RL: Policy Search

Gradient-free Optimization

Marius Lindauer

Winter Term 2021

Policy optimization

- \blacktriangleright Policy based reinforcement learning is an optimization problem over θ
- \rightarrow Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
 - ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)

Lindauer RL: Gradient-free, Winter Term 2021

Policy optimization

- ightharpoonup Policy based reinforcement learning is an optimization problem over heta
- $\, \leadsto \,$ Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
- ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - ▶ Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)
- gradient-free optimizers are (often) designed for
 - ▶ many function evaluations → possible in RL
 - ightharpoonup parallel computation ightarrow possible in RL
 - a few to hundreds of dimensions → RI?
 - lacktriangle a rew to nundreds of dimensions o RL?

Lindauer

Policy optimization

- \blacktriangleright Policy based reinforcement learning is an optimization problem over θ
- $\,\leadsto\,$ Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
- ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - ▶ Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)
- gradient-free optimizers are (often) designed for
 - ▶ many function evaluations → possible in RL
 - ightharpoonup parallel computation \rightarrow possible in RL
 - parametric computation / possible in the
 - ightharpoonup a few to hundreds of dimensions ightarrow RL?
- if we encode the policy π_{θ} as a DNN, we might have millions of dimensions (i.e., parameters in θ)

RL: Gradient-free. Winter Term 2021

Lindauer

Policy Optimization with Evolutionary Strategies

► Evolutionary Strategies can perform surprisingly well nevertheless [Salimans et al. 2017], [Chrabaszcz et al. 2018], [Fuks et al. 2019]

Sources: [Chrabaszcz et al. 2018], [Fuks et al. 2019]

Lindauer RL: Gradient-free, Winter Term 2021 3

Folicy Optimization with Evolutionary Strategies

[Chrabaszcz et al. 2018]

Algorithm 1 Canonical Evolution Strategy

```
Input:
```

```
\theta_0 - Initial policy vector parameters
```

T - time budget

 λ - Population size

 μ - Parent population size

 σ - Mutation step-size

 $F(\theta)$ - Fitness function for policy evaluation

1 for
$$j \in \{1 \dots \mu\}$$
 do

$$\sum_{k=1}^{\mu} log(\mu+0.5) - log(k)$$

3 for
$$t=0,1,\ldots,T$$
 do 4 for $i=1,2,\ldots,\lambda$ do

$$\begin{array}{c|c} \mathbf{7} & \mathbf{7} &$$

Sort
$$(\epsilon_1, \dots, \epsilon_{\lambda})$$
 according to s in ascending order Update policy: $\theta_{t+1} \leftarrow \theta_t + \sigma \cdot \sum_{i=1}^{\mu} w_i \cdot \epsilon_i$

Output: Return best found policy θ_{\star}

Progressive Episode Length [Fuks et al. 2019]