Devoir maison n°4: Méthode de Newton

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Partie A - Description de la méthode de Newton

1) D'une part on sait que la fonction f est dérivable donc continue sur [a,b] et qu'elle y est strictement monotone car f' strictement négative. D'autre part, on dispose de f(a) > 0 et de f(b) < 0.

Ainsi, d'après le corollaire du Théorème des Valeurs Intermédiaires, il existe un unique $\alpha \in [a,b]$ tel que $f(\alpha)=0$.

2) a) Soit $u \in [a,b]$. On note τ_u la tangente à la courbe représentative de f au point d'abscisse u.

Ainsi, l'équation de τ_u est donnée par : y = f'(u)(x-u) + f(u)

Or
$$y = 0 \Leftrightarrow x = u - \frac{f(u)}{f'(u)}$$
.

Par conséquent, τ_u coupe donc l'axe des abscisses au point d'abscisse $u - \frac{f(u)}{f'(u)}$.

b) Considérons maintenant la fonction g définie sur [a,b] par $g:x\longmapsto x-\frac{f(x)}{f'(x)}$ et la suite $(x_n)_{n\in\mathbb{N}}$ par $x_0=a$ et $x_{n+1}=g(x_n)$.

Cette suite se construit donc de la manière suivante : on part du point d'abscisse x_n sur la courbe représentative de f, on trace la tangente à cette courbe en ce point, puis on reporte l'intersection de cette tangente avec l'axe des abscisses pour obtenir le point d'abscisse x_{n+1} .

¹Schémas générés automatiquement pour n'importe quelle fonction. (programme dans le code source du DM, cf Github).

3) a) La fonction g est dérivable sur [a,b] par composition de fonctions dérivables, dont f' qui ne s'y annule pas, et pour tout $x \in [a,b]$, on a : $g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$

Ainsi, g' de même signe que f sur [a,b] et donc g est strictement croissante sur $[a,\alpha]$ et strictement décroissante sur $[\alpha,b]$.

- **b)** Montrons que pour tout $n\in\mathbb{N},$ $a\leqslant x_n\leqslant \alpha$ en procédant par récurrence :
- Initialisation : $x_0 = a$ donc $a \leqslant x_0 \leqslant \alpha$.
- Hérédité : Soit $n \in \mathbb{N}$, supposons que $a \leqslant x_n \leqslant \alpha$. Comme $\alpha \leqslant b, \, x_n \in [a;b]$ et $g(x_n)$ est bien défini. Par croissance de g sur $[a,\alpha]$, on a $g(a) \leqslant g(x_n) \leqslant g(\alpha) = \alpha$. Or $a \leqslant g(a)$, donc $a \leqslant x_{n+1} \leqslant \alpha$.

Par conséquent, on en déduit que pour tout $n \in \mathbb{N}$, $a \leqslant x_n \leqslant \alpha$.

4) a) Montrons que (x_n) est croissante. Pour tout $n \in \mathbb{N}$:

$$x_{n+1} - x_n = g(x_n) - x_n = -\frac{f(x_n)}{f'(x_n)}$$

Comme $x_n \in [a; \alpha]$, $f(x_n) \geqslant 0$. De plus, f' est strictement négative sur [a; b]. Ainsi, on a $x_{n+1} - x_n \geqslant 0$ et (x_n) est bien croissante.

b) La suite (x_n) est croissante et bornée par α : par le théorème de la limite monotone, la suite (x_n) tend vers une limite $\ell \in [a;\alpha]$; $g(\ell)$ est donc bien définie. De plus, par continuité de g et unicité de la limite :

$$g(\ell) = g\Bigl(\lim_{n \to \infty} x_n\Bigr) = \lim_{n \to \infty} g(x_n) = \lim_{n \to +\infty} x_{n+1} = \ell$$

Donc ℓ est un point fixe de g : le seul point fixe de g sur $[a;\alpha]$ étant α , on déduit que $(x_n) \to \alpha$.

Partie B - Vitesse de convergence

1) $\varphi: x \mapsto f(b) - f(x) - (b-x)f'(x) - \frac{(b-x)^2}{(b-a)^2}(f(b) - f(a) - (b-a)f'(a))$, définie sur [a;b], est dérivable sur [a;b] par opérations. Sa dérivée est pour tout $x \in [a;b]$:

$$\varphi'(x) = (b-x) \bigg(\frac{2((a-b)f'(a) - f(a) + f(b))}{(b-a)^2} - f''(x) \bigg)$$

De plus, on vérifie que $\varphi(a)=\varphi(b)=0$. Le théorème de Rolle donne l'existence de $c\in]a:b[$ tel que $\varphi'(c)=0$, c'est à dire :

$$f''(c) = \frac{2(f(b) - f(a) - (b - a)f'(a))}{(b - a)^2}$$

$$\Leftrightarrow f(b) - f(a) = (b - a)f'(a) + \frac{(b - a)^2}{2}f''(c)$$

Ce qu'il fallait démontrer.

2) f' est dérivable donc continue sur [a;b]. Le théorème des bornes atteintes donne donc un $m \in \mathbb{R}$ tel que $f' \leq m$. De plus, f' atteint m: comme f' < 0, m < 0 et pour tout $x \in [a;b], |f'(x)| \geqslant |m| > 0$.

De même, f'' est continue sur [a;b], donc bornée sur [a;b]: il existe donc $M \ge 0$ tel que $|f''(x)| \le M$. Comme f'' > 0, M > 0 et on a ce que l'on voulait démontrer.

3) La formule de Taylor-Lagrange appliquée à f sur $[x;\alpha]$ donne $c\in]x;\alpha[$ tel que :

$$f(\alpha)-f(x)-(\alpha-x)f'(x)=\frac{(\alpha-x)^2}{2}f''(c)$$

En passant à la valeur absolue et en utilisant $f'' \leq M$, on obtient :

$$\begin{split} |f(\alpha)-f(x)-(\alpha-x)f'(x)| &\leqslant \frac{(\alpha-x)^2}{2}M \\ \Leftrightarrow \left|x-\frac{f(x)}{f'(x)}-\left(f(\alpha)-\frac{f(\alpha)}{f'(x)}\right)\right| &\leqslant \frac{(\alpha-x)^2M}{2f'(x)} \end{split}$$

En remarquant que $f(\alpha) = 0$, on a $\frac{f(\alpha)}{f'(x)} = \frac{f(\alpha)}{f'(\alpha)}$. En utilisant cette réécriture et le fait que $f' \geqslant m$, on a enfin :

$$|g(x) - \alpha| = |g(x) - g(\alpha)| \leqslant \frac{(\alpha - x)^2 M}{2m}$$

4) Posons pour tout $n \in \mathbb{N}$, $u_n = \frac{M}{2m}|x_n - \alpha|$. D'après le 4)b) de la partie A, on sait que $(x_n) \to \alpha$. Donc $(u_n) \to 0$ par continuité de $|\cdot|$ et produit, et il existe donc par définition un $N \in \mathbb{N}$ tel que $u_n = \frac{M}{2m}|x_N - \alpha| < 1$.

5) D'après le 3), $u_{n+1}\leqslant u_n^2$. Montrons d'abord par récurrence que pour tout $n\geqslant N, u_n\leqslant u_n^{2^{n-N}}$.

Initialisation : $u_N \leqslant u_N^1$.

Hérédité : Si pour $n \geqslant N, u_n \leqslant u_N^{2^{n-N}}$, alors :

$$u_{n+1} \leqslant u_n^2 \leqslant u_N^{2 \cdot 2^{n-N}} = u_N^{2^{(n+1)-N}}$$

Ce qui conclut la récurrence.

Ainsi, pour tout $n \ge N$:

$$\begin{split} u_n \leqslant u_N^{2^{n-N}} &\Leftrightarrow \frac{M}{2m} |x_n - \alpha| \leqslant \left(u_N^{2^{-N}}\right)^{2^n} \\ &\Leftrightarrow |x_n - \alpha| \leqslant \frac{2m}{M} \left(u_N^{2^{-N}}\right)^{2^n} \end{split}$$

On obtient le résultat voulu avec $C=\frac{2m}{M}>0$ et $k=u_N^{2^{-N}}$, où k<1 car $u_N<1$ et $x^a<1$ pour tout $a\in\mathbb{R}^+_*$ quand x<1.

Partie C - Algorithmes

1) Pour $f(x) = x^2 - a$, f'(x) = 2x et on a donc pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n - \frac{u_n^2 - a}{2u_n} = \frac{u_n^2 + a}{2u_n}$$

Qui tend pour tout $a \in \mathbb{R}^+_*$ vers \sqrt{a} , car f satisfait les conditions de l'énoncé sur [0;X] pour tout $X > \sqrt{a}$: pour a > 1, on peut prendre X = a sans avoir à calculer \sqrt{a} .

2) Pour $f(x) = x^3 - 2$, f'(x) = 3x et pour tout $n \in \mathbb{N}$:

$$u_{n+1}=u_n-\frac{u_n^3-2}{3u_n}=\frac{3u_n^2-u_n^3+2}{3u_n}$$

Qui tend vers $\sqrt[3]{2}$ car f satisfait les conditions de l'énoncé sur [0;3], car $3>\sqrt[3]{2}$ et f est strictement croissante.

3)

Tentons maintenant de simplifier et d'optimiser ce code :

```
f = lambda x: x**3 - 2

def newton(f, x, h=le-4, epsilon=le-6):
    while abs(y := f(x)) > epsilon:
```



```
derivee = (f(x + h) - f(x - h)) / (2 * h)
    x -= (y / derivee)
return x
```

Pour aller encore plus loin dans la simplification, changeons de language pour Haskell :

```
f :: (Num r) => r -> r
f x = x^3 - 2

derivee f x h = (f (x + h) - f (x - h)) / (2*h)

newton f h e x =
    if (abs . f) x > e
    then newton f h e (x - (f(x) / (derivee f x h)))
    else x

main :: I0 ()
main = do
    let initialGuess = 1.0 -- Initial guess for the root
        h = le-4 -- Small step for derivative approximation
        e = le-6 -- Tolerance level for convergence
        root = newton f h e initialGuess
putStrLn $ "Root found: " ++ show root
```