

GEOM20007 SPATIAL VISUALISATION

LECTURE 13: CARTOGRAPHY 4

TOWARDS GREATER INTERACTION

REVISITING THE CARTOGRAPHIC PROCESS

Cartography has a very long history

A cartographic map is a representation

- Visual language (marks and visual variables)
- Abstract, symbolic representation of the real world*

It essentially has two core functions

- Storage and recording (spatial aspect)
- Presentation and analysis (graphical aspect)

REVISITING THE CARTOGRAPHIC PROCESS COMMUNICATION MODEL

Step 1

Consider the real world phenomena

Step 2

Determine the map's purpose and its intended users

Step 3

Collect data and perform modelling/selection

Step 4

Determine suitable encodings, design and construct the map

Step 5

Determine if users can decode the information and find it useful

PUTTING THINGS TOGETHER

- 1. Map elements
- 2. Typography and placement of labels

TRADITIONAL MAP ELEMENTS

- Borders
- Mapped area
- Inset (if applicable)
- Title and subtitle
- Legend
- Data source
- Scale
- Orientation

(Slocum et al., 2009)

Borders

Frame line and neat line help to organise the map's elements

Similar to a picture frame – focus the user's attention (not distract them)

Avoid **map junk** – maximise data ink ratio. Use clean, crisp borders.

Mapped area

The region of the Earth that is represented.

Size: dependent on various constraints*

Position: Centred (vertical, horizontal)^

Two main components:

1. Symbology

e.g., enumeration units

2. Base information

Provides a geographic frame of reference (without it symbols are virtually meaningless) e.g., boundaries, transportation routes

Inset

A smaller map within the context of a larger map. Reasons for use:

- 1. To show the primary **mapped area** in a larger, more recognisable context
- 2. To enlarge important or congested areas
- 3. To show other topics related to the map (e.g., previous maps from 2014, 2015)

Title and subtitle

Most (if not all) maps require a title

Must succinctly describe the map's theme, while not being too cryptic

Maximise the **mapped area** for the data-ink ratio: Omit unnecessary words such as 'Map of...'!

Subtitle may be used to elaborate on title

e.g.,

Population density
Melbourne 1883

Legend

Defines **all** of the symbols used on the map and that they are identical. Nothing else.

Must be clear and straight forward - avoid a "crypto-graphical mystery" (Tufte, 1983)

Good design principles apply, e.g., group symbols of the same graphic primitive.

Do **not** add a label: 'Legend' or 'Key'

Data source

Allows the map user to understand where the data came from

Use 'Source:' and reference all details (date is very important)

Typically:

Included in the mapped area of larger maps, or Included in the caption of smaller maps

Source

Scale

The amount of reduction that has taken place

The **representative fraction** is the ratio form of a scale e.g., 1:250,000

Include page size for paper maps e.g., 1:250,000 at A3

Bar scale allows relative judgements

- -Suitable for country or smaller sized areas
- -Minimum = 0
- -Maximum = rounded (never decimal)
- -Needs to be clean and not consume data-ink

Orientation

A graticule or north arrow illustrate the direction of 'North' on a map

Type depends on map purpose: e.g. magnetic north, true north

Large enough to find and use only, avoid map junk (maximise data-ink!)

mages: GRASS Wiki http://grasswiki.osgeo.org/

TYPE

Type (or text) refers to the use of words on maps. Typography is the process of formatting type.

Terminology:

Type family, e.g., Calibri

Type face, e.g., Courier Light

Type size, e.g, 12pt (1pt = 1/72")

Font: the complete set of characters in a font family

Serifs: short extensions to letters (no serif = sans serif)

Letter spacing: distance between letters in a word

Word spacing: distance between words

Kerning: distance between adjacent letters

Leading (line spacing): vertical space between lines

RR

TYPOGRAPHIC GUIDELINES FOR MAPS

Poor use of text spoils the map and impedes reading (Imhof, 1975)

General principles for lettering and design:

- 1. Legibility easily read, discriminated and quickly located
- 2. Clear graphic association to the object to which the text belongs
- 3. Minimise disruption to features and labels (overlapping, concealing)
- 4. Assist revealing spatial extent, connections, importance, differences
- 5. Type arrangement should reflect classification/hierarchy of objects
- 6. Selection and arrangement not unnecessarily even, not clustered

Source: Imhof, E. (1975). Positioning names on maps. The American Cartographer, 2(2), 128-144.

ADDTIONAL GUIDELINES FOR MAPS

- Avoid use of map junk, e.g., decorative type or other elements
- Minimise use of bold styles
- Reserve italics for labelling water features only
- Avoid use of more than two type families (be consistent)
- Choose realistic font sizes (readability vs. maximise data-ink ratio)
- Spell-check
- Critically review, revise and edit
 - Iterative design process

SUMMARY

- 1. Human vision
- 2. Data graphics
- 3. Cartography (representational era, 1950s-60s)

LIMITATIONS OF THE TRADITIONAL MAP METAPHOR

Despite being relatively intuitive and expressive, the map metaphor has four key limitations

- Maps are **static** and poor at representing change and evolution
- Maps are two-dimensional and ill-suited to complex threedimensional phenomena
- Maps are based on visual stimuli only and do not take advantage of auditory, haptic etc.
- Maps offer only limited opportunities for feedback

BIG LIMITATIONS OF TRADITIONAL MAP METAPHOR?

Big datasets

Linked data

Displaying 'necessary' data

TECHNOLOGIES PROMOTING CHANGE

SOME DRIVERS

- Server technologies
 - o Processing
 - Storage
- Devices
 - Various interaction technologies (e.g., display)
- Telecommunications
 - Design (e.g., centralised/decentralised)
 - Bandwidth and speed

SPATIAL DATA INFRASTRUCTURES

- Interoperability between systems
 - Linking to other data sets or services

LINKED DATA EXAMPLES

- Statistical data associated to the location, e.g., ABS
- Other spatial data (e.g. Data.gov.au: school locations)
- Administrative/government data
- Cultural data related to place
- Connectivity relationships (e.g., network connectedness)
- Dependency relationship (e.g., geometry defines another object)
- Topological relations in 3rd dimension (geometries overlap in the horizontal plane with other relations, e.g., highway flyover)
- Temporal data

Image redrawn from Roth (2013)

NEW DEVELOPMENTS IN MAPS

"Cartographic revolution"

(Roth, 2013)

... Maps of higher interactivity offering greater feedback

Compare against the map communication model (noisy channels)

NEW DEVELOPMENTS IN MAPS

Examples:

- Areal georeferenced video
- Play + pause with temporal navigation
 - Animated CO2 map http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11719
 - Animated tsunami map <u>http://sos.noaa.gov/Datasets/view-</u> movie.html?video=indian tsunami propagation 400

NEXT LECTURE

■ HCl 1: Interaction design

PRACTICAL

Presenting Data with Processing (PDP)