TP évalué

Intégration de Capteurs pour la robotique

ISIMA

2017-2018

Ce TP sera évalué et doit donc être rendu.

Chaque groupe doit envoyer les noms et prénoms de ses membres ainsi que l'url d'un dépôt *git* public contenant le *package* sensor_training_result conçu lors de ce TP à l'adresse mail gerald.lelong@easymov.fr avant le timestamp unix 1513002600.

Description

Le but de ce TP est de simuler un dispositif semblable à une caméra 3D. Il s'agira de la combinaison d'un caméra monoculaire classique et d'un lidar plan tournant sur lui-même. Notre système publiera, au final, un nuage de points 3D en couleur grâce à la combinaison des informations des deux capteurs.

1. Lancez le fichier de lancement simple_turtlebot.launch du package simple_turtlebot.

Les fichiers de lancement se lancent avec la commande roslaunch.

La fenêtre qui s'ouvrira est le simulateur **Gazebo** dans lequel vous pouvez visualiser le robot simulé dans son environnement (actuellement vide).

2. Créez un nouveau package ROS dans le workspace fournit.

Un package se crée avec la commande catkin create pkg.

Le package doit s'appeler, dans le cadre de ce TP, sensor_training_result.

3. Créez un fichier de lancement dans votre package.

Le fichier de lancement doit s'appeler, dans le cadre de ce TP, default.launch.

4. Incluez simple_turtlebot.launch du package simple_turtlebot dans votre fichier de lancement.

Il s'agit d'utiliser la balise include.

5. Spécifiez l'argument world de simple_turtlebot.launch pour simuler votre robot dans un environnement conçu par vos soins.

Il s'agit d'y préciser le chemin d'un fichier .world.

6. Copiez le fichier simple_turtlebot.urdf.xacro dans le dossier urdf du package simple_turtlebot vers un dossier urdf situé à la racine de votre package.

C'est ce fichier que vous modifierez pour ajouter des capteurs au Turtlebot simulé.

- 7. Spécifiez l'argument xacro_file de simple_turtlebot.launch pour charger le fichier URDF de votre package.
- 8. Utilisez la documentation disponible à l'adresse ci-dessous pour modifier votre fichier URDF de manière à ajouter une caméra (monoculaire) au Turtlebot.

https://goo.gl/HqKmqd

9. Incluez le fichier spinning_joint.urdf.xacro du package sensor_training dans votre propre fichier URDF.

Il s'agit d'utiliser la balise xacro: include.

Ce fichier va ajouter un membre (*link*) nommé laser_link représenté sous la forme d'un cube ainsi qu'une articulation (*joint*) capable de tourner de manière continue sur votre robot.

10. Utilisez la documentation disponible à l'adresse ci-dessous pour modifier votre fichier URDF de manière à transformer le membre laser_link en un lidar (laser).

https://goo.gl/HqKmqd

Vous devez choisir la version utilisant le CPU et non le GPU de votre machine.

11. Incluez control.launch du package sensor_training dans votre fichier de lancement.

Il s'agit d'utiliser la balise include.

Ce fichier permet de lancer les interfaces de contrôle de l'articulation rotative à laquelle votre lidar est attaché.

12. Créez un noeud ROS mettant en rotation le lidar à une vitesse donnée.

L'inclusion du fichier control.launch, à l'étape précédente, a dû ajouter le *topic* laser_velocity_controller/command auquel *Gazebo* souscrit. Votre noeud doit y publier une commande en vitesse pour l'articulation du lidar.

- 13. Ajoutez le lancement du noeud créé à l'étape précédente à votre fichier de lancement.
- 14. Ajoutez le lancement du noeud camera_lidar.py fournit par le package sensor_training à votre fichier de lancement.

Ce noeud écoute des données lidar et caméra. Pour chaque message lidar, il récupère la couleur de chacun des points 3D par projection dans l'espace caméra et les publie sous la forme d'un nuage de points en couleur.

15. Connectez les topic auxquels camera_lidar.py souscrit à vos capteurs.

Il s'agit d'utiliser la balise remap.

16. Ajoutez le lancement du noeud point_cloud_assembler fournit par le package laser_assembler à votre fichier de lancement.

Ce noeud écoute des nuages de points et les aggrège dans le repère souhaité. Le nuage de points généré n'est pas publié, mais doit être récupéré par l'appel au service assemble scans de ce noeud.

Le repère est spécifié à l'aide du paramètre fixed_frame.

N'hésitez pas à visiter la documentation de ce noeud!

17. Connectez le topic où camera_lidar.py publie ses nuages de points au noeud laser_assembler.

Il s'agit d'utiliser la balise remap.

- 18. Créez un noeud qui appelle périodiquement (toutes les 5 secondes par exemple) le service assemble_scans du noeud laser_assembler et publie le nuage de points aggrégé.
- 19. Ajoutez le lancement du noeud créé à l'étape précédente à votre fichier de lancement.
- 20. Ajoutez RViz à votre fichier de lancement de manière à ce qu'il soit lancé avec une configuration permettant de visualiser le nuage de points couleur publié.

Il s'agit d'utiliser l'option -d du noeud rviz permettant de spécifier un fichier de configuration.

Résultat attendu

Figure 1 – Exemple de résultat attendu