Lista 5, Zadanie 4

Wojciech Ganobis 310519

13/06/20

Mamy dwa ciągi w postaci:

 $-X = x_1, x_2, x_3, ..., x_n$

 $-Y = y_1, y_2, y_3, ..., y_n$

Z tych dwóch ciągów tworzymy jeden wspólny w postaci:

$$Z_1 = x_1, y_1, x_2, y_2, ..., x_n, y_n$$

Teraz tworzeymy kolejne ciągi przez zamienianie elementów z_i oraz z_{i+1} (gdzie $i \in \{1, 2, ..., 2n-1\}$). Takich zmian w ciągu o długości 2n można wykonać 2n-1 razy. Czyli w sumie mamy 2n ciągów.

Teraz mając 2n ciągów będziemy pytać adwersarza. Wiemy, że aby otrzymać odpowiedź musi pozostać nam dokładnie jeden ciąg
 Z. Mając 2n możliwych zestawów, musimy udowodnić, że zapytanie usuwa conaj
wyżej jeden ciąg Z.

Jedyne sensowne zapytania to "jak x_i jest w stosunku do y_j ". Eliminacja odbywa się tylko wtedy gdy:

-i = j.