Algebra and Analytic Geometry Lecture

Philip Policki

16th October 2020

1 Complex numbers

Def: A complex number is a pair of real numbers.

Example: (2, 3) they are traditionally denoted by z, u, w ...

The set of all complex numbers will be denoted by $\mathbb C$ so:

$$\mathbb{C} = \{(x, y) : x, y \in \mathbb{R}\}\$$

if z = (x, y) $(x, y) \in \mathbb{R}$, then x is called the real part of z and denoted as $R_e z$ and y is the imaginary part.

Geometric interpretation:

A complex number z=(x, y) can be viewed as a point on a Cartesian plane. Such plane will be called the complex plane.

As Vectors on the plane with a initial point at the origin of the plane

2 Operations on complex numbers

1. Addition:

f
$$z_1=(x_1,y_1), z_2=(x_2,y_2)\in\mathbb{C}$$
, then their sum is defined to be $z_1+z_2=(x_1+x_2,y_1+y_2)$ $(1,0)+(b,0)=(a+b,0)$

2. Multiplication:

if $z_1 = (x_1, y_1), z_2 = (x_1, y_1)$ then their product is defined to be the number

$$z_1 z_2 = (x_1 x_2 - y_1 y_2, \ x_1 y_2 + x_2 y_1)$$

Example:
$$(1,2)*(3,-1) = (1*3-2(-1), 1(-1), 3*2) = (5,5)$$

Properties: Commutative and Associative

$$(a,0)(b,0) = (ab,0)$$

$$(0,1)(0,1) = (-1,0)$$

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy$$

3. Better multiplication:

$$(3+2i)(1-2i) = (3+2i)1 + (3+2i)(2i) = 3+2i+6i-4 = -1+8i$$

4. Inverse:

$$z = x + iy$$

$$w = \frac{x}{x^2 + y^2} = i \frac{-y}{x^2 + y^2}$$
$$w = \frac{1}{z}$$

Properties:

$$\overline{z} = x + i(-y) = x - iy$$

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$

(b)
$$\overline{z*w} = \overline{z}*\overline{w}$$

(c)
$$\overline{z^n} = \overline{z}^n$$

6. Modulus:

if z=x+iy the modulus is
$$|z| = \sqrt{x^2 + y^2}$$