Enhancement & Denoising:

Frequency domain filtering

Dr. Tushar Sandhan

Input

Input

Output

Input

Input

Output

Input

Output

2D Fourier Transform

2D Fourier Transform

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

2D Fourier Transform

2D Fourier Transform

 $u = x = 0, 1, 2, \dots, M - 1$

2D Fourier Transform

u = x = 0, 1, 2, ..., M-1v = y = 0, 1, 2, ..., N-1.

2D Fourier Transform

$$\Box DFT: F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

$$u = x = 0, 1, 2, ..., M-1$$

 $v = y = 0, 1, 2, ..., N-1$.

2D Fourier Transform

$$\Box DFT: F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$u = x = 0, 1, 2, ..., M - 1$$

 $v = y = 0, 1, 2, ..., N - 1.$

2D Fourier Transform

$$\square \text{ DFT: } F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

u = x = 0, 1, 2, ..., M-1v = y = 0, 1, 2, ..., N-1.

Translation

Translation

$$FT[f(x - x_0, y - y_0)] = F(u, v) \cdot \exp[-j2\pi(ux_0 + vy_0)/N]$$

Translation

$$FT[f(x - x_0, y - y_0)] = F(u, v) \cdot \exp[-j2\pi(ux_0 + vy_0)/N]$$

Scaling

Translation

$$FT[f(x - x_0, y - y_0)] = F(u, v) \cdot \exp[-j2\pi(ux_0 + vy_0)/N]$$

Scaling

$$FT[f(ax, by)] = \frac{1}{ab}F\left(\frac{u}{a}, \frac{v}{b}\right)$$

$$f \star g$$

$$f \star g =$$

$$f \star g = \sum_{m} f(m)g(n-m)$$

$$FT[f \star g = \sum_{m} f(m)g(n-m)$$

$$FT[f \star g] = \sum_{m} f(m)g(n-m)$$

$$FT[f \star g] = \sum_{m} f(m)g(n-m)e^{-\frac{j2\pi nu}{N}}$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m)e^{-\frac{j2\pi nu}{N}}$$

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m)e^{-\frac{j2\pi nu}{N}}$$

$$=\sum_{m}f(m)\sum_{n}g(n-m)e^{-\frac{j2\pi nu}{N}}$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m) e^{\frac{-j2\pi nu}{N}}$$

$$= \sum_{m} f(m) \sum_{n} g(n-m) e^{\frac{-j2\pi nu}{N}}$$

$$= \sum_{m} f(m)FT[g] e^{\frac{-j2\pi nu}{N}}$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{m} \sum_{m} f(m)g(n-m)e^{-\frac{j2\pi nu}{N}}$$
$$= \sum_{m} f(m)FT[g]e^{-\frac{j2\pi mu}{N}}$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m) e^{-\frac{j2\pi nu}{N}}$$
$$= \sum_{m} f(m)FT[g]e^{-\frac{j2\pi mu}{N}}$$
$$= FT[g] \sum_{n} f(m)e^{-\frac{j2\pi mu}{N}}$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m) e^{-\frac{j2\pi nu}{N}}$$

$$= \sum_{m} f(m)FT[g]e^{-\frac{j2\pi mu}{N}}$$

$$= FT[g] \sum_{n} f(m)e^{-\frac{j2\pi mu}{N}}$$

$$= FT[f] \cdot FT[g]$$

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m) e^{-\frac{j2\pi nu}{N}}$$

$$= \sum_{m} f(m)FT[g]e^{-\frac{j2\pi mu}{N}}$$

$$= FT[g] \sum_{n} f(m)e^{-\frac{j2\pi mu}{N}}$$

$$FT[f \star g] = FT[f] \cdot FT[g]$$

Spatial filtering to frequency filtering

$$FT[f \star g] = \sum_{n} \sum_{m} f(m)g(n-m) e^{-\frac{j2\pi nu}{N}}$$
$$= \sum_{m} f(m)FT[g]e^{-\frac{j2\pi nu}{N}}$$
$$= FT[g] \sum_{n} f(m)e^{-\frac{j2\pi nu}{N}}$$

$$FT[f \star g] = FT[f] \cdot FT[g]$$

sandhan@iitk.ac.in

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \le k < N$$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \le n < N$$

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \leq k < N$$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \leq n < N$$

Both are periodic

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \le k < N$$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \leq n < N$$

Both are periodic

$$X[k] = \sum_{n=n_0}^{n_0+N-1} x[n] \, e^{-j2\pirac{nk}{N}}$$

$$k_0 \leq k < k_0 + N$$

$$x[n] = rac{1}{N} \sum_{k=k_0}^{k_0+N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$n_0 \leq n < n_0 + N$$

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \le k < N$$

$$t = [0: 0.01:10]$$

 $x(t) = 10\sin(t) + 10\cos(t)$
 $X(\omega) = FFT(x(t))$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \le n < N$$

Both are periodic

$$X[k] = \sum_{n=n_0}^{n_0+N-1} x[n] \, e^{-j2\pirac{nk}{N}}$$

$$k_0 \leq k < k_0 + N$$

$$x[n] = rac{1}{N} \sum_{k=k_0}^{k_0+N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$n_0 \leq n < n_0 + N$$

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \leq k < N$$

$$t = [0: 0.01:10]$$

 $x(t) = 10\sin(t) + 10\cos(t)$
 $X(\omega) = FFT(x(t))$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \le n < N$$

Both are periodic

$$X[k] = \sum_{n=n_0}^{n_0+N-1} x[n] \, e^{-j2\pirac{nk}{N}}$$

$$k_0 \leq k < k_0 + N$$

$$x[n] = rac{1}{N} \sum_{k=k_0}^{k_0+N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$n_0 \leq n < n_0 + N$$

Fast Fourier transform (FFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi rac{nk}{N}}$$

$$0 \leq k < N$$

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$0 \leq n < N$$

Both are periodic

$$X[k] = \sum_{n=n_0}^{n_0+N-1} x[n] \, e^{-j2\pirac{nk}{N}}$$

$$k_0 \leq k < k_0 + N$$

$$x[n] = rac{1}{N} \sum_{k=k_0}^{k_0+N-1} X[k] \, e^{+j2\pirac{nk}{N}}$$

$$n_0 \leq n < n_0 + N$$

$$t = [0: 0.01:10]$$

 $x(t) = 10\sin(t) + 10\cos(t)$
 $X(\omega) = FFT(x(t))$

• fftshift: visualize FFT within $[-\frac{F_s}{2}, \frac{F_s}{2}]$ instead of $[0 \ F_s]$

Repositioning the quadrants

Repositioning the quadrants

Repositioning the quadrants

Repositioning the quadrants

Repositioning the quadrants

f(x,y)

|F(u,v)|

Repositioning the quadrants

f(x,y)

|F(u,v)|

Shift(|F(u,v)|)

• FT as image & intensity transformations

• FT as image & intensity transformations

• FT as image & intensity transformations

• FT as image & intensity transformations

FT

• FT as image & intensity transformations

• FT as image & intensity transformations

• FT as image & intensity transformations

• FT as image & intensity transformations

-

Thresholding

Scaling

• FT as image & intensity transformations

FT

• FT as image & intensity transformations

FT

• FT as image & intensity transformations

• FT as image & intensity transformations

FT

FT as image & intensity transformations

FT

Thresholding

 $f_1(x,y)$

 $f_1(x,y)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $\log(|F_2(u,v)|)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

$$\log(|F_2(u,v)|)$$

$$f_1(x,y) + f_2(x,y)$$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

$$\log(|F_2(u,v)|)$$

 $f_1(x,y) + f_2(x,y)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $\log(|F_2(u,v)|)$

$$f_1(x,y) + f_2(x,y)$$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $\log(|F_2(u,v)|)$

 $f_1(x,y) + f_2(x,y)$

 $f_1(x,y)$

 $\log(|F_1(u,v)|)$

 $f_2(x,y)$

 $\log(|F_2(u,v)|)$

 $f_1(x,y) + f_2(x,y)$

$$\log(|F_1(u,v) + F_2(u,v)|)$$

HPF

Inverse Fourier

Fourier

LPF

Inverse Fourier

Input

Input

Input

LPF

Input

LPF

Input

LPF

Input

LPF

HPF

Input

LPF

HPF

Input

LPF

HPF

Input

JT.

HPF

Input

LPF

HPF

BPF

EE604: IMAGE PROCESSING

Input LPF **HPF BPF**

Input

- (a) Input image
- (b) Freq representation
- (c) 2D Mask
- (d) Freq filtered image
 - Inverse Fourier transform after getting dot product between (b) and (c) image

Input f(x, y)

 W_1

Input f(x, y)

 W_1

Input f(x, y)

 W_1

 w_1

Input f(x, y)

 W_1

 W_2

 W_1

Input f(x, y)

 W_1

 W_2

 W_1

.

Input f(x, y)

 W_1

 W_2

 W_1

 W_2

Input f(x, y)

 W_1

 W_2

 w_1

 W_2

Input f(x, y)

 W_1

 W_2

 $w_1 \star f$

 W_1

 W_2

Input f(x, y)

 W_1

 W_2

 $w_1 \star f$

 w_1

 W_2

Input f(x, y)

 W_1

 W_2

 $w_1 \star f$

 w_1

 W_2

 $w_2 \star f$

Prior smoothing to reduce ripple effects

Ideal Mask

Prior smoothing to reduce ripple effects

Ideal Mask

Smooth Mask-1

Prior smoothing to reduce ripple effects

Ideal Mask

Smooth Mask-1

Smooth Mask-2

Forget me, but don't forget my car!

Forget me, but don't forget my car!

Forget me, but don't forget my car!

Forget me, but don't forget my car!

Forget me, but don't forget my car!

Importance of Fourier Phase

Credit: Y. Shechtman et al. 2014

Frequency Filtering & HVS

credit: A. Oliva

Frequency Filtering & HVS

Frequency Filtering & HVS

Conclusion

- 2D FT properties & images
- Frequency filtering

Conclusion

- 2D FT properties & images
- Frequency filtering

- 2D Fourier Transform
 - Properties
 - Convolution theorem
 - 2D FT images

- □ Frequency filtering
 - Filtering in FT domain
 - Freq-spatial filtering
 - Freq-mixing

Conclusion

- 2D FT properties & images
- Frequency filtering

- 2D Fourier Transform
 - Properties
 - Convolution theorem
 - 2D FT images

- Frequency filtering
 - Filtering in FT domain
 - Freq-spatial filtering
 - Freq-mixing