

Victor Guichard, Eliott Vigier, Paul Chu

Introduction

Plan

- Introduction sur DSPy
- Reproduction et étude de DSPy
- LLM Ensembling
- Conclusion

Introduction sur DSPy

Declarative Self-improving Prompting in Python

DSPy affine le prompt du LLM de façon itérative afin de maximiser le score du LLM sur une tâche.

Introduction sur DSPy

Signature: structure de la tâche à réaliser. Ex : GSM8k, Questions (str) → Réponses (str) Liée à un **module**.

Module : Stratégie de raisonnement.

Ex: Vanilla, Chain-of-Thought (CoT),

Reflective.

Optimizer: Génère plusieurs prompts grâce au dataset. Compare les réponses de ces prompts avec la vraie réponse grâce à la **métrique** pour tout le dataset et garde le meilleur prompt.

Ex: bootstrap fewshot

Métrique : Compare le résultat du prompt généré avec la réponse attendue.

Ex: ExactMatch

Reproduction de DSPy

Reproduction de DSPy

- Comparaison entre les modules (Vanilla / CoT / Reflection)
- Comparaison entre avant/après optimisation

Table 2: Prediction Reasoning for Wendy's Dentist Bill Problem

Program	Prediction Reasoning
Vanilla	Wendy paid \$600 for the tooth extraction. (incorrect)
Vanilla + DSPy Compilation	Wendy paid \$240 for the tooth extraction. (incorrect)
CoT	Wendy paid \$150 for the tooth extraction. (incorrect)
CoT + DSPy Compilation	Let's denote the cost of the tooth extraction as x . Wendy's bill was five times the cost of a filling, which is \$120. So: \$70 (cleaning) + 2 × \$120 (fillings) + x = \$600. \Rightarrow 70 + 240 + x = 600 \Rightarrow x = 600 - 310 = 290. (correct)
Reflection	The cost of the tooth extraction is \$250. (incorrect)
Reflection + DSPy Compilation	Given that Wendy's dentist bill was five times the cost of a filling, and each filling costs \$120, the total bill is $5 \times $120 = 600 . The bill includes the cleaning (\$70) and 2 fillings (\$120 each), so: $$70 + 2 \times $120 = 310 . Therefore, the cost of the tooth extraction is: $$600 - $310 = \boxed{290}$. (correct)

Extension sur GPT40mini

Comparaison GPT3.5 / GPT4o-mini

Program	GPT-3.5	GPT-4o-mini	
Vanilla (Module Predict)	1.67	0.0	
+ DSPy Compilation	38.33	40.0	
СоТ	8.00	20.0	
+ DSPy Compilation	83.67	100.0	
Reflection	12.67	35.0	
+ DSPy Compilation	85.33	100.0	

Table: Accuracy comparison of uncompiled and compiled DSPy modules across GPT-3.5 and GPT-4o-mini.

Comparaison GPT3.5 / GPT4o-mini

• Comparaison entre le raisonnement de chaque module

Table 3: Comparison of DSPy-Compiled Reasoning between GPT-3.5 and GPT-40-mini

Model	Program (Compiled)	Prediction Reasoning
GPT-3.5	CoT + DSPy Compila- tion	Let's denote the cost of the tooth extraction as x . Wendy's bill was five times the cost of a filling, which is \$120. So: \$70 (cleaning) $+ 2 \times 120 (fillings) $+ x = 600$. $\Rightarrow 70 + 240 + x = 600 \Rightarrow x = 600 - 310 = 290$. (correct)
	Reflection + DSPy Compilation	Wendy's dentist bill was five times the cost of a filling. Each filling is \$120, so: \$600. Cleaning: \$70, Fillings: 2 × \$120 = \$240. Total known = \$310, Tooth extraction = \$600 - \$310 = 290. (correct)
GPT-4o-mini	CoT + DSPy Compila- tion	The bill is $5 \times \$120 = \600 . Cleaning = \\$70, Fillings = $2 \times \$120 = \240 . Total known = \\$310, Tooth extraction = \\$600 - \\$310 = \begin{array}{c} 290 \\ (correct) \end{array}
	Reflection + DSPy Compilation	Charges: \$70 (cleaning), $2 \times $120 = 240 (fillings). Cleaning + fillings = \$310. Total = $5 \times $120 = 600 . Tooth extraction = $$600 - $310 = \boxed{290}$. (correct)

Extension sur un nouveau dataset

Majority voting on a single model

- Définition du mini_bench (issue du GSM8k dataset)
- Initialisation de notre modèle "Qwen2.5-Coder-1.5B-Instruct"

Table 1: Sample from mini_bench (GSM8K Test Subset)

	Table 1. Dample from militabelien (Goldon Test Dubset)	
#	Question (abridged)	Answer
1	Janet's ducks lay 16 eggs/day. She eats 3 and uses 4 for	18
	muffins. She sells the rest at \$2 each. How much does she	
	earn per day?	
2	A robe takes 2 bolts of blue fiber and half that much white.	3
	How many total bolts?	
3	Josh buys a house for \$80k, renovates for \$50k. The value	70000
	increases 150%. What's his profit?	
4	James runs 3 sprints, 3×/week. Each sprint is 60m. How	540
	many meters per week?	
5	Wendi feeds each chicken 3 cups/day. She gives 15 cups AM,	20
	25 PM. Her flock has 20 chickens. How much for the last	
	meal?	
6	Kylar buys 16 glasses: 1st is \$5, 2nd is 60% of price. What's	64
	the total cost?	
7	Toulouse = $2 \times \text{Charleston}$; Charleston = $4 \times \text{Seattle}$; Seattle	260
	has 20 sheep. How many total sheep?	
8	Carla downloads 200GB. At 2GB/min, she restarts at 40%	160
	(after 20min pause). How long to redownload fully?	
9	John drives 3h at 60mph. On return: 2h traffic (0 mph),	45
	0.5h at 30mph, then 1.5h at 80mph. How far is he from	
	home after 4h?	
10	Eliza earns \$10/hr for $40h$ /week. Overtime = $1.2 \times \text{rate}$. If	460
	she works 45h this week, how much does she earn?	

Majority voting on a single model

• Implémentation du Majority voting avec N candidat(s)

Algorithm 1 GenerateCandidates

Input: Math question q, number of generations N

Output: List of N decoded responses R

- 1: Construct a structured prompt P containing q.
- 2: Tokenize P and send to LLM using sampling-based decoding with:
 - ullet num_return_sequences =N
 - do_sample = True, temperature = 0.7, top_p = 0.9
- 3: For each of the N outputs:
 - Decode the output into text.
 - Extract Python code between ''python ... ''.
- 4: return R, the list of code blocks

Algorithm 2 MajorityVote

Input: List of numerical outputs $A = \{a_1, a_2, ..., a_n\}$

Output: Most frequent result a^*

- Filter out any None or invalid results from A.
- Count occurrences of each remaining value using a frequency map F.
- 3: Identify the maximum frequency $f^* = \max F[a_i]$.
- 4: Let $C = \{a_i \in A \mid F[a_i] = f^*\}$ be the tied candidates.
- 5: Break ties by selecting a random $a^* \in C$.
- 6: return a*

Majority voting on a single model

Multi-Model Voting

• Implémentation du Majority voting cross-models

```
      Algorithm 3 GenerateAnswer

      Input : Math question q, model M, tokenizer T

      Output: Normalized numerical result r

      1 Format prompt P to instruct model to generate Python code

      Tokenize prompt: inputs ← T(P)

      Run model generation: output ← M(inputs)

      Extract code block delimited by ""python ..."

      if code is valid then

      2 Execute code using exec()

      Retrieve variable result from local scope

      Normalize numerical value using float()

      return r

      3 else

      4 return None
```

Algorithm 5 EvaluateModelsAndMajority

Benchmark set \mathcal{B} , model set $\mathcal{M}_1, \dots, \mathcal{M}_k$ Individual accuracies and ensemble accuracies

foreach model M_i do

Sort models by accuracy into list M_{sorted}

```
foreach N in top-N values do
```

```
foreach (q, a) in \mathcal{B} do

Let R \leftarrow \text{list of predictions } r_1, \dots, r_N \text{ from top-N models } r^* \leftarrow \text{MajorityVote}(R)

if r^* == a then

Lincrement ensemble correct count

Compute ensemble accuracy as \frac{\text{correct}}{|\mathcal{B}|}
```

Multi-Model Voting

Conclusion

Contribution:

- Expérimentation et reproduction du papier DSPy
- Extension sur un nouveau modèle et nouveau dataset
- Imitation avec une approche intuitive: LLM Ensembling

Travaux futurs:

- Comparer DSPy et GRPO (cf TPs): coût vs performance.
- Étendre à d'autres tâches complexes (Q&A).
- Tester les modules DSPy avec mise à jour de poids.

Références

[1] Omar Khattab, Ankit Singhvi, Pratyush Maheshwari, Zhun Zhang, Keshav Santhanam, Satyapriya Vardhamanan, Syed Haq, Ananya Sharma, Tanmayi Thyagarajan Joshi, Humza Moazam, Houston Miller, Matei Zaharia, Christopher Potts.

DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines.

Stanford University, UC Berkeley, Amazon Alexa AI, CMU, Microsoft, IIT Bombay, Dashworks, Calera Capital, Two Sigma Investments.

<u>Link to paper</u> – arXiv:2402.19150, 2024.

[2] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts, Matei Zaharia. Demonstrate-Search-Predict: Composing Retrieval and Language Models for Knowledge-Intensive NLP.

arXiv:2212.14024, 2022.

[3] Jinyi Xiang, Jing Zhang, Zhengyu Yu, Fengwei Teng, Jialiang Tu, Xiaodan Liang, Shilin Hong, Changzhou Wu, Yiyu Luo. Self-Supervised Prompt Optimization.

<u>arXiv link</u>, 2023.

[4] Ziyang Shao, Peng Wang, Qian Zhu, Runxin Xu, Jiaxin Song, Xiaodong Bi, Hang Zhang, Meng Zhang, Yikang Li, Yuxuan Wu, Dongyan Guo. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models.

DeepSeek-Al, Tsinghua University, Peking University.

@ GitHub Repository

[5] OpenAl API Key

Utilisé pour tester les modèles avancés (comme GPT-40-mini) via appel API dans les modules DSPy.

[6] LLM MVA Course – ENS Paris-Saclay
Supports de cours, TP1 & TP2 disponibles sur : Attps://llm.labri.fr/#slides

[7] Qwen/Qwen2.5-Coder-1.5B-Instruct

Modèle open-source Hugging Face : A https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct

Merci!