March 20th

Jordan Canonical form for nilpotent operator

N:V->V nilpotent

Then there exist $k_1 > k_2 > \cdots > k_r$ and a "canonical basis" a of V s.t. $[N]_d = J_{k_1} \oplus J_{k_2} \oplus \cdots \oplus J_{k_r}$

JK=nilpotent Jordan matrix. eg. J4= [0100]
0001

Moreover, ki>kz>...>kr are uniquely determined by N.

whereas the basis d is not.

Today We consider T:V->V with one eigenvalue).

Given such T, the char. poly of T, $p(x) = (x-\lambda)^n$, $n = \dim V$

Cayley-Hamilton $\Rightarrow p(T)=(T-\lambda I)^n=0$

i.e. N=T-XIIs nilpoted.

So there is a canonical basis α , and $k_1 > \dots > k_r$ s.t. $[T-\lambda I]_{\alpha} = J_{k_1} \oplus \dots$

 $[T]_{\alpha} - [\lambda I]_{\alpha} = J_{\kappa_1} \oplus \cdots \oplus J_{\kappa_n}$ $[T]_{\alpha} - [\lambda I]_{\alpha} = J_{\kappa_1} \oplus \cdots \oplus J_{\kappa_n}$

 $[T]_d = (J_{k_1} \oplus \cdots \oplus J_{k_r}) + \lambda I_n$

[T]d = (Jk, \oplus ... \oplus Jkr)+ 1 In

Defin: The nxn Jordan matrix with eigenvalue λ is $J_n(\lambda) = \begin{bmatrix} \lambda 1 & \cdots \\ & \ddots & \\ & & \ddots & \end{bmatrix}$

E.g. $J_3(t) = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$

 $[T]_{\alpha} = J_{k_1} \oplus \cdots \oplus J_{k_r}$

This is the JCF of T.

 $E_{X}: V = SP\{e^{2x}, \chi e^{2x}, \chi^2 e^{2x}, \chi^3 e^{2x}\}$

 $dimV=4 \qquad T:V\rightarrow V, T(f)=f'-f$ $d=\{e^{2x},...,x^3e^{2x}\} \text{ basis of } V.$ $T(e^{2x})=2e^{2x}-e^{2x}=e^{2x}$

$$T(xe^{2x}) = (e^{2x} + 2xe^{2x}) - xe^{2x} = e^{2x} + xe^{2x}$$

$$T(x^3e^{3x}) = (2xe^{2x} + 2x^3e^{2x}) - x^3e^{2x} = 2xe^{2x} + x^3e^{2x}$$

$$T(\chi^3 e^{2x}) = 3\chi^2 e^{2x} + 2\chi^3 e^{2x} - \chi^3 e^{2x} = 3\chi^2 e^{2x} + \chi^3 e^{2x}$$

$$[T] = \begin{bmatrix} 1000 \\ 0120 \\ 0013 \\ 0001 \end{bmatrix}$$
 So That one eigenvalue $\lambda = 1$

dim ker
$$N = 1$$

dim ker $N^2 = 2$
dim ker $N^3 = 3$
dim ker $N^4 = 4$

$$JCF ext{ of T is } J_4(D) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We want to find a canonical basis d of T. It suffices to find one for

 $B = \int N^3 x$, $N^2 x$, N x, x λ . $Y = N^3 x$. Yeker $N \cap M^3$

 $imN^3 = sp(e_i) \implies kerN \cap imN^3 = sp(e_i), choose y = \{e_i\}$

Solve
$$: N^3x = 6e = 7x = e_{\mu}$$

Solve: $N^3x = 6e_1 \Rightarrow x = e_4$ $B = \{6e_1, 6e_3e_3, e_4\}$ canonical basis for N. $T:V \rightarrow V$ $V = sp\{e^{2x}, \dots, x^3e^{2x}\}$ Canonical basis for T is $\{6e^{2x}, 6xe^{2x}, 3x^3e^{2x}, x^3e^{2x}\}$ with respect to this basis Thas modrin [1100

$$N = T + 2I = \begin{bmatrix} 0 - 8 & -3 & 8 \\ 0 & 5 & 2 - 5 \\ 0 & 0 & 0 & 0 \\ 0 & 5 & 2 - 5 \end{bmatrix}$$

$$N^{2} = 0$$
dimker $N = 2$
dimker $N^{2} = 4$

$$JCF = 0f T = J_{2}(-2) \oplus J_{3}(-2)$$

$$= \begin{bmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

To find canonical basis: $\alpha_1 = \{Nx_1, x_1\}$ $\alpha_2 = \{Nx_2, x_2\}$

$$y=Nx$$
, $y \in kerN \cap imN$
 $imN = sp \left[\begin{bmatrix} -8 \\ 5 \\ 5 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix} \right]$

KerN = spfe, a teu}

$$y = \begin{bmatrix} -8 \\ 5 \\ 5 \end{bmatrix}, \quad x_1 = e_2 \quad s_0 \quad \alpha_1 = \begin{bmatrix} -9 \\ 5 \\ 5 \end{bmatrix}, \quad e_2$$