1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin{(\omega_0 t)},$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала, изображенного на рисунке.

3 Найти импульсную характеристику цепи, изображенной на рисунке.

** *
$$\frac{p}{p+a} \leftrightarrow \delta(t) - a \cdot \exp(-at)$$

1. 1. Найти импульсную характеристику цепи, изображенной на рисунке.

*
$$\frac{p}{p+a} \leftrightarrow \delta(t) - a \cdot \exp(-at)$$

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

2. Найти амплитудный спектр сигнала, изображенного на рисунке.

3 Найти импульсную характеристику цепи, изображенной на рисунке.

** *
$$\frac{p}{p+a} \leftrightarrow \delta(t) - a \cdot \exp(-at)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала, изображенного на рисунке,

$$\int exp(ax) \cdot dx = \frac{1}{a} \cdot exp(ax)$$

3. Найти импульсную характеристику цепи, изображенной на рисунке.

$$\frac{1}{p+a} \leftrightarrow \exp(-at)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

 $s_2(t) = \sin(2\omega_0 t).$

на рисунке.

$$\int exp(ax) \cdot dx = \frac{1}{a} \cdot exp(ax)$$

3. Найти импульсную характеристику цепи, изображенной на рисунке.

$$\frac{1}{p+a} \leftrightarrow \exp(-at)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала

$$s(t) = at \cdot 1(t),$$

изображенного на рисунке.

3. Найти переходную характеристику цепи, изображенной на рисунке.

$$\frac{1}{p+a} \leftrightarrow \exp(-at)$$

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала, изображенного на рисунке.

3. Найти переходную характеристику цепи, изображенной на рисунке.

$$\frac{1}{p+a} \leftrightarrow \exp(-at)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

2. Найти амплитудный спектр сигнала, изображенного на рисунке,

*** $\int exp(ax)\cdot dx = \frac{1}{a} \cdot exp(ax)$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

$$\int exp(ax) \cdot dx = \frac{1}{a} \cdot exp(ax)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

2. Найти амплитудный спектр сигнала

$$\mathbf{s}(\mathbf{t}) = a\mathbf{t} \cdot \mathbf{1}(\mathbf{t}),$$

изображенного на рисунке.

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала

$$\mathbf{s}(\mathbf{t}) = a\mathbf{t} \cdot \mathbf{1}(\mathbf{t}),$$

изображенного на рисунке.

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала, изображенного на рисунке,

 $\int exp(ax)\cdot dx = \frac{1}{a} \cdot exp(ax)$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \sin(2\omega_0 t).$$

2. Найти амплитудный спектр сигнала, изображенного на рисунке.

$$\int exp(ax) \cdot dx = \frac{1}{a} \cdot exp(ax)$$

3. Найти импульсную характеристику цепи, изображенной на рисунке.

** *
$$\frac{p}{p+a} \leftrightarrow \delta(t) - a \cdot \exp(-at)$$

1. Пояснить (на рисунке) физический смысл свойства ортогональности сигналов

$$s_1(t) = \sin(\omega_0 t),$$

$$s_2(t) = \cos(\omega_0 t)$$
.

2. Найти амплитудный спектр сигнала

$$s(t) = at \cdot 1(t),$$

изображенного на рисунке.

3. Найти переходную характеристику цепи, изображенной на рисунке.

$$\frac{1}{p+a} \leftrightarrow \exp(-at)$$