

Bancos de Dados Geográficos

Sistemas de Bancos de Dados Matriciais

Gilberto Ribeiro de Queiroz

Como armazenar, gerenciar e facilitar a análise de grandes volumes de dados de Observação da Terra?

Utilizar conjunto de arquivos (GeoTIFF, HDF, NetCDF)?

Utilizar um SGBD Relacional (Oracle GeoRaster, PostGIS Raster)?

Utilizar um NoSQL? Qual?

Sistemas de Bancos de Dados Matriciais

SGBD-M

- Sistemas Gerenciadores de Banco de Dados
 Matriciais (SGBD-M) Array Databases
- Modelo de dados trata de "Arrays"

Modelo mais apropriado para dados intrinsecamente ordenados de forma espacial e/ou temporal

Array Databases

SciDB

"SciDB is an open-source analytical database oriented toward the data management needs of scientists."

(Stonebraker et al., 2011)

SciDB: Arquitetura

Fote: Adaptado de Paradigm4 (2016)

Arrays

nome <atributos> [dimensões]

SciDB: Atributos

- Cada célula pode ser associada a múltiplos valores.
- Tipos de dados: bool, char, datetime, datetimez, double, float, int8, int16, int32, int64, string, uint8, uint16, uint32, uint64

SciDB: Dimensões


```
mod13q1 <red:int16, nir:int16, blue:int16>
[j=1:5,2,1, i=1:5,2,1, k=1:4,2,1]
```

SciDB: Chunks


```
mod13q1 <red:int16, nir:int16, blue:int16>
[j=1:5,2,1, i=1:5,2,1, k=1:4,2,1]
```

Chunk size: 2 x 2 x 2

SciDB: Particionamento Vertical


```
mod13q1 <red:int16, nir:int16, blue:int16>
[j=1:5,2,1, i=1:5,2,1, k=1:4,2,1]
```

SciDB: Overlap (Replicação)


```
mod13q1 <red:int16, nir:int16, blue:int16>
[j=1:5,2,1, i=1:5,2,1, k=1:4,2,1]
```

Chunk overlap: 1 x 1 x 1

Linguagens de Consulta

Array Query Language (AQL)

Array Functional Language (AFL)

Array Query Language: AQL

There are DML and DDL clauses

Array Functional Language (AFL)

Consultas em AFL

Definindo um Array: mod13q1

```
CREATE ARRAY mod13q1
<nir:double, red:double, blue:double>
[col_id=0:4,1,0, row_id=0:4,1,0,
   time_id=0:3,4,0]
```


Creating Array: mod13q1

```
store(join(join(
build(<val:double>[col_id=0:4,1,0,row_id=0:4,1,0,time_id=0:3,4,0]
,(col_id+(row_id*5)+time_id*(5*5))/1.0),
build(<val:double>[col_id=0:4,1,0,row_id=0:4,1,0,time_id=0:3,4,0]
,(col_id+(row_id*5)+time_id*(5*5))/10.0)),
build(<val:double>[col_id=0:4,1,0,row_id=0:4,1,0,time_id=0:3,4,0]
,(col_id+(row_id*5)+time_id*(5*5))/100.0) ), mod13q1)
```


Horizontal Slice

Time Series

NDVI

```
store (
  project (
    apply (
        mod13q1, new_evi,
        2.5*(nir-red) /(nir+6.0*red-7.5*blue+1.)
    ),
    new_evi ), evi_array);
```


Window Queries

Stream

SciDB: Stream

Plugin Stream

Abordagem equivalente Hadoop

Processamento junto aos dados

Processamento por chunk

stream(array,'/path/to/app');

Fonte: Paradigm4 (2018)

SciDB - Stream

SciDB -> Application

stdin

Application -> SciDB

SciDB: Finished

Application: Finished

Computing the Average of Time Series

stream(mod13q1, '/GeoData/aqua/scidb/avg_time.py')

Considerações Finais

RasDaMan

- Raster Data Manager
- Clientes: R, Python, Java, C++
- PostgreSQL: campos blob
- SQLite: Sistema de Arquivos

Cluster de computadores somente na versão Enterprise

RasDaMan

- Projeto EarthServer
- Acesso aos dados através de WMS, WCS, WCPS, WPS

Fonte: RasDaMan (2018)

TileDB

- Biblioteca em C
- Sem distribuição de dados
- Pasta representa o Array no Sist. Arq.
- Baixa abstração para acesso aos dados

Architecture for Big EO Data Analytics

Avaliação da arquitetura: análise de série temporal

QUERY

(ALGORITHM PARAMETERS)

RESPONSE

SciDB e Hadoop

USER

MODIS: 1800 imagens

Fonte: Câmara et al. (2016)

Considerações Finais

 Nesta aula apresentamos uma classe de sistemas de bancos de dados baseado em um modelo orientado a arrays.

• Álgebra + Linguagem de Consulta matricial.

• Particionamento de Dados e Replicação.

Escalabilidade.

Referências Bibliográficas

Referências Bibliográficas

Stonebraker, M.; Brown, P.; Poliakov, A.; Raman, S.
 The Architecture of SciDB. Proceedings of the 23rd International Conference on Scientific and Statistical Database Management, SSDBM'11, 2011.

• Paradigm4. <u>SciDB Documentation</u>. Acesso: Agosto de 2016.

Exercícios