Aymptotic (Large Sample) Theory

o and O notation.

Distances between distributions.

Consistency of MLE.

Score and Fisher Information.

Efficiency and Asymptotic Normality.

Relative efficiency.

Robustness.

Hypothesis Testing

Constructing Tests

Evaluating Tests

Neyman-Pearson Test

Wald Test

Likelihood Ratio Test (LRT)

p-values

Permutation Test

Probability Inequalities

Thm 1 (Gaussian Tail Inequality): Let $X \sim \mathcal{N}(0,1)$. Then

$$\mathbb{P}(|X| > \epsilon) \le \frac{2}{\epsilon} e^{-\epsilon^2/2} \tag{1}$$

Additionally:

$$\mathbb{P}(|\overline{X}_n| > \epsilon) \le \frac{1}{\sqrt{n\epsilon}} e^{-n\epsilon^2/2} \tag{2}$$

Thm 2 (Markov Inequality): Let X be a non-negative random variable s.t. $\mathbb{E}(X)$ exists. Then $\forall t > 0$

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t} \tag{3}$$

Thm 3 (Chebyshev's Inequality): Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \text{Var}(X)$. Then

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{4}$$

$$\mathbb{P}(|(X-\mu)/\sigma| \ge t) \le \frac{1}{t^2} \tag{5}$$

Lemma 4: Let $\mathbb{E}(X) = 0$ and $a \le X \le b$. Then

$$\mathbb{E}(e^{tX}) \le e^{t^2(b-a)^2/8} \tag{6}$$

Lemma 5: Let X be any random variable. Then

$$\mathbb{P}(X > \epsilon) \le \inf_{t > 0} e^{-t\epsilon} \mathbb{E}(e^{tX}) \tag{7}$$

Thm 6 (Hoeffding's Inequality): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$, $a \le X_i \le b$. Then $\forall \epsilon > 0$

$$\mathbb{P}(|\overline{X} - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2} \tag{8}$$

Thm 9 (McDiarmid): X_1, \ldots, X_n indep't. If $\sup_{x_1, \ldots, x_n, x_i'} |g(x_1, \ldots, x_n) - g_i^*(x_1, \ldots, x_n)| \le c_i \ \forall i, \Longrightarrow$

$$\mathbb{P}\left(g(X_1,\ldots,X_n) - \mathbb{E}(g(X_1,\ldots,X_n)) \ge \epsilon\right) \le e^{-2\epsilon^2/\sum_i c_i^2} \tag{9}$$

where $g_i^* = g$ with x_i replaced by x_i' .

Thm 12 (Cauchy-Schwartz inequality):

Thm 13 (Jensen's inequality):

Ex 15 (Kullback Leibler distance):

Thm 18:

 $\begin{array}{l} O_p \text{ and } o_p \colon X_n = o_p(1) \text{ if } \forall \ \epsilon > 0, \ \lim_{n \to \infty} \mathbb{P}(|X_n| > \epsilon) = 0. \\ X_n = O_p(1) \text{ if } \forall \ \epsilon > 0, \ \exists \ C > 0 \text{ s.t. } \lim_{n \to \infty} \mathbb{P}(|X_n| > C) \le \epsilon. \\ X_n = o_p(a_n) \text{ if } X_n/a_n = o_p(1) \text{ and } X_n = O_p(a_n) \text{ if } X_n/a_n = O_p(1). \end{array}$

Shattering

Note: remember uniform bounds and union bound.

F a finite set, |F| = n, and $G \subset F$. A is a class of sets.

 \mathcal{A} picks out G if $\exists A \in \mathcal{A} \text{ s.t. } A \cap F = G$.

Let $S(A, F) = |\{G \subset F \text{ picked out by } A\}| \le 2^n$.

F is **shattered** by \mathcal{A} if $S(\mathcal{A}, F) = 2^n$ (ie if \mathcal{A} picks out all $G \subset F$).

Let \mathcal{F}_n be all finite sets with n elements.

The shatter coefficient $s_n(\mathcal{A}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F) \leq 2^n$.

The VC dimension d(A) = the largest n s.t. $s_n(A) = 2^n$.

Thm 5: $\forall \epsilon > 0$, $\mathbb{P}(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \epsilon) \le 8s_n(\mathcal{A})e^{-n\epsilon^2/32}$

Random Samples

For $X_1, \ldots, X_n \sim F$ a **statistic** is any $T = g(X_1, \ldots, X_n)$. E.g. \overline{X}_n , $S_n = \sum_i (X_i - \overline{X}_n)^2 / (n-1)$, $(X_{(1)}, \ldots, X_{(n)})$

Notes: $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_i)$, $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}(X_i)/n$, $\mathbb{E}(S_n)^2 = \operatorname{Var}(X_i)$, $X_{1,\dots,n} \sim \operatorname{Bern}(p) \Longrightarrow \sum_i X_i \sim \operatorname{Bin}(n,p)$, $X_{1,\dots,n} \sim \operatorname{Exp}(\beta) \Longrightarrow \sum_i X_i \sim \Gamma(n,\beta)$, $X_{1,\dots,n} \sim \mathcal{N}(0,1) \Longrightarrow \sum_i X_i^2 \sim \chi_n$. Thm. 1: $X_1,\dots,X_n \sim \mathcal{N}(\mu,\sigma^2) \Longrightarrow \overline{X}_n \sim \mathcal{N}(\mu,\sigma^2/n)$.

Convergence

 X, X_1, X_2, \dots random variables.

(1) X_n converges almost surely $X_n \xrightarrow{a.s.} X$ if $\forall \epsilon > 0$

$$\mathbb{P}(\lim_{n \to \infty} |X_n - X| < \epsilon) = 1 \tag{10}$$

(2) X_n converges in probability $X_n \stackrel{p}{\to} X$ if $\forall \epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| < \epsilon) = 1 \tag{11}$$

(3) X_n converges in quadratic mean $X_n \xrightarrow{qm} X$ if

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0 \tag{12}$$

(4) X_n converges in distribution $X_n \rightsquigarrow X$ if

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t) \tag{13}$$

(4) $\forall t \text{ on which } F_X \text{ is continuous.}$

Thm 7: Conv. a.s. and in q.m. imply conv. in prob. All three imply conv. in distribution. Conv. in distribution to a point-mass also implies conv. in prob.

Thm 10a: X, X_n, Y, Y_n random variables. Then

(a)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n + Y_n \xrightarrow{p} X + Y$$
 (14)

(b)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n Y_n \xrightarrow{p} XY$$
 (15)

(c)
$$X_n \xrightarrow{qm} X, Y_n \xrightarrow{qm} Y \Longrightarrow X_n + Y_n \xrightarrow{qm} X + Y$$
 (16)

Thm 10b (Slutzky's Thm): X, X_n, Y_n random variables. Then

(a)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n + Y_n \rightsquigarrow X + c$$
 (17)

(b)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n Y_n \rightsquigarrow cX$$
 (18)

Thm 12 (Law of Large Numbers): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$

 $\Longrightarrow \overline{X}_n \xrightarrow{\mathrm{qm}} \mu.$

Thm 14 (CLT): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu \operatorname{Var}(X_i) = \sigma^2$

 $\implies \sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1)$ $\implies \overline{X}_n \rightsquigarrow \mathcal{N}(\mu, \sigma^2/n)$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/S_n \rightsquigarrow \mathcal{N}(0,1)$$

Thm 18 (delta method): If $\sqrt{n}(Y_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1)$, $g'(\mu) \neq 0$ $\Longrightarrow \sqrt{n}(g(Y_n) - g(\mu))/|g'(\mu)|\sigma \rightsquigarrow \mathcal{N}(0,1)$ ie $Y_n \approx \mathcal{N}(\mu, \sigma^2/n) \Longrightarrow g(Y_n) \approx \mathcal{N}(g(\mu), g'(\mu)^2 \sigma^2/n)$

Thm 18b (2nd order delta method):?? Should I include this?

Sufficiency

If $X_1, ..., X_n \sim p(x; \theta)$, T sufficient for θ if $p(x^n|t; \theta) = p(x^n|t)$. Thm 9 (factorization): for $X^n \sim p(x; \theta)$, $T(X^n)$ sufficient for θ if the joint probability can be factorized as.

$$p(x^n; \theta) = h(x^n) \times g(t; \theta) \tag{19}$$

T is a **minimal sufficient statistic (MSS)** if T is sufficient and T = g(U) for all other sufficient state U.

Thm 15: *T* is a MSS if:

$$\frac{p(y^n;\theta)}{p(x^n;\theta)}$$
 constant in $\theta \iff T(y^n) = T(x^n)$ (20)

Parametric Point Estimation

make sure i've defined: $\mathbb{E}_{\theta}(\hat{\theta})$, bias, sampling distro, standard error, $\hat{\theta}_n$ consistent.

Method of Moments: Define equations

- (a) $(\sum_i X_i)/n = \mathbb{E}_{\hat{\theta}}(X_i)$
- (b) $(\sum_i X_i^2)/n = \mathbb{E}_{\hat{\theta}}(X_i^2)$
- (c) ...

And solve for $\hat{\theta}$.

Maximum Likelihood (MLE): The MLE is

$$\hat{\theta} = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} l(\theta) \tag{21}$$

Often suffices to solve for θ in $\frac{\partial l(\theta)}{\partial \theta} = 0$. The MLE is **equivariant** \implies if $\eta = g(\theta)$ then $\hat{\eta} = g(\hat{\theta})$.

Bayes Estimation: For prior $\pi(\theta)$, choose

$$\hat{\theta} = \mathbb{E}(\theta|x^n) = \int \theta \pi(\theta|x^n) d\pi \tag{22}$$

Mean Squared Error (MSE): The MSE is

$$MSE = \mathbb{E}(\hat{\theta} - \theta)^2 = \int (\hat{\theta} - \theta)^2 p(x^n; \theta) dx^n = bias(\hat{\theta})^2 + Var(\hat{\theta})$$
(23)

Defs: **bias**($\hat{\theta}$) = $\mathbb{E}(\hat{\theta}) - \theta$. We say $\hat{\theta}$ is **consistent** if $\hat{\theta} = \hat{\theta}_n \xrightarrow{p} \theta$. The **standard error** of $\hat{\theta}$, se($\hat{\theta}$), is the standard deviation of $\hat{\theta}$.

Risks and Estimators

 $L(\theta, \hat{\theta})$ is the **loss** of an estimator $\hat{\theta} = \hat{\theta}(x^n)$ for $x^n \sim p(x^n; \theta)$. The **risk** of this $\hat{\theta}$ is

$$R(\theta, \hat{\theta}) = \mathbb{E}[L(\theta, \hat{\theta})] = \int L(\theta, \hat{\theta}) p(x^n; \theta) dx^n \tag{24}$$

When $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$, the risk is the MSE.

The **max risk** of $\hat{\theta}$ over a set $\theta \in \Theta$ is

$$\overline{R}(\hat{\theta}) = \sup_{\hat{\theta}} R(\theta, \hat{\theta}) \tag{25}$$

The minimax estimator is

$$\hat{\theta} = \arg\inf_{\hat{\theta}} \overline{R}(\hat{\theta}) \tag{26}$$

The **Bayes risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$B_{\pi}(\hat{\theta}) = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta \tag{27}$$

The **posterior risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$r(\hat{\theta}|x^n) = \int L(\theta, \hat{\theta})\pi(\theta|x^n)d\theta \tag{28}$$

where $\pi(\theta|x^n) = \frac{\mathbb{P}(x^n;\theta)\pi(\theta)}{m(x^n)}$ is the posterior over θ .

The Bayes estimator is

$$\hat{\theta} = \arg\inf_{\hat{\theta}} B_{\pi}(\hat{\theta}) = \arg\inf_{\hat{\theta}} r(\hat{\theta}|x^n)$$
 (29)

which equals the posterior mean $\mathbb{E}(\theta|x^n)$ when $L(\theta,\hat{\theta}) = (\theta - \hat{\theta})^2$, the posterior median when $L(\theta,\hat{\theta}) = |\theta - \hat{\theta}|$, and the posterior mode when $L(\theta,\hat{\theta}) = \mathbb{I}[\theta \neq \hat{\theta}]$.

Thm 10: If $\hat{\theta}$ is a Bayes estimator for some prior π and $R(\theta, \hat{\theta})$ is constant, then $\hat{\theta}$ is a minimax estimator.

Note: The MLE is approximately minimax (as n increases, if dimension of the parameter is fixed).

Distributions

Discrete distributions:

(a) Bernoulli
$$f(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$
 (30)

(b) Binomial
$$f(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, x \in \{0,1,\ldots,n\}$$
 (31)

(c) Poisson
$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x \in \{0, 1, 2, \ldots\}$$
 (32)

Continuous distributions:

(a) Uniform
$$f(x|a,b) = \frac{1}{b-a}, \quad x \in [a,b]$$
 (33)

(b) Normal
$$f(x|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}, x \in \mathbb{R}$$
 (34)

(c) Gamma
$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, x \in \mathbb{R}_+, \alpha \beta > 0$$
 (35)

Expected Values

The **mean** or **expected value** of g(X) is

$$\mathbb{E}(g(X)) = \int g(x)dF(x) = \int g(x)dP(x) \tag{36}$$

Related properties and definitions:

(a)
$$\mu = \mathbb{E}(X)$$
 (37)

(b)
$$\mathbb{E}(\sum_{i} c_{i} g_{i}(X_{i})) = \sum_{i} c_{i} \mathbb{E}(g_{i}(X_{i}))$$
 (38)

(c)
$$\mathbb{E}\left(\prod_{i} X_{i}\right) = \prod_{i} \mathbb{E}(X_{i}), \quad X_{1}, \dots, X_{n} \text{ indep't}$$
 (39)

(d)
$$Var(X) = \sigma^2 = \mathbb{E}((X - \mu)^2)$$
 is the **variance** of X (40)

(e)
$$Var(X) = \mathbb{E}(X^2) - \mu^2$$
 (41)

(f)
$$Var\left(\sum_{i} a_i X_i\right) = \sum_{i} a_i^2 Var(X_i), \quad X_1, \dots, X_n \text{ indep't}$$
 (42)

(g)
$$Cov(X,Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y))$$
 is the **covariance** (43)

(h)
$$Cov(X,Y) = \mathbb{E}(XY) - \mu_x \mu_Y$$
 (44)

(i)
$$\rho(X,Y) = Cov(X,Y)/\sigma_x\sigma_y$$
, $-1 \le \rho(X,Y) \le 1$ (45)

The **conditional expectation** of Y given X is the random variable $g(X) = \mathbb{E}(Y|X)$, where

$$\mathbb{E}(Y|X=x) = \int yf(y|x)dy \tag{46}$$

and
$$f(y|x) = f_{X,Y}(x,y)/f_X(x)$$
 (47)

The Law of Total/Iterated Expectation is

$$\mathbb{E}(Y) = \mathbb{E}[\mathbb{E}(Y|X)] \tag{48}$$

The Law of Total Variance is

$$Var(Y) = Var[\mathbb{E}(Y|X)] + \mathbb{E}[Var(Y|X)]$$
 (49)

The Law of Total Covariance is

$$Cov(X,Y) = \mathbb{E}(Cov(X,Y|Z)) + Cov(\mathbb{E}(X|Z), \mathbb{E}(Y|Z)) \tag{50}$$