Media Engineering and Technology Faculty German University in Cairo

MCTR911 Robotics Programming Project

Milestone 2 Report

Team 6: Sara Wasfy, 52-0356

Mayar Bahnacy, 52-7251

Mazen Mostafa, 52-12990

Kareem Elkaderi, 52-1441

Teodore Farag, 52-3837

Ahmed Hemeida, 43-18800

Submission Date: 2 October, 2024

Contents

1	Project Flow				
	1.1 Milestone 1: Literature Review and Initial Setup	3			
	1.2 Milestone 2: Kinematic Analysis and Simulation	3			
	1.3 Milestone 3: Velocity, Acceleration Kinematics, and Trajectories	4			
	1.4 Milestone 4: Trajectory Validation in GUI	4			
	1.5 Milestone 5: Control and Final Validation	5			
2	Literature Review	7			
3	GrabCAD Models	9			
	3.1 Model 1	9			
	3.2 Model 2	10			
	3.3 Model 3	10			
4	Coordinate Frame	13			
5	DH-Convention	15			
	5.1 Table	15			
	5.2 Final Matrix	15			
6	Simulation	17			
7	GUI	21			
R	eferences	24			

Project Flow

1.1 Milestone 1: Literature Review and Initial Setup

- Literature Review: Research and write a two-page review on Industrial Robotics Applications focusing on pick-and-place robots (5-10 papers starting from 2015).
- **Select Application:** Choose the pick-and-place robot for industrial applications (e.g., packaging, assembly line). Propose a draft project flow to guide development.
- CAD Model Search: Search and select desktop robotic manipulators with 3-4 DOF from GrabCAD.
- Simulator Setup: Download and install CoppeliaSim for robot simulation. GitHub Setup: Create a GitHub repository with a folder named "Milestone 01".
- Include: Two-page literature review. CAD models of robotic manipulators. Video showing the installation of CoppeliaSim.
- **Deliverables:** GitHub Repository with "Milestone 01" folder: Literature review. CAD models. Video of simulator setup.

1.2 Milestone 2: Kinematic Analysis and Simulation

- Frame Assignment: Assign coordinate frames to the robotic arm joints and base in CoppeliaSim.
- Denavit-Hartenberg (DH) Parameters: Develop the DH parameters to define the kinematics of the robot. Forward and Inverse Kinematics: Use MAT-LAB/Simulink or Python to derive the forward and inverse kinematics of the robotic arm. Test and verify the results using simulations in CoppeliaSim.

- Simulation Setup: Import the CAD model of the robot into CoppeliaSim. Simulate the robot's movement using joint inputs and verify motion paths.
- **Deliverables:** GitHub Repository with "Milestone 02" folder: Report on DH convention and kinematic equations. Simulation code (MATLAB/Simulink or Python). Video showing the simulation of robot motion in CoppeliaSim.

1.3 Milestone 3: Velocity, Acceleration Kinematics, and Trajectories

- Velocity and Acceleration Kinematics: Derive forward and inverse velocity/acceleration kinematics using MATLAB/Simulink or Python. Simulate and validate these in CoppeliaSim by testing the robotic arm's movement with velocity and acceleration inputs.
- Task-Space and Joint-Space Trajectories: Generate Task-Space Trajectories for the end-effector to follow a path. Develop Joint-Space Trajectories for the robotic joints based on the end-effector path.
- Simulate and Validate Trajectories: Implement the task-space and joint-space trajectories in CoppeliaSim and validate the results.
- Deliverables: GitHub Repository with "Milestone 03" folder: Report on velocity/acceleration kinematics and trajectory planning. Code for velocity, acceleration kinematics, and trajectory tracking. Video showing simulation and trajectory validation.

1.4 Milestone 4: Trajectory Validation in GUI

- GUI and Environment Building: Continue building the GUI in CoppeliaSim to represent the environment (conveyor belts, workspace, etc.).
- Trajectory Validation: Validate the Task-Space and Joint-Space trajectories in the CoppeliaSim environment. Simulate the robot's performance following these paths and fine-tune based on observations.
- Hardware Integration (Optional): If applicable, integrate the simulation with a hardware system and validate the robot's movement on real hardware.
- **Deliverables:** GitHub Repository with "Milestone 04" folder: Videos of trajectory validation in CoppeliaSim. Code for trajectory validation. Video showing hardware validation (if applicable).

1.5 Milestone 5: Control and Final Validation

- Position Control (PID): Implement a PID control algorithm to regulate the robotic arm's joint positions.
- Closed-Loop System Testing: Test the closed-loop system in CoppeliaSim to ensure the robot can follow the desired trajectories accurately using position feedback.
- Force Control (Optional): Implement force control for more advanced manipulation tasks, such as handling delicate or variable-weight objects.
- Final Validation: Perform final validation of the complete pick-and-place robot system in CoppeliaSim and (if applicable) integrate with hardware for real-world testing.
- **Deliverables:** GitHub Repository with "Milestone 05" folder: Report and code for control systems. Video showing the complete robot system in simulation and hardware (if applicable).

Literature Review

Sherwani et al. (2020) emphasize the increasing role of collaborative robots (cobots) in Industry 4.0, particularly in tasks such as pick-and-place. Cobots, with their adaptability, safety, and ease of programming, are ideal for shared workspaces in industries like manufacturing, where repetitive tasks such as material handling and packaging are essential. This study highlighted the efficiency gains of cobots in smart factories powered by IoT and AI, which directly influenced our decision to focus on pick-and-place operations. The use of cobots in such environments can be accurately simulated in CoppeliaSim, allowing us to refine their performance before deployment[7].

Sanchez et al. (2018) review robotic manipulation of deformable objects, which are often encountered in industrial pick-and-place tasks. Their insights into the challenges of handling objects like cables, fabrics, and soft materials informed our choice of application, as CoppeliaSim allows us to simulate these complex dynamics. By testing how our robot interacts with these materials, we can ensure that it performs tasks like sorting and packaging with precision, an essential capability in industries dealing with delicate or flexible objects[6].

Javaid et al. (2021) emphasize the critical role of pick-and-place robots in high-speed manufacturing environments, where speed and precision are paramount. Their discussion of the integration of robots with IoT and AI for real-time monitoring and predictive maintenance supported our decision to focus on pick-and-place. Using CoppeliaSim, we can simulate these operations to optimize the robot's movements and ensure its efficiency in high-demand environments like electronics assembly, where continuous operation without fatigue is a key advantage[4].

Villani et al. (2018) focus on human-robot collaboration (HRC) and how pick-and-place robots contribute to improving safety and productivity in industrial settings. Their findings on the importance of intuitive interfaces and safety protocols reinforced our choice to prioritize pick-and-place applications, where seamless human-robot interaction is critical. CoppeliaSim allows us to simulate and test these safety mechanisms, ensuring that our robot can perform repetitive tasks like packaging and inspection in environments shared with human workers without compromising safety[8].

Collins et al. (2019) discuss the importance of simulators in robotics research, particularly for testing robotic systems in safe and cost-effective environments. Their emphasis on simulators like CoppeliaSim as a tool for optimizing robotic performance informed our decision to use it for pick-and-place operations. CoppeliaSim provides a robust platform to simulate and refine the robot's movements and interactions with various objects, ensuring accuracy and efficiency before implementing it in real-world manufacturing[1].

Feng et al. (2024) introduce a knowledge graph-based framework that enables robots to autonomously infer operational parameters, which influenced our decision to incorporate intelligent decision-making in our pick-and-place application. Testing such a framework in CoppeliaSim ensures that our robot can autonomously adapt to different tasks, such as picking various items in a production line, without requiring constant reprogramming. This aligns with our goal of improving robot autonomy and flexibility in manufacturing[3].

Wang and Hauser (2020) examine the optimization of robot-assisted packing in environments with unpredictable item arrival. Their algorithms for handling nondeterministic item sequences were directly applicable to our pick-and-place focus, where the robot must efficiently manage varying sequences of objects. Simulating these scenarios in CoppeliaSim ensures that the robot can handle the uncertainty of item arrival in warehouse and logistics environments, optimizing space and time efficiency[9].

Tehrani et al. (2022) review robotics in industrialized construction, focusing on tasks like pick-and-place for offsite and onsite assembly. Their findings on the need for greater automation in construction informed our choice of application, as CoppeliaSim allows us to simulate these complex tasks in a controlled environment. Testing the robot's ability to handle construction materials ensures that it can perform efficiently and safely in real-world construction environments[5].

Dzedzickis et al. (2022) highlight the advancements in collaborative robotics across sectors like healthcare, agriculture, and manufacturing, with a specific focus on pick-and-place tasks. The integration of AI and sensor technologies for precise operations guided our choice to prioritize pick-and-place, as CoppeliaSim allows for the simulation of sensor-driven, precision-based interactions. This is particularly useful in industries where accuracy in handling small, delicate objects is essential[2].

Yuan and Lu (2023) discuss the impact of industrial robots on maintaining competitive production rates in global value chains, particularly through pick-and-place tasks that improve efficiency. Their insights into how automation enhances productivity and reduces errors supported our decision to focus on pick-and-place operations, which can be optimized in CoppeliaSim. This allows us to test and refine the robot's performance to meet the demands of a highly competitive global market [10].

In conclusion, insights from the reviewed literature highlight the relevance and importance of pick-and-place operations in various industrial applications. By using CoppeliaSim, we can simulate and optimize these operations to ensure that the robot performs with precision, safety, and efficiency, making it well-suited for real-world industrial environments.

GrabCAD Models

3.1 Model 1

This model is named in zip folders as 4-dof-robot-arm-4.snapshot.4. The robotic arm was designed with four degrees of freedom and programmed to accomplish accurate material lifting tasks to assist in the production line in any industry. It consists of 4 servo motors, one at the base, 2 at the body, and one in the end effector.

Link: https://grabcad.com/library/4-dof-robot-arm-4

Figure 3.1: Model 1

Figure 3.2: Model 1

Figure 3.3: Model 1

3.2 Model 2

This model named in zip folders as 4-dof-robotic-arm-1.snapshot.3. The robotic arm or a mechanical arm is a programmable robot with 4 degrees of freedom. It is designed to perform functions that are similar to a human arm. The arm can act individually and as a part of some more complex Robot. The links of these arms are connected by joints connected at the end with the end effector.

Link: https://grabcad.com/library/4dof-robotic-arm-1

Figure 3.4: Model 2

3.3 Model 3

This model named in zip folders as robot-arm-13.snapshot.1. The robotic arm was designed with four or five degrees of freedom and used to lift or move objects.

Link: https://grabcad.com/library/robot-arm-13

3.3. MODEL 3

Figure 3.5: Model 3

Figure 3.7: Model 3

Figure 3.6: Model 3

Figure 3.8: Model 3

Coordinate Frame

Figure 4.1: Robot Coordinate Frames

In Figure 4.1, we can see a robotic arm with coordinate frames assigned according to the Denavit-Hartenberg (DH) convention. The coordinate frames are represented by colored axes: red for the X-axis, blue for the Z-axis, and green for the Y-axis, positioned at various joints and links of the robot.

Base (Joint 1):

- The bottom part of the robotic arm (attached to the ground) is the base.
- This part rotates about the Z-axis (denoted by the blue arrow).

• It represents the first revolute joint, allowing rotation about the vertical axis. The DH frame is assigned here, with the Z-axis pointing upwards and the X-axis (red) pointing along the arm's rotational axis.

Link 1:

- The first link extends from the base to the next joint.
- According to the DH-convention, the X-axis is aligned along the common normal between the joint axes, and the Z-axis is aligned with the axis of the first joint.

Joint 2:

- The next joint controls the vertical motion of the arm.
- This is another revolute joint, where the rotation occurs in a different plane. The Z-axis at this joint points along the axis of rotation.

Link 2:

- Extending from Joint 2, this link holds the next part of the robotic arm.
- The DH frame follows the convention, with the Z-axis pointing in the direction of the rotational axis of Joint 2.

Joint 3:

- The third joint is located at the elbow-like structure, controlling the arm's bending motion.
- It is another revolute joint, and the Z-axis aligns with the elbow's rotational axis.

End-Effector:

- The robotic arm's end-effector is visible at the top, represented by a gripper.
- The end-effector is responsible for manipulating objects.
- The DH frame for the end-effector is assigned based on the last link's positioning and the orientation of the end-effector.

DH-Convention

5.1 Table

Convention				
Joint	theta	delta	а	alpha
1	q1	I1 = 0.09522	0	90
2	q2	0	12	0
3	q3	0	0	-90
ee	q4	13+14	0	0

Figure 5.1: DH-Convention Table

5.2 Final Matrix

```
[[ 8.08134280e-01 -4.60830980e-01 -3.66815747e-01 -3.57486755e-02]

[ 4.95984940e-01 8.68329205e-01 1.82498791e-03 1.77850030e-04]

[ 3.17675815e-01 -1.83409922e-01 9.30291824e-01 2.14726319e-01]

[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
```

Figure 5.2: DH-Convention Final Matrix

Figure 5.2 illustrates the total transformation matrix from the base reference frame to the end effector reference frame. This transformation is crucial for understanding the position and orientation of the end effector relative to its base frame.

Simulation

Figure 6.1: Robot Manipulator Simulation - Joint Movements

In these images, we observe a robotic manipulator simulated in a 3D environment. The manipulator's joints are actively moving, and the corresponding coordinate frames—based on the Denavit-Hartenberg (DH) convention are visualized at various key points.

The images showcase the manipulator in various positions as its joints move, simulating the arm's interaction with its environment. The coordinate frames illustrate the current orientation and position of the joints during the simulation.

Figure 6.2: Robot Manipulator Simulation - Advanced Joint Position

In the background, we notice additional objects and characters, such as a person seated at a desk, indicating that the robot might be part of a larger simulation for interaction with surrounding components, such as the visible conveyor belt. This setup suggests the robot is likely involved in tasks like pick-and-place operations or object manipulation within the environment.

Figure 6.3: Robot Manipulator Simulation - Full Setup

GUI

Figure 7.1 illustrates a user interface for an office environment. One person is seen working at their desk, while another individual oversees the industrial pipeline, ensuring that the robotic arm is operating correctly. The robotic arm is responsible for picking and placing products along the conveyor belt. This setup highlights the integration of human supervision and automated processes, reflecting a modern industrial workflow where technology and human expertise collaborate seamlessly for efficient production.

22 CHAPTER 7. GUI

Figure 7.1: GUI

Bibliography

- [1] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of physics simulators for robotic applications. *IEEE Access*, 9:51416–51431, 2021.
- [2] Andrius Dzedzickis, Jurga Subačiūtė-Žemaitienė, Ernestas Šutinys, Urtė Samukaitė-Bubnienė, and Vytautas Bučinskas. Advanced applications of industrial robotics: New trends and possibilities. *Applied Sciences*, 12(1):135, 2021.
- [3] Bohan Feng, Xinzhe Juan, Xinyi Gao, Qi Zhou, and Youyi Bi. A robotic manipulation framework for industrial human–robot collaboration based on continual knowledge graph embedding. *The International Journal of Advanced Manufacturing Technology*, pages 1–17, 2024.
- [4] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, and Rajiv Suman. Substantial capabilities of robotics in enhancing industry 4.0 implementation. *Cognitive Robotics*, 1:58–75, 2021.
- [5] Behnam M. Tehrani, Samer BuHamdan, and Aladdin Alwisy. Robotics in assembly-based industrialized construction: A narrative review and a look forward. *International Journal of Intelligent Robotics and Applications*, 7(3):556–574, 2023.
- [6] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef Mezouar. Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey. *The International Journal of Robotics Research*, 37(7):688–716, 2018.
- [7] Fahad Sherwani, Muhammad Mujtaba Asad, and Babul Salam Kader K Ibrahim. Collaborative robots and industrial revolution 4.0 (ir 4.0). In 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), pages 1–5. IEEE, 2020.
- [8] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. *Mechatronics*, 55:248–266, 2018.
- [9] Fan Wang and Kris Hauser. Robot packing with known items and nondeterministic arrival order. *IEEE Transactions on Automation Science and Engineering*, 18(4):1901–1915, 2020.

24 BIBLIOGRAPHY

[10] Wenhua Yuan and Weixiao Lu. Research on the impact of industrial robot application on the status of countries in manufacturing global value chains. *Plos one*, 18(6):e0286842, 2023.