改善孔壁粗糙度

(上海美维电子有限公司 201600) 杜晓平 张春生 殳伟

The Improvement of Roughness of Hole-wall

Du Xi aopi ng Zhang Chunsheng ShuWei

1、项目简介:

孔粗是钻孔工序的重要控制项目,目前业内标准基本上定在 30um,我司目前的内部过程监控的标准是 38um,由于客户对电气性能要求的提高,以及尖端产品安全性能的要求,使得客户对样板孔粗的要求不断提高,例如0PC定单中许多高层背板的孔壁质量的要求 25um,在这样的情势下,我们必须在现有的工艺和控制方法的基础上做优化,以实现有能力稳定控制孔粗 25um的目标。

2.设定目标:

期望通过各 Si ze 钻嘴的 DOE 实验,找到关键因子和最佳水平,改善孔壁质量,同时期望找到孔粗控制在 1.0mi I 下的参数因应孔粗 25um 要求的板子。

3. 缺陷示意图:

4. 样本量测说明:

孔壁粗糙度,以平均值为样本,每一样本做4个切片,每个切片6个读数,以 um 为单位,共24个数据,合并计算其平均值。

5.特性要因分析(鱼骨图)

备注:在现有的生产条件中 stack height(叠板数),每次实验固定一台机器,实验前保证 vacuum (抽真空)在 110-130hPa,清洗夹头,选择动态 Run-out 在 8um 以下并保持 tape problem (胶带贴紧度)和 entry/backup (盖板/垫板体系)不变的情况下,考察 F(落速)S(转速)、H(最大钻孔数)、R(钻咀翻磨次数)B(回刀速)和 V(供应商)6 个因子。

6. 第一谐段实验配置和解析:

计划构想:安排从 0.3mm, 0.4mm, 0.5mm, 1.0mm 的实验, 以考察不同尺寸钻咀对应的最佳水平。

条件:

- 1, 1.6mm L6;
- 2、 叠板数:均为 两块一叠。
- 3、 钻咀无特别注明则选用 Uni on-tool;
- 4、 钻孔完毕后至 PPTH 后进行取样切片,每孔取最大值;
- 5、 品质特性评估值为所有孔粗读数的均值。

1.0 0.3mm 钻嘴

1.1 **因子水平设计**:采用钻孔参数 F, S, H, R, B 和 V 为 6 因子 2 水平 DOE 实验, 共 16 次实验。

因子	F(ipm)	S(krpm)	H(hits)	R(times)	V	B(ipm)
1	70	80	1000	0	Uni on-tool	200
2	90	96	2000	2	Tul on	1000

1.2 实验结果:

Ī	RUN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Ave	Max
	1	25	25	30	20	25	25	30	30	25	35	25	30	30	30	35	28	35

2	30	25	30	30	30	25	35	25	30	25	25	25	25	35	30	28.3	35
3	25	25	25	20	20	25	25	25	25	25	20	25	30	20	25	24	30
4	25	30	35	25	25	30	25	30	30	35	30	25	25	25	25	28	35
5	30	30	30	35	25	35	30	35	30	35	30	30	25	35	35	31.3	35
6	30	30	25	25	30	30	25	30	30	35	25	25	30	30	30	28.7	35
7	35	30	30	35	25	30	30	30	25	30	30	30	35	25	25	29.7	35
8	30	25	30	25	30	25	25	25	30	35	30	30	25	30	30	28.3	35

1.3、正交表及 Run 结果

本次实验输出为 Y1: 切片 15 个读数之平均值

Factor	1	2	3	4	5	6	7	resul t
RUN	F	S	Н	R	V	В	E1	Average
1	1	1	1	1	1	1	1	28
2	1	1	1	2	2	2	2	28. 3
3	1	2	2	1	1	2	2	24
4	1	2	2	2	2	1	1	28
5	2	1	2	1	2	1	2	31.3
6	2	1	2	2	1	2	1	28.7
7	2	2	1	1	2	2	1	29. 7
8	2	2	1	2	1	1	2	28.3
水平之和T1	108.3	116.3	114.3	113	109	115.6	114.4	/
水平之和T2	118	110	112	113.3	117.3	110.7	111.9	/
极差R	9.7	6.3	2.3	0.3	8.3	4.9	2.5	/
列平方和S	11. 76	4. 96	0.66	0.01	8. 61	3.0	0.78	/

ST=29.78

1.4、方差分析:

Se =SH+SR+SE1=1.45

Factor	列平方和	自由度	均方和	F比	贡献率	显著性
Factor	(Si)	(fi)	(Vi)	(F)	(P%)	
F	11. 76	1	11. 76	35.64	39. 38	**
S	4. 96	1	4. 96	15.03	15.55	*
V	8. 61	1	8. 61	26.09	27.80	*
В	3	1	3	9.09	8. 97	
误差项 e	1. 45	3	0. 33	/	8.3	

F0. 01(1, 3)=34.12 F0. 05(1, 3)=10.13

F1>F0.01(1,3) 故 Feedrate 为特显因子

F0.01(1,3)>Fv,Fs>F0.05(1,3)故 Vendor 和 Speed 为显著因子。

贡献率 Feerate>Vendor>Speed>Retract, 总的贡献率为 91.7%。

1.5、贡献率柏拉图

1.6 Cross table

Factor	Г	c	Ш	D	V	D
特性值	Г	3	Н	K	V	В
孔粗均值	F1	S2			V1	
显著性	**	*			*	
贡献率%	39. 38	15.55			27.80	
综合最佳值	F1	S2			V1	

结论:1、F1,S2,V1 为经 Cross table 分析后的较佳的参数条件;

2、以 F, S, V 第二谐段实验保留因子;其余因子视为常数项,以便找出最佳操作条件。

3、实验中的最佳结果及对应条件: 孔粗均值 24um ,最大值 30um(条件 F1S2V1), 没有达到我们的设定目标。

2.00.4mm 钻咀

2.1 因子水平设计:

因子	F(ipm)	S(krpm)	H(hits)	R(times)	V	B(ipm)
1	60	70	1000	0	Uni on-tool	200
2	120	99	2000	2	Tul on	1000

2.2 实验结果:

Run	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Ave	Max
1	15	20	20	15	20	20	20	15	15	15	15	20	20	15	20	20	17.8	20
2	20	20	25	25	25	20	20	20	20	20	15	25	20	20	20	20	20.9	25
3	20	20	15	15	20	15	20	25	20	20	15	20	20	20	20	20	19.1	25
4	15	25	20	20	25	20	20	20	20	20	20	25	25	20	20	25	21.3	25
5	15	15	20	20	25	25	25	20	25	20	25	20	20	25	20	25	21.6	25
6	20	25	25	30	25	25	25	30	25	25	20	25	30	25	25	25	25.3	30
- la	- 4 .	-	- ~,	- ~,	- ~ /	٠ L ـ .	-	-	- ~ /		-		-		-	-	1 -	_

7 | 15 | 15 | 25 | 25 | 20 | 15 | 15 | 20 | 15 | 20 | 15 | 20 | 15 | 15 | 17. 5 | 25

Ī	8	20	15	20	20	20	15	15	20	25	20	20	20	25	20	25	25	20.3	25
																		_0.0	

2.3. 正交表及 Run 结果:

Run	F	S	Н	R	V	В	E1	Ave
1	1	1	1	1	1	1	1	17. 813
2	1	1	1	2	2	2	2	20. 938
3	1	2	2	1	1	2	2	19.063
4	1	2	2	2	2	1	1	21. 250
5	2	1	2	1	2	1	2	21. 563
6	2	1	2	2	1	2	1	25. 313
7	2	2	1	1	2	2	1	17. 500
8	2	2	1	2	1	1	2	20. 313
T1	79.063	85. 625	76. 563	75. 938	75. 938	80. 938	81.875	/
T2	84. 688	78. 125	87. 188	87.813	81. 250	82. 813	81.875	/
R	-5. 625	7.500	-10.625	-11.875	-5. 313	-1.875	0.000	/
S	3. 9551	7. 031	14. 111	17. 627	3.528	0.440	0.000	/

ST=46. 6919

2.4. 方差分析

Error factor=SB+Se1=0.440

因子	(Si)	(fi)	(Vi)	(F)	(P%)	显著性
F	3. 9551	1	3. 9551	17. 98	8.0	
S	7. 031	1	7. 031	31. 96	14.59	
Н	14.111	1	14. 111	64.14	29. 28	*
R	17.627	1	17.627	80. 12	37. 28	*
V	3. 528	1	3. 528	16.04	7. 01	
Error	0.44	2	0. 22	/	4.84	

F0. 01(1, 2)=98. 50 F0. 05(1, 2)=18. 51

F0. 01(1, 2)>FH>FR >F0. 05(1, 2), 所以 H, R 为显著因子, 落速及转速, 供应商, 回刀速为不显著因子。

2.5 贡献率柏拉图:

2.6 Cross table

Factor	Г	C	Ш	D	V	D
特性值	Г	3	П	K	V	В
孔粗均值			H1	R1		
显著性			*	*		
贡献率%			29. 28	37. 28		
综合最佳值			H1	R1		

结论:1、H1,R1为经Cross table分析后的较佳的参数条件;

2、以 H, R 第二谐段实验保留因子;其余因子视为常数项,以便找出最佳操作条件。

3、从实验结果可知,目前的 0.4mm 参数可以实现孔粗 25um 以下的设定目标。

3.0 0.5mm 钻嘴:

3.1 因子水平设计

因子	F(ipm)	S(krpm)	Rep(times)	H(hits)	V
1	110	70	0	1000	ST(Union-tool)
2	180	95	2	2000	UC(Union-tool)

3.2 实验结果:

Run										读	数									
1	30	25	25	35	30	25	30	25	20	25	20	25	25	25	25	30	30	25	30	25
2	20	20	20	25	25	25	20	20	20	25	25	25	20	15	20	25	20	15	25	20
3	15	25	25	25	30	30	30	25	30	30	25	35	25	25	25	30	20	30	20	25
4	15	20	20	15	10	20	15	15	15	15	20	20	25	20	20	15	10	15	10	10
5	20	20	20	25	15	20	20	25	25	20	20	20	20	15	25	20	15	10	20	15
6	30	30	30	35	35	30	30	40	40	30	35	40	30	25	35	30	30	25	25	25
7	20	15	25	25	20	20	15	20	25	20	15	20	15	15	15	20	15	10	15	15
8	30	25	25	25	30	30	40	35	30	35	35	30	35	30	35	30	30	35	35	30

Run						读	数						Ave	Max
1	30	30	25	30	30	35	25	25	30	30	30	25	27	35
2	15	10	15	15	15	15	15	20	10	10	15	15	19	<i>25</i>
3	20	25	25	35	25	20	20	20	25	25	25	20	25	35
4	15	10	20	10	10	10	15	10	10	15	15	10	15	25
5	10	20	15	15	10	15	15	20	15	15	15	20	18	25
6	30	30	25	30	30	30	30	25	30	30	35	25	31	40
7	15	15	10	20	20	15	15	15	20	20	15	15	17	<i>25</i>
8	30	25	30	35	35	35	40	35	25	30	30	35	32	40

3.3 正交表及 Run 结果:

Run	F	S	Н	R	V	E1	E2	Ave.
1	1	1	1	1	1	1	1	27
2	1	1	1	2	2	2	2	19
3	1	2	2	1	1	2	2	25
4	1	2	2	2	2	1	1	15
5	2	1	2	1	2	1	2	18
6	2	1	2	2	1	2	1	31
7	2	2	1	1	2	2	1	17
8	2	2	1	2	1	1	2	32
T1	86. 250	94.688	95. 156	87. 969	87. 969	91.875	90. 156	
T2	97. 656	89. 219	88.750	95. 938	68. 906	92.031	93.750	
R	-11. 406	5. 469	6.406	-7. 969	19.063	-0. 156	-3.594	
S	16. 2628	3.7384	5. 1300	7. 9376	45. 4224	0.0031	1.6144	

ST=80.11

3.4 方差分析

Se=Se1+Se2=0.0031+1.6144=1.6175

因子	(Si)	(fi)	(Vi)	(F)	(P%)	显著性
F	16. 2628	1	16. 2628	20. 13	19.3	*
S	3. 7384	1	3.7384	4.63	3.66	
Н	5.13	1	5.13	6. 35	5. 40	
R	7. 9376	1	7. 9376	9.83	8.9	
V	45. 4224	1	45. 4224	56. 23	55.69	*
Error	1. 6175	2	0.8078	/	7.05	

F0.01(1,2)=98.50 F0.05(1,2)=18.51 所以显著因子为 F和 V. 其余 S, H及 R均为不显著因子。

3.5 贡献率柏拉图:

3.6 Cross table

Factor	F				.,	
特性值	F	S	Н	R	V	В
孔粗均值	F1				V2	
显著性	*				*	
贡献率%	19.3				55.69	
综合最佳值	F1				V2	

结论:1、F1, V2 为经 Cross table 分析后的较佳的参数条件;

2、以 F, V 第二谐段实验保留因子; 其余因子视为常数项, 以便找出最佳操作条件

3. 从实验结果可得,在 V2 条件下,可以达到设定目标。

4.0 1.0mm 钻嘴:

4.1 因子水平设计:

因子	S(krpm)	F(ipm)	Rep(times)	H(hits)
1	60	180	0	3000
2	80	130	3	2000
3	40	80	6	1000

4.2 实验结果:

r. Z	フマリ	M > L		•																					
Run					•			•					读数	X										•	
1	20	25	20	25	20	20	20	25	30	30	25	20	20	20	25	25	20	25	25	30	20	25	20	25	20
2	30	30	30	30	35	30	35	30	30	40	25	25	30	35	45	25	25	30	30	30	30	30	30	30	35
3	20	25	30	30	25	35	25	30	30	30	35	35	35	40	35	35	30	40	40	30	20	25	30	30	25
4	25	20	20	20	20	25	20	20	20	20	20	20	20	20	20	25	25	40	30	30	25	20	20	20	20
5	40	45	35	45	35	45	45	65	65	50	50	55	45	50	50	50	40	50	50	50	40	45	35	45	35
6	20	20	20	20	20	25	25	20	15	25	20	20	20	20	25	20	20	25	20	25	20	20	20	20	20
7	25	25	30	30	30	30	30	25	30	30	30	30	30	25	25	25	25	25	20	25	25	25	30	30	30
8	20	20	20	20	25	25	30	30	45	40	40	30	30	30	40	50	35	30	30	30	20	20	20	20	25
9	35	20	20	20	20	20	15	15	20	15	15	15	20	20	20	15	20	20	15	15	35	20	20	20	20

Run	读数																										
1	20	20	25	30	30	25	20	20	20	25	25	20	25	25	30	20	15	20	20	25	20	15	20	20	20	20	15
2	30	35	30	30	40	25	25	30	35	45	25	25	30	30	30	25	20	25	20	20	20	25	20	25	20	25	20
3	35	25	30	30	30	35	35	35	40	35	35	30	40	40	30	20	20	20	20	20	20	20	20	20	15	20	20
4	25	20	20	20	20	20	20	20	20	20	25	25	40	30	30	25	25	15	20	25	25	20	20	20	20	25	25
5	45	45	65	65	50	50	55	45	50	50	50	40	50	50	50	25	25	25	25	30	30	30	25	30	30	25	25
6	25	25	20	15	25	20	20	20	20	25	20	20	25	20	25	20	20	15	20	25	20	20	20	20	15	20	20
7	30	30	25	30	30	30	30	30	25	25	25	25	25	20	25	35	40	35	40	40	60	60	60	70	75	35	40
8	25	30	30	45	40	40	30	30	30	40	50	35	30	30	30	20	20	20	25	20	15	20	20	20	20	20	20
9	20	15	15	20	15	15	15	20	20	20	15	20	20	15	15	20	20	20	20	20	20	20	20	20	20	20	20

Run	读数																										
1	20	15	20	20	25	20	15	20	20	20	15	20	20	25	25	25	15	20	20	20	20	20	25	20	15	20	20
2	25	20	25	20	20	20	25	20	25	20	20	20	20	25	25	25	20	20	15	20	25	20	20	20	25	20	25
3	20	20	20	20	20	20	20	20	20	15	20	20	20	20	20	20	20	20	25	25	20	20	20	20	20	20	20
4	25	25	15	20	25	25	20	20	20	20	25	25	25	25	20	20	20	25	20	20	15	20	25	25	20	20	20
5	25	25	25	25	30	30	30	25	30	30	25	25	20	30	30	25	30	25	25	25	25	25	30	30	30	25	30
6	20	20	15	20	25	20	20	20	20	15	20	20	15	20	15	15	20	20	20	20	15	20	25	20	20	20	20
7	35	40	35	40	40	60	60	60	70	75	40	25	25	25	25	40	30	40	50	40	35	40	40	60	60	60	70
8	20	20	20	25	20	15	20	20	20	20	20	20	15	15	15	20	25	20	25	25	20	25	20	15	20	20	20
9	20	20	20	20	20	20	20	20	20	20	15	15	20	20	20	20	20	20	20	15	20	20	20	20	20	20	20

Run						读数						Ave	Max
1	20	15	20	20	25	25	25	15	20	20	20	21. 2	30
2	20	20	20	20	25	25	25	20	20	15	20	24.7	45
3	15	20	20	20	20	20	20	20	20	25	25	24.1	40
4	20	25	25	25	25	20	20	20	25	20	20	22.3	40
5	30	25	25	20	30	30	25	30	25	25	25	33.8	65
6	15	20	20	15	20	15	15	20	20	20	20	19.8	25
7	75	40	25	25	25	25	40	30	40	50	40	37.6	75
8	20	20	20	15	15	15	20	25	20	25	25	23.7	50
9	20	15	15	20	20	20	20	20	20	20	15	19.1	35

4.3 正交表及 Run 结果:

_					
	S	F	Rep	Hi ts	Yi
1	1	1	1	1	21. 2
2	1	2	2	2	24.7
3	1	3	3	3	24.1
4	2	1	2	3	22.3
5	2	2	3	1	33.8
6	2	3	1	2	19.8

7		3	1	3	2	37.6
8		3	2	1	3	23.7
ç	(3	3	2	1	19.1
Т	1	70	81.1	64.7	74.1	T 224 2
T.	2	75. 9	82.2	66.1	82.1	T=226。3 Yi *Yi =6012.4
T	3	80.4	63	95.5	70.1	ST=322. 9
5	5	18.3	78	201.8	25	31-322. 9

4.4.方差分析:将列平方和最小的列划为误差项,得:

Se =Ss + Sh =18.3+25=43.3

Run	列平方和 自由度		均方和	F比	F%	显著性
Kuii	(Si)	(fi)	(Vi)	(F)		
因子 2(F)	78	2	39	3.58	17.4	
因子 3®	201.8	2	100.9	9. 26	55.7	*
误差项 Se	43.3	4	10.9	/	16.8	

F0. 01(2, 4)=18. 0 F0. 05(2, 4)=6. 94

F0.01(2,2)> >F3>F0.05(2,2)>F2 故 R 为显著因子, S, F, H 为非显著因子。

4.5 贡献率柏拉图:

4.6 Cross table

Factor	C	Г	D	П
特性值	3	Γ	K	Н
孔粗均值			R1	
显著性			*	
贡献率%			55.7	
综合最佳值			R1	

结论:1、R1 为经 Cross table 分析后的较佳的参数条件;

- 2、以 R 为第二谐段实验保留因子;其余因子视为常数项,以便找出最佳操作条件
 - 3、实验最佳结果: S2F3R1H2,均值 19.8um,最值 25um.需要验证。

7. 第二谐段实验配置和解析,挑选最佳参数:

为对实验的正确性做再次确认及肯定,同时亦想找寻出较明确的操作条件,故必须做第二次实验。而在第二次实验中,因子的显著性已十分明确,故选用的因子已减少。且为确定良好的操作条件,在次以多水平方式安排实验,再以方差分析进行解析。

1.0 0.3mm 三水平正交实验:

1.1因子水平设计:

因子	F(ipm)	S(krpm)	V
1	70	95	Uni on
2	60	97	CKY
3	50	100	ZL

1.2、实验常数项

因子	设定条件				
Hits count	2000				
Retract	600				
Stack height	2				
Resharp times	1				

1.3、实验结果:

Run	1	2	3	4	5	6	7	8	Ave	Max
1	20	25	25	30	30	25	25	15	24.3	30
2	20	20	20	20	25	20	30	15	21.3	30
3	25	20	20	20	15	25	25	30	22.4	30
4	15	25	15	25	25	20	25	15	20.6	25
5	20	25	25	24	26	16	30	28	24.2	30
6	5	15	10	15	15	10	26	10	13.3	26
7	20	24	28	25	25	26	28	24	25	28
8	10	18	25	10	20	20	20	20	17.8	25
9	15	12	15	20	25	15	16	20	17.3	25

1.4、正交表及 Run 结果:

Factor	1	2	3	4	resul t
--------	---	---	---	---	---------

RUN	F	S	V	E1	Average	
1	1	1	1	1	24.3	
2	1	2	2	2	20. 3	
3	1	3	3	3	22. 4	
4	2	1	2	3	20.6	
5	2	2	3	1	24. 2	
6	2	3	1	2	13. 3	
7	3	1	3	2	25	
8	3	2	1	3	17.8	
9	3	3	2	1	17.3	
水平之和T1	67	69. 9	55.4	65.8	/	
水平之和T2	58.1	62.3	58.2	58.6	/	
水平之和T3	60.1	53	71.6	60.8	/	
极差R	14.5	48	50.0	9	/	

列平方和 ST=121.5

1.5、方差分析:将列平方和小于1的列划为误差项,得:

Se =S1+S4 =23.5

Factor	列平方和	自由度	均方和	F比	贡献率	显著性
ractor	(Si)	(fi)	(Vi)	(F)	(P%)	
S	48.0	2	24.0	4.07	29.8	
V	50.0	2	25.0	4.2	31.4	
误差项 e	23.5	4	5.9	/	51.2	

F0.01(2,4)=18.0 F0.05(2,4)=6.94

经方差分析,孔粗并未出现显著因子,并考虑最值,因此,第二次实验的配置中可选则可以适用。

1.6、贡献率柏拉图

1.7、第二次实验结果:

经方差分析,孔粗并未出现显著因子,代表第二次实验配置的水平范围都可以适用。考虑生产成本和产能效益,决定采用最佳操作条件如下表:操作条件对照表

实验因子	因子代号	原始参数	最佳参数	
落速	F	70	50	
转速	S	95	99	
Hits count	Н	1000	1500	
回刀速	R	600	600	
翻磨次数	R	2	2	
供应商	V	UNION	Uni on/CKY/ ZL	

1.8 验证:

孔粗记录:

	读数								Ave.	Max							
10	15	15	15	15	15	15	15	20	20	20	15	15	15	15	15	15.6	20
15	20	15	15	20	20	15	15	20	25	20	20	15	20	20	15	18.1	25
20	25	20	15	20	20	25	25	20	20	20	25	25	25	25	25	22.2	25
20	20	25	15	25	20	20	25	20	15	20	20	20	15	20	20	19.7	25

2.0 0.4mm 验证实验: (第一次实验已找到可达到设定目标的条件 H1R1)

2.1、实验常数项

因子	设定条件				
Hits count	1000				
Retract	1000				
Stack height	2				
Resharp times	0				
Feedrate	90				
Speed	95				

2.2 结果:(60326)

		读数											Ave	Max				
2	25	20	20	15	20	25	25	25	25	20	20	25	20	20	20	15	21.3	25
2	25	20	25	25	20	25	25	20	15	25	25	15	15	20	20	25	21.6	25

3.0 0.5mm 验证实验:

3.1 实验常数项:

因子	设定条件
Hits count	2000
Retract	1000

Stack height	2
Resharp times	2
speed	95
Drill bit	Uni on Tool -UC

3.2 验证结果:

Feedrate									读	数								max
110	10	10	15	10	15	15	15	15	15	15	15	20	15	10	15	10	13.8	20
125	10	10	15	10	15	20	15	20	15	15	15	15	15	15	20	20	14.1	25
140	20	20	25	20	20	25	25	20	30	20	20	20	25	25	20	20	22.2	30

所以:操作条件对照表

		1	
实验因子	因子代号	原始参数	最佳参数
落速	F	180	110
转速	S	95	95
Hits count	Н	2000	2000
回刀速	R	1000	1000
翻磨次数	R	2	2
钻嘴设计	V	UNION (ST)	Uni on (UC)

3.3 验证上述参数:

孔粗记录:

	读数												Ave	Max			
15	25	5 20 20 25 20 20 20 20 20 20 20 25 25 20 20 25											25	21. 3	25		
15	15	20	20	25	25	25	20	25	20	25	20	20	25	20	25	21.6	25

4.0 1.0mm 钻嘴:

4.1 实验常数项:

因子	设定条件
Hits count	2000
Retract	1000
Stack height	2
speed	80
Feedrate	80

4.2 验证 R

R																					Ave	Max
0	20	20	15	20	25	20	20	20	20	15	20	20	15	20	15	15	20	20	20	20	19	25
1	25	25	25	25	20	20	25	25	25	25	25	25	20	20	20	10	20	25	25	25	22.8	25

1	2	20	25	25	20	20	25	25	20	20	20	25	20	25	25	25	25	25	20	25	20	24. 3	30
	2	20	25	25	20	20	25	25	30	30	20	25	20	25	25	25	25	25	30	25	20	24. 3	30

所以:操作条件对照表

771 77 - 321411 -33411 - 37444			
实验因子	因子代号	原始参数	最佳参数
落速	F	180	80
转速	S	60	80
Hits count	Н	2000	2000
回刀速	R	1000	1000
翻磨次数	R	5	0/1

10、结论:

1. 每个 Si ze 钻咀的参数都有自身的要求,而且影响孔粗的显著因子也不一样, 所以需要我们针对不同的尺寸的钻咀试验最佳参数。

Size(mm)	特显因子	显著因子
0.3	F	S
0.4		H, R
0.5		F, V
1.0		R

- 2. 总体上说落速低,转速高,新刀,将有利于孔粗的改善,另外不同供应商的设计对孔粗控制也有很大的影响,如佑能的0. 3mm 比 Tul on 的孔粗控制好,0. 5mmST 型设计在孔粗控制上比 UC 型设计就差很多。
- 3. 从本次试验也可看出在正常生产控制中的降低单耗的方向,优化参数,选择耐磨耗的钻咀材料,提高钻孔数(Hits Count);
 - 4. 对于小孔加工(0.3mm 以下孔), 孔粗的操作 Window 会相对较小;
- 5. 此次试验只是针对 6 层板,对于 4 层以下及 7 层以上的情况并未做考量,同时也没有考量板厚的影响;
 - 6. 下一步的工作是考量层数和板厚以及不同板材的情况。