Intelligenza Artificiale e Astronomia

Giovanni Della Lunga Emiliano Ricci

Apprendimento Automatico (Machine Learning)

 L'apprendimento automatico, un sottoinsieme dell'intelligenza artificiale, svolge un ruolo fondamentale nell'automazione dell'analisi dei dati astronomici.

Apprendimento Automatico (Machine Learning)

 A differenza degli algoritmi tradizionali programmati con regole specifiche, i sistemi di machine learning apprendono dai dati e migliorano le proprie prestazioni nel tempo.

Approccio Tradizionale

Apprendimento Automatico

Un gioco semplice (si fa per dire...)

Come riconoscere le immagini?

Cosa «vede» una macchina?

• Quali immagini rappresentano delle scarpe?

• Ad una «scarpa» sono associate molte forme diverse...

Ricezione del segnale

- Un neurone biologico riceve segnali attraverso le sue strutture dendritiche, che sono estensioni ramificate che catturano i segnali chimici inviati da altri neuroni attraverso le sinapsi.
- Questi segnali chimici, noti come neurotrasmettitori, vengono convertiti in segnali elettrici all'interno del neurone.

Processamento del segnale

- I segnali elettrici ricevuti dai dendriti si propagano verso il corpo cellulare del neurone, dove vengono integrati e processati.
- Se la **somma** dei segnali eccitatori e inibitori raggiunge una certa soglia, il neurone genera un potenziale d'azione, un impulso elettrico che viaggia lungo l'assone.

Structure of a neuron **Processamento** I segnali elettri Non tutti i segnali dendriti si pro odendrocyte corpo cellulare hanno la stessa dove vengono processati. importanza!!! Se la somma d node of eccitatori e inil Ranvier una certa soglila, a neuron genera un potenziale axon terminal d'azione, un impulso elettrico synaptic end bulbs che viaggia lungo l'assone. healthline

Trasmissione del segnale

- Il potenziale d'azione percorre l'assone, una lunga proiezione del neurone, fino a raggiungere le terminazioni sinaptiche.
- Qui, il segnale elettrico provoca il rilascio di neurotrasmettitori nelle sinapsi, che attraversano lo spazio sinaptico e si legano ai recettori sui dendriti del neurone successivo, ripetendo il ciclo di comunicazione neuronale.

Una Rete Neurale è una Rete di «Funzioni»

L' «addestramento» di una Rete Neurale

 L'addestramento di una rete consiste nella ricerca del set ottimale di pesi che minimizza la differenza fra il risultato calcolato e il risultato atteso

L' «addestramento» di una Rete Neurale

 L'addestramento di una rete consiste nella ricerca del set ottimale di pesi che minimizza la differenza fra il risultato calcolato e il risultato atteso

Apprendimento Automatico

- Nel campo dell'astronomia, questo significa addestrare algoritmi su set di dati etichettati per riconoscere caratteristiche specifiche, come galassie, nebulose o effetti di lente gravitazionale.
- Una volta addestrati, questi algoritmi possono elaborare autonomamente nuovi dati, identificando e classificando gli oggetti celesti con notevole precisione.

Analisi dei dati osservativi

L'IA viene utilizzata per analizzare i dati provenienti da telescopi e altre strumentazioni astronomiche.

Algoritmi di machine learning e deep learning aiutano a identificare e classificare oggetti celesti, come stelle, pianeti, galassie e fenomeni transienti.

Esempi di strumenti: telescopi spaziali (Webb, Hubble, Kepler), radiotelescopi (SKA, ALMA).

Analisi dati osservativi

- I sistemi automatizzati, alimentati da algoritmi di intelligenza artificiale, possono rilevare eventi transitori, come supernove o lampi di raggi gamma, in tempo reale.
- La capacità di identificare e avvisare gli astronomi di questi eventi consente rapide osservazioni di follow-up, approfondendo la nostra comprensione della natura dinamica e in continua evoluzione del cosmo.

Riconoscimento di pattern e anomalie

Rilevamento di pattern: l'IA è in grado di riconoscere modelli ricorrenti nei dati astronomici, facilitando lo studio della struttura dell'universo.

Rilevamento di anomalie: l'IA identifica eventi o oggetti insoliti che potrebbero indicare nuovi fenomeni astrofisici o errori strumentali.

Simulazioni cosmologiche

- L'IA aiuta a migliorare le simulazioni dell'universo, modellando la formazione e l'evoluzione di galassie, ammassi di galassie e strutture su larga scala.
- Utilizzo di reti neurali per simulare la distribuzione della materia oscura e l'evoluzione delle galassie in base a diversi modelli cosmologici.

Ricerca di esopianeti

- L'IA viene utilizzata per analizzare i dati delle curve di luce di stelle alla ricerca di esopianeti.
- Algoritmi di machine learning classificano le variazioni di luminosità delle stelle per identificare potenziali pianeti in transito.
- Esempio: missione Kepler e TESS.

Studio delle supernove

- Le supernove sono eventi esplosivi cruciali per comprendere l'evoluzione stellare e l'espansione dell'universo.
- L'IA aiuta a identificare e classificare le supernove in grandi set di dati astronomici, migliorando la nostra comprensione dei meccanismi che le governano.

Mappatura del cielo

- Creazione di mappe dettagliate del cielo notturno utilizzando l'IA per analizzare le immagini ottenute da telescopi.
- L'IA contribuisce alla catalogazione di miliardi di oggetti celesti e alla creazione di atlanti celesti dettagliati.

Analisi di onde gravitazionali

- Le onde gravitazionali offrono una nuova finestra sull'universo, rivelando fenomeni come la fusione di buchi neri e stelle di neutroni.
- L'IA è utilizzata per analizzare i segnali delle onde gravitazionali e identificare eventi di fusione in dati complessi e rumorosi.

- L'IA ha già trasformato molti aspetti dell'astronomia, astrofisica e cosmologia, ma il suo potenziale è ancora in gran parte inesplorato.
- Le future applicazioni dell'IA potrebbero includere la scoperta di nuovi fenomeni cosmici, la miglior comprensione dell'energia oscura e la ricerca di segnali di vita extraterrestre.
- La collaborazione tra scienziati e esperti di IA sarà fondamentale per sfruttare al meglio queste tecnologie.

Grazie per la vostra attenzione

