Příklady pro cvičení 6. z IFJ: Syntaktická analýza zdola nahoru

Příklad 1.

- a) Vytvořte precedenční tabulku pro gramatiku $G = (N, T, P, \mathbf{E})$, kde:
 - $N = \{ \mathbf{E} \}$,
 - $T = \{+, -, *, /, ^{\bullet}, i, (,) \},$
 - $P = \{ 1: E \to E + E, 2: E \to E E, 3: E \to E \times E, 4: E \to E/E, 5: E \to E \wedge E, 6: E \to (E), 7: E \to i \}$

b) pomocí precedenční tabulky proveď te syntaktickou analýzu zdola nahoru pro řetězec (i * i) $^{\land} i$ a uveď te jeho pravý rozbor.

Význam jednotlivých operací, jejich asociativita a precedence:

```
* ... sčítání, – ... odčítání (obě levě asociativní)

* ... násobení, / ... dělení (obě levě asociativní)

* ... mocnina (pravě asociativní)
```

Poznámka:

```
Pro levě asociativní operaci • obecně platí: a \cdot b \cdot c = (a \cdot b) \cdot c
Pro pravě asociativní operaci • obecně platí: a \cdot b \cdot c = a \cdot (b \cdot c)
```

Řešení:

Záhlaví precedenční tabulky vytvoříme tak, že sloupce i řádky označíme terminálními symboly gramatiky a speciálním symbolem \$. Pozor! Označení řádků i sloupců je sice stejné, ale pokaždé má jiný význam. Označení sloupců bude reprezentovat vstupní symboly, speciálně \$ reprezentuje znak, kterým bude každý řetězec ukončen (=ENDMARKER). Označení řádků bude reprezentovat některé zásobníkové symboly, speciálně \$ reprezentuje symbol, který je na dně zásobníku (=STARTUJÍCÍ ZÁSOBNÍKOVÝ SYMBOL).

Precedenční tabulka pro náš příklad tedy bude ve tvaru:

Tabulku nyní postupně vyplníme symboly: =, <, >, ,,*prázdné poličko*" následujícím způsobem:

I. Vyplnění částí týkajících se operací:

a) pokud operace op_x má vyšší prioritu než operace op_y , potom platí:

$$op_x > op_y$$
; $op_y < op_x$

b) pokud operace op_x má <u>stejnou prioritu</u> jako operace op_y a jsou-li navíc obě operace <u>levě</u> <u>asociativní</u>, potom platí:

$$op_x > op_y$$
; $op_y > op_x$

c) pokud operace op_x má <u>stejnou prioritu</u> jako operace op_y a jsou-li navíc obě operace <u>pravě</u> asociativní, potom platí:

$$op_x < op_y$$
; $op_y < op_x$

Operační část tabulky pro výše uvedený příklad tedy bude vypadat následovně:

	+	-	*	/	٨
+	>	>	<	<	<
_	^	>	\	<	>
*	>	>	/	>	\
/	^	>	/	>	>
٨	^	^	\	^	\

Mnemotechnická pomůcka pro vyplnění operační části tabulky:

- Pro různé priority jsou zápisy dostatečně mnemotechnické: + < *, * > +, * < ^, ^ > *, ...
- Pro stejné priority a levou asociativitu má "*jako by větší prioritu*" operace na prvním místě, protože bude provedena dříve: +>+, ->-, ->+, +>-, ...
- Pro stejné priority a pravou asociativitu má "*jako by větší prioritu*" operace na druhém místě, protože bude provedena dříve: ^ < ^.

II. Vyplnění částí týkajících se identifikátorů:

a) Pro každý terminální symbol a, který se může vyskytovat hned **před** identifikátorem i, platí:

$$a \le i$$

b) Pro každý terminální symbol *a*, který se může vyskytovat hned <u>za</u> identifikátorem *i*, platí:

- V libovolném výrazu se může <u>před</u> identifikátorem nacházet: <u>libovolná operace</u>, <u>levá</u> <u>závorka</u> a !!!POZOR!!!, jakmile později uvidíme, budou se načtené symboly vkládat na zásobník, tedy speciálně v zásobníku se může vyskytovat hned před identifikátorem také startující symbol zásobníku §. Platí tedy: + < i, < i, * < i, / < i, ^ < i, (< i, \$ < i.
- V libovolném výrazu se může <u>za</u> identifikátorem nacházet: <u>libovolná operace</u>, <u>pravá závorka</u> a speciálně ve vstupním řetězci také ukončovač řetězce <u>\$</u>. Platí tedy: i > +, i > -, i > *, i > /, i > ^, i >), i > \$.

Odpovídající část tabulky pro výše uvedený příklad tedy bude vypadat následovně:

	+	_	*	/	۸	(i)	\$
+	>	>	<	<	<		<		
_	^	۸	\	\	\		٧		
*	^	/	>	>	<		\		
/	^	^	>	>	<		٧		
^	>	>	>	>	<		\		
(٧		
i	>	>	>	>	>			>	>
)									
\$							<		

III. Vyplnění částí týkajících se závorek:

a) Platí:

$$(=)$$

b) Pro každý terminální symbol *a* různý od), **\$** platí:

c) Pro každý terminální symbol *a* různý od (, \$ platí:

d) Pro každý terminální symbol a, který se může vyskytovat hned <u>před</u> levou závorkou (, platí:

e) Pro každý terminální symbol *a*, který se může vyskytovat hned <u>za</u> pravou závorkou), platí:

Poznámka: Řešení této části je analogické jako u části II. Také je tedy potřeba dát pozor na problém ukončovače řetězce a na startující symbol v zásobníku!

Odpovídající část tabulky pro výše uvedený příklad tedy bude vypadat následovně:

	+	_	*	/	۸	(i)	\$
+	>	>	<	<	<	<	<	>	
_	^	۸	\	٧	٧	٧	٧	^	
*	>	>	>	/	٧	\	٧	^	
/	>	>	>	>	\	\	٧	^	
^	>	^	>	^	\	٧	٧	^	
(<	<	<	<	<	٧	<	Ш	
i	>	\	>	^	>			۸	>
)	>	>	>	>	>			>	>
\$						<	<		

Poznámka: Všimněte si, že řádky se záhlavím *i*,) jsou stejné a sloupce se záhlavím (, *i* také.

IV. Vyplnění částí týkajících se symbolu \$:

Tabulku dokončíme následujícím způsobem. Pro libovolný operátor op platí: \$ < op; op > \$

Výsledná tabulka tedy vypadá následovně:

	+	_	*	/	۸	(i)	\$
+	>	>	<	<	<	<	<	>	>
_	>	^	<	\	\	V	\	^	>
*	>	^	>	^	٧	٧	٧	^	>
/	>	>	>	/	\	\	\	/	>
^	>	^	>	^	\	\	\	^	>
(<	\	<	\	\	\	\	=	
i	>	>	>	>	>			>	>
)	>	^	>	^	^			>	>
\$	<	<	<	<	<	٧	V		

Algoritmus pro syntaktickou analýzu používající precedenční tabulku:

- Vlož na zásobník symbol \$
- Hlavní cyklus:
 - o Nechť *a* je aktuální vstupní symbol, *b* je nejvrchnější **terminální** symbol na zásobníku. Podle obsahu políčka precedenční tabulky na souřadnicích [b, a] rozhodni:
 - = : Přečti symbol *a* ze vstupu a dej jej na vrchol zásobníku.
 - < : Najdi na zásobníku nejvrchnější **terminální** symbol–b. Hned **za** tento symbol vlož do zásobníku symbol < (Pozor, nemusí být na vrcholu zásobníku!). Přečti symbol a ze vstupu a dej jej na vrchol zásobníku.
 - > : Najdi na zásobníku nejvrchnější symbol <. Mezi tímto symbolem a vrcholem zásobníku najdi **pravou stranu** jistého pravidla r. Odstraň tuto část ze zásobníku včetně symbolu <. Vlož na zásobník levou stranu pravidla r popřípadě zapiš na výstup, že byla provedena redukce podle pravidla r.

prázdné políčko: syntaktická chyba ve vstupním řetězci

• Pokud a =\$ a b =\$ syntakt. analýza proběhla v pořádku, jinak proveď další smyčku cyklu.

Syntaktická analýza řetězce (i * i) ^ i:

Zásobník	Operátor	Vstup	Redukce podle pravidla
\$	<	$(i*i)^i$	
\$<(<	<i>i</i> * <i>i</i>) ^ <i>i</i> \$	
\$ < (< i	>	* i) ^ i \$	$7: E \rightarrow i$
\$ < (E	<	* i) ^ i \$	
\$ < (< E *	<	<i>i</i>) ^ <i>i</i> \$	
$\$ < (\le E * \le i$	>) ^ i \$	$7: E \rightarrow i$
$\$ < (\le E * E$	>) ^ i \$	$3: E \rightarrow E^*E$
\$ < (E	=) ^ i \$	
$\S < (E)$	>	^ i \$	$6: E \to (E)$
§ <i>E</i>	<	^ <i>i</i> \$	
\$ < E ^	<	<i>i</i> \$	
$\$ < E \land < i$	>	\$	$7: E \rightarrow i$
\$ < E ^ E	>	\$	$5: E \rightarrow E^{\wedge}E$
§ <i>E</i>	>	\$	ÚSPĚCH! Pravý rozbor: 773675

Příklad 2.

Uvažujte následující LR-tabulku pro gramatiku $G = (N, T, P, \mathbf{E})$, kde:

- $N = \{ \boldsymbol{E}, \boldsymbol{T}, \boldsymbol{F} \},$
- $T = \{+, -, *, /, i, (,)\},$
- $P = \{ 1: E \to E+T, 2: E \to E-T, 3: E \to T, 4: T \to T*F, 5: T \to T/F, 6: T \to F, 7: F \to (E), 8: F \to i \}$

LR-tabulka:

			Přechodová část								
	i	+	_	*	/	()	\$	E	T	F
0	s 5					s4			1	2	3
1		<u>s6</u>	s 7					0			
2		r3	r3	<u>\$</u> 8	s 9		r3	r3			
3		r6	r6	r6	r6		r6	r6			
4	<u>s</u> 5					s4			10	2	3
5		r8	r8	r8	r8		r8	r8			
6	s 5					s4				11	3
7	s 5					s4				12	3
8	s 5					s4					13
9	s 5					s4					14
10		<u>\$6</u>	s7				s15				
11		r1	r1	<u>\$</u> 8	s 9		r1	r1			
12		r2	r2	<u>\$</u> 8	s 9		r2	r2			
13		r4	r4	r4	r4		r4	r4			
14		r5	r5	r5	r5		r5	r5			
15		r 7	r7	r7	r 7		r 7	r 7			

Pomocí této LR-tabulky proved'te syntaktickou analýzu zdola nahoru pro řetězec (i+i)/i a uved'te jeho pravý rozbor.

Algoritmus pro syntaktickou analýzu používající LR tabulku:

- Vlož na zásobník dvojici symbolů $\langle S, q_0 \rangle$, nastav aktuální stav s na q_0 . $(q_0$ je první stav)
- Hlavní cyklus:
 - Nechť a je aktuální vstupní symbol, s je aktuální stav. Podle obsahu políčka LR-tabulky akční části na souřadnicích [s, a] rozhodni:
 - sq: Přečti symbol a ze vstupu a dej dvojici a, q na zásobník. Aktuální stav a nastav na a.
 - **rp**: Nechť pravidlo s návěštím **p** je tvaru $A \rightarrow X_1 X_2 \dots X_d$ Potom:
 - 1) Zkontroluj, zda je prvních d symbolů na zásobníku ve tvaru: $\langle X_1, ? \rangle \langle X_2, ? \rangle \dots \langle X_d, ? \rangle$, jinak **chyba!**
 - 2) Nechť ještě <u>hned</u> před prvkem <*X*₁, ?> se nachází prvek tvaru <?, *q*>, kde *q* je nějaký stav. Nastav aktuální stav *s* na hodnotu, kterou obsahuje LRtabulka <u>přechodové části</u> na souřadnicích [*q*, *A*] (*A* je levá strana pravidla *p*), odstraň symboly <*X*₁, ?> <*X*₂, ?> ... <*X*_d, ?> ze zásobníku a vlož na něj dvojici <*A*, *s*>.
 - ©: Konec: úspěch syntaktické analýzy!

Prázdné políčko: chyba!

Proveď další smyčku cyklu

Syntaktická analýza řetězce (i+i)/i:

Zásobník	Stav	Vstup	Použití	Redukce podle
			tabulky	pravidla
<\$, 0 >	0	(i+i)/i\$	$\alpha[0, (] = \$4$	
<\$, 0> <(, 4>	4	i+i)/i\$	$\alpha[4, i] = s5$	
<\$, 0> <(, 4> <i, 5=""></i,>	5	+ i) / i \$	$\alpha[5,+]=r8$	$8: F \rightarrow i$
			$\beta[4, F] = 3$	
<\$, 0> <(, 4> <f, 3=""></f,>	3	+ i) / i \$	$\alpha[3, +] = r6$	$6: T \to F$
			$\beta[4, T] = 2$	
<\$, 0> <(, 4> <t, 2=""></t,>	2	+ i) / i \$	$\alpha[2,+]=r3$	$3: E \rightarrow T$
			$\beta[4, E] = 10$	
<\$, 0> <(, 4> < <i>E</i> , 10>	10	+i)/i\$	$\alpha[10,+] = 6$	
<\$, 0> <(, 4> < <i>E</i> , 10> <+, 6>	6	i)/i\$	$\alpha[6, i] = 55$	
<\$, 0> <(, 4> <e, 10=""> <+, 6> <i, 5=""></i,></e,>	5) / i \$	$\alpha[5,)] = r8$	$8: F \rightarrow i$
			$\beta[6, F] = 3$	
<\$, 0> <(, 4> <e, 10=""> <+, 6> <f, 3=""></f,></e,>	3) / i \$	$\alpha[3,)] = r6$	$6: T \to F$
			$\beta[6, T] = 11$	
<\$, 0> <(, 4> < <u>E</u> , 10> <+, 6> < <u>T</u> , 11>	11) / i \$	$\alpha[11,)] = r1$	$1: E \rightarrow E + T$
			$\beta[4, E] = 10$	
<\$, 0> <(, 4> <e, 10=""></e,>	10) / i \$	$\alpha[10,)] = \$15$	
<\$, 0> <(, 4> < <u>E</u> , 10> <), 15>	15	/ i \$	$\alpha[15, /] = r7$	$7: F \rightarrow (E)$
			$\beta[0, F] = 3$	
<\$, 0> < F , 3>	3	/ i \$	$\alpha[3, /] = r6$	$6: T \to F$
			$\beta[0, T] = 2$	
<\$, 0> <t, 2=""></t,>	2	/ i \$	$\alpha[2, /] = 9$	
<\$, 0> <t, 2=""> <!--, 9--></t,>	9	<i>i</i> \$	$\alpha[9, i] = s5$	
<\$, 0> <t, 2=""> <!--, 9--> <i, 5=""></i,></t,>	5	\$	$\alpha[5, \$] = r8$	$8: F \rightarrow i$
			$\beta[9, F] = 14$	
<\$, 0> <t, 2=""> <!--, 9--> <f, 14=""></f,></t,>	14	\$	$\alpha[14, \$] = r5$	$5: T \to T/F$
			$\beta[0, T] = 2$	
<\$, 0> <t, 2=""></t,>	2	\$	$\alpha[2, \S] = r3$	$3: E \rightarrow T$
			$\beta[0, E] = 1$	
<\$, 0> < <u>E</u> , 1>	1	\$	$\alpha[1, \S] = \bigcirc$	

ÚSPĚCH! Pravý rozbor: 86386176853