Analysis 2 Contents

fat

March 14, 2024

Week	Contents
W1-1	Differentiation and Integration, Hardy-Littlewood Maximal
	Function, Lebesgue Differential Theorem, Lebesgue Density
	Theorem, Approximation to the Identity(1)
W1-2	Approximation to the Identity(2), Bounded Variation(1)
W2-1	Bounded Variation(2), Absolutely Continuous, Vitali Covering
	Lemma, Differentiability of Jump Functions(1)
W2-2	Differentiability of Jump Functions(1) (Bounded Variation(3)),
	Rectifiable Curves, Banach Spaces, ℓ^p space, Linear Functionals,
	Dual Spaces
W3-1	Bounded Linear Functionals (X^*) , Operator Norm, Isometry of
	Dual Space, Hahn-Banach Theorem (One-step Extension),
	Gauge (Minkowski Functionals)
W3-2	Hahn-Banach (General case with Zorn's lemma, normed spaces),
	Dual Points, Dual Space of $C^0([a,b])$, Riemann-Stieltjes Sum,
	$BV_0([a,b]), V([a,b])$
W4-1	Riesz Representation Theorem, Reflexive Spaces, Bounded
	Linear Operators
W4-2	Transpose Operator, Annihilators, Integral Operators,
	Differential Operators, Uniform Boundedness
	Principle/Banach-Strinhaus Theorem, Resonance Point,
	Interlude: Fourier Series
W5-1	Fourier Series(2), Open Mapping Theorem, Banach Inverse
	Mapping Theorem, Closed Graph Theorem
W5-2	Spectrum, Eigenvalues, Eigenvectors, Regular Value, Resolvent
	Set, Spectral Radius, Spectral Radiuc Formula, Hilbert Spaces