Graph Theory Set 6

27. The **cube graph** Q_n has vertices the bit strings of length n (these are sequences of 0's and 1's, such as 10110110) with an edge between two bit strings if and only if the strings differ in exactly one position. Below are Q_2 and Q_3 and an unlabeled Q_4 :

- **a.** Show that Q_n has 2^n vertices and $n2^{n-1}$ edges.
- **b.** Show that Q_n is bipartite.
- **c.** Use Menger's theorems to show that $\varepsilon(Q_n) = \kappa(Q_n) = n$.
- **d.** Show that Q_n is Hamiltonian by induction on n. One Hamiltonian cycle is highlighted on an unlabeled Q_5 graph below:

- **28.** Suppose *G* is critical (see Exercise 12). Show that $\kappa(G) \neq 1$.
- **29.** Show that deleting an edge from *G* reduces $\kappa(G)$ by at most 1.
- **30.** Show that if every vertex in *G* has an even degree, then $\varepsilon(G)$ is even.
- **31.** Suppose $\kappa(G) \ge 3$ and u, v, w are vertices in G. Show that G has a cycle containing u and v but not w.