MAR 2 9 2007 W

SEQUENCE LISTING

Ludevid, Dolores Torrent, Margarita Alvarez, Inaki Perez, Pascual <120> Amino acid-enriched plant protein reserves, particularly lysine-enriched maize gamma-zein, and plants expressing such proteins <130> 50062/004001 <140> US 09/117,246 <141> 1998-12-03 <150> PCT/FR97/00167 <151> 1997-01-28 <150> FR96/01004 <151> 1996-01-29 <160> 25 <170> PatentIn version 3.3 <210> 1 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> based on Maize 44 cgatgaattc aaaccaaagc caaagccgaa gccaaaagaa ttca <210> 2 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> based on Maize <400> 2 46 agcttgaatt cttttggctt cggctttggc tttggtttga attcat <210> 3 <211> 17 <212> PRT <213> Maize <400> 3

```
5
Pro
<210> 4
<211> 28
<212> PRT
<213> Maize
<400> 4
Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro
                                  10
               5
Lys Pro Lys Pro Lys Glu Phe Leu Gln Pro
          20
<210> 5
<211> 20
<212> PRT
<213> Maize
<400> 5
Asp Gly Ile Asp Glu Phe Lys Pro Lys Pro Lys Pro Lys Glu
                                                      15
               5
                                  10
Phe Lys Leu Asp
           20
<210> 6
<211> 672
<212> DNA
<213> Maize
<220>
<221> CDS
<222> (1)..(672)
<400> 6
atg agg gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gct gcg agc
                                                                   48
Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ala Ser
                                  10
gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg
                                                                   96
Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro
                               25
           20
```

Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Leu Gln

						ccg Pro											144
cca Pro	cct Pro 50	ccg Pro	gtg Val	cat His	ctc Leu	cca Pro 55	ccg Pro	ccg Pro	gtc Val	cac His	ctg Leu 60	ccg Pro	ccg Pro	ccg Pro	gtc Val		192
cac His 65	ctg Leu	cca Pro	ccg Pro	ccg Pro	gtc Val 70	cat His	gtg Val	ccg Pro	ccg Pro	ccg Pro 75	gtt Val	cat His	ctg Leu	ccg Pro	ccg Pro 80	•	240
cca Pro	cca Pro	tgc Cys	cac His	tac Tyr 85	cct Pro	act Thr	caa Gln	ccg Pro	ccc Pro 90	cgg Arg	cct Pro	cag Gln	cct Pro	cat His 95	ccc Pro		288
cag Gln	cca Pro	cac His	cca Pro 100	tgc Cys	ccg Pro	tgc Cys	caa Gln	cag Gln 105	ccg Pro	cat His	cca Pro	agc Ser	ccg Pro 110	tgc Cys	cag Gln		336
ctg Leu	cag Gln	gga Gly 115	acc Thr	tgc Cys	ggc Gly	gtt Val	ggc Gly 120	agc Ser	acc Thr	ccg Pro	atc Ile	ctg Leu 125	ggc Gly	cag Gln	tgc Cys		384
gtc Val	gag Glu 130	ttt Phe	ctg Leu	agg Arg	cat His	cag Gln 135	tgc Cys	agc Ser	ccg Pro	acg Thr	gcg Ala 140	acg Thr	ccc Pro	tac Tyr	tgc Cys		432
tcg Ser 145	cct Pro	cag Gln	tgc Cys	cag Gln	tcg Ser 150	ttg Leu	cgg Arg	cag Gln	cag Gln	tgt Cys 155	tgc Cys	cag Gln	cag Gln	ctc Leu	agg Arg 160		480
cag Gln	gtg Val	gag Glu	ccg Pro	cag Gln 165	cac His	cgg Arg	tac Tyr	cag Gln	gcg Ala 170	atc Ile	ttc Phe	ggc Gly	ttg Leu	gtc Val 175	ctc Leu		528
cag Gln	tcc Ser	atc Ile	ctg Leu 180	cag Gln	cag Gln	cag Gln	ccg Pro	caa Gln 185	agc Ser	ggc Gly	cag Gln	gtc Val	gcg Ala 190	ggg Gly	ctg Leu		576
ttg Leu	gcg Ala	gcg Ala 195	cag Gln	ata Ile	gcg Ala	cag Gln	caa Gln 200	ctg Leu	acg Thr	gcg Ala	atg Met	tgc Cys 205	ggc Gly	ctg Leu	cag Gln		624
cag Gln	ccg Pro 210	act Thr	cca Pro	tgc Cys	ccc Pro	tac Tyr 215	gct Ala	gct Ala	gcc Ala	ggc Gly	ggt Gly 220	gtc Val	ccc Pro	cac His	tga		672

<210> 7 <211> 223 <212> PRT

<213> Maize

<400> 7

Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser

1 5 10 15

Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro Pro 20 25 30

Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu 35 40 45

Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val 50 55 60

His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro 65 70 75 80

Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro 85 90 95

Gln Pro His Pro Cys Pro Cys Gln Gln Pro His Pro Ser Pro Cys Gln
100 105 110

Leu Gln Gly Thr Cys Gly Val Gly Ser Thr Pro Ile Leu Gly Gln Cys 115 120 125

Val Glu Phe Leu Arg His Gln Cys Ser Pro Thr Ala Thr Pro Tyr Cys 130 135 140

Ser Pro Gln Cys Gln Ser Leu Arg Gln Gln Cys Cys Gln Gln Leu Arg 145 150 155 160

Gln Val Glu Pro Gln His Arg Tyr Gln Ala Ile Phe Gly Leu Val Leu 165 170 175

Gln Ser Ile Leu Gln Gln Gln Pro Gln Ser Gly Gln Val Ala Gly Leu 180 185 190

Leu Ala Ala Gln Ile Ala Gln Gln Leu Thr Ala Met Cys Gly Leu Gln
195 200 205

Gln Pro Thr Pro Cys Pro Tyr Ala Ala Ala Gly Gly Val Pro His 210 215 220

<210> 8 <211> 693

<212> DNA <213> maize <220> <221> CDS <222> (1)..(693) <400> 8 atg agg gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gct gcg agc 48 Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ser 96 gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro ccg gtt cat cta ccg ccg ccg gtg cat ctg cca cct ccg gtt cac ctg 144 Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu 40 192 cca cct ccg gtg cat ctc cca ccg ccg gtc cac ctg ccg ccg gtc Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val cac ctg cca ccg ccg gtc cat gtg ccg ccg ccg gtt cat ctg ccg ccg 240 His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro 65 cca cca tgc cac tac cct act caa ccg ccc cgg atc gaa ttc aaa cca 288 Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Ile Glu Phe Lys Pro 95 85 aag cca aag ccg aag cca aaa gaa ttc aaa cca aag cca aag ccg aag 336 Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro Lys Pro Lys 100 cca aaa gaa ttc ctg cag ccc ctg cag gga acc tgc ggc gtt ggc agc 384 Pro Lys Glu Phe Leu Gln Pro Leu Gln Gly Thr Cys Gly Val Gly Ser 120 acc ecg atc etg gge eag tge gte gag ttt etg agg eat eag tge age 432 Thr Pro Ile Leu Gly Gln Cys Val Glu Phe Leu Arg His Gln Cys Ser 130 135 ccg acg gcg acg ccc tac tgc tcg cct cag tgc cag tcg ttg cgg cag 480 Pro Thr Ala Thr Pro Tyr Cys Ser Pro Gln Cys Gln Ser Leu Arg Gln 155 150 145 528 cag tgt tgc cag cag ctc agg cag gtg gag ccg cag cac cgg tac cag Gln Cys Cys Gln Gln Leu Arg Gln Val Glu Pro Gln His Arg Tyr Gln 175 170 165 gcg atc ttc ggc ttg gtc ctc cag tcc atc ctg cag cag cag ccg caa 576 Ala Ile Phe Gly Leu Val Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln 185

agc ggc cag gtc go Ser Gly Gln Val A 195	a Gly Leu I	ttg gcg gcg (Leu Ala Ala (200	cag ata gcg cag Gln Ile Ala Gln 205	caa ctg 624 Gln Leu
acg gcg atg tgc gg Thr Ala Met Cys G 210				
gcc ggc ggt gtc co Ala Gly Gly Val P: 225				693
<210> 9 <211> 230 <212> PRT <213> maize		·		
<400> 9				
Met Arg Val Leu Le 1 5	eu Val Ala I	Leu Ala Leu 1 10	Leu Ala Leu Ala	Ala Ser 15
Ala Thr Ser Thr H	s Thr Ser (Gly Gly Cys (25	Gly Cys Gln Pro 30	Pro Pro
Pro Val His Leu P		Val His Leu 40	Pro Pro Pro Val 45	His Leu
Pro Pro Pro Val H.	is Leu Pro 1 55	Pro Pro Val	His Leu Pro Pro 60	Pro Val
His Leu Pro Pro P 65	co Val His V 70		Pro Val His Leu 75	Pro Pro 80
Pro Pro Cys His T		Gln Pro Pro . 90	Arg Ile Glu Phe	Lys Pro 95
Lys Pro Lys Pro L	ys Pro Lys (Glu Phe Lys 105	Pro Lys Pro Lys 110	Pro Lys
Pro Lys Glu Phe L 115		Leu Gln Gly 120	Thr Cys Gly Val 125	Gly Ser
Thr Pro Ile Leu G 130	ly Gln Cys 135	Val Glu Phe	Leu Arg His Gln 140	Cys Ser
Pro Thr Ala Thr P	ro Tyr Cys	Ser Pro Gln	Cys Gln Ser Leu	Arg Gln

Gln Cys Cys Gln Gln Leu Arg Gln Val Glu Pro Gln His Arg Tyr Gln 165 170 Ala Ile Phe Gly Leu Val Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln 180 Ser Gly Gln Val Ala Gly Leu Leu Ala Ala Gln Ile Ala Gln Gln Leu 205 195 200 Thr Ala Met Cys Gly Leu Gln Gln Pro Thr Pro Cys Pro Tyr Ala Ala 220 215 210 Ala Gly Gly Val Pro His <210> 10 <211> 723 <212> DNA <213> Maize <220> <221> CDS <222> (1)..(723) <400> 10 atg agg gtg ttg ctc gtt gcc ctc gct ctc ctg gct ctc gct gcg agc 48 Met Arg Val Leu Leu Val Ala Leu Ala Leu Ala Leu Ala Ser 96 gcc acc tcc acg cat aca agc ggc ggc tgc ggc tgc cag cca ccg ccg Ala Thr Ser Thr His Thr Ser Gly Gly Cys Gly Cys Gln Pro Pro 20 ccg gtt cat cta ccg ccg ccg gtg cat ctg cca cct ccg gtt cac ctg 144 Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu 40 35 cca cct ccg gtg cat ctc cca ccg ccg gtc cac ctg ccg ccg gtc 192 Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val

90

240

288

cac ctg cca ccg ccg gtc cat gtg ccg ccg ccg gtt cat ctg ccg ccg

His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro

cca cca tgc cac tac cct act caa ccg ccc cgg cct cag cct cat ccc

Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro

85

cag cca cac cca tgo Gln Pro His Pro Cys 100	c ccg tgc caa cag s Pro Cys Gln Gln 105	ccg cat cca agc ccg Pro His Pro Ser Pro 110	tgc cag 336 Cys Gln
atc gaa ttc aaa cca Ile Glu Phe Lys Pro 115	a aag cca aag ccg o Lys Pro Lys Pro 120	aag cca aaa gaa ttc Lys Pro Lys Glu Phe 125	ctg cag 384 Leu Gln
ccc ctg cag gga acc Pro Leu Gln Gly Thi 130	tgc ggc gtt ggc Cys Gly Val Gly 135	agc acc ccg atc ctg Ser Thr Pro Ile Leu 140	ggc cag 432 Gly Gln
tgc gtc gag ttt ctc Cys Val Glu Phe Leu 145	g agg cat cag tgc n Arg His Gln Cys 150	agc ccg acg gcg acg Ser Pro Thr Ala Thr 155	ccc tac 480 Pro Tyr 160
tgc tcg cct cag tgc Cys Ser Pro Gln Cys 169	Gln Ser Leu Arg	cag cag tgt tgc cag Gln Gln Cys Cys Gln 170	cag ctc 528 Gln Leu 175
agg cag gtg gag ccg Arg Gln Val Glu Pro 180	g cag cac cgg tac o Gln His Arg Tyr 185	cag gcg atc ttc ggc Gln Ala Ile Phe Gly 190	Leu Val
ctc cag tcc atc ctc Leu Gln Ser Ile Leu 195	g cag cag cag ccg 1 Gln Gln Gln Pro 200	caa agc ggc cag gtc Gln Ser Gly Gln Val 205	gcg ggg 624 Ala Gly
ctg ttg gcg gcg cag Leu Leu Ala Ala Gli 210	g ata gcg cag caa n Ile Ala Gln Gln 215	ctg acg gcg atg tgc Leu Thr Ala Met Cys 220	ggc ctg 672 Gly Leu
cag cag ccg act ccc Gln Gln Pro Thr Pro 225	a tgc ccc tac gct o Cys Pro Tyr Ala 230	gct gcc ggc ggt gtc Ala Ala Gly Gly Val 235	ccc cac 720 Pro His 240
tga			723
<210> 11 <211> 240 <212> PRT <213> Maize			
<400> 11			
Met Arg Val Leu Le 1 5	u Val Ala Leu Ala	Leu Leu Ala Leu Ala 10	Ala Ser 15
Ala Thr Ser Thr Hi 20	s Thr Ser Gly Gly 25	Cys Gly Cys Gln Pro 30	Pro Pro
Pro Val His Leu Pr 35	o Pro Pro Val His 40	Leu Pro Pro Pro Val 45	His Leu

Pro Pro Pro Val His Leu Pro Pro Pro Val His Leu Pro Pro Val 55 50 His Leu Pro Pro Pro Val His Val Pro Pro Pro Val His Leu Pro Pro 70 Pro Pro Cys His Tyr Pro Thr Gln Pro Pro Arg Pro Gln Pro His Pro 85 90 Gln Pro His Pro Cys Pro Cys Gln Gln Pro His Pro Ser Pro Cys Gln 100 105 Ile Glu Phe Lys Pro Lys Pro Lys Pro Lys Pro Lys Glu Phe Leu Gln 125 115 120 Pro Leu Gln Gly Thr Cys Gly Val Gly Ser Thr Pro Ile Leu Gly Gln 135 130 Cys Val Glu Phe Leu Arg His Gln Cys Ser Pro Thr Ala Thr Pro Tyr 160 155 150 145 Cys Ser Pro Gln Cys Gln Ser Leu Arg Gln Gln Cys Cys Gln Gln Leu 170 165 Arg Gln Val Glu Pro Gln His Arg Tyr Gln Ala Ile Phe Gly Leu Val 185 Leu Gln Ser Ile Leu Gln Gln Gln Pro Gln Ser Gly Gln Val Ala Gly 200 Leu Leu Ala Ala Gln Ile Ala Gln Gln Leu Thr Ala Met Cys Gly Leu 220 210 Gln Gln Pro Thr Pro Cys Pro Tyr Ala Ala Ala Gly Gly Val Pro His 240 230 235 225

<210> 12

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> based on Maize

```
<400> 12
Pro Lys Pro Lys
<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 13
Pro Lys Pro Lys Pro Lys
1 5
<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 14
Pro Lys Pro Lys Pro Lys Pro Lys
<210> 15
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 15
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
1 5
<210> 16
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
```

<223> based on Maize

```
<400> 16
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
              5
                                 10
<210> 17
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 17
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                                 10
<210> 18
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 18
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                                 10
     5
Pro Lys
<210> 19
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 19
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
              5
                                 10
Pro Lys Pro Lys
           20
```

11

<210> 20

```
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 20
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
                              25
           20
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 21
Lys Pro Lys Pro Lys Pro Lys
<210> 22
<211> 60
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<220>
<221> VARIANT
<222> (5)..(5)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (6)..(6)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (7)..(7)
<223> Xaa = Pro or is absent
<220>
```

<221> VARIANT

```
<222> (8)..(8)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (9)..(9)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (10)..(10)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (11)..(11)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (12)..(12)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (13)..(13)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (14)..(14)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (15)..(15)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (16)..(16)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (17)..(17)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (18)..(18)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (19)..(19)
<223> Xaa = Pro or is absent
```

```
<220>
<221> VARIANT
<222> (20)..(20)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (21)..(21)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (22)..(22)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (23)..(23)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (24)..(24)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (25)..(25)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (26)..(26)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (27)..(27)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (28)..(28)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (29)..(29)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT <222> (30)..(30)
<223> Xaa = Lys or is absent
<220>
```

```
<221> VARIANT
<222> (31)..(31)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (32)..(32)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (33)..(33)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (34)..(34)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (35)..(35)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (36)..(36)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (37)..(37)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT <222> (38)..(38)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (39)..(39)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (40)..(40)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (41)..(41)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (42)..(42)
```

```
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (43)..(43)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (44)..(44)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (45)..(45)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (46)..(46)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT <222> (47)..(47)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (48)..(48)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (49)..(49)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (50)..(50)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (51)..(51)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (52)..(52)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> .(53)..(53)
<223> Xaa = Pro or is absent
```

```
<220>
<221> VARIANT
<222> (54)..(54)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (55)..(55)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (56)..(56)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (57)..(57)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (58)..(58)
<223> Xaa = Lys or is absent
<220>
<221> VARIANT
<222> (59)..(59)
<223> Xaa = Pro or is absent
<220>
<221> VARIANT
<222> (60)..(60)
<223> Xaa = Lys or is absent
<400> 22
5
                      10
30
                      25
        20
35
55
<210> 23
<211> 18
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> based on Maize
<400> 23
Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys Pro Lys
Pro Lys
<210> 24
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 24
Lys Pro Lys Pro Lys Pro Lys Glu Phe Lys Pro Lys
Pro Lys Pro Lys
           20
<210> 25
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> based on Maize
<400> 25
Pro Lys Pro Lys
```

1