Name: EMPLID:

Please write your solutions in an organized and systematic manner.

Please show all work for partial credit. I may give no credit for solutions with no supporting work.

The maximum number of points is shown next to each problem.

Useful definitions:

- An integer n is even if there is an integer k such that n = 2k.
- An integer n is odd if there is an integer k such that n = 2k + 1.
- If a, b are integers and $a \neq 0$ then a divides b (written $a \mid b$) if there is an integer k such that b = ak. We write $a \nmid b$ if a does not divide b.

You may use the following facts without proof or reference:

- Any logical equivalence or equality of sets proved in class or given as homework.
- The axioms for integers given in class.
- The sum of two integers is even iff they have the same parity.
- The product of two integers is even iff at least one of them is even.

If you need to use some other fact you need to either give a proof for it or give a reference to either the lectures or the textbook.

1. Show that $(\sim (P \iff Q)) \implies (P \lor Q)$ is a tautology. [10 pts]

2. Let A, B and C be sets. Show that $(A \setminus B) \setminus C = A \setminus (B \cup C)$	Let A	Let A, B and C be se	s. Show that $(A$	$(A \setminus B) \setminus C = A \setminus (B \cup C)$
---	---------	--------------------------	-------------------	--

[10 pts]

3. Show that if n is an integer then either n^2 is odd or 4 divides n^2 . [10 pts] (Hint: Split into cases depending on the parity of n. Alternatively, split into cases depending on the parity of n^2 and use a theorem from class.)

4. Find an example of a subset A of $\mathbb N$ such that $\{1,2,3\}\subseteq A$, $(7,2)\in A\times A$ and $|\mathcal P(A)|=16$. Is there more than one example? [10 pts]

- 5. Let n be an even integer and m an odd integer.
 - (a) Find an example of integers n, m, a, b, c, d such that an + bm is even and cn + dm is odd. [5 pts]

(b) If a, b are arbitrary integers, show that an + bm is even iff b is even. [5 pts]

6.	Let a, b and c be positive natural numbers.	
	(a) Show that if $a b$ and $a c$ then $a bc$.	[5 pts]
	(b) Give an example where $a c$ and $b c$ but $ab \nmid c$.	[5 pts]
7.	Show that there is no triple of distinct real numbers a, b, c for which the number and ac would be equal.	$[10 ext{ pts}]$
	(Hint: Argue by contradiction and consider cases depending on whether one of is 0 or not.)	of a, b, c

- 8. Let A and B be sets.
 - (a) Show that if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ then $A \subseteq B$.

[5 pts]

(b) Show that if $\mathcal{P}(A) = \mathcal{P}(B)$ then A = B. (You may use part (a) here even if you didn't prove it.) [5 pts]

9. Let x and y be integers. Show that x and y are both even iff xy and x + y are both even. [10 pts]

10. Show that $\sum_{i=0}^{n} (i \cdot i!) = (n+1)! - 1$ for any natural number n. [10 pts] (Recall that $0! = 1, 1! = 1, 2! = 2 \cdot 1 = 2, 3! = 3 \cdot 2 \cdot 1 = 6$, etc.)