Выбор локации продуктового магазина с помощью сферического нечёткого метода TOPSIS

Ситников Андрей

Постановка задачи

Дано:

```
набор альтернатив: X = \{x_1, x_2, \dots x_m\} (m \ge 2) набор критериев: C = \{C_1, C_2, \dots C_n\} C_j(X_i) = (\mu_{ij}, \vartheta_{ij}, \pi_{ij}) - значимость j-ого критерия для i-ой альтернативы D = (C_j(X_i))_{mxn} - сферически нечёткая матрица решений вес критериев: \mathbf{w} = \{w_1, w_2, \dots w_n\} 0 \le w_j \le 1, \sum_{j=1}^n w_j = 1
```

Необходимо определить наилучшую альтернативу использую сферически нечёткий метод TOPSIS.

Сферическое нечёткое множество (spherical fuzzy set)

IFS: $\pi_I = 1 - \mu - \vartheta$

PFS: $\pi_{\tilde{p}} = (1 - \mu_{\tilde{p}}^2(u) - v_{\tilde{p}}^2(u))^{1/2}$

NS: $0 \le \vartheta$, μ , $\pi \le 1$

Сферическое нечёткое множество A_{5} на универсальном множестве U:

$$\tilde{A}_{S} = \left\{ \left\langle u, (\mu_{\tilde{A}_{S}}(u), \nu_{\tilde{A}_{S}}(u), \pi_{\tilde{A}_{S}}(u)) \middle| u \in U \right\}$$

Где:

$$\mu_{\tilde{A}_s}: U \to [0,1], \ \nu_{\tilde{A}_s}(u): U \to [0,1], \ \pi_{\tilde{A}_s}: U \to [0,1]$$

$$0 \le \mu_{\tilde{A}_S}^2(u) + \nu_{\tilde{A}_S}^2(u) + \pi_{\tilde{A}_S}^2(u) \le 1 \qquad \forall u \in U$$

 $\mu_{\tilde{A}_S}(u)$ - степень вхождения (membership)

 $V_{\tilde{A}_{S}}(u)$ - степень невхождения (non-membership)

 $\pi_{\tilde{A}_{S}}(u)$ - степень нерешительности (hesitancy)

Операции над SFS

$$\begin{split} \tilde{A}_{S} \oplus \tilde{B}_{S} &= \begin{cases} \left(\mu_{\tilde{A}_{S}}^{2} + \mu_{\tilde{B}_{S}}^{2} - \mu_{\tilde{A}_{S}}^{2} \mu_{\tilde{B}_{S}}^{2}\right)^{1/2}, \ v_{\tilde{A}_{S}} v_{\tilde{B}_{S}}, \\ \left(\left(1 - \mu_{\tilde{B}_{S}}^{2}\right) \pi_{\tilde{A}_{S}}^{2} + \left(1 - \mu_{\tilde{A}_{S}}^{2}\right) \pi_{\tilde{B}_{S}}^{2} - \pi_{\tilde{A}_{S}}^{2} \pi_{\tilde{B}_{S}}^{2}\right)^{1/2} \end{cases} \\ \tilde{A}_{S} \otimes \tilde{B}_{S} &= \begin{cases} \mu_{\tilde{A}_{S}} \mu_{\tilde{B}_{S}}, \left(v_{\tilde{A}_{S}}^{2} + v_{\tilde{B}_{S}}^{2} - v_{\tilde{A}_{S}}^{2} v_{\tilde{B}_{S}}^{2}\right)^{1/2}, \\ \left(\left(1 - v_{\tilde{B}_{S}}^{2}\right) \pi_{\tilde{A}_{S}}^{2} + \left(1 - v_{\tilde{A}_{S}}^{2}\right) \pi_{\tilde{B}_{S}}^{2} - \pi_{\tilde{A}_{S}}^{2} \pi_{\tilde{B}_{S}}^{2}\right)^{1/2} \end{cases} \\ \lambda \cdot \tilde{A}_{S} &= \begin{cases} \left(1 - \left(1 - \mu_{\tilde{A}_{S}}^{2}\right)^{\lambda}\right)^{1/2}, \ v_{\tilde{A}_{S}}^{\lambda}, \\ \left(\left(1 - \mu_{\tilde{A}_{S}}^{2}\right)^{\lambda} - \left(1 - \mu_{\tilde{A}_{S}}^{2} - \pi_{\tilde{A}_{S}}^{2}\right)^{\lambda}\right)^{1/2} \end{cases} \end{split}$$

Алгоритм

- Построение матрицы решений путём оценки значимости критерия по данным.
- Перевод оценённых значений матрицы решений в соответствующие им сферические нечёткие числа:

Значимость	(μ, ϑ, π)
0.9	(0.9, 0.1, 0.1)
0.8	(0.8, 0.2, 0.2)
0.7	(0.7, 0.3, 0.3)
0.6	(0.6, 0.4, 0.4)
0.5	(0.5, 0.5, 0.5)
0.4	(0.4, 0.6, 0.4)
0.3	(0.3, 0.7, 0.3)
0.2	(0.2, 0.8, 0.2)
0.1	(0.1, 0.9, 0.1)

Алгоритм

- Построение взвешенной сферической нечёткой матрицы решений путём умножения SFS значений критериев на соответствующие им веса.
- Определение положительного (SFS-PIS) и отрицательного (SFS-NIS) сферических нечётких идеальных решений по score-значению:

$$Score(C_{j}(X_{iw})) = (2\mu_{ijw} - \frac{\pi_{ijw}}{2})^{2} - (v_{ijw} - \frac{\pi_{ijw}}{2})^{2}$$

SFS-PIS:

$$X^* = \left\{ C_j, \max_i < Score(C_j(X_{iw})) > \middle| j = 1, 2...n \right\} \qquad X^* = \left\{ \left\langle C_1, (\mu_1^*, v_1^*, \pi_1^*) \right\rangle, \left\langle C_2, (\mu_2^*, v_2^*, \pi_2^*) \right\rangle..... \left\langle C_n, (\mu_n^*, v_n^*, \pi_n^*) \right\rangle \right\}$$

SFS-NIS:

$$X^{-} = \left\{ C_{j}, \min_{i} < Score(C_{j}(X_{iw})) > \middle| j = 1, 2...n \right\} \qquad X^{-} = \left\{ \left\langle C_{1}, (\mu_{1}^{-}, v_{1}^{-}, \pi_{1}^{-}) \right\rangle, \left\langle C_{2}, (\mu_{2}^{-}, v_{2}^{-}, \pi_{2}^{-}) \right\rangle.....\left\langle C_{n}, (\mu_{n}^{-}, v_{n}^{-}, \pi_{n}^{-}) \right\rangle \right\}$$

Алгоритм

• Расчёт расстояний между альтернативой X_i и SFS-PIS и SFS-NIS:

$$\begin{split} &D\left(X_{i},X^{-}\right) = \sqrt{\frac{1}{2n}\sum_{i=1}^{n}\left(\left(\mu_{X_{i}} - \mu_{X^{-}}\right)^{2} + \left(v_{X_{i}} - v_{X^{-}}\right)^{2} + \left(\pi_{X_{i}} - \pi_{X^{-}}\right)^{2}\right)} \\ &D\left(X_{i},X^{*}\right) = \sqrt{\frac{1}{2n}\sum_{i=1}^{n}\left(\left(\mu_{X_{i}} - \mu_{X^{*}}\right)^{2} + \left(v_{X_{i}} - v_{X^{*}}\right)^{2} + \left(\pi_{X_{i}} - \pi_{X^{*}}\right)^{2}\right)} \end{split}$$

• Расчёт коэффициента близости и определение наилучший альтернативы:

$$\xi(X_i) = \frac{D(X_i, X^{-})}{D(X_i, X^{*}) + D(X_i, X^{-})}$$

Применение для выбора продуктового магазина

- Рассмотрено 5 альтернатив 5 сдающихся в аренду помещений площадью около 100 м² в районе Аэропорт.
- Критерии: цена аренды за месяц, количество конкурентов, трафик, площадь помещения, плотность населения.
- Данные для матрицы решений взяты с сайта mestomer.ru.
- Веса критериев взяты из статьи "Retail store location selection problem with multiple analytical hierarchy process of decision making an application in Turkey // Hikmet Erbıyık et al. / Procedia Social and Behavioral Sciences 58 (2012) 1405 1414"

Данные по 5 сдающимся в аренды торговым площадям и нормированные веса

	цена	конкуренты	трафик	площадь	плотность населения
Ленинградский проезд, 48	345940	4	4	70	2
Черняковская, 19	187740	7	1	126	1
Самеда Вурунга, 7	308000	6	1	132	2
Кочновский проезд, 4к2	381000	7	3	100	5
Ленинградский проезд, 76А	649350	9	5	117	4

	цена	конкуренты	трафик	площадь	плотность населения
вес	0.107	0.326	0.382	0.061	0.123

Оцененные значимости критериев и весов

	C1	C2	C3	C4	C 5
X1	0.586	0.9	0.74	0.100	0.42
X2	0.840	0.6	0.26	0.823	0.26
Х3	0.647	0.7	0.26	0.900	0.42
X4	0.530	0.6	0.58	0.487	0.90
X5	0.100	0.4	0.90	0.706	0.74

	C1	C2	C3	C4	C 5
weights	0.252	0.768	0.9	0.144	0.29

Сферическая нечёткая матрица решений

	C1	C2	C3	C4	C 5
X1	(0.59, 0.41, 0.41)	(0.9, 0.1, 0.1)	(0.74, 0.26, 0.26)	(0.1, 0.9, 0.1)	(0.42, 0.58, 0.42)
X2	(0.84, 0.16, 0.16)	(0.6, 0.4, 0.4)	(0.26, 0.74, 0.26)	(0.82, 0.18, 0.18)	(0.26, 0.74, 0.26)
Х3	(0.65, 0.35, 0.35)	(0.7, 0.3, 0.3)	(0.26, 0.74, 0.26)	(0.9, 0.1, 0.1)	(0.42, 0.58, 0.42)
X4	(0.53, 0.47, 0.47)	(0.6, 0.4, 0.4)	(0.58, 0.42, 0.42)	(0.49, 0.51, 0.49)	(0.9, 0.1, 0.1)
X5	(0.1, 0.9, 0.1)	(0.4, 0.6, 0.4)	(0.9, 0.1, 0.1)	(0.71, 0.29, 0.29)	(0.74, 0.26, 0.26)
weights	(0.25, 0.75, 0.25)	(0.77, 0.23, 0.23)	(0.9, 0.1, 0.1)	(0.14, 0.86, 0.14)	(0.29, 0.71, 0.29)

Взвешенная сферическая нечёткая матрица решений

	C1	C2	C3	C4	C 5
X1	(0.15, 0.8, 0.34)	(0.69, 0.25, 0.25)	(0.67, 0.28, 0.27)	(0.01, 0.97, 0.08)	(0.12, 0.82, 0.36)
X2	(0.21, 0.76, 0.27)	(0.46, 0.45, 0.43)	(0.23, 0.74, 0.27)	(0.12, 0.86, 0.17)	(0.08, 0.88, 0.26)
Х3	(0.16, 0.78, 0.32)	(0.54, 0.37, 0.36)	(0.23, 0.74, 0.27)	(0.13, 0.86, 0.15)	(0.12, 0.82, 0.36)
X4	(0.13, 0.81, 0.36)	(0.46, 0.45, 0.43)	(0.52, 0.43, 0.43)	(0.07, 0.9, 0.27)	(0.26, 0.71, 0.3)
X5	(0.03, 0.96, 0.13)	(0.31, 0.63, 0.42)	(0.81, 0.14, 0.14)	(0.1, 0.87, 0.2)	(0.21, 0.73, 0.33)

Score-матрица SFS-PIS, SFS-NIS

	C1	C2	C3	C4	C 5
X1	-0.376	1.566	1.407	-0.873	-0.406
X2	-0.303	0.441	-0.260	-0.582	-0.566
Х3	-0.361	0.765	-0.260	-0.578	-0.406
X4	-0.387	0.441	0.644	-0.579	-0.181
X5	-0.800	-0.011	2.397	-0.582	-0.255

	C1	C2	C 3	C4	C 5
X+	(0.21, 0.76, 0.27)	(0.69, 0.25, 0.25)	(0.81, 0.14, 0.14)	(0.13, 0.86, 0.15)	(0.26, 0.71, 0.3)
X-	(0.03, 0.96, 0.13)	(0.31, 0.63, 0.42)	(0.23, 0.74, 0.27)	(0.01, 0.97, 0.08)	(0.08, 0.88, 0.26)

Определение наилучшей альтернативы

	D(X, X+)	D(X, X-)	ratio	rank	цена	конкуренты	трафик	площадь	плотность населения
X1	0.116	0.287	0.712	1.0	345940	4	4	70	2
X2	0.300	0.135	0.309	5.0	187740	7	1	126	1
Х3	0.283	0.160	0.362	4.0	308000	6	1	132	2
X4	0.203	0.215	0.514	3.0	381000	7	3	100	5
X5	0.205	0.281	0.578	2.0	649350	9	5	117	4

Литература

- Hospital Location Selection Using Spherical Fuzzy TOPSIS// Cengiz Kahraman, Fatma Kutlu Gundogdu, Sezi Cevik Onar, Basar Oztaysi// Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)
- Retail store location selection problem with multiple analytical hierarchy process of decision making an application in Turkey // Hikmet Erbıyık et al. / Procedia - Social and Behavioral Sciences 58 (2012) 1405 – 1414