

maio de 2018

12.º Ano de Escolaridade | Turma K-G

- 1. Considera em \mathbb{C} , conjunto dos números complexos, o número complexo $w=1-\frac{\sqrt{3}}{3}i$ Determina os números reais x e y, de modo que w seja solução da equação $x\times z^6+y\times z^3=1-i^{99}$
- 2. Considera em \mathbb{C} , conjunto dos números complexos, os complexos $w_1 = 2 + 2\sqrt{3}i$ e $w_2 = 2e^{i\left(-\frac{\pi}{3}\right)}$
 - **2.1.** Escreve, na forma algébrica, o complexo $\frac{1}{4}\overline{w_2} + \frac{1}{8}\overline{w_1}$, e representa o seu afixo no plano complexo
 - **2.2.** Escreve na forma trigonométrica, as raízes cúbicas de $w = \frac{-w_1^3}{\overline{w_2}}$
- 3. Sejam z_1 e z_2 , dois números complexos, tais que $z_1=\sum\limits_{j=1}^7 i^j+2+\sqrt{3}i$ e $z_2=2e^{i\left(-\frac{\pi}{3}\right)}$
 - **3.1.** Escreve $\overline{z_1} \times z_2^2$ na forma trigonométrica
 - **3.2.** Sabendo que z_1 e z_2 são duas raízes consecutivas de índice n de um complexo w, determina n e w
 - **3.3.** Resolve, em \mathbb{C} , a equação $z^4 \overline{z_2}z = 0$
- 4. Seja \mathbb{C} , conjunto dos números complexos

Determina os números reais x e y, tais que $i^{4n+3} + \sum\limits_{j=1}^4 i^j = 1 - \frac{2x+yi}{1-i}$

5. Seja \mathbb{C} , conjunto dos números complexos

Sendo $w = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)$, determina o argumento mínimo positivo do número complexo $\frac{-w \times (\overline{w})^4}{\sqrt{2}e^{i\frac{\pi}{4}}}$

- 6. Mostra que o produto das n raízes de índice n de 1 é igual a $e^{i[(n-1)\pi]}$, com $n\in\mathbb{N}$ e $n\geq 2$
- 7. Resolve, em C, as equações seguintes:

7.1.
$$(2-2i)z^4-4i=0$$

7.2.
$$z^2 + z + i = -z - 1$$

7.3.
$$z^2 \times |z| + 1 - i = 0$$

7.4.
$$z^2 \times e^{i\pi} = \overline{z} \times (2 - 2\sqrt{3}i)$$

- 8. Em \mathbb{C} , conjunto dos números complexos, considera os números complexos $z_1=1+i$ e $z_2=-1+\sqrt{3}i$
 - **8.1.** Utilizando duas formas de representar o complexo $\frac{z_2}{z_1}$, deduz os valores exatos de $\sin\left(\frac{5\pi}{12}\right)$ e de $\cos\left(\frac{5\pi}{12}\right)$
 - **8.2.** Determina o menor valor de n , com $n\in\mathbb{N},$ que transforma $\left(\frac{z_2}{z_1}\right)^n$ num imaginário puro