

| Name     | Туре | Description                                                                                                                                                                                                      |  |  |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          |      | Notes: 1. Unless CMOS is being cleared (only to be done in the G3 power state) with a jumper, the RTCRST# input must always be high when all other RTC power planes are on.                                      |  |  |
|          |      | <ol><li>In the case where the RTC battery is dead or missing on the platform, the<br/>RTCRST# pin must rise before the DSW_PWROK pin.</li></ol>                                                                  |  |  |
|          |      | <b>Secondary RTC Reset</b> : This signal resets the manageability register bits in the RTC well when the RTC battery is removed.                                                                                 |  |  |
| SRTCRST# | I    | Notes: 1. The SRTCRST# input must always be high when all other RTC power planes are on.                                                                                                                         |  |  |
|          |      | <ol> <li>In the case where the RTC battery is dead or missing on the platform, the<br/>SRTCRST# pin must rise before the DSW_PWROK pin.</li> <li>SRTCRST# and RTCRST# should not be shorted together.</li> </ol> |  |  |

# 23.2 I/O Signal Planes and States

| Signal Name                                            | Power Plane | During Reset <sup>1</sup> | Immediately after Reset <sup>1</sup> | S4/S5    | Deep Sx  |  |  |
|--------------------------------------------------------|-------------|---------------------------|--------------------------------------|----------|----------|--|--|
| RTCRST#                                                | RTC         | Undriven                  | Undriven                             | Undriven | Undriven |  |  |
| SRTCRST# RTC                                           |             | Undriven                  | Undriven                             | Undriven | Undriven |  |  |
| Note: 1. Reset reference for RTC well pins is RTCRST#. |             |                           |                                      |          |          |  |  |

Intel® 700 Series Chipset Family On-Package Platform Controller Hub (PCH) January 2023

Doc. No.: 765585, Rev.: 001

Intel® 700 Series Chipset Family On-Package Platform Controller Hub (PCH)

Datasheet, Volume 1 of 2

147



## 24.0 System Management Interface and SMLink

The PCH provides two SMLink interfaces, SMLink0 and SMLink1. The interfaces are intended for system management and are controlled by the Intel<sup>®</sup> CSME. Refer to System Management on page 28 for more detail.

### Table 67. Acronyms

| Acronyms | Description                     |  |
|----------|---------------------------------|--|
| ВМС      | Baseboard Management Controller |  |
| EC       | Embedded Controller             |  |

### **24.1** Functional Description

The SMLink interfaces are controlled by the Intel® CSME.

SMLink0 is mainly used for integrated LAN. When an Intel LAN PHY is connected to SMLink0, a soft strap must be set to indicate that the PHY is connected to SMLink0. The interface will be running at the frequency of up to 1 MHz depending on different factors such as board routing or bus loading when the Fast Mode is enabled using a soft strap.

SMLink1 can be used with an Embedded Controller (EC) or Baseboard Management Controller (BMC).

Both SMLink0 and SMLink1 support up to 1 MHz.

#### NOTE

Access to the PCH thermal sensor should be via eSPI. as the SMLink 1 is disabled in Consumer platforms.

### 24.1.1 Integrated USB-C Usage

SMLink1 is used to communicate with USB-C\* PD Controller on the platform to configure different modes such as USB, DP, Thunderbolt etc. When used for Integrated USB-C purposes, a soft strap must be set to indicate that integrated USB-C ports from CPU are being used.

SMLINK1 uses master mode and gets an alert signal from PMCALERT#.

Based on capabilities of different PD Controllers, re-timers needed for USB-C connector on the platform may need to be controlled by SoC also. In these cases, both PD Controller and Re-timers will be connected to SMLink1. SMLink1 is used for all USB-C connectors on the platform.