Lecture Notes by Jonathan Alcaraz (UCR)

Geometry

Math 232A Fall 2017

Based on Lectures by

Dr. Frederick Willhelm University of California, Riverside

Lecture 1 28 Sep 2017

Introduction

Given a smooth surface $S \subseteq \mathbb{R}^3$, we'd like to compare and contrast with \mathbb{R}^n . In doing so, we may ask for analogs to lines, angles, volume, distance, length, et cetera.

In fact, we can even consider these analogs in more abstract smooth manifolds. For example:

- \bullet $\mathbb{R}P^n$
- the Torus
- the Klein Bottle

While these space can be embedded into \mathbb{R}^n , we don't usually consider them this way, but rather thin of them abstractly.

RIEMANNIAN MANIFOLDS

Definition 1.1 A Riemannian Manifold (M, g) is a C^{∞} -manifold together with a smoothly varying inner product g on M.

Definition 1.2 An *Inner Product* is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that is bilinear, symmetric, and positive definite.

Note Really there are inifinitely many inner products in a Riemmanian Manifold since each point has its own tangent space. We sometimes say g_p is the inner product at p. We say that g is a Riemannian metric, though this shouldn't be confused with standard notions of a metric.

Definition 1.3 Define the *angle* between two points $v, w \in T_pM$ for some $p \in M$ by

$$\sphericalangle(v, w) = \cos^{-1}\left(\frac{g_p(v, w)}{\|v\| \|w\|}\right)$$

where $||v||^2 := g_p(v, v)$.

In Euclidean space, given a path $c:[a,b]\to\mathbb{R}^n$, one can define the length of c by

$$len(c) = \int_{a}^{b} \|c'\| dt$$

Definition 1.4 In general Riemannian Manifolds, we can similarly define the *length* of a path $\tilde{c}:[a,b]\to M$ by

$$len(c) = \int_{a}^{b} \sqrt{g(\tilde{c}', \tilde{c}')} dt$$

In Euclidean space, we have the concept of distance between points p and q defined by dist(p,q) = len(c) where c is the unique line segment conecting p and q. However, in an abstract manifold, there may not be such a shortest path.

Definition 1.5 Given points p and q in a Riemannian Manifold M, the distance is defined by

 $dist(p,q) = \inf\{len(c) : c \text{ piece wise smooth between p and q}\}$

Example

- 1. $T\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ with g((x, v), (x, w)) = vw
- 2. Any real inner product space.

Definition 1.6 $f:(M,g)\to (N,h)$ is said to be an *isometry* is f is a diffeomorphism and $f^*(h)=g$ that is g(x,y)=h(df(x),df(y)).

Note Given any Riemannian Manifold (M, g), T_pM is an n-dimensional vector space, hence (T_pM, g_p) is isometric to (\mathbb{R}^n, can)

Lecture 2 3 Oct 2017