Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

Présentation d'un article : On shape optimization of optical waveguides using inverse problem techniques Thomas Felici & Heinz W Engl

Alexandre Vieira

INSA de Rouen

19 mars 2015

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- 1 Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- 1 Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Équation étudiée

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$\Delta U + n^2 U = 0$$

Figure : Profil du taper

Recherche de conditions au bord

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$\begin{cases} \Delta U + n^2 U &= 0 & \operatorname{pour}\left(x,z\right) \in \Omega \\ U|_{\Gamma} &= 0 & \left(\operatorname{murs\ r\'{e}fl\'{e}chissants}\right) \\ \frac{\partial U}{\partial z} + i \sum_{k=1}^{\infty} \beta_k^{(L)^2} \left\langle U, \tilde{U}_k^{(L)} \right\rangle \tilde{U}_k^{(L)} &= 2i \sum_{k=1}^{\infty} \beta_k^{(L)^2} \left\langle U_I, \tilde{U}_k^{(L)} \right\rangle \tilde{U}_k^{(L)} & \operatorname{sur\ } \Gamma_L \\ \frac{\partial U}{\partial z} - i \sum_{k=1}^{\infty} \beta_k^{(R)^2} \left\langle U, \tilde{U}_k^{(R)} \right\rangle \tilde{U}_k^{(R)} &= 0 & \operatorname{sur\ } \Gamma_R \end{cases}$$

Problème d'optimisation

Shape Opti. Waveguides Alexandre

Vieira Formulation

du problème

Solution du problème

problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

$$\langle \tilde{U}_k, \tilde{U}_k \rangle = \frac{1}{\beta_k}$$
 (2)

On cherche à maximiser :

$$P(n^{2}) = \beta_{1}^{2} |\langle U, \tilde{U}_{1}^{(R)} \rangle|^{2} = \beta_{1}^{2} \left| \int_{x \in \Gamma_{R}} U(x, z_{R}) \tilde{U}_{1}^{(R)}(x) dx \right|^{2}$$
(3)

⇒Formulation difficile à exploiter.

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- 1) Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Représentation locale

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

$$L_t(U) = \frac{\partial^2 U}{\partial x^2} + n^2(x, z)U$$

$$L_t(U_k) = \beta_k^2 U_k$$
 dans Ω_z
 $U_k|_{\partial\Omega_z} = 0$

$$\begin{array}{rcl} U & = & \sum_{k=1}^{\infty} (a_k + a_{-k}) U_k \\ \frac{\partial U}{\partial z} & = & \sum_{k=1}^{\infty} (a_k - a_{-k}) i \beta_k U_k \end{array}$$

(4)

Représentation locale

Shape Opti. Waveguides Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

Puissance dans le *k*ème mode : $|a_k|^2$ et $|a_{-k}|^2$. Ainsi :

$$P(n)=|a_1|^2$$

Longue démonstration pour avoir :

$$\dot{a}_k(z) - i\beta_k a_k(z) = \sum_{j \neq k,0} r_{kj}(z) a_j(z), \ k \neq 0$$

(6)

avec $\beta_{-k} = -\beta_k$ et

$$r_{kj}(z) = rac{\int_{\Omega_z} rac{\partial n^2}{\partial z} U_k U_j ds}{2(eta_k - eta_j)}$$

pour tout $j \neq k$, $j, k \neq 0$

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- 1 Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Discrétisation

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

 $\label{lem:Figure:Profil du taper: discrétisation pour le problème d'optimisation} % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: discrétisation pour le problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: de profil de problème d'optimisation} \end{array} \] % \[\begin{array}{c} \text{Figure: Profil du taper: de profil de p$

Résultats numériques

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

. . .

Figure : Profil du taper : résultat avec N = 48. (a) Forme initial du taper (b) Forme ontimale (c) Perte d'énergie en fonction du nombre d'itérations

Résultats numériques

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Figure : L'énergie est préservée grâce à la resonnance avec les autres modes

Un problème mal posé

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

- Variations arbitrairement grandes sur l'indice de refraction $n \Rightarrow$ Une solution U toujours aussi proche qu'on veut.
- Or, dans l'algorithme d'optimisation, la fonction objectif et les contraintes ne dépendent que de U, et non de n!
- Point de vue physique : l'onde ne voit pas les pics plus petites que sa longueur d'onde
- Pour gagner en stabilité : réduire l'espace de recherche (ajouter de la continuité par exemple)
- À contrario, on pourrait plutôt essayer de chercher la distribution des indices provenant d'une certaine mesure.

 \Rightarrow approche problème inverse

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- 1 Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Waveguides
Alexandre
Vieira

Formulation du problème

Shape Opti.

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

inverses Conclusion

$$1 = \sum_{k \in RB} |a_{-k}(0)|^2 + \sum_{k \in RB} |a_k(z_R)|^2$$

avec $RB = \{k \in \mathbb{Z}^* | \beta_L^2 > 0\}$

Pour rappel:

$$U(x, z_R) = \sum_{k=1}^{\infty} a_k(z_R) U_k^{(R)}(x)$$

Égalité seulement si :

$$egin{bmatrix} |a_1(z_R)| \ |a_2(z_R)| \ |a_3(z_R)| \ dots \ \end{bmatrix} = egin{bmatrix} 1 \ 0 \ 0 \ dots \ \end{aligned}$$

(7)

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

Avantage numérique : on prend en compte tous les a_k !

Dépendance non linéaire de n, et pas forcément de solution. D'où : approche par moindre carrés, et utilisation de la méthode de Newton.

$$\frac{\partial \mathbf{a}}{\partial n}\Big|_{n} \delta n = \mathbf{a}_{1} - \mathbf{a}(n) \tag{8}$$

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

Conclusion

$$\frac{\partial \mathbf{a}}{\partial n}\Big|_{\mathbf{n}} = UDV^T$$

Instabilité numérique reglé par troncature des valeurs singulières du jacobien : choix de $0 < \alpha < 1$ et :

$$r := \max\{i | d_i \ge \alpha d_1\}$$

Et:

$$D_{red} = diag(d_1, ..., d_r, 0, ..., 0)$$

 $\delta n = V D_{red}^{\dagger} U^{\dagger} [\mathbf{a}_1 - \mathbf{a}(n)]$ (9)

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$\min F(\lambda) = \|\mathbf{a}_1 - \mathbf{a}(n_k + \lambda \delta n)\|_2^2$$
$$n_{k+1} = n_k + \lambda_{min} \delta n$$

Conclusion

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

- Une approche par problème inverse efficace, mais sous certaines contraintes
- Moyen d'améliorer : algorithme en cascade
- Calculs très formels : il manque parfois quelques considérations mathématiques (notamment sur les séries)