The Hong Kong Polytechnic University Department of Computing COMP4913 Capstone Project RF-based indoor localization system

Presented by CHEUK Lok Kan (19053031D)

BSc (Hons) in Information Technology (61431-FIT)

Supervisor: Dr. YANG Ray

### Background

- A research-intensive topic: Indoor radio frequency (RF) localization
- Inaccuracies due to errors of indoor localization
  - Hardware and spatial diversities
  - Multipath effects due to obstacles
  - Mathematical errors by coordinate conversion
- Scenario: Finding a particular book out of dozens of books placed on a large shelf in a library
- Accuracy is the priority

### Why RFID?

• It owns the "Ray" database, an enormous, general-purpose, and protocol-free database consisting of over 1.32 million datasets collected in 14 scenes and 37 settings (ACM, 2022).

| Env.<br>(#)      | Scene<br>(#) | Setting<br>(#) | RSS<br>(dBm) | 1G<br>(#) | 2G<br>(#) | 3G<br>(#) | Total   | (p/m <sup>5</sup> ) | Space<br>(m <sup>2</sup> ) | MP.<br>(*) | Dist.<br>(m) | Size<br>(GB) | DR.<br>(r/s) | TS.<br>(min) | Temp. |
|------------------|--------------|----------------|--------------|-----------|-----------|-----------|---------|---------------------|----------------------------|------------|--------------|--------------|--------------|--------------|-------|
|                  |              | S1             | -62.5        | 32,191    | 35,308    | 16,893    | 84,392  | 3,843.0             | 78.5                       | 10         | 5            | 48.24        | 40.4         | 79.5         | 31.2  |
|                  |              | S2             | -66.4        | 21,551    | 24,480    | 11,300    | 57,311  | 4,689.9             | 314.2                      | 8          | 10           | 28.47        | 38.0         | 44.4         | 30.3  |
|                  |              | S3             | -66.7        | 20,372    | 23,773    | 11,382    | 55,527  | 5,274.2             | 706.9                      | 7          | 15           | 26.88        | 42.4         | 41.2         | 29.9  |
|                  |              | S4             | -69.4        | 19,483    | 24,858    | 10,177    | 54,518  | 3,787.0             | 1,256.6                    | 9          | 20           | 24.18        | 41.0         | 35.1         | 29.4  |
|                  | 100          | S5             | -71.0        | 16,567    | 22,278    | 11,457    | 50,302  | 4,336.4             | 1,963.5                    | 10         | 25           | 25.38        | 40.1         | 35.0         | 27.2  |
|                  | A            | S6             | -75.0        | 18,414    | 21,818    | 11,009    | 51,241  | 5,865.5             | 2,827.4                    | 9          | 30           | 22.68        | 38.2         | 32.9         | 27.4  |
|                  | 4.6-15-      | S7             | -77.4        | 16,445    | 22,807    | 12,037    | 51,289  | 5,871.0             | 3,848.5                    | 10         | 35           | 23.82        | 35.9         | 33.8         | 27.7  |
|                  |              | S8             | -78.8        | 28,672    | 35,540    | 10,309    | 74,521  | 7,834.4             | 5,026.5                    | 10         | 40           | 35.28        | 40.5         | 50.8         | 28.1  |
| ž                |              | S9             | -79.3        | 28,672    | 35,540    | 10,309    | 61,909  | 4,235.7             | 6,361.7                    | 8          | 45           | 27.66        | 41.4         | 40.9         | 28.3  |
| Semi-Indoor Env. |              | 510            | -79.1        | 32,919    | 33,753    | 9,803     | 76,475  | 5,223.7             | 7,854.0                    | 13         | 50           | 25.80        | 41.2         | 63.6         | 29.0  |
|                  |              | S11            | -88.6        | 29,440    | 17,387    | 3,359     | 50,186  | 10,490.4            | 7,854.0                    | 11         | 55           | 18.15        | 31.5         | 29.8         | 28.7  |
|                  | 7 50         | S12            | -71.8        | 4,301     | 10,683    | 8,044     | 23,028  | 538.7               | 1,963.5                    | 10         | 25           | 43.62        | 6.2          | 69.5         | 30.1  |
|                  | В            | S13            | -76.9        | 6,245     | 10,172    | 4,940     | 21,357  | 702.1               | 3,848.5                    | 13         | 35           | 39.07        | 5.9          | 66.9         | 30.4  |
|                  |              | S14            | -78.1        | 6,942     | 19,579    | 11,782    | 38,303  | 1,381.8             | 5,026.5                    | 12         | 40           | 64.44        | 6.8          | 113.1        | 30.9  |
|                  | C            | S15            | -68.3        | 5,533     | 9,075     | 4,118     | 18,726  | 6,079.9             | 1,256.6                    | 16         | 20           | 40.02        | 7            | 74.5         | 33.1  |
|                  | D            | S16            | -68.9        | 24,007    | 32,448    | 21,083    | 77,538  | 4,345.1             | 530.9                      | 7          | 13           | 21.48        | 33.9         | 39.5         | 29.2  |
|                  |              | S17            | -67.0        | 15,684    | 16,584    | 8,303     | 40,571  | 2,545.9             | 530.9                      | 10         | 13           | 46.92        | 32.2         | 81.6         | 28.8  |
|                  | E            | 518            | -66.2        | 2,326     | 31,693    | 126,475   | 160,494 | 38,212.9            | 314.2                      | 14         | 10           | 89.93        | 20.7         | 61.2         | 18.4  |
|                  |              | S19            | -65.3        | 8,720     | 69,915    | N/A       | 78,635  | 27,924.4            | 314.2                      | 11         | 10           | 31.25        | 27.4         | 124.1        | 24.9  |
|                  |              | S20            | -63.7        | 3,173     | 26,930    | N/A       | 30,103  | 10,906.9            | 314.2                      | 11         | 10           | 12.19        | 16.1         | 26.5         | 25.1  |
|                  |              | S21            | -64.9        | 2,998     | 23,918    | N/A       | 26,916  | 8,900.8             | 314.2                      | 10         | 10           | 11.74        | 39.3         | 21.7         | 27.6  |
| Full-Indoor Evn. |              | S22            | -65.4        | 18,872    | 13,170    | N/A       | 32,042  | 5,057.1             | 314.2                      | 11         | 10           | 12.47        | 40.7         | 18.0         | 24.8  |
|                  | F            | S23            | -65.1        | 4,930     | 17,714    | 25,823    | 48,467  | 22,627.0            | 153.9                      | 9          | 7            | 71.46        | 8.1          | 124.1        | 25.8  |
|                  | G            | S24            | -61.4        | 1,749     | 4,222     | 4,550     | 10,521  | 4,911.8             | 78.5                       | 8          | 5            | 11.88        | 4.2          | 65.9         | 27.5  |
| -8               |              | S25            | -60.2        | 891       | 2,425     | 1,975     | 5,291   | 937.8               | 78.5                       | 5          | 5            | 9.42         | 4.3          | 33.6         | 30.1  |
| Ē                |              | S26            | -61.9        | 1,911     | 3,973     | 839       | 6,723   | 2,394.2             | 78.5                       | 12         | 5            | 11.94        | 5.3          | 31.0         | 27.3  |
| Full-            |              | S27            | -61.9        | 1,593     | 3,527     | 3,293     | 8,413   | 1,828.9             | 78.5                       | 10         | 5            | 17.28        | 4.1          | 100.1        | 28.2  |
|                  |              | S28            | -63.7        | 1,297     | 3,526     | 4,088     | 8,911   | 1,600.4             | 78.5                       | 6          | 5            | 13.92        | 9.6          | 57.5         | 27.9  |
|                  | н            | S29            | -61.7        | 1,026     | 1,984     | 2,092     | 5,102   | 912.7               | 113.1                      | 7          | 6            | 14.11        | 3.7          | 33.1         | 29.3  |
|                  |              | \$30           | -60.4        | 526       | 1,335     | 1,789     | 3,650   | 1,011.6             | 113.1                      | 5          | 6            | 9.72         | 5.1          | 17.8         | 28.8  |
|                  | 1            | S31            | -60.9        | 964       | 2,555     | 3,947     | 7,466   | 823.0               | 113.1                      | 7          | 6            | 16.02        | 8.9          | 28.2         | 29.9  |
|                  |              | 532            | -61.0        | 528       | 1,244     | 982       | 2,754   | 307.9               | 113.1                      | 9          | 6            | 12.72        | 5.4          | 17.2         | 28.0  |
|                  |              | S33            | -61.6        | 9,379     | 16,164    | N/A       | 25,543  | 1,576.7             | 78.5                       | 8          | 5            | 8.41         | 48.3         | 11.8         | 18.5  |
|                  | K            | \$34           | -71.0        | 25,988    | 2,894     | N/A       | 28,882  | 1,380.6             | 1256.6                     | 4          | 20           | 11.78        | 29.6         | 16.6         | 17.8  |
|                  | L            | S35            | -77.7        | 23,743    | 28,891    | N/A       | 52,634  | 935.9               | 1963.5                     | 10         | 25           | 23.85        | 27.8         | 34.4         | 17.6  |
|                  | M            | S36            | -79.9        | 8,874     | 12,809    | N/A       | 21,683  | 1,335.2             | 3217.0                     | 8          | 32           | 8.53         | 24.0         | 12.3         | 17.3  |
|                  | N            | S37            | -68.5        | 14,250    | 7,479     | N/A       | 21,729  | 848.1               | 254.5                      | 6          | 9            | 7.83         | 30.6         | 11.3         | 16.8  |

Table 1: Summary of "Ray" database

### Why RFID?

- In "Ray", the datasets are collected by 3 gateways, referring to 3  $4 \times 4$  antenna arrays
- Each antenna in an array is at a distance of 16cm



Figure 1: Deployment and architecture of the gateway



Figure 2: Arrangement of elements in a gateway

#### Objectives

- Method of data analysis: Deep Neural Network (DNN)
- Implementation: "ThreeBodyNet" using datasets from "Ray"
- RSSI: Strength of RF signal received by gateways from the RF identification (RFID) tag
- Phase values: Reliability of RSSI values and indication of obstructions
- Objectives:
  - Localization of the RFID tag based on the RSSI and phase values received from their positions
  - Visualization of pairs of actual and predicted coordinates of the RFID tag in a 3D Cartesian coordinate system
  - Representation of holistic performances of different prediction models in a mathematical way by cumulative distribution function (CDF)

#### Methodology

- The project is divided into 3 parts.
- The first part: Coordinates prediction model (project.py)
- The second part: 3D scatter plot (scatter.py)
- The third part: CDF graphs generation (cdf.py)

|                             | project.py | scatter.py   | cdf.py       |
|-----------------------------|------------|--------------|--------------|
| Python 3.10 with Miniconda3 | ✓          | $\checkmark$ | $\checkmark$ |
|                             |            |              |              |
| Conda 23.1.0                | ✓          | $\checkmark$ | $\checkmark$ |
| NumPy 1.23.5                | ✓          | ✓            | $\checkmark$ |
| PyTorch 1.12.1              | ✓          |              |              |
| pandas 1.5.3                | ✓          |              | $\checkmark$ |
| Dash 2.7.0                  |            | $\checkmark$ |              |
| Plotly 5.9.0                |            | ✓            |              |
| pickle 4.0                  |            | $\checkmark$ |              |
| Matplotlib 3.7.1            |            |              | $\checkmark$ |
| openpyxl 3.0.10             |            |              | $\checkmark$ |

Table 2: Technologies, frameworks, libraries, and packages used in each Python project

- Construct a deep neural network (ThreeBodyNet)
  - 7 layers, each layer consists of 100 neurons and applies a linear transformation to the incoming data

Figure 3: Part of the code of project.py constructing the deep neural network

- Train the DNN 200 epochs
  - Using Adam optimizer with 0.0001 weight decay, 0.001 learning rate, mean squared error (MSE) loss function, training dataset (50% dataset), and validating dataset (20% dataset)
  - Each epoch computes the overall training loss and validating loss
  - Saving model with the least MSE loss function

```
# Split train, validate and test sets
validate_set = int(len(X) * 0.2)
test_set = int(len(X) * 0.3)
train_set = len(X) - test_set = validate_set
train_set, validate_set, test_set = random_split(data, [train_set, validate_set, test_set])
# Read the data in batches and put into memory
train_loader = DataLoader(train_set, batch_size=16, shuffle=True)
validate_loader = DataLoader(validate_set, batch_size=32)
test_loader = DataLoader(test_set, batch_size=32)

# Define_model
model = Network(X.size(1), Y.size(1))
model.to(torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))

# Define_loss function_and_optimizer
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001)
epochs = 200
train(model, epochs, train_loader, validate_loader, optimizer, loss_function)
print('Finish_training')
```

Figure 4: Part of the code of project.py training the DNN

- Predict the coordinates
  - Computing test loss
  - Using testing dataset (30% dataset)

- Implementation of the architecture of "ThreeBodyNet"
  - Gateway 1: Red spatial spectrum
  - Gateway 2: Green spatial spectrum
  - Gateway 3: Blue spatial spectrum
- Three strategies of training "ThreeBodyNet"
  - Strategy 1: Accept 1 spatial spectrum
  - Strategy 2: Accept 2 spatial spectrums
  - Strategy 3: Accept all 3 spatial spectrums
- Parameters: RSSI and phase values
- Scenario of input: Scene A Setting 1



Figure 5: Architecture of "ThreeBodyNet"

• 7 models and prediction sets are generated in total

|              | Gateway 1 | Gateway 2 | Gateway 3 |
|--------------|-----------|-----------|-----------|
| Prediction 1 | <b>√</b>  |           |           |
| Prediction 2 |           | <b>√</b>  |           |
| Prediction 3 |           |           | ✓         |
| Prediction 4 | ✓         | ✓         |           |
| Prediction 5 | ✓         |           | ✓         |
| Prediction 6 |           | <b>√</b>  | ✓         |
| Prediction 7 | ✓         | <b>√</b>  | ✓         |

Table 3: Gateway(s) used in each prediction

#### 3D scatter plot

- A web interface of a 3D Cartesian coordinate system
- Pairs of actual and predicted coordinates are visualized there
- Data shown:
  - Pair number
  - Actual coordinates
  - Corresponding predicted coordinates
  - Distance
  - RSSI and average RSSI
  - Phase values and average phase values



Figure 6: The 3D scatter plot webpage

#### **CDF**

- Mathematically represent the holistic performance of each prediction model to find out its extent of errors
- Greater distance of actual and predicted coordinates -> More errors
  - Parameter: Distance
- Implementation:
  - Acquisition of distances between each pair of coordinates
  - Rearrangement of the distances in ascending order

## Results of "project.py"

• The results of each prediction model generated by "project.py", the implementation of "ThreeBodyNet"

|              | Median of distance<br>between actual and<br>predicted coordinates (m) | Percentage of number of pairs of actual and predicted coordinates with distance less than 1 meter |         | Validation loss<br>of 200 <sup>th</sup> epoch | Overall<br>test loss | Corresponding prediction model |
|--------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------|-----------------------------------------------|----------------------|--------------------------------|
| Prediction 1 | 0.307                                                                 | 86.9%                                                                                             | 0.00537 | 0.06350                                       | 0.09145              | Model1.pth                     |
| Prediction 2 | 0.348                                                                 | 85.1%                                                                                             | 0.06144 | 0.16749                                       | 0.19302              | Model2.pth                     |
| Prediction 3 | 0.270                                                                 | 90.1%                                                                                             | 0.00739 | 0.07595                                       | 0.07992              | Model3.pth                     |
| Prediction 4 | 0.157                                                                 | 94.5%                                                                                             | 0.02349 | 0.06914                                       | 0.09200              | Model4.pth                     |
| Prediction 5 | 0.123                                                                 | 96.3%                                                                                             | 0.00705 | 0.03506                                       | 0.08477              | Model5.pth                     |
| Prediction 6 | 0.107                                                                 | 97.3%                                                                                             | 0.00511 | 0.04753                                       | 0.04112              | Model6.pth                     |
| Prediction 7 | 0.127                                                                 | 99.1%                                                                                             | 0.00423 | 0.04459                                       | 0.03895              | Model7.pth                     |

Table 4: Summary of each prediction

## Results of "project.py"

 The DNN with least test loss is adopted, generating several models and sets of prediction referring to different arrangement and number of gateways

| Model1.pth         | 29/12/2022 0:33  | PTH 檔案             | 216 KB |
|--------------------|------------------|--------------------|--------|
| Model2.pth         | 29/12/2022 0:42  | PTH 檔案             | 216 KB |
| Model3.pth         | 29/12/2022 0:51  | PTH 檔案             | 216 KB |
| Model4.pth         | 29/12/2022 8:53  | PTH 檔案             | 228 KB |
| Model5.pth         | 29/12/2022 9:03  | PTH 檔案             | 228 KB |
| Model6.pth         | 29/12/2022 9:11  | PTH 檔案             | 228 KB |
| Model7.pth         | 29/12/2022 9:22  | PTH 檔案             | 241 KB |
| ■ Prediction1.xlsx | 29/12/2022 0:33  | Microsoft Excel 工作 | 321 KB |
| ■ Prediction2.xlsx | 29/12/2022 0:43  | Microsoft Excel 工作 | 319 KB |
| Prediction3.xlsx   | 29/12/2022 0:52  | Microsoft Excel 工作 | 325 KB |
| ■ Prediction4.xlsx | 29/12/2022 8:53  | Microsoft Excel 工作 | 3 KB   |
| ■ Prediction5.xlsx | 29/12/2022 9:03  | Microsoft Excel 工作 | 553 KB |
| ■ Prediction6.xlsx | 29/12/2022 9:11  | Microsoft Excel 工作 | 551 KB |
| Prediction7.xlsx   | 29/12/2022 9:23  | Microsoft Excel 工作 | 788 KB |
| project.py         | 29/12/2022 22:26 | Python File        | 5 KB   |
| project.pyproj     | 29/12/2022 11:52 | Python Project     | 2 KB   |

Figure 7: Predictions produced by respective models in "project.py"

### Results of "scatter.py"

- 3D scatter plot: Starting the application results in stating the scatter plot webpage's URL, http://127.0.0.1:8050/.
  - Entering the URL in a browser leads to the 3D scatter plot webpage.
  - Finding out the relationship between RSSI, phase value, and the distance of actual to predicted coordinates

```
C:\Users\cheuk\.conda\envs\miniconda3\python.exe

Dash is running on http://127.0.0.1:8050/

* Serving Flask app 'scatter'

* Debug mode: on
```

Figure 8: URL of the 3D scatter plot webpage

## Results of "scatter.py"

- Findings:
  - Less error (distance between actual and predicted coordinates) is computed given lower phase values
  - Phase values are inversely proportional to accuracy

## Results of "cdf.py"



Figure 9: Cumulative Distribution Function (CDF) of distance between actual and predicted coordinates in Prediction 1-6

# Results of "cdf.py"



Figure 10: CDF of distance between actual and predicted coordinates in Prediction 7

### Results of "cdf.py"

- Extent of inclination between the intervals om and 1m:
  - Prediction 1-3 (1 gateway) < Prediction 4-6 (2 gateways) < Prediction 7 (3 gateways)
- More inclined: More minor errors whereas fewer significant errors

## Results from other perspective





Figure 11: Average distance of overall, x, y, and z coordinates in Prediction 1-7

## Results from other perspective

- Findings:
  - Error that x-coordinate contributes: 0.09m 0.3m (slightly less than y)
  - Error that y-coordinate contributes: 0.12m 0.42m (most)
  - Error that z-coordinate contributes: 0.02m 0.08m (least)

#### **Evaluations**

- The performance of strategy 2 and strategy 3 exceed strategy 1 by 52.7% and 63.7% respectively
- Coverage
  - Strategy 1: 100%
  - Strategy 2: 62%
  - Strategy 3: 20%
- The rigid requirement of strategy 3 makes it hardly practical.
   Therefore, is prevailed to be the result of "ThreeBodyNet"

#### **Evaluations**

- Spectra generation algorithms
- Bartlett algorithm
  - Testing the assumption of equal variances of RSSI across different scenarios that the data are collected
- MVDR algorithm
  - Increasing the signal-to-noise ratio (SNR) for sets of RSSI and phase values
- Both exhibit smaller errors in x and y coordinates of within o.1m

#### **Evaluations**

- Phase estimation algorithms in the combination of low noise phase estimator (LNPE), Kalman Filter (KF), and cyclic prefix and cyclic suffix (CC)
- LNPE
  - Estimating the relative timing and position of the signal with respect to the reference signal
- KF
  - Predicting the state of the system and updates based on the previous measurements statically with decrement of noises and other uncertainties
- CC
  - Mitigating inter-symbol interference (ISI) due to multipath propagation by cyclic extension transmitted along with the signal

#### Conclusion

- "Ray" database + "ThreeBodyNet" DNN = Indoor Localization Prediction
- The prediction models computed can be utilized in practical scenarios (Han, 2012)
  - Finding a particular book out of dozens of books placed on a large shelf in a library by RFID for localization prediction

#### References

- "Deep Learning on Indoor Localization: A Million-Scale Database with Millimeter-Level Labels," *ACM MobiCom* 2022, no. 1007, 2022.
- J. Han, Y. Zhao, Y.S. Cheng, "Improving Accuracy for 3D RFID Localization," *International Journal of Distributed Sensor Networks*, vol. 2012, no. 865184, February 2012.