Probabilités C.Hassenforder

CHAPITRE 7

COUPLES ALEATOIRES A DENSITE

I- LOI DE PROBABILITE D'UN COUPLE

Soit (Ω, \mathcal{A}, P) un espace de probabilité et X et Y deux v.a.r. définies sur (Ω, \mathcal{A}, P) .

 $\mathbf{D1}:$ On appelle fonction de répartition du couple (X,Y) la fonction $F_{X,Y}$ définie sur \mathbb{R}^2 par :

$$F_{X,Y}(x,y) = P([X \le x] \cap [Y \le y]).$$

Propriété: Les fonctions de répartition des v.a.r. X et Y vérifient

$$F_X(x) = \lim_{y \to +\infty} F_{X,Y}(x,y) \text{ et } F_Y(y) = \lim_{x \to +\infty} F_{X,Y}(x,y).$$

D2: La loi du couple (X,Y) est dite <u>absolument continue</u> s'il existe une application $f_{X,Y}$ de \mathbb{R}^2 sur \mathbb{R}_+ , appelée <u>densité</u> du couple (X,Y), continue sur l'intérieur d'un sous-ensemble D de \mathbb{R}^2 et nulle sur son complémentaire, telle que, pour tout $(x,y) \in \mathbb{R}^2$:

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv.$$

Remarque : Il existe des couples (X,Y) non discrets n'admettant pas non plus de densité (lorsque, par exemple, X est discrète et Y absolument continue!).

Propriétés:

- 1) $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f_{X,Y}(u,v) du \right) dv = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f_{X,Y}(u,v) dv \right) du = 1.$ 2) Les lois marginales de X et de Y admettent les densités f_X et f_Y définies par

$$f_X(u) = \int_{-\infty}^{+\infty} f_{X,Y}(u,v)dv$$
 et $f_Y(v) = \int_{-\infty}^{+\infty} f_{X,Y}(u,v)du$.

3) En tout (x_0, y_0) où $f_{X,Y}$ est continue, on a $f_{X,Y}(x_0, y_0) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x_0, y_0)$.

Lois conditionnelles:

D3: Pour tout $x \in \mathbb{R}$ tel que $f_X(x) \neq 0$, la <u>densité conditionnelle</u> de Y sachant (X = x) est la fonction g_x , notée $f_Y^{(X=x)}$ définie par $g_x(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}$.

Remarque: la fonction g_x est bien une densité.

II- OPERATEURS.

Si h est une fonction de \mathbb{R}^2 sur \mathbb{R} telle que h(X,Y) admette une espérance, alors :

$$\mathbb{E}(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f_{X,Y}(x,y) dx dy.$$

En particulier, ${\rm I\!E}(XY)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf_{X,Y}(x,y)dxdy$ si cette espérance existe.

CHAPITRE 7 Résumé du cours

Les résultats démontrés pour les couples discrets au sujet des opérateurs restent valables.

III- INDEPENDANCE.

D4: Deux v.a.r. X et Y sont dites indépendantes si, pour tout $(x,y) \in \mathbb{R}^2$, on a :

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

On admet que ceci équivaut à $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ pour tout $(x,y) \in \mathbb{R}^2$ ou bien à $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$ pour toutes fonctions g et h pourvu que ces espérances existent.

Propriété : Si X et Y sont indépendantes, alors $f_Y^{(X=x)} = f_Y$ pour tout x tel que $f_X(x) \neq 0$ et $f_X^{(Y=y)} = f_X$ pour tout y tel que $f_Y(y) \neq 0$.

IV- CHANGEMENT DE VARIABLES.

TH1: Soit (X,Y) un couple aléatoire de densité $f_{X,Y}$ et φ une fonction de \mathbbm{R}^2 sur \mathbbm{R}^2 . Si $f_{X,Y}$ est continue sur l'intérieur d'un ensemble D et nulle sur son complémentaire, si φ est une bijection de D sur $E = \varphi(D)$ telle que les dérivées partielles de φ et de φ^{-1} existent et soient continues, et si, de plus, $J(\varphi^{-1}) = \begin{vmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0$ sur E, alors le couple aléatoire $(U,V) = \varphi(X,Y)$ admet pour densité la fonction $f_{U,V}$ définie par :

 $f_{U,V}(u,v) = f_{X,Y}(\varphi^{-1}(u,v)) |J(\varphi^{-1})(u,v)| \text{ si } (u,v) \in E.$

V- SOMME DE DEUX V.A.R..

TH2 : Soit (X,Y) un couple aléatoire de densité $f_{X,Y}$. Alors :

1) la v.a.r. X + Y a pour densité la fonction f_{X+Y} définie par :

$$f_{X+Y}(w) = \int_{-\infty}^{+\infty} f_{X,Y}(w-v,v)dv = \int_{-\infty}^{+\infty} f_{X,Y}(u,w-u)du.$$

2) Si X et Y sont indépendantes, alors :

$$f_{X+Y}(w) = \int_{-\infty}^{+\infty} f_X(w-v) f_Y(v) dv = \int_{-\infty}^{+\infty} f_X(u) f_Y(w-u) du.$$

Application aux lois normales:

TH3: Si X et Y sont deux v.a.r. indépendantes de lois respectives $\mathcal{N}(m_1, \sigma_1^2)$ et $\mathcal{N}(m_2, \sigma_2^2)$, alors la v.a.r. X + Y suit la loi normale $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Probabilités C.Hassenforder

Exercices chapitre 7

Couples aléatoires à densité

212. * Soit f la fonction définie par:

$$f(x,y) = kxe^y \, 1_{[O,1]}(x) \, 1_{[O,1]}(y)$$

(a) Déterminer k pour que f soit la densité d'un couple (X, Y).

- (b) Déterminer les lois de X et de Y.
- (c) Les v.a.r. X et Y sont-elles indépendantes?

213. ** Soit f la fonction définie par:

$$f(x,y) = k(1 - \max(|x|,|y|)) \mathbb{I}_{[-1,1]}(x) \mathbb{I}_{[-1,1]}(y)$$

Déterminer k pour que f soit la densité d'un couple (X,Y), préciser les lois marginales et calculer cov(X,Y).

214. ** Soit (X, Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = k \, 1\!\!1_D(x,y)$$

où $D = \{(x, y) \in \mathbb{R}^2; |x| + |y| \le 1\}.$

- (a) Déterminer k et les lois marginales de X et Y.
- (b) Déterminer cov(X, Y) et étudier l'indépendance de X et de Y.

215. ** Soient X et Y deux v.a.r. indépendantes, de même loi exponentielle $\mathcal{E}(\lambda)$. Déterminer la loi du couple (U,V) et étudier l'indépendance des v.a.r. U et V dans les cas suivants:

- (a) U = X + Y et $V = \frac{X}{Y}$;
- (b) $U = X + Y \text{ et } V = \frac{X}{X+Y}$.

216. ** Soient X et Y deux v.a.r. indépendantes de même loi uniforme sur [0,2]. Déterminer la loi de Z=X-Y, de S=X+Y et de T=XY.

217. * Soit (X, Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = k (x^2 + y^2) \mathbb{I}_{[-1,1]}(x) \mathbb{I}_{[-1,1]}(y)$$

- (a) Déterminer k.
- (b) Déterminer cov(X, Y) et étudier l'indépendance de X et de Y.
- (c) Déterminer la loi de S = X + Y.

218. ** Soit f la fonction définie par:

$$f(x,y) = e^{-y} \, 1\!\!1_D(x,y)$$

où $D = \{(x, y) \in \mathbb{R}^2 ; 0 < x \le y\}.$

- (a) Vérifier que f est la densité d'un couple (X, Y).
- (b) Quelles sont les lois des v.a.r. X et Y. Ces v.a.r. sont-elles indépendantes?
- (c) Les v.a.r. X et X Y sont-elles indépendantes?
- (d) Les v.a.r. Y et X/Y sont-elles indépendantes?

CHAPITRE 7 Exercices

219. ** Deux personnes se donnent rendez-vous entre 13 heures et 14 heures: X et Y représentent l'instant d'arrivée de chacune ; Z est le temps d'attente de la première arrivée. Quelle est la loi de Z et son espérance?

220. ** Soient X et Y deux v.a.r. indépendantes de même loi admettant pour densité f définie par:

$$f(x) = ke^{-|x|}$$

(a) Déterminer k.

- (b) Déterminer la loi de Q = Y/X et, si elles existent, l'espérance et la variance de Q.
- (c) Déterminer la loi de S = X Y.

221. * Soit (X, Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = kxy e^{-(x^2+y^2)} \mathbb{I}_{\mathbb{R}^2_+}(x,y)$$

- (a) Déterminer k et les lois marginales de X et de Y.
- (b) Déterminer la loi de $Z = \sqrt{X^2 + Y^2}$.
 - **222.** ** Soit (X,Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = k \mathbb{I}_D(x,y)$$

où
$$D = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 \le 1\}$$

- (a) Déterminer k et les lois de X et de Y.
- (b) Déterminer les lois de Q = X/Y et de $Z = (X^2 + Y^2)^{-1/2}$.
 - **223.** ** Soit (X, Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = \frac{1}{x^2 y^2} \mathbb{I}_{[1,+\infty[}(x) \mathbb{I}_{[1,+\infty[}(y)$$

Soient U = XY et V = X/Y.

- (a) Déterminer les lois de U et de V.
- (b) Les v.a.r. U et V sont-elles indépendantes?
 - **224.** ** Soit (X, Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = k \frac{1}{x^2 y} \mathbb{I}_D(x,y)$$

où
$$D = \{(x, y) \in \mathbb{R}^2 : x > 1 \text{ et } x^{-1} < y < x\}$$

- (a) Déterminer k.
- (b) Déterminer les densités marginales et conditionnelles de X et de Y.
 - ${f 225.}$ *** Soient X et Y deux v.a.r. indépendantes de même loi admettant pour densité f définie par:

$$f(x) = \frac{1}{2} \cos x \, \mathbb{I}_{[-\pi/2,\pi/2]}(x)$$

. Déterminer la loi de S = X + Y.

Probabilités C.Hassenforder

226. ** Soit f la fonction définie par :

$$f(x,y) = \frac{1}{2} \, \mathrm{II}_{]-1,0[}(x) \, \mathrm{II}_{]0,1[}(y) + \mathrm{II}_{D}(x,y)$$

où $D = \{(x, y) \in \mathbb{R}^2 ; x \ge 0, y \ge 0 \text{ et } x + y < 1\}.$

- (a) Vérifier que f est la densité d'un couple (X,Y); déterminer les lois marginales de X et de Y ainsi que la densité de la loi conditionnelle de Y sachant (X=x) pour tout x tel que $f_X(x) \neq 0$.
- (b) Les v.a.r. X et Y sont-elles indépendantes? Calculer cov(X, Y).
- (c) Soient U = X + Y et V = X Y. Déterminer la densité du couple (U, V).
 - **227.** * Soit $a \in]0,1[$ et (X,Y) un couple de v.a.r. de densité f définie par:

$$f(x,y) = ((1+ax)(1+ay) - a) e^{-(x+y+ax)} \operatorname{II}_{\mathbb{R}^2_+}(x,y)$$

- (a) Vérifier que f est une densité de probabilité et déterminer les lois marginales de X et de Y; calculer $\mathbb{E}(X)$ et $\mathbb{E}(Y)$.
- (b) Déterminer la loi conditionnelle de X sachant (Y = y).

228. ** Soient X et Y deux v.a.r. indépendantes de même loi uniforme sur [-1,1].

- (a) Déterminer la loi de Z = X Y.
- (b) Déterminer la loi de $T = \min(X, Y^3)$

229. ** Soit $\alpha > 0$ et soient X et Y deux v.a.r. indépendantes de même loi uniforme sur $[0, \alpha[$. On pose $U = \min(X, Y), \ V = \max(X, Y), \ Z = V - U$ et T = U/V. Déterminer les lois de Z et de T.

230. ** Soient X et Y deux v.a.r. indépendantes, de lois exponentielles respectivement $\mathcal{E}(\lambda)$ et $\mathcal{E}(\mu)$. Déterminer les lois de $U = \min(X, Y)$ et $V = \max(X, Y)$.

231. ** Soit $\theta > 0$ et soient X et Y deux v.a.r. indépendantes, de même loi de densité f définie par:

$$f(x) = \frac{3x^2}{\theta^3} \, \mathbb{I}_{[0,\theta]}$$

On pose S = X + Y et $T = \max(X, Y)$

- (a) Déterminer $\mathbb{E}(S)$ et V(S).
- (b) Déterminer la loi de T.

232. ** Soient X et Y deux v.a.r. indépendantes de même loi exponentielle $\mathcal{E}(\lambda)$. On pose $Z = \min(X,Y)$ et S = X + Y.

- (a) Déterminer la loi, l'espérance et la variance de \mathbb{Z} .
- (b) Déterminer la loi de S.
- 233. *** On casse une baguette de bois de longueur 1 en deux endroits qu hasard. Quelle est la probabilité de pouvoir former un triangle en repliant les deux morceaux extrêmes?

CHAPITRE 7 Exercices

234. ** Soient X et Y deux v.a.r. indépendantes de même loi exponentielle $\mathcal{E}(\lambda)$. On pose U = X - Y, $V = \min(X, Y)$ et Z = |X - Y|.

Déterminer les lois de $U,\,V$ et Z ; examiner l'indépendance éventuelle de U et V ainsi que de Z et V.

235. ** Soient X et Y deux v.a.r. indépendantes de même loi Gamma $G(2,\lambda)$.

- (a) Calculer les moments $\mathbb{E}(X^n)$ et préciser V(X).
- (b) Calculer $\mathbb{E}(e^{-\alpha X})$ pour $\alpha > 0$.
- (c) Déterminer la loi de $T = \min(X, Y)$.
- **236.** ** On prend un point M au hasard sur le cercle C de centre O et de rayon 1. Soient X et Y les coordonnées de M.

Calculer cov(X, Y) et montrer que X et Y ne sont pas indépendantes.

237. *** Soient A et B deux v.a.r. indépendantes de même loi. Quelle est la probabilité que l'équation $x^2 - 2Ax + B = 0$ ait:

- 1) 2 solutions réelles;
- 2) 2 solutions complexes;
- 3) 1 solution double;

dans les cas suivants:

- (a) A et B sont de loi exponentielle $\mathcal{E}(\lambda)$;
- (b) A et B sont de loi uniforme sur [0, 1].
- **238.** * Soit X une v.a.r. de loi normale N(0,1) et Y une v.a.r. telle que $P(X=1)=P(X=-1)=\frac{1}{2}$. On suppose que X et Y sont indépendantes et on pose Z=XY.
- (a) Déterminer la loi de Z.
- (b) Calculer cov(X, Z).
- **239.** ** On considère une cible circulaire de centre O et de rayon R. Le point d'impact d'une flèche est représenté par ses coordonnées X et Y que l'on suppose indépendantes de même loi normale $N(0, (2R)^2)$.
- (a) Quelle est la probabilité que la flèche atteigne la cible?
- (b) Combien de flèches sont nécessaires pour que la probabilité que l'une d'entre elles au moins atteigne la cible soit supérieure à 0,9?
- **240.** ** Soient X_1 et X_2 deux v.a.r. indépendantes de lois normales respectives $N(m^1, \sigma_1^2)$ et $N(m^2, \sigma_2^2)$.

Déterminer la loi de $X_1 + X_2$.

241. ** Soit (X, Y) un couple de densité f définie par:

$$f(x,y) = \lambda e^{-(\frac{y^2}{2} - xy + x^2)}$$

- (a) Déterminer λ et les lois marginales du couple (X, Y).
- (b) Calculer cov(X, Y) et étudier l'éventuelle indépendance de X et de Y.