Overview of Text Mining

Credit: some slides are adopted from Prof. Ray Wang's course from UNC Chapel Hill

Text explosion

The Washington Post

scientific publications

> 1K news items/day

> 110 M

27 M electronic health records

5 M 14 M biomedical publications digital volumes

English articles

The anatomy of a matrix for text mining.

Documents

Vector-space representation

J 11 U 4	ing optromy of traffic
	We study the complexity of influencing elections through bribery: How computationally complex is it for an external actor to determine whether by a certain amount of bribing voters a specified candidate can be made the election's winner? We study this problem for election systems as varied as scoring

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

The Vector Space View

- Data object: a user's ratings of movies, a piece of text, a patient's test results
- Attribute: a numerical property of the object
- A data object is represented as n-dimensional vector of attributes
 - Each attribute corresponds to one dimension of vector space
 - Numerical value on each dimension

$$\vec{X} = [x_1, x_2, \cdots, x_n]$$

- x_i is the numerical value of X at the ith dimension (attribute)
- Therefore, the entire dataset can be represented as a matrix (a collection of vectors)

Classification

- Data: a set/vector of attributes (features)
- Classifier: attributes (X) → categorical class label (Y)
- Key technique: supervised learning
 - availability of a training set of examples with class labels
- Training: learn classifier from training data
- Test: predict the class label of unseen data

Clustering

- Similar to classification, but no predefined classes (or training data)
- Attributes (X) → assignment to one of multiple clusters/groups
- Key technique: unsupervised learning
- Usually requires a metric of similarity/distance between data points
- Intuition:
 - Similarity within cluster
 - Dissimilarity across clusters

What is a Network?

• A network is a collection of points joined by lines

One thing these last two methods have in common...

Distance/Similarity Calculation

- The relevance of two vectors can be calculated based on distance/similarity measures
- s: $x, y \rightarrow [0, 1]$

$$\mathbf{x} = \langle x_1, x_2, \cdots, x_n \rangle$$

$$\mathbf{y} = \langle y_1, y_2, \cdots, y_n \rangle$$

- s(x, y) = ?
 - The more dimensions in common, the larger the similarity
 - The closer values in each dimension, the larger the similarity

Similarity Measures

• Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Cosine similarity

$$cos(\mathbf{x}, \mathbf{y}) = \frac{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}{\sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + \dots + y_n^2}} = \frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2} \cdot \sqrt{\sum_{i=1}^n y_i^2}}$$

We will get into the details of all these methods over the next few weeks. Work hard, and have fun!