OPTICAL DEVICE AND ITS FABRICATING METHOD

Patent number:

JP2002118270

Publication date:

2002-04-19

Inventor:

KANBE MASAKATA; IWATA HITOSHI

Applicant:

TOKAI RIKA CO LTD

Classification:
- international:

H01L31/02; H01L33/00; H01L31/10; H01L31/02;

H01L33/00; H01L31/10; (IPC1-7): H01L31/02;

H01L31/10; H01L33/00

- european:

Application number: JP20000307749 20001006 Priority number(s): JP20000307749 20001006

Report a data error here

Abstract of JP2002118270

PROBLEM TO BE SOLVED: To provide an optical device, and its fabricating method, in which heat resistance cycle can be enhanced. SOLUTION: The optical device 11 comprises a light transmitting basic material part 12 and a chip 21. The basic material part 12 is formed of a material exhibiting higher heat resistance than epoxy resin. A lens part 13 is formed on the first face 12a of the basic material part 12. A conductor pattern 14 and a trench 15 are formed on the second face 12b of the basic material part 12. The chip 21 is surface mounted on the bottom face 15a of the trench 15. A light receiving part 22 is provided on the face 21a mounting the chip 21. The light receiving part 22 is directed toward the lens part 13.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-118270 (P2002-118270A)

(43)公開日 平成14年4月19日(2002.4.19)

(51) Int.Cl.?		識別記号	FΙ			7	₹3-ト*(参考)
H01L	31/02		H-0 1 L	33/00		N	5 F 0 4 1
	31/10			31/02		В	5F049
	33/00			31/10	•	Α	5F088

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出願番号	特願2000-307749(P2000-307749)	(71)出願人	000003551
			株式会社東海理化電機製作所
(22)出顧日	平成12年10月 6 日 (2000. 10. 6)	•	愛知県丹羽郡大口町豊田三丁目260番地
		(72)発明者	神戸 正方
			愛知県丹羽郡大口町豊田三丁目260番地
			株式会社東海理化電機製作所内
		(72)発明者	岩田 仁
		(-7,72,711	爱知県丹羽郡大口町豊田三丁目260番地
			株式会社東海理化電機製作所内
		(74)代理人	
		(14)10至人	
		ł	弁理士 恩田 博宜 (外1名)
	•		
			最終質に続く

(54) 【発明の名称】 光デバイス及びその製造方法

(57)【要約】

【課題】 耐熱サイクル性を向上させることができる光 デバイス及びその製造方法を提供する。

【解決手段】 光デバイス11は、光透過性を有する基 材部12とチップ21とを備えている。基材部12は、 エポキシ樹脂よりも耐熱性を有する材料で形成されてい る。基材部12の第1の面12aにはレンズ部13が形 成されている。それとともに、基材部12の第2の面1 2 bには、導体パターン14及び溝部15が形成されて いる。溝部15の底面15aにはチップ21が表面実装 されている。チップ21の設置面21aには受光部22 が設けられている。受光部22はレンズ部13側に向け て配置されている。

【特許請求の範囲】

【請求項1】第1の面にレンズ部が形成されるととも に、第2の面に電極部を有する導体パターン及び凹部が 形成される光透過性を有する基材部と、設置面に発光部 または受光部を有し、前記凹部内に収容されるチップと を備えた光デバイスにおいて、

前記基材部をフィラー抜きのエポキシ樹脂よりも熱膨張 率が小さい材料で形成するとともに、前記設置面を前記 レンズ部側に向けて配置した状態で、前記チップを前記 凹部の底面に表面実装したことを特徴とする光デバイ ス。

【請求項2】前記設置面と前記電極部との間に生じる空 間を、光透過性及び絶縁性を有するアンダフィル材料に よって充填したととを特徴とする請求項1 に記載の光デ

【請求項3】第1の面に格子状に配置されるレンズ部を 備え、第2の面に互いに平行な関係の複数の溝部を備 え、光透過性を有する光デバイス用基材における前記第 2の面に、電極部を有する導体パターンを形成する工程 と、チップの発光部または受光部をレンズ部側に向けた 20 光デバイス及びその製造方法を提供することにある。 状態で、前記チップの電極と前記電極部とを電気的に接 続することにより、前記溝部の底面に前記チップを表面 実装する工程と、前記光デバイス用基材を分割して個片 化する工程とを含むことを特徴とする光デパイスの製造

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フォトダイオー ド、フォトIC、LED等の光デパイス及びその製造方 法に関するものである。

[0002]

【従来の技術】従来、LED表示器、光通信機器、光ブ リンターヘッド及び光センサー等の各種制御機器に用い られる光デバイスとして種々のものが提案されている。 【0003】例えば、図11に示す光デバイス61は、 基材部62及びリードフレーム63を備えている。基材 部62は、光透過性を有する半導体用エポキシモールド 材 (エポキシ樹脂) によって形成されている。この基材 部62にはレンズ部64が形成されている。また、リー ドフレーム63にはチップ65が実装されている。この 40 チップ65の設置面65aには受光部66が設けられて

【0004】また、図12に示す光デバイス71は、特 開2000-164939号公報に示されるものであ る。この光デバイス71は、基材部72及びリードフレ ーム73を備えている。基材部72にはレンズ部74が 形成されている。また、リードフレーム73にはチップ 75が実装されている。チップ75の設置面75aには 発光部76が設けられている。設置面75aは、レンズ 部74側とは反対方向に配置されている。また、光デバ 50 なる。よって、チップが基材部から剥離してしまうのが

イス71には反射板77が設けられている。反射板77. は、発光部76からの光を反射してレンズ部74に送る ようになっている。

[0005]

【発明が解決しようとする課題】ところが、図11に示 す光デバイス61において、基材部62にエポキシ樹脂 を用いた場合、光デバイス61が熱サイクルに遭遇する と、基材部62が変形し、基材部62がリードフレーム 63から剥離してしまうことがあった。

【0006】また、図12に示される光デパイス71で 10 は、同光デバイス71内に反射板77を設ける必要があ った。そのため、光デバイス71の構造が複雑になって しまうとともに、光の利用効率が低下してしまうという 問題があった。

【0007】本発明は上記の課題に鑑みてなされたもの であり、その第1の目的は、耐熱サイクル性を向上させ ることができる光デバイス及びその製造方法を提供する ことにある。第2の目的は、構造を簡略化することがで きるとともに、光の利用効率を向上させることができる

[0008]

【課題を解決するための手段】上記目的を達成するため に、請求項1に記載の発明は、第1の面にレンズ部が形 成されるとともに、第2の面に電極部を有する導体バタ ーン及び凹部が形成される光透過性を有する基材部と、 設置面に発光部または受光部を有し、前記凹部内に収容 されるチップとを備えた光デバイスにおいて、前記基材 部をフィラー抜きのエポキシ樹脂よりも熱膨張率が小さ い材料で形成するとともに、前記設置面を前記レンズ部 側に向けて配置した状態で、前記チップを前記凹部の底 面に表面実装したことを要旨とする。

【0009】請求項2に記載の発明は、請求項1に記載 の発明において、前記設置面と前記電極部との間に生じ る空間を、光透過性及び絶縁性を有するアンダフィル材 料によって充填したことを要旨とする。

【0010】請求項3に記載の発明は、第1の面に格子 状に配置されるレンズ部を備え、第2の面に互いに平行 な関係の複数の溝部を備え、光透過性を有する光デバイ ス用基材における前記第2の面に、電極部を有する導体 バターンを形成する工程と、チップの発光部または受光 部をレンズ部側に向けた状態で、前記チップの電極と前 記電極部とを電気的に接続することにより、前記溝部の 底面に前記チップを表面実装する工程と、前記光デバイ ス用基材を分割して個片化する工程とを含むことを要旨

【0011】以下、本発明の「作用」について説明す る。 請求項1 に記載の発明によれば、基材部に使用され る材料は、フィラー抜きのエポキシ樹脂よりも熱膨張率 が小さいため、温度変化による基材部の変形量が小さく

防止される。従って、光デバイスの耐熱サイクル性を向 上させることができる。また、設置面はレンズ部側に向 けて配置されている。そのため、光は設置面とレンズ部 との間の領域を直接通過することができる。ゆえに、光 を反射させるための構成を別に設ける必要がなくなる。 よって、従来と比べて光デバイスの構造を簡略化すると とができる。それとともに、光デバイスにおける光の利 用効率を向上させることができる。

【0012】請求項2に記載の発明によれば、設置面と 電極部との間に生じる空間は、絶縁性を有するアンダフ 10 ィル材料によって充填されている。そのため、チップが 基材部から剥離してしまうのをより確実に防止すること ができる。また、アンダフィル材料は光透過性を有して いるため、光が設置面と電極部との間の領域を確実に通 過することができる。

【0013】請求項3に記載の発明によれば、凹部は溝 部であるため、チップを容易に表面実装することができ る。また、レンズ部は格子状に配置されているため、光 デバイス用基材の分割が容易になる。従って、複数個の 光デバイスを容易に製造することができる。

[0014]

【発明の実施の形態】以下、本発明を具体化した光デバ イス及びその製造方法の一実施形態を図1~図9に従っ て説明する。

【0015】図1~図3に示すように、光デバイス11 は、光透過性を有する材料によって略直方体状に形成さ れた基材部12を備えている。図1(b)に示すよう に、基材部12の第1の面12aにおける中心部分に は、略半球状のレンズ部13が一体形成されている。ま た、図1 (a) に示すように、基材部12の第2の面1 2 b における中央部分には、凹部としての溝部 1 5 が設 けられている。図2及び図3に示すように、溝部15の 底面15aは平坦になっている。底面15aと内壁面1 5cとの間は、第1アール面18aによって接続されて いる。それとともに、溝部15の開口端縁部15 bに は、第2の面12bと内壁面15cとを繋ぐ曲面として の第2アール面18bが設けられている。

【0016】また、基材部12の第2の面12b側に は、電極部を有する導体パターン14が印刷形成されて いる。導体パターン14の一端には、電極部としての外 部接続用パッド14 aが設けられている。導体パターン 14の他端には、電極部としてのチップ接続用バッド1 4 b が設けられている。各外部接続用パッド14 a は、 第2の面12b上に形成されている。各外部接続用バッ ド14aは、溝部15を介して互いに左右対称に配置さ れている。各外部接続用パッド14aの幅は、それぞれ 等しくなっている。また、チップ接続用パッド14bは 底面15 a上に形成されている。

【0017】図3に示すように、溝部15内にはモール ド部16が形成されている。モールド部16は、溝部1 50 の面41bにマスク51を被覆する。この状態において

5内に半導体エポキシモールド材を充填することによっ て形成されるようになっている。

【0018】前記基材部12は、フィラー抜きのエポキ シ樹脂よりも熱膨張率の小さい材料によって形成されて いる。ここで、フィラー抜きのエポキシ樹脂の熱膨張率 は60×10⁻⁶/℃~70×10⁻⁶/℃である。尚、本 実施形態において、基材部12は熱膨張率が0.5×1 0-°/℃~10×10-°/℃のガラスによって形成され ている。

【0019】図2及び図3に示すように、溝部15内に は、略直方体状のチップ21が収容されている。チップ 21における設置面21aの反対側の面には、モールド 部16が密着した状態になっている。チップ21は、モ ールド部16にモールドされることによって外力、塵埃 及び水等から保護されるようになっている。このチップ 21の設置面21aにおける外周部には、複数のバンブ 23が突設されている。各バンプ23は、チップ接続用 パッド14bに対応するように配置されている。チップ 21は、バンプ23とチップ接続用パッド14bとが電 気的に接続されることにより、底面15aに表面実装さ れるようになっている。設置面21aと底面15aとの 間に生じる空間A1には、光透過性を有するアンダフィ ル材料が充填されることによって、封止部17が形成さ れている。この封止部17は、バンブ23を被覆してい る。尚、本実施形態においては、アンダフィル材料とし てシリコーンゲルが用いられている。また、チップ21 の設置面21 aの中央部には受光部22が設けられてい る。受光部22はレンズ部13側に向けて配置されてい る。受光部22の中心は、レンズ部13の光軸と一致す るように配置されている。

【0020】次に、光デバイス11を製造する際に使用 される光デバイス用基材41について説明する。図4及 び図5に示すように、光デバイス用基材41は、光透過 性を有する材料によって板状に形成されている。図4に 示すように、光デバイス用基材41の第1の面41aに は、複数個(本実施形態では24個)のレンズ部13が 格子状に配置されている。また、図5に示すように、光 デバイス用基材41の第2の面41bには、複数本(本 実施形態では12本)の導体バターン14が形成されて いる。それとともに、光デバイス用基材41の第2の面 41bには、複数列(本実施形態では4列)の溝部15 が設けられている。溝部15は導体パターン14の長手 方向に対して直交している。各溝部15は互いに平行な 関係に配置されている。この光デバイス用基材41を、 図5 に示す一点鎖線において分割することによって、複 数個の基材部12が同時に形成されるようになってい

【0021】次に、光デバイス11の製造方法について 説明する。まず、光デバイス用基材41において、第2 エッチングを行うことにより、図6に示すように、第1 アール面18aを有する溝部15が形成される。そし て、マスク51の一部51aを剥がし、再びエッチング を行う。その結果、図7に示すように、溝部15の開口 端縁部15bが第2アール面18bになり、導体パター ン14の形成が容易になる。そして、マスク51を全て 剥がした後、光デバイス用基材41に導体パターン14 を印刷形成する。

【0022】次に、図8に示すように、チップ21の受 光部22がレンズ部13側に向けられた状態で、チップ 10 21のバンプ23と導体パターン14とを電気的に接続 する。それによって、溝部15の底面15aにチップ2 1が表面実装される。そして、チップ21をアンダフィ ル材料で封止することによって、封止部17が形成され る。更に、溝部15に半導体エポキシモールド材を充填 することによって、モールド部16が形成される。

【0023】その後、図9に示すように、光デバイス用 基材41は基盤目状をなす一点鎖線の箇所で分割され る。具体的に言うと、との光デバイス用基材41は、ダ イシングソーに備えられたブレードを回転させた状態 で、同プレードを一点鎖線に沿って移動させることによ って分割される。その結果、1枚の光デバイス用基材4 1が複数個の光デバイス11に個片化される。ゆえに、 複数個の光デバイス 1 1 が同時に製造される。

[0024] 本実施形態によれば、以下のような効果を 得るととができる。

(1) 基材部12に使用される材料は、フィラー抜きの エポキシ樹脂よりも熱膨張率が小さい材料である。ゆえ に、熱応力が発生しにくくなり、温度変化による基材部 12の変形量が小さくなる。よって、チップ21が基材 部12から剥離してしまうのが防止される。従って、光 デバイス11の耐熱サイクル性を向上させることができ る。また、設置面2.1 aはレンズ部13側に向けて配置 されている。そのため、光は設置面21aとレンズ部1 3との間の領域を直接通過することができる。ゆえに、 光を反射させるための構成を別に設ける必要がなくな る。よって、従来と比べて光デバイス11の構造を簡略 化するととができる。また、従来と比べて光が通過する 距離が短縮されている。そのため、反射や拡散等による 光の損失が小さくなる。従って、光デバイス11におけ 40 る光の利用効率を向上させることができる。

【0025】(2)設置面21aと導体パターン14と の間に生じる空間A1は、絶縁性を有するアンダフィル 材料によって充填されている。そのため、チップ21が 基材部12から剥離してしまうのをより確実に防止する ことができる。また、アンダフィル材料は光透過性を有 しているため、光は設置面21aと導体バターン14と の間の領域を確実に通過する。そのため、モールド部1 6内に光を通過させる必要はない。ゆえに、モールド部 16に使用される材料は、特に光透過性を有してなくて 50 て所望の配光特性を得るととができる。

もよい。従って、モールド部16に使用される材料を自 由に選択することができる。

【0026】(3)光デバイス用基材41に設けられる 凹部は溝部15である。そのため、チップ21の取付時 において、溝部15内にはチップ21を取り付けるため の工具を挿入するためのスペースが確保される。よっ て、チップ21を容易に表面実装することができる。ま た、レンズ部13は格子状に配置されているため、光デ バイス用基材41の分割が容易になる。従って、複数個 の光デバイス11を容易に製造することができる。

【0027】(4)封止部17を形成するアンダフィル 材料として、本実施形態では、光透過性の高いシリコー ンゲルを用いている。そのため、光が封止部17を通過 する際に、拡散等により光の損失が大きくなってしまう のを防止することができる。よって、光デバイス11内 を通過する光の利用効率が低下してしまうのを防止する ことができる。

【0028】(5)モールド部16は、半導体用エポキ シモールド材で溝部15を充填することによって形成さ 20 れている。よって、外力、塵埃及び水等からチップ21 を確実に保護することができる。

【0029】(6)レンズ部13を含む基材部12は、 ガラスを材料として、モールド成形以外の方法によって 形成される。よって、従来のように基材部12を半導体 用エポキシモールド材によって形成する場合とは異な り、レンズ部13内に気泡や空洞が発生してしまうのを 防止することができる。また、従来の半導体用エポキシ モールド材とは異なり、レンズ部13に黄色化現象が発 生してしまうのを防止することができる。

【0030】(7) 溝部15の開口端縁部15bには、 第2の面12bと内壁面15cとを繋ぐ第2アール面1 8 b が設けられている。そのため、第2アール面18 b に対する導体パターン14の密着性が向上する。ゆえ に、導体パターン14を形成しても、同導体パターン1 4が剥がれてしまう可能性が小さくなる。よって、導体 バターン14を確実に形成することができる。

【0031】なお、本実施形態は以下のように変更して もよい。・前記実施形態では、基材部12はガラスによ って形成されていた。しかし、光透過性を有し、且つフ ィラー抜きの状態での熱膨張率がエポキシ樹脂よりも小 さい樹脂材料によって基材部12を形成してもよい。例 えば、ポリカーボネート樹脂、シリコーン樹脂等を用い て基材部12を形成してもよい。

【0032】・前記実施形態では、滯部15の底面15 aは平坦になっていた。しかし、溝部15の断面形状を 変更してもよい。例えば、溝部15を断面半円状等の他 の形状にしてもよい。とのように構成すれば、滯部15 にレンズ部13の機能を持たせることができる。従っ て、レンズ部13を省略しても、溝部15の形状によっ

【0033】・前記実施形態では、封止部17を形成するアンダフィル材料として、光透過性を有するシリコーンゲルが用いられていた。しかし、シリコーンゲルの代わりに、アンダフィル材料として、エボキシ樹脂、フェノール樹脂、アクリル樹脂、メタクリル樹脂、水ガラス等の光透過性を有するものを用いてもよい。

【0034】・前記実施形態では、各外部接続用バッド 14aの幅はそれぞれ同一の大きさになっていた。しか し、各外部接続用バッド14aの幅はそれぞれ異なって いてもよい。このように構成すれば、溝部15内におい 10 てチップ21が誤装着されてしまうのを防止することが できる。

【0035】・前記実施形態では、導体バターン14は 第2の面12bに印刷形成されていた。しかし、導体バターン14を、蒸着等の他の方法によって第2の面12 bに形成してもよい。

【0036】・前記実施形態では、モールド部16はエポキシ樹脂によって形成されていた。その代わりに、モールド部16を、ユリア樹脂、フッ素樹脂またはポリカーボネート樹脂等の合成樹脂やシリコーンゴム等の他の 20 材料によって形成してもよい。

【0037】・図10(a)及び図10(b)に示すように、モールド部16に位置決め部31a、31bを突設してもよい。このように構成すれば、光デバイス11の利用時において、光デバイス11の位置決め精度を向上させることができる。

【0038】・前記実施形態では、チップ21の設置面21aに受光部22を設けることにより、受光体としての光デバイス11を構成していた。しかし、チップ21の設置面21aに発光部を設けることによって、光デバイス11を発光体として形成してもよい。また、チップ21の設置面21aに受光部22及び発光部の両方を設けることによって、光デバイス11を受発光体として形成してもよい。

【0039】・潜部15の底面15aにチップ21を2個以上配置してもよい。このように構成すれば、チップ21をそれぞれ独立させて駆動させることができる。従って、1個の光デバイス11に複数の機能を持たせることができる。

【0040】次に、特許請求の範囲に記載された技術的 40 思想のほかに、前述した実施形態によって把握される技術的思想を以下に記載する。

(1) 請求項1または2において、前記凹部内を半導体 用エポキシモールド材で充填することによって、モール ド部が形成されることを特徴とする光デバイス。よっ て、技術的思想(1)によれば、チップを確実に保護す ることができる。

【0041】(2)技術的思想(1)において、前記モールド部に位置決め部を突設したことを特徴とする光デバイス。よって、技術的思想(2)によれば、光デバイ 50

スの位置決め精度を向上させることができる。

【0042】(3) 請求項1または2、技術的思想

(1)~(2) において、前記基材部をガラスによって 形成したことを特徴とする光デバイス。よって、技術的 思想(3) によれば、基材部内に気泡や空洞が発生して しまうのを防止することができる。

[0043] (4) 請求項1または2、技術的思想

- (1)~(3)において、前記凹部の底面を平坦にした ことを特徴とする光デバイス。
- (5) 請求項1または2、技術的思想(1)~(4) に おいて、前記各電極部の幅がそれぞれ異なることを特徴 とする光デバイス。よって、技術的思想(5) によれ ば、凹部内においてチップが誤装着されてしまうのを防 止することができる。

【0044】(6)請求項1または2、技術的思想

- (1)~(5)において、前記凹部の開口端縁部に、前記第2の面と前記凹部の内壁面とを繋ぐ曲面を設けたことを特徴とする光デバイス。よって、技術的思想(6)によれば、電極部を確実に形成することができる。
- 【0045】(7)第1の面に格子状に配置されるレンズ部、第2の面に電極部及び互いに平行な関係の複数の溝部を形成することによって、光デバイスを複数個同時に形成できるようにしたことを特徴とする光デバイス用基材。よって、技術的思想(7)によれば、1つの光デバイス用基材に光デバイスを複数個形成したため、電極部の形成を1回で行うことができる。

【0046】(8) 光透過性を有する光デバイス用基材 に電極部を形成し、チップの発光部または受光部をレン ズ部側に向けた状態で、前記チップの電極と前記電極部 とを電気的に接続することにより、前記光デバイス用基 材に前記チップを表面実装した後、前記光デバイス用基 材を分割することを特徴とする光デバイスの製造方法。【0047】

【発明の効果】以上詳述したように、請求項1に記載の発明によれば、光デバイスの耐熱サイクル性を向上させることができる。また、従来と比べて光デバイスの構造を簡略化することができる。それとともに、光デバイスにおける光の利用効率を向上させることができる。

[0048] 請求項2 に記載の発明によれば、チップが基材部から剥離してしまうのをより確実に防止することができる。また、光が設置面と電極部との間の領域を確実に通過することができる。

【0049】請求項3に記載の発明によれば、複数個の 光デバイスを容易に製造することができる。

【図面の簡単な説明】

【図1】 (a)は、本実施形態における第2の面側から見た光デバイスを示す斜視図、(b)は、同じく、第1の面側から見た光デバイスを示す斜視図。

【図2】 光デバイスの要部拡大図。

【図3】 図1の3-3線における断面図。

【図4】 光デバイス用基材の第1の面側を示す斜視 図。

【図5】 光デバイス用基材の第2の面側を示す斜視 図。

【図6】 光デバイス用基材の第2の面側がエッチング される途中の状態を示す断面図。

【図7】 図5の7-7線における断面図。

【図8】 チップが取り付けられた後の状態を示す光デ バイス用基材の断面図。

の第2の面側を示す斜視図。

(a)及び(b)は、別例における光デバ*

*イスを示す斜視図。

【図11】 従来技術における光デバイスの断面図。 【図12】 従来技術における光デバイスの断面図。

【符号の説明】

11…光デバイス、12…基材部、12a…第1の面、 12b…第2の面、13…レンズ部、14…導体パター ン、14 a…電極部としての外部接続用パッド、14 b …電極部としてのチップ接続用パッド、15…凹部とし ての溝部、15a…底面、21…チップ、21a…設置 【図9】 分割される前の状態を示す光デバイス用基材 10 面、22…受光部、23…電極としてのパンプ、41… 光デバイス用基材、A1…空間。

[図1]

(a) (b)

【図3】

【図6】

【図2】

【図4】

フロントページの続き

F ターム(参考) 5F041 AA04 AA06 AA43 AA44 DA16 DA44 DA57 5F049 MA01 NA07 TA02 TA09 5F088 JA01 JA06 JA10 JA12 JA20