

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Contents

- Grundlagen
- 2 Spezielle Graphen
- 3 Königsberger Brückenproblem
- 4 Ende

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

2. Juli 2013

Synonyme

Knoten ⇔ Ecken

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{v_1, v_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

2. Juli 2013

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{v_1, v_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

2. Juli 2013

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt **vollständig** : $\Leftrightarrow = E \times E \setminus \{ e \in E : \{ e, e \} \}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt **vollständig** : $\Leftrightarrow = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Bipartite Graphen

Bipartite Graphen

Sei G=(E,K) ein Graph und $A,B\subset V$ zwei disjunkte Eckenmengen mit $E\setminus A=B.$

 ${\cal G}$ heißt **bipartit**

 $:\Leftrightarrow \forall_{k=\{e_1,e_2\}\in K}: (e_1\in A \text{ und } e_2\in B) \text{ oder } (e_1\in B \text{ und } e_2\in A)$

Vollständig bipartite Graphen

Vollständig bipartite Graphen

Sei G=(E,K) ein bipartiter Graph und $\{\,A,B\,\}$ bezeichne die Bipartition.

 $G \text{ heißt vollständig bipartit} :\Leftrightarrow \{ \; \{ \; a,b \; \} \; | \; a \in A \land b \in B \; \} = K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

Kantenzug

Kantenzug

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1,k_2,\ldots,k_s von Kanten, zu denen es Ecken e_0,e_1,e_2,\ldots,e_s gibt, so dass

- $k_1 = \{ e_0, e_1 \}$
- $k_2 = \{ e_1, e_2 \}$
-
- $k_s = \{ e_{s-1}, e_s \}$

gilt ein Kantenzug, der e_0 und e_s verbindet und s seine Länge.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G = (V, E) ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug. A heißt **geschlossen** : $\Leftrightarrow v_s = v_0$.

2. Juli 2013

Weg

Weg

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug. A heißt **Weg** : $\Leftrightarrow \forall_{i,j\in[1,s]\cap\mathbb{N}}: i\neq j\Rightarrow e_i\neq e_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in [1,s] \cap \mathbb{N}} : i \neq j \Rightarrow e_i \neq e_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in [1,s] \cap \mathbb{N}} : i \neq j \Rightarrow e_i \neq e_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Kreis

Kreis

Sei G = (V, E) ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug. A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow A ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (V, E) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall v_1,v_2\in V$: Es ex. ein Kantenzug, der v_1 und v_2 verbindet

Grad einer Ecke

Grad einer Ecke

Der **Grad** einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecken

Hat eine Ecke den Grad 0, so nennt man ihn isoliert.

Grundlagen 000 Spezielle Graphen 00000000● Königsberger Brückenproblem

0000000

Ende 0 15/26

Königsberg heute

Königsberger Brückenproblem

Übersetzung in einen Graphen

Übersetzung in einen Graphen

Eulerscher Kreis

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Eulerscher Kreis

TODO: K_5 eulerkreis animieren

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jeder Knoten von ${\cal G}$ geraden Grad.

Wenn G einen Knoten mit ungeraden Grad hat, ist G nicht eulersch.

Umkehrung des Satzes von Euler

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jeder Knoten geraden Grad hat, dann ist G eulersch.

Beweis per Induktion TODO

Offene eulersche Linie

Offene eulersche Linie

Sei ${\cal G}$ ein Graph und ${\cal A}$ ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G:\Leftrightarrow$ Jede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt.

Offene eulersche Linie

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

TODO: Haus des Nikolaus-Animation. TODO: Beweis

Bildquelle

- http://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
- Google Maps (Grafiken ©2013 Cnes/Spot Image, DigitalGlobe)