

Progetto 5 (Spark + Scala)

Colantonio Viviana 224473

Costa Cristian Giuseppe 227507

Il dataset

```
"server": "173",
"notes": [],
"publicFlag": true,
"placeId": "FphPyURWU7ux6h4",
"description": "St Peter's church in Rome",
"secret": "b96b1fece0",
"originalFormat": "jpg",
"media": "photo",
"title": "Basilica di San Pietro",
"iconServer": "",
"urls": [],
"farm": "1",
"id": "430793876",
"hasPeople": false,
"datePosted": "Mar 22, 2007 11:58:08 PM",
"views": 60,
"originalSecret": "",
```

```
"originalWidth": 0,
"owner": {
                                                              "tags": [
  "photosCount": 0,
  "admin": false,
                                                                  "count": 0.
  "revFamily": false,
  "pro": false,
                                                                  "value": "holiday"
  "iconServer": 0,
                                                                },
  "iconFarm": 0,
                                                                  "count": 0,
  "revContact": false,
                                                                  "value": "vatican"
  "filesizeMax": 0,
                                                                },
  "bandwidthUsed": 0,
  "bandwidthMax": 0,
                                                                  "count": 0,
  "id": "91071733@N00",
                                                                  "value": "stpeters"
  "revFriend": false,
                                                                },
  "username": "swashford"
},
"comments": 0,
                                                                   "count": 0,
"originalHeight": 0,
                                                                   "value": "rome"
"familyFlag": false,
"rotation": -1,
                                                              ],
"mediaStatus": "ready",
                                                               "license": "",
"geoData": {
                                                               "iconFarm": "",
  "latitude": 41.90245,
                                                               "lastUpdate": "Dec 10, 2014 1:09:09 AM",
  "accuracy": 16,
                                                               "favorite": false,
  "longitude": 12.456661
                                                               "dateTaken": "Jan 1, 0001 12:00:00 AM",
},
                                                               "primary": false,
"friendFlag": false,
                                                               "pathAlias": ""
"url": "https://flickr.com/photos/91071733@N00/430793876", }
"originalWidth": 0,
```

Sommario delle analisi qualitative effettuate

analisi relative all'utilizzo del social da parte degli utenti

analisi relative all'**utilizzo dei tag** all'interno dei post analisi di **trajectory mining** sulla base dei geotag dei post

analisi di clusterizzazione degli utenti

analisi che sfruttano concetti di **machine** learning

Analisi di utilizzo del social da parte degli utenti

Utenti più influenti

Classifica sulla base di:

- Numero di post pubblicati
- Totale di visualizzazioni ottenute
- $score = \frac{views}{count} + \log(count)$

Andamento temporale delle pubblicazioni di un utente

Due parametri:

- Visualizzazioni
- Numero di post

Serie temporali realizzate per:

- Anno
- Mese
- Giorno

Analisi riguardanti l'utilizzo dei tag

Tag maggiormente utilizzati

 Si è studiata la distribuzione dei tag sulla base del numero dei post ad essi relativi ed il numero di visualizzazioni totalizzate.

Andamento temporale dell'utilizzo di un tag

Serie temporali realizzate per:

- Anno
- Mese
- Giorno

Approccio adottato

Task 1: l'individuazione di post credibili rispetto all'analisi di Trajectory Mining Task 2: l'attribuzione di un luogo ad un post (latitudine e longitudine sono troppo precise) Task 3: la trasformazione del dataset in uno compatibile con l'implementazione di PrefixSpan

Task 4 : l'interpretazione dei risultati.

Task 1: post credibili

Si eliminano dal dataset tutti i post per i quali

- la data di acquisizione della foto è mancante
- la data di acquisizione della foto è antecedente il 1/1/2004
- la data di acquisizione della foto è conseguente al 1/1/2020.

Task 2: attribuzione di un luogo ad un post

- 1. si individuano le coppie (*latitudine* , *longitudine*) presenti nel dataset;
- 2. si effettua un rounding a 3 cifre delle coppie;
- 3. si filtrano le sole coppie distinte;
- 4. si effettua una richiesta alle API di **OpenStreet-Map** per tutte le coppie al fine di ottenere info sul luogo;
- 5. gli oggetti **GeoDFItem** ottenuti al passo (4) saranno raccolti in un dataset, filtrato sulla base di analisi delle distribuzioni degli attributi delle sue tuple;
- 6. ad ogni post presente nel dataset, verranno assegnati tutti i luoghi così trovati (mediante join) filtrando solo quelli che si trovano nel raggio di 300 metri dalla posizione dello scatto fotografico.

Task 2: attribuzione di un luogo ad un post

Task 3: Dataset per Prefix Span

Examples

Scala Java Python R

Refer to the Scala API docs for more details.

```
import org.apache.spark.ml.fpm.PrefixSpan

val smallTestData = Seq(
    Seq(Seq(1, 2), Seq(3)),
    Seq(Seq(1), Seq(3, 2), Seq(1, 2)),
    Seq(Seq(1, 2), Seq(5)),
    Seq(Seq(6)))

val df = smallTestData.toDF("sequence")
val result = new PrefixSpan()
    .setMinSupport(0.5)
    .setMaxPatternLength(5)
    .setMaxLocalProjDBSize(32000000)
    .findFrequentSequentialPatterns(df)
    .show()
```

https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#prefixspan

Task 3: Dataset per Prefix Span

```
private def user_loc_seq(dataset: Dataset[FlickrPost], datasetGeo: Dataset[GeoDFItem]): DataFrame = {
   val res = best loc guess all data(dataset, datasetGeo).repartition(200)
   {...}
              .toDf("DATE", "ID OWNER", "SEQUENCE")
   all_sequences.write.json("sequences_json")
    all_sequences
def seq for prefix span(sequences: DataFrame): DataFrame = {
   val all_sequences_df =
      sequences
        .map(x => x.get(2).asInstanceOf[Seq[String]].map(y => Seq(y)))
        .toDF("sequence")
def frequent_seq_pat(dataframe: DataFrame): DataFrame = {
   val result = new PrefixSpan()
      .setMinSupport(0.02)
      .setMaxPatternLength(10)
      .setMaxLocalProjDBSize(32000000)
      .findFrequentSequentialPatterns(dataframe)
   {...}
```

Pattern	Supporto
Piazza del Campidoglio → Foro di Traiano	11.60%
$Colosseo \rightarrow Domus Aurea$	10.22%
Colosseo → Ludus Magnus	9.59%
Basilica Sancti Petri → Braccio di Carlo Magno	10.37%
Forum Romanum → Tempio del Divo Giulio	7.52%
Musei Vaticani → San Nilammone Forum Sancti Petri → Braccio di Carlo Magno	
Colosseo \rightarrow Santi Luca e Martina al Foro Romano \rightarrow Tempio della Concordia	
Basilica Sancti Petri → Palazzo del Sant'Uffizio → Braccio di Carlo Magno	
Forum Romanum → Tempio del Divo Giulio → Foro di Nerva	
Casa delle Vestali → Forum Romanum → Foro di Nerva	
Colosseo \rightarrow Ludus Magnus \rightarrow Antiquarium del Celio \rightarrow Domus Aurea	
Casa delle Vestali \rightarrow Forum Romanum \rightarrow Tempio del Divo Giulio \rightarrow Necropoli arcaica	
Piazza Venezia \rightarrow Santa Maria in Aracoeli \rightarrow Insula dell'Ara Coeli \rightarrow Foro di Traiano	7.03%
Obeliscus Vaticanus → Basilica Sancti Petri → Palazzo del Sant'Uffizio → Braccio di Carlo Magno	8.33%
Tipografia Vaticana \rightarrow Basilica Sancti Petri \rightarrow San Nilammone \rightarrow Braccio di Carlo Magno	7.69%

User Clustering

Approccio adottato

Task 1: User Embedding

Task 2: Scelta modello/meccanismo di clustering

Task 3: parameter tuning

Task 4: l'interpretazione dei risultati.

Task 1: User Embedding

- Scelta feature dai post (title + description)
- Poi, diversi approcci al problema:
 - Modelli preallenati (su cosa? Quali lingue?)
 - Es: Doc2Vec
 - Modelli da addestrare (come? Parameter tuning)
 - Es: LDA

Si è optato per *Multilingual Universal Sentence Encoder*

Task 1: User Embedding

L'embedding di un singolo utente sarà dato da:

$$embedding(user) = \frac{\sum_{x \in posts(user)} embedding(x)}{|posts(user)|}$$

Lo spazio latente (\mathbb{R}^{512}) è condiviso tra post e utenti

Task 2, 3: Scelta meccanismo di clustering e parameter tuning

- Serve un modello con ragionevole *explainability*
- Si è optato per KMeans, k = 6

• Cluster maggiormente numeroso

Utente	Parole più usate
98274023@N00	vatican, st, rome, museum, i, pantheon, hotel, peter, paul, new
32076237@N00	rome, the, san, basilica, pietro, saint, peter, vatican, piazza, colosseum
44192643@N02	peter, st, vatican, square, santa, rome, maria, dome, inside, colosseum
83031170@N00	the, rome, st, peter, inside, vatican, forum, basilica, fountain, coliseum
22094057@N05	the, peter, st, vatican, coliseum, basilica, fountain, trevi, museum, forum

 Turisti abbastanza descrittivi all'interno dei loro post

Utente	Parole più usate
55391611@N00	rome, the, basilica, vatican, city, peter, saint, santa, maria, church
22158962@N07	roma, san, org, santa, wikipedia, http, href, wiki, www, piazza
28353725@N00	rome, i, the, piazza, street, quot, church, it, one, nuns
77547214@N00	the, rome, fountain, roman, forum, temple, colosseum, quot, st, peter
25718393@N04	quot, the, rome, roma, wikipedia, href, com, see, http, flickr

• Utenti che pubblicano post con pensieri ed aforismi personali

Utente	Parole più usate
34857532@N00	en, wiki, org, wikipedia, rome, http, href, i, villa
24793644@N08	crunch, i, roma, dsc, jpg, foto, storico, 5, b,
63327992@N07	i, a, the, rome, old, nice, our, fountain, water, maxentius
19446102@N00	rome, quot, href, http, i, roma, rel, nofollow, via, piazza
33399095@N00	roma, www, com, href, http, flickr, quot, photos, e, mm

• Utenti che inseriscono URL verso altri siti, che ottengono molte visualizzazioni. Sfruttano Flickr per pubblicizzarsi.

Utente	Parole più usate
8099187@N06	com, omogirando, href, rel, nofollow, www, http, jimdo, b, facebook
69912818@N00	href, http, rel, nofollow, www, com, b, roma, sound36
11432907@N00	href, http, com, rel, nofollow, large, amp, bighugelabs, onblack, php
11102419@N00	href, http, org, wikipedia, wiki, en, rome, com, flickr, the
21336230@N08	href, http, rel, nofollow, com, roma, www, amp, view, large

• Utenti che utilizzano titolo e descrizione del post in maniera poco significativa

Utente	Parole più usate
29223649@N04	de, roma, piazza, san, via, en, n, 2, y, palazzo
96291012@N00	img, com, www, bertolinidennis, myspace, 20110602, http, href, 06, edited
47211255@N05	img, a, s, day, piazza, navona, roma, lina, ivo, not
58826214@N00	column, trajan, roman, rome, aurelius, marcus, it, built, the, spiral
25538307@N00	dsc, img, 8, marzo, eucalipti, minirugby, ios, u16, s, photos

• Utenti appassionati di fotografia che inseriscono descrizioni sulle macchine fotografiche utilizzate, obiettivi, ecc.

Utente	Parole più usate
63558118@N07	voigtlander, 5, f, roma, 20mm, la, d200, valeria, rome, steps
136373368@N02	rome, roma, gh4, panasonic, picture, villa, autumn, borghese, shooted
13958243@N08	ilford, rome, nikon, epson, v750, kodak, nikkor, quot, tmax, d76
33920763@N08	de, ce, societ, 1, nikon, n, embe, famo, vino, statue
27818145@N00	http, href, kodak, com, 2, f, planar, 80mm, hasselblad, 501cm

In figura a fianco, statistiche relative ai vari cluster

Indicazioni di longevità dell'utente

In figura, utenti simili ad un dato utente.

La dimensionalità rende molto meno efficace la distanza euclidea.

Query di Machine Learning

Obiettivi

Sono state implementate query per:

- Ottenere feature da immagini
- Ricavare la lingua di un post

Query per immagini

- In figura, è possibile osservare l'output della rete GoogleNet.
- La rete, preallenata, è stata utilizzata tramite la libreria SynapseML di Microsoft, la quale supporta il formato ONNX.

Query per lingua di un post

In figura, è possibile osservare l'output del *LanguageDetectorDL*, fornito da Spark NLP, per post di lingua differente.

Analisi su dati sintetici

I task analizzati sono i seguenti:

- task 1: andamento dei post di un utente per anno;
- task 2: utenti più influenti sulla base di visualizzazioni e post pubblicati (score);
- task 3: andamento dei tag negli anni;
- task 4: distribuzione dei tag nel dataset;

Grazie per l'attenzione!