Unit 13

SIDES AND ANGLES OF A TRIANGLE

Theorem If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

Given

In $\triangle ABC$, mAC>mAB

To Prove

 $m\angle ABC > m\angle ACB$

Construction On \overline{AC} take a point D such that $\overline{AD} \cong \overline{AB}$ Join B to D so that $\triangle ADB$ is an isosceles triangle. Label $\angle 1$ and $\angle 2$ as shown in the given figure.

Proof

Statements		Reasons	
In	ΔABD		
93	$m\angle 1 = m\angle 2$ (i)	Angle opposite to congruent sides,	
In	ΔBCD, m∠ACB < m∠2	(construction)	
i.e.,	$m\angle 2 > m\angle ACB$ (ii)	(An exterior angle of a triangle is greater	
	YANU T	than a non-adjacent interior angle).	
	$m\angle 1 > m\angle ACB$ (iii)	By (i) and (ii)	
But	1	3	
	$m\angle ABC = m\angle 1 + m\angle DBC$	Postulate of addition of angles.	
:.	$m\angle ABC > m\angle 1$ (iv)		
<i>:</i> .	$m\angle ABC > m\angle 1 > m\angle ACB$	70	
Hence m∠ABC > m∠ACB		By (iii) and (iv)	
		(Transitive property of inequality of real number)	

Example Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60°. (i.e., two-third of a right-angle).

Given In $\triangle ABC$, $m\overline{AC} > m\overline{AB}$, $m\overline{AC} > m\overline{BC}$.

To Prove

 $m\angle B > 60^{\circ}$.

Proof

Statements		Reasons
In	ΔΑΒC	Acasons
	$m\angle B > m\angle C$	mAC>mAB (given)
	$m\angle B > m\angle A$	mAC>mBC (given)
But	$m\angle A + m\angle B + m\angle C = 180^{\circ}$	$\angle A$, $\angle B$, $\angle C$ are the angles of $\triangle ABC$
	$m\angle B + m\angle B + m\angle B > 180^{\circ}$	$m\angle B > m\angle C$, $m\angle B > m\angle A$ (proved)
Hence $m\angle B > 60^{\circ}$		$180^{\circ}/3 = 60^{\circ}$.

Example In a quadrilateral ABCD, \overline{AB} is the longest side and CD is the shortest side. Prove that $m\angle BCD > m\angle BAD$.

Given In quad. ABCD, AB is the longest side and \overline{CD} is the shortest side.

To Prove

 $m\angle BCD > m\angle BAD$

Construction

Join A to C.

Name the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ as shown in the figure.

Statements	Reasons
In $\triangle ABC$, $m\angle 4 > \angle 2$ (i) $\triangle ACD$, $m\angle 3 > m\angle 1$ (ii)	mAB>mBC(given)
In $\triangle ACD$, $m\angle 3 > m\angle 1$ (ii)	mAD>mCD (given)
$\therefore m \angle 4 + m \angle 3 > m \angle 2 + m \angle 1$	From I and II
	$\int m\angle 4 + m\angle 3 = m\angle BCD$
Hence $m\angle BCD > m\angle BAD$	$m \ge 2 + m \ge 1 = m \ge BAD$
ieorem;	

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Given

In $\triangle ABC$, $m\angle A > m\angle B$

To Prove

 $\overline{mBC} > \overline{mAC}$

Proof

Statements	Reasons
If mBC≯mAC, then	
either (i) $m\overline{BC} = m\overline{AC}$ or (ii) $m\overline{BC} < m\overline{AC}$	(Trichotomy property of real numbers)
From (i) if $m\overline{BC} = m\overline{AC}$, then $m\angle A = m\angle B$	(Angles opposite to congruent sides are congruent)
which is not possible	Contrary to the given
From (ii) if $\overrightarrow{mBC} < \overrightarrow{mAC}$, then $\overrightarrow{m} \angle A < \overrightarrow{m} \angle B$	(The angle opposite to longer side is greater than angle opposite to smaller side)
This is also not possible. ∴ mBC≠mAC	Contrary to the given
And mBC≮mAC Thus mBC>mAC	Trichotomy property of real numbers.

Note

- (i) The hypotenuse of a right angle triangle is longer than each of the other two sides.
- (ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two dies.

Example

ABC is an isosceles triangle with base \overline{BC} . On \overline{BC} a point D is taken away from C. A line segment though D cuts \overline{AC} at L and \overline{AB} at M. Prove that $\overline{mAL} > \overline{mAM}$.

In $\triangle ABC$, $\overrightarrow{AB} \cong \overrightarrow{AC}$.

D is a point on \overrightarrow{BC} away from C.

A line segment through D cuts \overrightarrow{AC} and L and \overrightarrow{AB} at M.

To Prove

 $\overline{\text{mAL}} > \overline{\text{mAM}}$

Proof

	Statements		Reasons
In	$\triangle ABC$ ∠B ≅ ∠2	I	$\overline{AB} \cong \overline{AC} \text{ (given)}$
In	Δ MBD $m \angle 1 > m \angle B$	ш	(∠1 is an ext. ∠ and ∠B is its interna
∴ In	$m\angle 1 > m\angle 2$ Δ LCD,	ш	opposite ∠) From I and II
	$m\angle 2 > m\angle 3$	IV	$(\angle 2 \text{ is an ext. } \angle \text{ and } \angle 3 \text{ is its internal opposite } \angle)$
 De	$m \angle 1 > m \angle 3$	V	From III and IV
But ∴	$\angle 3 \cong \angle 4$ $m\angle 1 > m\angle 4$	VI	Vertical angles From V and VI
lence	e mAL > mAM		I ΔALM, m∠1 > m∠4 (proved)

Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

To Prove

- (i) $\overline{mAB} + \overline{mAC} > \overline{mBC}$
- (ii) $\overline{mAB} + \overline{mBC} > \overline{mAC}$
- $\overline{mBC} + \overline{mCA} > \overline{mAB}$ (iii)

Construction.

Take a point D on CA such that AD≅AB. Join B to D and name the angles. $\angle 1$, $\angle 2$ as shown in the given figure.

Given ΔABC

Proof

	Statem	ents	Reasons
n	ΔABD,	· · · · · · · · · · · · · · · · · · ·	ACCUSORS
	∠1 ≅ ∠2	(i)	AD≅AB (construction)

	$m\angle DBC > m\angle 1$	(ii)
••	$m\angle DBC > m\angle 2$	(iii)
In	ADBC,	
	$m\overline{CD} > m\overline{BC}$	
i.e.,	$m\overline{AD} + m\overline{AC} > m\overline{BC}$	1
Hence	$m\overline{AB} + m\overline{AC} > m\overline{BC}$	
Simila	rly,	
	$m\overline{AB} + m\overline{BC} > m\overline{AC}$	65
And	$m\overline{BC} + m\overline{CA} > m\overline{AB}$	<u> </u>

$$m\angle DBC = m\angle 1 + m\angle ABC$$

From (i) and (ii)

By (iii)
mCD=mAD+mAC
mAD=mAB (construction)

Example

Which of the following sets of lengths can be the lengths of the sides of a triangle.

- (a) 2cm, 3cm, 5cm
- (b) 3cm, 4cm, 5 cm
- (c) 2cm, 4cm, 7cm
- (a) \therefore 2+3 = 5
 - .. This set of lengths cannot be those of the sides of a triangle.
- (b) $\therefore 3+4>5, 3+5>4, 4+5>3$
 - :. This set can form a triangle.
- $(c) \quad \therefore \quad 2+4<7$
 - .. This set of lengths cannot be the sides of a triangle.

Example Prove that the sum of the measures of two sides of a triangle is

greater than twice the measure of the median which bisects the third side.

Given.

In AABC,

median AD bisects side BC at D.

To Prove

 $m\overline{AB} + m\overline{AC} > 2m\overline{AD}$.

Construction On \overrightarrow{AD} , take a point E, such that $\overrightarrow{DE} \cong \overrightarrow{AD}$. Join C to E. Name the angles $\angle 1$, $\angle 2$ as shown in the figure.

Proof

Statements		Reasons	
In	$\triangle ABD \leftrightarrow \triangle ECD$ $BD \cong \overline{CD}$ $\angle 1 \cong \angle 2$	Given Vertical angles	
	AD≅ED ΔABD≅ ΔECD	Construction	

$AB \cong EC$	I	S.A.S. Postulate
$\overrightarrow{mAC} + \overrightarrow{mEC} > \overrightarrow{mAE}$	II	Corresponding sides of $\cong \Delta s$
$\overline{\text{mAC}} + \overline{\text{mAB}} > \overline{\text{mAE}}$		ACE is a triangle
Hence mAC+mAB>2mAD		From I and II
		mAE=2mAD (construction)

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side.

Given

 ΔABC

To Prove

 $m\overline{AC} - m\overline{AB} < m\overline{BC}$ $m\overline{BC} - m\overline{AB} < m\overline{AC}$ $\overline{mBC} - \overline{mAC} < \overline{mAB}$

Proof

Statements	Reasons
mAB+mBC>mAC	ABC is a triangle
$(m\overline{AB} + m\overline{BC} - m\overline{AB}) > (m\overline{AC} - m\overline{AB})$	Subtracting mAB from both sides.
$\therefore \qquad \overline{\text{mBC}} > (\overline{\text{mAC}} - \overline{\text{mAB}})$	
Or $m\overline{AC} - m\overline{AB} < m\overline{BC}$ I	$a > b \Rightarrow b < a$
Similarly	
$\overline{mBC} - \overline{mAB} < \overline{mAC}$	Reason similar to I
$\overline{mBC} - \overline{mAC} < \overline{mAB}$	Reason similar to t

Exercise 13.1

- Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure 1. is possible for the third side? (a) 5 cm (b)
- 20 cm
- 25 cm (d) (c)
- 30 cm

Ans. 20cm.

2. O is an interior point of the ABC. Show that

$$\overrightarrow{mOA} + \overrightarrow{mOB} + \overrightarrow{mOC} > \frac{1}{2} (\overrightarrow{mAB} + \overrightarrow{mBC} + \overrightarrow{mCA})$$

Given: O is the interior point of $\triangle ABC$

To Prove:

$$\overline{\text{mOA}} + \overline{\text{mOB}} + \overline{\text{mOC}} > \frac{1}{2} \left(\overline{\text{mAB}} + \overline{\text{mBC}} + \overline{\text{mCA}} \right)$$

Construction:

Join O with A, B and C.

Proof:

Statements	Reasons
ΔOAB	
$\overline{\text{mOA}} + \overline{\text{mOB}} > \overline{\text{mAB}}$ (i)	Sum of two sides > third side
Similarly	
$\overline{mOB} + \overline{mOC} > \overline{mBC}$ (ii)	Sum of two sides > third side
and	1460
$m\overline{OC} + m\overline{OA} > m\overline{CA}$ (iii)	10r/U.
$2m\overline{OA} + 2m\overline{OB} + 2m\overline{OC} > m\overline{AB} + m\overline{BC} + m\overline{CA}$	Adding (i), (ii) and (iii)
$2(m\overline{OA} + m\overline{OB} + m\overline{OC}) > m\overline{AB} + m\overline{BC} + m\overline{CA}$	V
$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} (m\overline{AB} + m\overline{BC} + m\overline{CA})$	

3. In the $\triangle ABC$, $m \angle B = 75^{\circ}$ and $m \angle C = 55^{\circ}$. Which of the sides of the triangle is longest and which is the shortest?

Ans: Given a ΔABC in which

$$m \angle B = 75^{\circ}$$

$$\mathbf{m} \angle \mathbf{C} = 55^{0}$$

As
$$m \angle A + m \angle B + m \angle C = 180^{\circ}$$

$$m \angle A + 75^0 + 55^0 = 180^0$$

$$m \angle A + 130^0 = 180^0$$

$$m \angle A = 180^{\circ}-130^{\circ}$$

So
$$m\overline{AC} > m\overline{BC}$$

Hence longest side is
$$\overline{AC}$$
 and shortest side is \overline{BC}

4. Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.

Ans.

Given: ΔABC is a right angle triangle.

Hence AB is hypotenuse of ΔABC.

To prove:

mAB > mAC and mAB > mBC

As $\triangle ABC$ is a right angle triangle. So $m\angle C = 90^{\circ}$ is the largest angle and the remaining angles $\angle A$ and $\angle B$ are acute. So $m\angle C > m\angle A$ and $m\angle C > m\angle B$

As the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Hence mAB > mAC and mAB > mBC

5. In the triangular figure, AB>AC.

BD and CD are the bisectors of ∠B and ∠C respectively. Prove that BC>DC.

are the bisectors of the angles B and C

To Prove:

Given:

To prove = $\overline{BD} > \overline{CD}$

Proof

Statements	Reasons
 in $\triangle ABC$ $\angle ACB > \angle ABC$ $\frac{1}{2} \angle ACB > \frac{1}{2} \angle ABC$	∴ AB > AC
 $\frac{\angle B CD > \angle DBC}{BD > \overline{CD}}$	$\overline{\text{CD}}$, $\overline{\text{BD}}$ are bisectors of $\angle \text{C}$, $\angle \text{B}$. The bigger sides is opposite the bigger angle

Theorem From a point, outside a line, perpendicular is the shortest distance from the point to the line.

Given A line AB and a point C (not lying on \overrightarrow{AB}) and a point D on \overrightarrow{AB} such that

To Prove

 $\overline{\text{mCD}}$ is the shortest distance from the point C to $\overline{\text{AB}}$.

Construction

Take a point E on \overrightarrow{AB} . Join C and E to form a ΔCDE

Proof:

SINSIPE SOM	Statements	Reasons			
In	ΔCDE				
	$m\angle CDB > m\angle CED$	(An exterior angle of a triangle is greater			

But $m\angle CDB = m\angle CDE$

 $m\angle CDE > m\angle CED$

or $m\angle CED < m\angle CDE$

mCD<mCE or

But E is any point on AB

Hence mCD is the shortest distance from C to AB.

 $a > b \Rightarrow b < a$

Side opposite to greater angle is greater.

than non adjacent interior angle).

Supplement of right angle.

Note:

- The distance between a line and a point not on it, is the length of the perpendicular (i) line segment from the point to the line.
- The distance between a line and a point lying on it is zero (ii)

Exercise 13

1. In the figure, P is any point and AB is a line. Which of the following is the shortest distance between the point P and the line AB.

- (c) mPN
- (d) mPO

Ans. (c)

- 2. In the figure, P is any point lying away from the line AB. Then mPL will be the shortest distance if:
 - (a) $m\angle PLA = 80^{\circ}$
 - (b) $m\angle PLB = 100^{\circ}$
 - (c) $m\angle PLA = 90^{\circ}$

- Ans. (c)
- 3. In the figure, PL is perpendicular to the line AB and mLN > mLM. Prove that mPN>mPM.

Here it is given mPL is Ans. perpendicular to line AB and mLN > mLM

Proof:

Here mPN > mPMAs \overline{PL} is the shortest distance from P to line AB. So PL $\perp AB$

As we go away from point L, the distance from points to L increases Hence

$$m\overline{PN} > m\overline{PM}$$

- 4. Which of the following are true and which are false?
- (i) The angle opposite to the longer side is greater. **TRUE**
- (ii) In a right-angled triangle greater angle is of 60°. **FALSE**
- (iii) In an isosceles right-angled triangle, angles other than right angle are each of 45°. TRUE
- (iv) A triangle having two congruent sides is called equilateral triangle. FALSE
- (v) A perpendicular from a point to t line is shortest distance. TRUE
- (vi) Perpendicular to line form an angle of 90°. TRUE
- (vii) A point out-side the line is collinear. FALSE
- (viii) Sum of two sides of triangle is greater than the third. TRUE
- (ix) The distance between a line and a point on it is zero. TRUE
- (x) Triangle can be formed of lengths 2 cm, 3 cm and 5 cm. FALSE
- 5. What will be angle for shortest distance from an outside point to the line?

Ans. 90°

6. If 13 cm, 12 cm, and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the measure of the third side.

Ans: (i) 13 - 12 = 1 < 15

(ii) 12 - 4 = 7 < 13

(iii) 13 - 5 = 8 < 12

So verified

7. If 10 cm,6 cm and 8 cm are the lengths of a triangle, then verify that sum of measures of two sides of a triangle is greater than the third side.

Ans. (i) 10 + 6 = 16 > 8

(ii) 6 + 8 = 14 > 10

(iii) 10+8 = 18 > 6

8. 3 cm, 4 cm and 7 are not the lengths of the triangle. Give the reason.

Ans: $3 + 4 \gg 7$

9. If 3 cm and 4 cm are lengths of two sides of a right angle triangle then what should be the third length of the triangle.

Ans. Third length = $\sqrt{3^2 + 4^2}$ $-\sqrt{25} = 5$ cm

OBJECTIVE

- 1. Which of the following sets of lengths can be the lengths of the sides of a triangle:
 - (a) 2cm, 3cm, 5cm
 - (b) 3cm, 4cm, 5cm
 - (c) 2cm, 4cm, 7cm
 - (d) None

- 2. Two sides of a triangle measure 10cm and 15cm. Which of the following measure is possible for the third side!
 - (a) 5cm
 - (b) 20cm
 - (c) 25cm
 - (d) 30cm

3. In the figure, P is any point and AB is a line. Which of the following is the short distance between the point P and line AB.

- (a) mPL
- (b) mPM
- (c) $m\overline{PN}$
- (d) mPO
- 4. In the figure, P is any point lying away from the line AB. Then mPL will be shortest distance if:

- (a) $m < PLA = 80^{\circ}$
- (b) $m < PLB = 100^{\circ}$
- (c) $m < PLA = 90^{\circ}$
- (d) None
- 5. The angle opposite to the longer side is:
 - (a) Greater
 - (b) Shorter
 - (c) Equal
 - (d) None
- **6.** In right angle triangle greater angle of:

- (a) 60°
- (b) 30°
- (c) 75°
- (d) 90°
- 7. In an isosceles right-angled triangle angles other than right angle are each of:
 - (a) 40°
 - (b) 45°
 - (c) 50°
 - (d) 55°
- 8. A triangle having two congruent sides is called ____ triangle.
 - (a) Equilateral
 - (b) Isosceles
 - (c) Right
 - (d) None
- Perpendicular to line form an angle of ___
 - $(a) 30^{\circ}$
 - (b) 60°
 - (c) 90°
 - (d) 120°
- 10. Sum of two sides of triangle is ____ than the third.
 - (a) Greater
 - (b) Smaller
 - (c) Equal
 - (d) None
- 11. The distance between a line and a point on it is ____
 - (a) Zero
 - (b) One
 - (c) Equal
 - (d) None

ANSWER KEY

1.	b	2.	b	3.	c	4.	С	5.	a
6.	d	7.	ь	8.	a	9.	С	10.	a
11.	a				102				