Kindr Cheat Sheet v1.0

Kinematics and Dynamics for Robotics

Nomenclature

(Hyper-)complex number	Q	normal capital letter
Column vector	a	bold small letter
Matrix	M	bold capital letter
Identity matrix	$\mathbb{1}_{n \times m}$	$n \times m$ -matrix
Coordinate system (CS)	$\mathbf{e}_{x}^{A},\mathbf{e}_{y}^{A},\mathbf{e}_{z}^{A}$	Cartesian right-hand system A with basis (unit) vectors e
Inertial frame	$\mathbf{e}_{x}^{I},\mathbf{e}_{y}^{I},\mathbf{e}_{z}^{I}$	global / inertial / world coordinate system (never moves)
Body-fixed frame	$\mathbf{e}_{x}^{B},\mathbf{e}_{y}^{B},\mathbf{e}_{z}^{B}$	local / body-fixed coordinate system (moves with body)
Rotation	$\Phi \in SO(3)$	generic rotation (for all parameterizations)
Machine precision	ϵ	

Operators

Cross product	$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Leftrightarrow (\mathbf{a})^{\wedge} \mathbf{b} = \hat{\mathbf{a}} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
Skew/unskew	$\mathbf{a} = \hat{\mathbf{a}}^{\vee}$
Euclidean norm	$\ \mathbf{a}\ = \sqrt{\mathbf{a}^T \mathbf{a}} = \sqrt{a_1^2 + \ldots + a_n^2}$
Exponential map for matrix	$expM : \mathbb{R}^3 \to \mathbb{R}^3, \mathbf{A} \mapsto e^{\mathbf{A}}, \mathbf{A} \in \mathbb{R}^{3 \times 3}$
Logarithmic map for matrix	$\log \mathrm{M}: \mathbb{R}^3 o \mathbb{R}^3, \mathbf{A} \mapsto \log \mathbf{A}, \mathbf{A} \in \mathbb{R}^{3 imes 3}$

Position & Orientation

Position

Vector	\mathbf{r}_{OP}	from point O to point P
Position vector	$_{B}\mathbf{r}_{OP}\in\mathbb{R}^{3}$	from point O to point P expr. in frame B
Homogeneous pos. vector	$_{B}\bar{\mathbf{r}}_{OP} = \begin{bmatrix} _{B}\mathbf{r}_{OP}^{T} & 1 \end{bmatrix}$	from point O to point P expr. in frame B

Orientation/Rotation

 $\Phi^A: {}_{I}\mathbf{r}_{OP} \mapsto {}_{I}\mathbf{r}_{OQ} \text{ (rotates the vector } \mathbf{r}_{OP})$ 1) Active Rotation:

 $\Phi^P: I^{\mathbf{r}_{OP}} \mapsto \mathbf{Br}_{OP}$ (rotates the frame $(\mathbf{e}_x^I, \mathbf{e}_y^I, \mathbf{e}_z^I)$) 2) Passive Rotation:

3) Elementary Rotations $I_{POP} = C_{IBBPOP}$

 $\Phi^{A^{-1}}(\mathbf{r}) = \Phi^P(\mathbf{r})$ 4) Inversion:

$$\Phi_2^A \left(\Phi_1^A (\mathbf{r}) \right) = \left(\Phi_2^A \otimes \Phi_1^A \right) (\mathbf{r}) = \left(\Phi_1^{A^{-1}} \otimes \Phi_2^{A^{-1}} \right)^{-1} (\mathbf{r})$$

5) Concatenation: $\Phi_2^P\left(\Phi_1^P(\mathbf{r})\right) = \left(\Phi_2^P \otimes \Phi_1^P\right)(\mathbf{r}) = \left(\Phi_1^{P^{-1}} \otimes \Phi_2^{P^{-1}}\right)^{-1}(\mathbf{r})$

 $\exp: \mathbb{R}^3 \to SO(3), \mathbf{v} \mapsto \exp M(\hat{\mathbf{v}}), \quad \mathbf{v} \in \mathbb{R}^3$ 6) Exponential map: 7) Logarithmic map:

 $\log : SO(3) \to \mathbb{R}^3, \Phi \mapsto \log M(\Phi)^{\vee}, \quad \Phi \in SO(3)$ $\Phi_2 = \Phi_1 \boxplus \mathbf{v} = \exp(\mathbf{v}) \otimes \Phi_1, \quad \Phi_1, \Phi_2 \in SO(3), \mathbf{v} \in \mathbb{R}^3$

8) Box plus: 9) Box minus:

10) Discrete integration:

 $\begin{aligned} \mathbf{v} &= \Phi_1 \boxminus \Phi_2 = \log \left(\Phi_1 \otimes \Phi_2^{-1} \right), & \Phi_1, \Phi_2 \in \mathrm{SO}(3), \mathbf{v} \in \mathbb{R}^3 \\ \Phi_{IB}^{k+1} &= \Phi_{IB}^k \boxplus \left(I \boldsymbol{\omega}_{IB}^k \Delta t \right), & \Phi_{BI}^{k+1} &= \Phi_{BI}^k \boxplus \left(-B \boldsymbol{\omega}_{IB}^k \Delta t \right) \\ I \boldsymbol{\omega}_{IB}^k &= \left(\Phi_{IB}^{k+1} \boxminus \Phi_{IB}^k \right) / \Delta t, & B \boldsymbol{\omega}_{IB}^k &= -\left(\Phi_{BI}^{k+1} \boxminus \Phi_{BI}^k / \Delta t \right) \\ \Phi_t &= \Phi_0 \boxplus \left(\left(\Phi_1 \boxminus \Phi_0 \right) t \right), & \Phi_t &= \Phi(t), \Phi_0 &= \Phi(0), \Phi_1 &= \Phi(1) \end{aligned}$ 11) Discrete differential:

12) (Spherical) linear interpolation $t \in [0, 1]$:

 $= (\Phi_1 \otimes \Phi_0^{-1})^t \otimes \Phi_0$

Rotation Parameterizations

Rotation Matrix	$\mathbf{C}_{AB} \in \mathrm{SO}(3)$	The rotation matrix (Direction Cosine Matrix)	
	$_{A}\mathbf{r}_{OP}=\mathbf{C}_{ABB}\mathbf{r}_{OP}$ is a coordinate transformation matrix,		
	$\mathbf{C}_{AB} = \mathbf{C}_{BA}^T$	which transforms vectors from frame B to frame A .	
Rotation	\mathbf{q}_{AB}	Hamiltonian unit quaternion (hypercomplex number)	
Quaternion	$\mathbf{q} = [q_0 \ q_1 \ q_2 \ q_3]^T$	$Q = q_0 + q_1 i + q_2 j + q_3 k \in \mathbb{H}, q_i \in \mathbb{R}, Q = 1$	
Angle-axis	$(\theta,\mathbf{n})_{AB}$	Rotation with unit rotation axis n and angle $\theta \in [0, \pi]$.	
Rotation Vector	$oldsymbol{\phi}_{A\!B}$	Rotation with rotation axis $\mathbf{n} = \frac{\boldsymbol{\phi}}{\ \boldsymbol{\phi}\ }$ and angle $\theta = \ \boldsymbol{\phi}\ $.	
Euler Angles ZYX	$(\psi, \theta, \phi)_{AB}$	Tait-Bryan angles (Flight conv.): $z - y' - x''$, i.e.	
Euler Angles YPR		yaw-pitch-roll. Singularities are at $\theta = \pm \frac{\pi}{2}$.	
		$\psi \in [-\pi, \pi), \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}), \phi \in [-\pi, \pi)$	
Euler Angles XYZ	$(\alpha, \beta, \gamma)_{AB}$	Cardan angles (Glocker conv.): $x - y' - z''$, i.e.	
Euler Angles RPY		roll-pitch-yaw. Singularities are at $\beta = \pm \frac{\pi}{2}$.	
		$\alpha \in [-\pi, \pi), \beta \in [-\frac{\pi}{2}, \frac{\pi}{2}), \gamma \in [-\pi, \pi)$	

Rotation Quaternion

A rotation quaternion is a Hamiltonian unit quaternion:

 $Q = q_0 + q_1 i + q_2 j + q_3 k \in \mathbb{H}, \quad q_i \in \mathbb{R}, i^2 = j^2 = k^2 = ijk = -1, \quad \|Q\| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} = 1$ Note that Q_{IB} and $-Q_{IB}$ represent the same rotation, but not the same unit quaternion.

Rot. quaternion as tuple: $Q = (q_0, q_1, q_2, q_3) = (q_0, \check{\mathbf{q}})$ with $\check{\mathbf{q}} := (q_1, q_2, q_3)^{\mathsf{T}}$

Rot. quaternion as vector: $\mathbf{q} = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 \end{bmatrix}$

Conjugate: $Q^* = (q_0, -\check{\mathbf{q}})$

Inverse: $Q^{-1} = Q^* = (q_0, -\check{\mathbf{q}})$

Quaternion multiplication:

$$Q \cdot P = (q_0, \check{\mathbf{q}}) \cdot (p_0, \check{\mathbf{p}}) = (q_0 p_0 - \check{\mathbf{q}}^\mathsf{T} \check{\mathbf{p}}, q_0 \check{\mathbf{p}} + p_0 \check{\mathbf{q}} + \check{\mathbf{q}} \times \check{\mathbf{p}}) \quad \Leftrightarrow \quad$$

$$\mathbf{q} \otimes \mathbf{p} = \underbrace{\mathbf{Q}(\mathbf{q})}_{\text{quaternion matrix}} \mathbf{p} = \begin{pmatrix} q_0 & -\check{\mathbf{q}}^\mathsf{T} \\ \check{\mathbf{q}} & q_0 \mathbb{1}_{3 \times 3} + \hat{\check{\mathbf{q}}} \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & -q_3 & q_2 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

$$= \underline{\bar{\mathbf{Q}}}(\mathbf{p}) \mathbf{q} = \begin{pmatrix} p_0 & -\check{\mathbf{p}}^\mathsf{T} \\ \check{\mathbf{p}} & p_0 \mathbb{1}_{3 \times 3} - \dot{\hat{\mathbf{p}}} \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & p_3 & -p_2 \\ p_2 & -p_3 & p_0 & p_1 \\ p_3 & p_2 & -p_1 & p_0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

Rotation Quaternion \Leftrightarrow Rotation Angle-Axis

$$\mathbf{q}_{IB} = \begin{bmatrix} \cos\frac{\theta}{2} \\ \mathbf{n}\sin\frac{\theta}{2} \end{bmatrix} \quad \Leftrightarrow \quad (\theta, \mathbf{n})_{IB} = \begin{cases} (2\arccos\left(p_{0}\right), \frac{\check{\mathbf{q}}}{\|\check{\mathbf{q}}\|}\right) & \text{if } \|\check{\mathbf{q}}\|^{2} \geq \epsilon^{2} \\ (0, \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}) & \text{otherwise} \end{cases}$$

Rotation Quaternion \Leftrightarrow Direction Cosine Matrix

$$\mathbf{C}_{IB} = \mathbb{1}_{3\times3} + 2q_0\dot{\mathbf{q}} + 2\dot{\mathbf{q}}^2 = (2q_0^2 - 1)\mathbb{1}_{3\times3} + 2q_0\dot{\mathbf{q}} + 2\check{\mathbf{q}}\check{\mathbf{q}}^\mathsf{T}$$

$$= \begin{bmatrix} p_0^2 + p_1^2 - p_2^2 - p_3^2 & 2p_1p_2 - 2p_0p_3 & 2p_0p_2 + 2p_1p_3 \\ 2p_0p_3 + 2p_1p_2 & p_0^2 - p_1^2 + p_2^2 - p_3^2 & 2p_2p_3 - 2p_0p_1 \\ 2p_1p_3 - 2p_0p_2 & 2p_0p_1 + 2p_2p_3 & p_0^2 - p_1^2 - p_2^2 + p_3^2 \end{bmatrix}$$

$$\begin{split} \mathbf{C}_{IB}^{-1} &= \mathbf{C}_{BI} = \mathbbm{1}_{3\times3} - 2p_0\hat{\mathring{\mathbf{p}}} + 2\hat{\mathring{\mathbf{p}}}^2 \\ &= \begin{bmatrix} p_0^2 + p_1^2 - p_2^2 - p_3^2 & 2p_0p_3 + 2p_1p_2 & 2p_1p_3 - 2p_0p_2 \\ 2p_1p_2 - 2p_0p_3 & p_0^2 - p_1^2 + p_2^2 - p_3^2 & 2p_0p_1 + 2p_2p_3 \\ 2p_0p_2 + 2p_1p_3 & 2p_2p_3 - 2p_0p_1 & p_0^2 - p_1^2 - p_2^2 + p_3^2 \end{bmatrix} \end{split}$$

Euler Angles ZYX ⇔ Direction Cosine Matrix

Figure 1: Rotation from A-frame to D-frame: (z-y'-x'') - (yaw-pitch-roll) - $(50^{\circ}-25^{\circ}-30^{\circ})$

Euler Angles XYZ ⇔ Direction Cosine Matrix

Figure 2: Rotation from A-frame to D-frame: (x-y'-z'') – (roll-pitch-yaw) – $(50^{\circ}-25^{\circ}-30^{\circ})$

Pose

Homogeneous Transformation Matrix

$$\begin{bmatrix} I^{\mathbf{r}_{IP}} \\ 1 \end{bmatrix} = \mathbf{T}_{IB} \begin{bmatrix} B^{\mathbf{r}_{BP}} \\ 1 \end{bmatrix}, \quad \mathbf{T}_{IB} = \begin{bmatrix} \mathbf{C}_{IB} & {}_{I}\mathbf{r}_{IB} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \quad \mathbf{T}_{IB}^{-1} = \mathbf{T}_{BI} = \begin{bmatrix} \mathbf{C}_{IB}^{\mathsf{T}} & -\mathbf{C}_{IB}^{\mathsf{T}}{}_{I}\mathbf{r}_{IB} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix}$$

Time Derivatives of Position & Orientation

Linear Velocity

Velocity of point P expressed in a rotating frame B w.r.t. to the inertial frame I:

 $_{B}\mathbf{v}_{P} = _{B}\mathbf{v}_{A} + _{B}\dot{\mathbf{r}}_{AP} + _{B}\boldsymbol{\omega}_{IB} \times _{B}\mathbf{r}_{AP}$

Velocity of point Q on rigid body B that rotates with ${}_{B}\Omega$, where point P is on the same rigid body B: ${}_{B}\mathbf{v}_{Q} = {}_{B}\mathbf{v}_{P} + {}_{B}\Omega \times {}_{B}\mathbf{r}_{PQ}$, ${}_{B}\Omega = {}_{B}\boldsymbol{\omega}_{IB}$

Angular Velocity

 ${}_{B}\boldsymbol{\omega}_{IB} =: {}_{B}\boldsymbol{\Omega}$ (local) absolute angular velocity of rigid body B expr. in frame B ${}_{B}\boldsymbol{\omega}_{IB} = -{}_{B}\boldsymbol{\omega}_{BI}$ inverse of angular velocity ${}_{I}\boldsymbol{\omega}_{IB} = \mathbf{C}_{IB}{}_{B}\boldsymbol{\omega}_{IB}$ (global) angular velocity from frame B to frame I ${}_{I}\hat{\boldsymbol{\omega}}_{IB} = \mathbf{C}_{IB}{}_{B}\hat{\boldsymbol{\omega}}_{IB}\mathbf{C}_{IB}^{\mathsf{T}}$ coord. transformation of angular velocity from frame B to frame I ${}_{D}\boldsymbol{\omega}_{AD} = {}_{D}\boldsymbol{\omega}_{AB} + {}_{D}\boldsymbol{\omega}_{BC} + {}_{D}\boldsymbol{\omega}_{CD}$ composition of (relative) angular velocity

Time Derivative of Direction Cosine Matrix ⇔ Angular Velocity

$$\begin{array}{lll} {}_{I}\hat{\boldsymbol{\omega}}_{IB} = \dot{\mathbf{C}}_{IB}\mathbf{C}_{IB}^{\mathsf{T}} = \dot{\mathbf{C}}_{BI}^{\mathsf{T}}\mathbf{C}_{BI} & \Leftrightarrow & \dot{\mathbf{C}}_{IB} = {}_{I}\hat{\boldsymbol{\omega}}_{IB}\mathbf{C}_{IB} \\ {}_{B}\hat{\boldsymbol{\omega}}_{IB} = \mathbf{C}_{IB}^{\mathsf{T}}\dot{\mathbf{C}}_{IB} = \mathbf{C}_{BI}\dot{\mathbf{C}}_{BI}^{\mathsf{T}} & \Leftrightarrow & \dot{\mathbf{C}}_{IB} = \mathbf{C}_{IBB}\hat{\boldsymbol{\omega}}_{IB} \end{array}$$

Time Derivative of Rotation Quaternion ⇔ Angular Velocity

$$\begin{aligned}
I \omega_{IB} &= 2\mathbf{H}(\mathbf{q}_{IB}) \dot{\mathbf{q}}_{IB} \\
B \omega_{IB} &= 2\mathbf{\bar{H}}(\mathbf{q}_{IB}) \dot{\mathbf{q}}_{IB} \\
B \omega_{IB} &= 2\mathbf{\bar{H}}(\mathbf{q}_{IB}) \dot{\mathbf{q}}_{IB} \\
\mathbf{H}(\mathbf{q}) &= \begin{bmatrix} -\dot{\mathbf{q}} & \dot{\mathbf{q}} + q_0 \mathbb{1}_{3 \times 3} \end{bmatrix} \in \mathbb{R}^{3 \times 4} \end{aligned}$$

$$\Rightarrow \quad \dot{\mathbf{q}}_{IB} &= \frac{1}{2}\mathbf{H}(\mathbf{q}_{IB})^{\mathsf{T}}_{I} \omega_{IB} \\
\dot{\mathbf{H}}(\mathbf{q}) &= \begin{bmatrix} -\dot{\mathbf{q}} & \dot{\mathbf{q}} + q_0 \mathbb{1}_{3 \times 3} \end{bmatrix} \in \mathbb{R}^{3 \times 4} \\
\ddot{\mathbf{H}}(\mathbf{q}) &= \begin{bmatrix} -\dot{\mathbf{q}} & -\dot{\mathbf{q}} + q_0 \mathbb{1}_{3 \times 3} \end{bmatrix} \in \mathbb{R}^{3 \times 4} \\
&= \begin{bmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & q_3 & q_0 & q_1 \\ -q_3 & -q_2 & q_1 & q_0 \end{bmatrix}
\end{aligned}$$

Time Derivative of Angle-Axis \Leftrightarrow Angular Velocity

$$I\boldsymbol{\omega}_{IB} = \mathbf{n}\dot{\boldsymbol{\theta}} + \dot{\mathbf{n}}\sin\boldsymbol{\theta} + \hat{\mathbf{n}}\dot{\mathbf{n}}(1 - \cos\boldsymbol{\theta})$$

$$B\boldsymbol{\omega}_{IB} = \mathbf{n}\dot{\boldsymbol{\theta}} + \dot{\mathbf{n}}\sin\boldsymbol{\theta} - \hat{\mathbf{n}}\dot{\mathbf{n}}(1 - \cos\boldsymbol{\theta})$$

$$\dot{\boldsymbol{\theta}} = \mathbf{n}^{\mathsf{T}}{}_{I}\boldsymbol{\omega}_{IB}, \quad \dot{\mathbf{n}} = \left(-\frac{1}{2}\frac{\sin\boldsymbol{\theta}}{1 - \cos\boldsymbol{\theta}}\hat{\mathbf{n}}^{2} - \frac{1}{2}\hat{\mathbf{n}}\right){}_{I}\boldsymbol{\omega}_{IB} \quad \forall\boldsymbol{\theta} \in \mathbb{R}\backslash\{0\}$$

$$\dot{\boldsymbol{\theta}} = \mathbf{n}^{\mathsf{T}}{}_{B}\boldsymbol{\omega}_{IB}, \quad \dot{\mathbf{n}} = \left(-\frac{1}{2}\frac{\sin\boldsymbol{\theta}}{1 - \cos\boldsymbol{\theta}}\hat{\mathbf{n}}^{2} + \frac{1}{2}\hat{\mathbf{n}}\right){}_{B}\boldsymbol{\omega}_{IB} \quad \forall\boldsymbol{\theta} \in \mathbb{R}\backslash\{0\}$$

Time Derivative of Rotation Vector ⇔ Angular Velocity

$$\begin{split} &_{I}\boldsymbol{\omega}_{IB} = \left(\mathbb{1}_{3\times3} + \hat{\boldsymbol{\phi}}\left(\frac{1-\cos\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^2}\right) + \hat{\boldsymbol{\phi}}^2\left(\frac{\|\boldsymbol{\phi}\|-\sin\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^3}\right)\right)\dot{\boldsymbol{\phi}} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &_{B}\boldsymbol{\omega}_{IB} = \left(\mathbb{1}_{3\times3} - \hat{\boldsymbol{\phi}}\left(\frac{1-\cos\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^2}\right) + \hat{\boldsymbol{\phi}}^2\left(\frac{\|\boldsymbol{\phi}\|-\sin\|\boldsymbol{\phi}\|}{\|\boldsymbol{\phi}\|^3}\right)\right)\dot{\boldsymbol{\phi}} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &\dot{\boldsymbol{\phi}} = \left(\mathbb{1}_{3\times3} - \frac{1}{2}\hat{\boldsymbol{\phi}} + \hat{\boldsymbol{\phi}}^2\frac{1}{\|\boldsymbol{\phi}\|^2}\left(1 - \frac{\|\boldsymbol{\phi}\|}{2}\frac{\sin\|\boldsymbol{\phi}\|}{1-\cos\|\boldsymbol{\phi}\|}\right)\right)_{I}\boldsymbol{\omega}_{IB} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\}\\ &\dot{\boldsymbol{\phi}} = \left(\mathbb{1}_{3\times3} + \frac{1}{2}\hat{\boldsymbol{\phi}} + \hat{\boldsymbol{\phi}}^2\frac{1}{\|\boldsymbol{\phi}\|^2}\left(1 - \frac{\|\boldsymbol{\phi}\|}{2}\frac{\sin\|\boldsymbol{\phi}\|}{1-\cos\|\boldsymbol{\phi}\|}\right)\right)_{B}\boldsymbol{\omega}_{IB} \quad \forall \|\boldsymbol{\phi}\| \in \mathbb{R}\backslash\{0\} \end{split}$$

Time Derivative of Euler Angles ZYX ⇔ Angular Velocity

$$\begin{bmatrix} \dot{z} \\ \dot{y} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & \frac{\sin(x)}{\cos(y)} & \frac{\cos(x)}{\cos(y)} \\ 0 & \cos(x) & -\sin(x) \\ 1 & \frac{\sin(x)\sin(y)}{\cos(y)} & \frac{\cos(x)\sin(y)}{\cos(y)} \end{bmatrix} B \boldsymbol{\omega}_{IB} \quad \forall y \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$\begin{bmatrix} \dot{z} \\ \dot{y} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} \frac{\cos(z)\sin(y)}{\cos(y)} & \frac{\sin(y)\sin(z)}{\cos(y)} & 1 \\ -\sin(z) & \cos(z) & 0 \\ \frac{\cos(z)}{\cos(y)} & \frac{\sin(z)}{\cos(y)} & 0 \end{bmatrix} I \boldsymbol{\omega}_{IB} \quad \forall y \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi\}, k \in \mathbb{Z}$$

$$B \boldsymbol{\omega}_{IB} = \begin{bmatrix} -\sin(y) & 0 & 1 \\ \cos(y)\sin(x) & \cos(x) & 0 \\ \cos(x)\cos(y) & -\sin(x) & 0 \end{bmatrix} \begin{bmatrix} \dot{z} \\ \dot{y} \\ \dot{x} \end{bmatrix}$$

$$I \boldsymbol{\omega}_{IB} = \begin{bmatrix} 0 & -\sin(z) & \cos(y)\cos(z) \\ 0 & \cos(z) & \cos(y)\sin(z) \\ 1 & 0 & -\sin(y) \end{bmatrix} \begin{bmatrix} \dot{z} \\ \dot{y} \\ \dot{x} \end{bmatrix}$$

Dynamics of a Multi-Rigid-Body System

nNumber of bodies in system Number of DoFs of the joints n_{j} Number of generalized coordinates n_a

Number of generalized velocities n_u

 \mathbf{M} Mass matrix

Gyroscopic and Coriolis forces \mathbf{g}

Generalized external forces and torques

Combined force vector

Jacobi matrix for translation of point P

Jacobi matrix for rotation \mathbf{F}_{Q}^{A} \mathbf{M}^{A} External forces on point Q

External torques

mMass

Inertia tensor

Variable before impact Variable after impact Variable before/after impact

 Δt Time step duration $\Delta \mathbf{u}$ Velocity change over one time step

 \mathbf{w} Generalized force directions for contact forces

λ Lebesgue-measurable contact forces Λ Purely atomic impact impulses

 \mathbf{P} Contact percussions

Generalized Coordinates of a Floating-Base System with Rotational Joints

Recommended set of generalized coordinates \mathbf{q} with quaternion \mathbf{q}_{IB} and generalized velocities \mathbf{u} :

$$\mathbf{q} = \begin{pmatrix} I^{\mathbf{r}_{IB}} \\ \mathbf{q}_{IB} \\ \varphi_{1} \\ \vdots \\ \varphi_{n_{j}} \end{pmatrix} \in \mathbb{R}^{7+n_{j}} = \mathbb{R}^{n_{q}} \quad \mathbf{u} = \begin{pmatrix} I^{\mathbf{v}_{B}} \\ B \boldsymbol{\omega}_{IB} \\ \dot{\varphi}_{1} \\ \vdots \\ \dot{\varphi}_{n_{j}} \end{pmatrix} \in \mathbb{R}^{6+n_{j}} = \mathbb{R}^{n_{u}} \quad \dot{\mathbf{u}} = \begin{pmatrix} I^{\mathbf{a}_{B}} \\ B \boldsymbol{\psi}_{IB} \\ \ddot{\varphi}_{1} \\ \vdots \\ \ddot{\varphi}_{n_{j}} \end{pmatrix} \in \mathbb{R}^{6+n_{j}}$$

$$\dot{\mathbf{q}} = \mathbf{F}\mathbf{u}, \quad \mathbf{F} = \begin{pmatrix} \mathbb{1}_{3\times3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{1}{2}\bar{\mathbf{H}}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbb{1}_{n_j\times n_j} \end{pmatrix} \quad \Leftrightarrow \quad \mathbf{u} = \bar{\mathbf{F}}\dot{\mathbf{q}}, \quad \bar{\mathbf{F}} = \begin{pmatrix} \mathbb{1}_{3x3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2\bar{\mathbf{H}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbb{1}_{n_j\times n_j} \end{pmatrix}$$

Equations of Motion with Contacts and no Impulses

Projected Newton-Euler Equations

$$\mathbf{M} = \sum_{i=1}^{n} \left[(\mathbf{J}_{S}^{\mathsf{T}} m \mathbf{J}_{S} + \mathbf{J}_{R}^{\mathsf{T}} \mathbf{\Theta}_{S} \mathbf{J}_{R}) \right]_{i}$$

$$\mathbf{M}\dot{\mathbf{u}} - \mathbf{h} = \mathbf{W}\boldsymbol{\lambda} \text{ with } \mathbf{h} := \mathbf{f} - \mathbf{g}, \text{ and } \mathbf{g} = \sum_{i=1}^{n} \left[(\mathbf{J}_{S}^{\mathsf{T}} m \dot{\mathbf{J}}_{S} \mathbf{u} + \mathbf{J}_{R}^{\mathsf{T}} (\mathbf{\Theta}_{S} \dot{\mathbf{J}}_{R} \mathbf{u} + \mathbf{\Omega} \times \mathbf{\Theta}_{S} \mathbf{\Omega})) \right]_{i}$$

$$\mathbf{f} = \sum_{i=1}^{n} \left[(\mathbf{J}_{Q}^{\mathsf{T}} \mathbf{F}_{Q}^{A} + \mathbf{J}_{R}^{\mathsf{T}} \mathbf{M}^{A}) \right]_{i}$$

Equations of Motion with Contacts and Impulses

$$\label{eq:matter} \boxed{ \mathbf{M} \Delta \mathbf{u} - \mathbf{h} \Delta t = \mathbf{W} \mathbf{P} } \quad \left\{ \begin{array}{cc} \mathbf{M} (\mathbf{u}^+ - \mathbf{u}^-) &= \mathbf{W} \mathbf{\Lambda} \\ \mathbf{M} \underbrace{(\dot{\mathbf{u}} \mathrm{d}t + (\mathbf{u}^+ - \mathbf{u}^-) \mathrm{d}\eta)}_{\mathrm{d}\mathbf{u}} - \mathbf{h} \mathrm{d}t &= \mathbf{W} \underbrace{(\mathbf{\lambda} \mathrm{d}t + \mathbf{\Lambda} \mathrm{d}\eta)}_{\mathrm{d}\mathbf{P}} \end{array} \right.$$

Transformation of Equations of Motion

Transformation from $\bar{\mathbf{M}}(\bar{\mathbf{q}}), \bar{\mathbf{h}}(\bar{\mathbf{q}}, \bar{\mathbf{u}})$ to $\mathbf{M}(\mathbf{q}), \mathbf{h}(\mathbf{q}, \mathbf{u})$, where $\bar{\mathbf{u}} = \mathbf{B}\mathbf{u}$: $h = B^T \bar{h} - B^T \bar{M} \dot{B} u$

Copyright © 2014 Autonomous Systems Lab, ETH Zurich (asl.ethz.ch) Contact: Christian Gehring (gehrinch@ethz.ch)