Estrutura de Dados – 2º semestre de 2019

Professor Mestre Fabio Pereira da Silva

Árvores

- Árvores são utilizadas para realizar a representação dos elementos de um determinado conjunto de dados de maneira hierárquica.
 - Representação de uma hierarquia de pastas
 - Diagrama hierárquico de uma organização
 - Modelagem de algoritmos
- O conceito de árvore está diretamente ligado à recursão.

- Árvores são um conjunto finito de elementos.
 - Um elemento é chamado de raíz
- Os outros são divididos em subconjuntos disjuntos onde cada um define uma árvore.
 - Cada elemento é um Nó ou Vértice da árvore
 - Arcos ou arestas conectam os vértices

- Uma coleção não vazia de vértices e ramos que satisfazem a certos requisitos.
- Vértice (Ou Nó)
 - É um objeto simples que pode ter um nome e mais alguma outra informação associada.
- Arco ou aresta (direcionado ou não)
 - É a conexão entre dois Nós

- Nós filhos, pais, tios, irmãos e avô
- Grau de saída (número de filhos de um nó)
- Nó folha (grau de saída nulo) e nó interior (grau de saída diferente de nulo)
- Grau de uma árvore (máximo grau de saída)
- Floresta (conjunto de árvores)

- Um conjunto de nós tal que:
 - Existe um nó r, denominado raiz, com zero ou mais sub-árvores, cujas raízes estão ligadas a r
 - Os nós raízes destas sub-árvores são os filhos de r
 - Os nós internos da árvore são os nós com filhos
 - As folhas ou nós externos da árvore são os nós sem filhos

Representação de árvore

- Cada vértice (exceto a raiz) tem exatamente um antecessor imediato ou pai.
- Cada vértice tem nós sucessores imediatos ou filhos.
- Nós sem filhos são considerados nós terminais ou folhas.
- Filhos de um mesmo pai: **irmãos**
- Nós com pelo menos um filho: não terminais ou internos.

- Caminho em uma árvore
 - É uma lista de vértices distintos e sucessivos, conectados por arcos (arestas) da árvore
- Nó raiz
 - Existe exatamente um caminho entre a raiz e cada um dos nós da árvore
- Qualquer nó é a raiz de uma sub-árvore consistindo dele e dos Nós abaixo
- Se existir mais de um caminho ou nenhum: **grafo**

- Os vértices da árvore são classificados em níveis.
- Níveis indicam o número de nós no caminho entre o vértice e a raiz da árvore.

- Altura de uma árvore
 - Corresponde ao maior nível
 - Maior distância entre a raiz e qualquer nó
- Floresta
 - Um conjunto de árvores
 - Se removermos a raiz e os arcos que ligam às subárvores, ficamos com uma floresta

- É um conjunto finito de elementos que é vazio ou composto de três conjuntos disjuntos
- O primeiro contém um único elemento, a raiz
- Os outros dois subconjuntos são árvores binárias
 - As sub-árvores da esquerda e da direita
 - As sub-árvores da esquerda ou da direita podem estar vazias

No nível k possui no máximo 2^k nós.

Total de nós (tn) é igual a soma de nós em cada nível entre 0 e D

tn =
$$2^{0} + 2^{1} + \dots + 2^{D} = \sum_{j=0}^{D} 2^{j} = 2^{D+1} + 1$$

Árvore Binária Balanceada

• Para cada nó, as alturas de suas duas sub-árvores diferem de, no máximo, i

Árvore Binária Balanceada

- Pior caso: como o número de passos é determinado pela altura da árvore, o pior caso é a árvore degenerada (altura = n).
 - Altura da árvore depende da sequência de inserção das chaves
 - Considere, p.ex., o que acontece se uma sequência ordenada de chaves é inserida
- Busca ótima: árvore de altura mínima (perfeitamente balanceada)
- Busca eficiente: árvore razoavelmente balanceada...(árvore balanceada)

- Procure um "local" para inserir a nova chave, começando a procura a partir do nó-raiz:
- Para cada nó-raiz, compare:
 - Se a nova chave for menor do que o valor no nó-raiz, repita o processo para sub-árvore esquerda; ou
 - Se a nova chave for maior que o valor no nó-raiz, repita o processo para sub-árvore direita.
- Se um ponteiro (filho esquerdo/direito de um nó-raiz) nulo é atingido, coloque o novo nó como sendo raiz dessa sub-árvore vazia.
- A inserção sempre se dá como nó folha: não exige deslocamentos

- Conjunto: [17, 99, 13, 1, 3, 100, 400]
 - O número 17 será inserido tornando-se o nó raiz
 - A inserção do 99 iniciase na raiz. Compara-se 99 c/ 17.
 - Como 99 > 17, 99 deve ser colocado na subárvore direita do nó contendo 17 (subárvore direita, inicialmente, nula)

- Conjunto: [17, 99, 13, 1, 3, 100, 400]
- A inserção do 13 inicia-se na raiz
- Compara-se 13 c/ 17.
 Como 13 < 17, 13 deve ser colocado na sub-árvore esquerda do nó contendo 17
- Já que o nó 17 não possui descendente esquerdo, 13 é inserido como raiz dessa sub-árvore

- Conjunto: [17, 99, 13, 1, 3, 100, 400]
- Repete-se o procedimento para inserir o valor 1
- 1<17, então será inserido na sub-árvore esquerda
- Chegando nela, encontra-se o nó 13, 1<13 então ele será inserido na sub-árvore esquerda de 13

Conjunto: [17, 99, 13, 1, 3, 100, 400]

- Repete-se o procedimento para inserir o elemento 3:
 - □ 3 < 17;</p>
 - 3 < 13</p>
 - **3** > 1

- Conjunto: [17, 99, 13, 1, 3, 100, 400]
- Repete-se o procedimento para inserir o elemento 100:
 - 100 > 17
 - □ 100 > 99

- Conjunto: [17, 99, 13, 1, 3, 100, 400]
- Repete-se o procedimento para inserir o elemento 400:
 - **400 > 17**
 - **400 > 99**
 - 400 > 100

25, 5, 30, 8, 20, 31.

15, 25, 5, 30, 8, 20, 31.

5, 30, 8, 20, 31.

8, 20, 31.

20, 31.

31.

Método de inserção em Árvore Binária

```
public void adicionaElemento(int e){
   No novo = new No(e);
   No aux1=raiz; No aux2=raiz:
   if (auxl != null) {
      while (auxl != null && auxl.dados != e) {
         aux2=aux1;
         if (e<aux1.dados)</pre>
            auxl=auxl.esquerda;
         else if (e>auxl.dados)
            auxl=auxl.direita;
      if (e == aux2.dados)
         System.out.println("Elemento já existe");
      else{
         if (e < aux2.dados)</pre>
            aux2.esquerda = novo;
         if (e > aux2.dados)
            aux2.direita = novo;
         System.out.println(e+" Incluído");
   else{
       raiz=novo:
       System.out.println(e+" Incluido");
```

Custo de inserção em Árvores Binárias

- A inserção requer uma busca pelo lugar da chave, portanto, com custo de uma busca qualquer (tempo proporcional à altura da árvore).
- O custo da inserção, após a localização do lugar, é constante; não depende do número de nós.
- Logo, tem complexidade análoga à da busca

Remoção em Árvores Binárias

- Casos a serem considerados no algoritmo de remoção de nós de uma árvore binária:
- · Caso 1: o nó é folha:
 - O nó pode ser retirado sem problema;
- Caso 2: o nó possui uma sub-árvore (esq./dir.)
 - O nó-raiz da sub-árvore (esq./dir.) pode substituir o nó eliminado;
- Caso 3: o nó possui duas sub-árvores
 - O nó cuja chave seja a menor da sub-árvore direita pode substituir o nó eliminado; ou, alternativamente, o de maior valor da sub-árvore esquerda pode substituí-lo.

- Caso o valor a ser removido seja o 15
- pode ser removido sem problema, não requer ajustes posteriores

Os nós com os valores 10 e 13 também podem ser removidos!

- Removendo-se o nó com o valor 5
- Como ele possui uma sub-árvore direita, o nó contendo o valor 6 pode "ocupar" o lugar do nó removido

 Caso existisse um nó com somente uma sub-árvore esquerda, seria análogo.

- Eliminando-se o nó de chave 11
- Neste caso, existem 2 opções:
 - O nó com chave 10 pode "ocupar" o lugar do nóraiz, ou
 - O nó com chave 12 pode "ocupar" o lugar do nó-raiz

- Esse terceiro caso, também se aplica ao nó com chave 14, caso seja retirado.
 - Nessa configuração, os nós com chave 13 ou 15 poderiam ocupar seu lugar.

Remoção em Árvores Binárias

Remoção em Árvores Binárias

Remoção em Árvores Binárias

Remover o nó com o elemento 15

Custo de remoção em Árvores Binárias

- A remoção requer uma busca pela chave do nó a ser removido, portanto, com custo de uma busca qualquer (tempo proporcional à altura da árvore).
- O custo da remoção, após a localização do nó dependerá de 2 fatores:
 - do caso em que se enquadra a remoção: se o nó tem o, 1 ou 2 subárvores; se o ou 1 filho, custo é constante.
 - de sua posição na árvore, caso tenha 2 sub-árvores (quanto mais próximo do último nível, menor esse custo)
- Repare que um maior custo na busca implica num menor custo na remoção pp. dita; e vice-versa.
- Logo, tem complexidade dependente da altura da árvore.

Percurso em Pré-Ordem

Percurso em Profundidade (Pré-Ordem)

- 1°. Visitar a raiz (mostrar elemento)
- 2°. Percorrer a subárvore esquerda
- 3°. Percorrer a subárvore direita

Considere a árvore a seguir, mostre a seqüência gerada com percurso em profundidade :

Solução: 51, 30, 10, 45, 62, 55, 73

Percurso em Pré-Ordem

Percurso em Ordem

Percurso em Ordem Simétrica (em Ordem)

- 1°. Percorrer a subárvore esquerda
- 2°. Visitar a raiz (mostrar elemento)
- 3°. Percorrer a subárvore direita

Considere a árvore a seguir, mostre a seqüência gerada com percurso em ordem simétrica :

Solução: 10, 30, 45, 51, 55, 62, 73

Percurso em Ordem

Percurso em Pós-Ordem

Percurso em Pós Ordem

- 1°. Percorrer a subárvore esquerda
- 2°. Percorrer a subárvore direita
- 3°. Visitar a raiz (mostrar elemento)

Considere a árvore a seguir, mostre a seqüência gerada com percurso em pós ordem:

Solução: 10, 45, 30, 55, 73, 62, 51

Métodos de percurso em Árvore Binária

```
public void preOrdem(No a) {
    a = raiz;
   if(a != null) {
      System.out.print(a.dados + " ");
      preOrdem(a.esquerda);
      preOrdem(a.direita);
public void emOrdem(No a) {
    a = raiz:
   if(a != null) {
      emOrdem(a.esquerda);
      System.out.print(a.dados+" ");
      emOrdem(a.direita);
public void posOrdem(No a) {
    a = raiz;
   if(a != null) {
      posOrdem(a.esquerda);
      posOrdem(a.direita);
      System.out.print(a.dados+" ");
```

Percurso em Pós-Ordem

Exemplo

Pré-Ordem: 12, 4, 2, 8, 6, 16

Pós-Ordem: 2, 6, 8, 4, 16, 12

Contatos

- Email: <u>fabio.silva321@fatec.sp.gov.br</u>
- Linkedin: https://br.linkedin.com/in/b41a5269