

#### **TABLE OF CONTENTS**

#### OI Introduction

Problem Statement and Background

#### 02 Data Cleaning & EDA

Data Processing and Visualizations

#### 03 Modeling

Fitting Different Models and Comparing the Results

#### **04 Recommender System**

Introducing the GAFC Player Scouter ver 1.38

#### **05** Conclusion

Summary & Future Work





01

Introduction

#### INTRODUCTION

Football is a world renowned sport with 4 billion fans worldwide.

- Especially popular in Europe, South America
- Countries have their respective leagues and competitions.
- Football clubs are able to purchase players from another club by paying a transfer fee.
- Dataset: Fifa19 data (Kaggle)
- Dimensions: 18207 rows, 89 columns



#### PROBLEM STATEMENT

Football Clubs have been overpaying for player transfers, along with making impulse purchases on players which do not suit the club. This leads to massive financial consequences should the new player fail to perform up to expectations.



**Regression Model** 

Creating a regression model which correctly predicts a player's transfer value based on various features.



**Recommender System** 

Building a recommender system to to search for similar players to replace departing stars.



## 02 Exploratory Data Analysis

## Age

Mean: 25.12 years old

Median: 25 years old

Mode: 21 years old

Youngest: 16 years old

Oldest: 45 years old



#### **Overall**

Mean, Median & Mode: 66

Highest: 94

Lowest: 46



## Overall vs Age

Player's overall score increase as they age.



# Speed, Acceleration & Agility vs Age

Sprint Speed,
Acceleration and
Agility decreases over
time as players age.



## **Position**





## **Position**





## **Position**





# Wage, Value vs Age

Players peak at 27-31 years old in general.

During that period, they are at the top of the game thus their wages and valuation are at a high.





## **Top 10 Attributes**

Top 3 features with highest correlation to a player's value:

- 1) Wage
- 2) International Reputation
- 3) Overall





03 Modeling

#### **Models Used**

- 1) Linear Regression
- 2) Lasso Regression
- 3) Ridge Regression
- 4) Random Forest Regression



#### **FIRST TEST: RAW DATASET**

**CROSS VAL SCORE** 

|                        | Linear Regression | Lasso Regression | Ridge Regression | Random Forest |
|------------------------|-------------------|------------------|------------------|---------------|
| Cross Validation Score | -2.931560e+25     | 0.843481         | 0.842346         | 0.971896      |

ACCURACY & VARIANCE

|                | Lasso Regression | Ridge Regression | Random Forest |
|----------------|------------------|------------------|---------------|
| Train Score    | 0.877622         | 0.873287         | 0.996732      |
| Accuracy Score | 0.834774         | 0.834733         | 0.980449      |
| Variance       | 0.042847         | 0.038554         | 0.016284      |

#### **SECOND TEST: CLEANED DATASET**

**CROSS VAL SCORE** 

|                        | Linear Regression | Lasso Regression | Ridge Regression | Random Forest |
|------------------------|-------------------|------------------|------------------|---------------|
| Cross Validation Score | -6.955243e+24     | 0.811363         | 0.810203         | 0.960073      |

ACCURACY & VARIANCE

|                | Lasso Regression | Ridge Regression | Random Forest |
|----------------|------------------|------------------|---------------|
| Train Score    | 0.840692         | 0.839766         | 0.994509      |
| Accuracy Score | 0.841983         | 0.843025         | 0.972539      |
| Variance       | 0.001291         | 0.003259         | 0.021970      |

## **Getting Best Parameters**





## **Final Model**

#### **Random Forest Regression**

| Train Score            | 0.994581 |
|------------------------|----------|
| Accuracy Score         | 0.973188 |
| Variance               | 0.021393 |
| Cross Validation Score | 0.960449 |



## **Predictions**



|   | ID     | Real Values | Predicted Values |
|---|--------|-------------|------------------|
| 0 | 229692 | 1.20        | 1.18             |
| 1 | 239605 | 0.27        | 0.20             |
| 2 | 214981 | 0.40        | 0.41             |
| 3 | 189235 | 0.78        | 0.67             |
| 4 | 204497 | 9.00        | 8.70             |
| 5 | 237631 | 4.90        | 4.74             |
| 6 | 244538 | 0.32        | 0.35             |
| 7 | 189839 | 0.35        | 0.48             |
| 8 | 226416 | 0.62        | 0.40             |
| 9 | 217758 | 0.82        | 0.82             |

## Residuals





## Feature Importance

**Overall** is the most important feature considered by the Random Forest Regressor in determining the target (Player's Value).

|   |   | Feature     | Importance |
|---|---|-------------|------------|
|   | 0 | Overall     | 0.84710    |
|   | 1 | Potential   | 0.07731    |
|   | 2 | Finishing   | 0.00892    |
| ļ | 3 | Composure   | 0.00836    |
|   | 4 | Reactions   | 0.00797    |
|   | 5 | Wage        | 0.00639    |
|   | 6 | Positioning | 0.00403    |
|   | 7 | Stamina     | 0.00392    |
|   | 8 | LongShots   | 0.00391    |
|   | 9 | BallControl | 0.00386    |



04

Recommender System

GAFC Player Scouter ver 1.38

#### **Testing the Recommender System**

Replacement for "L. Messi"



#### **GAFC Plauer Scouter Ver 1.38 Scout Report**

Argentina

Belgium

Netherlands

Argentina

Italy

Algeria

Brazil

France

Germany

| Club                | Name      | Age | Nationality | Main Position | Overall | Potential | Preferred Foot | Weak Foot | Wage   | Value (€ Mil) |
|---------------------|-----------|-----|-------------|---------------|---------|-----------|----------------|-----------|--------|---------------|
| Paris Saint-Germain | Neymar Jr | 26  | Brazil      | WING          | 92      | 93        | 1              | 5         | 290000 | 118           |

ST

ST

ST

WING

WING

WING

WING

WING

WING

89

91

84

89

88

85

86

82

88

94

91

84

89

88

85

86

89

95

0

0

1

0

0

3 205000

4 340000

4 300000

4 205000

4 140000

110000

165000

100000

100000

2

4

89

93

16

64

62

40

44

32

81

| Club | Mama | A | Matianality | Main Desition | Overell | Dat |
|------|------|---|-------------|---------------|---------|-----|
|      |      |   |             |               |         |     |
|      |      |   |             |               |         |     |
|      |      |   |             |               |         |     |
|      |      |   |             |               |         |     |

24

27

30

27

27

29

21

19

P. Dybala

E. Hazard

A. Robben

S. Agüero

L. Insigne

R. Mahrez

M. Reus

Malcom

**Juventus** 

Chelsea

Napoli

Paris Saint-Germain K. Mbappé

FC Bayern München

Manchester City

Manchester City

FC Barcelona

Borussia Dortmund

1

2

4

5

6

8



## 05 Conclusion

## Summary

With accuracy as the success metric for the final model, we are able to predict a players' value based on the features and also which features are most important in determining the forecast.

In the perspective of a financial view of a football club, this allows us to draft up better transfer plans and keep to our budget. It also lower the possibility of overpaying for a particular player thus putting greater financial strain on the transfer budget and club financials.



#### **Future Work**

- Try the model out on FIFA21 dataset when it is available.
- Try out more variations of the dataset to see if other models can produce a better performance than Random Forest Regression.
- 3) Create a flask API web page to get comments about the recommender system's effectiveness and improve from there.

#### The End



