1. (24 pts) Consider the homogeneous transformations

$${}^{0}\mathbf{T}_{1} = \mathbf{Trans}(\begin{bmatrix} 1 & -1 \end{bmatrix}^{T}) \ \mathbf{Rot}(\pi)$$
 ${}^{1}\mathbf{T}_{2} = \mathbf{Trans}(\begin{bmatrix} -1 & -2 \end{bmatrix}^{T}) \ \mathbf{Rot}(-\pi/2)$

- (a) (8pts) Draw a diagram to scale showing the relative locations of frames 0, 1, and 2.
- (b) (4pts) Suppose point P is fixed in coordinate system 2, and is located by $\mathbf{p}_2 = P O_2$. Suppose $^2\mathbf{p}_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$; draw \mathbf{p}_2 in your diagram. Find $^1\mathbf{p}_2$ and $^0\mathbf{p}_2$.
- (c) (6pts) Suppose $\mathbf{p}_1 = P O_1$. Draw \mathbf{p}_1 , and find $^2\mathbf{p}_1$, $^1\mathbf{p}_1$, and $^0\mathbf{p}_1$.
- (d) (6pts) Suppose $\mathbf{p}_0 = P O_0$. Draw \mathbf{p}_0 , and find $^2\mathbf{p}_0$, $^1\mathbf{p}_0$, and $^0\mathbf{p}_0$.
- 2. (20pts) Again consider the homogeneous transformations

$$^{0}\mathbf{T}_{1} = \mathbf{Trans}([1 \ -1]^{T}) \ \mathbf{Rot}(\pi) \qquad ^{1}\mathbf{T}_{2} = \mathbf{Trans}([-1 \ -2]^{T}) \ \mathbf{Rot}(-\pi/2)$$

- (a) (10pts) Show a figure giving an interpretation of the product ${}^{0}\mathbf{T}_{1}$ ${}^{1}\mathbf{T}_{2}$ as a coordinate transformation.
- (b) (10pts) Show a figure giving an interpretation of the product ${}^{0}\mathbf{T}_{1} \ {}^{1}\mathbf{T}_{2}$ as an operator.
- 3. (10pts) Again consider the transformation ${}^{0}\mathbf{T}_{1}$ from above:

$${}^{0}\mathbf{T}_{1} = \mathbf{Trans}([1 \ -1]^{T}) \ \mathbf{Rot}(\pi)$$

but now consider that

$$\mathbf{D}_1 = \mathbf{Trans}([-1 \ -2]^T) \ \mathbf{Rot}(-\pi/2)$$

is an operator in frame 1. Find the equivalent operator \mathbf{D}_0 in frame 0.

- 4. (42pts) This question concerns the concatenation of two polynomial trajectories $x_1(t)$ and $x_2(t)$.
 - Polynomial $x_1(t)$ is valid in the time range $0 \le t \le t_1$. At t = 0, the position and velocity are zero.
 - Polynomial $x_2(t)$ is valid in the time range $t_1 \le t \le t_2$. At $t = t_2$, the position is x_2 , and the velocity is zero.
 - At $t = t_1$, the two polynomials have the same position, velocity and acceleration.
 - (a) (8pts) Identify the constraints at time 0, t_1 and t_2 .
 - (b) (6pts) What are the minimal degrees of the two polynomials? Write their equations, and first and second derivatives.

- (c) (5pts) Substitute the unary constraints into the equations above. Identify which lead immediately to coefficient solutions.
- (d) (3pts) Now substitute the above polynomial equations into the binary constraints.
- (e) (16pts) Find the coefficients of polynomial 2.
- (f) (4pts) Find the coefficients of polynomial 1.