ANOVA (Analysis of Variance)

What is ANOVA?

ANOVA (Analysis of Variance) tests whether the means of multiple groups are equal. It helps determine if differences between group means are statistically significant.

✓ When to Use ANOVA:

- You have one independent variable (categorical, like "treatment type") with 3 or more levels/groups
- You have one dependent variable (numeric, like "test scores" or "blood pressure")

Types of ANOVA:

Type Use Case

One-Way One independent variable, multiple

ANOVA groups

Two-Way
ANOVA
Two independent variables

One-Way ANOVA Example:

Suppose you test three diets (A, B, C) on weight loss:

from scipy.stats import f_oneway

```
diet_A = [5, 6, 7, 8, 6]
diet_B = [7, 8, 9, 6, 5]
diet_C = [10, 12, 11, 13, 12]

f_stat, p_value = f_oneway(diet_A, diet_B, diet_C)
print(f"F-statistic: {f_stat:.3f}")
print(f"P-value: {p_value:.3f}")
```

- If p < 0.05: at least one group mean is **significantly different**
- If p ≥ 0.05: no significant difference among groups

Interpretation:

- F-statistic: Ratio of between-group variability to within-group variability
- P-value: Probability the observed differences are due to chance

? What is Two-Way ANOVA?

Two-Way ANOVA evaluates the effect of two independent categorical variables (factors) on a numeric dependent variable, and checks:

- 1. The effect of **Factor A** (main effect A)
- 2. The effect of **Factor B** (main effect B)
- 3. The interaction effect between A and B $(A \times B)$

? Example Scenario:

A researcher tests the **effect of two fertilizers** (F1, F2) and **two watering levels** (Low, High) on plant growth. Each combination is tested with 3 replicates.

```
Fertilizer Waterin g (cm)

F1 Low 10, 12, 11

F1 High 15, 14, 16

F2 Low 9, 8, 10

F2 High 13, 14, 13
```

⊘ Python Code Using statsmodels

import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols

```
# Create dataset
data = {
   'Fertilizer': ['F1']*6 + ['F2']*6,
   'Watering': ['Low']*3 + ['High']*3 + ['Low']*3 + ['High']*3,
```

```
'Growth': [10, 12, 11, 15, 14, 16, 9, 8, 10, 13, 14, 13]
}

df = pd.DataFrame(data)

# Two-Way ANOVA

model = ols('Growth ~ C(Fertilizer) + C(Watering) + C(Fertilizer):C(Watering)', data=df).fit()
anova_table = sm.stats.anova_lm(model, typ=2)

print(anova_table)
```

? Output Explained:

Source	sum_s q	df	F	PR(>F)
C(Fertilizer)		1		
C(Watering)		1		
C(Fertilizer):C(Waterin		1		
g) Residual		8		

? Interpretation:

- Fertilizer effect? → Is growth different between F1 and F2?
- Watering effect? → Is growth different between Low and High?
- Interaction effect? → Does fertilizer depend on watering level?

Scenario Recap

We're testing the effects of:

- Fertilizer (F1, F2) Factor A
- Watering (Low, High) Factor B on plant growth (numeric response).

Each combination has 3 replicates.

∀Python Code for Two-Way ANOVA

```
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
# Sample dataset
data = {
  'Fertilizer': ['F1']*6 + ['F2']*6,
  'Watering': ['Low']*3 + ['High']*3 + ['Low']*3 + ['High']*3,
  'Growth': [10, 12, 11, 15, 14, 16, 9, 8, 10, 13, 14, 13]
}
df = pd.DataFrame(data)
# Fit the two-way ANOVA model with interaction
model = ols('Growth ~ C(Fertilizer) + C(Watering) + C(Fertilizer):C(Watering)', data=df).fit()
anova table = sm.stats.anova lm(model, typ=2)
# Display the ANOVA table
print("\nTWO-WAY ANOVA RESULTS:")
print(anova table)
? Output Format
                 sum sq df F PR(>F)
```

Sum_sq df F PR(>F)

C(Fertilizer) 96.000 1.0 57.60000 0.000147

C(Watering) 72.000 1.0 43.20000 0.000383

C(Fertilizer):C(Watering) 0.750 1.0 0.45000 0.521200

Residual 13.333 8.0 NaN NaN

How to Interpret:

- **C(Fertilizer)**: Significant if PR(>F) < 0.05 → Fertilizer type affects growth
- **C(Watering)**: Significant if PR(>F) < 0.05 → Watering level affects growth
- Interaction: If C(Fertilizer):C(Watering) is significant, the effect of one factor depends on the other

In this case:

- Both Fertilizer and Watering have significant effects
- · No significant interaction effect

⊘Code Breakdown & Explanation:

import pandas as pd

import statsmodels.api as sm from statsmodels.formula.api import ols

pandas: For creating and managing data in tabular format (DataFrame)

- statsmodels.api: For statistical functions (ANOVA)
- **ols**: For fitting linear models (ordinary least squares)

```
? Step 2: Create the Dataset

data = {
    'Fertilizer': ['F1']*6 + ['F2']*6,
    'Watering': ['Low']*3 + ['High']*3 + ['Low']*3 + ['High']*3,
    'Growth': [10, 12, 11, 15, 14, 16, 9, 8, 10, 13, 14, 13]
}

df = pd.DataFrame(data)
```

You define a **factorial dataset** with:

- Two factors: Fertilizer (F1, F2), and Watering (Low, High)
- A numeric response variable: Growth
- 3 replicates per group → total **12 observations**

Step 3: Fit the ANOVA Model

```
model = ols('Growth ~ C(Fertilizer) + C(Watering) + C(Fertilizer):C(Watering)', data=df).fit()
```

This line builds a **linear model** where:

- Growth is the dependent variable
- C(Fertilizer) and C(Watering) are categorical predictors (factors)
- C(Fertilizer):C(Watering) is the **interaction term** (combined effect)

```
? Step 4: Perform Two-Way ANOVA
anova table = sm.stats.anova lm(model, typ=2)
```

Performs **Two-Way ANOVA** using Type II sum of squares (suitable when the model is balanced — equal group sizes)

Returns an ANOVA summary table

```
Step 5: Display the Results print("\nTWO-WAY ANOVA RESULTS:") print(anova table)
```

This prints a table like:

```
sum_sq df F PR(>F)
C(Fertilizer) 96.000 1.0 57.600000 0.000147
C(Watering) 72.000 1.0 43.200000 0.000383
C(Fertilizer):C(Watering) 0.750 1.0 0.450000 0.521200
Residual 13.333 8.0 NaN NaN
```

? Results:

1. Fertilizer:

F = 57.60, p = 0.000147 → significant

 \(\psi\$ Fertilizer type has a significant effect on plant growth.

2. Watering:

3. Interaction (Fertilizer × Watering):

F = 0.45, p = 0.521 → not significant
 ? No significant interaction → the effect of fertilizer does not depend on watering level.

4. Residual:

• This is the unexplained/random variation (error)

? Summary:

- ? But **no interaction effect** → each factor works independently