

FIT3158 - Mock Exam 1

Dashboard / My co	ourses / <u>FIT3158 - Mock Exam 1</u>	
. ,		
Started on	Sunday, 30 October 2022, 10:37 AM	
State	Finished	
Completed on	Sunday, 30 October 2022, 12:47 PM	
Time taken	2 hours 10 mins	
ı		
Information		
İ	Answer all questions in this exam.	
	This exam contributes to 60% of the unit assessment	
	This exam consists of TWO (2) sections:	
	Section A: 10 multiple choice questions worth 1 mark each.	Subtotal 10 marks
	Section B: 6 major topics worth 10 marks each.	Subtotal 60 marks
		Total 70 marks
	Note: The Normal Distribution Table is on Page 17.	
Unsure		
- :		
Information		
	Section A	
1		
	Multiple Choice (10 marks in total)	
	Answer all questions.	f t
	Select the best answer for each question. There is no penalty	
!		
Unsure		

- 11	nis is a practice environment. Please go to https://eassessment.monasn.edu for your eexams 2 years old	
	A company uses 4 pounds of resource 1 to make each unit of X1 and 3 pounds of resource 1 to make each unit of X2. There are only 150 pounds of resource 1 available. Which of the following constraints reflects the relationship between X1, X2 and resource 1?	Mark
1 of 20	Select one:	Nata (
Unsure	Report question issue 🗓 🕦	Notes 🔘
2 of 20	What is the goal in optimization? Select one: a. Find the best decision variable values that satisfy all constraints. b. Find the values of the decision variables that use all available resources. c. Find the values of the decision variables that satisfy all constraints. d. None of the above.	1 Mark
3 of 20	How many constraints are there in a transportation problem which has 5 supply points and 4 demand points? (ignore the non-negativity constraints) Select one: a. 4 b. 5 c. 9 d. 20	1 Mark
Unsure	Report question issue 🗓 🐧	Notes (
Unsule		

11	ils is a practice environment. Please go to https://eassessment.monasm.edu for your elxams 2 years old
	A production company wants to ensure that if Product 1 is produced, production of Product 1 not exceed production of Product 2. Which of the following constraints enforce this condition?
4 of 20	Select one: a. X1>M2Y2
	b. X1<m2x2< li="">c. X1<m1y1, li="" x1<y1x2<="">d. X1<x2< li=""></x2<></m1y1,></m2x2<>
Unsure	Report question issue ! Notes Notes
	The decision rule which determines the maximum payoff for each alternative and then selects the alternative associated with the largest payoff is the
5 of 20	Select one: a. maximax decision rule. b. maximin decision rule. c. minimax regret decision rule. d. minimin decision rule.
Unsure	Report question issue ! Notes

Mark

Report question issue ! Notes (

 $\mathbf{6}_{\text{of }20}$

Select one:

- a. -X12--X13= 0
- O b. -X12-X24= 1
- c. X12+ X13= 0
- d. -X12+ X24= 0

Unsure

Information

Questions 7 to 9 use the following information.

You are considering 4 investments, A, B, C and D. The payoff from each investment is a dependent on the economic condition over the next 2 years. The economy can expand or decline. The following payoff matrix has been developed for the decision problem.

off Matrix			
0.7	0.3		
Economy			
Decline	Expand		
-10	90		
20	50		
40	45		
15	20		
	0.7 Ecor Decline -10 20 40		

Th	his is a practice environment. Please go to https://eassessment.monash.edu for your eExams 2 years old	>
	What decision should be made according to the expected regret decision rule?	Mark
	what decision should be made according to the expected regret decision rule:	
	Select one:	
_	a. A	
of 20	○ b. B ○ c. C	
	○ d. D	
	Report question issue 🗓 Notes	\bigcirc
	Question 7 Notes	
	Or C, both are 0	
Unsure		
		1 Mark
	What decision should be made according to the expected monetary value decision rule?	
8 of 20	Select one:	
0120	○ a. A ○ b. B	
	○ c. C	
	O d. D	
Unsure	Report question issue 🗓 Notes	
	:	
		1
	What is the expected monetary value of Investment A?	Mark
0	Select one:	
9 of 20	O a. 15 O b. 20	
	O b. 20 O c. 30	
	O d. 34	
Unsure	Report question issue [! Notes	\bigcup

Th	nis is a practice environment. Please go to https://eassessment.monash.edu for your eExams 2 years old	×
	A time-series which has no significant upward or downward trend is referred to as:	Mark
10 of 20	Select one: a. static b. stationary c. non-moving d. non-stationary	
Unsure	Report question issue 🗓 No	tes 🔵
nformation		
	Section B:	
	This section consists of 6 major topics with sub-parts.	
	Answer all questions (60 marks in total)	
Unsure		

×

Marks

A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem.

	Profit per	Yield per	Maximum	Irrigation	Fertilizer
Crop	Acre (\$)	Acre (lb)	Demand (lb)	(acre ft)	(pounds/acre)
Corn	2,100	21,000	200,000	2	500
Pumpkin	900	10,000	180,000	3	400
Beans	1,050	3,500	80,000	1	300

Formulate the LP model for this linear programming problem. (4 marks)

Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively

DV

of crops (Corn, Pumpkins and Beans) to be produced

OF

Max Profit: 2100A + 900B + C 1050

Constraints

Unsure YPA!!

21000A<=200000

10000B<=180000

3500C<= 80000

A+B+C <= 20

2A+3B+1A <= 50

500A + 400B + 300C <= 8000

Report question issue ! Notes

Question 11 Notes

of 20

The problem in Question 11 is modeled in an Excel Spreadsheet and the Sensitivity Report is generated as shown below.

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$4	Acres of Com	9.52	0	2100	1E+30	350
\$C\$4	Acres of Pumpkin	0	-500.01	899.99	500.01	1E+30
\$D\$4	Acres of Beans	10.79	0	1050	210	375.00

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$E\$8	Corn demand Used	200000	0.017	200000	136000	152000
\$E\$9	Pumpkin demand Used	0	0	180000	1E+30	180000
\$E\$10	Bean demand Used	37777.78	0	80000	1E+30	42222.22
\$E\$11	Water Used	29.84	0	50	1E+30	20.15
\$E\$12	Fertilizer Used	8000	3.5	8000	3619.04	3238.09

Answer the following question based on the above report.

12a)

Marks

What is the optimal solution to this problem? (1 mark)

Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively

9.52 units of A

0 units of B

12b)

10.79 units of C

Report question issue 🗓

2

Marks

Suppose the farmer can purchase more fertilizer for \$2.50 per pound, should he purchase it and how much can he buy and still be sure of the value of the additional fertilizer? (2 marks)

2.5 < Shadow price (3.5)

With less cost, he should purchase more, in which he can buy 3619.04 more of the fertilizer

12 of 20

120)	ı Mar
What does the reduced cost for pumpkin indicate? (1 mark)	
It means that there is a non-binding constraint and there is no more slack.	
	Report question issue !
12d)	1
Identify the binding resource and state how much would you pay additional unit of that resource? (1 mark)	v to acquire an
Identify the binding resource and state how much would you pay to acquire	
	e an additional unit of that resource?
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively	e an additional unit of that resource?
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively	
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively You can buy 500 more A, and buy 210 more C	
(1 mark)	Report question issue ! 1 Mar (1 mark)
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively You can buy 500 more A, and buy 210 more C 12e) What can you infer from the shadow price of corn in this report?	Report question issue ! 1 Mar (1 mark)
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively You can buy 500 more A, and buy 210 more C 12e) What can you infer from the shadow price of corn in this report?	Report question issue ! 1 Mar (1 mark)
(1 mark) Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively You can buy 500 more A, and buy 210 more C 12e) What can you infer from the shadow price of corn in this report? What can you infer from the shadow price of corn in this report? (1 mark)	Report question issue 1 Mar
Let A, B, C be numbers of Corn, Pumpkins and Beans, respectively You can buy 500 more A, and buy 210 more C 12e) What can you infer from the shadow price of corn in this report? What can you infer from the shadow price of corn in this report? (1 mark) If you increase one unit of corn, the profit of corn will increase .017	Report question issue 1 Mar (1 mark)

Consider the following distribution problem for Ace Widgets:

Marks

		Capacity			
Depot	W1				
P1	2	6	4	12	100
P2	7	3	10	11	250
P3	5	8	9	13	300
Demand	50	150	200	250	

P2	7	3		10	11	250	
P3 Demand	5 50	8 150	,	9 200	13 250	300	
Demand	50	150	4	200	250		
3a)							3
							Ma
ormulate	an LP formul	ation for Ace	Widgets inc	cluding a	n objective fun	ction and	
onstraint	s. (3 marks)						
2							
=							
						Report question i	ssue 🗓
3b)							2
/							Ma
alva tha i	problem using	the Nexth W	aat Carmar r	mothod			IVIC
oive tile į	problem using	j tile North-we	est Comen	nemou.			
pdate the	e given respor	nse template v	with costs, o	demand/	supply values	for any dummy	
ariables i	f added and p	resent the res	sulting alloc	eations fr	om the North \	Nest Corner	
					working in the		
		elis. You do li	ot need to s	Silow ally	working in the	e response	
emplate.	(2 marks)						
	Destination						
ource		W2	W3		W4	W5	SUPI

500

DEMAND

1500

250

200

į	Source	W1	W2		W3			W4		W5	SUPPLY
	P1	2 50		6 50		4			12		
	P2	7		3 100		10 150			11		
	P3	5		8		9 50			13		
	P4										
	DEMAND	500		150 0		200 0			250		
	Source	Destination W1	W2		W3		W4			W5	SUPPLY
	P1	2 50	***	6 50	****	4	***	12		****	
	P2	7		3 100		10 150		11			
	P3	5		8		9 50		13 250			
	P4										
	DEMAND	500	1	50 0		200 0		0			

Report question issue 🗓

13c)

DEMAND

3 Marks

Using the allocation solution generated in (b) apply the MODI method (closed-loop path) to determine the optimized allocation for one iteration only (i.e. stop after forming the first closed loop to find the updated allocations).

Update the given response template with relevant values as appropriate. You do not need to draw the loop. Include (+) and (-) signs in relevant cells to form the loop. (3 marks)

13 of 20

	K1=	K2=	K3=	K4=	K5=
Source	Destination W1	W2	W3	W4	W5

R2=	P2	7	3	10	11
R3=	P3	5	8	9	13
R4=	P4				
	DEMAND	50	150	200	250

Extra template (in case you need it)

	\Box	1	\sim
ДΤ	\mathbf{P}	_	ш

Source	Destination W1 = 2	W2 = 6	W3 = 13	W4 = 17	W5 =	SUPPLY
P1 = 0	2 50	6 50	4	12		
P2 = -3	7	3 100	10 150	11		
P3 = -4	5	8	9 50	13 250		
P4 =						
DEMAND	500	150 0	200 0	0		

lt1

Penalty = P

P of P1W3 = 13+0 - 4 = 9

P of P1W4 = 17 + 0 -12 = 5

P of P2W1 = -3 + 2 -7 = -8

P of P1W4 = -3 + 17 - 11 = 3

P of P3W1 = -4+2 -5 = -7

P of P3W3 = -6

Form loop around P1W3 and Let P1 = 0

Source	Destination	WO 0	NA/O A	VA/A 0	\A/E	SUPPLY
P1 = 0	W1 = 2 2 50	W2 = -3 6	W3 = 4 4 50	W4 = 8 12	W5 =	
P2 = 6	7	3 50	10 100	11		
P3 = 5	5	8	9 50	13 250		
P4 =						
DEMAND	500	150 0	200 0	0		

P of P1W4 = 0+8 -12 = -4

P of P2W1 = 8 - 7 = 1

P of P2W4 = 6+8 -11 = 3

P of P3W1 = 5+2-5 = 2

P of P3W2 = 5-3 -8 = -6

lt3

Form loop around P2W4 and Let P1 = 0

Source	Destination W1 =	W2 =	W3 =	W4 =	W5 =	SUPPLY
P1 = 0	2 50	6	4 50	12		
P2 =	7	3 50	10	11 100		
P3 =	5	8	9 150	13 1 50		
P4 =						
DEMAND	500	150 0	200 0	0		

Penalty = P

P of P1W2 = 0-6 = -6

P of P2W1 = 5-7 = -2

P of P2W3 = 7-10 =-3

P of P3W1 = 5+2 -5 = 2

P of P3W2 = 5 -8 = -3

Form loop around P3W1 and Let P1 = 0

Source P1 = 0	Destination W1 = 2	W2 = 0 6	W3 = 4 4 100	W4 = 8 12	W5 =	SUPPLY
P2 = 3	7	3 50	10	11 100		
P3 = 5	5 50	8	9 100	13 1 50		
P4 =						
DEMAND	500	150 0	200 0	0		

Inventory Modelling Formula Sheet

Inventory Models: Deterministic Demand

Economic Order Quantity

Optimal order quantity : $Q^* = \sqrt{\frac{2Ak}{ch}}$

Number of orders per year = $\frac{A}{Q^*}$

Time between orders (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = ordering cost + holding cost = $\frac{Ak}{Q} + \frac{Qch}{2}$

Note:

Annual holding cost per item = h Ordering cost (per order) = k

Item cost = c

Backorder cost (per item) = p

Annual demand = A

Production rate = B

Economic Production Quantity

Optimal production lot size :
$$Q^* = \sqrt{\frac{2Ak}{ch}} \sqrt{\frac{B}{B-A}}$$

Number of production runs per year = $\frac{A}{O^*}$

Time between setups (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = setup cost + holding cost = $\frac{Ak}{Q} + \frac{chQ}{2} \left(\frac{B-A}{B} \right)$

EOQ with back orders

Optimal order quantity,
$$Q^* = \sqrt{\frac{2Ak}{ch} \left(\frac{p+ch}{p}\right)}$$

Quantity at the beginning of each cycle,
$$S^* = \sqrt{\frac{2Ak}{ch} \left(\frac{p}{p+ch}\right)}$$

Maximum number of backorders = $Q^* - S^*$

Number of orders per year =
$$\frac{A}{Q^*}$$

Time between orders (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = setup + holding + backorder

$$= \frac{Ak}{O} + \frac{chS^{2}}{2O} + \frac{p(Q-S)^{2}}{2O}$$

Formula for total cost using Quantity discounts.

Total annual cost = purchase cost + holding cost + item cost

$$=\frac{Ak}{Q}+\frac{chQ}{2}+Ac$$

A baseball card dealer must determine how many 1955 reproduced Willie Mays cards to stock. He experiences an annual demand of 100 cards. Each card is acquired from a big dealer for \$2. Each shipment must be sent by registered mail at a cost of \$4 regardless of quantity. Inventory is financed through a 16% bank loan. Suppose a shortage penalty applies in the amount of \$0.04 per card short (on an annual basis).	Mark
14a)	3
What is the economic order quantity? (3 marks)	Marks
A = 100	
k = 4	
C = 2	
h = .16	
backorder cost = .04	
Q* = SQRT(2500 * (P + CH / P))	
= SQRT(2500 * (P + .32 / P))	
= SQRT(800)	
Report question is	sue 📘
14b)	2
	Marks
What is the optimal order level? (2 marks)	
S = SQRT(2500 * P / (P + CH))	
= SQRT(2500 * 1/9)	
= SQRT(2500/9)	
Report question is	sue 🗓
14c)	1
	Mark:
If the optimal policy is used, determine the number of cards on backorder when a shipment arrives. (1 mark)	
Q*-S	

14 of 20

=SQRT(800) -SQRT(2500/9)

	The demand for Halloween pumpkins at the Black Cat's Patch is normally distributed with a mean of 1,000 and a standard deviation of 200. Each pumpkin costs \$0.50 and sells for \$0.90. Unsold pumpkins are disposed of at a cost of \$0.10 each.	Marks
!	15a)	3 Marko
	How many pumpkins should be ordered? (3 marks)	Marks
15 of 20	$C = .5$ $P_{-}r = .9$ $h_{-}e = .1$ $P_{-}s = 0$ (assumed there is no good will) Let $D = C_{-}u$ and $C = C_{-}v$ $P(demand < Q) = .4$ $Z = 1.28$ $m = 1000$, $sd = 200$ $1000+200(1.28) = 1256.3$	
	Report question issu	e !
	15b) For the quantity in a), determine the probability that there will be a shortage? (1 mark)	1 Marks
	P(demand > Q) = 14 = 0.6	
	Report question issu	e !
	Report question issue ! Note	s
Unsure	Question 15 Notes	

Decision Analysis Formula Sheet

Expected Value of a Project

If a decision has a number of outcomes, i, each having a payoff x_i , with probability $p(x_i)$ then the expected value of the decision is given by $\sum_i x_i p(x_i)$

Bayes' Theorem

To find the posterior probability that event A_i will occur given that event B has occurred

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)}$$

Tabular form for calculations

States of Nature	Prior Probabilities	Conditional Probabilities	Joint Probabilities	Posterior Probabilities
A1	$P(A_1)$	$P(B \mid A_1)$	$P(B \cap A_1)$	$P(A_1 \mid B)$
A2	$P(A_2)$	P(B A2)	$P(B \cap A_2)$	$P(A_2 \mid B)$
			P(B)	

Marks

An investor is considering 2 investments, A, B, which can be purchased now for \$10. There is a 40% chance that investment A will grow rapidly in value and a 60% chance that it will grow slowly. If A grows rapidly, the investor can cash it in for \$80 or trade it for investment C, which has a 25% chance of growing to \$100 and a 75% chance of reaching \$80. If A grows slowly, it is sold for \$50. There is a 70% chance that investment B will grow rapidly in value and a 30% chance that it will grow slowly. If B grows rapidly, the investor can cash it in for \$100 or trade it for investment D, which has a 20% chance of growing to \$95 and an 80% chance of reaching \$80. If B grows slowly, it is sold for \$45. A decision tree for the problem can be constructed as below.

16 of 20

16a)

2

Marks

Using backward induction and the expected monetary value (EMV) approach, what is the EMV at decision nodes 1 and 2 (indicated in red in the given diagram). (2 marks)

	FN0/6 mm In 1 - 05	
	EMV for node 1 = 85	
	EMV for node 1 = 100	
	Report question issue	:
	16b)	3
		∕lar
į	Evaluate the complete decision tree using the Expected Monetary Value (EMV) criteria	
	and advice on the course of action. What is the EMV at decision node 3 as indicated in	
į	red in the diagram? (3 marks)	
į		
	EMV for node A = 85 *.4 + 50 *.6 = 64	
	EMV for node B = 70 + 45*.3 = 83.5	
	Since EMV for node B (83.5) is higher, so one should choose node B.	
	So, EMV at decision node 3 is 83.5	
i		
į		
	Report question issue (•
	Donast modelini isana 🔲 Notae ($\overline{}$
į	Report question issue ! Notes (J
	Question 16 Notes	
sure	Question to Notes	

This is a practice environment. Please go to https://eassessment.monash.edu for your eExams. - 2 years old

×

Marks

Eagle Credit Union (ECU) has experienced a 10% default rate with its commercial loan customers (i.e.90% of commercial loan customers pay back their loans). ECU has developed a statistical test to assist in predicting which commercial loan customers will default. The test assigns either a rating of 'Approve' or 'Reject' to each loan applicant. When applied to recent loan commercial customers who paid their loans,the test gave an 'Approve' rating in 80% of the cases examined. When applied to recent loan commercial customers who defaulted, it gave a 'Reject' rating in 70% of the cases examined.

17a)

Marks

Fill in the joint probability table below (1 mark)

......

P(approved |Paid back) = .8

P(approved | default) = .2

 $P(R_j|Paid back) = .3$

P(Rj|default) = .7

P(default) = 10%

P(Paid back) = 90%

Joint Probabilities

.09

.99

Report question issue 🗓

17 of 20

17b)

Total

Marks

What is the conditional probability of a 'Reject' rating given that the customer defaulted? (1 mark)

	Report qu	estion issue 🗓
17c)		1 Mai
defaulted? (1 mark)	I probability of an 'Approve' rating given that the customer	
.2		
	Report qu	estion issue 🗓
17d)		2
., .,		
Suppose a new custom	ner receives a 'Reject' rating. If that customer gets the loan obability of default? (2 marks)	Ma
Suppose a new custom anyway, what is the pro		Mai
Suppose a new custom anyway, what is the pro	obability of default? (2 marks)	Mai
Suppose a new custom anyway, what is the pro	obability of default? (2 marks)	Mai
Suppose a new custom anyway, what is the pro	bability of default? (2 marks)	Mai

Unsure

This is a practice environment. Please go to https://eassessment.monash.edu for your eExams. - 2 years old

×

Queuing Theory and Simulation Formula Sheet

Queuing, Probability and Simulation

Service and waiting times for a single server queue, Poisson arrivals, Exponential service:

 λ = the average number of arrivals per time period (arrival rate)

 $\frac{1}{\lambda}$ = the average time between arrivals

 μ = the average number of services per time period (service rate)

 $\frac{1}{\mu}$ = the average time taken for each service

 $P_0 = 1 - \frac{\lambda}{\mu}$ the probability that no units are in the system

 $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ the average number of units in the waiting line

 $L = L_q + \frac{\lambda}{\mu}$ the average number of units in the system

 $W_q = \frac{L_q}{\lambda}$ the average time a unit spends in the waiting line

 $W = W_q + \frac{1}{\mu}$ the average time a unit spends in the system

 $P_{w} = \frac{\lambda}{\mu}$ the probability that an arriving unit has to wait for service

 $P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$ the probability of *n* units in the system

Probability distributions:

The Poisson distribution

$$f(x) = \frac{\theta^x e^{-\theta}}{x!}$$
 for a distribution having mean θ , $(e = 2.71828...)$

The exponential distribution

$$f(x) = \frac{1}{\theta} e^{-x/\theta}$$
 for a distribution having mean θ , $(e = 2.71828...)$

$$P(x \le x_0) = 1 - e^{-x_0/\theta}$$

$$P(x \ge x_0) = e^{-x_0/\theta}$$
 for a given value of x_0

Generation of Exponentially distributed random variables

Exponential variates with mean b are generated from uniform [0,1] random numbers, r_n , by the transformation $t_n = -b \log_e(r_n)$.

The customer service desk at Joe's Discount Electronics store receives 5 customers per hour on average. On average, each customer requires 10 minutes for service. The customer service desk is staffed by a single clerk.	Mai
18a)	1
Determine the Assistal sets and the Consider sets (1 mosts)	Marl
Determine the Arrival rate and the Service rate. (1 mark)	
The customer service desk at Joe's Discount Electronics store receives 5 customers per hour on average. Caverage, each customer requires 10 minutes for service. The customer service desk is staffed by a single c	
lambda = 5	
mu = 10	
Report question issu	ıe 🗓
18b)	1
	Marl
What is the average time a customer spends in the customer service area? (1 mark)	
Lq = .5	
L = 1	
Wq = .1	
W = .2	
So, the average time a customer spends in the customer service area is W which is .2*60 = 12 mins	
Report question issu	ıe !
100)	4
18c)	1 Mark
What is the probability that the customer service clerk takes more than 10minutes? (1 mark)	Mark
P(service > 10mins) = .5	

 $18_{\mathsf{of}\,20}$

What is the probability that there are less than 5 customers arriving in an hour? (2 marks)

P (less than 5 customers arriving in an hour) = 0.5

Report question issue

2 Marks

Report question issue ! Notes

Question 18 Notes

18e

18e)

Marks

Simulate the arrival of patients at a clinic using the uniform random number given in the table. The mean inter-arrival time is two minutes. Using the formula $t_n = -b \log_e(r_n)$, calculate the arrival time for 5 customers in answering the questions below. b is the mean inter-arrival time.

19a)

3 Marks

If service time is a constant at five minutes, complete the table below:

Customer	Random Number	Interarrival Time	Arrival Time	Service Starts	Service Ends	Number of patient in the clinic
1	0.42					
2	0.96					
3	0.37					
4	0.52					7
5	0.23					

Random Customer. $\begin{array}{ll} \text{Arrival Time} & \text{Service} \\ \text{Starts} \end{array}$ Inter-arrival Service Number of Patients in the Number Ends Clinic Time 0.42 0.96 3 0.37 4 0.52 5 0.23

19 of 20

19b)	1
	Marks
Calculate the average number of patients in the clinic. (1 mark)	

Report question issue 🗓

Report question issue 🗓

Report question issue 📘 Notes (

Information

Forecasting Formula Sheet

Least Squares Regression

For bivariate data consisting of n pairs of observations (x,y), the Least Squares Line of Best Fit is y=mx+c, where $m=\frac{n\sum xy-\sum x\sum y}{n\sum x^2-(\sum x)^2}$ and $c=\overline{y}-m\overline{x}$.

Simple exponential smoothing

$$\hat{y}_{t+1} = \hat{y}_t + a(y_t - \hat{y}_t),$$

where : \hat{y}_t : forecast value, y_t : observed value, α : smoothing factor, t: period (time) index

Mean Squared Error

Mean Absolute Percent Error

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - F_i)^2}{n}$$

$$MAPE = \frac{\sum_{i=1}^{n} \frac{|F_i - Y_i|}{Y_i}}{n}$$

 Y_i are the actual (observed) values F_i are the fitted (forecast) values n is the number of forecast values

The following is a set of quarterly sales data recorded over a period of 3 years. The deseasonalised sales data has also been worked out for you:

M	а	rl	(5

Period	Actual Sales	Seasonally adjusted		
1	5	6.16		
2	6	6.53		
3	8	6.36		
4	7	6.92		
5	6.2	7.63		
6	6.5	7.07		
7	11	8.75		
8	9	8.90		
9	7.4	9.11		
10	10	10.88		
11	12	9.54		
12	10.3	10.19		

20a)

Marks

Fit a least square regression line for the above data. (4 marks)

sigma xy= 834.562

sigma x= 98.4

sigma y= 98.04

sigma x^2 = 861.54

r = 0.7813

Report question issue 🗓

20b)

2

Assume the following seasonal indexes. (2 marks)

Quarter	Index
1	81.22%
2	91.89%
3	125.76%
4	101.13%

P1 = 9.11/81.22%=11.216

P2 = 10.88/91.89%=11.840

P3 = 9.54/125.76%=7.859

P4 = 10.19/101.13%=10.076

Report question issue 📘

20c)

2 Marks

Considering the following coefficients generated from regression summary statistics, forecast the sales for the next 4 quarters in the next year (Period 13, 14, 15 and 16) using the additive model. (2 marks)

Coefficients:

Intercept	Period	1	2	3	4	
5.34	0.43	-1.28	-0.41	1.99	0	

y = .43 x + 5.34

P1 = .43 (-1.28) + 5.34= 4.7896

P2 = .43 (-.41) + 5.34= 5.1637

P3 = .43 (1.99) + 5.34= 6.1957

P4 = .43(0) + 5.34 = 5.34

Report question issue 🗓

20d)

. .

Marks

If sales in 2018 the next year turn out to be Quarter 1: 8.5, Quarter 2: 10, Quarter 3: 15 and Quarter 4: 12, calculate the MAPE of the forecast in b) and c) and comment which model should be used. (2 marks)

Find APE of Forecast in b)

All values are absolute:

APE of P1 = 9.11-11.216 = 2.106

20 of 20

Question 20 Notes

Normal Distribution Table

Cumulative Probabilities for the Standard Normal Distribution

Table gives $P(Z \le z)$ for Z = N(0,1)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Unsure

4