Computational Complexity

Lecture 4: Diagonalization and the Time Hierarchy Theorems

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap What we saw last time..

- Proof that NP-complete problems exist
- The Cook-Levin Theorem
- Concrete reductions between problems
- Search vs. decision problems

What will we do today?

- Diagonalization arguments
- Time Hierarchy Theorems
- \blacksquare P \neq EXP

Warm-up: Cantor's diagonal argument

- We show: $\mathcal{P}(\mathbb{N})$ is uncountable
- Suppose that it is countably infinite. Then there is some bijection $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$.
- Consider the set $S \in \mathcal{P}(\mathbb{N})$ such that for all $i \in \mathbb{N}$ it holds that $i \in S$ iff $i \notin f(i)$
- Then $S \neq f(i)$ for each $i \in \mathbb{N}$, so f is not a bijection. \nleq

Diagonalization over TMs: uncomputable functions

- We show that there exists an uncomputable function $UC: \{0,1\}^* \to \{0,1\}$
- Define UC: for all $\alpha \in \{0,1\}^*$, UC(α) = 0, if $\mathbb{M}_{\alpha}(\alpha) = 1$, and UC(α) = 1 otherwise.
- Suppose that UC is computable. Then there exists some \mathbb{M}_{β} that computes UC: $\mathbb{M}_{\beta}(\alpha) = \text{UC}(\alpha)$ for all $\alpha \in \{0,1\}^*$.
- In particular, $\mathbb{M}_{\beta}(\beta) = \mathsf{UC}(\beta)$. By def. of UC: $\mathbb{M}_{\beta}(\beta) \neq \mathsf{UC}(\beta)$. $\cancel{\xi}$

Deterministic Time Hierarchy Theorem

Theorem

If $f, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions such that $f(n) \log f(n)$ is o(g(n)), then $\mathsf{DTIME}(f(n)) \subsetneq \mathsf{DTIME}(g(n))$.

- Assumption of time-constructibility rules out 'weird' functions.
 - f is time-constructible if $f(n) \ge n$ and there exists a TM that computes the function $x \mapsto f(|x|)$ in time O(f(|x|)), for each $x \in \{0,1\}^*$
- We will prove $DTIME(n) \subsetneq DTIME(n^{1.5})$

$\mathsf{DTIME}(n) \subsetneq \mathsf{DTIME}(n^{1.5})$

- Consider a TM $\mathbb D$ that, on input $\alpha \in \{0,1\}^*$, runs the simulation of $\mathbb M_\alpha(\alpha)$, and stops after $|\alpha|^{1.4}$ steps (counting the number of simulator steps), and:
 - if the simulation of $\mathbb{M}_{\alpha}(\alpha)$ outputs some $b \in \{0,1\}$ within $|\alpha|^{1.4}$ steps, then $\mathbb{D}(\alpha)$ outputs 1-b
 - lacksquare otherwise, $\mathbb{D}(lpha)$ outputs 1
- The language L decided by $\mathbb D$ is in DTIME($n^{1.5}$)
 - We perform a 'clocked' computation, maintaining a counter that keeps track of how many computation steps we took

diagonalization

- Performing T time steps of a computation (using such a counter) takes time $O(T \log T)$, and since $n^{1.4} \log n^{1.4}$ is $O(n^{1.5})$, we get that L is in DTIME($n^{1.5}$)
- (This is where we need time-constructibility, for the general case: so that we can compute the number T within T time steps.)

$\mathsf{DTIME}(n) \subsetneq \mathsf{DTIME}(n^{1.5})$

- Consider a TM $\mathbb D$ that, on input $\alpha \in \{0,1\}^*$, runs the simulation of $\mathbb M_{\alpha}(\alpha)$, and stops after $|\alpha|^{1.4}$ steps (counting the number of simulator steps), and:
 - if the simulation of $\mathbb{M}_{\alpha}(\alpha)$ outputs some $b \in \{0,1\}$ within $|\alpha|^{1.4}$ steps, then $\mathbb{D}(\alpha)$ outputs 1-b
 - lacksquare otherwise, $\mathbb{D}(lpha)$ outputs 1
- We show that $L \not\in \mathsf{DTIME}(n)$.
 - Suppose that $L \in \mathsf{DTIME}(n)$. Then there is some TM \mathbb{M} that decides L and runs in time dn, for some $d \in \mathbb{N}$.
 - Simulating \mathbb{M} on input x takes time $d'd|x|\log(d|x|)$, for some $d' \in \mathbb{N}$.
 - There is some $n_0 \in \mathbb{N}$ such that for all $n > n_0$ it holds that $n^{1.4} > d' dn \log(dn)$.

diagonalization

- Let α be a string of length $\geq n_0$ that represents \mathbb{M} : $\mathbb{M} = \mathbb{M}_{\alpha}$
- Then $\mathbb{M}_{\alpha}(\alpha) = \mathbb{D}(\alpha)$, because $\mathbb{M} = \mathbb{M}_{\alpha}$, and \mathbb{M} and \mathbb{D} decide the same language
- The 'clocked' simulation of $\mathbb{M}_{\alpha}(\alpha)$ for $n^{1.4}$ steps finishes, because $n^{1.4} \geq d' dn \log(dn)$, and so $\mathbb{D}(\alpha) = 1 \mathbb{M}_{\alpha}(\alpha) = 1 \mathbb{D}(\alpha)$. $\cancel{2}$

- The functions 2^n and 2^{2n} are time-constructible, and $2^n \log 2^n = n \cdot 2^n$ is $o(2^{2n})$.
- Then by the Deterministic Time Hierarchy Theorem, $DTIME(2^n) \subsetneq DTIME(2^{2n})$.
- $P = \cup_{c \in \mathbb{N}} \mathsf{DTIME}(n^c) \subseteq \mathsf{DTIME}(2^n) \subsetneq \mathsf{DTIME}(2^{2n}) \subseteq \mathsf{EXP}$
- So, $P \neq EXP$.

Nondeterministic Time Hierarchy Theorem

Theorem

If $f, g : \mathbb{N} \to \mathbb{N}$ are time-constructible functions such that f(n+1) is o(g(n)), then $\mathsf{NTIME}(f(n)) \subseteq \mathsf{NTIME}(g(n))$.

■ As a result: NP \subsetneq NEXP, where NEXP = $\cup_{c \in \mathbb{N}}$ NTIME(2^{n^c}).

Ladner's Theorem

- Question: is it the case that all problems in NP are either (i) in P or (ii) NP-complete?
- If P = NP, then this is trivially true.
- If $P \neq NP$, then no:

Theorem (Ladner 1975)

Suppose that $P \neq NP$.

Then there exists a language $L \in NP \setminus P$ that is not NP-complete.

■ Proof uses a diagonalization argument.

Recap

- Diagonalization arguments
- Time Hierarchy Theorems
- \blacksquare P \neq EXP

Next time

- Can we use diagonalization to attack $P \stackrel{?}{=} NP$? (Spoiler: no.)
- Limits of diagonalization
- Relativizing results
- Oracles