

BSDS-208: IMAGE AND VIDEO

BSDS-208: IMAGE AND VIDEO ANALYTICS Course Instructor - Mr. Aishwary Shukla

Gauri Sharan - BSc Data Science, Semester 4

June 11, 2024

Table of Contents

RESEARCH ANALYSIS

REAL LIFE APPLICATIONS

Introduction

Comparison

Customization

CODE EXAMPLE

BSDS-208: IMAGE AND VIDEO

HISTORY

Models of Choice - Mediapipe's Models

HANDGESTURECLASSIFIER AND GESTURERECOGNIZER

BSDS-208 · IMAGE AND VIDEO

Introduction

MediaPipe is a cross-platform framework developed by Google for building multimodal machine learning pipelines. It supports a variety of domains such as vision, audio, and text.

- The framework is designed to facilitate the deployment of machine learning models on various devices including mobile phones, desktops, and the web, enabling real-time processing capabilities.
- MediaPipe offers a comprehensive set of pre-built solutions and tools to streamline the development process, making it easier for developers to implement advanced ML models in their applications.

History

BSDS-208 · IMAGE AND VIDEO

HISTORY

MediaPipe originated as an internal tool at Google, aimed at streamlining the development and deployment of machine learning models across various platforms.

- Recognizing its potential. Google released MediaPipe as an open-source project to enable the broader research and developer community to benefit from its capabilities.
- Since its release, MediaPipe has seen continuous development and integration of new features, expanding its applications in areas like hand tracking, face detection, and gesture recognition.

HISTORY

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

GAUR Shara

INTRODUCTIO:

HISTORY

RESEARCH ANALYSIS

REAL LIFE
APPLICATIONS

Comparison
Customization

CODE

Project

REFERENCE

THANK VO

FIGURE: Hand gesture recognition using MediaPipe's Models

RESEARCH ANALYSIS

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

Gauri Sharai

INTRODUCTI

RESEARCH ANALYSIS

COMPONENTS
DESCRIPTIONS OF
MODEL
ARCHITECTURE AND
WORKING OF
MODEL
TRAINING, TESTING,
VALIDATION

Real Life Application

.

- MediaPipe's gesture recognition models are grounded in cutting-edge research in computer vision and machine learning, utilizing convolutional neural networks (CNNs) and other advanced techniques.
- The models leverage extensive datasets to learn the nuances of hand movements and gestures, ensuring high accuracy and robustness.
- Research has shown that MediaPipe's models can achieve real-time performance with minimal latency, making them suitable for interactive applications.

Insights

BSDS-208 · IMAGE AND VIDEO

■ MediaPipe's models exhibit high accuracy in detecting and classifying hand gestures, which is crucial for applications requiring precise and reliable gesture recognition.

- The framework's cross-platform compatibility ensures that applications can be deployed on a wide range of devices without significant modifications.
- MediaPipe offers customization tools, allowing developers to fine-tune models according to specific datasets and use cases, enhancing the model's performance in targeted applications.

Components and Descriptions of Model

BSDS-208 · IMAGE AND VIDEO

DESCRIPTIONS OF

- HandGestureClassifier: This model classifies gestures based on the detected landmarks of the hand. It maps the positions of key points on the hand to specific gestures using trained classifiers.
- GestureRecognizer: This model combines hand landmark detection with gesture classification. It first identifies key points on the hand and then uses these points to recognize specific gestures, providing a comprehensive solution for gesture recognition.
- Both models are built upon MediaPipe's robust hand tracking solution, which accurately detects and tracks hand landmarks in real-time.

Components and Descriptions of Model

BSDS-208:
IMAGE AND
VIDEO

GAURI

INTRODUCTIO

HISTORY

Research Analysis

Components Descriptions of Model

Architecture and Working of Model

Training, Testing, Validation Hands-on

REAL LIFE APPLICATIONS

Comparison

FIGURE: HandGestureClassifier Model Landmarker Bundle

ARCHITECTURE AND WORKING OF MODEL

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

Gauri Sharai

Introduction

Hierony

RESEARCH ANALYSIS Insights Components Descriptions o

Architecture and Working of Model

Training, Testing Validation Hands-on

REAL LIFE APPLICATION

Compar

■ The architecture of MediaPipe's gesture recognition models consists of several stages, including hand detection, landmark localization, and gesture classification.

- Hand detection is performed using a CNN that identifies the presence of hands in the input image or video stream.
- Once hands are detected, a separate model locates the precise positions of key landmarks on the hands.
- These landmarks are then fed into a gesture classifier, which uses trained algorithms to recognize and classify the gestures.
- This multi-stage pipeline ensures high accuracy and real-time performance, making the models suitable for interactive applications.

TRAINING, TESTING, VALIDATION HANDS-ON

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

Sharan

Introduction

HISTORY

RESEARCH ANALYSIS INSIGHTS

COMPONENTS
DESCRIPTIONS OF
MODEL
ARCHITECTURE AND
WORKING OF
MODEL

Training, Testing, Validation Hands-on

REAL LIFE APPLICATION

COMPARI

- Training of the models involves using large datasets of hand images annotated with key landmarks and corresponding gestures. The models learn to identify patterns and features associated with different gestures.
- Testing is conducted on separate datasets that were not used during training to evaluate the model's performance and generalization capabilities.
- Validation involves cross-validation techniques where the data is split into multiple subsets. The model is trained on some subsets and validated on others to fine-tune parameters and improve performance.
- This rigorous process ensures that the models perform well in real-world scenarios and can handle diverse inputs effectively.

REAL LIFE APPLICATIONS

BSDS-208 · IMAGE AND VIDEO

REAL LIFE

■ Sign Language Recognition: MediaPipe's models can be used to develop applications that interpret sign language, facilitating communication for the hearing impaired.

- Human-Computer Interaction: Gesture recognition enables more intuitive and natural interactions with computers and smart devices.
- Virtual Reality and Augmented Reality: In VR and AR applications, gesture recognition allows users to interact with virtual environments in a more immersive and interactive way.
- Interactive Gaming: Gesture-based controls enhance gaming experiences, making them more engaging and interactive.

Comparison with Other Models

BSDS-208 · IMAGE AND VIDEO

COMPARISON

MediaPipe models offer superior real-time performance compared to traditional gesture recognition models, which may struggle with latency issues.

- The framework's cross-platform support provides an advantage over models designed for specific environments, such as desktop-only or mobile-only solutions.
- MediaPipe's customization options allow developers to adapt the models to their specific needs, providing more flexibility and efficiency compared to other less adaptable models.

Customization

BSDS-208 · IMAGE AND VIDEO

CUSTOMIZATION

■ MediaPipe models can be customized using the MediaPipe Model Maker. which simplifies the process of training models with custom datasets.

- Developers can retrain models on their specific datasets to improve accuracy and performance for their particular use cases.
- Customization involves minimal code changes, making it accessible even to those with limited machine learning expertise.
- This flexibility allows developers to create highly specialized models tailored to their specific needs.

Python Code Example

```
BSDS-208 ·
IMAGE AND
  VIDEO
```

Customization

CODE

EXAMPLE

```
from mediapipe.tasks.python import vision
# Load the hand gesture recognizer
gesture_recognizer = vision.GestureRecognizer.create_from_model_path('path_to_model.tflite')
# Use the recognizer with an image
image = mp.Image.create_from_file('hand_image.jpg')
recognition_result = gesture_recognizer.recognize(image)
# Print recognized gestures
for gesture in recognition_result.gestures:
   print(f'Gesture: {gesture.name}, Confidence: {gesture.score}')
```


PROJECT

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

Gauri Sharan

INTRODUCTIO:

History

RESEARCH ANALYSIS

REAL LIFE APPLICATION

Customization

Code Exampli

Project

Refere

THANK VO

Project Link: **github.com/gaurisharan/gesture-recognition-mediapipe** Observed Output:

FIGURE: Gesture Recognition Model Output

References

IMAGE AND VIDEO

BSDS-208 ·

MediaPipe Framework. Official Website. https://ai.google.dev/edge/

mediapipe/solutions/vision/gesture_recognizer

mediapipe/solutions/customization/gesture_recognizer

MediaPipe Solutions. Official website. https://ai.google.dev/edge/

THANK YOU

BSDS-208:
IMAGE AND
VIDEO
ANALYTICS

Gauri Sharan

INTRODUCTIO

Research Analysis

REAL LIFE
APPLICATIONS

Comparison Customizat

Code Example

Dependence

REFERENCES
THANK YOU

Hope you liked this presentation.

Gauri Sharan

Student, School of Data Science AAFT Noida (Shobhit University) BSc Data Science 2022-25 Semester 4, 2024

■ LinkedIn: linkedin.com/in/gauri-sharan

■ GitHub: github.com/gaurisharan

■ Mail: gaurisharan123@gmail.com