4.2. Diagonalización de matrices

Definición 4.8 Dos matrices cuadradas A y B de orden n son equivalentes si existe una matriz P de orden n, no singular $(\det(P \neq 0))$ tal que $A = P^{-1}AP$.

Ejemplo 68 Las matrices $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$ $y \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$ son equivalentes pues:

$$\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 3 \end{pmatrix}$$

Definición 4.9 Una matriz cuadrada A es diagonalizable si posee una matriz equivalente B que sea diagonal.

Suponga que la matriz A de orden n tiene n vectores característicos linealmente independientes. Si estos vectores característicos son las columnas de una matriz S, entonces $S^{-1}AS$ es una matriz diagonal Λ , es decir A es diagonalizable g los valores característicos de g están sobre la diagonal de g:

$$S^{-1}AS = \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

Diagonalización de matrices de orden 2

Consideremos la matriz $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y calculemos sus valores propios, los cuales son las soluciones de:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

Entonces tenemos los siguientes casos:

1. **Dos raíces reales distintas** λ_1 y λ_2 : Entonces la matriz A es equivalente a la matriz $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ y por tanto es diagonalizable.

Ejemplo 69 Dada la matriz

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

Hallar

- a) Los valores propios de A.
- b) Los vectores propios A.
- c) Diagonalizar la matriz A

La ecuación característica es

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 3 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 6 = 0$$

cuyas soluciones $\lambda_1 = -2$ y $\lambda_2 = 3$ son los valores propios de A. Para $\lambda = \lambda_1 = -2$ da

$$3x_1 + 2x_2 = 0$$

$$3x_1 + 2x_2 = 0$$

Tomando $x_2 = t$ tenemos $x_1 = -\frac{2}{3}t$. Por lo tanto los vectores propios $a \lambda_1 = -2$ son

$$x = t \begin{pmatrix} -2/3 \\ 1 \end{pmatrix} \quad (t \in \mathbb{R})$$

Para $\lambda_2 = 3$, $x_1 = x_2$. Luego los vectores propios son:

$$x = s \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (t \in \mathbb{R})$$

Finalmente, como los lo valores propios de A son $\lambda_1 = -1$ y $\lambda_2 = 3$, podemos tomar los vectores propios respectivos

$$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 y $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Asi

$$P = \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \quad para \ la \ cual \quad P^{-1} = \begin{pmatrix} 1/5 & -1/5 \\ 3/5 & 2/5 \end{pmatrix}$$

Multiplicando deducimos que $P^{-1}AP = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$

2. Una raíz doble λ y el rango de $A - \lambda I$ igual a 1; entonces la matriz A es equivalente a la matriz: $\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$ y no es diagonalizable. Observemos que si el rango de $A - \lambda I$ es 0, entonces $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ que ya es diagonal.

Ejemplo 70 Sea
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

La ecuación característica es

$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1\\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0$$

cuyas soluciones $\lambda = \lambda_1 = \lambda_2 = 0$, es decir, $\lambda = 0$ es un valor característico doble y el rango de la matriz $A - \lambda I$ es 1, entonces la matriz A es equivalente a la matriz $\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. la cual no es diagonal.

3. **Dos raíces complejas conjugadas** a+bi y a-bi: entonces la matriz A es equivalente a la matriz $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ y no es diagonalizable.

Ejemplo 71 Sea

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0$$

cuyas raíces son $\lambda_1 = \lambda = i$ y $\lambda_2 = \bar{\lambda} = -i$. Entonces la matriz A es equivalente a la matriz

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

y no es diagonalizable.