Conjuntos y Números

Lista 3 Curso 2019-20

1) En cada uno de los siguientes casos, se da una relación entre elementos del conjunto que se especifica debajo. Decidir cuáles son **relaciones de orden**; en caso de serlo, estudiar si es o no un **orden total**; de lo contrario, explicar qué propiedad le falla para ser un orden.

$$\begin{bmatrix} x \ge y \\ x, y \in \mathbb{R} \end{bmatrix}, \begin{bmatrix} x < y \\ x, y \in \mathbb{R} \end{bmatrix}, \begin{bmatrix} |x| \le |y| \\ x, y \in \mathbb{R} \end{bmatrix}, \begin{bmatrix} A \subset B \\ A, B \in \mathcal{P}(X) \end{bmatrix}$$
$$\begin{bmatrix} a \le c \land b \le d \\ (a, b), (c, d) \in \mathbb{Z}^2 \end{bmatrix}, \begin{bmatrix} a + b\sqrt{2} \le c + d\sqrt{2} \\ (a, b), (c, d) \in \mathbb{Z}^2 \end{bmatrix}$$

Ojo: por convenio, ' \subset ' incluye el caso '='. Se escribe con frecuencia ' \subseteq ', para ayudar a recordarlo.

2) Sea X un conjunto no vacío y $f:X\longrightarrow \mathbb{R}$ una función. Se define en X la siguiente relación:

$$x\mathcal{R}y \Leftrightarrow f(x) \leq f(y).$$

Demostrar que la relación \mathcal{R} es una relación de orden si y sólo si f es inyectiva.

- 3) Para la relación de orden dada en \mathbb{N} por $\lceil n | m \rceil$, dar respuesta a las siguientes preguntas:
 - a) ¿Tiene N un máximo y/o un mínimo para esta relación?
 - b) ¿Qué subconjuntos de N tienen un máximo y cuáles un mínimo?
 - c) Dado un intervalo $A = \{k \in \mathbb{N} : n \le k \le m\}$, ¿qué debe cumplir un $k \in A$ para ser un elemento maximal de A? ¿Y para ser minimal?
 - d) ¿Cuáles son los minimales de $\mathbb{N} \setminus \{1\}$?
 - e) Calcular los elementos minimales de $I = \{k \in \mathbb{N} : 1 < k \le 100\}$.
- 4) Decimos que una relación de orden \mathcal{R} en un conjunto X es un **buen orden**, si cada subconjunto no vacío $A \subset X$ tiene un mínimo, como sucede con el orden ' \leq ' en \mathbb{N} .

Probar que también están bien ordenados por ' \leq ' los siguientes subconjuntos de \mathbb{R} :

- a) La unión $X \cup Y$ de dos subconjuntos $X,Y \subset \mathbb{R}$, si cada uno de ellos está bien ordenado.
- b) El conjunto $X = \{a_n + b_m : n, m \in \mathbb{N}\}$, si $\{a_n\}$, $\{b_n\}$, son dos sucesiones crecientes.
- 5) Probar la afirmación siguiente o dar un contraejemplo que la refute: Si un conjunto ordenado A tiene un solo elemento minimal a, entonces a es el mínimo de A.

- 6) Dar una biyección entre los conjuntos siguientes que transforme una en otra las relaciones de orden dadas sobre ellos:
 - a) Por un lado \mathbb{Z} , con el orden ' \leq ' habitual y por otro el conjunto de los racionales de la forma $1 \pm n/(n+1)$, $n \in \mathbb{N} \cup \{0\}$, también con el orden ' \leq ' habitual.
 - b) Por un lado $\mathbb{R} \times \mathbb{R}_+$, con el orden dado por: $(a,b)\mathcal{R}(c,d)$ si y sólo si $|a-c| \leq d-b$ y por otro el conjunto de los discos abiertos del plano, con su centro en el eje x, ordenados por inclusión.
- 7) ¿Existe una biyección entre \mathbb{Z} con el orden ' \leq ' habitual y \mathbb{Q} con el orden ' \leq ' habitual que transforme una en otra las relaciones de orden?
- 8) Dado un alfabeto que, como el nuestro, tiene un orden total establecido, y llamando "palabras" a todas las posibles secuencias finitas de sus signos, se llama *orden lexicográfico* al usado en los diccionarios, listas de nombres, etc., para ordenar el conjunto de palabras.
 - a) Usando el signo ' \leq ' para el orden de las "letras", dar una definición de cuándo la palabra ' $a_1a_2\ldots a_n$ ' precede a la ' $b_1b_2\ldots b_m$ ': decir qué deben cumplir sus letras para ello.
 - b) Con esa definición, probar que este orden es total; en consecuencia, cada conjunto finito de palabras tendrá un mínimo.
 - c) (*) ¿ es cierto el apartado anterior para cualquier conjunto infinito de palabras? (y por lo tanto se trataría de un *buen orden*). Demostrarlo o dar un contraejemplo.
- 9) En $\mathbb{R} \setminus \{0\}$ definimos la siguiente relación: $x\mathcal{R}y$ si $x \in y$ tienen el mismo signo $y \mid x \mid \leq \mid y \mid$.
 - a) Demostrar que es una relación de orden, pero que no es de orden total.
 - b) Hallar el supremo, ínfimo, máximo y mínimo (si los hay) del intervalo [-3, 2).
- 10) Se define $\mathbb{N}^* = \mathbb{N} \cup \{0\}$ y se considera la función

$$\begin{array}{ccc} f: \mathbb{N}^* \times \mathbb{N}^* & \longrightarrow \mathbb{N} \\ (n,m) & \longrightarrow f(n,m) = 2^n 3^m \end{array}$$

y a partir de ella se definen las siguientes relaciones en $\mathbb{N}^* \times \mathbb{N}^*$:

$$(n,m)\mathcal{R}_1(n',m') \Leftrightarrow f(n,m) \leq f(n',m')$$

 $(n,m)\mathcal{R}_2(n',m') \Leftrightarrow f(n,m) \mid f(n',m')$

- a) Demostrar que \mathcal{R}_1 y \mathcal{R}_2 son ambas relaciones de orden. ¿Son relaciones de orden total?
- b) Hallar los elementos distinguidos (elementos maximales, elementos minimales, supremos, ínfimos, máximos y mínimos) del conjunto $A = \{(n, m) \in \mathbb{N}^* \times \mathbb{N}^* : 1 \leq n + m \leq 4\}$ para cada una de la relaciones de orden \mathcal{R}_1 y \mathcal{R}_2 .