Analysis Report

$maxwell_scudnn_128x32_stridedB_small_nn$

Duration	954.65 μs
Grid Size	[784,1,1]
Block Size	[128,1,1]
Registers/Thread	92
Shared Memory/Block	10 KiB
Shared Memory Requested	96 KiB
Shared Memory Executed	96 KiB
Shared Memory Bank Size	4 B

[0] GeForce GTX 1080

GPU UUID	GPU-edd19385-a5f1-ce46-e1d9-61408827cccc	
Compute Capability	6.1	
Max. Threads per Block	1024	
Max. Threads per Multiprocessor	2048	
Max. Shared Memory per Block	48 KiB	
Max. Shared Memory per Multiprocessor	96 KiB	
Max. Registers per Block	65536	
Max. Registers per Multiprocessor	65536	
Max. Grid Dimensions	[2147483647, 65535, 65535]	
Max. Block Dimensions	[1024, 1024, 64]	
Max. Warps per Multiprocessor	64	
Max. Blocks per Multiprocessor	32	
Half Precision FLOP/s	72.9 GigaFLOP/s	
Single Precision FLOP/s	9.331 TeraFLOP/s	
Double Precision FLOP/s	291.6 GigaFLOP/s	
Number of Multiprocessors	20	
Multiprocessor Clock Rate	1.823 GHz	
Concurrent Kernel	true	
Max IPC	6	
Threads per Warp	32	
Global Memory Bandwidth	320.32 GB/s	
Global Memory Size	7.923 GiB	
Constant Memory Size	64 KiB	
L2 Cache Size	2 MiB	
Memcpy Engines	2	
PCIe Generation	3	
PCIe Link Rate	8 Gbit/s	
PCIe Link Width	16	

1. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "maxwell_scudnn_128x32_strid..." is most likely limited by compute. You should first examine the information in the "Compute Resources" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Compute

For device "GeForce GTX 1080" the kernel's memory utilization is significantly lower than its compute utilization. These utilization levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

2. Compute Resources

GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute resources are used most efficiently when instructions do not overuse a function unit. The results below indicate that compute performance may be limited by overuse of a function unit.

2.1. GPU Utilization Is Limited By Function Unit Usage

Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially limited by overuse of the following function units: Single.

Load/Store - Load and store instructions for shared and constant memory.

Texture - Load and store instructions for local, global, and texture memory.

Half - Half-precision floating-point arithmetic instructions.

Single - Single-precision integer and floating-point arithmetic instructions.

Double - Double-precision floating-point arithmetic instructions.

Special - Special arithmetic instructions such as sin, cos, popc, etc.

Control-Flow - Direct and indirect branches, jumps, and calls.

2.2. Instruction Execution Counts

The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The "Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due to divergence.

2.3. Floating-Point Operation Counts

The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

3. Memory Bandwidth

Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate requested by the kernel. The results below indicate that the kernel is limited by the bandwidth available to the shared memory.

3.1. Shared Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each shared memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a shared load or store within the kernel with an inefficient alignment or access pattern. For each load or store improve the alignment and access pattern of the memory access.

3.2. Memory Bandwidth And Utilization

The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also shows the utilization of each memory type relative to the maximum throughput supported by the memory.

4. Instruction and Memory Latency

Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The performance of latency-limited kernels can often be improved by increasing occupancy. Occupancy is a measure of how many warps the kernel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical occupancy provides an upper bound while achieved occupancy indicates the kernel's actual occupancy. The results below indicate that occupancy can be improved by reducing the number of registers used by the kernel.

4.1. GPU Utilization Is Limited By Register Usage

The kernel uses 92 registers for each thread (11776 registers for each block). This register usage is likely preventing the kernel from fully utilizing the GPU. Device "GeForce GTX 1080" provides up to 65536 registers for each block. Because the kernel uses 11776 registers for each block each SM is limited to simultaneously executing 5 blocks (20 warps). Chart "Varying Register Count" below shows how changing register usage will change the number of blocks that can execute on each SM.

Optimization: Use the -maxrregcount flag or the __launch_bounds__ qualifier to decrease the number of registers used by each thread. This will increase the number of blocks that can execute on each SM. On devices with Compute Capability 5.2 turning global cache off can increase the occupancy limited by register usage.

Variable	Achieved	Theoretical	Device Limit	Grid Size: [784,1,1] (784 blocks) Block Size: [128,1
Occupancy Per SM				
Active Blocks		5	32	0 4 8 12 16 20 24 28 3
Active Warps	19.59	20	64	0 9 18 27 36 45 54 66
Active Threads		640	2048	0 512 1024 1536 20
Occupancy	30.6%	31.2%	100%	0% 25% 50% 75% 10
Warps				
Threads/Block		128	1024	0 256 512 768 10
Warps/Block		4	32	0 4 8 12 16 20 24 28 33
Block Limit		16	32	0 4 8 12 16 20 24 28 33
Registers				
Registers/Thread		92	65536	0 16384 32768 49152 655
Registers/Block		12288	65536	0 16k 32k 48k 6
Block Limit		5	32	0 4 8 12 16 20 24 28 33
Shared Memory				
Shared Memory/Block		10240	98304	0 32k 64k 9
Block Limit		9	32	0 4 8 12 16 20 24 28 33

4.2. Occupancy Charts

The following charts show how varying different components of the kernel will impact theoretical occupancy.

Threads Per Block

Varying Register Count

Registers Per Thread

Varying Shared Memory Usage

Shared Memory Per Block (bytes)