

FIG. 1 : n = 1-3; X₇ = H, OH; Y₇ = H, SO_3^- , CO_2H , CH_2CO_2H , CH_2OH

FIG. 2 : n = 1-3; X₇ = H, OH; Y₇ = H, SO_3^- , CO_2H , CH_2CO_2H , CH_2OH

FIG. 3 :
 $n = 1-3; X_7 = H, OH; Y_7 = H, SO_3^-, CO_2H, CH_2CO_2H, CH_2OH; R_f = (CH_3)_2N$ or $OH; R_g = (CH_3)_2N^+$ or CHO

FIG. 4 :
 $n = 1-3; X_7 = \text{H}, \text{OH}; Y_7 = \text{H}, \text{SO}_3^-; \text{CO}_2\text{H}, \text{CH}_2\text{CO}_2\text{H}, \text{CH}_2\text{OH}; R_f = (\text{CH}_3)_2\text{N} \text{ or } \text{OH}; R_g = (\text{CH}_3)_2\text{N}^+ \text{ or } \text{CHO}$

FIG. 5 :
 $n = 1-3; X_7 = \text{H}, \text{OH}; Y_7 = \text{H}, \text{SO}_3^-$; **19** = $\text{CH}_2\text{CO}_2\text{H}, \text{CH}_2\text{OH}$, CH_2OH

FIG. 6 :
 $n = 1-3; X_7 = \text{H}, \text{OH}; Y_7, Y_8 = \text{H}, \text{SO}_3^- \text{Na}^+$

FIG. 7 :
 $n = 1-3; X_7 = \text{H}, \text{OH}; Y_7, Y_8 = \text{H}, \text{SO}_3^- \text{H}, \text{CO}_2\text{H}, \text{CH}_2\text{CO}_2\text{H}, \text{CH}_2\text{OH}$

FIG. 8A

FIG. 8B

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

BLOOD CLEARANCE OF HYDROPHILIC POLYASPARTIC ACID-CYANINE DYE

FIG. 11

BLOOD CLEARANCE PROFILE OF CYANINE DYE-POLYASPARTIC ACID (30 kDa)

FIG. 12

BLOOD CLEARANCE PROFILE OF INDOLE DISULFINATE

FIG. 13

BLOOD CLEARANCE PROFILE OF CYANINETETRASULFONATES

FIG. 14