جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

Bac Blanc **Epreuve de Maths**

Proposée le 24 mai 2018 de 8h à 12h 7D Durée:4h Niveau:

Exercice 1(3 points)

Pour chaque question ci-après, une seule réponse est exacte

_	1 Uui	r chaque question ci-apres, the settle repolise est exacte												
	N°	Question	Réponse A	Réponse B	Réponse C									
	1	(U_n) est une suite arithmétique telle	V = -13	($\int \mathbf{U}_0 = -13$									
		que : $ \begin{cases} U_3 = -4 \\ U_{10} = 17 \end{cases} alors : $	r = -3	r = 3	r = 3									
	2	(V _n) est une suite géométriques de	géométrique	arithmétique										
		raison q et de valeurs strictement			ni arithmétique									
1	127	positives alors la suite $U_n = lnV_n$ est:	th my	•										
	3	La somme	[(1)2018]	[/1 \2017]	[(1 \2018]									
		S = 1+ $\frac{1}{2}$ + $(\frac{1}{2})^2$ + \cdots + $(\frac{1}{2})^{2017}$ est égale	$ 2 (\frac{1}{2}) - 1 $	$2\left[1-\left(\frac{1}{2}\right)^{2017}\right]$	$ 2 1-(\frac{1}{2})$									
		$S = 1 + \frac{1}{2} + (\frac{1}{2}) + \cdots + (\frac{1}{2})$ est egale	$\lfloor \frac{2}{2} \rfloor \frac{2}{2}$											
		à:												
	4	Si pour tout n:	(U _n) converge	(U _n) converge vers	(U _n) converge									
		$1 \le U_n \le \ln(e - \frac{1}{n+1})$, alors	vers 0	himat	vers e									
	5	X est une variable aléatoire qui suit	5	5	1 "									
		la loi uniforme sur $[2,20]$.	18	$\overline{16}$	$\overline{4}$									
		La probabilité $p_{(x>4)}(5 \le x \le 10)$ est												
		égale à:	. 7											
1	6	X est une variable aléatoire qui suit la loi exponentielle de paramètre $\lambda > 0$.	$e^{-5\lambda} + e^{-2\lambda}$	$e^{-5\lambda} - e^{-2\lambda}$	$-\lambda e^{-5\lambda} + \lambda e^{-2\lambda}$									
		La probabilité $p(2 \le x \le 5)$ est												
		égale à:												

Recopier sur la feuille de réponse et compléter le tableau ci-dessous en choisissant la bonne réponse.

N°Question	1	2	3	7.4	27/	5	6		am	7	7/1	17		1	7	7
Réponse							~	•	\mathcal{L}	U	"	V	U	V	V.	» //

Exercice 2 (5 points)

- 1) Résoudre dans l'ensemble des nombres complexes l'équation : $z^2 2z + 10 = 0$
- 2) On considère le polynôme P définie par : $P(z) = z^3 (2+2i)z^2 + (10+4i)z 20i$
 - a)Calculer P(2i) et Déterminer des nombres complexes a et b tels que pour tout z : $P(z) = (z-2i)(z^2+az+b)$

b) Résoudre dans l'ensemble des nombres complexes l'équation : P(z) = 0

3) Le plan complexe étant muni d'un repère orthonormé(0; \vec{u} ; \vec{v}). On considère les points A ;B et C

d'affixes respectives : 2i; 1 + i et 1 + 3i.et pour tout $z \ne 1 + 3i$ on pose : $f(z) = \frac{z - 1 - i}{z - 1 - 2i}$

- a) Placer les points A;B et C.
- b) Résoudre l'équation f(z) = -i. En déduire la nature du triangle ABC.
- c) Déterminer et construire l'ensemble Γ_1 des points M d'affixe z tels que |f(z)| = 1..
- d) Déterminer et construire l'ensemble Γ_2 des points M d'affixe z tels que f(z) est imaginaire pur.
- e) Déterminer et construire l'ensemble Γ_3 des points M d'affixe z tels que $|f(z) 1| = \sqrt{2}$
- f) Justifier que le point A est commun aux ensembles Γ_1 ; Γ_2 et Γ_3 .

Exercice 3 (4 points)

Soit f la fonction définie par : $f(x) = \frac{(x-2)e^x + 2x + 4}{e^x + 2}$. On note C_f sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) Montrer que pour tout réel x :

$$f(x) = x + 2 - \frac{4e^x}{e^x + 2}$$
 (1)

$$f(x) = x - 2 + \frac{8}{e^x + 2}$$
 (2)

- 2) Calculer les limites de f en $-\infty$ et $+\infty$.
- 2) Calculer les limites de 1 en $-\infty$ et $+\infty$. 3) a) Montrer que la courbe C_f admet deux asymptotes obliques Δ_1 et Δ_2 que l'on précisera.
 - b) Etudier la position relative de Δ_1 ; Δ_2 et $C_{\rm f}$
- 4) a) Calculer f'(x) et donner le tableau de variation de f.
- b) Tracer Δ_1 ; Δ_2 et C_f .
- 5) a) Déterminer la primitive F de f telle que F(ln2) = 0
 - b) Calculer l'aire du domaine plan limité par : Δ_1 ; C_f et les droites d'équations x = 0 et $x = \ln 2$.

Exercice 4 (8 points)

- Exercice 4 (8 points)

 1) Soit la fonction g définie sur]0; $+\infty$ [par $g(x) = x(1+\ln x) 2\ln x$
 - a) Calculer g'(x)
 - b) Montrer que pour x > 1 on a g'(x) > 0 et pour x < 1 on a g'(x) < 0
 - c) Dresser le tableau de variation de g en déduire que pour tout x > 0 on $a : g(x) \ge 1$
- 2) Soit $f(x) = 1 + x \ln x (\ln x)^2$; (C) la courbe de f dans un repère orthonormé $(0, \vec{u}, \vec{y})$ d'unité 2cm
 - a) Calculer les limites de f aux bornes de $[0; +\infty[$
 - b) Montrer que $f'(x) = \frac{g(x)}{x}$ et dresser le tableau de variation de f
 - c) Montrer que l'équation f(x) = 0 admet une solution unique α dans $]0; +\infty[$
 - d) Montrer que $\alpha \in \left[0, \frac{1}{2}\right]$ et donner un encadrement de α d'amplitude 3×10^{-1} .
- 3) a) Ecrire l'équation de la tangente T au point $x_0 = 1$
- b) Déterminer les points de (C) où la tangente est parallèle à la droite (D) : y = x
- 4) a) Dresser le tableau de variation de $h(x) = x 1 \ln x$
 - b) En déduire le signe de h
 - c) Montrer que : $f(x) x = (\ln x 1)h(x)$ et préciser la position relative de (C) et T
- 5) a) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
 - b) Tracer (C) et T.
 - c) Discuter graphiquement et suivant les valeurs de paramètre m le nombre des solutions de l'équation : $1 - m - x(1 - \ln x) - (\ln x)^2 = 0$, (On pourra utiliser 3.b).
- 6) a) Montrer que f réalise une bijection de $]0; +\infty[$ sur un intervalle J que l'on déterminera
 - b) Dresser le tableau de variation de f^{-1} la réciproque de f et tracer (C') courbe de f^{-1}
- 7) a) En utilisant une intégration par parties ; calculer les intégrales :

$$I_1 = \int_1^e x \ln x dx \text{ et } I_2 = \int_1^e (\ln x)^2 dx$$

b) Calculer en cm² l'aire du domaine limité par les courbes (C) et (C') et les droites d'équations x = 0, y = 0.