

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 6月24日

出 願 番 号

特願2003-179458

Application Number:

[JP2003-179458]

出 願 人

[ST. 10/C]:

Applicant(s):

コニカミノルタビジネステクノロジーズ株式会社

2004年 2月 5日

特許庁長官 Commissioner, Japan Patent Office 今井康



【書類名】 特許願

【整理番号】 DKT2617355

【あて先】 特許庁長官殿

【国際特許分類】 G03G 5/14

【発明者】

【住所又は居所】 東京都八王子市石川町2970番地コニカビジネステク

ノロジーズ株式会社内

【氏名】 ▲崎▼村 友男

【発明者】

【住所又は居所】 東京都八王子市石川町2970番地コニカビジネステク

ノロジーズ株式会社内

【氏名】 志田 和久

【発明者】

【住所又は居所】 東京都八王子市石川町2970番地コニカビジネステク

ノロジーズ株式会社内

【氏名】 伊丹 明彦

【発明者】

【住所又は居所】 東京都八王子市石川町2970番地コニカビジネステク

ノロジーズ株式会社内

【氏名】 浅野 真生

【発明者】

【住所又は居所】 東京都八王子市石川町2970番地コニカビジネステク

ノロジーズ株式会社内

【氏名】 山崎 弘

【特許出願人】

【識別番号】 303000372

【氏名又は名称】 コニカビジネステクノロジーズ株式会社

【代表者】 坂口 洋文

【手数料の表示】

【予納台帳番号】 201526

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法

#### 【特許請求の範囲】

【請求項1】 導電性基体上に中間層、感光層を有する電子写真感光体において、該中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする電子写真感光体。

【請求項2】 導電性基体上に中間層、感光層を有する電子写真感光体において、該導電性基体の表面粗さRzが $0.5~2.5 \mu$ mであり、中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする電子写真感光体。

【請求項3】 前記遷移金属が原子番号21~30又は39~48の遷移元素であることを特徴とする請求項1又は2に記載の電子写真感光体。

【請求項4】 前記遷移金属が原子番号41のニオブ元素であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。

【請求項 5 】 前記アナターゼ形酸化チタン顔料のアナターゼ化度が 9 0 ~ 100%であることを特徴とする請求項  $1\sim 4$  のいずれか 1 項に記載の電子写真感光体。

【請求項6】 前記アナターゼ形酸化チタン顔料が反応性有機ケイ素化合物による表面処理を施されていることを特徴とする請求項1~5のいずれか1項に記載の電子写真感光体。

【請求項7】 前記アナターゼ形酸化チタン顔料の数平均一次粒径が10 nm以上200 nm以下であることを特徴とする請求項1~6のいずれか1項に記載の電子写真感光体。

【請求項8】 中間層の膜厚丁が前記表面粗さRzと下記式(1)の関係を有することを特徴とする請求項1~7のいずれか1項に記載の電子写真感光体。

式 (1) 0. 7 R z  $\leq$  T  $\leq$  2 0  $(\mu m)$ 

【請求項9】 前記感光層が電荷発生層及び電荷輸送層の層構成を有することを特徴とする請求項1~8のいずれか1項に記載の電子写真感光体。

【請求項10】 導電性基体上に中間層、感光層を有し、該中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。

【請求項11】 電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が導電性基体上に中間層、感光層を有し、該中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする画像形成装置。

【請求項12】 請求項11に記載の画像形成装置を用いて電子写真画像を 形成することを特徴とする画像形成方法。

### 【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$ 

【発明の属する技術分野】

本発明は、複写機やプリンターの分野において用いられる電子写真感光体、該電子写真感光体を用いたプロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。

 $[0\ 0\ 0\ 2]$ 

【従来の技術】

電子写真感光体(以下、単に感光体とも云う)はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年

無機感光体に代わって有機感光体の主流となっている。

### [0003]

一方、近年の電子写真方式の画像形成方法は、パソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さから、LEDやレーザを像露光光源とするデジタル方式の画像形成方式が急激に浸透しており、デジタル方式の高画質の電子写真画像を作製する技術が開発されている。例えば、スポット面積の小さいレーザ光で像露光を行い、ドット潜像の密度を上げて、高精細の潜像を形成し、該潜像を小粒径トナーで現像し、高画質の電子写真画像を作製する技術が公開されている。(特許文献1)

更に、最近のデジタル複写機、プリンター等の電子写真装置は小型、高速化が 進み、感光体特性として高速化に対応した高感度化と、耐摩耗性向上による長寿 命化の両方が要求されている。

### [0004]

前記した、高画質化、小型化、高速化の要求を満たすために、有機感光体としては、帯電特性及び感度が良好で、更に暗減衰が低いなど、電子写真特性は勿論のこと、デシタル潜像の現像に最も適している反転現像に対する適正が要求される。

#### [0005]

前記した、高画質化、小型化、高速化の要求を満たすために、感光体の感度の時間応答性を高めることが必要とされている。これらの要求を満たすために有機感光体は、感光層を電荷発生層と電荷輸送層に機能分離した層構成にし、該電荷発生層及び電荷輸送層の高感度及び高速性を追求してきた。

#### [0006]

しかしながら、これらの高感度、高速性の電荷発生物質や電荷輸送物質を用いると帯電性や感度の安定性が劣化しやすいという問題が発生している。即ち、高温高湿環境下や低温低湿環境下で帯電電位が低下したり、残留電位が増加したりしやすいと云う問題が発生している。

#### [0007]

即ち、これらの帯電電位や感度の安定性の劣化は、反転現像において、感光体

上の未露光部電位(VH)と露光部電位(VL)の差を小さくし、画像濃度を低下させると同時に、未露光電位(VH)と、感光体と現像スリーブ間の直流バイアス電位(VDC)の電位差も小さくなり、黒ポチ等の画像欠陥を発生させやすい。

### [0008]

上記帯電電位の安定化及び黒ポチ等の画像欠陥の問題を解決するため、有機感 光体に中間層を用いる技術が開発されている。例えば、導電性基体と感光層の間 に中間層を設け、該中間層には酸化チタン粒子を樹脂中に分散した構成を有する 有機感光体が知られている。又、表面処理を行った酸化チタンを含有させた中間 層の技術も知られている。例えば、酸化鉄、酸化タングステンで表面処理された 酸化チタン(特許文献 2)、アミノ基含有カップリング剤で表面処理された酸化 チタン(特許文献 3)、有機ケイ素化合物で表面処理された酸化チタン(特許文献 4)、メチルハイドロジェンポリシロキサンで表面処理された酸化チタン(特 許文献 5)、金属酸化物、或いは有機化合物で表面処理された樹枝状酸化チタン (特許文献 6)を用いた中間層を有する有機感光体が提案されている。

### [0009]

しかし、これらの技術を用いても高温高湿等の厳しい環境下では、尚、黒ポチの発生防止が十分でなく、或いは、繰り返し使用に伴う残留電位の上昇、露光部電位の上昇が起こり、画像濃度が十分得られないといった問題が発生している。

#### $[0\ 0\ 1\ 0\ ]$

更に、酸化チタンの結晶構造をより正確に制御し、前記した黒ポチの発生や繰り返し使用に伴う残留電位の上昇、露光部電位の上昇を改善しようとする提案が為されている。例えば、アナターゼ形酸化チタン顔料(以後、アナターゼ形酸化チタンだ子とも云う)を含有する中間層が提案されている(特許文献7)。アナターゼ形酸化チタンは、ルチル形酸化チタンに比し、体積抵抗が低く、この為中間層膜厚を厚めに構成でき、その厚みで、導電性支持体上の凹凸を隠蔽することにより、導電性支持体からの電荷注入を阻止しやすい反面、帯電電位の暗減衰を増大し、反転現像でのカブリの増加を起こしやすい傾向にあり、該特許文献にはこのような相反する課題の解決策が尚、不十分である

5/

0

### [0011]

又、上記酸化チタン粒子等をポリアミド樹脂に分散させて中間層を形成する方法は、広く知られている。しかし、この場合のポリアミド樹脂として通常用いられる主に、6ーナイロン等のアミド結合間の炭素鎖の少ない化学構造から構成される共重合ポリアミド樹脂やメトキシメチル化ポリアミド樹脂は、吸水率が高く、このようなポリアミドを用いた中間層は環境依存性が高くなる傾向にあり、その結果、繰り返し使用による残留電位の上昇、高温高湿下の帯電特性等が変化しやすく、黒ポチ等の画像欠陥が発生しやすい。

### [0012]

アミド結合間の炭素鎖の多い構成単位から構成される共重合ポリアミド樹脂、例えば12-ナイロン系樹脂は、吸水率が低い為、環境依存性が低い感光体を作るのに有効な材料であると予想される。しかし、このようなポリアミドは通常の有機溶媒には不溶で、感光体の製造には適さない。ポリアミドをメトキシメチル化により溶解性を向上させて用いる例があるが(特許文献8、9)、メトキシメチル化は著しく吸水率を増加させる為、黒ポチ等の画像欠陥を十分低くすることは難しい。

[0013]

【特許文献 1】

特開2001-255685号公報

 $[0\ 0\ 1\ 4]$ 

【特許文献 2】

特開平4-303846号公報

 $[0\ 0\ 1\ 5]$ 

【特許文献3】

特開平9-96916号公報

[0016]

【特許文献4】

特開平9-258469号公報

[0017]

【特許文献5】

特開平8-328283号公報

[0018]

【特許文献6】

特開平11-344826号公報

[0019]

【特許文献7】

特開平11-327188号公報

[0020]

【特許文献8】

特開平5-72787号公報

[0021]

【特許文献9】

特開平6-186767号公報

[0022]

【発明が解決しようとする課題】

本発明の目的は、高温高湿環境や低温低湿環境下において、帯電性及び感度が安定し、帯電電位や残留電位の変動が小さく、黒ポチやモアレ等の画像欠陥の発生を防止し、画像濃度が高い電子写真画像を作製できる電子写真感光体を提供することであり、又、高感度、高速性の電荷発生物質や電荷輸送物質を用いた場合に発生しやすい帯電性及び感度の劣化を防止し、帯電電位や残留電位の変動が小さく、黒ポチやモアレ等の画像欠陥の発生を防止し、画像濃度が高い電子写真画像を作製できる電子写真感光体を提供することであり、該電子写真感光体を用いたプロセスカートリッジ、画像形成装置及び画像形成方法を提供することである

[0023]

【課題を解決するための手段】

本発明者等は、上記高温高湿環境や低温低湿環境下において、帯電性及び感度

が安定し、帯電電位や残留電位の変動が小さく、黒ポチ等の画像欠陥の発生を防止するには、導電性支持体と感光層の間に、電荷キャリアに対し整流性を有する物質を含有させ、且つ温湿度変動に対しても安定した整流特性を示し、導電性支持体からの電荷注入に対し高いブロッキング効果を発揮できる中間層を設置することが有効であることを見いだし本発明を達成した。即ち本発明の目的は下記のような構成を取ることにより達成される。

### [0024]

1. 導電性基体上に中間層、感光層を有する電子写真感光体において、該中間層が遷移金属を100ppm~2. 0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする電子写真感光体。

### [0025]

2. 導電性基体上に中間層、感光層を有する電子写真感光体において、該導電性基体の表面粗さ R z が 0.  $5\sim2$ .  $5\,\mu$  m であり、中間層が遷移金属を 100 p p m  $\sim2$ . 0 質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする電子写真感光体。

### [0026]

3. 前記遷移金属が原子番号21~30又は39~48の遷移元素であることを特徴とする前記1又は2に記載の電子写真感光体。

#### $[0\ 0\ 2\ 7]$

4. 前記遷移金属が原子番号41のニオブ元素であることを特徴とする前記1~3のいずれか1項に記載の電子写真感光体。

#### [0028]

5. 前記アナターゼ形酸化チタン顔料のアナターゼ化度が $90\sim100\%$ であることを特徴とする前記 $1\sim4$ のいずれか1項に記載の電子写真感光体。

#### [0029]

6. 前記アナターゼ形酸化チタン顔料が反応性有機ケイ素化合物による表面処理を施されていることを特徴とする前記1~5のいずれか1項に記載の電子写真感光体。

### [0030]

7. 前記アナターゼ形酸化チタン顔料の数平均一次粒径が10 n m以上200 n m以下であることを特徴とする前記1~6のいずれか1項に記載の電子写真感 光体。

[0031]

8. 中間層の膜厚Tが前記表面粗さRzと下記式(1)の関係を有することを特徴とする前記1~7のいずれか1項に記載の電子写真感光体。

[0032]

式 (1) 0.7 R z  $\leq$  T  $\leq$  2 0 ( $\mu$  m)

9. 前記感光層が電荷発生層及び電荷輸送層の層構成を有することを特徴とする前記1~8のいずれか1項に記載の電子写真感光体。

[0033]

10. 導電性基体上に中間層、感光層を有し、該中間層が遷移金属を100ppm~2. 0質量%含有したアナターゼ形酸化チタン顔料を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。

[0034]

11. 電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が導電性基体上に中間層、感光層を有し、該中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする画像形成装置。

[0035]

12. 前記11に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。

#### [0036]

以下、本発明について詳細に記載する。

本発明の電子写真感光体は導電性基体上に中間層、感光層を有する電子写真感 光体において、該中間層が遷移金属を100ppm~2.0質量%含有したアナ ターゼ形酸化チタン顔料を含有することを特徴とする。

### [0037]

又、本発明の電子写真感光体は導電性基体上に中間層、感光層を有する電子写真感光体において、該導電性基体の表面粗さRzが $0.5~2.5~\mu$ mであり、中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする。

#### [0038]

本発明の電子写真感光体は上記構成を有することにより、感度や残留電位の環境依存性が小さく、高温高湿の環境から低温低湿の環境へ、使用条件が急に変化したとしても、安定した画像が得られ、又、反転現像でデジタル画像を形成するに際して、黒ポチやモアレ等の画像欠陥の発生が、どのような環境でも防止され、画像濃度が高く、鮮鋭性が良好な電子写真画像を形成できる。

### [0039]

酸化チタン顔料には、アナターゼ、ルチル、ブロカイトの3つの結晶構造が異なる顔料が存在し、本発明のアナターゼ形酸化チタン顔料(以後、単にアナターゼ形酸化チタンともいう)は屈折率2.55、結晶形は正方晶系で、aが0.378nm、cが0.947nmの格子常数を有する白色酸化チタン顔料を云う。

#### [0040]

本発明では中間層に遷移金属を100ppm(1ppmとは質量比で100万分の1を意味する)~2.0質量%含有するアナターゼ形酸化チタン顔料をバインダー樹脂中に、分散し、導電性基体と感光層の間に中間層として構成することにより、温湿度の環境条件が変化しても、帯電特性や感度特性の変化が小さく、その結果反転現像で発生しやすい黒ポチ等の画像欠陥の発生を防止して、鮮鋭性

の良好な電子写真画像を得ることができる。遷移金属が100ppm未満では帯電電位の暗減衰が増大しやすく、画像濃度が低下したり、カブリが発生したりしやすい。一方、遷移金属が2.0質量%より多いと黒ポリエステル樹脂チガ発生しやす。アナターゼ形酸化チタン顔料の遷移金属の含有量は300ppm~1.8質量%がより好ましい。

### [0041]

本発明のアナターゼ形酸化チタン粒子全体のニオブ元素濃度はICP (誘導結合プラズマ発光分析法)による定量分析により分析できる。

### [0042]

又、上記のような構成の中間層を表面を荒らした導電性基体(R z : 0.5~2.5  $\mu$  m)上に設置することにより、前記した効果に加えて、導電性基体と感光層の膜付きを改善し、レーザ光等の像露光光を用いた画像形成に際し、発生しやすいモアレの発生防止にも顕著な効果がある。又、導電性基体の表面を荒らすことにより発生しやすい黒ポチ防止のためには、本発明の中間層の膜厚は0.7 R z 以上、20  $\mu$  m以下にすることが好ましい。更に、中間層の膜厚TはR z 以上、10  $\mu$  m以下がより好ましい。中間層の膜厚Tが0.7 R z 未満では、黒ポチが発生しやすく、20  $\mu$  mより厚いと、残留電位が上昇しやすく、画像濃度が低下しやすい。

#### [0043]

本発明のアナターゼ形酸化チタン顔料に含有される遷移金属とは、原子番号 2  $1 \sim 3$  0 又は 3  $9 \sim 4$  8 、5  $7 \sim 8$  0 の遷移元素を意味する。これらの遷移元素の中でも、酸化チタン顔料中で、チタンイオンと大きさがほぼ同等以下の原子番号 2  $1 \sim 3$  0 又は 3  $9 \sim 4$  8 の遷移元素が好ましい。

#### [0044]

又、上記遷移金属の中でも、特にチタンイオンとイオン半径が近い原子番号41のニオブ元素が最も好ましい。ニオブ元素を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を中間層に含有する電子写真感光体は、中間層の整流性(電荷発生層の負電荷キャリアを通過させ、導電性支持体からの正電荷を阻止する性質)を強め、暗減衰が少なく、帯電安定性が十分に確保され、且つ

黒ポチ等の画像欠陥を十分に防止することができる。又、ニオブ元素を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を中間層に含有した中間層の膜厚を、前記式(1)の関係に従って、十分な膜厚に作製することにより、前記した効果を一層確実に達成することができる。

### [0045]

本発明のアナターゼ形酸化チタン顔料は公知の硫酸法で製造することができる。即ち、硫酸チタン、硫酸チタニルを含む溶液を加熱して加水分解させ含水二酸化チタンスラリーを作製し、該二酸化チタンスラリーを脱水焼成して得られる。以下、ニオブ元素を含有したアナターゼ形酸化チタン顔料の製造方法を記載する

### [0046]

まず、硫酸チタニル水溶液を加水分解して得た含水二酸化チタンスラリーに、硫酸ニオブ(水溶性のニオブ化合物)を添加する。添加量は、スラリー中のチタン量(二酸化チタン換算)に対し、ニオブイオンとして 0. 1 5~5 質量%の硫酸ニオブが適当である。具体的には、(i)硫酸チタニル水溶液に硫酸ニオブをニオブイオンとして 0. 1 5~5 質量%加えたものを加水分解して得た含水二酸化チタンスラリー、あるいは(ii)硫酸チタニル水溶液を加水分解して得た含水二酸化チタンスラリーに、硫酸ニオブをニオブイオンとして 0. 1 5~5 質量%加えたスラリーを用いることができる。

#### [0047]

上記ニオブイオン等を含む含水二酸化チタンスラリーを脱水して焼成する。焼成温度は一般に $850\sim1100$ ℃が適当である。焼成温度が850℃未満では焼成が十分に行われない。また、1100℃を上回ると粒子の焼結が生じ、顔料の分散性が著しく損なわれる。スラリーに加えられたニオブイオンは焼成中に粒子表面に偏析し、ニオブ酸化物として表面層に多く含まれる。この製造方法により、一次粒子の平均粒径が $0.01\sim10\mu$ mであって、ニオブ元素を100p $pm\sim2$ 質量%含有したアナターゼ形酸化チタン顔料を得ることができる。

#### [0048]

本発明のアナターゼ形酸化チタンはアナターゼ化度は90~100%が好まし

い。上記方法により、アナターゼ化度がほぼ100%のアナターゼ形酸化チタンを作製することができる。又、この範囲のニオブ元素を含有するアナターゼ形酸化チタンを含有する本発明の中間層は、整流性が良好且つ安定して達成され、本発明の前記したような効果が良好に達成される。

### [0049]

ここで、アナターゼ化度とは、酸化チタンの粉末 X 線回析において、アナターゼの最強干渉線(面指数 1 0 1)の強度 I A とルチルの最強干渉線(面指数 1 1 0)の強度 I R を測定し、以下の式で求められる値である。

アナターゼ化度 (%) = 100 / (1+1. 265×IR/IA)

アナターゼ化度を90~100%の範囲に作製するには、酸化チタンの作製において、チタン化合物として硫酸チタン、硫酸チタニルを含む溶液を加熱して加水分解させるとアナターゼ化度がほぼ100%のアナターゼ形酸化チタンが得られる。又、四塩化チタン水溶液をアルカリを用いて中和すればアナターゼ化度が高いアナターゼ形酸化チタンが得られる。

### [0050]

本発明の中間層には温湿度の環境依存性が小さいバインダー樹脂を用いることが好ましい。このようなバインダー樹脂としては、30%80%RHの体積抵抗 (A) と10%20%RHの体積抵抗 (B) の比 (A/B) が $1\sim1/100$ の バインダー樹脂が好ましく、具体的な例としては、以下のような樹脂が好ましい。

#### [0051]

即ち、エチレン系共重合樹脂としてELVAX4260(デュポン社製)、ポリウレタン樹脂としてNL2532(三井化学社製)、NL2249E(三井化学社製)、ポリアミド樹脂としてX1010(ダイセル・デグサ(株)製)、変性ポリオレフィン樹脂としてスーパクロン(日本製紙社製)、GS2000((株)鉛市)等が挙げられる。

#### [0052]

又、上記樹脂の体積抵抗は上記(A)及び(B)共、 $10^{12}\Omega$  c m以上が好ましく、 $10^{12}\sim10^{16}\Omega$  c mがより好ましい。 $10^{12}\Omega$  c m未満では、黒ポチ等

の画像欠陥が発生しやすく、 $10^{16}\Omega$  c mより大きいと残留電位が上昇しやすく、反転現像での画像濃度の低下が発生しやすい。

### [0053]

上記、体積抵抗の測定法について説明する。

体積抵抗率の測定法

体積抵抗率は、JIS K6911-1975に準じて行った。まず直径約100mm、厚さ20 $\mu$ mの円板状に形成したバインダー樹脂の試料を抵抗測定器ハイレスタIP(三菱油化株式会社製)を用いて測定、1分後の抵抗値より算出した値を測定値とした。なお、高温高湿条件下での測定値は、試料を30 $\mathbb C$ 80%RHの環境下にて24時間調湿した後に測定を行った。又、低温低湿条件下での測定値は、試料を10 $\mathbb C$ 20%RHの環境下にて24時間調湿した後に測定を行った。

### [0054]

アナターゼ形酸化チタンの平均粒径は、数平均一次粒径において10nm以上400nm以下の範囲のものが好ましく、より好ましくは20nm~200nm、特に好ましくは、20nm~100nmである。

### [0055]

数平均一次粒径の値が前記範囲内にあるアナターゼ形酸化チタンを用いた中間 層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポ チ発生やモアレ等の画像欠陥を防止する。

#### [0056]

前記アナターゼ形酸化チタンの数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。

### [0057]

アナターゼ形酸化チタン顔料は反応性有機ケイ素化合物による表面処理を行う ことが好ましい。反応性有機ケイ素化合物によるアナターゼ形酸化チタン顔料の 表面処理は以下の様な湿式法で行うことできる。尚、反応性有機ケイ素化合物の 表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。

### [0058]

即ち、有機溶剤や水に対して前記反応性有機ケイ素化合物を溶解または懸濁させた液に前記アナターゼ形酸化チタン顔料を添加し、この混合液を数分から1昼夜程度メディア分散する。そして場合によっては混合液に加熱処理を施した後に、濾過等の工程を経た後乾燥し、表面を有機ケイ素化合物で被覆したアナターゼ形酸化チタン顔料を得る。なお、有機溶剤や水に対して酸化チタンを分散させた懸濁液に前記反応性有機ケイ素化合物を添加しても構わない。

### [0059]

尚、前記表面処理に用いられる反応性有機ケイ素化合物の量は、前記表面処理時の仕込量にてアナターゼ形酸化チタン顔料100質量部に対し、反応性有機ケイ素化合物を0.1~10質量部、更に好ましくは0.1~5質量部用いることが好ましい。表面処理量が上記範囲よりも少ないと表面処理効果が十分に付与されず、中間層内における酸化チタン粒子の整流作用や分散性等が悪くなる。また、表面処理量が上記範囲を超えてしまうと、電子写真特性を劣化させ、その結果残留電位上昇や帯電電位の低下を招いてしまう。

#### [0060]

本発明で用いられる反応性有機ケイ素化合物としては下記一般式(1)で表される化合物が挙げられるが、酸化チタン表面の水酸基等の反応性基と縮合反応を する化合物であれば、下記化合物に限定されない。

$$[0\ 0\ 6\ 1]$$

### 一般式(1)

$$(R)_{n} - S_{i} - (X)_{4-n}$$

(式中、Siはケイ素原子、Rは該ケイ素原子に炭素が直接結合した形の有機 基を表し、Xは加水分解性基を表し、nは0~3の整数を表す。)

一般式 (1) で表される有機ケイ素化合物において、Rで示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、 $\gamma$  - グリシドキシプロピル、 $\beta$  - (3, 4)

#### [0062]

また、一般式(1)で表される有機ケイ素化合物は、単独でも良いし、2種以上組み合わせて使用しても良い。

### [0063]

また、一般式(1)で表される有機ケイ素化合物の具体的化合物で、nが2以上の場合、複数のRは同一でも異なっていても良い。同様に、nが2以下の場合、複数のXは同一でも異なっていても良い。又、一般式(1)で表される有機ケイ素化合物を2種以上を用いるとき、R及びXはそれぞれの化合物間で同一でも良く、異なっていても良い。

#### $[0\ 0\ 6\ 4]$

又、好ましい反応性有機ケイ素化合物としてはポリシロキサン化合物が挙げられる。特にメチルハイドロジェンポリシロキサンが好ましい。該ポリシロキサン化合物の分子量は1000~2000のものが一般に入手しやすく、又、黒ポチ発生防止機能も良好である。

### [0065]

本発明の酸化チタンの表面処理の他の1つはフッ素原子を有する有機ケイ素化 合物により表面処理を施された酸化チタン粒子である。該フッ素原子を有する有 機ケイ素化合物による表面処理、前記した湿式法で行うのが好ましい。

#### [0066]

尚、本発明において酸化チタン粒子表面が反応性有機ケイ素化合物により被覆

されていることは、光電子分光法(ESCA)、オージェ電子分光法(Auger)、2次イオン質量分析法(SIMS)や拡散反射FI-IR等の表面分析手法を複合することによって確認されるものである。

### [0067]

上記アナターゼ形酸化チタン顔料の表面処理の他の1つは、アルミナ、シリカ 、及びジルコニアから選ばれる少なくとも1種類以上の表面処理が挙げられる。

### [0068]

このアルミナ処理、シリカ処理、ジルコニア処理とはアナターゼ形酸化チタン表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。

### [0069]

なお、アルミナ及びシリカの処理は同時に行っても良いが、特にアルミナ処理 を最初に行い、次いでシリカ処理を行うことが好ましい。また、アルミナとシリ カの処理をそれぞれ行う場合のアルミナ及びシリカの処理量は、アルミナよりも シリカの多いものが好ましい。

#### [0070]

アナターゼ形酸化チタンのアルミナ、シリカ、及びジルコニア等の金属酸化物による表面処理は湿式法で行うことができる。例えば、シリカ、又はアルミナの表面処理を行ったアナターゼ形酸化チタンは以下の様に作製することができる。

#### [0071]

アナターゼ形酸化チタンを用いる場合、酸化チタン粒子(数平均一次粒子径:50nm)を50~350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等の



アルカリで中和することができる。

### [0072]

なお、上記表面処理に用いられる金属酸化物の量は、前記表面処理時の仕込量にて酸化チタン粒子100質量部に対して、0.1~50質量部、更に好ましくは1~10質量部の金属酸化物が用いられる。尚、前述のアルミナとシリカを用いた場合も例えばアナターゼ形酸化チタン粒子の場合、酸化チタン粒子100質量部に対して各々1~10質量部用いることが好ましく、アルミナよりもシリカの量が多いことが好ましい。

### [0073]

本発明の中間層は、バインダー樹脂100質量部に対し、表面処理アナターゼ 形酸化チタン顔料を10~10,000質量部、好ましくは50~1,000質 量部の割合で含有させる。該表面処理酸化チタンをこの範囲で用いることにより 、該酸化チタンの分散性を良好に保つことができ、黒ポチが発生せず、初期電位 変動が小さい良好な中間層を形成することができる。

### [0074]

電子写真感光体の構成

次に、本発明に用いられる電子写真感光体について記載する。

#### [0075]

本発明の電子写真感光体は有機感光体が好ましい。有機感光体とは電子写真感 光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機 能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷 発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送 機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する

#### [0076]

導電性基体(導電性支持体)

本発明の感光体に用いられる導電性基体としてはシート状、円筒状のどちらを 用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性基 体の方が好ましい。



### [0077]

本発明の円筒状導電性基体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の基体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の基体が好ましい。この真円度及び振れの範囲を超えると、良好な画像形成が困難になる。

### [0078]

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性基体としては常温で比抵抗  $10^3\Omega$  c m以下が好ましい。

### [0079]

本発明で用いられる導電性基体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100~200g/1、アルミニウムイオン濃度は1~10g/1、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。

#### [0080]

本発明の電子写真感光体は導電性基体の表面粗さを十点平均表面粗さR z で、0.5~2.5 μ mに作製することが好ましい。このような表面粗さに加工した 導電性基体の上に、本発明の遷移金属を含有するアナターゼ形酸化チタンを有する中間層を設置することにより、レーザ等の干渉光を用いても、モアレの発生を 効率よく防止することができる。

### [0081]

表面粗さRzの定義と測定法

本発明のR z は J I S B 0 6 0 1 - 1 9 8 2 に記載の基準長 0. 2 5 mmの値を意味する。即ち、基準長 0. 2 5 mmの距離間で上位から 5 つの山頂の平均高



さと、下位から5つの谷底の平均低さとの差である。

#### [0082]

後述の実施例では、粗さRzを表面粗さ計(小坂研究所社製 Surfcorder derSE-30H)で測定した。但し、誤差範囲内で同一の結果を生じる測定器であれば、他の測定器を用いても良い。

### [0083]

導電性基体の表面粗さR z は導電性基体の表面を切削加工や微細な粒子を基体表面に衝突させることによる、サンドブラスト加工の方法等を用いて、本発明の範囲内に加工することが出来る。又、前記したアルマイト加工等の化学的な表面処理によっても本発明の範囲内に加工することが出来る。

#### [0084]

#### 中間層

本発明においては導電性基体と感光層の間に、バリヤー機能を備えた前記のような中間層を設けることが好ましい。

#### [0085]

#### 感光層

本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を 1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の 機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのが よい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を 小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電 用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CT L)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯 電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離 構造を有する負帯電感光体構成である。

### [0086]

以下に機能分離負帯電感光体の感光層構成について説明する。

#### 電荷発生層

電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必



### [0087]

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる立体、電位構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu-Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。

### [0088]

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20~600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01 $\mu$ m~2 $\mu$ mが好ましい。

#### [0089]

#### 電荷輸送層

電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。

### [0090]

電荷輸送物質(CTM)としては、例えばトリフェニルアミン誘導体、ヒドラ ゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用い ることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解し て層形成が行われる。これらの中で繰り返し使用に伴う残留電位増加を最も小さ くできるCTMの併用は、相互のCTM間のイオン化ポテンシャル差が 0.5(eV)以下の特性を有するものであり、好ましくは 0.25(eV)以下である

### [0091]

CGM、CTMのイオン化ポテンシャルは表面分析装置AC-1 (理研計器社製)で測定される。

### [0092]

電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリーNービニルカルバゾール等の高分子有機半導体が挙げられる。

#### [0093]

これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10~200質量部が好ましい。又、電荷輸送層の膜厚は10~50 $\mu$ mが好ましい。又、本発明の電荷輸送層は2層以上の多層構成とし、その最上層に保護層としての機能を持たせても良い。

#### [0094]

又、電荷輸送層には酸化防止剤を含有させることが好ましい。該酸化防止剤と は、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在す る自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし 、抑制する性質を有する物質である。

#### [0095]

即ち、本発明の中間層、感光層、その他樹脂層の形成に用いられる溶媒又は分散媒としては、n-ブチルアミン、ジエチルアミン、エチレンジアミン、イソプ

ロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N, Nージメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1, 2ージクロロエタン、1, 1, 2ートリクロロエタン、1, 1, 1ートリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。

### [0096]

中間層塗布液の作製に用いられる表面処理酸化チタンの分散手段としてはサンドミル、ボールミル、超音波分散等いずれの分散手段を用いても良い。

#### [0097]

前記中間層を含め、本発明の電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお前記スプレー塗布については例えば特開平3-90250号及び特開平3-269238号公報に詳細に記載され、前記円形量規制型塗布については例えば特開昭58-189061号公報に詳細に記載されている。

#### [0098]

次に、本発明の画像形成方法及び画像形成装置の説明をする。

図1は本発明の画像形成方法の1例としての画像形成装置の断面構成図である

### [0099]

図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器(帯電手段、帯電工程)で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だっ

て、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電 前露光部51による露光を行って感光体周面の除電をしてもよい。

### [0100]

感光体への一様帯電の後、像露光手段(像露光工程)としての像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、f  $\theta$  レンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。

### [0101]

その静電潜像は次いで現像手段(現像工程)としての現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。

#### [0102]

像露光工程から現像工程迄の到達時間(Td)は高速のプロセススピードでは短くなり、高速適応性が不十分な電子写真感光体は、現像工程に達した時にも像露光による電位低下が完了しない。電子写真感光体は像露光工程から現像工程迄の到達時間(Td)が110m秒以下の高速のプロセスに適用しても、現像工程で、十分な電位低下を完了しており、繰り返し、使用による高速性の劣化も小さく、更に低温低湿環境下でも、十分な高速適応性を有している。

#### [0 1 0 3]

本発明の像露光工程から現像工程迄の到達時間(Td)は、感光体上に照射される像露光光の完了時の位置(感光体上の位置A)と現像によりトナーが付着し始める位置(感光体上の位置B)の間の感光体上の距離(|A~B|)を画像形成動作時の感光体の線速(感光体の表面線速)で除すことにより算出できる。

### [0104]

一般にデジタルの画像形成方法では反転現像が行なわれるが、ここで反転現像 とは帯電器 5 2 により、感光体表面を一様に帯電し、像露光が行われた領域、即 ち、感光体の露光部電位(露光部領域)を現像工程(手段)により、顕像化する 画像形成方法である。一方未露光部電位は現像スリーブ541に印加される現像バイアス電位により現像されない。

### [0105]

現像器 54 内部は現像剤攪拌搬送部材 544、543、搬送量規制部材 542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材 542 により制御される。該現像剤の搬送量は適用される電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には  $20\sim200$  m g/c m $^2$ の範囲である。

### [0106]

現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。感光体の電位測定は電位センサー547を図1のように現像位置上部に設けて行う。

### $[0\ 1\ 0\ 7]$

記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の 回転作動により転写域へと給紙される。

#### [0108]

転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写手段:転写器)58が作動し、給紙された記録紙Pにトナーと反対極性の帯電を与えてトナーを転写する。

### [0109]

次いで記録紙Pは分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を

### [0110]

一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器(クリーニング手段)62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。

### [0111]

尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。

### [0112]

本発明の画像形成方法及び画像形成装置は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。

### [0113]

#### 【実施例】

以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、以下の文章で「部」とは質量部を表す。

#### [0114]

以下のようにして、評価に用いる感光体を作製した。

### 感光体1の作製

#### 中間層 1

洗浄済み円筒状アルミニウム基体(切削加工により表面粗さR z : 1.0 μ m に加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、乾燥膜厚1.0 μ

mの中間層1を形成した。

### [0115]

下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。

### [0116]

(中間層分散液の作製)

バインダー樹脂: ELVAX4260 (デュポン社製) 1部ニオブ元素を0.5質量%含有したアナターゼ形酸化チタンA1 (一次粒径35nm;表面処理は、フッ化エチルトリメトキシシラン処理) 3.0部トルエン 10部

上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。

#### [0117]

### 電荷発生層

下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚 0.3  $\mu$  mの電荷発生層を形成した。

#### [0118]

Y形オキシチタニルフタロシアニン( $Cu-K\alpha$ 特性 X線による X線回折のスペクトルで最大ピーク角度が  $2\theta$  で 27.3) 20部ポリビニルブチラール(#6000-C、電気化学工業社製) 10部酢酸 t-ブチル 700部 4- 300部

#### 電荷輸送層

下記成分を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、乾燥膜厚 2 4 μ m の電荷輸送層を形成し、感光体 1 を作製した。

### [0119]

ポリカーボネート樹脂「ユーピロン-Z300」(三菱ガス化学社製)

100部

酸化防止剤 (下記化合物 A)

2部

テトラヒドロフラン/トルエン(体積比7/3)

750部

感光体2~21の作製

アルミニウム基体の表面粗さRz、中間層の粒子、バインダー樹脂、中間層の 乾燥膜厚等の組成を表1、2のように変更した以外は感光体1と同様にして感光 体 $2\sim2$  1 を作製した。

[0120]

【化1】

化合物A

[0121]

【表1】

|          | 1 1 1   |     |         |                                                                          | 福中             | 18              |                  |                          |                                                                                                 |        |      |
|----------|---------|-----|---------|--------------------------------------------------------------------------|----------------|-----------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------|------|
| 概光体      | 基本      |     | ナター     | な形                                                                       | バインダー          | ž               | ンダー体積抵抗<br>(Ocm) | <b>積抵抗</b>               | <b>灰</b> 옍                                                                                      | 乾燥膜厚   | 龜    |
| <u>:</u> | ( m m ) | 哲子  | #(m = 1 | <b>表</b> 由処理                                                             | <b>49</b> E    | A               | В                | A/B                      |                                                                                                 | ( m m) |      |
| -        | 1.0     | A 1 | 35      | フッ化エチルトリメトキシシラン                                                          | ELVAX4260      | 1014.50         | 1015.20          | 1/100.70                 | トルエン                                                                                            | 1.00   | 本発明内 |
| 2        | 1.0     | A 1 | 35      | フッ化エチルトリメトキシンラン                                                          | X1010          | 1014.85         | 1015.26          | 014.85 1015.26 1/100.41  | エタノール<br>/nープロビル<br>アルコール<br>(6/1)                                                              | 1.00   | 本発明内 |
| m        | 1.0     | A 1 | 35      | しゃ化エチルトリメトキンシラン                                                          | NL2532         | 1014.64 1015.18 | 1015.18          | 1/100.54                 | トルエン<br>/酢酸エチル<br>(1/4)                                                                         | 1.00   | 本発明内 |
| 4        | 1.0     | A 1 | 35      | フッ化エチル<br>トリメトキシシラン                                                      | NL2249E        | 1013.87         | 1015.12          | 1015.12 1/101.25         | トルエン<br>/酢酸エチル<br>(1/4)                                                                         | 0.1    | 本発明内 |
| r.       | 1.0     | 4   | 35      | ラッ化エチル<br>トリメトキシシラン                                                      | S G 2000       | 1012.69         | 1014.23          | 1/101.54                 | 大                                                                                               | 8.     | 本発明内 |
| 9        | 1.0     | A 1 | 35      | フッ化エチルトリメトキシシラン                                                          | <b>イロクハー</b> と | 1013.50         | 1014.98          | 1/101.48                 | トルエン                                                                                            | 1.00   | 本発明内 |
| 7        | 0.4     | A 2 | 180     | メチドントドロン・ドン・ボン・ボン・ボン・ドロン・シャル・ション・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー | S G 2000       | 1012.69         | 1014.23          | 1012.69 1014.23 1/101.54 | インプロピルアルコール                                                                                     | 0.40   | 本発明内 |
| ∞        | 0.5     | A 2 | 180     | メチルハイドロン・ドン・ボーン・ボーン・ボーン・ロン・カー・ドー・フロー・                                    | S G 2000       | 1012.69         | 1014.23          | 1/101.54                 | インプロビルアルコール                                                                                     | 0.30   | 本発明内 |
| თ        | 0.5     | A 2 | 180     | メチルハイドロジェンポリシロキサン                                                        | S G 2000       | 1012.69         | 1014.23          | 1/101.54                 | ¥                                                                                               | 0.40   | 本発明内 |
| 02       | 0.5     | A 2 | 180     | メチルハイドロジェンボリシロキサン                                                        | S G 2000       | 1012.69         | 1014.23          | 1012.69 1014.23 1/101.54 | 水                                                                                               | 1.00   | 本発明内 |
| =        | 0.5     | A 2 | 180     | メチルハイドロンドンボンボリンロサナン                                                      | S G 2000       | 1012.69         | 1014.23          | 1012.69 1014.23 1/101.54 | 米                                                                                               | 1.50   | 本発明内 |
| 12       | 1.0     | A 3 | 65      | オクチル<br>トリメトキシシラン                                                        | X1010          | 1014.85         | 1015.26          | 1/100.41                 | エタノール<br>10 <sup>14.85</sup> 10 <sup>15.26</sup> 1/10 <sup>0.41</sup> /nーブロビル<br>アルコール<br>(6/1) | 1.00   | 本発明内 |

[0122]

【表2】

|     | 7 11 11 17 |        |      |                     | 1        | 中間層             |           |                          |                                                                                                                                                     |         |        |
|-----|------------|--------|------|---------------------|----------|-----------------|-----------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 聚光存 | 本体の表面相     |        | 7+9- | - ゼ形酸化チタン           | *        | バイン             | バインダー体積抵抗 | 積抵抗                      |                                                                                                                                                     | 乾燥      | 金米     |
|     | RZ         | 74     | 粒径   | 東面処理                | ・メンシーを売を | )               | Ωcm       | <u>`</u>                 | <b>灰</b>                                                                                                                                            | 順厚      | r<br>E |
|     |            | ⊒      | (mu) | A Y II Y            |          | ٧               | В         | A/B                      |                                                                                                                                                     | ( M m ) |        |
| I   | 1.0        | ю<br>4 | 65   | オクチル<br>トリメトキシシラン   | X1010    | 1014.85         | 1015.26   | 1/100.41                 | 1014.85 $1015.26$ $1/100.41$ $/n - 7 \square V$ $/ N - 3 \square V$ | 2.00    | 本発明内   |
|     | 2.5        | A 4    | 51   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64 1015.18 | 1015.18   | 1/100.54                 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 1.75    | 本発明内   |
| 1   | 2.5        | A 4    | 15   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1014.64 1015.18 1/100.54 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 2.50    | 本発明内   |
| Į.  | 2.5        | A 4    | 15   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1/100.54                 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 5.00    | 本発明内   |
| ı   | 2.5        | 4 A    | 15   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1/100.54                 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 10.00   | 本発明内   |
| 1   | 2.5        | 4 A    | 15   | シリカ・アルミナ            | NL2532   | 1014.64         | 1015.18   | 1015.18 1/100.54         | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 20.00   | 本発明内   |
| l   | 3.0        | A 4    | 15   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1/100.54                 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 3.0     | 本発明内   |
| I   | 1.0        | A 5    | 35   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1014.64 1015.18 1/100.54 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 3.0     | 本発明外   |
| I   | 1.0        | 9 V    | 35   | フッ化エチル<br>トリメトキシシラン | NL2532   | 1014.64         | 1015.18   | 1014.64 1015.18 1/100.54 | トルエン<br>/酢酸エチル<br>(1/4)                                                                                                                             | 3.0     | 本発明外   |

[0123]

上表中、

A1はニオブ元素を0.5質量%含有したアナターゼ形酸化チタン(アナターゼ化度:100%)

A 2 はニオブ元素を 1. 0 質量%含有したアナターゼ形酸化チタン (アナターゼ化度: 95%)

A 3 はニオブ元素を 3 0 0 p p m含有したアナターゼ形酸化チタン (アナターゼ化度: 1 0 0 %)

A 4 はニオブ元素を1. 8 質量%含有したアナターゼ形酸化チタン (アナターゼ化度: 9 2 %)

A 5 はニオブ元素を 7 0 p p m含有したアナターゼ形酸化チタン (アナターゼ 化度: 100%)

A 6 はニオブ元素を 2. 2 質量%含有したアナターゼ形酸化チタン (アナターゼ化度: 9 2 %)

ELVAX4260はエチレン系共重合樹脂 (デュポン社製)

X1010はポリアミド樹脂(ダイセル・デグサ(株)製)

NL2532、NL2249Eはポリウレタン樹脂(三井化学社製)

スーパクロンは変性ポリオレフィン樹脂(日本製紙社製)

SG2000は変性ポリオレフィン樹脂((株)鉛市)

上記表中、中間層の膜厚は中間層塗布乾燥後、均一膜厚部分をランダムに10ケ所測定し、その平均値を中間層の膜厚とする。膜厚測定器は渦電流方式の膜厚測定器EDDY560C(HELMUT FISCHER GMBTE CO社製)を用いて行った。

### [0124]

尚、表 1、表 2 中、表面処理とはアナターゼ形酸化チタン顔料の表面に施した 表面処理に用いた物質を示す(但し、シリカ・アルミナはアナターゼ形酸化チタン顔料の表面に析出した物質を示す)。

### [0125]

又、表1、表2中のバインダーの体積抵抗の測定は以下のようにして行った。 体積抵抗の測定条件

測定条件; JIS:K6911-1975に準ずる。

#### [0126]

測定器:三菱油化社製Hiresta IP

測定条件:測定プローブ HRS

印加電圧:500V

測定環境:30±2℃、 80±5RH%

 $1.0 \pm 2 \, \text{°C}$ ,  $2.0 \pm 2 \, \text{R H \%}$ 

### 評価

得られたサンプルをコニカ(株)製の反転現像方式デジタル複写機「Konic ca7085」改造機(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4 紙85枚/分機)に搭載し、帯電器のグリッド電圧を-750 Vに調整し、低温低湿(LL:10 C20 % RH)、常温常湿(NN:20 C60 % RH)、高温高湿(HH:30 C80 % RH)にて、各環境毎に、A4 紙、A1 万枚の連続コピー画像を作製し、画像評価を行った。又、高温高湿(30 C80 % RH)の未露光部電位 VHH、露光部電位 VHL および低温低湿(10 C20 % RH)の未露光部電位 VLH、露光部電位 VLL を測定し、AVH (AVH AVH AVH

#### $[0 \ 1 \ 2 \ 7]$

「Konica7085| 改造機の作動条件

感光体のラインスピード;420mm/秒

像露光工程から現像工程までの移動時間; 0. 108秒

帯電条件

帯電器:スコロトロン帯電器(負帯電)

帯電電位の目標; -750V

露光条件

べた黒画像電位の目標;-50V

露光ビーム:レーザは680nmの半導体レーザを使用

現像条件

現像剤は、Konica7085用現像剤を使用した。

[0128]

転写条件

転写極;コロナ帯電方式(正帯電)

分離条件

分離爪ユニットの分離手段を用いた。

[0129]

クリーニング条件

クリーニングブレードをカウンター方向に当接したクリーニング手段を用いた

0

[0130]

評価項目及び評価基準

画像濃度;低温低湿 (LL:10℃20%RH)、高温高湿 (HH:30℃8 0%RH) で評価

マクベス社製RD-918を使用して測定。紙の反射濃度を「0」とした相対 反射濃度で測定した。多数枚のコピーで残留電位が増加すると、画像濃度が低下 する。各1万枚コピー後のべた黒画像部で測定した。

[0131]

◎:低温低湿、高温高湿とも黒ベタ画像が1.2より高い(良好)

〇:低温低湿、高温高湿とも黒ベタ画像が1.0以上、1.2以下(実用上問題なし)

×:低温低湿、高温高湿の何れかで黒ベタ画像が1.0未満(実用上問題あり)

カブリ;低温低湿 (LL:10℃20%RH)、高温高湿 (HH:30℃80%RH) で評価

カブリ濃度はべた白画像をマクベス社製RD-918を使用し反射濃度で測定した。該反射濃度は相対濃度(複写していないA4紙の濃度を0.000とする)で評価した。

### [0132]

◎;低温低湿、高温高湿とも濃度が0.010未満(良好)

○;低温低湿、高温高湿とも濃度が0.010以上、0.020以下(実用上問題ないレベル)

×;低温低湿、高温高湿の何れかで濃度が0.020より高い(実用上問題となるレベル)

黒ポチ(低温低湿又は高温高湿の黒ポチが多い方で判定した)

黒ポチについては、周期性が感光体の周期と一致し、目視できる黒ポチが、A4サイズ当たり何個あるかで判定した。

### [0133]

- ◎:0.4mm以上の黒ポチ頻度:全ての複写画像が3個/A4以下(良好)
- ○:0.4 mm以上の黒ポチ頻度:4個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
- ×:0.4mm以上の黒ポチ頻度:11個/A4以上が1枚以上発生(実用上問題有り)

モアレの評価(常温常湿のハーフトーン画像や白地画像で評価した。)

- ○:ハーフトーン画像や白地画像共、モアレ発生なし(良好)
- ○:ハーフトーン画像で軽微なモアレ発生(実用性に問題なし)

×:ハーフトーン画像又は白地画像で顕著なモアレ発生(実用性に問題有り)

#### 鮮鋭性

画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。

#### $[0\ 1\ 3\ 4]$

- ◎;低温低湿、高温高湿とも3ポイント、5ポイントとも明瞭であり、容易に 判読可能(良好)
- ○;低温低湿、高温高湿の何れかで3ポイントは一部判読不能、5ポイントは 明瞭であり、容易に判読可能(実用性に問題なし)
  - ×;低温低湿、高温高湿の何れかで3ポイントは殆ど判読不能、5ポイントも

一部あるいは全部が判読不能(実用性に問題有り) 評価結果を表3に示す。

[0135]

## 【表3】

|      | 鏕            | 本発明内 | 本発明外 | 本発明外 |
|------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      | 鮮鋭性          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×    | ×    |
| 恒    | モアレ          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 画像評価 | 黒ボチ          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×    |
|      | በይዩ          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×    | 0    |
|      | 画機像度         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ×    | 0    |
|      | ∆VL <br>(V)  | 650  | 645  | 645  | 635  | 640  | 635  | 610  | 605  | 909  | 930  | 645  | 630  | 635  | 290  | 099  | 640  | 655  | 260  | 570  | 200  | 540  |
|      | ( - A)       | 100  | 115  | 115  | 125  | 1.10 | 115  | 130  | 135  | 140  | 120  | 115  | 120  | 115  | 160  | 110  | 130  | 115  | 180  | 170  | 230  | 140  |
| 評価   | VLH ( - )    | 760  | 760  | 09/  | 760  | 750  | 750  | 740  | 740  | 740  | 750  | 760  | 750  | 750  | 750  | 770  | 770  | 770  | 740  | 730  | 730  | 730  |
| 電位評価 | ΙΔVH!<br>(V) | 089  | 675  | 675  | 665  | 675  | 670  | 640  | 645  | 650  | 680  | 685  | 680  | 685  | 625  | 069  | 680  | 685  | 540  | 009  | 450  | 550  |
|      | VHL ( – V)   | 99   | 65   | 65   | 75   | 8    | 65   | 8    | 85   | 8    | 2    | 65   | 70   | 65   | 125  | 09   | 70   | 65   | 160  | 130  | 200  | 150  |
|      | (y — )       | 740  | 740  | 740  | 740  | 735  | 735  | 720  | 730  | 740  | 750  | 750  | 750  | 750  | 750  | 750  | 750  | 750  | 700  | 730  | 650  | 700  |
| + +  | 級尤在<br>No.   | -    | 2    | 3    | 4    | 5    | 9    | 7    | ω    | 6    | 0    | =    | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 50   | 21   |

[0136]

表3より、100ppm~2質量%の範囲のニオブ元素を含有したアナターゼ 形酸化チタンを含有する中間層を有する本発明の感光体1~19はニオブ元素が 70ppmのアナターゼ形酸化チタン顔料を用いた感光体20或いはニオブ元素 が2.2質量%のアナターゼ形酸化チタン顔料を用いた感光体21に比し、高温 高湿、低温低湿での未露光部電位及び露光部電位の安定性に優れ、十分な電位差 | Δ∨Η | 及び | Δ∨L | を有することから、画像濃度が十分で且つカブリ濃度 が小さくしかも黒ポチ等の改良効果が顕著であり、その結果鮮鋭性が良好な電子 写真画像を得ている。特に、導電性支持体の表面粗さR z が 0 . 5 ~ 2 . 5 μ m で且つ中間層の樹脂の体積抵抗が30℃80%RH条件下で10<sup>12</sup>Ωcm以上且 つ30℃80%RHの体積抵抗(A)と10℃20%RHの体積抵抗(B)の比 (A/B) が $1\sim 1/100$ の範囲にあり、中間層の膜厚が膜厚が $Rz\sim 10\mu$ mの感光体1~6、10~13、15~17は改善効果が大きい。一方、感光体 20は未露光部電位VHHの低下、VLLの電位上昇が大きく、画像濃度の低下 、カブリの発生を起し、その結果鮮鋭性も低下している。又、ニオブ元素を2. 2質量%含有する感光体21は黒ポチの発生が著しく、その結果鮮鋭性も低下し ている。

### [0137]

### 【発明の効果】

実施例からも明らかなように、本発明の構成を有する電子写真感光体を用いることにより、環境変化に対する電位変動が小さく、且つ黒ポチやモアレ等も発生しない良好な電子写真感光体を得ることができる。又該電子写真感光体を用いた良好な電子写真画像を達成できるプロセスカートリッジ、画像形成装置及び画像形成方法を提供することが出来る。

#### 【図面の簡単な説明】

#### 【図1】

本発明の画像形成方法の1例としての画像形成装置の断面構成図である。

#### 【符号の説明】

- 50 感光体ドラム (感光体)
- 51 帯電前露光部

- 5 2 帯電器
- 53 像露光器
- 5 4 現像器
- 5 4 1 現像スリーブ
- 543、544 現像剤攪拌搬送部材
- 5 4 7 電位センサー
- 57 給紙ローラー
- 58 転写電極
- 59 分離電極(分離器)
- 60 定着装置
- 61 排紙ローラー
- 62 クリーニング器
- 70 プロセスカートリッジ

【書類名】

図面

# 【図1】



ページ: 1/E

【書類名】 要約書

【要約】

【課題】 本発明の目的は、高温高湿環境や低温低湿環境下において、帯電性及び感度が安定し、帯電電位や残留電位の変動が小さく、黒ポチやモアレ等の画像 欠陥の発生を防止し、画像濃度が高い電子写真画像を作製できる電子写真感光体を提供することであり、該電子写真感光体を用いたプロセスカートリッジ、画像 形成装置及び画像形成方法を提供することである。

【解決手段】 導電性基体上に中間層、感光層を有する電子写真感光体において、該中間層が遷移金属を100ppm~2.0質量%含有したアナターゼ形酸化チタン顔料を含有することを特徴とする電子写真感光体。

【選択図】 なし

### 認定・付加情報

特許出願の番号 特願2003-179458

受付番号 50301050165

書類名 特許願

担当官 第二担当上席 0091

作成日 平成15年 6月25日

<認定情報・付加情報>

【提出日】 平成15年 6月24日

### 特願2003-179458

### 出願人履歴情報

識別番号

[303000372]

1. 変更年月日

2002年12月20日

[変更理由]

新規登録

住 所 名

東京都新宿区西新宿1丁目26番2号

コニカビジネステクノロジーズ株式会社

2. 変更年月日

2003年10月 1日

[変更理由]

名称変更

【友类性四】

住所変更 東京都千代田区丸の内一丁目 6 番 1 号

住 所 名

コニカミノルタビジネステクノロジーズ株式会社