LAB 2

I. Consider the initial value problem

$$y' = -100y + 100t + 101$$
$$y(0) = y_0.$$

Given y_0, h , and N, use Euler's method and Backward Euler's method to solve this IVP to obtain an approximations y_n^E and y_n^{BE} respectively for y at uniform time steps $t_n = nh, n = 0, 1, \ldots, N$ and plot the exact solution $y(t_n)$ and the approximate solution y_n^E on one graph and $y(t_n)$ and y_n^{BE} on a separate graph.

The first line of your Matlab implementation file lab1_exercise1.m should read

function [] = lab2_exercise1(y0, h, N)

where the input y0 specifies the initial value y_0 , h is the size of the uniform time stepping and N is the number of time steps for which the approximate solutions are to be computed.

Run this code for $y_0 = 1$, $y_0 = 0.99$ and $y_0 = 1.01$ with h = 0.1 and N = 10 and report your observations.

II. Recall the Lab Exercise II from Lab 1 – The populations of two species, a pray denoted by y_1 and predator denoted by y_2 can be modeled by the non-linear ODE

$$y' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} y_1(\alpha_1 - \beta_1 y_2) \\ y_2(-\alpha_2 + \beta_2 y_1) \end{bmatrix} = f(y).$$

The parameters α_1 and α_2 are natural birth and death rates in isolation of prey and predators, respectively, and the parameters β_1 and β_2 determine the effect of interactions between the two populations, where the probability of interaction in proportional to product of the populations.

Run your Lab 1 Matlab function (in lab1_exercise2.m implementing the numerical solution of this problem using Euler's method)

function [] = lab1_exercise2(N, T, a1, a2, b1, b2, y10, y20)

for the final time T=250 with parameter values $\alpha_1=1$, $\beta_1=0.1$, $\alpha_2=0.5$, $\beta_2=0.02$, and the initial population $y_1(0)=100$ and $y_2(0)=10$ while varying the value of N; take N=4000,3500,3000,2500,2000 and 1500. Report and explain your observation.

Now, implement a Matlab function that uses the Backward Euler's method with uniform time steps $t_n = nT/N, n = 0, ..., N$, to solve the IVP between t = 0 and t = T. in the file lab2_exercise2.m with first line as

function [] = lab2_exercise2(N, T, a1, a2, b1, b2, y10, y20)

where the input N specifies the grid size N, the input T specifies the final time T, the inputs, a1, a2, b1, b2 correspond to ODE parameters $\alpha_1, \alpha_2, \beta_1, \beta_2$ respectively and the inputs y10, y20 specify the initial conditions $y_1(0), y_2(0)$ respectively. Your function should again plot each of the two populations as a function of time (on the same plot) and, on a separate graph, plots the trajectory of the points $(y_1(t), y_2(t))$ in the plane as a function of time.

For the parameter values $\alpha_1 = 1$, $\beta_1 = 0.1$, $\alpha_2 = 0.5$, $\beta_2 = 0.02$, and the initial population $y_1(0) = 100$ and $y_2(0) = 10$, display the plots for N = 4000, 3500, 3000, 2500, 2000, 1500, 1000 and 500. Comment on your observations.