MACM 101 Chapter 1 Homework

Alexander Ng

Sunday, September 15, 2024

1 Section 1.1

Question 22

- a) Inclusive or, the requirement is experience with one or the other, and having both would still satisfy the requirement.
- b) Exclusive or, Lunch will come with either soup or salad, not both.
- c) Inclusive or, having both documents will not get you turned away.
- d) Exclusive or, publishing prevents perishing.

Question 24

- a) If you get promoted, then you have washed the Boss's car.
- b) If there are winds from the south, then there is a spring thaw.
- c) If you bought the computer less than a year ago, then the warranty is good.
- d) If Willy cheats, then he gets caught.
- e) If you can access the website, then you have paid a subscription fee.
- f) If you know the right people, then you get elected.
- g) If Carol is on a boat, then she gets seasick.

Question 26

- a) If you send me an e-mail message, then I will remember to send you the address.
- b) If you were born in the United States, then you are a citizen of this country.
- c) If you keep your textbook, then it will be a useful reference in your future courses.
- d) If their goalie plays well, then the Red Wings will win the Stanley Cup.
- e) If you get the job, then you had the best credentials.
- f) If there is a storm, then the beach erodes.
- g) If you log on to the server, then you have a valid password.
- h) If you do not begin your climb too late, then you will reach the summit.
- i) If you are among the first 100 customers tomorrow, then you will get a free ice cream cone.

Question 38

a) $(p \lor q) \lor r$

p	q	r	$p \lor q$	$(p \lor q) \lor r$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

b) $(p \lor q) \land r$

p	q	r	$p \lor q$	$(p \lor q) \land r$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

c) $(p \wedge q) \vee r$

p	q	r	$p \wedge q$	$(p \land q) \lor r$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

d) $(p \wedge q) \vee r$

p	q	r	$p \wedge q$	$(p \land q) \lor r$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

e) $(p \lor q) \land \neg r$

p	q	r	$\neg r$	$p \lor q$	$(p \lor q) \land \neg r$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	0

f) $(p \land q) \lor \neg r$

p	q	r	$\neg r$	$p \wedge q$	$(p \land q) \lor \neg r$
0	0	0	1	0	1
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

Question 42

Given $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$, show that the statement is true if and only if p, q and r all have the same truth value.

- 1. $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$ Original Premise
- 2. $((p \vee \neg q) \wedge (q \vee \neg r)) \wedge (r \vee \neg p)$ Trivial
- 3. $((q \land (p \lor \neg q)) \lor (\neg r \land (p \lor \neg q))) \land (r \lor \neg p)$ Distributive Property
- 4. $[r \wedge ((q \wedge (p \vee \neg q)) \vee (\neg r \wedge (p \vee \neg q)))] \vee [\neg p \wedge ((q \wedge (p \vee \neg q)) \vee (\neg r \wedge (p \vee \neg q)))]$ Distributive Property
- 5. Take $q \land (p \lor \neg q)$ and apply the distributive property, $(q \land p) \lor (q \land \neg q)$. Notice $q \land \neg q$ is a contradiction, and $p \lor \mathbf{F} \Leftrightarrow p$. $\therefore q \land (p \lor \neg q) \Leftrightarrow (q \land p)$ Rewritten,

$$[r \wedge ((p \wedge q) \vee (\neg r \wedge (p \vee \neg q)))] \vee [\neg p \wedge ((p \wedge q) \vee (\neg r \wedge (p \vee \neg q)))]$$

- 6. Again, apply the distributive property. $[(r \land (p \land q)) \lor (r \land (\neg r \land p) \lor (\neg r \lor \neg q)))] \lor [(\neg p \land (p \land q)) \lor (\neg p \land ((\neg r \land p) \lor (\neg r \land \neg q)))]$
- 7. Notice how in the above statement, we have $r \wedge ((\neg r \wedge p) \vee (\neg r \wedge \neg q))$, which distributes to $r \wedge (\neg r \wedge p) \vee r \wedge (\neg r \wedge \neg q)$. This can easily be manipulated using the associative laws to show $((r \wedge \neg r) \wedge p) \vee ((r \wedge \neg r) \wedge \neg q). \rightarrow p \wedge \neg p \equiv \mathbf{F}$ $(\mathbf{F} \wedge p) \vee (\mathbf{F} \wedge \neg q)$. We know that $\mathbf{F} \wedge p \equiv \mathbf{F}$. $\therefore r \wedge ((\neg r \wedge p) \vee (\neg r \wedge \neg q)) \equiv \mathbf{F}$
- 8. $[(r \wedge (p \wedge q)) \vee \mathbf{F})] \vee [(\neg p \wedge (p \wedge q)) \vee (\neg p \wedge ((\neg r \wedge p) \vee (\neg r \wedge \neg q)))]$ Doing the same with $(\neg p \wedge ((\neg r \wedge p) \vee (\neg r \wedge \neg q)))$, we get $(\neg p \wedge (\neg r \wedge p)) \vee (\neg p \wedge (\neg r \wedge \neg q))$ $\mathbf{F} \vee (\neg p \wedge (\neg r \wedge \neg q))$
- 9. $[(r \land (p \land q)) \lor \mathbf{F})] \lor [\mathbf{F} \lor (\neg p \land (\neg r \land \neg q))]$ Because $p \lor \mathbf{F} \equiv p$,
- 10. $(r \land (p \land q)) \lor (\neg p \land (\neg q \land \neg r))$
- 11. $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \equiv (r \wedge (p \wedge q)) \vee (\neg p \wedge (\neg q \wedge \neg r))$

Proof

Show that the statement is true if and only if p, q, and r all have the same truth value.

- 1. Assume p = q = r. Then,
- $2. \ (r \wedge (p \wedge q)) \vee (\neg p \wedge (\neg q \wedge \neg r)$
- 3. $(p \land p \land p) \lor (\neg p \land \neg p \land \neg p)$ By the Idempotent laws,
- 4. $p \vee \neg p$. This is a Tautology.
- 5. \therefore when all values of p, q and r share the same truth value, the statement is true.
- 1. Assume p = q; $r = \neg p$

- 2. $(r \land (p \land q)) \lor (\neg p \land (\neg q \land \neg r))$
- 3. $(p \land p \land \neg p) \lor (\neg p \land \neg p \land \neg \neg p)$ By the Double Negation and Idempotent Laws,
- 4. $(p \land \neg p) \lor (\neg p \land p)$ Because $p \land \neg p$ is a Contradiction,
- 5. $\mathbf{F} \vee \mathbf{F} \equiv \mathbf{F}$.
- 6. \therefore when the values of p, q and r are not all the same, the statement is false.

Only after spending hours on this, I realize that I could have taken the original statement, applied the above two tests to it and proved the same thing. I am clearly, unequivocally, even, an idiot.