CECNET2021: Use Noise Protcol Framework to build secure communication channel for IoT scenarios

Pan Lanlan (潘蓝兰)

abbypan@gmail.com

Guangdong OPPO Mobile Telecommunications Corp. Ltd., China

2021.08

- 1 IoT Secure Communication
 - Main Process
 - Initial: Pairing
 - Initial: Provision/Exchange Long-Term credential
 - Communication: Mutual-Authentication based on Long-Term credential
 - Communication: Build secure communication channel
- IoT Secure Scenario
 - Secure IoT Communication
 - Example: Matter
 - Example: CCC Digital Key
 - Noise
 - Our Proposal
- Conclusion
 - Conclusion
 - Resources

Main Process

Fig: Main Process

Initial: Pairing

Pairing Category	Example	
Balanced PAKE	Dragonfly, J-PAKE,	
Augmented PAKE	SRP, Spake2+,	
Other	Noise-NNpsk0, TLS-PSK,	

Initial: Provision/Exchange Long-Term credential

- Share Secret.
- Endpoint's Raw Public Key
- Endpoint's Certificate

Communication: Mutual-Authentication based on Long-Term credential

Authentication Category	Example
STS	Full STS, Basic STS,
SIGMA	SIGMA-I, SIGMA-R,
TLS	mutual TLS, TLS-PSK,
MAC	HMAC, C-MAC,
Noise	Noise-KK, Noise-IX, Noise-XX,
Other	

Communication: Build secure communication channel

- Single Key: Symmetric Encryption(AEAD)
- Separated Keys: Symmetric Encryption + Symmetric Authentication

Secure IoT Communication

- Resource Constrained: Limited CPU/Memory/Battery
- Payload Size: Cut Down
- Compatible: Different Credentials
- Privacy: ID Protection

Example: Matter

Process	Selection
Pairing	Spake2+
Credential	Endpoint's Certificate
Authentication	SIGMA-I
Communication	Single Key

Example: CCC Digital Key

Process	Selection	
Pairing	Spake2+	
Credential	Endpoint's Certificate	
Authentication	Vehicle's signature is plaintext,	
	Endpoint's signature is encrypted	
Communication	Separated Keys	

Noise

Pattern	Detail	Note
NNpsk0	-> psk, e	share secret
	<- e, ee, psk	simpler than balanced PAKE, TLS-PSK
KK	-> s	Public Key/Certificate
	<- s	similar to Basic STS
	-> e, es, ss	
	<- e, ee, se	
IX	-> e, s	Public Key/Certificate
	<- e, ee, se, s, es	Responder's ID Protection
		similar to SIGMA-R
XX	-> e	Public Key/Certificate
	<- e, ee, s, es	Initiator's ID Protection
	-> s, se	similar to SIGMA-I

(ロ) (固) (注) (注) 注 り(()

Our Proposal

Noise:

- use DH operations to cut down the handshake signature size, which is helpful for constrained communication channel.
- support different credentials: share secret, public key, and certificate.
- adjust ID protection quickly by changing handshake pattern, compliance with privacy requirement, no more code development.

Process	Selection			
Pairing	Spake2+, Noise-NNpsk0			
Credential	Share Secret	Raw Public Key	Certificate	
Authentication	Noise-NNpsk0 Noise-KK/IX/XX			
Communication	Separated Keys			

Conclusion

It is important to enhance security and privacy for IoT communication.

Noise is suitable for lightweight IoT devices, compatible with different credentials, and flexible for ID protection compliance.

We can use Noise Protool Framework to build secure communication channel for IoT scenarios, compatible with various IoT Devices.

Resources

- STS https://en.wikipedia.org/wiki/Station-to-Station_protocol
- Matter https://github.com/project-chip/connectedhomeip
- CCC Digital Key https://carconnectivity.org/
- Noise https://noiseprotocol.org/
- SIGMA https://webee.technion.ac.il/ hugo/sigma-pdf.pdf