```
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
!pip install missingno
import missingno as msno
from datetime import date
from sklearn.metrics import accuracy score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import LocalOutlierFactor # çok değişkenli aykırı değer yakalama
from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler, RobustScaler
pd.set option("display.max columns", None)
pd.set_option("display.max_rows", None)
pd.set_option("display.float_format", lambda x: "%.3f" %x)
pd.set_option("Display.width", 500)
def load application train():
 data = pd.read_csv("/content/application_train.csv")
 return data
df = load_application_train()
df.head()
```

	SK_I	D_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AM
(0	100002	1	Cash loans	М	N	Υ	0	
	1	100003	0	Cash loans	F	N	N	0	
2	2	100004	0	Revolving loans	M	Υ	Υ	0	
,	3	100006	0	Cash loans	F	N	Υ	0	
4	4	100007	0	Cash loans	М	N	Υ	0	


```
def load():
   data = pd.read_csv("/content/titanic.csv")
```

return data

df = load()
df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
0	1	0	3	Braund, Mr. Owen Harris	male	22.000	1	0	A/5 21171	7.250	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.000	1	0	PC 17599	71.283	C85	

✓ AYKIRI DEĞERLERİ YAKALAMA

sns.boxplot(x=df["Age"])
plt.show() # sayısal değişken göstermede kutu ve histogram grafik

Aykırı değerler nasıl yakalanır ??

```
q1 = df["Age"].quantile(0.25)
     20.125
q3 = df["Age"].quantile(0.75)
     38.0
iqr = q3 - q1
iqr
     17.875
up = iqr * 1.5 + q3
     64.8125
low = q1 - 1.5 * iqr
```

aykırı değerlerimizi bulalım

-6.6875

df[(df["Age"] < low) | (df["Age"] > up)]

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
33	34	0	2	Wheadon, Mr. Edward H	male	66.000	0	0	C.A. 24579	10.500	NaN	
54	55	0	1	Ostby, Mr. Engelhart Cornelius	male	65.000	0	1	113509	61.979	B30	
96	97	0	1	Goldschmidt, Mr. George B	male	71.000	0	0	PC 17754	34.654	A5	
116	117	0	3	Connors, Mr. Patrick	male	70.500	0	0	370369	7.750	NaN	
280	281	0	3	Duane, Mr. Frank	male	65.000	0	0	336439	7.750	NaN	
456	457	0	1	Millet, Mr. Francis Davis	male	65.000	0	0	13509	26.550	E38	

```
df[(df["Age"] < low) | (df["Age"] > up)].index

# index değerlerini elde ettik

Int64Index([33, 54, 96, 116, 280, 456, 493, 630, 672, 745, 851], dtype='int64')

Aykırı Değer Var mı? Yok mu?

df[(df["Age"] < low) | (df["Age"] > up)].any(axis=None) # önemli satırve sutunun hepsine bakmak istediğimizden x=None dedik

True

# sonucu boş olan birşeyi deneyelim . low dan küçük değerler var mı diye bakalım

df[(df["Age"] < low )].any(axis=None)

# low değeri - idi , - yaş olmadığı için boş yani false olrak döndü zaten yukarda kutu grafikte de aşağı yönde aykırı değer yok

False
```

X FONKSİYONLAŞTIRMA

🦫 önce up ve low değerleri 🥞 sonra aykırı değerler

```
low_limit, up_limit = outlier_tresholds(df, "Fare") # istedigimiz kolon için atama yapabiliriz

## Aykırı değer olup olmadığını kontrol eden fonksiyon :

def check_outlier(data,col_name): # eğer outlier_treshold daki q1 ve/veya q3 değerlerini ön tanımlı değerlerden faklı girmek istersek onu da bu satıra ekliyoruz ! (df,col_name,q1= 0.1) gibi
low_limit, up_limit = outlier_tresholds(data, col_name)
if data[(data[col_name] > up) | (data[col_name] < low)].any(axis=None):
    return True
else:
    return False

check_outlier(df, "Age")
    True

check_outlier(df, "Age")
    True</pre>
```

▶ Verimizin içindeki **sayısal** değerleri bulup onlarda aykırı değer var mı yok mu bakalım

Grab_col_names

dff = load_application_train()
dff.head(2)

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AM
0	100002	1	Cash loans	М	N	Υ	0	
1	100003	0	Cash loans	F	N	N	0	

dff.info() # 122 adet sutün var, her birinde tek tek aykırı değer aramak mantıklı olmaz

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                Non-Null Count Dtype
# Column
                -----
    PassengerId 891 non-null
                               int64
    Survived 891 non-null
                              int64
                891 non-null
    Pclass
                             int64
           891 non-null
3
    Name
                             object
              891 non-null
4
    Sex
                             object
   Age 714 non-null SibSp 891 non-null Parch 891 non-null
5
                             float64
6
                              int64
7
                              int64
    Ticket 891 non-null
                             object
9 Fare
                891 non-null
                              float64
10 Cabin
                204 non-null
                               obiect
                889 non-null
11 Embarked
                               object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

- X Kategorik değişken örnek : cinsiyet , Embarked (titanic)
- Sayısal görünümlü kategorik değişken mesela 1, 2, 3 olarak 3 sınıf varsa bu Sayısal görünümlü kategorik değişkendir. (titanic veri setindeki pclass / survived)
- X KAtegorik görünümlü olup bilgi taşımayanlar (NAme, Ticked, cat_th: numerik gözüken kategorik değişkenler için eşik değeri car_th: katogorik görünen ama kardınal değişkenler için eşik değeri cat_cols: KAtegorik değişken listesi num_cols: Numerik değişken listesi

```
def grab_col_names(dataframe, cat_th =10, car_th =20):
   cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes == "0"]
   num_but_cat = [col for col in dataframe.columns if dataframe[col].nunique() < cat_th and</pre>
                  dataframe[col].dtypes != "0"]
   cat_but_car = [col for col in dataframe.columns if dataframe[col].nunique() > car_th and
                  dataframe[col].dtypes == "0"]
   cat_cols = cat_cols + num_but_cat
   cat cols = [col for col in cat cols if col not in cat but car]
   # num cols
   num cols = [col for col in dataframe.columns if dataframe[col].dtypes != "0"]
   num_cols = [col for col in num_cols if col not in num_but_cat]
   print(f"Observations: {dataframe.shape[0]}")
   print(f"Variables: {dataframe.shape[1]}")
   print(f'cat_cols: {len(cat_cols)}')
   print(f'num_cols: {len(num_cols)}')
   print(f'cat_but_car: {len(cat_but_car)}')
   print(f'num_but_cat: {len(num_but_cat)}')
   return cat cols, num cols, cat but car
```

grab col names(df

+ Metin

+ Kod

```
Observations: 891
Variables: 12
cat_cols: 6
num_cols: 3
cat_but_car: 3
num_but_cat: 4
(['Sex', 'Embarked', 'Survived', 'Pclass', 'SibSp', 'Parch'],
        ['PassengerId', 'Age', 'Fare'],
        ['Name', 'Ticket', 'Cabin'])
```

✓ 0 sn. tamamlanma zamanı: 22:59

https://colab.research.google.com/drive/145s1i8PRwSvXr4ncjpjRCkOmbl911LH8#scrollTo=vaONye3OY5eV&printMode=true