Contents

1 Probability Theory			1	
	1.1	Elemantary Probability		
		1.1.1	Basic principles of Counting	1
		1.1.2	Sample Points, Sample Space and σ -Field	2
		1.1.3	Probability Measures and Spaces	2
	1.2	Condi	itional Probability	3
		1.2.1	Independence of Events	3
		1.2.2	Bayes' Theorem	3
	1.3	Discre	ete Random Variables	3
		1.3.1	PDF and CDF	4
		1.3.2	Bernoulli Random Variable	4
		1.3.3	Independent and Identical Trials	5
		1.3.4	Counting Successes in a Saquance of Trials	5
		1.3.5	Binomal Random Variable	5
		1.3.6	Cumulative Distribution Function	5
		1.3.7	The Geometric Distribution	6
	1.4	Expec	etation, Variance and Moments	6

1 Probability Theory

1.1 Elemantary Probability

Definition 1.1.1 (Cardano's Principle). A be a random outcome of an experiment that may proceed in various ways. Assume each of these ways is **equally** likely, then, probability P[A] of outcome A is

$$P[A] = \frac{number\ of\ ways\ leading\ to\ outcome\ A}{number\ of\ ways\ the\ experiment\ can\ be\ proceeded} \tag{1}$$

1.1.1 Basic principles of Counting

• Permutation:

$$A_n^k = \frac{n!}{(n-k)!} \tag{2}$$

• Combination:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} \tag{3}$$

• Permutation of k **Indisguishable** Objects:

$$\frac{n!}{n_1! n_2! n_3! \cdots n_k!} = \binom{n}{n_1} \cdot \binom{n-n_1}{n_2} \cdots \binom{n-(n_1+n_2+\cdots+n_{k-1})}{n_k}$$
(4)

Remark:

In permutation of k indistinguishable objects, the elements has noorder

within a group but are different from each other; the groups either has order or are different from each other.

Example:

Consider 10 balls, 5 red, 3 green and 2 blue. How many ways can they be arranged on a line?

$$\frac{10!}{5! \cdot 3! \cdot 2!} = 2520 \tag{5}$$

1.1.2 Sample Points, Sample Space and σ -Field

Definition 1.1.2 (Sample Points). Mathematical objects are called sample points.

Definition 1.1.3 (Sample Space). The sample space S is large enough to accommodate all the sample points.

Definition 1.1.4 (Event). An outcome in the sense of Cardano's principle is interpreted as a subset A of a sample space S abd called an event.

Definition 1.1.5 (Mutually exclusive). Two events A_1 , A_2 are called mutual exclusive if $A_1 \cap A_2 = \emptyset$

Definition 1.1.6 (σ -Field). Suppose that a non-empty set S is given. A σ -field \mathcal{F} on S is a family of subsets of S such that:

- $\bullet \ \emptyset \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $S \setminus A \in \mathcal{F}$
- If $A_1, A_2, \dots \in \mathcal{F}$ is a finit sequence of subsets, then the union $\bigcup_k A_k \in \mathcal{F}$

1.1.3 Probability Measures and Spaces

Definition 1.1.7 (Probability Measure). Let S be the sample space and \mathcal{F} be a σ -field. Then a function

$$P: \mathcal{F} \to [0, 1], A \to P[A], \tag{6}$$

is called $probability\ measure\ /\ probability\ function\ on\ S$ if

- P[S] = 1
- For any set of events $A_k \subset mathcal F$ such that $A_j \cap A_k = \emptyset$ for $j \neq k$,

$$P[\cup_k A_k] = \sum_k a_n P[A_k] \tag{7}$$

Theorem 1.1.1 (Basic Properties). $P[A_1 \cup A_2] = p[A_1] + P[A_2] - P[A_1 \cap A_2]$

1.2 Conditional Probability

Definition 1.2.1 (Conditional Probability). B occurs given that A has occured

$$P[B \mid A] := \frac{P[A \cap B]}{P[A]} \tag{8}$$

1.2.1 Independence of Events

Definition 1.2.2 (independent). Two events are *independent* if

$$P[A \cap B] = P[A]P[B] \tag{9}$$

equivalent to

$$P[A \mid B] = P[A], P[B] \neq 0$$
 (10)

Definition 1.2.3 (Total Probability).

$$P[B] = P[B \mid A_1] * P[A_1] + \dots + P[B \mid A_n]P[A_n] = \sum_{k=1}^{n} P[B \mid A_k] \cdot P[A_k]$$
 (11)

is called total propability formula for P[B]

1.2.2 Bayes' Theorem

Theorem 1.2.1 (Bayes's Theoremm). Let $A_1, \dots, A_n \subset S$ be a set of pairwise mutually exclusive events whose union is S and who each have non zero probability of occurring. Let $B \subset S$ be any events such that $P[B] \neq 0$. Then for any $A_k, k = 1, \dots, n$

$$P[A_k \mid B] = \frac{P[B \cap A_k]}{P[B]} = \frac{P[B \mid A_k] \cdot P[A_k]}{\sum_{j=1}^n P[B \mid A_j] \cdot P[A_j]}$$
(12)

1.3 Discrete Random Variables

Definition 1.3.1 (Random Variable). Such function X

$$X: S \to \mathbb{R}$$
 (13)

is a random variable. X has numerical values that are derived from the outcome of a random experiment.

Two types:

• Discrete Random Variables: countable range in \mathbb{R}

Definition 1.3.2 (Discrete Random Variable). Let S be sample space, Ω a countable subset of \mathbb{R} . A discrete random variable is a map

$$X: S \to \Omega$$
 (14)

$$f_X: \Omega \to \mathbb{R}$$
 (15)

A random variable is often given by the pair (X, f_X)

• Continuous Random Variables: having a range equal to \mathbb{R}

Example:

Flip a coin three times, sample space can be given by:

$$S = (t, t, t), (t, t, h), (t, h, t), \cdots, (h, h, h)$$
(16)

Then we can define X as follows:

$$X(t,t,t) = 0, X(t,t,h) = 1, \dots, X(h,h,h) = 3$$
 (17)

X denotes the number of heads

$$P[X = 1] = P[(t, t, h), (t, h, t), (h, t, t)]$$
(18)

We can write

$$P[X = x] = P[A] \tag{19}$$

where $x \in R$ and $A \subset S$ is the event containing all sample points p such that X(p) = x.

1.3.1 PDF and CDF

Random variable comes with a probability density function or probability distribution f_X that allows the calculation of probability directly. Follows:

- $f_X(x) > 0$ for all x
- $\sum_{X \in \Omega} f_X(x) = 1$

Definition 1.3.3 (Cumulative distribution function). Cumulative distribution function of a random variable is defined as

$$F_X : \mathbb{R} \to \mathbb{R}, F_X(x) := P[X \le x]$$
 (20)

For discrete random variable, $F_X(x) = \sum_{y \le x} f_X(y)$

1.3.2 Bernoulli Random Variable

Definition 1.3.4 (Bernoulli Trial). Consider an experiment can only results in two possible outcomes, such as success or failure. and probability of success 0

Definition 1.3.5 (Bernoulli Random Variable). Let S be a sample space and $X: S \to 0, 1 \in \mathbb{R}$, Let 0 < P < 1, then define the density function

$$f_X: 0, 1 \to R \quad f_X(x) = \begin{cases} 1-p & for \ x = 0 \\ p & for \ x = 1 \end{cases}$$
 (21)

Then X is said to be a *Bernoulli random variable* or follow a *Bernoulli distribution* with parameter p. We indicate this by writing

$$X \sim Bernoulli(p)$$
 (22)

1.3.3 Independent and Identical Trials

- *independent* means the outcome of a trial will not influence the following trial
- identical means each trial has same probability of success

1.3.4 Counting Successes in a Saquance of Trials

$$P[x \ successes \ in \ n \ trials] = \binom{n}{x} p^x (1-p)^{n-x}$$
 (23)

1.3.5 Binomal Random Variable

Definition 1.3.6 (Binomal Random Variable). S: sample space, $n \in mathbb{N} \setminus 0$ and

$$X: S \to \Omega = \{0, \cdots, n\} \in \mathbb{R}$$
 (24)

Let 0 and define the density function

$$f_X: \Omega \to \mathbb{R}, \quad f_X(x) = \binom{n}{x} p_x (1-p)^{n-x}$$
 (25)

Then X is said to be a binomial random variable with parameters n and p. Indicate this by writing

$$X \sim B(n, p) \tag{26}$$

Also:

$$B(1,p) = Bernoulli(p) \tag{27}$$

1.3.6 Cumulative Distribution Function

Definition 1.3.7 (Cumulative Distribution Function).

$$F_X : \mathbb{R} \to \mathbb{R}, \qquad F_X(x) := P[X \le x]$$
 (28)

For a discrete random variable

$$F_X(x) = \sum_{y \le x} f_X(y) \tag{29}$$

In case of binomial distribution,

$$F_X(x) = \sum_{y=0}^{[x]} {n \choose y} p^y (1-p)^{n-y}$$
(30)

[x] denote the largest integer not greater than x.

MMA command:

CDF[BinomalDistribution[n,p],x]

1.3.7 The Geometric Distribution

Another example: suppose er perform a sequence of Bernoulli trials which continues until a success is obtained. We then define the $geometric\ random\ variable\ X$ to denote the number of trials needed to obtain the first success. Example:

Result (t, t, t, h), geometric random variable X attains value X = 4

Definition 1.3.8 (Geometric Random Variable).

$$X: S \to \Omega = \mathbb{N} \setminus \{0\} \tag{31}$$

Let $0 and define density function <math>f_X(x) : \mathbb{N} \setminus \{0\} \to \mathbb{R}$

$$f_X(x) = (1-p)^{x-1}p (32)$$

then, X is a geometric random variable with parameter p

$$X \sim Geom(p)$$
 (33)

The cumulative distribution fuction for a geometrically distributed random variable (X,f_X) with parameter p is given by

$$F(x) = P[X \le x] = 1 - (1 - p)^{[x]}$$
(34)

1.4 Expectation, Variance and Moments