Тестовое задание для компании ООО "РИТМ"

В. Шаршуков

17 июня 2022 г.

Содержание

1	Формулировка	3
2	Аналитическое решение	4
3	Решение методом Рунге-Кутты	6
4	Графики решений	7
5	Таблица значений	8

1 Формулировка

Написать программу численного решения задачи Коши для уравнения:

$$y^{(5)} + 15y^{(4)} + 90y''' + 270y'' + 405y' + 243y = 0, \quad x \in [0; 5],$$

$$y(0) = 0, \quad y'(0) = 3, \quad y''(0) = -9, \quad y'''(0) = -8, \quad y^{(4)}(0) = 0.$$
(1)

- 1. Реализовать какую-либо численную схему **без использования готовых ре- шений**.
- 2. Построить график решения.

Допустимо использовать сторонние средства построения графиков: gnuplot, Excel, etc.

3. Обосновать достоверность полученного результата.

2 Аналитическое решение

Уравнение 1 является линейным однородным дифференциальным уравнением пятого порядка с постоянными коэффициентами, поэтому для нахождения общего решения составим характеристическое уравнение:

$$\lambda^5 + 15\lambda^4 + 90\lambda^3 + 270\lambda^2 + 405\lambda + 243 = 0.$$

Замечая, что

$$15 = 5 \cdot 3$$
, $90 = 10 \cdot 3^2$, $270 = 10 \cdot 3^3$, $405 = 5 \cdot 3^4$, $243 = 3^5$,

приходим к уравнению

$$(\lambda + 3)^5 = 0,$$

откуда следует, что характеристическое уравнение имеет ровно один корень $\lambda=-3$ с кратностью 5, поэтому общее решение исходного дифференциального уравнения представимо в виде

$$y = (C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4)e^{-3x}.$$

Найдём теперь производные до 4 порядка включительно:

$$y' = (C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x}$$

$$-3\underbrace{(C_0 + C_1x + C_2x^2 + C_3x^3 + C_4x^4)e^{-3x}}_{y}$$

$$= (C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x} - 3y.$$

$$y'' = (2C_2 + 6C_3x + 12C_4x^2)e^{-3x}$$

$$-3\underbrace{(C_1 + 2C_2x + 3C_3x^2 + 4C_4x^3)e^{-3x}}_{y' + 3y} - 3y'$$

$$y' + 3y$$

$$= (2C_2 + 6C_3x + 12C_4x^2)e^{-3x} - 6y' - 9y.$$

$$y''' = (6C_3 + 24C_4x)e^{-3x}$$

$$-3\underbrace{(2C_2 + 6C_3x + 12C_4x^2)e^{-3x}}_{y'' + 6y' + 9y} - 6y'' - 9y'$$

$$y'' + 6y' + 9y$$

$$= (6C_3 + 24C_4x)e^{-3x} - 9y'' - 27y' - 27y.$$

$$y^{(4)} = 24C_4e^{-3x} - 3\underbrace{(6C_3 + 24C_4x)e^{-3x}}_{y''' + 9y'' + 27y' + 27y} - 27y'' - 27y'$$

$$= 24C_4e^{-3x} - 12y''' - 54y'' - 108y' - 81y.$$

Пользуясь начальными условиями 1, определим значения констант:

$$y(0) = 0,$$
 \Longrightarrow $C_0 = 0.$
 $y'(0) = 3,$ \Longrightarrow $C_1 = 3.$
 $y''(0) = -9,$ \Longrightarrow $-9 = 2C_2 - 18,$ $C_2 = \frac{9}{2}.$
 $y'''(0) = -8,$ \Longrightarrow $-8 = 6C_3 + 81 - 81,$ $C_3 = -\frac{4}{3}.$
 $y^{(4)}(0) = 0,$ \Longrightarrow $0 = 24C_4 + 96 + 486 - 324,$ $C_4 = -\frac{43}{4}.$

Итак, искомое решение задачи Коши:

$$y_1 = e^{-3x} (3x + \frac{9}{2}x^2 - \frac{4}{3}x^3 - \frac{43}{4}x^4)$$

$$= -\frac{1}{12}xe^{-3x} (129x^3 + 16x^2 - 54x - 36).$$
(2)

3 Решение методом Рунге-Кутты

Для начала, произведя замену переменных

$$y_1 = y$$
, $y_2 = y' = y'_1$, $y_3 = y'' = y'_2$, $y_4 = y''' = y'_3$, $y_5 = y^{(4)} = y'_4$,

запишем дифференциальное уравнение 1 в виде системы:

$$\begin{cases} y_1' = y_2, \\ y_2' = y_3, \\ y_3' = y_4, \\ y_4' = y_5, \\ y_5' = -243y_1 - 405y_2 - 270y_3 - 90y_4 - 15y_5. \end{cases}$$

Для удобства введём обозначения

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -243 & -405 & -270 & -90 & -15 \end{pmatrix};$$

тогда система дифференциальных уравнений запишется в векторной форме:

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = \vec{f}(x, \vec{y}) = A\vec{y}.$$

В качестве численного метода решения задачи Коши возьмём метод Рунге-Кутты четвёртого порядка с постоянным шагом h и итерационной формулой

$$\vec{y}_{i+1} = \vec{y}_i + \frac{1}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right),$$

где

$$\vec{k}_1 = h\vec{f}(x_i, \vec{y}_i) = hA\vec{y}_i,$$

$$\vec{k}_2 = h\vec{f}(x_i + \frac{h}{2}, \vec{y}_i + \frac{1}{2}\vec{k}_1) = hA(\vec{y}_i + \frac{1}{2}\vec{k}_1),$$

$$\vec{k}_3 = h\vec{f}(x_i + \frac{h}{2}, \vec{y}_i + \frac{1}{2}\vec{k}_2) = hA(\vec{y}_i + \frac{1}{2}\vec{k}_2),$$

$$\vec{k}_4 = h\vec{f}(x_i + h, \vec{y}_i + \vec{k}_3) = hA(\vec{y}_i + \vec{k}_3).$$

Начальные условия: $x_0 = 0$, $\vec{y}_0 = (0, 3, -9, -8, 0)^T$.

4 Графики решений

Введём обозначения:

- \bullet $y_n(x)$ решение, полученное с помощью численного метода.
- ullet $y_e(x)$ решение, полученное аналитически.

Рис. 1: Графики решений

5 Таблица значений

Шаг: h = 0.01.

	()	()	
x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
0.00	0.00000e+00	0.00000e+00	0.00000e+00
0.01	2.95487e-02	2.95487e-02	1.57961e-09
0.02	5.81894e-02	5.81894e-02	2.78069e-09
0.03	8.59144e-02	8.59144e-02	3.64744e-09
0.04	1.12716e-01	1.12716e-01	4.22032e-09
0.05	1.38588e-01	1.38588e-01	4.53637e-09
0.06	1.63523e-01	1.63523e-01	4.62940e-09
0.07	1.87516e-01	1.87516e-01	4.53023e-09
0.08	2.10562e-01	2.10562e-01	4.26691e-09
0.09	2.32657e-01	2.32657e-01	3.86491e-09
0.10	2.53798e-01	2.53798e-01	3.34732e-09
0.11	2.73983e-01	2.73983e-01	2.73500e-09
0.12	2.93210e-01	2.93210e-01	2.04678e-09
0.13	3.11480e-01	3.11480e-01	1.29956e-09
0.14	3.28794 e-01	3.28794e-01	5.08536e-10
0.15	3.45153e-01	3.45153e-01	-3.12756e-10
0.16	3.60561e-01	3.60561e-01	-1.15225e-09
0.17	3.75022e-01	3.75022e-01	-1.99926e-09
0.18	3.88541e-01	3.88541e-01	-2.84437e-09
0.19	4.01124e-01	4.01124e-01	-3.67930e-09
0.20	4.12780 e-01	4.12780 e-01	-4.49688e-09
0.21	4.23514e-01	4.23514e-01	-5.29086e-09
0.22	4.33339e-01	4.33339e-01	-6.05594e-09
0.23	4.42262 e-01	4.42262e-01	-6.78758e-09
0.24	4.50296 e - 01	4.50296 e - 01	-7.48203e -09
0.25	4.57451e-01	4.57451e-01	-8.13618e-09
0.26	4.63742e-01	4.63742e-01	-8.74756e-09
0.27	4.69181e-01	4.69181e-01	-9.31423e-09
0.28	4.73783e-01	4.73783e-01	-9.83476e-09
0.29	4.77562e-01	4.77562e-01	-1.03082e-08
0.30	4.80535 e - 01	4.80535e-01	-1.07339e-08
0.31	4.82717e-01	4.82717e-01	-1.11118e-08
0.32	4.84125 e-01	4.84125e-01	-1.14419e-08
0.33	4.84777e-01	4.84777e-01	-1.17246e-08
0.34	4.84690 e-01	4.84690 e-01	-1.19605e-08
0.35	4.83882e-01	4.83882e-01	-1.21506e -08
0.36	4.82373 e-01	4.82373 e-01	-1.22960e -08
0.37	4.80181e-01	4.80181e-01	-1.23977e-08
0.38	4.77325 e-01	4.77325 e - 01	-1.24573e -08
0.39	4.73826 e - 01	4.73826e-01	-1.24762e-08
0.40	4.69702 e-01	4.69702 e-01	-1.24559e-08

x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
0.41	$\frac{gn(\omega)}{4.64975e-01}$	$\frac{g_e(\omega)}{4.64975 \text{e-}01}$	$\frac{ge(w)-gn(w)}{-1.23983e-08}$
$0.11 \\ 0.42$	4.59664e-01	4.59664e-01	-1.23049e-08
0.12	4.53789e-01	4.53789e-01	-1.21777e-08
0.10	4.47372e-01	4.47372e-01	-1.20184e-08
0.45	4.40432e-01	4.40432e-01	-1.18289e-08
0.46	4.32990e-01	4.32990e-01	-1.16110e-08
0.47	4.25067e-01	4.25067e-01	-1.13666e-08
0.48	4.16682e-01	4.16682e-01	-1.10976e-08
0.49	4.07858e-01	4.07858e-01	-1.08057e-08
0.50	3.98613e-01	3.98613e-01	-1.04929e-08
$0.50 \ 0.51$	3.88968e-01	3.88968e-01	-1.01610e-08
0.52	3.78943e-01	3.78943e-01	-9.81153e-09
0.53	3.68559e-01	3.68559e-01	-9.44640e-09
0.54	3.57834e-01	3.57834e-01	-9.06722e-09
0.55	3.46789e-01	3.46789e-01	-8.67564e-09
0.56	3.35443e-01	3.35443e-01	-8.27321e-09
0.57	3.23814e-01	3.23814e-01	-7.86148e-09
0.58	3.11922e-01	3.11922e-01	-7.44190e-09
0.59	2.99785e-01	2.99785e-01	-7.01590e-09
0.60	2.87422e-01	2.87422e-01	-6.58483e-09
0.61	2.74850e-01	2.74850e-01	-6.14999e-09
0.62	2.62086e-01	2.62086e-01	-5.71262e-09
0.63	2.49149e-01	2.49149e-01	-5.27390e-09
0.64	2.36055e-01	2.36055e-01	-4.83496e-09
0.65	2.22821e-01	2.22821e-01	-4.39684e-09
0.66	2.09463e-01	2.09463e-01	-3.96057e-09
0.67	1.95997e-01	1.95997e-01	-3.52708e-09
0.68	1.82438e-01	1.82438e-01	-3.09727e-09
0.69	1.68802e-01	1.68802e-01	-2.67197e-09
0.70	1.55102e-01	1.55102e-01	-2.25195e-09
0.71	1.41355e-01	1.41355e-01	-1.83794e-09
0.72	1.27572e-01	1.27572e-01	-1.43060e-09
0.73	1.13769e-01	1.13769e-01	-1.03057e-09
0.74	9.99578e-02	9.99578e-02	-6.38413e-10
0.75	8.61515e-02	8.61515 e-02	-2.54643e-10
0.76	7.23625e-02	7.23625 e-02	1.20262e-10
0.77	5.86026e-02	5.86026 e-02	4.85872e-10
0.78	4.48834e-02	4.48834e-02	8.41802e-10
0.79	3.12161e-02	3.12161e-02	1.18771e-09
0.80	1.76114e-02	1.76114e-02	1.52329e-09
0.81	4.07958e-03	4.07958e-03	1.84828e-09
0.82	-9.36933e-03	-9.36933e-03	2.16245e-09
0.83	-2.27258e-02	-2.27258e-02	2.46562e-09

x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
0.84	-3.59807e-02	-3.59807e-02	$\frac{g_e(x) - g_n(x)}{2.75762 \text{e-}09}$
0.85	-4.91251e-02	-4.91251e-02	3.03833e-09
0.86	-6.21508e-02	-6.21508e-02	3.30765e-09
0.87	-7.50496e-02	-7.50496e-02	3.56552e-09
0.88	-8.78139e-02	-8.78139e-02	3.81191e-09
0.89	-1.00436e-01	-1.00436e-01	4.04679e-09
0.90	-1.12910e-01	-1.12910e-01	4.27019e-09
0.91	-1.25229e-01	-1.25229e-01	4.48214e-09
0.92	-1.37386e-01	-1.37386e-01	4.68270e-09
$\begin{vmatrix} 0.52 \\ 0.93 \end{vmatrix}$	-1.49375e-01	-1.49375e-01	4.87194e-09
0.94	-1.61192e-01	-1.61192e-01	5.04996e-09
0.95	-1.72831e-01	-1.72831e-01	5.21689e-09
0.96	-1.84286e-01	-1.84286e-01	5.37284e-09
0.97	-1.95554e-01	-1.95554e-01	5.51796e-09
0.98	-2.06630e-01	-2.06630e-01	5.65243e-09
0.99	-2.17510e-01	-2.17510e-01	5.77640e-09
$\begin{vmatrix} 0.55 \\ 1.00 \end{vmatrix}$	-2.28191e-01	-2.28191e-01	5.89007e-09
$\begin{vmatrix} 1.00 \\ 1.01 \end{vmatrix}$	-2.38669e-01	-2.38669e-01	5.99363e-09
$\begin{vmatrix} 1.01 \\ 1.02 \end{vmatrix}$	-2.48940e-01	-2.48940e-01	6.08729e-09
1.03	-2.59003e-01	-2.59003e-01	6.17126e-09
1.04	-2.68855e-01	-2.68855e-01	6.24577e-09
1.05	-2.78494e-01	-2.78493e-01	6.31103e-09
1.06	-2.87916e-01	-2.87916e-01	6.36730e-09
1.07	-2.97121e-01	-2.97121e-01	6.41481e-09
1.08	-3.06108e-01	-3.06108e-01	6.45381e-09
1.09	-3.14874e-01	-3.14874e-01	6.48453e-09
1.10	-3.23419e-01	-3.23419e-01	6.50725e-09
1.11	-3.31742e-01	-3.31742e-01	6.52221e-09
1.12	-3.39842e-01	-3.39842e-01	6.52966e-09
1.13	-3.47719e-01	-3.47719e-01	6.52988e-09
1.14	-3.55372e-01	-3.55372e-01	6.52310e-09
1.15	-3.62802e-01	-3.62802e-01	6.50960e-09
1.16	-3.70008e-01	-3.70008e-01	6.48963e-09
1.17	-3.76992e-01	-3.76992e-01	6.46345e-09
1.18	-3.83753e-01	-3.83753e-01	6.43131e-09
1.19	-3.90292e-01	-3.90292e-01	6.39346e-09
1.20	-3.96609e-01	-3.96609e-01	6.35017e-09
1.21	-4.02707e -01	-4.02707e -01	6.30168e-09
1.22	-4.08585e-01	-4.08585e-01	6.24823e-09
1.23	-4.14246e- 01	-4.14246e- 01	6.19007e-09
1.24	-4.19690e -01	-4.19690e -01	6.12745 e-09
1.25	-4.24919e-01	-4.24919e-01	6.06059 e - 09
1.26	-4.29935e-01	-4.29935e-01	5.98973e-09

x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
1.27	-4.34739e-01	-4.34739e-01	$\frac{g_e(w) - g_n(w)}{5.91510 \text{e-}09}$
$\begin{vmatrix} 1.21 \\ 1.28 \end{vmatrix}$	-4.39334e-01	-4.39334e-01	5.83693e-09
$\begin{vmatrix} 1.20 \\ 1.29 \end{vmatrix}$	-4.43720e-01	-4.43720e-01	5.75544e-09
$\begin{vmatrix} 1.25 \\ 1.30 \end{vmatrix}$	-4.47901e-01	-4.47901e-01	5.67083e-09
1.31	-4.51878e-01	-4.51878e-01	5.58333e-09
$\begin{vmatrix} 1.31 \\ 1.32 \end{vmatrix}$	-4.55654e-01	-4.55654e-01	5.49314e-09
1.33	-4.59230e-01	-4.59230e-01	5.40046e-09
1.34	-4.62610e-01	-4.62610e-01	5.30548e-09
$\begin{vmatrix} 1.31 \\ 1.35 \end{vmatrix}$	-4.65795e-01	-4.65795e-01	5.20841e-09
$\begin{vmatrix} 1.35 \\ 1.36 \end{vmatrix}$	-4.68788e-01	-4.68788e-01	5.10942e-09
$\begin{vmatrix} 1.35 \\ 1.37 \end{vmatrix}$	-4.71593e-01	-4.71593e-01	5.00869e-09
1.38	-4.74210e-01	-4.74210e-01	4.90641e-09
$\begin{vmatrix} 1.30 \\ 1.39 \end{vmatrix}$	-4.76644e-01	-4.76644e-01	4.80275e-09
1.40	-4.78897e-01	-4.78897e-01	4.69786e-09
1.41	-4.80971e-01	-4.80971e-01	4.59191e-09
1.42	-4.82870e-01	-4.82870e-01	4.48505e-09
1.43	-4.84596e-01	-4.84596e-01	4.37744e-09
1.44	-4.86153e-01	-4.86153e-01	4.26922e-09
1.45	-4.87542e-01	-4.87542e-01	4.16052e-09
1.46	-4.88768e-01	-4.88768e-01	4.05149e-09
1.47	-4.89833e-01	-4.89833e-01	3.94224e-09
1.48	-4.90741e-01	-4.90741e-01	3.83291e-09
1.49	-4.91493e-01	-4.91493e-01	3.72362e-09
1.50	-4.92094e-01	-4.92094e-01	3.61447e-09
1.51	-4.92546e-01	-4.92546e-01	3.50558e-09
1.52	-4.92852e-01	-4.92852e-01	3.39705e-09
1.53	-4.93016e-01	-4.93016e-01	3.28898e-09
1.54	-4.93041e-01	-4.93041e-01	3.18147e-09
1.55	-4.92929e-01	-4.92929e-01	3.07460e-09
1.56	-4.92684e-01	-4.92684e-01	2.96847e-09
1.57	-4.92309e-01	-4.92309e-01	2.86315e-09
1.58	-4.91806e-01	-4.91806e-01	2.75872e-09
1.59	-4.91179e-01	-4.91179e-01	2.65525 e - 09
1.60	-4.90431e-01	-4.90431e-01	2.55282e-09
1.61	-4.89566e -01	-4.89566e -01	2.45148e-09
1.62	-4.88585e-01	-4.88585e-01	2.35131e-09
1.63	-4.87492e-01	-4.87492e-01	2.25235 e - 09
1.64	-4.86290e -01	-4.86290e -01	2.15466e-09
1.65	-4.84982e-01	-4.84982e-01	2.05829e-09
1.66	-4.83571e-01	-4.83571e -01	1.96329e-09
1.67	-4.82060e -01	-4.82060e -01	1.86969e-09
1.68	-4.80451e-01	-4.80451e-01	1.77754e-09
1.69	-4.78748e-01	-4.78748e-01	1.68688e-09

x	$y_n(x)$	$y_e(x)$	$y_e(x) - y_n(x)$
$\frac{1.70}{1.70}$	$\frac{g_n(x)}{-4.76953\text{e-}01}$	$\frac{g_e(x)}{-4.76953e-01}$	$\frac{g_e(x) - g_n(x)}{1.59774 \text{e-}09}$
1.71	-4.75069e-01	-4.75069e-01	1.53774e-09 1.51014e-09
$\frac{1.71}{1.72}$	-4.73100e-01	-4.73100e-01	1.42412e-09
$\begin{vmatrix} 1.72 \\ 1.73 \end{vmatrix}$	-4.71047e-01	-4.71047e-01	1.33970e-09
$\frac{1.75}{1.74}$	-4.68914e-01	-4.68914e-01	1.25690e-09
1.75	-4.66703e-01	-4.66703e-01	1.17574e-09
$\begin{vmatrix} 1.75 \\ 1.76 \end{vmatrix}$	-4.64417e-01	-4.64417e-01	1.09623e-09
1.77	-4.62058e-01	-4.62058e-01	1.03023e-09 1.01840e-09
1.78	-4.59629e-01	-4.59629e-01	9.42256e-10
1.79	-4.57133e-01	-4.57133e-01	8.67800e-10
$\begin{vmatrix} 1.79 \\ 1.80 \end{vmatrix}$	-4.54572e-01	-4.54572e-01	7.95043e-10
1.81	-4.51949e-01	-4.54572e-01 -4.51949e-01	7.93043e-10 7.23992e-10
$\begin{vmatrix} 1.81 \\ 1.82 \end{vmatrix}$	-4.49266e-01	-4.49266e-01	6.54649e-10
1.83	-4.46525e-01	-4.46525e-01	5.87014e-10
1.83	-4.40525e-01 -4.43729e-01		
1.85		-4.43729e-01	5.21089e-10
	-4.40881e-01	-4.40881e-01	4.56870e-10
1.86	-4.37982e-01	-4.37982e-01	3.94354e-10
1.87	-4.35035e-01	-4.35035e-01	3.33535e-10
1.88	-4.32042e-01	-4.32042e-01	2.74405e-10
1.89	-4.29005e-01	-4.29005e-01	2.16957e-10
1.90	-4.25926e-01	-4.25926e-01	1.61180e-10
1.91	-4.22808e-01	-4.22808e-01	1.07063e-10
1.92	-4.19652e-01	-4.19652e-01	5.45949e-11
1.93	-4.16461e-01	-4.16461e-01	3.76082e-12
1.94	-4.13237e-01	-4.13237e-01	-4.54535e-11
1.95	-4.09981e-01	-4.09981e-01	-9.30637e-11
1.96	-4.06696e-01	-4.06696e-01	-1.39087e-10
1.97	-4.03383e-01	-4.03383e-01	-1.83540e-10
1.98	-4.00044e-01	-4.00044e-01	-2.26441e-10
1.99	-3.96681e-01	-3.96681e-01	-2.67810e-10
2.00	-3.93295e-01	-3.93295e-01	-3.07667e-10