

TRIGONOMETRY

Chapter 03
Sesión II

Sector Circular

MOTIVATING STRATEGY

Sabías ¿CUÁL ES LA LONGITUD DE LA ÓRBITA TERRESTRE?

Un sistema de telemetría desea hallar la distancia que separa (sobre la órbita geoestacionaria) a dos satélites geoestacionarios Arabsat – 1 A (localizado a $19,2^o$ Este) e Intelsat V-F4 (localizado a $34,4^o$ Oeste) sabiendo que la distancia de la superficie de la Tierra a un satélite geoestacionario es aproximadamente 35 800 km, considere que el radio de la Tierra es aproximadamente de 6 400 km.

ÁREA DE UN SECTOR CIRCULAR

S: área del sector circular AOB

$$S = \frac{\theta \cdot R^2}{2}$$

$$S = \frac{L.R}{2}$$

$$S = \frac{L^2}{2\theta}$$

PROPIEDADES

B)

 Calcule el área de la región que determina el borde inferior de una puerta de vaivén al girar un ángulo de 160^g sabiendo que dicho borde mide 100cm.

RESOLUCIÓN

Recordar:

$$1609 = 1609 \left(\frac{\pi \text{rad}}{2009}\right) = \frac{4\pi}{5} \text{rad}$$

Entonces:
$$S = \frac{\theta \cdot R^2}{2}$$

$$S = \frac{\frac{4\pi}{5}(100\text{cm})^2}{2}$$

∴
$$S = 4000\pi \text{ cm}^2$$

2. Si la longitud de un arco de un sector circular es 15m y el radio 6m, calcule el área de dicho sector.

RESOLUCIÓN

Datos:

Piden:

$$S = \frac{L.R}{2} \Rightarrow S = \frac{15m.6m}{2}$$

$$\therefore$$
 S = 45 m²

3. De la figura, calcule el área de la región sombreada.

RESOLUCIÓN

Por propiedad:
$$\frac{L}{15} = \frac{3}{3+2}$$

$$\Rightarrow$$
 L (5) = 15(3)

Piden:
$$S = \frac{L.R}{2}$$

$$\Rightarrow S = \frac{9u.3u}{2}$$

$$\therefore S = \frac{27}{2}u^2$$

4. Del gráfico, calcule el área del sector AOB, siendo el área del sector COD 18 m².

RESOLUCIÓN

Por propiedad:

$$\frac{\mathsf{S}_{\lhd \mathsf{AOB}}}{\mathsf{S}_{\lhd \mathsf{COD}}} = \frac{(6+2)^2}{(6)^2}$$

$$\frac{S_{\triangleleft AOB}}{18m^2} = \frac{64}{36}$$

$$\therefore S_{\triangleleft AOB} = 32 \text{ m}^2$$

5. Del gráfico, reduzca:

$$G = \frac{S_3 + 4S_1}{S_2}$$

RESOLUCIÓN

Por propiedad

Del gráfico, reemplazando:

$$G = \frac{(5S) + 4(S)}{(3S)}$$

$$G = \frac{99}{39}$$

HELICO | PRACTICE

6. Del gráfico, calcule el área del trapecio circular sombreado.

* En el sector circular AOB:

$$10 = \alpha (10) \Rightarrow \alpha = 1$$

* El área del trapecio circular:

$$S = \frac{(\alpha * 5 + \alpha * 7)}{2} * 2$$

$$S = 12 \alpha = 12 * 1$$

$$\therefore$$
 S = 12 u²

7. Del gráfico calcule el área del sector circular AOB.

RESOLUCIÓN

De la figura:

$$5S = 20 \Rightarrow S = 4$$

Piden el área del sector circular

AOB:
$$S + 3S + 5S + 7S = 16S$$

$$\Rightarrow$$
 16S = 16 \times 4

$$\therefore$$
 16S = 64 u²

8. Determine la medida del ángulo ⊖ en grados sexagesimales si: S₂ = 5S₁

RESOLUCIÓN

En el dato:
$$\frac{(\pi - \theta)k^2}{2} = 5 \frac{\theta k^2}{2}$$

$$\Rightarrow \pi - \theta = 5\theta \Rightarrow \theta = \frac{\pi}{6}$$

 $\therefore \theta = 30^{0}$