kd education academy (9582701166)

Time	Time : 5 Hour STD 11 Maths kd 90+ ch-14 probability			Total Marks : 230		
*	* Choose the right answer from the given options. [1 Marks Each] [120]					
1.	•	ers and addresses 4 e dom, then the probab s	•	·		
	(A) $\frac{1}{4}$	(B) $\frac{11}{24}$	(C) $\frac{15}{24}$	(D) $\frac{23}{24}$		
2.	One card is drawn f black suit is:	rom a pack of 52 card	ds.The probability of g	jetting a 10 of		
	(A) $\frac{1}{26}$	(B) $\frac{1}{13}$	(C) $\frac{3}{26}$	(D) None		
3.		ils and 10 nuts. Half o chosen at random, th				
	(A) $\frac{3}{16}$	(B) $\frac{5}{16}$	(C) $\frac{11}{16}$	(D) $\frac{14}{16}$		
4.	one fish at random f	from a shop for her a rom a tank containing t ne fish taken out is a m	5 male fish and 8 fema			
	(A) $\frac{5}{13}$	(B) $\frac{1}{4}$	(C) $\frac{1}{5}$	(D) $\frac{5}{14}$		
5.		3 white and 3 green be ne ball picked up is neit				
	(A) $\frac{1}{4}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$		
6.	Three integers are club that their product is	nosen at random from even is:	the first 20 integers.	Γhe probability		
	(A) $\frac{2}{19}$	(B) $\frac{3}{29}$	(C) $\frac{17}{19}$	(D) $\frac{4}{19}$		

7. Choose the correct answer.

Without repetition of the numbers, four digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is:

(A) $\frac{1}{5}$ (B) $\frac{4}{5}$ (C) $\frac{1}{30}$ (D) $\frac{5}{9}$

8. 20 cards are numbered from 1 to 20. If one card is drawn at random, what is the probability that the number on the card is a prime number?

(A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) 5

9. Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is:

(A) $\frac{11}{21}$ (D) None of these (B) $\frac{9}{21}$ (C) $\frac{10}{21}$

10.). All the three face cards of spades are removed from a well-shuffled pack of 52 cards. A card is then drawn at random from the remaining pack. Find the probability of getting black face card:				
	(A) $\frac{6}{49}$	(B) $\frac{3}{49}$	(C) $\frac{5}{49}$	(D) $\frac{4}{49}$	
11.	The probabilities of respectively. If the probability that neither	obability of happening			
	(A) 0.39	(B) 0.29	(C) 0.11	(D) None of these.	
12.	• .	swer. c of 52 playing cards, i issing cards to be of di		oped. Find the	
	(A) $\frac{29}{52}$	(B) $\frac{1}{2}$	(C) $\frac{26}{51}$	(D) $\frac{27}{51}$	
13.	A and B are two event both happening toget is (A) 0.39	s such that P (A) = 0.2 her is 0.14. The probal (B) 0.2	. ()		
11					
14.	What is the probability	-		_	
4.5	(A) $\frac{2}{11}$		(C) $\frac{4}{11}$	(D) $\frac{5}{11}$	
15.	A card is drawn at ra probability of drawing	indom from a pack of a number which is a s		1 to 100. The	
	(A) $\frac{1}{5}$	(B) $\frac{2}{5}$	(C) $\frac{1}{10}$	(D) None of these	
16.	If events A and B are i		= 0.15, $P(A \cup B) = 0.45$,	then P(B)=:	
	(A) 136	(B) 176	(C) 196	(D) 236	
17.	Two dice are thrown so 2 on first dice and a m	simultaneously. Find th nultiple of 3 on the sec		g a multiple of	
	(A) $\frac{4}{6}$	(B) $\frac{2}{6}$	(C) $\frac{1}{6}$	(D) $\frac{1}{36}$	
18.	6 boys and 6 girls sit together is		The probability that a	Ill the girls sit	
	(A) $\frac{1}{432}$	(B) $\frac{12}{431}$	(C) $\frac{1}{132}$	(D) none of these	
19.	The probability of gett	ting a total of 10 in a si	ngle throw of two dice	es is:	
	(A) $\frac{1}{9}$	(B) $\frac{1}{12}$	(C) $\frac{1}{6}$	(D) $\frac{5}{36}$	
20.	the cabin at any floo persons leaving at diff	them independently a or beginning with the ferent floor is:	and with equal probab first, then the proba	oility can leave ability of all 5	
	(A) $\frac{{}^{7}\mathrm{P}_{5}}{7^{5}}$	(B) $\frac{7^5}{^7P_5}$	(C) $\frac{^{6}}{^{6}P_{5}}$	(D) $\frac{^5\mathrm{P}_5}{5^5}$	

۷۱.	5 is:	w simultaneously, then	the probability of gett	ing a score or
	(A) $\frac{5}{216}$	(B) $\frac{1}{6}$	(C) $\frac{1}{36}$	(D) None of these
22.	The probability that a	leap year will have 53	Fridays or 53 Saturdays	s is:
	(A) $\frac{2}{7}$	(B) $\frac{3}{7}$	(C) $\frac{4}{7}$	(D) $\frac{1}{7}$
23.			30 in a box . A ticke et drawn bears an odd	
	(A) $\frac{1}{2}$	(B) $\frac{1}{3}$	(C) $\frac{2}{3}$	(D) $\frac{1}{4}$
24.	Find the sample space	e for choosing a prime	number less than 2020	
	(A) 2, 3, 5, 7, 11, 13, 17	7, 19	(B) 2, 3, 4, 5, 7, 11, 13,	
	(C) 2, 3, 5, 7, 11, 13, 17	7, 19, 20	(D) 2, 3, 5, 7, 11, 13, 17	', 19, 15
25.			4, 5, 6} one after and naller of the two is less	
	(A) $\frac{4}{5}$	(B) $\frac{1}{15}$	(C) $\frac{1}{5}$	(D) $\frac{14}{15}$
26.	A die is thrown then f	ind the probability of g	etting a number great	er than 3.
	(A) $\frac{1}{3}$	(B) $\frac{1}{2}$	(C) $\frac{2}{3}$	(D) 0
27.	Let A and B are two then P(AUB) is:	mutually exclusive eve	nts and if $P(A) = 0.5 a$	and P(B) =0.6
	(A) 0	(B) 1	(C) 0.6	(D) 0.9
28.	If two coins are tosse one tail turns up:	ed then find the proba	bility of the events tha	at at the most
	(A) $\frac{1}{4}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$
29.	Choose the correct ar	nswer.		
		t in a row at random.	The probability that a	ll the girls sit
	together is: (A) $\frac{1}{432}$	(B) $\frac{12}{421}$	(C) $\frac{1}{132}$	(D) none of these.
20	102	431	102	
50.	odds in favour of the		nance of one is $\frac{2}{3}$ of th	ne other, then
	(A) 1:3	(B) 3:1	(C) 2:3	(D) 3:2
31.		n together. The proba their digits is 9 will be:	bility that neither the	y show equal
	(A) $\frac{13}{15}$	(B) $\frac{13}{18}$	(C) $\frac{1}{9}$	(D) $\frac{8}{9}$
32.	A bag contains 2 red,	3 green and 2 blue ba	alls. Two balls are drav	vn at random.
	The probability that n	one of the balls drawn	is blue is:	
	(A) $\frac{10}{21}$	(B) $\frac{11}{21}$	(C) $\frac{2}{7}$	(D) $\frac{5}{7}$

	least one head.			
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) $\frac{3}{4}$	(D) None of these
34.		are the probabilities on the set of all values	of three mutually of p is:	exclusive and
	(A) (0,1)	(B) $\left(\frac{-1}{4},\frac{1}{3}\right)$	(C) $(0,\frac{1}{3})$	(D) $(0,\infty)$
35.	•	_	queens and 4 jacks. T st one of them is an ac	,
	(A) $\frac{1}{5}$	(B) $\frac{3}{16}$	(C) $\frac{9}{20}$	(D) $\frac{1}{9}$
36.	Two dice are thrown s	simultaneously. The pro	obability of getting a pa	air of aces is
	(A) $\frac{1}{36}$	(B) $\frac{1}{3}$	(C) $\frac{1}{6}$	(D) none of these
37.	Two dice are thrown seven is:	simultaneously. The pi	robability of obtaining	total score of
	(A) $\frac{5}{36}$	(B) $\frac{6}{36}$	(C) $\frac{7}{36}$	(D) $\frac{8}{36}$
38.	One card is drawn from a king or spade is:		The probability that it	is the card of
	(A) $\frac{1}{26}$	(B) $\frac{3}{26}$	(C) $\frac{4}{13}$	(D) $\frac{3}{13}$
39.			igits 0, 2, 4, 6, 8. A num the probability that this	
	(A) $\frac{1}{16}$	(B) $\frac{16}{25}$	(C) $\frac{1}{645}$	(D) $\frac{1}{25}$
40.		of of an experimen	t. (B) Selected outcomes	
	(A) All possible outcom (C) Both	lies	(D) None of these	
4 1		chosen from 1 to 20	The probability that	they are not
71,	consecutive is: (A) $\frac{186}{190}$	(B) $\frac{187}{190}$	(C) $\frac{188}{190}$	(D) $\frac{18}{{}^{20}\text{C}_2}$
42.		nutually exclusive and ${ m (B)}={ m C},$ then P(A) is ec	exhaustive events of a	
	(A) $\frac{1}{11}$	(B) $\frac{2}{11}$	(C) $\frac{5}{11}$	(D) $\frac{6}{11}$
43.	Two dice are thrown to greater than 3 is:	ogether. The probabili	ty that at least one will	show its digit
	(A) $\frac{1}{4}$	(B) $\frac{3}{4}$	(C) $\frac{1}{2}$	(D) $\frac{1}{8}$
44.	One coin is tossed on	ce. Find the probability	of getting A tail.	

33. Two unbiased coins are tossed simultaneously. Find the probability of getting at

	(A) $\frac{1}{2}$	(B) 1	(C) Data insufficient	(D) None of these
45.	Choose the correct and The probability that a		nts A and B occurs is ().6. If A and B
		with probability 0.2, th	_	
	(A) 0.4	(B) 0.8	(C) 1.2	(D) 1.6
46.	If a coin is tossed till t	he first head appears,	then what will be the s	ample space?
	(A) {H}		(B) {TH}	
	(C) {T, TH, HHT, HHHT	·,}	(D) {H, TH, TTH, TTTH,	}
47.	One card is drawn fr card is:	om a pack of 52 car	ds. The probability of	getting a jack
	(A) $\frac{1}{13}$	(B) $\frac{2}{13}$	(C) $\frac{3}{13}$	(D) $\frac{4}{13}$
48.	Two unbiased coins a most one head.	re tossed simultaneou	sly. Find the probability	of getting at
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{3}{4}$	(D) $\frac{1}{3}$
49.	9. Probability is 0.45 that a dealer will sell at least 20 television sets during a day, and the probability is 0.74 that he will sell less that 24 televisions. The probability that he will sell 20, 21, 22 or 23 televisions during the day, is:			
	(A) 0.19	(B) 0.32	(C) 0.21	(D) None of these
50.	Six boys and six girls girls sit alternatively is		n. The probability that	the boys and
	(A) $\frac{1}{462}$	(B) $\frac{11}{462}$	(C) $\frac{5}{51}$	(D) $\frac{7}{123}$
51.	Choose the correct an If the probabilities for		ation is 0.2 and that for	B is 0.3, then
	the probability that ei	ther A or B fails is:		
	(A)>0.5	(B) 0.5	(C) ≤ 0.5	(D) 0
52.	•		digit numbers are form number divisible by 5 is	
	(A) $\frac{1}{5}$	(B) $\frac{4}{5}$	(C) $\frac{1}{30}$	(D) $\frac{5}{9}$
53.	Two unbiased coins at one head is:	re tossed simultaneous	sly. The probability of g	etting at least
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) $\frac{3}{4}$	(D) none
54.	A die is rolled, then th	e probability that an e	ven number is obtained	d is:
	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$	(C) $\frac{1}{4}$	(D) $\frac{3}{4}$
55.	_	ood articles and 6 wity that it is either good	vith defects. One item d or has a defect is:	is drawn at

	(A) $\frac{64}{64}$	(B) $\frac{49}{64}$	(C) $\frac{40}{64}$	(D) $\frac{24}{64}$
56.	The probability that th	ie leap year will have 5	3 sundays and 53 mon	day is:
	(A) $\frac{2}{3}$	(B) $\frac{1}{2}$	(C) $\frac{2}{7}$	(D) $\frac{1}{7}$
57.	Choose the correct an	swer.		
	Three numbers are checonsecutive:	nosen from 1 to 20. Fi	nd the probability that	t they are not
	(A) $\frac{186}{190}$	(B) $\frac{187}{190}$	(C) $\frac{188}{190}$	(D) $\frac{18}{}$
50		100	100	(D) $\frac{18}{^{20}\mathrm{C}_3}$
58.	In tossing a coin, in 3 successive trials is		owing head and tail	alternatively
	(A) $\frac{1}{4}$	(B) $\frac{1}{6}$	(C) $\frac{1}{5}$	(D) $\frac{1}{48}$
59.	-		m the remaining cards lat they both are diamo	-
	(A) $\frac{84}{452}$	(B) $\frac{48}{452}$	(C) $\frac{84}{452}$	(D) $\frac{84}{452}$
60.	If the integers m and	d n are chosen at rar	ndom between 1 and	100, then the
	probability that the nu	ımber of the from 7 ^m -	+ 7 ⁿ is divisible by 5 equ	uals:
	(A) $\frac{1}{4}$	(B) $\frac{1}{7}$	(C) $\frac{1}{8}$	(D) $\frac{1}{49}$
61.	If S is the sample space mutually exclusive eve		$nd\; S = A \cup B \; where \; A \; a$	and B are two
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{3}{4}$	(D) $\frac{3}{8}$
62.	on the first die. B: G		as follows A: Getting ar the two dice. C: Gett Then AUB is equal to	
	(A) 15	(B) 17	(C) 19	(D) 21
63.	A die is rolled. What is	s the probability that a	n even number is obta	ined?
	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$	(C) $\frac{1}{4}$	(D) $\frac{3}{4}$
64.	One card is drawn frogetting a face card.	om a well-shuffled decl	c of 52 cards. Find the	probability of
	(A) $\frac{1}{13}$	(B) $\frac{1}{26}$	(C) $\frac{3}{13}$	(D) None of these
65.	In a simultaneous thro	ow of two dice what is	the probability of get	ting a doublet
	(A) $\frac{1}{6}$	(B) $\frac{1}{4}$	(C) $\frac{3}{4}$	(D) $\frac{2}{3}$
66.	The probabilities of the	nree mutually exclusive	e events A, B and C ar	e given by $\frac{2}{3}$,
	$\frac{1}{4}$ and $\frac{1}{6}$ respectively. T	he statement		
	(A) Is true.		(B) Is false.	
	(C) Nothing can be sa	id.	(D) Could be either.	

6/.	the probability that ei		tion is 0.2 and that for	B is 0.3, then
	(A) > 0.5	(B) 0.5	(C) ≤ 0.5	(D) 0
68.	of 6.		on the uppermost face	•
	R is the event that sai	e sum of the scores or me scores on both dice g pairs is mutually excl		s at least 10.
	(A) P, Q	(B) P, R	(C) Q, R	(D) None of these
69.		of a random experime		
	(A) Events	(B) Sample space	(C) Both	(D) None of these
70.		nd three black balls a o black balls are place	are randomly placed i d adjacently equals:	n a row. The
	(A) $\frac{1}{2}$	(B) $\frac{7}{15}$	(C) $\frac{2}{15}$	(D) $\frac{1}{3}$
71.	-	probability of forming	indomly formed from t g a number divisible b	_
	(A) $\frac{1}{5}$	(B) $\frac{2}{5}$	(C) $\frac{3}{5}$	(D) $\frac{4}{5}$
72.	Choose the correct ar In a non-leap year, th		53 tuesdays or 53 wed	nesdays is:
	(A) $\frac{1}{7}$	(B) $\frac{2}{7}$	(C) $\frac{3}{7}$	(D) none os these.
73.	What is the total num	ber of sample spaces	when a die is thrown 2	times?
	(A) 6	(B) 12	(C) 18	(D) 36
74.	•		numbers.If p is the protiple of 7 but not divisil	-
	(A) 1.0146	(B) 1.2085	(C) 1.0285	(D) 1.1521
75.	are odd, is	_	d 3—digit number at le	ast two digits
	(A) $\frac{19}{36}$	(B) $\frac{15}{36}$	(C) $\frac{13}{36}$	(D) $\frac{23}{36}$
76.	•	z a randomly chosen 6 -iple of 21 is p , then $96\ p$	digit number formed be is equal to	y using digits
	(A) 30	(B) 33	(C) 40	(D) 43
77.			ype questions. Out of orrectly with probabilit	

	remaining 6 questions correctly with probability $rac{1}{4}.$ If the probability that the				
	student guesses the answers of exactly 8 questions correctly out of 10 is $rac{27k}{4^{10}}$,				
	then k is equal to			-	
	(A) 598	(B) 487	(C) 412	(D) 479	
78.	Let E_1, E_2, E_3 be			such that	
	$P(E_1) = rac{2+3p}{6}, P(E_2) =$	$=rac{2-p}{8}$ and $P(E_3)=rac{1-p}{2}$.	If the maximum and mi	nimum values	
	of p are p_1 and p_2 , th	en (p_1+p_2) is equal to.			
	(A) $\frac{2}{3}$	(B) $\frac{5}{3}$	(C) $\frac{5}{4}$	(D) 1	
79.	The probabilities of a	student getting I,II a	nd III division in an ex	amination are	
	respectively $\frac{1}{10}$, $\frac{3}{5}$ and is	d $\frac{1}{4}$. The probability tha	t the student fails in th	e examination	
	(A) $\frac{197}{200}$	(B) $\frac{27}{100}$	(C) $\frac{83}{100}$	(D) None of these	
80.		winning toss is $3/4$. If se it is only $1/2$. Then c			
	(A) $\frac{1}{5}$	(B) $\frac{3}{5}$	(C) $\frac{3}{40}$	(D) $\frac{29}{40}$	
81.		biased that it is twice n thrown. It is thrown to n is even, is			
	(A) $\frac{1}{12}$	(B) $\frac{1}{6}$	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$	
82.		e by one without replace rds will precede the first		52 cards. The	
	(A) $\frac{241}{1456}$	(B) $\frac{164}{4165}$	(C) $\frac{451}{884}$	(D) None of these	
83.	3. A box contains 2 black, 4 white and 3 red balls. One ball is drawn at random from the box and kept aside. From the remaining balls in the box, another ball is drawn at random and kept aside the first. This process is repeated till all the balls are drawn from the box. The probability that the balls drawn are in the sequence of 2 black, 4 white and 3 red is			another ball is ted till all the wn are in the	
	(A) $\frac{1}{1260}$	(B) $\frac{1}{7560}$	(C) $\frac{1}{126}$	(D) None of these	
84.		matics is given to three and $rac{1}{5}$ respectively. The		_	
	(A) $\frac{2}{3}$	(B) $\frac{3}{4}$	(C) $\frac{4}{5}$	(D) $\frac{3}{5}$	
85.		hitting a target by bability that one and caneously, is			
	(A) $\frac{11}{24}$	(B) $\frac{1}{12}$	(C) $\frac{1}{8}$	(D) None of these	

86.	The probability of three try to solve the them will solve it, is	ne problem si					
	(A) $\frac{25}{168}$	(B) $\frac{25}{56}$		(C) $\frac{20}{168}$		(D) $\frac{30}{168}$	
87.	A man and his wife	appear for a	n interview	for two pos	ts. The pro	bability of the	
	husband's selection probability that only	•			ection is $\frac{1}{5}$.	. What is the	
	(A) $\frac{1}{7}$	(B) $\frac{2}{7}$		(C) $\frac{3}{7}$		(D) None of thes	e
88.	There are 4 envelo				1	he probability	
	(A) $\frac{19}{24}$	(B) $\frac{21}{23}$		(C) $\frac{23}{24}$		(D) $\frac{1}{24}$	
89.	A number is chose number is even or			numbers.	The proba	bility that the	
	(A) $\frac{3}{4}$	(B) $\frac{2}{3}$		(C) $\frac{4}{5}$		(D) $\frac{3}{5}$	
90.	Three persons wor	k independer	ntly on a pro	blem. If th	e respective	e probabilities	
	that they will solve	it are $\frac{1}{3}, \frac{1}{4}$ and	$d \frac{1}{5}$, then the	probability	that none	can solve it	
	(A) $\frac{2}{5}$	(B) $\frac{3}{5}$	21	(C) $\frac{1}{3}$		(D) None of thes	e
91.	A man and a woman The probability of $1/3$. What is the pro-	man's selecti	on is 1/4 ar	nd that of t	he woman	-	
	(A) $\frac{1}{2}$	(B) $\frac{1}{12}$	N.	(C) $\frac{1}{4}$		(D) None of thes	e
92.	Word 'UNIVERSITY does not come tog		ed randomly	/. Then the	probability	that both 'I'	
	(A) $\frac{3}{5}$	(B) $\frac{2}{5}$	7	(C) $\frac{4}{5}$		(D) $\frac{1}{5}$	
93.	If Mohan has 3 tic chance of winning		tery contain	ing 3 prize:	s and 9 bla	anks, then his	
	(A) $\frac{34}{55}$	(B) $\frac{21}{55}$		(C) $\frac{17}{55}$		(D) None of thes	e
94.	A box contains 25 random then the p						
	(A) $\frac{11}{50}$	(B) $\frac{13}{50}$		(C) $\frac{37}{50}$		(D) None of thes	e
95.	If four persons are children. Then the						
	(A) $\frac{10}{21}$	(B) $\frac{8}{63}$		(C) $\frac{5}{21}$		(D) $\frac{9}{21}$	
96.	A bag contains 3 rebag, then the proba					awn from the	

	(A) $\frac{6}{71}$	(B) $\frac{7}{81}$	(C) $\frac{10}{91}$	(D) None of these
97.	If out of 20 consecut probability that their s		vo are chosen at rand	om, then the
	(A) $\frac{5}{19}$	(B) $\frac{10}{19}$	(C) $\frac{9}{19}$	(D) None of these
98.		is processes until he g	ng cards, replaces it an gets a card of spade. T	
	(A) $\frac{9}{16}$	(B) $\frac{1}{16}$	(C) $\frac{9}{64}$	(D) None of these
99.	A and B are two indefinether A nor B) is ed		that $P(A)=rac{1}{2}$ and $P(B)$	$)=rac{1}{3}.$ Then P
	(A) $2/3$	(B) 1/6	(C) 5/6	(D) $1/3$
100.	The probabilities of a probability of the prob		by two students are	$\frac{1}{2}, \frac{1}{3}$. Then the
	(A) $\frac{2}{3}$	(B) $\frac{4}{3}$	(C) $\frac{1}{3}$	(D) 1
101.		0% and ' Y' in $50%$ of narrating the same inc	the cases. The probab cident is	ility that they
	(A) $\frac{1}{4}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{2}{3}$
102.	The probability that probability of at least		a target is given as	1/5. Then his
	(A) $1 - \left(\frac{4}{5}\right)^{10}$	(B) $\frac{1}{5^{10}}$	(C) $1 - \frac{1}{5^{10}}$	(D) None of these
103.	without replacement.		wo balls are taken ou ken out is red, then also red	
	(A) $\frac{1}{10}$	(B) $\frac{1}{15}$	(C) $\frac{3}{10}$	(D) $\frac{2}{21}$
104.		without replacement f them is an ace of hea	from a well-shuffled p rt	oack. Find the
	(A) $\frac{1}{25}$	(B) $\frac{1}{26}$	(C) $\frac{1}{52}$	(D) None of these
105.		that the two digit nu petition of digit is allov	mber formed by digit ved)	s $1,2,3,4,5$ is
	(A) $\frac{1}{30}$	(B) $\frac{1}{20}$	(C) $\frac{1}{40}$	(D) None of these
106.	The probability that a	leap year will have 53 F	Fridays or 53 Saturdays	is
	(A) $\frac{2}{7}$	(B) $\frac{3}{7}$	(C) $\frac{4}{7}$	(D) $\frac{1}{7}$
107.	_		mbered $1,2,3,4$. Three powerd corners will be	
	(A) $\frac{5}{24}$	(B) $\frac{5}{64}$	(C) $\frac{3}{32}$	(D) $\frac{3}{16}$

108.	A person can kill a probability that he ma		3/4. He tries 5 times.	What is the
	(A) $\frac{243}{1024}$	(B) $\frac{781}{1024}$	(C) $\frac{1}{1024}$	(D) $\frac{1023}{1024}$
109.	Two dice are thrown t	ogether. The probabili	ty that at least one will	show its digit
	(A) $\frac{11}{36}$	(B) $\frac{36}{11}$	(C) $\frac{5}{11}$	(D) $\frac{1}{6}$
110.			etting different numbers	s on the three
	(A) 4	q are co-prime, then q (B) 3	-p is equal to (C) 1	(D) 2
111.	Let a die be rolled n times be equal to the	times. Let the probable probability of getting	pility of getting odd nung odd numbers nine $rac{k}{2^{15}}$, then k is equal to:	umbers seven
	(A) 30	(B) 90	(C) 15	(D) 60
112.	There are n letters a letters are not kept in		elopes. The probability	y that all the
	(A) $\frac{1}{n!}$	(B) $1 - \frac{1}{n!}$	(C) $1 - \frac{1}{n}$	(D) None of these
113.		a success. If the prob	e the sum of the number ability of having at least (C) 164	
114.	with replacement. The Next four balls are d that exactly three ball	e probability that both rawn in succession w	s. Two balls are drawn the balls are of the sand the replacement and the burs is q . If $p:q=m:n$, (C) 13	ne colour is p. he probability
115.			,3 on its faces, is throu outcomes is positive, is	
	(A) $\frac{881}{2592}$	(B) $\frac{521}{2592}$	(C) $\frac{440}{2592}$	(D) $\frac{27}{288}$
116.		ample space $[0,60]$ is	nce between two rando less than or equal to a (C) 15	_
117.	Let M be the maximum sum is 66 . Let the s	m value of the produc	t of two positive intege $Z: x(66-x) \geq rac{5}{9}Mig\}$ a	ers when their

	(A) $\frac{275}{6^5}$	(B) $\frac{36}{5^4}$	(C) $\frac{181}{5^5}$	(D) $\frac{46}{6^4}$	
119.	candidates qualify it. number of males q	The number of fema ualifying it. A candid	dates appearing in a les qualifying the examate is randomly chose chosen candidate is a $(C) \frac{23}{32}$	n is twice the sen from the	
120.		$\{r\}$. Then the probability hat $\mathrm{HCF}(n,2022)=1$, is		sen number n	
	(A) $\frac{128}{1011}$	(B) $\frac{166}{1011}$	(C) $\frac{127}{337}$	(D) $\frac{112}{337}$	
*	Given section consists	of questions of 3 mar	ks each.	[60]	
121.	 I. box contains 6 red marbles numbered 1 through 6 and 4 white marble numbered form 12 through 15. find the probability that a marble drawn is: i. White ii. White and odd numbered iii. Even numbered iv. Red or even numbered. 				
122.			ck balls. A ball is drav e ball drawn is either w		
123.	The probability that a person will travel by plane is $\frac{3}{5}$ and that he will travel by trains is $\frac{1}{4}$. What is the probability that he (she) will travel by plane or train?				
124.	. In a race, the odds in favour of horses A, B, C, D are 1:3, 1:4, 1:5 and 1:6 respectively. Find probability that one of them wins the race.				
125.	In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?				
126.			ity councils. if one cour el6y is that it is a wome		
127.		are drawn at random	of the bolts and half of , what is the probabili		

(C) $\frac{1}{5}$

118. Let a biased coin be tossed 5 times. If the probability of getting 4 heads is equal

to the probability of getting 5 heads, then the probability of getting atmost two

(D) $\frac{7}{22}$

(A) $\frac{15}{44}$

heads is

(B) $\frac{1}{3}$

- 128. In a lottary, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six numbers already fixed by the lottery commitee, he wins the prize what is a probability of winning the prize in the game?
- 129. Tickets numbered form 1 to 20 are mixed up together and then a ticket is drawn at random, what is the probability that the ticket has a number which is a multiple of 3 or 7?
- 130. A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that (i) both the tickets have prime numbers on them (ii) on one there is a prime number and on the other there is a multiple of 4.
- 131. Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?

[**Hint:** First find the probability that the couple has adjacent desks, and then subtract it from 1]

132. An experiment consists of rolling a die until a 2 appears.

How many elements of the sample space correspond to the event that the 2 appears not later than the k^{th} roll of the die?

[**Hint:**
$$1 + 5 + 52 + ... + 5^{k-1}$$
]

133. If the letters of the word ASSASSINATION are arranged at random. Find the Probability that:

Two I's and two N's come together.

134. If the letters of the word ASSASSINATION are arranged at random. Find the Probability that:

All A's are not coming together.

- 135. A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the Probability that:
 - a. All the three balls are white.
 - b. All the three balls are red.
 - c. One ball is red and two balls are white.
- 136. One urn contains two black balls (labelled B_1 and B_2) and one white ball. A second urn contains one black ball and two white balls (labelled W_1 and W_2). Suppose the following experiment is performed. One of the two urns is chosen at random. Next a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball:
 - a. Write the sample space showing all possible outcomes.
 - b. What is the probability that two black balls are chosen?

- c. What is the probability that two balls of opposite colour are chosen?
- 137. If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?
- 138. If the letters of the word ASSASSINATION are arranged at random. Find the Probability that:

Four S's come consecutively in the word.

139. If the letters of the word ASSASSINATION are arranged at random. Find the Probability that:

No two A's are coming together.

- 140. Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
 - * Given section consists of questions of 5 marks each.

[50]

- 141. A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has
 - i. All boys?
 - ii. All girls?
 - iii. 1 boys and 2 girls?
 - iv. At least one girl?
 - v. At most one girl?
- 142. A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. from the box, what is the probability that:
 - i. All are blue?
 - ii. At least one is green?
- 143. 20 cards are numbered form 1 to 20. card is drawn at random. what is the probability that trhe number on the card is:
 - i. A multiple of 4?
 - ii. Not a multiple of 4?
 - iii. odd?
 - iv. Greather than 12?
 - v. Divisible by 5?
 - vi. Not a multiple of 6?
- 144. An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
- 145. Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
- 146. The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of

- passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?
- 147. Five cards are drawn from form a pack of 52 cards. what is the chance that these 5 will contain:
 - i. Just one ace
 - ii. At least one ace.
- 148. In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
- 149. Match the proposed probability under Column C_1 with the appropriate written description under column C_2 :

	C ₁		C_2
	Probability		Written Description.
a.	0.95	i.	An incorrect assignment.
b.	0.02	ii.	No chance of happening.
c.	-0.3	iii.	As much chance of happening as not.
d.	0.5	iv.	Very likely to happen.
e.	0	v.	Very little chance of happening.

- 150. Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that:
 - a. C will be selected?
 - b. A will not be selected?

----- Every failure is a new lesson, and every lesson is a key to new success." -----