COMPOSITION DE MATHEMATIQUES 1er SEMESTRE - MARS 2022 DUREE 04 HEURES

Exercice 1 (05 Pts)

Les questions 1), 2) et 3) suivantes sont indépendantes.

1) Déterminer le domaine de définition Df de la fonction f définie par ;

$$f(x) = \begin{cases} \frac{x^2 + 1}{E(x) - 1} & \text{si } x \le 1\\ \frac{\sqrt{x^2 - 2x}}{|x - 1| - 2} & \text{si } x > 1 \end{cases} \text{ ou E(x) désigne la partie entière de x}$$

- 2) Soit f la fonction définie par $f(x) = 2x^3 3x^2 + 4x + 1$
 - a) Soient α et β deux nombres réels et g la fonction définie par : $g(X) = f(\alpha + X) + \beta$. Exprimer g(X) en fonction de X.
 - b) Déterminer les réels α et β pour que g soit impaire.
 - c) En déduire que la courbe Cf admet un centre de symétrie à préciser
- 3) Soit f la fonction définie par $f(x) = cos^2 3x + sin^2 2x$
 - a) Linéariser $\cos^2 3x$ et $\sin^2 2x$
 - b) En déduire que f est périodique et déterminer sa période.

Exercice 2 (05 Pts)

Les questions 1), 2), 3) et 4) suivantes sont indépendantes.

- 1) Déterminer les mesures principales des angles de mesures $\frac{65\Pi}{6}$ et $\frac{77\Pi}{3}$ puis représenter ces angles sur le cercle trigonométrique.
- 2) Déterminer et construire l'ensemble des points M du plan tels que $(\overrightarrow{MA}, \overrightarrow{MB}) = \frac{-\Pi}{6} [2\Pi]$
- 3) a) Calculer $(\cos^2 x + \sin^2 x)^3$ de deux façons.
 - b) Détermine l'expression de sin²2x en fonction de cos4x.
 - c) En déduire que $\cos^6 x + \sin^6 x = \frac{5}{8} + \frac{3}{8}\cos 4x$.
- 4) Résoudre dans I les inéquations suivantes
- a) $\cos 2x \le -\frac{1}{2}$, I=IR; b) $\sin 2x \le \frac{\sqrt{3}}{2}$, $I = [0; 2\pi]$

Exercice 3 (05 Pts)

Soit f la fonction définie par $f(x) = \frac{1 + \sqrt{x^2 - 1}}{1 - \sqrt{x^2 - 1}}$

- a) Déterminer son ensemble de définition D.
- b) Résoudre dans IR l'équation f(x) = y où y est paramètre réel. L'application $f: D \rightarrow IR$ est – elle injective ? Surjective ?
- c) Déterminer deux parties E et F de IR les plus grands possibles pour que l'application

$$g: E \to F$$

 $x \to g(x) = f(x)$ soit bijective.

Définir alors g⁻¹

Exercice 4 (05 Pts)

On considère l'équation (E) : $\sin 3x = -\sin 2x$

- 1°)-a) Résoudre cette équation dans IR, puis dans l'intervalle $-\pi;\pi$
 - b) Représenter les solutions sur le cercle trigonométrique.
- 2°)-a) Démontrer que $\sin 3x = \sin x (4\cos^2 x 1)$.
 - -b) En déduire que l'équation (E) est équivalente à : $sinx (4cos^2x + 2cosx 1) = 0$.
 - -c) Parmi les solutions trouvées pour (E) , lesquelles sont aussi solutions de l'équation $4\cos^2x + 2\cos x 1 = 0$?
- 3°)-a) On pose X = cosx. Résoudre $4X^2 + 2X 1 = 0$
 - -b) En déduire les valeurs exactes de $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$

Bonne inspiration!