CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval

Kung-Hsiang Huang, ChengXiang Zhai, Heng Ji COLING 2022

> 발제자: 김한성 23-06-02

Abstract

영어 Fact-checking 데이터 셋이 다수 이후 다른 언어는 데이터 희소성 존재.

Cross-lingual 기술은 상대적 희소성이 높은 언어에서 좋은 효과를 기대할 수 있는 기술

본 저자는 Cross-lingual Fact-checking을 개선하기 위한 Cross-lingual Retrieval 모델을 제안

ORQA의 ICT Pretraining을 착안한 X-ICT를 제안

이는 결국 X-Fact zero-shot task에서 2.23% 향상한 SOTA를 달성

Claim	Muslimische Gebete sind Pflichtpro- gramm an katholischer Schule.
	Muslim prayers are compulsory in Catholic schools.
Label	Mostly-False (Grösstenteils Falsch)
Claimant	Freie Welt
Language	German
Source	de.correctiv.org
Claim Date	March 16, 2018
Review Date	March 23, 2018

X-Fact 데이터 구조

Background X-fact task

X-FACT - Evaluating Generalization

Three evaluation se	te for moscuring	gonoralization	of fact-checking systems
Tillee evaluation se	cs for fileasuring	generalization	of fact-checking systems

Split	# claims	# languages
Train	19079	13
Development	2535	12
In-domain	3826	12
Out-of-domain	2368	4
Zero-shot	3381	12
Zero-snot	2301	12

In-Domain Test

- · Language and source both in training
- Out-of-Domain Test
 - Language in training, but source not in training
- Zero-Shot Test
 - Neither language nor source in training.

Experiments and Baselines

- Experiments performed with mBERT
- Models and Baselines:
 - Claim-Only: Determine rating only using the claim statement.
 - Claim+Metadata: Additional metadata such as the claimant along with the claim statement
 - Evidence-based:
 - Extract evidences using Google Search on the claim statement.
 - Aggregate evidence using Attention-based model.

Introduction

- Fact-checking의 필요성 언급
- Fact-Checking을 위해선 신뢰성 높은 Corpus 가 필요
- Fact Checker는 항상 low-resource language datasets을 만들어야 함.

문제 정의 leverage high-resource languages with zero-shot cross-lingual transfer

train on leverage language and just test on low language

Introduction

Cross-lingual setup research

Claim to Claim : 주장의 언어와 다른 언어로 된 주장과 유사도 기준 매핑하지만 이러한 접근 또한 fact-checked된 다른 언어의 주장과 라벨이 존재해야함

X-Fact에서도 google search Engine을 활용하여 evidence를 제공했음 하지만 이 또한 수집된 문장의 신뢰성은 고려하지 않았음

Introduction

Cross-lingual setup research

Claim-oriented Cross-Lingual Retriever를 위한 세팅의 필요성을 느꼈고

이러한 프레임 워크인 CONCRETE(Claim-oriented Coss-lingual Retriever)를 제안.

Related Work

Fact-checking dataset

Related Work Cross-lingual Retrieval

Large Multi-lingual model이 생기면서 cross-encoder형태의 아키텍처가 제안

이후 bi-encoder 구조 시간 복잡도 또한 줄이고 효율도 챙긴 mDPR 제안

하지만 domain discrepancy로 claim evidence pair로 재학습한 CONCRETE등장

Task Definitions

Cross-lingual setup research

1. 크롤링: 49,000개의 기사 추출 (7개 언어로 구성,BBC, 16년에서 22년)

passage를 100토큰 가량으로 분리 347,557개의 passage 제작

- 2. X-Fact 문제를 풀기 위해 2-stage 프레임 워크 고안
 - Retrieval : Claim에 적절한 근거 Passage 찾기
 - Reader : Claim과 Passage를 기준으로 veracity를 확인

Proposed Method

CONCRETE(Retrival)

- Nossa Amazônia (...) permanece Claim praticamente intocada (Our Amazon (...) remains untouched.) Pada 2004 misalnya, kawasan hutan seluas lebih dari 27 ribu kilometer persegi hilang. Area itu setara dengan seluas Haiti... Top K Cross-lingual Multi-class Concrete mBERT retrieval bergabung dengan kampanye classification lingkungan untuk mengakhiri deforestasi lahan publik di hutan Amazon dan menuntut tindakan pemerintah. Predicted Retrieved passages veracity B B C BBC NEWS | WE BBC NEWS collection BBC NEWS | WE
- mDPR에서 학습한 multilingual IR datasets에서는 '주장'이 아닌 query가 주어진다.
 - 데이터 셋은 현재는 접근이 불가능하다.

Modification

1. OrQA방법을 착안한 pseudo claim 생성

- 4. OrQA ICT training
 - a. 문장 임베딩의 성능을 높이기 위한 방법론
 - b. sudo-question을 만들어 Retrieval학습

Figure 3: **Analysis**: Performance on our open version of the Natural Questions dev set with various masking rates for the ICT pre-training. Too much masking prevents the model from learning to exploit exact ngram overlap. Too little masking makes language understanding unnecessary.

Proposed Method

X-ICT : Cross-lingual Inverse Cloze Task

- 1. query랜덤 마스킹 문제점
 - a. 랜덤 쿼리가 Claim 성향인지 알 수가 없다
 - b. domain mismatch 확률이 높다. (문서 내 주제와 어긋나는 문장)
- 2. Claim의 성향에 제일 가까운 Document의 **Title**을 pseudo claim이라 정의 -> domain mismatch가 적다.
- 3. mBART to translate title (동일 확률을 위해 언어별 1/7)

$$L_{X-ICT} = -log \sum_{p_i \in P} rac{exp(sim(T^{`}_{p_i}, p_i))}{\sum_{p_j \in BATCH} exp(sim(T^{`}_{p_i}, p_j))}$$

c: claim

 $p_i: i_{th} document$

 $E_c(*)$: Claim Encoder

 $E_P(*): Passage\ Encoder$

$$sim(c, p_i) = E_c(c)^T E_p(p_i)$$

Proposed Method

Multilingual Reader

$$h_T = mBERT(T)[CLS]$$

 $h_{p_i} = mBERT(p_i)[CLS]$

$$L = rac{1}{N} \sum_{i=1}^N y_i \ log \hat{y}_i$$

PLM: bert-base-multilingual-cased

Baseline

- MT + DPR : translation input으로 모두 영어 변환 후 DPR
- BM25 : No train just test
- mDPR : 사전 학습된 Multilingual DPR
- Google Search

Implementation Details

X-ICT	AdamW, Ir : 2e-5, 30 epoch. max_length : 256
READER	mBERT fine tune Ir :5e-5, classifier Ir : 1e-3 max_length :512

Results

_			train lan != test lan	train lan == test lan
	Reader	Retrieval Method	Zero-shot F1 (%)	In-domain F1 (%)
Deign	Majority	None	7.6	6.9
Prior (Conto and Spilemen 2021)	mBERT	None	16.7	39.4
(Gupta and Srikumar, 2021)	mBERT	Google Search	16.0	41.9
	mBERT	None	17.25	36.91
Ours	mBERT	Google Search	16.02	42.61
	mBERT	MT+DPR	15.01	35.29
	mBERT	BM25	17.43	38.29
	mBERT	mDPR	17.60	36.79
	mBERT	CONCRETE	19.83*	40.53

for using Google Search suggests that the reader may exploit biases or patterns presented in Google Search's results that are not transferrable across languages. To validate this hypothesis, we an-

where Google Search results contain the string "SALAH" (WRONG), 50% of them are PARTLY TRUE and 45% of them are FALSE. Such patterns

Results

언어 거리간 음의 상관관계가 존재

인도네시아어 문단이 문단 컬렉션에서 제거된 경우 각 언어의 결과 (언어유사도 기준으로 정렬)

번역된 인도네시아어, 포르투갈어, 아랍어로 검색된 문단의 매크로 **F1** 점수의 성능 차이

Results

학습데이터 언어 수의 관계

인도네시아어 문단이 문단 컬렉션에서 제거된 경우 각 언어의 결과 (언어유사도 기준으로 정렬)

번역된 인도네시아어, 포르투갈어, 아랍어로 검색된 문단의 매크로 **F1** 점수의 성능 차이

Impact of X-ICT

Domain mis match

Remaining Challenges

- Evidence cannot be retrieved : 실제 근거가 아예 없는 경우
- Under-specified context : 주어진 근거로 사실을 판단하기 불충분할때
- Require intent identification : claim의 의도가 불분명한 경우
- Reader failure
- Annotation error

Figure 7: Distribution of the remaining errors.

Conclusion and Future works

- CONCRETE는 새로운 Cross-lingual Retrieval을 제안 및 domain specific하게 문제를 적절히 정의 및 모델 제안
- Fact-checking 분야의 Language generalization을 확보한 모델이다.
- IR 분야에 Claim과 같은 쿼리가 없는 것을 극복해줄 좋은 방법이라 주장
- 또한 X-Fact zero-shot task에서는 SOTA를 달성

감사합니다.