MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Spring 2006 Physics 8.04 Vuletic
Assignment #8 page 1 of 2

Due Thursday, April 20 at 4pm

1. Qualitative bound state solutions I (20 points).

French & Taylor, Problem 3-15.

- (a) Draw the wave functions associated with E_1 , E_2 , and E_3 .
- (b)-(e) Draw the ground state wave function only.
- (f) Draw a wave function for small barrier height and one for very large barrier height.
- (g) Draw one wave function for a narrow central barrier.

State in words what happens when the barrier grows to the full width.

2. Qualitative bound state solutions II (20 points).

French & Taylor, Problem 3-16.

3. Characteristics of wave functions for stationary states (20 points).

French & Taylor, Problem 3-18.

4. Relation between wavefunction phase and probability current (20 points).

Suppose that for a particle of mass m we write the complex wavefunction in the amplitude-phase form

 $\psi(x) = A(x) \exp(i\varphi(x))$, where A(x) and $\phi(x)$ are real quantities.

- a) (5 points) Show that the probability current is given by $j(x) = |A(x)|^2 \frac{\hbar}{m} \frac{\partial \varphi}{\partial x}(x)$, i.e. the probability current is proportional to the gradient of the complex phase.
- b) (5 points) Show that there can be no current in a region where the wavefunction is real.
- c) (5 points) How large is the current for a plane wave of wavevector k?
- d) (5 points) Calculate the current in a region where the wavefunction is given by $Be^{-\kappa x} + Ce^{+\kappa x}$, where κ is a real constant, and B, C are complex numbers, i.e. B, C are not position-dependent. (This is the solution inside a potential barrier if the particle energy is insufficient to overcome the barrier.) Is it correct to say that since $e^{\pm \kappa x}$ are real functions, the current inside the barrier must be zero? Find a condition on B and C such that the current vanishes.

5. Scattering by an attractive δ -potential (20 points)

A beam of particles, each of mass m and energy E>0, is incident from the left on a delta function well located at the origin,

$$V(x) = -\lambda \delta(x)$$
, with $\lambda > 0$.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Spring 2006 Assignment #8 Due Thursday, April 20 at 4pm Physics 8.04 page 2 of 2

Vuletic

- a) (5 points) Show that the first derivative of the wavefunction is not continuous at x=0, and obeys $\psi'(+\varepsilon) \psi'(-\varepsilon) = -\frac{2m\lambda}{\hbar^2}\psi(0)$.
- b) (15 points) Calculate the fraction of particles in the incident beam that are reflected by this potential, i.e. find the reflection coefficient R. Write your answer in terms of E, m, λ , and fundamental constants. Check if your result is reasonable in the limits $\lambda \rightarrow 0$ for constant E, and $E \rightarrow 0$ for constant λ .