Colle 16 \sim 3 février 2016 \sim Colleur : Isenmann \sim MP \sim Trinôme :

Planche 1.

Question de cours. Théorème d'intégration des relations de comparaison dans le cas de convergence.

Exercice 1. Trouver les endomorphismes f symétriques vérifiant $\langle f(x), x \rangle = 0$ pour tout $x \in E$.

Exercice 2. Donner une CNS sur a, b réelles pour que $\int_1^{+\infty} \frac{dt}{t^a(t-1)^b}$ converge.

Planche 2.

Question de cours. La convergence $\int_I |f|$ implique celle de $\int_I f$.

Exercice 1. Soit u un vecteur unitaire de \mathbb{R}^n . On définit la matrice $A = I_n - 2u^t u$. Montrer que $A \in O_n(\mathbb{R})$ et décrire l'automorphisme orthogonal de \mathbb{R}^n .

Exercice 2. Donner une CNS sur a, b réelles pour que $\int_0^{+\infty} \frac{t^a e^{-t}}{1+t^b} dt$ converge.

Planche 3.

Question de cours. Pour tout $n \in \mathbb{N}$, existence et valeur de $\int_0^\infty t^n e^{-t} dt$.

Exercice 1. Quelles sont les matrices $A \in O_n(\mathbb{R})$ à coefficients positifs?

Exercice 2. Donner une CNS sur a, b réelles pour que $\int_e^{+\infty} \frac{dt}{t^a \ln(t)^b}$ converge.