What is claimed is:

5

10

15

20

- A method for making a negative-working lithographic master for wet offset lithographic printing of an image on a printing medium, comprising the steps of:
 - (a) coating a layer of positive-working radiation-imageable medium onto a hydrophilic lithographic base;
 - (b) forming a mask on the surface of said radiation-imageable medium, said mask being in the form of said image and substantially resistant to a developer; and
 - (c) exposing said layer of radiation-imageable medium to said developer to remove the areas of said radiation-imageable medium that are not covered by said mask.
- A method for making a negative-working lithographic master, said method comprising the step of imaging a positive-working radiationimageable medium on a hydrophilic lithographic base.
- 3. A method for making a negative-working lithographic master for wet offset lithographic printing of an image on a printing medium, comprising the steps of:
 - (a) providing a lithographic precursor comprising a layer of positiveworking radiation-imageable medium coated on a hydrophilic lithographic base;

- (b) forming a mask on the surface of said radiation-imageable medium, said mask being in the form of said image and substantially resistant to a developer; and
- (c) exposing said layer of radiation-imageable medium to said developer to remove the areas of said medium that are not covered by said mask.

20

- 4. A method for making a negative-working lithographic master from a positive-working radiation-imageable medium, comprising the step of imagewise depositing droplets of a masking fluid onto a layer of positive-working radiation-imageable medium on a hydrophilic lithographic base.
- 5. A method of performing wet offset printing of an image on a printing medium, comprising the steps of:
 - (a) providing an offset lithographic precursor comprising a layer of positive-working radiation-imageable medium on a hydrophilic lithographic base;
 - (b) forming a mask upon the surface of said radiation-imageable medium, said mask being in the form of said image and substantially resistant to a developer;
 - (c) forming a lithographic master by exposing said layer of radiation-imageable medium to said developer to remove the areas of said developer that are not covered by said mask; and

- (d) performing wet offset lithographic printing with said lithographic master.
- 6. A method for wet offset printing, said method comprising the steps of:
 - (a) making a negative-working lithographic master from a positiveworking radiation-imageable medium; and
- (b) performing wet offset lithographic printing with said lithographic master.
 - 7. A negative-working lithographic master produced in accordance with the method of claim 1.
 - 8. A lithographic master in accordance with claim 6 wherein said base is one of:
 - (a) a disposable plate;
 - (b) a re-usuable plate;
 - (c) a printing cylinder of a printing press; and
- 25 (d) a seamless sleeve-for a printing cylinder of a printing press.
 - A negative-working wet lithographic master comprising areas of hydrophobic positive-working radiation-imageable medium on a hydrophilic lithographic base.

15

- 10. A masked lithographic printing precursor for use in the wet offset printing of an image, comprising:
 - (a) a hydrophilic lithographic base;

(b) a layer of positive-working radiation-imageable medium coated on said base; and

10

(c) a mask formed upon the surface of said layer of radiationimageable medium, said mask being in the form of said image and substantially resistant to a developer.

- 11. A method according to claim 1 wherein said step of forming a mask comprises depositing droplets of a masking fluid.
- 12. A method according to claim 11 wherein said depositing is done by means of an inkjet printer.
- 13. A method according to claim 1 wherein said step of forming a mask includes the steps of curing said mask.
 - 14. A method according to claim 13 wherein said curing is done by heating.
- 15. A method according to claim 14 wherein said heating is done at a temperature in the range of 40 130° C for a time in the range of 10 seconds to 3 minutes.

- 16. A method according to claim 1 further comprising the step of hardening the part of said layer of medium that remains on said base.
- 5 17. A method according to claim 1 further comprising, after step (c), the step of removing said mask.
 - 18. A method according to claim 11 wherein said masking fluid comprises an indicator dye.
 - 19. A method according to claim 11 wherein said masking fluid comprises an active masking ingredient and a solvent.
 - 20. A method according to claim 19 wherein said solvent comprises water.
 - 21. A method according to claim 19 wherein said solvent comprises an organic solvent.
- 22. A method according to claim 19 wherein said solvent comprises water and an organic solvent.
 - 23. A method according to claim 9 wherein said masking fluid comprises a nitrogen-containing compound wherein at least one nitrogen atom is:
 - (a) quarternized; or
 - (b) incorporated in a heterocyclic ring; or

10

		(c) both quarternized and incorporated in a heterocyclic ring.
·	24.	A method according to claim 23 wherein said nitrogen-containing compound is one of sub-paragraph:
5		(a) a triaryl methane dye, and
		(b) a tetraalkyl ammonium compound.
10	25.	A method according to claim 23 wherein said nitrogen-containing compound is one of:
		(a) a quinoline;
15		(b) a triazole;
		(c) an imidazole; and
20		(d) an indole.
20	26.	A method according to claim 25 wherein said nitrogen-containing compound is 1,2,4-triazole.
25	27.	A method according to claim 24 wherien said nitrogen-containing compound is one of:
		(a) Crystal Violet;
		(b) Ethel Violet; and
30		

5	28.	A method according to claim 24 wherein said nitrogen-containing compound is one of:
		(a) cetrimide; and
		(b) a benzotrimethyl ammonium salt.
10	29.	A method according to claim 23 wherein said nitrogen-containing compound is a quinolinium compound.
15	30.	A method according to claim 29 wherein said quinolinium compound is one of:
		(a) 1-ethyl-2-methyl quinolinium iodide; and
		(b) 1-ethyl-4-methyl quinolinium iodide.
20	31.	A method according to claim 23 wherein said nitrogen-containing compound is a benzothiazolylidene compound.
25	32.	A method according to claim 31 wherein said benzothiazolyidene compound is 3-ethyl-2-methyl benzothiazolium iodide.
	33.	A method according to claim 23 wherein said nitrogen-containing compound is a pyridinium compound.
30	34.	A method according to claim 33 wherein said pyridinium compound is one of:

(c) Basic Blue 7.

		(a) cetyl pyridinium bromide;
		(b) ethyl viologen dibromide; and
5		(c) fluoropyridinium tetrafluoroborate.
	35.	A method according to claim 29 wherein said quinolinium compound is a cationic cyanine dye.
10	36.	A method according to claim 35 wherein said dye is one of:
		(a) Dye A; and
1.5		(b) Quinoldine Blue.
15	37.	A method according to claim 31 wherein said benzothiazolium compound is 3-ethyl-2-[3-ethyl-2(3H)-benzothiazoylidene)-2-methyl-1-propenyl] benzothiazolium iodide.
20	38.	A method according to claim 11 wherein said masking fluid comprises one of:
		(a) a flavone;
25		(b) a flavonone;
		(c) an isoflavanone;
30		(d) a coumarin;

		(e) a chromone;
		(f) an indeneone;
5		(g) a chalcone;
		(h) a xanthone;
		(i) a thioxanthone;
10		(j) benzophenone;
		(k) a phthalimide; and
15		(I) a phenanthrenequinone.
	39.	A method according to claim 38 wherein said flavone is one of:
20		(a) 7,8-benzoflavone;
		(b) trihydroxyflavone; and
		(c) naphthaflavone.
25	40.	A method according to claim 38 wherein said flavanone is hydroxy-dimethoxyflavanone.
	41.	A method according to claim 11 wherein said masking fluid comprises a poly substituted siloxane.

- 42. A method according to claim 41 wherein said siloxane is polyphenylsiloxane.
- 43. A method according to claim 11 wherein said masking fluid comprises a substituted pyran.
 - 44. A method according to claim 11 wherein said making fluid comprises a perfluorinated compound.
- 10 45. A method according to claim 11 wherein said masking fluid comprises acridine orange base.
 - 46. A method according to claim 19 wherein the amount of said active masking ingredient is in the range of 0.5 5 weight % of said masking fluid.
 - 47. A method according to claim 11 wherein said masking fluid further comprises one or more of:
- 20 (a) a humidifying co-solvent;
 - (b) a dye;
 - (c) a surfactant or wetting agent; and
 - (d) a biocide.
 - 48. A method according to claim 1 wherein said radiation-imageable medium is a quinonediazide.

5

- 49. A method according to claim 48 wherein said quinonediazide is a 1,2-naphthoquinone-2-diazide-4- or -5- sulfonyl derivative.
- 50. A method according to claim 48 wherein said quinonediazide is a naphthoquinonediazide.

10

- 51. A method according to claim 50 wherein the amount of said naphthoquinonediazide is in the range of 3 50 weight % relative to the weight of non-volatile components of said radiation-imageable medium.
- 52. A method according to claim 1 wherein said radiation-imageable medium comprises a binder.
- 15 53. A method according to claim 52 wherein said binder is a novolak polycondensate.
 - 54. A method according to claim 52 wherein said binder is a polyhydroxyphenyl resin.
 - 55. A method according to claim 52 wherein said binder is a polymer or co-polymer of an acrylic or methacrylic acid ester with a polyhydricphenol.
- 56. A method according to claim 52 wherein the amount of said binder is in the range of 30 90 % by weight relative to total solids in said medium.

57.	A method according to claim 52 wherein the amount of said binder is in the range of 50 - 85 % by weight relative to total solids in said medium.
58.	A method according to claim 52 wherein said binder has pheonolic hydroxyl groups present in the range of about 1 - 15 mmol/g and a molecular weight up to 100,000.
59.	A method according to claim 52 wherein said binder comprises a combination of a cresol/formaldehyde novolak and an unplasticized alkyl-etherified melamine/formaldehyde resin.
60.	A method according to claim 1 wherein said radiation-imageable medium comprises or more of:
	(a) a polyglycol;
	(b) a cellulose derivative;
	(c) a dye;
	(d) an adhesion promoter;

10

15

20

25

30

61.

A method according to claim 1 wherein said step of coating

comprises dissolving said radiation-imageable medium in a solvent

(e) a pigment; and

(f) a UV-absorber.

and applying it by one of:

		(a) spraying;
		(b) dipping;
5		(c) roller application;
		(d) slot dies;
10		(e) blade application; and
		(f) coater application.
15	62.	A method according to claim 1 wherein said lithographic base is anodized aluminum.
	63.	A method according to claim 1 wherein said developer is an aqueous alkaline solution.
20	64.	A method according to claim 63 wherein said solution has a pH in the range of 10-14.
	65.	A method according to claim 63 wherein said solution further includes one or more of:
25		(a) an organic solvent;
		(b) a surfactant; and
30		(c) a sequestering agent.

- 66. A method according to claim 1, further including the step, after step (b), of flood-illuminating said layer of radiation-imageable medium with ultra-violet radiation, and wherein said developer is a developer of the type capable of removing the areas of said radiation-imageable medium that are not covered by said mask after said radiation-imageable medium has been illuminated with ultra-violet radiation.
- 67. A method according to claim 66 wherein said developer comprises a quaternary nitrogen compound.
 - 68. A method according to claim 67 wherein said developer comprises tetramethylammonium hydroxide in water.
- 15 69. A masking fluid for forming a mask on the surface of a layer of positive-working radiation-imageable medium, comprising:
 - (a) an active masking ingredient that is substantially resistant to a developer; and
 - (b) a solvent capable of dissolving said active masking ingredient and of not substantially removing said positive-working radiation-imageable medium from a hydrophilic lithographic base.