Parcial 3: Señales y Sistemas 2022-II

Profesor: Andrés Marino Álvarez Meza, Ph.D.

Departamento de Ingeniería Eléctrica, Electrónica, y Computación
Universidad Nacional de Colombia - sede Manizales

1. Instrucciones

- Para recibir crédito total por sus respuestas, estas deben estar claramente justificadas e ilustrar sus procedimientos y razonamientos (paso a paso) de forma concreta, clara y completa.
- La componente teórica de cada uno de los puntos deberá entregarse a mano. La componente práctica (programación), debe ser enviada al correo electrónico amalvarezme@unal.edu.co antes de las 6pm del 1 de diciembre de 2022, vía link de GitHub o adjuntando el archivo.ipynb. Se debe enviar un solo cuaderno de Python.
- Los códigos deben estar debidamente comentados en las celdas de código, y discutidos/explicados en celdas de texto (markdown). Códigos no comentados ni discutidos, no serán contabilizados en la nota final.
- El presente parcial puede ser desarrollado en parejas (enviar un solo cuaderno con los nombres de los integrantes).

2. Preguntas

 (Valor 2.5 puntos). Encuentre la función de transferencia que caracteriza el sistema masa, resorte, amortiguador, presentado en la siguiente Figura (asuma condiciones iniciales cero):

Posteriormente, encuentre el sistema equivalente del modelo masa, resorte, amortguador, a partir del siguiente circuito eléctrico:

Finalmente, proponga unos valores de m, k y c y sus equivalentes R, L y C, para simular un sistema subamortiguado. Presente las simulaciones y gráficas de polos y ceros, diagrama de Bode, respuesta impulso y respuesta al escalón.

Nota: para las gráficas de Bode, respuesta impulso y respuesta al escalón, se sugiere utilizar el paquete:

from sympy.physics.control.control_plots import pole_zero_plot, bode_plot,
impulse_response_plot, step_response_plot

Recuerde instalar la última versión de sympy:

!pip install sympy --upgrade

2. (Valor 2.5 puntos) Sea el demodulador en amplitud presentado en la siguiente figura:

Asumiendo $\theta_0=0$, presente una simulación sobre Python para el proceso de modulación y demodulación en amplitud, de 5 segundos de su canción favorita de Youtube. Especifique adecuadamente las consideraciones de diseño en tiempo y en frecuencia (con las gráficas pertinentes), y reproduzca el segmento de la canción para cada una de las etapas principales del procesos de modulación y demodulación.