Лабораторная работа 4.1.1(2)

Изучение центрированных оптических систем

Моделирование оптических приборов и определение их увеличения

Геометрическая оптика

Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Изучить методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической системы, составленной из тонких линз; изучить недостатки реальных линз сферическую и хроматическую аберрации.
- 2) Изучить модели зрительных труб (астрономической трубы Кеплера и земной трубы Галилея) и микроскопа, определить их увеличения.

2 Оборудование:

- 1) Оптическая скамья с набором рейтеров
- 2) Положительные и отрицательные линзы
- 3) Экран
- 4) Осветитель с ирисовой диафрагмой
- 5) Зрительная труба
- 6) Светофильтры
- 7) Кольцевые диафрагмы
- 8) Линейка

3 Теоретическая справка

Определения фокусных расстояний

Формула тонкой линзы имеет вид

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b},$$

где f — фокусное расстояние, a — расстояния от предмета до линзы, b — расстояние от изображения до линзы.

Для измерения фокусного расстояния тонкой собирающей линзы может использоваться схема с рис. 1. и формула (2).

$$f = \frac{L^2 - l^2}{4L}$$

Рис. 1: Схема измерения фокуса тонкой собирающей линзы

Также фокусное расстояние тонкой собирабщей линзы можно измерить с помощью зрительной трубы, настроенной на бесконечность. Если расположить линзу между предметом и трубой и найти четкое изображение предмета, то расстояние от линзы до предмета будет равно фокусному.

Для определения расстояние тонкой рассеивающей линзы поспользуемся схемой на рис. 2 и формулой тонкой линзы. Также можно восползоваться зриетльной трубой, настроенной на бесконечность. Если расположить предмет у нее в фокусе, то изображение переместиться в бесконечность, что можно проверить с помощью зрительной трубы.

Рис. 2: Схема измерения фокуса тонкой рассеивающей линзы

Для определения фокусного расстояние и положения главных плоскостей сложной оптической системы может использоваться метод Аббе: схема на рис. 3 и формула (3).

Рис. 3: Схема определения фокусного расстояние и положения главных плоскостей сложной оптической

$$f = \frac{\Delta x}{y/y_1 - y/y_2}$$

Аберрации реальных оптических систем

Сферическая аберрация – аберрация, связанная с формой линзы. При прохождении через нее не параксиального пучка лучи, проходящие на разных расстояниях от главной оптической оси собираются в разных точках. Для количечественной оценки сферической аберрации будем пользоваться характеристической кривой сферической аберрации, то есть зависимостью

$$\delta s(h) = s(h) - s(0) = -\frac{1}{2} \left(\frac{n}{n-1}\right)^2 \left(\frac{h}{f}\right)^2 f$$

При h = r формула (4) определяет продольную сферическую аберрацию.

Хроматическая аберрация – аберрация, связанная с немонохроматичностью проходящего через линзу света. Показатель преломления вещества зависит от длины волны падающего света, а значит лучу с разынами длинами волны будут собираться в разных точках. Для количечественной оценки хроматической аберрации воспользуемся

соотношениями

$$\delta f_{xp} = f_F - f_C,$$

$$\nu = \frac{n_D - 1}{n_F - n_C},$$

$$\delta f_{xp} = -\frac{1}{\nu} f_D,$$

где f_F – фоккусное расстояние для длины волны 486.1 нм, f_C – фокусное расстояние для длины волны 656.3 нм, f_D – фокусное расстояние для длины волны 589.3 нм, ν – число Аббе.

Телескопы

Для любых телескопических систем, у которых n=n', согласно (1.30), (1.18) угловое увеличение

$$N_T \equiv \frac{\alpha'}{\alpha} = \frac{y}{y'} = \frac{f_1'}{f_2} = -\frac{f_1}{f_2}$$

обратно поперечному увеличению и по абсолютной величине равно отношению фокусных расстояний объектива и окуляра. Угловое увеличение N_T в этом случае называют просто увеличением трубы, опуская прилагательное «угловое». Эта величина показывает, во сколько раз угол, под которым виден бесконечно удалённый малый предмет в трубу, больше угла, под которым он был бы виден невооружённым глазом (рис. 1.8a).

Микроскопы

Теоретические сведения. Обозначения: $f_{\rm of}$ - фокус объектива, $f_{\rm ok}$ - фокус окуляра, Δ - оптический интервал (расстояние между задним фокусом объектива и передним фокусом окуляра), $L_{\rm 3~p} \approx 25~{\rm cm}$ - расстояние наилучшего зрения (для здорового глаза). При аккомодации глаза на бесконечность угловое увеличение микроскопа

$$\gamma_{\infty} \equiv \frac{\lg \alpha_2}{\lg \alpha_0} = \frac{y_1/f_{\text{OK}}}{y_0/L_{3p}} = \frac{L_{3p}}{f_{\text{OK}}} \cdot \frac{\Delta}{f_{\text{OG}}}$$

(y_0 - размер предмета, y_1 - размер промежуточного изображения предмета в объективе). При аккомодации глаза на расстояние наилучшего зрения $d_{\rm 3p}$, когда глаз расположен вплотную к окуляру:

$$\gamma_{3p} = \frac{y_2/L_{3p}}{y_0/L_{3p}} = \frac{L_{3p} + f_{0K}}{f_{0K}} \frac{\Delta}{f_{06}}$$

(в этом случае угловое увеличение совпадает с линейным). При $f_{\text{ок}} \ll L_{\text{3p}}$ формулы совпадают: $\gamma_{\text{3p}} \approx \gamma_{\infty}$.

Изображение предмета в микроскопе можно сделать действительным и сфокусировать его на экране за окуляром (проекционный микроскоп). Увеличение проекционного микроскопа равно

$$\gamma_{\rm mp} = \frac{L - f_{\rm OK}}{f_{\rm OK}} \cdot \frac{\Delta}{f_{\rm OO}},$$

где L – расстояние от окуляра до экрана.

4 Измерения, Обработка

4.1 0. Подготовка к работе

1) В работе используется 5 линз с порядковыми номерами. В дальнейшем будем использовать такую нумерацию.

Линзы 1-4 собирающие, линза 5 - рассеивающая.

2) Центрируем все используемые оптические элементы.

4.2 І. Определение фокусных расстояний линз с помощью подзорной трубы

- 1) Настроим подзорную трубу на бесконечность
- 2-4) Проведем замеры фокусных расстояний линз с помощью подзорной трубы и занесем их в таблицу.

№ Линзы	F_1 , cm	<i>F</i> ₂ , см
1	7.5	7.3
2	15.0	14.5
3	19.8	20.2
4	29.0	29.8

Погрешность каждого измерения подразумевается равной 0.1 см.

Судя по результатам измерений, тонкими линзы считать нельзя.

5) Для первой линзы дополнительно проведем измерения с учетом погрешностей

Фокусное расстояние I линзы						
	7.5	7.3	7.4	7.3	7.6	7.4

Грубо усредняя полученные значения, получим результат

$$F = 7.42 \pm 0.05$$
 cm

6) Измерения фокусного расстояния рассеивающей линзы 5

$$a_0=17.0\pm0.1$$
 см, $l=8.4\pm0.1$ см. Тогда $f=l-a_0=-8.6\pm0.2$ см.

4.3 II. Измерение фокусных расстояний линз по формуле тонкой линзы и методом Бесселя

Проведу измерения для линз I и II.

4.3.1 Ілинза

- 1) $L = 34.5 \pm 0.1$ cm.
- 2) Расстояния $s_1 = 10.5 \pm 0.1$ см и $s_2 = 23.4 \pm 0.1$ см.

Разность $l = s_2 - s_1 = 12.9 \pm 0.2$ см.

3) По формуле тонкой линзы:

$$f(s_i) = \left(\frac{1}{s_i} + \frac{1}{L - s_i}\right)^{-1}$$

$$f(s_1) = 7.30 \pm 0.05$$
 cm

$$f(s_1) = 7.53 \pm 0.08$$
 cm

По приближённой формуле Бесселя:

$$f = \frac{L^2 - l^2}{4L} = 7.42 \pm 0.07 \text{ cm}$$

Результаты получились логичные, формула Бесселя эффективно усредняет значения $2-x s_i$.

4) Для развернутой линзы

Расстояния $s_1 = 11.0 \pm 0.1$ см и $s_2 = 24.1 \pm 0.1$ см.

Разность $l = s_2 - s_1 = 13.1 \pm 0.2$ см.

По формуле тонкой линзы:

$$f(s_i) = \left(\frac{1}{s_i} + \frac{1}{L - s_i}\right)^{-1}$$

$$f(s_1) = 7.49 \pm 0.05$$
 cm

$$f(s_1) = 7.26 \pm 0.09$$
 cm

По приближённой формуле Бесселя:

$$f = \frac{L^2 - l^2}{4L} = 7.38 \pm 0.07 \text{ cm}$$

4.3.2 II линза

- 1) $L = 72.4 \pm 0.1$ cm.
- 2) Расстояния $s_1 = 21.2 \pm 0.1$ см и $s_2 = 50.6 \pm 0.1$ см.

Разность $l = s_2 - s_1 = 29.4 \pm 0.2$ см.

3) По формуле тонкой линзы:

$$f(s_i) = \left(\frac{1}{s_i} + \frac{1}{L - s_i}\right)^{-1}$$

$$f(s_1) = 14.99 \pm 0.05 \text{ cm}$$

$$f(s_1) = 15.20 \pm 0.09$$
 cm

По приближённой формуле Бесселя:

$$f = \frac{L^2 - l^2}{4I} = 15.12 \pm 0.07 \text{ cm}$$

Результаты получились логичные, формула Бесселя эффективно усредняет значения $2-x s_i$.

4) Для развернутой линзы

Расстояния $s_1 = 21.5 \pm 0.1$ см и $s_2 = 51.4 \pm 0.1$ см.

Разность $l = s_2 - s_1 = 29.9 \pm 0.2$ см.

По формуле тонкой линзы:

$$f(s_i) = \left(\frac{1}{s_i} + \frac{1}{L - s_i}\right)^{-1}$$

$$f(s_1) = 15.1 \pm 0.05$$
 cm

$$f(s_1) = 14.9 \pm 0.09 \text{ cm}$$

По приближённой формуле Бесселя:

$$f = \frac{L^2 - l^2}{4L} = 15.01 \pm 0.07 \text{ cm}$$

Результаты получились логичные, формула Бесселя эффективно усредняет значения $2-x s_i$.

4.4 III. Измерение фокусных расстояний методом Аббе

Проведу измерения для линз I и II.

$$y_0 = 2.0 \pm 0.1 \text{ cm}$$

4.4.1 Ілинза

1) Занесем измеренные величины в таблицу

s ₁ , cm	L, cm	y_i , CM
11.5	35.0	1.4
15.5	30.0	1.9
13.3	30.4	2.6
15.7	30.0	1.8

2) Пересчитаем таблицу в величины смещения Δx

Δx , cm	$\Delta x'$, cm	y_i , cm
0	0	1.8
0.2	0.2	1.9
2.4	2.8	2.6

3) Фокусные расстояния по формулам Аббе:

$$f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = \frac{\Delta x}{y_0/y_2 - y_0/y_1}.$$

И

$$f^2 = \Delta x \cdot \Delta x' \cdot \frac{y_2 y_1}{(y_2 - y_1)^2}$$

$$F_{21} = 7 \pm 3$$

$$F_{22} = 10 \pm 10 \text{ cm}$$

$$F_{23} = 7 \pm 3 \text{ cm}$$

Как видим, точность метода Аббе весьма низка, хотя результаты довольно близки к значениям предыдущего пункта

4.4.2 II линза

1) Занесем измеренные величины в таблицу

<i>s</i> ₁ , cm	L, cm	y_i , CM
27.5	61.5	2.4
33.3	61.1	1.6

2) Пересчитаем таблицу в величины смещения Δx

Δx , cm	$\Delta x'$, cm	y_i , CM
0	0	1.6
5.8	6.2	2.4

3) Фокусные расстояния по формулам Аббе:

$$F_{21} = 16 \pm 5$$

$$F_{22} = 14 \pm 5 \text{ cm}$$

$$F_{23} = 15 \pm 5 \text{ cm}$$

Главная причина большой погрешности измерения фокусного расстояния - неточность определения размера изображения. Для улучшения точности необходимо увеличивать смещения Δx .

4.5 IV. Сборка и изучение подзорных труб Кеплера и Галилея

1) Выберем 2 линзы I и II и оптическую схему Кеплера.

Теоретическое увеличение телескопа $\gamma_{\rm Teop} = \frac{f_{II}}{f_{\rm I}} = 2.02 \pm 0.03$.

В качестве коллиматора будем использовать линзу IV.

- 2) Установим транспарант в фокус коллиматорной линзы.
- 3-5) Фотографии

Рис. 4: Фотография источника без увеличения

Рис. 5: Фотография источника через телескоп

6) Усредняя размеры сторон 5 клеток около центра изображения, получим размер клетки в 93.6 \pm 1.5 пиксела.

На втором изображении через телескоп размер клетки составляет 181 ± 3

Наконец, практическое увеличение составит $\gamma_{\mathfrak{IKCH}} = \frac{px_2}{px_1} = 1.93 \pm 0.06$, что совпадает с теоретическим расчетом в рамках погрешности.

7) Измерим диаметры зрачков входного и выходного пучка

$$D=5.1$$
 см, $d=2.5$ см. Тогда $\gamma_{
m 3paq}=rac{D}{d}=2.04\pm0.13$.

Такой результат нас вполне устраивает.

4.6 V. Сборка и изучение модели микроскопа

Выберем линзы I и II.

1) Выразим оптический интервал как функцию фокусных расстояний и увеличения

$$\Delta = \frac{\gamma f_1 f_2}{I_L} = 17.8 \text{ cm}$$

Тогда расстояние между линзами $l_{12} = \Delta + f_1 + f_2 = 40.2$ см

2) Соберем схему в соответствии с рассчетами.

3) Фотография измерений с помощью зрительной трубы

Рис. 6: Фотография источника через телескоп

Более тчательный анализ с помощью видеоряда дал результат 420 \pm 20 пикселов. Итоговое увеличение $\gamma_{\rm эксп}=4.5\pm0.3$. Используя формулу для пересчета увеличения в режиме аккомодации на бесконечность

$$\gamma_{\infty} = \frac{\alpha}{\alpha_0} \cdot \frac{L_{3p}}{f_{\text{кол}}} = 4.4 \pm 0.3$$

что входит в пределы теоретического значения.

4.7 VI. Изучение составной оптической системы

В пункте были использованы собирающая линза I и рассеивающая линза V.

1) Поскольку оптическая сила положительной линзы больше, система фокусирующая. Проверим это

Расстояние между линзами $l = 5.1 \pm 0.1$ см

Фокусное расстояние системы

$$f = \left(\frac{1}{f_1} + \frac{1}{f_2} - \frac{l}{f_1 f_2}\right) = 10.2 \pm 0.4 \text{ cm} > 0$$

- 2) Расстояние от ближайшей линзы до фокуса(источника) $s_1 = 15.5$ см. Расстояние с другой стороны точно измерить не получилось, оно оказалось чуть меньше 6 см.
- 3) Занесем в табличу смещение и расстояние между экраном и источником

L, см	1, см
56.5	24.2
53.0	17.4
51.0	22.0
47.0	6.2
60.0	27.5
64.0	32.6

Используя линеаризацию параболой(квадратичная), получим коэффициенты кривой $l^2=y=x^2-(2\delta+4f)x+\delta(\delta+4f)$

Получим

 $cx^2 = 1x^2$ - фиксируем с равное 1

Возьмем $y = l^2 - L^2$, а x = L

Построим зависимость y(x)

Найдем угловые коэффициенты прямых для каждой установки по МНК.

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = < v_i > -a < N_i >$$

Также рассчитаем их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

$$-(2\delta + 4f)x = -(50.4 \pm 2.5)x$$

$$\delta(\delta+4f)=190\pm140$$

Оценим из этих отношений δ и f.

$$\delta = 46 \pm 4 \text{ cm}$$

$$f = 10.4 \pm 1.9$$
 cm.

Данное значение очень хорошо согласуется с теорией.

5 Вывод

Сравнивая результаты метода Бесселя и Аббе, можно с увереностью сказать, что

автор, привыкший постоянно использовать в жизни первый метод, получает им

лучший результат, что совершенно не порочит второй подход. Просто в данной работе

довольно сложно изменять величины в больших пределах, поэтому метод Бесселя дал

более доверительные результаты.

В целом, в работе постоянно использовалась диафрагма для нивелирования аберра-

ций.

Что касается оптических схем, все они были успешно реализованы и дали разумные

результаты.

Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф

14