电动 - TP 2: 交变电信号

TP的目的:

熟悉电子价值的措施?Cient平均值相迪?Erent仪器 测量(示波器,万用表)。

由于功能有关:

- 3 获得平均值,形状,振幅和使用频率的数据的周期信号 GBF。
- 3 德?氖措施电子商务的本质是什么?Ectuée(值e?Ective,平均,幅度和峰 峰值)。
- 3 测量的电压(直接测量电压表或数字示波器);
- 3 测量两个正弦信号之间的相位差:移动时间偏移到相移识别 出生前或延迟,并查明穿过的0的相移或 π在XY模式。
- 3 管理,在电子电路中,约束与群众之间的结合。

设备可用

- 示波器, GBF;
- NOG-06模块;
- NOG-13模块;
- 万用表。

周期性信号已经很容易地识别可靠的特点:?êective值,平均值可以使用万用表,示波器和/或卡和相关联的采集来测量频率到操作系统。正是在这样的提议实践操作课程学习两测量的早期方法。

1个值e?的信号的Ective和平均值

1.1德? Nition

的信号的时间平均值 S(t)的期 T(电压或电流)被去由关系定义?:

E值?一个信号Cient时间 S(t) 的期 T(电压或电流)是均值的平方根

时间的平方(均方根或RMS):

√2<u>~</u>

的值e?的正弦信号的Cient等于其振幅除以

的值e?周期信号的Cient平方等于值e的平方和?Cient每个

正弦分量。

2018-2019

熟悉这些概念的N,填写下面的表格?:

电压	ÜEFF	Ü 平均= < U>
继续		
U(t) #9= U0		
正弦:		
$U(t)$ #9= U_1 COS ($\omega T + \varphi$)		
正弦+继续:		
$U(t)$ 的= U_1 COS ($\omega T + \varphi$) + U_0		
周期性期 T = 2 π ω:		
$U(t)$ #9= U_0 + \bar{u}_1 COS (ωT + φ) + U_2 COS ($2 \omega T$) +		
U ₃ COS (3 ωT) +		

要做的工作1.2

- 0 通过设置GBF,这样产生的前三个表张力: \ddot{u}_0 =1 V(与OFFSET) \ddot{u}_1 =2 V(振幅) F=1 千赫。使用示波器的张力设置。
- 0 使用示波器,用于测量幅度和峰的二峰振幅?Erent信号。
- 0 使用电压表和提高在AC模式和DC模式张力。
- 0 比较用示波器和电压表的理论预期值测量。演绎, 根据所选择的模式中,测量E'ectuée。

2测定的相移的

所使用的模拟示波器不执行两个电压顺之间的相移的自动测量 chrons。这将因此,测量的相移测量 时间偏移 两个同步信号之间。

理论值:两个正弦信号脉动之间的相位差 ω 和由延迟延迟 τ 一个由相对于彼此是:

Δ φ=ωτ

2.1协议

提出一种用于确定两个电压之间的相位差的步骤。

2.2应用

- 0 执行以下电路(保持为迪?Erent顺序相同的COM ponents)和可视化示波器上的电压在所述电容器的端子和发电机,如图所示。我们将 R = 1 kΩ, C = 100 nF的为 ügBF(T) 频率的正弦电压 F = 五 kHz和幅度3 V.
- 0 测量的相移的值 üc(T) 与 üGBF(T)。
- 0 通过比较给出的理论值 φ = 反正切($RC\omega$) 。
- 0 改变GBF的频率,并观察两个电压 üc(T)和 ügBF(T)。 该电路不通过高频优先让 (?高通滤波器),或更低的频率(?低通滤波器)?

电动 - TP 2 交替的电信号

2.3 XY模式

示波器有两种模式,以恰克?:

- 模式 Y(T)=时间演变电压= CH1和/或CH 2电压相对于时间。
- ・ 模式 XY 根据CH1 CH2。

工作要做

- + 在XY模式的地方(在"A?恰克"菜单)。
- + 观察曲线的形状时GBF的频率而变化。
- + 特别的外观解释?CHAGE在低频和高频。

3质量问题管理。

正是在这一节提出了突出有接地的存在相关的问题 一些单位电路。回想一下,一个接地连接?s接地避免任何风险 的使用的装置的金属骨架电气化。电气设备的接地所有 是相互关联的。

执行以下电路 $R = 300\Omega$, C = 50 nF的 该 10 毫亨和电压 E(t) 的 正弦频率 F = 1 kHz和幅度 E = 3 V.

该电路是一个RLC串联被迫正弦的。电压的幅度跨越 [R 和它相

作为频率的函数在理论上由下式给出:

$$\ddot{U}_{R(F)} = \sqrt{\frac{\ddot{E}}{(FF_0)_2}}$$
和 $\varphi(F) = -$ 反正切
1+ Q_2 — - F_0

$$((FF_0))$$
 \sqrt{g} $Q \longrightarrow F_0 \longrightarrow F$

3.1突出问题

- + 请以相同的顺序连接的图中,观察 E(t)的 在信道1和 ü_{IP}通道2上 示波器。
- + 如何在紧张 $\ddot{u}_{\mathbb{R}}$ 和 \ddot{E} 在示波器上(相位和振幅)?
- + 使用公式计算 F_0Q , $\ddot{u}_{R}(F=1$ 千赫) 和 $\varphi(F=1$ 千赫)。 我们可以从取得的观察得出什么结论 示波器?

3.2搜索解决方案

- + 示波器设计的原因是质量与GBF。如何做电路R,L,C系列的组件 到能够同时查看由GBF递送R两端的电压和?
- + 确定示波器连接,并进行编辑。
- + VERI?呃发现的值相匹配的理论预期。
- + 为什么我们不能同时观看在这样的电路两端R和C的电压?