150B/355B Introduction to Machine Learning for Social Science TA Section 2

Haemin Jee and Tongtong Zhang

January 19, 2018

Road Map

Multivariate Regression

Road Map

- Multivariate Regression
- 2 Linear Algebra: Inner Product

Road Map

- Multivariate Regression
- 2 Linear Algebra: Inner Product
- 3 Classification
 - Linear Probability Model (LPM)

Multivariate Regression

Time for Change Model (Abramowitz, Linzer)

Multivariate Regression

Time for Change Model (Abramowitz, Linzer)

Predict Incumbent Vote Share with political and economic fundamentals

Multivariate Regression

Time for Change Model (Abramowitz, Linzer)

Predict Incumbent Vote Share with political and economic fundamentals

- GDP Growth
- Incumbent Presidential Popularity
- Incumbent Party

Bivariate model: $Vote_i = \hat{\beta}_0 + \hat{\beta}_1 Approval_i + \epsilon_i$

Bivariate model: $Vote_i = \hat{\beta}_0 + \hat{\beta}_1 Approval_i + \epsilon_i$

```
rm(list=ls())
setwd("~/Dropbox (IPL)/150B Machine Learning/Lecture/Lecture 3")
d<-read.csv("TimeChange.csv")

#Bivariate model of VoteShare on Incumbency Approval
bivariate <- lm(IncumbentVoteShare~Incumbent_Net_Approval, data = d)
bivariate$coefficients

## (Intercept) Incumbent_Net_Approval
## 50.7594886 0.1619931</pre>
```

Multivariate model:

Multivariate model:

$$\begin{aligned} \textit{Vote}_i &= \textit{f}(\textit{Approval}_i, \textit{Q1GDP}_i, \textit{Q2GDP}_i, \textit{Inc2ndTerm}_i) + \epsilon_i \\ \textit{Vote}_i &= \hat{\beta_0} + \hat{\beta_1} \textit{Approval}_i + \hat{\beta_2} \textit{Q1GDP}_i + \hat{\beta_3} \textit{Q2GDP}_i + \hat{\beta_4} \textit{Inc2ndTerm}_i + \epsilon_i \end{aligned}$$

Multivariate model:

$$Vote_{i} = f(Approval_{i}, Q1GDP_{i}, Q2GDP_{i}, Inc2ndTerm_{i}) + \epsilon_{i}$$

$$Vote_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}Approval_{i} + \hat{\beta}_{2}Q1GDP_{i} + \hat{\beta}_{3}Q2GDP_{i} + \hat{\beta}_{4}Inc2ndTerm_{i} + \epsilon_{i}$$

How do we interpret $\hat{\beta_1}$ in this regression?

Multivariate model:

$$Vote_{i} = f(Approval_{i}, Q1GDP_{i}, Q2GDP_{i}, Inc2ndTerm_{i}) + \epsilon_{i}$$

$$Vote_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}Approval_{i} + \hat{\beta}_{2}Q1GDP_{i} + \hat{\beta}_{3}Q2GDP_{i} + \hat{\beta}_{4}Inc2ndTerm_{i} + \epsilon_{i}$$

How do we interpret $\hat{eta_1}$ in this regression?

One unit increase in Approval is associated with $\hat{\beta}_1$ units increase in Vote share, holding all other predictors constant.

Multivariate model:

```
#Multivariate model
multivariate <- lm(IncumbentVoteShare~Incumbent_Net_Approval + Q1_GDP_Growth +
                     Q2 GDP Growth + Incumbent Party Two Terms, data = d)
multivariate$coefficients
                 (Intercept)
##
                                 Incumbent_Net_Approval
##
                 51.01161540
                                             0.09511158
               Q1 GDP Growth
                                          Q2_GDP_Growth
##
##
                  0.10335203
                                             0.57188740
   Incumbent Party Two Terms
                 -4.35308941
##
```

Bivariate model: $Vote_i = 50.76 + 0.16 * Approval_i + \epsilon_i$

Multivariate model: $Vote_i = 51.01 + 0.10 * Approval_i + 0.10 * Q1GDP_i + 0.57 * Q2GDP_i - 4.35 * Inc2ndTerm_i + \epsilon_i$

Bivariate model: $Vote_i = 50.76 + 0.16 * Approval_i + \epsilon_i$

Multivariate model: $Vote_i = 51.01 + 0.10 * Approval_i + 0.10 * Q1GDP_i + 0.57 * Q2GDP_i - 4.35 * Inc2ndTerm_i + \epsilon_i$

Q: Why does the coefficient on Approval change between the two models?

Bivariate model: $Vote_i = 50.76 + 0.16 * Approval_i + \epsilon_i$

Multivariate model: $Vote_i = 51.01 + 0.10 * Approval_i + 0.10 * Q1GDP_i + 0.57 * Q2GDP_i - 4.35 * Inc2ndTerm_i + \epsilon_i$

Q: Why does the coefficient on Approval change between the two models?

A: Because omitting other explanatory variables in the bivariate model leads to a positive bias on the coefficient on Approval.

Bivariate model: $Vote_i = 50.76 + 0.16 * Approval_i + \epsilon_i$

Multivariate model: $Vote_i = 51.01 + 0.10 * Approval_i + 0.10 * Q1GDP_i + 0.57 * Q2GDP_i - 4.35 * Inc2ndTerm_i + \epsilon_i$

Q: Why does the coefficient on Approval change between the two models?

A: Because omitting other explanatory variables in the bivariate model leads to a positive bias on the coefficient on Approval. BUT, bias can also be negative! Example: effect of years of education on income controlling for PhD degree.

Bivariate model: $Vote_i = 50.76 + 0.16 * Approval_i + \epsilon_i$

Multivariate model: $Vote_i = 51.01 + 0.10 * Approval_i + 0.10 * Q1GDP_i + 0.57 * Q2GDP_i - 4.35 * Inc2ndTerm_i + \epsilon_i$

Q: Why does the coefficient on Approval change between the two models?

A: Because omitting other explanatory variables in the bivariate model leads to a positive bias on the coefficient on Approval. BUT, bias can also be negative! Example: effect of years of education on income controlling for PhD degree.

R Code (Question 1, Section 3)!

$$\mu = (\mu_1, \mu_2, ..., \mu_n)$$

 $\mathbf{v} = (v_1, v_2, ..., v_n)$

$$\mu \cdot \mathbf{v} = \mu_1 \mathbf{v}_1 + \mu_2 \mathbf{v}_2 + \dots + \mu_n \mathbf{v}_n$$

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$$
= (51.01, 0.1, 0.1, 0.57, -4.35)
$$\mathbf{x_i} = (1, Approval_i, Q1GDP_i, Q2GDP_i, Inc2ndTerm_i)$$

$$\begin{split} \hat{\beta} &= (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) \\ &= (51.01, 0.1, 0.1, 0.57, -4.35) \\ \mathbf{x_i} &= (1, Approval_i, Q1GDP_i, Q2GDP_i, Inc2ndTerm_i) \end{split}$$

Then, we can write our prediction as:

$$egin{aligned} & extit{V\^ote}_i = \hat{eta} \cdot \mathbf{x_i} \\ & extit{V\^ote}_i = 51.01 + 0.1 * Approval}_i + 0.1 * Q1GDP}_i \\ & = +0.57 * Q2GDP}_i - 4.35 * Inc2ndTerm}_i \end{aligned}$$

$$\begin{split} \hat{\beta} &= (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) \\ &= (51.01, 0.1, 0.1, 0.57, -4.35) \\ \mathbf{x_i} &= (1, Approval_i, Q1GDP_i, Q2GDP_i, Inc2ndTerm_i) \end{split}$$

Then, we can write our prediction as:

$$egin{aligned} & extit{V\^ote}_i = \hat{eta} \cdot \mathbf{x_i} \\ & extit{V\^ote}_i = 51.01 + 0.1 * Approval}_i + 0.1 * Q1GDP}_i \\ & = +0.57 * Q2GDP}_i - 4.35 * Inc2ndTerm}_i \end{aligned}$$

R code (Question 1, Sections 4 and 5)

Classification

Goal: predict Iraq vote (probability of yes, classify senators as for and against).

Classification

Goal: predict Iraq vote (probability of yes, classify senators as for and against).

Method: Linear Probability Model

Classification

Goal: predict Iraq vote (probability of yes, classify senators as for and against).

Method: Linear Probability Model

- Dependent variable: Vote; (1 or 0)
- Independent variable: Senator characteristics (party, vote for Gore, etc.)

Two estimation goals:

Two estimation goals:

Estimate:

■ Probability of voting yes: $Pr(Vote_i = 1 | \mathbf{x_i})$

Two estimation goals:

Estimate:

■ Probability of voting yes: $Pr(Vote_i = 1 | \mathbf{x_i})$

■ Classification of vote: $Vote_i = \mathbf{I}(Pr(Vote_i = 1|\mathbf{x_i}) > t)$, where t is a threshold and \mathbf{I} is an indicator function

$$egin{aligned} Vote_i &= eta \cdot \mathbf{x_i} + \epsilon_i \ \\ \widehat{Pr(Vote_i = 1 | \mathbf{x_i})} &= \widehat{eta} \cdot \mathbf{x_i} \ \\ \widehat{Vote_i} &= 1 ext{ if } \widehat{eta} \cdot \mathbf{x_i} > t \ \\ \widehat{Vote_i} &= 0 ext{ if } \widehat{eta} \cdot \mathbf{x_i} \leq t \end{aligned}$$

$$egin{aligned} Vote_i &= eta \cdot \mathbf{x_i} + \epsilon_i \ \\ \widehat{Pr(Vote_i = 1 | \mathbf{x_i})} &= \widehat{eta} \cdot \mathbf{x_i} \ \\ \widehat{Vote_i} &= 1 ext{ if } \widehat{eta} \cdot \mathbf{x_i} > t \ \\ \widehat{Vote_i} &= 0 ext{ if } \widehat{eta} \cdot \mathbf{x_i} \leq t \end{aligned}$$

 x_i : Party, vote share for Gore in 2000

$$egin{aligned} extstyle Vote_i &= eta \cdot \mathbf{x_i} + \epsilon_i \ \ extstyle Pr(extstyle Vote_i &= 1 | \mathbf{x_i}) = eta \cdot \mathbf{x_i} \ \ extstyle Vote_i &= 1 ext{ if } eta \cdot \mathbf{x_i} > t \ \ extstyle Vote_i &= 0 ext{ if } eta \cdot \mathbf{x_i} \leq t \end{aligned}$$

x_i: Party, vote share for Gore in 2000

R code (Question 2)