Quantum Kernelized Bandits

Yasunari Hikima*, Kazunori Murao*, Sho Takemori*, Yuhei Umeda* (Fujitsu Limited; * Alphabetical order)

Introduction and Problem Setup

We consider a quantum kernelized bandit problem (quantum bayesian optimization), where the player aims to maximize a noisy black-box non-linear reward function with a limited number of queries.

- 1. Select an action x_s based on the observation history
- 2. Input quantum circuit U containing \mathcal{O}_{x_s}

Figure: A conceptual diagram of quantum bandits

▶ Unlike the classical bandits, the player has a chance to access the quantum circuit reffered to as *quantum reward oracle* that encodes the reward distribution, and this setting could perform much better than the classical setting.

■ Problem Setup:

For $1 \le t \le T$, the player selects an action $x_s \in \mathcal{X}$ and incurs an instantaneous regret $\mu(x^*) - \mu(x_t)$, where $\mu: \mathcal{X} \to [0,1]$ is the mean reward function and $x^* = \operatorname{argmin}_{x \in \mathcal{X}} \mu(x)$ is the optimal action in hindsight.

■ Comparison:

Reference	Kernel	Setting	Regret bound
Vakili et al. (2021)	eta_p poly. eigen-decay	Classical	$O\left(T^{rac{eta_p+1}{2eta_p}}\log^{1-rac{1}{2eta_p}}(T) ight)$
	eta_e exp. eigen-decay		$O\left(T^{rac{1}{2}}\log^{1+rac{1}{2eta_e}}(T) ight)'$
Wan et al. (2023)	$\emph{d} ext{-dim.}$ linear	Quantum	$O\left(d^2\log^{5/2}\log(T) ight)$
This work	eta_p poly. eigen-decay		$\widetilde{O}\left(T^{\frac{3}{1+\beta_p}}\log\left(\frac{1}{\delta}\right)\right)$
	eta_e exp. eigen-decay	Quantum	$\widetilde{O}\left(\log^{3(1+\beta_e^{-1})/2}(T)\log\left(\frac{1}{\delta}\right)\right)$

Preliminaries on quantum computation and Quantum Monte Calro method

- ► A quantum computing relies on manipulating a *quantum state*, and one can extract partial information of the state by performing a *measurement*.
- ▶ Quantum Monte Calro Method (Montanaro, 2015), QMC($\mathcal{O}(y)$, ϵ , δ), provides a quadratic speedup compared to the classical estimator.
- ▶ Formally, the quantum algorithm $QMC(\mathcal{O}(y), \epsilon, \delta)$ outputs an estimator of the expectation $\mathbb{E}\left[y\right]$ satisfying both
 - (i) $P(|\widehat{y} \mathbb{E}[y]| \ge \epsilon) \le \delta$, and
- (ii) $\mathrm{QMC}(\mathcal{O}(y), \epsilon, \delta)$ queries the unitary operator $\mathcal{O}(y)$ or its adjoint $\mathcal{O}(y)^{\dagger}$ at most $\frac{C}{\epsilon}\log\left(\frac{1}{\delta}\right)$ times.

Mercer Kernels and Eigenvalue Decay

■ Mercer's Theorem:

▶ Let $I \subseteq \mathbb{Z}_{\geq 1}$. We have

$$k(x, x') = \sum_{i \in I} \lambda_i \psi_i(x) \psi_i(x'), \qquad x, x' \in \mathcal{X},$$

where $\{\lambda_i\}_{i\in I}$ and $\{\psi_i\}_{i\in I}$ be the eigenvalues of the Mercer operator and an orthogonal basis of the space of square-integrable functions on a measurable space \mathcal{X} , respectively.

- **Eigen-decay**: We say a kernel has a
- $ightharpoonup (C_p, \beta_p)$ -polynomial eigen-decay, if for all $n \in I$, we have $\lambda_n \leq C_p n^{-\beta_p}$.
- $C_{e,1}, C_{e,2}, \beta_e$)-exponential eigen-decay, if for all $n \in I$, we have $\lambda_n \leq C_{e,1} \exp(-C_{e,2} n^{\beta_e})$.

Algorithm: QMCKernelUCB

For each stage $s=1,2,\ldots$, our algorithm, QMCKernelUCB, plays an action $x_s \in \mathcal{X}$, and calls $\mathrm{QMC}(\mathcal{O}_{x_s},\eta\epsilon_s,\delta/M)$ with the error tolerance $\eta\epsilon_s$.

Algorithm 1 QMCKernelUCB

- 1: **Input**: fail probability $\delta \in (0,1)$, the total number of rounds T, an upper bound of the total number of stages M, and a tradeoff parameter $\eta > 0$.
- 2: **for** each stage $s=1,2,\ldots$ (terminate when we have used T queries to $\mathcal{O}_x,\mathcal{O}_x^{\dagger}$) **do** 3: $x_s \leftarrow \operatorname{argmax}_{x \in \mathcal{X}} \widetilde{\mu}_{s-1}(x) + \beta_{s-1} \widetilde{\sigma}_{s-1}(x)$.
- 4: $\epsilon_s \leftarrow \widetilde{\sigma}_{s-1}(x_s)$.
- Run $\mathsf{QMC}(\mathcal{O}_{x_s}, \eta \epsilon_s, \frac{\delta}{M})$ obtain an output y_s of QMC .
- 6: **for** the next $\frac{C}{n\epsilon_s}\log\frac{\tilde{M}}{\delta}$ rounds **do**
 - play action x_s and the player incurs regret $\mu(x^*) \mu(x_s)$.
- o. and for
- 8: end for9: end for

Theoretical Results: Regret Analysis

Theorem 1 (Upper Bounds of Algorithm 1). Assume T > 1.

1. Suppose that the kernel k has a β_p polynomial eigen-decay. Then, with probability at least $1-\delta$, the cumulative regret of Algorithm 1 with $M=c_p\eta^{-2}$ and $\eta=T^{-\frac{1}{1+\beta_p}}$ is bounded as

$$R(T) = O\left(T^{\frac{3}{1+\beta_p}} \log^{3(1-\beta_p^{-1})/2}(T) \log(T/\delta)\right).$$

2. Suppose that the kernel k has a β_e exponential eigen-decay. Then with probability at least $1-\delta$, the cumulative regret of Algorithm 1 with $M=c_e\log^{1+1/\beta_e}(T)$ and $\eta=1$ is bounded as

$$R(T) = O\left(\log^{3(1+\beta_e^{-1})/2}(T)\log\left(\frac{\log T}{\delta}\right)\right).$$

Comparison to Quantum Bayesian Optimization (Dai et al., 2023)

Compared to Dai et al. (2023), this work has the following advantages:

- 1. Theoretical analysis without the unbiasedness assumption of the QMC estimator: Dai et al. (2023) assumes that the QMC method is an unbiased estimator, however, this assumption is unlikely to hold. We provide a mathematically rigorous analysis without compromising the theoretical results.
- 2. Improved regret bounds: Even under the unbiasedness assumption, in β_p -polynomial eigen-decay case, our regret bound $\widetilde{O}(T^{\frac{3}{1+\beta_p}}\log(1/\delta))$ is better than that $\widetilde{O}(T^{\frac{3}{\beta_p}}\log(1/\delta))$ of Q-GP-UCB (Dai et al., 2023).
- 3. A novel tradeoff parameter η in QMCKernelUCB: Due to the parameter η , our QMCKernelUCB can leverage the total number of stages and regret incurred in each stage.

Experiments

- We have conducted an ablation study regarding the tradeoff parameter η , since our algorithm with $\eta=1$ is identical to that of Dai et al. (2023)
- We consider a simple synthetic environment as follows: $\mathcal{X} = [0,1]^d$ with d=1, k: Matèrn- ν kernel with $\nu=1.5$, \mathcal{O}_x : a quantum circuit representing $\mathrm{Bern}(\mu(x))$, $\mu(x)=k(x,x_0)$ with $x_0\in\mathcal{X}$.
- Results: Our regret analysis indicates that by taking η as an appropriate small value, our algorithm achieves better performance.

Figure: Ablation study of the parameter η .

In the following figure, for better emprical performance, we introduce an exploration parameter v to the UCB $\widetilde{\mu}_{s-1}(x) + v\beta_{s-1}\widetilde{\sigma}_{s-1}(x)$.

Figure: Ablation study of the parameter η with the exploration parameter $\upsilon=0.1$

References

Dai, Z., Lau, G. K. R., Verma, A., Shu, Y., Low, B. K. H., and Jaillet, P. (2023). Quantum Bayesian Optimization. In Thirty-seventh Conference on Neural Information Processing Systems.

Montanaro, A. (2015). Quantum speedup of monte carlo methods. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 471(2181):20150301. Vakili, S., Khezeli, K., and Picheny, V. (2021). On information gain and regret bounds in Gaussian process bandits. In *International Conference on Artificial Intelligence*

Wan, Z., Zhang, Z., Li, T., Zhang, J., and Sun, X. (2023). Quantum multi-armed bandits and stochastic linear bandits enjoy logarithmic regrets. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 10087–10094.