Lecture Notes

Advanced Discrete Structures
COT 4115.001 S15
2015-02-17

Recap

- DES
 - DES is not a group

Group (G,*)

A **group** is a set G equipped with a binary operation * that satisfies the axioms:

- 1. Closure: if $a \in G$ and $b \in G$, then $a * b \in G$
- 2. Associativity: a*(b*c) = (a*b)*c for all $a,b,c \in G$
- 3. Identity: there is an $1_G \in G$ such that $a*I_G = a$ for all $a \in G$
- 4. <u>Inverse</u>: for each $a \in G$, there is an $a^{-1} \in G$ such that $a * a^{-1} = I_G$

A group is call **Abelian** if it has the additional property:

5. Commutativity: a * b = b * a for all $a, b \in G$

Example of a Group

- $(\mathbb{Z}, +)$: Integers with addition
 - $3 \in \mathbb{Z}$ and $5 \in \mathbb{Z}$, so $3 + 5 = 8 \in \mathbb{Z}$
 - -3+(4+5)=(3+4)+5
 - 0 is the group identity, e.g., 3 + 0 = 3
 - Each element has an inverse, e.g., the inverse of 4 is -4 since

$$4 + (-4) = 0$$

(ℤ,•): Integers with multiplication

Basic Number Theory - Section 3.11

FINITE FIELDS

Field $(F, +, \cdot)$

A **field** is a set F equipped with two operations (usually denoted + and \cdot) that satisfy the following axioms:

- 1. Closure: for all $a, b \in F$ both $a + b \in F$ and $a \cdot b \in F$
- 2. Associativity: for all $a,b,c \in F$ both a+(b+c)=(a+b)+c and $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- 3. Commutativity: for all $a, b \in F$ both a + b = b + a and $a \cdot b = b \cdot a$
- 4. <u>Identities</u>: there exists distinct 0_F and 1_F such that $a + 0_F = a$ and $a \cdot 1_F = a$
- 5. Inverses: for all $a \in F$, there exists $-a \in F$ and $a^{-1} \in F$ $(a \neq 0_F)$ s.t. $a + (-a) = 0_F$ and $a \cdot a^{-1} = 1_F$
- 6. Distributivity: for all $a, b, c \in F$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Galois Field

A field with *finitely* many elements is called a **finite** or **Galois field**.

Example:

$$F = \{0,1,2,3,4\},\$$

 \oplus : addition (mod 5)

⊗: multiplication (mod 5)

$$(3 \oplus 2) \otimes 4 = 0 \otimes 4 = 0$$

$$(3 \otimes 4) \oplus (2 \otimes 4) = 2 \oplus 3 = 0$$

Theorems

- 1. Each finite field has p^n elements for some prime p.
- 2. For each prime p and $n \in \mathbb{N}$, there exists a field with p^n elements.
- 3. If two finite fields have the same number of elements, then they are the same (up to "isomorphism").

Note

The elements of the finite field are $not \mathbb{Z}_{p^n}$ since

$$p x \equiv 1 \pmod{p^n}$$

has no solution, i.e., p does not have an inverse.

Example

$$GF(2^2) = \{0,1,\omega,\omega^2\}$$

with the rules:

- 1. 0 + x = x for all x
- 2. x + x = 0 for all x
- 3. $1 \cdot x = x$ for all x
- 4. $\omega + 1 = \omega^2$
- 5. + and · are commutative, associative, and distributivity holds

Example

$$GF(2^2) = \{0,1,\omega,\omega^2\}$$

with the rules:

+	0	1	ω	ω^2		•	0	1	ω	ω^2
0	0	1	ω	ω^2	_	0	0	0	0	0
1	1	0	ω^2	ω		1	0	1	ω	ω^2
ω	ω	ω^2	0	1				ω		
ω^2	ω^2	ω	1	0		ω^2	0	ω^2	1	ω

$$\omega^3 = \omega \cdot \omega^2 = \omega \cdot (\omega + 1) = \omega^2 + \omega = (\omega + 1) + \omega = 1$$

Notation

The set of polynomials whose coefficients are integers mod p is denoted as $\mathbb{Z}_p[X]$.

Example:

$$4X^6 + 3X^5 + X^2 + 2X + 4 \in \mathbb{Z}_5[X]$$

$$4X^6 + 3X^5 + X^2 + 2X + 4 \in \mathbb{Z}_5[X]$$

Polynomial Arithmetic

Addition / Subtraction:

$$(3x^2 + 4x + 2) + (4x^3 - 3x + 5)$$

= $4x^3 + 3x^2 + x + 7$

Multiplication:

$$(x-7)(2x^{2} + 7x + 3)$$

$$= x (2x^{2} + 7x + 3) - 7 (2x^{2} + 7x + 3)$$

$$= (2x^{3} + 7x^{2} + 3x) - (14x^{2} + 49x + 21)$$

$$= 2x^{3} - 7x^{2} - 46x - 21$$

Basic Number Theory - Section 3.11.1

DIVISION

Division Algorithm (for Polynomials)

Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0_F$. Then there exist unique polynomials q(x) and r(x) such that

$$f(x) = q(x)g(x) + r(x)$$

and either

$$r(x) = 0_F$$
 or $\deg r(x) < \deg g(x)$.

Example (Long Division)

Division Example

$$2x^{4} + 5x^{3} - 3x^{2} - x + 7$$

$$= (2x^{2} - x - 14)(x^{2} + 3x + 7) + (48x + 105)$$

$$f(x) = q(x)g(x) + r(x)$$
$$\deg g(x) > \deg r(x)$$

$$2x^4 + 5x^3 - 3x^2 - x + 7 \equiv 48x + 105 \pmod{x^2 + 3x + 7}$$

Divisibility

Let F be a field and $f(x), g(x) \in F[x]$ with $f(x) \neq 0$. We say that f(x) divides g(x), or f(x) is a factor of g(x), and write

$$f(x) \mid g(x)$$
,

if g(x) = h(x)f(x) for some $h(x) \in F[x]$.

Reducibility

Let F be a field. A non-constant polynomial $f(x) \in F[x]$ is said to be *reducible* if it can be factored into two non-constant polynomials $p(x), q(x) \in F[x]$.

A non-constant polynomial which is not reducible over the field F is called *irreducible* over F.

Reducibility

Example:

$$6x^2 + 31x + 35 = (3x + 5)(2x + 7)$$

is reducible over the field $(\mathbb{Z}, +, \cdot)$, but

$$x^2 + 1$$

is irreducible over this field. However,

$$x^{2} + 1 = x^{2} - (-1)^{2} = (x + 1)(x - 1)$$

which means $x^2 + 1$ is reducible over the field $(\mathbb{C}, +, \cdot)$.

Constructing $GF(p^n)$

General procedure to construct a finite field with p^n elements, where p is prime and $n \ge 1$:

- 1. Pick P(X) to be an irreducible polynomial \pmod{p} of degree n.
- 2. Then $GF(p^n) = \mathbb{Z}_p[X] \pmod{P(X)}$.

Example: $GF(2^2)$

1. Choose a polynomial of degree 2 that is irreducible over \mathbb{Z}_2 .

Note:

$$X^2 + 1 \equiv X^2 + 2X + 1 = (X + 1)^2 \in \mathbb{Z}_2[X]$$

So $X^2 + 1$ is reducible over \mathbb{Z}_2 . However,

$$X^2 + X + 1$$

is irreducible over \mathbb{Z}_2 .

Example: $GF(2^2)$

2. The Galois field $GF(2^2)$ consists of $\mathbb{Z}_2[X]$, i.e., $\{0,1,X,X+1\}$ taken $(\operatorname{mod} X^2+X+1)$.

+	0	1	X	X + 1	.	0	1	X	X + 1
							0		
1	1	0	X + 1	X	1	0	1	X	X + 1
X	X	X + 1	0	1	X	0	X	X + 1	1
X + 1	X+1	X	1	0	X+1	0	X + 1	1	X

Compare this to what we had before:

$$\omega = X$$
, $\omega^2 = \omega + 1 = X + 1$

Consider the finite field:

$$GF(2^8) = \mathbb{Z}_2[X] \pmod{X^8 + X^4 + X^3 + X + 1}$$

- Since $X^7 + X^5 + X^2 + 1$ is not 0, it should have an inverse.
- Use the Extended Euclidean Algorithm to compute this

$$X^{8} + X^{4} + X^{3} + X + 1 \equiv (X) (X^{7} + X^{5} + X^{2} + 1) + (X^{6} + X^{4} + 1)$$

$$X^{7} + X^{5} + X^{2} + 1 \equiv (X) (X^{6} + X^{4} + 1) + (X^{2} + X + 1)$$

$$X^{6} + X^{4} + 1 \equiv (X^{4} + X^{3} + X^{2} + 1) (X^{2} + X + 1) + (X)$$

$$X^{2} + X + 1 \equiv (X + 1) (X) + (1)$$

$$X \equiv (X) (1) + 0$$

$$\gcd(X^{8} + X^{4} + X^{3} + X + 1, X^{7} + X^{5} + X^{2} + 1) = 1 \text{ in } \mathbb{Z}_{2}[X]$$

• Reverse the process to find the inverse.

$$1 \equiv (1)(X^{2} + X + 1) + (X + 1)(X)$$

$$\equiv (1)(X^{2} + X + 1) + (X + 1)[(X^{6} + X^{4} + 1) + (X^{4} + X^{3} + X^{2} + 1)(X^{2} + X + 1)]$$

$$\equiv (X^{5} + X^{2} + X)(X^{2} + X + 1) + (X + 1)(X^{6} + X^{4} + 1)$$

$$\equiv (X^{5} + X^{2} + X)[(X^{7} + X^{5} + X^{2} + 1) + (X)(X^{6} + X^{4} + 1)] + (X + 1)(X^{6} + X^{4} + 1)$$

$$\equiv (X^{5} + X^{2} + X)(X^{7} + X^{5} + X^{2} + 1) + (X^{6} + X^{3} + X^{2} + X + 1)(X^{6} + X^{4} + 1)$$

$$\equiv (X^{5} + X^{2} + X)(X^{7} + X^{5} + X^{2} + 1) + (X^{6} + X^{3} + X^{2} + X + 1) + (X)(X^{7} + X^{5} + X^{2} + 1)$$

$$+ (X^{6} + X^{3} + X^{2} + X + 1)[(X^{8} + X^{4} + X^{3} + X + 1) + (X)(X^{7} + X^{5} + X^{2} + 1)]$$

$$\equiv (X^{7} + X^{5} + X^{4} + X^{3})(X^{7} + X^{5} + X^{2} + 1)$$

$$+ (X^{6} + X^{3} + X^{2} + X + 1)(X^{8} + X^{4} + X^{3} + X + 1)$$

$$1 \equiv (X^7 + X^5 + X^4 + X^3)(X^7 + X^5 + X^2 + 1) + (X^6 + X^3 + X^2 + X + 1)(X^8 + X^4 + X^3 + X + 1)$$

which means

$$1 \equiv (X^7 + X^5 + X^4 + X^3)(X^7 + X^5 + X^2 + 1) \pmod{X^8 + X^4 + X^3 + X + 1}$$

Hence,

$$(X^7 + X^5 + X^2 + 1)^{-1} \equiv X^7 + X^5 + X^4 + X^3 \pmod{X^8 + X^4 + X^3 + X + 1}$$

Basic Number Theory - Section 3.11.2

 $GF(2^8)$

$GF(2^{8})$

We've shown that the finite field is given by

$$\mathbb{Z}_2[X] \pmod{X^8 + X^4 + X^3 + X + 1}$$

Every element can be represented uniquely as a polynomial

$$b_7 X^7 + b_6 X^6 + b_5 X^5 + b_4 X^4 + b_3 X^3 + b_2 X^2 + b_1 X + b_0$$
 where each b_i is 0 or 1 .

• The 8 bits $b_7b_6b_5b_4b_3b_2b_1b_0$ represent a byte, so elements of $GF(2^8)$ may be represented as a byte

$GF(2^8)$ Arithmetic

• Addition: XOR of the bits

$$(X^6 + X^5 + X^2 + X + 1) + (X^7 + X^2 + X)$$

 $01100111 \oplus 10000110 = 11100001$

• Multiplication: Consider

$$(X^{6} + X^{5} + X^{2} + X + 1)(X^{2})$$

$$\equiv (X^{8} + X^{7} + X^{4} + X^{3} + X^{2}) + (X^{8} + X^{4} + X^{3} + X + 1)$$

$$\equiv X^{7} + X^{2} + X + 1 \pmod{X^{8} + X^{4} + X^{3} + X + 1}$$

$GF(2^8)$ Arithmetic

• Multiplication: Consider

$$(X^6 + X^5 + X^2 + X + 1)(X^2)$$

 $\equiv (X^8 + X^7 + X^4 + X^3 + X^2) + (X^8 + X^4 + X^3 + X + 1)$
 $\equiv X^7 + X^2 + X + 1 \pmod{X^8 + X^4 + X^3 + X + 1}$
In binary:

$$01100111 \rightarrow 0110011100 \oplus 0100011011$$

 $\rightarrow 0010000111 = 10000111$

Multiplication by X^m

- 1. Shift left, i.e., append $\,m\,$ Os to the end of the byte
- 2. If the first m bits are 0, then truncate the first m bits and stop.
- 3. If any of the first m bits are 1, XOR the appropriate multiple of 100011011 to cancel the first 1.
 - Repeat until the first $\,m$ bits are 0. Go to 2.

Multiplication

Recall:

$$(X^2 + X + 1)(X^5 + X^3 + X^2) =$$

$$X^2 (X^5 + X^3 + X^2) + X (X^5 + X^3 + X^2) + (X^5 + X^3 + X^2)$$

Arbitrary multiplication can be performed

Comparison