Statistical & Probability Models

1. Hypothesis Testing

Hypothesis testing is a statistical method to make decisions about population parameters based on sample data.

- Null hypothesis (H₀): statement of no effect or no difference.
- Alternative hypothesis (H1): statement we want to test.

Common tests: z-test, t-test, chi-square test, ANOVA.

Steps:

- 1. State H₀ and H₁
- 2. Choose significance level (α)
- 3. Select test statistic
- 4. Compute p-value
- 5. Compare p-value with α to reject/accept H_0 .

2. Estimation

Estimation involves inferring population parameters from sample statistics.

- Point estimation: single value as an estimate (e.g., sample mean for population mean).
- Interval estimation: range of values (confidence intervals) within which parameter likely falls.

3. Confidence Intervals

A confidence interval (CI) gives a range of plausible values for a parameter.

Formula for mean with known σ : $CI = \bar{x} \pm z^*(\sigma/\sqrt{n})$.

For unknown σ , use t-distribution.

Level of confidence (e.g., 95%) indicates probability interval contains true parameter over repeated samples.

4. Probability Distributions

- Normal: continuous, symmetric, bell-shaped. Parameters: μ, σ.
- Binomial: discrete, fixed n trials, p success probability.
- Poisson: discrete, events in fixed interval, λ average rate.
- Exponential: continuous, time between events in Poisson process.

Applications: risk analysis, quality control, queuing, reliability.

5. Simulation Goals

Statistical & Probability Models

- Implement hypothesis tests on synthetic datasets.
- Generate and visualize common probability distributions.
- Construct and interpret confidence intervals.
- Estimate parameters using MLE and method of moments.