IF THEN STATEMENTS

If P and Q are *statements* (sentences that are either true or false) then "If P then Q" is another statement. "If P then Q" is true when P is false or Q is true; it is false when P is true and Q is false. We might write $P \Rightarrow Q$ as shorthand for "If P then Q", but avoid this shorthand in proofs and theorem statements. There are many different ways to word an if then statement! Basically anything with a hypothesis and a conclusion is an if then statement; the hypothesis is the "if" part (in the role of P above) and the conclusion is the "then" part (in the role of Q above).

Proving an if then statement directly. The general outline of a (direct) proof of "If P then Q" goes

- (1) Assume P.
- (2) Do some stuff.
- (3) Conclude Q.

Warning: in proving "If P then Q" we should never assume Q or just assert Q; we need to earn it, given P.

Applying an if then statement. If we know or can assume that "If P then Q" is true, and we also know that P is true, then we know that Q is true.

CONVERSES

The *converse* of the statement "If P then Q" is the statement "If Q then P". In symbols, the converse of $P \Rightarrow Q$ is $Q \Rightarrow P$. An if then statement can be true and its converse be false! These are different, independent statements!

CONTRAPOSITIVES

The *contrapositive* of the statement "If P then Q" is the statement "If not Q then not P". In short, the contrapositive of $P \Rightarrow Q$ is $(\text{not } Q) \Rightarrow (\text{not } P)$. The contrapositive of a statement is logically equivalent to the original statement!

Proving an if then statement by contraposition. Another way to prove an if then statement is by proving its contrapositive. The general outline of a proof of "If P then Q" by contraposition goes

- (0) "We prove the contrapositive" or "We proceed by contraposition" (to orient the reader)
- (1) Assume not Q.
- (2) Do some stuff.
- (3) Conclude not P.

IF-AND-ONLY-IF STATEMENTS

If P and Q are statements, then "P if and only if Q" means "If P then Q" and "If Q then P". The proof of such a statement generally has two parts: a proof of "If P then Q" (either directly or by contraposition) and a proof of "If Q then P" (either directly or by contraposition).

¹Proof: "If not Q then not P" is false exactly when "not Q" is false and P is true, which is equivalent to P is true and Q is false, which happens exactly when "If P then Q" is false.

Quantifiers refers either for all or there exists quantifiers.

FOR ALL STATEMENTS

A for all statement is a statement of the form "For all $x \in S$, P" where S is a set and P is a statement (that might depend on x). It is true if every element of the set S makes the statement P true. In the statement "For all $x \in S$, P", the x is a dummy variable, which means it's just a temporary name given to help explain the statement; we need to use a letter x that doesn't mean anything yet, and after we've finished this sentence, the letter x no longer means anything! The symbol \forall is shorthand for "for all".

We sometimes also write statements like "For all $x \in S$ such that Q, P" where S is a set and P and Q are statements (that might depend on x). It is true if every element of the set S that makes the statement Q true also makes the statement P true. The "such that" clause is restricting which elements of S we are "alling" over.

Proving a for all statement directly. The general outline of a proof of "For all $x \in S$, P" goes

- (1) Let $x \in S$ be arbitrary.
- (2) Do some stuff.
- (3) Conclude that P holds for x.

Applying a for all statement. If we know or can assume that "For all $x \in S$, P" is true, and we have some element $y \in S$, then we can conclude that P holds for y.

THERE EXISTS STATEMENTS

A there exists statement is a statement of the form "There exists $x \in S$ such that P" where S is a set and P is a statement (that might depend on P). Again, the x in this statement is a dummy variable. The symbol \exists is shorthand for "there exists".

Proving a there exists statement directly. To prove a there exists statement, you just need to give an example. To prove "There exists $x \in S$ such that P" directly:

- (1) Consider x = [some specific element of S].
- (2) Do some stuff.
- (3) Conclude that P holds for x.

Applying a there exists statement. If we know or can assume that "There exists $x \in S$ such that P" is true, then you can take and use an element of S for which P is true. I.e., you can say "Let $x \in S$ be such that P."

NEGATIONS OF QUANTIFIER STATEMENTS

To negate a statement with a quantifier: Switch the quantifier, and negate the condition.

Negation of a for all statement. The negation of "For all $x \in S$, P" is "There exists $x \in S$ such that not P". Switch the quantifier, and negate the condition. Thus, to *dis*prove a for all statement, we give a counterexample.

Negation of a there exists statement. The negation of "There exists $x \in S$ such that P" is "For all $x \in S$, not P". Switch the quantifier, and negate the condition. Thus, to *dis*prove a for all statement, we give a prove a for all statement.