Chap.5 Diagonalization

§5-1 Eigenvalue and Eigenvectors

This chapter begins the "second half" of the linear algebra. The first half was about "Ax=b". The new problem "A $x=\lambda x$ " will still be solved by simplifying a matrix - making ait diagonal if possible.

- 1. Does there exist an ordered basis β for V such that $[T]_{\beta}$ is diagonal matrix?
- 2. If such a basis exists how can it be found?

<u>Definition</u>. $T \in L(V)$, V is finite dimensional vector space. T is "diagonalizable" if there exist $\beta \ni [T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_A is diagonalizable.

Note that if $D = [T]_{\beta}$ is a diagonal matrix, for $\beta = \{v_1, \dots, v_n\}$, we have

$$\begin{cases} T(v_1) = D_{11}v_1 + D_{21}v_2 + \dots + D_{1n}v_n \\ T(v_2) = D_{12}v_1 + D_{22}v_2 + \dots + D_{n2}v_n \\ \vdots \\ T(v_n) = D_{1n}v_1 + D_{2n}v_2 + \dots + D_{nn}v_n \end{cases}$$

- $\because [T]_{eta}$ is diagonal matrix $\implies \forall \ i,j$, i
 eq j , $D_{ij} = 0$ and $D_{ji} = 0$.
- ... for $1 \leq j \leq n$, $T(v_j) = D_{jj}v_j$ take $D_{jj} = \lambda_j$ we obtain the formulation

$$Ax = \lambda x$$

•

Notice: To diagonalize the matrix or a linear operator is to find a basis of eigenvalue and the corresponding eigenvectors.

Example

<u>Definition</u>. Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI)$ is called a characteristic polynomial of A.

<u>Definition</u>. Let $T \in L(V)$, V is finite dimensional vector space, β is a ordered basis for V. We define the characteristic polynomial of T to be the characteristic polynomial of $A = [T]_{\beta}$ i.e. $f(t) = \det([T]_{beta} - tI)$.

Remark. The eigenvalue of $[T]_{\beta}$ is also an eigenvalue of T.

• Some properties between T and $[T]_{\beta}$:

V: n-dimensional vector space , $T\in L(V)$, define determinant of T denoted $\det(T)$ is choosing any ordered basis β for V , define $\det(T)=\det([T]_{\beta})$ then the followings are true :

- 1. If β and γ are two ordered basis for $V \implies \det([T]_{\beta}) = \det([T]_{\gamma})$
- 2. T is invertible $\Leftrightarrow \det(T) \neq 0$
- 3. T is invertible $\implies \det(T^{-1}) = \det(T)^{-1}$
- 4. If $U \in L(V)$, then $\det([TU]_{\beta}) = \det([T]_{\beta}) \det([U]_{\beta})$
- 5. $det(T \lambda I) = det([T]_{\beta} \lambda I)$