0.1 H25 数学選択

 $oxed{A}$ $(1)x^2-5$ は既約.よって $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$ である.最小多項式の根は $\pm\sqrt{5}$ である.すなわち $\mathbb{Q}(\sqrt{5})/\mathbb{Q}$ は Galois 拡大である.Galois 群は $\mathrm{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q})\cong \mathbb{Z}/2\mathbb{Z}$ である.中間体は $\mathbb{Q},\mathbb{Q}(\sqrt{5})$ である.

 $(2)x^3-5$ は既約. よって $[\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}]=3$ である. 最小多項式の根は $\sqrt[3]{5},\omega\sqrt[3]{5},\omega^2\sqrt[3]{5}$ である. ただし $\omega=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$ とする. $\omega\in\mathbb{C}\setminus\mathbb{R}$ であるから $\omega\notin\mathbb{Q}(\sqrt[3]{5})\subset\mathbb{R}$ である. よって $\mathbb{Q}(\sqrt[3]{5})/\mathbb{Q}$ は Galois 拡大でない.

Galois 閉包は $\mathbb{Q}(\sqrt[3]{5},\omega)$ である. x^2+x+1 は $\mathbb{Q}(\sqrt[3]{5})$ 上既約であるから $[\mathbb{Q}(\sqrt[3]{5},\omega):\mathbb{Q}(\sqrt[3]{5})]=2$ である. よって $[\mathbb{Q}(\sqrt[3]{5},\omega):\mathbb{Q}]=6$ である.

 $(3)x^2+x+1$ は $\mathbb{Z}/2\mathbb{Z}$ 上唯一の 2 次の既約なモニック多項式である. したがって $\mathbb{Z}/2\mathbb{Z}$ 上の可約な 4 次多項式で $\mathbb{Z}/2\mathbb{Z}$ に根を持たない多項式は $(x^2+x+1)^2=x^4+x^2+1$ のみである. すなわち $x^4+x^3+x^2+x+1$ は $\mathbb{Z}/2\mathbb{Z}$ 上既約である.

仮に $x^4+x^3+x^2+x+1$ が $\mathbb{Q}[x]$ 上可約であるとする.これは $\mathbb{Z}[x]$ 上可約であることを意味する.このとき π : $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ から誘導される写像で $x^4+x^3+x^2+x+1$ を送ると, $\mathbb{Z}/2\mathbb{Z}[x]$ 上で可約となり矛盾する.したがって $x^4+x^3+x^2+x+1$ は $\mathbb{Q}[x]$ 上既約である.

すなわち $\mathbb{Q}(\zeta_5)/\mathbb{Q}$ は 4 次の Galois 拡大である.

 $\sigma(\zeta_5) = \zeta_5^2$ とする. $\sigma^2(\zeta_5) = \zeta_5^4 \neq \zeta_5$ であるから $\sigma^2 \neq \mathrm{id}$ である. よって σ の位数は 4 であるから $\mathrm{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ である.

よって中間体はただ一つ存在して $\mathbb{Q}(\zeta_5 + \zeta_5^{-1}) = \mathbb{Q}(\cos \frac{2\pi}{5})$ である.

円分体の知識をみとめれば、 $Gal(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \cong (\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z}$ であることがすぐにわかる.