TEST REPORT

Reference No. : WTS14S0816950R1E

FCC ID : 2ACU9-UDRC24

Applicant.....: Shenzhen Jietuo Industries Co., Ltd.

Address: 3rd Floor, Building C2, Xintang Industrial Park, East Baishixia, Fuyong,

Baoan, Shenzhen, PRC.

Manufacturer : The same as above

Address..... : The same as above

Product Name.....: Digital Wireless Camera

Model No. : UDRC34HD

Standards...... : FCC CFR47 Part 15 Section 15.247:2015

Date of Receipt sample : Apr. 19, 2016

Date of Test : Apr. 20 - 26, 2016

Date of Issue...... : Apr. 27, 2016

Test Result.....: Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. The Report is renew the test for Radiated Spurious Emissions and Conduct Emission .

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Testing location: The same as above Tel:+86-755-83551033

Fax:+86-755-83552490

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

ed by:

Reference No.: WTS14S0816950R1E Page 2 of 51

2 Test Summary

Test Items	Test Requirement	Result	
Conduct Emission	15.207	PASS	
	15.205(a)		
Radiated Spurious Emissions	15.209	PASS	
	15.247(d)		
Dand adae	15.247(d)	PASS	
Band edge	15.205(a)		
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207/h)/1)	DACC	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T	
	4.3 CHANNEL LIST	
	4.5 TEST FACILITY	5
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	8
	6.2 EUT SETUP	
_	6.3 CONDUCTED EMISSION TEST RESULT	
7	RADIATED SPURIOUS EMISSIONS	
	7.1 EUT OPERATION	
	7.3 SPECTRUM ANALYSER SETUP	13
	7.4 TEST PROCEDURE	
	7.6 SUMMARY OF TEST RESULTS	
8	BAND EDGE MEASUREMENT	18
	8.1 TEST PROCEDURE	
	8.2 TEST RESULT	
9	20 DB BANDWIDTH MEASUREMENT	
	9.1 TEST PROCEDURE	
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure:	
	10.2 Test Result	24
11	HOPPING CHANNEL SEPARATION	27
	11.1 Test Procedure:	
40	11.2 TEST RESULT NUMBER OF HOPPING FREQUENCY	
12	12.1 Test Procedure:	
	12.1 TEST PROCEDURE. 12.2 TEST RESULT:	
13	DWELL TIME	
	13.1 Test Procedure:	31
	13.2 Test Result:	
14	ANTENNA REQUIREMENT	36
15	RF EXPOSURE	37

Reference No.: WTS14S0816950R1E Page 4 of 51

15.	1 REQUIREMENTS	37
15.	2 THE PROCEDURES / LIMIT	37
15.	3 MPE CALCULATION METHOD	38
16 PH	OTOGRAPHS -MODEL UDRC34HD TEST SETUP	39
16.	1 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	39
16.	2 PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	39
17 PH	OTOGRAPHS - CONSTRUCTIONAL DETAILS	41
17.	1 Model UDRC34HD External View	41
17	2 MODEL UDRC34HD INTERNAL VIEW	45

Reference No.: WTS14S0816950R1E Page 5 of 51

4 General Information

4.1 General Description of E.U.T.

Product Name : Digital Wireless Camera

Model No. : UDRC34HD

Operation Frequency : 2408MHz ~ 2468MHz, 16 channels in total

Type of Modulation : GFSK

The lowest oscillator : 32.768kHz

Antenna installation : Dipole antenna

Antenna Gain : 2dBi

4.2 Details of E.U.T.

Technical Data :DC 9V, 600mA powered by adapter

(Adapter Input: 100-240V~50/60Hz, 200mA)

Adapter : Csec, M/N:CS6D090060FUF

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2408	2	2412	3	2416	4	2420
5	2424	6	2428	7	2432	8	2436
9	2440	10	2444	11	2448	12	2452
13	2456	14	2460	15	2464	16	2468

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Bluetooth mode	Test mode	Low channel	Middle channel	High channel
EDR	Transmitting	2402MHz	2441MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207 and 15.209

Test Item	Test Mode
Radiated Emissions	Communication
Conducted Emissions	Communication

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Reference No.: WTS14S0816950R1E Page 6 of 51

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

• FCC Test Site 1#- Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

Condu	Conducted Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.18,2015	Sep.17,2016			
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.18,2015	Sep.17,2016			
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.18,2015	Sep.17,2016			
4.	Cable	LARGE	RF300	-	Sep.18,2015	Sep.17,2016			
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.18,2015	Sep.17,2016			
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.18,2015	Sep.17,2016			
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.18,2015	Sep.17,2016			
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.18,2015	Sep.17,2016			
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Sep.18,2015	Sep.17,2016			
6	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.18,2015	Sep.17,2016			
7	Coaxial Cable (above 1GHz)	Тор	1000MHz- 25GHz	EW02014-7	Sep.18,2015	Sep.17,2016			
8	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.18,2015	Sep.17,2016			

5.2 Measurement Uncertainty

Antenna

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S0816950R1E Page 8 of 51

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: $66-56 \text{ dB}_{\mu}\text{V} \text{ between } 0.15\text{MHz } \& 0.5\text{MHz}$

56 dBμV between 0.5MHz & 5MHz60 dBμV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-Peak &

Average if maximised peak within 6dB of Average Limit

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 1012 mbar

EUT Operation:

The test was performance on bluetooth linking mode, the test data shown in the report.

The EUT was tested according to ANSI C63.10. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The EUT was placed on the test table in shielding room.

Condu

6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS14S0816950R1E Page 11 of 51

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

<u> </u>						
	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS14S0816950R1E Page 13 of 51

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyser Setup

Below 30MHz		
	Sweep Speed IF Bandwidth Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	
	Video Bandwidth	10Hz

Reference No.: WTS14S0816950R1E Page 14 of 51

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

Reference No.: WTS14S0816950R1E Page 15 of 51

7.6 Summary of Test Results

Test Frequency: 32.768KHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Test mode: transmitting mode

	Receiver		Turn		Corrected	ed Corrected			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Low Channel								
268.32	36.89	QP	57	1.2	Н	-13.35	23.54	46.00	-22.46
268.32	41.33	QP	338	1.5	V	-13.35	27.98	46.00	-18.02
4804.00	46.15	PK	358	1.9	V	-1.06	45.09	74.00	-28.91
4804.00	43.52	Ave	358	1.9	V	-1.06	42.46	54.00	-11.54
7206.00	40.62	PK	100	1.3	Н	1.33	41.95	74.00	-32.05
7206.00	35.37	Ave	100	1.3	Н	1.33	36.70	54.00	-17.30
2331.19	46.76	PK	119	1.6	V	-13.19	33.57	74.00	-40.43
2331.19	38.25	Ave	119	1.6	V	-13.19	25.06	54.00	-28.94
2352.40	43.49	PK	144	1.4	Н	-13.14	30.35	74.00	-43.65
2352.40	36.19	Ave	144	1.4	Н	-13.14	23.05	54.00	-30.95
2496.61	42.26	PK	82	1.9	V	-13.08	29.18	74.00	-44.82
2496.61	36.11	Ave	82	1.9	V	-13.08	23.03	54.00	-30.97

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	e Channe	el			
268.32	37.59	QP	91	1.2	Н	-13.35	24.24	46.00	-21.76
268.32	40.25	QP	323	1.1	V	-13.35	26.90	46.00	-19.10
4882.00	46.75	PK	99	1.9	V	-0.62	46.13	74.00	-27.87
4882.00	43.77	Ave	99	1.9	V	-0.62	43.15	54.00	-10.85
7323.00	39.60	PK	48	2.0	Н	2.21	41.81	74.00	-32.19
7323.00	35.99	Ave	48	2.0	Н	2.21	38.20	54.00	-15.80
2333.44	46.20	PK	176	1.3	V	-13.19	33.01	74.00	-40.99
2333.44	38.51	Ave	176	1.3	V	-13.19	25.32	54.00	-28.68
2379.46	43.36	PK	266	1.9	Н	-13.14	30.22	74.00	-43.78
2379.46	38.73	Ave	266	1.9	Н	-13.14	25.59	54.00	-28.41
2497.97	42.86	PK	264	1.8	V	-13.08	29.78	74.00	-44.22
2497.97	37.87	Ave	264	1.8	V	-13.08	24.79	54.00	-29.21

Frequency Receiver Reading	Receiver	Turn table Angle	RX Antenna		Corrected	Corrected			
	Detector		Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
268.32	39.08	QP	121	1.1	Н	-13.35	25.73	46.00	-20.27
268.32	38.96	QP	185	1.3	V	-13.35	25.61	46.00	-20.39
4960.00	48.03	PK	30	1.9	V	-0.24	47.79	74.00	-26.21
4960.00	43.96	Ave	30	1.9	V	-0.24	43.72	54.00	-10.28
7440.00	38.13	PK	148	1.5	Н	2.84	40.97	74.00	-33.03
7440.00	34.54	Ave	148	1.5	Н	2.84	37.38	54.00	-16.62
2347.34	46.70	PK	169	1.9	V	-13.19	33.51	74.00	-40.49
2347.34	38.64	Ave	169	1.9	V	-13.19	25.45	54.00	-28.55
2378.23	42.19	PK	42	1.5	Н	-13.14	29.05	74.00	-44.95
2378.23	37.72	Ave	42	1.5	Н	-13.14	24.58	54.00	-29.42
2494.57	44.05	PK	97	1.1	V	-13.08	30.97	74.00	-43.03
2494.57	38.00	Ave	97	1.1	V	-13.08	24.92	54.00	-29.08

Test Frequency: 18~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS14S0816950R1E Page 18 of 51

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

8.1 Test Procedure

1. The EUT was placed on a turntable which is 0.8m above ground plane

2. Measurement Distance is 3m

3. Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto

Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = max hold

4.continuous transmitting

Test plots

Reference No.: WTS14S0816950R1E Page 22 of 51

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

Modulation	20dB Bandwidth(MHz)			
Modulation	low channel	middle channel	high channel	
GFSK	4.820	4.820	4.820	

Reference No.: WTS14S0816950R1E Page 24 of 51

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Modulation	Peak Output Power (dBm)				
Modulation	low channel middle channel		high channel		
GFSK 16.600		16.610	16.290		
Lir	mit	≤20.97dBm			
Re	sult	PASS			

Test plots

GFSK High Channel

Reference No.: WTS14S0816950R1E Page 27 of 51

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall

have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no

greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100KHz. VBW = 100KHz , Span = 6MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	4.012	PASS
GFSK	Middle	4.012	PASS
GFSK	High	4.012	PASS

Test plots

GFSK High Channel

Reference No.: WTS14S0816950R1E Page 30 of 51

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Centre Frequency = 2.441GHz, Span = 86MHz. Sweep=auto;

12.2 Test Result:

Total Channels are 79 Channels.

Reference No.: WTS14S0816950R1E Page 31 of 51

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 1MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000
Remark	Mkr Delta is single pulse time.

Reference No.: WTS14S0816950R1E Page 32 of 51

Modulation	Channel	T _{on} (ms)	T _{period} (ms)	$N_{channels}$	T(s)
	Low	19.84	1640	16	0.077
	middle	19.92	1636	16	0.078
GFSK	High	19.76	1632	16	0.077
Limit			T≤0.4s		

Test Plots Low Channel

Middle Channel

High Channel

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a Dipole antenna, fulfil the requirement of this section.

Reference No.: WTS14S0816950R1E Page 37 of 51

15 RF Exposure

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

15.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS14S0816950R1E Page 38 of 51

15.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
2.00	1.585	16.61	45.81	0.0145	1

16 Photographs - Model UDRC34HD Test Setup

16.1 Photograph - Conducted Emission Test Setup

16.2 Photograph – Radiation Spurious Emission Test Setup

Waltek Services (Shenzhen) Co., Ltd. http://www.waltek.com.cn

17 Photographs - Constructional Details

17.1 Model UDRC34HD External View

17.2 Model UDRC34HD Internal View

Reference No.: WTS14S0816950R1E Page 48 of 51

Reference No.: WTS14S0816950R1E Page 49 of 51

Reference No.: WTS14S0816950R1E Page 50 of 51

===== End of Report =====