一次元アーキテクチャへの搭載に向けた 量子回路設計支援アプリケーション

東京大学大学院 情報理工学系研究科 電子情報学専攻 長谷川研究室 修士1年 内藤壮俊

自己紹介

- ▶ プログラミング経験
 - ▶ 競技プログラミング (C++)
 - ▶ ゲーム開発 (Unity C#)
 - ▶ 研究, ウェブ開発 (Python, JavaScript)
- ▶ 量子コンピューティングの経験
 - ▶ 量子ゲート型: IBM Quantum Challenge 2020 に参加した程度
 - ▶ 量子アニーリング型:今回が初めて

参加したきっかけ

- ▶ 量子アニーリングを使って、量子ゲートの回路設計を支援できないか?
 - ▶ コラボって感じがしてカッコいい

- 現存するゲート型量子コンピュータは数十ビット程度の規模なので、 扱う問題の大きさとしてちょうど良い…?
 - ▶ アニーリングが先行している分だけ、アドバンテージが活かせそう

背景説明

量子ゲート型計算機

- ▶ ゲート通過による状態の変化を利用
- ▶ 任意の量子回路はU3ゲート(1入力,赤色)とCXゲート(2入力,青色)に展開可能

図:IBM Qにて作成した量子回路の例.

(左:回路設計段階における見た目. 右:U3ゲートとCXゲートに展開した結果.)

量子回路の実機搭載

- ▶ 「設計図上のビット」と「デバイス上のビット」の対応を考える必要がある
- ▶ CXゲートは物理的に隣り合う2ビットにしか作用できない
 - ▶ 離れている場合は? → SWAPゲートを使って入れ替える必要がある

左図:

IBM「Rochester」における 量子ビットの配置.

右図:

Google「Sycamore」における 量子ビットの配置.

量子回路のコスト

- ▶ 今回は、エラー率によってコストを見積もることとする
 - ▶ CXゲートのエラー率はU3ゲートの10倍程度
 - ▶ SWAPゲートはCXゲート3つから構成される

図:SWAPゲートの構成.

- ► CXゲートやSWAPゲートの個数が支配的
 - ▶ エラー率の比は U3ゲート: CXゲート: SWAPゲート = 1:10:30
 - ▶ SWAPゲートの個数をできるだけ減らしたい

扱う問題

▶ 量子ビットが一直線上に配置されたアーキテクチャにおいて, CXゲートを含むレイヤーのそれぞれに対し,量子ビットの配置を決定する

▶ 制約: CXゲートは物理的に隣り合う2ビットにしか作用できない

▶ コスト: レイヤー間に挿入するSWAPゲートの個数

図:レイヤーの構成.

古典的なアプローチ (動的計画法による高速化)

- \blacktriangleright 量子ビットの個数 N に対し、各レイヤーにおける配置は N! 通り
- \blacktriangleright レイヤーの枚数 M に対して、全体の取りうる状態数は $(N!)^M$ 通り
- ▶ 配置に対する暫定的なコストを持っておくことで, 空間計算量 $O(M \cdot N!)$, 時間計算量 $O(M \cdot (N!)^2)$ で解くことができる
- N=10 で $(N!)^2\approx 1.3\times 10^{13}$ なので、小規模の回路にしか適用できない。

背景説明 まとめ

- ▶ 実機搭載において, CXゲートは物理的に隣り合うビットにしか作用できない
- ▶ ビットが離れている場合, SWAPゲートでビットを入れ替える必要がある
- ▶ SWAPゲートのエラー率は非常に高いため,使う個数をできるだけ減らしたい
- ▶ 古典的解法は計算量が非常に大きく、小規模な回路にしか使えない

提案手法

バイナリ変数を用いた定式化

- ▶ 各レイヤーにおける量子ビットは [0,1,…,N 1] の並び替えとなる
- Q_{mnv} : 「レイヤー m における n 番目は、設計図における v 番目に対応する」
 - ► MN² 個の量子ビットが必要
- ▶ one-hot 制約
 - ightharpoonup 「設計図におけるビットは1つのビットに対応する」: $\sum_{n=0}^{N-1} oldsymbol{Q_{mnv}} = 1$
 - ▶ 「レイヤーにおけるビットは1つのビットに対応する」: $\sum_{v=0}^{N-1} Q_{mnv} = 1$
- ▶ CXゲートによる制約
 - ▶ 作用させる2ビットは物理的に隣り合っていなければならない
 - ト ペナルティ関数: $\sum_{(a,b)\in[CX-gates]} \sum_{(i,j),|i-j|\geq 2} Q_{mia} Q_{mjb}$

コスト関数の定式化 (初期案)

- ▶ $C_{ij} = 1 \leftrightarrow C[i] = j \leftrightarrow A[i] = B[j]$ を用意
 - ▶ 隣り合うレイヤー A,B 間において、シンボルが一致しているかどうか
- ▶ 転倒数 (= シンボルどうしが入れ替わった回数) を以下のように定式化
 - $ightharpoonup cost = \sum_{0 \le i_1 < i_2 < N} \sum_{0 \le j_2 < j_1 < N} C_{i_1 j_1} \cdot C_{i_2 j_2}$
- ▶ しかし,うまくいかず...
 - ▶ 制約条件 $C_{ij} = \sum_{v=0}^{N-1} A_{iv} B_{jv}$ は、2次多項式の形をしている
 - ト ペナルティの関数は $\left(C_{ij} \sum_{v=0}^{N-1} A_{iv} B_{jv}\right)^2 = 0$ となり,2次以下の多項式で表せない 2次式の2乗 = 4次式

転倒数の近似によるアプローチ

- ▶ 重回帰分析を試した結果
 - $ightharpoonup 10^{14}$ オーダーの係数が出てきてしまったが、まあまあ綺麗にフィットしていた
- ▶ 期待値による推定を行った結果
 - ▶ 係数は計算できるが,のっぺりした分布に...

図: 重回帰分析, 期待値による転倒数の推定結果. 横軸が正しい値, 縦軸が推定値である.

- ▶ 驚くべきことに,両者は互いに一次関数の関係にあった
 - ▶ そのため, 重回帰分析のフィッティング結果を生成できるように

転倒数の推定モデルの実装

- ▶ 期待値による推定:転倒数 $\approx \left\{ \sum_{0 \leq i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1} \right) \cdot C_{ij} \right\}$
- ▶ 重回帰分析の結果へ変換: $y = \frac{2N-2}{N}x \frac{(N-1)(N-2)}{4}$
- - トレイヤーm, m+1間においては, $A_{iv}=Q_{miv}, B_{jv}=Q_{(m+1)jv}$
- ▶ 代入すると、以下のように整理できる

$$\sum_{m=0}^{M-2} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} \mathbf{Q}_{miv} \mathbf{Q}_{(m+1)jv} \right) \right\} - \underbrace{(M-1)\frac{(N-1)(N-2)}{4}}_{4}$$

この部分を最小化したい.

定数項.

最小化においては無視される.

QUBO形式への変換

- $cost = \sum_{m=0}^{M-2} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} Q_{miv} Q_{(m+1)jv} \right) \right\}$
- ト $constraint = \sum_{m=0}^{M-1} \left\{ \underbrace{\sum_{v=0}^{N-1} (1 \sum_{n=0}^{N-1} \boldsymbol{Q_{mnv}})^2 + \sum_{n=0}^{N-1} (1 \sum_{v=0}^{N-1} \boldsymbol{Q_{mnv}})^2 + \sum_{v=0}^{N-1} (1 \sum_{v=0}^{N-1} \boldsymbol{Q_{mnv}})^2 +$
- ightharpoonup model = constraint × λ + cost として構成した
 - ▶ model の項数(= モデルの規模)は O(MN³) 個
 - 制約 >> コストとするために、とりあえず λ = 100 と設定

提案手法 まとめ

- ▶ SWAPゲートの個数 = 転倒数 は4次式で表されるため, 2次以下で近似を試みた
- ▶ 重回帰分析の結果 (= 最適解?) では係数が発散してしまったが, 期待値による推定結果から変換可能だった
- $ightharpoonup model = constraint × λ + cost として, <math>O(MN^3)$ サイズのモデルを構築

パフォーマンスの評価

評価:コスト最小化の性能比較

- ▶ ランダムに生成したデータ10個に対してコストを計算した
 - ▶ 古典的解法は最適解を出力するので,必ず 古典的解法 ≤ Amplify解法 となる
 - ト Amplify解法においては, $\lambda = 100$, timeout = 1秒 として実行
- N, M の大きいケースで誤差が大きくなった
 - ▶ 制約の重み λ を小さくする + timeout を伸ばすことでコスト抑制が可能

N	3	4	5	6
古典的解法 (M = 5)	0.6	1.4	2.1	4.1
Amplify解法 (M = 5)	0.6	1.4	2.1	4.5
古典的解法 (M = 20)	3.8	13.0	15.0	24.9
Amplify解法 (M = 20)	3.8	13.1	18.9	34.0

表: それぞれの解法における コストの平均値,

評価:実行時間の比較

M=5 にて、N を動かした時の実行時間(秒)を比較した

N	3	4	5	6	7	8	9	10	15	20
古典的解法	0.0007	0.0084	0.4551	8.9532	566.95	_	_	_	_	_
Amplify解法	1.8336	1.8184	1.4685	1.1751	1.2766	1.3620	1.3654	1.6483	6.1014	20.047

表: N を動かした時の実行時間の比較. $6 \le N$ においてAmplify解法の方が高速となっている.

- ightarrow N が大きくなると、Amplify解法でも時間がかかる傾向に
 - $O(MN^3)$ サイズのモデル構築に時間がかかっていた
- ightharpoonup といっても,古典的解法は $O(M\cdot(N!)^2)$ なので飛躍的向上と言える
 - N=10 のとき, $(10!)^2\div 10^3\approx 132$ 億倍の高速化に成功

パフォーマンスの評価 まとめ

古典的解法

- ▶ 厳密解を計算する
- $O(M \cdot (N!)^2)$ の時間がかかる
- ▶ 小規模 (N ≤ 6) の回路に強い

Amplify解法

- 近似解を計算する (λで調整可)
- $O(MN^3) + timeout$ の時間がかかる
- ▶ 中規模 (7 ≤ N ≤ 50) の回路に強い

アプリケーションの作成

OpenQASMとの連携

- ▶ 「OpenQASM」という言語で書かれた回路を入力できるようにしたい
- ▶ U3ゲートとCXゲートに分解済みの回路を入力に用いる

図:展開した後の回路.

```
cx qA[1],qB[1];
                                                                            cx qC[1],qC[0];
                                   u3(pi/2,0,5*pi/4) qC[1];
                                                                           u3(0,0,pi/4) qC[0];
u3(pi/2,0,pi) qC[0];
cx qA[0],qC[0];
                                   \operatorname{cx} \operatorname{qC}[1], \operatorname{qC}[0];
                                                                            cx qB[0],qC[0];
u3(0,0,-pi/4) qC[0];
                                   u3(0,0,pi/4) qC[0];
                                                                           u3(0,0,pi/4) qB[0];
u3(pi/2,0,pi) qC[1];
                                   cx qA[0],qC[0];
                                                                           u3(0,0,-pi/4) qC[0];
cx qB[1],qC[1];
                                   u3(0,0,pi/4) qA[0];
                                                                            cx qC[1],qC[0];
u3(0,0,-pi/4) qC[1];
                                   u3(0,0,-pi/4) qC[0];
                                                                           u3(pi/2,0,5*pi/4) qC[0];
\operatorname{cx} \operatorname{qA}[1],\operatorname{qC}[1];
                                  \operatorname{cx} \operatorname{qC}[1],\operatorname{qC}[0];
                                                                           \operatorname{cx} \operatorname{qC}[1], \operatorname{qB}[0];
                                                                           u3(0,0,-pi/4) qB[0];
u3(0,0,pi/4) qC[1];
                                   u3(0,0,9*pi/4) qC[0];
\operatorname{cx} \operatorname{qB}[1], \operatorname{qC}[1];
                                   cx qB[0],qC[0];
                                                                           u3(0,0,pi/4) qC[1];
u3(0,0,pi/4) qB[1];
                                   u3(0,0,-pi/4) qC[0];
                                                                            cx qC[1],qB[0];
u3(0,0,-pi/4) qC[1];
                                   \operatorname{cx} \operatorname{qC[1],qA[0]};
                                                                            cx qB[0],qC[1];
\operatorname{cx} \operatorname{qA}[1], \operatorname{qC}[1];
                                   u3(0,0,-pi/4) qA[0];
                                                                            \operatorname{cx} \operatorname{qA}[1],\operatorname{qC}[2];
\operatorname{cx} \operatorname{qA}[1], \operatorname{qB}[1];
                                   u3(0,0,pi/4) qC[1];
                                                                            cx qB[1],qC[2];
u3(0,0,pi/4) qA[1];
                                   \operatorname{cx} \operatorname{qC[1],qA[0]};
u3(0,0,-pi/4) qB[1];
                                   cx qA[0],qC[1];
```

図:出力されるOpenQASMプログラム.

アプリ機能紹介:量子回路の描画

- ▶ tkinterというライブラリで実装
- ▶ 設計図段階の回路と, Amplify解法の 実行結果を描画する

図:読み込んだ回路設計図の一部. (IBM Q上で描画.)

図:ビジュアライザ上での描画結果.

アプリ機能紹介: Amplifyの呼び出し

- ► Amplify解法を実行
 - ▶ タイムアウト (timeout) の調整可
 - 制約重みパラメータ (λ) の調整可
- ▶ 実行結果の描画
 - ▶ SWAPゲートは「X-X」で描画されている
- ▶ 良い解が見つかるまで調整・再試行が可能
 - ▶ 回路設計の効率化につながる

図: Amplify解法の実行結果.

アプリ機能紹介: OpenQASM形式で出力

- ▶ SWAPゲートを3つのCXゲートに置き換えることで OpenQASM形式に書き換えることが可能
 - ▶ 設計図段階の回路を入力して、アプリで実機搭載 可能な回路に変換して、その結果を出力する

図:SWAPゲートの展開.

- ▶ CXゲートの個数が最も少なくなるように置き換えを実行
 - ▶ 上下反転を考えると、置き換えは2通りある
 - ▶ CXゲートが相殺する場合がある

図:CXゲートの個数が減るケース.

アプリケーションの作成 まとめ

設計図段階の 量子回路の入力・描画

timeout, λ の調整

Amplify解法の実行 実行結果の描画

実機搭載可能な量子回路の出力

発表は以上になります. ありがとうございました.