Part 1 - Student Version

- 1. The program should allow students to predict their progression outcome at the end of each academic year.
- 2. The program should prompt for the number of credits at pass, defer and fail and then display the appropriate progression outcome for an individual student.
- 3. The program should let the user know if a credit input is the wrong data type. I.e., 'Integers required' is displayed.
- 4. The program should let the user know if credits are not in the range 0, 20, 40, 60, 80, 100 and 120. I.e., 'Range error' is displayed.
- 5. The program should let the user know if the total of the pass, defer and fail credits is not 120. I.e., 'Total incorrect' is displayed.
- Use conditions and user-defined functions in your solution as appropriate.
- Flow Diagram Before you start to program your solution you should create your flow diagram that represents your algorithm in a structured manner. Submit flowchart for Part 1 for marking.
- Test Plan A Part 1 test plan is provided in the appendix. Submit the completed test plan (with your flow diagram and program code) and bring a printed copy of the test plan to the demo.

Table 1: Progression outcomes as defined by the University regulations.

	Volume of Credit	at Each Lev	el	
	Pass (including condoned pass)	Defer	Fail	Progression Outcome
1	120	0	0	Progress
2	100	20	0	Progress – module trailer
3	100	0	20	Progress – module trailer
4	80	40	0	Do not Progress – module retriever
5	80	20	20	Do not Progress – module retriever
6	80	0	40	Do not Progress – module retriever
7	60	60	0	Do not progress – module retriever
8	60	40	20	Do not progress – module retriever
9	60	20	40	Do not progress – module retriever
10	60	0	60	Do not progress – module retriever
11	40	80	0	Do not progress – module retriever
12	40	60	20	Do not progress – module retriever
13	40	40	40	Do not progress – module retriever
14	40	20	60	Do not progress – module retriever
15	40	0	80	Exclude

16	20	100	0	Do not progress – module retriever
17	20	80	20	Do not progress – module retriever
18	20	60	40	Do not progress – module retriever
19	20	40	60	Do not progress – module retriever
20	20	20	80	Exclude
21	20	0	100	Exclude
22	0	120	0	Do not progress – module retriever
23	0	100	20	Do not progress – module retriever
24	0	80	40	Do not progress – module retriever
25	0	60	60	Do not progress – module retriever
26	0	40	80	Exclude
27	0	20	100	Exclude
28	0	0	120	Exclude

Part 2 - Staff Version

This extension should meet the requirements specified for Part 1 but also allow a staff member to predict progression outcomes for multiple students.

- 1. The program should prompt for credits at pass, defer and fail and display the appropriate progression for each individual student until the staff member user enters 'q' to quit.
- 2. When 'q' is entered, the program should produce a 'histogram' where each star represents a student who achieved a progress outcome in the category range: progress, trailing, module retriever and exclude. See example below.
- 3. The program should display the number of students for each progression category and the total number of outcomes processed.
- The program will make use of loops and user-defined functions.
- Flow Diagram Before you start to program your solution you should create your flow diagram that represents your algorithm in a structured manner. Submit flowchart for Part 2 for marking.
- Test Plan You are required to create your own test plan for Part 2. Submit the completed Part 2 test plan (with your flow diagram and program code) and bring a printed copy to the demo.

This following horizontal histogram example shows the output distribution for 20 outcomes. However, your program should work with any number of outcomes generated.

Progress 10: *******
Trailing 5: ****
Retriever 3: ***
Excluded 2: **

20 outcomes in total.

Part 3 - Vertical Histogram (optional extension)

Extend your program to add an additional histogram that displays vertically so the stars in a category should go downwards and not across the screen, e.g.:

Progress Trailing Retriever Excluded

* * * *

* *