Machine Learning and Artifical Intelligence

Lab 05 – SVMs and Evaluation Metrics

Practical problem

We want to recognize and classify images of handwritten digits: https://en.wikipedia.org/wiki/MNIST database

Let's consider this time images belonging to classes '6' and '9':

They are quite similar between each other (rotation)

Support Vector Machines

 Find the separation hyperplane between the 2 classes in order to <u>maximize the margin</u>, i.e., the minimum distances d+ and dbetween the nearest positive and negative samples respectively

Linearly Separable

 The lines containing the points with these margins (d+ and d-) are called support vectors

• Linearly classify new data x:

$$f(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

What if the problem is non-linear?

- We can't find a separation hyperplane that divides all the samples correctly!
- Introduction of Slack variables ξ_i,
 that allow some SV to exceed the
 margin, along and a parameter C
 indicating the cost for a wrong
 classification.
- Kernel trick: Map data in another, higher-dimensional space through functions called kernels.

Examples of kernel functions

Linear

$$K(x,z) = \langle x, z \rangle$$

Polynomial

$$K(x,z) = (\langle x, z \rangle + 1)^p$$

Radial basis functions

$$K(x,z) = e^{-\frac{\left\|x-z\right\|^2}{2\sigma^2}}$$

Sigmoid

$$K(x, z) = \tanh(a\langle x, z \rangle + b)$$

SVM in Scikit-learn

 The SVM classification algorithm can be implemented through <u>scikit-learn</u> (<u>https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC</u>)

How?

- 1. Model initialization (kernel specific): model = *SVC(...)*
- 2. Model fit (training to get w and b): model.fit()
- 3. Classification of test elements: *model.predict(x)*

Evaluation

• It is imperative to understand how a classifier behaves quantitatively.

- We need this information to:
 - Have absolute feedback: the goodness of a classifier/regressor.
 - Have relative feedback: the goodness of a classifier/regressor compared to another.

Classification evaluation metrics

 Accuracy: Number of correct predictions divided by the total number of predictions (dimensionality of the test set):

$$accuracy = \frac{\#\ correct\ classifications}{\#\ classifications}$$

• Error rate: Number of wrong predictions with respect to the total number of predictions:

$$error_rate = \frac{\# incorrect \ classifications}{\# \ classifications}$$

Confusion Matrix

- It allows you to understand where exactly the classifier makes mistakes.
- Introduced initially for binary classification cases.
- Example:
 - Class A: Dog(positive)
 - Class B: Not-dog (negative)

Confusion matrix for binary classification

Actual value	Α	TP	FN Type I error
	В	FP Type II error	TN
		Α	В
		Predicted value	

Confusion Matrix – Construction

- With each prediction on the test set, I add +1 in the appropriate box (intersection between the index predicted by the classifier and the GT index)
- In the case of balanced classes, we can normalize the values of the matrix, so that the rows sum to one.
- It's convenient to normalize values by rows and get percentages. The absolute count does contain more information though.

	Predicted		
		Р	Ν
R			
e	Р	20	10
а		(0.66)	(0.33)
Ι	N	5	25
		(0.17)	(0.83)

Confusion Matrix - Metrics

• In the range [0,1]

• Accuracy
$$\frac{tp + tn}{tp + tn + fp + fn}$$

- Precision $\frac{tp}{tp + fp}$
 - Portion of cases predicted as positive that actually are positive.
 - (If high) I take as positive only elements that actually are positive.
 - (If low) I say everything is positive.

Confusion Matrix - Metrics

- Recall (sensitivity)
 - Portion of all actually positive cases that have actually been classified as such
 - (If high) I don't lose positive elements
 - (If low) I lose positive elements

$$\frac{tp}{tp + fn}$$

F-measure

 Combine precision and recall into one measure.

Regression tasks

- In machine learning, we are not limited to classification tasks, even though they are common.
- In regression tasks, the model learns to predict numeric scores, so the model output is a continuous variable.
- In such a case, the metrics we mentioned before cannot be applied, because we are more interested in the magnitude of the error.

Regression evalution metrics

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
test set

The predicted value actual va

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and profiled.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Evaluation metrics available in Sklearn

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

A slightly different scenario

 We must no longer classify only images belonging to classes '6' and '9' but all figures from '0' to '9'

From binary to multi-class

- How do we move from binary classification to multiclass classification?
- SVMs (and many other classifiers) don't support multiclass classification *natively*, we need to adopt different strategies.
- One vs Rest:
 - Train K different classifiers, one for each class.
 - Each of the classifiers considers a class as positive and the remaining as negative.
 - Another, less popular approach is One vs One

From binary to multi-class

- One vs Rest strategy:
 - 1. Given K classes, instantiate K different SVMs.
 - 2. Train each of the K classifiers to recognize a particular class (the 3rd classifier will be trained to recognize class 3 and so on...)
 - 3. Given the test elements, each of the K classifiers produces two probabilities:
 - 1. Of belonging to the k-th class
 - 2. Of not belonging to the k-th class
 - 4. The class corresponding to the test element is the one with the highest probability of membership.
 - P.S: To output probabilities you must use the 'predict_proba' function in the Sklearn library.

Confusion Matrix — K classes

Confusion Matrix — K classes

• Precision and Recall are associated with *a single class*.

Given the confusion matrix C x C

• Precision:
$$\frac{tp}{tp + fp} = \frac{Conf(c,c)}{\sum_{d} Conf(d,c)}$$

• Recall
$$\frac{tp}{tp + fn} = \frac{Conf(c, c)}{\sum_{d} Conf(c, d)}$$

