

Design Procedure

- From the specifications of the circuit, determine the required number of inputs and outputs and assigned a letter symbol to each
- 2. Derive the truth table that defined the relationship between inputs and outputs
- 3. Obtain the simplified Boolean functions for each output as a function of the input variables
- 4. Draw the logic diagram
- 5. Verify the correctness of the design

Some Design Examples

- BCD to Excess-3 code converter
- · BCD to Seven Segment Decoder

(a) Segment designation

(b) Numerical designation for display

Fig. P4-9

BCD to Excess-3 code converter

■ TABLE 3-2 Truth Table for Code Converter Example

Decimal Digit	Input BCD				Output Excess-3			
	Α	В	С	D	w	Х	Υ	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

	InF	uts		OutPuts					
A	В	С	D	W	X	Y	Z		
0	0	0	0	0	0	1	1		
0	0	0	1	0	1	0	0		
0	0	1	0	0	1	0	1		
0	0	1	1	0	1	1	0		
0	1	0	0	0	1	1	1		
0	1	0	1	1	0	0	0		
0	1	1	0	1	0	0	1		
0	1	1	1	1	0	1	0		
1	0	0	0	1	0	1	1		
1	0	0	1	1	1	0	0		
1	0	1	0	X	X	X	X		
1	0	1	1	X	X	X	X		
1	1	0	0	X	X	X	X		
1	1	0	1	X	X	X	X		
1	1	1	0	X	X	X	X		
1	1	1	1	X	X	X	X		

BCD to Excess-3 code converter K-Maps

Fig. 4-3 Maps for BCD to Excess-3 Code Converter

BCD to Excess-3 code converter Logic Diagram

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

Thank you

