Week 08

Things to Note ...

Mid-term exam next week

In This Lecture ...

- Minimum spanning trees, Single-source shortest paths ([S] 20-20.4,21-21.3)
- Fun quiz

Coming Up ...

- Assignment 2
- Mid-session break
- Search tree algorithms ([S] Ch.10)

Assignment 1

We are in the final stages of finalising the results ...

Median auto-test result: 7/8

A few common issues:

- boundary cases not tested (empty list)
- program does not compile on CSE-machine
- program does not compile without warnings ⇒ bad style
- Magic Numbers ⇒ bad style

```
if (cr <= 2 || cr >= 400) { ... }
```

Better:

```
#define MIN_CREDITS 2
#define MAX_CREDITS 480
...
```

• The following is O(n), not O(n²):

```
for each element in the list do
   if element is what you are looking for then
      start at head and find predecessor of element
   end if
end for
```

• use of **break**, **continue** in loops ⇒ unstructured programming ⇒ bad style (accepted for now but not for Assignment 2)

Mid-term Exam

Thursday next week (21 Sep) 6:15pm — 7:15pm

Last name begins with A—M: Rex Vowels Theatre (Building F17) Last name begins with N—Z: Physics Theatre (Old Main Building)

Format:

- 5 multiple-choice questions (each worth 2 marks)
- 2 open questions (worth 7 and 8 marks, respectively)
- 60 minutes + 5 mins reading time
- closed book, but you can bring one A4-sized sheet of your own notes
 - double-sided is ok

For complete instructions see:

www.cse.unsw.edu.au/~cs9024/MSTinstructions.pdf

Mid-term Exam (cont)

Sample Open Questions

- Based on an array of edges representation of a directed graph, describe an algorithm in pseudocode to compute the *indegree* (= #edges into a vertex) of every vertex.
 Determine the time complexity of your algorithm depending on V (= number of vertices) and E (= number of edges).
- 2. Consider the following directed graph *G*:

- Show an adjacency matrix representation of G.
- Find a *directed* Euler path of *G* (= directed path using every edge exactly once), or provide an argument why such a path does not exist.
- Trace the execution of Warshall's algorithm to compute the transitive closure of G.
 Show tc[][] after every iteration.

Nerds You Should Know

The next in a series on famous computer scientists ...

They developed one of the most useful Web tools ...

Nerds You Should Know (cont)

Sergey Brin

Larry Page

- Co-founders of Google
- Brin: BSc University of Maryland
- Page: BSc/BE University of Michigan
- Both moved to Stanford for PhD in mid-1990's
- PhD work led to new ideas on Web searching
 - use keywords like "normal" search engines
 - augment document ranking by "credibility"
 - o credibility related to inbound links
- Ideas led to prototype, then to company
- Google Inc. founded in 1998
- Alphabet Inc. created in 2015

Weighted Graphs

Weighted Graphs

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a cost or weight of an association
- modelled by assigning values to edges (e.g. positive reals)

Weights can be used in both directed and undirected graphs.

Weighted Graphs (cont)

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

Weighted Graphs (cont)

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
 - a.k.a. minimum spanning tree problem
 - assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a shortest path problem
 - assumes: edge weights positive, directed or undirected

Exercise #1: Implementing a Route Finder

If we represent a street map as a graph

- what are the vertices?
- what are the edges?
- are edges directional?
- what are the weights?
- are the weights fixed?

What kind of algorithm would ...

help us find the "quickest" way to get from A to B?

Weighted Graph Representation

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

An alternative representation useful in this context:

• edge list representation (list of (s,t,w) triples)

All representations work whether edges are directed or not.

Adjacency matrix representation with weights:

	0	1	2	3	4
0	*	0.2	0.4	*	*
1	*	0.3	0.6	*	*
2	*	0.5	*	0.1	*
3	0.5	*	*	*	0.9
4	*	*	0.1	*	*

Adjacency Matrix

Note: need distinguished value to indicate "no edge".

Adjacency lists representation with weights:

Note: if undirected, each edge appears twice with same weight

Edge array / edge list representation with weights:

Note: not very efficient for use in processing algorithms, but does give a possible representation for min spanning trees or shortest paths

Sample adjacency matrix implementation in C requires minimal changes to previous Graph ADT:

WGraph.h

```
// edges are pairs of vertices (end-points) plus positive weight
typedef struct Edge {
    Vertex v;
    Vertex w;
    int weight;
} Edge;

// returns weight, or 0 if vertices not adjacent
int adjacent(Graph, Vertex, Vertex);
```

WGraph.c

```
typedef struct GraphRep {
   int **edges; // adjacency matrix storing positive weights
             // 0 if nodes not adjacent
  int nV; // #vertices
  int nE; // #edges
} GraphRep;
void insertEdge(Graph q, Edge e) {
  assert(q != NULL && validV(q,e.v) && validV(q,e.w));
   if (q-)edges[e.v][e.w] == 0) { // edge e not in graph}
      q->edges[e.v][e.w] = e.weight;
      q->edges[e.w][e.v] = e.weight;
     q->nE++;
int adjacent(Graph q, Vertex v, Vertex w) {
   assert(g != NULL && validV(g,v) && validV(g,w));
  return q->edges[v][w];
```

Minimum Spanning Trees

Minimum Spanning Trees

Reminder: Spanning tree ST of graph G(V,E)

- spanning = all vertices, tree = no cycles
- ST is a subgraph of G (G'=(V,E')) where $E' \subseteq E$
- ST is connected and acyclic

Minimum spanning tree MST of graph G

- MST is a spanning tree of G
- sum of edge weights is no larger than any other ST

Applications: Computer networks, Electrical grids, Transportation networks ...

Problem: how to (efficiently) find MST for graph *G*?

NB: MST may not be unique (e.g. all edges have same weight ⇒ every ST is MST)

Minimum Spanning Trees (cont)

Brute force solution:

Example of *generate-and-test* algorithm.

Not useful because #spanning trees is potentially large (e.g. nⁿ⁻² for a complete graph with n vertices)

Minimum Spanning Trees (cont)

Simplifying assumption:

• edges in *G* are not directed (MST for digraphs is harder)

Kruskal's Algorithm

One approach to computing MST for graph *G* with *V* nodes:

- 1. start with empty MST
- 2. consider edges in increasing weight order
 - add edge if it does not form a cycle in MST
- 3. repeat until *V-1* edges are added

Critical operations:

- iterating over edges in weight order
- checking for cycles in a graph

Kruskal's Algorithm (cont)

Execution trace of Kruskal's algorithm:

Exercise #2: Kruskal's Algorithm

Show how Kruskal's algorithm produces an MST on:

After 3 rd	iteration:
-----------------------	------------

After 6th iteration:

After 7th iteration:

After 8th iteration (V-1=8 edges added):

Kruskal's Algorithm (cont)

Pseudocode:

```
KruskalMST(G):
   Input graph G with n nodes
   Output a minimum spanning tree of G
   MST=empty graph
   sort edges(G) by weight
   for each e∈sortedEdgeList do
      MST = MST \cup \{e\}
      if MST has a cyle then
         MST = MST \setminus \{e\}
      end if
      if MST has n-1 edges then
         return MST
      end if
   end for
```

Kruskal's Algorithm (cont)

Rough time complexity analysis ...

- sorting edge list is O(E·log E)
- at least *V* iterations over sorted edges
- on each iteration ...
 - getting next lowest cost edge is O(1)
 - checking whether adding it forms a cycle: cost = ??

Possibilities for cycle checking:

- use DFS ... too expensive?
- could use *Union-Find data structure* (see Sedgewick Ch.1)

Prim's Algorithm

Another approach to computing MST for graph G=(V,E):

- 1. start from any vertex s and empty MST
- 2. choose edge not already in MST to add to MST
 - must be incident on a vertex already connected to s in MST
 - must have minimal weight of all such edges
- 3. repeat until MST covers all vertices

Critical operations:

- checking for vertex being connected in a graph
- finding min weight edge in a set of edges

Prim's Algorithm (cont)

Execution trace of Prim's algorithm (starting at s=0):

Exercise #3: Prim's Algorithm

Show how Prim's algorithm produces an MST on:

Start from vertex 0

After 1 st iteration:	
	0 3 1
After 2 nd iteration:	
	3
After 3 rd iteration:	
	3 2
After 4 th iteration:	6
	$ \begin{array}{c c} 0 & 3 & 1 & 5 \\ 4 & & & \end{array} $
	(3) 2 (6)
After 8 th iteration (all vertices covered):	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	6 7 9 8

Prim's Algorithm (cont)

Pseudocode:

```
PrimMST(G):
   Input graph G with n nodes
   Output a minimum spanning tree of G
   MST=empty graph
   usedV={0}
   unusedE=edges(g)
   while |usedV|<n do</pre>
      find e=(s,t,w)∈unusedE such that {
         s∈usedV ∧ t∉usedV ∧ w is min weight of all such edges
      MST = MST \cup \{e\}
      usedV = usedV U {t}
      unusedE = unusedE \ {e}
   end while
   return MST
```

Critical operation: finding best edge

Prim's Algorithm (cont)

Rough time complexity analysis ...

- V iterations of outer loop
- in each iteration ...
 - ∘ find min edge with set of edges is $O(E) \Rightarrow O(V \cdot E)$ overall
 - find min edge with priority queue is O(log E) ⇒ O(V·log E) overall

Note:

Using a priority queue gives a variation of DFS (stack) and BFS (queue) graph traversal

Sidetrack: Priority Queues

Some applications of queues require

- items processed in order of "key"
- rather than in order of entry (FIFO first in, first out)

Priority Queues (PQueues) provide this via:

- join: insert item into PQueue (replacing enqueue)
- leave: remove item with largest key (replacing dequeue)

Sidetrack: Priority Queues (cont)

Comparison of different Priority Queue representations:

	sorted array	unsorted array	sorted list	unsorted list
space usage	MaxN	MaxN	O(N)	O(N)
join	O(N)	O(1)	O(N)	O(1)
leave	O(N)	O(N)	O(1)	O(N)
is empty?	O(1)	O(1)	O(1)	O(1)

for a PQueue containing N items

Other MST Algorithms

Boruvka's algorithm ... complexity $O(E \cdot log V)$

- the oldest MST algorithm
- start with V separate components
- join components using min cost links
- continue until only a single component

Karger, Klein, and Tarjan ... complexity O(E)

- based on Boruvka, but non-deterministic
- randomly selects subset of edges to consider
- for the keen, here's the paper describing the algorithm

Shortest Path

Shortest Path

Path = sequence of edges in graph G $p = (v_0, v_1), (v_1, v_2), ..., (v_{m-1}, v_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices *s* and *t*

- a simple path p(s,t) where s = first(p), t = last(p)
- no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Finding shortest path between two given nodes known as sourcetarget SPP problem

Variations: single-source, all-pairs

Applications: robot navigation, routing in data networks, ...

Single-source Shortest Path (SSSP)

Given: weighted digraph G, source vertex s

Result: shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

59	0	1	2	3	4		
dist	0	0.3	0.7	1.1	inf		
pred	-	0	0	2	-		
Shortest paths from s=0							

Edge Relaxation

Assume: dist[] and pred[] as above (but containing data for shortest paths discovered so far)

dist[v] is length of shortest known path from s to v
dist[w] is length of shortest known path from s to w

Relaxation updates data for w if we find a shorter path from s to w:

Relaxation along edge e=(v,w,weight):

• if dist[v]+weight < dist[w] then
 update dist[w]:=dist[v]+weight and pred[w]:=w</pre>

Dijkstra's Algorithm

One approach to solving single-source shortest path ...

Data: G, s, dist[], pred[] and

• *vSet*: set of vertices whose shortest path from *s* is unknown

Algorithm:

```
dist[]
       // array of cost of shortest path from s
pred[]
       // array of predecessor in shortest path from s
dijkstraSSSP(G, source):
   Input graph G, source node
   initialise dist[] to all \infty, except dist[source]=0
   initialise pred[] to all -1
   vSet=all vertices of G
   while vSet≠Ø do
      find s∈vSet with minimum dist[s]
      for each (s,t,w)∈edges(G) do
         relax along (s,t,w)
      end for
      vSet=vSet\{s}
   end while
```

Exercise #4: Dijkstra's Algorithm

Show how Dijkstra's algorithm runs on (source node = 0):

∢ 43 **≻**

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	_	_	_	_	_	_

dist	0	14	9	7	∞	8
pred	_	0	0	0	_	_

dist	0	14	9	7	∞	22
pred	_	0	0	0	_	3

dist	0	13	9	7	∞	12
pred	_	2	0	0	_	2

dist	0	13	9	7	20	12
pred	_	2	0	0	5	2

dist	0	13	9	7	18	12
pred	_	2	0	0	1	2

Dijkstra's Algorithm (cont)

Why Dijkstra's algorithm is correct:

Hypothesis.

- (a) For visited s ... dist[s] is shortest distance from source
- (b) For unvisited *t* ... *dist[t]* is shortest distance from source *via visited nodes*

Proof.

Base case: no visited nodes, *dist[source]*=0, *dist[s]*=∞ for all other nodes

Induction step:

- 1. If s is unvisited node with minimum dist[s], then dist[s] is shortest distance from source to s:
 - if ∃ shorter path via only visited nodes, then dist[s] would have been updated when processing the predecessor of s on this path
 - ∘ if ∃ shorter path via an unvisited node *u*, then *dist[u]<dist[s]*, which is impossible if *s* has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes *t* after processing *s*:
 - ∘ if ∃ shorter path via s we would have just updated dist[t]
 - ∘ if ∃ shorter path without s we would have found it previously

Dijkstra's Algorithm (cont)

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find sevSet with minimum dist[s]"

- 1. try all $\mathbf{s} \in \mathbf{vSet} \Rightarrow \mathbf{cost} = O(V) \Rightarrow \mathbf{overall} \ \mathbf{cost} = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - can improve overall cost to O(E + V·log V) (for best-known implementation)

Summary

- Weighted graph representations
- Minimum Spanning Tree (MST)
 - Kruskal, Prim
- Single source shortest path problem
 - Dijkstra

- Suggested reading:
 - Sedgewick, Ch.19.3,20-20.4,21-21.3