МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Определение моментов диссипативных сил гироскопа

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследована вынужденная прецессия гироскопа под действием момента силы тяжести. Из полученных результатов оценены моменты сил трения в осях карданового подвеса. Исследовано затухание частоты вращения ротора под действием силы трения во внутренней оси гироскопа. Определена зависимость момента силы трения во внутренней оси от частоты вращения.

Содержание

1	Введение							
2	Методика .1 Определение моментов сил трения в различных осях	2						
3	Результаты и их анализ 1 Нахождение моментов сил трения во внешних осях гироскопа	4						
4	Зыводы	8						
5	Использованная литература							
6	Іриложения	g						
	.1 Расчёт момента инерции гироскопа	9						
	.2 Данные результатов измерения периода прецессии гироскопа							
	.3 Данные результатов измерения замедления вращения гироскопа							
	.4 Метод наименьших квадратов	11						
	.5 Расчёт погрешностей							

1 Введение

Важной задачей авиастроения является точное определение положения летательного аппарата в пространстве. Основными методами для определения положения являются использование ИНС - инерциальных систем навигации, основанных на способности гироскопа сохранять своё положения в пространстве и СНС - спутниковых систем навигации, таких как GPS и ГЛОНАСС. Основным преимуществом СНС является независимость точности измерений от времени полёта, в то время как ИНС будет терять свою точность при длительном использовании из-за моментов сил трения в осях гироскопа. Однако в настоящее время полный переход на СНС не представляется возможным из-за зависимости её точности от погодных условий. Потому важной является проблема оценки моментов диссипативных сил в осях гироскопов, используемых в ИНС, для дальнейшего расчёта поправок и увеличения точности. Цель настоящей работы заключалась в оценке моментов сил трения в осях гироскопа на примере механического гироскопа на кардановом подвесе.

2 Методика

В эксперименте использовался гироскоп на кардановом подвесе (Рис 1). Рассматривались моменты сил трения Mtr_1, Mtr_2, Mtr_3 , где Mtr_1 - момент силы трения во внешней оси ОО, Mtr_2 - момент силы трения во внешней оси, проходящей через центр вращения, перпендикулярно плоскости рисунка и оси ОО, Mtr_1 - момент силы трения во внутренней оси проходящей через центр вращения и точку С. Гироскоп представляет собой радиально симметричную металлическую конструкцию с моментом инерции I. Для его определения измерены крутильные колебания гироскопа и идеального цилиндра массой M и радиусом R, тогда его момент инерции $I_0 = MR^2$. Период крутильных колебаний гироскопа - T, цилиндра - T_0 . Тогда из литературы[1] известна связь моментов инерции тел и их периодов крутильных колебаний:

$$I = I_0 \cdot \frac{T^2}{{T_0}^2} \tag{1}$$

Момент импульса главной оси гироскопа L связан с его угловой скоростью вращения ω и моментом инерции I выражением:

$$L = I\omega \tag{2}$$

2.1 Определение моментов сил трения в различных осях

Для определения момента силы трения Mtr_1 и Mtr_2 используем эффект прецессии гироскопа под действием небольшого момента силы тяжести, предполагая постоянство данных моментов, независимо от приложенного момента силы тяжести, так как его масса намного меньше массы гироскопа. Из литературы[1] известны уравнения для связи главного момента импульса гироскопа L, момента силы тяжести M, момента силы трения Mtr_2 и угловой скорости прецессии w относительно вертикальной оси:

$$M = Lw - Mtr_2. (3)$$

Тогда измерив зависимость скорости прецессии от момента силы тяжести получим линейную зависимость с коэффициентом наклона L и свободным членом $-Mtr_2$. Для определения момента силы трения Mtr_1 измерим горизонтальную прецессию α за время t и, определив угловую скорость прецессии $W=\frac{\alpha}{t}$ относительно горизонтальной оси, оценим момент силы трения Mtr_1 с использованием ранее найденного L:

$$Mtr_1 = LW. (4)$$

Для определения момента силы трения Mtr_3 измерено затухание частоты смены полярности обмотки f. Известно, что частота смены полярности обмотки f зависит от угловой скорости вращения гироскопа w на константу Q, w = Qf. Предполагая степенную зависимость момента силы трения $Mtr_3 = -\gamma w^n$ от угловой скорости вращения гироскопа w получена связь первой производной $\frac{df}{dt}$ от частоты f и $A = \frac{\gamma Q^{n-1}}{I}$:

$$\frac{df}{dt} = -Af^n. (5)$$

Для нахождения степени n прологарифмировано выражение 5:

$$\ln -\frac{df}{dt} = \ln A + n \ln f.$$
(6)

Рис. 1: Схема экспериментальной установки гироскопа на кардановом подвесе, использованной в эксперименте.

Построив график $\ln \frac{df}{dt}$ от $\ln f$, определим значение n в качестве коэффициента наклона. После интегрирования выражения 4 получена связь частоты f от времени t и величину p = 1 - n:

$$f^p/p = f_0^p/p - At (7)$$

Из графиков $\frac{f^p/p}{p}$ от t получим A в качестве коэффициента наклона и f_0^p/p в качестве свободного члена. Получим зависимость для момента силы трения Mtr_3 :

$$Mtr_3 = -\gamma w^n = \frac{AI}{Q^{n-1}} w^n \tag{8}$$

И тогда момент силы трения Mtr_{3_0} выражается через w_0 :

$$Mtr_{3_0} = -\gamma w_0^n = \frac{AI}{Q^{n-1}} w_0^n \tag{9}$$

3 Результаты и их анализ

3.1 Нахождение моментов сил трения во внешних осях гироскопа

Результаты измерения параметров эталонного цилиндра и вычисления момента инерции гироскопа представлены в приложении 6.1. Для построения определения момента импульса гироскопа L и момента силы трения Mtr_2 были измерены периоды прецессии гироскопа в зависимости от момента силы, приложенного к его главной оси. Изменение момента силы достигалось за счёт изменения плеча её приложении и массы груза, подвешенного на ось гироскопа. Полученные данные занесены в таблицу 1. Построенная зависимость (Рис. 2) момента силы от угловой скорости прецессии M(w) оказалась линейной, что подтверждает корректность применимости модели гироскопа в данной задаче. Из выражения 3 найден момент импульса гироскопа $L=(1.93\pm0.01)\frac{\mathrm{Kr}\cdot\mathrm{M}^2}{\mathrm{c}}$ и момент силы трения $Mtr_2=(3.4\pm0.7)\cdot10^{-3}\frac{\mathrm{Kr}\cdot\mathrm{M}^2}{\mathrm{c}}$.

Рис. 2: Зависимость момента силы, приложенного к оси гироскопа, M от угловой скорости прецессии оси w в горизонтальной плоскости.

Для определения момента силы трения Mtr_1 была измерена угловая скорость прецессии в вертикальной плоскости W (Таблица 1). Тогда из выражения 4 получено значение $Mtr_1=(2.26\pm0.03)\cdot10^{-3}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}^2}{\mathrm{c}}$.

3.2 Нахождение момента силы трения во внутренней оси гироскопа

Для измерения частоты перемагничивания обмотки гироскопа f использованы осциллограф и генератор переменного тока, на котором во время эксперимента подбиралась такая частота сигнала, чтобы на осциллографе получался эллипс. Данные измерения приведены в таблице 2. Из графика зависимости частоты перемагничивания обмотки гироскопа (Рис. 3) от времени получено, что зависимость не является линейной, а значит момент силы трения зависит от частоты вращения гироскопа.

Рис. 3: Зависимость частоты перемагничивания обмотки гироскопа f от времени измерения t.

Согласно методике 6, предполагая зависимость момента силы трения Mtr_3 от частоты вращения ω степенной, построим график в логарифмическом масштабе (Рис. 4).

Рис. 4: Зависимость производной частоты перемагничивания обмотки гироскопа $\frac{df}{dt}$ от частоты перемагничивания обмотки f в логарифмическом масштабе.

Из графика следует, что зависимость 6 хорошо приближается линейной функцией с коэффициентом наклона $n=0.61\pm0.07$. Для проверки правильности линеаризации исходной зависимости предложенной теорией был построен следующий график (Рис. 5). Из того, что полученный график хорошо приближается прямой можно сделать вывод о правильности предложенной гипотезы. А значит момент силы трения в оси Mtr_3 зависит от частоты вращения ω степенным образом с показателем степени n=0.61, что соответствует выражению 8.

Рис. 5: Линеаризованная зависимость частоты перемагничивания обмотки гироскопа f^p , где $p=1-n,\ n$ - степень зависимости момента силы трения в оси от частоты вращения гироскопа, от времени измерения t.

Из графика 5 найдена начальная частота перемагничивания обмотки $f_0=(388.9\pm0.2)$ Гц. Рассчитав начальную угловую скорость вращения $\omega_0=L/I=(1330\pm20)$ $\frac{1}{\rm c}$, получено значение $Q=\frac{\omega_0}{f_0}=3.42\pm0.05$.

Из графика 5 рассчитан коэффициент наклона $-A=(-3.892\pm0.004)\cdot10^{-3}\,\frac{1}{\mathrm{c}^{2-n}}$ Тогда согласно выражению 8 получено $\gamma=(9.1\pm0.7)\cdot10^{-6}$ кг · м² · кг $^{n-2}$. Следовательно момент силы трения $Mtr_{3_0}=(12\pm1)\cdot10^{-3}\,\frac{\mathrm{Kr}\cdot\mathrm{M}^2}{\mathrm{c}}$.

4 Выводы

Моменты сил трения во внешних осях оказались равны $Mtr_1=(2.26\pm0.03)\cdot 10^{-3} \frac{\mathrm{K}\Gamma\cdot\mathrm{M}^2}{\mathrm{c}}$ и $Mtr_2=(3.4\pm0.7)\cdot 10^{-3} \frac{\mathrm{K}\Gamma\cdot\mathrm{M}^2}{\mathrm{c}}$. Зависимость момента силы трения во внутренней оси подчиняется закону $Mtr_3=-\gamma w^n$, где $n=0.61\pm0.07$, а $\gamma=(9.1\pm0.7)\cdot 10^{-6} \mathrm{~M}^2\cdot\mathrm{K}\Gamma^{n-1}$.

5 Использованная литература

Список литературы

[1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна

6 Приложения

6.1 Расчёт момента инерции гироскопа

Масса эталонного цилиндра составила $M=(1616.7\pm0.1)$ г, а радиус составил $R=(3.800\pm0.001)$ см. тогда момент инерции цилиндра равняется $I_0=(2.334\pm0.003)\cdot10^{-3}$ кг · м². Измерены периоды крутильных колебаний гироскопа $T=(3.150\pm0.015)$ с и цилиндра $T=(4.000\pm0.015)$ с. Тогда из соотношения 1 получим $I=(1.44\pm0.02)\cdot10^{-3}$ кг · м².

6.2 Данные результатов измерения периода прецессии гироскопа

т, г	l, см	М, кг·м	h, см	α	n	t, c	$W, \frac{1}{c}$	$W, \frac{1}{c}$
337,5	121	0,4002075	18	14,20556517	7	211,95	0,207512607	0,001169775
337,5	97	$0,\!3208275$	18	14,20556517	6	221,78	0,169984272	0,001117927
214,4	121	$0,\!25423552$	17,5	9,470376779	3	139,95	0,134687788	0,001181059
214,4	97	0,20380864	17,5	9,470376779	2	116,45	0,107912156	0,001419401
140,8	121	$0,\!16696064$	18	14,20556517	3	213,72	0,088197436	0,001160087
140,8	97	$0,\!13384448$	18,5	18,94075356	3	263,92	0,071421476	0,001252571
75,9	121	0,09000222	18	14,20556517	2	261,02	0,048143325	0,000949865
75,9	97	$0,\!07215054$	18,7	20,83482891	2	326,13	0,038531784	0,001115004

Таблица 1: Данные результатов измерения прецессии гироскопа под действием момента силы тяжести в двух осях. m - масса подвешенного груза, l - длина плеча подвеса, M - рассчитанный момент импульса, h - начальная высота крайней точки оси гироскопа, α - перемещение крайней точки оси гироскопа за время измерения, n - количество оборотов, совершённое осью гироскопа, t - время измерения, w - рассчитанная угловая скорость прецессии в горизонтальном направлении, W - рассчитанная угловая скорость прецессии в вертикальном направлении

6.3 Данные результатов измерения замедления вращения гироскопа

t c	f Dir
t, c	<i>f</i> , Гц 385
8,92	380
22,53	375
35,9	
50,02	$370 \\ 365$
63,77 $73,78$	360
91,38	355
105,56	350
119,95	$\frac{345}{345}$
134,5	340
134,5 $148,56$	335
163,02	330
177,71	325
191,87	$\frac{320}{320}$
207,56	315
221,25	310
235,71	305
251,08	300
266,1	295
281,68	290
297	285
313,2	280
327,98	275
344,22	270
$360,\!82$	265
376,98	260
$394,\!13$	255
411,5	250
$428,\!83$	245
446,75	240
$464,\!23$	235
482,4	230
$500,\!78$	225
519,3	220
$538,\!35$	215
$557,\!62$	210
576,33	205
596,18	200

Таблица 2: Данные результатов измерения замедления вращения гироскопа. t - время, прошедшее с момента отключения питания гироскопа, f - частота перемагничивания обмотки, измеренная при помощи осциллографа.

6.4 Метод наименьших квадратов

$$y = a + bx$$

Формула для расчёта коэффициентов a и b:

$$b = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2}$$

$$a = \overline{y} - b\overline{x}$$

Погрешности:

$$\sigma_b \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\overline{y^2} - \overline{y}^2}{\overline{x^2} - \overline{x}^2} - b^2}$$
$$\sigma_a \approx \sigma_b \sqrt{\overline{x^2} - \overline{x}^2}$$

6.5 Расчёт погрешностей

$$\sigma_{I_0} = I_0 \sqrt{\left[\left(\frac{\sigma_M}{M}\right)^2 + \left(2\frac{\sigma_R}{R}\right)^2\right]}$$

$$\sigma_I = I \sqrt{\left[\left(\frac{\sigma_{I_0}}{I_0}\right)^2 + \left(2\frac{\sigma_T}{T}\right)^2 + \left(2\frac{\sigma_{T_0}}{T_0}\right)^2\right]}$$

Для нахождения погрешностей величин, рассчитанных из графика используем формулу случайной погрешности из приложения 6.5. Будем обозначать случайную погрешность величины θ как σ_{θ_1} , а приборную как σ_{θ_2}

$$\sigma_{L} = \sqrt{\left[(\sigma_{L_{1}})^{2} + L^{2} \cdot max \left(\left(\frac{\sigma_{w}}{w} \right)^{2} + \left(\frac{\sigma_{M}}{M} \right)^{2} \right) \right]}$$

$$\sigma_{Mtr_{2}} = \sqrt{\left[(\sigma_{Mtr_{2_{1}}})^{2} + Mtr_{2}^{2} \cdot max \left(\left(\frac{\sigma_{w}}{w} \right)^{2} + \left(\frac{\sigma_{M}}{M} \right)^{2} \right) \right]}$$

Погрешность $\sigma_{Mtr_{11}}$ найдём как среднеквадратичное отклонение среднего из выборки.

$$\sigma_{Mtr_1} = \sqrt{\left[(\sigma_{Mtr_{11}})^2 + Mtr_1^2 \cdot max \left(\left(\frac{\sigma_W}{W} \right)^2 + \left(\frac{\sigma_L}{L} \right)^2 \right) \right]}$$

$$\sigma_n = \sqrt{\left[(\sigma_{n_1})^2 + n^2 \cdot max \left(\left(\frac{\sigma_{df}}{\frac{df}{dt}} \right)^2 \right) \right]}$$

$$\sigma_p = \sigma_{1-n} = \sigma_n$$