TEST PAPER OF JEE(MAIN) EXAMINATION – 2019

(Held On Thursday 10th JANUARY, 2019) TIME: 02: 30 PM To 05: 30 PM **PHYSICS**

- 1. Two forces P and Q of magnitude 2F and 3F, respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle is:
 - $(1) 30^{\circ}$
- $(2) 60^{\circ}$
- $(3) 90^{\circ}$
- (4) 120°

Ans. (4)

Sol.
$$4F^2 + 9F^2 + 12F^2 \cos \theta = R^2$$

 $4F^2 + 36 F^2 + 24 F^2 \cos \theta = 4R^2$
 $4F^2 + 36 F^2 + 24 F^2 \cos \theta$
 $= 4(13F^2 + 12F^2\cos\theta) = 52 F^2 + 48F^2\cos\theta$

$$\cos \theta = -\frac{12F^2}{24F^2} = -\frac{1}{2}$$

2. The actual value of resistance R, shown in the figure is 30Ω . This is measured in an experiment as shown using the standard

formula $R = \frac{V}{I}$, where V and I are the readings

of the voltmeter and ammeter, respectively. If the measured value of R is 5% less, then the internal resistance of the voltmeter is:

- (1) 350Ω (2) 570Ω (3) 35Ω (4) 600Ω

Ans. (2)

Sol.
$$0.95 \text{ R} = \frac{\text{R R}_{\text{b}}}{\text{R} + \text{R}_{\text{b}}}$$

 $0.95 \times 30 = 0.05 \text{ R}_{\text{b}}$
 $R_{\text{b}} = 19 \times 30 = 570 \Omega$

- **3.** An unknown metal of mass 192 g heated to a temperature of 100°C was immersed into a brass calorimeter of mass 128 g containing 240 g of water a temperature of 8.4°C Calculate the specific heat of the unknown metal if water temperature stabilizes at 21.5°C (Specific heat of brass is 394 J kg⁻¹ K⁻¹)
 - (1) 1232 J kg⁻¹ K⁻¹
- (2) $458 \text{ J kg}^{-1} \text{ K}^{-1}$

 - (3) $654 \text{ J kg}^{-1} \text{ K}^{-1}$ (4) $916 \text{ J kg}^{-1} \text{ K}^{-1}$

Ans. (4)

Sol.
$$192 \times S \times (100 - 21.5)$$

= $128 \times 394 \times (21.5 - 8.4)$
+ $240 \times 4200 \times (21.5 - 8.4)$
 $\Rightarrow S = 916$

4. A particle starts from the origin at time t = 0 and moves along the positive x-axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time t = 5s?

- (1) 6 m
- (2) 9 m
- (3) 3 m
- (4) 10 m

Ans. (2)

S = Area under graph

$$\frac{1}{2}$$
 × 2 × 2 + 2 × 2 + 3 × 1 = 9 m

- The self induced emf of a coil is 25 volts. When **5**. the current in it is changed at uniform rate from 10 A to 25 A in 1s, the change in the energy of the inductance is:
 - (1) 437.5 J
- (2) 637.5 J
- (3) 740 J
- (4) 540 J

Ans. (1)

$$L\frac{di}{dt} = 25$$

$$L \times \frac{15}{1} = 25$$

$$L = \frac{5}{3}H$$

$$\Delta E = \frac{1}{2} \times \frac{5}{3} \times (25^2 - 10^2) = \frac{5}{6} \times 525 = 437.5 \text{ J}$$

- A current of 2 mA was passed through an unknown resistor which dissipated a power of 4.4 W. Dissipated power when an ideal power supply of 11V is connected across it is:
 - (1) $11 \times 10^{-5} \text{ W}$
- (2) $11 \times 10^{-4} \text{ W}$
- $(3) 11 \times 10^5 \text{ W}$
- $(4) 11 \times 10^{-3} \text{ W}$

Ans. (1)

 $P = I^2R$

 $4.4 = 4 \times 10^{-6} \text{ R}$

 $R = 1.1 \times 10^6 \,\Omega$

$$P' = \frac{11^2}{R} = \frac{11^2}{1.1} \times 10^{-6} = 11 \times 10^{-5} W$$

- 7. The diameter and height of a cylinder are measured by a meter scale to be 12.6 ± 0.1 cm and 34.2 ± 0.1 cm, respectively. What will be the value of its volume in appropriate significant figures?
 - $(1) 4260 \pm 80 \text{ cm}^3$
- $(2) 4300 \pm 80 \text{ cm}^3$
- (3) $4264.4 \pm 81.0 \text{ cm}^3$ (4) $4264 \pm 81 \text{ cm}^3$

Ans. (1)

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h} = 2\left(\frac{0.1}{12.6}\right) + \frac{0.1}{34.2}$$

$$V = 12.6 \times \frac{\pi}{4} \times 314.2$$

- 8. At some location on earth the horizontal component of earth's magnetic field is 18×10^{-6} T. At this location, magnetic neeedle of length 0.12 m and pole strength 1.8 Am is suspended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is:
 - (1) $3.6 \times 10^{-5} \text{ N}$
- $(2) 6.5 \times 10^{-5} \text{ N}$
- $(3) 1.3 \times 10^{-5} \text{ N}$
- $(4) 1.8 \times 10^{-5} \text{ N}$

Ans. (2)

 $\mu B \sin 45^{\circ} = F \frac{\ell}{2} \sin 45^{\circ}$

$$F = 2\mu B$$

- 9. The modulation frequency of an AM radio station is 250 kHz, which is 10% of the carrier wave. If another AM station approaches you for license what broadcast frequency will you allot?
 - (1) 2750 kHz
- (2) 2000 kHz
- (3) 2250 kHz
- (4) 2900 kHz

Ans. (2)

$$f_{carrier} = \frac{250}{0.1} = 2500 \, \text{KHZ}$$

- \therefore Range of signal = 2250 Hz to 2750 Hz Now check all options : for 2000 KHZ f_{mod} = 200 Hz
- ∴ Range = 1800 KHZ to 2200 KHZ
- 10. A hoop and a solid cylinder of same mass and radius are made of a permanent magnetic material with their magnetic moment parallel to their respective axes. But the magnetic moment of hoop is twice of solid cylinder. They are placed in a uniform magnetic field in such a manner that their magnetic moments make a small angle with the field. If the oscillation periods of hoop and cylinder are T_h and T_c respectively, then:
 - (1) $T_h = 0.5 T_c$
- (2) $T_h = 2 T_c$
- (3) $T_h = 1.5 T_c$
- (4) $T_{h} = T_{c}$

Ans. (4)

$$T = 2\pi \sqrt{\frac{I}{\mu B}}$$

$$T_h = 2\pi \sqrt{\frac{mR^2}{(2\mu)B}}$$

$$T_C = 2\pi \sqrt{\frac{1/2mR^2}{\mu B}}$$

11. The electric field of a plane polarized electromagnetic wave in free space at time t= 0 is given by an expression

$$\vec{E}(x,y) = 10\hat{j} \cos [(6x + 8z)]$$

The magnetic field \vec{B} (x, z, t) is given by : (c is the velocity of light)

$$(1) \frac{1}{c} \left(6\hat{k} + 8\hat{i} \right) \cos \left[\left(6x - 8z + 10ct \right) \right]$$

$$(2) \frac{1}{c} \left(6\hat{k} - 8\hat{i} \right) \cos \left[\left(6x + 8z - 10ct \right) \right]$$

(3)
$$\frac{1}{c} \left(6\hat{k} + 8\hat{i} \right) \cos \left[\left(6x + 8z - 10ct \right) \right]$$

$$(4) \frac{1}{c} \left(6\hat{k} - 8\hat{i} \right) \cos \left[\left(6x + 8z + 10ct \right) \right]$$

Ans. (2)

$$\vec{E} = 10\hat{j} cos \left[\left(6\hat{i} + 8\hat{k} \right) \cdot \left(x\hat{i} + z\hat{k} \right) \right]$$

$$= 10 \hat{j} \cos[\vec{K} \cdot \vec{r}]$$

 $\vec{K} = 6\hat{i} + 8\hat{k}$; direction of waves travel. i.e. direction of 'c'.

 \therefore Direction of \hat{B} will be along

$$\hat{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$$

Mag. of \vec{B} will be along $\hat{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$

Mag. of
$$\vec{B} = \frac{E}{C} = \frac{10}{C}$$

$$\vec{B} = \frac{10}{C} \left(\frac{-4\hat{i} + 3\hat{k}}{5} \right) = \frac{\left(-8\hat{i} + 6\hat{k} \right)}{C}$$

12. Condiser the nuclear fission

$$Ne^{20} \rightarrow 2He^4 + C^{12}$$

Given that the binding energy/nucleon of Ne^{20} , He^4 and C^{12} are, respectively, 8.03 MeV, 7.07 MeV and 7.86 MeV, identify the correct statement :

- (1) 8.3 MeV energy will be released
- (2) energy of 12.4 MeV will be supplied
- (3) energy of 11.9 MeV has to be supplied
- (4) energy of 3.6 MeV will be released

Ans. (3)

$$\begin{array}{lll} Ne^{20} & \to & 2He^4 + C^{12} \\ 8.03 \times 20 & 2 \times 7.07 \times 4 + 7.86 \times 12 \\ \therefore & E_B = (BE)_{react} - (BE)_{product} = 9.72 \ MeV \end{array}$$

13. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A} + \vec{B})$ is 'n' times the magnitude of $(\vec{A} - \vec{B})$. The angle between \vec{A} and \vec{B} is:

$$(1) \sin^{-1} \left[\frac{n^2 - 1}{n^2 + 1} \right] \qquad (2) \cos^{-1} \left[\frac{n - 1}{n + 1} \right]$$

(3)
$$\cos^{-1} \left[\frac{n^2 - 1}{n^2 + 1} \right]$$
 (4) $\sin^{-1} \left[\frac{n - 1}{n + 1} \right]$

Ans. (3)

$$|\vec{A} + \vec{B}| = 2a\cos\theta/2 \qquad \qquad (1)$$

$$|\vec{A} - \vec{B}| = 2a\cos\frac{(\pi - \theta)}{2} = 2a\sin\theta/2 \qquad (2)$$

$$\Rightarrow n\left(2a\cos\frac{\theta}{2}\right) = 2a\frac{\sin\theta}{2}$$

$$\Rightarrow \tan\frac{\theta}{2} = n$$

14. A particle executes simple harmonic motion with an amplitude of 5 cm. When the particle is at 4 cm from the mean position, the magnitude of its velocity in SI units is equal to that of its acceleration. Then, its periodic time in seconds is:

(1)
$$\frac{7}{3}\pi$$
 (2) $\frac{3}{8}\pi$ (3) $\frac{4\pi}{3}$ (4) $\frac{8\pi}{3}$

Ans. (4)

$$v = \omega \sqrt{A^2 - x^2}$$

$$a = -\omega^2 x$$

$$|v| = |a|$$

$$\omega \sqrt{A^2 - x^2} = \omega^2 x$$

$$A^2 - x^2 = \omega^2 x^2$$

$$5^2 - 4^2 = \omega^2 (4^2)$$

$$\Rightarrow 3 = \omega \times 4$$

$$T = 2\pi/\omega$$

15. Consider a Young's double slit experiment as shown in figure. What should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit (S_1) ?

Ans. (4)

$$\sqrt{5}d - 2d = \frac{\lambda}{2}$$

- The eye can be regarded as a single refracting **16.** surface. The radius of curvature of this surface is equal to that of cornea (7.8 mm). This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.
 - (1) 2 cm
- (2) 1 cm
- (3) 3.1 cm
- (4) 4.0 cm

Ans. (3)

$$R = 7.8 \text{ mm}$$

$$\mu = 1 \quad \mu = 1.34$$

$$\frac{1.34}{V} - \frac{1}{\infty} = \frac{1.34 - 1}{7.8}$$

 \therefore V = 30.7 mm

- 17. Half mole of an ideal monoatomic gas is heated at constant pressure of 1atm from 20 °C to 90°C. Work done by gas is close to: (Gas constant R = 8.31 J/mol.K
- (1) 73 J
- (2) 291 J (3) 581 J (4) 146 J

Ans. (2)

$$WD = P\Delta V = nR\Delta T = \frac{1}{2} \times 8.31 \times 70$$

- A metal plate of area 1×10^{-4} m² is illuminated by a radiation of intensity 16 mW/m². The work function of the metal is 5eV. The energy of the incident photons is 10 eV and only 10% of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be: $[1 \text{ eV} = 1.6 \times 10^{-19}\text{J}]$

 - (1) 10^{10} and 5 eV (2) 10^{14} and 10 eV
 - (3) 10¹² and 5 eV (4) 10¹¹ and 5 eV

Ans. (4)

$$I = \frac{nE}{At}$$

$$16 \times 10^{-3} = \left(\frac{n}{t}\right)_{\text{Photon}} \frac{10 \times 1.6 \times 10^{-19}}{10^{-4}} = 10^{12}$$

- Charges -q and +q located at A and B, respectively, constitute an electric dipole. Distance AB = 2a, O is the mid point of the dipole and OP is perpendicular to AB. A charge O is placed at P where OP = y and y >> 2a. The charge Q experiences and electrostatic force F. If Q is now moved along the equatorial line
 - to P' such that OP'= $\left(\frac{y}{3}\right)$, the force on Q will be

close to
$$:\left(\frac{y}{3}>>2a\right)$$

- (2) 3F (3) 9F
- (4) 27F

Ans. (4)

Electric field of equitorial plane of dipole

$$=-\frac{\vec{KP}}{r^3}$$

$$\therefore \text{ At P, F} = -\frac{K\vec{P}}{r^3}Q.$$

At P¹, F¹ =
$$-\frac{\vec{KPQ}}{(r/3)^3}$$
 = 27 F.

- Two stars of masses 3×10^{31} kg each, and at 20. distance 2×10^{11} m rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is: (Take Gravitational constant $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
 - $(1) 1.4 \times 10^5 \text{ m/s}$
- $(2) 24 \times 10^4 \text{ m/s}$
- $(3) 3.8 \times 10^4 \text{ m/s}$
- $(4) 2.8 \times 10^5 \text{ m/s}$

Ans. (4)

By energy convervation between $0 \& \infty$.

$$-\frac{GMm}{r} + \frac{-GMm}{r} + \frac{1}{2}mV^{2} = 0 + 0$$

[M is mass of star m is mass of meteroite)

$$\Rightarrow v = \sqrt{\frac{4GM}{r}} = 2.8 \times 10^5 \,\text{m/s}$$

- A closed organ pipe has a fundamental 21. frequency of 1.5 kHz. The number of overtones that can be distinctly heard by a person with this organ pipe will be: (Assume that the highest frequency a person can hear is 20,000 Hz)
 - (1) 7
- (2) 5
- (3) 6
- (4) 4

Ans. (1)

- For closed organ pipe, resonate frequency is Sol. odd multiple of fundamental frequency.
 - \therefore (2n + 1) $f_0 \le 20,000$

 $(f_0 \text{ is fundamental frequency} = 1.5 \text{ KHz})$

- .. Total number of overtone that can be heared is 7. (0 to 6).

22. A rigid massless rod of length 3l has two masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be:

- (1) $\frac{g}{2l}$ (2) $\frac{7g}{3l}$ (3) $\frac{g}{13l}$ (4) $\frac{g}{3l}$

Ans. (3)

Applying torque equation about point P.

$$2M_0 (2l) - 5 M_0 gl = I\alpha$$

 $I = 2M_0 (2l)^2 + 5M_0 l^2 = 13 M_0 l^2 d$

$$\therefore \quad \alpha = -\frac{M_0 g \ell}{13 M_0 \ell^2} \quad \Rightarrow \quad \alpha = -\frac{g}{13 \ell}$$

- $\alpha = \frac{g}{13\ell}$ anticlockwise
- 23. For the circuit shown below, the current through the Zener diode is:

(3) 14 mA (4) 9 mA (1) 5 mA (2) Zero

Ans. (4)

Assuming zener diode doesnot undergo breakdown, current in circuit = $\frac{120}{15000}$ = 8 mA \therefore Voltage drop across diode = 80 V > 50 V. The diode undergo breakdown.

Current is $R_1 = \frac{70}{5000} = 14 \text{mA}$

Current is $R_2 = \frac{50}{10000} = 5 \,\text{mA}$

:. Current through diode = 9mA

- 24. Four equal point charges Q each are placed in the xy plane at (0, 2), (4, 2), (4, -2) and (0, -2). The work required to put a fifth charge Q at the origin of the coordinate system will be:

 - (1) $\frac{Q^2}{2\sqrt{2}\pi\epsilon_0}$ (2) $\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{5}}\right)$
 - (3) $\frac{Q^2}{4\pi\epsilon_0} \left(1 + \frac{1}{\sqrt{3}} \right)$ (4) $\frac{Q^2}{4\pi\epsilon_0}$

Ans. (2)

Potential at origin = $\frac{KQ}{2} + \frac{KQ}{2} + \frac{KQ}{\sqrt{20}} + \frac{KQ}{\sqrt{20}}$ (Potential at $\infty = 0$)

$$= KQ \left(1 + \frac{1}{\sqrt{5}} \right)$$

... Work required to put a fifth charge Q at origin

is equal to
$$\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{5}}\right)$$

- A cylindrical plastic bottle of negligible mass 25. is filled with 310 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω. If the radius of the bottle is 2.5 cm then ω close to : (density of water = $10^3 \text{ kg} / \text{m}^3$)
 - (1) 5.00 rad s^{-1}
- (2) 1.25 rad s⁻¹
- (3) 3.75 rad s⁻¹
- (4) 2.50 rad s⁻¹

Ans. (Bonus)

Extra Boyant force = δAxg

$$B_0 + B \times mg = ma$$

$$B = ma$$

$$a = \left(\frac{\delta Ag}{m}\right)^{x}$$

$$w^2 = \frac{\delta Ag}{m}$$

$$w = \sqrt{\frac{10^3 \times \pi (2.5)^2 \times 10^{-4} \times 10}{310 \times 10^{-6} \times 10^3}}$$

$$=\sqrt{63.30} = 7.95$$

- **26.** A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates the work done by the capacitor on the slab is:
 - (1) 692 pJ
- (2) 60 pJ
- (3) 508 pJ
- (4) 560 pJ

Ans. (3)

Intial energy of capacitor

$$U_{i} = \frac{1}{2} \frac{v^2}{c}$$

$$= \frac{1}{2} \times \frac{120 \times 120}{12} = 600 \text{ J}$$

Since battery is disconnected so charge remain same.

Final energy of capacitor

$$U_{f} = \frac{1}{2} \frac{v^{2}}{c}$$

$$= \frac{1}{2} \times \frac{120 \times 120}{12 \times 6.5} = 92$$

$$W + U_{f} = U_{i}$$

$$W = 508 \text{ J}$$

- 27. Two kg of a monoatomic gas is at a pressure of 4×10^4 N/m². The density of the gas is 8 kg/m³. What is the order of energy of the gas due to its thermal motion ?
 - $(1) 10^3 J$
- $(2)\ 10^5\ J$
- $(3)\ 10^6\ J$
- $(4) 10^4 J$

Ans. (4)

Thermal energy of N molecule

$$= N\left(\frac{3}{2}kT\right)$$

$$= \frac{N}{N_A} \frac{3}{2} RT$$

$$= \frac{3}{2} (nRT)$$

$$= \frac{3}{2} PV$$

$$= \frac{3}{2} P \left(\frac{m}{8} \right)$$

$$= \frac{3}{2} \times 4 \times 10^4 \times \frac{2}{8}$$

order will 104

 $= 1.5 \times 10^4$

- 28. A particle which is experiencing a force, given by $\vec{F} = 3\vec{i} 12\vec{j}$, undergoes a displacement of $\vec{d} = 4\vec{i}$. If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy at the end of the displacement?
 - (1) 15 J
- (2) 10 J
- (3) 12 J
- (4) 9 J

Ans. (1)

Work done =
$$\vec{F} \cdot \vec{d}$$

= 12J

work energy theorem

$$W_{\text{net}} = \Delta K.E.$$

$$12 = K_f - 3$$

$$K_f = 15J$$

29. The Wheatstone bridge shown in Fig. here, gets balanced when the carbon resistor used as R_1 has the colour code (Orange, Red, Brown). The resistors R_2 and R_4 are 80Ω and 40Ω , respectively.

Assuming that the colour code for the carbon resistors gives their accurate values, the colour code for the carbon resistor, used as R_3 , would be:

- (1) Red, Green, Brown
- (2) Brown, Blue, Brown
- (3) Grey, Black, Brown
- (4) Brown, Blue, Black

Ans. (2)

$$R_1 = 32 \times 10 = 320$$

for wheat stone bridge

$$\Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

$$\frac{320}{R_3} = \frac{80}{40}$$

Brown

30. Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2R and mass M (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is:

- (1) $\frac{152}{15}$ MR²
- (2) $\frac{17}{15}$ MR²
- (3) $\frac{137}{15}$ MR²
- (4) $\frac{209}{15}$ MR²

Ans. (3)

For Ball

using parallel axis theorem.

$$I_{ball} = \frac{2}{5}MR^2 + M(2R)^2$$

= $\frac{22}{5}MR^2$

2 Balls so
$$\frac{44}{5}$$
 MR²

Irod = for rod
$$\frac{M(2R)^2}{R} = \frac{MR^2}{3}$$

$$I_{\text{system}} = I_{\text{Ball}} + I_{\text{rod}}$$
$$= \frac{44}{5} MR^2 + \frac{MR^2}{3}$$

$$=\frac{137}{15} MR^2$$