Лекция 19: Поиск ассоциативных правил

M

Типовая прикладная задача: анализ «корзины покупателя»

Ассортимент супермаркета

Интересные правила

Задача Определить интересные правила в предпочтениях покупателей при выборе товара

Ассоциативный анализ

- Правила с семантикой:
 - \square в <u>s</u>% случаях ЕСЛИ верно $A_1, A_2, ..., A_k$, ТО с достоверностью <u>с</u> будет верно $B_1, B_2, ..., B_m$

$$A_1 \wedge A_2 \wedge ... \wedge A_k => B_1 \wedge B_2 \wedge ... \wedge B_m$$

- □ где A₁, A₂ , ..., A_k, B₁, B₂, ..., B_m (различные!) предикаты,
- \square s поддержка (support), c достоверность (confidence)
- Основная задача:
 - □ найти все <u>интересные</u> правила, с заданными ограничениями по s и с (возможно задание дополнительных ограничений на предикаты и сами правила)
- Основной математический аппарат:
 - □ дискретная математика, математическая логика, комбинаторная оптимизация (на основе метода «ветвей и границ» вариации полного перебора с отсевом подмножеств допустимых решений, заведомо не содержащих оптимальных решений).

v

Ассоциативный анализ

- Прикладные задачи:
 - «Экономические»: анализ корзины, маркетинг
 - «Безопасность» и Web usage mining: модели поведения пользователя
 - □ Text mining: поиск ключевых слов, характеристик и тематик
 - □ Биоинформатика, медицина
- Задачи анализа:
 - □ Поиск самих правил
 - □ Поиск исключений (из правил)
 - □ Выделение признаков (на основе правил)
 - □ Классификация и прогнозирование (на базе правил)

Ассоциативный анализ

- Тип моделей:
 - □ Как правило, «описательный» (descriptive) Data mining => одна из задач наглядное представление правил
- Тип обучения:
 - □ «без учителя» (unsupervised) => тренировочный набор не размечен
- Типы правил:
 - □ Булевы
 - □ Числовые нужна дискретизация, интервалы как булевы предикаты
 - □ Иерархические если определена иерархия для значений атрибутов
 - □ Временные как правило, семантика «в <u>s</u> случаях если произошло А и В, то потом случится С и D с вероятностью <u>c</u>»)
 - □ Пространственные предикаты определяют пространственные связи между объектами, например «рядом», «далеко» и т.п.

Булевы ассоциативные правила (определение через транзакции)

- Базовые определения:
 - $I = \{i_1, i_2, \dots, i_n\}$ множество атрибутов/элементов/бинарных признаков;
 - \square D множество транзакций T, каждая T множество элементов из I
- Эпизоды:
 - □ Транзакция T **поддерживает** набор (эпизод) $X \subseteq I$, если $X \subseteq T$
 - \square Поддержка эпизода X равна s, если s% транзакций из D содержат X
 - \square Набор X часто встречаемый, если support(X) = p(X) выше порога
- Правило:
 - □ Ассоциативное правило импликация $X \Rightarrow Y, X \subseteq I, Y \subseteq I$ и $X \cap Y = \emptyset$
 - □ Правило $X \Rightarrow Y$ имеет **поддержку (support) s**, если s% транзакций из D содержат X и Y: support $(X \Rightarrow Y) = p(X, Y)$
 - □ Правило $X \Rightarrow Y$ имеет **достоверность (confidence) с**, если с% транзакций из D, содержащих X, также содержат Y:

confidence
$$(X \Rightarrow Y) = p(Y|X) = \frac{p(X,Y)}{p(X)} = \frac{\text{support}(X \cup Y)}{\text{support}(X)}$$

□ Правило интересное, если превышены заданные пороги на достоверность и поддержку

Булевы ассоциативные правила (определение через признаки)

- Базовые определения:
 - \square *X* пространство объектов;
 - $\Box X^{l} = \{x_{1}, ..., x_{l}\} \subset X$ обучающая выборка
 - $\Box \mathcal{F} = \{f_1, ..., f_n\}, f_i: X \to \{0,1\}$ бинарные признаки (items)
- Эпизоды:
 - $\ \square$ Каждому подмножеству $\varphi \subseteq \mathcal{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), x \in X$$

- □ Если $\varphi(x) = 1$, то «признаки из φ совместно встречаются у x».
- \square Частота встречаемости (поддержка, support) φ в выборке X^l

$$v(\varphi) = \frac{1}{l} \sum_{i=1}^{l} \varphi(x_i)$$

- □ Если $v(\varphi) \ge \delta$, то «набор φ частый» (frequent itemset)
- \square Параметр δ минимальная поддержка, MinSupp

Булевы ассоциативные правила (определение через признаки)

- Интересное ассоциативное правило $\phi \to y$ это пара непересекающихся наборов $\phi, y \subseteq \mathcal{F}$ таких, что:
 - □ наборы φ и y совместно часто встречаются, $v(\varphi \cup y) \ge \delta$;
 - \square если встречается φ , то часто встречается также и y,

$$v(y|\varphi)\equiv rac{v(\varphi\cup y)}{v(\varphi)}\geq \varkappa$$
, где $v(y|\varphi)$ – значимость (confidence) правила.

- \square Параметр \varkappa минимальная значимость, MinConf.
- Логическая интерпретация:
 - $\hfill\Box$ Предикат $\varphi(x)$ логическая закономерность класса $c \in Y$

$$\operatorname{support}(\varphi) = \frac{p(\varphi)}{l} \ge \delta; \quad \operatorname{confidence}(\varphi) = \frac{p(\varphi)}{p(\varphi) + n(\varphi)} \ge \varkappa$$

- $\Box \ p(\varphi) = \#\{x_i \in X^l : \varphi(x_i) = 1 \text{ и } y(x_i) = c\} \ +$ примеры класса с
- $\square \ n(\varphi) = \#\{x_i \in X^l : \varphi(x_i) = 1 \ \text{и} \ y(x_i) \neq c\} \$ -примеры класса с
- \square Для « $\varphi \Rightarrow y$ » возьмем целевой признак $y(x) = \bigwedge_{f \in \mathcal{V}} f(x)$.
- \square Тогда $v(\varphi \cup y) \equiv Supp_1(\varphi) \geq \delta; \quad \frac{v(\varphi \cup y)}{v(\varphi)} \equiv Conf_1(\varphi) \geq \varkappa$

M

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

```
I={Xлеб, Kефир, Пиво, Чипсы} supp(Xлеб) = 60\% supp(Kефир) = 50\% supp(Пиво) = 60\% supp(Чипсы) = 30\%
```

Пример правила: Пиво=>Чипсы $supp(\Pi=>H)=30\%$ $conf(\Pi=>H)=50\%$

```
<u>Задача:</u> Найти правила с параметрами: minsupp = 30%, minconf = 60%
```


- Пример: (Aggarwal & Yu, PODS98)
 - □ Среди 5000 студентов
 - 3000 играют баскетбол
 - 3750 любят черный хлеб
 - 2000 и то и другое

	basketball	not basketball	sum(row)
bread	2000	1750	3750
not bread	1000	250	1250
sum(col.)	3000	2000	5000

- □ basketball ⇒ bread [40%, 66.7%] вводит в заблуждение, поскольку процент любителей хлеба 75% выше support 66.7%.
- □ basketball ⇒ not bread [20%, 33.3%] более полезное, хотя support and confidence ниже
- Пример:
 - □ X и Y: положительно коррелированы,
 - □ X и Z, отрицательно коррелированы
 - □ support и confidence больше у X=>Z
- Нужна новая мера зависимости

Χ	1	1	1	1	0	0	0	0
Υ	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37,50%	75%

٧

Интересность

- Объективная:
 - \square support($X \Rightarrow Y$), confidence($X \Rightarrow Y$), generality($X \Rightarrow Y$) = P(Y)

 - \square RI($X \Rightarrow Y$) = P(Y|X) P(Y) = confidence($X \Rightarrow Y$) generality($X \Rightarrow Y$)
- Субъективная (на основе информации, заданной экспертом)
 - «Полезная» (Actionable)
 - □ «Неожиданная» (Unexpected)

Алгоритм Apriori

- Основной принцип (анти-монотонность):
 - Любое подмножество часто встречаемого набора является часто встречаемым набором

Формально:

- Поддержка любого набора элементов не может превышать минимальной поддержки всех его подмножеств
- □ Необходимое условие частой встречаемости k-элементного набора
 − частая встречаемость всех его (k-1)-элементных подмножеств
- □ В примере: supp({Хлеб, Кефир, Чипсы}) не больше чем supp({Хлеб, Кефир}), supp({Хлеб, Чипсы}),supp({Кефир, Чипсы}), supp({Кефир}), supp({Чипсы}),supp({Хлеб})

Этапы алгоритма:

- □ Генерация множества часто встречаемых наборов (supp >= minsupp): метод «ветвей и границ» направленный перебор от простых (коротких) наборов к сложным (длинным) с отсечением
- □ Генерация правил по найденным наборам (conf >= minconf)

Идея метода ветвей и границ для Apriori

Пример генерации кандидатов с отсечением

- L_3 ={abc, abd, acd, ace, bcd}
- Join: L_3*L_3
 - \square abcd = abc + abd
 - \square acde = acd + ace
- Pruning:
 - \square acde удален, т.к. ade не в L_3
- C₄={abcd}

м.

Алгоритм Apriori (формально)

- Вход: X^l обучающая выборка; $\delta = MinSupp$; $\varkappa = MinConf$;
- Выход: $R = \{(\varphi, y)\}$ список ассоциативных правил;
- Множество всех частых исходных признаков:
 - $\square \ G_1 \coloneqq \{ f \in \mathcal{F} | v(f) \ge \delta \};$
- Для всех j = 2, ..., n
 - \square Множество всех частых наборов мощности j:

$$G_j := \{ \varphi \cup \{f\} | \varphi \in G_{j-1}, f \in G_1 \setminus \varphi, v(\varphi \cup \{f\}) \ge \delta \};$$

- \square Если $G_i = \emptyset$, то Выход из цикла по j;
- \blacksquare $R := \emptyset;$
- Для всех $\psi \in G_j$, j = 2, ..., n AssocRules (R, ψ, \emptyset) ;

٠,

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

Построение L1

supp(Xлеб) = 60% supp(Kефир) = 50% supp(Пиво) = 60% supp(Чипсы) = 30%L1 = {{X}, {K}, {П}, {Ч}}

Построение L2

 $\{X, K\}, \{X, \Pi\}, \{X, \Psi\} \}$ $\{K, \Pi\}, \{K, \Psi\}, \{\Pi, \Psi\} \}$ $supp(\{X, K\}) = 30\%$ $supp(\{X, \Pi\}) = 20\%$ $supp(\{X, \Psi\}) = 10\%$ $supp(\{K, \Pi\}) = 30\%$ $supp(\{K, \Psi\}) = 30\%$ $supp(\{\Pi, \Psi\}) = 30\%$ $L2=\{\{X,K\}, \{K,\Pi\}, \{K,\Psi\}, \{\Pi,\Psi\}\}$

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
D=	5	1	1	0	0
	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

```
L2=\{\{X,K\}, \{K,\Pi\}, \{K,Y\}, \{\Pi,Y\}\}\} Формируем L3 \{K,\Pi,Y\}
```

supp(
$$\{K, \Pi, Y\}$$
) = 30%
L3 = $\{\{K, \Pi, Y\}\}$

Результат= {{X}60%,{K}50%,{П}60%,{Ч}30%, {X,K}30%,{K,П}30%,{K,Ч}30%, {П,Ч}30%,{K, П, Ч}30%}

Генерация правил

- Дано и условия:

 - □ Должно выполняться confidence($X \Rightarrow Y$) $\ge \varkappa$
 - \square все $\operatorname{support}(X,Y) \geq \delta$ и известны с 1-го этапа генерации эпизодов
- Принцип:
 - \Box Если правило $\{A\} => \{B,C\}$ интересно, то и $\{A,B\} => \{C\}$ интересно
- Доказательство:

$$\operatorname{confidence}(\{A\} => \{B, C\}) = \frac{\operatorname{support}(\{A, B, C\})}{\operatorname{support}(\{A\})} \geq \varkappa$$

$$\mathsf{T.K.} \ \operatorname{support}(\{A, B\}) \leq \operatorname{support}(\{A\}), \ \mathsf{TO}:$$

$$\operatorname{confidence}(\{A, B\} => \{C\}) = \frac{\operatorname{support}(\{A, B, C\})}{\operatorname{support}(\{A, B\})} \geq \frac{\operatorname{support}(\{A, B, C\})}{\operatorname{support}(\{A\})} \geq \varkappa$$

- Алгоритм:
 - □ Для каждого часто встречаемого набора проверять правила на интересность, начиная со случая, когда в правой части правила находится один атрибут и постепенно добавлять/убавлять атрибуты в/из правую/левой часть(и).

Метод ветвей и границ для генерации правил

Выделение ассоциативных правил

- Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.
- \blacksquare Функция AssocRules(R, φ, y)
 - □ Вход: (φ, y) ассоциативное правило;
 - □ Выход: R список ассоциативных правил;
 - \square Для всех $f \in \varphi$: $id_f > \max_{g \in \mathcal{Y}} id_g$ (чтобы избежать повторов y)
 - $\varphi' \coloneqq \varphi \setminus \{f\}; y' \coloneqq y \cup \{f\};$
 - если $v(y'|\varphi') \ge \varkappa$ то добавить ассоциативное правило (φ', y') в список R;
 - Если $|\varphi'| > 1$ то AssocRules (R, φ', y') ;
 - $\ \square \ id_f$ порядковый номер признака f в $\mathcal{F} = \{f_1, \dots, f_n\}$

Пример

	t	Хлеб	Кефир	Пиво	Чипсы
	1	1	0	0	0
	2	1	1	0	0
	3	0	1	1	1
	4	0	1	1	1
	5	1	1	0	0
D=	6	1	0	1	0
	7	1	1	1	1
	8	1	0	0	0
	9	0	0	1	0
	10	0	0	1	0

Наборы:

{X}60%,{K}50%,{Π}60%, {Ч}30%,{X,K}30%,{K,Π}30%,{K,Ч}30%,{Π,Ч}30%, {K, Π, Ч}30%

Правила:

$$conf({X}=>{K})=50%$$

$$conf({K}=>{X})=60\%$$

$$conf({K}=>{\Pi})=60\%$$

$$conf(\{\Pi\}=>\{K\})=50\%$$

$$conf({K}=>{Y})=60\%$$

$$conf({Y}=>{K})=100%$$

$$conf(\{Y\}=>\{\Pi\})=100\%$$

$$conf({K, \Pi}=>{H})=100\%$$

$$conf({K}=>{\Pi, \, Y})=60\%$$

$$conf({\Pi}=>{K, Y})=50\%$$

$$conf({K, Y}=>{\Pi})=100\%$$

$$conf({Y}=>{K, \Pi})=100\%$$

$$conf({\Pi, \Psi}=>{K})=100\%$$

Недостатки Apriori

- Суть алгоритма Apriori:
 - □ Использовать часто встречаемые наборы размера (k-1) для генерации кандидатов часто встречаемых наборов размера k
 - □ Использовать dbscan и сравнения подмножеств атрибутов для расчета поддержки кандидатов
- Слабое место генерация кандидатов
 - □ Огромное число кандидатов: 10^4 1-элементных наборов приводят к 10^7 2-элементным наборам, если надо найти наборы размера 100 $\{a_1, a_2, ..., a_{100}\}$, нужно сгенерировать $2^{100} \approx 10^{30}$ кандидатов.
 - □ Множественные dbscan: (*n* + 1) сканирований, где *n* длина наибольшего набора
- Пути решения:
 - Хэш-деревья для хранения наборов и счетчиков поддержки.
 - □ Удаление неинформативных транзакций из базы
 - □ Разбиение базы и sampling набор будет часто встречаемым, если он часто встречаемый на каком-то подмножестве транзакций, но: необходима оценка полноты и достоверности

Поиск частых наборов без кандидатов

- Основная задача, решаемая методом Frequent-Pattern tree :
 - «сжать» информацию о транзакциях и представить в «компактном» виде с быстрым поиском частых наборов
 - □ уйти от частых сканирований БД, не генерировать кандидатов, а искать их динамически по структуре FP-tree
 - □ стратегия «разделяй и властвуй»: декомпозиция задачи поиска на более мелкие подзадачи рекурсивное построение «пути» частых наборов в FP-tree дереве
- Свойства и требования к структуре:
 - «сжатая» информация для поиска наборов должна быть полной
 - размер вспомогательных структур не должен превосходить размер БД
 - □ не должно быть несодержательной информации, например
 - □ при поиске обратная упорядоченность по частоте наборов и атрибутов более часто встречаемые атрибуты с большой вероятностью являются частью частых наборов

Построение FP-tree

TID	Items	frequent items	
100	${f, a, c, d, g, i, m, p}$	f, c, a, m, p	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	min_support = 0.5
300	$\{b, f, h, j, o\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$	

Шаги:

- 1. Первое сканирование БД и построение частых 1-наборов
- 2. Обратная сортировка по частоте
- 3. Второе сканирование и построение FP-tree

По заголовочной таблице можно проверить является эпизод частым: {p,a}? {p,c}?

Префиксное FP-дерево

- В каждой вершине v дерева T задается тройка $\langle f_v, c_v, S_v \rangle$:
 - □ Признак $f_v \in \mathcal{F}$;
 - □ Множество дочерних вершин $S_v \subset T$;
 - \Box Счетчик поддержки $c_v = lv(\varphi_v)$ набора $\varphi_v = \{f_u : u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.
- Обозначения:
 - $V(T,f) = \{v \in T: f_v = f\}$ все вершины признака (уровня) f.
 - \square $C(T,f) = \sum_{v \in V(T,f)} c_v$ сумма счетчиков поддержки признака f.
- Свойства FP-дерева T, построенного по всей выборке X^l :
 - $\square \frac{1}{l}C(T,f)=v(f)$ поддержка признака f.
 - $\ \square$ T содержит информацию о $v(oldsymbol{arphi})$ всех частых наборов $oldsymbol{arphi}$.

×

Алгоритм FP-growth

- Вход: X^l обучающая выборка;
- Выход: FP-дерево T; $\langle f_v, c_v, S_v \rangle$ для всех вершин $v \in T$;
- Упорядочить признаки $f \in \mathcal{F}$: $v(f) \ge \delta$ по убыванию v(f);
- $lacksymbol{\blacksquare}$ ЭТАП 1: Построение FP-дерева T по выборке X^l
- Для всех $i \coloneqq 1, ..., l$
 - $\square v \coloneqq v_0$
 - \square Для всех $f \in \mathcal{F}$ таких, что $f(x_i) = 1$, по убыванию v(f)
 - Если нет дочерней вершины $u \in S_v$: $f_u = f$ то
 - \square Создать новую вершину u; $S_v \coloneqq S_v \cup \{u\}$;
 - $\square f_u \coloneqq f; c_u \coloneqq 0; S_u \coloneqq \emptyset;$
 - $c_u \coloneqq c_u + 1$; $v \coloneqq u$;
- ЭТАП 2: Рекурсивный поиск частых наборов по FP-дереву Т
- FP-find(T, \emptyset , \emptyset);

Поиск частых наборов с FP-tree

Метод:

- □ Для каждого элемента (начиная с самых редких) найти его условный базовый набор
- □ На основе условного базового набора построить новое условное
 FP-tree поддерево для каждого элемента, рассматривая каждый путь как отдельную транзакцию
- □ **Повторить процесс** для элементов каждого вновь созданного условного FP-tree поддерева
- □ До тех пор пока результирующее FP-tree не будет пусто или не будет содержать единственный путь
- □ **Единственный путь** генерирует все комбинации подпутей, каждый из которых есть **частый набор**

Шаг 1: От FP-tree к условному базовому набору

- Для каждого элемента проход FP-tree «вверх» по дугам с запоминанием «условного» пути и его поддержки
- В результате с каждым элементом связан условный базовый набор (набор возможных путей к вершине с поддержкой)

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Свойства условного FP-tree (без доказательства)

- Свойство «узел-связь»:
 - □ Для каждого частого элемента *a*, все возможные частые наборы, содержащие его, могут быть получены обходом по пути «узел-связь» от заголовочного элемента к корню FP-tree
- Свойство префикса:
 - □ Для поиска частых наборов для узла а в пути P, необходимо рассматривать только префикс под-пути от а в P, его поддержка должна быть равна поддержке узла a.

Шаг 2: Построение условного FP-tree

 Для каждого условного базового набора построить условное FPtree, содержащее только пути из базового набора

M

Поиск частых наборов по условным базовым наборам

Item	Условный базовый набор	Условное FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

Шаг 3: Рекурсивная обработка условного FP-tree

cm-conditional FP-tree

Условный базовый набор для"cam": (f:3) f:3

cam-conditional FP-tree

Единственный путь в FP-tree

- Предположим в FP-tree есть единственный путь P
- Полное множество частых наборов из Т могут быть получены перебором всех возможных комбинаций подпутей из Р

m-conditional FP-tree

Этап 2: Рекурсивный г

Этап 2: Рекурсивный поиск частых наборов по FP-дереву

- FP-find(T, φ, R) находит по FP-дереву T все частые наборы, содержащие частый набор φ , и добавляет их в список R.
- Две идеи эффективной реализации FP-find:
 - □ Вместо T достаточно передать условное FP-дерево $T|\varphi$, это FP-дерево, порождаемое подвыборкой $\{x_i \in X^l : \varphi(x_i) = 1\}$
 - □ Будем добавлять в φ только те признаки, которые находятся выше в FP-дереве. Так мы переберем все подмножества $\varphi \subseteq \mathcal{F}$
- Функция FP-find (T, φ, R)
 - \square Вход: FP-дерево T, частый набор φ , список наборов R;
 - \square Выход: Добавить в R все частые наборы, содержащие φ ;
 - □ Для всех $f \in \mathcal{F}$: $V(T, f) \neq \emptyset$ по уровням снизу вверх, если $C(T, f) \geq l\delta$:
 - Добавить частый набор $\phi \cup \{f\}$ в список R;
 - T' := T | f условное FP-дерево, найти по T' все частые наборы, включающие φ и f: FP-find(T', $\varphi \cup \{f\}$, R);

.

Преимущества FP-tree перед Apriori

- Экспериментально:
 - □ FP-tree значительно быстрее Apriori

- Причина
 - □ Нет генерации и проверки кандидатов, нет повторяющихся сканирований БД, используется компактная структура для поиска частых наборов и расчета поддержки, основные операции суммирование и построение дерева

Использование ограничений

- Проблема итеративного анализа больших объемов данных:
 - невозможно без использования ограничений
- Типы ограничений:
 - стандартные: на support и confidence
 - на меры объективной интересности
 - □ на выборку «горизонтально» подмножества транзакций
 - □ на выборку «вертикально» подмножества атрибутов
 - на значения отдельных атрибутов (с точки зрения алгоритма аналогично «вертикальному»)
 - □ шаблоны правил для поиска метаправила (задаются экспертом, учитываются методом «ветвей и границ» при генерации наборов и правил из них, сокращается перебор)
 - шаблоны «неинтересных» правил (поиск «неожиданных» правил, нарушающих шаблон) – для оценки субъективной интересности