量子力学ノート

とが

目次	
第 1 章 2021/4/21	5
1. 要点(1 次元 Schrödinger 方程式)	5
2. 計算 1	6
3. 計算 2	6
4. 計算 3	7
第 2 章 2021/4/22	8
1. 問題 1.9	8
2. 問題 1.15	10
3. 要点(時間に依存しない Schrödinger 方程式)	10
第 3 章 2021/4/23	11
1. 要点(1 次元井戸型ポテンシャル)	11
2. 計算 1	12
3. 問題 2.4	
第 4 章 2021/4/25	15
1. 問題 2.1	
1.1. (a)	15

	1.2. (b)	15
	1.3. (c)	16
	2. 問題 2.2	17
	3. 要点(1 次元調和振動子)	17
	4. 計算 1	18
	5. 計算 2	19
第	5 章 2021/4/26	20
	1. 問題 2.10	20
	2. 問題 2.11	22
第	6章 2021/5/10	25
	1. 問題 1.7	25
	2. 要点(1 次元調和振動子つづき)	26
	3. 計算 1	28
	4. 計算 2	28
第	7章 2021/5/12	29
	1. 要点(ヒルベルト空間)	29
	2. 問題 3.1	29
	3. 計算 1	30
第	8章 2021/5/15	30
	1. 要点 (エルミート作用素)	30
	2. 計算 1	31
	3. 計算 2	32
	4. 計算 3	32

	5. 計算 4	32
第	9章 2021/05/17	33
	1. 要点(運動量表示)	33
	2. 計算 1	35
	3. 問題 3.11	35
第	10 章 2021/5/18	36
	1. 問題 3.12	36
	2. 要点(不確定性原理)	37
第	11 章 2021/5/19	38
	1. 問題 3.13	38
第	12 章 2021/05/25	39
	1. 要点(ベクトル表示)	39
	2. 計算 1	40
	3. 問題 3.23	40
	4. 問題 3.24	41
第	13 章 2021/5/26	42
	1. 問題 3.31	42
	2. 要点(3 次元における Schrödinger 方程式)	43
	3. 計算 1	44
	4. 問題 4.3	45
第	14 章 2021/5/27	47
	1. 要点(球面調和関数)	47
	2. 問題 4.4	48

	3. 問題 4.5	. 49
第	15 章 2021/5/28	50
	1. 問題 4.7	. 50
第	16 章 2021/5/30	52
	1. 要点 (ボーアの式)	. 52
	2. 計算 1	. 54
	3. 計算 2	. 54
第	17 章 2021/5/31	55
	1. 問題 4.12	. 55
第	18 章 2021/6/1	57
	1. 問題 4.13	. 57
	1.1. (a)	. 58
	1.2. (b)	. 59
第	19 章 2021/6/2	60
	1. 問題 4.14	. 60
	1.1. (a)	60
	1.2. (b)	61
	1.3. (c)	. 62
第	20 章 2021/6/4	62
	1. 要点(交換子)	. 62

第1章 2021/4/21

1. 要点(1 次元 Schrödinger 方程式)

1 次元の直線上を動く質量 m の粒子の波動関数 $\Psi:\mathbb{R}^2 \to \mathbb{C}$ は Schrödinger 方程式

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t)$$

を満たす. ただし $V: \mathbb{R}^2 \to \mathbb{R}$ はポテンシャル, \hbar は換算プランク定数, i は虚数単位.

暗黙の了解として, Ψ とその n 次導関数は $x \to +\infty$ で 0 に収束するものとする.

ある Ψ が Schrödinger 方程式を満たすなら、定数 A をかけた $A\Psi$ も Schrödinger 方程式を満たす (計算 1).

 Ψ が Schrödinger 方程式を満たすとき, $\int_{-\infty}^{\infty} \left|\Psi(x,t)\right|^2 \mathrm{d}x$ は t に依存しない(計算 2).

ある解 Ψ があったときに、定数をかけて

$$\int_{-\infty}^{\infty} \left| \Psi'(x,t) \right|^2 \mathrm{d}x = 1$$

を満たす解 Ψ' を見つける操作を、正規化という.

波動関数 $\Psi(x,t)$ で表される粒子の「座標の期待値」 $\langle x \rangle$ を

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx$$
$$= \int_{-\infty}^{\infty} \Psi^*[x] \Psi dx$$

(ただし Ψ^* は Ψ の共役複素数)で定義する. $\langle x \rangle$ の時間微分を計算すると

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = -\frac{i\hbar}{m} \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} \mathrm{d}x$$

となり(計算 3),これが粒子の「速度の期待値」 $\langle v \rangle$ となる.これに m をかけた「運動量の期待値」 $\langle p \rangle = m \langle v \rangle$ は

$$\langle p \rangle = \int_{-\infty}^{\infty} \Psi^* \left[-i\hbar \frac{\partial}{\partial x} \right] \Psi dx$$

となる. $\langle x \rangle$ の定義中の x, および $\langle p \rangle$ の定義中の $-i\hbar \frac{\partial}{\partial x}$ は作用素とみなせる. こうして x,p の関数 Q(x,p) として表せる任意の物理量の期待値が

$$\langle Q(x,p)\rangle = \int_{-\infty}^{\infty} \Psi^* \left[Q\left(x, -i\hbar \frac{\partial}{\partial x}\right) \right] \Psi dx$$

と書ける.

座標 x と運動量 p の標準偏差をそれぞれ σ_x , σ_p とすると,

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

が成り立つ.

2. 計算1

 Ψ が Schrödinger 方程式を満たすとする. A を定数とすると

$$\begin{split} i\hbar\frac{\partial}{\partial t}\big(A\varPsi\big) &= A\cdot i\hbar\frac{\partial\varPsi}{\partial t}\\ &= A\cdot\left(-\frac{\hbar^2}{2m}\frac{\partial^2\varPsi}{\partial x^2} + V\varPsi\right)\\ &= -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\big(A\varPsi\big) + V\big(A\varPsi\big) \end{split}$$

より AΨ も Schrödinger 方程式を満たす.

3. 計算 2

Schrödinger 方程式を変形すると

$$\frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi$$

となり, 両辺の複素共役をとると

$$\frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^*$$

となる. これより

$$\begin{split} \frac{\partial}{\partial t} \big(\varPsi^* \varPsi \big) &= \varPsi^* \frac{\partial \varPsi}{\partial t} + \frac{\partial \varPsi^*}{\partial t} \varPsi \\ &= \varPsi^* \bigg(\frac{i\hbar}{2m} \frac{\partial^2 \varPsi}{\partial x^2} - \frac{i}{\hbar} V \varPsi \bigg) + \bigg(-\frac{i\hbar}{2m} \frac{\partial^2 \varPsi^*}{\partial x^2} + \frac{i}{\hbar} V \varPsi^* \bigg) \varPsi \\ &= \frac{i\hbar}{2m} \bigg(\varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} - \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \bigg) \end{split}$$

である. ここで

$$\begin{split} \frac{\partial}{\partial x} \bigg(\varPsi^* \frac{\partial \varPsi}{\partial x} - \frac{\partial \varPsi^*}{\partial x} \varPsi \bigg) &= \varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} + \frac{\partial \varPsi^*}{\partial x} \cdot \frac{\partial \varPsi}{\partial x} - \left(\frac{\partial \varPsi^*}{\partial x} \cdot \frac{\partial \varPsi}{\partial x} + \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \right) \\ &= \varPsi^* \frac{\partial^2 \varPsi}{\partial x^2} - \frac{\partial^2 \varPsi^*}{\partial x^2} \varPsi \end{split}$$

に注意すると,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} |\Psi|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} (\Psi^* \Psi) \mathrm{d}x$$
$$= \frac{i\hbar}{2m} \left[\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right]_{-\infty}^{\infty}$$
$$= 0$$

を得るので, $\int_{-\infty}^{\infty} |\Psi|^2 dx$ が t に依存しないことが分かる.

4. 計算3

計算2の途中式を流用すると

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} x |\Psi|^2 \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} x \cdot \frac{\partial}{\partial t} (\Psi^* \Psi) \mathrm{d}x$$

$$= \frac{i\hbar}{2m} \int_{-\infty}^{\infty} x \cdot \frac{\partial}{\partial x} (\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi) \mathrm{d}x$$

となり, 部分積分により

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{i\hbar}{2m} \left(\left[x \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \mathrm{d}x \right)$$

$$= -\frac{i\hbar}{2m} \int_{-\infty}^{\infty} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \mathrm{d}x$$

となる. ここで部分積分

$$\int_{-\infty}^{\infty} \frac{\partial \varPsi^*}{\partial x} \varPsi \, \mathrm{d}x = \left[\varPsi^* \varPsi \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \varPsi^* \frac{\partial \varPsi}{\partial x} \, \mathrm{d}x$$
$$= - \int_{-\infty}^{\infty} \varPsi^* \frac{\partial \varPsi}{\partial x} \, \mathrm{d}x$$

に着目すると

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = -\frac{i\hbar}{m} \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} \mathrm{d}x$$

が得られる.

第2章 2021/4/22

1. 問題 1.9

$$\Psi(x,t)=Ae^{-a\left(\left(mx^2/\hbar
ight)+it
ight)}$$
 より $\left|\Psi(x,t)
ight|^2=\Psi(x,t)\Psi^*(x,t)=A^2e^{-2amx^2/\hbar}$ なので

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = A^2 \int_{-\infty}^{\infty} e^{-\frac{2am}{\hbar}x^2} dx$$
$$= A^2 \sqrt{\frac{\pi\hbar}{2am}}$$

よって,
$$\int_{-\infty}^{\infty} \left|\Psi(x,t)\right|^2 \mathrm{d}x = 1$$
 となるためには $A = \left(\frac{2am}{\pi\hbar}\right)^{\frac{1}{4}}$ であればよい.

₩を微分すると

$$\frac{\partial \Psi}{\partial t} = -ia\Psi$$

$$\frac{\partial \Psi}{\partial x} = -\frac{2amx}{\hbar}\Psi$$

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{2am(2amx^2 - \hbar)}{\hbar^2}\Psi$$

となるので、Schrödinger 方程式より

$$\hbar a\Psi = -rac{\hbar^2}{2m} \cdot rac{2am\left(2amx^2 - \hbar
ight)}{\hbar^2} \Psi + V\Psi$$

Vについて解いて $V(x) = 2a^2mx^2$.

$$|\Psi|^2$$
 は正規分布 $N\!\left(0,\frac{\hbar}{4am}\right)$ の密度関数なので、 $\langle x \rangle = 0$ 、 $\sigma_x = \sqrt{\frac{\hbar}{4am}}$ 、 $\left\langle x^2 \right\rangle = \sigma_x^2 = \frac{\hbar}{4am}$.

$$-i\hbar\frac{\partial\varPsi}{\partial x}=(\mathrm{const})x\varPsi\ \ \ \ \ \ \ \ \langle p\rangle=(\mathrm{const})\int_{-\infty}^{\infty}\varPsi^*x\varPsi\mathrm{d}x=0.$$

$$\begin{split} \left\langle p^{2}\right\rangle &=\int_{-\infty}^{\infty}\varPsi^{*}\bigg(-h^{2}\frac{\partial^{2}\varPsi}{\partial x^{2}}\bigg)\mathrm{d}x\\ &=\int_{-\infty}^{\infty}\varPsi^{*}\Big(-2am\big(2amx^{2}-\hbar\big)\varPsi\Big)\mathrm{d}x\\ &=-2am\big(2am\big\langle x^{2}\big\rangle-\hbar\big)\\ &=\hbar am \end{split}$$

2. 問題 1.15

Schrödinger 方程式より

$$\begin{split} \frac{\partial \varPsi_1^*}{\partial t} &= -\frac{i\hbar}{2m} \frac{\partial^2 \varPsi_1^*}{\partial x^2} + \frac{i}{\hbar} V \varPsi_1^* \\ \frac{\partial \varPsi_2}{\partial t} &= \frac{i\hbar}{2m} \frac{\partial^2 \varPsi_2}{\partial x^2} - \frac{i}{\hbar} V \varPsi_2 \\ \therefore \frac{\partial}{\partial t} \left(\varPsi_1^* \varPsi_2\right) &= \frac{i\hbar}{2m} \left(\frac{\partial^2 \varPsi_1^*}{\partial x^2} \varPsi_2 - \varPsi_1^* \frac{\partial^2 \varPsi_2}{\partial x^2}\right) \end{split}$$

よって

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} & \Psi_1 * \Psi_2 \, \mathrm{d}x = \frac{i\hbar}{2m} \int_{-\infty}^{\infty} \left(\frac{\partial^2 \Psi_1 *}{\partial x^2} \Psi_2 - \Psi_1 * \frac{\partial^2 \Psi_2}{\partial x^2} \right) \mathrm{d}x \\ &= \frac{i\hbar}{2m} \left[\frac{\partial \Psi_1 *}{\partial x} \Psi_2 - \Psi_1 * \frac{\partial \Psi_2}{\partial x} \right]_{-\infty}^{\infty} \\ &= 0 \end{split}$$

3. 要点(時間に依存しない Schrödinger 方程式)

t に依存しない $\psi(x)$ と x に依存しない $\varphi(t)$ を用いて $\Psi(x,t)=\psi(x)\varphi(t)$ と表せると仮定すると, $\frac{\partial \Psi}{\partial t}=\psi\frac{\mathrm{d}\varphi}{\mathrm{d}t}$, $\frac{\partial^2\Psi}{\partial x}=\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}\varphi$ より Schrödinger 方程式は

$$i\hbar\psi\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}\varphi + V\psi\varphi$$

となり、両辺を $\psi \varphi$ で割って

$$i\hbar \frac{1}{\varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V$$

とすると左辺は φ , 右辺は ψ だけの式になるから, ある定数 E が存在して

$$i\hbar \frac{1}{\varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = E$$
$$-\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V = E$$

よって、時間に依存しない Schrödinger 方程式

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V\psi = E\psi$$

を解けば,そこに $i\hbar\frac{\mathrm{d}\varphi}{\mathrm{d}t}=E\varphi$ の解である $\varphi=Ae^{-iEt/\hbar}$ をかけることで Ψ が得られる.

第3章 2021/4/23

1. 要点(1次元井戸型ポテンシャル)

$$V(x) = \begin{cases} 0 & (0 \le x \le a) \\ \infty & (\text{otherwise}) \end{cases}$$

とする. $\psi(0)=\psi(a)=0$ として $0\leq x\leq a$ の範囲で時間に依存しない Schrödinger 方程式 $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}=E\psi$ を解くと,n を正の整数として

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

が得られる (計算1).

波動関数 Ψ の初期状態 $\Psi(x,0)$ が与えられれば、フーリエ級数展開によって

$$\Psi(x,0) = \sum_{n=1}^{\infty} c_n \psi_n(x)$$

と表すことで

$$\varPsi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_{nt}/\hbar}$$

が得られる.

2. 計算1

 $k = \frac{\sqrt{2mE}}{\hbar}$ とおくと時間に依存しない Schrödinger 方程式は

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -k^2 \psi$$

と表せるので,一般解は

$$\psi(x) = A\sin kx + B\cos kx$$

ここで $\psi(0)=A\sin 0+B\cos 0=B$ で、 $\psi(0)=0$ なので B=0. よって $\psi(x)=A\sin kx$ だが、 $\psi(a)=0$ なのである整数 n が存在して $ka=n\pi$. よって解は 定数 A と整数 n を用いて $A\sin\left(\frac{n\pi}{a}x\right)$ と表せる.

n=0 のときは $\psi(x)=0$ となってしまうので不適.また n が負のときは定数 A'=-A と正の整数 n'=-n を用いて $\psi(x)=A'\sin\!\left(\frac{n'\pi}{a}x\right)$ と表せるので,n が正の整数のときだけを考えればよい.

$$\int_0^{\frac{a}{2\pi}} \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x = \int_0^{\frac{a}{2\pi}} \cos^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x \, \, \mathrm{J} \, \, \mathrm{J} \, \int_0^a \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x = n \int_0^{\frac{a}{2\pi}} \mathrm{d}x = \frac{a}{2} \, \mathrm{T} \, \, \mathrm{J} \, \, \, \mathrm{J} \, \, \mathrm{$$

$$\int_0^a |\psi|^2 dx = A^2 \int_0^a \sin^2\left(\frac{n\pi}{a}x\right) dx$$
$$= A^2 \cdot \frac{a}{2}$$

よって $\int_0^a \left|\psi(x)\right|^2 \mathrm{d}x = 1$ となるためには $A=\pm \sqrt{\frac{2}{a}}$ であればよい. ただし物理学の 観点では $A=\sqrt{\frac{2}{a}}$ のときを考えれば十分らしい.

さて, $k=\frac{\sqrt{2mE}}{\hbar}$ と $ka=n\pi$ より E としてありえる値は $E_n=\frac{n^2\pi^2\hbar^2}{2ma^2}$ であり,各 E_n に対応する ψ は $\psi_n(x)=\sqrt{\frac{2}{a}}\sin\!\left(\frac{n\pi}{a}x\right)$ である. これが今回の V に対する時間に依存しない Schrödinger 方程式の解である.

3. 問題 2.4

 $\langle x \rangle = \int_{a}^{a} x |\psi_{n}(x)|^{2} dx$

$$\begin{split} &=\frac{2}{a}\int_0^a x \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x \\ &=\frac{1}{a}\bigg(\int_0^a x \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x + \int_0^a (a-x) \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x\bigg) \\ &=\int_0^a \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x \\ &=\frac{a}{2} \\ &\langle x^2 \rangle = \int_0^a x^2 \left|\psi_n(x)\right|^2 \mathrm{d}x \\ &=\frac{2}{a}\int_0^a x^2 \sin^2\!\left(\frac{n\pi}{a}x\right) \mathrm{d}x \\ &=\frac{1}{a}\int_0^a x^2 \left(1 - \cos\!\left(\frac{2n\pi}{a}x\right)\right) \mathrm{d}x \\ &=\frac{1}{a}\int_0^a x^2 \mathrm{d}x - \frac{1}{a}\int_0^a x^2 \cos\!\left(\frac{2n\pi}{a}x\right) \mathrm{d}x \\ &=\frac{a^2}{3} - \frac{1}{a}\bigg(\frac{a}{2n\pi}\bigg[x^2 \sin\!\left(\frac{2n\pi}{a}x\right)\bigg]_0^a - \frac{a}{n\pi}\int_0^a x \sin\!\left(\frac{2n\pi}{a}x\right) \mathrm{d}x\bigg) \\ &=\frac{a^2}{3} + \frac{1}{n\pi}\bigg(-\frac{a}{2n\pi}\bigg[x \cos\!\left(\frac{2n\pi}{a}x\right)\bigg]_0^a + \frac{a}{2n\pi}\int_0^a \cos\!\left(\frac{2n\pi}{a}x\right) \mathrm{d}x\bigg) \\ &=\frac{a^2}{3} - \frac{a^2}{2n^2\pi^2} \end{split}$$

$$\langle p \rangle = \int_0^a \psi_n^*(x) \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \psi_n(x) \right) \mathrm{d}x$$

$$= \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(-i\hbar \cdot \frac{n\pi}{a} \sqrt{\frac{2}{a}} \cos\left(\frac{n\pi}{a}x\right) \right) \mathrm{d}x$$

$$= \frac{2n\pi i\hbar}{a^2} \int_0^a \sin\left(\frac{n\pi}{a}x\right) \cos\left(\frac{n\pi}{a}x\right) \mathrm{d}x$$

$$= \frac{n\pi i\hbar}{a^2} \int_0^a \sin\left(\frac{2n\pi}{a}x\right) \mathrm{d}x$$

$$= 0$$

$$\langle p^2 \rangle = \int_0^a \psi_n^*(x) \left(-\hbar^2 \frac{\mathrm{d}^2}{\mathrm{d}^2 x} \psi_n(x) \right) \mathrm{d}x$$

$$= \int_0^a \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \left(\hbar^2 \cdot \frac{n^2 \pi^2}{a^2} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \right) \mathrm{d}x$$

$$= \frac{2n^2 \pi^2 \hbar^2}{a^3} \int_0^a \sin^2\left(\frac{n\pi}{a}x\right) \mathrm{d}x$$

$$= \frac{n^2 \pi^2 \hbar^2}{a^2}$$

$$\begin{split} \sigma_x &= \sqrt{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2} \\ &= \sqrt{\frac{a^2}{3} - \frac{a^2}{2n^2\pi^2} - \frac{a^2}{4}} \\ &= a\sqrt{\frac{1}{12} - \frac{1}{2n^2\pi^2}} \\ \sigma_p &= \sqrt{\left\langle p^2 \right\rangle - \left\langle p \right\rangle^2} \\ &= \frac{n\pi\hbar}{a} \end{split}$$

より $\sigma_x\sigma_p=\hbar\sqrt{\frac{n^2\pi^2}{12}-\frac{1}{2}}$ 、これは n=1 のとき最小値 $\hbar\sqrt{\frac{\pi^2}{12}-\frac{1}{2}}=0.568\hbar$ をとるので不確定性原理は成り立っている.

第4章 2021/4/25

1. 問題 2.1

1.1. (a)

 $\Psi(x,t) = \psi(x)\varphi(t)$ が Schrödinger 方程式の解ならば,

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = |\varphi(t)|^2 \int_{-\infty}^{\infty} |\psi(x)|^2 dx$$

は t によらず一定なので $\left| \varphi(t) \right|^2$ は定数である.ここで $\varphi(t) = A e^{-iEt/\hbar}$ より

$$|\varphi(t)|^2 = \varphi^*(t)\varphi(t)$$

$$= Ae^{iE^*t/\hbar} \cdot Ae^{-iEt/\hbar}$$

$$= A^2e^{-i(E-E^*)t/\hbar}$$

であるから、一定となるためには $E-E^*=0$ 、すなわち E は実数でなければならない.

1.2. (b)

時間に依存しない Schrödinger 方程式について、任意の解 ψ が、実数値関数解の線型結合として表せることを示す. E が実数であるから、

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V\psi = E\psi$$

の両辺の複素共役をとると

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi^*}{\mathrm{d}x^2} + V\psi^* = E\psi^*$$

よって

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\frac{\psi + \psi^*}{2} + V\frac{\psi + \psi^*}{2} = E\frac{\psi + \psi^*}{2}$$
$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\frac{\psi - \psi^*}{2i} + V\frac{\psi - \psi^*}{2i} = E\frac{\psi - \psi^*}{2i}$$

より $\psi_R=\frac{\psi+\psi^*}{2}$ と $\psi_I=\frac{\psi-\psi^*}{2i}$ はともに解である. これらはそれぞれ ψ の実部と虚部であるから, $\lim_{x\to\pm\infty}\psi=0$ より $\lim_{x\to\pm\infty}\psi_R=\lim_{x\to\pm\infty}\psi_I=0$ であり,また

$$\int_{-\infty}^{\infty} \left| \psi_R \right|^2 \mathrm{d}x + \int_{-\infty}^{\infty} \left| \psi_I \right|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \left| \psi \right|^2 \mathrm{d}x = 1$$

である.一方 $\left|\psi_R\right|^2$, $\left|\psi_I\right|^2$ は常に 0 以上なので $\int_{-\infty}^{\infty}\left|\psi_R\right|^2\mathrm{d}x\geq 0$, $\int_{-\infty}^{\infty}\left|\psi_I\right|^2\mathrm{d}x\geq 0$.

- $\int_{-\infty}^{\infty} \left|\psi_R\right|^2 \mathrm{d}x = 1$, $\int_{-\infty}^{\infty} \left|\psi_I\right|^2 \mathrm{d}x = 0$ のとき, ψ は正規化された実数値関数解 ψ_R に等しい.
- $0<\int_{-\infty}^{\infty}\left|\psi_{R}\right|^{2}\mathrm{d}x<1, 0<\int_{-\infty}^{\infty}\left|\psi_{I}\right|^{2}\mathrm{d}x<1$ のとき, ψ は正規化可能な 2 つの実数値関数解 ψ_{R} , ψ_{I} の線型結合として表される.
- $\int_{-\infty}^{\infty} \left|\psi_R\right|^2 \mathrm{d}x = 0$, $\int_{-\infty}^{\infty} \left|\psi_I\right|^2 \mathrm{d}x = 1$ のとき, ψ は正規化された実数値関数解 ψ_I の i 倍に等しい.

いずれの場合も ψ を正規化可能な実数値関数解の線型結合として表すことができた.

1.3. (c)

時間に依存しない Schrödinger 方程式

$$-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

において V(x) = V(-x) なら

$$-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(-x) + V(x)\psi(-x) = E\psi(-x)$$

よって

$$-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}(\psi(x) + \psi(-x)) + V(x)(\psi(x) + \psi(-x)) = E(\psi(x) + \psi(-x))$$
$$-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}(\psi(x) - \psi(-x)) + V(x)(\psi(x) - \psi(-x)) = E(\psi(x) - \psi(-x))$$

より $\psi(x) + \psi(-x)$ と $\psi(x) - \psi(-x)$ はともに解である。前者は偶関数,後者は奇関数であるから, ψ を偶関数解と奇関数解の線型結合として表すことができた。

2. 問題 2.2

任意の x について $V(x) \geq E$ が成り立つと仮定する.

時間に依存しない Schrödinger 方程式を変形すると

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = \frac{2m}{\hbar} (V(x) - E)\psi(x)$$

となる.ここである x_0 が存在して $\psi(x_0)>0$ であると仮定する. $\psi'(x_0)\geq0$ の場合,集合 $A=\left\{x\geq x_0\;\middle|\;\psi(x)\leq0\right\}$ が空でないと仮定し,その下限を x_1 とおく. ψ の連続性より A は閉であるから $x_1\in A$,また $x_0\notin A$ より $x_0< x_1$ である. $x_0\leq x< x_1$ の範囲では, $\psi(x)>0$ と $V(x)-E\geq0$ より $\psi''(x)\geq0$ であるから, ψ' の単調性より $\psi'(x)\geq\psi'(x_0)\geq0$. よって ψ の単調性より $\psi(x_1)\geq\psi(x_0)>0$ となるが, $x_1\in A$ に反する. よって $A=\emptyset$ である. すると同様に $x_0\leq x$ の範囲で $\psi''(x)\geq0$ であるから ψ' の単調性より $\psi(x)\geq\psi(x_0)$ となり, ψ は正規化不可能である. 同様に $\psi'(x_0)\leq0$ の場合 $x\leq x_0$ の範囲で $\psi(x)\geq\psi(x_0)$ となるため ψ は正規化不可能である.よって $\psi(x_0)>0$ となる x_0 は存在しない.同様に $\psi(x_0)<0$ となる x_0 も存在しないので, ψ は定数 0 となるが,これも正規化不可能である.

よって、あるxが存在してV(x)
 <Eである(この証明は@buta_kimchi_ さんにいただいたリプをもとに書いている).

3. 要点(1次元調和振動子)

古典力学の単振動 $x=\sin\omega t$ を考えると, $m\ddot{x}=-m\omega^2\sin\omega t=-m\omega^2x$ より位置エネルギーは $V(x)=-\int \left(-m\omega^2x\right)\mathrm{d}x=\frac{1}{2}m\omega^2x^2$ である.この Vについて時間に依存しない Schrödinger 方程式

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2x^2\psi = E\psi$$

を解く.

運動量を得る作用素 $-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}$ を \hat{p} とおくと, $\hat{p}^2=-\hbar^2\frac{\mathrm{d}^2}{\mathrm{d}x^2}$ であるから, 方程式は

$$\frac{1}{2m} (\hat{p}^2 + (m\omega x)^2) \psi = E\psi$$

と書き換えられる. ここで \hat{a}_-,\hat{a}_+ を

$$\hat{a}_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x)$$

と定義すると, 方程式はさらに

$$\hbar\omega \bigg(\hat{a}_{\pm}\hat{a}_{\mp} \pm \frac{1}{2}\bigg)\psi = E\psi$$

と書き換えられる(計算1).

ある組 (ψ,E) がこの方程式の解ならば、組 $(\hat{a}_+\psi,E+\hbar\omega)$ と組 $(\hat{a}_-\psi,E-\hbar\omega)$ もこの方程式の解となる(計算 2). ただし ψ が正規化可能でも $\hat{a}_+\psi$ が正規化可能とは限らない.

組 $\left(\hat{a}_-\psi,E-\hbar\omega\right)$ について,もし $E-\hbar\omega\leq 0$ (Vの最小値)ならば $\hat{a}_-\psi$ は正規化不可能なので $\hat{a}_-\psi=0$. よって

$$(i\hat{p} + m\omega x)\psi = 0$$

を解いて $\psi = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^2}$. 対応する E を計算すると $\frac{1}{2}\hbar\omega$ となり, これが基底状態のエネルギー E_0 である. $0 < E \leq \hbar\omega$ の範囲の解はこれ 1 つなので, 任意の解 E は $E_n = \left(n + \frac{1}{2}\right)\!\hbar\omega$ と表せる.

4. 計算1

作用素 \hat{A} , \hat{B} について交換子 $\left[\hat{A},\hat{B}\right]$ を

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

で定義すると

$$\begin{split} \big[x,\hat{p}\big]\psi &= \big(x\hat{p} - \hat{p}x\big)\psi \\ &= x\bigg(-i\hbar\frac{\mathrm{d}\psi}{\mathrm{d}x}\bigg) - \bigg(-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\big(x\psi\big)\bigg) \\ &= -i\hbar x\frac{\mathrm{d}\psi}{\mathrm{d}x} + i\hbar x\frac{\mathrm{d}\psi}{\mathrm{d}x} + i\hbar\psi \\ &= i\hbar\psi \end{split}$$

より $\left[x,\hat{p}\right]=i\hbar$ なので,

$$\hbar\omega\left(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}\right) = \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(-i\hat{p} + m\omega x\right)\left(i\hat{p} + m\omega x\right) + \frac{1}{2}\right)$$

$$= \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2} + im\omega\left[x,\hat{p}\right]\right) + \frac{1}{2}\right)$$

$$= \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2} - \hbar m\omega\right) + \frac{1}{2}\right)$$

$$= \hbar\omega\cdot\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2}\right)$$

$$= \frac{1}{2m}\left(\hat{p}^{2} + (m\omega x)^{2}\right)$$

$$= \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(i\hat{p} + m\omega x\right)\left(-i\hat{p} + m\omega x\right) - \frac{1}{2}\right)$$

$$= \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2} - im\omega\left[x,\hat{p}\right]\right) - \frac{1}{2}\right)$$

$$= \hbar\omega\left(\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2} + \hbar m\omega\right) - \frac{1}{2}\right)$$

$$= \hbar\omega\cdot\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2} + \hbar m\omega\right) - \frac{1}{2}$$

$$= \hbar\omega\cdot\frac{1}{2\hbar m\omega}\left(\hat{p}^{2} + (m\omega x)^{2}\right)$$

 $=\frac{1}{2m}(\hat{p}^2+(m\omega x)^2)$

5. 計算 2

$$\hbar\omega \biggl(\hat{a}_{-}\hat{a}_{+}-\frac{1}{2}\biggr)\psi \,=\, E\psi\,\, \mbox{\sharp } \mbox{\flat } \mbox{,}$$

$$\begin{split} \hbar\omega\Big(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}\Big) &(\hat{a}_{+}\psi) = \hbar\omega\Big(\hat{a}_{+}\hat{a}_{-}\hat{a}_{+} + \frac{1}{2}\hat{a}_{+}\Big)\psi \\ &= \hbar\omega\hat{a}_{+}\Big(\hat{a}_{-}\hat{a}_{+} + \frac{1}{2}\Big)\psi \\ &= \hat{a}_{+}\Big(\hbar\omega\Big(\hat{a}_{-}\hat{a}_{+} - \frac{1}{2}\Big) + \hbar\omega\Big)\psi \\ &= \hat{a}_{+}(E + \hbar\omega)\psi \\ &= (E + \hbar\omega)(\hat{a}_{+}\psi) \end{split}$$

$$\hbar\omega\!\!\left(\hat{a}_{+}\hat{a}_{-}+\frac{1}{2}\!\right)\!\!\psi\,=\,E\psi\,\,\mathrm{k}\,\,\mathrm{b}\,,$$

$$\begin{split} \hbar\omega\Big(\hat{a}_{-}\hat{a}_{+} - \frac{1}{2}\Big) &(\hat{a}_{-}\psi) = \hbar\omega\Big(\hat{a}_{-}\hat{a}_{+}\hat{a}_{-} - \frac{1}{2}\hat{a}_{-}\Big)\psi \\ &= \hbar\omega\hat{a}_{-}\Big(\hat{a}_{+}\hat{a}_{-} - \frac{1}{2}\Big)\psi \\ &= \hat{a}_{-}\Big(\hbar\omega\Big(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}\Big) - \hbar\omega\Big)\psi \\ &= \hat{a}_{-}(E - \hbar\omega)\psi \\ &= (E - \hbar\omega)(\hat{a}_{-}\psi) \end{split}$$

第5章 2021/4/26

1. 問題 2.10

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \, \sharp \, \mathfrak{h}$$

$$\begin{split} \psi_1(x) &= \hat{a}_+ \psi_0(x) \\ &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega x) e^{-\frac{m\omega}{2\hbar}x^2} \\ &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2\hbar m\omega}} \left(-\hbar \frac{\mathrm{d}}{\mathrm{d}x} + m\omega x\right) e^{-\frac{m\omega}{2\hbar}x^2} \\ &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2\hbar m\omega}} \left(-\hbar \left(-\frac{m\omega}{\hbar} x e^{-\frac{m\omega}{2\hbar}x^2}\right) + m\omega x e^{-\frac{m\omega}{2\hbar}x^2}\right) \\ &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2\hbar m\omega}} \cdot 2m\omega x e^{-\frac{m\omega}{2\hbar}x^2} \\ &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \sqrt{\frac{2m\omega}{\hbar}} x e^{-\frac{m\omega}{2\hbar}x^2} \end{split}$$

$$\begin{split} \psi_2(x) &= \frac{1}{\sqrt{2}} \hat{a}_+ \psi_1(x) \\ &= \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \sqrt{\frac{2m\omega}{\hbar}} \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega x) \left(x e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ &= \frac{1}{\sqrt{2}\hbar} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-\hbar \frac{\mathrm{d}}{\mathrm{d}x} + m\omega x \right) \left(x e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ &= \frac{1}{\sqrt{2}\hbar} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-\hbar \left(x \cdot \left(-\frac{m\omega}{\hbar} x e^{-\frac{m\omega}{2\hbar}x^2} \right) + e^{-\frac{m\omega}{2\hbar}x^2} \right) + m\omega x^2 e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ &= \frac{1}{\sqrt{2}\hbar} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(m\omega x^2 e^{-\frac{m\omega}{2\hbar}x^2} - \hbar e^{-\frac{m\omega}{2\hbar}x^2} + m\omega x^2 e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ &= \frac{1}{\sqrt{2}\hbar} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(2m\omega x^2 - \hbar \right) e^{-\frac{m\omega}{2\hbar}x^2} \end{split}$$

 ψ_0,ψ_2 は偶関数, ψ_1 は奇関数なので $\psi_0^*\psi_1$ と $\psi_1^*\psi_2$ は奇関数. よって

$$\int_{-\infty}^{\infty} \psi_0^{} * \psi_1^{} \mathrm{d}x = \int_{-\infty}^{\infty} \psi_1^{} * \psi_2^{} \mathrm{d}x = 0$$

一方

$$\int (2m\omega x^2 - \hbar)e^{-\frac{m\omega}{\hbar}x^2} dx = 2m\omega \int x^2 e^{-\frac{m\omega}{\hbar}x^2} dx - \hbar \int e^{-\frac{m\omega}{\hbar}x^2} dx$$
$$= -\hbar x e^{-\frac{m\omega}{\hbar}x^2} + \hbar \int e^{-\frac{m\omega}{\hbar}x^2} dx - \hbar \int e^{-\frac{m\omega}{\hbar}x^2} dx$$
$$= -\hbar x e^{-\frac{m\omega}{\hbar}x^2} + (\text{const})$$

より

$$\begin{split} \int_{-\infty}^{\infty} \psi_0^*(x) \psi_2(x) \mathrm{d}x &= (\text{const}) \int_{-\infty}^{\infty} \left(2m\omega x^2 - \hbar \right) e^{-\frac{m\omega}{\hbar}x^2} \mathrm{d}x \\ &= (\text{const}) \left[x e^{-\frac{m\omega}{\hbar}x^2} \right]_{-\infty}^{\infty} \\ &= 0 \end{split}$$

であるから ψ_0, ψ_1, ψ_2 はそれぞれ直交する.

2. 問題 2.11

$$\left|\psi_{0}\right|^{2} = \sqrt{\frac{m\omega}{\pi\hbar}}e^{-\frac{m\omega}{\hbar}x^{2}} \ \mathrm{は正規分布} \ N\!\!\left(0, \frac{\hbar}{2m\omega}\right) \text{の密度関数なので} \left\langle x\right\rangle = 0, \ \left\langle x^{2}\right\rangle = \frac{\hbar}{2m\omega}.$$

 ψ_0 は偶関数なので $\frac{\mathrm{d}\psi_0}{\mathrm{d}x}$ は奇関数. よって $\psi_0 \frac{\mathrm{d}\psi_0}{\mathrm{d}x}$ は奇関数なので

$$\langle p \rangle = \int_{-\infty}^{\infty} \psi_0^* \left(-i\hbar \frac{\mathrm{d}\psi_0}{\mathrm{d}x} \right) \mathrm{d}x$$
$$= -i\hbar \int_{-\infty}^{\infty} \psi_0^* \frac{\mathrm{d}\psi_0}{\mathrm{d}x} \mathrm{d}x$$
$$= 0$$

また、
$$\xi = \sqrt{\frac{m\omega}{\hbar}}x$$
、 $\alpha = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}$ とおくと $\psi_0 = \alpha e^{-\frac{\xi^2}{2}}$ であるから
$$\frac{\mathrm{d}^2\psi_0}{\mathrm{d}x^2} = \frac{m\omega}{\hbar}\frac{\mathrm{d}^2\psi_0}{\mathrm{d}\xi^2}$$
$$= \frac{m\omega\alpha}{\hbar} \left(\xi^2 - 1\right) e^{-\frac{\xi^2}{2}}$$

$$\begin{split} \left\langle p^{2}\right\rangle &= \int_{-\infty}^{\infty} \psi_{0}^{*} \left(-\hbar^{2} \frac{\mathrm{d}^{2} \psi_{0}}{\mathrm{d}x^{2}}\right) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \alpha e^{-\frac{\xi^{2}}{2}} \left(-\hbar m \omega \alpha \left(\xi^{2}-1\right) e^{-\frac{\xi^{2}}{2}}\right) \sqrt{\frac{\hbar}{m \omega}} \mathrm{d}\xi \\ &= -\frac{\hbar m \omega}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(\xi^{2}-1\right) e^{-\xi^{2}} \mathrm{d}\xi \\ &= -\frac{\hbar m \omega}{\sqrt{\pi}} \left(\int_{-\infty}^{\infty} \xi^{2} e^{-\xi^{2}} \mathrm{d}\xi - \int_{-\infty}^{\infty} e^{-\xi^{2}} \mathrm{d}\xi\right) \\ &= -\frac{\hbar m \omega}{\sqrt{\pi}} \left(-\frac{1}{2} \left[\xi e^{-\xi^{2}}\right]_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} e^{-\xi^{2}} \mathrm{d}\xi - \int_{-\infty}^{\infty} e^{-\xi^{2}} \mathrm{d}\xi\right) \\ &= \frac{\hbar m \omega}{2\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^{2}} \mathrm{d}\xi \\ &= \frac{\hbar m \omega}{2} \end{split}$$

 $\left|\psi_1\right|^2 = \frac{2m\omega}{\hbar} \sqrt{\frac{m\omega}{\pi\hbar}} \, x^2 e^{-\frac{m\omega}{\hbar}x^2} \, \text{は偶関数なので} \, \langle x \rangle \, = \, \int_{-\infty}^\infty x \left|\psi_1\right|^2 \! \mathrm{d}x \, = \, 0. \quad \text{また上と}$ 同じ ξ と α を用いて $\psi_1 = \sqrt{2} \, \alpha \xi e^{-\frac{\xi^2}{2}}$ と表すと

$$\begin{split} \left\langle x^2 \right\rangle &= \int_{-\infty}^{\infty} x^2 \left| \psi_1 \right|^2 \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{\hbar}{m\omega} \xi^2 \cdot 2\alpha^2 \xi^2 e^{-\xi^2} \cdot \sqrt{\frac{\hbar}{m\omega}} \mathrm{d}\xi \\ &= \frac{2\hbar}{m\omega\sqrt{\pi}} \int_{-\infty}^{\infty} \xi^4 e^{-\xi^2} \mathrm{d}\xi \\ &= \frac{2\hbar}{m\omega\sqrt{\pi}} \left(-\frac{1}{2} \left[\xi^3 e^{-\xi^2} \right]_{-\infty}^{\infty} + \frac{3}{2} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \mathrm{d}\xi \right) \\ &= \frac{3\hbar}{m\omega\sqrt{\pi}} \left(-\frac{1}{2} \left[\xi e^{-\xi^2} \right]_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} e^{-\xi^2} \mathrm{d}\xi \right) \\ &= \frac{3\hbar}{2m\omega} \end{split}$$

 ψ_1 は奇関数なので $\frac{\mathrm{d}\psi_1}{\mathrm{d}x}$ は偶関数. よって $\psi_1\frac{\mathrm{d}\psi_1}{\mathrm{d}x}$ は奇関数なので

$$\begin{split} \langle p \rangle &= \int_{-\infty}^{\infty} \psi_1 * \biggl(-i \hbar \frac{\mathrm{d} \psi_1}{\mathrm{d} x} \biggr) \mathrm{d} x \\ &= -i \hbar \int_{-\infty}^{\infty} \psi_1 \frac{\mathrm{d} \psi_1}{\mathrm{d} x} \mathrm{d} x \\ &= 0 \end{split}$$

また

$$\frac{\mathrm{d}^2 \psi_1}{\mathrm{d}x^2} = \frac{m\omega}{\hbar} \frac{\mathrm{d}^2 \psi_1}{\mathrm{d}\xi^2}$$
$$= \frac{\sqrt{2} \, m\omega\alpha}{\hbar} \left(\xi^3 - 3\xi\right) e^{-\frac{\xi^2}{2}}$$

より

$$\begin{split} \left\langle p^2 \right\rangle &= \int_{-\infty}^{\infty} \psi_1^* \left(-\hbar^2 \frac{\mathrm{d}^2 \psi_1}{\mathrm{d} x^2} \right) \mathrm{d} x \\ &= \int_{-\infty}^{\infty} \sqrt{2} \, \alpha \xi e^{-\frac{\xi^2}{2}} \left(-\hbar \sqrt{2} \, m \omega \alpha \left(\xi^3 - 3 \xi \right) e^{-\frac{\xi^2}{2}} \right) \sqrt{\frac{\hbar}{m \omega}} \mathrm{d} \xi \\ &= -\frac{2\hbar m \omega}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(\xi^4 - 3 \xi^2 \right) e^{-\xi^2} \mathrm{d} \xi \\ &= -\frac{2\hbar m \omega}{\sqrt{\pi}} \left(\int_{-\infty}^{\infty} \xi^4 e^{-\xi^2} \mathrm{d} \xi - 3 \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \mathrm{d} \xi \right) \\ &= -\frac{2\hbar m \omega}{\sqrt{\pi}} \left(-\frac{1}{2} \left[\xi^3 e^{-\xi^2} \right]_{-\infty}^{\infty} + \frac{3}{2} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \mathrm{d} \xi - 3 \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \mathrm{d} \xi \right) \\ &= \frac{3\hbar m \omega}{\sqrt{\pi}} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \mathrm{d} \xi \\ &= \frac{3\hbar m \omega}{\sqrt{\pi}} \left(-\frac{1}{2} \left[\xi e^{-\xi^2} \right]_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} e^{-\xi^2} \mathrm{d} \xi \right) \\ &= \frac{3\hbar m \omega}{2} \end{split}$$

$$\psi_0$$
 については $\sigma_x=\sqrt{\frac{\hbar}{2m\omega}}$, $\sigma_p=\sqrt{\frac{\hbar m\omega}{2}}$ より $\sigma_x\sigma_p=\frac{\hbar}{2}$. ψ_1 については $\sigma_x=\sqrt{\frac{3\hbar}{2m\omega}}$, $\sigma_p=\sqrt{\frac{3\hbar m\omega}{2}}$ より $\sigma_x\sigma_p=\frac{3\hbar}{2}$. いずれについても不確定性原理は成り立っている.

$$T=rac{p^2}{2m}$$
, $V=rac{1}{2}m\omega^2x^2$ であるから, ψ_0 については

$$\langle T \rangle = \frac{\langle p^2 \rangle}{2m} = \frac{\hbar \omega}{4}$$
$$\langle V \rangle = \frac{1}{2} m \omega^2 \langle x^2 \rangle = \frac{\hbar \omega}{4}$$

 ψ_1 については

$$\begin{split} \langle T \rangle &= \frac{\left\langle p^2 \right\rangle}{2m} = \frac{3\hbar\omega}{4} \\ \langle V \rangle &= \frac{1}{2}m\omega^2 \left\langle x^2 \right\rangle = \frac{3\hbar\omega}{4} \end{split}$$

第6章 2021/5/10

1. 問題 1.7

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle p \rangle &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} \psi^* \bigg(-i\hbar \frac{\partial \psi}{\partial x} \bigg) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \bigg(\frac{\partial \psi^*}{\partial t} \bigg(-i\hbar \frac{\partial \psi}{\partial x} \bigg) + \psi^* \bigg(-i\hbar \frac{\partial^2 \psi}{\partial x \partial t} \bigg) \bigg) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \bigg(\bigg(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi^*}{\partial x^2} + V\psi^* \bigg) \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} \bigg(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V\psi \bigg) \bigg) \mathrm{d}x \\ &= -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} \bigg(\frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial^3 \psi}{\partial x^3} \bigg) \mathrm{d}x + \int_{-\infty}^{\infty} \bigg(V\psi^* \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} (V\psi) \bigg) \mathrm{d}x \end{split}$$

ここで

$$\int_{-\infty}^{\infty} \frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial \psi}{\partial x} dx = \left[\frac{\partial \psi^*}{\partial x} \frac{\partial \psi}{\partial x} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\partial \psi^*}{\partial x} \frac{\partial^2 \psi}{\partial x^2} dx$$

$$= - \left[\frac{\psi^*}{\partial x^2} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \psi^* \frac{\partial^3 \psi}{\partial x^3} dx$$

$$= \int_{-\infty}^{\infty} \psi^* \frac{\partial^3 \psi}{\partial x^3} dx$$

より

$$\int_{-\infty}^{\infty} \left(\frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial^3 \psi}{\partial x^3} \right) dx = 0$$

であるから,

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle p \rangle = \int_{-\infty}^{\infty} \left(V \psi^* \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} (V \psi) \right) \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \left(V \psi^* \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial V}{\partial x} \psi - \psi^* V \frac{\partial \psi}{\partial x} \right) \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \psi^* \left(-\frac{\partial V}{\partial x} \right) \psi \, \mathrm{d}x$$

$$= \left\langle -\frac{\partial V}{\partial x} \right\rangle$$

2. 要点(1次元調和振動子つづき)

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
 より $\hbar\omega \left(\hat{a}_+\hat{a}_- + \frac{1}{2}\right)\psi_n = \left(n + \frac{1}{2}\right)\hbar\omega\psi_n$ なので
$$\hat{a}_+\hat{a}_-\psi_n = \left(n + \frac{1}{2} - \frac{1}{2}\right)\psi_n = n\psi_n$$
 同様に $\hbar\omega \left(\hat{a}_-\hat{a}_+ - \frac{1}{2}\right)\psi_n = \left(n + \frac{1}{2}\right)\hbar\omega\psi_n$ なので
$$\hat{a}_-\hat{a}_+\psi_n = \left(n + \frac{1}{2} + \frac{1}{2}\right)\psi_n = (n+1)\psi_n$$

ここで、 \hat{a}_+ と \hat{a}_- のエルミート共役性

$$\int_{-\infty}^{\infty} f^*(\hat{a}_+ g) dx = \int_{-\infty}^{\infty} (\hat{a}_- f)^* g dx$$
$$\int_{-\infty}^{\infty} f^*(\hat{a}_- g) dx = \int_{-\infty}^{\infty} (\hat{a}_+ f)^* g dx$$

(計算1) に着目すると,

$$\int_{-\infty}^{\infty} (\hat{a}_{-}\psi_{n})^{*}(\hat{a}_{-}\psi_{n}) dx = \int_{-\infty}^{\infty} (\hat{a}_{+}\hat{a}_{-}\psi_{n})^{*}\psi_{n} dx$$
$$= n \int_{-\infty}^{\infty} \psi_{n}^{*}\psi_{n} dx$$
$$= n$$

$$\int_{-\infty}^{\infty} (\hat{a}_{+} \psi_{n})^{*} (\hat{a}_{+} \psi_{n}) dx = \int_{-\infty}^{\infty} (\hat{a}_{-} \hat{a}_{+} \psi_{n})^{*} \psi_{n} dx$$
$$= (n+1) \int_{-\infty}^{\infty} \psi_{n}^{*} \psi_{n} dx$$
$$= n+1$$

であるから, $\hat{a}_-\psi_n$ の定数倍である ψ_{n-1} が $\int_{-\infty}^\infty \psi_{n-1}^{}^*\psi_{n-1}^{}\mathrm{d}x=1$ を満たすためには

$$\psi_{n-1} = \frac{1}{\sqrt{n}} \hat{a}_- \psi_n$$

 $\hat{a}_+\psi_n$ の定数倍である ψ_{n+1} が $\int_{-\infty}^\infty \psi_{n+1}^{}^*\psi_{n+1}^{}\mathrm{d}x=1$ を満たすためには

$$\boldsymbol{\psi}_{n+1} = \frac{1}{\sqrt{n+1}} \hat{\boldsymbol{a}}_+ \boldsymbol{\psi}_n$$

であればよい.これを繰り返して $\psi_n = \frac{1}{\sqrt{n!}} \left(\hat{a}_+\right)^n \psi_0$ を得る.

また,次が成り立つ(計算2).

$$\int_{-\infty}^{\infty} \psi_m \psi_n \, \mathrm{d}x = \delta_{mn}$$

3. 計算1

ここで部分積分

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}f^*}{\mathrm{d}x} g \, \mathrm{d}x = \left[f^* g \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^* \frac{\mathrm{d}g}{\mathrm{d}x} \mathrm{d}x$$
$$= - \int_{-\infty}^{\infty} f^* \frac{\mathrm{d}g}{\mathrm{d}x} \mathrm{d}x$$

より
$$\int_{-\infty}^{\infty} f^*(\hat{a}_+g) dx \, \angle \int_{-\infty}^{\infty} (\hat{a}_-f)^*g dx$$
 は等しい.

4. 計算 2

 \hat{a}_+ と \hat{a}_- のエルミート共役性より

$$\int_{-\infty}^{\infty} \psi_m * (\hat{a}_+ \hat{a}_- \psi_n) dx = \int_{-\infty}^{\infty} (\hat{a}_- \psi_m) * (\hat{a}_- \psi_n) dx$$
$$= \int_{-\infty}^{\infty} (\hat{a}_+ \hat{a}_- \psi_m) * \psi_n dx$$

よって

$$n \int_{-\infty}^{\infty} \psi_m^* \psi_n dx = m \int_{-\infty}^{\infty} \psi_m^* \psi_n dx$$

であるから,
$$n \neq m$$
 ならば $\int_{-\infty}^{\infty} \psi_m^* \psi_n^* \mathrm{d}x = 0$.

第7章 2021/5/12

1. 要点(ヒルベルト空間)

可測関数 $f,g:\mathbb{R} \to \mathbb{C}$ (可積分とは限らない) に対して内積 $\langle f|g \rangle$ (有限とは限らない) を

$$\langle f|g\rangle = \int_{-\infty}^{\infty} f^*(x)g(x)\mathrm{d}x$$

で定義すると, $\langle f|f\rangle$ は必ず 0 以上の実数あるいは ∞ となる. ノルム $\|f\|$ を

$$||f|| = \sqrt{\langle f|f\rangle}$$

で定義する.このとき,集合 $L^2(\mathbb{R})=\left\{f:\mathbb{R}\to\mathbb{C}\;\middle|\; \|f\|<\infty\right\}$ は和とスカラー倍について閉じている(問題 3.1).また, $f,g\in L^2(\mathbb{R})$ ならば $\left|\langle f|g\rangle\right|<\infty$ である(計算 1).

2. 問題 3.1

任意の $f,g \in L^2(\mathbb{R})$ について

$$||f+g||^{2} = \int_{-\infty}^{\infty} |f(x) + g(x)|^{2} dx$$

$$\leq \int_{-\infty}^{\infty} (|f(x)| + |g(x)|)^{2} dx$$

$$\leq \int_{-\infty}^{\infty} ((|f(x)| + |g(x)|)^{2} + (|f(x)| - |g(x)|)^{2}) dx$$

$$= \int_{-\infty}^{\infty} (2|f(x)|^{2} + 2|g(x)|^{2}) dx$$

$$= 2||f||^{2} + 2||g||^{2}$$

$$< \infty$$

より $f+g \in L^2(\mathbb{R})$.

任意の $f \in L^2(\mathbb{R})$, $\alpha \in \mathbb{C}$ について

$$\|\alpha f\|^2 = |\alpha|^2 \|f\|^2$$

$$< \infty$$

より $\alpha f \in L^2(\mathbb{R})$.

3. 計算1

任意の実数 a,b について $a^2+b^2-2ab=\left(a-b\right)^2\geq 0$ より $ab\leq \frac{1}{2}\left(a^2+b^2\right)$ が 成り立つことに注意すると、

$$\left| \langle f|g \rangle \right| = \left| \int_{-\infty}^{\infty} f^*(x)g(x) dx \right|$$

$$\leq \int_{-\infty}^{\infty} \left| f^*(x)g(x) \right| dx$$

$$= \int_{-\infty}^{\infty} \left| f(x) \right| \cdot \left| g(x) \right| dx$$

$$\leq \frac{1}{2} \int_{-\infty}^{\infty} \left(\left| f(x) \right|^2 + \left| g(x) \right|^2 \right) dx$$

$$= \frac{1}{2} \left(\left\| f \right\|^2 + \left\| g \right\|^2 \right)$$

$$< \infty$$

となる (この証明は @nkswtr さんにいただいたリプをもとに書いている).

第8章 2021/5/15

1. 要点(エルミート作用素)

作用素 \hat{Q} , \hat{Q}^{\dagger} が任意の f,g について $\langle f|\hat{Q}g\rangle=\left\langle \hat{Q}^{\dagger}f\Big|g\right\rangle$ を満たすとき,これらはエルミート共役であるという.次が成り立つ:

- $(\hat{Q} + \hat{R})^{\dagger} = \hat{Q}^{\dagger} + \hat{R}^{\dagger}$
- α を複素数とすると $(\alpha\hat{Q})^{\dagger} = \alpha^*\hat{Q}^{\dagger}$
- $(\hat{Q}\hat{R})^{\dagger} = \hat{R}^{\dagger}\hat{Q}^{\dagger}$

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}^{\dagger} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}x^n}$$
である(計算 1).

作用素 \hat{Q} が $\hat{Q}=\hat{Q}^{\dagger}$ を満たすとき、これをエルミート作用素という。x、 \hat{p} はエルミート作用素である(計算 2)。 波動関数 Ψ から得られる観測可能な量 Q の期待値は、エルミート作用素 \hat{Q} を用いて $\langle Q \rangle = \langle \Psi | \hat{Q} \Psi \rangle$ と表される。 ある波動関数 Ψ の観測可能な量 Q の分布が退化してただ 1 つの値 q をとるとき、q は \hat{Q} の固有値、 Ψ は \hat{Q} の固有関数である(計算 3)。

エルミート作用素 \hat{Q} について、次が成り立つ(計算 4):

- $\langle \Psi | \hat{Q} \Psi \rangle$ は実数である.
- Qの固有値は実数である。
- \hat{Q} の 2 つの固有関数は、固有値が異なるならば直交する.

 \hat{Q} の全ての固有値の集まりをスペクトルという。線形独立な複数の波動関数が同じ固有値をもつとき、スペクトルは縮退しているという。

2. 計算1

$$\left\langle f \middle| \frac{\mathrm{d}g}{\mathrm{d}x} \right\rangle = \int_{-\infty}^{\infty} f^* \frac{\mathrm{d}g}{\mathrm{d}x} \mathrm{d}x$$
$$= \left[f^* g \right]_{\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\mathrm{d}f^*}{\mathrm{d}x} g \, \mathrm{d}x$$
$$= \left\langle -\frac{\mathrm{d}f}{\mathrm{d}x} \middle| g \right\rangle$$

より
$$\frac{\mathrm{d}}{\mathrm{d}x}^{\dagger} = -\frac{\mathrm{d}}{\mathrm{d}x}$$
であるから、

$$\frac{d^n}{dx^n}^{\dagger} = \left(\frac{d}{dx}^{\dagger}\right)^n$$
$$= \left(-\frac{d}{dx}\right)^n$$
$$= (-1)^n \frac{d^n}{dx^n}$$

3. 計算 2

$$\langle f|xg\rangle = \int_{-\infty}^{\infty} f^*xg \, dx$$
$$= \int_{-\infty}^{\infty} (xf)^*g \, dx$$
$$= \langle xf|g\rangle$$
$$\left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x}\right)^{\dagger} = i\hbar \frac{\mathrm{d}}{\mathrm{d}x}^{\dagger}$$

 $=-i\hbar\frac{\mathrm{d}}{\mathrm{d}x}$

4. 計算3

Q の期待値は $\langle Q \rangle = q$, 分散は

$$\sigma^{2} = \left\langle (Q - q)^{2} \right\rangle$$

$$= \left\langle \Psi \middle| (\hat{Q} - q)^{2} \Psi \middle\rangle$$

$$= \left\langle (\hat{Q} - q) \Psi \middle| (\hat{Q} - q) \Psi \middle\rangle$$

$$= \left\| (\hat{Q} - q) \Psi \right\|^{2}$$

であるから, $\sigma^2=0$ となるのは $(\hat{Q}-q)\varPsi=0$ のときである.

5. 計算 4

- 内積の性質より $\langle \Psi | \hat{Q}\Psi \rangle^* = \langle \hat{Q}\Psi | \Psi \rangle$, エルミート作用素の定義より $\langle \Psi | \hat{Q}\Psi \rangle = \langle \hat{Q}\Psi | \Psi \rangle$ であるから, $\langle \Psi | \hat{Q}\Psi \rangle = \langle \Psi | \hat{Q}\Psi \rangle^*$ より $\langle \Psi | \hat{Q}\Psi \rangle$ は実数.
- 固有値を q とすると $\langle \Psi | \hat{Q}\Psi \rangle = q \langle \Psi | \Psi \rangle = q \|\Psi\|^2$ であるから, $\langle \Psi | \hat{Q}\Psi \rangle$ が実数より q も実数.

• 固有値を q_1,q_2 ,対応する固有関数を \varPsi_1,\varPsi_2 とすると,

$$\begin{split} \langle \Psi_1 | \hat{Q} \Psi_2 \rangle &= q_2 \langle \Psi_1 | \Psi_2 \rangle \\ \langle \hat{Q} \Psi_1 | \Psi_2 \rangle &= q_1 \langle \Psi_1 | \Psi_2 \rangle \end{split}$$

であるが、エルミート作用素の定義より $\langle \Psi_1|\hat{Q}\Psi_2\rangle=\langle\hat{Q}\Psi_1|\Psi_2\rangle$ であるから、 $q_1\neq q_2$ ならば $\langle \Psi_1|\Psi_2\rangle=0$.

第9章 2021/05/17

1. 要点(運動量表示)

関数 f(x) のフーリエ変換を

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

で定義すると, その逆変換は

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx} dk$$

である. ここで $f(x) = \delta(x)$ とすると

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(x) e^{-ikx} dx$$
$$= \frac{1}{\sqrt{2\pi}} e^{-ik \cdot 0}$$
$$= \frac{1}{\sqrt{2\pi}}$$

であるから, 逆フーリエ変換より

$$\delta(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{ikx} dk$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$$

を得る.

運動量演算子 \hat{p} の固有値 p と固有関数 f_p を考える. $\hat{p}=-ih\frac{\mathrm{d}}{\mathrm{d}x}$ より

$$-i\hbar \frac{\mathrm{d}f_p}{\mathrm{d}x} = pf_p$$
$$\therefore f_p(x) = Ae^{\frac{ip}{\hbar}x}$$

ここで 2 つの固有値 p_1 , p_2 と対応する固有関数 $f_{p_1}(x)=A_1e^{rac{ip_1}{\hbar}x}$, $f_{p_2}(x)=A_2e^{rac{ip_2}{\hbar}x}$ について

$$\begin{split} \left\langle f_{p_1} \middle| f_{p_2} \right\rangle &= \int_{-\infty}^{\infty} A_1 e^{-\frac{ip_1}{\hbar}x} \cdot A_2 e^{\frac{ip_2}{\hbar}x} \, \mathrm{d}x \\ &= A_1 A_2 \int_{-\infty}^{\infty} e^{\frac{i\left(p_2 - p_1\right)}{\hbar}x} \, \mathrm{d}x \\ &= A_1 A_2 \cdot \hbar \int_{-\infty}^{\infty} e^{i\left(p_2 - p_1\right)x} \, \mathrm{d}x \\ &= A_1 A_2 \cdot 2\pi \hbar \delta \Big(p_2 - p_1\Big) \end{split}$$

であるから、 $A_1=A_2=rac{1}{\sqrt{2\pi\hbar}}$ とすれば $\left\langle f_{p_1}\middle|f_{p_2}
ight
angle =\delta\left(p_2-p_1
ight)$ となる.

座標表示の波動関数 $\Psi(x,t)$ に対して運動量表示の波動関数 $\Phi(p,t)$ を

$$\Phi(p,t) = \left\langle f_p \middle| \Psi \right\rangle
= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-\frac{ip}{\hbar}x} \Psi(x,t) dx$$

で定義すると

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}x} \Phi(p,t) dp$$

であり (計算 1), 時刻 t における運動量 p の確率密度関数は $\left| \varPhi(p,t) \right|^2$ となる.

2. 計算1

 Φ の定義中の p を $\hbar p$ に置き換えると

$$\Phi(\hbar p, t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx} \Psi(x, t) dx$$

となるから, Ψ のフーリエ変換は $\sqrt{\hbar}\Phi(\hbar p,t)$ である. よって逆フーリエ変換より

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ipx} \sqrt{\hbar} \Phi(\hbar p, t) dp$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}x} \sqrt{\hbar} \Phi(p, t) \frac{dp}{\hbar}$$
$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}x} \Phi(p, t) dp$$

3. 問題 3.11

1 次元調和振動子の基底状態の座標表示は $\Psi_0(x,t)=\left(\frac{m\omega}{\pi\hbar}\right)^{\!\!\frac{1}{4}}\!e^{-\frac{m\omega}{2\hbar}x^2-\frac{i\omega}{2}t}$ であるから,運動量表示は

$$\begin{split} \varPhi_0(p,t) &= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-\frac{ip}{\hbar}x} \varPsi_0(x,t) \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{i\omega}{2}t} \int_{-\infty}^{\infty} e^{-\frac{m\omega}{2\hbar}x^2 - \frac{ip}{\hbar}x} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{i\omega}{2}t} \int_{-\infty}^{\infty} e^{-\frac{m\omega}{2\hbar}\left(x + \frac{ip}{m\omega}\right)^2 - \frac{p^2}{2\hbar m\omega}} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{p^2}{2\hbar m\omega} - \frac{i\omega}{2}t} \int_{-\infty}^{\infty} e^{-\frac{m\omega}{2\hbar}x^2} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\hbar}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{p^2}{2\hbar m\omega} - \frac{i\omega}{2}t} \sqrt{\frac{2\pi\hbar}{m\omega}} \\ &= \left(\frac{1}{\pi\hbar m\omega}\right)^{\frac{1}{4}} e^{-\frac{p^2}{2\hbar m\omega} - \frac{i\omega}{2}t} \end{split}$$

一方古典力学におけるエネルギー $\frac{1}{2}\hbar\omega$ の単振動は速度 v が $\frac{1}{2}mv^2 \leq \frac{1}{2}\hbar\omega$ すなわち $-\sqrt{\frac{\hbar\omega}{m}} \leq v \leq \sqrt{\frac{\hbar\omega}{m}}$ を満たすので,運動量 mv は区間 $\left[-\sqrt{\hbar m\omega},\sqrt{\hbar m\omega}\right]$ 内の値をとる.基 底状態の調和振動子の運動量がこの範囲の値をとる確率は

$$\int_{-\sqrt{\hbar m\omega}}^{\sqrt{\hbar m\omega}} |\Phi_0(p,t)|^2 dp = \frac{1}{\sqrt{\pi \hbar m\omega}} \int_{-\sqrt{\hbar m\omega}}^{\sqrt{\hbar m\omega}} e^{-\frac{p^2}{\hbar m\omega}} dp$$

$$= \frac{1}{\sqrt{\pi \hbar m\omega}} \cdot \sqrt{\hbar m\omega} \int_{-1}^{1} e^{-p^2} dp$$

$$= \text{erf}(1)$$

$$= 0.843$$

(ただし erf は誤差関数).

第 10 章 2021/5/18

1. 問題 3.12

自由粒子の波動関数

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(k) e^{i\left(kx - \frac{\hbar k^2}{2m}t\right)} dk$$

において $k = \frac{p}{\hbar}$ と置換すると

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi\left(\frac{p}{\hbar}\right) e^{i\left(\frac{p}{\hbar}x - \frac{p^2}{2\hbar m}t\right)} \frac{\mathrm{d}p}{\hbar}$$
$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{i\frac{p}{\hbar}x} \left(\frac{1}{\sqrt{\hbar}} \varphi\left(\frac{p}{\hbar}\right) e^{-\frac{ip^2}{2\hbar m}t}\right) \mathrm{d}p$$

よって

$$\Phi(p,t) = \frac{1}{\sqrt{\hbar}} \varphi\left(\frac{p}{\hbar}\right) e^{-\frac{ip^2}{2\hbar m}t}$$

であり,

$$\left|\Phi(p,t)\right|^2 = \frac{1}{\hbar} \left|\varphi\left(\frac{p}{\hbar}\right)\right|^2$$

より $\left|\Phi(p,t)\right|^2$ はtに依らない.

2. 要点(不確定性原理)

観測可能な 2 つの量 A, B について, $\langle A \rangle = \langle \Psi | \hat{A}\Psi \rangle = a$, $\langle B \rangle = \langle \Psi | \hat{B}\Psi \rangle = b$ とおく. このとき, $\sigma_A = \left\| (\hat{A} - a)\Psi \right\|$ と $\sigma_B = \left\| (\hat{B} - b)\Psi \right\|$ の積 $\sigma_A \sigma_B$ を, $[\hat{A}, \hat{B}]$ を用いて評価したい.

まず,シュワルツの不等式より

$$\sigma_{A}\sigma_{B} = \|(\hat{A} - a)\Psi\| \cdot \|(\hat{B} - b)\Psi\|$$

$$\geq |\langle (\hat{A} - a)\Psi|(\hat{B} - b)\Psi\rangle|$$

であり,

$$\begin{split} \big\langle (\hat{A} - a) \Psi \big| (\hat{B} - b) \Psi \big\rangle &= \big\langle \Psi \big| (\hat{A} - a) (\hat{B} - b) \Psi \big\rangle \\ &= \big\langle \Psi \big| \hat{A} \hat{B} \Psi \big\rangle - b \big\langle \Psi \big| \hat{A} \Psi \big\rangle - a \big\langle \Psi \big| \hat{B} \Psi \big\rangle + a b \big\langle \Psi \big| \Psi \big\rangle \\ &= \big\langle \Psi \big| \hat{A} \hat{B} \Psi \big\rangle - a b - a b + a b \\ &= \big\langle \Psi \big| \hat{A} \hat{B} \Psi \big\rangle - a b \end{split}$$

一方

$$\begin{split} \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle &= \left\langle \varPsi \middle| \left[\hat{A}, \hat{B} \right] \varPsi \right\rangle \\ &= \left\langle \varPsi \middle| \left(\hat{A} \hat{B} - \hat{B} \hat{A} \right) \varPsi \right\rangle \\ &= \left\langle \varPsi \middle| \hat{A} \hat{B} \varPsi \right\rangle - \left\langle \varPsi \middle| \hat{B} \hat{A} \varPsi \right\rangle \\ &= \left\langle \varPsi \middle| \hat{A} \hat{B} \varPsi \right\rangle - \left\langle \varPsi \middle| \hat{A} \hat{B} \varPsi \right\rangle^* \\ &= 2i \cdot \operatorname{Im} \left\langle \varPsi \middle| \hat{A} \hat{B} \varPsi \right\rangle \end{split}$$

であるから,

$$\left| \langle (\hat{A} - a) \Psi | (\hat{B} - b) \Psi \rangle \right| \ge \left| \operatorname{Im} \langle (\hat{A} - a) \Psi | (\hat{B} - b) \Psi \rangle \right|$$
$$= \left| \operatorname{Im} \langle \Psi | \hat{A} \hat{B} \Psi \rangle \right|$$
$$= \left| \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right|$$

よって
$$\sigma_A\sigma_B \geq \left| rac{1}{2i} \langle [\hat{A},\hat{B}] \rangle \right|$$
 が成り立つ.

特に、
$$\hat{A}=x$$
、 $\hat{B}=\hat{p}$ のとき $\left\langle \left[x,\hat{p}\right]\right\rangle =\left[x,\hat{p}\right]=i\hbar$ であるから $\sigma_{x}\sigma_{p}\geq\left|\frac{i\hbar}{2i}\right|=\frac{\hbar}{2}$.

第11章 2021/5/19

1. 問題 3.13

Φ を p で微分すると

$$\frac{\partial}{\partial p} \Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \frac{\partial}{\partial p} e^{-\frac{ipx}{\hbar}} \cdot \Psi(x,t) dx$$
$$= -\frac{i}{\hbar \sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} x e^{-\frac{ipx}{\hbar}} \Psi(x,t) dx$$

よって

$$\Phi^*(p,t) \cdot i\hbar \frac{\partial}{\partial p} \Phi(p,t)
= \left(\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{\frac{ipy}{\hbar}} \Psi^*(y,t) dy\right) \left(\frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} x e^{-\frac{ipx}{\hbar}} \Psi(x,t) dx\right)
= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{ip(y-x)}{\hbar}} \Psi^*(y,t) x \Psi(x,t) dx dy$$

であるから

$$\int_{-\infty}^{\infty} \Phi^*(p,t) \cdot i\hbar \frac{\partial}{\partial p} \Phi(p,t) dp$$

$$= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{\frac{ip(y-x)}{\hbar}} dp \right) \Psi^*(y,t) x \Psi(x,t) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(y-x) \Psi^*(y,t) x \Psi(x,t) dx dy$$

$$= \int_{-\infty}^{\infty} \Psi^*(x,t) x \Psi(x,t) dx$$

$$= \langle x \rangle$$

第 12 章 2021/05/25

1. 要点 (ベクトル表示)

座標表示の 2 つの波動関数 Ψ_1 , Ψ_2 とその運動量表示 Φ_1 , Φ_2 について

$$\langle \varPsi_1 | \varPsi_2 \rangle = \langle \varPhi_1 | \varPhi_2 \rangle$$

が成り立つ(計算 1)から,波動関数の座標表示と運動量表示はヒルベルト空間として同型である.そこで,座標表示や運動量表示と同型な何らかのヒルベルト空間を考え,波動関数をその空間上のベクトル $|\mathcal{S}(t)\rangle$ として表すことにする. 座標表示における $\delta(x)$ に対応するベクトルを $|x\rangle$ とすると, $\Psi(x,t)$ だったものは $\langle x|\mathcal{S}(t)\rangle$ になり,運動量表示における $\delta(p)$ (座標表示ならば $\frac{1}{\sqrt{2\pi\hbar}}e^{\frac{ipx}{\hbar}}$) に対応するベクトルを $|p\rangle$ とすると, $\Phi(p,t)$ だったものは $\langle p|\mathcal{S}(t)\rangle$ になる.

作用素はヒルベルト空間上の線形変換として表される。1 で恒等作用素を表すことにすれば, $\left|e_n\right\rangle$ $(n=0,1,\ldots)$ が正規直交基底をなすというのは

$$\sum_{n} |e_n\rangle\langle e_n| = 1$$

と書き表すことができ, 同様に $|e_z\rangle$ $(z\in\mathbb{R})$ がディラック正規直交連続基底をなすというのは

$$\int_{-\infty}^{\infty} |e_z\rangle \langle e_z| \mathrm{d}z = 1$$

と書き表すことができる.

2. 計算1

$$\Phi_1(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-\frac{ip}{\hbar}x} \Psi_1(x,t) dx$$

$$\Phi_2(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-\frac{ip}{\hbar}x} \Psi_2(x,t) dx$$

のとき,

$$\begin{split} \Phi_1^*(p,t)\Phi_2(p,t) &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}x} \Psi_1^*(x,t) e^{-\frac{ip}{\hbar}y} \Psi_2(y,t) \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}(x-y)} \Psi_1^*(x,t) \Psi_2(y,t) \mathrm{d}x \, \mathrm{d}y \end{split}$$

より

$$\begin{split} \langle \varPhi_1 | \varPhi_2 \rangle &= \int_{-\infty}^{\infty} \varPhi_1^*(p,t) \varPhi_2(p,t) \mathrm{d}p \\ &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{\frac{ip}{\hbar}(x-y)} \, \mathrm{d}p \right) \varPsi_1^*(x,t) \varPsi_2(y,t) \mathrm{d}x \, \mathrm{d}y \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x-y) \varPsi_1^*(x,t) \varPsi_2(y,t) \mathrm{d}x \, \mathrm{d}y \\ &= \int_{-\infty}^{\infty} \varPsi_1^*(x,t) \varPsi_2(x,t) \mathrm{d}x \\ &= \langle \varPsi_1 | \varPsi_2 \rangle \end{split}$$

3. 問題 3.23

$$\hat{P}^2 = |\alpha\rangle\langle\alpha|\alpha\rangle\langle\alpha|$$
$$= |\alpha\rangle\langle\alpha|$$
$$= \hat{P}$$

また $\hat{P}|x
angle=p|x
angle\;(p\in\mathbb{C})$ のとき

$$|\alpha\rangle\langle\alpha|x\rangle = p|x\rangle$$

の両辺に $\langle \alpha |$ をかけて

$$\langle \alpha | \alpha \rangle \langle \alpha | x \rangle = p \langle \alpha | x \rangle$$

$$(p-1)\langle \alpha | x \rangle = 0$$

よって p=1 または $\langle \alpha|x\rangle=0$ である. p=1 のとき, $|x\rangle$ は $|\alpha\rangle$ のスカラー倍で表される任意のベクトル. 一方, $\langle \alpha|x\rangle=0$ のとき

$$p|x\rangle = \hat{P}|x\rangle = |\alpha\rangle 0 = 0$$

なので p=0 または $|x\rangle=0$ となる.

4. 問題 3.24

内積 $\langle \alpha | \beta \rangle$ が $| \alpha \rangle^\dagger | \beta \rangle$ であることに注意すると

$$\langle e_m | \hat{Q} | e_n \rangle = \left(\left(\hat{Q} | e_n \rangle \right)^{\dagger} | e_m \rangle \right)^*$$

であり, \hat{Q} のエルミート共役性より

$$\left(\hat{Q}|e_n\rangle\right)^{\dagger}|e_m\rangle = \langle e_n|\hat{Q}|e_m\rangle$$

であるから,

$$\langle e_m | \hat{Q} | e_n \rangle = \langle e_n | \hat{Q} | e_m \rangle^*$$

よって $Q_{mn}=Q_{nm}^*$. (うーんやはり多少不正確でも $\langle e_m|\hat{Q}|e_n\rangle=\langle\hat{Q}e_n|e_m\rangle^*=\langle e_n|\hat{Q}|e_m\rangle^*$ と書いた方が見やすいし分かりやすい)

第 13 章 2021/5/26

1. 問題 3.31

最初の基底は 1 を正規化したものである. $\int_{-1}^{1} \mathrm{d}x = 2$ より $e_0 = \frac{\sqrt{2}}{2}$.

次の基底は、 $x-\langle e_0|x\rangle e_0$ を正規化したものである。 $\langle e_0|x\rangle=\frac{\sqrt{2}}{2}\int_{-1}^1x\,\mathrm{d}x=0$ より $x-\langle e_0|x\rangle e_0=x$ であり、 $\int_{-1}^1x^2\mathrm{d}x=\frac{2}{3}$ より $e_1=\frac{\sqrt{6}}{2}x$.

次の基底は、 $x^2-\left\langle e_0\middle|x^2\middle\rangle e_0-\left\langle e_1\middle|x^2\middle\rangle e_1\right\rangle$ を正規化したものである.

$$\langle e_0 | x^2 \rangle = \frac{\sqrt{2}}{2} \int_{-1}^1 x^2 \, \mathrm{d}x = \frac{\sqrt{2}}{3}$$
$$\langle e_1 | x^2 \rangle = \frac{\sqrt{6}}{2} \int_{-1}^1 x^3 \, \mathrm{d}x = 0$$

より $x^2-\left\langle e_0\middle|x^2\right\rangle e_0-\left\langle e_1\middle|x^2\right\rangle e_1=x^2-\frac{1}{3}$ であり,

$$\left\| x^2 - \frac{1}{3} \right\|^2 = \int_{-1}^1 \left(x^2 - \frac{1}{3} \right)^2 dx = \frac{8}{45}$$

$$\mbox{\sharp 0 e_2} = \frac{3\sqrt{10}}{4} \bigg(x^2 - \frac{1}{3} \bigg). \label{eq:e2}$$

次の基底は、 $x^3-\left\langle e_0|x^3\right\rangle e_0-\left\langle e_1|x^3\right\rangle e_1-\left\langle e_2|x^3\right\rangle e_2$ を正規化したものである.

$$\begin{split} \left\langle e_0 \middle| x^3 \right\rangle &= \frac{\sqrt{2}}{2} \int_{-1}^1 x^3 \, \mathrm{d}x &= 0 \\ \left\langle e_1 \middle| x^3 \right\rangle &= \frac{\sqrt{6}}{2} \int_{-1}^1 x^4 \, \mathrm{d}x &= \frac{\sqrt{6}}{5} \\ \left\langle e_2 \middle| x^3 \right\rangle &= \frac{3\sqrt{10}}{4} \int_{-1}^1 \left(x^5 - \frac{1}{3} x^3 \right) \! \mathrm{d}x &= 0 \end{split}$$

より
$$x^3-\left\langle e_0\middle|x^3\right\rangle e_0-\left\langle e_1\middle|x^3\right\rangle e_1-\left\langle e_2\middle|x^3\right\rangle e_2=x^3-\frac{3}{5}x$$
 であり,

$$\left\| x^3 - \frac{3}{5}x \right\|^2 = \int_{-1}^1 \left(x^3 - \frac{3}{5}x \right)^2 dx = \frac{8}{175}$$

より
$$e_3 = \frac{5\sqrt{14}}{4} \left(x^3 - \frac{3}{5}x\right)$$
.

2.要点(3 次元における Schrödinger 方程式)

3 次元における Schrödinger 方程式は, $\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$ を用いて

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi$$

と表される. 正規化は $\int \left|\Psi\right|^2 \mathrm{d}^3 m{r} = 1$ を満たすように行われる.

Vが時間独立であれば,Schrödinger 方程式の解 Ψ は時間に依存しない Schrödinger 方程式

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$$

の解
$$\psi_n, E_n$$
 によって $\varPsi = \sum_n c_n \psi_n e^{-\frac{iE_n t}{\hbar}}$ と表される.

極座標 (r, θ, φ) で表したときに Vが r のみの関数 V(r) で表されるとする。極座標において時間に依存しない Schrödinger 方程式は

$$-\frac{\hbar^2}{2m}\left(\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2}\right) + V\psi = E\psi$$

となる (計算 1) から, ψ が r の関数 R と θ, φ の関数 Yを用いて $\psi(r,\theta,\varphi)=R(r)Y(\theta,\varphi)$ と表されると仮定すると,

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) - \frac{2mr^2}{\hbar^2}(V - E) = l(l+1)$$
$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\varphi^2} = -l(l+1)Y$$

(l は定数) と分けられる.

3. 計算1

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \varphi \\ r \sin \theta \sin \varphi \\ r \cos \theta \end{pmatrix} \sharp \mathfrak{H}$$

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \\ \frac{\partial x}{\partial \varphi} & \frac{\partial y}{\partial \varphi} & \frac{\partial z}{\partial \varphi} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

$$= \begin{pmatrix} \sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\ r \cos \theta \cos \varphi & r \cos \theta \sin \varphi & -r \sin \theta \\ -r \sin \theta \sin \varphi & r \sin \theta \cos \varphi & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

であり, ここで

$$\begin{vmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ r\cos\theta\cos\varphi & r\cos\theta\sin\varphi & -r\sin\theta \\ -r\sin\theta\sin\varphi & r\sin\theta\cos\varphi & 0 \end{vmatrix}$$

$$= r^2\sin^3\theta\sin^2\varphi + r^2\sin^3\theta\cos^2\varphi + r^2\sin\theta\cos^2\varphi + r^2\cos\varphi + r^2\sin\theta\cos^2\varphi + r^2\cos\varphi + r^2(\varphi + r^2) + r^2(\varphi + r$$

であるから

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} \sin\theta \cos\varphi & \sin\theta \sin\varphi & \cos\theta \\ r\cos\theta \cos\varphi & r\cos\theta \sin\varphi & -r\sin\theta \\ -r\sin\theta \sin\varphi & r\sin\theta \cos\varphi & 0 \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \varphi} \end{pmatrix}$$

$$= \frac{1}{r^2 \sin\theta} \begin{pmatrix} r^2 \sin^2\theta \cos\varphi & r\sin\theta \cos\theta \cos\varphi & -r\sin\varphi \\ r^2 \sin^2\theta \sin\varphi & r\sin\theta \cos\theta \sin\varphi & r\cos\varphi \\ r^2 \sin\theta \cos\theta & -r^2 \sin^2\theta & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \varphi} \end{pmatrix}$$

$$= \begin{pmatrix} \sin\theta \cos\varphi & \frac{\cos\theta \cos\varphi}{r} & -\frac{\sin\varphi}{r\sin\theta} \\ \sin\theta \sin\varphi & \frac{\cos\theta \sin\varphi}{r} & \frac{\cos\varphi}{r\sin\theta} \\ \cos\theta & -\frac{\sin\theta}{r} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \theta} \end{pmatrix}$$

よって

$$\begin{split} &\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \\ &= \left(\sin\theta \cos\varphi \frac{\partial}{\partial r} + \frac{\cos\theta \cos\varphi}{r} \frac{\partial}{\partial \theta} - \frac{\sin\varphi}{r \sin\theta} \frac{\partial}{\partial \varphi} \right)^2 \\ &\quad + \left(\sin\theta \sin\varphi \frac{\partial}{\partial r} + \frac{\cos\theta \sin\varphi}{r} \frac{\partial}{\partial \theta} + \frac{\cos\varphi}{r \sin\theta} \frac{\partial}{\partial \varphi} \right)^2 \\ &\quad + \left(\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \right)^2 \\ &\quad = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \varphi^2} \end{split}$$

4. 問題 4.3

$$\psi = Ae^{-r/a}$$
 のとき $rac{\partial \psi}{\partial r} = -rac{\psi}{a}$ であるから,

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) = -\frac{1}{ar^2} \frac{\partial}{\partial r} \left(r^2 \psi \right)$$
$$= -\frac{2}{ar} \psi + \frac{1}{a^2} \psi$$

よって

$$-\frac{\hbar^2}{2m}\left(-\frac{2}{ar}\psi + \frac{1}{a^2}\psi\right) + V\psi = E\psi$$
$$\therefore \frac{\hbar^2}{mar} - \frac{\hbar^2}{2ma^2} + V = E$$

であるから

$$\begin{split} E &= \lim_{r \to \infty} \biggl(\frac{\hbar^2}{mar} - \frac{\hbar^2}{2ma^2} + V \biggr) \\ &= -\frac{\hbar^2}{2ma^2} \\ V &= E - \frac{\hbar^2}{mar} + \frac{\hbar^2}{2ma^2} \\ &= -\frac{\hbar^2}{mar} \end{split}$$

$$\psi=Ae^{-r^2/a^2}$$
 のとき $\frac{\partial \psi}{\partial r}=-\frac{2r}{a^2}\psi$ であるから,
$$\frac{1}{r^2}\frac{\partial}{\partial r}\Big(r^2\frac{\partial \psi}{\partial r}\Big)=-\frac{2}{a^2r^2}\frac{\partial}{\partial r}\Big(r^3\psi\Big)$$

$$=-\frac{6}{a^2}\psi+\frac{4r^2}{a^4}\psi$$

よって

$$-\frac{\hbar^2}{2m}\left(-\frac{6}{a^2}\psi + \frac{4r^2}{a^4}\psi\right) + V\psi = E\psi$$

$$\therefore \frac{3\hbar^2}{ma^2} - \frac{2\hbar^2 r^2}{ma^4} + V = E$$

であるから
$$V=rac{2\hbar^2r^2}{ma^4}$$
, $E=rac{3\hbar^2}{ma^2}$.

第 14 章 2021/5/27

1. 要点(球面調和関数)

 $Y(\theta,\varphi)$ の方程式

$$\sin\theta \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{\partial^2 Y}{\partial\varphi^2} = -l(l+1)\sin^2\theta Y$$

において $Y(\theta,\varphi) = \Theta(\theta)\Phi(\varphi)$ と分けると

$$\frac{1}{\Theta}\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \frac{1}{\Phi} \frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} = -l(l+1)\sin^2\theta$$

となるから、定数mを用いて

$$\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \left(l(l+1)\sin^2\theta - m^2 \right)\Theta = 0$$

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} = -m^2\Phi$$

と書ける.

後者の解 $\Phi(\varphi)=e^{im\varphi}$ (指数の符号は m に,全体の係数は Θ に吸収させた)において境界条件 $\Phi(\varphi+2\pi)=\Phi(\varphi)$ より $m=0,\pm 1,\pm 2,\dots$ が従う.

一方で, 前者の解は, Legendre 多項式

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$

を用いて定義される Legendre 陪関数

$$P_l^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_l(x)$$

を用いて $\Theta(\theta) = AP_l^m(\cos \theta)$ と表される.

以上から球面調和関数

$$Y_l^m(\theta,\varphi) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} e^{im\varphi} P_l^m(\cos\theta)$$

が得られる.

2. 問題 4.4

$$P_0^0(x) = P_0(x) = \frac{1}{2^0 \cdot 0!} (x^2 - 1)^0 = 1$$

より

$$Y_0^0(\theta,\varphi) = \sqrt{\frac{1\cdot 0!}{4\pi 0!}}e^0 \cdot 1 = \frac{1}{2\sqrt{\pi}}$$

一方

$$P_2(x) = \frac{1}{2^2 \cdot 2!} \frac{\mathrm{d}^2}{\mathrm{d}x^2} (x^2 - 1)^2 = \frac{3x^2 - 1}{2}$$

$$P_2^1(x) = -(1-x^2)^{\frac{1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} P_2(x) = -3x\sqrt{1-x^2}$$

より

$$Y_2^1(\theta,\varphi) = \sqrt{\frac{5\cdot 1!}{4\pi\cdot 3!}} e^{i\varphi} (-3\sin\theta\cos\theta) = -\frac{3}{2} \sqrt{\frac{5}{6\pi}} e^{i\varphi} \sin\theta\cos\theta$$

$$\int_0^{2\pi} \int_0^\pi \left| Y_0^0 \right|^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\varphi = \frac{1}{4\pi} \int_0^\pi \sin\theta \, \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\varphi = 1$$

$$\int_0^{2\pi} \int_0^{\pi} \left| Y_2^1 \right|^2 \sin\theta \, d\theta \, d\varphi = \frac{15}{8\pi} \int_0^{2\pi} d\varphi \int_0^{\pi} \sin^3\theta \cos^2 d\theta$$
$$= \frac{15}{4} \int_0^{\pi} \sin\theta \left(\cos^2\theta - \cos^4\theta \right) d\theta$$
$$= -\frac{15}{4} \left[\frac{1}{3} \cos^3\theta - \frac{1}{5} \cos^5\theta \right]_0^{\pi}$$
$$= -\frac{15}{4} \left(-\frac{2}{3} + \frac{2}{5} \right)$$

$$\int_0^{2\pi} \int_0^{\pi} Y_0^{0*} Y_2^1 \sin\theta \, d\theta \, d\varphi = (\text{const}) \int_0^{2\pi} e^{i\varphi} \, d\varphi \int_0^{\pi} \sin\theta \cos\theta \, d\theta$$
$$= (\text{const}) \left(e^{2\pi i} - e^0 \right) \int_0^{\pi} \sin\theta \cos\theta \, d\theta$$
$$= 0$$

3. 問題 4.5

l=m=0とすると微分方程式は

$$\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) = 0$$

となるから、 $\sin\theta=0$ となる点以外では $\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right)=0$ が成り立つので $\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}$ は 定数. よって $\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}=A$ とおくと $\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}=\frac{A}{\sin\theta}$ であるから

$$\Theta = A \int \frac{d\theta}{\sin \theta}$$
$$= A \log \left| \tan \frac{\theta}{2} \right| + C$$

(C は定数).

第 15 章 2021/5/28

1. 問題 4.7

より

$$P_{3}(x) = \frac{1}{2^{3} \cdot 3!} \frac{\mathrm{d}^{3}}{\mathrm{d}x^{3}} (x^{2} - 1)^{3} = \frac{5x^{3} - 3x}{2}$$

$$P_{3}^{2}(x) = (1 - x^{2}) \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} P_{3}(x) = 15x(1 - x^{2})$$

$$Y_{3}^{2}(\theta, \varphi) = \sqrt{\frac{7}{4\pi}} \cdot \frac{1}{5!} e^{2i\varphi} P_{3}^{2}(\cos\theta) = \sqrt{\frac{105}{32\pi}} e^{2i\varphi} \sin^{2}\theta \cos\theta$$

$$\frac{\partial^{2} Y_{3}^{2}}{\partial \varphi^{2}} = (2i)^{2} Y_{3}^{2} = -4 \sqrt{\frac{105}{32\pi}} e^{2i\varphi} \sin^{2}\theta \cos\theta$$

$$\frac{\partial Y_{3}^{2}}{\partial \theta} = \sqrt{\frac{105}{32\pi}} e^{2i\varphi} (2\sin\theta \cos^{2}\theta - \sin^{3}\theta)$$

$$= \sqrt{\frac{105}{32\pi}} e^{2i\varphi} (2\sin\theta - 3\sin^{3}\theta)$$

$$\frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial Y_{3}^{2}}{\partial \theta}\right) = \sqrt{\frac{105}{32\pi}} e^{2i\varphi} \frac{\mathrm{d}}{\mathrm{d}\theta} (2\sin^{2}\theta - 3\sin^{4}\theta)$$

$$= \sqrt{\frac{105}{32\pi}} e^{2i\varphi} (4\sin\theta \cos\theta - 12\sin^{3}\theta \cos\theta)$$

$$\sin\theta \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial Y_{3}^{2}}{\partial \theta}\right) + \frac{\partial^{2} Y_{3}^{2}}{\partial \varphi}$$

$$= \sqrt{\frac{105}{32\pi}} e^{2i\varphi} (4\sin^{2}\theta \cos\theta - 12\sin^{4}\theta \cos\theta - 4\sin^{2}\theta \cos\theta)$$

 $= -12 \int_{32\pi}^{105} e^{2i\varphi} \sin^4\theta \cos\theta$

 $= -3 \cdot 4\sin^2\theta Y_3^2$

一方

$$P_l^l(x) = (-1)^l (1 - x^2)^{\frac{l}{2}} \frac{\mathrm{d}^l}{\mathrm{d}x^l} P_l(x)$$

$$= (-1)^l (1 - x^2)^{\frac{l}{2}} \frac{1}{2^l l!} \frac{\mathrm{d}^{2l}}{\mathrm{d}x^{2l}} (x^2 - 1)^l$$

$$= (-1)^l (1 - x^2)^{\frac{l}{2}} \frac{1}{2^l l!} (2l)!$$

$$= \frac{(2l)!}{(-2)^l l!} (1 - x^2)^{\frac{l}{2}}$$

より

$$Y_l^l(\theta,\varphi) = \sqrt{\frac{(2l+1)}{4\pi}} \frac{1}{(2l)!} e^{il\varphi} P_l^l(\cos\theta)$$
$$= \frac{1}{(-2)^l l!} \sqrt{\frac{(2l+1)!}{4\pi}} e^{il\varphi} \sin^l \theta$$

$$\int_0^{2\pi} \int_0^{\pi} \left| Y_l^l(\theta, \varphi) \right|^2 \sin \theta \, d\theta \, d\varphi = \frac{(2l+1)!}{4\pi \cdot 2^{2l} (l!)^2} \int_0^{\pi} \sin^{2l+1} \theta \, d\theta \int_0^{2\pi} d\varphi = 1$$
$$\frac{\partial^2 Y_l^l}{\partial \varphi^2} = (il)^2 Y_l^l = -l^2 Y_l^l$$

$$\frac{\partial Y_l^l}{\partial \theta} = \frac{1}{(-2)^l l!} \sqrt{\frac{(2l+1)!}{4\pi}} e^{il\varphi} l \sin^{l-1}\theta \cos\theta = \frac{l Y_l^l \cos\theta}{\sin\theta}$$

$$\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y_l^l}{\partial \theta} \right) = l \sin \theta \frac{\partial}{\partial \theta} \left(Y_l^l \cos \theta \right)$$
$$= -l Y_l^l \sin^2 \theta + l^2 Y_l^l \cos^2 \theta$$

$$\begin{split} \sin\theta \frac{\partial}{\partial \theta} \bigg(\sin\theta \frac{\partial Y_l^l}{\partial \theta} \bigg) + \frac{\partial^2 Y_l^l}{\partial \varphi^2} &= -l Y_l^l \sin^2\theta + l^2 Y_l^l \cos^2\theta - l^2 Y_l^l \\ &= -l Y_l^l \sin^2\theta - l^2 Y_l^l \sin^2\theta \\ &= -l (l+1) Y_l^l \sin^2\theta \end{split}$$

第 16 章 2021/5/30

1. 要点(ボーアの式)

動径方向の方程式

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) - \frac{2mr^2}{\hbar^2}(V - E)R = l(l+1)R$$

において、 $\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right)$ の部分がu(r)=rR(r)という置換によって $r\frac{\mathrm{d}^2u}{\mathrm{d}r^2}$ と書ける(計算 1)ことに着目すると、方程式は

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left(V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right)u = Eu$$

と書き換えられる. これは遠心項 $\frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$ を除けば 1 次元 Schrödinger 方程式と同じ形をしている.

電気素量を e,真空の誘電率を ε_0 とする.水素原子核にある 1 個の陽子が作る電位は,陽子からの距離を r とすると $-\int \frac{e}{4\pi\varepsilon_0 r^2}\mathrm{d}r = \frac{e}{4\pi\varepsilon_0 r}$ であるから,距離 r のところにある電子 1 個のもつ位置エネルギーは

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r}$$

である.これと電子の質量 $m=m_{
m e}$ を上の方程式に代入して

$$-\frac{\hbar^2}{2m_{\mathrm{e}}}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left(-\frac{e^2}{4\pi\varepsilon_0}\frac{1}{r} + \frac{\hbar^2}{2m_{\mathrm{e}}}\frac{l(l+1)}{r^2}\right)u = Eu$$

を得る、電子が束縛されている E < 0 のときについてこれを解く、

定数 $-\frac{\hbar^2}{2m_{\rm e}}$ と E を整理するために,両辺を E で割った後 $-\frac{\hbar^2}{2m_{\rm e}E}$ を $\frac{1}{\kappa^2}$ とする(すなわち $\kappa=\frac{\sqrt{-2m_{\rm e}E}}{\hbar}$ とおく).

$$\frac{1}{\kappa^2} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left(\frac{m_\mathrm{e} e^2}{2\pi \varepsilon_0 \hbar^2 \kappa^2} \frac{1}{r} - \frac{1}{\kappa^2} \frac{l(l+1)}{r^2} \right) u = u$$

さらに
$$\kappa r = \rho$$
 とおくと $\frac{\mathrm{d}}{\mathrm{d}r} = \kappa \frac{\mathrm{d}}{\mathrm{d}\rho}$ より $\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = \kappa^2 \frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2}$ だから

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} + \left(\frac{m_\mathrm{e}e^2}{2\pi\varepsilon_0\hbar^2\kappa}\frac{1}{\rho} - \frac{l(l+1)}{\rho^2}\right)u = u$$

最後に定数 $\frac{m_{\rm e}e^2}{2\pi\varepsilon_{\rm o}\hbar^2\kappa}$ を ρ_0 でおいて整理すると

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \left(1 - \frac{\rho_0}{\rho} + \frac{l(l+1)}{\rho^2}\right)u$$

ここで, $u(\rho) = \rho^{l+1}e^{-\rho}v(\rho)$ とおくと, 方程式は

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(l+1-\rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + (\rho_0 - 2(l+1))v = 0$$

と書ける (計算2).

v が ρ の N 次多項式であると仮定し,最高次の係数を c_N とする. すると,方程式中の $\rho \frac{\mathrm{d}^2 v}{\mathrm{d} \rho^2}$ と $2(l+1-\rho)\frac{\mathrm{d} v}{\mathrm{d} \rho}$ はそれぞれ ρ の N-1 次多項式と N 次多項式であるから,両辺の N 次の係数を比較して

$$-2Nc_N + (\rho_0 - 2(l+1))c_N = 0$$
$$\therefore \rho_0 = 2(N+l+1)$$

N+l+1=n とおくと, ρ_0 は整数 n を用いて $\rho_0=2n$ と表せることが分かる. $\rho_0=\frac{m_{\rm e}e^2}{2\pi\varepsilon_0\hbar^2\kappa}$, $\kappa=\frac{\sqrt{-2m_{\rm e}E}}{\hbar}$ より $E=-\frac{m_{\rm e}e^4}{8\pi^2\varepsilon_0^2\hbar^2\rho_0^2}$ であるから,

$$E_{n} = -\frac{m_{\rm e}e^{4}}{32\pi^{2}\varepsilon_{0}^{2}\hbar^{2}}\frac{1}{n^{2}}$$

2. 計算1

$$R = \frac{u}{r} \, \sharp \, \mathfrak{h}$$

$$\frac{\mathrm{d}R}{\mathrm{d}r} = \frac{\mathrm{d}}{\mathrm{d}r} \frac{u}{r}$$
$$= \frac{1}{r} \frac{\mathrm{d}u}{\mathrm{d}r} - \frac{u}{r^2}$$

よって
$$r^2 \frac{\mathrm{d}R}{\mathrm{d}r} = r \frac{\mathrm{d}u}{\mathrm{d}r} - u$$
 であるから

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) = r \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{\mathrm{d}u}{\mathrm{d}r} - \frac{\mathrm{d}u}{\mathrm{d}r}$$
$$= r \frac{\mathrm{d}^2 u}{\mathrm{d}r^2}$$

3. 計算 2

ライプニッツの公式(っていうとなんだかかっこよく聞こえるね)より

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \rho^{l+1} e^{-\rho} \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2 \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho^{l+1} e^{-\rho} \right) \cdot \frac{\mathrm{d}v}{\mathrm{d}\rho} + \frac{\mathrm{d}^2}{\mathrm{d}\rho^2} \left(\rho^{l+1} e^{-\rho} \right) \cdot v$$

ここで

$$\frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho^{l+1} e^{-\rho} \right) = (l+1)\rho^l e^{-\rho} - \rho^{l+1} e^{-\rho}$$
$$= \left(\frac{l+1}{\rho} - 1 \right) \rho^{l+1} e^{-\rho}$$

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}\rho^2} \Big(\rho^{l+1} e^{-\rho} \Big) &= \left(\frac{l+1}{\rho} - 1 \right) \frac{\mathrm{d}}{\mathrm{d}\rho} \Big(\rho^{l+1} e^{-\rho} \Big) - \frac{l+1}{\rho^2} \rho^{l+1} e^{-\rho} \\ &= \left(\left(\frac{l+1}{\rho} - 1 \right)^2 - \frac{l+1}{\rho^2} \right) \rho^{l+1} e^{-\rho} \\ &= \left(1 - \frac{2(l+1)}{\rho} + \frac{l(l+1)}{\rho^2} \right) \rho^{l+1} e^{-\rho} \end{split}$$

であるから

$$\frac{d^{2}u}{d\rho^{2}} = \rho^{l+1}e^{-\rho}\frac{d^{2}v}{d\rho^{2}}
+ 2\left(\frac{l+1}{\rho} - 1\right)\rho^{l+1}e^{-\rho}\frac{dv}{d\rho}
+ \left(1 - \frac{2(l+1)}{\rho} + \frac{l(l+1)}{\rho^{2}}\right)\rho^{l+1}e^{-\rho}v
= \rho^{l+1}e^{-\rho}\left(\frac{d^{2}v}{d\rho^{2}} + 2\left(\frac{l+1}{\rho} - 1\right)\frac{dv}{d\rho} + \left(1 - \frac{2(l+1)}{\rho} + \frac{l(l+1)}{\rho^{2}}\right)v\right)$$

よって方程式は

$$\frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2 \left(\frac{l+1}{\rho} - 1 \right) \frac{\mathrm{d}v}{\mathrm{d}\rho} + \left(\mathcal{X} - \frac{2(l+1)}{\rho} + \frac{l(l+\mathcal{X})}{\rho^2} \right) v = \left(\mathcal{X} - \frac{\rho_0}{\rho} + \frac{l(l+\mathcal{X})}{\rho^2} \right) v$$

整理して

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(l+1-\rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + \left(\rho_0 - 2(l+1)\right)v = 0$$

第 17 章 2021/5/31

1. 問題 4.12

n=3, l=0 のときの方程式

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(1-\rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + 4v = 0$$

の解を $v(\rho) = c_0 + c_1 \rho + c_2 \rho^2$ とおくと,

$$\frac{\mathrm{d}v}{\mathrm{d}\rho} = c_1 + 2c_2\rho$$

$$\frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} = 2c_2$$

より方程式は

$$2c_2\rho + 2(1-\rho)(c_1 + 2c_2\rho) + 4(c_0 + c_1\rho + c_2\rho^2) = 0$$
$$\therefore 4c_0 + 2c_1 + (2c_1 + 6c_2)\rho = 0$$

係数を比較して

$$4c_0 + 2c_1 = 0$$
$$2c_1 + 6c_2 = 0$$

よって
$$c_1 = -2c_0$$
, $c_2 = \frac{2}{3}c_0$ だから

$$v(\rho) = c_0 \left(1 - 2\rho + \frac{2}{3}\rho^2\right)$$

$$\rho = \frac{r}{an} = \frac{r}{3a} \, \, \sharp \, \, 9$$

$$u(r) = \frac{r}{3a}e^{-\frac{r}{3a}}v\left(\frac{r}{3a}\right) = (\text{const})re^{-\frac{r}{3a}}\left(1 - \frac{2r}{3a} + \frac{2r^2}{27a^2}\right)$$

$$R_{30}(r) = \frac{u(r)}{r} = (\text{const})e^{-\frac{r}{3a}} \left(1 - \frac{2r}{3a} + \frac{2r^2}{27a^2}\right)$$

n=3, l=1 のときの方程式

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(2 - \rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + 2v = 0$$

の解を $v(\rho) = c_0 + c_1 \rho$ とおくと,

$$\frac{\mathrm{d}v}{\mathrm{d}\rho} = c_1$$

$$\frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} = 0$$

より方程式は

$$2(2 - \rho)c_1 + 2(c_0 + c_1\rho) = 0$$
$$\therefore 4c_1 + 2c_0 = 0$$

よって $c_1=-rac{1}{2}c_0$ であるから

$$\begin{split} v(\rho) &= c_0 \bigg(1 - \frac{1}{2}\rho\bigg) \\ u(r) &= \bigg(\frac{r}{3a}\bigg)^2 e^{-\frac{r}{3a}} v\bigg(\frac{r}{3a}\bigg) = (\text{const}) r^2 e^{-\frac{r}{3a}} \bigg(1 - \frac{r}{6a}\bigg) \\ R_{31}(r) &= \frac{u(r)}{r} = (\text{const}) r e^{-\frac{r}{3a}} \bigg(1 - \frac{r}{6a}\bigg) \end{split}$$

n = 3, l = 2 のとき

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(3 - \rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} = 0$$

より v は定数関数 $v(
ho)=c_0$ であるから

$$u(r) = \left(\frac{r}{3a}\right)^3 e^{-\frac{r}{3a}} c_0 = (\text{const})r^3 e^{-\frac{r}{3a}}$$

$$R_{32}(r) = \frac{u(r)}{r} = (\text{const})r^2e^{-\frac{r}{3a}}$$

第 18 章 2021/6/1

1. 問題 4.13

ガンマ関数の定義

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

において $t = \frac{r}{a}$ と置換すると

$$\Gamma(x) = \frac{1}{a} \int_0^\infty \left(\frac{r}{a}\right)^{x-1} e^{-\frac{r}{a}} dr$$

よって x-1=n として公式

$$\int_0^\infty r^n e^{-\frac{r}{a}} \mathrm{d}r = n! a^{n+1}$$

を得る.

1.1. (a)

n=2, l=0 としたときの方程式

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho} + 2(1-\rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + 2v = 0$$

において $v=c_0+c_1\rho$ とおくと $c_1=-c_0$ より $v=c_0(1-\rho)$ なので

$$u = c_0 \frac{r}{2a} e^{-\frac{r}{2a}} \left(1 - \frac{r}{2a}\right)$$

$$R_{20}(r) = \frac{c_0}{2a} \left(1 - \frac{r}{2a} \right) e^{-\frac{r}{2a}}$$

(4.82 式).規格化は $\int_0^\infty \left|R_{20}(r)\right|^2 r^2 \mathrm{d}r = 1$ にすればよいから、

$$\int_0^\infty \left(1 - \frac{r}{2a}\right)^2 e^{-\frac{r}{a}} r^2 dr = \int_0^\infty \left(r^2 - \frac{r^3}{a} + \frac{r^4}{4a^2}\right) e^{-\frac{r}{a}} dr$$
$$= 2! a^3 - \frac{3! a^4}{a} + \frac{4! a^5}{4a^2}$$
$$= 2a^3$$

より

$$R_{20}(r) = \frac{1}{\sqrt{2a^3}} \left(1 - \frac{r}{2a}\right) e^{-\frac{r}{2a}}$$

$$\begin{split} \psi_{200}(r) &= \frac{1}{\sqrt{4\pi}} R_{20}(r) \\ &= \frac{1}{\sqrt{8\pi a^3}} \Big(1 - \frac{r}{2a} \Big) e^{-\frac{r}{2a}} \end{split}$$

1.2. (b)

 $n=2,\,l=0$ のとき v は定数関数 $v(r)=c_0$ であるから

$$u = c_0 \left(\frac{r}{2a}\right)^2 e^{-\frac{r}{2a}}$$

$$R_{21}(r) = \frac{c_0}{4a^2} r e^{-\frac{r}{2a}}$$

積分は

$$\int_0^\infty \left(re^{-\frac{r}{2a}} \right)^2 r^2 dr = \int_0^\infty r^4 e^{-\frac{r}{a}} dr$$
$$= 24a^5$$

となるから

$$R_{21}(r) = \frac{1}{\sqrt{24a^5}} re^{-\frac{r}{2a}}$$

一方で,

$$P_1(x) = \frac{1}{2 \cdot 1} \frac{\mathrm{d}}{\mathrm{d}x} (x^2 - 1)$$
$$= x$$

より

$$P_1^1(x) = -\sqrt{1 - x^2} \frac{\mathrm{d}}{\mathrm{d}x} P_1(x)$$

= $-\sqrt{1 - x^2}$

$$P_1^{-1}(x) = -\frac{0!}{2!}P_1^1(x)$$
$$= \frac{1}{2}\sqrt{1-x^2}$$

であるから

$$Y_1^1(\theta,\varphi) = \sqrt{\frac{3}{4\pi}} \frac{0!}{2!} e^{i\varphi} (-\sin\theta) \qquad = -\sqrt{\frac{3}{8\pi}} e^{i\varphi} \sin\theta$$

$$Y_1^0(\theta,\varphi) = \sqrt{\frac{3}{4\pi}} \frac{1!}{1!} \cos\theta \qquad = \sqrt{\frac{3}{4\pi}} \cos\theta$$

$$Y_1^{-1}(\theta,\varphi) = \sqrt{\frac{3}{4\pi}} \frac{2!}{0!} e^{-i\varphi} \cdot \frac{1}{2} \sin\theta \qquad = \sqrt{\frac{3}{8\pi}} e^{-i\varphi} \sin\theta$$

よって

$$\psi_{211}(r,\theta,\varphi) = R_{21}(r)Y_1^1(\theta,\varphi)$$

$$= -\sqrt{\frac{1}{64\pi a^5}} r e^{i\varphi - \frac{r}{2a}} \sin \theta$$

$$\psi_{210}(r,\theta,\varphi) = R_{21}(r)Y_1^0(\theta,\varphi)$$

$$= \sqrt{\frac{1}{32\pi a^5}} r e^{-\frac{r}{2a}} \cos \theta$$

$$\psi_{21-1}(r,\theta,\varphi) = R_{21}(r)Y_1^{-1}(\theta,\varphi)$$

$$= \sqrt{\frac{1}{64\pi a^5}} r e^{-i\varphi - \frac{r}{2a}} \sin \theta$$

第 19 章 2021/6/2

- 1. 問題 4.14
- 1.1. (a)

$$L_0(x) = \frac{e^x}{0!} \cdot e^{-x}$$
$$= 1$$

$$L_1(x) = \frac{e^x}{1!} \frac{\mathrm{d}}{\mathrm{d}x} (xe^{-x})$$
$$= e^x \cdot (1-x)e^{-x}$$
$$= 1-x$$

$$\begin{split} L_2(x) &= \frac{e^x}{2!} \frac{\mathrm{d}^2}{\mathrm{d}^2 x} \left(x^2 e^{-x} \right) \\ &= \frac{e^x}{2} \left(2 - 2 \cdot 2x + x^2 \right) e^{-x} \\ &= 1 - 2x + \frac{1}{2} x^2 \end{split}$$

$$L_3(x) = \frac{e^x}{3!} \frac{d^3}{d^3 x} (x^3 e^{-x})$$

$$= \frac{e^x}{6} (6 - 3 \cdot 6x + 3 \cdot 3x^2 - x^3) e^{-x}$$

$$= 1 - 3x + \frac{3}{2} x^2 - \frac{1}{6} x^3$$

1.2. (b)

$$L_7(x) = \frac{1}{0!} - \frac{7}{1!}x + \frac{21}{2!}x^2 - \frac{35}{3!}x^3 + \frac{35}{4!}x^4 - \frac{21}{5!}x^5 + \frac{7}{6!}x^6 - \frac{1}{7!}x^7$$

$$L_2^5(x) = -\frac{\mathrm{d}^5}{\mathrm{d}x^5} L_7(x)$$

$$= -\frac{\mathrm{d}^5}{\mathrm{d}x^5} \left(-\frac{21}{5!} x^5 + \frac{7}{6!} x^6 - \frac{1}{7!} x^7 \right)$$

$$= \frac{21}{0!} - \frac{7}{1!} x + \frac{1}{2!} x^2$$

$$= 21 - 7x + \frac{1}{2} x^2$$

$$v(\rho) = L_2^5(2\rho)$$

= $21 - 14\rho + 2\rho^2$

1.3. (c)

n=5, l=2 のときの方程式

$$\rho \frac{\mathrm{d}^2 v}{\mathrm{d}\rho^2} + 2(3 - \rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + 4v = 0$$

において $v = c_0 + c_1 \rho + c_2 \rho^2$ とすると

$$2c_2\rho + 2(3-\rho)(c_1 + 2c_2\rho) + 4(c_0 + c_1\rho + c_2\rho^2) = 0$$

$$(14c_2 + 2c_1)\rho + 6c_1 + 4c_0 = 0$$

よって
$$c_1=-rac{2}{3}c_0$$
, $c_2=rac{2}{21}c_0$ であるから

$$v(\rho) = c_0 \left(1 - \frac{2}{3}\rho + \frac{2}{21}\rho^2 \right)$$

 $c_0 = 21$ とすれば (b) と一致する.

第 20 章 2021/6/4

1. 要点(交換子)

環Rの元 $A,B \in R$ に対し、交換子[A,B]を

$$[A,B] = AB - BA$$

で定義する. このとき, 次が成り立つ.

- $\bullet \quad [A,A] = 0$
- $\bullet \quad [A,B] = -[B,A]$
- $[A, B_1 + B_2] = [A, B_1] + [A, B_2]$
- $\bullet \quad \left[A_1+A_2,B\right]=\left[A_1,B\right]+\left[A_2,B\right]$
- $\left[A,B_1B_2\right] = \left[A,B_1\right]B_2 + B_1\left[A,B_2\right] \left(特に \left[A,B_1\right] = \left[A,B_2\right] = 0 \text{ ならば } \left[A,B_1B_2\right] = 0\right)$
- $\left[A_1A_2,B\right]=\left[A_1,B\right]A_2+A_1\left[A_2,B\right] \left(特に\left[A_1,B\right]=\left[A_2,B\right]=0 \right. \\ \text{ \sharp if } \left[A_1A_2,B\right]=0 \right)$

- [A,B]=0 ならば $[A^m,B^n]=0$
- $[A, B_1] = 0$ ならば $[A, B_1B_2] = B_1[A, B_2]$, $[A, B_2B_1] = [A, B_2]B_1$
- ・ $\left[A_1,B\right]=0$ ならば $\left[A_1A_2,B\right]=A_1\left[A_2,B\right]$, $\left[A_2A_1,B\right]=\left[A_2,B\right]A_1$
- $\left[[A,B],C \right] + \left[[B,C],A \right] + \left[[C,A],B \right] = 0 (ヤコビ恒等式)$