CHAPTER - 14 APPLICATION OF DIFFERENTIATION

JEE MAIN - SECTION I

1. 2
$$\frac{dV}{dt} = 40$$

$$V = \frac{4}{3} \pi V^{2}$$

$$\frac{dV}{dt} = 4\pi V^{2} \frac{dV}{dt}$$

$$\frac{dV}{dt} = \frac{10}{\pi V^{2}}$$

$$S = 4Tr^{2}$$

$$\frac{ds}{dt} = 8Tr \cdot \frac{dr}{dt}$$

$$= 8Tr \cdot 8 \times 10$$

$$\pi \times 8 \times 8$$

$$= 10 \text{ cm}^{2} / 5$$

2. 1

3. 1

(1)
$$h'(\alpha) = f'(\alpha) - 2f(\alpha)f'(\alpha) + 3[f(\alpha)]^2f'(\alpha)$$

$$= f'(\alpha) \left(3(f(\alpha))^2 - 2f(\alpha) + 1\right)$$

$$+ \sqrt{C}$$

$$h(\alpha) \wedge when f(\alpha) \wedge$$

4. 2

5. 1

Nearest Distance =
$$\sqrt{(n-3)^2 + n^4}$$

Let $f = (n-3)^2 + n^4$
 $f' = 0$ & $f'' > 0$ at $n = 1$

Nearest Distance = $\sqrt{5}$

6. 1
$$x+p=a-2$$
, $x+p=a+1$
 $x^2+p^2=(a-2)^2+2(a+1)$
Let $f(a) = a^2-2a+6$
 $f'(a) = 0$ $f''(a) > 0$ $f''(a)$

7.
$$V = 5x - \frac{x^2}{6} \Rightarrow \frac{dV}{dt} = 5\frac{dx}{dt} - \frac{x}{3} \cdot \frac{dx}{dt}$$
$$\Rightarrow \frac{dx}{dt} = \frac{\frac{dV}{dt}}{\left(5 - \frac{x}{3}\right)} \Rightarrow \left(\frac{dx}{dt}\right)_{x=2} = \frac{5}{5 - \frac{2}{3}} = \frac{15}{13} \text{ cm / sec.}$$

8. Displacements
$$s = -4t^2 + 2t$$

Now velocity $v = -8t + 2$ and its acceleration $a = -8$
So $\left(\frac{ds}{dt}\right)_{t=1/2} = -8 \times \frac{1}{2} + 2 = -2$ and $\left(\frac{d^2s}{dt^2}\right)_{t=1/2} = -8$.

9. 1
$$f(x) = x^3 - 3x^2 - 24x + 5$$

For increasing, $f(x) > 0$, $3x^2 - 6x - 24 > 0$
 $\Rightarrow x^2 - 2x - 8 > 0$
 $x^2 - 4x + 2x - 8 > 0 \Rightarrow (x + 2)(x - 4) > 0$
 $x \in (-\infty, -2) \cup (4, \infty)$.

Brilliant STUDY CENTRE

10. 2 Here
$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

$$\Rightarrow \frac{e^b - e^a}{b - a} = f'(c) \Rightarrow \frac{e - 1}{1 - 0} = e^c \Rightarrow c = \log(e - 1).$$

11. 3
$$x = e^{2t} + 2e^{-t}, y = e^{2t} + e^{t}$$

At $t = \ln 2$ $x = 4 + 1 = 5, y = 4 + 2 = 6$

$$\frac{dy}{dx} = \frac{2e^{2t} + e^{t}}{2e^{2t} - 2e^{-t}} = \frac{8 + 2}{8 - 1} = \frac{10}{7} \implies \text{equation of tangent is } y - 6 = \frac{10}{7}(x - 5)$$

$$7y - 42 = 10x - 50 \text{ or} \qquad 10x - 7y = 8$$

12. 3
$$y^{3} = 27 x \Rightarrow 3y^{2} \frac{dy}{dt} = 27 \frac{dx}{dt}$$
But $\frac{|dx/dt|}{|dy/dt|} < 1 \Rightarrow \frac{y^{2}}{9} < 1 \Rightarrow -3 < y < 3 \text{ for } y \in (-3,3), x \in (-1,1) \Rightarrow (C)$

13. 3 Since f is defined on
$$(0, \infty)$$

 $\therefore 2a^2 + a + 1 > 0$ which is True as $D < 0$
also $3a^2 - 4a + 1 > 0$
 $(3a - 1)(a - 1) > 0 \Rightarrow 0$
as f is increasing hence
 $f(2a^2 + a + 1) > f(3a^2 - 4a + 1)$
 $\Rightarrow 2a^2 \pm a \pm 1 > 3a^2 - 4a + 1$
 $0 > a^2 - 5a$
 $\therefore a(a - 5) < 0 \Rightarrow (0, 5) \Rightarrow$
hence $a \in (0, 1/3) \cup (1, 5)$ Ans.

14. 3
$$x^4 - 10x^2 + 9 \le 0$$

$$(x^2-9)(x^2-1) \le 0$$

hence
$$-3 \le x \le -1$$
 or $1 \le x \le 3$

now
$$f(x) = x^3 - 3x$$

$$f'(x) = 3x^2 - 3 = 0$$

$$x = \pm 1$$

maximum occurs when x = 3

$$f(3) = 18$$

$$\chi^2 + y^2 = \chi^2$$
15. 2 $\chi dx + y dx$

17. 3 Let thickness of ice be "h".

Vol. of ice =
$$v = \frac{4\pi}{3}((10+h)^3 - 10^3)$$

$$\frac{dv}{dt} = \frac{4\pi}{3} (3(10+h)^2) \cdot \frac{dh}{dt}$$

Given, $\frac{dv}{dt} = 50cm^3 / \text{min and } h = 5cm$

$$\Rightarrow 50 = \frac{4\pi}{3} (3(10+5)^2) \frac{dh}{dt}$$

$$\Rightarrow \frac{dh}{dt} = \frac{50}{4\pi \times 15^2} = \frac{1}{18\pi}$$
 cm/min

18. 2 Let a is first term and d is common difference then, a+5d=2 (given)(1) f(d) = (2-5d)(2-2d)(2-d)

$$f'(d) = 0 \implies d = \frac{2}{3}, \frac{8}{5}$$

$$f''(d) < 0$$
 at $d = 8/5$

$$\Rightarrow d = \frac{8}{5}$$

19. $f(x) = 9x^{4} + 12x^{3} - 36x^{2} + 25$ $f'(x) = 36x^{3} + 36x^{2} - 72x$ $= 36x(x^{2} + x - 2) = 36x(x - 1)(x + 2)$

Points of minima = $\{-2,1\} = S_1$

Points of maxima = $\{0\} = S_2$

20. 1
$$h = 2r \sin \theta, a = 2r \cos \theta,$$

$$v = \pi (r \cos \theta)^{2} (2r \sin \theta), v = 2\pi r^{3} \cos^{2} \theta \sin \theta$$

$$\frac{dv}{d\theta} = \pi r^{3} (-2\cos \theta \sin^{2} \theta + \cos^{3} \theta) = 0 \text{ or } \tan \theta = \frac{1}{\sqrt{2}}$$

$$\therefore h = 2 \times 3 \times \frac{1}{\sqrt{3}} = 2\sqrt{3}.$$

SECTION II (NUMERICAL)

21. 320
$$f'(x) = 3x^2 + 6x(\lambda - 7) + 3(\lambda^2 - 9)$$

For +ve point of maxima both roots of f'(x) = 0 must be +ve, have $\lambda \in (-\infty, -3) \cup (3, \frac{29}{7})$ $\therefore \beta + 11v + 70\delta = 320$

By graphically we can obtain points of local extrema is 5

22. -3 Slope of the given line =
$$\frac{-3}{2}$$
.

First of all, we try to locate the points on the curve at which the tangent is parallel to the given line. So, differentiating both sides with respect to x of $3x^2-4y^2=72$, we get

$$\frac{dy}{dx} = \frac{3x}{4y} = \frac{-3}{2} \text{ (given)} \implies \frac{x}{y} = -2$$

Now,
$$3\left(\frac{x}{y}\right)^2 - 4 = \frac{72}{y^2} \implies y^2 = 9 \implies y = -3, 3$$

So, points are (-6, 3) and (6, -3).

Now, distance of (-6,3) from the given line $=\frac{\left|-18+6+1\right|}{\sqrt{13}}=\frac{11}{\sqrt{13}}$

and distance of (6, –3) from the given line = $\frac{\left|18-6+1\right|}{\sqrt{13}} = \frac{13}{\sqrt{13}}$

Clearly, the required point is $M(-6, 3) = (x_0, y_0)$ (given)

So,
$$x_0 = -6$$
, $y_0 = 3$.

So,
$$x_0 = -6$$
, $y_0 = 3$.
Hence, $(x_0 + y_0) = -6 + 3 = -3$. Ans.

23. Let
$$P(x)$$
 be a polynomial of degree 5 having extremum at $x = -1$, 1 and $\lim_{x \to 0} \left(\frac{P(x)}{x^3} - 2 \right) = 4$. If M and M are the maximum and minimum value of the function M and M then find M then find M and M are the maximum and minimum value of the function M and M are the maximum and minimum value of the function M and M are the maximum and minimum value of the function M and M are the maximum and minimum value of the function M and M are the maximum and minimum value of the function M and M are the maximum and minimum value of the function M and M are the maximum and M are the maximum and minimum value of the function M and M are the maximum and M and M are the maximum and M are

Consider
$$P(x) = ax^5 + bx^4 + 6x^3$$

$$\Rightarrow$$
 P'(x) = $5ax^4 + 4bx^3 + 18x^2$

Now,
$$P'(-1) = 0$$
 gives $5a - 4b = -18$

and
$$P'(1) = 0$$
 gives $5a + 4b = -18$

.. On solving, we get

$$a = \frac{-18}{5}$$
, $b = 0$

Hence
$$P(x) = \frac{-18}{5}x^5 + 6x^3$$

$$\Rightarrow$$
 P'(x) = -18x⁴ + 18x² = 18(x² - x⁴)

and
$$P''(x) = 18(2x-4x^3) = 36(x-2x^3)$$

$$\Rightarrow$$
 P''(x) = 36x(1 - 2x²)

Also
$$A = \{x \mid x^2 + 6 \le 5x\}$$

gives
$$x \in [2,3]$$

Clearly P"(x) $\leq 0 \forall x \in [2, 3]$

So, y = P'(x) is decreasing function in [2, 3]

$$M = P'_{max}(x = 2) = 18(4 - 16) = -18 \times 12$$

and
$$m = p_{min}^* (x = 3) = 18(9 - 81) = -18 \times 72$$

24. 1.5 Graph of f(x)

x = -1 maxima and x = 0 minima

x = -1, 0 are non differentiable points

A + x = -2,
$$\frac{d^2y}{dx^2}$$
 = 0 and $\frac{d^3y}{dx^3} \neq 0$.: Inflexion at x = -2

25.
$$5049$$
 if $b = 1$

$$f(x) = 8x^3 + 4ax^2 + 2x + a$$

 $f'(x) = 24x^2 + 8ax + 2$ or $2(12x^2 + 4ax + 1)$

for non monotonic f'(x) = 0 must have distinct roots

hence
$$D > 0$$
 i.e. $16a^2 - 48 > 0 \implies a^2 > 3$; $\therefore a > \sqrt{3}$ or $a < -\sqrt{3}$

$$sum = 5050 - 1 = 5049$$
 Ans.

JEE ADVANCED LEVEL SECTION III

26. D Consider a tangent common to both the curves $y = \frac{x^2}{3}$ and the circle whose centre at (15,-

3) at
$$P(x_1, y_1)$$
 : slope of the tangent at $P(x_1, y_1) = \frac{dy}{dx}|_{p} = \frac{2x_1}{3}$

: slope of the normal at
$$P(x_1, y_1)$$
 is $=\frac{-3}{2x_1}$

$$\therefore \frac{-3}{2x_1} = \frac{y_1 + 3}{x_2 - 15} \Rightarrow 2x_1y_1 + 9x_1 - 45 = 0$$

$$\Rightarrow 2x_1^3 + 27x_1 - 135 = 0$$

$$\Rightarrow$$
 x₁ = 3 & y₁ = 3 \Rightarrow radius = $6\sqrt{5}$

27. A Given curve is $y = \sin x$

Let the tangent to the curve at $P(\alpha,\beta)$ be $y-\beta = \cos \alpha (x-\alpha)...(1)$

since (1) passes through (0,0), $-\beta = \cos \alpha (-\alpha)$

ie,
$$\cos \alpha = \frac{\beta}{\alpha}$$
....(2)

since P lies on $y - \sin x, \beta = \sin \alpha \rightarrow (3)$

$$(2)^2 + (3)^2 \Rightarrow 1 = \frac{\beta^2}{\alpha^2} + \beta^2 \Rightarrow (\alpha, \beta)$$
 lies on $\frac{1}{x^2} - \frac{1}{y^2} + 1 = 0$

Brilliant STUDY CENTRE

28. C
$$\frac{dy}{dx} = \left(\frac{3x + 2y}{2x + 5y}\right) \Rightarrow \frac{dy}{dx}|_{p} = 0 \& \frac{dy}{dx}|_{Q} = \alpha$$

⇒ Tangenets at P & Q one ⊥r to each other

29. A From the question,
$$\left| \frac{dx}{dt} \right| > \left| \frac{dy}{dt} \right| \Rightarrow \left| \frac{dx}{dy} \right| > 1$$
. Differentiating $x^3 = 12y$ w.r.t. y , we get
$$\Rightarrow 3x^2 \frac{dx}{dy} = 12 \Rightarrow \frac{dx}{dy} = \frac{4}{x^2} \therefore \frac{4}{x^2} > 1 \qquad \left(\because \frac{dx}{dy} > 1\right)$$

$$\Rightarrow x^2 - 4 < 0 \Rightarrow -2 < x < 2$$

30. C Let
$$y = \cos x$$
 $\Rightarrow \frac{dy}{dx} = -\sin x$
Now, $\cos 60^{\circ} 2' = \cos 60^{\circ} + \Delta y$

$$\Delta y = \left(\frac{dy}{dx}\right)_{x=0^{\circ}} \Delta x = -\frac{\sqrt{3}}{2} \Delta x = -\frac{\sqrt{3}}{2} \cdot 1' = -\frac{\sqrt{3}}{2} \times \frac{2\alpha}{60}$$

$$\therefore \cos 60^{\circ} 2' = \frac{1}{2} - \frac{\alpha\sqrt{3}}{60}$$

31. C
$$f'(x) = -(1+3x^{2}) \rightarrow f(x) \text{ decreasing}$$
Then $1-f(x)-f^{3}(x) > f(1-5x) \rightarrow f(f(x)) > f(1-5x)$

$$\Rightarrow 1-x-x^{3} > 1-5x$$

$$\Rightarrow x^{3}-4x > 0 \Rightarrow x \in (-2,0) \cup (2,\infty)$$

32. C Statement 1 is true & statement -2 is true

SECTION IV (More than one correct)

33. A,C,D Using graph of f(x) and using Leibnitz Rule

34. A,B,C,D
$$f'(x) = (x^2 - x + 2)(x + 3)(x + 2)(x + 1)(x - 2)(x - 3)(x - 4)$$

since $f'(-2) = 0 \Rightarrow x + 2 = 0$ in the equation of normal at $x = -2$
Also $f(x)$ has local maximum at $x = -3, -1, 3 \Rightarrow \text{sum} = -1$

35. A,
$$C f'(x) = 3x^2 + 2ax + b + 5\sin 2x$$

 $f(x)$ increases always, so $f'(x) > 0 \ \forall \ x \in \mathbb{R}$
 $\Rightarrow 3x^2 + 2ax + b + 5\sin 2x > 0$
which will be true if $3x^2 + 2ax + b - 5 > 0$, always if $D < 0$

SECTION V - (Numerical type)

36. 1 Let
$$f(x) = x^3 - 3x + 1 \Rightarrow f'(x) = 3(x+1)(x-1)$$

 $\therefore f(x)$ is increasing in $(-\infty, -1) \cup (1, \infty)$ and decreasing in $(-1, 1)$
Since $f(-2)f(-1) < 0 \Rightarrow$ one root lies in $(-2, -1)$
 $f(0)f(1) < 0 \Rightarrow$ one root lies in $(0, 1)$
 $f(1)f(2) < 0 \Rightarrow$ one root lies in $(1, 2)$
 $\Rightarrow [x_1] + [x_2] + [x_3] = -1$, where x_1, x_2, x_3 are the roots of $f(x) = 0$
 $\{x_1\} + \{x_2\} + \{x_3\} = 1$, since $x_1 + x_2 + x_3 = 0$

37. 5 Since $f'(x) > 0, \forall x \in R, f(x)$ is increasing function

Now, $f(f(f(x) - 2x^3)) \ge f(f(2x^3 - f(x)))$ (given) $\Rightarrow f(x) \ge 2x^3 \Rightarrow 7x^2 - 26x - 8 \le 0 \Rightarrow x \in \left[\frac{-2}{7}, 4\right]$

38. 12
$$g(x) = \frac{d}{dx}(f'(x).f''(2))$$
Also $f'(x) = -f'(6-x)$

$$f'(0) = f'(6) = f'(u) = f'(5) = f'(1) = f'(3) = 0$$

$$f'(x) \text{ has at least 7 roots}$$

$$\therefore f''(x) \text{ has at least 6 roots}$$

$$\Rightarrow g(x) \text{ has at least 12 roots}$$

Brilliant STUDY CENTRE

Let
$$y_1 = \sqrt{2 - x_1^2}$$
 and $y_2 = \frac{9}{x_2} \Rightarrow x_1^2 + y_1^2 = 2$ and $x_2 y_2 = 9$

Hence given expression represents the distance between points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ lying on the curves $x^2 + y^2 = 2$ and xy = 9 respectively in the first quadrant.

Thus in order to find the least value of the given expression we must find the least distance between the indicated curves.

For
$$xy = 9$$
, $\frac{dy}{dx} = -\frac{y}{x} = -\frac{9}{x^2}$.

For xy = 9, $\frac{dy}{dx} = -\frac{y}{x} = -\frac{9}{x^2}$. Hence slope of normal to xy = 9 at $P_1(x_2, y_2)$ is $\frac{x_2^2}{9}$ and the equation of normal at P_2 is; $(y - y_2) = \frac{x_2^2}{9}(x - x_2)$. It must pass through the origin (as we are interested in common normal) $\Rightarrow 0 - \frac{9}{x_2} = \frac{x_2^2}{9}(0 - x_2) \Rightarrow x_2^4 = 81$

$$\Rightarrow x_2 = 3 \Rightarrow y_2 = 3$$

Thus least distance between the curves is $\sqrt{9+9} - \sqrt{2} = 2\sqrt{2}$.

SECTION VI - (Matrix match type)

A-(Q); B(QS); C-(QRS); D-(T) 40.

$$g(x) = \begin{cases} f(x) & -2 \le x < -1 \\ f(-1) & -1 \le x < 0 \\ f(0) & 0 \le x < 1 \\ f(x) & 1 \le x \le 3 \end{cases}$$

$$f(x) = \begin{cases} x^2 + 2x & -2 \le x < -1 \\ -1 & -1 \le x < 0 \\ 0 & 0 \le x < 1 \\ x^2 - 2x & 1 \le x \le 3 \end{cases}$$

- (a) f(x) not continuous at x = 0
- (b) g(x) not continuous at x = 0, 1 and not differentiative at 0, 1.
- (c) No point exist for local extrema
- (d) Absolute maxima occurs at x = 3