PROBLÈME: CONJECTURE D'ILIEFF-SENDOV

Préambule

Le but du problème est de prouver dans certains cas particuliers, la conjecture explicitée ci-après, souvent nommée conjecture d'Ilieff-Sendov.

On rappelle le théorème de d'Alembert-Gauss qui dit que tout polynôme non constant de $\mathbb{C}[X]$ a une racine dans \mathbb{C} .

Soit $S \in \mathbb{C}[X]$ un polynôme à coefficients complexes, de degré au moins égal à 2, z une racine de S:

- On dit que S et z vérifient (IS) s'il existe une racine ζ du polynôme dérivé S' de S vérifiant $|z-\zeta| \leq 1$.
- On dit que S vérifie (IS) si, pour toute racine z de S, S et z vérifient (IS).

La conjecture d'Ilieff-Sendov est que tout polynôme de degré au moins égal à 2 et dont les racines sont de module au plus 1, vérifie (IS).

Dans toute la suite, on fixe un entier $n \ge 2$ et un polynôme $P = a_n X^n + \dots + a_0$ de $\mathbb{C}[X]$, de degré n. On note z_0, z_1, \dots, z_m les racines distinctes de P (ainsi m est un entier tel que $0 \le m \le n$): pour $i = 0, \dots, m$, on note n_i la multiplicité de z_i . On a donc

$$P = a_n \prod_{i=0}^{m} (X - z_i)^{n_i}$$
 et $\sum_{i=0}^{m} n_i = n$.

On suppose que les z_i vérifient $|z_i| \leq 1$.

Partie I: quelques cas simples de la conjecture

A.

- $\mathbf{1}^{\circ}$) **a)** Prouver que si n=2, alors P vérifie (IS).
 - **b)** Prouver que si $n_0 \ge 2$, alors P et z_0 vérifient (IS).
- 2°) a) Montrer qu'il existe des nombres complexes $w_1,...,w_m$ non racines de P tels que

$$P' = na_n \prod_{i=0}^{m} (X - z_i)^{n_i - 1} \prod_{j=1}^{m} (X - w_j).$$

b) On suppose que $n_0 = 1$, montrer que

$$\prod_{j=1}^{m} (z_0 - w_j) = \frac{1}{n} \prod_{i=1}^{m} (z_0 - z_i).$$

- c) Prouver que, si on a $n \ge 2^m$, alors P vérifie (IS) (on distinguera les cas $n_0 = 1$ et $n_0 \ge 2$).
- d) Donner un exemple de polynôme P pour lequel on a $n \ge 2^m$ et vérifier le résultat précédent en calculant les racines de P et de P'.
- $\mathbf{3}^{\circ}$) \mathbf{a}) Écrire la décomposition en éléments simples de la fraction rationnelle $\frac{P'}{P}$.
 - b) En déduire que, pour tout $j \in [1,m]$, le point d'affixe w_j est un barycentre à coefficients strictement positifs des points d'affixes z_i , et que l'on a $|w_j| \leq 1$.
 - c) En déduire que si $z_0 = 0$ alors P et z_0 vérifient (IS).

В.

Dans cette partie, on écrit $P' = na_n \prod_{i=1}^{n-1} (X - t_i)$ où les t_i sont des nombres complexes. On suppose en outre que $n_0 = 1$.

1°) Prouver que si l'on a $\left|\frac{P''(z_0)}{P'(z_0)}\right| \ge n-1$ alors P et z_0 vérifient (IS).

- $\mathbf{2}^{\circ}$) Calculer $\frac{P''(z_0)}{P'(z_0)}$ à l'aide des z_i (on pourra utiliser le polynôme $\frac{P}{X-z_0}$).
- **3°)** Montrer que si $z \in \mathbb{C}$ vérifie $|z| \leq 1, z \neq 1$ alors

$$\Re\left(\frac{1}{1-z}\right) \geqslant \frac{1}{2}.$$

- **4°)** Montrer que, si $z_0 = 1$, P et z_0 vérifient (IS) (on pensera à utiliser B.1).
- 5°) On suppose que $z_0 = 1$ et on range les t_i de sorte que

$$\Re\left(\frac{1}{1-t_1}\right) \geqslant \Re\left(\frac{1}{1-t_i}\right) \text{ pour } i=1,\dots,n-1.$$

Prouver que l'on a

$$\Re\left(\frac{1}{1-t_1}\right) \geqslant 1$$
puis $\left|\mathbf{t}_1 - \frac{1}{2}\right| \leqslant \frac{1}{2}$ et $|\mathbf{t}_1 - \mathbf{1}| \leqslant 1$.

 6°) On suppose z_0 de module 1. Prouver que P et z_0 vérifient (IS) (utiliser une transformation géométrique simple de \mathbb{C}).

PARTIE II: CAS D'UNE RACINE RÉELLE

Dans toute cette partie, on suppose que $n_0 = 1$ et que z_0 est un nombre réel a vérifiant 0 < a < 1. Pour $w \in \mathbb{C} \setminus \{1/a\}$, on pose $T(w) = \frac{w-a}{aw-1}$.

Pour
$$w \in \mathbb{C} \setminus \{1/a\}$$
, on pose $T(w) = \frac{w-a}{aw-1}$.

On note \tilde{P} le polynôme de $\mathbb{C}[X]$ tel que

$$\tilde{P}(X) = (aX - 1)^n P\left(\frac{X - a}{aX - 1}\right),\,$$

et on écrit $\tilde{P}(X) = b_n X^n + \dots + b_0$ où les b_i sont dans \mathbb{C} .

- 1°) Calculer $T \circ T(w)$ pour $w \in \mathbb{C} \setminus \{1/a\}$, et trouver l'image par T du cercle unité, de son intérieur, et de son extérieur privé du point 1/a.
- **2**°) Prouver que l'on a $b_0 = 0$, $|b_1| \le |b_n|$ et $|b_{n-1}| \le (n-1)|b_n|$.

On pose

$$R(X) = \sum_{i=1}^{n} \left[(n-i)b_{i}X^{i} + \frac{ib_{i}}{a}X^{i-1} \right]$$

et on écrit $R(X) = A \prod_{k=1}^{n-1} (X - \gamma_k)$ où $A \neq 0$ et où les γ_k sont rangés de telle sorte que

$$|\gamma_1| \leqslant |\gamma_2| \leqslant \cdots \leqslant |\gamma_{n-1}|.$$

3°) Prouver que l'on a

$$\prod_{k=1}^{n-1} |\gamma_k| \leqslant \frac{1}{n - a(n-1)}.$$

 $\mathbf{4}^{\circ}$) Soit $w \in \mathbb{C} \setminus \{1/a\}$, calculer P'(T(w)) en fonction de a, w et R(w).

 ${f 5}^{\circ}$) Soit μ un nombre réel tel que $|\gamma_1|\leqslant \mu<\frac{1}{a}$. Prouver que P' a une racine ζ vérifiant

$$|\zeta - a| \leqslant \frac{\mu(1 - a^2)}{1 - a\mu}.$$

Si $\mu \leqslant \frac{1}{1+a-a^2}$, prouver que P' a une racine ζ vérifiant $|\zeta - a| \leqslant 1$.

- **6°) a)** Montrer que, pour $n \in \{3,4\}$, $\frac{1}{n-a(n-1)} \leqslant \frac{1}{(1+a-a^2)^{n-1}}$ (étudier la fonction $x \mapsto \ln(n-x(n-1)) (n-1)\ln(1+x-x^2)$).
 - b) En déduire que si $n \le 4$ alors P et a vérifient (IS). Montrer que, si $n \le 4$ alors, pour toute racine z de P de module compris strictement entre 0 et 1, P et z vérifient (IS).
- 7°) Montrer que tout polynôme de $\mathbb{C}[X]$, de degré 3 ou 4, ayant toutes ses racines de module au plus 1 vérifie (IS).
- 8°) On suppose qu'on a n=5, 6 ou 7 et que P a une racine double au moins et de module 1. Montrer que P et a vérifient (IS)(étudier la fonction $x \mapsto (n-2)\ln(1+x-x^2) \ln[n-(n-1)x]$).
- 9°) Montrer que tout polynôme de $\mathbb{C}[X]$, de degré 5, 6 ou 7, ayant une racine double au moins et de module 1, et toutes ses autres racines de module au plus 1, vérifie (IS).

PARTIE III: CONTINUITÉ DES RACINES D'UN POLYNÔME

On note $\mathbb{C}_n[X]$ l'espace vectoriel des polynômes de $\mathbb{C}[X]$ de degré au plus n. On définit une norme sur $\mathbb{C}[X]$ par

$$||S|| = \left\| \sum_{i=0}^{n} s_i X^i \right\| = \sum_{i=0}^{n} |s_i|.$$

On ne demande pas de prouver que ceci est une norme sur $\mathbb{C}[X]$.

- 1°) Prouver que si $S \in \mathbb{C}[X]$ est de degré n, toute racine z de S dans \mathbb{C} vérifie $|z| \leq \frac{\|S\|}{s_n}$ (on distinguera les cas $|z| \leq 1$ et |z| > 1).
- **2°)** Soit (S_k) une suite de polynômes de degré n qui converge vers S, de degré n, dans $\mathbb{C}_n[X]$, lorsque $k \to +\infty$. On pose $S_k = \alpha_k \prod_{i=1}^n (X x_{i,k})$. Soit z une racine de S dans \mathbb{C} et p sa multiplicité.

Si $\varepsilon > 0$ on veut montrer que, pour k assez grand, p au moins des nombres complexes $x_{i,k}$ (i = 1, ..., n) sont à distance au plus ε de z.

- a) Montrer que l'ensemble des $\{x_{i,k}, i \in [1,n], k \in \mathbb{N}\}$ est borné.
- b) Soit z une racine de S d'ordre $p, \varepsilon > 0$ et D le disque de centre z, de rayon ε . On range les racines de S_k de sorte que

$$|x_{1,k} - z| \le |x_{2,k} - z| \le \dots \le |x_{n,k} - z|.$$

Montrer par l'absurde que $|x_{p,k}-z|<\varepsilon$ et conclure.

PARTIE IV: POLYNÔMES EXTRÉMAUX

Soit k un entier vérifiant $n \ge k+1 \ge 2$. On note $P_n(k)$ la partie de $\mathbb{C}_n[X]$ formée des polynômes unitaires de degré n ayant au plus k+1 racines distinctes, toutes de module au plus 1.

Pour $S \in P_n(k)$ et pour z racine de S, on note $I_S(z)$ la plus courte distance de z aux racines de S'. On note I(S) le plus grand des $I_S(z)$ quand z parcourt l'ensemble des racines de S.

- 1°) a) Montrer qu'on a $I(S) \leq 2$ pour $S \in P_n(k)$ et qu'il existe un polynôme S de $P_n(n-1)$ tel que I(S) = 1.
 - **b)** On note $I(P_n(k))$ la borne supérieure des I(S) quand S parcourt $P_n(k)$. Montrer que, si on a $I(P_n(k)) \leq 1$ alors tout polynôme de $P_n(k)$ vérifie (IS). Montrer que $I(P_n(n-1)) \geq 1$.
- **2**°) **a)** Prouver que $P_n(k)$ est une partie compacte de $\mathbb{C}_n[X]$.
 - b) Montrer que $I: S \mapsto I(S)$ est une application continue de $P_n(k)$ dans \mathbb{R} et qu'il existe un polynôme S de $P_n(k)$ vérifiant $I(S) = I(P_n(k))$.

On appelle polynôme extrémal de $P_n(k)$ un polynôme S de $P_n(k)$ vérifiant $I(S) = I(p_n(k))$.

- **3**°) Prouver qu'un polynôme extrémal de $P_n(k)$ a une racine de module 1 (utiliser une transformation géométrique simple de \mathbb{C}).
- **4°)** Prouver que, pour tout nombre réel θ , un polynôme extrémal de $P_n(k)$ a au moins une racine de la forme $e^{i\alpha}$ où $\alpha \in [\theta, \theta + \pi[$.
- 5°) On suppose que n=5, 6 ou 7 et k=3. On note S un polynôme extrémal de $P_n(k)$ et on suppose que S a une racine a réelle vérifiant 0 < a < 1.

Prouver que S et a vérifient (IS) (dans le cas où S a exactement 2 zéros distincts u et v de module 1, on pourra prouver que leur somme est nulle et établir la majoration

$$|a - \zeta|^k \leqslant \frac{2^{k-2}}{n} |a - u|.|a - v|$$

où ζ est la racine de S' la plus proche de a).

- **6°**) On suppose que n=5, 6 ou 7. Prouver que l'on a $I(P_n(3)) \leq 1$.
- **7°)** Prouver que tout polynôme de $\mathbb{C}[X]$ ayant au plus 4 racines distinctes, ces racines étant de module au plus 1, vérifie (IS).

Remarque: On ne sait pas (encore?) démontrer la conjecture dans le cas général. Outre ceux envisagés dans le problème, d'autres cas particuliers ont étés établis, notamment celui des polynômes de degré 5 ou celui des polynômes ayant au plus 4 coefficients non nuls.

D'après: ENS Ulm 1989