

309

천체의 겉보기 등급 측정이 가능한 쌍안경

천체관측에 대한 전문적인 지식이 없는 일반인도 쉽게 천체관측과 함께 천문학의 기본 지식을 학습할 수 있도록 하자는 취지로 본 발명품을 개발했으며, 빛의 경로에 광센서를 붙여 관측과 동시에 천체의 광도를 측정할 수 있는 장치를 개발하였다.

출 품 자 : 김준섭 (전남과학고등학교)

지도교사 : 이기추 (전남과학고등학교)

여구내유

1 제작 동기

학교에서 천체관측동아리의 부회장으로 활동하면서 후배들을 가르치는 데에 어려움이 있었던 부분이 여럿 있었는데, 컴퓨터로 제어 가능한 천체망원경 조작 및 CCD로 촬영된 사진을 통해 벌의 물리량을 측정하는 것 등이었다. 이 과정에 불편함을 느껴 간단히 천체의 광도를 측정하는 방법을 모색했고, 그리하여 쌍안경을 통해 천체의 광도를 측정하는 장치를 개발하자는 아이디어를 창안했다. 이러한 이유로 본 발명품을 고안하고 개발하게 되었다.

2 제작 목적

제작목적은 다음과 같다.

- 포그슨 방정식을 적용해 겉보기 등급을 측정할 수 있는 쌍안경을 개발한다.
- 측광장치가 쌍안경의 사용에 지장이 없도록 개발한다.
- 측정된 값이 실제 값과 가깝게 나오도록 개발한다.

1. 작품의 전체적 구조 및 시스템 설계

쌍안경의 구조는 변형시키지 않는 쪽으로 개발을 진행하며, 크게 쌍안경, 광센서, 마이크로컨트롤러, 소형 디스플레이로 구성된다.

측광 시스템 순서도

쌍안경 분해 후 구조 파악

2. 광센서와 디스플레이를 이용한 측광장치 제작

광센서 *TSL-2591를*, 디스플레이 *SSD-1306*을 사용하며, 아직 개발초기라는 상황을 고려해 범용성이 높은 *Arduino* NANO 보드를 마이크로컨트롤러로 사용했다.

광센서-디스플레이 모듈을 통해 빛에 따라 광도가 다르게 출전되다

3. 쌍안경 개조

눈으로 향하는 빛을 막지 않는 부위를 선정하여 광센서를 이식할 곳을 선정하는 실험을 진행했다.

실험 결과 접안렌즈 쪽에서 많은 빛을 받아들임을 확인하고 그 부품을 개조하여 3D프린팅 했다. 이후 측광모듈과 쌍안경을 일체형으로 만들었다.

5. 시험 구동

2018년 4월 10일 천체관측 프로그램인 stellarium을 통해당시 밝은 편에 속해있던 천체를 선정하여 관측하였다.

	異別(기준)	の社事本で	A2 9}	배공후스	且成约是
정도살	151.2	14.8	3.2	8.7	3
김제동관	-2.43	0.15	0.95	1.35	0.4
日本を分	-	0.12	1.75	1.59	1.62
공급 오차 분호 설명		-0.05	0.80	0.24	1.42

1. 사용방법

- 쌍안경에 부착된 측광모듈의 전원을 켠다.
- 쌍안경을 관측하고자 하는 천체를 향해 조준한 뒤 자세의 흔들림을 최소화한다. 가급적 삼각대를 이용하는 것을 추천한다.
- 디스플레이를 통해 출력된 값의 평균을 읽어 별의 등급을 파악한다.

1. 향후 전망

매우 간단한 조작법만으로 천체의 겉보기 등급을 측정할 수 있다. 이러한 강점을 통해 전문적 천체관측법을 모르는 일반인도 전문가들이 하는 일을 체험해봄으로서 천문학에 흥미를 느낄 수 있으며 향후 실이 힘든 분야인 만큼 학생을 대상으로 교육적인 방향에서 넓게 사용될 수 있으리라 본다.

또한 매우 간단한 제작방법으로 공정화 역시 어렵지 않을 것이다.

2 보완점

 오차를
 줄이기
 위해
 기울기
 센서를
 도입하여

 대기소광계수를 구해
 보정하면
 더욱
 안정된
 값을 얻을

 수 있을
 것이다.
 또한
 단일
 천체의
 광도만
 측정해야

 하는데
 이는
 조리개를
 도입하여
 해결할
 수 있을
 것이다.

