Pre-clinical phase contrast breast CT scanner

Type of project:

- Content complexity:
 - Underlying physical mechanisms not clear in beginning
 - Effect of Compton scattering on phase signal (now after 2 years slowly)
 - Dedicated performance evaluation and comparison between phase and absorption never done for large scale and high energies
 - Technology not ready (detector, tube, gratings), all need to be developed/build
 - Signal retrieval and post-processing not available
 - no fast non-phase stepping method existing
 - Spiral CT reconstruction needs to be adapted (no in-house know-how)
 - o Image processing not on competitors level
- Context complexity:
 - Work with and supervise group members (students, colleagues) working on
 - Reconstruction (Students)
 - Detector
 - Gratings (grating fabrication PhD project parallel)
 - Theory (high energy PhD project parallel)
 - Work with multiple internal groups
 - Engineers/Technician for designing positioner system, small mechanical components, providing electrical support and infrastructure
 - Detector development (out sourced now)
 - Work/hire external companies
 - Gantry development (only 2 options worldwide, mayor cost factor)
 - Detector development in collaboration with spin-off (capable yes, common goals/end product not clear)
 - X-ray tube development (with/from external vendor, now canceled (too much cost, now an similar prototype exists and is available))
 - Reconstruction algorithm implementation (small scale in house, large scale from company, software engineers etc.
 - Work with hospital for samples/evaluation, later potential patients/clinical studies (not part of PhD project)
 - Potential high impact (on many patients), but only of cost (gantry, gratings) to benefit ratio is high enough

Thus, high content and high context complexity

System Analysis:

Conditions:

- Theoretical understanding of physical processes
- Theoretical evaluation and optimization of phase contrast breast CT (vs. absorption)
- Phase contrast spiral CT reconstruction algorithm for large field of view (FOV) (theory and implementation)
- High performing grating interferometry (GI) based phase contrast system
 - Dedicated high energy detector (photon counting, fast, large FOV)
 - o Dedicated tube (cone beam geometry, power, cooling, kVp)
 - Large area, high performing gratings
 - Stable, compact alignment stages for gratings
- Scan protocol (tube voltage, current; exposure times; trajectory)
- Approval radiation safety and mechanical/electrical safety
- Approval fresh mastectomy samples

Resources:

- Hardware budget (Gantry, Detector, Tube, Hardware, Gratings)
- Postdocs (Phase contrast experts, detector expert)
- PhDs (PM, high energy, reconstruction (not cone beam), grating manufacturing,
 2D/mammography)
- Students (semester, master projects)
- In-house technical support (infrastructure, engineers, technicians)
- Computer scientist (reconstruction algorithm implementation)
- Detector company
- Gantry company
- X-ray tube, other hardware vendors
- Computational power for reconstruction
- Mastectomy samples from hospital collaborations

Expertise:

- Physics behind Grating Interferometry
- Detector know how
- X-ray know how (generation, dosimetry)
- Mathematical understanding of CT reconstruction
- Phase retrieval development
- Computer science/programming know-how
- Mechanical engineering understanding
- System engineering
- Good organization, communication

Attributes:

- Attenuation coefficient and phase shift of breast tissue
- Sample sizes

- Detector performance (efficiency, noise, speed)
- Tube performance (flux, spectrum, cone beam geometry)
- Gantry stability/performance
- Number of projections, spiral trajectory (CT reconstruction performance)
- Dose delivered to sample, exposure time (image quality, SNR/CNR)
- Dose-weighted sensitivity of absorption and phase contrast

Tools:

- Dosimetry (Simulated and measured)
- New phase retrieval algorithm
- Phase contrast spiral CT reconstruction algorithm for large samples
- Breast phantoms
- Gratings
- Tube
- Detector
- Positioners
- Gantry
- Test setup to evaluate
 - o tube and detector
 - o positioners
 - gratings
 - o Phantoms
- Prototype consisting of dedicated tube, detector and gratings (plus stages)
- Radiation protected working space with complete infrastructure (electrical, mechanical and IT)

Environments:

- Radiation safety
- Mechanical/electrical safety
- Absorption-based breast CT companies (2 systems ready)
- Mammography/Tomosynthesis developments

Success:

- Gantry system compatible with GI system
- All system components operative
- Scanner running
- Scan of full FOV possible
- Low enough dose/fast enough scan protocol
- Performance evaluated

Stakeholder Analysis:

- Project team: PhD student (PM), Postdoc (supervisor), Professor (supervisor), PhD (high energy), PhD (gratings), PhD (Mammography), Postdoc (Detector), Master students, Technicians
- Mechanical support (internal): mechanical engineers
- Technical support (internal): (electrical) infrastructure, (radiation) safety/regulation
- External partners: Detector company, gantry company
- Suppliers: motors/controllers, X-ray tube
- Public: Patients, Radiologists, CT Vendors, Health Insurances

		Patients	Postdoc (Detector)	PhD student (PM)
		Radiologists	Master students	Professor (supervisor)
	high			Gantry company
		CT Vendors	Postdoc (supervisor)	Detector company
بد		Health insurances	PhD (CT reconstruction)	
Interest	medium		Technicians	
Int				
		PhD (Mammography)	PhD (high energy)	
		Support: infrastructure	PhD (gratings)	
	low	Support: safety/regulation	Mechanical engineers	
		Motors/controller vendor	X-ray tube vendor	

low medium high

Influence

Stakeholder	Interest/Stake	Influence/Power	Attitude	Measure	
PhD student (PM)	h	h	0	Increase attitude: Project is standing still (since months) waiting for funding and strategic decision by Prof -> move decision process forward	
Postdoc (supervisor)	m	m	0		
Professor (supervisor)	h	h	1		
PhD (high energy)		m	0	Increase interest: PhD is finishing and focusing on scatter problems, phase contrast not of interest to him	
PhD (gratings)	l	h	0	Increase attitude: Show potential of project and how their involvement will benefit	
PhD (Mammography)	I	I	0		
PhD (CT reconstruction)	_	m	0	Increase interest: Briefly worked by co-supervising Master student for spiral CT reconstruction, now finishing and no interest	
Postdoc (Detector)	h	m	-1	Increase attitude: Get deal with detector company done and ensure his involvement/proj ect leader position (Prof is negotiating this)	
Master students	h	m	1		
Technicians	m	m	1		
Mechanical engineers		m	0	Increase attitude/interest: Work faster on evaluating their system (has been	

				delayed for months since PM is focusing on moving the overall project further)
Support: infrastructure	1	I	1	
Support: safety/regulation	I	_	1	
Detector company	m	h	0	Increase interest: Show why our project is ideal to promote their new detector (Prof working on it)
Gantry company	h	h	1	
Motors/controller vendor	I		0	
X-ray tube vendor	I	m	0	
Patients	h	I	0	
Radiologists	h	1	0	
CT Vendors	m	1	0	
Health insurances	m		0	

Objectives:

Objective	Indicator	Measure	Deadline	Priority
Pre-clinical phase contrast breast CT system (breast pCT) on rotating gantry	Whole system assembled and operational	CT scans acquired and reconstructed	December 2018	Need-to-be
Feasibility of GI operated on fast gantry shown	Result of simulation and test	Within specifications	Mai 2018	Need-to-be
Better performance (sensitivity, dose efficiency compared to absorption CT) shown	Result of performance analysis	CNRp/CNRa >1, SNRp/SNRa >1, DOSEp approx. DOSEa	December 2017	Should-be
Mastectomy samples approved	Answer to request	approved	June 2017	Should-be
Mechanical stable gantry system compatible with GI	Result of simulation and test	Within specifications	March 2018	Need-to-be
Static Pre-clinical phase contrast breast CT system (breast pCT) without gantry	Whole system assembled and operational	CT scans acquired and reconstructed	September 2017	Should-be
Optimized grating interferometer (GI)	Theoretical performance; gratings	CNRp/CNRa >1, SNRp/SNRa >1, DOSEp approx. DOSEa; Gratings delivered	June 2017	Should-be
Dedicated X-ray tube for breast geometry and breast pCT spectrum	Result of tests	Flux, spectrum, geometry within specifications	June 2017	Should-be
High energy detector for breast pCT spectrum	Result of tests	Energy range, efficiency, size, speed within specifications	September 2017	Need-to-be
Spiral pCT reconstruction algorithm implemented	Result of tests	Accuracy and scalability shown	December 2016	Need-to-be
Positioners	Result of tests	Precise and stable enough	September 2016	Need-to-be
Define breast Phantoms	Absorption coefficient and phase shift	Same as mastectomy sample	June 2016	Need-to-be
Define scan protocol	Required number of projections, exposure time, pitch feasible	Mechanical possible and compatible with reconstruction and system requirements	December 2016	Need-to-be
Define system requirements	All parameters fixed	Optimal parameters found	December 2016	Need-to-be
Theoretical evaluation and optimization of phase contrast breast CT (vs. absorption)	GI parameters defined based on dose efficiency	Parameters optimized	Mai 2016	Need-to-be

Theoretical understanding of physical processes	High energy research done	Thesis proofed	March 2016	Need-to-be
2 articles published (theoretical vs. actual performance, new phase retrieval/CT reco)	Answer of journal	Accepted	December 2018	Should-be
Funding for gantry, detector, gratings and hardware secured	Amount	750000 Euro + 200000 CHF + 100000 CHF + 130000 CHF	Mai 2016	Need-to-be

Connect/order objectives:

WBS (object oriented):

SP 1:	SP 2: CT	SP 3:	SP 4: Tube	SP 5: Detector	SP 6:
Theoretical	reconstruction	Positioners			Optimized GI
understanding					
WP 1.1:	WP 2.1:	WP 3.1:	WP 4.1:	WP 5.1:	WP 6.1:
Physical	Mathematical	Market	Market	Market	Update scan
background	background	research	research	research	protocol
WP 1.2:	WP 2.2: Phase	WP 3.2:	WP 4.2:	WP 5.2:	WP 6.2: Specify
Phantom	Contrast	Specifications	Specifications	Specifications	gratings
design	adaptation				
WP 1.3: High	WP 2.3: Scale	WP 3.3: First	WP 4.3:	WP 5.3:	WP 6.3:
energy	to full FOV	Prototype	Commission	Contract	Evaluate
research				company	gratings
WP 1.4: New	WP 2.4:	WP 3.4:	WP 4.4:	WP 5.4: First	WP 6.4:
phase	Documentation	Evaluation	Evaluation	Prototype	Commission
retrieval					
WP 1.5: Scan		WP 3.5: Final		WP 5.5:	WP 6.5:
protocol		version		Evaluation	Documentation
WP 1.6:		WP 3.6:		WP 5.6: Final	
Theoretical		Commission		version	
performance					
WP 1.7:		WP 3.7:		WP 5.7:	
System		Documentation		Commission	
requirements					
WP 1.8: Paper				WP 5.8:	
				Documentation	

SP 7: Gantry	SP 8: Static scanner	SP 9: Complete system
WP 7.1:	WP 8.1:	WP 9.1: Combine
Market	Assemble	gantry and static
Research	Assemble	scanner
WP 7.2:	WP 8.2:	WP 9.2:
Specifications	Commission	Commission
WP 7.3:	WP 8.3: Evaluate	WP 9.3: Evaluate
Contract		
Company		
WP 7.4: First	WP 8.4:	WP 9.4:
Prototype	Phantom/Sample	Phantom/Sample
	scan	Scan
WP 7.5:	WP 8.5:	WP 9.5:
Evaluation	Documentation	Documentation
WP 7.6: Final		WP 9.6: Paper
version		
WP 7.7:		
Commission		

o, 2010

Gantt Chart

GANTT Aug Sep Oct Name Begin ... End date SP 1: Theoretical understanding 10/1/14 12/30/16 WP 1.1: Physical background 10/1/141/1/16 WP 1.2: Phantom design WP 1.3: High energy research 10/1/14 10/30/15 WP 1.4: New phase retrieval 4/1/15 8/1/16 WP 1.5: Scan protocol 4/1/16 9/30/16 WP 1.6: Theoretical perform... 10/1/15 12/30/16 WP 1.7: System requirements 6/2/15 12/30/16 WP 1.8: Paper 8/1/16 12/30/16 ■ SP 2: CT reconstruction WP 2.1: Mathematical backg... 4/1/15 9/1/15 WP 2.2: Phase contrast adap... 5/1/15 11/2/15 WP 2.3: Scale to full FOV 7/29/16 12/29/16 WP 2.4: Documentation 9/1/15 12/30/16 □ SP 3: Positioner 3/2/15 11/2/16 WP 3.1: Market research 3/2/15 6/2/15 WP 3.2: Specification 5/1/15 7/31/15 WP 3.3: First prototype 8/3/15 10/30/15 WP 3.4: Evaluation 11/2/15 4/1/16 WP 3.5: Final version 3/1/16 8/1/16 WP 3.6: Commission 8/2/16 11/2/16 WP 3.7: Documentation 11/2/15 11/2/16 □ SP 4: Tube 9/1/15 6/30/17 WP 4.1: Market research 9/1/15 2/1/16 WP 4.2: Specification 9/1/15 4/1/16 WP 4.3: Comission 1/9/17 3/1/17 WP 4.4: Evaluation 3/1/17 6/30/17 □ SP 5: Detector 8/3/15 6/30/17 WP 5.1: Market research 8/3/15 10/1/15 WP 5.2: Specification 9/2/15 12/2/15 WP 5.3: Contract company 10/1/15 4/1/16 WP 5.4: First prototype 4/4/16 10/3/16 WP 5.5: Evaluation 9/1/16 12/30/16 WP 5.6: Final version 1/2/17 3/31/17 WP 5.7: Commission 4/3/17 6/30/17 WP 5.8: Documentation 4/1/16 6/30/17 SP 6: Optimized GI 1/4/16 6/30/17 WP 6.1: Update scan proto ol 10/3/16 12/29/16 WP 6.2: Specify gratings 1/4/16 8/1/16 WP 6.3: Evaluate gratings 2/28/17 5/1/17 WP 6.4: Commission 4/3/17 6/30/17 WP 6.5: Documentation 3/1/17 6/30/17 □ SP 7: Gantry 3/2/15 3/30/18 WP 7.1: Market research 3/2/15 10/30/15 WP 7.2: Specifications 8/3/15 1/1/16 WP 7.3: Contract company 11/2/15 4/1/16 WP 7.4: First prototype 4/4/16 3/2/17 WP 7.5: Evaluation 10/3/16 6/1/17 WP 7.6: Final version 6/2/17 2/1/18 WP 7.7: Commission 1/1/18 3/30/18 WP 7.8: Documentation 10/3/16 3/30/18 SP 8: Static scanner 5/2/17 9/29/17 WP 8.1: Assemble 5/2/17 6/2/17 WP 8.2: Commission 5/30/17 6/30/17 7/3/17 9/29/17 WP 8.3: Evaluate WP 8.4: Phantom/Sample sc... 8/1/17 9/29/17 WP 8.5: Documentation 5/2/17 9/29/17 SP 9: Complete system 4/2/18 11/30/18 WP 9.1: Combine gantry and...4/2/18 6/1/18 WP 9.2: Commission 4/2/18 6/29/18 WP 9.3: Evaluate 6/4/18 8/31/18 WP 9.4: Phantom/Sample sc... 8/1/18 8/31/18 WP 9.5: Documentation 4/2/18 11/30/18 WP 9.6: Paper 9/3/18 11/30/18

_