

Fake News Detection

GETTING TO THE TRUTH IN AN ERA OF MISINFORMATION

BY ADAM CUMURCU

Business Case

- ► Fake news has been on the rise this past decade
- ▶ Denying the 2020 election results
- Spreading misinformation about the COVID vaccine
- Breakdown of shared reality
- One of the main sources of fake news is social media, such as Facebook and Twitter
- 2019: 8 percent of engagement with the 100 top-performing news sources on social media was dubious
- 2020: this number more than doubled
- Most popular news platform on Facebook in 2021: The Daily Wire
- A fake news detection system like the one I aim to produce can be used by social media companies to filter out misinformation.

Modeling Roadmap

MILESTONE 1

 Download the data from Kaggle

MILESTONE 2

- Preprocess data
- Perform EDA

MILESTONE 3

- Create simple models
- Optimize models through hyperparameter tuning

MILESTONE 4

 Create a web app using Streamlit

Data Understanding

- ▶ Date source: 'Fake and real news dataset' from Kaggle.
- ▶ 21,417 real articles from Reuters
- ▶ 23,481 fake articles from various sources.
- Period covered: January 2017 to December 2017.

Data Preparation

- Only looking at the articles, not the titles, subject or date.
- Data preparation steps:
- 1. Use regex to remove the names of the news outlet and city of origin from the real articles.
- 2. Use Spacy to tokenize the text of the articles and remove stop words.

World Cloud Visualization

Real Articles

Fake articles

Unigram Frequency Distribution

Real Articles

Fake Articles

Bi-gram Frequency Distribution

Tri-Gram Frequency Distribution

Modeling

- 1. dummy classifier to check the baseline score.
- 2. LogisticRegression
- 3. Multinomial Naïve Bayes
- 4. Random Forest
- 5. Voting classifier (LogisticRegression, Multinomial Naïve Bayes and Random Forest)
- Best Results: LogisticRegression
- Scoring: f1 (not overly concerned with false positives or negatives)
- Initial split: 0.25, which resulted in an f1 score of 0.99.
- Subsequent split (to address overfitting): 0.5, which resulted in an f1 score of 0.98

Modeling Results

Model	Training F1-Score	Testing F1-Score
Logistic Regression	1	0.99
Multinomial Naïve Bayes	0.96	0.94
Random Forest Classifier	1	0.95
Voting Classifier	1	0.98

Dummy Classifier

Logistic Regression Gridsearch Results with Split Set to 0.25

Training Set

Test Set

Logistic Regression Gridsearch Results with Split Set to 0.5

Training Set

Test Set

Next Steps

- Deploy web app so that anyone can verify if an article is real or fake.
- ▶ Train model on newer articles to keep it up to date.

Thank you

ADAM CUMURCU

EMAIL: <u>ACUMURCU@GMAIL.COM</u>

GITHUB: <u>HTTP://GITHUB.COM/ADAMCUMURCU</u>

LINKEDIN: http://linkedin.com/in/adam-cumurcu

BLOG: http://acumurcu.medium.com/