boston-aiml

March 17, 2024

```
[1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme(style = "darkgrid")

import warnings
warnings.filterwarnings("ignore", category = Warning)

from sklearn.datasets import load_boston
boston = load_boston()
```

#Make sure the data is loaded correctly.

```
[2]: data_url = "http://lib.stat.cmu.edu/datasets/boston"
    col_names = boston.feature_names
    df = pd.DataFrame(boston.data, columns = col_names)
    df['MEDV'] = boston.target

# Make sure the data is loaded correctly.
    df.head()
```

```
[2]:
          CRIM
                                                  AGE
                  ZN
                      INDUS
                             CHAS
                                     NOX
                                             RM
                                                          DIS
                                                               RAD
                                                                      TAX \
    0 0.00632 18.0
                       2.31
                              0.0
                                  0.538
                                          6.575
                                                 65.2 4.0900
                                                               1.0
                                                                    296.0
    1 0.02731
                       7.07
                                                 78.9 4.9671
                 0.0
                              0.0 0.469
                                          6.421
                                                               2.0
                                                                    242.0
    2 0.02729
                 0.0
                       7.07
                              0.0 0.469
                                          7.185
                                                 61.1 4.9671
                                                               2.0
                                                                    242.0
    3 0.03237
                 0.0
                       2.18
                              0.0 0.458
                                          6.998
                                                 45.8 6.0622
                                                               3.0
                                                                    222.0
    4 0.06905
                 0.0
                       2.18
                              0.0 0.458
                                          7.147
                                                 54.2 6.0622
                                                              3.0 222.0
                     B LSTAT MEDV
       PTRATIO
    0
          15.3
                396.90
                         4.98
                               24.0
    1
          17.8
                396.90
                         9.14
                               21.6
    2
          17.8
                392.83
                         4.03
                               34.7
    3
          18.7
                394.63
                         2.94
                               33.4
          18.7 396.90
                         5.33
                               36.2
```

#1. The model possible for this house price prediction are "Linear regression model", "Random forest".

#The output for this problem is expected to be a scalar (a constant).

1 2.Model Input / Output

```
[3]: x = df.iloc[:,:-1]
y = df["MEDV"]

# According to the defenition in this dataset, it is suitable to define "MEDV"⊔

→as output and others variables as input features.
```

2 3.EDA

```
[4]: print(df.describe())
  fig, ax = plt.subplots(ncols = 7, nrows = 2,figsize = (12, 12))
  index = 0
  ax = ax.flatten()
  for k, v in df.items():
     sns.boxplot(y = k, data = df, ax = ax[index])
     index += 1

plt.tight_layout(pad = 0.4, w_pad = 0.5, h_pad = 5.0)

# According to the result of brief EDA, CHAS is a dummy, while the others are
     numerical feartures.
# The variaties of the features are quite high; therefore, regularization is
     required.
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
	AGE	DIS	RAD	TAX	PTRATIO	В	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
75%	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	

	LSTAT	MEDV
count	506.000000	506.000000
mean	12.653063	22.532806
std	7.141062	9.197104
min	1.730000	5.000000
25%	6.950000	17.025000
50%	11.360000	21.200000
75%	16.955000	25.000000
max	37.970000	50.000000

[5]: # Absolute correlation coefficients among all variables.
corr = df.corr().abs()
sns.heatmap(corr)

It seems that (besides dummy) some of the features are correlated to \Box \Box themselves.

[5]: <AxesSubplot:>

[6]: # There's no missing value in the dataset.
df.isnull().sum()

[6]: CRIM 0 ZN 0 INDUS 0 CHAS 0 NOX 0 RM0 AGE 0 DIS 0 RAD 0 TAX PTRATIO 0 LSTAT 0 MEDV 0 dtype: int64

```
[7]: # DataPreprocessing
     # Ignore correlation coefficients which are too low to the output (set at 0.35).
    cor limit = 0.35
    corr_list = x[x.columns[:]].apply(lambda x : x.corr(y))
    cols = []
    for i in corr_list.index:
      if (corr_list[i] >= cor_limit or corr_list[i] <= -cor_limit):</pre>
        cols.append(i)
     # New data(x, input) with high correlation (HC) coefficients with Y.
    HC_x = df[cols]
    HC_x.head()
[7]:
          CRIM
                  ZN INDUS
                               NOX
                                       RM
                                            AGE RAD
                                                        TAX PTRATIO LSTAT
    0 0.00632 18.0
                       2.31 0.538 6.575 65.2 1.0 296.0
                                                                      4.98
                                                               15.3
    1 0.02731
                 0.0
                      7.07 0.469 6.421 78.9 2.0 242.0
                                                               17.8
                                                                      9.14
    2 0.02729 0.0
                      7.07 0.469 7.185 61.1 2.0 242.0
                                                                      4.03
                                                               17.8
    3 0.03237
                 0.0
                      2.18 0.458 6.998 45.8 3.0 222.0
                                                               18.7
                                                                      2.94
    4 0.06905
                 0.0
                       2.18 0.458 7.147 54.2 3.0 222.0
                                                               18.7
                                                                      5.33
[8]: # Regularization. For the large variaties in the input features.
     # MaxAbsScaler - For the highest explain power among all scalers from view of \Box
     →PCA and high predition accuracy.
    from sklearn.preprocessing import MaxAbsScaler
    Z = HC_x
    scaler = MaxAbsScaler()
    scaler.fit(Z)
    Z = scaler.transform(Z)
    HC_x.iloc[:,:] = Z
    #decomposition(PCA if needed)
    from sklearn.decomposition import PCA
    pca = PCA(n\_components = 2)
    L = pca.fit_transform(Z)
    #explain percentage
    pca_explained = PCA()
    pca_explained.fit(Z)
```

[8]: '\n#decomposition(PCA if needed)\nfrom sklearn.decomposition import PCA\n\npca =
 PCA(n_components = 2)\nL = pca.fit_transform(Z)\n\n\n#explain
 percentage\npca_explained = PCA()\npca_explained.fit(Z)\np_pca =
 np.round(pca_explained.explained_variance_ratio_, 2)\nprint("The 2 components
 explain percentage : " + str(round(p_pca[0]+p_pca[1],4)))\n'

```
[9]: # Make sure the input is regularized.
HC_x.describe()
```

[9]:		CRIM	ZN	INDUS	NOX	RM	AGE	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	0.040612	0.113636	0.401470	0.636849	0.715790	0.685749	
	std	0.096672	0.233225	0.247309	0.133040	0.080025	0.281489	
	min	0.000071	0.000000	0.016583	0.442021	0.405581	0.029000	
	25%	0.000922	0.000000	0.187094	0.515499	0.670330	0.450250	
	50%	0.002883	0.000000	0.349315	0.617681	0.707118	0.775000	
	75%	0.041327	0.125000	0.652487	0.716418	0.754385	0.940750	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
		RAD	TAX	PTRATIO	LSTAT			
	count	506.000000	506.000000	506.000000	506.000000			
	mean	0.397892	0.574173	0.838888	0.333238			
	std	0.362802	0.237042	0.098407	0.188071			
	min	0.041667	0.263010	0.572727	0.045562			
	25%	0.166667	0.392405	0.790909	0.183039			
	50%	0.208333	0.464135	0.865909	0.299184			
	75%	1.000000	0.936709	0.918182	0.446537			
	max	1.000000	1.000000	1.000000	1.000000			

3 4. Training set and Testing set separation. (by 15%)

```
[10]: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(HC_x, y, test_size = 0.15)
```

4 5.Fitting of each ML model.

```
[11]: from sklearn import metrics
  from sklearn.linear_model import LinearRegression

# Create a Linear Regression Model.
lm = LinearRegression()
```

```
lm.fit(x_train, y_train)
      LinearRegression(fit_intercept=True, n_jobs=None)
[11]: LinearRegression()
[12]: # Model fitting on training data.
      y_pred_lm = lm.predict(x_train)
      print('R^2:',round(metrics.r2_score(y_train, y_pred_lm), 4))
      print('Adjusted R^2:',round(1 - (1-metrics.r2_score(y_train,_
       y_{pred_lm})*(len(y_{train} - 1)/(len(y_{train}) - x_{train.shape}[1] - 1),4))
      print('MSE:',round(metrics.mean_squared_error(y_train, y_pred_lm),4))
     R^2: 0.6993
     Adjusted R^2: 0.6921
     MSE: 26.1001
[13]: # Predicting with the testing data.
      y_test_pred_lm = lm.predict(x_test)
      # Model Evaluation
      score_linreg = metrics.r2_score(y_test, y_test_pred_lm)
      print('R^2:', round(score_linreg,4))
      print('Adjusted R^2:',round(1 - (1-metrics.r2_score(y_test,__
       \rightarrowy_test_pred_lm))*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1),4))
      print('MSE:',round(metrics.mean_squared_error(y_test, y_test_pred_lm),4))
     R^2: 0.6793
     Adjusted R^2: 0.63
     MSE: 22.7771
[14]: # Visualizing the differences between real prices and predicted prices.
      plt.scatter(y train, y pred lm)
      plt.xlabel("Real Prices")
      plt.ylabel("Predicted Prices")
      plt.title("Real Prices vs Predicted prices")
      plt.show()
```

Real Prices vs Predicted prices

p_val of normality test is: 8.049803151117528e-36, so it's normally distributed.


```
[16]: # Import Random Forest Regressor.
      from sklearn.ensemble import RandomForestRegressor
      # Create a Random Forest Regressor.
      rfm = RandomForestRegressor()
      rfm.fit(x_train, y_train)
```

[16]: RandomForestRegressor()

```
[17]: # Model fitting on training data.
      y_pred_rf = rfm.predict(x_train)
      print('R^2:',round(metrics.r2_score(y_train, y_pred_rf),4))
      print('Adjusted R^2:',round(1 - (1-metrics.r2_score(y_train,_
       y_{\text{pred_rf}})*(len(y_train)-1)/(len(y_train)-x_train.shape[1]-1),4))
      print('MSE:',round(metrics.mean_squared_error(y_train, y_pred_rf),4))
```

R^2: 0.976

Adjusted R^2: 0.9754

MSE: 2.083

```
[18]: # Predicting with the testing data.
      y_test_pred_rf = rfm.predict(x_test)
```

R^2: 0.8663

Adjusted R^2: 0.8458

MSE: 9.4939

```
[19]: # Visualizing the differences between actual prices and predicted values
    plt.scatter(y_train, y_pred_rf)
    plt.xlabel("Real Prices")
    plt.ylabel("Predicted Prices")
    plt.title("Real Prices vs Predicted prices")
    plt.show()
```



```
[20]: # Checking of Normality of residuals.
statsn, pval = stats.normaltest(y_train - y_pred_rf)
print("p_val of normality test is : " + str(pval) + ", so it's normally

distributed." + "\n")
```

```
sns.distplot(y_train - y_pred_rf)
plt.title("Histogram of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.show()
```

p_val of normality test is: 1.3311902577279215e-21, so it's normally distributed.


```
[21]: # Comparison of Linear Regression model and Random Forest Regressor.
# It seems that both of the model do not occur serios overfitting or inder_
fitting problems.
# Random Forest Regressor seems to be outperforming the Linear Regression model.
```

5 5. Compare the accuracy with the regression models.

```
[22]: print("The defenition of Acc. Here is referring to R-squared score.")
print("Acc. of Linear Regression Model : " + str(round(score_linreg, 4)))
print("Acc. of Random Forest Model : " + str(round(score_rf, 4)))
```

The defenition of Acc. Here is referring to R-squared score. Acc. of Linear Regression Model : 0.6793

6 6.Neural Nnetwork

```
[23]: import keras
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Dense
      from tensorflow.keras.layers import Dropout
      from sklearn.metrics import r2_score
      # Since the prediction accuracy for the output of a scalar would be 0 for most_{\sqcup}
       ⇔of the scenarios.
      # Therefore, I decided to define the accuracy of NN model as R^2 as the
       ⇔classical linear regession model.
      n n n
      from tensorflow.keras import backend as K
      def ssr(y_true, y_pred):
       ss_res = K.sum(K.square(y_true - y_pred))
       ss\_tot = K.sum(K.square(y\_true - K.mean(y\_true)))
       return(1 - (ss_res / (ss_tot + K.epsilon())))
[23]: '\nfrom tensorflow.keras import backend as K\n\ndef ssr(y_true, y_pred):\n
      ss_res = K.sum(K.square(y_true - y_pred))\n ss_tot = K.sum(K.square(y_true -
      K.mean(y_true)))\n return(1 - (ss_res / (ss_tot + K.epsilon())))\n'
[24]: # NN Model stacking.
      model_nn = Sequential()
      model_nn.add(Dense(10, input_dim = len(HC_x.columns)))
      model_nn.add(Dense(10))
      model_nn.add(Dense(10))
      model_nn.add(Dense(1))
      model_nn.compile(loss = "mse", optimizer = "rmsprop", metrics = [r2_score],__
       →run_eagerly = True)
     model_nn.summary()
     2022-12-05 13:17:17.832387: I
     tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool
     with default inter op setting: 2. Tune using inter_op_parallelism_threads for
     best performance.
     Model: "sequential"
     Layer (type)
                                 Output Shape
                                                            Param #
```

```
(None, 10)
    dense (Dense)
                                                   110
                            (None, 10)
    dense_1 (Dense)
                                                   110
    dense 2 (Dense)
                            (None, 10)
                                                  110
    dense_3 (Dense) (None, 1) 11
    ______
    Total params: 341
    Trainable params: 341
    Non-trainable params: 0
[25]: # NN Model training.
     # This dataset is a small one, which may somehow occur overfitting problem.
     nn_result = model_nn.fit(x_train, y_train, batch_size = 20, epochs = 30,_
     ⇒validation_split = 0.10)
     fig, ax1 = plt.subplots()
     ax2 = ax1.twinx()
     ax1.plot(nn result.history["r2 score"], color = "g", label = "R2")
     ax2.plot(nn_result.history["loss"], color = "b", label = "Loss")
     ax1.set_ylabel("r2_score", color = "g")
     ax2.set_ylabel("loss", color = "b")
     plt.title("Model Accuracy")
     plt.xlabel("epoch")
     fig.legend()
     plt.show()
     print("Brief view on the result of training.")
    2022-12-05 13:17:18.279095: I
    {\tt tensorflow/compiler/mlir\_graph\_optimization\_pass.cc:185]}\ \ {\tt None}\ \ {\tt of}\ \ {\tt the}\ \ {\tt MLIR}
    Optimization Passes are enabled (registered 2)
    Epoch 1/30
    20/20 [============ ] - 5s 60ms/step - loss: 550.2806 -
    r2_score: -6.7891 - val_loss: 509.3455 - val_r2_score: -4.6462
    r2_score: -5.7202 - val_loss: 425.5466 - val_r2_score: -3.4199
    Epoch 3/30
```

```
r2_score: -4.3381 - val_loss: 325.2667 - val_r2_score: -2.0890
Epoch 4/30
20/20 [============ ] - 1s 57ms/step - loss: 272.6080 -
r2_score: -2.4913 - val_loss: 232.3489 - val_r2_score: -1.1219
Epoch 5/30
r2_score: -1.5415 - val_loss: 169.6804 - val_r2_score: -0.8865
Epoch 6/30
r2_score: -0.7720 - val_loss: 141.1949 - val_r2_score: -1.3927
Epoch 7/30
20/20 [============= ] - 1s 56ms/step - loss: 123.6893 -
r2_score: -0.6321 - val_loss: 134.1029 - val_r2_score: -1.2913
Epoch 8/30
r2_score: -0.5445 - val_loss: 127.1136 - val_r2_score: -1.3974
Epoch 9/30
20/20 [============= ] - 1s 59ms/step - loss: 111.0973 -
r2_score: -0.4840 - val_loss: 120.5698 - val_r2_score: -1.1983
Epoch 10/30
20/20 [============== ] - 1s 57ms/step - loss: 104.5461 -
r2_score: -0.3325 - val_loss: 114.5736 - val_r2_score: -1.3373
Epoch 11/30
r2_score: -0.2400 - val_loss: 107.4133 - val_r2_score: -0.9971
Epoch 12/30
r2_score: -0.1641 - val_loss: 101.6103 - val_r2_score: -1.0256
Epoch 13/30
r2_score: -0.1068 - val_loss: 94.0513 - val_r2_score: -0.6189
Epoch 14/30
20/20 [============ ] - 1s 57ms/step - loss: 80.8990 -
r2_score: 0.0031 - val_loss: 87.0259 - val_r2_score: -0.4735
Epoch 15/30
r2_score: -0.0844 - val_loss: 80.4614 - val_r2_score: -0.1584
Epoch 16/30
r2_score: 0.1561 - val_loss: 75.0943 - val_r2_score: 0.0083
Epoch 17/30
r2_score: 0.2196 - val_loss: 67.5616 - val_r2_score: -0.1237
Epoch 18/30
20/20 [============ ] - 1s 57ms/step - loss: 58.8932 -
r2_score: 0.2561 - val_loss: 61.2925 - val_r2_score: 0.0610
Epoch 19/30
```

```
r2_score: 0.3030 - val_loss: 56.9293 - val_r2_score: 0.1464
Epoch 20/30
r2_score: 0.3669 - val_loss: 52.6521 - val_r2_score: 0.2800
Epoch 21/30
r2_score: 0.3839 - val_loss: 50.2821 - val_r2_score: 0.5113
Epoch 22/30
r2_score: 0.4243 - val_loss: 47.6687 - val_r2_score: 0.5754
Epoch 23/30
r2_score: 0.4489 - val_loss: 43.6461 - val_r2_score: 0.5680
Epoch 24/30
20/20 [============ ] - 1s 57ms/step - loss: 43.6698 -
r2_score: 0.3358 - val_loss: 42.9058 - val_r2_score: 0.6188
Epoch 25/30
r2_score: 0.4956 - val_loss: 42.0499 - val_r2_score: 0.5124
Epoch 26/30
r2_score: 0.4265 - val_loss: 40.7416 - val_r2_score: 0.6342
Epoch 27/30
r2_score: 0.4792 - val_loss: 40.5412 - val_r2_score: 0.6510
Epoch 28/30
r2_score: 0.4988 - val_loss: 39.6165 - val_r2_score: 0.6539
r2_score: 0.4940 - val_loss: 39.2298 - val_r2_score: 0.6590
Epoch 30/30
r2_score: 0.4814 - val_loss: 37.5831 - val_r2_score: 0.6471
```


Brief view on the result of training.

```
[26]: # Examine the process of NN_model on loss and R2 score.
      plt.figure(figsize = (10, 8))
      plt.subplot(211)
      plt.plot(nn_result.history["loss"])
      plt.plot(nn_result.history["val_loss"])
      plt.title("Model Loss Value")
      plt.ylabel("Accuracy")
      plt.legend(["Training", "Validation"], loc = "upper left")
      plt.subplot(212)
      plt.plot(nn_result.history["r2_score"])
      plt.plot(nn_result.history["val_r2_score"])
      plt.title("Model Accuracy (R2 score)")
      plt.ylabel("Accuracy")
      plt.xlabel("Epochs")
      plt.legend(["Training", "Validation"], loc = "upper left")
      plt.show()
```



```
[27]: # Accuracy of well-trainde NN Model.
      scores = model_nn.evaluate(x_test, y_test)
      print("Accuracy of CNN is : " + str(round(scores[1],4)))
      #The accuracyt is quite unstable...
                             =======] - Os 38ms/step - loss: 38.5716 - r2_score:
     0.3765
     Accuracy of CNN is: 0.3765
[28]: # Compare the accuracy of all the regression models.
      print("The defenition of Acc. here is referring to R-squared score.")
      print("Acc. of Linear Regression Model : " + str(round(score_linreg, 4)))
      print("Acc. of Random Forest Model : " + str(round(score_rf, 4)))
      print("Acc. of Neural Network Model : " + str(round(scores[1],4)))
     The defenition of Acc. here is referring to R-squared score.
     Acc. of Linear Regression Model: 0.6793
     Acc. of Random Forest Model: 0.8663
     Acc. of Neural Network Model: 0.3765
```