BCMM I : Midterm Exam

May 15, 2007

Division:

ID#:

Name:

- 1. P,Q,R を命題とする。二つの論理式 $(P\vee \sim Q)\Rightarrow (Q\wedge \sim R),Q\wedge (R\Rightarrow \sim P)$ が論理同値であることを以下の二つの方法で証明せよ。
 - (a) 真理表を書くことによって。

P	Q	R	P	V	$\sim Q)$	\Rightarrow	(Q	\wedge	$\sim R)$	Q	\wedge	(R	\Rightarrow	$\sim P)$
T	T	T												
T	T	F												
T	F	T												
T	F	F												
F	T	T												
\overline{F}	T	F												
F	F	T												
F	F	F												

(b) 式の変形によって。(詳しく途中式を書くこと。)

2. 集合 A, B, C について、Venn 図を使わずに次を証明せよ。ただし、X, Y を集合としたとき、 $X - Y = X \cap \overline{Y} = \{x \mid (x \in X) \land (x \notin Y)\}$ である。

$$A \cup (B-C) = ((A \cup B) - C) \cup (A \cap C)$$

Division: ID#: Name:

3. R を集合 A に定義された関係とする。任意の $a,b,c \in A$ について関係 R が 次の条件 (a), (b), (c) を満たすとき R は同値関係というのであった。

(a) aRa, (b) $aRb \Rightarrow bRa$, (c) $(aRb \land bRc) \Rightarrow aRc$.

ここで $a\in A$ に対して、 $[a]=\{x\in A\mid xRa\}$ と定義したとき、次が成立することを示せ。一つ一つのステップで、上の (a), (b), (c) のどの性質を使ったか明記せよ。

 $[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset.$

Division: ID#: Name:

- 4. $a,b \in \mathbf{Z}$ に対して $2a^2 + 5b^2 \equiv 0 \pmod{7}$ のとき aRb と定める。
 - (a) R が 整数の集合 \mathbf{Z} 全体の上の同値関係であることを示せ。

(b) 相異なる同値類はいくつあるか。同値類を決定せよ。

Division: ID#: Name:

- 5. f を集合 A から集合 B への写像(関数)、g を集合 B から集合 C への写像とする。この時、 $h=g\circ f:A\to C\;(a\mapsto g(f(a)))$ によって 集合 A から C への写像 $h=g\circ f$ を定義する。以下を証明または反証せよ。
 - (a) g が全射であるとき $h = g \circ f$ も全射である。

(b) f は単射ではないが $h = g \circ f$ は単射であるような例が存在する。

Message: (a) これまでの数学通論 I (BCMM I) について。

(b) 改善点など何でも書いて下さい。[裏にもどうぞ。掲載不可の場合は明記のこと。]

Solutions to Midterm 2007

May 15, 2007

- 1. P,Q,R を命題とする。二つの論理式 $(P \lor \sim Q) \Rightarrow (Q \land \sim R), Q \land (R \Rightarrow \sim P)$ が論理同値であることを以下の二つの方法で証明せよ。
 - (a) 真理表を書くことによって。

P	Q	R	P	V	$\sim Q)$	\Rightarrow	(Q	\wedge	$\sim R)$	Q	\wedge	(R	\Rightarrow	$\sim P)$
T	T	T	T	T	F	$oldsymbol{F}$	T	F	F	T	\boldsymbol{F}	T	F	F
T	T	F	T	T	F	T	T	T	T	T	T	F	T	\overline{F}
T	F	T	T	T	T	\boldsymbol{F}	F	F	F	F	\boldsymbol{F}	T	F	F
T	F	F	T	T	T	$oldsymbol{F}$	F	F	T	F	\boldsymbol{F}	F	T	\overline{F}
F	T	T	F	F	F	$oldsymbol{T}$	T	F	F	T	\boldsymbol{T}	T	T	T
F	T	F	F	F	F	T	T	T	T	T	T	F	T	T
F	F	T	F	T	T	$oldsymbol{F}$	F	F	F	F	$oldsymbol{F}$	T	T	T
F	F	F	F	T	T	\boldsymbol{F}	F	F	T	F	\boldsymbol{F}	F	T	T

(b) 式の変形によって。(詳しく途中式を書くこと。)

解. 以下の変形においては、それぞれ 「 \Rightarrow の書きかえ」、「ド・モルガン」、「分配法則」、「 \Rightarrow の書きかえ」を用いた。それ以外にも、 $\sim (\sim Q) \equiv Q$ や、 \wedge や \vee の可換性と呼ばれる、 $P \wedge Q \equiv Q \wedge P$ や $P \vee Q \equiv Q \vee P$ を用いた。

$$\begin{split} (P \vee \sim & Q) \Rightarrow (Q \wedge \sim R) \equiv \sim (P \vee \sim Q) \vee (Q \wedge \sim R) \\ & \equiv \quad (\sim & P \wedge Q) \vee (Q \wedge \sim R) \equiv Q \wedge (\sim & R \vee \sim P) \equiv Q \wedge (R \Rightarrow \sim P). \; \blacksquare \end{split}$$

2. 集合 A, B, C について、Venn 図を使わずに次を証明せよ。ただし、X, Y を集合としたとき、 $X-Y=X\cap \overline{Y}=\{x\mid (x\in X)\land (x\not\in Y)\}$ である。

$$A \cup (B{-}C) = ((A \cup B){-}C) \cup (A \cap C)$$

解. (\subseteq) $x \in A$ は $x \in C$ 、 $a \notin C$ のいずれかだから、 $A \subseteq (A-C) \cup (A \cap C)$ 。 $A \subseteq A \cup B$ だから、 $A = (A-C) \cup (A \cap C) \subseteq ((A \cup B) - C) \cup (A \cap C)$ 。また、 $B-C \subseteq (A \cup B) - C$ だから、 $A \cup (B-C) \subseteq ((A \cup B) - C) \cup (A \cap C)$ を得る。

 (\supseteq) $A\cap C\subseteq A$ だから $A\cap C\subseteq A\cup (B-C)$ 。 $x\in (A\cup B)-C$ とすると、 $x\in A$ または $x\in B$ でかつ、 $x\not\in C$ である。 $x\in A$ ならば $x\in A\cup (B-C)$ だから、 $x\in B$ とすると、 $x\not\in C$ だから $x\in B-C$. よって常に、 $x\in A\cup (B-C)$ である。したがって、 $A\cup (B-C)\supseteq ((A\cup B)-C)\cup (A\cap C)$ 。

よって、 $A \cup (B-C) = ((A \cup B)-C) \cup (A \cap C)$ が証明された。

別解. $A = (A - C) \cup (A \cap C)$ である。上では、 \subseteq のみ示したが、右辺は A の部分集合だから等号が成り立つ。したがって、

$$\begin{array}{lll} ((A \cup B) - C) \cup (A \cap C) & = & ((A \cup B) \cap \overline{C}) \cup (A \cap C) \\ & = & (A \cap \overline{C}) \cup (B \cap \overline{C}) \cup (A \cap C) \\ & = & (A - C) \cup (A \cap C) \cup (B - C) \\ & = & A \cup (B - C). \end{array}$$

- 3. R を集合 A に定義された関係とする。任意の $a,b,c \in A$ について関係 R が 次の条件 (a),(b),(c) を満たすとき R は同値関係というのであった。
 - (a) aRa, (b) $aRb \Rightarrow bRa$, (c) $(aRb \land bRc) \Rightarrow aRc$.

ここで $a \in A$ に対して、 $[a] = \{x \in A \mid xRa\}$ と定義したとき、次が成立することを示せ。一つ一つのステップで、上の (a), (b), (c) のどの性質を使ったか明記せよ。

 $[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset.$

- 解. 対偶 $[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b]$ を示す。 $[a] \cap [b] \neq \emptyset \Rightarrow [a] \subseteq [b]$ を示せば、a と b の役目を入れ替えて、 $[a] \cap [b] \neq \emptyset \Rightarrow [b] \subseteq [a]$ を得るので、[a] = [b] となる。仮定 より、 $[a] \cap [b] \neq \emptyset$ だから、 $c \in [a] \cap [b]$ とする。 [a], [b] の定義より、cRa かつ cRb である。 (b) より aRc でもある。ここで、 $x \in [a]$ とすると、xRa。aRc と (c) を用いて、xRc。 さらに、cRb と (c) を用いると、xRb を得る。したがって、 $x \in [b]$ である。 $x \in [a]$ は任意だったから、 $[a] \subseteq [b]$ を得る。これで証明された。
- $4. \ a,b \in \mathbb{Z}$ に対して $2a^2 + 5b^2 \equiv 0 \pmod{7}$ のとき aRb と定める。
 - (a) R が整数の集合 Z 全体の上の同値関係であることを示せ。

解. $2a^2 + 5b^2 \equiv 0 \pmod{7}$ の両辺に $2b^2$ を加え、 $7b^2 \equiv 0 \pmod{7}$ を用いると、 $2a^2 \equiv 2b^2 \pmod{7}$ となる。さらに、両辺に 4 をかけると $a^2 \equiv b^2 \pmod{7}$ となる。逆に、 $a^2 \equiv b^2 \pmod{7}$ とすると、両辺に 2 をかけることにより、 $2a^2 \equiv 2b^2 \pmod{7}$ を得、さらに、 $5b^2$ を両辺に加えることにより、最初の式を得る。したがって、aRb は、 $a^2 \equiv b^2 \pmod{7}$ と同値である。前間における同値関係になる条件 (a) (b) (c) を調べる。しかし、 \equiv は同値関係だったから、条件は明らかに成立する。

(b) 相異なる同値類はいくつあるか。同値類を決定せよ。

解. $a\equiv b\pmod{7}$ ならば $a^2\equiv b^2$ だから、 \equiv に関する同値類に関して調べればよい。 $1^2\equiv 6^2\pmod{7}$ 、 $2^2\equiv 5^2\pmod{7}$ 、 $3^2\equiv 4^2\pmod{7}$ で、0,1,4,2は7を法として異なるので、同値類は4個でそれぞれは、 $[a]=\{x\in \textbf{Z}\mid x\equiv a\pmod{7}\}$ とすると、 $[0],[1]\cup[6],[2]\cup[5],[3]\cup[4]$ となる。

- 5. f を集合 A から集合 B への写像(関数)、g を集合 B から集合 C への写像とする。この時、 $h=g\circ f:A\to C$ $(a\mapsto g(f(a)))$ によって 集合 A から C への写像 $h=g\circ f$ を定義する。以下を証明または反証せよ。
 - (a) g が全射であるとき $h = g \circ f$ も全射である。

解. 成り立たない。反例を示す。 $A=\{1\}, B=C=\{1,2\}, f(1)=1, g(1)=1, g(2)=2$ とする。h(1)=1 で、 $A=\{1\}$ だから、h(a)=2 となる $a\in A$ は存在しない。したがって、g は全射であるが h は全射ではない。

(b) f は単射ではないが $h = q \circ f$ は単射であるような例が存在する。

解. 存在しない。つまり、h が単射なら f は単射。

f(a) = f(a') とする。すると h(a) = g(f(a)) = g(f(a')) = h(a') となる。h は 仮定より単射であるから、a = a' となる。f(a) = f(a') を仮定して、a = a' を 得たので、f は単射である。

鈴木寬 (hsuzuki@icu.ac.jp)