Machine Learning Applications

Evaluierung

- Hold-out Estimates
- Cross-validation
- Significance Testing
- Sign test

Basierende auf Folien von Johannes Fürnkranz. Danke fürs Offenlegen der Folien

Evaluation of Learned Models

Validation through experts

- a domain expert evaluates the plausibility of a learned model
 - + but often the only option (e.g., clustering)
 - subjective, time-intensive, costly

Validation on data

- evaluate the accuracy of the model on a separate dataset drawn from the same distribution as the training data
 - labeled data are scarce, could be better used for training
 - + fast and simple, off-line, no domain knowledge needed, methods for re-using training data exist (e.g., cross-validation)

On-line Validation

- test the learned model in a fielded application
 - + gives the best estimate for the overall utility
 - bad models may be costly

Confusion Matrix (Classification)

	Classified as +	Classified as –	
Is+	true positives (tp)	false negatives (fn)	tp + fn = P
Is –	false positives (fp)	true negatives (tn)	fp + tn = N
	tp + fp	fn + tn	E =P + N

- the confusion matrix summarizes all important information
- how often is class i confused with class j
- most evaluation measures can be computed from the confusion matrix
- -accuracy
- recall/precision, sensitivity/specificity

-...

Basic Evaluation Measures

true positive rate:

$$tpr = \frac{tp}{tp + fn}$$

- percentage of correctly classified positive examples
- false positive rate:

$$fpr = \frac{fp}{fp + tn}$$

- percentage of negative examples incorrectly classified as positive

• false negative rate:
$$fnr = \frac{fn}{tp + fn} = 1 - tpr$$

- percentage of positive examples incorrectly classified as negative

• true negative rate:
$$tnr = \frac{tn}{fp + tn} = 1 - fpr$$

- percentage of correctly classified negative examples

• accuracy:
$$acc = \frac{tp + tn}{P + N}$$

- percentage of correctly classified examples

$$acc = \frac{P}{P+N} \cdot tpr + \frac{N}{P+N} \cdot (1-fpr)$$

•can be written in terms of
$$tpr$$
 and fpr : $acc = \frac{P}{P+N} \cdot tpr + \frac{N}{P+N} \cdot (1-fpr)$
• error: $err = \frac{fp+fn}{P+N} = 1 - acc = \frac{P}{P+N} \cdot (1-tpr) + \frac{N}{P+N} \cdot fpr$

percentage of incorrectly classified examples

Confusion Matrix (Multi-Class Problems)

for multi-class problems, the confusion matrix has many more entries:

classified as

		A	В	C	D	
	A	$n_{A,A}$	$n_{B,A}$	$n_{C,A}$	$n_{D,A}$	n_A
, [В	$n_{A,B}$	$n_{B,B}$	$n_{C,B}$	$n_{D,B}$	n_B
	C	$n_{A,C}$	$n_{B,C}$	$n_{C,C}$	$n_{D,C}$	n_C
	D	$n_{A,D}$	$n_{B,D}$	$n_{C,D}$	$n_{D,D}$	n_D
Ī		\overline{n}_A	$\bar{n}_{\scriptscriptstyle B}$	\overline{n}_{C}	\overline{n}_D	E

accuracy is defined analogously to the two-class case:

$$accuracy = \frac{n_{A,A} + n_{B,B} + n_{C,C} + n_{D,D}}{\mid E \mid}$$

Out-of-Sample Testing

- Performance cannot be measured on training data
 - overfitting!
- Reserve a portion of the available data for testing
 - typical scenario
 - •2/3 of data for training
 - •1/3 of data for testing (evaluation)
 - a classifier is trained on the training data
 - and tested on the test data
 - e.g., confusion matrix is computed for test data set

Problems:

- waste of data
- •labelling may be expensive
- high variance
 - •often: repeat 10 times or → cross-validation

Typical Learning Curves

Quelle: Winkler 2007, nach Mitchell 1997,

Cross-Validation

- Algorithm:
 - split dataset into x (usually 10) partitions
 - for every partition X
 - •use other x-1 partitions for learning and partition X for testing
 - average the results
- Example: 4-fold cross-validation

Leave-One-Out Cross-Validation

n-fold cross-validation

- where n is the number of examples:
 - use n-1 examples for training
 - 1 example for testing
 - repeat for each example

Properties:

- + makes best use of data
 - only one example not used for testing
- + no influence of random sampling
 - training/test splits are determined deterministically
- typically very expensive
 - but, e.g., not for k-NN (Why?)
- bias
 - e.g., majority classifier in a perfectly balanced problem

Experimental Evaluation of Algorithms

- Typical experimental setup (in % Accuracy):
 - evaluate n algorithms on m datasets

	↓	<u> </u>	—	\neg							
Dataset	Grading	Select	Stacking	Voting			Dataset	Grading	Select	Stacking	Voting
audiology	83.36	77.61	76.02	84.56	(┝	hepatitis	83.42	83.03	83.29	82.77
autos	80.93	80.83	82.20	83.51	~	┝	ionosphere	91.85	91.34	92.82	92.42
balance-scale	89.89	91.54	89.50	86.16	~	\mapsto	iris	95.13	95.20	94.93	94.93
breast-cancer	73.99	71.64	72.06	74.86	~	┝	labor	93.68	90.35	91.58	93.86
breast-w	96.70	97.47	97.41	96.82	←	┝	lymph	83.45	81.69	80.20	84.05
colic	84.38	84.48	84.78	85.08	~	┝	primary-t.	49.47	49.23	42.63	46.02
credit-a	86.01	84.87	86.09	86.04	(┝>	segment	98.03	97.05	98.08	98.14
credit-g	75.64	75.48	76.17	75.23	←	┝>	sonar	85.05	85.05	85.58	84.23
diabetes	75.53	76.86	76.32	76.25	←	┝>	soybean	93.91	93.69	92.90	93.84
glass	74.35	74.44	76.45	75.70	~	┝	vehicle	74.46	73.90	79.89	72.91
heart-c	82.74	84.09	84.26	81.55	\leftarrow	┝	vote	95.93	95.95	96.32	95.33
heart-h	83.64	85.78	85.14	83.16	←	\rightarrow	vowel	98.74	99.06	99.00	98.80
heart-statlog	84.22	83.56	84.04	83.30	(L	Z00	96.44	95.05	93.96	97.23

Can we conclude that algorithm X is better than Y? How?

Summarizing Experimental Results

Averaging the performance

Dataset	Grading	Select	Stacking	Voting
Avg	85.04	84.59	84.68	84.88

- May be deceptive:
 - algorithm A is 0.1% better on 19 datasets with thousands of examples
 - algorithm B is 2% better on 1 dataset with 50 examples
 - A is better, but B has the higher average accuracy
- In our example: "Grading" is best on average
- Counting wins/ties/losses
 - •now "Stacking" is best
 - Results are "inconsistent":
 - •Gradsing > Select > Voting > Grading

	Grading	Select	Stacking	Voting
Grading	-	15/1/10	11/0/15	12/0/14
Select	10/1/15		10/0/16	14/0/12
Stacking	15/0/11	16/0/10	_	15/1/10
Voting	14/0/12	12/0/14	10/1/15	_

•How many "wins" are needed to conclude that one method is better than the other?

Sign Test

- Given:
 - A coin with two sides (heads and tails)
- Question:
 - How often do we need heads in order to be sure that the coin is not fair?
- Null Hypothesis:
 - The coin is fair (P(heads) = P(tails) = 0.5)
 - We want to refute that!
- Experiment:
 - Throw up the coin N times
- Result:
 - *i* heads, *N- i* tails
 - What is the probability of observing i under the null hypothesis?

Sign Test

Given:

A coin with two sides (heads and

Two Learning Algorithms (A and B)

Question:

How often do we not the coin is not fair?

On how many datasets must A be better than B to ensure that A is a better algorithm than B?

Null Hypothesis:

The coin is fair (P(heads) = P(tails) = 0.5)

Both Algorithms are equal.

- We want to refute that!
- Experiment:
 - Throw up the coin N times

Run both algorithms on N datasets

Result:

• i heads, N- i tails

i wins for A on N-i wins for B

What is the probability of observing i under the null hypothesis?

Sign Test: Summary

We have a binomial distribution with $p = \frac{1}{2}$

- the probability of having *i* successes is $P(i) = {N \choose i} p^i (1-p)^{N-i}$
- the probability of having at most k successes is (one-tailed test)

$$P(i \le k) = \sum_{i=1}^{k} {N \choose i} \frac{1}{2^i} \cdot \frac{1}{2^{N-i}} = \frac{1}{2^N} \sum_{i=1}^{k} {N \choose i}$$

the probability of having at most k successes or at least N- k successes is (two-tailed test)

$$P(i \le k \lor i \ge N - k) = \frac{1}{2^N} \sum_{i=1}^k {N \choose i} + \frac{1}{2^N} \sum_{i=1}^k {N \choose N - i} = \frac{1}{2^{N-1}} \sum_{i=1}^k {N \choose i}$$
critical region region

• for large N, this can be approximated with a normal distribution

Illustrations taken from http://www.mathsrevision.net/

Table Sign Test

- Example:
 - 20 datasets
 - Alg. A vs. B
 - A 4 wins
 - **B** 14 wins
 - 2 ties (not counted)
 - we can say
 with a certainty
 of 95% that B is better
 than A
 - but not with99% certainty!

N	Irrtumswahrse	heinlichkeit 5%	N	Irrtumswahrscheinlichkeit		
6	1 - 1	0	41	11	13	
6		ő	42	12	14	
8	. 0	ŏ	43	12	14	
8	0	1	44	13	15	
10	0 1	î	45	13	15	
11	ŏ	î	46	13	15	
12	ĭ	2	47	14	16	
13	i	2	48	14	16	
14	î	2	49	15	17	
15	2	2 2 2 3 3	50	15	17	
16	2 2	3	51	15	18	
17	9	4	52	16	18	
18	3	4	53	16	18	
19		4	54	17	19	
20	3	5	55	17	19	
21	4	5	56	17	20	
22	4	5	57	18	20	
23	4 4 5	6	58	18	21	
24	5	6	59	19	21	
25	5	7	60	19	21	
	6	7	61	20	22	
26	ě	7	62	20	22	
28	6		63	20	23	
29	6 7	8 8 9	64	21	23	
30	7	9	65	21	24	
31	7 7	9	66	22	24	
32	8	9	67	22	25	
33	8	10	68	22	25	
0.4	9	10	69	23	25	
35	9	11	70	23	26	
36	9	îî	71	24	26	
37	10	12	72	24	27	

Online: http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html

Properties

Sign test is a very simple test

does not make any assumption about the distribution

Sign test is very conservative

- If it detects a significant difference, you can be sure it is
- If it does not detect a significant difference, a different test that models the distribution of the data may still yield significance

Alternative tests:

- two-tailed *t*-test:
 - incorporates magnitude of the differences in each experiment
 - assumes that differences form a normal distribution

Rule of thumb:

- Sign test answers the question "How often?"
- t-test answers the question "How much?"

Problem of Multiple Comparisons

Problem:

- With 95% certainty we have
 - a probability of 5% that one algorithm appears to be better than the other
 - even if the null hypothesis holds!
 - → if we make many pairwise comparisons the chance that a "significant" difference is observed increases rapidly

Solutions:

- Bonferroni adjustments:
 - •Basic idea: tighten the significance thresholds depending on the number of comparisons
 - Too conservative
- Friedman and Nemenyi tests
 - •recommended procedure (based on average ranks)
 - → Demsar, Journal of Machine Learning Research 7, 2006 http://jmlr.csail.mit.edu/papers/v7/demsar06a.html

