Programming Project 0 (Advanced)

Implement the following Python "magic methods" in your Molecule class:

<u>name</u>	$\underline{\text{returns}}$	args	called by 1	description
len	int		len(mol)	return the "length" (number of atoms) of a molecule instance
str	str		<pre>print(mol), str(mol)</pre>	represent the contents of a Molecule object as a string in .xyz
				format
iter	iterator		for _ in mol	iterates over (str, numpy.array) tuples, each of which con-
				tains the atomic symbol and Cartesian coordinates of an atom
				in the molecule
sum	Molecule	Molecule	mol1 + mol2	returns a new molecule object containing

¹Assume mol, mol1, and mol2 are all instances of your Molecule class.