Classification of Data based on Sentiment of Text using Machine Learning & Deep Learning

(High Integrity Systems, Master's Thesis)

Presented by: Rozana Alam

Advisor: Prof. Dr. rer.nat. Matthias F. Wagner

Co-advisor: Prof. Dr. Eicke Godehardt

Department of Computer Science and Engineering, Frankfurt University of Applied Sciences, Frankfurt(Germany)

Outline

- Introduction 3
- Related Work 4
- Business Knowledge and proposed solution 6
- Theoretical & Technical Overview 8
- Data Collection & Analysis 19
- Implementation
- Results 30
- Conclusion 31

Introduction

- Overview
- ► Motivation
- ► Related Work
- ► Project plan

Related work

Result analysis of Related works				
Model Type	Model name	Accuracy		
Machine Learning	Naïve Bayes	88%		
	Support Vector machine	81%		
	Random Forest	63%		
Deep Learning	Deep Pyramid CNN (Amazon 2)	94.68%		
	BLSTM-(SST2)	89.5%		
Bert model	Bert base(IMBD)	95.63% FRA		
Classification	eight category	59% OF APPLIED S		

4/32

Project Plan

Business Knowledge and proposed solution

- Natural Language processing(NLP)
- Multi-class Classification
- Sentiment Analysis
- Applications of Sentiment Analysis
- Problem Statement
- Proposed Solution
- Objectives
- Process model of sentiment analysis

Process model of sentiment analysis

AI, Machine Learning and Deep Learning

Figure: AI, ML, and Deep Learning relationship

Selected Methods for the experiment on our Data

Text classification with Machine Learning models

Selected Methods for the experiment on our Data

Text classification with Machine Learning models

- ► Naïve Bayes classifier 11
- ► Logistic Regression 12
- ► Decision Tree 13

Text classification with Deep Learning models

- ► General Neural Network 14
- Convolutional Neural Network 15
- ► Long Sort-term Memory(LSTM) 16
- ► Bert_base_uncased_model 17

Naïve Bayes Theorem ML model

Naïve Bayes:

$$P(A/B) = (P(B/A)P(A))/(P(B))$$
 (1)

Where P(A/B) and P(B/A) are conditional probabilities.

Multinomial NB model:

$$P(c/d) \alpha \prod_{1 \leq_k \leq_n d} P(c) P(tk/c)$$

(2)

Logistic Regression

Figure: Logistic Curve, The values of y cannot be less than 0 or greater FRANKFURT than 1

Decision Tree

Simple Neural Network

$$\sum_{i=1}^{3} x_i w_i = w_1 * x_1 + w_2 * x_2 + w_3 * x_3$$
 (3)

Convolutional Neural Network

Figure: The architecture of a sample CNN model for text classification

Long Short-Term Memory(LSTM)

Figure: Structure of the LSTM cell

Bert_base_uncased model

Figure: BERT model

BERT input representation

Figure: BERT input representation

Data Collection And Data Investigation

S_df.head(10) # first 5 series

sentiment	selected_text	text	textID	
neutra	I'd have responded, if I were going	I'd have responded, if I were going	cb774db0d1	0
negative	Sooo SAD	Sooo SAD I will miss you here in San Diego!!!	549e992a42	1
negative	bullying me	my boss is bullying me	088c60f138	2
negative	leave me alone	what interview! leave me alone	9642c003ef	3
negative	Sons of ****,	Sons of ****, why couldn't they put them on t	358bd9e861	4
neutra	http://www.dothebouncy.com/smf - some shameles	http://www.dothebouncy.com/smf - some shameles	28b57f3990	5
positive	fun	2am feedings for the baby are fun when he is a	6e0c6d75b1	6
neutra	Soooo high	Soooo high	50e14c0bb8	7
neutra	Both of you	Both of you	e050245fbd	8
positive	Wow u just became cooler.	Journey!? Wow u just became cooler, hehe	fc2cbefa9d	9

Figure: head lines of S_df

Data visualization of 'S_df' DataFrame

Figure: S_df visualization

'Selected_text' column WordCloud Visulalization

Figure: 'Selected_text' column WordCloud Visulalization

Comparison of 'selected_text' & 'text' column

Figure: Value counts for 'selected_text' and 'text' column

Data pre-processing for ML models

Defining Training and Test Data for ML models

Flow of Feature Engineering steps

Steps for best Machine Learning model

Data pre-processing for Simple NN, CNN and RNN

Flow of Deep Learning Best model

Flowchart of BERT model

Result analysis of all the model		
Model Type	Model name	Accuracy
	Naïve Bayes	78.31%
ML model	Logistic Regression	78.85%
	Decision Tree	75.96%
	Simple NN	48.66%
DL Model	CNN	49%
	LSTM	32.50%
Bert model	Bert_Base_Fine_Tuning	88.56%
	Neutral	86.028%
Sentiment for Bert model	negative	88.724%
	positive	90.29%

Conclusion

- ► Limitations
- ► Problem Faced
- ► Future Plan

Thank You

Questions??

