Spike-and-Slab LASSO Generalized Additive Models and Fast Algorithms for High-Dimensional Data Analysis

Boyi Guo and Nengjun Yi

Department of Biostatistics University of Alabama at Birmingham

March 28th, 2022

Outline

- Background
 - Review of generalize additive model
 - Challenges in higher dimensional additive model
- Objectives
- Bayesian Hierarchical Additive Model
 - Two-part Spike-and-slab LASSO Prior for Smoothing Functions
 - EM-Coordinate Descent algorithm
- Numeric Studies
- Conclusion

Background

Non-linear Effect Modeling

"It is extremely unlikely that the true (effect) function f(X) (on the outcome) is actually linear in X."

- Hastie, Tibshirani, and Friedman (2009) PP. 139
- Traditional modeling approaches
 - ▶ Categorization of continuous variable, polynomial regression
 - Simple but may be statistically flawed
- Machine learning methods
 - ▶ Black-box algorithms: Random forests, neural network
 - Predict accurate but too complicated for interpretation

Firstly formalized by Hastie and Tibshirani (1987)

$$y_i \stackrel{\text{iid}}{\sim} EF(\mu_i, \phi), \quad i = 1, \dots, n$$

$$\mu_i = g^{-1}(\beta_0 + \sum_{j=1}^p B_j(x_j))$$

where $B_j(x_j)$ is a smoothing function, $g(\cdot)$ is a link function, ϕ is the dispersion parameter * Objective: to estimate smoothing functions $B_j(x_j)$ * Applications in biomedical research: * Dose-response curve * Time-varying effect

High-dimensional GAM

- Grouped penalty models
 - Grouped lasso penalty (Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010). grouped SCAD penalty (Wang, Chen, and Li 2007; Xue 2009)
 - Sparse penalty induces excess shrinkage, causing inaccurate interpolation of non-linear effect
- Bavesian Hierarchical Models
 - Grouped spike-and-slab priors (Scheipl, Fahrmeir, and Kneib 2012; Yang and Narisetty 2020), grouped spike-and-slab lasso prior(Bai et al. 2020; Bai 2021)
 - Mostly Markov chain Monte Carlo methods for model fitting
 - Computational inefficiency causes scaling problems in high-dimensional data analysis

Other challenges

- Bi-level selection
 - ► To detect a smoothing function is linear and nonlinear effects
 - ▶ All-in-all-out selection reduces the ability of result interpretation
- Uncertainty inferences
 - Penalized models doesn't provide uncertainty measures
 - ► Challenging to estimate the effective degree of freedom for each smoothing functions

Objectives

- ➤ To develop statistical models that improve curve interpolation and outcome predicting
 - Local adaption of sparse penalty and smooth penalty
 - ▶ Bi-level selection for linear and nonlinear effect
- To develop a fast and scalable algorithm
- To implement a user-friendly statistical software

Bayesian Hierarchical Additive Model (BHAM)

Given the data $\{X_i, y_i\}_{i=1}^n$ where $X_i \in \mathbb{R}^p$, $y_i \in \mathbb{R}$ and p >> n, we have the generalized additive model

$$y_i \stackrel{\text{i.i.d.}}{\sim} EF(\mu_i, \phi),$$
 $g(\mu_i) = g^{-1}(\beta_0 + \sum_{j=1}^p B_j(x_j)), \quad i = 1, \dots, n.$

The smoothing function can be written in a matrix form $B_j(x_j) = \beta_j^T \mathbf{X}_j$, where β_j are the coefficients of the smoothing function and \mathbf{X}_j is the basis matrix of dimension K_j .

Smoothing Function Reparameterization

Smoothing penalty from Smoothing spline regression (Wood2017?)

$$\lambda_j \int B_j''(x) dx = \lambda_j \beta_j^T \mathbf{S}_j \beta_j,$$

where S_i is a known smoothing penalty matrix.

 \triangleright Isolate the linear and nonlinear componentsvia eigendecomposing S_i

$$\mathbf{X}\boldsymbol{\beta} = X^0\boldsymbol{\beta} + \mathbf{X}^*\boldsymbol{\beta}^*$$

- Renefits
 - Motivate bi-level selection
 - Implicit modeling of function smoothness
 - Reduce computation load with conditionally independent prior of basis coefficients

Two-part Spike-and-slab LASSO (SSL) Prior

SSL prior for linear coefficients and group SSL priors for nonlinear coefficients

$$egin{aligned} eta_j | \gamma_j, s_0, s_1 &\sim \mathsf{DE}(0, (1-\gamma_j) s_0 + \gamma_j s_1) \ eta_{jk}^* | \gamma_j^*, s_0, s_1 &\stackrel{\mathsf{iid}}{\sim} \mathsf{DE}(0, (1-\gamma_j^*) s_0 + \gamma_j^* s_1), k = 1, \dots, K_j \end{aligned}$$

Effect hierarchy enforced latent inclusion indicators γ_j and γ_i^* for bi-level selection

$$\gamma_j | heta_j \sim \textit{Bin}(\gamma_j | 1, heta_j), \quad \gamma_j^* | \gamma_j, heta_j \sim \textit{Bin}(1, \gamma_j heta_j),$$

Local adaptivity of signal sparsity and function smoothness

$$\theta_j \sim \mathsf{Beta}(a,b)$$

Visual Representation

EM-Cooridante Descent Algrithm for Scalable Model Fitting

We are interested in estimating $\Theta = \{\beta, \theta, \phi\}$ using optimization based algorithm for scalability purpose

- Basic Ideas
 - ightharpoonup Treat γ s as the "missing data" in the EM procedure
 - P Quantify the expectation of log posterior density function of Θ with respect to γ conditioning on $\Theta^{(t-1)}$
 - Maximize the independent parts of the objective function using Coordinate Descent algorithm and closed-form equations
- Previous applications in high-dimensional data analysis
 - ► EMVS (Ročková and George 2014), Spike-and-slab lasso (Ročková and George 2018)
 - ► BhGLM (Yi et al. 2019)

Decomposition of Objective Function

We aim to maximize the log posterior density of Θ by averaging over all possible values of γ

$$\log f(\Theta, \gamma | \mathbf{y}, \mathbf{X}) = Q_1(\beta, \phi) + Q_2(\gamma, \theta),$$

 L_1 -penalized likelihood function of β , ϕ

$$Q_1 \equiv Q_1(oldsymbol{eta},\phi) = \log f(\mathbf{y}|oldsymbol{eta},\phi) + \sum_{j=1}^p \left[\log f(eta_j|\gamma_j) + \sum_{k=1}^{\mathcal{K}_j} \log f(eta_{jk}^*|\gamma_{jk}^*)
ight]$$

Posterior density of θ given data points γ s

$$Q_2 \equiv Q_2(\gamma, oldsymbol{ heta}) = \sum_{j=1}^p \left[(\gamma_j + \gamma_j^*) \log heta_j + (2 - \gamma_j - \gamma_j^*) \log (1 - heta_j)
ight] + \sum_{j=1}^p \log f(heta_j).$$

 Q_1 and Q_2 are independent conditional on γ s

Summary of EM-Coordinate Descent Algorithm

- ► E-step
 - Formulate $E_{\gamma|\Theta^{(t)}}\left[Q(\Theta,\gamma)\right]=E(Q_1)+E(Q_2)$
 - $ightharpoonup E(Q_1)$ is a penalized likelihood function of β, ϕ
 - $E(Q_2)$ is a posterior density of θ given $E(\gamma)$
 - $ightharpoonup E(Q_1)$ and $E(Q_2)$ are conditionally independent
 - lacktriangle Calculate $E(\gamma_j)$ and $E(\gamma_j^*)$, and penalties by Bayes' theorem
- M-step:
 - Use Coordinate Descent to fit the penalized model in $E(Q_1)$ to update β, ϕ
 - ▶ Closed form calculation via $E(Q_2)$ to update θ

Tuning Parameter Selection

- \triangleright s_0 and s_1 are tuning parameters
- Empirically, s_1 has extremely small effect on changing the estimates
- Focus on tuning s₀
- ► Consider a sequence of L ordered values $\{s_0^I\}$: $0 < s_0^1 < s_0^2 < \dots < s_0^L < s_1$
- \triangleright Cross-validation to choose optimal value for s_0

Simulation Study

Simulation Study

- ▶ Follow the data generating process introduced in Bai et al. (2020).
- $n_{train} = 500, n_{test} = 1000$
- p = 4, 10, 50, 200

$$\mu = 5\sin(2\pi x_1) - 4\cos(2\pi x_2 - 0.5) + 6(x_3 - 0.5) - 5(x_4^2 - 0.3),$$

- $f_j(x_j) = 0$ for j = 5, ..., p.
- lacksquare 2 types of outcome: Gaussian ($\phi=1$), Binomial
- Splines are constructed using 10 knots
- ▶ 50 Iterations

Comparison & Metircs

- Methods of comparison
 - Proposed model BHAM
 - Linear LASSO model as the benchmark
 - ► mgcv (Wood 2004)
 - COSSO (Zhang and Lin 2006) and adaptive COSSO(Storlie et al. 2011)
 - Sparse Bayesian GAM (Bai 2021)
 - spikeSlabGAM [TODO: add]
- Metrics
 - ightharpoonup Prediction: R^2 for continuous outcomes, out-of-sample AUC for binary outcomes
 - Variable Selection Performance:

Simulation Results

- ▶ The proposed method works better in low, medium, high settings than other state-of-art methods
- ► SB-GAM works better in ultra-high setting

4 0.94 (0.01) 0.89 (0.04) 0.90 (0.02) 0.90 (0.02) 0.94 (0.01) 0.93 (0.02) 10 0.93 (0.01) 0.87 (0.03) 0.87 (0.03) 0.85 (0.03) 0.92 (0.04) 0.92 (0.02) 50 0.92 (0.01) 0.87 (0.02) 0.83 (0.02) 0.83 (0.02) 0.76 (0.04) 0.92 (0.02) 200 0.88 (0.01) 0.86 (0.02) 0.81 (0.06) 0.81 (0.08) - 0.92 (0.02)	р	EM-IWLS	EM-CD	COSSO	ACOSSO	mgcv	SB-GAM
50 0.92 (0.01) 0.87 (0.02) 0.83 (0.02) 0.83 (0.02) 0.76 (0.04) 0.92 (0.02)	4	0.94 (0.01)	0.89 (0.04)	0.90 (0.02)	0.90 (0.02)	0.94 (0.01)	0.93 (0.01)
	10	0.93 (0.01)	0.87 (0.03)	0.87 (0.03)	0.85 (0.03)	0.92 (0.04)	0.92 (0.01)
200 0.99 (0.01) 0.96 (0.02) 0.91 (0.06) 0.91 (0.09)	50	0.92 (0.01)	0.87 (0.02)	0.83 (0.02)	0.83 (0.02)	0.76 (0.04)	0.92 (0.01)
200 0.88 (0.01) 0.80 (0.02) 0.81 (0.00) 0.81 (0.08) - 0.92 (0.0	200	0.88 (0.01)	0.86 (0.02)	0.81 (0.06)	0.81 (0.08)	-	0.92 (0.01)

Conclusion

Conclusion

- Propose a scalable Bayesian Hierarchical Additive Model (BHAM) for high-dimensional data analysis
 - Organic balance between sparse penalty and smooth penalty
 - ▶ Bi-level selection for linear- and non-linear effects
 - Uncertainty measures provided
- R package: BHAM
 - Ancillary functions for high-dimensional formulation
 - Model summary and variable selection
 - Covariate adjustment without penalty
 - Website via boyiguo1.github.io/BHAM

References I

- Bai, Ray. 2021. "Spike-and-Slab Group Lasso for Consistent Estimation and Variable Selection in Non-Gaussian Generalized Additive Models." arXiv:2007.07021v5.
- Bai, Ray, Gemma E Moran, Joseph L Antonelli, Yong Chen, and Mary R Boland. 2020. "Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models." Journal of the American Statistical Association, 1–14.
- Hastie, Trevor, and Robert Tibshirani. 1987. "Generalized additive models: Some applications." Journal of the American Statistical Association 82 (398): 371-86. https://doi.org/10.1080/01621459.1987.10478440.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media
- Huang, Jian, Joel L Horowitz, and Fengrong Wei. 2010. "Variable Selection in Nonparametric Additive Models." Annals of Statistics 38 (4): 2282.

References II

- Ravikumar, Pradeep, John Lafferty, Han Liu, and Larry Wasserman. 2009. "Sparse additive models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 (5): 1009–30. https://doi.org/10.1111/j.1467-9868.2009.00718.x.
- Ročková, Veronika, and Edward I. George, 2014, "EMVS: The EM approach to Bayesian variable selection." Journal of the American Statistical Association 109 (506): 828–46. https://doi.org/10.1080/01621459.2013.869223.
- —. 2018. "The Spike-and-Slab LASSO." Journal of the American Statistical Association 113 (521): 431–44. https://doi.org/10.1080/01621459.2016.1260469.
- Scheipl, Fabian, Ludwig Fahrmeir, and Thomas Kneib. 2012. "Spike-and-slab priors for function selection in structured additive regression models." Journal of the American Statistical Association 107 (500): 1518–32. https://doi.org/10.1080/01621459.2012.737742.

References III

- Storlie, Curtis B, Howard D Bondell, Brian J Reich, and Hao Helen Zhang. 2011. "Surface Estimation, Variable Selection, and the Nonparametric Oracle Property." *Statistica Sinica* 21 (2): 679.
- Wang, Lifeng, Guang Chen, and Hongzhe Li. 2007. "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data." *Bioinformatics* 23 (12): 1486–94.
- Wood, S. N. 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models." *Journal of the American Statistical Association* 99 (467): 673–86.
- Xue, Lan. 2009. "Consistent Variable Selection in Additive Models." *Statistica Sinica*, 1281–96.
- Yang, Xinming, and Naveen N Narisetty. 2020. "Consistent Group Selection with Bayesian High Dimensional Modeling." *Bayesian Analysis* 15 (3): 909–35.

References IV

- Yi, Nengjun, Zaixiang Tang, Xinyan Zhang, and Boyi Guo. 2019. "BhGLM: Bayesian Hierarchical GLMs and Survival Models, with Applications to Genomics and Epidemiology." *Bioinformatics* 35 (8): 1419–21.
- Zhang, Hao Helen, and Yi Lin. 2006. "Component Selection and Smoothing for Nonparametric Regression in Exponential Families." *Statistica Sinica*, 1021–41.