Lecture #5 (Decision Tree)

Presented by
Assoc. Prof. Ghazal A. Fahmy
ghazal.Fahmy@nti.sci.eg

Definition

A tree-like model that illustrates series of events leading to certain decisions

• Each node represents a test on an attribute and each branch is an outcome of

Definition

A tree-like model that illustrates series of events leading to certain decisions

 Each node represents a test on an attribute and each branch is an outcome of that test

Definition

A tree-like model that illustrates series of events leading to certain decisions

 Each node represents a test on an attribute and each branch is an outcome of that test

- We use labeled data to obtain a suitable decision tree for future predictions
 - We want a decision tree that works well on unseen data, while asking as few questions as possible

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

Outlook

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

5	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
וו יט	Hot	High	Strong	No
š	Mild	High	Weak	No
OUTIOOK	Cool	Normal	Weak	Yes
3	Mild	Normal	Strong	Yes

,,				
Overca	Temperature	Humidity	Wind	Play Tennis?
, e	Hot	High	Weak	Yes
ا ا	Cool	Normal	Strong	Yes
X	Mild	High	Strong	Yes
JULIOOK	Hot	Normal	Weak	Yes
₹'				

کر	Temperature	Humidity	Wind	Play Tennis?
Rainy	Mild	High	Weak	Yes
=	Cool	Normal	Weak	Yes
충	Cool	Normal	Strong	No
Outlook	Mild	Normal	Weak	Yes
<u>ರ</u>	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

Sunny	Temperature	Humidity	Wind	Play Tennis?
'n	Hot	High	Weak	No
ll S	Hot	High	Strong	No
쑹	Mild	High	Weak	No
Outlook	Cool	Normal	Weak	Yes
ō	Mild	Normal	Strong	Yes

Tem Hot	perature	Humidity	Wind	Play Tennis?
Hot		High	Weak	Yes
Coo	I	Normal	Strong	Yes
Mild		High	Strong	Yes
Hot		Normal	Weak	Yes
	·			

5	Temperature	Humidity	Wind	Play Tennis?
Rainy	Mild	High	Weak	Yes
=	Cool	Normal	Weak	Yes
쏭	Cool	Normal	Strong	No
Outlook	Mild	Normal	Weak	Yes
ರ	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

What is a good attribute?

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

- Which attribute provides better splitting?
- Why?
 - Because the resulting subsets are more pure
 - Knowing the value of this attribute gives us more information about the label (the entropy of the subsets is lower)

Entropy

Entropy measures the degree of randomness in data

For a set of samples X with k classes:

$$entropy(X) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

where p_i is the proportion of elements of class i

Lower entropy implies greater predictability!

Information Gain

 The information gain of an attribute a is the expected reduction in entropy due to splitting on values of a:

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

where X_v is the subset of X for which a = v

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

entropy
$$(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

entropy $(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$
 $entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918$
 $entropy(X_{color=white}) = 1$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \qquad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \qquad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$\begin{array}{ll} entropy\left(X\right) = -p_{\text{mammal}}\log_{2}p_{\text{mammal}} - p_{\text{bird}}\log_{2}p_{\text{bird}} = -\frac{3}{7}\log_{2}\frac{3}{7} - \frac{4}{7}\log_{2}\frac{4}{7} \approx \ 0.985 \\ entropy\left(X_{color=brown}\right) = -\frac{1}{3}\log_{2}\frac{1}{3} - \frac{2}{3}\log_{2}\frac{2}{3} \approx \ 0.918 \\ & entropy\left(X_{color=white}\right) = 1 \\ & gain\left(X,color\right) = \mathbf{0}.985 - \frac{3}{7} \cdot \mathbf{0}.918 - \frac{4}{7} \cdot \mathbf{1} \approx \mathbf{0}.020 \\ & entropy\left(X_{fly=yes}\right) = 0 \\ & entropy\left(X_{fly=no}\right) = -\frac{3}{4}\log_{2}\frac{3}{4} - \frac{1}{4}\log_{2}\frac{1}{4} \approx \ 0.811 \end{array}$$

In practice, we compute entropy(X)

only c	10est fly?	Color	Class
	No	Brown	Mammal
	No	White	Mammal
	Yes	Brown	Bird
	Yes	White	Bird
	No	White	Mammal
	No	Brown	Bird
	Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \qquad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

entropy
$$(X_{fly=no}) = -\frac{3}{4}\log_2\frac{3}{4} - \frac{1}{4}\log_2\frac{1}{4} \approx 0.811$$

$$gain(X, fly) = 0.985 - \frac{3}{7} \cdot 0 - \frac{4}{7} \cdot 0.811 \approx 0.521$$

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Decision Trees Can Represent Any Boolean Function

The tree will in the worst case require exponentially many nodes, however.

Entropy v/s Gini Impurity

The internal workings of both methods are similar, as they are used for computing the impurity of features after each split. However, Gini Impurity is generally more computationally efficient than entropy. The graph of entropy increases up to 1 and then starts decreasing, while Gini Impurity only goes up to 0.5 before decreasing, thus requiring less computational power. The range of entropy is from 0 to 1, whereas the range of Gini Impurity is from 0 to 0.5.

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$Gini(E) = 1 - \sum_{j=1}^{c} p_j^2$$

Homework

• Which feature will be at the root node of the decision tree trained for the following data? In other words which attribute makes a person most attractive?

Height	Hair	Eyes	Attractive?
small	blonde	brown	No
tall	dark	brown	No
tall	blonde	blue	Yes
tall	dark	Blue	No
small	dark	Blue	No
tall	red	Blue	Yes
tall	blonde	brown	No
small	blonde	blue	Yes

Question?

