# Gender Pay Gap: Predicting Income Based on Demographic Data

Katie Peterson
Supervised Learning Capstone
May 2018



Photo: Getty Images

#### **Research Questions**

What demographic data is the best determinant for a person to have a higher income?

- Level of education?
- Occupation?
- Race?

Do these features differ between men and women?

#### Data Set - 1994 Census Bureau Database

- ~32,000 working people over the age of 16, who made over \$100 that year and who are representative of the larger population
- Tracked if income was over or under \$50,000
  - Note: After accounting for inflation and cost of living increases, \$50,000 in 1994 would be worth approximately \$84,500 in 2018.

#### **Counts of Income Level**



#### **Income Level, by Sex**

income 0 1 sex Female 8670 1112 Male 13984 6396 5.86241470132775e-310



### Other Interesting Insights - Marital Status and Race





### Other Interesting Insights - Age and Hours per Week





# **Feature Engineering**

### Feature Engineering - Working Class

```
# Creating new data frame with updated working class categories
inc = inc[inc['workclass'] != '?']
inc.workclass = inc.workclass.map({'Private': 'Private',
                                    'Self-emp-not-inc':'Self employed', 'Self-emp-inc':'Self employed',
                                    'Local-gov': 'Government', 'State-gov': 'Government', 'Federal-gov': 'Government',
                                    'Without-pay': 'Not working', 'Never-worked': 'Not working'})
inc.workclass.value counts()
Private
                 22696
Government
                  4351
Self employed
                  3657
Not working
Name: workclass, dtype: int64
                                 Name: workclass, dtype: int64
```

#### **Feature Engineering - Education**

```
# Re-naming entries to generalize some of the smaller categories
inc.education = inc.education.map({'Preschool':'Dropout',
                                     '1st-4th': 'Dropout',
                                     '5th-6th': 'Dropout',
                                     '7th-8th': 'Dropout',
                                     '9th': 'Dropout',
                                     '10th': 'Dropout',
                                     '11th': 'Dropout',
                                     'HS-grad': 'HS-grad',
                                     'Some-college': 'Some-college',
                                     'Assoc-voc': 'Some-college',
                                     'Assoc-acdm': 'Some-college'.
                                     'Bachelors': 'Bachelors',
                                     'Masters': 'Advanced-degree',
                                     'Prof-school': 'Advanced-degree',
                                     'Doctorate': 'Advanced-degree'})
inc.education.value counts()
HS-grad
                    9969
Some-college
                    9118
Bachelors
                    5182
Dropout
                    3432
Advanced-degree
                    2631
Name: education, dtype: int64
```

### Feature Engineering - Marital Status

```
inc.marital_status.value_counts()
```

```
inc.marital_status = inc.marital_status.map({'Married-civ-spouse':'Married', 'Married-AF-spouse':'Married', 'Divorced':'No_longer_married', 'Separated':'No_longer_married', 'Married-spouse-absent':'No_longer_married', 'Widowed':'No_longer_married'
'Never-married':'Never-married'})

Married 14361
Never-married 9917
No_longer_married 6447
Name: marital_status, dtype: int64
```

Name: marital\_status, dtype: int64

### Feature Engineering - Capital Gains



### Feature Engineering - Age



### Feature Engineering - Independence



# Modeling

Logistic Regression

K Nearest Neighbors Classifier

Random Forest

Gradient Boosting Classifier

<sup>\*\*</sup>All with under-sampling on training set

# Logistic Regression

- + Provides probability scores
  - + Robust to noise in data
  - + Interpretability of odds ratios from coefficients
- Struggles with large number of categorical features

#### **Default Settings**

**Accuracy**: 85.28 (+/- 1)%

**ROC Score:** 0.9048 (+/- 0.01)

**Optimized** the regularization parameter, solver algorithm, and L1 (LASSO) vs. L2 (Ridge) regression penalties

**Accuracy**: 85.31 (+/- 1)%

**ROC Score:** 0.9049 (+/- 0.01)

# K Nearest Neighbors Classifier

- + Classifies based on closeness of other known observations
  - + Lazy learning responds to changes in inputs
  - Longer computation time in test set
  - High dimensionality reduces effectiveness

#### **Default Settings**

**Accuracy**: 82.4 (+/- 2)%

**ROC Score:** 0.8453 (+/- 0.03)

**Optimized** the number of neighbors used to compare and classify points

**Accuracy**: 82.9 (+/- 2)%

**ROC Score:** 0.8751 (+/- 0.03)

#### **Random Forest**

- + Typically high performer
- + Guards against overfitting
- + Provides feature importance
  - Black box
  - Not able to predict outside sample
    - Optimization is computationally expensive

#### **Default Settings**

**Accuracy**: 83.0 (+/- 1)%

**ROC Score:** 0.8610 (+/- 0.03)

**Optimized** the number of estimators, minimum samples split, maximum depth

**Accuracy**: 85.12 (+/- 2)%

**ROC Score:** 0.9055 (+/- 0.01)

# Gradient Boosting Classifier

- + Minimizes loss function
- + Subsampling and learning rate help prevent overfitting
  - + Robust to outliers and missing data
- Can be prone to overfitting
  - Optimization can be computationally expensive

#### **Default Settings**

**Accuracy**: 85.7 (+/- 2)%

**ROC Score:** 0.9093 (+/- 0.01)

**Optimized** the minimum samples split, minimum samples per leaf, maximum depth, number of features considered, fraction of observations used to subsample, and number of estimators

**Accuracy**: 85.4 (+/- 2)%

**ROC Score:** 0.9097 (+/- 0.01)

# **Overall Model Analysis**

|   | Model               | Mean_Accuracy_Train | Mean_Accuracy_Test | ROC_AUC_Score |
|---|---------------------|---------------------|--------------------|---------------|
| 3 | Gradient_Boost      | 0.825457            | 0.856653           | 0.909662      |
| 2 | Random_Forest       | 0.815599            | 0.851081           | 0.905456      |
| 0 | Logistic_Regression | 0.816308            | 0.853203           | 0.904994      |
| 1 | KNN                 | 0.793836            | 0.829469           | 0.845342      |

#### **Error Analysis - Gradient Boosting**

Precision (positive outcomes correctly predicted) was higher for predicting incomes under \$50,000

Recall (actual positives correctly identified) was higher for predicting incomes over \$50,000

F1-score (weighted average of precision and recall) was higher for predicting incomes under \$50,000



#### **Model Interpretation - Feature Importances**



#### **Model Interpretation - Feature Importances**



#### Gender Pay Gap - Model with only Females



#### Conclusion

• While people can't change their age (without waiting), they can change all of the other demographic indicators that are indicative of earning more money

#### Demographic Indicator

- Being married
- Number of hours worked per week
- High capital gains
- Bachelor's degree and other advanced degrees

#### Characteristics of Individual

Interpersonal skills, commitment

Grit, persistence, passion

Risk/reward

Critical thinking skills, discipline

#### Conclusion

- While people can't change their age (without waiting), they can change all of the other demographic indicators that are indicative of earning more money
- Demographic Indicator
  - Being married
  - Number of hours worked per week
  - High capital gains
  - Bachelor's degree and other advanced degrees

#### Characteristics of Individual

Interpersonal skills, commitment

Grit, persistence, passion

Risk/reward

Critical thinking skills, discipline

#### Final Thoughts

- Opportunities for further exploration
  - How have these indicators changed since 1994?
  - How do these indicators compare to the income levels of other developed countries?
  - What indicators are most important for predicting if minority races earn higher incomes?

### Thanks!