BaggingClassifier

In [1]:

```
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
```

In [2]:

```
from sklearn.datasets import load_breast_cancer
dataset=load_breast_cancer()
x=dataset.data
y=dataset.target
```

In [3]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(x,y,random_state=4)
```

In [4]:

```
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
knn.score(x_test,y_test)
```

Out[4]:

0.8951048951048951

Let's use bagging over KNN classifier and see if our score improves:

In [5]:

In [6]:

```
bag_knn.fit(x_train,y_train)
bag_knn.score(x_test,y_test)
```

```
C:\Users\USER\anaconda3\lib\site-packages\sklearn\ensemble\_bagging.py:640:
UserWarning: Some inputs do not have OOB scores. This probably means too few
estimators were used to compute any reliable oob estimates.
  warn("Some inputs do not have OOB scores."
C:\Users\USER\anaconda3\lib\site-packages\sklearn\ensemble\_bagging.py:644:
RuntimeWarning: invalid value encountered in true_divide
  oob_decision_function = (predictions /
```

Out[6]:

0.9020979020979021

Great our score sginificantly improves with use of bagging.

In [7]:

In [8]:

```
pasting_knn.fit(x_train,y_train)
pasting_knn.score(x_test,y_test)
```

Out[8]:

0.8881118881118881

Random Forests

Problem Statement

To build an application to classify the patients to be healthy or suffering from cardiovascular disease based on the given attributes

In [9]:

```
#Important Libs
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# preprocessing, Normalizing
from sklearn.preprocessing import StandardScaler

#Model
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import RandomForestClassifier

# Metrics
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')

%matplotlib inline
```

In [10]:

df=pd.read_csv('https://raw.githubusercontent.com/training-ml/Files/main/cardio_train.csv',
df.head()

Out[10]:

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	С
0	988	22469	1	155	69.0	130	80	2	2	0	0	1	
1	989	14648	1	163	71.0	110	70	1	1	0	0	1	
2	990	21901	1	165	70.0	120	80	1	1	0	0	1	
3	991	14549	2	165	85.0	120	80	1	1	1	1	1	
4	992	23393	1	155	62.0	120	80	1	1	0	0	1	

In [11]:

Dataset stats
print(df.shape)

(69301, 13)

In [12]:

All are int and float types. understand the stats of dataframe
df.describe()

Out[12]:

	id	age	gender	height	weight	ap_hi	
coun	t 69301.000000	69301.000000	69301.000000	69301.000000	69301.000000	69301.000000	69
mea	50471.480397	19468.786280	1.349519	164.362217	74.203027	128.829584	
ste	28563.100347	2467.261818	0.476821	8.205337	14.383469	154.775805	
miı	988.000000	10798.000000	1.000000	55.000000	10.000000	-150.000000	
25%	25745.000000	17664.000000	1.000000	159.000000	65.000000	120.000000	
50%	50494.000000	19704.000000	1.000000	165.000000	72.000000	120.000000	
75%	75150.000000	21326.000000	2.000000	170.000000	82.000000	140.000000	
ma	99999.000000	23713.000000	2.000000	250.000000	200.000000	16020.000000	11
4							•

How to remove duplicates

In [13]:

```
#Drop Id and remove duplicates
df.drop('id',axis=1, inplace=True)

#Duplicate removal
df.drop_duplicates(inplace=True)
```

In [14]:

df.shape

Out[14]:

(69277, 12)

In [15]:

pip install seaborn

Requirement already satisfied: seaborn in c:\user\user\anaconda3\lib\site-p ackages (0.11.2)Note: you may need to restart the kernel to use updated pack ages.

Requirement already satisfied: scipy>=1.0 in c:\users\user\anaconda3\lib\sit e-packages (from seaborn) (1.7.1)

Requirement already satisfied: matplotlib>=2.2 in c:\users\user\anaconda3\lib\site-packages (from seaborn) (3.4.3)

Requirement already satisfied: numpy>=1.15 in c:\users\user\anaconda3\lib\si te-packages (from seaborn) (1.20.3)

Requirement already satisfied: pandas>=0.23 in c:\users\user\anaconda3\lib\s ite-packages (from seaborn) (1.3.4)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\user\anacond a3\lib\site-packages (from matplotlib>=2.2->seaborn) (2.8.2)

Requirement already satisfied: pillow>=6.2.0 in c:\users\user\anaconda3\lib \site-packages (from matplotlib>=2.2->seaborn) (8.4.0)

Requirement already satisfied: cycler>=0.10 in c:\users\user\anaconda3\lib\s ite-packages (from matplotlib>=2.2->seaborn) (0.10.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\user\anaconda3 \lib\site-packages (from matplotlib>=2.2->seaborn) (1.3.1)

Requirement already satisfied: pyparsing>=2.2.1 in c:\users\user\anaconda3\l ib\site-packages (from matplotlib>=2.2->seaborn) (3.0.4)

Requirement already satisfied: six in c:\users\user\anaconda3\lib\site-packa ges (from cycler>=0.10->matplotlib>=2.2->seaborn) (1.16.0)

Requirement already satisfied: pytz>=2017.3 in c:\users\user\anaconda3\lib\s ite-packages (from pandas>=0.23->seaborn) (2021.3)

In [16]:

```
plt.figure(figsize=(20,15))
plotnumber=1

for column in df[['age','height','ap_hi','weight','ap_lo']]:
    if plotnumber<=6:
        ax=plt.subplot(2,3,plotnumber)
        sns.distplot(df[column])
        plt.xlabel(column,fontsize=20)

    plotnumber+=1
plt.tight_layout()</pre>
```


In [19]:

```
# with std 3 Lets see the stats
# from scipy import stats
# zscore= (x-mean)/std => you have seen this in standard scaler

### z= (x-mean)/std

from scipy.stats import zscore

z_score = zscore(df[['age','height','ap_hi','weight','ap_lo']])
abs_z_score=np.abs(z_score) # Apply the formula and get the scaled data

filtering_entry =(abs_z_score <3).all(axis=1)
df=df[filtering_entry]
df.describe()</pre>
```

Out[19]:

	age	gender	height	weight	ap_hi	ap_lo	
count	67360.000000	67360.000000	67360.000000	67360.000000	67360.000000	67360.000000	67
mean	19466.779053	1.347268	164.374555	73.566278	126.164430	81.286001	
std	2467.040240	0.476105	7.690310	13.195627	17.860035	10.236086	
min	14275.000000	1.000000	140.000000	32.000000	-150.000000	-70.000000	
25%	17660.000000	1.000000	159.000000	65.000000	120.000000	80.000000	
50%	19702.000000	1.000000	165.000000	72.000000	120.000000	80.000000	
75%	21324.000000	2.000000	170.000000	81.000000	140.000000	90.000000	
max	23713.000000	2.000000	188.000000	117.000000	401.000000	602.000000	
4							•

In [20]:

df.head()

Out[20]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	22469	1	155	69.0	130	80	2	2	0	0	1	0
1	14648	1	163	71.0	110	70	1	1	0	0	1	1
2	21901	1	165	70.0	120	80	1	1	0	0	1	0
3	14549	2	165	85.0	120	80	1	1	1	1	1	0
4	23393	1	155	62.0	120	80	1	1	0	0	1	0
4												•

In [21]:

check how much skewness we removed

In [22]:

```
plt.figure(figsize=(20,15))
plotnumber=1

for column in df[['age','height','ap_hi','weight','ap_lo']]:
    if plotnumber<=6:
        ax=plt.subplot(2,3,plotnumber)
        sns.distplot(df[column])
        plt.xlabel(column,fontsize=20)

    plotnumber+=1
plt.tight_layout()</pre>
```


In [23]:

```
# cannot make out much from the above plots.Let build model
x=df.drop(columns=['cardio'],axis=1)
y=df['cardio']
```

1. You can use correlation matrix and plot heatmap to check for multicollinearity or correlation between all

variables(Refer decision tree algo for heat map)

OR

2. you can use VIF to check if there is any multicollinearity(refer Logistic Regression for VIF)

Let's Tune the parameters using GridSearchCV

```
In [25]:
```

```
# RandomForestClassifier
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=.30, random_state=41)
clf=RandomForestClassifier()
params={'n_estimators':[13,15],
       'criterion':['entropy','gini'],
       'max_depth':[10,15],
       'min_samples_split':[10,11],
       'min_samples_leaf':[5,6]
grd=GridSearchCV(clf,param_grid=params)
grd.fit(x_train,y_train)
print('best_params = >',grd.best_params_)
clf=grd.best_estimator_
                            # reinstantiating with best params
clf.fit(x_train,y_train)
y_pred=clf.predict(x_test)
rf_conf_mat= confusion_matrix(y_test,y_pred)
print('\nconf_mat=>','\n',rf_conf_mat)
print('\nAccuracy rf Normal ======>', accuracy_score(y_test,y_pred))
best_params = > {'criterion': 'entropy', 'max_depth': 10, 'min_samples_lea
f': 6, 'min_samples_split': 10, 'n_estimators': 15}
conf mat=>
 [[8240 2003]
 [3366 6599]]
Accuracy rf Normal =====> 0.7343131433095804
```

In [26]:

```
report= classification_report(y_test,y_pred)
print(report)
```

	precision	recall	fl-score	support
0	0.71	0.80	0.75	10243
1	0.77	0.66	0.71	9965
accuracy			0.73	20208
macro avg	0.74	0.73	0.73	20208
weighted avg	0.74	0.73	0.73	20208

Note

You can improve the performance by tweaking preprocessing methods

Let's plot ROC AUC curve to choose best model

In [28]:

```
# Plot ROC/AUC for multiple models without hyperparams tuning

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve,roc_auc_score
from sklearn.metrics import plot_roc_curve
```

In [29]:

```
lr=LogisticRegression()
dt=DecisionTreeClassifier()
rf=RandomForestClassifier()
kn=KNeighborsClassifier()
```

In [30]:

```
# Traine test split
x=df.drop(columns=['cardio'],axis=1)
y=df['cardio']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.25, random_state=41)

# training with all classifier
lr.fit(x_train,y_train)
rf.fit(x_train,y_train)
kn.fit(x_train,y_train)
dt.fit(x_train,y_train)
print("All models are trained")
```

All models are trained

In [31]:

```
# All models score captured
lr.score(x_train,y_train)
rf.score(x_train,y_train)
kn.score(x_train,y_train)
dt.score(x_train,y_train)
print("All models test score captured")
```

All models test score captured

Let's check ROC AUC Curve for the fitted model

True positive rate False positive Rate

Since it is difficult to evaluate the score based on only TPR and FPR data, there comes AUC

In [33]:

```
### How well our model works on training data

disp=plot_roc_curve(dt,x_train,y_train)
plot_roc_curve(lr,x_train,y_train,ax=disp.ax_) # ax_=Axesnwith confusion matrix
plot_roc_curve(kn,x_train,y_train,ax=disp.ax_)
plot_roc_curve(rf,x_train,y_train,ax=disp.ax_)
plt.legend(prop={'size':10},loc='lower right')
plt.show()
```


How well our model works on test data

In [34]:

```
# How well our model works on Test data

disp=plot_roc_curve(dt,x_test,y_test)
plot_roc_curve(lr,x_test,y_test,ax=disp.ax_) # ax_=Axesnwith confusion matrix
plot_roc_curve(kn,x_test,y_test,ax=disp.ax_)
plot_roc_curve(rf,x_test,y_test,ax=disp.ax_)
plt.legend(prop={'size':11},loc='lower right')
plt.show()
```


In []: