# **INT201 Decision, Computation** and Language

Lecture 6 - Context-Free Languages (1) Dr Yushi Li



### **Context-Free Languages**

· Regular expressions describe precisely the strings in the language

Describe the general shape of all strings in the language.

• Context-free grammar (CFG) is an entirely different formalism for defining a class

Give a procedure for listing off all strings in the language.

提供个步骤来到出语中所有strings



### Context-Free Languages

- · Context-Free Grammar (CFG)
- · Chomsky Normal Form (CNF)



### Context-Free Languages 上下之无关语言

#### Applications of CFG

Programming languages: CFGs are used to define the syntax of programming languages, allowing parsers to analyze code structure. 分析代码框架

が経済 が知れている。 NLP: CFGs help in parsing sentences, enabling applications like m<u>achine translation</u> and speech recognition 解析句子

· Compilers: CFGs facilitate s<u>vntax analysis.</u> ensuring that the s<u>ource code adhere</u>s to the language's grammatical rules. 确保 源代码 贴台 语言语法规则



### Context-Free Grammar

### Example

Start variable S with rules:

$$S \to AB$$

$$A \rightarrow a$$

$$A \rightarrow aA$$

$$\mathbf{B} \to \mathbf{p}$$

$$B \!\to\! bB$$

variables: S, A, B terminals: a, b

• Following these rules, we can yield?

L= {am|bm: m=1}



### Context-Free Grammar

### Example

Language L = { 
$$0^k \mid k$$
 Language L = {  $0^k \mid k \geq 0$  } has CFG G = (V,  $\Sigma$ , R, S),

Terminal set 
$$\Sigma = \{0,1\}$$



### Context-Free Grammar

### Definition

A context-free grammar is a 4-tuple  $G = (V, \Sigma, R, S)$ , where

file 1. V is a finite set, whose elements are called **variables**, 2. ∑ is a finite set, whose elements are called **terminals**, (适知 DA/NFA的区域)

3.  $V \cap \Sigma = \emptyset$ , variable  $\cap$  terminal 波角元素积

4. <u>S</u> is an element of V; it is called the <u>start variable</u>,  $\overrightarrow{A} \not \not W_2$  5. R is a finite set, whose elements are called <u>rules</u>. Each rule has the form  $A \rightarrow w$ ,

where  $A \in V$  and  $w \in (V \cup \Sigma)^*$ .

A is a variable in V wis the strings constructed from CVUS



### Deriving strings and languages using CFG





Let  $G = (V, \Sigma, R, S)$  be a context free grammar with

A ∈ V

•  $\overline{u, v, w} \in (V \cup \Sigma)^*$ ,

•  $\overrightarrow{A} \rightarrow \overrightarrow{w}$  is a rule of the grammar

The string uwv can be derived in one step from the string uAv, written as

 $uAv \Rightarrow uwv$ 

**Example:** aaAbb ⇒ aaaAbb



### Deriving strings and languages using CFG



### ⇒: derive 右重左撑到

Let  $G = (V, \Sigma, R, S)$  be a context free grammar with

•  $u, v \in (V \cup \Sigma)^*$ 



경설 The string v can be derived from the string u , written as  $u\overset{*}{\Rightarrow}v,$  if one of the following conditions holds:

2.there exist an integer  $\underline{k \geq 2}$  and a sequence  $u_1,\,u_2,\,\ldots,\,u_k$  of strings in  $(V\ \cup\ \Sigma)^*$ , such that

(a)  $u = u_1$ ,

(b)  $v = u_k,$  and  $u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k$  .

**Example:** With the rules  $A \rightarrow B1 \mid D0C$ 

0AA ⇒ 0D0CB1



# Example (Palindrome) 図文 CFG $G = (V, \Sigma, R, S)$ with 1. $V = \{S\}$ 2. $\Sigma = \{a, b\}$

1. 
$$V = \{S\}$$

$$2. \quad \Sigma = \{a, b\}$$

3. Rules R: S 
$$\rightarrow$$
 aSa | bSb | a | b |  $\varepsilon$   $\swarrow$   $\hookrightarrow$   $\hookrightarrow$ 

Language of this CFG?

$$S = > \alpha S a = > \alpha S a a = > \alpha - - \alpha S a - - \alpha$$

$$= > \begin{cases} \alpha ... & \alpha a a - - a & S - > \alpha \\ \alpha ... & \alpha b a ... & \alpha & S - > b \end{cases}$$

$$\alpha ... & \alpha s - \alpha & S - > \epsilon$$

$$S \Rightarrow bSb \Rightarrow bbSbb \dots$$
 same measure as above  $L(G) = \{w \in \Sigma^* \mid w = w^R\}$  R: reverse



### Language of CFG

### Definition

The language of CFG  $G = (V, \Sigma, R, S)$  is

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Such a language is called **context-free**, and satisfies  $L(G) \subseteq \Sigma^*$ .

#### Example

CFG 
$$G = (V, \Sigma, R, S)$$
 with

1. 
$$V = \{S\}$$

2. 
$$\Sigma = \{0, 1\}$$

3. Rules R: 
$$S \rightarrow 0S \mid \epsilon$$

$$L(G) = ?$$



# 

CFG  $G = (V, \Sigma, R, S)$  with

1. 
$$V = \{S\}$$

2. 
$$\Sigma = \{+, -, \times, /, (,), 0, 1, 2, \dots, 9\}$$

$$S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdot \cdot \cdot \cdot \mid 9$$

L(G): valid arithmetic expressions over single-digit integers

S derives string  $3 \times (5+6)$ ?

$$S => SxS => Sx(S) => Sx(StS) => 3x(StS) =>$$



Regular Languages are context-free

(if) (cond sor)

Theorem Regular Language => Context free

Let  $\Sigma$  be an alphabet and let  $L \subseteq \Sigma^*$  be a regular language. Then L is a context-free language (Every regular language is context-free).

Proof (goneral idea) 在介层 有个DR 从楼文, L建上文长的高要

Since L is a regular language, there exists a deterministic finite automaton  $M=(Q,\Sigma,\delta,q,F)$  that accepts L. To prove that L is context-free, we have to define a context-free grammar  $G=(V,\Sigma,R,S)$ , such that L=L(M)=L(G). Thus, G must have the following property:

WGL(M) (=) WGL(G)

For every string  $w \in \Sigma^*$ ,

 $\underline{w} \in L(M)$  if and only if  $w \in L(G)$ ,

which can be reformulated as

M accepts w if and only if  $S \stackrel{*}{\Rightarrow} w$ .

 $\begin{array}{c} \mathcal{C} \text{ in } \text{ V 社里 M H M } \text{ } \text{ } \mathbb{Q} \\ \text{Set } \underline{V} = \{R_i | q_i \in Q\} \text{ (that is, } G \text{ has a variable for every state of } M\text{). Now, for every transition } \underline{\delta(q_i \; , \; a) = q_i} \text{ add a rule } R_i \rightarrow aR_j \text{. For every accepting state } \underline{q_i \in F} \text{ add a rule } R_i \rightarrow \epsilon \text{. Finally, make the start variable } S = R_0. \end{array}$ 

Po is the mitial state of the machine

### Regular Languages are context-free

### Example

Let L be the language defined as

 $L = \{w \in \{0, 1\}^*: 101 \text{ is a substring of } w\}.$ 

The DFA M that accepts L



将DFA转换为 CFG

How can we convert M to a context-free grammar G whose language is L?





### Regular Languages are context-free

#### Example

Start variable: S (initial state of M)

Rules:



## 

A context-free grammar  $G=(V,\,\Sigma,\,R,\,S)$  is said to be in Chomsky normal form, if every rule in R has one of the following three forms: 如果fules 版記面三点种

- $A \rightarrow BC$ , where A, B, and C are elements of V ,  $B \neq S$ , and  $C \neq S$ .
- $A \rightarrow a$ , where A is an element of V and a is an element of  $\Sigma$ .
- $S \rightarrow \varepsilon$ , where S is the start variable.

### Why CNF?

Grammars in Chomsky normal form are far easier to analyze.

### Example

Rules of CFG in Chomsky normal form with  $V = \{S,A,B\}$  ,  $\Sigma = \{a,b\}$  :

$$G_1: S \rightarrow AB, S \rightarrow c, A \rightarrow a, B \rightarrow b$$
 (CNF)

$$G_1\colon S\to aA, A\to a, B\to c$$
 (not CNF)



context free grammar -> chomsky normal form

### Converting CFG into CNF

#### Transformation steps

// 人多立 資金 stave which Step 1. Eliminate the start variable from the right-hand side of the rules.

- New start variable S<sub>0</sub>
- New rule  $S_0 \rightarrow S$

Step 2. Remove  $\varepsilon$ -rules  $A \to \varepsilon$ , where  $A \in V - \{S\}$ .

- Before:  $B \to xAy$  and  $A \to \epsilon \mid \cdot \cdot \cdot$
- After:  $B \rightarrow xAy \mid xy \text{ and } A \rightarrow \cdot \cdot \cdot$

When removing  $A \rightarrow \epsilon$  rules, insert all new replacements:

- Before:  $B \rightarrow AbA$  and  $A \rightarrow \epsilon \mid \cdot \cdot \cdot$
- After:  $B \rightarrow AbA \mid bA \mid Ab \mid b$  and  $A \rightarrow \cdot \cdot \cdot$



### Chomsky Normal Form (CNF)

#### Theorem

Let  $\Sigma$  be an alphabet and let  $L \subseteq \Sigma^*$  be a context-free language. There exists a contextfree grammar in Chomsky normal form, whose language is L (Every CFL can be described by a CFG in CNF).

### $\text{CFL} \to \text{CNF}$

Given CFG  $G = (V, \Sigma, R, S)$ . Replace, one-by-one, every rule that is not "Chomsky".

- · Start variable (not allowed on RHS of rules)
- $\epsilon$ -rules (A  $\rightarrow \epsilon$  not allowed when A isn't start variable)
- all other violating rules (A  $\rightarrow$  B, A  $\rightarrow$  aBc, A  $\rightarrow$  BCDE)



### Converting CFG into CNF

All rules must be ratisfied with

### Transformation steps

above 3 requirements

In final

Step 3. Remove unit rules  $A \rightarrow B$ , where  $A \in V$ .

- Before:  $A \rightarrow B$  and  $B \rightarrow xCy$
- After:  $A \rightarrow xCy$  and  $B \rightarrow xCy$

Step 4. Eliminate all rules having more than two symbols on the right-hand side.

- Before:  $A \rightarrow B_1B_2B_3$
- After:  $A \rightarrow B_1A_1, A_1 \rightarrow B_2B_3$

Step 5. Eliminate all rules of the form  $A \rightarrow ab$ , where a and b are not both variables.

- Before:  $A \rightarrow ab$
- After:  $A \rightarrow B_1B_2$ ,  $B_1 \rightarrow a$ ,  $B_2 \rightarrow b$ .



### Converting CFG into CNF

### Example

Given a CFG  $G = (V, \Sigma, R, S)$ , where  $V = \{A, B\}, \Sigma = \{0, 1\}$ , A is the start variable, and R consists of the rules:

$$A \rightarrow BAB \mid B \mid \epsilon$$
  
 $B \rightarrow 00 \mid \epsilon$   
 $E$ - Tukes:  
 $A \rightarrow \mathcal{E}$ 

Convert this G to CNF:

Step 1. Eliminate the start variable from the right-hand side of the rules.



(1) Remove  $A \rightarrow A$ :

Step 3. Remove unit-rules.



Converting CFG into CNF

Example

Step 2. Remove ε-rules.

(1) Remove  $A \rightarrow \varepsilon$ :  $S \rightarrow A, A \rightarrow BAB$ 

(2) Remove B  $\rightarrow \epsilon$ : A  $\rightarrow$  BAB, A  $\rightarrow$  B, A  $\rightarrow$  BB

Converting CFG into CNF

S-> E BAB B BB AB BA

Example

A -> BAB B BB AB BA

Step 3. Remove unit-rules.

B-> 00

(3) Remove  $S \rightarrow B$ :

$$S \rightarrow \text{ElBAB|BB|AB|BA}$$
  
 $A \rightarrow BAB|B|BB|AB|3A$   
 $B \rightarrow OO$ 

(4) Remove A  $\rightarrow$  B:



### Converting CFG into CNF

VS-E |BAB | BB | AB |BA |OU

Example

A-> BAB | BB | AB | BA | OU

 $\beta \rightarrow 00$ Step 4. Eliminate all <u>rules</u> having <u>more than we symbols</u> on the right-hand side.

(1) Remove S→BAB: 想法記 BAB 変为两个gwbol

$$\beta \rightarrow 0\overline{0}$$
Assume  $A_1 \rightarrow AB$ 

(2) Remove  $A \rightarrow BAB$ :

B->00

 $A_1 \rightarrow AB$ 

A2 -> AB

### Converting CFG into CNF

### Example

Step 5. Eliminate all rules, whose right-hand side contains exactly two symbols, which are not both variables.

(3) Remove  $S \rightarrow 00$ :



### Converting CFG into CNF

### Example

Step 5. Eliminate all rules, whose right-hand side contains exactly two symbols, which

(3) Penove B->00



