enunciato

Se f(x) è una funzione continua in [a, b]

$$sia F(x) = \int_{a}^{x} f(t)dt$$

una funzione detta funzione integrale

allora esiste la derivata prima della funzione integrale F(x) in ogni punto x dell'intervallo chiuso [a, b] e si ha:

$$F'(x) = f(x)$$

In altre parole il teorema afferma che la funzione integrale F(x) così definita, è una primitiva di f(x)

dimostrazione

Consideriamo l'incremento h della funzione integrale $F(x)$ relativo ad un generico punto x dell'intervallo $[a,b]$	F(x+h)-F(x)
Tale incremento, per definizione di funzione integrale, è uguale a:	$F(x+h) - F(x) = \int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt$
Per la proprietà additiva degli integrali definiti, il primo integrale si scompone nella somma dei due integrali (vedi figura in alto):	$\int_{a}^{x+h} f(t)dt = \int_{a}^{x} f(t)dt + \int_{x}^{x+h} f(t)dt$
L'incremento di $F(x)$ si scrive allora come somma di tre integrali definiti, cioè:	$F(x+h) - F(x) = \int_{a}^{x} f(t)dt + \int_{x}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt$
Semplifichiamo i termini opposti. Si ottiene che l'incremento di $F(x)$ è uguale all'integrale definito di $f(t)$ calcolato tra x e x + h	$F(x+h) - F(x) = \int_{x}^{x+h} f(t)dt$
Applichiamo il <i>teorema della media</i> alla funzione $f(t)$ nell'intervallo $[x, x+h]$. Allora, esiste almeno un punto \mathbf{c} dell'intervallo $[x, x+h]$ tale che:	$F(x+h) - F(x) = \int_{x}^{x+h} f(t)dt = h \cdot f(c)$
Cioè l'incremento di $F(x)$ è uguale al prodotto tra $h \operatorname{ed} f(c)$	$F(x+h) - F(x) = h \cdot f(c)$
Dividiamo entrambi i membri per h . Osserviamo che il primo membro rappresenta il rapporto incrementale di $F(x)$	$\frac{F(x+h) - F(x)}{h} = f(c)$

Calcoliamo il limite per h che tende a 0 di entrambi i membri	$\lim_{h \to o} \frac{F(x+h) - F(x)}{h} = \lim_{h \to o} f(c)$
Il primo membro è per definizione la derivata prima della funzione integrale $F(x)$ nel punto x	$\lim_{h\to o}\frac{F(x+h)-F(x)}{h}=F'(x)$
Il secondo membro tende a x , infatti poiché c è compreso tra x e $x + h$ se h tende a zero allora c tende a x ; quindi si può scrivere:	$\lim_{h \to 0} f(c) = \lim_{c \to x} f(c)$ $a x c x + h b$
f(x) è continua in c essendo per ipotesi continua in $[a,b]$. Per definizione di funzione continua in un punto, si ha:	$\lim_{h\to 0} f(c) = \lim_{c\to x} f(c) = f(x)$
Ricostruendo la catena delle uguaglianze si ottiene la tesi:	F'(x)=f(x)

Una importante conseguenza del teorema fondamentale del calcolo integrale è la seguente formula che permette di calcolare l'integrale definito di una funzione per mezzo di una sua primitiva.

Formula fondamentale del calcolo integrale

Se f(x) è una funzione continua in [a,b] allora $\int_a^b f(x) dx = F(b) - F(a)$

La dimostrazione della Formula fondamentale del calcolo integrale sarà oggetto di una scheda successiva