

Directed Graph Graph

There's a direct relation between the vertices

Types of graph

- Directed graph

$$E = \{(C,B)\}$$

Undirected Graph Graph

There's a relation between the two vertices

Types of graph

- Undirected graphs

Undirected Weighted

For the numbers it could be the distance between each vertex or cost...

Types of graph

- Undirected Weighted

Directed Weighted

Types of graph

Directed / Undirected Weighted

Connected Graph

Connected graph i can go in a path for any case just like this example i can go from A to D or from D to C

Types of graph

Types of graph

Types of graph simple graph vs not simple graph

Types of graph simple graph

Types of graph simple graph vs not simple graph

Types of graph

simple graph vs not simple graph

Kanchofo limrbot nichan m3a c had I case we have D and C because there's a loop

adjacent vertices

We get rid off the originale adjacent edge and we should mention the other edges that have a relation between the (A,B) in this case we have : a-z and b-c

Cyclic graph vs acyclic graph

Cyclic graph vs acyclic graph

A cycle in a <u>directed graph</u> is a path of <u>length at least 2</u> such that the first vertex on the path is the same as the last one

(if the path is simple, then cycle is a simple cycle).

A cycle in a <u>undirected graph</u> is a path of <u>length at least 3</u> such that the first vertex on the path is the same as the last one and the edges on th path are distinct

Simple path vs not simple path

Simple path vs not simple path

vertex degree

Hadi 5 hint ila kan sahem kaydi wyib edge kadrab fe 2

vertex degree

Incident edges = ?

In-degree and Out-degree

In-degree and Out-degree

Type of graph

Dense vs Sparse

 $|E| \approx |V|^2$ the graph is dense

 $|E| \approx |V|$ the graph is sparse

Graph representation

- 1. Adjacency Matrix
- 2. Adjacency List

Graph representation

1. Adjacency Matrix

size of matrix = 5×5

4 X 4

Graph representation

Graph representation

1. Adjacency Matrix

Space Complexity O(v²)

Graph representation

2. djacency List

Space Complexity O(V + E)