Mathematics for Machine Learning – Assignment Solutions

Q1) (1) Generate dataset $X \in R^{(50x6)}$

```
import numpy as np
import pandas as pd
# f1, f2, f3, f4 are generated from standard normal distribution
f1 = np.random.randn(50)
f2 = np.random.randn(50)
f3 = np.random.randn(50)
f4 = np.random.randn(50)
# since f5 and f6 are dependent features on f1, f2, f3, f4.
f5 = 2 * f1 + f2
f6 = f3 - f4
# Create a 2D Numpy array with size (50x6)
X = \text{np.column stack}((f1, f2, f3, f4, f5, f6))
# Round all elements to 8 decimals
X = \text{np.round}(X, 8, \text{out} = X)
# Using DataFrame to view the constructed matrix (50x6)
dataFrame = pd.DataFrame(X, columns=["f1", "f2", "f3", "f4", "f5",
"f6"])
# Save the matrix to a csv file
dataFrame.to csv("dataset X.csv", index=False, float format="%.8f")
```

Comment on round off errors:

Floating-point numbers are stored with limited precision. Some decimal values cannot be written exactly in binary, so the machine stores a very close value, not the exact one. So, the machine introduces round-off errors because it stores numbers in floating-point format.

When machine calculates the features f5 and f6 using features f1, f2, f3, f4, it may not hold the exact result, only something very close. After that, when we round everything to 8 decimals, numbers look neat, but it introduces another small difference. Because if we calculate f5 and f6 after this, then f5 will not be equal to 2 * f1 + f2; From data shown let's take first row:

f1	f2	f3	f4	f5	f6
1.51473295	1.03897799	-0.19350891	-0.77230558	4.06844388	0.57879667

Therefore, we can conclude that after rounding-off the features f5 and f6 are not anymore linear-combination of f1, f2, f3, f4. Hence, it affects the rank of matrix that was supposed to be 4 before round-off. Now it can compute the rank to be more than 4.

Q1) (2) Rank of X and Display the dataset generated above

Matrix generated: -

fl	f2	f3	f4	f5	f 6
1.51473295	1.03897799	-0.19350891	-0.77230558	4.06844388	0.57879667
0.55612370	-0.37658555	0.15895096	-0.07771266	0.73566186	0.23666361
1.87367610	0.71358571	-1.69390379	-0.44800883	4.46093791	-1.24589496
-0.61246131	-0.76743760	-0.87233761	-0.35944159	-1.99236022	-0.51289602
-0.31830765	-0.28419433	0.69143401	0.25075850	-0.92080964	0.44067550
1.82634663	-0.69490505	0.05882057	-0.45360821	2.95778822	0.51242878
-0.66267779	-1.39802916	0.28214850	-0.48506501	-2.72338473	0.76721351
-0.46912689	-0.62598233	1.40916763	-0.80978351	-1.56423611	2.21895114
0.08875751	0.03152032	0.31918064	-0.90281282	0.20903535	1.22199346
1.14049398	0.61550934	-0.20151043	-0.59783172	2.89649731	0.39632129
-0.46636538	1.81951833	0.57159963	-0.74916070	0.88678757	1.32076033
-1.30061475	0.32566171	-0.04373780	0.27531079	-2.27556779	-0.31904860
0.06855454	-0.50293399	0.28980232	1.20223722	-0.36582492	-0.91243490
0.83232728	0.64950437	0.20502086	-2.08673046	2.31415894	2.29175132
-0.34208647	1.17493397	0.96801232	1.87844527	0.49076103	-0.91043295
0.36490518	0.12085086	-1.29668145	-0.15239870	0.85066122	-1.14428275
-0.85765662	-1.43304473	0.26134458	0.05747247	-3.14835797	0.20387211
0.74765205	1.15993017	-0.36315585	-1.63510429	2.65523427	1.27194844
1.55081486	-0.23096670	-0.08319415	0.02804994	2.87066303	-0.11124409
1.59995425	-0.30119700	-0.51412009	1.01764198	2.89871150	-1.53176208
-0.06676010	1.08277473	0.23831879	-0.64908602	0.94925454	0.88740481
-0.73534138	-0.71293811	0.69977258	0.56372050	-2.18362087	0.13605209
-2.56553843	-1.62230694	-2.60748119	-0.63562123	-6.75338379	-1.97185995
2.13979775	-0.49468318	2.08398988	-0.87763914	3.78491232	2.96162901
-0.53594272	-0.09054304	-1.06609250	0.00075514	-1.16242847	-1.06684763
-1.17730364	-0.66704127	0.70785622	1.30025035	-3.02164855	-0.59239412
0.19746067	-1.88487149	0.37480753	0.60331900	-1.48995016	-0.22851147
0.12590063	0.36316333	0.27993583	-0.88844411	0.61496458	1.16837994
-0.61156124	0.18918903	-0.30602791	0.91646286	-1.03393346	-1.22249076

-1.34524405	1.38284296	-1.34935152	-1.91528593	2.73219448
0.49332920	-0.75813499	2.80104847	-0.89061555	-3.55918347
0.83759505	1.05477204	0.93786236	2.45660806	0.11690968
-0.85727109	-0.89759696	0.76705848	-0.23630294	-1.66465543
-0.74031840	-0.53434020	0.67638316	1.98667828	-1.21072335
1.08321728	-0.73412102	0.82242479	-0.60036402	-1.55654581
0.26614713	0.71193089	0.48055228	5.01062838	0.23137861
-1.42987180	-0.63420665	-0.19584426	-1.01775028	-0.43836238
-0.17780886	0.00133727	-0.85623735	-1.07572951	0.85757462
0.62025314	0.37802316	-1.39641669	1.47979243	1.77443985
1.66210537	-1.07227056	0.35509518	3.27946623	-1.42736573
0.20683421	1.40906276	0.81087469	1.93418959	0.59818807
-0.80715580	-0.48847807	0.06015808	0.41130701	-0.54863615
-1.01763150	-1.20800380	1.15317991	-1.16470498	-2.36118371
-1.31357305	0.60866272	-0.07454821	-5.97646117	0.68321093
0.08979187	-0.53591484	-0.29088163	-2.84020448	-0.24503320
0.95971539	-0.31749436	0.69551343	2.17675437	-1.01300779
0.37825637	-0.06316210	1.81160110	3.35821843	-1.87476320
-0.09281886	-0.85877341	-0.72718507	-0.77601909	-0.13158834
0.73837777	2.08475150	0.44407302	1.46894207	1.64067849
0.51746561	0.20346029	0.05043079	0.52034060	0.15302950
	0.49332920 0.83759505 -0.85727109 -0.74031840 1.08321728 0.26614713 -1.42987180 -0.17780886 0.62025314 1.66210537 0.20683421 -0.80715580 -1.01763150 -1.31357305 0.08979187 0.95971539 0.37825637 -0.09281886 0.73837777	0.49332920 -0.75813499 0.83759505 1.05477204 -0.85727109 -0.89759696 -0.74031840 -0.53434020 1.08321728 -0.73412102 0.26614713 0.71193089 -1.42987180 -0.63420665 -0.17780886 0.00133727 0.62025314 0.37802316 1.66210537 -1.07227056 0.20683421 1.40906276 -0.80715580 -0.48847807 -1.01763150 -1.20800380 -1.31357305 0.60866272 0.08979187 -0.53591484 0.95971539 -0.31749436 0.37825637 -0.06316210 -0.09281886 -0.85877341 0.73837777 2.08475150	0.49332920-0.758134992.801048470.837595051.054772040.93786236-0.85727109-0.897596960.76705848-0.74031840-0.534340200.676383161.08321728-0.734121020.822424790.266147130.711930890.48055228-1.42987180-0.63420665-0.19584426-0.177808860.00133727-0.856237350.620253140.37802316-1.396416691.66210537-1.072270560.355095180.206834211.409062760.81087469-0.80715580-0.488478070.06015808-1.01763150-1.208003801.15317991-1.313573050.60866272-0.074548210.08979187-0.53591484-0.290881630.95971539-0.317494360.695513430.37825637-0.063162101.81160110-0.09281886-0.85877341-0.727185070.738377772.084751500.44407302	0.49332920 -0.75813499 2.80104847 -0.89061555 0.83759505 1.05477204 0.93786236 2.45660806 -0.85727109 -0.89759696 0.76705848 -0.23630294 -0.74031840 -0.53434020 0.67638316 1.98667828 1.08321728 -0.73412102 0.82242479 -0.60036402 0.26614713 0.71193089 0.48055228 5.01062838 -1.42987180 -0.63420665 -0.19584426 -1.01775028 -0.17780886 0.00133727 -0.85623735 -1.07572951 0.62025314 0.37802316 -1.39641669 1.47979243 1.66210537 -1.07227056 0.35509518 3.27946623 0.20683421 1.40906276 0.81087469 1.93418959 -0.80715580 -0.48847807 0.06015808 0.41130701 -1.01763150 -1.20800380 1.15317991 -1.16470498 -1.31357305 0.60866272 -0.07454821 -5.97646117 0.08979187 -0.53591484 -0.29088163 -2.84020448 0.95971539 -

Python Code to compute Rank of X:

```
import numpy as np
import pandas as pd
# f1, f2, f3, f4 are generated from standard normal distribution
f1 = np.random.randn(50)
f2 = np.random.randn(50)
f3 = np.random.randn(50)
f4 = np.random.randn(50)
# since f5 and f6 are dependent features on f1, f2, f3, f4.
\overline{f5} = 2 * \overline{f1} + \overline{f2}
f6 = f3 - f4
# Create a 2D Numpy array with size (50x6)
A = \text{np.column stack}((f1, f2, f3, f4, f5, f6))
# Compute rank before rounding
rank before round off = np.linalg.matrix rank(X)
# Round values to 8 decimals
X rounded = np.round(X, 8)
# Compute rank after rounding
rank after round off = np.linalg.matrix rank(X rounded)
print("Rank before rounding:", rank before round off)
print("Rank after rounding (8 decimals):", rank after round off)
```

```
import numpy as np
import pandas as pd
# f1, f2, f3, f4 are generated from standard normal distribution
f1 = np.random.randn(50)
f2 = np.random.randn(50)
f3 = np.random.randn(50)
f4 = np.random.randn(50)
# since f5 and f6 are dependent features on f1, f2, f3, f4.
f5 = 2 * f1 + f2
f6 = f3 - f4
# Create a 2D Numpy array with size (50x6)
A = np.column_stack((f1, f2, f3, f4, f5, f6))
# Compute rank before rounding
rank_before_round_off = np.linalg.matrix_rank(X)
# Round values to 8 decimals
X_{rounded} = np.round(X, 8)
# Compute rank after rounding
rank_after_round_off = np.linalg.matrix_rank(X_rounded)
print("Rank before rounding:", rank_before_round_off)
print("Rank after rounding (8 decimals):", rank_after_round_off)
Rank before rounding: 4
Rank after rounding (8 decimals): 6
```

Because of round-off errors, the machine computed the rank as 6 instead of 4. This happens because after rounding, f5 and f6 are not exact linear combination of f1, f2, f3 and f4 anymore.

Q1) (3) Using Power Method to find dominant eigenvalue and it's corresponding eigenvector

a) Compute covariance matrix:

```
import numpy as np

# Compute rank using NumPy
C = (X.T @ X) / n
np.set_printoptions(precision=6, suppress=True)
print("\nCovariance matrix C:\n", C)
```

```
import numpy as np

# Compute rank using NumPy
C = (X.T @ X) / n
np.set_printoptions(precision=6, suppress=True)
print("\nCovariance matrix C:\n", C)

Covariance matrix C:
[[ 1.139058  0.253991  0.139314 -0.036709  2.532107  0.176023]
[ 0.253991  0.784484  0.037891 -0.002467  1.292466  0.040358]
[ 0.139314  0.037891  0.811355 -0.037332  0.31652  0.848688]
[ -0.036709 -0.002467 -0.037332  0.889719 -0.075885 -0.927052]
[ 2.532107  1.292466  0.31652  -0.075885  6.35668  0.392405]
[ 0.176023  0.040358  0.848688 -0.927052  0.392405  1.77574 ]]
```

b) Implement Power Method to approximate largest eigenvalue $\lambda 1$ and its corresponding eigenvector v1 of C.

```
import numpy as np
from numpy.linalg import norm
# Function to estimate eigenvalue for a given vector
def rayleigh quotient(X, v):
  v = v / (norm(v) + 1e-18) \# add 1e-18 to avoid dividing by zero
  return float(v.T @ X @ v) # Return estimate of eigenvalue using formula
v^T X v
# Power Method to find largest eigenvalue and eigenvector
def power method(X, tol=1e-10, max iter=10000, x0=None):
  n = X.shape[0]
  x = np.random.randn(n) if x0 is None else np.array(x0, dtype=float)
  x = x / (norm(x) + 1e-18)
  lambda old = 0.0
  for k in range(1, max iter + 1):
     y = X (a, x)
     ny = norm(y)
     if ny == 0:
       # rare fallback: if X sends x to (near) zero, restart with a new random
       x = np.random.randn(n)
       x = x / (norm(x) + 1e-18)
       continue
     x = y / ny
     # New eigenvalue estimate using Rayleigh quotient
     lambda new = rayleigh quotient(X, x)
     # Stop if the new and old eigenvalues are very close (relative change \le \text{
tol)
     if abs(lambda new - lambda old) \le tol * (abs(lambda new) + 1e-18):
       # Flip sign of vector so results are consistent
       if x[0] < 0:
          x = -x
       return lambda new, x, k
     lambda old = lambda new
```

```
# If we reach max iterations without meeting tolerance, return last result if x[0] < 0:
    x = -x
    return lambda_new, x, max_iter

lambda1, v1, iters = power_method(C, tol=1e-10, max_iter=10000)

print("Largest eigenvalue λ1 (power method):", f"{lambda1:.10f}")

print("Eigen Vector:\n", v1)

print("Minimum number of Iterations:", iters)
```

```
lambda1, v1, iters = power_method(C, tol=1e-10, max_iter=10000)

print("Largest eigenvalue λ1 (power method):", f"{lambda1:.10f}")
print("Eigen Vector:\n", v1)
print("Minimum number of Iterations:", iters)

Largest eigenvalue λ1 (power method): 7.6879156161
Eigen Vector:
[ 0.3617764457  0.1840745423  0.0607106133 -0.0240420266  0.9076274339  0.0847526394]
Minimum number of Iterations: 13
```

c) Next largest eigenvalue λ_2 and its corresponding eigenvector V_2 by applying power method on $C-V_1V_1^TC$.

```
def top k power deflation(X, k, tol=1e-10, max iter=10000):
  Returns top-k eigenpairs using:
    X \le -X - \lambda v v^{\wedge}T
  after each dominant eigenpair is found.
  X \text{ work} = X.\text{copy}()
  Eigvals, eigvecs, iters list = [], [], []
  for i in range(k):
     lam, v, iters = power method(X work, tol=tol, max iter=max iter)
     eigvals.append(lam)
     eigvecs.append(v)
     iters list.append(iters)
     # Remove the found mode so the next run finds the next eigenpair
     X \text{ work} = X \text{ work} - \text{lam * np.outer}(v, v)
  return np.array(eigvals), np.column stack(eigvecs), np.array(iters list)
# 5) Get \lambda 1, v1; then \lambda 2, v2 using prompt's deflation C - v1 v1^T C
lambda1, v1, iters1 = power method(C)
# Your prompt's specific deflation: X2 = C - v1 v1^T C
X2 prompt = C - np.outer(v1, v1.T @ C)
lambda2 prompt, v2 prompt, iters2 prompt = power method(X2 prompt)
# (Optional) Also get top-k using standard deflation
k = C.shape[0]
eigvals defl, eigvecs defl, iters defl = top k power deflation(C, k=k)
print("=== Matrix sizes ===")
print("X:", X.shape, " C:", C.shape)
print("\n=== \lambda 1, v1 from C (power method) ====")
print("λ1:", f" {lambda1:.10f}")
```

```
print("v1:", v1)
print("iterations:", iters1)

print("\n=== Next eigenpair using prompt's deflation X2 = C - v1 v1^T C ===")
print("λ2 (power on X2):", f"{lambda2_prompt:.10f}")
print("v2 (power on X2):", v2_prompt)
print("iterations:", iters2_prompt)

print("\n=== Top-k eigenpairs using standard deflation (X <- X - λ v v^T) ===")
for j in range(k):
    print(f"k={j+1}: λ={eigvals_defl[j]:.10f}, iters={iters_defl[j]}")
    print(" v:", eigvecs_defl[:, j])</pre>
```

```
print("\n=== Top-k eigenpairs using standard deflation (X <- X - λ v v^T) ===")</pre>
for j in range(k):
  print(f"k={j+1}: λ={eigvals_defl[j]:.10f}, iters={iters_defl[j]}")
  print(" v:", eigvecs_defl[:, j])
=== Matrix sizes ===
X: (50, 6) C: (6, 6)
=== λ1, v1 from C (power method) ===
λ1: 7.6879156161
0.0847558819]
iterations: 13
=== Next eigenpair using prompt's deflation X2 = C - v1 v1^T C ===
λ2 (power on X2): 2.6140669295
-0.8109546563]
iterations: 10
=== Top-k eigenpairs using standard deflation (X <- X - \lambda v v^T) ===
k=1: λ=7.6879156161, iters=14
 0.08475662011
k=2: \lambda=2.6140669296, iters=11
 -0.8109539077]
k=3: λ=0.8055145394, iters=53
 v: [ 0.0268996091 -0.0813170247  0.7209530532  0.686242367 -0.0275178085
 0.0347106853]
k=4: \lambda=0.6495397247, iters=2
 -0.02512978481
k=5: \lambda=-0.0000000001, iters=12
 0.0847649886]
k=6: \lambda=-0.0000000000, iters=24
 -0.8109564738]
```

d) All eigenvalues and eigenvector using

```
def cosine similarity(u, v):
  """|cos(angle)|; 1.0 means same direction up to sign."""
  u = u / (norm(u) + 1e-18)
  v = v / (norm(v) + 1e-18)
  return float(abs(u @ v))
# ----- (1) Built-in eigenpairs with NumPy -----
# eigh is for symmetric matrices like C; it returns ascending order.
eigvals all, eigvecs all = np.linalg.eigh(C)
idx = np.argsort(eigvals all)[::-1] # sort descending
eigvals_np = eigvals_all[idx] # shape: (n,)
eigvecs np = eigvecs all[:, idx] # shape: (n,n)
# ----- (2) Power method + deflation (recomputed for comparison) ------
k = C.shape[0]
eigvals pm, eigvecs pm, iters pm = top k power deflation(C, k=k, tol=1e-
10, max iter=10000)
# ----- (3) Compare eigenvalues and eigenvectors -----
rows = []
for j in range(k):
  lam pm = eigvals pm[j]
  lam np = eigvals np[j]
  vec pm = eigvecs pm[:, j]
  vec np = eigvecs np[:, j]
  abs err = float(abs(lam pm - lam np))
  rel err = float(abs err / (abs(lam np) + 1e-18))
  cos sim = cosine similarity(vec pm, vec np)
  rows.append([
    j+1, lam pm, lam np, abs err, rel err, cos sim, int(iters pm[j])
# Pretty print comparison table
```

```
header = ["rank k", "lambda (power)", "lambda (numpy)", "abs error", "rel
error", "cosine(|v_pm,v_np|)", "iters (power)"]
col widths = [8, 18, 18, 14, 14, 20, 14]
fmt = "".join([f"{{:<{w}}}}" for w in col_widths])
print(fmt.format(*header))
for r in rows:
  # format floats compactly
  r fmt = [
     r[0],
     f''\{r[1]:.10e\}''
     f"{r[2]:.10e}",
     f''\{r[3]:.3e\}''
     f''\{r[4]:.3e\}''
     f"{r[5]:.6f}",
     r[6]
  print(fmt.format(*r fmt))
```

```
print(fmt.format(*r_fmt))
rank k lambda (power)
                         lambda (numpy)
                                                                      cosine(|v_pm,v_np|) iters (power)
                                           abs error
                                                        rel error
1
       7.6879156161e+00 7.6879156161e+00 5.871e-11
                                                        7.637e-12
                                                                      1.000000
                                                                                          13
2
       2.6140669296e+00 2.6140669295e+00 1.531e-10
                                                        5.857e-11
                                                                      1.000000
                                                                                          11
3
       8.0551453939e-01 8.0551453944e-01 4.916e-11
                                                        6.103e-11
                                                                      1.000000
                                                                                          48
4
       6.4953972468e-01 6.4953972454e-01 1.397e-10
                                                        2.151e-10
                                                                      1.000000
                                                                                          2
5
       -1.1396030557e-10 4.7664184062e-16 1.140e-10
                                                        2.386e+05
                                                                      0.000000
                                                                                          16
       -4.5007108154e-11 1.0455025714e-16 4.501e-11
                                                        4.264e+05
                                                                      0.000000
                                                                                          22
```

Comparison:

- absolute error / relative error: this tells us how close the power-method eigenvalues are to NumPy's.
- cosine(|v pm, v np|): this tells us how well the eigenvectors line up.
- Iters(power): this tells us how many power-method steps each rank took.

e) All eigenvalues and eigenvector using

Rank 1 ($\lambda_1 \approx 7.6879156161$, 13 iters):

- Next eigenvalue $\lambda_2 \approx 2.6140666930$
- Ratio $\lambda_2/\lambda_1 \approx 2.6141 / 7.6879 \approx 0.34$
- This means that each step the leftover error shrinks by around 34% and hence converged quickly in 13 iterations

Rank 2 ($\lambda_2 \approx 2.6140666930$, 11 iters)

- After removing rank-1, the new competitor is $\lambda_3 \approx 0.8055145394$
- Ratio $\lambda_3/\lambda_2 \approx 0.8055 / 2.6141 \approx 0.31$
- This means that error shrinks a bit faster than rank-1 and hence converged in 11 iterations only

Rnak 3 ($\lambda_3 \approx 0.8055145394$, 48 iters)

- Now the next competitor is $\lambda_4 \approx 0.6495397245$
- Ratio $\lambda_4/\lambda_3 \approx 0.6495 / 0.8055 \approx 0.81$
- This means the ratio is much closer to 1 than before, so the error decays slowly; a lot more steps are needed. Hence, it took 48 iterations.

Rank 4 ($\lambda_4 \approx 0.6495397245$, 2 iters)

- Next competitor is $\lambda s \approx 4.77e-16$ (essentially zero).
- Ratio $\lambda_5/\lambda_4 \approx -0 / 0.6495 \approx 0$
- With almost nothing competing, the method locks in very quickly. Hence 2 iterations.

Rank 5 and 6 (near-zero eigenvalues; 16 and 22 iters)

- $\lambda_5 \approx 4.77e-16$, $\lambda_6 \approx 1.05e-16$ (basically zero).
- Here, floating-point noise and small rounding effects dominate.
- The table shows power estimates around (-1.14e-10 and -4.50e-11), huge relative errors ($\approx 2.386\text{e}+05$ and 4.264e+05), and cosine = 0.0 (i.e., vectors don't line up and hence there is no stable direction to lock onto).
- Hence the 16 and 22 iterations don't carry any useful meaning and they are in numerical noise area.

_

Q2) (a) Compute SVD of $A \in \mathbb{R}^{150 \times 100}$

```
import numpy as np
# Size: 150x100, values between 0-255 like pixel intensities
A = np.random.randint(0, 256, size=(150, 100)).astype(float)
print("Matrix A shape:", A.shape)
# Perform Singular Value Decomposition (SVD)
# full matrices=False gives compact form (U: 150 \times 100, \Sigma: 100 \times 100, Vt:
100x100
U, S, Vt = np.linalg.svd(A, full matrices=False)
# Convert S (1D array of singular values) to diagonal matrix \Sigma
Sigma = np.diag(S)
print("U shape:", U.shape)
                            # (150, 100)
print("\Sigma shape:", Sigma.shape) # (100, 100)
print("V^T shape:", Vt.shape) # (100, 100)
# first 10 singular values
print("\nFirst 10 singular values:")
print(S[:10])
 # first 10 singular values
 print("\nFirst 10 singular values:")
 print(S[:10])
 Matrix A shape: (150, 100)
 U shape: (150, 100)
 Σ shape: (100, 100)
 V^T shape: (100, 100)
 First 10 singular values:
 [15706.78407439 1640.84021614 1582.73546527 1529.07024889
    1519.48595292 1469.245657 1467.44503071 1449.24525623
    1402.90977832 1386.52033945]
```

Q2) (b) Reconstruction with Multiple Ranks

```
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color
from skimage.transform import resize
# safe grayscale loader that handles 1/2/3/4 channels
def load as gray(img path):
  Loads an image as grayscale float64 in [0,1].
  Handles:
   - HxW (gray)
   - HxWx2 (L + Alpha) -> use L
   - HxWx3 (RGB) -> rgb2gray
                      -> rgba2rgb -> rgb2gray
   - HxWx4 (RGBA)
  img = io.imread(img path)
  if img.ndim == 2:
    # already grayscale
    A = img.astype(np.float64)
    if A.max() > 1.0: # convert 0..255 to 0..1 if needed
       A = A / 255.0
    return A
  if img.ndim == 3:
    c = img.shape[2]
    if c == 3:
       # RGB -> gray
       A = color.rgb2gray(img)
       return A
    elif c == 4:
       # RGBA -> RGB -> gray
       rgb = color.rgba2rgb(img)
       A = color.rgb2gray(rgb)
       return A
    elif c == 2:
```

```
# L + Alpha (or similar) -> use L channel
       A = img[..., 0].astype(np.float64)
        if A.max() > 1.0:
          A = A / 255.0
       return A
     else:
       raise ValueError(f"Unsupported number of channels: {c}")
  raise ValueError(f"Unsupported image shape: {img.shape}")
# Load image
img path = "mush.png"
A = load as gray(img path) # float64 in [0,1]
# Resize to A \in R^{150×100}
A = resize(A, (150, 100), anti aliasing=True) # stays in [0,1]
# SVD (compact)
\# A = U \otimes \operatorname{diag}(S) \otimes \operatorname{Vt}, with S sorted descending
U, S, Vt = np.linalg.svd(A, full matrices=False) # U: (150,100), S: (100,),
Vt: (100,100)
# rank-k reconstruction
def reconstruct rank k(U, S, Vt, k):
  Build A k = U[:, :k] @ diag(S[:k]) @ Vt[:k, :]
  Returns float image in [0,1].
  Uk = U[:, :k]
  Sk = np.diag(S[:k])
  Vtk = Vt[:k, :]
  Ak = Uk (a) Sk (a) Vtk
  return np.clip(Ak, 0.0, 1.0)
# Build rank-k images for requested ks
ks = [5, 10, 20, 40, 60]
reconstructions = [(k, reconstruct rank k(U, S, Vt, k))] for k in ks]
# Display: Original (left) + each rank-k (right)
n rows = len(ks)
```

```
fig, axes = plt.subplots(n_rows, 2, figsize=(8, 3*n_rows))

if n_rows == 1:
    axes = np.array([axes]) # ensure 2D indexing even for one row

for i, (k, Ak) in enumerate(reconstructions):
    # Left: original
    axes[i, 0].imshow(A, cmap='gray', vmin=0, vmax=1)
    axes[i, 0].set_title("Original (150×100)")
    axes[i, 0].axis('off')

# Right: rank-k
    axes[i, 1].imshow(Ak, cmap='gray', vmin=0, vmax=1)
    axes[i, 1].set_title(f''Rank-k Reconstruction (k = {k})")
    axes[i, 1].axis('off')

plt.tight_layout()
plt.show()
```


Original (150×100)

Rank-k Reconstruction (k = 5)

Rank-k Reconstruction (k = 10)

Original (150×100)

Original (150×100)

Original (150×100)

Rank-k Reconstruction (k = 20)

Rank-k Reconstruction (k = 40)

Rank-k Reconstruction (k = 60)

Q2) (c) Error Analysis:

```
import numpy as np
import matplotlib.pyplot as plt
def reconstruct rank k(U, S, Vt, k):
  Uk = U[:, :k]
  Sk = np.diag(S[:k])
  Vtk = Vt[:k, :]
  Ak = Uk @ Sk @ Vtk
  return Ak
# Compute E k = ||A - A k|| F for all k = 1..min(m,n)
m, n = A.shape
kmax = min(m, n)
ks = np.arange(1, kmax + 1)
# Method A (direct reconstruction)
E recon = np.empty like(ks, dtype=float)
for i, k in enumerate(ks):
  Ak = reconstruct rank k(U, S, Vt, k)
  E recon[i] = np.linalg.norm(A - Ak, ord='fro')
# Method B (theory check via singular values):
# For SVD, ||A - A k|| F^2 = sum \{j > k\} S j^2
# This is a fast consistency check; should match E recon (up to tiny round-
off).
E svals = np.sqrt(np.array([np.sum(S[k:]**2) for k in ks]))
# normalized errors (relative to ||A|| F)
A fro = np.linalg.norm(A, ord='fro')
E rel = E recon / A fro
# Plot E k vs k (and the singular-value-based check)
plt.figure(figsize=(6,4))
plt.plot(ks, E recon, marker='o', label=r'\$E k = |A-A| | F  (recon)')
plt.plot(ks, E svals, linestyle='--', label='Check via singular values')
plt.xlabel('k (rank of approximation)')
plt.ylabel(r'$E k$ (Frobenius norm)')
```

```
plt.title('Reconstruction Error vs Rank k')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

# Small table for requested k values
ks_report = [5, 10, 20, 40, 60]
print("k E_k (Fro) E_k/||A||_F")
for k in ks_report:
    Ek = E_recon[k-1] # because ks starts at 1
    Erk = Ek / A_fro
    print(f"{k:<3} {Ek:>10.6f} {Erk:>10.6f}")
```



```
E_k (Fro)
                 E_k/||A||_F
5
     10.304588
                    0.114925
                   0.068952
10
      6.182480
20
      3.340287
                   0.037254
                   0.013940
40
      1.249868
                   0.004863
60
      0.436072
```

Q2) (d) Energy Preservation:

```
import numpy as np
import matplotlib.pyplot as plt
# Assumes you already have S (singular values from np.linalg.svd(A,
full matrices=False))
# If not, uncomment the next line:
\# U, S, Vt = np.linalg.svd(A, full matrices=False)
# Energy(k): cumulative proportion of sigma^2
sigma2 = S**2
total energy = np.sum(sigma2)
cum energy = np.cumsum(sigma2)
                                        # length r
energy k = \text{cum energy} / (\text{total energy} + 1\text{e-}18) \# \text{proportion in } [0,1]
r = len(S)
ks = np.arange(1, r+1)
# Plot Energy(k) vs k
plt.figure(figsize=(6,4))
plt.plot(ks, energy k, marker='o', linewidth=1)
plt.xlabel('k (number of singular values kept)')
plt.ylabel('Energy(k) = sum_\{i \le k\} \sigma_i^2 / sum \{i \le r\} \sigma_i^2')
plt.title('Energy Preservation vs Rank k')
plt.ylim(0, 1.02)
plt.grid(True)
plt.tight layout()
plt.show()
# Table for specific k values
ks report = [5, 10, 20, 40, 60]
print("k Energy(k)")
for k in ks report:
  if k <= r:
     print(f"{k:<4} {energy k[k-1]:.6f}")
     print(f"\{k:<4\} (k exceeds rank r=\{r\})")
```

```
# Find smallest k to reach common thresholds (e.g., 90%, 95%)
def min_k_for_threshold(energy_curve, thresh):
    idx = np.searchsorted(energy_curve, thresh, side='left')
    return None if idx >= len(energy_curve) else (idx+1)

for thresh in [0.90, 0.95]:
    k_needed = min_k_for_threshold(energy_k, thresh)
    if k_needed is None:
        print(f"No k achieves {int(thresh*100)}% energy.")
    else:
        print(f"Smallest k for >= {int(thresh*100)}% energy: k = {k_needed}")
```


Q3) (a) Eigenvalue Computation:

```
import numpy as np
import sympy as sp
# Matrix
M = np.array([[2, 1, 0],
         [1, 2, 1],
         [0, 1, 2], dtype=float)
# Characteristic polynomial using (|M - \lambda I| = 0)
lam = sp.symbols('lam')
Ms = sp.Matrix(M)
char poly = sp.expand((Ms - lam*sp.eye(3)).det())
print("Characteristic polynomial =", char poly)
roots = [complex(r) for r in sp.nroots(char poly)]
print("Eigenvalues:", roots)
# numeric eigenvalues (verification)
\overline{w}, = \overline{np}.linal\overline{g}.eig(\overline{M})
print("Eigenvalues from NumPy (unordered):", w)
# For a symmetric matrix, eigh gives sorted real eigenvalues
w eigh, = np.linalg.eigh(M)
print("Eigenvalues from eigh (ascending):", w eigh)
```

```
Characteristic polynomial = -1.0*lam**3 + 6.0*lam**2 - 10.0*lam + 4.0

Eigenvalues: [(0.585786437626905+0j), (2+0j), (3.414213562373095+0j)]

Eigenvalues from NumPy (unordered): [3.41421356 \ 2. 0.58578644]

Eigenvalues from eigh (ascending): [0.58578644 \ 2. 3.41421356]
```

Q3) (b) Eigenvectors:

```
# Use eigh (best for symmetric matrices) to get orthonormal eigenvectors
vals, vecs = np.linalg.eigh(M) # vals ascending; columns of vecs are
eigenvectors
# Normalize (they already are, but we'll do it explicitly) and check residuals
residuals = []
V \text{ norm} = np.zeros like(vecs)
for i in range(3):
  v = vecs[:, i]
  v = v / np.linalg.norm(v)
  V norm[:, i] = v
  lhs = M @ v
  rhs = vals[i] * v
  res = np.linalg.norm(lhs - rhs)
  residuals.append(res)
print("Eigenvalues (ascending):", vals)
print("Normalized eigenvectors (columns):\n", V norm)
print("Residuals ||Mv - λν||:")
for i, res in enumerate(residuals, start=1):
  print(f"Eigenpair {i}: {res:.3e}")
 Eigenvalues (ascending): [0.58578644 2.
                                                          3.41421356]
 Normalized eigenvectors (columns):
  [[-5.00000000e-01 7.07106781e-01 5.00000000e-01]
  [ 7.07106781e-01 1.93135775e-16 7.07106781e-01]
  [-5.00000000e-01 -7.07106781e-01 5.00000000e-01]]
 Residuals ||Mv - λv||:
 Eigenpair 1: 4.611e-16
 Eigenpair 2: 4.751e-16
 Eigenpair 3: 4.441e-16
```

Q3) (c) Diagonalizability:

```
Output:

||P^T P - I||: 4.902612130890298e-16

||M - P D P^T||: 2.758088265960388e-16
```

Q3) (d) Generalization:

Solution: 2 1	0]	
	1	
0 1	2	S. M. Sarra year
General case of M being an	n×n trodiagona	1 matrix
by exeplacing 2 with a and	of a with b.	
	0 0 0	
	1	0
0 6	a o o	0
	0	1
0 0	0	b
	0 0 6	a
	A removery post	n×h
Here, every diagonal entry in	principal diabor	val is 'a'
and the entries just below a	nd above the prins	i pal diagonal
elements are b', and every o	they position in my	natrin has O.
Hence, this is a Symmetric		
	0	Was into
For Eigenvalues (2) such that t	here enists a ve	clor or with
•	if n = (n, n2,	
a b o o o o	[н,] [хи,]	
b a b 0 0 0	M2 AN2	craying Josef
0 6 2 000	n3 hx3	state of the
0 00 a bo	1 - 1 - 1	ant maletan
		10
0 00 6 a b		
	nn Ann	
0 00 bab	ر با	
0 00 6 a b	ر با	1.8 (1.11)
0 00 bab	N NXT	1st now multiplie
0 00 bab 0 00 0ba nx i. from above egn we get	$n \mapsto f_{am}$	1st row multiplier

Last sou	can be dispresented as:
	$b \mathcal{H}_{n-1} + a \mathcal{H}_n = \lambda \mathcal{H}_n - \mathbf{r}$
Any mid	dle srow can be suppresented as
0	bx, 1 + ax, + bx, = \(\frac{1}{2} \), where $j = 2, 3,, n-1$
Hence	3 1 141 1
eacl	entry of n is linked by its neighbours by this necurrence
	000-000
	$b x_{j-1} + a x_j + b x_{j+1} - b x_j = 0$
4 0	bn; + (a-x)n; + bx; + = 0 - (120)
	a Condition is now a succurrence relation, where every
1	tied to the previous of the newly
	, we can pretend there are 2 extra entries:
N°=0	, before first now of Mn+1 = 0 after last now
	the ments are it, and every other position in metric, it
This way	, the securrence applies uniformly from j= 1 to n
S9 mater	in problem is reduced to,
2000	The relation of the same of the state of the section of the sectio
1	bn _{j-1} + (a-λ) η _j + bn _{j+1} = 0 - where j=1,2,n f - (v) n ₀ =0 f n _{n+1} =0
_	7(iv) 7e=U 4 7n+1=C
For Such	decurrences, a Standard trick is to guess that the entires
look like	powers of some number " ?
C + + + +	Ret 2; = xd
Substitu	brit (a-A) ri + brit = 0 - 0
Divide b	ογ-+ (Q-N) γ-+ ο1 = U - (V)
1)NICKE O	hart Galai haiti
	$\frac{5}{7^{i-1}} + \frac{(0-3)\gamma^{i}}{\gamma^{i-2}} + \frac{5\gamma^{i+1}}{\gamma^{i-2}} = 0$
	$b + (a-\lambda)\gamma + b\gamma^2 = 0$ This is a quadratic equ
=/	- (vi.)

PAGE

		a
	Solving the equation by + (a-x) + b=0	
		" ant+bu+ (= 0
	product of exocts = b = 1	Product of roots = (a)
	& Sum of scoots = (- (a-2)) = 91+ = 7	Sum of roots = (-b)
	" If one of the solution of above equation	راه من
	then other will be 1/x.	. 9 : M
	3. Roots are complex conjugate pair that o	no also reciprocals.
	they must be located on the unit circ	le in complex plane.
	Any complex number with a modular	al a be willed
	in the form $91 = e^{i\Theta}$ using	Euler's formula.
	- 1 - e'0	W1-62 D
	0 =	(3(114)-12
	"," Sum of swots = 91 + 1 - e10 + e	(0 = 8 (1+1)
	NOW,	
	91+ 1 _ (cos0 + isin0) + (cos0 - 1	(sin 0) Using Euler's formula
	94 (3)- (1	(7)
	A+1 = 2 cos 0	y who waters?
	91	
	- (2-2) _ 2(010)	0: 91+1=(-(a-2)))
	6	, ,
	: 1 = a + 26 cos 0 - (viii) This i	's the formula for
		igen Values
	Now, we need to find which values of 0 ar	
	We set No=0 & No+1=0. Therefore General	
	M= Aeio+ Beio - (ix)	
	Substitute eil = cas(j0)+ isin(j0) & eil0 = c	os(10) - isin(10) in above col (
	we get = x; = (A+B) cos(10) + i(A-B) sin(10)	
	Let C=1(A-B) & D=(A+B)	
1	: N = D (os (j 0) + C sin (j 0) -	\bigcirc
	7	

