Vector Calculus Sample Final Examination #1

Warning to Instructors: Question 2 may involve more linear algebra than you are assuming, so modify it accordingly (eg, by deleting or changing parts (b) and (c).

- 1. Let $f(x, y) = e^{xy} \sin(x + y)$.
 - (a) In what direction, starting at $(0, \pi/2)$, is f changing the fastest?
 - (b) In what directions starting at $(0, \pi/2)$ is f changing at 50% of its maximum rate?
 - (c) Let $\mathbf{c}(t)$ be a flow line of $\mathbf{F} = \nabla f$ with $\mathbf{c}(0) = (0, \pi/2)$. Calculate

$$\frac{d}{dt}[f(c(t))]\Big|_{t=0}$$
.

- 2. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a given mapping and write f(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z)). Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by g(u,v,w) = (u-v,u+w,w+v) and let $h=g\circ f$.
 - (a) Write a formula for the derivative matrix $\mathbf{D}h$.
 - (b) Show that $\mathbf{D}h$ cannot have rank 3 at any point (x, y, z).
 - (c) Show that $\mathbf{D}h$ has an eigenvalue zero at every (x, y, z).
- 3. Extremize f(x, y, z) = x subject to the constraints

$$x^2 + y^2 + z^2 = 1$$
 and $x + y + z = 1$.

4. (a) Evaluate

$$\iiint_D \exp[(x^2 + y^2 + z^2)^{3/2}] \, dx \, dy \, dz$$

where D is the region defined by $1 \le x^2 + y^2 + z^2 \le 2$ and $z \ge 0$.

(b) Sketch or describe the region of integration for

$$\int_0^1 \int_0^x \int_0^y f(x, y, z) dz \, dy \, dx,$$

and interchange the order to dy dx dz.

- 5. Let $\mathbf{G}(x,y) = (xe^{x^2+y^2} + 2xy)\mathbf{i} + (ye^{x^2+y^2} + x^2)\mathbf{j}$.
 - (a) Show that $G = \nabla f$ for some f; find such an f.
 - (b) Use (a) to show that the line integral of G around the edge of the triangle with vertices (0,0),(0,1),(1,0) is zero.
 - (c) State Green's theorem for the triangle in (b) and a vector field \mathbf{F} and verify it for the vector field \mathbf{G} above.

- 6. Let W be the three dimensional region under the graph of $f(x,y) = \exp(x^2 + y^2)$ and over the region in the plane defined by $1 \le x^2 + y^2 \le 2$.
 - (a) Find the volume of W.
 - (b) Find the flux of the vector field $\mathbf{F} = (2x xy)\mathbf{i} y\mathbf{j} + yz\mathbf{k}$ out of the region W.
- 7. Let C be the curve $x^2 + y^2 = 1$ lying in the plane z = 1. Let $\mathbf{F} = (z y)\mathbf{i} + y\mathbf{k}$.
 - (a) Calculate $\nabla \times \mathbf{F}$.
 - (b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{s}$ using a parametrization of C and a chosen orientation for C.
 - (c) Write $C=\partial S$ for a suitably chosen surface S and, applying Stokes' theorem, verify your answer in (b) .
 - (d) Consider the sphere with radius $\sqrt{2}$ and center the origin. Let S' be the part of the sphere that is above the curve (i.e., lies in the region $z \geq 1$), and has C as boundary. Evaluate the surface integral of $\nabla \times \mathbf{F}$ over S'. Specify the orientation you are using for S'.