Wstęp do bioinformatyki

Nr ćwiczenia: 4

Temat ćwiczenia: Progresywne dopasowanie wielosekwencyjne

Nazwisko i Imię prowadzącego kurs: dr inż. Witold Dyrka

Wykonawcy:	
Imię i Nazwisko	Edyta Krukowska 217097, WPPT
Nr indeksu, wydział	
Termin zajęć: dzień tygodnia, godzina	Piątek 11.15
Data oddania sprawozdania	23.05.2019

Repozytorium: https://github.com/Edie1995/Bioinformatyka/tree/zadanie3

1. Prezentacja działania programu:

Rysunek 1 Przykład działania programu, dla przykładowych sekwencji wczytanych z przykładowych plików

2. Schemat blokowy algorytmu dopasowania

Rysunek 2 Schemat blokowy -tworzenie dopasowania wielu sekwencji

3. Oszacowanie złożoności czasowej obliczeniowej i pamięciowej kodu poszczególnych funkcji i całego programu:

> Czasowa:

addGapSign:

3 operacje if w 2 pętlach for, jedna pętla przy pesymistycznym założeniu porównywania n sekwencji o rozmiarze n, druga przy pesymistycznym założeniu długości sekwencji m, o rozmiarze m, złożoność maksymalnie rzędu O(mn)

addStar:

Podobnie jak w przypadku wcześniejszej funkcji, dwie pętle for, jedna zależna od długości sekwencji, druga od ich ilości, co daje nam ponownie złożoność maksymalnie rzędu O(mn)

searchingCenter:

Dwie pętle for obie o ilości iteracji równej ilości sekwencji, przy pesymistycznym założeniu, że ich ilość to n, cała funkcja maksymalnie rzędu O(n²)

createMatrix:

Dwie główne pętle zagnieżdżone o ilości iteracji równej długości poszczególnych sekwencji. W pesymistycznym założeniu, że jedna z nich będzie miała długość n a druga m funkcja maksymalnie rzędu O(mn)

searchAligment:

Funkcja zawierająca pętlę o ilości iteracji równej ilości sekwencji sprawdzanych, w pesymistycznym założeniu n, dodatkowo pętla ta wywołuje funkcję zawierającą pętlę o ilości iteracji n w pętli o ilości iteracji n (zależą one od długości porównywanych sekwencji), całość maksymalnie rzędu O(nm²)

toTextFile:

Zawiera pętlę główną o ilości iteracji równej długości sekwencji /60, pod nią zagnieżdżona jest pętla o ilości iteracji równej ilości sekwencji, a w niej pętla o ilości iteracji równej długości sekwencji, w pesymistycznym założeniu n*m*n. Funkcja maksymalnie rzędu O(mn²).

Ponieważ pozostałe funkcje nie zawierają tak złożonych operacji, można przyjąć, że program jest maksymalnie rzędu O(mn²).

> Pamięciowa

Największa ze struktur w programie ma rozmiar n*m, jest to struktura zwierająca n sekwencji o długości m. Struktura ta jest wykorzystywana w kilku funkcjach, jednak wywołania te nie są wysokiego rzędu. Można więc przyjąć, że złożoność pamięciowa programu wyniesie O(mn)

4. Porównanie przykładowych par sekwencji

```
JQ735466.1
              -A-GG-----TCN-AGC----CC------GG-A-A-CC-----CTACT----T---
               --GGG-----CAA--CCT------GG-----CA----C-ACTGC--TA--
JQ735460.1
JQ735459.1
              TA-GG-----C--AACC-T-----GG--GA-CC-----CTAC----T-A-
                                                                           23
JQ179960.1
               -A---TTAATTC-GAG-----C--TGAATTAGGTA-ATCC-TGGGTCT-CT--AAT--T
                                                                           40
                                           **
JQ735466.1
               GGC---GATGATCAA--ATCT--A-T--AATGTA---ATT-GTT-ACA--GCT-----CA
                                                                           61
JQ735460.1
               GG-A--GATGATC-AG-AT-T---TTC-AATGTA---A-TCG-T--CA---CTGCC--CA
                                                                           61
JQ735459.1
              GG--A-GATGATC-A-GATC-G-A---CAATGT-C--ATT-G-T-A-ACCGC----C-CA
JQ179960.1
              GG---TGATGATCAA--AT-T-TA-T--AA--TA-CTATT-G-TCACA--GC-----ACA
                                                                           78
                    ****** * **
                                        ** *
                                                **** * *
JQ735466.1
              TGCC-T-TT-GTA--ATA-ATCTTCTT--T---ATA---GTA---ATAC-CC--ATTATG
```

JQ735466.1– cytochrom c świni (COI)

JQ735460 – cytochrom c kota (COI)

JQ735459.1 – cytochrom c konia (COI)

JQ179960.1 – cytochrom c żaby (COI)