Unsupervised Learning: Part I An Introduction to Cluster Analysis

Efthymios Costa

June 9, 2025

The Milky Way is nothing else but a mass of innumerable stars planted together in **clusters**.

Galileo Galilei

Types of Learning Revisited

	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Input Data	Features $+$ labels (e.g., X , y)	Only features (X)	Environment feed- back (states, ac- tions, rewards)
Objective	Predict output	Identify patterns	Optimise decision making
Output	Predicted label or value	Cluster assignment, reduced dimensions, etc.	Policy/Strategy for decision mak- ing
Feedback	Direct error signal	No explicit feed- back; pattern dis- covery	Delayed reward signal from envi- ronment

Unsupervised Learning

No explicit labels in the data, so cannot train a predictive model.

• What else might be of interest, besides predictions?

How about discovering patterns/structures in the data?

Example: Customer segmentation

- A retailer launches an advertisement campaign.
- They want to identify groups of people with common interests.
- This is a problem of cluster analysis.

Cluster Analysis: Definition

Definition

Cluster analysis (clustering) is the task of grouping a set of objects into groups (clusters) so that similar objects are assigned in the same cluster and less similar objects are assigned in distinct clusters.

Clustering approaches

Clustering algorithms can be categorised in several ways:

- By their output: Hard/Soft clustering.
- By their assumptions: Distance-based/Model-based clustering.
- By their structure: Partitional/Hierarchical clustering.

Distance-based clustering

- Main Idea: Observations which are 'closer' are also 'more similar'.
- Can therefore assign observations in the same cluster if they are close and ensure distant observations are in different groups.

The K-Means Algorithm

- Let $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$ be our data, where $\mathbf{x}_i \in \mathbb{R}^p$.
- ullet Assume we want to partition our data into K clusters.
- *K*-Means Objective: Find the best partition $\mathcal{C} = \{C_1, \ldots, C_K\}$ among the space of all partitions into K non-empty clusters \mathcal{P}_K such that $C_i \cap C_j = \emptyset$ and:

$$C = \operatorname*{arg\,min}_{\mathcal{C}' \in \mathcal{P}_K} \sum_{k=1}^K \sum_{i: \mathbf{x}_i \in \mathcal{C}_k'} \|\mathbf{x}_i - \mathbf{m}_k\|^2, \quad \mathbf{m}_k = \frac{1}{|\mathcal{C}_k'|} \sum_{i: \mathbf{x}_i \in \mathcal{C}_k'} \mathbf{x}_i$$

- \mathbf{m}_k is the mean vector of values in cluster k the kth **centroid**.
- $\bullet \parallel \cdot \parallel^2$ is the Euclidean distance (measure of dissimilarity).
- $|C_k|$ is the size of cluster k (i.e. how many observations it includes).

The K-Means Algorithm - Pseudocode

Input: Data matrix X, number of clusters K, number of iterations t^{max} .

- $\bullet \hspace{0.5cm} \mathsf{Select} \hspace{0.1cm} \mathsf{K} \hspace{0.1cm} \mathsf{random} \hspace{0.1cm} \mathsf{points} \hspace{0.1cm} \mathsf{in} \hspace{0.1cm} \mathbb{R}^{\pmb{p}} \hspace{0.1cm} \mathbf{m}_{1}^{0}, \ldots, \mathbf{m}_{\mathsf{K}}^{0}.$
- 2 Compute pairwise distances between observations and centroids $\mathbf{m}_1^0,\dots,\mathbf{m}_K^0$.
- Assign each observation to the cluster with the closest centroid.
- Update cluster centroids by re-computing the mean vectors.
- Repeat Steps 3 4 until cluster assignments remain unchanged or max number of iterations t^{max} is reached.
- Repeat all the above steps several times and choose the solution for which the K-Means objective is minimised.

Summary

- Unsupervised learning: No labels, no target output available for training.
- Cluster analysis: The task of finding groups (clusters) in data.
- **Clustering objective:** Similar observations are assigned in the same cluster, dissimilar items are placed in distinct clusters.
- K-Means Algorithm: Basic clustering algorithm that uses the Euclidean distance to define dissimilarities.

Useful Resources

- The Elements of Statistical Learning (Friedman, Tibshirani, and Hastie, 2001) - §14.3.
- R function kmeans provides a good implementation of K-Means.
- Code to reproduce plots in earlier slides can be found in:

