数据结构与算法分析

华中科技大学软件学院

2017年秋

数据结构 1 / 78

大纲

- 1 简单排序算法
- 2 希尔排序
- 3 最优排序算法
- 4 排序算法的分析
- 5 外部排序

课程计划

- 已经学习了
 - 散列
 - 冲突的处理
 - 再散列
 - 优先队列和堆

数据结构 3 / 78

课程计划

- 已经学习了
 - 散列
 - 冲突的处理
 - 再散列
 - 优先队列和堆
- 即将学习
 - 排序算法
 - 排序算法的分析
 - 外部排序

数据结构 3 / 78

Roadmap

- 1 简单排序算法
- 2 希尔排序
- ③ 最优排序算法
- 4 排序算法的分析
- 5 外部排序

为什么需要排序

- 计算机上运行的最重要的工作之一
- 有许多重要的应用
 - 先排序, 再查找
 - Google搜索, PageRank
- 研究的比较全面
- 关键算法在许多语言中已经实现,例如qsort

数据结构 5 / 7

排序为何重要

- 非常常见, 很多计算机花大量时间排序
- 收件箱中的邮件可以按照日期,主题,发件人排序
- 可以使得其他工作变得容易一些
 - 数组排序后可以使用折半查找 , 时间复杂度降为logn
 - 寻找中位数
 - 寻找重复值
 - 寻找重数

数据结构 6 / 78

排序的算法

- 简单算法, 运算较慢
 - 插入排序
 - 冒泡排序
- 次二次型排序算法: 希尔排序
- 最优排序,复杂度O(n log n)
 - 归并排序
 - 快速排序
 - 堆排序
- 特殊情况: 桶式排序、基数排序

数据结构 7 / 78

洗牌与排序

- 洗牌:随机选取一种排列方式,如果恰好排好, 停止
- 否则重新洗牌
 - 最好情况: 0(1)
 - 最坏情况: ∞
 - 平均情况: n*n!, n次调用随机数发生器, n!种排列

数据结构 8 / 7

回顾插入排序

```
void InsertionSort (ElementType A[], int N)
    int j, p;
    ElementType tmp;
    for (p = 1; p < N; p++)
        tmp = A[p];
        for (j = p; j > 0 \&\& A[j-1] > tmp; j--)
            A[j] = A[j-1];
        A[j] = tmp;
```

递归求解

- 平凡情况, 若N为1, 已经排序, 返回
- 将长度为n的数组划分为2部分: 长为n-1的数组, 和最后一个元素
 - 解决次问题
 - 将最后一个元素插入到n-1的已排序数组中
- 最后一步可以更有效率些吗? 二分查找怎么样?

数据结构 10 / 78

冒泡排序

- 想法: 通过交换把大数移到顶部 for i = n-1 down to 1 for j = 1 to i if A[j] < A[j-1] swap A[j] and A[j-1]
- 每趟排序将最大数移到合适的位置
 - 只有n趟排序
 - 每趟排序的交换少于n次
 - $0(n^2)$

数据结构 11 /

Simple slow algorithms

- "简单"的慢速算法有什么坏处?
- 只比较相邻项
- 冒泡排序显然是这样的
- 插入排序可认为是这样的

数据结构 12 /

复杂度分析

Theorem

任何相邻项比较的算法复杂度都是Θ(n²)的

数据结构 13 / 13

证明

证: 设序偶(i, j), 不妨 i < j, 有 a[i] > a[j], 称 此为逆序(inversion).

有多少种可能的 (ordered) 有序偶?答案是 n*(n-1)/2. 考虑一些排序0和反转的 0^{-1} , (i,j)会在0 或 0^{-1} 若0是随机的,则可期望半数的序偶被反转. 故可期望的反转数量为: $\frac{n*(n-1)/2}{2} = \Theta(n^2)$

为什么这很重要? 任何相邻项的交换都可以精确地进行一次反转. 平均地, 只交换相邻项的算法复杂度是 $\Theta(n^2)$

Roadmap

- 1 简单排序算法
- ② 希尔排序
- 3 最优排序算法
- 4 排序算法的分析
- 5 外部排序

ShellSort

- 如何更快地排序? 必须交换相距更远的项
- 希尔排序: Donald Shell, 1959. 亚二次, 但仅 比插入排序难一点点
 - 具体想法: 交换相距很远的项
 - 用若干"增量(increments)"做插入排序
 - 最后,按距离排序
 - Eg: 8, 4, 2, 1, 是递减的 尾数为 1
- 结果呈现: 后做的排序不会影响先前的

数据结构 16 / 78

举例

- 考虑一个队列: 4 63 20 3 61 40 1 65 10 5 64 30 2 62 50
- 用 3-sort 排序:1 61 10 2 62 20 3 63 30 4 64 40 5 65 50
- 现在用 2-sort 排序:
 1 2 3 4 5 20 10 40 30 61 62 63 50 65 64
- 用 1-sort 排序:1 2 3 4 5 10 20 30 40 50 61 62 63 64 65
- 注意 81 94 11 96 12 35 17 95 28 58 41 75 15
- 按 5, 3, 1 做排序

数据结构 17 /

ShellSort代码

```
void shellSort (int a[], int n)
  int i, j, gap, cur;
  for (gap = n/2; gap > 0; gap = gap/2)
      for (i = gap; i < n; i++)</pre>
          cur = a[i];
          for (j = i; j >= gap \&\&
                   cur < a[j - gap]; j -= gap)
               a[j] = a[j - gap];
          a[j] = cur;
```

ShellSort的增量

- 第一批增量来自Shell: 1 2 4 8 16 n/2 (按逆序) → Θ(n²)
- 但结果表明:据数论, 平均时间为 Θ(n^{1.5})
- $\Omega(n^2)$: second-to-last is 2-sort
 - 将大值置于偶数位
 - 1-sort 会反转 Θ(n²)
- 0(n²): h-sort 基于 n/h 元素

数据结构 19 /

Shell排序的下界

- 须说明复杂度也是 Ω(n²)
- 足以发现复杂度为Θ(n²)的一种序列类型,但不仅 仅是一个序列!
- 在偶数位选n个小数,奇数位选n个大数:10 0 11 1 12 2 13 3
- 1-sort之前的所有排序,都在偶数位留下偶数, 奇数位留下奇数
- 在1-sort,最小数(从0开始)排在位置2i+1,而不 在位置i
 - 每次必须移动i+1的距离
 - n/2中的每一个都必须大致移动 $\sum_{i=0}^{n/2} i + 1 \rightarrow n^2$

Shell排序的分析

一趟排序由 h 个子集的 n/h个元素组成 今 $n=2^k$. 最坏情况

$$\begin{split} n^2 + 2*(n/2)^2 + 4*(n/4)^2 + 8*(n/8)^2 + ... + n/2*(n/(n/2))^2 \\ &= (1 + 1/2 + 1/4 + ... + 1/2^{k-1}) * n^2 \\ &\leq 2n^2 = \Theta(n^2) \end{split}$$

最好情况,对一个已排好序的数组执行Shell Sort

$$\begin{aligned} n + 2 * (n/2) + 4 * (n/4) + 8 * (n/8) + ... + n/2 * (n/2) \\ &= (1 + 1 + 1 + ... + 1) * n \\ &= (k + 1)n = \Theta(n \log n) \end{aligned}$$

改进增量

- 如果增量之间不互质,总在重复同样的工作。引入新的增量序列
- Hibbard (一种增量): 1,3,7,...,2^k 1, 连续增量是相关的素数
- 结果表明足以有效
 - 可表明: Hibbard = O(n^{3/2}) 为最坏情况
 - 未表明但可信: O(n^{5/4}) 为平均情况
- Sedgewick (一种增量): 0(n^{4/3}) 为最坏情况,可能: 0(n^{7/6}) 为平均情况,序列: 9*4ⁱ-9*2ⁱ+1
 or 4ⁱ-3*2ⁱ+1

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

数据结构 22 /

Hibbard增量的复杂度分析

Theorem

使用Hibbard增量的希尔排序最坏情况运行时间为 $\Theta(n^{\frac{3}{2}})$

证法分析: 在 h_k -sort之前,数组是 h_{k+1} -sorted的. 对于两个元素,这些元素是 h_{k+1} 和 h_{k+2} 分开的正线性组合, 他们处于正确的顺序. 在每趟排序中,只有不可表示为先前间隔的线性组合的位置,才须被排序。 那需要 h_k N次操作. 然后我们可以分离 h_k 's通过与 by comparing with \sqrt{N} 的比较,并对每趟排序的花费求和

数据结构 23 /

Roadmap

- 1 简单排序算法
- 2 希尔排序
- ③ 最优排序算法
- 4 排序算法的分析
- 5 外部排序

归并排序

- 基本想法: 用递归步骤分治(divide and conquer)
 - MergeSort (left half);
 - MergeSort (right half);
 - 合并2半;
 - 平凡情况: 若长度为1, 则返回
- 很简单的递归算法,于 1945 由 John von Neumann 提出,他发明了博弈论(Game Theory),致力于量子力学(QM),还发明了"冯•诺依曼体系结构(von Neumann architecture)",用程序和数据单一存储的"存储程序"计算机

数据结构 25 /

冯诺依曼和计算机

数据结构 26 / 7

MergeSort

- 重复对半划分, 直到平凡情况
- 合并2个长为m的序列: time 2m
- 但结果放在哪里呢?
 - 保留在同一数组, 如insert-sort m²
 - 为了得到线性时间, 需放在一个新数组
- MergeSort 用时 n logn 但使用 O(n) 的空间
 - 大缺点: "记忆墙"
 - 以及: 获取 n 的空间费时
 - 来回复制很慢

数据结构 27 / 78

98 | 89 | 56 | 87 | 34 | 21 | 43 | 65

98	89	56	87	34	21	43	65
89	98	56	87	21	34	43	65

98	89	56	87	34	21	43	65
89	98	56	87	21	34	43	65
56	87	89	98	21	34	43	65

98	89	56	87	34	21	43	65
89	98	56	87	21	34	43	65
56	87	89	98	21	34	43	65
56	87	89	98	21	34	43	65

98	89	56	87	34	21	43	65
89	98	56	87	21	34	43	65
56 56	87	89	98	21	34	43	65
56	87	89	98	21	34	43	65
21	34	43	56	65	87	89	98

数据结构 28 /

98	89	56	87	34	21	43	65
89	98	56	87	21	34	43	65
56 56	87	89	98	21	34	43	65
56	87	89	98	21	34	43	65
21	34	43	56	65	87	89	98

Sort 12, 14, 8, 72, 15, 23, 47, 92

数据结构 28 / 78

合并

数据结构 29 / 78

代码

```
void MS (ElementType A[], ElementType Tmp[], int left, int right)
    int center;
    if (left < right)
    ł
        center = (left + right)/2;
        MS (A, Tmp, left, center);
        MS (A, Tmp, center + 1 , right);
        merger (A, Tmp, center + 1, right);
}
void MergeSort (ElementType A[], int N)
ſ
    ElementType *Tmp;
    Tmp = malloc (N*sizeof (ElementType);
    if (Tmp != NULL)
        MS (A, Tmp, 0, N-1);
       free (Tmp);
```

合并

```
合并 A[left..right-1], A[right..rightEnd] 到 Tmp[left..rightEnd] 然后复制回 A[left..rightEnd]
```

数据结构 31 /

复杂度分析

$$\left\{ \begin{array}{ll} T(1) = 1 & \text{trivial case} \\ T(n) = 2T(n/2) + n & \text{recursive step} \end{array} \right.$$

$$T(n/2)/(n/2) = T(n/4)/(n/4) + 1$$

 $T(n/4)/(n/4) = T(n/8)/(n/8) + 1$

$$T(2)/2 = T(1)/1 + 1$$

现在添加所有的等式——大部分的项都被抵消了 $T(n)/n = logn + T(1)/1$ Thus $T(n) = 0(nlogn)$

32 / 78

快速排序

- 由Tony Hoare在1960年发明
- 最坏情形: 0(n²)
- 平均情况:0(nlogn), 且常系数小
- 通常被认为是最好的排序算法

数据结构 33 / 78

QuickSort

```
QuickSort(int A[], int n)
    if (1 == n)
        return;
     listA
                     listlist;
    return {QuickSort(leftside), pivot,
                 QuickSort(rightside)};
```

数据结构 34 / 78

快速排序举例

- Quicksort: 13 22 79 18 2 8 42 50 6
- 选取枢纽元, 比如, 22
- 返回 (quicksort(13, 18, 2, 8, 6), 22, quicksort(79, 42, 50))
 - Quicksort: 13 18 2 8 6
 - 选取枢纽元 8
 - 返回 quicksort(2,6), 8, quicksort(13,18)
- Quicksort: 79 42 50, etc.
- 我们希望的是: 给定枢纽元, 左右两边list大小相等

选择枢纽元

- 总是选择第一个元素。如果数组是完全随机的, 这就是可行的
- 但若情况不理想, 一侧将填满剩下的所有元素
- 规模折半 → 删除第一个元素
- $\Theta(n)$ 递归调用 $\to \Theta(n^2)$ 时间, 一个坏的主意
- 在列表中随机选择枢纽元。 在选择枢纽元的随机 性方面堪称完美。 但随机选取过程的代价是昂贵 的。
- 选择中值。可以在线性时间内完成,但消耗仍然 较大。

数据结构 36 /

Median of 3

- 选择 "median of 3"
 - 几乎和中位数一样好, 但是很简单
 - 查看首元素,中间元素和尾元素,选择大小居中的那个

数据结构 37 / 78

划分过程

```
int comp median3 (int a[], int left, int right)
    int ctr = (left+right)/2;
    if (a[ctr] < a[left]) swap (a,left,ctr);</pre>
    if (a[right] < a[left]) swap (a,right,left);</pre>
    if (a[right] < a[ctr]) swap (a,ctr,right);</pre>
    // right-1
    swap (a,ctr,right-1);
    return (a[right-1]);
```

划分过程

- 用数组中最右边的元素交换枢纽元
- ② 左指针从第一个元素开始,一直向前移动,直到 找到比枢纽元更大的元素为止
- 右指针从第二个位置开始,向后移动直到找到小 于枢纽元的元素
- 如果左指针过右,则与最后一个元素交换并停止;否则,交换指针指向的元素,并重复移动

数据结构 39 / 78.

划分过程

```
QuickSort (A)
    i = left; j = right - 1;
    while (1)
    {
        while a[++i] < pivot</pre>
        while a[--j] > pivot
        if (i < j)
             swap a[i] and a[j];
        else
             break;
    swap a[i] and pivot;
```

 18
 8
 14
 6
 35
 2
 7
 0
 91
 78
 80

18	8	14	6	35	2	7	0	91	78	80
80	8	14	6	35	2	7	0	91	78	18

18	8	14	1 6	35	2	. 7	0	91	78	80
80	8	14	1 6	35	2	. 7	0	91	78	18
0	8	14	6	35	2	7	80	91	78	18

18	8	14	6	3	5	2	7	0	91	78	80
80	8	8 14		6 35		2		0	91	78	18
0	8	14	6	35	2)	7	80	91	78	18
0	8	14	6	7	2	3	5	80	91	78	18

18	8	14	6	3	5	2	7	0	91	78	80
80	8	14	6	3	5	2	7	0	91	78	18
0	8	14	6	35	2	2	7	80	91	78	18
0	8	14	6	7	2	3	5	80	91	78	18
0	8	14	6	7	2	1	8	80	91	78	35

18	8	14	- 6	3	5	2	7	0	91	78	80
80 8		14	14 6		5	2	7	0	91	78	18
0	8	14	6	35		2	7	80	91	78	18
0	8	14	6	7	2	3	5	80	91	78	18
0	8	14	6	7	2	1	8	80	91	78	35
0	8	14	2	7	6	1	8	35	91	78	80

18	8	14	- 6	3	5	2	7	0	91	78	80
80	8	14	- 6	3	5	2	7	0	91	78	18
0	8	14	6	35	2	2	7	80	91	78	18
0	8	14	6	7	2	3	5	80	91	78	18
0	8	14	6	7	2	1	8	80	91	78	35
0	8	14	2	7	6	1	8	35	91	78	80
0	2	14	8	7	6	1	8	35	78	91	80

18	8	14	6	3	5	2	7	0	91	78	80
80	8	14	6	3	5	2	7	0	91	78	18
0	8	14	6	35	2	2	7	80	91	78	18
0	8	14	6	7	2	3	5	80	91	78	18
0	8	14	6	7	2	1	8	80	91	78	35
0	8	14	2	7	6	1	8	35	91	78	80
0	2	14	8	7	6	1	8	35	78	91	80
0	2	6	8 7	7	14	18	8	35	78	80	91

枢纽元与划分

数据结构 42 / 78

编程中的细节问题

- 为什么不像下面那样做?
 while (a[i] < piv) i++; while (a[j] > piv) j--;
- 考虑这个情况: 421454, 三值均为 4
- 然后i, j不动, 4和4交换, 如此往复, 形成一个 无限循环
- 为什么不这样? while (a[i] <= piv) i++;while (a[j] => piv) j--;
- 考虑 444444, i 总是向右移动

◆ロト ◆昼 ト ◆ 恵 ト → 恵 → りへで

数据结构 43 / 78

枢纽元举例

枢纽元编程

- 保留主体代码,但在选择中值时,排序左、右、 中部分
- 好处:
 - 没有无限循环
 - i, j总是向前移动
 - 对同值的初始输入保持平衡

快速排序时间复杂度分析

令 i 为右侧部分大小 然后 T(n) = 1 + n + T(i) + T(n-i-1) 1 为选择枢纽元时间, n 为分区时间 右边是 n - left size - pivot的大小 最坏情况是什么? i always = 0

$$T(n) = 1 + n + 1 + T(n - 1)$$

$$= 1 + n + 1 + (1 + n - 1 + 1 + T(n - 2))$$

$$= n + n - 1 + (n - 2 + T(n - 3)) = n^{2}$$

最好情况? i 总是为 n/2

$$T(n) = 1 + n + 2 * T(n/2) = 1 + n + 2 * (1 + n/2 + 2 * T(n/4))$$

 $= n \log n$

1 ト 4 個 ト 4 重 ト 4 重 ト 9 Q ○

快速排序最坏情况

另一种写法:

$$T(n) = T(n-1) + n$$

$$T(n-1) = T(n-2) + n - 1$$

$$T(n-2) = T(n-3) + n - 2$$
 ...

$$T(2) = T(1) + 2$$

累加所有等式,逐项相消: 右侧为:

$$T(n) = n + n - 1 + n - 2 + ... + 2 + T(1) = \Theta(n^2)$$

快速排序最好情况

$$\begin{split} T(n) &= 2T(n/2) + n \\ T(n)/n &= T(n/2)/(n/2) + 1 \\ T(n/2)/(n/2) &= T(n/4)/(n/4) + 1 \\ &\cdots \\ T(2)/1 &= T(1)/1 + 1 \\ T(n)/n &= T(1)/1 + \log n \\ T(n) &= n \log n \end{split}$$

数据结构 48 / 1

快速排序平均情况

- 随机的主元将列表平均分为一半
- 期望为 → n log n
- 平均情况还不够
- 假设枢纽元算法总是选择最小或最大的
- 左侧总是为空或者包含全部元素 → 平均来说是一半!

$$T(n) = T(L) + T(R) + n$$
 需要估计 $T(L)$, $T(R)$ 大小从 0 到 $n-1$ 平均: $T(L) = T(R) = \frac{T(0) + ... + T(n-1)}{n}$

4□ ▶ 4률 ▶ 4 를 ▶ 4 를 ▶ 9<0

数据结构 49 / 7

快速排序平均情况

- 对于给定的枢纽元选法,我们有average $T(i) = \frac{\sum_{j=0}^{n-1} T(j)}{n}$
- 所以 $T(n) = \frac{2}{n} * (\sum_{j=0}^{n-1} T(j)) + n$
- 乘以 n: $nT(n) = 2 * (\sum_{j=0}^{n-1} T(j)) + n^2$ (1)
- 记住 (n-1)² = n² 2n + 1
 (1) (2) = nT(n) (n-1)T(n-1) = 2T(n-1) + 2n-1. 減 1, 两边加 (n-1)T(n-1) : nT(n) = (n+1)T(n-1) + 2n, 除以 n(n+1): T(n)/(n+1) = T(n-1)/n + 2/(n+1)

快速排序平均情况

- 已经得到: T(n)/(n+1) = T(n-1)/n + 2/(n+1)
- 现在:
 - T(n-1)/(n) = T(n-2)/(n-1) + 2/(n)
 - T(n-2)/(n-1) = T(n-3)/(n-2) + 2/(n-1)
 - T(n-3)/(n-2) = T(n-4)/(n-3) + 2/(n-2)
 - . . .
 - T(2)/3 = T(1)/2 + 2/3
- 多数项抵消:

$$T(n)/(n+1) = 2(1/(n+1) + 1/n + \cdots + 1/3)$$

=2H_{n+1} = log n, 调和级数

• $\mathbb{P} \mathsf{T}(\mathsf{n})/(\mathsf{n+1}) \to \mathsf{T}(\mathsf{n}) = \mathsf{nlogn}$

数据结构 51 / 78

快速排序小结

- 快速排序平均情况 0(n log n)
- 可以表明n²情况可能性极小
- 举个例子,如果非常不幸运,总是分成 9/10*n 和 1/10*n 两部分,结果仍然是 0(n log n)
 T(n) = T(0.9n) + T(0.1n) + n

数据结构 52 / 7

qsort()函数

- C语言库中的函数 void qsort(void *base, size_t nitems, size_t size, int (*compar) (const void *, const void*)) 给一个数组排序
- 参数
 - base 指向要排序的数组的第一个元素的指针
 - nitems base指向的数组的元素个数
 - size 数组中每个元素的字节大小
 - compar 比较两个元素的函数
- 返回值
 - 这个函数不返回任何值

数据结构 53 /

```
#include <stdio.h>
#include <stdlib.h>
int values[] = { 88, 56, 100, 2, 25 };
int cmpfunc (const void * a, const void * b)
   return ( *(int*)a - *(int*)b );
int main()
   int n:
   printf("Before sorting the list is: \n");
   for(n = 0; n < 5; n++)
      printf("%d<sub>||</sub>", values[n]);
   }
   qsort(values, 5, sizeof(int), cmpfunc);
   printf("\nAfter_usorting_uthe_ulist_uis:u\n");
   for(n = 0; n < 5; n++)
      printf("%du", values[n]);
 return(0):
```

混合排序算法

- 元素较少的数组上插入排序非常快
- 快速排序/归并排序一般在长度>20的数组上使用
 - 元素较少使用快速排序 过多的开销导致速度不会很快
 - 不会消耗很多时间, 但是相比插入排序, 计算量较大
- 对于元素较少的数组,调用插入排序即可
 - sort(int[]) and sort(Object[]) in Arrays and Collections all do this
 - Both quicksort and mergesort

数据结构 55 /

选择所需的排序算法

- 最常用:
 - 插入排序 Insertion
 - 希尔排序 Shell
 - 归并排序 Merge
 - 快速排序 quick
- 插入排序在数组元素<20或者数组大部分已经排序 时非常快
- 希尔排序易于代码编写而且运行很快
- 在外部排序,而且需要稳定排序时,归并排序理 论上很快
- 电子邮件先按姓名排序,然后按日期排序
- 快速排序一般都很快

◆ロト ◆昼ト ◆夏ト ◆夏ト 夏 める(*)

数据结构 56 / 78

Roadmap

- 1 简单排序算法
- 2 希尔排序
- 3 最优排序算法
- 4 排序算法的分析
- 5 外部排序

基于比较的排序算法分析

- 假设我们有 a,b,c 三个需要排序的元素
- 怎么做?
- 自然想到: 比较 再比较
- 在每一点上做一些测试(比较)
 - 二叉树 视结果而定
 - 叶子=解决方案
- 决策树
 - 画一个决策树
 - 每个节点 = 一个状态
 - 每个状态 = 一种可能性
- 这样一棵树的最小深度是多少?

基于比较的排序算法分析

Lemma

深度为d的二叉树有 < 2d 个叶子

Lemma

有 | 个叶子的二叉树深度一定 ≥ (log |) 向下取整

Lemma

只使用比较的排序算法在最坏情形下需要 ≥ log(n!) 次比较

n! 次可能的输入 \rightarrow n! 次可能的输出 \rightarrow n! 叶子 \rightarrow 深度 \geq $\log(n!)$

Log函数

- 凸性: $\forall x_1, x_2 \in X, \forall t \in [0, 1],$ $f(tx_1 + (1 - x)t_2) \le tf(x_1) + (1 - t)f(x_2)$
- 对数函数单调凸

数据结构 60 / 1

分析

Lemma

任何基于比较的排序算法都是 $\Omega(n \log n)$

$$\begin{array}{l} \log(n!) = \log(n*(n-1)(n-2)*1) = \sum_{i=1}^{n} \log i \\ = \sum_{i=1}^{n/2} \log i + \sum_{i=n/2+1}^{n} \log i \geq \sum_{i=n/2+1}^{n} \log i \\ \geq \frac{n}{2}*\log \frac{n}{2} \\ = n/2*(\log n - 1) \rightarrow \log(n!) = \Omega(n \log n) \end{array}$$

Theorem

任何基于比较的排序算法都是 Θ(n logn)

$$\log(n!) \le \log n^n = n \log n \to \log(n!) = 0(n \log n)$$

数据结构 61 /

结论

- 决策树具有最小深度 n logn
- 另一种理解方式: 最初有 $\Pi_1 = n!$ 可能的输入序列, each comparison at best sets $\Pi_{i+1} = \Pi_i/2$
- 在 Π_k = 1 之前,需要做多少次?
 log Π₁ = log n! = nlogn 次
- 另一种理解方法: 每个比较给出1个信息位
- 有 n! 种输入可能
- 为了查找条目索引, 需要 logn! bits = n logn

数据结构 62 /

其它排序模型

- 我们可以比 nlogn 做得更好吗? 如果我们有额外的信息, 我们就能做得更好。
- 以前的模型假定2个项目之间的每一个比较都需要 一定的时间。
- 桶排序呢? 额外信息=值的上界
- 桶排序采用M型比较,类似于哈希
 - 从列表中遍历并找到最大值M
 - 对M个桶进行桶排序
- 对某些输入, 桶排序可以很快
 - 整数范围小
 - 但要获得 Θ(M) 内容空间

Roadmap

- 1 简单排序算法
- 2 希尔排序
- ③ 最优排序算法
- 4 排序算法的分析
- 5 外部排序

External Sort

- 问题: 用1MB的RAM数据排序1GB数据
- 我们在哪里需要:
 - Data requested in sorted order (ORDER BY)
 - 分组操作所需
 - 排序合并连接算法的第一步
 - 去除重复
 - b树索引的批量加载

数据结构 65 /

External Sort Idea

- 文件只能逐块读取,没有可用的随机访问
- 想法:使用小内存来缓冲文件数据,反复排序合并直到形成一个独立文件
 - 从文件读取一些数据到缓冲区
 - 对缓冲区中的数据进行排序
 - 将数据写入临时文件
 - 将一些从临时文件中排序的数据读到缓冲区中
 - 归并读入的数据
 - 将合并后的数据写入临时文件 (run)
- 文件1/0比内存操作慢得多

数据结构 66 /

Example

- 6个数字:8,1,6,3,4,5, small memory for only 3 numbers
- 在内存的帮助下将数字排序
 - 读 8,1,6, 排序并写 1,6,8 到外部存储
 - 读 3,4,5 排序, 写 3,4,5
- 归并排序数据
 - 读 1 和 3,比较选择较小的一个,写到 1 外部存储
 - 读 6 与 3进行比较,写 3
 - 读 4 与 6进行比较, 写 4; 重复直到所有均已归并

数据结构 67 /

Two Way Merge Sort

- 在RAM中需要3个缓冲区
- 传递1:读一个块,整理,写
- 传递2, 3, …, etc.: 归并, 写入 不需要读完整 的子列表再合并

数据结构 68 / 78

二路外部归并排序

```
假设块大小是 B = 4Kb
Step 1, 运行长度 L = 4Kb
Step 2. 运行长度 L = 8Kb
Step 3. 运行长度 L = 16Kb = 2^{3-1} * 4Kb
Step 9. 运行长度 L = 1MB = 2^{9-1} * 4Kb
Step 19. 运行长度 L = 1GB = 2<sup>19-1</sup> * 4Kb
需要对磁盘数据进行19次迭代以排序 1GB的数据
```

数据结构 69 / 7

成本模型

我们能做得更好吗?

B: 块的大小 (= 4KB)

M: 主存的大小 (= 1MB)

N: 文件中的记录数

R: 一个记录的大小

L: 当前被排序的子列表的大小

数据结构 70 / 78

多路外部归并排序

Phase one: 在内存中加载m字节,排序

结果: N*R/M lists of length M bytes (1MB)

L = M

数据结构

Phase 2

- 归并 M/B 1 lists into a new list M/B-1 = 1MB / 4kb ≈ 249
- 结果: lists of size M *(M/B 1) bytes L = 249 * 1MB ≈ 250 MB

数据结构 72 / 78

Phase 3

- 归并 M/B 1 lists into a new list
- 结果: lists of size $M*(M/B-1)^2$ bytes
- L = 249 * 250 MB \approx 62,500 MB = 625 GB

数据结构 73 / 78

Cost of External Merge Sort

- Amount sorted in P passes: $M*(M/B)^{P-1}$
- 排序 大小为N records为R 的次数: log_{M/B}(N*R/M)+1
- 我们能用 1MB RAM 排序多大的数据? 1 次: 1MB,
 2 次: 250MB (M/B = 250), 3 次: 625GB
- 时间:

假设读、写块 \sim 10 ms = .01 s

每次: 读写所有数据

每次: 2*625GB/4kb*. 01s = 2*1562500s = 2*26041m = 2*434 = 2*18 days = 36 days

◆ロト ◆個ト ◆夏ト ◆夏ト 夏 めらぐ

数据结构 74 /

Cost of External Merge Sort

- 传递次数: log_{M/B}(N*R/M)+1
- 我们能用 10MB RAM 排序多大的数据 (M/B = 2500)?
 - 1次: 10MB
 - 2次: 10MB * 2500 = 25,000MB = 25GB
 - 3次: 2500 * 25GB = 62,500GB

数据结构 75 / 78

Cost of External Merge Sort

- 传递次数: log_{M/B}(N*R/M)+1
- 我们能用 100MB RAM 排序多大的数据 (M/B = 25000)?
 - 1次: 100MB
 - 2次: 100MB * 25,000 = 2,500,000MB = 2,500GB = 2.5TB
 - 3次: 25,000 * 2.5TB = 62,500TB = 62.5PB

数据结构 76 / 78

小结

- 简单排序算法比较和交换相邻的元素,一次只能 修正一对逆序,因而运行缓慢
- 基于比较的排序算法使用决策树决定元素排列关系,二叉树的叶子结点有n!个,树的高度为0(n log n)
- 最优排序的时间复杂度为0(n logn),如归并排序、快速排序和堆排序
- 外部排序利用较小的内存缓存解决大量外部数据 的排序问题,可以使用排序一归并的算法

数据结构 77

实验8

- 7.35,实现希尔排序。使用不同的增量序列,度 量在不同序列的增量下,排序算法的时间性能。
- 如何找到10000个整数中第5大的数?假定内存只能一次容纳1000个数。编程实现你的算法,并分析时间复杂度。如果内存只能存放10个数呢?你的算法是否仍然适用?

数据结构 78 /