Low-Resource Machine Translation

Andrea Cavallo, Lorenzo Scarciglia, Cristina Tortia

Deep Natural Language Processing Politecnico di Torino

February 23rd, 2022

- Problem Statement
- Original Paper
- Our implementation
- 4 Extension I
- 6 Extension II
- **6** Conclusions

- Problem Statement
- Original Paper
- 3 Our implementation
- 4 Extension I
- 6 Extension II
- **6** Conclusions

Problem Statement

Issue: Usually, Machine Translation relies on encoder-decoder architectures trained end-to-end. However, this approach performs poorly on *low-resource language pairs*.

Possible solutions:

- multilingual models
- large-scale pretraining on different tasks of multilingual models (e.g. mBART)
- train model on a rich language pair and finetune it on low-resource language pair (transfer learning)

- Problem Statement
- Original Paper
- 3 Our implementation
- 4 Extension I
- 6 Extension II
- 6 Conclusions

Original Paper

Dabre, Fujita, and Chu propose **Multilingual finetuning**:

- pretrain on high-resource language pair
- finetune using sentences from high-resource and different low-resource languages (mixed)
- finetune on one low-resource language pair (pure)

Figure: Finetuning strategy

- Problem Statement
- Original Paper
- Our implementation
- 4 Extension I
- 6 Extension II
- **6** Conclusions

Our implementation - Comparison

	Original method	Our method
Model	tensor2tensor: open-source implementation of the transformer model	MarianMT: transformer-based encoder-decoder architecture
Tokenizer	Moses for English, KyotoMorph and JUMAN for Chinese and Japanese, raw data for low-resource languages	Marian Tokenizer + mBART-50 encodings
Source language pair	English-Chinese English-Japanese	English-Chinese
Dataset	ALT 7 target languages	ALT 4 target languages: Vietnamese, Indonesian, Khmer, Filipino

Our implementation - Finetuning strategies

- **Pure**: finetune just on low-resource language pair (10 epochs)
- Mixed: finetune on a mix of one high-resource language pair (English-Chinese) and one low-resource language pair (5 epochs)
- Mixed + Pure: perform 5 epochs of pure finetuning after 5 epochs of mixed finetuning

Our implementation - Data selection

Figure: Sketch of the dataset generation procedure for the mixed and pure finetuning process

 Add special token <2zz> in front of sentences to identify target language

- Add special token <2zz> in front of sentences to identify target language
- Add to Marian tokenizer the tokens for target languages derived from mBART tokenizer

- Add special token <2zz> in front of sentences to identify target language
- Add to Marian tokenizer the tokens for target languages derived from mBART tokenizer
- Tokenize English input sentences with newly instantiated Marian tokenizer
- Tokenize target language input sentences with extended Marian tokenizer

- Add special token <2zz> in front of sentences to identify target language
- Add to Marian tokenizer the tokens for target languages derived from mBART tokenizer
- Tokenize English input sentences with newly instantiated Marian tokenizer
- Tokenize target language input sentences with extended Marian tokenizer
- Truncate sentences according to selected maximum length

- Add special token <2zz> in front of sentences to identify target language
- Add to Marian tokenizer the tokens for target languages derived from mBART tokenizer
- Tokenize English input sentences with newly instantiated Marian tokenizer
- Tokenize target language input sentences with extended Marian tokenizer
- Truncate sentences according to selected maximum length

Languages	Input length	Cut-off sentences (%)	
		English	Target language
Vietnamese	64	3.4	8.1
Indonesian	128	0.1	0.1
Filipino	128	0.1	0.3
Khmer	128	0.1	0.5

Our implementation - Framework

- Google Colab
- Hugging Face Trainer API
- Training
 - 10 epochs
 - learning rate = 2e-4
 - batch size = 16
 - weight decay = 0.01

Our implementation - Results (1)

BLEU scores on test set

Languages	BLEU scores			
	Pure	Mixed	Mixed + Pure	Paper ¹
Vietnamese	36.56	38.07	38.9	34.22
Indonesian	37.27	37.35	37.74	25.62
Filipino	28.3	29.4	29.12	26.61
Khmer	25.06	32.65	33.32	27.49

Table: BLEU score for different finetuned models

- Outperformed paper results for all languages
- Mixed always better than pure
- Sometimes mixed+pure achieves further improvements

Our implementation - Results (2)

Figure: BLEU score during training for different English-target language pairs

14 / 28

Our implementation - Results (3)

Impact of learning rate

Figure: BLEU during training for Vietnamese

To avoid BLEU drop when starting pure, two learning rates for pure finetuning (2e-5 and 2e-4):

- Smaller LR avoid BLEU drop
- Higher LR achieves better performances in the end (so it is used in the other experiments)

Project Report

Our implementation - Results (4)

Training for more epochs

Figure: BLEU during training for Khmer

- Khmer needs more epochs to achieve satisfactory results on pure
- Mixed immediately performs much better

- Problem Statement
- Original Paper
- Our implementation
- 4 Extension I
- **5** Extension II
- **6** Conclusions

Extension I - Idea

- Low-resource Low-resource translator
 - English as bridge language
- Steps:
 - train a model to perform Vietnamese-English translation
 - use the previously finetuned models to translate from English to another low-resource language

Extension I - Results

Source language	Target language	BLEU score
Vietnamese	English	33.35
Vietnamese	Indonesian	23.00
Vietnamese	Khmer	24.13

Table: BLEU score for translations among low-resource language pairs

- Performances are satisfactory
- No baseline to compare results

- Problem Statement
- Original Paper
- 3 Our implementation
- 4 Extension I
- 6 Extension II
- 6 Conclusions

Extension II - Idea

- Dataset: WikiMatrix
 - automatically align sentences from Wikipedia articles
 - 1620 language pairs
- Language pair: English Kazakh
- Starting models:
 - English Turkish
 - English Russian

Extension II - Results (1)

Initial model	BLEU scores		
	Pure	Mixed	Mixed + Pure
En-Tk	6.93	7.33	7.26
En-Ru	6.18	7.31	7.11

Table: BLEU score for En-Kk with different initial models

- Lower performances with respect to ALT
- Mixed still performs better than pure

Extension II - Results (2)

Figure: BLEU score during training for English-Kazakh with different pre-trained models

- Mixed better than pure
- Mixed + mixed also better than mixed + pure

- Problem Statement
- Original Paper
- Our implementation
- 4 Extension I
- 6 Extension II
- **6** Conclusions

• Multilingual finetuning greatly surpasses pure finetuning

- Multilingual finetuning greatly surpasses pure finetuning
- Adding tokens from a pretrained tokenizer allows to deal with the low-resource languages
 - Although you need to add another tokenize to tokenize English sentences

- Multilingual finetuning greatly surpasses pure finetuning
- Adding tokens from a pretrained tokenizer allows to deal with the low-resource languages
 - Although you need to add another tokenizer to tokenize English sentences
- This approach also works well on:
 - The opposite direction²
 - Other low resource languages from another parallel corpus

Conclusions - Example of usage

```
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Download the pretrained model for English-Vietnamese available on the hub
model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-vi")
tokenizer = AutoTokenizer.from pretrained("CLAck/en-vi")
# Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
# We used the one coming from the initial model
# This tokenizer is used to tokenize the input sentence
tokenizer en = AutoTokenizer.from pretrained('Helsinki-NLP/opus-mt-en-zh')
# These special tokens are needed to reproduce the original tokenizer
tokenizer_en.add_tokens(["<2zh>", "<2vi>"], special_tokens=True)
sentence = "The cat is on the table"
# This token is needed to identify the target language
input sentence = "<2vi>" + sentence
translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
output sentence = [tokenizer.decode(t, skip special tokens=True) for t in translated]
print('en:'. sentence) # -> "en: the cat is on the table"
print('vi:', output sentence) # -> "vi: Con mè o đang trên bàn."
```

Figure: GitHub repository:

https://github.com/andrea-cavallo-98/Low-resource-Machine-Translation

Conclusions - Model Hub

HUGGING FACE

Figure: Some of the models were uploaded on the Hugging Face models hub. They are available on https://huggingface.co/CLAck

Thank you!

