Exercises in Physics Assignment # 4

Date Given: April 28, 2022 Date Due: May 12, 2022

- **P1.** (2 points) At some instant of time, a particle has velocity $\mathbf{v} = \sqrt{3}\mathbf{i} + \mathbf{j}$ m/s, acceleration magnitude $|\mathbf{a}| = 5$ m/s², and the radius of curvature $\rho = 8/5$ m. Find the angle between the velocity and acceleration vectors of the particle at that instant.
- **P2.** (2 points) A car travels along the level curved road with a speed which is decreasing at the constant rate of $0.6 \,\mathrm{m/s}$ each second. The speed of the car as it passes point A is $16 \,\mathrm{m/s}$. Calculate the magnitude of the total acceleration of the car as it passes point B which is $120 \,\mathrm{m}$ along the road from A. The radius of curvature of the road at B is $60 \,\mathrm{m}$.

Figure 1: Illustration to Problem 2.

P3. (2 points) The car travels along the circular path such that its speed is increased by $a_t = (4t^2)\text{m/s}^2$, where t is in seconds. Determine the magnitudes of its velocity and acceleration after the car has traveled s = 27m starting from rest. Neglect the size of the car.

Figure 2: Illustration to Problem 3.

Exercises in Physics 2 of 2

P4. (2 points) If the car passes point A with a speed of 20m/s and begins to increase its speed at a constant rate of $a_t = 0.5 \text{m/s}^2$, determine the magnitude of the car's acceleration at point C where s = 101.68 m and x = 0.

Figure 3: Illustration to Problem 4.