IN2090 - Databaser og datamodellering

01 - Introduksjon og motivasjon: Modellering

Leif Harald Karlsen leifhka@ifi.uio.no

Data vs. informasjon

- Innholdet i en database er data
- F.eks. i en kolonne som heter Vekt kan man ha verdien 142.3
- Dette er en bit data, og sier oss egentlig ingenting!
- Må vite hvordan verdien skal tolkes for at det skal gi oss noe informasjon
- F.eks. hvilken måleenhet er brukt, hva er det vekten på, betegner det faktisk vekt eller maks vekt, osv.
- Informasjon er data pluss regler for hvordan data skal tolkes

Heis	Vekt	
:	:	:
3	142.3	
:	:	:

Heis nr. 3 veier 142.3kg?

3 heiser har maks kapasitet 142.3 kg?

Heis nr. 3 har maks kapasitet 142.3 tonn?

Heiser kan ta 3 mennesker som hver veier 142.3 kg?

Fra domene til data

- En database inneholder kun dataene fra et domene
- Så vi må oversette informasjon fra domene til data
- Mange måter å gjøre dette på, noen gode, andre dårlige
- Datamodellering hjelper oss med å finne de gode representasjonene

Kompliserte domener: Entiteter

De fleste domener er veldig komplekse!

Universitet:	Nettbutikk:	Sykehus:	Skatt:
studenter	produkter	pasienter	personer
ansatte	kunder	ansatte	lønnstrinn
kurs	bestillinger	medisiner	relasjoner
foreninger	leverandører	sykdommer	frynsegoder
programmer	lagere	behandlinger	bedrifter
bygninger	kategorier	rutiner	organisasjoner
rom	kampanjer	krav	sykemeldinger
aktiviteter	regioner	rom	familiære forhold
forskningsgrupper	relatert	operasjoner	formue
karakterer	kvitteringer	inventar	arv
prosjekter	dokumenter	vakt	fagforeninger
:	÷	÷	÷

Kompliserte domener: Relasjoner

Disse entitenene har mange relasjoner mellom seg

Universitet:	Nettbutikk:	Sykehus:	Skatt:
ansatt ved	bestilt av	får behandling	er datter av
rom bestilt av	har kategori	har kometanse til	tjener
veileder	koster	har vakt	medlem av
har karakter i	er med i kampanje	har utstyr	ansatt i
ledes av	antall på lager	trinn i rutine	har lønnstrinn
:	:	:	:

Kompliserte databaser

- Så databasen blir da veldig kompleks
 - Mange tabeller (f.eks. > 100)
 - Mange kolonner (f.eks. > 20)
 - Mange rader (millioner)
- Må da ha en god metode for å designe skjemaet til databasen
- Altså, hvilke tabeller og kolonner man skal ha, og hvordan tabellene er relatert

Komplisert databaseskjema

Datamodellering

- Et modelleringsspråk brukes for å lage en modell av et domene
- En modell er en forenkling av virkeligheten som beskriver kun de tingene vi er interessert i
- Denne modellen blir så oversatt til et godt databaseskjema
- Finnes mange modelleringsspråk:
 - UML
 - ORM
 - ER
 - OWL
- Vi skal bruke ER

ER-diagram av karakterer for et spill¹

https://commons.wikimedia.org/wiki/File:ER_Diagram_MMORPG.png

Takk for nå!

Neste video gir et eksempel på hvordan databaser og datamodellering brukes sammen.

