In order to solve (RE) we consider the differential operator $A := \frac{d}{dx}$ on $E = L^{1}([-1,0],F)$ with domain

$$D(A) := \{ f \in AC([-1,0],F) : f' \in E \text{ and } f(0) = \Phi(f) \}$$
.

We claim that (A,D(A)) generates a strongly continuous semigroup $(T(t))_{t\geq 0}$ on E. To this end we first consider the operator $A_0f:=f'$ with domain

$$D(A_0) := \{ f \in E : f \in AC([-1,0],F) , f' \in E \text{ and } f(0) = 0 \}$$
.

Similarly to the special case where $F = \mathbb{R}$ (compare A-I,Ex.2.4.(ii)) it can be seen that the operator A_O generates a strongly continuous semigroup $(T_O(t))_{t\geq 0}$ given by

(3.1)
$$(T_{O}(t)f)(s) = \begin{cases} f(t+s) & \text{if } t+s \le 0 \\ 0 & \text{if } t+s > 0 \end{cases} .$$

Notice that $(T_O(t))_{t\geq 0}$ is a nilpotent semigroup.

Now consider the operators $S_{\lambda}: E \rightarrow E: f \rightarrow \varepsilon_{\lambda} \otimes \Phi(f)$, $\lambda > 0$, where ε_{λ} denotes the function $s \rightarrow e^{\lambda s}$ as an element of $L^{1}[-1,0]$ and $h \otimes x \in E$ is defined by $(h \otimes x)(s) := h(s) \cdot x$ for $h \in L^{1}[-1,0]$, $x \in F$ and $s \in [-1,0]$. Clearly $\|\varepsilon_{\lambda}\| = 1/\lambda \cdot (1-e^{-\lambda}) \rightarrow 0$ as $\lambda \rightarrow \infty$ and we have $\|S_{\lambda}\| = \|\varepsilon_{\lambda}\| \cdot \|\Phi\| = 1/\lambda \cdot (1-e^{-\lambda}) \cdot \|\Phi\| \leq 1/\lambda \cdot \|\Phi\|$.

For every $\lambda > \| \phi \|$, $(\text{Id} - S_{\lambda})$ is an isomorphism of E and it is not difficult to see that it induces a bijection from D(A) onto D(A_O) such that

(3.2)
$$(\lambda - A) = (\lambda - A_0) (Id - S_{\lambda})$$
.

Since A_O generates a semigroup of contractions $\lambda - A_O$ is invertible for each $\lambda > 0$. This yields the invertibility of $\lambda - A$ for each $\lambda \ge \|\phi\|$.

In order to obtain an estimate on $\|R(\lambda,A)\|$ we use Formula (3.2). Since $\|R(1,S_{\lambda})\| = \|\sum_{n=0}^{\infty} S_{\lambda}^{n}\| \leq \sum_{n=0}^{\infty} \|\varepsilon_{\lambda}\|^{n} \cdot \|\phi\|^{n} = (1-\|\varepsilon_{\lambda}\|\cdot\|\phi\|)^{-1}$

and $\|R(\lambda, A_0)\| \le 1/\lambda$ for $\lambda > 0$ we obtain for $\lambda \ge \|\phi\|$:

$$\begin{split} \left\| \mathbb{R} \left(\lambda, \mathsf{A} \right) \, \right\| & \leq \, \left(1 \, - \, \left\| \varepsilon_{\lambda} \right\| \cdot \left\| \phi_{\lambda} \right\| \right)^{-1} \cdot 1 / \, \lambda \, = \, \left(\lambda \, - \, \lambda \cdot \left\| \varepsilon_{\lambda} \right\| \cdot \left\| \phi_{\lambda} \right\| \right)^{-1} \\ & = \, \left(\lambda \, - \, \left(1 \, - \, \mathrm{e}^{-\lambda} \right) \cdot \left\| \phi_{\lambda} \right\| \right)^{-1} \, \leq \, \left(\lambda \, - \, \left\| \phi_{\lambda} \right\| \right)^{-1} \, \, . \end{split}$$

By using A-II, Cor.1.8 we thus have proved the first assertion of the following theorem: