

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-

TUTORIAL 3

Part 1: Consider the following incident plane wave reflected by a perfect metallic conductor. The electric field is in the y axis direction. θ defines the direction of the wave vector \vec{k}_i , with $|\vec{k}_i| = \frac{\omega}{2}$.

Figure 1

 $\overrightarrow{E_i} = E_0 e^{-j\overrightarrow{k_i}.\overrightarrow{r}} \overrightarrow{e_y}$, $\overrightarrow{r} = \overrightarrow{OM}$, is the incident electric field $\overrightarrow{H_i}$ is the incident magnetic field. Compute $\overrightarrow{H_i}$

 $\overrightarrow{E_r}$, $\overrightarrow{H_r}$ are the electromagnetic fields reflected by the perfect metallic conductor. Compute these fields at the point M.

Compute then the components of the total electromagnetic fields E and H as a function of $\,\,^\theta$.

Give the surface current density on the conductor. Does this current seem to propagate?

Part 2:

A second perfect conductor plane is placed at the distance 2d from the first one (see Figure 2). These 2 plates are parallel.

- a) From the boundary conditions on this second metallic plane, and using the total electric field already computed, determine a relation between θ and ω .
- b) From what frequency F_{c1} can the field propagate between the two plates?
- c) What is the propagation constant of the field between F_{c1} and 2*F_{c1}?
- d) Draw the E field variations in the x direction and in the z direction for $F = 1,5*F_{c1}$.
- e) How the field can be written at the frequency 2,5*F_{c1}?

Serge Verdeyme

-2-