Национальный исследовательский университет ИТМО Факультет информационных технологий и программирования Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе $\mathbb{N}3$

⟨Собрано 6 июня 2023 г.⟩

Работу выполнили:

Бактурин Савелий Филиппович M32331 Вереня Андрей Тарасович M32331 Сотников Максим Владимирович M32331

Преподаватель:

Ким Станислав Евгеньевич

Решение задачи нелинейной регрессии

Часто решая задачу создания регрессионной модели мы сталкиваемся с тем, что по жизни очень немногие рассматриваемые функции оказываются не представимы в виде обобщенной линейной зависимости или полиномиальной некоторой конечной степени k. Такая же ситуация часто случается и с некоторым набором данных, который нужно как-то обобщить. Именно в таких случаях к нам на помощь приходит более частный случай регрессионного анализа — нелинейная регрессия.

Идея построения нелинейной регрессии как и в случае с полиномиальной заключается в том, чтобы найти математическую функцию, которая максимально точно описывает зависимость между независимой переменной и зависимой от нее. Например, для построения нелинейной регрессии можно использовать функции типа полинома, логарифмической или экспоненциальной зависимости.

В целом весь процесс нахождения нелинейной регрессионной модели можно поделить на два этапа:

- \triangleright Определить регрессионную модель f(w,x), которая зависит от параметров $w=(w_1,\ldots,w_W)$ и свободной переменной x.
- ▶ Решить задачу по нахождению минимума сумма квадратов регрессионных остатков:

$$S = \sum_{i=1}^{m} r_i^2, \ r_i = y_i - f(w, x_i)$$

Однако, решая в лоб такую задачу, мы сталкиваемся с оптимизационной задачи нахождения параметров нелинейной регрессионной модели. Тут к нам и приходят на помощь различные методы нахождения, в том числе и рассматриваемые ниже: Gauss-Newton и Powell Dog Leg.

Gauss-Newton

Напомним, что мы решаем следующую задачу: дана нелинейная модель f(w,x), где $w \in \mathbb{R}^m$, тогда сумма квадратов регрессионных остатков высчитывается как

$$S = \sum_{i=1}^{\text{sizeof } X} (f(w, x_i) - y_i)^2 \to \min$$

Итак, пусть $n=\mathtt{sizeof}\ X$ и введем некоторые новые объекты для решения задачи, пусть $w^0=(w^0_0,\ w^0_1,\ \dots,\ w^0_m)$ — начальное приближение, и

$$\mathbf{J} = \left(\frac{\partial f}{\partial w_j}(w^{\mathbf{i}},x_i)\right)_{n\times m} - \text{Якобиан, или матрица первых производных } \vec{f}_{\mathbf{i}} = \left(f(w^{\mathbf{i}},x_i)\right)_{n\times 1} - \text{ вектор значений функции } f$$

$$\mathbf{\eth}_{\mathbf{i}} = \mathbf{const} - \mathbf{p} \mathbf{a} \mathbf{s} \mathbf{m} \mathbf{e} \mathbf{p} \mathbf{a} \text{ шага}$$

Тогда, формула і-й итерации рассматриваемого метода будет высчитываться как

$$w^{\mathbf{i}+1} \leftarrow w^{\mathbf{i}} - \eth_{\mathbf{i}} \cdot \underbrace{\left(\beth_{\mathbf{i}}^{\mathrm{T}} \beth_{\mathbf{i}} \right)^{-1} \beth_{\mathbf{i}}^{\mathrm{T}}}_{\beta} (\vec{f}_{\mathbf{i}} - y),$$

где β — это псевдообратная матрица к матрице $\mathbf{J_i}$, или решение некоторой задачи многомерной линейной регрессии, где мы ищем такой вектор β , что

$$\left\| \exists_{\mathbf{i}} \beta - (\vec{f}_{\mathbf{i}} - y) \right\|^2 \to \min,$$

где y — вектор правильных/настоящих ответов нашей модели. Получается, для решения задачи, мы, так называемую, невязку пытаемся приблизить линейной комбинацией вектора из матрицы Якобиана так, что при следующем шаге итерации получить такой w^{i+1} , который бы сократил нам расстояние невязки. Причем, заметим, что на каждом шаге, задача будет новой, так как \mathbf{J}_i зависит от текущего приближения, чтобы решить задачу многомерной регрессии.

Заметим, что здесь, по алгоритму, мы видим достаточно очевидное ограничение: $m \geqslant n$, в ином случае для $\mathbf{J}_{\mathbf{i}}^{\mathrm{T}}\mathbf{J}_{\mathbf{i}}$ не будет существовать обратной матрицы и, в следствии, решения к уравнению.

Исследования

Powell Dog Leg

 $Trust-region\ method\ -$ это метод решения оптимизационных задач, который основывается на вычислении региона, в котором квадратичная модель аппроксимирует целевую функцию. Сам этот метод представляет из себя смесь сразу двух алгоритмов, решающих задачу:

- ▶ Линейный поиск используется для определения направления поиска и дальнейшего нахождения оптимального шага вдоль выбранного вектора пути.
- ▶ Сам по себе trust-region используется для определения области вокруг текущей итерации, в котором модель достаточно аппроксимирует целевую функцию. Причем, стоит заметить, что для поиска следующего радиуса рассматриваемого региона также будет использоваться линейный поиск.

В общем случае Trust-region на каждой итерации решает следующую квадратичную задачу:

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + p^{\mathrm{T}} g_k + \frac{1}{2} p^{\mathrm{T}} B_k p,$$

где $f_k = f(x_k)$, $g_k = \nabla f_k$, $B_k = \nabla^2 f_k$ и $\nabla_k > 0$ – изменяющийся радиус региона, причем всё это, при условии, что $|p| \leqslant \nabla_k$. Заметим, что в таком простейшем виде мы получаем безусловно почти бесполезный алгоритм: он чрезвычайно медленный из-за появления B_k – Гессиана функции. С другой стороны, если он положительно определен и $|B_k^{-1}\nabla f_k| \leqslant \nabla_k$, то решение легко определить: $p_k^B = -B_k^{-1}\nabla_k$. Но, опять же, высчитывать еще и обратную матрицу – дело долгое и медленное, поэтому, начиная отсюда и до конца все лабораторной работы, мы будем то и дело пытаться приближать наши значения к реальным/по настоящему посчитанным значениям Гессиан-функции.

Здесь мы рассмотрим один из методов оптимизации при аппроксимации квадратичной модели — $Powell\ Dog\ Leg$. Начнем, пожалуй, с определения радиуса рассматриваемого доверительного региона: в алгоритме dogleg обычно выбирают основываясь на сходстве функции m_k (та, что мы решаем изначально) и оригинальной функции f на предыдущей итерации. Зададим ρ_k следующим образом:

$$\rho_k = \frac{f_k - f_k^*}{m_k(0) - m_k(p_k)},$$

где $f_k^{\star} = f(x_k + p_k)$. А теперь посмотрим на то, как именно лучше поменять шаг: в том случае, если ρ_k меньше нуля, то это значит, что наша модель далека от функции и нужно обязательно уменьшить радиус; в том случае, изменение функции почти не изменилось и мы попали на границу региона, то есть смысл увеличить радиус; в ином другом случае – остается неизменным.

$$\Delta_{k+1} = egin{cases} rac{1}{4}\Delta_k, &
ho_k < rac{1}{4} \\ \min{(2\Delta_k, \ \Delta_{\max})}, &
ho_k > rac{3}{4} \wedge \|p_k\| = \Delta_k \\ \Delta_k, & в \$$
ином другом случае

Наконец, начинается самое интересное со стороны Powell Dog Leg. Итак, мы находимся на некоторой точки нашей модели, есть подсчитанный Δ -радиуса доверительного региона, и посмотрим на полный шаг $p^B=-B^{-1}g$. Если p^B лежит в окружности региона, то мы можем его взять и более закончить алгоритм. В ином случае, рассмотрим анти-градиент -g и попробуем вдоль нее поискать минимум квадратичной модели, то есть решить

$$\min_{\|-\tau g\| \leqslant \Delta} m(-\tau g)$$

Для её решения мы можем взять некую новую точку без каких-либо ограничений в направлении анти-градиента и найти минимум модели

$$p^U = -\frac{g^{\mathrm{T}}g}{g^{\mathrm{T}}Bg}g$$

Здесь снова две ситуации, где может находиться т. p^U :

- ▶ Если она находится вне рассматриваемой области, то мы можем взять точку на границе и шагнуть туда.
- ightharpoonup Если же она находится в окружности, то построим отрезок $p^U p^B$ и начнем искать минимум вдоль этих двух линий $\left(\begin{tabular}{c} \begin{tabu$

Наконец, вдоль пути мы рассматриваем траекторию $\hat{p}(\tau)$

$$\hat{p}(\tau) = \begin{cases} \tau p^U, & 0 \leqslant \tau \leqslant 1\\ p^U + (\tau - 1)(p^B - p^U), & 1 \leqslant \tau \leqslant 2 \end{cases}$$

Подытожим. Мы получили, на самом деле, в чем-то схожий на метод Гаусса-Ньютона алгоритм нахождения схождения, в частности, кстати, точка p^B — это то, куда бы шагнул метод Гаусса-Ньютона, но при этом, если эта точка удовлетворяет нашим потребностям, то мы действуем как Гаусс-Ньютон, в ином случае — чуть по другому. Причем под «немного другим» способом предполагается, на самом деле, хитрая комбинация Гаусса-Ньютона и градиентного спуска (так как при маленьком доверительном регионе мы пойдем по направлению, близкому градиентному спуску).

Исследования

BFGS

BFGS, или Алгоритм Бройдена - Флетчера - Гольдфарба - Шанно – это тоже оптимизационный итерационный алгоритм для нахождения локального экстремума для не представимых данных или функций в линейном/полиномиальном виде.

Один из известных квазиньютоновских методов (то есть, тех, которые основаны на получении информации о кривизне функции). Как и в случае с Powell Dog Leg, данный метод, в отличии от многих квазиньютоновских, использует аналог довольно медлительного постоянного переопределения Гессиана функции. Но если предыдущий механизм никак не взаимодействовал с явным Гессианом, то BFGS, наоборот, ускоряет работу на порядок: ибо он не явно каждый раз высчитывает матрицу, а лишь приближает к ней значения, при этом посчитав по честному Гессиан лишь один раз.

Рассмотрим идею этого алгоритма. Обозначим за $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$ – координата в пространстве, где n – размерность соответствующего пространства. Пусть дана нам некоторая функция f(x) и, как обычно, решаем задачу оптимизации нахождения $\arg\min_x f(x)$. Тогда, зададим некую начальную точку x_0 и $H_0 = B_0^{-1}$ – начальное приближение, где B_0^{-1} – обратный Гессиан функции, который или может быть посчитан в точке x_0 , или выбран как \mathbf{I} – обратная матрица. Наконец, сам алгоритм:

- 0) Пусть k текущий номер итерации алгоритма.
- 1) Находим точку, в направлении которой будем производить поиск, она определяется следующим образом

$$p_k = -H_k \times \nabla f_k$$

где здесь и далее $f_k = f(x_k)$.

2) Вычисляем x_{k+1} через рекуррентное соотношение следующего вида:

$$x_{k+1} = x_k + \alpha \cdot p_k,$$

где α – коэффициент, удовлетворяющий условиям Вольфа, которые, напомню, выглядят вот так

$$f(x_k + \alpha \cdot p_k) \leqslant f(x_k) + c_1 \cdot \alpha \cdot \nabla f_k^T p_k$$
$$\nabla f(x_k + \alpha \cdot p_k)^T p_k \geqslant c_2 \cdot \nabla f_k^T p_k$$

3) Теперь определим размер шага алгоритма после данной итерации и изменение градиента следующими соответствующими образами

$$s_k = x_{k+1} - x_k$$
$$y_k = \nabla f_{k+1} - \nabla f_k$$

4) Наконец, обновим Гессиан функции, зная, что $\lambda = \frac{1}{y_k^{\rm T} s_k} \in \mathbb{R}$

$$H_{k+1} = (\mathbf{I} - \lambda s_k y_k^{\mathrm{T}}) H_k (\mathbf{I} - \lambda y_i s_k^{\mathrm{T}}) + \lambda s_k s_k^{\mathrm{T}}$$

Исследования

L-BFGS

L-BFGS, или BFGS с ограниченной памятью — это оптимизационный алгоритм, который аппроксимирует оригинальный алгоритм BFGS с использованием заданного ограниченного объема памяти.

L-BFGS как и BFGS использует приближенную оценку Гессиана, при этом в явном виде посчитав только один раз, а все остальные шаги лишь преобразовывая. Проблема: BFGS хранит всегда $n \times n$ приближений к обратному Гессиану. Решение: хранить несколько векторов, которые неявно представляют приближение, представляющие из себя историю последних m обновлений положения x и градиента $\nabla f(x)$. При этом, m обычно выбирается небольшим (m < 10).

Рассмотрим идею этого алгоритма. Во многом она будет совпадать с предыдущим, поэтому пропустим обозначения и перейдем сразу алгоритму.

- 0) Пусть k текущий номер итерации алгоритма, здесь и далее будем иметь ввиду $g_k = \nabla f(x_k)$.
- 1) Также как и в BFGS находим точку, в направлении которой будем производить поиск:

$$p_k = -H_k \times \nabla f_k$$

здесь и далее $f_k = f(x_k)$.

2) Пусть мы сохранили m обновлений вида:

$$s_k = x_{k+1} - x_k$$
$$y_k = g_{k+1} - g_k$$

Заметим, что при последующих итерациях алгоритма $k \geqslant m$ произведение из первого шага можно получить выполнив последовательность скалярных произведений и суммирования векторов, включающую ∇f_k и пары $\{s_i, y_i\}$. После вычисления новой итерации самая старая пара векторов в наборе пар $\{s_i, y_i\}$ заменяется новой парой, который получается из данного шага.

3) Наконец, пожалуй, самая идейная часть — обновление Гессиана. На итерации k у нас определен x_k и пары $\{s_i, y_i\} \ \forall i \in [k-m, k-m+1, \ldots, k-1]$. Выберем некоторое начальное Гессианское приближение H_k^0 (в отличие от стандартной итерации BFGS, это начальное приближение может меняться от итерации к итерации) и путем повторного применения формулы, заданной изначально в BFGS, получаем

$$H_{k} = (V_{k-1}^{T} \cdot \dots \cdot V_{k-1}^{T}) H_{k}^{0}(V_{k-m} \cdot \dots \cdot V_{k-1})$$

$$+ \rho_{k-m} (V_{k-1}^{T} \cdot \dots \cdot V_{k-m+1}^{T}) s_{k-m} s_{k-m}^{T} (V_{k-m+1} \cdot \dots \cdot V_{k-1})$$

$$+ \rho_{k-m+1} (V_{k-1}^{T} \cdot \dots \cdot V_{k-m+2}^{T}) s_{k-m+1} s_{k-m+1}^{T} (V_{k-m+2} \cdot \dots \cdot V_{k-1})$$

$$+ \dots$$

$$+ \rho_{k-1} s_{k-1} s_{k-1}^{T},$$

где $\rho_k = \frac{1}{y_k^{\rm T} s_k}, V_k = \mathbf{I} - \rho_k y_k s_k^{\rm T}$. Из всего вышеописанного мы можем провести произведение $H_k \times \nabla f_k$ более эффективно следующим образом

$$q \leftarrow \nabla f_k$$
; $orall i = k-1, \ k-2, \ \dots, \ k-m$ do $lpha_i \leftarrow
ho_i s_i^{\mathrm{T}} q$; $q \leftarrow q - lpha_i y_i$; end $r \leftarrow H_k^0 q$; $orall i = k-m, \ k-m+1, \ \dots, \ k-1$ do $eta \leftarrow
ho_i y_i^{\mathrm{T}} r$; $r \leftarrow r + s_i (lpha_i - eta)$; end return $r \equiv H_k imes
abla f_k$;

Получение нового на данной итерации H_k^0 мы также сильно ускорим, лишь приблизив наши значения, используя формулу $H_k^0=\gamma_k {f I}$, где

$$\gamma_k = \frac{s_{k-1}^{\mathrm{T}} y_{k-1}}{y_{k-1}^{\mathrm{T}} y_{k-1}}$$

4) Все последующие шаги аналогичны с оригинальным BFGS.

Итак, напишем идейный псевдокод алгоритма L-BFGS.

```
1 function is_convergence(f:\mathbb{R}^n 	o \mathbb{R}):
             /*implementation defined*/
 4 function Wolfe_coefficient(f: \mathbb{R}^n \to \mathbb{R}, p_k):
             /*implementation defined*/
 7 function get_prod(f: \mathbb{R}^n \to \mathbb{R}):
            q \leftarrow \nabla f_k; \forall i = k-1, \ k-2, \ \dots, \ k-m do
                     \alpha_i \leftarrow \rho_i s_i^{\mathrm{T}} q;
                      q \leftarrow q - \alpha_i y_i;
             end
12
             r \leftarrow H_k^0 q;
            \forall i=k-m,\ k-m+1,\ \dots,\ k-1 do
14
                     \beta \leftarrow \rho_i y_i^{\mathrm{T}} r;

r \leftarrow r + s_i (\alpha_i - \beta);
15
16
17
             return r \equiv H_k \times \nabla f_k;
18
19
20 function LBFGS():
             x_0 \leftarrow \mathbf{INIT};
21
             m \leftarrow i \in [5, 10];
23
             q \leftarrow []
             while !is\_convergence(f) do
24
                      H_k^0 \leftarrow \left(rac{s_{k-1}^{	ext{T}} y_{k-1}}{y_{k-1}^{	ext{T}} y_{k-1}}
ight) \mathbf{I} ;
25
26
                      \alpha_k \leftarrow Wolfe\_coefficient(f, p_k);
27
                      x_{k+1} \leftarrow x_k + \alpha_k p_k
                      if k>m then
                               q.remove(\{s_{k-m},y_{k-m}\});
30
```

```
s_k \leftarrow x_{k+1} - x_k;
y_k \leftarrow \nabla f_{k+1} - \nabla f_k;
q.append(\{x_k, y_k\});
```

Исследования