

Exercise Sheet 1

Applications, spatial position and orientation (part 1)

Sven Böttger

1 Medical robotics applications

a. Name three types of medical robots and an example application for each. Briefly explain the advantages gained from using robotics in your examples.

1. Navigation

Ex. Surgical drill
Precise positioning, motion compensation...

2. Motion replication

Ex. Minimally-invasive surgery

Motion downscaling, reduce tremor...

3. Imaging

Ex. Robotic ultrasound Automation, speed...

4. Rehabilitation and prosthesis

Ex. Exoskeletons
Replace damaged structures, autonomous rehabilitation...

a. Rotation of α around the y-axis of the base coordinate system $(R(y,\alpha))$, then β around the z-axis of the base coordinate system $(R(z,\beta))$, and finally γ around the x-axis of the base coordinate system $(R(x,\gamma))$:

Calculate the 3×3 matrix R_{YPR} . Is this an extrinsic or intrinsic rotation?

First, find the individual rotation matrices:

$$R(y,\alpha) = \begin{pmatrix} c_{\alpha} & 0 & s_{\alpha} \\ 0 & 1 & 0 \\ -s_{\alpha} & 0 & c_{\alpha} \end{pmatrix}$$

$$R(z,\beta) = \begin{pmatrix} c_{\beta} & -s_{\beta} & 0 \\ s_{\beta} & c_{\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(x,\gamma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\gamma} & -s_{\gamma} \\ 0 & s_{\gamma} & c_{\gamma} \end{pmatrix}$$

Then, multiply the matrices to yield the final rotation matrix:

$$R_{YPR} = R(x, \gamma) \cdot R(z, \beta) \cdot R(y, \alpha)$$

Note the multiplication order → Extrinsic rotation

Last to first!

We get

$$R_{YPR} = \begin{pmatrix} c_{\alpha}.c_{\beta} & -s_{\beta} & c_{\beta}.s_{\alpha} \\ s_{\alpha}.s_{\gamma} + c_{\alpha}c_{\gamma}s_{\beta} & c_{\beta}.c_{\gamma} & c_{\gamma}.s_{\alpha}.s_{\beta} - c_{\alpha}s_{\gamma} \\ c_{\alpha}.s_{\beta}.s_{\gamma} - c_{\gamma}.s_{\alpha} & c_{\beta}.s_{\gamma} & c_{\alpha}.c_{\gamma} + s_{\alpha}.s_{\beta}.s_{\gamma} \end{pmatrix}$$

b. If the rotations described in part (a) lead to an object orientation as seen in Figure 1, find the YPR angles α , β and γ and calculate the rotation matrix R_{YPR} .

First, find YPR angles from the figure:

$$lpha=90^\circ$$
 , $eta=0$, $\gamma=0$

Then implement the values in the rotation matrix R_{YPR} :

$$R(y,\alpha) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \quad R(z,\beta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R(x,\gamma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{YPR}(\alpha,\beta,\gamma) = R(y,\alpha) \cdot R(z,\beta) \cdot R(x,\gamma) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

c. Derive the Euler angles θ , δ and φ of the object coordinate system S. Do you get the same angles as YPR?

Assuming that Figure 1 represents the following orientation:

rotation of θ around the z-axis of the **base** coordinate system $(R(z,\theta))$, then δ around the x-axis of the **new** coordinate system $(R(x',\delta))$, and finally φ around the z-axis of the **new** coordinate system $(R(z'',\varphi))$

