Praktikum Klassische Physik Teil 2 (P2)

Operationsverstärker

Simon Fromme, Philipp Laur

10. Juni 2013

Inhaltsverzeichnis

1 Transistorverstärker			
	1.1	gleichstromgegengekoppelte Schaltung	2
	1.2	stromgegengekoppelte Schaltung	2
	1.3	Verstärkung in Abhängigkeit der Frequenz	3

1 Transistorverstärker

1.1 gleichstromgegengekoppelte Schaltung

Die vollständige Emitter-Verstärkerschaltung wird wie in der Vorbereitungshilfe beschrieben aufgebaut, allerdings wird statt einem 5 µF-Kondensator ein 4,7 µF-Kondensator verwendet. Am Signalgenerator wurde eine Dreieckspannung mit der Frequenz $f=1000\,\mathrm{Hz}$ erzeugt. Die gemessenen Spannungswerte am Ein- und Ausgang sind in Tabelle 1 angebeben.

Tabelle 1: Messergebnisse gleichstromgegengekoppelte Emitterschaltung

U_E^{SS} in mV	U_A^{SS} in V	$\beta = \frac{U_A^{SS}}{U_E^{SS}}$
26	4,0	153,85
32	5,2	162,50
42	7,4	176,19
58	9,8	168,97

Mittelt man über diese Werte, so erhält man einen Verstärkungsfaktor von

$$\beta = 165, 38.$$

Zu bemerken ist, dass der Verstärkungsfaktor in einem relativ breiten Intervall schwankt, was auf eine vergleichsweise schlechte Qualität dieser Transistor-Verstärkerschaltung hindeutet. Bei höheren Eingangsspannungen scheint der Verstärkungsfaktor etwas höher zu liegen, jedoch lässt die geringe Zahl der Messwerte keine genaue Aussage zu.

1.2 stromgegengekoppelte Schaltung

Bei der vorherigen Schaltung wird nun der Kondensator C_E entfernt, was die Gegenkopplung auf den gesamten Frequenzbereich ausweitet. Die Messwerte (Tabelle 2) werden ganz analog zur vorherigen Teilaufgabe genommen ($f=1000\,\mathrm{Hz}$) und wiederum der Verstärkungsfaktor β bestimmt.

Tabelle 2: Messergebnisse stromgekoppelte Emitterschaltung

U_E^{SS} in mV	U_A^{SS} in mV	$\beta = \frac{U_A^{SS}}{U_E^{SS}}$
25,6	114	4,45
56,8	250	4,45 4,40
106	464	4,38

Zu beobachten ist hier, dass der Verstärkungsfaktor β einer geringeren Schwankung als bei der gleichstromgegengekoppelten Emitterschaltung unterliegt.

Abbildung 1: Frequenzabhängige Verstärkung bei Stromgegenkopplung

Durch Mittelung über die Verstärkungsfaktoren der einzelnen Messungen ergibt sich

$$\beta = 4,41.$$

Der Verstärkungsfaktor ist bei gleicher Frequenz von $f=1000\,\mathrm{Hz}$ also wesentlich geringer als bei der gleichstromgegengekoppelten Emitterschaltung. Der Grund dafür ist, dass der Widerstand R_E für hohe Frequenzen nun nicht mehr durch den Kondensator C_E überbrückt wird, so dass an R_E eine höhere Spannung abfällt und der Emitter dementsprechend auf einem höheren Potential liegt. Somit verringert sich die Ausgangsspannung.

1.3 Verstärkung in Abhängigkeit der Frequenz

Abbildung 2: Frequenzabhängige Verstärkung bei Gleichstromgegenkopplung

