

Equipe - Baião de Dados Segmentação de Estradas e Ruas

Alunos:

- Francisco Rafael Braga de Lima
- João Pedro Pereira da Silva
- José Lucas da Silva Pinheiro

Sumário

- Introdução
- Metodologia
- Resultados
- Conclusões

Resumo do problema

O DeepGlobe Road Extraction Challenge apresenta o desafio de extrair, automaticamente, estradas e ruas a partir de imagens de satélite.

Porque esse problema?

Devido à grande necessidade de informações acerca de acessibilidade nas zonas de catástrofe, com intuito de dar respostas rápidas às crises que se encontram.

Objetivo geral

Segmentar as imagens do dataset a fim de criar uma rede neural capaz de dissociar estradas de terreno selvagem em imagens de satélite.

BASE DE DADOS:

- Total de imagens: 14.796 imagens
 - O Conjunto de treinamento: 12.452 imagens;
 - o Conjunto de validação: 1.243 imagens;
 - o Conjunto de teste: 1.101 imagens.

- Conjunto de treinamento
 - 6.226 pares de imagens e suas respectivas máscaras.

- Conjunto de validação e de teste
 - o "imagem_sat.jpg"

Imagem de validação

Imagem de teste

- Foi atestado que os arquivos estão em estado de análise e uso para treinamento e teste;
 - o Imagens de satélite: .jpg
 - Imagens de máscara: .png
 - Dimensões das imagens: 1024px X 1024px

ETAPA 1 - Código original

ETAPA 1 - Código original

ETAPA 2 - Reduzindo o número de épocas

40 -

ETAPA 2 - Reduzindo o número de épocas

ETAPA 2 - Reduzindo o número de épocas

ETAPA 3 - Modificando a função de ativação Imagem de Satélite

ETAPA 3 - Modificando a função de ativação Imagem de Satélite

ETAPA 3 - Modificando a função de ativação Imagem de Satélite

ETAPA 4: Aplicando binarização no resultado

ETAPA 4: Aplicando binarização no resultado

ETAPA 4: Aplicando binarização no resultado

ETAPA 5 - Dividir em treino, teste e validação

Total de imagens: 14.796 imagens

- Conjunto de treinamento: 12.452 imagens;
- o Conjunto de validação: 1.243 imagens;
- o Conjunto de teste: 1.101 imagens.

ETAPA 5 - Dividir em treino, teste e validação

ETAPA 5 - Dividir em treino, teste e validação

ETAPA 5 - Dividir em treino, teste e validação

ETAPA 6 - Aumentando o número de filtros

ETAPA 6 - Aumentando o número de filtros

ETAPA 6 - Aumentando o número de filtros

Sugestões

- Diminuir o número de épocas;
- Aumentar o número de camadas de convolução;
- Modificar a função de ativação;
- Utilizar as imagens em escala de cinza;
- Aplicar filtros.

Estrutura da rede

• Parâmetros totais: 8.642.273

Métricas

Modelo com validação

Modelo com validação

Modelo com validação

Testes

Testes

100

120

Testes

4. Conclusão

Conclusões

- Imagens muito grandes podem ser um obstáculo para treinamento de modelos de segmentação. É necessário alguma espécie de tratamento, especialmente em máquinas menos potentes;
- Datasets robustos podem ser reduzidos a depender dos resultados obtidos;
- A redução das dimensões das imagens do Dataset compromete a capacidade do modelo de obter informações, a acurácia não parece corresponder o resultado;

Referências Bibliográficas

- Ashwath, B. (2020). DeepGlobe Road Extraction Dataset [Data set].
 https://www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset
- MapUnet. (2022, outubro 29). Kaggle.com; Kaggle.
 https://www.kaggle.com/code/yash2410/mapunet
- Gavrikov, P. ([s.d.]). Visualkeras documentation.
 https://github.com/paulgavrikov/visualkeras

Agradecemos a atenção!