Primerjava določenega in predoločenega sistema enačb pri uporabi podobmočij v metodi robnih elementov

Jure Ravnik

28. september 2011

Povzetek

V poročilu poročam o delovanju metode robnih elementov na podobmočjih. Primerjam diskretizaciji, vi vodita do določenega oziroma predoločenega sistema enačb.

1 Uvod

V primeru, da uporabljamo metodo robnih elementov v kombinaciji z območnih členov je uporaba tehnike podobmočij najučinkovitejša metoda, ki omogoča izogibanje polnim matrikam. Aproksimativne metode kot so (dual reciprocity metoda, fast multipole metoda, adaptive cross approximation metoda, hrearhične matrike, panel clustering, stiskanje v valčki, dosegajo manjšo izpraznjenost pri enaki zahtevani natančnosti.

2 Predoločen sistem enačb

- Vsaka celica v mreži je svoje podobmočje.
- V vsaki celici imamo kvadratno interpolacijo funkcije (27 točk) in linearno interpolacijo normalnega odovoda (24 točk).
- V vse točke (27+24=51) postavimo izvorne točke in zanje zapišemo enačbe.
- Skupno število enačb je enako številu celic v mreži krat 51.
- Število neznank je enako skupnemu številu funkcijskih vozlišč + število fluks vozlišč minus število vozlišč v katerih so znani robni pogoji. V vsakem fluks vozlišču imamo samo eno vrednost fluksa. Pri integraciji poskrbimo, da je integral za sosednji celici (v kateri je fluks nasproten) pomnožen z -1 (oziroma z razmerjem difuzivnosti).
- Uporabimo solver, ki temelji na metodi najmanjših kvadratov za rešitev predoločenih sistemov enačb, [2].

3 Določen sistem enačb

- Vsaka celica v mreži je svoje podobmočje.
- V vsaki celici imamo kvadratno interpolacijo funkcije (27 točk) in linearno interpolacijo normalnega odovoda (24 točk).
- V vse točke (27+24=51) postavimo izvorne točke in zanje zapišemo enačbe.
- Skupno število enačb je enako številu celic v mreži krat 51.
- Število neznank je enako skupnemu številu funkcijskih vozlišč + število fluks vozlišč minus število vozlišč v katerih so znani robni pogoji. V vsakem fluks vozlišču imamo samo eno vrednost fluksa. Pri integraciji poskrbimo, da je integral za sosednji celici (v kateri je fluks nasproten) pomnožen z -1 (oziroma z razmerjem difuzivnosti).
- Enačbe, ki so zapisane za isto funkcijsko izvorno točko seštejemo.
- Enačbi, ki sta zapisani za isto fluks izvorno točko medsebojno odštejemo.
- V vozlišča, kjer so znani robni pogoji ne postavimo izvorne točke in ne pišemo enačb.
- Uporabimo rBiCGstab solver z ILU predpogojevanjem, [3].

Slike 1 do 3 grafično prikažejo razliko pri sestavljanju sistemov enačb.

Slika 1: Grafična predstavitev zlaganja sistemov enačb- prvi del.

Slika 2: Grafična predstavitev zlaganja sistemov enačb - drugi del.

Slika 3: Grafična predstavitev zlaganja sistemov enačb - tretji del.

4 Primerjava

4.1 3D gnana kotanja

- Mreži: 20r05x20r05x20r05z 41^3 vozlišči in 12r1x12r1x12r1z 25^3 vozlišči.
- $\bullet\,$ Profili hitrosti so na sliki 4 in na sliki 7.
- Število iteracij linearnega solverja je prikazano na sliki 5 in na sliki 8.
- Potek konvergence je na sliki 6 in na sliki 9.
- \bullet Primerjava časov računanja in števila iteracij je v preglednici 1 in v preglednici 2.

	Re = 100		Re = 400		Re = 1000	
	LSQR	SQR	LSQR	SQR	LSQR	SQR
x Bw r.h.s	1865.027	1906.550	2574.689	2664.063	4844.405	4399.743
x Bw solve	55.358	56.263	75.981	78.812	134.098	130.605
x Dv r.h.s	75.718	235.672	104.122	333.212	173.735	545.400
x Dv solve	280.118	112.299	381.952	154.489	639.009	251.809
x Dw r.h.s	90.436	681.570	124.135	958.068	220.011	1577.714
x Dw solve	7405.203	1394.468	8024.255	1845.542	11129.550	2585.051
y Bw r.h.s	2136.084	2160.008	2960.249	3027.189	5475.458	4962.341
y Bw solve	56.936	57.555	77.952	81.432	136.907	132.995
y Dv r.h.s	75.945	234.189	104.555	329.513	173.862	542.437
y Dv solve	275.045	161.084	395.219	219.469	668.542	266.892
y Dw r.h.s	91.599	682.037	125.730	960.012	219.513	1579.177
y Dw solve	5962.639	1253.115	6197.500	1623.620	9888.801	2536.820
z Bw r.h.s	2130.880	2158.597	2958.629	3032.078	5476.562	4944.126
z Bw solve	53.750	54.729	74.014	76.427	130.435	125.468
z Dv r.h.s	75.948	235.789	104.404	329.387	174.275	543.491
z Dv solve	279.427	112.494	371.431	153.585	649.133	255.107
z Dw r.h.s	91.411	682.157	125.092	960.538	218.770	1580.248
z Dw solve	7288.348	1339.938	6396.689	1878.298	10722.742	2574.412
DT r.h.s	0.000	0.000	0.000	0.000	0.000	0.000
DT solve	0.000	0.000	0.000	0.000	0.000	0.000
DC r.h.s	0.000	0.000	0.000	0.000	0.000	0.000
DC solve	0.000	0.000	0.000	0.000	0.000	0.000
init, read input files	0.710	0.800	0.640	0.760	0.650	0.750
generate macro mesh	31.390	31.360	31.210	31.630	32.130	31.200
read and generate BiC	10.430	12.890	10.180	10.560	10.130	10.600
integration single domain	72.490	140.730	56.080	148.290	152.540	157.310
form sys, rhs matrix single do	817.130	843.880	919.490	783.320	899.000	833.220
integration makro domain	13.550	22.570	15.890	23.740	16.410	19.110
form makro sys, rhs matrix	202.840	235.880	250.070	229.020	204.640	225.200
solve	28294.859	13523.550	31183.480	18712.779	51085.973	29543.381
TOTAL	29443.400	14811.660	32467.041	19940.100	52401.473	30820.771
razmerje časov	0.50		0.61		0.59	
nelinearni nit	749	740	1026	1029	1635	1703
linearni solver nit Dv x	12051	1498	16151	2062	23050	3360
linearni solver nit Dv y	12040	2226	17251	3051	24659	3591
linearni solver nit Dv z	12277	1498	16121	2066	23948	3410
linearni solver nit Dw x	103418	3815	109388	5058	126067	7026
linearni solver nit Dw y	83188	3410	84612	4404	111157	6852
linearni solver nit Dw z	101629	3659	87284	5132	121322	6965

Tabela 1: Primerjava časov in števila iteracij za primer 3D kotanje na 41^3 mreži. Časi za integracijo so časi branja integralov iz diska.

Slika 4: Profili hitrosti skozi središče kotanje za primer 3D gnane kotanje na mreži 41^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 5: Število iteracij linearnega solverja za primer 3D gnane kotanje na mreži 41^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 6: Potek konvergence za primer 3D gnane kotanje na mreži 41^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 7: Profili hitrosti skozi središče kotanje za primer 3D gnane kotanje na mreži 25^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 8: Število iteracij linearnega solverja za primer 3D gnane kotanje na mreži 25^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 9: Potek konvergence za primer 3D gnane kotanje na mreži 25^3 , zgornja vrsta Re=100, srednja Re=400, spodnja Re=1000; levo predoločen sistem enačb, desno določen sistem enačb.

	Re = 100		Re = 400		Re = 1000	
	LSQR	SQR	LSQR	SQR	LSQR	SQR
x Bw r.h.s	187.090	210.460	256.608	289.631	417.413	1011.990
x Bw solve	8.411	9.020	11.701	12.410	20.225	47.448
x Dv r.h.s	15.810	37.481	21.711	51.328	40.933	194.148
x Dv solve	44.482	15.469	58.718	21.418	88.228	77.436
x Dw r.h.s	18.951	133.059	25.752	185.445	42.841	739.669
x Dw solve	776.707	281.071	901.310	337.455	1178.545	1217.852
y Bw r.h.s	206.960	222.341	281.956	307.571	486.566	1148.000
y Bw solve	9.051	9.660	12.070	12.949	21.119	49.429
y Dv r.h.s	16.228	37.119	21.981	51.612	41.090	195.437
y Dv solve	43.501	23.801	61.596	32.390	95.186	110.112
y Dw r.h.s	18.801	132.891	25.611	185.815	43.156	740.884
y Dw solve	503.335	242.179	741.089	327.361	1167.352	982.218
z Bw r.h.s	205.785	222.089	282.332	306.693	487.133	1146.347
z Bw solve	8.112	8.791	11.030	11.899	19.417	45.550
z Dv r.h.s	16.059	37.410	22.010	51.321	40.982	192.812
z Dv solve	44.189	23.991	57.971	32.452	90.901	110.184
z Dw r.h.s	19.009	133.581	25.509	185.871	43.182	742.080
z Dw solve	631.857	260.580	913.004	337.127	1478.052	1271.051
DT r.h.s	0.000	0.000	0.000	0.000	0.000	0.000
DT solve	0.000	0.000	0.000	0.000	0.000	0.000
DC r.h.s	0.000	0.000	0.000	0.000	0.000	0.000
DC solve	0.000	0.000	0.000	0.000	0.000	0.000
init, read input files	0.120	0.170	0.120	0.120	0.110	0.130
generate macro mesh	1.540	2.400	1.530	1.560	1.550	1.560
read and generate BiC	1.140	1.770	1.060	1.060	1.060	1.070
integration single domain	4.640	3.970	3.980	4.160	3.770	3.920
form sys, rhs matrix single do	52.380	48.540	50.970	50.620	41.850	37.160
integration makro domain	0.680	0.610	0.520	0.510	0.520	0.540
form makro sys, rhs matrix	11.920	12.470	10.690	11.680	10.860	11.480
solve	2775.490	2042.300	3733.630	2742.290	5805.270	10028.810
TOTAL	2847.910	2112.230	3802.500	2812.000	5864.990	10084.670
razmerje časov	0.74		0.74		1.72	
nelinearni nit	730	720	1006	1019	1912	4233
linearni solver nit Dv x	8345	849	11086	1273	18752	5610
linearni solver nit Dv y	8199	1445	11706	2041	20551	8468
linearni solver nit Dv z	8389	1445	11016	2040	19445	8448
linearni solver nit Dw x	42398	3398	49057	4166	72433	16983
linearni solver nit Dw y	27181	2900	40354	4027	72457	13503
linearni solver nit Dw z	34326	3131	49849	4164	92302	17756

Tabela 2: Primerjava časov in števila iteracij za primer 3D kotanje na 25^3 mreži. Časi za integracijo so časi branja integralov iz diska.

4.2 3D naravna konvekcija v kotanji

- Mreža: $20\mathrm{r}05\mathrm{x}20\mathrm{r}05\mathrm{x}20\mathrm{r}05$ z 41^3 vozlišči.
- Število iteracij linearnega solverja je prikazano na sliki 10.
- Potek konvergence je na sliki 11.
- $\bullet\,$ Primerjava časov računanja in števila iteracij je v preglednici 3.

	$Ra = 10^3$ $LSQR \qquad SQR$		$Ra = 10^4$		$Ra = 10^5$	
			LSQR SQR		LSQR SQR	
x Bw r.h.s	2535.369	2480.130	2277.948	2396.366	2365.774	2213.631
x Bw solve	71.092	69.298	64.119	65.462	64.819	62.209
x Dv r.h.s	99.125	317.797	89.013	295.628	87.523	286.115
x Dv solve	619.000	149.985	573.316	175.522	535.627	149.364
x Dw r.h.s	175.555	1291.795	160.944	1202.346	161.414	1163.688
x Dw solve	12013.956	1831.467	10509.819	1620.017	9608.369	1417.680
y Bw r.h.s	2855.488	2780.058	2558.551	2669.271	2639.463	2491.545
y Bw solve	74.486	73.181	67.281	69.804	68.095	65.815
y Dv r.h.s	99.213	314.210	89.526	293.403	87.984	284.484
y Dv solve	632.373	224.695	520.004	196.819	432.333	178.873
y Dw r.h.s	175.795	1288.350	161.724	1202.148	161.558	1163.180
y Dw solve	15695.643	1756.697	13766.834	1631.638	13765.889	1415.014
z Bw r.h.s	2867.788	2791.211	2576.400	2677.009	2651.504	2492.516
z Bw solve	72.748	70.986	65.850	67.696	66.315	64.135
z Dv r.h.s	99.799	315.488	89.478	293.672	88.220	285.033
z Dv solve	620.036	183.632	568.703	154.499	501.001	128.016
z Dw r.h.s	175.510	1293.898	160.832	1205.846	161.476	1164.666
z Dw solve	12361.748	1883.500	11507.805	1805.782	10918.278	1557.942
DT r.h.s	114.088	864.495	102.564	806.502	10316.276	779.858
DT solve	25099.922	1765.371	21915.084	1669.931	21186.977	1435.077
DC r.h.s	0.000	0.000	0.000	0.000	0.000	0.000
DC solve	0.000	0.000	0.000	0.000	0.000	0.000
init, read input files	0.710	0.840	0.710	0.750	0.710	0.760
generate macro mesh	30.760	32.650	31.290	30.880	32.320	33.110
read and generate BiC	10.080	10.620	10.070	10.620	10.080	10.590
integration single domain	93.590	125.140	103.460	139.690	81.350	142.880
form sys, rhs matrix single do	1021.330	911.320	821.330	784.790	893.000	851.840
integration makro domain	14.790	22.130	17.950	22.690	18.140	18.890
form makro sys, rhs matrix	268.530	301.580	267.880	299.840	274.230	302.530
solve	76465.156	21752.529	67831.383	20505.771	65663.641	18804.492
TOTAL	77904.945	23156.809	69084.070	21795.031	66973.469	20165.092
razmerje časov	0.30		0.32		0.30	
nelinearni nit	954	903	859	834	824	816
linearni solver nit Dv x	26262	1887	24609	2193	20937	1933
linearni solver nit Dv y	27222	2955	22453	2458	16808	2391
linearni solver nit Dv z	26539	2324	24700	1871	19712	1655
linearni solver nit Dw x	157824	4696	135458	4038	114226	3672
linearni solver nit Dw y	206373	4524	179371	4052	163433	3666
linearni solver nit Dw z	161486	4810	149070	4517	130537	4062
linearni solver nit TEMP	322216	4340	277469	4033	248248	3548
Nu	1.0711772	1.0712885	2.0563908	2.0573331	4.3431518	4.3461042
Lo et al. [1]		1.0710 2.0537			329	
[-]	,0	-		•		-

Tabela 3: Primerjava časov, Nu števila in števila iteracij za primer 3D naravne konvekcije na 41^3 mreži. Časi za integracijo so časi branja integralov iz diska.

	$Ra = 10^6$			
	dlse,ϵ =	$\epsilon = 10^{-15}$		
	LSQR	SQR	SQR	
x Bw r.h.s	2263.884	2801.418	3477.463	
x Bw solve	62.281	79.962	90.941	
x Dv r.h.s	84.706	379.235	396.289	
x Dv solve	440.680	174.278	1012.174	
x Dw r.h.s	155.188	1531.712	1613.285	
x Dw solve	7200.041	1782.485	5486.853	
y Bw r.h.s	2535.398	3187.706	3790.834	
y Bw solve	65.776	84.152	95.155	
y Dv r.h.s	84.812	374.630	393.377	
y Dv solve	346.117	226.663	1041.900	
y Dw r.h.s	155.740	1529.621	1612.371	
y Dw solve	9182.499	1741.855	5099.173	
z Bw r.h.s	2542.716	3190.353	3795.382	
z Bw solve	63.885	81.504	93.047	
z Dv r.h.s	85.231	376.251	394.331	
z Dv solve	407.773	163.559	962.605	
z Dw r.h.s	155.493	1533.052	1615.636	
z Dw solve	7581.436	1792.124	5496.756	
DT r.h.s	99.565	1027.984	1080.079	
DT solve	23384.271	2500.290	7946.532	
DC r.h.s	0.000	0.000	0.000	
DC solve	0.000	0.000	0.000	
init, read input files	0.720	0.820	0.770	
generate macro mesh	32.020	30.940	32.770	
read and generate BiC	10.110	10.640	11.770	
integration single domain	113.860	78.640	137.040	
form sys, rhs matrix single do	917.750	790.370	895.070	
integration makro domain	21.060	11.370	8.470	
form makro sys, rhs matrix	269.090	296.310	317.570	
solve	56903.641	24566.189	45501.660	
TOTAL	58268.250	25785.279	46905.121	
razmerje časov	0.44		1005	
nelinearni nit	800	1095	1095	
linearni solver nit Dv x	17466	2360	12401	
linearni solver nit Dv y	13715	3149	12782	
linearni solver nit Dv z	16324	2203	11797	
linearni solver nit Dw x	86113	4738	13344	
linearni solver nit Dw y	110651	4642	12407	
linearni solver nit Dw z	91306	4791	13402	
linearni solver nit TEMP	277949	6524	18816	
Nu	8.6791603	8.6945850	8.6945855	
Lo et al. [1]		8.6678		

Tabela 4: Primerjava časov, Nu števila in števila iteracij za primer 3D naravne konvekcije na 41³ mreži. Časi za integracijo so časi branja integralov iz diska. ϵ je zahtevana natančnost solverja.

Slika 10: Število iteracij linearnega solverja za primer 3D naravne konvekcije, zgornja vrsta $Ra=10^3$, druga $Ra=10^4$, tretjea $Ra=10^5$ in spodnja $Ra=10^6$; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 11: Potek konvergence za primer 3D naravne konvekcije, zgornja vrsta $Ra=10^3$, druga $Ra=10^4$, tretjea $Ra=10^5$ in spodnja $Ra=10^6$; levo predoločen sistem enačb, desno določen sistem enačb.

Slika 12: Primerjava profilov za naravno konvekcijo $Ra=10^6$. Prikazujemo T, $v_x,$ v_z in ω_y skozi sredino kotanje vzdolž x in z osi.

5 Zaključki

Primerjali smo čase reševanja gnane kotanje (Re = 100, 400, 1000) in naravne konvekcije ($Ra = 10^3, 10^4, 10^5$) s predoločenim in določenim sistemom enačb za rešitev notranjih hitrosti, temperatur in vrtinčnosti.

Ugotovitve:

- Pri določenem sistemu enačb je sestavljanje desne strani zahtevnejše kot pri predoločenem, saj zahteva seštevanje enačb.
- Pri pregledu natančnosti rezultatov smo opazili, da so rezultati
 - na gosti mreži pri določenem sistemu komaj opazno slabši kot pri predoločenem sistemu. Poslabšanje natančnosti je tako majhno, da ni vzrok za neuporabo določenega sistema.
 - na redki mreži pri visokem Re so rezultati določenega sistema občutno slabši od predoločenega. V kolikor je mreža komaj dovolj gosta za popis problema, je potrebno uporabiti predoločeni sistem enačb.
- Izračun z določenim sistemom enačb je hitrejši. Razmerje časov je bilo v primeru gnane kotanje med 0.5 in 0.6 v primeru naravne konvekcije pa 0.3 v prid določenim sistemom enačb. Na redki mreži je pohitritev slabša (0.7). V primeru, ko je mreža redka, Re pa visok, pa je določen sistem enačb počasnejši. Takrat je tudi natančnost rezultatov slaba.
- Število nelinearnih iteracij potrebnih za dosego konvergence
 - na gosti mreži se pri majhnih Ra in Re ni pomembneje spremenilo. Pri najvišjih (Re = 1000 in $Ra = 10^6$) se je število nelinearnih iteracij rahlo povišalo, vendar je oblika konvergenčnih krivulj ostala stabilna.
 - $-\,$ na redki mreži pa se je priRe=1000število nelinearnih iteracij zelo povečalo.
- Povečevanje natančnosti solverja linearnega sistema enačb iz 10^{-7} na 10^{-15} praktično nima vpliva na rezultat.

Literatura

- D.C. Lo, D.L. Young, K. Murugesan, C.C. Tsai, and M.H. Gou. Velocity-vorticity formulation for 3D natural convection in an inclined cavity by DQ method. *Int. J. Heat Mass Transfer*, 50:479–491, 2007.
- [2] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. *ACM Transactions on Mathematical Software*, 8:43–71, 1982.
- [3] G. L. G. Sleijpen and D. R. Fokkema. BICGSTAB(l) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum. El. Trans. on Numerical Analysis, 1:11–32, 1993.