1. Vacuum interrupter (1) with an encapsulation (14) that is resistant to internal pressure, comprising a layer (15) of a rigid plastic foam applied to the vacuum interrupter (1) and an outer casing (20) of a fibre-reinforced plastic, characterized in that the layer (15) of rigid plastic foam has a uniformly porous quality, without compacted outer layers, and in that the outer casing (20) is formed by a wound body of filaments or strips with a cured synthetic resin as a binder.

19 BUNDESREPUBLIK DEUTSCHLAND
DEUTSCHES PATENTAMT

@ Gebrauchsmuster

U1

- (11) Rollennummer G 93 14 754.6
- (51) Hauptklasse HO1H 33/66 Nebenklasse(n) HO1H 33/53
- (22) Anmeldetag 27.09.93
- (47) Eintragungstag 03.03.94
- (43) Bekanntmachung im Patentblatt 14.04.94
- (54) Bezeichnung des Gegenstandes Vakuumschaltröhre mit einer gegen Innendruck beständigen Kapselung
- (71) Name und Wohnsitz des Inhabers Siemens AG, 80333 München, DE

9364131

5

10

15

20

25

30

1

Siemens Aktiengesellschaft

Vakuumschaltröhre mit einer gegen Innendruck beständigen Kapselung

Die Erfindung betrifft eine Vakuumschaltröhre mit einer gegen Innendruck beständigen Kapselung, bestehend aus einer auf die Vakuumschaltröhre aufgebrachten Schicht aus einem harten Kunststoff-Schaumstoff und einem äußeren Mantel aus einem faserverstärkten Kunststoff.

Eine Vakuumschaltröhre dieser Art ist durch die DE-A37 18 110 bekannt geworden. Der harte Kunststoff-Schaumstoff ist dabei ein Polyurethan-Integralschaumstoff mit
ausgeprägten Randschichten. Durch eine solche Beschichtung
einer Vakuumschaltröhre wird sowohl die gewünschte Berstsicherheit als auch eine thermische Isolierung erzielt.
Durch die erwähnte Offenlegungsschrift ist es auch bekannt,
das Aufbringen der Integral-Schaumstoffschicht wahlweise in
einer Dauerform oder in einem Isolierstoffrohr durchzuführen, das zum Bestandteil der Kapselung wird und die
Funktion einer verlorenen Form hat. Auf die Festigkeit
dieses Isolierstoffrohres kommt es nur untergeordnet an,
weil die Aufgabe der Berstsicherheit überwiegend den porenfreien Randschichten des Schaumstoffes übertragen ist.

Ferner ist es durch das DE-U-84 03 264 bekannt, eine Vakuumschaltröhre in einem Druckkapselungsgehäuse unterzubringen und einen darin verbleibenden Zwischenraum mit einem Isolierschaum auszufüllen. Sowohl bei dieser Anordnung als auch bei der zuvor beschriebenen Anordnung mit verlorener Form ist das äußere Rohr erforderlich, um den

Et/Pch / 24.09.93

93G4131

10

15

20

25

30

Kunststoff-Schaumstoff auf die Vakuumschaltröhre aufbringen zu können.

2

Eine weitere Möglichkeit zur berstsicheren Ummantelung einer Vakuumschaltröhre besteht gemäß der EP-A-O 196 503 darin, auf die Vakuumschaltröhre einen Wickelkörper aufzubringen, der aus Fäden oder Bändern besteht, die mit einem hartbaren Kunststoff getränkt sind. Um die Bildung eines für die erwünschte Festigkeit günstigen Gestalt des Wickelkörpers zu erzielen, kann die Vakuumschaltröhre im Bedarfsfall mit Einlagekörpern geometrisch ergänzt werden.

Die vorstehend erwähnten bekannten Gestaltungen berstsicherer Vakuumschaltröhren haben sich in der Praxis in unterschiedlicher Hinsicht als unbefriedigend erwiesen. Insbesondere wird durch einen Wickelkörper nach der EP-A-0 196 503 keine ausreichende thermische Isolierung erzielt. Dieser Gesichtspunkt wird andererseits nach der DE-A-37 18 110 und dem DE-U-84 03 264 stärker berücksichtigt, in beiden Fällen jedoch mit einer recht aufwendigen Herstellungsweise. Wird andererseits von der Verwendung eines gesonderten Isolierrohres nach einem der Ausführungsbeispiele gemäß der DE-A-37 18 110 abgesehen, so ist es schwierig, sowohl die Wärmeisolierung als auch die Berstsicherheit bei der Herstellung der Integral-Schaumstoffschicht angemessen zu berücksichtigen.

Der Erfindung liegt ausgehend von einer Anordnung mit einem Mantel aus einem faserverstärkten Kunststoff die Aufgabe zugrunde, eine Vakuumschaltröhre mit einer verhältnismäßig dünnen Ummantelung zu schaffen, bei deren Herstellung sowohl die Wärmeisolierung als auch die Berstsicherheit zuverlässig erreicht werden.

93G4131

3

Gemāß der Erfindung wird diese Aufgabe dadurch gelöst, daß die Schicht aus hartem Kunststoff-Schaumstoff eine gleichmāßig poröse Beschaffenheit ohne verdichtete Randschichten aufweist und daß der äußere Mantel durch einen Wickelkörper aus Fäden oder Bändern mit einem ausgehärteten Kunstharz als Bindemittel gebildet ist. Hierdurch wird erreicht, daß der Kunststoffschaumstoff bei einer gegebenen Dicke die bestmögliche Wärmeisolierung ergibt. Dadurch, daß es sich um einen harten Kunststoff-Schaumstoff handelt, ist andererseits diese Beschichtung in der Lage, als Unterlage eines Wickelkörpers aus Fäden oder Bändern zu dienen. Dieser Wickelkörper umgibt somit die Schaumstoffschicht dicht anliegend und kann mit einer gewissen Vorspannung aufgebracht sein, was zur Erreichung einer hohen Berstsicherheit beiträgt. Die Kombination einer harten Schaumstoffschicht ohne verdichtete Randschichten und eines hierauf aufgebrachten Wickelkörpers ergibt somit eine Kapselung von verhältnismäßig geringer Dicke und wesentliche verbesserten Eigenschaften, wobei zugleich die Herstellbarkeit erleichtert ist.

Die Schicht aus harten Kunststoff-Schaumstoff kann die gesamte Umfangsfläche der Vakuumschaltröhre derart umschließend ausgebildet sein, das alle unstetigen Oberflächenmerkmale wie Stufen, Pumpstutzen oder dgl. überdeckt und eine lediglich stirnseitig durch Anschlußbolzen durchbrochene abgerundete Zylinderform gebildet ist. Auf diese Weise wird eine für das Aufbringen des Wickelkörpers besonders geeignete glatte bzw. stetig verlaufende Kontur erzeugt. Dies erleichtert nicht nur die Herstellung des Wickelkörpers, sondern verbessert auch durch die dann mögliche gleichmäßige Schichtdicke die Festigkeit der Umhüllung.

10

15

20

25

30

93 G 4 1 3 1

5

10

15

20

25

30

4

Die Erfindung wird im folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.

In der Figur ist eine Vakuumschaltröhre in einem Längsschnitt gezeigt.

In bekannter Weise weist die Vakuumschaltröhre 1 relativ zueinander bewegbare Schaltkontakte 2 und 3 auf, von denen der Schaltkontakt 2 an einem Trägerbolzen 4 feststehend angeordnet ist. Der Schaltkontakt 3 ist an einem durch das Gehäuse der Vakuumschaltröhre 1 axial verschiebbar herausgeführten Trägerbolzen 5 befestigt, wobei ein Faltenbalg 6 als vakuumdichte Verbindung die axiale Beweglichkeit ermöglicht. Die Vakuumschaltröhre 1 besitzt ein Gehäuse 7, das im wesentlichen aus hohlzylindrischen Keramikkörpern 10 und stirnseitigen Abschlußflanschen 11 bzw. 12 besteht. Der Trägerbolzen 4 ist vakuumdicht mit dem unteren Abschlußflansch verbunden, während der obere Abschlußflansch 11 ein Führungslager 13 für den axial bewegbaren Trägerbolzen 5 aufweist und mit dem Faltenbalg 6 verbunden ist.

Die Vakuumschaltröhre 1 ist mit einer gegen einen Innendruck beständigen Kapselung 14 versehen, deren Aufbau nun beschrieben wird. Die Kapselung 14 besteht aus einer inneren Schicht 15 aus thermisch und elektrisch isolierendem Schaumstoff und einem äußeren berstsicheren Mantel 16. Die Übergänge zwischen den Keramikkörpern 10 und den Abschlußflanschen 11 und 12 bilden Stufen 17, die enbenso wie ein Pumpstutzen 18 Unstetigkeiten in der Kontur der Vakuumschaltröhre 1 darstellen. Diese Unstetigkeiten werden durch die Schicht 15 aus harten Kunststoff-Schaumstoff, vorzugsweise ein Polyurethanschaumstoff, derart überdeckt, daß die äußere Kontur einem abgerundeten Zylinder entspricht. Vor dem vorzugsweise in einer Form vorzunehmenden Aufbringen

93G4131

5

des Schaumstoffes können aus Metall bestehende Schutzkappen 19 aufgebracht werden, um im Fehlerfall eine thermische Entlastung der Schaumstoffschicht 15 zu bewirken. Derartige zusätzliche Metallkörper bzw. Schutzkappen sind beispielsweise auch in der DE-A-37 18 110 erwähnt. Die Schicht 15 ist gleichmäßig porös, weist also keine verdichteten Randschichten auf. Hierdurch wird die bestmögliche thermische Isolierung bei einer gegegbenen Dicke der Schicht erreicht.

10

15

Die Schaumstoffschicht 15 ist von dem Mantel 16 umschlossen, der als Wickelkörper ausgebildet ist und der aus Fäden oder Bändern besteht, die mit einem ausgehärteten Kunststoff getränkt sind. Der Mantel 16 ist dicht anliegend auf die Schaumstoffschicht 15 aufgebracht, was insbesondere dadurch ermöglicht wird, daß mit Rücksicht auf die Festigkeit des harten Schaumstoffes mit einer gewissen Vorspannung gearbeitet werden kann.

20 Die beiden Komponenten der Kapselung 14 der Vakuumschaltröhre 1, nämlich die harte Schaumstoffschicht 15 und der Mantel 16, sind ihren jeweiligen Aufgaben genau angemessen. Dies bedeutet, daß die Schaustoffschicht 15 die thermische Isolierung zu übernehmen hat und daher an der Oberfläche 25 der Schaumstoffschicht 15 im Fehlerfall keine zur Zündung eines umgebenden Gases ausreichende Temperatur erreicht werden darf. Der Mantel 16 ist seinerseits so bemessen, daß er die gesamte Berstkraft aufzunehmen vermag, die bei einem Fehler innerhalb der Vakuumschaltröhre 1 auftritt. Daher zeichnet sich die beschriebene Ummantelung bei guter 30 Herstellbarkeit und Prüfbarkeit durch ein hohes Maß an Sicherheit aus.

93 G 4 1 3 1

Schutzansprüche

- Vakuumschaltröhre (1) mit einer gegen Innendruck beständigen Kapselung (14), bestehend aus einer auf die
 Vakuumschaltröhre (1) aufgebrachten Schicht (15) aus einem harten Kunststoff-Schaumstoff und einem äußeren Mantel (20) aus einem faserverstärkten Kunststoff, dad urch gekennzeich die chnet, daß die Schicht (15) aus hartem Kunststoff-Schaumstoff eine
 gleichmäßig poröse Beschaffenheit ohne verdichtete Randschichten aufweist und daß der äußere Mantel (20) durch einen Wickelkörper aus Fäden oder Bändern mit einem ausgehärteten Kunstharz als Bindemittel gebildet ist.
- 2. Vakuumschaltröhre nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Schicht (15) aus hartem Kunststoff-Schaumstoff die gesamte Umfangsfläche der Vakuumschaltröhre (1) derart umschließend ausgebildet ist, daß alle unstetigen Oberflächenmerkmale wie Stufen (17), Pumpstutzen (18) od. dergl. überdeckt und eine lediglich stirnseitig durch Anschlußbolzen (4, 5) durchbrochene abgerundete Zylinderform gebildet ist.

MID: -DE | M14764111

