Spectral Weighting and Spatial Biasing for Hyperspectral K-Means Clustering

Daniel Hanson, Sam Kreter Brendan Marsh, Christina Mosnick

Data Visualization

Spectral Slices

band 150 band 167

Why K-Means?

Tried DBSCAN and Soft K-Means

Known Number of Clusters

Weighted Features for K-Means

- Weight all spectral bands by .001.
- Choose appropriate bands to weight more heavily
- Add weighted X and Y coords into feature vectors
- Run Scikit-learn K-means

PCA Projection Into Three Dimensions

Neighborhood Bias

- Spatially close points are spectrally similar
- Uses 'majority vote' approach
- Smooths out local inconsistencies

Neighborhood Bias

Results

Weighting of Spectral Layers

Selection of Spectral Images

Final Rand Index 0.886272

