

Decisiones sin datos de probabilidad

- Maximax
 - Seleccionar la opción con el máximo retorno
- Maximin
 - Seleccionar la opción con la minima pérdida
- LaPlace-Bayes
 - Todos los estados tienen la misma probabilidad de ocurrir
 - Seleccionar la alternativa con el mejor resultado en promedio

Maximax: Punto de vista optimista

- Estrategia de seleccionar lo mejor de lo mejor
 - Evalúa cada decisión como el retorno máximo posible asociado a cada decisión.
 - La decision que genere el máximo retorno entre estos máximos es la que prevalece.
- Para los propensos al riesgo
 - No se considera la parte adversa de los resultados
 - Ignora las pérdidas posibles al seleccionar una alternativa

Maximin: Punto de vista pesimista

- Estrategia de seleccionar lo mejor de lo peor
 - Evalúa cada decisión como el retorno mínimo posible asociado a cada decisión.
 - La decision que genere el máximo retorno entre estos mínimos es la que prevalece.
- Para los aversos al riesgo
 - Es una estrategia proteccionista que se enfoca en el peor escenario

Ejemplo del caso de una Pizzería

Demanda de Pizzas	en los	último	os 100	días
Número de pizzas que se solicitan	150	160	170	180
Número de días	20	40	25	15

Base de cálculo para las utilidades:

- Por cada pizza que se vende se ganan \$2
- Por cada pizza que no se vende se pierde \$1

Tabla de Utilidades para la Pizzería

Número de pizzas que se hornean con	De	emanda	de pizz	as
anticipación	150	160	170	180
150	300	300	300	300
160	290	320	320	320
170	280	310	340	340
180	270	300	330	360

Valores Presentes de la Decisión de Ubicación

	Acción Externa							
Decisión	Ninguna	Cerrar los antiguos dormitorios	Construir nuevos departamentos					
No mudarse	+\$100,000	+\$50,000	+\$20,000					
Baxter Street	+\$40,000	+\$150,000	+\$25,000					
Epps Bridge Road	-\$20,000	+\$20,000	+\$200,000					

Hay que tomar dos decisiones:

- Determinar el número de pizzas a hornear (esta es del tipo de la existen datos previos).
- Determinar si es conveniente cambiar de ubicación (esta es de las del tipo cuando no existen datos previos).

Hay que tomar dos decisiones:

			Estados de	e la natural		
Decisión		150	160	170	180	Rendimiento esperado
	150	300	300	300	300	300
	160	290	320	320	320	314
	170	280	310	340	340	316
	180	270	300	330	360	310.5
		300	320	340	360	
Probablilidades		0.2	0.4	0.25	0.15	

Tabla	de	arrepentimiento

			Estados de	e la natural	eza		
Decisión		150	160	170	180	Mínimo de máximos	U
	150	0	20	40	60		60
	160	10	0	20	40		40
	170	20	10	0	20		20
	180	30	20	10	0		30

Segunda parte de los criterios de cantidad a preparar:

		Criterio M	laximin			
		Estados de	e la natural	eza		
Decisión	150	160	170	180	Maximin	
150	300	300	300	300		30
160	290	320	320	320		290
170	280	310	340	340		280
180	270	300	330	360		27
'		Criterio M	aximax		,	
		Estados de	e la natural	eza		
Decisión	150	160	170	180	Maximax	

Árbol de Decisión

Ejemplo: Reemplazo de equipos

Una empresa está considerando cambiar uno de sus equipos tecnológicamente avanzados, para ello dispone de dos opciones, la primera es comprar dos nuevos equipos idénticos al actual a 200.000 euros cada uno, y la segunda consiste en comprar un nuevo sistema integrado por 800.000 euros. Las ventas estimadas por la empresa a lo largo de la vida útil de cualquiera de sus equipos son de 5.000.000 de euros en el caso de que el mercado sea alcista, a lo que la empresa le asigna una probabilidad de que suceda del 30%, en caso contrario, si el mercado es bajista las ventas esperadas son de 3.500.000 euros.

Indique al director de dicha empresa la opción que debe tomar.

Solución

Ejemplo: Diseño producto

Basado en un nuevo enfoque tecnológico un fabricante ha desarrollado un televisor en colores, con un tubo de 36 pulgadas. El propietario de un pequeño almacén minorista estima que al precio de venta de \$1800, podrían venderse 2 o hasta 5 televisores durante los siguientes tres meses. El margen de utilidad para cada televisor vendido es \$200. Si no se venden algunos televisores durante los tres meses, la pérdida total por aparato, para el minorista, será de \$300. Basándose sólo en estas consecuencias económicas, determine los mejores actos de decisión, de adquirir el números de televisores para ofertar en la tienda, desde el punto de vista:

- a) del criterio maximin,
- b) del criterio maximax; y
- c) la pena minimax.
- d) Del criterio de Laplace

Solución: Diseño producto

			Estados de	e la natural	eza		
Decisión		2	3	4	5	Laplace	Ì
	2	400	400	400	400	400	
	3	100	600	600	600	475	
	4	-200	300	800	800	425	
	5	-500	0	500	1000	250	
		400	600	800	1000		
Probablilidades		0.25	0.25	0.25	0.25		
		Tak	ola de arrep	entimiento)		
			Estados de	e la natural	eza		
Decisión		2	3	4	5	Mínimo de máximos	
	2	0	200	400	600	600	
	3	300	0	200	400	400	c)
	4	600	300	0	200	600	
		000	600	200	0	000	ı

			Criterio Ma	aximin	- 4			
			Estados de	7				
Decisión		2	3	4	5	Maximin	1	P
	2	400	400	400	400		400	a)
	3	100	600	600	600		100	
	4	-200	300	800	800		-200	
	5	-500	0	500	1000		-500	١
						//.		Į.
			Criterio Ma	aximax	× /			
			Estados de	la natural	eza			
Decisión		2	3	4	5	Maximax		
	2	400	400	400	400	1/2	400	7
	3	100	600	600	600		600	
	4	-200	300	800	800		800	
	5	-500	0	500	1000		1000	b)