Distributions and Outliers Lab

Load airbnb dataset: https://github.com/fenago/cts245X/tree/main/EDA

Part 1: Create your first histogram
Remove any filters from the existing table so the descriptive statistics reflect all cities.
Create a a <i>Clustered column chart</i> showing the count of distinct listing_id by city .
Create a new group for updated_price with 25 bins.
Create another histogram using the new updated_price group and distinct count of listings.
Go to the <i>Format</i> tab and modify the interaction between the two histograms so the one for updated price filters when you select a city bar.
Which city doesn't have listings with an `updated_price` greater than \$3,000?
O New York
O Paris
Rome
Sydney

Part 2: Identify outliers

Create two new columns:

- The first one is called 25_percentile and calculates the 25th percentile of updated_price
- The second, called 75_percentile, calculates the 75th percentile of updated_price

Your formula should use the PERCENTILE.INC() function,

For more information visit this documentation.

https://learn.microsoft.com/en-us/dax/percentile-inc-function-dax

Create another column called IQR which is the difference between 75_percentile and 25_percentile.

Create two final columns for the upper_IQR_boundary
and Lower_IQR_boundary , i.e. using the IQR value.

Remember, the lower boundary should be calculated as the [25th percentile] - 1.5*[IQR]. Use the same methodology to calculate the upper boundary.

Add a X-Axis Constant Line to the histogram of updated_price for both lower_IQR_boundary and upper_IQR_boundary.

Make each line red, with no transparency and show the data labels.

What is the upper limit using the IQR approach?

Part 3: Addressing outliers in the data

Duplicate the page and rename it "modified price". Remove everything except the histogram for updated_price. Create a column called modified_price using nested IF() statements. The final structure should look like:

```
modified_price = IF( ___ < PERCENTILE.INC(___, 0.05), PERCENTILE.INC(___, 0.05), IF( ___ > PERCENTILE.INC(___, 0.95), PERCENTILE.INC(___, 0.95), ___ ))
```

Add a new table with a distinct count of listings and modified_price as a median and average.

Create a new group with 25 bins of modified_price.

Create a histogram for modified_price.

How many distinct listings are in the last bin?