Lecture 17: Paired Data and Difference of Two Means

Chapter 5.1-5.2

Goals for Today

- Define statistical power
- Difference of Means
- ▶ Note on Practical vs Statistical Significance

Here are the 8 broad types of questions we can answer with statistical methods (confidence intervals and hypothesis tests) in this class:

1. What is the mean value μ ?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?
- 4. What is the proportion *p* of "successes"?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?
- 4. What is the proportion *p* of "successes"?
- 5. Are the proportions of "successes" of two groups p_1 and p_2 equal or not?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?
- 4. What is the proportion *p* of "successes"?
- 5. Are the proportions of "successes" of two groups p_1 and p_2 equal or not?
- 6. Are the means μ_1, \ldots, μ_k of k groups all equal or not?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?
- 4. What is the proportion *p* of "successes"?
- 5. Are the proportions of "successes" of two groups p_1 and p_2 equal or not?
- 6. Are the means μ_1, \ldots, μ_k of k groups all equal or not?
- 7. Are we observing counts that we were expected?

- 1. What is the mean value μ ?
- 2. Are the means of two groups μ_1 and μ_2 equal or not?
- 3. What is the mean paired difference μ_{diff} ?
- 4. What is the proportion *p* of "successes"?
- 5. Are the proportions of "successes" of two groups p_1 and p_2 equal or not?
- 6. Are the means μ_1, \ldots, μ_k of k groups all equal or not?
- 7. Are we observing counts that we were expected?
- 8. Are two categorical variables independent?

Are the means of two groups μ_1 and μ_2 equal or not?

Example from Chapter 5.2: Did men (n=45) run faster than women (n=55)?

Difference in Means

We are interested in the difference of two population means $\mu_{\it w}-\mu_{\it m}$ where

Difference in Means

We are interested in the difference of two population means $\mu_{w}-\mu_{m}$ where

- $\blacktriangleright \mu_{w}$ is the mean time for women
- $\blacktriangleright \mu_m$ is the mean time for men

Difference in Means

We are interested in the difference of two population means $\mu_{\rm W}-\mu_{\rm m}$ where

- $\blacktriangleright \mu_w$ is the mean time for women
- $\blacktriangleright \mu_m$ is the mean time for men

The data:

	men	women
\overline{X}	87.65	102.13
5	12.5	15.2
n	45	55

We now recreate all the elements of Chapter 4 using this new population parameter $\mu_w - \mu_m$:

1. Determine a point estimate of $\mu_w - \mu_m$.

- 1. Determine a point estimate of $\mu_w \mu_m$.
- 2. Show the normality of the sampling distribution: mean and SE

- 1. Determine a point estimate of $\mu_w \mu_m$.
- 2. Show the normality of the sampling distribution: mean and SE
- 3. Build a confidence interval

- 1. Determine a point estimate of $\mu_w \mu_m$.
- 2. Show the normality of the sampling distribution: mean and SE
- 3. Build a confidence interval
- 4. Conduct hypothesis tests

We now recreate all the elements of Chapter 4 using this new population parameter $\mu_w - \mu_m$:

- 1. Determine a point estimate of $\mu_w \mu_m$.
- 2. Show the normality of the sampling distribution: mean and SE
- 3. Build a confidence interval
- 4. Conduct hypothesis tests

First, the point estimate for $\mu_w - \mu_m$ is the sample difference of means

$$\overline{x}_w - \overline{x}_m = 102.13 - 87.65 = 14.48$$

If the sample means \overline{x}_1 and \overline{x}_2

If the sample means \overline{x}_1 and \overline{x}_2

 each meet the criteria for having nearly normal sampling distributions

If the sample means \overline{x}_1 and \overline{x}_2

- each meet the criteria for having nearly normal sampling distributions
- ▶ also the observations from the two samples are independent

If the sample means \overline{x}_1 and \overline{x}_2

- each meet the criteria for having nearly normal sampling distributions
- ▶ also the observations from the two samples are independent then the difference in sample means $\overline{x}_1 \overline{x}_2$ will also have a nearly normal sampling distribution...

with

with

▶ mean $\mu_1 - \mu_2$

with

- ▶ mean $\mu_1 \mu_2$
- estimated standard error

$$SE_{\overline{x}_1-\overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

with

- ▶ mean $\mu_1 \mu_2$
- estimated standard error

$$SE_{\overline{x}_1-\overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Note the different s^2 's and sample sizes.

We verify the conditions:

▶ Because each sample consists of less than 10% of their respective populations (men: 45 of 7192 and women: 55 of 9732).

- ▶ Because each sample consists of less than 10% of their respective populations (men: 45 of 7192 and women: 55 of 9732).
- ▶ The observations for both groups don't look too skewed.

- ▶ Because each sample consists of less than 10% of their respective populations (men: 45 of 7192 and women: 55 of 9732).
- ▶ The observations for both groups don't look too skewed.
- Each sample has at least 30 observations (rule of thumb).

- ▶ Because each sample consists of less than 10% of their respective populations (men: 45 of 7192 and women: 55 of 9732).
- ▶ The observations for both groups don't look too skewed.
- ► Each sample has at least 30 observations (rule of thumb).
- ► The samples are independent (not paired or linked in any way).

We verify the conditions:

- Because each sample consists of less than 10% of their respective populations (men: 45 of 7192 and women: 55 of 9732).
- ▶ The observations for both groups don't look too skewed.
- ► Each sample has at least 30 observations (rule of thumb).
- ► The samples are independent (not paired or linked in any way).

the sampling distribution is Normal with mean= $\mu_{\it w}-\mu_{\it m}$ and

$$SE_{\overline{x}_w - \overline{x}_m} = \sqrt{\frac{15.2^2}{55} + \frac{12.5^2}{45}} = 2.77$$

Confidence Interval

A 95% confidence interval for $\mu_1-\mu_2$ is $(\mbox{point estimate for }\mu_1-\mu_2)\pm 1.96\times SE$

Confidence Interval

A 95% confidence interval for
$$\mu_1-\mu_2$$
 is
$$(\text{point estimate for } \mu_1-\mu_2)\pm 1.96\times SE \\ (\overline{x}_1-\overline{x}_2)\pm 1.96\times SE_{\overline{x}_1-\overline{x}_2}$$

Confidence Interval

A 95% confidence interval for $\mu_1 - \mu_2$ is

(point estimate for
$$\mu_1 - \mu_2$$
) $\pm 1.96 \times SE$
 $(\overline{x}_1 - \overline{x}_2) \pm 1.96 \times SE_{\overline{x}_1 - \overline{x}_2}$

So for the Cherry Blossom Run data, a 95% CI for $\mu_{\rm W}-\mu_{\rm m}$ is:

$$14.48 \pm 1.96 \times 2.77 = [9.05, 19.91]$$

Next Time

- ▶ Hypothesis test for differences in means
- Paired differences
- One sample t-test