(a) will also vom us element [(a) will also vom us element [(a) will also vom us element [(a) [(s)] : f-(s) = f-(s) f-(r) [(a) [(s)] : f-(s) = f-(s) f-(r) [(a) [(s)] : f-(s) and xet [(a) [(s)] : f-(s) and f-(r) [(a) [(s)] : f-(s) and f-(r) [(a) [(s)] : f-(s) [(a) [(s)] : f-(s) [(b) [(s)] : f-(s) [(c) [(s) [(s)] : f-(s) [(c) [(s)] : f-(s) [(c) [(s)] : f-(s) [(c) [(1)	Discuelle Structured Middem - 2 Mauriaha Jain 112020223
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		o = no elementa in ma subact. f(\$\phi\$) unia also vous no elementa f Samu noch for \$f^-(\$\phi\$) : \$f^-(\$\phi\$) = \$\phi\$
m w aussi way	(m)	Grun: $S_1 + e C_1 R$ to pincu: $f^{-1}(S_1 + f^{-1}(R)) = f^{-1}(L) \cap f^{-1}(R)$ [au 1: Let χ & $S_1 + f$ $S_1 + f$ $S_2 + f$ $S_3 + f$ S_3
		But our assumption wou [-(x) t b-1 1 -(s/r) & c f-(s) n f-(r) 1 -(s/r) & c f and x e T cet x e s and x e T

men + E T suge in in our (十)一 godn't erist ours they chie = (3) = ひか A ES I by we assume that for A & B & 47:- 8 must be on in used in our = + and uma (1) occun't exist K K which function is not for which f-1(t) = 5 MUSA PORDUES 2 7 7 2 3/2 + (+1,(+1) + + 1 4/2 SI # A ACE! 1-1(2) (4-1 (71)) 11 iet piana

the have been given that are are positive numbers	Principle of Induction.	(a+b) = a+b $a+b = a+b$	tina phond.	Induction hypowided Let (a+b) R> aR+bR be true for REN	Induction Step: We need to show (atb) k+1 > a k+ + b k+1	$(a+b)^{R+1} = (a+b)^{R}(a+b)$ = $(a^{R} + b^{R})(a+b)$	equality quoin mauch o	(Q1D) RHI = 0, RHI + 6 RHI + abr + 6ar	(a+b) R+1 2 a R+1 + b R+1 + b R+1	3
bed I.E.N							(mrb)			

3