```
In [11]: #step 1:importing
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn import preprocessing,svm
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         #reading the data set
```

```
In [13]: #step2:reading data set
df=pd.read_csv(r"C:\Users\ubinl\Downloads\bottle.csv.zip")
df
```

C:\Users\ubinl\AppData\Local\Temp\ipykernel_3796\808498730.py:1: DtypeWarnin
g: Columns (47,73) have mixed types. Specify dtype option on import or set lo
w_memory=False.
 df=pd.read_csv(r"C:\Users\ubinl\Downloads\bottle.csv.zip")

Out[13]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O25
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	SaInty	O2ml_L	STheta	025
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.

864863 rows × 74 columns

Out[16]:		Sal	Temp
	0	33.440	10.50
	1	33.440	10.46
	2	33.437	10.46
	3	33.420	10.45
	4	33.421	10.45
	5	33.431	10.45
	6	33.440	10.45

7 33.424 10.248 33.420 10.06

9.86

9 33.494

```
In [21]: #step 3:exploring
sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x1de0c6f5550>

In [22]: df.describe()

Out[22]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [23]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
              Column Non-Null Count
                                       Dtype
                      -----
          0
              Sal
                      817509 non-null float64
                      853900 non-null float64
          1
              Temp
         dtypes: float64(2)
         memory usage: 13.2 MB
In [25]: #step 4:
         df.fillna(method='ffill',inplace=True)
         C:\Users\ubinl\AppData\Local\Temp\ipykernel_3796\3632936489.py:2: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [28]: #step 5:training model
         x=np.array(df['Sal']).reshape(-1,1)
         y=np.array(df['Temp']).reshape(-1,1)
         #seperating
         #column
         df.dropna(inplace=True)
         #droping values
         x train,x test,y train,y test=train test split(x,y,test size=0.25)
         #spliting data
         regr=LinearRegression()
         regr.fit(x train,y train)
         print(regr.score(x test,y test))
         0.20433504495880672
         C:\Users\ubinl\AppData\Local\Temp\ipykernel 3796\59502318.py:6: SettingWithCo
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace=True)
```

```
In [31]: #step 6:exploring results
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
#scatter
```



```
In [33]: #step7:working with a smaller data set
         df500=df[:][:500]
         #selecting
         sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
         df500.fillna(method='ffill',inplace=True)
         x=np.array(df500['Sal']).reshape(-1,1)
         y=np.array(df500['Temp']).reshape(-1,1)
         df500.dropna(inplace=True)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print("Regression:",regr.score(x_test,y_test))
         y_pred=regr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
```

Regression: 0.8267224559931696


```
In [34]: #step 8:
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    #train
    model=LinearRegression()
    model.fit(x_train,y_train)
    #evaluate
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2_score:",r2)

    r2_score: 0.8267224559931696

In [35]: #step 9:conclusion:
    Dataset we have taken is poor for linear model but with smaller data it works

In []:
```