Oct 30, 2023	
	lish
	Optimization $VR(\theta_0) = 0$
	Assemption ((.) is strongly convex
Convex	$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle$
Show	g Connexity Is also above the parabole. (rules out flat pt).
f	$f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \underline{\times} x - x^* ^2$

Stong convexity rules cut cases like !—

1. Grid Search. $[\underline{\theta}, \overline{\theta}]$ $\theta := \underline{\theta} + i\Delta$

min $|| \nabla R(\theta_i) ||$, N steps $\Delta = \frac{\overline{\theta} - \underline{\theta}}{N}$ (Accuracy)

You do not have a closed form.

2.	bisection Algorithm
	$a_0 = 0$ $b_0 = \overline{0}$
	$c_{\perp} = \frac{\bar{\Theta} + \Theta}{2}$
	(50/2) + 0 (50/1)
	$\log_{10}\left(\nabla R(a_0)\right) \neq \log_{10}\left(\nabla R(b_0)\right)$
	of sign (∇R(bo))≠ sign (∇R(c1))
	$a_1 = c_{+/} b_1 = b_0$
	$\frac{a_{k+}}{b_k}$, $\frac{a_{k+}}{2}$
	If sogn $(\nabla R(c_{k+1})) \neq sogn(\nabla R(b_k))$
	$a_{k+1} = c_{k+1}, b_{k+1} = b_k [a_k, b_k]$
	$ b_{k}-a_{k} =\varepsilon=\frac{ \bar{\theta}-\bar{\theta} }{2^{k}}\qquad N\sim \log \frac{1}{\varepsilon}$

Sandist of the

	$R(\theta) = E[R(Y, \theta)]$ we can't keep along no RV.
	A sample: {Yi3 i=1 which has a cut off -> 1) data collection is experime;
	2) Most of the date is historial; there is only
	to much data ther.
	Analogy Principle a Set of N numbers
	the take the sample to ceretic a un distribution "replicating" compling scheme \(\Sigma_i \) \(\Sigma_i \)
	(σ, J _{i≥1})
	N(Z = y;) = 1 (Z talles value with equal probability)
	empirical visk: $R(\theta) = E_{\mu}[l(z,\theta)]$ $= 1 \leq l(y,\theta)$
hats are	$\hat{R}(\theta) = E[L(z,\theta)]$
for empro	h h
1 Soll	$= \int_{N} \sum_{i=1}^{N} l(y, \theta)$