carPredictionNotebook

July 29, 2025

1 Car Price Prediction Project

```
[29]: # Imports
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_squared_error, r2_score
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import accuracy_score, confusion_matrix,_
       ⇔classification_report
[30]: # Define data
      df = pd.read_csv(r"Assets\car_data_v2.csv")
      print(df.head())
              car name
                          brand
                                    model
                                           vehicle_age
                                                        km_driven mileage \
     0
           Maruti Alto
                         Maruti
                                     Alto
                                                           120000
                                                                     19.70
                        Maruti
                                                                     20.92
           Maruti Alto
                                     Alto
                                                     9
                                                            37000
     1
     2 Maruti Wagon R
                        Maruti Wagon R
                                                     8
                                                            35000
                                                                     18.90
     3 Maruti Wagon R
                         Maruti
                                 Wagon R
                                                     3
                                                            17512
                                                                     20.51
        Hyundai Venue Hyundai
                                   Venue
                                                     2
                                                            20000
                                                                     18.15
        max_power
                   seats
                          selling_price
     0
            46.30
                       5
                                  120000
                       5
     1
            67.10
                                  226000
     2
            67.10
                       5
                                  350000
     3
            67.04
                       5
                                  410000
     4
           118.35
                                 1050000
[31]: print(df.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2119 entries, 0 to 2118
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	car_name	2119 non-null	object
1	brand	2119 non-null	object
2	model	2119 non-null	object
3	vehicle_age	2119 non-null	int64
4	km_driven	2119 non-null	int64
5	mileage	2119 non-null	float64
6	max_power	2119 non-null	float64
7	seats	2119 non-null	int64
8	selling_price	2119 non-null	int64
dtyp	es: float64(2),	int64(4), object	t(3)
memo	ry usage: 149.1	+ KB	
None			
prir	nt(df.describe()))	
	vehicle_age	km_driven	mile
COlln	t 2119 000000	2119 000000	2119 000

[32]:

vehicle_age	km_driven	${\tt mileage}$	max_power	seats	\
2119.000000	2119.000000	2119.000000	2119.000000	2119.000000	
6.153374	42207.621992	22.574856	61.802931	5.002832	
3.524845	27950.561196	3.008683	13.112960	0.176503	
0.000000	581.000000	14.400000	38.400000	4.000000	
4.000000	21000.000000	20.510000	53.260000	5.000000	
5.000000	38000.000000	22.740000	67.000000	5.000000	
8.000000	58494.000000	23.950000	67.050000	5.000000	
29.000000	425785.000000	33.540000	123.370000	7.000000	
	2119.000000 6.153374 3.524845 0.000000 4.000000 5.000000 8.000000	2119.000000 2119.000000 6.153374 42207.621992 3.524845 27950.561196 0.000000 581.000000 4.000000 21000.000000 5.000000 38000.000000 8.000000 58494.000000	2119.000000 2119.000000 2119.000000 6.153374 42207.621992 22.574856 3.524845 27950.561196 3.008683 0.000000 581.000000 14.400000 4.000000 21000.000000 20.510000 5.000000 38000.000000 22.740000 8.000000 58494.000000 23.950000	2119.000000 2119.000000 2119.000000 2119.000000 6.153374 42207.621992 22.574856 61.802931 3.524845 27950.561196 3.008683 13.112960 0.000000 581.000000 14.400000 38.400000 4.000000 21000.000000 20.510000 53.260000 5.000000 38000.000000 22.740000 67.000000 8.000000 58494.000000 23.950000 67.050000	2119.000000 2119.000000 2119.000000 2119.000000 2119.000000 6.153374 42207.621992 22.574856 61.802931 5.002832 3.524845 27950.561196 3.008683 13.112960 0.176503 0.000000 581.000000 14.400000 38.400000 4.000000 4.000000 21000.000000 20.510000 53.260000 5.000000 5.000000 38000.000000 22.740000 67.000000 5.000000 8.000000 58494.000000 23.950000 67.050000 5.000000

selling_price 2.119000e+03 count mean3.287744e+05 std 1.496699e+05 ${\tt min}$ 4.000000e+04 25% 2.490000e+05 50% 3.150000e+05 75% 3.900000e+05 1.240000e+06 max

[33]: print(df.isnull().sum())

car_name 0 0 brand 0 model 0 vehicle_age km_driven 0 mileage 0 max_power 0 0 seats selling_price 0 dtype: int64


```
[35]: #Relationship between km_driven and selling_price
plt.figure(figsize=(8,5))
sns.scatterplot(x='km_driven', y='selling_price', data=df)
plt.title('Km_Driven_vs_Selling_Price')
plt.show()
```



```
[36]: # Relationship between power vs Selling Price
plt.figure(figsize=(8,5))
sns.scatterplot(x='max_power', y='selling_price', data=df)
plt.title('Max Power vs Selling Price')
plt.show()
```



```
[37]: # Brand Distribution of Selling Price
plt.figure(figsize=(12,8))
sns.boxplot(x='brand', y='selling_price', data=df)
plt.title('Brand vs Selling Price')
plt.xticks(rotation=45)
plt.show()
```



```
[38]: # Selection of the numeric columns for correlation analysis
numeric_columns = df.select_dtypes(include=['float64', 'int64'])

#Correlation matrix
plt.figure(figsize=(10,8))
sns.heatmap(numeric_columns.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
```



```
[39]: # Missing Value Check
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Data Heatmap')
plt.show()
```



```
[40]: # Check for duplicate rows
df.duplicated().sum()

# # Fixing duplicate rows:
# df.drop_duplicates(inplace=True)
```

[40]: np.int64(34)

```
[41]: #data types
df.dtypes
```

```
[41]: car_name object brand object model object vehicle_age int64 km_driven int64 mileage float64 max_power float64
```

seats int64 selling_price int64

dtype: object

```
[42]: #Outliers
sns.boxplot(x=df['km_driven'], y=df['selling_price'], data=df)
```

[42]: <Axes: xlabel='km_driven', ylabel='selling_price'>

2 Modelling

LINEAR REGRESSION

```
[43]: # Feature selection
X = df.drop(['selling_price', 'car_name', 'model'], axis=1)
X = pd.get_dummies(X, drop_first=True)

y = df['selling_price']
# Train-test split
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       →random_state=42)
[44]: # Modeling the training data
      lr_model = LinearRegression()
      lr_model.fit(X_train, y_train)
[44]: LinearRegression()
[45]: # Evaluation
      y_pred = lr_model.predict(X_test)
      print("R<sup>2</sup> Score:", r2_score(y_test, y_pred))
      print("RMSE:", np.sqrt(mean_squared_error(y_test, y_pred)))
     R<sup>2</sup> Score: 0.8129121015140068
     RMSE: 58325.83941323817
[46]: # Prediction of a new car's price
      carInput = X_test.iloc[0:1]
      predictedPrice = lr_model.predict(carInput)
      print("Predicted Selling Price:", predictedPrice[0])
     Predicted Selling Price: 399165.51263545104
     LOGISTIC REGRESSION
[47]: medianPrice = df['selling price'].median()
      df['price_category'] = np.where(df['selling_price'] > medianPrice, 1, 0)
[48]: X = df.drop(['selling_price', 'price_category', 'car_name', 'model'], axis=1)
      X = pd.get_dummies(X, drop_first=True)
      y = df['price_category']
      # Train-test split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
       →random_state=42)
[49]: # Modeling of the training data
      from sklearn.preprocessing import StandardScaler
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      X_trainScaled = scaler.fit_transform(X_train)
      X_testScaled = scaler.transform(X_test)
      log model = LogisticRegression(class_weight='balanced', max_iter=2000)
      log_model.fit(X_trainScaled, y_train)
      y_pred = log_model.predict(X_testScaled)
```

```
[50]: # Evaluation
      y_pred = log_model.predict(X_test_scaled)
      print("This is the Accuracy:", accuracy_score(y_test, y_pred))
      print("This is the Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
      print("The Classification Report:\n", classification_report(y_test, y_pred,_
       ⇔zero_division=0))
     This is the Accuracy: 0.8608490566037735
     This is the Confusion Matrix:
      [[164 34]
      [ 25 201]]
     The Classification Report:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.87
                                  0.83
                                            0.85
                                                        198
                        0.86
                                  0.89
                                            0.87
                                                        226
                1
                                                        424
                                            0.86
         accuracy
        macro avg
                        0.86
                                  0.86
                                            0.86
                                                        424
     weighted avg
                        0.86
                                  0.86
                                            0.86
                                                        424
[51]: # Scale the sample input (use the same scaler used for training)
      carInput = X_test.iloc[0:1]
      carInputScaled = scaler.transform(carInput)
      # Predict if it will be expensive/affordable
      predictedCategory = log_model.predict(carInputScaled)
      print("Predicted Category (0=Affordable, 1=Expensive):", predictedCategory[0])
     Predicted Category (0=Affordable, 1=Expensive): 1
 []:
```