✓ 例 1.1.1 设 $f: \mathbb{R} \to \mathbb{R}$ 严增, f^{-1} 是其反函数, x_1 是 $f(x) + x_2$

= a 的根, x_2 是 $f^{-1}(x) + x = a$ 的根.试求 $x_1 + x_2$ 的值.

解 因 $f(x_1) + x_1 = a$, $f^{-1} \circ f$ 是恒等变换, 知 $f(x_1) + f^{-1}[f(x_1)] = a$. 此即表明 $f(x_1)$ 是方程 $f^{-1}(x) + x = a$ 的根.

但由于 f 严增,可知 $f^{-1}(x) + x$ 也严增,方程 $f^{-1}(x) + x = a$ 有

根必唯一. 故 $f(x_1) = x_2$,因而 $x_1 + x_2 = x_1 + f(x_1) = a$. 注 讨论反函数,与所讨论的范围有密切关系. 例 f(x) =

 \sqrt{x} , $g = x^2$, 当用它们定义函数 $f: \mathbf{R} \to \mathbf{R}$, $g: \mathbf{R} \to \mathbf{R}$ 时,则 f 不是满射, g 不是单射. 但作为函数 $f: [0, +\infty) \to [0, +\infty)$, $g: [0, +\infty)$

射,g 不是单射.但作为函数 $f:[0, +\infty) \to [0, +\infty), g:[0, +\infty)$ $\to [0, +\infty)$ 二者都是双射,且互为反函数.

例 1.1.5 试证:设
$$f(x)$$
是 R 上的有界实函数,且有
$$f(x+h) = \frac{f(x+2h) + f(x)}{2} \qquad (\forall x \in \mathbf{R}),$$

其中 h 为某一正数,则 h 必是函数 f 的周期.

证 (根据式(1),有具有周贯等不面图常是个周期景量多 等

$$f(x+2h) - f(x+h) = f(x+h) - f(x) \qquad (\forall x \in \mathbf{R}).$$
令 $F(x) = f(x+h) - f(x)$, 上式即为 $F(x+h) = F(x)$ ($\forall x \in \mathbf{R}$), 于是

$$f(x+nh) = [f(x+nh) - f(x+(n-1)h)] + [f(x+(n-1)h) - f(x+(n-2)h)] + \dots + [f(x+h) - f(x)] + f(x)$$

$$= \sum_{h=0}^{n-1} F(x+hh) + f(x) = nF(x) + f(x).$$

若 $F(x) \neq 0$, 当 $n \rightarrow + \infty$ 时, 有 $nF(x) \rightarrow + \infty$, 与函数 f 有界矛盾, 所以 F(x) = 0. 即 f(x+h) = f(x)($\forall x \in \mathbf{R}$), 故 h 是函数 f 的周期.

注 1° 显然,正实数 h 是函数 f 的周期,则条件(1)必成立.本例说明:

若函数 f 在数轴上是有界函数,则条件(1)是 f 以 h 为周期的充分必要条件.

 2° "有界"条件不可忽略,例如 f(x) = x,不是周期函数,但是式(1)总成立.

例 1.1.3 若 f^{-1} 为 f 的反函数, $y = f^{-1}(-x)$ 是 y = f(-x)的反函数,试证 f(x)是奇函数.

证 I $y=f^{-1}(-x)$ 实为 f^{-1} 与 $g(x) \equiv -x$ 的复合函数.即 $f^{-1}(-x) = f^{-1}(g(x)) = (f^{-1} \circ g)(x), \tag{1}$

同理 $f(-x) = f(g(x)) = (f \circ g)(x)$. (2)

按题设条件, $f^{-1} \circ g = f \circ g$ 互为反函数,因此

$$f \circ g = (f^{-1} \circ g)^{-1} = g^{-1} \circ f,$$
 (3)

即 $\forall x \in (-l, l)$ 有 $f(-x) \stackrel{(2)}{===} (f \circ g)(x) \stackrel{(3)}{===} (g^{-1} \circ f)(x) = -f(x).$

所以 f 是奇函数.

证 I 由 $y = f^{-1}(-x)$ 可得 f(y) = -x,即 x = -f(y). 这 表明,像点 $y = f^{-1}(-x)$ 找出它的原像是 x = -f(y). 即 y = -f(x)是 $y = f^{-1}(-x)$ 的反函数. 但 题 中 告 诉 我 们 $y = f^{-1}(-x)$ 是 y = f(-x) 的反函数,故应有 f(-x) = -f(x), $\forall x \in (-l, l)$, f 是奇函数.

注 用类似方法也可先证明 $f^{-1}(x)$ 是奇函数,然后利用例 1.1.2 的结果,推知 f(x)是奇函数.