Package 'GapAnalysis'

May 5, 2020

Type Package
Title An R package to calculate conservation indicators using spatial
information
Date 2019-12-10
Version 1.0
Author Dan Carver, Chrystian Sosa, Colin Khoury, Julian Ramirez-Villegas
Maintainer CIAT Decision and policy analysis research area <j.r.villegas@cgiar.org></j.r.villegas@cgiar.org>
Description This R library provides a consistent pipeline to calculate ex situ and in situ conservation indicators. Also, it provides basic functions to allow run the gap analysis methodology based on the gap analysis methodology used in developed by Ramirez-Villegas et al. (2010) and used in Khoury et al., (2019). Please note, that this library does not include methods for modeling species distribution models. Predicted habitats must be provided by users.
Depends R (>= $3.5.0$)
Imports tmap (>= 2.3), dplyr (>= 0.4.0), tidyselect (>= 0.4.0), raster (>= 3.0), rgdal(>= 1.4-8), sf (>= 0.8), rlang (>= 0.4.6), lwgeom (>= 0.2), utils (>= 3.5), base (>= 3.5), methods (>= 3.5), magrittr (>= 1.5), geosphere (>= 1.5), dataverse (>= 0.2.0), data.table (>= 1.12), sp (>= 1.4.1), redlistr (>= 1.0.3), fasterize (>= 1.0.0), tidyr (>= 1.0.2), devtools (>= 2.2.0), usethis (>= 1.6.0), rmarkdown (>= 2.1)
Suggests knitr
License GPL-3
LazyData true
Encoding UTF-8
RoxygenNote 7.1.0
NeedsCompilation no
R topics documented:
GapAnalysis-package
and the Data

2 cucurbitaData

cucurbitaRasters	3
ecoregions	4
eooAoo	4
ERSex	5
ERSin	6
ExsituCompile	7
FCSc_mean	9
FCSex	10
FCSin	12
GetDatasets	13
GRSex	14
GRSin	15
InsituCompile	16
OccurrenceCounts	17
protectedAreas	18
SRSex	19
SRSin	20
summary_HTML	21
	24

GapAnalysis-package GapAnalysis: A gap analysis and conservation status tool

Description

GapAnalysis is a package to provide easy calculation for conservation scores

Details

Index

Package: GapAnalysis
Type: Package
Version: 1.0.0
Date: 2020-04-8
License: GPL-3

Author(s)

CIAT Decision and Policy Analysis research area

email: <J.R.Villegas@cgiar.org>

cucurbitaData Cucurbita occurrences dataset

Description

This dataset is a subset of the original dataset for: C. cordata, C. digitata and C. palmata used in Khoury et al., 2020

cucurbitaRasters 3

Usage

cucurbitaData

Format

A data frame with 1184 rows and 4 variables:

taxon character: Species name

latitude numeric:Latitude in decimal format **longitude** numeric: Longitude in decimal format

type character: Source of the record, germplasm (G) or herbarium (H)

Source

https://dataverse.harvard.edu/dataverse/GapAnalysisR

References

Khoury, CK, Carver, D, Kates, HR, et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbita (Cucurbita L.). Plants, People, Planet. 2019; 00: 1– 15. https://doi.org/10.1002/ppp3.10085

cucurbitaRasters

Cucurbita species distribution models dataset

Description

This dataset is a subset of thresholded species distribution models for: C. cordata, C. digitata and C. palmata used in Khoury et al., 2020

Usage

cucurbitaRasters

Format

raster files

Source

https://dataverse.harvard.edu/dataverse/GapAnalysisR

References

Khoury, CK, Carver, D, Kates, HR, et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbita (Cucurbita L.). Plants, People, Planet. 2019; 00: 1– 15. https://doi.org/10.1002/ppp3.10085

4 eooAoo

ecoregions

Ecoregions shapefile

Description

This dataset is a subset of the Terrestrial Ecoregions shapefile made by the Nature Conservancy

Usage

ecoregions

Format

Shapefile

Source

http://maps.tnc.org/gis_data.html

eooAoo

IUCN conservations status using Area of occupancy (AOO) and extent of occurrence (EOO) (IUCN Redlist)

Description

This function calculates the species conservation status according IUCN parameters using Area of occupancy (AOO) Area and extent of occurrence (EOO)

Usage

```
eooAoo(species_list, occurrenceData)
```

Arguments

species_list An species list to calculate metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species

Value

This function returns a data frame with the following columns:

species Species name
EOO Status IUCN conservation status (EOO)
AOO Status IUCN conservation status (AOO)

Author(s)

Dan Carver

ERSex 5

References

Bland, Lucie & Keith, David & Miller, Rebecca & Murray, Nicholas & Rodríguez, Jon. (2017). Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, version 1.1. 10.2305/IUCN.CH.2016.RLE.3.en.

Lee, C. K. F., Keith, D. A., Nicholson, E. and Murray, N. J. 2019. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. – Ecography 42: 1050–1055 (ver. 0).

Examples

ERSex	Environmental representativeness score estimation (Ex-situ conserva-
	tion)

Description

This function performs an estimation of the environmental representativeness score for ex-situ gap analysis (ERSex) using Ramirez-Villegas et al., (2010) methodology. ERSex is calculated as:

ERSex = min(100, (Number of ecoregions with 50 km of GO c currences/Number of Ecoregions Present with interest and the second of the second

Usage

ERSex(species_list, occurrenceData, raster_list, bufferDistance, ecoReg)

Arguments

species_list An species list to calculate the ERSex metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species

raster_list A list representing the species distribution models for the species list provided loaded in raster format. This list must match the same order of the species list.

bufferDistance Geographical distance used to create circular buffers around germplasm. Default: 50000 that is 50 km around germplasm accessions (CA50)

ecoReg A shapefile representing ecoregions information with a field ECO_NUM representing ecoregions Ids. If ecoReg=NULL the function will use a shapefile provided for your use after run GetDatasets()

Value

This function returns a data frame with two columns:

species Species name
ERSex ERSex value calculated

6 ERSin

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

ERSin

Environmental representativeness score estimation (In-situ conservation)

Description

This function performs an estimation of germplasm representativeness score for in-situ gap analysis (GRSin) using Khoury et al., (2019) methodology This function uses a germplasm buffer raster file (e.g. CA50), a thresholded species distribution model, and a raster file of protected areas

ERSin = min(100, (Number of ecoregions of germplas moccurrences in protected areas/Number of ecoregions of germplas moccurrences in protected areas of germplas moccurrences are g

Usage

```
ERSin(species_list, occurrenceData, raster_list, proArea, ecoReg)
```

Arguments

species_list An species list to calculate the ERSin metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species

raster_list A list representing the species distribution models for the species list provided loaded in raster format. This list must match the same order of the species list.

proArea A raster file representing protected areas information. If proArea=NULL the

funtion will use a protected area raster file provided for your use after run Get-

Datasets()

ExsituCompile 7

ecoReg

A shapefile representing ecoregions information with a field ECO_NUM representing ecoregions Ids. If ecoReg=NULL the function will use a shapefile provided for your use after run GetDatasets()

Value

This function returns a data frame with two columns:

species Species name
ERSin ERSin value calculated

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining protected areas raster
data(protectedAreas)
##Obtaining ecoregions shapefile
data(ecoregions)
ERSin_df <- ERSin(species_list = speciesList,</pre>
                    occurrenceData = cucurbitaData,
                    raster_list = cucurbitaRasters,
                    proArea= protectedAreas,
                    ecoReg=ecoregions)
```

ExsituCompile

Ex-situ gap analysis calculation (Ex-situ conservation)

Description

This function allows calculate all the three Ex situ gap analysis scores in one unique function returning a final conservation score summary table

8 ExsituCompile

Usage

```
ExsituCompile(
   species_list,
   occurrenceData,
   raster_list,
   bufferDistance,
   ecoReg
)
```

Arguments

species_list A species list to calculate metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type

of records (G or H) for a given species

raster_list A list representing the species distribution models for the species list provided

loaded in raster format. This list must match the same order of the species list.

bufferDistance Geographical distance used to create circular buffers around germplasm. De-

fault: 50000 that is 50 km around germplasm accessions (CA50)

ecoReg A shapefile representing ecoregions information with a field ECO_NUM repre-

senting ecoregions Ids. If ecoReg=NULL the funtion will use a shapefile pro-

vided for your use after run GetDatasets()

Value

This function returns a data frame summarizing the ex-situ gap analysis scores:

species Species name
SRSex Ex-situ sample representativeness score
GRSex Ex-situ germplasm representativeness score
ERSex Ex-situ environmental representativeness score
FCSex Ex-situ final conservation score

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)
##Obtaining ecoregions shapefile</pre>
```

FCSc_mean 9

data(ecoregions)

#Running all three Ex situ gap analysis steps using ExsituCompile function
exsituGapMetrics <- ExsituCompile(species_list=speciesList,</pre>

occurrenceData=cucurbitaData, raster_list=cucurbitaRasters, bufferDistance=50000, ecoReg=ecoregions)

FCSc_mean

Combining Ex-situ and In-situ gap analysis results in one comprehensive conservation score (Summary Assessments)

Description

This function concatenates ex-situ conservation scores (SRSex, GRSex, ERSex,FCSex), and in situ scores (SRSin, GRSin, ERSin,FCSin) in one unique table and calculate the final conservation score for a species using Khoury et al., (2019) methodology.

Usage

```
FCSc_mean(fcsEx, fcsIn)
```

Arguments

fcsEx A data frame object result of the functions ExsituCompile or fcs_exsitu
fcsIn A data frame object result of the functions InsituCompile or fcs_insitu

Value

this function returns a data frame object with the following columns:

species Species name **FCSex** Ex-situ final conservation score **FCSin** In-situ final conservation score FCSc min Final conservation score (mininum value between FCSin and FCSex) FCSc_max Final conservation score (maximum value between FCSin and FCSex) FCSc_mean Final conservation score (average value between FCSin and FCSex) FCSc_min_class Final conservation category using FCSc_min value Final conservation category using FCSc max value FCSc max class FCSc_mean_class Final conservation category using FCSc_mean value

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

10 FCSex

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining protected areas raster
data(protectedAreas)
##Obtaining ecoregions shapefile
data(ecoregions)
#Running all three Ex-situ gap analysis steps using ExsituCompile function
exsituGapMetrics <- ExsituCompile(species_list=speciesList,</pre>
                                       occurrenceData=cucurbitaData,
                                       raster_list=cucurbitaRasters,
                                       bufferDistance=50000,
                                       ecoReg=ecoregions)
#Running all three In-situ gap analysis steps using InsituCompile function
insituGapMetrics <- InsituCompile(species_list=speciesList,</pre>
                                        occurrenceData=cucurbitaData,
                                        raster_list=cucurbitaRasters,
                                        proArea=protectedAreas,
                                        ecoReg=ecoregions)
fcsCombine <- FCSc_mean(fcsEx = exsituGapMetrics,fcsIn = insituGapMetrics)</pre>
```

FCSex

Final ex situ conservation score estimation (Ex-situ conservation)

Description

This function concatenates the SRSex, GRSex, and ERSex values in an unique dataframe object to calculate a final priority score as the average of the SRSex, GRSex, and ERSex values:

FCSex = mean(SRSex, GRSex, ERSex)

Usage

```
FCSex(srsDF, grsDF, ersDF)
```

Arguments

srsDF	A dataframe object result of the SRSex function
grsDF	A dataframe object result of the GRSex function
ersDF	A dataframe object result of the ERSex function

FCSex 11

Value

This function returns a data frame with the follows information summarizing the ex situ gap analysis scores:

species	Species name
SRSex	Ex-situ sample representativeness score
GRSex	Ex-situ germplasm representativeness score
ERSex	Ex-situ environmental representativeness score
FCSex	Ex-situ final conservation score

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining ecoregions shapefile
data(ecoregions)
#Calculating SRSex value
SRSex_df <- SRSex(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData)
#Calculating GRSex value
GRSex_df <- GRSex(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                     raster_list = cucurbitaRasters)
#Calculating ERSex value
ERSex_df <- ERSex(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                     raster_list = cucurbitaRasters,
                     bufferDistance = 50000,
                     ecoReg=ecoregions
                     )
#Calculating final conservation for ex-situ gap analysis
FCSex_df <- FCSex(srsDF = SRSex_df, grsDF = GRSex_df, ersDF = ERSex_df)</pre>
```

FCSin

FCSin Final in-situ conservation score estimatic	n (In-situ conservation)
--	--------------------------

Description

This function concatenates the SRSin, GRSin, and ERSin values in an unique dataframe object to calculate a final priority score as the average of the SRSin, GRSin, and ERSin values:

```
FCSin = mean(SRSin, GRSin, ERSin)
```

Usage

```
FCSin(srsDF, grsDF, ersDF)
```

Arguments

srsDF	A dataframe object result of the SRSin function
grsDF	A dataframe object result of the GRSin function
ersDF	A dataframe object result of the ERSin function

Value

This function returns a data frame with the follows information summarizing the in-situ gap analysis scores:

species	Species name
SRSin	In-situ sample representativeness score
GRSin	In-situ germplasm representativeness score
ERSin	In-situ environmental representativeness score
FCSin	In-situ final conservation score

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)
##Obtaining protected areas raster</pre>
```

GetDatasets 13

```
data(protectedAreas)
##Obtaining ecoregions shapefile
data(ecoregions)
#Calculating SRSin value
SRSin_df <- SRSin(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                     raster_list = cucurbitaRasters,
                    proArea=protectedAreas)
#Calculating GRSin value
GRSin_df <- GRSin(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                    raster_list = cucurbitaRasters,
                     proArea=protectedAreas)
#Calculating ERSin value
ERSin_df <- ERSin(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                     raster_list = cucurbitaRasters,
                     proArea=protectedAreas,
                     ecoReg=ecoregions)
#Calculating final conservation for ex-situ gap analysis
FCSin_df <- FCSin(srsDF = SRSin_df, grsDF = GRSin_df, ersDF = ERSin_df)</pre>
```

GetDatasets

Preparing datasets to run GapAnalysis functions

Description

This function creates the data_preloaded folder and it downloads datasets from dataverse to allow run gapAnalysis package function.

Usage

GetDatasets()

Value

This function downloads data required to run a full gap analysis. It creates the folder data_preloaded into the GapAnalysis. Please run this function after install the package.

References

Khoury, CK, Carver, D, Kates, HR, et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants, People, Planet. 2019; 00: 1– 15. https://doi.org/10.1002/ppp3.10085

14 GRSex

Examples

```
## Not run:
GetDatasets()
## End(Not run)
```

GRSex

Geographical representativeness score estimation (Ex-situ conservation)

Description

This function performs an estimation of the geographical representativeness score for ex-situ gap analysis (GRSex) using Ramirez-Villegas et al., (2010) methodology. GRS ex-situ score is calculated as:

GRSex = min(100, (MaskedArea of BufferedGO ccurrences/TotalArea of PredictedHabitat)*100)

Usage

```
GRSex(occurrenceData, species_list, raster_list, bufferDistance)
```

Arguments

occurrenceData A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species

species_list An species list to calculate the GRSex metrics.

A list representing the species distribution models for the species list provided loaded in raster format. This list must match the same order of the species list.

bufferDistance Geographical distance used to create circular buffers around germplasm. Default: 50000 that is 50 km around germplasm accessions (CA50)

Value

This function returns a data frame with two columns:

species Species name
GRSex GRSex value calculated

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

GRSin 15

Hijmans, R.J. and Spooner, D.M. (2001). Geographic distribution of wild potato species. Am. J. Bot., 88: 2101-2112. doi:10.2307/3558435

Examples

GRSin

Geographical representativeness score estimation (In-situ conservation)

Description

This function performs an estimation of germplasm representativeness score for in-situ gap analysis (GRSin) using Khoury et al., (2019) methodology #' GRSIn is calculated as:

GRSin = min(100, (Predicted Habitat within protected areas/Total Area of Predicted Habitat)*100)

Usage

```
GRSin(species_list, occurrenceData, raster_list, proArea)
```

Arguments

species_list An species list to calculate the GRSin metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type

of records (G or H) for a given species

raster_list A list representing the species distribution models for the species list provided

loaded in raster format. This list must match the same order of the species list.

proArea A raster file representing protected areas information. If proArea=NULL the

function will use a protected area raster file provided for your use after run Get-

Datasets()

Value

This function returns a data frame with two columns:

species Species name
GRSin GRSin value calculated

16 InsituCompile

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

InsituCompile

In-situ gap analysis calculation (In-situ conservation)

Description

This function allows calculating all the three In-situ gap analysis scores in one unique function returning a final conservation score summary table

Usage

InsituCompile(species_list, occurrenceData, raster_list, proArea, ecoReg)

Arguments

species_list	An species list to calculate metrics.
occurrenceData	A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species
raster_list	A list representing the species distribution models for the species list provided loaded in raster format. This list must match the same order of the species list.
proArea	A raster file representing protected areas information. If proArea=NULL the function will use a protected area raster file provided for your use after run Get-Datasets()
ecoReg	A shapefile representing ecoregions information with a field ECO_NUM representing ecoregions Ids. If ecoReg=NULL the function will use a shapefile provided for your use after run GetDatasets()

OccurrenceCounts 17

Value

This function returns a data frame summarizing the in-situ gap analysis scores:

species	Species name
SRSin	In-situ sample representativeness score
GRSin	In-situ germplasm representativeness score
ERSin	In-situ environmental representativeness score
FCSin	In-situ final conservation score

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining protected areas raster
data(protectedAreas)
##Obtaining ecoregions shapefile
data(ecoregions)
#Running all three In situ gap analysis steps using InsituCompile function
insituGapMetrics <- InsituCompile(species_list=speciesList,</pre>
                                        occurrenceData=cucurbitaData,
                                         raster_list=cucurbitaRasters,
                                         proArea=protectedAreas,
                                         ecoReg=ecoregions)
```

 ${\tt OccurrenceCounts}$

Generating Species Count Data Frame

Description

This function creates a summary file the summarizes the total number of germplasm and herbarium occurrences

Usage

OccurrenceCounts(species, occurrenceData)

18 protectedAreas

Arguments

species The name of a species

occurrenceData A data frame object with the species name, geographical coordinates, and type

of records (G or H) for a given species

Value

This function returns a data frame object with the following columns:

species	Species name
totalRecords	Total records available
hasLat	Number of occurrences with latitude
hasLon	Number of occurrences with longitude
totalUseful	Number of occurrences with longitude
totalGRecords	Number of occurrences with longitude
totalGUseful	Number of occurrences with longitude
totalHRecords	Number of occurrences with longitude
totalHUseful	Number of occurrences with longitude

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)
countDF <- OccurrenceCounts(speciesList[[1]],cucurbitaData)</pre>
```

protected Areas

Protected areas dataset in raster format

Description

This dataset is a raster version of the world protected areas dataset used in Khoury et al., (2019)

Usage

protectedAreas

Format

Raster file

SRSex 19

Source

https://www.protectedplanet.net/

References

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

SRSex

Sample representativeness score estimation (Ex-situ conservation)

Description

This function performs an estimation of sample representativeness score for ex-situ gap analysis (SRSex) using Ramirez-Villegas et al., (2010) methodology using information from herbarium and germplasm occurrences. SRS ex-situ score is calculated as:

SRSex = Number of germplas moccurrences/Number of herbarium occurrences

Usage

SRSex(species_list, occurrenceData)

Arguments

species_list An species list to calculate the SRSex metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type of records (G or H) for a given species

Value

This function returns a data frame with two columns:

species Species name
SRSex SRSex value calculated

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

##Obtaining occurrences from example
data(cucurbitaData)

20 SRSin

SRSin

Sample representativeness score estimation (In-situ conservation)

Description

This function performs an estimation of the sample representativeness score for in situ gap analysis (SRSin) using Khoury et al., (2019) methodology. SRSin is calculated as:

SRSin = Number of occurrences in protected areas/Total number of occurrences

Usage

```
SRSin(species_list, occurrenceData, raster_list, proArea)
```

Arguments

species_list An species list to calculate the SRSin metrics.

occurrenceData A data frame object with the species name, geographical coordinates, and type

of records (G or H) for a given species

raster_list A list representing the species distribution models for the species list provided

loaded in raster format. This list must match the same order of the species list.

proArea A raster file representing protected areas information. If proArea=NULL the

function will use a protected area raster file provided for your use after run Get-

Datasets()

Value

This function returns a data frame with two columns:

species Species name
SRSin srsInsitu value calculated

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., . . . Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

##Obtaining occurrences from example

summary_HTML 21

```
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining protected areas raster
data(protectedAreas)
SRSin_df <- SRSin(species_list = speciesList,</pre>
                     occurrenceData = cucurbitaData,
                     raster_list=cucurbitaRasters,
                     proArea=protectedAreas)
```

summary_HTML

Creating a summary HTML document for gap analysis

Description

Calls the summaryHTML rmd file information from all in situ, ex situ, and EOO AOO summaries and displays The content. The code also produces in situ and ex situ gap maps which can be written out to disk.

Usage

```
summary_HTML(
  species_list,
 occurrenceData,
 raster_List,
 proArea,
 bufferDistance,
  insituSummary,
  exsituSummary,
  fcsSummary,
  eooAooSummary,
 outputFolder,
 writeRasters
)
```

Arguments

species_list A species list to calculate metrics. occurrenceData A data frame object with the species name, geographical coordinates, and type

of records (G or H) for a given species

A list representing the species distribution models for the species list provided raster_List loaded in raster format. This list must match the same order of the species list.

A raster file representing protected areas information. If proArea=NULL the

proArea funtion will use a protected area raster file provided for your use after run Get-

Datasets()

bufferDistance Geographical distance used to create circular buffers around germplasm. De-

fault: 50000 that is 50 km around germplasm accessions (CA50)

22 summary_HTML

insituSummary A data frame object result of the functions insituGapAnalysis or fcs_insitu

A data frame object result of the functions exsituGapAnalysis or fcs_exsitu

A data frame object result of the function fcs_combine

A data frame object result of the function eooAoo

outputFolder A path to save the HTML file resulting of this function

writeRasters Boolean field (default=F) to indicate if raster files should be saved

Value

This function returns a data frame file saved at a specified folder

References

Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. G., & Guarino, L. (2010). A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLOS ONE, 5(10), e13497. Retrieved from https://doi.org/10.1371/journal.pone.0013497

Khoury, C. K., Amariles, D., Soto, J. S., Diaz, M. V., Sotelo, S., Sosa, C. C., ... Jarvis, A. (2019). Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.11.016

Examples

```
## Not run:
##Obtaining occurrences from example
data(cucurbitaData)
##Obtaining species names from the data
speciesList <- unique(cucurbitaData$taxon)</pre>
##Obtaining raster_list
data(cucurbitaRasters)
cucurbitaRasters <- raster::unstack(cucurbitaRasters)</pre>
##Obtaining protected areas raster
data(protectedAreas)
##Obtaining ecoregions shapefile
data(ecoregions)
#Running all three Ex situ gap analysis steps using insituGapAnalysis function
exsituGapMetrics <- ExsituCompile(species_list=speciesList,</pre>
                                       occurrenceData=cucurbitaData,
                                       raster_list=cucurbitaRasters,
                                       bufferDistance=50000,
                                       ecoReg=ecoregions)
#Running all three In situ gap analysis steps using insituGapAnalysis function
insituGapMetrics <- InsituCompile(species_list=speciesList,</pre>
                                        occurrenceData=cucurbitaData,
                                         raster_list=cucurbitaRasters,
                                        proArea=protectedAreas,
                                         ecoReg=ecoregions)
## Obtaining AOO and EOO ##
eooAoo_table <- GapAnalysis::eooAoo(species_list = speciesList,</pre>
                                occurrenceData = cucurbitaData)
```

End(Not run)

Index

```
*Topic datasets
    cucurbitaData, 2
    cucurbitaRasters, 3
    ecoregions, 4
    protectedAreas, 18
*Topic package
    GapAnalysis-package, 2
cucurbitaData, 2
cucurbitaRasters, 3
ecoregions, 4
eooAoo, 4
ERSex, 5
ERSin, 6
ExsituCompile, 7
FCSc_mean, 9
FCSex, 10
FCSin, 12
GapAnalysis (GapAnalysis-package), 2
GapAnalysis-package, 2
GetDatasets, 13
GRSex, 14
GRSin, 15
InsituCompile, 16
OccurrenceCounts, 17
protectedAreas, 18
SRSex, 19
SRSin, 20
\texttt{summary\_HTML}, \textcolor{red}{21}
```