Statistics for Data Science - 2 Formula file

Discrete random variables:

Distribution	PMF $(f_X(k))$	$CDF(F_X(x))$		Var(X)
Uniform(A) $A = \{a, a + 1, \dots, b\}$	$ \frac{1}{n}, x = k $ $ n = b - a + 1 $ $ k = a, a + 1, \dots, b $	$\begin{cases} 0 & x < 0 \\ \frac{k-a+1}{n} & k \le x < k+1 \\ & k = a, a+1, \dots, b-1, b \\ 1 & x \ge n \end{cases}$	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$
Bernoulli(p)	$\begin{cases} p & x = 1 \\ 1 - p & x = 0 \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$	p	p(1-p)
Binomial(n, p)		$\begin{cases} 0 & x < 0 \\ \sum_{i=0}^{k} {}^{n}C_{i}p^{i}(1-p)^{n-i} & k \le x < k+1 \\ & k = 0, 1, \dots, n \\ 1 & x \ge n \end{cases}$	np	np(1-p)
Geometric(p)	$(1-p)^{k-1}p,$ $k=1,\ldots,\infty$	$\begin{cases} 0 & x < 0 \\ 1 - (1 - p)^k & k \le x < k + 1 \\ & k = 1, \dots, \infty \end{cases}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}, \\ k = 0, 1, \dots, \infty$	$\begin{cases} 0 & x < 0 \\ e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} & k \le x < k+1 \\ & k = 0, 1, \dots, \infty \end{cases}$	λ	λ

Continuous random variables:

Distribution	PDF $(f_X(k))$	$CDF(F_X(x))$	E[X]	$\operatorname{Var}(X)$
$\operatorname{Uniform}[a,b]$	$\frac{1}{b-a}, \ a \le x \le b$	$\begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, x > 0$	$\begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	$\begin{vmatrix} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right), \\ -\infty < x < \infty \end{vmatrix}$	No closed form	μ	σ^2
	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x > 0$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
$Beta(\alpha, \beta)$	$ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} $ $0 < x < 1 $		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

1. Markov's inequality: Let X be a discrete random variable taking non-negative values with a finite mean μ . Then,

$$P(X \ge c) \le \frac{\mu}{c}$$

2. Chebyshev's inequality: Let X be a discrete random variable with a finite mean μ and a finite variance σ^2 . Then,

$$P(\mid X - \mu \mid \ge k\sigma) \le \frac{1}{k^2}$$

3. Weak Law of Large numbers: Let $X_1, X_2, \ldots, X_n \sim \text{iid } X \text{ with } E[X] = \mu, \text{Var}(X) = \sigma^2$.

Define sample mean $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$. Then,

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

4. Using CLT to approximate probability: Let $X_1, X_2, ..., X_n \sim \text{iid } X \text{ with } E[X] = \mu, \text{Var}(X) = \sigma^2$.

Define $Y = X_1 + X_2 + \ldots + X_n$. Then,

$$\frac{Y - n\mu}{\sqrt{n}\sigma} \approx \text{Normal}(0, 1).$$