AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings of claims in the specification:

Listing of Claims

Claims 1 -10. (Cancelled)

Claim 11. (Previously Presented) A compound of formula la or lb

$$Ar - X^{1} - \bigvee_{N} - \bigvee_{H} - \bigvee_{m} - \bigvee_{R^{1}} - \bigvee_{H} - \bigvee_{R^{2}} - \bigvee_{R^{2}} - \bigvee_{R^{3}} - \bigvee_{R^{3}} - \bigvee_{H} - \bigvee_{R^{3}} -$$

or its pharmaceutically acceptable salts, where

Ar is phenyl optionally substituted by one or more substituents selected from halogen,

C₁-C₈-alkyl, cyano or nitro;

 X^1 is -S-, -S(=O)- or -S(=O)₂-;

 X^2 is -S-, -S(=O)- or -S(=O)₂-;

m is 1, 2, 3 or 4;

 R^1 is hydrogen or C_1 - C_8 -alkyl optionally substituted by hydroxy, C_1 - C_8 -alkoxy, acyloxy, halogen, carboxy, C_1 - C_8 -alkoxycarbonyl, -N(R^4) R^5 , -CON(R^6) R^7 or by a monovalent cyclic organic group having 3 to 15 atoms in the ring system;

Q has the formula

where Ra is C1-C8-alkylene,

or Q is $-C(R^b)(R^c)$ - where R^b and R^c are independently C_1 - C_8 -alkyl

or R^b and R^c together form a C₃-C₁₀-cycloalkyl;

Y is oxygen or sulfur;

 R^2 is hydrogen, C_1 - C_8 -alkyl or C_3 - C_{10} -cycloalkyl and R^3 is C_1 - C_8 -alkyl substituted by phenyl, phenoxy, acyloxy or naphthyl, or R^3 is C_3 - C_{10} -cycloalkyl optionally having a benzo group fused thereto, a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms, phenyl or naphthyl, said phenyl, phenoxy or naphthyl groups being optionally substituted by one or more substituents selected from halogen, cyano, hydroxy, acyl, nitro, - SO_2NH_2 , C_1 - C_8 -alkyl optionally substituted by C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy, C_1 - C_8 -alkyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino optionally substituted on the nitrogen atom by C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino, aminocarbonyl, C_1 - C_8 -alkylamino-carbonyl, di(C_1 - C_8 -alkyl)aminocarbonyl, di(C_1 - C_8 -alkyl)

or R² and R³ together with the nitrogen atom to which they are attached denote a heterocyclic group having 5 to 10 ring atoms of which 1, 2 or 3 are hetero atoms;

 R^4 and R^5 are each independently hydrogen or C_1 - C_8 -alkyl, or R^4 is hydrogen and R^5 is hydroxy- C_1 - C_8 -alkyl, acyl, $-SO_2R^8$ or $-CON(R^6)R^7$, or R^4 and R^5 together with the nitrogen atom to which they are attached denote a 5-or 6-membered heterocyclic group;

 R^6 and R^7 are each independently hydrogen or C_1 - C_8 -alkyl, or R^6 and R^7 together with the nitrogen atom to which they are attached denote a 5- or 6-membered heterocyclic group; and R^8 is C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, or phenyl optionally substituted by C_1 - C_8 -alkyl.

Claim 12. (Currently Amended) A compound according to claim 11, which is

a compound of formula la or its pharmaceutically acceptable salts, wherein
 Ar is phenyl substituted by halo;

$$X^1$$
 is -S-, -S(=O)- or -S(=O)₂-;

m is 2;

 R^1 is C_1 - C_8 -alkyl optionally substituted by hydroxy or C_1 - C_8 -alkoxy;

Y is oxygen;

R² is hydrogen; and

R³ is a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms, or

(ii) a compound of formula lb or its pharmaceutically acceptable salts, wherein

Ar is phenyl substituted by halo;

 X^2 is O, C(=O) or CH_2 ;

m is 1 or 2;

Q has the formula

Application No. 10/568,486 Attorney Docket No. 33361-US-PCT

where Ra is C1-C8-alkylene,

or Q is $-C(R^b)(R^c)$ - where R^b and R^c are independently C_1 - C_8 -alkyl

or R^b and R^c together form a C₃-C₁₀-cycloalkyl;

R² is hydrogen; and

R³ is a heterocyclic group having 5 to 11 ring atoms of which 1 to 4 are hetero atoms.

Claim 13. (Currently Amended) A compound according to claim 11, which is

(i) a compound of formula la or its pharmaceutically acceptable salts, wherein Ar is phenyl substituted by halo, preferably chloro;

$$X^1$$
 is -S-, -S(=O)- or -S(=O)₂-;

m is 2:

R¹ is C₁-C₄-alkyl optionally substituted by hydroxy or C₁-C₄-alkoxy;

Y is oxygen;

R² is hydrogen; and

 R^3 is a heterocyclic group having 5, 6 or 7 ring atoms of which one, two, three or four, are hetero atoms selected from nitrogen, oxygen and sulphur, said heterocyclic group being optionally substituted by C_1 - C_4 -alky, C_1 - C_4 -alkoxy or C_3 - C_6 -cycloalkyl; or

(ii) a compound of formula lb or its pharmaceutically acceptable salts, wherein Ar is phenyl substituted by halo, preferably chloro;

m is 1 or 2;

Q has the formula

$$-C$$
 $-C$

where R^a is C₁-C₈-alkylene,

or Q is -C(Rb)(Rc)- where Rb and Rc are independently C1-C4-alkyl

or R^b and R^c together form a C₃-C₆-cycloalkyl;

R² is hydrogen; and

- R^3 is a heterocyclic group having 5, 6 or 7 ring atoms of which one, two, three or four, are hetero atoms selected from nitrogen, oxygen and sulphur, said heterocyclic group being optionally substituted by C_1 - C_4 -alkyl or C_3 - C_6 -cycloalkyl.
- Claim 14. (**Previously Presented**) A compound according to claim 11 or a pharmaceutically acceptable salt thereof that is selected from the group consisting of:
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3,5-dimethoxyphenyl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-[1,3,4]thiadiazol-2)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-cyclopropyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-isoxazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfinyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3-ethyl-isoxazol-5-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-[1,3,4]thiadiazol-2-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-cyclopropyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3,5-dimethoxyphenyl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-isoxazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-phenylsulfanyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3-ethyl-isoxazol-5-yl)-urea;

- 1-{(S)-3-[3-(4-Chloro-benzenesulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-[1,3,4]thiadiazol-2-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro- benzenesulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-cyclopropyl-2-methyl-2H-pyrazol-3-yl)-urea;
- 1-{(S)-3-[3-(4-Chloro- benzenesulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3,5-dimethoxyphenyl)-urea;
- 1-{(S)-3-[3-(4-Chloro-benzenesulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(5-ethyl-isoxazol-3-yl)-urea; and
- 1-{(S)-3-[3-(4-Chloro-benzene-sulfonyl)-azetidin-1-yl]-1-hydroxymethyl-propyl}-3-(3-ethyl-isoxazol-5-yl)-urea.
- Claim 15. (**Previously Presented**) A pharmaceutical composition comprising a compound according to claim 11 or a pharmaceutically acceptable salt thereof in combination with another drug substance selected from an anti-inflammatory, a bronchodilator, an antihistamine or an antitussive substance.
- Claim 16. (**Previously Presented**) A pharmaceutical composition comprising as active ingredient a compound according to claim 11, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
- Claim 17. (**Previously Presented**) A pharmaceutical composition comprising as active ingredient a compound according to claim 14, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
- Claim 18. (Withdrawn Currently Amended): A method of treating a condition mediated by CCR-3 in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of <u>Claim 11</u>, formula—I or a pharmaceutically acceptable salt thereof.

Claim 19. (**Withdrawn – Currently Amended**): A method of treating an inflammatory or obstructive airways disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of <u>Claim 11</u>, formula I or a pharmaceutically acceptable salt thereof.

Claim 20. (Withdrawn-Currently Amended): A process for the preparation of a compound of formula Ia or Ib as claimed in claim 11 which comprises

(i) (A) for the preparation of compounds of formula la where R² is hydrogen, reacting a compound of formula lla

$$Ar - X^{1} - N - \begin{pmatrix} H & H \\ C & -M \\ H & R^{1} \end{pmatrix}$$
 IIa

or a protected form thereof, where Ar, X¹, m and R¹ are as defined in claim 11, with a compound of formula III

$$Y=C=N-R^3$$

where Y and R³ are as defined in claim 11; or

(B) for the preparation of compounds of formula la where Y is oxygen, reacting a compound of formula lla where Ar, X¹, m and R¹ are as defined in claim 11, with a compound of formula IV

$$\begin{array}{c|c}
 & O & R^2 \\
 & || & | \\
 & | & | \\
 & C - N - R^3
\end{array}$$
IV

where R² and R³ are as defined in claim 11; or

- (C) for the preparation of compounds of formula la where X^1 is $-S(=O)_2$ -, oxidising a compound of formula la in protected form where X^1 is -S- and Ar, m, R^1 , Y, R^2 and R^3 are as defined in claim 11;
- (D) for the preparation of compounds of formula lb, reacting a compound of formula llb

$$Ar - X^{2} \longrightarrow N - \left(\begin{matrix} H \\ C \\ H \end{matrix} \right)_{m} Q - NH_{2} \qquad IIb$$

where Ar, X^2 , m and Q are as defined in claim 11, with a compound of formula IV where R^2 and R^3 are as defined in claim 11;

(E) for the preparation of compounds of formula Ib where R^2 is hydrogen, reacting a compound of formula IIb where Ar, X^2 , m and Q are as defined in claim 11, with a compound of formula V

$$O=C=N-R^3$$

where R3 is as defined in claim 11; or

- (F) for the preparation of compounds of formula Ib where [[X]] \underline{X}^2 is $-S(=O)_{z^-}$, oxidising a compound of formula Ib in protected form where X^2 is -S- and Ar, m, Q, R^2 and R^3 are as defined in claim 11; and
- (ii) recovering the product in free or salt form.