

$$J(x) * \frac{d}{dx} g_{\epsilon}(x)$$
Takering a noisy edge with first derivative of $g_{aggreen}$

$$J(x) * \frac{d}{dx} g_{\epsilon}(x)$$

$$= \alpha u(x-x_{o}) * \frac{d}{dx} g_{\epsilon}(x)$$

$$= \alpha \delta(x-x_{o}) * g_{\epsilon}(x)$$

$$= \alpha g_{\epsilon}(x-x_{o})$$
Response at $x=x_{o}$ is α (independent of δ).

Look for peaks of
$$I(x) * \frac{d}{dx} g_{\sigma}(x)$$

$$\vdots Look for zero crossings of
$$\frac{d}{dx} I(x) * \frac{d}{dx} g_{\sigma}(x)$$

$$= I(x) * \frac{d^{2}}{dx^{2}} g_{\sigma}(x)$$$$

Where do peaks of
$$u(x-x_0) * \frac{d^2}{dx_2} g_{\sigma}(x)$$
 occur?

$$u(x-x_0) * \frac{d^2}{dx_2} g_{\sigma}(x)$$

$$= \delta(x-x_0) * \frac{d g_{\sigma}(x)}{dx}$$

$$= \frac{d}{dx} g_{\sigma}(x-x_0) + take derivative and set to 0.$$

$$= \frac{d}{dx} e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

$$= -\frac{(x-x_0)}{\sigma^2} e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

$$\frac{d}{dx} \left(\frac{d}{dx} g_{\sigma}(x-x_{\sigma}) \right)$$

$$= -\frac{d}{dx} \left(\left(\frac{x-x_{\sigma}}{\sigma^{2}} \right) e^{-\frac{(x-x_{\sigma})^{2}}{2\sigma^{2}}} \right)$$

$$= \frac{1}{6^{2}} \left(1 - \frac{(x-x_{\sigma})^{2}}{\sigma^{2}} \right) e^{-\frac{(x-x_{\sigma})^{2}}{2\sigma^{2}}}$$

$$= 0 \qquad \text{when} \qquad x = x_{\sigma}^{+} = 0$$

Height of peak of
$$I(x) + \frac{d^2a_{x}(x)}{dx^2}$$
?

$$\frac{(x-x_0)}{x^2} = \frac{(x-x_0)^2}{26^2} \Big|_{x=x_0 \pm 6} = \pm \frac{1}{5} = \pm \frac{1}{5} = \pm \frac{1}{5}$$

If we use $\int \frac{dg_{\delta}(x)}{dx^2} + \int \frac{dg_{\delta}(x)}{dx}$

height of peak of $u(x-x_0) + \int \frac{dg_{\delta}(x)}{dx}$

will be $z = \frac{1}{5}$ (independent of $s = \frac{1}{5}$).

$$I(x) \times G(x, \sigma) \sim \text{blur an image}$$

$$I(x) \times \frac{d}{dx} g_{\sigma}(x) \sim \text{edge detection}$$

$$I(x) \times \sigma \frac{d^2}{dx^2} g_{\sigma}(x) \sim \text{box detection}$$