Assignment

GATE-IN-46

EE23BTECH11034 - Prabhat Kukunuri

I. QUESTION

Consider a system with transfer-function G(s) = $\frac{2}{s+1}$. A unit-step function $\mu(t)$ is applied to the system, which results in an output y(t).

If $e(t) = y(t) - \mu(t)$ then $\lim_{t\to\infty} e(t)$ is_

Solution:

Symbol	Value	Description
G(s)	$\frac{2}{s+1}$	Transfer function
e (t)	$y(t) - \mu(t)$	Function of $y(t)$ and $\mu(t)$
Y(s)	$G(s) \times U(s)$	Convolution in <i>t</i> domain is multiplication in <i>s</i> domain.
$\mu(t)$	$\begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$	Unit step function

TABLE 0 VARIABLE DESCRIPTION

Applying Laplace transform on $\mu(t)$

$$\mu(t) \stackrel{\mathcal{L}}{\longleftrightarrow} U(s)$$
 (1)

$$U(s) = \frac{1}{s} \tag{2}$$

$$U(s) = \frac{1}{s}$$

$$Y(s) = \left(\frac{2}{s+1}\right)\left(\frac{1}{s}\right)$$
(2)

$$Y(s) = \frac{2}{s} - \frac{2}{s+1} \tag{4}$$

The inverse Laplace transform of $\frac{a}{s+b}$ is $ae^{-bt}\mu(t)$

$$y(t) = 2\mu(t) - 2e^{-t}\mu(t)$$
 (5)

$$e(t) = \mu(t) (1 - 2e^{-t})$$
 (6)

$$\lim_{t \to \infty} e(t) = \lim_{t \to \infty} \mu(t) \left(1 - 2e^{-t}\right) \tag{7}$$

$$\lim_{t \to \infty} e(t) = 1 \tag{8}$$