Temporal Multi-view Graph Convolutional Networks for Citywide Traffic Volume Inference

Shaojie Dai, Jinshuai Wang, Chao Huang, Yanwei Yu* and Junyu Dong

Ocean University of China

Email: daishaojie@stu.ouc.edu.cn

- Background
- Problem
- Framework
- Experiment
- Conclusion

Citywide traffic volume inference is key to an intelligent city.

Intelligent transportation system

Alleviating traffic congestion

Government's policy-making

Citywide traffic volume inference is a **challenging** task because:

• Coverage is limited: accurate traffic volumes on the roads can only be measured at certain locations where sensors are installed.

Only 2% of road segments in Jinan city deploy the surveillance cameras for traffic monitoring [1].

[1] X. Yi, Z. Duan, T. Li, T. Li, J. Zhang, and Y. Zheng, "Citytraffic: Modeling citywide traffic via neural memorization and generalization approach," in CIKM, 2019, pp. 2665–2671.

Citywide traffic volume inference is a **challenging** task because:

• Lack of Historical Observations: it is worth noting that different from the problem of traffic volume forecast based on the historical data, there is no any historical data available for the unmonitored roads.

Volume(vehicle/5 minute/road)

Citywide traffic volume inference is a **challenging** task because:

• Complex Spatial-Temporal Dependencies: Different granularity-specific variation regularities of traffic data may present various temporal patterns (e.g., hourly, daily, weekly) which are complementary and inter-dependent with each other [2].

[2] Y. Yu, X. Tang, H. Yao, X. Yi, and Z. Li, "Citywide traffic volume inference with surveillance camera records," IEEE Transactions on Big Data, 2019.

- Background
- Problem
- Framework
- Experiment
- Conclusion

Problem

Volume(vehicle/5 minute/road)

Given a road network, observed traffic volume at the monitored road segments, our goal is to infer citywide traffic volume of any unmonitored road segment, $r_i \in U$, at any time interval. (\boldsymbol{n} road segment, \boldsymbol{m} time slice)

- Background
- Problem
- Framework
- Experiment
- Conclusion

Framework

Affinity Graph Construction

$$s_{ij} = \frac{\mathbf{x}_i \cdot \mathbf{x}_j}{|\mathbf{x}_i||\mathbf{x}_j|}$$

 \mathbf{x}_i denotes the feature of road segment i.

$$w_{ij} = \sigma(liner(\frac{max(lane_i, lane_j)}{min(lane_i, lane_i)}))$$

 $lane_i$ denotes the #lanes of road segment i.

Multi-view Graph Convolution Network

$$\mathbf{H}_{f}^{(l+1)} = Relu(\widetilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\widetilde{\mathbf{A}}_{f}\widetilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\mathbf{H}_{f}^{(l)}\mathbf{W}_{f}^{(l)})$$

$$\mathbf{H}_{cf}^{(l+1)} = Relu(\widetilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\widetilde{\mathbf{A}}_{f}\widetilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\mathbf{H}_{cf}^{(l)}\mathbf{W}_{c}^{(l)})$$

$$\mathbf{H}_{cs}^{(l+1)} = Relu(\widetilde{\mathbf{D}}_{s}^{-\frac{1}{2}}\widetilde{\mathbf{A}}_{s}\widetilde{\mathbf{D}}_{s}^{-\frac{1}{2}}\mathbf{H}_{cs}^{(l)}\mathbf{W}_{c}^{(l)})$$

$$\mathbf{H}_{c}^{(l)} = \frac{\mathbf{H}_{cf}^{(l)} + \mathbf{H}_{cs}^{(l)}}{2}$$

$$\mathbf{H}_{S}^{(l+1)} = Relu(\widetilde{\mathbf{D}}_{S}^{-\frac{1}{2}}\widetilde{\mathbf{A}}_{S}\widetilde{\mathbf{D}}_{S}^{-\frac{1}{2}}\mathbf{H}_{S}^{(l)}\mathbf{W}_{S}^{(l)})$$

[3] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in ICLR, 2016.

Multi-view Graph Convolution Network

We finally utilize the attention mechanism $\mathbf{H} = att(\mathbf{H}_s, \mathbf{H}_f, \mathbf{H}_c)$ [3] to combine their embedding in a reasonable way as follows:

$$\omega_{s}^{i} = \mathbf{q}^{\mathsf{T}} Tanh(\mathbf{W} \cdot \left(\mathbf{h}_{s}^{i}\right)^{\mathsf{T}} + \mathbf{b})$$

$$a_{s}^{i} = softmax(\omega_{s}^{i}) = \frac{\exp(\omega_{s}^{i})}{\exp(\omega_{s}^{i}) + \exp(\omega_{s}^{i}) + \exp(\omega_{s}^{i})}$$

$$\mathbf{a}_{S} = diag(a_{S}), \mathbf{a}_{F} = diag(a_{f}), \mathbf{a}_{C} = diag(a_{C})$$

$$\mathbf{H} = \mathbf{a}_{S} \cdot \mathbf{H}_{s} + \mathbf{a}_{F} \cdot \mathbf{H}_{f} + \mathbf{a}_{C} \cdot \mathbf{H}_{c} \quad \mathbf{H} \in \mathbb{R}^{n*d}$$

$$\mathbb{H} \in \mathbb{R}^{m*n*d}$$

[4] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, "Am-gcn: Adaptive multi-channel graph convolutional networks," in KDD, 2020, pp. 1243–1253.

Temporal Self-Attention

Where H_i denotes the concatenated hidden representation of road segment r_i at all related time intervals.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," arXiv preprintarXiv:1706.03762, 2017.

Joint Learning Optimization

How can we learn and make inference?

Joint Learning Optimization

Unsupervised objective function

$$\begin{split} \mathcal{L}_{walk} &= \sum_{t \in T} \sum_{v_i \in \mathcal{V}} (\sum_{v_j \in \mathcal{N}_{walk}^t(v_i)} - \log \left(\sigma(s_{ij}^t) \right) \\ &- \sum_{v_k \in Neg^t(v_i)} \log (1 - \sigma(s_{ij}^t))) \end{split}$$

Semi-supervised objective function

$$\mathcal{L}_{volume} = \sum_{t \in T} \sum_{r_i \in \mathcal{M}} |y_i^t - \frac{\sum_{j}^k s_{ij}^t y_j^t}{\sum_{j}^k s_{ij}^t}|$$

Final objective function

$$\mathcal{L}_{joint} = \mathcal{L}_{walk} + \mathcal{L}_{volume} + \frac{\lambda}{2} ||\mathbf{\Theta}||^2$$

Traffic volume inference

$$\hat{y}_i^t = \frac{\sum_{j}^k s_{ij}^t y_j^t}{\sum_{j}^k s_{ij}^t}$$

- Background
- Problem
- Framework
- Experiment
- Conclusion

Dataset

Table 1. Basic statistics of two datasets

Dataset	Hangzhou City	Jinan City	
Time spans	2021/01/03-01/03	2016/08/01-08/31	
# Road segments	553	493	
# Monitored segments	46	165	
# Features	8	7	
Time interval (minute)	5	5	
Sensor type Traffic radar		Surveillance camera	

Performance Study

Table 2. Performance comparison of different baselines.

$$RMSE = \sqrt{\frac{1}{n|T|} \sum_{t=1}^{|T|} \sum_{i=1}^{n} (y_i^t - \hat{y}_i^t)^2}$$

$$MAPE_{t} = \frac{100\%}{n|T|} \sum_{t=1}^{|T|} \sum_{i=1}^{n} |\frac{y_{i}^{t} - \hat{y}_{i}^{t}}{y_{i}^{t}}|$$

$$MAPE_{p} = \frac{100\%}{n|T|} \sum_{t=1}^{|T|} \sum_{i=1}^{n} |\frac{y_{i}^{t} - \hat{y}_{i}^{t}}{\hat{y}_{i}^{t}}|$$

Dataset	Hangzhou City			Jinan City		
Methods	$MAPE_t$	$MAPE_p$	RMSE	$MAPE_t$	$MAPE_p$	RMSE
KNN (k=5)	0.6636	0.7139	63.1035	0.6446	0.6306	60.3842
CA (k=5)	0.6879	0.7325	65.4562	0.6568	0.6423	61.2357
MLP	0.6029	0.6561	56.4201	0.8180	0.6808	69.3974
XGBoost	0.4689	0.5243	53.9832	1.5811	0.5917	93.3649
ST-SSL	0.5638	0.5983	44.2793	0.7052	0.6883	59.0377
CT-Gen	0.3602	0.4622	37.9691	0.6727	0.4760	57.4482
JMDI	\	\	\	0.4655	0.5574	42.0020
CTVI	0.3294	0.4037	33.1924	0.4487	0.4389	34.5814

Parameter Sensitivity

Fig. 1. Parameter sensitivity on Hangzhou.

Fig. 2. Parameter sensitivity on Jinan

- Background
- Problem
- Framework
- Experiment
- Conclusion

Conclusion

- We propose a novel framework, called CTVI, to infer citywide traffic volume by modeling complex spatial corrections and temporal dependencies.
- We incorporate multi-view graph convolution on spatial and feature affinity graphs with temporal self-attention mechanism to learn road segment representation.
- We combine an **unsupervised** random walk enhancement and a **semi-supervised** spatial-temporal volume constraint to augment the final representation.

Q&A

Thanks!

Code: https://github.com/dsj96/CTVI-master

Framework

