

Feature Learning

Finding the diamonds in the rough

High Dimensionality

Higher Dimensionality

More Data

Feature 1	Feature 2	Feature 3	Feature 4
Value 1, 1	Value 1, 2	Value 1, 3	Value 1, 4
Value 2, 1	Value 2, 2	Value 2, 3	Value 2, 4
Value 3, 1	Value 3, 2	Value 3, 3	Value 3, 4
Value 4, 1	Value 4, 2	Value 4, 3	Value 4, 4
Value 5, 1	Value 5, 2	Value 5, 3	Value 5, 4
Value 6, 1	Value 6, 2	Value 6, 3	Value 6, 4

Feature Learning

- Feature Selection
- Feature Extraction

Feature Selection

Feature Selection

Feature Selection Methods

- Filter methods
- Wrapper methods
- Embedded methods

Filter Methods

MInDS @ Mines Feature Learning

Mutual Information Score

Mutual information between two vectors of discrete values, \mathbf{x} and \mathbf{y} is,

$$MI(\mathbf{x}, \mathbf{y}) = \sum_{x_i \in \mathbf{x}} \sum_{y_i \in \mathbf{y}} p(x_i, y_i) \log \left(\frac{p(x_i, y_j)}{p(x_i) \times p(y_j)} \right).$$

MInDS @ Mines Feature Learning 8 / 21

Wrapper Methods

Recursive Feature Elimination

Algorithm 1: Recursive Feature Elimination

Input: Features from data

Parameter: *r* features to select from the data **Parameter:** *k* features to remove per iteration **Output:** Subset of *r* features from the data

Train a model on all features and obtain feature coefficients

while selected features count > r **do**

Remove up to k features with the lowest feature coefficients

Train a model on the new subset of features

10 / 21

Embedded Methods

Regularization Based methods

$$\min_{\mathbf{w}} f(\mathbf{x}, \mathbf{w}) + g(\mathbf{w}),$$

where f is a core objective function with learned parameters \mathbf{w} and g is a regularization function applied to the learned parameters.

MInDS @ Mines Feature Learning 12 / 21

Linear Regression Based Regularization

$$\min_{\mathbf{w}} ||\mathbf{y}^T - \mathbf{w}^T \mathbf{X}||_2^2 + g(\mathbf{w}).$$

MInDS @ Mines Feature Learning 13 / 21

Lasso

$$\min_{\mathbf{w}} ||\mathbf{y}^T - \mathbf{w}^T \mathbf{X}||_2^2 + \alpha ||\mathbf{w}||_1.$$

MInDS @ Mines Feature Learning 1-

Feature Selection Summary

- Filter methods
 - Pros: Low computation time
 - Cons: May select redundant data, not as effective as other methods, greedy
- Wrapper methods
 - Pros: Incorporate information from learned model
 - Cons: Potentially high computation time, prone to overfitting, greedy
- Embedded methods
 - Pros: Improve on both Filter and Wrapper in terms of performance
 - Cons: High computation time

Feature Extraction

$$\min_{\mathbf{U},\mathbf{V}} ||\mathbf{X} - \mathbf{U}\mathbf{V}^T||_F^2,$$
 s.t. $\mathbf{U}^T\mathbf{U} = \mathbf{I}$.

Demo

Questions

These slides are designed for educational purposes, specifically the CSCI-470 Introduction to Machine Learning course at the Colorado School of Mines as part of the Department of Computer Science.

Some content in these slides are obtained from external sources and may be copyright sensitive. Copyright and all rights therein are retained by the respective authors or by other copyright holders. Distributing or reposting the whole or part of these slides not for academic use is HICHLY prohibited, unless explicit permission from all copyright holders is granted.