Transaction Manager for Policies

Team Deadlock Chaitanya Kshirsagar, Nishad Gurav, Yadhu Prakash

Architecture

Policies Table

attributes	policyID	author	querier	from	to	entered	invalidated*
types	int	string	string	timeStamp	timeStamp	timeStamp	timeStamp
							,

Time traversal and Recovery based on these timestamps

Design Choices

- Use timestamp with policy versions.
 - Time traversal is much faster
 - Recovery is simpler
 - Cons: needs more storage
- Force Log @ Commit (FL@C)
 - Commit is not complete till all logs are flushed
- Periodic Flush with checkpoints
 - Logs and policies in buffer are flushed when capacity is reached. Capacity is configurable.
 - Checkpoint logged when flush is successful. Use checkpoints for redo.
- Using JSON to exchange data with TIPPERS for universality

Recovery Management

- If a TRXN is interrupted midway we could have the following cases.
 - Checkpoint log exists but no commit log before that -> UNDO
 - Log and policy table in sync, but trxn failed
 - Commit exits but no checkpoint -> REDO
 - TRXN failed during write to policy table.
 - Abort log exits without checkpoint -> UNDO
 - TRXN failed during write to policy table.
 - Random policy data logged last -> UNDO (till latest commit log)
 - TRXN failed during write to log table.
 - We still undo from policy table in case the TRXN was checkpointed earlier.