Practice 1

We highly encourage being environment friendly and trying all problems on your own.

- 1 · Implement exercise 2.3-7.
- 2 · Implement priority queue.
- 3 · Implement Quicksort and answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value?
 (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively.
- 4 · Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the ith element of each list. Give an $O(lg \ m + lgn)$ time algorithm for computing the kth largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct).

Practice 2

We highly encourage being environment friendly and trying all problems on your own.

- 5 · Matrix-chain product. The following are some instances.
 - a) <3, 5, 2, 1,10>
 - b) <2, 7, 3, 6, 10>
 - c) <10, 3, 15, 12, 7, 2>
 - d) <7, 2, 4, 15, 20, 5>
- 6 · Longest Common Subsequence (LCS). The following are some instances.
 - a) X: xzyzzyx Y: zxyyzxz
 - b) X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFIS RLLAIVAD

Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFIS RLLAIVAG

- 7 · Longest Common Substring. The following are some instances.
 - a) X: xzyzzyx Y: zxyyzxz
 - b) X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFIS RLLAIVAD

Y:MAEEEVAKLEKHLMLLROEYVKLOKKLAETEKRCTLLAAOANKENSNESFISR

LLAIVAG

8 · Max Sum. The following is an instance.

9 · Shortest path in multistage graphs. Find the shortest path from θ to 15 for the following graph.

A multistage graph is a graph (1) G=(V,E) with V partitioned into $K \ge 2$ disjoint subsets such that if (a,b) is in E, then a is in V_i , and b is in V_{i+1} for some subsets in the partition; and (2) $|V_1| = |V_K| = 1$.

Practice 3

We highly encourage being environment friendly and trying all problems on your own.

10 · Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem both as fractional knapsack and 0/1 knapsack.

value(\$US)	20	30	65	40	60
weight(Lbs)	10	20	30	40	50
value/weight	2	1.5	2.1	1	1.2

A simple scheduling problem. We are given jobs $j_1, j_2... j_n$, all with known running times $t_1, t_2... t_n$, respectively. We have a single processor. What is the best way to schedule these jobs in order to minimize the average completion time. Assume that it is a nonpreemptive scheduling: once a job is started, it must run to completion. The following is an instance.

a)
$$(j_1, j_2, j_3, j_4) : (15, 8, 3, 10)$$

12 · Single-source shortest paths. The following is the adjacency matrix, vertex A is the source.

13 · All-pairs shortest paths. The adjacency matrix is as same as that of problem 3.(Use Floyd or Johnson's algorithm)

Practice 4

We highly encourage being environment friendly and trying all problems on your own.

14 · 0/1 Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem using back-tracking algorithm and try to draw the tree generated.

value(\$US)	20	30	65	40	60
weight(Lbs)	10	20	30	40	50
value/weight	2	1.5	2.1	1	1.2

15 · Solve the 8-Queen problem using back-tracking algorithm.