TOPOLOGÍA. Examen del Tema 2

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

Nombre:

- 1. Se considera un conjunto $X, p \in X$, y τ la topología del punto incluído (para p). Probad que una aplicación $f:(X,\tau)\to (X,\tau)$ que satisface f(p)=p es continua.
- 2. Se considera en \mathbb{R} la topología τ que tiene como base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probad que una aplicación creciente $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ es continua.
- 3. Hallad un homeomorfismo entre el elipsoide $X=\{(x,y,z)\in\mathbb{R}^3; \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ y la esfera $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2+z^2=1\}.$
- 4. Probad que el conjunto

$$X = \{(x, y, z) \in \mathbb{R}^3; 2 < x^2 + y^2 < 3, -1 < z < 1\}$$

es abierto en \mathbb{R}^3

TOPOLOGÍA. Examen del Tema 2

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

- 1. Se considera un conjunto $X, p \in X, y \tau$ la topología del punto incluído (para p). Probad que una aplicación $f:(X,\tau)\to (X,\tau)$ que satisface f(p)=p es continua. Solución: La topología es $\tau=\{O\subset X; p\in O\}\cup\{\emptyset\}$.
 - (a) (primera forma). Probamos que si $O' \in \tau$, $f^{-1}(O') \in \tau$. Para ello se prueba que $p \in f^{-1}(O')$. Esto será cierto si $f(p) \in O'$. Pero f(p) = p y $O' \in \tau$.
 - (b) (segunda forma) Se probó que una base de entornos es $\beta_x = \{\{x,p\}\}$. Probamos que f es continua en cada punto. Sea $x \neq p$. Dado $V' = \{f(x), p\} \in \beta_{f(x)}$, tomamos $U = \{x,p\} \in \beta_x$. Es evidente que $f(U) = \{f(x), f(p) = p\} = V'$. Si x = p, se toma $V' = \{p\} \in \beta_{f(p)}$ y $U = \{p\} \in \beta_p$ y es evidente que f(U) = V'.
- 2. Se considera en \mathbb{R} la topología τ que tiene como base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probad que una aplicación creciente $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ es continua.

Solución: Se demostró para esta topología que una base de entornos es $\beta_a = \{[a, \infty)\}$. Probamos que es continua en todo punto. Sea $a \in \mathbb{R}$ y $[f(a), \infty) \in \beta_{f(a)}$. Demostramos que $f([a, \infty)) \subset [f(a), \infty)$. Sea $x \in [a, \infty)$, es decir, $a \leq x$. Como f es una aplicación creciente, $f(a) \leq f(x)$. En particular, $f(x) \in [f(a), \infty)$.

3. Hallad un homeomorfismo entre el elipsoide $X=\{(x,y,z)\in\mathbb{R}^3; \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ y la esfera $Y=\{(x,y,z)\in\mathbb{R}^3; x^2+y^2+z^2=1\}.$

Solución: Se define la aplicación $f: \mathbb{R}^3 \to \mathbb{R}^3$ mediante f(x,y,z) = (ax,by,cz). Esta aplicación es una afinidad ya que $a,b,c \neq 0$. Por tanto, f es un homeomorfismo. Es evidente que f(Y) = X. Luego $f_{|Y|}: Y \to f(Y) = X$ es un homeomorfismo.

4. Probad que el conjunto

$$X = \{(x, y, z) \in \mathbb{R}^3; 2 < x^2 + y^2 < 3, -1 < z < 1\}$$

es abierto en \mathbb{R}^3

Solución:

- (a) (primera forma) Las aplicaciones $f,g:\mathbb{R}^3\to\mathbb{R}$ definidas por $f(x,y,z)=x^2+y^2$ y g(x,y,z)=z son continuas. En particular, los conjuntos $f^{-1}((2,3))$ y $g^{-1}((-1,1))$ son abiertos en \mathbb{R}^3 . Finalmente, $X=f^{-1}((2,3))\cap g^{-1}((-1,1))$ y por tanto, es un conjunto abierto al ser intersección de dos conjuntos abiertos.
- (b) (segunda forma) Se define la aplicación $h: \mathbb{R}^3 \to \mathbb{R}^2$ mediante $h(x,y,z) = (x^2 + y^2, z)$. Esta aplicación es continua ya que $p_1 \circ h = f$ y $p_2 \circ h = g$. Es evidente que $X = h^{-1}((2,3) \times (-1,1))$ y este conjunto es abierto porque (ya se probó en clase) el rectángulo $(2,3) \times (-1,1)$ es abierto en \mathbb{R}^2 .