# Overview of Machine Learning and H2O.ai

# Machine Learning Overview

## What is machine learning?

A field of study that gives computers the ability to learn without being explicitly programmed.

-- Arthur Samuel, 1959





# Why now?

- Data, computers, and algorithms are commodities
- Unstructured data
- Increasing competition in business



Estimating a model for inference

Training a model for prediction

What happened? Why?

What will happen?

Assumptions, parsimony, interpretation

Predictive accuracy, production deployment

Linear models, statistics

Machine learning

Models tend to be static

Many models can evolve elegantly  $H_2O$ .a



1. There is no perfect language.



If someone claims to have the perfect programming language, he is either a fool or a salesman or both.

-- Bjarne Stroustrup

2. There is no perfect algorithm.



Algorithms that search for an extremum of a cost function perform exactly the same when averaged over all possible cost functions.

-- D.H. Wolpert

3. Doing things right is always hard.



Developing and deploying ML systems is relatively fast and cheap, but maintaining them over time is difficult and expensive.

-- Google, Hidden Technical Debt in Machine Learning Systems

# H<sub>2</sub>O.ai Overview



# Company Overview

| Founded      | 2011 Venture-backed, debuted in 2012                                                                                                                                     |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Products     | <ul> <li>H2O: In-Memory AI Prediction Engine</li> <li>Sparkling Water: Spark Integration</li> <li>Steam: Deployment engine</li> <li>Deep Water: Deep Learning</li> </ul> |  |  |
| Mission      | Operationalize Data Science, and provide a platform for users to build beautiful data products                                                                           |  |  |
| Team         | <ul> <li>70 employees</li> <li>Distributed Systems Engineers doing Machine Learning</li> <li>World-class visualization designers</li> </ul>                              |  |  |
| Headquarters | Mountain View, CA                                                                                                                                                        |  |  |





### H2O.ai Offers Al Open Source Platform

#### Product Suite to Operationalize Data Science

#### 100% Open Source



In-Memory, Distributed
Machine Learning
Algorithms with Speed
and Accuracy



State-of-the-art
Deep Learning on GPUs
with TensorFlow, MXNet
or Caffe with the ease of
use of H2O



H2O Integration with Spark. Best Machine Learning on Spark.

# Steam

Operationalize and
Streamline Model
Building, Training and
Deployment Automatically
and Elastically

## H<sub>2</sub>O.ai Now Focused On Experience

Beyond Algorithms and Data



# H<sub>2</sub>O.ai

## High Level Architecture



# Intro to Machine Learning Algos



# Algorithms on H<sub>2</sub>O

#### **Supervised Learning**

Statistical Analysis

- Penalized Linear Models: Super-fast, super-scalable, and interpretable
- Naïve Bayes: Straightforward linear classifier

Decision Tree Ensembles

Stacking

- Distributed Random Forest: Easy-touse tree-bagging ensembles
- Gradient Boosting Machine: Highly tunable tree-boosting ensembles

 Stacked Ensemble: Combine multiple types of models for better predictions

#### **Unsupervised Learning**

Clustering

 K-means: Partitions observations into similar groups; automatically detects number of groups

Dimensionality Reduction

Aggregator

- Principal Component Analysis: Transforms correlated variables to independent components
- Generalized Low Rank Models: Extends the idea of PCA to handle arbitrary data consisting of numerical, Boolean, categorical, and missing data

 Aggregator: Efficient, advanced sampling that creates smaller data sets from larger data sets

#### **Neural Networks**

Multilayer Perceptron

Deep

Learning

- Deep neural networks: Multi-layer feed-forward neural networks for standard data mining tasks
- Convolutional neural networks:
   Sophisticated architectures for pattern recognition in images, sound, and text

Anomaly Detection

Term Embeddings

- Autoencoders: Find outliers using a nonlinear dimensionality reduction technique
- **Word2vec:** Generate context-sensitive numerical representations of a large text corpus

### **Supervised Learning**

#### Regression:

How much will a customers spend?



#### H<sub>2</sub>O algos:

Penalized Linear Models
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles

#### **Classification:**

Will a customer make a purchase? Yes or No



#### H<sub>2</sub>O algos:

Penalized Linear Models
Naïve Bayes
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles



### **Unsupervised Learning**

#### **Clustering:**

Grouping rows – e.g. creating groups of similar customers



#### H<sub>2</sub>O algos:

k – means

#### **Feature extraction:**

Grouping columns – Create a small number of new representative dimensions



#### H₂O algos:

Principal components
Generalized low rank models
Autoencoders
Word2Vec

#### **Anomaly detection:**

Detecting outlying rows - Finding high-value, fraudulent, or weird customers



#### H<sub>2</sub>O algos:

Principal components
Generalized low rank models
Autoencoders



| <b>H<sub>2</sub>O</b> .ai                   | Usage                                               | Recommendations                                                                                                                                                                                                                                                                            | Problems                                                                                                                                                                                                                                                      |
|---------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Penalized<br>Linear Models                  | <ul><li>Regression</li><li>Classification</li></ul> | <ul> <li>Creates interpretable models with super-fast training time</li> <li>Nonlinear and interaction terms to be specified manually</li> <li>Can extrapolate beyond training data domain</li> <li>Select the correct target distribution</li> <li>Few hyperparameters to tune</li> </ul> | <ul><li>NAs</li><li>Outliers/influential points</li><li>Strongly correlated inputs</li><li>Rare categorical levels in new data</li></ul>                                                                                                                      |
| Naïve<br>Bayes                              | Classification                                      | <ul> <li>Nonlinear and interaction terms should be<br/>specified by users</li> </ul>                                                                                                                                                                                                       | <ul> <li>Linear independence assumption</li> <li>Often less accurate than more<br/>sophisticated classifiers</li> <li>Rare categorical levels in new data</li> </ul>                                                                                          |
| Random<br>Forest                            | <ul><li>Regression</li><li>Classification</li></ul> | <ul> <li>Builds accurate models without overfitting</li> <li>Few hyperparameters to tune</li> <li>Requires less data prep</li> <li>Great for implicitly modeling interactions</li> </ul>                                                                                                   | <ul> <li>Difficulty extrapolating beyond training data domain</li> <li>Can be difficult to interpret</li> <li>Rare categorical levels in new data</li> </ul>                                                                                                  |
| Gradient<br>Boosting<br>Machines            | <ul><li>Regression</li><li>Classification</li></ul> | <ul> <li>Builds accurate models without overfitting<br/>(often more accurate than random forest)</li> <li>Requires less data prep</li> <li>Great for implicitly modeling interactions</li> </ul>                                                                                           | <ul> <li>Many hyperparameters</li> <li>Difficulty extrapolating beyond training data domain</li> <li>Can be difficult to interpret</li> <li>Rare categorical levels in new data</li> </ul>                                                                    |
| Neural<br>Networks<br>(Deep learning & MLP) | <ul><li>Regression</li><li>Classification</li></ul> | <ul> <li>Great for modeling interactions in fully connected topologies</li> <li>Can extrapolate beyond training data domain</li> <li>Deep learning architectures best-suited for pattern recognition in images, videos, and sound</li> </ul>                                               | <ul> <li>NAs</li> <li>Overfitting</li> <li>Outliers/influential points</li> <li>Long training times</li> <li>Difficult to interpret</li> <li>Many hyperparameters</li> <li>Strongly correlated inputs</li> <li>Rare categorical levels in new data</li> </ul> |

| H <sub>2</sub> O.ai                  | Usage                                                                                                                | Recommendations                                                                                                                                                                                                                                                         | Problems                                                                                                                                                                                                                       |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>k</b> - means                     | • Clustering                                                                                                         | <ul> <li>Great for creating Gaussian, non-overlapping, roughly equally sized clusters</li> <li>The number of clusters can be unknown</li> </ul>                                                                                                                         | <ul> <li>NAs</li> <li>Outliers/influential points</li> <li>Strongly correlated inputs</li> <li>Cluster labels sensitive to initialization</li> <li>Curse of dimensionality</li> </ul>                                          |
| Principal Components<br>Analysis     | <ul><li>Feature extraction</li><li>Dimension reduction</li><li>Anomaly detection</li></ul>                           | <ul> <li>Great for extracting a number &lt;= N of linear, orthogonal features from i.i.d. numeric data</li> <li>Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers</li> </ul> | <ul><li>NAs</li><li>Outliers/influential points</li><li>Categorical inputs</li></ul>                                                                                                                                           |
| Generalized<br>Low Rank<br>Models    | <ul><li>Feature extraction</li><li>Dimension reduction</li><li>Anomaly detection</li><li>Matrix completion</li></ul> | <ul> <li>Great for extracting linear features from mixed data</li> <li>Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers</li> <li>Great for imputing NAs</li> </ul>          | Outliers/influential points                                                                                                                                                                                                    |
| Autoencoders<br>(Neural<br>Networks) | <ul><li>Feature extraction</li><li>Dimension reduction</li><li>Anomaly detection</li></ul>                           | <ul> <li>Great for extracting a number of nonlinear features from mixed data</li> <li>Great for plotting extracted features in a reduced dimensional space to analyze structure, e.g. clusters, hierarchy, sparsity, outliers</li> </ul>                                | <ul> <li>NAs</li> <li>Overtraining</li> <li>Outliers/influential points</li> <li>Long training times</li> <li>Many hyperparameters</li> <li>Strongly correlated inputs</li> <li>Rare categorical levels in new data</li> </ul> |
| Word2Vec                             | Highly representative feature extraction from text                                                                   | <ul> <li>Great for extracting highly representative, context sensitive term embeddings (e.g. numerical vectors) from text</li> <li>Great for text preprocessing prior to further supervised or unsupervised analysis</li> </ul>                                         | <ul> <li>Many Hyperparameters • Long training times</li> <li>Overtraining</li> <li>Specifying term weightings prior to training</li> </ul>                                                                                     |