Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 12

Nicolás Cagliero

June 24, 2025

Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable, cuando es llamado Σ -enumerable y defina "el programa $\mathcal P$ enumera a S"

Respuesta:

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -computable.

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -enumerable cuando sea vacío o haya una función $F:\omega\to\omega^n\times\Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ sea Σ -computable, para cada $i\in\{1,\ldots,n+m\}$

Un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ enumera a S cuando:

- (a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado $\|x\|$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
- (b) Para cada $(x_1,...x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$