COMP90043: Cryptography and security: Week 3: Extra Exercises

- (1) Simplify the following expressions:
 - (a) 100003 ($mod\ 100$) = 03 Use place value of the numbers
 - (b) $64 \pmod{10} = 4$ See the value of the second digit 10 divides it
 - (c) $2^{145} 3^{777} 9^{777} \pmod{4} = 0 4 \text{ divides } 2^{1}45$
 - (d) $4^8 \pmod{15} = 1$; See 4^8 as $(4^2)^4$; 4^2 is 1 mod 16
 - (e) $3^{123} 5^{456} 7^{789} \pmod{4} = 1$ see $3 \mod 4 = 1$, $5 \mod 4 = 1$ and $7 \mod 4$ is -1
- (2) Verify the following identities.

```
((x \mod m) + (y \mod m)) \mod m = (x + y) \mod m,
((x \mod m) \times (y \mod m)) \mod m = (x \times y) \mod m,
where x, y and m are integers.
```

- (3) Write an efficient algorithm for computing exponentiation in a finite structure (a group, modulo p, finite field etc).
- (4) Write an efficient algorithm for computing exponentiation in a finite structure (a group, modulo p, finite field etc).

```
Exponentiation:=function(a, exp, n);
p:=1; j:=exp; base:=a;
while (j > 0)
    if even (j)
       base = base^2; j := j div 2;
    else
       p :=p*base; j:=j-1;
end while;
return p;
end function;
```

(5) Find $x^5 \pmod{10}$, where is x is an integer and

```
(a.) 0 \le x < 10
```

(b.) x > 10.

For x > 10, first take x mod 10, and then use the results in (a.) to find the answer.

- (6) Express the following numbers as a product of primes and prime powers. 32, 63, 64, 79, 81, 124, 141, 234, 512
- (7) Using the results of the above question, find gcd of the following sequences of numbers.
 - (a) 32, 63
 - (b) 141, 81
 - (c) 81, 124
 - (d) 79, 141
 - (e) 512,81
 - (f) 124, 512.

For example $32 = 2^5$; $63 = 3^2*7$; $63 = 3^2 * 7$; $64 = 2^6$; Similarly you need to work out the rest.

- (8) Set of residues modulo n, denoted by Z_n , is given by $\{0, 1, \dots, n-1\}$. Reduced set of residues is the set of all residues results
 - 1}. Reduced set of residues is the set of all residues moulo n which are relatively prime to n.

How many elements are there in the reduced set of residues:

- (a) modulo 11;
 - 10; they are 1,2,3,4,5,6,7,8,9,10
- (b) modulo 35;
- (c) modulo 26;
- (d) modulo 29;
- (e) modulo 77.

In general, if a number n can be expressed using its prime factors such that $n = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$, then there are $\phi(n)$ elements in its reduced set of residues and,

$$\phi(n) = p_1^{a_1 - 1}(p_1 - 1)p_2^{a_2 - 1}(p_2 - 1) \cdots p_n^{a_n - 1}(p_n - 1)$$

(9) Extended Euclids algorithm (XGCD in magma) takes two integers a and b and gives gcd(a,b) and also two other integers such that gcd(a,b) = x * a + y * b. How can you use this algorithm to find an inverse of (a mod n)?