Networks II: Market Design—Lecture 9 Markets with Initial Endowments: The Core

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Logistics

- Speed feedback: What could slowing down mean?
 - More time for clicker questions
 - More time to discuss answers to clicker questions
 - More time on definitions—they're a handful!
 - Just speak slower (and/or pause more)!
 - No changes I can think of in-class: Please don't change speed (zzzz) and/or Offline time necessary

Recap: One-sided markets with initial endowments

- Markets with initial endowments: $((a_k, h_k)_{k \in \{1,...,n\}}, \succ)$
 - 'Housing market': Agent a_k owns house h_k
 - Each agent a has strict preferences \succ_a over houses
- What properties should a good matching have?
 - Pareto efficiency (PE): Matching M is Pareto efficient if
 - There is no matching \hat{M} such that $\hat{M}(a) \succeq_a M(a)$ for all agents a, and $\hat{M}(b) \succ_b M(b)$ for some agent b
 - 'Individual rationality' (IR): No agent is better off not participating in the market
 - $\bullet \ M(a_k) \succeq_{a_k} h_k$
 - Core: No group of agents can do better by not participating in the market and trading their initial endowments amongst themselves

Checking in: An example

- Agents a,b,c; Houses x,y,z
 - Initial endowments: a-x, b-y, c-z
 - Preferences: a: $y \succ z \succ x$; b: $y \succ x \succ z$; c: $x \succ y \succ z$
- Pareto-efficient: PE; Individually rational: IR
- Matching $M_1 = (a-y, b-x, c-z)$ is:
 - [A] PE [B] IR [C] Both PE and IR [D] Neither
 - PE does not imply IR!
- Matching $M_2 = (a-x, b-y, c-z)$ is:
 - [A] PE [B] IR [C] PE and IR [D] Neither
 - IR does not imply PE!

Checking in: Understanding individual rationality

- Let M_0 be 'initial matching', i.e., $M_0(a_k) = h_k$. Any individually rational matching M Pareto-dominates M_0 .
 - A True
 - B False
- M₀ is itself individually rational, and does not Pareto-dominate itself!
 - ullet Reminder: For matching \hat{M} to Pareto-dominate matching M,
 - $\hat{M}(a) \succeq_a M(a)$ for all agents a, and
 - $\hat{M}(b) \succ_b M(b)$ for at least one agent b!
 - So: No matching can Pareto-dominate itself

Recap: The Core

- Core: No group of agents can do better by not participating in the market and trading their initial endowments amongst themselves
- Matching M is in the **core** if there is **no** coalition of agents $C \subseteq A$, and a matching \hat{M} , such that
 - For any $a \in C$, $\hat{M}(a)$ is the *initial house* of some $a' \in C$
 - $\hat{M}(a) \succeq_a M(a)$ for all $a \in C$
 - $\hat{M}(b) \succ_b M(b)$ for some $b \in C$

Understanding the core: Double negatives

- Observe common structure in definitions of Pareto-efficiency,
 core: A matching is 'good' if it is not 'not-good'
 - Matching M is in the core if there is **no** coalition of agents $C \subseteq A$, and a matching \hat{M} , such that
 - ① For any $a \in C$, $\hat{M}(a)$ is the *initial house* of some $a' \in C$
 - ② $\hat{M}(a) \succeq_a M(a)$ for all $a \in C$
 - A matching is not in the core if there is some coalition $C \subseteq A$, and a matching \hat{M} , such that [1]-[3] hold
 - A matching is in the core if it is not not-in-the-core

Understanding the core: Double negatives

- Pareto-efficiency: A matching M is Pareto-efficient if it is not not Pareto-efficient (i.e., if it is not Pareto-dominated)
- Pareto-efficiency for mechanisms: A mechanism φ is Pareto-efficient if it not not-Pareto-efficient, *i.e.*, does not return a not-Pareto-efficient matching on any input (A, H, \succ)
- \bullet Strategyproofness: A mechanism φ is strategyproof if it is **not** not-strategyproof (recall definition)

Core: Revisiting our example (from previous class)

(A matching M is in the **core** if there is no coalition of agents $B \subseteq A$, and a matching \hat{M} , such that

- For any $a \in B$, $\hat{M}(a)$ is the *initial house* of some $b \in B$, and
- $\hat{M}(a) \succeq_a M(a)$ for all $a \in B$ and $\hat{M}(b) \succ_b M(b)$ for some $b \in B$)
- Agents a,b,c; Houses x,y,z
 - Initial endowments: a-z, b-y, c-x
 - Preferences: a: $y \succ z \succ x$; b: $x \succ y \succ z$; c: $z \succ y \succ x$
- Matching $M_2 = (a-z, b-x, c-y)$: (i) Is M_2 in the core? (ii) Does coalition $\{a, c\}$ demonstrate M_2 is not in the core?
 - No, and no!:
 - Consider coalition C = A, matching $\hat{M} = (a-y, b-x, c-z)$: No agent is unhappier, and agents a, c strictly happier
 - c cannot improve by deviating out of market only with a:
 Coalition {a,b,c} is required!

Desiderata: One-sided markets with initial endowments

What properties should a good matching have?

- Pareto efficiency: Matching M is Pareto efficient if
 - There is no matching \hat{M} such that $\hat{M}(a) \succeq_a M(a)$ for all agents a, and $\hat{M}(b) \succ_b M(b)$ for some agent b
- Individual rationality: No agent is better off not participating in the market
 - $M(a_k) \succeq_{a_k} h_k$
- Core: Matching M is in the core if there is **no** coalition of agents $C \subseteq A$, and a matching \hat{M} , such that
 - For any $a \in C$, $\hat{M}(a)$ is the *initial house* of some $a' \in C$, and
 - $\hat{M}(a)\succeq_a M(a)$ for all $a\in C$ and $\hat{M}(b)\succ_b M(b)$ for some $b\in C$

Properties of matchings in the core

(A matching M is in the **core** if there is no coalition of agents $B \subseteq A$, and a matching \hat{M} , such that

- For any $a \in B$, $\hat{M}(a)$ is the *initial house* of some $b \in B$, and
- $\hat{M}(a)\succeq_a M(a)$ for all $a\in B$ and $\hat{M}(b)\succ_b M(b)$ for some $b\in B$)
- Is every core matching individually rational (IR)?
 - A Yes
 - B No
 - Yes: Consider a one-person "coalition" $B = \{a\}$
- Is every core matching Pareto efficient (PE)?
 - A Yes
 - B No
 - Yes: Consider the coalition B = A

Core and properties of matchings

- Is every individually rational (IR) matching in the core?
 - A Yes
 - B No
 - Market with two agents and houses
 - Initial endowments a-x, b-y
 - Preferences a: $y \succ x$, b: $x \succ y$
 - 'Initial' matching a-x, b-y is not PE: Every core matching is PE!
- Is every Pareto-efficient matching in the core?
 - A Yes
 - B No
 - Market with two agents and houses
 - Initial endowments a-x, b-y
 - Preferences a: $y \succ x$, b: $y \succ x$
 - Matching a-y, b-x is not IR: Every core matching is IR!

Just checking: The core

- The 'initial matching' $M_0(a_k) = h_k$ is always
 - A Individually rational
 - B Belongs to the core
 - **C** Neither
- Every core matching M Pareto-dominates the 'initial' matching $M_0(a_k) = h_k$
 - A True
 - B False

The core so far

- Every core matching is individually rational (IR) and Pareto-efficient (PE)
 - Consider one-person "coalition" $B = \{a\}$ and grand coalition B = A respectively
- Is every IR matching in the core?
 - No: Simple 2-agent, 2-item example where swapping improves allocation
- Is every PE matching in the core?
 - No, again: A Pareto-efficient matching need not be individually rational!
- What if a matching is both PE and IR—is such a matching always in the core?

Understanding the core: Another example

- Agents a, b, c; Houses x, y, z
 - Preferences \succ : a: $z \succ y \succ x$; b: $z \succ x \succ y$; c: $y \succ x \succ z$
 - Initial endowments: a owns x, b owns y, c owns z
 - Is matching $M_1 = (a-z, b-x, c-y)$ (i) Pareto-efficient? (ii) Individually rational?
 - Is matching $M_2 = (a-x, b-z, c-y)$ (i) Pareto-efficient? (ii) Individually rational?
 - Which of these matchings is in the core?
 - A Only M_1
 - B Only M_2
 - C Neither M_1 nor M_2
 - D Both M_1 and M_2
- A matching may be both individually rational and Pareto-efficient, but still not belong to the core!

