IP fipioina - 8 pro

- הגדרות ועקרונות בסיסיים 🕨
 - מודל השכבות 🕨
 - משפחת הפרוטוקולים 🕨
 - IP מאפייני פרוטוקול >
 - ור a מיבנה פרוטוקול ה- IP →
 - רתובות IP ➤
 - לעומת IPV4 >

הגדרות

- The term internet is short for "internetworking"
 - interconnection of networks with different network access mechanisms, addressing, different routing techniques, etc
- An internet
 - Collection of communications networks interconnected by layer 3 switches and/or routers
- IP (Internet Protocol)
 - Most widely used internetworking protocol
 - IP provides <u>connectionless</u> (datagram) service
 - Each packet treated separately
 - Network layer protocol

<u>עקרונות בסיסיים</u>

- TCP/IP protocol suite also called "Internet Protocol Suite" is named for two of its most important protocols:
 - Transmission Control Protocol (TCP)
 - Internet Protocol (IP)
- Goals:
 - build an interconnection of networks that provided universal communication services:
 - architecture of the physical networks is hidden from the user.
 - interconnect different physical networks to form what appears to the user to be one large network.
 - such a set of interconnected networks is called an internet.

מודל 7 השכבות לפי OSI

מודל 7 השכבות לפי OSI (המשך)

<u>פרוטוקול IP</u>

- IP stands for Internet Protocol
- A set of rules to send and receive messages at the Internet address level
- Computers must run IP to communicate across the internet
- IP forwards each packet based on a four byte destination address (the IP number) (e.g, 192.156.1.1)

משפחת הפרוטוקולים מעל IP

BGP DNS		Border Gateway Protocol Domain Name System			Resource ReSerVation Protocol Real-Time Transport Protocol
		File Transfer Protocol			Session Description Protocol
HTTP	=	Hypertext Transfer Protocol	SIP	=	Session Initiation Protocol
ICMP	=	Internet Control Message Protocol	SMTP	=	Simple Mail Transfer Protocol
IGMP	=	Internet Group Management Protocol	SNMP	=	Simple Network Management Protocol
IP	=	Internet Protocol	TCP	=	Transmission Control Protocol
MIME	=	Multi-Purpose Internet Mail Extension	TLS	=	Transport Layer Security
OSPF	=	Open Shortest Path First	UDP	=	User Datagram Protocol

Connectionless Internetworking

- Advantages
 - Flexible and robust
 - In case of congestion or node failure, packets find their way easier than connection-oriented services
 - No unnecessary overhead for connection setup
 - Can work with different network types
- Disadvantage: Unreliable
 - Not guaranteed delivery
 - Not guaranteed order of delivery
 - Packets can take different routes
 - Reliability is responsibility of next layer up (for example:TCP)

דוגמא לתקשורת 1P (1)

דוגמא לתקשורת 2) IP

שירותי IP

- IP provides an unreliable connectionless best effort service (also called: "datagram service")
 - Unreliable: IP does not make an attempt to recover lost packets
 - Connectionless: Each packet ("datagram") is handled independently. IP is not aware that packets between hosts may be sent in a logical sequence
 - Best effort: IP does not make guarantees on the service (no throughput guarantee, no delay guarantee,...)
- Consequences
 - Higher layer protocols have to deal with losses or with duplicate packets
 - Packets may be delivered out-of-sequence

שירותי IP (המשך)

IP supports the following services:

one-to-one (unicast)
one-to-all (broadcast)
one-to-several (multicast)

- IP multicast also supports a many-to-many service.
- IP multicast requires support of other protocols (IGMP, multicast routing)

מיבנה כתובות ה-IP

IP Address = <network number><host number>
Initially, 5 Classes of IP addresses where defined

<u>מיבנה כתובות ה-IP (המשך)</u>

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (oreset bits do not	Network(*) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N:N.N.H	255.255.255. <mark>0</mark>	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

Green bits do not change

^{**} All zeros (0) and all ones (1) are invalid hosts addresses.

מיבנה כתובות ה-IP (המשך) 125.31.137.33 01111101 00011111 10001001 00100001

32 bits - Decimal Notation

Each node has at least one IP address on each one of its interfaces

כתובות פרטיות לעומת כתובות גלובליות

כתובות ברשתות פרטיות

- Private IP network is an IP network that is not Directly
 Connected to the Internet
- Not unique IP addresses
- Private networks address ranges

• Class A: 10.0.0.0 – 10.255.255.255 **10.x.x.x**

• Class B: 172.16.0.0 – 172.31.255.255 **172.16.x.x-172.31.x.x**

Class C: 192.168.0.0 – 192.168.255.255
 192.168.x.x

Subnets and Subnet Masks

- Allow arbitrary complexity of internetworked LANs within organization
 - By not having one network class for each LAN within the organization
 - Each such LAN is called a subnet
- Such a network with several subnets looks like a single network from the point of view of the rest of internet
- Each subnet is assigned a subnet number
- Host portion of address partitioned into subnet number and host number
- Local routers route within subnetted network
- Subnet mask indicates which bits are network/subnet number and which are host number

פורמט מיוחד של כתובות IP

Prefix (network)	Suffix (host)	Type & Meaning
all zeros	all zeros	this computer (used during bootstrap)
network address	all zeros	identifies network
network address	all ones	broadcast on the specified network
all ones	all ones	broadcast on local network
127	any	loop back (for testing purposes)

<u> מיבנה ה- IP Header לפי תקן 791</u>

RFC 791: https://www.ietf.org/rfc/rfc791.txt

<u>מיבנה ה- IP Header לפי תקן 2474</u>

RFC 2474: https://tools.ietf.org/html/rfc2474

^{**} DS (Differentiated Services) and ECN (Explicit Congestion Notification)

IP Header Fields (1)

- Version
 - IP version 4
- Header length
 - Including options
- Type of Service (RFC 791)
 - Specify treatment of data unit during transmission through networks
- DS (Differentiated Services) and ECN (Explicit Congestion Notification) - RFC 2474
 - previously used for "Type of Service"
 - now used by (interpreted as) DS and ECN
 - DS is for QoS support

Type of Service Indicators

- R Reliability
 - Normal or high
- D- Delay
 - Normal or low
- T- Throughput
 - Normal or high

- Precedence
 - 111 = Network
 - 110 = Internetwork
 - 101 = Critic (mainly used for Voice RTP)
 - 100 = Flash Override
 - 011 = Flash (mainly used for Voice Signaling or for Video)
 - 001 = Immediate
 - 000 = Routing (best effort)

IP Header Fields (2)

- Total length
 - of datagram (header + data), in octets
- Identification
 - Sequence number
 - Used with addresses and user protocol to identify datagram uniquely
 - Used for Fragmentation and Re-assembly
- Flags (3 bits)
 - First bit always set to 0
 - DF bit (Do not fragment)
 - MF bit (More fragments)

IP Header Fields (3)

- Fragmentation offset
- Time To Live (TTL) (1 byte)
 - Ensure that packet is eventually dropped when a routing loop occurs
 - Used as follows
 - Sender sets the value (e.g., 64)
 - Each router decrements the value by 1
 - When the value reaches 0, the datagram is dropped
- Protocol (1 byte)
 - Specifies the higher-layer protocol

<u>Datagram Lifetime</u>

- Datagrams could loop indefinitely
 - Unnecessary resource consumption
 - Transport protocol needs upper bound on datagram life
- Datagram marked with lifetime
 - Time To Live (TTL) field in IP
 - Once lifetime expires, datagram discarded
 - Hop count
 - Decrement time to live on passing through each router

IP Header Fields (4)

- Header checksum (2 bytes)
 - 16-bit long checksum which is computed for the header of the datagram
 - Verified and recomputed at each router
- Source address
- Destination address
- Options
 - Security restrictions
 - Record Route: each router that processes the packet adds its IP address to the header
 - Timestamp: each router that processes the packet adds its IP address and time to the header

IP Header Fields (5)

- Options (cont.)
 - (loose) Source Routing: specifies a list of routers that must be traversed
 - (strict) Source Routing: specifies a list of the only routers that can be traversed
- Padding
 - Padding bytes are added to ensure that header ends on a 4-byte boundary (32 bits long)
- Data
 - User (upper layer) data
 - any octet length is OK
 - But max length of IP datagram (header plus data) is 65,535 octets

Maximum Transmission Unit

- Maximum size of IP datagram is 65535, but the data link layer protocol generally imposes a limit that is much smaller
 - Ethernet frames have a maximum payload of 1500 bytes → IP datagrams encapsulated in Ethernet frame cannot be longer than 1500 bytes
- The limit on the maximum IP datagram size, imposed by the data link protocol is called maximum transmission unit (MTU)
- MTU for various data link protocols:

Ethernet: 1500 FDDI: 4352
 802.3: 1492 ATM AAL5: 9180

■ 802.5: 4464 PPP: negotiated

Fragmentation and Re-assembly

- Different maximum packet sizes for different networks
 - routers may need to split the datagrams into smaller fragments
- When to re-assemble
 - At destination
 - Packets get smaller as data travel
 - inefficiency due to headers
 - Intermediate reassembly
 - Need large buffers at routers
 - All fragments must go through same router
 - Inhibits dynamic routing

■ The picture can't be displ

IP Fragmentation

- What if the size of an IP datagram exceeds the MTU?
- IP datagram is fragmented into smaller units
- What if the route contains networks with different MTUs?

MTUs: FDDI: 4352 Ethernet: 1500

Fragmentation:

- IP router splits the datagram into several datagram
- Fragments are reassembled at receiver

Where is Fragmentation done?

- Fragmentation can be done at the sender or at intermediate routers
- The same datagram can be fragmented several times
- Reassembly of original datagram is only done at destination hosts

What's involved in Fragmentation?

version	header length	DS	ECN		total length (in bytes)	
	ldentif	ication		o B F	Fragment offset	
time-to-l	ive (TTL)	protocol			header checksum	

- Total length: Length of user data in octets (if fragment, length of fragment data) including the header
- Identification: uniquely identify datagram. all fragments that belong to a datagram share the same identifier

What's involved in Fragmentation?

version	header length	DS	ECN		total lengtl	h (in bytes)
	ldentif	ication		0 D M F F	Frag	ment offset
time-to-l	ive (TTL)	protocol			header c	hecksum

Flags

- DF (Do not fragment) bit is set: Datagram cannot be fragmented and must be discarded if MTU is too small
- MF (More fragments) bit set: This datagram is part of a fragment and an additional fragment follows this one (Indicates that this is not the last fragment)

Fragment offset

- Offset of the payload of the current fragment in the original datagram
- Position of fragment of user data in original datagram In multiples of 64 bits (8 octets)

Fragmentation Example (1)

Original datagram
Data length = 404 octets
Segment offset = 0
More = 0

Fragmentation Example (2)

 A datagram with size 2400 bytes must be fragmented according to an MTU limit of 1000 bytes

IPv4 to IPv6

IPv4

- 32 bits or 4 bytes long
 - ≅4,200,000,000 possible addressable nodes

IPv6

- 128 bits or 16 bytes: four times the bits of IPv4
 - ≅3.4 * 10³⁸ possible addressable nodes
 - ≅340,282,366,920,938,463,374,607,432,768,211,456
 - ≅5 * 10²⁸ addresses per person

Major Improvements of IPv6 Header

- Larger address space
- No option field: Replaced by extension header. Result in a fixed length, 40-byte IP header
- No header checksum: Result in fast processing
 - Reduce end-to-end delay
- No fragmentation at intermediate nodes: Result in fast IP forwarding
- Higher level of security

סיכומ

- IP structure
- Routing
- Datagram lifetime
- Fragmentation and re-assembly
- Error control
- Flow control
- Addressing
- IP Fragmentation
- IPV4 versus IPV6

IGMP Architecture

ICMP

ICMP Header Format

Offsets	Octet	0			1								2								3												
Octet	Bit	0 1 2 3 4 5 6 7				7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31			
0	0				Ту	ре	•						Co	ode										С	hec	ksu	ım						
4	32															Re	st o	f He	eade	er													

Type

ICMP type

Code

ICMP subtype

Checksum

 Error checking data, calculated from the ICMP header and data, with value 0 substituted for this field

Rest of Header

Four-bytes field, contents vary based on the ICMP type and code

Data

 ICMP error messages contain a data section that includes the entire IPv4 header, plus the first eight bytes of data from the IPv4 packet that caused the error message

Туре	Code	Status	Description
0 – Echo Reply ^{[3]:14}	0		Echo reply (used to ping)
1 and 2			Reserved
	0		Destination network unreachable
	1		Destination host unreachable
	2		Destination protocol unreachable
	3		Destination port unreachable
	4		Fragmentation required, and DF flag set
	5		Source route failed
	6		Destination network unknown
3 – Destination Unreachable ^{[3]:4}	7		Destination host unknown
3 – Destination officachable	8		Source host isolated
	9		Network administratively prohibited
	10		Host administratively prohibited
	11		Network unreachable for TOS
	12		Host unreachable for TOS
	13		Communication administratively prohibited
	14		Host Precedence Violation
	15		Precedence cutoff in effect
4 – Source Quench	0	deprecated	Source quench (congestion control)

	-							
	0		Redirect Datagram for the Network					
5 – Redirect Message	1		Redirect Datagram for the Host					
3 - Neull ett Wessage	2		Redirect Datagram for the TOS & network					
	3		Redirect Datagram for the TOS & host					
6		deprecated	Alternate Host Address					
7			Reserved					
8 – Echo Request	0		Echo request (used to ping)					
9 – Router Advertisement	0		Router Advertisement					
10 – Router Solicitation	0		Router discovery/selection/solicitation					
11 – Time Exceeded ^{[3]:6}	0		TTL expired in transit					
11 - Time Exceeded 1	1		Fragment reassembly time exceeded					
	0		Pointer indicates the error					
12 – Parameter Problem: Bad IP header	1		Missing a required option					
	2		Bad length					
13 – Timestamp	0		Timestamp					
14 – Timestamp Reply	0		Timestamp reply					
15 – Information Request	0	deprecated	Information Request					
16 – Information Reply	0	deprecated	Information Reply					
17 – Address Mask Request 0 depre			Address Mask Request					
18 – Address Mask Reply	0	deprecated	Address Mask Reply					

19			Reserved for security
20 through 29			Reserved for robustness experiment
30 – Traceroute	0	deprecated	Information Request
31		deprecated	Datagram Conversion Error
32		deprecated	Mobile Host Redirect
33		deprecated	Where-Are-You (originally meant for IPv6)
34		deprecated	Here-I-Am (originally meant for IPv6)
35		deprecated	Mobile Registration Request
36		deprecated	Mobile Registration Reply
37		deprecated	Domain Name Request
38		deprecated	Domain Name Reply
39		deprecated	SKIP Algorithm Discovery Protocol, Simple Key-Management for Internet Protocol
40			Photuris, Security failures
41			ICMP for experimental mobility protocols such as Seamoby [RFC4065]
42 through 255			Reserved