اضيات	مادة الريـــ
ىرياضية أو ب	شعبة العلوم ا
امل : <u>9</u>	المعــــــعــا
أربع ساعسات	مدة الانجاز:

الإمتحـــات الوطني الموحد لنيل شهادة البكالوريــــــ

الدورة الإستدراكية 2013

|--|

	الجزءان I و I مستقلان فيما بينهما \square
$x * y = \frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)}$:	نامجال [الكل x و y من المجال x لكل x لكل المجال x

G يب داخلي في المجموعة	بین أن * قانون تر ك	0,50 ن 🔳 🚺

نذکر أن $(\times, *_{\mathbb{R}})$ زمرة تبادلية $f(x) = \frac{x+2}{x+1}$: و نعتبر التطبيق f المعرف من \mathbb{R}^*_+ نحو G بما يلي [

. (G,*) نحو (\mathbb{R}_+^*, \times) نحو نقابلي من f نحو f نحو f نحو f نحو f

. زمرة تبادلية و حدد عنصرها المحايد ($G_{,*}$) استنتج أن ($G_{,*}$) زمرة تبادلية و 0,50 ن|

$$I = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$
 : وحدتها $\mathcal{O} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ علقة واحدية صفرها : $\mathcal{O} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ و وحدتها : $\mathcal{O} = \mathcal{O} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$

.
$$A=egin{pmatrix} 0&3&2\\0&0&1\\0&0&0 \end{pmatrix}$$
 : فضاء متجهي حقيقي و نضع $\mathscr{M}_3(\mathbb{R}),+,\cdot)$ و أن $\mathscr{M}_3(\mathbb{R}),+,\cdot)$

 $(\mathcal{M}_3(\mathbb{R}),+, imes)$ ثم استنتج أن A قاسم للصفر في الحلقة $A^3=\mathcal{O}$: آ 0,50 ن ا

> . $(A^2 - A + I)(A + I) = I$: نحقق أن [-1]0,50 ن

. ثم استنتج أن المصفوفة (A+I) تقبل مقلوبا في $(\mathcal{M}_3(\mathbb{R}),+, imes)$ يتم تحديده

. $M(a,b) = a \cdot I + b \cdot A$: لكل $a \in A$ نضع $B \in A$ **2**||**II**| 0,75 ن

 $E = \{ M(a,b) / (a,b) \in \mathbb{R}^2 \}$: و نعتبر المجموعة

بین أن $(E,+,\cdot)$ فضاء متجهی حقیقی و حدد أساسا له .

التمرين الثاني: (3 ن)

يحتوى صندوق على 3 كرات حمراء و 4 كرات سوداء لا يمكن التمييز بينها باللمس. نسحب عشوائيا بالتتابع و بإحلال 4 كرات من الصندوق و نعتبر المتغير العشوائي X الذي

يساوي عدد الكرات السوداء المسحوبة من الصندوق.

حدد قانون احتمال المتغير العشوائي X. 1,00 ن|| ا

أحسب E(X) الأمل الرياضي للمتغير العشوائي X. 0,50 ن

ننجز التجربة العشوائية التالية في ثلاث مراحل كالأتي:

المرحلة الثانية: نضيف إلى الصندوق 5 كرات لها نفس لون الكرة المسحوبة في المرحلة الأولى.

المرحلة الثالثة: نسحب بالتتابع و بدون إحلال 3 كرات من الصندوق الذي أصبح يحتوي على

12 كرة بعد المرحلة الثانية.

EXCEL

ا نعتبر الأحداث التالية :	
$N=\{$ الكرة المسحوبة في المرحلة الأولى سوداء $\}$.	
$R = \{$ الكرة المسحوبة في المرحلة الأولى حمراء $\}$.	
$E = \{$ جميع الكرات المسحوبة في المرحلة الثالثة سوداء $\}$.	
$p(E\cap N)=rac{12}{55}$: بين أن $igcup igcup i$	 0.50
$p(E)$ أحسب $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
. أحسب احتمال الحدث R علما أن الحدث E قد تحقق	0,50
التمرين الثالث: (3,5 ن)	
Centre Excel in ENROPICEMENT in de COACHING SCOLAIRE	
ا لیکن a عددا عقدیا یخالف a .	
: المعادلة ذات المجهول z التالية (z المعادلة ذات المجهول z التالية (z المعادلة ذات المجهول z	
. (E) هما حلي المعادلة $z_2=rac{(a-1)(1-i)}{2}$ و $z_1=rac{(a-1)(1+i)}{2}$: بين أن $z_1=rac{(a-1)(1+i)}{2}$	0,50 ن
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$(0) (\theta - \pi)$	0,50 ن
استنتج الشكل المثلثي لكل من z_1 و z_2 . $igcircle igcap Z_1$. $igcircle igcap Z_1$. $igcircle igcap Z_1$. $igcap igcap Z_1$.	1,00 ك
المستوى العقدي منسوب إلى معلم متعامد ممنظم $(\sigma, \vec{u}, \vec{v})$. $B'(1)$ و $B(-i)$ و $A(a)$ و نعتبر النقط $\Re(a) < 0$ و $B'(1)$ و $B'(1)$ المستوى العقدي منسوب إلى معلم متعامد ممنظم $B(-i)$.	
	0,50 ن
المام المام الذي مركزه I و قياس زاويته I و I الدوران الذي مركزه I و قياس زاويته I	1
ي نضع : $C'=r_1(C)$ نضع : $C'=r_1(C)$ نضع :	3 3,2 3
ر المان c' الحق a' و ليكن c' الحق a' و a' و لحق a' و لحق a' و الماد a' و الماد a' و الماد a'	
ارتفاع في المثلث $(\frac{a'-c'}{a-1})$ ثم استنتج أن المستقيم (AB') ارتفاع في المثلث $(\frac{a'-c'}{a-1})$	0.50 ن
التمرين الرابع: (8,25 ن)	
	•••••
$\begin{cases} f(x) = \frac{1}{\sqrt{1 + (x \ln x)^2}} : يا تكن f الدالة العددية المعرفة على المجال 0, +\infty الدالة العددية المعرفة على المجال$	
$\int f(0) = 1$	
$\lim_{x \to +\infty} f(x)$ بين أن الدالة f متصلة على اليمين في النقطة 0 ثم أحسب أن الدالة f	0,50 ن
$x \to +\infty$ ($\lim_{x \to 0^+} x(\ln x)^2 = 0$ أدرس قابلية اشتقاق f على اليمين في النقطة f (يمكنك استعمال النتيجة أدرس قابلية اشتقاق المحتمد أله النقطة f على اليمين في النقطة f أدرس قابلية اشتقاق المحتمد	0,50 ن
$\lim_{x \to 0^+} x (\text{m} x) = 0$. $\lim_{x \to 0^+} x (\text{m} x) = 0$	ن 0,50 ن
$(\forall x > 0) ; f'(x) = \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$	
ر $(1 + (x \ln x)^2)^2$. f غيرات الدالة f	0,50 ن
<u>الدورة الإستدراكيـة 2013 - الصفحة: 248</u>	

 $F(x)=\int_0^x f(t)\,dt$: يما يلي : $[0,+\infty[$ المعرفة على المعرفة على المجال $[0,+\infty[$ المنحنى الممثل للدالة F في معلم متعامد ممنظم (\mathcal{C}_F) المنحنى الممثل الدالة F في معلم متعامد ممنظم (\mathcal{C}_F) . $[e, +\infty[$ على المجال على الدالة أصلية للدالة $x\mapsto \frac{1}{x\ln x}$ 0,25 ن $(\forall t \geq e)$; $t \ln t < \sqrt{1 + (t \ln t)^2} < \sqrt{2} t \ln t$: بين أن [-2]0,50 ن $(\forall t \ge e) \; ; \; \frac{1}{\sqrt{2}} \ln(\ln x) < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^2}} dt < \ln(\ln x) \; : يين أن$ 0,75 ن $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$: و أن $\lim_{x \to +\infty} F(x) = +\infty$: استنتج أن $\mathbf{2}$ 0,50 ن يقبل نقطتي انعطاف المطلوب تحديد أفصول كلّ واحدة منهما . $igl(\mathscr{C}_F)$ 0,50 ن $(F\left(\frac{1}{a}\right)\approx 0.4$ و $F(1)\approx 0.5$ د ناخذ من أجل ذلك $F(1)\approx 0.5$ و $F(1)\approx 0.5$ 1,00 ن . $\varphi(x) = x - F(x)$: نضع [0, $+\infty$ [لكل x من المجال . φ بين أن φ الدالة $\varphi(x)=+\infty$ ثم ادرس تغيرات الدالة الم $\varphi(x)=+\infty$ 0,75 ن . $[0,+\infty[$ في المجال α_n نقبل حلا وحيدا α_n نقبل من $\varphi(x)=n$ نقبل من n من n من n نقبل علام بين أنه لكل م 0,50 ن $\lim_{n\to\infty} lpha_n$ بين أن : $lpha_n \geq n$; $lpha_n \geq n$ ثم أحسب lacksquare0,50 ن $(\forall n \geq 1) \; ; \; 0 < \frac{F(\alpha_n)}{\alpha} < \frac{F(n)}{n} + f(n) \; : این أن [4]$ 0,50 ن (من أجل ذلك يمكن استعمال مبر هنة التزايدات المنتهية) $\lim_{n\to\infty} \left(\frac{a_n}{n}\right)$: أحسب النهاية $\frac{1}{2}$ 0,50 ن $v_n = \ln(u_n)$ و $u_n = \left(\frac{arctan(n)}{arctan(n+1)}\right)^{n^2}$: الكل عدد صحيح طبيعي غير منعدم n نضع [$(\forall n \geq 1)$; $v_n = n^2[\ln(\arctan(n)) - \ln(\arctan(n+1))]$: تحقق أن 0,25 ن ا باستعمال مبر هنة التزايدات المنتهية بين أن: 0,50 ن $(\forall n \ge 1), (\exists c \in]n; n+1[); v_n = \frac{-n^2}{(1+c^2)arctan(c)}$ $(\forall n \geq 1) \; ; \; \frac{-n^2}{(1+n^2)arctan(n)} < v_n < \frac{-n^2}{(1+(1+n)^2)arctan(n+1)} \; : ن أن :$ [3] 0,50 ن $\lim_{n \to \infty} u_n$: أحسب النهاية $\boxed{4}$ <u>0,50</u> ن

— أكتوبر 2013 - الصفحة : 49

$2 > \frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)}$

(2) $\forall (x,y) \in G^2 \; ; \; 2 > x * y \mid :$ يعنى

 $\forall (x,y) \in G^2$; 1 < x * y < 2 : من النتيجتين (1) و (2) من النتيجتين $\forall (x,y) \in G^2$; $x * y \in G$: يعني

G في المجموعة و بالتالى G قانون تركيب داخلى في المجموعة

$$f: (\mathbb{R}_+^*, \times) \mapsto (G, *)$$
 لدينا f تطبيق معرف بما يلي : ______: لدينا f لدينا f لدينا f الدينا f

ان نتحقق من أن f تشاكلا يكفى أن نتحقق من أن f $\forall x, y \in \mathbb{R}_+^* ; f(x \times y) = f(x) * f(y)$

 \mathbb{R}_+^* و γ عنصرين من المجموعة

$$f(x) * f(y) = \left(\frac{x+2}{x+1}\right) * \left(\frac{y+2}{y+1}\right)$$
 : Light

$$= \frac{2\left(\frac{x+2}{x+1}-1\right)\left(\frac{y+2}{y+1}-1\right)+\left(\frac{x+2}{x+1}-2\right)\left(\frac{y+2}{y+1}-2\right)}{\left(\frac{x+2}{x+1}-1\right)\left(\frac{y+2}{y+1}-1\right)+\left(\frac{x+2}{x+1}-2\right)\left(\frac{y+2}{y+1}-2\right)}$$

$$= \frac{\left(\frac{2}{x+1}\right)\left(\frac{1}{y+1}\right) + \left(\frac{-x}{x+1}\right)\left(\frac{-y}{y+1}\right)}{\left(\frac{1}{x+1}\right)\left(\frac{1}{y+1}\right) + \left(\frac{-x}{x+1}\right)\left(\frac{-y}{y+1}\right)}$$

$$=\frac{xy+2}{xy+1}=f(x\times y)$$

$f(x) * f(y) = f(x \times y) -$ إذن : -----

(G,*) نحو (\mathbb{R}_+^*, \times) نحو اذن f نخا

لكي يكون f تقابلا يكفي أن يحقق ما يلي :

 $(\forall y \in G)$, $(\exists! x \in \mathbb{R}_+^*)$: f(x) = y

f(x) = y أو بتعبير أسهل : يكون f تطبيقا تقابليا عندما يكون للمعادلة دات المجهول x حل وحيد في \mathbb{R}^*_+ مرتبط بـ y .

f(x) = y المعادلة \mathbb{R}^*_+ المعادلة G و لنحل في بين عنصرا من المجموعة و لنحل

=y : هذه المعادلة تصبح

(x+1) نضرب طرفي هذه المعادلة في العدد الغير المنعدم

(x+2) = y(x+1) : نجد

x(1-y) = (y-1) : يعني x+2 = xy + yنضرب طرفي هذه المعادلة في العدد الغير المنعدم $\frac{1}{1-\nu}$

 $x = \frac{y-2}{1-y} \quad : \quad \text{i.e.}$

نلاحظ أن التعبير $\frac{y-2}{1-v}$ وحيد لأنه إذا افترضنا غير ذلك .

 $\frac{y-2}{1-y} = \frac{y'-2}{1-y'}$: فإنه سوف نحصل على

y - yy' - 2 + 2y' = y' - 2 - yy' + 2y:

أجوبة المتحان الدورة الاستدراكية 2013

منهجية التفكير في هذا السؤال:

 $\beta = (x-2)(y-2)$ و $\alpha = (x-1)(y-1)$ $\forall (x,y) \in G^2$; $x * y \in G$: نرید أن نبین أن $\forall (x,y) \in G^2$; 1 < x * y < 2 : يعنى نريد أن نبين أن من أجل ذلك سوف نحتاج إلى أن نبين أن :

 $\forall (x,y) \in G^2 \; ; \; x*y>1$ و x*y<2 يعني سوف نحتاج إلى أن نبين أن :

 $\forall (x,y) \in G^2$; $\alpha + \beta > 0$ و $\alpha > 0$ و $\beta > 0$. . G = [1,2] المجال x و y عنصرين من المجال x

. 1 < y < 2 و 1 < x < 2

. 0 < (y-1) < 1 و منه: 0 < (x-1) < 10 < (x-1)(y-1) < 1:

و هذا يعنى أن الكمية (x-1)(y-1) كمية موجبة قطعا .

(x-1)(y-1) > 0 : يعنى

1 < y < 2 و لدينا كذلك : 1 < x < 2

-1 < (y-2) < 0 و -1 < (x-2) < 0

يعنى أن : (x-2) و (y-2) كميتان سالبتان قطعا .

(x-2)(y-2) > 0 : يعنى موجبة قطعا يعنى غطما كمية موجبة قطعا

 $\forall (x,y) \in G^2$; x*y>1 : في المرحلة الأولى نبين أن (x-1)(y-1) > 0 : في من أجل ذلك ننطلق من الكتابة

(x-1)(y-1) + (x-2)(y-2) و نضيف إلى كلا الطرفين الكمية

2(x-1)(y-1)+(x-2)(y-2) :خصل على

$$> (x-1)(y-1) + (x-1)(y-2)$$

نضرب طرفي هذه المتفاوتة في الكمية الموجبة قطعا التالية:

$$\frac{1}{(x-1)(y-1)+(x-2)(y-2)}$$

$$\frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)} > 1$$
:

 $\forall (x,y) \in G^2$; x * y > 1 : و هذا يعني أنه

(1) $\forall (x,y) \in G^2$; x*y<2 : في المرحلة الثانية نبين أن

(x-2)(y-2)>0 : في ننطلق من الكتابة و من أجل ذلك ننطلق من الكتابة

(x-2)(y-2) و نضيف إلى كلا الطرفين الكمية

2(x-2)(y-2) > (x-2)(y-2) : نجد 2(x-1)(y-1) ثم نضيف بعد ذلك إلى طرفى هذه المتفاوتة الكمية

2(x-1)(y-1)+2(x-2)(y-2) : نجد

> (x-2)(y-2) + 2(x-1)(y-1)

2[(x-1)(y-1)+(x-2)(y-2)] يعني: > (x-2)(y-2) + 2(x-1)(y-1)

نضرب طرفى هذه المتفاوتة في الكمية الموجبة قطعا:

$$\frac{1}{(x-1)(y-1)+(x-2)(y-2)}$$

أجوبة امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحى: () أكتوبر 2013

@%@@%@@%@@%@@

y = y' : أي (y - y') = 0 : و التالي فإن التعبير $\frac{y-2}{1-y}$ وحيد . $\frac{y-2}{1-y}$ إذن المعادلة f(x)=y تقبل حلا وحيدا و هو \mathbb{R}_{+}^{*} يكفي الآن أن نتحقق من أن هذا الحل ينتمي إلى

 $\forall \ y \in]1,2[\ ; \ \frac{y-2}{1-y} > 0 \ : نبين أن نبين أن يكفي أن نبين أن :$ -1 < (y-2) < 0 : لاينا 1 < y < 2-1 < (1 - y) < 0 : إذن 1 < y < 2

إذن (y-2) و (y-2) كميتان سالبتان قطعا. أي أن خارجهما كمية موجبة قطعا .

 $\forall y \in]1,2[; \frac{y-2}{1-y} > 0 : يعني :$ $(\forall y \in G)$, $\left(\exists ! \ x = \frac{y-2}{1-y} \in \mathbb{R}_+^*\right) : f(x) = y$: إذَن

. G يعني أن f تقابل من \mathbb{R}_+^* نحو . (G,*) نحو (\mathbb{R}_+^*,\times) نحو نقابلي من f: غلاصة

نعلم أن التشاكل التقابلي يحافظ على البنية الجبرية لمجموعة الإنطلاق و يُحولها إلى مجموعة الوصول.

(F,T) يعني أنه عندما نتوفر على تشاكل تقابلي f من مجموعة (*,*) نحو فإنه نستنتج البنية الجبرية للمجموعة (F,T) انطلاقا من البنية الجبرية . f عن طريق التطبيق f

. F في قي تجميعي في E فإن T تبادلي أو تجميعي في Eإذا كان e هو العنصر المحايد للقانون st في E فإن e هو العنصر F في F المحايد للقانون

إذا كان χ' هو مماثل χ بالنسبة للقانون χ في E فإن χ' هو مماثل F بالنسبة للقانون ا في f(x)

في هذا السؤال لدينا f تشاكل تقابلي معرف بما يلي :

 $f: (\mathbb{R}_+^*, \times) \mapsto (G, *)$

إذن نستنتج البنية الجبرية للمجموعة (G,st) انطلاقا من البنية الجبرية \perp (\mathbb{R}_+^*) عن طريق التطبيق f

و بما أن $(\mathbb{R}_{+}^{*}, \times)$ زمرة تبادلية عنصرها المحايد هو العدد الحقيقي 1 f(1) فإن (G,*) زمرة تبادلية كذلك عنصرها المحايد هو العدد الحقيقي أي العدد $\frac{3}{2}$. و للتأكد من ذلك يكفي أن تتحقق من أن :

 $(\forall x \in G) \; ; \; x * \frac{3}{2} = \frac{3}{2} * x = x$

. E هو العنصر المحايد للقانون * في e هو العنصر المحايد للقانون * في نقول بأن عنصرا χ من E فاسم للصفر إذا تحققت الشروط التالية :

$$\mathcal{O} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$
التي صفر ها $(\mathscr{M}_3(\mathbb{R}), +, imes)$ انعتبر الحلقة الواحدية

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 و وحدتها

 $A^3 = A \times A \times A$ $= \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathcal{O}$

 $A^3 = \mathcal{O}$: إذن

 $A \neq 0$ نلاحظ في البداية أن $A^3 = A \times A^2 = \mathcal{O}$: و لدينا

 \mathcal{O} إذن نستنتج أن $A \neq \mathcal{O}$ و توجد مصفوفة و هي A^2 تخالف $A \times A^2 = A^2 \times A = \mathcal{O}$ و تحقق

 $(\mathcal{M}_3(\mathbb{R}),+, imes)$ إذن حسب التذكير : المصفوفة A قاسم للصفر في الحلقة

 $(A^2 - A + I) \times (A + I) = A^3 + A^2 - A^2 - A + A + I$ $= A^3 + I = O + I = I$

و بما أن A و I مصفوفتان من $\mathscr{M}_{3}(\mathbb{R})$

 $\mathscr{M}_3(\mathbb{R})$ فإن المصفوفة (A^2-A+I) عنصر من

 $\mathscr{M}_3(\mathbb{R})$ و نعلم أن (x,+, imes) حلقة تبادلية وحدتها I إذن imes تبادلي في $(A+I) \times (A^2-A+I) = (A^2-A+I) \times (A+I) = I$: يعنى $(\mathcal{M}_3(\mathbb{R}),+, imes)$ و بالتالي (A+I) مصفوفة قابلة للقلب في و مقلوبها هو المصفوفة $(A^2 - A + I)$.

$$(A+I) = \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : \underline{\psi}$$

$$(A^{2} - A + I) = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -3 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{\text{EXCLEL}}{=}$$

. $\begin{pmatrix} 1 & -3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ هي المصفوفة $\begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ مقلوب المصفوفة

لكي يكون $(E,+,\cdot)$ فضاء متجهي حقيقي يكفي أن نتحقق من الشروط التالية :

$$\left(egin{array}{ll} \forall \ x,y \in E \\ orall \ lpha, eta \in \mathbb{R} \end{array}
ight)$$
 ;
$$\left\{ egin{array}{ll} (\alpha,y) \in E \\ (\alpha,y) \in \mathbb{R} \end{array} \right\}$$
 ;
$$\left\{ egin{array}{ll} (\alpha,y) \in \mathbb{R} \\ (\alpha+\beta) \cdot x = \alpha \cdot x + \beta \cdot x \\ (\alpha \times \beta) \cdot x = \alpha \cdot (\beta \cdot x) \\ 1 \cdot x = x \end{array} \right.$$

بحيث × هو الضرب في ₪

 $\mathscr{M}_3(\mathbb{R})$ و + هو جمع المصفوفات في

و ٠ هو ضرب مصفوفة في عدد حقيقي .

 $(\mathcal{M}_3(\mathbb{R}),+)$ في البداية نبين أن (E,+) زمرة جزئية من الزمرة لين أن E لدينا E جزء غير فارغ من E

. E مصفوفتان من M(c,d) و M(a,b)

$$M(a,b) - M(c,d) = aI + bA - cI - dA$$
 : لاينا
$$= (a-c)I + (b-d)A$$
$$= M(a-c;b-d) \in E$$

إذن (E, +) زمرة جزئية من الزمرة (E, +) زمرة جزئية من الزمرة (E, +) زمرة تبادلية (E, +) فإن (E, +) زمرة تبادلية (E, +) نستنتج الخاصيات المتبقية من خلال كون E جزء من الفضاء المتجهي الحقيقي (F, +, +) و كون E جزء مستقر بالنسبة للقانون (F, +) (E, +) و ذلك (E, +) (E, +) و ذلك (E, +) (E, +)

$$(2) \left(\begin{array}{l} \forall \ A, B \in E \\ \forall \ \alpha, \beta \in \mathbb{R} \end{array} \right) \quad ; \quad \left\{ \begin{array}{l} \alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B \\ (\alpha+\beta) \cdot A = \alpha \cdot A + \beta \cdot A \\ (\alpha \times \beta) \cdot A = \alpha \cdot (\beta \cdot A) \\ 1 \cdot A = A \end{array} \right.$$

من النتيجتين (1) و (2) نستنتج أن : $(E,+,\cdot)$ فضاء متجهي حقيقي نعتبر الأسرة (I,A) .

من الواضح أن الأسرة (I,A) مولاة للفضاء المتجهي $(E,+,\cdot)$.

 $\forall M(a,b) \in E$; M(a,b) = aI + bA : لأن

A يعني أن كل مصفوفة من E تكتب على شكل تأليفة خطية للمصفوفتين E لنبين الآن أن الأسرة E حرة .

من أجل ذلك ننطلق من تأليفة خطية منعدمة للمصفوفتين I و A .

$$\begin{vmatrix} a \cdot I + b \cdot A = \mathcal{O} \\ 0 & a & 0 \\ 0 & 0 & a \end{vmatrix} + \begin{pmatrix} 0 & 3b & 2b \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\Rightarrow \begin{pmatrix} a & 3b & 2b \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \left\{ \begin{array}{l} a = 0 \\ b = 0 \end{array} \right.$$

إذن الأسرة (I,A) حرة .

و بما أن (I,A) أسرة حرة و مولدة للفضاء المتجهي E فإنها أساس لهذا الفضاء المتجهي الحقيقي

عندما نسحب عشوائيا بالتتابع و بإحلال أربع كرات من صندوق يحتوي على 7 كرات فإن هذه التجربة العشوائية تحتمل 7^4 نتيجة ممكنة .

 $card(\Omega) = 7^4 = 2401$: يعني

. مو كون إمكانيات هذه التجربة العشوائية Ω

قانون احتمال المتغير العشوائي X سيكون إذن التطبيق P_X المعرف على المجموعة $\{0,1,2,3,4\}$ نحو المجال $\{0,1\}$ بما يلي :

 $P_X: \{0,1,2,3,4\} \mapsto [0,1]$

 $k \mapsto P_X(k) = p[X = k]$

. X من قيم المتغير العشوائي k من قيم المتغير العشوائي

p[X=0]:

الحدث [X=0] هو الحصول على أربع كرات كلها حمراء و توجد X=0ا مكانية لسحب الكرات الأربع .

$$p[X=0] = rac{3^4}{7^4} = rac{81}{2401}$$
 : إذن

p[X=1]: نحسب

الحدث X = X هو الحصول على كرة سوداء واحدة و ثلاث كرات حمراء . و من أجل ذلك لدينا :

41 إمكانية لسحب الكرة السوداء

السوداء الكرة السوداء لختيار السحبة صاحبة الكرة السوداء \mathcal{C}^1_4

33 إمكانية لسحب ثلاث كرات حمراء

$$p[X=1] = rac{4^1 imes C_4^1 imes 3^3}{7^4} = rac{432}{2401}$$
: إذن

p[X=2]: \underline{U}

الحدث [X=2] هو الحصول على كرتين حمر اوين و كرتين سوداوين . و من أجل ذلك لدينا :

 4^2 إمكانية لسحب الكرتين السوداوين .

. إمكانية لاختيار مكان الكرتين السوداوين \mathcal{C}_4^2

32 إمكانية لسحب الكرتين الحمر اوين.

$$p[X=2] = rac{4^2 \times C_4^2 \times 3^2}{7^4} = rac{864}{2401}$$
 : إذن

أجوية امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحي: () أكتوبر 2013 الصفحة: 252

$p(E \cap N) = p_N(E) \times p(N)$ $= p_N(E_1) \times p_N(E_2) \times p_N(E_3) \times p(N)$ $=\frac{9}{12}\times\frac{8}{11}\times\frac{7}{10}\times\frac{4}{7}=\frac{2016}{9240}=\frac{12}{55}$

$$p(E) = p(E \cap N) + p(E \cap R)$$

$$= \frac{12}{55} + p_R(E_1) \times p_R(E_2) \times p_R(E_3) \times p(R)$$

$$= \frac{12}{55} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times \frac{3}{7}$$

$$= \frac{12}{55} + \frac{72}{9240} = \frac{87}{385}$$

p[X=3] : نحسب الحدث [X=3] هو الحصول على ثلاث كرات سوداء و كرة حمراء

واحدة . و من أجل ذلك لدينا :

 1 إمكانية لسحب الكرة الحمراء 1

. إمكانية لاختيار السحبة صاحبة الكرة الحمراء C_4^1

. 4^3 إمكانية لسحب الكرات السوداء الثلاث

$$p[X=3] = rac{3^1 imes C_4^1 imes 4^3}{7^4} = rac{768}{2401}$$
 : إذن

$oldsymbol{p}[X=4]$: نحسب

الحدث [X=4] هو الحصول على أربع كرات كلها سوداء .

$$p[X=4] = rac{4^4}{7^4} = rac{256}{2401}$$
 : إِذَن

و بالتالى قانون احتمال المتغير العشوائى X هو التطبيق P_X المعرف بما يلى

$$P_X : \{0,1,2,3,4\} \mapsto [0,1]$$

$$0 \mapsto P_X(0) = \frac{81}{2401}$$

$$1 \mapsto P_X(1) = \frac{432}{2401}$$

$$2 \mapsto P_X(2) = \frac{864}{2401}$$

$$3 \mapsto P_X(3) = \frac{768}{2401}$$

$$4 \mapsto P_X(4) = \frac{256}{2401}$$

و للتأكد من صحة الجواب يجب أن نحصل على:

$$\left[\frac{81}{2401} + \frac{432}{2401} + \frac{864}{2401} + \frac{768}{2401} + \frac{256}{2401} = 1 \right]$$

$$E(X) = \sum_{0}^{4} k \cdot p[X = k]$$

$$= 0 \left(\frac{81}{2401} \right) + 1 \left(\frac{432}{2401} \right) + 2 \left(\frac{864}{2401} \right) + 3 \left(\frac{768}{2401} \right) + 4 \left(\frac{256}{2401} \right)$$

$$= \frac{5488}{2401} = \frac{16}{7}$$

 $p(E \cap N) = p_N(E) \times p(N)$: لدينا

و لدينا كذلك الحدث E هو الحصول على ثلاث كرات سوداء من خلال ثلاث سحبات متتابعة بدون إحلال.

إذن نستطيع تجزيء الحدث E في المرحلة الثالثة إلى ثلاث أحداث جزئية و مستقلة فيما بينها و هي : -

 $E = E_1 \cap E_2 \cap E_3$: إذن نكتب

 $p_N(E) = p_N(E_1) \times p_N(E_2) \times p_N(E_3)$: و منه

ÉRCEL

$$p_{E}(R) = \frac{p(R \cap E)}{p(E)} = \frac{p_{R}(E) \times p(R)}{p(E)}$$

$$= \frac{p_{R}(E_{1}) \times p_{R}(E_{2}) \times p_{R}(E_{3}) \times p(R)}{p(E)}$$

$$= \frac{\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times \frac{3}{7}}{87} = \boxed{\frac{1}{29}}$$

لنحل في مجموعة الأعداد العقدية) المعادلة التالية:

$$(E): 2z^2 - 2(a-1)z + (a-1)^2 = 0$$

$$\Delta = 4(a-1)^2 - 8(a-1)^2$$
 : لينا

$$\begin{vmatrix} = -4(a-1)^2 \\ = (2i(a-1))^2 \end{vmatrix}$$

. Z_2 و Z_1 إذن المعادلة (E) تقبل حلين عقديين

$$z_1 = \frac{2(a-1) + 2i(a-1)}{4} = \frac{(a-1)(1+i)}{2}$$
$$z_2 = \frac{2(a-1) - 2i(a-1)}{4} = \frac{(a-1)(1-i)}{2}$$

$$(a-1)=e^{i heta}-1$$
 : لدينا $a=e^{i heta}$ مع $a=e^{i heta}$ الدينا $a=e^{i heta}-1$ $=\cos heta+i\sin heta-1$ $=\cos(heta)-1+i\sin(heta)$

$$\begin{cases} \sin(\theta) = r \sin(\varphi) \end{cases} : \varphi$$

$$(\cos(\theta) - 1)^2 + \sin^2\theta = r^2(\cos^2\theta + \sin^2\theta) :$$

الصفحة : 253) أكتوبر 2013 أجوبة امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحى: (

لدينا r_1 دوران مركزه J و زاويته $\frac{\pi}{2}$. و لدينا $r_1(C)=C'$ الذن حسب التعريف العقدي للدوران نكتب

$$\left(aff(C') - aff(J)\right) = e^{\frac{i\pi}{2}} \left(aff(C) - aff(J)\right)$$

$$\iff \left(c' - \frac{a+i}{2}\right) = i\left(i - \frac{a+i}{2}\right)$$

$$\Leftrightarrow c' = \frac{-1 - ia + a + i}{2} = \frac{(a-1)(1-i)}{2} = z_2$$

و بنفس الطريقة لدينا r_2 دوران مركزه K و زاويته r_2 دوران مركزه و لدينا $r_2(A)=A'$ إذن حسب التعريف العقدي للدوران نكتب :

$$\left(aff(A') - aff(K)\right) = e^{\frac{i\pi}{2}} \left(aff(A) - aff(K)\right)$$

$$\iff \left(a' - \frac{a - i}{2}\right) = i\left(a - \frac{a - i}{2}\right)$$

$$\Leftrightarrow a' = \frac{ia - 1 + a - i}{2} = \frac{(a - 1)(1 + i)}{2} = z_1$$

$$\frac{a'-c'}{a-1} = \frac{\frac{(a-1)(i+1)}{2} - \frac{(a-1)(1-i)}{2}}{\frac{a-1}{1}} = \frac{(a-1)(i+1-1+i)}{2} \times \frac{1}{(a-1)} = i$$

$$\operatorname{arg}\left(\frac{a^{'}-c^{'}}{a-1}\right) \equiv \frac{\pi}{2} \left[\pi\right]$$
 و منه : $\frac{a^{'}-c^{'}}{a-1} = i$: إذن : $\left(\overline{B^{'}A},\overline{C^{'}A^{'}}\right) \equiv \frac{\pi}{2} \left[\pi\right]$ يعني : $\left(\overline{B^{'}A},\overline{C^{'}A^{'}}\right) = \frac{\pi}{2} \left[\pi\right]$

. (A'C') عمودي على المستقيم و هذا يعني أن المستقيم (AB') عمودي المثلث (AB'C') أي أن المستقيم (AB') $A'C' \perp (AB') \perp B' \in (AB')$ لأن $B' \in (AB')$ و

- التمرين الرا<u>بع</u> [[[[[[اله-

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{\sqrt{1 + (x \ln x)^2}} = \frac{1}{\sqrt{1 + (0^+)^2}}$ $=\frac{1}{\sqrt{1+0}}=1=f(0)$

 $\lim_{x \to 0^+} f(x) = f(0) \quad \exists \quad$

و هذا يعنى أن الدالة f متصلة على يمين الصفر .

 $+\infty$ لنحسب الأن نهاية f بجوار

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + (x \ln x)^2}} = \frac{1}{\sqrt{1 + (+\infty)^2}}$$

$$= \frac{1}{\sqrt{1 + \infty}} = \frac{1}{+\infty} = 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

 $\cos^2\theta - 2\cos\theta + 1 + \sin^2\theta = r^2$: يعنى

@**0**%%00%%00%00%%00%%00%

$$2(1 - \cos \theta) = r^2$$
 : عني

$$2\left(1-\left(2\cos^2\left(\frac{\theta}{2}\right)-1\right)\right)=r^2$$
 : يعني

$$2\left(2-2\cos^2\left(\frac{\theta}{2}\right)\right)=r^2$$
 : يعني

$$4\left(1-\cos^2\left(\frac{\theta}{2}\right)\right)=r^2$$
 : يعني

$$4 \sin^2\left(rac{ heta}{2}
ight) = r^2$$
 : يعني

$$r>0$$
 يعني : $r=2\sin\left(rac{ heta}{2}
ight)$ و

 $\sin \theta = r \sin \varphi$ يكفى الآن تحديد قيمة φ . و ننطلق من الكتابة

EXCEL

$$\sin\left(2\cdot\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\sin(\varphi)$$
 : يعني

$$2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\sin(\varphi)$$
 : يعني

$$\cos\left(\frac{\theta}{2}\right) = \sin(\varphi)$$
 : يعني

$$\cos\left(\frac{\theta}{2}\right) = \cos\left(\frac{\pi}{2} - \varphi\right)$$
 : يعني

$$\cos\left(\frac{\theta}{2}\right) = \cos\left(\varphi - \frac{\pi}{2}\right)$$
 : يعني

$$\frac{\theta}{2}\equiv arphi-rac{\pi}{2}\;[2\pi]$$
 : يعني

$$arphi \equiv rac{ heta - \pi}{2} \; [2\pi]$$
 يعني

$$(a-1)=2\sin\left(rac{ heta}{2}
ight)e^{i\left(rac{ heta-\pi}{2}
ight)}$$
 : إذن

$$(1+i) = \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2}e^{\frac{i\pi}{4}}$$

$$(1-i) = \sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right) = \sqrt{2}e^{\frac{-i\pi}{4}}$$

$$z_{1} = \frac{(a-1)(1+i)}{2} = \frac{1}{2} \cdot 2\sin\left(\frac{\theta}{2}\right) \cdot \sqrt{2} e^{\frac{i\pi}{4}} \quad : \dot{\psi}$$

$$= \sqrt{2}\sin\left(\frac{\theta}{2}\right) e^{\frac{i\pi}{4}}$$

$$z_2 = \frac{(a-1)(1-i)}{2} = \frac{1}{2} \cdot 2\sin\left(\frac{\theta}{2}\right) \cdot \sqrt{2} e^{\frac{-i\pi}{4}}$$
$$= \sqrt{2} \sin\left(\frac{\theta}{2}\right) e^{\frac{-i\pi}{4}}$$

[AC] لدينا I هي منتصف القطعة

$$aff(J) = \frac{aff(A) + aff(C)}{2} = \frac{a+i}{2}$$
 : إذن

. [AB] و لدينا K هي منتصف القطعة

$$aff(K) = \frac{aff(A) + aff(B)}{2} = \frac{a-i}{2}$$
 : إذن

جوبة امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحى:

---: لدر اسة اشتقاق الدالة f على اليمين في 0 نحسب النهاية التالية $\lim_{x \to 0^+} \left(\frac{f(x) - f(0)}{x - 0} \right)$

و من أجل ذلك نستعين بالنهايتين التاليتين :

$$\lim_{x \to 0^+} x (\ln x)^2 = 0 \qquad \text{if } \lim_{x \to 0^+} (x \ln x) = 0$$

$$\lim_{x \to 0^+} \left(\frac{f(x) - f(0)}{x - 0} \right) = \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1}{\sqrt{1 + (x \ln x)^2}} - 1 \right) :$$

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1 - \sqrt{1 + (x \ln x)^2}}{\sqrt{1 + (x \ln x)^2}} \right)$$

-: نضرب البسط و المقام في المرافق $\left(1+\sqrt{1+(x\ln x)^2}
ight)$ نجد

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1 - \sqrt{1 + (x \ln x)^2}}{\sqrt{1 + (x \ln x)^2}} \right) \left(\frac{1 + \sqrt{1 + (x \ln x)^2}}{1 + \sqrt{1 + (x \ln x)^2}} \right)$$

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{1 - 1 - (x \ln x)^2}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= \lim_{x \to 0^+} \frac{1}{x} \left(\frac{-(x \ln x)^2}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= \lim_{x \to 0^+} (-x(\ln x)^2) \left(\frac{1}{\sqrt{1 + (x \ln x)^2} \left(1 + \sqrt{1 + (x \ln x)^2} \right)} \right)$$

$$= (-0) \left(\frac{1}{\sqrt{1 + (0)^2} \left(1 + \sqrt{1 + (0)^2} \right)} \right) = (0) \left(\frac{1}{2} \right) = 0$$

$$ightharpoons \left[\lim_{x\to 0^+} \left(\frac{f(x)-f(0)}{x-0}\right)=0\right]$$
: إذن

. $f_d^{'}(0) = 0$ و هذا يعني أن الدالة f قابلة للإشتقاق على يمين الصفر و

. I دالة معرفة و قابلة للإشتقاق على مجال g

و كانت f دالة معرفة و قابلة للإشتقاق على مجال f .

 $g(I)\subseteq J$: إذ تكون الدالة $f\circ g$ قابلة للإشتقاق على المجال الإا كان $f\circ g$

$$f(x) = \frac{1}{\sqrt{1 + (x \ln x)^2}}$$
: لاينا

 $(\forall x \in \mathbb{R})$; $\varphi(x) = \frac{1}{\sqrt{1+x^2}}$: نضع

 $\forall x \in]0; +\infty[; \psi(x) = x \ln x : \psi(x) = x \ln x : \psi(x) \in x \in]0; +\infty[; f(x) = \varphi \circ \psi(x) : \psi(x) = x \ln x : \psi(x) = x$

الدينا ψ دالة معرفة و قابلة للاشتقاق على المجال ϕ دالة معرفة و قابلة للاشتقاق على ϕ .

 $]0;+\infty$ ون الدالة ψ ه φ قابلة للاشتقاق على $]\infty+0$

 $\psi(\]0,+\infty[\)\subseteq\mathbb{R}$ إذا كان : \mathbb{R} \cong الماء الما

 $[0,+\infty]$ يكن χ عنصرا من المجال

 $\psi(x) = x \ln x \in \left[\frac{1}{e}, +\infty\right] \subset \mathbb{R}$: (x, y)

 $\psi(\]0,+\infty[\)\subseteq\mathbb{R}$: إذن

.]0; $+\infty$ [المجال على المجال $f=arphi\circ\psi$ إذن الدالة

@@**%**@@%@@%@@%@@

- ليكن χ عنصرا من المجال $]0,+\infty$. لدينا

$$f(x) = \frac{1}{\sqrt{1 + (x \ln x)^2}} = (1 + (x \ln x)^2)^{\frac{-1}{2}}$$

$$f'(x) = \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-1}{2} - 1} (1 + (x \ln x)^2)' : \frac{1}{2}$$

$$= \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-3}{2}} (2x \ln x) (x \ln x)'$$

$$= \frac{-1}{2} (1 + (x \ln x)^2)^{\frac{-3}{2}} (2x \ln x) (1 + \ln x)$$

$$= \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$

$$(\forall x > 0) \; ; \; f'(x) = \frac{-x \ln x \, (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$
 : نِيْن

نلاحظ في البداية أن : $0 = \frac{3}{2} > 0$; $(1 + (x \ln x)^2)^{\frac{3}{2}} > 0$; نلاحظ في البداية أن : $(1 + \ln x)$ و $(\ln x)$ و نتعلق بإشارتي الكميتين $(\ln x)$ و الكمية $\ln x$ تتعدم في 1 و الكمية $\frac{1}{e}$. نستنتج إذن جدول تغيرات الدالة $\frac{1}{e}$ كما يلي :

x	0	1	$\frac{1}{e}$		1		+∞
ln x		_		_	0	+	
$1 + \ln x$		_	0	+		+	
$f^{'}(x)$		_	0	+	0	_	
f	1		$f(\frac{1}{e})$)	1		•

•—•((((((i 2))))))))))

$$\int \frac{1}{x \ln x} dx = \int \frac{\left(\frac{1}{x}\right)}{\ln x} dx = \int \frac{(\ln x)'}{(\ln x)} dx :$$

$$= \ln(|\ln x|) + c ; c \in \mathbb{R}$$

 $\ln x \geq 1$: فإن $x \in [e; +\infty[$: بما أن

نأخذ الثابتة c تساوي c نجد أن الدالة c دالة أصلية للدالة c على المجال c على المجال . c على المجال c على المجال c على المجال .

 $[1;+\infty]$ و أشير إلى أن $x \to \ln(\ln x)$ دالة معرفة و متصلة على $x \to \ln(\ln x)$. $[e,+\infty]$ حال في متصلة على $[e,+\infty]$ لأن : $[e,+\infty]$

أجوية امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحي : () أكتوبر 2013 الصفحة : 55

. $[e, +\infty]$ ليكن t عنصرا من المجال

 $(t \ln t)^2$ ننطلق من المتفاوتة 1 < 0 و نضيف إلى طرفيها الكمية $(t \ln t)^2 < 1 + (t \ln t)^2$: نجد

 $\sqrt{(t \ln t)^2} < \sqrt{1 + (t \ln t)^2}$: و منه

(1) $(\forall t \ge e)$; $t \ln t < \sqrt{1 + (t \ln t)^2}$: يعنى . $\ln t \geq 1$ إذن $t \geq e$

 $t \ln t \ge e > 1$: نضر به هاتين المتفاوتتين طرفا بطرف نجد

 $(\forall t \geq e)$; $t \ln t > 1$: نحتفظ بالمتفاوتة $(\forall t \ge e)$; $(t \ln t)^2 > 1$: التي تصبح

 $(t \ln t)^2$ نضيف إلى طرفى هذه المتفاوتة الكمية $(\forall t \ge e)$; $2(t \ln t)^2 > 1 + (t \ln t)^2$:

(2) $(\forall t \ge e)$; $\sqrt{2} t \ln t > \sqrt{1 + (t \ln t)^2}$: يعني من النتيجتين (1) و (2) نستنتج أن :

 $(\forall t \ge e) \; ; \; t \ln t < \sqrt{1 + (t \ln t)^2} < \sqrt{2} t \ln t$

$$(\forall t \geq e)$$
 ; $\frac{1}{\sqrt{2}} \left(\frac{1}{t \ln t}\right) < \frac{1}{\sqrt{1 + (t \ln t)^2}} < \frac{1}{t \ln t}$ ليكن $x \geq e$ ليكن $x \leq e$ ليكن $x \leq e$

: غدخل التكامل $\int_{
ho}^{x}dt$ على هذا التأطير نجد

$$-\frac{1}{\sqrt{2}} \int_{e}^{x} \left(\frac{1}{t \ln t}\right) dt < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^{2}}} dt < \int_{e}^{x} \frac{1}{t \ln t} dt$$

$$rac{1}{\sqrt{2}}[\ln(\ln t)]_e^{\chi} < \int_e^{\chi} rac{1}{\sqrt{1+(t\ln t)^2}} dt < [\ln(\ln t)]_e^{\chi}$$
 : يعني

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^{2}}} dt < \ln(\ln x) \quad :$$
يعني

$$-\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} \frac{1}{\sqrt{1 + (t \ln t)^{2}}} dt < \ln(\ln x)$$

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} f(t) dt < \ln(\ln x) : \dot{\psi}$$

 $\lim_{x \to +\infty} \ln(\ln x) = \ln(\ln(+\infty)) = \ln(+\infty) = +\infty$: لاينا

إذن نحصل على الوضعية التالية:

$$\frac{1}{\sqrt{2}\ln(\ln x)} < \int_{e}^{x} f(t) dt < \underbrace{\ln(\ln x)}_{x \to +\infty}$$

$$+\infty$$

$$(1) \left[\lim_{x \to +\infty} F(x) = +\infty \right] : باذن$$

$$\frac{1}{\sqrt{2}}\ln(\ln x) < \int_{e}^{x} f(t) dt < \ln(\ln x)$$

نضرب أطراف هذا التأطير في العدد الموجب قطعا χ نجد:

$$-rac{1}{\sqrt{2}} \left(rac{\ln(\ln x)}{x}
ight) < rac{1}{x} \int_{e}^{x} f(t) \, dt < rac{\ln(\ln x)}{x}$$

$$\lim_{x \to +\infty} \left(rac{\ln(\ln x)}{x}
ight) :$$
نحسب النهاية :

$$\lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) = \lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) \times \frac{\ln x}{\ln x}$$

$$= \lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{\ln x} \right) \times \frac{\ln x}{x}$$

$$= \lim_{\substack{x \to +\infty \\ y \to +\infty \\ y = \ln x}} \frac{\ln y}{y} \times \frac{\ln x}{x} = 0 \times 0 = 0$$

$$\lim_{x \to +\infty} \left(\frac{\ln(\ln x)}{x} \right) = 0 : 0$$

و نحصل بذلك على الوضعية التالية:

$$\underbrace{\frac{1}{\sqrt{2}} \left(\frac{\ln(\ln x)}{x} \right)}_{x \to +\infty} < \frac{1}{x} \int_{e}^{x} f(t) dt < \underbrace{\frac{\ln(\ln x)}{x}}_{x \to +\infty}$$

و منه حسب خاصية النهايات و التأطير نستنتج أن :

$$\lim_{x \to +\infty} \frac{1}{x} \int_{e}^{x} f(t) dt = 0$$

$$\lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt$$

$$= \lim_{x \to +\infty} \frac{1}{x} \left(\int_0^e f(t) dt + \int_e^x f(t) dt \right)$$

$$= \lim_{x \to +\infty} \frac{1}{x} \left(\int_0^e f(t) dt \right) + \lim_{x \to +\infty} \frac{1}{x} \left(\int_e^x f(t) dt \right)$$

$$= \left(\frac{1}{+\infty} \right) \times \left(\begin{array}{c} constante \\ r\'{e}elle \end{array} \right) + 0 = 0$$

$$(2) \left[\lim_{x \to +\infty} \frac{F(x)}{x} = 0 \right] : باذن$$

و يمكن تفسير النهايتين (1) و (2) بقولنا : المنحنى (\mathscr{C}_{F}) يقبل فرعا شلجميا في اتجاه محور الأفاصيل.

•—•((((((<u>a</u> 2)))))))

. F''(x) ندرس إشارة المشتقة الثانية $(F_F)''(x)$ ندرس السارة المشتقة الثانية

$$F(x)=\int_0^x f(t)\,dt$$
 : يدينا F دالة عددية معرفة على $F(x)=[0,+\infty[$ بما يلي $F(x)=[0,+\infty[$ بن $F(x)=[0,+\infty[$

 $\forall x \in [0, +\infty[; F'(x) = f(x) :]$ أو بتعبير الاشتقاق نكتب و بما أن الدالة f قابلة للاشتقاق على المجال $]\infty+\infty[$. $]0, +\infty[$ فإن الدالة F' قابلة للاشتقاق على المجال

$$(\forall x \in]0, +\infty[); F''(x) = f'(x) = \frac{-x \ln x (1 + \ln x)}{(1 + (x \ln x)^2)^{\frac{3}{2}}}$$
: و لدينا

 $]0,+\infty[$ على المجال F''(x) إذن تنعدم الدالة . $(1 + \ln x)$ عندما تتعدم الكميتين و $(\ln x)$ $x=rac{1}{e}$ أي تنعدم الدالة F''(x) إذا كان x=1 أو x=1 أو تتغير إشارتها بجوار تلك النقطتين و ذلك حسب جدول الإشارة السابق . و بالتالي (\mathscr{C}_F) يقبل نقطتي انعطاف أفصو لاهما على التوالي $\frac{1}{2}$ و 1 .

و يمكن أن نضيف جدول التقعر للمنحنى (\mathcal{G}_{E}) و ذلك انطلاقا من جدول إشارة f'(x). $\forall x \in]0, +\infty[: F''(x) = f'(x) : \dot{V}$

 $\lim_{x \to +\infty} \frac{F(x)}{x} = 0 : \text{insign}$ $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$ $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$ $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$

$$\lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} (x - F(x)) = \lim_{x \to +\infty} x \left(1 - \frac{F(x)}{x} \right)$$
$$= (+\infty)(1 - 0) = +\infty$$

 $\lim |\varphi(x) = +\infty|$: إذن

arphi(x)=x-F(x) : بما يلي إ $0,+\infty$ معرفة على معرفة على من جهة ثانية لدينا arphi معرفة على F'(x) = f(x) : بحیث $[0, +\infty]$ علی علی قابلة للاشتقاق علی آ $[0,+\infty[$ المجال على المجال ϕ $\varphi'(x) = 1 - F'(x) = 1 - f(x)$: $e^{-\frac{1}{2}}$ f(x)=1 فإن x=0 غان المخط أنه إذا كان $\varphi'(x) = 0$: أي 1 - f(x) : يعنى

 $f(0) \ge f(x) \ge f\left(\frac{1}{e}\right)$ فإن $0 \le x \le \frac{1}{e}$

 $\left[0, \frac{1}{e}\right]$ لأن f دالة تناقصية على المجال f ذال f إذن f f f f

 $\varphi^{'}(x) \geq 0$: أي $1 - f(x) \geq 0$: يعنى $[0, \frac{1}{a}]$ إذن φ دالة تزايدية على المجال

 $f\left(\frac{1}{e}\right) \le f(x) \le f(1)$ فإن فإن $\frac{1}{e} \le x \le 1$ $\left[\frac{1}{a},1\right]$ لأن f دالة تزايدية على المجال

 $\varphi'(x) \ge 0$: أي $1 - f(x) \ge 0$: يعني $f(\frac{1}{a}) \le f(x) \le 1$ $\left[\frac{1}{2},1\right]$ إذن $\left[\frac{1}{2},1\right]$. المجال

> $f(x) \le f(1)$: فإن $x \ge 1$: إذا كان f دالة تناقصية على المجال f .

 $\phi'(x) \ge 0$: أي $f(x) \ge 0$ يعني $f(x) \le 1$ أي $f(x) \le 1$ $[1, +\infty]$ إذن φ دالة تزايدية على المجال

 $[0,+\infty[$ دالة تزايدية قطعا على المجال φ

 $[0,+\infty]$ دالة متصلة و تزايدية قطعا على المجال . $\varphi(\,[0,+\infty[\,)$ نحو صورته $(\,0,+\infty[\,]$ نحو المجال $\,\phi$ $\varphi([0,+\infty[)=\left[\varphi(0);\lim_{x\to+\infty}\varphi(x)\right]=[0,+\infty[::]]$ و لدينا $[0,+\infty[$ يتقابل من المجال $]\infty+\infty[$ نحو المجال $]\infty+\infty[$ و هذا يعنى حسب تعريف التقابل:

 $(\,\forall\,y\,\epsilon\,[0,+\infty[\,)\,,(\,\exists!\,x\,\epsilon\,[0,+\infty[\,)\,\,;\,\,\varphi(x)=y$ البكن n عددا صحيحا طبيعيا n $\mathbb{N} \subset [0, +\infty[: \dot{0}, +\infty[: \dot{0}$

 $[0,+\infty[$ ان يوجد عنصر وحيد نرمز له به α_n في المجال

 $\varphi(\alpha_n) = n$: بحيث أو بتعبير آخر : المعادلة $\varphi(x)=n$ ذات المجهول x تقبل حلا وحيدا . N من n في المجال $\infty + \infty$ و ذلك كيفما كان n من α_n

 $(\forall n \in \mathbb{N})$, $(\exists ! \ \alpha_n \geq 0)$; $\ \varphi(\alpha_n) = n$: أو بتعبير أخير

 $(\forall n \in \mathbb{N})$; $\alpha_n \geq 0$: أن (بالسؤال بالسؤال بال . $[0,+\infty[$ لأن $F(\alpha_n)\geq F(0)$ لأن $F(\alpha_n)$ لأن لأن أ (1) $(\forall n \in \mathbb{N})$; $F(\alpha_n) \geq 0$: يعني أن $(\forall x \geq 0)$; $\varphi(x) = x - F(x)$: و نعلم أن $\alpha_n \geq 0 :$ لأن $\varphi(\alpha_n) = \alpha_n - F(\alpha_n) :$ إذن (2) $F(\alpha_n) = \alpha_n - \varphi(\alpha_n)$: يعني

> $\alpha_n \geq \varphi(\alpha_n)$: يعنى $(\forall n \in \mathbb{N})$; $\varphi(\alpha_n) = n$: و نعلم أن

 $lpha_n - arphi(lpha_n) \geq 0$: بدمج (1) و (2) نحصل على

 $(\forall n \in \mathbb{N})$; $\alpha_n \geq n$: إذن

نلاحظ أن : $\infty + = n$ إذن نحصل على الوضعية التالية :-

 $\lim(lpha_n)=+\infty$: إذن حسب مصاديق تقارب المتتاليات نستنتج أن

 $n \in \mathbb{N}$ و $n \geq 1$ $[0,+\infty]$ لدينا الدالة F متصلة و قابلة للاشتقاق على المجال

 $\forall x \in [0, +\infty[; F'(x) = f(x) :$ بحیث

إذن بإمكاننا تطبيق مبرهنة التزايدات المنتهية على الدالة F في أي مجال محدود يوجد ضمن $]\infty+0]$.

. $[0; \alpha_n]$ المرحلة الأولى: نختار المجال

 $(\forall n \in \mathbb{N})$; $\alpha_n \geq 0$ لأن $[0; \alpha_n] \subset [0, +\infty[$ لاينا إذن ، حسب مبر هنة التزايدات المنتهية ، يوجد عنصر c من المجال

$$rac{F(lpha_n) - F(0)}{lpha_n - 0} = F^{'}(c) = f(c)$$
 : بحیث $]0; lpha_n[$ يعني $0 < c < lpha_n$ يعني $0 < c < lpha_n$

أجوبة امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحى: ا

(*) $1 < \frac{F(\alpha_n)}{\alpha} < f(\alpha_n)$: و منه

 $lpha_n \in [1; +\infty[$ بما أن $n \in [1; +\infty[$ فإن $lpha_n \geq n \geq 1$ بما $[1;+\infty[$ لأن f تناقصية على $f(lpha_n) \leq f(n)$ لائن $lpha_n \geq n$ لدينا إذن بالرجوع إلى التأطير (*) نكتب :-

$$-0 < 1 < \frac{F(\alpha_n)}{\alpha_n} < f(\alpha_n) < f(n)$$

(1)
$$0 < \frac{F(\alpha_n)}{\alpha_n} < f(n)$$
 : يعني

[0;n] في المرحلة الثانية نُطبق مبر هنة التزايدات المنتهية على الدالة F

–: إذن يوجد عنصر arepsilon من [0;n[بحيث

$$\frac{F(n) - F(0)}{n - 0} = F'(\varepsilon) = f(\varepsilon)$$

$$rac{F(n)}{n} = f(arepsilon)$$
 و $0 < arepsilon < n$: يعني

$$f(0) < f(arepsilon) < f(n)$$
 : لدينا $0 < arepsilon < n$: لدينا

$$0 < 1 < \frac{F(n)}{n} < f(n)$$
 : يعني $1 < \frac{F(n)}{n} < f(n)$: يعني

(2)
$$-f(n) < \frac{-F(n)}{n} < 0$$
 : $\frac{F(n)}{n} < f(n)$: يعني

نجمع التأطيرين (1) و (2) طرفا بطرف نجد :

$$-f(n) < \frac{F(\alpha_n)}{\alpha_n} - \frac{F(n)}{n} < f(n)$$

ما يهمنا في هذا التأطير الغريب هو الشق الأيمن فقط.

$$\frac{F(\alpha_n)}{\alpha_n} - \frac{F(n)}{n} < f(n) : \varphi^{\dagger}$$

$$(3)$$
 $\frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)$: الذي يصبح

(4)
$$0 < \frac{F(\alpha_n)}{\alpha_n}$$
 : نستنتج أن (1) و من التأطير

إذن من (3) و (4) نستنتج أن :

$$(\forall n \ge 1) ; 0 < \frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)$$

نعلم حسب الأسئلة السابقة أن :-

$$\lim_{x \to +\infty} \frac{F(x)}{x} = 0 \quad \text{in} \quad \lim_{x \to +\infty} f(x) = 0$$

$$\lim_{n \to \infty} \left(\frac{F(n)}{n} + f(n) \right) = 0 \quad (0)$$

و منه فإن التأطير (*) يُصبح:

$$(\forall n \ge 1) \; ; \; \underbrace{0 < \frac{F(\alpha_n)}{\alpha_n} < \frac{F(n)}{n} + f(n)}_{n\infty}$$

ڲٛڡۅڲؿڡۅڲ؈؈ڲ؈ۅڲؿۅڡڲؿۅڡڲؿۅڡڲؿۅڡڲ؈ۄٷ۩ۅڲ؈ڡڲۅۄڲ ؙؙڰڡڲؿڡڡڲؿڡڰؿۅڡڲؿۅڡڲؿۅڡڲؿۅڡڲؿۅڡڲؿۄۄڲٷۄ۩ٷڰۄڡڲۿۄڰ

و منه حسب مصاديق تقارب المتتاليات نستنتج أن :-

$$-(\blacksquare)\left[\lim_{n\infty}\frac{F(\alpha_n)}{\alpha_n}=0\right]$$

 $\frac{F(\alpha_n)}{\alpha_n} = \frac{\alpha_n - n}{\alpha_n} = 1 - \frac{n}{\alpha_n} \quad : \varphi^{\dagger}$

$$\lim_{n\infty} rac{F(lpha_n)}{lpha_n} = \lim_{n\infty} \left(1 - rac{n}{lpha_n}
ight)$$
: پعني

 $\lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right) = 1$ يعني $0 = 1 - \lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right)$ يعني $\lim_{n \to \infty} \left(\frac{\alpha_n}{n} \right) = \frac{1}{\lim_{n \to \infty} \left(\frac{n}{\alpha_n} \right)} = \frac{1}{1} = 1$ و بالتالي :

$$\left[\lim_{n\infty} \left(\frac{\alpha_n}{n}\right) = 1\right] : \emptyset$$

 $n \geq 1$: ليكن n عددا صحيحا طبيعيا بحيث

$$v_n = \ln(u_n)$$
 = $\ln\left(\left(\frac{arctan(n)}{arctan(n+1)}\right)^{n^2}\right)$ = $n^2 \ln\left(\frac{arctan(n)}{arctan(n+1)}\right)$ = $n^2 \left[\ln(arctan(n)) - \ln(arctan(n+1))\right]$

•—•(((((**2**))))))

 $f(x) = \ln(\arctan(x))$: نعتبر f المعرفة على $]0; +\infty[$ بما يلي : $]0; +\infty[$ لدينا حسب الخاصيات العامة لاتصال مركب دالتين أن الدالة f متصلة على $]0; +\infty[$ و كذلك f قابلة للاشتقاق على المجال $]0; +\infty[$ و $]0; +\infty[$ دالة قابلة للإشتقاق على $]0; +\infty[$ و $]0; +\infty[$.

إذن بإمكاننا تطبيق مبر هنة التزايدات المنتهية على الدالة f في أي مجال محدود و يوجد ضمن $]\infty+0[$

. $[n\,;\,n+1]$ و نختار المجال $n\geq 1$

-: بحيث n ; n+1[بحيث c من المجال n ; n+1

$$-(**) \overline{\frac{f(n+1)-f(n)}{(n+1)-n}} = f'(c)$$

 $\forall x \in]0; +\infty[; f(x) = \ln(\arctan(x)) : لدينا$

$$f'(x) = \frac{\left(arctan(x)\right)'}{arctan(x)} = \frac{\left(\frac{1}{1+x^2}\right)}{arctan(x)} = \frac{1}{(1+x^2) \ arctan(x)}$$

إذن بالرجوع إلى المتساوية (**) نجد :

$$\left(\frac{f(n+1) - f(n)}{(n+1) - n} = \frac{1}{(1+c^2) \arctan(c)}\right)$$

 $\ln(\arctan(n+1)) - \ln(\arctan(n)) = \frac{1}{(1+c^2)\arctan(c)}$

 $\ln(\arctan(n)) - \ln(\arctan(n+1)) = \frac{-1}{(1+c^2)\arctan(c)}$

: نجد n^2 منعدم المتساوية في العدد الغير المنعدم

 $n^{2}\left[\ln\left(\arctan(n)\right) - \ln\left(\arctan(n+1)\right)\right] = \frac{-n^{2}}{(1+c^{2})\arctan(c)}$

 $v_n = rac{-n^2}{(1+c^2) \ arctan(c)}$: نجد (1 السؤال 1) نجد

خلاصة :

 $(\forall n \ge 1), (\exists c \in]n; n+1[); v_n = \frac{-n^2}{(1+c^2) \arctan(c)}$

n < c < n+1 : لدينا

: على هذا التأطير و علما أنها تزايدية قطعا على $\mathbb R$ نجد نُدخل الدالة arctan

(1) arctan(n) < arctan(c) < arctan(n+1)

n < c < n+1 : و لدينا كذلك

(2) $(1+n^2) < (1+c^2) < 1+(n+1)^2$: $(1+c^2) < (1+c^2) < (1+c^2)$

نضرب التأطيرين (1) و (2) طرفا بطرف نجد:

 $(1+n^2)arctan(n) < (1+c^2)arctan(c)$ < $(1+(n+1)^2)arctan(n+1)$

نُدخل على هذا التأطير دالة المقلوب نجد:

$$\frac{1}{(1+(n+1)^2)arctan(n+1)} < \frac{1}{(1+c^2)arctan(c)}$$

$$< \frac{1}{(1+n^2)arctan(n)}$$

. نضرب أطرف هذا التأطير في العدد السالب قطعا $-n^2$ نجد

$$\frac{-n^2}{(1+n^2)arctan(n)} < \frac{-n^2}{(1+c^2)arctan(c)} < \frac{-n^2}{(1+(n+1)^2)arctan(n+1)}$$

و نستغل بعد ذلك نتيجة السؤال 2) نجد:

$$\frac{-n^2}{(1+n^2)arctan(n)} < v_n < \frac{-n^2}{(1+(n+1)^2)arctan(n+1)}$$

$$(\bigotimes)$$

في البداية أذكركم بالنهايتين المهمتين التاليتين: -----

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \quad \text{o} \quad \lim_{x \to -\infty} \arctan(x) = \frac{-\pi}{2}$$

$$\lim_{n \to \infty} \frac{-n^2}{(1+(n+1)^2)arctan(n+1)}$$
 : نينا

$$= \lim_{n \to \infty} \left(\frac{-n^2}{n^2 + 2n + 2} \right) \left(\frac{1}{arctan(n+1)} \right)$$
$$= (-1) \left(\frac{1}{\frac{\pi}{2}} \right) = \frac{-2}{\pi}$$

$$\lim_{n \to \infty} \frac{-n^2}{(1+n^2)\arctan(n)}$$

$$= \lim_{n \to \infty} \left(\frac{-n^2}{n^2+1}\right) \left(\frac{1}{\arctan(n+1)}\right)$$

$$= (-1)\left(\frac{1}{\frac{\pi}{2}}\right) = \frac{-2}{\pi}$$

إذن التأطير (⊗) يُصبح:

$$\underbrace{\left(\frac{-n^2}{(1+n^2)arctan(n)}\right)}_{n \approx \infty} < v_n < \underbrace{\left(\frac{-n^2}{(1+(n+1)^2)arctan(n+1)}\right)}_{n \approx \infty}$$

$$\displaystyle \lim_{n\infty}(v_n)=rac{-2}{\pi}$$
 : إذن حسب مصاديق تقارب المتتاليات نجد

$$u_n=e^{v_n}$$
 : إذن $v_n=\ln(u_n)$ و لدينا

$$\lim_{n\infty}(u_n)=\lim_{n\infty}e^{v_n}=e^{\left(\lim_{n\infty}v_n
ight)}=e^{\left(rac{-2}{\pi}
ight)}$$
 : و منه

$$\left[egin{array}{c} \lim_{n\infty}(u_n)=e^{\left(rac{-2}{\pi}
ight)} \end{array}
ight]$$
 : و بالنالي

■ العمد لله رب العامين

أجوية امتحان الدورة الإستدراكية 2013 من إعداد الأستاذ بدر الدين الفاتحي: () أكتوبر 2013 الصفحة : 260