F 1.2 Arbeit und Spannung im elektrischen

- **1.a)** $W=0.15\,\text{mJ}$ **b)** $U=375\,\text{V}$
- 2. $E = 4 \cdot 10^5 \text{ V/m}$
- **3.** $m = 3,016 \cdot 10^{-14} \text{kg}$; $Q = 3,36 \cdot 10^{-18} \text{As}$

F 1.3 Kapazität, Kondensator, Energie im Kondensator

Seite 129

- **2. a)** $C_2 = \frac{1}{2}C_1$; Q = konst.; $U_2 = 2U_1$; $E_2 = E_1$; D=konst; $W_2=2W_1$
 - **b)** $U = \text{konst}; C_2 = \frac{1}{2}C_1; Q_2 = \frac{1}{2}Q_1; E_2 = \frac{1}{2}E_1;$ $D_2 = \frac{1}{2}D_1$; W = konst;
- 3. 1J=6,25 · 10¹⁸ eV
- **4. a)** $Q = 0.92 \cdot 10^{-3} \text{ As}$; W = 105.8 mJ
 - **b)** $N=5,75\cdot 10^{15}$
- **5.** $Q = 5 \cdot 10^{-8} \text{ As}$; $E = 50 \cdot 10^{3} \text{ V/m}$; $W = 2,5 \mu \text{ J}$; $F = 2.5 \cdot 10^{-3} \text{ N}$
- **6.** C_1 = 35,4 pF; C_2 = 177 pF; U_1 = 226 V; $U_2 = 45,2 \text{ V}; E_1 = 452 \text{ V/cm}; E_2 = 90,4 \text{ V/cm}$
- **7. a)** $Q = 552 \cdot 10^{-6} \text{ As } \mathbf{b} \mathbf{)} U_1 = 92 \text{ V}; U_2 = 138 \text{ V}$
- c) U = 55.2 V
- d) $Q_{\text{zus}} = 1748 \cdot 10^{-6} \text{As} = 1.748 \cdot 10^{-3} \text{As}$
- **8. a)** $U_{\text{max}} = 4 \,\text{kV}$ **b)** $Q_{\text{max}} = 556 \cdot 10^{-9} \,\text{As}$

F2 Elektrischer Stromkreis

F 2.1 Ohm'sches Gesetz und Widerstand

Seite 130

- **3. a)** $R = 360 \Omega$ **b)** U = 5,32 kV **c)** I = 15,33 Ad) $U=180\,\mathrm{kV}$ e) $R=3,49\,\Omega$ f) $I=5,29\,\mathrm{mA}$
- **4.** U = 300 V
- **5.** $R = 79,3\Omega$
- **6.** $R = 1.28 \text{ k}\Omega$
- **7.** $R_{i} = 0.6 \Omega$
- 8. U = 257 V
- 9. $R_i = 0.5 \,\mathrm{m}\Omega$

F 2.2 Widerstand eines Leiters

Seite 131

- **2.** a) $\rho = 0.0286 \Omega \cdot \text{mm}^2/\text{m}$; $R = 0.98 \Omega$
 - **b)** $\gamma = 56.2 \,\text{m/}(\Omega \cdot \text{mm}^2); R = 0.74 \,\Omega$
 - c) $\gamma = 2.38 \text{ m/}(\Omega \cdot \text{mm}^2)$; l = 42.86 m
- 3. $l = 3,016 \,\mathrm{m}; 1,508 \,\mathrm{m}; 0,684 \,\mathrm{m}; 0,312 \,\mathrm{m}; 0,146 \,\mathrm{m}$
- 4. $A = 2.5 \,\mathrm{mm}^2$
- **5. a)** l=73,1m **b)** m=10,42g

Seite 132

- **6.** $l = 78,5 \,\mathrm{m}$
- 7. $\vartheta = 525 \,^{\circ}\text{C}$
- **8. a)** R_{20} =209 Ω **b)** R_{120} =215,7 Ω
 - **c)** Eisen: $R_{20} = 73,3\Omega$; $R_{120} = 106,3\Omega$
- **9. a)** $R = 275 \Omega$ **b)** I = 9,2 A **c)** I = 0,84 A

F 2.3 Spannungsabfall, Spannungsverlust

1. $R=6\Omega$

Seite 133

- **2.** $R = 34,3\Omega$
- 3. a) $U_{\text{KI}} = 3.72 \text{ V}$ b) $R_{\text{i}} = 0.8 \Omega$
- **4.** $U_V = 10.8 \text{ V}$; $U_V/U = 4.8 \%$, zu hoch
- **5.** $U_V = 175 \text{ V}$
- **6.** $U_{V} = 1,43 \text{ V}$
- 7. a) $U_V = 0.35 \text{ V}$; U = 21.63 V
 - **b)** $R_i = 0.48 \Omega$ **c)** $U_{KI} = 21.98 V$

F 2.4 Schaltung von Widerständen (Kirchhoff'sche Gesetze)

Seite 134

- 1. in Reihe: $R=3\Omega$; parallel: $R=0.667\Omega$
- 2. in Reihe: $R=7\Omega$; parallel $R=0.571\Omega$
- **3.** I_1 = 3,43 A; I_2 = 4,57 A
- 4. a) $I = 3,75 \,\text{A}$
 - **b)** $I = 0.926 \,\text{A}$
 - c) $U_1 = 4,44 \text{ V}; U_2 = 5,56 \text{ V}$
- 5. a) $I_1 = 15,9 \text{ A}$; $I_2 = 19,1 \text{ A}$ b) U = 286 V

Seite 135

- **6.** $I_1 = I_2 = 1A$; U = 12V
- 7. $R_1 = R_2 = 16\Omega$
- 8. in Reihe: $R=2,25 \text{ k}\Omega$; parallel: $R=224\Omega$
- **9. a)** $R_1 = R_2 = 57,5 \Omega$ **b)** $I_1 = 2 A$; $I_{11} = 4 A$
- **10.** $R_x = 23,33 \Omega$
- **11.** $R=12,5\Omega$; l=59,6 m

F 2.5 Schaltung von Messgeräten

Seite 136

- **1. c)** $I = I_3 = 17,59 \text{ A}$; $I_1 = 10,82 \text{ A}$; $I_2 = 6,77 \text{ A}$; $U_1 = U_2 = 54,1 \text{ V}; U_3 = 175,9 \text{ V}$
- 2. Messbereich I=60 A
- 3. $R_{\rm n} = 0.0625 \,\Omega$
- **4. a)** $R = 11,4 \text{ k}\Omega$ **b)** I = 41,67 mA
- **6.** U = 100 V
- **7.** $R_{V} = 4.8 \,\mathrm{k}\Omega$

F 2.6 Elektrische Arbeit und Leistung

Seite 137

- 1. $P_{\text{aufg}} = 1,035 \,\text{kW}$
- **2.** $R = 63,3\Omega$; bei 230 V wäre P = 835,3 W
- 3. I = 2.61 A
- 4. Pauto = 1,254 kW
- **5. a)** $R_i = 0.02 \Omega$; $P_V = 0.08 W$ **b)** $P_{\text{nutz}} = 47.92 W$
- P_{aufg} = 3498 W
- 7. a) $R_{\text{Ltq}} = 1,35 \Omega$; $P_{\text{Ltq}} = 5,4 \text{W}$ b) U = 21,25 V:
 - $P_{\text{aufg}} = 42,51 \text{ W}; R = 10,63 \Omega$
- 8. $t = 25 \, \text{h}$

Seite 138

- 9.0,9Ct
- 10. a) 40,5 Ct/Monat
- **11. a)** $P = 0.24 \,\text{kW}$; I =
- **12.** $P_{\text{aufg}} = 5294 \text{W}$
- 13. P_{nutz} = 15 kW; P_{aufo} Stromkosten: 85,0
- **14.** $\eta = 0.84$
- **15. a)** $P_{\text{aufg}} = 1426 \text{W};$
 - **b)** $P_{\text{aufg}} = 4784 \text{ W};$
 - c) $P_{\text{aufg}} = 15640 \text{ W}$
- **16.** $P_{\text{nutz}} = 13,8 \,\text{kW}; \, \eta =$
- 17. a) Paufg=2264 Nm
 - **b)** $P_{Motor} = 2573 \text{ W}$
- 18. a) P_{Motor} = 4088 J/s
 - **b)** $P_{\text{Netz}} = 4985 \text{W};$

F3 Wärmewirku

Seite 139

- 1. P=233 J/s=233 W
- **2.** Q = W = 21600003. b) W = 80 kWh
- **4.** Q = 483 kJ
- 5. a) W = 0.242 kWh
 - c) $Q_2 = 721 \text{ kJ d}$
- 6. a) I=3,48 A; R=6
 - **b)** $Q_{\text{nutz}} = 545 \,\text{kJ}$;
 - c) W = 681 kJ = 0,1
 - **d)** t = 14,2 min
- 7. Qwasser = 11 062 kJ
- $Q_{\text{aufg}} = W = 13014$ P=14,46 kW; Kos

Seite 140

- 8. a) $Q_{\ddot{O}I} = 1267 \text{ kJ}$; Q
 - **b)** $I = 4,08 \,\text{A}$ **c)** R
- 9. Q = W = 823,4 kJ; t = 1372 s = 22 min

F4 Chemische \

- 1. m = 19.74q
- **2.** I = 12 A
- 3. $t=5 \min 58 s$
- Seite 141

- 4. m = 22,9 g; I = 6,94
- **5.** $m = 63673 \,\mathrm{kg}$
- **6. a)** $R = 0.233 \,\text{m}\Omega$
 - **b)** $\ddot{A} = 0.0933 \,\text{mg/}$
 - c) A = 20.8 kWh/k