OTA Design

Specifications:

- DC gain ≥ 100 dB
- Output voltage swing $\geq 1 V_{p-p}$
- Phase margin ≥ 60°
- Output load capacitance = 1 pF

- Unity gain frequency ≥ 90 MHz
- Slew rate ≥ 200 V /μs
- Input referred thermal noise \leq 20 nV $/\sqrt{Hz}$

Figure 1: Two Stage Cascode (Telescopic) OTA with high swing

Figure 2: Biasing Circuit

Part I: Layout

Final Design

Table 1: Transistor parameters

	W/L	Fingers	Multipliers	W (in μm)	L(in µm)
M1	6	3	2	3.3	0.55
M2	6	3	2	3.3	0.55
M3	16	4	4	8.8	0.55
M4	16	4	4	8.8	0.55
M5	20	2	10	7	0.35
M6	20	2	10	7	0.35
M7	4	2	2	1.4	0.35
M8	4	2	2	1.4	0.35
M9	150	15	10	52.5	0.35
M10	112	14	8	61.6	0.55
M11	6	2	3	3.3	0.55
M12	2	2	1	1.1	0.55
M13	8	2	4	4.4	0.55
Mx	8	8	1	2.8	0.35
Му	20	10	2	7	0.35
Mz	34	17	2	11.9	0.35
MB1	2	2	1	1.1	0.55
MB2	2	2	1	1.1	0.55
MB3	6	3	2	2.1	0.35
MB4	6	3	2	2.1	0.35

 $C_{c} = 0.17 \text{ pF}$

Simulated Results

Table 2: Comparision of Simulation Results of Layout vs Schematic

	Schematic	Layout	
DC Gain	100.287 dB	98.5745 dB	
Unity Gain Frequency	152.99 MHz	106.2 MHz	
Phase Margin	62.926°	60.036°	
Slew Rate	140 V/μs	124 V/μs	
Input Referred Thermal Noise	18.0282 nV/√ <i>Hz</i>	18.7849 nV/√ <i>Hz</i>	
Settling Time	7.22088 ns	10.8387 ns	
Common Mode Gain	-12.093 dB	-35.7374 dB	
Output Swing	1.06 V	1 V	
PSRR _{VDD}	100.19 dB	102.042 dB	
PSRR _{VSS}	106.094 dB	108.202 dB	
CMRR	112.38 dB	134.311 dB	
Input Common Mode Range	[709 mV, 1.225 V]	[689 mV, 1.024 V]	
Power	1.188 mW	1.191 mW	
Area		6375 μm²	

Figure 3: Schematic

Figure 4: DC Analysis (Layout)

Figure 5: Layout

Area = 75 μ m × 85 μ m

Figure 6: STB Analysis

Dc gain = 98.574 dB, Unity gain Frequency = 106.203 MHz , Phase Margin = 60.0327°

Figure 7: Closed-Loop Gain

 $V_{out} \approx 0$ dB, Phase = 0°. 3 dB Frequency = 227.062 MHz

Figure 8: Closed-Loop Transient Response

Figure 9: Common Mode Gain

 A_{CM} = -35.7374 dB, So CMRR = 20×(In A_{dm} – In A_{cm}) = 134.311 dB

Figure 10: Input Common Mode Range

ICR = 689 mV to 1.024 V

(a) Input referred noise PSD from 1Hz to 1GHz

Integrated Noise Summary (in V) Sorted By Noise Contributors Total Summarized Noise = 0.000230136 Total Input Referred Noise = 0.000228047 The above noise summary info is for noise data

(b) Observed integrated noise voltage over the unity gain bandwidth

Figure 11: Input Referred Noise

Figure 12: Power Supply Rejection Ratio

PSRR+ = 102.042 dB

PSRR = 108.202 dB

Figure 13: Settling Time

1% Settling Voltage = 1.1615 V, Settling time = 10.8387 ns

(a) Step Response

(b) Derivative of Step Response

Figure 14: Slew Rate

Slew Rate =
$$\max\left(\frac{dV_{out}}{dt}\right) = 462 V/\mu s$$

Figure 15: Systematic Offset

Offset by 8.566 nV.

Power Consumption

Total power consumed = Total Current × Operating Voltage

= 662 μ A × 1.8 V = 1.191 mW \leq 2 mW

Part II: Process Corners

Figure 16: Stability Analysis for SS process variation

Figure 17: Stability Analysis for FF process variation

Table 3: Variation in OTA with Process (Layout)

Corner	SS		TT	FF	
Temperature (°C)	0	100	27	0	100
DC Gain	98.7727 dB	93.76 dB	98.5745 dB	98.206 dB	77.471 dB
Unity Gain Frequency	105.95 MHz	85.303 MHz	106.2 MHz	179.47 MHz	125.32 MHz
Phase Margin	59.982°	61.889°	60.036°	35.276°	54.623 °