

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

по курсу «Типы и структуры данных»

Вариант 2

Студент: Писаренко Дмитрий Павл	пович	
Группа: ИУ7-34Б		
Студент		Писаренко Д.П.
	подпись, дата	фамилия, и.о.
Преподаватель		Барышникова М.Ю

подпись, дата

фамилия, и.о.

Условие задачи

Составить программу умножения или деления двух чисел, где порядок имеет до 5 знаков: от –99999 до +99999, а мантисса – до 30 знаков. Программа должна осуществлять ввод чисел и выдавать либо верный результат в указанном формате (при корректных данных), либо сообщение о невозможности произвести счет.

Смоделировать операцию умножения действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) — до 30 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Техническое задание

Входные данные

Действительное число вида \pm m.nE \pm K. Суммарная длина строки — до 30 значащих цифр (m + n) + символ точки и знака. Величина порядка K — 5 цифр и символ знака.

Целое число вида ±d. Длина до 30 значащих цифр.

```
typedef struct
{
    char sign;
    int mantissa[ARR_LEN];
    size_t size;
    int order;
} num_t;
```

```
char sign — знак числа
int mantissa[ARR_LEN] — мантисса числа
size_t size — длина мантиссы
int order — порядок действительного числа
```

Описание полей структуры пит_t

Ограничения на входные данные

- Действительное число не более 30 значащих цифр
- Целое число не более 30 значащих цифр
- Порядок не более 5 значащих цифр
- Нельзя вводить пробелы до/после знаков, до/после порядка

Выходные данные

Действительное число вида $\pm 0.m1E\pm K1, m1$ — до 30 значащих цифр, K1 — до 5 значащих цифр.

Способ обращения к программе

Работа с программой осуществляется с помощью консоли.

Сборка осуществляется с помощью команды make release

Запуск выполняется с помощью команды ./app.exe

```
      dimasxt@dimasxt-VirtualBox:~/BMSTU-TaDS/lab_01$ ./app.exe

      Введите действительное число (Например: +123.41E+14 | 123.41 | -123):

      ------10------20------|
```

Алгоритм программы

- 1. Производится ввод действительного числа через fgets. Введенное действительное число проверяется на корректность, нормализуется. Производится ввод целого числа через fgets. Введенное целое число проверяется на корректность, нормализуется.
- 2. Определяется знак результата, исходя из знаков предыдущих двух чисел, сравнивается количество значащих разрядов (чтобы узнать, что на что умножать). Производится умножение и нормализируется результат.
- 3. Проверяется значение порядка результата (abs должен быть <100.000), проверяется количество ненулевых разрядов результата (0 особый случай).
 - 4. Выполняется вывод результата на экран.

Тестирование

Позитивные тесты

#	Входные данные	Выходные данные	
1	+123.123E+123	+0.658831173E+129	
	+5351		
2	-123.52	-0.135872E+4	
	+11		
3	2	+0.4E+1	
	2		
4	+100	-0.1E+4	
	-10		
5	+252.32E+123	-0.33331472E+129	
	-1321		
6	+752.32E+12	+0.1890128768E+19	
	+25124		
7	-321	-0.103041E+6	
	321		
8	-15123.123E+15	-0.3795903873E+22	
	+251		
9	+0000123.123E+123	+0.658831173E+129	
	+5351		
10	+123.123E+000123	+0.658831173E+129	
	+5351		
11	+0.0	+0.0E0	
	-12412		
12	-12412	+0.0E0	
	0		

Негативные тесты

#	Входные данные	Выходные данные	Результат
1	++122.123	Некорректный ввод	Код ошибки 5
		знака	
2	+123	Целое число не	Код ошибки 9
	+123.12	соответствует формату	
3	\n	Вещественное число не	Код ошибки 2
		было введено	
4	+122.12E+FEffrr	Вещественное число не	Код ошибки 10
		соответствует формату	
5	+11111111111111111111111111111111111111	Переполнение	Код ошибки 7
	111111111111111111111111111111111111111	мантиссы	
6	+123.123.123	Некорректный ввод	Код ошибки б
		точки	
7	+512.325E+150000	Порядок по модулю	Код ошибки 8
		больше 100.000	
8	4124EE+11	Некорректное	Код ошибки 4
		использование Е	

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

На это влияет тип чисел, размер выделенной для их хранения памяти и разрядность машины. Если переменная типа unsigned integer занимает 4 байта (32 бита), то диапазон значений будет от 0 до 2³2-1.

2. Какова возможная точность представления чисел?

Это зависит от количества памяти, выделенной для хранения мантиссы. В среднем под хранение выделяют 16-30 разрядов.

3. Какие стандартные операции возможны над числами?

Сложение, вычитание, умножение, деление, взятия остатка, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Структура.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Путем последовательного выполнения операций над всеми цифрами, начиная с конца массива.

Вывод

В процессе выполнения лабораторной работы были изучены принципы работы длинной арифметики. Я узнал, как работать с числами, которые выходят за возможный диапазон значений каких-либо типов, представленных в ЯП.