Delaunay Triangulation

- 1. Motivation
- 2. Triangulation ebener Punktmengen
- 3. Definition und Eigenschaften der Delaunay Triangulation
- 4. Berechnung der Delaunay Triangulation (randomisiert, inkrementell)
- 5. Analyse des Platz- und Zeitbedarfs

1. Motivation

Umwandlung einer topographischen Karte

in eine perspektivische Sicht

Terrains

Gegeben:

Eine Anzahl von Beispielpunkten p1,...,pn Gesucht:

Triangulation T mit Bild von T "realistisch"

Das "Flippen" einer Kante

Ziel:

Maximierung des Winkels in der Triangulation

2. Triangulation ebener Punktmengen

Gegeben: Menge P von n Punkten in der Ebene (nicht alle kollinear).

Eine Triangulation T(P) ist eine planare Aufteilung der konvexen Hülle von P in Dreiecke mit Eckpunkten aus P.

T(P) ist maximale Unterteilung.

Für eine gegebene Punktmenge gibt es nur endlich viele verschiedene Triangulationen.

Größe von Triangulationen

Satz:

```
Jede Triangulation einer Punktmenge P=\{p1,...,pn\} besitzt 2n-2+k Dreiecke und 3n-3-k Kanten, k = \# Kanten auf der konvexen Hülle
```

Größe von Triangulationen

Satz:

e = 3n-3-k

```
Jede Triangulation einer Punktmenge P={p1,...,pn}
besitzt 2n-2+k Dreiecke und 3n-3-k Kanten,
k = # Kanten auf der konvexen Hülle
Beweis:
Dreieck 3 Kanten, äußere Fläche k Kanten
f = \#Dreiecke + 1
Kante hat jeweils 2 inzidente Flächen =>
 e = (3 \#Dreiecke + k)/2
Euler: n-e+f = 2
                             =>
 \#Dreiecke = 2n-2-k
 und
```

Winkelvektor

P Menge von n Punkten

T(P) habe m Dreiecke

A(T) = {a1,...,a3m} Vektor der 3m Winkel in absteigender Größenanordnung

Triangulationen lassen sich bzgl. A(T) lexikographisch anordnen!

Triangulation T(P) heißt winkeloptimal, wenn A(T(P))>=A(T'(P)) für alle Triangulationen T'(P) gilt.

Illegale Kanten

min{ai | i aus 1..6} < min {ai' | i aus 1..6}

T hat illegale Kante => Flippen zu T' ergibt A(T')>A(T)

Illegalitäts-Test

Thales Theorem


```
Winkel(asb) <
Winkel(aqb) = Winkel(apb) <
Winkel(arb)</pre>
```

Sei C Kreis um Dreieck pi,pj,pk und pl weiterer Punkt.

pi pj illegal <=> pl im Inneren von C

Quadrilateral mit

pl im Innern des Kreises durch pi,pj,pk.

Beh.: Minimaler Winkel nicht bei pk!

Ziel: pi pj illegal

O.E. a4 minimal.

Kreiskriterium verletzt
=> Kante illegal

Kante pi pj illegal

Kante pk pl illegal

Kreiskriterium

Eine Triangulation erfüllt das Kreiskriterium gdw. der Umkreis eines jeden Dreiecks enthält keinen weiteren Punkt im Innern.

Satz

Eine Triangulation T(P) einer Menge von Punkten enthält keine illegale Kante gdw. nirgendwo das Kreiskriterium verletzt ist.

Satz

Jede Triangulation T(P) einer Punktmenge P kann in endlich vielen Schritten in eine winkeloptimale Triangulation verwandelt werden.

2. Definition und Eigenschaften der Delaunay Triangulation

Die Delaunay Triangulation ist das "straight - line dual" des Voronoi Diagramms.

Kante zwischen zwei benachbarten Vor-Regionen

Jeder Voronoi Knoten ist Mittelpunkt eines Dreiecks der Delaunay Triangulation.

(Für Mengen von Punkten in allgemeiner Lage)

Planarität

Wissen (Vor-Diagrammen)

pi pj in Delauney Graph G(P) <=>
ex. Cij, mit pi und pj und keinem pk
auf dem Rand

Satz: G(P) planar.

Beweis:

Ckl weiterer Kreis und Tkl weiteres Dreieck Ckl und Cij leer => Tkl schneidet Tij nicht

=> pi pj schneidet pk pl nicht

Triangulation

Annahme:

Keine 4 Punkte auf einem Kreis
Delaunay Graph ist Triangulation

3 Punkte pi,pj,pk bilden Dreieck im
Delaunay-Graph <=>
Kreis um pi,pj,pk enthält keinen weiteren Punkt.

=> Jede Delaunay-Triangulation ist legal

Ziel:

Winkeloptimale Triangulation ist Delaunay. Jede Delaunay-Triangulation ist Winkeloptimal.

Äquivalente Charakterisierungen der Delaunay Triangulation DT(P) einer Punktmenge P

- (1) DT(P) ist straight-line-dual von VD(P)
- (2) DT(P) ist eine Triangulation der konvexen Hülle von P, so dass alle Kanten legal sind.
- (3) DT(P) ist eine Triangulation der konvexen Hülle von P, so dass für jedes Dreick das Kreiskriterium gilt.
- (4) DT(P) ist winkeloptimale Triangulation
- (5) Eine Kante pi pj ist Kante in DT(P) gdw. es einen abgeschlossenen Kreis gibt, auf dessen Rand pi und pj liegen und der keinen weiteren Punkt aus P in seinem Innern enthält.

3. Berechnung der Delaunay Triangulation (randomisiert, inkrementell)

Initial: Dreieck xyz, daß alle Punkte p1,...,pn einschließt

Ausgangsdreieck so gross, dass jeder Kreis um drei Punkte aus P keinen Eckpunkt des Ausgangsdreiecks enthält.

Algorithmus DT(P)

Seien

x,y,z Punkte, sodass P im Ausgangsdreieck T mit diesen Eckpunkten enthalten ist.

- 1. Initialisiere DT(P) durch T
- 2. Berechne eine zufällige Permutation pl,...,pn der Punkte von P
- 3. Für r=1 bis n:
 Füge pr zu DT(P) hinzu, d.h. finde das
 Dreick der aktuellen Triangulation, in dem
 pr liegt, füge neue Kanten ein und
 legalisiere sie.
- 4. Entferne alle Kanten, die mit x,y,z verbunden sind.

Legalisieren einer Kante

2 Fälle

Algorithmus

Delaunay(P)

Ausgabe: Delaunay Triangulation der Menge P

```
T= xyz
for r = 1..n
  Finde Dreieck in dem pr liegt
```

- 1. Im Dreieck pi,pj,pk
 splitte pi,pj,pk
 Legalize(pr,pi pj),Legalize(pr,pi pk),
 Legalize(pr,pk pi)
- 2. Auf Kante pi pj
 Legalize(pr,pi pl), Legalize(pl pj pk)
 Legalize(pr,pl pj), Legalize(pr, pk pi)

Lösche xyz mit allen Kanten zu P

Korrektheit

z.Z. Jede neu erzeugte Kante in Iteration r ist Kante im
Delaunay Graph von x,y,z,p1,...,pr

Nutze definierende Eigenschaft: größter leerer Kreis

Beweisidee: "Schrumpfen des Kreises"

Vor Einfügen von pr war Kreis um pi,pj,pk leer!

Flippen einer Kante erzeugt nur legale neue Kante:

Vor der Einfügung von pr war Kreis um pi,pj,pl leer!

Beobachtung: Kantenflip nach Einfügen von prerzeugt nur mit prinzidente Kanten.

Datenstruktur zur Punktlokalisation

5. Analyse des Algorithmus zur Konstruktion der Delaunay Triangulation DT(P)

Satz:

Der Erwartungswert für die Anzahl der vom Algorithmus zur Konstruktion von DT(P) erzeugten Dreiecke für eine Menge P von n Punkten ist höchstens 9n+1.

Satz

Die Delaunay Triangulation DT(P) für eine Menge P von n Punkten kann in erwarteter Zeit O(n log n) und erwartetem Platz O(n) berechnet werden.