MAT194F Calculus Midterm Test 9:00 - 10:45, 23 November 2015 105 minutes No calculators or aids Each question is worth 10 marks

1. Evaluate f' for:

(a)
$$f(x) = x^3 \ln x$$

(b)
$$f(x) = \ln|2 - x - 5x^2|$$
 (c) $f(x) = 2e^{2x^2}$

(c)
$$f(x) = 2e^{2x^2}$$

(d)
$$f(x) = x \log_4 (\sin x)$$

(e)
$$f(x) = x^{\sin x}$$

2. Evaluate:

(a)
$$\int e^x \sqrt{e^x + 5} \, dx$$

(a)
$$\int e^x \sqrt{e^x + 5} \, dx$$
 (b) $\int_{-2}^0 \sqrt{4 - x^2} \, dx$ (c) $\int_1^e \frac{\ln x}{x} \, dx$

(d)
$$\int_0^{\pi/4} \frac{\cos x}{1-\sin x} dx$$
 (e)
$$\int \frac{x+\sqrt{x}}{3x^2} dx$$

(e)
$$\int \frac{x+\sqrt{x}}{3x^2} dx$$

- 3. Sketch, indicating all important features, the curve $y = xe^{1-x}$.
- 4. Let R be the region above the x-axis and under the graph of $f(x) = 1/\sqrt{x}$ for $1 \le x \le 4$.
 - (a) Find the area of R.
 - (b) There is a choice of $k \in [1,4]$ such that the vertical line x = k divides R into two regions R_1 and R_2 with the property that the solids obtained by revolving R_1 and R_2 about the xaxis have the same volume. Find this k.
- 5. Let R be the region above $y = (x 1)^2$ and below y = x + 1. Find the volume of the solid obtained by revolving R about the line y = -1.

Page one of two pages (turn this page over)

- 6. Let f(x) = 2kx and $g(x) = kx^2$, where k is a constant. Is there a value of k > 1 (strict inequality) for which the average values of f(x) and g(x) for $1 \le x \le k$ are equal?
- 7. f(x) is continuous, positive, real and is such that f(n) = 1 for all integers n. Let $F(x) = \int_4^{x^2} f(t)dt$, $x \ge 2$.
 - (a) Find $\lim_{x\to 2} F(x)$ and $\lim_{x\to 2} F'(x)$.
 - (b) Explain why F is 1-1 on $[2, \infty)$.
 - (c) Find $(F^{-1})(0)$ and $(F^{-1})'(0)$.
- 8. What is the area of the largest triangle in the first quadrant with two sides on the axes and the third side tangent to the curve $y = e^{-x}$?
- 9. A leaky 10 kg bucket is lifted from the ground to a height of 12 m at a very slow, constant speed with a rope that weighs 0.8 kg/m. Initially the bucket contains 36 kg of water but the water leaks at a constant rate and finishes draining just as the bucket reaches the 12-m level. How much work was done?
- 10. For what values of constants b and c does the curve $y = cx^3 + e^{bx}$ have (i) zero, (ii) exactly one, (iii) exactly two, (iv) more than 2, inflections points?

Page two of two pages