HW8

Omair Shafi Ahmed

14.1

a) Between 1955:1 and 2009:4, the mean is 0.0072

- b) Mean growth rate in percentage points is 3.08876
- c) The standard deviation is 0.250

- d) The first 4 autocorrelations are 0.3445, 0.2163, 0.0495 and -0.0154
 - . corr dlnRealGDP L.dlnRealGDP if tin(1955q1,2009q4) (obs=220)

	dlnRea~P	L. dlnRea~P
dlnRealGDP		
	1.0000	
L1.	0.3445	1.0000

. corr dlnRealGDP L2.dlnRealGDP if tin(1955q1,2009q4)
(obs=220)

	dlnRea~P	L2. dlnRea~P
dlnRealGDP		
	1.0000	
L2.	0.2163	1.0000

. corr dlnRealGDP L3.dlnRealGDP if tin(1955q1,2009q4)
(obs=220)

	dlnRea~P	L3. dlnRea~P
dlnRealGDP		
	1.0000	
L3.	0.0495	1.0000

. corr dlnRealGDP L4.dlnRealGDP if tin(1955q1,2009q4) (obs=220)

	dlnRea~P	L4 dlnRea~P
dlnRealGDP		
	1.0000	
L4.	-0.0154	1.0000

14.2

a) The estimated AR(1) coefficient is 0.34337 [0.1982098, 0.4885306] and is statistically significant.

```
. regress dlnRealGDP L.dlnRealGDP if tin(1955q1,2009q4), vce(robust)
                                           Number of obs
Linear regression
                                                                    220
                                           F(1, 218) =
                                                                  21.74
                                           Prob > F
                                                                 0.0000
                                           R-squared
                                                                 0.1187
                                           Root MSE
                                                                  .00873
                          Robust
 {\tt dlnRealGDP}
                  Coef.
                         Std. Err.
                                     t
                                           P>|t|
                                                    [95% Conf. Interval]
 dlnRealGDP
       L1.
               .3433702 .0736516
                                     4.66 0.000
                                                     .1982098
                                                                .4885306
      _cons
               .0050586
                        .0008846
                                     5.72 0.000
                                                     .003315 .0068021
```

- . scalar BIC1= $\ln(e(rss)/e(N))+2*\ln(e(N))/e(N)$
- . scalar AIC1=ln(e(rss)/e(N))+2*2/e(N)
- b) The coefficient of the first lag is statistically significant, whereas the coefficient of the second lag is not. BIC(1) being smaller then BIC(2), AR(1) is preferable.

. regress dlnF	RealGDP L.dln	RealGDP L2.dl	nRealGDI	if tin(1955q1,2	2009q 4), vce (robust
Linear regress	ion			Number	of obs	=	220
				F(2, 21	7)	=	11.94
				Prob >	F	=	0.0000
				R-squar	ed	=	0.1294
				Root MS	E	=	.0087
dlnRealGDP	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
dlnRealGDP							
L1.	.3053322	.0796661	3.83	0.000	.1483	3138	.4623506
L2.	.1097903	.0826838	1.33	0.186	0531	L759	.2727565
_cons	.0044984	.0010324	4.36	0.000	.0024	1636	.0065332

- . scalar BIC2= $\ln (e(rss)/e(N))+3*\ln (e(N))/e(N)$
- . scalar AIC2=ln(e(rss)/e(N))+3*2/e(N)

c) Based on BIC, we would be better off chasing one lag, whereas AIC would recommend having two lags. i.e. AR(2) is the better model.

```
. regress dlnRealGDP L(1/3).dlnRealGDP if tin(1955q1,2009q4), vce(robust)
Linear regression
                                              Number of obs
                                                                        220
                                              F(3, 216)
                                                                        7.89
                                                               =
                                              Prob > F
                                                                      0.0001
                                                               =
                                                                      0.1327
                                              R-squared
                                              Root MSE
                                                                       .0087
                            Robust
 dlnRealGDP
                           Std. Err.
                                                        [95% Conf. Interval]
                   Coef.
                                         t
                                              P>|t|
 dlnRealGDP
        L1.
                .3119704
                           .0802763
                                       3.89
                                              0.000
                                                        .1537453
                                                                    .4701956
        L2.
                .1286768
                           .0898773
                                       1.43
                                              0.154
                                                        -.048472
                                                                   .3058256
        L3.
               -.0616961
                           .0759268
                                       -0.81
                                              0.417
                                                       -.2113485
                                                                    .0879562
                                                                   .0068741
                .0047812
                           .0010618
                                       4.50 0.000
                                                       .0026884
      _cons
```

[.] scalar BIC3= $\ln(e(rss)/e(N))+4*\ln(e(N))/e(N)$

[.] scalar AIC3=ln(e(rss)/e(N))+4*2/e(N)

. regress dlnRealGDP L(1/4).dlnRealGDP if tin(1955q1,2009q4), vce(robust)

Linear regression
Number of obs = 220 F(4, 215) = 5.99 Prob > F = 0.0001 R-squared = 0.1342 Root MSE = .00872

dlnRealG	3DP	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
dlnRealG	SDP						
I	1.	.3093836	.079642	3.88	0.000	.1524045	.4663627
I	.2.	.1337497	.0923868	1.45	0.149	04835	.3158495
I	.3.	0488982	.0766608	-0.64	0.524	2000011	.1022048
I	.4.	0413429	.0815097	-0.51	0.613	2020033	.1193175
_cc	ons	.004986	.0011237	4.44	0.000	.002771	.0072009

- . scalar BIC4=ln(e(rss)/e(N))+5*ln(e(N))/e(N)
- . scalar AIC4=ln(e(rss)/e(N))+5*2/e(N)

. scalar dir

AIC2 = -9.4751907

AIC3 = -9.4699327

AIC4 = -9.4625434

AIC1 = -9.4720938

BIC4 = -9.3854155

BIC3 = -9.4082304

BIC1 = -9.4412426

BIC2 = -9.428914

14.5

a) AR(1) has an r-squared of 0.1187 whereas ADL(1,4) has an r-squared of 0.1921. The R squared increases by 0.0734.

```
. gen dTBillRate=D.TBillRate
(1 missing value generated)
. regress dlnRealGDP L.dlnRealGDP L(1/4).dTBillRate if tin(1955q1,2009q4), vce(robust)
Linear regression
                                                Number of obs
                                                                          220
                                                                 =
                                                F(5, 214)
                                                                         8.05
                                                Prob > F
                                                                 =
                                                                       0.0000
                                                R-squared
                                                                 =
                                                                       0.1921
                                                Root MSE
                                                                        .00844
                            Robust
                                              P>|t| [95% Conf. Interval]
  dlnRealGDP
                   Coef. Std. Err.
                                         t
  dlnRealGDP
                                                           .170809
        ы1.
                .3304833 .0810072 4.08 0.000
                                                                      .4901575
  dTBillRate
                                                                    .0035614
                                      2.06 0.041
                .0018182 .0008844
                                                        .0000749
        L1.
               -.0033377 .0009575 -3.49 0.001
.0012095 .0007504 1.61 0.108
-.0024893 .0008687 -2.87 0.005
        L2.
                                                        -.0052251
                                                                    -.0014503
                                                       -.000<u>-</u>
-.0002697
        L3.
                                                                      .0026887
                                                       -.0042017
        L4.
                                                                      -.000777
                 .0051465 .0009455
                                      5.44 0.000
                                                         .0032829
                                                                      .0070102
       _cons
```

b) The granger causality f-statistic is 5.11. As it is greater than 3.32 it is significant at the 1% level.

```
. test L1.dTBillRate L2.dTBillRate L3.dTBillRate L4.dTBillRate
```

- (1) L.dTBillRate = 0
- (2) L2.dTBillRate = 0
- (3) L3.dTBillRate = 0
- (4) L4.dTBillRate = 0

$$F(4, 214) = 5.11$$

 $Prob > F = 0.0006$