# Willingness-to-pay for Warnings: Main Tables

A. Gaduh, P. McGee and A. Ugarov

November 30, 2021



## Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
  - Natural disaster warnings (tornados, floods, earthquakes)
  - Medical tests for treatable conditions
  - Investing in research on likelihood of catastrophic events (rogue Al, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal



# Overview of the Experiment

- An insurance experiment:
  - ullet Two states of the world: bad  $(\omega=1)$  and good  $(\omega=0)$
  - Probability of a bad state is  $P(\omega = 1) = \pi$
  - Bad state  $\implies$  loss of \$L
  - ullet A perfectly protective insurance can be purchased for  $\$
- Subject can purchase a signal s before purchasing the insurance:
  - A signal is characterized by its true-positive ( $P(s=1|\omega=1)$ ) and true-negative rates ( $P(s=0|\omega=0)$ )

#### Research objective

How do signal characteristics affect the WTP?



- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ( $\pi L << c$ )  $\implies$  never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution  $b^*$  to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution  $b^*$  to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(0|1)u(Y_0 - b^* - L) + (1 - \pi)P(0|0)u(Y_0 - b^*) =$$

$$= \min[(1 - \pi)u(Y_0) + \pi u(Y_0 - L), u(Y_0 - c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

## Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
  - The opposite is true: subjects underreact to false positive and false negative rates and overpay for bad signals
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
  - No: FP and FN rates have no significant effects on costs besides their predicted theoretical effect
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?



#### Risk Aversion Measurement

- Measure risk aversion based on blind protection choices:
  - Exclude obs from subjects switching back and forth
  - $\bullet$  The lowest probability for which a subject chooses to protect is  $\pi^*$
  - ullet Calculate their coefficient of relative risk aversion heta as the solution to the following equation:

$$\pi^* u(Y_0 - L; \theta) + (1 - \pi^*) u(Y_0; \theta) = u(Y_0 - c; \theta)$$

• Where u() is the CRRA utility function:

$$u(x;\theta) = \frac{x^{1-\theta} - 1}{1 - \theta}$$

• Note: risk lovers have  $\theta < 0$ 



#### **CRRA** Estimates

• Most subjects are moderately risk averse:

| Probability $(\pi^*)$ | $\theta$ | N  |
|-----------------------|----------|----|
| Always protect        | >2       | 1  |
| 0.1                   | 2        | 2  |
| 0.15                  | 1.216    | 7  |
| 0.2                   | 0.573    | 17 |
| 0.25                  | 0        | 7  |
| 0.3                   | -0.539   | 5  |
| Never protect         | <-0.539  | 8  |
|                       |          |    |

#### Note:

- There are 18 subjects (out of 65) switching multiple times
- Can use more sophisticated methods to measure risk aversion for those



#### WTP for the Signal

Theoretical value of signal for risk-neutral subject:

$$b^* = \underbrace{\min[\pi L, c]}_{\text{BP costs}} - \underbrace{\pi(1 - P(s = 0 | \omega = 1))L}_{\text{False neg. costs}} - \underbrace{P(s = 1)c}_{\text{Protection costs}}$$

- Two potential approaches:

$$V - b^* = \alpha_0 + \alpha_1 \text{FN costs} + \alpha_2 \text{Prot. costs} + \epsilon$$

Regress WTP directly on its components and account for censoring at 0:

$$V = \min[0, \beta_0 + \beta_1 \mathsf{FN} \; \mathsf{costs} + \beta_2 \mathsf{Prot}. \; \mathsf{costs} - \beta_3 \mathsf{BP} \; \mathsf{costs} + \gamma]$$

Note: protection costs include costs due to false positive signals



# WTP for the Signal (Approach 1)

 Coefficient sign. different from zero is an anomaly: people overpay for bad signals
 Figure: WTP for Information (Discrepancy)

| rigule. Will for information (Discrepancy) |         |             |             |           |
|--------------------------------------------|---------|-------------|-------------|-----------|
|                                            | (1) (2) |             | (3)         | (4)       |
|                                            | All     | Risk-averse | Risk-loving | Switchers |
| Prot. costs                                | .245*** | .304***     | .227**      | 0364      |
|                                            | (3.1)   | (2.6)       | (2.0)       | (-0.1)    |
| False neg. costs                           | .346*** | .243**      | .436***     | .272      |
|                                            | (5.2)   | (2.5)       | (4.5)       | (1.2)     |
| Constant                                   | 518***  | 587***      | 54**        | .229      |
|                                            | (-3.3)  | (-2.8)      | (-2.3)      | (0.3)     |
| Observations                               | 630     | 282         | 306         | 42        |
| Adjusted $\mathbb{R}^2$                    | 0.05    | 0.04        | 0.07        | -0.02     |

t statistics in parentheses



 $<sup>^{\</sup>ast}$  p < 0.10 ,  $^{\ast\ast}$  p < 0.05 ,  $^{\ast\ast\ast}$  p < 0.01

# WTP for the Signal (Approach 2, Tobit Estimation)

Coefficient should **differ from one** in abs. value to show an anomaly (ignore stars for now)

| Figure: WTP for Information (Tobit Estimation) |         |             |             |           |  |
|------------------------------------------------|---------|-------------|-------------|-----------|--|
|                                                | (1)     | (2)         | (3)         | (4)       |  |
|                                                | All     | Risk-averse | Risk-loving | Switchers |  |
| model                                          |         |             |             |           |  |
| BP costs                                       | .541*** | .516***     | .578***     | .386      |  |
|                                                | (6.4)   | (4.6)       | (4.4)       | (0.9)     |  |
| Prot. costs                                    | 274**   | 204         | 278         | 78        |  |
|                                                | (-2.3)  | (-1.2)      | (-1.5)      | (-1.4)    |  |
| False neg. costs                               | 471***  | 568***      | 384***      | 564*      |  |
|                                                | (-5.0)  | (-4.2)      | (-2.8)      | (-1.7)    |  |
| Constant                                       | .332    | .314        | .172        | 2.04      |  |
|                                                | (1.2)   | (0.9)       | (0.4)       | (1.3)     |  |
| sigma                                          |         |             |             |           |  |
| Constant                                       | 1.97*** | 1.88***     | 2***        | 2.18***   |  |
|                                                | (24.4)  | (15.2)      | (17.7)      | (6.9)     |  |
| Observations                                   | 630     | 282         | 306         | 42        |  |
| AIC                                            | 2303.98 | 1017.20     | 1136.36     | 164.51    |  |

t statistics in parentheses



A. Gaduh, P. McGee and A. Ugarov

# WTP for the Signal (Risk Aversion)

 Explaining the discrepancy between WTP and value with risk aversion:

| Figure: VVTP for information (different risk aversion) |               |                |                |                |
|--------------------------------------------------------|---------------|----------------|----------------|----------------|
|                                                        | (1)           | (2)            | (3)            | (4)            |
|                                                        | Heterogeneous | $\theta = 0.5$ | $\theta = 1.0$ | $\theta = 1.5$ |
| BP costs                                               | 28***         | 442***         | 208***         | .114*          |
|                                                        | (-3.7)        | (-7.4)         | (-3.5)         | (1.9)          |
| Prot. costs                                            | .745***       | .855***        | .776***        | .604***        |
|                                                        | (6.6)         | (9.3)          | (8.5)          | (6.6)          |
| False neg. costs                                       | .612***       | .675***        | .754***        | .788***        |
|                                                        | (7.2)         | (9.7)          | (10.8)         | (11.1)         |
| Constant                                               | 552**         | 14             | -1.01***       | -2.08***       |
|                                                        | (-2.1)        | (-0.7)         | (-5.3)         | (-10.9)        |
| Observations                                           | 438           | 630            | 630            | 630            |
| Adjusted $\mathbb{R}^2$                                | 0.16          | 0.19           | 0.23           | 0.30           |

t statistics in parentheses



 $<sup>^{\</sup>ast}$  p < 0.10 ,  $^{\ast\ast}$  p < 0.05 ,  $^{\ast\ast\ast}$  p < 0.01

#### Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- Each reported participant's strategy s is a tuple of numbers  $(r_w, r_b)$  representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L + P(s = 1)c$$
$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics



#### Actual Costs vs Theoretical Costs

Figure: Actual Exp. Costs vs Theoretical Costs

|                         | (1)     | (2)     | (3)    | (4)     | (5)     | (6)     |
|-------------------------|---------|---------|--------|---------|---------|---------|
|                         | OLS     | OLS     | OLS    | FE      | FE      | FE      |
| Optimal exp. costs      | .998*** | 1.02*** | .931** | 1.02*** | 1.05*** | .992*** |
|                         | (14.1)  | (11.6)  | (2.3)  | (20.3)  | (9.1)   | (15.7)  |
| Prior prob.             |         | .189    | 321    |         | .358    |         |
|                         |         | (0.2)   | (-0.1) |         | (0.3)   |         |
| False neg. rate         |         |         | 466    |         |         | 218     |
|                         |         |         | (-0.2) |         |         | (-0.3)  |
| False pos. rate         |         |         | 228    |         |         | 326     |
|                         |         |         | (-0.2) |         |         | (-0.2)  |
| Constant                | 961***  | 975***  | 942**  | 905***  | 937***  | 91***   |
|                         | (-3.9)  | (-3.2)  | (-2.2) | (-8.0)  | (-6.2)  | (-8.3)  |
| Observations            | 630     | 630     | 630    | 630     | 630     | 630     |
| Adjusted $\mathbb{R}^2$ | 0.15    | 0.15    | 0.15   | 0.17    | 0.16    | 0.16    |
|                         |         |         |        |         |         |         |

t statistics in parentheses



<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

## Additional Complementary Tables

- Factors affecting informed protection responses
- The effect of beliefs on informed protection
- 4 How accurate are their beliefs?
- Oecomposition of belief updating: priors vs signals

#### Informed Protection: Determinants

| ' '6'               |            | ica i iotec |              |              |
|---------------------|------------|-------------|--------------|--------------|
|                     | (1)<br>All | (2)<br>All  | (3)<br>Smart | (4)<br>Smart |
| Informed protection |            |             |              |              |
| Posterior prob.     | 2.09***    | .699***     | 2.24***      | .642***      |
|                     | (17.7)     | (3.3)       | (16.1)       | (2.7)        |
| Prior prob.         |            | 1.23***     |              | 1.3***       |

(4.1)

1.26\*\* (7.6)

-1.06\*\*\*

(-10.6)

1260

1206.92

Figure: Informed Protection

t statistics in parentheses

Constant

AIC

Observations

Gremlin says Black

-.668\*\*\*

(-13.2)

1260

1263.29



(3.8)

(7.7)

-1.14\*\*\*

(-10.0)

1020

925.61

-.724\*\*\*

(-12.9)

1020

982.25

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

#### Informed Protection: Do Subject's Beliefs Matter?

| Figure: Informed Protection: Response to Reported Beliefs |         |         |         |  |
|-----------------------------------------------------------|---------|---------|---------|--|
|                                                           | (1)     | (2)     | (3)     |  |
|                                                           | All     | All     | Smart   |  |
| Informed protection                                       |         |         |         |  |
| Belief                                                    | 2.36*** | 1.36*** | 1.35*** |  |
|                                                           | (17.1)  | (7.9)   | (7.1)   |  |
| Posterior prob.                                           |         | 1.3***  | 1.37*** |  |
|                                                           |         | (9.4)   | (8.3)   |  |
| Constant                                                  | 811***  | 912***  | 943***  |  |
|                                                           | (-13.9) | (-15.0) | (-14.5) |  |
| Observations                                              | 1260    | 1260    | 1020    |  |
| AIC                                                       | 1289.25 | 1197.97 | 933.64  |  |

t statistics in parentheses



 $<sup>^{\</sup>ast}$  p < 0.10 ,  $^{\ast\ast}$  p < 0.05 ,  $^{\ast\ast\ast}$  p < 0.01

# Belief Updating: Correlation

| Figure: Belief Elicitation: Belief vs Posterior |         |               |           |  |
|-------------------------------------------------|---------|---------------|-----------|--|
|                                                 | (1)     | (2)           | (3)       |  |
|                                                 | All     | $Not\_honest$ | Good quiz |  |
| Posterior prob.                                 | .655*** | .711***       | .546***   |  |
|                                                 | (35.7)  | (36.8)        | (21.1)    |  |
| Constant                                        | .156*** | .138***       | .216***   |  |
|                                                 | (20.9)  | (17.5)        | (22.0)    |  |
| Observations                                    | 1260    | 1020          | 840       |  |
| Adjusted $\mathbb{R}^2$                         | 0.56    | 0.61          | 0.42      |  |

t statistics in parentheses



 $<sup>^{\</sup>ast}$  p < 0.10,  $^{\ast\ast}$  p < 0.05,  $^{\ast\ast\ast}$  p < 0.01

# Belief Updating: Decomposition

• Posterior probability  $\mu = P(B|S=x)$  that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With  $\lambda_0 \equiv \ln(p/(1-p))$  representing (transformed) prior beliefs
- And  $S_B$ ,  $S_W$  describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$
  
 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$ 

# Belief Updating: Decomposition

| Figure: Belief Elicitation: Decomposition |         |         |           |  |
|-------------------------------------------|---------|---------|-----------|--|
|                                           | (1)     | (2)     | (3)       |  |
|                                           | OLS     | FE      | Smart, FE |  |
| lt_prior                                  | .216*** | .202*** | .165***   |  |
|                                           | (3.3)   | (4.0)   | (3.1)     |  |
| signalB                                   | .65***  | .86***  | 1***      |  |
|                                           | (4.0)   | (6.3)   | (5.9)     |  |
| signalW                                   | .21     | 0       | 0         |  |
|                                           | (1.5)   | (.)     | (.)       |  |
| Constant                                  | 279*    | 514***  | 642***    |  |
|                                           | (-1.7)  | (-5.3)  | (-6.0)    |  |
| Observations                              | 280     | 280     | 216       |  |
| Adjusted $\mathbb{R}^2$                   | 0.26    | 0.31    | 0.34      |  |

t statistics in parentheses



 $<sup>^{\</sup>ast}$  p < 0.10,  $^{\ast\ast}$  p < 0.05,  $^{\ast\ast\ast}$  p < 0.01