Proposition 6.20. Let E be a vector space. If $E = U \oplus V$ and $E = U \oplus W$, then there is an isomorphism $f: V \to W$ between V and W.

Proof. Let R be the relation between V and W, defined such that

$$\langle v, w \rangle \in R \quad \text{iff} \quad w - v \in U.$$

We claim that R is a functional relation that defines a linear isomorphism $f \colon V \to W$ between V and W, where f(v) = w iff $\langle v, w \rangle \in R$ (R is the graph of f). If $w - v \in U$ and $w' - v \in U$, then $w' - w \in U$, and since $U \oplus W$ is a direct sum, $U \cap W = (0)$, and thus w' - w = 0, that is w' = w. Thus, R is functional. Similarly, if $w - v \in U$ and $w - v' \in U$, then $v' - v \in U$, and since $U \oplus V$ is a direct sum, $U \cap V = (0)$, and v' = v. Thus, f is injective. Since $E = U \oplus V$, for every $w \in W$, there exists a unique pair $\langle u, v \rangle \in U \times V$, such that w = u + v. Then, $w - v \in U$, and f is surjective. We also need to verify that f is linear. If

$$w - v = u$$

and

$$w' - v' = u'.$$

where $u, u' \in U$, then, we have

$$(w + w') - (v + v') = (u + u'),$$

where $u + u' \in U$. Similarly, if

$$w - v = u$$

where $u \in U$, then we have

$$\lambda w - \lambda v = \lambda u$$
.

where $\lambda u \in U$. Thus, f is linear.

Given a vector space E and any subspace U of E, Proposition 6.20 shows that the dimension of any subspace V such that $E = U \oplus V$ depends only on U. We call $\dim(V)$ the codimension of U, and we denote it by $\operatorname{codim}(U)$. A subspace U of codimension 1 is called a hyperplane.

The notion of rank of a linear map or of a matrix is an important one, both theoretically and practically, since it is the key to the solvability of linear equations. Recall from Definition 3.19 that the $rank \operatorname{rk}(f)$ of a linear map $f : E \to F$ is the dimension $\dim(\operatorname{Im} f)$ of the image subspace $\operatorname{Im} f$ of F.

We have the following simple proposition.

Proposition 6.21. Given a linear map $f: E \to F$, the following properties hold:

(i)
$$\operatorname{rk}(f) = \operatorname{codim}(\operatorname{Ker} f)$$
.