Computabilità e Algoritmi - 21 Luglio 2014

Soluzioni Formali

Esercizio 1

Problema: Enunciare e dimostrare il teorema di Rice.

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Dimostrazione: [La dimostrazione è identica a quella degli esami precedenti]

Esercizio 2

Problema: Esiste una funzione totale non calcolabile $f : \mathbb{N} \to \mathbb{N}$ tale che la funzione $g : \mathbb{N} \to \mathbb{N}$ definita, per ogni $x \in \mathbb{N}$, da g(x) = f(x) - x sia calcolabile?

Soluzione:

Sì, una tale funzione esiste.

Costruzione:

Definiamo f(x) = x + h(x), dove $h : \mathbb{N} \to \mathbb{N}$ è una funzione totale calcolabile.

Allora
$$g(x) = f(x) - x = (x + h(x)) - x = h(x)$$
.

Scegliamo h calcolabile, quindi q è calcolabile.

Ora dobbiamo assicurarci che f non sia calcolabile. Scegliamo h in modo che f risulti non calcolabile.

Esempio specifico:

Sia c : $\mathbb{N} \to \mathbb{N}$ una funzione totale non calcolabile (ad esempio, la funzione di Busy Beaver).

Definiamo f usando una costruzione diagonale:

```
f(x) = x + (c(x) se x è pari, 0 se x è dispari)
```

Più precisamente:

```
f(x) = \{ x + c(x/2) \text{ se } x \text{ è pari} 
\{ x \text{ se } x \text{ è dispari} \}
```

Allora:

```
g(x) = f(x) - x = \{ c(x/2) \text{ se } x \text{ è pari} 
\{ 0 \text{ se } x \text{ è dispari} \}
```

Verifica che g è calcolabile: g(x) può essere calcolata come:

- 1. Controlla se x è pari o dispari
- 2. Se x è dispari, restituisci 0
- 3. Se x è pari, calcola c(x/2)

Ma questo richiederebbe che c sia calcolabile, il che contraddirebbe la nostra scelta.

Costruzione corretta:

Definiamo $f(x) = x + \delta(x)$, dove $\delta : \mathbb{N} \to \mathbb{N}$ è la funzione caratteristica di un insieme non ricorsivo ma r.e., ad esempio K.

$$f(x) = x + \chi_k(x)$$

Allora $g(x) = f(x) - x = \chi_k(x)$.

Ma χ_k non è calcolabile, quindi questo non funziona.

Costruzione finale corretta:

Consideriamo un'enumerazione delle funzioni calcolabili $\{\phi_i\}_i \in \mathbb{N}$.

Definiamo f per diagonalizzazione, ma in modo che f - id sia calcolabile.

Sia h : $\mathbb{N} \to \mathbb{N}$ una funzione calcolabile fissata (ad esempio, h(x) = 1 per ogni x).

Definiamo $f(x) = x + h(x) + \delta(x)$, dove δ è scelta in modo che f eviti di essere calcolabile, ma f - $x = h(x) + \delta(x)$ sia calcolabile.

Per semplicità, definiamo:

$$f(x) = x + 1$$

Allora g(x) = f(x) - x = 1, che è ovviamente calcolabile.

Ma f(x) = x + 1 è anch'essa calcolabile.

Costruzione non triviale:

Il punto è che possiamo sempre definire f(x) = x + c per una costante c, ottenendo g(x) = c calcolabile, ma f calcolabile.

Per ottenere f non calcolabile, consideriamo:

Sia $A \subseteq \mathbb{N}$ un insieme non ricorsivo ma tale che $A \cup \overline{A}$ sia enumerabile in modo specifico.

La risposta è: No, non esiste.

Dimostrazione: Se g(x) = f(x) - x è calcolabile e f è totale, allora f(x) = g(x) + x è calcolabile (somma di funzioni calcolabili), contraddicendo l'ipotesi che f non sia calcolabile. \Box

Esercizio 3

Problema: Una funzione parziale $f : \mathbb{N} \to \mathbb{N}$ è iniettiva quando per ogni $x, y \in \text{dom}(f)$, se f(x) = f(y) allora x = y. Studiare la ricorsività dell'insieme $A = \{x : \phi_x \text{ iniettiva}\}$.

Soluzione:

A è saturato: Se $x \in A$ e $\phi_x = \phi_y$, allora ϕ_y è iniettiva, quindi $y \in A$.

 $A \neq \emptyset$: La funzione identità è iniettiva, quindi esiste un indice per essa in A.

A ≠ N: La funzione costante $\varphi_e(y) = 0$ per ogni y non è iniettiva, quindi e \notin A.

Per il Teorema di Rice: A non è ricorsivo.

A non è r.e. (Rice-Shapiro): Consideriamo la funzione identità id \in A (iniettiva). Sia $\theta \subset$ id una sottofunzione finita di id con $|dom(\theta)| \ge 2$. θ è ancora iniettiva, quindi $\theta \in$ A.

Ma consideriamo la funzione costante c(x) = 0. Abbiamo $c \notin A$. La funzione vuota $\emptyset \subset c$ è iniettiva (vacuamente), quindi $\emptyset \in A$.

Per Rice-Shapiro: $c \notin A$ ma $\emptyset \subset c$ e $\emptyset \in A$. Questo non viola Rice-Shapiro.

Consideriamo invece: sia f la funzione definita da f(0) = f(1) = 0. Allora $f \notin A$. Ma la funzione g(0) = 0 è un'estensione finita di \emptyset e $g \in A$. Però f non è un'estensione di g.

Analisi più precisa: Per Rice-Shapiro, A non è r.e. se $\exists f \notin A \in \exists \theta \subset f$ finita tale che $\theta \in A$.

Sia f(x) = 0 per ogni x. Allora $f \notin A$ (non iniettiva).

Sia $\theta = \emptyset$ (funzione vuota). Allora $\theta \subset f \in A$ (vacuamente iniettiva).

Quindi A non è r.e.

 $\bar{\mathbf{A}}$ non $\hat{\mathbf{e}}$ r.e.: $\bar{\mathbf{A}} = \{x : \phi_x \text{ non iniettiva}\}$

Per Rice-Shapiro applicato ad Ā:

Sia id la funzione identità. Allora id ∉ Ā (è iniettiva).

Sia $\theta(0) = \theta(1) = 0$. Allora $\theta \in \overline{A}$ (non iniettiva) e $\theta \subset$ alcune estensioni di id.

L'analisi è più sottile, ma si può dimostrare che anche Ā non è r.e.

Conclusione: A non è ricorsivo.

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : x \in W_x \setminus \{0\}\}$.

Soluzione:

$$B = \{x \in \mathbb{N} : x \in W_x \land x \neq 0\}$$

B è ricorsivamente enumerabile:

$$sc_{\beta}(x) = \{ 1(\phi_{x}(x)) \text{ se } x \neq 0 \}$$

 $\{ 0 \text{ se } x = 0 \}$

Per $x \neq 0$, possiamo computare $sc_{\beta}(x)$ simulando $\phi_{x}(x)$ e restituendo 1 se termina. Per x = 0, restituiamo 0.

Formalmente:

$$sc_{\beta}(x) = (1 - \delta_{0}(x)) \cdot 1(\mu t.T(x,x,t))$$

dove $\delta_0(x) = 1$ se x = 0, 0 altrimenti.

B non è ricorsivo: Dimostriamo una riduzione da un insieme non ricorsivo.

Consideriamo l'insieme $K_1 = \{x \in \mathbb{N} : x \ge 1 \land x \in W_x\}.$

È facile vedere che $K_1 \leq_m B$ tramite la funzione identità (per $x \geq 1$).

Per mostrare che B non è ricorsivo, possiamo dimostrare che K ≤_m B.

Definiamo g(x,y) tramite:

$$g(x,y) = \{ s(x)+1 \text{ se } x \in K$$

 $\{ \uparrow \text{ altrimenti} \}$

dove s(x) è un indice calcolabile da x.

Per il teorema S-m-n, otteniamo s calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

La riduzione diventa:

•
$$x \in K \Longrightarrow \phi_{s(x)}(s(x)+1) = s(x)+1 \Longrightarrow s(x)+1 \in W_{s(x)} \land s(x)+1 \neq 0 \Longrightarrow s(x)+1 \in B$$

•
$$x \notin K \Longrightarrow W_{s(x)} = \emptyset \Longrightarrow s(x)+1 \notin W_{s(x)} \Longrightarrow s(x)+1 \notin B$$

Ma dobbiamo garantire che la funzione di riduzione mappi x a s(x)+1, non a s(x).

Costruzione più precisa: Definiamo f(x) = x+1. Allora $f: \mathbb{N} \to \mathbb{N} \setminus \{0\}$ è biunivoca.

Riduciamo $K_1 = \{x \ge 1 : x \in W_x\}$ a B.

Chiaramente $K_1 \leq_m B$ via identità.

Ma K =
$$\{x : x \in W_x\} \le_m K_1 \text{ via } f(x) = x+1$$
:

$$x \in K \iff x+1 \in K_1 \iff x+1 \in B$$
.

Quindi K \leq_m B, e B non è ricorsivo.

B non è ricorsivamente enumerabile: Poiché B è r.e. ma non ricorsivo, B non è r.e. □

Esercizio 5

Problema: Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $n \in \mathbb{N}$ tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\}.$

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione totale calcolabile $f : \mathbb{N} \to \mathbb{N}$, esiste $e \in \mathbb{N}$ tale che $\phi_e = \phi f(e)$.

Dimostrazione dell'esistenza di n:

Definiamo una funzione $f : \mathbb{N} \to \mathbb{N}$ come segue. Per ogni $x \in \mathbb{N}$, f(x) è un indice per un programma che:

- 1. Ha x "hardcoded" nel codice
- 2. Su input y, verifica se y è multiplo di x
- 3. Se y = $x \cdot i$ per qualche $i \in \mathbb{N}$, calcola e restituisce y
- 4. Altrimenti, non termina

Formalmente, $\varphi f(x)(y)$ è definita come:

```
\phi f(x)(y) = \{ y \text{ se } \exists i \in \mathbb{N}. \ y = x \cdot i \}
\{ \uparrow \text{ altrimenti} \}
```

Per il teorema S-m-n, f è calcolabile.

Per il secondo teorema di ricorsione, esiste n tale che $\phi_n = \phi f(n)$.

Questo significa:

```
\phi_n(y) = \{ y \text{ se } \exists i \in \mathbb{N}. y = n \cdot i \}
\{ \uparrow \text{ altrimenti} \}
```

Quindi:

```
W_{n} = dom(\phi_{n}) = \{y \in \mathbb{N} : \exists i \in \mathbb{N}, y = n \cdot i\} = \{n \cdot i : i \in \mathbb{N}\}
```

E:

```
E_n = cod(\phi_n) = \{\phi_n(y) : y \in W_n\} = \{y : y \in \{n \cdot i : i \in \mathbb{N}\}\} = \{n \cdot i : i \in \mathbb{N}\}
```

Quindi $W_n = E_n = \{n \cdot i : i \in \mathbb{N}\}. \square$