Introduction to Analysis Methods for Longitudinal/Clustered Data, Part 3: Generalized Estimating Equations

Mark A. Weaver, PhD Family Health International

Office of AIDS Research, NIH
ICSSC, FHI
Goa, India, September 2009

Institute for Family Health

Objectives

- To develop a basic conceptual understanding of what generalized estimating equation (GEE) methods are and
- 2. When they might be applicable
- 3. With a focus on interpretation of results

What are GEE?

- GEE (Liang and Zeger, 1986) provide a method of inference for a wide variety of models when responses are correlated
 - Linear regression (for continuous outcomes)
 - Logistic regression (for binary outcomes)
 - Poisson regression (for outcomes that are counts)
 - Proportional odds (for ordinal categorical outcomes)

What are GEE?

- GEE are an <u>analysis</u> <u>method</u>, not models in and of themselves
 - You specify a model that you'd like to fit using GEE
 - Model is specified through
 - 1. A <u>link function</u> that relates the mean response to the regression equation
 - "link = logit" for logistic regression
 - "link = log" for Poisson regression
 - 2. An <u>assumed distribution</u> for the response, although distributional assumptions not really strong
 - "binomial" for logistic regression
 - "poisson" for Poisson regression
 - 3. A working correlation matrix (more on this later) 4

GEE Benefits

- GEE provides many of the same benefits as mixed models.
 - Accounts for within-subject/within-cluster correlations
 - Allows for missing data (but requires stronger assumption in this regard than mixed models)
 - Allows for time-varying covariates
 - Allows for irregularly-timed or mistimed measurements
 - Range of correlation structures

Differences Between GEE and Mixed Models

- Mixed models can fit multiple levels of correlations
 - Ex., longitudinal data from children clustered within schools
- GEE, as implemented in software, is generally restricted to one level of correlation
- Mixed models fit subject-specific models GEE fit marginal models (population average).
- Mixed models require normality assumptions –
 GEE allow for weaker distributional assumptions.

Differences Between GEE and Mixed Models

- Mixed models require assumption that you have correctly specified the correlation structure – GEE do not.
 - GEE provide consistent (i.e., asymptotically unbiased)
 parameter and standard error estimates even if you do not pick the correct correlation structure.
 - Requires number of clusters (or subjects in RCT) to be large (e.g., >50 is probably ok, >100 better)
 - As long as "robust" standard errors are used, not "model-based" standard errors
 - However, choosing a correlation structure that is closer to the truth improves efficiency of estimates

Example

- Intervention: American Heart Association 8-week
 School Program (among 3rd and 4th graders)
- Is the intervention effective to reduce proportion of kids with high systolic BP?
 - Y =HiBP
 - T = Treatment (0=Control, 1=Intervention)
- New: 3 study visits
 - 1. Visit 1 baseline, pre-randomization
 - 2. Visit 2 8 weeks following start of intervention
 - 3. Visit 3 1 Year post-intervention

"Long" Data Structure

- Reminder, GEE requires "long" data structure
 - One record per observation per subject
 - True for all standard statistical packages

STID	VISIT	HiBP	Т	SEX	Other VARs
105	1	0	1	F	•••
105	2	0	1	F	
105	3	1	1	F	
202	1	0	0	М	
202	2	0	0	М	
202	3	0	0	М	

Summary Stats

T = 0 (Control)				
	HiBP			
Visit	0 1 Total			
1	291	16 (5.2%)	307	
2	261	46 (15.0%)	307	
3	256	51 (16.6%)	307	

T = 1 (Intervention)				
	HiBP			
Visit	0 1 Total			
1	247	12	259	
		(4.6%)		
2	243	16	259	
		(6.2%)		
3	237	22	259	
		(8.5%)		

No missing data here (unrealistic!), but GEE would have still worked fine even if there had been.

Questions of Interest

- Primary question: Is intervention effective at reducing proportion with high BP over 8 weeks?
 - 1. Re-expressed: Do the groups differ wrt change in proportion with high BP from baseline to post-intervention (V1 to V2), controlling for other important variables?

Questions of Interest

- Secondary questions:
 - 2. Do the groups differ wrt change from baseline to 1 year following intervention (V1 to V3), controlling for other important variables?
 - 3. Do the groups differ wrt change from immediately post-intervention to 1 year later (V2 to V3), controlling for other important variables?

Review of Logistic Regression Model

· We'll start by reviewing Mario's model:

$$logit(\theta) = \beta_0 + \beta_1^*T + \beta_2^*B_HiBP$$
$$+ \beta_3^*METSUM + \beta_4^*B_AGE + \beta_5^*MALE + \beta_6^*URBAN$$

where
$$\theta = Pr\{ HiBP = 1 \mid T, B_HiBP, ... \}$$

logit(θ) = log[θ / (1- θ)] = log odds of high BP

odds =
$$\exp\{\beta_0 + \beta_1^*T + \beta_2^*B_HiBP + ...\}$$

Longitudinal Logistic Regression Model

Now consider adding terms for additional visits:

logit(
$$\theta$$
) = $\beta_0 + \beta_1^*T + \beta_2^*V2 + \beta_3^*V3 + \beta_4^*T^*V2 + \beta_5^*T^*V3$

+ β_6 *METSUM + β_7 *B_AGE + β_8 *MALE + β_9 *URBAN

Interpretation of Logistic Parameters

Т	Visit	Odds
0	1	exp{ β ₀ }
0	2	$\exp\{\beta_0 + \beta_2\}$
0	3	$\exp\{\beta_0 + \beta_3\}$
1	1	$\exp\{\beta_0 + \beta_1\}$
1	2	$\exp\{\beta_0 + \beta_1 + \beta_2 + \beta_4\}$
1	3	$\exp\{\beta_0 + \beta_1 + \beta_3 + \beta_5\}$

- $exp{ \beta_2 }$ is the OR comparing V2 to V1 for T = 0
- $exp{ \beta_2 + \beta_4 }$ is the OR comparing V2 to V1 for T = 1
- exp{ β_4 } is the ratio of these ORs, which compares change from V1 to V2 for intervention group to that for control

Relating Model Parameters to Questions

1. Do the groups differ wrt change in proportion with high BP from baseline to post-intervention (V1 to V2)?

$$H_0$$
: $\exp\{\beta_4\} = 1 \longleftrightarrow H_0$: $\beta_4 = 0$

- 2. ... from V1 to V3? $H_0: \exp\{\beta_5\} = 1 \longleftrightarrow H_0: \beta_5 = 0$
- 3. ... from V2 to V3? $H_0: \exp\{\beta_5 - \beta_4\} = 1 \longleftrightarrow H_0: \beta_5 - \beta_4 = 0$

Where Does GEE Come In?

- So far, everything we've talked about has been a review of standard logistic regression
- So, where does GEE come in?
- Keep in mind that the goal of GEE is to account for within-subject correlations...

GEE: Working Correlation Structure

- In GEE, you choose a "working" correlation structure:
 - Available choices: compound symmetry (exchangeable), unstructured, few more
 - In a sense, choice doesn't matter in large samples (e.g.,
 100 clusters) because parameter estimates will be unbiased regardless
 - Also provides unbiased estimates of parameters' standard errors

Let's Fit the Model!

• Stata: XTGEE command

```
xtgee dependent var independent vars,
i( stid )
link( logit )
family( binomial )
corr( exchangeable )
robust
```

Let's Fit the Model!

SPSS: GENLIN command (or use point and click)

link=logit
distribution=binomial
/ repeated subject=stid
corrtype=exchangeable

Analyze → Generalized Linear Models → GEE

Model with Compound Symmetric Working Correlation

Working Correlation Matrix				
	Col1 (Visit 1)	Col2 (Visit 2)	Col3 (Visit 3)	
Row1 (Visit 1)	1.00	0.28	0.28	
Row2 (Visit 2)	0.28	1.00	0.28	
Row3 (Visit 3)	0.28	0.28	1.00	

Model Parameter Estimates

Parameter	Estimate		SE	Pr > Z
Intercept	$\beta_0 =$	-6.20	1.27	<.001
trt	$\beta_1 =$	-0.11	0.39	0.773
Vis2	$\beta_2 =$	1.18	0.24	<.001
Vis3	$\beta_3 =$	1.30	0.27	<.001
trt*Vis2	$\beta_4 =$	-0.87	0.39	0.027
trt*Vis3	$\beta_5 =$	-0.65	0.41	0.116
metsum	$\beta_6 =$	0.01	0.01	0.160
b_age	$\beta_7 =$	0.36	0.14	0.012
male	$\beta_8 =$	-0.10	0.22	0.647
urban	$\beta_9 =$	-0.50	0.21	0.018

Answering Our Questions of Interest

- 1. Do the groups differ wrt change in proportion with high BP from baseline to post-intervention (V1 to V2)?
 - Recall: OR comparing V2 to V1 for T=0
 exp{ β₂ } = exp{ 1.18 } = 3.25
 - OR comparing V2 to V1 for T=1
 exp{ β2 + β4 } = exp{ 1.18 0.87 } = 1.36
 - Ratio of these two ORs compares change btw groupsexp{ β4 } = exp{ 0.87 } = 0.42

Answering Our Questions of Interest

Question	Estimated ratio of ORs	95% CI	p-value
1. V1 to V2	$\exp\{\beta_4\} = 0.42$	(0.19, 0.90)	0.027
2. V1 to V3	$\exp\{\beta_5\} = 0.52$	(0.23, 1.17)	0.116
3. V2 to V3	$\exp\{\beta_5 - \beta_4\} = 1.25$	(0.64, 2.44)	0.511

Model with Unstructured Working Correlation

Working Correlation Matrix				
	Col1 (Visit 1)	Col2 (Visit 2)	Col3 (Visit 3)	
Row1 (Visit 1)	1.00	0.35	0.22	
Row2 (Visit 2)	0.35	1.00	0.27	
Row3 (Visit 3)	0.22	0.27	1.00	

Answering Our Questions of Interest

Question	Estimated ratio of ORs	95% CI	p-value
1. V1 to V2	$\exp\{\beta_4\} = 0.42$	(0.19, 0.90)	0.026
2. V1 to V3	$\exp\{\beta_5\} = 0.52$	(0.23, 1.17)	0.114
3. V2 to V3	$\exp\{\beta_5 - \beta_4\} = 1.25$	(0.64, 2.44)	0.512

Virtually identical to those for the model with the compound symmetric working correlation matrix

Concluding Remarks

- For our example, final conclusions did not depend on the chosen working correlation matrix
- But, sometimes they will!
- Suggested approach for GEE: prior to analysis, specify a reasonable form for the working correlation matrix in the analysis plan and stick with it
 - To avoid biasing (or appearance of biasing) results