

Si9942DY Vishay Siliconix

Complimentary 20-V (D-S) MOSFET

PRODUCT SUMMARY				
	V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)	
N-Channel	20	0.125 @ V _{GS} = 10 V	±3.0	
	20	0.250 @ V _{GS} = 4.5 V	±2.0	
P-Channel	-20	0.200 @ V _{GS} = -10 V	±2.5	
	-20	0.350 @ V _{GS} = -4.5 V	±2.0	

N-Channel MOSFET

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage		V _{DS}	20	-20	V	
Gate-Source Voltage		V_{GS}	±20	±20	1	
Continuous Drain Current (T ₁ = 150°C) ^a	T _A = 25°C	l _D	±3.0	± 2.5	A	
Continuous Drain Current (1) = 130 Cy	T _A = 70°C		± 2.5	±2.0		
Pulsed Drain Current		I _{DM}	±10	±10	1 ^	
ntinuous Source Current (Diode Conduction) ^a		I _S	1.6	-1.6	1	
Maximum Power Dissipation ^a	T _A = 25°C	PD	2	2.0		
	T _A = 70°C	1 ''B	1	.3	W	
Operating Junction and Storage Temperature Range		T _J , T _{sta}	-55 t	o 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	N- or P-Channel	Unit		
Maximum Junction-to-Ambient ^a	R _{thJA}	62.5	°C/W		

Notes a. Surface Mounted on FR4 Board, $t \le 10$ sec.

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm

Si9942DY

Vishay Siliconix

Parameter	Symbol	Test Condition		Min	Typ ^a	Max	Unit
Static							•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	N-Ch	1.0			V
Take 1111 belief Vellage	· G3(III)	$V_{DS} = V_{GS}, I_D = -250 \mu A$	P-Ch	-1.0			Ţ
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
	1	V _{DS} = 16 V, V _{GS} = 0 V	N-Ch			2	
Zara Cata Valtaga Drain Current	Ι. Γ	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	P-Ch			-2	
Zero Gate Voltage Drain Current	DSS	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$	N-Ch			25	μΑ
		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$	P-Ch			-25	
	1	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	N-Ch	10			
On-State Drain Current ^b	1 , [$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	P-Ch	-10			١,
On-State Drain Current	D(on)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	N-Ch	2			A
	1	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	P-Ch	-2			
Drain-Source On-State Resistance ^b	1	V _{GS} = 10 V, I _D = 1.0 A	N-Ch		0.07	0.125	
	1 1	$V_{GS} = -10 \text{ V}, I_D = 1.0 \text{ A}$	P-Ch		0.12	0.200	
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 0.5 \text{ A}$	N-Ch		0.105	0.250	Ω
	1 1	$V_{GS} = -4.5 \text{ V}, I_D = 0.5 \text{ A}$	P-Ch		0.22	0.350	
Forward Transconductance ^b	1	V _{DS} = 15 V, I _D = 3.0 A	N-Ch		4.8		
	9fs -	$V_{DS} = -15 \text{ V}, I_D = -3.0 \text{ A}$	P-Ch		3.0		S
	1 ,, 1	I _S = 1.25 A, V _{GS} = 0 V	N-Ch		0.75	1.2	V
Diode Forward Voltage ^b	V _{SD}	$I_S = -1.25 \text{ A}, V_{GS} = 0 \text{ V}$	P-Ch		-0.8	-1.2	^v
Dynamic ^a							
T. 10 1 0			N-Ch		7	25	
Total Gate Charge	\mathbf{Q}_{g}	N-Channel	P-Ch		6.7	25	
		$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$	N-Ch		0.75		1
Gate-Source Charge	Q_gs	P-Channel	P-Ch		1.3		nC
0 + 5 + 0		$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -2.3 \text{ A}$	N-Ch		1.7		1
Gate-Drain Charge	Q_gd		P-Ch		1.6		
Turn On Dolov Time	*		N-Ch		6	15	
Turn-On Delay Time	^t d(on)		P-Ch		10	40	
Rise Time	, t	N-Channel V_{DD} = 20 V, R_L = 20 Ω	N-Ch		10	20	
Rise Time	t _r	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$	P-Ch		12	40	
Turn-Off Delay Time	t _{4/-50}	P-Channel	N-Ch		17	50	ns
	^t d(off)	V_{DD} = -20 V, R_L = 20 Ω $I_D \cong -1$ A, V_{GEN} = -10 V, R_G = 6 Ω	P-Ch		20	90	
Fall Time	t _f	-	N-Ch		10	50	1
	ч		P-Ch		10	50	
Source-Drain Reverse Recovery Time	1 ,	I _F = 1.25 A, di/dt = 100 A/μs	N-Ch		45	100	
Source-Drain Reverse Recovery Time	t _{rr}	17 = 1.20 A, αι/αι = 100 A/μ3	P-Ch		70	100	I

Notes
a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width $\leq 300 \, \mu s$, duty cycle $\leq 2\%$.

Si9942DY

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

N-CHANNEL

V_{GS} - Gate-to-Source Voltage (V)

I_D - Drain Current (A)

V_{DS} - Drain-to-Source Voltage (V)

むatasheet5

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Si9942DY Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

P-CHANNEL

①atasheet5—集成电路查询网

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

P-CHANNEL

超过3,000,000种电子元器件资料免费查询

www. datasheet5. com