hyperrefHyper figures OFFhyperrefLink nesting OFFhyperrefHyper index ONhyperrefPlain pages OFFhyperrefBackreferencing OFF hyperrefImplicit mode ON; LaTeX internals redefined hyperrefBookmarks ON

hyperref Hyper figures OFF
hyperref Link nesting OFF
hyperref Hyper index ON
hyperref Backreferencing OFF
hyperref Link coloring OFF
hyperref Link coloring oFF
hyperref PDF/A mode OFF

hyperrefDriver (autodetected): hpdftex

rerunfilecheckFeatu

"pdfmdfivesum is not available(e.g. pdfTeX or LuaTeX with package 'pdftexcmds'). Therefore file contents cannot be checked efficiently and the loading of the package is aborted hyperrefOption 'raiselinks' set 'true' hyperrefOption 'colorlinks' set 'true'

hyperrefLink coloring ON

A Confluence proof for the λ_x -calculus in Coq

Flávio L. C. de Moura Danilo R. F. Caldas April 13, 2023

1 The substitution lemma for the metasubstitution

In the pure λ -calculus, the substitution lemma is probably the first non trivial property. In our framework, we have defined two different substitution operation, namely, the metasubstitution denoted by [x:=u]t and the explicit substitution that has n_sub as a constructor. In what follows, we present the main steps of our proof of the substitution lemma for the metasubstitution operation:

```
Lemma m_subst_lemma: \forall \ e1 \ e2 \ x \ e3 \ y, \ x \neq y \rightarrow x \ \text{'notin'} \ (\text{fv_nom} \ e3) \rightarrow ([y := e3]([x := e2]e1)) = a ([x := ([y := e3]e2)]([y := e3]e1)). Proof.
```

We proceed by functional induction on the structure of subst_rec_fun, the definition of the substitution. The induction splits the proof in seven cases: two cases concern variables, the next two concern abstractions, the next case concerns the application and the last two concern the explicit substitution. intros $e1\ e2\ x$. functional induction (subst_rec_fun $e1\ e2\ x$).

- intros e3 y XY IH. rewrite m_subst_var_eq. rewrite m_subst_var_neq.

If we only have these two variables, we can use the equality lemma to find that both sides of the proof are equal and finish it using reflexivity and in the second case assumptions are used to finish the proof.

+ rewrite m_subst_var_eq. apply aeq_refl.

admit. auto. admit.

H0.

apply aeq_sym. apply H. pose proof $m_subst_abs_diff$. specialize (H0 t1 e3 z x). rewrite

```
- admit.
  - intros e3 z XY IH. rewrite m_subst_app. rewrite m_subst_app. rewrite m_subst_app.
rewrite m_subst_app. auto.
  - intros e3 z XY IH. admit.
   - admit.
Admitted.
Lemma m_subst_lemma: \forall \ e1 \ e2 \ e3 \ x \ y, \ x \neq y \rightarrow x \ \text{`notin'} \ (\text{fv_nom} \ e3) \rightarrow
   aeq (m_subst e3 y (m_subst e2 x e1)) (m_subst (m_subst e3 y e2) x (m_subst e3 y e1)).
Proof.
Admitted.
 *)
Inductive betax : n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
 | step\_betax : \forall (e1 \ e2: n\_sexp) (x: atom),
       betax (n_app (n_abs \ x \ e1) \ e2) (n_sub \ e1 \ x \ e2).
Fixpoint f_-pix (t: n\_sexp): n\_sexp :=
   match t with
   (n_-sub\ (n_-var\ x)\ y\ e) \Rightarrow \text{if}\ x == y \text{ then } e \text{ else } (n_-var\ x)
   | (n\_sub (n\_abs x e1) y e2) \Rightarrow
         let (z, -) :=
            atom\_fresh\ (fv\_nom\ (n\_abs\ x\ e1)\ `union'\ fv\_nom\ e2\ `union'\ \{\{y\}\}\}) in
         (n\_abs \ z \ (n\_sub \ (swap \ x \ z \ e1) \ y \ e2))
   \mid (n\_sub \ (n\_app \ e1 \ e2) \ y \ e3) \Rightarrow (n\_app \ (n\_sub \ e1 \ y \ e3) \ (n\_sub \ e2 \ y \ e3))
   end.
Inductive pix : n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
| one\_step : \forall t, pix t (f\_pix t).
Inductive betapi: n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
\mid b\_rule : \forall t \ u, \ betax \ t \ u \rightarrow betapi \ t \ u
|x_rule: \forall t \ u, \ pix \ t \ u \rightarrow betapi \ t \ u.
Inductive ctx (R: n\_sexp \rightarrow n\_sexp \rightarrow Prop): n\_sexp \rightarrow n\_sexp \rightarrow Prop :=
   step\_aeg: \forall e1 \ e2, \ aeg \ e1 \ e2 \rightarrow ctx \ R \ e1 \ e2
   step\_redex: \forall (e1\ e2\ e3\ e4:\ n\_sexp),\ aeq\ e1\ e2 \rightarrow R\ e2\ e3 \rightarrow aeq\ e3\ e4 \rightarrow ctx\ R\ e1\ e4
   step\_abs\_in: \forall (e\ e':\ n\_sexp)\ (x:\ atom),\ ctx\ R\ e\ e'\to ctx\ R\ (n\_abs\ x\ e)\ (n\_abs\ x\ e')
   step\_app\_left: \forall (e1\ e1'\ e2:\ n\_sexp), ctx\ R\ e1\ e1' \rightarrow ctx\ R\ (n\_app\ e1\ e2)\ (n\_app\ e1'\ e2)
   step\_app\_right: \forall (e1\ e2\ e2':\ n\_sexp),\ ctx\ R\ e2\ e2' \rightarrow ctx\ R\ (n\_app\ e1\ e2)\ (n\_app\ e1\ e2')
   step\_sub\_left: \forall (e1\ e1'\ e2:\ n\_sexp)\ (x:\ atom)\ ,\ ctx\ R\ e1\ e1'\ 	o \ ctx\ R\ (n\_sub\ e1\ x\ e2)
(n\_sub\ e1'\ x\ e2)
 | step\_sub\_right: \forall (e1\ e2\ e2':\ n\_sexp)\ (x:atom),\ ctx\ R\ e2\ e2' \rightarrow ctx\ R\ (n\_sub\ e1\ x\ e2)\ (n\_sub\ e1\ x)
e1 \ x \ e2').
Definition lx \ t \ u := ctx \ betapi \ t \ u.
Lemma step\_abs\_eq: \forall (e1 \ e2: \ n\_sexp) \ (y: \ atom), \ \exists \ (z: \ atom) \ (e: \ n\_sexp), \ refltrans\_aeq \ (ctx \ pix)
```

 $(n_sub\ (n_abs\ y\ e1)\ y\ e2)\ (n_abs\ z\ e) \land (n_abs\ z\ e=a\ n_abs\ y\ e1).$

```
Proof.
  induction e1 using n\_sexp\_size\_induction. generalize dependent H. case e1.
  - intros x IH e2 y. pose proof eq\_dec. specialize (H x y). destruct H.
  + subst.

Admitted.

Lemma step\_redex\_R: \forall (R: n\_sexp \to n\_sexp \to Prop) e1 e2,

R e1 e2 \to ctx R e1 e2.

Proof.
  intros. pose proof step\_redex. specialize (H0 R e1 e1 e2 e2).
  apply H0.
  - apply aeq\_reft.
  - assumption.
  - apply aeq\_reft.
Qed.
```

1.1 Capture-avoiding substitution

We need to use size to define capture avoiding substitution. Because we sometimes swap the name of the bound variable, this function is *not* structurally recursive. So, we add an extra argument to the function that decreases with each recursive call.

Fixpoint subst_rec (n:nat) (t:n_sexp) (u :n_sexp) (x:atom) : n_sexp := match n with — $0 = \xi$ t — S m = ξ match t with — n_var y = ξ if (x == y) then u else t — n_abs y t1 = ξ if (x == y) then t else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom t 'union' 1) in n_abs z (subst_rec m (swap y z t1) u x) — n_app t1 t2 = ξ n_app (subst_rec m t1 u x) (subst_rec m t2 u x) — n_sub t1 y t2 = ξ if (x == y) then n_sub t1 y (subst_rec m t2 u x) else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom t 'union' 2) in n_sub (subst_rec m (swap y z t1) u x) z (subst_rec m t2 u x) end end.

Our real substitution function uses the size of the size of the term as that extra argument.

Definition m_subst (u : n_sexp) (x:atom) (t:n_sexp) := subst_rec (size t) t u x. Notation "x := u t" := (m_subst u x t) (at level 60).

Lemma m_subst_var_eq : forall u x, $x := u(n_var x) = u$. Proof. intros. unfold m_subst. simpl. rewrite eq_dec_refl. reflexivity. Qed.

Lemma m_subst_var_neq : forall u x y, x $; y - y := u(n_var x) = n_var x$. Proof. intros. unfold m_subst. simpl. destruct (y == x) eqn:Hxy.

- subst. contradiction.
- reflexivity.

Qed.

Lemma m_subst_abs : forall u x y t , m_subst u x (n_abs y t) = if (x == y) then (n_abs y t) else let (z,_) := atom_fresh (fv_nom u 'union' fv_nom (n_abs y t) 'union' 3) in n_abs z (m_subst u x (swap y z t)). Proof. intros. case (x == y).

X

 $^{^2}$ x

 $^{^3}$ x

- intros. unfold m_subst. rewrite e. simpl. case (y == y).
 - - trivial.
 - - unfold not. intros. assert (y = y). { reflexivity. } contradiction.
- intros. unfold m_subst. simpl. case (x == y).
 - - intros. contradiction.
 - - intros. pose proof AtomSetImpl.union_1. assert (forall z, size t = size (swap y z t)). { intros. case (y == z).
 - * intros. rewrite e. rewrite swap_id. reflexivity.
 - * intros. rewrite swap_size_eq. reflexivity.
 - } destruct (atom_fresh (Metatheory.union (fv_nom u) (Metatheory.union (remove y (fv_nom t)) (singleton x)))). specialize (H0 x0). rewrite H0. reflexivity.

Qed.

Corollary m_subst_abs_eq : for all u x t, $x := u(n_abs x t) = n_abs x t$. Proof. intros u x t. pose proof m_subst_abs. specialize (H u x x t). rewrite eq_dec_refl in H. assumption. Qed.

Corollary m_subst_abs_neq: forall u x y t, x ;; y -; let $(z, -) := \text{atom_fresh (fv_nom u 'union' fv_nom (n_abs y t) 'union' }^4)$ in $x := u(n_abs y t) = n_abs z (x := u(swap y z t))$. Proof. intros u x y t H. pose proof m_subst_abs. specialize (H0 u x y t). destruct (x == y) eqn:Hx.

- subst. contradiction.
- destruct (atom_fresh (Metatheory.union (fv_nom u) (Metatheory.union (fv_nom (n_abs y t)) (singleton x)))). assumption.

Qed.

Lemma m_subst_notin : forall t u x, x 'notin' fv_nom t -i, x := ut = t. Proof. induction t.

- intros u x' H. unfold m_subst. simpl in *. apply notin_singleton_1' in H. destruct (x' == x) eqn:Hx. + subst. contradiction. + reflexivity.
- intros u x' H. simpl in *.
- •
- •

intros. unfold $m_subst.$ simpl. destruct (y == x) eqn:Hxy.

- subst. contradiction.
- reflexivity.

 $^{^4}$ X

Qed.

Lemma m_subst_lemma: forall e1 e2 e3 x y, x ; y - ; x 'notin' (fv_nom e3) -; (y := e3(x := e2e1)) =a (x := ([y := e3]e2)(y := e3e1)). Proof. induction e1 using n_sexp_size_induction.

generalize dependent e1. intro e1; case e1 as $z \mid z \mid e11 \mid e12 \mid e11 \mid z \mid e12$.

- intros IH e2 e3 x y Hneq Hfv. destruct (x == z) eqn:Hxz. + subst. rewrite (m_subst_var_neq e3 z y). * repeat rewrite m_subst_var_eq. apply aeq_refl. * assumption. + rewrite m_subst_var_neq. * subst. apply aeq_sym. pose proof subst_fresh_eq. change (subst_rec (size e3) e3 (subst_rec (size e2) e2 e3 z) x) with (m_subst (m_subst e3 z e2) x e3). apply H. assumption. * apply aeq_sym. change (subst_rec (size (n_var z)) (n_var z) (subst_rec (size e2) e2 e3 y) x) with (m_subst (m_subst e3 y e2) x (n_var z)). apply subst_fresh_eq. simpl. apply notin_singleton_2. intro H. subst. contradiction.
- intros IH e2 e3 x y Hneq Hfv. unfold m_subst at 2 3. simpl. destruct (x == z) eqn:Hxz. + subst. change (subst_rec (size (m_subst e3 y (n_abs z e11))) (m_subst e3 y (n_abs z e11)) (m_subst e3 y e2) z) with (m_subst (m_subst e3 y e2) z (m_subst e3 y (n_abs z e11))). rewrite subst_abs_eq. +

Admitted. ¿¿¿¿¿¿ 52cf4c422428638712e894346e04a71a1e69b53f