

SOME STUDIES ON RURAL WATER SUPPLY SCHEMES

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By
R. P. YADAV

to the
DEPARTMENT OF CIVIL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
MAY, 1980

DEDICATED TO THE SWEET MEMORY OF
MY PARENTS

I.I.T. KANPUR
CENTRAL LIBRARY
Ref. No. A 63006
- 8 AUG 1980

CERTIFICATE

This is to certify that the thesis 'Some Studies on Rural Water Supply Schemes' submitted by Mr. R.P. Yadav in partial fulfilment of the requirements for the degree of Master of Technology of the Indian Institute of Technology, Kanpur, is a record of bonafide research work carried out by him under my supervision and guidance. The work embodied in this thesis has not been submitted elsewhere for a degree.

Dated: May, 1980

(K. SUBRAMANYA)
Professor
Department of Civil Engineering
Indian Institute of Technology, Kanpur

ACKNOWLEDGEMENTS

I had a pleasurable and stimulative environment in which I carried out this project under the supervision of Dr. K. Subramanya, Professor, Department of Civil Engineering, Indian Institute of Technology, Kanpur. I express my hearty gratitude and deep regard to him for his invaluable guidance, help, interest and encouragement.

Thanks are due to Shri O.P. Bishnoi, Chief Engineer (Project and Design), Shri S.K. Singh, Research Executive Engineer and Shri M.K. Shukla, Executive Engineer, of U.P. Jal Nigam for their kind help to provide me the reports of few rural water supply schemes and other details regarding the same.

I am also thankful to Mr. R.S. Chaudhary, Mr. S. Das Gupta and all my friends who have helped me with keen interest to bring out this project.

I wish to express my appreciation to Mr. G.S. Trivedi for his nice typing, Mr. J.C. Verma for his fine drawing and others of Civil Engineering Department for their valuable cooperation.

R.P. YADAV

LIST OF CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS AND ABBREVIATIONS	ix
ABSTRACT	xi
1. INTRODUCTION	1
1.1 General	1
1.2 U.P. Jal Nigam	4
1.3 Design Criteria	7
1.4 Finance	15
1.5 Need for an Optimal Design	16
2. PRESENT STUDY	18
2.1 General	18
2.2 Salient Features	18
2.3 Costs for Efficient Design	34
2.4 Comparative Study	35
3. ANALYSIS OF WATER DISTRIBUTION SYSTEM	42
3.1 General	42
3.2 Network Analysis Programme	42
3.3 Formulation for the Analysis	45
3.3.1 Basic Equations	45
3.3.2 Direct Solution of Linearized Equations	47
3.4 Computer Flow Diagram	48
3.5 Basic Equations	50

	Page
3.6 Implementation of the Programme	53
3.6.1 Modification due to Computer System	53
3.6.2 Additions	54
3.6.3 Computation Time for a Big Scheme	55
3.7 Tests	55
3.7.1 Test Problem Number 1	58
3.7.2 Test Problem Number 2	58
3.7.3 Test Problem Number 3	58
3.7.4 Test Problem Number 4	60
3.8 Analysis of Selected RWS Schemes	60
3.8.1 Scheme 1	60
3.8.2 Scheme 2	62
3.8.3 Scheme 3	62
3.8.4 Scheme 4	62
3.8.5 Scheme 5	63
4. DESIGN OF TREE TYPE DISTRIBUTION SYSTEM	64
4.1 General	64
4.2 Problem	64
4.3 Past Works	65
4.4 Current Practice	67
4.5 Suggested Improvement	68
4.6 A Suggested LP Method	68

	Page
4.6.1 General	68
4.6.2 LP Model	70
4.6.3 Critical Path Concept	72
4.6.4 Formulation	73
4.6.5 Computer Programme	74
5. CONCLUSIONS AND RECOMMENDATIONS	75
LIST OF REFERENCES	77
APPENDIX I FEATURES OF NETWORK ANALYSIS PROGRAMME	80
APPENDIX II RESULTS OF ANALYSIS	82

LIST OF TABLES

Table No.	Title	Page
1.1	Water Supply Position in India	2
2.1	Cost and Saving Details of the Schemes	35
2.2	Comprehensive Abstract of Cost	36
2.3	Costs of Over Head Tanks	38
2.4	Economics	39

LIST OF FIGURES

Figure No.	Title	Page
2.1	Schematic Layout of Girdkot, Zone A, Group of Villages RWSS, Allahabad	19
2.2	Schematic Layout of Ketehra, Zone A, Group of Villages RWSS, Allahabad	22
2.3	Schematic Layout of Urwa, Part II, Group of Villages RWSS, Allahabad	25
2.4	Schematic Layout of Malasa Group of Villages RWSS, Kanpur	29
2.5	Schematic Layout of Rajpur Group of Villages RWSS, Kanpur	32
3.1	Simplified Computer Flow Diagram	49
3.2	Schematic Diagram of Tree Type Distribution System	56
3.3	Schematic Diagram of Loop Type Fourteen Pipe Distribution System	57
3.4	Schematic Diagram of Pipe Water Distribution System	59
3.5	Schematic Layout of Improved Water Distribution System	61
4.1	Branching Distribution System	71

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

C	Hazen Williams Roughness Coefficient
γ	Specific Weight
γ_w	Specific Weight of Water
S	Specific Gravity

Abbreviations

WHA	World Health Assembly
LSGED	Local Self Government Engineering Department
IDA	International Development Authority
LIC	Life Insurance Corporation
RWSS	Rural Water Supply Scheme
RWS	Rural Water Supply
l.p.c.d.	Litres per capita per Day
A.C.	Asbestos Cement
P.V.C.	Polythene Polyvinyl Chloride
G.I.	Galvanized Iron
C.I.	Cast Iron
B.H.P.	Break Horse Power
UNICEF	United Nations International Children's Emergency Fund
NWSP	National Water Supply and Sanitation Programme
O.H.T.	Over Head Tank

RCC	Reinforced Cement Concrete
KL	Kilolitre
PSIG	Per Square Inch Gauge
MGD	Million Gallons Per Day
GPM	Gallons Per Minute
CFS	Cubic Feet per Second
l/s	Litres per Second
LP	Linear Programming
HGL	Hydraulic Grade Line

ABSTRACT

The rural water supply schemes of U.P. Jal Nigam have been studied by taking five representative projects. The present studies of design criteria and the overall typical characteristics of these water supply schemes have been highlighted. The need for an efficient design and analysis of water distribution networks has been brought out.

A versatile water distribution network system analysis programme has been implemented at I.I.T. Kanpur DEC 1090 system. The five selected rural water supply schemes were analysed through the use of this versatile programme. The deficiencies in the existing schemes and the methods to modify them have been indicated.

A method for the optimum design of tree type water distribution network has been indicated.

1 INTRODUCTION

1.1 GENERAL

Water, like air, is essential to human survival, so it is a must for a welfare government to provide safe and potable drinking water in adequate quantity to its urban as well as rural population. In recent few years there is a progressive effort towards this.

The United Nations Water Conference held at Mar del Plata, Argentina, in March 1977 recommended that the decade (1980-1990) should be designated as the 'International Drinking Water Supply and Sanitation Decade'. The resolution WHA 30.33 concerning preparations for the decade (1980-1990) has been unanimously adopted by the thirtieth World Health Assembly in May 1977. According to this (i) Implementation of National Plans for drinking water supply and sanitation to all urban and rural communities should be increased, (ii) Specific targets should be set up by each country taking into consideration its sanitary, social and economic conditions²⁰. The above is an important resolution and it is but natural that the Central and State Governments of India will give high priority for drinking water supply and sanitation programme, and provide necessary provisions in the annual plans so as to achieve these objectives.

According to the World Health Statistics Report, 1976, about 77 percent of the urban communities and 22 percent of the rural communities among the developing countries have been provided with adequate water supply upto 1975. Progress in urban water supply in India is comparable to that at global and South East Asia regional level, but it is rather poor in rural water supply systems. In India 60 percent of the urban community and 4 percent of the rural community was served by water supply facility in 1970 and 79 percent and 18 percent in 1975 respectively, as indicated in Table 1.1.

TABLE 1.1 WATER SUPPLY POSITION IN INDIA

Community	Population served (percent)		Population to be served (Target) (percent)	
	1970	1975	1980	1990
Urban	60	79	98	100
Rural	4	18	32	100

As per 1971 Census the country had an urban population of 1090.94 million spread in 3,119 towns and rural population of 438.58 million in 5,75,936 villages and hamlets. The population in 3,18,633 villages (55.32 percent) is less than

500. An additional 1,32,990 villages have population in the range of 500-999 making a total of 4,51,626 (78.41 percent). These villages are scattered in the countrysides, some of which are inaccessible during part of the year whereas some have no reliable source nearby. A total of 1,52,475 villages came under the category of scarcity or problem villages, which pose a challenge to those involved in water supply programme.

Water with high chemical ingredients such as fluorides, chloride, iron and manganese have been found in about 25000 villages with a population of approximately 21.93 million. In addition water borne diseases such as dysentery, gasto enteritis, infectious hepatitis, enteric fevers and poliomylites are prevalent in urban and rural areas. The death rate due to these diseases have been found to be 9.6 and 16.5 per thousand persons in urban and rural communities respectively. This reflects an urgent need of safe water supply and other public health facilities, especially in rural areas.

Out of the total annual precipitation of 400 million hectare meter, only about 105 million hectare meter is estimated to be ultimately utilizable containing of 70 million hectare meter of surface water and 35 million hectare meter of ground water. The surface water is not safe as it gets

polluted due to increased industrialization. In ground water there is presence of chemical ingradients. So, there is a need of some technological solution for safe water supply. These are the reasons why India Government is giving more emphasis on rural water supply schemes, from Fourth Five Year Plan (1969-74). The accelerated water supply programme gave a further boost to rural water supply. About 64,000 out of 5,75,936 villages and 1,890 out of 3,119 towns have been provided with water supply by 1978. The outlay on rural water supply was 0.8 percent of the total plan during the first plan which increased to 1.5 percent in the fifth plan. The annual per capita expenditure on rural water supply and sanitation for the unserved population of the entire country was increased from Re 1.00 from the fourth plan to Rs. 2.4 in the fifth plan (1974-1978).

Several financing institutions like the Life Insurance Corporation of India and Banks have been providing part of funds required for water supply schemes. Funding from international and bilateral agencies are available now.

1.2 U.P. JAL NIGAM

Previously supplying of water to a community was the responsibility of the municipal authorities. But when the work grew in complexity and volume, need for the establishment

of a separate organisation was felt and in 1927, the U.P. Public Health Engineering Department was created. It was later re-named the Local Self Government Engineering Department (LSGED) which is now fully merged in the U.P. Jal Nigam. Further, State Government gave more emphasis on water supply and sanitation which required large initial investment. So, in the seventies the World Bank was approached. But to give financial assistance it wanted a central organisation with statutory powers to be established first, through which loans to the local bodies could be channelized. Due to this the State Government created an organisation named U.P. Jal Nigam on June 18, 1975 by an act of U.P. Legislature. Now it is a dynamic organisation of U.P. Government, which is working under the financial assistance mainly of International Development Authority, (IDA), a subsidiary of the World Bank for soft lending to member nations of United Nations Organisation for development programmes; the Dutch Government and the Life Insurance Corporation of India (LIC)⁷.

It consists of eight Jal Sansthans, three Regional Jal Sansthans namely Garhwal, Kumaon and Bundelkhand and five local Jal Sansthans for KAVAL towns ie. Kanpur, Agra, Varanasi, Allahabad and Lucknow to give proper water supply and sewerage facilities.

During the five Five-Year Plans only 6,670 villages were brought under the piped water supply. Out of the 1,12,561 revenue villages in the state 35,506 villages suffer from scarcity of potable water. Similarly out of the 619 urban localities barely 376 localities had piped water supply. Till the end of the Fifth Five Year Plan only 39 urban localities were provided the sewerage facility. The Nigam provided water to 1,917 villages during the year 1978-79. This compares very favourably with the 6,670 villages which were provided this facility during the last five Five Year Plans, i.e. upto 1978, and that. During the year 1977-78, drinking water was provided to 1,200 villages.

During the Sixth Five Year Plan period 1978-83 it has been envisaged to provide piped water supply to all the 619 urban local bodies of the state as well as to provide underground sewerage system in 39 more towns. Strengthening of water supply has been proposed in 83 towns and sewerage reorganisation in eight towns. A target covering, 14,200 more villages has been set for rural water supply programme. To boost the progress of rural water supply schemes, the Central Government has launched a crash programme under the title, 'Accelerated Rural Water Supply Programme' and it is likely that a sum of Rs. 26 crores will be made available for this, besides the plan allocations. This will be utilised

for provision of safe drinking water supply facilities to about 2,250 additional villages.

1.3 DESIGN CRITERIA

The design criteria for the RWSS adopted by U.P. Jal Nigam with recent guidelines is as following:-

Design Period

The design period should be 30 years.

Population

The rural design population should not be estimated by the previous criterion of increasing the present population by 50 percent except the villages bordering the towns where the percentage increase in the design population may be more.

Any one of the following methods is to be adopted to calculate the design population.

- i) Arithmetical mean method
- ii) Geometrical increase method
- iii) Incremental increase method
- iv) Decrease in percentage increase method
- v) Graphical method
 - a) an ordinary plot method
 - b) a semi-log plot method
- vi) Comparative method

Floating Population

The equivalent population for feeding the institution, market and mela may be considered as 20 percent of the total population.

Rate of Water Supply

- (i) 70 l.p.c.d. for villages where individual design population is less than 4,000 and where private house connections are expected.
- (ii) 50 l.p.c.d. for small villages where no or few house connections are expected.
- (iii) 25 l.p.c.d. where adequate source is not available. But the schemes should be framed on 50 l.p.c.d. so that except for 2 to 3 months of the summer adequate quantity of water is available to the beneficiaries.
- (iv) 90 l.p.c.d. for villages where individual design population is more than 4,000.

Source Discharge

The discharges of the source should normally be measured for three consecutive years of the driest season and the least discharge should be adopted. In the case if the scheme is to be prepared urgently, the one year driest discharge should be double than the ultimate requirement.

In special circumstances where there is an acute scarcity of drinking water the scheme can be framed if the discharge of the source can feed at a rate of 25 l.p.c.d.

Service Reservoir

Minimum storage however should not be less than 10 l.p.c.d. or 1/6th of the days requirement whichever is more.

Peak Factor

For KAVAL towns	2.0
For Urban towns	2.5
For Rural areas	2.5
For Industrial areas	1.0

These peak factors are applicable on maximum day per capita rates adopted.

Distribution System

The distribution network should be designed for peak flow of peak factor times the average demand.

The minimum size of a distribution main should be kept according to the size of the town as per following criteria.

Design Population	Minimum Size of Distribution Main
Upto 5,000	50 mm
5001 to 50,000	80 mm
50,001 to 5,00,000	100 mm
above 5,00,000	125 mm

In hills the minimum size shall be 25 mm.

For towns of population above one lac wherever the main road is more than 20 m in width, mains will be laid on both sides so that the road is not cut for service connections later on.

Pipes

Medium quality of G.I. pipes should be used for water supply schemes of hilly areas.

In plains P.V.C. pipes may be adopted upto a dia of 100 mm. A.C. pipes should be used for bigger sizes. Presently upto 150 mm P.V.C., 200 to 600 mm A.C. and above 600 mm C.I. pipes are being used.

Terminal Pressures

Terminal pressures shall be provided as listed in the following tabular shape.

Design Population of the town(in lacs)	Building type	Terminal Pressure (m)
Upto 0.20	Single storied	7
	Double storied	12
0.20 to 0.50		
0.50 to 1.00	No consideration of the height of building	12
1.00 to 5.00		
5.00 to 10.00	No consideration of the height of building	15
above 10.00		

Terminal pressure for villages shall be 7.0 meters. Minimum terminal pressure of 6 m for single storied buildings with market and a few house connections and 8 m for double storied building with a large number of house connections were adopted previously by Nigam.

Pipe Lines

Sluice valve/wheel valve may be provided at a spacing of 21 cms (for sizes greater than 150 mm, the spacing may be reduced as required).

Terminal pressure - Minimum 6 m

Design of distribution system are to be done for each and every village. Station pressure must be duly considered for deciding classes of pipes. Break pressure tables are to be provided as required.

Stand posts considering initial population (upper limit)

- (i) One for about 150 persons in hilly areas
- (ii) One for about 250 persons in plains.

There should be one stand post atleast for weaker section such as Harijan and Tribal community.

Air valve should be provided on summits.

Tank type stand posts, instead of single tap pillar type previously used.

- (i) In such villages where no private connections are

expected in the begining, tank type stand posts with capacities of 2000, 3000, 5000 litres may be provided, keeping in view 1/2 day's requirement in the initial stages.

- (ii) The distribution system even in these villages will be designed for 6 meters, minimum terminal pressure to provide for house connections in future.

Rising Main

The economical size of rising main should be calculated as per departmental tabular procedure taking electricity tarif rule for the cost of every corporation economics of laying a size main throughout the design period to that of duplicating after 15 years be worked.

For tube wells and other pumping schemes requiring short length of rising main (say not exceeding 200 m), it would be desirable to use C.I. pipes. At other place A.C. pipe tested upto adequate pressure may be considered.

Consumption

The annual average supply of water is expected to be about 75 percent. The consumption of chemicals, electric or diesel should be calculated on this pattern. Minimum of two tube wells may be provided. The pumping hours of the tube well may generally be taken 16 hrs at the ultimate period of the scheme.

Hydraulic Gradient

To design the distribution main, such hydraulic gradient may be adopted for different type of pipe materials as to provide an economical design. For this purpose the hydraulic gradient arrived at for economic design of rising main shall be adopted. Generally the hydraulic gradient for P.V.C. and A.C. pressure pipes shall be 3 to 4 per thousand and for C.I. and steel pipes 5 to 6 per thousand. However the gradient may vary according to the minimum size of the distribution main as recommended in para 'Distribution System'.

Size of Pump House

BHP	Size
10.0	8' x 10' x 12'
12.5 to 40.0	12' x 10' x 12'

The chloronome house is to be constructed jointly with pump house as per type design.

Accommodation of the Staff

- (i) For pump operator - one single room quarter with box room.
- (ii) For chawkidar - one single room quarter with one box room.

Provision for more buildings is to be made after

obtaining Chief Engineer's instruction. For gravity schemes where provision of part-time staff for maintenance purposes is considered adequate, number of buildings should be provided.

List of Various Categories of Pipes and Their Working Pressures

(i) A.C. Pipes

Type of Pipe	Working Pressure
Class I	2.5 kg/cm ²
Class II	5.0 kg/cm ²
Class III	7.5 kg/cm ²

(ii) G.I. Pipes

Size (mm)	Pressure (kg/cm ²)		
	Light	Medium	Heavy
6 to 25	10.5	21.0	24.6
32 to 40	8.8	17.6	21.1
50 to 80	7.0	14.0	17.6
80 to 100	5.6	10.5	14.0
125	-	10.5	14.0
150	-	8.8	10.5

(iii) P.V.C. Pipes

These are available in 4, 6 and 20 kg/cm² working pressures, M/s Wavin India Ltd. have, however, offered pipes capable of withstanding a working pressure of 5 kg/cm² against 4 kg/cm² pipes.

(iv) C.I. S/S Pipes

Class	Pressure(kg/cm ²)
LA	6
A	9
B	12

Design Formula

Hazen and Williams formula is to be used for the design of the distribution system.

1.4 FINANCE

Considerable emphasis is being given to the RWSS. as laid in the 'International Drinking Water and Sanitation Programme' to make all the villages of the countries provided with the safe drinking water by 1990. Our national Government is also taking keen interest in this field to fulfill the target. But to do this our developing country needs much financial assistance. So this assistance is being taken from International and National financing concerns. For the U.P. Jal Nigam the finance pattern has two ways - Plan and Non-plan. Under plan, the finance is given by IDA and Non-IDA procedures. In IDA procedure the finance comes 50 percent from IDA, an affiliate of the World Bank and 50 percent from the LIC (India). Under Non-IDA, the finance is provided by Central and State Governments through granting and loaning ways, according to the

financial situation of the area concerned, and by the LIC and other Banks through loaning, which is to be returned in few years by the Department. Government gives 100 percent grant to the scheme whose public finance condition is poor and there is no proper source of return of money and 75 percent grant and 25 percent loan or 50 percent grant and 50 percent loan, to the schemes whose area is prosperous. Under the non-plan deposit work comes. If Department contracts some private concern's scheme, the Department needs full cost of the scheme in advance deposited and work will be started after full payment to the Department. To accelerate the National Water Supply and Sanitation Programme (Rural), the financial assistance is to be needed urgently. For this at this time UNICEF and Dutch Government are giving finance.

1.5 NEED FOR AN OPTIMAL DESIGN

The distribution system of a water supply scheme has a major part of the cost incurred on the scheme. So, it should be designed economically. There is no proper and accurate method to design the network system in an optimal manner. But there are more works on network analysis. By this analysis we can optimize the network by changing the diameters of the pipes. Nowadays we have computer facilities available generally in our country, so that through computers we can analyse even a big network within seconds by using an efficient computer.

programme. The RWSS where finance is a main problem, can benefit considerably through efficient, optimal designs. In the present study an analysis of few RWS schemes under implementation of U.P. Jal Nigam have been made by a modified and efficient computer programme to bring out the efficiency and advantages of computer use in such large investment projects.

2 PRESENT STUDY

2.1 GENERAL

The topic of RWS in U.P., for which not only our State or Central Government is taking interest but some other Foreign Governments and International Organisations are giving help, has been selected for the study. The Chief Engineer (Project and Design) and one Research Executive Engineer of U.P. Jal Nigam provided the necessary background and details about the RWS schemes. Reports of three RWS schemes of District Allahabad were made available. Also the Executive Engineer, IIInd T.C.D. Kanpur provided valuable informations and details of two RWS schemes of District Kanpur. The details of the various schemes are in the next sections.

2.2 SALIENT FEATURES

A. Girdkot, Zone A, Group of Villages RWSS¹⁴.

Name of programme	:	N.W.S.P. (Rural)
Name of Local Body	:	District Board, Allahabad
Number of Villages Covered	:	16
Population	:	Present: 7,476 (1971) Designed: 11,214 (2001)
Rate of W/S	:	70 l.p.c.d.
Source of W/S	:	Tube well
Nature of Treatment	:	Pressure feed type chlorination

Conveyance : A.C. and P.V.C. pipes
 Service Storage : One O.H.T. of
 Capacity : 200 KL(based on 1/4th
 of the ultimate
 daily requirement
 of water)

Staging : 15 m

Material : RCC
 of cons-
 truction

Distribution system : Peack factor : 2.4

Minimum size: 25 mm(internal)

Minimum terminal pressure:7 m

Kind,size and class of pipe

Kind of pipe	Size, ϕ (mm)	Class	C
A.C.	125 to 250	10	130.00
P.V.C.	25 to 100	4 to 10 kg/cm ²	140.00

Estimated Cost : 9.00 lacs

Pumping plant : Plant capacity: 25 BHP

Pumping Hours : 10

Draw off rate of balancing reservoir : 16 Hours (standard)

This scheme comes in Handia Tehsil of Allahabad District.

The area under Handia Tehsil is such that there is no river or any other natural source to get drinking water in abundant quantity. It is very difficult to get water. In summers the draught condition is a regular feature. The ground water

condition is good here, so this water is to be utilized for drinking. This rural water supply scheme has been drawn up for the villages which are draught affected and the villages which come in the alignment of pipe lines for draught striken villages.

Taking the design period 30 years, the designed population at the end of the design period i.e. in the year 2001 has been taken as 11,214 assuming 50 percent increase over the 1971 population taking into account the future growth and development.

To make the scheme economical it was divided into zones as follows:

Zone	Number of villages	Population designed
A	16	11,214
B	21	11,814
C	21	14,590

B. Ketehra, Zone A, Group of Villages RWSS¹⁵

Name of the programme	:	NWSP (Rural)
Name of the Local body	:	District Board, Allahabad
Number of villages covered	:	13
Population	:	Present: 7,123 (1971) Designed: 10,693 (2001)
Rate of W/S	:	68.1 l.p.c.d.

Nature of source : Tube well
 Source of Development : Pump House
 Nature of treatment : Pressure feed type chlorination
 Conveyance : A.C. and P.V.C. pipes
 Service storage : One RCC O.H.T. of
 Capacity: 120 KL(based on 1/6th of
 the ultimate daily
 requirement of water)
 Staging : 17 m
 Distribution system : Peak demand factor: 2.4
 Minimum terminal head: 7.0 m
 Minimum size : 25 mm
 kind, size and class of pipe

Kinds of pipes	Size, Ø(mm)	Class	C
A.C.	125 to 250	II	130.00
P.V.C.	25 to 100	-	140.00
G.I.	15 to 20	Light quality	-

 Estimated cost : 9.0 lacs
 Pumping plant : Plant capacity: 20 BHP
 Pumping Hours: 10
 Draw off rate of balan- : 16 Hours (standard)
 cing reservoir

This scheme also comes in Handia Tehsil of District Allahabad. Due to absence of river a any other natural source the ground water is to be supplied for drinking to the draught

striken, Ketehra group of villages, the condition of which is good.

As per 1961 Census, the population of all the 52 villages covered by this scheme was 19,643. The estimate of this scheme was originally prepared by scarcity division, Mirzapur in the year 1972-73 and the population of 1971 Census was taken as the initial population by increasing the population of 1961 Census by 25 percent which comes to be 24,541. This was assumed that over a period of 30 years further increase in population would be 50 percent keeping a margin for family planning measures and migration of rural population to urban areas, including floating population due to occurrence of cattle fair and religious festivals.

To make the scheme economical it was divided into three zones as follows:

Zone	Number of villages	Population designed
A	13	10,693
B	20	16,593
C	19	9,533

C. Urwa, Part II, Group of Villages RWSS¹⁶

Name of programme	:	Dutch programme
Name of local body	:	District Board, Allahabad
Number of villages covered	:	23

Population : Census, 1971 : 16,836
 Present, 1981 : 20,246
 Designed, 2011: 30,369

Rate of W/S : 70 l.p.c.d. for population < 4,000
 90 l.p.c.d. for population > 4,000

Source of W/S : Tube well

Nature of treatment : Chlorination by differential pressure feed type chlorinating plant

Conveyance : Forced main of C.I. (class, LA, C=100.00) S/S pipe of

\varnothing (mm)	Length(m)
200	300
300	50

Service storage : One O.H.T. of R.C.C. having Capacity: 650 KL (based on 1/4th of the ultimate daily requirement of water)
 Staging : 14m

Distribution system : Peak demand factor : 2.4
 Terminal head: 6m for single storied building with few house connections
 8m for double storied building
 Minimum size 25 mm of pipe:

Kind, size and class of pipes

Kind	Size, Ø(mm)	Class	C
A.C.	200 to 250	10	130.00
P.V.C.	25	10 kg/cm ²	140.00
	32 to 40	6 kg/cm ²	140.00
	50 to 150	4 kg/cm ²	140.00

Appurtenances	:	Sluice valve	: 52 nos.
		Wheel valve	: 4 nos.
		Air valve single ball screwed down type 20 mm	: 12 nos.
		Fire hydrant	: 15 nos.
		Single tap type Stand post	: 42 nos. (30 percent for scheduled cast localities)
Average dose of chlorination	:	0.5 PPM	
Estimated cost	:	39.23 lacs	

This scheme falls under Tehsil Meja, District Allahabad.

Scarcity of drinking water is a regular feature in summer in this area. To face the draught conditions in every summer of the area a permanent piped water supply has been proposed. The railway line from Allahabad to Mirzapur goes across through this village group. In the southern side of the railway line there is URWA, Part I , group of villages RWSS which has already been implemented. In the north side of the same this scheme

is to be implemented.

The base year for the design period is 1981. As per Census figures the growth of population in the district is 20.4 percent for 1961 to 1971 decade; so to arrive at the population for 1981, the 1971 population has been increased by 20.4 percent. The ultimate population has been calculated for the year 2011 anticipating an increase of 50 percent. Over the 1981 population.

Two centrally located tube wells with pumping plants designed for discharge of 2000 lpm, at a head of 40 meters with 25 HP motor running 6.5 hours each in the beginning, 8 hours in the middle and 9.5 hours at the end of the design period shall be sufficient to cope with the need of scheme.

D. Malasa Group of Villages RWSS¹⁷

Name of the programme : NWSP (Rural)

Name of the local body : District Board, Kanpur

Number of villages
covered : 15

Population : Present : 15,400 (1978)

Designed: 23,100 (2008)

Rate of W/S : 70 l.p.c.d.

Nature of source : Tube well

Source of Development : Pump house

Nature of Treatment : Gaseous injector type chlorination using chlorine gas

SCHEDE 6

GROUP OF VILLAGES RIVER, RIVER, RIVER

卷之三

Conveyance : Forced main working on maximum pressure of 60 m water head of C.I. (class LA) having 200 mm internal dia and 330 m length.

Service storage : One O.H.T. of RCC of Capacity : 500 KL (based a 1/4th of the ultimate daily requirement of water)

 Staging : 20 m

Appurtenances : Sluice valves : 40 nos.

 Wheel valves : 35 nos.

 Air valves : 5 nos.

 Scour valves : 5 nos

 Public stand posts proposed single tap pillar type : 75 nos. (18 nos. are for weaker section).

Distribution system : Peak demand factor : 2.4

 Terminal pressure : Min. 6m head

 Minimum size of pipe : 25 mm

 Kind, size and class of pipes

Kind	Size, Ø(mm)	Class	C
A.C.	125 to 250	II	130.00
P.V.C.	25 to 100	-	140.00

Dose of chlorination : Maximum : 2.0 PPM

 Average : 0.5 PPM

 Range : 0.1 to 2.0 PPM

Estimated capital cost : 25.48 lac cs

Pumping plant : Two electrically driven oil lubricated vertical base hole turbine pumping plants

Plant capacity : 35 BHP

Pumping Hours : 16

Draw off rate of balancing reservoir : 16 hrs (standard)

Number of tubewells : 2 (one standby)

The villages draw their daily requirement of water for drinking and domestic purposes from open wells and hand pumps which are inadequate in number and are liable to contamination. The available water of the wells in some of the villages is brackish as well as unhygienic which is not advisable for human use. Besides this the ground water level in this area is considerably low varying from 19 to 25 meters below ground level. So, piped water supply becomes essential in this area.

The 1971 Census population of the proposed group of villages is 13,883. The population in the beginning of the design period (1978) works out to be 15,400 by increasing the 1971 Census population by 12 percent. The design population after a period of 30 years (2008) works out to be 23,100 after increasing the initial population by 50 percent.

E. Rajpur Group of Villages RWSS ¹⁸

Name of the programme : NWSP (Rural)

Name of local body : District Board, Kanpur

Number of villages covered: 3

Population	: Present: 6,439 (1976)
	Designed: 10,000 (2006)
Rate of W/S	: 70 l.p.c.d. for population <4,000 90 l.p.c.d. for population >4,000
Nature of source	: Tube well
Source of Development	: Pump house
Nature of treatment	: Pressure feed type chlorination
Conveyance	: Forced main of C.I. (class LA) having
	size Ø(mm) length(m)
	125 400
	150 30
Service storage	: One RCC O.H.T. of Capacity: 135 KL (based on 1/6th of the ultimate daily requirement of water) Staging : 12 m
Distribution system	: Peak demand factor : 2.4 Minimum terminal pressure: 6 m Minimum size: 32 mm
	Kind size Ø(mm) Class C
	A.C. 65 to 200 II 130.00
	P.V.C. 32 to 50 - 140.00
Appurtenances	: Sluice valve : 15 nos. Air valve : 2 nos. Fire hydrant : 4 nos.

Standposts : Single tap pillar type : 10 nos.
 Dose of chlorination : Maximum : 2 PPM
 Average : 0.5 PPM
 Estimated capital cost : 7.05 lacs
 Number of tube wells : Two (one standby)
 Pumping plant : Plant capacity : 7.5 BHP
 Pumping Hours: 14
 Draw off rate of balancing reservoir : 16 hrs. (standard)

The open wells are only the sources of drinking water in this area, which are liable to be contaminated and in summer draw inadequate water. Water table of the area is nearabout 20 m deep. So, piped water supply has been necessitated.

As per 1971 Census, the population of proposed group of villages is 5,699. The initial population (1976) works out to be 8,439 after allowing increase of 2.7 percent per year. Population after 30 years (2006) works out to be 10,000 after increasing the initial population by 50 percent.

2.3 COSTS FOR EFFICIENT DESIGN

The water supply distribution networks of the five schemes were analysed at the I.I.T. Kanpur computer facility by an efficient computer programme. After analysis it was found that the some schemes were overdesigned i.e. Ketehra and Rajpur.

The pressure heads at the terminal point are much more than that specified in design criteria. Some schemes were deficient and the pressure heads at the terminal points are much less than the specified, i.e. Girdkot, Urwa and Malasa. So, keeping in mind the minimum requirement of the pressure heads at the terminal points, the diameters of some pipes were changed according to the condition, to get more pressure head the diameter was increased, and final costs of the schemes were calculated. Table 2.1 shows the details of costs and savings.

TABLE 2.1: COST AND SAVING DETAILS OF THE SCHEMES

Schemes	Initial Cost (Rs.)*	Final Cost (Rs.)*	Saving (Percent)
A	3.42	3.44	-0.58
B	3.12	3.11	+0.32
C	15.00	15.26	-1.73
D	9.13	9.39	-2.85
E	1.78	1.57	+11.80

* In lacs

2.4 COMPARATIVE STUDY

TABLE 2.2 : COMPREHENSIVE ABSTRACT OF COST

Items	Schemes				
	A. 1**	B. 1***	C	D	E
1	2	3	4	5	6
Distribution system	14,47,600	15,12,000	19,30,111	11,80,000	2,25,000
Over head tank	3,70,000	2,96,000	3,20,000	2,32,000	80,000
Pumping plants	1,79,000	1,78,862*	1,34,000	1,40,000	40,000
Pump House and chlorinating room	33,000	29,000	22,000	14,000	10,000
Staff building	1,31,600	1,68,000†	87,000	22,500	-
Rising main	14,600	14,000	58,000	48,000	22,800
Boundary wall, approach road and gate	47,200	-	20,000	7,500	1,08,000
Electric transmission line	48,100	55,300	2,42,500	90,000	20,000
Chlorinating plant	9,000	-	6,000	14,000	4,000
Tubular shed	20,000	20,000	3,600	5,400	2,400
Purchase of special T and P	71,000	71,000	29,000	15,000	-

Table contd.

Table 2.2 contd...

	1	2	3	4	5	6
Extra cartage of material	5,000	-	-	8,500	4,000	
Land acquisition	-	5,000	7,500	-	-	
Water meters	-	-	33,060	29,600	10,000	
Internal electrification	-	-	-	4,000	-	
Provision of work required for diverting the surplus water - for agricultural use	-	-	-	5,900	-	
Total (Rs. in lacs ro- unded off)	23.76	23.49	23,49,162	28,92,771	18,16,400	5,26,200

- * Cost includes for pumping plants plus chlorinating plant
- + Cost includes for staff building plus boundary wall, approach road and gate
- ** Girdkot group of villages RWSS , Allahabad
- *** Ketehra group of villages RWSS, Allahabad

TABLE 2.3 : COSTS OF OVER HEAD TANKS

Sl. No.	Schemes	Sta- zing (m)	Capa- city (KL)	Cost (Rs.)	Year	Cost esti- mated in 1980(Rs. in lacs)
1.	A	15	200	1,23,333	1978	1.36
2.	B	17	120	86,500	1978	0.95
3.	C	14	500	3,20,000	1979	3.36
4.	D	20	500	2,32,000	1976	2.82
5.	E	12	135	80,000	1975	1.02

Average cost per 100 KL = Rs. 0.654 lacs

TABLE 2.4: ECONOMICS

Items	Schemes				Average
	A. 1*	B. 1**	C	D	
1971 (2001)	1971 (2001)	1981 (1996) ^x	1978 (2001) ^x	1976 (2006)	2001
-	-	(2011) ^x	(2008) ^x	-	
Total population (37,618)	25,069 -	24,541 -	20,246 (25,307) ^x	15,400 (21,520) ^x	6,439 (10,000)
Total capital cost (Rs.)***	30.00 (30.00)	29.95 (29.95)	29.23 (29.23) ^x	25.48 (25.48) ^x	7.05 (7.05)
Total annual maintenance cost(1,33,800) (Rs.)	86,000 -	78,000 -	86,000 (1,07,900) ^x	1,45,000 (1,60,000) ^x	35,700 (27,200)
Cost of scheme per capita(Rs.)	119.66 (79.75)	122.03 (81.34)	194.00 (155.01) ^x	165.45 (118.40)	110.00 (71.00)
Maintenance cost per capita(Rs.)	3.43 (3.56)	3.18 (3.07)	4.25 (4.26) ^x	9.45 (7.43) ^x	5.54 (2.72)
Water cost per KL (Rs.)	0.13 (0.14)	0.13 (0.13)	0.21 (0.21) ^x	0.37 (0.29) ^x	0.22 (0.11)

* Girdkot group of villages RWSS, Allahabad
 ** Ketehra group of villages RWSS, Allahabad
 *** In lacs

Total cost of scheme/1000 of population(2001)=RS. 1.05***

2.5 TYPICAL FEATURES OF A RWSS

According to the comparative study of the economics of the five U.P. Rural Water Supply schemes we get an average total of expenditure incurred on scheme on per capita basis. Per capita average total of expenditure on scheme will be equal to the sum of average per capita capital cost of the scheme and average per capita maintenance cost. The total for the year 2001 comes as Rs. 105.31. This per capita cost of the scheme is helpful for one to know the cost of the scheme, when population is known. One can easily get a total cost of the RWWS in a particular year, when the population to be served is known for that year, allowing a provision of appropriate annual compound interest (say 5 percent).

By the comparative study of over head tanks for all RWS schemes, the costs of the over head tanks for the year 1980 have been calculated by giving a provision of 5 percent annual compound interest. We have got an average total expenditure on over head tank on/100 KL basis, as Rs. 65,400.00. So, we can easily estimate the expenditure incurred on over head tank in an particular year of construction, if we know the capacity of over head tank.

It has been found from the present study that the Over Head Tank for each RWSS was designed and constructed separately. It incurs extra expenditure for its design for each scheme . It also creates difficulty in construction due to changes in each O.H.T.'s , so the working efficiency for the staff for construction becomes low giving more expenditure on scheme. Therefore, it is a need for standardization of O.H.T.'s. There can be a few O.H.T.'s . When we will go to design the distribution system, we can choose a standard design of O.H.T. of standard capacity to suit the scheme.

From the analysis of the network system of the schemes, it has been found that the required terminal pressure heads at some terminal points were not satisfied. There is no accurate method of the analysis in the Department. Manual analysis is very difficult. So, there is a need of distribution analysis by computer. With this we can modify the distribution system to get a nearly optimized network.

Also there is a need of standard features for staff buildings, approach roads and stores etc.

3 ANALYSIS OF WATER DISTRIBUTION SYSTEM

3.1 GENERAL

A few RWS schemes have been taken from U.P. Jal Nigam to get their water distribution networks analysed as discussed in previous chapter. These schemes are traditionally designed and there is no suitable and accurate method in the Department to analyse the schemes. While urban water supply schemes receive considerable attention, in terms of efficient analysis and design, there appears to be no such attempts towards optimal design in RWSS, even though the cost involved is in no way a small amount. So, it is essential to analyse the rural water supply distribution network to meet the flow and pressure requirements and to make the scheme optimal as far as feasible.

3.2 NETWORK ANALYSIS PROGRAMME

An efficient computer programme for the analysis of pressure and flow in pipe distribution systems, prepared by University of Kentucky, was available with Dr. K. Subramanya. This programme was suitably modified and implemented on the IIT Kanpur computer system, DEC 1090. This programme gives rapid and accurate results in only few trials. Features of this programme are given in Appendix I. The computer programme is written in FORTRAN IV, G level. It consists of a main

programme and five sparse matrix subroutines to solve the p linearized simultaneous equations where p is the number of pipes in the system. Before going to the programme a few terms related to distribution network are being defined.

(i) Node

The end points of pipes are called nodes.

(ii) Junction Node

It is a node where two or more pipes meet or where flow is put in or removed from the system. If a pipe diameter changes occurs at a component such as a valve or a pump, this point is a junction node.

(iii) Fixed Grade Node

It is node in the system where both the pressure and elevation (or hydraulic grade line i.e. piezometric head) are known. This is usually the surface of a storage tank or reservoir or a source or discharge point of specified pressure. Each system must have at least one fixed grade node.

(iv) Primary Loop

It is a closed pipe circuit with no closed pipe circuits contained within it.

If the junction, primary loops, and fixed grade nodes are identified as described here the following holds for all pipe system:

$$p = j + l + t - 1 \quad (3.1)$$

where, p = number of pipes

j = number of junction

l = number of primary loops

and t = number of fixed grade nodes.

(v) Pipe System Components

Pipes:

The length, inside diameter and roughness of each pipe must be input as data. One can use roughness coefficient both for Hazen Williams equation and Darcy-Weisbach equation.

Pumps:

A pump can be included in any line of the pipe system. The characteristics of the pump can be input in two ways :

- i) The power the pump puts into the system (in Horse power or kilowatts)
- ii) Minimum three points of operating data (Head-discharge) under normal operating range. This program is designed to work also if the points are outside the normal operating range. A second order curve can be fit to this data to obtain a pump characteristic curve describing the pump operation of the forms

$$E_p = A + BQ + CQ^2 \quad (3.2)$$

where A, B, C, are the characteristic coefficients and E_p is the head corresponding to the discharge Q.

Minor Loss:

A number of components in a pipe system (such as valves, junctions, bends, meters etc.) produce a head loss, calling minor loss. It could be input easily

$$H_{LM} = M \frac{V^2}{2g} \quad (3.3)$$

where M = minor loss coefficient

V = line velocity

and g = acceleration due to gravity.

Check Valve:

These valves allow flow only in the specified direction. If flow reversal occurs the valve shuts and the line causes no flow.

Pressure Regulating Valves (PRV's):

These valves are designed to maintain a specified discharge pressure (PR) which is lower than the pressure upstream from PRV.

3.3 FORMULATION FOR THE ANALYSIS

3.3.1 Basic Equations

Equation (3.1) giving the relationship between the

number of pipes, loops, junctions, and fixed grade nodes becomes significant when formulating a proper set of hydraulics equations to describe a pipe system.

In terms of the unknown discharge in each pipe, a number of continuity and energy equations can be written equating the number of pipes in the system.

i) Continuity Equation:

For each junction node the flow into the junction should be equal to the flow out of the junction, written as follows:

$$Q_{in} = Q_{out} \quad (j \text{ equations}) \quad (3.4)$$

ii) Energy Equations:

For each loop the sum of head loss around a loop should be equal to the sum of the energy put into the loop liquid by a pump. So for each loop the energy equation can be written as follows:

$$\sum h_L = \sum E_p \quad (1 \text{ equations}) \quad (3.5)$$

where h_L = head loss in each pipe (including minor loss)

E_p = energy put into the liquid by a pump.

If there are no pumps in the loop then the energy equation will state that the sum of the head loss around a loop equals zero.

If there are t fixed grade nodes, $t-1$ energy equations can be written for paths between any two fixed grade nodes as follows:

$$E = \sum h_L - \sum E_p \quad (t-1 \text{ equation}) \quad (3.6)$$

where E = grade difference between the two fixed grade nodes.

Any path in the pipe system can be chosen between these nodes. However, care must be taken to avoid redundant paths. The best method to avoid this difficulty is to either choose all paths starting at one source (like A-B, A-C, A-D, etc.) or to use the previous end point for a path as the starting point for the next path (like A-B, B-C, C-D, etc.). Either of these methods will result in $t-1$ equations with no redundant ones. These junction equations (continuity equations) and loop and path equations (energy equations) constitute a set of simultaneous nonlinear equations which can be solved for the discharge in each line.

3.3.2 Direct Solution of Linearized Equations

Because of the nonlinear nature of the above equations a direct solution is not possible. A linearization procedure is used to handle the non-linear head loss and pump terms so the system of equations can be cast as a set of p linear simultaneous equations which can be solved by routine matrix methods. Essentially the technique used to solve the system equations is this.

Based on an assumed flow in each line (a velocity of 4 units in each pipe is used) the non-linear hydraulic equations are linearized and the linearized equations are simultaneously solved for the flowrates. This set of flowrates is used to linearize the equations and a second solution is obtained. The procedure is repeated until the change in flowrates obtained in successive trials is insignificant. Because all flows are computed simultaneously, convergence is assured and occurs very fast compared to other procedures. Usually only 4-6 trials are required even for large systems. In the present study for the large system, 2 trials were required in tree type configuration and 6 trials in looped type configuration.

3.4 COMPUTER FLOW DIAGRAM

The simplified computer flow diagram has been given on page 49 .

FIG. 3.1 SIMPLIFIED COMPUTER FLOW DIAGRAM

3.5 BASIC EQUATIONS

The line head loss is given by

$$h_{LP} = K_p Q^n \quad (3.7)$$

where K_p = pipe line constant

Q = discharge in the pipe line

and n = exponent

For Hazen Williams equation

$$K_p = \frac{K_1 L}{C^{1.852} D^{4.87}} \quad (3.8)$$

and $n = 1.852$

where L = pipe line length

C = Hazen Williams Roughness coefficient

D = internal pipe diameter

and K_1 is a coefficient

= 10.69 for SI units

= 4.73 for English units

For Darcy Weisbach Equation

$$K_p = \frac{K_2 f L}{D^5} \quad (3.9)$$

and $n = 2.0$

where f = friction factor

L = pipe line length

D = internal pipe diameter

and K_2 is a coefficient
 = 0.08265 for SI units
 = 0.02517 for English units

Minor losses are given by a loss coefficient, M , which multiplies the velocity head to give the loss at the component.

This is

$$h_{LM} = M \frac{V^2}{2g} \quad (3.10)$$

where V = the mean line velocity
 and g = the gravitational constant

In terms of the discharge this is

$$h_{LM} = K_M Q^2 \quad (3.11)$$

where $K_M = \frac{K_3 M}{D^4}$ (3.12)

Q = discharge in pipe line
 D = internal dia of the pipe line
 and K_3 is a coefficient
 = 0.08265 for SI units
 = 0.02517 for English units

The effect of minor loss will be insignificant on the nodal pressure heads so it has not been considered in the present study.

The pump head is expressed in two ways:

- i) When pump power is given, general equation for pump head is

~~11-8848~~
CENTRAL LIBRARY

A 63006

$$E_P = \frac{P}{\gamma Q} \quad (3.13)$$

where P = power of the pump in watts

γ = specific weight of the liquid = $\gamma_w S$

Q = discharge in the pipe line

γ_w = specific weight of the water

and S = specific gravity of the liquid

$$\text{So, } E_P = \frac{P}{\gamma_w S Q}$$

Here, for SI units

$$E_P = \frac{1000 P}{9806 S Q}$$

or $E_P = \frac{0.10197 P}{S Q} \quad (3.14)$

and for English units

$$E_P = \frac{550 P}{62.42 S Q}$$

or $E_P = \frac{8.814 P}{S Q} \quad (3.15)$

- ii) When operating points for the pump are given, the pump head is

$$E_P = A + BQ + CQ^2 \quad (3.16)$$

where A , B , and C are the coefficients of a parabolic characteristic curve which defines the pump operation in the vicinity of the operating point.

Since this expression is only valid over a specified range it should not be indiscretely employed in an analysis.

The basic energy equation for a loop or a path between fixed grade nodes is

$$(h_{LP} + h_{LM}) = E + \Sigma E_p \quad (3.17)$$

where E is the energy difference between the fixed grade nodes.

This equation can be linearized with the continuity equations to get a set of p simultaneous linear equations in terms of the flowrates in each pipe using a gradient approximation.

3.6 IMPLEMENTATION OF THE PROGRAMME

This original programme is fairly lengthy involving 1,117 FORTRAN cards. The programme was created on the disk of the DEC 1090 system through the cards, and editing was done through the terminals (tty). After compressing the programme file, it occupies 62 blocks storage on disk. The syntax errors were corrected through the terminals. Considerable amount of time was spent on implementing the programme on the DEC system.

3.6.1 Modification due to Computer System

A large number of changes in the programme had to be made to implement it on the DEC system. The major changes are:

- i) '*2' was removed from the programme and 'REAL*8' and 'REAL' were substituted by 'DATA'.
- ii) In READ and WRITE statements device unit numbers were removed and only format statement number were given, also the 'WRITE' was changed to 'PRINT'.
- iii) The cards were arranged in the following order:
 - (a) Name of subroutine;
 - (b) Dimension cards;
 - (c) Variable declaration cards, REAL and INTEGER;
 - (d) Common cards;
 - (e) DATA statement cards;
 - (f) Programme card.

3.6.2 Additions

Some additions were made to run the programme and to get the desired results for the present study. These are:

- i) Array 'ROWCOL(2)' and 'NAME(5)' were introduced in the dimension statements in the subroutines 'MA18A' and 'MA18B' respectively.
- ii) Subroutine COSTT

This subroutine was added to get the total cost of the distribution network. We can give the rate/m length of the pipe for 20 standard pipe diameters. The cost was calculated nicely to know the cost of the scheme just after each analysis.

By making some changes in the system we will get next new cost of the scheme each time. This was felt to know the cost of the scheme when an round off optimized network was being obtained by the provision of putting changes in the system.

iii) Some FORMAT and PRINT statements were introduced to get the cost output and nice prints out for the U.P. RWS schemes.

3.6.3 Computation Time for a Big Scheme

All the five RWS schemes were analysed on DEC 1090 system. The Malasa Group of villages RWSS is biggest one. The distribution network of this scheme is of loop type. It has 298 pipes. It has been observed that the analysis of loop type network of the same number of pipes takes more CPU time than tree type network, as previous type network takes more number of trials to get the desired accuracy limit. The distribution network of Malasa, RWSS took 7.41 seconds CPU time for its analysis. The initial analysis took 5 trials to get the accuracy of 0.00363 l/s. The analysis after changes takes only 2 trials to get the accuracy of 0.00297 l/s. The execution for this scheme uses CORES of 100P.

3.7 TESTS

The programme was tested for four different types of water distribution networks. The details of the problems

Fixed grades at

$$A = 253.62$$

$$B = 107.87$$

$$C = 80.90$$

$$D = 121.81$$

$$E = 43.98$$

$$F = 100.00$$

Fig. 3.2 Schematic diagram of tree type distribution system fed by a large pressure main – English Units, $p=7$, $l=0$, $j=2$, and $t=6$

Fixed grades at	Pump characteristics	
	E in (m)	Q (l/s)
A = 30.05		
B = 30.48	165.61	200.00
C = 33.53	131.85	600.00
D = 33.53	17.83	1000.00

Fig. 3.3 Schematic diagram of loop type fourteen pipe distribution system - SI Units, $p=14$, $i=3$, $j=8$ and $t=4$

tested with computer results are as follows:

3.7.1 Test Problem No.1

This seven pipe tree type system (Fig. 3.2) is fed by a pressurized main at a constant pressure of 60 psig. All discharge points are fixed grade nodes, labeled A-F. The liquid used is gasoline having specific gravity of 0.68. Here the Darcy Weishbach equation was used in analysis. DEC 10 has taken only 3 trials against 12 trials (previously tested problem) and gave better accuracy limit.

3.7.2 Test Problem No.2

This fourteen pipe system has 3 loops and 4 fixed grade nodes, labeled A, B, C and D (Fig. 3.3). Pipe numbered 12 and 14 both are connected to the same storage reservoir. There is a pump in line 1 and has been described by operating data. Here an option for multiplying factor to the changes for demands is used. The pump operates within the allowable range. It has taken only 3 trials against 4 trials (previously tested problem).

3.7.3 Test Problem No.3

The system has a pump described by the useful horsepower. An item of note is a check valve in line 4, which allows flow only in the direction towards the storage

Fixed grades at

$$A = 50.00$$

$$B = 200.00$$

$$C = 303.46$$

$$D = 278.46$$

Fig. 3.4 Schematic diagram of pipe water distribution system having one check valve, one pump and 2 PRV's - English Units, $p=18, l=2, j=13, t=4$

Fig. 3.5 Schematic layout of improved water distribution system for the city of Montpelier, V.T.- English Units, $p = 43$, $l = 13$, $j = 27$ and $t = 4$

is 7 m and 11 nodes give less pressure heads. By making changes as shown in the computer print out the scheme has been made safe giving insignificant increase in the cost of the scheme. It took only 2.87 seconds CPU time for this analysis.

3.8.2 Scheme 2

This scheme was found to be over-designed. The terminal pressure were coming more than specified, 7m. It took 1.00 second CPU time. A little cost was reduced after changes to make the network nearly optimal.

3.8.3 Scheme 3

The analysis of this scheme gave more negative pressure at some nodes. One complete branch of the network was under-designed. This 138 pipes tree type network has taken 2.59 seconds CPU time for its analysis. The cost of the scheme has been increased by 1.73 percent to be safe.

3.8.4 Scheme 4

It is the biggest scheme. It comprises 298 pipes and 56 loops. It took 7.73 seconds CPU time. It was more under-designed and closely optimized scheme needed the scheme cost increased by 2.85 percent. Due to loop type it has taken 5 trials for initial analysis.

3.8.5 Scheme 5

It was too much over-designed and after making changes to get nearly optimal network, the saving turned out to be 11.80 percent. It took 2.76 seconds CPU time for analysis.

4 DESIGN OF TREE TYPE DISTRIBUTION SYSTEM

4.1 GENERAL

The essential part of all water supply schemes is the water distribution system. It comprises a considerable part of the total expenditure incurred on water supply schemes. It is apparent from the comparative study of a few U.P. rural water supply schemes, randomly selected, that 65 percent or more of the total cost of the scheme goes to the distribution system. So, optimization of the distribution network is highly desirable.

4.2 PROBLEM

The distribution systems are of mainly two types:
(i) loop type and (ii) tree type. As alternate routes are available for transporting water to the demand nodes in looped systems, they are more reliable, though somewhat costlier, than the other type. Reliability is preferred to economy and also the street pattern is grid like for large communities and therefore, loop type networks are employed for urban water supply schemes. For rural water supply schemes, however cost rather than reliability is the design criterion, and also the pattern of villages is of zig-zag nature, so, tree type system is used for them.

Previously all water supply schemes were concerned with Urban communities only. But nowadays worldwide agitation is being made to provide safe drinking water to all rural communities by 1990. In view of vast financial outlay in these projects we have to select optimized distribution network in all schemes.

We can have two ways of optimizing the network systems by (i) global optimal design and (ii) nearly optimized design. Optimal design is really a hard task and can be only possible by an efficient computer programme using the theory of Linear Programming. The other type of design which is to be nearly optimum. This is specifically studied here.

4.3 PAST WORKS

A review of past work in this field is made here before going to the design problem for tree type network systems. Bhave² used the method of critical path approach for the design of dead-end system. He showed that an optimal solution could be obtained directly without trial and error by system reduction procedure and by adopting an economic friction slope. The friction slope is assumed. So, one can not be certain that the optimal solution is achieved, though it may not be far from it. Deb⁹ presented a

method to get optimal solution of the branched pipe network system. He assumed a boundary condition that the total head-loss of the system through any branch is same. Khanna and Swamee¹¹ suggested an optimal design problem which reaches to a non-linear constraints involving an unknown procedure for solution and the work is based on simplifying the problem through approximations. Bhave¹ has a non-computer approach having steady flows. The approach is based on the critical path method, the method is simple, straight forward and gives a fairly economical distribution method without any trial and error procedure. Deb⁸ suggested that for optimal design of the water distribution system , the initial costs of the pipes, pumps and elevated service reservoir, and maintenance and electricity costs should be considered. According to him the total cost of a water distribution system is dependant on the inlet hydraulic gradient and the pressure surface geometry. With the increase of inlet hydraulic head and the pressure surface parameter (the ratio of the actual slope of the pressure profile at the farthest point from the inflow to the straight line variation slope) value, the total cost decreases initially, reaches a minimum value, and then increases. Optimum values of inlet hydraulic head, H_I and pressure surface parameter, S_R could be obtained. His study also found that the position of the elevated service

reservoir within the network is an important factor in cost optimization. If the position of the service reservoir is removed from the corner of a rectangular pipe network, towards the centre along the diagonal, the distance between the inlet point and the farthest point in the network is reduced, and for a specified head, the hydraulic gradient is increased. As a result, pipe cost is expected to be reduced. It was found that the total cost of the system is found to be 1.33 times more when the reservoir position is at one corner of the network than when it is at the centre.

4.4 CURRENT PRACTICE

From the study of five RWS schemes of the State, U.P., we see that the distribution networks were designed traditionally. In design, the tables based on Hazen Williams Formula were used. As the tables and graphs are used in design, there is a more chance to commit error in selecting a correct pipe diameter for the flow and friction slope conditions. There is no provision to check the error and it will be commulative giving more and more errors. For example, in the design of distribution network of Urwa, Part II, group of villages RWWS, a mistake has been committed in the beginning of a branch having starting node number 78. Due to this mistake the whole branch starting from node number 78 is unsafe from the

terminal pressure head point of view. There is no suitable method to analyse the distribution network after designing it. In other schemes under study, some are overdesigned and some under-designed. So, there is an essential need of a proper analysis for the flow and pressure conditions of the network and a proper design procedure.

4.5 SUGGESTED IMPROVEMENT

By the analysis of distribution network we get the terminal pressure condition. Observing the pressure condition we have to change the pipe diameter upstream of the corresponding terminal node, to get the network improved. So, no doubt, the analysis designs the network system in other way.

The computer programme used for the analysis of the scheme here was used to design the network and make it as far as possible optimal. The final costs of the schemes were calculated after the suggested design. The computer programme can be efficiently used to make the system nearabout optimal which is previously arbitrarily designed. This has been done in Urwa, Part II, group of villages, RWSS, Allahabad.

4.6 A SUGGESTED LP METHOD

4.6.1 General

A method based on the critical path concept can be

developed for selection of the optimal sets of pipe sizes for optimization of branching networks by LP. The number of pipes of consecutive sizes in an optimal set depends upon the quality of optimality needed. Practically two pipe sizes are satisfactory for a system. For global optimality one can select four, or even more pipe sizes. Before going to the critical path concept and behaviour of LP, we will be clear about some definitions.

Path

In branching system there is only one route to each demand node (terminal node) from the source. This route is called path.

Slope of Path

This is maximum available average friction slope. This is expressed as

$$S = \frac{H_O - H^{\min}}{L_P} \quad (4.1)$$

where S = slope of the path

H_O = HGL at the source

H = minimum required HGL at the demand node

and L_P = length of the path

Critical Slope

The minimum of all the path-slopes is termed as critical path.

$$S_c = \text{Minimum } \frac{H_o - H^{\min}}{L_p}, \text{ giving } S_c \leq S \quad (4.2)$$

Critical Path and Critical Node

The path having the maximum available average friction slope equal to the critical slope is termed as critical path and the node at the end of the critical path is termed as critical node.

Link

It consists of one or more pipes connected in series and has a constant flow and no branches.

4.6.2 LP Model

Decision Variable

As the resistance of a pipe and its cost are linear functions of its length, the different pipe lengths constituting a link are taken as the decision variables.

Objective Function

The objective function is to minimize the sum of the capital costs of the various links.

Constraints

- (i) For all links the sum of the lengths of the pipes selected must equal the length of the link.

FIG. 4.1: BRANCHING DISTRIBUTION SYSTEM

(ii) At each demand node the available HGL value must be equal to or greater than the minimum required HGL value at the node.

(iii) All pipe-lengths must be non-negative.

By experience, a designer, who carries out the network optimization, selects generally an optimal set of two or three pipe sizes, but this set may not constitute the optimal set. So, critical path concept is suggested here to select optimal set of pipe sizes.

4.6.3 Critical Path Concept

Here, the critical path for the entire system is located. There will be so many paths as demand nodes. The critical one is chosen in the system. For a node i on the critical path, the proposed HGL value H_i will be given by

$$H_i = H_o - S_c L_{Pi} \quad (4.3)$$

From equation (4.1)

$$H_i^{\min} = H_o - S_i L_{Pi} \quad (4.4)$$

From equations (4.3) and (4.4)

$$H_i \geq H_i^{\min}$$

which satisfy the node HGL constraints of the optimization problem, for all the nodes on critical path.

Thus , when all the links on the critical path are provided with critical slope, the node HGL constraints for all the nodes on the critical path are satisfied, and the flow takes place along the other paths.

After deciding the critical path and estimating the HGL values for the nodes lying on it, the critical path is removed from the distribution system. This leaves behind distribution sub-systems of the first order. These distribution sub-systems emerge from the nodes of known HGL values and thus are treated as independent distribution subsystems for which critical subpaths are located and the HGL values for nodes lying on them are estimated. The procedure of obtaining the distribution subsystems of first and higher orders, locating the critical subpaths and estimating the HGL values for nodes lying on them is continued until the proposed friction slopes for all links of the entire system can be estimated.

Practically the commercial pipe sizes which have friction slopes equal to the immediate lower and higher values constitute the optimal set for each link.

4.6.4 Formulation

After getting the critical path, the diameter of all the links lying on that path will be calculated by

$$D = \left(\frac{10.69 Q^{1.852}}{C^{1.852} S} \right)^{1/4.87}$$

where Q = pipe discharge, $\text{m}^3/\text{sec.}$

C = Hazen Williams constant

S = friction path slope

and D = internal diameter of the pipe in m

The set of two commercial pipe sizes having immediate lower and higher values than the calculated size will be optimal set.

4.6.5 Computer Programme

On the basis of this LP model based on critical path concept a computer programme in FORTRAN IV language was prepared. This consists of one main program and one subroutine dia. This has been created on the disk of IIT/K DEC 1090 system, and has been found to work satisfactorily. The programme is however in the initial stage of development and needs full testing. The details are available with Dr. K. Subramanya.

5 CONCLUSIONS AND RECOMMENDATIONS

Five rural water supply schemes under U.P. Jal Nigam were selected for the present study. Three tree type schemes are in district Allahabad named Girdkot, Ketehra and Urwa and two loop cum tree type schemes are in district Kanpur named Malasa and Rajpur. The topography of the areas where these schemes fall are more or less flat. Overall comparative study of these schemes has been done. The need for an efficient design and analysis of water distribution networks has been brought out.

These schemes were analysed by an efficient modified water distribution network system analysis computer programme. By the analysis of these schemes, it was found that some schemes were under-designed and some over-designed. These deficiencies of the existing schemes were removed with the help of the programme. By making suitable changes in the pipe line data of the schemes, in few trials we have got nearby optimized networks and final cost was calculated for each scheme. On the basis of the comparative study of the schemes, it has been found that the per capita expenditure for a typical scheme, is Rs. 105/- for the year 2001.

A computer method for the optimum design of tree type water distribution network has been indicated. This

method is based on critical path approach.

It has been found that:

- i) There is scope for considerable improvement in the schemes to effect economy.
- ii) Computer analysis and design is a necessity and the traditional methods of design have to give way to this.
- iii) The analysis programme used in the present study is very fast, versatile, reliable and could be used by Jal Nigam and other organisations connected with water supply for obtaining status of their design/systems.
- iv) There is a need for a computer based optimal water supply design programme.

LIST OF REFERENCES

1. Bhave, P.R., 'Economical Design of Single Source Distribution Networks by Critical Path Method,' Journal of IE (India), Env. Eng. Div., Vol.58, pt EN1, Oct., 1977, pp. 1-7.
2. Bhave, P.R., 'Critical Path Approach for the Design of Dead-End Gravity Distribution Systems,' Journal of IWWA, Bombay, India, Vol.8, No.1, Jan.-March, 1976, pp.41-48.
3. Bhave, P.R., 'Selecting Pipe Sizes in Network-Optimization by LP ', Journal of the Hydraulics Division, ASCE, Vol.105, No. HY7, August, 1979, pp. 1019-1025.
4. Bhave, P.R., 'Node Flow Analysis of Serial Water Distribution Systems', Journal of IWWA, Vol.XII, No.1, Jan.-Mar., 1980, pp.17-23.
5. Chiplunkar, A.V. and Khanna, P., 'Optimal Design of Rural Water Supply Systems', Journal of IWWA, Vol.XII, No.2, April -June, 1980, pp. 205-212.
6. Civic Affairs, U.P. Jal Nigam, Vol.26, No.11, June, 1979.
7. Deb, A.K., 'Optimization in Design of Pumping Systems' Journal of the Env. Eng. Div.,ASCE, Vol.104, No. EE1, Feb., 1978, pp. 127-136.

8. Deb, A.K., 'Optimization of Water Distribution Network Systems,' Journal of the Env. Eng. Div., Vol.102, No.EE4, Aug., 1976, pp.837-851.
9. Deb , A.K., 'Least Cost Design of Branched Pipe Network System,' Journal of the Env.,Eng. Div., ASCE, Vol.100, No. EE4, Aug., 1974, pp. 821-835.
10. Garde,R.J., and Mirajgaokar, A.G., Fluid Mechanics, Roorkee Publishing House Roorkee(India), 1972.
11. Khanna, P., and Swamee, P.K., 'Optimization of Water Distribution Networks,' Journal of the Institution of Engineers (India), Public Health Engineering Division, Vol.52, No.6, Part PH2, February, 1972, pp.54-56.
12. Khare, S.T., 'International Drinking Water Supply and Sanitation Decade (1980-1990),' Journal of IWWA, Vol.X, No.1, Jan.-March, 1978, pp.1-3.
13. Kumaresan, N., and Kumar Avadhesh, 'Approaches for Optimal Design of Branched Pipe System,' Journal of IWWA, Vol.XII, No.1, Jan.-March, 1980, pp.25-31.
14. Report, Girdkot Group of Villages Rural Water Supply Scheme, Allahabad, U.P. Jal Nigam.
15. Report, Ketehra Group of Villages Rural Water Supply Scheme, Allahabad, U.P. Jal Nigam.

16. Report, Urwa, Part II, Group of Villages Rural Water Supply Scheme, Allahabad, U.P. Jal Nigam.
17. Report, Malasa Group of Villages Rural Water Supply Scheme, Kanpur, U.P. Jal Nigam.
18. Report, Rajpur Group of Villages Rural Water Supply Scheme, Kanpur, U.P. Jal Nigam.
19. Streeter, V.L., and Wylie, E. Benjamin, Fluid Mechanics, McGraw-Hill Kogakusha, Ltd. International Student Edition, 1975.
20. Sundarsan, B.B., 'Drinking Water Supply Decade (1980-1990)- A Challenge,' Journal of Indian Water Works Association, Vol.XI, No.2, April-June, 1979, pp.225-244.
21. Swamee, P.K., Kumar Virendra, and Khanna, P., 'Optimization of Dead End Water Distribution Systems,' Journal of the Env. Eng. Div., ASCE, Vol.99, No.EE2, Proc.Paper 9650, April, 1973, pp. 123-134.
22. Tasgaonkar, S.K., 'Norms for Design of Rural Piped Water Supply Schemes,' Journal of IWWA, Vo.X, No.1, Jan.-March, 1978, pp. 97-102.
23. Venkobachar, C. and Jain, R.K., 'Recent Trend in Rural Water Supply Technology,' Journal of IWWA, Vol.XI, No.3, July-Sept., 1979, pp. 323-326.

APPENDIX I - FEATURES OF NETWORK ANALYSIS PROGRAMME

Features of the programme can be listed as follows:

1. Any type of pipe system configuration can be handled.
2. The system can contain any number of storage tanks, pumps, valves, meters, fitting etc.
3. Pumps can be described by useful power or by inputting head-flow data from operating curves. Out of range pump operation is incorporated into the programme.
4. The system can have pressure regulating valves which isolate entire low pressure regions or various single pressure regulations described throughout the system.
5. Check valves, which allow flow in only one direction, can be included.
6. Flow units of CFS, GPM, MGD or SI can be used.
7. Data preparation is simple even for large systems.
8. Complete output is provided including pressures, elevations and grade lines at all junctions, head losses in lines and at all valves, pump heads, flowrates and velocities.
9. The procedure is relatively fast. Typical computer times for execution on DEC 1090 system at IIT Kanpur are as follows:

For loop systems: 2-3 seconds for 100 pipes network
6-7 seconds for 300 pipes network

For tree type systems : 1-2 seconds for 100 pipes network.

10. It has the characteristics to converge to a solution for all situations.
11. No assumptions (such as initial flowrates or pressures) are required.
12. Sparse matrix routines are used which minimize storage requirements and increase computer execution times.
13. A pipe system of p pipes requires approximately $50p$ dimensioned storage (word) spaces.

The basis of the programme is a direct solution of the basic pipe system hydraulic equations using a linearization scheme (A-1) and sparse matrix methods to handle the non-linearization methods to solve the equations. It utilizes linear network theory.

Ref:(A-1): Wood, Don J., and Charles, Carl, O.A., 'Hydraulic Network Analysis Using Linear Theory,' Journal of Hydraulics Division, ASCE, Vol.98, No.HY7, Proc. Paper 9031, July 1972, pp. 1157-1170.

APPENDIX II - RESULTS OF ANALYSIS

Typical output results relating to the analysis of all five U.P. Jal Nigam schemes (A through E) are appended.

SCHEME I STADKÖNIG, ZONE A, GROUP OF VILLAGES RURAL, SATED SIBBIY SCHEME APPROVED

THIS SCHEME HAS 112 PIPES, 112 JUNCTIONS, 0 LOOPS AND 1 FIXED GRADE NODE

THESE ARE THE RESULTS FOR THE FLOW IN DIPS

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRAILS

STANDARD GRADE
(NETT PPS)
44.40

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTION NODES

JUNCTION NO.	DEMAND (LBS/SEC)	GRADE LINE (FEET)	ELEVATION (METERS)	PRESSURE (METERS)
--------------	---------------------	----------------------	-----------------------	----------------------

159 8
0 9 8
- -
177 3
- -
4 2 0
- -
4 4 0
- -
1 1 0
M P D

1920
320
1
000
0000
2222
1111
0000
1111

4320
4640
4740
4770
4810
4840
4900
4930
4970
5010
5050
5080
5110
5140
5170
5200
5230
5260
5290
5320
5350
5380
5410
5440
5470
5500
5530
5560
5590
5620
5650
5680
5710
5740
5770
5800
5830
5860
5890
5920
5950
5980
6010
6040
6070
6100
6130
6160
6190
6220
6250
6280
6310
6340
6370
6400
6430
6460
6490
6520
6550
6580
6610
6640
6670
6700
6730
6760
6790
6820
6850
6880
6910
6940
6970
7000
7030
7060
7090
7120
7150
7180
7210
7240
7270
7300
7330
7360
7390
7420
7450
7480
7510
7540
7570
7600
7630
7660
7690
7720
7750
7780
7810
7840
7870
7900
7930
7960
7990
8020
8050
8080
8110
8140
8170
8200
8230
8260
8290
8320
8350
8380
8410
8440
8470
8500
8530
8560
8590
8620
8650
8680
8710
8740
8770
8800
8830
8860
8890
8920
8950
8980
9010
9040
9070
9100
9130
9160
9190
9220
9250
9280
9310
9340
9370
9400
9430
9460
9490
9520
9550
9580
9610
9640
9670
9700
9730
9760
9790
9820
9850
9880
9910
9940
9970
0000

DIAMETER (MM)	COST (RS.)
10	0
12	0
14	0
16	0
18	0
20	0
22	0
24	0
26	0
28	0
30	0
32	0
34	0
36	0
38	0
40	0
42	0
44	0
46	0
48	0
50	0
52	0
54	0
56	0
58	0
60	0
62	0
64	0
66	0
68	0
70	0
72	0
74	0
76	0
78	0
80	0
82	0
84	0
86	0
88	0
90	0
92	0
94	0
96	0
98	0
100	0

DIAMETER (MM)	TOTAL LENGTH (MFT/PRS)
10	0.0
12	0.0
14	0.0
16	0.0
18	0.0
20	0.0
22	0.0
24	0.0
26	0.0
28	0.0
30	0.0
32	0.0
34	0.0
36	0.0
38	0.0
40	0.0
42	0.0
44	0.0
46	0.0
48	0.0
50	0.0
52	0.0
54	0.0
56	0.0
58	0.0
60	0.0
62	0.0
64	0.0
66	0.0
68	0.0
70	0.0
72	0.0
74	0.0
76	0.0
78	0.0
80	0.0
82	0.0
84	0.0
86	0.0
88	0.0
90	0.0
92	0.0
94	0.0
96	0.0
98	0.0
100	0.0

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

DIAMETER (MM)	ROUGHNESS (/MTRS.)
10	1.30
12	1.30
14	1.30
16	1.30
18	1.30
20	1.30
22	1.30
24	1.30
26	1.30
28	1.30
30	1.30
32	1.30
34	1.30
36	1.30
38	1.30
40	1.30
42	1.30
44	1.30
46	1.30
48	1.30
50	1.30
52	1.30
54	1.30
56	1.30
58	1.30
60	1.30
62	1.30
64	1.30
66	1.30
68	1.30
70	1.30
72	1.30
74	1.30
76	1.30
78	1.30
80	1.30
82	1.30
84	1.30
86	1.30
88	1.30
90	1.30
92	1.30
94	1.30
96	1.30
98	1.30
100	1.30

140	140.0	7.00	2499.0	17493.00
140	140.0	4.70	1507.0	7082.00
140	140.0	4.15	1340.0	5561.00
140	140.0	4.10	3140.0	12874.00
	TOTAL CONST=			342437.70

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIA METER (CMWS)	ROUGHNESS
28	26	25.2-0	4.0	140.0
49	32	31.2-0	5.5	140.0
51	34	36.2-0	3.2	140.0
35	35	30.0-0	4.2	140.0
342	36	15.0-0	1.6	140.0
43	41	23.0-0	2.3	140.0
46	42	15.0-0	1.5	140.0
47	45	23.0-0	2.3	140.0
93	95	23.0-0	2.3	140.0
5	51	10.5-0	1.0	140.0
31	33	30.0-0	3.0	140.0
36	39	29.0-0	2.9	140.0
40	47	29.0-0	2.9	140.0
43	49	10.8-0	1.0	140.0
46	47	10.8-0	1.0	140.0
48	49	10.8-0	1.0	140.0
100	105	10.8-0	1.0	140.0
110	112	10.8-0	1.0	140.0
111	113	10.8-0	1.0	140.0
112	114	10.8-0	1.0	140.0
113	115	10.8-0	1.0	140.0
114	116	10.8-0	1.0	140.0
115	117	10.8-0	1.0	140.0
116	118	10.8-0	1.0	140.0
117	119	10.8-0	1.0	140.0
118	120	10.8-0	1.0	140.0
119	121	10.8-0	1.0	140.0
120	122	10.8-0	1.0	140.0
121	123	10.8-0	1.0	140.0
122	124	10.8-0	1.0	140.0
123	125	10.8-0	1.0	140.0
124	126	10.8-0	1.0	140.0
125	127	10.8-0	1.0	140.0
126	128	10.8-0	1.0	140.0
127	129	10.8-0	1.0	140.0
128	130	10.8-0	1.0	140.0
129	131	10.8-0	1.0	140.0
130	132	10.8-0	1.0	140.0
131	133	10.8-0	1.0	140.0
132	134	10.8-0	1.0	140.0
133	135	10.8-0	1.0	140.0
134	136	10.8-0	1.0	140.0
135	137	10.8-0	1.0	140.0
136	138	10.8-0	1.0	140.0
137	139	10.8-0	1.0	140.0
138	140	10.8-0	1.0	140.0
139	141	10.8-0	1.0	140.0
140	142	10.8-0	1.0	140.0
141	143	10.8-0	1.0	140.0
142	144	10.8-0	1.0	140.0
143	145	10.8-0	1.0	140.0
144	146	10.8-0	1.0	140.0
145	147	10.8-0	1.0	140.0
146	148	10.8-0	1.0	140.0
147	149	10.8-0	1.0	140.0
148	150	10.8-0	1.0	140.0
149	151	10.8-0	1.0	140.0
150	152	10.8-0	1.0	140.0
151	153	10.8-0	1.0	140.0
152	154	10.8-0	1.0	140.0
153	155	10.8-0	1.0	140.0
154	156	10.8-0	1.0	140.0
155	157	10.8-0	1.0	140.0
156	158	10.8-0	1.0	140.0
157	159	10.8-0	1.0	140.0
158	160	10.8-0	1.0	140.0
159	161	10.8-0	1.0	140.0
160	162	10.8-0	1.0	140.0
161	163	10.8-0	1.0	140.0
162	164	10.8-0	1.0	140.0
163	165	10.8-0	1.0	140.0
164	166	10.8-0	1.0	140.0
165	167	10.8-0	1.0	140.0
166	168	10.8-0	1.0	140.0
167	169	10.8-0	1.0	140.0
168	170	10.8-0	1.0	140.0
169	171	10.8-0	1.0	140.0
170	172	10.8-0	1.0	140.0
171	173	10.8-0	1.0	140.0
172	174	10.8-0	1.0	140.0
173	175	10.8-0	1.0	140.0
174	176	10.8-0	1.0	140.0
175	177	10.8-0	1.0	140.0
176	178	10.8-0	1.0	140.0
177	179	10.8-0	1.0	140.0
178	180	10.8-0	1.0	140.0
179	181	10.8-0	1.0	140.0
180	182	10.8-0	1.0	140.0
181	183	10.8-0	1.0	140.0
182	184	10.8-0	1.0	140.0
183	185	10.8-0	1.0	140.0
184	186	10.8-0	1.0	140.0
185	187	10.8-0	1.0	140.0
186	188	10.8-0	1.0	140.0
187	189	10.8-0	1.0	140.0
188	190	10.8-0	1.0	140.0
189	191	10.8-0	1.0	140.0
190	192	10.8-0	1.0	140.0
191	193	10.8-0	1.0	140.0
192	194	10.8-0	1.0	140.0
193	195	10.8-0	1.0	140.0
194	196	10.8-0	1.0	140.0
195	197	10.8-0	1.0	140.0
196	198	10.8-0	1.0	140.0
197	199	10.8-0	1.0	140.0
198	200	10.8-0	1.0	140.0
199	201	10.8-0	1.0	140.0
200	202	10.8-0	1.0	140.0
201	203	10.8-0	1.0	140.0
202	204	10.8-0	1.0	140.0
203	205	10.8-0	1.0	140.0
204	206	10.8-0	1.0	140.0
205	207	10.8-0	1.0	140.0
206	208	10.8-0	1.0	140.0
207	209	10.8-0	1.0	140.0
208	210	10.8-0	1.0	140.0
209	211	10.8-0	1.0	140.0
210	212	10.8-0	1.0	140.0
211	213	10.8-0	1.0	140.0
212	214	10.8-0	1.0	140.0
213	215	10.8-0	1.0	140.0
214	216	10.8-0	1.0	140.0
215	217	10.8-0	1.0	140.0
216	218	10.8-0	1.0	140.0
217	219	10.8-0	1.0	140.0
218	220	10.8-0	1.0	140.0
219	221	10.8-0	1.0	140.0
220	222	10.8-0	1.0	140.0
221	223	10.8-0	1.0	140.0
222	224	10.8-0	1.0	140.0
223	225	10.8-0	1.0	140.0
224	226	10.8-0	1.0	140.0
225	227	10.8-0	1.0	140.0
226	228	10.8-0	1.0	140.0
227	229	10.8-0	1.0	140.0
228	230	10.8-0	1.0	140.0
229	231	10.8-0	1.0	140.0
230	232	10.8-0	1.0	140.0
231	233	10.8-0	1.0	140.0
232	234	10.8-0	1.0	140.0
233	235	10.8-0	1.0	140.0
234	236	10.8-0	1.0	140.0
235	237	10.8-0	1.0	140.0
236	238	10.8-0	1.0	140.0
237	239	10.8-0	1.0	140.0
238	240	10.8-0	1.0	140.0
239	241	10.8-0	1.0	140.0
240	242	10.8-0	1.0	140.0
241	243	10.8-0	1.0	140.0
242	244	10.8-0	1.0	140.0
243	245	10.8-0	1.0	140.0
244	246	10.8-0	1.0	14

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTION NODES

PRESSURE
(NEUTER)

ELEVATION
(NEUTER)

GRADE LINE
(NEUTER)

Demand
Rate/sec.)

JUNCTION NO. 123456789012345

105	0.00000	38.489	30.890	7.60
106	0.05833	38.385	30.890	7.50
107	0.10000	38.277	30.700	7.38
108	0.17500	37.725	30.500	7.75
109	0.38889	37.725	30.600	7.93
110	0.05056	38.033	30.700	7.33
111	0.01944	37.986	30.690	7.33
112	0.00000	43.766	29.250	14.52

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

DIAMETER (CMS)	ROUGHNESS (CMS)	RATE (/MTRS)	TOTAL LENGTH (METERS)	COST (RS)
25.0	130.0	55.00	0.0	0.00
29.0	130.0	40.00	191.0	7640.00
15.0	130.0	30.00	106.7	3201.00
12.5	130.0	25.00	113.1	2827.50
10.0	140.0	17.00	524.1	9228.90
8.5	140.0	12.70	397.2	50444.40
6.5	140.0	9.70	248.9	24056.00
5.0	140.0	7.00	117.2	8204.00
4.0	140.0	4.70	143.0	6721.00
3.2	140.0	4.15	219.5	9109.25
2.5	140.0	4.10	337.7	13845.70
TOTAL COST =			312355.15	

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAFTER (CMSS)	ROUGHNESS
89	107	108	3.2	140.0
71	73	75	4.0	140.0
66	71	72	5.0	140.0
62	68	69	6.2	140.0
98	83	84	4.0	140.0
103	88	89	4.0	140.0
120	61	63	6.0	140.0
21	61	63	3.2	140.0
18	59	60	3.2	140.0
25	66	67	3.2	140.0
12	23	24	5.0	140.0

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAFTER (CMSS)	ROUGHNESS	FLOWRATE (LIT/SEC)	HEAD LOSS (METERS)	VELOCITY (M/SEC)	FIXED GRADE (METERS)
89	107	108	3.2	140.0	0.083	0.094	2.760	44.49
71	73	75	4.0	140.0	0.083	0.094	2.760	44.49
66	71	72	5.0	140.0	0.083	0.094	2.760	44.49
62	68	69	6.2	140.0	0.083	0.094	2.760	44.49
98	83	84	4.0	140.0	0.083	0.094	2.760	44.49
103	88	89	4.0	140.0	0.083	0.094	2.760	44.49
120	61	63	6.0	140.0	0.083	0.094	2.760	44.49
21	61	63	3.2	140.0	0.083	0.094	2.760	44.49
18	59	60	3.2	140.0	0.083	0.094	2.760	44.49
25	66	67	3.2	140.0	0.083	0.094	2.760	44.49
12	23	24	5.0	140.0	0.083	0.094	2.760	44.49

THE EFFECTS OF VARIOUS PRESSURES AT JUNCTION NODE

Dissertationen der Universität Bonn

CHARTERS (ISSUED)

卷之三

— 100
— 200
— 300
— 400
— 500

1980-81
1981-82
1982-83
1983-84
1984-85
1985-86
1986-87
1987-88
1988-89
1989-90
1990-91
1991-92
1992-93
1993-94
1994-95
1995-96
1996-97
1997-98
1998-99
1999-2000
2000-01
2001-02
2002-03
2003-04
2004-05
2005-06
2006-07
2007-08
2008-09
2009-10
2010-11
2011-12
2012-13
2013-14
2014-15
2015-16
2016-17
2017-18
2018-19
2019-20
2020-21
2021-22

卷之三

ପ୍ରକାଶନ କମିଶନ ଅଧୀକାରୀ ପତ୍ର ପରିଚୟ

443
422
• •
221
330
335
333
111
330
mm

220
220
220
111
000
mm

R 725
R 745
R 800

11-48
11-50
11-52
11-54
11-56
11-58
11-60
11-62
11-64
11-66
11-68
11-70
11-72
11-74
11-76
11-78
11-80
11-82
11-84
11-86
11-88
11-90
11-92
11-94
11-96
11-98
11-100
11-102
11-104
11-106
11-108
11-110
11-112
11-114
11-116
11-118
11-120
11-122
11-124
11-126
11-128
11-130
11-132
11-134
11-136
11-138
11-140
11-142
11-144
11-146
11-148
11-150
11-152
11-154
11-156
11-158
11-160
11-162
11-164
11-166
11-168
11-170
11-172
11-174
11-176
11-178
11-180
11-182
11-184
11-186
11-188
11-190
11-192
11-194
11-196
11-198
11-200
11-202
11-204
11-206
11-208
11-210
11-212
11-214
11-216
11-218
11-220
11-222
11-224
11-226
11-228
11-230
11-232
11-234
11-236
11-238
11-240
11-242
11-244
11-246
11-248
11-250
11-252
11-254
11-256
11-258
11-260
11-262
11-264
11-266
11-268
11-270
11-272
11-274
11-276
11-278
11-280
11-282
11-284
11-286
11-288
11-290
11-292
11-294
11-296
11-298
11-300
11-302
11-304
11-306
11-308
11-310
11-312
11-314
11-316
11-318
11-320
11-322
11-324
11-326
11-328
11-330
11-332
11-334
11-336
11-338
11-340
11-342
11-344
11-346
11-348
11-350
11-352
11-354
11-356
11-358
11-360
11-362
11-364
11-366
11-368
11-370
11-372
11-374
11-376
11-378
11-380
11-382
11-384
11-386
11-388
11-390
11-392
11-394
11-396
11-398
11-400
11-402
11-404
11-406
11-408
11-410
11-412
11-414
11-416
11-418
11-420
11-422
11-424
11-426
11-428
11-430
11-432
11-434
11-436
11-438
11-440
11-442
11-444
11-446
11-448
11-450
11-452
11-454
11-456
11-458
11-460
11-462
11-464
11-466
11-468
11-470
11-472
11-474
11-476
11-478
11-480
11-482
11-484
11-486
11-488
11-490
11-492
11-494
11-496
11-498
11-500
11-502
11-504
11-506
11-508
11-510
11-512
11-514
11-516
11-518
11-520
11-522
11-524
11-526
11-528
11-530
11-532
11-534
11-536
11-538
11-540
11-542
11-544
11-546
11-548
11-550
11-552
11-554
11-556
11-558
11-560
11-562
11-564
11-566
11-568
11-570
11-572
11-574
11-576
11-578
11-580
11-582
11-584
11-586
11-588
11-590
11-592
11-594
11-596
11-598
11-600
11-602
11-604
11-606
11-608
11-610
11-612
11-614
11-616
11-618
11-620
11-622
11-624
11-626
11-628
11-630
11-632
11-634
11-636
11-638
11-640
11-642
11-644
11-646
11-648
11-650
11-652
11-654
11-656
11-658
11-660
11-662
11-664
11-666
11-668
11-670
11-672
11-674
11-676
11-678
11-680
11-682
11-684
11-686
11-688
11-690
11-692
11-694
11-696
11-698
11-700
11-702
11-704
11-706
11-708
11-710
11-712
11-714
11-716
11-718
11-720
11-722
11-724
11-726
11-728
11-730
11-732
11-734
11-736
11-738
11-740
11-742
11-744
11-746
11-748
11-750
11-752
11-754
11-756
11-758
11-760
11-762
11-764
11-766
11-768
11-770
11-772
11-774
11-776
11-778
11-780
11-782
11-784
11-786
11-788
11-790
11-792
11-794
11-796
11-798
11-800
11-802
11-804
11-806
11-808
11-810
11-812
11-814
11-816
11-818
11-820
11-822
11-824
11-826
11-828
11-830
11-832
11-834
11-836
11-838
11-840
11-842
11-844
11-846
11-848
11-850
11-852
11-854
11-856
11-858
11-860
11-862
11-864
11-866
11-868
11-870
11-872
11-874
11-876
11-878
11-880
11-882
11-884
11-886
11-888
11-890
11-892
11-894
11-896
11-898
11-900
11-902
11-904
11-906
11-908
11-910
11-912
11-914
11-916
11-918
11-920
11-922
11-924
11-926
11-928
11-930
11-932
11-934
11-936
11-938
11-940
11-942
11-944
11-946
11-948
11-950
11-952
11-954
11-956
11-958
11-960
11-962
11-964
11-966
11-968
11-970
11-972
11-974
11-976
11-978
11-980
11-982
11-984
11-986
11-988
11-990
11-992
11-994
11-996
11-998
11-1000

卷之三

卷之三

卷之三

TYPE OF FURNITURE	RUGGNESS	RATE (IN RUPEES)	TOTAL RENTAL (IN RUPEES)	COST (IN RUPEES)
CCS 1	130+	150-	1910-	76400-
CCS 2	130+	150-	1910-	76400-
CCS 3	130+	150-	1910-	76400-
CCS 4	130+	150-	1910-	76400-

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

ITEM	QUANTITY	UNIT	RATE	AMOUNT
1. Furniture	1	Set	76400	76400
2. Rent	1	Month	1910	1910
3. Total Cost	1		95510	95510

	25.00
130.0	17.80
140.0	12.70
140.0	9.70
140.0	7.00
140.0	4.70
140.0	4.15
140.0	4.10
	2742.0
	11242.20
	344055.30
TOTAL COSTS	
	5000500
	554432.5
	32.

SCHEME 2

KETEERA, ZONE A, GROUP OF VILLAGES RURAL WATER SUPPLY SCHEME, ALIAHABAD
 THIS SYSTEM HAS ONE OVER HEAD TANK
 THIS SCHEME HAS 55 PIPES, 55 JUNCTIONS,
 0 LOOP AND 1 FIXED GRADE NODE

THESE ARE THE RESULTS FOR THE FLOWS IN PIPES

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAETER (CM'S)	ROUGHNESS (METERS)	FLOW RATE (LIT/SEC)	HEAD LOSS (METERS)	VELOCITY (M/SEC)	HL/1000	FIXED GRADE (METERS)
1	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
2	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
3	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
4	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
5	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
6	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
7	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
8	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
9	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
10	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
11	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
12	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
13	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
14	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
15	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
16	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
17	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
18	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
19	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
20	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
21	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
22	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
23	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
24	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
25	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
26	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
27	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
28	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
29	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
30	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
31	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
32	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
33	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
34	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
35	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
36	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
37	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
38	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
39	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
40	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
41	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
42	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
43	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
44	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
45	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
46	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
47	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
48	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
49	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
50	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
51	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
52	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
53	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
54	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20
55	100	130.0	15.0	0.028	1.30	0.097	1.145	9.750	117.20

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTIONS

JUNCTION NO.	DEMAND (LIT/SEC)	GRADE LINE (METERS)	ELEVATION (METERS)	PRESSURE (METERS)
1	0.00000	117.103	100.930	117.07
2	0.28375	116.949	100.930	117.33
3	0.00000	115.267	100.930	115.06
4	0.94583	111.736	100.939	111.95
5	1.90112	101.399	99.539	99.87

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIA METER (CMS)	ROUGHNESS
6	5	10	300.0	140.0
55	3	12	300.0	140.0
31	32	34	300.0	140.0
28	30	31	200.0	140.0
30	32	33	210.0	140.0

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIA METER (CMS)	ROUGHNESS	FLOW RATE (LIT/SEC)	HEAD LOSS (METERS)	VELOCITY (CM/SEC)	HL/1000	FIXED GRADE (METERS)
6	5	10	300.0	140.0	130.0	0.0	1.45	9.75	0.158
55	3	12	300.0	140.0	130.0	0.0	1.45	9.75	0.158
31	32	34	300.0	140.0	130.0	0.0	1.45	9.75	0.158
28	30	31	200.0	140.0	130.0	0.0	1.45	9.75	0.158
30	32	33	210.0	140.0	130.0	0.0	1.45	9.75	0.158

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTION NODES

JUN. NODE NO.	DEMAND (LIT/SEC)	GRADE LINE (METERS)	ELEVATION (METERS)	PRESSURE (CM OF WATER)
1	123.45678	1.17	0.300	117.333
2	123.45678	1.17	0.300	117.333
3	123.45678	1.17	0.300	117.333
4	123.45678	1.17	0.300	117.333
5	123.45678	1.17	0.300	117.333
6	123.45678	1.17	0.300	117.333
7	123.45678	1.17	0.300	117.333
8	123.45678	1.17	0.300	117.333

SCHEME 3

URWA, PART II, GROUP OF VILLAGES RURAL WATER SUPPLY SCHEME, ATLAHABAD

THIS SYSTEM HAS ONE OVER HEAD TANK

THIS SCHEME HAS 138 PIPES, 138 JUNCTIONS, 9 LOOP AND 1 FIXED GRADE NODE

THESE ARE THE RESULTS FOR THE FLOWS IN PIPES

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAMETER (CMS)	ROUGHNESS	FLOW RATE (LIT/SEC)	HEAD LOSS (FEET)	VELOCITY (CM/SEC)	HL/1000	FIXED GRADE (METERS)	
									1123456789	1123456789
1	1235816789	100	25.0	130.0	61.912	6.473	6.473	6.473	0.000	0.000
2	1456789	34.0	25.0	62.6	60.643	1.261	1.261	1.261	0.000	0.000
3	1456789	14.0	20.0	52.6	1.043	1.497	1.497	1.497	0.000	0.000
4	1456789	20.0	20.0	52.6	1.043	1.497	1.497	1.497	0.000	0.000
5	1456789	3.0	16.0	4.4	1.043	1.497	1.497	1.497	0.000	0.000
6	1456789	15.0	15.0	5.0	1.043	1.497	1.497	1.497	0.000	0.000
7	1456789	2.0	12.0	2.0	1.043	1.497	1.497	1.497	0.000	0.000
8	1456789	1.0	10.0	1.0	1.043	1.497	1.497	1.497	0.000	0.000
9	1456789	0.5	8.0	0.5	1.043	1.497	1.497	1.497	0.000	0.000
10	1456789	0.2	6.0	0.2	1.043	1.497	1.497	1.497	0.000	0.000
11	1456789	0.1	5.0	0.1	1.043	1.497	1.497	1.497	0.000	0.000
12	1456789	0.05	4.0	0.05	1.043	1.497	1.497	1.497	0.000	0.000
13	1456789	0.02	3.0	0.02	1.043	1.497	1.497	1.497	0.000	0.000
14	1456789	0.01	2.0	0.01	1.043	1.497	1.497	1.497	0.000	0.000
15	1456789	0.005	1.5	0.005	1.043	1.497	1.497	1.497	0.000	0.000
16	1456789	0.002	1.0	0.002	1.043	1.497	1.497	1.497	0.000	0.000
17	1456789	0.001	0.5	0.001	1.043	1.497	1.497	1.497	0.000	0.000
18	1456789	0.0005	0.3	0.0005	1.043	1.497	1.497	1.497	0.000	0.000
19	1456789	0.0002	0.2	0.0002	1.043	1.497	1.497	1.497	0.000	0.000
20	1456789	0.0001	0.1	0.0001	1.043	1.497	1.497	1.497	0.000	0.000
21	1456789	0.00005	0.05	0.00005	1.043	1.497	1.497	1.497	0.000	0.000
22	1456789	0.00002	0.02	0.00002	1.043	1.497	1.497	1.497	0.000	0.000
23	1456789	0.00001	0.01	0.00001	1.043	1.497	1.497	1.497	0.000	0.000
24	1456789	0.000005	0.005	0.000005	1.043	1.497	1.497	1.497	0.000	0.000
25	1456789	0.000002	0.002	0.000002	1.043	1.497	1.497	1.497	0.000	0.000
26	1456789	0.000001	0.001	0.000001	1.043	1.497	1.497	1.497	0.000	0.000
27	1456789	0.0000005	0.0005	0.0000005	1.043	1.497	1.497	1.497	0.000	0.000
28	1456789	0.0000002	0.0002	0.0000002	1.043	1.497	1.497	1.497	0.000	0.000
29	1456789	0.0000001	0.0001	0.0000001	1.043	1.497	1.497	1.497	0.000	0.000
30	1456789	0.00000005	0.00005	0.00000005	1.043	1.497	1.497	1.497	0.000	0.000
31	1456789	0.00000002	0.00002	0.00000002	1.043	1.497	1.497	1.497	0.000	0.000
32	1456789	0.00000001	0.00001	0.00000001	1.043	1.497	1.497	1.497	0.000	0.000
33	1456789	0.000000005	0.000005	0.000000005	1.043	1.497	1.497	1.497	0.000	0.000
34	1456789	0.000000002	0.000002	0.000000002	1.043	1.497	1.497	1.497	0.000	0.000
35	1456789	0.000000001	0.000001	0.000000001	1.043	1.497	1.497	1.497	0.000	0.000
36	1456789	0.0000000005	0.0000005	0.0000000005	1.043	1.497	1.497	1.497	0.000	0.000
37	1456789	0.0000000002	0.0000002	0.0000000002	1.043	1.497	1.497	1.497	0.000	0.000
38	1456789	0.0000000001	0.0000001	0.0000000001	1.043	1.497	1.497	1.497	0.000	0.000
39	1456789	0.00000000005	0.00000005	0.00000000005	1.043	1.497	1.497	1.497	0.000	0.000
40	1456789	0.00000000002	0.00000002	0.00000000002	1.043	1.497	1.497	1.497	0.000	0.000
41	1456789	0.00000000001	0.00000001	0.00000000001	1.043	1.497	1.497	1.497	0.000	0.000
42	1456789	0.000000000005	0.000000005	0.000000000005	1.043	1.497	1.497	1.497	0.000	0.000
43	1456789	0.000000000002	0.000000002	0.000000000002	1.043	1.497	1.497	1.497	0.000	0.000
44	1456789	0.000000000001	0.000000001	0.000000000001	1.043	1.497	1.497	1.497	0.000	0.000
45	1456789	0.0000000000005	0.0000000005	0.0000000000005	1.043	1.497	1.497	1.497	0.000	0.000
46	1456789	0.0000000000002	0.0000000002	0.0000000000002	1.043	1.497	1.497	1.497	0.000	0.000
47	1456789	0.0000000000001	0.0000000001	0.0000000000001	1.043	1.497	1.497	1.497	0.000	0.000
48	1456789	0.00000000000005	0.00000000005	0.00000000000005	1.043	1.497	1.497	1.497	0.000	0.000
49	1456789	0.00000000000002	0.0000000002	0.00000000000002	1.043	1.497	1.497	1.497	0.000	0.000
50	1456789	0.00000000000001	0.0000000001	0.00000000000001	1.043	1.497	1.497	1.497	0.000	0.000
51	1456789	0.000000000000005	0.00000000005	0.000000000000005	1.043	1.497	1.497	1.497	0.000	0.000
52	1456789	0.000000000000002	0.0000000002	0.000000000000002	1.043	1.497	1.497	1.497	0.000	0.000
53	1456789	0.000000000000001	0.0000000001	0.000000000000001	1.043	1.497	1.497	1.497	0.000	0.000
54	1456789	0.0000000000000005	0.00000000005	0.0000000000000005	1.043	1.497	1.497	1.497	0.000	0.000
55	1456789	0.0000000000000002	0.0000000002	0.0000000000000002	1.043	1.497				

JUNCTION NO.	Demand (LT/SEC)	Grade Line (METERS)	Elevation (METERS)	Pressure (MM)
1	0.0000	357	100	100
2	0.6250	474	100	100
3	0.6250	359	100	100
4	0.6250	122	100	100
5	0.6250	757	100	100
6	0.6250	315	100	100
7	0.6250	105	100	100
8	0.6250	105	100	100
9	0.6250	105	100	100
10	0.6250	105	100	100
11	0.6250	105	100	100
12	0.6250	105	100	100
13	0.6250	105	100	100
14	0.6250	105	100	100
15	0.6250	105	100	100
16	0.6250	105	100	100
17	0.6250	105	100	100
18	0.6250	105	100	100
19	0.6250	105	100	100
20	0.6250	105	100	100
21	0.6250	105	100	100
22	0.6250	105	100	100
23	0.6250	105	100	100
24	0.6250	105	100	100
25	0.6250	105	100	100
26	0.6250	105	100	100
27	0.6250	105	100	100
28	0.6250	105	100	100
29	0.6250	105	100	100
30	0.6250	105	100	100
31	0.6250	105	100	100
32	0.6250	105	100	100
33	0.6250	105	100	100
34	0.6250	105	100	100
35	0.6250	105	100	100
36	0.6250	105	100	100
37	0.6250	105	100	100
38	0.6250	105	100	100
39	0.6250	105	100	100
40	0.6250	105	100	100
41	0.6250	105	100	100
42	0.6250	105	100	100
43	0.6250	105	100	100
44	0.6250	105	100	100
45	0.6250	105	100	100
46	0.6250	105	100	100
47	0.6250	105	100	100
48	0.6250	105	100	100
49	0.6250	105	100	100
50	0.6250	105	100	100
51	0.6250	105	100	100
52	0.6250	105	100	100
53	0.6250	105	100	100
54	0.6250	105	100	100
55	0.6250	105	100	100
56	0.6250	105	100	100
57	0.6250	105	100	100
58	0.6250	105	100	100
59	0.6250	105	100	100
60	0.6250	105	100	100
61	0.6250	105	100	100
62	0.6250	105	100	100
63	0.6250	105	100	100
64	0.6250	105	100	100
65	0.6250	105	100	100
66	0.6250	105	100	100
67	0.6250	105	100	100
68	0.6250	105	100	100
69	0.6250	105	100	100
70	0.6250	105	100	100
71	0.6250	105	100	100
72	0.6250	105	100	100
73	0.6250	105	100	100
74	0.6250	105	100	100
75	0.6250	105	100	100
76	0.6250	105	100	100
77	0.6250	105	100	100
78	0.6250	105	100	100
79	0.6250	105	100	100
80	0.6250	105	100	100
81	0.6250	105	100	100
82	0.6250	105	100	100
83	0.6250	105	100	100
84	0.6250	105	100	100
85	0.6250	105	100	100
86	0.6250	105	100	100
87	0.6250	105	100	100
88	0.6250	105	100	100
89	0.6250	105	100	100
90	0.6250	105	100	100
91	0.6250	105	100	100
92	0.6250	105	100	100
93	0.6250	105	100	100
94	0.6250	105	100	100
95	0.6250	105	100	100
96	0.6250	105	100	100
97	0.6250	105	100	100
98	0.6250	105	100	100
99	0.6250	105	100	100
100	0.6250	105	100	100
101	0.6250	105	100	100
102	0.6250	105	100	100
103	0.6250	105	100	100
104	0.6250	105	100	100
105	0.6250	105	100	100
106	0.6250	105	100	100
107	0.6250	105	100	100
108	0.6250	105	100	100
109	0.6250	105	100	100
110	0.6250	105	100	100
111	0.6250	105	100	100
112	0.6250	105	100	100
113	0.6250	105	100	100
114	0.6250	105	100	100
115	0.6250	105	100	100
116	0.6250	105	100	100
117	0.6250	105	100	100
118	0.6250	105	100	100
119	0.6250	105	100	100
120	0.6250	105	100	100
121	0.6250	105	100	100
122	0.6250	105	100	100
123	0.6250	105	100	100
124	0.6250	105	100	100
125	0.6250	105	100	100
126	0.6250	105	100	100
127	0.6250	105	100	100
128	0.6250	105	100	100
129	0.6250	105	100	100
130	0.6250	105	100	100
131	0.6250	105	100	100
132	0.6250	105	100	100
133	0.6250	105	100	100
134	0.6250	105	100	100
135	0.6250	105	100	100
136	0.6250	105	100	100
137	0.6250	105	100	100
138	0.6250	105	100	100
139	0.6250	105	100	100
140	0.6250	105	100	100
141	0.6250	105	100	100
142	0.6250	105	100	100
143	0.6250	105	100	100
144	0.6250	105	100	100
145	0.6250	105	100	100
146	0.6250	105	100	100
147	0.6250	105	100	100
148	0.6250	105	100	100
149	0.6250	105	100	100
150	0.6250	105	100	100
151	0.6250	105	100	100
152	0.6250	105	100	100
153	0.6250	105	100	100
154	0.6250	105	100	100
155	0.6250	105	100	100
156	0.6250	105	100	100
157	0.6250	105	100	100
158	0.6250	105	100	100
159	0.6250	105	100	100
160	0.6250	105	100	100
161	0.6250	105	100	100
162	0.625			

98.570	98.750
97.000	97.460
97.750	97.950
97.250	97.830
96.750	96.500
96.460	97.000
96.750	97.430
96.500	97.330
96.250	97.000
96.000	96.830
95.750	96.500
95.500	96.330
95.250	96.000
95.000	95.830
94.750	95.500
94.500	95.330
94.250	95.000
94.000	94.830
93.750	94.500
93.500	94.330
93.250	94.000
93.000	93.830
92.750	93.500
92.500	93.230
92.250	93.000
92.000	92.730
91.750	92.430
91.500	92.130
91.250	91.830
91.000	91.500
90.750	91.230
90.500	90.930
90.250	90.630
90.000	90.330
89.750	90.000
89.500	89.730
89.250	89.430
89.000	89.130
88.750	88.430
88.500	88.130
88.250	87.830
88.000	87.530
87.750	87.230
87.500	87.030
87.250	86.830
87.000	86.630
86.750	86.430
86.500	86.230
86.250	86.030
86.000	85.830
85.750	85.630
85.500	85.430
85.250	85.230
85.000	85.030
84.750	84.530
84.500	84.330
84.250	84.030
84.000	83.830
83.750	83.530
83.500	83.330
83.250	83.130
83.000	82.830
82.750	82.530
82.500	82.330
82.250	82.130
82.000	81.830
81.750	81.530
81.500	81.330
81.250	81.130
81.000	80.830
80.750	80.630
80.500	80.430
80.250	80.230
80.000	80.030
79.750	79.530
79.500	79.330
79.250	79.130
79.000	78.830
78.750	78.530
78.500	78.330
78.250	78.130
78.000	77.830
77.750	77.530
77.500	77.330
77.250	77.130
77.000	76.830
76.750	76.530
76.500	76.330
76.250	76.130
76.000	75.830
75.750	75.530
75.500	75.330
75.250	75.130
75.000	74.830
74.750	74.530
74.500	74.330
74.250	74.030
74.000	73.830
73.750	73.530
73.500	73.330
73.250	73.130
73.000	72.830
72.750	72.530
72.500	72.330
72.250	72.130
72.000	71.830
71.750	71.530
71.500	71.330
71.250	71.130
71.000	70.830
70.750	70.530
70.500	70.330
70.250	70.130
70.000	69.830
69.750	69.530
69.500	69.330
69.250	69.130
69.000	68.830
68.750	68.530
68.500	68.330
68.250	68.130
68.000	67.830
67.750	67.530
67.500	67.330
67.250	67.130
67.000	66.830
66.750	66.530
66.500	66.330
66.250	66.130
66.000	65.830
65.750	65.530
65.500	65.330
65.250	65.130
65.000	64.830
64.750	64.530
64.500	64.330
64.250	64.130
64.000	63.830
63.750	63.530
63.500	63.330
63.250	63.130
63.000	62.830
62.750	62.530
62.500	62.330
62.250	62.130
62.000	61.830
61.750	61.530
61.500	61.330
61.250	61.130
61.000	60.830
60.750	60.530
60.500	60.330
60.250	60.130
60.000	59.830
59.750	59.530
59.500	59.330
59.250	59.130
59.000	58.830
58.750	58.530
58.500	58.330
58.250	58.130
58.000	57.830
57.750	57.530
57.500	57.330
57.250	57.130
57.000	56.830
56.750	56.530
56.500	56.330
56.250	56.130
56.000	55.830
55.750	55.530
55.500	55.330
55.250	55.130
55.000	54.830
54.750	54.530
54.500	54.330
54.250	54.130
54.000	53.830
53.750	53.530
53.500	53.330
53.250	53.130
53.000	52.830
52.750	52.530
52.500	52.330
52.250	52.130
52.000	51.830
51.750	51.530
51.500	51.330
51.250	51.130
51.000	50.830
50.750	50.530
50.500	50.330
50.250	50.130
50.000	49.830
49.750	49.530
49.500	49.330
49.250	49.130
49.000	48.830
48.750	48.530
48.500	48.330
48.250	48.130
48.000	47.830
47.750	47.530
47.500	47.330
47.250	47.130
47.000	46.830
46.750	46.530
46.500	46.330
46.250	46.130
46.000	45.830
45.750	45.530
45.500	45.330
45.250	45.130
45.000	44.830
44.750	44.530
44.500	44.330
44.250	44.130
44.000	43.830
43.750	43.530
43.500	43.330
43.250	43.130
43.000	42.830
42.750	42.530
42.500	42.330
42.250	42.130
42.000	41.830
41.750	41.530
41.500	41.330
41.250	41.130
41.000	40.830
40.750	40.530
40.500	40.330
40.250	40.130
40.000	39.830
39.750	39.530
39.500	39.330
39.250	39.130
39.000	38.830
38.750	38.530
38.500	38.330
38.250	38.130
38.000	37.830
37.750	37.530
37.500	37.330
37.250	37.130
37.000	36.830
36.750	36.530
36.500	36.330
36.250	36.130
36.000	35.830
35.750	35.530
35.500	35.330
35.250	35.130
35.000	34.830
34.750	34.530
34.500	34.330
34.250	34.130
34.000	33.830
33.750	33.530
33.500	33.330
33.250	33.130
33.000	32.830
32.750	32.530
32.500	32.330
32.250	32.130
32.000	31.830
31.750	31.530
31.500	31.330
31.250	31.130
31.000	30.830
30.750	30.530
30.500	30.330
30.250	30.130
30.000	29.830
29.750	29.530
29.500	29.330
29.250	29.130
29.000	28.830
28.750	28.530
28.500	28.330
28.250	28.130
28.000	27.830
27.750	27.530
27.500	27.330
27.250	27.130
27.000	26.830
26.750	26.530
26.500	26.330
26.250	26.130
26.000	25.830
25.750	

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (FEETERS)	DIA METER (CMMS)	ROUGHNESS
6.6	65	57	12.5	140.0
6.7	76	29.0	12.5	140.0
6.8	77	15.0	12.5	140.0
6.9	78	16.0	12.5	140.0
6.10	82	45.0	12.5	140.0
6.11	84	16.0	12.5	140.0
6.12	87	17.0	12.5	140.0
6.13	90	9.0	12.5	140.0
6.14	108	1.0	8.0	140.0
6.15	116	14.0	3.2	140.0
6.16	117	10.0	3.2	140.0
6.17	119	12.0	1.4	140.0
6.18	120	1.0	1.4	140.0
6.19	121	2.0	0.5	140.0
6.20	122	6.0	0.5	140.0
6.21	123	6.0	0.5	140.0
6.22	124	1.0	0.5	140.0
6.23	125	1.0	0.5	140.0
6.24	126	1.0	0.5	140.0
6.25	127	1.0	0.5	140.0
6.26	128	1.0	0.5	140.0
6.27	129	1.0	0.5	140.0
6.28	130	1.0	0.5	140.0
6.29	131	1.0	0.5	140.0
6.30	132	1.0	0.5	140.0
6.31	133	1.0	0.5	140.0
6.32	134	1.0	0.5	140.0
6.33	135	1.0	0.5	140.0
6.34	136	1.0	0.5	140.0
6.35	137	1.0	0.5	140.0
6.36	138	1.0	0.5	140.0
6.37	139	1.0	0.5	140.0
6.38	140	1.0	0.5	140.0
6.39	141	1.0	0.5	140.0
6.40	142	1.0	0.5	140.0
6.41	143	1.0	0.5	140.0
6.42	144	1.0	0.5	140.0
6.43	145	1.0	0.5	140.0
6.44	146	1.0	0.5	140.0
6.45	147	1.0	0.5	140.0
6.46	148	1.0	0.5	140.0
6.47	149	1.0	0.5	140.0
6.48	150	1.0	0.5	140.0
6.49	151	1.0	0.5	140.0
6.50	152	1.0	0.5	140.0
6.51	153	1.0	0.5	140.0
6.52	154	1.0	0.5	140.0
6.53	155	1.0	0.5	140.0
6.54	156	1.0	0.5	140.0
6.55	157	1.0	0.5	140.0
6.56	158	1.0	0.5	140.0
6.57	159	1.0	0.5	140.0
6.58	160	1.0	0.5	140.0
6.59	161	1.0	0.5	140.0
6.60	162	1.0	0.5	140.0
6.61	163	1.0	0.5	140.0
6.62	164	1.0	0.5	140.0
6.63	165	1.0	0.5	140.0
6.64	166	1.0	0.5	140.0
6.65	167	1.0	0.5	140.0
6.66	168	1.0	0.5	140.0
6.67	169	1.0	0.5	140.0
6.68	170	1.0	0.5	140.0
6.69	171	1.0	0.5	140.0
6.70	172	1.0	0.5	140.0
6.71	173	1.0	0.5	140.0
6.72	174	1.0	0.5	140.0
6.73	175	1.0	0.5	140.0
6.74	176	1.0	0.5	140.0
6.75	177	1.0	0.5	140.0
6.76	178	1.0	0.5	140.0
6.77	179	1.0	0.5	140.0
6.78	180	1.0	0.5	140.0
6.79	181	1.0	0.5	140.0
6.80	182	1.0	0.5	140.0
6.81	183	1.0	0.5	140.0
6.82	184	1.0	0.5	140.0
6.83	185	1.0	0.5	140.0
6.84	186	1.0	0.5	140.0
6.85	187	1.0	0.5	140.0
6.86	188	1.0	0.5	140.0
6.87	189	1.0	0.5	140.0
6.88	190	1.0	0.5	140.0
6.89	191	1.0	0.5	140.0
6.90	192	1.0	0.5	140.0
6.91	193	1.0	0.5	140.0
6.92	194	1.0	0.5	140.0
6.93	195	1.0	0.5	140.0
6.94	196	1.0	0.5	140.0
6.95	197	1.0	0.5	140.0
6.96	198	1.0	0.5	140.0
6.97	199	1.0	0.5	140.0
6.98	200	1.0	0.5	140.0
6.99	201	1.0	0.5	140.0
6.100	202	1.0	0.5	140.0
6.101	203	1.0	0.5	140.0
6.102	204	1.0	0.5	140.0
6.103	205	1.0	0.5	140.0
6.104	206	1.0	0.5	140.0
6.105	207	1.0	0.5	140.0
6.106	208	1.0	0.5	140.0
6.107	209	1.0	0.5	140.0
6.108	210	1.0	0.5	140.0
6.109	211	1.0	0.5	140.0
6.110	212	1.0	0.5	140.0
6.111	213	1.0	0.5	140.0
6.112	214	1.0	0.5	140.0
6.113	215	1.0	0.5	140.0
6.114	216	1.0	0.5	140.0
6.115	217	1.0	0.5	140.0
6.116	218	1.0	0.5	140.0
6.117	219	1.0	0.5	140.0
6.118	220	1.0	0.5	140.0
6.119	221	1.0	0.5	140.0
6.120	222	1.0	0.5	140.0
6.121	223	1.0	0.5	140.0
6.122	224	1.0	0.5	140.0
6.123	225	1.0	0.5	140.0
6.124	226	1.0	0.5	140.0
6.125	227	1.0	0.5	140.0
6.126	228	1.0	0.5	140.0
6.127	229	1.0	0.5	140.0
6.128	230	1.0	0.5	140.0
6.129	231	1.0	0.5	140.0
6.130	232	1.0	0.5	140.0
6.131	233	1.0	0.5	140.0
6.132	234	1.0	0.5	140.0
6.133	235	1.0	0.5	140.0
6.134	236	1.0	0.5	140.0
6.135	237	1.0	0.5	140.0
6.136	238	1.0	0.5	140.0
6.137	239	1.0	0.5	140.0
6.138	240	1.0	0.5	140.0
6.139	241	1.0	0.5	140.0
6.140	242	1.0	0.5	140.0
6.141	243	1.0	0.5	140.0
6.142	244	1.0	0.5	140.0
6.143	245	1.0	0.5	140.0
6.144	246	1.0	0.5	140.0
6.145	247	1.0	0.5	140.0
6.146	248	1.0	0.5	140.0
6.147	249	1.0	0.5	140.0
6.148	250	1.0	0.5	140.0
6.149	251	1.0	0.5	140.0
6.150	252	1.0	0.5	140.0
6.151	253	1.0	0.5	140.0
6.152	254	1.0	0.5	140.0
6.153	255	1.0	0.5	140.0
6.154	256	1.0	0.5	140.0
6.155	257	1.0	0.5	140.0
6.156	258	1.0	0.5	140.0
6.157	259	1.0	0.5	140.0
6.158	260	1.0	0.5	140.0
6.159	261	1.0	0.5	140.0
6.160	262	1.0	0.5	140.0
6.161	263	1.0	0.5	140.0
6.162	264	1.0		

JUNCTION NO.	Demand (LIT/SEC)	Grade Line (METERS)	Elevation (METERS)	Pressure (MMERS)
1	0.05000	113.357	109.200	13.16
2	0.62500	110.474	102.470	10.60

כְּלֹבֶד אַתָּה בְּנֵי יִשְׂרָאֵל כִּי תְּבִיא אֶת־עֲמָקָם
בְּנֵי יִשְׂרָאֵל וְאֶת־עֲמָקָם בְּנֵי יִשְׂרָאֵל כִּי תְּבִיא אֶת־עֲמָקָם

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

SCHEME 4

MALASA GROUP OF VILLAGES RURAL WATER SUPPLY SCHEME, KANPUR

THIS SYSTEM HAS ONE OVER HEAD TANK

THIS SYSTEM HAS 298 PIPES, 242 JUNCTIONS, 56 Loops AND 1 FIXED GRADE NOOD

THESE ARE THE RESULTS FOR THE FLUSS IN PIPES

THE FOLLOWING RESULTS ARE OBTAINED AFTER 5 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIA METER (CHMS)	ROUGHNESS (FT/SEC)	FLOW RATE (LIT/SEC)	HEAD LOSS (FEET)	VELOCITY (CH/SEC)	H/L 1000	FIXED GRADE (METERS)
1	130	0	130	0	130	0	0.917	3.565	
2	130	0	130	0	130	0	0.627	1.763	
3	130	0	130	0	130	0	0.473	1.357	
4	130	0	130	0	130	0	0.448	1.238	
5	130	0	130	0	130	0	0.444	1.274	
6	130	0	130	0	130	0	0.522	2.117	
7	130	0	130	0	130	0	0.591	2.507	
8	130	0	130	0	130	0	0.591	2.539	
9	130	0	130	0	130	0	0.591	2.557	
10	130	0	130	0	130	0	0.591	2.574	
11	130	0	130	0	130	0	0.591	2.591	
12	130	0	130	0	130	0	0.591	2.608	
13	130	0	130	0	130	0	0.591	2.625	
14	130	0	130	0	130	0	0.591	2.642	
15	130	0	130	0	130	0	0.591	2.659	
16	130	0	130	0	130	0	0.591	2.676	
17	130	0	130	0	130	0	0.591	2.693	
18	130	0	130	0	130	0	0.591	2.710	
19	130	0	130	0	130	0	0.591	2.727	
20	130	0	130	0	130	0	0.591	2.744	
21	130	0	130	0	130	0	0.591	2.761	
22	130	0	130	0	130	0	0.591	2.778	
23	130	0	130	0	130	0	0.591	2.795	
24	130	0	130	0	130	0	0.591	2.812	
25	130	0	130	0	130	0	0.591	2.829	
26	130	0	130	0	130	0	0.591	2.846	
27	130	0	130	0	130	0	0.591	2.863	
28	130	0	130	0	130	0	0.591	2.880	
29	130	0	130	0	130	0	0.591	2.897	
30	130	0	130	0	130	0	0.591	2.914	
31	130	0	130	0	130	0	0.591	2.931	
32	130	0	130	0	130	0	0.591	2.948	
33	130	0	130	0	130	0	0.591	2.965	
34	130	0	130	0	130	0	0.591	2.982	
35	130	0	130	0	130	0	0.591	2.999	
36	130	0	130	0	130	0	0.591	3.016	
37	130	0	130	0	130	0	0.591	3.033	
38	130	0	130	0	130	0	0.591	3.050	
39	130	0	130	0	130	0	0.591	3.067	
40	130	0	130	0	130	0	0.591	3.084	
41	130	0	130	0	130	0	0.591	3.101	
42	130	0	130	0	130	0	0.591	3.118	
43	130	0	130	0	130	0	0.591	3.135	
44	130	0	130	0	130	0	0.591	3.152	
45	130	0	130	0	130	0	0.591	3.169	
46	130	0	130	0	130	0	0.591	3.186	
47	130	0	130	0	130	0	0.591	3.203	
48	130	0	130	0	130	0	0.591	3.220	
49	130	0	130	0	130	0	0.591	3.237	
50	130	0	130	0	130	0	0.591	3.254	
51	130	0	130	0	130	0	0.591	3.271	
52	130	0	130	0	130	0	0.591	3.288	
53	130	0	130	0	130	0	0.591	3.305	
54	130	0	130	0	130	0	0.591	3.322	
55	130	0	130	0	130	0	0.591	3.339	
56	130	0	130	0	130	0	0.591	3.356	
57	130	0	130	0	130	0	0.591	3.373	
58	130	0	130	0	130	0	0.591	3.390	
59	130	0	130	0	130	0	0.591	3.407	
60	130	0	130	0	130	0	0.591	3.424	
61	130	0	130	0	130	0	0.591	3.441	
62	130	0	130	0	130	0	0.591	3.458	
63	130	0	130	0	130	0	0.591	3.475	
64	130	0	130	0	130	0	0.591	3.492	
65	130	0	130	0	130	0	0.591	3.509	
66	130	0	130	0	130	0	0.591	3.526	
67	130	0	130	0	130	0	0.591	3.543	
68	130	0	130	0	130	0	0.591	3.560	
69	130	0	130	0	130	0	0.591	3.577	
70	130	0	130	0	130	0	0.591	3.594	
71	130	0	130	0	130	0	0.591	3.611	
72	130	0	130	0	130	0	0.591	3.628	
73	130	0	130	0	130	0	0.591	3.645	
74	130	0	130	0	130	0	0.591	3.662	
75	130	0	130	0	130	0	0.591	3.679	
76	130	0	130	0	130	0	0.591	3.696	
77	130	0	130	0	130	0	0.591	3.713	
78	130	0	130	0	130	0	0.591	3.730	
79	130	0	130	0	130	0	0.591	3.747	
80	130	0	130	0	130	0	0.591	3.764	
81	130	0	130	0	130	0	0.591	3.781	
82	130	0	130	0	130	0	0.591	3.798	
83	130	0	130	0	130	0	0.591	3.815	
84	130	0	130	0	130	0	0.591	3.832	
85	130	0	130	0	130	0	0.591	3.849	
86	130	0	130	0	130	0	0.591	3.866	
87	130	0	130	0	130	0	0.591	3.883	
88	130	0	130	0	130	0	0.591	3.890	
89	130	0	130	0	130	0	0.591	3.907	
90	130	0	130	0	130	0	0.591	3.924	
91	130	0	130	0	130	0	0.591	3.941	
92	130	0	130	0	130	0	0.591	3.958	
93	130</								

THE RELATIVE CHANGE IN FLOW RATE FROM PREVIOUS TRIAL = 0.00363

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTION NODES

JUNCTION NO.	GRADE LINE (DIFTERS)	PURIFICATION (DIFTERS)	PRESSURE (METERS)
1	774	774	0.00000
2	143	143	0.00000
3	143	143	0.00000
4	143	143	0.00000
5	143	143	0.00000
6	143	143	0.00000
7	143	143	0.00000
8	143	143	0.00000
9	143	143	0.00000
10	143	143	0.00000
11	143	143	0.00000
12	143	143	0.00000
13	143	143	0.00000
14	143	143	0.00000
15	143	143	0.00000
16	143	143	0.00000
17	143	143	0.00000
18	143	143	0.00000
19	143	143	0.00000
20	143	143	0.00000
21	143	143	0.00000
22	143	143	0.00000
23	143	143	0.00000
24	143	143	0.00000
25	143	143	0.00000
26	143	143	0.00000
27	143	143	0.00000
28	143	143	0.00000
29	143	143	0.00000
30	143	143	0.00000
31	143	143	0.00000
32	143	143	0.00000
33	143	143	0.00000
34	143	143	0.00000
35	143	143	0.00000
36	143	143	0.00000
37	143	143	0.00000
38	143	143	0.00000
39	143	143	0.00000
40	143	143	0.00000
41	143	143	0.00000
42	143	143	0.00000
43	143	143	0.00000
44	143	143	0.00000
45	143	143	0.00000
46	143	143	0.00000
47	143	143	0.00000
48	143	143	0.00000
49	143	143	0.00000
50	143	143	0.00000
51	143	143	0.00000
52	143	143	0.00000
53	143	143	0.00000
54	143	143	0.00000
55	143	143	0.00000
56	143	143	0.00000
57	143	143	0.00000
58	143	143	0.00000
59	143	143	0.00000
60	143	143	0.00000
61	143	143	0.00000
62	143	143	0.00000
63	143	143	0.00000
64	143	143	0.00000
65	143	143	0.00000
66	143	143	0.00000
67	143	143	0.00000
68	143	143	0.00000
69	143	143	0.00000
70	143	143	0.00000
71	143	143	0.00000
72	143	143	0.00000
73	143	143	0.00000
74	143	143	0.00000
75	143	143	0.00000
76	143	143	0.00000
77	143	143	0.00000
78	143	143	0.00000
79	143	143	0.00000
80	143	143	0.00000
81	143	143	0.00000
82	143	143	0.00000
83	143	143	0.00000
84	143	143	0.00000
85	143	143	0.00000
86	143	143	0.00000
87	143	143	0.00000
88	143	143	0.00000
89	143	143	0.00000
90	143	143	0.00000
91	143	143	0.00000
92	143	143	0.00000
93	143	143	0.00000
94	143	143	0.00000
95	143	143	0.00000
96	143	143	0.00000
97	143	143	0.00000
98	143	143	0.00000
99	143	143	0.00000
100	143	143	0.00000
101	143	143	0.00000
102	143	143	0.00000
103	143	143	0.00000
104	143	143	0.00000
105	143	143	0.00000
106	143	143	0.00000
107	143	143	0.00000
108	143	143	0.00000
109	143	143	0.00000
110	143	143	0.00000
111	143	143	0.00000
112	143	143	0.00000
113	143	143	0.00000
114	143	143	0.00000
115	143	143	0.00000
116	143	143	0.00000
117	143	143	0.00000
118	143	143	0.00000
119	143	143	0.00000
120	143	143	0.00000
121	143	143	0.00000
122	143	143	0.00000
123	143	143	0.00000
124	143	143	0.00000
125	143	143	0.00000
126	143	143	0.00000
127	143	143	0.00000
128	143	143	0.00000
129	143	143	0.00000
130	143	143	0.00000
131	143	143	0.00000
132	143	143	0.00000
133	143	143	0.00000
134	143	143	0.00000
135	143	143	0.00000
136	143	143	0.00000
137	143	143	0.00000
138	143	143	0.00000
139	143	143	0.00000
140	143	143	0.00000
141	143	143	0.00000
142	143	143	0.00000
143	143	143	0.00000
144	143	143	0.00000
145	143	143	0.00000
146	143	143	0.00000
147	143	143	0.00000
148	143	143	0.00000
149	143	143	0.00000
150	143	143	0.00000
151	143	143	0.00000
152	143	143	0.00000
153	143	143	0.00000
154	143	143	0.00000
155	143	143	0.00000
156	143	143	0.00000
157	143	143	0.00000
158	143	143	0.00000
159	143	143	0.00000
160	143	143	0.00000
161	143	143	0.00000
162	143	143	0.00000
163	143	143	0.00000
164	143	143	0.00000
165	143	143	0.00000
166	143	143	0.00000
167	143	143	0.00000
168	143	143	0.00000
169	143	143	0.00000
170	143	143	0.00000

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIA METER (CM'S)	ROUGHNESS
82	72	8.0	140.0	1.40
77	75	2.75	140.0	3.0
82	86	1.05	140.0	3.0
84	94	1.20	140.0	3.0
96	101	1.20	140.0	3.0
105	105	1.15	140.0	3.0
108	123	1.15	140.0	3.0
123	133	1.15	140.0	3.0
133	140	1.15	140.0	3.0
140	145	1.15	140.0	3.0
145	152	1.15	140.0	3.0
152	160	1.15	140.0	3.0
160	164	1.15	140.0	3.0
164	170	1.15	140.0	3.0
170	175	1.15	140.0	3.0
175	182	1.15	140.0	3.0
182	187	1.15	140.0	3.0
187	192	1.15	140.0	3.0
192	197	1.15	140.0	3.0
197	202	1.15	140.0	3.0
202	207	1.15	140.0	3.0
207	212	1.15	140.0	3.0
212	217	1.15	140.0	3.0
217	222	1.15	140.0	3.0
222	227	1.15	140.0	3.0
227	232	1.15	140.0	3.0
232	237	1.15	140.0	3.0
237	242	1.15	140.0	3.0
242	247	1.15	140.0	3.0
247	252	1.15	140.0	3.0
252	257	1.15	140.0	3.0
257	262	1.15	140.0	3.0
262	267	1.15	140.0	3.0
267	272	1.15	140.0	3.0
272	277	1.15	140.0	3.0
277	282	1.15	140.0	3.0
282	287	1.15	140.0	3.0
287	292	1.15	140.0	3.0
292	297	1.15	140.0	3.0
297	302	1.15	140.0	3.0
302	307	1.15	140.0	3.0
307	312	1.15	140.0	3.0
312	317	1.15	140.0	3.0
317	322	1.15	140.0	3.0
322	327	1.15	140.0	3.0
327	332	1.15	140.0	3.0
332	337	1.15	140.0	3.0
337	342	1.15	140.0	3.0
342	347	1.15	140.0	3.0
347	352	1.15	140.0	3.0
352	357	1.15	140.0	3.0
357	362	1.15	140.0	3.0
362	367	1.15	140.0	3.0
367	372	1.15	140.0	3.0
372	377	1.15	140.0	3.0
377	382	1.15	140.0	3.0
382	387	1.15	140.0	3.0
387	392	1.15	140.0	3.0
392	397	1.15	140.0	3.0
397	402	1.15	140.0	3.0
402	407	1.15	140.0	3.0
407	412	1.15	140.0	3.0
412	417	1.15	140.0	3.0
417	422	1.15	140.0	3.0
422	427	1.15	140.0	3.0
427	432	1.15	140.0	3.0
432	437	1.15	140.0	3.0
437	442	1.15	140.0	3.0
442	447	1.15	140.0	3.0
447	452	1.15	140.0	3.0
452	457	1.15	140.0	3.0
457	462	1.15	140.0	3.0
462	467	1.15	140.0	3.0
467	472	1.15	140.0	3.0
472	477	1.15	140.0	3.0
477	482	1.15	140.0	3.0
482	487	1.15	140.0	3.0
487	492	1.15	140.0	3.0
492	497	1.15	140.0	3.0
497	502	1.15	140.0	3.0
502	507	1.15	140.0	3.0
507	512	1.15	140.0	3.0
512	517	1.15	140.0	3.0
517	522	1.15	140.0	3.0
522	527	1.15	140.0	3.0
527	532	1.15	140.0	3.0
532	537	1.15	140.0	3.0
537	542	1.15	140.0	3.0
542	547	1.15	140.0	3.0
547	552	1.15	140.0	3.0
552	557	1.15	140.0	3.0
557	562	1.15	140.0	3.0
562	567	1.15	140.0	3.0
567	572	1.15	140.0	3.0
572	577	1.15	140.0	3.0
577	582	1.15	140.0	3.0
582	587	1.15	140.0	3.0
587	592	1.15	140.0	3.0
592	597	1.15	140.0	3.0
597	602	1.15	140.0	3.0
602	607	1.15	140.0	3.0
607	612	1.15	140.0	3.0
612	617	1.15	140.0	3.0
617	622	1.15	140.0	3.0
622	627	1.15	140.0	3.0
627	632	1.15	140.0	3.0
632	637	1.15	140.0	3.0
637	642	1.15	140.0	3.0
642	647	1.15	140.0	3.0
647	652	1.15	140.0	3.0
652	657	1.15	140.0	3.0
657	662	1.15	140.0	3.0
662	667	1.15	140.0	3.0
667	672	1.15	140.0	3.0
672	677	1.15	140.0	3.0
677	682	1.15	140.0	3.0
682	687	1.15	140.0	3.0
687	692	1.15	140.0	3.0
692	697	1.15	140.0	3.0
697	702	1.15	140.0	3.0
702	707	1.15	140.0	3.0
707	712	1.15	140.0	3.0
712	717	1.15	140.0	3.0
717	722	1.15	140.0	3.0
722	727	1.15	140.0	3.0
727	732	1.15	140.0	3.0
732	737	1.15	140.0	3.0
737	742	1.15	140.0	3.0
742	747	1.15	140.0	3.0
747	752	1.15	140.0	3.0
752	757	1.15	140.0	3.0
757	762	1.15	140.0	3.0
762	767	1.15	140.0	3.0
767	772	1.15	140.0	3.0
772	777	1.15	140.0	3.0
777	782	1.15	140.0	3.0
782	787	1.15	140.0	3.0
787	792	1.15	140.0	3.0
792	797	1.15	140.0	3.0
797	802	1.15	140.0	3.0
802	807	1.15	140.0	3.0
807	812	1.15	140.0	3.0
812	817	1.15	140.0	3.0
817	822	1.15	140.0	3.0
822	827	1.15	140.0	3.0
827	832	1.15	140.0	3.0
832	837	1.15	140.0	3.0
837	842	1.15	140.0	3.0
842	847	1.15	140.0	3.0
847	852	1.15	140.0	3.0
852	857	1.15	140.0	3.0
857	862	1.15	140.0	3.0
862	867	1.15	140.0	3.0
867	872	1.15	140.0	3.0
872	877	1.15	140.0	3.0
877	882	1.15	140.0	3.0
882	887	1.15	140.0	3.0
887	892	1.15	140.0	3

THE RELATIVE CHANGE IN FLOWRATE FROM PREVIOUS TRIAL = .00297

THESE ARE THE RESULTS FOR THE PRESSURES AT JUNCTIONS 1-15

JUNCTION NO.	Demand (LIT/SEC)	Grade Line (METERS)	Elevation (FEET)	Pressure (PSI)
1	0.000000000000000	143.74	489.0	0.000
2	0.000000000000000	143.74	489.0	0.000
3	0.000000000000000	143.74	489.0	0.000
4	0.000000000000000	143.74	489.0	0.000
5	0.000000000000000	143.74	489.0	0.000
6	0.000000000000000	143.74	489.0	0.000
7	0.000000000000000	143.74	489.0	0.000
8	0.000000000000000	143.74	489.0	0.000
9	0.000000000000000	143.74	489.0	0.000
10	0.000000000000000	143.74	489.0	0.000
11	0.000000000000000	143.74	489.0	0.000
12	0.000000000000000	143.74	489.0	0.000
13	0.000000000000000	143.74	489.0	0.000
14	0.000000000000000	143.74	489.0	0.000
15	0.000000000000000	143.74	489.0	0.000

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

MANUFACTURER	QUANTITY	COST	KATE	TOTAL LENGTH
--------------	----------	------	------	--------------

(METERS)	(METERS)	(RS.)
55.00	100.00	5500.00
40.00	9425.00	377500.00
30.00	8300.00	249000.00
25.00	4522.00	113050.00
17.83	3033.00	53987.40
12.70	2583.00	32804.10
9.73	3067.00	29749.90
7.00	3236.00	22666.00
4.79	2961.00	13916.70
4.15	3859.00	16014.85
4.10	6140.00	25174.00
TOTAL COST		938862.95

SCHEME 5
RAJPUR GROUP OF VILLAGES RURAL WATER SUPPLY SCHEME, KANPUR
THIS SYSTEM HAS ONE OVER HEAD TANK
THIS SYSTEM HAS 86 PIPES, 60 JUNCTIONS, 26 LOOPS AND 1 FIXED GRADE NOLE

THESE ARE THE RESULTS FOR THE FLOWS IN PIPES

THE FOLLOWING RESULTS ARE OBTAINED AFTER 6 TRIALS

THE JOURNAL OF CLIMATE

THE RELATIVE CHANGE IN FLOWRATE FROM PREVIOUS TRIALS = 0.00086

RESULTS FOR THE PRESSURES AT JUNCTION ANDES

JUNCTION NO.	DEMAND (LT/SEC)	GRADE LINE (METERS)	ELEVATION (METERS)	PRESSURE (METERS)
1	1.0	1.0	1.0	1.0
2	1.0	1.0	1.0	1.0
3	1.0	1.0	1.0	1.0
4	1.0	1.0	1.0	1.0
5	1.0	1.0	1.0	1.0
6	1.0	1.0	1.0	1.0
7	1.0	1.0	1.0	1.0
8	1.0	1.0	1.0	1.0
9	1.0	1.0	1.0	1.0
10	1.0	1.0	1.0	1.0
11	1.0	1.0	1.0	1.0
12	1.0	1.0	1.0	1.0
13	1.0	1.0	1.0	1.0
14	1.0	1.0	1.0	1.0
15	1.0	1.0	1.0	1.0
16	1.0	1.0	1.0	1.0
17	1.0	1.0	1.0	1.0
18	1.0	1.0	1.0	1.0
19	1.0	1.0	1.0	1.0
20	1.0	1.0	1.0	1.0
21	1.0	1.0	1.0	1.0
22	1.0	1.0	1.0	1.0
23	1.0	1.0	1.0	1.0
24	1.0	1.0	1.0	1.0
25	1.0	1.0	1.0	1.0
26	1.0	1.0	1.0	1.0
27	1.0	1.0	1.0	1.0
28	1.0	1.0	1.0	1.0
29	1.0	1.0	1.0	1.0
30	1.0	1.0	1.0	1.0
31	1.0	1.0	1.0	1.0
32	1.0	1.0	1.0	1.0
33	1.0	1.0	1.0	1.0
34	1.0	1.0	1.0	1.0
35	1.0	1.0	1.0	1.0
36	1.0	1.0	1.0	1.0
37	1.0	1.0	1.0	1.0
38	1.0	1.0	1.0	1.0
39	1.0	1.0	1.0	1.0
40	1.0	1.0	1.0	1.0
41	1.0	1.0	1.0	1.0
42	1.0	1.0	1.0	1.0
43	1.0	1.0	1.0	1.0
44	1.0	1.0	1.0	1.0
45	1.0	1.0	1.0	1.0
46	1.0	1.0	1.0	1.0
47	1.0	1.0	1.0	1.0
48	1.0	1.0	1.0	1.0
49	1.0	1.0	1.0	1.0
50	1.0	1.0	1.0	1.0
51	1.0	1.0	1.0	1.0
52	1.0	1.0	1.0	1.0
53	1.0	1.0	1.0	1.0
54	1.0	1.0	1.0	1.0
55	1.0	1.0	1.0	1.0
56	1.0	1.0	1.0	1.0
57	1.0	1.0	1.0	1.0
58	1.0	1.0	1.0	1.0
59	1.0	1.0	1.0	1.0
60	1.0	1.0	1.0	1.0
61	1.0	1.0	1.0	1.0
62	1.0	1.0	1.0	1.0
63	1.0	1.0	1.0	1.0
64	1.0	1.0	1.0	1.0
65	1.0	1.0	1.0	1.0
66	1.0	1.0	1.0	1.0
67	1.0	1.0	1.0	1.0
68	1.0	1.0	1.0	1.0
69	1.0	1.0	1.0	1.0
70	1.0	1.0	1.0	1.0
71	1.0	1.0	1.0	1.0
72	1.0	1.0	1.0	1.0
73	1.0	1.0	1.0	1.0
74	1.0	1.0	1.0	1.0
75	1.0	1.0	1.0	1.0
76	1.0	1.0	1.0	1.0
77	1.0	1.0	1.0	1.0
78	1.0	1.0	1.0	1.0
79	1.0	1.0	1.0	1.0
80	1.0	1.0	1.0	1.0
81	1.0	1.0	1.0	1.0
82	1.0	1.0	1.0	1.0
83	1.0	1.0	1.0	1.0
84	1.0	1.0	1.0	1.0
85	1.0	1.0	1.0	1.0
86	1.0	1.0	1.0	1.0
87	1.0	1.0	1.0	1.0
88	1.0	1.0	1.0	1.0
89	1.0	1.0	1.0	1.0
90	1.0	1.0	1.0	1.0
91	1.0	1.0	1.0	1.0
92	1.0	1.0	1.0	1.0
93	1.0	1.0	1.0	1.0
94	1.0	1.0	1.0	1.0
95	1.0	1.0	1.0	1.0
96	1.0	1.0	1.0	1.0
97	1.0	1.0	1.0	1.0
98	1.0	1.0	1.0	1.0
99	1.0	1.0	1.0	1.0
100	1.0	1.0	1.0	1.0

卷之三

卷之三

7-30
1974

תְּבִרְכֵּת
תְּבִרְכֵּת
תְּבִרְכֵּת
תְּבִרְכֵּת

222
888
• •
111
000
111
000
050
004
088
• •
888
0100

卷之三

卷之三

卷之三

卷之三

卷之三

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEME

DIAPETER (CM'S)	ROUGHNESS (CM'S)	RATE (/-MTRS)	TOTAL LENGTH (METERS)	COST (RS.)
20.0	1.30.0	40.00	310.0	12400.00
21.0	1.30.0	28.00	1477.0	41474.16
21.5	1.30.0	24.00	1235.0	5640.00
22.0	1.30.0	19.00	1457.0	27083.99
22.5	1.30.0	16.50	3465.0	57172.50
23.0	1.30.0	10.50	1265.0	13282.50
23.5	1.30.0	7.60	1315.0	9994.00
24.0	1.40.0	5.60	1495.0	8372.00
24.5	1.40.0	4.10	465.0	1906.50
			TOTAL COST =	177924.66

THE FOLLOWING CHANGES IN SYSTEM DATA ARE MADE

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAMETER (CMES)	ROUGHNESS
27	47	45	5.0	140.0
31	42	14	4.9	140.0
34	15	16	5.5	130.0
38	19	23	5.0	140.0
49	22	29	5.5	130.0
52	32	14	5.5	140.0
55	38	16	5.5	130.0
58	39	16	5.5	140.0
61	40	16	5.5	130.0
64	41	16	5.5	140.0
67	42	16	5.5	130.0
70	43	16	5.5	140.0
73	44	16	5.5	130.0
76	45	16	5.5	140.0
79	46	16	5.5	130.0
82	47	16	5.5	140.0
85	48	16	5.5	130.0
88	49	16	5.5	140.0
91	50	16	5.5	130.0
94	51	16	5.5	140.0
97	52	16	5.5	130.0
100	53	16	5.5	140.0
103	54	16	5.5	130.0
106	55	16	5.5	140.0
109	56	16	5.5	130.0
112	57	16	5.5	140.0
115	58	16	5.5	130.0
118	59	16	5.5	140.0
121	60	16	5.5	130.0
124	61	16	5.5	140.0
127	62	16	5.5	130.0
130	63	16	5.5	140.0
133	64	16	5.5	130.0
136	65	16	5.5	140.0
139	66	16	5.5	130.0
142	67	16	5.5	140.0
145	68	16	5.5	130.0
148	69	16	5.5	140.0
151	70	16	5.5	130.0
154	71	16	5.5	140.0
157	72	16	5.5	130.0

THE FOLLOWING RESULTS ARE OBTAINED AFTER 2 TRIALS

PIPE NO.	NODE NUMBERS	LENGTH (METERS)	DIAMETER (CMES)	ROUGHNESS	FLOWRATE (LIT/SEC)	HEAD LOSS (METERS)	VELOCITY (M/SEC)	FIXED GRADE (METERS)
27	47	45	5.0	130.0	22.0	0.0	0.0	2.450
31	42	14	4.9	130.0	22.0	0.0	0.0	2.450
34	15	16	5.5	130.0	22.0	0.0	0.0	2.450
38	19	23	5.0	140.0	22.0	0.0	0.0	2.450
49	22	29	5.5	130.0	22.0	0.0	0.0	2.450
52	32	14	5.5	140.0	22.0	0.0	0.0	2.450
55	38	16	5.5	130.0	22.0	0.0	0.0	2.450
58	39	16	5.5	140.0	22.0	0.0	0.0	2.450
61	40	16	5.5	130.0	22.0	0.0	0.0	2.450
64	41	16	5.5	140.0	22.0	0.0	0.0	2.450
67	42	16	5.5	130.0	22.0	0.0	0.0	2.450
70	43	16	5.5	140.0	22.0	0.0	0.0	2.450
73	44	16	5.5	130.0	22.0	0.0	0.0	2.450
76	45	16	5.5	140.0	22.0	0.0	0.0	2.450
79	46	16	5.5	130.0	22.0	0.0	0.0	2.450
82	47	16	5.5	140.0	22.0	0.0	0.0	2.450
85	48	16	5.5	130.0	22.0	0.0	0.0	2.450
88	49	16	5.5	140.0	22.0	0.0	0.0	2.450
91	50	16	5.5	130.0	22.0	0.0	0.0	2.450
94	51	16	5.5	140.0	22.0	0.0	0.0	2.450
97	52	16	5.5	130.0	22.0	0.0	0.0	2.450
100	53	16	5.5	140.0	22.0	0.0	0.0	2.450
103	54	16	5.5	130.0	22.0	0.0	0.0	2.450
106	55	16	5.5	140.0	22.0	0.0	0.0	2.450
109	56	16	5.5	130.0	22.0	0.0	0.0	2.450
112	57	16	5.5	140.0	22.0	0.0	0.0	2.450
115	58	16	5.5	130.0	22.0	0.0	0.0	2.450
118	59	16	5.5	140.0	22.0	0.0	0.0	2.450
121	60	16	5.5	130.0	22.0	0.0	0.0	2.450
124	61	16	5.5	140.0	22.0	0.0	0.0	2.450
127	62	16	5.5	130.0	22.0	0.0	0.0	2.450
130	63	16	5.5	140.0	22.0	0.0	0.0	2.450
133	64	16	5.5	130.0	22.0	0.0	0.0	2.450
136	65	16	5.5	140.0	22.0	0.0	0.0	2.450
139	66	16	5.5	130.0	22.0	0.0	0.0	2.450
142	67	16	5.5	140.0	22.0	0.0	0.0	2.450
145	68	16	5.5	130.0	22.0	0.0	0.0	2.450
148	69	16	5.5	140.0	22.0	0.0	0.0	2.450
151	70	16	5.5	130.0	22.0	0.0	0.0	2.450

RELATIVE CHANGE IN FLUORATE FROM PREVIOUS TRIAL = 0.00420

RESULTS AND DISCUSSIONS FOR THE PRESENTATION MODES

卷之三

卷之三

ପ୍ରକାଶକ ପତ୍ର ପରିଚୟ

卷之三

卷之三

卷之三

卷之三

卷之三

THE JOURNAL OF CLIMATE

卷之三

THE JOURNAL OF CLIMATE

THE JOURNAL OF CLIMATE

卷之三

THE FOLLOWING IS THE COST STATEMENT OF THE SCHEM

DIA METER (INCHES)	ROUGHNESS RO (MICRONS)	RATE (\$/MCR.5)	TOTAL LENGTH (FEETERS)	COST (CRS.)	TOTAL COST
1.30	0.0	128.00	1540.0	9600.00	156582.76
1.30	0.0	128.00	1547.0	93439.00	
1.30	0.0	128.00	1535.0	45640.00	
1.30	0.0	128.00	1792.0	3325.00	
1.30	0.0	128.00	2592.0	4276.00	
1.30	0.0	128.00	1535.0	4275.00	
1.30	0.0	128.00	1580.0	41666.00	
1.30	0.0	128.00	1060.0	41828.00	
1.30	0.0	128.00	1060.0	4346.00	