A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115	17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21

20	ME21B060 20.1 what is a steady flow process	22
21	ME21B065	23
22	ME21B079	24
23	ME21B088	25
24	ME21B091	26
25	ME21B186	27
26	ME21B190	28
27	ME21B196	29
28	ME21B204	30
2 9	ME21B217	31
30	MM21B012	32
31	MM21B024	33
32	MM21B032	34
33	MM21B044	35
34	MM21B046	36
35	$\mathbf{MM21B059}$	37
36	MM21B063	38
37	NA21B002	39
38	NA21B005	40
39	NA21B006	41
40	NA21B007	42
41	NA21B020	43
42	NA21B048	44
43	NA21B052	45
44	Conclusions	46
45	References	46

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [?].

8 BE21B016

9 BE21B040

10 CE19B020

16 CH21B067

17 CH21B079

18 CH21B101

20.1 what is a steady flow process

A steady flow process is a process in which matter and energy flow in and out of an open system at same rates.

20.2 Equation for steady Flow

$$\dot{Q} - \dot{W} = \dot{m} * [(hi + vi^2/2 + gzi) - (he + ve^2/2 + gze)]$$
 (1)

sr.no	variable	meaning
1	\dot{Q}	Rate of heat absorption by CV
2	\dot{W}	Rate of external work interaction
3	\dot{m}	Rate of mass entering into CV(kg/sec)
4	zi	height above the reference line for the inlet.
5	ze	Height above the reference line for an outlet.
6	vi	velocity of entering steam.
7	ve	velocity of leaving steam.
8	hi	enthalpy of entering steam.
9	he	enthalpy of outgoing stream.

20.3 Explanation

The steady flow energy equation (SFEE) is used for control volume system. To derive the equation few approximations are also taken into count. The incoming and outgoing mass rates are having the same value, Change in the total energy of a CV is assumed to be zero (0). In CV there is no mass accumulation due to mass flow. By assuming the inlet as state 1 and outlet as state 2 and by calculating the temperature and pressure at both states. We can find out the other thermodynamic properties of the CV such as work, heat transfer, enthalpy of incoming or outgoing flow.

$31\quad \mathrm{MM21B024}$

$35\quad \mathrm{MM21B059}$

44 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

45 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.