb{R}^{n_2}$, with $n_1 + n_2 = n$, we can write

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}_1\boldsymbol{x}_1 + \boldsymbol{A}_2\boldsymbol{x}_2$$

similarly, by partitioning

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix},$$

we can write

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{x}_1 + \mathbf{A}_{12}\mathbf{x}_2 \\ \mathbf{A}_{21}\mathbf{x}_1 + \mathbf{A}_{22}\mathbf{x}_2 \end{bmatrix}$$

Block Matrix Manipulations

consider AB. By an appropriate partitioning,

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2$$

similarly, by an appropriate partitioning,

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \mathbf{B}_1 & \mathbf{A}_1 \mathbf{B}_2 \\ \mathbf{A}_2 \mathbf{B}_1 & \mathbf{A}_2 \mathbf{B}_2 \end{bmatrix}$$

we showcase two-block partitioning only, but the same manipulations apply to multi-block partitioning like

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \\ \vdots & & \vdots \\ \mathbf{A}_{p1} & \cdots & \mathbf{A}_{pq} \end{bmatrix}$$

4□ > 4□ > 4 = > 4 = > = 90

Extension to \mathbb{C}^n

- ▶ all the concepts described above apply to the complex case
- \blacktriangleright we only need to replace every " \mathbb{R} " with " \mathbb{C} ", and every "T" with "H"; e.g.,

•

$$\text{span}\{\boldsymbol{a}_1,\dots,\boldsymbol{a}_n\}=\{\boldsymbol{y}\in\mathbb{C}^m\mid\boldsymbol{y}=\textstyle\sum_{i=1}^n\alpha_i\boldsymbol{a}_i,\ \boldsymbol{\alpha}\in\mathbb{C}^n\},$$

- $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^H \mathbf{x};$
- $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^H \mathbf{x}}$, and so forth.

Extension to $\mathbb{R}^{m \times n}$

- the concepts also apply to the matrix case
 - e.g., we may write

span
$$\{\mathbf{A}_1,\ldots,\mathbf{A}_k\} = \{\mathbf{Y} \in \mathbb{R}^{m \times n} \mid \mathbf{Y} = \sum_{i=1}^k \alpha_i \mathbf{A}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^k\}.$$

- sometimes it is more convenient to *vectorize* X as a vector $x \in \mathbb{R}^{mn}$, and use the same treatment as in the \mathbb{R}^n case
- inner product for $\mathbb{R}^{m \times n}$:

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} y_{ij} = \mathrm{tr} \big(\mathbf{Y}^T \mathbf{X} \big),$$

• the matrix version of the Euclidean norm is called the Frobenius norm:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |x_{ij}|^2} = \sqrt{\mathsf{tr}(\mathbf{X}^\mathsf{T}\mathbf{X})}$$

 \blacktriangleright extension to $\mathbb{C}^{m\times n}$ is just as straightforward as in that to \mathbb{C}^n

- ightharpoonup every vector/matrix operation such as $\mathbf{x} + \mathbf{y}$, $\mathbf{y}^T \mathbf{x}$, $\mathbf{A} \mathbf{x}$, ... incurs computational costs, and they cost more as the vector and matrix sizes get bigger
- we typically look at floating point arithmetic operations, such as add, subtract, multiply, and divide

- ▶ flops: one flop means one floating point arithmetic operation.
- ▶ flops count of some standard vector/matrix operations: $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$.
 - $\mathbf{x} + \mathbf{y}$: n adds, so n flops
 - $\mathbf{y}^T \mathbf{x}$: n multiplies and n-1 adds, so 2n-1 flops
 - Ax: m inner products, so m(2n-1) flops
 - AB: do "Ax" above p times, so pm(2n-1) flops

MIT Lab, Yue Qiu

- we are often interested in the *order* of the complexity
- **b**ig \mathcal{O} notation: given two functions f(n), g(n), the notation

$$f(n) = \mathcal{O}(g(n))$$

means that there exists a constant C > 0 and n_0 such that $|f(n)| \le C|g(n)|$ for all $n \ge n_0$.

- ▶ big O complexities of standard vector/matrix operations:
 - $\mathbf{x} + \mathbf{y}$: $\mathcal{O}(n)$ flops
 - $\mathbf{y}^T \mathbf{x}$: $\mathcal{O}(n)$ flops
 - Ax: O(mn) flops
 - AB: $\mathcal{O}(mnp)$ flops

- ▶ Discussion: flop counts do not always translate into the actual efficiency of the execution of an algorithm
- ▶ things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers, cloud computing), etc., can make the story different.
- ▶ flop counts also ignore memory usage and other overheads...
- that said, we need at least a crude measure of the computational cost of an algorithm, and counting the flops serves that purpose.

- computational complexities depend much on how we design and write an algorithm
- ▶ generally, it is about
 - top-down, analysis-guided, designs:
 - seen in class, research papers
 - looks elegant
- facts are
 - usually not taught much in class
 - not commonplace in papers
 - subtly depends on your problem at hand
 - a bunch of small differences can make a big difference, say in actual running time
- here we give several, but by no means all, tips for saving computations

MIT Lab, Yue Qiu Sept. 19, 2022 28 / 32

- apply matrix operations wisely
- Example: try this on Matlab

```
>> A=randn(5000,2);
>> B=randn(2,10000);
>> C=randn(10000,10000);
>>
>> tic; D= A*B*C; toc
Elapsed time is 1.334183 seconds.
>> tic; D= (A*B)*C; toc % ask Matlab to do AB first
Elapsed time is 1.205725 seconds.
>> tic: D= A*(B*C): toc % ask Matlab to do BC first
Elapsed time is 0.067979 seconds.
```

- let us analyze the complexities in the last example
 - $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times p}, \text{ with } n \ll \min\{m, p\}.$
 - We want to compute D = ABC.
 - if we compute AB first, and then D = (AB)C, the flop count will be

$$\mathcal{O}(mnp) + \mathcal{O}(mp^2) = \mathcal{O}(m(n+p)p) \approx \mathcal{O}(mp^2)$$

 ${\color{black} \bullet}$ if we compute BC first, and then D=A(BC), the flop count will be

$$\mathcal{O}(np^2) + \mathcal{O}(mnp) = \mathcal{O}((m+p)np).$$

• the 2nd option is preferable if n is much smaller than m, p

4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

- use structures, if available
- lacktriangle example: let $oldsymbol{\mathsf{A}} \in \mathbb{R}^{n \times n}$ and suppose that

$$a_{ij} = 0$$
 for all i, j such that $|i - j| > p$,

for some integer p > 0.

- such a structured A is called banded matrix
- if we don't use structures, computing $\mathbf{A}\mathbf{x}$ requires $\mathcal{O}(n^2)$

- ullet if we use the banded + sparsity 1 structures, we can compute ${\sf Ax}$ with ${\cal O}({\it pn})$
- different problems may have different fancy/advanced structures to be exploited

 1 a vector or matrix is said to be sparse if it contains many zeros $\square \rightarrow \langle \square \rangle \rightarrow$

MIT Lab. Yue Qiu Sept. 19, 2022 31 / 3

Readings

Readings for lecture 2 and 3

► Carl D. Meyer. *Matrix Analysis and Applied Linear Algebra*, SIAM, 2005.

Chapter 3.1 - 3.7, 4.1 - 4.5, 5.1 - 5.4

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Johns Hopkins University Press, 2013.

Chapter 1, 2.1 - 2.3