

Trabajo Fin de Grado

Desarrollo de un sistema de comunicaciones VVLC con implementación de filtro adaptado en SoC FPGA

Realizado por: Andrés Casasola Domínguez

Dirigido por: Antonio García Zambrana

Ingeniería de Comunicaciones - UNIVERSIDAD DE MÁLAGA Málaga, 12 de marzo de 2020

Índice de contenidos

- 1. Objetivo
- 2. VVLC
- 3. Hardware
- 4. Sistema base
- 5. Filtro adaptado
- 6. Sistema mejorado
- 7. Pruebas
- 8. Conclusiones y líneas futuras

Mejorar las capacidades de un sistema de comunicación VVLC, diseñando e implementando un receptor óptimo, probando su funcionamiento y cuantificando sus capacidades.

Vehicular Visible Light Communications

Fuente: Visible Light Communication for Cooperative ITS.

Fuente: Smart Automotive Lighting for Vehicle Safet, IEEE Communications Magazine.

Sistema base

Sistema base

Sistema base

Sistema base

Sistema base: Gráficas

Sistema base: Gráficas

Filtro adaptado

Filtro adaptado

Filtro adaptado a un patrón conocido

Diagrama de bloques del filtro adaptado

Filtro adaptado

Sistema h_m[n]

Sistema sampleador

Sistema sampleador

El sistema sampleador debe:

- 1. Capturar las muestras.
- 2. Calcular el error en fase de muestreo.
- 3. Desfasar la señal de muestreo.

Filtro adaptado

Algoritmo de Gardner

Error =
$$(y_n - y_{n-2}) \cdot y_{n-1}$$

Ecuación de Gardner

Muestreo adelantado

Error = $(0.8 - (-0.8)) \cdot (-0.2)$ = -0.32

Muestreo atrasado

Error =
$$(0.8 - (-0.8)) \cdot 0.2$$

= 0.32

Muestreo óptimo

Error =
$$(1 + 1) \cdot 0 = 0$$

Filtro adaptado

Implementación

Implementación

Sistema mejorado

Sistema mejorado

Sistema mejorado

Sistema mejorado: Gráficas

Pruebas

Configuración de equipos

Configuración de equipos

Experimentos de alcance

TRMS:

878mV

3

RMS:

324mV

EMS.

RMS: 550mV

Distancia de 2 metros

T RMS 201mV (M 5.00us (Ch2 / 440mV 100.000kHz)

4

RMS: 201mV

Distancia de 4 metros

Distancia de 5 metros

Experimentos de desapuntamiento

I RMS: 878mV

3

RMS:

368mV

2 RMS: 723mV

Desapuntamiento de 0º

M Pos 0.000s

The property of the property of

4 RMS: 50mV

Desapuntamiento de 60º

Desapuntamiento de 90º

Conclusions and future lines

- The main goal of this project was to upgrade the base transceiver system capabilities.
- A matched filter has been studied and implemented.
- The matched filter has been tested and integrated into the transceiver system.
- Successfully transmissions have been achieved with distances near to 4 meters and disorientation up to 90° in the receiver.
- In futures works...
- Automatic programmable gain must be implemented via hardware to fit the receiver signal with the ADC dynamic range.
- A high pass filter must be implemented to achieve a better SNR.
- The transceiver should be upgraded to perform streaming communications.
 Audio streaming is the closest goal.