On Preconditioning for Finite Element Equations on Irregular Grids

Alison Ramage *

October 13, 2005

Abstract

Preconditioning methods are widely used in conjunction with the conjugate gradient method for solving large sparse symmetric linear systems arising from the discretisation of self-adjoint linear elliptic partial differential equations.

1 Introduction

When faced with choosing a method for solving a partial differential equation on an irregular domain, one possibility is certainly the finite element method which has many attractive approximation properties (see e.g. [1]). Other choices would be

- use finite differences
- give up and go home.

As with other numerical methods for solving partial differential equations, using the finite element method involves some form of **discretisation** of the problem domain. In the light of such observations,

we consider the general topic of solving finite element equations with particular reference to producing pretty papers.

2 Eigenvalue bounds

2.1 Analysis

In order to analyse irregular grids we introduce lots of equations so we can number them. Suppose that the finite element grid contains numbered elements $e=1,\ldots,E$ with V_e local unknowns on each element, giving a total of N global unknowns. The coefficient matrix A can be written as

$$A = L^{T}[A_e]L$$
 for any matrix A (2.1)

^{*}Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, United Kingdom.

where $[A_e]$ represents an $[E.V_e \times E.V_e]$ block diagonal matrix whose $[V_e \times V_e]$ diagonal blocks are the element-calculated coefficient matrices. We can now use (2.1) later.

2.2 Result

A useful result not contained in Wathen [2] is that if $\{B_e\}$ is any set of $[V_e \times V_e]$ symmetric positive definite matrices and a preconditioner B is formed from

$$B = \left(\frac{a^2 + b^2 - c}{\theta \alpha}\right) \frac{\partial x}{\partial t} \hat{\alpha} \underline{v} \qquad \forall \hat{\alpha} \in [0, 1]$$

then the eigenvalues of the global matrix $B^{-1}A$ must satisfy

$$\min_{e} \lambda_{\min}(B_e^{-1}A_e) \le \lambda(B^{-1}A) \le \max_{e} \lambda_{\max}(B_e^{-1}A_e). \tag{2.2}$$

3 Conclusion

This is a load of rubbish, and the phrase

"Why bother?"

comes to mind. We list the reasons why here:

- 1. To enhance the education of the human race.
- 2. To avoid getting the sack.

A Appendix

In this case the stiffness matrix is

$$K_e = \frac{1}{4S_e} \begin{bmatrix} a & -b & b-a \\ -b & c & b-c \\ b-a & b-c & a-2b+c \end{bmatrix}$$
 (A.1)

where S_e is the element area, $a=y_2^2$, $b=y_1y_2$ and $c=x_1^2+y_1^2$.

References

- [1] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973.
- [2] A.J. WATHEN, Spectral Bounds and Preconditioning Methods, MAFE-LAP VI (1987), J.R. Whiteman, ed., Academic Press, 1988, pp. 157-168.