PHY2048 Formulas

Constants and General Relations

$$g=9.8~\mathrm{m/s^2}-1~\mathrm{mile}=1600~\mathrm{m}$$
 – Area circle = πr^2

Vectors

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$
 $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$ Magnitudes: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$ $|\vec{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2}$

Scalar Product:
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = |\vec{a}| |\vec{b}| \cos \theta \ (\theta = \text{angle between } \vec{a} \text{ and } \vec{b})$$

Vector Product:
$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y)\hat{i} + (a_z b_x - a_x b_z)\hat{j} + (a_x b_y - a_y b_x)\hat{k}$$

Magnitude:
$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$$
 $(\theta = \text{angle between } \vec{a} \text{ and } \vec{b})$

Component of
$$\vec{a}$$
 in Direction of $\vec{b}=a_{\parallel}=\frac{\vec{a}\cdot\vec{b}}{|\vec{b}|}$

Motion

Displacement:
$$\Delta \vec{r} = \vec{r}(t_2) - \vec{r}(t_1)$$

$$\text{Average Velocity:} \ \, \vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(t_2) - \vec{r}(t_1)}{t_2 - t_1} \qquad \qquad \text{Average Speed:} \ \, s_{avg} = (\text{total distance})/\Delta t$$

Instantaneous Velocity:
$$\vec{v} = \frac{d\vec{r}(t)}{dt}$$
 Relative Velocity: $\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$

Average Acceleration:
$$\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$$
 Instantaneous Acceleration: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{v}}{dt^2}$

Equations of Motion for Constant Acceleration

General Projectile Motion

$$\vec{v} = \vec{v}_0 + \vec{a}t \qquad \qquad x = x_0 + v_{x0}t$$

$$\vec{r} - \vec{r}_0 = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$
 $y = y_0 + v_{y0} t - \frac{1}{2} g t^2$

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$
 (in each of 3 dim) $v_x = v_{x0}$

$$\Delta \vec{r} = \frac{1}{2}(\vec{v}_0 + \vec{v})\Delta t \qquad v_y = v_{y0} - gt$$

Newton's Laws Friction & Drag Spring Force

$$\vec{F}_{net} = 0 \Leftrightarrow \vec{v}$$
 is a constant (Newton's First Law) Static: $f_s \leq \mu_s F_N$ $\vec{F}_{spring} = -k\Delta \vec{x}$

$$\vec{F}_{net} = m\vec{a}$$
 (Newton's Second Law) Kinetic: $f_k = \mu_k F_N$

"Action = Reaction" (Newton's Third Law) Drag:
$$D = \frac{1}{2}C\rho Av^2$$

Uniform Circular Motion (Radius R, Tangential Speed $v = R\omega$, Angular Velocity ω)

Centripetal Acceleration:
$$a = \frac{v^2}{R} = R\omega^2$$
 Period: $T = \frac{2\pi R}{v} = \frac{2\pi}{\omega}$

Work (W) & Kinetic Energy (K)

Kinetic Energy:
$$K=\frac{1}{2}mv^2$$
 Work: $W=\int_{\vec{r}_1}^{\vec{r}_2}\vec{F}\cdot d\vec{r}$ (when force is constant $W=\vec{F}\cdot \vec{d}$)

$$\text{Power: } P = \frac{dW}{dt} = \vec{F} \cdot \vec{v} \qquad \text{Work-Energy Theorem: } W_{\text{external}} = \Delta K \qquad W_{gravity} = mg(h_i - h_f) \qquad W_{spring} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2 - \frac{1}{2}$$

Work (W), Mechanical Energy (E, Kinetic Energy (K), Potential Energy <math>(U))

Potential Energy: $\Delta U = -W = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r}$ $U_{gravity} = mgh$ $U_{spring} = \frac{1}{2}kx^2$

Mechanical Energy: $E_{\rm mech} = K + U$ $E_{\rm mech} = {\rm constant}$ for an isolated system with conservative forces

Work-Energy: $W_{ext} = \Delta E_{mech} + \Delta E_{th} + \Delta E_{int}$ $\Delta E_{th} = f_k d$

Momentum

Center of Mass: $\vec{r}_{\text{com}} = \frac{1}{M_{\text{tot}}} \sum_{i=1}^{N} m_i \vec{r}_i$ $M_{\text{tot}} = \sum_{i=1}^{N} m_i$

Linear Momentum: $\vec{p}=m\vec{v}$ Impulse: $\vec{J}=\Delta\vec{p}=\int_{t_i}^{t_f}\vec{F}(t)dt=\vec{F}_{\rm av}\Delta t$

 $\vec{F} = \frac{d\vec{p}}{dt}$ If $\vec{F} = \frac{d\vec{p}}{dt} = 0$ then $\vec{p} = \text{constant}$ and $\vec{p}_f = \vec{p}_i$

$$\vec{P}_{\mathrm{tot}} = M_{\mathrm{tot}} \, \vec{v}_{\mathrm{com}} = \sum_{i=1}^{N} \vec{p}_{i}$$
 $\vec{F}_{\mathrm{net}} = \frac{d\vec{P}_{\mathrm{tot}}}{dt} = M_{\mathrm{tot}} \, \vec{a}_{\mathrm{com}}$

Elastic Collisions of Two Bodies, 1D

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i}$$
 $v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i} + \frac{m_2 - m_1}{m_1 + m_2} v_{2i}$

Moments of Inertia

Rotational Variables

angular position:
$$\theta(t)$$
 angular velocity: $\omega(t) = \frac{d\theta(t)}{dt}$

angular acceleration:
$$\alpha(t) = \frac{d\omega(t)}{dt} = \frac{d^2\theta(t)}{dt^2}$$

Motion with constant angular acceleration α :

$$\omega = \omega_0 + \alpha t \qquad \qquad \omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \qquad \qquad \theta = \theta_0 + \frac{1}{2} (\omega + \omega_0) t$$

Angular to linear relationships for circular motion

arc length:
$$s = r\theta$$
 velocity: $v = r\omega$

tangential acceleration:
$$a_{\rm T}=r\alpha$$
 centripetal acceleration: $a_{\rm c}=r\omega^2$

Rotational Inertia:
$$I = \sum_{i=1}^{N} m_i r_i^2$$
 (discrete) $I = \int r^2 dm$ (continuous)

Parallel Axis:
$$I = I_{\text{com}} + M_{\text{tot}}d^2$$
 (d is displacement from c.o.m.)

Rotational, Rolling Kinetic Energy:
$$K_{\rm rot}=\frac{1}{2}I\omega^2$$
 $K_{\rm roll}=\frac{1}{2}Mv_{\rm com}^2+\frac{1}{2}I_{\rm com}\omega^2$

Rolling without slipping:
$$x_{\text{com}} = R\theta$$
 $v_{\text{com}} = R\omega$ $a_{\text{com}} = R\alpha$

Torque and Angular Momentum

Torque:
$$\vec{\tau} = \vec{r} \times \vec{F}$$
 $\tau = rF \sin (\text{angle between } \vec{r} \text{ and } \vec{F}) = rF_{\perp}$

Angular Momentum:
$$\vec{L} = \vec{r} \times \vec{p}$$
 $\vec{\tau} = \frac{d\vec{L}}{dt}$ $L = rp$ sin (angle between \vec{r} and \vec{p}) = rp_{\perp} $L = I\omega$

If
$$\vec{\tau}_{\rm net} = \frac{d\vec{L}}{dt} = 0$$
 then $\vec{L} = {\rm constant}$ and $\vec{L}_f = \vec{L}_i$

Work done by a constant torque:
$$W = \tau \Delta \theta = \Delta K_{\rm rot} = \frac{1}{2}I\omega_2^2 - \frac{1}{2}I\omega_1^2$$
; General: $W = \int \tau d\theta$

Power done by a constant torque:
$$P = \tau \omega$$

For torque acting on a body with rotational inertia $I: \vec{\tau} = I\vec{\alpha}$

Elasticity

Stress =
$$\frac{F}{A}$$
 and Strain = $\frac{\Delta L}{L}$ (Y = Young's modulus, G = shear modulus)

Tensile:
$$\frac{F_{\perp}}{A} = Y \frac{\Delta L}{L}$$

 Shear: $\frac{F_{\parallel}}{A} = G \frac{\Delta x}{L}$

Gravitation

Newton's law of gravitation
$$\vec{F} = \frac{Gm_1m_2}{r^2}\hat{r}$$
 where $G = 6.67408 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ $U_g = -\frac{GMm_2}{r}$

Kepler's Area Law:
$$\frac{dA}{dt} = constant$$
 Kepler's Law of periods: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$

Escape speed from Earth:
$$v_{esc} = \sqrt{\frac{2GM_E}{R_E}}$$
 with $M_E = 5.97 \times 10^{24}$ kg and $R_E = 6.38 \times 10^6$ m

<u>Fluids</u>

Fluid density: $\rho = \frac{m}{V}$ Pressure: $P = \frac{F}{A}$ $P_2 = P_1 + \rho g(y_1 - y_2)$

Archimedes: $F_b = m_f g$ Flow of fluid: Av = constant Pascal's principle: $F_i/A_i = F_o/A_o$

Bernoulli's Eqn: $P + \frac{1}{2}\rho v^2 + \rho gy = \text{constant}$

Waves and Oscillators

Simple harmonic motion $\frac{d^2x}{dt^2} = -\omega^2x$ $x = x_m\cos(\omega t + \phi)$ Energy (undamped) $E = \frac{1}{2}kx_m^2 = \frac{1}{2}m\omega^2x_m^2$

Frequency (Hz) and period (s): $f = \frac{1}{T}$ Angular freq. $\omega = 2\pi f$ $v_m = \omega x_m$ $a_m = \omega^2 x_m$

Simple pendulum: $\omega = \sqrt{\frac{g}{L}}$ Physical pendulum: $\omega = \sqrt{\frac{mgh}{I}}$

Linear oscillator: $\omega = \sqrt{\frac{k}{m}}$

Linear oscillator with damping force -bv: $\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$ $x(t) = x_m e^{-bt/2m} \cos(\omega' t + \phi)$

Sinusoidal waves: $y(x,t) = y_m \sin(kx \mp \omega t)$ $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T}$ $v = \frac{\omega}{k} = f\lambda$

Wave equation: $\frac{d^2y}{dx^2} = \frac{1}{v^2} \frac{d^2y}{dt^2}$ Wave speed on string (linear mass density μ) $v = \sqrt{F_T/\mu}$

 n^{th} harmonic resonance on string of length L or an open-open tube of length L: $f_n = \frac{v}{\lambda_n} = n \frac{v}{2L}, n = 1, 2, 3, ...$

 n^{th} harmonic resonance in an open-closed tube of length L: $f_n = \frac{v}{\lambda_n} = n \frac{v}{4L}, n = 1, 3, 5, ...$

Path difference and phase $\phi = \frac{2\pi\Delta L}{\lambda}$ Constructive: $\phi = 2m\pi$, Destructive: $\phi = (2m+1)\pi$

Sound intensity $I = \frac{P}{A} = \frac{1}{2}\rho v\omega^2 s_m^2$ and sound level: $\beta = (10 \text{ dB})\log_{10}\left(\frac{I}{I_0}\right)$ (where $I_0 = 10^{-12} \text{ W/m}^2$)

Doppler effect for source moving at v_S and detector moving at v_D : $f_D = f_S\left(\frac{v_{snd} \pm v_D}{v_{snd} \mp v_S}\right)$

top signs: $v_D(v_S)$ moves towards $v_S(v_D)$ bottom signs: $v_D(v_S)$ moves away from $v_S(v_D)$