Problem A. Collinearity

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

We have N points on a two-dimensional infinite coordinate plane.

The i-th point is at (x_i, y_i) .

Is there a triple of distinct points lying on the same line among the ${\cal N}$ points?

Constraints

- All values in input are integers.
- $3 \le N \le 10^2$
- $|x_i|, |y_i| \leq 10^3$
- If $i \neq j$, $(x_i, y_i) \neq (x_j, y_j)$.

Input

Input is given from Standard Input in the following format:

```
egin{bmatrix} N \ x_1 \ y_1 \ dots \ x_N \ y_N \ \end{pmatrix}
```

Output

If there is a triple of distinct points lying on the same line, print \mbox{Yes} ; otherwise, print \mbox{No} .

Sample 1

Input	Output
4	Yes
0 2	
0 1 0 2 0 3	
1 1	

The three points (0,1),(0,2),(0,3) lie on the line x=0.

Sample 2

Input	Output
14	No
5 5	
0 1	
2 5	
8 0	
2 1	
0 0	
3 6	
8 6	
5 9	
7 9	
3 4	
9 2	
9 8	
7 2	

Sample 3

Input	Output
9	Yes
8 2	
2 3	
1 3	
3 7	
1 0	
8 8	
5 6	
9 7	
0 1	