Trabajo Práctico nº:4 Diseño de un Inductor con núcleo para fuente conmutada

Materia: Tecnología Electrónica

Profesor: Centeno Carlos

Integrantes:

Schamun Lucas Gabriel 62378

Ponce Nicolás 64725

Sosa Javier 65337

Sueldo Enrique 62508

Curso: 5R2

TP. № 4 Tecnología Electrónica - 5R2

CONTENIDO

ntroducción	3
Desarrollo	
Diseño:	
Comprobación:	
Ensayos para diferentes nucleos:	
Esquemático:	
	11
CONCIUSION	11

INTRODUCCIÓN

En el siguiente trabajo se analizarán los distintos tipos de núcleos de las bobinas, los parámetros de cada uno y la correcta interpretación de sus respectivas hojas de datos. También las técnicas de diseño de inductores con toroides y la manera de corroborar la adecuada implementación, este concepto será de ayuda en la elaboración de una fuente conmutada.

DESARROLLO

MARCO TEÓRICO:

Para la construcción de bobinas fijas que se emplean en circuitos de baja potencia en las bandas de HF y VHF se utilizan casi exclusivamente núcleos toroidales.

Los motivos por los cuales se prefieren las inductancias con este tipo de núcleos a las clásicas bobinas cilíndricas son variados y los podemos resumir:

- Los núcleos toroidales, debido a su forma, no tienen campo magnético disperso y por tanto no es necesario encerrarlos en un blindaje metálico.
- El Q (factor de calidad) de un bobinado sobre un toroide es mayor que sobre una bobina convencional.
- El valor de inductancia depende fielmente del material empleado en el núcleo y del número de espiras, por lo que es muy fácil calcular el valor de la inductancia.
- Con estos se consiguen inductancias muy compactas y de reducido tamaño.
- Además, son muy útiles desde algunos cientos de Hz hasta muy arriba en el espectro de UHF.

El integrado LM2596 es un regulador monolítico que proporcionan todas las funciones activas para un regulador de conmutación descendente (buck), es capaz de conducir una carga 3A, una frecuencia de conmutación de 150KHz. Estos dispositivos están disponibles con tensiones de entradas fijas de entrada 3 V, 5 V, 12 V y una salida ajustable.

DISEÑO:

- Para probar el inductor, se utilizó el integrado LM2596 (regulador switcher). En la hoja de datos se pueden obtener las especificaciones de diseño.
 - \triangleright L = 47uH
 - $I_{max} = 1,5A$
 - \triangleright E = 12V
 - F = 150 KHz
- Se eligió un toroide de color amarillo, midiendo los diámetros internos, externos y la altura se lograron obtener los siguientes valores:

$$\emptyset_{ext} = 21mm \\
\emptyset_{int} = 11mm$$

$$h = 8mm$$

TP. № 4

Tecnología Electrónica - 5R2

A partir de esos valores y tomando como referencia las siguientes tablas, se logró obtener el tipo: T-80 Número 24.

TABLA NÚMERO UNO							
TIPO	DIÁMETRO EXTERIOR	DIÁMETRO INTERIOR	AL TURA	DESARROLLO			
	mm	mm	mm	mm			
T-12	3,1	1,5	1,3	4,2			
T-16	4,1	1,8	1,5	5,3			
T-20	5,1	2,0	1,8	6,7			
T-25	6,4	3,0	2,5	8,4			
T-27	6 9	3,4	3,1	9,7			
T-30	7 6	3,8	3,3	10,4			
T-37	9,4	5,1	3,3	10,9			
T-44	11,2	5,8	4,0	13,4			
T-50	12,7	7,6	4,8	14,7			
T-60	15,2	8,4	4,8	16,4			
T-68	17,3	9,4	4,8	17,5			
T-80	20,3	12,4	6,4	20,7			
T-94	23,9	14,2	7,9	25,5			
T-106	26,9	14,2	11,2	35,1			
T-130	33,0	19,0	11,2	36,4			
T-157	39,9	24,1	14,5	44,8			
T-184	46,7	24,4	18,0	58,3			
T-200	50,8	31,7	14,0	47,1			
T-200A	50,8	31,7	25,4	69,9			
T-225	57 1	35,6	14,0	49,5			
T-225A	57 1	35,6	25,4	72,3			
T-300	76,2	48,8	12,7	52,8			
T-300A	76,2	48,8	25,4	78,2			
T-400	101 6	57,1	16,5	77,5			
T-400A	101 6	57,1	33,0	110,5			
T-520	132,1	78,2	20,3	94,5			

TABLA NÚMERO DOS					
COLOR(ES)	NÚMERO	FRECUENCIAS			
Amarillo-Blanco	26	Hasta 100KHz			
Gris	3	50 KHz- 1MHz			
Rojo-Blanco	15	0,1 - 3 MHz			
Azul	1	0,5-5 MHz			
Rojo	2	1 -30 MHz			
Amarillo	6	2 - 50 MHz			
Negro	10	5- 100 MHz			
Azul-Amarillo	12	20 - 200 MHz			
Verde-Blanco	17	20-200 MHz			
Verde-Naranja	22	20-200 MHz			
Marrón	0	50-300 MHz			

• Se consideró $A_l=450$; a partir de la siguiente tabla; con ese valor se pudo calcular el número de vueltas utilizando la siguiente ecuación:

$$A_l = \frac{10000.L}{N^2}$$

$$N^{2} = \sqrt{\frac{10000.L}{A_{l}}} = \sqrt{\frac{10000.47}{450}} = 32.31 \text{ vueltas } \approx 32 \text{ vueltas}$$

		TA	BLA N	IÚMEI	RO TRI	ES			
	26	3	15	1	2	6	10	17	0
T-12		60	50	8	20	17	12	7	3
T-16		61	5	44	22	19	13	8	3
T-20		90	6	52	27	22	16	10	3
T-25		100	100	70	34	27	19	12	5
T-27									
T-30	325	140	93	85	43	36	25	16	6
T-37	275	120	90	80	40	30	25	15	5
T-44	360	180	160	105	52	42	33	19	7
T-50	320	175	135	100	49	40	31	18	6
T-60									
T-68	420	195		115	57	47	32	21	8
T-80	450	180		115	55	45	32	22	9
T-94	590	248		160	84	70	58	32	11
T-106	900	450	345	325	135	116			19
T-130	785	350		200	110	96			15
T-157	970	420	330		140	115			
T-184	1640	720		500	240				
T-200	895	425		250	120	100			
T-200A	1550				218	180			
T-225	950	424			120	100			
T-225A	1600				215				
T-300	825				115				
T-300A	1600				228				
T-400	1320				185				
T-400A	2600				360				
T-520	1460				20				

Tecnología Electrónica - 5R2

• Debido a la corriente máxima, se escogió un cable de 19 [AWG], este presenta una resistividad (ρ) de 0.264 [m Ω].

De la tabla WINDING TABLE, se comprobó que tiene un número máximo de 35 vueltas.

						SIN	NGL	FΙΔ	YER	WI	ND	ING	TAI	BLE						
WIRE S	IZE (AW	G)	28	26	24	22	20	19	18	17	16	15	14	13	12	-11	10	0.000	nerger rowns	500000
RESISTI	VITY (m	Ω/cm)	2.13	1.34	.842	.530	.330	.264	.210	.166	.132	.104	.0828	.0651	.0521	.0413	.0328	TOTAL POWER		
										V2				ν.	V			D	ISSIPATIO	
MAXIM	IUM AME	PS 10C°	.64	.90	1.29	1.83	2.62	3.12	3.72	4.45	5.33	6.35	7.60	9.03	10.8	12.9	15.4		(WATTS)
PER ALI	LOWABL	E 25C°	1.07	1.52	2.17	3.09	4.41	5.26	6.27	7.50	8.97	10.7	12.8	15.2	18.2	21.7	26.0	٠,	EMP. RI	CE.
TEMP R	ISE 40C°		1.38	1.97	2.81	4.00	5.70	6.81	8.11	9.70	11.6	13.8	16.6	19.7	23.5	28.1	33.6		LIVIE. KI	,,,
PART No.	MLT cm/turn	Surface Area cm ²						NUN	1BE	R O	FTU	RNS	5					10C°	25C°	40C°
T16	.80	.80	9	6	4	2	-1											.013	.038	.067
T20	.96	1.16	11	8	5	3	2	1		\$ 6		ŝ	8 3		8 8		(i)	.018	.055	.097
T25	1.19	1.88	18	14	10	7	5	4	3	2	1							.030	.089	.157
T26	1.74	2.67	15	11	8	5	3	2	1									.042	.127	.223
T30	1.44	2.79	25	20	15	11	7	6	5	4	3	2	1	1			(0) (c)	.044	.133	.233
T37	1.53	3.77	37	29	22	17	12	11	9	7	6	5	4	3	2	1	1	.060	.180	.316
T38	1.92	4.43	31	24	18	13	10	8	7	5	4	3	2	2	1			.071	.211	.371
T44	1.84	5.23	43	34	26	20	15	13	11	9	7.	6	5	4	3	2	- 1	.083	.249	.437
T50	2.01	6.86	59	47	37	28	22	19	16	14	12	10	8	7	6	4	3	.109	.326	.574
T50B	2.32	7.83	59	47	37	28	22	19	16	14	12	10	8	7	6	4	3	.125	.373	.659
T50D	2.95	9.87	59	47	37	28	22	19	16	14	12	10	8	7	6	4	3	.157	.470	.826
T51C	2.58	7.56	36	28	22	16	12	10	9	. 7	6	5	4	3	2	1	8 9	.120	.360	.633
T60	2.48	9.84	67	53	41	32	25	21	19	16	14	12	10	8	7	6	4	.156	.468	.824
T60D	3.68	14.3	67	53	41	32	25	21	19	16	14	12	10	8	7	6	4	.228	.681	1.20
T68	2.47	11.2	74	59	46	36	28	24	21	18	16	14	12	10	8	7	5	.178	.533	.936
T68A	2.77	12.5	74	59	46	36	28	24	21	18	16	14	12	10	8	7	5	.198	.594	1.04
T68D	3.41	15.2	74	59	46	36	28	24	21	18	16	14	12	10	8	7	5	.241	.722	1.27
T72	3.15	13.3	54	43	33	26	19	17	14	12	11	9	. 7	6	5	4	3	.212	.634	1.11
T80	2.8	15.5	103	82	64	51	39	35	30	27	23	20	17	15	13	-11	9	.246	.736	1.30
T80B	3.44	18.7	103	82	64	51	39	35	30	27	23	20	17	15	13	11	9	.298	.892	1.57

Tras medir con un calibre la sección del conductor, se obtuvo:

$$A_c = 1.18 \ mm.$$

• Utilizando las siguientes ecuaciones, se calcularon las pérdidas en el conductor, en el núcleo y sumando ambas se obtuvo la pérdida total.

$$R_c = \rho \frac{l_c}{A_c} = 0.264 \frac{m\Omega}{cm} * 32 * 1.5cm = 12.67m\Omega$$

$$P_c = Ief^2 * R_c = (1.5A)^2 * 12.67m\Omega = 28.5mW$$

A posterior se calcula la pérdida en el núcleo a partir del flujo magnético B:

$$B = \frac{E_{pk} * t * 10^8}{N * S} = \frac{13.4V * 3us * 10^8}{32 * 0.7853cm^2} = 159.97Gauss$$

TP. № 4
Tecnología Electrónica - 5R2

Con el siguiente gráfico se obtiene el valor de P_N :

Por lo tanto

$$P_n = 120 \frac{mW}{cm^3}$$

Sumando ambos valores:

$$P_t = P_c + P_n = 148.5 mW$$

X

COMPROBACION:

 Para verificar los valores calculados, se utilizó un puente RLC, con el cual se midió el valor propuesto en el diseño.

Mediante el circuito implementado, se comprobó que la bobina funcionaba correctamente.

• Para comprobar la máxima densidad de flujo magnético, se corroboró que:

$$B_{max} < B_{sat}$$
.

Conociendo $B_{sat} = 13800 \; Gaus$ a partir de la siguiente tabla y $B_{max} = B_{CA} + B_{CC}$

Tecnología Electrónica - 5R2

Para obtener B_{max} , primero calculamos H_{CC} (Campo magnético en continua)

$$H_{cc} = \frac{0.4 * \pi * N * I_{cc}}{l} = \frac{0.4 * \pi * 32 * 1.5A}{1.5cm * 32} = 1.2566 \left[\frac{A}{cm}\right]$$

Como 1[oersteds] = $0.7958[\frac{A}{cm}]$, por lo tanto $H_{CC}=1.5790$ [oersteds].Con este valor y el número del núcleo (26), obtenemos μ_r .

$$\mu_r = 75$$

$$B_{CC} = \mu_r * \mu_0 * H_{CC} = 75 * (4\pi * 10^{-7}) * 1.2566 = 0.000118431 \left[\frac{A}{cm}\right]$$

 $\therefore B_{CC} = 118.431 \left[Gauss\right]$

$$B_{CA} = \frac{V * 10^8}{4.44 * f * N * S} = \frac{9v * 10^8}{4.44 * 150 KHz * 32 * 0.7853 cm^2} = 50.69 \ Gauss$$

$$B_{max} = B_{CA} + B_{CC} = 118.431 + 50.69 = 169.121 Gaus$$

De esta manera se verificó que $B_{max} < B_{sat}$ y no corremos riesgo de que se sature.

Tecnología Electrónica - 5R2

• Para medir el salto de temperatura a plena carga de corriente, se empleó un tester con el agregado de una termocupla, con el que se midieron los siguientes valores:

$$T_{ambiente} = 23^{\circ}C$$

 $T_{plena\ carga} = 29^{\circ}C$
 $\Delta T = 6^{\circ}C$

De esta forma, queda en evidencia un salto de 6ºC.

• Para medir el ripley de corriente sobre el inductor a plena carga, se hizo uso de una resistencia de 22Ω en serie con el bobinado, se midió la tensión a bornes de la misma y con la ley de ohm se calculó la corriente. Como la imagen no representa correctamente la forma de onda, se integró la cuadrada observada en la figura anterior.

$$V = R * I : I = \frac{V}{R} = \frac{5.96V}{22\Omega} = 270.90 \text{ mA}$$

TP. № 4 Tecnología Electrónica - 5R2

Ensayos para diferentes núcleos:

Datos de diferentes toroides.

	T-94/26	T80/26
Colores	Amarillo y blanco	Amarillo y blanco
\emptyset_{ext}	24 mm	20.2 mm
\emptyset_{int}	14.2 mm	12.6 mm
h	7.92 mm	6.35 mm
A_l del fabricante	$60[nHy/N^2]$	$71[nHy/N^2]$

Inductancia medida para diferente número de vueltas al toroide.

Nº de vueltas	T-94/26	T80/26
5	2.85 [μ <i>Hy</i>]	2.55 [μ <i>Hy</i>]
10	9.25 [μ <i>Hy</i>]	7 [μ <i>Hy</i>]
15	16 [μΗγ]	14 [μΗy]

Se calculó el factor de inductancia ${\cal A}_l$ para diferentes núcleos, utilizando la ecuación:

$$A_l = \frac{L[nHy]}{N^2}$$

Nº de vueltas	T-94/26	T80/26
5	114 [nHy/N²]	$100[nHy/N^2]$
10	92.5[<i>nHy/N</i> ²]	$70[nHy/N^2]$
15	$71.1[nHy/N^2]$	$62.22[nHy/N^2]$

Tecnología Electrónica - 5R2

01258323

ESQUEMÁTICO:

El circuito se basó en el integrado LM2596adj cuyo esquemático se encontró en la hoja de datos del fabricante:

Adjustable Output Voltage Versions LOCATE THE PROGRAMMING RESISTORS NEAR THE FEEDBACK PIN USING SHORT LEADS R1 R2 KEEP FEEDBACK WIRING AWAY FROM INDUCTOR FLUX FEEDBACK REGULATED OUTPUT LM2596 000 ADJUSTABLE UNREGULATED GND ON/OFF DC INPUT HEAVY LINES MUST BE KEPT SHORT AND USE GROUND PLANE CONSTRUCTION FOR BEST RESULTS

$$V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1} \right)$$

where V_{REF} = 1.23V

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$$

Select R₁ to be approximately 1 k Ω , use a 1% resistor for best stability.

C_{IN} —470 µF, 50V, Aluminum Electrolytic Nichicon "PL Series"

C_{OUT} — 220 μF, 35V Aluminum Electrolytic, Nichicon "PL Series"

D1 -5A, 40V Schottky Rectifier, 1N5825

L1 -68 µH, L38

R1 -1 kΩ, 1%

CFF — See Application Information Section

CONCLUSIÓN

Logramos conocer los datos más significativos que permitieron la confección de bobinados sobre núcleos toroidales.

La correcta utilización del puente RLC que permitió medir la inductancia de dicho toroide implementado. Implementando un cirquito en base al LM2596, visualizamos a modo de primera impresión, la forma de onda que debería verse al realizar el proyecto de la fuente conmutada.

Medimos el salto de temperatura como así también el rippley ambos a plena carga de corriente.

Por ultimo notamos que la A_l para diferentes núcleo aumenta al aumentar el número de vueltas del devanado.