PINNs Architecture for Force Equivalence Procedure

Susmita khatun

December 2024

Equations Overview

1. Resistance (Res):

$$\operatorname{Res} = \frac{\rho}{2\pi R^2} \cdot \left(\theta - \left(\frac{th}{R} - \cos\theta\right) \cdot \frac{1}{\sqrt{1 - \left(\frac{th}{R} - \cos\theta\right)^2}} \cdot \arctan\left(\sqrt{\frac{1 - \left(\frac{th}{R} - \cos\theta\right)}{1 + \left(\frac{th}{R} - \cos\theta\right)}} \cdot \tan\frac{\theta}{2}\right)\right).$$

2. Voltage Dynamics:

$$V = \operatorname{Res} \cdot \frac{4\pi T d^2}{V} \left(-\sin\theta \cdot \frac{d\theta}{dt} - \frac{\cos\theta}{V} \cdot \frac{dV}{dt} \right).$$

3. Radius Relation:

$$R = \frac{d}{\sin \theta}.$$

Proposed PINNs Architecture

The goal of the architecture is to predict θ given voltage (V) and other parameters (ρ, T, d, th) while ensuring that the predictions respect the above equations.

Input Features

- V (voltage): Scalar or time series input.
- ρ, T, d, th : Material properties/constants.
- Initial conditions for θ , $\frac{d\theta}{dt}$, $\frac{dV}{dt}$.

Output

Predicted θ at time t.

Loss Function

The loss function combines physics and data losses:

$$\mathcal{L}_{\text{physics}} = \left| V - \text{Res} \cdot \frac{4\pi T d^2}{V} \left(-\sin\theta \cdot \frac{d\theta}{dt} - \frac{\cos\theta}{V} \cdot \frac{dV}{dt} \right) \right|^2 + \left| R - \frac{d}{\sin\theta} \right|^2.$$

$$\mathcal{L}_{\text{data}} = \|\theta_{\text{predicted}} - \theta_{\text{observed}} \|^2.$$

$$\mathcal{L} = \mathcal{L}_{\rm physics} + \lambda \mathcal{L}_{\rm data}. \label{eq:loss_loss}$$

Architecture Design

Layer Type	Input Shape	Output Shape	Activation	Comments
Input Layer	$[V, \rho, T, d, th, \frac{d\theta}{dt}, \frac{dV}{dt}]$	[n]	None	Captures system inputs.
Dense Layer 1	[n]	[128]	Tanh	Encodes non-linear relationships.
Dense Layer 2	[128]	[128]	Tanh	Adds depth for feature extraction.
Dense Layer 3	[128]	[64]	Tanh	Refines feature representation.
Dense Layer 4	[64]	[1]	Linear	$Output spredicted \theta.$

Training Process

1. Initialization:

- Normalize inputs and scale outputs.
- Initialize network weights with small random values.

2. Optimization:

- Use Adam optimizer with a small learning rate (e.g., 10^{-4}).
- Implement gradient clipping to handle stiff equations.

3. Regularization:

• Penalize large weight magnitudes to improve generalization.

4. Validation:

• Verify physical consistency of predictions (θ, R, Res) .

Extensions

- 1. **Dynamic Learning Rate:** Adjust λ during training based on the magnitude of the physics error.
- 2. Neural ODE Extension: Integrate $\frac{d\theta}{dt}$ and $\frac{dV}{dt}$ using Neural ODE layers for better time-dependent modeling.

- 3. Uncertainty Quantification: Use Bayesian PINNs to provide confidence intervals for θ .
- 4. **Dimensionality Reduction:** Employ autoencoders to reduce the complexity of high-dimensional inputs.