Prof. Dr. Özlem Imamoglu

Nur die Aufgaben mit einem * werden korrigiert.

5.1. MC Fragen: Folgenkonvergenz Wählen Sie die richtigen Antworten.

(a) Wir nehmen an, dass $\sum_{n=1}^{\infty} c_n$ absolut konvergiert und $\alpha > 0$. Definiere:

$$a_n = c_n \alpha^n$$
$$b_n = nc_n \alpha^{n-1}$$

Welche Aussage trifft zu?

- $\square \lim_{n \to +\infty} \sup_{n \to +\infty} |a_n|^{1/n} > \lim_{n \to +\infty} \sup_{n \to +\infty} |b_n|^{1/n}.$
- $\square \lim_{n \to +\infty} \sup_{n \to +\infty} |a_n|^{1/n} < \lim_{n \to +\infty} \sup_{n \to +\infty} |b_n|^{1/n}.$
- $\square \lim \sup_{n \to +\infty} |a_n|^{1/n} = \lim \sup_{n \to +\infty} |b_n|^{1/n}.$
- \Box Die Informationen genügen nicht um zu schliessen.
- (b) Wir nehmen an, dass $\sum_{k=1}^{\infty} a_k$ absolut konvergiert und dass $\sum_{k=1}^{\infty} b_k$ konvergiert. Geben Sie die korrekte Antwort auf folgende zwei Fragen an.
 - (A) Die Reihe $\sum_{k=1}^{\infty} |a_k|^2$
 - \square konvergiert nicht unbedingt.
 - \square konvergiert immer, aber konvergiert nicht unbedingt absolut.
 - \Box konvergiert immer absolut.
 - $\Box\,$ keine der obigen Aussagen trifft zu.
 - (B) Die Reihe $\sum_{k=1}^{\infty} a_k b_k$
 - □ konvergiert nicht unbedingt.
 - \square konvergiert immer, aber konvergiert nicht unbedingt absolut.
 - $\hfill \square$ konvergiert immer absolut.
 - $\Box\,$ keine der obigen Aussagen trifft zu.

(c) Wir nehmen an, dass $\sum_{k=1}^{\infty} a_k$ divergiert und dass $\sum_{k=1}^{\infty} b_k$ divergiert. Die Reihe

$$\sum_{k=1}^{\infty} a_k b_k$$

- \square konvergiert nicht unbedingt.
- \square konvergiert immer, aber konvergiert nicht unbedingt absolut.
- \square konvergiert immer absolut.
- \Box keine der obigen Aussagen trifft zu.
- **5.2.** Wurzelkriterium "starker" als Quotientkriterium. Zeigen Sie, dass Folgendes gilt:

$$\liminf \left|\frac{a_{n+1}}{a_n}\right| \leq \liminf \left|a_n\right|^{1/n} \leq \limsup \left|a_n\right|^{1/n} \leq \limsup \left|\frac{a_{n+1}}{a_n}\right|.$$

 $\pmb{*5.3.}$ Reihen I Untersuchen Sie folgende Reihen auf Konvergenz und absolute Konvergenz.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2} - \sqrt{n+1}}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!(2n)!\sin(n^{17})}{(3n)!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{5n+2^n}{3^n}$$

*5.4. Reihen II Finden Sie den Konvergenzradius von

$$\sum_{i=1}^{\infty} \frac{(n!)^3}{(3n)!} x^n.$$