RHCEv8 Online Class 16052021 10:00pm RHCSA-sysadmin

- Accessing Linux File Systems
- Managing Basic Storage

- Accessing Linux File Systems

STORAGE MANAGEMENT CONCEPTS

what is File System?

A filesystem is an organized structure of data holding files/directories residing on storage devices.

ex:

aMS-win->NFTS, fat32, fat16

Linux ->cramfs, ext2, ext3, ext4, fat, minix, msdos, vfat, xfs

what is Mount on Linux?

it means attach storage (remove able) to OS

ex:

mount pendrive on Linux

- -MS-win and Linux-GUI they are p&p OS. plug and play
- -Linux-cli mount is manual

attach

mount <mount device> <mount point>

- -<mount device> ->partition
- -<mount point> ->directory name

detach

umont <mount point>

List of storage/block-device on Linux

cat /proc/partitions

major minor #blocks name

8 0 20,971,520 sda

-name

<mark>XX</mark>X

first 2XX from left ->storage technology

vd ->virtual disk sd ->sata, sas, ssd disk

sr ->sata remove-able dm ->disk mapper

3rd X from left ->its storage number started from a to z

sda ->hard disk1 with sata technology

vdf ->6th virtual disk

4th X from left ->number of partition started from 1 to

vdb5 ->5th partition from second virtual hard disk

sdc4 ->4th partition from 3rd sata hard disk

-blokes ->size of storage based-on Kilo Byte

20,971,520 ->20Gb

-minor

-storage, stared from 0 with sequence 16 0, 16, 32, 48, ...

-partitions, previous minor + 1

-major

kernel detects storage's technology by major number.

8 ->sata, sas, ssd disk

11 ->sata remoe-able CD/DVD

253 ->disk mapper

IsbIk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

RM (remove-able) 0/1 0->permanent/disk 1->remove-able RO (read only) 0/1 0->writable 1->non-writeable

storage details by use disk-free utility

df -hT

h->human readable

T->type

size of file/dir by use disk-usage utility

du -h anaconda-ks.cfg 4.0K anaconda-ks.cfg # du -h /etc 23M /etc/

How to manage storage on Linux?

2methods to manage storage on Linux 1-Master Boot Record-MBR ->legacy 2-Guid Partition Table-GPT ->UEFI

1-Master Boot Record-MBR

- -its first sector from first primary bootable hard disk.
- -32bit technology
- -size is 512bytes in to:

446 ->bootloader information 64 ->partition table information

2 ->err check

-maximum partitions support by MBR

->15partitions in primary, Extend and Logical

-maximum size of supports on one single hard disk in MBR

->2TB

-command fdisk

2-Guid Partition Table-GPT

-it works base-on Unified Extensible Firmware Interface-UEFI

-64bit technology

-maximum partitions support by MBR ->128 started from 1

-maximum size of supports on one single hard disk in MBR ->8ZB

-command gdisk

ONT	ADDICEVIATION	STORAGE
Bit	В	Binary Digit, Single 1 or 0
Nibble	-	4 bits
Byte/Octet	В	8 bits
Niibble Byte/Octet Kilobyte Megabyte Gigabyte Terabyte Petabyte Zettabyte	KB	1024 bytes
Megabyte	MB	1024 KB
Gigabyte	GB	1024 MB
Terabyte	TB	1024 GB
Petabyte	PB	1024 TB
Exabyte	EB	1024 PB
Zettabyte Yottabyte	ZB	1024 EB
Yottabyte	YB	1024 ZB
Storage unite (unus byte notes com		

STORAGE

ABBBEVIATION

Storage units (www.byte-notes.com

NOTE: device files on Linux stored on /dev

Is -I /dev/sda1

brw-rw----. 1 root disk 8, 1 May 16 09:52 /dev/sda1

1-Master Boot Record-MBR

-create 2gb primary partition, format it with xfs filesystem and mount it on /mnt/disk1

fdisk /dev/sdb

m

new partition n d delete partition

print partition table р

change partition id t

save/write and quit w

quit without save

q

Disk /dev/sdb: 5 GiB Disklabel type: dos(mbr)

n

Partition type

p primary (0 primary, 0 extended, 4 free)

e extended (container for logical partitions)

Partition number: Enter First sector: Enter Last sector: +2G

/dev/sdb1 2048 4196351 4194304 2G 83 Linux

udevadm settle

->update kernel offline about storage modification

```
# fdisk -l /dev/sdb
# cat /proc/partitions
    16 5242880 sdb
8
    17 2097152 sdb1
# Isblk
sdb
          8:16 0 5G 0 disk
∟sdb1
          8:17 0 2G 0 part
# mkfs.xfs /dev/sdb1
# blkid
/dev/sdb1: UUID="a5915984-1c50-4604-b2c4-223d048a80ab" TYPE="xfs" PARTUUID="0d7e1514-01"
# mkdir /mnt/disk1
mount
1-temporary
2-prsistently
1-temporary
-Attach
# mount /dev/sdb1 /mnt/disk1
# df -hT
/dev/sdb1
                         2.0G 47M 2.0G 3%
                                                /mnt/disk1
                   xfs
mount device
                filesystem
                                                 mount point
-list of temporary mount
# tail /etc/mtab
-Detach
# umont /mnt/disk1
2-prsistently
# vim /etc/fstab
<mount device> <mount point> <file system> defaults 0 0
/dev/sdb1 /mnt/disk1 xfs defaults 0 0
:wq!
# mount -a
# df -hT
/dev/sdb1
              xfs
                     2.0G 47M 2.0G 3%/mnt/disk1
-create 1.5gb logical partition, format it with # mkfs.ext4 /dev/sdb5 filesystem and mount it on /mnt/disk2
# fdisk /dev/sdb
Disk /dev/sdb: 5 GiB
/dev/sdb1
             2048 4196351 4194304 2G 83 Linux
Partition number: Enter
First sector: Enter
Last sector: Enter
/dev/sdb1
              2048 4196351 4194304
                                         2G 83 Linux
/dev/sdb2
            4196352 10485759 6289408 3G 5 Extended
Adding logical partition 5
First sector: Enter
Last sector: +1.5G
              2048 4196351 4194304
/dev/sdb1
                                         2G 83 Linux
/dev/sdb2
            4196352 10485759 6289408 3G 5 Extended
/dev/sdb5
            4198400 7319551 3121152 1.5G 83 Linux
# udevadm settle
# fdisk -l /dev/sdb
# mkfs.ext4 /dev/sdb5
```

```
# blkid
/dev/sdb5: UUID="3bf47fea-adb4-4cca-9da0-70552144acbb" TYPE="ext4" PARTUUID="0d7e1514-05"
# mkdir /mnt/disk2
# echo "/dev/sdb5 /mnt/disk2 ext4 defaults 0 0" >>/etc/fstab
# echo "UUID=3bf47fea-adb4-4cca-9da0-70552144acbb /mnt/disk2 ext4 defaults 0 0" >>/etc/fstab
# mount -a
# df -hT
/dev/sdb1
               xfs
                      2.0G 47M 2.0G 3%/mnt/disk1
/dev/sdb5
               ext4
                      1.5G 4.5M 1.4G 1%/mnt/disk2
2-Guid Partition Table-GPT
# cat /proc/partitions
# gdisk /dev/sdc
                new partition
        n
                delete partition
        d
                print partition table
        р
        t
                change partition id
                save/write and quit
        W
                quit without save
        q
p
n
Partition number (1-128, default 1): 1
First sector: Enter
Last sector: +1G
Hex code or GUID: Enter
p
1
       2048
                2099199 1024.0 MiB 8300 Linux filesystem
w
Do you want to proceed? (Y/N): y
```

udevadm settle

MANAGING SWAP SPACE

INTRODUCING SWAP SPACE CONCEPTS

- -A swap space is an area of a disk under the control of the Linux kernel memory management subsystem.
- -The kernel uses swap space to supplement the system RAM by holding inactive pages of memory.
- -The combined system RAM plus swap space is called virtual memory.

Implement SWAP on Linux

```
-create 750mb partition and attach it to Linux swap.
```

free -m Swap: 2048 # fdisk /dev/sdb

р

/dev/sdb1 2048 4196351 4194304 2G 83 Linux /dev/sdb2 4196352 10485759 6289408 3G 5 Extended /dev/sdb5 4198400 7319551 3121152 1.5G 83 Linux

n

Adding logical partition 6

First sector: **Enter** Last sector: +750M

р

 /dev/sdb1
 2048 4196351 4194304
 2G
 83 Linux

 /dev/sdb2
 4196352 10485759 6289408
 3G
 5 Extended

 /dev/sdb5
 4198400 7319551 3121152
 1.5G
 83 Linux

 /dev/sdb6
 7321600 8857599 1536000
 750M 83 Linux

t

Partition number (1,2,5,6, default 6): 6 Hex code (type L to list all codes): 82

р

/dev/sdb1 2048 4196351 4194304 2G 83 Linux /dev/sdb2 4196352 10485759 6289408 3G 5 Extended /dev/sdb5 4198400 7319551 3121152 1.5G 83 Linux

/dev/sdb6 7321600 8857599 1536000 750M **82 Linux swap / Solaris**

W

udevadm settle

fdisk -l /dev/sdb

mkswap /dev/sdb6

UUID=98529389-4573-4190-8ca8-bbdbf25b3e1f

echo "UUID=98529389-4573-4190-8ca8-bbdbf25b3e1f swap swap deafults 0 0" >>/etc/fstab

mount -a

swapon /dev/sdb6

free -m

Swap: 2797 # swapon -d # swapon -s

-delete swap space

swapoff /dev/sdb6

free -m

Swap: 2047 # vim /etc/fstab delete swap record

:wq!

mount -a # fdisk /dev/sdb

faisk /aev/sa

/dev/sdb1 2048 4196351 4194304 2G 83 Linux /dev/sdb2 4196352 10485759 6289408 3G 5 Extended /dev/sdb5 4198400 7319551 3121152 1.5G 83 Linux

/dev/sdb6 7321600 8857599 1536000 750M 82 Linux swap / Solaris

d

Partition number (1,2,5,6, default 6): 6

р

 /dev/sdb1
 2048 4196351 4194304
 2G 83 Linux

 /dev/sdb2
 4196352 10485759 6289408
 3G 5 Extended

 /dev/sdb5
 4198400 7319551 3121152
 1.5G 83 Linux

w

udevadm settle

```
parted command
# parted
(parted) select /dev/sdc
Using /dev/sdc
(parted) select /dev/sdd
Using /dev/sdd
(parted) quit
or
# parted /dev/sdd
(parted) select /dev/sda
Using /dev/sda
(parted) quit
# parted
(parted) select /dev/sdd
Using /dev/sdd
(parted) print
Partition Table: unknown
(parted) mktable
New disk label type?
aix amiga atari bsd dvh gpt loop mac msdos pc98 sun
New disk label type? msdos
(parted) print
Partition Table: msdos
(parted) print free
Number Start
               End
                          Size
        1024B 5369MB 5369MB
(parted) mkpart
Partition type? primary/extended? primary
File system type? [ext2]? xfs
Start? 1024B
End? 1024MB
(parted) print
Number Start
                                 Type File system Flags
                End
                          Size
```

1024B 1024MB 1024MB primary

(parted) quit # udevadm settle