

CHAPTER-7

EQUILIBRIUM

- Equilibrium state- When rate of formation of a product in a process is in competition with rate of formation of reactants, the state is then named as "Equilibrium state".
- Figure Equilibrium in physical processes: $H_2O_{(s)} \rightleftharpoons H_2O_{(l)} \rightleftharpoons H_2O_{(vap)}$

solid \rightleftharpoons liquid \rightleftharpoons gas

Law of chemical equilibrium: At a given temperature, the product of concentrations of the reaction products raised to the respective stoichiometric coefficient in the balanced chemical equation divided by the product of concentrations of the reactants raised to their individual stoichiometric coefficients has a constant value. This is known as the Equilibrium Law or Law of Chemical Equilibrium.

$$aA +bB \rightleftharpoons cC + dD$$

 $K_c = [C]^c [D]^d / [A]^a [B]^b$

Chemical equation

Equilibrium constant

$$aA + b B \rightleftharpoons c C + D$$
 $cC + d D \rightleftharpoons a A + b B$
 $K'c = (1/Kc)$
 $na A + nb B \rightleftharpoons ncC + ndD$
 $K'''c = (Kc^n)$

Concentrations or partial pressure of pure solids orliquids do notappear in the expression of the equilibrium constant. In the reaction,

$$Ag_2O(s) + 2HNO_3(aq) \rightleftharpoons 2AgNO_3(aq) + H_2O(1)Kc = \frac{[AgNO3]^2}{[HNO3]^2}$$

- ightharpoonup If Qc > Kc, the reaction will proceed in the direction of reactants (reverse reaction). If Qc < Kc, the reaction will proceed in the direction of the products (forward reaction)
- ➤ Kp is equilibrium constant in terms of partial pressure of gaseous reactants and products.
- > Kc is equilibrium constant in terms of molar concentration of gaseous reactants and products.
- > $Kp = Kc (RT)^{\Delta n}$ here **R** is gas constant, **T** is temperature at which the process is carried out & Δn is no. of moles of gaseous product minus no. of moles of gaseous reactants.
- \triangleright If Kc> 10^3 ; Kc is very high i.e. the reaction proceeds nearly to completion.
- \triangleright If Kc<10³; Kc is very small i.e. the reaction proceeds rarely.
- \triangleright If Kcis ranging in the range of 10^3 to 10^{-3} ; i.e. reactants and products are just in equilibrium.
- $\rightarrow \Delta G^0 = -RT \ln K$ or $\Delta G^0 = -2.303RT \log K$
- Factors affecting equilibrium constant:- temperature, pressure, catalyst and molar concentration of reactants and products.

- ➤ <u>Le Chatelier's principle</u>:- It states that a change in any of the factors thatdetermine the equilibrium conditions of asystem will cause the system to changein such a manner so as to reduce or tocounteract the effect of the change.
- \triangleright Arrhenius acids are the substances that ionize in water to form \mathbf{H}^+ .
- Arrhenius bases are the substances that ionize in water to form **OH**.
- Lewis acids are lone pair (of e-) accepters while Lewis bases are lone pair donators.
- ➤ Proton donor are acids while proton accepters are bases(Bronsted-Lowry concept).
- > The acid-base pair that differs only by one proton is called a **conjugateacid-base pair**. If Brönsted acid is a strong acid then **its conjugate base is a weak base and** *viceversa*.
- \triangleright Ionic product of water. $Kw = [H^+][OH^-]$
- \rightarrow pH = -log [H⁺]; here[H⁺] is molar concentration of hydrogen ion.
- \rightarrow pH + pOH =14
- \triangleright pKa + pKb =14
- \triangleright Ka x Kb = Kw = ionic product of water=1 x 10^{-14}
- ➤ Buffer solution: The solutions which resist change in pH on dilution or with the addition of small amounts of acid or alkali are called Buffer Solutions.
- **common ion effect**: It can be defined as a shift in equilibrium on adding a substance that provides more of an ionic species already present in the dissociation equilibrium.
- ➤ Hydrolysis of Salts: process of interaction between water and cations/anions or both of salts is called hydrolysis.
- ➤ The cations (e.g., Na⁺, K⁺,Ca²⁺, Ba²⁺, etc.) of strong bases and anions(e.g., Cl⁻, Br⁻, NO³⁻, ClO⁴⁻ etc.) of strong acids simply get hydrated but do not hydrolyse, andtherefore the solutions of salts formed fromstrong acids and bases are neutral i.e., theirpH is 7.
- ➤ Salts of weak acid and strong base e.g.,CH₃COONa are basic in nature.
- > Salts of strong acid and weak base e.g.,NH₄Cl, are acidic
- Salts of weak acid and weak base, e.g., CH_3COONH_4 . The pH is determined by the formula $pH = 7 + \frac{1}{2} (pK_a pK_b)$
- ➤ Solubility product- product of the molar concentrations of the ions in a saturated solution, each concentration term raised to the power equal to the no. of ions produced.

ONE MARK QUESTIONS

Q.1. Mention the factors that affect equilibrium constant.

Ans. Temperature, pressure, catalyst and molar concentration of reactants and products.

Q.2. Whatis ionic products of water?

Ans. $Kw = [H^+][OH^-]$

Q.3. Write conjugate acids of H₂O & NH₃.

Ans. H₃O⁺& NH₄⁺.

Q.4. Define Arrhenius acids.

Ans. Arrhenius acids are the substances that ionize in water to form \mathbf{H}^+ .

Q.5. Define the term degree of ionization.

Ans. Extent up to which an acid/base/salt ionize to form ions.

Q.6. What are Buffer solutions?

Ans. The solutions which resist change in pH on dilution or with the addition of small amounts of acid or alkali are called Buffer Solutions.

Q.7. Write Kc for the gaseous reaction- $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Ans. $Kc = [NH_3]^2 / [N_2] [H_2]^3$

Q.8. Out of H₂O & H₃O⁺ which is stronger acid?

Ans. H_3O^+ .

Q.9. What is common ion effect?

Ans. Shift in equilibrium on adding a substance that provides more of an ionic species already present in the dissociation equilibrium.

Q.10. Write relationship between Kp and Kc for the gaseous reaction - N_2 + O_2 \rightleftharpoons 2NO

Ans.Kp = Kc as Δn is zero for the above said reaction.

TWO MARKS QUESTIONS

1. What is effect of catalyst on equilibrium constant 'Kc'?

Ans . A catalyst does not affect equilibrium constant because it speeds up both forward and backward reactions to the same extent.

2. State Le Chatelier'r principle.

Ans.It states that a change in any of the factors that determine the equilibrium conditions of asystem will cause the system to change in such a manner so as to reduce or tocounteract the effect of the change.

3. What is meant by conjugate acid –base pairs? Explain.

Ans:-
$$H_2O + HC1 \rightleftharpoons H_3O^+ + C1^-$$
base acid + $HC1 \rightleftharpoons H_3O^+ + C1^-$
conjugate acid + $H_3O^+ + C1^-$

4. Classify the following bases as strong and weak bases: NaHCO₃, NaOH, KOH, Ca(OH)₂, Mg(OH)₂.

Ans:-strong base NaOH, KOH; weak bases NaHCO₃ Ca(OH)₂, Mg(OH)₂.

5. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its pH?

Ans:-pH =
$$-\log[3.8 \times 10^{-3}]$$

= $-\{\log[3.8] + \log[10^{-3}]\}$
= $-\{(0.58) + (-3.0)\} = -\{-2.42\} = 2.42$

Therefore, the pH of the soft drink is 2.42and it is acidic.

6. The species: H₂O, HCO₃⁻, HSO₄⁻ and NH₃can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base. Ans:-

Species	Conjugate acid	Conjugate base
H_2O	H_3O^+	OH ⁻
HCO ₃	H_2CO_3	CO_3^{2-}
HSO ₄	H_2SO_4	$\mathrm{SO_4}^{2-}$
NH ₃	NH ₄ ⁺	NH ₂

7. Explain Lewis acids and bases with suitable examples.

Ans:-Lewis acids are lone pair (of e-) accepters while Lewis bases are lone pair donators.

AlCl₃ is a Lewis acid while NH₃ is a Lewis base.

8. What is difference between alkali and bases? Give examples.

Ans:- An alkali is a water soluble base. All the alkalis are bases but all the bases are not alkali. Ex- NaOH is an alkali/base. Ca(OH)₂ is a base but not an alkali.

9. Explain homogeneous and heterogeneous equilibrium giving examples.

Ans:- If all the reactants and products present in an equilibrium mixture are in same phase—homogeneous equilibrium.

If all the reactants and products present in an equilibrium mixture are in different phase— heterogeneous equilibrium.

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ homogeneous equilibrium

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ heterogeneous equilibrium

THREE MARK QUESTIONS

1. The pH of some common substances is given bellow. Classify the substances as acidic/basic

Name of fluid	рН
Lime water	10
Milk of magnesia	10
Human saliva	6.4
Lemon juice	2.2
Sea water	7.8
Vinegar	3
milk	6.8

Ans.:- acidic-Human saliva, Lemon juice, milk, vinegar

Basic- Lime water, sea water, milk of magnesia.

2. Explain general characteristics of acids and bases.

Ans.:- Most of the acids taste sour. Acids are known to turn blue litmus paper into red and liberate dihydrogen on reacting with some metals.

Bases are known to turn red litmus paper blue, tastebitter and feel soapy.

3. Water is amphoteric in nature. Explain.

Ans.:- Water can react with acid as well as base

$$H_2O + HCl \rightarrow H_3O^+ + Cl^-$$

water is basic

$$H_2O + NH_3 \rightarrow OH^- + NH_4^+$$

water is acidic

4. Describe the effect of:

- a) addition of H₂
- b) addition of CH₃OH
- c) removal of CO

d) removal of CH₃OH

on the equilibrium of the reaction:

$$2H_{2(g)} + CO_{(g)} \rightleftharpoons CH_3OH_{(g)}$$

Ans.:- a) addition of H_2 equilibrium will shift on RHS

b) addition of CH₃OH equilibrium will shift on LHS

c) removal of CO equilibrium will shift on LHS

d) removal of CH₃OH equilibrium will shift on RHS

5. Classify the following species into Lewisacids and Lewis bases and show how these act as such:

(a) $HO^{-}(b)F^{-}(c) H^{+}(d) BCl_{3}$

Solution

- (a) Hydroxyl ion is a Lewis base as it candonate an electron lone pair (:OH⁻).
- (b) Flouride ion acts as a Lewis base asit can donate any one of its fourelectron lone pairs.

- (c) A proton is a Lewis acid as it canaccept a lone pair of electrons frombases like hydroxyl ion and fluorideion.
- (d) BCl₃ acts as a Lewis acid as it canaccept a lone pair of electrons from species like ammonia or aminemolecules.
- **6.** For the equilibrium, $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$ the value of the equilibrium constant, $Kcis 3.75 \times 10^{-6}$ at 1069 K. Calculate the Kp for the reaction at this temperature?

Solution

```
We know that, Kp = Kc(RT)^{\Delta n}
For the above reaction, \Delta n = (2+1) - 2 = 1
Kp = 3.75 \times 10^{-6} (0.0831 \times 1069)
Kp = 0.033.
```

7. Hydrolysis of sucrose gives, Sucrose + H₂O \rightarrow Glucose + Fructose Equilibrium constant Kc for the reaction is 2×10^{13} at 300K. Calculate ΔG^0 at 300K.

Solution

$$\Delta G^0 = -RT \ln Kc$$

 $\Delta G^0 = -8.314 \text{J mol}^{-1} \text{K}^{-1} \text{J x } 300 \text{K} \times \ln(2 \times 10^{13})$
 $\Delta G^0 = -7.64 \times 10^4 \text{ J mol}^{-1}$

- **8.** Explain the following:
 - (i) Common ion effect (ii) solubility products (iii) pH
- Ans. (i) Suppression of ionization of weak electrolyte by adding a strong electrolyte having an ion common.
- (ii) Product of the molar concentrations of the ions in a saturated solution, each concentration term raised to the power equal to the no. of ions produced.
 - (iii) Negative logarithm of hydrogen ion concentration.
- 9. The values of Ksp of two sparingly solublesalts Ni(OH)₂ and AgCN are 2.0 \times 10⁻¹⁵ and 6 \times 10⁻¹⁷ respectively. Which salt ismore soluble? Explain.

Solution

$$\begin{split} &AgCN {\rightleftharpoons} Ag^{^{+}} + CN^{^{-}} \\ &Ksp = [Ag^{^{+}}][CN^{^{-}}] = 6 \times 10^{-17} \\ &Ni(OH)_2 {\rightleftharpoons} Ni^{2+} + 2OH^{^{-}} \\ &Ksp = [Ni^{2+}][OH^{^{-}}]^2 = 2 \times 10^{-15} \\ &Let \ [Ag^{^{+}}] = S_1, \ then \ [CN_{^{-}}] = S_1 \\ &Let \ [Ni^{2+}] = S_2, \ then \ [OH^{^{-}}] = 2S_2 \\ &S_1^{\ 2} = 6 \times 10^{-17}, \ S_1 = 7.8 \times 10^{-9} \\ &(S_2)(2S_2)^2 = 2 \times 10^{-15}, \ S_2 = 0.58 \times 10^{-4} \\ &Ni(OH)_2 \ is \ more \ soluble \ than \ AgCN. \end{split}$$

FIVE MARKS QUESTIONS

1. At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl₅ is 8.3×10^{-3} . If decomposition is depicted as,

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \Delta r H^0 = 124.0 \text{ kJ mol}^{-1}$$

- a) Write an expression for *Kc* for the reaction.
- b) What is the value of *Kc* for the reverse reaction at the same temperature?

c)what would be the effect on Kc if (i) more PCl_5 is added (ii) pressure is increased(iii) the temperature is increased?

Ans: (a)
$$Kc=[\underline{PCl_3}][\underline{Cl_2}]$$
 [PCl_5]

- (b)120.48
- (c) (i) equilibrium will shift on RHS
- (ii) equilibrium will shift on LHS
- (iii) equilibrium will shift on RHS
- 2. Dihydrogen gas is obtained from natural gas by partial oxidation with steam asper following endothermic reaction: $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
 - (a) Write as expression for *Kp* for the above reaction.
 - (b) How will the values of *Kp* and composition of equilibrium mixture be affectedby(i) increasing the pressure(ii) increasing the temperature(iii) using a catalyst?

Ans. (a)
$$K_p = p(CO).p(H_2)^3/p(CH_4).p(H_2O)$$

- (b)(i) value of Kp will not change, equilibrium will shift in backward direction.
- (ii) Value of Kp will increase and reaction will proceed in forward direction.

(iii)no effect.

3. What is meant by the conjugate acid-base pair? Find the conjugate acid/basefor the following species:HNO₂, CN⁻, HClO₄, F⁻, OH⁻, CO₃²⁻, and S²⁻

Ans. The acid-base pair that differs only by one proton is called a conjugate acid-base pair

Species	Conjugate
	acid/base
HNO_2	NO_2^-
CN ⁻	HCN
HClO ₄	ClO ₄
F ⁻	HF
OH_	H2O
CO_3^{2-}	HCO ₃ ² -

S^{2-}	HS^-

HOTS QUESTIONS

1. The value of Kc for the reaction $2A \rightleftharpoons B + C$ is 2×10^{-3} . At a given time, the composition of reaction mixture is $[A] = [B] = [C] = 3 \times 10^{-4}$ M. In which direction the reaction will proceed?

Solution

For the reaction the reaction quotient Qc is given by, $Qc = [B][C]/[A]^2$

as [A] = [B] = [C] =
$$3 \times 10^{-4}$$
M
 $Qc = (3 \times 10^{-4})(3 \times 10^{-4}) / (3 \times 10^{-4})2 = 1$

as Qc > Kc so the reaction will proceed in the reverse direction.

2. PCl₅, PCl₃ and Cl₂ are at equilibrium at 500 K and having concentration 1.59M PCl₃, 1.59M Cl₂ and 1.41 M PCl₅. Calculate Kc for the reaction, PCl₅ \rightleftharpoons PCl₃ + Cl₂ **Solution**

The equilibrium constant Kc for the abovereaction can be written as,

$$Kc = [PCl_3][Cl_2]$$

$$[PCl_5]$$

$$=(1.59)^2/1.41=1.79$$

3. Why is ammonia termed as a base though it does not contain OH ions? Ans.ammona is termed as a base on the basis of Lewis concept it can donate a lone pair of electrons.