Name: Chris Jerylle Vargas Oidem

Student ID: 45476624

Unit Code: STAT270 Applied Statistics

Question 1

a) State the statistical model for a simple linear regression of Extent explained by Year.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Extent_i = $\beta_0 + \beta_1 \text{Year}_i + \epsilon_i$; $\epsilon_i \sim N(0, \sigma^2)$

b) Fit a simple linear regression to the 1979-2002 data. Explain why there is a linear relationship.

Based on the scatterplot below, it is reasonable to assume a linear relationship as the data looks like it follows a linear trend. Q-Q plot verifies normal residuals as it follows a relatively straight line and the residual vs fitted plot confirms constant variance in residuals, deeming the linear regression model appropriate.

c) Call:

```
lm(formula = Extent ~ Year, data = dat1)
```

Residuals:

```
Min 1Q Median 3Q Max -0.74002 -0.34571 0.03998 0.33513 0.97518
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.15180 25.65735 3.825 0.000922 ***
Year -0.04587 0.01289 -3.558 0.001760 **
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.4371 on 22 degrees of freedom Multiple R-squared: 0.3653, Adjusted R-squared: 0.3364 F-statistic: 12.66 on 1 and 22 DF, p-value: 0.00176

There is a linear relationship as the slope is not zero and effect of year is statistically significant.

```
\hat{Y}_i = b_0 + b_1 X_i \rightarrow \hat{Extent}_i = 98.1518 - 0.04587 Year_i
```

For every 1-year increase, the extent of the sea ice is expected to decrease by 0.04587km², on average.

d) Is this a strong relationship? Explain your answer in the context of this data.

Correlation Coefficient = 0.6044005

No, it is not a strong linear relationship. Based on the output in part c), only 60% of the variation in Extent is explained by the linear regression on Year.

e) Predict the extent of the sea ice (in km²) for the year 2000.

```
X = 2000

\widehat{Y}_i = 98.1518 - 0.04587(2000)

= 6.4118

\approx 6.412
```

The expected extent of the sea ice is 6.412km² for the year 2000.

f) 95% prediction band for the extent of sea ice in the year 2000:

```
6.412 ± 2.073873 x 0.4371 x 1.058369
= (5.452599, 7.371401)
RStudio Output:
# lwr upr
# 5.461929 7.380798
```

g) 95% confidence band for the extent of sea ice in the year 2000:

```
6.412 ± 2.073873 x 0.4371 x 0.3466192
= (6.097793, 6.726207)
RStudio Output:
# lwr upr
# 6.107146 6.735582
```

h) Given the data, we have a 95% prediction interval for the extent of sea ice in the year 2000 to be (5.452599, 7.371401) and a 95% confidence interval for the true mean at Year = 2000 to be (6.097793, 6.726207).

Average extent of sea ice by calendar year

i) Justify why a simple linear regression is inappropriate for the 1979-2012 data:

There is no linear relationship between Year and Extent. A curvature pattern can be seen, thus a simple linear regression is inappropriate and will not fit. The residuals vs fitted plot shows a negative quadratic trend and parabola shape. We should fit a polynomial model and validate.

6.5

Fitted values

5.0

5.5

6.0

7.0

7.5

-2

-1

0

Theoretical Quantiles

2

1

j) Fit a second order polynomial regression model to the data and validate the model:

```
call:
lm(formula = Extent \sim Year + I(Year^2), data = seaice)
Residuals:
    Min
                 Median
             10
                               30
-0.9300 -0.2932
                 0.0938
                          0.2796
                                   0.9173
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                         3.626e+03
                                    -4.247 0.000183 ***
(Intercept) -1.540e+04
                                      4.273 0.000170 ***
             1.553e+01
                         3.634e+00
Year
             -3.912e-03
                         9.105e-04
                                     -4.297 0.000159 ***
I(Year^2)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4565 on 31 degrees of freedom
Multiple R-squared: 0.8171,
                                  Adjusted R-squared:
F-statistic: 69.27 on 2 and 31 DF, p-value: 3.653e-12
\hat{Y}_i = b_0 + b_1 X_i + b_2 X_i^2
  = -15.400 + 15.53X - 0.003912X^{2}
```

k) Plot the fitted polynomial to your data:

$$\widehat{\text{Extent}}_i = -15.400 + 15.53 \text{Year}_i - 0.003912 \text{Year}_i^2$$

I) Using the second order model you fitted, predict the extent of the sea ice for the year 2000:

$$X = 2000$$

$$\widehat{Y}_i = -15,400 + 15.53(2000) -0.003912(2000)^2$$

$$= 12$$

The expected extent of the sea ice is 12km² for the year 2000.

m) Compare your answers in part e) and part l). Which prediction value do you recommend and why?

I would recommend the prediction value in part e) as the value in part I) is a result of overfitting a model. The R-squared is also unusually high, which means that the model has begun to describe random error in the data rather than relationships between variables.

Question 2

a) State the statistical model for a multiple regression with Quality as the response using all other variables as predictors, defining any parameters as necessary.

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_i + \beta_2 X_i + \beta_3 X_i + \epsilon_i \\ Quality_i &= \beta_0 + \beta_1 Density_i + \beta_2 p H_i + \beta_3 Alcohol_i + \epsilon_i \; ; \; \epsilon_i \; \sim \; N(0,\sigma^2) \end{split}$$

b) Fit this multiple regression model and write down the fitted model.

$$\widehat{Y}_i = b_0 + b_1 X_i + b_2 X_i + b_3 X_i$$
 $\rightarrow \widehat{Quality}_i = -46.18943 + 51.33496 Density_i - 0.84169 pH_i + 0.38190 Alcohol_i$

c) What are the assumptions required for a multiple regression analysis? If possible, validate those assumptions for the multiple regression model you fitted in part b.

$$Y_i = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p + \epsilon_i$$

Where $\epsilon_i \sim N(0, \sigma^2)$

- The normal Q-Q plot of residuals is linear, implying errors close to normally distributed and better adherence to model requirements.
- The residuals vs fitted has no discernable pattern besides the outlier dragging the slope down.
- Residuals vs predictor plots shows no obvious pattern.

d) Conduct an F-test for the overall regression i.e. is there any relationship between the response and the predictors. Write your answer as a formal hypothesis test and include the ANOVA table (one combined regression SS source is sufficient)

Analysis of Variance Table Response: Quality Df Sum Sq Mean Sq F value Density 1 1.956 1.956 3.4791 0.063187 5.503 5.503 9.7858 0.001943 ** На 1 Alcohol 36.772 36.772 65.3905 1.83e-14 *** 1 Residuals 282 158.583 0.562 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Full Regression SS = 1.956 + 5.503 + 36.772 = 44.231Regression MS = 44.231/3 = 14.74367 H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$; H_1 : at least one β_i is **not** = 0;

Test statistic: F_{obs} = Regression MS/Residual MS = 14.74367/0.56235 = 26.21796

P-value: $P(F_{3,282} \ge 26.22) = 5.47e-15 < 0.01$

> Reject at the 5% level

There is a significant linear relationship between the response and at least one of the three predictor variables.

e) From the analysis in part b, determine the 95% CI for the Alcohol slope parameter and comment on its meaning in this context.

```
0.38190 \pm 1.968 \times 0.04723 = (0.2889514, 0.4748486)
```

It is found that 0.5 is contained in the interval between 0.289 and 0.475. Thus, we have data consistent with the claim of 0.38 increase in Quality for each 1% increase in Alcohol, on average.

f) Using the model selection procedures used in this course, find the best multiple regression model that explains the data giving reasons for your choice(s).

Quality_i =
$$\beta_0 + \beta_1 pH_i + \beta_2 Alcohol_i + \epsilon_i$$
; $\epsilon_i \sim N(0, \sigma^2)$

Density has the largest non-statistic p-value and does not contribute statistically significant and additional information to predicting the response after controlling for the other predictors in the model – pH and Alcohol. Thus, dropping it from the model.

g) State the final fitted regression model and comment on its interpretation.

 $\widehat{Quality_i} = 6.0141 - 1.0260 pH_i + 0.3409 Alcohol_i$

For a unit increase in pH there is a 1.0260 decrease in Quality and for every unit increase in Alcohol, there is a 0.3409 increase in Quality. All of these are while holding all other parameters constant.