Intro to Algebra 2 W5-1

fat

March 20, 2024

Corollary 1 (Corollary 28). If E, E' are splitting fields for $f(x) \in F[x]$, then \exists an isomorphism $\psi : E \to E'$ such that

$$\psi|_F = \mathrm{id}_F$$

Proof.

Apply theorem 27 with F = F' and $\phi = id_F$.

Definition 1. Let F be a field. An **algebraic closure** \bar{F} of F is an algebraic extension of F such that every polynomial $f(x) \in F[x]$ splits completely in \bar{F} . (i.e. \bar{F} contains all roots of f(x).)

Definition 2. A field K is **algebraically closed** if every nonconstant polynomial $f(x) \in K[x]$ splits completely in K[x]. (Equivalently, every polynomial $f(x) \in K[x]$ has a root in K.) (\Leftarrow : Let $f(x) \in K[x]$. Let $\alpha \in K$ be a root of f(x) in K. Then $f(x) = (x - \alpha)g(x)$ for some $g(x) \in K[x]$. \cdots) (In other words, K cannot be enlarged by adding roots of $f(x) \in K[x]$.)

Example 1. $\mathbb C$ is algebraically closed. (Fundamental theorem of algebra)

Proposition 1 (Proposition 29). Let \bar{F} be an algebraic closure of F. Then \bar{F} is algebraicaally closed. i.e. $\bar{\bar{F}} = \bar{F}$.

Proof.

We need to show that if $f(x) \in \bar{F}[x]$ is a nonconstant polynomial, then for a root α of f(x) in \bar{F} , the root must be in \bar{F} . By theorem 20, since \bar{F}/F , $\bar{F}(\alpha)/\bar{F}$ are both algebraic algebraic extensions, $\bar{F}(\alpha)/\bar{F}$ is algebraic. In particular, α is algebraic over F. i.e. $\exists g(x)(\neq 0) \in F[x]$ such that $g(\alpha) = 0$. Since \bar{F} is an algebraic closure of F, g(x) splits completely over $\bar{F} \Rightarrow \alpha \in \bar{F}$.

Theorem 1. Let F be a field. Then an algebraic closure of F exists. Moreover, if E, E' are 2 algebraic closures of F, then \exists and isomorphism $\phi: E \to E'$ such that $\phi|_F = \mathrm{id}_F$.

Notation: We let \bar{F} denote the algebraic closure of F.

13.5 Separable/Inseparable Extensions

Definition 3. Let $f(x) \in F[x]$. We say f(x) is **separable** if it has no repeated roots in its splitting field. Otherwise, we say f is **inseparable**.

Example 2. (1) $f(x) = (x^2 - 2)^2 \in \mathbb{Q}[x]$ is inseparable.

(2) $F = \mathbb{F}_2(t), f(x) = x^2 - t \in F[x]$. Note that $\sqrt{t} = -\sqrt{t}$ in F[x]. Thus f is inseparable.

Definition 4. Let $f(x) = a_n x^n + \cdots + a_0 \in F[x]$. Then its **derivative** Df is defined to be

$$(Df)(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1$$

Lemma 1. (1) D(fg) = fDg + gDf.

(2)
$$D(cf + q) = cDf + Dq \forall f, g \in F[x], c \in F.$$

Proposition 2 (Propotision 33). A polynomial $f(x) \in F[x]$ has a repeated root $\alpha \Leftrightarrow \alpha$ is also a root of Df. In particular, f is separable $\Leftrightarrow GCD(f, Df) = 1$.

Proof.

If $\alpha \in \bar{F}$ is a repeated root of f(x), then

$$f(x) = (x - \alpha)^2 g(x)$$

for some $g(x) \in \bar{F}[x]$. Now $(Df)(x) = 2(x - \alpha)g(x) + (x - \alpha)^2(Dg)(x)$. $\Rightarrow \alpha$ is a root of Df. Conversely assume that α is not a repeated root of f(x). Then $f(x) = (x - \alpha)g(x)$ for some $g(x) \in \bar{F}[x]$ with $g(\alpha) \neq 0$. Then $(Df)(x) = g(x) + (x - \alpha)(Dg)(x) \Rightarrow (Dg)(\alpha) = g(\alpha) \neq 0$.

Example 3. $F = \mathbb{F}_2(t)$. $f(x) = x^2 - t \in F[x]$. Df = 2x = 0. Indeed \sqrt{t} is a root of Df.

Corollary 2 (Corollary 34). Every irreducible polynomial over a field of char 0 is separable.

Proof.

Let f(x) be an irreducible. Since char F = 0, deg $Df = \deg f - 1$. Then since f is irreducible, we must have (f, Df) = 1. $\Rightarrow f$ is separable.

Corollary 3. Assume char F = p (p a prime). An irreducible polynomial $f(x) \in F[x]$ is inseparable $\Leftrightarrow f(x) = g(x^p)$ for some $g(x) \in F[x]$.

Proof.

If $f(x) = g(x^p)$ for some $g(x) \in F[x]$, say $g(x) = a_n x^n + \cdots + a_0$. Then

$$f(x) = a_n x^{pn} + a_{n-1} x^{p(n-1)} + \dots + a_1 x^p + a_0$$

$$Df(x) = pna_n x^{pn-1} + \dots + pa_1 x^{p-1} = 0$$

 \Rightarrow $(f, Df) = f \neq 1$. By prop 33, f is inseparable.

Conversely if f(x) is not of the form $g(x^p)$, i.e. $f(x) = b_n x^n + \dots + b_0$ with $b_j \neq 0$ for some j with $p \nmid j$.

$$\Rightarrow Df = \dots + jb_j x^{j-1} + \dots \neq 0$$
$$\Rightarrow (f, Df) = 1$$

 $\Rightarrow f$ is separable.

We next show that if F is a finite field of char p then every polynomial of the form $g(x^p)$ is reducible. Thus, according to the corollary above, every irreducible polynomial over a finite field is separable.

Example 4. We have seen that $x^2 - t \in \mathbb{F}_2(t)[x]$ is inseparable. It is irreducible. This could happen because $\mathbb{F}_2(t)$ is an infinite field of char $\neq 0$.

Proposition 3 (Proposition 35). Assume that char F = p. Then $\forall a, b \in F$,

$$(a+b)^p = a^p + b^p$$

$$(ab)^p = a^p b^p$$

i.e. the function $a \mapsto a^p$ is an injective homomorphism from F to F.

Proof.

$$(ab)^p = a^p b^p$$

is clear. Now

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + \binom{p}{p-1}ab^{p-1} + b^p$$

Observe that $p\binom{p}{j}$ for j=1,...,p-1. $\Rightarrow (a+b)^p=a^p+b^p$.

Corollary 4 (Corollary 36). If F is a finite field of char p, then $a \mapsto a^p$ is an automorphism of F.

Proof. Since F is a finite field, any injective homorphism is an automorphism.

Definition 5. The function $a \mapsto a^p$ is called the **Frobenius endomorphism**. (or **Frobenius automorphism** when it is an isomorphism.)

Example 5. For an infinite field of char p, the function $a \mapsto a^p$ may not be surjective. For example, $K = \mathbb{F}_2(\sqrt{t})$.

Claim. The image of the Frob. endo. is $\mathbb{F}_2(t)$, a proper subfield of K.

Proof.

Say

$$r = \frac{a_n(\sqrt{t})^n + \dots + a_0}{b_n(\sqrt{t})^n + \dots + b_0} \in K$$

Then

$$r^{2} = \frac{\left(a_{n}(\sqrt{t})^{n} + \dots + a_{0}\right)^{2}}{\left(b_{n}(\sqrt{t})^{n} + \dots + b_{0}\right)^{2}} = \frac{a_{n}^{2}t^{n} + \dots + a_{0}^{2}}{b_{n}^{2}t^{n} + \dots + b_{0}^{2}} \in \mathbb{F}_{2}(t)$$

3

Proposition 4 (Proposition 37). Every irreducible polynomial over a finite field F is separable.

Proof.

Assume that char F = p and f(x) is an irreducible polynomial in F[x]. Assume that f(x) is inseparable. By Corollary (the one after corollary 34), $f(x) = g(x^p)$ for some $g(x) \in F[x]$. Say $g(x) = a_n x^n + \cdots + a_0$. Now by corollary 36, $a \mapsto a^p$ is surjective. Thus $\forall j, \exists b_j \in F$ such that $b_j^p = a_j$. Then

$$f(x) = a_n x^{pn} + \dots + a_0 = b_n^p x^{pn} + \dots + b_0^p$$

= $(b_n x^n + \dots + b_0)^p$

which is not an irreducible, a contradiction. Thus f is separable.