Algebra I (ISIM), lista 12, ćwiczenia 6.06.24, deklaracje do godz. 11:00.

Teoria: Odwzorowania 2-liniowe i wieloliniowe: definicja, przykłady (wyznacznik). Funkcjonały 2-liniowe. Formy liniowe, 2-liniowe. $m_{\mathcal{B}}(\varphi)$: macierz $\varphi \in L_2(V;\mathbb{R})$ w bazie $\mathcal{B}.$ $\Phi: Hom(V,V^*) \stackrel{\cong}{\to} L_2(V;\mathbb{R})$: $f \mapsto \Phi_f.$ $m_{\mathcal{B}\mathcal{B}^*}(f) = m_{\mathcal{B}}(\Phi_f).$ $m_{\mathcal{C}}(\varphi) = m_{\mathcal{C}\mathcal{B}}(id)^T m_{\mathcal{B}}(\varphi) m_{\mathcal{C}\mathcal{B}}(id)$ dla $\varphi \in L_2(V;\mathbb{R})$ i baz $\mathcal{B}, \mathcal{C} \subseteq V.$ rk $(\varphi) = \text{rk}(m_{\mathcal{B}}(\varphi)).$ Definicja: φ niezdegenerowana \iff rk $(\varphi) = \dim V.$ Funkcjonały 2-liniowe symetryczne, dodatnio określone: definicje. Macierze symetryczne, dodatnio określone: definicje. Gdy $\varphi \in L_2(V;\mathbb{R})$ jest symetryczny, to macierz φ jest diagonalna w pewnej bazie ortonormalnej V. Kryterium Sylvestera.

V oznacza przestrzeń liniową skończonego wymiaru.

1. Określamy przekształcenie $\langle \cdot, \cdot \rangle : V^* \times V \to R$ wzorem

$$\langle \varphi, v \rangle = \varphi(v).$$

- a)
– Sprawdzić, że $\langle \cdot, \cdot \rangle$ jest 2-liniowe.
- b) Dla podzbioru $A \subset V$ definiujemy $A^{\perp} = \{ \varphi \in V^* : (\forall v \in A) \langle \varphi, v \rangle = 0 \}$. Podobnie dla zbioru $A^* \subset V^*$ definiujemy $(A^*)^{\perp} \subset V$. Stosujemy tu podobne oznaczenia, jak dla dopełnień ortogonalnych. Udowodnić, że zbiory $A^{\perp}, (A^*)^{\perp}$ są podprzestrzeniami przestrzeni V^*, V odpowiednio. Udowodnić, że dla niezerowego wektora $v \in V$, $\dim(v^{\perp}) = \dim(V^*) 1$.
- 2. Na zbiorze macierzy $M_{n\times n}(R)$ określamy relację \sim przez $A\sim B\iff A=C^TBC$ dla pewnej macierzy odwracalnej C.
 - (a) Udowodnić, że jest to relacja równoważności.
 - (b) Załóżmy, że $A \sim B$. Udowodnić, że macierze A i B mają ten sam rząd.
- 3. Mówimy, że macierz kwadratowa A jest antysymetryczna $\iff a_{ij} = -a_{ji}$.
 - (a) Udowodnić, że każdą macierz kwadratową B można przedstawić w postaci sumy macierzy symetrycznej i antysymetrycznej. Następnie pokazać, że to przedstawienie jest jednoznaczne.
 - (b)* Udowodnić, że rząd macierzy antysymetrycznej jest liczbą parzystą.
- 4. (a) Czy suma przekształceń symetrycznych jest symetryczna?
 - (b) Czy złożenie przekształceń symetrycznych jest symetryczne?
- 5. Mówimy, że macierz symetryczna A wymiaru $n \times n$ jest ujemnie określona, gdy $X^TAX < 0$ dla każdego $X \in \mathbb{R}^n \setminus \{0\}$. Podać i udowodnić kryterium ujemnej określoności macierzy symetrycznej analogiczne do kryterium Sylvestera.
- 6. * Załóżmy, że V jest przestrzenią euklidesową, $\mathcal{B} = \{b_1, \ldots, b_n\}$ jest bazą V, zaś $\mathcal{B}' = \{b'_1, \ldots, b'_n\}$ jest bazą o.n. V otrzymana z bazy \mathcal{B} metodą Grama-Schmidta. Udowodnić, że bazy \mathcal{B} i \mathcal{B}' są tak samo zorientowane.
- 7. Załóżmy, że $\varphi \in L_2(V;\mathbb{R})$. Udowodnić, że następujące warunki są równoważne:
 - (i) φ jest niezdegenerowany,
 - (ii) $\forall v \neq 0 \ \varphi(v, \cdot) \neq 0 \ (\text{w} \ V^*),$
 - (iii) $\forall v \neq 0 \ \varphi(\cdot, v) \neq 0 \ (\text{w } V^*).$

- 8. * Dowieść, że jeśli $\varphi \in L_2(V;\mathbb{R})$ jest rzędu 1, to istnieją $g,h \in V^*$ takie, że $\varphi(v,w)=g(v)\cdot h(w).$
- 9. * Załóżmy, że $\varphi, \psi \in L_2(V; \mathbb{R})$ sa iloczynami skalarnymi. Udowodnić, że φ, ψ mają dokładnie te same bazy ortogonalne $\iff \varphi$ i ψ są liniowo zależne w $L_2(V; \mathbb{R})$.
- 10. * Załóżmy, że $\varphi, \psi \in L_2(V; \mathbb{R})$ to iloczyny skalarne. Udowodnić, ze nastepujące warunki sa równoważne:
 - (1) φ, ψ są liniowo zależne w przestrzeni $L_2(V; \mathbb{R})$.
 - (2) dla każdego $f \in End(V)$, f jest symetryczny (samosprzężony) względem $\varphi \iff f$ jest symetryczny względem ψ .