

**CSCI-P556 Applied Machine Learning** Lecture 14

D.S. Williamson

# Agenda and Learning Outcomes Today's Topic(s)

- Topic(s): Neural Networks
  - Multi-layer Perceptrons (MLP)
  - Deep Neural Networks
  - Backpropagation
- Announcements

### Recall: Perceptron Neuron Model

#### Modified version of McCulloch-Pitts neuron



- Perceptrons use real-valued inputs.
- Perceptrons are also used for learning.
- Invented by Rosenblatt in 1957
- Useful for binary classification

$$x_i \in \mathbb{R}$$

$$v = \sum_{i=1}^{m} w_i x_i + b$$

$$y = \phi(v)$$

$$\phi(v) = \left\{ \begin{array}{ll} 1, & \text{if } v \geq 0 \\ -1, & \text{if } v < 0 \end{array} \right. \text{ Activation function}$$

Real-valued inputs

Activation potential

Output

## Recall: Decision Boundary

$$\phi(v) = \begin{cases} 1, & \text{if } v \ge 0 \\ -1, & \text{if } v < 0 \end{cases}$$

#### Perceptrons as classifiers

- The <u>decision boundary</u> of a perceptron is the line (or hyperplane) where the activation potential equals 0. This is based on the activation function of a perceptron
- For a 2-D input space with a bias: q(

$$g(x_1, x_2) = w_1 x_1 + w_2 x_2 + b = 0$$

=> After re-writing the equation we can see that it follows the equation of a line

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{b}{w_2}$$

- The discriminant function is a line with slope –w<sub>1</sub>/w<sub>2</sub> and intercept –b/w<sub>2</sub>
- The distance of the function to the origin is |b|/||w||, where

$$||\boldsymbol{w}|| = \sqrt{w_1^2 + w_2^2}$$

### Recall: Decision Boundary

#### Perceptrons as classifiers

 $x_2 = -\frac{w_1}{w_2} x_1 - \frac{b}{w_2}$ 

- For an m-dimensional input space, the decision boundary is an (m-1)-dimensional hyperplane perpendicular to w.
  - By definition, the weight vector is orthogonal to the decision boundary. Why? Recall: inner product
- The hyperplane separates the input space into two halves
  - One half having  $\hat{y} = 1$
  - The other half having  $\hat{y} = -1$
- When b=0, the hyperplane goes through the origin



## Recall: Perceptron Learning Rule: Finding Weights Single Perceptron, Multiple inputs

- How do we (iteratively) change the weights if they are too small or too large?
  - Weights must be initialized (more on this next week)

$$\mathbf{w}^{n+1} = \mathbf{w}^n + \nabla(\mathbf{w})$$

$$= \mathbf{w}^n + \eta(y - \hat{y})\mathbf{x}$$

$$n: \text{ iteration number}$$

$$\eta: \text{ step size or learning rate}$$
Actual output

Desired output

- Note:
  - The outputs are bipolar {-1,1}
  - Thus,  $[y-\hat{y}]$  is either 0 (correct), -2 (too strong), or 2 (too weak)

### Generalization Once Trained

#### Perceptrons during testing

- Recall the definition of generalization
  - **Definition**: Performance of a learning machine on test patterns not seen (or used) during training.

- Perceptrons generalize by deriving a decision boundary in the input space.
  - The selection of training patterns is thus important for generalization
  - The solution weight vector is not unique. There are infinite possible solutions and decision boundaries.





Testing signals from each class



Training signals from each class

### Gradient Descent vs. Perceptron Learning Rule

#### The math is the same

- Perceptron learning is for McCulloch-Pitts neurons (with real inputs), which are nonlinear
  - Gradient descent (as discussed) is for linear neurons (e.g. linear regression)
  - Perceptron learning is for classification
  - Linear regression learning via gradient descent is for estimation (or regression)



Perceptron Learning

$$v = \sum_{i=1}^{m} w_i x_i + b$$

$$\phi(v) = \begin{cases} 1, \\ -1, \end{cases}$$

$$y = \phi(v)$$

$$if v \ge 0 \\
if v < 0$$

$$y = \sum_{i=1}^{m} w_i x_i + b \qquad \phi(v) = v$$

### Perceptrons for Multi-dimensional outputs

#### For classification or regression

- Multiple perceptrons can be used when performing multiclass classification (one for each class) or multi-dimensional estimation
  - Classification: Perceptron output is 1 when input is from the corresponding class. Its output is 0 otherwise. Each perceptron forms it's own decision boundary
  - Regression: Each perception corresponds to one of the output dimensions
- When these perceptrons have the same inputs (but with different weights), this stacking of perceptrons is called a <u>layer</u>



### A limitation of single-layer perceptrons

#### Logic Gate Example: OR Gate

 Single-layer perceptron networks can be used to solve multi-class classification problems, but they are not as useful for problems that are linearly inseparable or linearly-separable problems that require multiple boundaries per class



| <b>x</b> 1 | <b>x2</b> | y |
|------------|-----------|---|
| 0          | 0         | 0 |
| 0          | 1         | 1 |
| 1          | 0         | 1 |
| 1          | 1         | 1 |



### A limitation of single-layer perceptrons

#### Logic Gate Example: XOR Gate

 Single-layer perceptron networks can be used to solve multi-class classification problems, but they are not as useful for problems that are linearly inseparable or linearly-separable problems that require multiple boundaries per class



| <b>x</b> 1 | <b>x2</b> | y |
|------------|-----------|---|
| 0          | 0         | 0 |
| 0          | 1         | 1 |
| 1          | 0         | 1 |
| 1          | 1         | 0 |

A single (layer) perceptron cannot solve this problem



### The Case for Multi-Layered Perceptrons (MLP)

#### Logic Gate Example

 Adding layers to a network can help solve more complicated problems. The resulting neural network is called a <u>Multi-Layer Perceptron (MLP)</u>



### Multi-Layer Perceptron (MLP)

#### Components of the MLP

- Input layer: not really a layer, but serves to represent the inputs to a network
- Hidden layers: Layers where the output goes to another layer of neurons
- Output layer: Final layer of network, where output(s) are computed
- <u>Deep neural networks(DNN)</u> have two or more hidden layers (or three or more layers, excluding the input layer)
  - This is an example of a three-layer DNN. The input layer is not counted.



Multi-Layer Perceptron (MLP)

Computing Output(s): Forward Pass

- The output(s) of the network is(are) computed in a layer-wise fashion. This is known as the <u>forward</u> <u>pass</u>
  - The output from layer one is first computed and this becomes the input to the next layer
  - This continues until the output(s) is(are) computed





| input layer | hidden layer 1 | hidden layer 2 | output layer |
|-------------|----------------|----------------|--------------|
| ınput layer | hidden layer 1 | hidden layer 2 | output layer |

### Deep Neural Networks

#### Distinction with MLPs: Activation Functions

- The sign (or step) function of MLPs is mostly useful for classification problems. It also is not as useful for more complicated problems.
- To address these problems, other activation functions are often used in DNNs. These activation functions all use the activation potential as originally defined, as their input
  - Sigmoid (or logit):  $\phi(v) = 1/(1 + e^{-v})$
  - Hyperbolic Tangent (tanh):  $\phi(v) = 2/(1 + e^{-2v}) 1$
  - Rectified Linear (ReLU):  $\phi(v) = \max(0,v)$
  - Linear:  $\phi(v) = v$
- Different activation functions may be used in different layers (not required).



#### DNNs are supervised learning algorithms

- Goal: Find the weights that minimize the error (often MSE) between true and predicted values
  using a training set.
- During the training phase, the <u>back propagation</u> algorithm is used to find these weights
- General idea of back propagation:
  - For each training sample (e.g. input), compute the output using the forward pass
  - Compute the estimation/prediction error
  - Sequentially go through each layer (in reverse order) to measure the error contribution from each connection
  - Update the weights based on the error contribution to reduce the error (e.g. gradient descent)

#### Graphical depiction of backpropagation

- General idea of back propagation:
  - For each training sample (e.g. input), compute the output using the forward pass
  - Compute the estimation/prediction error
  - Sequentially go through each layer (in reverse order) to measure the error contribution from each connection
  - Update the weights based on the error contribution to reduce the error (e.g. gradient descent)



Compute
Forward Pass of
DNN to get
output from
input

#### Graphical depiction of backpropagation

- General idea of back propagation:
  - For each training sample (e.g. input), compute the output using the forward pass
  - Compute the estimation/prediction error
  - Sequentially go through each layer (in reverse order) to measure the error contribution from each connection
  - Update the weights based on the error contribution to reduce the error (e.g. gradient descent)



 $y - \hat{y}$ 

#### Graphical depiction of backpropagation

- General idea of back propagation:
  - For each training sample (e.g. input), compute the output using the forward pass
  - Compute the estimation/prediction error
  - Sequentially go through each layer (in reverse order) to measure the error contribution from each connection
  - Update the weights based on the error contribution to reduce the error (e.g. gradient descent)



Compute contribution from each neuron in each layer

 $\delta_k$ 

#### Graphical depiction of backpropagation

- General idea of back propagation:
  - For each training sample (e.g. input), compute the output using the forward pass
  - Compute the estimation/prediction error
  - Sequentially go through each layer (in reverse order) to measure the error contribution from each connection
  - Update the weights based on the error contribution to reduce the error (e.g. gradient descent)



Update weights based on error and (weighted) contributions for each neuron and layer

$$\mathbf{w}_k = \mathbf{w}_k - \eta \, \nabla E(w)$$

### Mathematics behind Backpropagation

### Simplified DNN

Notation for one hidden layer



- Weight(s) for the k-th neuron in the output layer are denoted as  $\mathbf{w}_{kj}$
- Weight(s) for the j-th neuron in the hidden layer are denoted as  $\mathbf{w}_{ii}$
- <u>Iterative weight update equations based on MSE loss function each iteration performs both in an interlaced manner</u> (e.g. output update, hidden layer update, output update, hidden layer update, out...)
  - Output layer (delta rule):  $\mathbf{w}_{kj}(n+1) = \mathbf{w}_{kj}(n) + \eta e_k(n) \phi'(v_k) \hat{y}_j(n) = \mathbf{w}_{kj}(n) + \eta \delta_k(n) \hat{y}_j(n)$
  - Hidden layer (generalized delta rule):

$$\mathbf{w}_{ji}(n+1) = \mathbf{w}_{ji}(n) + \eta \phi'(v_j(n)) \left[ \sum_{k} \delta_k(n) w_{kj}(n) \right] \mathbf{x}_i(n) = \mathbf{w}_{ji}(n) + \eta \delta_j(n) \mathbf{x}_i(n)$$

### Backpropagation

#### Illustration of delta rules



• Illustration of the generalized  $\delta$  rule,

$$\delta_{j}(n) = \phi'(v_{j}(n)) \left[ \sum_{k} \delta_{k}(n) w_{kj}(n) \right]$$

$$\chi_{j} \quad \delta_{k} \quad \delta_{k}(n) = (y_{k} - \hat{y}_{k}) \phi'(v_{k}) = e_{k}(n) \phi'(v_{k})$$

- The generalized  $\delta$  rule gives a solution to the credit (blame) assignment problem (e.g. which neuron is most responsible for the error).
- The updates depend on the partial derivative of the activation function  $\phi'(v)$
- Updates can be done using Stochastic or Mini-batch gradient descent

### Derivatives of activation functions

### Needed for weight update

Plot of partial derivatives for different activation functions

• For a logistic sigmoid for  $\phi$ 

$$\phi(v) = \frac{1}{1 + e^{-v}} \implies \phi'(v) = \phi(v)[1 - \phi(v)]$$





### DNNs as Multi-Class Classifiers

#### Softmax layer

- The prior approach assumes that the DNN is being trained to solve a regression problem. What happens if we need to solve a classification problem?
- For binary classification, we can merely threshold the output neuron, as was shown previously for Linear Regression
- For multi-class classification (when the classes are exclusive), each neuron in the output layer corresponds to a single class.
  - The output layer is then modified to replace the individual activation functions with a shared soft-max function
  - Outputs represent estimated probability of the corresponding class

$$\hat{y}_i = p_{y_i} = \phi_k(v) = \frac{e^{v_k}}{\sum_{j=1}^K e^{v_j}}$$



Cross Entropy Loss to train network

$$L_{ce} = -\sum_{i=1}^{m} y_i \log(p_{y_i})$$

#### **Next Class: Neural Networks III**

### Training a DNN

### A Python Example using TensorFlow

- MNIST Digit Recognition Example
- Other considerations during training

