Policy Gradient for Generative Dialogue Models

Nicolas A. Gontier Michael Noseworthy

Reasoning and Learning Lab McGill University

COMP 767 - Final Project Presentation April 13th

Dialogue Generation

- We can measure the quality of a response using ADEM
 - A Dialogue Evaluation Model (R. Lowe, M. Noseworthy, I.V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau)

Dialogue Generation

- Goal: Train a model to maximize the ADEM score
- We will use the policy-gradient framework from RL
 - State (s_t) : What has been generated up to this point $\hat{Y}_{1,...,t-1}$ given a context c
 - Action (a_t) : Emit a token \hat{v}_t in the generated response \hat{Y} given a context c
 - Policy (π) : The HRED ² model (softmax over the vocab)
 - Return (R): The ADEM score for a generated response
 - Rewards are 0 except for the final step.
 - Reward part of sentences with ADEM might gives us a very bad signal
 - Work inspired by "An Actor-Critic Algorithm for Sequence Prediction"
 (D. Bahdanau et al., 2017)
- Data-set used: On-line Tweets (~700,000 conversations)

 $^{^1\}mbox{We}$ use BPE (sub-word level) tokens to reduce the size of the action space from $^{\sim}20\mbox{k}$ to $^{\sim}5\mbox{k}$

²I.V. Serban et al. (2016)

Actor Network

c_1,1

Objective: $J_{actor} = \sum_{t=1}^{T} \log p(\hat{y}_t | \hat{Y}_{1,...,t-1}) \hat{Q}$ GENERATED RESPONSE: Ŷ **REINFORCE** w Baseline: $\hat{Q} = R_t - V(\hat{Y}_{1-t-1}, Y)$ $\hat{y}_{-3,1}$ $\hat{y}_{3}, N3$ Actor-Critic: $\hat{Q} = \hat{Q}(\hat{y}_t | \hat{Y}_{1-t-1}, Y)$ LSTM $\hat{y}_{3,1}$ encoding of context encoding utterance 1 encoding utterance 2

c_2,1

c_2,N2

c_1,N1

CONTEXT: C

Critic Network

TD Targets:
$$q_t = R(\hat{Y}_{1,...,t}) - \bar{R} + \sum_{a \in Vocab} P(a|\hat{Y}_{1,...,t}) * \hat{Q}(a|\hat{Y}_{1,...,t})$$

Objective:
$$J_{critic} = \sum_{t=1}^{T} (q_t - \hat{Q}(\hat{y}_t | \hat{Y}_{1,...,t-1}))^2 + \lambda C_t$$

Regularization:
$$C_t = \sum_{a \in Vocab} \hat{Q}(a|\hat{Y}_{1,...,t-1}) - \bar{\hat{Q}}(.|\hat{Y}_{1,...,t-1})$$

CONTEXT ENCODING (from previous encoder)

TRUE RESPONSE ENCODING (from previous encoder)

Challenges

Large Action Space

- Critic target q_t uses $(R_t \bar{R})$ to reduce variance in the reward
- $J_{critic} = \sum_{t=1}^{T} \text{squared error loss} + \lambda C_t$ to penalize variance in the critic values $\hat{Q}(a|\hat{Y}_{1,...,t-1})$
- Pretrain the actor with ML objective: $J_{actor} = \sum_{t=1}^{T} \log p(\hat{y}_t | Y_{1,\dots,t-1})$
- Pretrain the critic with samples from the pretrained actor

Sparse Reward Signal

Things to try:

- Use ADEM to score sub-parts of generated response? May be really bad, takes more time.
- Monte Carlo roll-outs from each time steps to have a full sentence before sending it to ADEM? Very time consuming!