Week 10 IVLE Quiz

- 1. Which of the following statements below is/are definitely correct?
 - (I) If u is a least squares solution to Ax = b, then u is an exact solution to $A^TAx = A^Tb$.
 - (II) If \boldsymbol{u} is an exact solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$, then \boldsymbol{u} is an exact solution to $\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^T\boldsymbol{b}$.
 - (A) (I) only.
 - (B) (II) only.
 - (C) Both (I) and (II).
 - (D) Inconclusive, more information is required.

Answer: (C). Recall the Theorem in Unit 54 (slide 8).] bbu is a least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if \mathbf{u} is a solution to $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$. So statement (I) is true. Statement (II) is also true since an exact solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is the best least squares solution there is.

- 2. Suppose $\mathbf{b} \in \mathbb{R}^n$ is a vector that is not in the column space of a $n \times m$ matrix \mathbf{A} . How many statements below is/are definitely correct?
 - (I) $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent.
 - (II) The projection of \boldsymbol{b} onto the column space of \boldsymbol{A} is a least squares solution to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$.
 - (III) If \boldsymbol{u} is a solution to $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$, then $\boldsymbol{A} \boldsymbol{u}$ is the projection of \boldsymbol{b} onto the column space of \boldsymbol{A} .
 - (A) None.
 - (B) Exactly one.
 - (C) Exactly two.
 - (D) All three.

Answer: (C). Statement (I) is true since \boldsymbol{b} is not in the column space of \boldsymbol{A} . Statement (II) is incorrect since the projection of \boldsymbol{b} onto the column space of \boldsymbol{A} , say \boldsymbol{p} , is **NOT** a least squares solution. Instead, solving $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{p}$ yields a least squares solution. Statement (III) is correct since \boldsymbol{u} is a solution to the normal equation means that \boldsymbol{u} is a least squares solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$. This implies that \boldsymbol{u} is a solution to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{p}$.

- 3. Let V be a subspace of \mathbb{R}^n . If $\boldsymbol{b} \in \mathbb{R}^n$ does not belong to V and \boldsymbol{p} is the orthogonal projection of \boldsymbol{b} onto V, which of the following statements is/are correct?
 - (I) $\boldsymbol{p} \neq \boldsymbol{b}$.
 - (II) p b is orthogonal to p.
 - (III) p b is orthogonal to b.
 - (A) (II) and (III) only
 - (B) (I) and (II) only
 - (C) (I) and (III) only
 - (D) None of the given combinations is correct

Answer: (B). Statement (I) is correct since \boldsymbol{b} is not in V, then the vectors \boldsymbol{b} and its projection onto V (\boldsymbol{p}) would be different. Statement (II) is correct since the difference $\boldsymbol{b} - \boldsymbol{p}$ (and thus $\boldsymbol{p} - \boldsymbol{b}$ as well) is a normal vector to V, meaning that $\boldsymbol{p} - \boldsymbol{b}$ is orthogonal to all vectors in V, including \boldsymbol{p} . Statement (III) is incorrect as $\boldsymbol{p} - \boldsymbol{b}$ is orthogonal to \boldsymbol{p} , not to \boldsymbol{b} .

- 4. Suppose I am applying Gram-Schmidt Process on $S = \{u_1, u_2, \dots, u_k\}$ (a basis) to convert S into an orthogonal set $T = \{v_1, v_2, \dots, v_k\}$. How many statements below is/are definitely true?
 - (I) $\mathbf{v_i} \cdot \mathbf{v_j} = 0$ for all $i \neq j$.
 - $(\mathrm{II}) \ \mathrm{span}\{\boldsymbol{u_1},\boldsymbol{u_2},\cdots,\boldsymbol{u_k}\} = \mathrm{span}\{\boldsymbol{v_1},\boldsymbol{v_2},\cdots,\boldsymbol{v_k}\}.$
 - (III) It is possible that T contains the zero vector.
 - (A) Exactly one.
 - (B) Exactly two.
 - (C) All three.
 - (D) None.

Answer: (B). Note that S is a basis, so S is a linearly independent set. Statement (I) is correct since the vectors in T are pairwise orthogonal. Statement (II) is correct since both S and T are bases for the same subspace. Statement (III) is incorrect since T is a basis, it cannot contain the zero vector (else it would be linearly dependent).

- 5. Suppose Ax = b is an inconsistent linear system. Which of the statements below is definitely correct?
 - (A) The least squares solution for Ax = b is unique.
 - (B) The projection of \boldsymbol{b} onto the column space of \boldsymbol{A} is unique.
 - (C) \boldsymbol{b} belongs to the column space of \boldsymbol{A} .

(D) \boldsymbol{A} is not of full rank.

Answer: (B). Statement (A) is not necessarily correct since a linear system can be infinitely many least squares solution (imagine a consistent linear system with inifinitely many exact solutions, all of which are least squares solutions). Statement (C) is incorrect since $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent. Statement (D) is not necessarily correct since \mathbf{A} can be full rank and still $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent. Statement (B) is correct since the projection is always unique.