

SEQUENCE LISTING

<110> C. Frank Bennett
Kenneth Dobie

<120> ANTISENSE MODULATION OF THYROID HORMONE RECEPTOR INTERACTOR 6
EXPRESSION

<130> RTS-0333

<160> 89

<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 1
tccgtcatcg ctcctcaggg

20

<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 2
atgcattctg cccccaagga

20

<210> 3

<211> 1755

<212> DNA

<213> Homo sapiens

<220>

<220>

<221> CDS

<222> (160)...(1590)

<400> 3

cgcccggca ggtcccaaaa ttaggggggaa agaggaaaaa aaaaagccag aaaaagttt 60

cttttctgga gtcccaaacg aggtgcggga cgaaagaggg ggtgaaggcc agaggctcgg 120

ggcttcaaga ccgctgtctg gagtccccct ttccaggcc atg tcg ggg ccc acc 174
Met Ser Gly Pro Thr

1 5

tgg ctg ccc ccg aag cag ccg gag ccc gcc aga gcc cct cag ggg agg 222
Trp Leu Pro Pro Lys Gln Pro Glu Pro Ala Arg Ala Pro Gln Gly Arg
10 15 20gcg atc ccc cgc ggc acc ccg ggg cca cca ccg gcc cac gga gca gca 270
Ala Ile Pro Arg Gly Thr Pro Gly Pro Pro Ala His Gly Ala Ala
25 30 35ctc cag ccc cac ccc agg gtc aat ttt tgc ccc ctt cca tct gag cag 318
Leu Gln Pro His Pro Arg Val Asn Phe Cys Pro Leu Pro Ser Glu Gln
40 45 50tgt tac cag gcc cca ggg gga ccg gag gat cgg ggg ccg gcg tgg gtg 366
Cys Tyr Gln Ala Pro Gly Gly Pro Glu Asp Arg Gly Pro Ala Trp Val
55 60 65ggg tcc cat gga gta ctc cag cac acg cag ggg ctc cct gca gac agg 414
Gly Ser His Gly Val Leu Gln His Thr Gln Gly Leu Pro Ala Asp Arg
70 75 80 85ggg ggc ctt cgc cct gga agc ctg gac gcc gag ata gac ttg ctg agc 462
Gly Gly Leu Arg Pro Gly Ser Leu Asp Ala Glu Ile Asp Leu Leu Ser
90 95 100

acc acg ctg gcc aaa ctg aat ggg ggt cgg ggt cat gcg tca cgg cga 510

Thr Thr Leu Ala Lys Leu Asn Gly Gly Arg Gly His Ala Ser Arg Arg
 105 110 115

cca gac cga cag gca tat gag ccc ccg cca cct cct gcc tac cgc acg 558
 Pro Asp Arg Gln Ala Tyr Glu Pro Pro Pro Pro Ala Tyr Arg Thr
 120 125 130

ggc tcc ctg aag cca aat cca gcc tcg ccg ctc cca gcg tct ccc tat 606
 Gly Ser Leu Lys Pro Asn Pro Ala Ser Pro Leu Pro Ala Ser Pro Tyr
 135 140 145

ggg ggc ccc act cca gcc tct tac act acc gcc agc acc ccg gct ggc 654
 Gly Gly Pro Thr Pro Ala Ser Tyr Thr Ala Ser Thr Pro Ala Gly
 150 155 160 165

cca gcc ttc ccc gtg caa gtg aag gtg gca cag cca gtg agg ggc tgc 702
 Pro Ala Phe Pro Val Gln Val Lys Val Ala Gln Pro Val Arg Gly Cys
 170 175 180

ggc cca ccc agg cgg gga gcc tct cag gct tct ggg ccc ctc ccg ggc 750
 Gly Pro Pro Arg Arg Gly Ala Ser Gln Ala Ser Gly Pro Leu Pro Gly
 185 190 195

ccc cac ttt cct ctc cca ggc cga ggt gaa gtc tgg ggg cct ggc tat 798
 Pro His Phe Pro Leu Pro Gly Arg Gly Glu Val Trp Gly Pro Gly Tyr
 200 205 210

agg agc cag aga gag cca ggg cca ggg gcc aaa gag gaa gct gct ggg 846
 Arg Ser Gln Arg Glu Pro Gly Pro Gly Ala Lys Glu Glu Ala Ala Gly
 215 220 225

gtc tct ggc cct gca gga aga gga aga gga ggc gag cac ggg ccc cag 894
 Val Ser Gly Pro Ala Gly Arg Gly Arg Gly Glu His Gly Pro Gln
 230 235 240 245

gtg ccc ctg agc cag cct cca gag gat gag ctg gat agg ctg acg aag 942
 Val Pro Leu Ser Gln Pro Pro Glu Asp Glu Leu Asp Arg Leu Thr Lys
 250 255 260

aag ctg gtt cac gac atg aac cac ccg ccc agc ggg gag tac ttt ggc 990
 Lys Leu Val His Asp Met Asn His Pro Pro Ser Gly Glu Tyr Phe Gly
 265 270 275

cag tgt ggt ggc tgc gga gaa gat gtg gtt ggg gat ggg gct ggg gtt 1038

Gln Cys Gly Gly Cys Gly Glu Asp Val Val Gly Asp Gly Ala Gly Val
 280 285 290

gtg gcc ctt gat cgc gtc ttt cac gtg ggc tgc ttt gta tgt tct aca 1086
 Val Ala Leu Asp Arg Val Phe His Val Gly Cys Phe Val Cys Ser Thr
 295 300 305

tgc cgg gcc cag ctt cgc ggc cag cat ttc tac gcc gtg gag agg agg 1134
 Cys Arg Ala Gln Leu Arg Gly Gln His Phe Tyr Ala Val Glu Arg Arg
 310 315 320 325

gca tat tgc gag ggc tgc tac gtg gcc acc ctg gag aaa tgt gcc acg 1182
 Ala Tyr Cys Glu Gly Cys Tyr Val Ala Thr Leu Glu Lys Cys Ala Thr
 330 335 340

tgc tcc cag ccc atc ctg gac cgg atc ctg cgg gct atg ggg aag gcc 1230
 Cys Ser Gln Pro Ile Leu Asp Arg Ile Leu Arg Ala Met Gly Lys Ala
 345 350 355

tac cac cct ggc tgc ttc acc tgc gtg gtg tgt cac cgc ggc ctc gac 1278
 Tyr His Pro Gly Cys Phe Thr Cys Val Val Cys His Arg Gly Leu Asp
 360 365 370

ggc atc ccc ttc aca gtg gat gct acg agc cag atc cac tgt att gag 1326
 Gly Ile Pro Phe Thr Val Asp Ala Thr Ser Gln Ile His Cys Ile Glu
 375 380 385

gac ttt cac agg aag ttt gcc cca aga tgc tca gtg tgc ggt ggg gcc 1374
 Asp Phe His Arg Lys Phe Ala Pro Arg Cys Ser Val Cys Gly Ala
 390 395 400 405

ata atg cct gag cca ggt cag gag gag act gtg aga att gtt gct ctg 1422
 Ile Met Pro Glu Pro Gly Gln Glu Glu Thr Val Arg Ile Val Ala Leu
 410 415 420

gat cga agt ttt cac att ggc tgt tac aag tgc gag gag tgt ggg ctg 1470
 Asp Arg Ser Phe His Ile Gly Cys Tyr Lys Cys Glu Glu Cys Gly Leu
 425 430 435

ctg ctc tcc tct gag ggc gag tgt cag ggc tgc tac ccg ctg gat ggg 1518
 Leu Leu Ser Ser Glu Gly Glu Cys Gln Gly Cys Tyr Pro Leu Asp Gly
 440 445 450

cac atc ttg tgc aag gcc tgc agc gcc tgg cgc atc cag gag ctc tca 1566

His Ile Leu Cys Lys Ala Cys Ser Ala Trp Arg Ile Gln Glu Leu Ser
455 460 465

gcc acc gtc acc act gac tgc tga gtcttcctag aagtacacctgc tgggttctca 1620
Ala Thr Val Thr Thr Asp Cys
470 475

gttccagttc ccatcctttg attgatcact ctccctgaca tccacctgta tgactttgtc 1680
accaaatgct gtcttctctt tctccaatca agaaataata atccctcgag tttacaaaaaa 1740
aaaaaaaaaaa aaaaa 1755

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
gctgcggaga agatgtggtt 20

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5
gccccggcatg tagaacatac a 21

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 6

ttgatcgctt cttcacgtgggc

23

<210> 7

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 7

gaaggtaaag gtcggagtc

19

<210> 8

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 8

gaagatggtg atgggatttc

20

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 9
caagcttccc gttctcagcc

20

<210> 10
<211> 7001
<212> DNA
<213> Homo sapiens

<220>

<221> exon
<222> (486)...(740)
<223> exon 1

<221> exon:inton junction
<222> (740)...(741)
<223> exon 1:inton 1

<221> intron
<222> (741)...(994)
<223> intron 1

<221> intron:exon junction
<222> (994)...(995)
<223> intron 1:exon 2

<221> exon
<222> (995)...(1122)
<223> exon 2

<221> exon:inton junction
<222> (1122)...(1123)
<223> exon 2:inton 2

<221> intron
<222> (1123)...(1241)
<223> intron 2

<221> intron:exon junction
<222> (1241)...(1242)
<223> intron 2:exon 3

<221> exon

<222> (1242)...(1367)

<223> exon 3

<221> exon:intron junction

<222> (1367)...(1368)

<223> exon 3:intron 3

<221> intron

<222> (1368)...(1628)

<223> intron 3

<221> intron:exon junction

<222> (1628)...(1629)

<223> intron 3:exon 4

<221> exon

<222> (1629)...(2000)

<223> exon 4

<221> exon:intron junction

<222> (2000)...(2001)

<223> exon 4:intron 4

<221> intron

<222> (2001)...(3503)

<223> intron 4

<221> intron:exon junction

<222> (3503)...(3504)

<223> intron 4:exon 5

<221> exon

<222> (3504)...(3597)

<223> exon 5

<221> exon:intron junction

<222> (3597)...(3598)

<223> exon 5:intron 5

<221> intron

<222> (3598)...(3707)

<223> intron 5

<221> intron:exon junction

<222> (3707) . . . (3708)
<223> intron 5:exon 6

<221> exon
<222> (3708) . . . (3877)
<223> exon 6

<221> exon:intron junction
<222> (3877) . . . (3878)
<223> exon 6:intron 6

<221> intron
<222> (3878) . . . (4676)
<223> intron 6

<221> intron:inton junction
<222> (4676) . . . (4677)
<223> intron 6:exon 7

<221> exon
<222> (4677) . . . (4855)
<223> exon 7

<221> exon:intron junction
<222> (4855) . . . (4856)
<223> exon 7:intron 7

<221> intron
<222> (4856) . . . (5757)
<223> intron 7

<221> intron:inton junction
<222> (5757) . . . (5758)
<223> intron 7:exon 8

<221> exon
<222> (5758) . . . (5878)
<223> exon 8

<221> exon:intron junction
<222> (5878) . . . (5879)
<223> exon 8:intron 8

<221> intron

<222> (5879)...(6305)

<223> intron 8

<221> intron:exon junction

<222> (6305)...(6306)

<223> intron 8:exon 9

<221> exon

<222> (6306)...(6650)

<223> exon 9

<400> 10

ctaggggccca ggcctcctct gtgactctgg gctacctcag tttcccccatt ttggccagac 60

tcaccggccc actggggtgg tcatgttttc gttctgtttt attttctaa ctctgctgac 120

catgaataaaa agacaaaaac actacaggct ggctgagcag tgctggtggg tagctgagag 180

ggaggggggtg ggaatggaga gctctgcaga ggggtggaga tcggagcctt cagcctcccg 240

ccgcgaggct gccacgtgca gggctgggt gcggggcccg gacgcattcg tggacttgaa 300

ggctggctcg ggcccgacc tcccatcccc agctgcccgc aaccccaagt gactcggat 360

cccccgaga gccctccct ctcggcagga ggggctgac tcagggagaa atggcagtt 420

agggcctagg gggcacgtg accctcccc aggaatgtgg tgacgtcatc ggaggcgtgg 480

tcgtcccaa aattagggag gaagagggaaa aaaaaaaagcc agaaaaaagtt ttctttctg 540

gagtccaaa cgaggtgcgg gacggaagag ggggtgaagg ccagaggctc ggggcttcaa 600

gaccgctgtc tggagtcccc cttccaggc catgtcgggg cccacctggc tgcccccgaa 660

gcagccggag cccgccagag cccctcaggg gagggcgatc ccccgccgca ccccgcccc 720

accaccggcc cacggagcag gtaaggcagc cttgtgaga cagaagagcc acccagctgt 780

ggcgctcacc tctgtcctac cgctccagcc tcccgcctg gctgcttcct cctgcccctt 840

ccccaaagccg aggccccggg aacagccgcc tgcgcctctt tgggacccta gatttggggg 900

aggaggttaac gagaggcggg gaggggtggct cctcaaataat acaccctcc tgcctccgc 960

caccccacct ttgatttctc ttccctcaac ccagcactcc agccccaccc cagggtcaat 1020
ttttgcggcc ttccatctga gcagtgttac caggccccag ggggaccggg ggatcgaaaa 1080
ccggcggtggg tgggtccca tggagtactc cagcacacgc aggtgagacc cgggatcgtg 1140
gggtgggaca tgtggatcc cccagaaccg agtctgaggg acccaggaca ggagaaggcc 1200
tatggtgatt tgcatttttc ctgccttggc tccatcctca ggggctccct gcagacaggg 1260
ggggccttcg cccttggaaagc ctggacgccc agatagactt gctgagcagc acgctggccg 1320
agctgaatgg gggtcggggt catgcgtcac ggcgaccaga ccgacaggtg actctgcccc 1380
tcctccccgt cagcaccctg ccccttctc tggactctca gaccagcct gatcgatccc 1440
ccatgtgtgt aatgtgcacc ccagcatgga ggaagcgtgg ctgcaagtac caacatgtca 1500
gccacttgag gacgggacct tgtcaaatgc aaaaagcctg tgcttccca cagccaggg 1560
catttccaca aatgtgggtc ttggagtggg gtccttgctt acgacttctg gcctgcgttt 1620
ctcctcaggc atatgagccc ccggccaccc tcgccttaccg cacgggctcc ctgaagccaa 1680
atccagccctc gccgtctccca gcgtctccct atggggccccc cactccagcc tcttacacta 1740
ccgcccagcac cccggctggc ccagccttcc ccgtgcaagt gaaggtggca cagccagtga 1800
ggggctgcgg cccacccagg cggggagcct ctcaggcctc tggccctcc cggggccccc 1860
actttcctct cccaggccga ggtgaagtct gggggcctgg ctataggagc cagagagagc 1920
cagggccagg ggccaaagag gaagctgctg gggctctgg ccctgcagga agaggaagag 1980
gaggcgagca cgggccccag gtgagccctg gggactggg atttcaggcc ctacagacaa 2040
tgggacaccg actgggtggg gtggctggg gtgttttagg gggctttttt gtttttttag 2100
acagagttt gctcttggg gcccaggctg ggggtgcagtg gtgccttgc ggctcactgc 2160
aacctctgcc tcccggttc aagtgattct ctcgcctcag ctcctgaat aactggatta 2220
caggcacacg ctgccacgct tggtaattt ttgtatTTT agtacagacg ggtttcact 2280

aaaaccccccag	tttgttggcc	aggctggctc	cgaactcccg	acctcaggtg	atccgcctgc	2340
ctcagcctcc	caaagtgctg	ggattgcagg	cctgagccac	cgccgcctggc	caaggggctg	2400
gttttggagc	agagtcagag	gtctggacg	tggaataggt	aagggcaggg	cagtgcgggg	2460
gagcaggata	gaactgccc	ttggggctga	gcgcggtggc	tcatgcctgt	aatcccagca	2520
ctttgggagg	ctgaggtggg	tggatcacct	gaggtcacga	gttcgagacc	acactgacca	2580
acatggagaa	acctcgctc	tactaaaaat	acaaaattag	ccaggcatgg	tggcacatgc	2640
ctgtaatccc	agctactcg	gaggttgagg	caggagaatc	acttgaacct	gggaggtgga	2700
ggttgcggtg	agccgagatc	gcaccactgc	tctccaacct	ggcaacaag	agcaaaaactc	2760
tgtctcaaaa	aaaaaaaaaa	aaaaaaaaaa	gaactgccta	cgggccccctg	ggctgagatg	2820
ttctcagatg	agctttctag	ctggaactgc	ctggccacct	tcagagacat	tatagcagtc	2880
cccaatcttt	ttggcaccag	ggaccagttt	tggggaaaac	aattttcca	tggactgggg	2940
agggggatgg	gagggggatgg	gagggggatg	gttcaggat	gattcaagca	cattacattc	3000
attgtgcact	ttatttctgt	tataataata	atagaatata	tagtatatat	aattgtttcg	3060
gtatatatta	caatgtat	tacaatgtaa	tatataccga	aacaattata	caattcacca	3120
tcatgttagga	tcagtggag	ccctgagctt	gtttcctgc	aactggacag	tcccatctgg	3180
gggtgatggg	agacagtgc	agatcatcag	gcattagatt	ctcataagga	gcttgcaacc	3240
tacatccttc	gaacacacag	ttcacaatag	ggttcatgct	cctatgagaa	tctaacgccc	3300
ctgctgatct	gacaggaggt	ggagctcagg	cggtaatgca	agtgatgggg	agcagctgta	3360
aatacagatg	aagctttgct	tgcccattgc	tcagctcctg	ctgtgtggcc	cagttcctaa	3420
caggccatgg	cctggcggct	gagggccctg	gtattacagc	atcaggagct	agagtaggac	3480
cgagccccat	tcccaccc	caggtcccc	tgagccagcc	tccagaggat	gagctggata	3540
qqctgacgaa	gaagctggtt	cacgacatga	accacccgccc	cagcggggag	tactttggtg	3600

agctgaggct gtgggggtggg tgggacgtgg gaagggaggc tgggagacag agggacagt 3660
ggcttcctgg gtctgtgaag actgatgctg tttctccctg tcctcaggcc agtgtggtgg 3720
ctgcggagaa gatgtggttg gggatggggc tggggttgtg gcccttgatc gcgtcttca 3780
cgtgggctgc tttgtatgtt ctacatgccg ggcccagctt cgccggccagc atttctacgc 3840
cgtggagagg agggcatatt gcgagggctg ctacgtggtg agtggctggg gctgggagga 3900
gggagtcagt ggctggatgc agggggcttc catccaaggt ggtaactaga gcgtccaaga 3960
ccaaaggagg aacggtgcta aaagccaggc gactgaaagt gatgtacaaa cagggcggaa 4020
ttctgcaagt atcaagcaag tagcttaaca ctggtgtggctg aagggaaagga cgtagcttt 4080
acaagtgtgg agcatcttac agttaaagag aatgtgttag attcccatga caccctgtg 4140
aggcaggtat tactactgat tcctggttt gttttttgtt ttttttgag acagtctcgc 4200
tctgttgcgc agactggagt gcagtggggt gatctctgct cactgcaacc tcagcctgcc 4260
ctggttcaag cgattctcat gcctcaggct cccgagcagt tgggattaca ggtgccacc 4320
accacaccca gctaattttt gtatTTTtag tagagacagg gtttcgccat gttggccagg 4380
ctgtttgaa actcctggcc tcaagcagtc cgccccactct ggcctcccaa agtgctggca 4440
ttacaggcgt gagccactgc acccagcctg attcctgttt ttctcatagt gtttaataac 4500
cgtgtatagt gctgggacct gaactcagat ctgctcaagt ctgccttca ccgaatcaca 4560
tgcaggaggc tgcatgcagg aggctgcaga aatttagatgg ctgggttgct ggggttcctg 4620
ttgagctgcc atggctcccg cccgctccca gatcttcctg cttcccttcc caacaggcca 4680
ccctggagaa atgtgccacg tgctcccagc ccattctggc ccggatcctg cgggctatgg 4740
ggaaggccta ccaccctggc tgcttcaccc ggtgggtgtg tcaccgcggc ctcgacggca 4800
tccccttcac agtggatgct acgagccaga tccactgcat tgaggacttt cacaggtcag 4860
gcctggcctc cacattgtct cacaatgtct gaccttcct gtctctctca tctcttcatg 4920

ccccaggact gtctttcct gttccaacc ctggccctcc ttgcgttctt gttattgtta 4980
tttttagag acggagttc actctgttgc ccaggcagga gtgcaatggc atgatcatag 5040
ctcaactgcag cctccaactc ctgggctcaa gtgatcctcc tacctcagcc tcctgagtag 5100
ctgggactac gggtcacac gccaccatgc ctggctagtt ttctcgaaa ttttttttt 5160
tttttgaga tggagtctca ctctgtcacc caggctggag tgcagtgca cgatctcagc 5220
tcactgcaac ctccaccacc tgggttcaag tgattgcct gcctcaacct ccccagtagc 5280
tgggattacg ggccatgcc accacgcctg gctagttttt ttttttttt tttttttgt 5340
attttagta gagacaggct ttcatcatgt tggccaggct ggtctaaac tcctgagctc 5400
aagcgatcca cctgcctcgg ccgccccaaag tgcagggata gcaggcgtaa gccactgcac 5460
ccagtcttct tctttgtatt ttaataaaaga cagcgtcttg ctgtgttgcc taggctggc 5520
ttgaacgcct ggccctcaagt gatcctcctg ccttggcctc ccaaagtcgg gggattgcag 5580
gctagagcca ctgcacctag cctctctcat tctcttgac atcgtccctt ccccaagacc 5640
taaggccata cctctggcct ctctgattcc ctccctgtgcc ccaccttctc tgggttccat 5700
tgttgggcc ctgcaaccccc aaggcttgat ggcccttcttg gttctttcc cctgcaggaa 5760
gtttgccccca agatgcttag tgtcggtgg ggccataatg cctgagccag gtcaggagga 5820
gactgtgaga attgttgctc tggatcgaag tttcacatt ggctgttaca agtgcgagg 5880
cagggggcccc cagcacgtgc aaggggctgg cagtgtctag ggtgctgggt agagcatgag 5940
gggaaacaca gaggtctggg gttgatggaa acctgttgct tcttttttt ttttttttt 6000
ttgagacgga gtcttgctct gttgcccagg ctggagtgca gtggcacaat ctggctcac 6060
tgcaacctcc acctccccggg ttcaagtgat tctcctgcct cagcctcctg agtagctgg 6120
attacaggtg ctggccacca tgcctggcta atttttgtat ttttagtaga gacagggttt 6180
caccatattg gccaggctgg tcttgaactc ctgacccctgt gatcctcctg cctcggttc 6240

tcaaagtgc gggattacag gcgtgagcca tcgcgcgg ccaattgttg cttcttttc 6300
aacaggagtg tggctgctg ctccctctg agggcgagtg tcagggctgc taccgctgg 6360
atgggcacat cttgtgcaag gcctgcagcg cctggcgcac ccaggagctc tcagccaccc 6420
tcaccactga ctgctgagtc ttcctagaag tacctgctgg gtttcagtt ccagttccc 6480
tcctttgatt gatcactctc cctgacatcc acctgtatga ctttgcacc aaatgctgtc 6540
ttctctttctt ccaatcaaga aataataatc cctcgagttt aaaaaacact tccaaatctg 6600
ttgtctcatc tgattctccc agtagccat tacaggccca gtcattgtta ctgcctgcat 6660
ttttttctt tttttttga gacggagtct ggctctgtca cccaggctgg aatgcagtgg 6720
tgccatctcg gctcactgca acctctgcct cccaggttca agtGattctc ttgcctcagc 6780
ctcttgagta gctgggatta caggcgcccc ccaccacgtc tggctaattt tgtatTTTA 6840
gttagagacgg ggTTTcacca cttggtcag ggtggctttg aactcctgac ctcaagtgtat 6900
ctgcccgtt cacccaaacca aagtgtggg attacaggcg tgagccaccc ccTTggcca 6960
ctgtctgcat ttttacatgt gaggatgtca gagctgagag g 7001

<210> 11
<211> 704
<212> DNA
<213> Homo sapiens

<220>

<221> exon:exon junction
<222> (182)...(183)
<223> exon 1:exon 3

<400> 11
gggacggaag agggggtgaa ggccagaggc tcggggcttc aagaccgctg tctggagtcc 60
ccctttccag gccatgtcgg ggcccacctg gctgcccccg aagcagccgg agcccgccag 120

agccccctcag gggagggcga tcccccgcg 180
aggggctccc tgcagacagg gggggccttc gccttggaaag cctggacgcc gagatagact 240
tgctgagcag cacgctggcc gagctgaatg ggggtcgaaaa tcattgcgtca cggcgaccag 300
accgacaggc atatgagccc ccgcacccctc ctgccttaccg cacggctcc ctgaagccaa 360
atccagccctc gccgctccca gcgtctccct atgggggccc cactccagcc tcttacacta 420
ccgccagcac cccggctggc ccagccttcc ccgtgcaagt gaagggtggca cagccagtga 480
ggggctgcgg ccacccaggc ggggagcctc tcaggcctct gggccctcc cggggcccca 540
ctttcctctc ccaggccgag gtgaagtctg ggggcctggc tataggagcc agagagagcc 600
aggccagggg ccaaagagga agctgctggg atctctggcc ctgcaggaag aggaagagga 660
ggcgagcacg ggcccagggtg ccctgagcca gcctccagag gatg 704

<210> 12

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 12

aaaagaaaaac tttttctggc

20

<210> 13

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 13

ctccagacag cggtcttgaa 20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 14
gggccccgac atggcctgga 20

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 15
ggctggagtg ctgctccgtg 20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 16
gagtactcca tgggaccggca 20

<210> 17
<211> 20

<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 17

gccccctgcgt gtgctggagt

20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 18

cagggagccc ctgcgtgtgc

20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 19

aggcttccag ggcgaaggcc

20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 20

gctcagcaag tctatctcg

20

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 21

ttggccagcg tggtgctcag

20

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 22

gcttcaggga gcccgtgcgg

20

<210> 23

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 23

ggcgaggctg gatttggctt

20

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 24

aagcctgaga ggctcccg

20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 25

gcccgaaaggc ctgagaggct

20

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 26

ctggctcccta tagccaggcc

20

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 27

tggctctctc tggctcctat

20

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 28

gaccggcagca gcttcctctt

20

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 29

ctctggaggc tggctcaggg

20

<210> 30

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 30
tggccaaagt actccccgct 20

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 31
cagccaccac actggccaaa 20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 32
tcaagggccca caaccccagc 20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 33
aagcagccca cgtgaaagac 20

<210> 34

<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 34
gaacatacaa agcagcccac

20

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 35
ccggcatgta gaacatacaa

20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 36
ctggccgcga agctgggccc .

20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 37

ggcgttagaaa tgctggccgc

20

<210> 38

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 38

ctccagggtg gccacgtagc

20

<210> 39

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 39

catttctcca gggtgccac

20

<210> 40

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 40

acgtggcaca ttctccagg

20

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 41
gatccggtcc aggatgggct

20

<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 42
atagcccgca ggatccggtc

20

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 43
gtgacacacc acgcagggtga

20

<210> 44
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 44

aggccgcggt gacacaccac

20

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 45

ctggctcgta gcatccactg

20

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 46

cctcaataaca gtggatctgg

20

<210> 47

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 47

tcctgtgaaa gtcctcaata

20

<210> 48

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 48

ggcaaacttc ctgtgaaagt

20

<210> 49

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 49

tatggcccca ccgcacactg

20

<210> 50

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 50

ctcaggcatt atggcccac

20

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 51
cctggctcag gcattatggc

20

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 52
gtctccctcct gacctggctc

20

<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 53
aacaattctc acagtctcct

20

<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 54

tccagagcaa caattctcac

20

<210> 55

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 55

ttcgatccag agcaacaatt

20

<210> 56

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 56

gaaaaacttcg atccagagca

20

<210> 57

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 57

acagccaatg taaaaacttc 20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 58
gccctcagag gagagcagca 20

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 59
catccagcgg gtagcagccc 20

<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 60
gcccatccag cggtagcag 20

<210> 61
<211> 20

<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 61

aagatgtgcc catccagcgg

20

<210> 62

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 62

caagatgtgc ccatccagcg

20

<210> 63

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 63

ttgcacaaga tgtgcccata

20

<210> 64

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 64

gctgcaggcc ttgcacaaga

20

<210> 65

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 65

agctcctgga tgccgcaggc

20

<210> 66

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 66

gtgacgggtgg ctgagagctc

20

<210> 67

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 67

cagtcagtgg tgacgggtggc

20

<210> 68
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 68
tcagcagtca gtggtgacgg

20

<210> 69
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 69
aggaagactc agcagtcagt

20

<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 70
ccagcaggta cttcttaggaa

20

<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 71

ctggaactga gaaccaggca

20

<210> 72

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 72

atcaaaggat gggaaactgga

20

<210> 73

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 73

gggagagtga tcaatcaaag

20

<210> 74

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 74

ggtgacaaag tcatacaggt

20

<210> 75

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 75

gaaagagaag acagcatttg

20

<210> 76

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 76

gagggattat tatttcttga

20

<210> 77

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 77

actcgaggga ttatttttc

20

<210> 78

<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 78
tttttgtaaa ctcgagggat

20

<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 79
cgggtctcac ctgcgtgtgc

20

<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 80
gggcaggaag aatgcaaatac

20

<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 81

ccacactggc ctgaggacag

20

<210> 82

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 82

agccactcac cacgttagcag

20

<210> 83

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 83

cgcctctagtt accacccttgg

20

<210> 84

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 84

tgtacatcac tttcagtcgc

20

<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 85
caggcctgac ctgtgaaagt

20

<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 86
atcaacccca gacctctgtg

20

<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 87
actgggagaa tcagatgaga

20

<210> 88
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 88

gtaacaatga ctgggcctgt

20

<210> 89

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense Oligonucleotide

<400> 89

cagggagccc ctgctccgtg

20