COMPARAÇÃO ENTRE O CONTROLE PID E MPC

UM ESTUDO DE CASO COM CART POLE E LUNAR LANDER

Gabriel Bueno Leandro Orientador Samir Ângelo Milani Martins

Universidade Federal de São João del-Rei

Departamento de Engenharia Elétrica

9 de abril de 2024

Introdução

Conceitos Preliminares

Metodologia

Resultados

 ${\bf Conclus\~ao}$

Referências Bibliográficas

Introdução

Importância no contexto da Engenharia

- ▶ O controlador PID é, atualmente, o mais prevalente e amplamente adotado nas malhas fechadas industriais [1];
- ▶ A ISA considera que o controle preditivo é uma ferramenta importante capaz de diferenciar entre um bom e um excelente Engenheiro de Controle;
- ▶ O Controle Preditivo Generalizado (GPC) emerge como a técnica mais amplamente reconhecida no contexto do Controle Preditivo Baseado em Modelo (MPC) [2];
- ▶ O desafio apresentado pelo pêndulo invertido (*Cart Pole*) é um clássico na engenharia de controle;
- ▶ Estudar os desafios do pouso lunar por meio da simulação no *Lunar Lander* permite entender um pouco sobre autonomia de veículos/robôs.

Conceitos Preliminares

Um controlador PID é composto por três termos ajustáveis que atuam em torno do erro do sistema:

$$e(t) = r(t) - y_m(t). (1)$$

$$g(t) = K_C \left(e(t) + \frac{1}{\tau_I} \cdot \int_0^t e(t)dt + \tau_D \cdot \frac{de(t)}{dt} \right). \tag{2}$$

Controle Preditivo Baseado em Modelo

- ► Trajetória de referência;
- ▶ Modelo do processo;
- ▶ Otimizador;
- ▶ Processo real.

O Controle Preditivo Generalizado (GPC) se baseia em modelos paramétricos.

Método de pesquisa em grade

- ightharpoonup Complexidade O(n!);
- ► Mínimo/máximo global.

Algoritmo subida de encosta

- ▶ Inicialização com uma solução inicial;
- ► Mover-se iterativamente para uma solução vizinha mais favorável;
- Continuar até não haver mais melhorias ou um critério de parada ser alcançado.

Ambientes 9

Cart Pole

Lunar Lander

Número	Observação	Mínimo	Máximo		
0	Posição	-4,8	4,8		
1	Velocidade linear	-Inf	Inf		
2	Ângulo	$-0,418 \text{ rad } (-24^{\circ})$	$0,418 \text{ rad } (24^{\circ})$		
3	Velocidade angular	-Inf	Inf		

Número	Observação	Mínimo	Máximo
0	Coordenada x	-1,5	1,5
1	Coordenada y	-1,5	1,5
2	Velocidade linear em x	-5	5
3	Velocidade linear em y	-5	5
4	$\hat{\mathrm{A}}\mathrm{ngulo}$	$-\pi \ (-180^{\circ})$	$\pi \ (180^{\circ})$
5	Velocidade angular	-5	5
6	Contato pé esquerdo	0	1
7	Contato pé direito	0	1

Metodologia

Deslocamento horizontal do carro:

$$M\frac{d^2x}{dt} = u - H. (3)$$

Equilíbrio das forças horizontais do pêndulo:

$$m\frac{d^2}{dt}(x+\ell sen\theta) = H \Rightarrow m\frac{d^2}{dt}(x+\ell\theta) = H.$$
 (4)

Equilíbrio das forças verticais do pêndulo:

$$m\frac{d^2}{dt}(\ell - \ell \cos\theta) = mg - V \Rightarrow 0 = V - mg. (5)$$

Movimento rotacional do pêndulo:

$$I\frac{d^2\theta}{dt} = V\ell sen\theta - H\ell cos\theta, \qquad (6)$$

ou ainda:

$$I\frac{d^2\theta}{dt} = V\ell\theta - H\ell. \tag{7}$$

Onde, $H = m \frac{d^2}{dt}(x + \ell \theta)$ e V = mg, assim:

$$I\frac{d^2\theta}{dt} = mg\theta\ell - m\frac{d^2}{dt}(x+\ell\theta)\ell m. \quad (8)$$

Ao igualar a zero, tem-se:

$$(I + m\ell^2)\frac{d^2\theta}{dt^2} + m\ell\frac{d^2x}{dt^2} - mg\ell\theta = 0.$$
 (9)

Substituindo a expressão de H en $M\frac{d^2x}{dt}=u-H$, chega-se:

(7)
$$M\frac{d^2x}{dt^2} = u - m\frac{d^2}{dt^2}(x + \ell\theta).$$
 (10)

Obtenção da Função de Transferência Cart Pole

$$M\frac{d^2x}{dt^2} + m\frac{d^2}{dt^2}(x + \ell\theta) = u.$$
 (11)

Ao considerar a transformada de Laplace com condições iniciais nulas:

$$(I + m\ell^2)s^2\Theta(s) + m\ell s^2X(s) - mg\ell\Theta(s) = 0,$$
(12)

$$(M+m)s^2X(s) + m\ell s^2\Theta(s) = U(s).$$

Após algumas manipulações, chega-se à FT [3]:

$$\frac{\Theta(s)}{U(s)} = \frac{m\ell}{(m^2\ell^2 - (M+m)(I+m\ell^2))s^2 + (M+m)mg\ell}.$$

(13)

(14)

Obtenção da Função de Transferência Cart Pole

Força constante à direita:

Aceleração linear:

$$\ddot{x} = 0,19524 \frac{m}{s^2}.\tag{15}$$

Aceleração angular:

$$\ddot{\theta} = -0,29775 \frac{rad}{s^2}.$$
 (16)

15

Obtenção da Função de Transferência Cart Pole

Considere:

$$(I + m\ell^2)\frac{d^2\theta}{dt^2} + m\ell\frac{d^2x}{dt^2} - mg\ell\theta = 0.$$
 (17)

Sendo $\theta \approx 0$:

$$(I+m\ell^2)\frac{d^2\theta}{dt^2} = -m\ell\frac{d^2x}{dt^2},$$
 (18)

numericamente:

$$I = \frac{0,0976\ell - 0,1488\ell^2}{0,29775}.$$
 (19)

Agora, será estimada a massa do carro:

$$(M+m)\frac{d^2x}{dt^2} + m\ell \frac{d^2\theta}{dt^2} = u,$$
 (20)

isolando M:

$$M = \frac{u - m\ell\dot{\theta} - m\ddot{x}}{\ddot{x}},\tag{21}$$

como m = 0, 5kg, u = 1N e $\ell = 0, 65m$, tem-se:

$$M = 5,11754kq. (22)$$

Os resultados encontrados/fixados foram:

M[kg]	m[kg]	$\ell[m]$	$I[kg\cdot m^2]$
5,11754	0,5	0,65	$1,8537 \times 10^{-3}$

Ao substituí-los na FT da Equação 14, chega-se:

$$\frac{\Theta(s)}{U(s)} = \frac{0,325}{-1,0914s^2 + 17,9101}.$$
 (23)

As acelerações \ddot{x} e $\ddot{\theta}$ serão multiplicadas por k. Considere a Equação de Inércia:

$$(I+m\ell^2)\frac{d^2\theta}{dt^2} \cancel{k} = -m\ell \frac{d^2x}{dt^2} \cancel{k}.$$
 (24)

Se $\frac{d\vec{a}}{dt} > 0$ e $\vec{F} = \text{cte}$, então $\frac{dM}{dt} < 0$

$$M = \frac{u - km\ell\ddot{\theta} - km\ddot{x}}{k\ddot{x}}.$$
 (25)

A FT não conseguiu representar o sistema adequadamente.

Obtenção da Função de Transferência Cart Pole

Onde M > 0, logo:

$$0 < \frac{u - km\ell\ddot{\theta} - km\ddot{x}}{k\ddot{x}},\tag{26}$$

ou ainda:

$$0 < 1 + 0,096768k - 0,09762k,$$
 (27)

chega-se a k < 1174, 74, o valor de k, ele será variado de 1 a 1174.

$$\overline{RMSE}_k = \frac{1}{47} \sum_{ep=1}^{47} \frac{\sqrt{\sum_{i=1}^{N} (y_{ep}(i) - \hat{y}_{ep}(i))^2}}{\sqrt{\sum_{i=1}^{N} (y_{ep}(i) - \bar{y}_{ep})^2}}.$$
 (28)

Obtenção da Função de Transferência Cart Pole

Ao tomar k=165, obtém-se uma FT que responde melhor aos estímulos da entrada.

A nova massa passa a ser:

$$M = 0,02668kg, (29)$$

com os novos valores dos parâmetros, a FT passa a ser:

$$\frac{\Theta(s)}{U(s)} = \frac{0,325}{-0,00661s^2 + 1,67919}.$$
 (30)
$$U(s) \qquad \qquad \downarrow \qquad \qquad$$

Para estabilizar o sistema, será utilizado um controlador PID:

Considere a expressão do PID:

$$g(t) = K_C \cdot e(t) + \frac{K_C}{\tau_I} \cdot \int_0^t e(t)dt + K_C \cdot \tau_D \cdot \frac{de(t)}{dt},$$

o τ_i foi fixado em 2 e τ_d em 0,25.

(31)

O pacote GEKKO [4] fornecerá o valor de K_C ao minimizar:

$$e(t) = r(t) - y_m(t). (32)$$

Os parâmetros encontrados foram:

Termos	Relação com K_C	Valor
Proporcional	K_C	0,5
Integral	$rac{K_C}{ au_I}$	$0,\!25$
Derivativo	$K_C \cdot au_D$	0,125

Ao substituir os valores, obtém-se:

$$g(t) = 0, 5 \cdot e(t) + 0, 25 \cdot \int_0^t e(t)dt + 0, 125 \cdot \frac{de(t)}{dt}.$$

(33)

A expressão completa para o controlador PID é:

$$u_n = 0, 5 \cdot \theta_n + 0, 25 \cdot \sum_{i=0}^{n} \theta_i + 0, 125 \cdot \omega_n.$$
 (34)

É fundamental realizar uma análise gráfica da saída do GEKKO.

(35)

(36)

(37)

O primeiro passo é definir a trajetória de referência:

$$w = [0, 0, 0, \cdots, n_{etapas}].$$

Sendo a Função Custo utilizada:

$$J(k) = \sqrt{(\sum_{j=d}^{h_p} [\hat{y}(j+k|k) - w(j+k)])^2}.$$

Deve-se também, definir todos os Δu possíveis, logo:

$$u_{k-1} = 1 \text{ e } u_k = -1 \Rightarrow \Delta u = -2$$

 $u_{k-1} = 1 \text{ e } u_k = 1 \Rightarrow \Delta u = 0$
 $u_{k-1} = -1 \text{ e } u_k = -1 \Rightarrow \Delta u = 0$
 $u_{k-1} = -1 \text{ e } u_k = 1 \Rightarrow \Delta u = 2$

24

GPC: Formulação para o Cart Pole

A definição do problema de otimização é a seguinte:

Minimizar
$$J(k) = \sqrt{(\sum_{j=d}^{h_p} [\hat{y}(j+k|k) - w(j+k)])^2}$$
. sujeto a: $\Delta u = \{-2, 0, 2\}$ (38)

Para estimar o modelo ARX, utilizou-se o sinal PRBS [6] e o SysIdentPy [7]:

$$y(k) = 2 \cdot y(k-1) - 0,993 \cdot y(k-2) - 0,005 \cdot u(k-1), \tag{39}$$

$$y(k) = 3 \cdot y(k-1) - 2,993 \cdot y(k-2) + 0,993 \cdot y(k-3) - 0,005 \cdot \Delta u(k-1).$$
 (40)

$h_c = h_p$	2	3	4	5	6	7
Tempo $[s]$	t	1,071t	1,218t	1,8164t	3,582t	9,187t

Os setpoints utilizados para a implementação do controle PD foram:

A expressão do controlador PD para a altura é a seguinte:

$$y_{PD} = k_{p1} \cdot (|x| - y) + k_{d1} \cdot v_y.$$

A expressão do controlador PD para o ângulo é a seguinte:

$$\theta_{PD} = k_{p2} \cdot \left[\frac{\pi}{4} \cdot (x + v_x) - \theta \right] + k_{d2} \cdot v_\theta, \tag{42}$$

ao empregar a técnica de Otimização por Subida de Encosta, obtém-se:

k_{p1}	k_{p1} k_{d1}		k_{d2}	
9,0565	-9,9488	11,9271	-5,0963	

Para facilitar nas trajetória de referência, o plano cartesiano foi rotacionado em 45°:

$$p_x = x \cdot \cos 45^{\circ} + y \cdot \sin 45^{\circ}$$

$$p_y = -x \cdot \sin 45^{\circ} + y \cdot \cos 45^{\circ}$$

Com o plano cartesiano rotacionado, é possível estimar três trajetórias de referência.

Neste contexto lunar, u substitui Δu devido à variação na penalização dos propulsores. Quando $h_c < h_p$, u é mantido em 0 para maximizar a recompensa do ambiente.

A função de custo para o Lunar Lander foi definida como:

$$J(k) = \sum_{j=d}^{h_p} [\{\alpha \cdot (\hat{p}_x(j+k|k) - \hat{p}_y(j+k|k)) - \beta \cdot \hat{\theta}(j+k|k) + \delta \cdot (\hat{v}_y(j+k|k) - 0,725 \cdot \hat{p}_y(j+k|k) - 0,125)\}^2]^{\frac{1}{2}}$$

$$(43)$$

sujeito a:

$$Propulsor = \begin{cases} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{cases} u_1 \Rightarrow \text{Propulsor principal} u_2 \Rightarrow \text{Propulsor auxiliar}$$

Horizonte de controle: 2 ($h_c = 2$) e horizonte de predição: 4 ($h_p = 4$). Correlação das saídas com entrada específica foram identificadas durante a obtenção do modelo:

Saída
$$p_x$$
 θ p_y v_y
Entrada u_2 u_2 u_1 u_1

Pesos utilizados:

31

Resultados

Cart Pole

Controle	$ar{ heta}$	$ heta_{max}$	Etapas	Tempo de Execução $[s]$
PID	$1,1053\cdot 10^{-5}$	$4,6395 \cdot 10^{-2}$	5000	9,0421
GPC	$-9,7546\cdot 10^{-5}$	$7,3337 \cdot 10^{-2}$	5000	15,1423

				Lun	ar Lander	- GPC		
	1.25 -							x ₄₅ .
	1.00 -							x
	0.75 -							v _x
Valor	0.50 -							θ ν _θ
8	0.25 -							
	0.00 -	200	A CO	A AMERICAN CONTRACTOR OF THE PARTY OF THE PA	AN ANCOROL	√	AOAMAN	
	-0.25 -		and the same of	N. Anglander of the Lot	A point partire point popular	Nodine.		'
	-0.50 -	Var. Market	MARINE					
		o	50	100	150 Amostras	200	250	300

Controle	Pouso	Pouso com $+200$ pontos	Etapas	Tempo $[s]$	Média
PD	765	764	177577	1086,6976	217,4862
GPC	870	808	340369	1017,0346	209,1881

Conclusão

- ✓ Ambos os controladores demonstraram eficácia no controle tanto do Cart Pole quanto do Lunar Lander;
- ✓ O controlador PID destacou-se pela sua eficácia no *Cart Pole*, enquanto o GPC mostrou-se mais eficiente no *Lunar Lander*;
- ✓ Este trabalho revelou especificidades distintas de cada técnica, oferecendo uma aplicação prática e comparativa entre elas.

- P. DEULKAR AND S. HANWATE, "ANALYSIS OF PSO-PID CONTROLLER FOR CSTR TEMPERATURE CONTROL," IN 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), pp. 1-6, IEEE, 2020.
- [2] C. B. Alba and I. C. D. E. EN AUTOMATICA, "CONTROL PREDICTIVO: METODOLOGIA, TECNOLOGIA Y NUEVAS PERSPECTIVAS," Universidad de Sevilla, Aquadulce, Almeria, 2000.
- Ogata and Katsuhiko, Engenharia de controle moderno. Prentice Hall do Brasil, 5 ed., 2010.
- [4] L. Beal, D. Hill, R. Martin, and J. Hedengren, "Gekko optimization suite," Processes, vol. 6, no. 8, p. 106, 2018.
- [5] T. C. Prata, "Controle preditivo baseado em modelo (MPC) aplicado a uma planta didática," Master's thesis, Instituto Federal de São Paulo, 2020.
- [6] L. A. AGUIRRE, Introdução à identificação de sistemas—Técnicas lineares e não-lineares aplicadas a sistemas reais.
 EDITORA UFMG, 2004.
- [7] W. R. Lacerda, L. P. C. da Andrade, S. C. P. Oliveira, and S. A. M. Martins, "Sysidentpy: A python package for system identification using narmax models," *Journal of Open Source Software*, vol. 5, no. 54, p. 2384, 2020.

Muito Obrigado!

