

Semester 2 Examinations 2018/2019

Course Instance Code(s)	1CSD1, 1CSD2, 1SPE1			
Exam(s)	MSc in Computer Science (Data Analytics)			
Module Code(s) Module(s)	CT5120 Introduction to Natural Language Processing			
Paper No. Repeat Paper	1 No			
External Examiner(s) Internal Examiner(s)	Professor Pier Luca Lanzi Dr. Michael Madden *Dr. Paul Buitelaar Dr. John McCrae			
Answer all parts of all questions. There are 4 sections; each section is worth 25 marks (100 marks total). Use a separate answer book for each section answered.				
Duration No. of Pages Discipline(s) Course Co-ordinator	2 hours 5 Engineering and Information Technology (s) Dr. Enda Howley			
Requirements:	X			
Release in Exam Venu				
MCQ	Yes No X			
Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials	None None None None None None None			

Graphic material in colour Yes

No

CT5120 Natural Language Processing

Exam Duration: 2 Hours

You must complete Sections 1 to 4

Section 1: Linguistic Foundations

Instructions: Provide answers for questions 1A, 1B and 1C.

Question 1A 10 Marks

Define a constituency (phrase) grammar and lexicon that analyses the following sentence by using the non-terminal symbols 'S, NP, VP, PP' and the pre-terminal symbols 'Det, Noun, Verb, Prep'.

The Taoiseach provided a long answer to questions by TDs.

Question 1B 10 Marks

Draw a constituency (phrase) structure tree and a dependency tree by using the relations 'nsubj, pobj, amod, det, prep' for the sentence given in question 1A.

Question 1C 5 Marks

How many types and tokens are there in the sentence given in question 1A?

PTO

Section 2: Language Modelling

Instructions: Provide answers for question 2A, 2B, 2C, 2D and 2E.

Consider the following corpus:

flies fly behind flies then more flies try to fly further behind

Question 2A 5 Marks

State the formula for a bigram language model.

Question 2B 5 Marks

Using a bigram language model without smoothing, calculate the probability of the sentence "flies fly further". You should use the corpus above to estimate probabilities.

Suestion 2C 5 Marks

Using a bigram language model with add-one smoothing, calculate the probability of the sentence "then flies fly further"

Question 2D 5 Marks

Recall the formula ion bigram interpolation

$$p^*(w_n|w_{n-1}) \approx \lambda p(w_n|w_{n-1}) + (1-\lambda)p(w_n)$$

Using a bigram language model with interpolation (λ = 9.5), calculate the probability of the sentence "then flies fly"

Question 2E 5 Marks

Why may a language model be used in a machine translation system?

PTO

Section 3: Parsing

Instructions: Provide answers for question 3A, 3B, 3C and 3D

Consider the following probabilistic grammar

N → natural	0.6	NP → A NP	0.1
N → language	0.2	$NP \rightarrow NP NP$	0.3
$N \rightarrow processing$	0.1	$NP \rightarrow N$	0.6
$N \rightarrow works$	0.1	$VP \rightarrow V$	0.4
A → natural	1.0	$VP \rightarrow V NP$	0.4
$V \rightarrow processing$	0.1	VP →V NP NP	0.2
$V \rightarrow works$	0.9	$S \rightarrow NP VP$	0.8
		$S \rightarrow NP$	0.2

Question 3A 5 Marks

Describe one ambiguity when applying the above grammar to the sentence "natural language processing works".

Question 3B 5 Marks

What changes would be necessary to convert the above grammar into Chomsky normal form?

Question 3C 10 Marks

Why should a grammar be in Chomsky normal form when applying the CYK algorithm?

Question 3D 5 Marks

What is a cross-bracketing error and why may it not be important in the example of Q3A?

PTO

Section 4: Distributional Semantics

Instructions: Provide answers for questions 4A and 4B

Consider the following corpus:

A black cat chased the white cat.
The black dog chased the white dog.
A white dog chased the white cat.
A white dog chased the black dog.
The white cat chased a black cat.
The white cat chased a white dog.

Question 4A 15 Marks

Construct a co-occurrence matrix for all types in the corpus, using a context window of two words.

Question 4B 10 Marks

Using Cosine Similarity, compute the distance between:

- black, white
- cat, dog

END