13.4 Would it be rational for an agent to hold the three beliefs P(A)=0.4, P(B)=0.3, and $P(A \lor B)=0.5$? If so, what range of probabilities would be rational for the agent to hold for $A \land B$? Make up a table like the one in Figure 13.2, and show how it supports your argument about rationality. Then draw another version of the table where $P(A \lor B)=0.7$. Explain why it is rational to have this probability, even though the table shows one case that is a loss and three that just break even. (Hint: what is Agent 1 committed to about the probability of each of the four cases, especially the case that is a loss?)

By the *inclusion-exclusion principle* we can calculate the probability of the two event at the same time:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

 $P(A \land B) = P(A) + P(B) - P(A \lor B)$
 $P(A \land B) = 0.4 + 0.3 - 0.5 = 0.2$

It is exactly 0.2, a value between 0 and 1, so the agents presents a rational behaviour.

It is not possible to present a multiple bet to win in all cases:

Agent 1		Agent 2		Outcome and payoffs to Agent 1			
Proposition	Belief	Bet	Stakes	A, B	$A, \neg B$	$\neg A, B$	$\neg A, \neg B$
A	0.4	A	4 to 6	-6	-6	4	4
В	0.3	В	3 to 7	-7	3	-7	3
$A \lor B$	0.5	$\neg (A \lor B)$	2 to 2	2	2	2	-2
				-11	-1	-1	5

If the Agent 2 tries to win on $(\neg A, \neg B)$, for example with a stake of "8 to 8", then it will lose in $(A, \neg B)$ and $(\neg A, B)$.

With $P(A \lor B) = 0.7$ the agent still presents a rational behaviour:

$$P(A \land B) = 0.4 + 0.3 - 0.7 = 0.0$$

Agent 1		Agent 2		Outcome and payoffs to Agent 1			
Proposition	Belief	Bet	Stakes	a, b	$a, \neg b$	$\neg a, b$	$\neg a, \neg b$
а	0.4	а	4 to 6	-6	-6	4	4
b	0.3	b	3 to 7	-7	3	-7	3
$a \lor b$	0.7	$\neg (a \lor b)$	7/3 to 1	7/3	7/3	7/3	-1
				-32/3	-2/3	-2/3	6

I found another example using the atomic events of a world and two prepositions:

Λ	A	$\neg A$
В	а	b
$\neg B$	С	d

These four events are independent and they can be represented in a Venn's diagram as (please forgive my drawing skills):

I) Here we see the equivalents probabilities of the atomic events:

$$P(a) = P(A \land B)$$

$$P(b) = P(\neg A \land B)$$

$$P(c) = P(A \land \neg B)$$

$$P(d) = P(\neg A \land \neg B)$$

And we can calculate the different atomic event probabilities for second version where $P(A \lor B) = 0.7$:

II) By hypothesis:

$$P(A) = P(a) + P(c) = 0.4$$

III) By hypothesis:

$$P(B) = P(a) + P(b) = 0.3$$

IV) By hypothesis:

$$P(A \lor B) = P(a) + P(b) + P(c) = 0.7$$

V) By Axioms of Probability Theory:

$$\Omega = \{a, b, c, d\}
P(\Omega) = P(a \lor b \lor c \lor d) = P(a) + P(b) + P(c) + P(d) = 1$$

VI) By (I) and (V):

$$P(d) = 1 - (P(a) + P(b) + P(c)) = 1 - P(A \lor B) = 1 - 0.7 = 0.3$$

VII) (IV) - (II)

$$P(a) + P(b) + P(c) - P(a) - P(c) = 0.7 - 0.4 = 0.3$$

 $P(b) = 0.3$

VIII) By (III) and (VII)

$$P(a) = 0$$

IX) By complement:

$$P(c) = 1 - (P(a) + P(b) + P(d)) = 1 - 0.6 = 0.4$$

All atomic events presents valid values!