Chapter 5 Duality

Last update on 2024-04-30 07:53

Table of contents

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Examples

Generalized inequalities

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Example:

Generalized inequalitie

Lagrangian

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$h_i(x)=0, \qquad i=1,\cdots,p$$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

 $\textbf{Lagrangian} \qquad L \colon \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R} \quad \text{ with } \quad \mathbf{dom} \, L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- \blacktriangleright λ_i and ν_i are Lagrange multipliers

Lagrange dual function

Lagrange dual function $g \colon \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

g is concave, can be $-\infty$ for some values of λ and ν

 $\mbox{Lower bound property} \qquad g(\lambda,\nu) \leq p^* \mbox{ for any } \lambda \succeq 0$

Proof for any feasible \bar{x} and $\lambda \succeq 0$

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) \le L(\bar{x}, \lambda, \nu) \le f_0(\bar{x})$$

minimizing over all feasible \bar{x} gives $g(\lambda, \nu) \leq p^*$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax b)$
- ightharpoonup to minimize L over x, set gradient equal to zero

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \qquad \Longrightarrow \qquad x = -(1/2)A^T \nu$$

ightharpoonup dual function (concave in ν)

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -(1/4)\nu^T AA^T\nu - b^T\nu$$

 $\qquad \text{lower bound property} \qquad p^* \geq -(1/4) \nu^T A A^T \nu - b^T \nu \qquad \text{ for all } \nu$

Standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$

Lagrangian

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

dual function (linear on affine domain hence concave)

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \begin{cases} -b^T \nu & A^T \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

lower bound property $p^* \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Equality constrained norm minimization

$$\label{eq:minimize} \begin{aligned} & \min & \|x\| \\ & \text{subject to} & & Ax = b \end{aligned}$$

- Lagrangian $L(x,\nu) = ||x|| \nu^T (Ax b) = ||x|| \nu^T Ax + b^T \nu$
- dual function

$$g(\nu) = \inf_x L(x, \nu) = \begin{cases} b^T \nu & \quad \|A^T \nu\|_* \le 1 \\ -\infty & \quad \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{||u|| < 1} u^T v$ is the dual norm (proof on next page)

 $\qquad \text{lower bound property} \qquad p^* \geq b^T \nu \qquad \text{ if } \|A^T \nu\|_* \leq 1$

Proof

observe that

$$\inf_{x} (\|x\| - y^T x) = \begin{cases} 0 & \|y\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

- if $||y||_* \le 1$, then $y^T x \le ||x|| ||y||_* \le ||x||$ for all x, with equality if x = 0
- if $||y||_* > 1$, choose x = tu such that $||u|| \le 1$ and $y^T u > 1$, then

$$\lim (\|x\| - y^T x) = t(\|u\| - \|y\|_*) = -\infty$$

$$\lim_{t \to \infty} (\|x\| - y^T x) = t (\|u\| - \|y\|_*) = -\infty$$

Two-way partitioning problem

$$\begin{array}{ll} \text{minimize} & x^T W x \\ \text{subject to} & x_i^2 = 1, \qquad i = 1, \cdots, n \end{array}$$

- ightharpoonup nonconvex problem, feasible set contains 2^n discrete points
- $lackbox{W} \in \mathbb{S}^n$, W_{ij} is cost of assigning i and j to the same set
- ightharpoonup interpretation: find the most harmonies way to divide $\{1, \cdots, n\}$ in two sets

Lagrangian

$$L = x^T W x + \sum_{i=1}^n \nu_i (x_i^2 - 1)$$

dual function

$$g(\nu) = \inf_x \left(x^T (W + \mathbf{diag}(\nu)) x - \mathbf{1}^T \nu \right) = \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

► lower bound property

$$p^* > -\mathbf{1}^T \nu$$
 if $W + \mathbf{diag}(\nu) \succeq 0$

example

$$u = -\lambda_{\min}(W) \mathbf{1} \quad ext{gives bound} \quad p^* \geq n \lambda_{\min}(W)$$

Lagrange dual & conjugate function

minimize
$$f_0(x)$$
 subject to $Ax \leq b$ $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + \left(A^T \lambda + C^T \nu \right)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* \left(-A^T \lambda - C^T \nu \right) - b^T \lambda - d^T \nu$$

- ► recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- ightharpoonup simplifies derivation of dual if conjugate of f_0 is known

Entropy maximization

minimize
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$
 subject to
$$Ax \preceq b$$

$$\mathbf{1}^T x = 1$$

ightharpoonup conjugate of $f_0(x)$

$$f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

dual function

$$g(\lambda, \nu) = -\sum_{i=1}^{n} e^{-a_i^T \lambda - \nu - 1} - b^T \lambda - \nu = -e^{-\nu - 1} \sum_{i=1}^{n} e^{-a_i^T \lambda} - b^T \lambda - \nu$$

Lagrange dual problem

$$\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- \blacktriangleright finds best lower bound on p^* , obtained from Lagrange dual function
- lacktriangle convex optimization problem, optimal value denoted d^*
- ▶ λ and ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \mathbf{dom}\, g$
- lacktriangle often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit
- original problem is called primal problem

Standard form LP

primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

dual problem

$$\text{maximize} \qquad g(\lambda,\nu) = \begin{cases} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$
 subject to
$$\lambda \succeq 0$$

equivalent form

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \\ \text{subject to} & A^T \nu + c \succeq 0 \end{array}$$

Inequality form LP

primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

dual problem

$$\text{maximize} \qquad g(\lambda) = \begin{cases} -b^T \lambda & \quad A^T \lambda + c = 0 \\ -\infty & \quad \text{otherwise} \end{cases}$$
 subject to
$$\lambda \succeq 0$$

equivalent form

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$$

Two-way partition problem

primal problem

$$\label{eq:subject_to} \begin{array}{ll} \mbox{minimize} & x^T W x \\ \\ \mbox{subject to} & x_i^2 = 1, \qquad i = 1, \cdots, n \end{array}$$

dual problem

$$\text{maximize} \qquad g(\nu) = \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

equivalent form

$$\begin{aligned} & \text{maximize} & & & -\mathbf{1}^T \boldsymbol{\nu} \\ & \text{subject to} & & W + \mathbf{diag}(\boldsymbol{\nu}) \succeq 0 \end{aligned}$$

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Examples

Generalized inequalities

Weak duality

Statement

$$d^* \le p^*$$

- always holds (regardless of convexity)
- > can be used to find nontrivial lower bounds for difficult problem

Example

solving SDP

$$\begin{aligned} & \text{maximize} & & & -\mathbf{1}^T \boldsymbol{\nu} \\ & \text{subject to} & & W + \mathbf{diag}(\boldsymbol{\nu}) \succeq 0 \end{aligned}$$

gives a lower bound for two-way partitioning problem

Strong duality

Statement

$$d^* = p^*$$

- ▶ does not hold in general
- usually holds for convex problems

Constraint qualifications

- conditions that guarantee strong duality for convex problems
- ▶ there exist many types, example below

Slater's constraint qualification

If a convex problem

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$Ax = b$$

is strictly feasible, namely

$$\exists \ x \in \operatorname{int} \mathcal{D} \qquad \text{such that} \qquad f_i(x) < 0, \quad i = 1, \cdots, m, \quad Ax = b,$$

then strong duality holds. If moreover $p^* > -\infty$, then the dual optimum is attained.

- $lacktriangleq\inf \mathcal{D}$ can be replaced with $\operatorname{relint} \mathcal{D}$ (interior relative to affine hull)
- linear inequalities do not need to hold with strict inequality
- strong duality holds for LP unless both primal and dual are infeasible (for LP, dual of dual is primal, Slater's condition and feasibility agree)

Quadratic program

primal problem (assume
$$P \in \mathbb{S}^n_{++}$$
)

minimize $x^T P x$ subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (Ax - b) \right) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- by Slater's condition $p^* = d^*$ holds if primal problem is feasible
- lacktriangle in fact $p^*=d^*$ always holds (dual of dual is primal, dual always satisfies Slater)

A nonconvex problem with strong duality

primal problem (nonconvex if $A \not\succeq 0$)

dual problem

maximize
$$-b^T(A+\lambda I)^\dagger b - \lambda$$
 subject to
$$A+\lambda I \succeq 0$$

$$b \in \mathcal{R}(A+\lambda I)$$

equivalent SDP

$$\begin{array}{ll} \mathsf{maximize} & -t - \lambda \\ \mathsf{subject to} & \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \end{array}$$

strong duality holds although primal problem is nonconvex (not easy to show)

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Example:

Generalized inequalitie

geometric description

consider problem with one constraint

$$\label{eq:total_form} \begin{aligned} & \text{minimize} & & t = f_0(x) \\ & \text{subject to} & & u = f_1(x) \leq 0 \end{aligned}$$

set of value pairs

$$\mathcal{G} = \{(u,t) \mid u = f_1(x), t = f_0(x) \text{ for some } x \in \mathcal{D}\}$$

interpretation of primal optimal value

$$p^* = \inf\{t \mid (u, t) \in \mathcal{G} \text{ and } u \le 0\}$$

interpretation of dual objective value

$$g(\lambda) = \inf\{t + \lambda u \mid (u, t) \in \mathcal{G}\} = \inf\{(\lambda, 1)^T (u, t) \mid (u, t) \in \mathcal{G}\}$$

t-intercept of the (non-vertical) supporting hyperplane to $\mathcal G$ with normal vector $(\lambda,1)^T$

interpretation of weak duality \qquad fix $\lambda \geq 0$ we have

$$t + \lambda u \le t$$
 for any $(u, t) \in \mathcal{G}$ with $u \le 0$

therefore we obtain

$$\inf\{t+\lambda u\mid (u,t)\in\mathcal{G} \text{ with } u\leq 0\} \quad \leq \quad \inf\{t\mid (u,t)\in\mathcal{G} \text{ with } u\leq 0\}$$

 p^*

$$q(\lambda) = \inf\{t + \lambda u \mid (u, t) \in \mathcal{G}\}\$$

epigraph variation we still assume $\lambda \geq 0$, and replace \mathcal{G} by

$$\mathcal{A} = \{(u, t) \mid u \ge f_1(x) \text{ and } t \ge f_0(x) \text{ for some } x \in \mathcal{D}\}$$

$$g(\lambda)=\inf\{(\lambda,1)^T(u,t)\mid (u,t)\in\mathcal{A}\} \qquad \text{and} \qquad p^*=\inf\{t\mid (0,t)\in\mathcal{A}\}$$
 therefore we obtain
$$g(\lambda)\leq (\lambda,1)^T(0,t)=p^*$$

strong duality holds \iff \exists nonvertical supporting hyperplane to $\mathcal A$ at $(0,p^*)$

Slater's condition for convex problems implies strong duality

- lacktriangledown convex problems $\Longrightarrow \mathcal{A}$ is convex \Longrightarrow supporting hyperplane H at $(0,p^*)$ exists
- ▶ Slater's condition $\implies \exists \ (\tilde{u}, \tilde{t}) \in \mathcal{A} \text{ with } \tilde{u} < 0 \implies H \text{ cannot be vertical}$

Slater's constraint qualification if a convex problem

minimize
$$f_0(x)$$

subject to $F(x) \leq 0$
 $Ax = b$

is strictly feasible, namely

$$\exists x \in \mathbf{int} \mathcal{D}$$
 such that $F(x) \prec 0$ and $Ax = b$,

then strong duality holds. If moreover $p^* > -\infty$, then the dual optimum is attained.

Proof Without loss of generality, we assume

- $ightharpoonup p^*$ is finite (otherwise the result follows immediately from weak duality)
- lacktriangleq A has full row rank (achieved by removing redundant equations)

Step 1. Consider sets A, $B \subseteq \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R}$ defined as

$$\mathcal{A} = \{(u, v, t) \mid u \succeq F(x), \ v = Ax - b, \ t \ge f_0(x) \text{ for some } x \in \mathcal{D}\}$$

$$\mathcal{B} = \{(0, 0, s) \mid s < p^*\}$$

Observe that A and B are disjoint and both convex. (Prove it yourself!)

Step 2. By separating hyperplane theorem, $\exists~(\tilde{\lambda}, \tilde{\nu}, \mu) \neq 0$ and $\alpha \in \mathbb{R}$ such that

$$(u, v, t) \in \mathcal{A} \implies \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \ge \alpha;$$

$$(u, v, t) \in \mathcal{B} \implies \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \le \alpha.$$

(1)

(2)

(1) implies $\tilde{\lambda} \succeq 0$ and $\mu \geq 0$ (otherwise LHS is unbounded below over \mathcal{A}).

(2) implies
$$\mu p^* \leq \alpha$$
.

Combining them to obtain

$$\tilde{\lambda}^T F(x) + \tilde{\nu}^T (Ax - b) + \mu f_0(x) \ge \alpha \ge \mu p^* \quad \text{for all} \quad x \in \mathcal{D}$$
 (3)

Step 3. We show that $\mu > 0$ by contradiction. If $\mu = 0$, then (3) implies

$$\tilde{\lambda}^T F(x) + \tilde{\nu}^T (Ax - b) > 0$$
 for all $x \in \mathcal{D}$.

Assume \tilde{x} is a strictly feasible point, then

$$\tilde{\lambda}^T F(\tilde{x}) > 0.$$

However $\tilde{\lambda} \succeq 0$ and $F(\tilde{x}) \prec 0$, hence $\tilde{\lambda} = 0$. It follows that $\tilde{\nu} \neq 0$ and

$$\tilde{\nu}^T(Ax-b) \geq 0$$
 for all $x \in \mathcal{D}$.

But $A\tilde{x} - b = 0$ and $\tilde{x} \in \operatorname{int} \mathcal{D}$ imply $\tilde{v}^T(Ax - b) < 0$ for some $x \in \mathcal{D}$, unless $\tilde{v}^T A = 0$. The assumption of A having full row rank implies $\tilde{v} = 0$, contradiction. **Step 4.** By Step 3 we can divide both sides of (3) by μ to obtain

$$L\left(x,\tilde{\lambda}/\mu,\tilde{\nu}/\mu\right) \ge p^*$$
 for all $x \in \mathcal{D}$.

Therefore

$$g\left(\tilde{\lambda}/\mu, \tilde{\nu}/\mu\right) = \inf_{x \in \mathcal{D}} L\left(x, \tilde{\lambda}/\mu, \tilde{\nu}/\mu\right) \ge p^*.$$

By weak duality we also have

$$p^* \ge d^* \ge g\left(\tilde{\lambda}/\mu, \tilde{\nu}/\mu\right).$$

Hence all of them are equal – strong duality holds and dual optimum is attained.

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Example:

Generalized inequalities

Conditions for achieving optimality

assume x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$g(\lambda^*, \nu^*) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \leq f_0(x^*)$$
(4)

assume strong duality holds, then both inequalities hold with equality

- $\blacktriangleright x^*$ minimizes $L(x, \lambda^*, \nu^*)$
- lacksquare $\lambda_i^* f_i(x^*) = 0$ for each $i = 1, \dots, m$, namely, for each pair of inequalities

$$\lambda_i^* \ge 0 \qquad \text{and} \qquad f_i(x^*) \le 0$$

at least one of them achieves equality (complementary slackness)

KKT conditions

assume f_0, f_1, \dots, f_m and h_1, \dots, h_p are all differentiable (hence with open domains)

Karush-Kuhn-Tucker conditions

- 1. primal constraints $f_i(x) \leq 0, \ i=1,\cdots,m; \quad h_i(x)=0, \ i=1,\cdots,p$
- 2. dual constraints $\lambda \succeq 0$
- 3. complementary slackness $\lambda_i f_i(x) = 0, \ i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

necessity if strong duality holds

$$(x^*,\lambda^*,\nu^*)$$
 are optimal \implies (x^*,λ^*,ν^*) satisfy KKT

sufficiency if primal problem is convex

$$(x^*,\lambda^*,\nu^*)$$
 satisfy KKT \implies (x^*,λ^*,ν^*) are optimal

proof

- conditions 1 & 2 imply primal and dual feasibility
- condition 3 is responsible for the equality of the last step in (4)
- condition 4 is responsible for the equality of the middle step in (4)

necessity + sufficiency assume differentiability + convexity + Slater then

$$x^*$$
 is optimal \iff (x^*, λ^*, ν^*) satisfy KKT for some λ^* and ν^*

Example

assume $\alpha_i > 0$ for $i = 1, \dots, n$

minimize
$$-\sum_{i=1}^n \log(x_i + \alpha_i)$$
 subject to
$$x \succeq 0$$

$$\mathbf{1}^T x = 1$$

x is optimal \iff $x\succeq 0$, $\mathbf{1}^Tx=1$, there exists $\lambda\in\mathbb{R}^n$ and $\nu\in\mathbb{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu, \qquad i = 1, \dots, n$$

- ▶ if $\nu \leq 1/\alpha_i$, then $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- ▶ if $\nu \ge 1/\alpha_i$, then $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$

determine ν from

$$\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$$

water-filling algorithm

- lacktriangle left-hand side is a piecewise linear increasing function in 1/
 u
- ightharpoonup n patches, level of patch i is at height α_i
- flood area with unit amount of water, resulting level is $1/\nu^*$

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Example:

Generalized inequalities

Perturbed problem

perturbed primal problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq u_i, \qquad i=1,\cdots,m$ $h_i(x)=v_i, \qquad i=1,\cdots,p$

perturbed dual problem

$$\begin{array}{ll} \text{maximize} & g(\lambda,\nu) - u^T \lambda - v^T \nu \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- ightharpoonup u and v are parameters
- \blacktriangleright original primal & dual problems are recovered when u=0 and v=0
- $ightharpoonup p^*(u,v)$ is optimal value as a function of u and v
- lacktriangle need to understand $p^*(u,v)$ from solution to unperturbed problem

Global sensitivity

assume for the unperturbed problem that

- strong duality holds (e.g. convex + Slater)
- \blacktriangleright λ^* and ν^* are dual optimal

then weak duality for the perturbed problem implies

$$p^*(u, v) \ge g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \nu^*$$

= $p^*(0, 0) - u^T \lambda^* - v^T \nu^*$

- $ightharpoonup \lambda_i^*$ large $\implies p^*$ increases greatly if $u_i < 0$ (tighten constraint)
- λ_i^* small $\implies p^*$ does not decrease much if $u_i > 0$ (loosen constraint)
- $ightharpoonup
 u_i^* > 0$ large $\implies p^*$ increases greatly if $v_i < 0$
- $ightharpoonup
 u_i^* > 0$ small $\implies p^*$ does not decrease much if $v_i > 0$
- $ightharpoonup
 u_i^* < 0 \text{ large } \implies p^* \text{ increases greatly if } v_i > 0$
- $ightharpoonup
 u_i^* < 0 ext{ small } \implies p^* ext{ does not decrease much if } v_i < 0$

Local sensitivity

assume in addition that $p^*(u,v)$ is differentiable at (0,0) then

$$\lambda_i^* = -\frac{\partial p^*}{\partial u_i}(0,0), \qquad \nu_i^* = -\frac{\partial p^*}{\partial v_i}(0,0)$$

(above picture exhibits $p^*(u)$ for a problem with one inequality constraint)

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Examples

Generalized inequalitie

Duality and problem reformulations

principle

- equivalent formulations of a problem can lead to very different duals
- reformulation can be useful when dual is difficult to derive or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- apply an increasing function to objective or constraint functions

Introducing new variables and equality constraints

unconstrained problem

primal problem

minimize
$$f_0(Ax+b)$$

dual problem

$$g = \inf_{x} f_0(Ax + b) = p^*$$

- no dual variable, hence dual function is constant
- strong duality holds, but dual is useless

reformulated primal problem

dual of reformulated problem

$$\begin{array}{ll} \text{maximize} & \quad b^T \nu - f_0^*(\nu) \\ \\ \text{subject to} & \quad A^T \nu = 0 \end{array}$$

it follows from

$$g(\nu) = \inf_{x,y} \left(f_0(y) - \nu^T y + \nu^T A x + b^T \nu \right) = \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

norm approximation problem

minimize ||Ax - b||

reformulated problem

 $\label{eq:continuous_problem} \begin{aligned} & & & \text{minimize} & & & & \|y\| \\ & & & & \text{subject to} & & & y = Ax - b \end{aligned}$

dual of the reformulated problem

$$\begin{array}{ll} \text{maximize} & b^T \nu \\ \text{subject to} & A^T \nu = 0 \\ & \|\nu\|_* \leq 1 \end{array}$$

Implicit constraints

LP with box constraints

primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} \end{array}$$

dual problem

$$\begin{aligned} & \text{maximize} & & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ & \text{subject to} & & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & & & \lambda_1 \succeq 0, & & \lambda_2 \succeq 0 \end{aligned}$$

reformulated primal problem

minimize
$$f_0(x) = \begin{cases} c^T x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$
 subject to
$$Ax = b$$

dual function

$$g(\nu) = \inf_{-\mathbf{1} \le x \le \mathbf{1}} \left(c^T x + \nu^T (Ax - b) \right)$$
$$= -b^T \nu - \|A^T \nu + c\|_1$$

dual of the reformulated problem

maximize
$$-b^T \nu - \|A^T \nu + c\|_1$$

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Examples

Generalized inequalities

Problems with generalized inequalities

primal problem (proper cone $K_i \subseteq \mathbb{R}^{k_i}$ for $i = 1, \dots, m$)

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \preceq_{K_i} 0, \qquad i=1,\cdots,m$$

$$h_i(x)=0, \qquad i=1,\cdots,p$$

- ▶ Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbb{R}^{k_i}$, for $h_i(x) = 0$ scalar $\nu_i \in \mathbb{R}$
- ▶ Lagrangian $L \colon \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \longrightarrow \mathbb{R}$

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

▶ dual function
$$g \colon \mathbb{R}^{k_1} \times \dots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

Lower bound property if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \dots, \lambda_m, \nu) \leq p^*$

Proof For any feasible \tilde{x} we have

$$f_0(\tilde{x}) \ge f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\ge \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= q(\lambda_1, \dots, \lambda_m, \nu)$$

We conclude by minimizing over all feasible \tilde{x} .

dual problem

maximize
$$g(\lambda_1,\cdots,\lambda_m,\nu)$$
 subject to $\lambda_i\succeq_{K_i^*}0, \qquad i=1,\cdots,m$

weak duality (always holds)

$$p^* \ge d^*$$

strong duality (holds for convex problem with constraint qualification)

$$p^* = d^*$$

Slater's condition: primal problem is strictly feasible

Semidefinite program

primal SDP (assume $F_i, G \in \mathbb{S}^k$)

minimize
$$c^T x$$

subject to
$$x_1F_1 + \cdots + x_nF_n \leq G$$

Lagrange multiplier

$$Z \in \mathbb{S}^k$$

Lagrangian

$$L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \dots + x_n F_n - G) \right)$$

dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\operatorname{tr}(ZG) & c_i + \operatorname{tr}(ZF_i) = 0 \text{ for all } i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(ZG)$$
 subject to $Z\succeq 0$ $c_i+\mathbf{tr}(ZF_i)=0, \qquad i=1,\cdots,n$

strong duality

 $p^* = d^*$ holds if primal SDP is strictly feasible ($\exists x \text{ such that } x_1F_1 + \cdots + x_nF_n \prec G$)