Analyse de robustesse du modèle de prédiction avec 6 régions et 3 grandes villes

Équipe CLESSN

2025-04-10

Table of contents

1	Introduction	2
2	Méthodologie	2
3	Données d'évaluation	2
4	Performance globale 4.1 Métriques principales	
5	Performance par région et ville 5.1 Performance par région	
6	Analyse de stabilité (Bootstrap)	5
7	Calibration du modèle	6
8	Comparaison avec le modèle sans variables de villes	6
9	Résultats spécifiques aux villes	7
	Conclusion et recommandations 10.1 Recommandations	8

1 Introduction

Ce document présente une analyse approfondie de la robustesse du modèle de prédiction électorale pour les élections fédérales canadiennes 2025. Ce modèle intègre:

- Des prédictions basées sur les codes postaux (RTA Forward Sortation Areas)
- Des modèles spécifiques pour 6 régions du Canada (Ontario, Québec, Colombie-Britannique, Prairies, Atlantique, Territoires)
- Des modèles spécifiques pour 3 grandes villes (Montréal, Toronto, Vancouver)

L'extension du modèle aux grandes villes vise à améliorer la précision des prédictions dans les centres urbains qui présentent des dynamiques électorales distinctes des régions géographiques plus larges.

2 Méthodologie

L'analyse de robustesse comprend plusieurs dimensions:

- 1. Performance globale: Accuracy, F1-score et autres métriques de performance
- 2. Stabilité: Résistance aux variations d'échantillonnage via bootstrap
- 3. Équité géographique: Performances comparées entre régions et villes
- 4. Calibration: Adéquation entre probabilités prédites et fréquences observées
- 5. Comparaison: Analyse comparative avec le modèle sans variables de villes

3 Données d'évaluation

L'analyse est basée sur un ensemble de validation comprenant 17,555 observations, avec la distribution suivante:

Table 1: Distribution des votes dans l'ensemble de validation

Parti	Application	Pilote
bq	4194	39
cpc	4244	97
lpc	5683	66
ndp	2821	52
gpc	348	11

Table 2: Distribution des grandes villes dans l'ensemble de validation

Ville	Nombre d'observations	Pourcentage (%)
Montréal	2143	12.21
Toronto	916	5.22
Vancouver	302	1.72

4 Performance globale

4.1 Métriques principales

Table 3: Métriques globales de performance

Métrique	Valeur
Accuracy globale	0.5439
Accuracy premier ou deuxième choix	0.8291
Recall moyen (macro)	0.4524
Recall pondéré (weighted)	0.5439

4.2 Performance par parti

Table 4: Métriques de performance par parti politique

Parti	Précision	Rappel	F1-Score	Support	Top-2 Accuracy
bq	0.5430	0.8275	0.6557	4233	0.9608
cpc	0.5669	0.5096	0.5367	4341	0.7754
lpc	0.5185	0.4406	0.4764	5749	0.9019
ndp	0.5629	0.4483	0.4991	2873	0.6638
gpc	0.4483	0.0362	0.0670	359	0.0808

4.3 Matrice de confusion

Table 5: Matrice de confusion (Lignes: prédictions, Colonnes: valeurs réelles)

	$_{\rm bq}$	cpc	lpc	ndp	gpc
bq	3503	799	1653	427	69

cpc	213	2212	991	410	76
lpc	383	1097	2533	743	129
ndp	134	231	563	1288	72
gpc	0	2	9	5	13

5 Performance par région et ville

5.1 Performance par région

Table 6: Performance par région

Région	Observations	Accuracy	Top-2 Accuracy
ontario	3899	0.5427	0.8582
quebec	9760	0.5307	0.8097
$british_columbia$	1187	0.5442	0.8273
prairie	1906	0.5845	0.8526
atlantic	803	0.6139	0.8692
territories	NA	NA	NA

Accuracy

5.2 Performance par grande ville

Table 7: Performance par grande ville

Ville	Observations	Accuracy	Top-2 Accuracy
Montréal	2143	0.5483	0.8339
Toronto	916	0.5753	0.8657
Vancouver	302	0.5960	0.8477

6 Analyse de stabilité (Bootstrap)

L'analyse bootstrap permet d'évaluer la stabilité du modèle face à des variations d'échantillonnage.

Table 8: Résultats de l'analyse bootstrap global (100 répétitions)

Statistique	Valeur
Accuracy moyenne	0.5068
Écart-type	0.0184
IC inférieur (95%)	0.4666

IC supérieur (95%)	0.5435
Coefficient de variation $(\%)$	3.6306

Table 9: Résultats bootstrap par ville

Ville	Accuracy moyenne	Écart-type	IC inférieur (95%)	IC supérieur (95%)
Montréal	0.5233	0.0211	0.4771	0.5680
Toronto	0.5744	0.0227	0.5251	0.6189
Vancouver	0.5979	0.0257	0.5530	0.6556

7 Calibration du modèle

La calibration évalue l'adéquation entre les probabilités prédites par le modèle et les fréquences réellement observées pour chaque parti.

8 Comparaison avec le modèle sans variables de villes

Cette section compare les performances du modèle actuel (avec variables de grandes villes) au modèle précédent (modèle à 6 régions sans variables de villes).

Table 10: Comparaison des performances entre modèles

Métrique	Modèle 6 régions	Modèle 6 régions + 3 villes	Différence	Différence (%)
Accuracy globale	0.5475	0.5439	-0.0036	-0.6575
Amélioration (%)	NA	NA	NA	NA

9 Résultats spécifiques aux villes

Table 11: Comparaison des performances en zone urbaine vs non-urbaine

Zone	Accuracy	Top-2 Accuracy
Montréal	0.5483	0.8339
Hors Montréal	0.5433	0.8284
Toronto	0.5753	0.8657
Hors Toronto	0.5422	0.8270
Vancouver	0.5960	0.8477
Hors Vancouver	0.5430	0.8287

10 Conclusion et recommandations

Sur la base de cette analyse de robustesse, nous pouvons tirer les conclusions suivantes:

- 1. **Performance globale**: Le modèle avec variables de grandes villes présente une légère diminution de performance (-0.66%) par rapport au modèle à 6 régions sans variables de villes. L'accuracy globale est de 54.39%, avec une accuracy du premier ou deuxième choix atteignant 82.91%.
- 2. Performance différenciée par ville:
 - Vancouver présente la meilleure performance (59.60% d'accuracy)
 - Toronto arrive en deuxième position (57.53%)
 - Montréal montre la performance la plus faible des trois villes (54.83%)
 - Chaque ville surpasse les performances dans les zones extérieures correspondantes
- 3. **Stabilité**: L'analyse bootstrap indique une bonne stabilité du modèle, avec un coefficient de variation de 3.63%. Les intervalles de confiance à 95% par ville montrent des plages acceptables, en particulier pour Vancouver.

4. Limites:

- \bullet Le modèle présente des performances très faibles pour le Parti vert (GPC) avec seulement 3.62% de rappel
- L'ajout des variables de villes n'améliore pas la performance globale

10.1 Recommandations

1. Utilisation recommandée:

- Bien que le modèle global n'améliore pas les performances, il permet une meilleure prédiction dans les grandes villes
- Utiliser ce modèle spécifiquement pour les zones urbaines, où il surpasse le modèle régional standard

2. Améliorations futures:

- Explorer d'autres définitions des zones urbaines que les trois premières lettres des codes postaux
- Envisager l'ajout d'autres grandes villes canadiennes (Calgary, Edmonton, etc.)
- Augmenter l'échantillon pour améliorer la performance sur les petits partis

3. Rapports de prédiction:

• Inclure systématiquement le deuxième choix prédit, étant donné l'accuracy élevée (82.91%) lorsqu'on considère les deux premiers choix

Ce modèle présente donc un intérêt particulier pour les prédictions ciblées en zones urbaines, mais n'est pas recommandé comme remplacement complet du modèle à 6 régions pour les prédictions à l'échelle nationale.