Infinite impulse response filters Bilinear z-transform

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar
rodrigo.gonzalez@ingenieria.uncuyo.edu.ar

Summary

- Classification of discrete filters
- IIR filtering in frequency domain
- Bilinear transform (Tustin's Method)
 - Map from s to z
 - Frequency pre-warping
 - Example of IIR design using bilinear transform
- IIR structures
 - Direct form I IIR implementation
 - Direct form II IIR implementation
 - IIR cascade implementation
- FIR vs IIR

Classification of discrete filters

Table: Classification of discrete filters

	Finite impulse response (FIR)	Infinite impulse response (IIR)
Filtering in time domain	Moving average	Leaky Integrator
Filtering in frequency domain	Windowed Filters Equiripple Minimax	Bilinear z-transform ZOH method

IIR filtering in frequency domain

- The main idea is to transform an analog filter to the discrete domain.
- From s domain to z domain.
- This way, all the theory behind analog filter can be reused to implement a filter in a computer (Butterworth filter, Chebyshev filters, Elliptic filter).

Bilinear transform (Tustin's Method)

Suppose the following integrator,

$$\frac{U(s)}{E(s)} = D_c(s) = \frac{1}{s}.$$
 (1)

The area under e(t) over $k \times T$ periods is,

$$u(k) = \int_0^{k-1} e(t)dt + \int_{k-1}^k e(t)dt.$$
 (2)

Tustin's method uses the trapezoidal integration, to approximate e(t) by a straight line between two samples. The technique is an algebraic transformation between variables s and z.

$$u(k) = u(k-1) + \frac{T}{2} [e(k-1) + e(k)],$$
 (3)

$$U(z) = z^{-1}U(z) + \frac{T}{2}\left[z^{-1}E(z) + E(z)\right], \quad (4)$$

$$U(z)(1-z^{-1}) = \frac{T}{2} \left[E(z)(1+z^{-1}) \right], \quad (5)$$

$$\implies \frac{U(z)}{E(z)} = \frac{T}{2} \left(\frac{1 + z^{-1}}{1 - z^{-1}} \right) = \frac{1}{\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}}.$$
(6)

Comparing Eq. 1 and 6,

$$s \approx \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$
 (7)

Relationship between analog and digital frequencies

- Ω is the analog frequency, $-\infty, <\Omega<\infty.$
- ω , the "digital" frequency, $-\pi, < \omega < \pi$, i.e., $-2\pi f_s/2, < \omega < 2\pi f_s/2$.
- What is the relationship between Ω and ω .

Doing $s = j\Omega$, z should be evaluated in the unity circle, so, $z = r \cdot e^{j\omega} = \cdot e^{j\omega}$, with r = 1.

$$s = \frac{2}{T} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right) = \frac{2}{T} \left[\frac{2e^{-j\omega/2}(j\sin\omega/2)}{2e^{-j\omega/2}(\cos\omega/2)} \right] = j\frac{2}{T} \tan(\omega/2).$$
 (8)

Real and imaginary parts on both sides of Eq. 8 are,

Since $s = \sigma + j\Omega$,

$$\sigma = 0, (9)$$

$$\Omega = \frac{2}{7} \tan(\omega/2) \,, \tag{10}$$

$$\implies \omega = \arctan(\Omega T/2)$$
. (11)

Map from s to z

Frequency pre-warping

- Non-linear relationship between Ω and ω .
- Analog frequencies has to be adjust before analog filter design.

Example of IIR design using bilinear transform

1 Choose the analog filter that complains with the desired performance.

For example, second-order Butterworth low-pass filter.

$$G(s) = rac{\Omega_c^2}{s^2 + s\sqrt{2}\Omega_c + \Omega_c^2}$$

2 Cut-off digital frequency is normalized.

$$f_{dc} = 100 \text{ Hz}, f_s = 1000 \text{ Hz}, T = 0.001 \text{ s}.$$

$$\omega_c = 2 \pi \, 100/1000 = 0.628 \, \text{rad/s}.$$

3 Pre-warp the analog frequencies.

$$\Omega_c = \frac{2}{T} \tan(\omega_c/2) = \frac{2}{0.001} \tan\left(\frac{0.628}{2}\right) = 649.839$$
 rad/s. $f_{ac} = 103.42$ Hz.

Example of IIR design using bilinear transform

4 Replace s by the bilinear transform, $s \approx \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$.

$$H(s) = \frac{\Omega_c^2}{s^2 + s\sqrt{2}\Omega_c + \Omega_c^2}$$

$$H(z) = \frac{(649.84)^2}{\left(\frac{2}{T}\right)^2 \left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + \frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\sqrt{2}\left(649.84\right) + (649.84)^2}$$

$$H(z) = \frac{0.067 + 0.135z^{-1} + 0.067z^{-2}}{1 - 1.143z^{-1} + 0.413z^{-2}}$$

5 Invert the Z-transform to find the difference equation.

$$y[n] = 0.067 x[n] + 0.135 x[n-1] + 0.067 x[n-2]1 + + 1.143 y[n-1] - 0.413 y[n-2]$$
(12)

Frequency and phase responses

Direct form I IIR implementation

Figure 7.24 Direct Form implementation of an IIR filter.

Direct form I IIR implementation inverted

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

By the commutative properties of the z-transform, we can invert the order of computation to turn the Direct Form I structure into a new structure

Figure 7.25 Direct form I with inverted order.

Direct form II IIR implementation

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

We can then combine the parallel delays together. This implementation is called Direct Form II; its obvious advantage is the reduced number of the required delay elements (hence of memory storage).

Figure 7.26 Direct Form II implementation of a second-order section.

IIR cascade implementation

The cascade structure of N second-order sections is much less sensitive to quantization errors than the previous Direct form II of order $2 \cdot N$.

Figure 7.27 4th order IIR: cascade implementation.

FIR vs IIR

FIR, pros:

- Unconditional stability (no poles).
- Precise control of the phase response and, in particular, exact linear phase.
- Robustness with respect to finite numerical precision hardware.

FIR, cons:

- Longer input-output delay.
- Higher computational cost with respect to IIR solutions.

IIR, pros:

- Lower computational cost with respect to an FIR with similar behavior.
- Shorter input-output delay.
- Compact representation.

IIR, cons:

- Stability is not guaranteed.
- Phase response is difficult to control.
- Design is complex in the general case.
- Sensitive to numerical precision.

Bibliography

- 1 Paolo Prandoni and Martin Vetterli. Signal processing for communications. Taylor and Francis Group, LLC. 2008. Sections 7.3, and 7.4.2.
- 2 Oliver Hinton. Digital Signal Processing Resources for EEE305 Course. Chapter 5. www.staff.ncl.ac.uk/oliver.hinton/eee305/
- 3 Gene F. Franklin, J. David Powell and Abbas Emami-Naeini. Feedback Control of Dynamic Systems. 7th Edition. 2014. Section 8.3.