

SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY)

(Established under section 3 of the UGC Act 1956)

Re - accredited by NAAC with 'A' Grade

Founder: Prof. Dr. S. B. Mujumdar, MSc., Ph.D. (Awarded Padma Bhushan and Padma Shri by President of India)

Course Name : Multimodal Al

Course Code : TE7493
Faculty : Engineering

Course Credit: 3 Course Level: 3

Sub-Committee (Specialization): Computer Science

Learning Objectives:

Learn the fundamental concepts associated with MMDF methods.

Apply the basic principles to derive the various multimodal techniques for different modalities such as text-text, image-text etc

Understand and choose various approaches based on the specific application for

designing MMDF algorithms

Implement and validate the MMDF for specific applications.

Books Recommended :

Book	Author	Publisher
Multimodal data fusion based on mutual information	Bramon, R., Boada, I., Bardera, A., Rodriguez, J., Feixas, M., Puig, J., & Sbert, M. (2011)	IEEE Transactions on Visualization and Computer Graphics, 18(9), 1574-1587
Multimodal data fusion: an overview of methods, challenges, and prospects	Lahat, D., Adali, T., & Jutten, C. (2015)	Proceedings of the IEEE, 103(9), 1449-1477
Multimodal machine learning: A survey and taxonomy	Baltrusaitis, T., Ahuja, C., & Morency, L. P. (2018)	IEEE transactions on pattern analysis and machine intelligence, 41(2), 423-443

Course Outline:

Sr. No.	Торіс	Actual Teaching Hours	Contact Hours Equivale nce
1	IntroductionWhat is Multimodal , Historical view, multimodal vs multimedia, Why multimodal, Multimodal applications: image captioning, video description, AVSR, Core technical challenges, Representation learning, translation, alignment, fusion and co-learn	12	0
2	Multimodal representations Joint representations, Visual semantic spaces, multimodal autoencoder, Orthogonal joint representations, Component analysis, Parallel multimodal representations, Similarity metrics, canonical correlation analysis.	10	0
3	Multimodal translation and mappingEncoder-decoder models, Machine translation, image captioning, Generative vs retrieval approaches, modality alignment, Latent alignment approaches, Attention models, multi instance learning, Explicit alignment, Dynamic ti	13	0
4	Multimodal fusion and co-learningModel free approaches, Early and late fusion, hybrid models, Kernel-based fusion, Multiple kernel learning, Multimodal graphical models, Factorial HMM, Multi-view Hidden CRF	10	0
	Total	45	0

Pre Requisites :

Deep Learning

Evaluation:

A) Continuous Assessment (90 marks)

a)Quizzesb)Assignments

c)Tests

B) End Semester Examination (60 Marks)

Pedagogy:

1.Online Video lectures

2.Webinars

3. Online activities

Expert:

Dr. Ketan Kotecha, Professor and Director, SIT

Dr. Shraddha Phansalkar, Associate Professor and Head (CS & IT), SIT