Aufgabe 1

a) Ermitteln Sie den Grenzwert von $\lim_{x\to 0} \frac{1-\cos x}{\sin(x^2)}$

Lösung in Kurzform:

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin(x^2)} = \lim_{x \to 0} \frac{\sin x}{2x \cdot \cos(x^2)} = \lim_{x \to 0} \frac{\cos x}{2\cos(x^2) - 4x^2\sin(x^2)} = \frac{1}{2}$$

L'Hospital musste zweimal angewendet werden, da nach der ersten Anwendung immer noch ein Ausdruck $\frac{0}{6}$ vorhanden war.

b) Ermitteln Sie den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n = \ln(\frac{n+4}{n-1/2})$

$$a_n = \ln(b_n)$$
 mit $b_n := \frac{n+4}{n-1/2}$ $\lim_{n\to\infty} b_n = 1 \Rightarrow \lim_{n\to\infty} (\ln(b_n)) = 0$

Die Folge (c_b) hat den Grenzwert 1. Der Logarithmus von 1 ist Null. Wichtig hierbei ist die Stetigkeit von $\ln(x)$. Sie garantiert $\ln(\lim_{x\to\infty} c_n) = \lim_{x\to\infty} (\ln(c_n))$.

Jerfahre

Gol). nad

wer de

+ Statisfant

Aufgabe 2

Untersuchen Sie die folgende Reihe auf Konvergenz/Divergenz und bestimmen gegebenenfalls den Grenzwert.

$$\sum_{k=1}^{\infty} \frac{5}{4^{2k+1}}$$

Lösung in Kurzform:

 $\sum_{A^{2k+1}}^{\infty} = \frac{5}{4} \sum_{A^{2k}}^{\infty} \frac{1}{4^{2k}} = \frac{5}{4} \sum_{A^{2k}}^{\infty} \frac{1}{16^k}$ (* geometrische Reihe, diese konvergiert!)

Nachklausur Mathematik 2

Aufgabe 3

- a) Vergleichen Sie den Satz von Rolle mit dem Mittelwertsatz der Differentialrechnung. (Worin unterscheiden Sie sich? Hinweis: Sie müssen nicht die vollständigen Definitionen beider Sätze aufschreiben.)
- Lösung, Stichworte: Mittelwertsatz = Erweiterung des Satzes von Rolle ...
- b) Welchem Urnenmodell entspricht die hypergeometrische Verteilung? Geben Sie ein Beispiel für die Anwendung der hypergeometrischen Verteilung an. Lösung, Stichworte: Ohne Zurücklegen und ohne Berücksichtigung Reihenfolge.

Aufgabe 4 (20 Punkte)

Die Funktion $f: x \to y$ sei durch $f(x) = \ln(\frac{1+x}{1-x})$ gegeben. Analysieren Sie diese Funktion:

- a) Goben sie den Definitionsbereich und den Wortebereich an.
- b) Untersuchen Sie die Funktion auf relative Minima bzw. Maxima, Wendepunkte und errechnen Sie gegebenenfalls die Koordinaten.
- skizzleren Sie die Funktion im Koordinatenkreuz.

- Lösung in Kurzform:

 a) Def:]-1,1[Wertebereich] $-\infty,\infty$ [

 7 Survives Servives

 Das kann man sehr leicht ermitteln, wenn man überlegt $\ln(\frac{1+x}{1-x}) = \ln(1+x) \ln(1-x)$ und weil der Logarithmus nur für positive Werte definiert ist, folgen die Ungleichungen: 1+x>0 und 1-x>0. Daraus ergibt sich sofort der Definitionsbereich.
- b) keine lokalen Extremalstellen, Wendepunkt in (0,0)

Lösung entweder über $\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$ oder mittels Ableitungen usw.

$$f(x) = \ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$$

$$f'(x) = \frac{1}{1+x} \cdot 1 - \frac{1}{1-x} \cdot (-1) = \frac{1}{1+x} + \frac{1}{1-x} = \frac{2}{1-x^2}$$

Man sieht sofort, dass t' nie Null werden kann, d.h. es gibt keine lokalen Extrema. Nun weitere Untersuchung auf Wendepunkte usw.

Weg 2: stur ableiton ergibt

$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

$$f'(x) = \frac{1}{\frac{1+x}{1-x}} \cdot \frac{(1-x)-(1+x)(-1)}{(1-x)^2} = \frac{1-x}{1+x} \cdot \frac{2}{(1-x)^2} = \frac{1}{1-x^2}$$

Ansonsten wie bei Weg 1.

c)

0,0) itt uxdeperte

Aufgabe 5

a) Bestimmen Sie eine Stammfunktion der Funktion $f(x) = (\ln(x))^2$

Lösung:

Substitution:
$$\ln x = u \Leftrightarrow x = e^u$$
, $dx = e^u du$
 $\int u^2 e^u du$ (Lösen mirt part. Integration)

Andere Lösungen ebenfalls möglich, z.B. direkt partielle Integration, dann aber zweimal anwenden, weil dann $\int \ln x dx = x \cdot (\ln x - 1) + const.$ auch gelöst werden muss Auch andere Substitutionen möglich.

b) Bestimmen Sie das folgende Integral mittels der Substitutionsmethode:

$$\int_0^1 (1+x^3)^2 \cdot 3x^2 dx$$

Lösung:

Verschiedene Substitutionsmöglichkeiten (Aber auch direktes Ausmultiplizieren und Integrieren möglich)

$$x^{3} = u \qquad \text{und} \qquad du = 3x^{2}dx$$

$$\int_{0}^{1} (1+x^{3})^{2} \cdot 3x^{2}dx = \int_{0}^{1} (1+u)^{2}du = \left[\frac{1}{3}(1+u)^{3}\right]_{0}^{1} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

Viele andere Substitutionsmöglichkeiten.

Aufgabe6

Ein Versandhändler führt 400 verschiedene Artikel. Die Häufigkeitsverteilung (in Tsd. €) des letzten Monats ist

	Umsatz von	(Tsd. €) bis unter	Anzahl der Artikel		
i	0	10	50	•	
	10	20	80	130	
	20	30	80	150	
	30	40	100	310	
	40	. 60	. 60	390	
	60	100	10	300	
	100	200	20	- 0	

a) Berechnen Sie den gesamten Artikelumsatz

b) Berechnen Sie arithmetisches Mittel, Modalklasse und Median. Welchen Umsatz erzielen somit 50% der Artikel?

c) Berechnen und interpretieren Sie das erste Quartil.

d) Wie viele Artikel haben einen Wert unter 50 Tsd. €?

e) Wie viel Prozent der Artikel haben einen Wert von mindestens 75 Tsd €?

f) Berechnen sie die Varianz.

Lösung

Die Basisrechnungen ergeben sich aus der folgenden Tabelle

Klasse	von Umsatz (Tsd. €)	bls unter	Anzahl der Artikel	kum. Häufigkeil	Klassen-mittelwerte	Klassen. umsatz	Käufigkeits- dichte	Median	(Klassenmitte • Mittelwert)*2	(KLæssenmitte-Mitfelwert)**2 * Häufigkeit
1	0	10			5	260	6		862,9	43144,53
2 3	10	20	80		15	1200	6		375,4	30031,25
Э	20	30			25	2000	8	28,75	87,9	7031,25
4	30	40	100		35	3500	10		0,4	39,08
5 6	40	60	60		50	3000	3		244,1	14648,44
6		100	10		80	800	0,25		2081,6	20816,41
7	100	200	20	400	150	3000	0,2		13369,1	267382,81
		400 Umsatz gew, Mittel		13750,00 34,38			42,6 Varianz	383093,75 957,734375		
Adat titizen					34,00					

Artikelumsatz: 13.75 Tsd.

arithmetisches Mittel: 34,38 Tsd. €

Modalklasse: Klasse 4 (größte Häufigkeitsdichte)

dian:
$$x_{\frac{400}{2}} = x_{200}$$
: es glit $\frac{200 - 130}{210 - 130} = \frac{x_{200} - 20}{30 - 20} \iff x_{200} = \frac{70}{80} *10 + 20 = 28,75$

Also Median = 28.75 Tsd. €

Frage: Welchen Umsatz erzielen somit 50% der Artikel?

Antwort: 50% der Artikel erzielen einen Umsatz von höchstens 28,75 Tsd. €

(Die Frage "Welchen Umsatz erzielen 50% der Artikel?"ist missverstündlich und wurde in der Aufgabe deshalb nicht gewertet. - Gefragt war einfach nach einer verbalen Interpretation des Median.

Andere Interpretation: Wie viel Gesamtumsatz erzielen 50% der Artikel?)

Erstes Quartil: $x_{\frac{400}{100}} = x_{100}$: es gilt $\frac{100-50}{130-50} = \frac{x_{100}-10}{20-10} \Leftrightarrow x_{100} = \frac{50}{80} \cdot 10 + 10 = 16,25$

erstes Quartil = 16,25 Tsd.€, d.h. 25% der Artikel erzielen höchstens einen Umsatz von 16,25 Tsd. €

Zur Berechnung des Wertes wird die betreffende Klasse ermittelt:

Klasse 1: weniger als 10 Tsd. €, Klasse 2: weniger als 20 Tsd. €

die gesuchte Klasse ist die Klasse 5: 40 Tsd. € ≤ Artikelwert < 60 Tsd. €

Die Anzahl der relevanten Artikel in Klasse 5 muss interpoliert werden, wobei das in diesem Fall einfach ist: gerade die Hälfte minus I (Obergrenze gehört nicht dazu) von den 60 Artikeln, d.h. 29. Dazu müssen dann die Artikel der Klassen 1-4 addiert worden und es ergibt sich:

Anzahl Artikel mit einem Wert unter 50 Tsd. € ist 310 + 29 =339 Artikel.

(Falls als Ergebnis 340 ermittelt wurde, so wird das ebenfalls zugelassen - Feinheit nicht beachtet, aber deswegen kein Punktabzug.)

Wieviel Prozent der Artikel haben einen Wert von mindestens 75 Tsd €?

Das ist eine analoge Rechnung zu d), wobei man umgekehrt vorgeht und dann zusätzlich ein Prozentsatz errechnet wird.

Mindestens 75 Tsd, €, d.h, in jedem Fall die Klasse 7 und Interpolation bei der Klasse 6:

75 Tsd. E. d.h. bei der Klassenbreite von 40 haben 5/8 der Artikel von Klasse 6 einen Wert von mindestens 75 Tsd. C.

Es ergibt sich: Anzahl der Artikel = 20 + 5/8*10=26.25, gerundet 26 (27) Artikel. Daraus ergibt sich ein Prozentsatz von 26/400*100= 6,5 oder 27/400*100=6,75.

Beide Rundungen sind je nach Interpretation zu vertreten, daher werden beide als richtig gewertet.

f) Verianz:

Siehe Tabelle oben: 957.73

eni chuch