An improved test generation approach from extended finite state machines using genetic algorithms

Raluca Lefticaru, Florentin Ipate

University of Bucharest, Romania

SEFM 2012, Thessaloniki, Greece

Outline

- Problem formulation: EFSM test generation
- Motivation: why metaheuristics in EFSM testing?
- Previous approaches
- Proposed strategy: decomposing long paths into independent subpaths
- Fitness functions: *al+nbl* versus *ICF*
- Empirical evaluation
- Conclusions and future work

Test Data Generation for State-based Testing

Problem Formulation

Given: some paths in the state machine (obtained according to a certain coverage criteria).

Find: input parameter values to trigger the given paths.

Approach: Use metaheuristic search techniques (such as **genetic** algorithms) to find for each path (sequence of methods) the input values for the parameters, which satisfy the corresponding guards (pre-conditions)

Questions:

Encoding: $x = (x_1, x_2, ..., x_n)$

Fitness function: f(x) = ?

Search technique: which one, tunings?

Motivation

- State-based testing
 - test selection methods for FSMs: W, Wp methods etc.
 - coverage criteria for state machines diagrams
- Automatic generation of test cases from EFSMs, state machines diagrams, X-machines etc. is not straightforward!
- Dranidis, Bratanis, Ipate . JSXM: A Tool for Automated Test Generation. SEFM 2012. http://www.jsxm.org/
- Constraints (guards) on transitions → NP-complete problem!
- Idea: Why not to use the power of evolutionary algorithms or other metaheuristics to solve state-based testing problems?
- This answer is given by new field of Search-based Software Engineering

Search-Based Software Engineering (SBSE)

- Software engineering problems → optimization problems + metaheuristic search techniques (GAs, PSO, SA).
- Term of SBSE: first coined by Harman and Jones (2001).
- Applications: software testing, requirements engineering, automated maintenance, service-oriented SE, compiler optimization, quality assessment, project planning and cost estimation.

Repository of publications on SBSE:

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

M. Harman, B.F. Jones. **Search-based software engineering**. *Information and Software Technology*, 2001.

Search-based testing from state-based specifications

Kalaji, Hierons, Swift. Generating feasible transition paths for testing from an extended finite state machine (EFSM). *ICST 2009*

Derderian, Hierons, Harman, Guo.
Generating feasible input sequences for extended finite state machines (EFSMs) using genetic algorithms. *GECCO* 2005

Yano, Martins, Sousa. Generating feasible test paths from an executable model using a multiobjective approach. ICST 2010

Yano, Martins, Sousa. MOST: a multi-objective search-based testing from EFSM. *ICST 2011*

Kalaji, Hierons, Swift. An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models. *Information and Software Technology*, 2011

Zhao, Harman, Li. Empirical study on the efficiency of search based test generation for EFSM models. *ICST 2010*

Lefticaru, Ipate. Functional search-based testing from state machines. *ICST 2008*

Lefticaru, Ipate. Automatic statebased test generation using genetic algorithms. SYNASC 2007 Kalaji, Hierons, Swift. Automatic generation of test sequences form EFSM models using evolutionary algorithms. BURA *Technical Report*, 2008.

Generating test data for feasible paths in the state machine

Fitness Function Calculation: al+nbl

Fitness Calculation: al + nbl

fitness = approach_level + normalized_branch_level $approach_level \in \{0,1,...,m-1\}$ $normalized _branch _level \in [0,1]$

R. Lefticaru, F. Ipate. Automatic state-based test generation using genetic algorithms. In SYNASC 2007

Objective Functions used for Branch Level

Classical Tracey's objective functions

Relational predicate or logical connective	Objective function obj
$a = b$ $a \neq b$ $a < b$ $a \leq b$ $a > b$ $a \geq b$	if $abs(a-b) = 0$ then 0 else $abs(a-b) + K$ if $abs(a-b) \neq 0$ then 0 else K if $a-b < 0$ then 0 else $(a-b) + K$ if $a-b \leq 0$ then 0 else $(a-b) + K$ if $b-a < 0$ then 0 else $(b-a) + K$ if $b-a \leq 0$ then 0 else $(b-a) + K$
Boolean $a \wedge b$ $a \vee b$ $a \text{ xor } b$ $\neg a$	if $TRUE$ then 0 else K $obj(a) + obj(b)$ $min(obj(a), obj(b))$ $obj((a \land \neg b) \lor (\neg a \land b))$ Negation is moved inwards and propagated over a

EFSM Example

Fitness Function Evaluation: al + nbl

```
Require: Target path p, containing the transitions t_1, t_2, \ldots, t_m, corresponding guards
  g_1, g_2, \ldots, g_m, chromosome x = (x_1, \ldots, x_n)
Ensure: The fitness value of the chromosome x = (x_1, \ldots, x_n) for the given path.
  Create an instance of the EFSM in the initial configuration.
  aproach \exists evel \leftarrow m-1
                                                                     Stopping at the first
  for i = 1 \rightarrow m do
                                                                      unsatisfied guard!
    {for every transition t_i in the sequence p}
    if not g_i then
                                                                       Give a chance to
      Calculate obj(g_i)
                                                                     other blocks to be
      evaluated, too!
    else
      aproach\_level \leftarrow aproach\_level - 1
      Apply transition t_i with the corresponding values from (x_1, \ldots, x_n)
    end if
  end for
                                                Who's
  return 0
                                                better?
               Chromosome1:
                                                                      Chromosome2:
    (x1, x2, x3, x4, x5, x6, x7, x8)
                                                           (y1, y2, y3, y4, y5, y6, y7, y8)
```

Establishing Dependencies in EFSM

Independent sub-paths: $[[t_1(x1,x2), t_2(x3, x4)], [t_3(x5,x6,x7)], [t_4(x8)]]$

An Improved Fitness Function for EFSM Testing

- Main idea: defining dependency relations between transitions, decomposing long paths into independent sub-paths
- For given paths, that can be logically decomposed into independent sub-paths, a new function, ICF, was designed, which takes into account the independent components:

$$fitness(x) = \sum_{i=1}^{subpaths_no} fitness(subpath_i)$$

Why? The fitness function that guides the search is *crucial* for the success of a genetic algorithm! An improvement in the fitness function will reduce the duration of the generation process and increase the success chances of the search algorithm.

10/5/2012

12

Extended Finite State Machines (EFSM)

- An Extended Finite State Machine (EFSM) is a 6-tuple (S, s_{o} , V, *I,O, T*) where:
 - S is a non empty set of logical states;
 - $s_0 \in S$ is the *initial state*;
 - V is the finite set of internal variables;
 - I and O are the set of input and output interactions, respectively;
 - T is the finite set of transitions.
- A transition $t \in T$ has start and end states, may have associated input parameters, a *guard* and a *computational block* which consists of assignments and output statements.

10/5/2012

Dependency Relations on EFSMs

- A transition t depends on the internal variable v_i ∈ V if the value of v_i is evaluated by its guard.
- A transition t modifies the internal variable $v_i \in V$ if v_i appears on the left hand side of an assignment operation of its sequence of atomic operations.
- Let $[t_1, t_2, ..., t_i, ..., t_j, ..., t_p]$ be a path in the EFSM. The transition t_j directly depends on the transition t_i if there exists an internal variable $v_k \in V$ such as t_i modifies the internal variable v_k , t_j depends on v_k and there is no other transition t_r , i < r < j that modifies the internal variable v_k .
- Result: a dependency graph between transitions.
- Compute the *independent subpaths* (connected components in the dependency graph).
- *ICF fitness function*: takes into account the fitness of the independent components

Empirical Evaluation

4 states 2 internal variables 16 transitions

10/5/2012

(b) Class 2 transport protocol

6 states 5 internal variables 20 transitions

Excerpt from Protocol EFSM

t $s_s \rightarrow s_e$	Input declaration	Guards	Operations
$t_0 \ s_1 \rightarrow s_2$	t1(dst_add, prop_opt)	Nil	opt := prop_opt; R_credit := 0;
$t_1 \ s_1 \rightarrow s_3$	$t2(peer_add, opt_ind, cr)$	Nil	$opt := opt ind; S_credit := cr;$
$t_2 \ s_2 \rightarrow s_4$	t2(opt_ind, cr)	$opt_ind < opt$	$R_credit := 0;$ $TRsq := 0; TSsq := 0;$ $opt := opt_ind; S_credit := cr;$
t_3 $s_2 \rightarrow s_5$	$t3(opt_ind, cr)$	$opt_ind > opt$	Nil
$t_5 \ s_3 \rightarrow s_4$	$t5(accpt_opt)$	$accpt_opt < opt$	$opt := accpt_opt; TRsq := 0;$
	·=/III · FlogDII)	G. No. o	TSsq := 0;
$t_7 \ s_4 \rightarrow s_4$	t7(Udata, E0SDU)	$S_credit > 0$	S_credit := S_credit -1;
t a \ \ a	t9/Sand ag	$R_credit \neq 0$ AND	TSsq := (TSsq +1) mod 128; TRsq := (TRsq+1) mod 128;
$\iota_8 \ s_4 \rightarrow s_4$	t8(Send_sq, Ndata,E0TSDU)	Send_sq = TRsq	$R_{\text{credit}} := (1Rsq+1) \text{mod} 126;$ $R_{\text{credit}} := R_{\text{credit}} \cdot 1;$
$t_9 \ s_4 \rightarrow s_4$	t9(Send_sq,	$R_{credit} = 0 \lor$	Nil
	Ndata, E0TSDU)	$Send_{sq} \neq TRsq$	
$t_{10} \ s_4 \rightarrow s_4$	t10(cr)	Nil	$R_credit := R_credit + cr;$
$t_{11} \ s_4 \rightarrow s_4$	t11(XpSsq, cr)	$TSsq \ge XpSsq \land$	$S_{credit} := cr + XpSsq - TSsq;$
		$cr + XpSsq - TSsq \ge 0 \land$	
		$cr + XpSsq - TSsq \le 15$	

Infeasible path example: $[t_1, t_5, t_8, ...]$ because of R_credit internal variable modification

16

Experiment Settings and Results: al +nbl vs. ICF

- EFSM models: Book, Protocol
- Large pool of randomly generated paths, for each model, having different lengths (from 6 to 35 transitions)
- GA applied for each path 100 times with al+nbl, 100 times with ICF
- GA settings: population size 20, BestChromosomesSelector 0.8, single point crossover, mutation rate 1/12
- H₀: There is no difference in efficiency (number of generations needed by the GA to find a solution) between the two fitness functions, al + nbl and ICF.
- Statistical tests: t-test with significance level α = 0.05, p-values were also recorded to decide if tests were significant (confidence 95%) and very significant (confidence 99%).

Summary of Experimental Results

Path	No. of	Path	Stat.	ICF	Alnbl	Very	ICF	Alnbl
Set	Paths	Lengths	Signif.	+	+	Signif.	+	+
T1	20	6 - 15	14	14	0	13	13	0
T2	20	20	16	15	1	15	14	1
T3	20	25	18	18	0	17	17	0
T1-T3	60	6 - 25	48	47	1	45	44	1
P1	20	6 - 15	0	0	0	0	0	0
P2	20	20	6	6	0	3	3	0
P3	20	25	4	4	0	2	2	0
P4	20	30	6	6	0	4	4	0
P5	20	35	7	7	0	4	4	0
P1-P5	100	6 - 35	23	23	0	13	13	0
All	160	6 - 35	71	70	1	58	57	1
	Set T1 T2 T3 T1-T3 P1 P2 P3 P4 P5 P1-P5	Set Paths T1 20 T2 20 T3 20 T1-T3 60 P1 20 P2 20 P3 20 P4 20 P5 20 P1-P5 100	Set Paths Lengths T1 20 6 - 15 T2 20 20 T3 20 25 T1-T3 60 6 - 25 P1 20 6 - 15 P2 20 20 P3 20 25 P4 20 30 P5 20 35 P1-P5 100 6 - 35	Set Paths Lengths Signif. T1 20 6 - 15 14 T2 20 20 16 T3 20 25 18 T1-T3 60 6 - 25 48 P1 20 6 - 15 0 P2 20 20 6 P3 20 25 4 P4 20 30 6 P5 20 35 7 P1-P5 100 6 - 35 23	Set Paths Lengths Signif. + T1 20 6 - 15 14 14 T2 20 20 16 15 T3 20 25 18 18 T1-T3 60 6 - 25 48 47 P1 20 6 - 15 0 0 P2 20 20 6 6 P3 20 25 4 4 P4 20 30 6 6 P5 20 35 7 7 P1-P5 100 6 - 35 23 23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Set Paths Lengths Signif. + + Signif. T1 20 6 - 15 14 14 0 13 T2 20 20 16 15 1 15 T3 20 25 18 18 0 17 T1-T3 60 6 - 25 48 47 1 45 P1 20 6 - 15 0 0 0 0 P2 20 20 6 6 0 3 P3 20 25 4 4 0 2 P4 20 30 6 6 0 4 P5 20 35 7 7 0 4 P1-P5 100 6 - 35 23 23 0 13	Set Paths Lengths Signif. + + Signif. + T1 20 6 - 15 14 14 0 13 13 T2 20 20 16 15 1 15 14 T3 20 25 18 18 0 17 17 T1-T3 60 6 - 25 48 47 1 45 44 P1 20 6 - 15 0 0 0 0 0 P2 20 20 6 6 0 3 3 P3 20 25 4 4 0 2 2 P4 20 30 6 6 0 4 4 P5 20 35 7 7 0 4 4 P1-P5 100 6 - 35 23 23 0 13 13

10/5/2012

An improved test generation approach from EFSMs using GAs

Conclusions and Future Work

- ICF obtains better results than al + nbl for the majority of the paths: it improves the success rate of the GA, especially for complex paths
- Easy to trigger paths: similar behaviour
- Complex paths: the differences are very significant (confidence 99%)

Future Work

10/5/2012

- Analysing how often independent sub-paths occur in real world **EFSMs**
- Comparing the results obtained by GA with other metaheuristic search techniques.
- Adapt and integrate this search-based approach into existing tools, such as JSXM

Questions?

