EXEMPLES DE TABLEAUX

A	В	С	D	Е	F	G	Н	Sommet
0	∞	A						
	0+2 2(A)	0+1 1(A)	0+4 4(A)	∞	∞	∞	∞	С
	2(A)		4(A)	1+5 6(C)	∞	∞	∞	В
			4(A)	6(C)	∞	∞	∞	D
				6(C)	4+1 5(D)	∞	∞	F
				6(C)		5+4 9(F)	5+1 6(F)	E
						6+2 8(E)	6(F)	Н
						6+4 8(E)		G

	Ville A	Ville B	Ville C
Période haute	2,5	3,5	1,5
Période moyenne	2	2,2	1,5
Période basse	1,5	1,2	1

Paramètre de la population totale à estimer	Valeur du paramètre dans l'échantillon de taille n	Estimation ponctuelle pour la population totale	Estimation par intervalle de confiance au niveau de confiance $2\Pi(t) - 1$ pour la population totale
Moyenne	m_e	$m = m_e$	$\left[m_e - t\frac{\sigma}{\sqrt{n}}; m_e + t\frac{\sigma}{\sqrt{n}}\right]$
Écart-type	σ_e	$\sigma = \sigma_e \sqrt{\frac{n}{n-1}}$	
Fréquence	f_e	$f = f_e$	$\left[f_e - a\sqrt{\frac{f_e(1-f_e)}{n-1}}; f_e + t\sqrt{\frac{f_e(1-f_e)}{n-1}}\right]$

Loi	Notation	Formule	Espérance	Variance
Loi de Bernoulli	$\mathscr{B}(p)$	P(X = 1) = p ; P(X = 0) = q	E(X) = p	V(X) = pq
Loi Binomiale	$\mathscr{B}(n;p)$	$P(X = k) = C_n^k \times p^k \times q^{n-k}$	E(X) = np	V(X) = npq
Loi de Poisson	$\mathscr{P}(\lambda)$	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$	$E(X) = \lambda$	$V(X) = \lambda$
Loi Normale	$\mathcal{N}(m;\sigma)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$	E(X) = m	$V(X) = \sigma^2$
Centrée réduite	$\mathcal{N}(0;1)$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$	E(X) = 0	V(X) = 1

k λ	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,548
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

Échanges inter-industriels

consomme 🗪	Agriculture	Biens manufac- turés	Énergie
1 unité d'agriculture	0,293	0	0
1 unité de biens manufacturés	0,014	0,207	0,017
1 unité d'énergie	0,044	0,01	0,216

Besoins de la population

13,2 unités d'agriculture
17,6 unités de biens manufacturés
1,8 unité d'énergie

1. L'expression $(x + 1)^2$ est l'expression développée de $x^2 + 2x + 1$.	□ V □ F
2. Pour tout réel x , $(x+1)(2x+4) + 2(x+1)(x-1) = (x+1)(4x-2)$.	□ V □ F
3. Pour tout réel $x \neq -1$ et $x \neq 0$, $\frac{2x+1}{x+1} = \frac{2x}{x}$.	□ V □ F
4. Pour tout réel $x \ne 1$, $\frac{2}{x-1} + 4 = \frac{4x-2}{x-1}$.	□ V □ F

- 10
- 10
(c-1)
-9
(2x-6)
(x-3)
(2x-6)

Avec \tabularx :

x	0	1
$p(X_i = x)$	0,46	0,54