- Contains Eight Flip-Flops With Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications Include:

Buffer/Storage Registers Shift Registers Pattern Generators

description

These monolithic, positive-edge-triggered flipflops utilize TTL circuitry to implement D-type flip-flop logic with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect ar the output.

These flip-flops are guaranteed to respond to clock frequencies ranging form 0 to 30 megahertz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 39 milliwatts per flip-flop for the '273 and 10 milliwatts for the 'LS273.

FUNCTION TABLE (each flip-flop)

ı	NPUTS		OUTPUT
CLEAR	CLOCK	D	Q
L	Χ	Χ	L
н	\uparrow	Н	Н
н	\uparrow	L	L
Н	L	Χ	Q ₀

SN54273, SN74LS273 . . . J OR W PACKAGE SN74273 . . . N PACKAGE SN74LS273 . . . DW OR N PACKAGE (TOP VIEW)

SN54LS273 . . . FK PACKAGE (TOP VIEW)

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DW, J, N, and W packages.

schematics of inputs and outputs

EQUIVALENT OF EACH INPUT

VCC

20 kΩ
NOM

INPUT

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range, T _A : SN54273	-55°C to 125°C
SN74273	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54273			SN74273			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH				-800			-800	μΑ	
Low-level output current, I _{OL}				16			16	mA	
Clock frequency, f _{clock}				30	0		30	MHz	
Width of clock or clear pulse, t _W		16.5			16.5			ns	
Sotup time +	Data input	20↑			20↑			20	
Setup time, t _{SU}	Clear inactive state	25↑			25↑			ns	
Data hold time, th					5↑			ns	
Operating free-air temperature, TA		-55		125	0		70	°C	

[↑]The arrow indicates that the rising edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST C	ONDITIONS†	MIN	TYP‡	MAX	UNIT	
V _{IH}	High-level input voltage				2			V	
VIL	Low-level input voltage						0.8	V	
٧ıK	Input clamp voltage		V _{CC} = MIN,	$I_{I} = -12 \text{ mA}$			-1.5	V	
Vон			V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 μA	2.4	3.4		V	
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = 16 \text{ mA}$			0.4	V	
Ιį	Input current at maximum input voltag	је	V _{CC} = MAX,	V _I = 5.5 V			1	mA	
l	High-level input current	Clear	VMAY	V _I = 2.4 V			80		
liH	nigh-level input current	Clock or D	V _{CC} = MAX,	V = 2.4 V			40	μΑ	
1	Low-level input current	Clear	VCC = MAX,	V _I = 0.4 V			-3.2	mA	
ΊL	Low-level input current	Clock or D	VCC = WAX,	V = 0.4 V			-1.6	111/4	
los	OS Short-circuit output current§		V _{CC} = MAX		-18		-57	mA	
Icc			V _{CC} = MAX,	See Note 2		62	94	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

 $^{^\}ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

SN54273, SN54LS273, SN74273, SN74LS273 OCTAL D-TYPE FLIP-FLOP WITH CLEAR

SDLS090 - OCTOBER 1976 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		30	40		MHz
tPHL	Propagation delay time, high-to-low-level output from clear	C _L = 15 pF,		18	27	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	R _L = 400 Ω , See Note 3		17	27	ns
tPHL	Propagation delay time, high-to-low-level output from clock			18	27	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	7 V
Operating free-air temperature range, TA: SN54LS273	–55°C to 125°C
SN74LS273	0°C to 70°C
Storage temperature range	65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SI	SN54LS273			SN74LS273				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V		
High-level output current, IOH				-400			-400	μΑ		
Low-level output current, IOL			4			8	mA			
Clock frequency, f _{clock}	0		30	0		30	MHz			
Width of clock or clear pulse, tw		20			20			ns		
Cotup time t	Data input	20↑			20↑					
Setup time, t _{SU}	Clear inactive state	25↑			25↑			ns		
Data hold time, th		5↑			5↑			ns		
Operating free-air temperature, TA		-55		125	0		70	°C		

The arrow indicates that the rising edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEC	T CONDITION	uet	SI	N54LS27	'3	SI	N74LS27	'3	UNIT
	PARAMETER	153	TEST CONDITIONST			TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	$V_{IH} = 2 V,$ $I_{OH} = -400$	μΑ	2.5	3.4		2.7	3.4		V
\/o:	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V
VOL	Low-level output voltage	V _I L = V _I Lmax,		$I_{OL} = 8 \text{ mA}$					0.35	0.5	
lį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
lіН	High-level input current	$V_{CC} = MAX$,	V _I = 2.7 V				20			20	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			-20		-100	-20		-100	mA
ICC	Supply current	$V_{CC} = MAX$,	See Note 2			17	27		17	27	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency	_	30	40		MHz
tPHL	Propagation delay time, high-to-low-level output from clear	$C_L = 15 \text{ pF},$ $R_1 = 2 \text{ k}\Omega,$		18	27	ns
tPLH	Propagation delay time, low-to-high-level output from clock	See Note 3		17	27	ns
tPHL	Propagation delay time, high-to-low-level output from clock			18	27	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time and duration of short circuit should not exceed one second.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS273DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LS273NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

www.ti.com 9-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS273DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LS273NSR	SO	NS	20	2000	367.0	367.0	45.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
78010012A	FK	LCCC	20	1	506.98	12.06	2030	NA
7801001SA	W	CFP	20	1	506.98	26.16	6220	NA
JM38510/32501B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
JM38510/32501BSA	W	CFP	20	1	506.98	26.16	6220	NA
M38510/32501B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
M38510/32501BSA	W	CFP	20	1	506.98	26.16	6220	NA
SN74LS273DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LS273N	N	PDIP	20	20	506	13.97	11230	4.32
SN74LS273NE4	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54LS273FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54LS273W	W	CFP	20	1	506.98	26.16	6220	NA

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated