Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue: {}
Incumbent: none
Best cost Z*: - inf

Initialize

{}

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue: Incumbent: none Best cost Z*: - inf • Dequeue {}

(}

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16.5, x = <0.8333,1,0,1>$$

- Bound {}
 - 1. Constrain x_i by {}
 - 2. Relax to LP
 - 3. Solve LP

Queue:

Incumbent: none

Best cost Z*: - inf

{}

Queue:

Incumbent: none

Best cost Z*: - inf

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

-
$$x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16.5$$
, $x = <0.8333,1,0,1>$

- Try to fathom:
 - infeasible?
 - 2. worse than incumbent?
 - 3. integer solution?

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

- $x_3 + x_4 \le 1$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Z = 16.5, x = <0.8333,1,0,1>

- Branch:
 - 1. select unassigned x_i
 - pick non-integer (x_1)
 - 2. Split on x_i

Queue: $\{x_1 = 0\}\{x_1 = 1\}$ Incumbent: none Best cost Z^* : - inf

Queue: $\{x_1 = 0\}\{x_1 = 1\}$ Incumbent: none

Best cost Z*: - inf

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

- Dequeue:
 - · depth first or
 - · best first

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$- x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue: $\{x_1 = 1\}$

Incumbent: none
Best cost Z*: - inf

Solve:

Max $Z = 9 \cdot 0 + 5x_2 + 6x_3 + 4x_4$ Subject to:

- $-60 + 3x_2 + 5x_3 + 2x_4 \le 10$
- $x_3 + x_4 \le 1$
- $-0 + x_3 \le 0$
- $-x_2 + x_4 \le 0$
- $x_i \le 1, x_i \ge 0, x_i$ integer

Queue: $\{x_1 = 1\}$ Incumbent: none Best cost Z^* : - inf

• Bound
$$\{x_1 = 0\}$$

• constrain x by $\{x_1 = 0\}$

Queue: $\{x_1 = 1\}$ Incumbent: none Best cost Z^* : - inf Solve:

Max
$$Z = 5x_2 + 6x_3 + 4x_4$$

$$3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$+ x_3 \le 0$$

$$- -x_2 + x_4 \le 0$$

$$- x_i \le 1, x_i \ge 0, x_i \text{ integer}$$

$$Z = 9, x = <0,1,0,1>$$

• Bound
$$\{x_1 = 0\}$$

• constrain x by
$$\{x_1 = 0\}$$

- · relax to LP
- solve LP

Queue: $\{x_1 = 1\}$ Incumbent: none Best cost Z^* : - inf Solve:

Max
$$Z = 5x_2 + 6x_3 + 4x_4$$

$$3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$+ x_3 \le 0$$

$$- x_2 + x_4 \le 0$$

$$- x_i \le 1, x_i \ge 0, x_i \text{ integer}$$

$$Z = 9, x = <0,1,0,1>$$

- Try to fathom:
 - 1. infeasible?
 - 2. worse than incumbent?
 - 3. integer solution?

Queue: $\{x_1 = 1\}$

Incumbent: x = <0,1,0,1>

Best cost Z*: 9

Solve:

$$Max Z = 5x_2 + 6x_3 + 4x_4$$

bject to:

$$3x_2 + 5x_3 + 2x_4 \le 10$$

 $-x_3 + x_4 \le 1$
 $+x_3 \le 0$
 $-x_2 + x_4 \le 0$
 $-x_i \le 1, x_i \ge 0, x_i$ integer

$$Z = 9$$
, $x = <0,1,0,1>$

- Try to fathom:
 - 1. infeasible?
 - 2. worse than incumbent?
 - 3. integer solution?

Solve:

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue: $\{x = 1\}$ Incumbent: x = <0,1,0,1>Best cost Z^* : 9 Dequeue

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$- x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

Queue:

Incumbent: x = <0,1,0,1>

• Bound
$$\{x_1 = 1\}$$

Solve:

$$\text{Max Z} = 9 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$- 6 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- 1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i \text{ integer}$$

$$Z = 16.2, x = <1,.8,0,.8>$$

• Bound
$$\{x_1 = 1\}$$

Queue:

Incumbent:
$$x = <0,1,0,1>$$

Oueue:

Incumbent: x = <0,1,0,1>

Best cost Z*: 9

Solve:

$$Max Z = 9 + 5x_2 + 6x_3 + 4x_4$$

$$-6 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16.2, x = <1,.8,0,.8>$$

- Try to fathom:
 - · infeasible?
 - worse than incumbent?
 - integer solution?

Max $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$ Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-1_1 + x_3 \le 0$$

$$- x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16.2, x = <1,.8,0,.8>$$

- Queue: $\{x_1=1, x_2=1\}\{x_1=1, x_2=0\}$
- Incumbent: x = <0,1,0,1>

- Branch
- Dequeue

Queue: $\{x_1=1, x_2=0\}$

Incumbent: x = <0,1,0,1>

Best cost Z*: 9

Solve:

Max
$$Z = 9 + 5 + 6x_3 + 4x_4$$

Subject to:

$$-6 + 3 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$-1 + x_3 \le 0$$

$$-1 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16, x = <1,1,0,.5>$$

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:
 $-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$

$$- 0x_1 + 3x_2 + 3x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- -x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$- -x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16, x = <1,1,0,.5>$$

Queue:
$$\{...,x_3=0\}\{...,x_2=0\}$$
 • Branch

Incumbent: x = <0,1,0,1>

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:
 $-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$
 $-x_3 + x_4 \le 1$
 $-x_1 + x_3 \le 0$
 $-x_2 + x_4 \le 0$
 $-x_i \le 1, x_i \ge 0, x_i integer$

Queue:
$$\{x_1, x_3=1\}$$
 $\{x_1, x_3=0\}$ $\{x_1, x_2=0\}$ Dequeue Bound $\{x_1=1, x_2=1, x_3=1\}$ Incumbent: $\mathbf{x} = <\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}>$ Best cost \mathbf{Z}^* : 9

Max $Z = 9 + 5 + 6 + 4x_4$ Subject to:

$$-6 + 3 + 5 + 2x_4 \le 10$$

 $-1 + x_4 \le 1$

$$- -1 + 1 \le 0$$

$$-1 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

No Solution

- Try to fathom:
 - infeasible?

Queue: $\{..., x_3 = 0\}\{..., x_2 = 0\}$ Incumbent: $\mathbf{x} = \langle \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1} \rangle$

Queue:
$$\{x_1, x_2 = 0\} \{\dots, x_2 = 0\}$$

Incumbent: $\mathbf{x} = \langle 0, 1, 0, 1 \rangle$

Best cost Z*: 9

Solve:

Max
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to:

$$-6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$- x_3 + x_4 \le 1$$

$$- \mathbf{x}_1 + \mathbf{x}_3 \le 0$$

$$- x_2 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

- Dequeue
- Bound $\{x_1=1, x_2=1, x_3=0\}$

Queue:
$$\{..., x_2 = 0\}$$

Incumbent:
$$x = <0,1,0,1>$$

Best cost Z*: 9

Solve:

$$\text{Max Z} = 9 + 5 + 4x_4$$

$$\begin{array}{rcl}
- & \mathbf{6} & + \mathbf{3} & + & + 2x_4 \le 10 \\
& & + x_4 \le 1 \\
- & -\mathbf{1} & \le 0
\end{array}$$

$$-1 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 16, x = <1,1,0,.5>$$

- Try to fathom:
 - · infeasible?
 - worse than incumbent?
 - integer solution?

$$Max Z = 9 + 5$$

Subject to:

$$-6 + 3 \le 10$$

 ≤ 1
 $--1 \le 0$
 $-1 \le 0$
 $-x_i \le 1, x_i \ge 0, x_i$ integer

$$Z = 14, x = <1,1,0,0>$$

Queue:
$$\{x_2=0\}\{\dots,x_4=1\}\{\dots,x_2=0\}$$

Incumbent: $\mathbf{x} = \{0,1,0,1\}$

- Dequeue
- Bound

Queue: $\{...,x_4=1\}\{...,x_2=0\}$ Incumbent: $\mathbf{x} = <\mathbf{0},\mathbf{1},\mathbf{0},\mathbf{1}>$ Best cost Z^* : 9 Solve:

$$Max Z = 9 + 5$$

$$\begin{array}{cccc}
-6 & +3 & \leq 10 \\
& \leq 1 \\
--1 & \leq 0
\end{array}$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 14, x = <1,1,0,0>$$

- Try to fathom:
 - · infeasible?
 - · worse than incumbent?
 - integer solution?

Queue: $\{...,x_4=1\}\{...,x_2=0\}$

Incumbent: x = <1,1,0,0>

Best cost Z*: 14

$$Max Z = 9 + 5$$

$$-6 + 3 \le 10$$

 ≤ 1
 $--1 \le 0$
 $--1 \le 0$
 $-x_i \le 1, x_i \ge 0, x_i integer$

$$Z = 14, x = <1,1,0,0>$$

- · Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Queue: $\{x_4=1\}\{\dots,x_2=0\}$ Incumbent: $\mathbf{x} = <1,1,0,0>$ Best cost \mathbf{Z}^* : 14 Solve:

$$Max Z = 9 + 5 + 4$$

$$-6 + 3 + 2 \le 10$$

 $+1 \le 1$
 $-1 \le 0$
 $-1 + 1 \le 0$
 $-x_i \le 1, x_i \ge 0, x_i integer$

No Solution,
$$x = <1,1,0,1>$$

- Try to fathom:
 - infeasible?
 - worse than incumbent?
 - integer solution?

Queue: $\{..., x_2=0\}$

Incumbent: x = <1,1,0,0>

Best cost Z*: 14

Solve:

$$Max Z = 9 + 6x_3 + 4x_4$$

$$-1 + x_4 \le 0$$

$$-1 + x_4 \le 0$$

$$-x_i \le 1, x_i \ge 0, x_i$$
 integer

$$Z = 13.8, x = <1,0,.8,0>$$

- Try to fathom:
 - · infeasible?
 - worse than incumbent?
 - · integer solution?