For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Programmable devices have existed for centuries. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Many applications use a mix of several languages in their construction and use. Following a consistent programming style often helps readability. Integrated development environments (IDEs) aim to integrate all such help. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Normally the first step in debugging is to attempt to reproduce the problem. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Normally the first step in debugging is to attempt to reproduce the problem. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. The first step in most formal software development processes is requirements analysis. followed by testing to determine value modeling, implementation, and failure elimination (debugging). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Whatever the approach to development may be, the final program must satisfy some fundamental properties. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling).