Homework #2

I pledge my honor that I have abided by the Stevens honor system.

1.3: 2, 6, 10a, 10b, 10c, 18, 20

2.) Show that $\neg(\neg p) = p$

р	¬р	¬(¬p)	
T	F	T	
F	Т	F	

Therefore, $p = \neg (\neg p)$.

6.) Use a truth table to verify De Morgan's First Law: $\neg(p \land q) \equiv \neg p \lor \neg q$

р	q	p∧q	¬(p∧q)	¬р	¬q	¬pv¬q
Т	Т	Т	F	F	F	F
Т	F	F	Т	F	Т	T
F	Т	F	Т	Т	F	T
F	F	F	T	Т	Т	T

10. Show each as a tautology.

a. $[\neg p \land (p \lor q)] \rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q \equiv T$

	1 11 173	1 1 11	1/3 1			
р	q	¬р	pvq	¬p∧(p∨q)	¬[¬p∧(p∨q)]	$\neg [\neg p \land (p \lor q)] \lor q$
F	F	Т	F	F	Т	T
F	Т	Т	Т	Т	F	Т
Т	F	F	Т	F	Т	Т
Т	Т	F	Т	F	Т	T

$$[\neg p \land (p \lor q)] \rightarrow q$$

 $= \neg [\neg p \land (p \lor q)] \lor q \qquad \text{implicit exchange}$

= p v ¬(p v q) v q double negation law

■ pv¬p∧¬qvq De Morgan's Law/associative

 $= \qquad \qquad p \vee \neg p \wedge q \vee \neg q \qquad \qquad \text{commutative property}$

 \equiv T \wedge T Negation law \equiv T Idempotent

b. $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$

р	q	r	¬р	¬q	¬p∨¬q	¬q∨r	(¬pvq)∧(¬qvr)	¬[(¬pvq)∧(¬qvr)]	¬p∨r	$\neg [(\neg p \lor q) \land (\neg q \lor r)] \lor (\neg p \lor r)$
F	F	F	Т	Т	Т	Т	Т	F	Т	Τ
F	F	Т	Т	Т	Т	Т	Т	F	Т	Τ
F	Т	F	Т	F	Т	F	F	Т	Т	Τ
F	Т	Т	Т	F	Т	Т	Т	F	Т	Τ
Т	F	F	F	Т	F	Т	F	Т	F	T
Т	F	Т	F	Т	F	Т	F	Т	Т	Τ
Т	Т	F	F	F	Т	F	F	Т	F	T
Т	Т	Т	F	F	Т	Т	T	F	Т	T

 $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ $[(\neg p \lor q) \land (\neg q \lor r)] \rightarrow (\neg p \lor r)$ implicit exchange = $\neg [(\neg p \lor q) \land (\neg q \lor r)] \lor (\neg p \lor r)$ implicit exchange = $\neg(\neg p \lor q) \lor \neg(\neg q \lor r) \lor (\neg p \lor r)$ De Morgan's Law $(p \land \neg q) \lor (q \land \neg r) \lor (\neg p \lor r)$ De Morgan's Law = $p \wedge (\neg q \vee q) \wedge \neg r \vee (\neg p \vee r)$ Associative property $p \wedge T \vee \neg r \vee (\neg p \vee r)$ **Negation Law** = $p \wedge \neg r \vee T \vee (\neg p \vee r)$ Commutative property $p \wedge \neg r \vee (\neg p \vee r) \vee T$ Commutative property p v ¬p ∧ r v ¬r v T Commutative property $T \wedge T \vee T$ **Negation Law** = Т Idempotent

c. $[p \land (p \rightarrow q)] \rightarrow q$

р	q	¬р	¬p∨q	p∧(¬p∨q)	¬(p∧(¬p∨q))	¬[p∧(¬p∨q)]∨q
Т	T	F	Т	Т	F	T
Т	F	F	F	F	Т	Т
F	Т	Т	Т	F	Т	T
F	F	Т	Т	F	Т	Т

 $[p \land (p \rightarrow q)] \rightarrow q$ $\neg [p \land (\neg p \lor q)] \lor q$ Implicit exchange = $\neg [(p \land \neg p) \lor q] \lor q$ Associative property = $\neg (p \land \neg p) \land \neg q \lor q$ De Morgan's Law $\neg p \lor p \land \neg q \lor q$ De Morgan's Law $T \wedge T$ **Negation Law** Т Idempotent =

18.) Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent.

 $p \rightarrow q$ $= \neg p \lor q$ Implicit exchange $= \neg p \lor \neg \neg q$ Commutative property $= \neg \neg q \lor \neg p$ Commutative property $= \neg q \rightarrow \neg p$ Implicit exchange

20.) Show that $\neg(p \oplus q) \equiv p \leftrightarrow q$

р	q	p⊕q	¬(p⊕q)	p→q	q→p	$(p\rightarrow q) \wedge (q\rightarrow p)$
F	F	F	T	Т	Т	Τ
F	Т	Т	F	Т	F	F
Т	F	Т	F	F	Т	F
T	Т	F	Т	Т	T	Т

- 6.) Let N(x) be "x has visited ND", domain consists of students in school. Express in English.
- a. $\exists x \ N(x)$: There is some student at school that has visited ND.
- b. $\forall x \ N(x)$: Every student at school has visited ND.
- c. $\neg \exists x \ N(x)$: No student at school has visited ND.
- d. $\exists x \neg N(x)$: There is some student at school who has not visited ND.
- e. $\neg \forall x \ N(x)$: Not all students at school have visited ND.
- f. $\forall x \neg N(x)$: None of the students at school have visited ND.
- 8.)R(x) is "x is a rabbit" and H(x) is "x hops", domain consists of all animals. Express in English.
- a. $\forall x [R(x) \rightarrow H(x)]$: Every animal, that is a rabbit, hops.
- b. $\forall x [R(x) \land H(x)]$: All animals are rabbits, and they hop.
- c. $\exists x [R(x) \rightarrow H(x)]$: There is an animal that hops if it is a rabbit.
- d. $\exists x [R(x) \land H(x)]$: There is an animal that is a rabbit and hops.
- 10.) C(x) is "x has a cat", D(x) is "x has a dog", F(x) is "x has a ferret", domain is students in your class.
- a. A student in your class has a cat, a dog, and a ferret: $\exists x [C(x) \land D(x) \land F(x)]$
- b. All students in your class have a cat, a dog, or a ferret: $\forall x [C(x) \lor D(x) \lor F(x)]$
- c. Some student in your class has a cat, and a ferret, but not a dog: $\exists x [C(x) \land F(x) \land \neg D(x)]$
- d. No student in your class has a cat, a dog, and a ferret: $\neg \exists x [C(x) \land D(x) \land F(x)]$
- e. For each C(x), D(x), and F(x), there is a student who has one: $\exists x \ C(x) \land \exists x \ D(x) \land \exists x \ F(x)$
- 12.) Q(x) is "x+1>2x". What are the truth-values, where domain is all ints?
- a. Q(0) = T
- b. Q(-1) = T
- c. Q(1) = F
- T = (x)Q(x) = T
- $e. \forall x Q(x) = F$
- f. $\exists x \neg Q(x) = T$
- $g. \forall x \neg Q(x) =$
- 28.) Cor(x) is "x is in the correct place", Tool(x) is "x is a tool", EC(x) is "x is in excellent condition".
- a. Something is not in the correct place: $\exists x \neg Cor(x)$
- b. All tools are in the correct place and are in excellent condition: $\forall x [Tool(x) \rightarrow Cor(x) \land EC(x)]$
- c. Everything is in the correct place and are in excellent condition: $\forall x [Cor(x) \land EC(x)]$
- d. Nothing is in the correct place and is in excellent condition: $\neg \exists x [Cor(x) \land EC(x)]$
- e. One of your tools is not in the correct place, but it's in excellent condition: $\exists x (Tool(x) \rightarrow \neg Cor(x) \land EC(x))$