

Лекция 4 Доверительные интервалы и проверка гипотез

Машинное обучение в цифровом продукте Полякова И.Ю.

Оценки параметров/статистик

Точечные

Доверительный интервал

• Доверительным интервалом уровня α для оцениваемого параметра θ является такой интервал со случайными концами L и R, для которого

 $1. \ L < R$ почти наверное;

2.
$$P(L < \theta < R) = 1 - \alpha$$

L и R – это случайные величины/функции от выборки!

Чем шире доверительный интервал – тем менее устойчивая оценка

Пример

- Записываем дов. интервал по определению, пользуясь ЦПТ
- Раскрываем скобки
- Получаем левую и правую границы оценки

$$P\left(\frac{Z_{a/2}}{K} \leq \frac{1}{N} \leq \frac{1}{$$

- Теоретическое СКО нам неизвестно практически никогда!
- Однако, по лемме Слуцкого имеем право заменять теоретическое СКО на выборочное СКО и считать интервал
- При маленьких выборках рекомендуется использовать t-распределение вместо z-распределения

Про лемму Слуцкого:

Пример

• При $n \to \infty$ статистики L и R будут сходиться к мат. ожиданию, что является следствием 3БЧ

Как еще считать доверительный интервал?

Бутстреп — набор техник, позволяющих искусственно генерировать большие данные из уже имеющихся, при этом получается распределение, похожее на исходное распределение выборки.

Этими данными можно манипулировать, добиваясь нужных для ЦПТ и других полезных конструкций предположений.

Можно понимать как одну из разновидностей метода Монте-Карло

- Бутстреп НЕ позволяет сделать оценку точнее (доверительный интервал уже)
- Можно сказать, что бутстреп из данных «непонятного» распределения приводит данные к чуть более «понятному» распределению

• Главное: бутстреп позволяет дать интервальную оценку параметра, тогда когда совсем не понятно, как ее построить более формальными методами

Непараметрический

Непараметрический бутстреп

Предпосылка использования: нет уверенности в том, что данные подчиняются какому-либо известному параметрическому распределению

Непараметрический бутстреп

Идея:

- Имеется исходная выборка
- Из этой выборки случайно, с возвращением извлекается новая выборка такого же размера n: такая выборка называется бутстреп-выборка
- Так как выборка с возвращением, некоторые исходные точки могут попасть в новую выборку несколько раз, а некоторые ни разу

Непараметрический бутстреп

Идея:

- Для каждой бутстреп-выборки вычисляется интересующая нас статистика θ^*
- Предыдущие шаги повторяются большое количество раз. В результате мы получаем бутстреп-распределение статистики θ*.
- Бутстреп-распределение используется для построения доверительных интервалов, оценки стандартной ошибки и т.д.

Параметрический бутстреп

Предпосылка использования: предполагаем, что данные пришли из распределения определенного типа. Однако нам неизвестны параметры этого распределения

Параметрический бутстреп

Идея:

• Используем исходную выборку, чтобы оценить эти параметры. Затем генерируем новые выборки уже из этого подобранного параметрического распределения

Параметрический бутстреп

Идея:

- Генерируем новую выборку размера n не из исходных данных, а из этого подобранного параметрического распределения
- Для каждой такой сгенерированной выборки вычисляется статистика θ^*
- Получаем бутстреп-распределение статистики θ^*
- Так же используем бутстреп-распределение для построения доверительных интервалов, оценки стандартной ошибки и т.д.

Доверительный интервал на основе бутстрепа

- Для каждой бутстреп выборки вычисляем оцениваемую величину
- Сортируем вычисленные статистики по возрастанию, получаем эмпирическое распределение
- Из этого распределения вычисляем левосторонний и/или правосторонний квантиль в соответствие с назначенным уровнем значимости
- Значения квантилей и будут границами доверительного интервала на основе бутстрепа

Jacknife

- Зачастую более экономный подвид бутстрепа (но массово используется реже)
- Идея в том, чтобы сгенерировать n выборок из исходной, где каждая выборка получается путем удаления одного единственного i-го элемента
- Такой метод не очень хорошо показывает себя в вычислении порядковых статистик, медианы и квантилей

Проверка статистических гипотез

Проверка гипотез

• Статистическая гипотеза: предположение о свойствах генеральной совокупности (о виде распределения, значении параметра и т.д.), которое можно проверить на основе выборочных данных

Гипотеза это «догадка» исследователя, она может быть сформулирована на основе анализа литературы, EDA, априорных знаний и тд...

Проверка гипотез

$$H_0$$
 vs H_1

- Выдвигаются две гипотезы: нулевая (H_0) и альтернативная (H_1)
- Гипотезы обязаны быть взаимоисключающими!
- Но при этом не обязаны покрывать все «множество допустимых значений»

Например: постановка H_0 : $\theta \neq 5$ и H_1 : $\theta < 5$ является валидной

Проверка гипотез

H_0 vs H_1

- Как правило, гипотеза H_0 говорит о состоянии «по умолчанию», «об отсутствии эффекта/различия/связи»
- H_1 , в свою очередь, гипотеза, противоречащая нулевой: то, что мы хотим «доказать»

Пример Н1: разработанный препарат лучше плацебо, спрос мужчин и женщин на предметы роскоши различен и тд...

Процедура проверки гипотез

- Для проверки гипотез используется идея доверительных интервалов
- Применяем статистический критерий: правило, по которому на основании выборки принимается решение
 - отклонить или не отклонить нулевую гипотезу

Пример

- Мы знаем теор. распр-е статистики при верной H0
- Можем проверить, насколько вычисленное значение статистики вероятно получить при выполненной Н0
- Если попадает в область высокой вероятности, то мы не имеем оснований отклонять Н0
- Иначе, НО отклоняется

Проверка гипотез: уровень значимости

- При проверке гипотез lpha обозначается **«уровень значимости»**
- Задается исследователем
- Обозначает в-ть ошибки первого рода, которую мы считаем «приемлемой» совершить
- Ошибка первого рода отвержение НО при том, что НО верна
- Ошибка второго рода НЕотвержение НО при том, что НО неверна
- Чем меньше ошибку первого рода мы готовы «терпеть» тем шире будет наш доверительный интервал и тем выше в-ть совершить ошибку второго рода

«Золотое правило» проверки гипотез

$$p-value < \alpha => H0 reject$$

 $p-value \ge \alpha => H0 not reject$

- P-value это шанс получить такую же или более «экстремальную» статистику при истинности НО
- P-value это минимальный уровень lpha, при котором мы отклонили бы H0

Распределения, произведенные от нормального

Распределение хи-квадрат

Пусть X_1, \ldots, X_k независимы и имеют стандартное нормальное распределение $\mathcal{N}(0,1)$.

Распределением χ^2 (хи-квадрат) с k степенями свободы называется распределение случайной величины

$$Y = X_1^2 + \ldots + X_k^2.$$

Обозначение: χ_k^2 или H_k .

Распределение хи-квадрат

Распределение Стьюдента

Пусть X_0, X_1, \ldots, X_k независимы и имеют стандартное нормальное распределение $\mathcal{N}(0,1)$.

Распределением Стьюдента с k степенями свободы называется распределение случайной величины

ление случаиной величины
$$Y = \frac{X_0}{\sqrt{\frac{X_1^2 + \dots + X_k^2}{k}}}$$
. $\chi(n-k-1)$

Обозначение: t_k или T_k .

Распределение Стьюдента

Распределение Фишера

Распределение Фишера показывает распределение отношения двух независимых СВ, которые распределены по закону хи-квадрат и имеют степени свободы k_1 и k_2 соответственно:

$$F = \frac{X/k_1}{Y/k_2}$$

$$F \sim F(k_1, k_2)$$

Распределение Фишера

Гипотезы об однородности/критерии согласия

Пример

• В какой из кофеен X и Y качество кофе более непредсказуемо?

$$H_{1} = 6^{2}_{x} = 6^{2}_{y}$$

$$H_{1} = 6^{2}_{x} > 6^{2}_{y}$$

$$T = \frac{6^{2}_{x}}{6^{2}_{y}} \times (n-1) \times (n-1)$$

В пользу отклонения НО говорит очень большая статистика Т (очень высокое отношение двух дисперсий)

Областью H0 reject здесь является полуинтервал:

Пример

• Процедура, сконструированная в предыдущем примере хорошо подходит для небольших выборок (n < 1000)

• Однако при крупных n более состоятельными можно считать тест Колмогорова-Смирнова (для непрерывных распр-й) или тест хи-квадрат (для дискретных)

Критерий Колмогорова

• Критерий о виде неизвестного распределения

$$H_{a}: f_{x}(x) = f_{x}(x)$$
 $H_{x}: F_{x}(x) \neq F_{x}(x)$

Критерий Колмогорова

- Критерий о виде неизвестного распределения
- Нужно ввести меру расстояния между двумя распределениями

$$D_{n}(X_{1},X_{n}) = \sup_{X} |F_{b}(X) - \widehat{F}_{h}(X)|$$

Теорема Колмогорова

• При справедливости НО, распределения статистики Dn одинаково для любых непрерывных распределений, при этом его функция распр-я:

$$\lim_{k \to \infty} P(\overline{h} \cdot \overline{h}) \leq Z = 1 + 2 \sum_{k=1}^{\infty} (-1)^k exp$$

• Критерий для проверки:

$$K_n = \sqrt{n} \cdot \sup_{x} |F_b(x) - \hat{F}_n(x)|$$

$$K_n = \sqrt{n} \cdot \sup_{x} |F_b(x) - \hat{F}_n(x)|$$

$$K_n = \sqrt{n} \cdot \sup_{x} |F_b(x) - \hat{F}_n(x)|$$

Критерий Пирсона

- «Аналог» теста Колмогорова для дискретных величин;
- Необходимо сравнить все теоретические частоты с эмпирическими;

$$X$$
 Z_1 Z_2 N_1 Z_3 Возможные значения СВ $P(X=Z_i)$ $P_1(lat)$ $P_2(lat)$ $N_2(lat)$ $N_2(lat)$ $N_3(lat)$ Теоретические вероятности $N(X_i=rac{1}{2}i)$ N_1 N_2 N_3 N_4 N_5 N_5 N_6 N_6

Тестовая статистика представляет собой нормированную разность квадратов наблюдаемых частот и теоретических

Как проверить распределение на нормальность?

• Тест Шапиро-Уилка — один из самых мощных тестов для малых выборок (Н0: данные распределены нормально)

- Тест Жарка-Бера применяется для больших выборок (Н0: данные распределены нормально)
- Тест Жарка-Бера делает вывод на основе асимметрии и эксцесса

- **QQ-plot**: график квантиль-квантиль
- Позволяет увидеть тяжелые хвосты, асимметрию и тд...

Дополнительно

- Подробнее при критерии согласия: https://github.com/pileyan/applied statistics 2024/blob/master/lect-04/S4.pdf
- Про бутстрап у Максима Каледина: <u>https://github.com/XuMuK1/psmo/blob/master/lectures/Lec12-Boots.pdf</u>
- Оригинальная статья: B.Efron. Bootsraps methods: Another look at the jackknife. *The annals of Statistics*, 7(1): 1-26, 1979
- ВШЭ: прикладная статистика (week10): https://www.youtube.com/watch?v=2p24KPez62U&list=PLCf-cQCe1FRyCcf47wwBlDObNcz4ud2 L

