Review for Final

Natural Language Processing

The Basics of Semantic Similarity

- Word similarity
 - BoW statistical similarity vs. structural similarity
- Basic statistical measure: PPMI
 - Dependent vs. independent word probabilities

Statistical Word Similarity

- Vector semantics
 - Term-document matrix
 - Raw counts or tf-idf
 - Sparse vs. dense vectors
- LSA
 - Dimension reduction
 - SVD (singular value decomposition)
- Cosine similarity
 - Of words, with respect to a corpus

Structural Word Similarity

- Using parse contexts
 - Adjective-Noun, Verb-Object patterns
- Ontological distance
 - Using WordNet hyponym trees

Measures of Document Similarity

- Jaccard distance
 - Intersection vs. union
- Cosine similarity, of documents
 - Dot product
 - Eucidian distance of vectors in vector space
 - Advantage of using tf-idf values in the feature vectors (instead of just raw counts)

Measures of Document Similarity

- Jaccard distance
 - Intersection vs. union
- Cosine similarity, of documents
 - Dot product
 - Euclidian distance of vectors in vector space
 - Advantage of using tf-idf values in the feature vectors (instead of just raw counts)
- Heilinger distance
 - Documents as probability distributions
- Weaknesses of term-document matrix methods
 - Countering by normalizing to synsets

Caveats in Applying Measures of Semantic Similarity

- Understanding importance of lexicography (having collocation headwords like "boot camp")
- Similarity vs. synonymy, issues of conflation

Uses for Word Similarity

- Search expansion
- Tracking linguistic change over time
- Plagiarism detection
- Detection of information gain vs. previous news
- Source criticism (detection of multiauthorship in a text)

DataScience@SMU

Review for Final

Natural Language Processing

Document Clustering

- What is document clustering?
- Clustering vs. classification
- Methods: Centroid vs. hierarchical

Centroid Clustering

- What is a centroid?
- K-means clustering
 - Distance between vs. within clusters
 - Weaknesses
 - Fixed number of clusters
 - Unlucky random seeding

Hierarchical Clustering

- AGNES vs. DIANA
- Ward's minimum variance
- Agglomerative procedure
- Divisive procedure
- "Cutting" a dendogram

Working with Clusters

- Visualizing clusters
 - Challenge of visualizing in a 2D space
 - How PCA helps
 - Labelling with top n features
- Applications of clustering
 - Cohort profiling (e.g., clustering top n movies)
 - Search result profiling

Document Classification

- Subject based vs. descriptor based
- Binary vs. multiclass
- Text classification vs. document classification
 - E.g., clustering news headlines vs. news articles
- Text classification landscape (dominated by one type)

Content-Based Classification

- With multinomial naïve Bayes
 - Prior vs. posterior probabilities
 - Probabilities of the *class* vs. of the *predictor*
 - Example application: making a spam filter

Content-Based Classification

- With multinomial naïve Bayes
 - Prior vs. posterior probabilities
 - Probabilities of the *class* vs. of the *predictor*
 - Example application: making a spam filter

With SVMs

- Separation in the margins of feature vector space
- Why it is called a hyperplane
- Outlier detection
- Projecting to higher dimensionality: Why?
- Projecting to higher dimensionality: How?
 - Kernel trick—know one example
- Multiclass with SVM: cascading binary classification

Descriptor-Based Classification

- Two approaches
 - IR approach
 - Empty taxonomy

Descriptor-Based Classification

- IR approach
 - Postprocess query results for strong hits
 - What is a strong hit?
 - Where does the SVM come in?

Descriptor-Based Classification

- Taxonomy approach
 - Building queries from empty taxonomies
 - SVM comes again after IR

DataScience@SMU

Review for Final

Natural Language Processing

Types of Topic Modeling

- Organic topic modeling
- Canonical topic modeling
- Entity-centric topic modeling
- Al community bias in favor of organic

Organic Topic Modeling

- With LSA
 - Topic-topic matrix
 - Separating documents
- With LDA
 - Procedural difference from LSA
 - Concentration parameters and their effects
- With NMF
 - Implementation differences from LDA
 - Psychological difference from LDA

Working with Organic Topic Models

- Statistical interference
- Troubleshooting
- Applications

Canonical Topic Modeling

- What are canonical topic models?
- Examples in real life
- Organic approach—constraining output to canon
- IR approach—intensional vs. extensional comparison of topics

Entity-Centric Topic Modeling

- Entity weight of topics
- Ways of determining definitive list of entities
 - By reference vs. by description
 - Entity-first vs. topic-first approach

Curation of Topic Models

- For what? And why?
 - Prune topics, edit labels, etc.

DataScience@SMU

Review for Final

Natural Language Processing

General Sentiment Scoring

- ML approach
- Lexical KB approach

ML Approach

- Pros and cons
- Procedure
 - Choosing a classifier
- Blueprint

Lexical Approach

- Pros and cons
- Procedure
 - Choosing a lexicon
- Blueprint

Advanced Sentiment Analysis

- Pairing sentiment with objects or themes
- Adding dimensionality to pos-neg sentiment
- Sentiment and rhetoric

Attaching objects or themes to sentiment

- Using a chunker
 - Procedure
 - Vulnerabilities (negation, cross-chunk attachments)
- Using a dependency parser
 - Procedure

Adding dimensionality to sentiment

- Typologies of emotion
- Hierarchical listings, e.g., Shaver
- Modifying our blueprint for lexical sentiment analysis

A hybrid approach to adding themes/dimensions

- Semiautomated feature engineering
- Modifying our blueprint for lexical sentiment analysis again
- Example with user reviews of products

Sentiment and Insight

- Presenting roll-ups of sentiment numbers, with examples
- Sentiment and rhetoric
- Sentiment and demographics

DataScience@SMU