#### CSE: 449 PARALLEL, DISTRIBUTED AND HIGH-PERFORMANCE COMPUTING

#### PAPER REVIEW PRESENTATION 2

Paper Title: Towards Edge-enabled Distributed Computing Framework for Heterogeneous Android-based Devices

Author: Yongtao Yao\*, Bin Liu†, Yiwei Zhao† and Weisong Shi‡

Submitted by:

Name: Marzanul Momenine

ID: 22301194

Section: 01

Team: 26

#### Introduction

- The vast improvements in computing technologies and the wide deployment of communication mechanisms the past decades have led to the widespread adoption of smart home edge devices.
- Furthermore, Android is forecast to remain the most widely-used operating system for these smart home edge devices

#### **Background and Related Work**

- Distributed machine learning (DML) algorithms were developed to aid the implementation of complex iterative neural networks.
- Federated learning (FL) is a novel DML that is perfect to train models in a collaborative manner while preserving the privacy of sensitive data.
- Berkeley Open Infrastructure for Network Computing (BOINC) is one of the leading distributed computing platforms used in a variety of fields.
- BOINC provides clients for various operating systems, including the Android client, to allow volunteers to contribute their unused computing resources.
- ThinkAir is a popular framework that makes it simple for developers to migrate their smartphone applications to the cloud.
- ThinkAir exploits the concept of smartphone virtualization in the cloud and provides method-level computation offloading.
- RAPID was proposed based on ThinkAir, which supports CPU and GPGPU computation offloading on Linux and Android devices.

### Methodology

- □ Hardware Setup
  - Android Based edge devices, such as Smart Phone, Smart Watch etc
- Dataset Selection
  - PDTV dataset
- Model Selection
  - ☐ YOLOv3 and YOLOv3-Tiny
- ☐ Framework Description
  - ☐ TensorFlow Lite



## **Design and Result Analysis**

• Stand Alone Learning

Distributed Computing Experiment

## **Stand Alone Learning**







# **Distributed Computing Experiment**







#### Conclusion

This paper proposes an Android distributed computing framework to accelerate edge DNN inference.

The experimental results demonstrated that the proposed framework can reduce the CPU utilization by

24% and save 59.8% to 71.8% of the energy consumption. It is also demonstrated that the proposed

framework will not lead to a high bandwidth footprint.

# The END