	-,	填空题(每空1分,共25分)。				
	1.	不考虑系统的激励,仅由系统的初始储能产生的响应为,不考虑系统的				
		初始储能,仅由系统的激励产生的响应为				
		142				
	2.	系统的输入 $c(t)$ 和输出 $r(t)$ 满足 $r(t)=\int c^2(\tau)d\tau$,且初始状态为零,则该系统是否线				
		性?,是否时不变?,是否因果?				
	3.	计算下列各式的值(其中 f(t)为任意函数,t。为实常数,*表示卷积运算): 1				
$\sin(t) * \delta(t + \frac{\pi}{2}) = $, $\cos(t)\delta(t) + \sin(t)\delta(t - \frac{\pi}{2}) = $						
		$\int_{-\infty}^{\tau} f(\tau - 1)\delta(\tau - 1)d\tau = \underline{\qquad}, \qquad \frac{d}{dt}(f(t) * \varepsilon(t - 1)) = \underline{\qquad}, \qquad$				
		已知有始序列 $f(k)$ 的 z 变换 $F(z) = \frac{1}{2z^{3}+2^{2}-2z-1}$, 则 $f(k)$ 的 初信				
	4.	已知有始序列 $f(k)$ 的 z 变换 $F(z) = \frac{2z^{3}+z^{2}-2z-1}{2}$,则 $f(k)$ 的初信				
		f(0) =,和终值f(∞) =				
5. 若 $f(t) = e^{-4t} \cos \omega_0 t [\varepsilon(t) - \varepsilon(t-4)]$,则其拉普拉斯变换的收敛域为						
		变换 F(jw) 是否存在?				
	б.	已知周期信号 f(r)的傅里叶级数展开式为: 4				
		4. 1				
		$f(t) = \frac{4}{\pi} (\sin \pi t + \frac{1}{3} \sin 3\pi t + \frac{1}{5} \sin 5\pi t + \cdots) +$				
		则该信号的基波角频率 $\Omega=$,公共周期 $T=$,直流分量 $\frac{a_0}{2}=$,				
	IN					
	14	该信号是奇团数还是偶团数?				
	7.	已知某因果系统的系统函数为 $H(s) = \frac{2s+1}{s(s+1)}$,则其极点,				
		收敛域				
		收敛域,该系统属于何种稳定?,单位冲溅响应的初值 $h(0^+)=$,和终值 $h(\infty)=$, ω				
	8.					

计算过程,并绘出 y(1)的图形。(本题可写在试卷的反面)。

本題分	分数中	120	0
得	分中	9	0

三、(12分)已知连续系统的系统函数H(s)

画出直接型、级联型和并联型方框图。

本題分数。	200	1
得 分。	4	4

四、(每小题 5分,共 20分) 计算下列变换或反变换。+

1. 已知 $f(t) = e^{-t}(t-2)\varepsilon(t-2)$, 求 F(s);

- 有始信号f(t)的拉普拉斯变换 $F(s) = \frac{s^2-s+1}{s^2(s-1)}$,求原函数f(t);。
- $f(k) = (k-2)(0.5)^{k-1} \varepsilon(k-2)$ 求其 Z 变换 F(z) ; +
- 4. 有始序列f(k)的单边Z变换 $F(z) = \frac{z^2 + z}{z^2 4}$,求原序列f(k)。v

五、(16分) 离散因果系统的差分方程为 y(k+2) - 3y(k+1) + 2y(k) = e(k+2), $\Rightarrow \phi$

- 1. 系统函数 H(=),并作出系统直接型模拟方框图;4
- 由H(z) 求单付函数响应h(k) , ω
- 若系统的初始储能为 $y_{st}(0)=0$, $y_{st}(1)=1$ 求系统零输入响应 $y_{st}(k)$, v_{1}
- 4. 若 $e(k) = 3^k \varepsilon(k)$ 求系统要状态响应 $y_{\pi}(k)$ 。 ω

六、(14 分) 如图所示 电路,已知元件参数及 初始条件: C = 1F, L = 0.5H, $R_1 = 1\Omega$,

 $R_2 = \frac{1}{5}\Omega$, $u_C(0^-) = 5V$, $t_L(0^-) = 4A$

E = 10s(t) ,解答下列各題。 ω

1. 作出运算等效电路; ~

2. 求系统函数 H(s) 及 h(t); +

求 R_2 上的全响应电压 u(t)。。

