

CSE301 - DATABASE

Functional Dependencies

Functional Dependencies

- A functional dependency (FD) is a relationship between two attributes (typically between the Primary Key and other non-key attributes within a table).
- For any relation R, attribute Y is functionally dependent on attribute X (usually the Primary Key), if for every valid instance of X, that value of X uniquely determines the value of Y.
- \square This relationship is indicated by $X \rightarrow Y$
- ☐ The left side of the above FD diagram is called the determinant, and the right side is the dependent.

Examples of Functional Dependencies

R

A	В
1	6
2	7
3	8
4	9

 \square A \rightarrow B, if for every valid instance of A, that value of A uniquely determines the value of B.

$$\square$$
 {1 \to 6}, {2 \to 7}, {3 \to 8}, {4 \to 9}

 \square B has the same value for the same value as A.

R

A	В
1	6
2	7
3	8
2	9

 \square A $\not\rightarrow$ B, if for every valid instance of A, that value of A not uniquely determines the value of B.

$$\square$$
 {1 \rightarrow 6}, {2 \rightarrow 7}, {3 \rightarrow 8}, {2 \rightarrow 9}

 \square B has not the same value for the same value as A.

Functional Dependencies

- \square We can mathematically represent $X \to Y$,
 - ightharpoonup When $X \subseteq R$ and $Y \subseteq R$
 - ightharpoonup If T₁[X] = T₂[X], then T₁[Y] = T₂[Y]

Examples of Functional Dependencies

■ Which of the following FD is not valid?

$$a) A \rightarrow B$$

$$b) B \rightarrow C$$

c)
$$BC \rightarrow A$$

 $d)AC \rightarrow B$

R

A	В	C
1	2	3
4	2	3
5	3	3

- \Box $A \to B$, $\{1 \to 2\}$, $\{4 \to 2\}$, $\{5 \to 3\}$ *Valid*
- \square $B \to C$, $\{2 \to 3\}$, $\{2 \to 3\}$, $\{3 \to 3\}$ *Valid*
- \square BC \rightarrow A, $\{2,3 \rightarrow 1\}$, $\{2,3 \rightarrow 4\}$, $\{3,3 \rightarrow 5\}$ Not Valid
 - > Right hand side has not the same value for the same value as left hand side.
- \square $AC \to B, \{1,3 \to 2\}, \{4,3 \to 2\}, \{5,3 \to 3\}$ Valid

Examples of Functional Dependencies

☐ Which of the following FD is valid?

a)
$$XY \rightarrow Z$$
, $Z \rightarrow Y$

$$b) XZ \rightarrow X, Y \rightarrow Z$$

c)
$$YZ \rightarrow X$$
, $Z \rightarrow X$

$$d) XZ \rightarrow Y, Y \rightarrow Z$$

R

c)
$$YZ \rightarrow X$$
, $Z \rightarrow X$

Option c is not valid

a) $XY \rightarrow Z$, $Z \rightarrow Y$

$$\square$$
 $XY \rightarrow Z$

$$\square$$
 $Z \rightarrow Y$

$$\begin{cases} 3 \to 4 \}, \{3 \to 5 \}, \\ \{3 \to 6 \}, \{2 \to 2 \} \end{cases}$$

Option a is not valid

b) $XZ \rightarrow X, Y \rightarrow Z$

$$\square$$
 $XZ \rightarrow X$

$$\begin{cases} 1,3 \to 1 \}, & \{1,3 \to 1 \}, \\ \{4,3 \to 4 \}, & \{3,2 \to 3 \} \end{cases}$$

$$\square$$
 $Y \rightarrow Z$

$$\begin{cases} 4 \to 3 \}, \{5 \to 3 \}, \\ \{6 \to 3 \}, \{2 \to 2 \} \end{cases}$$

Option b is valid

 $d) XZ \rightarrow Y, Y \rightarrow Z$

$$\square$$
 $XZ \rightarrow X$

$$\begin{cases} 1,3 \to 4 \}, & \{1,3 \to 5 \}, \\ \{4,3 \to 6 \}, & \{3,2 \to 2 \} \end{cases}$$

$$\square$$
 $Y \rightarrow Z$

$$\{4 \to 3\}, \{5 \to 3\}, \{6 \to 3\}, \{2 \to 2\}$$

Option d is not valid Introduction: 1-6

Exercise on Functional Dependencies

☐ Which of the following FD is correct?

$$a) A \rightarrow BC$$

b)
$$DE \rightarrow C$$

c)
$$C \rightarrow DE$$

$$d)$$
 $BC \rightarrow A$

A	В	C	D	E			
A	2	3	4	5			
2	A	3	4	5			
A	2	3	6	5			
a	2	3	6	6			

R

☐ Which of the following FD is not correct? R

a)
$$XY \rightarrow Z$$
, $Z \rightarrow Y$

b)
$$YZ \rightarrow X$$
, $Y \rightarrow Z$

c)
$$XZ \rightarrow X$$
, $Z \rightarrow X$

$$d) XZ \rightarrow Y, Y \rightarrow Z$$

Classification of Functional Dependencies

- ☐ Trivial functional dependency
 - \checkmark A \rightarrow B has trivial functional dependency if B is a subset of A (B \subseteq A).
 - \checkmark Examples: $A \rightarrow A$, $AB \rightarrow B$, {Employee_id, Employee_Name} \rightarrow Employee_Id
- Non-trivial functional dependency
 - \checkmark A \rightarrow B has a non-trivial functional dependency if B is not a subset of A.
 - ✓ If there is at least one attribute in right hand side that is not present in the left-hand side.
 - \checkmark Examples: $AB \rightarrow BC$, $\{ID\} \rightarrow \{ID, DOB\}$, $\{Roll, Name\} \rightarrow \{Roll, Name, Phone\}$
 - ✓ When A intersection B is NULL, then $A \rightarrow B$ is called as complete non-trivial.
 - \checkmark Example: $A \rightarrow B$, $B \rightarrow C$, $\{ID\} \rightarrow \{Name\}$, $\{Name\} \rightarrow \{DOB\}$

Classification of Functional Dependencies

☐ Fully functional dependency

- ✓ Given R and A → B, then B is fully functional dependent on A if there is no Z where Z is a proper subset of A (Z \subset A) such that Z → B.
- \checkmark Examples: $\{AB \rightarrow C, A \rightarrow D\}$ is a fully FD, $\{AB \rightarrow C, A \rightarrow C\}$ is not a fully FD
- ✓ MaSV, MaMH → TenSV, TenMH, Diem and MaSV ≠> TenSV, TenMH, Diem

Partial functional dependency

- Given a relation R with FD F defined on the attributes of R and K as a candidate key, if X is a proper subset of K ($X \subset K$) and if and only if $X \to A$, then A said to be partially dependent on K.
- \checkmark Examples: R(ABCD), Key(AB), $FD: \{A \rightarrow C\}$. C is partially dependent on A.
- ✓ MaSV, MaMH → TenSV, TenMH, Diem and MASV –>TenSV, MaMH -> TenMH

Classification of Functional Dependencies

- ☐ Transitive functional dependency
 - ✓ If $A \rightarrow B$ and $B \rightarrow C$, then C is transitively functional dependent on A such that $A \rightarrow C$.
 - \checkmark Examples: $\{AB \rightarrow C, C \rightarrow D\}, So, \{AB \rightarrow D\}$

Armstrong's axioms / Inference Rules

- ☐ Reflexive Rule (IR1)
 - ✓ If Y is a subset of X $(X \supseteq Y)$, then X determines Y $(X \to Y)$.
 - \checkmark Examples: $\{AB \rightarrow A\}$, $\{Employee_id, Employee_Name\} \rightarrow \{Employee_Name\}$
- ☐ Augmentation Rule (IR2)
 - ✓ If X determines Y (X → Y), then XZ determines YZ (XZ → YZ). for any Z.
 - \checkmark Examples: R(ABCD), if $A \rightarrow B$ then $AC \rightarrow BC$
- ☐ Transitive Rule (IR3)
 - ✓ If X determines Y (X → Y) and Y determine Z (Y → Z), then X must also determine Z (X \rightarrow Z).

Armstrong's axioms / Inference Rules

- ☐ Union Rule (IR4)
 - ✓ If X determines Y (X → Y) and X determines Z (X → Z), then X must also determine Y and Z (X → YZ).
 - \checkmark Examples: R(ABCD), if $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow BC$.
- Decomposition Rule (IR5)
 - ✓ If X determines Y and Z (X \rightarrow YZ), then X determines Y (X \rightarrow Y) and X determines Z (Y \rightarrow Z) separately.
 - \checkmark Examples: R(ABCD), if $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$
- Pseudo Transitive Rule (IR6)
 - ✓ If X determines Y (X → Y) and YZ determines W (YZ → W), then XZ determines W (XZ → W).

Closure Set of Attributes

- \square X⁺ is the set of all attributes that can be determine using the given set X(attributes).
- \square If "F" is a functional dependency then closure of functional dependency can be denoted using " $\{F\}$ +".

Closure Set of Attributes

- ☐ There are three steps to calculate closure of functional dependency. These are:
 - ✓ Step-1 : Add the attributes which are present on Left Hand Side in the original functional dependency.
 - ✓ Step-2 : Now, add the attributes present on the Right Hand Side of the functional dependency.
 - \checkmark Step-3:
 - With the help of attributes present on Right Hand Side, check the other attributes that can be derived from the other given functional dependencies.
 - Repeat this process until all the possible attributes which can be derived are added in the closure.

Closure Set of Attributes

Input: Functional dependencies (FDs), Target set of attributes (X)

Output: Closure of X, denoted as X+

Step 1: Initialize X+ with attributes in X

Step 2: Repeat until no new attributes can be added to X+

For each functional dependency $(Y \rightarrow Z)$ in FDs:

If Y is a subset of X+:

Add all attributes of Z to X+

Return X+ as the closure of X

• Consider the table Student_details having (Roll_no, Name, Marks, Location) as the attributes and having two functional dependencies.

```
FD1 : Roll_no → Name, Marks
FD2 : Name → Marks, Location
```

- Now, we will calculate the closure of all the attributes present in the relation using the three steps mentioned below. Find closure set of attributes of {Roll_no}+
- Step-1: add attributes present on the LHS of the first functional dependency to the closure.
 {Roll_no}+= {Roll_no}
- Step-2: add attributes present on the RHS of the original functional dependency to the closure.

```
{Roll_no} + = {Roll_no, Name, Marks}
```

- Step-3: Add the other possible attributes which can be derived using attributes present on the RHS of the closure.
 - So, Roll_No attribute cannot functionally determine any attribute, but Name attribute can determine other attributes such as Marks and Location using 2nd Functional Dependency.
 - Therefore, complete closure of Roll_No will be:

```
{Roll_no}+= {Roll_No, Marks, Name, Location}
```

- Example 1: R (ABCDEFG)
 - $\{A \rightarrow B, BC \rightarrow DE, AEG \rightarrow G\}$
 - Find $(AC)^+ = ?$
 - $(AC)^+ = AC$
 - $= ABC (A \rightarrow B)$
 - = ABCDE (BC \rightarrow DE)
 - = ABCDE

- Example 2: R (ABCDE)
 - $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
 - Find $(B)^+ = ?$
- $(B)^+ = B$
- $= BD (B \rightarrow D)$
- = BD

- Example 3: R (ABCDEF)
 - {AB \rightarrow C, CD \rightarrow E, DE \rightarrow B}
 - Find $(AB)^+ = ?$
- $(AB)^+ = AB$
- =ABC (AB \rightarrow C)

- Example 1: R (ABCDEFGH)
 - {A \rightarrow BC, CD \rightarrow E, E \rightarrow C, D \rightarrow AEH, ABH \rightarrow BD, DH \rightarrow BC}
 - Find $(BCD)^+ \rightarrow H$?
 - $(BCD)^+ = BCD$
 - = BCDE (CD \longrightarrow E)
 - = ABCDEH (D \rightarrow AEH)
 - So, $(BCD)^+ \rightarrow H$ is valid

- Exercise 1: R (ABCDEF)
 - $\{A \rightarrow BC, CD \rightarrow EF, B \rightarrow D, E \rightarrow A\}$
 - Find $(AE)^+ = ?$
- Exercise 2: R (ABCDEF)
 - $\blacksquare \{AB \to C, CD \to E, DE \to B\}$
 - Find $(AB)^+ = ?$
- Exercise 3: Student (Roll, Name, DoB, Phone, Course)
 - Roll, Name} → Phone, {Course, DoB} → Roll, Course
 → Name, Roll → Name}
 - Find (Course) $^+$ = ?

Equivalence Of Functional Dependencies

R (ACDEH)

• F:
$$\{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$

• G:
$$\{A \rightarrow CD, E \rightarrow AH\}$$

$$\bullet (A)^+ = ACD$$

$$\bullet (AC)^+ = ACD$$

•
$$(E)^+ = EAH = EAHCD$$

• So,
$$F \subseteq G$$

So,
$$G \subseteq F$$

$$\blacksquare$$
 F \subset G and G \subset F, so, F $=$ G

Find the correct option

a)
$$F \subseteq G$$

b)
$$G \subset F$$

c)
$$F = G$$

d)
$$F \neq G$$

Equivalence Of Functional Dependencies

- R (ACDEH)
- F: $\{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
- G: $\{A \rightarrow CD, E \rightarrow AH\}$
- Check both FD's are equivalent or not.

- R (ABC)
- F: $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
- G: $\{A \rightarrow BC, B \rightarrow A, C \rightarrow A\}$
- Find the correct option

a)
$$F \subseteq G$$

b)
$$G \subseteq F$$

c)
$$F = G$$

d)
$$F \neq G$$

- **■** R (VWXYZ)
- F: $\{W \to X, WX \to Y, Z \to WY, Z \to V\}$
 - G: $\{W \rightarrow XY, Z \rightarrow WX\}$
 - Find the correct option

a)
$$F \subseteq G$$

b)
$$G \subseteq F$$

$$c) F = G$$

d)
$$F \neq G$$