Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z Laboratorium 4

Dominik Jeżów

GR NR 4

Specyfikacje sprzętowe urządzenia:

• System: 80SM (LENOVO_MT_80SM_BU_idea_FM_Lenovo ideapad 310-15ISK)

• Procesor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• Pamięć RAM: 8GB

• Środowisko: Jupyther Notebook

Ćwiczenie zrealizowane w języku Julia 1.8.5, wraz z wykorzystaniem pakietu LinearAlgebra, Plots oraz PrettyTables

0. Opis ćwiczenia:

Ćwiczenie polegało na przybliżeniu funkcji $y(x) = e^{-(-k\sin(mx))} + k\sin(mx) - 1$ (gdzie, k = 4, m = 1) wykorzystując metodę aproksymacji średniokwadratowej wielomianowej. Zbadać wyznaczoną funkcje pod względem numerycznym dla różnej ilości punktów pochodzących z funkcji pierwotnej oraz dla różnej liczby funkcji bazowych.

1. Wprowadzenie teoretyczne

Aproksymacja średniokwadratowa wielomianowa polega na wyznaczeniu wielomianu $a_0 + a_1x + a_2x^2 + ... + a_mx^m$, gdzie ciąg skończony a_m wyznaczamy z poniższego układu równań

Wzór 1.1 Układ równań aproksymacji wielomianowej

2. Obliczanie aproksymacji

W moim programie obliczenie aproksymacji realizuje funkcja poly_aprox() która zwraca 100 węzłów aproksymacji funkcji. W funkcji obliczanie układu równań realizuje za pomocą operatora (\) z pakiety LinearAlgebra.

3. Punkty dyskretyzacji

Jak widać na tabeli 1.1 ilość wybranych punktów traciła na znaczeniu, gdy osiągnięto określoną ilość. Dla aproksymacji metodą wielomianową 30 punktów osiągało dobrą jak dla tej metody wyniki.

liczba punktów	aproksymacja wielomianowa
10	4107.69
20	95.1461
30	92.8285
40	92.814
50	92.8104
60	92.8097
70	92.8095
80	92.8094
90	92.8094
100	92.8094
500	92.8094
1000	92.8094

Tab. 3.1 średni błąd kwadratowy w zależności od ilości wybranych punktów (stopień wielomianu = 13)

4. Ilość funkcji bazowych

Ilość funkcji składowych ma znaczny wpływ na wynik. Szczególnie dla pierwszych 20 wartości, później te różnice się zacierają. W tym przypadku najmniejszy średni błąd kwadratowy osiągnęła aproksymacja wielomianu stopnia 13 i 12.

Warto zauważyć, że dla aproksymacji wielomianowej wyniki często występują "parami" to znaczy, że dla dwóch sąsiednich stopni wielomianu otrzymujemy prawie ten sam średni błąd

Stopień wielomianu	aproksymacja wielomianowa
2	140.059
3	140.059
4	137.163
9	128.74
10	101.247
11	101.247
12	92.8094
13	92.8094
14	116.088
15	120.631
20	147.157
50	168.828
95	168.927
96	168.928
97	168.929
98	168.93
99	7455.32
100	168.932

Tab. 4.1 średni błąd kwadratowy w zależności od stopnia aproksymacji

Z powyższego wykresu można zauważyć, że podczas używania aproksymacji średniokwadratowej wielomianowej, dla stopnia równego 99 błąd jest zatrważająco wysoki. Najprawdopodobniej jest to błąd czysto maszynowy.

Rys 4.1 Aproksymacja funkcji metoda wielomianowa dla stopnia wielomianu równego 99.

5. Wnioski

Niepotrzebna jest ogromna liczba danych, aby otrzymać dobre wyniki aproksymacji.