RELÁCIE

1. Relácie R, S sú dané vymenovaním takto:

$$R = \{[1,1],[1,2],[1,3],[2,1],[2,2]\}, S = \{[2,1],[2,2],[2,3],[3,1],[3,2],[4,1]\}.$$

Určte: $R \circ S$, $S \circ R$, R^{-1} , S^{-1} , $R^{-1} \circ S^{-1}$, $(R \circ S)^{-1}$, $(S \circ R)^{-1}$.

Výsledky: $R \circ S = \{[2,1], [2,2], [2,3], [3,1], [3,2], [3,3], [4,1], [4,2], [4,3]\},$

 $S \circ R = \{[1,1],[1,2],[1,3],[2,1],[2,2],[2,3]\}, R^{-1} = \{[1,1],[2,1],[3,1],[1,2],[2,2]\},$

 $S^{-1} = \{[1, 2], [2, 2], [3, 2], [1, 3][2, 3], [1, 4]\},\$

 $(R \circ S)^{-1} = \{[1, 2], [2, 2], [3, 2], [1, 3], [2, 3], [3, 3], [1, 4], [2, 4], [3, 4]\},\$

 $(S \circ R)^{-1} = \{[1, 1], [2, 1], [3, 1], [1, 2], [2, 2], [3, 2]\}, R^{-1} \circ S^{-1} = (S \circ R)^{-1}.$

2. Nech $A = \{n \in \mathbb{N}: n \leq 10\}$, $B = \{m \in \mathbb{N}: m \leq 12\}$, $R = \{[m, n] \in A \times B: n = 3m\}$, $S = \{[m, n] \in B \times A: m - n = 2\}$. Zapíšte relácie R, S vymenovaním prvkov. Zostrojte grafy relácií R, S. Určte relácie $R \circ S, S \circ R, R^{-1}, S^{-1}$.

Výsledky: $R = \{[1, 3], [2, 6], [3, 9], [4, 12]\}, S = \{[3, 1], [4, 2], [5, 3], \dots [11, 9], [12, 10]\},$

 $R \circ S \ = \ \{[3,3],[4,6],[5,9],[6,12]\}, \\ S \circ R = \{[1,1],[2,4],[3,7],[4,10]\},$

 $R^{-1} = \{[3,1], [6,2], [9,3], [12,4]\}, S^{-1} = \{[1,3], [2,4], [3,5] \dots [9,11], [10,12]\}.$

3. Nech $R = \{[x,y] \in \mathbb{R}^2 : y = 2x\}, S = \{[x,y] \in \mathbb{R}^2 : x^2 = y\}, T = \{[x,y] \in \mathbb{R}^2 : y = \sqrt{x}\}.$ Zostrojte karteziánske grafy relácií R, S, T. Určte relácie $R \circ S, S \circ R, S \circ T, R \circ T, T \circ R, T \circ S$. Zostrojte grafy relácií $R \circ S, S \circ R, S \circ T, R \circ T, T \circ R, T \circ S$.

 $\begin{aligned} & \text{V\'{y}sledky: } R \circ S = \{[x,y] \in \mathbb{R} \times \mathbb{R}_0^+ : y = 2x^2\}, S \circ R = \{[x,y] \in \mathbb{R} \times \mathbb{R}_0^+ : y = 4x^2\}, S \circ T = \{[x,y] \in \mathbb{R}_0^+ \times \mathbb{R}_0^+ : y = x\}, T \circ S = \{[x,y] \in \mathbb{R} \times \mathbb{R}_0^+ : y = |x|\}, S \circ R = \{[x,y] \in \mathbb{R}_0^+ \times \mathbb{R}_0^+ : y = \sqrt{2x}\}, R \circ S = \{[x,y] \in \mathbb{R}_0^+ \times \mathbb{R}_0^+ : y = 2\sqrt{x}\} \end{aligned}$

- 4. Na množine $M = \{1, 2, 3, 4\}$ určte vymenovaním reláciu, ktorá je
 - (a) symetrická, reflexívna, ale nie je tranzitívna,
 - (b) reflexívna a tranzitívna, ale nie je symetrická,
 - (c) tranzitívna, ale nie je reflexívna, ani ireflexívna,
 - (d) tranzitívna, ale nie je symetrická, ani antisymetrická.

Výsledky:

- a) napr. $R_a = \{[1,1],[2,2],[3,3],[4,4],[1,2],[2,1],[1,3],[3,1]\},$
- b) napr. $R_b = \{[1,1], [2,2], [3,3], [4,4], [1,2]\},$
- c) napr. $R_c = \{[1, 1]\},\$
- d) napr. $R_d = \{[1, 1], [2, 2], [1, 2], [2, 1], [4, 3]\}.$
- 5. Nech $R = \{(1,3), (2,3), (3,4), (3,1), (4,2)\}$. Nájdite R^+ . Výsledky: $R^+ = \{1,2,3,4\} \times \{1,2,3,4\}$.
- 6. Nájdite reláciu S, pre ktorú platí $S^+ \neq S$.

Výsledky: napr. $S = \{[1, 2], [2, 1]\}.$

7. Nájdite reláciu S, pre ktorú platí $S^+ = S$.

Výsledky: napr. $S = \{[1, 2]\}.$

8. Nájdite tranzitívnu reláciu R, pre ktorú platí $R \circ R \neq R$.

Výsledky: napr. $R = \{[1, 2]\}.$

9. Nájdite neprázdnu tranzitívnu reláciu R, pre ktorú platí $R\circ R=\emptyset.$

Výsledky: napr. $R = \{[1, 2]\}.$

- 10. Dokážte, že pre ľubovolné relácie platí:
 - (a) $R \circ (S_1 \cup S_2) = R \circ S_1 \cup R \circ S_2$,
 - (b) $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$,
 - (c) $(R \setminus S)^{-1} = R^{-1} \setminus S^{-1}$,
 - (d) $(\bar{R})^{-1} = \overline{R^{-1}}, (R^{-1})^{-1} = R,$
 - (e) * $R \circ (\bigcup_{i \in I} S_i) = \bigcup_{i \in I} R \circ S_i$, $(\bigcup_{i \in I} R_i)^{-1} = \bigcup_{i \in I} R_i^{-1}$.
- 11. Dokážte, že pre ľubovolné relácie platí:
 - (a) $R \circ (S_1 \cap S_2) \subseteq R \circ S_1 \cap R \circ S_2$,
 - (b) $(S_1 \cap S_2) \circ R \subseteq S_1 \circ R \cap S_2 \circ R$,
 - (c) $R \circ S_1 \setminus R \circ S_2 \subseteq R \circ (S_1 \setminus S_2)$.

Dokážte, že v uvedených vzťahoch nie je možné nahradiť inklúziu rovnosťou.

12. Určte vymenovaním všetky rozklady množiny {1, 2, 3, 4}.

```
Výsledky: Všetkých možností je 15, treba si ich systematicky vypísať. Sú to napr. \{\{1\}, \{2\}, \{3\}, \{4\}\}, \{\{1, 2\}, \{3\}, \{4\}\}, \dots, \{\{1, 2, 3, 4\}\},
```

13. Nájdite aspoň tri rôzne rozklady množiny Z.

```
 \text{V\'{s}ledky: Napr. } \{\{0\}, \{m \in \mathbb{Z} \colon m > 0\}, \{m \in \mathbb{Z} \colon m < 0\}\}, \{\{2m \colon m \in \mathbb{Z}\}, \{2m + 1 \colon m \in \mathbb{Z}\}\}, \{\{3m \colon m \in \mathbb{Z}\}, \{3m + 1 \colon m \in \mathbb{Z}\}\}.
```

- 14. Napíšte relácie ekvivalencie k nasledujúcim rozkladom
 - (a) $S_1 = \{\{a, b, c, d\}\},\$
 - (b) $S_1 = \{\{a\}, \{b, c\}, \{d\}\},\$
 - (c) $S_1 = \{\{a\}, \{b\}, \{c\}, \{d\}\}.$

Výsledky:

- a) $R_1 = \{a, b, c, d\}^2$,
- b) $R_1 = \{[a, a], [b, b], [c, c], [d, d], [b, c], [c, b]\},\$
- c) $R_1 = \{[a, a], [b, b], [c, c], [d, d]\}.$
- 15. Na množine $M = \{1, 2, 3, 4\}$ je daná relácia $R = \{[1, 1], [1, 2], [2, 1], [2, 2], [2, 3], [3, 2], [3, 3]\}$. Je relácia R reláciou ekvivalencie? V prípade kladnej odpovede nájdite rozklad, ktorý ekvivalencia určuje. V prípade zápornej odpovede určte jej reflexívny, symetrický a tranzitívny uzáver.

Výsledky: R nie je relácia ekvivalencie, nie je reflexívna ani tranzitívna.

```
\varrho(R) = \{[1,1],[1,2],[2,1],[2,2],[2,3],[3,2],[3,3],[4,4]\},
```

 $R^+ = \{[1, 1], [1, 2], [2, 1], [2, 2], [2, 3], [3, 2], [3, 3], [1, 3], [3, 1]\},\$

symetrický uzáver je totožný s ${\cal R}.$

- 16. Zistite, ktoré z nasledujúcich relácií sú ekvivalencie na množině R.
 - (a) $R_1 = \{ [x, y] \in \mathbb{R}^2 : \frac{x}{y} = 1 \},$
 - (b) $R_2 = \{[x,y] \in \mathbb{R}^2 : |x-y| \le 1\},$ pro je reflexivní?
 - (c) $R_3 = \{[x, y] \in \mathbb{R}^2 : |x| = |y|\},\$
 - (d) $R_4 = \{ [x, y] \in \mathbb{R}^2 : x^3 = y^3 \}.$

Výsledky:

- a) nie je relácia ekvivalencie, je porušená reflexívnosť,
- b) nie je relácia ekvivalencie, je porušená tranzitívnosť,
- c) je relácia ekvivalencie,
- d) je relácia ekvivalencie.
- 17. Na množine $\{0,1,2,\ldots,9\}$ je daná relácia \sim nasledovne:

$$a \sim b \iff 10a + b$$
 je prvočíslo.

Zistite, či \sim je reláciou ekvivalencie na množine $\{0,1,2,\ldots,9\}$, v prípade kladnej odpovede nájdite jej rozklad.

Výsledky: Nie je to relácia ekvivalencie, je porušená napr. reflexívnosť. Doporučujem nájsť prvok, pre ktorý reflexívnosť neplatí a zistiť, či zvyšné dve vlastnosti platia.

18. Nech X je ľubovolná neprázdna množina. Na jej potenčnej množine P(X) je daná relácia \sim nasledovne:

$$A \sim B \iff A \subseteq B$$
.

Zistite, či \sim je reláciou ekvivalencie alebo usporiadania na množine P(X).

Výsledky: Nie je to relácia ekvivalencie, je porušená symetria. Je to relácia usporiadania.

19. Rozhodnite o pravdivosti tvrdenia: Necht E je relácia ekvivalencie. Potom relácia E^{-1} je tiež relácia ekvivalencie. Svoju odpoveď zdôvodnite.

Výsledky: Tvrdenie platí.

20. Rozhodnite o pravdivosti tvrdenia: Nech E_1 , E_2 sú relácie ekvivalencie na tej istej množine. Potom relácia $E_1 \circ E_2$ je tiež relácia ekvivalencie. Svoju odpoveď zdôvodnite.

Výsledky: Tvrdenie neplatí, je porušeá napr. symetria.

- 21. Rozhodnite o pravdivosti tvrdenia: Nech R_1, R_2 sú relácie usporiadania na tej istej množine. Potom relácia $R_1 \circ R_2$ je tiež relácia usporiadania. Svoju odpoveď zdôvodnite. Výsledky: Tvrdenie neplatí, je porušeá napr. antisymetria.
- 22. Nech $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}$. Na množine $\mathcal{P}(Y) \setminus \mathcal{P}(X)$ je daná relácia ~ nasledovne:

$$A \sim B \iff A \subseteq B$$
.

Ukážte, že relácia \sim je na možine $\mathcal{P}(Y) \setminus \mathcal{P}(X)$ reláciou usporiadania.

- 23. Rozhodnite, ktoré z nasledujúcich relácií sú zobrazenia:
 - (a) $R_1 = \{ [*, \circ], [\circ, *], [\heartsuit, *], [\spadesuit, \heartsuit], [\circ, \heartsuit] \},$
 - (b) $R_2 = \{ [x, y] \in \mathbb{R}^2 \colon x^2 + y^2 = 1 \},$
 - (c) $R_3 = \{ [x, y] \in \mathbb{R}^2 : x + y^4 = 1 \},$
 - (d) $R_4 = \{ [x, y] \in \mathbb{Z}^2 : x^2 + y = 1 \}.$

Výsledky: a)-c) nie sú zobrazenia (treba zdôvodniť), d) je zobrazenie (treba dokázať.)

24. Nech f je zobrazenie na množine \mathbb{R} dané predpisom $y=x^2-1$. Určte $f(\langle -1,2\rangle), f(\langle -1,1\rangle), f(\mathbb{R}), f^{-1}(\langle -1,1\rangle), f^{-1}(\langle 0,2\rangle)$.

 $\text{V\'{s}ledky: } f(\langle -1, 2 \rangle) = \langle -1, 3 \rangle, \\ f(\langle -1, 1 \rangle) = \langle -1, 0 \rangle, \\ f(R) = \langle -1, \infty \rangle, \\ f^{-1}(\langle -1, 1 \rangle) = \langle -\sqrt{2}, \sqrt{2} \rangle, \\ f^{-1}(\langle -1, 1 \rangle) = \langle -\sqrt{2}, \sqrt{2} \rangle, \\ f^{-1}(\langle -1, 1 \rangle) = \langle -1, 0 \rangle, \\ f^{-1}(\langle -1, 1 \rangle) = \langle -1,$

 $f^{-1}(\langle 0, 2 \rangle) = \langle -\sqrt{3}, -1 \rangle \cup \langle 1, \sqrt{3} \rangle.$

25. Určte všetky bijekcie množiny $A = \{1, 2, 3\}$ na množinu $\{a, b, c\}$. Výsledky: všetkých bijekcií je 3! = 6, jedna z ich je napr. $\{[1, a], [2, b], [3, c]\}$, ostatné si skúste systematicky vypísať.