HMK 1 - Proximal Denoising

Vincent Plassier, vincent.plassier@ens-paris-saclay.fr

1 Réponses

Question 1:

Montrons que la fonction $f \circ L : \mathbb{R}^N \longrightarrow \mathbb{R}^N \in \Gamma_0(\mathbb{R}^N)$. Pour cela, il suffit de prouver que $f \circ L$ est propre, convexe et semi-continue inférieurement. Par inversibilité de L, on en déduit que $f \circ L$ est bien défini donc $\mathrm{dom}(f \circ L) \neq \emptyset$: c'est une application propre.

De plus, la convexité provient de la pré-composition d'une fonction convexe par une fonction affine. Enfin, pour toute suite de points (x_n) convergente vers x, posons $y_n = L(x_n)$. Comme L est linéaire en dimension finie, on en déduit que L est continue. Par définition de la continuité, il existe $y \in \mathbb{R}^N$ tel que (y_n) converge vers y. Comme l'ensemble des fonctions semi-continues inférieurement est stable par somme finie et que $\forall i \ f_i$ est semi-continue inférieurement; on en déduit que f est semi-continue inférieurement. Donc $\lim_n \inf f(y_n) \geq f(y)$, ce qui équivaut à $\lim_n \inf f \circ L(x_n) \geq f \circ L(x)$. D'où $f \circ L$ est bien semi-continue inférieurement. En conclusion, nous avons bel et bien $f \circ L \in \Gamma_0(\mathbb{R}^N)$.

D'après le cours sur les opérateurs proximaux, nous avons

$$\operatorname{prox}_{f \circ L}(y) = \arg \min_{\mathbb{R}^N} \left[\frac{1}{2} \|x - y\|^2 + f(Lx) \right]$$

On en déduit qu'il est équivalent de résoudre prox $f \circ L(y)$.

Question 2:

Posons $h: x \longmapsto L^*x$. Par calcul, nous avons:

$$\operatorname{prox}_{f \circ L}(y) = \arg\min_{\mathbb{R}^N} \left[\frac{1}{2} \|x - y\|^2 + f(Lx) \right]$$

$$\stackrel{\operatorname{cf}(1)}{=} h^{-1} \left(\arg\min \left[\frac{1}{2} \|h(x) - y\|^2 + f(h(x)) \right] \right)$$

$$\stackrel{\operatorname{cf}(2)}{=} h^{-1} \left(\arg\min \left[\frac{1}{2} \|x - Ly\|^2 + f(x) \right] \right)$$

$$= L^{-1} \operatorname{prox}_f(Ly)$$

- (1): car h est une isométrie.
- (2) : car L est également une isométrie.

Grâce aux calculs précédents on en déduit le résultat souhaité.

Question 3:

Nous affichons l'image originale (cf 1) ainsi que celle obtenue en lui ajoutant un bruit gaussien décart type égal à 30. Nous avons renormalisé nos images dans [0,1] afin de calculer la SNR.

FIGURE 1: Comparaison des images originale et bruitée

Question 4:

Ici, nous considérons $\varphi=\chi|.|^q$ et

$$f_i = \left\{ \begin{array}{l} 0 \text{ si } i \in \mathbb{K} \\ \varphi \text{ sinon} \end{array} \right.$$

Pour q=1, regardons le paramètre χ maximisant la SNR, le trait vertical représente la valeur optimale.

FIGURE 2: Itération de l'algorithme d'optimisation

Pour le paramètre χ obtenu précédemment, affichons l'image débruité obtenue dans la figure 3.

FIGURE 3: Image obtenue par débruitage

Pour finir, traçons l'évolution de l'erreur quadratique en fonction de χ (pour rappel, nous avons considéré les images dans $[0, \dots, 1]$).

FIGURE 4: CHoix de $\chi_{optimal}$ en fonction de q