My solution:

1. The result shows in the table:

Person	Υ0	Y1	TE	D	Υ
Adam	10	10	0	0	10
Billy	15	15	0	0	15
Cynthia	10	12	2	1	12
Daniel	8	11	3	1	11
Elaine	6	9	3	1	9
Francis	15	11	-4	0	15
Gia	5	7	2	1	7
Hank	13	11	-2	0	13
Ida	15	6	-9	0	15
Jane	11	9	-2	0	11
Kelly	10	13	3	1	13
Leanna	15	15	0	0	15

- 2. In the table, I denote those friends with D=0 and D=1.
- 3. Those people with positive TE (D=1) are going to play. The proportion is Pi≈0.416666667.
- 4. Y=D*Y1+(1-D)*Y0

Using this equation, I get the Y column in the table.

5. a. E[Y|D=1]=10.4

E[Y|D=0]=13.42857143

Simple difference in mean outcomes:

E[Y|D=1]-E[Y|D=0]=10.4-13.42857143=-3.028571429

b. ATE=-0.333333333

ATT=2.6

ATU=-2.428571429

c. E[Y0|D=1]=7.8

E[Y0|D=0]=13.42857143

Selection bias:

E[Y0|D=1]-E[Y0|D=0]=7.8-13.42857143=-5.628571429

d. SDO decomposition:

ATE+Selection bias+(1-Pi)(ATT-ATU)

=-0.33333333+(-5.628571429)+(1-0.416666667)[2.6-(-2.428571429)]

=-3.028571429