Digital Signal Processing Laboratory

Laboratory 3 Discrete-Time Systems

3.1 Introduction

The purpose of this $lab^{1,2}$ is to explore the characteristics of discrete-time systems.

3.2 Discrete-time Systems

The following continuous-time systems are commonly used in electrical systems:

differentiator:
$$y(t) = \frac{d}{dt}x(t)$$
 (3.1)

integrator:
$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau$$
 (3.2)

3.2.1 EXERCISE

- 1. For each of the two systems described in 3.2:
 - a) Formulate a discrete-time system that approximates the continuous-time functions. Write the difference equation that describes the discrete-time systems.
 - b) Draw the block diagram of the discrete-time systems.
- 2. Write two functions that will apply the differentiator (function \sim 3212d.py) and integrator (function \sim 3212i.py) systems. Apply the differentiator and integrator to the following two signals for $-10 \le n \le 20$.

a)
$$x_a(n) = \delta(n) - \delta(n-7)$$
 (Figures ~ 3212 ad.png, and ~ 3212 ai.png)

b)
$$x_b(n) = u(n) - u(n - (N+1))$$
 with $N = 8$ (Figures ~ 3212 bd.png, and ~ 3212 bi.png)

To compute u(n) for $-10 \le n \le 20$, set n = -10, -9, ..., 20, and use the boolean expression u = (n>=0). Use the subplot and stem commands to co-plot the input and output signals.

¹C. Bouman, *Digital Signal Processing with Applications*, School of Electrical and Computer Engineering, Purdue University

²S. Burrus, etal., Computer-Based Exercises for Signal Processing using Matlab, Prentice-Hall: Englewood Cliffs, NJ, 1994, pp.8-10

Hint: When implementing a difference equation using for loops, pre-define the output vector before entering the loop. If you are using a for loop to filter the signal x(n)and yield an output y(n), place the following command before the for loop

where N is the length that y should be after filtering.

3.3 Difference Equations

3.3.1 EXERCISE

- 1. Write Python functions to implement two discrete-time filters S_1 and S_2 described by the following difference equations:

 - a) $y_1(n) = \frac{1}{2}x(n) \frac{1}{2}x(n-1)$ (Function s1(..)) b) $y_2(n) = \frac{1}{2}y(n-1) + x(n)$ (Function s2(..))

Place the two functions in a module named ~ 3 .py.

- 2. Use the functions to plot the impulse response of the following systems:
 - a) S_1 (Figure $\sim 3312a.png$)
 - b) S_2 (Figure ~ 3312 b.png)
 - c) $S_2(S_1)$ the series connection with S_1 followed by S_2 (Figure ~ 3312 c.png)
 - d) $S_1(S_2)$ (Figure $\sim 3312d.png$)

3.4 Audio Filtering

3.4.1 EXERCISE

Listen to the file music.wav using a sound player. Load this file into Python using scipy.io. Filter the audio signal with each of the two systems S_1 and S_2 in section 3.3.1. How do the filters change the sound of the audio signal? Explain your observation (File \sim 341.txt).

3.5 Infinite Impulse Response Difference Equations

An IIR(infinite impulse response) filter is an LTI system expressed as a linear constantcoefficient difference equation:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$
(3.3)

In scipy.signal, difference equations are represented by two vectors: one vector containing the feedforward coefficient, b_k for the x terms, and the other vector containing the feedback coefficients, a_k for the y terms. The coefficient a_0 is usually taken to be 1, so that when y(n) is written in terms of past values it drops out:

$$y(n) = -\frac{1}{a_0} \sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

In scipy.signal the lfilter function will divide out a_0 so it must not be zero.

Hints: The function y = lfilter(b,a,x) implements a digital filter defines by the a and b coefficients as in (3.3) to filter the data stored in x. If x is the unit impulse signal, then y will be the impulse response h(n). Note that the function lfilter returns only as many samples into y as there are in x (the impulse response is truncated to the length of the unit impulse vector, x).

3.5.1 EXERCISE: Simple Difference Equation

1. Create vectors b and a that contain the coefficients of x[n] and y[n], respectively, in the following difference equation:

$$y(n) + 0.8y(n-2) = 0.2x(n) + 0.4x(n-1) + 0.2x(n-2)$$
(3.4)

- 2. Calculate y(n) analytically for $x(n) = \delta(n)$
- 3. Create a unit impulse vector, imp, of length 128. Generate the first 128 points of the impulse response of the filter in (3.4). Use stem to plot these values as a discrete-time signal versus time. Plot the first 20 points (Figure ~351.png).

3.5.2 EXERCISE: Impulse Response with filter

1. Use the lfilter function to generate and plot the impulse response h(n) of the following difference equation. Plot h(n) in the range $-10 \le n \le 100$ (Figure $\sim 352.$ png).

$$y(n) - 1.8\cos(\frac{\pi}{16})y(n-1) + 0.81y(n-2) = x(n) + \frac{1}{2}x(n-1)$$
(3.5)

2. Determine the impulse response analytically and confirm your results.