Reporte.md 2025-03-07

Reporte: Comparación de Modelos AlexNet desde Cero y Preentrenados utilizando CIFAR-10

Nombre: Bustos Benítez Sonia Valeria

Fecha de Entrega: 03/07/2025

1. Introducción

El objetivo de este trabajo es implementar una versión personalizada de AlexNet desde cero y comparar su desempeño con modelos preentrenados adaptados para el conjunto de datos CIFAR-10. Esto se llevó a cabo utilizando PyTorch y TensorFlow/Keras. La versión creada cuenta con 11 capas: 5 convolucionales, 3 de max pooling y 3 densas. A partir de los resultados, se evalúan las ventajas y limitaciones del aprendizaje desde cero frente al aprendizaje por transferencia.

2. Implementación

2.1. Conjunto de Datos: CIFAR-10

CIFAR-10 es un conjunto de datos compuesto por imágenes de 32x32 en 10 clases. El preprocesamiento incluyó:

- Normalización.
- Aumentación de datos (rotaciones, desplazamientos horizontales/verticales, volteo horizontal).

2.2. Arquitectura AlexNet

Ambos modelos creados desde cero compartieron la misma arquitectura:

- Capas Convolucionales (5): Extraen características visuales.
- Capas de Max Pooling (3): Reducen las dimensiones espaciales.
- Capas Densas (3): Con 4096 unidades en las dos primeras y 10 en la salida (una por clase).

2.3. Implementación de Modelos

Desde Cero:

- **PyTorch:** Se utilizó torch.nn.Module para construir la red desde cero. El entrenamiento empleó Adam como optimizador y entropía cruzada categórica como pérdida.
- **TensorFlow/Keras:** Se usó tf.keras.Sequential para construir el modelo desde cero. El flujo también incluyó aumentación de datos y callbacks para dinamizar el aprendizaje.

Preentrenados:

- **PyTorch:** AlexNet preentrenado con ImageNet.
- TensorFlow/Keras: VGG16 como alternativa a AlexNet, adaptado para 10 clases de CIFAR-10.

Reporte.md 2025-03-07

3. Resultados

3.1. Modelos desde Cero

PyTorch:

• Tiempo por Época: 5:33 minutos.

• Precisión en el Conjunto de Prueba: 70.93%.

• Resultados del Entrenamiento:

Epoch 10, Loss: 0.6899, Accuracy: 76.12%

Test Accuracy: 70.93%

TensorFlow/Keras:

• Tiempo por Época: ~7 minutos.

• Precisión en el Conjunto de Prueba: 73.02%.

• Resultados del Entrenamiento:

Epoch 10, Loss: 0.8467, Accuracy: 70.63%

Test Accuracy: 73.02%

3.2. Modelos Preentrenados

PyTorch:

• Tiempo por Época: 18 minutos.

• Precisión en el Conjunto de Prueba: 10.00%.

• Resultados del Entrenamiento:

Epoch 10, Loss: 2.3031, Accuracy: 9.84%

Test Accuracy: 10.00%

TensorFlow/Keras:

• Tiempo por Época: ~53 minutos.

• Precisión en el Conjunto de Prueba: 81.72%.

• Resultados del Entrenamiento:

Epoch 10, Loss: 0.8739, Accuracy: 72.88%

Test Accuracy: 81.72%

Reporte.md 2025-03-07

4. Análisis y Discusión

1. Modelos desde Cero:

 El modelo desarrollado desde cero en PyTorch mostró un desempeño aceptable (70.93%), aunque fue ligeramente superado por la versión en TensorFlow/Keras (73.02%). Este comportamiento puede deberse a diferencias en la optimización y manejo de regularización.

2. Modelos Preentrenados:

- La versión preentrenada en PyTorch no logró converger (10.00%). Esto sugiere un problema de configuración, como tasas de aprendizaje inadecuadas o mal manejo de los pesos congelados.
- La versión preentrenada en TensorFlow/Keras alcanzó una precisión significativamente mayor (81.72%), evidenciando las ventajas del aprendizaje por transferencia en tareas de clasificación.

3. Impacto del Conjunto de Datos:

 CIFAR-10, por ser un conjunto relativamente pequeño, limita el desempeño de los modelos desde cero en comparación con los preentrenados que aprovechan características extraídas de conjuntos masivos como ImageNet.

4. Eficiencia de Entrenamiento:

- Los modelos desde cero entrenaron más rápido (5-7 minutos por época) que los preentrenados en TensorFlow/Keras (53 minutos por época).
- Sin embargo, la precisión de los preentrenados valida su costo computacional en tareas de alta importancia.

5. Conclusiones

- 1. **Modelos Desde Cero:** Ofrecen una buena base para entender la arquitectura y entrenar en conjuntos pequeños, pero su desempeño no compite con los preentrenados.
- 2. **Modelos Preentrenados:** En TensorFlow/Keras, estos modelos lograron un aprendizaje más rápido y mejores resultados (81.72%). Sin embargo, el modelo en PyTorch requiere ajustes para converger.
- 3. **Recomendación:** Para tareas prácticas, priorizar modelos preentrenados con fine-tuning, ya que maximizan precisión y generalización.