what is algorithm?

that takes some input and produce some output.

An augorathm is thus a sequence of computational steps that transform the input into the output.

what kinds of problems are solved by algorithms?

- 1) Human genome mapping.
- (ii) Routing of data through intermet
- (ii) Electronics commence security concern.
- (i) andustrial manufacturing sector
- 1 And many morre.

Efficiency of algorithm

- O computer speed is not infinite and memory is not free so we need efficiency alsorithm.
- (ii) Algorithm efficiency can be determined by time and space it need.

- FOR example, insertition sont takes time equal to cont to sort n items while merge sont takes contogn.
- in which one would work faster depends on size of

Example of efficiency:

computer A is 100 times faster than B.

A takes 2n' time to sort in items using insertion sort.

2 (10⁶) instructions = 2 oro second

TB takes 50109n time to sort nitems using merge sont

50.10° Log10° instructions

10° instructions/second

= 10°D second.

Analysis of algorithms:-

Analysis is performed with respect to a computational

we will usually use a generic uniprocessor random access machine.

ACOHIT = Ke

- · All memory equally expensive to access.
- · No concurrent operations.
- · All reasonable instructions take unit time
- o constant world size.

Asymptotie performance

- · Ruming time
- · memony/storage requirements
- · Remember that we use the the all RAM model.
- · All memory equally expensive to access.
- · All reasonable instruction take unit time.
- · constant word size.

An example -> 9nsention sont Strolder is performed with the ansertionsont (A,n) { for i=2 to ms Ket = A [i] access madine. J = 7-1 while (JCO) and (A(J) & Key) A[j+1] = A[j] All reasonable insuretions take unit time constant word size. A [j+1] = key · truming 4 will a a wewlout / stoudle weaminents Remember that we use the the all RAPA mode

# Job Se	equence	PRoblem.	To John Colon Starter Starter
			21+02 = Hand lefel
Profit :-			
deadlines:-	1 3		
Soln -	Job id	3	5 1 2 4 [FITOSH CHANTED]
1	profit :	°- 20	15 10 5 1 आणाल श्रेव
Lea	adlines	2 ,	2. 1 3 3
	Js	03	2. 1 3 3 \sim ReJected \sim
maximum Jeadlines		1 2	7 3 0 0 8
Job id	profit	deadlines	stot assign
73	20	2	[1/2]
J5 J1	15	2	[01] nejected.
72	5	3	[2,3]
24 /	1	3	nejected.

$$B(4.5) = max (3.5) B = (3.5) + 5$$

$$= max(8.5), B = (3.1) + 5$$

$$= max(7.5)$$

$$= 7$$

$$maximum profit:$$

$$= 1 2 3 4$$

$$2 1 0$$

$$4 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4+3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$maximum profit = 4 + 3 = 7$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

$$+ 1 = 0$$

object	PROfit	weight 1 Remaining weight
2	5	1 15-1=14
1	192	3 14-3=11
3	16	4 11-4=7
4	7	2 7-2=5
6	111	4 5-4=1
7	1 %=2	1 1-0=0
-		15 -3 titonia ranu

maximum

Define greedy method.

A greed algorithm is an algorithmic stategy that makes the best choice optimal choice at each small stage with the goal of this eventually reading to a globally optimum solution.

Define Dynamic Programming.

> Dynamic programming is a technique in computer programming that helps to efficiently solve a class of problems that have overlapping subproblems

1 Hown greedy method	and
# what is the difference between greedy method	
dynamic programming.	

to 190000 do	enning tree is a	de - Samily luces - de
10 Lea 1 1551	Greedy method	Dynamic Programming
Main concept	choosing the best option that give the best profit for the best step.	optimizing the recursive backtracking solution.
optima lity	only if we can prove that local aptimality leads to global optimality.	of it is a solution
Time Complexity	Polynomial	polynomial, but usually workse that the greedy approach.
Memore of complexity	morre efficiently.	1ess efficiently
Examples	Pirim's algornithm	op knapiack.

minimum cost spanning trees spanning trees spanning tree is a subgraph of a graph where we should take all vertices and only spanning tree post spanning tree za or do rato \$15. ECH' = 605 = 6 weighted Arraph. spaming thee 9+6+3=13 5+3+6=14

Optimal Storage on tapes:-7=3

L1 = 3 5

L2 =10

L1 L2 L3
5 (5+10) (5+10+3)

ondening	MRT -> minimum Retnival tim	0
11213	5+ (B5+10)+ (5+10+3) = 38	
2,1,2	5+ (5+3) + (5+3+10) = 31	
2,1,3	10 + (10+5) + (10+5+3) = 43 10 + (10+3) + (10+3+5) - 41	
3,1,2	3+ (3+5) + (3+5+10)=29 3+ (3+10) + (3+10+5) = 34	/
	3-29	

4=10, 62=20,63=45,64=70,65=1,6=3,67=7 L8=54, L9=23, L10=67 tents are either completely one no items are solno- 1, 3, 7, 10, 20, 23, 45, 54, 67, 70 Tape 0 -> 4,10,45,70 = 1+ (1+10) + (1+10+45) + (1+10+95+70) = 154 Tope 1 \rightarrow 3,20,54, = 3+(3+20)+(3+20+54) = 103 Tope 2 -> 7,23,67 7+(7+23)+(7+23+67)=134 : AVERAGE time = 194+103+134 = 143.67

The o/1 knapsack problem means that the items are either completely or no items are filled in a knapsack for example; we have two items having weights 2.Kg and 3kg respectively. If we pick the 2kg item then we cannot pick 1 kg item from the 2kg item. we have to pick

Di-fference between primiss algorithm and knuskal algorithm.

al foilt with	
alfortifum alfortifum	kruckal Alforithm
D A greedy algorithm that	O A spanning tree aponith
tinds a minimum stanning	which finds an edge of the
tree for a weighted	least possible weight that
undirected graph.	connects any two thees in the
	forest!
2 9+ stant to built the MS	1 2 97 start to built the MST
from any of the Node.	from minimum weighted
0	Ventex in the graph.
3 Adjaceney matrix, Binar	y 3 Distoint set is used in
heap or Fibonacci Heap	knuskal algonithm.
is used in prim's algor	ith, so you
a primes algorithm run faste	2 (1) Knuskal algorithm Rus Aster
in dense graphs.	in spage maph.
3 Greedy algonithm	(5) Greedy algorithm.
	18 78 (-18 MILE)

sum of subsets W/= [1:6] = \$5,/10,12/13,15,18/5 fotal=73 W={3,4,5,2} find sum of subsets for m = 9 us backtraking algorithm.

