Programação Imperativa (CC1003)

2020/2021

Folha 4

Começar por rever os apontamentos sobre Variáveis Indexadas (em https://www.dcc.fc.up.pt/~pbv/aulas/progimp/teoricas/teorica13.html), sem o exemplo de escrita em binário.

1. Pretendemos um programa para ler m sequências de n inteiros não negativos e escrever a sequência que tem maior média arredondada para o inteiro mais próximo. Os valores são lidos do *standard input* (entrada padrão) e escritos no *standard output* (saída padrão). Em caso de empate, deve indicar a primeira que encontrou. Admita que $n \le 1000$.

Para resolver o problema deve implementar as funções seguintes:

- a) void ler_seq(int x[], int n) para ler uma sequência n inteiros e a colocar no array dado por x. Na posição de índice i fica o (i + 1)-ésimo elemento da sequência, para 0 < i < n 1.
- **b)** void escrever_seq(int x[], int n) para escrever os n primeiros elementos do *array* dado por x. Deve apresentá-los numa linha separados por um espaço. (*Sugestão*: comece por escrever o primeiro elemento (sem espaço) e, depois, cada um dos restantes precedido de um espaço).
- c) copiar (int y[], int x[], int n) para copiar os primeiros n elementos do array dado por x para o array dado por y.
- **d)** int media_arred(int x[], int n) que retorna a média dos n primeiros elementos do *array* dado por x, arredondada para o inteiro mais próximo (pode somar 0.5 e truncar).
- e) int main(), que deverá usar as funções anteriores com funções auxiliares.

Exemplo

Input	Output
4 10	5 6 7 14 5 8 9 8 10 3
2 3 4 6 7 7 2 3 4 9	Media = 8
5 6 7 14 5 8 9 8 10 3	
8 8 8 8 8 8 8 9 10	
4 5 6 7 8 8 9 6 5 4	

- **2.** Dispomos de uma caixa com moedas de valores 200, 100, 50, 20, 10, 5, 2, 1 cêntimos e pretendemos formar uma quantia Q (em cêntimos). Queremos formar Q aplicando o método seguinte:
 - usamos Q/v moedas de valor v, sendo v o valor mais alto não superior a Q; se não existirem Q/v moedas de valor v, usamos todas as que a caixa contém de valor v;
 - sendo k, com $k \ge 0$, o número de moedas de valor v que usámos, aplicamos a mesma estratégia para formar a quantia Q kv, se v > 1 e $Q \ne 0$.
- a) Implemente uma função int troca (int vmoeda[], int dmoeda[], int n, int q) que aplica o método indicado e retorna a quantia que sobra (que é 0 só se conseguiu trocar, o que tal método não garante, mesmo se o conteúdo da caixa o permitia). Em dmoeda[i] tem o número de moedas disponíveis de valor vmoeda[i], para $0 \le i \le n-1$. Admita que o array vmoeda está ordenado por ordem decrescente de valor.

b) Use a função troca para resolver o problema enunciado. A função main deve ler o número de moedas existentes dos oito tipos referidos, por ordem decrescente de valor, e a seguir o valor de Q. Imprime a quantia que sobraria.

Exemplo 1 Input	Exemplo 2 Input
5 3 2 3 0 0 1 1 60	0 2 2 3 0 10 1 1 230
Output	Output
7	0