

Fakultet elektrotehnike i računarstava Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Željko Butković Julijana Divković Pukšec Adrijan Barić

ELEKTRONIKA 1

III dio

Fakultet elektrotehnike i računarstava Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Željko Butković Julijana Divković Pukšec Adrijan Barić

ELEKTRONIKA 1

III dio

Sadržaj

1.	Uvo	d u elektroniku	1		
	1.1.	Razvoj elektronike	1		
	1.2.	Vrste signala	3		
	1.3.	Osnovna svojstva pojačala	7		
	1.4.	Osnovna svojstva invertora	37		
2.	Električka svojstva poluvodiča				
	2.1.	Električka svojstva materijala	44		
	2.2.	Struktura silicija	45		
	2.3.	Ostali poluvodički materijali	49		
	2.4.	Širina zabranjenog pojasa	50		
	2.5.	Intrinzična koncentracija	52		
	2.6.	Određivanje koncentracija nosilaca	54		
	2.7.	Raspodjele energija nosilaca	60		
	2.8.	Određivanje položaja Fermijeve energije	64		
	2.9.	Vođenje struje u poluvodiču	69		
	2.10	. Poluvodički materijali u elektronici	80		
3.	Polu	Połuvodičke diode8			
	3.1.	Struktura pn-diode	82		
	3.2.	Ravnoteža pn-spoja i kontaktni potencijal	83		
	3.3.	Polarizacija pn-spoja	87		
	3.4.	Osiromašeni sloj	90		
	3.5.	Strujno-naponska karakteristika pn-spoja	96		
	3.6.	Strujno-naponske karakteristike realnih pn-dioda	.112		
	3.7.	Dinamička svojstva pn-diode	.119		
	3.8.	Impulsni rad pn-diode	.129		
	3.9.	Spoj metal-poluvodič	. 132		
4.	Sklo	povi s diodom	. 137		
	4.1.	Statička analiza	.137		
	4.2.	Analiza uz priključak malog signala	.141		
	4.3.	Priključak velikog signala	. 151		
	4.4.	Ispravljači	. 152		
	4.5.	Ograničavači	. 163		
	4.5.	Restauratori	. 167		
5.	Unipolarni tranzistori				
	5.1.	Struktura n-kanalnog MOSFET-a i princip rada			
	5.2.	Strujno-naponske karakteristike n-kanalnog MOSFET-a	. 179		
	5.3.	Vrste n-kanalnog MOSFET-a	. 182		
	5.4.	n-kanalni MOSFET	185		

	5.5. Konačni nagib izlaznih karakteristika u području zasićenja	. 189
	5.6. Spojni FET (JFET)	. 191
	5.7. MESFET	. 199
	5.8. Temperaturna svojstva unipolarnih tranzistora	. 200
	5.9. Proboji kod unipolarnih tranzistora	. 201
	5.10. Dinamički parametri i modeli unipolarnih tranzistora	. 202
6.	Sklopovi s unipolarnim tranzistorima	213
	6.1. Prijenosna karakteristika sklopa s MOSFET-om	. 213
	6.2. Podešavanje statičke radne točke pojačala	. 215
	6.3. Uvjeti za rad pojačala s FET-om u režimu malog signala	. 226
	6.4. Osnovni spojevi pojačala s FET-ovima	. 227
	6.5. CMOS invertor	. 247
	6.6. CMOS logički sklopovi	. 259
	6.7. CMOS bistabili	. 265
7.	Bipolarni tranzistori	268
	7.1. Struktura bipolarnog tranzistora	. 269
	7.2. Opis rada	270
	7.3. Određivanje komponenti struja	275
	7.4. Bipolarni pnp tranzistor	282
	7.5. Spojevi bipolarnog tranzistora	. 286
	7.6. Područja rada	291
	7.7. Strujno-naponske karakteristike	. 294
	7.8. Dinamički parametri i model bipolarnog tranzistora	. 304
8.	Sklopovi s bipolarnim tranzistorima	311
	8.1. Prijenosna karakteristika sklopa s bipolarnim tranzistorom	. 311
	8.2. Podešavanje statičke radne točke pojačala s bipolarnim tranzistorima	. 315
	8.3. Osnovni stupnjevi pojačala s bipolarnim tranzistorima	. 322
	8.4. Diferencijsko pojačalo	. 351
	8.5. Bipolarni tranzistor kao sklopka	. 364
	8.6. Skupina ECL	. 374
9.	Stabilizatori	379
	9.1. Referentni element	. 380
	9.2. Stabilizator sa Zenerovom diodom	381
	9.3. Serijski tranzistorski stabilizator	. 387
	9.4. Serijski tranzistorski stabilizator s pojačalom u povratnoj vezi	. 392
10	. Sklopovi s operacijskim pojačalima	394
	10.1. Osnovna svojstva	. 394
	10.2. Izvedbe pojačala	. 396
	10.3. Primjene operacijskih pojačala u obavljanju matematičkih operacija	. 405
	10.4 Multivibratori	410

8. Sklopovi s bipolarnim tranzistorima

Slično kao i unipolarni tranzistor i bipolarni tranzistor je aktivni poluvodički element. Koristi se kao četveropol, pri čemu se pobuda dovodi na ulazni priključak, a signal se s izlaznog priključka predaje trošilu. Treći je priključak zajednički u ulaznom i u izlaznom krugu. Upravljanjem pomoću signala u ulaznom krugu bipolarni tranzistor obavlja osnovne elektroničke funkcije poput pojačanja ili sklopke.

8.1. Prijenosna karakteristika sklopa s bipolarnim tranzistorom

Na slici 8.1 prikazan je osnovni sklop bipolarnog tranzistora u najčešćem korištenom spoju zajedničkog emitera. Ulazni priključak je baza, izlazni je kolektor, a zajednički je emiter. Ulazni napon priključen je između baze i emitera, $u_{UL}=u_{BE}$. U ulazni priključak teče struja baze i_B . Odnos ulaznog napona u_{BE} i struje baze i_B određuje ulazna karakteristika tranzistora. Izlazni se napon dobiva između kolektora i emitera, $u_{IZ}=u_{CE}$. Izlazni je priključak preko trošila R_T spojen na napon napajanja U_{CC} . Kroz R_T teče struja kolektora i_C . Uloga trošila je dvojaka. Osim što se njime određuje istosmjerni napon U_{CE} , na trošilu se struja i_C pretvara u izlazni napon u_{IZ} . Napon napajanja omogućuje podešavanje radne točke tranzistora, te osigurava snagu za rad sklopa.

Slika 8.1 – Osnovni sklop bipolarnog tranzistora u spoju zajedničkog emitera.

Za izlazni krug sklopa može se pisati

$$u_{IZ} = u_{CE} = U_{CC} - R_T i_C. (8.1)$$

Jednadžba povezuje izlaznu struju tranzistora i_C s izlaznim naponom u_{CE} i određuje radni pravac u polju izlaznih karakteristika bipolarnog tranzistora prema slici 8.2. Radni pravac se najlakše crta određivanjem njegova sjecišta s koordinatnim osima. Za struju $i_C = 0$ sjecište pravca s osi apscisa je napon $u_{CE} = U_{CC}$, a za napon $u_{CE} = 0$ sjecište pravca s osi ordinata je struja $i_C = U_{CC}/R_T$. Na slici 8.2 napon napajanja je $U_{CC} = 15$ V, a otpor trošila je $R_T = 1.5$ k Ω . Radni pravac između osi ordinata i osi apscisa gotovo u cijelosti leži u normalnom aktivnom području rada tranzistora. Točka A na pravcu na granici je normalnog aktivnog područja i područja zapiranja, a točka B je na granici normalnog aktivnog područja i područja zasićenja.

Slika 8.2 – Izlazne karakteristike bipolarnog tranzistora s ucrtanim radnim pravcem.

Radna točka sklopa određena je sjecištem radnog pravca i izlazne karakteristike tranzistora za struju i_B koja odgovara ulaznom naponu $u_{BE} = u_{UL}$. Koordinate sjecišta određuju napon u_{CE} i struju i_C . S promjenom ulaznog napona $u_{UL} = u_{BE}$ mijenja se i struja baze i_B i sjecište se pomiče duž radnog pravca, čime se mijenjaju izlazni napon $u_{IZ} = u_{CE}$ i struja i_C . Promjena izlaznog napona u_{IZ} s ulaznim naponom u_{UL} predstavlja naponsku prijenosnu karakteristiku sklopa. Na slici 8.3 prikazana je naponska prijenosna karakteristika koja odgovara primjeru sa slike 8.2.

Slika 8.3 – Naponska prijenosna karakteristika osnovnog sklopa bipolarnog tranzistora u spoju zajedničkog emitera uz priključak malog signala.

lako je s pozitivnim naponom u_{UL} spoj emiter-baza propusno polariziran, za male napone $u_{UL} = u_{BE}$ tranzistor praktički ne vodi i struje tranzistora su zanemarivo male. Struja kolektora $i_C \approx 0$ i izlazni napon $u_{IZ} = u_{CE} = U_{CC}$. Kada ulazni napon postane pozitivniji od oko 0,5 V tranzistor počinje znatnije voditi, struja kolektora i_C raste i izlazni napon se, prema (8.1), počinje smanjivati. Tranzistor radi u normalnom aktivnom području i izlazni napon u_{IZ} mijenja

se s promjenom ulaznog napona u_{UL} . Tome odgovara dio prijenosne karakteristike između točaka A i B. Uz zanemarenje struje zasićenja zaporno polariziranog spoja kolektor-baza I_{CE0} , struja kolektora u normalnom aktivnom području je

$$i_C \approx i_{nC} = \beta^* i_{nE} = I_S \exp\left(\frac{u_{BE}}{U_T}\right) = I_S \exp\left(\frac{u_{UL}}{U_T}\right).$$
 (8.2)

U (8.2) uzeta je u obzir eksponencijalna promjena struje i_{nE} s naponom u_{BE} , prema (7.17) i (7.12). β^* je transportni faktor baze, a I_S je struja zasićenja. Primjenom (8.2) i (8.1) za promjenu izlaznog napona u normalnom aktivnom području može se pisati

$$u_{IZ} = U_{CC} - R_T I_S \exp\left(\frac{u_{UL}}{U_T}\right). \tag{8.3}$$

Zbog eksponencijalne promjene izlaznog napona u_{IZ} s ulaznim naponom u_{UL} nagib prijenosne karakteristike je strm. Povećanjem ulaznog napona, u točki B tranzistor prelazi u područje zasićenja. Izlazni napon poprima malu vrijednost napona zasićenja $u_{IZ} = u_{CE} = U_{CEzas}$. Napon U_{CEzas} je tipično 0,1 do 0,3 V.¹ Daljnjim porastom ulaznog napona izlazni se napon više ne mijenja.

Ovisno o ulaznom naponu, sklop sa slike 8.1 može se višestruko koristiti. Sklop igra ulogu pojačala u uskom području prijenosne karakteristike između točaka A i B u kojem se izlazni napon mijenja s ulaznim. U tom području tranzistor radi u normalnom aktivnom području. Izvan tog područja izlazni napon ne mijenja se s promjenom ulaznog napona, već poprima vrijednost visoke razine $u_{IZ} = U_{CC}$ za male ulazne napone ili vrijednost niske razine $u_{IZ} = U_{CEzas}$ za velike ulazne napone. U tim područjima prijenosne karakteristike tranzistor igra ulogu sklopke pri čemu radi ili u području zapiranja ili u području zasićenja.

Za rad sklopa kao pojačala treba osigurati rad tranzistora u normalnom aktivnom području. To se postiže dovođenjem istosmjernih napona i struja čime se tranzistor postavlja u statičku radnu točku Q. Prema slici 8.2 radnu točku osigurava struja baze $I_{BQ}=40~\mu\text{A}$, kojom se, uz odabrani napon napajanja i otpor trošila, u izlaznom krugu sklopa dobiva napon $U_{CEQ}=8,8~\text{V}$ i struja $I_{CQ}=4,1~\text{mA}$. Prema slici 8.3 ulazna struja $I_{BQ}=40~\mu\text{A}$ uspostavlja ulazni napon $U_{ULQ}=U_{BEQ}=0,69~\text{V}$. Izlazni napon prijenosne karakteristike u statičkoj radnoj točki je izlazni napon sklopa $U_{IZQ}=U_{CEQ}=8,8~\text{V}$.

8.1.1. Pojačanja

Prema slici 8.3, na ulazni napon U_{ULQ} superponiran je mali ulazni naponski sinusni signal $u_{ul}(t) = U_{ulm} \sin \omega t$, amplitude $U_{ulm} = 8 \, \text{mV}$. Dovođenjem signala radna se točka pomiče po prijenosnoj karakteristici. Za mali signal, dio karakteristike po kojem se pomiče radna točka je ravan i rezultat je pojačan izmjenični izlazni napon $u_{iz}(t) = -U_{izm} \sin \omega t$ čiji je valni oblik jednak

 $^{^1}$ Teorijska granica normalnog aktivnog područja i područja zasićenja je napon $U_{CE}=U_{BE}\approx 0,7~\rm V$, uz koji je napon $U_{CB}=0$. Do stvarnog zasićenja, popraćenog smanjenjem struje kolektora u izlaznim karakteristikama, dolazi tek tada kada se spoj kolektor-baza polarizira dovoljno velikim propusnim naponom od oko $0,5~\rm V$ pri čemu dolazi do veće injekcije nosilaca preko spoja kolektor-baza. Zbog toga se realna granica normalnog aktivnog područja i područja zasićenja javlja pri nižim naponima U_{CE} .

valnom obliku ulaznog signala. Amplituda izlaznog sinusnog napona u primjeru na slici 8.3 je $U_{izm} = 1,88$ V, te je naponsko pojačanje sklopa

$$A_V = \frac{u_{iz}}{u_{nl}} = \frac{-U_{izm} \sin \omega t}{U_{nlm} \sin \omega t} = -\frac{U_{izm}}{U_{nlm}} = -\frac{1,88}{8 \cdot 10^{-3}} = -235.$$
 (8.4)

Pojačalo predaje trošilu izlazni napon povećan 235 puta, pri čemu negativni predznak pojačanja upućuje da je izlazni napon zakrenut u fazi za 180° u odnosu na ulazni napon. Pojačanje $A_V = \Delta u_{IZ} / \Delta u_{UL}$ odgovara nagibu prijenosne karakteristike u statičkoj radnoj točki Q.

Uz poznatu analitičku jednadžbu za prijenosnu karakteristiku (8.3), naponsko pojačanje može se odrediti i analitički. Naponsko pojačanje odgovara promjeni izlaznog napona s ulaznim u statičkoj radnoj točki Q

$$A_{V} = \frac{\mathrm{d} u_{IZ}}{\mathrm{d} u_{UL}} \bigg|_{O} . \tag{8.5}$$

Deriviranjem izraza (8.3) dobiva se

$$A_{V} = -\frac{R_{T}}{U_{T}} I_{S} \exp \left(\frac{u_{UL}}{U_{T}} \right) \bigg|_{Q} = -\frac{R_{T} I_{CQ}}{U_{T}} = -g_{m} R_{T}, \qquad (8.6)$$

gdje je g_m strmina tranzistora u statičkoj radnoj točki. Uz naponski ekvivalent temperature $U_T = 25 \text{ mV}$ i struju $I_{CQ} = 4,1 \text{ mA}$, dobivenu iz slike (8.2), strmina je $g_m = 164 \text{ mA/V}$, a uz $R_T = 1,5 \text{ k}\Omega$ naponsko pojačanje je $A_V = -246$. Dobiveno pojačanje po iznosu je približno isto pojačanju određenom grafičkim putem.

U tranzistor sa slike 8.1 teče ulazna struja sklopa $i_{UL} = i_B$, a tranzistor predaje trošilu izlaznu struju $i_{IZ} = -i_C$. Uz naponsko pojačanje može se odrediti i strujno pojačanje

$$A_I = \frac{\mathrm{d}\,i_{IZ}}{\mathrm{d}\,i_{UL}}\bigg|_{Q} \,. \tag{8.7}$$

Promjeni struja u sklopu sa slike 8.1 odgovara

$$A_I = \frac{\mathrm{d}i_{IZ}}{\mathrm{d}i_{UL}}\bigg|_{O} = -\frac{\mathrm{d}i_{C}}{\mathrm{d}i_{B}}\bigg|_{O} = -h_{fe}. \tag{8.8}$$

Iz izlaznih karakteristika sa slike 8.2 faktor strujnog pojačanja $h_{fe} \approx 100$, te je strujno pojačanje $A_I = -100$. Pojačalo predaje trošilu 100 puta veću struju od struje koja ulazi u pojačalo, pri čemu je struja koja ulazi u trošilo zakrenuta za 180° u fazi za strujom koja ulazi u pojačalo.

Usporedbom s osnovnim sklopom pojačala s FET-om iz primjera sa slika 6.1 do 6.3, može se zaključiti da pojačalo s bipolarnim tranzistorom daje po iznosu znatno veće naponsko pojačanje, što je prema (8.6) rezultat znatno veće strmine bipolarnog tranzistora u odnosu na tipične strmine FET-ova. Osim naponskog, pojačalo s bipolarnim tranzistorom daje i strujno pojačanje, koje je u spoju zajedničkog emitera po iznosu znatno veće od jedinice.

8.2. Podešavanje statičke radne točke pojačala s bipolarnim tranzistorima

U pojačalu bipolarni tranzistor treba raditi u normalnom aktivnom području u kojem se podešava statička radna točka. Podešavanje radne točke postiže se sklopovima spojenim na istosmjerni napon napajanja koji osiguravaju istosmjerne napone i struje tranzistora.

8.2.1. Podešavanje statičke radne točke stalnom baznom strujom

Prema slici 8.2 rad u normalnom aktivnom području u ulaznom krugu tranzistora u spoju zajedničkog emitera osigurava struja baze I_{BQ} . Jednostavni sklop kojim se osigurava istosmjerna struja baze I_B je sklop prema slici 8.4.

Slika 8.4 – Podešavanje statičke radne točke pomoću otpora R_B u krugu baze.

Za ulazni krug sklopa u statičkoj radnoj točki može se pisati

$$I_{BQ} = \frac{U_{CC} - U_{BEQ}}{R_B} \,. \tag{8.9}$$

Pozitivna struja baze I_{BQ} ulazi u tranzistor i propusno polarizira spoj emiter-baza, Napon U_{BEQ} je napon propusno polariziranog spoja. Taj se napon malo mijenja sa strujom I_{BO} i može se pisati

$$U_{BEO} \approx U_{\gamma},$$
 (8.10)

gdje je U_r napon koljena propusno polariziranog spoja. Za silicijske tranzistore koristi se $U_r = 0.7 \text{ V}$.

Ako tranzistor radi u normalnom aktivnom području njegova kolektorska struja u statičkoj radnoj točki je

$$I_{CQ} \approx \beta I_{BQ}$$
. (8.11)

U (8.11) zanemareni su struja zasićenja I_{CE0} i porast struje I_C s naponom U_{CE} . Ukoliko temperature nisu previsoke struja zasićenja I_{CE0} može se zanemariti u odnosu na uobičajene miliamperske struje I_C . Porast struje I_C u normalnom aktivnom području je mali. Pogreška koja se radi kada se u proračunu statičke radne točke zanemaruje porast struje I_C u normalnom aktivnom području redovito je manja od rasipanja parametra tranzistora. Uz poznatu struju kolektora iz izlaznog kruga tranzistora dobiva se

$$U_{CEO} = U_{CC} - R_C I_{CO}. (8.12)$$

Za rad tranzistora u normalnom aktivnom području treba biti $U_{CEO} > U_{BEO}$.

Primjer 8.1

U sklopu prema slici 8.4 napon napajanja je $U_{CC}=15~{\rm V}$, a otpor $R_C=2~{\rm k}\Omega$. Parametri tranzistora su $U_\gamma=0.7~{\rm V}$ i $\beta=100$. Odrediti otpor otpornika R_B uz koji će u statičkoj radnoj točki izlazni napon U_{CEO} biti jednak polovici napona napajanja, $U_{CEO}=U_{CC}/2$.

Rješenje:

Napon U_{CEO} je

$$U_{CEQ} = U_{CC} / 2 = 15 / 2 = 7,5 \text{ V}$$
.

Napon $U_{CEQ} > U_{BEQ} = U_{\gamma} = 0,7 \text{ V}$ i tranzistor radi u normalnom aktivnom području. Struja kolektora u statičkoj radnoj točki je

$$I_{CQ} = \frac{U_{CC} - U_{CEQ}}{R_C} = \frac{15 - 7.5}{2} = 3.75 \text{ mA},$$

a struja baze je

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{3,75}{100} = 0,0375 \text{ mA} = 37,5 \text{ }\mu\text{A} .$$

Otpor R_B potreban za dobivanje te struje je

$$R_B = \frac{U_{CC} - U_{BEQ}}{I_{BQ}} = \frac{U_{CC} - U_{\gamma}}{I_{BQ}} = \frac{15 - 0.7}{0.0375} = 381 \,\mathrm{k}\Omega.$$

Primjer 8.2

Kada u primjeru 8.1 temperatura naraste s 25°C na 75°C faktor strujnog pojačanja poveća se s β_1 = 100 na β_2 = 150. Izračunati nove vrijednosti struja i napona tranzistora u statičkoj radnoj točki na temperaturi od 75°C. Zanemariti struju zasićenja I_{CE0} , te promjenu napona propusne polarizacije U_{BE} s temperaturom.

Rješenje:

Uz pretpostavku da se pri povećanju temperature zanemari promjena napona U_{BE} i na višoj temperaturi napon $U_{BEQ2}=U_{\gamma}=0.7~\rm V$. U tom se slučaju ne mijenja ni struja baze

$$I_{BQ2} = \frac{U_{CC} - U_{BEQ2}}{R_B} = \frac{15 - 0.7}{381} = 0.0375 \text{ mA} = 37.5 \text{ }\mu\text{A} .$$

U realnosti napon propusno polariziranog spoja U_{BE} smanjuje se s povećanje temperature, tipično za 1,5 do 2,5 mV/°C. Promjena napona U_{BE} je mala, a još manje dolazi do izražaja kada se u gornjem izrazu napon U_{BE} uspoređuje sa znatno većim naponom U_{CC} .

Na višoj temperaturi struja kolektora je

$$I_{CO2} = \beta_2 I_{BO2} = 150 \cdot 0,0375 = 5,63 \text{ mA}$$
,

pa je izlazni napon

$$U_{CEO2} = U_{CC} - R_C I_{CO2} = 15 - 2.5,63 = 3,74 \text{ V}$$
.

Porastom temperature, te povećanjem faktora β za 50%, struja kolektora I_{CQ} povećala se za

$$\frac{\Delta I_{CQ}}{I_{CO1}} = \frac{I_{CQ2} - I_{CQ1}}{I_{CO1}} = \frac{5,63 - 3,75}{3,75} = 50\%,$$

a napon U_{CEQ} smanjio se na polovicu, odnosno njegova je relativna promjena

$$\frac{\Delta U_{CEQ}}{U_{CEQ1}} = \frac{U_{CEQ2} - U_{CEQ1}}{U_{CEQ1}} = \frac{3,74 - 7,5}{7,5} = -50\%.$$

Daljnjim porastom temperature napon U_{CEQ} bi se sve više smanjivao i kod neke temperature postao bi jednak naponu U_{BEQ} čime bi tranzistor izašao iz normalnog aktivnog područja rada i prešao u područje zasićenja. Tranzistor u tom području više nema svojstvo pojačanja.

Sklopom sa slike 8.4 može se podesiti radna točka tranzistora u normalnom aktivnom području. Sklop održava stalnu struju baze, koja je približno jednaka $I_{BQ} \approx U_{CC} / R_B$ i ne ovisi o parametrima tranzistora. Kako je struja kolektora $I_{CQ} \approx \beta I_{BQ}$, uz stalnu struju baze I_{BQ} , struja kolektora mijenja s promjenom faktora β . Npr. faktor β izrazito raste s temperaturom, a s njime i struja kolektora I_{CQ} u sklopu na slici 8.4.

Zadaća sklopa za postavljanje statičke radne točke nije samo dovođenje tranzistora u normalno aktivno područje, već i stabilizacija položaja statičke radne točke u polju izlaznih karakteristika tranzistora. Sklop sa slike 8.4 ne zadovoljava drugi zahtjev, jer nije u stanju stabilizirati statičku radnu točku s obzirom na promjene radnih uvjeta sklopa i parametra tranzistora.

8.2.2. Stabilizacije statičke radne točke emiterskim otpornikom

Smanjenje osjetljivosti položaja statičke radne točke na promjenu parametara tranzistora, tj. stabilizaciju statičke radne točke omogućuje sklop sa slike 8.5. U krugu baze uključeno je otporno djelilo s otpornicima R_1 i R_2 , a između emitera i mase spojen je otpornik R_E .

Slika 8.5 – Podešavanje statičke radne točke emiterskim otpornikom R_E .

Proračun statičke radne točke može se pojednostavniti ako se otporno djelilo spojeno na priključak baze tranzistora nadomjesti, prema slici 8.6 po Theveninu. Theveninov naponom U_{BB} i otpor R_B su napon neopterećenog djelila i ekvivalentni otpor između izlaznih stezaljki djelila

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC}, \qquad (8.13)$$

$$R_B = R_1 \| R_2 . {(8.14)}$$

Slika 8.6 – Nadomještavanje otpornog djelila s Theveninovim naponom U_{BB} i otporom R_B .

Na slici 8.7 nadomjesni je Theveninov spoj uključen u shemu sklopa sa slike 8.5. U ulaznom krugu kroz otpornik R_B teče bazna struja I_B , a kroz otpornik R_E emiterska struja $-I_E = I_B + I_C$. Za ulaznu petlju može se pisati

$$U_{BB} = R_B I_B + U_{BE} + R_E (I_B + I_C). (8.15)$$

U normalnom aktivnom području vrijedi $U_{BE}=U_{BEQ}=U_{\gamma}$ i $I_{CQ}=\beta\,I_{BQ}$, pa se (8.13) može pisati u obliku

$$U_{BB} = R_B I_{BQ} + U_{BEQ} + (1 + \beta) R_E I_{BQ}.$$
 (8.16)

Slika 8.7 – Shema sklopa sa slike 8.5 s uključenim Theveninovim naponom U_{BB} i otporom R_B .

odakle se dobiva struja baze

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = \frac{U_{BB} - U_{\gamma}}{R_B + (1 + \beta)R_E}.$$
 (8.17)

Izlazni napon U_{CEO} je

$$U_{CEQ} = U_{CC} - R_C I_{CQ} - R_E (I_{BQ} + I_{CQ}) \approx U_{CC} - (R_C + R_E) I_{CQ}.$$
 (8.18)

U zadnjem desnom dijelu izraza (8.18) pretpostavljeno je da je faktor $\beta >> 1$, pri čemu se struja baze I_{BQ} može zanemariti u odnosu na struju I_{CQ} .

Primjer 8.3

U sklopu prema slici 8.5 napon napajanja je U_{CC} = 15 V, a otpori su R_1 = 11 k Ω , R_2 = 2 k Ω , R_C = 2 k Ω i R_E = 500 Ω .

- a) Odrediti struje i napone tranzistora u statičkoj radnoj točki za temperaturu od 25°C na kojoj su parametri tranzistora $U_{\nu} = 0.7 \,\mathrm{V}$ i $\beta_1 = 100$.
- b) Ponoviti proračun statičke radne točke za temperaturu od 75°C na kojoj faktor strujnog pojačanja naraste na $\beta_2 = 150$. Zanemariti pri tome temperaturnu promjenu napona koljena propusno polariziranog spoja $U_{\gamma} = 0.7 \, \text{V}$.

Rješenje:

The veninov napon U_{BB} i otpor R_B su

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC} = \frac{2}{11 + 2} \cdot 15 = 2,31 \text{ V},$$

$$R_B = R_1 \| R_2 = 11 \| 2 = 1,69 \text{ k}\Omega.$$

Uz zanemarenje temperaturne promjene napona U_{γ} , na obje je temperature

$$U_{REO} = U_{\nu} = 0.7 \text{ V}$$
.

a) Na temperaturi od 25°C uz $\beta_1 = 100$ vrijedi

$$I_{BQ1} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta_1)R_E} = \frac{2,31 - 0,7}{1,69 + 101 \cdot 0,5} = 0,0308 \text{ mA} = 30,8 \text{ }\mu\text{A} ,$$

$$I_{CQ1} = \beta_1 I_{BQ1} = 100 \cdot 0,0308 = 3,08 \text{ mA} ,$$

$$U_{CEO1} = U_{CC} - (R_C + R_E)I_{CO1} = 15 - (2 + 0,5) \cdot 3,08 = 7,30 \text{ V} .$$

b) Kada se na temperaturi od 75°C uz faktor β poveća na $\beta_2 = 150$ dobiva se

$$I_{BQ2} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta_2)R_E} = \frac{2,31 - 0,7}{1,69 + 151 \cdot 0,5} = 0,0209 \text{ mA} = 20,9 \text{ }\mu\text{A} ,$$

$$I_{CQ2} = \beta_2 I_{BQ2} = 150 \cdot 0,0209 = 3,14 \text{ mA} ,$$

$$U_{CEO2} = U_{CC} - (R_C + R_E)I_{CO1} = 15 - (2 + 0,5) \cdot 3,14 = 7,15 \text{ V} .$$

Relativne promjene struje I_{CO} i napona U_{CEO} su

$$\frac{\Delta I_{CQ}}{I_{CQ1}} = \frac{I_{CQ2} - I_{CQ1}}{I_{CQ1}} = \frac{3,14 - 3,08}{3,08} = 1,9\%,$$

$$\frac{\Delta U_{CEQ}}{U_{CEQ1}} = \frac{U_{CEQ2} - U_{CEQ1}}{U_{CEQ1}} = \frac{7,15 - 7,30}{7,30} = -2,1\%.$$

Rezultati ukazuju da sklop sa slike 8.5 dobro stabilizira statičku radnu točku s obzirom na promjene faktora strujnog pojačanja β . Porastom temperature i povećanjem faktora β smanjuje se ulazna struja baze I_{BQ} , ali se vrlo malo mijenja izlazna struja kolektora I_{CQ} .

Uvjet za malu osjetljivost statičke radne točke sklopa sa slike 8.5 na promjenu faktora strujnog pojačanja u izlaznim karakteristikama može se odrediti, ako se uz pomoć (8.17) izrazi struja kolektora I_{CO}

$$I_{CQ} = \beta I_{BQ} = \frac{\beta \left(U_{BB} - U_{BEQ} \right)}{R_B + (1 + \beta) R_F}.$$
 (8.19)

Struja I_{CQ} može se načiniti neovisnom o faktoru pojačanja β , ako je $R_B \ll (1 + \beta) R_E$. U tom se slučaju može pisati

$$I_{CQ} \approx \frac{\beta \left(U_{BB} - U_{BEQ} \right)}{\left(1 + \beta \right) R_E} \approx \frac{U_{BB} - U_{BEQ}}{R_E} \,. \tag{8.20}$$

Uvjet $R_B \ll (1+\beta)R_E$ znači da je istosmjerna struja kroz otpore R_1 i R_2 znatno veća od struje baze I_B . Time je baza na fiksnom potencijalu U_{BB} , određenom s (8.13), a emiter je na potencijalu $U_{BB} - U_{BE}$. Struja $(I_B + I_C) \approx I_C$ kroz otpor R_E određena je kvocijentom potencijala emitera i otpora emitera prema (8.20).

Uz fiksni potencijal U_{BB} , pad napona između baze i mase $U_{BB} \approx U_{BE} + R_E \, I_C$ objašnjava stabilizacijsko djelovanje otpora R_E . Ako bi se iz nekog razloga struja I_C povećala, tada bi se morao smanjiti napon U_{BE} , što bi uzrokovalo smanjenje struje I_C . Sklop sa slike 8.5 suprotstavlja se promjeni struje I_C , a time i promjeni položaja radne točke u polju izlaznih karakteristika. Otpor R_E spojen između emitera i mase smanjuje naponsko pojačanje sklopa, što se naziva emiterskom degeneracijom.

8.2.3. Podešavanje statičke radne točke s dva napona napajanja

Ako su na raspolaganju dva napona napajanja, pozitivni i negativni, statička radna točka može se podesiti sklopom na slici 8.8. U tom slučaju nije potrebno koristiti otporno djelilo u krugu baze. Spoj baze s masom ostvaruje se preko izmjeničnog izvora ili općenito preko otpornika R_B . U spoju zajedničke baze, baza se spaja izravno na masu. Otpornikom R_E stabilizira se statička radna točka.

Slika 8.8 – Podešavanje statičke radne točke s dva napona napajanja.

Za ulazni krug sklopa može se pisati

$$U_{EE} = R_B I_B + U_{BE} + R_E (I_B + I_C). (8.21)$$

Uz $I_C = \beta I_B$, struja baze je

$$I_B = \frac{U_{EE} - U_{BE}}{R_B + (1 + \beta)R_E} \,. \tag{8.22}$$

Izlazni napon U_{CE} je

$$U_{CE} = U_{CC} + U_{EE} - (R_C + R_E)I_C. (8.23)$$

U gornjem je izrazu pretpostavljeno da je faktor $\beta >> 1$, odnosno da je $(I_B + I_C) \approx I_C$.

8.3. Osnovni stupnjevi pojačala s bipolarnim tranzistorima

Bipolarni tranzistor može raditi u tri različita spoja, pa se i pojačala s bipolarnim tranzistorima koriste u tri spoja. Ako pojačalo radi u režimu malog signala, u njegovoj se analizi može primijeniti metoda superpozicije. Najprije se u statičkoj analizi određuju struje i naponi tranzistora u statičkoj radnoj točki. Nakon toga se u statičkoj radnoj točki izračunavaju dinamički parametri, da bi se u dinamičkoj analizi odredila dinamička svojstva pojačala poput naponskog i strujnog pojačanja, te ulaznog i izlaznog otpora.

8.3.1. Pojačalo u spoju zajedničkog emitera

Shema pojačala s bipolarnim tranzistorom u spoju zajedničkog emitera prikazana je na slici 8.9. Statičku radnu točku bipolarnog tranzistora T_1 određuju, uz napon napajanja U_{CC} , otporno djelilo s otpornicima R_1 i R_2 u krugu baze, te otpornici R_C i R_E .

Slika 8.9 – Pojačalo s bipolarnim tranzistorom u spoju zajedničkog emitera.

Ulazni signal iz generatora signala u_g s unutarnjim otporom R_g dovodi se na ulaz pojačala, tj. na bazu tranzistora preko veznog kondenzatora C_B . U statičkim prilikama zadaća kondenzatora C_B je odvajanje generatora signala od ulaza sklopa kojim se određuje statička radna točka, a u dinamičkim prilikama propuštanje signala u ulaz pojačala. Izlazni signal pojačala dobiva se na izlaznom kolektorskom priključku na koji je preko veznog kondenzatora C_C spojeno trošilo otpora R_T . Uloga kondenzatora C_C na izlazu pojačala jednaka je ulozi kondenzatora C_B na ulazu. Emiterski otpornik R_E , koji se koristi za stabilizaciju statičke radne točke, i dinamičkim je prilikama premošten kondenzatorom C_E .

Na frekvenciji signala impedancije kondenzatora C_B , C_C i C_E moraju biti male čime se ulazni signal dovodi na bazu tranzistora, izlazni signal odvodi se s kolektora, a emiter se u dinamičkim prilikama kratko spaja na masu. U tim uvjetima bipolarni tranzistor radi u spoju zajedničkog emitera.

U statičkoj se analizi odspajaju C_B , C_C i C_E . Sklop se svodi na shemu prema slici 8.5, a statička radna točka određuje se primjenom jednadžbi (8.13), (8.14), (8.10), (8.11), (8.17) i (8.18).

Shema pojačala za dinamičku analizu prikazana je na slici 8.10. U dinamičkim prilikama uzimamo da su kondenzatori C_B , C_C i C_E kratki spojevi. Time se generator signala izravno spaja na bazu tranzistora, trošilo na kolektor, a emiter na masu. Napon napajanja U_{CC} nema

izmjeničnu komponentu i u dinamičkim se prilikama spaja na masu. U tim su uvjetima oba otpornika R_1 i R_2 jednim priključkom spojeni na masu, a drugim na bazu tranzistora, te su u shemi na slici 8.10 nadomješteni otporom $R_B = R_1 \parallel R_2$.

Slika 8.10 – Model pojačala u spoju zajedničkog emitera sa slike 8.9 za dinamičku analizu.

Bipolarni tranzistor nadomješten je, između priključaka B, E i C, modelom sa slike 7.34 pri čemu je zanemaren serijski otpor baze $r_{bb'}$. Time je ukupni dinamički ulazni otpor $r_{be} = r_{bb'} + r_{b'e} \approx r_{b'e}$, a upravljački napon $u_{b'e} \approx u_{be}$. U izlaznom krugu pojačanje tranzistora modelira se naponski upravljanim strujnim izvorom čiji je parametar strmina g_m , a paralelno tom izvoru spojen je izlazni dinamički otpor tranzistora r_{ce} . Ovisni izvor upravljan je naponom u_{be} , a smjer struje izvora je od kolektora prema emiteru.

U izlaznom krugu izlazni napon u_{iz} rezultat je pada napona na paralelnoj kombinaciji otpora $r_{ce} \| R_C \| R_T$ zbog protjecanja struje $-g_m u_{be}$

$$u_{iz} = -g_m u_{be} (r_{ce} || R_C || R_T). \tag{8.24}$$

Kako je u ulaznom krugu

$$u_{ul} = u_{be}, (8.25)$$

naponsko je pojačanje

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -g_{m} \left(r_{ce} \| R_{C} \| R_{T} \right). \tag{8.26}$$

Naponsko pojačanje pojačala jednako je strmini tranzistora pomnoženoj s ukupnim otporom u krugu kolektora. Pojačanje je negativno, što znači da je izlazni napon u_{iz} pomaknut u fazi za 180° u odnosu na ulazni napon u_{ul} . Često je izlazni dinamički otpor tranzistora r_{ce} znatno veći od paralelne kombinacije otpora $R_C \parallel R_T$, te u tom slučaju naponsko pojačanje poprima oblik

$$A_V = \frac{u_{iz}}{u_{id}} \approx -g_m \left(R_C \parallel R_T \right). \tag{8.27}$$

Izlazna struja i_{iz} iz sheme na slici 8.10 dio je struje izvora $-g_m u_{be}$

$$i_{iz} = -g_m u_{be} \frac{r_{ce} \| R_C}{r_{ce} \| R_C + R_T}.$$
 (8.28)

Iz ulaznog kruga napon u_{be} je

$$u_{be} = (R_B \| r_{be}) i_{ul}. {(8.29)}$$

Kombinacijom (8.28) u (8.27) dobiva se strujno pojačanje

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -g_{m} \frac{r_{ce} \| R_{C}}{r_{ce} \| R_{C} + R_{T}} (R_{B} \| r_{be}).$$
(8.30)

Kako je najčešće izlazni dinamički otpor r_{ce} znatno veći od otpora R_C , strujno pojačanje može se pisati u obliku

$$A_{I} = \frac{i_{iz}}{i_{nl}} \approx -g_{m} \frac{R_{C}}{R_{C} + R_{T}} (R_{B} \| r_{be}). \tag{8.31}$$

Izrazi za naponsko i strujno pojačanje mogu se umjesto sa strminom g_m izraziti s dinamičkim faktorom strujnog pojačanja h_{fe} . Uvrštenjem izraza $g_m = h_{fe} / r_{be}$, koji vrijedi uz $r_{b'e} = r_{be}$, jednadžbe (8.27) i (8.31) prelaze u oblik

$$A_{V} = \frac{u_{iz}}{u_{ul}} \approx -\frac{h_{fe}\left(R_{C} \parallel R_{T}\right)}{r_{be}},$$

$$(8.32)$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} \approx -h_{fe} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{B}}{R_{B} + r_{be}}.$$
 (8.33)

Pojačanja (8.32) i (8.33) dobila bi se također kada bi se u modelu tranzistora na slici 8.10 naponski upravljani strujni izvor $g_m u_{be}$ zamijenio sa strujno upravljanim strujnim izvorom h_{fe} i_b . Prema (8.33) strujno pojačanje pojačala A_I odgovara strujnom pojačanju tranzistora h_{fe} umanjenom zbog gubitaka struja u ulaznom i u izlaznom krugu. Od ulazne struje i_{ul} koju generator signala daje u pojačalo, pojačava se samo struja i_b koja ulazi u tranzistor, a ne pojačava se dio struje koja teče kroz otpor R_B . Od pojačane struje koju daje tranzistor korisna je samo izlazna struja i_{iz} koju preuzima trošilo, ali nije korisna struja koja teče kroz otpor R_C . Za veće strujno pojačanje otpor R_B treba biti što veći u odnosu na ulazni otpor tranzistora r_{be} , a otpor R_C treba biti što veći u odnosu na otpor trošila R_T . Zahtjev za što veći otpor $R_B = R_1 \parallel R_2$ u suprotnosti je sa zahtjevom da za dobru stabilizaciju statičke radne točke otpori R_1 i R_2 budu što manji, pa je odabir otpora R_1 i R_2 kompromis dobre stabilizacije statičke radne točke i većeg strujnog pojačanja. Strujno pojačanje je negativno, odnosno struja i_{iz} koje pojačalo predaje trošilu zakrenuta je u fazi za 180° u odnosu na struju i_{ul} koja ulazi u pojačalo.

Prema shemi 8.10 ulazni otpor pojačala je

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| r_{be} \,. \tag{8.34}$$

Oba izraza za naponsko i strujno pojačanje izvedena su zasebno iz modela pojačala za dinamičku analizu. Uz poznavanje jednog od pojačanja drugo se može lako izvesti posredno. Tako se npr. za strujno pojačanje može pisati

$$A_{I} = \frac{i_{iz}}{i_{ul}} = \frac{u_{iz} / R_{T}}{u_{ul} / R_{ul}} = A_{V} \frac{R_{ul}}{R_{T}}.$$
 (8.35)

Na slici 8.11 prikazana je shema za određivanje izlaznog otpora pojačala sa slike 8.9. Pri određivanju izlaznog otpora u modelu pojačala sa slike 8.10 kratko je spojen neovisan izvor generatora signala u_g . Odspojeno je trošilo R_T i na njegovo mjesto postavljen je naponski izvor u i određuje se struja i koja iz izvora u teče u pojačalo.

Slika 8.11 – Određivanje izlaznog otpora pojačala sa slike 8.9.

U ulaznom krugu pojačala nema izvora napona niti struje, te je napon $u_{be}=0$. Time je struja ovisnog strujnog izvora $g_m u_{be}=0$ i izlazni je otpor

$$R_{iz} = \frac{u}{i} = r_{ce} \| R_C. \tag{8.36}$$

Često je izlazni otpor r_{ce} znatno veći od otpora R_C , pa je izlazni otpor pojačala $R_{iz} \approx R_C$. Kada bi s trošilo spojilo izravno u kolektor, odnosno kada ne bi bilo otpora R_C izlazni otpor pojačala bio bi jednak izlaznom otporu tranzistora r_{ce} .

Primjer 8.4

U pojačalu sa slike 8.9 zadano je: $U_{CC}=15\,\mathrm{V}$, $R_g=500\,\Omega$, $R_1=30\,\mathrm{k}\Omega$, $R_2=11\,\mathrm{k}\Omega$, $R_C=2\,\mathrm{k}\Omega$, $R_T=1.2\,\mathrm{k}\Omega$ i $R_E=1\,\mathrm{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100$, $U_\gamma=0.7\,\mathrm{V}$ i $U_A=200\,\mathrm{V}$. Naponski ekvivalent temperature $U_T=25\,\mathrm{mV}$. Odrediti pojačanja $A_V=u_{iz}/u_{ul}$, $A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Rješenje:

U statičkoj analizi vrijedi prema Theveninu

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC} = \frac{11}{30 + 11} \cdot 15 = 4,02 \text{ V},$$

$$R_B = R_1 \| R_2 = 30 \| 11 = 8,05 \text{ k}\Omega,$$

$$U_{BEQ} = U_{\gamma} = 0.7 \text{ V},$$

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = \frac{4,02 - 0.7}{8,05 + 101 \cdot 1} = 0,0304 \text{ mA} = 30.4 \text{ µA},$$

$$I_{CQ} = \beta I_{BQ} = 100 \cdot 0,0304 = 3,04 \text{ mA},$$

$$U_{CEQ} = U_{CC} - (R_C + R_E)I_{CQ} = 15 - (2 + 1) \cdot 3,04 = 5,88 \text{ V}.$$

Uz zanemarenje serijskog otpora baze dinamički parametri u statičkoj radnoj točki su

$$r_{be} = \frac{U_T}{I_{BQ}} = \frac{0,025}{30,4 \cdot 10^{-6}} = 822 \,\Omega \,,$$

$$r_{ce} = \frac{U_{CEQ} + U_A}{I_{CQ}} = \frac{5,88 + 200}{3,04} = 67,7 \,\mathrm{k}\Omega \,,$$

$$g_m = \frac{h_{fe}}{r_{be}} = \frac{100}{0,822} = 122 \,\mathrm{mA/V} \,.$$

lz dinamičke analize slijedi

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -g_{m} \left(r_{ce} \parallel R_{C} \parallel R_{T} \right) = -122 \cdot \left(67,7 \parallel 2 \parallel 1,2 \right) = -90,5,$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -h_{fe} \frac{r_{ce} \parallel R_{C}}{r_{ce} \parallel R_{C} + R_{T}} \frac{R_{B}}{R_{B} + r_{be}} = -100 \cdot \frac{67,7 \parallel 2}{67,7 \parallel 2 + 1,2} \cdot \frac{8,05}{8,05 + 0,822} = -56,1,$$

$$R_{ul} = R_{B} \parallel r_{be} = 8,05 \parallel 0,822 = 746 \Omega,$$

$$A_{Vg} = \frac{u_{iz}}{u_{g}} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_{g}} = A_{V} \frac{R_{ul}}{R_{g} + R_{ul}} = -90,5 \cdot \frac{746}{500 + 746} = -54,2,$$

$$R_{iz} = r_{ce} \parallel R_{C} = 67,7 \parallel 2 = 1,94 \text{ k}\Omega.$$

U paralelnoj kombinaciji otpora $r_{ce} \| R_C$ izlazni otpor tranzistora r_{ce} je preko 30 puta veći od otpora R_C . Zanemarenjem otpora r_{ce} izrazima za pojačanja i izlazni otpor dobiva se

$$A_{V} \approx -g_{m} \left(R_{C} \parallel R_{T} \right) = -122 \cdot \left(2 \parallel 1, 2 \right) = -91,5,$$

$$A_{I} \approx -h_{fe} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{B}}{R_{B} + r_{be}} = -100 \cdot \frac{2}{2 + 1, 2} \cdot \frac{8,05}{8,05 + 0,822} = -56,7,$$

$$A_{Vg} = A_{V} \frac{R_{ul}}{R_{g} + R_{ul}} \approx -91,5 \cdot \frac{746}{500 + 746} = -54,8,$$

$$R_{i-} \approx R_C = 2 \text{ k}\Omega$$
.

Pogreške pri zanemarenju otpora r_{ce} vrlo su male i manje su od rasipanja parametra tranzistora. Ako je otpor tranzistora r_{ce} znatno veći od otpora pojačala spojenog u kolektorskom krugu u proračunu pojačanja i izlaznog otpora pojačala utjecaj otpora r_{ce} može se zanemariti.

Oba pojačanja pojačala u spoju zajedničkog emitera, naponsko i strujno negativna su i po iznosu su znatno veća od 1. Uz otpor R_B dovoljno velik, ulazni otpor pojačala određuje ulazni otpor tranzistora r_{be} . Nasuprot tome izlazni otpor pojačala određuje prvenstveno otpornik R_C spojen u krugu kolektora.

Primjer 8.5

Za pojačalo iz primjera 8.4 u polje izlaznih karakteristika bipolarnog tranzistora ucrtati statički i dinamički radni pravac. Koliki je maksimalni hod izmjeničnih izlaznih napona i struje, a da pri tome radna točke ne izađe iz normalnog aktivnog područja?

Rješenje:

Slika 8.12 prikazuje izlazne karakteristike bipolarnog tranzistora čiji su parametri dani u primjeru 8.4. Uz pretpostavku da je faktor β znatno veći od jedinice, jednadžba statičkog radnog pravca u izlaznom krugu pojačala sa slike 8.9 je

$$U_{CE} = U_{CC} - (R_C + R_E)I_C.$$

Slika 8.12 – Izlazne karakteristike bipolarnog tranzistora s ucrtanim radnim pravcima.

Sjecište statičkog radnog pravca s osi apcisa je napon $U_{CE}=U_{CC}=15~\rm V$, a sjecište s osi ordinata je struja $I_C=U_{CC}/(R_C+R_E)=15/(2+1)=5~\rm mA$. Statički radni pravac ima koeficijent nagiba $-1/(R_C+R_E)=-1/3~\rm k\Omega$. Statičku radnu točku Q određuje sjecište statičkog radnog pravca i izlazne karakteristike tranzistora uz struju baze $I_B=I_{BQ}=30~\rm \mu A$. Povlačenjem okomica na koordinatne osi određuju se struja $I_{CQ}=3.0~\rm mA$ i napon $U_{CEQ}=5.8~\rm V$ u statičkoj radnoj točki. Te su vrijednosti praktički jednake vrijednostima određenim analitičkim proračunom.

U dinamičkim uvjetima pojačalo sa slike 8.9 može se predočiti spojem na slici 8.13. Shema na slici 8.13 dobivena je kratkim spajanjem kondenzatora C_B , C_C i C_E , te spajanjem napona napajanja U_{CC} na masu. Jednadžba izlaznog kruga

Slika 8.13 – Pojačalo u spoju zajedničkog emitera sa slike 8.9 u dinamičkim prilikama.

$$u_{ce} = -(R_C \parallel R_T)i_c,$$

predstavlja dinamički pravac u izlaznim karakteristikama. Dinamički radni pravac mora proći kroz statičku radnu točku, a koeficijent nagiba mu je $-1/(R_C \parallel R_T) = -1/(2 \parallel 1,2) = -1/750 \Omega$. Položaj dinamičkog radnog pravca u polju izlaznih karakteristika na slici 8.12 može se odrediti računanjem njegovih sjecišta s koordinatnim osima. Otpor u dinamičkim uvjetima je $R_C \parallel R_T$. Odsječak na osi apscisa od napona U_{CEQ} do sjecišta dinamičkog pravca je $\Delta u_{CE} = (R_C \parallel R_T) I_{CQ}$, pa je sjecište dinamičkog pravca s osi apscisa uz napon u_{CE}

$$u_{CE} = U_{CEO} + \Delta u_{CE} = U_{CEO} + (R_C || R_T)I_{CO} = 5.8 + 0.75 \cdot 3.0 = 8.1 \text{ V}.$$

Odsječak na osi ordinata od struje I_{CQ} do sjecišta dinamičkog pravca je $\Delta i_C = U_{CEQ} / (R_C \parallel R_T)$ i sjecište dinamičkog pravca s osi ordinata je uz struju i_C

$$i_C = I_{CO} + \Delta i_C = I_{CO} + U_{CEO} / (R_C || R_T) = 3.0 + 5.8 / 0.75 = 10.7 \text{ mA}$$
.

Priključkom ulaznog signala radna se točka kreće po dinamičkom radnom pravcu. Porastom struje i_B radna se točka pomiče prema većim strujama i_C i manjim naponima u_{CE} . Krajnji položaj radne točke koja još uvijek leži u normalnom aktivnom području označen je točkom B. Ta je točka, s naponom $U_{CEB}=0,3$ V i strujom $I_{CB}=10,4$ mA, na granici područja zasićenja. Smanjenjem struje i_B radna točaka pomiče se prema manjim strujama i_C i većim naponima u_{CE} . Točka A je krajnji položaj radne točke na granici normalnog aktivnog područja i područja zapiranja. Napon i struja u toj točki su $U_{CEA}=8,1$ V i $I_{CA}=0$ mA.

Maksimalni hod signala ograničen je kraćom udaljenošću od statičke radne točke Q do jedne od graničnih točaka A ili B. Prema slici 8.12 kraća je udaljenost od točke Q do točke A. Maksimalni hod napona u_{ce} ograničen tim točkama je

$$U_{ce \max} = U_{CEA} - U_{CEO} = 8.1 - 5.8 = 2.3 \text{ V},$$

a struje i_c je

$$I_{c \max} = I_{CO} - I_{CA} = 3.0 - 0 = 3.0 \text{ mA}$$
.

Maksimalni hod izlaznog napona u_{iz} odgovara maksimalnom hodu napona u_{ce}

$$U_{iz \max} = U_{ce \max} = 2.3 \text{ V}$$
,

a maksimalni hod izlazne struje i_i , prema slici 8.13, dio je maksimalnog hoda struje kolektora i_c

$$I_{iz \max} = I_{c \max} \frac{R_C}{R_C + R_T} = 3.0 \frac{2}{2 + 1.2} = 1.9 \text{ mA}.$$

Podešavanje statičke radne točke za maksimalni hod signala

U prethodnom primjeru pokazano je da se dolaskom signala radna točka kreće po dinamičkom radnom pravcu u polju izlaznih karakteristika tranzistora. U radu pojačala ni u jednom trenutku radna točka ne smije izaći iz normalnog aktivnog područja rada. To znači da se, prema slici 8.12, porastom struje radna točka smije pomicati do točke B, na granici normalnog aktivnog područja s područjem zasićenja, a smanjenjem struje do točke A, na granici normalnog aktivnog područja s područjem zapiranja. Maksimalni hod signala određen je kraćom udaljenošću od statičke radne točke Q do jedne od tačaka B ili A. Maksimalni hod signala bit će očito najveći ako su obje udaljenosti jednake, odnosno ako se statička radna točka nalazi na sredini, između točaka B i A.

Optimalni položaj statičke radne točke Q, na sredini dinamičkog radnog pravca može se odrediti analitičkim i grafičkim putem. Postupak će biti prikazan na primjeru pojačala sa slike 8.9. Uz pretpostavku da je faktor strujnog pojačanja β znatno veći od jedinice, statički radni pravac u polju izlaznih karakteristika određuje jednadžba

$$U_{CEO} = U_{CC} - (R_C + R_E)I_{CO}. (8.37)$$

Druga jednadžba koja povezuje napon U_{CEQ} i struju I_{CQ} dobiva se iz dinamičkih uvjeta. Uz priključak signala, pojačalo se za izmjenične veličine može prikazati shemom prema slici 8.13. Za izlazni krug vrijedi

$$u_{ce} = -(R_C \| R_T) i_c. (8.38)$$

To je jednadžba dinamičkog radnog pravca. Izmjenični napon u_{ce} i struja i_c mogu se pisati kao razlike totalnih vrijednosti i istosmjernih vrijednosti u statičkoj radnoj točki

$$u_{CE} - U_{CEQ} = -(R_C || R_T)(i_C - I_{CQ}).$$
 (8.39)

Na slici 8.14 u polju izlaznih karakteristika ucrtani su statički i dinamički radni pravac. Na dinamičkom radnom pravcu ucrtane su točka A na granici s područjem zapiranja i točka B na granici s područjem zasićenja. Točka A leži na osi apscisa, a uz zanemarenje malog napona zasićenja U_{CEzas} , koji je tipično 0.1 do 0.3 V, točka B leži na osi ordinata. Da bi statička radna točka bila na sredini dinamičkog radnog pravca, struja i_C određena sjecištem dinamičkog radnog

pravca s osi ordinata, u točki B, mora biti jednaka dvostrukoj struji I_{CQ} . Kako je za svaku točku na osi ordinata napon $u_{CE} = 0$, za točku B jednadžba (8.39) poprima oblik

$$0 - U_{CEO} = -(R_C \| R_T)(2I_{CO} - I_{CO}), \tag{8.40}$$

Slika 8.14 – Položaj statičke radne točke za maksimalni hod signala.

odnosno

$$U_{CEO} = (R_C \| R_T) I_{CO}. (8.41)$$

Isti bi se rezultat dobio kada bi se u jednadžbu (8.39) uvrstio uvjet za točku A. Da bi statička radna točka bila na sredini dinamičkog radnog pravca, u točki A napon mora biti $u_{CE} = 2U_{CEQ}$, a struja $i_C = 0$.

Uz (8.37), izraz (8.41) je druga jednadžba koja povezuje napon U_{CEQ} i struju I_{CQ} . Iz te se dvije jednadžbe dobivaju napon U_{CEQ} i struja I_{CQ} za statičku radnu točku koja leži na sredini dinamičkog radnog pravca

$$I_{CQ} = \frac{U_{CC}}{R_C + R_E + R_C \| R_T},$$
(8.42)

$$U_{CEQ} = \frac{R_C \| R_T}{R_C + R_E + R_C \| R_T} U_{CC}.$$
 (8.43)

Optimalni položaj statičke radne točke Q za maksimalni hod signala može se odrediti i grafičkim putem. Najprije se u polje izlaznih karakteristika ucrtava statički radni pravac, čiji je koeficijent nagiba $-1/(R_C+R_E)$. Zatim se ucrtava pomoćni pravac koji prolazi kroz ishodište i čiji koeficijent nagiba odgovara koeficijentu nagiba dinamičkog radnog pravca sa suprotnim predznakom. Kako je koeficijent nagiba dinamičkog radnog pravca $-1/(R_C \parallel R_T)$, koeficijent nagiba pomoćnog pravca je $1/(R_C \parallel R_T)$. Taj je pravac na slici 8.14 označen crtkano. Sjecište statičkog radnog pravca i pomoćnog pravca određuje statičku radnu točku Q na sredini dinamičkog radnog pravca. Dinamički radni pravac dobiva se zrcaljenjem pomoćnog radnog pravca oko vertikalne osi uz napon $u_{CE} = U_{CEQ}$.

Primjer 8.6

Za pojačalo sa slike 8.9 odrediti statičku radnu točku za maksimalni hod signala. Koliki su pri tome maksimalni hodovi izlaznog napona u_{iz} i izlazne struje i_{iz} ? Odrediti otpore otpornog djelila R_1 i R_2 kojima se postiže ta statička radna točka. Zadano je: $U_{CC}=15\,\mathrm{V}$, $R_C=2\,\mathrm{k}\Omega$, $R_T=1,2\,\mathrm{k}\Omega$ i $R_E=1\,\mathrm{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta=100\,\mathrm{i}\ U_{\gamma}=0,7\,\mathrm{V}$.

Rješenje:

Za statičku radnu točku na sredini dinamičkog radnog pravca struja I_{CQ} i napon U_{CEQ} računaju se prema (8.42) i (8.43)

$$I_{CQ} = \frac{U_{CC}}{R_C + R_E + R_C \| R_T} = \frac{15}{2 + 1 + 2 \| 1,2} = 4 \text{ mA},$$

$$U_{CEQ} = \frac{R_C \| R_T}{R_C + R_E + R_C \| R_T} U_{CC} = \frac{2 \| 1.2}{2 + 1 + 2 \| 1.2} \cdot 15 = 3 \text{ V}.$$

Prema slici 8.14 maksimalni hodovi napona u_{ce} i struje i_c su

$$U_{ce \max} = U_{CEQ} = 3 \text{ V}$$
,

$$I_{c \max} = I_{CO} = 4 \text{ mA}$$
.

Maksimalni hodovi izlaznog napona u_{iz} i izlazne struje i_{iz} su

$$U_{iz \max} = U_{ce \max} = 3 \text{ V}$$
,

$$I_{i = \text{max}} = I_{c \text{ max}} \frac{R_C}{R_C + R_T} = 4 \cdot \frac{2}{2 + 1.2} = 2.5 \text{ mA}.$$

Statička radna točka postavlja se otpornim djelilom u krugu baze i otpornikom R_E u emiteru tranzistora. Thevenonov otpor otpornog djelila je $R_B = R_1 \parallel R_2$. Uvjet za dobru stabilizaciju radne točke je $R_B << (1+\beta)R_E$. S druge strane otpor R_B ne smije biti premali, da ne bi smanjio ulazni otpor R_{ul} ili strujno pojačanje A_l pojačala. Kao kompromis može se odabrati da je otpor R_B deset puta manji od vrijednosti $(1+\beta)R_E$, odnosno

$$R_R = 0.1(1 + \beta)R_F = 0.1 \cdot 101 \cdot 1 = 10.1 \text{ k}\Omega$$
.

Struja baze u statičkoj radnoj točki je

$$I_{BO} = I_{CO} / \beta = 4/100 = 0.04 \text{ mA} = 40 \mu\text{A}$$

a Theveninov je napon, prema (8.16)

$$U_{BB} = R_B \, I_{BQ} + U_{BEQ} + \big(1 + \beta\big) R_E \, I_{BQ} = 10.1 \cdot 0.04 + 0.7 + 101 \cdot 1 \cdot 0.04 = 5.14 \, \text{V} \, .$$

Prema Theveninu

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC}$$
,

$$R_B = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$
.

lz te se dvije jednadžbe određuju otpori R_1 i R_2

$$R_1 = R_B \frac{U_{CC}}{U_{BB}} = 10,1 \cdot \frac{15}{5,14} = 29,5 \text{ k}\Omega$$

$$R_2 = R_B \frac{U_{CC}}{U_{CC} - U_{BB}} = 10,1 \cdot \frac{15}{15 - 5,14} = 15,4 \text{ k}\Omega.$$

Pojačalo u spoju zajedničkog emitera s emiterskom degeneracijom

U pojačalu na slici 8.9 emiterski otpornik R_E , koji služi za stabilizaciju radne točke, premošten je kondenzatorom C_E . Na taj je način emiter tranzistora u dinamičkim prilikama spojen na masu. Ako se emiterski otpornik ne premosti kondenzatorom, tada pojačalo poprima oblik na slici 8.15.

Slika 8.15 – Pojačalo s bipolarnim tranzistorom u spoju zajedničkog emitera s emiterskom degeneracijom.

Jednako kao i kod pojačala sa slike 8.9, statičku radnu točku pojačala sa slike 8.15 određuju napon napajanja U_{CC} , otporno djelilo s otpornicima R_1 i R_2 u baznom krugu, te otpornici R_C i R_E u izlaznom krugu. Time sklop u statičkim prilikama izgleda kao sklop prikazan na slici 8.5.

Pobuda se iz generatora signala dovodi na bazu preko veznog kondenzatora C_B , a pojačani signal se s kolektora predaje trošilu preko veznog kondenzatora C_C . Pojačalo radi u spoju zajedničkog emitera, jer je emiterski krug zajednički ulaznom i izlaznom krugu.

Model pojačala za dinamičku analizu prikazan je na slici 8.16. Shema je dobivena kratkim spajanjem kondenzatora C_B i C_C , te spajanjem priključka napona napajanja na masu. Na taj je način generator signala izravno vezan na bazu, a trošilo na kolektor tranzistora. Otpornici R_1

i R_2 spojeni su paralelno između baze i mase i nadomješteni su otporom $R_B = R_1 \parallel R_2$. Emiter tranzistora nije izravno spojen na masu, nego je na masu spojen preko otpornika R_E . Iako niti jedna od točaka tranzistora nije na masi, pojačalo radi u spoju zajedničkog emitera. Signal se dovodi na bazu, a odvodi s kolektora tranzistora.

Slika 8.16 – Model pojačala u spoju zajedničkog emitera s emiterskom degeneracijom sa slike 8.15 za dinamičku analizu.

Tranzistor je nadomješten modelom između priključaka baze B, emitera E i kolektora C. Između baze i emitera uključen je ulazni dinamički otpor r_{be} , a zanemaren je serijski otpor baze. Između baze i kolektora tranzistor je nadomješten ovisnim strujnim izvorom $h_{fe}i_b$, te paralelno spojenim izlaznim dinamičkim otporom r_{ce} . Ovisni izvor upravljan je strujom i_b , koja teče kroz r_{be} od baze prema emiteru, a struja izvora teče od kolektora prema emiteru.

Izlazni dinamički otpor tranzistora r_{ce} , prikazan crtkano na slici 8.16, redovito je znatno veći i od otpora R_C i R_T spojenih u kolektoru i od otpora R_E spojenog u emiteru tranzistora. Time je struja koja teče kroz r_{ce} , u shemi na slici 8.16, znatno manja od struje $h_{fe}i_b$ strujnog izvora, pa se u dinamičkoj analizi pojačala otpor r_{ce} može ispustiti. U tom su slučaju ulazni i izlazni napon

$$u_{ul} = i_b r_{be} + (1 + h_{fe}) i_b R_E,$$
 (8.44)

$$u_{iz} = -h_{fe} i_b (R_C || R_T), (8.45)$$

pa je naponsko pojačanje

$$A_V = \frac{u_{iz}}{u_{ul}} = -h_{fe} \frac{R_C \| R_T}{r_{be} + (1 + h_{fe}) R_E}.$$
 (8.46)

Usporedbom s izrazom (8.32) za naponsko pojačanje pojačala u spoju zajedničkog emitera, može se zaključiti da je naponsko pojačanje i dalje negativno, ali da emiterski otpornik R_E uzrokuje smanjenje iznosa pojačanja. Zbog toga se primjena emiterskog otpornika u spoju zajedničkog emitera naziva **emiterskom degeneracijom**.

Ukoliko se u jednadžbi (8.46) zanemari jedinica u odnosu na veliki faktor strujnog pojačanja h_{fe} , te ukoliko se primjeni izraz $g_m = h_{fe} / r_{be}$, tada (8.46) prelazi u

$$A_{V} \approx \frac{-g_{m}\left(R_{C} \parallel R_{T}\right)}{1 + g_{m} R_{E}}.$$
(8.47)

Gornji izraz jednak je izrazu (6.42) za pojačanje pojačala s FET-om u spoju zajedničkog uvoda s uvodskom degeneracijom. Usporedbom s jednadžbom (8.27), za pojačanje pojačala s bipolarnim tranzistorom u spoju zajedničkog emitera bez emterske degeneracije, vidi se da emiterska degeneracija smanjuje naponsko pojačanje pojačala za faktor $(1 + g_m R_E)$. Ukoliko je umnožak $g_m R_E$ znatno veći od jedinice, tada se (8.47) može pisati u obliku

$$A_{V} \approx -\frac{R_{C} \| R_{T}}{R_{F}}.$$
 (8.48)

Naponsko pojačanje je u tom slučaju određeno jedino omjerom otpora otpornika spojenih u kolektorskom i emiterskom krugu tranzistora. Takvo pojačanje manje je od pojačanja pojačala bez degeneracije, ali je stabilnije, jer ne ovisi o parametrima tranzistora, koji se jako rasipaju, već o iznosim otpora otpornika koji se kreću u znatno užim tolerancijama.

Ulazni otpor R'_{ul} gledajući u bazu tranzistora je prema shemi na slici 8.16 i prema (8.44) jednak

$$R'_{ul} = \frac{u_{ul}}{i_b} = r_{be} + (1 + h_{fe})R_E.$$
 (8.49)

Osim ulaznog dinamičkog otpora tranzistora r_{be} , u ulaznom otporu R'_{ul} pojavljuje se i emiterski otpornik R_E pomnožen s $(1+h_{fe})$. Prema shemi na slici 8.16 ulazni otpor određuje se u krugu baze u kojem teče struja i_b . Otpornik R_E nalazi se u krugu emitera u kojem teče struja $(1+h_{fe})i_b$. Kada se taj otpornik preslikava u krug baze mora se pomnožiti s $(1+h_{fe})$ kako bi se na njemu zadržao isti pad napona $(1+h_{fe})i_b$ R_E . Zbog člana $(1+h_{fe})R_E$ ulazni otpor R'_{ul} je velik i može biti reda veličine $100 \text{ k}\Omega$.

Iz izlaznog kruga sheme na slici 8.16 izlazna struja i_{iz} dio je struje $-h_{fe}i_{h}$

$$i_{iz} = -h_{fe} i_b \frac{R_C}{R_C + R_T} \,, \tag{8.50}$$

a iz ulaznog kruga struja i_b dio je ulazne struje i_{ul}

$$i_b = i_{ul} \frac{R_B}{R_B + R'_{ul}} = i_{ul} \frac{R_B}{R_B + r_{be} + (1 + h_{fe})R_E}.$$
 (8.51)

Iz (8.50) i (8.51) slijedi izraz za strujno pojačanje

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -h_{fe} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{B}}{R_{B} + r_{be} + (1 + h_{fe})R_{E}}.$$
 (8.52)

Strujno pojačanje je negativno, a emiterska degeneracija, tj. član $(1+h_{fe})R_E$ u nazivniku drugog razlomka u izrazu (8.52) smanjuje iznos pojačanja. S pojačalom sa slike 8.15 nemoguće u isto vrijeme postići dobru stabilizaciju statičke radne točke i veliki iznos strujnog pojačanja. Dobra stabilizacija statičke radne točke postiže se uvjetom da je $R_B << (1+\beta)R_E$. Uz $\beta \approx h_{fe}$, prethodni uvjet znači da je $R_B << (1+h_{fe})R_E$. Taj uvjet automatski uzrokuje malo strujno pojačanje, jer je u tom slučaju brojnik R_B u drugom razlomku izraza (8.52) znatno manji od nazivnika $R_B + r_{be} + (1+h_{fe})R_E$.

Ukupni ulazni otpor pojačala je

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| R'_{ul} = R_B \| [r_{be} + (1 + h_{fe})R_E].$$
 (8.53)

Redovito je R'_{ul} jako velik otpor pa je ulazni otpor R_{ul} najčešće ograničen manjim otporom R_B .

Slika 8.17 prikazuje shemu za određivanje izlaznog otpora pojačala sa slike 8.15. Shema je dobivena iz modela sa slike 8.16, u kojem je kratko spojen neovisni izvor u_g , te je odspojeno trošilo na čije je mjesto spojen naponski izvor u iz kojeg u sklop teče struja i.

Slika 8.17 – Određivanje izlaznog otpora pojačala sa slike 8.15.

Struja i koja teče u sklop može se pisati kao

$$i = \frac{u}{R_C} + h_{fe} i_b. {(8.54)}$$

Potencijal emitera E u ulaznom krugu je

$$u_e = (1 + h_{fe})i_b R_E = -i_b (R_g || R_B + r_{be}).$$
 (8.55)

Gornji je izraz moguć jedino uz $i_b = 0$, što znači da ovisni izvor sa strujom $h_{fe} i_b$ treba odspojiti. U tom je slučaju

$$R_{iz} = \frac{u}{i} = R_C. ag{8.56}$$

Primjer 8.7

U pojačalu sa slike 8.15 zadano je: $U_{CC}=15\,\mathrm{V}$, $R_g=500\,\Omega$, $R_1=25\,\mathrm{k}\Omega$, $R_2=2,2\,\mathrm{k}\Omega$, $R_C=3\,\mathrm{k}\Omega$, $R_T=2\,\mathrm{k}\Omega$ i $R_E=200\,\Omega$. Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100$ i $U_\gamma=0,7\,\mathrm{V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25\,\mathrm{mV}$. Odrediti pojačanja $A_V=u_{iz}/u_{ul}$, $A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Rješenje:

Statičkom analizom pojačala dobiva se

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC} = \frac{2,2}{25 + 2,2} \cdot 15 = 1,21 \text{ V},$$

$$R_B = R_1 \| R_2 = 25 \| 2,2 = 2,02 \text{ k}\Omega,$$

$$U_{BEQ} = U_{\gamma} = 0,7 \text{ V},$$

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = \frac{1,21 - 0,7}{2,02 + 101 \cdot 0,2} = 0,023 \text{ mA} = 23,0 \text{ \muA},$$

$$I_{CQ} = \beta I_{BQ} = 100 \cdot 0,023 = 2,30 \text{ mA},$$

$$U_{CEO} = U_{CC} - (R_C + R_E)I_{CQ} = 15 - (3 + 0,2) \cdot 2,30 = 7,64 \text{ V}.$$

Dinamički parametri u statičkoj radnoj točki su

$$r_{be} = \frac{U_T}{I_{BQ}} = \frac{0,025}{0,023} = 1,09 \text{ k}\Omega$$

$$g_m = \frac{h_{fe}}{r_{be}} = \frac{100}{1,09} = 91,7 \text{ mA/V}.$$

Uz zanemarenje porasta struje kolektora u normalnom aktivnom području izlazni dinamički otpor $r_{ce} \to \infty$.

Iz dinamičke analize slijedi

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -h_{fe} \frac{R_{C} \| R_{T}}{r_{be} + (1 + h_{fe})R_{E}} = -100 \frac{3 \| 2}{1,09 + 101 \cdot 0,2} = -5,64 ,$$

$$R'_{ul} = \frac{u_{ul}}{i_{b}} = r_{be} + (1 + h_{fe})R_{E} = 1,09 + 101 \cdot 0,2 = 21,3 \text{ k}\Omega ,$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -h_{fe} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{B}}{R_{B} + R'_{ul}} = -100 \cdot \frac{3}{3 + 2} \cdot \frac{2,02}{2,02 + 21,3} = -5,2 ,$$

$$R_{ul} = R_{B} \| R'_{ul} = 2,02 \| 21,3 = 1,84 \text{ k}\Omega ,$$

$$A_{Vg} = \frac{u_{iz}}{u_{g}} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_{g}} = A_{V} \frac{R_{ul}}{R_{g} + R_{ul}} = -5,64 \cdot \frac{1,84}{0,5 + 1,84} = -4,43 ,$$

$$R_{iz} = R_{C} = 3 \text{ k}\Omega .$$

Radi se o spoju zajedničkog emitera i oba pojačanja, naponsko i strujno su negativna. Zbog emiterske degeneracije oba su pojačanja po iznosu mala. Kod strujnog pojačanja najveći gubitak struje je u ulaznom krugu. Otpor R_B dosta je manji od ulaznog otpora R'_{ul} , pa veći dio struje koju daje generator signala teče kroz otpor R_B u masu, a manji se dio, koji ulazi u tranzistor, pojačava.

Ulazni otpor R'_{ul} "gledano" u bazu tranzistora velik je (preko $20 \text{ k}\Omega$), ali je ukupni ulazni otpor R_{ul} znatno manji zbog manjeg otpora R_B . Smanjenje ulaznog otpora R_{ul} i smanjenje strujnog pojačanja A_I zbog otpora R_B mogao bi se izbjeći ako bi se za postavljanje statičke radne točke koristio sklop s dva izvora napajanja sa slike 8.8 i kada bi se u tom sklopu naponski generator signala izravno spojio na bazu tranzistora, bez korištenja otpornika R_B .

Ako se naponsko pojačanje računa pomoću strmine tranzistora prema (8.47) dobiva se

$$A_V \approx \frac{-g_m \left(R_C \parallel R_T\right)}{1 + g_m R_E} = \frac{-91.7 \cdot \left(3 \parallel 2\right)}{1 + 91.7 \cdot 0.2} = -5.69$$
.

To je praktički jednako pojačanje dobiveno točnim izrazom (8.46). Bez emiterske degeneracije naponsko pojačanje bilo bi $-g_m(R_C \parallel R_T) = -110$. Emiterska degeneracija smanjuje naponsko pojačanje $1 + g_m R_E = 19$ puta. Zanemarenjem jedinice u prethodnom izrazu naponsko pojačanje teži vrijednosti

$$A_V \approx -\frac{R_C \|R_T}{R_E} = -\frac{3\|2}{0.2} = -6.$$

8.3.2. Pojačalo u spoju zajedničke baze

Slika 8.18 prikazuje dvije izvedbe pojačala s bipolarnim tranzistorom u spoju zajedničke baze. U tom je spoju ulazni priključak emiter, a izlazni kolektor. U obje izvedbe generator signala, prikazan s naponskim izvorom u_g i unutarnjim otporom R_g , spojen je preko veznog kondenzatora C_E na emiter tranzistora. Pojačani signal dobiva se na kolektoru, te se preko veznog kondenzatora C_C predaje trošilu R_T . Na frekvenciji signala impedancije kondenzatora C_E i C_C moraju biti dovoljno male tako da se ti kondenzatori mogu nadomjestiti kratkim spojem.

U izvedbi na slici 8.18a koristi je jedan napon napajanja U_{CC} . Statička radna točka postavlja se otpornim djelilom, s otpornicima R_1 i R_2 , na koji je spojena baza tranzistora, te s otpornicima R_E u emiteru i R_C u kolektoru tranzistora. Sklop za podešavanje statičke radne točke odgovara shemi na slici 8.5. U statičkim prilikama baza je na pozitivnom potencijalu. U dinamičkim prilikama baza se spaja na masu preko kondenzatora C_B . Da bi se to ostvarilo, kapacitet kondenzatora treba podesiti tako da na frekvenciji signala praktički predstavlja kratki spoj.

Izvedba pojačala sa slike 8.18b koristi dva napona napajanja, pozitivni U_{CC} i negativni $-U_{EE}$. Dio sklopa za postavljanje radne točke čine naponi napajanja, te otpornici R_E u emiteru i R_C u kolektoru tranzistora. Taj dio sklopa odgovara shemi na slici 8.8. Emiter tranzistora spaja se preko otpornika R_E na negativni napon napajanja $-U_{EE}$. Time je emiter tranzistora u statičkim prilikama na negativnom potencijalu i baza se može izravno spojiti na masu. U odnosu na sklop sa slike 8.18a, sklop s dva napona napajanja ne zahtjeva ni otporno djelilo niti kondenzator C_B .

Na slici 8.19 prikazana je shema za dinamičku analizu za oba pojačala sa slike 8.18. U dinamičkim prilikama svi su kondenzatori kratko spojeni, a kratko su spojene točke oba napona napajanja na masu. Time je generator signala izravno spojen s emiterom tranzistora, a trošilo s kolektorom. Oba priključka otpornika R_1 i R_2 sklopa sa slike 8.18a spojena su na masu, pa su ti otpornici u shemi na slici 8.19 izostavljeni. Kolektorski otpornik R_C u oba sklopa i emiterski otpornik R_E u sklopu na slici 8.18b spojeni su jednim priključkom na masu.

Slika 8.18 – Pojačalo s bipolarnim tranzistorom u spoju zajedničke baze: a) izvedba s jednim naponom napajanja, b) izvedba s dva napona napajanja.

Slika 8.19 – Model pojačala u spoju zajedničke baze sa slike 8.18 za dinamičku analizu.

Model bipolarnog tranzistora spojen je između čvorova emitera E, baze B i kolektora C. Uz zanemarenje serijskog otpora baze, tranzistor je između emitera i baze nadomješten dinamičkim otporom r_{be} . Pojačanje je modelirano ovisnim strujnim izvorom h_{fe} i_b spojenim između kolektora i emitera, paralelno kojem je spojen dinamički otpor r_{ce} . Ovisni izvor upravljan je strujom i_b koja teče kroz otpor r_{be} od baze prema emiteru, a struja izvora teče od kolektora prema emiteru. Otpori R_C i R_T u kolektoru i otpori R_E i r_{be} u emiteru znatno su manji od otpora r_{ce}

i struja kroz otpor r_{ce} znatno je manja od struje strujnog izvora $h_{fe}i_b$. Time se otpor r_{ce} može ispustiti iz sheme na slici 8.19.

Ulazni i izlazni napon su

$$u_{ul} = -i_b \, r_{be} \,, \tag{8.57}$$

$$u_{iz} = -h_{fe} i_b \left(R_C \| R_T \right), \tag{8.58}$$

a naponsko pojačanje je

$$A_{V} = \frac{u_{iz}}{u_{ul}} = h_{fe} \frac{R_{C} \| R_{T}}{r_{be}} = g_{m} (R_{C} \| R_{T}).$$
 (8.59)

Naponsko pojačanje je pozitivno i po iznosu je praktički jednako naponskom pojačanju spoja zajedničkog emitera bez degeneracije.

Ulazni otpor R'_{ul} gledan u emiter tranzistora je

$$R'_{ul} = \frac{u_{ul}}{i_e} = \frac{-i_b r_{be}}{-(1 + h_{fe})i_b} = \frac{r_{be}}{1 + h_{fe}}.$$
 (8.60)

 R'_{ul} je otpor u emiterskom krugu tranzistora u kojem teče struja $(1+h_{fe})i_b$. Otpor r_{be} je otpor iz baznog u kome teče struja i_b . Da bi se zadržao isti pad napona na otporu r_{be} taj se otpor preslikava u emiterski krug podijeljen s $(1+h_{fe})$. Otpor $r_{be}/(1+h_{fe})$ je ulazni otpor tranzistora u spoju zajedničke baze. Taj je otpor mali i iznosi tipično 10-tak oma. Uz faktor strujnog pojačanja $h_{fe} >> 1$ vrijedi

$$R'_{ul} \approx \frac{r_{be}}{h_{fe}} = \frac{1}{g_m} \,. \tag{8.61}$$

Otpor gledan u emiter jednak je recipročnoj vrijednosti strmine tranzistora. Slično je kod pojačalima s FET-ovima otpor gledan u uvod bio jednak recipročnoj vrijednosti strmine FET-a.

Iz izlaznog je kruga izlazna struja

$$i_{iz} = -h_{fe} i_b \frac{R_C}{R_C + R_T}, (8.62)$$

a iz ulaznog je kruga struja emitera

$$i_e = -(1 + h_{fe})i_b = i_{ul} \frac{R_E}{R_E + R'_{ul}}.$$
 (8.63)

Iz (8.62) i (8.63) slijedi strujno pojačanje

$$A_{I} = \frac{i_{iz}}{i_{ul}} = \frac{h_{fe}}{1 + h_{fe}} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{E}}{R_{E} + R'_{ul}}.$$
 (8.64)

Očito je strujno pojačanje pozitivno i manje od jedinice. Razlog je što je faktor strujnog pojačanja tranzistora u spoju zajedničke baze $h_{fe}/(1+h_{fe})$ manji od jedinice. Dodatno smanjenje strujnog pojačanja uzrokuje gubitak struje kroz otpor R_E u ulaznom krugu, te gubitak struje kroz otpor R_C u izlaznom krugu. Smanjenje pojačanja je to manje što je otpor R_E veći od R'_{ul} i što je otpor R_C veći od R_T .

Ukupni ulazni otpor pojačala, kojeg "vidi" generator signala je

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_E \| R'_{ul} = R_E \| \frac{r_{be}}{1 + h_{fe}} \approx R_E \| \frac{1}{g_m}.$$
 (8.65)

Obično je otpor R_E veći od otpora R'_{ul} , te ulazni otpor R_{ul} određuje ulazni otpor tranzistora R'_{ul} .

Izlazni otpor određuje se pomoću sheme na slici 8.20. Shema je dobivena tako da je u shemi sa slike 8.19 neovisni naponski izvor u_g kratko spojen, a umjesto trošila na izlaz je spojen naponski izvor u koji u izlazni krug daje struju i.

Slika 8.20 - Određivanje izlaznog otpora sklopa sa slike 8.18.

Za potencijal emitera E u ulaznom krugu može se pisati

$$u_e = -i_b r_{be} = (1 + h_{fe})i_b (R_e || R_E). \tag{8.66}$$

Iz gornjeg izraza slijedi da je struja $i_b=0$, odnosno da se ovisni strujni izvor $h_{fe}\,i_b$ treba odspojiti. U tom je slučaju izlazni otpor

$$R_{iz} = \frac{u}{i} = R_C. {(8.67)}$$

Primjer 8.8

U pojačalu sa slike 8.18b zadano je: $U_{CC}=U_{EE}=15\,\mathrm{V}$, $R_g=500\,\Omega$, $R_C=2\,\mathrm{k}\Omega$ i $R_T=1,2\,\mathrm{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100\,$ i $U_\gamma=0,7\,\mathrm{V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25\,\mathrm{mV}$. Odrediti otpor otpornika R_E koji će osigurati statičku struju kolektora $I_{CQ}=3\,\mathrm{mA}$. Izračunati pojačanja $A_V=u_{iz}/u_{ul}$, $A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Rješenje:

Kroz emiterski otpornik R_E teče struja emitera $-I_E = I_B + I_C$. U statičkoj radnoj točki za ulazni krug može se pisati

$$0 - (-U_{EE}) = U_{BEQ} + (I_{BQ} + I_{CQ})R_E = U_{BEQ} + (1/\beta + 1)I_{CQ}R_E,$$

odakle je

$$R_E = \frac{U_{EE} - U_{BEQ}}{(1/\beta + 1)I_{CO}} = \frac{U_{EE} - U_{\gamma}}{(1/\beta + 1)I_{CO}} = \frac{15 - 0.7}{(1/100 + 1) \cdot 3} = 4.7 \text{ k}\Omega.$$

Zanemarujući struju baze I_{BQ} u odnosu na struju kolektora I_{CQ} , izlazni napon U_{CEQ} je

$$U_{CEO} \approx U_{CC} + U_{EE} - (R_C + R_E)I_{CO} = 15 + 15 + (2 + 4.7) \cdot 3 = 9.9 \text{ V}.$$

Napon $U_{CEO} > U_{BEO}$, što znači da tranzistor radi u normalnom aktivnom području.

Dinamički parametri u statičkoj radnoj točki su

$$g_m = \frac{I_{CQ}}{U_T} = \frac{3}{0,025} = 120 \text{ mA/V},$$

$$r_{be} = \frac{h_{fe}}{g_m} = \frac{100}{0.120} = 833 \Omega$$
.

Uz zanemarenje porasta struje kolektora u normalnom aktivnom području izlazni dinamički otpor $r_{ce} \to \infty$.

Iz dinamičke analize slijedi

$$A_{V} = \frac{u_{iz}}{u_{ul}} = g_{m} \left(R_{C} \parallel R_{T} \right) = 120 \cdot \left(2 \parallel 1, 2 \right) = 90 ,$$

$$R'_{ul} = \frac{u_{ul}}{i_{e}} = \frac{r_{be}}{1 + h_{fe}} = \frac{833}{1 + 100} = 8,25 \Omega ,$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = \frac{h_{fe}}{1 + h_{fe}} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{E}}{R_{E} + R'_{ul}} = \frac{100}{1 + 100} \cdot \frac{2}{2 + 1, 2} \cdot \frac{4,7}{4,7 + 0,00825} = 0,62 ,$$

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_{E} \parallel R'_{ul} = 4700 \parallel 8,25 = 8,24 \Omega ,$$

$$A_{Vg} = \frac{u_{iz}}{u_{g}} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_{g}} = A_{V} \frac{R_{ul}}{R_{g} + R_{ul}} = 90 \cdot \frac{8,24}{500 + 8,24} = 1,46 ,$$

$$R_{iz} = R_{C} = 2 \text{ k}\Omega .$$

U spoju zajedničke baze oba pojačanja su pozitivna. Naponsko pojačanje je veliko, ali je strujno pojačanje manje od jedinice. Faktor strujnog pojačanja tranzistora je $h_{fe}/(1+h_{fe})=0,99$. U

navedenom primjeru strujno pojačanje pojačala je manje prvenstveno zbog gubitka dijela izlazne struje tranzistora koja teče kroz kolektorski otpornik i ne dolazi do trošila. Ulazni je otpor tranzistora R'_{ul} mali, pa je radi toga i mali ulazni otpor pojačala R_{ul} . Zbog malog ulaznog otpora malo je iskorištenje generatora signala u_g . Veći dio napona u_g gubi se na unutarnjem otporu generatora signala R_g , a manji dio dolazi na ulaz tranzistora i pojačava se. Izlazni otpor pojačala određuje otpor R_C koji je znatno manji od izlaznog otpora tranzistora.

Ulazni otpor tranzistora u spoju zajedničke baze može se računati primjenom

$$R'_{ul} \approx \frac{1}{g_m} = \frac{1}{0.12} = 8.33 \,\Omega.$$

Razlika između ove vrijednosti i vrijednosti od $8,24 \Omega$ dobivene točnim izrazom je mala, što upućuje da se ulazni otpor tranzistora u spoju zajedničke baze može računati kao recipročna vrijednost strmine tranzistora.

8.3.3. Pojačalo u spoju zajedničkog kolektora - emitersko sljedilo

Na slici 8.21 prikazano je pojačalo s bipolarnim tranzistorom u spoju zajedničkog kolektora. U tom je spoju baza ulazni, a emiter izlazni priključak. Generator signala, koji se sastoji od izvora u_g i u seriju spojenog unutarnjeg otpora R_g , spojen je na bazu tranzistora preko veznog kondenzatora C_B . Pojačani signal odvodi se s emitera tranzistora trošilu R_T preko veznog kondenzatora C_E . Oba kondenzatora odabiru se tako da na frekvenciji signala predstavljaju malu impedancije, te se u tom slučaju mogu nadomjestiti kratkim spojem.

Slika 8.21 – Pojačalo s bipolarnim tranzistorom u spoju zajedničkog kolektora.

Statičku radnu točku tranzistora određuje otporno djelilo, s otpornicima R_1 i R_2 , spojeno na napon napajanja U_{CC} , te otpornik R_E spojen između emitera tranzistora i mase. Taj dio sklopa sličan je sklopu sa slike 8.5. Jedina je razlika što je u sklopu sa slike 8.21 kolektor tranzistora izravno spojen na napon napajanja U_{CC} . Na taj se način u dinamičkim prilikama kolektor kao zajednički priključak spaja na masu. U statičkim uvjetima, uz zanemarenje struje baze I_B , izlazni napon tranzistora U_{CE} je

$$U_{CE} = U_{CC} - R_E I_C. (8.68)$$

Nadomjesna shema za dinamičku analizu pojačala sa slike 8.21 prikazana je na slici 8.22. Shema je dobivena kratkim spajanjem kondenzatora C_B i C_E , te spajanjem točke s naponom napajanja na masu. U dinamičkim prilikama generator signala spaja se izravno na bazu tranzistora, trošilo R_T na kolektor. Oba otpora djelila R_1 i R_2 spojena su jednim krajem na bazu tranzistora, a drugim na masu i nadomješteni su u shemi na slici 8.22 otporom R_B koji predstavlja njihovu paralelnu kombinaciju, $R_B = R_1 \parallel R_2$.

Slika 8.22 – Model pojačala u spoju zajedničkog kolektora sa slike 8.21 za dinamičku analizu.

Bipolarni tranzistor nadomješten je modelom između čvorova baze B, emitera E i kolektora C. Između baze i emitera uključen je dinamički otpor r_{be} , pri čemu je zanemaren serijski otpor baze. Između kolektora i emitera spojeni su ovisni strujni izvor h_{fe} i_b i dinamički otpor r_{ce} . Ovisni strujni izvor upravljan je strujom i_b koja teče kroz otpor r_{be} od baze prema emiteru, a struja izvora teče od kolektora prema emiteru. Izlazni dinamički otpor tranzistora r_{ce} redovito je znatno veći od paralelno spojenih otpora R_E i R_T i u dinamičkoj analizi pojačala može se zanemariti. Zbog toga je taj otpor nacrtan u shemi na slici 8.22 crtkano.

Izlazni napon sklopa pad je napona na paralelnoj kombinaciji otpora R_E i R_T kroz koju teče struja $(1+h_{fe})i_b$

$$u_{iz} = (1 + h_{fe})i_b \left(R_E \| R_T \right). \tag{8.69}$$

Ulazni napon je pad napona na otporu r_{be} kroz koji teče struja i_b i pad napona na otporima R_E i R_T

$$u_{ul} = i_b r_{be} + (1 + h_{fe}) i_b \left(R_E \| R_T \right). \tag{8.70}$$

Naponsko pojačanje sklopa je

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{(1 + h_{fe})(R_{E} \| R_{T})}{r_{be} + (1 + h_{fe})(R_{E} \| R_{T})}.$$
 (8.71)

Naponsko pojačanje pojačala u spoju zajedničkog emitera je pozitivno, ali je manje od 1. Kako je redovito otpor r_{be} znatno manji od $(1 + h_{fe})(R_E \parallel R_T)$ pojačanje teži prema 1. Kaže se da izlazni napon emitera slijedi ulazni napon baze i pojačalo se zbog toga zove **emitersko sljedilo**. Ukoliko se u (8.71) zanemari 1 u odnosu na faktor h_{fe} , može se pisati

$$A_{V} \approx \frac{h_{fe} \left(R_{E} \| R_{T} \right)}{r_{he} + h_{fe} \left(R_{E} \| R_{T} \right)} = \frac{g_{m} \left(R_{E} \| R_{T} \right)}{1 + g_{m} \left(R_{E} \| R_{T} \right)}.$$
 (8.72)

Jednadžba (8.72) pokazuje sličnost u pojačanjima uvodskog i emiterskog sljedila. Pojačanje je to bliže jedinici što je produkt $g_m(R_E \parallel R_T)$ veći od jedinice.

Prema (8.70) ulazni otpor R'_{ul} "gledano" u bazu tranzistora je

$$R'_{ul} = \frac{u_{ul}}{i_b} = r_{be} + (1 + h_{fe}) \left(R_E \parallel R_T \right). \tag{8.73}$$

Otpor se sastoji od serijske kombinacije otpora r_{be} i otpora $R_E \parallel R_T$ pomnoženog s $1 + h_{fe}$. Otpor R'_{ul} je otpor baze tranzistora u koju teče struja i_b . Otpori R_E i R_T su u emiteru kroz koji teče struja $(1 + h_{fe})i_b$, te se u bazu ti otpori preslikavaju pomnoženi s $1 + h_{fe}$. Otpor R'_{ul} je velik i može biti reda veličine $100 \text{ k}\Omega$.

Iz izlaznog kruga može se odrediti izlazna struja

$$i_{iz} = (1 + h_{fe})i_b \frac{R_E}{R_E + R_T},$$
 (8.74)

a iz ulaznog kruga struja baze

$$i_b = i_{ul} \frac{R_B}{R_B + R'_{ul}} \,, \tag{8.75}$$

odakle slijedi strujno pojačanje

$$A_{I} = \frac{i_{iz}}{i_{ul}} = (1 + h_{fe}) \frac{R_{E}}{R_{E} + R_{T}} \frac{R_{B}}{R_{B} + R'_{ul}}.$$
 (8.76)

Strujno pojačanje je pozitivno i može biti dosta veliko. Faktor strujnog pojačanja tranzistora u spoju zajedničkog kolektora je $1 + h_{fe}$. Strujno pojačanje pojačala je manje zbog gubitaka struja u otporima R_E u izlaznom i R_B u ulaznom krugu.

Ulazni otpor pojačala je

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| R'_{ul} = R_B \| [r_{be} + (1 + h_{fe}) (R_E \| R_T)].$$
 (8.77)

Iako je otpor R'_{ul} veliki, ulazni otpor R_{ul} je obično manji, jer je ograničen manjim otporom R_B .

Izlazni otpor pojačala određuje se pomoću sheme na slici 8.23. Shema je dobivena iz modela pojačala sa slike 8.22, pri čemu je kratko spojen neovisan izvor u_g , a otpor trošila R_T zamijenjen je naponskim izvorom u koji u izlazni krug daje struju i.

Slika 8.23 – Određivanje izlaznog otpora sklopa sa slike 8.21.

Iz sheme slijedi

$$u = -i_b \left(R_g \, \middle\| \, R_B + r_{be} \right), \tag{8.78}$$

$$\frac{i}{u} = \frac{1}{R_E} - \frac{(1 + h_{fe})i_b}{u} = \frac{1}{R_E} + \frac{1 + h_{fe}}{R_g \|R_B + r_{be}},$$
(8.79)

$$R_{iz} = \frac{u}{i} = R_E \left\| \frac{R_g \left\| R_B + r_{be}}{1 + h_{fe}} \right\|.$$
 (8.80)

Izlazni otpor R_{iz} paralelna je kombinacija otpora R_E i kombinacije otpora $R_g \parallel R_B + r_{be}$ podijeljene s $1 + h_{fe}$. Izlazni otpor je otpor u emiteru u kojem teče struja $(1 + h_{fe})i_b$. Kombinacija otpora $R_g \parallel R_B + r_{be}$ spojena je u bazi u kojoj teče struja i_b . Kada se ta kombinacija otpora preslikava u krug s $1 + h_{fe}$ puta većom strujom njena se vrijednost otpora mora podijeliti s $1 + h_{fe}$.

Primjer 8.9

U pojačalu sa slike 8.21 zadano je: $U_{CC}=15~\rm V$, $R_g=500~\Omega$, $R_1=70~\rm k\Omega$, $R_2=100~\rm k\Omega$, $R_E=4~\rm k\Omega$ i $R_T=1~\rm k\Omega$. Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100~\rm i$ $U_{\gamma}=0.7~\rm V$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~\rm mV$. Odrediti pojačanja $A_V=u_{iz}/u_{ul}$, $A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Rješenje:

Statičkom analizom pojačala dobiva se

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC} = \frac{100}{70 + 100} \cdot 15 = 8,82 \text{ V},$$

$$R_B = R_1 \parallel R_2 = 100 \parallel 70 = 41,2 \text{ k}\Omega,$$

$$U_{BEQ} = U_{\gamma} = 0,7 \text{ V},$$

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = \frac{8,82 - 0,7}{41,2 + 101 \cdot 4} = 0,0182 \text{ mA} = 18,2 \text{ \muA},$$

$$I_{CQ} = \beta I_{BQ} = 100 \cdot 0,0182 = 1,82 \text{ mA},$$

$$U_{CEQ} = U_{CC} - R_E I_{CQ} = 15 - 4 \cdot 1,82 = 7,72 \text{ V}.$$

Dinamički parametri u statičkoj radnoj točki su

$$r_{be} = \frac{U_T}{I_{BQ}} = \frac{0,025}{0,0182} = 1,37 \text{ k}\Omega,$$

$$g_m = \frac{h_{fe}}{r_{he}} = \frac{100}{1,37} = 73 \text{ mA/V}.$$

Uz zanemarenje porasta struje kolektora u normalnom aktivnom području izlazni dinamički otpor $r_{ce} \to \infty$.

Iz dinamičke analize slijedi

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{(1 + h_{fe}) \left(R_{E} \parallel R_{T}\right)}{r_{be} + (1 + h_{fe}) \left(R_{E} \parallel R_{T}\right)} = \frac{101 \cdot \left(4 \parallel 1\right)}{1,37 + 101 \cdot \left(4 \parallel 1\right)} = 0,983,$$

$$R'_{ul} = \frac{u_{ul}}{i_{b}} = r_{be} + (1 + h_{fe}) \left(R_{E} \parallel R_{T}\right) = 1,37 + 101 \cdot \left(4 \parallel 1\right) = 82,2 \text{ k}\Omega,$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = (1 + h_{fe}) \frac{R_{E}}{R_{E} + R_{T}} \frac{R_{B}}{R_{B} + R'_{ul}} = 101 \cdot \frac{4}{4 + 1} \cdot \frac{41,2}{41,2 + 82,2} = 27,$$

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_{B} \parallel R'_{ul} = 41,2 \parallel 82,2 = 27,4,$$

$$A_{Vg} = \frac{u_{iz}}{u_{g}} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_{g}} = A_{V} \frac{R_{ul}}{R_{g} + R_{ul}} = 0,983 \cdot \frac{27,4}{0,5 + 27,4} = 0,965,$$

$$R_{iz} = \frac{u}{i} = R_{E} \parallel \frac{R_{g} \parallel R_{B} + r_{be}}{1 + h_{fe}} = 4 \parallel \frac{0,5 \parallel 41,2 + 1,37}{101} = 4 \parallel 0,0185 = 0,0184 \text{ k}\Omega = 18,4 \Omega.$$

Oba pojačanja, naponsko i strujno, pozitivna su. Naponsko pojačanje je malo manje od 1. Iako je strujno pojačanje tranzistora 101, strujno pojačanje pojačala je dosta manje od te vrijednosti. Otprilike 2/3 struje koju daje generator signala gubi se, jer teče kroz otpor R_B , a samo 1/3 ulazi u tranzistor i pojačava se. Za veće strujno pojačanje trebao bi otpor R_B biti veći, no on ne smije biti velik radi dobre stabilizacije statičke radne točke. Ulazni otpor R'_{ul} gledan u bazu tranzistora je velik, ali je ukupni ulazni otpor R_{ul} smanjen praktički na 1/3 zbog manjeg otpora R_B . Izlazni otpor je mali i posljedica je činjenice da se otpor iz baze tranzistora preslikava u emiter podijeljen s $1 + h_{fe}$.

Naponsko pojačanje može se računati pomoću strmine tranzistora prema (8.72)

$$A_V \approx \frac{g_m(R_E \| R_T)}{1 + g_m(R_E \| R_T)} = \frac{73 \cdot (4 \| 1)}{1 + 73 \cdot (4 \| 1)} = 0.983.$$

Taj je rezultat jednak pojačanju dobivenim s točnim izrazom (8.71).

Primjer 8.10

U pojačalu sa slike 8.24 zadano je: $U_{CC}=U_{EE}=15\,\mathrm{V}$, $R_g=500\,\Omega$, $R_E=4\,\mathrm{k}\Omega$ i $R_T=1\,\mathrm{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100$ i $U_\gamma=0.7\,\mathrm{V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25\,\mathrm{mV}$. Odrediti pojačanja $A_V=u_{iz}/u_{ul}$ i $A_I=i_{iz}/i_{ul}$, te ulazni i izlazni otpor pojačala.

Slika 8.24 – Pojačalo s bipolarnim tranzistorom u spoju zajedničkog kolektora s dva napona napajanja.

Rješenje:

Pojačalo koristi dva napona napajanja. Generator signala, s naponskim izvorom u_g i unutarnjim otporom R_g , spojen je izravno na bazu tranzistora. Bez priključka generatora signala u bazu tranzistora ne teče struja i tranzistor je u području zapiranja. Tek nakon što se priključi generator signala u bazu tranzistora poteče istosmjerna struja koju osigurava negativni napon napajanja $-U_{EE}$. Emiter je preko otpornika R_E spojen na napon napajanja $-U_{EE}$ pa je spoj emiter-baza propusno polariziran, a tranzistor je u normalnom aktivnom području. Trošilo je preko veznog kondenzatora C_E spojeno na emiter tranzistora. Budući da se signal dovodi na bazu, a odvodi s emitera pojačalo radi u spoju zajedničkog kolektora.

U statičkim prilikama kroz otpor R_g teče istosmjerna struja baze I_B , a kroz otpornik R_E struja emitera $-I_E = I_B + I_C = (1 + \beta) I_B$. Kako je istosmjerna komponenta naponskog izvora u_g jednaka nuli, za ulazni krug u statičkim uvjetima vrijedi

$$U_{EE} = I_{BO} R_g + U_{BEO} + (1 + \beta) I_{BO} R_E$$
,

odakle je

$$I_{BQ} = \frac{U_{EE} - U_{BEQ}}{R_g + (1 + \beta)R_E} = \frac{U_{EE} - U_{\gamma}}{R_g + (1 + \beta)R_E} = \frac{15 - 0.7}{0.5 + 101 \cdot 4} = 0.0354 \text{ mA} = 35.4 \text{ µA},$$

$$I_{CQ} = \beta I_{BQ} = 100 \cdot 0.0354 = 3.54 \text{ mA},$$

$$U_{CEQ} = U_{CC} + U_{EE} - R_E I_{CQ} = 15 + 15 - 4 \cdot 3.54 = 15.8 \text{ V}.$$

Dinamički parametri u statičkoj radnoj točki su

$$r_{be} = \frac{U_T}{I_{BQ}} = \frac{0,025}{0,0354} = 706 \,\Omega,$$

$$g_m = \frac{h_{fe}}{r_{be}} = \frac{100}{0,706} = 142 \text{ mA/V}.$$

Uz zanemarenje porasta struje kolektora u normalnom aktivnom području izlazni dinamički otpor $r_{ce} \to \infty$.

Model pojačala za dinamičku analizu prikazan je na slici 8.25. Shema je dobivena kratkim spajanjem kondenzatora C_E , te spajanjem točaka oba napona napajanja na masu. Tranzistor je nadomješten dinamičkim otporom r_{be} spojenim između baze i emitera. Kroz taj otpor, od baze prema emiteru, teče struja baze i_b koja upravlja ovisnim strujnim izvorom h_{fe} i_b spojenim između kolektora i emitera. Struja izvora teče od kolektora prema emiteru.

Slika 8.25 – Model pojačala u spoju zajedničkog kolektora sa slike 8.24.

Izlazni i ulazni napon su

$$u_{iz} = (1 + h_{fe})i_b \left(R_E \parallel R_T\right),$$

$$u_{ul} = i_b r_{be} + (1 + h_{fe})i_b \left(R_E \parallel R_T\right),$$

pa je naponsko pojačanje

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{(1 + h_{fe})(R_{E} || R_{T})}{r_{be} + (1 + h_{fe})(R_{E} || R_{T})} = \frac{101 \cdot (4 || 1)}{0,706 + 101 \cdot (4 || 1)} = 0,991.$$

Izlazna struja je

$$i_{iz} = (1 + h_{fe})i_b \frac{R_C}{R_C + R_T}.$$

Kako je ulazna struja $i_{ul} = i_b$, strujno je pojačanje

$$A_I = \frac{i_{iz}}{i_{ul}} = (1 + h_{fe}) \frac{R_E}{R_E + R_T} = 101 \cdot \frac{4}{4 + 1} = 80.8$$
.

Iz izraza za ulazni napon određuje se ulazni otpor

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = \frac{u_{ul}}{i_b} = r_{be} + (1 + h_{fe}) (R_E \parallel R_T) = 0,706 + 101 \cdot (4 \parallel 1) = 81,5 \text{ k}\Omega,$$

Izlazni otpor određuje se i sheme na slici 8.26. Shema je dobivena tako da je u modelu pojačala sa slike 8.25 kratko spojen neovisni izvor u_g , te je otpora trošila zamijenjen naponskim izvorom u koji u sklop struju daje i. Iz sheme slijedi

Slika 8.26 - Određivanje izlaznog otpora sklopa sa slike 8.24.

$$u = -i_b \left(R_g + r_{be} \right),$$

$$\frac{i}{u} = \frac{1}{R_E} - \frac{\left(1 + h_{fe} \right) i_b}{u} = \frac{1}{R_E} + \frac{1 + h_{fe}}{R_g + r_{be}},$$

$$R_{i:} = \frac{u}{i} = R_E \left\| \frac{R_g + r_{be}}{1 + h_{fe}} \right\| = 4000 \left\| \frac{500 + 706}{101} \right\| = 4000 \left\| 11,9 = 11,9 \Omega \right\|.$$

Na slikama 8.21 i 8.24 prikazane su dvije izvedbe pojačala u spoju zajedničkog kolektora. Uz korištenje jednog izvora napajanja, prema slici 8.21, statička radna točka tranzistora podešava se otpornim djelilom, s otpornicima R_1 i R_2 . Iznosi otpora tih otpornika su ograničeni, jer za dobru stabilizaciju statičke radne točke paralelna kombinacija otpora $R_B = R_1 \parallel R_2$ mora biti dosta manja od $(1 + \beta)R_E$. U dinamičkim prilikama dio ulazne struje koju daje generator signala gubi se u otporu R_B , zbog čega se smanjuje strujno pojačanje pojačala. Osim toga otpor R_B smanjuje iznos ulaznog otpora pojačala.

Primjenom dva izvora napajanja, prema slici 8.24, u postavljanju statičke radne točke tranzistora nije potrebno koristiti otporno djelilo. Izostankom otpora R_B povećava se strujno pojačanje. Prema shemi na slici 8.25, kompletna ulazna struja generatora signala $i_{ul} = i_b$ ulazi u tranzistor i pojačava se. Do smanjenja strujnog pojačanja pojačala dolazi jedino zbog toga što od ukupne pojačane struje $(1 + h_{fe})i_b$ koju daje tranzistor, samo dio odlazi u trošilo, a dio se gubi u otporu R_E . Za veće strujno pojačanje otpor R_E treba biti što veći u odnosu na otpor trošila R_T . Uz veće strujno pojačanje, s pojačalom prema slici 8.24 postiže se i veći ulazni otpor R_{ul} .

Pojačalo u spoju zajedničkog kolektora ima naponsko pojačanje neznatno manje od jedinice, ima veliko strujno pojačanje, veliki ulazni i mali izlazni otpor. Slično kao i pojačalo s FET-om u spoju zajedničkog odvoda, spoj zajedničkog kolektora najčešće se koristi kao odvojni stupanj u primjenama kada izvor signala s velikim unutarnjim otporom treba spojiti na trošilo manjeg otpora R_T . Kaže se da služi kao transformator impedancije, tj. pretvara naponski izvor velikog unutarnjeg otpora u naponski izvor malog unutarnjeg otpora.

8.3.4. Usporedba osnovnih spojeva pojačala s bipolarnim tranzistorom

Naponska i strujna pojačanja, te ulazni i izlazni otpori tri osnovna spoja pojačala uspoređeni su u tablici 8.1. Navedeni podaci odnose se na izvedbe pojačala s jednim izvorom napajanja u kojima se statička radna točka podešava otpornim djelilom. Podaci za spoj zajedničkog emitera su za pojačalo bez emiterske degeneracije.

Tablica 8.1	I – Svojstva osnovn	ih spojeva pojačala	s bipolarnim tranzistorom.

Spoj pojačala	zajednički emiter	zajednička baza	zajednički kolektor
A_V	$-g_m(R_C R_T)$	$g_m\left(R_C \parallel R_T ight)$	$\frac{g_m\left(R_E \parallel R_T\right)}{1+g_m\left(R_E \parallel R_T\right)}$
A_I	$-h_{fe}\frac{R_C}{R_C+R_T}\frac{R_B}{R_B+r_{be}}$	$\frac{h_{fe}}{1 + h_{fe}} \frac{R_C}{R_C + R_T} \frac{R_E}{R_E + \frac{r_{be}}{1 + h_{fe}}}$	$(1 + h_{fe}) \frac{R_E}{R_E + R_T} \frac{R_B}{R_B + r_{be} + (1 + h_{fe}) (R_E \parallel R_T)}$
R_{ul}	$R_B \parallel r_{be}$	$R_E \parallel \frac{\eta_{be}}{1 + h_{fe}}$	$R_B \left\ \left[r_{be} + (1 + h_{fe}) \left(R_E \middle\ R_T \right) \right] \right.$
R_{iz}	R_C	R_C	$R_E \parallel \frac{R_g \parallel R_B + r_{be}}{1 + h_{fe}}$

Kod spoja zajedničkog emitera oba su pojačanja, naponsko i strujno, negativna, a kod preostala dva spoja oba su pojačanja pozitivna. Po iznosu naponska pojačanja spoja zajedničkog emitera i zajedničke baze su velika i međusobno su jednaka. Ta su pojačanja umnožak strmine tranzistora i otpora spojenih u kolektorskom krugu. Naponsko pojačanje spoja zajedničkog kolektora samo je malo manje od 1.

Strujna pojačanja pojačala u pojedinim spojevima ovise o faktoru pojačanja tranzistora, koja su $-h_{fe}$ u spoju zajedničkog emitera, $h_{fe}/(1+h_{fe})$ u spoju zajedničke baze i $1+h_{fe}$ u spoju zajedničkog kolektora. Kako je faktor strujnog pojačanja tranzistora u spoju zajedničke baze manji od 1 i pojačanje pojačala u tom spoju je manje od 1. Iznosi strujnih pojačanja pojačala u spojevima zajedničkog emitera i kolektora mogu biti velika, ali ovise o gubicima struja u ulaznom i izlaznom krugu pojačala. Za manji gubitak pojačane struje u izlaznom krugu, tj. za veći iznos strujnog pojačanja otpor trošila R_T treba biti što manji od otpora R_C u spoju zajedničkog emitera i otpora R_E u spoju zajedničkog kolektora. U ulaznom krugu pojačala gubici struje generatora signala u otporu R_B veći su kod spoja zajedničkog kolektora, jer je ulazni otpor gledan u bazu tranzistora veći u spoju zajedničkog kolektora nego u spoju zajedničkog emitera. Gubici struje generatora signala u ulaznom krugu pojačala mogu se eliminirati korištenjem pojačala s dva napona napajanja.

Od sva tri spoja jedino pojačalo u spoju zajedničkog emitera ima oba pojačanja po iznosu veća od 1. Red veličine iznosa tih pojačanja je tipično 100 i taj se spoj pojačala najčešće koristi. Od preostala dva spoja, pojačalo u spoju zajedničke baze ima strujno pojačanje manje od 1, a pojačalo u spoju zajedničkog kolektora naponsko pojačanje manje od 1.

Uspoređujući sva tri spoja, pojačalo u spoju zajedničke baze ima najmanji, a pojačalo u spoju zajedničkog kolektora najveći ulazni otpor. Tipično su ulazni otpori pojačala u spoju zajedničke baze oko 10Ω , u spoju zajedničkog emitera oko $1 k\Omega$, a u spoju zajedničkog kolektora oko $100 k\Omega$. Razlog različitih ulaznih otpora su preslikavanja otpora iz baznog kruga u emiterski krug i obrnuto. U pojačalu u spoju zajedničke baze ulazni je priključak emiter, u koji se otpori iz baznog kruga tranzistora preslikavaju podijeljeni s $1 + h_{fe}$. U pojačalu u spoju zajedničkog kolektora ulazni je priključak baza u čiji se krug otpori iz kruga emitera preslikavaju

pomnoženi s $1+h_{fe}$. Ulazni otpor pojačala u spoju zajedničkog kolektora može smanjiti otpor $R_B=R_1 \parallel R_2$. To se smanjenje može izbjeći primjenom pojačala s dva napona napajanja u kojem se ne koristi otporno djelilo za podešavanje statičke radne točke tranzistora.

U pojačalima u spoju zajedničkih emitera i baze izlazni otpor je otpor R_C u kolektorskom krugu. Taj je otpor reda veličine kilooma. U pojačalu u spoju zajedničkog kolektora izlazni otpor je mali i iznosi tipično oko 10 Ω . Mali izlazni otpor posljedica je preslikavanja otpora iz baznog kruga u emiterski krug tranzistora, pri čemu se otpori iz baznog kruga dijele s $1 + h_{fe}$.

8.3.5. Usporedba osnovnih spojeva pojačala s FET-ovima i s bipolarnim tranzistorom

Kao aktivni element u osnovnim spojevima pojačala može se koristiti ili FET ili bipolarni tranzistor. S oba se elementa izvode tri osnovna spoja pojačala. Postoji sličnost u svojstvima tih pojačala pri čemu pojačalu u spoju zajedničkog uvoda odgovara pojačalo u spoju zajedničkog emitera, pojačalu u spoju zajedničke upravljačke elektrode odgovara pojačalo u spoju zajedničke baze, a pojačalu u spoju zajedničkog uvoda odgovara pojačalo u spoju zajedničkog kolektora.

Osim sličnosti postoje i razlike koje su rezultat različitih svojstava FET-ova i bipolarnih tranzistora. Bipolarni tranzistor odlikuje se većom strminom g_m . Strmine bipolarnog tranzistora tipično su oko 100 mA/V, a strmine FET-ova su tipično 1-10 mA/V. Rezultat su veća naponska pojačanja koje se ostvaruju pojačalima s bipolarnim tranzistorima.

Struje upravljačkih elektroda FET-ova su praktički jednake nuli, te se zbog toga pojačala s FET-ovima ne koriste kao strujna pojačala. Nasuprot tome pojačala s bipolarnim tranzistorima koriste se i kao naponska i kao strujna pojačala. Zbog izolirane upravljačke elektrode ulazni otpori pojačala s FET-ovima znatno su veći od ulaznih otpora pojačala s bipolarnim tranzistora.

Prednost pojačala s FET-ovima je bolja temperaturna stabilnost u odnosu na pojačala s bipolarnim tranzistorima. Kod FET-ova se s porastom temperature izlazna struja odvoda smanjuje čime se smanjuje i disipacija snage koje je uzrok porasta temperature. Kod bipolarnog tranzistora porastom temperature raste izlazna struja kolektora, što povećava disipaciju snage, a time izaziva i dodatni porast temperature.

8.4. Diferencijsko pojačalo

Diferencijsko pojačalo je jedno od najznačajnijih i najraširenijih tranzistorskih pojačala. Prvenstveno se koristi kao ulazno pojačalo i to najčešće u različitim tipovima analognih integriranih sklopova. Diferencijsko pojačalo je ulazni stupanj svakog operacijskog pojačala, ali se primjenjuje i u drugim vrstama integriranih sklopova poput stabilizatora, komparatora, raznih pojačala i sl. Često se koristi u mjernoj tehnici gdje se javlja potreba za mjerenjem razlika napona ili struja. Najbolja svojstva diferencijskih pojačala postižu se u integriranoj tehnici, u kojoj se najlakše osigurava dobra simetrija sklopa.

Osnovni spoj diferencijskog pojačala s bipolarnim tranzistorima prikazan je na slici 8.27. Za razliku od dosad opisanih osnovnih stupnjeva pojačala, diferencijsko pojačalo ima dva ulaza, koji su označeni na slici s u_{ul1} i u_{ul2} . Na oba su ulaza priključeni generatori signala prikazani kao izmjenični izvori u_{g1} i u_{g2} s pripadnim unutarnjim otporima R_{g1} i R_{g2} . Ulazi se priključuju na baze tranzistora T_1 i T_2 . Kolektori tranzistora spojeni su preko kolektorskih otpornika R_{C1} i R_{C2} na pozitivni napon napajanja U_{CC} . Na kolektorima tranzistora dobivaju se izlazni naponi pojačala označeni s u_{iz1} i u_{iz2} . U primjeni se mogu koristiti oba izlaza. Ako se koristiti samo jedan od

izlaza, u_{iz1} ili u_{iz2} , tada se taj izlaz naziva **asimetrični izlaz**. U pojedinim se slučajevima kao izlaz koristi razlika napona između oba izlaza, npr. $u_{iz} = u_{iz2} - u_{iz1}$. Takav se izlaz naziva **diferencijski ili simetrični izlaz**. Emiteri tranzistora spojeni su preko zajedničkog emiterskog otpornika R_E na negativni napon napajanja $-U_{EE}$.

Slika 8.27 – Diferencijsko pojačalo s bipolarnim tranzistorima.

U diferencijskom pojačalu na slici ne koriste se vezni kondenzatori. Takvo pojačalo nema donje granične frekvencije, tj. pojačava signale od frekvencije 0 pa do gornje granične frekvencije, a spada u tzv. istosmjerna ili izravno vezana pojačala.

8.4.1. Statička analiza

Kako bi tranzistori u diferencijskom pojačalu sa slike 8.27 radili u normalnom aktivnom području baze tranzistora trebaju preko generatora signala biti spojene na masu. Eventualnim odspajanjem generatora signala pripadni tranzistor gubi struju baze i prelazi u područje zapiranja.

Diferencijsko pojačalo sa slike 8.27 u statičkim uvjetima prikazano je na slici 8.28. Istosmjerne vrijednosti izmjeničnih izvora u_{g1} i u_{g2} jednake su nuli, pa se u statičkoj analizi ti izvori kratko spajaju. Za dobar rad diferencijskog pojačala obje grane moraju biti simetrične. Ako tranzistori T_1 i T_2 imaju jednake parametre i ako su otpori u granama međusobno jednaki, $R_{g1} = R_{g2}$ i $R_{C1} = R_{C2}$, tada su jednake struje tranzistora $I_{B1} = I_{B2}$ i $I_{C1} = I_{C2}$ i njihovi naponi $U_{BE1} = U_{BE2}$ i $U_{CE1} = U_{CE2}$. Uz rad tranzistora u normalnom aktivnom području struja kolektora je $I_C = \beta I_B$ i kroz emiterski otpornik R_E teče dvostruka struja emitera $2(1 + \beta) I_{B1}$. U statičkoj radnoj točki za ulazni krug tranzistora T_1 može se pisati

$$U_{EE} = I_{BQ1} R_{g1} + U_{BEQ1} + 2(1 + \beta) I_{BQ1} R_E.$$
 (8.81)

Odgovarajući se izraz, uz zamjenu indeksa 1 s indeksom 2, može pisati i za ulazni krug tranzistora T_2 . Iz gornjeg izraza dobiva se struja baze

$$I_{BQ1} = I_{BQ2} = \frac{U_{EE} - U_{BEQ1}}{R_{g1} + 2(1 + \beta)R_E} = \frac{U_{EE} - U_{\gamma}}{R_{g1} + 2(1 + \beta)R_E}.$$
 (8.82)

Slika 8.28 - Diferencijsko pojačalo u statičkim uvjetima.

Struje kolektora su

$$I_{CQ1} = I_{CQ2} = \beta I_{BQ1}, \tag{8.83}$$

a izlazni naponi

$$U_{CEQ1} = U_{CEQ2} = U_{CC} + U_{EE} - \left[\beta R_{C1} + 2(1+\beta)R_E\right]I_{BQ1} \approx$$

$$\approx U_{CC} + U_{EE} - \left(R_{C1} + 2R_E\right)I_{CO1}.$$
(8.84)

Primjer 8.11

U diferencijskom pojačalu sa slike 8.28 zadano je: $U_{CC}=U_{EE}=15\,\mathrm{V}$, $R_{g1}=R_{g2}=500\,\Omega$, $R_{C1}=R_{C2}=1,5\,\mathrm{k}\Omega$ i $R_E=4,5\,\mathrm{k}\Omega$. Parametri oba bipolarna tranzistora su $\beta=100$ i $U_{\gamma}=0,7\,\mathrm{V}$. Odrediti struje i napone tranzistora u statičkoj radnoj točki.

Rješenje:

U statičkoj radnoj točki vrijedi

$$U_{BEQ1} = U_{BEQ2} = U_{\gamma} = 0.7 \text{ V},$$

$$I_{BQ1} = I_{BQ2} = \frac{U_{EE} - U_{\gamma}}{R_{g1} + 2(1 + \beta)R_{E}} = \frac{15 - 0.7}{0.5 + 2 \cdot 101 \cdot 4.5} = 0.0157 \text{ mA} = 15.7 \text{ }\mu\text{A},$$

$$I_{CQ1} = I_{CQ2} = \beta I_{BQ1} = 100 \cdot 0.0157 = 1.57 \text{ mA},$$

$$U_{CEQ1} = U_{CEQ2} \approx U_{CC} + U_{EE} - (R_{C1} + 2R_{E})I_{CQ1} = 15 + 15 - (1.5 + 2 \cdot 4.5)1.57 = 13.5 \text{ V}$$

Obično je otpor $R_{g1} \ll 2(1+\beta)R_E$. Uz tu pretpostavku te uz $\beta >> 1$ struje kolektora su

$$I_{CQ1} = I_{CQ2} \approx \frac{U_{EE} - U_{\gamma}}{2 R_E} = \frac{15 - 0.7}{2 \cdot 4.5} = 1.59 \text{ mA}.$$

Rezultat se neznatno razlikuje od onog dobivenog točnim proračunom.

8.4.2. Dinamička analiza za asimetrični izlaz

Model diferencijskog pojačala sa slike 8.27 za dinamičku analizu prikazan je na slici 8.29. Pri crtanju modela točke oba napona napajanja spojene su na masu. Oba generatora signala, s izvorima u_{g1} i u_{g2} i s unutarnjim otporima R_{g1} i R_{g2} , spojena su na baze tranzistora T_1 i T_2 označene s B1 i B2. Kolektorski otpornici R_{C1} i R_{C2} spojeni su između kolektora tranzistora C1 i C2 i mase, a emiterski je otpornik R_E spojen između emitera tranzistora E i mase. Ulazni naponi u_{ul1} i u_{ul2} , dobiveni iz generatora signala su na bazama tranzistora, a izlazni se naponi u_{iz1} i u_{iz2} dobivaju na kolektorskim otpornicima, koji su trošila pojedinih grana.

Slika 8.29 – Model diferencijskog pojačala sa slike 8.27 za dinamičku analizu.

Modeli tranzistora priključeni su između točaka baze, emitera i kolektora. Uz zanemarenje serijskog otpora baze, tranzistori su između baze i emitera nadomješteni ulaznim dinamičkim otporima r_{be1} i r_{be2} , kroz koje od baze prema emiteru teku struje baza i_{b1} i i_{b2} . Te struje upravljaju ovisnim strujnim izvorima h_{fe} i_{b1} i h_{fe} i_{b2} spojenim između kolektora i emitera, pri čemu struje izvora teku od kolektora prema emiteru. Pretpostavljeno je da su faktori strujnih pojačanja h_{fe} oba tranzistora jednaki. U shemi su izostavljeni izlazni dinamički otpori r_{ce1} i r_{ce2} , jer su redovito znatno većeg otpora od otpornika R_{C1} , R_{C2} i R_E . Da su uključeni, ti bi otpori bili spojeni paralelno ovisnim strujnim izvorima.

Nadomjesna shema pojačala prikazana na slici 8.29 nije najprikladnija za analizu, prvenstveno zbog otpornika R_E koji se pojavljuje u ulaznim i u izlaznim krugovima oba tranzistora. Analiza se može se pojednostavniti ako se razdvoje ulazni i izlazni krugovi. Na taj se način dobiva shema prema slici 8.30. U daljnjoj analizi promatrat će se samo jedan asimetrični izlaz $u_{iz} = u_{iz2}$ u kolektoru tranzistora T_2 , pa je u shemi na slici 8.30 ucrtan samo izlazni krug tranzistora T_2 , a izostavljen je izlazni krug tranzistora T_1 .

U originalnoj shemi na slici 8.29 otpornik R_E spojen u krug emitera. Kroz taj otpornik teku emiterske struje oba tranzistora $(1 + h_{fe})(i_{b1} + i_{b2})$ i na njemu se stvara pad napona

$$u_{RE} = (1 + h_{fe})(i_{b1} + i_{b2})R_E.$$
 (8.85)

Slika 8.30 – Pojednostavljeni model diferencijskog pojačala za dinamičku analizu s razdvojenim ulaznim i izlaznim krugom i s jednim asimetričnim izlaznim naponom.

U ulaznom krugu sheme na slici 8.30 otpornik R_E preslikan je u krug baze i kroz taj otpornik teku samo struje baze $i_{b1} + i_{b2}$. Da bi se sačuvao pad napona u_{RE} otpornik R_E u shemi na slici 8.30 pomnožen je s $1 + h_{fe}$.

Napon u_{iz} ovisan je o dva ulazna napona generatora signala u_{g1} i u_{g2} . U diferencijskom pojačalu pojedinačni se naponi u_{g1} i u_{g2} rastavljaju na **zajednički signal** u_z koji je njihova aritmetička sredina

$$u_z = \frac{u_{g1} + u_{g2}}{2} \tag{8.86}$$

i na diferencijski signal u_d koji predstavlja njihovu razliku

$$u_d = u_{g2} - u_{g1} (8.87)$$

Kod definicije diferencijskog signala nije bitan predznak napona u_d , već iznos razlike ulaznih napona. Kada se izlaz dobiva na tranzistoru T_2 logično je koristiti definiciju (8.87), kao što bi u slučaju kada bi se izlaz dobivao na tranzistoru T_1 bilo logično diferencijski signal definirati kao $u_d = u_{g1} - u_{g2}$. Ponekad se umjesto naziva zajednički i diferencijski signal koriste nazivi istofazni i protufazni signal.

Iz (8.86) i (8.87) mogu se izraziti pojedinačni ulazni naponi generatora signala kao

$$u_{g1} = u_z - u_d / 2 ag{8.88}$$

$$u_{g2} = u_z + u_d / 2 ag{8.89}$$

Analiza diferencijskog pojačala može se pojednostavniti, ako se primijeni metoda superpozicije, pri čemu se pojačala analizira posebno uz primjenu samo zajedničkog signala na oba ulaza, a posebno uz primjenu samo diferencijskog signala spojenog između ulaza. Osim jednostavnije analize, ovakav pristup daje bolji uvid u rad diferencijskog pojačala.

Pojačanje za zajednički signal

Pojačanje za zajednički signal diferencijskog pojačala može se odrediti ukoliko se na oba ulaza primijeni zajednički signal $u_{g1} = u_{g2} = u_z$. U tom slučaju shema sa slike 8.30 poprima oblik na slici 8.31. Uz simetriju ulaznih grana, $R_{g1} = R_{g2}$ i $r_{be1} = r_{be2}$, te uz iste napone u_z priključene na oba ulaza, u baze tranzistora teku jednake struje $i_{bz1} = i_{bz2}$. U tom slučaju u analizi pojačala dovoljno je promatrati ulazni krug jednog tranzistora, prema slici 8.32. Odabire se ulazni krug onog tranzistora s čijeg se kolektora dobiva izlazni napon. U navedenom primjeru radi se o

tranzistoru T_2 . Kako je u ulaznim krugovima oba tranzistora, prema slici 8.31, prisutan zajednički otpor $R_E (1 + h_{fe})$ u slučaju simetrije svakom ulaznom krugu pojedinog tranzistora pripada dvostruka vrijednost tog otpora $2R_E (1 + h_{fe})$.

Slika 8.31 – Pojednostavljeni model diferencijskog pojačala za dinamičku analizu uz primjenu zajedničkog signala na ulazima.

Slika 8.32 – Pojednostavljeni model sa slike 8.31 s ulaznim krugom tranzistora T_2 .

Pojačanje za zajednički signal određuje se iz sheme na slici 8.32. Za izlazni napon u_{iz} i ulazni napon u_z može se pisati

$$u_{iz} = -h_{fe} i_{bz2} R_{C2}, (8.90)$$

$$u_z = i_{bz2} \left[R_{g2} + r_{be2} + 2 R_E \left(1 + h_{fe} \right) \right], \tag{8.91}$$

pa je naponsko pojačanje za zajednički signal

$$A_{Vz} = \frac{u_{iz}}{u_z} = \frac{-h_{fe} R_{C2}}{R_{g2} + r_{be2} + 2R_E (1 + h_{fe})}.$$
 (8.92)

Dobiveno pojačanja odgovara pojačanju pojačala u spoju zajedničkog emitera s emiterskom degeneracijom, koja je u ovom slučaju udvostručena. To je naponsko pojačanje u odnosu na generator signala i sadrži unutarnji otpor generatora signala $R_{\rm g2}$. U slučaju priključka idealnih generatora naponskog signala, uz $R_{\rm g1}=R_{\rm g2}=0$, naponsko pojačanje za zajednički signal poprima oblik

$$A_{Vz} = \frac{-h_{fe} R_{C2}}{r_{be2} + 2 R_E (1 + h_{fe})} \approx \frac{-g_{m2} R_{C2}}{1 + 2 g_{m2} R_E}.$$
 (8.93)

Pojačanje za diferencijski signal

Pojačanje diferencijskog pojačala za diferencijski signal određuje se tako da se između ulaza pojačala priključi diferencijski signal u_d . U tom slučaju vrijedi $u_{g2} = -u_{g1} = u_d / 2$. Shema sa slike 8.30 prelazi u oblik na slici 8.33. Kako se diferencijski signal priključuje između oba ulaza, svakom od ulaza pripada polovica ukupnog diferencijskog signala, a ulazi su međusobno protufazni. Ako su ulazne grane simetrične, $R_{g1} = R_{g2}$ i $r_{bel} = r_{be2}$, struje baza i_{bd1} i i_{bd2} istog su iznosa, ali su suprotnog predznaka, $i_{bd2} = -i_{bd1}$. To znači da struja i_{bd2} teče u smjeru naznačenom u shemi na slici 8.33, a struja i_{bd1} teče u suprotnom smjeru od smjera označenog na slici. Te se struje kroz otpor $R_E (1 + h_{fe})$ međusobno poništavaju, tako da je ukupna struja kroz taj otpor jednaka nuli i na njemu nema pada napona. Stoga se uz priključak diferencijskog signala otpor $R_E (1 + h_{fe})$ nadomještava kratkim spojem. Umjesto ulaznih krugova oba tranzistora i u ovom je slučaju dovoljno promatrati ulazni krug samo jednog tranzistora. To je prikazano na slici 8.34 na kojoj je ucrtan samo ulazni krug tranzistora T_2 na čijem se kolektoru dobiva izlazni napon.

Slika 8.33 – Pojednostavljeni model diferencijskog pojačala za dinamičku analizu uz primjenu diferencijskog signala između ulaza.

Slika 8.34 – Pojednostavljeni model sa slike 8.33 s ulaznim krugom tranzistora T_2 .

Izlazni napon u_{iz} i napon $u_d/2$ iz sheme na slici 8.34 su

$$u_{iz} = -h_{fe} i_{bd2} R_{C2}, (8.94)$$

$$u_d/2 = i_{bd2} (R_{g2} + r_{be2}),$$
 (8.95)

pa je naponsko pojačanje za diferencijski signal

$$A_{Vd} = \frac{u_{iz}}{u_d} = \frac{1}{2} \frac{u_{iz}}{u_d/2} = \frac{-h_{fe} R_{C2}}{2(R_{g2} + r_{be2})}.$$
 (8.96)

Pojačanje za diferencijski signal odgovara pojačanju pojačala u spoju zajedničkog emitera bez emiterske degeneracije, s time da je upola manje. Uz priključak idealnih generatora naponskog signala, $R_{\rm g1}=R_{\rm g2}=0$, naponsko pojačanje za diferencijski signal prelazi u

$$A_{Vd} = \frac{-h_{fe} R_{C2}}{2r_{he2}} = \frac{-g_{m2} R_{C2}}{2}.$$
 (8.97)

Faktor potiskivanja

Izlazni izmjenični napon diferencijskog pojačala računa se kao superpozicija izlaznog napona dobivenog uz priključak diferencijskog i zajedničkog signala

$$u_{iz} = A_{Vd} u_d + A_{Vz} u_z. ag{8.98}$$

Provedena analiza ukazuje na različita pojačanja A_{Vd} i A_{Vz} . Pojačanje diferencijskog signala A_{Vd} po iznosu redovito je znatno veće od iznosa pojačanja zajedničkog signala A_{Vz} , koje je manje od jedinice. Uloga diferencijskog pojačala je da dobro pojača diferencijski signal, koji predstavlja razliku signala spojenih između ulaza pojačala, a slabo pojača, odnosno priguši ili potiskuje, zajednički signal, tj. signal koji se istovremeno priključuje na oba ulaza. Kvaliteta diferencijskog pojačala iskazuje se parametrom ρ koji se naziva **faktor potiskivanja** (engl. common-mode rejection ratio – CMMR), a predstavlja omjer apsolutnih iznosa pojačanja diferencijskog i zajedničkog pojačanja

$$\rho = \frac{|A_{Vd}|}{|A_{Vd}|}. (8.99)$$

Uvrštenjem (8.96) i (8.92) za diferencijsko pojačalo sa slike 8.27 dobiva se

$$\rho = \frac{R_{g2} + r_{be2} + 2R_E \left(1 + h_{fe}\right)}{2\left(R_{g2} + r_{be2}\right)} = \frac{1}{2} + \frac{R_E \left(1 + h_{fe}\right)}{R_{g2} + r_{be2}}.$$
 (8.100)

Dobro diferencijsko pojačalo treba imati što veći faktor potiskivanja. Veći faktor potiskivanja, tj. veći omjer iznosa pojačanja diferencijskog i zajedničkog signala, postiže se većim otporom otpornika R_E . Povećanjem otpora R_E povećava se emiterska degeneracija i smanjuje se iznos pojačanja zajedničkog signala A_{Vz} . S druge strane otpor R_E ne utječe na pojačanje diferencijskog signala. Uz priključak diferencijskog signala, u simetričnom diferencijskom pojačalu, struje koje teku kroz otpornik R_E međusobno se poništavaju. Time se emiterska degeneracija električki isključuje i pojačanje diferencijskog signala po iznosu je veliko.

Uz
$$R_{g1} = R_{g2} = 0$$
 izraz (8.100) prelazi u

$$\rho = \frac{1}{2} + \frac{R_E \left(1 + h_{fe}\right)}{r_{be2}} \approx \frac{1}{2} + g_{m2} R_E = \frac{1}{2} + \frac{I_{CQ2}}{U_T} R_E.$$
 (8.101)

Gornji izraz pokazuje da je faktor potiskivanja proporcionalan, ne samo s otporom R_E , već i sa statičkom strujom kolektora I_{CQ2} . Uz nepromjenjivi napon napajanja $-U_{EE}$, povećanjem otpora R_E smanjuje se struja I_{CQ2} , pa se faktor potiskivanja ne povećava. Kako bi se faktor potiskivanja povećao mora se povećati i iznos napona napajanja $-U_{EE}$. Preveliki iznosi U_{EE} nisu praktični pa se koriste druge izvedbe diferencijskog pojačala sa strujnim izvorom umjesto otpornika R_E .

Primjer 8.12

Za diferencijsko pojačalo iz primjera 8.11 za asimetrični izlaz $u_{iz} = u_{iz2}$ izračunati naponska pojačanja za zajednički i diferencijski izlaz A_{Vz} i A_{Vd} , te faktor potiskivanja ρ . Dinamički faktor strujnog pojačanja $h_{fe} = 100$, a naponski ekvivalent temperature $U_T = 25 \,\mathrm{mV}$. Zanemariti porast struje kolektora u normalnom aktivnom području.

Rješenje:

U primjeru 8.11 određena je statička struja baze I_{BQ1} =15,7 μA , pa su ulazni dinamički otpori

$$r_{be1} = r_{be2} = \frac{U_T}{I_{BO1}} = \frac{0.025}{0.0157} = 1.59 \text{ k}\Omega$$

Uz zanemarenje porasta struje kolektora u normalnom aktivnom području izlazni dinamički otpori $r_{ce1} \to \infty$ i $r_{ce2} \to \infty$.

Pojačanja i faktor potiskivanja su

$$A_{Vz} = \frac{u_{iz}}{u_z} = \frac{-h_{fe} R_{C2}}{R_{g2} + r_{be2} + 2 R_E (1 + h_{fe})} = \frac{-100 \cdot 1,5}{0,5 + 1,59 + 2 \cdot 4,5 \cdot 101} = -0,165,$$

$$A_{Vd} = \frac{u_{iz}}{u_d} = \frac{-h_{fe} R_{C2}}{2(R_{g2} + r_{be2})} = \frac{-100 \cdot 1,5}{2 \cdot (0,5 + 1,59)} = -35,9,$$

$$\rho = \frac{|A_{Vd}|}{|A_{Vd}|} = \frac{35,9}{0,165} = 218.$$

Diferencijsko pojačava diferencijski signal 218 puta više nego što pojačava zajednički signal. Često se faktor potiskivanja izražava u decibelima

$$\rho = 20 \log (218) = 46.8 \, dB$$
.

Primjer 8.13

Na diferencijsko pojačalo iz primjera 8.12 priključeni su sinusni signali $u_{g1}=U_{g1m}\sin\omega t$ i $u_{g2}=U_{g2m}\sin\omega t$. Izračunati izlazni napon $u_{iz}=u_{iz2}$ za

a)
$$U_{g1m} = -5 \text{ mV i } U_{g2m} = 5 \text{ mV, te}$$

b)
$$U_{g1m} = 20 \text{ mV i } U_{g2m} = 30 \text{ mV}.$$

Rješenje:

Izlazni napon je

$$u_{iz} = A_{Vd} u_d + A_{Vz} u_z.$$

Pojačanja iz primjera 8.12 su $A_{Vd} = -35.9$ i $A_{Vz} = -0.165$. Zajednički i diferencijski signali su

$$u_d = U_{dm} \sin \omega t = u_{g2} - u_{g1},$$

$$u_z = U_{zm} \sin \omega t = \frac{u_{g1} + u_{g2}}{2} ,$$

odakle su

$$U_{dm} = U_{g2m} - U_{g1m},$$

$$U_{zm} = \frac{U_{g1m} + U_{g2m}}{2}.$$

Kako je $u_{iz} = U_{izm} \sin \omega t$, može se pisati

$$U_{i=m} = A_{Vd} U_{dm} + A_{V=} U_{=m}$$
.

a) Za prvi slučaj vrijedi

$$U_{dm} = U_{g2m} - U_{g1m} = 5 + 5 = 10 \text{ mV},$$

$$U_{zm} = \frac{-5 + 5}{2} = 0,$$

$$U_{izm} = A_{Vd} U_{dm} + A_{Vz} U_{zm} = -35,9 \cdot 10 - 0,165 \cdot 0 = -359 \text{ mV},$$

$$u_{iz} = U_{izm} \sin \omega t = -359 \sin \omega t \text{ mV}.$$

U prvom slučaju na diferencijsko pojačalo priključen je samo diferencijski signal.

b) U drugom je slučaju

$$U_{dm} = U_{g2m} - U_{g1m} = 30 - 20 = 10 \text{ mV},$$

$$U_{zm} = \frac{20 + 30}{2} = 25 \text{ mV},$$

$$U_{izm} = A_{Vd} U_{dm} + A_{Vz} U_{zm} = -35,9 \cdot 10 - 0,165 \cdot 25 = -359 - 4,1 = -363 \text{ mV},$$

$$u_{iz} = U_{izm} \sin \omega t = -363 \sin \omega t \text{ mV}.$$

U odnosu na prvi slučaj diferencijski signal ostao je isti, ali je prisutan i zajednički signal. Iako 2,5 puta veći od diferencijskog signala, zajednički je signal potisnut i praktički ne doprinosi promjeni izlaznog napona.

8.4.3. Pojačanja za simetrični ili diferencijski izlaz

Pojačanja (8.92) i (8.96) određena su za asimetrični izlaz $u_{iz} = u_{iz2}$ u kolektoru tranzistora T_2 . Iz tih se izraza može zaključiti o pojačanjima za pojedinačne izlaze u_{iz1} i u_{iz2}

pojačala sa slike 8.27. Uz priključak zajedničkog signala $u_{g1} = u_{g2} = u_z$, na oba se tranzistora dovodi napon istog predznaka i pojačanja pojedinih izlaza su

$$A_{V=1} = \frac{u_{i=1}}{u_{z}} = \frac{-h_{fe} R_{C1}}{R_{e1} + r_{be1} + 2 R_{E} (1 + h_{fe})},$$
 (8.102)

$$A_{V=2} = \frac{u_{i=2}}{u_z} = \frac{-h_{fe} R_{C2}}{R_{e2} + r_{be2} + 2 R_E (1 + h_{fe})}.$$
 (8.103)

Uz $R_{g1} = R_{g2}$, $r_{be1} = r_{be2}$ i $R_{C1} = R_{C2}$, pojačanja A_{Vz1} i A_{Vz2} međusobno su jednaka i pojačanje zajedničkog signala za diferencijski izlaz $u_{iz} = u_{iz2} - u_{iz1}$ je

$$A_{Vz} = \frac{u_{iz2} - u_{iz1}}{u_{-}} = A_{Vz2} - A_{Vz1} = 0.$$
 (8.104)

Uz priključak zajedničkog signala izlazni naponi međusobno se jednaki, $u_{iz1} = u_{iz2}$, i pojačanje za diferencijski napon jednako je nuli. To vrijedi za potpuno simetrično pojačalo.

Uz priključak diferencijskog signala $u_{g2} = -u_{g1} = u_d/2$ ulazni naponi tranzistora su suprotnog predznaka i pojačanja na pojedinim izlazima su

$$A_{Vd1} = \frac{u_{i:1}}{u_d} = \frac{+h_{fe} R_{C1}}{2(R_{g1} + r_{bel})}.$$
 (8.105)

$$A_{Vd2} = \frac{u_{i=2}}{u_d} = \frac{-h_{fe} R_{C2}}{2(R_{e2} + r_{he2})}.$$
 (8.106)

Uz $R_{g1} = R_{g2}$, $r_{be1} = r_{be2}$ i $R_{C1} = R_{C2}$, pojačanje diferencijskog signala za diferencijski izlaz $u_{iz} = u_{iz2} - u_{iz1}$ je

$$A_{Vd} = \frac{u_{i:2} - u_{i:1}}{u_d} = A_{Vd2} - A_{Vd1} = \frac{-h_{fe} R_{C2}}{R_{\sigma 2} + r_{he2}}.$$
 (8.107)

Pojačanje diferencijskog signala za diferencijski izlaz po iznosu je dvostruko veće od iznosa pojačanja za asimetrični izlaz, jer su dobiveni signali na izlazima protufazni, a jednaki po iznosu. Uz $R_{\rm g2}=0$ bit će

$$A_{Vd} = \frac{-h_{fe} R_{C2}}{r_{be2}} = -g_{m2} R_{C2}. \tag{8.108}$$

U slučaju potpuno simetričnog pojačala za diferencijski izlaz $A_{Vz}=0$ i faktor potiskivanja $\rho \to \infty$.

8.4.4. Prijenosna karakteristika

Na slici 8.35 prikazano je diferencijsko pojačalo u kojem su na baze tranzistora doveđeni ulazni naponi u_{B1} i u_{B2} . Ako su naponi u_{B1} i u_{B2} međusobno jednaki, oba tranzistora rade s jednakim strujama i diferencijsko pojačalo je simetrično. Dovođenjem diferencijskog napona

između ulaznih stezaljki naponi u_{B1} i u_{B2} postaju različiti i pojačalo se desimetrira. Utjecaj ulaznih napona u_{B1} i u_{B2} na rad sklopa opisuje prijenosna karakteristika.

Slika 8.35 – Primjena velikog signala na diferencijsko pojačalo.

Pad napona na otporniku R_E , koji određuje struju kroz taj otpornik, jednak je $u_E + U_{EE}$. S u_E označen je potencijal emitera, koji se mijenja s naponima u_{B1} i u_{B2} . Neovisno o promjeni, potencijal u_E redovito je znatno manji od iznosa napona U_{EE} , pa se za struju koja teče kroz R_E može pisati

$$I_0 = \frac{u_E + U_{EE}}{R_E} \approx \frac{U_{EE}}{R_E}.$$
 (8.109)

Negativnim naponom napajanja $-U_{EE}$ uspostavlja se kroz otpornik R_E praktički stalna struja I_0 .

S druge strane struju I_0 sačinjavaju, prema slici 8.35, emiterske struje tranzistora T_1 $i_{C1}+i_{B1}$ i tranzistora T_2 $i_{C2}+i_{B2}$. Ukoliko se, zbog velikog faktora strujnog pojačanja $\beta \approx h_{fe}$, zanemare struje baza i_{B1} i i_{B2} , struja I_0 je jednaka

$$I_0 \approx i_{C1} + i_{C2} \,. \tag{8.110}$$

Prema (8.2) u normalnom aktivnom području kolektorska struja tranzistora i_C raste eksponencijalno s naponom propusno polariziranog spoja emiter-baza u_{BE} , te se za struje i_{C1} i i_{C2} može pisati

$$i_{C1} = I_S \exp\left(\frac{u_{BE1}}{U_T}\right),\tag{8.111}$$

$$i_{C2} = I_S \exp\left(\frac{u_{BE2}}{U_T}\right).$$
 (8.112)

Tranzistori su međusobno jednaki, pa su jednake i njihove struje zasićenja I_S . Struja i_{C1} može se izraziti pomoću struje i_{C2}

$$i_{C1} = I_S \exp\left(\frac{u_{BE2}}{U_T}\right) \exp\left(-\frac{u_{BE2} - u_{BE1}}{U_T}\right) = i_{C2} \exp\left(-\frac{u_{BE2} - u_{BE1}}{U_T}\right).$$
 (8.113)

Razlika napona $u_{BE2} - u_{BE1}$ jednaka je ulaznom diferencijskom naponu u_D . Prema slici 8.35 vrijedi

$$u_D = u_{B2} - u_{B1} = u_{BE2} - u_{BE1}. (8.114)$$

Iz (8.110), (8.113) i (8.114) dobiva se

$$I_0 \approx i_{C2} \exp\left(-\frac{u_D}{U_T}\right) + i_{C2},$$
 (8.115)

odakle je

$$i_{C2} \approx \frac{I_0}{1 + \exp\left(-\frac{u_D}{U_T}\right)}.$$
 (8.116)

Na sličan se način dobiva

$$i_{C1} \approx \frac{I_0}{1 + \exp\left(\frac{u_D}{U_T}\right)}.$$
(8.117)

Jednadžbe (8.116) i (8.117) opisuju promjenu izlaznih struja kolektora i_{C1} i i_{C2} s ulaznim diferencijskim naponom u_D , tj. određuju prijenosnu karakteristiku diferencijskog pojačala. Grafički su te jednadžbe prikazane na slici 8.36. Na slici je diferencijski napon u_D normiran na naponski ekvivalent temperature U_T , a struje kolektora i_C normirane su na ukupnu struju sklopa I_0 .

Slika 8.36 - Prijenosna karakteristika diferencijskog pojačala.

Bez prisutnosti diferencijskog napona, tj. uz $u_D=0$, sklop je simetričan i struje tranzistora međusobno su jednake $i_{C1}=i_{C2}=I_0/2$. Porastom pozitivnog napona $u_D=u_{BE2}-u_{BE1}$ povećava se napon u_{BE2} tranzistora T_2 , a smanjuje se napon u_{BE1} tranzistora T_1 . Kroz tranzistor T_2 teče sve veća struja. Kako je zbroj struja $i_{C1}+i_{C2}\approx I_0$ konstantan, porastom

struje tranzistora T_2 smanjuje se struja tranzistora T_1 . Već pri vrlo malom diferencijskom naponu od $u_D \approx 4 U_T \approx 0.1 \,\mathrm{V}$, tranzistor T_2 preuzima gotovo kompletnu struju I_0 , pri čemu struja tranzistora T_1 praktički pada na nulu i tranzistor T_1 prelazi u područje zapiranja. Sklop više ne radi kao pojačalo. Jednako vrijedi i za negativni diferencijski napon u_D , uz zamjenu uloga tranzistora T_1 i T_2 .

Rad diferencijskog pojačala kao linearnog sklopa ograničen je na još manju promjenu diferencijskog napona. Prema slici 8.36 prijenosna karakteristika linearna je za promjenu napona u_D od otprilike $\pm U_T/2$. Osim linearnog područja rada, na slici 8.36 ucrtani su maksimalni nagibi karakteristika uz napon $u_D=0$. Ti nagibi određuju maksimalnu strminu pojačala G_m koja iznosi

$$G_{m,\text{max}} = \left| \frac{\mathrm{d}\,i_{C1}}{\mathrm{d}\,u_D} \right| = \left| \frac{\mathrm{d}\,i_{C2}}{\mathrm{d}\,u_D} \right| = \frac{I_0}{4\,U_T} \,.$$
 (8.118)

Naponsko pojačanje za diferencijski signal određuje se množenjem strmine pojačala G_m s otporom R_{C1} ili R_{C2} , te iznosi najviše

$$A_{Vd,\text{max}} = -G_{m,\text{max}} R_{C2} = \frac{I_0}{4U_T}.$$
 (8.119)

8.5. Bipolarni tranzistor kao sklopka

Osim što se primjenjuje kao aktivni element u pojačalima, bipolarni tranzistor koristi se i kao električki upravljana sklopka. Uloga sklopke je uključivanje i isključivanje struje kroz trošilo. Da bi se u ulaznom krugu sklopkom upravljalo uz što manju potrošnju energije, odabire se spoj tranzistora s najmanjom ulaznom strujom, a to je struja baze. Spoj koji se koristi za realizaciju sklopke je spoj zajedničkog emitera, u kojem se trošilo spaja u izlazni kolektorski krug tranzistora.

Slika 8.37 – Osnovni spoj bipolarne tranzistorske sklopke.

Sklop bipolarne tranzistorske sklopke prikazan je na slici 8.37. Ulazna struja baze je

$$i_B = \frac{u_{UL} - u_{BE}}{R_B},$$
 (8.120)

a za izlazni krug može se pisati

$$u_{IZ} = u_{CE} = U_{CC} - R_C i_C$$
. (8.121)

Izraz (8.121) jednadžba je radnog pravca u polju izlaznih karakteristika. Izlazne karakteristike bipolarnog tranzistora s ucrtanim radnim pravcem prikazane su na slici 8.38. Sjecište radnog pravca s osi apscisa je napon $u_{CE}=U_{CC}$, a s osi ordinata struja $i_C=U_{CC}/R_C$. U primjeru na slici 8.38 napon $U_{CC}=5\,\mathrm{V}$. Kako je sjecište na osi ordinata $U_{CC}/R_C=5\,\mathrm{mA}$, otpor $R_C=1\,\mathrm{k}\Omega$.

Slika 8.38 - Radni pravac bipolarne tranzistorske sklopke u polju izlaznih karakteristika.

Kada je ulazni napon u_{UL} negativniji od otprilike 0,5 V tranzistor radi sa zanemarivo malim strujama. Iako pozitivni napon u_{UL} propusno polarizira spoj emiter-baza, uz napone u_{UL} manje od 0,5 V struje tranzistora su toliko male da se tranzistor praktički nalazi u području zapiranja. Uz zanemarivo male struje i_B i i_C , zanemariv je i pad napona na trošilu R_C i izlazni napon $u_{IZ} = u_{CE} = U_{CC}$. To ogovara točki A u polju izlaznih karakteristika. Tranzistor igra ulogu isključene sklopke.

Porastom ulaznog napona u_{UL} iznad 0,5 V tranzistor počinje voditi i ulazi u normalno aktivno područje. Uz veće ulazne napone u_{UL} napon u_{BE} poprima vrijednost od otprilike 0,7 V. Porastom ulaznog napona u_{UL} , prema (8.120), raste struja baze i_B . S njom raste i struja kolektora i_C koja je u normalnom aktivnom području jednaka $i_C = \beta i_B$ i radna točka u polju izlaznih karakteristika pomiče se od točke A prema većim strujama. Porastom struje i_C smanjuje se izlazni napon $u_{IZ} = u_{CE}$.

Prema slici 8.38, napon u_{CE} može se smanjiti do napona U_{CEzas} kada tranzistor ulazi u područje zasićenja. To odgovara točki B u polju izlaznih karakteristika. Pri tome kolektorska struja i_C postiže maksimalnu vrijednost

$$I_{Czas} = \frac{U_{CC} - U_{CEzas}}{R_C}. ag{8.122}$$

Napon U_{CEzas} iznosi tipično 0,1 do 0,3 V. Kako je U_{CEzas} redovito dosta manji od napona napajanja U_{CC} , struja $I_{Czas} \approx U_{CC} / R_C$. U području zasićenja struja baze mora biti

$$I_{Bzas} \ge \frac{I_{Czas}}{\beta},\tag{8.123}$$

pri čemu struju baze I_{Bzas} i dalje određuje ulazni krug sklopa

$$I_{Bzas} = \frac{U_{UL} - U_{BEzas}}{R_B}. ag{8.124}$$

Napon U_{BEzas} je napon u_{BE} u zasićenju i iznosi tipično 0,7 do 0,8 V. Kada radi u zasićenju, na tranzistoru je u izlaznom krugu mali pad napona, a kolektorska struja određena je vanjskim krugom. Tranzistor igra ulogu **uključene sklopke**.

Kao sklopka tranzistor radi u području zapiranja ili u području zasićenja. Kroz normalno aktivno područje prolazi jedino pri promjeni stanja. U području zapiranja kroz tranzistor teče zanemarivo mala struja, a u području zasićenja na njemu je mali pad napona. Zbog zanemarive struje u jednom stanju i malog pada napona u drugom na tranzistoru je u stacionarnim stanjima u izlaznom krugu utrošak snage vrlo mali.

Primjer 8.14

Bipolarna sklopka sa slike 8.37 radi s naponom napajanja $U_{CC}=5\,\mathrm{V}$ i s kolektorskim otporom $R_C=1\,\mathrm{k}\Omega$. Odrediti maksimalnu vrijednost otpora R_B koji će uz ulazni napon $U_{UL}=U_{CC}$ osigurati rad tranzistora u zasićenju. Faktor strujnog pojačanja tranzistora β može poprimati vrijednosti iz intervala 50 do 150. Pretpostaviti vrijednosti $U_{CEzas}=0,2\,\mathrm{V}$ i $U_{BEzas}=0,8\,\mathrm{V}$.

Rješenje:

Struja kolektora u zasićenju je

$$I_{Czas} = \frac{U_{CC} - U_{CEzas}}{R_C} = \frac{5 - 0.2}{1} = 4.8 \text{ mA}.$$

Za struju baze u zasićenju vrijedi

$$I_{Bzas} = \frac{U_{UL} - U_{BEzas}}{R_B} \ge \frac{I_{Czas}}{\beta}$$
.

Najmanja dozvoljena struja baze dobiva se uz minimalan faktor strujnog pojačanja. Uz $u_{UL} = U_{CC}$ može se pisati

$$R_{B \max} \le \beta_{\min} \frac{U_{CC} - U_{BEzas}}{I_{Czas}} = 50 \cdot \frac{5 - 0.8}{4.8} = 43.7 \text{ k}\Omega.$$

8.5.1. Naponska prijenosna karakteristika

Bipolarna tranzistorska sklopka ujedno je i osnovni logički sklop – invertor. Ako se ulazni napon u_{UL} u sklopki promatra kao digitalni signal tada taj signal poprima dvije razine – napon niske razine koji predstavlja logičku 0 i napon visoke razine koji predstavlja logičku 1. Ako je na ulaz sklopke priključen napon niske razine, dovoljno mali da tranzistor ne vodi, tada je izlazni napon $U_{IZ} = U_{CC}$, što je napon visoke razine. Kada je na ulazu priključen napon visoke

razine tranzistor je u zasićenju, te je izlazni napon mali napon $U_{IZ} = U_{CEzas}$, koji predstavlja napon niske razine.

Statička svojstva invertora opisuje naponska prijenosna karakteristika, koja prikazuje promjenu izlaznog napona u_{IZ} s ulaznim naponom u_{UL} . Pojednostavljeni prikaz naponske prijenosne karakteristike sklopa sa slike 8.37 prikazan je na slici 8.39. Karakteristika je aproksimirana s tri segmenta pravca. Iako jednostavna, karakteristika sa slike 8.39 dobro opisuje stvarnu karakteristika, koja je kontinuirana krivulja s blagim prijelazima između pojedinih područja rada tranzistora.

Slika 8.39 – Pojednostavljeni prikaz naponske prijenosne karakteristike invertora s bipolarnim tranzistorom.

Za male ulazne napone tranzistor ne vodi struju i praktički je u području zapiranja. Izlazni napon $U_{IZ} = U_{CC}$. To je izlazni napon visoke razine $U_{IZV} = U_{CC}$.

Kada ulazni napon dosegne oko 0,5 V tranzistor počinje voditi struju. U početku se, s porastom struje i_B povećava i napon propusno polariziranog spoja baza-emiter u_{BE} sve dok ulaskom u normalno aktivno područje ne poprimi vrijednost od oko 0,7 V. Nakon toga napon u_{BE} malo se mijenja sa strujom i_B . Kao granica ulaska u normalno aktivno područje, u kome, zbog porasta struje, počinje promjena izlaznog napona može se odabrati ulazni napon od 0,7 V. Taj je napon označen na slici s U_{ULN} Struja baze određena je izrazom (8.120). Kako je u normalnom aktivnom području struja kolektora $i_C = \beta i_B$ izlazni je napon

$$u_{IZ} = u_{CE} = U_{CC} - R_C i_C = U_{CC} - \beta R_C \frac{u_{UL} - u_{BE}}{R_B}.$$
 (8.125)

Porastom ulaznog napona izlazni se napon smanjuje. Izlazni napon može se smanjivati sve dok ne poprimi vrijednost $u_{IZ} = U_{CEzas}$ kada tranzistor ulazi u zasićenje. Taj je napon označen na slici 8.39 s U_{IZN} . Granični napon $u_{UL} = U_{ULV}$ uz koji tranzistor ulazi u zasićenje je napon uz koji tranzistor radi na granici normalnog aktivnog područja i područja zasićenja. U tom slučaju vrijedi

$$I_B = \frac{U_{ULV} - U_{BE}}{R_B} = \frac{I_{Czas}}{\beta} = \frac{U_{CC} - U_{CEzas}}{\beta R_C},$$
 (8.126)

odakle je

$$U_{ULV} = \frac{R_B}{\beta R_C} (U_{CC} - U_{CE-as}) + U_{BE}.$$
 (8.127)

Za napon U_{BE} može se i u gornjem slučaju pretpostaviti vrijednost od oko 0,7 V.

Za sve ulazne napone u_{UL} veće od U_{ULV} izlazni napon ostaje nepromijenjen i jednak $U_{IZ} = U_{CEzas}$. Za invertor sa slike 8.37 naponi logičke 0 i 1 su

$$U_0 = U_{IZN} = U_{CE=as}, (8.128)$$

$$U_1 = U_{IZV} = U_{CC}. (8.129)$$

Slično kao i kod CMOS invertora granice naponskih smetnji mogu se definirati kao

$$GS_N = U_{ULN} - U_{IZN} = U_{ULN} - U_{CE=as},$$
 (8.130)

$$GS_V = U_{IZV} - U_{ULV} = U_{CC} - U_{ULV}. (8.131)$$

Primjer 8.15

Odrediti karakteristične napone naponske prijenosne karakteristike invertora s bipolarnim tranzistorom sa slike 8.37. Napon napajanja $U_{CC}=5\,\mathrm{V}$, a otpori otpornika su $R_B=10\,\mathrm{k}\Omega$ i $R_C=1\,\mathrm{k}\Omega$. Faktor strujnog pojačanja tranzistora $\beta=100$, a napon $U_{CE=as}=0.2\,\mathrm{V}$. Pretpostaviti da je normalnom aktivnom području rada tranzistora napon $U_{BE}=0.7\,\mathrm{V}$. Izračunati granice naponskih smetnji.

Rješenje:

Naponi logičke U_{IZV} i U_{IZN} su

$$U_{IZV} = U_{CC} = 5 \,\mathrm{V} \,,$$

$$U_{IZN} = U_{CEzas} = 0.2 \text{ V}$$
.

Za obje granice normalnog aktivnog područja rada tranzistora, u intervalu ulaznih napona od U_{ULN} do U_{ULV} , napon $U_{BE}=0.7~\rm V$. Vrijedi

$$U_{ULN}=U_{BE}=0.7 \text{ V}$$
,

$$U_{ULV} = \frac{R_B}{\beta R_C} (U_{CC} - U_{CEzas}) + U_{BE} = \frac{10}{100 \cdot 1} \cdot (7 - 0.2) + 0.7 = 1.18 \text{ V}.$$

Granice naponskih smetnji su

$$GS_N = U_{IJI.N} - U_{IZN} = 0.7 - 0.2 = 0.5 \text{ V}$$

$$GS_V = U_{IZV} - U_{IJIV} = 5 - 1.18 = 3.82 \text{ V}$$
.

Prijenosna karakteristika nije simetrična i granice smetnji za nisku i visoku razinu ulaznog napona jako su različite. Invertor je znatno osjetljiviji na smetnje pri niskoj razini ulaznog napona.

8.5.2. Utjecaj opterećenja na napone logičkih razina

Dosad je analiziran rad neopterećenog invertora upravljan ulaznim naponom u_{UL} . U digitalnim sklopovima na izlaz invertora spaja se jedan ili više logičkih sklopova. Osim toga invertor najčešće nije na ulazu upravljan naponskim izvorom, nego prethodnim logičkim sklopom. Analiza invertora u realnom sklopovskom okruženju može se provesti na primjeru lanca invertora sa slike 8.40.

Slika 8.40 – Invertor s bipolarnim tranzistorom upravljan prethodnim i opterećen slijedećim invertorom.

Analiziraju se stacionarna stanja invertora s bipolarnim tranzistorom T_1 . Ako je bipolarni tranzistor T_0 prethodnog invertora u zapiranju, struja kolektora tog tranzistora je nula. Tranzistoru T_1 struju baze i_{B1} osigurava napon napajanja U_{CC} , preko otpornika R_C spojenog u kolektoru tranzistora T_0 i otpornika R_B spojenog u krugu baze tranzistora T_1 . Tranzistor T_1 treba u tom slučaju raditi u području zasićenja, u kojem je njegova struja baze

$$I_{B1zas} = \frac{U_{CC} - U_{BEzas}}{R_C + R_B} \,. \tag{8.132}$$

Napon napajanja U_{CC} i otpori R_C i R_B moraju osigurati dovoljno veliku struju baze da se osigura uvjet za zasićenje

$$I_{B1zas} \ge \frac{I_{C1zas}}{\beta} = \frac{U_{CC} - U_{CEzas}}{R_C}, \qquad (8.133)$$

Izlazni napon $u_{IZ1} = u_{CE1} = U_{CEzas}$. Zbog malog napona na spoju emiter-baza u_{BE2} , struja baze tranzistora T_2 $i_{B2} \approx 0$ i kompletna struja od napona napajanja U_{CC} , kroz otpornik R_C teče u kolektor tranzistora T_1 . Na izlazu invertora s tranzistorom T_1 je niski napon logičke 0

$$U_0 = U_{CE_{208}}. (8.134)$$

Kada je bipolarni tranzistor T_0 prethodnog invertora u zasićenju, njegov je napon kolektora jednak $u_{CE0}=u_{UL1}=U_{CEzas}$. Uz mali napon U_{CEzas} od 0,1 do 0,3 V, spojen preko otpornika R_B na spoj emiter-baza tranzistora T_1 , kroz tranzistor T_1 teku zanemarivo male struje. Tranzistor T_1 je praktički u zapiranju. Bez obzira što je kolektorska struja $i_{C1}\approx 0$, kroz otpornik R_C u kolektoru tranzistora T_1 teče struja i_{B2} u bazu tranzistora T_2 . Tranzistor T_2 treba u tom slučaju raditi u zasićenju, pri čemu je njegova struja $i_{B2}=I_{B2zas}$ određena izrazom (8.132). Izlazni napon invertora s tranzistorom T_1 u tom je slučaju jednak

$$u_{i=1} = U_{CC} - R_C I_{B2=as} = U_{CC} - R_C \frac{U_{CC} - U_{BE=as}}{R_C + R_B} = U_1.$$
 (8.135)

To je ujedno visoki napon logičke 1. Uz opterećenja invertora izlazni napon logičke 1 manji je od napona napajanja U_{CC} za pad napona na kolektorskom otporniku R_C , uvjetovan protjecanjem struje I_{Bzas} slijedećeg invertora.

Primjer 8.16

U lancu invertora sa slike 8.40 zadani su napon napajanja $U_{CC} = 5 \text{ V}$ i otpori otpornika $R_B = 20 \text{ k}\Omega$ i $R_C = 1 \text{ k}\Omega$. Parametri svih tranzistora su jedanaki i iznose: faktor strujnog pojačanja $\beta = 100$ i napon $U_{CEzas} = 0.2 \text{ V}$ i $U_{BEzas} = 0.8 \text{ V}$. Da li uz navedene podatke invertori ispravno rade? Odrediti napone logičkih 0 i 1 invertora s tranzistorom T_1 .

Rješenje:

Kada su tranzistori T_0 i T_2 u zapiranju, tranzistor T_1 treba radit u području zasićenja. Struje tranzistora T_1 su

$$I_{B1zas} = \frac{U_{CC} - U_{BEzas}}{R_C + R_B} = \frac{5 - 0.8}{1 + 20} = 0.2 \text{ mA},$$

$$I_{C1zas} = \frac{U_{CC} - U_{CEzas}}{R_C} = \frac{5 - 0.2}{1} = 4.8 \text{ mA}.$$

Kako je $\beta I_{B1zas} = 100 \cdot 0,2 = 20 \text{ mA} > I_{C1zas} = 4,8 \text{ mA}$ uvjet za rad tranzistora T_1 u zasićenju je ispunjen.

Naponi logičkih 0 i 1 invertora s tranzistorom T_1 su

$$U_0 = U_{CEzas} = 0.2 \text{ V},$$

$$U_1 = U_{CC} - R_C \frac{U_{CC} - U_{BEzas}}{R_C + R_B} = 5 - 1 \cdot \frac{5 - 0.8}{1 + 20} = 4.8 \text{ V}.$$

Opterećenje s jednim istim invertorom smanjuje napon logičke 1 za 0,2 V u odnosu na napon logičke 1 neopterećenog invertora.

Ukoliko se na izlaz invertora s tranzistorom T_1 prema slici 8.40 priključi ne jedan već više invertora, napon logičke 1 će se dodatno smanjiti. Za opterećenje s N istovrsnih invertora napon logičke 1 bit će

$$U_1 = U_{CC} - N R_C \frac{U_{CC} - U_{BEzas}}{N R_C + R_B}.$$
 (8.136)

Tako bi se npr. uz podatke iz primjera 8.16 i uz opterećenje s 10 istovrsnih invertora napon logičke 1 smanjio na $U_1 = 3.6 \text{ V}$.

U logičkim sklopovima definira se minimalni iznos napona logičke 1, nužan za ispravan rad sklopa. S minimalnim iznosom napona logičke 1 u gornjem se primjeru određuje maksimalni broj invertora s kojim se smije opteretiti izlaz prethodnog invetora. Takav se maksimalni broj logičkih sklopova naziva faktor grananja izlaza.

8.5.3. Impulsni odziv

Uz statičke parametre bipolarnog invertora, kojima se određuju naponi logičkih razina i granice smetnji, za primjenu su bitni i vremenski parametri koji ukazuju koliko brzo će se invertor prebacivati iz jednog logičkog stanja u drugo i obrnuto. Uz primjenu ulaznih digitalnih signala, koji su u idealnom slučaju pravokutni impulsi, vremenski odziv bipolarnog invertora može se promatrati kao vremenski odziv bipolarne tranzistorske sklopke na impulsnu pobudu. Za sklopku sa slike 8.37 taj je vremenski odziv prikazan na slici 8.41.

Za vrijeme t < 0 negativni ulazni napon $u_{UL} = -U_{UL2}$ zaporno polarizira spoj emiter-baza. Uz zanemarivu struju baze i_B , ulazni zaporni napon tranzistora $u_{BE} = -U_{UL2}$. Napon U_{CC} zaporno polarizira spoj kolektor-baza i tranzistor je u području zapiranja. Kolektorska struja $i_C \approx 0$.

Nagla promjena polariteta napona u_{UL} , s vrijednosti $-U_{UL2}$ na U_{UL1} u trenutku t=0, izaziva trenutačni porast struje i_B . Pozitivna struja i_B propusno polarizira spoj emiter-baza i tranzistor prelazi u normalno aktivno područje. To je popraćeno porastom struje i_C . Promjena napona u_{BE} s vrijednosti $-U_{UL2}$ na napon propusne polarizacije povezana je promjenom naboja u osiromašenom sloju emiter-baza. Zbog toga porast struje i_C kasni za promjenom struje i_B .

Nakon promjene naboja u osiromašenom sloju emiter-baza, porast struje i_C popraćen je injekcijom naboja manjinskih nosilaca u kvazineutralna područja tranzistora. Uz dovoljno veliku struju $I_{B1} = (U_{UL1} - U_{BEzas})/R_B$, struja i_C raste do maksimalnog iznosa I_{Czas} i tranzistor iz normalnog aktivnog područja prelazi u područje zasićenja. U postupnom rastu struje i_C , prema slici 8.41, vrijeme od promjene struje i_B , za t=0, do porasta struje i_C na iznos 0,1 I_{Czas} naziva se **vrijeme zakašnjenja** t_d (engl. delay time), a vrijeme potrebno za promjenu struje i_C od 0,1 I_{Czas} do 0,9 I_{Czas} je **vrijeme porasta** t_r (engl. rise time). Ukupno vrijeme zakašnjenja i porasta naziva se **vrijeme uključivanja** $t_{on} = t_d + t_r$ (engl. turn-on time).

U trenutku $t=t_1$ ulazni napon u_{UL} ponovo mijenja polaritet. Negativni napon $u_{UL}=-U_{UL2}$ mijenja predznak struje i_B , na početnu vrijednost $-I_{B2}=(-U_{UL2}-U_{BEzas})/R_B$. Zbog injektiranog naboja manjinskih nosilaca, spoj emiter-baza ne može trenutačno promijeniti polarizaciju i ostaje propusno polariziran. Ulazni krug tranzistora ponaša se kao dioda u sklopu sa slike 3.35. U području zasićenja injektirani naboj manjinskih nosilaca u bazi i kolektoru veći je od naboja istih nosilaca koji bi postojao u normalnom aktivnom području uz kolektorsku struju

 $i_C = I_{Czas}$. Taj višak naboja razlog je što i nakon nagle promjene polariteta struje i_B , struja i_C ostaje još određeno vrijeme praktički konstantna.

Slika 8.41 – Vremenski odziv bipolarne tranzistorske sklopke na impulsnu pobudu.

Tek nakon odstranjenja viška naboja tranzistor prelazi u normalno aktivno područje i struja i_C počinje padati. Odstranjenjem ukupnog injektiranog naboja manjinskih nosilaca mijenja se i polarizacija spoja emiter-baza, te tranzistor prelazi u područje zapiranja. Uspostavlja se stanje koje je vrijedilo za t < 0. Prilikom prelaska tranzistora iz područja zasićenja u zapiranje, vrijeme od promjene polariteta struje i_B , za $t = t_1$, do pada struje i_C na vrijednost 0,9 I_{Czas} je **vrijeme zadržavanja** t_s (engl. storage time), a vrijeme u kojem se struja i_C smanji od 0,9 I_{Czas} do 0,1 I_{Czas} je vrijeme pada t_f (engl. fall time). Zbroj vremena zadržavanja i pada je **vrijeme isključivanja** $t_{off} = t_s + t_f$ (engl. turn-off time).

Rad tranzistora kao sklopke popraćen je stalnom izmjenom naboja. Brzina promjene naboja veća je, a time je rad tranzistorske sklopke brži, ako su vremena života manjinskih nosilaca τ manja. Na brzinu rada utječu i radni uvjeti. Odnos vremena uključivanja i isključivanja podešava se prvenstveno omjerom struja I_{B2}/I_{B1} , odnosno omjerom napona U_{UL2}/U_{UL1} . S većom strujom I_{B1} tranzistor se brže uključuje, ali se sporije isključuje. Utjecaj struje $-I_{B2}$ je obrnut. Dovođenjem naboja u tranzistor veća struja I_{B1} skraćuje vremena t_d i t_r . Uz veću struju I_{B1}

tranzistor ulazi dublje u zasićenje i sporije se isključuje, pa su duža vremena t_s i t_f . Struja $-I_{B2}$ odvodi struju iz tranzistora, te skraćuje vremena t_s i t_f .

Bipolarna tranzistorska sklopka može se upravljati i samo pozitivnim impulsom u_{UL} , čija je niska razina 0 V, a visoka razina U_{UL1} . Razlika u odnosu na sliku 8.41 je ta što u trenutku $t=t_1$ ulazni napon pada s vrijednosti U_{UL1} na vrijednost od 0 V. Struja i_B u tom trenutku mijenja predznak i poprima početnu vrijednost $-I_{B2} = -U_{BEzas}/R_B$. U ovom je slučaju iznos struje $-I_{B2}$ manji nego u slučaju primjene impulsnog napona s niskom negativnom razinom $-U_{UL2}$, pa se primjenom isključivo pozitivnog impulsa u_{UL} skraćuje vrijeme uključivanja t_{on} , ali produžuje vrijeme isključivanja t_{off} .

U impulsnom radu bipolarne tranzistorske sklopke u pravilu je najduže vrijeme zadržavanja t_s , koje je rezultat odstranjivanja velikog naboja manjinskih nosilaca nakupljenog za vrijeme rada tranzistora u području zasićenja. Jedan od načina skraćivanja vremena zadržavanja je primjena **Schottkyjevog tranzistora**.

Kod Schottkyjevog tranzistora jednostavnim spajanjem metala formira se između baze i kolektora tranzistora Schottkyjeva dioda s anodom spojenom na bazu, a katodom spojenom na kolektor tranzistora, prema slici 8.42a.

Slika 8.42 – Schottkyjev tranzistor: a) spoj bipolarnog tranzistora i Schottkyjeve diode, b) električki simbol.

Kada je kolektor tranzistora na višem potencijalu od baze, što vrijedi u području zapiranja ili u normalnom aktivnom području, spoj kolektor-baza i Schottkyjeva dioda zaporno su polarizirani i Schottkyjeva dioda nema utjecaja na rad tranzistora. Prelaskom tranzistora iz normalnog aktivnog područja rada u područje zasićenja, spoj kolektor-baza i Schottkyjeva dioda postaju propusno polarizirani. Porastom napona propusne polarizacije najprije provede Schottkyjeva dioda čiji je napon koljena tipično oko 0,4 V i manji je od napona koljena spoja kolektor-baza silicijskog tranzistora. Nakon što provede, Schottkyjeva dioda ograniči napon propusne polarizacije spoja kolektor-baza na napon koljena Schottkyjeve diode. Takav napon ne dozvoljava ulazak tranzistora duboko u područje zasićenja. Time se smanjuje količina naboja manjinskih nosilaca u bazi i ubrzava prijelaz tranzistora iz područja zasićenja u područje zapiranja. Pri vođenju Schottkyjeve diode izlazni napon u_{CE} tranzistora je $u_{CE} = u_{BE} - u_{D} \approx 0,7 - 0,4 = 0,3$ V.

Na slici 8.42b prikazan je električki simbol Schottkyjevog tranzistora. Schottkyjevi tranzistori primjenjuju se u digitalnim sklopovima skupine Schottky TTL.

8.6. Skupina ECL

Za realizaciju složenijih digitalnih sustava razvijen je cijeli niz različitih integriranih digitalnih sklopova. Prvi digitalni integrirani sklopovi temeljili su se na primjeni bipolarnog tranzistora. Ovisno o načinu spajanja osnovnih sklopova, razvijen je veći broj logičkih skupina. Zahvaljujući svojim karakteristikama, prvenstveno većoj brzina rada, kao najpopularnije logičke skupine temeljene na bipolarnom tranzistoru izdvojile su se skupina TTL ili skupina tranzistorsko-tranzistorske logike (engl. transistor-transistor logic) i skupina ECL ili skupina emiterski vezane logike (engl. emitter-coupled logic).

U TTL sklopovima bipolarni tranzistori rade kao sklopke, pri čemu tranzistor prelazi iz područja zapiranja u područje zasićenja i obrnuto. U naprednijim TTL sklopovima veća brzina rada osigurava se primjenom Schottkyjevih tranzistora. Ipak se najveća brzina rada postiže ECL sklopovima u kojima tranzistori rade u području zapiranja ili u normalnom aktivnom području. U tim se sklopovima sprječavanje ulaska tranzistora u zasićenje osigurava sklopovski, ograničenjem struja i napona.

U današnjoj digitalnoj elektronici znatno su više koriste CMOS od bipolarnih integriranih sklopova. Glavni je razlog jednostavnost i znatno manji utrošak snage CMOS sklopova, čime se omogućuje ostvarenje integriranih sklopova znatno veće složenosti. Usprkos sve većoj popularnosti CMOS sklopova, skupina ECL zadržala je primat kao najbrža skupina logičkih sklopova. ECL sklopovi koriste se ili kao zasebni integrirani sklopovi srednje razine složenosti ili su dio najsloženijih integriranih sklopova koji se temelje na primjeni komplementarnih MOS tranzistora i bipolarnih tranzistora integriranih na istom čipu.

8.6.1. Strujna sklopka

ECL sklopovi temelje svoj rad na strujnoj sklopki prikazanoj na slici 8.43. Spoj strujne sklopke jednak je diferencijskom pojačalu. Ulazni signal u_{UL} dovodi se na bazu tranzistora T_1 , dok je baza tranzistora T_2 spojena na referentni istosmjerni napon U_R . Prema (8.111) i (8.112), uz iste tranzistore T_1 i T_2 , odnos njihovih kolektorskih struja je

Slika 8.43 - Strujna sklopka.

$$\frac{i_{C1}}{i_{C2}} = \exp\left(\frac{u_{BE1} - u_{BE2}}{U_T}\right) = \exp\left(\frac{u_{UL} - U_R}{U_T}\right). \tag{8.137}$$

Uz zanemarenje struja baza i_{B1} i i_{B2} , može se pisati

$$i_{C1} + i_{C2} \approx I_0$$
. (8.138)

 I_0 je struja strujnog izvora u emiterima tranzistora T_1 i T_2 , realiziranog s emiterskim otporom R_E . lz prethodnih izraza slijedi

$$\frac{i_{C1}}{I_0} \approx \frac{1}{1 + \exp\left(\frac{U_R - u_{UL}}{U_T}\right)},\tag{8.139}$$

$$\frac{i_{C2}}{I_0} \approx \frac{1}{1 + \exp\left(\frac{u_{UL} - U_R}{U_T}\right)}.$$
 (8.140)

Uz $U_R - u_{UL} = u_D$ jednadžbe (8.139) i (8.140) odgovaraju jednadžbama (8.116) i (8.117) i predstavljaju prijenosnu karakteristiku diferencijskog pojačala sa slike 8.36. Zbog eksponencijalne ovisnosti kolektorskih struja o ulaznom naponu, razlika napona $U_R - u_{UL}$ od otprilike $\pm 4U_T$ prebacuje jedan od tranzistora iz normalnog aktivnog područja u područje zapiranja. U tom slučaju sklop ne radi kao pojačalo već kao sklopka.

Ako je ulazni napon u_{UL} za više od $4U_T$ negativniji od napona U_R tranzistor T_1 je u području zapiranja, uz $i_{C1}\approx 0$, a tranzistor T_2 je u normalnom aktivnom području, uz $i_{C2}\approx I_0$. Izlazni naponi logičkih razina su

$$u_{IZ1} = U_1 \approx U_{CC},$$
 (8.141)

$$u_{IZ2} = U_0 \approx U_{CC} - I_0 R_{C2}. \tag{8.142}$$

Kada je napon u_{UL} za više od $4U_T$ pozitivniji od napona U_R tranzistor T_1 je u normalnom aktivnom području, uz $i_{C1} \approx I_0$, a tranzistor T_1 je u području zapiranja, uz $i_{C2} \approx 0$, pa su izlazni naponi logičkih razina

$$u_{IZ1} = U_0 \approx U_{CC} - I_0 R_{C1},$$
 (8.143)

$$u_{IZ2} = U_1 \approx U_{CC}$$
. (8.144)

Struja strujnog izvora je

$$I_0 = \frac{U_R - u_{BE2} + U_{EE}}{R_E}, (8.145)$$

pa je izlazni napon logičke 0

$$U_0 \approx U_{CC} - \frac{R_C}{R_E} (U_R - u_{BE2} + U_{EE}).$$
 (8.146)

 R_C je jedan od kolektorskih otpora R_{C1} ili R_{C2} . Budući da mala promjena napona u_{BE2} ne mijenja bitno naponsku razliku u zagradi prethodnog izraza, razliku naponskih razina logičke 1 i 0

$$\Delta U = U_1 - U_0 \approx \frac{R_C}{R_E} \left(U_R - u_{BE2} + U_{EE} \right)$$
 (8.147)

prvenstveno određuje omjer otpora R_C/R_E koji se u integriranoj tehnici može dobro kontrolirati.

8.6.2. ECL sklop serije 10K

Električka shema jedne od najčešće korištenih izvedbi ECL sklopova pod nazivom serija 10K prikazana je na slici 8.44. Da bi se ostvarila logička funkcija, tranzistor T_1 u strujnoj sklopki sa slike 8.43 zamijenjen je paralelnim spojem više tranzistora T_{1i} za veći broj ulaza. Sklop sa slike 8.44 koristi dva ulaza A i B. Baza tranzistora T_2 , u drugoj grani strujne sklopke, spojena je na referentni napon U_R . Izlazi sklopa Y i \overline{Y} spojeni su na kolektore tranzistora T_{1i} i T_2 preko emiterskih slijedila T_3 i T_4 .

Slika 8.44 – ECL sklop serije 10K: a) električka shema, b) logički simbol.

Za ispravan rad sklopa napon logičke I mora biti pozitivniji, a napon logičke 0 negativniji od referentnog napona U_R . Ukoliko je na barem jedan od ulaza priključen napon logičke 1 pripadni tranzistor radi u normalnom aktivnom području, a tranzistor T_2 je u zapiranju. Struja strujnog izvora teče kroz otpor R_{C1} i stvara na njemu pad napona. Kroz otpor R_{C2} ne teče struja i na njemu je pad napona jednak nuli. Izlaz Y je u stanju logičke 1, izlaz \overline{Y} u stanju logičke 0. Priključak logičke 0 na svim ulazima mijenja stanje sklopa. Na izlazu Y ostvaruje se ILI, a na izlazu \overline{Y} NILI logička funkcija

$$Y = A + B$$
, (8.148)

$$\overline{Y} = \overline{A+B} . \tag{8.149}$$

Sklopom se istovremeno ostvaruju međusobno komplementarni izlazi, što je vrlo korisno u nekim primjenama.

Obje se grane strujne sklopke zaključuju emiterskim sljedilima T_3 i T_4 . Naponi na izlazima \overline{Y} i Y negativniji su za napone U_{BE3} i U_{BE4} od napona na kolektorima T_{1i} i T_2 , što znači da se sljedilima ostvaruje istosmjerni pomak izlaznih naponskih razina. Ovim se istosmjernim pomakom postiže da su vrijednosti napona logičkih razina jednake na ulazu i izlazu sklopa. Zahvaljujući velikom strujnom pojačanju sljedila, na izlazima se mogu dobiti veće struje, čime se osiguravaju veći faktori grananja izlaza.

U starijim izvedbama ECL sklopova, emiteri tranzistora T_3 i T_4 bili su spojeni s otpornicima na negativni napon napajanja. Novije izvedbe rade se s otvorenim emiterima, s kojima se postiže veća fleksibilnost u primjeni. Izvedba sklopa s otvorenim emiterima omogućuje paralelno spajanje izlaza, čime se ostvaruje logička funkcija spojeni ILI.

Pri opterećenju sklopa s istovrsnim ECL sklopom ulogu emiterskih otpornika tranzistora T_3 i T_4 preuzimaju ulazni otpornici slijedećeg sklopa od 50 k Ω , označeni s R_4 i R_B . Ovaj pristup koristi se u realizaciji sporijih digitalnih sustava, jer veliki iznos otpora smanjuje struju izbijanja izlaznih kapaciteta. Povećanje brzine postiže se paralelnim spajanjem dodatnih otpornika prema negativnom naponu napajanja. Vrijednosti otpora smiju se smanjivati do 2 k Ω ako se otpornik spaja na napon napajanja -5,2 V, odnosno do 50 Ω ako se otpornik spoja na drugi napon napajanja od -2 V. Zadnja vrijednost otpora odgovara otporu prijenosne linije kojom se prospajaju ECL sklopovi u brzim digitalnim sustavima. Osim što predstavljaju opterećenje prethodnog sklopa, ulazni otpornici R_4 i R_B osiguravaju napon logičke 0 na ulazu na kojem nije prisutan ulazni signal.

Sprječavanje ulaska tranzistora u zasićenje osigurava se sklopovski. Kada je na ulazu na bazi jednog od tranzistora T_{1i} strujne sklopke napon logičke jedinice U_1 , na izlazu \overline{Y} je napon logičke nule U_0 . U tom je slučaju kolektor tog tranzistora na naponu $U_0 + U_{BE}$, pa su njegovi naponi

$$U_{CB} = U_0 + U_{BE} - U_1 = U_{BE} - \Delta U, \qquad (8.150)$$

$$U_{CE} = U_{CB} + U_{BE} = 2U_{BE} - \Delta U = 2U_{\gamma} - \Delta U.$$
 (8.151)

gdje je U_{γ} napon koljena propusno polariziranog pn-spoja. Da bi tranzistor ostao u normalnom aktivnom području napon $U_{CE} \ge U_{CE;2as}$. Ako se kao donja granica napona U_{CE} odabere napon $U_{\gamma}/2$, tada je maksimalni razmak logičkih razina

$$\Delta U_{\text{max}} = 1.5 U_{\nu}. \tag{8.152}$$

Razmak logičkih razina podešava se prvenstveno omjerom otpora R_{C1} i R_{C2} u odnosu na R_{E} .

U seriji 10K, ECL sklopovi izvode se s negativnim naponom napajanja $-U_{EE}$, uz $U_{CC}=0$. Razlog je što eventualna smetnja u napona napajanja $-U_{EE}$ puno manje doprinosi smetnji na izlazu sklopa, nego što bi doprinijela smetnja u naponu napajanja U_{CC} . Zbog malog

razmaka napona logičkih razina ECL sklopovi jako su osjetljivi na smetnje. Strujna sklopka i referentni naponski izvor spajaju se na jedan, a emiterska sljedila na drugi izvor napajanja. U radu sklopa strujna sklopka i referentni naponski izvor vrlo malo mijenjaju struju koja kroz njih teče. U isto vrijeme prisutne su velike promjene u strujama emiterskih slijedila, što može uzrokovati smetnje u njihovom naponu napajanja. Odvajanjem tog napona napajanja od ulaznog sklopa znatno se smanjuje utjecaj smetnji na rad sklopa.

Uz ECL sklop, na čipu se realizira i referentni naponski izvor, koji osigurava referentni napon $U_R=-1,32~\rm V$. Uz navedene vrijednosti otpora prema slici 8.44 u ECL sklopu serije 10k naponi logičkih razina su $U_1=-0,88~\rm V$ i $U_0=-1,77~\rm V$, pa je razmak logičkih razina $\Delta U=U_1-U_0=0,89~\rm V$. Faktor grananja izlaza N=10, vrijeme kašnjenja je 2 ns uz srednju disipaciju snage od 25 mW, što odgovara umnošku snage i vremena kašnjenja $P\cdot t_d=50~\rm pJ$.

9. Stabilizatori

Stabilizatori su dio istosmjernih izvora napajanja, čija je blok-shema prikazana na slici 4.17. Nakon transformiranja, ispravljanja i filtriranja izmjeničnog mrežnog napona, na izlazu ispravljača dobiva se ispravljeni napon. Taj se napon sastoji od istosmjerne komponente i male izmjenične komponente napona valovitosti, koja je posljedica neidealnog filtriranja ispravljenog napona. Istosmjerna komponenta može se mijenjati zbog promjene mrežnog napona i promjene opterećenja. Zadaća stabilizatora je svesti te promjene na minimum. Također stabilizator dodatno prigušuje izmjeničnu komponentu napona valovitosti.

Stabilizator se može prikazati blok-shemom na slici 9.1. Ulazni napon stabilizatora u_{UL} je izlazni napon ispravljača i sadrži promjenjivu istosmjernu komponentu napona U_{UL} i izmjenični napon valovitosti u_{ulv} . Na izlaz stabilizatora priključuje se realno trošilo, koje se nadomještava promjenjivim otporom R_T .

Slika 9.1 - Blok-shema stabilizatora.

Niti jedan stabilizator nije idealan i napon na njegovu izlazu mijenja se s promjenom radnih uvjeta: s ulazni naponom u_{UL} , sa strujom trošila i_{IZ} , s temperaturom T i sl. Promjena izlaznog napona može se prikazati kao totalni diferencijal

$$du_{IZ} = \frac{\partial u_{IZ}}{\partial u_{UL}} du_{UL} + \frac{\partial u_{IZ}}{\partial i_{IZ}} di_{IZ} + \frac{\partial u_{IZ}}{\partial T} dT =$$

$$= S_U du_{UL} + S_I di_{IZ} + S_T dT,$$
(9.1)

gdje su S_U naponski faktor stabilizacije

$$S_U = \frac{\partial u_{1Z}}{\partial u_{UL}} \bigg|_{\mathbf{d}_{I_Z} = 0, \mathbf{d}_{T} = 0}, \tag{9.2}$$

 S_I opteretni faktor stabilizacije

$$S_I = \frac{\partial u_{IZ}}{\partial i_{IZ}} \bigg|_{\mathbf{d}u_{IJ} = 0, \ \mathbf{d}T = 0},\tag{9.3}$$

a S_T temperaturni koeficijent

$$S_T = \frac{\partial u_{IZ}}{\partial T} \bigg|_{du_{UL} = 0, \ di_{IZ} = 0}.$$

$$(9.4)$$

Za dobar stabilizator svi navedeni faktori, odnosno koeficijenti trebaju biti što manji.

9.1. Referentni element

Osnovni element stabilizatora je referentni element. To je element na kojem se uspostavlja stalni napon, po mogućnosti neovisan o radnim uvjetima kao što su promjena struje, temperature i sl. Kao jednostavan, ali vrlo djelotvoran referentni element u stabilizatorima se najčešće koristi Zenerova dioda. To je pn-dioda koja radi u području proboja, kako je to prikazano na slici 9.2. U proboju, probojni Zenerov napon U_Z praktički je stalan i vrlo se malo mijenja sa strujom. Zenerova dioda koristi se pri zapornoj polarizaciji i Zenerov napon U_Z suprotnog je polariteta od polariteta propusno polarizirane diode U_D . Iz istih je razloga smjer struje Zenerove diode I_Z suprotan smjeru struje propusno polarizirane diode I_D .

Slika 9.2 – Zenerova dioda: a) električki simbol, b) strujno-naponska karakteristika.

Zenerove diode označuju se posebnim električkim simbolom, prikazanim na slici 9.2a. Izvode se za niz različitih napona. Uz Zenerov napon, bitan parametar Zenerove diode je dinamički otpor

$$r_Z = \frac{\Delta U_Z}{\Delta I_Z},\tag{9.5}$$

definiran kao recipročna vrijednost nagiba karakteristike u području proboja. Dinamički otpor treba biti što manji. Temperaturni koeficijent Zenerove diode ukazuje kako se i koliko mijenja Zenerov napon s promjenom temperature. Zenerove diode su najčešće diode s lavinskim probojem, pa je temperaturni koeficijent pozitivan, što znači da Zenerov napon raste s

temperaturom. Ima i Zenerovih dioda, koje su temperaturno kompenzirane. Njihov je temperaturni koeficijent znatno smanjen.

Za ispravan rad diode kao referentnog elementa kroz Zenerovu diodu mora teći minimalna struja $I_{Z\min}$, dovoljno velika da se izbjegne koljeno karakteristike u proboju i da se dosegne Zenerov napon. Maksimalna struja Zenerove diode $I_{Z\max}$ ograničena je maksimalnom disipacijom snage $P_{Z\max}$, koja ovisi o izvedbi diode, tipu kućišta i eventualno dodanom hladilu.

9.2. Stabilizator sa Zenerovom diodom

Najjednostavnija izvedba stabilizatora prikazana je na slici 9.3. Na ulaz stabilizatora dovodi se nestabilizirani napon iz ispravljača označen u_{UL} . Na izlaz se priključuje trošilo promjenjivog otpora R_T . Između ulaza i izlaza stabilizatora spojen je otpornik R_1 , a paralelno izlazu spojena je Zenerova dioda Z.

Slika 9.3 - Stabilizator sa Zenerovom diodom.

Da bi se na Zenerovoj diodi uspostavio Zenerov napon U_Z istosmjerni ulazni napon U_{UL} mora biti veći od izlaznog stabiliziranog napona. Zenerov napon ujedno je i izlazni napon U_{IZ} stabilizatora. Razlika ulaznog i izlaznog napona je na otporniku R_1 . Padom napona na otporniku R_1 određena je struja I_1 kroz taj otpornik

$$I_1 = \frac{U_{UL} - U_{IZ}}{R_1} = \frac{U_{UL} - U_Z}{R_1} \tag{9.6}$$

Struja I_1 dijeli se na struju Zenerove diode I_Z i izlaznu struju trošila I_{IZ}

$$I_1 = I_Z + I_{IZ} \,, \tag{9.7}$$

pri čemu je struja trošila

$$I_{IZ} = \frac{U_{IZ}}{R_T} = \frac{U_Z}{R_T} \tag{9.8}$$

Princip stabilizacije je održavanje izlaznog napona stabilnim, tj. što manje ovisnim o promjeni radnih uvjeta kao što su promjena ulaznog napona ili promjena otpora trošila. Ako se promijeni ulazni napon, promijenit će se pad napona na otporniku R_1 , a time i njegova struja I_1 . Zenerova dioda održava stalni napon U_Z , a time i stalni izlazni napon U_{IZ} . Ako se nije promijenio otpor trošila R_T , nije s promijenila ni njegova struja. U tom se slučaju struja Zenerove diode I_Z

mijenja s promjenom struje I_1 . Izlazni napon ostat će nepromijenjen u onolikoj mjeri koliko se napon Zenerove diode U_Z ne mijenja s promjenom struje I_Z .

Ukoliko se uz nepromijenjeni ulazni napon promijeni trošilo, tj. njegov otpor R_T , uz stalni napon $U_{IZ} = U_Z$ promijenit će se izlazna struja I_{IZ} . Kako se nije promijenio pad napona na otporniku R_1 , nije se promijenila ni struja I_1 , tako da se izlazna struja I_{IZ} mijenja na račun promjene struja Zenerove diode I_Z .

Promjenom radnih uvjeta mijenja se struja Zenerove diode I_Z . Pri projektiranju stabilizatora treba osigurati da uz poznate promjene ulaznog napona U_{UL} i otpora trošila R_T struja Zenerove diode ostane u intervalu $I_{Z\,\rm min} < I_Z < I_{Z\,\rm max}$, gdje je $I_{Z\,\rm min}$ minimalna struja određena koljenom karakteristike diode, a $I_{Z\,\rm max}$ je maksimalna struja određena maksimalnom dozvoljenom disipacijom snage. Osiguravanje struje Zenerove diode potrebne za ispravan rad stabilizatora postiže se podešavanjem iznosa otpora R_1 . Za struju Zenerove diode može se pisati

$$I_Z = I_1 + I_{IZ} (9.9)$$

Struja diode I_Z biti će najmanja kada je najmanja struja I_1 i kada je najveća struja trošila I_{IZ} .

$$I_{Z \min} = I_{1 \min} - I_{IZ \max}. \tag{9.10}$$

Struja I_1 je najmanja kada je najmanji ulazni napon U_{UL} , a najveći otpor R_1

$$I_{1\min} = \frac{U_{UL\min} - U_Z}{R_{1\max}}.$$
 (9.11)

Pretpostavlja se da se Zenerov napon U_Z ne mijenja. Struja trošila je najveća kada je najmanji otpor trošila

$$I_{IZ\max} = \frac{U_Z}{R_{T\min}},\tag{9.12}$$

Uvrštenjem (9.11) i (9.12) u (9.10) dobiva se

$$I_{Z\min} = \frac{U_{UL\min} - U_Z}{R_{I\max}} - \frac{U_Z}{R_{T\min}}.$$
 (9.13)

Iz gornjeg se izraza dobiva najveći iznos otpora $R_{1 \text{max}}$ koji osigurava da struja Zenerove diode ne postane manja od $I_{Z \text{min}}$

$$R_{1 \max} = \frac{U_{UL \min} - U_Z}{I_{Z \min} + U_Z / R_{T \min}}.$$
 (9.14)

Na sličan način može se izraziti uvjet za najveću struju diode I_Z , koja je ograničena maksimalnom dozvoljenom disipacijom snage

$$I_{Z \max} = I_{1 \max} - I_{IZ \min} = \frac{U_{UL \max} - U_Z}{R_{1 \min}} - \frac{U_Z}{R_{T \max}} = \frac{P_{Z \max}}{U_Z}.$$
 (9.15)

Iz (9.15) slijedi uvjet za najmanji iznos otpora R_{lmin} uz koji struja Zenerove diode neće biti veća od $I_{Z\max}$

$$R_{\rm 1min} = \frac{U_{UL\,\rm max} - U_Z}{P_{Z\,\rm max} / U_Z + U_Z / R_{T\,\rm max}}.$$
 (9.16)

Iz gornjih uvjeta slijedi da iznos otpora otpornika R_1 iz intervala $R_{1\min} < R_1 < R_{1\max}$ osigurava ispravan rad stabilizatora uz struju Zenerove diode u intervalu $I_{Z\min} < I_Z < I_{Z\max}$.

Osim o iznosu otpora otpornika R_1 treba voditi računa i o snazi koja se disipira na tom otporniku. Uz odabranu vrijednost otpora R_1 , snaga P_1 na tom otporniku ovisi o ulaznom naponu i najveća je kada je ulazni napon najveći

$$P_{1\max} = \frac{(U_{UL\max} - U_Z)^2}{R_1}.$$
 (9.17)

U stabilizator treba ugraditi otpornik R_1 koji je predviđen za snagu $P_{1\max}$. Navedena snaga je najveća u normalnom radu stabilizatora. Dobro je pretpostaviti mogućnost pogrešnog kratkog spajanja izlaznih priključaka. U tom se slučaju na otporu disipira veća snaga $P'_{1\max} = U^2_{UL\max} / R_1$. i ako otpornik nije odabran za tu snagu može stradati.

Faktori stabilizacije S_U i S_I određuju se iz nadomjesne sheme stabilizatora za mali signal, prikazane na slici 9.4. U dinamičkim prilikama izmjenični ulazni napon stabilizatora u_{ul} jednak je izmjeničnom naponu valovitosti u_{ulv} , a Zenerova dioda nadomještena je dinamičkim otporom r_Z .

Slika 9.4 – Nadomjesna shema stabilizatora sa Zenerovom diodom za mali signal.

Prema (9.2) naponski faktor stabilizacije S_U je

$$S_U = \frac{u_{iz}}{u_{ul}} \bigg|_{i_{iz} = 0} \tag{9.18}$$

Uz $i_{iz} = 0$ odspaja se otpor trošila R_T i ista struja i_1 teče kroz R_1 i r_Z . Ta je struja

$$i_1 = \frac{u_{ul}}{R_1 + r_Z} = \frac{u_{iz}}{r_Z} \,, \tag{9.19}$$

odakle je

$$S_U = \frac{r_Z}{R_1 + r_Z} \,. {(9.20)}$$

Otpor R_1 redovito je dosta veći od dinamičkog otpora diode r_Z , pa je i izlazni izmjenični napon stabilizatora u_{iz} znatno manji od ulaznog napona valovitosti $u_{ul} = u_{ulv}$. Stabilizator znatno prigušuje izmjenični napon valovitosti.

Prema (9.3) opteretni faktor stabilizacije S_I je

$$S_I = \frac{u_{iz}}{i_{iz}} \bigg|_{u_{xt} = 0} \tag{9.21}$$

Prema shemi na slici 9.4 faktor S_I po iznosu je jednak izlaznom otporu R_{iz} , kojeg trošilo "vidi" u izlazu stabilizatora. Uz $u_{ul} = 0$ izlazni otpor je

$$R_{iz} = r_Z \parallel R_1. \tag{9.22}$$

Ako je dinamički otpor diode r_Z dosta manji od otpora R_1 izlazni otpor $R_{iz} \approx r_Z$. Zbog malog dinamičkog otpora diode r_Z mali je i izlazni otpor R_{iz} . Za trošilo se stabilizator ponaša kao naponski izvor s vrlo malim unutarnjim otporom. Zbog malog unutarnjeg otpora izlazni napon u_{iz} na trošilu malo će se mijenjati s otporom trošila R_T .

Za određivanje temperaturnog koeficijenta stabilizatora S_T treba poznavati temperaturne parametre otpornika R_1 i Zenerove diode.

Primjer 9.1

Odabrati otpor R_1 za ispravan rad stabilizatora sa slike 9.3. Ulazni napon U_{UL} mijenja se od 25 do 30 V, otpor trošila je $R_T \geq 500\,\Omega$, a probojni napon Zenerove diode $U_Z = 20\,\mathrm{V}$ uz $I_Z \geq 5\,\mathrm{mA}$. Dinamički otpor Zenerove diode u proboju $r_Z = 0.5\,\Omega$. Za odabrani otpor R_1 izračunati maksimalnu disipaciju Zenerove diode i otpornika R_1 . Odrediti naponski faktor stabilizacije i izlazni otpor stabilizatora, te efektivnu vrijednost napona valovitosti na trošilu R_T uz $U_{ulvef} = 0.5\,\mathrm{V}$.

Rješenje:

Izlazni napon stabilizatora $U_{IZ} = U_Z$. Za struje vrijedi

$$I_Z = I_1 - I_{IZ}.$$

Za minimalnu struju diode može se pisati

$$I_{Z\min} = I_{1\min} - I_{IZ\max},$$

uz

$$I_{1\min} = \frac{U_{UL\min} - U_Z}{R_{1\max}},$$

$$I_{IZ\,\text{max}} = \frac{U_Z}{R_{T\,\text{min}}},$$

odakle je

$$R_{1\,\text{max}} = \frac{U_{UL\,\text{min}} - U_Z}{I_{Z\,\text{min}} + U_Z / R_{T\,\text{min}}} = \frac{25 - 20}{5 + 20 / 0.5} = 0.11\,\text{k}\Omega \ .$$

Odabire se otpor

$$R_1 = 100 \Omega$$
.

Maksimalna disipacija na diodi je

$$P_{Z \max} = U_Z I_{Z \max}$$
,

a maksimalna struja diode

$$I_{Z \max} = I_{1 \max} - I_{IZ \min},$$

uz

$$I_{1\max} = \frac{U_{UL\max} - U_Z}{R_1},$$

$$I_{IZ\,\mathrm{min}} = \frac{U_Z}{R_{T\,\mathrm{max}}} = \frac{U_Z}{\infty} = 0.$$

Kako nije dana gornja granica otpora trošila R_T , može se očekivati da na izlazu trošilo bude odspojeno. U tom slučaju kroz diodu teče najveća struja i na njoj je najveća disipacija. Iz gornjih se izraza dobiva

$$P_{Z \max} = U_Z I_{1 \max} = U_Z \frac{U_{UL \max} - U_Z}{R_1} = 20 \cdot \frac{30 - 20}{100} = 2 \text{ W}.$$

Uz normalni rad stabilizatora maksimalna disipacija na otporu R_1 je

$$P_{1 \text{max}} = \frac{(U_{UL \text{max}} - U_Z)^2}{R_1} = \frac{(30 - 20)^2}{100} = 1 \text{ W}.$$

Uz kratko spojen izlaz

$$P'_{1\text{max}} = \frac{U_{UL\,\text{max}}^2}{R_1} = \frac{30^2}{100} = 9 \text{ W}.$$

Ako se otpornik R_1 želi zaštiti za slučaj kratko spojenog izlaza, mora se odabrati otpornik za disipaciju snage od 9 W.

Iz dinamičke nadomjesne sheme je

$$S_U = \frac{r_Z}{R_1 + r_Z} = \frac{0.5}{100 + 0.5} = 5 \cdot 10^{-3}$$
,

$$R_{iz} = r_Z || R_1 = 0.5 || 100 = 0.5 \Omega.$$

Efektivna vrijednost izlaznog napona valovitosti je

$$U_{izvef} = \frac{r_Z \| R_T}{R_1 + r_Z \| R_T} U_{ulvef}.$$

Uz $R_T >> r_Z$ dobiva se

$$U_{izvef} = \frac{r_Z}{R_1 + r_Z} U_{ulvef} = S_U \ U_{ulvef} = 5 \cdot 10^{-3} \cdot 0, \\ 5 = 2, \\ 5 \cdot 10^{-3} \ \text{V} = 2, \\ 5 \text{ mV} \ .$$

Primjer 9.2

U stabilizatoru prema slici 9.3 Zenerova dioda ima parametre: $U_Z=6\,\mathrm{V}$, uz $I_{Z\,\mathrm{min}}=4\,\mathrm{mA}$ i $P_{Z\,\mathrm{max}}=200\,\mathrm{mW}$. Otpor trošila $R_T=200\,\Omega$, a najmanji ulazni napon $U_{UL\,\mathrm{min}}=10\,\mathrm{V}$.

- a) Izračunati maksimalnu vrijednost otpora $R_{1 \text{ max}}$.
- b) Uz taj R_1 odrediti najveći dozvoljeni ulazni napon $U_{UL \max}$.

Rješenje:

a) Maksimalna vrijednost otpora $R_{1\max}$ određuje minimalnu vrijednost struje $I_{1\min}$ uz koju je i struja Zenerove diode minimalna $I_{Z\min}$. Ako se ne mijenja otpor trošila ne mijenja se ni izlazna struja I_{lZ} . Za minimalnu struju Zenerove diode vrijedi

$$I_{Z \min} = I_{1 \min} - I_{IZ}$$
.

uz

$$I_{1\min} = \frac{U_{UL\min} - U_Z}{R_{1\max}},$$

$$I_{IZ} = \frac{U_Z}{R_x}.$$

Iz navedenih izraza slijedi

$$R_{1\,\text{max}} = \frac{U_{UL\,\text{min}} - U_Z}{I_{Z\,\text{min}} + U_Z / R_T} = \frac{10 - 6}{4 + 6 / 0.2} = 0.118 \,\text{k}\Omega = 118 \,\Omega.$$

b) Uz $R_1 = 118\Omega$ maksimalna struje diode je

$$I_{Z\,{\rm max}} = \frac{P_{Z\,{\rm max}}}{U_Z} = I_{1\,{\rm max}} - I_{IZ} = \frac{U_{UL\,{\rm max}} - U_Z}{R_1} - \frac{U_Z}{R_T} \; .$$

Iz tog se izraza dobiva najveći dozvoljeni ulazni napon

$$U_{UL \max} = \left(\frac{P_{Z \max}}{U_Z} + \frac{U_Z}{R_T}\right) R_1 + U_Z = \left(\frac{200}{6} + \frac{6}{0.2}\right) \cdot 0.118 + 6 = 13.5 \text{ V}.$$

9.3. Serijski tranzistorski stabilizator

U stabilizatoru sa Zenerovom diodom dioda je jako opterećena. Budući da se stabilizatori projektiraju za veće izlazne struje, velika struja teče i kroz diodu uvjetujući na njoj veliku disipaciju snage. Disipacija snage diode znatno se smanjuje u serijskom tranzistorskom stabilizatoru prikazanom na slici 9.5. Stabilizator se zove serijski, jer je element koji služi za stabilizaciju, bipolarni tranzistor, spojen u seriju s izlaznim priključcima. Tranzistor prati i preuzima na sebe promjene ulaznog napona i opterećenja na izlazu, pri čemu se na izlazu održava stabilan napon.

Slika 9.5 - Serijski tranzistorski stabilizator.

Istosmjerni izlazni napon stabilizatora manji je od napona Zenerove diode za napon spoja baza-emiter tranzistora

$$U_{IZ} = U_Z - U_{BE}. ag{9.23}$$

Napon U_{BE} malo se mijenja sa strujom i jednak je naponu koljena propusno polariziranog spoja baza-emiter.

Ulazni napon U_{UL} mora biti veći od napona Zenerove diode U_Z , kako bi dioda radila u području proboja. Razlika ulaznog napona U_{UL} i napona Zenerove diode U_Z uspostavlja pad napona na otporniku R_1 , kojim se regulira struja tog otpornika

$$I_{1} = \frac{U_{UL} - U_{Z}}{R_{1}}. (9.24)$$

Pad napona na otporniku R_1 zaporno polarizira spoj kolektor-baza tranzistora i osigurava njegov rad u normalnom aktivnom području.

Struja I_1 dijeli se na struju Zenerove diode i baznu struju tranzistora

$$I_1 = I_Z + I_B. (9.25)$$

Izlazna struja je emiterska struja tranzistora i za rad tranzistora u normalnom aktivnom području vrijedi

$$I_{IZ} = (1 + \beta)I_B, \tag{9.26}$$

pa se za izlazni napon može pisati

$$U_{IZ} = I_{IZ} R_T = (1 + \beta) I_B R_T. \tag{9.27}$$

Rad serijskog tranzistorskog stabilizatora sličan je radu stabilizatora sa Zenerovom diodom. Dobar rad ovisi o nepromjenjivosti napona U_Z i U_{BE} sa strujama Zenerove diode I_Z i bazne struje tranzistora I_B . Pri promjeni ulaznog napona U_{UL} mijenja se struja I_1 . Ako se ne mijenja otpor trošila R_T , uz stalan izlazni napon $U_{IZ} = U_Z - U_{BE}$ ne mijenja se izlazna struja I_{IZ} , ne mijenja se ni bazna struja tranzistora I_B , pa promjenu struje I_1 preuzima Zenerova dioda. Promjena otpora trošila mijenja izlaznu struju I_{IZ} , a s njom i baznu struju tranzistora I_B . Ako se pri tome ne mijenja ulazni napon U_{UL} , uz stalni napon U_Z ne mijenja se ni struja I_1 . Bazna struja tranzistora mijenja se na račun promjene struje Zenerove diode.

Promjenom radnih uvjeta mijenja se struja Zenerove diode I_Z . Uz poznate promjene ulaznog napona U_{UL} i otpora trošila R_T za ispravan rad stabilizatora treba osigurati da struja Zenerove diode ne bude manja od struje $I_{Z\min}$, određene naponom koljena probojne karakteristike, niti veća od struje $I_{Z\max}$, određena maksimalnom dozvoljenom disipacijom snage $P_{Z\max}$.

Najmanja struja diode I_Z određena je najmanjom strujom I_1 i najvećom baznom strujom I_B

$$I_{Z\min} = I_{1\min} - I_{B\max} . (9.28)$$

Kombinacijom s (9.24) i (9.27) dobiva se

$$I_{Z \min} = \frac{U_{UL \min} - U_Z}{R_{1 \max}} - \frac{U_{IZ}}{(1 + \beta)R_{T \min}},$$
(9.29)

odakle se dobiva najveći iznos otpora $R_{1 \text{ max}}$ koji osigurava da struja Zenerove diode nije manja od $I_{Z \text{ min}}$

$$R_{1 \max} = \frac{U_{UL \min} - U_Z}{I_{Z \min} + \frac{U_{IZ}}{(1 + \beta)R_{T \min}}}.$$
 (9.30)

Na sličan se način izražava uvjet za najveću struju diode I_Z

$$I_{Z \max} = I_{1 \max} - I_{B \min} = \frac{U_{UL \max} - U_Z}{R_{1 \min}} - \frac{U_{IZ}}{(1 + \beta)R_{T \max}} = \frac{P_{Z \max}}{U_Z},$$
 (9.31)

odakle se određuje najmanji iznos otpora $R_{1\,\mathrm{min}}$ koji osigurava da struja Zenerove diode ne postane veća od $I_{Z\,\mathrm{max}}$

$$R_{1\min} = \frac{U_{UL\max} - U_Z}{\frac{P_{Z\max}}{U_Z} + \frac{U_{IZ}}{(1+\beta)R_{T\max}}}.$$
 (9.32)

Za ispravan rad Zenerove diode sa strujama iz intervala $I_{Z \min} < I_Z < I_{Z \max}$ otpor otpornika R_1 mora biti iz intervala $R_{1 \min} < R_1 < R_{1 \max}$.

Na slici 9.6 prikazana je nadomjesna shema serijskog tranzistorskog stabilizatora sa slike 9.5 za mali signal. Iz te se sheme određuju faktori stabilizacije S_U i S_I . Izmjenični ulazni napon stabilizatora u_{ul} jednak je izmjeničnom naponu valovitosti u_{ulv} . Između baze i emitera tranzistor je nadomješten dinamičkim otporom r_{be} , a između kolektora i emitera s ovisnim strujnim izvorom h_{fe} i_b . Strujni izvor upravljan je strujom baze, koje teče od baze prema emiteru, a struja izvora teče od kolektora prema emiteru. Zenerova dioda nadomještena je njenim dinamičkim otporom r_Z .

Slika 9.6 – Nadomjesna shema serijskog tranzistorskog stabilizatora za mali signal.

Naponski faktor stabilizacije S_U je

$$S_U = \frac{u_{iz}}{u_{ul}} \bigg|_{i_{iz} = 0} \tag{9.33}$$

Uz $i_{iz} = 0$, struja $i_b = 0$, pa je i pad napona na otporu r_{be} jednak nuli. Odspajanjem izvora h_{fe} i_b i trošila dobiva se shema prema slici 9.7. Iz te je sheme naponski faktor stabilizacije

$$S_U = \frac{u_{iz}}{u_{ul}} = \frac{r_Z}{R_1 + r_Z} \,. \tag{9.34}$$

Slika 9.7 – Određivanje naponskog faktora stabilizacije S_U iz sheme sa slike 9.6.

Faktor S_U jednak je kao i kod stabilizatora sa Zenerovom diodom. Redovito je dinamički otpor diode r_Z znatno manji od otpora R_1 , pa je i izlazni izmjenični napon stabilizatora u_{iz} znatno manji od ulaznog napona valovitosti $u_{ul} = u_{ulv}$.

Opteretni faktor stabilizacije S_I po iznosu je jednak izlaznom otporu R_{iz} . Na slici 9.8 prikazana je shema za određivanje izlaznog otpora. Shema je dobivena iz sheme sa slike 9.6 kratkim spajanjem naponskog izvora u_{ul} , te odspajanjem trošila R_T . Na mjesto trošila postavljen je naponski izvor u koji u sklop daje struju i.

Slika 9.8 – Određivanje izlaznog otpora R_{iz} iz sheme sa slike 9.6.

Struja i i napon u sa slike 9.8 su

$$i = -(1 + h_{fe})i_b,$$
 (9.35)

$$u = -(r_{be} + R_1 || r_Z) i_b, (9.36)$$

pa je izlazni otpor

$$R_{iz} = \frac{u}{i} = \frac{r_{be} + R_1 \| r_Z}{1 + h_{fe}}.$$
 (9.37)

Ako je dinamički otpor diode r_Z znatno manji od otpora R_1 izlazni otpor $R_{iz} \approx (r_{be} + r_Z)/(1 + h_{fe})$. U stabilizatoru tranzistor radi s većim izlaznim strujama, pa mu je dinamički otpor r_{be} mali. Izlazni otpor je mali, jer se mali otpori r_{be} i r_Z dijele s $1 + h_{fe}$. Za trošilo stabilizator je naponski izvor s vrlo malim unutarnjim otporom.

U serijskom tranzistorskom stabilizatoru tranzistor preuzima disipaciju snage. Izlazna struja je emiterska struja tranzistora. Zenerova dioda spojena je u krug baze i kroz nju teče praktički β puta manja struja u odnosu na struju koja teče kroz Zenerovu diodu u stabilizatoru sa Zenerovom diodom. To je bitna prednost. Uloga Zenerove diode u stabilizatoru je održavanje referentnog napona, što se lakše postiže ako dioda radi s manjim snagama i manje se grije.

Primjer 9.3

Odrediti izlazni napon, te dozvoljene granice iznosa otpornika R_1 za ispravan rad serijskog tranzistorskog stabilizatora sa slike 9.5. Otpor trošila je $R_T \ge 100\,\Omega$, a ulazni napon je $U_{UL} = 12 \pm 1\,\mathrm{V}$. Parametri Zenerove diode su: $U_Z = 7,5\,\mathrm{V}$ uz $I_Z \ge 1\,\mathrm{mA}$, $P_{Z\,\mathrm{max}} = 250\,\mathrm{mW}$ i

 $r_Z=0.5\,\Omega$. Faktor strujnog pojačanja tranzistora je $\beta\approx h_{fe}=100$, a naponski ekvivalent temperature $U_T=25\,\mathrm{mV}$. Odrediti naponski faktor stabilizacije i izlazni otpor stabilizatora uz $R_T=100\,\Omega$.

Rješenje:

Izlazni napon stabilizatora je

$$U_{17} = U_7 - U_{RF} = 7.5 - 0.7 = 6.8 \text{ V}$$
.

Iz izraza za minimalnu struju diode

$$I_{Z \min} = I_{1 \min} - I_{B \max} = \frac{U_{UL \min} - U_{Z}}{R_{1 \max}} - \frac{U_{IZ}}{(1 + \beta)R_{T \min}},$$

maksimalni iznos otpora R_1 je

$$R_{1\,\text{max}} = \frac{U_{UL\,\text{min}} - U_Z}{I_{Z\,\text{min}} + \frac{U_{IZ}}{(1+\beta)R_{T\,\text{min}}}} = \frac{11 - 7.5}{1 + \frac{6.8}{101 \cdot 0.1}} = 2,09 \text{ k}\Omega.$$

Nije dana gornja granica otpora trošila R_T , što znači da trošilo može biti odspojeno. U tom slučaju tranzistor je u području zapiranju i bazna struja $I_B = 0$. Kroz diodu teče najveća struja

$$I_{Z \max} = I_{1 \max} = \frac{U_{UL \max} - U_Z}{R_{1 \min}} = \frac{P_{Z \max}}{U_Z},$$

pa je minimalna vrijednost otpora R_1

$$R_{\text{Imin}} = \frac{U_{UL \max} - U_Z}{P_{Z \max} / U_Z} = \frac{13 - 7.5}{250 / 7.5} = 0.165 \text{ k}\Omega = 165 \Omega.$$

Uz zadane radne uvjete za ispravan rad Zenerove diode treba odabrati otpor R_1 s iznosom $165 \Omega < R_1 < 2,09 \text{ k}\Omega$.

Naponski faktor stabilizacije

$$S_U = \frac{r_Z}{R_1 + r_Z}$$

ovisi o odabranom iznosa otpora R_1 . Najveći je uz minimalnu vrijednost $R_{1 min} = 165 \Omega$ i iznosi

$$S_U = \frac{r_Z}{R_1 + r_Z} = \frac{0.5}{165 + 0.5} = 3 \cdot 10^{-3}$$

Odabiranjem većeg iznosa R_1 faktor S_U biti će još manji. Izlazni otpor je

$$R_{iz} = \frac{r_{be} + R_1 || r_Z}{1 + h_{fe}}.$$

Za otpor trošila $R_T = 100 \,\Omega$ bazna struja tranzistora je

$$I_B = \frac{I_{IZ}}{1+\beta} = \frac{U_{IZ}}{(1+\beta)R_T} = \frac{6.8}{101 \cdot 0.1} = 0.673 \text{ mA},$$

pa je dinamički otpor r_{be}

$$r_{be} = \frac{U_T}{I_B} = \frac{25}{0.673} = 37 \,\Omega$$
.

Dinamički otpor Zenerove diode r_Z znatno je manji od otpora R_1 i izlazni otpor je

$$R_{iz} = \frac{r_{be} + r_Z}{1 + h_{fe}} = \frac{37 + 0.5}{101} = 0.37 \,\Omega.$$

9.4. Serijski tranzistorski stabilizator s pojačalom u povratnoj vezi

Dosad opisani stabilizatori stabiliziraju izlazni napon fiksnog iznosa. Podešavanje iznosa izlaznog napona omogućuje stabilizator na slici 9.9. Stabilizator se naziva serijski tranzistorski stabilizator s pojačalom u povratnoj vezi. Aktivni element pojačala je tranzistor T_2 . U sklopovima s povratnom vezom dio izlaznog signala vraća se na ulaz. U stabilizatoru sa slike 9.9 dio izlaznog napona na bazi tranzistora T_2 vraća se preko kolektorske struje tog tranzistora u ulazni krug na bazu tranzistora T_1 .

Slika 9.9 – Serijski tranzistorski stabilizator s pojačalom u povratnoj vezi.

Otpornik R_1 osigurava baznu struju tranzistora T_1 i kolektorsku struju tranzistora T_2 , a otpornik R_2 struju Zenerove diode. Uloga tranzistora T_2 je slijedeća. Ako bi se povećao izlazni napon, povećao bi se potencijal baze tranzistora T_2 , a time i njegov napon U_{BE} . Povećanjem napona U_{BE} povećala bi se kolektorska struja I_{C2} tog tranzistora, ali na račun bazne struje tranzistora T_1 koja bi se smanjila. Time bi se smanjila izlazna struja trošila, a s njom i izlazni napon. Tranzistor T_2 suprotstavlja se promjeni izlaznog napona.

Kliznikom potenciometra mijenja se omjer otpora R3 i R4 i podešava se iznos izlaznog napona. Ako je struja koja teče kroz potenciometar znatno veća od bazne struje tranzistora T_2 vrijedi

$$U_{IZ} = U_Z + U_{BE2} + \frac{R_3}{R_3 + R_4} U_{IZ}, \qquad (9.38)$$

odakle je

$$U_{IZ} = (U_Z + U_{BE2}) \frac{R_3 + R_4}{R_4}.$$
 (9.39)

Izlazni napon je referentni napon U_Z+U_{BE2} pomnožen s faktorom $(R_3+R_4)/R_4$, koji je određen položajem kliznika potenciometra.

10. Sklopovi s operacijskim pojačalima

Operacijsko pojačalo ima dva ulaza i najčešće jedan izlaz. Odlikuje se vrlo velikim naponskim pojačanjem. Naziv "operacijsko pojačalo" nastao je kao rezultat prve primjene u analognim računalima, gdje su se uz pomoć operacijskih pojačala obavljale matematičke operacije (zbrajanje, odbijanje, integriranje, deriviranje) s analognim signalima. Prva operacijska pojačala bila su izvedena s diskretnim elementima, najprije s elektronskim cijevima, a kasnije s tranzistorima. Krajem 60-tih godina prošlog stoljeća realizirana su prva integrirana operacijska pojačala. Danas su integrirana operacijska pojačala najčešće korišteni analogni integrirani sklopovi. Zahvaljujući izvanrednim svojstvima koriste se u velikom broju primjena kao što su realizacija raznih pojačala, aktivnih filtara, stabilizatora, komparatora, digitalno-analognih i analogno-digitalnih pretvornika, generatora signala i sl.

10.1. Osnovna svojstva

Za operacijsko pojačalo koristi se električki simbol prema slici 10.1. Uz ulazne priključke i izlazni priključak, na slici su označeni i priključci na napajanje. Najčešće se kod operacijskih pojačala koriste dva napona napajanja, pozitivno i negativno. Naponi napajanja, označeni s U_{CC} i $-U_{EE}$, su komplementarni, tj. suprotnog su predznaka, ali su istog iznosa $U_{CC} = U_{EE}$. U električkim shemama često se radi jednostavnosti priključci napona napajanja ne crtaju.

U linearnom radu operacijskog pojačala, izlazni napon je pojačana razlika napona na ulazima.

Slika 10.1 – Operacijsko pojačalo – električki simbol s priključcima ulaza, izlaza i napajanja.

$$u_{iz} = A_{VOP} u_d = A_{VOP} (u_+ - u_-), \tag{10.1}$$

gdje je A_{VOP} naponsko pojačanje operacijskog pojačala. Iz gornjeg izraza slijedi

$$za u_{-} = 0 \rightarrow u_{iz} = A_{VOP} u_{+},$$
 (10.2)

$$za u_{+} = 0 \rightarrow u_{iz} = -A_{VOP} u_{-}.$$
 (10.3)

Izlazni napon u_{iz} u fazi je s naponom u_+ priključenim na ulaz označen s "+", a zakrenut je u fazi za 180° u odnosu na napon u_- priključen na ulaz označen s "-". Zbog toga se ulaz označen s "+" naziva neinvertirajući ulaz, a ulaz označen s "-" invertirajući ulaz.

U analizi sklopova s operacijskim pojačalima često se koriste svojstva idealnog operacijskog pojačala, od kojih su najvažnija navedena u tablici 10.1. Naponsko pojačanje vrlo je veliko i često se može smatrati beskonačnim. Ulazni otpori vrlo su veliki, što znači da su struje koje teku u ulazne priključke zanemarivo male. Na izlazu se operacijsko pojačalo ponaša kao idealni naponski izvor sa zanemarivo malim unutarnjim otporom.

Svojstvo	Idealno pojačalo	Realno pojačalo
Naponsko pojačanje	∞	104 - 106
Ulazni otpor	∞	1 MΩ i više
Izlazni otpor	0	100 Ω i manje
Gornja granična frekvencija	∞	10 Hz i više

Tablica 10.1 – Svojstva operacijskog pojačala.

U tablici 10.1 navedena su i svojstva realnih integriranih operacijskih pojačala. Kako bi se ostvarila željena svojstva, prvenstveno veliko naponsko pojačanje, operacijsko pojačalo najčešće se sastoji od tri stupnja pojačala, s time da mu je ulazni stupanj diferencijsko pojačalo. Katkad se za postizanje velikog ulaznog otpora kao ulazni tranzistori diferencijskog pojačala koriste FET-ovi.

Izlazni napon operacijskog pojačala ograničen je naponima napajanja. To se vidi na prijenosnoj karakteristici pojačala, na slici 10.2, koja prikazuje promjenu izlaznog napona u_{IZ} s ulaznim diferencijskim naponom spojenim između neinvertirajućeg i invertirajućeg ulaza, $u_D = u_+ - u_-$. Treba uočiti različita mjerila na osi apsica i osi ordinata.

Slika 10.2 – Prijenosna karakteristika operacijskog pojačala.

Predznak izlaznog napona odgovara predznaku diferencijskog napona u_D . Ako je napon u_+ pozitivniji od napona u_- , izlazni napon je pozitivan, a u suprotnom je slučaju negativan. Za male iznose napona u_D pojačalo radi linearno i izlazni napon mijenja se proporcionalno ulaznom

naponu. To je područje rada na prijenosnoj karakteristici ograničeno intervalom između točaka A i B. U linearnom području rada nagib karakteristike odgovara pojačanju pojačala A_{VOP} . Povećanjem iznosa ulaznog diferencijskog napona u_D , raste i iznos izlaznog napona u_{IZ} . Izlazni napon po iznosu može rasti do napona $U_{IZ\max}$ koji je malo manji od iznosa napona napajanja U_{CC} i smanjivati se do napona $U_{IZ\min}$ koji je po iznosu malo manji od iznosa napona $-U_{EE}$. Obično je $U_{IZ\min} = -U_{IZ\max}$. Daljnjim porastom iznosa napona u_D izlazni napon se više ne mijenja, već ulazi u zasićenje. U primjeru na slici 10.2 pojačanje pojačala je $A_{VOP} = 2 \cdot 10^5$. Iznos izlaznog napona ograničen je na napon malo manji od 15 V, a pojačalo radi linearno za iznose ulaznog diferencijskog napona u_D manje od 75 μ V.

Operacijsko pojačalo koristi se u dva različita područja prijenosne karakteristike. Uz ulazne napone do približno $|u_D| < U_{IZ\,\text{max}} / A_{VOP}$, uz koje je karakteristika linearna, operacijsko pojačalo djeluje kao pojačalo. Za veće iznose ulaznog napona u_D izlazni napon pojačala ulazi u zasićenje i ograničen je naponima $U_{IZ\text{max}}$ i $U_{IZ\text{min}}$. Predznak izlaznog napona odgovara predznaku napona u_D . Operacijsko pojačalo djeluje kao komparator, tj. kao sklop kojim se određuje da li je napon u_+ pozitivniji ili negativniji od napona u_- .

10.2. Izvedbe pojačala

Integrirana operacijska pojačala imaju vrlo velika naponska pojačanja, ali im se pojačanja rasipaju u širokim tolerancijama. Zbog toga se u realizaciji pojačala s operacijskim pojačalima redovito koristi negativna povratna veza, primjenom koje pojačanja pojačala postaju manja, ali su znatno stabilnija. Pojačanja pojačala s negativnom povratnom vezom nisu određena svojstvima elementa od kojih je načinjeno pojačalo, nego svojstvima pasivnih elemenata koji se odlikuju puno užim tolerancijama. Za linearni rad izlazni napon operacijskog pojačala ne smije ući u zasićenje.

10.2.1. Invertirajuće pojačalo

Na slici 10.3 prikazan je spoj invertirajućeg pojačala. Otpornik R_2 spojen je između izlaza i invertirajućeg ulaza operacijskog pojačala. Na taj se način dio izlaznog signala vraća na ulaz, čime se ostvaruje povratna veza. Ulazni napon u_{ul} priključen je na invertirajući ulaz preko otpornika R_1 . Na shemi su označeni priključci ulaznog i izlaznog napona pojačala u_{ul} i u_{iz} . Ulazni i izlazni naponi su potencijali tih točaka prema masi.

Slika 10.3 – Invertirajuće pojačalo.

Struje koje teku kroz otpornike R_1 i R_2 su

$$i_1 = \frac{u_{ul} - u_-}{R_1},\tag{10.4}$$

$$i_2 = \frac{u_- - u_{iz}}{R_2} \,. \tag{10.5}$$

Ukoliko se zbog velikog ulaznog otpora operacijskog pojačala zanemari struja koja ulazi u invertirajući ulaz struje i_1 i i_2 međusobno su jednake

$$i_1 = i_2$$
, (10.6)

odnosno

$$\frac{u_{ul} - u_{-}}{R_1} = \frac{u_{-} - u_{iz}}{R_2} \,. \tag{10.7}$$

Kako je neinvertirajući ulaz spojen je na masu, napon $u_+ = 0$, pa iz (10.3) slijedi

$$u_{-} = -\frac{u_{iz}}{A_{VOP}} \,. \tag{10.8}$$

lz (10.7) i (10.8) dobiva se naponsko pojačanje invertirajućeg pojačala

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 + \frac{1}{A_{VOP}} \left(1 + \frac{R_{2}}{R_{1}}\right)}.$$
 (10.9)

Ulazni napon u_{ul} spojen je na invertirajući ulaz operacijskog pojačala i pojačanje A_V je negativno. Izlazni napon u_{iz} zakrenut je u fazi za 180° u odnosu na ulazni napon u_{ul} .

Ako je naponsko pojačanje operacijskog pojačala A_{VOP} znatno veće od $(1 + R_2 / R_1)$, drugi pribrojnik u nazivniku znatno je manji od jedinice i pojačanje postaje jednako

$$A_V = \frac{u_{iz}}{u_{yy}} = -\frac{R_2}{R_1}. (10.10)$$

Uz veliko pojačanje A_{VOP} , ulazni diferencijski napon $u_d = u_+ - u_-$ operacijskog pojačala vrlo je mali i ulazni priključci praktički su na istom potencijalu, $u_+ = u_-$. Između ulaznih priključaka operacijskog pojačala je **prividni kratki spoj**. Spoj je kratki, jer su oba ulaza na istom potencijalu, ali je prividan, jer uz $R_{ul} \rightarrow \infty$ između ulaznih priključaka ne teče struja.

Uz prividni kratki spoj između ulaznih priključaka operacijskog pojačala, u pojačalu sa slike 10.3 vrijedi $u_- = u_+ = 0$, pa (10.7) prelazi u

$$\frac{u_{ul}}{R_1} = \frac{-u_{iz}}{R_2},\tag{10.11}$$

odakle izravno slijedi naponsko pojačanje prema (10.10).

Analiza sklopova s idealnim operacijskim pojačalima koja rade u linearnom području postaje jednostavna ako se koriste slijedeće pretpostavke:

- zbog beskonačno velikog ulaznog otpora ulazne struje operacijskog pojačala jednake su nuli i
- zbog beskonačno velikog pojačanja ulazni priključci operacijskog pojačala na istom su potencijalu.

Ako je naponsko pojačanje A_{VOP} znatno veće od $(1 + R_2 / R_1)$, iznos naponskog pojačanja invertirajućeg pojačala R_2 / R_1 znatno je manji od naponskog pojačanja operacijskog pojačala A_{VOP} . Povratna veza smanjuje naponsko pojačanje i naziva se **negativna povratna veza**. Prednost negativne povratne veze je da je pojačanje određeno otpornicima, čije su vrijednosti otpora puno užih tolerancija nego što su tolerancije parametra operacijskog pojačala. U sklopovima s operacijskim pojačalom negativna povratna veza realizira se spajanjem pasivnog elementa ili pasivne mreže između izlaza i invertirajućeg ulaza operacijskog pojačala.

Uz idealno operacijsko pojačalo ulazni otpor invertirajućeg pojačala sa slike 10.3 je

$$R_{ul} = \frac{u_{ul}}{i_1} = \frac{u_{ul}}{u_{ul}/R_1} = R_1. \tag{10.12}$$

Invertirajuće pojačalo je istosmjerno pojačalo, koje nema donje granične frekvencije, odnosno jednako dobro pojačava napone od frekvencije nula do gornje granične frekvencije. Svi navedeni izrazi u analizi pojačala vrijede ne samo za izmjenične sinusne signale s frekvencijom nižom od gornje granične frekvencije, nego i za istosmjerne napone i struje.

Primjer 10.1

U invertirajućem pojačalu sa slike 10.3 otpori otpornika su $R_1 = 1\,\mathrm{k}\Omega$ i $R_2 = 100\,\mathrm{k}\Omega$. Odrediti naponsko pojačanje invertirajućeg pojačala A_V uz pojačanja operacijskog pojačala $A_{VOP} = 10^3$, 10^4 i 10^5 . Za svako pojačanje A_{VOP} odrediti relativnu pogrešku stvarnog pojačanja A_V u odnosu na pojačanje $A_{Vi} = -R_2/R_1$ uz idealno operacijsko pojačalo, te amplitudu napona U_{-m} invertirajućeg ulaza operacijskog pojačala, ako je amplituda ulaznog sinusnog napona pojačala $U_{ulm} = 0,1\,\mathrm{V}$.

Rješenje:

Za zadane otpore naponsko pojačanje invertirajućeg pojačala uz idealno operacijsko pojačalo je

$$A_{Vi} = \frac{u_{iz}}{u_{ul}} = -\frac{R_2}{R_1} = -\frac{100}{1} = -100.$$

Uz konačno pojačanje opearacijskog pojačala A_{VOP} naponsko pojačanje invertirajućeg pojačala je

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 + \frac{1}{A_{VOP}} \left(1 + \frac{R_{2}}{R_{1}}\right)}.$$

Relativna pogreška pojačanja je

$$\varepsilon_r = \frac{A_V - A_{Vi}}{A_V} \,,$$

a amplituda napona invertirajućeg ulaza je

$$U_{-m} = -\frac{U_{izm}}{A_{VOP}} = -\frac{A_V \, U_{ulm}}{A_{VOP}} \, . \label{eq:Um}$$

Rezultati za pojedina pojačanja A_{VOP} dani su u tablici 10.2.

Tablica 10.2 – Rezultati primjera 10.1.

A_{VOP}	A_V	ε_r	U_m
10 ³	-90,8	-10,1 %	9,08 mV
104	-99,0	-1,0 %	0,99 mV
10 ⁵	-99,9	-0,1 %	0,10 mV

Pojačanje operacijskog pojačala A_{VOP} uspoređuje se s

$$1 + \frac{R_2}{R_1} = 1 + \frac{100}{1} = 101$$
.

Što je pojačanje A_{VOP} veće od $(1 + R_2 / R_1)$, pojačanje A_V približava se pojačanju A_{Vi} invertirajućeg pojačala s idealnim operacijskim pojačalom. Pri tome je pogreška među pojačanjima sve je manja, a s povećanjem pojačanja A_{VOP} manji je i napon između ulaznih priključaka.

Primjer 10.2

Odrediti otpore R_1 i R_2 invertirajućeg pojačala sa slike 10.3 tako da ulazni otpor pojačala bude $R_{ul} = 2 \, \mathrm{k}\Omega$, a naponsko pojačanje $A_V = -200$. Operacijsko pojačalo je idealno.

Rješenje:

Uz idealno operacijsko pojačalo ulazni otpor invertirajućeg pojačala je

$$R_{ul} = \frac{u_{ul}}{i_1} = R_1 = 2 \,\mathrm{k}\Omega \,.$$

Naponsko pojačanje invertirajućeg pojačala je

$$A_V = \frac{u_{iz}}{u_{ul}} = -\frac{R_2}{R_1},$$

odakle slijedi

$$R_2 = -A_V R_1 = -200 \cdot 2 = -400 \,\mathrm{k}\Omega$$
.

10.2.2. Nenvertirajuće pojačalo

Spoj neinvertirajućeg pojačala na slici 10.4 sličan je invertirajućem pojačalu, s tom razlikom što se ulazni napon u_{ul} dovodi izravno na neinvertirajući ulaz operacijskog pojačala, a otpornik R_1 spojen je između invertirajućeg ulaza i mase. Otpornik R_2 , spojen između izlaza i invertirajućeg ulaza operacijskog pojačala, osigurava negativnu povratnu vezu.

Slika 10.4 – Neinvertirajuće pojačalo.

Zanemarenjem ulaznih struja operacijskog pojačala, struje koje teku kroz otpornike R_1 i R_2 međusobno su jednake $i_1 = i_2$, odnosno

$$\frac{u_{-}}{R_{1}} = \frac{u_{iz} - u_{-}}{R_{2}} \,. \tag{10.13}$$

Ulazni diferencijski napon operacijskog pojačala je

$$u_{+} - u_{-} = u_{ul} - u_{-} = \frac{u_{iz}}{A_{VOP}}.$$
 (10.14)

Kombinacijom (10.13) i (10.14) dobiva se naponsko pojačanje

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \left(1 + \frac{R_2}{R_1}\right) \frac{1}{1 + \frac{1}{A_{VOP}} \left(1 + \frac{R_2}{R_1}\right)}.$$
 (10.15)

Naponsko pojačanje neinvertirajućeg pojačala je pozitivno, što znači da su ulazni i izlazni napon u fazi. Naponsko pojačanje neinvertirajućeg pojačala (10.15) jednako ovisi o naponskom pojačanju operacijskog pojačala A_{VOP} kao i naponsko pojačanje invertirajućeg pojačala (10.9). Pojačanje A_V ne ovisi o pojačanju A_{VOP} , ako je to pojačanje znatno veće od $(1 + R_2 / R_1)$. U tom je slučaju drugi pribrojnik u nazivniku znatno manji od jedinice i pojačanje je jednako

$$A_V = \frac{u_{iz}}{u_{ul}} = 1 + \frac{R_2}{R_1} \,. \tag{10.16}$$

tj. ovisi samo o otporima otpornika R_1 i R_2 .

Do izraza (10.16) može se doći izravnom analizom pojačala sa slike 10.4. Ako se zbog velikog pojačanja A_{VOP} zanemari razlika napona između ulaznih priključaka operacijskog pojačala, tada vrijedi $u_- = u_+ = u_{ul}$, te izraz (10.13) prelazi u oblik

$$\frac{u_{ul}}{R_1} = \frac{u_{iz} - u_{ul}}{R_2} \,, \tag{10.17}$$

odakle slijedi naponsko pojačanje prema (10.16).

Ulazni otpor neinvertirajućeg pojačala jednak je ulaznom otporu neinvertirajućeg ulaza operacijskog pojačala. Taj je otpor vrlo velik, a u slučaju idealnog operacijskog pojačala smatra se beskonačnim.

Primjer 10.3

U neinvertirajućem pojačalu sa slike 10.4 otpori otpornika su $R_1 = 3 \,\mathrm{k}\Omega$ i $R_2 = 50 \,\mathrm{k}\Omega$. Odrediti naponsko pojačanje neinvertirajućeg pojačala A_V , amplitude napona U_{-m} invertirajućeg ulaza i U_{izm} operacijskog pojačala, te amplitude struja I_{1m} i I_{2m} ako je amplituda ulaznog sinusnog napona pojačala $U_{ulm} = 0$,1 V . Operacijsko pojačalo je idealno.

Rješenje:

Uz idealno operacijsko pojačalo naponsko pojačanje neinvertirajućeg pojačala je

$$A_V = \frac{u_{iz}}{u_{vl}} = 1 + \frac{R_2}{R_1} = 1 + \frac{50}{3} = 17.7$$
.

Amplitude napona su

$$U_{-m} = U_{+m} = U_{ulm} = 0.1 \text{ V},$$

$$U_{izm} = A_V U_{ulm} = 17,7 \cdot 0,1 = 1,77 \text{ V},$$

a struja

$$I_{1m} = \frac{U_{ulm}}{R_1} = \frac{0.1}{3} = 0.033 \,\text{mA} = 33 \,\mu\text{A} = I_{2m}.$$

Struja I_{2m} može se izračunati i iz

$$I_{2m} = \frac{U_{i:m}}{R_1 + R_2} = \frac{1,77}{3 + 50} = 0,033 \text{ mA} = 33 \mu\text{A} = I_{2m}.$$

Naponsko sljedilo

Specijalan slučaj neinvertirajućeg pojačala je naponsko sljedilo sa slike 10.5. U odnosu na neinvertirajuće pojačalo sa slike 10.4, u sljedilu su otpori $R_2 = 0$ i $R_1 = \infty$., te je prema 10.16 naponsko pojačanje

$$A_V = \frac{u_{iz}}{u_{ul}} = 1. {(10.18)}$$

Slika 10.5 - Naponsko sljedilo.

Pojačanje sljedila može se izravno očitati iz sheme na slici 10.5 uz pretpostavku da je operacijsko pojačalo idealno. Iz sheme je napon $u_- = u_{iz}$. Ako se pretpostavi prividni kratki spoj između ulaznih priključaka operacijskog pojačala tada je $u_- = u_+ = u_{ul} = u_{iz}$, odnosno naponsko pojačanje $A_V = 1$.

Sljedilo sa slike 10.5 ima jako veliki ulazni i jako mali izlazni otpor i koristi se kao odjelni stupanj, odnosno transformator impedancije, kao što je to slučaj s emiterskim i uvodskim sljedilom

10.2.3. Diferencijsko pojačalo

U diferencijskom pojačalu na slici 10.6 koriste se dva ulazna napona u_{ul1} i u_{ul2} , od kojih se jedan dovodi na invertirajući, a drugi na neinvertirajući ulaz operacijskog pojačala.

Slika 10.6 - Diferencijsko pojačalo.

Ako se zanemari struja u invertirajući ulaz operacijskog pojačala, struje kroz otpornike R_1 i R_2 međusobno su jednake, $i_1 = i_2$, pa vrijedi

$$\frac{u_{u/1} - u_{-}}{R_1} = \frac{u_{-} - u_{iz}}{R_2},\tag{10.19}$$

odakle je

$$u_{iz} = \left(1 + \frac{R_2}{R_1}\right) u_{-} - \frac{R_2}{R_1} u_{u/1}. \tag{10.20}$$

Izlazni napon u_{iz} superpozicija je doprinosa napona u_{-} i u_{ul1} . Zanemarenjem struje u neinvertirajući ulaz opearcijskog pojačala, jednake su struje kroz otpornike R_3 i R_4 , $i_3 = i_4$, odakle je

$$u_{+} = \frac{R_4}{R_3 + R_4} u_{u/2} \,. \tag{10.21}$$

Uz veliko naponsko pojačanje operacijskog pojačala ulazni naponi operacijskog pojačala praktički su jednaki $u_- = u_+ = u$. U tom se slučaju uvrštenjem (10.21) u (10.20) dobiva

$$u_{iz} = \frac{R_1 + R_2}{R_1} \frac{R_4}{R_3 + R_4} u_{u/2} - \frac{R_2}{R_1} u_{u/1}.$$
 (10.22)

Izlazni napon u_{iz} ovisi o oba ulazna napona u_{ul1} i u_{ul2} . Za vrijednosti otpora $R_3 = R_1$ i $R_4 = R_2$ (10.22) prelazi u

$$u_{iz} = \frac{R_2}{R_1} \left(u_{u/2} - u_{u/1} \right) = \frac{R_2}{R_1} u_{u/d} . \tag{10.23}$$

odakle je pojačanje diferencijskog pojačala

$$A_{Vd} = \frac{u_{iz}}{u_{ul2} - u_{ul1}} = \frac{u_{iz}}{u_{uld}} = \frac{R_2}{R_1}.$$
 (10.24)

Uz $R_3 = R_1$ i $R_4 = R_2$ pojačalo pojačava diferencijski napon $u_d = u_{ul2} - u_{ul1}$. Diferencijsko pojačanje određeno je omjerom otpornika R_2 / R_1 .

10.2.4. Instrumentacijsko pojačalo

Nedostatak diferencijskog pojačala sa slike 10.6 su relativno mali ulazni otpori. Pojačanje razlike signala uz velike ulazne otpore pojačala može se postići instrumentacijskim pojačalom prikazanim na slici 10.7. Pojačalo koristi tri operacijska pojačala označena s A_1 , A_2 i A_3 . Dva ulazna napona $u_{u/1}$ i $u_{u/2}$, dovode se na neinvertirajuće ulaze operacijskih pojačala A_1 i A_2 , koja rade kao neinvertirajuća pojačala. Izlazni naponi ta dva operacijska pojačala u_{iz1} i u_{iz2} dovode se na operacijsko pojačalo A_3 koje je u spoju diferencijskog pojačala.

U analizi instrumentacijskog pojačala pretpostavljaju se idealna operacijska pojačala, čije su ulazne struje jednake nuli i čiji su ulazni priključci na istom potencijalu. Kroz dva otpornika R_2 i otpornik $2R_1$ teku jednake struje i

$$i = \frac{u_{iz2} - u_{iz1}}{2R_1 + 2R_2} = \frac{u_{u/2} - u_{u/1}}{2R_1},$$
(10.25)

odakle je

$$u_{i=2} - u_{i=1} = \left(1 + \frac{R_2}{R_1}\right) \left(u_{ul2} - u_{ul1}\right). \tag{10.26}$$

Slika 10.7 – Instrumentacijsko pojačalo.

Naponi u_{iz1} i u_{iz2} su ulazni naponi diferencijskog pojačala realiziranog s operacijskim pojačalom A_3 . Na temelju analize diferencijskog pojačala prema (10.23) vrijedi

$$u_{iz} = \frac{R_4}{R_3} (u_{iz2} - u_{iz1}), \qquad (10.27)$$

odnosno

$$u_{iz} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) \left(u_{u/2} - u_{u/1} \right) = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) u_{u/d}, \qquad (10.28)$$

gdje je $u_{uld} = u_{ul2} - u_{ul1}$ ulazni diferencijski napon. Naponsko pojačanje ulaznog diferencijskog napona je

$$A_{Vd} = \frac{u_{iz}}{u_{u/2} - u_{u/1}} = \frac{u_{iz}}{u_{u/d}} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right), \tag{10.29}$$

Instrumentacijsko pojačalo pojačava razliku ulaznih napona. Uz mogućnost postizanja velikog naponskog pojačanja za ulazni diferencijski napon, osnovna prednost pojačala su veliki ulazni otpori na oba ulaza.

Primjer 10.4

U instrumentacijskom pojačalu sa slike 10.7 otpori otpornika su $R_1 = 15 \,\mathrm{k}\Omega$, $R_2 = 150 \,\mathrm{k}\Omega$, $R_3 = 15 \,\mathrm{k}\Omega$ i $R_4 = 30 \,\mathrm{k}\Omega$. Uz pretpostavku da su ne neinvertirajuće ulaze operacijskih pojačala A_1 i A_2 priključeni istosmjerni naponi $U_{UL1} = 2,5 \,\mathrm{V}$ i $U_{UL2} = 2,25 \,\mathrm{V}$ odrediti izlazne napone operacijskih pojačala U_{IZ1} , U_{IZ2} i U_{IZ} .

Rješenje:

Prema slici 10.7 kroz otpornik 2 R_1 teče ista struja I

$$I = \frac{U_{UL2} - U_{UL1}}{2R_1} = \frac{2,25 - 2,5}{2 \cdot 15} = -8,33 \cdot 10^{-3} \text{ mA} = -8,33 \,\mu\text{A}.$$

Naponi U_{IZ1} i U_{IZ2} su

$$U_{171} = U_{1111} - IR_2 = 2.5 + 8.33 \cdot 10^{-3} \cdot 150 = 3.75 \text{ V}.$$

$$U_{IZ2} = U_{UL2} + I R_2 = 2,25 - 8,33 \cdot 10^{-3} \cdot 150 = 1,00 \text{ V}$$
.

Izlazni napon pojačala je

$$U_{IZ} = \frac{R_4}{R_3} (U_{IZ2} - U_{IZ1}) = \frac{30}{15} \cdot (1,00 - 3,75) = -5,50 \text{ V}.$$

Izlazni napon može se računati izravno iz ulaznih napona pojačala

$$U_{IZ} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right) \left(U_{UL2} - U_{UL1} \right) = \frac{30}{15} \cdot \left(1 + \frac{150}{15} \right) \cdot \left(2,25 - 2,5 \right) = -5,50 \text{ V}.$$

Na oba načina dobiveni su jednaki rezultati.

10.3. Primjene operacijskih pojačala u obavljanju matematičkih operacija

Primjenom operacijskih pojačala mogu se obavljati matematičke operacije nad analognim signalima. Nekad su se te primjene koristile u analognim računalima, a danas se koriste u obradi signala.

10.3.1. Zbrajanje i oduzimanje operacijskim pojačalom

Osnovni sklop zbrajala s operacijskim pojačalom prikazan je na slici 10.8. Sklop je dobiven proširenjem broja ulaza invertirajućeg pojačala. Uz idealno operacijsko pojačalo oba su ulazna napona operacijskog pojačala međusobno jednaka, $u_- = u_+ = 0$, a zbroj struja kroz otpornike R_1 , R_2 i R_3 jednak je struji kroz otpornik R_N spojen između izlaza i invertirajućeg ulaza operacijskog pojačala

$$i_1 + i_2 + i_3 = i_N. ag{10.30}$$

Za struje se može pisati

$$\frac{u_{UL1}}{R_1} + \frac{u_{UL2}}{R_2} + \frac{u_{UL3}}{R_3} = -\frac{u_{IZ}}{R_N} \,. \tag{10.31}$$

Slika 10.8 – Sklop za zbrajanje.

Uz prividni kratki spoj između ulaznih priključaka operacijskog pojačala ulazne struje su proporcionalne ulaznim naponima. Izlazni napon je

$$u_{IZ} = -\left(\frac{R_N}{R_1}u_{UL1} + \frac{R_N}{R_2}u_{UL2} + \frac{R_N}{R_3}u_{UL3}\right). \tag{10.32}$$

Izlazni napon je zbroj ulaznih napona u_{ULi} pomnoženih s težinskim faktorima R_N / R_i . Ako se ulazni naponi žele zbrajati s istim težinskim faktorom ulazni otpori moraju biti jednaki $R_1 = R_2 = R_3$. Tada vrijedi

$$u_{IZ} = -\frac{R_N}{R_1} \left(u_{UL1} + u_{UL2} + u_{UL3} \right). \tag{10.33}$$

Za $R_N = R_1 = R_2 = R_3$ izlazni je napon po iznosu jednak zbroju ulaznih napona, $u_{IZ} = -(u_{UL1} + u_{UL2} + u_{UL3})$.

Broj ulaznih napona u sklopu na slici 10.8 može se po volji povećati spajanjem dodatnih paralelnih grana između pojedinog ulaza i invertirajućeg ulaza operacijskog pojačala. Budući se ulazni naponi preko otpornika priključuju na invertirajući ulaz operacijskog pojačala izlazni napon je negativni zbroj ulaznih napona. Pozitivni zbroj može se dobiti ako se u seriju sa sklopom za zbrajanje spoji invertirajuće pojačalo s naponskim pojačanjem $A_V = -1$.

Sklop sa slike 10.8 može jedino zbrajati ulazne napone. Na slici 10.9 prikazan je sklop koji zbraja i oduzima ulazne napone. Sklop je dobiven proširenjem broja ulaza diferencijskog pojačala sa slike 10.6. Dio ulaznih napona spaja se na invertirajući, a dio na neinvertirajući ulaz operacijskog pojačala. Sklop se analizira uz pretpostavku da je operacijsko pojačalo idealno, pri čemu se zanemaruju ulazne struje operacijskog pojačala i razlika napona između njegovih ulaznih priključaka. U tom su slučaju oba ulazna napona operacijskog pojačala međusobno jednaka $u_- = u_+ = u$. Zbroj struja kroz otpornike R_3 i R_4 jednak je struji kroz otpornik R_P

$$i_3 + i_4 = i_P \,. \tag{10.34}$$

Izraze li se struje pomoću napona i otpora

Slika 10.9 - Sklop za zbrajanje i oduzimanje.

$$\frac{u_{UL3} - u}{R_3} + \frac{u_{UL4} - u}{R_4} = \frac{u}{R_P},$$
 (10.35)

dobiva se

$$u\left(1 + \frac{R_P}{R_3} + \frac{R_P}{R_4}\right) = \frac{R_P}{R_3}u_{UL3} + \frac{R_P}{R_4}u_{UL4}.$$
 (10.36)

Zbroj struja kroz otpornike R_1 i R_2 jednak je struji kroz otpornik R_N

$$i_1 + i_2 = i_N \,, \tag{10.37}$$

$$\frac{u_{UL1} - u}{R_1} + \frac{u_{UL2} - u}{R_2} = \frac{u - u_{IZ}}{R_N} \,. \tag{10.38}$$

Izlazni napon je

$$u_{IZ} = u \left(1 + \frac{R_N}{R_1} + \frac{R_N}{R_2} \right) - \frac{R_N}{R_1} u_{UL1} - \frac{R_N}{R_2} u_{UL2}.$$
 (10.39)

Uvrštenjem (10.36) dobiva se

$$u_{IZ} = -\frac{R_N}{R_1} u_{UL1} - \frac{R_N}{R_2} u_{UL2} + \frac{1 + \frac{R_N}{R_1} + \frac{R_N}{R_2}}{1 + \frac{R_P}{R_3} + \frac{R_P}{R_4}} \left(\frac{R_P}{R_3} u_{UL3} + \frac{R_P}{R_4} u_{UL4} \right). \tag{10.40}$$

U izlaznom naponu ulazni se naponi javljaju s težinskim faktorima. Pri tome se ulazni naponi koji su spojeni na invertirajući ulaz operacijskog pojačala javljaju s negativnim predznakom, a ulazni naponi koji su spojeni na neinvertirajući ulaz s pozitivnim predznakom. Ako su svi otpori R_i ulaznih napona u_{ULi} međusobno jednaki, $R_1 = R_2 = R_3 = R_4$ i ako su jednaki otpori $R_N = R_P$ izlazni je napon jednak

$$u_{IZ} = \frac{R_N}{R_1} \left(-u_{UL1} - u_{UL2} + u_{UL3} + u_{UL4} \right). \tag{10.41}$$

Sklop zbraja i oduzima ulazne napone bez težinskog faktora, ali je izlazni napon pojačan za omjer R_N / R_1 . Ako je i $R_N = R_1$ izlazni napon je $u_{JZ} = -u_{UL1} - u_{UL2} + u_{UL3} + u_{UL4}$.

10.3.2. Integrartor

U sklopu na slici 10.10 u povratnu vezu između izlaza i invertirajućeg ulaza operacijskog pojačala spojen je kondenzator kapaciteta C. Između ulaza pojačala i invertirajućeg ulaza operacijskog pojačala spojen je otpornik R. Za idealno operacijsko pojačalo oba ulaza su na istom potencijalu $u_- = u_+ = 0$, a ulazne struje operacijskog pojačala jednake su nuli. Uz vremenski promjenjivi ulazni napon $u_{UL}(t)$ struja otpornika R jednaka je

Slika 10.10 - Integrator.

$$i(t) = \frac{u_{UL}(t)}{R}$$
 (10.42)

Ista struja i(t) teče u kondenzator i nabija ga. Napon na kondenzatoru C je

$$u_C(t) = \frac{1}{C} \int_0^t i(t) dt + U_{C0} = \frac{1}{RC} \int_0^t u_{UL}(t) dt + U_{C0}, \qquad (10.43)$$

gdje je $U_{C0} = u_C(t=0)$ početni napon na kondenzatoru u trenutku t=0. Izlazni napon sklopa je

$$u_{IZ}(t) = -u_C(t) = -\frac{1}{RC} \int_0^t u_{UL}(t) dt - U_{C0}.$$
 (10.44)

Izlazni napon sklopa $u_{IZ}(t)$ proporcionalan je integralu ulaznog napona $u_{UL}(t)$ i sklop se naziva integrator. Čest naziv ovog sklopa je i **Millerov integrator**.

Primjer 10.5

Odrediti izlazni napon $u_{IZ}(t)$ integratora sa slike 10.10 ako je ulazni napon $u_{UL}(t)$ impuls amplitude $U_{UL1}=1\,\mathrm{V}$, a trajanja $T_P=1\,\mathrm{ms}$. Otpor otpornika je $R=10\,\mathrm{k}\Omega$, a kapacitet kondenzatora je $C=10\,\mathrm{nF}$. Prije dolaska impulsa napon na kondenzatoru bio je jednak nuli, tj. $U_{C0}=0\,\mathrm{V}$.

Rješenje:

Za vrijeme trajanja impulsa za $0 \le t \le T_P$ ulazni napon $u_{UL} = U_{UL1}$. Kroz to vrijeme izlazni napon integratora je

$$u_{IZ}(t) = -\frac{1}{RC} \int_{0}^{t} u_{UL}(t) dt = -\frac{U_{UL1}}{RC} t.$$

Izlazni napon mijenja se linearno s vremenom t. Umnožak RC, odnosno vremenska konstanta je

$$RC = 10^4 \cdot 10^{-8} = 10^{-4} \text{ s} = 0.1 \text{ ms}$$

pa je u intervalu vremena $0 \le t \le 1$ ms izlazni napon

$$u_{IZ}(t) = -10t,$$

gdje je vrijeme t u milisekundama. Nakon $t = T_P = 1$ ms izlazni napon poprima vrijednost

$$u_{IZ}(T_P) = -10 \text{ V}$$
.

Valni oblici ulaznog i izlaznog napona prikazani su na slici 10.11.

Slika 10.11 – Valni oblici ulaznog i izlaznog napona integratora iz primjera 10.5.

10.3.3. Derivator

U odnosu na sklop integratora sa slike 10.10 u sklopu na slici 10.12 zamijenjene su uloge otpornika i kondenzatora. Uz idealno operacijsko pojačalo naponi oba ulaza međusobno su

jednaki, $u_- = u_+ = 0$, a ulazne struje operacijskog pojačala jednake su nuli. Struja kondenzatora C jednaka je

Slika 10.12 - Diferencijator.

$$i(t) = C \frac{\mathrm{d} u_{UL}(t)}{\mathrm{d} t}, \tag{10.45}$$

a izlazni je napon

$$u_{IZ}(t) = -Ri(t) = -RC \frac{d u_{UL}(t)}{dt}$$
 (10.46)

Izlazni napon $u_{IZ}(t)$ sklopa proporcionalan je derivaciji ulaznog napona $u_{UL}(t)$ po vremenu t i sklop se naziva derivator.

10.4. Multivibratori

Multivibratori su impulsni sklopovi čiji izlazni napon poprima jedno od dva moguća stanja – stanje niske ili stanje visoke razine. Stanja mogu biti stabilna ili kvazistabilna. U stabilnom stanju multivibrator ostaje trajno. Stabilno stanje mijenja se tek dovođenjem vanjske pobude koja prebacuje multivibrator u suprotno stanje. U kvazistabilnom stanju multivibrator ostaje ograničeno vrijeme, određeno karakteristikama sklopa, nakon čega sam prelazi u suprotno stanje. Postoje tri vrste multivibratora. Bistabilni multivibrator ili bistabil ima oba stanja stabilna. U monostabilnom multivibratoru ili monostabilu jedno stanje je stabilno, a drugo kvazistabilno. Astabilni multivibrator ili astabil je multivibrator s oba kvazistabilna stanja. Multivibratori se izvode s tranzistorima i s operacijskim pojačalima. Izvedbe CMOS tranzistorskih bistabila bile su prikazane u 6. poglavlju.

10.4.1. Operacijsko pojačalo s pozitivnom povratnom vezom

Kada se operacijsko pojačalo koristi u pojačalima primjenjuje se negativna povratna veza. Ta vrsta povratne veze najčešće ograničava izlazni napon operacijskog pojačala na vrijednosti koje su unutar izlaznih napona zasićenja i zbog velikog naponskog pojačanja operacijskog pojačala održava njegove ulazne stezaljke na praktički istom potencijalu.

U multivibratorima operacijska pojačala rade s **pozitivnom povratnom vezom**, koja se, prema slici 10.13, ostvaruje spajanjem pasivne komponente između izlaza i neinvertirajućeg ulaza operacijskog pojačala. Ako je u sklopu na slici 10.13 izlazni napon na potencijalu mase, $u_{IZ} = 0 \text{ V}$, tada su i oba ulaza na potencijalu mase, $u_{-} = u_{+} = 0 \text{ V}$. Takvo stanje ne može se održati trajno. U pojedinim točkama sklopova su uvijek prisutne smetnje. Ako se uslijed smetnje na neinvertirajućem ulazu pojavi mali pozitivni napon u_{+} taj će se napon pojačati operacijskim pojačalom i na izlazu će se javiti napon $u_{IZ} = A_{VOP} u_{+}$. Otporno djelilo, s otpornicima R_{1} i R_{2} , vraća dio izlaznog napona $u_{+} = \beta u_{IZ}$ na neinvertirajući ulaz, pri čemu je $\beta = R_{1}/(R_{1} + R_{2})$. Ukoliko je produkt βA_{VOP} veći od jedinice na neinvertirajući ulaz vraća se napon u_{+} istog predznaka, ali većeg iznosa od prvobitnog napona u_{+} izazvanog smetnjom. Prolaz signala kroz operacijsko pojačalo i natrag preko otpornog djelila o povratnoj vezi nastavlja se pri čemu i izlazni napon u_{IZ} i napon neinvertirajućeg ulaza u_{+} stalno rastu. Proces se ponavlja dok se na izlazu ne uspostavi maksimalni mogući pozitivni napon, tj. napon zasićenja $U_{IZ\max}$.

Slika 10.13 - Operacijsko pojačalo s pozitivnom povratnom vezom.

Slična bi se pojava desila kada bi se uslijed smetnje na neinvertirajućem ulazu operacijskog pojačala pojavio mali negativni napon u_+ . Jedino bi se tada u stacionarnom stanju na izlazu uspostavio negativni napon zasićenja $U_{IZ\, \rm min} = -U_{IZ\, \rm max}$. Prelazak izlaznog napona u zasićenje može izazvati smetnja i u drugim točkama sklopa, npr. na invertirajućem ulazu operacijskog pojačala. Operacijsko pojačalo s pozitivnom povratnom vezom ne radi kao linearni sklop, već mu izlazni napon poprima jedno od dva stabilna stanja, pozitivni napon zasićenja $U_{IZ\, \rm max}$ ili negativni napon zasićenja $-U_{IZ\, \rm max}$.

10.4.2. Komparator

Primjenom operacijskog pojačala s pozitivnom povratnom vezom izvodi se komparator, sklop koji uspoređuje ili komparira dva ulazna napona. Komparator s operacijskim pojačalom prikazan je na slici 10.14. Zbog pozitivne povratne veze izlazni napon je u zasićenju. Ulazni napon u_{UL} spojen je na invertirajući ulaz operacijskog pojačala. Preko otpornog djelila dio izlaznog napona vraća se na neinvertirajući ulaz

$$u_{+} = \frac{R_{1}}{R_{1} + R_{2}} u_{IZ} = \beta u_{IZ}, \qquad (10.47)$$

gdje je

Slika 10.14 - Komparator.

$$\beta = \frac{R_1}{R_1 + R_2} \,. \tag{10.48}$$

Ako je napon invertirajućeg ulaza negativniji od napona neinvertirajućeg ulaza, $u_{UL} = u_- < u_+$, izlazni napon je pozitivan $u_{IZ} = U_{IZ\,\text{max}}$. Pri tome je napon neinvertirajućeg ulaza

$$u_{+} = \beta U_{IZ \max} = U_{PV} \tag{10.49}$$

Izlazni napon ostaje isti sve dok je ulazni napon u_{UL} negativniji od napona U_{PV} . Da bi se promijenilo stanje izlaznog napona ulazni napon mora rasti. U trenutku kada ulazni napon dosegne napon U_{PV} i postane neznatno pozitivniji, napon invertirajućeg ulaza postaje pozitivniji od napona neinvetrirajućeg ulaza i izlazni napon skokovito se mijenja na negativnu vrijednost $u_{IZ} = -U_{IZ\,\text{max}}$. Ta je promjena prikazana na prijenosnoj karakteristici komparatora na slici 10.15a.

Slika 10.15 – Prijenosne karakteristike komparatora: a) za povećanje ulaznog napona, b) za smanjenje ulaznog napona, c) ukupna prijenosna karakteristika.

Uz negativni izlazni napon $u_{IZ} = -U_{IZ\,\mathrm{max}}$, napon neinvetrirajućeg ulaza poprima vrijednost

$$u_{+} = -\beta U_{IZ \max} = U_{PN} \tag{10.50}$$

Izlazni napon ostaje negativan sve dok je $u_{UL}=u_->u_+=U_{PN}$. Da bi izlazni napon promijenio stanje ulazni se napon mora smanjivati. Kada se ulazni napon izjednači s naponom U_{PN} i postaje neznatno negativniji, napon invertirajućeg ulaza postaje negativniji od napona neinvetrirajućeg ulaza i izlazni napon poprima pozitivnu vrijednost $u_{IZ}=U_{IZ\max}$. Ta je promjena prikazana na prijenosnoj karakteristici na slici 10.15b.

Na slici 10.15c prikazana je ukupna prijenosna karakteristika komparatora. Očito je da izlazni napon mijenja stanja pri različitim ulaznim naponima, ovisno o tome povećava li se ili smanjuje ulazni napon. Pri porastu ulaznog napona do promjene dolazi uz napon $u_{UL} = U_{PV}$, a pri smanjenju uz napon $u_{UL} = U_{PN}$. Naponi U_{PV} i U_{PN} su naponi praga okidanja. Kako je $U_{PV} > U_{PN}$, s U_{PV} je označen napon praga okidanja visoke razine, a s U_{PN} napon praga okidanja niske razine. Prijenosna karakteristika na slici 10.15c ima svojstvo histereze, pri čemu je širina histereze

$$U_H = U_{PV} - U_{PN} = 2\beta U_{IZ \text{ max}}.$$
 (10.51)

Širina histereze podešava se parametrom β , tj. omjerom otpora R_1 i R_2 . Primjer odziva komparatora na ulaznu sinusnu pobudu prikazan je na slici 10.16.

Slika 10.16 - Odziv komparatora na ulaznu sinusnu pobudu.

Izlazni napon komparatora na slici 10.14 ograničen je naponima zasićenja operacijskog pojačala. Stabiliziranje razina izlaznog napona postiže se spajanjem dioda paralelno izlaznom naponu. Na slici 10.17 prikazana su dva moguća rješenja. Sklop na slici 10.17a koristi dvije nasuprotno spojene Zenerove diode. Kada je izlazni napon pozitivan dioda Z_1 je u proboju, a dioda Z_2 je propusno polarizirana. Uz negativni izlazni napon dioda Z_1 je propusno polarizirana, a dioda Z_2 je u proboju. Ako su Zenerovi naponi obje diode jednaki izlazni napon poprima jedno od dva stanja

$$U_{IZ} = \pm (U_Z + U_D), \tag{10.52}$$

gdje je U_Z Zenerov napon, a U_D napon propusno polarizirane diode. Sklop na slici 10.17b koristi četiri diode u mosnom ili Graetzovom spoju i jednu Zenerovu diodu. Kada je izlazni napon pozitivan vode diode D_1 , Z i D_2 , a kada je negativan vode diode D_4 , Z i D_3 . U oba slučaja Zenerova dioda radi u proboju. Izlazni napon ovog sklopa poprima vrijednosti

Slika 10.17 – Ograničenje izlaznog napona komparatora: a) s dvije Zenerove diode, b) s četiri diode u mosnom spoju i s jednom Zenerovom diodom.

$$U_{IZ} = \pm (U_Z + 2U_D). \tag{10.53}$$

Otpornikom R₃ u oba se sklopa podešava potrebna struja Zenerovih dioda.

Prijenosna karakteristika sa slike 10.15c simetrična je oko ulaznog napona u ishodištu, tj. naponi praga okidanja međusobno su komplementarni, $U_{PV} = -U_{PN}$. Pomak prijenosne karakteristike postiže se spajanjem priključka otpornika R_1 na istosmjerni napon U_R , prema slici 10.18. Napon u_+ neinvertirajućeg ulaza ovisan je o izlaznom naponu u_{IZ} i naponu U_R . Primjenom metode superpozicije može se pisati

Slika 10.18 - Komparator s pomaknutom prijenosnom karakteristikom.

$$u_{+} = \frac{R_2}{R_1 + R_2} U_R + \frac{R_1}{R_1 + R_2} u_{IZ}.$$
 (10.54)

Uz pozitivni izlazni napon $u_{IZ} = U_{IZ} = U_Z + U_D$, napon u_+ jednak je naponu praga okidanja visoke razine

$$u_{+} = U_{PV} = \frac{R_2}{R_1 + R_2} U_R + \frac{R_1}{R_1 + R_2} U_{IZ}, \qquad (10.55)$$

a uz negativni izlazni napon $u_{IZ} = -U_{IZ} = -(U_Z + U_D)$, napon u_+ jednak je naponu praga okidanja niske razine

$$u_{+} = U_{PN} = \frac{R_2}{R_1 + R_2} U_R - \frac{R_1}{R_1 + R_2} U_{IZ}.$$
 (10.56)

Prijenosna karakteristika pomaknuta je prema pozivnim ulaznim naponima za napon $R_2/(R_1+R_2)U_R$. Širina histereze nije se pri tome promijenila, te je i dalje jednaka izrazu (10.51).

Za opisane komparatore još se koriste nazivi diskriminator razine ili Schmittov okidni sklop.

Primjer 10.6

U komparatoru na slici 10.18 zadano je R_1 = 1,5 k Ω , U_Z = 4,3 V i U_D = 0,7 V. Odrediti otpor otpornika R_2 i napon U_R tako da prijenosna karakteristika bude simetrična oko ulaznog napona od 1 V i da je širina histereze U_H = 100 mV.

Rješenje:

Izlazni napon ograničen je na vrijednosti

$$u_{IZ} = \pm U_{IZ} = \pm (U_Z + U_D) = \pm (4.3 + 0.7) = \pm 5 \text{ V}.$$

Širina histereze je

$$U_H = 2 \beta U_{IZ} = 2 \frac{R_1}{R_1 + R_2} U_{IZ},$$

odakle je

$$R_2 = R_1 \left(\frac{2U_{IZ}}{U_H} - 1 \right) = 1.5 \cdot \left(\frac{2 \cdot 5}{0.1} - 1 \right) = 149 \text{ k}\Omega.$$

Sredina prijenosne karakteristike je pri ulaznom naponu

$$U_{ULC} = \frac{R_2}{R_1 + R_2} U_R,$$

$$U_R = \frac{R_1 + R_2}{R_2} U_{ULC} = \frac{1.5 + 149}{149} \cdot 1 = 1.01 \text{ V}.$$

10.4.3. Astabil

Komparator se okida promjenom vanjskog napona. Dodavanjem RC-mreže može se postići automatsko okidanje komparatora. Na taj se način realizira astabilni multivibrator ili astabil. Astabil s operacijskim pojačalom prikazan je na slici 10.19. Operacijsko pojačalo s otpornicima R_1 i R_2 spojenim u pozitivnu povratnu vezu predstavlja komparator. Komparator osigurava nagle promjene izlaznog napona u_{IZ} između dvije razine, pozitivne i negativne ovisno o predznaku razlike napona $(u_+ - u_-)$ između ulaza operacijskog pojačala. Zenerove diode ograničavaju vrijednost izlaznog napona na $u_{IZ} = \pm U_{IZ} = \pm (U_Z + U_D)$. Promjenu stanja komparatora osigurava RC-mreža spojena s izlaza operacijskog pojačala, preko invertirajućeg ulaza na masu.

Slika 10.19 - Astabil.

Na neinvertirajući ulaz operacijskog pojačala dovodi se preko djelila dio izlaznog napona $u_+ = \beta u_{IZ}$, gdje je $\beta = R_1/(R_1 + R_2)$. Na invertirajućem ulazu je napon kondenzatora $u_- = u_C$. Izlazni napon periodički mijenja stanja između vrijednosti $\pm U_{IZ}$. Rad astabila može se objasniti praćenjem valnih oblika napona prema slici 10.20.

Neka u trenutku t=0 izlazni napon naglo promjeni stanje s vrijednosti $-U_{IZ}$ na U_{IZ} . Neposredno prije toga naponi na oba ulaza operacijskog pojačala bili su međusobno jednaki $u_+ = -\beta U_{IZ} = U_{PN} = u_- = u_C$. Kada izlazni napon poprimi vrijednost U_{IZ} kondenzator C se preko otpornika R počinje nabijati pri čemu njegov napon teži prema U_{IZ} . Napon na kondenzatoru eksponencijalno raste prema izrazu dobivenom iz slike 10.20.

$$u_C(t) = U_{PN} + (U_{IZ} - U_{PN}) \left[1 - \exp\left(-\frac{t}{\tau}\right) \right],$$
 (10.57)

Slika 10.20 - Valni oblici napona u astabilu.

gdje je $U_{PN} = u_C(0)$ početni napon na kondenzatoru, a $\tau = RC$ je vremenska konstanta o kojoj ovisi brzina nabijanja kondenzatora. Kada je izlazni napon pozitivan, napon neinvertirajućeg ulaza operacijskog pojačala jednak je $u_+ = \beta U_{IZ} = U_{PV}$. Komparator mijenja stanje u trenutku $t = T_1$ kada napon na kondenzatoru dosegne vrijednost napona neinvertirajućeg ulaza operacijskog pojačala. Za taj se trenutak može pisati

$$u_C(T_1) = U_{PV} = U_{PN} + (U_{IZ} - U_{PN}) \left[1 - \exp\left(-\frac{T_1}{\tau}\right) \right],$$
 (10.58)

odakle slijedi

$$T_{1} = \tau \ln \left(\frac{U_{IZ} - U_{PN}}{U_{IZ} - U_{PV}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - \beta} \right) = \tau \ln \left(1 + 2 \frac{R_{1}}{R_{2}} \right). \tag{10.59}$$

Vrijeme T_1 je trajanje visoke razine ili pozitivnog izlaznog napona, koje uz vremensku konstantu τ , ovisi o omjeru otpora R_1 i R_2 u otpornom djelilu, ali ne ovisi o iznosu izlaznog napona U_{IZ} .

U trenutku $t=T_1$, nakon što napon na kondenzatoru postane neznatno pozitivniji od napona U_{PV} , izlazni napon komparatora naglo mijenja stanje i postaje negativan, $u_{IZ}=-U_{IZ}$. Kondenzator C se preko otpornika R počinje izbijati i njegov napon teži prema naponu $-U_{IZ}$. Napon na kondenzatoru eksponencijalno se smanjuje prema izrazu koji slijedi iz slike 10.20

$$u_C(t) = U_{PV} + \left(-U_{IZ} - U_{PV}\right) \left[1 - \exp\left(-\frac{t - T_1}{\tau}\right)\right].$$
 (10.60)

Pri tome je napon na neinvertirajućem ulazu operacijskog pojačala dio izlaznog napona $u_+ = -\beta U_{IZ} = U_{PN}$. U trenutku $t = T_1 + T_2$ napon na kondenzatoru postaje jednak naponu U_{PN} i komparator ponovo mijenja stanje. Za taj trenutak vrijedi

$$u_C(T_1 + T_2) = U_{PN} = U_{PV} + \left(-U_{IZ} - U_{PV}\right) \left[1 - \exp\left(-\frac{T_2}{\tau}\right)\right], \tag{10.61}$$

odakle je

$$T_2 = \tau \ln \left(\frac{U_{IZ} + U_{PV}}{U_{IZ} + U_{PN}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - \beta} \right) = T_1.$$
 (10.62)

Vrijeme T_2 je trajanje niske razine ili negativnog izlaznog napona. To vrijeme jednako je vremenu trajanja visoke razine ili pozitivnog napona T_1 .

Na izlazu astabila dobiva se periodički pravokutni simetrični napon periode $T = T_1 + T_2$ i frekvencije f = 1/T. Astabil je generator pravokutnog napona.

Primjer 10.7

U astabilu sa slike 10.19 zadano je $R = 10 \text{ k}\Omega$ i C = 1 nF. Odrediti omjer otpora R_2 / R_1 uz koje će frekvencija izlaznog pravokutnog napona biti 20 kHz.

Rješenje:

Vremenska konstanta RC-mreže je

$$\tau = RC = RC = 10 \cdot 10^3 \cdot 10^{-9} = 10 \,\mu\text{s}$$
.

Frekvencija izlaznog simetričnog pravokutnog napona je

$$f = \frac{1}{T} = \frac{1}{T_1 + T_2} = \frac{1}{2T_1} = \frac{1}{2\tau \ln\left(1 + 2\frac{R_1}{R_2}\right)},$$

odakle je omjer otpora

$$\frac{R_2}{R_1} = \frac{2}{\exp\left(\frac{1}{2\tau f}\right) - 1} = \frac{2}{\exp\left(\frac{1}{2 \cdot 10 \cdot 10^{-6} \cdot 20 \cdot 10^3}\right) - 1} = 0,179.$$

10.4.4. Monostabil

Za razliku od astabila, čija su oba stanja kvazistabilna, monostabil ili monostabilni multivibrator ima jedno stabilno i jedno kvazistabilno stanje. Monostabil s operacijskim pojačalom prikazan je na slici 10.21. Shema sklopa slična je shemi astabila sa slike 10.19. Osnovna je razlika što je paralelno kondenzatoru C spojena dioda D_1 . Ostali dodatni dio monostabila predstavlja mrežu za okidanje koju čine dioda D_2 , kondenzator C_1 i otpornik R_4 .

Sklop je monostabil, odnosno ima jedno stabilno stanje upravo zbog djelovanja diode D_1 . Ako je izlazni napon pozitivan $u_{IZ}=U_{IZ}$, kondenzator C počinje se nabijati preko otpornika R. Pozitivni napon na kondenzatoru u_C propusno polarizira diodu D_1 . Dioda provede i ograniči napon kondenzatora na napon koljena diode $u_C=U_{D1}\approx 0,7\,\mathrm{V}$. Napon na kondenzatoru ne može dalje rasti. Istovremeno se dio izlaznog napona vraća preko otpornog dijelila R_1 i R_2 na neinvertirajući ulaz pojačala, te je $u_+=\beta U_{IZ}$ uz $\beta=R_1/(R_1+R_2)$. Ograničeni napon kondenzatora osigurava da je $u_C=U_{D1}<\beta U_{IZ}$, odnosno da je $u_-< u_+$ čime se održava pozitivni izlazni napon. To je stabilno stanje.

Slika 10.21 - Monostabil.

Stabilno stanje može se promijeniti sklopom za okidanje. U trenutku okidanja na ulaz sklopa dovodi se negativni impuls u_{UL} , koji preko CR-mreže s kondenzatorom C_1 i otpornikom R_4 i diode D_2 dolazi na neinvertirajući ulaz operacijskog pojačala. Dolaskom impulsa napon u_+ postaje negativniji od napona $u_- = u_C = U_{D1}$, te izlazni napon naglo mijenja stanje i postaje negativan $u_{IZ} = -U_{IZ}$. Monostabil prelazi u kvazistabilno stanje. Okidanje i promjena stanja prikazani su na slici 10.22. Trenutak okidanja označen je vremenom $t = t_1$.

Slika 10.22 - Valni oblici napona u monostabilu.

Nakon promjene stanja kondenzator C počinje se preko otpornika R nabijati prema negativnom izlaznom naponu $-U_{IZ}$. Napon kondenzatora eksponencijalno se smanjuje prema izrazu dobivenom iz slike 10.22

$$u_C(t) = U_{D1} + \left(-U_{IZ} - U_{D1}\right) \left[1 - \exp\left(-\frac{t - t_1}{\tau}\right)\right].$$
 (10.63)

S U_{D1} označen je početni napon na kapacitetu, $U_{D1} = u_C(t_1)$, a τ je vremenska konstanta RC-mreže, $\tau = RC$. Napon neinvertirajućeg ulaza operacijskog pojačala dio je izlaznog napona $u_+ = -\beta U_{IZ} = U_{PN}$. Napon na kondenzatoru smanjuje se dok ne poprimi vrijednost U_{PN} . Prema

slici 10.22 to se događa nakon vremena T. U trenutku $t = t_1 + T$ oba su ulaza operacijskog pojačala na istom potencijalu i može se pisati

$$u_C(t_1 + T) = U_{PN} = U_{D1} + \left(-U_{IZ} - U_{D1}\right) \left[1 - \exp\left(-\frac{T}{\tau}\right)\right]. \tag{10.64}$$

Iz gornjeg je izraza

$$T = \tau \ln \left(\frac{U_{IZ} + U_{D1}}{U_{IZ} + U_{PN}} \right) = \tau \ln \left(\frac{1 + U_{D1} / U_{IZ}}{1 - \beta} \right).$$
 (10.65)

T je trajanje kvazistabilnog stanja.

Nakon što u trenutku $t = t_1 + T$ napon kondenzatora postane neznatno negativniji od napona U_{PN} izlazni napon naglo mijenja stanje i postaje pozitivan $u_{IZ} = U_{IZ}$. Kondenzator C počinje se preko otpornika R nabijati prema pozitivnom naponu U_{IZ} . Napon kondenzatora eksponencijalno raste prema izrazu koji slijedi iz slike 10.22

$$u_C(t) = U_{PN} + \left(U_{IZ} - U_{PN}\right) \left[1 - \exp\left(-\frac{t - t_1 - T}{\tau}\right)\right]. \tag{10.66}$$

Napon na kondenzatoru raste dok ne postane jednak pozitivnom naponu koljena diode U_{D1} . Nakon toga dioda D_1 ograniči daljnji porast napona u_C . Pri tome napon neinvertirajućeg ulaza $u_+ = \beta U_{IZ} = U_{PV}$ ostaje pozitivniji i izlazni napon ne mijenja stanje. Monostabil je ponovo u stabilnom stanju.

Iako monostabil ulazi u stabilno stanje odmah nakon promjene izlaznog napona s $-U_{IZ}$ na U_{IZ} , stacionarno se stanje uspostavlja tek kada napon na kondenzatoru dosegne napon koljena diode U_{D1} . Tek nakon toga monostabil je pripravan za dolazak novog okidnog impulsa. Vrijeme od promjene izlaznog napona na početku stabilnog stanja pa do porasta napona kondenzatora na $u_C = U_{D1}$ naziva se **vrijeme oporavka monostabila** (engl. recovery time). To je vrijeme na slici 10.22 označeno s T_r . U trenutku $t = t_1 + T + T_r$ za napon na kondenzatoru prema (10.66) može se pisati

$$u_C(t_1 + T + T_r) = U_{D1} = U_{PN} + \left(U_{IZ} - U_{PN}\right) \left[1 - \exp\left(-\frac{T_r}{\tau}\right)\right], \tag{10.67}$$

odakle je vrijeme oporavka

$$T_r = \tau \ln \left(\frac{U_{IZ} - U_{PN}}{U_{IZ} - U_{D1}} \right) = \tau \ln \left(\frac{1 + \beta}{1 - U_{D1} / U_{IZ}} \right). \tag{10.68}$$

Podešavanjem trajanja kvazistabilnog stanja mostabil se može koristiti kao sklop za kašnjenje.

Primjer 10.8

U monostabilu prema slici 10.21 zadano je $U_{IZ}=5\,\mathrm{V}$, $U_{D1}=0.7\,\mathrm{V}$, $R_1=22\,\mathrm{k}\Omega$, $R_2=18\,\mathrm{k}\Omega$, $R=11\,\mathrm{k}\Omega$ i $C=2\,\mathrm{nF}$. Odrediti trajanje kvazistabilnog stanja i minimalno vrijeme između okidnih impulsa.

Rješenje:

Vremenska konstanta RC-mreže je

$$\tau = RC = RC = 11 \cdot 10^3 \cdot 2 \cdot 10^{-9} = 22 \text{ us}$$

 $a\beta$ je

$$\beta = \frac{R_1}{R_1 + R_2} = \frac{22}{22 + 18} = 0.55.$$

Trajanje kvazistabilnog stanja je

$$T = \tau \ln \left(\frac{1 + U_{D1} / U_{IZ}}{1 - \beta} \right) = 22 \cdot 10^{-6} \cdot \ln \left(\frac{1 + 0.7 / 5}{1 - 0.55} \right) = 20.4 \,\mu\text{s}$$

a vrijeme oporavka je

$$T_r = \tau \ln \left(\frac{1+\beta}{1-U_{D1}/U_{IZ}} \right) = 22 \cdot 10^{-6} \cdot \ln \left(\frac{1+0.55}{1-0.7/5} \right) = 13.0 \,\mu\text{s} .$$

Minimalno vrijeme između okidnih impulsa je zbroj trajanja kvazistabilnog stanja i vremena oporavka

$$T + T_r = 20.4 + 13.0 = 33.4 \mu s$$
.

10.4.5. Generator trokutnog napona

Astabilom se može generirati periodički pravokutni napon. Kombinacijom komparatora i integratora može se generirati periodički trokutni napon. Jedna od izvedbi generatora trokutnog napona prikazana je na slici 10.23. Prvo operacijsko pojačalo A_1 s otpornim djelilom R_1 i R_2 u pozitivnoj povratnoj vezi predstavlja komparator. Izlazni napon komparatora u_1 ograničen je Zenerovim diodama na vrijednost $u_1 = \pm U_1 = \pm (U_Z + U_D)$. Izlaz komparatora ulaz je integratora s operacijskim pojačalom A_2 , otpornikom R i kondenzatorom C u negativnoj povratnoj vezi. Izlaz integratora spojen je na ulaz komparatora.

Napon u_+ na neinvertirajućem ulazu operacijskog pojačala A_1 posljedica je djelovanja izlaznog napona komparatora u_1 i izlaznog napona integratora u_{IZ} . Metodom superpozicije dobiva se

$$u_{+} = \frac{R_2}{R_1 + R_2} u_{IZ} + \frac{R_1}{R_1 + R_2} u_1.$$
 (10.69)

Slika 10.23 - Generator trokutnog napona.

Kada je izlazni napon kompartora negativan $u_1 = -U_1$, napon u_+ je jednak

$$u_{+} = \frac{R_{2}}{R_{1} + R_{2}} u_{IZ} - \frac{R_{1}}{R_{1} + R_{2}} U_{1}.$$
 (10.70)

U integratoru struja i teče u smjeru suprotnom od onoga ucrtanog u shemi na slici 10.23. Struja $i = -I = -U_1/R$ i izlazni napon u_{IZ} raste linerno s vremenom. Time raste i napon u_+ prema (10.70). Napon u_+ raste tako dugo dok ne dosegne napon U_R , a nakon toga komparator mijenja stanje. U trenutku promjene stanja napon $u_+ = U_R$, a izlazni napon poprima maksimalnu vrijednost $u_{IZ} = U_{IZ \max}$, pa se (10.70) može pisati kao

$$u_{+} = U_{R} = \frac{R_{2}}{R_{1} + R_{2}} U_{IZ \max} - \frac{R_{1}}{R_{1} + R_{2}} U_{1}, \qquad (10.71)$$

odakle je

$$U_{IZ\max} = \frac{R_1 + R_2}{R_2} U_R + \frac{R_1}{R_2} U_1.$$
 (10.72)

Nakon promjene stanja izlazni napon komparatora postaje pozitivan $u_1 = U_1$ i napon neinvertirajućeg ulaza operacijskog pojačala A_1 je

$$u_{+} = \frac{R_2}{R_1 + R_2} u_{IZ} + \frac{R_1}{R_1 + R_2} U_1.$$
 (10.73)

U integratoru struja i teče u smjeru označenom u shemi na slici 10.23, $i = I = U_1/R$ i izlazni napon se smanjuje linearno s vremenom. Time se smanjuje i napon u_+ prema (10.73). Napon u_+ smanjuje se i kada se izjednači s naponom U_R , komparator opet mijenja stanje. U trenutku izjednačavanja napona $u_+ = U_R$ izlazni napon poprima minimalnu vrijednost $u_{IZ} = U_{IZ \min}$, što uvršteno u (10.73) daje

$$u_{+} = U_{R} = \frac{R_{2}}{R_{1} + R_{2}} U_{IZ \min} + \frac{R_{1}}{R_{1} + R_{2}} U_{1}.$$
 (10.74)

Iz gornjeg se izraza dobiva minimalna vrijednost izlaznog napona

$$U_{IZ\,\min} = \frac{R_1 + R_2}{R_2} U_R - \frac{R_1}{R_2} U_1. \tag{10.75}$$

Na slici 10.24 prikazani su izlazni naponi iz komparatora u_1 i integratora u_{IZ} . Razlika minimalne i maksimalne vrijednosti izlaznog napona ili napon od vrha do vrha je

$$U_{IZ\,\text{max}} - U_{IZ\,\text{min}} = 2\,\frac{R_1}{R_2}U_1,\tag{10.76}$$

Slika 10.24 - Valni oblici napona u generatoru trokutnog napona.

a srednja vrijednost izlaznog napona je

$$U_{IZ} = \frac{R_1 + R_2}{R_2} U_R. {10.77}$$

Izlazni napon integratora je

$$u_{IZ}(t) = -u_C(t) = -\frac{1}{C} \int_0^t i(t) dt - U_{C0}.$$
 (10.78)

U intervalu vremena $0 < t < T_1$, prema slici 10.24, za vrijeme porasta izlaznog napona struja je $i = -I = -U_1/R$ i izlazni napon je

$$u_{IZ}(t) = \frac{U_1}{RC} \int_{0}^{t} dt + U_{IZ\,\text{min}} = \frac{U_1}{RC} t + U_{IZ\,\text{min}}, \qquad (10.79)$$

U trenutku $t = T_1$ izlazni napon je $u_{IZ} = U_{IZ \text{ max}}$, što uvršteno u (10.79) daje

$$u_{IZ}(T_1) = U_{IZ\max} = \frac{U_1}{RC} T_1 + U_{IZ\min}.$$
 (10.80)

Kombinacijom (10.80) i (10.76) dobiva se trajanje porasta izlaznog napona

$$T_1 = \left(U_{IZ\,\text{max}} - U_{IZ\,\text{min}}\right) \frac{RC}{U_1} = 2RC \frac{R_1}{R_2}. \tag{10.81}$$

Izlazni napon je simetričan i jednaka vrijednost dobila bi se za trajanje pada izlaznog napon T_2 . Perioda trokutnog napona je

$$T = T_1 + T_2 = 2T_1 = 4RC\frac{R_1}{R_2}. (10.82)$$

Perioda T, odnosno frekvencija f = 1/T, trokutnog napona ne ovisi o naponu U_1 i podešava se vremenskom konstantom integratora $\tau = RC$, te omjerom otpora R_1 i R_2 . Otporima R_1 i R_2 se, zajedno s naponom U_1 , podešava amplituda trokutnog napona, a njegova srednja vrijednost podešava se naponom U_R .

Uz trokutni napon u_{IZ} na izlazu integratora, sklop sa slike 10.23 istovremeno daje i periodički pravokutni napon u_1 na izlazu komparatora.

Primjer 10.9

U generatoru trokutnog napona prema slici 10.23 zadano je $U_1 = 5 \,\mathrm{V}$ i $R = 10 \,\mathrm{k}\Omega$. Odrediti omjer otpora R_2 / R_1 , kapacitet kondenzatora C i napon U_R da se dobije trokutni napon kojemu je frekvencija $10 \,\mathrm{kHz}$, napona od vrha do vrha $5 \,\mathrm{V}$ i srednja vrijednost $1 \,\mathrm{V}$.

Rješenje:

Iz izraza (10.76) za napon od vrha do slijedi

$$\frac{R_2}{R_1} = \frac{2U_1}{U_{IZ \max} - U_{IZ \min}} = \frac{2 \cdot 5}{5} = 2.$$

Frekvencija trokutnog napona je

$$f = \frac{1}{T} = \frac{1}{4RC} \frac{R_2}{R_1}$$

odakle je kapacitet kondenzatora

$$C = \frac{1}{4Rf} \frac{R_2}{R_1} = \frac{2}{4 \cdot 10 \cdot 10^3 \cdot 10 \cdot 10^3} = 5 \text{ nF}.$$

Iz izraza (10.77) za srednja vrijednost trokutnog napona, napon U_R je

$$U_R = \frac{R_2}{R_1 + R_2} U_{IZ} = \frac{R_2 / R_1}{1 + R_2 / R_1} U_{IZ} = \frac{2}{1 + 2} \cdot 1 = 0,667 \text{ V}.$$