Chapter 5 Advanced Data Modeling

Objectives

Understand extended entity relationship model
Use clusters to represent multiple entities and relationships
Choose good primary keys
Use flexible solutions for special cases

Supertypes and Subtypes

Consider the case of PERSON, STUDENT, EMPLOYEE

Inheritance

ALL subtypes inherit their primary key from their supertype.

One-to-one relationship between subtype and supertype.

Subtypes participate in the supertype's relationships

All subtypes are weak entities

Specialization (is-a)

Subtype Discriminator

Attribute in the supertype entity that determines to which entity subtype the supertype occurrence is related

Disjoint subtypes: Each entity instance of the supertype can appear in only one of the subtypes. Known as nonoverlapping subtype

Overlapping subtypes: Each entity instance of the supertype may appear in more than one subtype.

Specialization hierarchy with overlapping subtypes

Subtype Discriminator

Completeness Constraint

Specifies whether each supertype occurrence must also be a member of at least one subtype

Partial completeness: not every supertype occurrence is a member of a subtype

Total completeness: every supertype occurrence must be a member of at least one subtypes

FIGURE 5.4

Specialization hierarchy with overlapping subtypes

Completeness Constraint

Questions?

Entity Clustering

Virtual entity that represents multiple entities and relationships

Entity Clustering

Virtual entity that represents multiple entities and relationships

Tiny College ERD using entity clusters

FIGURE 5.5

Selecting Primary Keys

Natural Key or Natural Identifier

- real-world, generally accepted identifier (Empl_id, SID, VIN)
- e-mail, SIN, while natural & unique, not recommended

Guidelines

Uniquely identify an entity instance or row Used to implement relationships...

When to use composite keys

Identifiers of composite entities (when handling M:N) for Student, Course

Identifiers of weak entities with a strong identifying relationship for Employee, Dependent

Desirable Primary Key Characteristics (pg. 178)

Unique + No+ NALL

Non-intelligent - no semantic meaning
No change over time - e.g. names can change
Single attribute - fewer attributes make life easier
Numeric - simpler to manage (auto-number!)
Security compliant - don't leak information

Surrogate Key

RESOURCE [rsc_type, rsc_description, rsc_qty, rsc_price]

Some design things to consider

Employee manages 0 or one department Department managed by exactly one employee

FIGURE 5.7

The 1:1 relationship between DEPARTMENT and EMPLOYEE

A One-to-One (1:1) Relationship:

An EMPLOYEE manages zero or one DEPARTMENT; each DEPARTMENT is managed by one EMPLOYEE.

SOURCE: Course Technology/Cengage Learning

Time Variant Data

Employee has salary history

Design Case 2: Maintaining History of Time-Variant Data

Design Case 3: Fan Traps

- Design trap: occurs when a relationship is improperly or incompletely identified
 - Represented in a way not consistent with the real world
- Fan trap: occurs when one entity is in two 1:M relationships to other entities
 - Produces an association among other entities not expressed in the model

How can we draw this?

Division has many teams Division has many players

Design Case 3: Fan Traps

Beware of fan traps

One entity in two 1:M relationships to other entities, producing an association that is not expressed in the model.

Division has many teams

Division has many players

Design Case 3: Fan Traps (3 of 3)

Design Case 4: Redundant Relationships

- Occur when there are multiple relationship paths between related entities
 - Must remain consistent across the model
 - Help simplify the design

Design Case 4: Redundant Relationships

In Alberta, residents may receive an Identity Card. This card has name, address, photograph and other personal information. If a resident has passed one or more driver's tests, this card is also works as a Driver's License by indicating the classes of driver's license held by the resident. Assume that each class of license has different information and requirements.

For simplicity, you may assume Alberta only has 3 classes of license.

In my little world of international relations, Canada keeps a record of all the nations of the world. Each nation is either an ally or an enemy. How can we model this relationship?

(Not Both) (not WeitLer)

