since $\langle u_j, u_i \rangle = 0$ for all $i \neq j$ and $c_i = \langle v, u_i \rangle / \|u_i\|^2$. As a consequence, we have

$$||v||^{2} = ||v - \sum_{i \in I} c_{i}u_{i} + \sum_{i \in I} c_{i}u_{i}||^{2}$$

$$= ||v - \sum_{i \in I} c_{i}u_{i}||^{2} + ||\sum_{i \in I} c_{i}u_{i}||^{2}$$

$$= ||v - \sum_{i \in I} c_{i}u_{i}||^{2} + \sum_{i \in I} |c_{i}|^{2},$$

since the u_i are pairwise orthogonal, that is,

$$||v||^2 = ||v - \sum_{i \in I} c_i u_i||^2 + \sum_{i \in I} |c_i|^2.$$

Thus,

$$\sum_{i \in I} |c_i|^2 \le ||v||^2,$$

as claimed.

- (2) We prove the chain of implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.
- $(a) \Rightarrow (b)$: If $v \in V$, since V is the closure of the subspace spanned by $(u_k)_{k \in K}$, for every $\epsilon > 0$, there is some finite subset I of K and some family $(\lambda_i)_{i \in I}$ of complex numbers, such that

$$\left\|v - \sum_{i \in I} \lambda_i u_i\right\| < \epsilon.$$

Now for every finite subset J of K such that $I \subseteq J$, we have

since $I \subseteq J$ and the u_j (with $j \in J$) are orthogonal to $v - \sum_{j \in J} c_j u_j$ by the argument in (1), which shows that

$$\left\|v - \sum_{j \in J} c_j u_j\right\| \le \left\|v - \sum_{i \in I} \lambda_i u_i\right\| < \epsilon,$$

and thus, that the family $(c_k u_k)_{k \in K}$ is summable with sum v, so that

$$v = \sum_{k \in K} c_k u_k.$$