

Extracting Sensor Data from 3D CAD

Introduction

- Creating a JSON file is an important part of the sensor placement process
- Manual creation of JSON files
 - Good for prototyping
 - Easy to use when the number of sensors is small
 - Time consuming
 - Error prone
- Automated creation of JSON files
 - Eliminates most human error
 - Fast
 - Difficult to work with universal file types (STEP, X_T, IGES, etc)
 - Program likely needs to be written for each CAD package

Creating a JSON for hmd_designer

- Location of sensor centroid
 - x, y, and z parameters determine position
 - Expressed in meters
- Sensor orientation
 - Vector that has a direction indicating the center of the sensor viewing area
 - Unit vector with length of 1
- Channel map not required. Can be added though if specific sensor identifiers are desired.

```
"modelPoints":
, -0.05500000 ,-0.05255000],
[0.08443813 , 0.00550000 ,-0.03507779],
[-0.08443813 , 0.00550000 ,-0.03507779],
[0.03084635 , 0.06003408 ,-0.03674775],
[-0.03084635 , 0.06003408 ,-0.03674775],
[0.02082437 ,-0.11914293 ,-0.03720147],
[-0.02082437 ,-0.11914293 ,-0.03720147],
[0.09115339 ,-0.0009119 ,-0.01947069],
[0.07734485 , 0.00550000 ,-0.00362941],
[0.07711887 , 0.04135413 ,-0.00813314],
```

```
"modelNormals":

[0.54350384 ,0.00000000 ,-1.00000000],

[-0.54350384  ,0.00000000 ,-0.83940668],

[0.00000000 ,0.45371886 ,-0.89114488],

[0.00000000 ,0.45371886 ,-0.89114488],

[0.00000000 ,0.45371886 ,-0.89114488],

[1.00000000 ,0.45371886 ,-0.89114488],

[1.00000000 ,0.045371886 ,-0.89114488],

[1.00000000 ,0.00000000 ,0.00000000 ],

[0.54350384 ,0.00000000 ,0.83940668 ],

[0.87857711 ,0.44703810 ,0.16810472 ],
```

Manual Extraction from 3D CAD

- Indicate the location of the sensor centroid
 - Need to be able to measure the absolute position of the centroid relative to the origin
 - A point usually works well
 - Usually on outside surface of part
- Indicate the direction the sensors are facing
 - Extend a line from the sensor centroid point in the desired direction
 - Line is usually perpendicular to the surface
 - Length of line not important

Manual Extraction from 3D CAD

Measure the absolute positions

Sensor centroids

End of sensor orientation line

Manual Extraction from 3D CAD

Calculate the normalized vector components for the orientation line

$$x_{normal} = \frac{x_{distal} - x_{surf}}{\sqrt{(x_{distal} - x_{surf})^2 + (y_{distal} - y_{surf})^2 + (z_{distal} - z_{surf})^2}}$$

$$y_{normal} = \frac{y_{distal} - y_{surf}}{\sqrt{(x_{distal} - x_{surf})^2 + (y_{distal} - y_{surf})^2 + (z_{distal} - z_{surf})^2}}$$

$$z_{normal} = \frac{z_{distal} - z_{surf}}{\sqrt{(x_{distal} - x_{surf})^2 + (y_{distal} - y_{surf})^2 + (z_{distal} - z_{surf})^2}}$$

 Enter the centroid locations and normalized orientation vector components into JSON file

Automated Extraction from Solidworks

- Add macro to Solidworks
- Create a 3D Sketch
 - Indicate sensor centroid with sketch points
 - Indicate the sensor orientation with a sketch segment
 - Make the sketch segment normal to the face

Automated Extraction from Solidworks

- Save the Solidworks file
- Select 3D Sketch in the Feature Tree and run the macro
- A JSON file will be created with the same name as the Solidworks file and in the same directory

```
"modelNormals" : [
    [0.851651, 0.39713126, -0.34202014],
    [0.397131. 0.85165074. -0.34202014].
    [0.707107, 0, -0.70710678],
    [0.742404, 0.34618861, 0.57357644],
     [0.851651. -0.39713126. -0.34202014].
    [0.397131, -0.85165074, -0.34202014]
    FO. -0.81915204. 0.573576441.
14 [0, -0.70710678, -0.70710678]
16 [0.11399, 0.22798078, -0.966969991,
17 [0. 0.70710678. -0.70710678]
18 [-0.11399, 0.22798078, -0.96696999]
19 [-0.11399, -0.22798078, -0.966969991,
20 [0. -0.9961947. -0.087155741.
    [-0.346189, -0.74240388, 0.57357644]
    [-0.397131, -0.85165074, -0.34202014].
    [-0.851651, -0.39713126, -0.34202014],
    [-0.707107, 0, -0.70710678],
    [-0.742404. -0.34618861. 0.573576441.
    [-0.996195, 0, -0.08715574],
    [-0.742404, 0.34618861, 0.57357644],
28 [-0.707107. 0. -0.707106781.
29 [-0.851651, 0.39713126, -0.34202014]
30 [-0.397131, 0.85165074, -0.34202014],
31 [-0.346189, 0.74240388, 0.573576441,
32 [0, 0.81915204, 0.57357644],
33 [0, 0.9961947, -0.08715574],
34 [0.346189, 0.74240388, 0.57357644]
37 [0.099116, 0.05094458, -0.03741659],
38 [0.096753, 0.06424891, -0.01789138],
39 [0.09661, 0.04056861, -0.04681386],
40 [0.116967, 0.03007791, -0.00365902],
41 [0.122949, 0, -0.01464239],
42 [0.116037, -0.01576068, -0.02738716]
43 [0.116967, -0.03007855, -0.00365928],
44 [0.099116, -0.05094458, -0.03741659]
45 [0.096753, -0.0642489, -0.01789139],
46 [0.069937, -0.07703236, -0.00365897]
47 [0.027612, -0.08031133, -0.00368459],
48 [0.015, -0.04486129, -0.05856297],
49 [0.045931, -0.02837947, -0.06181433]
50 [0.04593, 0.02837947, -0.06181439],
51 [-0.015, 0.04486129, -0.05856297],
52 [-0.045931, 0.02837947, -0.06181433]
53 [-0.04593, -0.02837947, -0.06181439]
54 [-0.048124, -0.08297038, -0.01439971]
55 [-0.069937, -0.07703306, -0.0036594],
56 [-0.096753, -0.06424891, -0.01789136],
57 [-0.099116, -0.05094458, -0.03741659],
58 [-0.115995, -0.01569321, -0.02742963],
59 [-0.116967, -0.03007792, -0.00365902],
60 [-0.122949, 0, -0.01464239],
61 [-0.116967, 0.03007855, -0.00365928],
62 [-0.09661, 0.04056914, -0.04681428],
63 [-0.099116, 0.05094458, -0.03741659]
64 [-0.096753, 0.06424891, -0.01789137]
65 [-0.069937, 0.07703236, -0.00365897]
66 [-0.027612, 0.08031133, -0.00368459],
67 [0.048124, 0.08297038, -0.01439971],
68 [0.069937, 0.07703306, -0.0036594]
69 ]
```

JSON File Verification

- Open the JSON to verify it was built correctly
 - Confirm there is a modelNormals section.
 - Confirm there is a modelPoints section.
 - Make sure there are no null vectors in the modelNormals array
 - Make sure the number of elements in each array is the same
- Visualize in hmd_designer
 - Export 3D object as an STL file
 - Load STL and JSON into hmd_designer
 - Confirm the sensors are in the correct position
 - Make sure the green sensor face is oriented outwards