Comparaison des méthodes

Méthodes de calcul de E et V

otes de Retour sur chap 2, problème 2.7.1

Méthode de calcul	Avantages	Inconvénients
Coulomb	cas non symétriques	intégrales vectorielles
$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{(\vec{r} - \vec{r})dq}{ \vec{r} - \vec{r}' ^3}$		
$V = -\int \vec{E} \cdot d\vec{l}$		
Gauss $ \oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_{0}} $ $V = - \vec{E} \cdot d\vec{I} $	intégrales simples	cas symétriques seulement
Potentiel	cas non symétriques	plus long que Gauss
$V = rac{1}{4\pi arepsilon_0} \int rac{{ m d}q}{ ec r - ec r' }$ $ec E = - abla V$	intégrale scalaire	

Capsules vidéo par Francis Torres.Il manque présentement un vidéo, le dernier, celui de l'énergie potentielle de plusieurs charges.

24