Matrices minimisant la norme sur $\mathrm{SL}_n(\mathbb{R})$:

I Le développement

Le but de ce développement est de déterminer les matrices minimisant une certaine norme sur $SL_n(\mathbb{R})$.

On commence tout d'abord par deux résultats préliminaires :

Lemme 1 : [Gourdon, p.330]

Soient E,F et G trois espace vectoriels de dimension finie et $\varphi:E\times F\longrightarrow G$ une application bilinéaire.

L'application φ est différentiable sur $E \times F$ et :

$$\forall (x,y) \in E \times F, \ \forall (h,k) \in E \times F, \ d\varphi_{(x,y)}(h,k) = \varphi(x,k) + \varphi(h,y)$$

Preuve:

Soient E,F et G trois espace vectoriels de dimension finie et $\varphi:E\times F\longrightarrow G$ une application bilinéaire.

Soit $(x, y) \in E \times F$.

Pour tout $(h, k) \in E \times F$, on a (par bilinéarité de φ):

$$\varphi((x,y) + (h,k)) = \varphi(x+h,y+k) = \varphi(x,y) + (\varphi(x,k) + \varphi(h,y)) + \varphi(h,k)$$

Or, l'application $(h,k) \longmapsto \varphi(x,k) + \varphi(h,y)$ est linéaire et puisque φ est bilinéaire, il existe C>0 tel que $\|\varphi(h,k)\|_G \leq C \|(h,k)\|_{E\times F}^2$. On a alors :

$$\varphi((x,y) + (h,k)) = \varphi(x,y) + (\varphi(x,k + \varphi(h,y)) + o(\|(h,k)\|_{E \times E})$$

Finalement, l'application φ est différentiable sur $E\times F$ et :

$$\forall (x,y) \in E \times F, \ \forall (h,k) \in E \times F, \ d\varphi_{(x,y)}(h,k) = \varphi(x,k) + \varphi(h,y)$$

Proposition 2: [Gourdon, p.332]

Soit $n \in \mathbb{N}^*$.

L'application det : $\mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^{∞} sur $\mathcal{M}_n(\mathbb{R})$ et :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \forall H \in \mathcal{M}_n(\mathbb{R}), \ d(\det)_M(H) = \operatorname{Tr}(\operatorname{Com}(M)^{\mathsf{T}}H)$$

Preuve:

Soit $n \in \mathbb{N}^*$.

L'application det : $\mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^{∞} sur $\mathcal{M}_n(\mathbb{R})$ car polynomiale en ses coefficients.

Soit $M \in \mathcal{M}_n(\mathbb{R})$.

Pour tout $t \in \mathbb{R}$ et tout $(i,j) \in [1;n]^2$, on a par *n*-linéarité du déterminant que :

$$\det(M+tE_{i,j}) = \det(M) + \begin{vmatrix} \begin{pmatrix} m_{1,1} & \cdots & 0 & \cdots & m_{1,n} \\ \vdots & & t & & \vdots \\ m_{n,1} & \cdots & 0 & \cdots & m_{n,n} \end{pmatrix} = \det(M) + t\operatorname{Com}(M)_{i,j}$$

On a alors : $\frac{\partial \det}{\partial E_{i,j}}(M) = \operatorname{Com}(M)_{i,j}$.

Ainsi, pour tout $H = (h_{i,j})_{i,j \in [1,n]} \in \mathcal{M}_n(\mathbb{R})$, on a :

$$d(\det)_M(H) = \sum_{i,j=1}^n h_{i,j} \frac{\partial \det}{\partial E_{i,j}}(M) = \sum_{i=1}^n \left(\sum_{j=1}^n h_{i,j} \left(\operatorname{Com}(M)^{\mathsf{T}} \right)_{j,i} \right)$$
$$= \sum_{i=1}^n \left(H \operatorname{Com}(M)^{\mathsf{T}} \right)_{i,i} = \operatorname{Tr} \left(\operatorname{Com}(M)^{\mathsf{T}} H \right)$$

Remarque 3:

En particulier, pour $M \in \mathrm{GL}_n(\mathbb{R})$, on a $\mathrm{Com}(M)^{\mathsf{T}} = \det(M)M^{-1}$, donc pour tout $H \in \mathcal{M}_n(\mathbb{R})$ on a : $d(\det)_M(H) = \det(M) \operatorname{Tr}(M^{-1}H)$.

On énonce désormais le résultat qui nous intéresse :

Proposition 4: [Gourdon, p.341]

Si l'on munit $\mathcal{M}_n(\mathbb{R})$ de la norme $\|\cdot\|_2 : M \longrightarrow \left(\sum_{i,j=1}^n m_{i,j}^2\right)^{\frac{1}{2}}$, alors le groupe des matrices orthogonales directes de $SO_n(\mathbb{R})$ est l'ensemble des éléments de $SL_n(\mathbb{R})$ de norme minimale.

Preuve:

On munit $\mathcal{M}_n(\mathbb{R})$ de la norme $\|\cdot\|_2 : M \longrightarrow \left(\sum_{i,j=1}^n m_{i,j}^2\right)^{\frac{1}{2}}$.

On remarque que pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on a $\|M\|_2^2 = \operatorname{Tr}(M^{\mathsf{T}}M)$. Il s'agit donc de minimiser la fonction f définie sur $\mathcal{M}_n(\mathbb{R})$ par $f(M) = \operatorname{Tr}(M^{\mathsf{T}}M)$ sous la contrainte g(M) = 0, avec $g(M) = \det(M) - 1$.

Or, l'application f est une forme quadratique et g est une forme multilinéaire sur un espace vectoriel de dimension finie, donc f et g sont continues. L'ensemble

 $\mathrm{SL}_n(\mathbb{R}) = g^{-1}(\{0\})$ est donc un fermé de $\mathcal{M}_n(\mathbb{R})$ et ainsi le minimum de f sur $\mathrm{SL}_n(\mathbb{R})$ est atteint en un point $A \in \mathrm{SL}_n(\mathbb{R})$.

Or par la proposition précédente, on a $dg_A(H) = \text{Tr}(A^{-1}H)$. Donc dg_A est non nulle et par le théorème des extrema liés, il existe un réel λ tel que $df_A = \lambda dg_A$.

De plus, on a par le lemme que $df_A(H) = 2 \operatorname{Tr} (A^{\mathsf{T}} H)$ et donc pour toute matrice $H \in \mathcal{M}_n(\mathbb{R})$ on a :

$$2\operatorname{Tr}(A^{\mathsf{T}}H) = \lambda\operatorname{Tr}(A^{-1}H)$$

soit:

$$\operatorname{Tr}\left(\left(2A^{\mathsf{T}} - \lambda A^{-1}\right)H\right) = 0$$

On a alors $2A^{\mathsf{T}} = \lambda A^{-1}$ (car $\operatorname{Tr}(A^{\mathsf{T}}B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$). Ainsi, $2A^{\mathsf{T}}A = \lambda I_n$ et par n-linéarité du déterminant on a : $2^n = \lambda^n$.

Or, $A^{\intercal}A$ est une matrice positive, donc $n\lambda = 2\operatorname{Tr}(A^{\intercal}A) \geq 0$ et ainsi $\lambda = 2$. On a alors $A^{\intercal}A = I_n$, c'est-à-dire $A \in SO_n(\mathbb{R})$ et le minimum vaut $f(A) = \operatorname{Tr}(A^{\intercal}A) = \operatorname{Tr}(I_n) = n$.

Réciproquement, toute matrice de $SO_n(\mathbb{R})$ est de norme au carré égale à n et on a donc le résultat voulu.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé quelques résultats sur la comatrice. On rappelle ainsi quelques généralités sur celle-ci pour une matrice $A \in \mathcal{M}_n(\mathbb{R})$:

Définition 5 : Mineur et cofacteur [Deschamps, p.1248]

On considère $(i, j) \in \overline{[1; n]^2}$.

On appelle:

- * mineur de $a_{i,j}$ le déterminant $\Delta_{i,j}$ de la matrice extraite de A obtenue en supprimant la i-ème ligne et la j-ème colonne de A.
- * cofacteur de $a_{i,j}$ le scalaire $(-1)^{i+j}\Delta_{i,j}$.

Théorème 6 : [Deschamps, p.1248]

On a le développement suivant par rapport à une colonne/ligne :

$$\forall j \in [1; n], \det(A) = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} \Delta_{i,j} \text{ et } \forall i \in [1; n], \det(A) = \sum_{j=1}^{n} a_{i,j} (-1)^{i+j} \Delta_{i,j}$$

Définition 7 : Comatrice [Deschamps, p.1251] :

On appelle **comatrice de** A (notée Com(A)) la matrice des cofacteurs de A.

Proposition 8 : [Deschamps, p.1251]

On a la relation $A \operatorname{Com}(A)^{\mathsf{T}} = \operatorname{Com}(A)^{\mathsf{T}} A = \det(A) I_n$. En particulier, si $A \in \operatorname{GL}_n(\mathbb{K})$, alors $A^{-1} = \frac{1}{\det(A)} \operatorname{Com}(A)^{\mathsf{T}}$.

Exemple 9: [Deschamps, p.1251]

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 est inversible, alors $A^{-1} = \frac{1}{ad - bd} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

On a également utilisé le théorème des extrema liés dont on rappelle l'énoncé ainsi que la preuve :

Théorème 10 : Théorème des extrema liés [Gourdon, p.337] :

Soient $f, g_1, ..., g_r$ des fonctions réelles de classe \mathcal{C}^1 définies sur un ouvert non vide \mathcal{U} de \mathbb{R}^n et à valeurs réelles et $\Gamma = \{x \in \mathcal{U} \text{ tq } g_1(x) = ... = g_r(x) = 0\}$. Si $f|_{\Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si $dg_{1,a}, ..., dg_{r,a}$ sont linéairement

indépendants, alors il existe $\lambda_1,...,\lambda_r \in \mathbb{R}$ (uniques et appelés **multiplicateurs de Lagrange**) tels que $df_a = \sum_{i=1}^r \lambda_i dg_{i,a}$.

Preuve:

Soient $f, g_1, ..., g_r$ des fonctions réelles de classe C^1 définies sur un ouvert non vide \mathcal{U} de \mathbb{R}^n et à valeurs réelles et $\Gamma = \{x \in \mathcal{U} \text{ tq } g_1(x) = ... = g_r(x) = 0\}.$

Posons s=n-r et identifions \mathbb{R}^n à $\mathbb{R}^s \times \mathbb{R}^r$. On écrit alors les éléments de \mathbb{R}^n sous la forme $(x,y)=(x_1,...,x_s;y_1,...,y_r)$ et on pose $a=(\alpha,\beta)\in\mathbb{R}^n$, où $\alpha\in\mathbb{R}^s$ et $\beta\in\mathbb{R}^r$.

Commençons par faire la remarque suivante :

On a nécessairement $r \geq n$ car les formes linéaire $dg_{i,a}$ forment une famille libre et la dimension du dual de \mathbb{R}^n est n. Par ailleurs, si r=n, le théorème est évident car les $dg_{i,a}$ forment une base de $(\mathbb{R}^n)^*$. On peut donc supposer que $r \leq n-1$, c'est-à-dire $s \geq 1$.

Les formes linéaires $dg_{i,a}$ forment une famille libre, la matrice :

$$\begin{pmatrix} \frac{\partial g_1}{\partial x_1}(a) & \cdots & \frac{\partial g_1}{\partial x_s}(a) & \frac{\partial g_1}{\partial y_1}(a) & \cdots & \frac{\partial g_1}{\partial y_r}(a) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial g_r}{\partial x_1}(a) & \cdots & \frac{\partial g_r}{\partial x_s}(a) & \frac{\partial g_r}{\partial y_1}(a) & \cdots & \frac{\partial g_r}{\partial y_r}(a) \end{pmatrix}$$

est donc de rang r. On peut donc en extraire une sous-matrice de taille $r \times r$ inversible. Quitte à changer le nom des variables, on peut supposer que :

$$\det\left(\left(\frac{\partial g_i}{\partial y_j}(a)\right)_{1 < i, j < r}\right) = \frac{D(g_1, ..., g_r)}{D(y_1, ..., y_r)} \neq 0$$

D'après le théorème des fonctions implicites, on peut alors trouver un voisinage ouvert \mathcal{U}' de α dans \mathbb{R}^s , un voisinage ouvert Ω de $a = (\alpha, \beta)$ dans \mathbb{R}^n et une fonction $\varphi = (\varphi_1, ..., \varphi_r) : \mathcal{U}' \longrightarrow \mathbb{R}^r$ de classe \mathcal{C}^1 tels que (en notant $q = (q_1, ..., q_r)$):

$$(g(x,y) = 0 \text{ avec } x \in \mathcal{U}' \text{ et } (x,y) \in \Omega) \iff (y = \varphi(x))$$

En d'autres termes, sur un voisinage de a, les éléments de $\Gamma = \{x \in \mathcal{U} \text{ tq } g(x) = 0\}$ s'écrivent $(x, \varphi(x))$. Posons alors $h(x) = f(x, \varphi(x))$. La fonction h admet donc un extremum local en $x = \alpha$ (car $(\alpha, \varphi(\alpha)) = a$ et $(x, \varphi(x)) \in \Omega$), ce qui entraîne :

$$\forall i \in [1; s], \ \frac{\partial h}{\partial x_i}(a) = \frac{\partial f}{\partial x_i}(a) + \sum_{i=1}^r \frac{\partial \varphi_j}{\partial x_i}(\alpha) \frac{\partial f}{\partial y_j}(a) = 0 \quad (*)$$

Par ailleurs, en écrivant les dérivées partielles par rapport aux x_i de $g(x, \varphi(x)) = 0$, on tire :

$$\forall k \in [1, r], \ \forall i \in [1; s], \ \frac{\partial g_k}{\partial x_i}(a) + \sum_{i=1}^r \frac{\partial \varphi_j}{\partial x_i}(\alpha) \frac{\partial g_k}{\partial y_j}(a) = 0 \quad (**)$$

Autrement dit, les s premiers vecteurs colonnes de la matrice :

$$M = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) & \cdots & \frac{\partial f}{\partial x_s}(a) & \frac{\partial f}{\partial y_1}(a) & \cdots & \frac{\partial f}{\partial y_r}(a) \\ \frac{\partial g_1}{\partial x_1}(a) & \cdots & \frac{\partial g_1}{\partial x_s}(a) & \frac{\partial g_1}{\partial y_1}(a) & \cdots & \frac{\partial g_1}{\partial y_r}(a) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial g_r}{\partial x_1}(a) & \cdots & \frac{\partial g_r}{\partial x_s}(a) & \frac{\partial g_r}{\partial y_1}(a) & \cdots & \frac{\partial g_r}{\partial y_r}(a) \end{pmatrix}$$

s'expriment, d'après (*) et (**), linéairement en fonction de ses r derniers vecteurs colonnes et donc $\operatorname{rg}(M) \leq r$.

Or le rang des vecteurs lignes est égal au rang des vecteurs colonnes de M (car $\operatorname{rg}(M^\intercal)=\operatorname{rg}(M)$), donc les r+1 vecteurs lignes de M forment une famille liée, ce qui entraı̂ne l'existence de r réels $\mu_0,...,\mu_r$ non tous nuls tels que $\sum_{i=1}^r \mu_i dg_{i,a}=0$. Or, comme la famille $(dg_{i,a})_{i\in \llbracket 1;r\rrbracket}$ est libre, on a $\mu_0=0$, et en posant pour tout $i\in \llbracket 1;r\rrbracket, \lambda_i=\frac{-\mu_i}{\mu_0}$ on en déduit que $df_a=\sum_{i=1}^r \lambda_i dg_{i,a}$.

II.2 Pour aller plus loin...

II.2.1 Différentielle du déterminant

Il est possible de calculer la différentielle du déterminant d'une autre manière : * Calcul de la différentielle en l'identité :

Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $\lambda_1, ..., \lambda_n$ ses valeurs propres complexes. Pour tout $t \in \mathbb{R}$, on a :

$$\det(I_n + tM) = \prod_{i=1}^n 1 + t\lambda_i = 1 + t\operatorname{Tr}(M) + O(t^2) = 1 + t\operatorname{Tr}(M) + o(t)$$

On a donc $d(\det)_{I_n}(M) = \operatorname{Tr}(M)$.

* Calcul de la différentielle pour $X \in GL_n(\mathbb{R})$: Pour tout $X \in GL_n(\mathbb{R})$ et tout $H \in \mathcal{M}_n(\mathbb{R})$ on a :

$$\det(X+H) = \det\left(X\left(I_n + X^{-1}H\right)\right) = \det(X)\left(1 + \operatorname{Tr}\left(X^{-1}H\right) + o\left(\|H\|\right)\right)$$
$$= \det(X) + \operatorname{Tr}\left(\det(X)X^{-1}H\right) + o\left(\|H\|\right)$$
$$= \det(X) + \operatorname{Tr}\left(\operatorname{Com}(X)^{\mathsf{T}}H\right) + o\left(\|H\|\right)$$

On a donc $d(\det)_X(H) = \operatorname{Tr}(\operatorname{Com}(X)^{\mathsf{T}} H)$.

* Calcul de la différentielle pour $X \in \mathcal{M}_n(\mathbb{R})$:

L'application $X \longmapsto \operatorname{Com}(X)^{\mathsf{T}}$ est continue, donc $f: X \longmapsto \operatorname{Tr}(\operatorname{Com}(X)^{\mathsf{T}})$ est continue également. De plus, $g: X \longmapsto d(\det)_X$ est également continue et puisque f = g sur $\operatorname{GL}_n(\mathbb{R})$ qui est un ouvert dense de $\mathcal{M}_n(\mathbb{R})$, on en déduit que f = g sur $\mathcal{M}_n(\mathbb{R})$ tout entier.

Ainsi, on a $d(\det)_X(H) = \operatorname{Tr}(\operatorname{Com}(X)^{\mathsf{T}}H)$.

II.2.2 Une autre méthode...

On peut également chercher les matrices minimisant la norme $\|\cdot\|_2$ sur $\mathrm{SL}_n(\mathbb{R})$ d'une autre manière (en gardant les mêmes notations) :

Toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire sous la forme $M = \Omega S$ avec Ω une matrice orthogonale et S une matrice symétrique positive. On a alors $||M||_2^2 = ||\Omega S||_2^2 = ||S||_2^2$.

Comme S est symétrique réelle, elle se diagonalise dans une base orthonormée, c'est-à-dire qu'il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^\intercal S P = D$ est diagonale. En notant $\lambda_1,...,\lambda_n$ les valeurs propres (réelles positives) de S, on a alors :

$$||M||_{2}^{2} = \operatorname{Tr}(S^{2}) = \operatorname{Tr}(D^{2}) = \sum_{k=1}^{n} \lambda_{k}^{2}$$

En utilisant l'inégalité entre moyennes géométrique et arithmétique :

$$\left(\prod_{k=1}^{n} \lambda_k^2\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{k=1}^{n} \lambda_k^2$$

On en déduit que :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \|M\|_2^2 \ge n \left(\prod_{k=1}^n \lambda_k^2\right)^{\frac{1}{n}} = n \left(\det\left(S^2\right)\right)^{\frac{1}{n}} = n \left(\det\left(M^2\right)\right)^{\frac{1}{n}}$$

Pour toute matrice $M \in \mathrm{SL}_n(\mathbb{R})$, on a alors $\|M\|_2^2 \geq n$ et ainsi la distance au carré de $\mathrm{SL}_n(\mathbb{R})$ à $0_{\mathcal{M}_n(\mathbb{R})}$ est minorée par n. Or, pour $M \in \mathrm{SO}_n(\mathbb{R})$, on a $\|M\|_2^2 = \mathrm{Tr}(M^\intercal M) = \mathrm{Tr}(I_n) = n$, d'où l'inégalité inverse.

Finalement, on retrouve bien le résultat que l'on avait démontré.

Remarque 11 : [Caldero, p.190 + 226]

Il est possible d'effectuer d'autres calculs de distance dans les espaces de matrices en utilisant les mêmes arguments que précédemment (décomposition ou théorème des extrema liés).

II.3 Recasages

Recasages: 148 - 149 - 161 - 206 - 214 - 215 - 219.

III Bibliographie

- Xavier Gourdon, Les maths en tête, Analyse.
- Claude Deschamps, Maths MPSI Tout-en-un.
- Philippe Caldero, Carnet de voyage en Analystan.