Analysis III

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

12. Dezember 2016

Inhaltsverzeichnis

Inl	haltsverzeichnis	3	5
I.	Vorwort I.1. Über dieses Skriptum I.2. Wer I.3. Wo		5
П.	Vorbereitung	7	,
1.	Satz von Arzelà-Ascoli	g)
2.	Der Integralsatz von Gauss im \mathbb{R}^2	11	L
3.	Flächen im \mathbb{R}^3	13	3
4.	Der Integralsatz von Stokes	15	;
5.	Der Integralsatz von Stokes	17	7
6.	Differentialgleichungen: Grundbegriffe	19)
7.	Lineare Differentialgleichungen 1. Ordnung	23	3
8.	Differentialgleichungen mit getrennten Veränderlichen	27	7
9.	Einige Typen von Differentialgleichungen 1. Ordnung	31	L
10	Exakte Differentialgleichungen	33	3
11	. Hilfsmittel aus der Funktionalanalysis	35	5
12	Der Existenzsatz von Peano	41	L
13	Der Existenz- und Eindeutigkeitssatz von Picard - Lindelöf	45	;
14	. Matrizenwertige und vektorwertige Funktionen	49)
15	Existenz- und Eindeutigkeitssätze für Dgl.Systeme 1. Ordnung	55	;
16	. Lineare Systeme	57	7
17	Lineare Systeme mit konstanten Koeffizienten	65	;
18	Differentialgleichungen höherer Ordnung	73	3
19	Lineare Differentialgleichungen m -ter Ordnung	75	5

In halts verzeichn is

20. Lineare Differentialgleichungen m -ter Ordnung mit konstanten Koeffizienten	79
21. Die Eulersche Differentialgleichung	83
22. Einschub: Das Zornsche Lemma	85
22. Nicht fortsetzbare Lösungen	87
23. Minimal- und Maximallösung	91
24. Ober- und Unterfunktionen	95
25. Stetige Abhängigkeit	99
26. Zwei Eindeutigkeitssätze	103
27. Randwertprobleme (Einblick)	107
A. Satz um Satz (hüpft der Has)	113
Stichwortverzeichnis	115
B. Credits für Analysis III	119

I. Vorwort

I.1. Über dieses Skriptum

Dies ist ein erweiterter Mitschrieb der Vorlesung "Analysis III" von Herrn Schmoeger im Wintersemester 05/06 an der Universität Karlsruhe (TH). Die Mitschriebe der Vorlesung werden mit ausdrücklicher Genehmigung von Herrn Schmoeger hier veröffentlicht, Herr Schmoeger ist für den Inhalt nicht verantwortlich.

I.2. Wer

Gestartet wurde das Projekt von Joachim Breitner. Beteiligt am Mitschrieb sind außer Joachim noch Pascal Maillard, Wenzel Jakob und andere.

1.3. Wo

Alle Kapitel inklusive IATEX-Quellen können unter http://mitschriebwiki.nomeata.de abgerufen werden. Dort ist ein Wiki eingerichtet und von Joachim Breitner um die IATEX-Funktionen erweitert. Das heißt, jeder kann Fehler nachbessern und sich an der Entwicklung beteiligen. Auf Wunsch ist auch ein Zugang über Subversion möglich.

II. Vorbereitung

Definition

Seien $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3) \in \mathbb{R}^3$

$$a \times b := (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \in \mathbb{R}^3$$

heißt das Kreuzprodukt von a und b

Formal gilt mit $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$:

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

Beispiel

a = (1, 1, 2), b = (1, 1, 0).

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ 1 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} = e_3 + 2e_2 - e_3 - 2e_1 = (-2, 2, 0)$$

Bemerkung (Regeln):

$$b \times a = -(a \times b)$$

$$(\alpha a) \times (\beta b) = \alpha \beta (a \times b) \ \forall \alpha, \beta \in \mathbb{R}$$

$$a \times a = 0$$

$$a \cdot (a \times b) = 0 = b \cdot (a \times b)$$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}^3$, D offen und $F = (P, Q, R) \in C^1(D, \mathbb{R}^3)$.

$$\operatorname{rot} F := (R_y - Q_z, P_z - R_x, Q_x - P_y)$$

heißt Rotation von F.

Formal: rot $F = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (P, Q, R)$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}^n, D$ offen, $f = (f_1, f_2, \dots, f_n) \in C^1(D, \mathbb{R}^n)$

$$\operatorname{div} f := \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \dots + \frac{\partial f_n}{\partial x_n}$$

heißt **Divergenz** von f.

Definition

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg. Ist γ in $t_0\in[a,b]$ differenzierbar und ist $\gamma'(t_0)\neq 0$, so heißt $\gamma'(t_0)$ Tangentialvektor von γ in t_0 .

1. Satz von Arzelà-Ascoli

In diesem Paragraphen sei $\emptyset \neq A \subseteq \mathbb{R}$ und \mathcal{F} sei eine Familie (Menge) von Funktionen $f: A \to \mathbb{R}$.

Definition

 \mathcal{F} heißt auf A

(1) punktweise beschränkt : $\iff \forall x \in A \ \exists c = c(x) \ge 0$:

$$|f(x)| \le c \ \forall f \in \mathcal{F}$$

(2) gleichmäßig beschränkt : $\iff \exists \gamma \geq 0$:

$$|f(x)| \le \gamma \ \forall x \in A \ \forall f \in \mathcal{F}$$

(3) **gleichstetig** : $\iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$:

$$|f(x) - f(y)| < \varepsilon \ \forall x, y \in A \ \text{mit} \ |x - y| < \delta \ \text{und} \ \forall f \in \mathcal{F}$$

Satz (Satz von Arzelà-Ascoli)

A sei beschränkt und abgeschlossen, \mathcal{F} sei punktweise beschränkt und gleichstetig auf A und (f_n) sei eine Folge in \mathcal{F} .

Dann enthält (f_n) eine Teilfolge, welche auf A gleichmäßig konvergiert.

Beweis

Analysis II, 2.3 \implies es existiert eine abzählbare Teilmenge $B = \{x_1, x_2, \ldots\} \subseteq A$ mit $\overline{B} = A$.

 $(f_n(x_1))$ ist beschränkt $\xrightarrow{\text{Analysis I}}$ (f_n) enthält eine Teilfolge $(f_{1,n})$ mit $(f_{1,n}(x_1))$ konvergent. $(f_{1,n}(x_2))$ ist beschränkt $\xrightarrow{\text{Analysis I}}$ $(f_{1,n})$ enthält eine Teilfolge $(f_{2,n})$ mit $(f_{2,n}(x_2))$ konvergent.

Wir erhalten Funktionenfolgen

$$(f_{1,n}) = (f_{1,1}, f_{1,2}, f_{1,3}, \dots)$$

$$(f_{2,n}) = (f_{2,1}, f_{2,2}, f_{2,3}, \dots)$$

$$(f_{3,n}) = (f_{3,1}, f_{3,2}, f_{3,3}, \dots)$$

$$\vdots$$

 $(f_{k+1,n})$ ist eine Teilfolge von $(f_{k,n})$ und $(f_{k,n}(x_k))_{n=1}^{\infty}$ konvergiert $(k \in \mathbb{N})$.

 $g_j := f_{j,j} \ (j \in \mathbb{N}); \ (g_j)$ ist eine Teilfolge von (f_n) .

 $(g_k, g_{k+1}, g_{k+2}, \ldots)$ ist eine Teilfolge von $(f_{k,n}) \implies (g_j(x_k))_{j=1}^{\infty}$ ist konvergent $(k=1,2,\ldots)$.

1. Satz von Arzelà-Ascoli

Sei $\varepsilon > 0$. Wir zeigen:

(*)
$$\exists j_0 \in \mathbb{N} : |g_j(x) - g_{\nu}(x)| < 3\varepsilon \ \forall j, \nu \geq j_0 \ \forall x \in A$$

(woraus die gleichmäßige Konvergenz von (g_i) folgt)

 \mathcal{F} gleichstetig \Longrightarrow

(i)
$$\exists \delta > 0 : |g_j(x) - g_j(y)| < \varepsilon \ \forall x, y \in A \text{ und } |x - y| < \delta \ \forall j \in \mathbb{N}$$

 $A \subseteq \bigcup_{x \in A} U_{\frac{\delta}{2}}(x)$. Analysis II, 2.3 $\Longrightarrow \exists y_1, \dots, y_p \in A4$:

$$(ii)$$
 $A \subseteq \bigcup_{j=1}^{p} U_{\frac{\delta}{2}}(y_j)$

 $\overline{B} = A \implies \forall q \in \{1, \dots, p\} \ \exists z_q \in B : z_q \in U_{\frac{\delta}{2}}(y_q) \ (g_j)(z_q))_{j=1}^{\infty} \text{ ist konvergent für alle } q \in \{1, \dots, p\} \implies \exists j_0 \in \mathbb{N}:$

(iii)
$$|g_j(z_q) - g_\nu(z_q)| < \varepsilon \ \forall j, \nu \ge j_0 \ (q = 1, \dots, p)$$

Seien $j, \nu \geq j_0$ und $x \in A \stackrel{(ii)}{\Longrightarrow} \exists q \in \{1, \dots, p\} : x \in U_{\frac{\delta}{2}}(y_q) \Longrightarrow |x - z_q| = |x - y_q + y_q - z_q| \leq |x - y_q| + |y_q - z_q| < \frac{\delta}{2} + \frac{\delta}{2} = \delta \stackrel{(i)}{\Longrightarrow} |g_j(x) - g_j(z_q)| < \varepsilon, |g_\nu(x) - g_\nu(z_q)| < \varepsilon \text{ (iv)}$

$$\implies |g_{j}(x) - g_{\nu}(x)| = |g_{j}(x) - g_{j}(z_{q}) + g_{j}(z_{q}) - g_{\nu}(z_{q}) + g_{\nu}(z_{q}) - g_{\nu}(x)|$$

$$\leq \underbrace{|g_{j}(x) - g_{j}(z_{q})|}_{<\varepsilon \ (iv)} + \underbrace{|g_{j}(z_{q}) - g_{\nu}(z_{q})|}_{<\varepsilon \ (iii)} + \underbrace{|g_{\nu}(z_{q}) - g_{\nu}(x)|}_{<\varepsilon \ (iv)}$$

$$< 3\varepsilon \implies (*)$$

2. Der Integralsatz von Gauss im \mathbb{R}^2

Stets in diesem Paragraphen: $(x_0, y_0) \in \mathbb{R}^2$ sei fest, $R : [0, 2\pi] \to (0, \infty)$ sei stetig und stückweise stetig differenzierbar, $R(0) = R(2\pi)$.

$$\gamma(t) := (x_0 + R(t)\cos t, y_0 + R(t)\sin t) \quad (t \in [0, 2\pi])$$

 γ ist stückweise stetig differenzierbar, also rektifizierbar, $\gamma(0) = \gamma(2\pi)$

$$B := \{(x_0 + r\cos t, y_0 + r\sin t) : t \in [0, 2\pi], 0 \le r \le R(t)\}$$

Sind γ und B wie oben, so heißt B **zulässig**. B ist beschränkt und abgeschlossen, $\partial B = \Gamma_{\gamma} = \gamma([0, 2\pi])$. Analysis II, 17.1 $\Longrightarrow B$ ist messbar.

Beispiel

$$R(t) = 1 \implies \gamma(t) = (x_0 + \cos t, y_0 + \sin t). B = \overline{U_1(x_0, y_0)}$$

Satz 2.1 (Integralsatz von Gauss im \mathbb{R}^2)

B und $\gamma = (\gamma_1, \gamma_2)$ seien wie oben, B also zulässig und $\partial B = \Gamma_{\gamma}$. Weiter sei $D \subseteq \mathbb{R}^2$ offen, $D \supseteq B$ und $f = (u, v) \in C^1(D, \mathbb{R}^2)$. Dann:

- (1) $\int_B u_x(x,y)d(x,y) = \int_{\mathcal{D}} u(x,y)dy$
- (2) $\int_B v_y(x,y)d(x,y) = -\int_{\gamma} v(x,y)dx$
- (3) $\int_B div f(x, y) d(x, y) = \int_{\gamma} (u dy v dx)$

Anwendung 2.2

B und γ seien wie in 2.1. Mit f(x,y)=(x,y) folgt

$$\lambda_2(B) = \int_{\gamma} x dy = -\int_{\gamma} y dx = \frac{1}{2} \int_{\gamma} (x dy - y dx)$$

Beweis

(nach Lemmert)

Wir zeigen nur (1). ((2) zeigt man Analog, (3) folgt aus (1) und (2).)

OBdA: $(x_0, y_0) = (0, 0)$ und γ stetig db. Also: $\gamma(t) = (R(t) \cos t, R(t) \sin t)$ mit R(t) stetig db. $A := \int_B u_x(x, y) d(x, y)$. Z.z.: $A = \int_0^{2\pi} u(\gamma(t)) \gamma_2'(t) dt$

Polarkoordinaten, Substitution, Fubini $\implies A = \int_0^{2\pi} (\int_0^{R(t)} u_x(r\cos t, r\sin t)rdr)dt$. $\beta(r,t) := u(r\cos t, r\sin t)$. Nachrechnen: $u_x(r\cos t, r\sin t)r = r\beta_r(r,t)\cos t - \beta_t(r,t)\sin t \implies A = \int_0^{2\pi} (\int_0^{R(t)} (r\beta_r(r,t)\cos t - \beta_t(r,t)\sin t)dr)dt$

$$\int_0^{R(t)} r \beta_r(r,t) dr = \underbrace{r \beta(r,t) \Big|_{r=0}^{r=R(t)}}_{=R(t)\beta(R(t),t)=R(t)u(\gamma(t))} - \underbrace{\int_0^{R(t)} \beta(r,t) dr}_{=:\alpha(t)}$$

2. Der Integralsatz von Gauss im \mathbb{R}^2

AII,21.3
$$\Longrightarrow \alpha$$
 ist stetig db und $\alpha'(t) = R'(t)\beta(R(t), t) + \int_0^{R(t)} \beta_t(r, t)dr$

$$\Longrightarrow \int_0^{R(t)} \beta_t(r, t)dr = \alpha'(t) - R'(t)u(\gamma(t))$$

$$\Longrightarrow A = \int_0^{2\pi} (R(t)u(\gamma(t))\cos t - \alpha(t)\cos t - \alpha'(t)\sin t + R'(t)u(\gamma(t))\sin t)dt$$

$$= \int_0^{2\pi} u(\gamma(t))\underbrace{(R(t)\sin t)'}_{\gamma_2'(t)} dt - \underbrace{\int_0^{2\pi} (\alpha(t)\sin t)'dt}_{=\alpha(t)\sin t|_0^{2\pi} = 0}$$

3. Flächen im \mathbb{R}^3

Definition

Sei $\emptyset \neq B \subseteq \mathbb{R}^2$, B sei beschränkt und abgeschlossen, $D \subseteq \mathbb{R}^2$ sei offen, $B \subseteq D$ und es sei $\phi(u,v)=(\phi_1,\phi_2,\phi_3)\in C^1(D,\mathbb{R}^3)$. Die Einschränkung $\phi_{|B}$ von ϕ auf B heißt eine **Fläche**, $S:=\phi(B)$ heißt **Flächenstück**, B heißt **Parameterbereich**.

$$\phi' = \begin{pmatrix} \frac{\partial \phi_1}{\partial u} & \frac{\partial \phi_1}{\partial v} \\ \frac{\partial \phi_2}{\partial u} & \frac{\partial \phi_2}{\partial v} \\ \frac{\partial \phi_3}{\partial u} & \frac{\partial \phi_3}{\partial v} \end{pmatrix}$$

$$=: \phi_u =: \phi_v$$

Sei weiterhin $(u_0, v_0) \in B$. Dann ist $N(u_0, v_0) := \phi_u(u_0, v_0) \times \phi_v(u_0, v_0)$ der **Normalenvektor** von ϕ in (u_0, v_0) . $I(\phi) := \int_B ||N(u, v)|| d(u, v)$ wird als **Flächeninhalt** von ϕ bezeichnet.

Beispiele:

(1)
$$B := [0, 2\pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$$

 $\phi(u, v) := (\cos(u) \cdot \cos(v), \sin(u) \cdot \cos(v), \sin(v)) \ (D = \mathbb{R}^2)$
 $S = \phi(B) = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\} = \partial U_1(0)$
 $N(u, v) = \phi_u(u, v) \times \phi_v(u, v) = \cos(v) \cdot \phi(u, v)$
 $||N(u, v)|| = |\cos(v)| \cdot ||\phi(u, v)|| = |\cos(v)|$
 $\Longrightarrow I(\phi) = \int_B |\cos(v)| d(u, v) = 4\pi$
Beachte $\lambda_3(S) = 0$! (siehe: Analysis II 17.6)

(2) Explizite Parameterdarstellung

B und D seien wie oben. Es sei $f\in C^1(D,\mathbb{R})$ und $\phi(u,v):=(u,v,f(u,v))$ Dann ist $S=\phi(B)=$ Graph von $f_{|B}$ und $\phi_u=(1,0,f_u)$ $\phi_v=(0,1,f_v)$ $\Longrightarrow N(u,v)=\phi_u\times\phi_v=(-f_u,-f_v,1)$ $\Longrightarrow I(\phi)=\int_B (f_u^2+f_v^2+1)^{\frac{1}{2}}d(u,v)$ Beachte wieder $\lambda_3(S)=0!!$

(3) Sei $B = \{(u, v) \in \mathbb{R}^2 | u^2 + v^2 \le 1\}$ und $f(u, v) := u^2 + v^2$, sowie $\phi(u, v) = (u, v, f(u, v)) = (u, v, u^2 + v^2)$. $S = \phi(B)$ ist ein Paraboloid. Weiter ist $f_u = 2u$ und $f_v = 2v \implies I(\phi) = \int_B (4u^2 + 4v^2 + 1)^{\frac{1}{2}} d(u, v)$. Substitution mit $u = r \cdot \cos(\varphi)$, $v = r \cdot \sin(\varphi)$ und Fubini $\implies I(\phi) = \int_0^{2\pi} (\int_0^1 (4r^2 + 1)^{\frac{1}{2}} \cdot r dr = \frac{\pi}{6} \cdot ((\sqrt{5})^3 - 1)$

Definition

Sei $\Phi = (\Phi_1, \Phi_2, \Phi_3)$ eine Fläche mit Parameterbereich $B \subseteq \mathbb{R}^2, D \subseteq \mathbb{R}^2$ offen, $B \subseteq D, \Phi \in C^1(D, \mathbb{R}^3)$ und $S = \Phi(B)$.

Für $f: S \to \mathbb{R}$ stetig und $F: S \to \mathbb{R}^3$ stetig:

$$\int_{\Phi} f \, \mathrm{d}\sigma \qquad := \int_{B} f \left(\Phi(u,v) \right) \cdot \| \, N(u,v) \, \| \, \mathrm{d}(u,v) \\ \int_{\Phi} F \cdot n \, \mathrm{d}\sigma \quad := \int_{B} F \left(\Phi(u,v) \right) \cdot N(u,v) \, \mathrm{d}(u,v)$$
 Oberflächenintegrale

Beispiele 4.1

- (1) Für $f \equiv 1: \int_{\Phi} 1 \, \mathrm{d}\sigma =: \int_{\Phi} \mathrm{d}\sigma = I(\Phi)$
- (2) Sei $B := \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}, \; \Phi(u,v) := (u,v,u^2+v^2), \; F(x,y,z) \; = \; (x,y,z)$ Bekannt: $N(u,v) = (-2u, -2v, 1), \ F(\Phi(u,v)) = (u,v,u^2+v^2) \Rightarrow \int_{\Phi} F \cdot n \ d\sigma = \int_{B} (u,v,u^2+v^2) \cdot (-2u, -2v, 1) d(u,v) = -\int_{B} (u^2+v^2) d(u,v) \stackrel{u=r\cos\varphi,v=r\sin\varphi}{=} -\int_{0}^{2\pi} (\int_{0}^{1} r^3 dr) d\varphi = -\frac{\pi}{2}$

Satz 4.2 (Integralsatz von Stokes)

 B, D, Φ seien wie oben. B sei zulässig, $\partial B = \Gamma \gamma$, wobei $\gamma = (\gamma_1, \gamma_2)$ wie in §2. Es sei $\Phi \in C^2(D, \mathbb{R}^3), G \subseteq \mathbb{R}^3$ sei offen, $F \subseteq G$ und $F = (F_1, F_2, F_3) \in C^1(G, \mathbb{R}^3)$. Dann:

$$\underbrace{\int_{\Phi} \operatorname{rot} F \cdot n \, \mathrm{d}\sigma}_{\text{Oberflächenintegral}} = \underbrace{\int_{\Phi \circ \gamma} F(x,y,z) \, \mathrm{d}(x,y,z)}_{\text{Wegintegral}}$$

$$\varphi := \Phi \circ \gamma, \varphi = (\varphi_1, \varphi_2, \varphi_3), \text{ also: } \varphi_j = \Phi_j \circ \gamma \quad (j = 1, 2, 3)$$
Zu zeigen: $\int_{\mathbb{R}^3} \cot F \cdot \eta \, d\sigma = \int_{\mathbb{R}^2}^{2\pi} F(\varphi(t)) \cdot \varphi'(t) dt = \sum_j \int_{\mathbb{R}^3}^{2\pi} F(\varphi(t)) dt = \sum_j \int_{\mathbb{R}^3$

Zu zeigen: $\int_{\Phi} \operatorname{rot} F \cdot n \, d\sigma = \int_{0}^{2\pi} F(\varphi(t)) \cdot \varphi'(t) dt = \sum_{j=1}^{3} \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) dt$ Es ist $\int_{\Phi} \operatorname{rot} F \cdot n \, d\sigma = \int_{B} \underbrace{(\operatorname{rot} F)(\Phi(x,y)) \cdot (\Phi_{x}(x,y) \times \Phi_{y}(x,y))}_{\bullet} d(x,y)$

$$F\ddot{u}r \ j = 1, 2, 3: g_j(x, y) := \underbrace{(F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial y}(x, y), \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y)}_{=:v_j(x, y)}, \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y), \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y)}_{=:v_j(x, y)}, (x, y) \in D$$

$$F \in C^1, \Phi \in C^2 \Rightarrow a_i \in C^1(D, \mathbb{R}^2)$$

$$F \in C^1, \Phi \in C^2 \Rightarrow g_i \in C^1(D, \mathbb{R}^2)$$

Nachrechnen:
$$g = \text{div } g_1 + \text{div } g_2 + \text{div } g_3 \Rightarrow \int_{\Phi} \text{rot } F \cdot n \, d\sigma = \sum_{j=1}^{3} \int_{B} \text{div } g_j(x, y) d(x, y)$$

$$\int_{B} \operatorname{div} g_{j}(x,y) \operatorname{d}(x,y) \stackrel{2.1}{=} \int_{\gamma} (u_{j} \operatorname{d}y - v_{j} \operatorname{d}x) = \int_{0}^{2\pi} (u_{j} (\gamma(t)) \cdot \gamma'_{2}(t) - v_{j} (\gamma(t)) \cdot \gamma'_{1}(t)) \operatorname{d}t = \int_{0}^{2\pi} (F_{j}(\varphi(t)) \frac{\partial \Phi_{j}}{\partial y} \gamma(t) \gamma'_{2}(t) + F_{j}(\varphi(t)) \frac{\partial \Phi_{j}}{\partial x} \gamma(t) \gamma'_{1}(t)) \operatorname{d}t = \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) \operatorname{d}t \Rightarrow \int_{\Phi} \operatorname{rot} F \cdot n \operatorname{d}\sigma = \sum_{j=1}^{3} \int_{B} \operatorname{div} g_{j}(x,y) \operatorname{d}(x,y) = \sum_{j=1}^{3} \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) \operatorname{d}t$$

Beispiel

 B, Φ, F seien wie in Beispiel 4.1.(2). $\gamma(t) = (\cos t, \sin t), t \in [0, 2\pi]$. Verifiziere 4.2 Hier: $\cot F = 0$, also $\int_{\Phi} \cot F \cdot n d\sigma = 0$. $(\Phi \circ \gamma)(t) = (\cos t, \sin t, 1) \Rightarrow \int_{\Phi \circ \gamma} F(x, y, z) d(x, y, z) = \int_{0}^{2\pi} (\cos t, \sin t, 1) \cdot (-\sin t, \cos t, 0) dt = 0$

Definition

Sei $\Phi = (\Phi_1, \Phi_2, \Phi_3)$ eine Fläche mit Parameterbereich $B \subseteq \mathbb{R}^2, D \subseteq \mathbb{R}^2$ offen, $B \subseteq D, \Phi \in C^1(D, \mathbb{R}^3)$ und $S = \Phi(B)$.

Für $f: S \to \mathbb{R}$ stetig und $F: S \to \mathbb{R}^3$ stetig:

$$\int_{\Phi} f \, \mathrm{d}\sigma \qquad := \int_{B} f \left(\Phi(u,v) \right) \cdot \| \, N(u,v) \, \| \, \mathrm{d}(u,v) \\ \int_{\Phi} F \cdot n \, \mathrm{d}\sigma \quad := \int_{B} F \left(\Phi(u,v) \right) \cdot N(u,v) \, \mathrm{d}(u,v)$$
 Oberflächenintegrale

Beispiele 5.1

- (1) Für $f \equiv 1: \int_{\Phi} 1 \, \mathrm{d}\sigma =: \int_{\Phi} \mathrm{d}\sigma = I(\Phi)$
- (2) Sei $B := \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}, \; \Phi(u,v) := (u,v,u^2+v^2), \; F(x,y,z) \; = \; (x,y,z)$ Bekannt: $N(u,v) = (-2u, -2v, 1), \ F(\Phi(u,v)) = (u,v,u^2+v^2) \Rightarrow \int_{\Phi} F \cdot n \ d\sigma = \int_{B} (u,v,u^2+v^2) \cdot (-2u, -2v, 1) d(u,v) = -\int_{B} (u^2+v^2) d(u,v) \stackrel{u=r\cos\varphi,v=r\sin\varphi}{=} -\int_{0}^{2\pi} (\int_{0}^{1} r^3 dr) d\varphi = -\frac{\pi}{2}$

Satz 5.2 (Integralsatz von Stokes)

 B, D, Φ seien wie oben. B sei zulässig, $\partial B = \Gamma \gamma$, wobei $\gamma = (\gamma_1, \gamma_2)$ wie in §2. Es sei $\Phi \in C^2(D, \mathbb{R}^3), G \subseteq \mathbb{R}^3$ sei offen, $F \subseteq G$ und $F = (F_1, F_2, F_3) \in C^1(G, \mathbb{R}^3)$. Dann:

$$\underbrace{\int_{\Phi} \operatorname{rot} F \cdot n \, \mathrm{d}\sigma}_{\text{Oberflächenintegral}} = \underbrace{\int_{\Phi \circ \gamma} F(x,y,z) \, \mathrm{d}(x,y,z)}_{\text{Wegintegral}}$$

$$\varphi := \Phi \circ \gamma, \varphi = (\varphi_1, \varphi_2, \varphi_3), \text{ also: } \varphi_j = \Phi_j \circ \gamma \quad (j = 1, 2, 3)$$
The point of the Figure 1 and $\varphi_j = \varphi_j \circ \gamma \quad (j = 1, 2, 3)$

Zu zeigen: $\int_{\Phi} \operatorname{rot} F \cdot n \, d\sigma = \int_{0}^{2\pi} F(\varphi(t)) \cdot \varphi'(t) dt = \sum_{j=1}^{3} \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) dt$ Es ist $\int_{\Phi} \operatorname{rot} F \cdot n \, d\sigma = \int_{B} \underbrace{(\operatorname{rot} F)(\Phi(x,y)) \cdot (\Phi_{x}(x,y) \times \Phi_{y}(x,y))}_{\bullet} d(x,y)$

Es ist
$$\int_{\Phi} \operatorname{rot} F \cdot n \, d\sigma = \int_{B} (\operatorname{rot} F)(\Phi(x, y)) \cdot (\Phi_{x}(x, y) \times \Phi_{y}(x, y)) \, d(x, y)$$

$$F\ddot{u}r \ j = 1, 2, 3: g_j(x, y) := \underbrace{(F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial y}(x, y), \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y)}_{=:v_j(x, y)}, \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y), \underbrace{-F_j(\Phi(x, y)) \frac{\partial \Phi_j}{\partial x}(x, y)}_{=:v_j(x, y)}, (x, y) \in D$$

$$F \in C^1, \Phi \in C^2 \Rightarrow a_i \in C^1(D, \mathbb{R}^2)$$

$$F \in C^1, \Phi \in C^2 \Rightarrow g_j \in C^1(D, \mathbb{R}^2)$$

Nachrechnen: $g = \text{div } g_1 + \text{div } g_2 + \text{div } g_3 \Rightarrow \int_{\Phi} \text{rot } F \cdot n \, d\sigma = \sum_{i=1}^{3} \int_{B} \text{div } g_j(x, y) d(x, y)$

$$\int_{B} \operatorname{div} g_{j}(x,y) \operatorname{d}(x,y) \stackrel{2.1}{=} \int_{\gamma} (u_{j} \operatorname{d}y - v_{j} \operatorname{d}x) = \int_{0}^{2\pi} (u_{j} (\gamma(t)) \cdot \gamma'_{2}(t) - v_{j} (\gamma(t)) \cdot \gamma'_{1}(t)) \operatorname{d}t = \int_{0}^{2\pi} (F_{j}(\varphi(t)) \frac{\partial \Phi_{j}}{\partial y} \gamma(t) \gamma'_{2}(t) + F_{j}(\varphi(t)) \frac{\partial \Phi_{j}}{\partial x} \gamma(t) \gamma'_{1}(t)) \operatorname{d}t = \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) \operatorname{d}t \Rightarrow \int_{\Phi} \operatorname{rot} F \cdot n \operatorname{d}\sigma = \sum_{j=1}^{3} \int_{B} \operatorname{div} g_{j}(x,y) \operatorname{d}(x,y) = \sum_{j=1}^{3} \int_{0}^{2\pi} F_{j}(\varphi(t)) \cdot \varphi'_{j}(t) \operatorname{d}t$$

Beispiel

 B, Φ, F seien wie in Beispiel 4.1.(2). $\gamma(t) = (\cos t, \sin t), t \in [0, 2\pi]$. Verifiziere 4.2 Hier: $\cot F = 0$, also $\int_{\Phi} \cot F \cdot n d\sigma = 0$. $(\Phi \circ \gamma)(t) = (\cos t, \sin t, 1) \Rightarrow \int_{\Phi \circ \gamma} F(x, y, z) d(x, y, z) = \int_{0}^{2\pi} (\cos t, \sin t, 1) \cdot (-\sin t, \cos t, 0) dt = 0$

Differentialgleichungen: Grundbegriffe

In diesem Paragraphen sei I stets ein Intervall in \mathbb{R} .

Erinnerung: Sei $p \in \mathbb{N}$ und $y: I \to \mathbb{R}^p, \ y = (y_1, \dots, y_p).$ y heißt auf I k-mal (stetig) db auf $I \iff y_j \text{ ist auf } I \text{ k-mal (stetig) db } (j = 1, \dots, p).$

In diesem Fall gilt:

$$y^{(j)} = (y_1^{(j)}, \dots, y_p^{(j)}) \quad (j = 0, \dots, k)$$

Definition

Seien $n, p \in \mathbb{N}$ und $D \subseteq \mathbb{R} \times \underbrace{\mathbb{R}^p \times \ldots \times \mathbb{R}^p}_{n+1 \text{ Faktoren}}$ und $F: D \to \mathbb{R}^p$ eine Funktion.

Eine Gleichung der Form

(i)
$$F(x, y, y', \dots, y^{(n)}) = 0$$

heißt eine (gewöhnliche) Differentialgleichung (Dgl) n-ter Ordnung.

Eine Funktion $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (i), gdw. gilt:

- y ist auf I n-mal db,
- $\forall x \in I : (x, y(x), y'(x), \dots, y^{(n)}(x)) \in D \text{ und}$
- $\forall x \in I : F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0.$

Beispiele:

(1)
$$n = p = 1$$
, $F(x, y, z) = y^2 + z^2 - 1$, $D = \mathbb{R}^3$.

Dgl:
$$y^2 + y'^2 - 1 = 0$$
.

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = 1 \text{ ist eine Lösung},$

 $\bar{y}: \mathbb{R} \to \mathbb{R}, \ \bar{y}(x) = \sin x \text{ ist eine weitere Lösung.}$

(2)
$$n = p = 1$$
, $F(x, y, z) = z + \frac{y}{x}$, $D = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$.

Dgl:
$$y' + \frac{y}{x} = 0$$
.

 $y:(0,\infty)\to\mathbb{R},\ y(x)=\frac{1}{x}$ ist eine Lösung, $\bar{y}:(-\infty,0)\to\mathbb{R},\ \bar{y}(x)=\frac{17}{x}$ ist eine weitere Lösung.

(3) n = 1, p = 2. Mit $y = (y_1, y_2)$:

$$y' = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix}$$

 $y: \mathbb{R} \to \mathbb{R}^2$, $y(x) = (\cos x, \sin x)$ ist eine Lösung.

Definition

Seien $n, p \in \mathbb{N}, \ D \subseteq \mathbb{R} \times \underbrace{\mathbb{R}^p \times \ldots \times \mathbb{R}^p}_{n \text{ Faktoren}} \text{ und } f : D \to \mathbb{R}^p.$

Eine Gleichung der Form

(ii)
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

heißt explizite Differentialgleichung n-ter Ordnung.

Ist $(x_0, y_0, y_1, \dots, y_{n-1}) \in D$ (fest), so heißt das Gleichungssystem

(iii)
$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0, \ y'(x_0) = y_1, \dots, \ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

ein Anfangswertproblem (AWP)

 $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (ii), gdw. gilt:

- y ist auf I n-mal db,
- $\forall x \in I : (x, y(x), y'(x), \dots, y^{(n-1)}(x)) \in D$ und
- $\forall x \in I : y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)).$

 $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (iii), gdw. gilt:

- y ist eine Lösung von (ii),
- $x_0 \in I$ und
- $y^{(j)}(x_0) = y_j \ (j = 0, \dots, n-1)$

Das AWP (iii) heißt eine eindeutig lösbar, gdw. gilt:

- (iii) hat eine Lösung und
- für je zwei Lösungen $y_1: I_1 \to \mathbb{R}^p$, $y_2: I_2 \to \mathbb{R}^p$ von (iii) $(I_1, I_2 \text{ Intervalle in } \mathbb{R})$ gilt: $y_1 \equiv y_2$ auf $I_1 \cap I_2$

Beispiele:

(1)

AWP:
$$\begin{cases} y' = 2\sqrt{|y|} \\ y(0) = 0 \end{cases} \quad (n = 1, \ p = 1)$$

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = 0$ ist eine Lösung des AWPs, $\bar{y}: [0, \infty) \to \mathbb{R}, \ \bar{y}(x) = x^2$ ist eine weitere Lösung.

(2)

AWP:
$$\begin{cases} y' = 2y \\ y(0) = 1 \end{cases} \quad (n = 1, \ p = 1)$$

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = e^{2x}$ ist eine Lösung des AWPs.

Sei $\bar{y}:I\to\mathbb{R}$ eine Lösung des AWPs. Wir definieren

$$g(x) := \frac{\bar{y}(x)}{e^{2x}} \ (x \in I)$$

.

Nachrechnen:
$$g'(x) = 0 \ \forall x \in I \implies \exists c \in \mathbb{R} : g(x) = c \ \forall x \in I \implies \bar{y}(x) = ce^{2x} \ (x \in I).$$

 $1 = \bar{y}(0) = c \implies \bar{y}(x) = e^{2x} \ \forall x \in I.$

Das AWP ist also eindeutig lösbar.

7. Lineare Differentialgleichungen 1. Ordnung

Stets in diesem Paragraphen: $n=p=1,\ I\subseteq\mathbb{R}$ sei ein Intervall und $a,s:I\to\mathbb{R}$ stetig. Die Differentialgleichung

$$y' = a(x)y + s(x)$$

heißt eine lineare Differentialgleichung (1. Ordnung), sie heißt homogen, falls $s \equiv 0$, anderenfalls inhomogen, s heißt Störfunktion.

Wir betrachten zunächst die zu obiger Gleichung gehörende homogene Gleichung

$$(H) \quad y' = a(x)y$$

Wegen Ana I, 23.14 besitzt a auf I eine Stammfunktion A.

Satz 7.1 (Lösung einer linearen Dgl 1. Ordnung)

Sei $J \subseteq I$ ein Intervall und $y: J \to \mathbb{R}$ eine Funktion. y ist eine Lösung von (H) auf $J \iff \exists c \in \mathbb{R}: y(x) = ce^{A(x)}$

Beweis

$$\phi''$$
: $y'(x) = ce^{A(x)}A'(x) = a(x)y(x) \ \forall x \in J \implies y \text{ löst } (H).$

"⇒": $g(x) := \frac{y(x)}{e^{A(x)}} \ (x \in J)$. Nachrechnen: $g'(x) = 0 \ \forall x \in J \implies \exists c \in \mathbb{R} : g(x) = c \ \forall x \in J \implies y(x) = ce^{A(x)} \ (x \in J)$. ■

Satz 7.2 (Eindeutige Lösbarkeit eines linearen AWPs 1. Ordnung)

Seien $x_0 \in I$ und $y_0 \in \mathbb{R}$. Dann hat das

AWP:
$$\begin{cases} y' = a(x)y \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Beweis

Sei $c \in \mathbb{R}$ und $y(x) := ce^{A(x)}$ $(x \in I)$.

$$y_0 = y(x_0) \iff y_0 = ce^{A(x)} \iff c = y_0 e^{-A(x_0)}.$$

Beispiel

AWP:
$$\begin{cases} y' = (\sin x)y \\ y(0) = 1 \end{cases} \quad (I = \mathbb{R})$$

 $a(x) = \sin x$, $A(x) = -\cos x$; allgemeine Lösung der Dgl: $y(x) = ce^{-\cos x}$ $(c \in \mathbb{R})$

$$1 = y(0) = ce^{-\cos 0} = ce^{-1} \implies c = e.$$

Lösung des AWPs: $y(x) = ee^{-\cos x} = e^{1-\cos x}$ $(x \in \mathbb{R})$.

Wir betrachten jetzt die inhomogene Gleichung

$$(IH) \quad y' = a(x)y + s(x).$$

Für eine spezielle Lösung y_s von (IH) auf I macht man folgenden Ansatz: $y_s(x) = c(x)e^{A(x)}$, wobei $c: I \to \mathbb{R}$ db. Dieses Verfahren heißt Variation der Konstanten.

 y_s ist eine Lösung von (IH) auf I

$$\iff y_s'(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} + c(x)e^{A(x)}a(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} + a(x)y_s(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} = s(x)$$

$$\iff c'(x) = e^{-A(x)}s(x)$$

 \iff c ist eine Stammfunktion von $e^{-A}s$ auf I.

Nach Ana I, 23.14 besitzt $e^{-A}s$ eine Stammfunktion auf I.

Fazit: Die Gleichung (IH) besitzt Lösungen auf I.

Aus 7.1 folgt

$$L_H = \{y : I \to \mathbb{R} : y \text{ löst } (H) \text{ auf } I\}$$

$$L_{IH} := \{ y : I \to \mathbb{R} : y \text{ löst } (IH) \text{ auf } I \}$$

Bekannt:

$$L_{IH} \neq \emptyset$$

Satz 7.3 (Spezielle Lösungen bei AWPs)

 $J \subseteq I$ sei ein Intervall, $y_s \in L_{IH}, x_0 \in I, y_0 \in \mathbb{R}$

- (1) Ist $y: J \to \mathbb{R}$ eine Lösung von (IH) auf $J \Rightarrow \exists y_1 \in L_H: y = y_1 + y_s$ auf J.
- (2) $y \in L_{IH} \Leftrightarrow y = y_1 + y_s \text{ mit } y_1 \in L_H$
- (3) Das AWP y' = a(x)y + s(x), $y(x_0) = y_0$, ist auf I eindeutig lösbar

Beweis

(1)
$$y_1 := y - y_s$$
 auf $J \Rightarrow y_1' = y' - y_s' = a(x)y + s(x) - (a(x)y_s + s(x)) + s(x)) = a(x)(y - y_s) = a(x)y_1 \Rightarrow y_1 \text{ löst } (H) \text{ auf } J \Rightarrow \exists c \in \mathbb{R} : y_1(x) = ce^{A(x)} \Rightarrow y(x) = ce^{A(x)} + y_s(x) \forall x \in J$

- (2) ", \Rightarrow ": folgt aus (1) mit J = I $= y_1 + y_s \Rightarrow y' = y_1' + y_s' = a(x)y_1 + y(x)y_s + s(x) = a(x)(y_1 + y_s) + a(x)(x)(y_1 + y_s) + a(x)(x)(y_1 + y_s) + a(x)(x)(x)(x) + a(x)(x)(x$ $a(x)y + s(x) \Rightarrow y \in L_H$
- (3) Sei $c \in \mathbb{R}$ und $y(x) = ce^{A(x)} + y_s(x) \stackrel{(2)}{\Rightarrow} y \in L_{IH}; y_0 = y(x_0) \Leftrightarrow ce^{A(x_0)} + y_s(x_0) = y_0 \Leftrightarrow ce^{A(x_0)} + y_0 \Leftrightarrow ce^{$ $c = (y_0 - y_s(x_0))e^{-A(x_0)}$

Beispiel

- (1) Bestimme die allgemeine Lösung von y' = 2xy + x auf \mathbb{R}
 - 1. Schritt: homogene Gleichung: y' = 2xy; allgemeine Lösung:

$$y(x) = ce^{x^2} (c \in \mathbb{R})$$

2. Schritt: Ansatz für eine spezielle Lösung der inhomogenen Gleichung:

$$y_s(x) = c(x)e^{x^2}.$$

$$y'_s = c'(x)e^{x^2} + c(x)2xe^{x^2} \stackrel{!}{=} 2xy_s(x) + x = 2xc(x)e^{x^2} + x$$

$$y_s - c(x)e^x + c(x)2xe^x - 2xy_s(x) = c'(x) = xe^{-x^2} \Rightarrow c(x) = -\frac{1}{2}e^{-x^2}$$

$$\Rightarrow y_s(x) = -\frac{1}{2}e^{-x^2}e^{x^2} = -\frac{1}{2}$$
Allgemeine Lösung von $y' = 2xy + x$:
$$y(x) = ce^{x^2} - \frac{1}{2}(c \in \mathbb{R})$$

Allgemeine Lösung von
$$y' = 2xy + x$$
:

$$y(x) = ce^{x^2} - \frac{1}{2}(c \in \mathbb{R})$$

- (2) Löse das AWP: $y' = 2y + e^x$, y(0) = 1
 - 1. Schritt: homogene Gleichung y' = 2y,
 - allgemeine Lösung $y(x) = ce^{2x} (c \in \mathbb{R}$
 - 2. Schritt: Ansatz für eine spezielle Lösung der inhomogenen Gleichung:

$$y_s(x) = c(x)e^{2x}$$

$$y'_s(x) = c'(x)e^{2x} + c(x)2e^{2x} \stackrel{!}{=} 2y_s(x) + e^x$$

$$=2c(x)e^{2x}+e^x$$

$$\Rightarrow c'(x)e^{2x} = e^x \Rightarrow c'(x) = e^{-x} \Rightarrow c(x) = -e^{-x} \Rightarrow y_s(x) = -e^x$$

Allgemein Lösung von
$$y' = 2y + e^x : y(x) = ce^{2x} - e^x$$

3. Schritt:
$$1 = y(0) = c - 1 \Rightarrow c = 2$$

Lösung des AWP:
$$y(x) = 2e^{2x} - e^x$$

Differentialgleichungen mit getrennten Veränderlichen

Stets in diesem Paragraphen: I, J seien Intervalle in $\mathbb{R}, f: I \to \mathbb{R}, g: J \to \mathbb{R}$ stetig, $x_0 \in I, y_0 \in J$.

Wir betrachten: (i) y' = g(y)f(x), Differentialgleichung mit getrennten Veränderlichen und das zugehörige AWP (ii) $\begin{cases} y' = g(y)f(x) \\ y(x_0) = y_0 \end{cases}$

Satz 8.1 (AWP mit getrennten Veränderlichen)

Sei $y_0 \in J^0$ und $g(y) \neq 0 \ \forall y \in J$. Dann esistiert ein Intervall $I_{x_0} \in I$ und $x_0 \in I_{x_0}$ und es gilt:

- (1) Das AWP (ii) hat eine Lösung $y: I_{x_0} \to \mathbb{R}$
- (2) Die Lösung aus (1) erhält man durch Auflösen der Gl

$$\int_{y_0}^{y(x)} \frac{\mathrm{d}t}{g(t)} = \int_{x_0}^x f(t) \mathrm{d}t \quad \text{nach } y(x)$$

- (3) Ist $U \subseteq I$ ein Intervall und $u: U \to \mathbb{R}$ eine Lösung des AWPs, $x_0 \in U, \implies U \subseteq I_{x_0}$ und u = y auf U.
- (4) Das AWP (ii) ist eindeutig lösbar.

Beweis

- (4) folgt aus (3)
 - Definiere $G: J \to \mathbb{R}$ durch $G(y) := \int_{y_0}^y \frac{dt}{g(t)}$, G ist stetig db, $G' = \frac{1}{g}$ auf J und $G(y_0) = 0$. g stetig, $g(y) \neq 0 \ \forall y \in J \implies G' > 0$ auf J oder G' < 0 auf $J \implies \exists G^{-1}: G(J) \to J$, K := G(J), K ist ein Intervall, $0 \in K$, $y_0 \in J^0 \implies 0 \in K^0 \implies \exists \varepsilon > 0 : (-\varepsilon, \varepsilon) \subseteq K$ Definiere $F: I \to \mathbb{R}$ durch $F(x) := \int_{x_0}^x f(t) dt$; F ist stetig db, F' = f, $F(x_0) = 0$. F stetig in $x_0 \implies \exists \delta > 0 : |F(x) F(x_0)| = |F(x)| < \varepsilon \ \forall x \in U_{\delta}(x_0) \cap I$

 $M_0 \text{ ist ein Intervall, } x_0 \in M_0, M_0 \subseteq I, F(M_0) \subseteq K$ $\mathfrak{M} := \{ M \subseteq I : M \text{ ist ein Intervall, } x_0 \in M, F(M) \subseteq K \}, M_0 \in \mathfrak{M} \neq \emptyset; I_{x_0} := \bigcup_{M \in \mathfrak{M}} M \implies I_{x_0} \in \mathfrak{M}$ Definiere $y : I_{x_0} \to \mathbb{R}$ durch $y(x) := G^{-1}(F(x))$. $y \text{ ist stetig db auf } I_{x_0}, y(x_0) = G^{-1}(F(x_0)) = G^{-1}(0) = y_0; \forall x \in I_{x_0} : G(y(x)) = F(x) \implies (2) \text{ und (Diff): } G'(y(x)) y'(x) = G^{-1}(x_0)$

$$F'(x) = f(x) \implies y'(x) = g(y(x))f(x) \ \forall x \in I_{x_0} \implies (1)$$

(3) Sei $u:U\to\mathbb{R}$ eine Lösung des AWPs, $U\subseteq I.$ $u(x_0)=y_0$ und u'(t)=g(u(t))f(t) $\forall t\in U\implies f(t)=\frac{u'(t)}{g(u(t))}$ $\forall t\in U,\ u(U)\subseteq J$

$$\forall x \in U : F(X) = \int_{x_0}^x f(t) dt = \int_{x_0}^x \frac{u'(t)}{g(u(t))} dt = \begin{cases} s = u(t) \\ ds = u'(t) dt \end{cases} = \int_{y_0}^{u(x)} \frac{ds}{g(s)} = G(u(x)) \text{ Also:}$$

$$f(x) = G(u(x)) \ \forall x \in U). \ x \in U \implies u(x) \in J \implies G(u(x)) \in G(J) = K \implies F(x) \in K \implies F(U) \subseteq K \implies U \in \mathfrak{M} \implies U \subseteq I_{x_0}.$$

$$F(x) = G(u(x)) \ \forall x \in U \implies u(x) = G^{-1}(F(x)) = y(x) \ \forall x \in U$$

Der Fall $G(y_0) = 0$. $y(x) = y_0$ ist eine Lösung des AWPs.

Beispiel

Untersuchung des AWPs:

$$AWP: \begin{cases} y' = \sqrt{|y|} \\ y(0) = 0 \end{cases} \quad (I = J = \mathbb{R})$$

 $y_1(x)=0$ ist eine Lösung des AWPs $y_2(x)=\frac{x^2}{4} \text{ ist eine Lösung des AWPs auf } [0,\infty)$

$$y_3(x) = \begin{cases} \frac{x^2}{4} & x > 0\\ 0 & x \le 0 \end{cases}$$

ist eine Lösung des AWPs auf \mathbb{R} . Mehrdeutige Lösbarkeit, da nicht gilt: $g(y) \neq 0$ auf J.

Verfahren für die Praxis: Trennung der Veränderlichen (TDV): Schreibe (i) in der Form: $\frac{dy}{dx} = f(x)g(y)$. TDV: $\frac{dy}{g(y)} = f(x)dx \implies (iii) \int \frac{dy}{g(y)} = \int f(x)dx + c \ (c \in \mathbb{R})$

Die allgemeine Lösung von (i) erhält man durch Auflösen von (iii) in der Form y=y(x;c). Die Lösung von (ii) erhält man, indem man c der Bedingung $y(x_0)=y_0$ anpasst.

Beispiele:

(1) $y' = -2xy^2$ (*) $(g(y) = y^2)$. $\frac{\mathrm{d}y}{\mathrm{d}x} = -2xy^2$ TDV: $\frac{\mathrm{d}y}{y^2} = -2x\mathrm{d}x \implies \int \frac{\mathrm{d}y}{y^2} = \int (-2x)\mathrm{d}x + c \implies -\frac{1}{y} = -x^2 + c \implies y = \frac{1}{-c+x^2}$. Allgemeine Lösung von (*) $y(x) = \frac{1}{x^2-c}$ $(c \in \mathbb{R})$

(1.1)

AWP:
$$\begin{cases} (*) \\ y(0) = -1 \end{cases}$$

 $-1=y(0)=-\frac{1}{c}\implies c=1\implies$ Lösung des AWPs: $y(x)=\frac{1}{x^2-1}$ auf (-1,1) $(=I_{x_0})$

(1.2)

AWP:
$$\begin{cases} (*) \\ y(0) = 1 \end{cases}$$

 $1 = y(0) = -\frac{1}{c} \implies c = -1 \implies$ Lösung des AWPs: $y(x) = \frac{1}{x^2 + 1}$ auf \mathbb{R} $(= I_{x_0})$

AWP:
$$\begin{cases} (*) \\ y(0) = 0 \end{cases}$$

 $0=y(0)=-\frac{1}{c} \implies$ AWP hat die Lösung $y\equiv 0,$ allerdings ist das Verfahren hier nicht anwendbar.

Dgl:
$$y' = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2} \implies \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} \implies \int \frac{y^2}{1+y} \mathrm{d}y = \int \frac{x^2}{1-x} \mathrm{d}x + \epsilon \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} + \epsilon \frac{y^2}{1+y} + \epsilon \frac{y^2}{1+y$$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{1-x} \cdot \frac{1+y}{y^2} \implies \frac{y^2}{1+y} \mathrm{d}y = \frac{x^2}{1-x} \implies \int \frac{y^2}{1+y} \mathrm{d}y = \int \frac{x^2}{1-x} \mathrm{d}x + c$ Nachrechnen: $\frac{y^2}{2} - y + \log(1+y) = -\frac{x^2}{2} - x - \log(1-x) + c \text{ (Lösungen in impliziter Form)}.$

Einige Typen von Differentialgleichungen 1. Ordnung

 $y' = f(\frac{y}{x})$. Setze $u := \frac{y}{x}$. Dies führt auf eine Differentialgleichung mit getrennten Verän-

Beispiel

AWP:
$$\begin{cases} y' = \frac{y}{x} - \frac{x^2}{y^2} \\ y(1) = 1 \end{cases}$$

$$\begin{aligned} u &:= \frac{y}{x} &\implies y = xu \\ y' &= u + xu' &\implies u + xu' = u - \frac{1}{u^2} \\ &\implies u' = -\frac{1}{xu^2} \\ &\implies \frac{du}{dx} = -\frac{1}{xu^2} \\ &\implies u^2 du = -\frac{1}{x} dx \\ &\implies \frac{1}{3} u^3 = -\log x + c \\ &\implies u^3 = -3\log x + 3c \ (c \in \mathbb{R}) \end{aligned}$$

$$u(1) &= \frac{y(1)}{1} = 1 \implies 1 = u^3(1) = 3c \\ &\implies c = \frac{1}{3}$$

$$u^3 = 1 - 3\log x \implies y(x) = x\sqrt[3]{1 - 3\log x} \ \text{auf} \ (0, \sqrt[3]{e}) \ (\text{L\"osung des AWPs}) \end{aligned}$$

(II) Bernoullische Differentialgleichung: $y' + p(x)y + q(x)y^{\alpha} = 0$, wobei p und q stetig sind und $0 \neq \alpha \neq 1$. Dividiere durch y^{α} und setze $u := y^{1-\alpha}$. Dies führt auf eine lineare Differentialgleichung für u.

Beispiel
$$(*) \ y' - xy + 3xy^2 = 0 \ (\alpha = 2). \ \text{Dann:} \ \frac{y'}{y^2} - \frac{x}{y} + 3x = 0; \ u := \frac{1}{y} \implies u' = -\frac{y'}{y^2} \implies -u' - xu + 3x = 0 \implies u' = -xu + 3x. \ \text{Allgemeine L\"osung hiervon:} \ u(x) = ce^{-\frac{1}{2}x^2} + 3 \ (c \in \mathbb{R}). \ \text{Allgemeine L\"osung von} \ (*): \ y(x) = \frac{1}{ce^{-\frac{1}{2}x^3} + 3} \ (c \in \mathbb{R})$$

(III) Riccatische Differentialgleichung: (*) $y' + g(x)y + h(x)y^2 = k(x)$, wobei g, h, k stetig sind. Sei y_1 eine bekannte Lösung von (*); setze $z := \frac{1}{y-y_1}$. Nachrechnen: (**) z' = (g(x) + y)

9. Einige Typen von Differentialgleichungen 1. Ordnung

 $2y_1(x)h(x))z + h(x)$ (lin. Dgl für z). Die allgemeine Lösung von (*) lautet: $y(x) = y_1(x) + \frac{1}{z(x)}$ wobei z die allgemeinen Lösungen von (**) durchläuft.

10. Exakte Differentialgleichungen

Vereinbarung: In diesem Paragraphen sei $D \subseteq \mathbb{R}^2$ stets ein Gebiet, $P,Q \in C(D,\mathbb{R})$ und $(x_0,y_0) \in D$

Wir betrachten die Gleichung P(x,y) + Q(x,y)y' = 0. Diese Gleichung schreibt man in der Form:

(i) P(x,y)dx + Q(x,y)dy = 0. Weiter betrachten wir das AWP:

(ii)
$$\begin{cases} P(x,y)dx + Q(x,y)dy = 0\\ y(x_0) = y_0 \end{cases}$$

Erinnerung: Analysis 2, Paragraph 14

- (1) Eine Funktion $F \in C^1(D, \mathbb{R})$ heißt eine Stammfunktion von $(P, Q) : \iff F_x = P, F_y = Q.$
- (2) Ist D sternförmig und sind $P, Q \in C^1(D, \mathbb{R})$, so gilt: (P, Q) hat auf D eine Stammfunktion $\iff P_y = Q_x$ auf D.

Definition

Die Gleichung (i) heißt auf D exakt : \iff (P,Q) besitzt auf D eine Stammfunktion.

Satz

Die Gleichung (i) sei auf D exakt und F sei eine Stammfunktion (P,Q) auf D.

- (1) Sei $I \subseteq \mathbb{R}$ ein Intervall, $y: I \to \mathbb{R}$ differenzierbar und $(x, y(x)) \in D \ \forall x \in I$. y ist eine Lösung von (i) auf $I \iff \exists c \in \mathbb{R}: F(x, y(x)) = c \ \forall x \in I$.
- (2) Ist $Q(x_0, y_0) \neq 0$, so existiert eine Umgebung U von x_0 : das AWP (ii) hat auf U genau eine Lösung.

Beweis

- (1) g(x) := F(x, y(x)) $(x \in I)$; g ist differenzierbar auf I und $g'(x) = F_x(x, y(x)) \cdot 1 + F_y(x, y(x))y'(x) = P(x, y(x)) + Q(x, y(x))y'(x)$. y ist eine Lösung von $(i) \iff g'(x) = 0 \ \forall x \in I \iff \exists c \in \mathbb{R}: \ g(x) = c \ \forall x \in I \iff \exists c \in \mathbb{R}: \ F(x, y(x)) = c \ \forall x \in I$.
- (2) $f(x,y) := F(x,y) F(x_0,y_0)$ $((x,y) \in D)$. $f(x_0,y_0) = 0$, $f_y(x_0,y_0) = F_y(x_0,y_0) = Q(x_0,y_0) \neq 0$. Analysis 2, Paragraph 10 $\Longrightarrow \exists$ Umgebung U von x_0 , V von y_0 und genau eine differenzierbare Funktion $y: U \to V$ mit: $U \times V \subseteq D$, $y(x_0) = y_0$ und $f(x,y(x)) = 0 \ \forall x \in U \Longrightarrow F(x,y(x)) = F(x_0,y_0) \ \forall x \in U \Longrightarrow Behauptung$.

Beispiele:

(1)

AWP:
$$\begin{cases} x dx + y dy = 0 \\ y(0) = 1, \ (D = \mathbb{R}^2, P = x, Q = y) \end{cases}$$

 $P_y=Q_x\Longrightarrow$ die Dgl. ist auf D exakt. $F(x,y)=\frac{1}{2}(x^2+y^2)$ ist eine Stammfunktion von (P,Q) auf D. $\frac{1}{2}(x^2+y^2)=c\iff y^2=2c-x^2\iff y(x)=\pm\sqrt{2c-x^2}\ (c\in\mathbb{R})$ allgemeine Lösung der Dgl. $1=y(0)^2-2c\implies c=\frac{1}{2}$. Lösung des AWPs: $y(x)=+\sqrt{1-x^2}$ auf (-1,1).

(2)

AWP:
$$\begin{cases} x dx + y dy = 0 \\ y(0) = 0 \end{cases}$$

 $0 = y(0)^2 = 2c \implies c = 0 \implies y^2 = -x^2$, Widerspruch! Das AWP ist nicht lösbar.

(3)

AWP:
$$\begin{cases} x dx - y dy = 0 \\ y(0) = 0 \end{cases}$$

 $F(x,y)=\frac{1}{2}(x^2-y^2)$ ist eine Stammfunktion von (P,Q) auf \mathbb{R}^2 . $\frac{1}{2}(x^2-y^2)=c\iff y^2=x^2-2c;$ also: $y(x)=\pm\sqrt{x^2-2c}.\ 0=y(0)^2=-2c\implies c=0.\ y(x)=x$ und y(x)=-x sind Lösungen des AWPs auf \mathbb{R} .

(4) $D = (0, \infty) \times (0, \infty)$; $(*) \underbrace{\frac{1}{y} dx}_{=P} + \underbrace{\frac{1}{x} dy}_{=Q} = 0$. $P_y = -\frac{1}{y^2}$, $Q_x = -\frac{1}{x^2} \implies (*)$ ist auf D nicht exakt. Multiplikation von (*) mit $\underbrace{xy}_{\neq 0} \implies (**) x dx + y dy = 0$.

Definition

Sei $\mu \in C(D, \mathbb{R})$ und $\mu(x, y) \neq 0 \ \forall (x, y) \in D$. μ heißt ein **Multiplikator** von (i) auf $D : \iff (iii) \ (\mu P) dx + (\mu Q) dy = 0$ ist auf D exakt.

Bemerkung: Es sei $\mu \in C(D, \mathbb{R})$ und $\mu(x, y) \neq 0 \ \forall (x, y) \in D$

- (1) Ist $I \subseteq \mathbb{R}$ ein Intervall, $y(I) \to \mathbb{R}$ eine Funktion und $(x, y(x)) \in D \ \forall x \in I$, so gilt: y ist Lösung von (i) auf $I \iff y$ ist Lösung von (iii) auf I.
- (2) Ist D sternförmig und sind $P, Q, \mu \in C^1(D, \mathbb{R})$, so gilt: μ ist Multiplikator von (i) auf $D \iff (\mu P)_y = (\mu Q)_x$ auf D.
- (3) Hängt $f := \frac{1}{Q}(P_y Q_x)$ nur von x ab, so ist $\mu(x) = e^{\int f(x)dx}$ ein Multiplikator. Hängt $f := \frac{1}{P}(P_y - Q_x)$ nur von y ab, so ist $\mu(x) = e^{-\int f(y)dy}$ ein Multiplikator.

Beispiel

(*)
$$\underbrace{(2x^2y + 2xy^3 + y)}_{=P} dx + \underbrace{(3y^2 + x)}_{=Q} dy = 0$$

 $P_y=2x^2+6xy^2+1;\ Q_x=1\implies (*)$ ist nicht exakt. $\frac{P_y-Q_x}{Q}=2x\implies \mu(x)=e^{x^2}$ ist ein Multiplikator. Lösung von (*) in impliziter Form: $(xy(x)+y(x)^3)e^{x^2}=c\ (c\in\mathbb{R}).$

11. Hilfsmittel aus der Funktionalanalysis

In diesem Paragraphen sei X stets ein Vektorraum (VR) über \mathbb{K} , wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Definition

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt eine **Norm auf** $X: \iff$

- (i) $||x|| \ge 0 \ \forall x \in X; \ ||x|| = 0 \iff x = 0$
- (ii) $\|\alpha x\| = |\alpha| \|x\| \ \forall \alpha \in \mathbb{R}, x \in X$
- (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecks-Ungleichung)

In diesem Fall heißt $(X, \|\cdot\|)$ ein **normierter Raum** (NR). Meist schreibt man nur X statt $(X, \|\cdot\|)$.

Beispiele:

- (1) $X = \mathbb{K}^n$, für $x = (x_1, \dots, x_n)$: $||x|| = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}$. Analysis II $\implies (X, ||\cdot||)$ ist ein normierter Raum.
- (2) $A \subseteq \mathbb{R}^n$ sei beschränkt und abgeschlossen. $X = C(A, \mathbb{R}^n)$; $||f||_{\infty} = \max\{||f(x)||, x \in A\} \ (f \in X)$. Dann ist $(X, ||\cdot||_{\infty})$ ein normierter Raum.
- (3) $X = L(\mathbb{R}^n)$. Für $f \in L(\mathbb{R})$: $||f||_1 := \int_{\mathbb{R}^n} |f(x)| dx$; $||f||_2 := \left(\int_{\mathbb{R}^n} |f(x)|^2 dx\right)^{\frac{1}{2}}$; Analysis II 16.1 $\Longrightarrow ||\cdot||_1$ hat die Eigenschaft (ii) und (iii) einer Norm, $||f||_1 \ge 0$ aber $||f||_1 = 0 \iff f = 0$ fast überall auf \mathbb{R}^n .

Es ist üblich, zwei Funktionen $f, g \in L(\mathbb{R}^n)$ als gleich zu betrachten, wenn f = g fast überall. In diesem Sinne: $(L(\mathbb{R}), \|\cdot\|_1)$ ist ein normierter Raum.

Für den Rest des Paragraphen sei $(X, \|\cdot\|)$ stets ein normierter Raum. Wie in Analysis II zeigt man:

$$|||x|| - ||y||| < ||x - y|| \ \forall x, y \in X$$

||x - y|| heißt Abstand von x und y.

Definition

Sei (x_n) eine Folge in X

(1) (x_n) heißt konvergent : $\iff \exists x \in X : ||x_n - x|| = 0 \ (n \to \infty)$ In diesem Fall ist x eindeutig bestimmt (Beweis wie in \mathbb{R}^n) und heißt der Grenzwert (GW) oder Limes von (x_n) . Man schreibt:

$$x_n \to x \ (x \to \infty) \ \text{oder} \ x_n \to \infty \ \text{oder} \ \lim_{n \to \infty} x_n = x$$

(2) $\sum_{n=1}^{\infty} x_n$ bedeutet die Folge (s_n) wobei $s_n := x_1 + \dots + x_n \ (n \in \mathbb{N})$ $\sum_{n=1}^{\infty} x_n$ heißt konvergent : \iff (s_n) ist konvergent. $\sum_{n=1}^{\infty} x_n$ heißt divergent : \iff (s_n) ist divergent. Im Konvergenzfall: $\sum_{n=1}^{\infty} x_n := \lim_{n \to \infty} s_n$

Wie üblich zeigt man: Aus $x_n \to x$ und $y_n \to y$ folgt:

$$x_n + y_n = x + y$$
$$\alpha x_n \to \alpha x \ (\alpha \in \mathbb{K})$$
$$\|x_n\| \to \|x\|$$

Definition

Sei (x_n) eine Folge in X und $A \subseteq X$

- (1) A heißt konvex : \iff aus $x, y \in A$ und $t \in [0, 1]$ folgt stets: $x + t(y x) \in A$
- (2) A heißt **beschränkt**: $\iff \exists c \ge 0 : ||x|| \le c \ \forall x \in A$
- (3) A heißt **abgeschlossen** : \iff der Grenzwert jeder konvergenten Folge aus A gehört zu A
- (4) A heißt **kompakt** : \iff jede Folge in A enthält eine konvergente Teilfolge, deren Grenzwert zu A gehört.
- (5) (x_n) heißt eine Cauchyfolge (CF) in $X:\iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{R}: ||x_n x_m|| < \varepsilon \ \forall n, m \ge n_0$

Bemerkung: (1) Wie in Analysis II: (x_n) konvergiert $\implies (x_n)$ ist eine Cauchyfolge in X

- (2) Ist $A \subseteq \mathbb{R}^n$: A ist kompakt : \iff A ist beschränkt und abgeschlossen (Analysis II, 2.2)
- (3) $A \text{ kompakt} \implies A \text{ abgeschlossen}$
- (4) X = C[a, b] mit $\|\cdot\|_{\infty}$. Sei (f_n) eine Folge in X und $f \in X$. Dann $(f_n) \to f$ bezüglich $\|\cdot\|_{\infty} \iff (f_n)$ konvergiert auf [a, b] gleichmäßig gegen f (Analysis I, Übungsblatt 10, Aufgabe 37)

Beispiel

$$X = C[-1, 1] \text{ mit } \| \cdot \|_2 = \left(\int_{-1}^1 |f(x)|^2 dx \right)^{\frac{1}{2}}.$$

$$f_n = \begin{cases} -1, & 1 \le x \le -\frac{1}{n} \\ nx, & -\frac{1}{n} \le x \le \frac{1}{n} \\ 1, & \frac{1}{n} \le x \le 1 \end{cases}$$

In der Übung: (f_n) ist eine Cauchyfolge in X, aber es existiert kein $f \in X : f_n \to f$ (bezüglich $\|\cdot\|_2$)

Definition

Ein normierter Raum X heißt **vollständig** oder ein **Banachraum** (BR) : \iff jede Cauchyfolge in X ist konvergent.

Beispiele:

- (1) Sei X und $\|\cdot\|_2$ wie im obigen Beispiel. Dann ist X kein Banachraum.
- (2) \mathbb{R}^n ist mit der üblichen Norm ein Banachraum (Siehe Analysis II)
- (3) C[a,b] ist mit $\|\cdot\|_{\infty}$ ein Banachraum (Analysis I, Übungsblatt 10, Aufgabe 37)
- (4) $L(\mathbb{R}^n)$ ist mit $\|\cdot\|_1$ ein Banachraum (Analysis II, 18.1)

Definition

X sei ein normierter Raum, $x_0 \in X$ und $\epsilon > 0$.

- (1) $U_{\epsilon}(x_0) := \{x \in X : ||x x_0|| < \epsilon\}$ heißt ϵ Umgebung von U
- (2) $D \subseteq X$ heißt offen : $\Leftrightarrow \forall x \in D \ \exists \epsilon = \epsilon(x) > 0 : U_{\epsilon}(x) \subseteq D$

Wie in Analysis 2 zeigt man:

Satz 11.1 (Verweis auf Analysis 2.3(3))

- (1) D ist offen $:\Leftrightarrow X \setminus D$ ist abgeschlossen.
- (2) Ist $A \subseteq X$ kompakt, so gilt die Aussage des Satzes 2.3(3) aus Analysis 2 wörtlich

Definition (Operator)

X sei ein normierter Raum, $A \subseteq X$ und $T : A \to X$ eine Abbildung. T heißt auch ein **Operator** auf A, man schreibt meist T_x statt T(x) $(x \in A)$.

- (1) x^* heißt ein **Fixpunkt** von $T : \Leftrightarrow T_{x^*} = x^*$.
- (2) T heißt in $x_0 \in A$ stetig : \Leftrightarrow für jede Folge (x_n) in A. mit $x_n \to x_0 : T_{x_n} \to T_{x_0}$. (Übung: $\Leftrightarrow \forall \epsilon > 0 \ \exists \delta > 0 : \|T_x T_0\| < \epsilon \ \forall x \in U_{\delta}(x_0) \cap A$)
- (3) T heißt stetig auf $A :\Leftrightarrow T$ ist stetig in jedem $x \in A$.
- (4) T heißt auf A kontrahierend : $\Leftrightarrow \exists L \in [0,1) : ||T_x T_y|| \le L||x y|| \forall x, y \in A$

Beispiel (Wichtig!)

x = C[a, b] ist mit $\|\cdot\|_{\infty}$ ein Banachraum. Definiere $T : X \to X$ durch $(T_y)(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$ $(x \in [a, b])$ wobei $x_0 \in [a, b], y_0 \in \mathbb{R}$ und $f : [a, b] \times \mathbb{R} \to \mathbb{R}$ stetig. $(T_y \in C^1[a, b])$

Behauptung: T ist stetig auf X.

Beweis

Sei $z_0 \in X$. Sei $z \in X$ mit $||z - z_0|| \le 1$. $\forall t \in [a, b] : |z(t)| \le ||z||_{\infty} = ||z - z_0 + z_0||_{\infty} \le ||z - z_0||_{\infty} + ||z_0||_{\infty} \le 1 + ||z_0||_{\infty} =: \gamma$

 $R := [a, b] \times [-\gamma, \gamma]$. D.h. $(t, z(t)) \in R \ \forall t \in [a, b] \ \forall z \in X \ \text{mit} \ \|z - z_0\|_{\infty} \le 1$.

f ist glm. stetig auf R (da R kompakt). Sei $\epsilon > 0$. $\exists \ \delta > 0 : |f(\alpha) - f(\beta)| < \epsilon \ \forall \alpha, \beta \in R$ mit $\|\alpha - \beta\| < \delta$ und $\delta \le 1$.

Sei $z \in X$ mit $||z - z_0||_{\infty} < \delta \le 1$. Dann: $||(t, z(t)) - (t, z_0(t))|| = ||(0, z(t) - z_0(t))|| = ||z(t) - z_0(t)| \le ||z - z_0||_{\infty} < \delta \ \forall \ t \in [a, b]$

$$\implies |f(t, z(t)) - f(t, z_0(t))| < \epsilon \ \forall \ t \in [a, b]$$

$$\implies |(T_z)(x) - (T_{z_0})(x)| = |\int_{x_0}^x (f(t, z(t))) - (f(t, z_0(t))) dt| \le \epsilon |x - x_0| \le (b - a) \ \forall \ x \in [a, b]$$

$$\implies ||T_z - T_{z_0}||_{\infty} \le \epsilon(b-a) \implies T \text{ ist stetig in } z_0.$$

Satz 11.2 (Fixpunktsatz von Banach)

X sei ein Banachraum. $A\subseteq X$ sei abgeschlossen, $T:A\to X$ sei kontrahierend, also $\exists \ L\in [0,1): \|T_x-T_y\|\le L\|x-y\| \ \forall x,y\in A$ und es sei $T(A)\subseteq A$. Dann hat T genau einen Fixpunkt $x^*\in A$.

Sei $x_0 \in A$ beliebig und $x_{n+1} := T_{x_n} (n \ge 0)$. Dann:

- (i) $x_n \in A \ \forall n \in \mathbb{N}_0$
- (ii) $x_n \to x^*$
- (iii) $||x_n x^*|| \le \frac{L^n}{1 L} ||x_0 x_1|| \ \forall n \in \mathbb{N}_0.$
- (x_n) heißt Folge der sukzessiven Approximation.

Beweis

Sei $x_0 \in A$. Definiere $x_{n+1} := T_{x_n} (n \ge 0) \implies (i)$.

$$||x_{k+1} - x_k|| = ||T_{x_k} - T_{x_{k-1}}|| \le L||x_k - x_{k-1}|| (\forall k \ge 1)$$

Induktiv: $||x_{k+1} - x_k|| \le L^k ||x_k - x_0|| \ \forall k \ge 0$

Seien $m, n \in \mathbb{N}, m > n$. $||x_m - x_n|| = ||x_m - x_{m-1} + x_{m-1} - x_{m-2} + \dots + x_{n+1} - x_n|| \le ||x_m - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{n+1} - x_n|| \le (L^{m^1} + L^{m-2} + \dots + L^n)||x_1 - x_0|| = L^n \underbrace{(1 + L + \dots + L^{m-1-n})}_{\le \sum_{i=0}^{\infty} L^j = \frac{1}{1-L}} ||x_1 - x_0|| \le \frac{L^n}{1-L} ||x_1 - x_0|| (*)$

 $(*) \implies (x_n)$ ist eine Cauchy-Folge in X. X Banachraum $\implies \exists x^* \in X: x_n \to x^*.$ (iii) folgt aus (*) mit $m \to \infty$

 $A \text{ abgeschlossen} \implies x^* \in A$

$$||T_{x^*} - x^*|| = ||T_{xj} - x_{n+1} + x_{n+1} - x^*|| \le ||T_{x^*} - \underbrace{x_{n+1}}_{=T_{x_n}}|| + ||x_{n+1} - x^*|| \le \underbrace{L||x^* - x_n|| + ||x_{n+1} - x^*||}_{\to 0(n \to \infty)} \Longrightarrow$$

$$||T_{x^*} - x^*|| = 0 \implies T_{x^*} = x^*$$

Sei
$$z \in A$$
 und $T_z = z$. $||x^* - z|| = ||T_{x^*} - T_z|| \le L||x^* - z||$; wäre $||x^* - z|| \ne 0 \implies L \ge 1$, Wid., also $x^* = z$.

Ohne Beweis:

Satz 11.3 (Fixpunktsatz von Schauder)

X sei ein normierter Raum, $A \subseteq X$ sei konvex und kompakt und $T: A \to X$ sei stetig und $T(A) \subseteq A$. Dann hat T einen Fixpunkt (in A).

Satz 11.4 (Konvergente Teilfolgen von Funktionen)

Sei $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}$, $M \ge 0$ und (y_n) eine Folge in C(I) mit: $y_n(x_0) = y_0 \ \forall n \in \mathbb{N}$ und $|y_n(x) - y_n(\overline{x})| \le M|x - \overline{x}| \ \forall n \in \mathbb{N} \ \forall x, \overline{x} \in I$ Dann enthält (y_n) eine auf I gleichmäßig konvergente Teilfolge.

Beweis

 $\mathcal{F} := \{y_n : n \in \mathbb{N}\}.$ \mathcal{F} ist auf I gleichstetig. $\forall n \in \mathbb{N} \ \forall x \in I : |y_n(x)| = |y_n(x) - y_0 + y_0| \le |y_n(x) - y_0| + |y_0| = |y_n(x) - y_n(x_0)| + |y_0| \le M|x - x_0| + |y_0| \le M(b - a) \cdot |y_0| \implies \mathcal{F}$ ist gleichmäßig beschränkt. $1 \implies$ Behauptung.

Satz 11.5 (Konvexe und Kompakte Teilmenge)

 $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}, M \ge 0,$

 $A := \{ y \in C(I) : y(x_0) = y_0 \text{ und } |y(x) - y(\overline{x})| \le M|x - \overline{x}| \ \forall x, \overline{x} \in I \}$

Dann ist A eine nicht leere, konvexe und kompakte Teilmenge des Banachraumes $(C(I), \|\cdot\|_{\infty})$.

Beweis

$$A \neq \emptyset$$
 $(y(x) \equiv y_0 \implies y \in A)$

Übung: A ist konvex.

Sei (y_n) ein Folge in A. 11.4 \Longrightarrow (y_n) enthält eine auf I gleichmäßig konvergente Teilfolge $(y_{n_k}), y(x) := \lim_{n \to \infty} y_{n_k}(x) \ (x \in I) \stackrel{\text{A I}}{\Longrightarrow} y \in C(I)$

z.zg: $y \in A$. $y(x_0) = \lim_{n \to \infty} y_{n_k}(x_0) = y_0$

 $\forall k \in \mathbb{N} \ \forall x, \overline{x} \in I : |y_{n_k}(x) - y_{n_k}(\overline{x})| \le M|x - \overline{x}| \xrightarrow{k \to \infty} |y(x) - y(\overline{x})| \le M|x - \overline{x}|. \text{ Also: } y \in A_{\blacksquare}$

12. Der Existenzsatz von Peano

Definition

Sei $D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$ eine Funktion und $(x_0, y_0) \in D$ und $I \subseteq \mathbb{R}$ ein Intervall. Die Gleichung:

(i)
$$y(x) = y_0 + \int_{x_0}^x f(t, y(t))dt$$
 $(x \in I)$

heißt eine Integralgleichung. $y \in C(I)$ heißt eine Lösung von (i) auf $I : \iff (t, y(t)) \in D$ $\forall t \in I$ und es gilt $(i) \forall x \in I$.

Wir betrachten auch noch das AWP

(ii)
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Satz 12.1 (Zusammenhang Integral- und Differenzialgleichung)

 $D, f, (x_0, y_0)$ und I seien wie oben und $y \in C(I)$. Es sei $f \in C(D, \mathbb{R})$.

- (1) y ist eine Lösung von (i) auf $I \iff$ y ist eine Lösung von (ii) auf I
- (2) Sei I = [a, b] und $D = I \times R$. Ist $T : C(I) \to C(I)$ def. durch $(T_y)(x) := y_0 + \int_{x_0}^x f(t, y(t)) dt$, $x \in I$, so gilt: y ist eine Lösung von (ii) auf $I \iff T_y = y$

Beweis

- (1) " \Longrightarrow ": $y(x_0) = y_0$; Durch Differentation: $y'(x) = f(x, y(x)) \ \forall x \in I$ " \Leftarrow ": $y'(x) = f(t, y(t)) \ \forall t \in I \ \text{und} \ y(x_0) = y_0 \implies \int_{x_0}^x f(t, y(t)) dt = \int_{x_0}^x y'(t) dt = y(x) y(x_0) = y(x) y_0 \ \forall x \in I$
- (2) $T_y = y \iff y \text{ löst } (i) \text{ auf } I \iff y \text{ löst } (ii) \text{ auf } I.$

Satz 12.2 (Lösungen auf Teilintervallen)

Sei $D \subseteq \mathbb{R}^2, f: D \to \mathbb{R}$ eine Funktion und $\Gamma \neq \emptyset$ (Γ ist Indexmenge). Für jedes $\gamma \in \Gamma$ sei $y_{\gamma}: I_{\gamma} \to \mathbb{R}$ (wobei $I_{\gamma} \subseteq \mathbb{R}$ ein Intervall) eine Lösung der Dgl.:

$$(+) y'(x) = f(x,y)$$

auf I_{γ}

Weiter sei $\bigcap_{\gamma \in \Gamma} I_{\gamma} \neq \emptyset$ und für je zwei Lösungen $y_{\gamma_1} : I_{\gamma_1} \to \mathbb{R}, y_{\gamma_2} : I_{\gamma_2} \to \mathbb{R}$ von (+) gelte $y_{\gamma_1} = y_{\gamma_2}$ auf $I_{\gamma_1} \cap I_{\gamma_2}$.

Setzt man $I := \bigcup_{\gamma \in \Gamma} I_{\gamma}$ und $y(x) := y_{\gamma}(x)$, falls $x \in I_{\gamma}$, so ist I ein Intervall und y eine Lösung von (+) auf I.

Beweis

Übung. ■

Folgerung 12.3

Sei $I = [a, b], S := I \times \mathbb{R}, f : S \to \mathbb{R}$ eine Funktion, $x_0 \in (a, b), y_0 \in \mathbb{R}, I_1 := [a, x_0], I_2 := [x_0, b]$ und $y_1 : I_1 \to \mathbb{R}, y_2 : I_2 \to \mathbb{R}$ seien Lösungen des AWPs

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf I_1 bzw I_2 . Definiert man $y: I \to \mathbb{R}$ durch

$$y(x) := \begin{cases} y_1(x), & \text{falls } x \in I_1 \\ y_2(x), & \text{falls } x \in I_2 \end{cases}$$

so ist y eine Lösung des AWPs auf I.

Satz 12.4 (Der Existenzsatz von Peano (Version I))

I und Sseien wie in 12.3, $x_0\in I, y_0\in \mathbb{R}$ und $f\in C(S,\mathbb{R})$ sei beschränkt. Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

eine Lösung auf I.

Wir führen zwei Beweise. In beiden sei $M := \sup\{|f(x,y)| : (x,y) \in S\}$ und $T : C(I) \to C(I)$ sei definiert durch $(T_y)(x) := y_0 + \int_{x_0}^x f(t,y(t)) \ (x \in I)$

Beweis (mit 11.3)

Sei $A \subseteq C(I)$ sei wie in 11.5 (mit obigen M). 11.5 $\Longrightarrow A \neq \emptyset$, A ist konvex und kompakt. $T: A \to C(I)$ ist stetig. Wegen 11.3 und 12.1(2) ist nur noch zu zeigen: $T(A) \subseteq A$. Sei $y \in A$. Dann $(T_y)(x_0) = y_0$. Weiter gilt

$$\forall x, \overline{x} \in I : |(T_y)(x) - (T_y)(\overline{x})| = |\int_x^{\overline{x}} \underbrace{f(t, y(t))}_{\leq M} dt| \leq M \cdot |x - \overline{x}|. \text{ Also: } T_y \in A. \text{ Somit: } T(A) \subseteq A_{\blacksquare}$$

Beweis (Nr.2)

Wir unterscheiden 3. Fälle: $x_0 = a, x_0 = b$ und $x_0 \in (a, b)$. Wir führen den Beweis nur für den Fall $x_0 = a$ (den Fall $x_0 = b$ zeigt man analog; der Fall $x_0 \in (a, b)$ folgt aus 12.3 und den ersten beiden Fällen).

Sei also $x_0 = a$. o.B.d.A. $x_0 + \frac{1}{n} = a + \frac{1}{n} \in I \ \forall n \in I$.

Für $n \in \mathbb{N}$ definieren wir $z_n : (-\infty, b] \to \mathbb{R}$ durch

$$z_n(x) := \begin{cases} y_0, & \text{falls } x \le x_0 = a \\ y_0 + \int_{x_0}^x f(t, z_n(t - \frac{1}{n}) dt, & \text{falls } x \in I \end{cases}$$

Beh.: z_n ist auf I wohldefiniert.

Sei $x \in [x_0, x_0 + \frac{1}{n}]$ und $t \in [x_0, x] \implies t - \frac{1}{n} \le x - \frac{1}{n} \le x_0 \implies z_n(t - \frac{1}{n}) = y_0 \implies z_n(x) = \frac{1}{n} = \frac{1}{n$ $y_0 + \int_{x_0}^x f(t, y_0) dt$, also $z_n(x)$ ist wohldef. Sei $x \in [x_0 + \frac{1}{n}, x_0 + \frac{2}{n}]$ und $t \in [x_0, x] \implies t - \frac{1}{n} \le x - \frac{1}{n} \in [x_0, x_0 + \frac{1}{n}] \implies z_n(t - \frac{1}{n})$ wohldef. $\implies z_n(x)$ ist wohldefiniert, etc...

Übung: $z_n \in C(-\infty, b]$.

Insbesondere: $z_n \in C(I)$. Es ist $z_n(x_0) = y_0$. Für $x, \overline{x} \in I : |z_n(x) - z_n(\overline{x})| = |\int_x^{\overline{x}} f(t, z_n(t - z_n(x)))|$ $(z_n)dt \leq M \cdot |x-\overline{x}|$. 11.4 $\implies (z_n)$ enthält eine auf I gleichmäßige konvergente Teilfolge. o.B.d.A.: (z_n) konvergiert auf I glm.

 $y(x) := \lim_{n \to \infty} z_n(x) \ (x \in I)$. AI $\implies y \in C(I)$. Also $z_n \to y$ bzgl. $\|\cdot\|_{\infty}$. $(\|z_n - y\|_{\infty} \to 0)$

$$g_n(t) := z_n(t - \frac{1}{n}) \ (t \in I). \ \forall t \in I : |g_n(t) - y(t)| = |g_n(t) - z_n(t) + z_n(t) - y(t)| \le |\underbrace{z_n(t - \frac{1}{n}) - z_n(t)}_{\leq \frac{M}{n}}| + \underbrace{z_n(t - \frac{1}{n}) - z_n(t)}_{\leq \frac{M}{n}}| + \underbrace{z$$

$$|\underbrace{z_n(t)-y(t)}_{\leq \|z_n-y\|_{\infty}}|$$

 $\Longrightarrow \|g_n(t) - y(t)\|_{\infty} \leq \frac{M}{n} + \|z_n - y\|_{\infty} \,\forall n \in \mathbb{N} \implies g_n \to y \text{ bzgl. } \|\cdot\|_{\infty} \text{ (glm. konv.)}$ $T: C(I) \to C(I) \text{ ist stetig} \implies T_{g_n} \to T_y \text{ bzgl. } \|\cdot\|_{\infty}$ $(T_{g_n})(x) = y_0 + \int_{x_0}^x f(t, z_n(t - \frac{1}{n})) dt = z_n(x) \forall x \in I \implies T_{g_n} = z_n \text{ auf } I.$ Also $T_y = y$ und damit folgt, y löst das AWP auf I.

Satz 12.5 (Der Existenzsatz von Peano (Version II))

Es sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}, s > 0$ und $R := I \times [y_0 - s, y_0 + s]$ Es sei $f \in C(R, \mathbb{R}), M := \max\{|f(x, y)| : (x, y) \in R\}$ und $J:=I\cap [x_0-\frac{s}{M},x_0+\frac{s}{M}]$. Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

eine Lösung auf J.

Beweis

 $S := I \times \mathbb{R}$. Def. $g : S \to \mathbb{R}$ durch:

$$g(x,y) = \begin{cases} f(x,y), & (x,y) \in \mathbb{R} \\ f\left(x, y_0 + s \frac{y - y_0}{|y - y_0|}\right), & x \in I, |y - y_0| \ge s \end{cases}$$

Dann: g = f auf R, $|g| \leq M$ auf S und $g \in C(S, \mathbb{R})$ Betrachte das AWP

$$(+) \begin{cases} y' = g(x, y) \\ y(x_0) = y_0 \end{cases}$$

 $12.4 \implies (+)$ hat eine Lösung \overline{y} auf $I. 12.1 \implies$

$$(*) \ \overline{y}(x) = y_0 + \int_{x_0}^x g(t, \overline{y}(t)) dt \ \forall x \in I$$

12. Der Existenzsatz von Peano

Sei
$$x \in J$$
. Sei $y := \overline{y}|_J$. Dann: $|y(x) - y_0| = |\overline{y}(x) - y_0|$

$$\stackrel{(*)}{=} |\int_{x_0}^x g(t, \overline{y}(t)) dt| \le M|x - x_0| \le M \cdot \frac{s}{M} = s \implies (x, y(x)) \in R$$

$$\implies (t, y(t)) \in R \text{ für } t \text{ zwischen } x \text{ und } x_0.$$

$$\implies y(x) = y_0 + \int_{x_0}^x f(t, g(t)) dt \ \forall x \in J$$

$$\stackrel{12.1}{\Longrightarrow} y \text{ löst das AWP auf } J$$

Satz 12.6 (Der Existenzsatz von Peano (Version III))

Sei $D \in \mathbb{R}^2$ offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R})$. Dann ex. $\delta > 0$: das AWP

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

hat eine Lösung $y: K \to \mathbb{R}$, wobei $K = [x_0 - \delta, x_0 + \delta]$ (also $x_0 \in K^0$)

Beweis

$$\begin{array}{ll} D \text{ offen} &\Longrightarrow \exists \; r,s>0 : R:=[x_0-r,x_0+r]\times [y_0-s,y_0+s]\subseteq D \\ M:=\max\{|f(x,y)|:(x,y)\in \mathbb{R}\} \\ \delta:=\max\{r,\frac{s}{M}\}, K:=[x_0-\delta,x_0+\delta] \; 12.5 \; \Longrightarrow \; \text{Beh.} \end{array}$$

13. Der Existenz- und Eindeutigkeitssatz von Picard - Lindelöf

EuE = Existenz und Eindeutigkeit

Definition

Sei $D \subseteq \mathbb{R}^2$ und $f: D \to \mathbb{R}$ eine Funktion.

f genügt auf D einer Lipschitzbedingung (LB) bzgl. $y:\iff$ $\exists \ \gamma \ge 0 : |f(x,y) - f(x,\overline{y})| \le \gamma |y - \overline{y}| \ \forall (x,y), (x,\overline{y}) \in D \quad (*)$

Vorbetrachtungen: Sei $I = [a,b], x_0 \in I, y_0 \in \mathbb{R}, S := I \times \mathbb{R}$ und $f \in C(S,\mathbb{R})$ genüge auf S einer LB bzgl. y mit $\gamma \geq 0$ wie in (*), $T: C(I) \rightarrow C(I)$ sei def. durch $T_y(x) =$ $y_0 + \int_{x_0}^x f(t, y(t)) dt \ (x \in I)$

Aus 12.1 folgt: das AWP
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

hat auf I genau eine Lösung $\iff T$ hat genau einen Fixpunkt.

Frage: ist T bzgl. $\|\cdot\|_{\infty}$ kontrahierend?

Seien
$$u, v \in C(I), x \in I : |T_u(x) - T_v(x)| = |\int_{x_0}^x f(t, u(t)) - f(t, v(t)) dt|$$

$$\leq \gamma |\int_x^{x_0} \underbrace{|u(t) - v(t)|}_{\infty} dt \leq \gamma ||u - v||_{\infty} |\int_{x_0}^x dt| = \gamma |x - x_0| ||u - v||_{\infty}$$

$$\leq ||u-v||_{\infty}$$

$$\leq \gamma(b-a) \|u-v\|_{\infty}$$

 $\implies ||T_u - T_v||$ ist nur dann kontrahierend, wenn $\gamma(b-a) < 1$.

Sei $\varphi(x) := e^{-2\gamma|x-x_0|}$ $(x \in I)$ Auf C(I) def. die folgende Norm:

 $||y|| := \max\{\varphi(x)|y(x)| : x \in I\} (= ||\varphi y||_{\infty})$

 $\alpha := \min\{\varphi(x) : x \in I\} \implies 0 < \alpha < \varphi < 1 \text{ auf } I$

 $\implies \alpha \|y\|_{\infty} \le \|y\| \le \|y\|_{\infty} \ \forall \ y \in C(I)$

Sei (y_n) eine Folge in C(I) und $y \in C(I)$

 $\alpha ||y_n - y||_{\infty} \le ||y_n - y|| \le ||y_n - y||_{\infty}$

Fazit: Konvergenz bzgl. $\|\cdot\| =$ Konvergenz bzgl $\|\cdot\|_{\infty} =$ gleichmäßige Konvergenz auf I. (y_n) ist CF bzgl. $\|\cdot\| \iff (y_n)$ ist CF bzgl. $\|\cdot\|_{\infty}$ $(C(I), \|\cdot\|)$ ist ein Banachraum.

Behauptung

T ist bzgl. $\|\cdot\|$ kontrahierend. Seien $u, v \in C(I), x \in I$.

$$|T_{u}(x) - T_{v}(x)| \overset{s.o.}{\leq} \gamma |\int_{x_{0}}^{x} |u(t) - v(t)| dt| = \gamma |\int_{x_{0}}^{x} \underbrace{|u(t) - v(t)|\varphi(t)}_{\leq |u-v|} \underbrace{\frac{1}{\varphi(t)}}_{\leq |u-v|} dt|$$

$$\leq \gamma ||u-v|| |\int_{x_{0}}^{x} e^{-2\gamma|t-x_{0}|} dt| = \gamma ||u-v|| \frac{1}{2\gamma} (e^{-2\gamma|x-x_{0}|} - 1) \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||u-v|| \frac{1}{\varphi(x)} \implies \varphi(x) ||T_{u}(x) - T_{u}(x)|| \leq \frac{1}{2} ||T_$$

$$\leq \gamma \|u - v\| \left| \int_{x_0}^x e^{-2\gamma |t - x_0|} dt \right| = \gamma \|u - v\| \frac{1}{2\gamma} (e^{-2\gamma |x - x_0|} - 1) \leq \frac{1}{2} \|u - v\| \frac{1}{\varphi(x)} \implies \varphi(x) |(T_u)(x) - T_v)(x)| \leq \frac{1}{2} \|u - v\| \ \forall x \in I$$

$$\implies ||T_u - T_v|| \le \frac{1}{2}||u - v||$$

Aus 11.2 und 12.1 folgt: 13.1

Satz 13.1 (EuE - Satz von Picard - Lindelöf (Version I))

 I, x_0, y_0, S und f seien wie in der Vorbetrachtung und f genüge auf S einer LB bzgl. y. Dann hat das AWP:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung. Sei $z_0 \in C(I)$ beliebig und $z_{n+1}(x) := y_0 + \int_{x_0}^x f(t, z_n(t)) dt \ (x \in I)$, (also $z_{n+1} = T_{z_n}$) dann konvergiert die Folge der sukzessiven Approximationen (z_n) auf Igleichmäßig gegen die Lösung des AWPs.

Beispiel

Zeige (mit 13.1): das AWP: $\begin{cases} y' = 2x(1+y) \\ y(0) = 0 \end{cases}$ hat auf $\mathbb R$ genau eine Lösung. Berechne diese.

f(x,y) = 2x(1+y) Sei a > 0 und I = [-a,a] Für $(x,y), (x,\overline{y}) \in I \times \mathbb{R}$:

 $|f(x,y) - f(x,\overline{y})| = |2x| |y - \overline{y}| \le 2a|y - \overline{y}|$

13.1 \Longrightarrow das AWP hat auf I genau eine Lösung y. Sei $z_0(x) = 0$. $z_1(x) = \int_0^x 2t dt = x^2 \; ; \; z_2(x) = \int_0^x 2t (1+t^2) dt = x^2 + \frac{1}{2}x^4 \; ; \; z_3(x) = x^2 + \frac{1}{2}x^4 + \frac{1}{6}x^6$ Induktiv: $z_n(x) = x^2 + \frac{1}{2!}x^4 + \frac{1}{3!}x^6 + \ldots + \frac{1}{n!}x^{2n}$

Analysis I \Longrightarrow (z_n) konvergiert auf I gleichmäßig gegen $e^{x^2} - 1$ 13.1 $\Longrightarrow y(x) = e^{x^2} - 1$ auf I

a > 0 beliebig $\implies y(x) = e^{x^2} - 1$ ist <u>die</u> Lösung des AWPs auf \mathbb{R} .

Satz 13.2 (Der EuE-Satz von Picard-Lindelöf (Version II))

Sei $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}$, s > 0, $R := I \times [y_0 - s, y_0 + s]$ und $f \in C(R, \mathbb{R})$. $M := I \times [y_0 - s, y_0 + s]$ $\max\{|f(x,y)|:(x,y)\in R\}$. f genüge auf R einer LB bzgl. y. Dann hat das AWP

$$\begin{cases} y' &= f(x.y) \\ y(x_0) &= y_0 \end{cases}$$

genau eine Lösung auf $J:=I\cap [x_0-\frac{s}{M},x_0+\frac{s}{M}]$. Diese Lösung kann iterativ gewonnen werden (vgl. 13.1).

Beweis

Ähnlich wie 12.5 aus 12.4 gewonnen wurde.

Definition

Sei $D \subseteq \mathbb{R}^2$ offen und $f: D \to \mathbb{R}$ eine Funktion. f genügt auf D einer lokalen LB bzgl. $y:\iff \forall (x_0,y_0)\in D\;\exists\; \mathrm{Umgebung}\; U\; \mathrm{von}\; (x_0,y_0)\; \mathrm{mit}\; U\subseteq D\; \mathrm{und}\; f\; \mathrm{genügt}\; \mathrm{auf}\; U\; \mathrm{einer}\; \mathrm{LB}$ bzgl. y.

Satz 13.3 (Partielle Differenzierbarkeit und lokale Lipschitzbedingung)

D und f seien wie in obiger Definition. Ist f auf D partiell db nach y und ist $f_y \in C(D,\mathbb{R}) \implies f$ genügt auf D einer lokalen LB bzgl. y.

Beweis

Sei $(x_0, y_0) \in D$. D offen $\implies \exists \varepsilon > 0 : U := \overline{U_{\varepsilon}(x_0, y_0)} \subseteq D$. f_y ist stetig $\implies \exists \gamma := \max\{|f_y(x, y)| : (x, y) \in U\}$.

Seien
$$(x,y),(x,\overline{y}) \in U: |f(x,y)-f(x,\overline{y})| \stackrel{\text{MWS}}{=} \underbrace{|f_y(x,\xi)|}_{\leq \gamma} |(y-\overline{y})| \leq \gamma |y-\overline{y}| \text{ mit } \xi \text{ zwischen } y$$
 und $\overline{y} \ (\Longrightarrow (x,\xi) \in U).$

Bemerkung: Ist I = [a, b] und $R := I \times [c, d]$ $(S := I \times \mathbb{R})$ und $f : R \to \mathbb{R}$ $(f : S \to \mathbb{R})$ stetig und partiell db nach g auf g (g) und g ist beschränkt auf g (g). Wie im Beweis von 13.3 zeigen wir: g genügt auf g (g) einer LB bzgl. g.

Beispiel

 $R := [0,1] \times [-1,1], \ f(x,y) = e^{x+y^2}$. Zeige: das AWP $y' = f(x,y), \ y(0) = 0$ hat auf $[0,\frac{1}{e^2}]$ genau eine Lösung.

Beweis

$$|f(x,y)| = e^x e^{y^2} \le e \cdot e = e^2, \ f(1,1) = e^2 \implies M = \max\{|f(x,y)| : (x,y) \in R\} = e^2.$$

$$|f_y(x,y)| = |2ye^{x+y^2}| = 2|y|e^{x+y^2} \le 2e^2 \ \forall (x,y) \in R \implies f \text{ genügt auf } R \text{ einer LB bzgl. } y.$$

13.2 \Longrightarrow das AWP hat auf $J=[0,1]\cap[-\frac{s}{M},\frac{s}{M}]\stackrel{s=1}{=}[0,1]\cap[-\frac{1}{e^2},\frac{1}{e^2}]=[0,\frac{1}{e^2}]$ genau eine Lösung.

Satz 13.4 (Der EuE-Satz von Picard-Lindelöf (Version III))

Es sei $D \subseteq \mathbb{R}^2$ offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R})$ genüge auf D einer lokalen LB bzgl. y. Dann ist das AWP

$$\begin{cases} y' &= f(x,y) \\ y(x_0) &= y_0 \end{cases}$$

eindeutig lösbar. (zur Erinnerung d.h.: das AWP hat eine Lösung. $y: I \to \mathbb{R}$ (I ein Intervall) und für je zwei Lösungen $y_1: I_1 \to \mathbb{R}$, $y_2: I_2 \to \mathbb{R}$ (I_1, I_2 Intervalle) gilt: $y_1 \equiv y_2$ auf $I_1 \cap I_2$).

Beweis

12.6 \Longrightarrow das AWP hat eine Lösung. Seien $y_1:I_1\to\mathbb{R}$ und $y_2:I_2\to\mathbb{R}$ Lösungen des AWPs $(I_1,I_2 \text{ Intervalle})$.

Annahme: $\exists x_1 \in I_1 \cap I_2 : y_1(x_1) \neq y_2(x_1)$. Dann: $x_1 \neq x_0$, etwa $x_1 > x_0$, dann: $[x_0, x_1] \subseteq I_1 \cap I_2$.

 $M := \{x \in [x_0, x_1] : y_1(x) = y_2(x)\} \subseteq [x_0, x_1], \ x_0 \in M. \ \xi_0 := \sup M, \ y_1, y_2 \text{ stetig} \implies y_1(\xi_0) = y_2(\xi_0) =: \eta_0.$

Es gilt: $y_1(x) \neq y_2(x) \ \forall x \in (\xi_0, x_1]$ (*)

13. Der Existenz- und Eindeutigkeitssatz von Picard - Lindelöf

Wähle r, s > 0, dass $\xi_0 + r < x_1$, $R := [\xi_0, \xi_0 + r] \times [\eta_0 - s, \eta_0 + s] \subseteq D$ und f genügt auf R einer LB bzgl. y.

Aus 13.2 folgt: $\exists \alpha \in (0,r)$: das AWP (+) $\begin{cases} y' = f(x,y) \\ y(\xi_0) = \eta_0 \end{cases}$ hat auf $[\xi_0,\xi_0+\alpha]$ genau eine Lösung. y_1 und y_2 sind Lösungen von (+) auf $[\xi_0,\xi_0+\alpha] \implies y_1 \equiv y_2$ auf $[\xi_0,\xi_0+\alpha]$, Widerspruch zu (*).

Matrizenwertige und vektorwertige Funktionen

Sei $m \in \mathbb{N}$. \mathbb{M}_m sei der Vektorraum aller $(m \times m)$ -Matrizen

$$A = (a_{jk}) = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}$$

über \mathbb{K} (wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$). dim $\mathbb{M}_m = m^2$

Sei $A = (a_{jk}) \in \mathbb{M}_m$, mit $a^{(k)}$ bez. wir die k-te Spalte von A, also $A = (a^{(1)}, \dots, a^{(m)})$.

E sei die Einheitsmatrix in \mathbb{M}_m , also

$$E = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} = (e_1, \dots, e_m), \ e_k := (0, \dots, 0, 1, 0, \dots, 0)^T.$$

Für $A = (a_{jk}) \in \mathbb{M}_m : \bar{A} := (\overline{a_{jk}}) \text{ (also: } A = \bar{A} \iff a_{jk} \in \mathbb{R} \ (j, k = 1, \dots, m))$

 $\operatorname{Re} A := (\operatorname{Re} a_{jk}), \operatorname{Im} A := (\operatorname{Im} a_{jk}). \operatorname{Dann}: A = \operatorname{Re} A + i \operatorname{Im} A.$

$$\operatorname{Re} A = \frac{1}{2}(A + \bar{A}), \operatorname{Im} A = \frac{1}{2i}(A - \bar{A}). \operatorname{F\"{u}r} B \in \mathbb{M}_m : \overline{AB} = \bar{A}\bar{B}.$$

Sei $A \in \mathbb{M}_m$. $\lambda \in \mathbb{K}$ heißt ein **Eigenwert** (EW) von $A : \iff \exists x \in \mathbb{K}^m : x \neq 0$ und $Ax = \lambda x$. In diesem Fall heißt x ein **Eigenvektor** (EV) von A zum EW λ .

Ist $A \in \mathbb{M}_m$, $\lambda \in \mathbb{K}$, $x \in \mathbb{K}^m$ und $Ax = \lambda x$, so gilt, falls $A = \overline{A} : A\overline{x} = \overline{\lambda}\overline{x}$, wobei $\overline{x} = (\overline{x_1}, \dots, \overline{x_m})$, wenn $x = (x_1, \dots, x_m)$.

 $p(\lambda) := \det(A - \lambda E)$ heißt das **charakteristische Polynom von** A. $\lambda_0 \in \mathbb{K}$ ist ein EW von $A \iff p(\lambda_0) = 0$. Ist λ_0 eine q-fache Nullstelle von p, so heißt q die (algebraische) Vielfachheit von λ_0 .

Sind $\lambda_1, \ldots, \lambda_k$ EWe von A mit $\lambda_j \neq \lambda_{\nu}$ $(j \neq \nu)$ und $x^{(j)}$ ein zu λ_j gehörender EV $(j = 1, \ldots, k)$, so sind $x^{(1)}, \ldots, x^{(k)}$ linear unabhängig im \mathbb{K}^m .

Bekannt aus der Linearen Algebra:

Satz 14.1 (Existenz der Jordan-Normalform)

Sei $A \in \mathbb{M}_m, \lambda_1, \dots, \lambda_k$ seien die verschiedenen EWe von A mit den Vielfachheiten q_1, \dots, q_k

(also: $\lambda_j \neq \lambda_{\nu} \ (j \neq \nu)$) und $q_1 + \ldots + q_k = m$). Es ex. eine invertierbare Matrix $C = (c^{(1)}, \ldots, c^{(m)}) \in \mathbb{M}_m$ mit:

$$C^{-1}AC = \operatorname{diag}(A_1, \dots, A_k) := \begin{pmatrix} A_1 & & 0 \\ & A_2 & \\ & & \ddots \\ 0 & & & A_k \end{pmatrix}$$

mit

$$A_{j} = \begin{pmatrix} \lambda_{j} & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_{j} \end{pmatrix} \in \mathbb{M}_{q_{j}}$$

Ist speziell $A = \bar{A}$, so kann man die EWe wie folgt anordnen:

$$\lambda_1, \ldots, \lambda_l \in \mathbb{C} \setminus \mathbb{R}, \ \lambda_{l+1} = \overline{\lambda_1}, \ldots, \lambda_{2l} = \overline{\lambda_l} \ (\in \mathbb{C} \setminus \mathbb{R}), \ \lambda_{2l+1}, \ldots, \lambda_k \in \mathbb{R}$$

Dann: $A_{l+1} = \bar{A}_1, \dots, A_{2l} = \bar{A}_l; A_{2l+1}, \dots, A_k \text{ sind reell.}$

$$q := q_1 + \dots + q_l$$
, $c^{(q+1)} = \overline{c^{(1)}}, \dots, c^{(2q)} = \overline{c^{(q)}}, c^{(2q+1)}, \dots, c^{(m)} \in \mathbb{R}^m$.

Definition

Sei $z = x + iy \in \mathbb{C}$ $(x, y \in \mathbb{R}), |z| = (x^2 + y^2)^{\frac{1}{2}}$ (= ||(x, y)||). Sei (z_n) eine Folge in \mathbb{C} $z_n \to z$ bzgl. $|\cdot| \iff \text{Re } z_n \to x$, Im $z_n \to y$

Definition

Sei $A = (a_{jk}) \in \mathbb{M}_m$, $||A|| := (\sum_{j,k=1}^m |a_{jk}|^2)^{\frac{1}{2}}$. $(\mathbb{M}_m, ||\cdot||)$ ist ein NR. Sei $(A_n) = ((a_{jk}^{(n)}))$ eine Folge in \mathbb{M}_m $A_n \to A$ bzgl. $||\cdot|| \iff a_{jk}(n) \to a_{jk}$ für $j, k = 1, \ldots, m$. Insbesondere: $(\mathbb{M}_m, ||\cdot||)$ ist ein BR. Analysis II, §1: $||AB|| \le ||A|| ||B|| \, \forall A, B \in \mathbb{M}_m, ||Ax|| \le ||A|| ||x|| \, \forall A \in \mathbb{M}_m, x \in \mathbb{K}^m$

Erinnerung (Analysis II, §12): Sei $y = (y_1, \ldots, y_m) : [a, b] \to \mathbb{R}^m$. Es gelte: $y_j \in R[a, b]$ $(j = 1, \ldots, m)$. $\int_a^b y(x) dx = (\int_a^b y_1(x) dx, \ldots, \int_a^b y_m(x) dx) (\in \mathbb{R}^m)$ $\|\int_a^b y(x) dx\| \le \int_a^b \|y(x)\| dx$

Definition

Sei $\varphi \in C([a,b])$ und $\varphi > 0$ auf [a,b].

Für $y \in C([a,b],\mathbb{R}^m)$: $||y|| := \max\{\varphi(x)||y(x)|| : x \in [a,b]\}$ Wie in §13: $(C([a,b],\mathbb{R}^m), ||\cdot||)$ ist ein BR. Und Konvergenz bzgl. $||\cdot|| = \text{glm}$. Konvergenz auf [a,b].

Satz 14.2 (Konvex und Kompakt)

Sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}^m$ und $M \ge 0$.

 $A := \{ y \in C(I, \mathbb{R}^m) : y(x_0) = y_0, ||y(x) - y(\overline{x})|| \le M|x - \overline{x}| \, \forall x, \overline{x} \in I \}$

Dann ist A eine konvexe und kompakte Teilmenge des Banachraumes $(C(I, \mathbb{R}^m), \|\cdot\|)$.

Beweis

Wie in 11.5

Definition

Sei $I \subseteq \mathbb{R}$ ein Intervall, $[a, b] \subseteq I$, $A : I \to M$ sei eine Matrixwertige Funktion.

$$A(x) = (a_{jk}(x)) = \begin{pmatrix} a_{11}(x) & \cdots & a_{1m}(x) \\ \vdots & & \vdots \\ a_{m1}(x) & \cdots & a_{mm}(x) \end{pmatrix} \text{ mit } a_{jk} : I \to \mathbb{R}.$$

A heißt in x_0 stetig \iff alle a_{jk} sind in x_0 stetig.

A heißt **auf** I **stetig** \iff alle a_{ik} sind auf I stetig.

A heißt **auf** I **differenzierbar** \iff alle a_{jk} sind auf I differenzierbar.

etc....

Sind alle $a_{jk} \in R[a,b]: \int_a^b A(x) dx := (\int_a^b a_{jk}(x) dx)$ Übung: $\|\int_a^b A(x) dx\| \le \int_a^b \|A(x)\| dx$ Ist $B: I \to \mathbb{M}$ eine weitere Funktion und $y: I \to \mathbb{R}^m$ eine Funktion, A, B und y seien auf Idifferenzierbar:

(AB)' = A'B + AB' (Reihenfolge beachten!), (Ay)' = A'y + Ay' (det $A)' = \sum_{k=1}^m \det(a^{(1)}, \dots, a^{(k-1)}, (a^{(k)})', a^{(k+1)}, \dots, a^{(m)})$ wobei $A = (a^{(1)}, \dots, a^{(m)})$ (Beweis: Übung)

Jetzt sei $z=(z_1,\ldots,z_m):I\to\mathbb{C}^m$ eine Funktion und $W=(w_{jk}):I\to\mathbb{M}$ eine Funktion und $w_{ik}: I \to \mathbb{C}$.

Sei z=u+iv mit $u,v:I\to\mathbb{R}^m.$ $U:=\mathrm{Re}\ W$ und $V:=\mathrm{Im}\ W.$

Dann: $W = U + iV, U, V : I \to \mathbb{M}$ (reellwertig)

Konvergenz, Stetigkeit, Ableitung, Integral, ... werden über Real- und Imaginärteil definiert.

z.B.: W'(x) = U'(x) + iV'(x), z'(x) = u'(x) + iv'(x),

 $\int_a^b W(x)dx = \int_a^b U(x)dx + i \int_a^b V(x)dx$

Sei $(A_n)_{n=0}^{\infty} = ((a_{ik}^{(n)}))$ eine Folge in $\mathbb{M}. S_n := A_0 + A_1 + \ldots + A_n$.

 $\sum_{n=0}^{\infty} A_n$ heißt **konvergent** : \iff (S_n) ist konvergent \iff alle $\sum_{n=0}^{\infty} a_{jk}^{(n)}$ sind konvergent. $\sum_{n=0}^{\infty} A_n$ heißt **divergent** : \iff (S_n) ist divergent \iff ein $\sum_{n=0}^{\infty} a_{jk}^{(n)}$ ist divergent.

Im Konvergenzfall: $\sum_{n=0}^{\infty} A_n = \lim_{n \to \infty} S_n = (\sum_{n=0}^{\infty} a_{jk}^{(n)})$ $\sum_{n=0}^{\infty} A_n$ heißt **absolut konvergent**: $\iff \sum_{n=0}^{\infty} \|A_n\|$ ist konvergent.

Wie in Ana 1 zeigt man:

Satz 14.3 (Rechenregeln für Matrixreihen und -folgen)

 $(A_n), (B_n)$ seien Folgen in $\mathbb{M}_m, A, B \in \mathbb{M}_m$.

- (1) $\sum_{n=0}^{\infty} A_n$ konvergiert absolut \iff alle $\sum_{n=0}^{\infty} a_{jk}^{(n)}$ konvergieren absolut. In diesem Fall ist $\sum_{n=0}^{\infty} A_n$ konvergent und $\|\sum_{n=0}^{\infty} A_n\| < \sum_{n=0}^{\infty} \|A_n\|$
- (2) $\sum_{n=0}^{\infty} A_n$, $\sum_{n=0}^{\infty} B_n$ seien absolut konvergent. $C_n := A_0 B_n + A_1 B_{n-1} + \ldots + A_m B_0 \ (n \in \mathbb{N}_0)$ Dann konvergiert $\sum_{n=0}^{\infty} C_n$ absolut und $\sum_{n=0}^{\infty} C_n = (\sum_{n=0}^{\infty} A_n)(\sum_{n=0}^{\infty} B_n)$
- (3) Aus $A_n \to A, B_n \to B$ folgt: $A_n B_n \to AB$

Definition

 $A^0 := E(A \in \mathbb{M})$

Satz 14.4 (Absolute Konvergenz von Matrixreihen)

Sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit dem Konvergenzradius r>0 $(r=\infty \text{ ist zugelassen})$

 $f(x) := \sum_{n=0}^{\infty} a_n x^n$ für $x \in (-r,r)$. Sei $A \in \mathbb{M}_m$ und ||A|| < r. Dann ist $\sum_{n=0}^{\infty} a_n A^n$ absolut konvergent.

$$f(A) := \sum_{n=0}^{\infty} a_n A^n$$

Beweis

 $||A^2|| \le ||A||^2$, allgemein (induktiv): $||A^n|| \le ||A||^n$, $\forall n \ge 1$ $\implies ||a_n A^n|| \le ||a_n|| ||A||^n = |a_n|c^n, c := ||A|| < r$

Analysis I $\Longrightarrow \sum_{n=0}^{\infty} |a_n| c^n$ ist konvergent $\xrightarrow{\text{Majorantenkrit.}} \sum_{n=0}^{\infty} \|a_n A^n\|$ ist konvergent \Longrightarrow Beh.

Beispiele 14.5

- (1) $\sum_{n=0}^{\infty} \frac{x^n}{n!} (=e^x); e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!} (A \in \mathbb{M})$ Spezialfall: m=1 Dann: $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ für $z \in \mathbb{C}$
- (2) $\sum_{n=0}^{\infty} x^n (r=1)$. Sei $A \in \mathbb{M}$, dann konvergiert $\sum_{n=0}^{\infty} A^n$ absolut, falls ||A|| < 1.

Behauptung

(E-A) ist invertierbar und $\sum_{n=0}^{\infty} A^n = (E-A)^{-1}$

Beweis

$$B := \sum_{n=0}^{\infty} A^n, S_n := \sum_{k=0}^n A^k = E + A + \dots + A^n$$

$$S_n(E - A) = (E - A) \cdot S_n = S_n - AS_n = E + A + \dots + A^n - (A + A^2 + \dots + A^n + A^{n+1}) = E - A^{n+1}$$

$$\|A^{n+1}\| \le \|A\|^{n+1} \to 0 (n \to \infty) \implies A^{n+1} \to 0$$

$$\implies \underbrace{(E - A)S_n}_{\to (E - A)B} = \underbrace{S_n(E - A)}_{\to B(E - A)} \to E$$

$$\implies (E - A)B = B(E - A) = E \implies (E - A) \text{ ist invertierbar und}$$

$$(E - A)^{-1} = B$$

Satz 14.6 (Matrixexponential rechnung)

Seien A,B $\in \mathbb{M}_m$.

(1)
$$e^0 = E$$
, $e^{\alpha A} = e^{\alpha} E$ ($\alpha \in \mathbb{K}$)

(2)
$$\overline{e^A} = e^{\overline{A}}$$

(3) Ist
$$A = diag(A_1, ..., A_k)$$
, dann $e^A = diag(e^{A_1}, ..., e^{A_k})$

(4) Ist
$$C \in \mathbb{M}_m$$
 invertier
bar $\implies e^{C^{-1}AC} = C^{-1}e^AC$

(5) Ist
$$AB = BA \implies e^{A+B} = e^A e^B = e^B e^A$$

(6)
$$e^A$$
 ist invertierbar und $(e^A)^{-1} = e^{-A}$

Beweis

- (1),(2) klar
- (3) $A^n = diag(A_1^n, ..., A_k^n) \ \forall n \in \mathbb{N} \implies \text{Beh.}$
- (4) $(C^{-1}AC)^2 = C^{-1}ACC^{-1}AC = C^{-1}A^2C$. Induktiv: $(C^{-1}AC)^n = C^{-1}A^nC \implies \text{Beh.}$
- (5) $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$ (da AB=BA). Rest: wie in AI (13.5), beachte Cauchyprodukt

(6)
$$e^A \cdot e^{-A} = e^{-A} \cdot e^A = e^{A-A} = e^0 = E$$

Folgerung 14.7

(1)
$$e^{it} = cos(t) + i \cdot sin(t) \ (\forall t \in \mathbb{R}), \ |e^{it} = 1|$$

(2)
$$e^{z_1+z_2} = e^{z_1} \cdot e^{z_2} \ (\forall z_1, z_2 \in \mathbb{C})$$

(3)
$$cos(nt) + i \cdot sin(nt) = (cos(t) + i \cdot sin(t))^n \ \forall n \in \mathbb{N} \forall t \in \mathbb{R}$$

(4) Ist
$$z = x + iy$$
 $(x, y \in \mathbb{R}) \implies e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot (\cos(y) + i\cot\sin(y))$. Und $|e^z| = e^x$

Beweis

(1)
$$z := it \ (t \in \mathbb{R}). \ z^2 = -t^2, z^3 = -it^3, z^4 = t^4, \dots$$

Einsetzen in Potenzreihe und Aufspalten in geraden Exponententeil und ungerade Exponententeil \implies Beh., $|e^{it}| = |\cos(t) + i \cdot \sin(t)| = \cos^2(t) + \sin^2(t) = 1$.

- (2) folgt aus 14.5(5)
- (3) $\cos(nt) + i \cdot \sin(nt) = e^{int} = (e^{it})^n = (\cos(t) + i \cdot \sin(t))^n$
- (4) folgt aus (2) und (1).

Satz 14.8 (Ableitung der Matrixexponentfunktion)

Sei $A \in \mathbb{M}_m$ und $\phi(x) := e^{xA}$ für x aus \mathbb{R} . ϕ ist auf \mathbb{R} db und $\phi'(x) = Ae^{xA} = e^{xA}A$.

Beweis

Beweis Sei
$$A^n=(a_{jk}^{(n)})(n\in\mathbb{N}_0)$$
. Dann: $\phi(x)=(\underbrace{\sum_{n=0}^\infty\frac{x^n}{n!}a_{jk}^{(n)}}_{f_{jk}(x)})=(f_{jk}(x))$. f_{jk} ist eine Potenzreihe

mit KR =
$$\infty$$
 \Longrightarrow f_{jk} ist auf \mathbb{R} db und $f'_{jk}(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} a_{jk}^{(n)}$ \Longrightarrow ϕ db auf \mathbb{R} und $\phi'(x) = (f_{jk}(x)) = (\sum_{n=0}^{\infty} \frac{x^n}{n!} a_{jk}^{(n+1)}) = \sum_{n=0}^{\infty} \frac{x^n}{n!} A^{n+1} = A e^{xA}$

Beispiel (für
$$e^{xA}$$
)
Sei $q \in \mathbb{N}, \lambda \in \mathbb{K}$ und $A = \begin{pmatrix} \lambda & & * \\ & \ddots & \\ 0 & & \lambda \end{pmatrix} \in \mathbb{M}_q$.

Dann $A - \lambda E = \begin{pmatrix} 0 & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}$,

$$(A - \lambda E)^2 = A_j = \begin{pmatrix} 0 & 0 & * \\ & \ddots & \ddots \\ & & \ddots & 0 \\ 0 & & & 0 \end{pmatrix},$$

:

$$(A - \lambda E)^{q-1} = \begin{pmatrix} 0 & \dots & * \\ & \ddots & \vdots \\ 0 & & 0 \end{pmatrix}$$

$$(A - \lambda E)^n = 0 \ \forall n \ge q$$

$$e^{xA} = e^{\lambda x E + x(A - \lambda E)} = e^{\lambda x E} e^{x(A - \lambda E)} = e^{\lambda x} e^{x(A - \lambda E)} = e^{\lambda x} \sum_{n=0}^{\infty} \frac{x^n}{n!} (A - \lambda E)^n = e^{\lambda x} \sum_{n=0}^{q-1} \frac{x^n}{n!} (A - \lambda E)^n$$

$$= e^{\lambda x} (\underbrace{E + x(A - \lambda E) + \frac{x^2}{2}(A - \lambda E)^2 + \dots + \frac{x^{q-1}}{(q-1)!}(A - \lambda E)^{q-1}}_{-:B(x)})$$

Dann: $B(x) \in \mathbb{M}_q$ und in der k-ten Spalte von B(x) stehen Polynome in x vom Grad $\leq k-1$.

Z.B.
$$(q = 3, \lambda = 2), A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{M}_q$$
. Dann $A - 2E = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, (A - 2E)^2 = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, (A - 2E)^n = 0 (\forall n \ge 3)$$

$$\implies e^{xA} = e^{2x} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + x \cdot \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + \frac{x^2}{2} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix})$$

Aus obiger Betrachtung und 14.5(3) folgt:

Satz 14.9 (Exponierung von Matrizen entlang der Diagonalen)

Seien $q_1, \ldots, q_k \in \mathbb{N}$, $m = q_1 + \cdots + q_k$, $A \in \mathbb{M}_m$, $A = \operatorname{diag}(A_1, \ldots, A_k)$ mit

$$A_{j} = \begin{pmatrix} \lambda_{j} & * \\ & \ddots & \\ 0 & & \lambda_{j} \end{pmatrix} \in \mathbb{M}_{q_{j}} \quad (j = 1..k),$$

wobei $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$ (vgl. 14.1).

Dann: $e^{xA} = \operatorname{diag}(e^{\lambda_1 x} B_1(x), \dots, e^{\lambda_k x} B_k(x))$, wobei $B_j(x) \in \mathbb{M}_{q_j}$ und in der ν -ten Spalte von $B_j(x)$ stehen Polynome in x vom Grad $\leq \nu - 1$ (j = 1..k).

15. Existenz- und Eindeutigkeitssätze für Dgl.Systeme 1. Ordnung

Stets in diesem Paragraphen: $D \subseteq \mathbb{R}^{m+1}, (x_0, y_0) \in D$ und $x_0 \in \mathbb{R}, y_0 \in \mathbb{R}^m$ und $f = (f_1, ..., f_m) : D \to \mathbb{R}^m$ eine Funktion.

Ein System von Dgl. 1. Ordnung hat die Form:

$$\begin{cases} y'_1 = f_1(x, y_1, ..., y_m) \\ y'_2 = f_2(x, y_1, ..., y_m) \\ \vdots \\ y'_m = f_m(x, y_1, ..., y_m) \end{cases}$$

Setzt man $y = (y_1, ..., y_m)$, so schreibt sich das System in der Form y' = f(x, y). Wir betrachten auch noch das AWP (A) $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$

Wir übertragen die Sätze aus den Paragraphen 12 und 13 auf Systeme. Die Beweise dort lassen sich fast wörtlich für Systeme wiederholen. (beachte 14.2) ($\|\cdot\|$ anstatt $|\cdot|$).

Satz 15.1 (Peano)

- (1) Sei $D = I \times \mathbb{R}^m$ und $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}^m$ und $f \in C(D, \mathbb{R}^m)$ sei beschränkt. Dann hat das AWP (A) eine Lösung auf I.
- (2) Es sei $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}^m, s > 0$ und $D := \{(x, y) \in \mathbb{R}^{m+1} | ||y y_0|| < s\}$. Es sei $f \in C(D, \mathbb{R}^m), M := \max\{||f(x, y)|| : (x, y) \in D\}$ und $J := I \cap [x_0 - \frac{s}{M}, x_0 + \frac{s}{M}]$. Dann hat das AWP (A) eine Lösung auf J.
- (3) Sei D offen, $(x_0, y_0) \in D$ und $f \in C(D, \mathbb{R}^m)$. Dann ex. eine Lösung $y : K \to \mathbb{R}^m$ von (A) mit $x_0 \in K$ und $K \subseteq \mathbb{R}$ ein Intervall.

Definition

- (1) f genügt auf D einer Lipschitzbedingung (LB) bzgl. $y:\iff \exists \ \gamma \geq 0: ||f(x,y)-f(x,\overline{y})|| \leq \gamma ||y-\overline{y}|| \ \forall (x,y), (x,\overline{y}) \in D$ (*)
- (2) Sei D offen. f genügt auf D einer lokalen LB bzgl. $y : \iff \forall (x_0, y_0) \in D \exists$ Umgebung U von (x_0, y_0) mit: $U \subseteq D$ und f genügt auf U einer LB bzgl. y.

Satz 15.2 (Picard-Lindelöf)

(1) I, x_0, y_0, D seien wie in 15.1(1) und $f \in C(D, \mathbb{R}^m)$ genüge auf D einer LB bzgl. y. Dann hat das AWP (A) auf I genau eine Lösung. Ist $y^{[0]} \in C(I, \mathbb{R}^m)$ beliebig und

setzt man $y^{[n+1]}(x):=y_0+\int_{x_0}^x f(t,y^{[n]}(t))dt$ $(x\in I,n\in\mathbb{N})$. Dann konvergiert $(y^{[n]})$ auf I glm. gegen die Lösung von (A).

- (2) I, x_0, y_0, D, s, M und J seien wie in 15.1(2) und $f \in C(D, \mathbb{R}^m)$ genüge auf D eine LB bzgl. y. Dann hat (A) auf J genau eine Lsg.
- (3) Es sei D offen, f genüge auf D einer lokalen LB bzgl. y. Dann ist das AWP (A) eindeutig lösbar.

16. Lineare Systeme

Vereinbarung: $I \subseteq \mathbb{R}$ sei ein Intervall, $m \in \mathbb{N}$, $x_0 \in I$, $y_0 \in \mathbb{R}^m$. $D := I \times \mathbb{R}^m$, $a_{jk}, b_j : I \to \mathbb{R}$ seien auf I stetig.

Das Dgl.-System

$$y'_1 = a_{11}(x)y_1 + \ldots + a_{1m}(x)y_m + b_1(x)$$

 \vdots
 $y'_m = a_{m1}(x)y_1 + \ldots + a_{mm}(x)y_m + b_m(x)$

heißt ein **lineares System**. Mit $A(x) := (a_{jk}(x)), \ b(x) := (b_1(x), \dots, b_m(x))$ und $y := (y_1, \dots, y_m)$ schreibt sich obiges System in der Form

$$(S) \quad y' = A(x)y + b(x)$$

Ist $b \equiv 0$, so heißt (S) homogen, anderenfalls inhomogen. (Der Fall m = 1: §7). Wir betrachten noch das AWP

(A)
$$\begin{cases} y' = A(x)y + b(x) \\ y(x_0) = y_0 \end{cases}$$

und die zu (S) gehörende homogene Gleichung

$$(H) \quad y' = A(x)y$$

Satz 16.1 (Lösungen linearer Systeme)

- (1) (A) hat auf I genau eine Lösung.
- (2) (S) hat eine Lösung auf I.
- (3) Ist $J \subseteq I$ ein Intervall und $\widehat{y}: J \to \mathbb{R}^m$ eine Lösung von (S) auf J, dann existiert eine Lösung $y: I \to \mathbb{R}^m$ von (S) auf I mit: $\widehat{y} = y_{|_J}$
- (4) Sei y_s eine spezielle Lösung von (S) auf I und ist $y: I \to \mathbb{R}^m$ eine Funktion, so gilt: y ist eine Lösung von (S) auf $I \iff \exists y_h: I \to \mathbb{R}^m$ mit: y_h löst (H) auf I und $y = y_h + y_s$.

Bemerkung 16.2

Wegen 16.1(3) können wir immer annehmen, daß Lösungen von (S) auf ganz I definiert sind.

Beweis (von 16.1)

(2) folgt aus (1)

- (4) wie in §7
- (1) <u>Fall 1</u>: I = [a, b]. $f(x, y) \coloneqq A(x)y + b(x)$, $\gamma \coloneqq \max\{\|A(x)\| : x \in I\}$. Für (x, y), $(x, \tilde{y}) \in D$: $\|f(x, y) - f(x, \tilde{y})\| = \|A(x)(y - \tilde{y})\| \le \|A(x)\|\|y - \tilde{y}\| \le \gamma \|y - \tilde{y}\|$. 15.2 \Longrightarrow Beh.

Fall 2: I beliebig.

 $\mathcal{M} := \{K : K \text{ ist ein kompaktes Intervall}, K \subseteq I, x_0 \in K\}$

$$\implies I = \bigcup_{K \in \mathcal{M}} K.$$

Fall $1 \Longrightarrow \forall K \in \mathcal{M}$ existiert genau eine Lösung $y_K : K \to \mathbb{R}^m$ von (A) auf K. Def: $y : I \to \mathbb{R}^m$ durch $y(x) := y_k(x)$, falls $x \in K \in \mathcal{M}$. y ist wohldefiniert. Sei $x \in K_1 \cap K_2$ $(K_1, K_2 \in \mathcal{M})$. z.z: $y_{K_1}(x) = y_{K_2}(x)$.

O.B.d.A: $x \neq x_0$, etwa $x > x_0$, $K_3 := [x_0, x] \subseteq K_1 \cap K_2$. $K_3 \in \mathcal{M}$.

Fall $1 \Longrightarrow (A)$ hat auf K_3 genau eine Lösung. y_{K1} und y_{K2} sind Lösungen von (A) auf $K_3 \Longrightarrow y_{K1} = y_{K2}$ auf $K_3 \Longrightarrow y_{K1}(x) = y_{K2}(x)$. Klar: y löst (A) auf I. Sei \tilde{y} eine weitere Lösung von (A) auf $I \Longrightarrow^1 y = \tilde{y}$ auf $K \forall K \in \mathcal{M}$. $\Longrightarrow y = \hat{y}$ auf I.

(3) Sei $\xi \in J$, $\eta := \widehat{y}(\xi)$. (1) \Longrightarrow das AWP

(+)
$$\begin{cases} y' = A(x)y + b(x) \\ y(\xi) = \eta \end{cases}$$

hat auf I genau eine Lösung y. Sei $x \in J$. Z.z: $\widehat{y}(x) = y(x)$. O.B.d.A: $x \neq \xi$, etwa $x > \xi$. (+) hat auf $[\xi, x]$ genau eine Lösung (wegen (1)), \widehat{y} , y sind Lösungen von (+) auf $[\xi, x] \implies y(x) = \widehat{y}(x)$

Wir betrachten jetzt die homogene Gleichung (H) y' = A(x)y.

$$\mathbb{L} := \{ y : I \to \mathbb{R}^m : y \text{ löst } (H) \text{ auf } I \}$$

Satz 16.3 (Vektorraum der Lösungen)

- (1) L ist ein reeller Vektorraum.
- (2) Seien $y^{(1)}, \dots, y^{(k)} \in \mathbb{L}$. Dann sind äquivalent:
 - (i) $y^{(1)}, \ldots, y^{(k)}$ sind linear unabhänging in \mathbb{L} .
 - (ii) $\forall x \in I: y^{(1)}(x), \dots, y^{(k)}(x)$ sind linear unabhänging im \mathbb{R}^m .
 - (iii) $\exists \xi \in I : y^{(1)}(\xi), \dots, y^{(k)}(\xi)$ sind linear unabhängig im \mathbb{R}^m .
- (3) dim $\mathbb{L} = m$.

Beweis

- (1) Nachrechnen!
- (2) (i) \Longrightarrow (ii): Sei $x_1 \in I$, $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ und $0 = \alpha_1 y^{(1)}(x_1) + \dots + \alpha_k y^{(k)}(x_1)$. $y \coloneqq \alpha_1 y^{(1)} + \dots + \alpha_k y^{(k)} \Longrightarrow y \in \mathbb{L}$ und y löst das AWP

$$\begin{cases} y' = A(x)y\\ y(x_1) = 0 \end{cases}$$

Die Funktion 0 löst dieses AWP ebenfalls $\stackrel{16.1}{\Longrightarrow} y \equiv 0 \stackrel{\text{Vor.}}{\Longrightarrow} \alpha_1 = \ldots = \alpha_k = 0.$

- (ii) \Longrightarrow (iii): Klar
- (iii) \Longrightarrow (i): Seien $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ und $0 = \alpha_1 y^{(1)} + \cdots + \alpha_k y^{(k)} \Longrightarrow 0 = \alpha_1 y^{(1)}(\xi) + \cdots + \alpha_k y^{(k)}(\xi) \stackrel{\text{Vor.}}{\Longrightarrow} \alpha_1 = \ldots = \alpha_k = 0.$
- (3) Aus (2): dim $\mathbb{L} \leq m$. Für $j=1,\ldots,m$ sei $y^{(j)}$ die Lösung des AWPs

$$\begin{cases} y' = A(x)y\\ y(x_0) = e_j \end{cases}$$

 $(2) \implies y^{(1)}, \dots, y^{(m)}$ sind linear unabhängig in $\mathbb{L} \implies \dim \mathbb{L} \ge m$.

Ist also $y^{(1)}, \ldots, y^{(m)}$ eine Basis von \mathbb{L} , so lautet die allgemeine Lösung von (H): $y = c_1 y^{(1)} + \cdots + c_m y^{(m)}$ $(c_1, c_2, \ldots, c_m \in \mathbb{R})$.

Ein Spezialfall: Es sei m=2 und A(x) habe die Gestalt

$$A(x) = \begin{pmatrix} a_1(x) & -a_2(x) \\ a_2(x) & a_1(x) \end{pmatrix}$$

 $a_1, a_2: I \to \mathbb{R}$ stetig. Sei $y = (y_1, y_2)$ eine Lösung von

$$(\mathbb{R}) \ y' = A(x)y$$

 $z\coloneqq y_1+iy_2,\ a\coloneqq a_1+ia_2;\ \int a(x)\mathrm{d}x\coloneqq \int a_1(x)\mathrm{d}x+i\int a_2(x)\mathrm{d}x.$ Nachrechnen: z ist eine Lösung der komplexen linearen Differentialgleichung 1. Ordnung

$$(\mathbb{C}) \ z' = a(x)z$$

Ist umgekehrt z eine Lösung von (\mathbb{C}), so setze $y_1 := \text{Re } z$, $y_2 := \text{Im } z$, $y := (y_1, y_2)$. Nachrechnen: y löst (\mathbb{R}). Wie in §7: die allgemeine Lösung von (\mathbb{C}) lautet:

$$z(x) = ce^{\int a(x)dx} \ (c \in \mathbb{C})$$

 $z_0 \coloneqq e^{\int a(x) \mathrm{d}x}; \ y_1 \coloneqq \mathrm{Re} \ z_0, \ y_2 \coloneqq \mathrm{Im} \ z_0, \ y^{(1)} \coloneqq (y_1, y_2). \ y^{(1)} \ \mathrm{ist} \ \mathrm{eine} \ \mathrm{L\"{o}sung} \ \mathrm{von} \ (\mathbb{R}).$

 $z_1(x)=ie^{\int a(x)\mathrm{d}x}=iz_0(x)=i(y_1+iy_2)=-y_2+iy_1 \implies y^{(2)}\coloneqq (-y_2,y_1)$ ist eine Lösung von (\mathbb{R}) .

$$\det \begin{pmatrix} y_1(x) & -y_2(x) \\ y_2(x) & y - 1(x) \end{pmatrix} = y_1(x)^2 + y_2(x)^2$$

$$= |z_0(x)|^2 = |e^{\int a(x) dx}|^2$$

$$= (e^{\int a_1(x) dx})^2 \neq 0 \ \forall x \in I$$

 $\stackrel{16.3}{\Longrightarrow} y^{(1)}, y^{(2)}$ sind in \mathbb{L} linear unabhängig (dim $\mathbb{L} = 2$).

Beispiele:

(1) Beh.: \exists genau ein Paar von Funktionen (y_1, y_2) mit: $y_1, y_2 \in C^1(\mathbb{R}, \mathbb{R}), y_1' = y_2, y_2' = -y_1, y_1(0) = 0, y_2(0) = 1$ nämlich $y_1(x) = \sin x, y_2(x) = \cos x$

Beweis: $I = \mathbb{R}$; $A := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, mit $y = (y_1, y_2)$:

$$y' = Ay \iff y'_1 = y_2, \ y'_2 = -y_1$$

AWP:
$$\begin{cases} y' = Ay \\ y(0) = (0, 1) \end{cases}$$

 $16.1 \Longrightarrow Beh.$

$$a_1(x) \equiv 0, \ a_2(x) \equiv -1, \ a(x) = -i, \ z_0(x) = e^{-ix} = (\cos x, -\sin x),$$

 $y^{(1)}(x) = (\cos x, -\sin x), \ y^{(2)}(x) = (\sin x, \cos x).$ Die allgemeine Lösung von $y' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} y$:

$$y(x) = c_1 \begin{pmatrix} \cos x \\ -\sin x \end{pmatrix} + c_2 \begin{pmatrix} \sin x \\ \cos x \end{pmatrix} \quad (c_1, c_2 \in \mathbb{R})$$

(2)
$$I = (0, \infty), A(x) = \begin{pmatrix} \frac{1}{x} & -2x \\ 2x & \frac{1}{x} \end{pmatrix}. a_1(x) = \frac{1}{x}, a_2(x) = 2x$$

 $\implies a(x) = \frac{1}{x} + i2x \implies \int a(x) dx = \log x + ix^2 \implies z_0(x) = e^{\log x + ix^2} = e^{\log x} e^{ix^2} = x(\cos x^2 + i\sin x^2). \implies$

$$y^{(1)}(x) = (x \cos x^2, x \sin x^2)$$

 $y^{(2)}(x) = (-x \sin x^2, x \cos x^2)$

Die allgemeine Lösung von y' = A(x)y:

$$y(x) = c_1 \begin{pmatrix} x \cos x^2 \\ x \sin x^2 \end{pmatrix} + c_2 \begin{pmatrix} -x \sin x^2 \\ +x \cos x^2 \end{pmatrix}$$

Definition

- (1) Seien $y^{(1)},\dots,y^{(m)}\in\mathbb{L}$. Dann heißt $y^{(1)},\dots,y^{(m)}$ ein **Lösungssystem**
- (2) $Y(x) := (y^{(1)}(x), \dots, y^{(m)}(x)) \in \mathbb{M}_m$ heißt dann eine **Lösungsmatrix** (LM) von (H)
- (3) $W(x) := \det Y(x) \ (x \in I)$ heißt Wronskideterminante.
- (4) Sind $y^{(1)}, \ldots, y^{(m)}$ linear unabhängig in \mathbb{L} , so heißt $y^{(1)}, \ldots, y^{(m)}$ ein **Fundamentalsystem** (FS) von (H) und Y heißt eine **Fundamentalmatrix** (FM) von (H).

Satz 16.4 (Lösungssyteme und -matrizen)

Seien $y^{(1)}, \ldots, y^{(m)}, Y$ und W wie oben.

(1)
$$Y'(x) = A(x)Y(x) \forall x \in I$$
.

- $(2) \ \{Yc : c \in \mathbb{R}^m\} \subseteq \mathbb{L}$
- (3) $y^{(1)}, \ldots, y^{(m)}$ ist eine FS von (H) $\iff Y(x)$ ist invertierbar $\forall x \in I \Leftrightarrow W(x) \neq 0 \ \forall x \in I \Leftrightarrow W(\xi) \neq 0$ für ein $\xi \in I$.
- (4) Sei Y eine FM von (H) und $Z: I \to \mathbb{M}_m$ eine Funktion. Z eine FM von (H) $\iff \exists C \in \mathbb{M}_m : C$ ist invertierbar, $C = \overline{C}$ und $Z(x) = Y(x)C \ \forall x \in I$.
- (5) Für $\xi \in I : W(x) = W(\xi)e^{\int_{\xi}^{x} \operatorname{Spur} A(t)dt} \ \forall x \in I.$

Beweis

- (1) klar.
- (2) Sei $c = (c_1, \dots, c_m) \in \mathbb{R}^m : Yc = c_1 y^{(1)} + \dots + c_m y^{(m)}$
- (3) folgt aus 16.3
- (4) " \Longrightarrow ": Sei $Z(x) = (z^{(1)}(x), \dots, z^{(1)}(x))$ (2) $\Rightarrow \forall j \in \{1, \dots, m\} \exists c^{(j)} \in \mathbb{R}^m : z^{(j)} = Yc^{(j)}C := (c^{(1)}, \dots, c^{(m)}) \in \mathbb{M}_m \Rightarrow C = \overline{C} \text{ und } Z = YC, 0 \neq \det Z(x) = \det Y(x) \det C \Rightarrow \det C \neq 0.$ " \Leftarrow ": $Z'(x) = Y'(x)C \stackrel{1}{=} A(x)Y(x)C = A(x)Z(x) \Rightarrow Z$ ist eine LM von (H). $\det Z(x) = \det Y(x) \det C \neq 0 \Rightarrow Z$ ist eine FM von (H).
- (5) Wegen (3): O.B.d.A.: $W(x) \neq 0 \forall x \in I. \stackrel{(3)}{\Rightarrow} Y$ ist eine FM von (H). Sei $x_0 \in I, z^{(j)}$ die Lösung des AWPs

$$\begin{cases} y' = A(x)y \\ y(x_0) = e_j \quad (j = 1, \dots, m) \end{cases}$$

 $16.3 \Rightarrow Z(x) = (z^{(1)}(x), \dots, z^{(m)}(x)) \text{ ist eine FM von (H) } (4) \Rightarrow \exists C \in M : C = \overline{C}, C$ ist invertierbar und $Y(x) = Z(x)C \Rightarrow Y(x_0) = \underbrace{Z(x_0)}_{E}C = C \Rightarrow Y(x) = Z(x)Y(x_0) \Rightarrow \underbrace{Z(x_0)}_{E} = \underbrace{Z(x$

$$W(x) = \underbrace{\det Z(x)}_{=:\varphi(x)} W(x_0) \Rightarrow W'(x) = \varphi'(x)W(x_0) \,\forall x \in E \ (*)$$

 $\varphi(x) \stackrel{14}{=} \sum_{k=1}^m \det(z^{(1)}(x), \dots, z^{(k-1)}(x), (z^{(k)}(x))', z^{(k+1)}(x), \dots, z^{(m)}(x)) \ (z^{(k)}(x))' = A(x)z^{(k)}(x) = (z^{(k)}(x))'_{|x=x_0|} = A(x_0)z^{(k)}(x_0) = A(x_0)e_k = \text{k-te Spalte von } A(x_0).$

$$\varphi'(x_0) = \sum_{k=1}^{m} \begin{bmatrix} 1 & 0 & \cdots & 0 & a_{1k}(x_0) & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \vdots & & \ddots & \vdots \\ \vdots & \ddots & 1 & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & & & \vdots & \vdots & \vdots & \ddots & 1 & 0 \\ 0 & \cdots & \cdots & 0 & a_{mk}(x_0) & 0 & \cdots & 0 & 1 \end{bmatrix} = \operatorname{Spur} A(x_0)$$

 $\stackrel{(*),x=x_0}{\Rightarrow} W'(x_0) = (\operatorname{Spur} A(x_0)W(x_0) \stackrel{x_0 \text{bel.}}{\Rightarrow} W' = (\operatorname{Spur} A(x))W \operatorname{auf} I. \text{ Sei } \xi \in I. \text{ Dann ist}$ $\int_{\xi}^{x} \operatorname{Spur} A(t) dt \text{ eine Stammfunktion von } \operatorname{Spur} A \stackrel{7}{\Rightarrow} \exists c \in \mathbb{R} : W(x) = ce^{\int_{\xi}^{x} \operatorname{Spur} A(t) dt} \stackrel{x=\xi}{\Rightarrow}$ $c = W(\xi) \Rightarrow \text{Beh.}$

Wir betrachten jetzt die inhomogene GL (IH) y' = A(x)y + b(x)Motivation: Sei m=1. I.d.Fall ist $y(x)=e^{\int A(x)dx}$ ein FS von (H). Für eine spezielle Lösung

von (IH) machten wir den Ansatz:
$$y_s(x) = y(x)c(x)$$
 und erhielten $c(x) = \int \underbrace{e^{-\int A(x)dx}}_{\frac{1}{g(x)}} b(x)dx$

also $y_s(x) = y(x) \int \frac{1}{y(x)} b(x) dx$.

Satz 16.5 (Spezielle Lösung per Cramerscher Regel)

Sei $Y = (y^{(1)}, \dots, y^{(m)})$ eine FM von (H) und $y_s(x) := Y(x) \int (Y(x))^{-1} b(x) dx$ ($x \in$ I). Dann ist y_s eine spezielle Lösung des (IH). Für $k=1,\ldots,m$ sei $W_k(x):=$ $\det(y^{(1)}(x),\ldots,y^{(k-1)}(x),b(x),y^{(k+1)}(x),\ldots,y^{(m)}(x)).$ Dann:

$$y_s(x) = \sum_{k=1}^{m} \left(\int \frac{W_k(x)}{W(x)} dx \right) \cdot y^{(k)}(x)$$

Beweis

Beweis
$$y'_s(x) = Y'(x) \cdot \int (Y(x))^{-1} b(x) dx + y(x) Y(x)^{-1} b(x) = A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x) = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{Y(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) dx}_{y_s(x)} + b(x)}_{y_s(x)} = \underbrace{A(x) \underbrace{X(x) \int Y(x)^{-1} b(x) d$$

$$A(x)y_s(x) + b(x)$$

Für $x \in I$ betrachte das LGS Y(x)v = b(x), dann $v = (v_1, \dots, v_m) = Y(x)^{-1}b(x)$. Cramersche Regel $\Rightarrow v_j = \frac{W_j(x)}{W(x)} \Rightarrow Y(x)^{-1}b(x) = \left(\frac{W_1(x)}{W(x)}, \dots, \frac{W_m(x)}{W(x)}\right) \Rightarrow \text{Beh.}$

Beispiel
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
; Bestimme die allgemeine Lösung von $y' = Ay + \begin{pmatrix} \sin x \\ \cos x \end{pmatrix}$ $(m = 2)$

Bekannt: FS von $y' = Ay : y^{(1)}(x) = (\sin x, \cos x), y^{(2)}(x) = (\cos x, -\sin x).W(x) = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}$ $-1 = W_1(x), W_2(x) = \begin{vmatrix} \sin x & \sin x \\ \cos x & \cos x \end{vmatrix} = 0 \Rightarrow y_s(x) = x \cdot \begin{pmatrix} \sin x \\ \cos x \end{pmatrix}$

Allgemeine Lösung der inhomogenen Gleichung: $y(x) = c_1 \left(\frac{\sin x}{\cos x} \right) + c_2 \left(\frac{\cos x}{-\sin x} \right) + x \left(\frac{\sin x}{\cos x} \right), c_1, c_2 \in \mathbb{R}$

 $\mathbb{R}, Y(x) = \begin{pmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{pmatrix} \text{FM von } y' = Ay. \text{ Dann } Y(x)^T Y(x) = E. \text{ Sei } y = (y_1, y_2) \text{ eine L\"osung von } y' = Ay \Rightarrow y_1 = c_1 \sin x + c_2 \cos x, y_2 = c_1 \cos x - c_2 \sin x. \text{ Nachrechnen: } y_1^2 + y_2^2 = c_1^2 + c_2^2$

Satz 16.6 (Schiefsymmetrische Systeme)

Sei $A(x)^T = -A(x) \ \forall x \in I, Y$ sei eine FM von (H) y' = A(x)y.

- (1) $Y(x)^T Y(x)$ ist auf I konstant.
- (2) Ist $y = (y_1, \dots, y_m)$ eine Lösung von (H) $\Rightarrow y_1^2 + y_2^2 + \dots + y_m^2$ ist konstant auf I.

Beweis

- Beweis (1) $(Y^TY)' = (Y^T)'Y + Y^TY' = (Y')^TY + Y^TY' = (AY)^TY + Y^TAY = Y^T \underbrace{A^T}_{-A} Y + Y^T AY = Y^T AY$ 0 auf $I \Rightarrow$ Beh.
- (2) O.B.d.A: $y \not\equiv 0, y^{(1)} := y$. Dann ist $y^{(1)}$ l.u. in \mathbb{L} . Dann existieren $y^{(2)}, \dots, y^{(m)} \in \mathbb{L}$ mit: $y^{(1)}, \dots, y^{(m)}$ ist ein FS von (H). $Y := (y^{(1)}, \dots, y^{(m)}), Z(x) := Y(x)^T Y(x) \stackrel{(1)}{\Rightarrow} Z$ ist auf I konstant. Sei $Z(x) = (z_{jk})$. Dann $y_1^2 + \dots + y_m^2 = z_{11}$

17. Lineare Systeme mit konstanten Koeffizienten

Wir betrachten Systeme der Form:

(S)
$$y' = Ay + b(x)$$

wobei $A = (a_{jk}) \in \mathbb{M}_m$ und die a_{jk} konstant sind. Die Lösung solcher Systeme lässt sich auf Eigenwerte von A zurückführen. Ist A reell, so kann A komplexe Eigenwerte haben.

Also stets in diesem Paragraphen: $m \in \mathbb{N}, A = (a_{jk}) \in \mathbb{M}_m, a_{jk} \in \mathbb{C}, I \subseteq \mathbb{R}$ ein Intervall, $x_0 \in I, y_0 \in \mathbb{C}^m$ und $b: I \to \mathbb{C}^m$ stetig.

Erweiterter Lösungsbegriff: Sei $y:I\to\mathbb{C}^m$ differenzierbar. y heißt eine Lösung von (S) auf $I:\iff y'(x)=Ay+b(x)\ \forall x\in I.$

y heißt eine Lösung des AWPs (A) $\begin{cases} y' = Ay + b(x) \\ y(x_0) = y_0 \end{cases}$ auf $I : \iff y$ ist eine Lösung von (S) auf I und $y(x_0) = y_0$

Satz 17.1

(A) hat auf I genau eine Lösung.

Beweis

 $U := \operatorname{Re} A, \ V := \operatorname{Im} A, \ g := \operatorname{Re} b, \ h := \operatorname{Im} b, \ \gamma_0 := \operatorname{Re} y_0, \ \delta := \operatorname{Im} y_0,$ $\tilde{b} := (g, h) : I \to \mathbb{R}^{2m}, \ \tilde{y_0} := (\gamma_0, \ \delta_0) \in \mathbb{R}^{2m}$ $B := \begin{pmatrix} U & -V \\ V & U \end{pmatrix} \in \mathbb{M}_{2m} \ (B = \overline{B})$

Betrachte das AWP (
$$\tilde{A}$$
) $\begin{cases} z' = Bz + \tilde{b}(x) \\ z(y_0) = \tilde{y_0} \end{cases}$

Sei $y: I \to \mathbb{C}^m$ eine Funktion, $z:=(\operatorname{Re} y, \operatorname{Im} y): I \to \mathbb{R}^{2m}$ Dann: y ist eine Lösung von (A) auf $I \iff z$ ist eine Lösung von (A) auf I. 16.1 \implies Beh.

Wir betrachten das homogene System

(H)
$$y' = Ay$$

Folgerung 17.2

Alle Definitionen und die Sätze 16.3, 16.4 und 16.5 des §16 bleiben im komplexen Fall gültig. Der Raum \mathbb{L} ist ein komplexer VR, dim $\mathbb{L} = m$. In 16.4 schreibe $c \in \mathbb{C}^m$ und $C \in \mathbb{M}_m$ komplex. Ist $y \in \mathbb{L}$ und A reell $\xrightarrow{\text{Bew. "". 17.1}}$ Re y, Im $y \in \mathbb{L}$

Satz 17.3

 e^{xA} ist eine Fundamentalmatrix von (H).

Beweis

$$Y(x) := e^{xA}$$
; 14.5 $\implies e^{xA}$ ist invertierbar. $\implies \det Y(x) \neq 0$
 $Y'(x) \stackrel{14.5}{=} Ae^{xA} = AY(x) \implies Y$ ist eine LM von (H)

Beispiel (m=2)

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \text{ induktiv: } A^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \ \forall n \in \mathbb{N}_0$$

$$\implies e^{xA} = \sum_{n=0}^{\infty} \frac{x^n}{n!} A^n = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{x^n}{n!} & o \\ \sum_{n=0}^{\infty} \frac{nx^n}{n!} & \sum_{n=0}^{\infty} \frac{x^n}{n!} \end{pmatrix}$$

$$\sum_{n=0}^{\infty} \frac{nx^n}{n!} = \sum_{n=1}^{\infty} \frac{x^n}{(n-1)!} = x \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = xe^x$$

$$\implies e^{xA} = \begin{pmatrix} e^x & 0 \\ xe^x & e^x \end{pmatrix}$$

Fundamental system von y' = Ay:

$$y^{(1)}(x) = e^x \begin{pmatrix} 1 \\ x \end{pmatrix}$$
$$y^{(2)}(x) = e^x \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Motivation: Sei λ ein Eigenwert von $A, c \in \mathbb{C}^m \setminus \{0\}$ und $Ac = \lambda c$

$$y(x) := e^{\lambda x}c$$

$$y'(x) = \lambda e^{\lambda x} c = e^{\lambda x} (\lambda c) = e^{\lambda x} (Ac) = A(e^{\lambda x} c) = Ay(x)$$

Satz 17.4

Die Eigenwerte von A seien **alle einfach**, d.h. A habe die Eigenwerte $\lambda_1, \ldots, \lambda_m$ ($\lambda_j \neq \lambda_k$ für $j \neq k$). $c^{(j)}$ sei ein Eigenvektor zu $\lambda_j (j = 1, \ldots, m)$. Es sei $y^{(j)}(x) := e^{\lambda_j x} c^{(j)}$.

Dann ist (*)
$$y^{(1)}, \dots, y^{(m)}$$
 ein (komplexes) FS von (H)

Sei A reell: Wir können mit einem $l \in \mathbb{N}$ annehmen:

$$\lambda_1, \ldots, \lambda_l \in \mathbb{C} \setminus \mathbb{R}; \ (\lambda_{l+1} = \overline{\lambda_1}), \ldots, (\lambda_{2l} = \overline{\lambda_l}); \ \lambda_{2l+1}, \ldots, \lambda_m \in \mathbb{R}$$

Dann ist $(+) \operatorname{Re} y^{(1)}, \dots, \operatorname{Re} y^{(l)}, \operatorname{Im} y^{(1)}, \dots, \operatorname{Im} y^{(l)}, y^{(2l+1)}, \dots, y^{(m)}$

ein reelles FS von (H).

Beweis

Obige Motivation $\implies y^{(1)}, \dots, y^{(m)} \in \mathbb{L}$. Seien $\alpha_1, \dots, \alpha_m \in \mathbb{C}$ und $0 = \alpha_1 y^{(1)} + \dots + \alpha_m y^{(m)}$ $\implies 0 = \alpha_1 y^{(1)}(0) + \dots + \alpha_m y^{(m)}(0) \implies 0 = \alpha_1 c^{(1)} + \dots + \alpha_m c^{(m)}$ $\implies \alpha_1 = \dots = \alpha_m = 0 \implies y^{(1)}, \dots, y^{(m)}$ ist ein FS von (H). Sei A reell: 17.2 \implies in (+)

Übung: diese Lösungen sind linear unabhängig.

Beispiele:

(1) Bestimme ein komplexes FS von

stehen Lösungen von (H).

$$y' = \underbrace{\begin{pmatrix} i & 0 & 2\\ 1 & 1+i & 0\\ 1-i & 1+i & 1+2 \end{pmatrix}}_{=A} y$$

 $\det(A - \lambda E) = (\lambda - 1)(\lambda - i)(1 + i - \lambda); \text{ Eigenwerte: } \lambda_1 = i, \lambda_2 = 1 + i, \lambda_3 = 1$ EV zu $\lambda_1 : (1, -1, i), \text{ EV zu } \lambda_2 : (2, 2i, 1 + i), \text{ EV zu } \lambda_3 : (0, 1, 0)$ FS: $y^{(1)}(x) = e^{ix} \begin{pmatrix} 1 \\ -1 \\ i \end{pmatrix}, y^{(2)}(x) = e^{(1+i)x} \begin{pmatrix} 2 \\ 2i \\ 1+i \end{pmatrix}, y^{(3)}(x) = e^{x} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

(2) Bestimme ein reelles FS von

$$y' = \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -3 & 1 & -1 \end{pmatrix}}_{=A} y$$

$$\det(A - \lambda E) = (\lambda - i)(\lambda + i)(1 - \lambda)$$

$$\lambda_1 = i, \lambda_2 = \overline{\lambda_1}, \lambda_3 = 1$$

EV zu $\lambda_1 : (1, 1, 1 - i)$, EV zu $\lambda_3 : (1, 3, 0)$

$$y(x) := e^{ix} \begin{pmatrix} 1 \\ 1 \\ 1 - i \end{pmatrix} = (\cos x + i \sin x) \begin{pmatrix} 1 \\ 1 \\ 1 - i \end{pmatrix}$$

$$= \begin{pmatrix} \cos x + i \sin x \\ \cos x + i \sin x \\ \cos x + \sin x + i (\sin x - \cos x) \end{pmatrix}$$

$$= \begin{pmatrix} \cos x \\ \cos x \\ \cos x \\ \cos x + \sin x \end{pmatrix} + i \begin{pmatrix} \sin x \\ \sin x \\ \sin x - \cos x \end{pmatrix}$$

$$=:y^{(1)}(x)$$

$$=:y^{(2)}(x)$$

$$y^{(3)}(x) = e^{x} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

Fundamental system: $y^{(1)}, y^{(2)}, y^{(3)}$

Hilfssatz (1)

Sei λ ein q-facher Eigenwert von A und $c^{(1)},\ldots,c^{(\nu)}$ seien linear unabhängig in $\operatorname{Kern}(A-\lambda E)^q$.

Für $j = 1, \ldots, \nu$:

$$y^{(j)}(x) := e^{\lambda x} \left(c^{(j)} + x(A - \lambda E)c^{(j)} + \frac{x^2}{2!}(A - \lambda E)^2 c^{(j)} + \dots + \frac{x^{(q-1)}}{(q-1)!}(A - \lambda E)^{q-1} c^{(j)} \right)$$

Dann sind $y^{(1)}, \dots, y^{(\nu)}$ linear unabhängige Lösungen von (H).

Beweis

1. Schreibe c statt $c^{(j)}$ und y statt $y^{(j)}$. Also:

$$y(x) = e^{\lambda x} \sum_{k=0}^{q-1} \frac{x^k}{k!} (A - \lambda E)^k c$$

$$y'(x) = \lambda y(x) + e^{\lambda x} \sum_{k=1}^{q-1} \frac{x^{k-1}}{(k-1)!} (A - \lambda E)^k c$$

$$= \lambda y(x) + e^{\lambda x} \sum_{k=1}^{q} \frac{x^{k-1}}{(k-1)!} (A - \lambda E)^k c$$

$$= \lambda y(x) + e^{\lambda x} \sum_{k=0}^{q-1} \frac{x^k}{k!} (A - \lambda E)^{k+1} c$$

$$= \lambda y(x) + (A - \lambda E) \underbrace{\left(e^{\lambda x} \sum_{k=0}^{q-1} \frac{x^k}{k!} (A - \lambda E)^k c\right)}_{=y(x)}$$

$$= \lambda y(x) + (A - \lambda E) y(x) = Ay(x)$$

2. $y^{(j)}(0) = c^{(j)} \stackrel{16.3}{\Longrightarrow} y^{(1)}, \dots, y^{(\nu)}$ sind linear unabhängig in $\mathbb L$

Hilfssatz (2)

Seien $\lambda_1, \ldots, \lambda_k$ die paarweisen verschienden Eigenwerte von A und q_1, \ldots, q_k deren Vielfachheiten (also: $k \leq m, q_1 + \cdots + q_k = m$).

$$V_i := \operatorname{Kern}(A - \lambda_i E)^{q_j} \quad (j = 1, \dots, k).$$

Dann:

$$\mathbb{C}^m = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$

Beweis

Siehe lineare Algebra

Konstruktion für die Praxis: Bezeichnungen wie im Hilfssatz 2. Sei $j \in \{i, ..., k\}$. Dann:

$$\operatorname{Kern}(A - \lambda_j E) \subseteq \operatorname{Kern}(A - \lambda_j E)^2 \subseteq \operatorname{Kern}(A - \lambda_j E)^3 \subseteq \cdots \subseteq V_j$$

Bestimme eine Basis von V_i wie folgt:

Bestimme eine Basis von Kern $(A - \lambda_j E)$. Erweitere diese zu einer Basis von Kern $(A - \lambda_j E)^2$, ...

Aus den Hilfssätzen (1) und (2) und obiger Konstrutktion folgt:

Satz 17.5

 $\lambda_1, \ldots, \lambda_k$ und q_1, \ldots, q_k seien wie im Hilfssatz (2). Zu λ_j gibt es q_j linear unabhängige Lösungen von (H) der Form:

$$(**) \quad e^{\lambda_j x} p_0^{(j)}(x), e^{\lambda_j x} p_1^{(j)}(x), \dots, e^{\lambda_j x} p_{q_j - 1}^{(j)}(x)$$

wobei im Vektor $p_{\nu}^{(j)}(x)$ Polynome vom Grad kleiner oder gleich ν stehen.

Führt man diese Konstruktion für jedes λ_j durch, so erhält man ein (komplexes) Fundamentalsystem von (H).

Ist also A reell, so kann man mit einem $l \in \mathbb{N}$ annehmen:

$$\lambda_1, \ldots, \lambda_l \in \mathbb{C} \setminus \mathbb{R}, \ \lambda_{l+1} = \overline{\lambda_1}, \ldots, \lambda_{2l} = \overline{\lambda_l}, \ \lambda_{2l+1}, \ldots, \lambda_k \in \mathbb{R}$$

und

$$p_0^{(j)}(x), \dots, p_{q-1}^{(j)}(x) \in \mathbb{R}^m \quad (j = 2l + 1, \dots, k)$$

Ein reelles Fundamentalsystem von (H) erhält man wie folgt:

- 1. Für $\lambda_1, \ldots, \lambda_l$ zerlege die Lösungen in (**) in Real- und Imaginärteil (und lasse die Lösungen für $\lambda_{k+1}, \ldots, \lambda_{2l}$ unberücksichtigt).
- 2. Für $\lambda_{2l+1}, \ldots, \lambda_k$ übernehme die Lösungen aus (**).

Bezeichnung: Für $a^{(1)},\ldots,a^{(\nu)}\in\mathbb{C}^m$ sei $[a^{(1)},\ldots,a^{(\nu)}]$ die lineare Hülle von $a^{(1)},\ldots,a^{(\nu)}$

Beispiele:

(1)

$$y' = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -2 & 0 \end{pmatrix}}_{-4} y$$

 $\lambda_1=i$ ist ein 2-facher Eigenwert von $A,\ \lambda_2=\overline{\lambda_1}=-i$ ist ein 2-facher Eigenwert von A.

$$\operatorname{Kern}(A-iE) = \begin{bmatrix} 1\\i\\-1\\-i \end{bmatrix} \subseteq \begin{bmatrix} 1\\i\\-1\\-i \end{bmatrix}, \begin{pmatrix} 0\\1\\2i\\-3 \end{bmatrix} = \operatorname{Kern}(A-iE)^2$$

17. Lineare Systeme mit konstanten Koeffizienten

$$y^{(1)}(x) = e^{ix} \begin{pmatrix} 1 \\ i \\ -1 \\ -i \end{pmatrix}$$
$$y^{(2)}(x) = e^{ix} \begin{pmatrix} 0 \\ 1 \\ 2i \\ -3 \end{pmatrix} + x(A - iE) \begin{pmatrix} 0 \\ 1 \\ 2i \\ -3 \end{pmatrix} = e^{ix} \begin{pmatrix} x \\ 1 + ix \\ -x + 2i \\ 3 - ix \end{pmatrix}$$

Dann ist $\operatorname{Re} y^{(1)}, \operatorname{Im} y^{(1)}, \operatorname{Re} y^{(2)}, \operatorname{Im} y^{(3)}$ ein reelles FS.

$$y^{(1)}(x) = \begin{pmatrix} \cos x + i \sin x \\ -\sin x + i \cos x \\ -\cos x - i \sin x \\ \sin x - i \cos x \end{pmatrix} = \begin{pmatrix} \cos x \\ -\sin x \\ -\cos x \\ \sin x \end{pmatrix} + i \begin{pmatrix} \sin x \\ \cos x \\ -\sin x \\ -\cos x \end{pmatrix}$$

(2)

$$y' = \underbrace{\begin{pmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}}_{=A} y$$

$$\det(A - \lambda E) = -(\lambda - 1)(\lambda - 1)^2; \ \lambda_1 = 1, q_1 = 2, \lambda_2 = 2, q_2 = 1;$$

$$\operatorname{Kern}(A - E) = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} \subseteq \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \end{bmatrix} = \operatorname{Kern}(A - E)^2$$

$$y^{(1)}(x) = e^x \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$y^{(2)}(x) = e^x \begin{pmatrix} 0\\0\\-1 \end{pmatrix} + x(A - E) \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$$

$$= e^x \begin{pmatrix} 0\\0\\-1 \end{pmatrix} + x \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$= e^x \begin{pmatrix} x\\x\\-1 \end{pmatrix}$$

$$\operatorname{Kern}(A - 2E) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$y^{(3)}(x) = e^{2x} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Das Fundamentalsystem ist $y^{(1)}, y^{(2)}, y^{(3)}$.

(3)

$$y' = \underbrace{\begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & -4 & 3 \end{pmatrix}}_{-A} y$$

$$\det(A - \lambda E) = -(\lambda - 1)^3; \ \lambda_1 = 1, \ q_1 = 3$$

$$\begin{aligned} \operatorname{Kern}(A-E) &= \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{bmatrix} \\ &\subseteq \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \end{bmatrix} = \operatorname{Kern}(A-E)^2 \\ &\subseteq \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix} = \operatorname{Kern}(A-E)^3 \end{aligned}$$

$$y^{(1)}(x) = e^{x} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$y^{(2)}(x) = e^{x} \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} + x(A - E) \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \end{pmatrix}$$

$$= e^{x} \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + x \begin{pmatrix} -4 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$= e^{x} \begin{pmatrix} -4x \\ 1 \\ -2 \end{pmatrix}$$

$$y^{(3)}(x) = e^{x} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + x(A - E) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \frac{x^{2}}{2}(A - E)^{2} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$= e^{x} \begin{pmatrix} x - 2x^{2} \\ -x \\ 1 + 2x \end{pmatrix}$$

Das Fundamentalsystem ist $y^{(1)}, y^{(2)}, y^{(3)}$.

Zum inhomogenen System (IH) Ay + b(x). Sei $y^{(1)}, \ldots, y^{(m)}$ ein Fundamentalsystem von (H). Für eine spezielle Lösung y_s von (IH) macht man den Ansatz

$$y_s(x) = c_1(x)y^{(1)} + \dots + c_m(x)y^{(m)}$$

und gehe damit in (IH) ein.

18. Differentialgleichungen höherer Ordnung

In diesem Paragraphen: $m \in \mathbb{N}$, $\emptyset \neq D \subseteq \mathbb{R}^m$, $f: D \to \mathbb{R}$ eine Funktion, $x_0, y_0, \dots, y_{m-1} \in \mathbb{R}$ mit $(x_0, y_0, \dots, y_{m-1}) \in D$.

Wir betrachten die Differentialgleichung

(D)
$$y^{(m)} = f(x, y, y', \dots, y^{(m-1)})$$

und das Anfangswertproblem

(A₁)
$$\begin{cases} (D) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(m-1)}(x_0) = y_{m-1} \end{cases}$$

(Lösungsbegriff für (D) und $(A_1) \rightarrow \S 6$)

Für $z = (z_1, \ldots, z_m)$ betrachten wir das System

(S)
$$\begin{cases} z'_1 = z_2 \\ z'_2 = z_3 \\ \vdots \\ z'_{n-1} = z_n \\ z'_n = f(x, z_1, \dots z_m) \end{cases}$$

Satz 18.1

Sei $I \subseteq \mathbb{R}$ ein Intervall.

- (1) Ist $y: I \to \mathbb{R}$ eine Lösung von (D) auf $I \implies z := (y, y', \dots, y^{(m-1)})$ ist eine Lösung von (S) auf I.
- (2) Ist $z = (z_1, \dots, z_m) : I \to \mathbb{R}^m$ eine Lösung von (S) auf $I \Longrightarrow y := z_1$ ist eine Lösung von (D).

Beweis

Nachrechnen.

Satz 18.2

Sei $h: D \to \mathbb{R}^m$ definiert durch $h(x,y) := (y_2, \dots, y_m, f(x,y))$, wobei $(x,y) \in D$ und $x \in \mathbb{R}, y \in \mathbb{R}^m$.

- $(1) \ h \in C(D, \mathbb{R}^m) \iff f \in C(D, \mathbb{R})$
- (2) f genügt auf D einer (lokalen) Lipschitzbedingung bezüglich $y \iff h$ genügt auf D einer (lokalen) Lipschitzbedingung bezüglich y.

Beweis

- (1) Klar.
- (2) Nachrechnen.

Aus 18.1, 18.2 und 15.3 folgt:

Satz 18.3

Sei $I=[a,b]\subseteq\mathbb{R}, D:=I\times\mathbb{R}^m, f\in C(D,\mathbb{R})$ und genüge auf D einer Lipschitzbedingung bezüglich y. Dann hat (A_1) auf I genau eine Lösung.

Bemerkung: Die weiteren Sätze aus \S 15 lassen sich ebenfalls auf Differentialgleichungen m-ter Ordnung übertragen.

19. Lineare Differentialgleichungen m-ter Ordnung

In diesem Paragraphen: $I \subseteq \mathbb{R}$ ein Intervall, $a_0, a_1, \ldots, a_{m-1}, b \in C(I, \mathbb{R}), x_0, y_0, \ldots, y_{m-1} \in \mathbb{R}$. Die Differentialgleichung $y^{(m)} + a_{m-1}(x)y^{(m-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$ heißt eine **lineare** Differentialgleichung m-ter Ordnung.

Setze $Ly := y^{(m)} + a_{m-1}(x)y^{(m-1)} + \ldots + a_1(x)y' + a_0(x)y$. Dann schreibt sich obige Gleichung in der Form

$$Ly = b(x)$$

Diese Gleichung heißt **homogen**, falls $b \equiv 0$, anderenfalls **inhomogen**. Das zur Gleichung Ly = b gehörende System (S) aus § 18 lautet

$$z' = A(x)z + b_0(x)$$

mit
$$b_0(x) = (0, \dots 0, b(x))$$
 und $A(x) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 0 & 0 & 0 & & 1 \\ -a_0(x) & \dots & \dots & -a_{m-1}(x) \end{pmatrix}$

Die Beweise der folgenden Sätze 19.1 bis 19.4 folgen aus den Paragraphen 16 und 18.

Satz 19.1 Das Anfangswertproblem
$$\begin{cases} Ly = b(x) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(m-1)}(x_0) = y_{m-1} \end{cases}$$
 hat auf I genau eine Lösung.

Wie in § 16: Ist $J \subseteq I$ ein Intervall und $\hat{y}: J \to \mathbb{R}$ eine Lösung von Ly = b auf J, so existiert eine Lösung $y: I \to \mathbb{R}$ der Gleichung Ly = b auf I mit $\hat{y} = y|_J$.

Daher betrachten wir immer Lösungen $y: I \to \mathbb{R}$.

Die zu Ly = b gehörende homogene Gleichung lautet: (H) Ly = 0.

Satz 19.2

Sei y_s eine spezielle Lösung der Gleichung Ly=b und $y:I\to\mathbb{R}$ eine Funktion.

Dann: y ist eine Lösung von $Ly = b \iff \exists y_0 : I \to \mathbb{R} : y_0$ ist eine Lösung von (H) und $y = y_0 + y_s$.

 $\mathbb{L} := \{ y : I \to \mathbb{R} : y \text{ löst (H) auf } I \}.$

Satz 19.3

- (1) \mathbb{L} ist ein reeller Vektorraum, dim $\mathbb{L} = m$.
- (2) Für $y_1, \ldots, y_k \in \mathbb{L}$ sind äquivalent:
 - (i) y_1, \ldots, y_k sind linear unabhängig in \mathbb{L} ;
 - (ii) $\forall x \in I \text{ sind } (y_j(x), y_j'(x), \dots, y_j^{(m-1)}(x)) \quad (j = 1, \dots k) \text{ linear unabhängig in } \mathbb{R}^m;$
 - (iii) $\exists x \in I : (y_j(x), y_j'(x), \dots, y_j^{(m-1)}(x)) \quad (j = 1, \dots, k)$ sind linear unabhängig in \mathbb{R}^m .

Definition

Seien $y_1, \ldots, y_m \in \mathbb{L}$. y_1, \ldots, y_m heißt ein **Lösungssystem** (LS) von (H) und

$$W(x) := \begin{vmatrix} y_1(x) & \dots & y_m(x) \\ y'_1(x) & \dots & y'_m(x) \\ \vdots & & \vdots \\ y_1^{(m-1)}(x) & \dots & y_m^{(m-1)}(x) \end{vmatrix}$$

heißt Wronskideterminante.

Sind y_1, \ldots, y_m linear unabhängig in \mathbb{L} , so heißt y_1, \ldots, y_m ein **Fundamentalsystem** (FS) von (H).

Satz 19.4

Sei $y_1, \ldots y_m$ ein Lösungssystem von (H).

- (1) $W(x) = W(\xi)e^{-\int_{\xi}^{x} a_{m-1}(t)dt} \ (x, \xi \in I)$
- (2) $y_1, \dots y_m$ ist ein Fundamentalsystem von (H) $\iff W(x) \neq 0 \, \forall x \in I \iff \exists \xi \in I : W(\xi) \neq 0$

Satz 19.5 (Reduktionsverfahren von d'Alembert (m = 2))

Sei y_1 eine Lösung von (*) $y'' + a_1(x)y' + a_0(x)y = 0$ und $y_1(x) \neq 0 \,\forall x \in I$. Sei z eine Lösung von $z' = -(a_1(x) + \frac{2y_1'(x)}{y_1(x)})z$, $z \neq 0$ und $y_2(x) := y_1(x) \int z(x) dx$.

Dann ist y_1, y_2 ein Fundamentalsystem von (*).

Nachrechnen:
$$y_2$$
 löst (*). $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} y_1 & y_1 \int z dx \\ y'_1 & y'_1 \int z dx + y_1 z \end{vmatrix} =$

$$y_1 y'_1 \int z dx + y_1^2 z - y_1 y'_1 \int z dx = \underbrace{y_1^2}_{>0} z \xrightarrow{19.4} y_1, y_2 \text{ sind linear unabhängig in } \mathbb{L}.$$

Beispiel

Setspice
$$(**)$$
 $y'' + \frac{2x}{1-x^2}y' - \frac{2}{1-x^2}y = 0$ $(I = (1, \infty)); y_1(x) = x$ $z' = -(\frac{2x}{1-x^2} + \frac{2}{x})z = -\frac{2x^2 + 2(1-x^2)}{x(1-x^2)}z = \frac{2}{x(x^2-1)}z$ $(***)$
$$\int \frac{2}{x(x^2-1)}dx = \log(1 - \frac{1}{x^2})$$

§ 7
$$\implies$$
 allgemeine Lösung von (***): $z(x) = ce^{\log(1-\frac{1}{x^2})} = c(1-\frac{1}{x^2})$ $(c \in \mathbb{R})$

$$z(x) = 1 - \frac{1}{x^2} \implies \int z(x)dx = x + \frac{1}{x} \implies y_2(x) = x(x + \frac{1}{x}) = 1 + x^2$$

Fundamentalsystem: y_1, y_2 . Allgemeine Lösung von (**): $y(x) = c_1 x + c_2 (1 + x^2)$ $(c_1, c_2 \in \mathbb{R})$

Satz 19.6

Sei y_1, \ldots, y_m ein FS von (H). W sei die Wronskideterminante von y_1, \ldots, y_m und für $k=1,\ldots,m$ sei $W_k(x)$ die Determinante, die aus W(x) entsteht, indem man in W(x) die k-te Spalte ersetzt durch $(0,\ldots,0,b(x))^T$. Dann ist

$$y_s := \sum_{k=1}^m y_k \int \frac{W_k}{W} dx$$

eine spezielle Lösung von $L_y = b(x)$.

Beweis

§16, §18

$$y'' + \frac{2x}{1-x^2}y' - \frac{2}{1-x^2}y = x^2 - 1$$

$$W(x) = \begin{vmatrix} x & x^2 + 1 \\ 1 & 2x \end{vmatrix} = 2x^2 - (x^2 + 1) = x^2 - 1$$

$$W_1(x) = \begin{vmatrix} 0 & x^2 + 1 \\ x^2 - 1 & 2x \end{vmatrix} = -(x^2 + 1)(x^2 - 1) \implies \frac{W_1(x)}{W(x)} = -(x^2 + 1)$$

$$\implies \int \frac{W_1}{W} dx = -\frac{1}{3}x^3 - x$$

$$W_2(x) = \begin{vmatrix} x & 0 \\ 1 & x^2 - 1 \end{vmatrix} = x(x^2 - 1) \implies \frac{W_2(x)}{W(x)} = x \implies \int \frac{W_2}{W} dx = \frac{1}{2}x^2$$

$$\implies y_s(x) = -\frac{1}{3}x^4 - x^2 + (x^2 + 1)\frac{1}{2}x^2 = \frac{1}{6}x^4 - \frac{1}{2}x^2.$$

Allgemeine Lösung der inhomogenen Gleichung: $y(x) = c_1 x + c_2(x^2 + 1) + \frac{1}{6}x^4 + \frac{1}{2}x^2(c_1, c_2 \in \mathbb{R})$

20. Lineare Differentialgleichungen m-ter Ordnung mit konstanten Koeffizienten

Wir gehen wie in §17 den Weg über das Komplexe:

 $I \subseteq \mathbb{R}$ sei ein Intervall, $a_0, a_1, \ldots, a_{m-1} \in \mathbb{C}, b: I \to \mathbb{C}$ sei stetig; $x_0 \in I, y_0, \ldots, y_{m-1} \in \mathbb{C}$ Wir betrachten die DGL:

$$Ly := y^{(m)} + a_{m-1}y^{(m-1)} + \ldots + a_1y' + a_0y = b(x)$$

§18/19 obiger Gleichung entspricht das folgende System

$$z' = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{m-1} \end{pmatrix} z + \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ b(x) \end{pmatrix}$$

Aus §17 folgt:

Satz 20.1

(1)

das AWP
$$\begin{cases} Ly = b(x) \\ y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(m-1)}(x_0) = y_{m-1} \end{cases}$$

hat auf I genau eine Lösung

(2) Die Definitionen und Sätze des §en 19 gelten auch im Komplexen. \mathbb{L} ist ein komplexer VR. dim $\mathbb{L} = m$.

Wir betrachten zunächst die homogene Gleichung (H) Ly=0 $p(\lambda):=\lambda^m+a_{m-1}\lambda^{m-1}+\ldots+a_1\lambda+a_0$ heißt das charakteristische Polynom von (H). Beachte: $p(\lambda)=\det(\lambda E-A)$.

Satz 20.2 (ohne Beweis)

Sie p das char. Polynom von (H)

(1) λ_0 sei eine q-fache Nullstelle von p. Dann sind $e^{\lambda_0 x}, x e^{\lambda_0 x}, \dots, x^{q-1} e^{\lambda_0 x}$ linear unabhängige Lösungen von (H).

- (2) Führt man (1) für jede Nullstelle von p durch, so erhält man ein (komplexes) FS von (H).
- (3) Es seien $a_0, a_1, \ldots, a_{m-1} \in \mathbb{R}$. Dann erhält man ein reelles FS von (H) wie folgt: Sei λ eine Nullstelle von p.
 - (i) Ist $\lambda_0 \in \mathbb{R}$, so übernehme die Lösungen aus (1).
 - (ii) Ist $\lambda_0 \notin \mathbb{R}$, und y eine Lösung aus (1), so bilde die reellen Lösungen Re y und Im y und streiche die zu $\overline{\lambda_0}$ gehörenden Lösungen.

Beispiele:

(1)
$$y^{(6)} - 6y^{(5)} + 9y^{(4)} = 0$$

 $p(\lambda) = \lambda^6 - 6\lambda^5 + 9\lambda^4 = \lambda^4(\lambda^2 - 6\lambda + 9) = \lambda^4(\lambda - 3)^2$

$$\lambda_1 = 0: 1, x, x^2, x^3$$

$$\lambda_2 = 3: e^{3x}, xe^{3x}$$
 FS obiger Gleichung

Allgemeine Lösung: $y(x) = c_1 + c_2x + c_3x^2 + c_4x^3 + c_5e^{3x} + c_6xe^{3x}$

(2)
$$y''' - 2y'' + y' - 2y = 0$$

 $p(\lambda) = \lambda^3 - 2\lambda^2 + \lambda - 2 = (\lambda - 2)(\lambda^2 + 1) = (\lambda - 2)(\lambda - i)(\lambda + i)$
 $\lambda_1 = i$: komplexe Lösung $e^{ix} = \cos x + i \sin x$
 $\lambda_2 = 2 : e^{2x}$
FS: e^{2x} , $\cos x$, $\sin x$

Allgemeine Lösung: $y(x) = c_1 e^{2x} + c_2 \cos x + c_3 \sin x \ (c_1, c_2, c_3 \in \mathbb{R})$

$$\begin{cases} y''' - 2y'' + y' - 2y = 0\\ y(0) = 0, y'(0) = 1, y''(0) = 0 \end{cases}$$

Allgemeine Lösung der DGL: $y(x) = c_1 e^{2x} + c_2 \cos x + c_3 \sin x$ $0 = y(0) = c_1 + c_2$ $c_1 = -c_2$ $1 = y'(0) = 2c_1 e^{2\cdot 0} - c_2 \sin 0 + c_3 \cos 0 = 2c_1 + c_3$ $y''(x) = 4c_1 e^{2x} - c_2 \cos x - c_3 \sin x \implies 0 = 4c_1 - c_2$ $\implies c_1 = c_2 = 0, c_3 = 1$ Lösung des AWPs: $y(x) = \sin x$

(4)
$$y'' - 2y' + 5y = 0$$

 $p(\lambda) = \lambda^2 - 2\lambda + 5 = (\lambda - (1+2i))(\lambda - (1-2i))$
 $\lambda = 1 + 2i$: komplexe Lösung $e^{1+2i}x = e^x e^{2ix} = e^x(\cos 2x + i\sin 2x)$
FS: $e^x \cos(2x), e^x \sin(2x)$

(5) Löse das Randwertproblem (RWP):
$$y'' + y = 0, y(0) = 1, y(\frac{\pi}{2}) = 1$$
$$p(\lambda) = \lambda^2 + 1 = (\lambda - i)(\lambda + i). \text{ FS: } \cos x, \sin x$$
Allgemeine Lösung der DGL:
$$y(x) = c_1 \cos x + c_2 \sin x$$
$$1 = y(0) = c_1, 1 = y(\frac{\pi}{2}) = c_2 \text{ Lösung des RWPs: } y(x) = \cos x + \sin x$$

(6) Löse das RWP:
$$y'' + \pi^2 y = 0, y(0) = y(1) = 0$$

 $p(\lambda) = \lambda^2 + \pi^2 = (\lambda - i\pi)(\lambda + i\pi)$

Allgemeine Lösung der DGL
$$y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x)$$

 $0 = y(0) = c_1, 0 = y(1) = c_2 \sin \pi$
Lösungen des RWPs: $y(x) = c \cdot \sin(\pi x)$ $c \in \mathbb{R}$

Wir betrachten nun den inhomogenen Fall:

$$(IH) Ly = b(x)$$

Um eine spezielle Lösung des inhomogenen Problems zu finden, kann man 19.6 anwenden (Lösung eines inhomogenen Systems).

Sei dazu p das charakteristische Polynom von (H).

Definition (0-fache Nullstelle)

 $\mu \in \mathbb{C}$ ist eine **0-fache Nullstelle** von $p :\Leftrightarrow p(\mu) \neq 0$

Satz 20.3 (Regel - ohne Beweis)

Seien $\alpha, \beta \in \mathbb{R}$, $n, q \in \mathbb{N}_0$ und b sei von der Form:

$$b(x) = (b_0 + b_1 x + \dots + b_n x^n) \cdot e^{\alpha x} \cdot \cos \beta x$$
 bzw.

$$b(x) = (b_0 + b_1 x + \dots + b_n x^n) \cdot e^{\alpha x} \cdot \sin \beta x$$

Ist $\alpha + i\beta$ eine q-fache Nullstelle von p, so gibt es eine spezielle Lösung y_s von (IH) der Form

$$y_s(x) = x^q \cdot e^{\alpha x} ((A_0 + A_1 x + \dots + A_n x^n) \cos \beta x + (B_0 + B_1 x + \dots + B_n x^n) \sin \beta x)$$

Beispiel

$$(1) y''' - y' = x - 1$$

Erster Schritt: Lösung der homogenen Gleichung y'''-y'=0. Charakteristisches Polynom: $p(\lambda)=\lambda^3-\lambda=\lambda(\lambda^2-1)=\lambda(\lambda+1)(\lambda-1)$ Fundamentalsystem: $1,e^x,e^{-x}$

Zweiter Schritt: Spezielle Lösung der inhomogenen Gleichung. System ist von obiger Form mit $\alpha = \beta = 0$; $\alpha + i\beta = 0$ ist 1-fache Nullstelle von p. Ansatz: Für eine spezielle Lösung der inhomogenen Gleichung:

$$y_s(x) = x(A_0 + A_1x) = A_0x + A_1x^2$$

$$y_s'(x) = A_0 + 2xA_1$$

$$y_s'''(x) = 0$$

$$x-1 \stackrel{!}{=} y_s''' - y_s' = -A_0 - 2xA_1 \Rightarrow A_0 = 1; A_1 = -\frac{1}{2}$$

Allgemeine Lösung der Differentialgleichung:

$$y(x) = c_1 + c_2 e^x + c_3 e^{-x} + x - \frac{1}{2}x^2 \ (c_1, c_2, c_3 \in \mathbb{R})$$

20. Lineare Differentialgleichungen m-ter Ordnung mit konstanten Koeffizienten

(2)
$$y'' - y = xe^x$$

1. Schritt: Lösung der homogenen Gleichung y''-y=0. Charakteristisches Polynom $p(\lambda)=\lambda^2-1=(\lambda-1)(\lambda+1)$

Fundamental system: e^x , e^{-x}

2. Schritt: Spezielle Lösung der inhomogenen Gleichung. System ist von obiger Form mit $\alpha=1,\beta=0;\,\alpha+i\beta=1$ ist einfach Nullstelle von p. Ansatz für eine spezielle Lösung:

$$y_s(x) = x(A_0 + A_1 x)e^x$$

Nachrechnen:
$$y_s''(x) - y_s(x) = (2A_0 + 2A_1 + 4A_1x)e^x \stackrel{!}{=} xe^x \Leftrightarrow 2A_0 + 2A_1 + 4A_1x = x \Rightarrow A_1 = \frac{1}{4}, A_0 = -\frac{1}{4}$$

$$y_s(x) = \frac{1}{4}x(x-1)e^x$$

Allgemeine Lösung der Differentialgleichung:

$$y(x) = c_1 e^x + c_2 e^{-x} + \frac{1}{4}x(x-1)e^x \ (c_1, c_2 \in \mathbb{R})$$

21. Die Eulersche Differentialgleichung

Darunter versteht man eine Differentialgleichung der Form

(i)
$$x^m y^{(m)} + a_{m-1} x^{m-1} y^{(m-1)} + \dots + a_1 x y' + a_0 y = 0$$
 mit $a_0, \dots, a_{m-1} \in \mathbb{R}$

Wir suche Lösungen von (i) auf $(0, \infty)$. Beachte: Ist $y : (0, \infty) \to \mathbb{R}$ eine Lösung von (i) auf $(0, \infty) \Rightarrow z(x) := y(-x)$ ist eine Lösung von (i) auf $(-\infty, 0)$.

Satz 21.1 (Lösungsansatz)

Sei also x > 0. Substituiere $x = e^t$ und setze $u(t) := y(e^t) = y(x)$, also $y(x) = u(\log x)$ Dann:

$$u'(t) = y'(e^t)e^t = y'(x) \cdot x = x \cdot y'(x)$$

$$u''(t) = y''(e^t)(e^{2t}) + e^t y'(e^t) = y''(x) \cdot x^2 + x \cdot y'(x) = x^2 \cdot y'' + x \cdot y'$$

etc.

Dies führt auf eine lineare Differentialgleichung mit konstanten Koeffizienten für u:

Übung: Ist $y:(0,\infty)\to\mathbb{R}$ eine Funktion und $u(t):=y(e^t), t\in\mathbb{R}$, so gilt: y ist eine Lösung von (i) auf $(0,\infty)\Leftrightarrow u$ ist eine Lösung von (ii) auf \mathbb{R} .

Wir betrachten nun die inhomogene Gleichung:

(iii)
$$x^m y^{(m)} + a_{m-1} x^{m-1} y^{(m-1)} + \dots + a_1 x y' + a_0 y = b(x)$$

Diese Gleichung heißt ebenfalls Eulersche Differentialgleichung.

Die allgemeine Lösung von (iii) erhält man wie folgt:

Setze $x = e^t$ und bestimme die allg. Lösung von $u^{(m)} + b_{m-1}u^{(m-1)} + \cdots + b_1u' + b_0u = b(e^t)$. Setze in der allgemeinen Lösung dieser Gleichung $t = \log x$.

Beispiel

(1)
$$x^2y'' - 3xy' + 7y = 0(*)$$

Setze
$$x = e^t$$
, $u(t) = y(e^t)$

Dann (s.o.):

$$u'(t) = xy'(x)$$

$$u''(t) = x^2y''(x) + xy'(x) = x^2y''(x) + u'(t)$$

21. Die Eulersche Differentialgleichung

$$\Rightarrow x^{2}y''(x) = u''(t) - u'(t)$$
$$\Rightarrow u'' - u' - 3u' + 7u = u'' - 4u' + 7u = 0$$

Charakteristisches Polynom:
$$p(\lambda) = \lambda^2 - 4\lambda + 7 = (\lambda - (2 + i\sqrt{3}))(\lambda - (2 - i\sqrt{3}))$$

Allgemeine Lösung: $y(x) = c_1 \cdot x^2 \cos(\sqrt{3} \log x) + c_2 \cdot x^2 \sin(\sqrt{3} \log x)$ für $x > 0, (c_1, c_2 \in \mathbb{R})$

(2)
$$x^2y'' - 7xy' + 15y = x(**)$$

Setze
$$x = e^t$$
, $u(t) = y(e^t) \Rightarrow u'' - 8u' + 15u = e^x$

Diese Gleichung hat die allgemeine Lösung: $u(t) = c_1 e^{3t} + c_2 e^{5t} + \frac{1}{8} e^t$

Die allgemeine Lösung von (**): $y(x)=c_1x^3+c_2x^5+\frac{1}{8}x \ (x>0;c_1,c_2\in\mathbb{R})$

22. Einschub: Das Zornsche Lemma

Es sei $\emptyset \neq \mathcal{L}$ eine Menge und \triangleleft eine **Ordnungsrelation** auf \mathcal{L} , d.h. für $a, b, c \in \mathcal{L}$ gilt:

- (1) $a \triangleleft a$
- (2) aus $a \triangleleft b$ und $b \triangleleft a \implies a = b$
- (3) aus $a \triangleleft b$ und $b \triangleleft c \implies a \triangleleft c$

Es sei $\emptyset \neq \mathcal{K} \subseteq \mathcal{L}$. \mathcal{K} heißt eine **Kette** : \iff aus $a, b \in \mathcal{K}$ folgt stets: $a \triangleleft b$ oder $b \triangleleft a$. Sei $\mathcal{M} \subseteq \mathcal{L}$ und $a \in \mathcal{L}$. a heißt eine **obere Schranke** von $\mathcal{M} : \iff x \triangleleft a \ \forall x \in \mathcal{M}$. $v \in \mathcal{L}$ heißt ein **maximales Element** von $\mathcal{L} : \iff$ aus $a \in \mathcal{L}$ und $v \triangleleft a$ folgt: v = a

Lemma 22.1 (Das Zornsche Lemma)

 \mathcal{L} und \triangleleft seien wie oben. Besitzt **jede** Kette in \mathcal{L} eine obere Schranke in \mathcal{L} , so enthält \mathcal{L} ein maximales Element.

22. Nicht fortsetzbare Lösungen

In diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$, $(x_0, y_0) \in D$ und I, J, K, \ldots seien Intervalle in \mathbb{R} .

Wir betrachten das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Bemerkung: Die Definitionen und Sätze dieses Paragraphen gelten allgemeiner für Systeme, also $D \subseteq \mathbb{R}^{m+1}, \ f: D \to \mathbb{R}^m, \ (x_0, y_0) \in D, \ x_0 \in \mathbb{R}, \ y_0 \in \mathbb{R}^m \ (\text{vgl. Paragraph 15}).$

Definitionen und Bezeichnungen

- (1) $\mathcal{L}_{(A)} := \text{Menge aller L\"osungen von } (A).$
- (2) Für $y \in \mathcal{L}_{(A)}$ bezeichne I_y das Definitionsintervall von y.
- (3) Seien $u, v \in \mathcal{L}_{(A)}$. v heißt eine **Fortsetzung** von u, gdw. $I_u \subseteq I_v$ und u = v auf I_u . I.d. Fall schreiben wir $u \otimes v$.
- (4) $v \in \mathcal{L}_{(A)}$ heißt **nicht fortsetzbar (nf)**, gdw. aus $y \in \mathcal{L}_{(A)}$ und $v \otimes y$ folgt $I_v = I_y$ (also y = v).

Erinnerung: (A) ist eindeutig lösbar \iff aus $y_1, y_2 \in \mathcal{L}_{(A)}$ folgt: $y_1 = y_2$ auf $I_{y_1} \cap I_{y_2}$.

Satz 22.1

Sei $u \in \mathcal{L}_{(A)}$. Dann existiert ein $v \in \mathcal{L}_{(A)}$: v ist eine nicht fortsetzbare Fortsetzung von u ("Maximale Fortsetzung von u").

Beweis

 $\mathcal{L} := \{ y \in \mathcal{L}_{(A)} : u \otimes y \}, \ \mathcal{L} \neq \emptyset$, denn $u \in \mathcal{L}$. \otimes ist eine Ordnungsrelation auf \mathcal{L} . Weiter gilt für $v \in \mathcal{L} : v$ ist ein maximales Element in $\mathcal{L} \iff v$ ist nicht fortsetzbar. Wegen des Zornschen Lemmas ist z.z.: jede Kette in \mathcal{L} hat eine obere Schranke in \mathcal{L} . Sei also $\emptyset \neq \mathcal{K} \subseteq \mathcal{L}$ eine Kette in \mathcal{L} . $I := \bigcup_{u \in \mathcal{K}} I_y$. Wegen $x_0 \in I_y \ \forall y \in \mathcal{K} : I$ ist ein Intervall.

Definiere $z: I \to \mathbb{R}$ wie folgt: Ist $x \in I \Longrightarrow \exists y \in \mathcal{K} : x \in I_y$. z(x) := y(x). Gilt auch noch $x \in I_{\tilde{y}}, \ \tilde{y} \in \mathcal{K}, \ \mathcal{K}$ Kette $\Longrightarrow y \otimes \tilde{y}$ oder $\tilde{y} \otimes y$. Etwa: $y \otimes \tilde{y}$. D.h.: $I_y \subseteq I_{\tilde{y}}$ und $y = \tilde{y}$ auf $I_y \Longrightarrow y(x) = \tilde{y}(x)$.

z ist wohldefiniert. Klar: $z(x_0) = y_0$. 12.2 $\implies z \in \mathcal{L}_{(A)}$ Nach Konstruktion: $y \otimes z \ \forall y \in \mathcal{K}$.

Sei $y \in \mathcal{K} \implies u \otimes y$ und $y \otimes z \implies u \otimes z \implies z \in \mathcal{L}$. z ist also eine obere Schranke von \mathcal{K} in \mathcal{L} .

Satz 22.2

Sei D offen und $f \in C(D, \mathbb{R})$.

- (1) $\exists y \in \mathcal{L}_{(A)} : x_0 \in I_y^{\circ}$
- (2) Ist $y \in \mathcal{L}_{(A)}$, so existivt eine nicht fortsetzbare Fortsetzung $\widehat{y} \in \mathcal{L}(A)$ von y mit $I_{\widehat{y}}$ ist offen.
- (3) Ist (A) eindeutig lösbar, so hat (A) eine eindeutig bestimmte, nicht fortsetzbare Lösung $y:(\omega_{-},\omega_{+})\to\mathbb{R}$, wobei $\omega_{-}<\omega_{+},\ \omega_{-}\in\mathbb{R}\cup\{-\infty\},\ \omega_{+}\in\mathbb{R}\cup\{\infty\}$ ("die" Lösung des AWPs).

Beweis

- (1) 12.6 (Peano, III)
- (2) Wegen 22.1 ist nur zu zeigen: $I_{\widehat{y}}$ ist offen.

Annahme: $I_{\widehat{y}}$ ist *nicht* offen. Dann existiert $\max I_{\widehat{y}}$ oder $\min I_{\widehat{y}}$. Etwa: $\exists b := \max I_{\widehat{y}}$.

$$x_1 := b, \ y_1 := \widehat{y}(b). \text{ AWP } (B) \begin{cases} y' &= f(x, y) \\ y(x_1) &= y_1 \end{cases}$$

Wende (1) auf (B) an. Dann existiert eine Lösung $\tilde{y}: K \to \mathbb{R}$ von (B) mit $x_1 = b \in \mathcal{K}^{\circ} \implies$ $\exists \varepsilon > 0 : [b,b+\varepsilon) \subseteq K. \text{ Definiere } z : I_{\widehat{y}} \cup [b,b+\varepsilon) \to \mathbb{R} \text{ durch } z(x) := \begin{cases} \widehat{y}(x), & x \in I_{\widehat{y}} \\ \widehat{y}(x), & x \in [b,b+\varepsilon) \end{cases}.$ Klar: $z(x_0) = \widehat{y}(x_0) = y_0$. 12.3 $\Longrightarrow z \in \mathcal{L}_{(A)}$.

Weiter: $I_{\widehat{y}} \subsetneq I_z = I_{\widehat{y}} \cup [b, b+\varepsilon)$ und $\widehat{y} = z$ auf $I_{\widehat{y}}$. Widerspruch, denn \widehat{y} ist nicht fortsetzbar.

Folgerung 22.3

Es sei $D \subseteq \mathbb{R}^2$ offen, $f \in C(D, \mathbb{R})$, f sei auf D partiell differenzierbar nach g und $f_g \in C(D, \mathbb{R})$. Dann hat (A) eine eindeutig bestimmte nicht fortsetzbare Lösung $y:(\omega_-,\omega_+)\to\mathbb{R}$.

Beweis

Beispiele: (1)
$$D = \mathbb{R}^2$$
, $f(x,y) = 1 + y^2$, AWP $\begin{cases} y' &= 1 + y^2 \\ y(0) &= 0 \end{cases}$

Voraussetzungen obiger Folgerung sind erfüllt.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y^2 \implies \int \frac{\mathrm{d}y}{1 + y^2} = \int \mathrm{d}x + c \implies \arctan y = x + c \implies y(x) = \tan(x + c), \ 0 = y(0) = \tan c \implies c = 0.$$

Die eindeutig bestimmte, nicht fortsetzbare Lösung des AWPs lautet: $y(x) = \tan x, x \in$ $(\omega_{-}, \omega_{+}), \ \omega_{-} = -\pi/2, \ \omega_{+} = \pi/2 \ (also: \omega_{+} = -\omega_{-}).$

(2) f erfülle die Voraussetzungen obiger Folgerung und es gelte $D = \mathbb{R}^2$ und

(*)
$$f(x,y) = f(-x,y) = f(-x,-y) = f(x,-y) \ \forall (x,y) \in \mathbb{R}^2$$
.

Dann gilt für die eindeutig bestimmte, nicht fortsetzbare Lösung $y:(\omega_-,\omega_+)\to\mathbb{R}$ des AWPs $\begin{cases} y' &= f(x,y)\\ y(0) &= 0 \end{cases}:\omega_+ = -\omega_-.$

Beweis

Klar: $\omega_- < 0 < \omega_+$. Wir zeigen $\omega_+ \ge -\omega_-$ (analog: $\omega_+ \le \omega_-$). Annahme: $\omega_+ < -\omega_-$.

Sei
$$x \in [0, -\omega_-) \implies -x \in (\omega_-, 0] \subseteq (\omega_-, \omega_+)$$
. Definiere $z : [0, -\omega_-) \to \mathbb{R}$ durch $z(x) := -y(-x)$.

$$z(0) = -y(0) = 0, \ z'(x) = -y'(-x)(-1) = y'(-x) = f(-x,y(-x)) \stackrel{(*)}{=} f(x,y(-x)) \stackrel{(*)}{$$

$$u(0) = y(0) = 0$$
, 12.3 $\Longrightarrow u$ löst das AWP auf $(\omega_{-}, -\omega_{-})$.

Ohne Beweis:

Satz 22.4

Sei $I = [a, b] \subseteq \mathbb{R}$, $D := I \times \mathbb{R}$ und $f \in C(D, \mathbb{R})$ sei auf D beschränkt. (12.4 $\Longrightarrow \exists u \in \mathcal{L}_{(A)} : I_u = I$).

Ist $y \in \mathcal{L}_{(A)}$, so existiert ein $\tilde{y} \in \mathcal{L}_{(A)} : I_{\tilde{y}} = I$ und $y = \tilde{y}$ auf I_y .

23. Minimal- und Maximallösung

Stets in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^2, f: D \to \mathbb{R}$ eine Funktion, $(x_0, y_0) \in D$. Wieder betrachten wir das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

 $L_{(A)}$ und I_y für $y \in L_{(A)}$ seien wie in Paragraph 22 definiert.

Definition

 $y^* \in L_{(A)}$ heißt eine **Maximallösung** von (A) : $\iff y \leq y^*$ auf $I_y \cap I_{y^*} \forall y \in L_{(A)}$. $y_* \in L_{(A)}$ heißt eine **Minimallösung** von (A) : $\iff y \geq y_*$ auf $I_y \cap I_{y_*} \forall y \in L_{(A)}$

Beispiel

$$D = \mathbb{R}^2, f(x, y) = \sqrt{|y|}, \text{AWP}$$

$$(A) \begin{cases} y' = \sqrt{|y|} \\ y(0) = 0 \end{cases}$$

Für
$$\alpha \ge 0 : y_{\alpha}(x) := \begin{cases} 0 & , x \le \alpha \\ \frac{(x-\alpha)^2}{4} & , x \ge \alpha \end{cases}$$

Es gilt weiterhin $\tilde{y}_{\alpha}(x) := -y_{\alpha}(-x)$.

Nachrechnen: $y_{\alpha}(x), \tilde{y}_{\alpha}(x)$ lösen das AWP auf \mathbb{R} .

Für
$$\alpha, \beta \ge 0 : y_{\alpha,\beta} := \begin{cases} y_{\alpha}(x) &, x \ge \alpha \\ 0 &, -\beta \le x \le \alpha \\ \tilde{y}_{\beta}(x) &, x \le -\beta \end{cases}$$

Übung: Sei $y:I\to\mathbb{R}$ eine Funktion, $I\subseteq\mathbb{R}$ ein Intervall und $0\in I$. y löst das AWP auf I $\iff y=0$ auf I oder $\exists \alpha\geq 0: y=(y_{\alpha})_{|I}$ oder $\exists \alpha\geq 0: y=(\tilde{y}_{\alpha})_{|I}$ oder $\exists \alpha,\beta\geq 0: y=(\tilde{y}_{\alpha,\beta})_{|I}$.

Damit ist y_0 eine Maximallösung und $\tilde{y_0}$ eine Minimallösung. Ab jetzt sei $I = [a, b] \subseteq \mathbb{R}, D := I \times \mathbb{R}, f \in C(D, \mathbb{R})$ sei beschränkt, $x_0 \in I, y_0 \in \mathbb{R}, M := \sup\{|f(x, y)| : (x, y) \in D\}.$

Vorbemerkungen:

- (1) Das AWP (A) hat Lösungen auf I (12.4, Peano)
- (2) $\mathcal{X} := C(I, \mathbb{R}) \text{ mit } ||.||_{\infty} \text{ ist ein BR.}$
- (3) $T: \mathcal{X} \to \mathcal{X}$ sei definiert durch $(Ty)(x) := y_0 + \int_{x_0}^x f(t, y(t)) dt \ (y \in \mathcal{X}, x \in I)$, T ist stetig; Für $y \in \mathcal{X}$ gilt: y löst das AWP auf $I \iff Ty = y$.
- (4) Sei $y \in \mathcal{X}$ eine Lösung von (A) auf I: für $x, \tilde{x} \in I$: $|y(x) y(\tilde{x})| = |y'(\xi)||x \tilde{x}| = |f(\xi, y(\xi))||x \tilde{x}| \le M|x \tilde{x}|$

Satz 23.1

Das AWP (A) hat eine Maximallösung $y^*: I \to \mathbb{R}$ und eine Minimallösung $y_*: I \to \mathbb{R}$.

Beweis

Wir zeigen nur die Existenz von $y^*: I \to \mathbb{R}$. $\mathcal{L} := \{y \in \mathcal{L}_{(A)}: I_y = I\}$. 12.4 $\Longrightarrow \mathcal{L} \neq \emptyset$. Sei $y \in \mathcal{L}, x \in I: |y(x)| = |y_0 + \int_{x_0}^x f(t, y(t)) dt| \le |y_0| + |\int_{x_0}^x f(t, y(t)) dt| \le |y_0| + M|x - x_0| \le |x| + |x| +$ $\underbrace{|y_0|+M|b-a|}_{\widehat{c}}.$

Also: $y(x) \leq c \ \forall y \in \mathcal{L} \ \forall x \in I$. Es existiert also $y^*(x) := \sup\{y(x) : y \in \mathcal{L}\}(x \in I)$. Sei $y \in \mathcal{L}$ (also $I_y = I$). Dann $y \leq y^*$ auf I. Sei $y \in \mathcal{L}_{(A)}$ (also $I_y \subseteq I$).

$$22.3 \implies \exists \hat{y} \in \mathcal{L} : y = \hat{y}_{|I_y} \implies y \leq \hat{y} \leq y^* \text{ auf } I_y.$$

Noch zu zeigen: $y^* \in \mathcal{L}$.

Sei
$$I \cap \mathbb{Q} = \{x_1, x_2, x_3, \dots\}$$

Seien $j, k \in \mathbb{N}$. Dann ex. ein $y_{jk} \in \mathcal{L} : y_{jk}(x_j) \geq y^*(x_j) - \frac{1}{k}$.

Für $k \in \mathbb{N}$ und $x \in I : y_k(x) := max\{y_{1k}(x), y_{2k}(x), \dots, y_{kk}(x)\}.$ Übung: $y_k \in \mathcal{L} \ \forall k \in \mathbb{N}$. Für $k, j \in \mathbb{N}, j \leq k : y_k(x_j) \geq y_{jk}(x_j) > y^*(x_j) - \frac{1}{k}$.

Vorbemerkung (4) und 11.4 \implies (y_k) enthält eine auf I gleichmäßig konvergente Teilfolge. o.B.d.A (y_k) konvergiert gleichmäßig auf I. $\hat{y}(x) := \lim_{k \to \infty} y_k(x) (x \in I)$. $Ty_k = y_k \ \forall k \in I$ $\mathbb{N}, T \text{ stetig } \implies T\hat{y} = \hat{y} \implies \hat{y} \in \mathcal{L}.$

Es ist $\hat{y} \leq y^*$ auf I. Sei $x_j \in I \cap \mathbb{Q}$. $\hat{y}(x_j) = \lim_{k \to \infty} y_k(x_j) \geq \lim_{k \to \infty} (y^*(x_j) - \frac{1}{k}) = y^*(x_j) \implies$ $\hat{y} = y^*$ auf $I \cap \mathbb{Q}$.

Annahme: $\exists \xi \in I : \hat{y}(\xi) < y^*(\xi) \implies \exists u \in \mathcal{L} : \hat{y}(\xi) < u(\xi)$. Für $x_{\mu} \in I \cap \mathbb{Q}$ hinreichend nahe bei $\xi : \hat{y}(x_{\mu}) < u(x_{\mu}) \leq y^*(x_{\mu})$, Widerspruch.

D.h. $\hat{y} \geq y^*$ auf I. Also $y^* = \hat{y}$ auf I, somit gilt $y^* \in \mathcal{L}$.

Definition

 $T := \{(x,y) \in \mathbb{R}^2 : x \in I, y_*(x) \le y \le y^*(x)\}$ heißt **Lösungstrichter** von (A).

Satz 23.2

Sei $(\sigma, \tau) \in T$. Dann existiert eine Lösung $v: I \to \mathbb{R}$ von (A) auf I mit $v(\sigma) = \tau$.

Betrachte das AWP (B) $\begin{cases} y' = f(x, y) \\ y(\sigma) = \tau \end{cases}$. 12.4 (Peano) \Longrightarrow (B) hat eine Lösung $w: I \to \mathbb{R}$

auf I. Ist $\sigma = x_0 \implies \tau = y_0 \implies v := w$ leistet das Verlangte. Sei also $\sigma \neq x_0$, etwa $x_0 < \sigma$. Ist $w(x_0) = y_0 \implies v := w$ leistet das Verlangte. Sei also $w(x_0) \neq y_0$. Es ist $y_*(\sigma) \le \tau = w(\sigma) \le y^*(\sigma).$

Fall 1: $w(x_0) > y_0 = y^*(x_0) \implies w(x_0) - y^*(x_0) > 0$ und $w(\sigma) - y^*(\sigma) \le 0$. Zwischenwertsatz $\implies \exists \xi \in [x_0, \sigma] : w(\xi) = y^*(\xi)$

Definiere: $v: I \to \mathbb{R}$ durch $v(x) := \begin{cases} y^*(x), & x \in [a, \xi] \\ w(x), & x \in [\xi, b] \end{cases}$ $v(x_0) = y^*(x_0) = y_0, \ v(\sigma) = w(\sigma) = \tau.$ 12.3 $\implies v$ löst das AWP (A) auf I.

Fall 2: $w(x_0) < y_0 = y_*(x_0) \implies w(x_0) - y_*(x_0) < 0$ und $w(\sigma) - y_*(\sigma) \ge 0$. Zwischenwertsatz $\implies \exists \xi \in [x_0, \sigma] : w(\xi) = y_*(\xi)$

Definiere:
$$v: I \in \mathbb{R}$$
 durch $v(x) := \begin{cases} y_*(x), & x \in [a, \xi] \\ w(x), & x \in [\xi, b] \end{cases}$ $v(x_0) = y_*(x_0) = y_0, \ v(\sigma) = w(\sigma) = \tau.$
12.3 $\implies v$ löst das AWP (A) auf I

24. Ober- und Unterfunktionen

Vereinbarung: I.d. Paragraphen: $x_0, y_0 \in \mathbb{R}, a > 0, I := [x_0, x_0 + a], I_0 := (x_0, x_0 + a], D := I \times \mathbb{R}$ und $f : D \to \mathbb{R}$ eine Funktion.

Wir betrachten das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Definition

 $v, w: I \to \mathbb{R}$ seien differenzierbar auf I.

v heißt eine **Unterfunktion** (UF) bzgl. $(A) : \iff$

$$v'(x) < f(x, v(x)) \ \forall x \in I \text{ und } v(x_0) \le y_0$$

w heißt eine **Oberfunktion** (OF) bzgl. (A):

$$w'(x) > f(x, w(x)) \ \forall x \in I \text{ und } w(x_0) \ge y_0$$

Hilfssatz 24.1

 $\phi, \psi: I_0 \to \mathbb{R}$ seien differenzierbar auf I_0 . Es sei $\varepsilon > 0, \varepsilon < a$ und es gelte: $\phi < \psi$ auf $(x_0, x_0 + \varepsilon)$. Weiter sei

$$\phi'(x) - f(x, \phi(x)) < \psi'(x) - f(x, \psi(x)) \ \forall x \in I_0$$

Dann: $\phi < \psi$ auf I_0 .

Beweis

Anname: $\exists x_1 \in I_0 : \phi(x_1) \ge \psi(x_1)$. Zwischenwertsatz $\implies M := \{x \in I_0 : \phi(x) = \psi(x)\} \ne \emptyset$.

 $\xi := \inf M$; ϕ, ψ stetig $\Longrightarrow \phi(\xi) = \psi(\xi) \Longrightarrow \xi = \min M$ und $\phi < \psi$ auf (x_0, ξ) . Sei h > 0 so, daß $\xi - h > x_0 \Longrightarrow \phi(\xi - h) < \psi(\xi - h)$

$$\implies \frac{\phi(\xi - h) - \phi(\xi)}{h} < \frac{\psi(\xi - h) - \psi(\xi)}{h}$$
$$\phi(\xi - h) - \phi(\xi) \qquad \psi(\xi - h) - \psi(\xi)$$

$$\implies \frac{\phi(\xi - h) - \phi(\xi)}{-h} > \frac{\psi(\xi - h) - \psi(\xi)}{-h}$$

 $\overset{h\to 0}{\Longrightarrow} \phi'(\xi) \ge \psi'(\xi) \text{ Aber: } \phi'(\xi) - f(\xi,\phi(\xi)) < \psi'(\xi) - f(\xi,\underbrace{\psi(\xi)}_{=\phi(\xi)}) \implies \phi'(\xi) < \psi'(\xi), \text{ Widerspruch!}$

Satz 24.2 (Abschätzung von Lösungen mittels Ober- und Unterfunktionen)

Gegeben: $v, w, y : I \to \mathbb{R}$. v sei eine Unterfunktion bezüglich (A), w sei eine Oberfunktion bezüglich (A) und y sei eine Lösung des AWPs (A) auf I. Dann: v < y < w auf I_0 .

Beweis

Wir zeigen nur v < y auf I_0 .

$$\forall x \in I : v'(x) - f(x, v(x)) < 0 = y'(x) - f(x, y(x)).$$

Wegen 24.1 genügt es z.z:

(*)
$$\exists \varepsilon \in (0, a) : v < y \text{ auf } (x_0, x_0 + \varepsilon)$$

Fall 1: $v(x_0) < y_0 = y(x_0)$; v, y stetig \implies es gilt (*).

Fall 2: $v(x_0) = y_0 = y(x_0)$; h := y - v; dann: $h(x_0) = 0$ und

$$v'(x_0) - f(x_0, v(x_0)) < 0 = y'(x_0) - f(x, \underbrace{y(x_0)}_{=v(x_0)})$$

 $\implies v'(x_0) < y'(x_0)$, also $h'(x_0) > 0$. Annahme: (*) gilt nicht. Dann existiert zu jedem $n \in \mathbb{N}$ ein $x_n \in (x_0, x_0 + \frac{1}{n})$: $h(x_n) \le 0$

$$\implies \frac{h(x_n)}{x_n - x_0} = \frac{h(x_n) - h(x_0)}{x_n - x_0} \le 0 \ \forall n \in \mathbb{N} \stackrel{n \to \infty}{\Longrightarrow} h'(x_0) \le 0$$

Widerspruch!

Bemerkung: Man kann auch folgende Situation betrachten:

 $x_0, y_0 \in \mathbb{R}, a > 0, J := [x_0 - a, x_0], D := J \times \mathbb{R}, f : D \to \mathbb{R}$

$$AWP \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Dann lauten die Bedingungen für eine

Unterfunktion: v'(x) > f(x, v(x)) $\forall x \in I, v(x_0) \leq y_0$ Oberfunktion: w'(x) < f(x, w(x)) $\forall x \in I, w(x_0) \geq y_0$

 $(\rightarrow \text{Walter: Gew\"{o}hnliche Differentialgleichungen}).$

Anwendung von 24.2, schwer klausurrelevant! :-) : $f(x,y) = \frac{x^2+1}{2} + y^2$.

AWP (+)
$$\begin{cases} y' = f(x, y) \\ y(0) = 1 \end{cases}$$

 $f \in C(\mathbb{R}^2, \mathbb{R})$, f ist partiell differenzierbar nach y und $f_y \in C(\mathbb{R}^2, \mathbb{R})$ Paragraph 22 \Longrightarrow (+) hat eine eindeutig bestimmte, nicht fortsetzbare Lösung $y : (\omega_-, \omega_+) \to \mathbb{R}$. $(\omega_- < 0 < \omega_+)$. Wir untersuchen diese Lösung für $x \ge 0$.

Behauptung:

- (1) $w_+ \in [\frac{\pi}{4}, 1]$
- (2) $\frac{1}{1-x} < y(x) \ \forall x \in (0, \omega_+)$
- (3) $\frac{1}{1-x} < y(x) < \tan(x + \frac{\pi}{4}) \ \forall x \in (0, \frac{\pi}{4})$

Beweis

 $f_1(x,y) = y^2 \implies f_1 < f \text{ auf } \mathbb{R}^2$. Das

AWP
$$\begin{cases} v' = v^2 = f_1(x, v) \\ v(0) = 1 \end{cases}$$

hat die Lösung $v(x) = \frac{1}{1-x}$ auf $(-\infty, 1)$ (TDV!).

Sei $a \in (0,1), a < \omega_+$. Für $x \in [0,a]$:

$$v'(x) = f_1(x, v(x)) < f(x, v(x)), \quad v(0) = 1$$

v ist eine Unterfunktion bezüglich (+) auf [0, a]. 24.2 $\implies v < y$ auf (0, a] (i).

Annahme: $\omega_+ > 1 \implies (i)$ gilt $\forall a \in (0,1) \implies v < y$ auf (0,1). $\implies \lim_{x \to 1^-} y(x) = \infty$. Aber: $1 \in (\omega_-, \omega_+) \implies y(x) \to y(1)$ $(x \to 1^-)$, Widerspruch! (also: $\omega_+ \le 1$).

Weiter: (i) gilt $\forall a \in (0, \omega_+) \implies v < y$ auf $(0, \omega_+)$. $f_2(x, y) := 1 + y^2$, dann: $f_2 > f$ auf $[0, 1) \times \mathbb{R}$. Das

$$AWP \begin{cases} w' = 1 + w^2 \\ w(0) = 1 \end{cases}$$

hat die Lösung $w(x) = \tan(x + \frac{\pi}{4})$ auf $(-\frac{3}{4}\pi, \frac{1}{4}\pi)$ (TDV!). Sei $a \in (0, \omega_+)$, $a < \frac{\pi}{4}$; für $x \in [0, a]$: $w'(x) = f_2(x, w(x)) > f(x, w(x))$, $w(0) = 1 \implies$ w ist eine Oberfunktion bzgl (+) auf [0, a]. $24.2 \implies y < w$ auf (0, a] (ii).

Annahme: $\omega_{+} < \frac{\pi}{4} \implies (ii)$ gilt $\forall a \in (0, \omega_{+}) \implies y < w$ auf $(0, \omega_{+})$. $y'(x) = \frac{x^{2}+1}{2} + y(x)^{2} > 0 \implies y$ ist streng wachsend. y ist nach oben beschränkt auf $[0, \omega_{+}) \implies \exists \beta := \lim_{x \to \omega_{+} -} y(x)$ und $\beta \in \mathbb{R}$.

$$z(x) := \begin{cases} y(x), & x \in (\omega_{-}, \omega_{+}) \\ \beta, & x = \omega_{+} \end{cases} \quad (\implies z \in C(\omega_{-}, \omega_{+}))$$

$$\lim_{x \to \omega_{+}-} \frac{z(x) - z(\omega_{+})}{x - \omega_{+}} = \lim_{x \to \omega_{+}-} \frac{y(x) - \beta}{x - \omega_{+}} \stackrel{\text{l'Hosp.}}{=} \lim_{x \to \omega_{+}-} y'(x)$$
$$= \lim_{x \to \omega_{+}-} f(x, y(x)) = f(\omega_{+}, \beta)$$

 $\implies z$ ist in ω_+ differenzierbar und $z'(\omega_+) = f(\omega_+, \beta) = f(\omega_+, z(\omega_+)) \implies z$ löst das AWP (+) auf $(\omega_-, \omega_+]$, Widerspruch!, denn y ist nicht fortsetzbar. Also: $\omega_+ \ge \frac{\pi}{4}$. Dann gilt (ii) $\forall a \in (0, \frac{\pi}{4}) \implies y < w$ auf $(0, \frac{\pi}{4})$.

25. Stetige Abhängigkeit

In diesem Paragraphen: $I = [a, b] \subseteq \mathbb{R}, D := I \times \mathbb{R}, f \in C(D, \mathbb{R}).$

Satz 25.1

Sei (f_n) eine Folge in $C(D,\mathbb{R})$, (x_n) eine Folge in I, (η_n) eine Folge in \mathbb{R} und $M \geq 0$. Es gelte:

- (a) $|f_n(x,y)| \leq M$, $|\eta_n| \leq M \ \forall n \in \mathbb{N} \ \forall (x,y) \in D$
- (b) (f_n) konvergiere auf $R := I \times [-(b-a+1)M, (b-a+1)M]$ gleichmäßig gegen f.
- (c) Zu jedem $n \in \mathbb{N}$ sei $y_n : I \to \mathbb{R}$ eine Lösung des Anfangswertproblems:

$$\begin{cases} y' = f_n(x, y) \\ y(x_n) = \eta_n \end{cases}$$

auf I.

Dann gilt:

- (1) (y_n) enthält eine auf I gleichmäßig konvergente Teilfolge (y_{n_k}) und $y(x) := \lim_{k\to\infty} y_{n_k}(x)$ $(x\in I)$ so gilt: $y'(x) = f(x,y(x)) \ \forall x\in I$
- (2) Gilt $x_n \to x_0 \ (\in I)$ und $\eta_n \to y_0$ und hat das Anfangswertproblem

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung $y: I \to \mathbb{R}$, so konvergiert (y_n) auf I gleichmäßig gegen y.

Beweis

(1) 12.1 $\Longrightarrow y_n(x) = \eta_n + \int_{x_n}^x f_n(t, y_n(t)) dt \ \forall x \in I \ \forall n \in \mathbb{N} \ (*).$

Für $x, \tilde{x} \in I, n \in \mathbb{N}$: $|y_n(x)| \le |\eta_n| + |\int_{x_n}^x |f_n(t, y_n(t))| dt| \le M + M|x - x_n| \le M + (b - a)M = (b - a + 1)M \implies (x, y_n(x)) \in R \ \forall n \in \mathbb{N} \ \forall x \in I \ (**)$

$$|y_n(x) - y_n(\tilde{x})| \stackrel{\text{MWS}}{=} |y'_n(\xi_n)| |x - \tilde{x}| = |f_n(\xi_n, y_n(\xi_n))| |x - \tilde{x}| \le M|x - \tilde{x}|$$

 $\S1 \implies (y_n)$ enthält eine auf I gleichmäßig konvergente Teilfolge. o.B.d.A.: (y_n) konvergiert auf I gleichmäßig.

 $y(x) := \lim_{n \to \infty} y_n(x) \ (x \in I);$ Analysis I $\Longrightarrow y \in C(I, \mathbb{R}).$ (**) $\Longrightarrow (x, y(x)) \in R \ \forall x \in I.$ $g(t) := f(t, y(t)), g_n(t) := f_n(t, y_n(t)) \ (t \in I).$ Übung: (g_n) konvergiert auf I

gleichmäßig gegen g. o.B.d.A: (x_n) konvergent, (η_n) konvergent, etwa $x_n \to x_0$, $\eta_n \to y_0$. (Bolzano-Weierstraß!).

$$(*) \implies y_n(x) = \eta_n + \int_{x_n}^x g_n(t)dt \ \forall n \in \mathbb{N} \ \forall x \in I$$

$$\xrightarrow{n \to \infty} y(x) = y_0 + \int_{x_0}^x g(t)dt \ \forall x \in I$$

$$\implies y(x_0) = y_0 \text{ und } y'(x) = g(x) = f(x, y(x)) \ \forall x \in I$$

(2) $a_n := ||y - y_n||_{\infty}$. Zu zeigen ist: $a_n \to 0$.

Annahme: $a_n \nrightarrow 0 \implies \exists \varepsilon_0 > 0$ und eine Teilfolge $(a_{n_k}) : a_{n_k} \ge \varepsilon_0 \ \forall k \in \mathbb{N}$.

- (1) \implies (y_{n_k}) enhält eine auf I gleichmäßig konvergente Teilfolge $y_{n_{k_l}}; z(x) := \lim_{l \to \infty} y_{n_{k_l}} (x \in I)$
- (1) + Beweis von (1) $\Longrightarrow z$ löst das Anfangswertproblem $y' = f(x,y); \ y(x_0) = y_0$. Die eindeutige Lösbarkeit liefert z = y auf $I \Longrightarrow a_{n_{k_l}} = \|y y_{n_{k_l}}\|_{\infty} = \|z y_{n_{k_l}}\|_{\infty} \to 0$ $(l \to \infty)$, Widerspruch denn $a_{n_{k_l}} \ge \varepsilon_0 \ \forall l \in \mathbb{N}$.

Satz 25.2

Es sei $x_0 \in I$, $\eta_1, \eta_2 \in \mathbb{R}$, $L \geq 0$ und es gelte:

$$|f(x,y) - f(x,\tilde{y})| \le L(y - \tilde{y}) \ \forall (x,y), (x,\tilde{y}) \in D.$$

Für i = 1, 2 sei $y_i : I \to \mathbb{R}$ die (nach 13.1) eindeutig bestimmte Lösung des Anfangswert-problems:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = \eta_i \end{cases}$$

Dann gilt:

$$|y_1(x) - y_2(x)| \le e^{L(b-a)} |\eta_1 - \eta_2| \ \forall x \in I.$$

Beweis

 $\alpha := \|y_1 - y_2\|_{\infty} = \max\{|y_1(x) - y_2(x)| : x \in I\}.$ Für $x \in I$:

$$|y_{1}(x) - y_{2}(x)| = \left| \eta_{1} + \int_{x_{0}}^{x} f(t, y_{1}(t)) dt - (\eta_{2} + \int_{x_{0}}^{x} f(t, y_{2}(t)) dt) \right|$$

$$\leq |\eta_{1} - \eta_{2}| + \left| \int_{x_{0}}^{x} \underbrace{\left| f(t, y_{1}(t)) - f(t, y_{2}(t)) \right| dt}_{L|y_{1}(t) - y_{2}(t)| \leq L\alpha} \right|$$

$$\leq |\eta_{1} - \eta_{2}| + L\alpha |x - x_{0}|$$

$$\leq |\eta_{1} - \eta_{2}| + L\alpha |x - x_{0}|$$
Allgemein gilt:
$$\leq \underbrace{\frac{L^{n+1}}{(n+1)!} \alpha |x - x_{0}|^{n+1}}_{=:\alpha_{n}(x)} + |\eta_{1} - \eta_{2}| \underbrace{\sum_{k=0}^{n} \frac{L^{k} |x - x_{0}|^{k}}{k!}}_{=:\alpha_{n}(x)}$$

$$\beta_n(x) \to e^{L|x-x_0|} \ (n \to \infty), \ \alpha_n(x) \to 0 \ (n \to \infty) \implies |y_1(x) - y_2(x)| \le e^{L|x-x_0|} |\eta_1 - \eta_2| \le e^{L(b-a)} |\eta_1 - \eta_2|$$

26. Zwei Eindeutigkeitssätze

Stets in diesem Paragraphen: $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}$ und $f \in C(D, \mathbb{R})$. Wir betrachten das Anfangswertproblem:

(A)
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Satz 26.1 (Satz von Nagumo)

Es gelte

$$|f(x,y) - f(x,\tilde{y})| \le \frac{|y - \tilde{y}|}{|x - x_0|} \, \forall (x,y), (x,\tilde{y}) \in D \text{ mit } x \ne x_0.$$

Dann hat (A) höchstens eine Lösung auf I.

Beweis

Seien $y_1, y_2: I \to \mathbb{R}$ Lösungen von (A) auf $I, y := y_1 - y_2$. ($\Longrightarrow y(x_0) = 0$)

$$\lim_{x \to x_0} \frac{y(x)}{x - x_0} = \lim_{x \to x_0} \frac{y(x) - y(x_0)}{x - x_0} = y'(x_0) = y'_1(x_0) - y'_2(x_0) = f(x_0, y_1(x_0)) - f(x_0, y_2(x_0)) = 0.$$

Definiere $h: i \to \mathbb{R}$ durch $h(x) := \begin{cases} \frac{|y(x)|}{|x-x_0|}, & x \in I \setminus \{x_0\} \\ 0, & x = x_0 \end{cases} \implies h \in C(I, \mathbb{R})$. Voraussetzung $\implies |f(t, y_1(t)) - f(t, y_2(t))| \le h(t) \ \forall t \in I$.

$$\forall x \in I : |y(x)| = |y_1(x) - y_2(x)|$$

$$\stackrel{12.1}{=} \left| \int_{x_0}^x (f(t, y_1(t)) - f(t, y_2(t))) dt \right|$$

$$\leq \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_2(t))| dt \right|$$

$$\leq \left| \int_{x_0}^x h(t) dt \right|$$

Annahme: $\exists x_1 \in I : y(x_1) \neq 0$. Dann: $x_1 \neq x_0$, etwa $x_0 < x_1$; $h(x_1) > 0$, $h(x_0) = 0$. $\exists \xi \in [x_0, x_1] : h(t) \leq h(\xi) \ \forall t \in [x_0, x_1]$. Dann: $h(\xi) > 0 \implies \xi \neq x_0$, also $x_0 < \xi$.

Dann:
$$h(\xi) = \frac{|y(\xi)|}{|\xi - x_0|} = \frac{|y(\xi)|}{\xi - x_0} \le \frac{1}{\xi - x_0} \left| \int_{x_0}^{\xi} h(t)dt \right|$$

$$= \frac{1}{\xi - x_0} \int_{x_0}^{\xi} h(t)dt < \frac{1}{\xi - x_0} \int_{x_0}^{\xi} h(\xi)dt = h(\xi), \text{ Widerspruch.} \quad \blacksquare$$

Satz 26.2 (Satz von Osgood)

Es sei $\phi:(0,\infty)\to\mathbb{R}$ stetig und >0 auf $(0,\infty),\ t_0>1$ und das uneigentliche Integral $\int_0^{t_0} \frac{du}{\phi(u)}$ sei divergent.

Weiter gelte

$$|f(x,y) - f(x,\tilde{y})| \le \phi(|y - \tilde{y}|) \forall (x,y), (x,\tilde{y}) \in D \text{ mit } y \ne \tilde{y}.$$

Dann hat (A) auf I höchstens eine Lösung.

Bemerkung: f genüge auf D einer LB bzgl. y mit der Lipschitz-Konstanten L: $\phi(u) := Lu$

o.B.d.A: $x_0 = a$. $\int_0^{t_0} \frac{du}{\phi(u)} \text{ div. } \Longrightarrow \int_{\frac{1}{k}}^{t_0} \frac{du}{\phi(u)} \to \infty(k \to \infty)$.

Daher: o.B.d.A: $\int_{\frac{1}{k}}^{t_0} \frac{du}{\phi(u)} > 2(b-a) \forall k \in \mathbb{N}.$

(I): Sei $k \in \mathbb{N}$. Definiere $g_k : [\frac{1}{k}, \infty) \to \mathbb{R}$ durch $g_k(t) := \int_{\frac{1}{k}}^t \frac{du}{\phi(u)}$

Dann: $g_k \in C^1([\frac{1}{k}, \infty), g'_k = \frac{1}{\phi} > 0, g_k \text{ ist streng wachsend}, g_k(\frac{1}{k}) = 0, g_k(t_0) > 2(b-a)$

ZWS $\Longrightarrow [0, 2(b-a)] \subseteq g_k([\frac{1}{k}, \infty))$

Für $x \in I = [a, b] : 2(x - a) \in [0, 2(b - a)].$

Definiere $\Psi_k: I \to \mathbb{R}$ durch $\Psi_k(x) := g_k^{-1}(2(x-a)).$ $\implies (i): 2(x-a) = g_k(\Psi_k(x)) = \int_{\frac{1}{k}}^{\Psi_k(x)} \frac{du}{\phi(u)} \forall x \in I.$

 g_k streng wachsend $\Longrightarrow g_k^{-1}$ streng wachsend $\Longrightarrow \Psi_k$ streng wachsend. $\Psi_k(a) = \Psi_k(x_0) = g_k^{-1}(0) = \frac{1}{k}, \ \Psi_k(x) > \frac{1}{k} \forall x \in (a, b].$ g_k ist stetig db $\Longrightarrow g_k^{-1}$ stetig db $\Longrightarrow \Psi_k$ stetig db. Aus (i): $2 = g'_k(\Psi_k(x))\Psi'_k(x) = \frac{1}{\phi(\Psi_k(x))}\Psi'_k(x)\forall x \in I$

 \implies (ii): $\Psi'_k = 2\phi(\Psi_k(x)) > 0 \forall x \in I$.

(II): Behauptung: $\Psi_k(x) \to 0 (k \to \infty) \forall x \in I$.

Beweis: Sei $x \in I$. Annahme: $\Psi_k(x) \not\to 0 (k \to \infty)$.

Dann $\exists \epsilon_0 > 0$ und eine TF $(\Psi_{k_i}(x))$ von $(\Psi_k(x))$ mit:

 $\epsilon_0 \ge 0 \Psi_{k_j}(x) \forall j \in \mathbb{N}.$

 $c_j := \int_{\frac{1}{k_i}}^{\epsilon_0} \frac{du}{\phi(u)} (j \in \mathbb{N}).$ Vorraussetzung $\implies c_j \to \infty (j \to \infty).$

Aber: $c_j = \int_{\frac{1}{k_j}}^{\varepsilon_0} \frac{du}{\phi(u)} \le \int_{\frac{1}{k_j}}^{\Psi_{k_j}(x)} \frac{du}{\phi(u)} \stackrel{(1)}{=} 2(x-a) \forall j \in \mathbb{N}.$

Widerspruch zu $c_i \to \infty!$

(III): Sei $y_1, y_2: I \to \mathbb{R}$ Lösungen von (A) auf $I. y := y_1 - y_2$.

Wir zeigen: $|y(x)| \leq \Psi_k(x) \forall k \in \mathbb{N} \forall x \in I$. (Mit (II) folgt dann: y == 0 auf I.) Sei $k \in \mathbb{N}$.

Annahme: $M := x \in I : |y(x)| > \Psi_k(x) \neq \emptyset$.

 $y(a) = y(x_0) = y_1(x_0) - y_2(x_0) = 0 \implies a \notin M.\xi := \inf M$

 y, Ψ_k stetig $\Longrightarrow |y(\xi)| \ge \Psi_k(\xi) \Longrightarrow \xi > a \text{ und } |y(x)| \le \Psi_k(x) \forall x \in [a, \xi) \text{ (iii)}$

 $\begin{array}{l} \xrightarrow{x \to \xi^-} \quad |y(\xi)| \le \Psi_k(\xi). \text{ Also: } |y(\xi)| = \Psi_k(\xi). \text{ D.h.: } + -y(\xi) = \Psi_k(\xi). \text{ o.B.d.A: } y(\xi) = \Psi_k(\xi). \\ \text{(sonst betrachte } y_2 - y_1 = -y). \\ \text{Aus (iii) folgt: } \exists \alpha > 0 \text{ so, dass } \xi - \alpha \ge a \text{ und } 0 < y \le \Psi_k \text{ auf } [\xi - a, \xi]. \\ \text{Sei } x \in (\xi - \alpha, \xi) \implies y(x) \le \Psi_k(x) \implies y(x) - y(\xi) \le \Psi_k(x) - \Psi_k(\xi) \\ \implies \frac{y(x) - y(\xi)}{x - \xi} \ge \frac{\Psi_k(x) - \Psi_k(\xi)}{x - \xi} \stackrel{x \to \xi^-}{\Longrightarrow} y'(\xi) \ge \Psi'_k(\xi) \implies \Psi'_k(\xi) \le y'(\xi) = y'_1(\xi) - y'_2(\xi) \\ = f(\xi, y_1(\xi)) - f(\xi, y_2(\xi)) \stackrel{(ii)}{=} \frac{1}{2} \Psi'_k(\xi) \implies \Psi'_k(\xi) \le 0, \text{ Widersruch zu (ii)!}. \end{array}$

27. Randwertprobleme (Einblick)

Sei $D \subseteq \mathbb{R}^2$, $I = [a, b] \subseteq \mathbb{R}$, $f : IxD \to \mathbb{R}$ eine Funktion. Wir betrachten das **Randwertproblem** (RWP):

$$\begin{cases} y'' = f(x, y, y') \\ \alpha_1 y(a) + \alpha_2 y''(a) = \gamma_a, \beta_1 y(b) + \beta_2 y''(b) = \gamma_b \end{cases}$$

mit $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_a, \gamma_b \in \mathbb{R}$.

Beispiel

Die Dgl $y'' = -\pi^2 y$ hat die allg. Lösung $y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x)$ Die Dgl $y'' = -\pi^2 y + 1$ hat die allg. Lösung $y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x) + \frac{1}{\pi^2}$

RWP (1)
$$\begin{cases} y'' = -\pi^2 y \\ y(0) = y(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) = c_1 \cos(\pi 0) + c_2 \sin(\pi 0) = c_1$

 $0 = y(1) = c_2 \sin(\pi 0) = 0$. D.h.: das RWP hat unendlich viele Lösungen: $y(x) = c \sin(\pi x)$ ($c \in$

RWP (2)
$$\begin{cases} y'' = -\pi^2 y + 1 \\ y(0) = y(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) = c_1 \cos(\pi 0) + c_2 \sin(\pi 0) + \frac{1}{\pi^2} = c_1 + \frac{1}{\pi^2} \implies c_1 = -\frac{1}{\pi^2}$ $0 = y(1) = -\frac{1}{\pi^2} \cos(\pi) + c_2 \sin(\pi) + \frac{1}{\pi^2} = \frac{2}{\pi^2}. \text{ D.h.: das RWP ist unlösbar.}$

RWP (3)
$$\begin{cases} y'' = -\pi^2 y \\ y(0) = y'(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) \implies c_1 = 0 \implies y(x) = c_2 \sin(\pi x)$

 $y'(x) = c_2\pi\cos(\pi x) \xrightarrow{x=1} c_2\pi\cos(\pi) = -c_2\pi \implies c_2 = 0$

 $\implies y = 0$ ist die eindeutig bestimmte Lösung des RWPs.

Beachte für später:

In Bsp(1) und (3): $f(x,y) = -\pi^2 y$

In Bsp(1) and (3), $f(x,y) = -\pi^2 y + 1$ In allen 3 Bsp'en: $|f(x,y) - f(x,\tilde{y})| = \underbrace{\pi^2}_{t} |y - \tilde{y}|$. ($\implies \exists \text{ kein } L \in [0,\pi^2) : |f(x,y) - f(x,\tilde{y})| \le \frac{\pi^2}{t} |y - \tilde{y}|$.

 $L|y-\tilde{y}|$)

Definition: Die Funktion $G: [0,1] \times [0,1] \to \mathbb{R}$ sei definiert durch:

$$G(x,t) := \begin{cases} t(x-1), \text{ falls } 0 \le t \le x. \\ x(t-1), \text{ falls } 0 \le x \le t. \end{cases}$$

Klar: $G \le 0$; $G(0,t) = G(1,t) = 0 \ \forall t \in [0,1]$. Übung: G ist stetig auf $[0,1] \times [0,1]$.

Hilfssatz 27.1

Gegeben: $h:[0,1]\to\mathbb{R}$ stetig. $\phi:[0,1]\to\mathbb{R}$ sei definiert durch

$$\phi(x) := \int_0^1 G(x, t)h(t)dt.$$

Dann: $\phi(0) = \phi(1) = 0, \phi \in C^2([0, 1] \text{ und } \phi'' = h \text{ auf } [0, 1].$

$$\begin{aligned} & \text{\textbf{Beweis}} \\ & \phi(0) = \int_0^1 \underbrace{G(0,t)}_{=0} h(t) dt = 0; \phi(1) = \int_0^1 \underbrace{G(1,t)}_{=0} h(t) dt = 0 \\ & \forall x \in [0,1] : \phi(x) = \int_0^x G(x,t) h(t) dt + \int_x^1 G(x,t) h(t) dt = \int_0^x (tx-t) h(t) dt + \int_x^1 (xt-x) h(t) dt \\ & = x \int_0^x t h(t) dt - \int_0^x t h(t) dt + x \int_x^1 t h(t) dt - x \int_x^1 h(t) dt \\ & = x \int_0^1 t h(t) dt - \int_0^x t h(t) dt + x \int_1^x h(t) dt \\ & \implies \phi \text{ ist db auf } [0,1] \text{ und } \phi'(x) = \int_0^1 t h(t) dt - x h(x) + \int_1^x h(t) dt + x h(x) \\ & = \int_0^1 t h(t) dt + \int_1^x h(t) dt. \implies \phi \text{ ist auf } [0,1] \text{ 2 mal db und } \phi''(x) = h(t). \end{aligned}$$

Beispiel
$$\int_{0}^{1} G(x,t)dt = \underbrace{\int_{0}^{1} G(x,t)1dt}_{=:\phi(x)} \xrightarrow{27.1} \phi''(x) = 1 = \phi'(x) = x + c_{1}$$

$$\Rightarrow \phi(x) = \frac{1}{2}x^{2} + c_{1}x + c_{2}$$

$$0 = \phi(0) = c_{2}$$

$$0 = \phi(1) = \frac{1}{2} + c_{1} \Rightarrow c_{1} = -\frac{1}{2}$$

$$0 = \phi(0) = c_2$$

$$0 = \phi(1) = \frac{1}{2} + c_1 \implies c_1 = -\frac{1}{2}$$

$$\implies \int_0^1 G(x, t) dt = \frac{1}{2} x^2 - \frac{1}{2} x \ \forall x \in [0, 1].$$

Definition

 $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ sei stetig. Das RWP

(R)
$$\begin{cases} y'' = f(x, y) \\ y(0) = y(1) = 0 \end{cases}$$

heisst Dirichlet Randwert-Problem und obige Funktion G heisst die zu (R) gehörende Greensche Funktion.

Im Folgenden sei $X := C([0,1],\mathbb{R})$ und der Operator $T: X \to X$ definiert durch

$$(T_y)(x) := \int_0^1 G(x,t)f(t,y(t))dt(y \in X, x \in [0,1])$$

Aus 27.1: $(T_y)(0) = (T_y)(1) = 0, T_y \in C^2[0,1]$ und $(T_y)''(x) = f(x,y(x)) \ \forall y \in X \ \forall x \in [0,1].$

Satz 27.2

Sei $y \in X$.

$$y$$
 löst (R) auf $[0,1] \iff T_y = y$

Beweis

$$\forall x \in I : y''(x) = f(x,y(x)) \overset{\text{s.o.}}{=} (T_y)''(x); \Psi(x) := y(x) - (T_y)(x) \\ \Longrightarrow \Psi'' = 0 \text{ auf } [0,1] \Longrightarrow \Psi'(x) = c_1 \Longrightarrow \Psi(x) = c_1 x + c_2 \\ \Psi(0) = y(0) - (T_y)(0) = 0 \Longrightarrow c_2 = 0. \\ \Psi(1) = y(1) - (T_y)(1) = 0 \Longrightarrow c_1 = 0. \\ \text{"} \Leftarrow \text{"} : \\ \text{Sei } y = T_y \overset{27.1}{\Longrightarrow} y \in C^2([0,1]) \text{ und } y''(x) = (T_y)''(x) = f(x,y(x)) \ \forall x \in [0,1] \\ y(0) = (T_y)(0) \overset{\text{s.o.}}{=} 0 \\ y(1) = (T_y)(1) \overset{\text{s.o.}}{=} 0.$$

Vorbetrachtung:

Sei
$$0 < c < \pi$$
, $\phi(x) := \cos c(x - \frac{1}{2})(x \in [0, 1])$.
 $\phi \in C([0, 1], \mathbb{R})$. $x \in [0, 1] \implies c(x - \frac{1}{2}) \in [-\frac{c}{2}, \frac{c}{2}] \subsetneq [-\frac{\pi}{2}, \frac{\pi}{2}]$
 $\implies \phi(x) > \frac{c}{2} > 0 \ \forall x \in [0, 1]$

Satz 27.3 (Satz von Lettenmeyer)

 $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ sei stetig. Es sei $L\geq 0$ und es gelte: $|f(x,y)-f(x,\tilde{y})|\leq L|y-\tilde{y}|\; \forall (x,y),(x,\tilde{y})\in [0,1]\times\mathbb{R}.$ Ist $L<\pi^2$, so hat (R) auf [0,1] genau eine Lösung.

Bemerkung:

- (1) Die Beispiele am Anfang des Paragrafen zeigen, dass die Schranke π^2 optimal ist.
- (2) Allgemein kann man das RWP

$$\begin{cases} y'' = f(x, y) \\ y(a) = y(b) = 0 \end{cases}$$

(mit $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ stetig) betrachten. Dann ist π^2 durch $\frac{\pi^2}{(a-b)^2}$ zu ersetzen.

Beweis

Sei $c := (\frac{c+\pi^2}{2})^{\frac{1}{2}}$. Dann: $L < c^2 < \pi^2$, $q = \frac{L}{c^2}$, also q < 1.

Sei ϕ wie in der Vorbetrachtung. Wir versehen nun X mit folgender Norm:

$$||u||:=\max\{\frac{u(x)}{\phi(x)}:0\leq x\leq 1\}\ (u\in X)$$
 gewichtete Max-Norm

Bekannt: $(X, ||\cdot||)$ ist ein BR (Par. 13). Wir werden zeigen:

$$||T_u - T_v|| \le q||u - v|| \ \forall u, v \in X.$$

Aus 11.2 folgt dann: T hat genau einen Fixpunkt. Aus 27.2 folgt dann die Behauptung.

Seien $u, v \in X$ und $x \in [0, 1]$. $|(T_u)(x) - (T_v)(x)| = |\int_0^1 G(x, t)(f(t, u(t)) - f(t, v(t))dt| \le \int_0^1 |G(x, t)| L|u(t) - v(t)|dt$

$$\int_{0}^{1} |G(x,t)| L|u(t) - v(t)| dt$$

$$= L \int_{0}^{1} |G(x,t)| \underbrace{\frac{|u(t) - v(t)|}{\phi(t)}}_{\leq ||u - v||} \phi(t) dt \leq L||u - v|| \int_{0}^{1} |G(x,t)| \phi(t) dt$$

27. Randwertprobleme (Einblick)

$$\frac{G \leq 0}{\tilde{z}} L||u-v|| \left(-\int_{0}^{1} G(x,y)\phi(t)dt\right)$$

$$= :g(x)$$

$$27.1 \implies g(0) = g(1) = 0, g \in C^{2}([0,1]) \text{ und } g'' = \phi. \text{ Dann: } g'(x) = \frac{1}{c}\sin c(x - \frac{1}{2}) + c_{1}$$

$$\implies g(x) = -\frac{1}{c^{2}}\cos c(x - \frac{1}{2}) + c_{1}x + c_{2} = -\frac{1}{c^{2}}\phi(x) + c_{1}x + c_{2}.$$

$$0 = g(0) = -\frac{1}{c^{2}}\phi(0) + c_{2} \implies c_{2} = \frac{1}{c^{2}}\cos\frac{c}{2} \quad 0 = g(1) = -\frac{1}{c^{2}}\phi(1) + \frac{1}{c^{2}}\cos\frac{c}{2} \implies c_{1} = 0$$

$$\implies g(x) = -\frac{1}{c^{2}}\phi(x) + \frac{1}{c^{2}}\cos\frac{c}{2}$$

$$\implies |(T_{u})(x) - (T_{v})(x)| \leq L||u-v||\frac{1}{c^{2}}(\phi(x) - \cos\frac{c}{2}) = \frac{L}{c^{2}}||u-v||(\phi(x) - \cos\frac{c}{2}) \implies \underbrace{|(T_{u})(x) - (T_{v})(x)|}_{=\phi(x)} \leq \frac{L}{c^{2}}||u-v||$$

$$\stackrel{L}{\Rightarrow} ||T_{u} - T_{v}|| \leq q||u-v||.$$

Satz 27.4 (Satz von Scorza-Dragoni)

Sei $I = [a, b] \subseteq \mathbb{R}$, $D := I \times \mathbb{R}$ und $f \in C(D, \mathbb{R})$ sei auf D beschränkt.

Dann hat das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(a) = y(b) = 0 \end{cases}$$

eine Lösung auf I.

Beispiel

$$I = [0, \pi], \quad f(x, y) = \begin{cases} 1, & y \le -1 \\ -y, & |y| \le 1 \\ -1, & y \ge 1 \end{cases}$$

Wir betrachten das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(0) = y(\pi) = 0 \end{cases}$$

Sei $\alpha \in \mathbb{R}$, $|\alpha| \le 1$ und $y_{\alpha}(x) := \alpha \sin x$, $|y_{\alpha}| \le 1$, $y_{\alpha}''(x) = -\alpha \sin x = -y_{\alpha}(x) = f(x, y_{\alpha}(x))$, $y_{\alpha}(0) = y_{\alpha}(\pi) = 0$. Das heißt: Ein Randwertproblem wie in 27.4 muß *nicht* eindeutig lösbar sein.

Beweis

Wir führen den Beweis nur unter der zusätzlichen Voraussetzung:

$$\exists L > 0 : |f(x,y) - f(x,\tilde{y})| < L|y - \tilde{y}| \ \forall (x,y), (x,\tilde{y}) \in D$$

Sei $M \ge 0$ so, dass $|f| \le M$ auf D.

Sei $s \in \mathbb{R}$. Wir betrachten das Anfangswertproblem:

$$\begin{cases} y'' = f(x,y) \\ y(a) = 0, y'(a) = s \end{cases}$$

18.3 \Longrightarrow obiges Anfangswertproblem hat genau eine Lösung y_s auf I. §18 und 25.2 \Longrightarrow $|y_{s_1}(x) - y_{s_2}(x)| \le c|s_1 - s_2| \ \forall x \in I, s_1, s_2 \in \mathbb{R}$.

 $h(s) := y_s(b) \ (s \in \mathbb{R})$, damit $h : \mathbb{R} \to \mathbb{R}$ stetig. Ist $s_0 \in \mathbb{R}$ und $h(s_0) = 0$, so ist $y := y_{s_0}$ eine Lösung des Randwertproblems.

$$\forall x \in I : y_s'(x) - s = y_s'(x) - y_s'(a) = \int_a^x y_s''(t)dt = \int_a^x f(t, y_s(t))dt$$

$$\implies y_s'(x) = s + \int_a^x f(t, y_s(t))dt$$

$$\implies y_s(b) = y_s(b) - y_s(a)$$

$$\stackrel{\text{MWS}}{=} y_s'(\xi)(b - a)$$

$$= \left(s + \int_a^\xi f(t, y_s(t))dt\right)(b - a)$$

$$= s(b - a) + \int_a^\xi f(t, y_s(t))dt(b - a)$$

$$\implies |h(s) - s(b - a)| = |\int_a^{\xi} f(t, y_s(t)) dt(b - a)| \le M(\xi - a) \le M(b - a) =: c$$

$$\implies -c \le h(s) - s(b - a) \le c \ \forall s \in \mathbb{R}$$

$$\implies s(b - a) - c \le h(s) \le c + s(b - a) \ \forall s \in \mathbb{R}$$

$$\implies h(s) \to \infty \ (s \to \infty) \ \text{und} \ h(s) \to -\infty \ (s \to -\infty)$$

Der Zwischenwertsatz liefert nun: $\exists s_0 \in \mathbb{R} : h(s_0) = 0$

Satz 27.5

Sei $A > 0, 0 < B < \pi^2, f \in C([0,1] \times \mathbb{R}, \mathbb{R})$ und es gelte

$$|f(x,y)| \le A + B|y| \ \forall x \in [0,1], y \in \mathbb{R}$$

Dann hat das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(0) = y(1) = 0 \end{cases}$$

eine Lösung auf [0, 1]

Bemerkung: Die Schranke π^2 ist optimal:

$$\begin{cases} y'' = -\pi^2 y + 1 \\ y(0) = y(1) = 0 \end{cases}$$

ist unlösbar!

A. Satz um Satz (hüpft der Has)

2.1.	Integralsatz von Gauss im \mathbb{R}^2	11
4.2.	Integralsatz von Stokes	15
5.2.	Integralsatz von Stokes	17
7.1.	Lösung einer linearen Dgl 1. Ordnung	23
7.2.	Eindeutige Lösbarkeit eines linearen AWPs 1. Ordnung	23
7.3.	Spezielle Lösungen bei AWPs	24
8.1.	AWP mit getrennten Veränderlichen	27
11.1.	Verweis auf Analysis 2.3(3)	37
11.2.	Fixpunktsatz von Banach	38
11.3.	Fixpunktsatz von Schauder	38
11.4.	Konvergente Teilfolgen von Funktionen	39
11.5.	Konvexe und Kompakte Teilmenge	39
12.1.	Zusammenhang Integral- und Differenzialgleichung	41
12.2.	Lösungen auf Teilintervallen	41
12.4.	Der Existenzsatz von Peano (Version I)	42
12.5.	Der Existenzsatz von Peano (Version II)	43
12.6.	Der Existenzsatz von Peano (Version III)	44
13.1.	EuE - Satz von Picard - Lindelöf (Version I)	46
13.2.	Der EuE-Satz von Picard-Lindelöf (Version II)	46
13.3.	Partielle Differenzierbarkeit und lokale Lipschitzbedingung	47
13.4.	Der EuE-Satz von Picard-Lindelöf (Version III)	47
14.1.	Existenz der Jordan-Normalform	49
14.2.	Konvex und Kompakt	51
14.3.	Rechenregeln für Matrixreihen und -folgen	51
14.4.	Absolute Konvergenz von Matrixreihen	52

A. Satz um Satz (hüpft der Has)

14.6. Matrixexponentialrechnung	. 53
14.8. Ableitung der Matrixexponentfunktion	. 53
14.9. Exponierung von Matrizen entlang der Diagonalen	. 54
15.1. Peano	. 55
15.2. Picard-Lindelöf	. 55
16.1. Lösungen linearer Systeme	. 57
16.3. Vektorraum der Lösungen	. 58
16.4. Lösungssyteme und -matrizen	. 60
16.5. Spezielle Lösung per Cramerscher Regel	. 62
16.6. Schiefsymmetrische Systeme	. 62
17.1	. 65
17.3	. 66
17.4	. 66
17.5	. 69
18.1	. 73
18.2	. 73
18.3	. 74
19.1	. 75
19.2	. 75
19.3	
19.4	. 76
19.5. Reduktionsverfahren von d'Alembert $(m=2)$. 76
19.6	. 77
20.1	. 79
20.2. ohne Beweis	. 79
20.3. Regel - ohne Beweis	. 81
21.1. Lösungsansatz	. 83
22.1	. 87

<u>4</u>
<mark>1</mark>
<mark>2</mark>
2. Abschätzung von Lösungen mittels Ober- und Unterfunktionen
<mark>1.</mark>
<mark>2 </mark>
1. Satz von Nagumo
2. Satz von Osgood
<mark>2</mark>
3. Satz von Lettenmeyer
4. Satz von Scorza-Dragoni
5

Stichwortverzeichnis

f genügt auf D einer Lipschitzbedingung (LB)	gewichtete Max-Norm, 109
$bzgl. \ y:, 45, 55$	gleichmäßig beschränkt, 9
0-fache Nullstelle, 81	gleichstetig, 9
	Greensche Funktion, 108
abgeschlossen, 36	
absolut konvergent, 51	homogen, 57, 75
alle einfach, 66	in m. statis 51
Anfangswertproblem, 20	in x_0 stetig, 51 inhomogen, 57, 75
eindeutig lösbares, 20	Integralgleichung, 41
Lösung eines, 20	integrargietchung, 41
auf I differenzierbar, 51	Kette, 85
auf I stetig, 51	kompakt, 36
AWP, 20	komplexe, 65
	konstant, 65
Banachraum, 36	kontrahierend, 37
beschränkt, 36	konvergent, 51
	konvex, 36
charakteristisches Polynom, 49	Kreuzprodukt, 7
D'C (11111 10	, ·
Differentialgleichung, 19	Lösung einer expliziten Differentialgleichung,
Eulersche, 83	20
explizite, 20	Lösung einer gewöhnlichen Differentialglei-
gewöhnliche, 19	chung, 19
homogene, 23	Lösung eines Anfangswertproblems, 20
inhomogene, 23	Lösung von (i) auf I , 41
Lösung einer expliziten, 20	Lösungssystem, 60, 76
Lösung einer gewöhnlichen, 19	Lösungstrichter, 92
lineare, 23	lineare Differentialgleichung, 23
Dirichlet Randwert-Problem, 108	lineare Differentialgleichung m -ter Ordnung,
divergent, 51	75
Divergenz, 7	lineares System, 57
E:	Lipschitzbedingung
Eigenvektor, 49	lokale, 46
Eigenwert, 49	Losungsmatrix, 60
endeutig lösbares Anfangswertproblem, 20	
explizite Differentialgleichung, 20	maximales Element, 85
Firmuplet 27	Maximallösung, 91
Fixpunkt, 37	Minimallösung, 91
Flächen, 13 Folge der gultrassitten Approximation 28	Multiplikator, 34
Folge der sukzessiven Approximation, 38	Name ouf V 25
Fundamentalmatrix, 60	Norm auf X , 35
Fundamental system, 60, 76	normierter Raum, 35

Stichwortverzeichnis

```
obere Schranke, 85
Oberfunktion, 95
Operator, 37
Ordnungs
relation, 85
punktweise beschränkt, 9
Randwertproblem, 80, 107
Rotation, 7
Störfunktion, 23
System von Dgl. 1. Ordnung, 55
Tangentialvektor, 7
TDV, 28
Trennung der Veranderlichen, 28
Unterfunktion, 95
Variation der Konstanten, 24
vollständig, 36
Wronskideterminante, 60, 76
zulässig, 11
```

B. Credits für Analysis III

Abgetippt haben die folgenden Paragraphen:

- § 1: Satz von Arzelà-Ascoli: Joachim Breitner
- § 2: Der Integralsatz von Gauss im \mathbb{R}^2 : Joachim Breitner, Florian Mickler
- § 3: Flächen im \mathbb{R}^3 : Christian Schulz
- § 4: Der Integralsatz von Stokes: Bernhard Konrad
- § 5: Der Integralsatz von Gauss im \mathbb{R}^3 : Bernhard Konrad
- § 6: Differentialgleichungen: Grundbegriffe: Pascal Maillard
- § 7: Lineare Differentialgleichungen 1. Ordnung: Pascal Maillard, Michael Knoll
- § 8: Differentialgleichungen mit getrennten Veränderlichen: Lars Volker, Wenzel Jakob
- § 9: Einige Typen von Differentialgleichungen 1. Ordnung: Wenzel Jakob
- § 10: Exakte Differentialgleichungen: Wenzel Jakob und Joachim Breitner
- § 11: Hilfsmittel aus der Funktionalanalysis: Joachim Breitner, Lars und Michael Volker Knoll
- § 12: Der Existenzsatz von Peano: Christian Schulz, Ferdinand Szekeresch
- § 13: Der Existenz- und Eindeutigkeitssatz von Picard Lindelöf: Ferdinand Szekeresch und Pascal Maillard
- § 14: Matrizenwertige und vektorwertige Funktionen: Pascal Maillard, Ferdinand Szekeresch und Christian Schulz
- § 15: Existenz- und Eindeutigkeitssätze für Dgl.Systeme 1. Ordnung: Christian Schulz
- § 16: Lineare Systeme: Wenzel Jakob, Bernhard Konrad
- § 17: Lineare Systeme mit konstanten Koeffizienten: Ferdinand Szekeresch und Joachim Breitner
- § 18: Differentialgleichungen höherer Ordnung: Jonathan Picht
- § 19: Lineare Differentialgleichungen m-ter Ordnung: Jonathan Picht und Ferdinand Szekeresch
- \S 20: Lineare Differentialgleichungen m-ter Ordnung mit konstanten Koeffizienten: Ferdinand Szekeresch
- § 22: Nicht fortsetzbare Lösungen: Pascal Maillard
- § 23: Minimal- und Maximallösung: Christian Schulz
- § 24: Ober- und Unterfunktionen: Wenzel Jakob
- § 25: Stetige Abhängigkeit: Joachim Breitner
- § 26: Zwei Eindeutigkeitssätze: Joachim Breitner, Florian Mickler
- § 27: Randwertprobleme (Einblick): Florian Mickler und Joachim Breitner