LA2 Přehled

February 27, 2024

1 Obecný vektorový prostor

Grupa

Nechť Mje neprázdná množina a $\circ: M \times M \to M$ binární operace. Platí-li

- 1. asociativní zákon: $(\forall a, b, c \in M)(a \circ (b \circ c) = (a \circ b) \circ c)$,
- 2. existence neutrálního prvku: existuje $e \in M$ tak, že $(\forall a \in M) (a \circ e = e \circ a = a)$,
- 3. existence **inverzních prvků**: $(\forall a \in M)(\exists a^{-1} \in M)(a \circ a^{-1} = a^{-1} \circ a = e),$

říkáme, že uspořádaná dvojice $G=(M,\circ)$ je **grupa**. Platí-li navíc pro \circ

• komutativní zákon: $(\forall a,b\in M)\big(a\circ b=b\circ a\big),$ mluvíme o abelovské grupě.

Těleso

Nechť Mje neprázdná množina a $+:M\times M\to M,\,\cdot:M\times M\to M$ dvě binární operace. Platí-li, že

- 1. (M, +) je **abelovská grupa** (neutrální prvek značíme 0 a nazýváme nulovým prvkem),
- 2. $(M \setminus \{0\}, \cdot)$ je grupa (neutrální prvek značíme 1 a nazýváme jednotkový prvek),
- 3. platí levý a pravý distributivní zákon, tj.

$$(\forall a, b, c \in M) \Big(a(b+c) = ab + ac \wedge (b+c)a = ba + ca \Big),$$

nazýváme uspořádanou trojici $T=(M,+,\cdot)$ tělesem. Je-li navíc $(M\setminus\{0\},\cdot)$ abelovská grupa, je T komutativní těleso.

Vektorový prostor

Nechť T je libovolné komutativní těleso, jeho neutrální prvky vůči operacím sčítání, resp. násobení označme 0, resp. 1. Mějme dánu neprázdnou množinu V a dvě zobrazení

$$\oplus: V \times V \to V, \qquad \bigcirc: T \times V \to V.$$

Řekneme, že (V, T, \oplus, \odot) je **vektorový prostor nad tělesem** T s vektorovými operacemi \oplus a \odot , právě když platí následující **axiomy vektorového prostoru**:

1. Sčítání vektorů je komutativní:

$$(\forall \mathbf{x}, \mathbf{y} \in V)(\mathbf{x} \oplus \mathbf{y} = \mathbf{y} \oplus \mathbf{x}).$$

2. Sčítání vektorů je asociativní:

$$(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V)((\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z} = \mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z})).$$

3. Násobení skalárem je asociativní:

$$(\forall \alpha, \beta \in T)(\forall \mathbf{x} \in V) (\alpha \odot (\beta \odot \mathbf{x}) = (\alpha \cdot \beta) \odot \mathbf{x}).$$

4. Násobení skalárem je distributivní zleva:

$$(\forall \alpha \in T)(\forall \mathbf{x}, \mathbf{y} \in V) (\alpha \odot (\mathbf{x} \oplus \mathbf{y}) = (\alpha \odot \mathbf{x}) \oplus (\alpha \odot \mathbf{y})).$$

5. Násobení skalárem je distributivní zprava:

$$(\forall \alpha, \beta \in T)(\forall \mathbf{x} \in V)((\alpha + \beta) \odot \mathbf{x} = (\alpha \odot \mathbf{x}) \oplus (\beta \odot \mathbf{x})).$$

6. Neutrální prvek $1 \in T$ je neutrální i vůči násobení vektoru skalárem:

$$(\forall \mathbf{x} \in V)(1 \odot \mathbf{x} = \mathbf{x}).$$

7. Existuje **nulový vektor** veVa nulový násobek libovolného vektoru je nulový vektor

$$(\exists \theta \in V)(\forall \mathbf{x} \in V)(0 \odot \mathbf{x} = \theta)$$
.

Základní vlastnosti VP

Buď V vektorový prostor nad tělesem T. Potom platí:

- 1. VeV existuje právě jeden nulový vektor.
- 2. Libovolný násobek nulového vektoru je opět nulový vektor. Tj.

$$(\forall \alpha \in T)(\alpha \odot \theta = \theta).$$

3. Přičtení nulového vektoru k libovolnému vektoru jej nezmění. Tj.

$$(\forall \mathbf{x} \in V)(\mathbf{x} \oplus \theta = \mathbf{x}).$$

4. Ke každému vektoru z V existuje právě jeden **vektor opačný**. Tzn.,

$$(\forall \mathbf{x} \in V)(\exists_1 \mathbf{y} \in V)(\mathbf{x} \oplus \mathbf{y} = \theta)$$
.

Tento vektor splňuje $\mathbf{y}=(-1)\odot\mathbf{x},$ kde -1je opačný prvek k 1 vůči operaci+vT.

5. Je-li součin skaláru a vektoru roven nulovému vektoru, potom je skalár roven 0 nebo vektor roven θ .

$$(\forall \alpha \in T)(\forall \mathbf{x} \in V) \Big(\alpha \odot \mathbf{x} = \theta \Rightarrow (\alpha = 0 \vee \mathbf{x} = \theta)\Big) \,.$$

Podprostor

Nechť P je podmnožina vektorového prostoru V nad T. Řekneme, že P je **podprostor** vektorového prostoru V, právě když platí:

- 1. množina P je neprázdná, tzn. $P \neq \emptyset$.
- 2. množina P je uzavřená vůči sčítání vektorů v ní, tzn.

$$(\forall \mathbf{x}, \mathbf{y} \in P)(\mathbf{x} + \mathbf{y} \in P),$$

3. Množina P je uzavřená vůči násobení vektorů v ní libovolným skalárem, tzn.

$$(\forall \alpha \in T)(\forall \mathbf{x} \in P)(\alpha \mathbf{x} \in P)$$
.

Vztah být podprostorem pak značíme

$$P \subset \subset V$$
.

(Triviální) lineární kombinace

Mějme vektorový prostor V nad T. Nechť $\mathbf{x} \in V$ a $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je soubor vektorů z V. Říkáme, že vektor \mathbf{x} je **lineární kombinací** souboru $(\mathbf{x}_1, \dots, \mathbf{x}_m)$, právě když existují čísla $\alpha_1, \dots, \alpha_m \in T$ taková, že

$$\mathbf{x} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \,.$$

Čísla α_i , $i \in \hat{m}$, nazýváme koeficienty lineární kombinace. Jestliže $(\forall i \in \hat{m})(\alpha_i = 0)$, nazýváme takovou lineární kombinaci triviální. V opačném případě jde o lineární kombinaci netriviální.

Lineárně (ne)závislý soubor

• $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je LN \Leftrightarrow

$$(\forall \alpha_1, \dots, \alpha_m \in T) \left(\sum_{i=1}^m \alpha_i \mathbf{x}_i = \theta \Rightarrow ((\forall i \in \hat{m})(\alpha_i = 0)) \right).$$

• $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je LZ \Leftrightarrow

$$(\exists \alpha_1, \dots, \alpha_m \in T)(\exists k \in \hat{m}) \left(\alpha_k \neq 0 \land \sum_{i=1}^m \alpha_i \mathbf{x}_i = \theta\right).$$

Lineární obal souboru

Buď $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ soubor vektorů z VP V nad tělesem T. Množinu všech lineárních kombinací tohoto souboru nazveme **lineárním obalem souboru** $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ a značíme ji

$$\langle \mathbf{x}_1, \ldots, \mathbf{x}_m \rangle$$
.

Neboli

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = \left\{ \sum_{i=1}^m \alpha_i \mathbf{x}_i \mid \alpha_i \in T \text{ pro každé } i \in \hat{m} \right\}.$$

Vlastnosti lineární obalu souboru

Nechť $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ je soubor vektorů z vektorového prostoru V nad T. Pak platí:

1. lineární obal obsahuje nulový vektor:

$$\theta \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$$
,

2. vektory leží ve svém lineárním obalu, přesněji:

$$\mathbf{x}_1,\ldots,\mathbf{x}_m\in\langle\mathbf{x}_1,\ldots,\mathbf{x}_m\rangle$$
,

3. je-li vektor již obsažen v lineárním obalu, tak jeho přidáním do souboru se lineární obal nezmění:

$$(\forall \mathbf{z} \in V) \Big(\mathbf{z} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle \quad \Leftrightarrow \quad \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = \langle \mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{z} \rangle \Big),$$

4. lineární obal je uzavřený na sčítání vektorů i na násobení vektorů skalárem:

$$(\forall \mathbf{x}, \mathbf{y} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle) (\mathbf{x} + \mathbf{y} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle)$$

$$\mathbf{a}$$

$$(\forall \alpha \in T) (\forall \mathbf{x} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle) (\alpha \mathbf{x} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle).$$

5. lineární obal z lineárního obalu neobsahuje nic navíc:

Je-li
$$k \in \mathbb{N}$$
 a $\mathbf{z}_1, \dots, \mathbf{z}_k \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$, potom $\langle \mathbf{z}_1, \dots, \mathbf{z}_k \rangle$ je podmnožinou $\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$.

Lineární obal množiny

Buď M neprázdná podmnožina VP V nad tělesem T. Množinu všech lineárních kombinací všech souborů vektorů z množiny M nazveme **lineárním obalem množiny** M a značíme ji $\langle M \rangle$.

Tedy

$$\langle M \rangle = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \mid m \in \mathbb{N}, \ \mathbf{x}_1, \dots, \mathbf{x}_m \in M, \ \alpha_1, \dots, \alpha_m \in T \right\}.$$

Vlastnosti lineárního obalu množiny

Nechť M je neprázdná množina vektorů z vektorového prostoru V nad T. Pak platí:

1. lineární obal obsahuje nulový vektor:

$$\theta \in \langle M \rangle$$
,

2. vektory z M leží v jeho lineárním obalu, přesněji:

$$M \subseteq \langle M \rangle$$
,

3. je-li vektor již obsažen v lineárním obalu, tak jeho přidáním do množiny se lineární obal nezmění:

$$(\forall \mathbf{z} \in V) \Big(\mathbf{z} \in \langle M \rangle \Leftrightarrow \langle M \rangle = \big\langle M \cup \{ \mathbf{z} \} \big\rangle \Big) \,,$$

4. lineární obal je uzavřený na sčítání vektorů i na násobení vektorů skalárem:

$$(\forall \mathbf{x}, \mathbf{y} \in \langle M \rangle) (\mathbf{x} + \mathbf{y} \in \langle M \rangle)$$
a
$$(\forall \alpha \in T) (\forall \mathbf{x} \in \langle M \rangle) (\alpha \mathbf{x} \in \langle M \rangle).$$

5. lineární obal souboru vektorů z lineárního obalu souboru vektorů neobsahuje nic navíc:

Je-li
$$\emptyset \neq N \subseteq \langle M \rangle$$
, potom $\langle N \rangle \subseteq \langle M \rangle$.

Speciálně:

Je-li
$$\emptyset \neq N \subseteq M$$
, potom $\langle N \rangle \subseteq \langle M \rangle$.

Věta o vztahu LZ souboru a lineárního obalu

Buď $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ soubor vektorů z VP V a $m\geq 2$. Potom $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ je lineárně závislý právě tehdy, když

$$(\exists k \in \hat{m}) (\mathbf{x}_k \in \langle \mathbf{x}_1, \dots, \mathbf{x}_{k-1}, \mathbf{x}_{k+1}, \dots, \mathbf{x}_m \rangle).$$

Přidání vektoru do LN souboru

Buď $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ LN soubor vektorů z VP V a $\mathbf{y} \notin \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$. Potom soubor $(\mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{y})$ je také LN.

Soubor (množina) generuje podprostor

O souboru vektorů $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ z vektorového prostoru V řekneme, že **generuje** podprostor $P\subset\subset V$, právě když platí:

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = P.$$

V případě, že P=Vmůžeme zjednodušeně říkat $(\mathbf{x}_1,\dots,\mathbf{x}_m)$ generuje (vektorový) prostor V.