Асимптотика та складність

Задача 1 Знайти суму елементів масиву

for (int
$$i = 0$$
; $i < n$; $++i$)
$$R = R + a[i];$$

Додавання	n
Присвоєння	n
Загалом	2n

Задача 2 Знайти максимум масиву

```
for(int i = 0; i < n; ++i)
    if(a[i] > R)
        R = a[i];
```

Порівняння	n
Присвоєння	від 1 до n
Загалом	Від n + 1 до 2n

Задача 3

Знайти
$$\sum_{i=0}^{n-1} \sum_{j=0,i!=j}^{n-1} a[i]a[j]$$

```
for(int i = 0; i < n; ++i)
  for(int j = 0; j < n; ++j)
    if(i != j)
        R = R + a[i]*a[j];</pre>
```

Операцій загалом n (3(n - 1) + n) = = n (4n - 3)

	при і = 0	при і = 1	
Порівняння	n	n	
Додавання, множення і присвоєння	n - 1	n - 1	
Загалом	3(n - 1) + n	3(n - 1) + n	

a[i]	1	5	2	-4	1	6
1	1	5	2	-4	1	6
5	5	25	10	-20	5	30
2	2	10	4	-8	2	12
-4	-4	-20	-8	16	-4	-24
1	1	5	2	-4	1	6
6	6	30	12	-24	6	36

R = R * 2;

Операцій загалом

$$3(n-1) + 3(n-2) + ... + 3 + 1 =$$

= $(3/2) * n(n-1) + 2$

	при i = 0	при i = 1	
Додавання, множення і присвоєння	n -1	n - 2	
Загалом	3(n - 1)	3(n - 2)	

$$\sum_{i=0}^{n-1}\sum_{j=0,i!=j}^{n-1}a[i]a[j] = \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}a[i]a[j] - \sum_{i=0}^{n-1}a[i]^2 = \sum_{i=0}^{n-1}a[i] - \sum_{i=0}^{n-1}a[i] - \sum_{i=0}^{n-1}a[i]^2 = \sum_{i=0}^{n-$$

```
for(int i = 0; i < n; ++i){
    sum = sum + a[i];
    sqSum = sqSum + a[i]*a[i];
}
result = sum*sum - sqSum;</pre>
```

Додавання/віднімання	2n + 1
Множення	n + 1
Присвоєння	2n + 1
Загалом	5n + 3

	N = 5	N = 10	N = 100	N = 1000	N =10000	N = 100000	N = 1000000
Рішення 1 n*(4n - 3)	85	370	39700	3'997'000	399'970'000	39'999'700'000	3'999,997'000'000
Рішення 2 3/2*n*(n-1)+2	32	137	14852	1'498'502	149'985'002	14,999'850'002	1'499,998'500'002
Рішення 3 5n + 3	28	53	503	5'003	50'003	500'003	5'000'003
Пошук суми 2n	10	20	200	2'000	20'000	200'000	2'000'000

Означення

T(n) = O(f(n)) - існує деяке додатнє число ${f c}$, таке що для всіх n починаючи з деякого виконується $T(n) \leq c f(n)$

$$n*(4n-3) \le 4*n^2 \implies n*(4n-3) = O(n^2)$$

$$\frac{3}{2}n(n-1) + 1 \le \frac{3}{2}n^2 \implies \frac{3}{2}n(n-1) + 1 = O(n^2)$$

$$5*n+3 \le 6*n(n \ge 3) \implies 5*n+3 = O(n)$$

$$2n \le 2n \implies 2n = O(n)$$

Вправа 1

```
int j = 0;
for(int i = 0; i < n; ++i)
    while(j < n) {
        j = j + 1;
        R = R + 1;
}</pre>
```

Додавання	2*n
Присвоєння	2*n
Порівняння	(n+1)+ (n-1) = 2*n
Загалом	6n

Складність: T(n) = O(n)

Вправа 2

```
while(n > 1) {
    n = n / 2;
    r = r + 1;
}
```

Складність:

$$T(n) = O(\log n)$$

Впастивості

O(cf(n)) = O(f(n))

 $O(3n^2) = O(n^2)$

 $n = O(n), n^2 = O(n^2),$

f(n) = O(f(n))

 $O(f(n) + g(n)) = O(f(n)), f(n) > g(n), n > n_0$

 $O(n+n^2) = O(n^2)$

f(n) * O(g(n)) = O(f(n) * g(n)) $n * O(n^2) = O(n^3)$

O(f(n)) + O(g(n)) = O(f(n) + g(n))

$$O(n) + O(n) = O(2n) = O(n)$$

(на прикладі двох змінних)

```
for(int i=0;i<n;++i) {
    for(int j=0;j<m;++j) {
        r = r + a[i]*b[j];
    }
}</pre>
```

(приклад 2)

```
for (int i = 0; i < n; ++i) {
    /*
    Деякий код з асимптотикою O(m^2)
    * /
```

Складність: O(n * m^2)

(приклад 3)

```
for (int i = 0; i < n; ++i) {
    Деякий код з асимптотикою O(m + n)
    * /
```

Складність: O(n * (m + n))

(приклад 4)

```
for (int i = 0; i < n; ++i) {
      /*
      Деякий код з асимптотикою O(m + i)
      * /
\sum_{i=0}^{n-1} O(m+i) = O(mn + \sum_{i=0}^{n-1} i) = O(mn + \frac{n(n-1)}{2}) = O(mn + n^2)
```

