

基于振幅编码的变分量子MNIST分类

量子探索队

- >> 队长
- >> 队员
- >> 2024年9月4日

- 1 团队介绍
- 2 赛题回顾
- 3 解决方案
- 4 实验结果

团队介绍

- >> 我们是一群通过互联网认识的量子计算爱好者
- >>> 跨学科合作,互通学科信息;一起参加量子计算、数据挖掘、人工智能和运筹算法相关的比赛

赛题回顾

在量子机器学习中,振幅编码是一种将经典数据编码到量子态的振幅值上,以供量子算法处理的基本方法。 该编码方式可以高效利用量子态的多个维度,使量子算法在更小的系统上处理大规模的数据。

参赛团队被要求使用 DeepQuantum 实现振幅编码线路,能够将任意实数向量 x 编码到量子态 $|\psi\rangle$ 中,其中 c 是归一化常数;然后使用量子神经网络对输入数据 x 进行分类。

$$|\psi_{x}\rangle = c\sum_{i} x_{i}|i\rangle$$

初赛要求在 MNIST 数据集上:

- 实现振幅编码线路,将 28 * 28 像素值振幅编码到 10 个量子比特上
- 训练量子神经网络,对数字 0、1、2、3、4 对应的数据编码进行 5 分类

Score =
$$\left[2 * \text{Fidelity} + \text{Accuracy} + \frac{1 - \text{gate_count}}{1000} + 0.1 * \left(1 - \frac{\text{runtime}}{360}\right)\right] * 100$$

赛题回顾

图像像素

$ \psi\rangle = c$	$\sum_{i} x_{i} i\rangle = x_{0} 0000\rangle + x_{1} 0001\rangle + \dots + x_{15} 1111\rangle$
4	i.

pred: 5

振幅编码:直接构造法

$$|\psi\rangle = \frac{1}{4}|00\rangle + \frac{\sqrt{2}}{4}|01\rangle - \frac{2}{4}|10\rangle - \frac{3}{4}|11\rangle$$

$$|\psi\rangle = \frac{\sqrt{3}}{4}|0b_0\rangle - \frac{\sqrt{13}}{4}|1b_0\rangle$$
 振幅分配树 AmpTree
$$|\psi\rangle = 1|b_1b_0\rangle$$

优化小Trick

- 使用格雷码顺序枚举节点项,减少 X 门
- 树的剪枝:将同层连续且幅值近似的节点向上提升为 H 门
- 像素重排列:从中心以蚊香形向外读出像素值,降低数据复杂度

优点:精确编码、构造快

缺点:线路 $\mathbb{R}^n O(2^n)$

保真度	0.971/0.970		
门数量	774.61/566.32		
耗时	~0.2s		
总耗时	~18min		

振幅编码: 变分线路法

xCRY[]

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C_0 & 0 & -S_0 \\ 0 & -S_0S_1 & C_1 & -C_0S_1 \\ 0 & S_0C_1 & S_1 & C_0C_1 \end{bmatrix}$$

$$xCRY|01\rangle \rightarrow |01\rangle + |10\rangle + |11\rangle$$

x-Scatter Encoder

> $|0\rangle$ xCRY $|0\rangle$ **xCRY** $|0\rangle$ **xCRY** $|0\rangle$ × k repeats

> > 变分线路法所用量子线路形式

优化小Trick

- 巧妙设计合理的 Ansatz 结构,有效地利用门
- 可以在训练时渐进加深线路,但耗时会成倍增加
- 像素重排列: 从中心以蚊香形向外读出像素值,降低数据复杂度

优点:线路浅 O(poly(n))

缺点:近似编码、构造极慢

全零初始化, 训练时参数变化

保真度	0.916/0.930
门数量	253/301
耗时	2~3min
总耗时	~220h

8 线程跑 两天!

量子神经网络分类器

MERA-like Ansatz

选择可观测量: Z0,Z1,X0,X1,Y0

- · 从训练数据中按分类等量抽样随机子集,划分训练集:验证集=7:3
- 使用 MERA 的 up-down 结构比密集平铺有更平稳的梯度和损失

训练-验证指标曲线

准确率	88%~92%	
层数	10	测试集精度
门数量	500	
参数量	1500	CAI

实验结果

- 蛇形像素排列策略能降低数据复杂度,从而降低门数量
- 直接构造法的保真度无法达到理论无损,是因为做了近似,否则门数量超标
- 变分线路法能取得比直接构造法更高的总分,但需付出700+倍成本
- 分类精度与保真度正相关

变分线路法所有样本的保真度分布

振幅编码	像素排列	门数量	保真度	分类精度	提交得分
直接构造	平铺	774.61	0.971	0.929	311.59
直接构造	蛇形	556.32	0.970	0.929	333.27
变分线路	蛇形	301	0.930	0.890	349.17
变分线路	蛇形	253	0.916	0.889	354.32

实现细节

- 蛇形重排列
- 不同深度VQC线路的保真度和构造时间

• 振幅分配树剪枝

$$|\psi\rangle = 0.1|00\rangle + 0.11|01\rangle + 0.1|10\rangle + 0.09|11\rangle + \dots$$

减少了两个门(含一个门控用X门)

n_layer=16 以上可能产生了贫瘠高原

讨论

对于MNIST数据而言,可用更少的比特

- 原始样本为 28*28=784 维
- 一部分维度是 trivial 的
- 可简化至 512 个特征 ⇒ 9 比特
- 但, 赛题要求必须用 10 个比特
- Let it be...

感谢观看!

量子探索队

- >> 队长
- >> 队员
- >> 2024年9月4日

