1 Евклидовы кольца, кольца главных идеалов, факториальные кольца

Определение 1.1 (Евклидово кольцо). R - ассоциативное, коммутативное кольцо с единицей, R - евклидово, если для каждого элемента a этого кольца существует его норма $\|a\|$.

Определение 1.2 (Евклидова норма). Это некоторая функция элемента кольца, такая что

- 1. $||a|| \in \omega$
- 2. если $a, b \neq 0$, то $||ab|| \geq \max(||a||, ||b||)$
- 3. если $a \neq 0$, то для любого b существуют d и r такие что b = da + r и $\|r\| < \|a\|$ или r = 0

Определение 1.3 (Кольцо главных идеалов). Кольцо главных идеалов - кольцо, в котором все идеалы главные

Теорема 1.4. Каждое евклидово кольцо - кольцо главных идеалов

Доказательство.

Теорема 1.5. B кольце главных идеалов R не существует бесконечно возрастающей цепи идеалов

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots$$

Доказательство. Пусть $I_0\subseteq I_1\subseteq I_2\subseteq\dots$ - возрастающая цепь идеалов и $I=\cup_{i=0}^\infty I_i$, докажем что I - идеал

- 1. докажем что I подкольцо по теореме ??
 - (a) I замкнут по сложению и умножению, покажем на элементах $a,b\in I$. В таком случае в цепи есть идеалы I_j и I_k , такие что $a\in I_j$ и $b\in I_k$. Если $m\geq \max(j,k)$ то оба элемента a и b принадлежат I_m , поэтому принадлежат и a+b и ab. Поэтому $a+b\in I$ и $ab\in I$
 - (b) $0 \in I$ потому что $0 \in I_i$ для всякого i
 - (c) Пусть $a \in I$. Тогда $a \in I_j$ Для какого-то j, в этом случае $-a \in I_j$, следовательно $-a \in I$

следовательно I - подкольцо

2. Пусть $a\in I$. Тогда $a\in I_j$ Для какого-то j. Пусть r - любой элемент R, тогда $ra\in I_j$, следовательно $ra\in I$. Следовательно $rI\subseteq I$

по определению ?? I - идеал.

Так как R - КГИ и I - идеал, то существует $a \in R$, такое что I = aR. Так как $a \in I$ существует n такой что $a \in I_n$. Следовательно $aR \subseteq I_n$. По определению I $I_n \subset I = aR$. I_n и I входят друг в друга следовательно $I = I_n$. Если брать любое $m \ge n$ то должно выполнятся условие $I \subseteq I_m$. Это возможно только если $I_m = I$.

Следовательно после некоторого конечного элемента n цепь идеалов перестаёт возрастать

Определение 1.6 (Простой элемент). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда a - простой, если из a=bc следует что b или c обратимы

Определение 1.7 (Факториальное кольцо). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда R - факториальное кольцо, если для каждого элемента $a \in R$

- 1. существует простые $b_1, ..., b_n$, такие что $a = b_1 ... b_n$
- 2. если $a=c_1...c_m$, где $c_1,...,c_m$ простые, то m=n, существует перестановка σ , Такая что $c_i=e_ib_{\sigma(i)}$ Для обратимого e_i

Теорема 1.8. Существует нефакториальное кольцо

Лемма 1.9. Если R - кольцо, $a \in R$ и $1 \in aR$, то aR = R

Доказательство. Так как $1 \in aR$, то a обратим, то есть существует $a^{-1} \in R$,следовательно

$$aR \supset aa^{-1}R = R$$

Так как $R \subseteq aR$ и $aR \subseteq R$, то aR = R

Теорема 1.10. R - целостное кольцо и $a \neq 0$, Тогда следующие условия эквивалентны

- 1. а необратимый
- 2. $aR \neq R$
- 3. Для любого $b \neq 0$ $abr \neq bR$

4. для некоторого $b \neq 0$ $abr \neq bR$

Доказательство. $1 \Rightarrow 2$

 $ab \neq 1$ для любого b, соответствено $aR \not \ni 1$, следовательно $aR \neq R$ $2 \Rightarrow 3$

Пусть $b \neq 0$. Допустим $abR = br \ni b$. Пусть для некоторого $r \in R$ верно abr = b, следовательно

$$arb - b = 0 \Rightarrow (ar - 1)b = 0 \Rightarrow ar - 1 = 0 \Rightarrow ar = 1$$

то есть $1 \in aR$, следовательно aR = R, Противоречие.

 $3 \Rightarrow 4$

Если для любого $b \neq 0$ верно $abr \neq bR$, то верно и для некоторого $4 \Rightarrow 1$

Допустим a - обратимый, то есть существует $r \in R$, такой что ar = 1, получается

$$abR = baR \subseteq bR$$

И

$$bR = 1 \cdot bR = arbR = abrR \subseteq abR$$

следовательно bR=abR, что противоречит 4, следовательно a необратим \square

Теорема 1.11. Если R - $K\Gamma M$, то каждый необратимый элемент отличный от нуля раскладывается в конечное произведение простых элементов

Доказательство.

Лемма 1.12. Пусть I - идеал $K\Gamma HR$. Тогда I является максимальным тогда и только тогда когда I = pR, где p - простой

Доказательство.

Теорема 1.13. пусть R - целостное кольцо главных идеалов, тогда R - факториальное

Доказательство.