

Financial Econometrics

Times Series Econometrics

Tim C.C. Hung 洪志清

March 21^{st} , 2022

Data Type

- Different types of Data:
 - Cross-Sectional Data
 e.g. All monthly stock returns on TWSE in March
 - ► Times-Series Data e.g. Taiwan GDP from 1945 to present
 - ▶ Panel Data v.s. Pooled Cross-sectional Data
- Frequencies of Times-Series Data
 - Low frequency data: yearly, quarterly, monthly data
 - High frequency data: weekly, daily, intra-day data

Times-Series

- What's special about times-series data?
- There may be certain trends in times-series data.
 e.g. deterministic trend, seasonality, serial correlation, · · ·
- Example: an AR(1) process: $y_t = \rho y_{t-1} + \epsilon_t$, $\rho = 0.9, \epsilon_t \sim WN(0, \sigma^2)$

Times-Series Operators

• Lag operator: L

$$Ly_t = y_{t-1}$$

- More about Lag operators:
 - $L^k y_t = y_{t-k}$
 - $L^k L^j y_t = L^k y_{t-j} = y_{t-j-k}$
 - $L^0 y_t = y_t$
 - $L^{-k}y_t = y_{t+k}$
- Difference operator: D. or Δ

$$D.y_t = \Delta y_t = y_t - y_{t-1} = y_t - Ly_t = (1 - L)y_t$$

$$\Delta^{k} y_{t} = y_{t} - y_{t-k} = (1 - L^{k}) y_{t}$$

Stationary

Definition (Weak Stationary)

A times series $\{\cdots,y_{t-3},y_{t-2},y_{t-1},y_t,y_{t+1},y_{t+2},y_{t+3},\cdots\}$ satisfy weak stationary **iff**

- 1 $E(y_t) = E(y_{t-k}) = \mu \quad \forall t, k$
- 2 $var(y_t) < \infty \quad \forall t$
- 3 $Cov(y_t, y_{t-k}) = E[(y_t \mu)(y_{t-k} \mu)] = \gamma(k) \quad \forall t$

Definition (Strict Stationary)

For some k, (t_1, t_2, \cdots, t_n) , a times series $\{y_t\}$ satisfy strict stationary **iff**

$$(y_{t_1}, y_{t_2}, \cdots, y_{t_n})' \xrightarrow{d} (y_{t_1+k}, y_{t_2+k}, \cdots, y_{t_n+k})'$$

- Weak stationary is sometimes called covariance stationary.
- If Strict stationary & $E(y_t^2) < \infty$, \rightarrow weak stationary.

White Noise

Definition (Stochastic Process)

A stochastic process $\{x_t\}$ is a sequence of random variables in time order.

Definition (White Noise)

A stochastic process $\{\epsilon_t\}$ is White Noise, or $\epsilon_t \sim WN(0, \sigma_\epsilon^2)$, iff

- 1 $E(\epsilon_t) = 0 \quad \forall t$
- $2 var(\epsilon_t) = \sigma_{\epsilon}^2 \quad \forall t$
- 3 $E(\epsilon_t \epsilon_{t-k}) = 0 \quad \forall t, k$
- You can clearly see that a white noise is stationary.
- A stronger condition is that $\epsilon_t, \epsilon_{t-k}$ are independent for $k \neq 0$
- If all these conditions hold and $\epsilon_t \sim N(0, \sigma_\epsilon^2)$, then the process is Gaussian White Noise.

Autocovariance and Autocorrelation

Definition (Autocovariance)

The k^{th} autocovariance of a series $\{y_t\}$ is defined as:

$$\gamma(k) = cov(y_t, y_{t-k}) = E([y_t - E(y_t)][y_{t-k} - E(y_{t-k})])$$

- As you can tell, autocovariance is defined for weak stationary process.
- You can also see that $\gamma(0) = var(y_t)$

Definition (Autocorrelation)

The k^{th} autocorrelation of a covariance stationary process $\{y_t\}$ is defined as:

$$\rho(k) = \frac{\gamma(k)}{\gamma(0)}$$

Autocovariance and Autocorrelation

As you can tell,

$$cov(y_t, y_{t-k}) = cov(y_{t-1}, y_{t-k-1}) == cov(y_{t-j}, y_{t-k-j}) \quad \forall j$$

autocovariance does not depend on t but only on the distance k. i.e., autocovariance is defined for weak stationary process.

- You can also see that $\gamma(0) = var(y_t)$
- The correlation of y_t with y_{t+1} is a measure of how persistent a time series is, i.e., how strong is the tendency for a high observation today (this week, this month, this year, \cdots) to be followed by a high observation tomorrow (next week, next month, next year, \cdots).

Definition (Sample Autocovariance)

$$\hat{\gamma}(k) = \widehat{cov(y_t, y_{t-k})} = \frac{1}{T} \sum_{t-k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

where $\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$

Definition (Sample Autocorrelation)

$$\hat{\rho}(k) = \frac{\widehat{cov(y_t, y_{t-k})}}{\widehat{var(y_t)}} = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

• You will soon see that the estimated $\hat{\rho}(1)$ coefficient happens to be the estimated coefficient of an AR(1) process.

Deterministic Trend

• One of the simplest times-series model is a model of deterministic trend:

$$y_t = \beta_0 + \beta_1 TIM E_t + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

- $TIME_t$ could be a categorical variable that takes the value of t, i.e. $TIME_1 = 1, TIME_2 = 2, \cdots$
- ullet Thus, if we have a time-series of $\{y_t\}_{t=1}^T$, the model can be rewritten as:

$$y_t = \beta_0 + \beta_1 t + \epsilon_t$$

• Deterministic trend models could also be of higher moments,

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \epsilon_t$$

Deterministic Trend

• Even with higher moments, we can still estimate the coefficients using OLS, where the explanatory (independent) variables are t, t^2, t^3, \cdots .

Remarks: Why is that the case?

- ullet After estimation, we can obtain $\hat{y_t}$
- The residual $\hat{\epsilon_t} = y_t \hat{y_t}$ is what we called a detrended data.

Seasonality

- Similar to deterministic trend, we may experience regular patterns within certain time window (cycle).
- For example, seasonality in GDP, Sales of product of a firm in different months, January effect in stock returns, Friday effect in attention (DellaVigna and Pollet (2009, JF)), etc.

Figure: Sales of wine in Australia (1980:1-1995:7) from 陳旭昇(2013)

Seasonality

- Except the cases that our main focus is seasonality, we would want to exclude seasonality in the data.
- The most straightforward way is to use indicator (dummy) variables as regressors to exclude seasonality.

Season	D_1	D_2	D_3
Spring	1	0	0
Summer	0	1	0
Fall	0	0	1
Winter	0	0	0

Seasonality

Figure: Adjusted Sales of wine in Australia from 陳旭昇 (2013)

Definition (AR(1) Model)

$$y_t = \alpha + \rho y_{t-1} + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

 ρ is the first-order autoregressive coefficient.

• Recursively, y_t can be rewritten as:

$$y_{t} = \alpha + \rho y_{t-1} + \epsilon_{t}$$

$$= \alpha + \rho(\alpha + \rho y_{t-2} + \epsilon_{t-1}) + \epsilon_{t}$$

$$= \alpha(1 + \rho) + \rho^{2} y_{t-2} + \epsilon_{t} + \rho \epsilon_{t-1}$$

$$= \alpha(1 + \rho + \rho^{2} + \cdots) + (\epsilon_{t} + \rho \epsilon_{t-1} + \rho^{2} \epsilon_{t-2} + \cdots) + \lim_{k \to \infty} \rho^{k} y_{t-k}$$

$$= \alpha \sum_{j=0}^{\infty} \rho^{j} + \sum_{j=0}^{\infty} \rho^{j} \epsilon_{t-j} + \lim_{k \to \infty} \rho^{k} y_{t-k}$$

• When we have $|\rho| < 1$:

$$y_t = \alpha \sum_{j=0}^{\infty} \rho^j + \sum_{j=0}^{\infty} \rho^j \epsilon_{t-j} + \lim_{k \to \infty} \rho^k y_{t-k}$$
$$= \underbrace{\frac{\alpha}{1-\rho}}_{\mu} + \sum_{j=0}^{\infty} \rho^j \epsilon_{t-j} + 0$$
$$= \mu + \sum_{j=0}^{\infty} \rho^j \epsilon_{t-j}$$

• The Expectation:

$$E(y_t) = E(y_{t-k}) = \mu$$

• The Variance:

$$\begin{split} \gamma(0) &= var(y_t) \\ &= var(\sum_{j=0}^{\infty} \rho^j \epsilon_{t-j}) \\ &= var(\epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + \cdots) \\ &= \sigma_{\epsilon}^2 (1 + \rho^2 + \rho^4 + \cdots) \\ &= \frac{\sigma_{\epsilon}^2}{1 - \rho^2} < \infty \quad \text{(for some } |\rho| < 1) \end{split}$$

• The Autocovariance:

$$\begin{split} \gamma(j) &= cov(y_t, y_{t-j}) \\ &= E[(y_t - \mu)(y_{t-j} - \mu)] \\ &= E[(\epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} \cdots)(\epsilon_{t-j} + \rho \epsilon_{t-1-j} + \rho^2 \epsilon_{t-2-j} \cdots)] \\ &= \rho^j E[\epsilon_{t-j} \epsilon_{t-j}] + \rho^{j+2} E[\epsilon_{t-j-1} \epsilon_{t-j-1}] + \cdots \\ &= \sigma_\epsilon^2 \rho^j [1 + \rho^2 + \rho^4 + \cdots] \\ &= \frac{\sigma_\epsilon^2 \rho^j}{1 - \rho^2} < \infty \quad \text{(for some } |\rho| < 1) \end{split}$$

• The Autocorrelation:

$$\rho(j) = \frac{\sigma_{\epsilon}^2 \rho^j}{1 - \rho^2} / \frac{\sigma_{\epsilon}^2}{1 - \rho^2} = \rho^j$$

• As we can see, when $|\rho|<1$, an AR(1) process has an invariant mean, finite variance, and autocovariance independent to t.

Corollary (Stationary AR(1) Model)

For an AR(1) process:
$$y_t = \alpha + \rho y_{t-1} + \epsilon_t, \quad \epsilon_t \overset{i.i.d.}{\sim} (0, \sigma_\epsilon^2)$$

The stationary condition is: $|\rho| < 1$

- To stay simple, we can detrend y_t to exclude the intercept!
- For some $y_t = \alpha + \rho y_{t-1} + \epsilon_t$
- Let's minus μ on both sides:

$$y_t - \mu = \alpha - \mu + \rho y_{t-1} + \epsilon_t$$

• Let's add and minus a $\rho\mu$ term on the RHS:

$$x_t \equiv y_t - \mu = \alpha - \mu + \rho \mu + \rho (y_{t-1} - \mu) + \epsilon_t$$
$$= \alpha - (1 - \rho)\mu + \rho (y_{t-1} - \mu) + \epsilon_t$$
$$= \rho (y_{t-1} - \mu) + \epsilon_t$$
$$= \rho x_{t-1} + \epsilon_t$$

• x_t is an AR(1) process with no intercept and 0 mean.

• The variance-covariance matrix for x_t is:

$$\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}} \begin{bmatrix} 1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\ \rho & 1 & \rho & \cdots & \rho^{T-2} \\ \rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1 \end{bmatrix} \equiv \sigma_{\epsilon}^{2} \Omega$$

AR(1) Simulations: White Noise

AR(1) Simulations: $\rho = 0.5$

AR(1) Simulations: $\rho = 0.9$

Definition (AR(p) Model)

$$y_t = \alpha + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_\epsilon^2)$$

the model is called the p^{th} -order autoregressive model.

ullet Using the lag operator, we can rewrite y_t as:

$$\rho(L)y_t = \alpha + \epsilon_t,$$

where

$$\rho(L) = 1 - \rho_1 L - \rho_2 L^2 - \dots - \rho_p L^p$$

Definition (AR(p) Stationary Condition)

For a time series y_t

$$y_t = \alpha + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

The stationary condition is:

$$\rho(z) = 1 - \rho_1 z - \rho_2 z^2 - \dots - \rho_p z^p = 0$$

the norms of all the roots, $||z_i||_{i=1}^p$, for the above equation > 1.

Alternatively, the roots all fall outside the unit circle.

- Example 1: AR(1), $y_t = \beta y_{t-1} + u_t$
 - ▶ The solution to: $1 \beta z = 0$ is $z = \frac{1}{\beta}$
 - ▶ The AR(1) stationary condition would be: $|\frac{1}{\beta}| > 1$, or $|\beta| < 1$
- Example 2: AR(2), $y_t = 0.5 + 0.3y_{t-1} + 0.4y_{t-2} + e_t$
 - ▶ The solution to: $1 0.3z 0.4z^2 = 0$ is $z = \frac{5}{4}$ or -2
 - ► The AR(2) stationary condition would be: $|z_1| = |\frac{5}{4}| > 1$ and $|z_2| = |-2| > 1$
- Example 3: AR(2), $y_t = 0.5 + 0.3y_{t-1} 0.4y_{t-2} + e_t$
 - ► The solution to: $1 0.3z + 0.4z^2 = 0$ is $z = \frac{3}{8} \pm \frac{\sqrt{151}}{8}i$
 - ► The AR(2) stationary condition would be:

$$||z_1|| = ||z_2|| = \sqrt{(\frac{3}{8})^2 + (\frac{\sqrt{151}}{8})^2} = \sqrt{2.5} > 1$$

- If the norm of any root of z < 1, the AR(p) process is explosive.
- If the norm of any root of z = 1, the AR(p) process has an unit root.

Definition (Sufficient Condition for AR(p) Stationary)

$$\sum_{i=1}^{p} |\rho_i| < 1$$

If alternatively,

$$\sum_{i=1}^{p} \rho_i = 1$$

then the series has at least one unit root.

AR(p) Process: Choice of p

Definition (Akaike Information Criterion (AIC))

$$AIC(p) = log(\frac{UV(p)}{T}) + (p+1)\frac{2}{T}$$

where UV(p) is the unexplained variance (sum of squared residuals),

$$UV(p) = \sum_{t} \hat{\epsilon_t}^2,$$

$$\hat{\epsilon_t}^2 = y_t - \hat{y_t} = y_t - (\hat{\alpha} + \hat{\rho_1}y_{t-1} + \dots + \hat{\rho_p}y_{t-p})$$

Definition (Bayesian Information Criterion (BIC))

$$BIC(p) = log(\frac{UV(p)}{T}) + (p+1)\frac{logT}{T}$$

Pick the p with the lowest ICs!

MA(1) and MA(q) Process

Definition (Moving Average Models)

If a stochastic process $\{y_t\}$ is a weighted average of current and past shocks, we call it a moving average model.

MA(1), first-order moving average model:

$$y_t = \epsilon_t + \theta \epsilon_{t-1},$$

$$\epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

MA(q), q^{th} -order moving average model:

$$y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q},$$

MA(q) Process: Stationary

- Now, let $q \to \infty$: $y_t = \sum_{j=0}^{\infty} \theta_j \epsilon_{t-j}$
- For a MA model to be well defined, we need its partial sum (i.e. $\sum_{j=0}^{n} \theta_{j} \epsilon_{t-j}$) to converge in mean square to some random variable.

Definition (MA(∞) Stationary Condition)

For
$$y_t = \sum_{j=0}^{\infty} \theta_j \epsilon_{t-j}$$
, $\epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$

The stationary condition is:

$$\sum_{j=0}^{\infty} |\theta_j| < \infty$$

This also indicates that $\{\theta_i\}$ is absolutely summable.

• Quick Takeaway: for finite q, MA(q) is definitely stationary.

MA(q) Process: Invertibility

- MA(q) can be rewritten as: $y_t = \theta(L)\epsilon_t$
- If the roots of $\theta(z)=0$ all have norms larger than 1 (all fall outside the unit circle), MA(q) can be further rewritten as:

$$\frac{1}{\theta(L)}y_t = \epsilon_t$$

• This property is called the invertibility of MA(q) series.

MA(q) Process: Invertibility

Definition (Absolute Summable Inverses of Lag Polynomials)

For some

$$\beta(L) = 1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p$$

If the roots for $\beta(z) = 0$ all fall outside the unit circle, then

$$\beta(L)^{-1} = \phi(L) = \phi_0 + \phi_1 L + \phi_2 L + \cdots$$

where

$$\sum_{j=0}^{\infty} |\phi_j| < \infty$$

MA(q) Process: Invertibility

• For example: a MA(1) process: $x_t = \epsilon_t + \theta \epsilon_{t-1}, \epsilon_t \overset{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$

$$x_{t} = \epsilon_{t} + \theta \epsilon_{t-1}$$

$$= \epsilon_{t} + \theta(x_{t-1} - \theta \epsilon_{t-2})$$

$$= \epsilon_{t} + \theta x_{t-1} - \theta^{2}(x_{t-2} - \theta \epsilon_{t-3})$$

$$= \epsilon_{t} + \theta x_{t-1} - \theta^{2} x_{t-2} + \theta^{3} x_{t-3} - \theta^{4} x_{t-4} + \cdots$$

• Thus, we can rewrite ϵ_t as a series of $\{x_t\}$

$$\epsilon_t = x_t - \theta x_{t-1} + \theta^2 x_{t-2} - \theta^3 x_{t-3} + \theta^4 x_{t-4} - \cdots$$

 Before we move on, assume for stationarity, can you derive the mean, variance, autocovariance, and autocorrelation of a AR(1) model and a MA(1) model directly?

ARMA model

- Now, let's combine AR models with MA models.
- Let's consider a ARMA(p,q) model:

$$y_t = \rho_1 y_{t-1} + \dots + \rho_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$$

Let

$$\rho(L) = 1 - \rho_1 L - \rho_2 L^2 - \dots - \rho_p L^p$$

$$\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$$

• The ARMA(p,q) model can be rewritten as:

$$\rho(L)y_t = \theta(L)\epsilon_t$$

ARMA model

Definition (ARMA(p,q) Stationary Condition)

Given that

$$\rho(L)y_t = \theta(L)\epsilon_t$$

If the root of $\rho(z) = 0$ all fall outside the unit circle, y_t is stationary.

ARMA model

• If y_t is stationary, we can rewrite ARMA(p,q) as MA(∞):

$$y_{t} = \underbrace{\rho(L)^{-1}\theta(L)}_{\psi(L)} \epsilon_{t}$$

$$= \left[\frac{1 + \theta_{1}L + \theta_{2}L^{2} + \dots + \theta_{q}L^{q}}{1 - \rho_{1}L - \rho_{2}L^{2} - \dots - \rho_{p}L^{p}}\right] \epsilon_{t}$$

$$= \psi(L)\epsilon_{t}$$

$$= \epsilon_{t} + \psi_{1}\epsilon_{t-1} + \psi_{2}\epsilon_{t-2} + \dots$$

$$= MA(\infty)$$

Remark: $\psi_0 = 1$,

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

ARMA model

Definition (ARMA(p,q) Model Invertibility)

Given that

$$\rho(L)y_t = \theta(L)\epsilon_t$$

If the root of $\theta(z) = 0$ all fall outside the unit circle, y_t is invertible.

• If the root of $\theta(z)=0$ all fall outside the unit circle,

$$\underbrace{\theta(L)^{-1}\rho(L)}_{b(L)}y_t = \epsilon_t$$

ARMA model

• We now have:

$$b(L)y_t = \epsilon_t$$

where

$$b(L) = 1 - b_1 L - b_2 L^2 - \cdots$$

• Therefore, ARMA(p,q) can be rewritten as a AR(∞) model:

$$y_t = \epsilon_t + b_1 y_{t-1} + b_2 y_{t-2} + \dots = AR(\infty)$$

• Estimation: Sadly, we won't be able to introduce estimation of MA models and ARMA models without non-linear estimation methods. Please refer to 陳旭昇(2013):Chapter 4 for more details.

Unit Root

• Back to a normal AR(1) process.

$$y_t = \alpha + \rho y_{t-1} + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

- The stationary condition for y_t is $|\rho| < 1$
- We also know that if $|\rho| > 1$, y_t is an explosive series.
- What if, $\rho = 1$?
- When $\rho = 1$,

$$y_t = \alpha + y_{t-1} + \epsilon_t$$

• It is called a random walk model with a drift term.

Unit Root: Random Walk

• Without a drift term,

$$y_t = y_{t-1} + \epsilon_t$$

• It is a simple random walk model. We also have:

$$E_t[y_t] = y_{t-1}$$

- ightarrow the best predictor for the next period is the current value.
- Assume we begin from y_0 . By iterations,
 - Without drift term:

$$y_t = \epsilon_t + \epsilon_{t-1} + \dots + \epsilon_1 + y_0$$

With a drift term:

$$y_t = \epsilon_t + \epsilon_{t-1} + \dots + \epsilon_1 + y_0 + \alpha t$$

Unit Root: Random Walk

- The αt term is the deterministic trend we have introduced earlier. If $\alpha>0$, the times series gradually increase along with time. If $\alpha<0$, the times series gradually decrease along with time.
- Other than the deterministic trend (固定趨勢), there is another type of trend called the the *stochastic trend* (隨機趨勢).

Unit Root: Deterministic Trend

Given

$$y_t = \alpha + \beta t + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} WN(0, \sigma_{\epsilon}^2)$$

• We can see that:

$$E[y_t] = \alpha + \beta t$$

$$E[y_{t+s}] = \alpha + \beta(t+s)$$

• $E[y_t] \neq E[y_{t+s}]$, suggesting that y_t is not stationary. But we could regress y_t on t and obtain the residual:

$$\hat{\epsilon_t} = y_t - \hat{y_t} = y_t - \hat{\alpha} - \hat{\beta}t$$

• For any time series like y_t for which we could restore stationarity after detrending the deterministic trend, we call it trend stationary (TS).

Unit Root: Stochastic Trend

- Stochastic trends, however, are more subtle, harder to detect, and could have more series impact to time-series econometrics.
- A stochastic trend is the prolong effect of the stochastic component. Imagine if the ϵ component does not die out and has permanent effect.
- For example, the AR(1) model with $\rho=1$. $y_t=\epsilon_t+\epsilon_{t-1}+\cdots+\epsilon_1$. Any huge ϵ_j could last till period t even if t>>j.

Definition (Unit Root and Stochastic Trend)

Given a AR(p) process:

$$\rho(L)y_t = \alpha + \epsilon_t$$

If the polynomial $\rho(z)=1-\rho_1z-\rho_2z^2-\cdots-\rho_pz^p=0$ has a root =1. This AR(p) process possesses a stochastic trend.

The AR(p) process is also said to have a unit root (單根).

Unit Root: Problems

- There are three types of serious problems caused by stochastic trends.
 - 1 The estimated autocorrelation coefficient has a small-sample downward bias.
 - 2 The *t*-statistic for the autocorrelation coefficient is not distributed normally.
 - 3 Spurious regression 虛假迴歸.

Unit Root: Small-Sample Bias

• Take AR(1) for example, assume the DGP is:

$$y_t = y_{t-1} + \epsilon_t$$

• Assume we don't know the true DGP and estimate the model as a AR(1) process, (which suppose to be right!)

$$y_t = \beta_0 + \beta_1 y_{t-1} + u_t$$

• While the true $\beta_1 = 1$, $\hat{\beta_1}$ has a downward bias:

$$\mathsf{Bias} = E[\hat{\beta_1}] - \beta_1 \approx -\frac{5.3}{T}$$

ullet The smaller T, the larger bias.

Unit Root: Non-Normal t

• Following the previous example.

$$t = \frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \stackrel{d}{\to} N(0, 1)$$

• However, when $\beta = 1$

$$t = \frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} = \frac{\hat{\beta}_1 - 1}{SE[\hat{\beta}_1]}$$

The limit distribution is not standard normal!

Unit Root: Bias and Non-Normal t

Unit Root: Spurious Regression

- The idea of spurious regression is brought up by Granger and Newbold (1974).
- In general, for two independent and stationary x_t and y_t , if we run the following regression:

$$y_t = a_0 + a_1 x_t + u_t$$

We should expect for

- 1 Insignificant $\hat{a_1}$
- 2 Very low \mathbb{R}^2
- However, if both x_t and y_t have stochastic trends, the probability of rejecting the null of $a_1=0$ is stunningly high! And we also have very high R^2 s. This supposedly none-existing association is called a spurious regression.
- \bullet The following figures are the distributions of AR(1) coefficients and R^2 of 1,000 simulations.

Unit Root: Bias and Non-Normal t

Unit Root: Bias and Non-Normal t

- The most common unit-root test is the Augmented Dickey-Fuller Test
- Consider a AR(k) model:

$$\rho(L)y_t = \mu + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

where $\rho(L) = 1 - \rho_1 L - \cdots - \rho_k L^k$

Definition (Dickey-Fuller Reparameterization)

Let p = k - 1, we can reparameterize $\rho(L)$ to get

$$\rho(L) = (1 - L) - \alpha_0 L - \alpha_1 (L - L^2) - \dots - \alpha_p (L^p - L^{p+1})$$

where

$$\alpha_0 = -1 + \sum_{j=1}^k \psi_j$$

$$\alpha_i = -\sum_{j=1}^k \psi_j, \quad for \ i = 1, 2, \cdots, p$$

Definition (Dickey-Fuller Reparameterization (Cont.))

We can rewrite the previous AR(k) process as:

$$\Delta y_t = \mu + \alpha_0 y_{t-1} + \alpha_1 \Delta y_{t-1} + \dots + \alpha_p \Delta y_{t-p} + \epsilon_t$$

• Reparameterization Example: AR(3) model

$$y_t = \mu + \psi_1 y_{t-1} + \psi_2 y_{t-2} + \psi_3 y_{t-3} + \epsilon_t$$

• Now, let's reparameterize y_t :

$$\begin{aligned} y_t &= \mu + \psi_1 y_{t-1} - (\psi_2 + \psi_3)(y_{t-1} - y_{t-2}) - \psi_3(y_{t-2} - y_{t-3}) + \epsilon_t + (\psi_2 y_{t-1} + \psi_3 y_{t-1}) \\ &= \mu + (\psi_1 + \psi_2 + \psi_3)y_{t-1} - (\psi_2 + \psi_3)(y_{t-1} - y_{t-2}) - \psi_3(y_{t-2} - y_{t-3}) + \epsilon_t \\ &= \mu + (\psi_1 + \psi_2 + \psi_3)y_{t-1} - (\psi_2 + \psi_3)\Delta y_{t-1} - \psi_3\Delta y_{t-2} + \epsilon_t \end{aligned}$$

• Let's subtract y_{t-1} on both RHS and LHS:

$$\Delta y_t = \mu + \underbrace{\left(-1 + \psi_1 + \psi_2 + \psi_3\right)}_{\alpha_0} y_{t-1} \underbrace{-\left(\psi_2 + \psi_3\right)}_{\alpha_1} \Delta y_{t-1} \underbrace{-\psi_3}_{\alpha_2} \Delta y_{t-2} + \epsilon_t$$

• A quick exercise together: AR(2): $y_t = 0.5y_{t-1} + 0.5y_{t-2} + \epsilon_t$

- Almost there!
- We know that if $\psi(z) = 0$ has a root that falls *on* the unit circle, i.e. $\psi(1) = 0$, y_t has an unit root.

$$\psi(1) = (1-1) - \alpha_0(1) - \alpha_1(1-1^2) - \dots - \alpha_p(1^p - 1^{p+1}) = -\alpha_0$$

• Thus, the null hypotheses testing whether y_t has a unit root: $H_0: \psi(1)=0$, is equivalent to testing $H_0: \alpha_0=0!!!$

Definition (Augmented Dickey-Fuller)

If the null hypotheses is that y_t has an unit root, and the alternative hypotheses is that y_t is stationary, consider the following regression:

$$\Delta y_t = \beta_0 + \delta y_{t-1} + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + u_t$$

and we test: $H_0: \delta = 0$ v.s. $H_1: \delta < 0$

If the null hypotheses is that y_t has an unit root, and the alternative hypotheses is that y_t is *trend* stationary, consider the following regression:

$$\Delta y_t = \beta_0 + \alpha t + \delta y_{t-1} + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + u_t$$

and we test: $H_0: \delta = 0$ v.s. $H_1: \delta < 0$

- The $\delta y_{t-1} + \gamma_1 \Delta y_{t-1} + \cdots + \gamma_p \Delta y_{t-p}$ component is called the augmented part in ADF.
- ullet We could choose the optimal p according to AIC or BIC.

$$ADF - t = \frac{\hat{\delta}}{SE(\hat{\delta})}$$

 Under the null: ADF-t is not standard normal. It has the following critical values:

ADF model	10%	5%	1%
with eta_0	-2.57	-2.86	-3.43
with eta_0 & deterministic trend	-3.12	-3.41	-3.96

Dealing with Unit Root

• Given the following unit root time series:

$$y_t = \alpha + y_{t-1} + \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$$

 The most straightforward way to detrend the stochastic trend is to take first difference:

$$\Delta y_t = y_t - y_{t-1} = \alpha + \epsilon_t$$

- For time-series that retain stationary after taking first difference, we call it difference stationary.
- If y_t is stationary after first difference, we express it as: $y_t \sim I(1)$ (integrated of degree one).
- If y_t is already stationary, we express it as: $y_t \sim I(0)$.
- \bullet If y_t is stationary after d^{th} difference, we express it as: $y_t \sim I(d)$