Вопросы для аналитиков и специалистов по машинному обучению.

1. Какой из перечисленных ниже функционалов качества используются в задачах классификации и является дифференцируемым?

$$Q(w) = \sum_{i=1}^{l} |a(x_i, w) - y_i|$$

$$\bigcirc Q(w) = \sum_{i=1}^{l} | sign(a(x_i, w)) = y_i |$$

$$Q(w) = \sum_{i=1}^{l} (a(x_i, w) - y_i)^2$$

•
$$Q(w) = \sum_{i=1}^{l} y_i \ln(a(x_i, w)) + (1 - y_i) \ln(1 - a(x_i, w))$$

2. Почему в градиентном спуске на каждой итерации делается шаг в сторону антиградиента?

- Антиградиент функционала ошибки зависит только от одного объекта.
- Антиградиент легко найти, в отличие от других направлений.
- Антиградиент совпадает с направлением наискорейшего убывания.

Правильно

Таким образом ошибка на выборке на каждой итерации минимизируется.

3. Градиент какой функции/функционала и по какому аргументу используется в градиентном спуске при обучении линейной регрессии?

- Алгоритма то есть скалярного произведение вектора признаков —по вектору весов.
- Функционала ошибки например, среднеквадратичной ошибки по вектору весов.

Правильно

Такой градиент показывает в какую сторону нужно сдвинуть веса, чтобы уменьшить ошибку на выборке.

Функционала ошибки — например, среднеквадратичной ошибки — по прогнозам алгоритма.

- 4. В чём заключается отличие градиентного спуска от стохастического градиентного спуска?
- В стохастическом градиентном спуске на каждой итерации делается шаг в случайном направлении.
- 🔍 В стохастическом градиентном спуске на каждой итерации используется лишь одно слагаемое в функционале ошибки.
- 🕒 В стохастическом градиентном спуске на каждой итерации к антиградиенту добавляется нормальный шум.
 - 5. Для чего при обучении линейных классификаторов используются верхние оценки на пороговую функцию потерь?
- Чтобы перейти к функции потерь, на которой градиентный спуск будет быстрее сходиться.
- Чтобы перейти к функции потерь, которая будет легко вычислима без этого градиентная оптимизация будет занимать слишком много времени.
- Чтобы заменить разрывную пороговую функцию потерь на гладкую функцию без этого градиентная оптимизация будет невозможна.
 - 6. Предположим, вы решаете задачу восстановления регрессии с использованием некоторого функционала ошибки Q(w,X). Как будет выглядеть новый функционал при добавлении L_2 -регуляризатора с коэффициентом регуляризации λ ?
- $Q(w,X) + \lambda \sum_{i=1}^d w_i^2$

Правильно

Добавочное слагаемое является квадратом L_2 нормы весов линейной модели.

- $Q(w,X) + \lambda \sum_{j=1}^d w_j$
- $\bigcirc Q(w,X) + \lambda \sum_{j=1}^{d} |w_j|$
- $\bigcirc Q(w,X) + \lambda \sum_{j=1}^{d} \frac{1}{w_j^2}$
 - 7. Метод опорных векторов (SVM) это линейный классификатор, использующий:

lacksquare Кусочно-линейную функцию потерь (hinge loss) и L 2 регуляризатор.
Правильно
$lacktriangle$ Логистическую функцию потерь и L_1 регуляризатор.
lacktriangle Экспоненциальную функцию потерь и $L2$ регуляризатор.
igcup Квадратичную функцию потерь и L_1 регуляризатор.
\square Логистическую функцию потерь и $L2$ регуляризатор.
8. Выберите предположения, выполнение которых необходимо и достаточно для того, чтобы метод наименьших квадратов давал несмещённые и состоятельные оценки истинных коэффициентов регрессии.
lacktriangle Полнота ранга X : ни один из признаков не является линейной комбинацией других признаков.
Правильно
lacksquare Линейность отклика: $y=Xeta+arepsilon$
Правильно
Гомоскедастичность ошибок
правильно, этот вариант не должен быть выбран
Нормальность ошибок: $\varepsilon \mid x \sim N(0, \sigma^2)$
правильно, этот вариант не должен быть выбран
Случайность ошибок: $E(\varepsilon \mid x) = 0$
Правильно
Случайность выборки: наблюдения (x_i, y_i) независимы

Правильно

		Предположим, вы оцениваете качество работы алгоритма при помощи кросс-валидации с разбиением на k блоков. Сколько раз буде проведено обучение модели?
	$\frac{k(k-1)}{2}$	$\frac{-1)}{2}$
◉	k	
0	k^2	
0	1	
		К какому из указанных чисел будет ближе значение метрики AUC-ROC для алгоритма, возвращающего случайный ответ для любого объекта?
0	Нев	возможно указать точное значение без информации о выборке.
0	0	
0	0.33	3
•	0.5	
0	1	
	11.	Зачем нужно масштабировать признаки перед обучением линейной модели?
	Лин	нейная модель не будет иметь смысла при обучении на признаках с разным масштабом.
		ьно, этот вариант не должен быть выбран
V	Гра	адиентный спуск может очень медленно сходиться при разном масштабе признаков.
	авилі	

133					u u		_
	 Благоларя масштаби 	рованию выборка бу	/лет занимать	меньше места в опе	еративной памяти.	ЧТО ПОЗВОЛИТ VCKO	рить процесс обучения.
							p :p.=q

12. Выберите верные утверждения про бинарное кодирование категориальных признаков.

Бинарное кодирование категориальных признаков является способом регуляризации линейных моделей.

правильно, этот вариант не должен быть выбран

Если обучить над бинарным кодированием линейную модель, то получится, что каждому значению исходного категориального признака будет соответствовать свой вес.

Правильно

🗹 Для кодирования требуется столько бинарных признаков, сколько значений мог принимать исходный категориальный признак.

13. Рассмотрим решающее дерево для решения задачи кредитного скоринга, которое основано на двух признаках: возрасте и месячном доходе.

Пусть дана следующая выборка из пяти объектов (первый признак — возраст, второй — месячный доход):

[20, 8000], [15, 15000], [28, 9500], [24, 30000], [30, 20000]

Для скольки из них будет принято положительное решение о выдаче кредита?

2

- 14. Как в общем устроен процесс построения решающего дерева?
- 🤍 Жадно начинаем с одной вершины, разбиваем её на две, после чего рекурсивно повторяем процедуру для новых дочерних вершин.

Правильно

Верно.

- 🔍 Жадно начинаем с дерева, у которого в каждом листе находится по одному объекту, и удаляем из него вершины, пока улучшается качество.
- Полным перебором вычисляем качество каждого возможного дерева, выбираем лучшее.
- Аналитически можно в явном виде выписать формулы, задающие структуру оптимального дерева.
 - 15. Мы пытаемся найти лучшее разбиение вершины m, и хотим оценить качество конкретного способа, который разобьёт вершину m на вершины l и r. Обозначим через $|X_m|,|X_l|,|X_r|$ количество объектов в вершинах m, l и r соответственно, через H(X) значение критерия информативности на выборке X.

По какой из формул следует вычислять ошибку такого разбиения?

- $\bigcirc \frac{|Xl|}{|Xm|}H(Xl) + \frac{|Xr|}{|Xm|}H(Xr)$
- $\bigcirc \frac{H(Xl)}{H(Xm)} + \frac{H(Xr)}{H(Xm)}$
- \bigcirc $H(X_l) + H(X_r)$
 - 16. Можно ли решать задачу регрессии с помощью решающих деревьев?
- 🔘 Да, можно достаточно лишь выбрать критерий информативности, оценивающий разброс вещественных ответов.

О бе	Нет, нельзя— деревья могут выдавать столько различных ответов, сколько в дереве листьев, то есть конечное число. А в задаче регрессии сконечно много возможных ответов.
	Нет, нельзя— критерии информативности зависят от распределения объектов по классам, такие распределения нельзя построить в задачах рессии.
	17. Выберите верные утверждения про обучение случайного леса.
	Каждое дерево обучается по случайной подвыборке признаков.
	Как правило, строятся деревья небольшой глубины, поскольку этого достаточно для восстановления сложных зависимостей.
	Каждое дерево обучается по случайной подвыборке объектов.
	Каждое дерево обучается независимо от остальных деревьев в композиции.
	В каждой вершине оптимальный признак для разбиения выбирается из случайного подмножества признаков.
	18. Какие величины предсказывает N -й базовый алгоритм в градиентном бустинге?
	Производные (с минусом) функции потерь, вычисленные в точках, соответствующих ответам композиции $a_{N-1}(x)$ на обучающей выборке.
-1	авильно
	Разницу между истинными ответами и ответами композиции $a_{N-1}(x)$ на обучающей выборке.
	Производные (с минусом) функции потерь, вычисленные в точках, соответствующих ответам предыдущего базового алгоритма $b_{N-1}(x)$ на учающей выборке.
	19. Чем градиентный бустинг отличается от случайного леса?
-	Базовые алгоритмы, как правило, выбираются достаточно простыми — например, это могут быть неглубокие деревья.
	Градиентный бустинг может строить алгоритмы только для задач регрессии.
	Каждый следующий алгоритм в градиентном бустинге обучается так, чтобы исправить ошибки предыдущих базовых алгоритмов.

	20. В задаче кластеризации мы пытаемся:
0	Восстановить отображение вектора признаков в метку класса по набору известных пар (признаки, метка). Восстановить отображение вектора признаков в действительное число по набору известных пар (признаки, метка). Сгруппировать похожие объекты (близкие в пространстве признаков) в кластеры, поместив при этом непохожие друг на друга объекты в вные кластеры.
	21. Какие параметры есть у метода k ближайших соседей?
	Число деревьев вильно, этот вариант не должен быть выбран
	Число соседей k
	Функция активации ввильно, этот вариант не должен быть выбран
	Функция весов объектов авильно
	22. Какие из перечисленных алгоритмов нуждаются в задании количества кластеров?
	DBSCAN k-Means EM-алгоритм

	23. С помощью какого алгоритма можно разделять смеси распределений?
_	Алгоритм К-средних
	ЕМ-алгоритм
	авильно
Be	рно.
0	Алгоритм Прима
	24. Выберите верные утверждения про метод главных компонент
_ "об	Метод главных компонент — это метод понижения размерности с потерями, если число новых признаков d меньше ранга исходной матрицы δ ъекты-признаки".
NCX	Метод главных компонент является линейным методом понижение размерности — новые признаки являются линейными комбинациями кодных признаков.
	Метод главных компонент позволяет найти нелинейную поверхность, при проецировании выборки на которую дисперсия оказывается ксимальной.
	Матрица весов W , которая строится в методе главных компонент, является ортогональной.
	25. Что неотрицательного в методе неотрицательных матричных разложений?
V	Элементы раскладываемой матрицы
	авильно
	тому что элементы приближающей матрицы неотрицательны и было бы странно приближать такой матрицей, матрицу с отрицательными ементами.
	Определители всех угловых миноров раскладываемой матрицы

правильно, этот вариант не должен быть выбран

Определители матриц-множителей

правильно, этот вариант не должен быть выбран

Элементы матриц-множителей

Правильно

Это верно по определению неотрицательного матричного разложения.

Значения функции потерь

Правильно

Как и во всех остальных задачах, функция потерь отрицательных значений не принимает.

26. Какую функцию активации σ нужно взять в однослойной нейронной сети $a(x,w) = \sigma(\sum_{j=1}^d w_j x_j^2 + w_0)$, чтобы получилась линейная регрессия?

 \circ $\sigma(u) = u$

Правильно

 $\sigma(u) = sign(u)$

27. Какую функцию активации σ нужно взять в однослойной нейронной сети $a(x,w) = \sigma(\sum_{j=1}^d w_j x_j + w_0)$, чтобы получилась классификация (не логическая регрессия)?

 \circ $\sigma(u) = u$

$$\sigma(u) = sign(u)$$
 Правильно

28. Какие параметры являются мерами разброса распределений?	
Математическое ожидание.	
правильно, этот вариант не должен быть выбран	
Среднеквадратическое отклонение.	
Правильно	
Среднеквадратическое отклонение — это корень из дисперсии; как и дисперсия, оно характеризует разброс распределе	эния.
✓ Интерквартильный размах.	
Правильно 	
Интерквартильный размах — мера разброса.	
Медиана.	
правильно, этот вариант не должен быть выбран	
Дисперсия.	
Правильно	
Дисперсия — наиболее часто используемая мера разброса.	
Мода.	
правильно, этот вариант не должен быть выбран	

29. Пусть график плотности распределения случайной величины X выглядит следующим образом:

Выберите верные утверждения о средних такой случайной величины.

 $\ \square$ Медиана X меньше её математического ожидания

правильно, этот вариант не должен быть выбран

Медиана менее чувствительна к выбросам, в свою очередь небольшое количество экстремальных значений сильно влияют на математическое ожидание.

lacktriangle Мода X больше её медианы.

Правильно

Мода совпадает с положением большего пика, а медиана смещается в сторону меньшего.

 $\hfill \square$ Математическое ожидание и медиана X совпадают, а мода не определена.

правильно, этот вариант не должен быть выбран

lacktriangledown Мода X больше её математического ожидания.

Правильно

Мода совпадает с положением большего пика, а математическое ожидание смещается в сторону меньшего.

30. Пусть $X \sim F(x)$ — случайная величина с произвольным распределением, неизвестным математическим ожи дисперсией DX . Как выглядит доверительный интервал для EX с приближённым уровнем доверия $100(1-x)$	
$ar{X} \pm z_{1-rac{lpha}{2}} \sqrt{rac{DX}{N}}$	
авильно	
$\bar{X} + z = a \frac{DX}{2}$	

 $\begin{array}{ccc} \bar{X} \pm z_{1-\frac{\alpha}{2}} \frac{DX}{\sqrt{N}} \\ \\ \bar{X} \pm t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{DX}{N}} \\ \\ \bar{X} \pm z_{1-\alpha} \sqrt{\frac{DX}{N}} \end{array}$

(

- 31. Пусть H_0 нулевая, основная гипотеза, H_1 альтернативная, конкурирующая гипотеза, если достигаемый уровень значимости $p \le \alpha$, то:
- $^{\circ}$ H_0 не отвергается
- $^{\circ}$ H_1 верна
- $^{\bigcirc}$ H_0 отвергается в пользу H_1

Правильно

- $^{\circ}$ H_1 отвергается в пользу H_0
- $^{\circ}$ H_0 верна
 - 32. При проверке некоторой гипотезы значение статистики составило 54123432,22. Достигаемый уровень значимости р это:
- вероятность справедливости нулевой гипотезы.
- вероятность справедливости нулевой гипотезы при таком значении статистики.
- вероятность получить такое значение статистики.
- ничего из перечисленного

Правильно

Достигаемый уровень значимости — вероятность получить такое или ещё более экстремальное значение статистики при справедливости нулевой гипотезы.
33. Ошибка первого рода — это:
отвержение верной нулевой гипотезы
Правильно
принятие неверной нулевой гипотезы
34. Объём выборки, необходимый для построения доверительного интервала заданной ширины:
увеличивается с уменьшением требуемой ширины
Правильно
увеличивается с увеличением требуемой ширины
правильно, этот вариант не должен быть выбран
увеличивается с ростом дисперсии выборки
Правильно
\square увеличивается с ростом $lpha$
правильно, этот вариант не должен быть выбран
lacksquare уменьшается с ростом $lpha$
Правильно
уменьшается с ростом дисперсии выборки
правильно, этот вариант не должен быть выбран

35. С помощью каких из этих величин по данным социологического опроса можно оценить силу взаимосвязи между возрастом (в годах) средним годовым доходом (в рублях)?) и
∎г∎ Коэффициент V Крамера	
правильно, этот вариант не должен быть выбран	
Коэффициент корреляции Пирсона	
Правильно	
Так мы измерим силу линейной взаимосвязи между нашими непрерывными признаками	
Коэффициент корреляции Спирмена	
Правильно	
Так мы измерим силу монотонной взаимосвязи между нашими непрерывными признаками	
Разность между средними доходами молодых и старых	
правильно, этот вариант не должен быть выбран	
Коэффициент корреляции Мэтьюса	
правильно, этот вариант не должен быть выбран	
36. С помощью каких из этих величин по данным социологического опроса можно оценить силу взаимосвязи между полом и семейным положением (холост/в браке/в разводе)?	
Разность между средними долями женатых среди мужчин и среди женщин	
правильно, этот вариант не должен быть выбран	
Коэффициент V Крамера	
Правильно	
Коэффициент корреляции Мэтьюса	

прав	ильно, этот вариант не должен быть выбран			
□ k	Коэффициент корреляции Спирмена			
прав	ильно, этот вариант не должен быть выбран			
□ k	Коэффициент корреляции Пирсона			
прав	ильно, этот вариант не должен быть выбран			
3	37. Какой из статистических тестов используется для проверки на нормальность?			
0 1	Л анна-Уитни			
□ I	Шапиро-Уилка			
Прав	Правильно			
_	Стьюдента Вавилова-Черенкова			
3	88. Какой из трёх методов поправки на множественную проверку позволяет отвергнуть больше всего гипотез?			
O 6	Бенджамини-Хохберга			
Прав	ильно			
0 >	Колма			
O 6	Бонферрони			