

MOSFET

OptiMOS[™]3 Power-Transistor, 250 V

Features

- N-channel, normal level

- N-channel, normal level
 Fast Diode (FD) with reduced Q_{rr}
 Optimized for hard commutation ruggedness
 Very low on-resistance R_{DS(on)}
 175 °C operating temperature
 Pb-free lead plating; RoHS compliant
 Qualified according to JEDEC¹⁾ for target application
 Halogen-free according to IEC61249-2-21

Table 1 1toy 1 of 101111affoot af affordiore						
Parameter	Value	Unit				
$V_{ extsf{DS}}$	250	V				
R _{DS(on),max}	21.0	mΩ				
I _D	69	A				

Type / Ordering Code	Package	Marking	Related Links
IPT210N25NFD	PG-HSOF-8	210N25NF	-

OptiMOS[™]3 Power-Transistor, 250 V IPT210N25NFD

Table of Contents

escription	1
laximum ratings	3
hermal characteristics	3
lectrical characteristics	3
lectrical characteristics diagrams	5
ackage Outlines	9
evision History 10	C
rademarks 10	C
pisclaimer	ว

OptiMOS[™]3 Power-Transistor, 250 V IPT210N25NFD

1 Maximum ratings at T_A =25 °C, unless otherwise specified

Table 2 **Maximum ratings**

Banamatan	0		Values			N 4 4 7 4 6 199	
Parameter	Symbol	Min.	Min. Typ.		Unit	Note / Test Condition	
Continuous drain current	I _D	-	-	69 54	А	T _C =25 °C T _C =100 °C	
Pulsed drain current ¹⁾	I _{D,pulse}	-	-	276	Α	T _C =25 °C	
Avalanche energy, single pulse	E AS	-	-	610	mJ	$I_{\rm D}$ =37 A, $R_{\rm GS}$ =25 Ω	
Gate source voltage	V _{GS}	-20	-	20	V	-	
Power dissipation	P _{tot}	-	-	375	W	T _C =25 °C	
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	IEC climatic category; DIN IEC 68-1: 55/175/56	

2 Thermal characteristics

Table 3 Thermal characteristics

Davamatav	Cumbal	Values			N 4 17 40 1141	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	0.2	0.4	K/W	-
Thermal resistance, junction - ambient, minimal footprint	R _{thJA}	-	-	62	K/W	-
Thermal resistance, junction - ambient, 6 cm ² cooling area ²⁾	R _{thJA}	-	-	40	K/W	-

3 **Electrical characteristics**

Table 4 **Static characteristics**

	0		Values				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	250	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	$V_{\rm GS(th)}$	2	3	4	V	V _{DS} =V _{GS} , I _D =267 μA	
Zero gate voltage drain current	I _{DSS}	-	0.1 10	1 100	μΑ	V _{DS} =200 V, V _{GS} =0 V, T _j =25 °C V _{DS} =200 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I_{GSS}	-	1	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	18.0	21.0	mΩ	V _{GS} =10 V, I _D =69 A	
Gate resistance ³⁾	R _G	-	2.8	4.2	Ω	-	
Transconductance	g fs	70	139	-	S	V _{DS} >2 I _D R _{DS(on)max} , I _D =69 A	

PCB is vertical in still air.

3) Defined by design. Not subject to production test.

 $^{^{1)}}$ See Diagram 3 $^{2)}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection.

OptiMOS[™]3 Power-Transistor, 250 V IPT210N25NFD

Table 5 Dynamic characteristics¹⁾

Downworton.	Symbol	Values			1111111	Nata / Tank Canadikian
Parameter		Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	5300	7000	pF	V _{GS} =0 V, V _{DS} =125 V, f=1 MHz
Output capacitance	Coss	-	300	400	pF	V _{GS} =0 V, V _{DS} =125 V, f=1 MHz
Reverse transfer capacitance	Crss	-	6	9.4	pF	V _{GS} =0 V, V _{DS} =125 V, f=1 MHz
Turn-on delay time	$t_{ m d(on)}$	-	13	-	ns	$V_{\rm DD}$ =125 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =34.5 A, $R_{\rm G,ext}$ =1.6 Ω
Rise time	t _r	-	13	-	ns	$V_{\rm DD}$ =125 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =34.5 A, $R_{\rm G,ext}$ =1.6 Ω
Turn-off delay time	$t_{ m d(off)}$	-	43	-	ns	$V_{\rm DD}$ =125 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =34.5 A, $R_{\rm G,ext}$ =1.6 Ω
Fall time	t _f	-	13	-	ns	$V_{\rm DD}$ =125 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =34.5 A, $R_{\rm G,ext}$ =1.6 Ω

Table 6 Gate charge characteristics²⁾

Parameter	Syran had		Values			Nata (Tant Oan dittan
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	24	-	nC	$V_{\rm DD}$ =125 V, $I_{\rm D}$ =69 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge ¹⁾	$Q_{ m gd}$	-	8	-	nC	$V_{\rm DD}$ =125 V, $I_{\rm D}$ =69 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q _{sw}	-	16	-	nC	$V_{\rm DD}$ =125 V, $I_{\rm D}$ =69 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total ¹⁾	Qg	-	65	86	nC	$V_{\rm DD}$ =125 V, $I_{\rm D}$ =69 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	-	4.5	-	V	$V_{\rm DD}$ =125 V, $I_{\rm D}$ =69 A, $V_{\rm GS}$ =0 to 10 V
Output charge ¹⁾	Q _{oss}	-	144	-	nC	V _{DD} =125 V, V _{GS} =0 V

Table 7 Reverse diode

Parameter	Sumb of		Values			Note / Took Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode continous forward current	I _S	-	-	69	Α	<i>T</i> _C =25 °C
Diode pulse current	I _{S,pulse}	-	-	276	Α	<i>T</i> _C =25 °C
Diode forward voltage	V _{SD}	-	0.9	1.2	V	V _{GS} =0 V, I _F =69 A, T _j =25 °C
Reverse recovery time ¹⁾	t _{rr}	-	134	268	ns	V_R =125 V, I_F = I_S , di_F/dt =100 A/ μ s
Reverse recovery charge ¹⁾	Qrr	-	406	-	nC	V_R =125 V, I_F = I_S , dI_F/dt =100 A/ μ s

 $^{^{1)}}$ Defined by design. Not subject to production test. $^{2)}$ See "Gate charge waveforms" for parameter definition

4 Electrical characteristics diagrams

5 Package Outlines

Figure 1 Outline PG-HSOF-8

OptiMOS[™]3 Power-Transistor, 250 V

Revision History

IPT210N25NFD

Revision: 2016-01-11, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)				
2.0	2016-01-11	Release of final version				

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGan™, CoolMOS™, CoolSet™, CoolSic™, Corecontrol™, Crossave™, Dave™, Di-Pol™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoPual™, EconoPid™, EconoPid™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPack™, Infineon™, ISOFace™, IsoPack™, i-Wafer™, MIPAQ™, ModStack™, my-d™, NovalithIc™, OmniTune™, OPTIGa™, OptiMos™, ORIGa™, Powercode™, PRIMARION™, PrimePack™, PrimeStack™, Profet™, Prof-sil™, Rasic™, Real3™, Reversave™, Satric™, Sieget™, SipMos™, SmartLewis™, Solid Flash™, Spoc™, Tempfet™, thinq!™, Trenchstop™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.