Riemann Integral

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Consider following terms:

- Let $f:[a,b] \to \mathbb{R}$ be a bounded real valued function on the closed, bounded interval [a,b]. Also let m,M be the infimum and supremum of f(x) on [a,b], respectively.
- A partition *P* of [a, b] is an ordered set $P := \{a = x_0, x_1, x_2, ..., x_n = b\}$ such that $x_0 < x_1 < \cdots < x_n$.
- Let m_k and M_k be the infimum and supremum of f(x) on the subinterval $[x_{k-1}, x_k]$, respectively.

Definition

Riemann Lower sum: The Riemann Lower sum, denoted with L(P,f) of f(x) with respect to the partition P is given by

$$L(P,f) = \sum_{k=1}^{n} m_k(x_k - x_{k-1}).$$

Riemann Upper sum: The Riemann Upper sum, denoted with U(P,f) of f(x) with respect to the partition P is given by

$$U(P,f) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}).$$

Refinement of a Partition: A partition Q is called a refinement of the partition P if $P \subseteq Q$.

Lemma

If Q is a refinement of P, then

$$L(P,f) \leq L(Q,f) \quad \text{ and } \quad U(P,f) \geq U(Q,f).$$

Proof: Let
$$P = \{x_0, x_1, x_2, ..., x_{k-1}, x_k, ..., x_n\}$$
 and $Q = \{x_0, x_1, x_2, ..., x_{k-1}, z, x_k, ..., x_n\}$. Then

$$L(P,f) = m_0(x_1 - x_0) + \dots + m_k(x_k - x_{k-1}) + \dots + m_{n-1}(x_n - x_{n-1})$$

$$\leq m_0(x_1 - x_0) + \dots + m_k'(x_k - z) + m_k''(z - x_{k-1}) + \dots + m_{n-1}(x_n - x_{n-1})$$

$$= L(O,f)$$

where
$$m'_{k} = \inf_{[z,x_{k}]} f(x)$$
 and $m''_{k} = \inf_{[x_{k-1},z]} f(x)$.

Lemma

If P_1 and P_2 be any two partitions, then $L(P_1, f) \leq U(P_2, f)$.

Proof: Let $Q = P_1 \cup P_2$. Then Q is a refinement of both P_1 and P_2 . So by above Lemma, we have $L(P_1, f) \leq L(Q, f) \leq U(Q, f) \leq U(P_2, f)$.

Definition

Let \mathcal{P} be the collection of all possible partitions of [a,b]. Then upper integral of f is defined as

$$\int_{a}^{\overline{b}} f = \inf\{U(P, f) : P \in \mathcal{P}\}$$

and lower integral of f is defined as

$$\int_{a}^{b} f = \sup\{L(P, f) : P \in \mathcal{P}\}.$$

- ullet For a bounded function $f:[a,b] o \mathbb{R}$, we have $\int_{\underline{a}}^{\underline{b}} f \leq \int_{a}^{\overline{b}} f.$
- **Riemann integrability:** $f:[a,b] \to \mathbb{R}$ is said to be Riemann integrable if $\int_{\underline{a}}^{b} f = \int_{a}^{b} f$ and the value of the limit is denoted with $\int_{a}^{b} f(x)dx$. We say $f \in \mathcal{R}[a,b]$.

Example 1

Consider f(x) = x on [0, 1] and the sequence of partitions $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, \frac{n}{n}\}$. Then

$$L(P_n,f) = 0 \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n} + \dots + \frac{n-1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} [1 + 2 + \dots + (n-1)] = \frac{n(n-1)}{2n^2}$$

Thus $\lim_{n\to\infty} L(P_n,f)=\frac{1}{2}$. Hence from the definition $\int_{\underline{0}}^1 f(x)dx\geq \frac{1}{2}$. Similarly

$$U(P_n,f) = \frac{1}{n} \cdot \frac{1}{n} + \frac{2}{n} \cdot \frac{1}{n} + \dots + \frac{n}{n} \cdot \frac{1}{n} = \frac{1}{n^2} [1 + 2 + \dots + n] = \frac{n(n+1)}{2n^2}$$

Hence $\lim_{n\to\infty} U(P_n,f) = \frac{1}{2}$. Again from the definition $\int_0^{\overline{1}} f(x) dx \leq \frac{1}{2}$.

So
$$\frac{1}{2} \le \int_{\underline{0}}^{1} f(x) dx \le \int_{0}^{1} f(x) dx \le \frac{1}{2}$$
.

Thus
$$\int_0^1 f(x)dx = \int_0^1 f(x)dx = \int_0^{\bar{1}} f(x)dx = \frac{1}{2}$$
.

Example 2

Consider $f(x) = x^2$ on [0,1] and the sequence of partitions $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, \frac{n}{n}\}$. Then

$$U(P_n, f) = \frac{1}{n^2} \cdot \frac{1}{n} + \left(\frac{2}{n}\right)^2 \cdot \frac{1}{n} + \dots + \left(\frac{n}{n}\right)^2 \cdot \frac{1}{n}$$
$$= \frac{1}{n^3} [1 + 2^2 + \dots + n^2]$$
$$= \frac{n(n+1)(2n+1)}{6n^3}$$

Thus $\lim_{n\to\infty} U(P_n,f) = \frac{1}{3}$. Similarly

$$L(P_n, f) = 0 \cdot \frac{1}{n} + \left(\frac{1}{n}\right)^2 \cdot \frac{1}{n} + \dots + \left(\frac{n-1}{n}\right)^2 \cdot \frac{1}{n}$$

$$= \frac{1}{n^3} [1 + 2^2 + \dots + (n-1)^2]$$

$$= \frac{n(n-1)(2n-1)}{6n^3}$$

Therefore, $\lim_{n\to\infty} L(P_n,f) = \frac{1}{3}$. Hence from the definition $\int_0^1 f \ge \frac{1}{3}$ and $\int_0^{\overline{1}} f \le \frac{1}{3}$.

So
$$\frac{1}{3} \le \int_0^1 f(x) dx \le \int_0^{\overline{1}} f(x) dx \le \frac{1}{3}$$
. Thus $\int_0^1 f(x) dx = \int_0^1 f(x) dx = \int_0^{\overline{1}} f(x) dx = \frac{1}{3}$.

Example 3

On
$$[0,1]$$
, define $f(x) = \begin{cases} 1, & x \in Q, \\ 0, & x \notin Q. \end{cases}$

Let *P* be a partition of [0,1]. In any sub interval $[x_{k-1},x_k]$, there exists a rational number and irrational number. Then the supremum in any subinterval is 1 and infimum is 0. Therefore,

$$L(P,f) = 0$$
 and $U(P,f) = 1$. Hence $\int_0^1 f \neq \int_0^{\overline{1}} f$.

Result

Suppose f is a continuous function on [a, b]. Then $f \in \mathcal{R}[a, b]$.

Theorem

Suppose $f:[a,b]\to\mathbb{R}$ be a bounded function which has finitely many discontinuities. Then $f\in\mathcal{R}[a,b]$.

Properties of definite integral

- (a) For a constant $c \in \mathbb{R}$, $\int_{-b}^{b} cf(x)dx = c \int_{-b}^{b} f(x)dx$.
- (b) Let $f_1, f_2 \in \mathcal{R}[a, b]$. Then $\int_a^b (f_1 + f_2)(x) dx = \int_a^b f_1(x) dx + \int_a^b f_2(x) dx$.
- (c) If $f(x) \le g(x)$ on [a, b]. Then $\int_a^b f(x)dx \le \int_a^b g(x)dx$.
- (d) If $f \in \mathcal{R}[a,b]$ then $|f| \in \mathcal{R}[a,b]$ and $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f|(x) dx$.
- (e) Let f be bounded on [a,b] and let $c \in (a,b)$. Then f is integrable on [a,b] if and only if f is integrable on [a,c] and [c,b]. In this cases

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_a^b f(x)dx.$$

Mean value theorem

Let f(x) be a continuous function on [a,b]. Then there exists $\xi \in [a,b]$ such that

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

First Fundamental theorem

Let f(x) be a continuous function on [a,b] and let $\phi(x) = \int_a^x f(s)ds$. Then ϕ is differentiable and $\phi'(x) = f(x)$.

• A function F(x) is called anti-derivative of f(x), if F'(x) = f(x).

Second fundamental theorem

Suppose F(x) is an anti-derivative of continuous function f(x). Then $\int_a^b f(x)dx = F(b) - F(a)$.

Change of variable theorem

Let u(t), u'(t) be continuous on [a,b] and f is a continuous function on the interval u([a,b]). Then

$$\int_{a}^{b} f(u(x)) \ u'(x) dx = \int_{u(a)}^{u(b)} f(y) dy.$$

Problem

Evaluate
$$\int_0^1 x\sqrt{1+x^2}dx$$
.

Solution: Taking $u = 1 + x^2$, we get u' = 2x and u(0) = 1, u(1) = 2. Then

$$\int_0^1 x \sqrt{1+x^2} dx = \frac{1}{2} \int_1^2 \sqrt{u} du = \frac{1}{3} \left[u^{\frac{2}{3}} \right]_{u=1}^2 = \frac{1}{3} (2^{\frac{2}{3}} - 1).$$

