AMENDMENTS TO THE SPECIFICATION

PLEASE AMEND THE PARAGRAPH STARTING ON PAGE 8, LINE 16, AS FOLLOWS:

In an embodiment of this invention, the compounds of general formula I according to elaims aspects 8 to 11 are used as preferred compounds. In this case, these are known compounds that are described in WO 97/267017. Their production can also be found in this WO publication. Surprisingly enough, it has been shown that these compounds are also very well suited as MRI-contrast media for visualization of thrombi. As quite especially preferred compounds, metal complexes MK 2, 3 and 4, as well as MK 8, 9, 10 and 11 (cf. also Table 1) are used. Aspect is 8 is the use according to the invention, wherein as perfluoroalkyl-containing metal complexes, the compounds of general formula I are used RF-L-K in which is a perfluorinated, straight-chain or branched carbon chain with formula -C_nF_{2n}E, in which represents a terminal fluorine, chlorine, bromine, iodine or hydrogen atom and n stands for numbers 4-30, means a direct bond, a methylene group, an -NHCO group, a group

$$-\left\{ -\left\{ \mathrm{CH_{2}}\right\} _{0}\mathrm{-NHCOCH_{2}}\left\{ \mathrm{CH_{2}}\right\} _{p}\right\} -\left\{ \mathrm{NHCOCH_{2}}\left\{ \mathrm{CH_{2}}\right\} _{p}\right\} -\left\{ \mathrm{NHCOCH_{2}}\right\} -\left\{ \mathrm{CH_{2}}\right\} _{p}$$

whereby p means the numbers 0 to 10, and q and u, independently of one

	another, mean numbers 0 or 1, and	
***************************************	R ^a	is a hydrogen atom, a methyl group, a benzyl group, a phenyl
		group, a -CH ₂ -OH group, a CH ₂ OCH ₃ group, a -CH ₂ -CO ₂ H group
		or a C ₂ -C ₁₅ chain, which optionally is interrupted by 1 to 3 oxygen
		atoms, 1 to 2 >CO groups or an optionally substituted aryl group
		and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C ₁ -C ₄
		alkoxy groups, 1 to 2 carboxy groups, or a group -SO ₃ H-,
or is a strai		a straight-chain, branched, saturated or unsaturated C2-C30 carbon
	<u>chair</u>	n, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR ^a
	grou	ps, 1 to 2 sulfur atoms, a piperazine, a -CONR ^a group, one to six -
NR ^a CO groups, an -SO ₂ group, an -NR ^a -CO ₂ group,		CO groups, an -SO ₂ group, an -NR ^a -CO ₂ group, 1 to 2 CO groups, a
	grou	<u>p</u>
		$N-T-N(R^2)-SO_0-R^F$
	00	$-N-T-N(R^a)-SO_2-R^F$, or 1 to 2 optionally substituted
		s and/or is interrupted by these groups and/or is optionally substituted
	with 1 to 3 -OR ^a groups, 1 to 2 oxo groups, 1 to 2 -NH-COR ^a groups, 1 or 2 -CONHR ^a groups, 1 to 2 -(CH ₂) _p -CO ₂ H groups, 1 to 2 groups -(CH ₂) _p	
		-CH ₂ CH ₂ -R ^F ,
		reby
		R ^F and p and q have the above-indicated meanings, and
	T	means a C ₂ -C ₁₀ chain, which optionally is interrupted by 1 to 2
and the second		oxygen atoms or 1 to 2 -NHCO groups,
		The state of the s
K	stands for a	complexing agent or metal complex or their salts of organic and/or

complexing agent or complex of general formula II

in which R^c, R¹ and B are independent of one another, and

- R^c has the meaning of R^a or means -(CH₂)m-L-R^F, whereby m is 0, 1 or 2, and L and R^F have the above-mentioned meaning,
- R¹, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 22-29, 42-46 or 58-70,
- B means -OR¹ or

$$-N$$
 $CH_2CH_2-L-R^F$ $-N$ $N-SO_2-L-R^F$ R^3 or

whereby R¹, L, R^F and R^c have the above-mentioned meanings, or

K stands for a complexing agent or complex of general formula III

$$\begin{array}{c|c}
R^{\circ} & R^{\circ} & \\
R^{\circ} & CO_{2}R^{1} \\
\hline
CO_{2}R^{1} \\
\hline
CO_{2}R^{1}
\end{array}$$
(III)

in which R^c and R¹ have the above-mentioned meanings,

R^b has the meaning of R^a,

or

K stands for a complexing agent or complex of general formula IV

$$R^{1}O_{2}C$$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R1 has the above-mentioned meaning

or

K stands for a complexing agent or complex of general formula V

$$CO_2 R^2$$

$$CO_2 R^1$$

in which R^1 has the above-mentioned meaning, and o and q stand for number 0 or 1, and yields the sum o + q = 1,

or

K stands for a complexing agent or complex of general formula VI

$$R^{1}O_{2}C$$
 N
 N
 N
 m
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{3}R^{1}$
 $CO_{3}R^{1}$
 $CO_{4}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$

in which R¹ has the above-mentioned meaning

or

K stands for a complexing agent or complex of general formula VII

in which R¹ and B have the above-mentioned meanings

or

K stands for a complexing agent or complex of general formula VIII

$$1 \text{ RO}_2$$
 C CO_2R^1 N N CH_2CH_2 CH_2CH_2 (VIII)

in which R^c and R^I have the above-mentioned meanings, and R^b has the
above-mentioned meaning of R^a

or

K stands for a complexing agent or complex of general formula IX

in which R^c and R¹ have the above-mentioned meanings,

or

K stands for a complexing agent or complex of general formula X

in which R^c and R¹ have the above-mentioned meanings,

or

K stands for a complexing agent or complex of general formula XI

$$\begin{picture}(100,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$$

in which R¹, p and q have the above-mentioned meaning, and R^b has the meaning of R^a,

K stands for a complexing agent or complex of general formula XII

$$\begin{array}{c|c}
 & O \\
 & N \\
 & -CO_2R^1 \\
 & N \\
 & -CO_2R^1 \\
 & N \\
 & -SO_2-L-R^F
\end{array}$$
(XII)

in which L, R^F and Z^I have the above-mentioned meanings,

or

K stands for a complexing agent or complex of general formula XIII

$$\begin{array}{c|c}
 & CO_2 R^1 \\
 & CO_2 R^1 \\
 & CO_2 R^1 \\
 & CO_2 R^1
\end{array}$$

$$\begin{array}{c|c}
 & CO_2 R^1 \\
 & CO_2 R^1
\end{array}$$
(XIII)

in which R1 has the above-mentioned meaning,

are used.

Aspect 9 is the use according to aspect 8, wherein the compounds of general formula I, in which L stands for

```
\alpha-CH<sub>2</sub>-\beta

\alpha-CH<sub>2</sub>CH<sub>2</sub>-\beta

\alpha-(CH<sub>2</sub>)<sub>8</sub>-\beta s = 3 - 15

\alpha-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta

\alpha-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)<sub>t</sub>-\beta t = 2 - 6

\alpha-CH<sub>2</sub>-NH-CO-\beta

\alpha-CH<sub>2</sub>-NH-CO-\beta
```

α-CH2-NH-CO-CH2-N(C2H5)-SO2-β

α-CH2-NH-CO-CH2-N(C10H21)-SO2-β

α-CH2-NH-CO-CH2-N(C6H13)-SO2-β

α-CH2-NH-CO-(CH2)10-N(C2H5)-SO2-β

α-CH2-NH-CO-CH2-N(-CH2-C6H5)-SO2-β

α-CH2-NH-CO-CH2-N(-CH2-CH2-OH)SO2-β

α-CH2-NHCO-(CH2)10-S-CH2CH2-β

α-CH2NHCOCH2-O-CH2CH2-β

α-CH2NHCO(CH2)10-O-CH2CH2-β

α-CH2-C6H4-O-CH2CH2-β

 $\begin{array}{c} \text{$\alpha$-CH$_2$-O-CH$_2$-C$(CH$_2$-OCH$_2$-CH$$

¹СH₂-СH₂NHCOCH₂N(С₂H₅)-SO₂-В

α-CH₂-O-CH₂-CH(OC₁₀H₂₁)-CH₂-O-CH₂CH₂-β

α-(CH2NHCO)4-CH2O-CH2CH2-β

α-(CH2NHCO)3-CH2O-CH2CH2-β

φ-CH₂-OCH₂C(CH₂OH)₂-CH₂-O-CH₂CH₂-β

σ-CH2NHCOCH2N(C6H5)-SO2-β

α-NHCO-CH2-CH2-β

α-NHCO-CH2-O-CH2CH2-β

α-NH-CO-B

 α -NH-CO-CH₂-N(CH₂COOH)-SO₂- β

 α -NH-CO-CH₂-N(C₂H₅)-SO₂- β

α-NH-CO-CH₂-N(C₁₀H₂₁)-SO₂-β

 α -NH-CO-CH₂-N(C₆H₁₃)-SO₂- β

α-NH-CO-(CH₂)₁₀-N(C₂H₅)-SO₂-β

α-NH-CO-CH2-N(-CH2-C6H5)-SO2-β

α-NH-CO-CH2-N(-CH2-CH2-OH)SO2-β

o-NH-CO-CH2-B

```
α-CH<sub>2</sub>-O-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-β
α-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-β
α-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-β
α-N(C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-β
α-N(C<sub>10</sub>H<sub>21</sub>)-SO<sub>2</sub>-β
α-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-β
α-N(C<sub>2</sub>H<sub>4</sub>OH)-SO<sub>2</sub>-β
α-N(C<sub>2</sub>H<sub>4</sub>OH)-SO<sub>2</sub>-β
α-N(CH<sub>2</sub>COOH)-SO<sub>2</sub>-β
α-N(CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-β
α-N-[CH(CH<sub>2</sub>OH)<sub>2</sub>]-SO<sub>2</sub>-β
α-N-[CH(CH<sub>2</sub>OH)<sub>2</sub>]-SO<sub>2</sub>-β
```

are used.

and in which α represents the binding site to the complexing agent or metal complex K, and β represents the binding site to the fluorine radical,

Aspect 10 is the use according to aspects 8 and/or 9, wherein the compounds of formula I in which n in formula -C_nF_{2n}E stands for numbers 4-15 and/or E in this formula means a fluorine atom are used. Aspect 11 is the use according to one of aspects 8 to 10, wherein the following compounds are used:

- -- Gadolinium complex of 10-[1-methyl-2-oxo-3-aza-5-oxo-{4perfluorooctylsulfonyl-piperazin-1-yl}-pentyl]-1,4,7-tris(carboxymethyl)-1,4,7,10tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-oxa
 10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17-heptadecafluoroheptadecyl]
 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-aza-5,9-dioxo-9-{4-perfluorooctyl}-piperazin-1-yl}-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
 - -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-aza-7-(perfluorooctyl-sulfonyl)-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,

	Gadolinium complex of 10-[2-hydroxy-4-oxa-1H,1H,2H,3H,3H,5H,5H,6H,6H-	
	perfluorotetradecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,	
	Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-oxa-	
	10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19-henicosafluoro-	
	nonadecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,	
Tem 100	Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-11-aza-11-	
	(perfluorooctylsulfonyl)-tridecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-	
	tetraazacyclododecane,	
*****	Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-aza-7-	
	(perfluorooctylsulfonyl)-8-phenyl-octyl]-1-4-7-tris(carboxymethyl)-1,4,7,10-	
	tetraaza-cyclododecane.	

PLEASE AMEND THE PARAGRAPH STARTING ON PAGE 8, LINE 22, AS FOLLOWS:

In another embodiment of this invention, those compounds of general formula Ia according to elaims aspects 12 to 21 are used as preferred compounds. These compounds are known and are described in WO 99/01161. Their use as MRI contrast media for visualization of thrombi still had not been described to date. Of these compounds, quite especially preferably metal complex MK 12 (cf. Table 1) is used.

Aspect 12 is the use according to the invention, wherein as perfluoroalkyl-containing metal complexes, the compounds of general formula Ia are used

A-R^F (Ia)

in which

• A is a molecule part that contains 2 to 6 metal complexes, which are bonded directly or via a linker to a nitrogen atom of an annular skeleton chain, and

R^F is a perfluorinated, straight-chain or branched carbon chain with formula

-C_nF_{2n}E, in which

E represents a terminal fluorine, chlorine, bromine, iodine or

hydrogen atom,

and n stands for numbers 4-30,

whereby molecule part A has the following structure:

whereby

- q^1 is a number 0, 1, 2 or 3,
- K stands for a complexing agent or metal complex or their salts of organic and/or inorganic bases or amino acids or amino acid amides,
 - X is a direct bond to the perfluoroalkyl group, a phenylene group or a C₁-C₁₀-alkylene chain, which optionally contains 1-15 oxygen atoms, 1-5 sulfur atoms, 1-10 carbonyl groups, 1-10 (NR^d) groups, 1-2 NR^dSO₂ groups, 1-10 CONR^d groups, 1 piperidine group, 1-3 SO₂ groups and 1-2 phenylene groups or optionally is substituted by 1-3 radicals R^F, in which R^d stands for a hydrogen atom, a phenyl group, benzyl group or a C₁-C₁₅ alkyl group, which optionally contains 1-2 NHCO groups, 1-2 CO groups, or 1-5 oxygen atoms and optionally is substituted by 1-5 hydroxy, 1-5 methoxy, 1-3 carboxy, or 1-3 R^F radicals,
- V is a direct bond or a chain of general formula IIa or IIIa:

$$\beta = N_1 H_2 - (CH_2)_K - (W)_1 - (CH_2)_M - C - \alpha$$
(Ila)

$$\begin{array}{c} \beta-N-CH_2-C-N\\ H\\ \end{array}$$

$$\begin{array}{c} \beta-N-CH_2-C-N\\ H\\ \end{array}$$

$$\begin{array}{c} (CH_2)_{0-S}\\ \end{array}$$

$$\begin{array}{c} C\\ \end{array}$$

$$\begin{array}{c} C\\ \end{array}$$

$$\begin{array}{c} (Ille) \end{array}$$

in which

- R^e is a hydrogen atom, a phenyl group, a benzyl group or a C₁-C₇-alkyl group, which optionally is substituted with a carboxy group, a methoxy group or a hydroxy group,
- W is a direct bond, a polyglycol ether group with up to 5 glycol units, or a molecule part of general formula IVa

 $-CH(R^h)$ - (IVa)

in which R^h is a C₁-C₇ carboxylic acid, a phenyl group, a benzyl group or a -(CH₂)₁₋₅-NH-K group,

- α represents the binding to the nitrogen atom of the skeleton chain, β represents
 the binding to complexing agents or metal complex K,
- and in which variables k and m stand for natural numbers between 0 and 10, and 1 stands for 0 or 1

and whereby

D is a CO or SO₂ group,

are used.

Aspect 13 is the use according to aspect 12, wherein the compounds of general formula Ia in which q is the number 1 are used.

Aspect 14 is the use according to aspect 12, wherein the compounds of general formula Ia are used, in which molecule part X is an alkylene chain, which contains 1-10 CH₂CH₂O groups or 1-5 COCH₂NH groups, a direct bond or one of the following structures

$$\begin{array}{c} \gamma - CH_{2} - O - (CH_{2})_{2} - \delta \cdot \gamma - CH_{2} - N - SO_{2} - \delta \ , \ \gamma - (CH_{2})_{10} - N - C - CH_{2} - N - SO_{2} - \delta \ , \\ \gamma - (CH_{2})_{10} - O - (CH_{2})_{2} - \delta \ , \\ \gamma - CH_{2} - N - SO_{2} - \delta \ , \ \gamma - CH_{2} - N - SO_{2} - \delta \ , \\ \gamma - CH_{2} - N - SO_{2} - \delta \ , \ \gamma - CH_{2} - N - SO_{2} - \delta \ , \\ C_{0}H_{11} \end{array}$$

whereby

 γ binds to D, and δ binds to R^F.

Aspect 15 is the use according to aspect 12, wherein the compounds of general formula

Ia, in which V is a molecule part with one of the following structures

$$\alpha$$
-C-CH₂-NH- β , α -C-CH₂-N- β , α -C-CH₂-N- β , α -C-CH-NH- β

$$\alpha$$
 COOH α CH₂COOH α C-CH₂-CH-NH- β , α C-CH₂-CH-NH- β , α C-CH-NH- β

are used.

Aspect 16 is the use according to aspect 12, wherein the compounds of general formula Ia, in which K represents a complex of general formula Va, VIa, VIIa or VIIIa,

(Va)

(Vla)

are used,

whereby

R4, independently of one another, are a hydrogen atom or a metal ion equivalent

CH2NHCOCH2OCH2-, or

-CH₂NHCOCH₂C₆H₄- group.

Aspect 19 is the use according to aspect 12, wherein the compounds of general formula Ia in which K has one of the following structures:

are used.

Aspect 20 is the use according to one of aspects 12 to 19, wherein the compounds of general formula Ia in which the perfluoroalkyl chain R^F is $-C_6F_{13}$, $-C_8F_{17}$, $-C_{10}F_{21}$ or $-C_{12}F_{25}$ are used.

Aspect 21 is the use according to one of aspects 12 to 20, wherein the gadolinium complex of 1,4,7-tris{1,4,7-tris(N-(carboxylatomethyl)-10-[N-1-methyl-3,6-diaza-2,5,8-trioxooctane-1,8-diyl)]-1,4,7,10-tetraazacyclododecane, Gd complex}-10-[N-2H,2H,4H,5H,5H-3-oxa-perfluorotridecanoyl]-1,4,7,10-tetraazacyclododecane is used.