

R-HTA LMIC Workshop

Carina Behr
PhD Candidate Health Economics
21 June 2022

UNIVERSITY | Health Technology OF TWENTE. | & Services Research

Learning goals

Learning goals:

- 1. Understand the theory behind Markov cohort models
- 2. Have an overview of the setup of the DARTH cohort model in R
- 3. Be able to adapt the DARTH cohort model to a new model

Assumed preknowledge:

- 1. Rationale behind health economic evaluations
- 2. Concept of utilities and QALYs
- 3. Estimation of ICER
- 4. Simple decision tree approaches to modelling

PART 1 Markov cohort Models

Cohort state-transition model

- Hypothetical cohort transitioning through health states
- Group result is represented by a single number
- Memoryless (Markovian assumption)
- Health states are mutually exclusive and collectively exhaustive
- · Cohort is homogenous within each health state

An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example

<u>Fernando Alarid-Escudero</u>, <u>Eline M. Krijkamp</u>, <u>Eva A. Enns</u>, <u>Alan Yang</u>, <u>M.G. Myriam Hunink</u>, <u>Petros Pechlivanoglou</u>, <u>Hawre Jalal</u>

Case study: Sick sicker

Cohort 25-year-old Time horizon; Max age =100 Cycle length = 1 year

Figure 1: State-transition diagram of the time-independent Sick-Sicker cohort state transition model with the name of the health states and possible transitions with their corresponding transition probability names

Transition probability matrix

	Healthy	Sick	Sicker	Death
Healthy	0,722	0,207	0,061	0,01
Sick	0	0,582	0,401	0,017
Sicker	0	0	0,74	0,26
Death	0	0	0	1

Different transition probability matrices for strategies

Illustrative example

ICER Plane

PART 2 DARTH cohort Model

DARTH discrete-time cohort statetransition model (cSTM)

- Referred to as Markov model
- We will look at time-independent model
- Repositories from DARTH workgroup:
 - Microsimulation-tutorial
 - Dampack: Decision Analytic Modeling package
 - Cohort-modeling-tutorial
 - Darthpack: Decision Analytic Modeling Coding Framework
- Alarid-Escudero, Fernando, et al. "An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example." *arXiv preprint arXiv:2001.07824* (2020).

Data type:

- : Scalar

- v: Vector

- m: Matrix

- a: Array

- df: Dataframe

Variable type:

- p: probability

- r: rate

- hr: hazard ratio

- Lor: log-odds ratio

- c: cost

- u: utility

Description

Variables: Examples

c_H r_HD u_S2 p_HS1 v_s_init

Variables: Examples

c_H -> Cost of being in the healthy state

r_HD -> rate of moving from healthy to death = baseline mortality rate

u_S2 -> Utility of being sicker

p_HS1 -> probability of moving from healthy to sick

v_s_init -> vector containing the initial proportion of individuals in each state

R code- Introduction of parameters

```
## General setup
cycle length <- 1 # cycle length equal one year
n age init <- 25 # age at baseline
n age max <- 100 # maximum age of follow up
n_cycles <- n_age_max - n_age_init # number of cycles
v_names_states <- c("H", "S1", "S2", "D") # the 4 health states of the model:
                              # Healthy (H), Sick (S1), Sicker (S2), Dead (D)
n states <- length(v names states) # number of health states
d_e <- 0.03 # discount rate for QALYs of 3% per cycle
d c <- 0.03 # discount rate for costs of 3% per cycle
v names str <- c("Standard of care", # store the strategy names
                 "Strategy A",
                 "Strategy B",
                 "Strategy AB")
## Transition probabilities (per cycle), hazard ratios and odds ratio (OR)
r HD
        <- 0.002 # constant rate of dying when Healthy (all-cause mortality rate)
p HS1
       <- 0.15 # probability of becoming Sick when Healthy
p S1H
        <- 0.5 # probability of becoming Healthy when Sick
p S1S2
       <- 0.105 # probability of becoming Sicker when Sick
hr S1
      <- 3 # hazard ratio of death in Sick vs Healthy
hr S2
       <- 10
              # hazard ratio of death in Sicker vs Healthy
```

UNIVERS OF TWE

R code - Transform rates to probabilities (using function)

```
#' Convert a rate to a probability
            ## Probabilities of dying
            cycle length <- 1
                                                     \code{rate_to_prob} convert a rate to a probability.
            p HD <- 1 - exp(-r HD*cycle length)
            p_S1D <- 1 - exp(-r_S1D*cycle_length) #
                                                     @param r rate
                                                  #' @param t time/ frequency
            p_S2D <- 1 - exp(-r_S2D*cycle_length)</pre>
                                                  #' @return a scalar or vector with probabilities
                                                  #' @examples
                                                  #' # Annual rate to monthly probability
#* transform rates to probabilities
#* Function included in "R/Functions.R". The latest #'
                                                     r_{vear} < 0.3
p_HS1 <- rate_to_prob(r = r_HS1, t = cycle_length)</pre>
                                                     r_month <- rate_to_prob(r = r_year, t = 1/12)
p_S1H <- rate_to_prob(r = r_S1H, t = cycle_length)</pre>
                                                  #' r_month
p_S1S2 <- rate_to_prob(r = r_S1S2, t = cycle_length) # @export
     <- rate_to_prob(r = r_HD, t = cycle_length)</pre>
                                                  rate_to_prob <- function(r, t = 1){
p_S1D <- rate_to_prob(r = r_S1D, t = cycle_length)</pre>
                                                    if ((sum(r < 0) > 0)){
p_S2D <- rate_to_prob(r = r_S2D, t = cycle_length)</pre>
                                                       stop("rate not greater than or equal to 0")
                                                    p < -1 - exp(-r * t)
                                                    return(p)
```

tional on surviving tional on surviving ional on surviving

R code- Variables (1)

$$M = \begin{bmatrix} -\mathbf{m}_0 - \\ -\mathbf{m}_1 - \\ \vdots \\ -\mathbf{m}_{n_T} - \end{bmatrix}$$

$$\mathbf{m}_t = \begin{bmatrix} m_{[t,1]} & m_{[t,2]} & \cdots & m_{[t,n_S]} \end{bmatrix}$$

State vector: Stores the distribution of the cohort across all states Cohort trace matrix M

~			
<u> </u>	โล	t	Δc
	La	U	\boldsymbol{c}

	^	н 💠	\$1 [‡]	\$2 [‡]	D
	0	1.0000000	0.00000000	0.00000000	0.000000000
Cycles	_s 1	0.8589883	0.13901372	0.00000000	0.001998001
,		0.7922313	0.18944948	0.01377337	0.004545846
	3	0.7546140	0.20558006	0.03227115	0.007534750

R code- Variables (2)

$$P = \begin{bmatrix} p_{[1,1]} & p_{[1,2]} & \cdots & p_{[1,n_S]} \\ p_{[2,1]} & p_{[2,2]} & \cdots & p_{[2,n_S]} \\ \vdots & \vdots & \ddots & \vdots \\ p_{[n_S,1]} & p_{[n_S,2]} & \cdots & p_{[n_S,n_S]} \end{bmatrix}$$

Transition probability matrix Elements of transition probabilities: Moving from state i to j

•	н ‡	\$1 [‡]	\$2 [‡]	D
н	0.8589883	0.1390137	0.00000000	0.001998001
S 1	0.3911156	0.5038232	0.09907922	0.005982036
S2	0.0000000	0.0000000	0.98019867	0.019801327
D	0.0000000	0.0000000	0.00000000	1.000000000

Run the model

```
# Run Markov model ----
#* Iterative solution of time-independent cSTM
for(t in 1:n_cycles){
    # For SoC
    m_M[t + 1, ] <- m_M[t, ] %*% m_P
    # For strategy A
    m_M_strA[t + 1, ] <- m_M_strA[t, ] %*% m_P_strA
    # For strategy B
    m_M_strB[t + 1, ] <- m_M_strB[t, ] %*% m_P_strB
    # For strategy AB
    m_M_strAB[t + 1, ] <- m_M_strAB[t, ] %*% m_P_strAB
}</pre>
```


WCC Simpson's 1/3rd rule

Discounting

Cycle-length rate can be set for costs and effects seperately

Calculate outcomes

```
## Loop through each strategy and calculate total utilities and costs ----
for (i in 1:n_str) {
  v_u_str <- l_u[[i]] # select the vector of state utilities for the i-th s
  v_c_str <- l_c[[i]] # select the vector of state costs for the i-th strate
  ###* Expected QALYs and costs per cycle
  ##* Vector of QALYs and Costs
  #* Apply state rewards
  v_qaly_str <- l_m_M[[i]] %*% v_u_str # sum the utilities of all states for
  v_cost_str <- l_m_M[[i]] %*% v_c_str # sum the costs of all states for each
  ####* Discounted total expected QALYs and Costs per strategy and apply half
 #* QALYS
  v_tot_qaly[i] <- t(v_qaly_str) %*% (v_dwe * v_wcc)</pre>
  #* Costs
  v_tot_cost[i] <- t(v_cost_str) %*% (v_dwc * v_wcc)</pre>
```


Calculate outcomes

ICER plane

Dominated

Weakly Dominated

— Efficient Frontier

- Dominated
- Efficient Frontier

Questions to answer

- 1. What is the annual probability of becoming "Sick" (S1) while in the "Healthy" (H) stage?
- 2. And the probability of entering "Sicker" (S2) while in the "Sick" stage (S1), under Therapy B?
- 3. How many matrices did you create to obtain the entire cohort distribution between the different states through the whole analysis time horizon for "Strategy A"? And for all strategies?
- 4. For "Strategy AB": how many patients (out of 100) were at the "Health (H)" state during the last cycle (year 75 of follow-up)? And For "Strategy A"?
- 5. What were the total discounted costs and QALYs for "Strategy B" for the entire time horizon of analysis?

- 1. ¿Cuál es el valor calculado de la probabilidad anual de volverse "Enfermo (S1)" estando en estadio "Sano (H)"?
- 2. ¿Y la probabilidad anual de pasar al estadio "Enfermo Severo (S2)" estando en estadio Enfermo (S1), bajo la Terapia B?
- 3. ¿Cuántas matrices ha tenido usted que crear para obtener la distribución de toda la cohorte entre los diferentes estadios a través de todo el horizonte temporal de análisis para la estrategia A? Y para todas las estrategias?
- 4. Para la "Estrategia AB": ¿cuántos pacientes (de un total de 100 pacientes inciales) estuvieron en el estado "Sano (H)" durante el último ciclo (año 75 de seguimiento)? ¿Y para la "Estrategia A"?
- 5. ¿Cuáles fueron los costos y QALYs descontados totales para la "Estrategia B" para todo el horizonte temporal del análisis?

Questions to answer

- 1. p_HS1: 0.139292.
- 2. p_S1S2_trtB: 0.06105653.
- 3. For "Strategy A": two (2) matrices. For all the strategies: eight (8) matrices.
- 4. For Strategy AB = approx. 21 patients out of 100 (exactly: 20.7)

For Strategy A = approx. 12 out of 100 (exactly: 11.5)

5.Strategy B: Costs = 259100; QALYs = 22.18447