Unit No. 6

Trigonometry

Exercise No. 6.2

Question No. 1

For each of the following right-angled triangles, find the trigonometric ratios:

(i) $\sin \theta$

(ii) cos θ

(iii) $\tan \theta$ (iv) $\sec \theta$

- (v) cosec θ
- (vi) cot ϕ
- (vii) tan φ
- (viii) cosec φ
- (ix) $\sec \varphi(x) \cos \varphi$

(b).

(a).

(c).

Solution (fig. a):

Here a = 4, b = 3, c = 5 when θ is given:

(i)
$$\sin \theta = \frac{a}{c} = \frac{4}{5}$$

(ii)
$$\cos \theta = \frac{b}{c} = \frac{3}{5}$$

(iii)
$$\tan \theta = \frac{a}{b} = \frac{4}{3}$$

(iv)
$$\sec \theta = \frac{c}{b} = \frac{5}{3}$$

(v) cosec
$$\theta = \frac{c}{a} = \frac{5}{4}$$

Here a = 3, b = 4, c = 5 when φ is given:

(vi) cot
$$\varphi = \frac{b}{a} = \frac{4}{3}$$

(vii)
$$\tan \varphi = \frac{a}{b} = \frac{3}{4}$$

(viii) cosec
$$\varphi = \frac{c}{a} = \frac{5}{3}$$

(ix)
$$\sec \varphi = \frac{c}{b} = \frac{5}{4}$$

(x)
$$\cos \varphi = \frac{b}{c} = \frac{4}{5}$$

Solution (fig. b):

Here a = 8, b = 15, c = 17 when θ is given:

(i)
$$\sin \theta = \frac{a}{c} = \frac{8}{17}$$

(ii)
$$\cos \theta = \frac{b}{c} = \frac{15}{17}$$

(iii)
$$\tan \theta = \frac{a}{b} = \frac{8}{15}$$

(iv)
$$\sec \theta = \frac{c}{b} = \frac{17}{15}$$

(v) cosec
$$\theta = \frac{c}{a} = \frac{17}{8}$$

Here a = 15, b = 8, c = 17 when φ is given:

(vi) cot
$$\varphi = \frac{b}{a} = \frac{8}{15}$$

(vii)
$$\tan \varphi = \frac{a}{b} = \frac{15}{8}$$

(viii) cosec
$$\varphi = \frac{c}{a} = \frac{17}{15}$$

(ix) sec
$$\varphi = \frac{c}{b} = \frac{17}{8}$$

(x)
$$\cos \varphi = \frac{b}{c} = \frac{8}{17}$$

Solution (fig. c):

Here a = 5, b = 12, c = 13 when θ is given:

(i)
$$\sin \theta = \frac{a}{c} = \frac{5}{13}$$

(ii)
$$\cos \theta = \frac{b}{c} = \frac{12}{13}$$

(iii)
$$\tan \theta = \frac{a}{b} = \frac{5}{12}$$

(iv)
$$\sec \theta = \frac{c}{b} = \frac{13}{12}$$

(v) cosec
$$\theta = \frac{c}{a} = \frac{13}{5}$$

Here a = 12, b = 5, c = 13 when φ is given:

(vi) cot
$$\varphi = \frac{b}{a} = \frac{5}{12}$$

(vii) tan
$$\varphi = \frac{a}{b} = \frac{12}{5}$$

(viii) cosec
$$\varphi = \frac{c}{a} = \frac{13}{12}$$

(ix) sec
$$\varphi = \frac{c}{b} = \frac{13}{5}$$

(x)
$$\cos \varphi = \frac{b}{c} = \frac{5}{13}$$

Question No. 2

For the following right-angled triangle ABC find the trigonometric ratios for which $m\angle A=\phi \text{ and } m\angle C=\theta\text{:}$

- (i) $\sin \theta$
- (ii) cos θ
- (iii) tan θ

- (iv) sin φ
- (v) cos φ
- (vi) tan φ

Solution:

Here a = c, b = a, c = b when θ is given:

(i)
$$\sin \theta = \frac{a}{c} = \frac{c}{b}$$

(ii)
$$\cos \theta = \frac{b}{c} = \frac{a}{b}$$

(iii)
$$\tan \theta = \frac{a}{b} = \frac{c}{a}$$

Here a = a, b = c, c = b when φ is given:

(iv)
$$\sin \varphi = \frac{a}{c} = \frac{a}{b}$$

(v)
$$\cos \varphi = \frac{b}{c} = \frac{c}{b}$$

(vi)
$$\tan \varphi = \frac{a}{b} = \frac{a}{c}$$

Question No. 3

Considering the adjoining triangle ABC, verify that:

$$a = 3, b = 4,$$
 $c = 5$

(i) $\sin \theta \csc \theta = 1$

Solution:

$$\sin \theta \csc \theta = 1$$

We know that:

$$\sin \theta = \frac{a}{c} = \frac{3}{5}$$
 and $\csc \theta = \frac{c}{a} = \frac{5}{3}$

By putting these values in given equation:

$$(\frac{3}{5})(\frac{5}{3})=1$$

$$1 = 1$$

So, proved that:

 $\sin \theta \csc \theta = 1$

(ii) $\cos \theta \sec \theta = 1$

Solution:

 $\cos \theta \sec \theta = 1$

We know that:

$$\cos \theta = \frac{b}{c} = \frac{4}{5}$$
 and $\sec \theta = \frac{c}{b} = \frac{5}{4}$

By putting these values in given equation:

$$(\frac{4}{5})(\frac{5}{4}) = 1$$

$$1 = 1$$

So, proved that:

$$\cos \theta \sec \theta = 1$$

(iii) $\tan \theta \cot \theta = 1$

Solution:

 $\tan \theta \cot \theta = 1$

We know that:

$$\tan \theta = \frac{a}{b} = \frac{3}{4}$$
 and $\cot \theta = \frac{b}{a} = \frac{4}{3}$

By putting these values in given equation:

$$(\frac{3}{4})(\frac{4}{3}) = 1$$

So, proved that:

 $\tan \theta \cot \theta = 1$

Question No. 4

Fill in the blanks.

(i)
$$\sin 30^{\circ} = \sin (90^{\circ} - 60^{\circ}) = \cos 60^{\circ}$$

(ii)
$$\cos 30^\circ = \cos (90^\circ - 60^\circ) = \underline{\sin 60^\circ}$$

(iii)
$$\tan 30^{\circ} = \tan (90^{\circ} - 60^{\circ}) = \underline{\cot 60^{\circ}}$$

(iv)
$$\tan 60^{\circ} = \tan (90^{\circ} - 30^{\circ}) = \underline{\cot 30^{\circ}}$$

(v)
$$\sin 60^{\circ} = \sin (90^{\circ} - 30^{\circ}) = \cos 30^{\circ}$$

(vi)
$$\cos 60^{\circ} = \cos (90^{\circ} - 30^{\circ}) = \underline{\sin 30^{\circ}}$$

(vii)
$$\sin 45^\circ = \sin (90^\circ - 45^\circ) = \underline{\cos 45^\circ}$$

(viii)
$$\tan 45^{\circ} = \tan (90^{\circ} - 45^{\circ}) = \underline{\cot 45^{\circ}}$$

(ix)
$$\cos 45^\circ = \cos (90^\circ - 45^\circ) = \underline{\sin 45^\circ}$$

Question No. 5

In a right-angled triangle ABC, $m\angle B = 90^{\circ}$ and C is an acute angle of 60° . Also sin $m\angle A = a/b$, then find the following trigonometric ratios:

From fig. mAB = c, mBC = a, mAC = b

(i)
$$\frac{mBC}{mAB}$$

Solution:

$$\frac{mBC}{mAB}$$

$$=\frac{a}{c}$$

(ii) cos 60°

Solution:

$$\cos 60^{\circ} = \frac{mBC}{mAC}$$

$$=\frac{a}{b}$$

(iii) tan 60°

Solution:

$$\tan 60^{\circ} = \frac{mAB}{mBC}$$

$$=\frac{c}{a}$$

(iv) cosec $(\frac{\pi}{3})$

Solution:

Converting radian into degree:

$$=\frac{\pi}{3}\times\frac{180}{\pi}$$

$$= 60^{\circ}$$

$$\rm cosec~60^{\circ}$$

$$\csc 60^{\circ} = \frac{mAC}{mAB}$$

$$=\frac{k}{c}$$

(v) cot 60°

Solution:

$$\cot 60^{\circ} = \frac{mBC}{mAB}$$

$$=\frac{a}{c}$$

(vi) sin 30°

Solution:

$$\sin 30^{\circ} = \frac{mBC}{mAC}$$

$$=\frac{a}{b}$$

(vii) cos 30°

Solution:

$$\cos 30^{\circ}$$

$$\cos 30^{\circ} = \frac{mAB}{mBC}$$

$$=\frac{c}{b}$$

(viii) $\tan \left(\frac{\pi}{6}\right)$

Solution:

Converting radian into degree:

$$=\frac{\pi}{60}\,\times\,\frac{180}{\pi}$$

$$\tan 30^{\circ} = \frac{mAB}{mBC}$$

$$=\frac{a}{c}$$

(ix) sec 30°

Solution:

$$\sec\,30^\circ$$

$$\sec 30^\circ = \frac{mAC}{mAB}$$

$$=\frac{k}{c}$$

(x) cot 30°

Solution:

$$\cot 30^{\circ} = \frac{mAB}{mBC}$$

$$=\frac{c}{a}$$