

Local Collaborative Autoencoders

Minjin Choi¹, Yoonki Jeong¹, Joonseok Lee², Jongwuk Lee¹

Sungkyunkwan University (SKKU), South Korea¹ Google Research, United States²

Motivation

Global Low-rank Assumption

- Existing models are based on the global low-lank assumption.
 - All users and items share the same latent features.

>Limitation: some users/items may have different latent features.

Local Low-rank Assumption

- >A user-item matrix can be divided to several sub-matrices with the local low-rank assumption.
 - Each sub-matrix represents different communities.
 - Local models represent various communities with different characteristics.

Limitation of Existing Local Models

- If the local model is too large, it is close to the global model.
 - Because LLORMA uses large local models, the local model may not represent its unique characteristic.
 - The performance gain may come from an ensemble effect.

								N			
	1	1	?	?	1	&	1	1	?	?	1
	1	1	1	?	?	∽	1	1	1	?	?
2	1	1	?	1	?	&	1	1	?	1	?
	?	1	1	1	?	2	?	1	1	1	?
	?	1	1	?	1	8	?	1	1	?	1

Limitation of Existing Local Models

- >If the local model is too small, the accuracy is too low.
 - Because sGLSVD uses small local models, some local model may have insufficient training data.

Research Question

How to build coherent and accurate local models?

Our Key Contributions

>When the local model keeps small and coherent, we build the local model with a relatively large training data.

Our Key Contributions

- >Autoencoder-based models are used as the base model to train the local model.
 - They are useful for capturing non-linear and complicated patterns.

Proposed Method

Local Collaborative Autoencoders (LOCA)

>Overall architecture of LOCA

- Step 1: Discovering two local communities for an anchor user
- Step 2: Training a local model with an expanded community
- Step 3: Combining multiple local models

Step 1: Discovering Local Communities

For an anchor user, determine a local community and expand the local community for training.

Calculate the similarities between the anchor user and the other users.

Expanded neighbors to train the local community

Step 2: Training a Local Model

>Train the local model with the expanded community.

- Use the autoencoder-based model for training the local model.
 - Note: It is possible to utilize any base models, e.g., MF, AE and EASE^R.
- The similarities with the anchor are used for the user weights for training.

Step 3: Combining Multiple Local Models

Aggregate multiple local models with the weight of each local model.

Training Local Models in Detail

\triangleright The loss function for the j-th local model

User weight for training the j-th local model

$$\underset{\boldsymbol{\theta^{(j)}}}{\operatorname{argmin}} \sum_{r_u \in R} \boldsymbol{t}_u^{(j)} \mathcal{L} \big(r_u, \boldsymbol{M^{local}}(r_u; \boldsymbol{\theta^{(j)}}) \; \big) + \lambda \Omega(\boldsymbol{\theta^{(j)}})$$

Parameter for the *j*-th local model

The j-th local model

>Aggregating all local models and a global model

The global model is used to handle the users who are not covered by local models.

User weight for inferring the j-th local model

$$\widehat{R} = \alpha M^{global}(R; \theta^{(g)}) + (1 - \alpha) \sum_{j=1}^{q} w^{(j)} \odot M^{local}(R; \theta^{(j)}) \oslash w$$

How to Choose Anchor Users

- \triangleright Random selection: Choose k anchor users at random.
- >Need to maximize the coverage of users by local models.
 - An optimal maximum coverage algorithm is the NP-hard problem.
- >Use the greedy method to maximize the coverage.
 - Select the anchor user who has the most uncovered users iteratively.

Experiments

Experimental Setup: Dataset

>We evaluate our model over five public datasets with various characteristics (e.g., domain, sparsity).

Dataset	# of users	# of items	# of ratings	Sparsity
MovieLens 10M (ML10M)	69,878	10,677	10,000,054	98.66%
MovieLens 20M (ML20M)	138,493	26,744	20,000,263	99.46%
Amazon Music (AMusic)	4,964	11,797	97,439	99.83%
Amazon Game (AGame)	13,063	17,408	236,415	99.90%
Yelp	25,677	25,815	731,671	99.89%

Evaluation Protocol and Metrics

>Evaluation protocol: leave-5-out

Hold-out the last 5 interactions as the test data for each user.

User interaction:

Training data: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Test data: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

>Evaluation metrics

- Recall@100
 - Measures the number of test items included in the top-N list.
- NDCG@100
 - Measures the ranking of test items in the top-N list.

Competitive Global/Local Models

>Four autoencoder-based global models

- CDAE: a denoising autoencoder-based model with a latent user vector
- MultVAE: a VAE-based model
- RecVAE: a VAE-based model by improving MultVAE
- EASE^R: an item-to-item latent factor model

>Two local models

- LLORMA: local model using MF as the base model
- sGLSVD: local model using SVD as the base model

Yao Wu et al., "Collaborative Denoising Auto-Encoders for Top-N Recommender Systems," WSDM 2016
Dawen Liang et al., "Variational autoencoders for collaborative filtering," WWW 2018.
Ilya Shenbin et al., "RecVAE: A new variational autoencoder for Top-N recommendations with implicit feedback," WSDM 2020.
Harald Steck., "Embarrassingly shallow autoencoders for sparse data," WWW 2019.
Lee et al., "LLORMA: Local Low-Rank Matrix Approximation," JMLR 2016
Evangelia Christakopoulou and George Karypis, "Local Latent Space Models for Top-N Recommendation," KDD 2018

Accuracy: LOCA vs. Competing Models

>LOCA consistently outperforms competitive global/local models over five benchmark datasets.

Global Models

Local Models

Ours

Dataset	Metric	CDAE	MultVAE	EASER	RecVAE	LLORMA	sGLSVD	LOCA _{VAE}	LOCA _{EASE}
ML10M	Recall@100	0.4685	0.4653	0.4648	<u>0.4705</u>	0.4692	0.4468	0.4865	0.4798
	NDCG@100	0.1982	0.1945	0.2000	0.1996	0.2042	0.1953	0.2073	0.2049
ML20M	Recall@100	0.4324	0.4397	0.4468	0.4417	0.3355	0.4342	0.4419	0.4654
	NDCG@100	0.1844	0.1860	0.1948	0.1857	0.1446	0.1919	0.1884	0.2024
Amusic	Recall@100	0.0588	0.0681	<u>0.0717</u>	0.0582	0.0517	0.0515	0.0748	0.0717
	NDCG@100	0.712	0.0822	0.0821	0.0810	0.0638	0.0613	0.0893	0.0826
Agames	Recall@100	0.1825	0.2081	0.1913	0.1920	0.1223	0.1669	0.2147	0.1947
	NDCG@100	0.0808	0.0920	0.0915	0.0849	0.0539	0.0777	0.0966	0.0922
Yelp	Recall@100	0.2094	0.2276	0.2187	0.2262	0.1013	0.1965	0.2354	0.2205
	NDCG@100	0.0920	0.0982	0.0972	0.0975	0.0429	0.0857	0.1103	0.0981

Effect of the Number of Local Models

>The accuracy of LOCA improved consistently with an increase in the number of local models.

Effect of Anchor Selection Method

Our coverage-based anchor selection outperforms the other methods in terms of accuracies and coverages.

Illustration of LOCA

- >When a user has multiple tastes, LOCA can capture the user preference by combining different local patterns.
 - For a user (66005 in ML10M) who likes Sci-Fi and Horror movies, LOCA shows a better accuracy.

Recommendation	Local 70	Local 179	Global	Ground Truth	
Top-1	Sci-Fi Adventure	Horror Action	Thriller Action	Sci-Fi Action	
Тор-2	Sci-Fi Horror	Horror Drama The Birds True	Drama	HALLOWEEN Horror Thriller	
Тор-3	Sci-Fi Action	Horror Drama	Drama Mystery	Horror Action	

Conclusion

Conclusion

>We propose a new local recommender framework, namely local collaborative autoencoders (LOCA).

- >LOCA can handle a large number of local models effectively.
 - Adopts a local model with different training/inference strategies.
 - Utilizes autoencoder-based model as the base model.
 - Makes use of a greedy maximum coverage method to build various local models.

>LOCA outperforms the state-of-the-art global and local models over various benchmark datasets.

Q&A

Email: zxcvxd@skku.edu

Code: https://github.com/jin530/LOCA