实验 3 二氧化碳临界现象观测及 PVT 关系的测定

一. 实验目的

- 1. 观测 CO₂ 临界状态现象,增加对临界状态概念的感性认识;
- 2. 加深对纯流体热力学状态: 汽化、冷凝、饱和态和超临流体等基本概念的理解; 测定 CO₂ 的 PVT 数据,在 PV 图上绘出 CO₂ 等温线;
 - 3. 掌握低温恒温浴和活塞式压力计的使用方法。

二. 实验原理

纯物质的临界点表示汽液二相平衡共存的最高温度(T_C)和最高压力点(P_C)。纯物质所处的温度高于 T_C ,则不存在液相;压力高于 P_C ,则不存在汽相;同时高于 T_C 和 P_C ,则为超临界区。本实验测量 $T<T_C$, $T=T_C$ 和 $T>T_C$ 三种温度条件下等温线。其中 $T<T_C$ 等温线,为一光滑曲线; $T=T_C$ 等温线,在临界压力附近有一水平拐点,并出现汽液不分现象; $T<T_C$ 等温线,分为三段,中间一水平段为汽液共存区。

对纯流体处于平衡态时, 其状态参数 P、V 和 T 存在以下关系:

由相律, 纯流体, 在单相区,自由度为 2, 当温度一定时,体积随压力而变化;在二相区,自由度为 1,温度一定时,压力一定,仅体积发生变化。本实验就是利用定温的方法测定 CO_2 的 P 和 V 之间的关系,获得 CO_2 的 P-V-T 数据。

三. 实验装置流程和试剂

实验装置由试验台本体、压力台和恒温浴组成(图 2-3-1)。试验台本体如图 2-3-2 所示。实验装置实物图见图 2-3-3。

实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装有高纯度的 CO₂ 气体的承压玻璃管(毛细管),CO₂ 被压缩,其压力和容积通过压力台上的活塞杆的进退来调节。温度由恒温水套的水温调节,水套的恒温水由恒温浴供给。

CO₂的压力由压力台上的精密压力表读出(注意:绝对压力=表压+大气压),温度由水套内精密温度计读出。比容由 CO₂柱的高度除以质面比常数计算得到。

试剂: 高纯度二氧化碳。

图 2-3-1 CO₂ PVT 关系实验装置

图 2-3-2 试验台本体

1.高压容器 2-玻璃杯 3-压力油 4-水银 5-密封填料6-填料压盖 7-恒温水套 8-承压玻璃管 9-CO₂10-精密温度计

图 2-3-3 CO₂ PVT 实验装置实物图

四、实验操作步骤

- 1. 按图 2-3-1 装好试验设备。
- 2. 接通恒温浴电源,调节恒温水到所要求的实验温度(以恒温水套内精密温度计为准)。
- 3. 加压前的准备——抽油充油操作
- (1) 关闭压力表下部阀门和进入本体油路的阀门,开启压力台上油杯的进油阀。
- (2) 摇退压力台上的活塞螺杆,直至螺杆全部退出。此时压力台上油筒中抽满了油。
- (3) 先关闭油杯的进油阀, 然后开启压力表下部阀门和进入本体油路的阀门。
- (4) 摇进活塞杆,使本体充油。直至压力表上有压力读数显示,毛细管下部出现水银为止。
- (5) 如活塞杆已摇进到头,压力表上还无压力读数显示,毛细管下部未出现水银,则重复(1)--(4)步骤。
- (6) 再次检查油杯的进油阀是否关闭,压力表及其进入本体油路的二个阀门是否开启。温度是否达到所要求的实验温度。如条件均已调定,则可进行实验测定。
- 4. 测定承压玻璃管(毛细管)内 CO₂ 的质面比常数 K 值

由于承压玻璃管(毛细管)内的 CO_2 质量不便测量,承压玻璃管(毛细管)内径(截面积)不易测准。本实验用间接方法确定 CO_2 的比容。假定承压玻璃管(毛细管)内径均匀一致, CO_2 比容和高度成正比。具体方法如下:

- (1) 由文献, 纯 CO₂ 液体在 25℃, 7.8MPa 时, 比容 V = 0.00124 m³/kg;
- (2)实验测定本装置在 25 ℃,7.8MPa(表压大约为 7.7 MPa)时, CO_2 柱高度为 $\Delta h_0 = h' h_0$ 。式中, h_0 —承压玻璃管(毛细管)内径顶端的刻度(酌情扣除尖部长度),h'—25 ℃,7.8MPa 下水银柱上端液面刻度。(注意玻璃水套上刻度的标记方法)
- (3)如 m—CO₂ 质量 ,A—承压玻璃管(毛细管)截面积, h—测量温度压力下水银柱上端 液面刻度,K—质面比常数,则 25℃,7.8MPa 下比容,

$$V = \frac{\Delta h_0 \cdot A}{m} = 0.00124 m^3 / kg \tag{2-3-1}$$

质面比常数
$$K = \frac{m}{A} = \frac{\Delta h_0}{0.00124}$$
 (2-3-2)

又如 Δh 为测量温度压力下 CO_2 柱高度,则此温度压力下 CO_2 比容,

$$V = \frac{h - h_0}{m/A} = \frac{\Delta h}{K} \tag{2-3-3}$$

- 5. 测定低于临界温度下的等温线(T= 20℃或 25℃)
- (1) 将恒温水套温度调至 T= 20℃或 25℃, 并保持恒定。
- (2)逐渐增加压力,压力为 4.0MPa 左右(毛细管下部出现水银面)开始读取相应水银柱上端液面刻度,记录第一个数据点。读取数据前,一定要有足够的平衡时间,保证温度、压力和水银柱高度恒定。
- (3)提高压力约 0.3MPa,达到平衡时,读取相应水银柱上端液面刻度,记录第二个数据点。 注意加压时,应足够缓慢的摇进活塞杆,以保证定温条件,水银柱高度应稳定在一定数值, 不发生波动时,再读数。
- (4) 按压力间隔 0.3MPa 左右,逐次提高压力,测量第三、第四……数据点,当出现第一小滴 CO_2 液体时,则适当降低压力,平衡一段时间,使 CO_2 温度和压力恒定,以准确读出恰出现第一小液滴 CO_2 时的压力。
- (5) 注意此阶段,压力改变后 CO₂ 状态的变化,特别是测准出现第一小滴 CO₂ 液体时的压力和相应水银柱高度及最后一个 CO₂ 小汽泡刚消失时的压力和相应水银柱高度。此二点压力改变应很小,要交替进行升压和降压操作,压力应按出现第一小滴 CO₂ 液体和最后一个 CO₂ 小汽泡刚消失的具体条件进行调整。
- (6)当 CO_2 全部液化后,继续按压力间隔0.3MPa左右升压,直到压力达到8.0MPa为止(承压玻璃管最大压力应小于8.0MPa)。
- 6. 测定临界等温线和临界参数,观察临界现象
- (1)将恒温水套温度调至 T= 31.1℃,按上述 5 的方法和步骤测出临界等温线,注意在曲线的拐点(P=7.376MPa)附近,应缓慢调整压力(调压间隔可为 0.05MPa),以较准确的确定临界压力和临界比容,较准确的描绘出临界等温线上的拐点。
- (2) 观察临界现象

a. 临界乳光现象

保持临界温度不变,摇进活塞杆使压力升至 P。附近处,然后突然摇退活塞杆(注意勿使试验台本体晃动)降压,在此瞬间玻璃管内将出现圆锥型的乳白色的闪光现象,这就是临界乳光现象。这是由于 CO₂ 分子受重力场作用沿高度分布不均和光的散射所造成的。可以反复几

次观察这个现象。

b. 整体相变现象

临界点附近时,汽化热接近于零,饱和蒸汽线与饱和液体线接近合于一点。此时汽液的相互转变不象临界温度以下时那样逐渐积累,需要一定的时间,表现为一个渐变过程;而是当压力稍有变化时,汽液是以突变的形式相互转化。

c. 汽液二相模糊不清现象

处于临界点附近的 CO_2 具有共同的参数 (P, V, T), 不能区别此时 CO_2 是汽态还是液态。如果说它是气体,那么,这气体是接近液态的气体;如果说它是液体,那么,这液体又是接近气态的液体。下面用实验证明这结论。因为此时是处于临界温度附近,如果按等温过程,使 CO_2 压缩或膨胀,则管内什么也看不到。现在,按绝热过程进行,先调节压力处于7.4 MPa(临界压力)附近,突然降压(由于压力很快下降,毛细管内的 CO_2 未能与外界进行充分的热交换,其温度下降), CO_2 状态点不是沿等温线,而是沿绝热线降到二相区,管内 CO_2 出现了明显的液面。这就是说,如果这时管内 CO_2 是气体的话,那么,这种气体离液相区很近,是接近液态的气体;当膨胀之后,突然压缩 CO_2 时,这液面又立即消失了。这就告诉我们,这时 CO_2 液体离汽相区也很近,是接近气态的液体。这时 CO_2 既接近气态,又接近液态,所以只能是处于临界点附近。临界状态流体是一种汽液不分的流体。这就是临界点附近汽液二相模糊不清现象。

7. 测定高于临界温度的等温线 (T = 40°C)

将恒温水套温度调至 T=40℃, 按上述 5 相同的方法和步骤进行。

五. 实验数据记录

实验数据记录于表 2-3-1。

表 2-3-1 不同温度下 CO₂的 P—V 数据测定结果

室温 \mathbb{C} ,大气压 MPa,毛细管内部顶端的刻度 $h_o = m$,

25℃, 7.8MPa 下 CO_2 柱高度 Δh_0 = m,质面比常数 K = kg/m²

N T =25.0°C T =31.1°C T =40.0°C

	Pée (MPa)	Δh (m)	$V = \Delta h/K$ (m^3/kg)	现象	Pée (MPa)	Δh (m)	$V = \Delta h/K$ (m^3/kg)	现象	P ée ∕MPa	Δh (m)	$V = \Delta h/K$ (m^3/kg)	现象
1												
2												
3												
4												
5												
	等温实验时间= min				等温实验时间= min				等温实验时间= min			

六. 实验数据处理

- 按 25℃, 7.8MPa 时 CO₂ 液柱高度 △ h_o(=h˙-h_o) (m), 计算承压玻璃管(毛细管)内 CO₂ 的 质面比常数 K 值。
- 2. 按表 2-3-1 \triangle h 数据计算不同压力 P 下 CO₂的体积 v, 计算结果填入表 2-3-1 空格处。。
- 3. 按表 2-3-1 三种温度下 CO₂ PVT 数据在 PV 坐标系中画出三条 PV 等温线。
- 4. 估计 25℃下 CO₂的饱和蒸汽压,并与 Antoine 方程计算结果比较。
- 5. 按表 2-3-2 计算 CO_2 的临界比容 V_c (m^3/kg),并与由临界温度下 PV 等温线实验值比较,也列于表 2-3-2。
- 6. 计算示例(某次实验数据列于表 2-3-3)
- (1) 计算 CO_2 的质面比常数 K: $\Delta h_0 = h' h_0 = 0.06 0.012 = 0.048 m$

$$K = \frac{\Delta h_0}{0.00124} = 38.71 kg / m^3$$

- (2) 按 $V = \Delta h/K$ 计算不同压力 P 下 CO_2 的比容 V,也列于表 2-3-3。
- (3) 按表 2-3-3 数据绘出 25℃, 31.1℃和 40℃下等温线。(略)
- (4)由 Antoine 方程 $\lg P^s = A B/(T + C)$ 计算 25℃下 CO_2 的饱和蒸汽压 $P^s = 6.44MPa$,

由 25° C的 PV 等温线估计 $P^s = 6.50MPa$, 二者比较接近。

(5) CO₂的临界比容 V₂实测和计算结果,列于表 2-3-2。从表中数据可知 V₂实验值与文献值符合较好,按理想气体方程计算结果误差最大。

表 2-3-2 CO_2 的临界比容 V_c (m^3/kg)

文献值	按 PV 等温线	按理想气体方程	按 van der Waals 方程				
	实验值	V _c =RTc/Pc	$V_c = 3RTc/(8Pc)$				
0.00216	0.00204	0.00779	0.002923				

表 2-3-3 不同温度下 CO₂的 P—V 数据测定结果

室温 26 °C,大气压 0.1018 MPa,毛细管内部顶端的刻度 h_o = 0.012 m ,

25℃, 7.8MPa 下 CO_2 柱高度 $\Delta h_0 = 0.048$ _m, 质面比常数 K = 38.71 kg/m²

	1	t =25℃			t =31.1℃				t =40°C			
	P é	Δh	V=	现象	P #	Δh	V=	现象	P 绝	Δh	V=	现象
N	(MPa)	(m)	Δh/K		(MPa)	(m)	Δh/K		/MPa	(m)	Δh/K	
			(m ³ /kg)				(m³/kg)				(m ³ /kg)	
1	4. 41	32. 4	0.00837		4. 41	34. 0	0.00878		4. 55	34. 7	0.00869	
2	4. 90	27. 6	0.00713		5. 39	25. 5	0.00659		4. 90	31.6	0.00816	
3	5. 39	23. 5	0.00607		5. 88	21.8	0.00563		5. 39	27.8	0.00718	
4	5. 88	19. 6	0.00506		6. 37	18. 4	0.00475		5. 88	24. 2	0. 00625	
5	6. 37	15. 7	0.00406		6. 86	15. 1	0.00390		6. 37	21.3	0. 00550	
6	6. 50	14.3	0.00369	开始	7. 20	12.3	0.00318		6.86	18.6	0.00481	
				液化								
7	6. 53	5. 2	0.00135	全部	7. 25	11.8	0.00305	接近	7. 35	16.0	0.00413	
				液化				临界				
								点				
8	6. 86	5. 1	0.00132		7. 30	10.9	0.00282		7.40	15. 7	0.00406	
9	7. 35	4.9	0. 300127		7. 35	10.0	0. 00258		7. 55	14.9	0.00385	
10	7. 80	4.8	0.00124		7.40	7. 9	0.00204		7. 70	14. 2	0.00367	
11	7.84	4.8	0.00124		7. 84	5. 5	0.00142		7.84	13.6	0.00351	
12	8. 00	4.8	0.00124		8. 00	5. 3	0.00137		8.00	12. 7	0. 00328	
	等温实验时间= 50 min				等温实验时间= 40 min				等温实验时间 = 35 min			

七. 实验结果和讨论

1. 实验结果

给出实验处理主要结果,并进行说明。

2. 讨论

- (1) 试分析实验误差和引起误差的原因;
- (2) 指出实验操作应注意的问题。

3. 思考题

- (1) 质面比常数 K 值对实验结果有何影响? 为什么?
- (2) 为什么测量 25℃下等温线时,严格讲,出现第1个小液滴时的压力和最后一个小

汽泡将消失时的压力应相等? (试用相律分析)

八. 注意事项

- 1. 实验压力不能超过 8.0 MPa,实验温度不高于 40℃。
- 2. 应缓慢摇进活塞螺杆,否则来不及平衡,难以保证恒温恒压条件。
- 3. 一般,按压力间隔 0.3MPa 左右升压。但在将要出现液相,存在汽液二相和汽相将完全 消失以及接近临界点的情况下,升压间隔要很小,升压速度要缓慢。严格讲,温度一定 时,在汽液二相同时存在的情况下,压力应保持不变。
- 4. 准确测出 25 ℃,7.8 MPa 时 CO_2 液柱高度 \triangle h_o 。准确测出 25 ℃下出现第 1 个小液滴时的压力和体积(高度)及最后一个小汽泡将消失时的压力和体积(高度)。
- 5. 压力表读得的数据是表压,数据处理时应按绝对压力(=表压+大气压)。

九.参考文献

- 1. Richard Stephenson, Handbook of the Thermodynamics of Organic Compounds, 1987
- 2. 南京化工大学编,化工热力学实验讲义,1998
- 2. Neidre B Le, Vodar B, Experimental Thermodynamics vol2, London: Butter worths, 1975
- 4. 陈钟秀, 顾飞燕, 等. 化工热力学, 第2版. 北京: 化学工业出版社, 2001

附录

1. CO₂的物性数据

Tc=304.25K, $Pc=7.376\,MPa$, $Vc=0.0942\,m^3/\,kmol$,M=44.01 Antoine 方程: $log\,P^S=A-B/\,(T+C)$,

式中 P^S —kPa, T---K, A = 7.76331, B = 1566.08, C = 97.87 (273~304 K)

2. CO₂的PV图

摩尔体积(l/mol)

图 2-3-4 CO₂的 P-V 等温线