| Project ID | Student Name(s) | Registration<br>Number | Section (A/B) | Instructor<br>Remarks |
|------------|-----------------|------------------------|---------------|-----------------------|
|            | Mayank V Chopra | 229309229              | С             |                       |
|            | Kunal Yadav     | 229309237              | С             |                       |

### **Finalized Domain Name:**

Software

### **Finalized Problem Statement:**

Real-Time Sign Language Translation System

To develop a real-time system that converts speech or text into sign language gestures, ensuring seamless communication between non-sign language users and individuals who rely on sign language. The system will integrate deep learning techniques for speech recognition, natural language processing (NLP), and 3D gesture visualization.

# **Finalized Dataset:**

# a) Dataset Size:

**Size**: 290GB

Frames: Around 13.5 million frames extracted

Data Split: ~80% for training, ~10% for validation, ~10% for testing

## b) Dataset Link:

https://how2sign.github.io/

## c) Dataset features:

Video, Depth Information, Hand Landmarks, Translation, Pose Data, Audio



### 1. Platform/ libraries:

- **Speech Recognition:** Google Cloud Speech-to-Text, Mozilla DeepSpeech, Web Speech API
- NLP: Hugging Face Transformers, TensorFlow, PyTorch
- **Gesture Rendering:** Three.js, Unity (for 3D avatars)
- Frontend: React.js, Flutter
- Backend: Python (Flask/Django), WebSockets for real-time communication
- Cloud: AWS, Google Cloud
- Containerization: Docker, Kubernetes
- Database: MongoDB, PostgreSQL (for user preferences, logs)

2. Tools and Techniques: Enlist all the techniques data preprocessing and processing techniques (ML/DL/Optimization/ or any other) that you are using in your experiment.

# 2.1 Data Pre-processing Techniques

| S.No. | Name of the<br>Technique     | 2-3 line description                                                                                                        | Justification for incorporating this technique in your model                                                                                    |
|-------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Text<br>Normalization        | Simplifies text by removing punctuation, lowercasing words, and handling abbreviations for uniform processing.              | This ensures that the input text is in a clean, consistent format, minimizing errors in NLP models and improving translation accuracy.          |
| 2.    | Speech-to-Text<br>Conversion | Converts real-time speech input into text using automatic speech recognition (ASR) models like Google Cloud Speech-to-Text. | This enables the system to handle speech inputs efficiently, translating spoken language into a format suitable for NLP and gesture generation. |
| 3.    | Tokenization                 | Breaks down input text into smaller components (words, sentences) for better processing by NLP models.                      | Tokenization allows the system to process text more granularly, helping to identify key parts for gesture translation.                          |

# 2.2 Model Training and Testing Techniques or any other:

| S.No. | Name of the Technique                             | 2-3 line description                                                                                                                                                           | Justification for incorporating this technique in your model                                                                                              |
|-------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Sequence-to-Seq<br>uence (Seq2Seq)<br>Translation | A Seq2Seq model translates the processed input text into a sequence of sign language gestures. It utilizes an encoder-decoder framework to map sentences to gesture sequences. | Seq2Seq models are highly effective for language translation tasks, ensuring that the gestures correspond to entire sentences, not just individual words. |
| 2.    | Long Short-Term<br>Memory (LSTM)                  | LSTMs are used to capture long-term dependencies in text, ensuring context is                                                                                                  | LSTMs are essential for maintaining the contextual flow of text across multiple words, ensuring accurate gesture                                          |

|    |                                             | maintained when generating sign language gestures.                                                                                   | translations for complex sentences.                                                                                                    |
|----|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 3. | Gesture<br>Synthesis and<br>Rendering       | 3D avatars are used to generate and render the sign language gestures using <b>Three.js</b> or <b>Unity</b> for real-time animation. | Gesture synthesis enables the translation of text into sign language in a way that is visually understandable for sign language users. |
| 4. | Automatic<br>Speech<br>Recognition<br>(ASR) | Converts speech input into text, allowing the system to process spoken language in real time.                                        | ASR models provide an additional input modality, enhancing the system's versatility by supporting both speech and text inputs.         |

## 3. Experimentation:

# Input:

- **Speech:** Real-time speech input using Web Speech API or Google Cloud Speech-to-Text.
- **Text:** Written sentences in English or other languages.

### **Expected Output:**

Accurate generation of sign language gestures (in ASL/ISL) visualized through 3D animated avatars.

# **Coding Status:**

- **Speech-to-Text Conversion**: 50% complete (Google Cloud Speech-to-Text integration in progress).
- Text Preprocessing and Tokenization: Ongoing (Basic tokenization complete).
- Model Development: Pending (Seq2Seq and LSTM model exploration ongoing).
- Gesture Rendering: Planned (Integration with Three.js for 3D avatar rendering).
- Real-Time System Integration: Planned.