

2003 Physics

Intermediate 2

Finalised Marking Instructions

${\bf 2003\ Physics\ Intermediate\ 2}$

Marking scheme

Section A

1.	A	11.	C
2.	D	12.	В
3.	Е	13.	A
4.	C	14.	D
5.	A	15.	A
6.	C	16.	В
7.	C	17.	D
8.	Е	18.	Е
9.	D	19.	Е
10.	С	20.	В

2003 Physics Intermediate 2

Sam	ple Aı	nswer a	and Mark Allocation		Notes	Ma	arks
21.	(a)		mgh 1400 x 10 x 30 420 000 J	(½) (½) (½) (½) (½)	Allow $g = 9.8 \text{ N/kg}$	2	7
	(b)	(i)	$a = \frac{v - u}{t}$	(1/2)			
			$a = \frac{20 - 0}{5}$	(1/2)			
			$a = 4 \text{ m/s}^2$	(1/2) (1/2)		2	
		(ii)	d = area under graph $d = (\frac{1}{2} \times 5 \times 20) + (\frac{1}{2} \times 3 \times 20)$ d = 80 m	(½) (½) (½) (½)			
			$d = \overline{v}t$ $d = 10 \times 8$ $d = 80 \text{ m}$	(1/2) (1/2) (1/2) (1/2)		2	
		(iii)	Less friction (1) OR Less resistive force OR Smaller unbalanced force	.		1	

Sam	ple A	nswer	and Mark Allocation		Notes	Ma	ırks
22.	(a)	(i)	W = mg $W = 2.5 \times 10^6 \times 8.4$ $W = 2.1 \times 10^7 \text{ N}$	(1/2) (1/2) (1/2) (1/2)		2	9
		(ii)		Engine force OR thrust (1) Weight OR gravity force (1)	 Two upward forces or two downwards forces loses 1 mark Name of force must match its direction 	2	
	(b)	Acce Sma OR	$F = 3.8 \times 10^7 - 2.1 \times 10^8$ $F = ma$ $10^7 = 2.5 \times 10^6 \times a$ $a = 6.8 \text{ m/s}^2$ eleration on Y is less ller unbalanced force greater weight	$0^{7} = 1.7 \times 10^{7} (N) (1)$ $(\frac{1/2}{2})$ $(\frac{1/2}{2}) (\frac{1/2}{2})$ (1) (1)		3	
			because of air resistance greater gravitational field	l strength		2	

Sam	ple Ar	nswer and Mark Allocation		Notes	Ma	rks
23.	(a)	(i) $d = vt$ $0.1 = v \times 0.05$ $v = 2 \text{ m/s}$	(½) (½) (½) (½) (½)		2	9
		(ii) momentum before = $1.6 v$ momentum after = $2.6 x 2$	(1/2) (1/2)			
		1.6 v = 5.2 $v = 3.25 m/s$	(1/2) (1/2)		2	
	(b)	(i) $E_k = \frac{1}{2} mv^2$ = 0.5 x 2.6 x 4 ² = 20.8 J	(½) (½) (½) (½)		2	
		(ii) $E_k = Fd$ $20.8 = 2.6 \times d$ $d = 8 \text{ m}$	(½) (½) (½) (½)		2	
	(c)	So that the speed is measured before it changes OR because there will be friction OR before friction slows it down OR before friction affects it OR before cars slow down OR to get the fastest speed	(1)		1	

Sam	ple Ar	swer and Mark Allocation	Notes	Mai	rks
24.	(a)	$P = \frac{V^2}{R}$ (1/2) OR $P = IV$ $11.5 = I \times 23$ I = 0.5 A (1)	Can start with 46 Ω and proceed to 11.5 W		9
		$11.5 = \frac{23^2}{R}$ (1/2) $V = IR$ $23 = 0.5 \times R$ $R = 46 \Omega$ (1)			
		$R = 46 \Omega (\frac{1}{2}) (\frac{1}{2})$		2	
	(b)	(i) $\frac{230}{10}$ (½) = 23 V (½)		1	
		(ii) If one lamp breaks, the others go out (1) OR non independent switching		1	
	(c)	(i) $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots $ (1/2)			
		$\frac{1}{R_T} = \frac{1}{46} + \frac{1}{46} + \dots \tag{1/2}$			
		$\frac{1}{R_T} = \frac{10}{46}$			
		$R_{\rm T} = 4.6 \ \Omega \tag{1/2} $		2	
		(ii) (A) Turns ratio = 10 : 1 (1)			
		$\frac{V}{230} = \frac{1}{10} \text{ (1/2)} V = 23V \text{ (1/2)}$		2	
		(B) All bulbs in parallel have <u>23V</u> across them so they			
		operate at normal brightness (1)		1	

Sam	ple A	nswer and Mark Allocation		Notes	Ma	rks
25.	(a)	$V = IR$ $0.8 = 0.005 \times R$ $R = 160 \Omega$	(1)	Any two points on the graph correctly used		7
		$V = IR$ $1 \cdot 6 = 0 \cdot 02 \times R$ $R = 80 \Omega$	(1)			
		As voltage increases R decreases	(1)		3	
	(b)	(i) 1.6 V	(1)		1	
		(ii) Voltage across $R = 3.4 \text{ V}$ $V = IR$ $3.4 = 0.02 \text{ x } R$ $R = 170 \Omega$	(1) (½) (½) (½) (½)	Voltage used must be 5 – b (i) answer. Any other voltage is wrong physics ½ maximum		
					3	

Sam	Sample Answer and Mark Allocation			Notes	Ma	rks	
26.	(a)	(i)	$E_{\rm H} = \ell m$ $E_{\rm H} = 3.34 \times 10^5 \times 0.05$ $E_{\rm H} = 16700 \text{ J}$	(½) (½) (½) (½)		2	8
		(ii) 167	$E = Pt$ $700 = P \times 300$ $P = 55.7 \text{ W}$	(½) (½) (½) (½)		2	
	(b)	(i)	Transistor	(1)	Not MOSFET	1	
		(ii)	Resistance increases	(1)		1	
		(iii)	Voltage across thermistor rises above 0·7 V Transistor switches on current passes through warning light	$\binom{1/2}{2}$ $\binom{1/2}{2}$		2	

Sam	Sample Answer and Mark Allocation				Notes	Ma	rks
27.	(a)	(i)	Protons + neutrons	(1) or (0)		1	6
		(ii)	Fission (NOT chain reaction)	(1)		1	
		(iii)	Uranium or fuel is used up	(1)		1	
		(iv)	Radioactive waste OR they are radioactive OR they give out radiation	(1)		1	
	(b)	166 2	$c \ m\Delta T$ x $10^6 = 830 \ x \ 2000 \ x \ \Delta T$ = 100°C	(1/2) (1/2) (1/2) (1/2)		2	

Sam	ple Aı	nswer and Mark Allocation	Notes	Ma	rks
28.	(a)	(i) 35° (1) ½ unit deduction		1	7
		(ii) any smaller angle (1) But not 0°		1	
	(b)	B (½) C (½) Angle of incidence must be smaller than the critical angle (1)	If A mentioned then zero marks	2	
	(c)	(i) Diverging OR concave (1)		1	
		(ii) $P = \frac{1}{f}$ (½)			
		$P = \frac{1}{-0.2} \tag{1/2}$			
		$P = -5 \mathrm{D}$ (1/2)			
		Choose lens Q (½)	no unit deduction unless wrong unit	2	

Sam	ple Aı	nswer	and Mark Allocation		Notes	Ma	rks
29.	(a)	(i)	Solar cell	(1)	Not solar panel	1	9
		(ii)	Q = I t $Q = 4.5 \times 300$ Q = 1350 C	(½) (½) (½) (½)		2	
	(b)	<i>(</i>	<u> </u>	→			
				→ → →			
			Shape (1) Arrows (1)			2	
	(c)	P	X rays	(1/2)			
		Q	Infrared	(1/2)		1	
	(d)	Corr	vect frequency = $8 \times 10^9 \text{ Hz}$ $v = f\lambda$ $3 \times 10^8 = 8 \times 10^9 \times \lambda$ $\lambda = 3.75 \times 10^{-2} \text{ m}$	(1) (½) (½) (½) (½) (½)		3	

Sam	ple Aı	nswer a	and Mark Allocation		Notes	Ma	rks
30.	(a)	(i)	The number of decays per second	(1)			9
			OR radioactive emissions per OR disintegrations per secon OR nuclei which break up p	nd		1	
		(ii)	20000 10000 halfing 5000 4 half lives 2500 1250 activity = 1250 Bq	(½) (½) (½) (½)		2	
	(b)	gamı		(1)		-	
		<u>beta</u>	absorbed by aluminium	(1)		2	
	(c)	(i)	$D = \frac{E}{m}$	(1/2)			
		5×10	$0^{-5} = \frac{E}{0.5}$	(1/2)			
			$E = 2.5 \times 10^{-5} \text{ J}$	(1/2) (1/2)		2	
		(ii)	H = DQ $H = 5 \times 10^{-5} \times 20$ $H = 1 \times 10^{-3} \text{ Sy}$	(1/2) (1/2) (1/2) (1/2)	More than one radiation used gives ½ only	2	

[END OF MARKING INSTRUCTIONS]