Data Structures Chapter 5: Heap and Priority Queue

- 1. Heap & Priority Queue
- 2. Heapsort
- 3. Heap & PQ Coding

하나님은 모든 사람이 구원을 받으며 진리를 아는 데에 이르기를 원하시느니라 (딤전2:4)

너희가 나를 택한 것이 아니요 내가 너희를 택하여 세웠나니 이는 너희로 가서 열매를 맺게 하고 또 너희 열매가 항상 있게 하여 내 이름으로 아버지께 무엇을 구하든지 다 받게 하려 함이라 (요15:16)

Data Structures Chapter 5: Heap and Priority Queue

- 1. Heap & Priority Queue
 - Complete Binary Tee (Review)
 - Binary Heap and Priority Queue
 - Minheap and Maxheap
- 2. Heapsort
- 3. Heap & PQ Coding

Binary trees - Properties

- **Definition:** A full binary tree of level k is a binary tree having $2^k 1$ nodes, $k \ge 0$.
- **Definition**: A binary tree with n nodes and level k is **complete** iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of level k.

A full binary tree

A **complete** binary tree

Binary trees - Array representation

• Q: Let's suppose that you have a **complete binary tree** in an array. Find its parent, left child and right child at node D.

Solution:

parent(x = 4) is at 4/2 = 2 leftChild(4) is at 2x4 = 8rightChild(4) is at 2x4 + 1 = 9

Binary trees - Array representation

- Q: Let's suppose that you have a complete binary tree in an array, how can we locate node x's parent or child?
- A complete binary tree with n nodes, any node index i, $1 \le i \le n$, we have
 - parent(i) is at $\lfloor i/2 \rfloor$ If i = 1, i is at the root and has no parent
 - leftChild(i) is at 2i if 2i <= n. If 2i > n, then i has no left child.
 - rightChild(i) is at 2i+1 if 2i+1 <= n. If 2i+1 > n, then i has no right child.

Wow! Can we use this to all binary trees? Why not?

Problem remains:

The problem with storing an arbitrary binary tree using an array is the inefficiency in memory usage.

- Heaps are frequently used to implement priority queues.
 - Because it provides an efficient implementation for priority queues.

Priority queues.

- Queues with priorities associated to.
- **Example:** A line waiting to be served at a bank and served FIFO except if a senior or a disabled person arrives in the line. They are served first. Seniors and disabled persons have higher priority than others.

A typical ADT for Priority Queue

- Get the top priority element (min or max)
- Insert an element
- Delete the top priority element
- Decrease the priority of an element

- O(1)
- O(log n)
- O(log n)
- O(log n)

Priority queue applications

[customers in a line, colliding particles] Event-driven simulation.

Numerical computation. [reducing round-off error]

Data compression. [Huffman codes]

Graph searching. [Dijkstra's algorithm, Prim's algorithm]

Number theory. [sum of powers]

Artificial intelligence. [A* search]

[maintain largest M values in a sequence] Statistics.

[load balancing, interrupt handling]

[bin packing, scheduling]

[Bayesian spam filter]

Operating systems.

Discrete optimization.

Spam filtering.

- Challenge: Find the largest M items in a stream of N items.
 - Fraud detection: isolate \$\$ transactions.
 - Hacking: KT's customer DB access by their sales agents
 - File maintenance: find biggest files, directories, or emails.
- Constraints: Not enough memory to store N items.

%more trans.txt

Turing	6/17/1990	644.08
vonNeumann	3/26/2002	4121.85
Dijkstra	8/22/2007	2678.40
vonNeumann	1/11/1999	4409.74
Dijkstra	11/18/1995	837.42
Hoare	5/10/1993	3229.27
vonNeumann	2/12/1994	4732.35
Hoare	8/18/1992	4381.21
Turing	1/11/2002	66.10
Thompson	2/27/2000	4747.08
Turing	2/11/1991	2156.86
Hoare	8/12/2003	1025.70
vonNeumann	10/13/1993	2520.97
Dijkstra	9/10/2000	708.95
Turing	10/12/1993	3532.36
Hoare	2/10/2005	4050.20

%java TopM 5 < trans.txt

N huge, M large N >> M

- Challenge: Find the largest M items in a stream of N items.
- Constraints: Not enough memory to store N items.

N huge, M large N >> M

Order of growth of finding the largest M in a stream of N items

implementation	time	space
sort	N log N	Ν
binary heap	N log M	M
best in theory	Ν	М

- Challenge: Find the largest M items in a stream of N items.
- Constraints: Not enough memory to store N items.

Order of growth of finding the largest M in a stream of N items

	200		
implementation	insert	delete	min/max
unordered array	1	Ν	N
ordered array	Ν	1	N huge
goal	log N	log N	log N

Binary heap

- Binary heap: array representation of a heap-ordered complete binary tree
- Properties:
 - Heap-ordered: Parent's key no smaller than children's keys. [maxheap]
 - Heap-structure:
 A complete binary tree
- Array representation
 - Indices start at 1.
 - Take nodes in level order.
 - Parent at k is at k/2.
 - Children at k are at 2k and 2k+1.
 - No explicit links needed!

- Duplicates are allowed
- No order implied for elements which do not share ancestor-descendant relationship

- insertion: grow(heap, 14)
 - Insert a new element while maintaining a heap-structure
 - Move the element up the heap while not satisfying heap-ordered
 - Where is an empty node to start?

- deletion: dequeue delete the root
 - Swap the root and thelast element.
 - Heap decreases by one in size.
 - Move down (sink) the root while not satisfying heap-ordered.
 - Minimum element is always at the root (by minheap definition).

deletion: trim() or dequeue() - Which position of the node will be empty?

deletion: trim() or dequeue() - Which position of the node will be empty?

- Is $31 > \min(14,16)$?
- Yes swap 31 with min(14,16)
- Is $31 > \min(19,21)$?
- Yes swap 31 with min(19,21)

- Is $31 > \min(65,26)$?
- Yes swap 31 with min(65,26)
- Heap-ordered
- ✓ Heap-Structure

Binary heap operations time complexity:

- Level of heap is $\log_2 N$
- insert: O(log N) for each insert
 - In practice, expect less
- delete: O(log N) // deleting root node in min/max heap
- decreaseKey: O(log N)
- increaseKey: O(log N)
- remove: O(log N) // removing a node in any location

Binary heap operations time complexity with N items:

Implementation	Insert	Delete	max
Unordered array	1	N	Ν
Ordered array	Ν	1	1
Binary heap	log N	log N	1
	Mission C	Completed	1 4 4 A

OURSELL STATE OF THE STATE OF T

Data Structures Chapter 5: Heap and Priority Queue

1. introduction

- Complete Binary Tee (Review)
- Heap and Priority Queue
- 2. Binary Heap
 - Min heap, **Max heap**
 - Priority Queue
- 3. Heapsort
- 4. Heap & PQ Coding

Heap ADT - heap.h

- Heap ADT: A one based and one dimensional array is used to simplify parent and child calculations.
- heap.h

```
struct Heap {
 int *nodes;  // an array of nodes
 int capacity; // array size of node or key, item
 int N;
        // the number of nodes in the heap
 bool (*comp)(Heap*, int, int);
 Heap(int capa = 2) {
   capacity = capa;
   nodes = new int[capacity];
   N = 0;
   comp = nullptr;
 };
 ~Heap() {};
using heap = Heap*;
```

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

void swim(heap h, int k) {
 while (k > 1 && less(h, k / 2, k)) {
 swap(h, k / 2, k);
 k = k / 2;
 }
}

How to code insert X

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

swim up: swim(11, N)

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

remove the max (root)

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

remove the max (root)

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

remove the max (root)

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

- Insert: Add node at end, then swim it up.
- Remove: Swap root with last node, then sink down.

Binary heap operations time complexity with N items:

- Level of heap is $\lfloor \log_2 N \rfloor$
- insert: O(log N) for each insert
 - In practice, expect less
- delete: O(log N) // deleting root node in min/max heap
- decreaseKey: O(log N)
- increaseKey: O(log N)
- remove: O(log N) // removing a node in any location
- Heapify(): ○(N)
- Heapsort(): O(n log n)
- Because O(N) heapify + O(n log n) remove nodes = O(n log n)
- Proof:
 - https://stackoverflow.com/questions/9755721/how-can-building-a-heap-be-on-time-complexity
 - https://www.growingwiththeweb.com/data-structures/binary-heap/build-heap-proof/
 - https://www.quora.com/How-is-the-time-complexity-of-building-a-heap-is-o-n
 - http://www.cs.umd.edu/~meesh/351/mount/lectures/lect14-heapsort-analysis-part.pdf

Binary heap operations time complexity with N items:

14,9,0,81			
Implementation	Insert	Delete	max
Unordered array	1	Ν	N
Ordered array	Ν	1	1
Binary heap	log N	log N	1
			2
	A mee		
	Mission (Completed	

References in Korean:

https://ratsgo.github.io/data%20structure&algorithm/2017/09/27/heapsort/https://zeddios.tistory.com/56

Summary & quaestio qo < 9 9??

Data Structures Chapter 5: Heap and Priority Queue

1. introduction

- Complete Binary Tee (Review)
- Heap and Priority Queue
- 2. Binary Heap
 - Min heap, Max heap
 - Priority Queue
- 3. Heapsort
- 4. Heap & PQ Coding