Admission chances prediction

```
#importing necessary libaries
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
```

Double-click (or enter) to edit

```
df = pd.read_csv("/content/admission_predict (1).csv")
df.head()
```

→		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65

df.shape

→ (500, 9)

df.rename(columns={'University Rating': 'UniversityRating'}, inplace=True)

#checking the name of columns
df.columns

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 500 entries, 0 to 499 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	UniversityRating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 35.3 KB

df.describe()

 $\overline{\Rightarrow}$

	Serial No.	GRE Score	TOEFL Score	UniversityRating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	500.000000	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000

Returns true for a column having null values, else false df.isnull().any()

```
Serial No.
                   False
GRE Score
                   False
                   False
TOEFL Score
UniversityRating
                   False
SOP
                   False
LOR
                   False
CGPA
                   False
Research
                   False
Chance of Admit
                   False
dtype: bool
```

Returns different datatypes for each columns (float, int, string, bool, etc.) df.dtypes

\rightarrow	Serial No.	int64
	GRE Score	int64
	TOEFL Score	int64
	UniversityRating	int64
	SOP	float64
	LOR	float64
	CGPA	float64
	Research	int64
	Chance of Admit	float64
	d+	

dtype: object

Renaming the columns with appropriate names
df = df.rename(columns={'GRE Score': 'GRE', 'TOEFL Score': 'TOEFL', 'LOR', 'Chance of Admit ': 'Probability'})
df.head()

→		Serial No.	GRE	TOEFL	UniversityRating	SOP	LOR	CGPA	Research	Probability
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65

Univariate analysis of columns

```
# Visualizing the feature GRE
fig = plt.hist(df['GRE'], rwidth=0.7)
plt.title("Distribution of GRE Scores")
plt.xlabel('GRE Scores')
plt.ylabel('Count')
plt.show()
```


sns.boxplot(x =df['GRE'])

<Axes: xlabel='GRE'>

The above boxplot describes the summary statistics of the GRE column, a half of the candidates had scoles less than the 310-320 range while the other half had above that range (i.e median score). The highest score being 340 and 290 being the lowest.


```
fig = plt.hist(df['TOEFL'], rwidth=0.7)
plt.title('Distribution of TOEFL Scores')
plt.xlabel('TOEFL Scores')
plt.ylabel('Count')
plt.show()
```


About 80 candidates had a score of 110 with fewer than 10 students having less than 95.

```
sns.boxplot(x =df['UniversityRating'])
```


df['UniversityRating'].describe()

$\overline{\rightarrow}$	count	500.000000
	mean	3.114000
	std	1.143512
	min	1.000000
	25%	2.000000
	50%	3.000000
	75%	4.000000
	max	5.000000

Name: UniversityRating, dtype: float64

Bivariate analysis

This examines the correlation or relationship between two columns or features. For example, a school with high rating is expected to produce students with good research exposure

```
#plotting the relationship between research and school rating
sns.barplot(x= "Research", y = "UniversityRating", data=df)
plt.show()
```


As expected, students from schools with high rating has better research experience.

```
#examining the relationship between GRE and TOEFL scores of candidates
plt.scatter(x = df["GRE"], y = df["TOEFL"], color='blue', marker='o')

# Add title and labels
plt.title('Sample Scatterplot')
plt.xlabel('GRE scores')
plt.ylabel('TOEFL scores')
plt.show()
```


Start coding or generate with AI.

The above scatter plot indicates a positive linear relationship between the GRE and TOEFL scores of candidates, meaning that with candidates with high GRE scores also most likely have high TOEFL scores.

```
#GRESCORES VS CGPA comparison
plt.scatter(x = df["GRE"], y = df["CGPA"], color='blue', marker='o')

# Add title and labels
plt.title('Sample Scatterplot')
plt.xlabel('GRE scores')
plt.ylabel('CGPA')
plt.show()
```


There is also a positive linear rellationship between GRE SCORES and CGPA, therefore, candidates with high cgpa will most likely have high GRE scores

```
#checking the relationship between various admission requirement and chance of admit
fig, axs = plt.subplots(2, 3, figsize=(15, 10))
# Scatter plot for GRE vs Probability of Admission
axs[0, 0].scatter(df['GRE'], df['Probability'])
axs[0, 0].set title('GRE vs Probability of Admission')
axs[0, 0].set xlabel('GRE Scores')
axs[0, 0].set ylabel('Probability of Admission')
# Scatter plot for TOEFL vs Probability of Admission
axs[0, 1].scatter(df['TOEFL'], df['Probability'])
axs[0, 1].set title('TOEFL vs Probability of Admission')
axs[0, 1].set xlabel('TOEFL Scores')
axs[0, 1].set_ylabel('Probability of Admission')
# Scatter plot for GPA vs Probability of Admission
axs[0, 2].scatter(df['CGPA'], df['Probability'])
axs[0, 2].set title('CGPA vs Probability of Admission')
axs[0, 2].set_xlabel('GPA')
axs[0, 2].set ylabel('Probability of Admission')
# Box plot for Research Publications vs Probability of Admission
df.boxplot(column='Probability', by='Research', ax=axs[1, 0])
axs[1, 0].set_title('Research Publications vs Probability of Admission')
axs[1, 0].set xlabel('Research Publications')
axs[1, 0].set ylabel('Probability of Admission')
# Box plot for LOR vs Probability of Admission
df.boxplot(column='Probability', by='LOR', ax=axs[1, 1])
axs[1, 1].set title('LOR vs Probability of Admission')
axs[1, 1].set xlabel('LOR')
axs[1, 1].set ylabel('Probability of Admission')
# Box plot for SOP vs Probability of Admission
df.boxplot(column='Probability', by='SOP', ax=axs[1, 2])
axs[1, 2].set title('SOP vs Probability of Admission')
axs[1, 2].set_xlabel('SOP')
axs[1, 2].set ylabel('Probability of Admission')
# Adjust layout
plt.tight layout()
plt.show()
```


Double-click (or enter) to edit

Data Cleaning

```
# Removing the serial no, column
df.drop('Serial No.', axis='columns', inplace=True)
df.head()
```

→		GRE	TOEFL	UniversityRating	SOP	LOR	CGPA	Research	Probability
	0	337	118	4	4.5	4.5	9.65	1	0.92
	1	324	107	4	4.0	4.5	8.87	1	0.76
	2	316	104	3	3.0	3.5	8.00	1	0.72
	3	322	110	3	3.5	2.5	8.67	1	0.80
	4	314	103	2	2.0	3.0	8.21	0	0.65

```
#remove outliers using the IQR method
def remove_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Apply the function to relevant numeric columns

numeric_columns = df.select_dtypes(include=['number']).columns

for column in numeric_columns:
    df = remove_outliers(df, column)

# Display the shape of the dataframe to see how many rows were removed df.shape</pre>
```

→ (497, 8)

3 rows have been removed from the dataset because they contain outliers

```
#Standardization of numerical features
from sklearn.preprocessing import StandardScaler

#scaler = StandardScaler()
#df = pd.DataFrame(scaler.fit_transform(df))

# Check the transformed data
df.head()
```

#import pandas as pd
import numpy as np

Epatura Scaling

→		GRE	TOEFL	UniversityRating	SOP	LOR	CGPA	Research	Probability
	0	337	118	4	4.5	4.5	9.65	1	0.92
	1	324	107	4	4.0	4.5	8.87	1	0.76
	2	316	104	3	3.0	3.5	8.00	1	0.72
	3	322	110	3	3.5	2.5	8.67	1	0.80
	4	314	103	2	2.0	3.0	8.21	0	0.65

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import joblib

# Data Preprocessing
# Assuming there are no missing values and no categorical variables to encode

# Features and target
X = df[['GRE', 'TOEFL', 'CGPA', 'Research', 'LOR', 'SOP']]
y = df['Probability']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# I COLUITE DEGITING
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Model Selection and Training
# Linear Regression
lr_model = LinearRegression()
lr model.fit(X train, y train)
# Decision Tree Regressor
dt_model = DecisionTreeRegressor(random_state=42)
dt model.fit(X train, y train)
# Random Forest Regressor
rf model = RandomForestRegressor(random state=42, n estimators=100)
rf model.fit(X train, y train)
# Model Evaluation
models = {'Linear Regression': lr_model, 'Decision Tree': dt_model, 'Random Forest': rf_model}
for name, model in models.items():
    y pred = model.predict(X test)
    mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    print(f'{name}:')
    print(f'Mean Squared Error: {mse:.4f}')
    print(f'R-squared: {r2:.4f}')
    print('---')
# Hyperparameter Tuning (example for Random Forest)
from sklearn.model selection import GridSearchCV
param_grid = {
    'n estimators': [50, 100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
grid search = GridSearchCV(estimator=rf model, param grid=param grid, cv=3, n jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)
print(f'Best Parameters: {grid search.best params }')
```

```
# Best model after hyperparameter tuning
best_rf_model = grid_search.best_estimator_

# Evaluate the best model
y_pred_best = best_rf_model.predict(X_test)
mse_best = mean_squared_error(y_test, y_pred_best)
r2_best = r2_score(y_test, y_pred_best)

print('Best Random Forest Model:')
print(f'Mean Squared Error: {mse_best:.4f}')
print(f'R-squared: {r2_best:.4f}')

# Save the best model
joblib.dump(best_rf_model, 'best_rf_model.pkl')
joblib.dump(scaler, 'scaler.pkl')
```

Linear Regression:

Mean Squared Erron: 0 0027