Introduction to Weakly Supervised Semantic Segmentation

Data Mining & Quality Analytics Lab

2020년 08월 21일

발표자: 조용원

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- 3. Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation
- 6. Conclusions

- 인공지능 기반 컴퓨터 비전 문제
 - ❖ 컴퓨터 비전 (Computer Vision)
 - 사진/영상 내 정보를 인식 및 이해하는 알고리즘의 집합
 - 인공 신경망을 사용하는 분야 내에는 이미지 분류, 객체 탐지, 이미지 분할 등이 존재

- 3 -

• 대부분 지도학습 기반의 알고리즘으로 사진/ 영상에 대한 정답(Label)이 필요

이미지 분류 (Image Classification)

이미지 분류 및 위치 파악 (Image Localization)

다중 객체 (Multi object)

객체 탐지 (Object Detection)

크리스토프

- 이미지 분류 모형의 입력/ 출력 데이터
 - ❖ 이미지 분류 (Image Classification) 이란?
 - 사진/ 영상 내 탐지하고자 하는 범주 중 어떤 범주가 있는지를 예측하는 문제
 - 입력 변수는 사진/ 영상이며 출력 변수는 탐지하고자 하는 범주
 - 합성곱 (convolutional neural networks, CNN) 기반 분류 모형을 주로 사용

Input

Output

올라프	안나	엘사	크리스토퍼
1	0	0	0
0	1	0	0
0	0	1	0
0	0	1	0

- 이미지 분할의 세부 문제
 - ❖ 이미지 분할 (Image Segmentation) 이란 ?
 - 사진/ 영상 내 특정 영역이 탐지하고자 하는 범주 중 어떤 범주에 속하는지 예측
 - Semantic Segmentation과 Instance Segmentation으로 구성

- 이미지 분할 중 Semantic Segmentation의 입력/ 출력 데이터 생성
 - ❖ 이미지 분할 (Image Segmentation) 에서의 정답 생성 과정 (Labeling)
 - 이미지 분류와 같이 특정 사진에 대한 정답이 필요함
 - 탐지하고자 하는 범주: 배경 (0), 보트 (1), 안나 (2), 올라프 (3)
 - 픽셀 별로 탐지하고자 하는 범주가 입력된 출력 변수가 필요 (픽셀 별 분류)

입력 이미지

Segmentation map

							•		
0	0	0	0	0	0	0	0	0	0
0	2	2	0	0	0	0	0	0	0
0	2	2	0	0	3	3	0	0	0
0	2	2	2	0	3	3	3	0	0
0	2	2	2	0	3	3	3	0	0
0	2	2	2	1	3	3	3	0	0
0	2	1	2	2	1	3	1	0	0
0	1	1	1	2	1	3	1	1	0
0	1	1	1	1	1	3	1	1	0
0	0	1	1	1	1	1	1	1	0
				4	4				

Semantic Segmentation 모형

- 데이터 셋 구축의 어려움
 - ❖ 이미지 분할 문제 해결을 위한 데이터 셋 구축의 어려움
 - 탐지하고자 하는 범주: 주행 도로, 나머지 도로, 차량, 장애물 등

- 데이터 셋 구축의 어려움
 - ❖ 이미지 분할 문제 해결을 위한 데이터 셋 구축의 어려움
 - 일반적으로 Image Segmentation 모형은 무수히 많은 파라미터를 가지고 있음
 - 작은 학습 데이터 셋으로 많은 파라미터의 최적 값을 찾기 어려움
 - 정답 생성하는 인원에 따른 이미지 이해의 차이가 있기에 검토하는 과정도 필요

학습 (2,658 장) / 테스트 (438 장)

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation
- 6. Conclusions

- Weakly Supervised Semantic Segmentation 연구 목적
 - ❖ Weakly Supervised Semantic Segmentation (WSSS) 연구 목적
 - 픽셀 단위 Labeling은 많은 인력, 시간, 비용이 필요함
 - Labeling 경험 정도, 사람의 기분에 따라 Labeling 결과물 차이가 발생할 수 있음
 - 상대적으로 작은(Weakly) 정보로 Semantic Segmentation을 수행하는 것이 목표

오차 역전파 (Backpropagation)

- Weakly Supervised Semantic Segmentation 연구 목적
 - ❖ Weakly Supervised Semantic Segmentation (WSSS) 연구 목적
 - 상대적으로 작은(Weakly) 정보로 Semantic Segmentation을 수행하는 것이 목표
 - ▶ 상대적으로 작은 정보를 Weakly supervision 이라고 부름
 - 위치 정보 활용하는 방법과 범주 정보 활용하는 방법에 대해 각각 소개하고자 함

Semantic Segmentation

올라프

안나

보트

Weakly Supervised Semantic Segmentation

- 위치 정보(Bounding box) 기반 (bounding box annotation)
 - ❖ Type of weakly supervision ① 범주와 위치
 - 2017년 Computer Vision and Pattern Recognition 에서 소개
 - 2020년 8월 19일 기준 **233**회 인용

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the version available on IEEE Xplore.

Simple Does It: Weakly Supervised Instance and Semantic Segmentation

Anna Khoreva¹ Rodrigo Benenson¹ Jan Hosang¹ Matthias Hein² Bernt Schiele¹

¹Max Planck Institute for Informatics, Saarbrücken, Germany
²Saarland University, Saarbrücken, Germany

⁻ Khoreva, A., Benenson, R., Hosang, J., Hein, M., & Schiele, B. (2017). Simple does it. Weakly supervised instance and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 876-885).

• 위치 정보(Bounding box) 기반 (bounding box annotation)

❖ Type of weakly supervision ① - 범주와 위치

- 픽셀 단위 Labeling에 비해 위치를 지정해주는 것은 상대적으로 간단함
- 범주와 범주의 위치를 이용해 Semantic Segmentation을 수행하는 것
- 범주의 위치 내 모든 픽셀은 특정 범주에 속하는 픽셀로 간주

위치 정보(Bounding box) 기반 (bounding box annotation)

❖ Type of weakly supervision ① - 범주와 위치

- Feature Extractor (Encoder)

 Classifier (Decoder)
- 학습 데이터 셋에 대해 1 Epoch 학습 후 정답 이미지 교체 진행
- 범주별로 예측 결과와 위치 상자와 비교해 작은 것을 정답으로 선택
- 해당 과정을 반복

⁻ Khoreva, A., Benenson, R., Hosang, J., Hein, M., & Schiele, B. (2017). Simple does it: Weakly supervised instance and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 876-885).

• 범주 정보 기반 (image-level annotation)

❖ Type of weakly supervision ② - 범주

- 입력 이미지마다 어떠한 범주가 존재하는지에 대한 정보만 존재
- 이미지 분류 모형을 사용해 Segmentation map을 생성하고자 함

• Weakly supervision의 종류

❖ Type of weakly supervision ② - 범주

- 입력 이미지마다 어떠한 범주가 존재하는지에 대한 정보만 존재
- 이미지 분류 모형을 사용해 Segmentation map을 생성하고자 함

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- 3. Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation
- 6. Conclusions

• 문제 상황 정의

- 입력 이미지에 대해서 다중 객체 존재 여부를 예측하는 문제
- CNN에서 출력되는 값을 시그모이드 함수에 입력하여 확률 값 도출
- 확률 값을 이용해 범주 별 존재 여부를 예측 가능 함

탐지하고자 하는 범주 엘사, <mark>안나</mark>, 크리스토프, <mark>한스</mark>

엘사	안나	크리스토프	한스
0	1	1	0
1	1	0	0
1	0	0	1
1	0	0	1

• 시그모이드 연산

❖ Multi-label Classification 문제

- 입력 이미지에 대해서 다중 객체 존재 여부를 예측하는 문제
- CNN에서 출력되는 값을 시그모이드 함수에 입력하여 확률 값 도출
- 확률 값을 이용해 범주 별 존재 여부를 예측 가능 함

탐지하고자 하는 범주 엘사, <mark>안나</mark>, 크리스토프, <mark>한스</mark>

점수

• 시그모이드 연산

(Sogil) (Sogi

- CNN에서 출력되는 값을 시그모이드 함수에 입력하여 확률 값 도출
- 확률 값을 이용해 범주 별 존재 여부를 예측 가능 함

• 시그모이드 연산

- (bogt) (cogt) (
- · CNN에서 출력되는 값을 시그모이드 함수에 입력하여 확률 값 도출
- 확률 값을 이용해 범주 별 존재 여부를 예측 가능 함
- 시그모이드 값이 0.5보다 큰 경우, 해당 범주가 입력 이미지 내 존재한다고 예측

손 실 함 수 계 산

3. Multi-label Classification and Grad-CAM

• 시그모이드 연산

- CNN에서 출력되는 값을 시그모이드 함수에 입력하여 확률 값 도출
- 실제 범주 레이블과 손실 함수 계산

Multi-label Classification 모형 학습

Multi-label Classification 모형 학습 완료

- 입력 이미지에 어떠한 범주가 있는지를 예측할 수 있는 모형 구축
- 특정 범주를 예측할 때 입력 이미지의 어떤 부분을 보고 예측하는지 파악 필요

Dense Conditional Random Field

Gradient-weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM)

- 2017년 International Conference on Computer Vision에서 소개
- 2020년 8월 15일 기준 **2452**회 인용

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruv Batra

Ramprasaath R. Selvaraju

Georgia Institute of Technology, Atlanta, GA, USA

E-mail: ramprs@gatech.edu

Michael Cogswell

Georgia Institute of Technology, Atlanta, GA, USA

E-mail: cogswell@gatech.edu

Abhishek Das

Georgia Institute of Technology, Atlanta, GA, USA

E-mail: abhshkdz@gatech.edu

Ramakrishna Vedantam

Georgia Institute of Technology, Atlanta, GA, USA

E-mail: vrama@gatech.edu

Devi Parikh

Georgia Institute of Technology, Atlanta, GA, USA Facebook AI Research, Menlo Park, CA, USA

E-mail: parikh@gatech.edu

Dhruv Batra

Georgia Institute of Technology, Atlanta, GA, USA Facebook AI Research, Menlo Park, CA, USA

E-mail: dbatra@gatech.edu

Gradient-weighted Class Activation Mapping

❖ Multi-label Classification 모형의 원인 분석 (Grad-CAM)

- Grad-CAM은 이미지 분류 모형 예측 결과에 대한 판단 근거를 제시할 수 있는 알고리즘
- 우선 입력 이미지를 이미지 분류 모형에 입력

Gradient-weighted Class Activation Mapping

• 입력 이미지에 대해 오차 역전파를 진행하고 **변화량(Gradient)** 계산

• Gradient-weighted Class Activation Mapping

• 각각의 Feature map에 대한 중요도 계산

Feature map

3	0.86	3	0.99
-1	-0.22	-3	0.76

1번 Feature map 변화량 평균

$$\mathbf{0.5975} = \frac{0.86 + 0.99 - 0.22 + 0.76}{4}$$

$$-0.048 = \frac{0.11 + 0.34 - 0.25 - 0.44}{4}$$

- Gradient-weighted Class Activation Mapping
 - ❖ Multi-label Classification 모형의 원인 분석 (Grad-CAM)
 - '엘사'라고 예측한 원인 지역을 분석

Feature map

	•	_		
3 0.86	3 0.99		1.7925	1.7925
-1 -0.22	-3 0.76		-0.5975	-1.7925
			-	-
1 0.11	6 0.34		-0.048	-0.288
-2 -0.25	-5 -0.44		0.096	0.24
				I
			1.7445	1.5045
			-0.5015	-1.5525

· Gradient-weighted Class Activation Mapping

• '엘사'라고 예측한 원인 지역을 분석

Feature map

3	0.86	3 0.99
-1	-0.22	-3 0.76

1.7925	1.7925
-0.5975	-1.7925

1	0.11	6	0.34
-2	-0.25	-5	-0.44

-0.048	-0.288
0.096	0.24

•

최종 Grad-CAM 출력 결과

1.7445	1.5045
0	0

- Gradient-weighted Class Activation Mapping
 - ❖ 원인 분석 시각화 결과 (Grad-CAM)

예측: 고양이

예측: 비행기

예측: 사람

예측: 버스

Grad-CAM 시각화 결과

입력 이미지

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- 3. Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation
- 6. Conclusions

- 예리하게 객체의 경계선을 찾아보자
 - ❖ Grad-CAM 을 이용해서 객체의 경계선을 찾을 수 있을까?
 - Grad-CAM을 이용해서 특정 객체의 위치를 파악할 수 있음
 - 하지만 정확히 객체가 존재하는 영역을 인식하고 분류하는 것이 아님
 - 확률 값과 입력 이미지를 이용해 정확히 객체 존재 영역을 탐지해야 함

예측: 고양이

예측: 버스

입력 이미지

Grad-CAM 시각화 결과

- Dense CRF
 - Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
 - 2012년 Neural Information Processing Systems (Neural IPS)에서 발표
 - 2020년 8월 18일 기준 **2150**회 인용

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Philipp Krähenbühl

Computer Science Department Stanford University

philkr@cs.stanford.edu

Vladlen Koltun

Computer Science Department Stanford University

vladlen@cs.stanford.edu

- Dense CRF
 - Dense Conditional Random Field (Dense CRF)
 - Dense CRF 알고리즘의 입력 변수는 픽셀별 확률 값과 이미지
 - 엘사와 한스가 존재한다고 예측됨

탐지하고자 하는 범주 엘사, 안나, 크리스토프, **한스**

- Grad-CAM 결과를 입력 이미지 크기로 확장
 - Dense Conditional Random Field (Dense CRF)
 - Dense CRF 알고리즘의 입력 변수는 픽셀별 확률 값과 이미지
 - 픽셀별 확률 값은 Grad-CAM을 이용해 생성하고 이를 이미지 크기와 동일하게 확장

0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
8.0	0.8	0.8	8.0	0.8	0.8	0.8	0.8	0.8	0.8
8.0	0.8	0.8	8.0	0.8	0.8	0.8	0.8	0.8	0.8
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

탐지하고자 하는 범주 엘사, 안나, 크리스토프, **한스**

1.7445	1.5045 1.5045 1.7445
0	0

• Grad-CAM 결과를 입력 이미지 크기로 확장

픽셀별 한스가 존재할 확률

- Dense Conditional Random Field (Dense CRF)
 - Dense CRF 알고리즘의 입력 변수는 픽셀별 확률 값과 이미지
 - 픽셀별 확률 값은 Grad-CAM을 이용해 생성하고 이를 이미지 크기와 동일하게 확장

0.9		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
(0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0
	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0
	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0

1	0.88
0	0

1	0
0.86	0

한스

Dense CRF

- Dense Conditional Random Field (Dense CRF)
 - Dense CRF 알고리즘의 입력 변수는 픽셀별 확률 값과 이미지
 - 픽셀별 확률 값은 Grad-CAM을 이용해 생성하고 이를 이미지 크기와 동일하게 확장

픽셀별 <mark>객체가</mark> 존재할 확률												
ļŗ		22	22	22	22	22	22	22	22	20		
	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0		
	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0		
	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0		
	8.0	0.8	0.8	8.0	8.0	0	0	0	0	0		
	8.0	0.8	0.8	8.0	8.0	0	0	0	0	0		
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0		
H	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0		
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0		
	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0		
1	8.0	0.8	0.8	0.8	0.8	0	0	0	0	0		

Dense CRF (확률, 이미지)

Dense CRF

Dense Conditional Random Field (Dense CRF)

- 모든 픽셀은 같은 범주에 속할 수 있다는 가정이 존재
- 픽셀별 객체 존재 확률과 색상을 기준으로 객체의 경계면 가장자리 탐색

픽셀별 한스 존재 확률

0.9 0.9 0.9 0.9 0.0 0										
0.9 0.9 0.9 0.9 0.9 0.0 <	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
0.8 0.8 0.8 0.8 0.8 0 <td< td=""><td>0.9</td><td>0.9</td><td>0.9</td><td>0.9</td><td>0.9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
0.8 0.8 0.8 0.8 0.8 0.0 0 0 0 0 0 0.7 0.7 0.7 0.7 0 0 0 0 0 0 0.7 0.7 0.7 0.7 0 0 0 0 0 0 0.7 0.7 0.7 0.7 0 0 0 0 0 0	0.9	0.9	0.9	0.9	0.9	0	0	0	0	0
0.7 0.7 0.7 0.7 0.7 0.0 <	0.8	0.8	8.0	0.8	0.8	0	0	0	0	0
0.7 0.7 0.7 0.7 0.7 0.07 0.00 0	8.0	0.8	8.0	8.0	0.8	0	0	0	0	0
0.7 0.7 0.7 0.7 0.7 0 0 0 0 0	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
0.8 0.8 0.8 0.8 0.8 0 0 0 0 0	0.7	0.7	0.7	0.7	0.7	0	0	0	0	0
	8.0	8.0	8.0	8.0	8.0	0	0	0	0	0
0.8 0.8 0.8 0.8 0.8 0 0 0 0 0	0.8	0.8	0.8	0.8	0.8	0	0	0	0	0

- Dense CRF
 - Dense Conditional Random Field (Dense CRF)
 - 픽셀별 객체 존재 확률과 색상을 기준으로 객체의 경계면 가장자리 탐색

픽셀별 한스 존재 확률

0	0	0	0.9	0.9	0	0	0	0	0
0	0	0	0.9	0.9	0	0	0	0	0
0	0	0	0.9	0.9	0	0	0	0	0
0	0	0.8	0.8	0.8	0	0	0	0	0
0	0.8	0.8	0.8	0	0	0	0	0	0
0	0.7	0.7	0.7	0	0	0	0	0	0
0	0.7	0.7	0	0	0	0	0	0	0
0	0	0.7	0.7	0.7	0.6	0	0	0	0
0	0	0.8	0.8	0	0	0	0	0	0
0	0	0	0.8	0	0	0	0	0	0

Dense CRF

Dense Conditional Random Field (Dense CRF)

- 픽셀간 거리가 멀 경우, 같은 범주에 속하지 않도록 함 (**엘사 vs. 배경**)
- 엘사가 존재할 확률이 높은 픽셀을 흰 픽셀로 표기

픽셀별 엘사 존재 확률

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.9	0.9	0	0	0
0	0	0	0	0	0.9	0.9	0.9	0	0
0	0	0	0	0	0.9	0.9	0.9	0.9	0
0	0	0	0	0	0	0.9	09	0.9	0
0	0	0	0	0.9	0.9	0.9	0.9	0.1	0
0	0	0	0	0.9	0.9	0.9	0.9	0.1	0.1
0	0	0	0	0.9	0.9	0.9	0.9	0	0
0	0	0	0.9	0.9	0.9	0.9	0.9	0	0
0	0	0	0.9	0.9	0.9	0.9	0.9	0.9	0

- Dense CRF
 - Dense Conditional Random Field (Dense CRF)
 - 최종적으로 픽셀 별로 범주 할당 하기
 - 특정 범주에 대한 존재 확률이 가장 큰 범주를 해당 픽셀에 대한 범주로 할당

엘사

안나

크리스토프

한스

0	0	0	0.9	0.9	0	0	0	0	0
0	0	0	0.9	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0.9	0.9	0	0
0	0	8.0	0.8	0.8	0.9	0.9	0.9	0.9	0
0	0.8	0.8	0.8	0	0	0.9	0.9	0.9	0
0	0.7	0.7	0.7	0.9	0.9	0.9	0.9	0	0
0	0.7	0.7	0	0.9	0.9	0.9	0.9	0	0
0	0	0.7	0.7	0.9	0.9	0.9	0.9	0	0
0	0	8.0	0.9	0.9	0.9	0.9	0.9	0	0
0	0	0	0.9	0.9	0.9	0.9	0.9	0.9	0

Dense CRF를 활용한 픽셀별 범주 할당

Dense CRF

Dense Conditional Random Field (Dense CRF)

수식으로 알고리즘 살펴보기

$$\mathbf{E}(\mathbf{x}|I) = \sum_{i} \psi_{u}(x_{i}) +$$

픽셀이 특정 범주에 속할 확률

- $\psi_{i}(x_i) = -\log P(x_i), i = 1, 2, \dots, h * w$
 - h, w : 입력 이미지의 가로, 세로 길이
- $P(x_i)$: 픽셀별로 특정 범주에 속할 확률
- $P(x_i)$ 는 Grad-CAM 으로 계산 가능

$$E(x)|I) = \sum_{i} \psi_{u}(x_{i}) + \left| \mu(x_{i}, x_{j}) \sum_{m=1}^{K} w^{(m)} k^{(m)} (f_{i}, f_{j}) \right|$$

$$k(f_{i}, f_{j}) = w_{1} * \exp\left(-\frac{\|p_{i} - p_{j}\|^{2}}{2\sigma_{\alpha}^{2}} - \frac{\|I_{i} - I_{j}\|^{2}}{2\sigma_{\beta}^{2}}\right) + w_{2} * \exp\left(-\frac{\|p_{i} - p_{j}\|^{2}}{2\sigma_{\gamma}^{2}}\right)$$

- p_i, p_j : 픽셀의 위치 (예 \rightarrow (2,3))
- I_i, I_i: 특정 픽셀의 색상 (예 → (0,0,255))

- Dense CRF
 - Dense Conditional Random Field (Dense CRF)
 - 수식으로 알고리즘 살펴보기

$$E(x | I) = \sum_{i} \psi_{u}(x_{i}) + \mu(x_{i}, x_{j}) \sum_{m=1}^{K} w^{(m)} k^{(m)}(f_{i}, f_{j})$$

- 유사 위치의 픽셀은 같은 범주에 속하도록 함
- 유사 색상의 픽셀은 같은 범주에 속하도록 함
- 범주에 속하는 픽셀의 개수가 일정 수준 이상으로 유지
- $k(f_{i}, f_{j}) = w_{1} * \exp\left(-\frac{\|p_{i} p_{j}\|^{2}}{2\sigma_{\alpha}^{2}} \frac{\|I_{i} I_{j}\|^{2}}{2\sigma_{\beta}^{2}}\right)$ $+ w_{2} * \exp\left(-\frac{\|p_{i} p_{j}\|^{2}}{2\sigma_{\alpha}^{2}}\right)$

- 같은 범주에 속할 경우 1
- 다른 범주에 속할 경우 0

- p_i, p_j : 픽셀의 위치 (예 \rightarrow (2,3))
- I_i, I_j: 특정 픽셀의 색상 (예 → (0,0,255))

- Dense CRF
 - Dense Conditional Random Field (Dense CRF)
 - 수식으로 알고리즘 살펴보기

$$\operatorname{Maximize}(P(x)) = \frac{1}{Z} exp(-E(x \mid I))$$

- 이미지 내 객체를 중심으로 범주가 할당되길 기대
- 특정 범주에 대한 픽셀별 확률 값을 계산
- 범주별로 앞에서 설명한 과정을 반복
- 픽셀 별로 가장 큰 확률값을 가지는 범주를 픽셀에 할당

Dense CRF

❖ Multi-label Classification → Grad-CAM -> Dense CRF

- 세 단계를 거쳐 예측한 Semantic Segmentation 결과 시각화
- Mean Intersection over Union (Semantic Segmentation 평가지표): 44.57 (%)

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- 3. Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation
- 6. Conclusions

❖ 자가 학습 (Self-Supervised learning)

- 입력 데이터의 특징을 이해하고 있는 가중치를 학습함
- 해결하고자 하는 문제 상황에 적합한 모델과 결합하여 기존보다 성능 향상 도모

- Weakly Supervised Semantic Segmentation with Self-Supervised learning
 - ❖ 자가 학습 이용 ① (Class activation map (CAM) 알고리즘의 문제점을 지적)
 - 동일한 이미지에 대해 이미지 크기가 변한 경우 활성 영역이 변경됨
 - 자가 학습(Self-supervised learning) 을 이용해 문제를 해결한 연구 존재
 - 기존 CAM을 개선하여 객체 가장자리에 가깝게 활성 영역을 생성
 - 검증 데이터의 MIoU는 64.5(%), 테스트 데이터의 MIoU는 65.7(%)

⁻ Wang, Y., Zhang, J., Kan, M., Shan, S., & Chen, X. (2020). Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation. arXiv preprint arXiv:2004.04581.

Weakly Supervised Semantic Segmentation with Self-Supervised learning

❖ 자가 학습 이용 ② (추가적인 이미지 분류 레이블 생성)

- 새롭게 생성한 레이블은 입력 이미지의 추출된 특징을 군집하여 생성
- 기존 레이블과 새로운 레이블을 동시에 분류하여 입력 이미지에 대한 정확한 이해 진행
- 위의 방법으로 CAM 성능이 증가할 것으로 기대하고 방법론 개발
- 검증 데이터의 MIoU는 66.1(%), 테스트 데이터의 MIoU는 65.9(%)

- Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai, & Ming-Hsuan Yang. (2020). Weakly-Supervised Semantic Segmentation via Sub-Category Exploration

- Weakly Supervised Semantic Segmentation with Self-Supervised learning
 - ❖ 자가 학습 기반 Weakly Supervised Semantic Segmentation 결과
 - 왼쪽: CAM을 공간에서 유사한 위치에 존재하게 하는 방법
 - 오른쪽: 군집을 생성하여 입력 이미지에 대한 이해를 높이는 방법

목차

- 1. Introduction
- 2. Weakly Supervised Semantic Segmentation
- 3. Multi-label Classification and Grad-CAM
- 4. Dense Conditional Random Field
- 5. Trends of Weakly Supervised Semantic Segmentation

6. Conclusions

6. Conclusions

Weakly Supervised Semantic Segmentation

- Semantic Segmentation 모형 학습을 위해 정답 생성에는 많은 비용이 필요
- 정답 생성을 인간이 하는 것이 아닌 인공지능 모형으로 대체하고자 하는 연구 대두
- 픽셀별로 범주를 표기하는 것이 아닌 이미지 별 정답 생성으로 대체
 - 범주 (이미지 분류 모형 활용)
 - ▶ 범주와 위치 (범주에 대한 위치 정보를 활용해 Semantic Segmentation 정답을 정의)
- 픽셀별 확률 값 생성을 위해 사용되는 알고리즘: Grad-CAM
- 확률 값 후처리 기법: Dense CRF
- 최근에는 자가학습과 결합된 Weakly Supervised Semantic Segmentation이 등장

감사합니다.

