LC19 : Application du premier principe de la thermodynamique à la réaction chimique

Niveau: CPGE

Prérequis :

- -Premier principe de la thermodynamique
- -Fonctions d'états (énergie interne, enthalpie)
- -Capacité calorifique à pression constante
- -Etat standard de référence
- -Réactions acido-basiques
- -Réaction de combustion

Introduction

Introduction

90mL d'eau

10mL de solution de HCI à 2 mol/L

Principe de l'expérience

10mL de solution de NaOH à 2 mol/L

Principe de l'expérience

Principe de l'expérience

II.1) Mesure expérimentale de Δ_r H

Enthalpie standard de formation:

L'enthalpie standard de formation $\Delta_f H^{\circ}(T)$ d'une espèce X, à la température T est l'enthalpie standard de la réaction de formation de l'espèce X.

Enthalpie standard de formation:

L'enthalpie standard de formation $\Delta_f H^{\circ}(T)$ d'une espèce X, à la température T est l'enthalpie standard de la réaction de formation de l'espèce X.

Enthalpie standard de formation:

L'enthalpie standard de formation $\Delta_f H^{\circ}(T)$ d'une espèce X, à la température T est l'enthalpie standard de la réaction de formation de l'espèce X.

Réaction de formation :

Enthalpie standard de formation :

L'enthalpie standard de formation $\Delta_f H^{\circ}(T)$ d'une espèce X, à la température T est l'enthalpie standard de la réaction de formation de l'espèce X.

Réaction de formation :

La réaction de formation de *l'espèce X, à la température T* et dans un état physique donné, est la réaction dans laquelle **une mole** de X est formée à partir des corps simples des éléments constituant X, dans leurs états standards de référence respectifs.

Corps simple:

Corps pur constitué des atomes d'un seul élément chimique.

Exemple : Quelle est la réaction de formation de $CO_{2(g)}$?

Réaction de formation :

Exemple:

$$C_{(graphite)} + O_{2(g)} \longrightarrow CO_{2(g)}$$

Réaction de formation :

Exemple:

$$C_{(graphite)} + O_{2(g)} \longrightarrow 1CO_{2(g)}$$

Réaction de formation :

Espèce	Δ _f H° (à 298,15K)	
H ₃ O ⁺ (aq)	-285,8 kJ/mol	
HO ⁻ (aq)	-230,0 kJ/mol	
H ₂ O(I)	-285,8 kJ/mol	

III)Température de flamme

Flamme d'un chalumeau

III) Température de flamme

Espèce	Δ _f H° (à 298,15K)	C _{pm} ° (à 298,15K)
C ₂ H ₂ (g)	226,7 kJ/mol	1,69 kJ/kg/K
O ₂ (g)	0 kJ/mol	0,920 kJ/kg/K
N ₂ (g)	0 kJ/mol	1,04 kJ/kg/K
CO ₂ (g)	-393,5 kJ/mol	0,850 kJ/kg/K
H ₂ O(g)	-241.8 kJ/mol	2,01 kJ/kg/K

III)Température de flamme

III)Température de flamme

