ctitioner's Docket No.: 789_071

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

the application of: Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki

NAKAYAMA, Hiroyuki TAKEUCHI and Seiji YASUI

Ser. No.: 09/913,353

Filed: August 13, 2001

Conf. No.: 8579

HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Assistant Commissioner for Patents Washington, DC 20231

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to Assistant Commissioner for Patents, Washington, D.C. 20231 on February 26, 2003 under "EXPRESS MAIL" mailing label number EV 196642704 US.

Group Art Unit: 1775

Examiner: Turner, A.

Tara L. Preston

SUBMISSION OF NEW FORMAL DRAWINGS

Sir:

For:

Attached please find new formal drawings of Figs. 3-5, 8, 16, 17, 19-21, 23, 24, 26-28, 30, 34, 38 and 40. The terms "impregnate," "impregnated," "impregnating" and "impregnation" have been changed to --infiltrate--, --infiltrated--, --infiltrating-- and --infiltration--, respectively, to correspond with the language used throughout the specification and claims.

The Examiner is requested to confirm receipt and entry of these new formal drawings.

February 26, 2003

Date

Respectfully submitted,

Customer No.: 025191

Telephone: (315) 233-8300 Facsimile: (315) 233-8320

Stephen P. Burr Reg. No. 32,970

SPB/SC/tlp

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

FIG. 4

FIG. 5

FIG. 16

1	7	/	4	C
т				

Ş			17/40	,			
WATER RESISTANCE	EFFECT	GENERA- TION OF CARBIDE	GENERA- TION OF CARBIDE	GENERA- TION OF CARBIDE	GENERA- TION OF CARBIDE	GENERA- TION OF	GENERA- TION OF
ATER		◁	٥	△	٥	△	٥
*	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻¹⁶ /K)	14.0	13.5	13.6	14.0	11.5	G
	COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	321	325	305	321	311	301
	INFIL- TRATION TRATION METHOD (MPa)	60.0	60.0	60.0	. 60.0	60.0	60.0
=		PRESS	PRESS	PRESS	PRESS	PRESS	PRESS
ADDED ELEMENT	AMOUNT OF ADDITION (wt%)	0. 001	0. 001	0. 001	0. 001	0.001	1.001
ADD /		N.	Q	qN	Nb	q _N	£
METAL \		ŋ	3	Cu	ng	no	70
W	FILLING METHOD	NO PRESSUR- IZATION	NO PRESSUR- IZATION	NO PRESSUR- IZATION	NO PRESSUR- IZATION	PRESSUR- IZATION, 7MPa	PRESSUR- IZATION, 25MPa
	PARTICLE SIZE OF POWDER (µm)	AVERAGE 120	AVERAGE 50	212- 1180	AVERAGE 120	AVERAGE 120	AVERAGE 120
	TYPE OF POWDER	type -P	type -S	type -R	type -P	type -p	type -p
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	× 120 × 190	30 × 120 × 191	30 × 120 × 192	30 × 120 × 193	30 × 120 × 194	30 × 120 × 195
	SAMPLE	PW-1	PW-2	PW-3	PW-4	PW-5	PW-6

F1G. 17

19/40

		-			11	Т	T	_			-		Τ-		- ·		_	ī	_	_	Γ	
	!	EFFECT			NONE	NONE			WETT-	ABILITY				-	GENERALION	OF CARBIDE		COMBINED	ADD1T10N	NONE	WETT-	ABILITY
-	WATER	RESISTANCE		-	◁	0			()		-			۵)	0	(•
9N I C	STRENGTH	(MPa)	THI CK-	NESS	53.9	41.2	45.1	41.2	39. 2	38. 2	39. 2	41.2	57.8	58.8	56.8	56.8	40.2	15 1	- ·	41.2	39. 2	42.1
BENDING	STRE	SW.	SUR-	FACE	33, 3	27.4	28.4	27. 4	26.5	25. 5	26.5	27.4	34.3	37.2	34.3	34.3	24.5	1 76	21.7	27.4	26.5	28. 4
COEFFICIENT	JF I HEKMAL EXPANSION	(×10 ⁻⁶ /°C)	THI CK-	NESS	5.5	5.1	5.1	5.1	5.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5		9.0	5.1	5.0
COEFF	OF IHEKMAI EXPANSION	$(\times 10$	SUR-	FACE	5.3	5.1	5.0	5.0	5.0	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	7.	٥.٠	5.0	5.0	50
CIENT	OF THEKMAL CONDUCTIVITY	(W/mK)	THICK-	NESS	171	170	178	186	189	178	176	185	204	192	181	190	174	177		188	196	204
COEFFICIENT	CONDUCTIVIT	/M)	SUR-	FACE	171	162	168	178	180	172	169	172	184	187	175	187	172	165	3	170	185	192
NIC II	INFIL- TRATING	METHON			PRESS	PRESS			DDECC	וורטט					PRESS			PRESS	2011	GAS	0 0	S
1110111	AMOUNI OF	ADD1T10N	(wt%)		NONE	NONE	2	0.2	0.5	7	0.5,0.5	0.5, 2.0	-	0.5	0.5	0.02	0.5	0.505	2 2 2 2	NONE	7	7
	EI EMENT	1			NONE	NONE	Bi	S S	Te	<u>-</u>	Te, Bi	Te, Pb	Be	ප්	띭	£	Zr	Te N:		NONE	<u>ө</u>	Ţe
	METAI	ון בי			٩١	Ç	3	ಸ್ತ	20	3	უ ე	S	సె	3	3	3	S	3		ŋ	3	చె
	SIZE	(mm)			20x60x60	20×60×60	20x60x60	20x60x60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60		20×60×60	10x85x180	20×60×60
	SAMPLE				p1-1	p1-2			p2-3			\neg			p3-3		p3-5	p4-1	-	p5-1	p6-1	pe-2

F16.1

C	=	7
C		
_	_	_

	·			2	0/	40								
	EFFECT			NONE	HON	WETT-	ABILITY			GENERATION	OF CARRIDE	10100 IO		NONE
WATER	RESISTANCE		_	- <	1.©	(⊴			©
BENDING STRENGTH	(MPa)	SUR- THICK-	NESS	56.8				59.8	8 09	57.8	57 B	57.8	52.0	28.0
BENI	₹		FACE	34.3	28.4	26.5	-0.0	36.3	37.2	35.3	35.3	35.3	32.3	25.5
COEFFICIENT OF THERMAL EXPANSION	$(\times 10^{-6})^{\circ}$ C	-XOIHT	NESS	5.6	5.1	7.	;	5.1	5.1	5.1	5.	5.1	Т	-
COEFF OF TH EXPA	(×10	SUR-	FACE	4.5	4.5	4.5	:	4.5	4.5	4.5	4.5	4.5	4.5	4 5
COEFFICIENT OF THERMAL CONDUCTIVITY	(W/mK)	THI CK-	NESS	187	181	199		213	193	192	192	207	182	198
COEFF OF TH CONDUC	/M)	SUR-	FACE	161	145	168		184	170	165	162	169	158	166
INFIL- TRATING	METHOD	2		PRESS	PRESS	PRESS				ODECC	SCENT C			GAS
AMOUNT 0F	ADDITION	(wt%)		NONE	NONE	0.50		1.00	0.50	0. 20	0.05	0.02	0. 50	NONE
EI EMENT				NONE	NONE	_e		æ	င်	Æ	2	£	Zr	NONE
METAI EI EMEN	-			۱	3	3	1			3			Cu	ŋ
SIZE				20×60×60	20×60×60	m2-1 20x60x60	00 00	20x60x60	20×60×60	20×60×60	20×120×190	20×60×60	20×60×60	20×60×60
SAMPIE				m11	m1-2	m2-1	,			m3-3			m36	m5-1

21	1	Λ	r
		4	ι.

		_	П	\neg	_	1	_	_		_			_		_		_			т		_	
RESISTANCE	EFFECT		NONE	NONE	MCTTABILITY	_1			GENERATION OF	J 1 1 1 1			COMBINED	ADDITION	GENERATION OF	CARBIDE	EXPANSION OF	SOLID-LIQUID	RANGE	NONE	GENERATION OF CARRIDE	EXPANSION OF	SOL ID-LIQUID RANGE
WATER	~		4	100) (c	0	44.	<u> </u>	14	۵۵	٥.	٥<	1©	0	٥<	14	00	90	00	0	۵	0	0
	COMPRESSIVE STRENGTH (MPa)	THICK-	51.0					48. 0	-	51.9	51.9	98.8 8.6	51.0	51.9	54.9	63.7	8.09	62.0			62.7	61.7	68.6
≿	COMPF STR (A	SUR- FACE	46.1				5	42. 1				2.0	5.0	48.0	51.0		53.9				57.8	50.0	56.8
NDUCT I VI	BENDING STRENGTH (MPa)	THI CK-	51.9	39. 2		62.7	29.8	7 9 8	57.8	o										39. 2			_
AL CO	BEN STR	SUR- FACE	31.4	26. 5			36.3		35.3											26.5		•	
COEFFICIENT OF THERMAL CONDUCTIVITY	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	TH1CK- NESS	6.0	. 1	.,		. 4. 4 	4, 4 U ru							-					4.5	6.5	6.5	6.5
INFILTRATION PRESSURE	COEFF OF TI EXPA (×1	SUR- FACE			., .			o œ			0.0	. 4 o re							,	3.8	5.0	5.0	5.0
TION P		(W/mK)	311		351	341			303		363				387		333		325	320	332	329	327
ILTRA			156 185	150	199	183	186	198	167		182	186		$\dot{-}$					163	2	177	169	181
N /		(MPa)	26.7 60.0	26.7	1 1	26. 7 156. 1		-			96		9		90.0		70 90.0		43.3	797	60.0	60.0	60.0
92 193	\sim		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS	PRESS	DDECC	PRESS	PRESS	PRESS	PRESS	PRESS	GAS	PRESS	PRESS	PRESS
FILTRATING METHOD	AMOUNT OF ADDITION (wt%)		NONE NONE	NONE	0.500			0.050	0.050 0.500	0.001	100	1.900	9.4,6.7	1. 0, 0. 23, 0. 04	2.870	4. 490	10.900	5, 170	5,300	NONE	2. 000	5.000	12.000
≥	ADDITIVE ELEMENT		NONE NONE	NONE NONE	Те	Be e		_S	Zr Sr	2	22	Be		N	ပြ	7.2		:5 6	Si	NONE	Be	Si	Si
METAL	\sim		4 A	33	3	33	33	3	33	33	33	3	30	36	3	33	33	3	30	3	¥	Ā	AI
21	SIZE (mm)		20×60×60 20×120×190	$20 \times 60 \times 60$ $20 \times 120 \times 190$	20 × 60 × 60	$20 \times 60 \times 60$ $20 \times 120 \times 190$	20 × 60 × 60 20 × 60 × 60	$20 \times 60 \times 60$	$20 \times 120 \times 190$ $20 \times 60 \times 60$	$20 \times 120 \times 190$	20 × 120 × 190	$20\times120\times190$	20 × 120 × 190	20 × 120 × 190	20X	20 × 120 × 190	20×120×190	20 × 120 × 190	20 × 60 × 190	ś	20×120×190	$20\times120\times190$	20×120×190
F16.21	SAMPLE	•	n 1-1-	n1-2 n1-3	n2-1	n3-2 n3-2	73-3 4-5	n3-5	n3-6 n3-7	2 2 2 3	n3-10	n3-11	n3-12	n3-15		73-15 7-17		n3-19	03-70	2	n7-1	n7-2	n7-3

EFFECT				NONE	WETT-	ABILITY		NONE	i i	NONE
WATER	NES ISTANCE		(<u></u>		9		9 .)
BENDING STRENGTH		NESS	41.2	41.2	38. 2	42.1	42.1	38. 2	39. 2	39. 2
BENI	SUR-	FACE	27.4	27.4	25. 5	28. 4	28.4	25.5	26.5	26. 5
COEFFICIENT OF THERMAL EXPANSION	ı —	NESS	5.1	5.0	5.0	5.0	5.1	5.1	4.5	4.5
COEFF OF TH EXPAI	SUR-	FACE	5.1	5.0	4.9	5.0	4.5	4.5	3.8	3,8
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)		NESS	170	188	178	204	181	198	310	320
COEFF OF TH CONDUC	SUR-	TANE	162	170	172	192	145	166	150	170
INFIL- TRATING	METHOD		PRESS	GAS	PRESS	GAS	PRESS	GAS	PRESS	GAS
AMOUNT TRATIN OF TRATIN	(wt%)		HNON	NONE	2	2	PIONE	NOME	NONE	
ELEMENT			HNON	NONE	Te	Te	NONE	NOINE	NONE	
METAL			ت	3	nე	Cu	خ	5	no	3
S1ZE (mm)			20×60×60	20×60×60	20×60×60	20×60×60	20x60x60	20×60×60	20×60×60	20×60×60
SAMPLE			p1-2	p5-1	p2-4	pe-2	m1-2	m5-1	n1-2	n5-1

F1G. 23

C	7
c	
_	_

FEB 2 6 2003

No.	POROSITY [%]	PORE DIAMETER [\(m \)]	N i PLAT ING	Si INFIL- TRATION	INFILTRATION TEMPERATURE [°C]	PRESSURIZATION [MPa(kgf/cm²)]	PRESSURIZATION TIME [sec]	COOL ING SPEED [°C/min]	REACTION OF Si/Cu	INFIL- TRATION
SAMPLE1	35	70	ABSENT	ABSENT	1130	0 78(8)	9	260	<	~
SAMPLE2	44	22	ABSENT	ABSENT	1130	7 84 (80)	30	202	10	4(
SAMPLE3	59	42	ABSENT	PRESENT	1130	11 8 (120)	07	200	0	9
SAMPLE4	15	LC:	PRESENT	ARSENT	1130	92 5 (940)	0.	480	9	9
SAMDI ES	202	45	ADOTAL	יייייייייייייייייייייייייייייייייייייי	0077	23. 3 (240)	01	900	9	0
CANTLL C	60	4,4	ABSENI	PRESENT	1180	0. 78(8)	09	900	◁	٥
SAMPLED	2	2	ABSENT	ABSENT	1180	3. 92 (40)	20	480	0	٥
SAMPLE/	59	42	ABSENT	PRESENT	1180	11.8(120)	10	906	0	@
SAMPLE8	44	22	ABSENT	ABSENT	1180	23. 5 (240)	10	620	@	©
SAMPLE9	44	22	ABSENT	PRESENT	1230	0. 78 (8)	20	480	C	>
SAMPLE10	59	42	PRESENT	ABSENT	1230	3. 92 (40)	35	790	C	1 C
SAMPLE11	35	70	ABSENT	ABSENT	1230	7.84(80)	100	620	0	0
SAMPLE12	44	22	ABSENT	PRESENT	1230	23. 5 (240)	5	620	0	@
SAMPLE13	59	42	ABSENT	ABSENT	1280	3. 92 (40)	50	790	C	C
SAMPLE14	35	70	ABSENT	ABSENT	1280	7.84(80)	35	480) (©
SAMPLE15	44	22	PRESENT	ABSENT	1280	7.84(80)	5	620	С	@
SAMPLE16	59	42	ABSENT	PRESENT	1280	11.8(120)	10	790	C	0
SAMPLE17		21	ABSENT	ABSENT	1150	156. 1	8	006	0	@
SAMPLE18	20	19	ABSENT	ABSENT	1150	156.1	5	006	0	@
SAMPLE19		23	ABSENT	ABSENT	1140	69.3	5	006	0	(C)
SAMPLE20	50	22	ABSENT	ABSENT	1145	7 96	7	000	(0

NOTES REACTION of Si/Cu: @NO REACTION OSLIGHT REACTION ASTRONG REACTION INFILTRATION OF Cu: @GOOD INFILTRATION OSLIGHTLY INSUFFICIENT INFILTRATION

FIG. 34

FIG. 38

FIG. 40

