δ	7.	1:	EXPO	ONENTIAL	FUNCTIONS
×	_	_	_	_	

§7.2: Inverse Functions §7.3 Logarithms

Math 1910

NAME: October 5, 2017

ONE-PAGE REVIEW

	(1)	(2)
(1) $f(x) = b^x$ is increasing if	and decreasing if	

(2) The derivative of $f(x) = b^x$ is $\frac{d}{dx}b^x =$

(3)
$$\frac{x^x}{e} =$$
 and $\frac{x^{f(x)}}{e} =$ and $\frac{x^{kx+b}}{e} =$ (6)

(4)
$$\int e^x dx =$$
 $\int_{0}^{(7)} and \int e^{kx+b} =$ for constants k, b.

(5) A function f with domain D is **one to one** if

(6) Let f have domain D and range R. The **inverse** f^{-1} is the unique function with domain R and range D such that

on its domain. (7) The inverse of f exists if and only if f is

(8) **Horizontal Line Test:** f is one-to-one if and only if every horizontal line

the graph of f through the line (10) The graph of f^{-1} is obtained by

(11) If f is differentiable and one-to-one with inverse g, then for x such that $f'(g(x)) \neq 0$,

$$g'(x) = \frac{1}{f'(g(x))}.$$

(12) The inverse of $f(x) = b^x$ is

(13) Logarithm Rules

(a)
$$\log_b(1) = \frac{18}{3}$$
 and $\log_b(b) = \frac{19}{3}$.

(b)
$$\log_b(xy) =$$
 and $\log_b\left(\frac{x}{y}\right) =$ (21)

(a) $\log_b(1) = \frac{18}{2}$ and $\log_b(b) = \frac{1}{2}$ (b) $\log_b(xy) = \frac{\log_a(x)}{\log_a(b)} = \frac{1}{2}$

(d)
$$\log_b(x^n) =$$
 (23)

(14)
$$\frac{x}{\ln}(x) = \frac{x}{\log_b(x)}$$
 and $\frac{x}{\log_b(x)} = \frac{x}{\ln(x)}$

PROBLEMS

(1) Calculate the derivative.

(a)
$$f(x) = 7e^{2x} + 3e^{4x}$$

(b)
$$f(x) = e^{e^x}$$

(c)
$$f(x) = 3^x$$

(d)
$$f(t) = \frac{1}{1 - e^{-3t}}$$

(e)
$$f(t) = \cos(te^{-2t})$$

(f)
$$\int_{4}^{e^{x}} \sin t \, dt$$

(g)
$$f(x) = x \ln x$$

(h)
$$f(x) = ln(x^5)$$

(i)
$$f(x) = \ln(\sin(x) + 1)$$

(j)
$$f(x) = e^{\ln(x)^2}$$

(k)
$$f(x) = \log_{\alpha}(\log_{b}(x))$$

(1)
$$f(x) = 16^{\sin x}$$

(2) Calculate the integral.

(a)
$$\int \frac{7}{x} dx$$

(b)
$$\int e^{4x} dx$$

(c)
$$\int \frac{\ln x}{x} \, dx$$

$$(d) \int \frac{1}{9x-3} dx$$

(e)
$$\int_{2}^{3} (e^{4t-3}) dt$$

(f)
$$\int e^t \sqrt{e^t + 1} \, dt$$

(g)
$$\int e^x \cos e^x dx$$

(h)
$$\int \tan(4x+1) \, \mathrm{d}x$$

(3) For each function shown below, sketch the graph of the inverse.

(4) Calculate g(b) and g'(b), where g is the inverse of f.

(a)
$$f(x) = x + \cos x$$
, $b = 1$.

(b)
$$f(x) = 4x^3 - 2x$$
, $b = -2$.

(c)
$$f(x) = \sqrt{x^2 + 6x}$$
 for $x \ge 0$, $b = 4$.

(d)
$$f(x) = \frac{1}{x+1}$$
, $b = \frac{1}{4}$.

- (5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.
 - (a) If f is increasing, then f^{-1} is increasing.
 - (b) If f is concave up, then f^{-1} is concave up.
 - (c) If f is odd then f^{-1} is odd.
 - (d) Linear functions f(x) = ax + b are always one-to-one.
 - (e) $f(x) = \sin(x)$ is one-to-one.