Práctica 0: Repaso de combinatoria

Ejercicio 1. Sean \mathcal{U} un conjunto universal finito y $A, B \subseteq \mathcal{U}$. Probar que:

- a) $\#A^c = \#U \#A$.
- b) $\#A = \#(A \cap B) + \#(A \cap B^c)$.
- c) $\#(A \cup B) = \#A + \#B \#(A \cap B)$. Generalizar para la unión de una cantidad finita cualquiera de conjuntos.
- d) $\#(A B) = \#A \#(A \cap B)$.

Ejercicio 2.

- a) Martín tiene pintura de 7 colores, va a pintar una mesa y una silla. ¿De cuántas maneras puede hacerlo?
- b) Charly tiene que ubicar 7 pares de medias iguales en 2 cajones, uno rojo y otro azul. ¿De cuántas maneras puede hacerlo?
- c) La nona tiene muchos caramelos, de naranja y de limón. Quiere regalarle uno a cada uno de sus 7 nietos. ¿De cuántas maneras puede hacerlo?
- d) Beto tiene que decidir los resultados de un concurso, en el que participan 7 personas y hay premios para el primero y el segundo. ¿De cuántas maneras puede hacerlo?
- e) Ana tiene 7 libros distintos y tiene que elegir 2 libros para llevárselos de viaje. ¿De cuántas maneras puede hacerlo?

¿Cuáles son las diferencias entre los 5 enunciados? ¿Se animan a generalizarlos?

Ejercicio 3. De una caja que contiene 123 bolillas numeradas de 1 a 123 se extraen cinco bolillas. ¿Cuántos resultados posibles hay si:

- a) las bolillas se extraen una a la vez y se descartan después de extraerlas?
- b) las bolillas se extraen una a la vez y se devuelven a la caja después de extraerlas?
- c) las bolillas se extraen todas juntas?

Ejercicio 4.

- a) ¿Cuántos anagramas de BIBLIOTECARIA pueden formarse?
- b) ¿Y con la condición de que la T esté a la derecha de la C?
- c) ¿Y con la condición de que la T esté a la derecha de la C y la C a la derecha de la R?
- d) ¿Y con la condición de que las dos A no estén juntas?
- e) ¿Y con la condición de que todas las vocales estén juntas?

Ejercicio 5. Consideremos la ecuación $x_1 + x_2 + x_3 = 57$.

- a) ¿Cuántas soluciones enteras no negativas tiene?
- b) ¿Cuántas soluciones enteras positivas tiene donde $x_1 \ge 50$?

Ejercicio 6. En el tablero de la figura, ¿cuántas formas hay de llegar desde A hasta B realizando movimientos hacia abajo y hacia la derecha siguiendo las lineas? ¿Cuántos de esos caminos pasan por X?

Ejercicio 7. Se extraen 23 bolitas de una caja que contiene 100 bolitas blancas, 100 bolitas azules, 100 bolitas negras y 100 bolitas rojas. ¿Cuántos resultados posibles hay?

Ejercicio 8. Probar que

$$\{(x,y) \in \mathbb{R}^2 : |x+y| \geqslant \varepsilon\} \subseteq \left\{(x,y) \in \mathbb{R}^2 : |x| \geqslant \frac{\varepsilon}{2}\right\} \cup \left\{(x,y) \in \mathbb{R}^2 : |y| \geqslant \frac{\varepsilon}{2}\right\}.$$

Ejercicio 9. Sea $F : \mathbb{R} \to \mathbb{R}$ una función monótona. Probar que F tiene a lo sumo numerables puntos de discontinuidad.

Ejercicio 10. Probar, por inducción, que la derivada n-ésima de $f(x) = e^{x^2}$ es de la forma $f^{(n)}(x) = f(x) \cdot p_n(x)$, con $p_n(x)$ un polinomio de grado n.

Ejercicio 11. Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ dos sucesiones acotadas de números reales. Enunciar y demostrar las relaciones de orden entre los siguientes cuatro números:

- $\lim \inf(a_n + b_n)$.
- $\limsup(a_n+b_n)$.
- $\limsup a_n + \limsup b_n$
- $\liminf a_n + \liminf b_n$.

Ejercicio 12.

- a) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales positivos tal que $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} = l < 1$. Probar que $\lim_{n\to\infty} a_n = 0$.
- b) Usar el ítem anterior para probar que:
 - i) Si $\alpha < 0$ entonces $\lim_{n \to \infty} \alpha^n / n! = 0$.
 - ii) $\lim_{n\to\infty} n!/n^n = 0.$

iii) Si $0 < \alpha < 1$ y $k \in \mathbb{Z}$, entonces $\lim_{n \to \infty} n^k \alpha^n = 0$.

Ejercicio 13.

a) Sea $k \in \mathbb{N}$. Calcular

$$\lim_{n \to \infty} \binom{n+k}{n} \frac{k!}{n^k}.$$

b) Sean $r \in (0,1)$ y $a_n = \sum_{k=0}^n r^k$. Probar que $a_n = \frac{r^{n+1}-1}{r-1}$ y concluir que

$$\lim_{n \to \infty} a_n := \sum_{k=0}^{+\infty} r^k = \frac{1}{1 - r}.$$

c) Sea $p \in \mathbb{R}$. Probar que $\sum_{n=1}^{+\infty} \frac{1}{n^p}$ converge si y sólo si p > 1.

Ejercicio 14. Probar que las siguientes afirmaciones son falsas, mostrando un contraejemplo:

- "Si $f_n:[0,1]\to\mathbb{R}$ es una sucesión de funciones continuas que converge puntualmente a f(x) (es decir, para cada $x\in[0,1]$ se tiene $f_n(x)\to f(x)$), entonces f(x) es continua."
- "Si $f_n : \mathbb{R} \to \mathbb{R}$ es una sucesión de funciones continuas y acotadas que converge puntualmente a una función continua f(x), entonces f(x) es acotada."

Ejercicio 15.

- a) Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones con $f_n:\mathbb{R}\to\mathbb{R}$, cada una de ellas derivable, que converge uniformemente a una función $f:\mathbb{R}\to\mathbb{R}$ y f'_n converge uniformemente a una función $g:\mathbb{R}\to\mathbb{R}$. Probar que f es derivable y que f'=g.
- b) Sea $\sum_{n=0}^{\infty} f_n(x)$ una serie de funciones. ¿Bajo qué hipótesis es legítimo derivarla término?
- c) Probar que la serie $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ converge uniformemente en \mathbb{R} , pero que esto no ocurre para la serie obtenida derivando término a término.
- d) Sea $p \in (0,1)$. Probar que $\sum_{n=1}^{\infty} n.p.(1-p)^{n-1} = \frac{1}{p}.$

Ejercicio 16. Calcular

$$\int\limits_0^1\int\limits_y^1 e^{-x^2}dxdy,\qquad \int\limits_0^{+\infty}\int\limits_0^y e^{-y}dxdy,\qquad \int\limits_{-\infty}^t x^2e^xdx.$$

3