Symmetric Encryption Lesson Introduction

- Block cipher primitives
- DES
- AES
- Encrypting large message
- Message integrity

Block Cipher Scheme

Block Cipher Primitives

Confusion:

An encryption operation
 where the relationship between the key
 and ciphertext is obscured

Achieved with substitution

Block Cipher Primitives

Diffusion:

 An encryption operation where the influence of one plaintext bit is spread over many ciphertext bits with the goal of hiding statistical properties of the plaintext

Achieved with permutation

Block Cipher Primitives

 Round: combination of substitution and permutation, and do so often enough so that a bit change can affect every output bit

Block Cipher Quiz

Select all correct answers to complete that statement.

A block cipher should...

	Use substitution to achieve confusion
	Use permutation to achieve diffusion
	Use a few rounds, each with a combination of substitution and permutation
	Keep the algorithm secret

- Published in 1977,
 standardized in 1979
- Key: 64 bit quantity=8-bit parity+56-bit key
 - Every 8th bit is a parity bit
- ●64 bit input, 64 bit output

Bit Permutation (1-to-1)

A DES Round

Decryption

- Apply the same operations key sequence in reverse:
 - Round 1 of decryption uses key of the last round in encryption
- Each round:
 - ●Input: R_{n+1}|L_{n+1}
 - Due to the swap operation at the end of encryption
 - •Output: $R_n|L_n$
- The swap operation at the end will produce the correct result:
 L|R

XOR Quiz

Use the XOR function and the given key to encrypt the word "Hi".

key = FA F2

Mangler Function

S-Box (Substitute and Shrink)

- 48 bits => 32 bits. (8*6 => 8*4)
- 2 bits used to select amongst 4 substitutions for the rest of the 4-bit quantity

S-Box Quiz For the given input, determine the output.

S -		Middle 4 bits of input															
35	S ₅		0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outor bito		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits		0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

Input: 011011

Output:

Security of DES

- •Key space is too small (2⁵⁶ keys)
 - Exhaustive key search relative easy with today's computers
- S-box design criteria have been kept secret
- Highly resistant to cryptanalysis techniques published years after DES

Triple DES

- K₁=K₃ results in an equivalent 112-bit DES which provides a sufficient key space
- Distinct K₁, K₂, K₃ results in an even stronger 168-bit DES
- Can run as a single DES with K₁ = K₂

DES

Check all the statements that are true:

To decrypt using DES, same algorithm is used, but with per-round keys used in the reversed order
With Triple DES the effective key length can be 56, 112, and 168
Each round of DES contains both substitution and permutation operations
The logics behind the S-boxes are well-known and verified

Advanced Encryption Standard

- In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm (Rijndael) that is now known as the Advanced Encryption Standard (AES)
- •New (Nov. 2001) symmetric-key NIST standard, replacing DES
- Processes data in 128 bit blocks
- •Key length can be 128, 192, or 256 bits

Advanced Encryption Standard

AES Round

AES Round

• A Stick Figure Guide to AES

• http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

The initial round has me xor each input byte with the corresponding byte of the first round key.

Applying Confusion: Substitute Bytes

I use confusion (Big Idea #1) to obscure the relationship of each byte. I put each byte into a substitution box (sbox), which will map it to a different byte:

Denotes (confusion 0000

Applying Diffusion, Part 1: Shift Rows Next I shift the rows to the left , Hiiiii yaah! f5 69 fb 92 af Halaal 6b 44 c9/d7/43 b6 59 60 /2 ...and then wrap them around the other side fЬ da aa 16b 47 44 43 66 Denotes * permutation

Applying Key Secrecy: Add Round Key

At the end of each round, I apply the next round key with an xor:

AES Encryption Quiz Check all the statements that are true:

To decrypt using AES, just run the same algorithn the same order of operations
Each operation or stage in AES is reversible
AES can support key length of 128, 192, 256
AES is much more efficient than Triple DES

- Break a message into blocks
- Apply block cipher on the blocks

•Is that it?

Electronic Code Book (ECB)

ECB Problem #1

$$(M_1 == M_3) => (C_1 == C_3)$$

ECB Problem #2

- Lack the basic protection against integrity attacks on the ciphertext at message level (i.e., multiple cipher blocks)
- Without additional integrity protection
 - cipher block substitution and rearrangement attacks
 - •fabrication of specific information

Cipher Block Chaining (CBC)

 $(M_1 == M_3)$ very unlikely leads to $(C_1 == C_3)$

CBC Decryption

General K-Bit Cipher Feedback Mode (CFB)

General K-bit Cipher Feedback Mode (CFB)

Protecting Message Integrity

Only send last block of CBC (CBC residue)
 along with the plaintext

 Any modification in plaintext result in a CBC residue computed by the receiver to be different from the CBC residue from the sender

Ensures integrity

Protecting Message Integrity

 Simply sending all CBC blocks (for confidentiality) replicating last CBC block (for integrity) does not work

•Should use two separate secret keys: one for encryption and the other for generating residue (two encryption passes)

Or, CBC (message|hash of message)

CBC Quiz

Put a check next to the statements that are true:

CBC is more secure than ECB

We can have both confidentiality and integrity protection with CBC by using just one key

Symmetric Encryption Lesson Summary

- Need both confusion and diffusion
- DES: input 64-bit, key 56-bit; encryption and decryption same algorithms but reversed per-round key sequence
- AES: input 128-bit, key 128/192/256 bits; decryption the reverse/inverse of encryption
- Use cipher-block-chaining to encrypt a large message
- Last CBC block can be use as MIC; use different keys for integrity and confidentiality