Package 'rwicc'

October 14, 2022
Title Regression with Interval-Censored Covariates
Version 0.1.3
Description Provides functions to simulate and analyze data for a regression model with an interval censored covariate, as described in Morrison et al. (2021) <doi:10.1111 biom.13472="">.</doi:10.1111>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2
VignetteBuilder knitr
Config/testthat/edition 3
Imports biglm, dplyr, lubridate, magrittr, stats, pryr, arm, ggplot2, scales
Suggests spelling, rmarkdown, knitr, testthat, markdown, pander
Language en-US
<pre>URL https://d-morrison.github.io/rwicc/,</pre>
https://github.com/d-morrison/rwicc
BugReports https://github.com/d-morrison/rwicc/issues
NeedsCompilation no
Author Douglas Morrison [aut, cre, cph] (https://orcid.org/0000-0002-7195-830X), Ron Brookmeyer [aut]
Maintainer Douglas Morrison <dmorrison@1@ucla.edu></dmorrison@1@ucla.edu>
Repository CRAN
Date/Publication 2022-03-09 21:40:06 UTC
R topics documented:
build_phi_function_from_coefs

2 compute_mu

fit_midpoint_model		 		5
fit_uniform_model		 		6
plot_CDF		 		7
plot_phi_curves		 	. 	8
rwicc		 		10
seroconversion_inverse_sur	vival_function	 		10
simulate_interval_censoring	g	 		11

Index 13

build_phi_function_from_coefs

convert a pair of simple logistic regression coefficients into P(Y|T) curve:

Description

convert a pair of simple logistic regression coefficients into P(Y|T) curve:

Usage

```
build_phi_function_from_coefs(coefs)
```

Arguments

coefs

numeric vector of coefficients

Value

```
function(t) P(Y=1|T=t)
```

compute_mu

compute mean window period duration from simple logistic regression coefficients

Description

compute mean window period duration from simple logistic regression coefficients

Usage

```
compute_mu(theta)
```

Arguments

theta

numeric vector of coefficients

fit_joint_model 3

Value

numeric scalar: mean window period duration

fit_joint_model

Fit a logistic regression model with an interval-censored covariate

Description

This function fits a logistic regression model for a binary outcome Y with an interval-censored covariate T, using an EM algorithm, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

Usage

```
fit_joint_model(
  participant_level_data,
  obs_level_data,
 model_formula = stats::formula(Y ~ T),
 mu_function = compute_mu,
 bin_width = 1,
  denom\_offset = 0.1,
  EM_toler_loglik = 0.1,
 EM_toler_est = 1e-04,
 EM_max_iterations = Inf,
 glm_tolerance = 1e-07,
 glm_maxit = 20,
  initial_S_estimate_location = 0.25,
  coef_change_metric = "max abs rel diff coefs",
  verbose = FALSE
)
```

Arguments

participant_level_data

a data.frame or tibble with the following variables:

- ID: participant ID
- E: study enrollment date
- L: date of last negative test for seroconversion
- R: date of first positive test for seroconversion
- Cohort' (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

obs_level_data a data.frame or tibble with the following variables:

- ID: participant ID
- O: biomarker sample collection dates
- Y: MAA classifications (binary outcomes)

model_formula the functional form for the regression model for p(ylt) (as a formula() object)

4 fit_joint_model

mu_function a function taking a vector of regression coefficient estimates as input and outputting an estimate of mu (mean duration of MAA-positive infection).

bin_width the number of days between possible seroconversion dates (should be an integer)

denom_offset an offset value added to the denominator of the hazard estimates to improve

numerical stability

EM_toler_loglik

the convergence cutoff for the log-likelihood criterion ("Delta_L" in the paper)

EM_toler_est the convergence cutoff for the parameter estimate criterion ("Delta_theta" in the paper)

EM_max_iterations

the number of EM iterations to perform before giving up if still not converged.

glm_tolerance the convergence cutoff for the glm fit in the M step

glm_maxit the iterations cutoff for the glm fit in the M step

initial_S_estimate_location

determines how seroconversion date is guessed to initialize the algorithm; can be any decimal between 0 and 1; 0.5 = midpoint imputation, 0.25 = 1st quartile, 0 = 1ast negative, etc.

coef_change_metric

a string indicating the type of parameter estimate criterion to use:

- "max abs rel diff coefs" is the "Delta_theta" criterion described in the paper.
- "max abs diff coefs" is the maximum absolute change in the coefficients (not divided by the old values); this criterion can be useful when some parameters are close to 0.
- "diff mu" is the absolute change in mu, which may be helpful in the incidence estimate calibration setting but not elsewhere.

verbose

whether to print algorithm progress details to the console

Value

a list with the following elements:

- Theta: the estimated regression coefficients for the model of p(Y|T)
- Mu: the estimated mean window period (a transformation of Theta)
- Omega: a table with the estimated parameters for the model of p(SIE).
- converged: indicator of whether the algorithm reached its cutoff criteria before reaching the specified maximum iterations. 1 = reached cutoffs, 0 = not.
- iterations: the number of EM iterations completed before the algorithm stopped.
- convergence_metrics: the four convergence metrics

References

Morrison, Laeyendecker, and Brookmeyer (2021). "Regression with interval-censored covariates: Application to cross-sectional incidence estimation". Biometrics. doi: 10.1111/biom.13472.

fit_midpoint_model 5

Examples

```
## Not run:

# simulate data:
study_data <- simulate_interval_censoring()

# fit model:
EM_algorithm_outputs <- fit_joint_model(
   obs_level_data = study_data$obs_data,
   participant_level_data = study_data$pt_data
)

## End(Not run)</pre>
```

fit_midpoint_model

Fit model using midpoint imputation

Description

Fit model using midpoint imputation

Usage

```
fit_midpoint_model(
  participant_level_data,
  obs_level_data,
  maxit = 1000,
  tolerance = 1e-08
)
```

Arguments

participant_level_data

a data.frame or tibble with the following variables:

- ID: participant ID
- E: study enrollment date
- L: date of last negative test for seroconversion
- R: date of first positive test for seroconversion
- Cohort' (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

obs_level_data a data.frame or tibble with the following variables:

- ID: participant ID
- O: biomarker sample collection dates
- Y: MAA classifications (binary outcomes)

maxit maximum iterations, passed to bigglm tolerance convergence criterion, passed to bigglm

6 fit_uniform_model

Value

a vector of logistic regression coefficient estimates

Examples

```
sim_data = simulate_interval_censoring(
  "theta" = c(0.986, -3.88),
  "study_cohort_size" = 4500,
  "preconversion_interval_length" = 365,
  "hazard_alpha" = 1,
  "hazard_beta" = 0.5)

theta_est_midpoint = fit_midpoint_model(
  obs_level_data = sim_data$obs_data,
  participant_level_data = sim_data$pt_data
)
```

fit_uniform_model

Fit model using uniform imputation

Description

Fit model using uniform imputation

Usage

```
fit_uniform_model(
  participant_level_data,
  obs_level_data,
  maxit = 1000,
  tolerance = 1e-08,
  n_imputations = 10
)
```

Arguments

participant_level_data

a data.frame or tibble with the following variables:

- ID: participant ID
- E: study enrollment date
- L: date of last negative test for seroconversion
- R: date of first positive test for seroconversion
- Cohort' (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

obs_level_data a data.frame or tibble with the following variables:

plot_CDF 7

- ID: participant ID
- O: biomarker sample collection dates
- Y: MAA classifications (binary outcomes)

maxit maximum iterations, passed to bigglm tolerance convergence criterion, passed to bigglm n_imputations number of imputed data sets to create

Value

a vector of logistic regression coefficient estimates

Examples

```
sim_data = simulate_interval_censoring(
   "theta" = c(0.986, -3.88),
   "study_cohort_size" = 4500,
   "preconversion_interval_length" = 365,
   "hazard_alpha" = 1,
   "hazard_beta" = 0.5)

theta_est_midpoint = fit_uniform_model(
   obs_level_data = sim_data$obs_data,
   participant_level_data = sim_data$pt_data
)
```

plot_CDF

plot estimated and true CDFs for seroconversion date distribution

Description

plot estimated and true CDFs for seroconversion date distribution

Usage

```
plot_CDF(true_hazard_alpha, true_hazard_beta, omega.hat)
```

Arguments

```
true_hazard_alpha

The data-generating hazard at the start of the study true_hazard_beta
```

The change in data-generating hazard per calendar year

omega.hat tibble of estimated discrete hazards

Value

```
a ggplot
```

8 plot_phi_curves

Examples

```
## Not run:
hazard_alpha = 1
hazard_beta = 0.5
study_data <- simulate_interval_censoring(</pre>
  "hazard_alpha" = hazard_alpha,
  "hazard_beta" = hazard_beta)
# fit model:
EM_algorithm_outputs <- fit_joint_model(</pre>
  obs_level_data = study_data$obs_data,
  participant_level_data = study_data$pt_data
)
plot1 = plot_CDF(
  true_hazard_alpha = hazard_alpha,
  true_hazard_beta = hazard_beta,
  omega.hat = EM_algorithm_outputs$Omega)
print(plot1)
## End(Not run)
```

plot_phi_curves

Plot true and estimated curves for P(Y=1|T=t)

Description

Plot true and estimated curves for P(Y=1|T=t)

Usage

```
plot_phi_curves(
   theta_true,
   theta.hat_joint,
   theta.hat_midpoint,
   theta.hat_uniform
)
```

Arguments

```
theta_true the coefficients of the data-generating model P(Y=1|T=t) theta.hat_joint the estimated coefficients from the joint model theta.hat_midpoint the estimated coefficients from midpoint imputation theta.hat_uniform the estimated coefficients from uniform imputation
```

plot_phi_curves 9

Value

a ggplot

Examples

```
## Not run:
theta_true = c(0.986, -3.88)
hazard_alpha = 1
hazard_beta = 0.5
sim_data = simulate_interval_censoring(
  "theta" = theta_true,
  "study_cohort_size" = 4500,
  "preconversion_interval_length" = 365,
  "hazard_alpha" = hazard_alpha,
  "hazard_beta" = hazard_beta)
# extract the participant-level and observation-level simulated data:
sim_participant_data = sim_data$pt_data
sim_obs_data = sim_data$obs_data
rm(sim_data)
# joint model:
EM_algorithm_outputs = fit_joint_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data,
  bin_width = 7,
  verbose = FALSE)
# midpoint imputation:
theta_est_midpoint = fit_midpoint_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data
# uniform imputation:
theta_est_uniform = fit_uniform_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data
plot2 = plot_phi_curves(
  theta_true = theta_true,
  theta.hat_uniform = theta_est_uniform,
  theta.hat_midpoint = theta_est_midpoint,
  theta.hat_joint = EM_algorithm_outputs$Theta)
print(plot2)
## End(Not run)
```

rwicc

rwicc: Regression with Interval-Censored Covariates

Description

The rwice package implements a regression model with an interval-censored covariate using an EM algorithm, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

rwice functions

The main rwicc functions are:

- simulate_interval_censoring
- fit_joint_model

References

Morrison, Laeyendecker, and Brookmeyer (2021). "Regression with interval-censored covariates: Application to cross-sectional incidence estimation". Biometrics. doi: 10.1111/biom.13472.

```
seroconversion_inverse_survival_function
```

Inverse survival function for time-to-event variable with linear hazard function

Description

This function determines the seroconversion date corresponding to a provided probability of survival. See doi: 10.1111/biom.13472, Supporting Information, Section A.4.

Usage

```
seroconversion_inverse_survival_function(u, e, hazard_alpha, hazard_beta)
```

Arguments

u a vector of seroconversion survival probabilities

e a vector of time differences between study start and enrollment (in years)

hazard_alpha the instantaneous hazard of seroconversion on the study start date

hazard_beta the change in hazard per year after study start date

Value

numeric vector of time differences between study start and seroconversion (in years)

References

Morrison, Laeyendecker, and Brookmeyer (2021). "Regression with interval-censored covariates: Application to cross-sectional incidence estimation". Biometrics, doi: 10.1111/biom.13472.

```
simulate_interval_censoring
```

Simulate a dataset with interval-censored seroconversion dates

Description

simulate_interval_censoring generates a simulated data set from a data-generating model based on the typical structure of a cohort study of HIV biomarker progression, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

Usage

```
simulate_interval_censoring(
   study_cohort_size = 4500,
   hazard_alpha = 1,
   hazard_beta = 0.5,
   preconversion_interval_length = 84,
   theta = c(0.986, -3.88),
   probability_of_ever_seroconverting = 0.05,
   years_in_study = 10,
   max_scheduling_offset = 7,
   days_from_study_start_to_recruitment_end = 365,
   study_start_date = lubridate::ymd("2001-01-01")
```

Arguments

```
study_cohort_size
```

the number of participants to simulate (N_0 in the paper)

hazard_alpha the hazard (instantaneous risk) of seroconversion at the start date of the cohort

study for those participants at risk of seroconversion

hazard_beta the change in hazard per calendar year

preconversion_interval_length

the number of days between tests for seroconversion

theta the parameters of a logistic model (with linear functional from) specifying the

probability of MAA-positive biomarkers as a function of time since seroconver-

sion

probability_of_ever_seroconverting

the probability that each participant is at risk of HIV seroconversion

years_in_study the duration of follow-up for each participant

```
max_scheduling_offset
```

the maximum divergence of pre-seroconversion followup visits from the pre-scribed schedule

days_from_study_start_to_recruitment_end

the length of the recruitment period

study_start_date

the date when the study starts recruitment ("d_0" in the main text). The value of this parameter does not affect the simulation results; it is only necessary as a reference point for generating E, L, R, O, and S.

Value

A list containing the following two tibbles:

- pt_data: a tibble of participant-level information, with the following columns:
 - ID: participant ID
 - E: enrollment date
 - L: date of last HIV test prior to seroconversion
 - R: date of first HIV test after seroconversion
- obs_data: a tibble of longitudinal observations with the following columns:
 - ID: participant ID
 - 0: dates of biomarker sample collection
 - Y: MAA classifications of biomarker samples

References

Morrison, Laeyendecker, and Brookmeyer (2021). "Regression with interval-censored covariates: Application to cross-sectional incidence estimation". Biometrics. doi: 10.1111/biom.13472.

Examples

```
study_data <- simulate_interval_censoring()
participant_characteristics <- study_data$pt_data
longitudinal_observations <- study_data$obs_data</pre>
```

Index

```
build_phi_function_from_coefs, 2

compute_mu, 2

fit_joint_model, 3, 10
fit_midpoint_model, 5
fit_uniform_model, 6

plot_CDF, 7
plot_phi_curves, 8

rwicc, 10

seroconversion_inverse_survival_function, 10
simulate_interval_censoring, 10, 11
```