Inverse methods in optical design

Martijn Anthonissen, TU Eindhoven

Paulius Cebatarauskas¹, Philipp Landwehr², Csaba Rosztoczy³, Santeri Röpelinen⁴ and Maddalena Zanrosso⁵

¹Department of Mathematical Sciences, Norwegian University of Science and Technology

²Department of Mathematics, Technische Universität Dresden

³Bolyai Institut, SZTE TTIK Szeged

⁴LENS, LUT University

April 29, 2025

⁵Department of Mathematics "Federigo Enriques", Università degli studi di Milano

Table of Contents

Parallel source with one reflector

Parallel source with two reflectors

Point source with one reflector

Point source with two reflectors

Generalized formulations of the problem

Introductory Problem

Figure:
$$V(x, y) = d(P, A) + d(A, Q)$$

Optical Path Length

Let the path length be

$$V := \underbrace{d(P,A)}_{u(x)} + d(A,Q)$$

$$V = u(x) + \sqrt{(x - y)^2 + (L + u(x))^2}$$

Differentiating $\frac{\partial V}{\partial x}$, only one term depending on y remains:

000000

Let the path length be

$$V := \underbrace{d(P,A)}_{u(x)} + d(A,Q)$$

$$V = u(x) + \sqrt{(x - y)^2 + (L + u(x))^2}$$

Differentiating $\frac{\partial V}{\partial y}$, only one term depending on y remains:

$$0 = u'(x) + \frac{(x-y) + (L+u(x))u'(x)}{\sqrt{(x-y)^2 + (L+u(x))^2}}$$

000000

Let
$$m : [x_L, x_R] \to [y_L, y_R], \ m(x) := y.$$

Energy conservation law:

$$\int_{x_{l}}^{x} E(\xi) d\xi = \pm \int_{m(x_{l})}^{m(x)} G(y) dy$$
$$\int_{x_{l}}^{x} E(\xi) d\xi = \pm \int_{x_{l}}^{x} G(m(\xi)) \cdot m'(\xi) dx$$

The function *m*

ParallelS1R

000000

Let $m: [x_I, x_R] \to [y_I, y_R], \ m(x) := y.$

Energy conservation law:

$$\int_{x_i}^{x} E(\xi) d\xi = \pm \int_{m(x_i)}^{m(x)} G(y) dy$$
$$\int_{x_i}^{x} E(\xi) d\xi = \pm \int_{x_i}^{x} G(m(\xi)) \cdot m'(\xi) dx$$

To find m(x), we numerically solve the ODE

$$m'(x) = \pm \frac{E(x)}{G(m(x))}, \quad m(x_l) = \begin{cases} y_L, \text{ positive } \pm \\ y_R, \text{ negative } \pm \end{cases}$$

The main equation

Now that we have an equation y = m(x), we can insert it into the main equation:

$$u'(x) = \frac{m(x) - x}{\sqrt{(x - m(x))^2 + (L + u(x))^2} + L + u(x)}$$

 \implies solve V(x, m(x)) numerically!

000000

Figure: Computed solutions for E(x) = 1, G(y) = 1, S = [1, 2], T = [3, 7], L = 1 and u(1) = 4

00000

Figure: Computed solution for $E(x) = (e^{5(x-1.5)} + e^{-5(x-1.5)})^{-1}$, G(y) = 2 - ||2y - 10|| - 2|, S = [1, 2], T = [3, 7], L = 1 and u(1) = 4

To compute $y_2 = m(y_1)$ we use the energy conservation law again

$$\int_{y_l}^y G_1(\eta)d\eta = \int_{y_l}^y G_2(m(\eta))m'(\eta)d\eta$$

Computing the m function

To compute $y_2 = m(y_1)$ we use the energy conservation law again

$$\int_{y_l}^y G_1(\eta)d\eta = \int_{y_l}^y G_2(m(\eta))m'(\eta)d\eta$$

and obtain the ODE

$$m'(y) = \pm \frac{G_1(y)}{G_2(m(y))}, \quad m(y_{1,L}) = \begin{cases} y_{2,L}, \ \pm \ \text{positive} \\ y_{2,R}, \ \pm \ \text{negative} \end{cases}$$

The t vector

Using the function m, we can compute the final ray direction $\hat{\mathbf{t}} = \frac{\mathbf{t}}{||\mathbf{t}||}$ as

$$\mathbf{t}(y) = \begin{bmatrix} m(y) - y \\ L_2 - L_1 \end{bmatrix}$$

The t vector

Using the function m, we can compute the final ray direction $\hat{\mathbf{t}} = rac{\mathbf{t}}{||\mathbf{t}||}$ as

$$\mathbf{t}(y) = \begin{bmatrix} m(y) - y \\ L_2 - L_1 \end{bmatrix}$$

and the coordinates of B

$$B = \begin{bmatrix} -w(y)\hat{t}_1(y) + y \\ -w(y)\hat{t}_2(y) + L_1 \end{bmatrix}$$

Generalizations

To find y = m(x) we solve the ODE

$$\tilde{m}'(x) = \pm \frac{E(x)}{G_1(\tilde{m}(x))}, \quad \tilde{m}(x_l) = \begin{cases} y_{1,L}, \pm \text{ positive} \\ y_{1,R}, \pm \text{ negative} \end{cases}$$

$$V(x,y) = \underbrace{d(P,A)}_{u(x)} + \underbrace{d(A,B)}_{d} + \underbrace{d(B,Q_1)}_{w(y)}$$

Considering that

$$\frac{\partial V}{\partial x} = 0$$
 and $\frac{\partial V}{\partial y} = \hat{t}_1(y)$

We can now compute V(x, y) = V(y) by solving the second equation!

Computing w

► Two different equations for *d* in dependence of *x* and *y* respectively motivate the hope for cancellations:

$$d^2 = (V - u - w)^2$$
 and $d^2 = d(A, B)^2$

Computing w

Two different equations for d in dependence of x and y respectively motivate the hope for cancellations:

$$d^2 = (V - u - w)^2$$
 and $d^2 = d(A, B)^2$

Eventually, we derive

$$w = \frac{-(u-V)^2 + (y-x)^2 + (L_1-u)^2}{2(u-V+\hat{t}_1(y-x)+\hat{t}_2(L_1-u))}$$

Computing u

We compute the derivative for the first equation with respect to \boldsymbol{x} and isolate the term \boldsymbol{u}' to obtain

$$u' = \frac{x - y + w\hat{t}_1}{w - V + L_1 - w\hat{t}_2}$$

We compute the derivative for the first equation with respect to x and isolate the term u' to obtain

$$u' = \frac{x - y + w\hat{t}_1}{w - V + L_1 - w\hat{t}_2}$$

We can substitute every occurrence of y, w, \hat{t} and V and reach something in the form

$$u' = f(x, u)$$

Figure: Computed solutions for $E(x) = (e^{5(x-1.5)} + e^{-5(x-1.5)})^{-1}$, G(y) = 1, S = [0, 1], $T_1 = [10, 13]$, u(1) = 4 and w(10) = 6

Test problems

Figure: Computed solution for $E(x) = (e^{5(x-1.5)} + e^{-5(x-1.5)})^{-1}$, $G_1(y) = 1$, $G_2(y_2) = 2 + y_2$ S = [0, 1], $T_1 = [7, 13]$, U(1) = 4 and U(7) = 8

Point source with one reflector

ParallelS1R

Generalizations

Point source with one reflector

- ► Traditional cartesian coordinates or radians are impractical ⇒ choose stereographic projection
- The use of this parameter x gives us the **s** vector $\mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$ with $||\mathbf{s}|| = 1$ and

$$s_1 = \frac{2x}{1+x^2}$$
 $s_2 = \frac{1-x^2}{1+x^2}$

ightharpoonup y = m(x) is a very similar ODE:

$$m'(x) = \pm \frac{E(x)||s'(x)||}{G(m(x))}, \quad m(x_L) = \begin{cases} y_L, \pm \text{ positive} \\ y_R, \pm \text{ negative} \end{cases}$$

ightharpoonup y = m(x) is a very similar ODE:

$$m'(x) = \pm \frac{E(x)||s'(x)||}{G(m(x))}, \quad m(x_L) = \begin{cases} y_L, \pm \text{ positive} \\ y_R, \pm \text{ negative} \end{cases}$$

• u(x) := d(0, A) = ||A(x)|| the distance between source and A with new coordinates $A(u(x)\hat{s}_1(x), u(x)\hat{s}_2(x))$

The main equation

ParallelS1R

► Starting with the optical path length

$$V = u(x) + d(A, Q) = V(y)$$

$$V = u + \sqrt{u^2 + y^2 - 2yu\hat{s}_1 + L^2 + 2u\hat{s}_2L}$$

The main equation

► Starting with the optical path length

$$V = u(x) + d(A, Q) = V(y)$$

$$V = u + \sqrt{u^2 + y^2 - 2yu\hat{s}_1 + L^2 + 2u\hat{s}_2L}$$

▶ After computing the derivative in respect to x we get the final equation

$$u' = \frac{yu\hat{s}_1' - u\hat{s}_2'L}{\sqrt{u^2 + y^2 - 2yu\hat{s}_1 + L^2 + 2u\hat{s}_2L} + u - 2y\hat{s}_1 + \hat{s}_2L}$$

Figure: Computed solutions for E(x) = 1, G(y) = 1, $\theta = \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$, T = [4, 7] and $u_0 = 6$

Point source with two reflectors

$$m'(y_1) = \pm \frac{G_1(y_1)}{G_2(m(y_1))}$$
 $m(y_{1,L}) = \begin{cases} y_{2,L}, & \pm \text{ positive} \\ y_{2,R}, & \pm \text{ negative} \end{cases}$

Normalized direction vector \hat{t} as

$$\hat{t} = \frac{t}{||t||}$$
 $t = \begin{bmatrix} m(y_1) - y_1 \\ L_2 - L_1 \end{bmatrix}$

The function \tilde{m} and the vector s

• express the mapping in terms of s(x):

$$s(x) = \begin{bmatrix} s_1(x) \\ s_2(x) \end{bmatrix},$$

$$s_1(x) = \frac{2x}{1+x^2},$$

$$s_2(x) = \frac{1-x^2}{1+x^2}$$

obtain ODE of familiar form

• express the mapping in terms of s(x):

$$s(x) = \begin{bmatrix} s_1(x) \\ s_2(x) \end{bmatrix},$$

$$s_1(x) = \frac{2x}{1+x^2},$$

$$s_2(x) = \frac{1-x^2}{1+x^2}$$

obtain ODE of familiar form

$$ilde{m}'(x) = \pm rac{E(x)||s'(x)||}{G_1(ilde{m}(x))}, \quad ilde{m}(x_L) = egin{cases} y_{1,L}, \pm \text{ positive} \\ y_{1,R} \pm \text{ negative} \end{cases}$$

Generalizations

$$\frac{\partial V}{\partial v} = \hat{t}_1(y), \quad V(y_L) = V_0$$

ODE for the function V(y)

Generalizations

ParallelS1R

$$\frac{\partial V}{\partial v} = \hat{t}_1(y), \quad V(y_L) = V_0$$

ODE for the function V(y)

$$(V - u - w)^2 = d(A, B)^2 = (y - w\hat{t}_1 - u\hat{s}_1)^2 + (L_1 - w\hat{t}_2 - u\hat{s}_2)^2$$

$$\frac{\partial V}{\partial y} = \hat{t}_1(y), \quad V(y_L) = V_0$$

ODE for the function V(y)

$$(V - u - w)^2 = d(A, B)^2 = (y - w\hat{t}_1 - u\hat{s}_1)^2 + (L_1 - w\hat{t}_2 - u\hat{s}_2)^2$$

$$w = \frac{V^2 - 2uV - y^2 + 2u\hat{s}_1y - L_1^2 + 2L_1u\hat{s}_2}{2(V - u - y\hat{t}_1) + u\hat{t}_1\hat{s}_1 - L_1\hat{t}_2 + u\hat{t}_2\hat{s}_2)}$$

ODE for u(x)

$$u' = \frac{-u\hat{s}_1'y + wu\hat{t}_1\hat{s}_1' - L_1u\hat{s}_2' + wu\hat{t}_2\hat{s}_2'}{-V + w + \hat{s}_1y - w\hat{t}_1\hat{s}_1 + L_1\hat{s}_2 - w\hat{t}_2\hat{s}_2}, \qquad u(x_L) = u_0$$

Figure: Computed solutions for E(x)=1, $G_1(y_1)=1$, $G_2(y_2)=1$, $\theta=\left[\frac{\pi}{4},\frac{\pi}{2}\right]$, $T_1=[6,8]$, $T_2=[6.2,7.5]$, $u_0=6$ and $w_0=5$

Figure: Computed solutions for E(x) = 1, $G_1(y_1) = 1$, $G_2(y_2) = 1$, $\theta = \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, $T_1 = [6, 8]$, $T_2 = [6.2, 7.5]$, $u_0 = 6$ and $w_0 = 5$

Figure: Computed solution and ray traced validation of the system

Generalized formulations of the problem

ParallelS1R

Generalizations

All distributions are directed density sources

- interval light distributions can be interpreted as *light distributions* with an angle: $\sin \alpha = 1$ if parallel.
- two interval densities can be interpreted as *light distributions* with an angle: $\cos \alpha(x)$ depends on x
- all point sources can be interpreted as parallel interval sources: α implicitly given by the angular distribution in radians

Describe the single mirror case as a special case of the two mirror near field frame work.

$$V := u + d(A, F) + w$$

$$\begin{cases} w(y) \equiv 0, & F := \left(m(x), L\right) \\ w(y) \neq 0 \text{ a.e.}, & F := B = \begin{bmatrix} -w(y)\hat{t}_1(y) + y \\ -w(y)\hat{t}_2(y) + L_1 \end{bmatrix} \end{cases}$$

⇒ all near field problems can be interpreted in the two mirror, two directed densities frame work