CC2 Algèbre Durée : 1 h 30 min

L'épreuve est sans document et sans appareil électronique.

Il sera tenu compte du soin, de la rédaction et de la présentation lors de l'évaluation.

Question de cours.

3 points

Soit (E, \langle, \rangle) un espace euclidien, soit u un endomorphisme symétrique de E et soit F un sous-espace vectoriel de E.

- 1. Rappeler la définition de l'orthogonal de F, noté F^{\perp} .
- 2. Démontrer que si F est stable par u, alors F^{\perp} est stable par u.

Exercice 1. 7 points

On considère la matrice $A := \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}$.

- 1. Justifier qu'il existe une matrice orthogonale $P \in \mathcal{O}_2(\mathbb{R})$ telle que $P^{-1}AP = \text{Diag}(-2,1)$. Expliciter une telle matrice P et son inverse.
- 2. La matrice A est-elle symétrique positive? Justifier la réponse.
- 3. Déterminer l'ensemble des valeurs $n \in \mathbb{N}^*$ pour lesquelles la matrice A^n est symétrique positive.

Exercice 2. 8 points

On considère (E, \langle, \rangle) un espace euclidien de norme associée $\|\cdot\|$. Soient $v \in E \setminus \{0\}$ et $\lambda \in \mathbb{R}$. On considère l'application

$$\begin{array}{ccc} u: & E & \longrightarrow & E \\ & x & \longmapsto & x + \lambda \langle x, v \rangle v. \end{array}$$

- 1. Montrer que u est un endomorphisme symétrique de E.
- 2. a. Pour $x \in E$, calculer $||u(x)||^2$.
 - b. En déduire que u est un endomorphisme orthogonal de E si et seulement si $\lambda \in \left\{0,-\frac{2}{\|v\|^2}\right\}$.
- 3. Dans la suite, on supposera que $\lambda = -\frac{2}{\|v\|^2}$.
 - a. Montrer que les valeurs propres réelles d'un endomorphisme orthogonal sont incluses dans $\{-1,1\}$.
 - b. En déduire que u est une symétrie de E.
 - c. Déterminer $\operatorname{Ker}(u-\operatorname{Id}_E)$ et préciser complètement la nature de l'application u.

Exercice 3. 4 points

Déterminer, en prenant le soin de détailler le raisonnement et les calculs,

$$\inf \left\{ \int_0^1 (t^2 - at - b)^2 dt \mid a, b \in \mathbb{R} \right\}.$$