

Epreuve: CRYPTOGRAPHIE / M. BONNETON

JUILLET 2014 Durée : 2 heures

Calculatrice graphique autorisée – Aucun document

**Exercice 1:** L'armée de César comptait plus de 1000 hommes et moins de 3000. Lorsqu'il voulut la dénombrer par groupes de 9, il restait 5 soldats, par groupes de 13, il en restait 8. En revanche, il pouvait faire des groupes de 11 sans qu'il ne reste de soldats. Combien y avait-il d'hommes dans son armée ?

**Exercice 2:** Lester Hill (mathématicien américain, 1891-1961) a publié en 1929 une méthode de chiffrement dite polygraphique. On commence par associer à chaque lettre de l'alphabet un nombre compris entre 0 et 25 (A=0, B=1, ..., Z=25). On se donne une matrice A =  $\begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$ 

- 1. Vérifier que la matrice A permet de chiffrer correctement un message en clair et de la décoder.
- 2. Chiffrer le message « CODAGE »
- 3. Décoder le message « EELBZJ »

 $111 \rightarrow 100$ 

## Exercice 3 : Compléter les réseaux de Feistel suivants :



$$w = 101110 \in \{0, 1\}^6$$

$$f_1 : \{0, 1\}^3 \to \{0, 1\}^3$$

$$000 \to 101$$

$$001 \to 100$$

$$010 \to 111$$

$$100 \to 000$$

$$011 \to 001$$

$$110 \to 101$$

$$110 \to 010$$

$$111 \to 110$$

$$000 \to 010$$

$$001 \to 001$$

$$010 \to 111$$

$$100 \to 010$$

$$011 \to 001$$

$$010 \to 110$$

$$100 \to 111$$

$$101 \to 011$$

$$110 \to 001$$

## **Exercice 4:** ATTAQUE DU RSA SUR MODULE COMMUN

Alice, Bob et Charlie, trois dangereux terroristes, préparent un double attentat contre la maison blanche. Pour communiquer à ses deux complices le message m contenant l'heure de l'attentat (format hhmm), Alice leur envoie les messages chiffrés :  $m_1 = 4166 \equiv m^{e1} \mod n$  et  $m_2 = 5094 \equiv m^{e2} \mod n$ 

En utilisant leurs clés RSA publiques respectives :  $(n, e_1) = (9313, 5465) & (n, e_2) = (9313, 7807)$ 

Mais ces deux messages m<sub>1</sub> et m<sub>2</sub> sont interceptés ainsi que leurs clés publiques par les services du NCIS.

- 1/ En découvrant ces données, l'agent T. MC Guy s'écrit : « Mais ils ont pris le même module n et en plus les exposants de chiffrement publiques  $e_1$  et  $e_2$  sont premiers entre eux !!!! Quelle erreur !!! Je dois pouvoir déchiffrer ce message par une simple attaque sur module commun ! »
  - a/ Vérifiez que e<sub>1</sub> et e<sub>2</sub> sont premiers entre eux.
  - b/ Déterminez une identité de Bezout entre  $e_1$  et  $e_2$ :  $e_1 \times d_1 + e_2 \times d_2 = 1$
  - c/ En partant de m =  $m^1 = m^{e_1 \times d_1 + e_2 \times d_2} \mod n$ , montrer que l'on peut retrouver m à l'aide de  $m_1$ ,  $m_2$ ,  $d_1$  et  $d_2$ .
  - d/ Sachant que  $m_2^{-1}$  = 7940 mod n, en déduire l'heure de l'attentat m.
- 2/ L'agent A. Sciuto marmonne : « C'est quoi cette attaque sur module commun ? Je suis sûre que ma calculatrice viendra à bout plus rapidement de la factorisation de n= 9313 !! »
  - a/ Déterminer la décomposition en facteurs premiers de 9313.
  - b/ En déduire la valeur de l'indicatrice d'Euler : φ(n)
  - c/ Déterminer maintenant  $c_1$  l'inverse de  $e_1$  mod  $\varphi(n)$
  - d/Retrouver l'heure de l'attentat m à partir de  $m_1$  et  $d_1$ .

## Rappels et aide:

- Pour montrer que deux nombres sont premiers entre eux, il faut calculer le PGCD des 2 nombres.
- Règles de calculs sur les puissances :  $x^{ab+c} = x^{ab}$  .  $x^c = (x^a)^b$  .  $x^c = (x^b)^a$  .  $x^c$
- $x^{-a} = (1/x)^{a}$
- $4166^{10} = 5798 \mod 9313$   $5094^{-7} = 7940^{7} = 4835 \mod 9313$ 
  - Indicatrice d'Euler :  $\phi(n) = n(1-\frac{1}{p_1})...(1-\frac{1}{p_r})$
  - 4166 <sup>5</sup> = 1200 mod 9313

## Le théorème chinois des restes

Soit  $m_1, m_2, \ldots, m_r$  une suite d'entiers positifs premiers entre eux deux à deux. Alors le système de congruences :

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_r \pmod{m_r} \end{cases}$$

a une solution unique x modulo  $M=m_1 imes m_2 imes \cdots imes m_r$  :

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_r M_r y_r$$

avec

$$M_i = M/m_i \qquad y_i M_i \equiv 1 \pmod{m_i}$$

Chaque groupe de 2 lettres, ou par identification de 2 nombres  $x_1, x_2$ , est représenté par un vecteur colonne  $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ . Les relations de

dépendance linéaire sont, comme souvent, représentés par une matrice  $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ . On a, dans  $\mathbb{Z}/26\mathbb{Z}$  , la relation

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = A \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

où  $\left(egin{array}{c} y_1 \\ y_2 \end{array}
ight)$  est le bloc codé, et  $\left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$  est le bloc clair.

Une matrice carrée à coefficient dans  $\mathbb{Z}/26\mathbb{Z}$  est inversible si et seulement si son déterminant est inversible modulo 26. De plus, lorsque m=2, l'inverse est donné par la formule :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

RAPPEL SUR LE RSA:

Alice

Bob

M

choisit p et qe premier avec p-1 et q-1

calcule 
$$n = p \times q$$
  
d tel que  $ed \equiv 1 \pmod{\varphi(n)}$ 

envoie (n, e) à Alice

calcule 
$$C = M^e \pmod{n}$$
  
et l'envoie à Bob

calcule  $C^d \pmod{n}$