List of Equations (only some of these equations are required to solve question 3 and 4)

Power delivered to the load	$P_{L} = \frac{\left V_{2}^{-}\right ^{2}}{2Z_{0}} \left(1 - \left \Gamma_{L}\right ^{2}\right)$
Input power to the network	
input power to the network	$P_{in} = \frac{ V_1^+ ^2}{2Z_0} (1 - \Gamma_{in} ^2)$
Input and output reflection coefficients of a transistor with a source and load: general case	$\Gamma_{in} = \frac{V_1^-}{V_1^+} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$
	$\Gamma_{out} = \frac{V_2^-}{V_2^+} = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1 - S_{11}\Gamma_S}$
Input and output reflection coefficients of a transistor with a source and load: unilateral case	$\Gamma_{in} = \frac{V_1^-}{V_1^+} = S_{11}$
	$\Gamma_{out} = \frac{V_2^-}{V_2^+} = S_{22}$
Gain of the input matching network	$G_S = \frac{1 - \Gamma_S ^2}{ 1 - \Gamma_{\rm in} \Gamma_S ^2}$
Gain of the output matching network	$G_L = \frac{1 - \Gamma_L ^2}{ 1 - S_{22}\Gamma_L ^2}$
Gain of the transistor (unilateral case)	$G_0 = S_{21} ^2$
Transducer gain of the basic amplifier	$G_T = G_S G_0 G_I$
circuit (input matching, unilateral	I S U L
transistor, output matching)	$O_{T,dB} = O_{S,dB} + O_{0,dB} + O_{L,dB}$
Maximum gain of the input and output matching networks	$G_{T,dB} = G_{S,dB} + G_{0,dB} + G_{L,dB}$ $G_{S_{\text{max}}} = \frac{1}{1 - S_{11} ^2},$
	$G_{L_{\max}} = \frac{1}{1 - S_{22} ^2}.$
Maximum transducer power gain, unilateral case	$G_{TU_{\text{max}}} = \frac{1}{1 - S_{11} ^2} S_{21} ^2 \frac{1}{1 - S_{22} ^2}$
Normalized gain factors g _s and g _L	$g_S = \frac{G_S}{G_{S_{\text{max}}}} = \frac{1 - \Gamma_S ^2}{ 1 - S_{11}\Gamma_S ^2} (1 - S_{11} ^2),$
	$g_L = \frac{G_L}{G_{L_{\text{max}}}} = \frac{1 - \Gamma_L ^2}{ 1 - S_{22}\Gamma_L ^2} (1 - S_{22} ^2).$
Center and radius of the constant gain circle for the input matching network	$C_S = \frac{g_S s_{11}}{1 - (1 - g_S) S_{11} ^2},$
	$R_S = \frac{\sqrt{1 - g_S} \left(1 - S_{11} ^2\right)}{1 - (1 - g_S) S_{11} ^2}$
Center and radius of the constant gain circle for the output matching network	$C_L = \frac{g_L S_{22}^*}{1 - (1 - g_L) S_{22} ^2},$
	$R_L = \frac{\sqrt{1 - g_L} \left(1 - S_{22} ^2 \right)}{1 - (1 - g_L) S_{22} ^2}$

Condition for "unconditionally stable" device,	for all $ \underline{\Gamma}_L < 1$ and $ \underline{\Gamma}_S < 1$
general case	$\Rightarrow \begin{cases} \left \Gamma_{in} \right = \left S_{11} + \frac{S_{12} S_{21} \Gamma_L}{1 - S_{22} \Gamma_L} \right < 1 \\ \left \Gamma_{out} \right = \left S_{22} + \frac{S_{12} S_{21} \Gamma_S}{1 - S_{11} \Gamma_S} \right < 1 \end{cases}$
	$\Rightarrow \begin{cases} \Gamma S_{22} \Gamma_L \\ \Gamma = S_{22} + \frac{S_{12} S_{21} \Gamma_S}{S_{22} \Gamma_S} < 1 \end{cases} < 1$
Conditions for	' '
"unconditionally stable" device, unilateral case	$\begin{aligned} \left \Gamma_{in} \right &= \left S_{11} \right < 1 \\ \left \Gamma_{out} \right &= \left S_{22} \right < 1 \end{aligned}$
unnateral case	$ \Gamma_{out} = \Omega_{22} \setminus \Gamma$
Center and radius of the stability circles, load side	$C_L = \frac{\left(S_{22} - \Delta S_{11}^*\right)^*}{ S_{22} ^2 - \Delta ^2}$ (center),
	$R_L = \left \frac{S_{12} S_{21}}{ S_{22} ^2 - \Delta ^2} \right $ (radius).
	$\Delta = S_{11}S_{22} - S_{12}S_{21}$
Center and radius of the stability circles, source side	$C_S = \frac{\left(S_{11} - \Delta S_{22}^*\right)^*}{ S_{11} ^2 - \Delta ^2}$ (center),
	$R_S = \left \frac{S_{12} S_{21}}{ S_{11} ^2 - \Delta ^2} \right $ (radius)
	$\Delta = S_{11}S_{22} - S_{12}S_{21}$
Test for unconditional stability, general case	$ \Delta = S_{11}S_{22} - S_{12}S_{21} < 1$
8	and $ C ^2 C ^2 + A^2$
	$K = \frac{1 - S_{11} ^2 - S_{22} ^2 + \Delta^2}{2 S_{12}S_{21} } > 1$
Test for unconditional stability, unilateral case	$ S_{11} < 1$
ummiter ur euse	$\left S_{22}\right < 1$
Noise figure of a 2-port amplifier	$F = F_{\min} + \frac{r_N}{g_S} \left \underline{y}_S - \underline{y}_{opt} \right ^2$
	$F = F_{\min} + 4r_N \frac{\left \underline{\Gamma}_S - \underline{\Gamma}_{opt}\right ^2}{\left(1 - \left \underline{\Gamma}_S\right ^2\right) \cdot \left 1 + \underline{\Gamma}_{opt}\right ^2}$
Constant noise circles	$\underline{C}_F = \frac{\Gamma_{opt}}{1+N}$
	$\underline{C}_{F} = \frac{\Gamma_{opt}}{1+N}$ $R_{F} = \frac{1}{1+N} \sqrt{N^{2} + N(1 - \left \Gamma_{opt}\right ^{2})}$
	$F_{min} = 10^{\frac{NF_{min}}{10}}$
	$\Delta F_n' = N = \left(F - F_{\min}\right) \frac{\left 1 + \underline{\Gamma}_{opt}\right ^2}{4r_n} = \frac{\left \underline{\Gamma}_S - \underline{\Gamma}_{opt}\right ^2}{1 - \left \underline{\Gamma}_S\right ^2}$

Output noise, input noise, equivalent noise temperature, noise factor and noise figure	$\begin{aligned} N_{o} &= Gk_{B}(T_{0} + T_{e})B\\ N_{i} &= k_{B}T_{0}B\\ F &= \frac{S_{i}}{N_{i}} = \frac{S_{i}}{S_{o}} \frac{N_{o}}{N_{i}} = \frac{1}{G} \frac{Gk_{B}(T_{0} + T_{e})B}{k_{B}T_{0}B} = 1 + \frac{T_{e}}{T_{0}} \end{aligned}$
Three-stage amplifier: Output noise $(P_{n,total})$, noise factor (F_{total}) noise figure (NF_{total})	$\begin{aligned} NF &= 10 \log_{10} F \\ P_{n,total} &= G_{A3} G_{A2} G_{A1} P_{n,in} + G_{A3} G_{A2} P_{n1} + G_{A3} P_{n2} + P_{n3} \\ F_{total} &= \frac{P_{n,total}}{G_{A3} G_{A2} G_{A1} P_{n,in}} \\ F_{total} &= 1 + \frac{P_{n1}}{G_{A1} P_{n,in}} + \frac{P_{n2}}{G_{A1} G_{A2} P_{n,in}} + \frac{P_{n3}}{G_{A3} G_{A2} G_{A1} P_{n,in}} \end{aligned}$
	$F_{total} = F_1 + \frac{F_2 - 1}{G_{A1}} + \frac{F_3 - 1}{G_{A1}G_{A2}}$ $NF_{total} = 10 \log_{10} F_{total}$ Noise factor of single stage $F_j = 1 + \frac{P_{nj}}{G_{Aj}P_{n,in}}$, $j = 1,2,3$ Noise figure of single stage $NF_j = 10 \log_{10} F_j$, $j = 1,2,3$
Receiver sensitivity	$P_{sens} [dBm] = k_B T_0 B [dBm] + NF_{total} [dB] + SNR [dB]$ $+ SNR [dB]$ $P_{sens} [dBm] = -174 + NF_{total} + 10\log_{10} B + SNR$ $k_B - \text{Boltzman constant}, k_B = 1.38 \cdot 10^{-23} \frac{Watt \cdot s}{K}$
Conversion Watt to dBm	$P_{sens} [dBm] = 10\log_{10} \frac{P_{sens} [Watt]}{1mWatt}$ $P_{sens} [dBm] = 10\log_{10} \frac{P_{sens} [Watt]}{10^{-3}Watt}$
Gain conversion from linear to dB	$G\left[dB\right] = 10\log_{10}G$
Friis radio link formula	$P_{RX} = P_{TX}G_{TX}G_{RX}(\frac{\lambda}{4\pi R})^2$ $P_{RX} - \text{power at RX input}$ $P_{TX} - \text{power at TX output}$ $G_{RX} - \text{RX antenna gain}$ $G_{TX} - \text{TX antenna gain}$ $\lambda - \text{wave length}$ $\lambda = \frac{c}{f}$ $c - \text{speed of light, } c = 3.10^8 \frac{m}{s}$ $f - \text{frequency}$