# Chap. 2 Finite Automata



## Agenda of Chapter 2

- Deterministic Finite Accepters (DFA)
- Nondeterministic Finite Accepters (NDFA)
- Equivalence of DFA & NDFA

## Deterministic Accepters & Transition Graph (1/3)



#### Deterministic Accepters & Transition Graph (2/3)

Ex 2.1]M = 
$$(\{q_0, q_1, q_2\}, \{0,1\}, \delta, q_0, \{q_1\})$$
  
 $\delta(q_0,0) = q_0, \delta(q_0,1) = q_1,$   
 $\delta(q_1,0) = q_0, \delta(q_1,1) = q_2,$   
 $\delta(q_2,0) = q_2, \delta(q_2,1) = q_1.$ 

**Transition** 



Table representation

|       | 0     | 1                          |
|-------|-------|----------------------------|
| $q_0$ | $q_0$ | $q_{\scriptscriptstyle 1}$ |
| $q_1$ | $q_0$ | $q_2$                      |
| $q_2$ | $q_2$ | $q_{\scriptscriptstyle 1}$ |

## Deterministic Accepters & Transition Graph (3/3)



#### [THEOREM 2.1] Extended transition of DFA & strings

 $\begin{aligned} \mathsf{M} &= (\mathsf{Q}, \, \Sigma, \, \delta, \, \mathsf{q}_0, \, \mathsf{F} \,) : \mathsf{a} \, \mathsf{dfa}, \\ \mathsf{G}_\mathsf{M} &: \mathsf{associated transition graph} \\ \mathsf{For every} \, \mathsf{q}_\mathsf{i}, \, \mathsf{q}_\mathsf{j} &\in \mathsf{Q} \, \mathsf{and} \, \mathsf{w} \in \mathsf{\Sigma}^+ / \delta^* \, (\mathsf{q}_\mathsf{i}, \, \mathsf{w}) \! = \! \mathsf{q}_\mathsf{j} \\ \Leftrightarrow \mathsf{There is in } \, \mathsf{G}_\mathsf{M} \, \mathsf{a} \, \mathsf{walk} \, \mathsf{with label w from } \, \mathsf{q}_\mathsf{i} \, \mathsf{to} \, \mathsf{q}_\mathsf{i} \! \in \! \mathsf{Q} \end{aligned}$ 

# Languages and Dfa's (1/2)

- Language
  - Set of all the strings accepted by the automaton
- $\square$  Language accepted by dfa M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>,  $\Xi$ )
  - Set of all strings on accepted by M. ∠(೨) → Ground 이 의 생물 /
  - $L(M) = \{ \widetilde{W} \in \Sigma^* \mid \widetilde{\mathcal{M}} \in F \}$
- □ Nonacceptance
  - $(L(M))^{c} = \{ w \in \Sigma^{*} \mid \delta^{*}(Q,w) \notin \Gamma \}$
- Ex 2.2] Find a language







TENER नेम ought ही अमे

Stotal function

# Languages and Dfa's (2/2)

Ex2.3] A dfa recognizing L={abw}  $w \in \Sigma^*$  },  $\Sigma$ ={a,b}





Ex2.4] A dfa accepting all strings on {0,1} except those containing 001 of the second strings on {0,1} except those









## Regular Languages

DFA. ⇒ Regular Language.

- Family
  - a set of languages with a common characteristics
  - a set of languages accepted by a set of automata

## [Definition] Regular Language (Family) That the Language

- A language Lis regular iff There exist some dfa M
- -L = L(M)

Ex2.5] Show that L={awa|w∈{a,b}\*} is regular



Ex2.6] Show that L2 is regular,

$$L^{2} = \begin{bmatrix} aw_{1} & aw_{2} & b \\ w_{1} & cw_{2} & b \end{bmatrix} \begin{bmatrix} w_{1} & cw_{2} & cw_{2} \\ w_{2} & cw_{2} & b \end{bmatrix}$$



M 短蜗子坚 那(一

Automata

## Definition of a Nondeterministic Accepter (1/4)



## Definition of a Nondeterministic Accepter(2/4)

Ex2.8] An nfa shown as a transition graph



## Definition of a Nondeterministic Accepter(3/4)

- □ Extended transition 啊啊啊啊啊啊
  - $\delta^*$  (q<sub>i</sub>, w) contains q<sub>j</sub> iff there is a walk from q<sub>i</sub> to q<sub>i</sub> labeled w

#### Ex2.9] An nfa shown as a transition graph



## Definition of a Nondeterministic Accepter(4/4)

- □ A string is accepted by an NFA
  - if there is some sequence of possible moves that ends in a final
- $\square$  Language L accepted by an NFA M = (Q,  $\Sigma$ ,  $\delta_{\mathbf{q}}$  q<sub>0</sub>, F)
  - $L(M) = \{ w \in \Sigma^* \mid \delta^* (q_0, w) \cap F \neq \emptyset \}$



$$\delta^* (q_0, 1) = [Q_1] : \text{Note:}$$

$$\delta^* (q_0, \lambda) = [Q_0] : \text{Note:}$$
accept strings:  $\lambda = (0, 0)$ 
reject strings:  $\lambda = (0, 0)$ 

$$\delta^* (q_0, 1010) = 0.0$$
 $\delta^* (q_0, 110) = 0.0$ 

# Why nondeterminism?

□ An effective mechanism for selve the selve of the selv



Language accepted by the nfa :

Relation between and dfa & nfa?

ATM ATM

# Equivalence of DFA & NFA (1/4)

- $\square$  Two finite accepters  $M_1$  and  $M_2$  are equivalent if
  - L(M<sub>1</sub>) = L(M<sub>2</sub>) = tell report the same language

#### Ex2.11]

nfa and dfa accepting  $\{(10)^n : n \ge 0\}$ 



# Equivalence of DFA & NFA (2/4)

- The classes of DFA's and NFA's are equally powerful
  - possible to convert any nfa -> an equivalent dfa
- How to convert
  - Correspond a set  $\{q_i, q_i, ..., q_k\}$  in nfa  $\rightarrow$  a state  $q_{ii...k}$  in dfa
  - For a set of (Q) states, dfa can have states less than  $2^{|Q|}$



## Equivalence of DFA & NFA (3/4)

#### [THEOREM 2.2]

L: language accepted by nfa  $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ then a dfa  $M_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$  exists such that  $L = L(M_D)$ 

#### Proof) Find a procedure nfa to dfa

- 1. Create a graph  $G_D$  with initial vertex  $\{q_0\}$
- 2. Repeat until no more edges are missing



- Compute  $\delta^*(q_i,a)$ ,  $\delta^*(q_j,a)$ , ...,  $\delta^*(q_k,a)$
- Form the union of all  $\delta^*$  yielding the set  $\{q_l, q_m, ..., q_n\}$
- Create new vertex [q<sub>I</sub>,q<sub>m</sub>,...,q<sub>n</sub>] if it does not already exist
- Add an edge from  $[q_i, q_i, ..., q_k]$  to  $[q_i, q_m, ..., q_n]$  and label it with a
- 3. Identify final vertex
  - Every state of  $G_D$  with any  $q_f \in F_N$
- 4. If  $M_N$  accepts  $\lambda_n$ , the vertex  $\{q_0\}$  is a final vertex

# Equivalence of DFA & NFA (4/4)

#### Ex 2.13] Convert nfa to an equivalent dfa

