

Nyström Sketches

Daniel J. Perry¹, Braxton Osting², and Ross T. Whitaker¹
SCI Institute¹ and Department of Mathematics², University of Utah, USA

Nyström sketching goals

- ightharpoonup Desire sketch matrix \mathbf{R} of size $m \times d$
- ▶ R should (approximately) minimize projection error in feature space ▶ minimize projection error of $\phi(A)$ onto the column span of $\phi(R)$
- ► R found in reasonable time
- ► Theoretical runtime and error bounds

Objective for Nyström sketching problem

$$\min_{R \in R^{d \times m}} E_{kpca}(R) = \frac{1}{n} \sum_{i=1}^{n} \| (I - V_k V_k^\mathsf{T}) \phi(A_i) \|^2, \tag{1}$$

where V_k is the rank-k kernel PCA basis, $\phi(R) = V\Sigma U^T$.

Algorithm: Nyström Sketch

Input Mercer kernel $k(\cdot, \cdot)$, input data A, and sketch size m

Output Nyström sketch $R \in \mathbb{R}^{d imes m}$

Initialize: Let R be a random subset of A

Solve (1) using the Levenberg-Marquardt method (or alternative non-linear least squares method) to find the optimal parameter R.

Results: synthetic swirl dataset

Results: forest dataset

Previous work

- Nyström sketch as a subset
 - ▶ Uniform random sampling (Williams, et al. 2001), (Drineas, et al. 2005)
 - ▶ Greedy sampling (Smola, et al. 2002), (Ouimet, et al. 2005)
 - Description (Alzate, et al. 2008), (Tipping, 2001)
- ► Nyström sketch as a linear combination
 - ▶ Preimage of kernel PCA basis (Chin, et al. 2006)

Modifications

► Modify loss function to be *robust* to noise

$$E_{\text{rkpca}}(R) = \frac{1}{n} \sum_{i=1}^{n} \| (I - V_{p} V_{p}^{T}) \phi(A_{i}) \|_{1}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \sqrt{k(A_{i}, A_{i}) - k(R, A_{i})^{T} k(R, R)^{-1} k(R, A_{i}) + \epsilon}$$
(2)

where the approximation is valid as $\epsilon o \mathbf{0}$

- ▶ Solve using gradient descent or BFGS instead of a nonlinear least squares
- ► Modify solution step for use in a *streaming setting*
 - ▷ Solve (1) or (2) using stochastic gradient descent over the next b observed data elements, $\{A_i, \ldots, A_{i+b}\}$.

Data Sets

data set	d	n	σ
swirl	2	1000	$\sqrt{0.10}$
forest (subsampled)	54	1000	2.59×10^3
cpu-train	21	6554	5.88×10^{5}
cpu-test	21	819	5.88×10^{5}
forest-train	54	522910	2.53×10^3
forest-test	54	58102	2.53×10^3
gas-CO-train	16	3708261	6.44×10^3
gas-CO-test	16	500000	6.44×10^{3}
gas-methane-train	16	3678504	4.68×10^3
gas-methane-test	16	500000	4.68×10^3

Results: robust formulation on synthetic swirl

Results: online formulation

cpu dataset forest and gas datasets