Write your name here Surname	Other	names
Edexcel GCE	Centre Number	Candidate Number
Physics Advanced Subsidi Unit 1: Physics on	-	
Friday 11 January 2013 – Time: 1 hour 30 minute		Paper Reference 6PH01/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 1 6 2 7 A 0 1 2 8

Turn over ▶

SECTION A

Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ₩ and then mark your new answer with a cross ⋈.

1 An object of weight 7 N is raised from a height of 2 m to a height of 8 m.

The change in gravitational potential energy is

- **B** 56 J
- **■ D** 549 J

(Total for Question 1 = 1 mark)

- 2 Which of the following is a derived SI unit?
 - **A** joule
 - **B** metre
 - C power
 - **D** time

(Total for Question 2 = 1 mark)

3 A student is asked to solve the following problem:

An object is thrown upwards with a speed of 25 m s⁻¹. How high will it be when the speed is 12 m s^{-1} ?

Which equation will allow the problem to be solved in a single calculation?

- \triangle **A** $s = ut + \frac{1}{2} at^2$
- \blacksquare **B** s = (u + v)t/2
- \mathbf{C} \mathbf{C} $\mathbf{v} = \mathbf{u} + a\mathbf{t}$
- $\mathbf{D} \quad v^2 = u^2 + 2as$

(Total for Question 3 = 1 mark)

4 When beer is being brewed it can contain bubbles of gas rising through it as well as solid particles, such as grain particles, falling through it.

Which row of the table correctly shows the forces on a rising gas bubble and a falling solid particle?

F =viscous drag, U =upthrust, W =weight

	Gas bubble	Solid particle
⋈ A	$U \uparrow f$ W	$U \uparrow \downarrow $
⋈ B	$U \uparrow \downarrow $	$U \bigcap_{W} F$
⋈ C	$U \uparrow \downarrow $	$U \uparrow \downarrow $
⊠ D	$U \uparrow F$ W	U

(Total for Question 4 = 1 mark)

5 A cylinder of length 50 cm has a force applied to it. The new length of the cylinder is 45 cm.

The quantity determined using $\frac{5 \text{ cm}}{50 \text{ cm}}$ is

- A compressive strain.
- **B** compressive stress.
- C tensile strain.
- **D** tensile stress.

(Total for Question 5 = 1 mark)

6 An object is thrown horizontally from the roof of a building.

Which pair of displacement—time graphs correctly shows the vertical and horizontal components of displacement for the object until it lands? Assume that there is no air resistance.

	Vertical	Horizontal
A	s 1	s 1
В	s \(\)	s \\
ĭ C	s \	s \\ \tag{t}
ĭ D	s \\ t	s \\

(Total for Question 6 = 1 mark)

7 Three springs X, Y and Z have forces applied to them. For each spring a graph is plotted of length L of the spring against force F. The graphs are shown below:

Which of the springs obey Hooke's law?

- A X and Y
- \boxtimes **B** X and Z
- \square C Y and Z
- **D** Y only

(Total for Question 7 = 1 mark)

8 A car of mass 1400 kg is travelling at 25 m s^{-1} .

The kinetic energy of the car is

- **■ B** 35.0 kJ
- **■ D** 875 kJ

(Total for Question 8 = 1 mark)

Questions 9 and 10 refer to the information below.

An aeroplane is flying horizontally and heading north through the air. Its speed through the air is a and the wind is blowing east with a speed b.

- **9** The speed over the ground is given by
 - $\mathbf{A} \mathbf{A} a + b$
 - **B** $a^2 + b^2$
 - \square C $\sqrt{a+b}$
 - \square **D** $\sqrt{a^2+b^2}$

(Total for Question 9 = 1 mark)

- 10 The angle from north at which the plane flies over the ground is given by
 - \boxtimes **A** $\cos^{-1} a/b$
 - \square **B** $\sin^{-1} b/a$
 - \square C tan⁻¹ a/b
 - \square **D** tan⁻¹ b/a

(Total for Question 10 = 1 mark)

TOTAL FOR SECTION A = 10 MARKS

SECTION B

C_{2}	ar engines use motor oil as a lubricant. Motor oils need to operate over a range of	
te	mperatures because they may be at 0 °C or below when the engine is started but be up 160 °C when the engine is running. At all times motor oils need to be thin enough to low the parts to move smoothly but thick enough to remain on the moving parts.	
	Explain why the engine may experience difficulties if the temperature becomes too hot or cold.	
		(2)
	(Total for Question 11 = 2 ma	rks)
		rks)
		rks)
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	(4)
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book: Unlike many metals, lead is malleable but not ductile.	
	A student reads the following statement in a text book:	(4)

13 A student carries out an experiment to find the acceleration of free fall.

- (a) In this experiment the student releases a small steel ball in front of a metre rule and uses a video camera to record its motion. The camera captures 30 images per second, which may be played back one image at a time.
 - (i) Explain how the acceleration of free fall could be determined using the recording.

(ii) Describe a systematic error which could arise.	(1)
(b) Describe one property of the steel ball that makes it suitable to use in this experiment and explain why this property makes it suitable.	(2)
(c) Explain an advantage of using a video camera to take measurements for this experiment rather than using a stopwatch.	(2)
(Total for Question 13 = 9 1	marks)

*14	Einstein imagined a person in a large box without windows.	He suggested that, with no
	way to see outside, the person could not tell whether they we	ere:

- experiencing gravity on Earth
- in deep space far away from any effects of gravity but being accelerated at a rate of 9.81 m s^{-2} .

(6)

in deep space

Account for Einstein's suggestion by explaining in each case what a person standing in the box would feel through their feet. It may help to assume the person has mass m.

(Total for Question 14 = 6 marks)

15 The graph shows the stress–strain curve for two types of human bone under compression.

(a) Use the graph to identify and describe **one** property of cortical bone.

(2)

(b) The table gives the following information for the two types of bone.

Material	Young modulus / GPa	Maximum compressive stress / MPa	Maximum tensile stress / MPa
Cortical bone	17.9	170	120
Trabecular bone	0.076	2.2	

(i) State the difference between compressive stress and tensile stress.

(1)

(ii) State how the graph could be used to confirm the value of the Young modulus for cortical bone.

(1)

cross-sectional area of femur = $3.7 \times 10^{-4} \text{ m}^2$	(4)
	(4)
iv) It is stated in a text book that a femur can support about 30 ti	mes a person's
weight.	-
Trabecu	lar bone
Trabecu	lar bone
Cortical be	
Cortical be	one
Explain how the structure shown in the diagram would accou	one
Cortical be	one nt for the difference
Explain how the structure shown in the diagram would accou	one
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference
Explain how the structure shown in the diagram would accou	one nt for the difference

- 16 The photograph shows a sequence of pictures of a man jumping 30 m from a cliff into the water below.
 - Ignore the first picture and consider the second as representing the instant he jumps.
 - Ignore the final picture (the splash), taking the tenth picture as showing the time at which he has fallen 30 m.

The diagram shows the tenth picture of the man.	
It is useful to mark the centre of gravity of the man for each picture before taking measurements to analyse the motion.	
State what is meant by centre of gravity and mark its approximate position on the diagram.	(2)
(b) The vertical distance between consecutive pictures increases, but the horizontal distance remains the same. Explain this observation.	(2)
(c) By considering the vertical motion for pictures 2 to 10, show that the pictures are taken at a rate of about 3 per second.	
vertical height fallen = 30 m	(3)

(d) The vertical height between the second and from the photograph and use them to show pictures is between 12 m and 15 m.	enth pictures is 30 m. Take measure hat the horizontal distance between t	ements these
Record your measurements below.		(3)
		(3)
(e) Calculate the horizontal velocity and vertical	l velocity of the man for the tenth ni	cture
(e) carearate the nonzonar versory and versor	t vercency of the man for the tentor pr	(4)
	Horizontal velocity =	
	Vertical velocity =	
	(Total for Question 16 = 14	
		,

17 A stationary boat is pointing north as shown in the diagram. A wind starts blowing at 10 m s^{-1} in a direction 20° east of north against the sail. The boat starts to move northwards.

(a) (i) The wind exerts a force per unit area of 84 N m⁻² on the sail, which is at right angles to the wind direction.

Show that the component of force in a northerly direction is about 1400 N.

area of sail = 18 m^2

(3)

(ii) When the wind starts to blow the water exerts a force on the boat to the west.

Explain why.

(2)

(iii) Draw a vector diagram showing the forces exerted on the boat by the wind and the water and the resultant force calculated in part (a)(i).	(2)
(iv) Assuming the boat is starting from rest in still water, calculate the initial accele of the boat.	ration
mass of boat = 400 kg	(2)
	(2)
Initial acceleration =	
(b) Later the wind, still at a speed of 10 m s ⁻¹ , is blowing towards the north and the bost is travelling northwards at a steady speed of 5 m s ⁻¹ . The force on the sail is now 380 N towards the north.	at
(i) Suggest why the force on the sail is less than in part (a).	
	(1)

	(2)
Rate at which the	e wind does work =
ere is now a force exerted southwards	s on the boat. A suggested reason for this
rce is because of turbulence developin	g at the rear of the boat. Add flow lines to the
agram to show the path of water around bulent flow.	nd the boat and label the regions of laminar and
outent now.	(2)
	\wedge
,	
	(Total for Question 17 = 14 marks)

18 The photograph shows a marble launcher.

To load: pull the block of wood backwards, stretching the rubber band, place a marble into the channel.

To launch: release the block so it is pulled forward by the rubber band, pushing the marble through the channel.

(a) The graph shows the results of an experiment to investigate the properties of the rubber band.

← 10 cm →	6.7 cm	
Unstretched rubber band	Stretched rubber band	
Use the graph to show that the tension is about 3 N.		(2)
(ii) A student uses the graph to obtain an approximate val before launching. Show that 0.06 J is a reasonable ap		(2)
(iii) The student launches the marble vertically in order to transferred to it when it is launched. Show that the m attainable is about 2 m. mass of marble = 3.8 g		(2)
		(2)

(b) The student obtains the following set of measurements for the height reached. 30.0 cm, 30.3 cm, 25.8 cm, 29.7 cm	
(i) Explain why the student obtained a value of 30.0 cm for the height reached.	(2)
(ii) Explain why the height reached is so much less than 2 m.	(2)
(iii)Suggest how the marble launcher could be adapted so that the height reached by the marble could be increased.	y (1)
(Total for Question 18 = 11 m TOTAL FOR SECTION B = 70 MA TOTAL FOR PAPER = 80 MA	ARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Electron charge $e = -1.60 \times 10^{-19} \,\mathrm{C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Planck constant $h = 6.63 \times 10^{-34} \, \mathrm{J \, s}$ Speed of light in a vacuum $c = 3.00 \times 10^8 \, \mathrm{m \, s^{-1}}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$

Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$