A

Università degli Studi Roma Tre

Corso di Studi in Ingegneria Informatica **Ricerca Operativa 1 – terzo appello** 7 febbraio 2019

Nome:	0	Orale 13/02/2019 ore 9:30 aula N14
Cognome:	0	Ougle 29/02/2010 and 0:00 and N14
Matricola:	O	Orale 28/02/2019 ore 9:00 aula N14

Esercizio 1

In tabella è riportata la matrice di incidenza nodi/archi di una rete di flusso composta da 10 nodi (chiamati s, 1, ..., 8, t) e 15 archi. Per ogni arco è riportato un flusso iniziale e il valore della sua capacità massima. In particolare, s è il nodo sorgente e t è il nodo pozzo.

Rete	а	b	С	d	е	f	g	h	i	ı	m	n	0	р	q
S	1	1	1									-1			
1	-1			1											
2		-1			1										
3			-1			1									
4				-1			1								
5					-1			1					1		1
6						-1			1						-1
7							-1	-1		1				1	
8									-1		1		-1	-1	
t										-1	-1	1			
Flusso	2	1	0	2	1	0	2	0	0	3	1	1	1	0	0
Capacità	6	8	6	7	4	4	8	9	5	3	30	4	3	1	1

- 1. Partendo dai dati in tabella, determinare se la distribuzione di flusso iniziale data è ammissibile, e in ogni caso spiegarne il motivo.
- 2. Se il flusso iniziale è ammissibile, determinare una soluzione ottima al problema del massimo flusso utilizzando l'algoritmo di Ford e Fulkerson a partire da quel flusso dato. Altrimenti, scaricare il flusso iniziale e risolvere il problema del massimo flusso utilizzando Ford e Fulkerson.
- 3. Per la soluzione ottima trovata al punto 2, mostrare un taglio di capacità minima tra i nodi s e t.
- 4. Partendo dalla soluzione ottima trovata al punto 2, si determini il nuovo flusso massimo dopo aver apportato le seguenti modifiche ai pesi della rete:
 - l'arco p aumenta la sua capacità di 2 unità di flusso;
 - l'arco f aumenta la sua capacità di 4 unità di flusso;
 - l'arco q aumenta la sua capacità di 7 unità di flusso.
- 5: Per la soluzione ottima trovata al punto 4, mostrare un taglio di capacità minima tra i nodi s e t. Motivare opportunamente ogni risposta data ai punti 1, 2, 3, 4, 5.

Esercizio 2

È dato il problema di PL in figura.

- 1. Costruire il problema duale.
- 2. Portare <u>il problema duale</u> in forma standard.
- 3. Utilizzando una versione a scelta dell'algoritmo del simplesso (fase 1 e fase 2), trovare una soluzione ottima del problema duale o dimostrare che lo stesso è inammissibile o illimitato inferiormente.
- 4. Utilizzando le condizioni di ortogonalità, dalla soluzione ottima del duale ricavare la soluzione ottima del primale.

$$\min 3x_{1} - x_{2}$$

$$\begin{cases} x_{1} + x_{2} \ge 1 \\ -x_{1} + x_{2} \le 3 \\ x_{1} - 2x_{2} \le 2 \\ x_{1} \ge 0 \\ x_{2} \ libera \end{cases}$$

Università degli Studi Roma Tre

Corso di Studi in Ingegneria Informatica **Ricerca Operativa 1 – terzo appello** 7 febbraio 2019

Nome:	0	Orale 13/02/2019 ore 9:30 aula N14
Cognome:	0	O L- 29/02/2010 0.00 L- N14
Matricola:	O	Orale 28/02/2019 ore 9:00 aula N14

Esercizio 1

In tabella è riportata la matrice di incidenza nodi/archi di un digrafo composto da 8 nodi e 15 archi. Per ogni arco è riportato un peso.

Digrafo	а	b	С	d	е	f	g	h	i	I	m	n	0	р	q
1	1	1	1												
2	-1			1									-1		
3		-1			-1	1	-1								
4			-1					1						-1	
5				-1	1				1		1				
6						-1			-1	-1		1	1	1	
7							1	-1		1					-1
8											-1	-1			1
Peso	7	2	9	2	1	3	1	1	1	1	1	2	1	3	2

- 1. Partendo dai dati in tabella, trovare l'albero dei cammini orientati di peso minimo dal nodo 1 verso tutti gli altri nodi utilizzando la versione efficiente dell'algoritmo di Dijkstra. Mostrare l'albero dei cammini orientati di costo minimo.
- 2. Per la soluzione ottima trovata al punto 1, indicare in quale ordine vengono aggiunti i nodi in S.
- 3. Trovare un'altra soluzione ottima (se ne esiste più di una) per il problema descritto al punto 1 o motivare il fatto che la soluzione ottima è unica.
- 4. Come varia la soluzione ottima trovata al punto 1 se l'arco f ha peso 8?
- 5. Per la soluzione ottima trovata al punto 4, indicare in quale ordine vengono aggiunti i nodi in S. Motivare opportunamente ogni risposta data ai punti 1, 2, 3, 4, 5.

Esercizio 2

È dato il problema di PL in figura.

- 1. Costruire il problema duale.
- 2. Portare il <u>problema duale</u> in forma standard.
- 3. Utilizzando una versione a scelta dell'algoritmo del simplesso (fase 1 e fase 2), trovare una soluzione ottima <u>del problema duale</u> o dimostrare che lo stesso è inammissibile o illimitato inferiormente.
- 4. Utilizzando le condizioni di ortogonalità, dalla soluzione ottima del duale ricavare la soluzione ottima del primale.

$$\min 4x_{1} - 2x_{2}$$

$$\begin{cases} x_{1} + x_{2} \ge 2 \\ -x_{1} + x_{2} \le 3 \\ x_{1} - 2x_{2} \le 4 \\ x_{1} \ge 0 \\ x_{2} \ libera \end{cases}$$