CS 207: Discrete Structures

Instructor: S. Akshay

July 27, 2015 Lecture 04 – Basic Mathematical Structures

Logistics

Tutorial timings

Tuesdays $5.15 \mathrm{pm}$ at SIC 301 Kresit building.

).

Recap of last three lectures

Chapter 1: Mathematical reasoning

- ▶ Propositions, predicates.
- ▶ Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- ▶ Principle of Mathematical Induction
- ▶ Well-ordering principle and Strong Induction

Recap of last three lectures

Chapter 1: Mathematical reasoning

- ▶ Propositions, predicates.
- ▶ Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- ▶ Principle of Mathematical Induction
- ▶ Well-ordering principle and Strong Induction

Today:- Chapter 2: Basic Mathematical Structures

- ▶ Finite and infinite sets, Functions
- Relations

Sets

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

§ I

The Conception of Power or Cardinal Number

By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

§ 1

The Conception of Power or Cardinal Number

By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined by (or satisfy) P is a set, i.e., $S = \{x \mid P(x)\}.$

Some simple boring stuff about sets

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- \blacktriangleright Let A, B be two sets. Recall the usual definitions:
 - ▶ Equality A = B, Subset $A \subseteq B$,
 - ▶ Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
 - ▶ Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
 - ▶ Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
 - \triangleright Empty set ϕ ,
 - ▶ Power set of $A = \mathcal{P}(A)$ = set of all subsets of A.
 - ▶ If U is the universe, then the complement of A, $\bar{A} = A^c = \{x \in U \mid x \notin A\}.$

Some simple boring stuff about sets

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- \blacktriangleright Let A, B be two sets. Recall the usual definitions:
 - ▶ Equality A = B, Subset $A \subseteq B$,
 - ▶ Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
 - ▶ Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
 - ▶ Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
 - \triangleright Empty set ϕ ,
 - ▶ Power set of $A = \mathcal{P}(A)$ = set of all subsets of A.
 - ▶ If U is the universe, then the complement of A, $\bar{A} = A^c = \{x \in U \mid x \notin A\}.$

So, what is the difference between $\{\emptyset\}$ and \emptyset ?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let
$$S = \{X \mid X \notin X\}$$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S = \{X \mid X \notin X\}$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let
$$S = \{X \mid X \notin X\}$$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property P, $S = \{x \in A \mid P(x)\}$ is a set.

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let
$$S = \{X \mid X \notin X\}$$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property P, $S = \{x \in A \mid P(x)\}$ is a set.

Why does this definition get rid of Russell's paradox?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S = \{X \mid X \notin X\}$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property P, $S = \{x \in A \mid P(x)\}$ is a set.

Let $P(x) = x \notin x$. let A be a set and $S = \{x \in A \mid x \notin x\}$.

- ▶ if $(S \in S)$: from the definition of S, $S \in A$ and $S \notin S$, which is a contradiction.
- ▶ if $(S \not\in S)$: from the definition, either $S \not\in A$ or $S \in S$. But we have assumed that $S \not\in S$. Hence, $S \not\in A$. No contradiction!

Is the fun done? How do we compare sets?

► For two finite sets, this is easy, just count the number of elements and compare them!

Is the fun done? How do we compare sets?

- ► For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ightharpoonup Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}

Is the fun done? How do we compare sets?

- ▶ For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ightharpoonup Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}
- ▶ Turns out we need functions... but first...

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?

- ► Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?
- 3. What if infinitely many more trains with infinitely many more guests arrive? (H.W)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

i.e., $f:A\to B$ is a subset R of $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

i.e., $f:A\to B$ is a subset R of $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.
 - We write f(a) = b and call b the image of a.
 - ► $Range(f) = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}, Domain(f) = A$

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

i.e., $f:A\to B$ is a subset R of $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Composition of functions

- ▶ If $g: A \to B$ and $f: B \to C$, then $f \circ g: A \to C$ is defined by $f \circ g(x) = f(g(x))$.
- ▶ Defined only if $Range(g) \subseteq Domain(f)$.
- Example: if $f(x) = x^2$, $g(x) = x x^3$ with $f, g : \mathbb{R} \to \mathbb{R}$, what is $f \circ g(x)$, $g \circ f(x)$?

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

i.e., $f:A\to B$ is a subset R of $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Composition of functions is associative

▶ If $h: A \to B$ and $g: B \to C$ and $f: C \to D$, then $f \circ (g \circ h) = (f \circ g) \circ h$.

Check it! (H.W.)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

i.e., $f:A\to B$ is a subset R of $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Inverse of a function

▶ If $f: A \to B$ is a ???? function, then $f^{-1}: B \to A$ defined by $f^{-1}(b) = a$ if f(a) = b, is called its inverse.

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

If f is a bijection, then its inverse function exists and $f \circ f^{-1} = f^{-1} \circ f = id$

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.
- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Comparing (finite and infinite) sets

- ▶ Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y. If A, B finite, $|A| \ge |B|$
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y. If A, B finite, $|A| \le |B|$
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

 If A, B finite, |A| = |B|
- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Properties of finite and infinite sets

Relative notion of "size"

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Properties of finite and infinite sets

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ \exists **surj** from A to B and \exists **surj** B to A, implies \exists **bij** from A to B.

Properties of finite and infinite sets

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)