

MONASH INFORMATION TECHNOLOGY

FIT3003 – Business Intelligence and Data Warehousing

Week 7 – Determinant Dimensions

Semester 2, 2022

Developed by:
Dr. Agnes Haryanto
Agnes.Haryanto@monash.edu
Dr. Soon Lay-Ki
Soon.LayKi@monash.edu

Learning Objectives

- 1. To understand the difference between one and split dimensions.
- 2. To understand the concept of hierarchy.
- 3. To understand the concept of determinant dimensions.
- 4. To be able to distinguish the differences between determinant and nondeterminant dimensions.

Agenda

- 1. Hierarchies
 - 1. Hierarchy vs. Non-Hierarchy
- 2. Determinant Dimensions
 - 1. Determinant vs. Non-Determinant Dimensions
 - 2. Determinant Dimension vs. Pivoted Fact Table

Hierarchies

Hierarchies

(a) A simple Star Schema

(b) A Snowflake with Hierarchy

- A Hierarchy is formed when a dimension is broken down to two or more dimensions in a hierarchical manner.
 - > As a result, the star schema becomes a snowflake schema.

Hierarchies

(a) A Snowflake with a Bridge Table

(b) A Snowflake with Hierarchy

CampusID	CampusName	Address	Suburb	City	State	Postcode	Country
CL	Clayton Campus	Wellington Rd	Clayton	Melbourne	Victoria	3800	Australia
CA	Caulfield Campus	Dandenong Rd	Caulfield East	Melbourne	Victoria	3145	Australia
PA	Parkville Campus	Royal Parade	Parkville	Melbourne	Victoria	3052	Australia
SY	Sydney Campus	Opera Boulevard	Sydney	Sydney	New South Wales	2001	Australia
MUM	Malaysia Campus	Jalan Lagoon	Bandar Sunway	Kuala Lumpur	Selangor	47500	Malaysia
MSA	South Africa Campus	Peter St	Johannesburg	Johannesburg	Johannesburg	1725	South Africa

(a) Campus Dimension Table

CampusID	CampusName	Address	Suburb	Postcode CityID
CL	Clayton Campus	Wellington Rd	Clayton	3800MEL
CA	Caulfield Campus	Dandenong Rd	Caulfield East	3145MEL
PA	Parkville Campus	Royal Parade	Parkville	3052MEL
SY	Sydney Campus	Opera Boulevard	Sydney	2001SYD
MUM	Malaysia Campus	Jalan Lagoon	Bandar Sunway	47500KUL
MSA	South Africa Campus	Peter St	Johannesburg	1725JNB

(b) City Dimension Table

CityID	City Name	State	CountryID
MEL	Melbourne	Victoria	AU
SYD	Sydney	New South Wales	AU
KUL	Kuala Lumpur	Selangor	MA
JNB	Johannesburg	Johannesburg	SA

(c) Country Dimension Table

CountryID	Country Name
AU	Australia
MA	Malaysia
SA	South Africa

(a) Correct Hierarchy

(b) A Wrong Hierarchy

1. One table vs. many tables

The consequence is in the join query processing when producing reports.

2. Normalized vs. Un-normalized

With the hierarchy option, the tables are normalized, which follows the relational model. In contrast, the non-hierarchy option, the table (e.g. the Campus Dimension table) is unnormalized, which is basically 1NF with visible replication on information, which is prone to anomalies (e.g. insert, update, and delete anomalies).

3. Drilling down and rolling up

The hierarchy model is not about drilling down information exploration.

Hierarchy vs. Non-Hierarchy – Summary

- From the query point of view, both versions need two queries.
- From the query processing point of view, the non-hierarchy version uses one join operation only, because it only needs to join the fact and one dimension.
- From the **conceptual point of view**, the hierarchy model does not actually offer a better roll up or drill down features.

Determinant Dimensions

Dimensions and Fact Tables - Recap

A Star Schema for the Sales Case Study

Querying Fact Table

Example #1:

select	Year	Product Name	Total Sales
T.Year, P.ProductName,	2010		
sum(Total_Sales) as TotalSales	2019	Shoes	1359800
from	2019	Jeans	941330
SalesFact S,			
TimeDim T,	2019		2301130
ProductDim P,	2020	Shoes	2861450
LocationDim L	2020	T	1027400
where S.TimeID = T.TimeID	2020	Jeans	1827480
and S.ProductNo = P.ProductNo	2020		4688930
and S.LocationID = L.LocationID		Classic	1001050
and T.Year = 2019 and T.Year = 2020		Shoes	4221250
and P.ProductName in ('Shoes', 'Jeans')		Jeans	2768810
and L.Country = 'Australia'			6000060
group by cube(T.Year, P.ProductName);			6990060

Querying Fact Table (cont.)

Example #2:

```
select
 T. Year, P. Product Name,
  sum(Total_Sales) as TotalSales
from
 SalesFact S,
  TimeDim T,
 ProductDim P,
where S.TimeID = T.TimeID
and S.ProductNo = P.ProductNo
and T.Year = 2019 and T.Year = 2020
and P.ProductName in ('Shoes', 'Jeans')
group by cube (T. Year, P. Product Name);
```


Determinant Dimensions

A star schema may have a **special dimension** all data retrieval from this star schema <u>must use this dimension</u> else, the retrieved data will become meaningless.

Introducing a Determinant Dimension – Petrol Station Case Study

Sample operational database of a company about petrol prices from all petrols stations in Victoria:

Petrol station	Company	Address	Fuel Type	Price	Date	Day of Week	Suburb
Caltex Star Mart Box Hill	Caltex	793-797 Whitehorse Road, Box Hill	Unleaded	120.9	1/08/16	Monday	Box Hill
Caltex Star Mart Box Hill	Caltex	793-797 Whitehorse Road, Box Hill	Diesel	118.9	1/08/16	Monday	Box Hill
Caltex Star Mart Box Hill	Caltex	793-797 Whitehorse Road, Box Hill	LPG	58.9	1/08/16	Monday	Box Hill
Caltex Star Mart Box Hill	Caltex	793-797 Whitehorse Road, Box Hill	U95	132.9	1/08/16	Monday	Box Hill
Caltex Star Mart Box Hill	Caltex	793-797 Whitehorse Road, Box Hill	Premium Unl	139.9	1/08/16	Monday	Box Hill
7-Eleven Clayton	7-Eleven	187-191 Clayton Road, Clayton	unleaded	122.7	1/08/16	Monday	Clayton
7-Eleven Clayton	7-Eleven	187-191 Clayton Road, Clayton	LTG	56.7	1/08/16	Monday	Clayton
7-Eleven Clayton	7-Eleven	187-191 Clayton Road, Clayton	diesel	115.9	1/08/16	Monday	Clayton
United Fitzroy	United	390 Nicholson Street, Fitzroy	Unleaded	119.9	1/08/16	Monday	Fitzroy
United Fitzroy	United	390 Nicholson Street, Fitzroy	Diesel	109.9	1/08/16	Monday	Fitzroy
United Fitzroy	United	390 Nicholson Street, Fitzroy	LPG	59.7	1/08/16	Monday	Fitzroy
7-Eleven Hawthorn	7-Eleven	747-755 Toorak Road, Hawthorn East	Unleaded	121.9	1/08/16	Monday	Hawthorn Eas

The requirements for the data warehouse are to answer the questions related to

- (a) average petrol price,
- (b) minimum petrol price, and
- (c) maximum petrol price

Chosen Dimensions:

- (i) day of week,
- (ii) suburb, and
- (iii) petrol company.

Category		Fact Mea	sures					
Day of week	Total Petrol Price							
Monday Tuesday								

Two-column Table for Petrol Prices based on Day of Week

Minimum price for which petrol type?

Day of week	Total Petrol Price	Num of Petrol Station	Min Petrol Price	Max Petrol Price
Monday				
Tuesday				

Day of	Total	Num of		N		Max			
week	Petrol Price	Petrol Station	Unleaded	P95	P98	E10	Diesel	LPG	Petrol Price
Monday			119.9c	132.9c	139.9c	114.9c	115.9c	55.7c	
Tuesday			118.9c	131.9c	136.9c	114.9c	115.9c	56.9c	

Day of		Tota	l Pet	rol	Pri	ce	Num of		Min	Pet	rol 1	Pric	ce		Max	Pet	rol	Pri	ce
Week	U	95	98	Е	D	LPG	Petrol	U	95	98	Е	D	LPG	U	95	98	Е	D	LPG
							Station												
Monday																			
Tuesday																			

- Not all petrol stations sell all types of petrol, e.g. Premium 98.
- Calculating the average price for Premium 98 on Monday cannot be:

The number of petrol stations is different for different petrol type!

- Solution: Split the Number of Petrol Station column into six columns one for each petrol type.
- Question: How many columns in total?

select DayofWeek, Min_Petrol_Price
from PetrolFact
where DayofWeek = 'Monday';

Day of Week	Min Petrol Price	
Monday	117.9 cents	
Monday	56.7 cents	Min. price for
Monday	109.9cents	which petrol
Monday	125.9 cents	type??
Monday	133.9 cents	
Monday	114.9 cents	

Day of Week	Min Petrol Price
Monday	117.9 cents

Day of Week	PetrolType	Min Petrol Price
Monday	Unleaded	117.9 cents
Monday	LPG	56.7 cents
Monday	Diesel	109.9cents
Monday	E10	125.9 cents
Monday	Premium 95	133.9 cents
Monday	Premium 98	114.9 cents

Determinant Dimension uses dotted box in the star schema.

The new star schema with a Determinant Dimension for Petrol Case Study

Determinant vs. Non-Determinant Dimensions

Determinant vs. Non-Determinant Dimensions

The Olympic Games Case Study

- The Olympic Games committee maintains an operational database that stores all matches, games, as well as the medal winners of the Olympic Games over the years
- Let's build a data warehouse to analyse the medal counts, by each country, sport, and at which Olympic Games

The Olympic Games Case Study - The Star Schemas

The questions are:

- 1. What is the difference between these two versions of star schema?
- 2. Is Medal Type Dimension a Determinant Dimension?

The Olympic Games Case Study - The Star Schema Version-1

Two-column tables (pivot tables) for each dimension category in star schema version-1

Country	Num of Gold	Num of Silver	Num of Bronze
USA	733	602	488
China	199	143	133
Australia	167	170	189

Sport	Num of Gold	Num of Silver	Num of Bronze
Swimming 100m Butterfly Men	20	20	20
Swimming 400m Freestyle Women	20	20	20
Swimming 4x100m Medley Relay Men	20	20	20

Olympic Name	Num of Gold	Num of Silver	Num of Bronze
London 2012	302	304	356
Beijing 2008	302	303	353
Athens 2004	301	301	327

The Olympic Games Case Study - The Star Schema Version-2

Country	Num of Medals
USA	1823
China	475
Australia	526

Sport	Num of Medals
London 2012	962
Beijing 2008	958
Athens 2004	929

Sport	Num of Medals
Swimming 100m Butterfly Men	60
Swimming 400m Freestyle Women	60
Swimming 4x100m Medley Relay Men	60

Medal Type	Num of Medals
Gold	4115
Silver	4095
Bronze	4474

Determinant vs. Non-Determinant Dimensions

- Is MedalTypeDIM a determinant dimension?
 - To retrieve the data from version-2 star schema, must we have the information from Medal Type Dimension?

The Olympic Games Case Study - The Star Schema Version-1 vs Version-2

Fact Table for Version-1

Country	Sport	Olympic Name	Num of Gold	Num of Silver	Num of Bronze
USA	Swimming	London 2012	16	9	6
China	Swimming	London 2012	5	1	4
Australia	Swimming	London 2012	1	6	3

Fact Table for Version-2

Country	Sport	Olympic Name	Medal Type	Num of Medals
USA	Swimming	London 2012	Gold	16
USA	Swimming	London 2012	Silver	9
USA	Swimming	London 2012	Bronze	6
China	Swimming	London 2012	Gold	5
China	Swimming	London 2012	Silver	1
China	Swimming	London 2012	Bronze	4
Australia	Swimming	London 2012	Gold	1
Australia	Swimming	London 2012	Silver	6
Australia	Swimming	London 2012	Bronze	3

The Olympic Games Case Study - The Star Schema Version-1 vs Version-2

Differenc es	Version 1	Version 2 (with MedalTypeDIM)	
Storage	Lower with only three records	Nine records	
Modelling The schema looks more complex and crowded; but the storage cost is lower		More concise and compact with less number of measures in the fact, easier to understand	
Query Processin g	Less join processing between dimension tables and the fact table.	Requires additional join with MedalTypeDIM	

Determinant Dimensions vs. Pivoted Fact Table

Determinant Dimensions vs. Pivoted Fact Table

The PTE Academic Test Case Study

- PTE Test consists of four main components: Listening, Reading, Speaking, and Writing
- There are many test venues (all major cities in Australia, and overseas as well), each country may have a different price setting
- A student taking a PTE test will have one score for each of these four components, as well as one overall score
- The score is a numerical score, ranging from 10 to 90
- The results will normally be released five days after the actual test date
- A student may take a PTE Academic Test several times, in order to improve the score
- A student is identified by his/her RegistrationID, which stays the same student stays the same

ERD for PTE Academic Test

The PTE Academic Test Case Study - Sample Records for 8 Students

		Table Test Venue		
Venue ID	Name	Address	Price	Country Code
1	RMIT English	Level 10	300AUD	AU
	Worldwide	235-251 Bourke Street	300AUD	AU
		Melbourne		
		Victoria 3000		
2	Pearson Professional	Suite 200	200USD	US
	Centers	201 Filbert Street		
	San Francisco	San Francisco, California		
3	PLT at Cliftons	Level 12	300AUD	AU
	Sydney	60 Margaret Street		
		Sydney		
		New South Wales 2000		

		Table Test	
Test No	Test Date	Test Time	Venue ID
1	01/AUG/17	10:00am	1
2	01/AUG/17	11:00am	1
3	10/AUG/17	10:00am	2
4	10/AUG/17	11:00am	2
5	17/AUG/17	10:00am	3
6	17/AUG/17	11:00am	3
7	17/AUG/17	10:00am	1
8	25/AUG/17	10:00am	1

_	1	1	-		1		
	ah	NIE	S	T	α	Θ 1	nt.
10	$a_{\mathbf{L}}$,,,,	<i>,</i> ,	···	u	U	ııı

Registration ID	Student Name	DOB	Gender	Citizenship
318678895	Ying Chang	27/AUG/89	F	CN
312124682	Ryou Kato	23/MAR/94	M	JP
117609895	Susi Bambang	19/FEB/91	F	ID
891186588	Su-yeon Park	07/JUL/94	F	KR
387160595	Hong Lei	16/DEC/90	M	CN
312905800	Tim Yeoh	08/OCT/91	M	SG
311765711	Berta Ferrari	27/DEC/87	F	IT
392837402	Wenbo Lin	27/AUG/92	M	CN

The PTE Academic Test Case Study - Sample Records for 8 Students

Table Test Result

Test No	Registration ID	Listening Score	Reading Score	Speaking Score	Writing Score	Overall Score
1	318678895	69	77	78	70	74
1	312124682	55	57	60	75	60
2	117609895	68	68	67	69	68
2	891186588	62	63	57	68	61
3	387160595	67	72	78	66	72
3	312905800	66	73	71	67	70
4	311765711	57	55	59	60	57
7	117609895	75	68	78	78	75
7	891186588	69	70	76	75	72
8	318678895	80	7 9	78	78	78
8	312124682	55	45	47	50	47

The PTE Academic Test Case Study - Star Schema with Determinant Dim.

To implement the star schema in SQL:

```
create table CountryVenueDim
as
select distinct C.CountryCode, C.CountryName, T.TestPrice
from Test Venue T, Country C
where T.CountryCode = C.CountryCode;
create table CitizenshipDim
as
select distinct C.CountryCode as Citizenship, C.CountryName
from Student S, Country C
where S.Citizenship = C.CountryCode;
create table YearDim
as
select distinct to char (TestDate, 'YYYYY') as Year from Test;
```



```
create table GradeDim (
    Grade varchar2(3),
    Description varchar2(20),
    MinScore number,
    MaxScore number
);
insert into GradeDim values ('4.5', 'Functional', 30, 35);
insert into GradeDim values ('5', 'Vocational', 36, 49);
insert into GradeDim values ('6', 'Competent', 50, 64);
insert into GradeDim values ('7', 'Proficient', 65, 78);
```

insert into GradeDim values ('8-9', 'Superior', 79, 90);

		PTE band-scale	
Proficiency Level	Grade	Test Component	Test Score
Functional	4.5	Overall score	30-35
Vocational	5	Listening	36-49
		Reading	
		Writing	
		Speaking	
Competent	6	Listening	50-64
		Reading	
		Writing	
		Speaking	
Proficient	7	Listening	65-78
		Reading	
		Writing	
		Speaking	
C	8-9	Listening	79-90
Superior		Reading	
		Writing	
		Speaking	


```
create table TestComponentDim (
    TestComponent varchar2(20)
);
insert into TestComponentDim values
('Listening');
insert into TestComponentDim values
('Reading');
insert into TestComponentDim values
('Writing');
insert into TestComponentDim values
('Speaking');
insert into TestComponentDim values
('Overall');
```

Create temporary fact table:

```
create table TempFact
as
select TV.CountryCode, S.Citizenship,
to char(T.TestDate, 'YYYYY') as Year,
TR.ListeningScore, TR.ReadingScore,
TR.WritingScore, TR.SpeakingScore,
TR.OverallScore, TR.RegistrationID
from Test Venue TV, Test T, Student S,
Test Result TR
where TV. VenueID = T. VenueID
and T.TestNo = TR.TestNo
and TR.RegistrationID = S.RegistrationID;
```



```
alter table TempFact
add (
        GradeOverall varchar2(3),
        GradeListening varchar2(3),
        GradeReading varchar2(3),
        GradeWriting varchar2(3),
        GradeSpeaking varchar2(3)
);
```

```
update TempFact
set GradeOverall = (
case
  when OverallScore >= 30 and
     OverallScore <= 35 then '4.5'
  when OverallScore >= 36 and
     OverallScore <= 49 then '5'
  when OverallScore >= 50 and
     OverallScore <= 64 then '6'
  when OverallScore >= 65 and
     OverallScore <= 78 then '7'
  when OverallScore >= 79 and
     OverallScore <= 90 then '8-9'
end);
```

Repeat for GradeListening, GradeReading, GradeWriting, and GradeSpeaking

		PTE band-scale	
Proficiency Level	Grade	Test Component	Test Score
Functional	4.5	Overall score	30-35
Vocational	5	Listening	36-49
		Reading	
		Writing	
		Speaking	
Competent	6	Listening	50-64
		Reading	
		Writing	
		Speaking	
Proficient	7	Listening	65-78
		Reading	
		Writing	
		Speaking	
Superior	8-9	Listening	79-90
Superior		Reading	
		Writing	
		Speaking	

- The TempFact table has the correct grades for each student.
- The problem now is to breakdown the grades for a student into multiple test components
 - Create another temporary fact for <u>each of the test components</u>, eg. a temporary fact called 'OverallFact' for the Overall Score, and so on so forth

```
create table OverallFact GradeListening, GradeReading, GradeWriting, and GradeSpeaking as select CountryCode, Citizenship, Year, GradeOverall As Grade, 'Overall' as TestComponent, count(RegistrationID) as Total_Students_Overall from TempFact group by CountryCode, Citizenship, Year, GradeOverall, 'Overall';
```


 There were eleven students taking the test which are now grouped into nine records in Table OverallFact

	OverallFact Table										
Country Code	Citizenship	Year	Grade	Test Component	Total Students C	Overall					
AU	JP	2017	6	Overall	1						
AU	KR	2017	6	Overall	1				Listeningl	Fact Table	
AU	ID	2017	7	Overall	2	Country Co	de Citizenship	Year	Grade	Test Component	Total Students Listening
US	IT	2017	6	Overall	1	AU	CN	2017	7	Listening	1
AU	JP	2017	5	Overall	1	AU	ID	2017	7	Listening	2
US	CN	2017	7	Overall	1	US	IT	2017	6	Listening	1
US	SG	2017	7	Overall	1	AU	KR	2017	6	Listening	1
			7		1	US	CN	2017	7	Listening	1
AU	KR	2017	7	Overall	1	US	SG	2017	7	Listening	1
AU	CN	2017	7	Overall	2	AU	JP	2017	6	Listening	2
						AU	CN	2017	8-9	Listening	1
						AU	KR	2017	7	Listening	1

- There are also three other fact tables: ReadingFact, WritingFact, and SpeakingFact, with identical table structures
- These five fact tables can now be 'combined' to form one final fact table using a *union* operator:

```
create table FinalFact as
select CountryCode, Citizenship, Year, Grade, TestComponent,
Total_Students_Overall as Total_Students
from OverallFact
union select * from ListeningFact
union select * from ReadingFact
union select * from WritingFact
union select * from SpeakingFact;
```


- The final fact table contains 45 records
- Conclusion:
 - When the input record in the operational database contains the scores of all the test components as one record, it will be challenging to break down the records into multiple records in the final fact table, because there is a Test Component dimension.

	Final Fact Table										
Country Code	Citizenship	Year	Grade	Test Component	Total Students						
AU	CN	2017	7	Listening	1						
AU	CN	2017	7	Overall	2						
AU	CN	2017	7	Reading	1						
AU	CN	2017	7	Speaking	2						
AU	CN	2017	7	Writing	2						
AU	CN	2017	8-9	Listening	1						
AU	CN	2017	8-9	Reading	1						
US	SG	2017	7	Listening	1						
US	SG	2017	7	Overall	1						
US	SG	2017	7	Reading	1						
US	SG	2017	7	Speaking	1						
US	SG	2017	7	Writing	1						

- Fact measure for all the test components
- This means that the fact table is a Pivoted Fact Table
 - Shifts the Test Component into the fact measure;
 - The Determinant Dimension TestComponentDim is then removed from the star schema

How many records do we have in fact table with five fact measures?

Answer:

60 records in the final fact table

- = 2 countries of test venues * 6 countries of citizenship * 1 year * 5 grades
- However, since our test result data is incomplete, we will have problems with the final fact, because in the non-determinant dimension version, we need to keep track the zeroes
 - Even if the data is the test result is a lot, but still does not cover all possible combinations from the dimension!

	Table Test Result							
Test No	Registration ID	Listening Score	Reading Score	Speaking Score	Writing Score	Overall Score		
1	318678895	69	77	78	70	74		
1	312124682	55	57	60	75	60		
2	117609895	68	68	67	69	68		
2	891186588	62	63	57	68	61		
3	387160595	67	72	78	66	72		
3	312905800	66	73	71	67	70		
4	311765711	57	55	59	60	57		
7	117609895	75	68	78	78	75		
7	891186588	69	70	76	75	72		
8	318678895	80	79	78	78	78		
8	312124682	55	45	47	50	47		

		PTE band-scale	
Proficiency Level	Grade	Test Component	Test Score
Functional	4.5	Overall score	30-35
Vocational	5	Listening	36-49
		Reading	
		Writing	
		Speaking	
Competent	6	Listening	50-64
		Reading	
		Writing	
		Speaking	
Proficient	7	Listening	65-78
		Reading	
		Writing	
		Speaking	
	8-9	Listening	79-90
Superior		Reading	
		Writing	
		Speaking	

- 'Superior' grade is only available for Listening and Reading scores
- Using the normal fact table, there <u>will not be entry in the fact table</u> for Superior-Speaking, and for Superior-Writing;
- There will not be zero value in TotalStudents, where the Grade column is 'Superior' and the Test Component column is either 'Speaking' or 'Writing' \rightarrow less than 60 rows of records in the fact table

Solution: Step1

Get all possible combinations from all dimensions using Cartesian product between all dimensions:

Solution: Step 2

Re-create five temporary fact tables, one for each test component, using Outer Join operation between AllDimensions table and each of the temporary fact tables created in the previous section (see slide #51).

```
create table OverallFactNew as
select A.CountryCode, A.Citizenship,
          A. Year, A. Grade,
          nvl(0.Total Students Overall, 0)
          as Total Students Overall
from AllDimensions A, OverallFact O
where A.CountryCode = O.CountryCode(+)
and A.Citizenship = O.Citizenship(+)
and A.Year = 0.Year(+)
and A.Grade = 0.Grade(+);
```

```
create table ListeningFactNew as
    select
              A.CountryCode, A.Citizenship,
              A. Year, A. Grade,
              nvl(0.Total Students Listening, 0)
              as Total Students Listening
    from AllDimensions A, ListeningFact O where
    A.CountryCode = O.CountryCode(+)
    and A.Citizenship = O.Citizenship(+)
    and A.Year = 0.Year(+)
    and A.Grade = 0.Grade(+);
    create table ReadingFactNew as select ...;
    create table WritingFactNew as select ...;
55 create table SpeakingFactNew as select ...;
```

Solution: Step 3

Create the final fact table using the join operation

Solution: Step 4

Because our sample data is small, there are many records with zeroes values in the Total Students columns. Delete records where Total Students in <u>all of the five test components</u> are equal to zero.

```
delete from FinalFact2
where Total_Students_Overall = 0
and Total_Students_Listening = 0
and Total_Students_Reading = 0
and Total_Students_Writing = 0
and Total_Students_Speaking = 0;
```

	Final Fact Table									
Country	Citizenship	Year	Grade	Test Students	Total Students	Total Students	Total Students	Total Students		
Code				Overall	Listening	Reading	Writing	Speaking		
AU	KR	2017	6	1	1	1	0	1		
US	IT	2017	6	1	1	1	1	1		
AU	CN	2017	7	2	1	1	2	2		
AU	JP	2017	6	1	2	1	1	1		
AU	ID	2017	7	2	2	2	2	2		
AU	KR	2017	7	1	1	1	2	1		
US	CN	2017	7	1	1	1	1	1		
AU	JP	2017	5	1	0	1	0	1		
US	SG	2017	7	1	1	1	1	1		
AU	CN	2017	8-9	0	1	1	0	0		
AU	JP	2017	7	0	0	0	1	0		

Determinant Dimension - Conclusion

A Determinant Dimension (or a Determinant Attribute) must be used in retrieving the fact, in order to make the retrieved data more meaningful.

In other words, it is critical to use the Determinant Attribute in the query, either as a filtering mechanism (in the where clause) or in the display (in the select clause) in the SQL command.

