Functional Programming Excercise Sheet 3

Emilie Hastrup-Kiil (379455), Julian Schacht (402403), Niklas Gruhn (389343), Maximilian Loose (402372)

Excercise 1

a)

```
collatz :: Int \rightarrow [Int] collatz x = iterate (\y \rightarrow if mod y 2 == 0 then div y 2 else 3*y+1) x total_stopping_time :: Int \rightarrow Int total_stopping_time 1 = 3 total_stopping_time x = length (takeWhile (\y \rightarrow y /= 1) (collatz x))
```

b)

```
check_collatz :: Int -> Bool
check_collatz 1 = False
check_collatz n = elem 1 (take n (collatz n))
```

Excercise 2

a)

b)

```
range :: [a] -> Int -> [a]
range xs a b = [xs !! i | i <- [a .. b]]
```

Excercise 3

Excercise 4

a)

All elements $x \in ((\mathbb{Z}_{\perp} \times \mathbb{B}_{\perp}) \times \mathbb{Z}_{\perp}$ that are less defined than y_1 are given by $((-1, \perp), 0), ((\perp, False), 0), ((-1, False), \perp), ((\perp, False), \perp), ((-1, \perp), \perp), ((\perp, \perp), 0)$ and the smallest Element $((\perp, \perp), \perp)$.

All elements $x \in ((\mathbb{Z}_{\perp} \times \mathbb{B}_{\perp}) \times \mathbb{Z}_{\perp}$ that are less defined than y_2 are given by $((\perp, \perp), 2), ((-1, \perp), \perp)$ and the smallest Element $((\perp, \perp), \perp)$.

b) Given a domain $D = \underbrace{\mathbb{Z}_{\perp} \times ... \times \mathbb{Z}_{\perp}}_{n \text{ times}}$ for $0 < n \in \mathbb{N}$ and a chain $S \subseteq D$ then $\sup\{|S| \mid S \subseteq D, S \text{ is a chain}\} = n + 1.$

We use induction on n to show that this holds for all $n \in \mathbb{N}, n > 0$.

Base case. n=1

Let $D = \mathbb{Z}_{\perp}$, then $\perp \in D$ and for all $x \in \mathbb{Z} : x \in \mathbb{Z}_{\perp}$. For $x, y \in S$ with $x, y \in \mathbb{Z}$ it follows from the definition of S that either $x \sqsubseteq y$ or $y \sqsubseteq x$. By the definition of \sqsubseteq and x and y, this is only true iff x = y. As a result, $|\{x \in \mathbb{Z} \mid x \in S \text{ with } S \subseteq D, S \text{ is a chain}\}| \leq 1$.

However, $\bot \sqsubseteq x$ for all $x \in \mathbb{Z}$ hence $\sup\{|S| \mid S \subseteq D, S \text{ is a chain}\} = 1 + 1 = 2 = n + 1.$

Induction hypothesis

sup{
$$|S| \mid S \subseteq D$$
, S is a chain} = $n+1$ holds for $n \in \mathbb{N}$, $0 < n$ with $D = \underbrace{\mathbb{Z}_{\perp} \times ... \times \mathbb{Z}_{\perp}}_{n \text{ times}}$.

Induction step
$$n \to n+1$$

Let
$$D = \underbrace{\mathbb{Z}_{\perp} \times ... \times \mathbb{Z}_{\perp}}_{n+1 \text{ times}}$$
.

It follows from the hypothesis that if $D_n = \underbrace{\mathbb{Z}_{\perp} \times ... \times \mathbb{Z}_{\perp}}_{n \text{ times}}$ then $\sup\{|S_n| \mid S_n \subseteq$

 D_n, S_n is a chain $\} = n + 1$.

Now we extend each n-tuple $(n_1, n_2, ..., n_n)$ in the chain S_n $(n_1, n_2, ..., n_n \in \mathbb{Z}_{\perp})$ so that we get (n+1)-tuples $(n_1, n_2, ..., n_n, x) \in D, x \in \mathbb{Z}_{\perp}$.

Case 1: $x \in \mathbb{Z}$

For two tuples $t_i = (n_{i_1}, n_{i_2}, ..., n_{i_n}), t_j = (n_{j_1}, n_{j_2}, ..., n_{j_n}) \in S_n$ either $t_i \sqsubseteq t_j$ or $t_j \sqsubseteq t_i$ applies. Then also $(n_{i_1}, n_{i_2}, ..., n_{i_n}, x) \sqsubseteq (n_{j_1}, n_{j_2}, ..., n_{j_n}, x)$ or $(n_{j_1}, n_{j_2}, ..., n_{j_n}, x) \sqsubseteq (n_{i_1}, n_{i_2}, ..., n_{i_n}, x)$ since in particular $x \sqsubseteq x$ and consequently $(n_{j_1}, n_{j_2}, ..., n_{j_n}, x), (n_{i_1}, n_{i_2}, ..., n_{i_n}, x) \in S$ with $\sup\{|S| \mid S \subseteq D, S \text{ is a chain}\} \ge \sup\{|S_n| \mid S_n \subseteq D_n, S_n \text{ is a chain}\} = n + 1.$

If $(n_1, n_2, ..., n_n, x) \in S$ and $(n_1, n_2, ..., n_n, y) \in S$ then x = y because neither $x \sqsubseteq y$ nor $y \sqsubseteq x$ applies. Similarly, If $t_i = (n_1, n_2, ..., n_n, x) \in S$ and $t_j = (n_1, n_2, ..., x, ..., n_n) \in S$ then neither $t_i \sqsubseteq t_j$ nor $t_j \sqsubseteq t_i$ applies, because $t_i \neq t_j$ and both are equally defined. This leads on to our second case.

Case 2:
$$(n_1, n_2, ..., n_n, x), n_1 = n_2 = ... = n_n = x = \bot$$

Then clearly $(n_1, n_2, ..., n_n, x) \in S$ since it is the smallest element of D and therefore $(n_1, n_2, ..., n_n, x) \sqsubseteq y$ for all $y \in D$. Resulting from this, $\sup\{|S| \mid S \subseteq D, S \text{ is a chain}\} = (n+1)+1=n+2$. The equation holds.