模块三 空间向量及其应用

第1节 空间向量的基本运算(★☆)

强化训练

1. (2023 • 乐山模拟 •★) 在四面体 *ABCD* 中, *E*, *F* 分别为 *BC*, *AD* 的中点, 若 $\overline{AB} = a$, $\overline{AC} = b$, $\overline{AD} = c$, 则 $\overrightarrow{EF} = ($)

(A)
$$\frac{1}{2}(\boldsymbol{c}-\boldsymbol{a}-\boldsymbol{b})$$

(B)
$$\frac{1}{2}(c+a+b)$$

(C)
$$\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b}-\boldsymbol{c})$$

(A)
$$\frac{1}{2}(c-a-b)$$
 (B) $\frac{1}{2}(c+a+b)$ (C) $\frac{1}{2}(a+b-c)$ (D) $-\frac{1}{2}(c+a-b)$

答案: A

解析:空间基底表示和平面基底表示方法类似,往与基向量关联较强的向量上化即可,

如图,
$$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BA} + \overrightarrow{AF} = \frac{1}{2}\overrightarrow{CB} - \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} - \overrightarrow{AB})$$

$$\overrightarrow{AC}) - \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} = -\frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}(\boldsymbol{c} - \boldsymbol{a} - \boldsymbol{b}).$$

2. (2023 • 河南模拟 • ★) 已知空间向量 $\mathbf{a} = (2,-1,2)$, $\mathbf{b} = (1,-2,1)$, 则 $\mathbf{a} \cdot \mathbf{b} = ____$; 向量 \mathbf{b} 在向量 \mathbf{a} 上 的投影向量是 .

答案: 6; $(\frac{4}{2}, -\frac{2}{2}, \frac{4}{2})$

解析: 由题意, $a \cdot b = 2 \times 1 + (-1) \times (-2) + 2 \times 1 = 6$;

向量 \boldsymbol{b} 在向量 \boldsymbol{a} 上的投影向量是 $\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}|^2} \boldsymbol{a} = \frac{6}{2^2 + (-1)^2 + 2^2} (2, -1, 2) = (\frac{4}{3}, -\frac{2}{3}, \frac{4}{3}).$

3. (2023・信宜模拟・★★) 已知向量a = (1,-1,3),b = (-1,4,-2),c = (1,5,x),若 a,b,c 共面,则实数 x = (

(A) 3

- (B) 2 (C) 15
- (D) 5

答案: D

解析:注意到a,b不共线,所以a,b,c 共面等价于c 能用a,b 表示,可由此建立方程组求x,

由题意,存在实数 λ 和 μ , 使 $c = \lambda a + \mu b$,即 $(1,5,x) = \lambda(1,-1,3) + \mu(-1,4,-2) = (\lambda - \mu, -\lambda + 4\mu, 3\lambda - 2\mu)$,

所以
$$\begin{cases} \lambda - \mu = 1 \\ -\lambda + 4\mu = 5 \end{cases}$$
 解得: $x = 5$.
$$3\lambda - 2\mu = x$$

4. $(2023 \cdot 四川绵阳模拟 \cdot ★★)已知<math>\{a,b,c\}$ 是空间的一组基底,则下列各项中能构成基底的一组向量是

(A)
$$a$$
, $a+b$, $a-b$ (B) b , $a+b$, $a-b$ (C) c , $a+b$, $a-b$ (D) $a+2b$, $a+b$, $a-b$ 答案: C

解析:要判断三个向量是否构成基底,就看它们是否不共面.观察发现选项中a+b和a-b不共线,故通 过判断能否用它们表示另一向量来看它们是否共面,

A 项,
$$a = \frac{1}{2}(a+b) + \frac{1}{2}(a-b)$$
, 所以 a , $a+b$, $a-b$ 共面, 不能构成基底, 故 A 项错误;

B 项,
$$b = \frac{1}{2}(a+b) - \frac{1}{2}(a-b)$$
, 所以 b, $a+b$, $a-b$ 共面, 不能构成基底, 故 B 项错误;

C项,a+b和a-b都没有c,所以c不能用它们表示,故c,a+b,a-b不共面,能构成基底,故C项 正确;

D 项,假设
$$a+2b=x(a+b)+y(a-b)$$
,则 $a+2b=(x+y)a+(x-y)b$,所以 $\begin{cases} x+y=1\\ x-y=2 \end{cases}$,解得: $x=\frac{3}{2}$, $y=-\frac{1}{2}$,

从而a+2b能用a+b和a-b表示,它们共面,故 D 项错误.

5. (2023 • 饶平模拟 • ★★) (多选) 已知空间中三点 A(0,1,0), B(2,2,0), C(-1,3,1),则下列说法正确的 是()

(A) $AB \perp AC$

(B) 与
$$\overrightarrow{AB}$$
同向的单位向量是($\frac{2\sqrt{5}}{5}$, $\frac{\sqrt{5}}{5}$, 0)
(C) \overrightarrow{AB} 和 \overrightarrow{BC} 的本色会改值是 $\sqrt{55}$

(C)
$$\overrightarrow{AB}$$
 和 \overrightarrow{BC} 的夹角余弦值是 $\frac{\sqrt{55}}{11}$

(D) 平面 ABC 的一个法向量是 (1,-2,5)

答案: ABD

解析: A 项, $\overrightarrow{AB} = (2,1,0)$, $\overrightarrow{AC} = (-1,2,1)$, $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \times (-1) + 1 \times 2 + 0 \times 1 = 0 \Rightarrow AB \perp AC$, 故 A 项正确;

B 项,与
$$\overrightarrow{AB}$$
同向的单位向量是 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{1}{\sqrt{5}}\overrightarrow{AB} = (\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, 0)$,故 B 项正确;

C 项,
$$\overrightarrow{BC} = (-3,1,1)$$
, 所以 $\cos < \overrightarrow{AB}, \overrightarrow{BC} > = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{BC} \right|} = \frac{2 \times (-3) + 1 \times 1 + 0 \times 1}{\sqrt{2^2 + 1^2} \times \sqrt{(-3)^2 + 1^2 + 1^2}} = -\frac{\sqrt{55}}{11}$, 故 C 项错误;

D 项,设平面
$$ABC$$
 的法向量为 $\mathbf{n} = (x, y, z)$,则
$$\begin{cases} \mathbf{n} \cdot \overrightarrow{AB} = 2x + y = 0 \\ \mathbf{n} \cdot \overrightarrow{AC} = -x + 2y + z = 0 \end{cases}$$
,令 $x = 1$ 可得
$$\begin{cases} y = -2 \\ z = 5 \end{cases}$$
,

所以 $\mathbf{n} = (1, -2, 5)$ 是平面ABC的一个法向量,故 D 项正确.