CTG_dre

February 9, 2023

1 CTG DRE

1st read in the dfa location: https://archive.ics.uci.edu/ml/datasets/cardiotocography

```
[2]: import sys
     import pandas as pd
     import numpy as np
     import torch
     from torch import distributions
     import matplotlib.pyplot as plt
     from sklearn.linear_model import LogisticRegression
     from scipy import optimize
     import pickle
     import warnings
     from copy import deepcopy
     # setting path
     sys.path.append('..')
     from functions.np_classifier_torch import cutoff_bin, power_alpha_calc # noqa:
      →E402
     from functions.estimators_torch import kliep_miss_wrap, __
      →kliep_multi_dim_sep_wrap, kliep_multi_dim_naive_sep_wrap
     from functions.estimators_torch import kliep_multi_dim_imp_wrap,_
      →kliep_multi_dim_sep_imp_wrap # noqa: E402
     from functions.objective_funcs_torch import get_dat_vals_impute,_
      ⇒get_dat_vals_multidim
     from functions.pipeline_funcs import missing_pipeline, full_pipeline, func_adj,_
      ⇔get_ci, progress, create_standard_miss_func
     unif=distributions.Uniform(0,1)
     plt.rcParams["figure.facecolor"] = "White"
     plt.rcParams["savefig.facecolor"] = "White"
     page_width=9
     width_height_ratio=3/4
     font = {'weight' : 'normal',
```

```
'size' : 14}
plt.rc('font', **font)
warnings.filterwarnings("once")
```

```
[2]: # Read in data
df = pd.read_excel("../real_world_data/CTG.xls",sheet_name="Raw Data")
#Remove unnecssary columns
df_fin = df.iloc[1: , np.arange(6,14).tolist()+[24,26,39]]

null_df = df_fin[df_fin["NSP"]!=1].drop("NSP",axis=1)
alt_df = df_fin[df_fin["NSP"]==1].drop("NSP",axis=1)

df_fin_nodrop=df_fin.drop("NSP",axis=1)

# Get normalisation terms from training tensor
std = np.nanstd(df_fin_nodrop.to_numpy(), axis=0)
m = np.nanmean(df_fin_nodrop.to_numpy(), axis=0)
```

2 Single Examples

2.1 No missing data

[3]: [[tensor(0.7900), tensor(0.0675)]]

2.2 Corrupted Data, known φ

Now try corrupting the data. We will corrupt them in the worst directions possible

```
[4]: signs=np.sign(temp_nomiss_norm["dr"]["par"])
missing_funcs = [create_standard_miss_func(m[j],std[j],-signs[j]) for j in

→range(10)]
```

Plot these to see what they look like

```
[5]: print(m.shape)
# adjust true function to be on same scale as normalised data
```

```
fig, ax = plt.subplots(nrows=5,ncols=2,figsize=(8,10))
for j in range(10):
    x=torch.linspace(m[j]-3*std[j],m[j]+3*std[j],50)
    y=missing_funcs[j](x)
    ax[j//2,j%2].plot(x,y)
    ax[j//2,j%2].set(title=df.columns[j])
```

(10,)

Now try the approach knowing these missing funcs with the same data split and random missing data

[6]: [[tensor(0.6900), tensor(0.0675)]]

We lose a fair amount of power however we now need to see how this compares to the naive approach.

[7]: [[tensor(0.5000), tensor(0.0675)]]

This performs far worse. Out of curiosity see if the reduction in power for our method comes from ultilising the naive assumption more heavily.

```
[8]: temp_nomiss_nb = full_pipeline(
    null_df, alt_df, None, n_altte=100, n_nulltr=237,
    est_miss=False, lr=lr, alpha=0.1, delta=0.05, maxiter=1000,
    split_seed=123)
temp_nomiss_nb["power_res"]
```

[8]: [[tensor(0.7100), tensor(0.0675)]]

2.3 Iterative Imputation

Now try MICE approach

```
est_miss=False, lr=lr, alpha=0.1, delta=0.05,
    maxiter=1000,
    split_seed=123, miss_seed=1234)
temp_mice["power_res"]
```

[9]: [[tensor(0.7600), tensor(0.0675)]]

This performs surprisingly well. Now, separate each dimension

[17]: [[tensor(0.5800), tensor(0.0675)]]

We then get our worse performance back again which is interesting. This suggests that marginally our samples are wrong but jointly this is not the case?

2.4 Uniform Imputation

Now try uniform imputation along each

[10]: [[tensor(0.7400), tensor(0.0675)]]

```
[11]: [[tensor(0.5100), tensor(0.0675)]]
```

2.5 Weighted Imputation

[12]: [[tensor(0.7800), tensor(0.0675)]]

[13]: [[tensor(0.6900), tensor(0.0675)]]

That seems to be the case.

2.6 Learning φ

Now try and learn the missingness function. We adapt the ideas of King, Zeng 2001 to do this.

```
[14]: # Test our method
temp_our = full_pipeline(
    null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
    est_miss=True, lr=lr,alpha=0.1, delta=0.05, nlearn=25, maxiter=1000,
    split_seed=123,miss_seed=1234,learn_seed=12345)
temp_our["power_res"]
```

[14]: [[tensor(0.7000), tensor(0.0675)]]

Performs identically to method with known missingness funcs!. Out of curiosity plot these missingness funcs against the true ones to compare accuracy.

```
[23]: adj_miss_funcs = [func_adj(
         temp_our["norm"]["mean"][j], temp_our["norm"]["std"][j], missing_funcs[j]
        ) for j in range(len(missing_funcs))]
fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(8, 10))
for j in range(10):
    x = torch.linspace(-3, 3, 50)
```

```
y = adj_miss_funcs[j](x)
y_est = temp_our["est_miss_funcs"][j](x)
ax[j//2, j % 2].plot(x, y, label="True")
ax[j//2, j % 2].plot(x, y_est, label="Estimated")
ax[j//2, j % 2].set(title=df.columns[j])
ax[j//2, j % 2].legend()
```


Quite good approximation with only 25 points.

3 Repeated Fixed Scenarios

3.1 Random direction missingness

We now try the same procedure but choosing direction of corruption for each feature randomly. We will do this 10 times

```
[14]: best meth = []
      naive meth = []
      for i in range(1000):
              # ### Chossing missing functions ### #
          signs = torch.multinomial(torch.zeros((2))+1, num_samples=10,
                                   replacement=True)
         missing_funcs = [create_standard_miss_func(m[j],std[j],-signs[j]) for j in_
       →range(10)]
      # Test new pipeline
         temp_our = full_pipeline(
             null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
             est miss=True, lr=lr,alpha=0.1, delta=0.05, nlearn=25, maxiter=1000,
              split_seed=123,miss_seed=1234,learn_seed=12345)
         best_meth.append(temp_our["power_res"])
          # Test new pipeline.
          # Test naive method
         temp_naive = full_pipeline(
             null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
             dr_proc=kliep_multi_dim_naive_sep_wrap,
              est_miss=False, lr=lr, alpha=0.1, delta=0.05, maxiter=1000,
              split_seed=123, miss_seed=1234)
         naive_meth.append(temp_naive["power_res"])
      results = {"Learning Missingness Func": best_meth, "Naive": naive_meth}
      with open('../results/real world results/CTG missrand 1000sim ourmeth.pkl',,,
       pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
```

Give results

```
For Learning Missingness Func Method
Our Estimated Expected Power is: 0.708
With ci(0.707, 0.708)
For Naive Method
Our Estimated Expected Power is: 0.689
With ci(0.685, 0.692)
```

4 Varying α

Now try all the different approaches each time with completely new data split and for various α .

```
[27]: warnings.filterwarnings("ignore")
      new_meth = []
      true meth = []
      best_meth = []
      naive_meth = []
      nomiss_nb_meth = []
      nomiss_norm_meth = []
      mice_meth = []
      new_seed = 12344
      reg = 0
      alphas = [0.3, 0.25, 0.2, 0.15, 0.1, 0.05]
      deltas = [0.05]*len(alphas)
      mice_args = {"sample_posterior": False, "n_nearest_features": 9}
      nsim=1000
      for i in range(nsim):
          torch.manual_seed(new_seed)
          # ### Seed Setting ### #
          split seed = int(1e9*unif.sample([1])[0])
          miss_seed = int(1e9*unif.sample([1])[0])
          learn_seed = int(1e9*unif.sample([1])[0])
          new_seed = int(1e9*unif.sample([1])[0])
          # ### Chossing missing functions ### #
          signs = torch.tensor([-1., 1.])
          signs = signs[torch.multinomial(torch.zeros((2))+1, num_samples=10,
                                           replacement=True)]
          missing_funcs = [create_standard_miss_func(
              m[j], std[j], -signs[j]) for j in range(10)]
          # Test our method
          temp_our = full_pipeline(
              null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
              est_miss=True, lr=lr, alpha=alphas, delta=deltas, nlearn=10,__
       ⇒maxiter=1000,
              reg=reg,
              split_seed=split_seed, miss_seed=miss_seed, learn_seed=learn_seed)
```

```
# Re-do with smaller LR if errors
  if any(torch.isnan(temp_our["dr"]["par"]).reshape(-1)):
      print(f"Fail on run {i}")
      print(f"Seeds are: Split - {split seed}, Miss - {miss_seed}, Learn -__
→{learn_seed}")
      print(f"Signs are {signs}")
      temp_our = full_pipeline(
          null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
          est_miss=True, lr=0.1*lr, alpha=alphas, delta=deltas, nlearn=10, u
⇔maxiter=1000,
          reg=reg,
          split seed=split seed, miss seed=miss seed, learn seed=learn seed)
      if any(torch.isnan(temp_our["dr"]["par"]).reshape(-1)):
          print(f"Still not Working on run {i}")
  best_meth.append(temp_our["power_res"])
  # Test true method
  temp_true = full_pipeline(
      null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
      est_miss=False, lr=lr, alpha=alphas, delta=deltas, maxiter=1000,
      reg=reg,
      split_seed=split_seed, miss_seed=miss_seed)
  true_meth.append(temp_true["power_res"])
  # Test naive method
  temp_naive = full_pipeline(
      null df, alt df, missing funcs, n altte=100, n nulltr=237,
      dr_proc=kliep_multi_dim_naive_sep_wrap,
      est_miss=False, lr=lr, alpha=alphas, delta=deltas, maxiter=1000,
      reg=reg,
      split_seed=split_seed, miss_seed=miss_seed)
  naive_meth.append(temp_naive["power_res"])
  temp nomiss nb = full pipeline(
      null_df, alt_df, None, n_altte=100, n_nulltr=237,
      est_miss=False, lr=lr, alpha=alphas, delta=deltas, maxiter=1000,
      reg=reg,
      split_seed=split_seed)
  nomiss_nb_meth.append(temp_nomiss_nb["power_res"])
  temp_nomiss_norm = full_pipeline(
      null_df, alt_df, None, n_altte=100, n_nulltr=237,
      dr_proc=kliep_miss_wrap, dat_val_fun=get_dat_vals_impute,
      est_miss=False, lr=lr, alpha=alphas, delta=deltas, maxiter=1000,
      reg=reg,
      split_seed=split_seed)
  nomiss_norm_meth.append(temp_nomiss_norm["power_res"])
```

```
temp mice = full pipeline(
            null_df, alt_df, missing_funcs=missing_funcs, n_altte=100, n_nulltr=237,
            dr_proc=kliep_multi_dim_sep_imp_wrap, impute="MICE", opt_type="Scalar",
            mice_args=mice_args, est_miss=False, lr=lr, alpha=alphas,
            delta=deltas, maxiter=1000,
            split_seed=split_seed, miss_seed=miss_seed)
        mice_meth.append(temp_mice["power_res"])
        # Print progress
        progress(int(100*(i+1)/nsim))
    results = {
        "Learning Missingness Func": best_meth,
        "Naive": naive_meth, "Known Missingness Func": true_meth,
        "No Missing NB": nomiss_nb_meth, "No Missing Normal": nomiss_norm_meth,
        "MICE": mice_meth
    }
    data = (results,{"alphas": alphas, "deltas": deltas})
    with open('../results/real_world_results/
     →CTG_fullrand_'+str(nsim)+'sim_allmeth_noreg_varyalpha.pkl', 'wb') as handle:
        pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
    [#######
                                          ]22%Fail on run 221
    Seeds are: Split - 909081728, Miss - 611009280, Learn - 481309344
    Signs are tensor([-1., 1., -1., -1., 1., -1., -1., 1.])
    140%Fail on run 408
    Seeds are: Split - 801440256, Miss - 667935808, Learn - 421786080
    Signs are tensor([ 1., 1., -1., -1., -1., -1., 1., -1., 1., -1.])
    ]66%Fail on run 665
    Seeds are: Split - 835022400, Miss - 160659008, Learn - 437058912
    Signs are tensor([ 1., 1., 1., -1., -1., -1., -1., -1.])
    ]68%Fail on run 683
    Seeds are: Split - 452783296, Miss - 392387136, Learn - 926203456
    Signs are tensor([-1., 1., -1., -1., -1., 1., -1., 1.])
    [################################# ]98%Fail on run 988
    Seeds are: Split - 19364596, Miss - 473424960, Learn - 765411648
    Signs are tensor([-1., 1., -1., -1., 1., 1., -1., 1., -1.])
    [#############]100%
    Give results
[6]: with open('../results/real world results/
     →CTG_fullrand_1000sim_allmeth_noreg_varyalpha.pkl', 'rb') as handle:
        results, params = pickle.load(handle)
    names = {
```

```
"No Missing NB": "KLIEP (full dataset)",
    "Known Missingness Func": r"M-KLIEP (known $\varphi_j$)",
    "Learning Missingness Func": r"M-KLIEP (estimated $\varphi_j$)",
    "Naive": "CC-KLIEP"
}
cs = [u'#377eb8', u'#4daf4a', u'#e41a1c', u'#000000',u"#984ea3"]
fig, ax = plt.subplots(figsize=(0.7*8, 0.7*6))
for i, key in enumerate(names):
   print(key)
    x = np.array(params["alphas"])
    all_cis = get_ci(torch.tensor(results[key])[:, :, 0],
                     verbose=False)
    y1 = all_cis[1]
    y2 = all_cis[2]
    y = all_cis[0]
    error = y2-y
    diff = x[1]-x[0]
    x_jit = x+diff*0.05*i
    ax.scatter(x_jit, y, label=names[key], s=20, c=cs[i])
    ax.errorbar(x_jit, y, error, c=cs[i],linewidth=2)
ax.set(xlabel="Fixed Type 1 Error", ylabel="Out of Sample Power")
ax.legend(handletextpad=-0.3,borderpad=0, borderaxespad=0.2,frameon=False)
plt.savefig("../plots/np_RWE_CTG_varyalpha.pdf",
            bbox_inches="tight", dpi=300)
```

No Missing NB Known Missingness Func Learning Missingness Func Naive


```
[5]: with open('../results/real_world_results/
      →CTG_fullrand_1000sim_allmeth_noreg_varyalpha.pkl', 'rb') as handle:
         results, params = pickle.load(handle)
     names = {
         "No Missing NB": "KLIEP (full dataset)",
         "Known Missingness Func": r"M-KLIEP (known $\varphi_j$)",
         "Learning Missingness Func": r"M-KLIEP (estimated $\varphi_j$)",
         "Naive": "CC-KLIEP",
         "MICE": "MICE"
     }
     cs = [u'#377eb8', u'#4daf4a', u'#e41a1c', u'#000000',u"#984ea3"]
     fig, ax = plt.subplots(figsize=(0.7*8, 0.7*6))
     for i, key in enumerate(names):
         print(key)
         x = np.array(params["alphas"])
         all_cis = get_ci(torch.tensor(results[key])[:, :, 0],
                          verbose=False)
         y1 = all_cis[1]
         y2 = all_cis[2]
         y = all_cis[0]
```

```
error = y2-y

diff = x[1]-x[0]

x_jit = x+diff*0.05*i

ax.scatter(x_jit, y, label=names[key], s=20, c=cs[i])
ax.errorbar(x_jit, y, error, c=cs[i],linewidth=2)

ax.set(xlabel="Fixed Type 1 Error", ylabel="Out of Sample Power")
ax.legend(handletextpad=-0.3,borderpad=0, borderaxespad=0.2,frameon=False,u=labelspacing=0.2)

plt.savefig("../plots/np_RWE_CTG_varyalpha_mice.pdf", bbox_inches="tight", dpi=300)
```

No Missing NB Known Missingness Func Learning Missingness Func Naive MICE


```
results_our = np.array(results["Learning Missingness Func"])[:,4,0]
results_naive = np.array(results["Naive"])[:,4,0]

fig, ax = plt.subplots(figsize=(5, 3))
ax.hist(results_our, alpha=0.4, label='Unknown Corruption: MKLIEP')
ax.hist(results_naive, alpha=0.4, label='Known Corruption: CCKLIEP')
ax.legend(loc='upper right')
ax.set(title=r"$\alpha=$"+str(params["alphas"][4]),xlabel="Out of sample Power")
plt.savefig("../plots/np_RWE_CTG_power_dist.pdf",bbox_inches="tight")
```


5 Varying φ to Vary Proportion Missing

We vary $a_{j,0}$ to vary the proportion of points missing. We now work out what $a_{j,0}$ ti choose to give our desired missing proportions

```
[15]: def miss_prop_opt(loc,data, m, std, sign, target_prop):
    varphi = create_standard_miss_func(m,std, sign,loc)
    return (torch.nanmean(varphi(data))-target_prop)**2

df_tens = torch.tensor(
    (df_fin_nodrop).to_numpy().astype(np.float32))

locs = []
    miss_props = np.arange(0.1,1,0.1)
    for miss_prop in miss_props:
        temp_locs = []
```

```
for j in range(df_fin_nodrop.shape[1]):
    opt_plus = optimize.minimize_scalar(
        miss_prop_opt,args=(df_tens[:,j],m[j],std[j],1.,miss_prop))
    opt_minus = optimize.minimize_scalar(
        miss_prop_opt,args=(df_tens[:,j],m[j],std[j],-1.,miss_prop))

    temp_locs.append([opt_plus["x"], opt_minus["x"]])
locs.append(temp_locs)
```

We now perform our procedure for these various missing proprtions

```
[16]: warnings.filterwarnings("ignore")
      new_seed = 12345
      reg = 0.
      alphas = 0.1
      deltas = 0.05
      nsim = 1000
      miss_props = np.arange(0.1,1,0.1)
      mice_args = {"sample_posterior": False, "n_nearest_features": 9}
      true meth = {
          key: [[] for j in range(miss props.shape[0])]
          for key in ["power_res", "prop_miss", "true_prop_miss", "grad"]
      }
      best_meth = deepcopy(true_meth)
      naive_meth = deepcopy(true_meth)
      mice_meth = deepcopy(true_meth)
      for j, miss_prop in enumerate(miss_props):
          for i in range(nsim):
              torch.manual_seed(new_seed)
              # ### Seed Setting ### #
              split_seed = int(1e9*unif.sample([1])[0])
              miss seed = int(1e9*unif.sample([1])[0])
              learn_seed = int(1e9*unif.sample([1])[0])
              new seed = int(1e9*unif.sample([1])[0])
              # ### Chossing missing functions ### #
              signs = torch.tensor([-1., 1.])
              signs = signs[torch.multinomial(torch.zeros((2))+1,
               num_samples=df_fin_nodrop.shape[1],
                                              replacement=True)]
              sign_locs = ((signs+1)/2).int()
              missing_funcs = [create_standard_miss_func(
                  m[1], std[1], -signs[1], shift=locs[j][1][sign_locs[1]])
                  for 1 in range(df fin nodrop.shape[1])]
```

```
# Test our method
      temp_our = full_pipeline(
          null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
          est_miss=True, alpha=alphas, delta=deltas, nlearn=10, maxiter=100,
          reg=reg, opt_type="scalar", lr=1, tol=1e-3,
          split_seed=split_seed, miss_seed=miss_seed, learn_seed=learn_seed)
      # Re-do with smaller LR if errors
      best meth["power res"][j].append(temp our["power res"][0])
      best_meth["prop_miss"][j].append(temp_our["prop_miss"])
      best_meth["true_prop_miss"][j].append(miss_prop)
      best_meth["grad"][j].append(temp_our["dr"]["gr"])
      # Test true method
      temp_true = full_pipeline(
          null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
          est_miss=False, alpha=alphas, delta=deltas, maxiter=100,
          reg=reg, opt_type="scalar",lr=1, tol=1e-3,
          split_seed=split_seed, miss_seed=miss_seed)
      true_meth["power_res"][j].append(temp_true["power_res"][0])
      true_meth["prop_miss"][j].append(temp_true["prop_miss"])
      true_meth["true_prop_miss"][j].append(miss_prop)
      true_meth["grad"][j].append(temp_true["dr"]["gr"])
      # Test naive method
      temp naive = full pipeline(
          null_df, alt_df, missing_funcs, n_altte=100, n_nulltr=237,
          dr_proc=kliep_multi_dim_naive_sep_wrap,
          est_miss=False, alpha=alphas, delta=deltas, maxiter=100,
          reg=reg, opt_type="scalar", lr=1, tol=1e-3,
          split_seed=split_seed, miss_seed=miss_seed)
      naive_meth["power_res"][j].append(temp_naive["power_res"][0])
      naive_meth["prop_miss"][j].append(temp_naive["prop_miss"])
      naive_meth["true_prop_miss"][j].append(miss_prop)
      naive_meth["grad"][j].append(temp_naive["dr"]["gr"])
      temp_mice = full_pipeline(
          null df, alt df, missing funcs=missing funcs, n altte=100,
⇔n_nulltr=237,
          dr_proc=kliep_multi_dim_sep_imp_wrap, impute="MICE",_
⇔opt_type="Scalar",
          mice_args=mice_args, est_miss=False, lr=lr, alpha=alphas,
          delta=deltas, maxiter=1000,
          split_seed=split_seed, miss_seed=miss_seed)
      mice_meth["power_res"][j].append(temp_mice["power_res"][0])
      mice_meth["prop_miss"][j].append(temp_mice["prop_miss"])
```

```
mice_meth["true_prop_miss"][j].append(miss_prop)
    mice_meth["grad"][j].append(temp_mice["dr"]["gr"])

progress(int(100*(j*nsim+(i+1))/(nsim*miss_props.shape[0])))

results = {
    "Learning Missingness Func": best_meth,
    "Naive": naive_meth, "Known Missingness Func": true_meth,
    "Iterative Imputation": mice_meth
}

data = (results, {"alphas": alphas, "deltas": deltas})
with open('../results/real_world_results/
    \( \subseteq CTG_fullrand_' + str(nsim) + 'sim_allmeth_noreg_varymissfixed_scalar_test.pkl', \subseteq 'wb') as handle:
    pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
```

[############]100%

Finally perform each procedure with no-missingness as a benchmark.

```
[19]: new_seed = 12345
      reg = 0
      alphas = 0.1
      deltas = 0.05
      nsim = 1000
      lr = 0.7**(np.floor((np.arange(1000))/100)+1)
      true meth 0 = {
          key: [[]] for key in ["power res", "prop miss", "true prop miss", "grad"]
      best_meth_0 = deepcopy(true_meth_0)
      naive_meth_0 = deepcopy(true_meth_0)
      mice_meth_0 = deepcopy(true_meth_0)
      miss_prop=0
      for i in range(nsim):
          torch.manual_seed(new_seed)
          # ### Seed Setting ### #
          split_seed = int(1e9*unif.sample([1])[0])
          miss_seed = int(1e9*unif.sample([1])[0])
          learn seed = int(1e9*unif.sample([1])[0])
          new_seed = int(1e9*unif.sample([1])[0])
          # ### Chossing missing functions ### #
          signs = torch.tensor([-1., 1.])
```

```
signs = signs[torch.multinomial(torch.zeros((2))+1,__
→num_samples=df_fin_nodrop.shape[1],
                                   replacement=True)]
  sign_{locs} = ((signs+1)/2).int()
  missing funcs = [create standard miss func(
      m[1], std[1], -signs[1], shift=locs[j][1][sign_locs[1]])
      for l in range(df_fin_nodrop.shape[1])]
  # Test our method
  temp_our = full_pipeline(
      null_df, alt_df, None, n_altte=100, n_nulltr=237,
      est_miss=False, alpha=alphas, delta=deltas, nlearn=10, maxiter=100,
      reg=reg, opt_type="scalar", lr=1, tol=1e-3,
      split_seed=split_seed, miss_seed=miss_seed, learn_seed=learn_seed)
  best_meth_0["power_res"][0].append(temp_our["power_res"][0])
  best_meth_0["prop_miss"][0].append(0)
  best_meth_0["true_prop_miss"][0].append(miss_prop)
  # Test true method
  temp true = full pipeline(
      null_df, alt_df, None, n_altte=100, n_nulltr=237,
      est_miss=False, alpha=alphas, delta=deltas, maxiter=100,
      reg=reg, opt_type="scalar", lr=1, tol=1e-3,
      split_seed=split_seed, miss_seed=miss_seed)
  true_meth_0["power_res"][0].append(temp_true["power_res"][0])
  true_meth_0["prop_miss"][0].append(0)
  true_meth_0["true_prop_miss"][0].append(miss_prop)
  # Test naive method
  temp_naive = full_pipeline(
      null_df, alt_df, None, n_altte=100, n_nulltr=237,
      dr_proc=kliep_multi_dim_naive_sep_wrap,
      est miss=False, alpha=alphas, delta=deltas, maxiter=100,
      reg=reg, opt_type="scalar", lr=1, tol=1e-3,
      split_seed=split_seed, miss_seed=miss_seed)
  naive_meth_0["power_res"][0].append(temp_naive["power_res"][0])
  naive_meth_0["prop_miss"][0].append(0)
  naive_meth_0["true_prop_miss"][0].append(miss_prop)
  temp_mice = full_pipeline(
          null_df, alt_df, missing_funcs=missing_funcs, n_altte=100,_
⇔n_nulltr=237,
          impute=None, opt_type="Scalar",
          mice_args=mice_args, est_miss=False, lr=lr, alpha=alphas,
          delta=deltas, maxiter=1000,
          split_seed=split_seed, miss_seed=miss_seed)
```

[############]100%

```
[9]: with open('../results/real world results/
      →CTG_fullrand_1000sim_allmeth_nomiss_scalar_test.pkl', 'rb') as handle:
         no_miss_results, params = pickle.load(handle)
     with open('../results/real world results/
      ⇔CTG_fullrand_1000sim_allmeth_noreg_varymissfixed_scalar_test.pkl', 'rb') as⊔
      →handle:
         results, params = pickle.load(handle)
     names = {
         "Known Missingness Func": r"M-KLIEP (known $\varphi j$)",
         "Learning Missingness Func": r"M-KLIEP (estimated $\varphi_j$) ",
         "Naive": "CC-KLIEP",
     }
     cs=[u'#377eb8',u'#4daf4a', u'#e41a1c',u'#000000', u"#984ea3"]
     fig, ax = plt.subplots(figsize=(0.7*8, 0.7*6))
     for i, key in enumerate(names):
         x = torch.mean(torch.
      otensor(no_miss_results[key]["true_prop_miss"]+results[key]["true_prop_miss"]),dim=1)
         all_cis = get_ci(torch.
      →tensor(no_miss_results[key]["power_res"]+results[key]["power_res"])[:, :, 0].
      \hookrightarrow T,
                          verbose=False)
```



```
with open('../results/real_world_results/
 ⇔CTG fullrand 1000sim allmeth noreg varymissfixed scalar test.pkl', 'rb') as⊔
 ⇔handle:
    results, params = pickle.load(handle)
names = {
    "Known Missingness Func": r"M-KLIEP (known $\varphi_j$)",
    "Learning Missingness Func": r"M-KLIEP (estimated $\varphi_j$) ",
    "Naive": "CC-KLIEP",
    "Iterative Imputation": "MICE"
}
cs=[u'#377eb8',u'#4daf4a', u'#e41a1c',u'#000000', u"#984ea3"]
fig, ax = plt.subplots(figsize=(0.7*8, 0.7*6))
for i, key in enumerate(names):
    x = torch.mean(torch.
 otensor(no_miss_results[key]["true_prop_miss"]+results[key]["true_prop_miss"]),dim=1)
    all_cis = get_ci(torch.
 →tensor(no_miss_results[key]["power_res"]+results[key]["power_res"])[:, :, 0].
 \hookrightarrow T,
                     verbose=False)
    y1 = all_cis[1]
    y2 = all_cis[2]
    y = all_cis[0]
    error = y2-y
    diff = x[1]-x[0]
    x_jit = x+diff*0.05*i
    ax.scatter(x_jit, y, label=names[key], s=20,c=cs[i+1])
    ax.errorbar(x_jit, y, error,c=cs[i+1], linewidth=2)
ax.set(xlabel="Proportion of Values Missing", ylabel="Out of Sample Power")
ax.legend(handletextpad=-0.3,borderpad=0, borderaxespad=0.2,frameon=False, u
 ⇒labelspacing=0.2)
plt.savefig("../plots/np_RWE_CTG_varymissfixed_mice.pdf",
            bbox_inches="tight", dpi=300)
```

