Practice sheet 4

Notations: \mathbf{a}_k^T denotes the k-th row of A and $\tilde{\mathbf{a}}_k$ denotes the k-th column of A. $\mathbf{a'}_k^T$ denotes the i th row of the matrix $[A^T:-I]^T$, or $\mathbf{a'}_k^T$ is either the k th row of A or the k-th row of -I

 b'_i is either the *i* th component of **b** or is equal to 0.

1. Consider the problem (P) given below:

Maximize
$$x_1 + x_2$$

subject to $-x_1 + x_2 + x_3 \le 1$
 $x_1 + 2x_2 + 3x_3 = 2$
 $x_1 > 0, x_2 > 0, x_3 > 0.$

Consider the extreme point \mathbf{x}^0 which lies in the hyperplanes corresponding to the first constraint, second constraint and the constraint $x_1 \geq 0$. Write the corresponding feasible solution $[\mathbf{x}^0, s_1]^T$ of the system,

$$-x_1 + x_2 + x_3 + s_1 = 1$$
$$x_1 + 2x_2 + 3x_3 = 2$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, s_1 \ge 0.$$

Verify that $[\mathbf{x}^0, s_1]^T$ is a basic feasible solution of the above system. Verify that $[0, 0, \frac{2}{3}, \frac{1}{3}]^T$ is a basic feasible solution of the above system. Verify that $[0, 0, \frac{2}{3}]^T$ is an extreme point of Fea(P).

2. Use simplex algorithm to solve the following problem:

Min
$$4x_1 + 4x_2 - 2x_3$$

Subject to $2x_1 + 3x_2 - 2x_3 \le 10$
 $2x_1 - x_2 + 3x_3 \le 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

3. For a LPP (P) of the form,

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A_{m \times n} \mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}, rank(A) = m$

check the correctness of the following statements with proper justification.

- (a) If $c_1 z_1 > 0$ in some iteration (table) and if $\tilde{\mathbf{a}}_1$ is made to enter the basis, then the new solution obtained will not be feasible for (P).
- (b) If for some basic feasible solution $\overline{\mathbf{x}}$, $\mathbf{c}^T \overline{\mathbf{x}} = 10$ and for no feasible \mathbf{x} , $\mathbf{c}^T \mathbf{x} = 5$, then (P) has an optimal solution.

- (c) For m = 2 and n = 4 in (P), if $[1, 2, 3, 0]^T$ is an optimal solution, then (P) has infinitely many solutions.
- (d) For m = 2 and n = 4 in (P), if in some iteration (table) of the simplex method, $\tilde{\mathbf{a}}_2$ enters the basis, then $\tilde{\mathbf{a}}_2$ can leave the basis in the next iteration (table).
- (e) For m=2 and n=4 in (P), if in some iteration (table) of the simplex method, $\tilde{\mathbf{a}}_2$ leaves the basis, then $\tilde{\mathbf{a}}_2$ can again enter the basis in the next iteration (table).
- (f) If **B** is the basis matrix corresponding to the optimal table (of the simplex method) where $\mathbf{c}_1 \mathbf{z}_1 = 0$ and $\mathbf{B}^{-1}\tilde{\mathbf{a}_1} \leq \mathbf{0}$, then the set of optimal solutions of (P) is an unbounded set.
- (g) If $\mathbf{c}^T \mathbf{x}^0 = \mathbf{b}^T \mathbf{y}^0$ for some \mathbf{x}^0 feasible but not optimal for (P), then \mathbf{y}^0 is not feasible for the Dual of (P).
- (h) For m = 2 and n = 4 in (P) if $x_1 = 1$ and $x_2 = 3$ are the basic variables of a BFS of (P), then there exists a feasible solution of (P) with $x_1 > 0, x_2 > 0, x_3 > 0$.
- (i) If for some BFS \mathbf{x} and in a nonbasic column $B^{-1}\tilde{\mathbf{a}_s}$ corresponding to \mathbf{x} , $min\{\frac{x_i}{u_{is}}:u_{is}>0\}=\frac{x_t}{u_{ts}}=\frac{x_r}{u_{rs}}>0$ for some $t\neq r$, then there exists a BFS of (P) which corresponds to two different basis.
- 4. Given a LPP with feasible region F as follows

 $S = \{ \mathbf{x} \in \mathbb{R}^2 : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}.$

It is given that the feasible region S has only the three extreme points $[0,0]^T$, $[0,3]^T$ and $[2,5]^T$.

Convert the feasible region S (by adding variables) to the form $S' = \{[\mathbf{x}, \mathbf{s}]^T \in \mathbb{R}^4 : A'[\mathbf{x}, \mathbf{s}]^T = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{s} \geq \mathbf{0}\}$, where A' = [A : I].

The following is the simplex table for the basic feasible solution corresponding to the basis $B = [\mathbf{a}_1, \mathbf{a}_2]$.

	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\mathbf{s}_1$	$B^{-1}\mathbf{s}_2$	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}}_1$			-2		
$ ilde{\mathbf{a}_2}$			-1		

- (a) How many constraints (other than the non negativity constraints) does S have?
- (b) Obtain a feasible region S of the above problem.
- (c) If possible give all the missing entries of the above table.
- (d) If possible give a direction $[\mathbf{d}, \mathbf{s}]^T = [d_1, d_2, s_1, s_2]^T$ of S' such that the corresponding direction $\mathbf{d} = [d_1, d_2]^T$ of the feasible region S satisfies $\mathbf{a}_1^T \mathbf{d} < 0$ while $\mathbf{a}_2^T \mathbf{d} = 0$.
- (e) If possible give a direction $[\mathbf{d}', \mathbf{s}]^T = [d'_1, d'_2, s_1, s_2]^T$ of S' such that the corresponding direction $\mathbf{d}' = [d'_1, d'_2]^T$ of the feasible region S satisfies $\mathbf{a}_1^T \mathbf{d}' < 0$ and $\mathbf{a}_2^T \mathbf{d}' < 0$.
- (f) Let \mathbf{u} and \mathbf{v} be the extreme points of S' corresponding to the extreme points $[0,0]^T$ and $[0,3]^T$, respectively. Give a $[\mathbf{d},\mathbf{s}]^T$ such that $\mathbf{u} + \alpha[\mathbf{d},\mathbf{s}]^T = \mathbf{v}$. Give the value of α .

2

- (g) Similarly let \mathbf{v} and \mathbf{w} be the extreme points of S' corresponding to the extreme points $[0,3]^T$ and $[2,5]^T$, respectively. If $[\mathbf{d},\mathbf{s}]^T$ is such that $\mathbf{v} + \alpha[\mathbf{d},\mathbf{s}]^T = \mathbf{w}$, $\alpha > 0$ then can \mathbf{d} be a nonnegative vector?
- (h) Which of the following can possibly constitute a basis matrix for the above problem:

 $B = [\tilde{\mathbf{a}}_2, \mathbf{e}_1], B = [\tilde{\mathbf{a}}_1, \mathbf{e}_1], B = [\mathbf{e}_1, \mathbf{e}_2]$ and $B = [\tilde{\mathbf{a}}_2, \mathbf{e}_2]$, where \mathbf{e}_i denotes the *i* th column of the identity matrix.

- (i) Find a **c** such that if the objective function is of the form: Minimize $\mathbf{c}^T \mathbf{x}$ then the problem does not have an optimal solution.
- 5. Consider a LPP for which we get the following optimal table.

$c_j - z_j$	0	0	1	0	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\tilde{\mathbf{a}_4}$	$B^{-1}\tilde{\mathbf{a}_5}$	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}_1}$		-1				4
$\tilde{\mathbf{a}_4}$		-2				4
$ ilde{\mathbf{a}_5}$		-3				3

- (a) Can you suggest two different optimal solutions for this problem?
- (b) If you change the entry -1 in the above table to +1, can you find two optimal BFS, by entering a new variable in the basis?
- (c) If there are two optimal BFS's then is it true that there are infinitely many optimal solutions of a LPP? What about the converse?
- 6. Consider a LPP (P) of the form,

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A_{4\times 2} \mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}$.

Let the simplex table of a BFS $[\mathbf{x}_0^T, \mathbf{s}_0^T]^T$ of the corresponding problem with equality constraints (P') be given by:

$c_j - z_j$			$\frac{5}{2}$		$\frac{3}{2}$		
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\mathbf{s}_1$	$B^{-1}\mathbf{s}_2$	$B^{-1}\mathbf{s}_3$	$B^{-1}\mathbf{s}_4$	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}_1}$			-1				5
$\widetilde{\mathbf{a}_2}$			2				3
\mathbf{s}_2			-3				0
\mathbf{s}_4			0				1

(a) Let
$$[\mathbf{d}^T, \mathbf{u}^T]^T = \begin{bmatrix} -B^{-1}\mathbf{s}_1 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
, where $\mathbf{d} \in \mathbb{R}^2$ (corresponds to the variables x_1, x_2) and $\mathbf{u} \in \mathbb{R}^4$.

Give a hyperplane H_{i_1} (just indicate which one) with normal \mathbf{a}'_{i_1} such that, $\mathbf{a}'_{i_1}^T(\mathbf{x}_0 + \alpha \mathbf{d}) < b'_{i_1}$, $\mathbf{a}'_{i_1}^T(\mathbf{x}_0 - \alpha \mathbf{d}) < b'_{i_1}$ but $\mathbf{a}'_{i_1}^T(\mathbf{x}_0 + \beta \mathbf{d}) > b'_{i_1}$ for some $\alpha, \beta > 0$.

Given the above information is it possible to give another hyperplane satisfying similar conditions?

- (b) If **d** is as defined in part(a) then if possible give a hyperplane H_{i_2} (just indicate which one) with normal \mathbf{a}'_{i_2} such that, $\mathbf{a}'_{i_2}{}^T(\mathbf{x}_0 + \alpha \mathbf{d}) < b'_{i_2}$, $\mathbf{a}'_{i_2}{}^T(\mathbf{x}_0 \alpha \mathbf{d}) < b'_{i_2}$ for all $\alpha > 0$.
- (c) If **d** is as defined in part(a) then if possible give a hyperplane H_{i_3} (just indicate which one) with normal \mathbf{a}'_{i_3} such that, $\mathbf{a}'_{i_3}{}^T(\mathbf{x}_0 + \alpha \mathbf{d}) < b'_{i_3}$, for all $\alpha > 0$ and $\mathbf{a}'_{i_3}{}^T(\mathbf{x}_0 \beta \mathbf{d}) < b'_{i_3}$ for some $\beta > 0$.
- (d) The normals to how many hyperplanes (defining Fea(P')) is $[\mathbf{d}^T, \mathbf{u}^T]^T$ (defined in part(a)) orthogonal to? In that case indicate also the corresponding hyperplanes. \mathbf{d} is orthogonal to the normals of how many hyperplanes defining Fea(P)?
- (e) How many optimal solutions does the problem (P) have? Justify.
- (f) How many optimal solution/s does the dual of (P) have? Justify.
- (g) Give the basic and nonbasic variables for the optimal solution/s of the dual of this problem.
- (h) Can you guess the sign of the entries in the row corresponding to the basic variable y_1 in the corresponding dual table? Justify.
- (i) Can you guess the exact entries in the row corresponding to the basic variable y_1 in the corresponding dual table? Justify.
- (j) Given the above information is it possible to give a feasible solution of the dual of (P) with $y_1 > 0, y_2 > 0, y_3 > 0$?