1

Assignment 3

Dishank Jain - AI20BTECH11011

Download all python codes from

https://github.com/Dishank422/AI1103-Probability -and-random-variables/blob/main/ Assignment 3/codes

and latex-tikz codes from

https://github.com/Dishank422/AI1103-Probability -and-random-variables/blob/main/ Assignment 3/main.tex

1 Problem

(Gate IN - 2021 Q.37) Consider that X and Y are independent continuous valued random variables with uniform PDF given by $X \sim U(2,3)$ and $Y \sim U(1,4)$. Then $\Pr(Y \leq X)$ is equal to

2 Solution

Fig. 0: Probability Distribution of (X, Y)

In figure 0, rectangle ABCD represents sample space of (X, Y). $Y \le X$ for any point (X, Y) if and only if the point lies on or below line EF. Therefore

$$Pr(Y \le X) = \frac{Area\ of\ AEFD}{Area\ of\ ABCD}$$
 (2.0.1)

$$=\frac{1}{2}$$
 (2.0.2)

Alternately, we have

$$F_Y(x) = \frac{x - 1}{3} \tag{2.0.3}$$

$$\Longrightarrow F_Y(X) = \frac{X-1}{3} \tag{2.0.4}$$

PDF of X is given by

$$f(X) = \begin{cases} 1 & 2 \le X \le 3\\ 0 & otherwise \end{cases}$$
 (2.0.5)

Thus

$$\Pr(Y \le X) = \int_{-\infty}^{\infty} F_Y(X) f(X) dX \qquad (2.0.6)$$

$$= \int_{-\infty}^{\infty} \frac{X-1}{3} dX \tag{2.0.7}$$

$$=\frac{1}{2}$$
 (2.0.8)