Virtual Large Cardinals

BRITISH LOGIC COLLOQUIUM 2019, OXFORD

Dan Saattrup Nielsen University of Bristol September 5, 2019

What is a large cardinal?

There is no rigorous definition of a large cardinal

What is a large cardinal?

There is no rigorous definition of a large cardinal, but many of them, especially in the higher reaches of the hierarchy, are characterised as the *critical point* of a certain elementary embedding:

$$\pi: (\mathcal{M}, \in) \to (\mathcal{N}, \in)$$

What is a large cardinal?

There is no rigorous definition of a large cardinal, but many of them, especially in the higher reaches of the hierarchy, are characterised as the *critical point* of a certain elementary embedding:

$$\pi: (\mathcal{M}, \in) \to (\mathcal{N}, \in)$$

Examples

- κ is a measurable cardinal if $\mathcal{M} = \mathcal{H}_{\kappa^+}$.
- κ is a θ -strong cardinal if $\mathcal{M} = H_{\theta}$, $H_{\theta} \subseteq \mathcal{N}$ and $\pi(\kappa) > \theta$.

Recall that $x \in H_{\theta}$ iff $|\text{trcl}(x)| < \theta$. This hierarchy is often more convenient than the V_{α} 's since $H_{\theta} \models \mathsf{ZFC}^-$ if θ is regular.

The hierarchy of large cardinals

What is a *virtual* large cardinal?

We basically just require that the embeddings exist in a *generic* extension rather than in V:

What is a *virtual* large cardinal?

We basically just require that the embeddings exist in a *generic* extension rather than in V:

"Definition"

Let Φ be a large cardinal concept defined via elementary embeddings between *sets*, like the definitions on the previous slide.

What is a *virtual* large cardinal?

We basically just require that the embeddings exist in a *generic* extension rather than in V:

"Definition"

Let Φ be a large cardinal concept defined via elementary embeddings between *sets*, like the definitions on the previous slide.

Then κ is **virtually** Φ if the same definition holds but where we only require the embeddings exist in a generic extension and that $\mathcal{N} \subseteq V$.

A virtual addition to the hierarchy

Attaching an adjective

Let us attach a **pre-** to our large cardinals if we do not require anything about where the critical point is sent:

Example

 κ is **prestrong** if for every regular $\theta > \kappa$ there is an elementary embedding $\pi: (H_{\theta}, \in) \to (\mathcal{N}, \in)$ with crit $\pi = \kappa$ and $H_{\theta} \subseteq \mathcal{N}$.

Attaching an adjective

Let us attach a **pre-** to our large cardinals if we do not require anything about where the critical point is sent:

Example

 κ is **prestrong** if for every regular $\theta > \kappa$ there is an elementary embedding $\pi: (H_{\theta}, \in) \to (\mathcal{N}, \in)$ with crit $\pi = \kappa$ and $H_{\theta} \subseteq \mathcal{N}$.

This is really not an interesting concept in the real world:

Proposition (folklore)

For regular cardinals $\kappa < \theta$:

- κ is θ -prestrong iff it is θ -strong
- ullet is heta-presupercompact iff it is heta-supercompact

Attaching an adjective

Let us attach a **pre-** to our large cardinals if we do not require anything about where the critical point is sent:

Example

 κ is **prestrong** if for every regular $\theta > \kappa$ there is an elementary embedding $\pi: (H_{\theta}, \in) \to (\mathcal{N}, \in)$ with crit $\pi = \kappa$ and $H_{\theta} \subseteq \mathcal{N}$.

It is interesting in the virtual world, however:

Theorem (N.)

For regular cardinals $\kappa < \theta, \, \kappa$ is virtually $\theta\text{-prestrong}$ iff either

- κ is virtually θ -strong, or
- κ is virtually (θ, ω) -superstrong

Characterising a phenomenon

Corollary (N.)

Virtually $\theta\text{-prestrongs}$ are equiconsistent with virtually $\theta\text{-strongs}.$

Characterising a phenomenon

Corollary (N.)

Virtually θ -prestrongs are equiconsistent with virtually θ -strongs.

Corollary (N.)

The following are equivalent:

- Virtually prestrongs are equivalent to virtually strongs
- There are no virtually ω -superstrongs.

Characterising a phenomenon

Corollary (N.)

Virtually θ -prestrongs are equiconsistent with virtually θ -strongs.

Corollary (N.)

The following are equivalent:

- Virtually prestrongs are equivalent to virtually strongs
- There are no virtually ω -superstrongs.

Note that ω -superstrong cardinals are inconsistent with ZFC!

Adding parameters

Definition

Let $\kappa < \theta$ be regular and let A be a class. Then κ is **virtually** (θ, A) -prestrong if there exists a generic elementary embedding

$$\pi \colon (H_{\theta}^{V}, \in, A \cap H_{\theta}^{V}) \to (\mathcal{N}, \in, B)$$

such that crit $\pi = \kappa$, $H_{\theta}^{V} \subseteq \mathcal{N}$, $\mathcal{N} \subseteq V$ and $A \cap H_{\theta}^{V} = B \cap H_{\theta}^{V}$.

Further, if $\pi(\kappa) > \theta$ then κ is **virtually** (θ, A) -strong.

Adding parameters

Definition

Let $\kappa < \theta$ be regular and let A be a class. Then κ is **virtually** (θ, A) -prestrong if there exists a generic elementary embedding

$$\pi \colon (H_{\theta}^{V}, \in, A \cap H_{\theta}^{V}) \to (\mathcal{N}, \in, B)$$

such that crit $\pi = \kappa$, $H_{\theta}^{V} \subseteq \mathcal{N}$, $\mathcal{N} \subseteq V$ and $A \cap H_{\theta}^{V} = B \cap H_{\theta}^{V}$.

Further, if $\pi(\kappa) > \theta$ then κ is virtually (θ, A) -strong.

Can we find some virtual large cardinal characterising exactly when the virtually A-prestrongs are equivalent to virtually A-strongs?

8

Adding parameters

Definition

Let $\kappa < \theta$ be regular and let A be a class. Then κ is **virtually** (θ, A) -prestrong if there exists a generic elementary embedding

$$\pi \colon (H_{\theta}^{V}, \in, A \cap H_{\theta}^{V}) \to (\mathcal{N}, \in, B)$$

such that crit $\pi = \kappa$, $H_{\theta}^{V} \subseteq \mathcal{N}$, $\mathcal{N} \subseteq V$ and $A \cap H_{\theta}^{V} = B \cap H_{\theta}^{V}$.

Further, if $\pi(\kappa) > \theta$ then κ is virtually (θ, A) -strong.

Can we find some virtual large cardinal characterising exactly when the virtually *A*-prestrongs are equivalent to virtually *A*-strongs?

Remember that we are looking for a large cardinal notion which is inconsistent in the real world.

Definition

 δ is **virtually berkeley** if for every transitive set \mathcal{M} there exists a generic elementary embedding $\pi \colon \mathcal{M} \to \mathcal{M}$ with crit $\pi < \delta$.

G

Definition

 δ is **virtually berkeley** if for every transitive set \mathcal{M} there exists a generic elementary embedding $\pi \colon \mathcal{M} \to \mathcal{M}$ with crit $\pi < \delta$.

The real world versions of these are of course inconsistent with ZFC, but are currently being investigated in a choiceless context.

G

Definition

 δ is **virtually berkeley** if for every transitive set \mathcal{M} there exists a generic elementary embedding $\pi \colon \mathcal{M} \to \mathcal{M}$ with crit $\pi < \delta$.

Definition

Say that On is virtually (pre)woodin if for every class A there exists a virtually A-(pre)strong cardinal κ .

9

Definition

 δ is **virtually berkeley** if for every transitive set \mathcal{M} there exists a generic elementary embedding $\pi \colon \mathcal{M} \to \mathcal{M}$ with crit $\pi < \delta$.

Definition

Say that On is virtually (pre)woodin if for every class A there exists a virtually A-(pre)strong cardinal κ .

Theorem (N.)

The following are equivalent:

- On is virtually prewoodin iff it is virtually woodin
- There are no virtually berkeley cardinals

Open questions

Question

Is the existence of a virtually berkeley cardinal equivalent to the statement that, for every class *A*, every virtually *A*-prestrong cardinal is virtually *A*-strong?

Question

Are virtually ω -superstrongs equivalent to virtually berkeleys?

Wilson (2018) has shown that this is true in L.

Thank you for your attention.

```
ω-erdős = Virtually berkeley = Virtually club berkeley =
Virtually \omega-superstrong = Virtually totally reinhardt
              Virtually rank-into-rank
        Virtually vopěnka = Virtually woodin
              Virtually C(n)-extendible
                Virtually extendible
       Remarkable = Virtually measurable =
     Virtually strong = Virtually supercompact
```