Contrôle de TD numéro 2 (Sujet A) - 20 min

Nom:

Prénom:

Jeudi 10 octobre

Tout oubli d'unité ou de chiffres significatifs pourra entrainer la perte de point. Pour les exercices 2-4-5 , il est demandé de fournir une explication détaillée de vos réponses. Il n'est pas demandé de faire de schémas pour les exercices 4 et 5 sur la feuille. (Mais cela peut être utile sur un brouillon)

1 TD 1: Lentilles minces

Exercice 1 (Formule de grandissement (1 pt)) – Quelle sont les bonnes égalités de la formule de grandissement ? (une seule réponse possible)

$$\bigcirc \gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA}}{\overline{OA'}}$$
$$\bigcirc \gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

$$\bigcirc \ \gamma = \frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{OA}}{\overline{OA'}}$$

$$\bigcirc \ \gamma = \frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{OA'}}{\overline{OA}}$$

Exercice 2 (Construction optique (3 pts)) — On forme l'image d'un objet de 1,0 cm placé à 2,0 cm après une lentille divergente de distance focale -5,0 cm.

- 1) Construire l'image sur un schéma à l'échelle et déterminer la nature de l'objet et de l'image.
- 2) Calculer le grandissement par la méthode de votre choix.

2 TD 3 : Systèmes composés de plusieurs lentilles minces

Exercice 3 (Formule de grossissement (1 pt)) — Quelle est la bonne formule du grossissement, si α est l'angle sous lequel l'objet est vu par le système optique et α' l'angle sous lequel l'image est vue à travers le système optique? (une seule réponse possible)

$$\bigcirc G_c = \frac{\alpha}{\alpha'}$$
$$\bigcirc G_c = \frac{\alpha'}{\alpha}$$

Exercice 4 (La lunette de Galilée (5 pts)) – Une lunette astronomique de Galilée est constituée d'un objectif L_1 de centre O_1 et d'un oculaire L_2 de centre O_2 . L'objectif a une vergence V_1 de 4,0 δ et un diamètre D de 20,0 mm. L'oculaire présente une vergence V_2 de -20,0 δ .

- 1) Calculer les distances focales f'_1 et f'_2 .
- 2) Définissez le caractère afocal et expliquer son intêret pour un oeil emmétrope (sans défaut).
- 3) Calculer l'encombrement optique $\overline{O_1O_2}$ de la lunette pour qu'elle soit afocale.
- 4) Calculer le grossissement G_c de la lunette.
- 5) Déterminer la nature de l'image A_1B_1 pour la lentille L_1 et de l'objet A_1B_1 pour la lentille L_2 .

3 BONUS

Exercice 5 (La lunette de Galilée (suite) (2 pts)) – On cherche à déterminer la position et la taille du cercle oculaire de centre C'_G .

- 6) Rappeler la définition du cercle oculaire et son intérêt.
- 7) Déterminer la position $\overline{O_2C_G'}$.
- 8) Déterminer le diamètre D_G du cercle oculaire.