Sledy, tahy, cesty. Stupně a skóre

Zdeněk Dvořák

28. listopadu 2018

Vrcholy v_1 a v_2 <u>sousedí</u>, jestliže v_1v_2 je hrana. Vrchol v a hrana e jsou incidentní, jestliže $v \in e$.

Posloupnost v_0 , e_1 , v_1 , e_2 , v_2 , ..., e_n , v_n je <u>sled</u> (z v_0 do v_1 , délky n) jestliže v_0 , ..., v_n jsou vrcholy, e_1 , ..., e_n jsou hrany, a e_i je incidentní s v_{i-1} a v_i pro i = 1, ..., n. Sled je uzavřený, jestliže $v_0 = v_n$. Sled je

- tah, jestliže hrany e_1, \ldots, e_n jsou navzájem různé,
- <u>cesta</u>, jestliže vrcholy v_0, \ldots, v_n (a tedy i hrany e_1, \ldots, e_n) jsou navzájem různé,
- kružnice, jestliže vrcholy v_1, \ldots, v_n jsou navzájem různé a $v_0 = v_n$.

Pozorování 1. Vede-li mezi dvěma vrcholy sled délky n, vede mezi nimi i cesta délky nejvýše n; nejkratší sled mezi dvěma vrcholy je cesta.

Vzdálenost d(u, v) dvou vrcholů u a v je délka nejkratší cesty mezi nimi (∞ nebo nedefinováno pokud žádná taková cesta neexistuje).

Pozorování 2. Vzdálenost v grafu je metrika, tj. d(u,v) = 0 právě když u = v, d(u,v) = d(v,u), a $d(u,v) + d(v,w) \ge d(u,w)$ pro všechny vrcholy u, v, w.

Relace \sim tž. $u\sim v$ právě když v G existuje sled (či cesta) mezi u a v je ekvivalence. Její třídy jsou komponenty souvislosti. Má-li graf jen jednu komponentu, je souvislý.

1 Stupně

<u>Stupeň</u> $\deg(v)$ vrcholu v je počet s ním incidentních hran. Graf je <u>d-regulární,</u> jestliže všechny vrcholy mají stupeň právě d. <u>Izolovaný vrchol</u> je vrchol stupně 0. <u>Minimální stupeň</u> vrcholu v grafu G se značí $\delta(G)$, <u>maximální stupeň</u> $\Delta(G)$.

Příklad 1. Úplný graf K_n je (n-1)-regulární, libovolná kružnice je 2-regulární. Cesta P_n pro $n \geq 2$ má dva vrcholy stupně 1 a n-2 vrcholů stupně 2.

Lemma 3. Pro každý (konečný) graf G platí

$$\sum_{v \in V(G)} \deg v = 2|E(G)|.$$

Tedy

- součet stupňů vrcholů je vždy sudý,
- každý graf má sudý počet vrcholů lichého stupně,
- průměrný stupeň G je roven 2|E(G)|/|V(G)|.

 $D\mathring{u}kaz$. Sečteme-li stupně, každou hranu započítáme dvakrát (jednou za každý její konec).

Příklad 2. Je-li graf G d-regulární pro liché d, pak G má sudý počet vrcholů. Libovolný d-regulární graf s n vrcholy má právě dn/2 hran.

Je-li G souvislý a všechny jeho stupně jsou sudé, pak pro každou hranu e je graf G – e souvislý (jinak by měl komponentu obsahující právě jeden vrchol lichého stupně).

Skóre grafu je posloupnost stupňů jeho vrcholů uspořádaná dle velikosti.

Příklad 3. Skóre P_n (pro $n \ge 2$) je

$$1, 1, \underbrace{2, \dots, 2}_{(n-2)-kr\acute{a}t}$$
.

Pozorování 4. Izomorfní grafy mají stejné skóre, opačné tvrzení neplatí.