Department of Mathematics & Statistics

MTH305a

Quiz-II

Marks: 10

Name:	Roll No:	•••••

Time: 25 minutes

1. Let $\gamma:(a,b)\to\mathbb{R}^2$ be a smooth regular curve such that, for all $t\in(a,b)$, the normal line through $\gamma(t)$ pass through a given point. Show that the trace of the curve γ is contained in a circle. [4 marks]

For a point $t \in (a, b)$, the normal line to the curve γ at $\gamma(t)$ is the line given by $\ell(\gamma(t), N(t)) = \{\gamma(t) + sN(t) : s \in \mathbb{R}\}$, where N(t) is the unit normal to the curve γ for $t \in (a, b)$.

If $p \in \mathbb{R}^2$ is a point such that all the normal lines to γ pass through p, then, for $t \in (a, b)$, there exists a real number s(t) such that $\gamma(t) + s(t)N(t) = p$. Therefore, for every $t \in (a, b)$, $\gamma(t) - p = s(t)N(t)$. [1 mark]

If we now show that s(t) is a constant, say C, for all $t \in (a,b)$, then it would follow that $\|\gamma(t) - p\| = |s(t)| \|N(t)\| = C$. This will prove that the trace of the curve is contained in a circle centered at the point p. [1 mark] Let $f(t) = \|\gamma(t) - p\|^2$ for $t \in (a,b)$. Then the function f is differentiable and $f'(t) = 2 \langle \gamma'(t), \gamma(t) - p \rangle = 2s(t) \langle \gamma'(t), N(t) \rangle = 0$. Hence the function f is constant. [1 mark]

2. Let a, b > 0 and $\gamma(t) = (a \cos t, a \sin t, bt)$ for $t \in \mathbb{R}$. Find the arc length parametrization of the curve γ . [2 marks]

For the curve $\gamma(t)=(a\cos t, a\sin t, bt)$, the tangent vector at a point $t\in\mathbb{R}$ is $\gamma'(t)=(-a\sin t, a\cos t, b)$ and $\|\gamma'(t)\|=\sqrt{a^2+b^2}$. Therefore $s(t)=\int_0^t \|\gamma'(t)\|dt=\sqrt{a^2+b^2}t$ and this shows that $t=\frac{s}{\sqrt{a^2+b^2}}$. [1 mark] Hence the arc length parametrization of the curve γ is given by $\sigma(s)=(a\cos(\frac{s}{\sqrt{a^2+b^2}}), a\sin(\frac{s}{\sqrt{a^2+b^2}}), b\frac{s}{\sqrt{a^2+b^2}})$. [1 mark]

3. Find the curvature and torsion of the curve defined by $\gamma(t) = e^t(\cos t, \sin t, 1)$ for $t \in \mathbb{R}$. [4 marks]

For the curve $\gamma(t) = e^t(\cos t, \sin t, t)$, we have

$$\gamma'(t) = e^t(\cos t - \sin t, \cos t + \sin t, 1)$$

 $\gamma''(t) = e^t(-2\sin t, -2\cos t, 1)$ and
 $\gamma'''(t) = e^t(-2(\cos t + \sin t), 2(\cos t - \sin t), 1)$ [1 mark]

Further
$$\gamma'(t) \times \gamma''(t) = e^{2t}(\sin t - \cos t, -(\cos t + \sin t), 2)$$
 and $\langle \gamma'(t) \times \gamma''(t), \gamma'''(t) \rangle = 2e^{3t}.$ [1 mark] Observe that $\|\gamma'(t)\|^3 = e^{3t}3^{3/2}$ and $\|\gamma'(t) \times \gamma''(t)\|^2 = 6e^{4t}.$ [1 mark]

Hence for very point $t \in \mathbb{R}$, the curvature $\kappa(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3} = \frac{\sqrt{2}}{3}e^{-t}$ and the torsion $\tau(t) = \frac{\langle \gamma'(t) \times \gamma''(t), \gamma'''(t) \rangle}{\|\gamma'(t) \times \gamma''(t)\|^2} = \frac{e^{-t}}{3}$. [1 mark]

.....