Disjoint Sets Data Structure

Bruce Nan

What Are Disjoint Sets?

Two sets A and B are disjoint if they have NO elements in common. $(A \cap B = 0)$

What Are Disjoint Set Data Structures?

A disjoint-set data structure maintains a collection $S = \{S1, S2,...,Sk\}$ of disjoint dynamic (changing) sets.

- •Each set has a representative (member of the set).
- •Each element of a set is represented by an object (x).

Disjoint Sets

- Some applications require maintaining a collection of disjoint sets.
- A Disjoint set S is a collection of sets

$$S_1, \dots, S_n$$
 where $\forall_{i \neq j} S_i \cap S_j = \phi$

• Each set has a representative which is a member of the set (Usually the minimum if the elements are comparable)

Disjoint Set Operations

- Make-Set(x) Creates a new set where x is it's only element (and therefore it is the representative of the set).
- Union(x,y) Replaces S_x , S_y by $S_x \cup S_y$ one of the elements of $S_x \cup S_y$ becomes the representative of the new set.
- Find(x) Returns the representative of the set containing x

Analyzing Operations

- We usually analyze a sequence of *m* operations, of which *n* of them are Make_Set operations, and *m* is the total of Make_Set, Find, and Union operations
- Each union operations decreases the number of sets in the data structure, so there can not be more than *n-1* Union operations

Applications

• Equivalence Relations (e.g Connected Components)

Minimal Spanning Trees

 Given a graph G we first preprocess G to maintain a set of connected components.
 CONNECTED_COMPONENTS(G)

 Later a series of queries can be executed to check if two vertexes are part of the same connected component
 SAME_COMPONENT(U,V)

CONNECTED_COMPONENTS(G)

```
for each vertex v in V[G]
do MAKE_SET (v)
```

for each edge (u,v) in E[G]
do if FIND_SET(u) != FIND_SET(v)
then UNION(u,v)

 $SAME_COMPONENT(u,v)$

 $return\ FIND_SET(u) == FIND_SET(v)$

Example

(b,d)

(a,c)

(h,i)

(a,b) h e b a

(b,c)

Result

• During the execution of CONNECTED-COMPONENTS on a undirected graph G – (V, E) with k connected components, how many time is FIND-SET called? How many times is UNION called? Express you answers in terms of |V|, |E|, and |K|.

Solution

- FIND-SET is called 2|E| times. FIND-SET is called twice on line 4, which is executed once for each edge in E[G].
- UNION is called /V| k times. Lines 1 and 2 create /V| disjoint sets. Each UNION operation decreases the number of disjoint sets by one. At the end there are k disjoint sets, so UNION is called /V| k times.

Linked List implementation

- We maintain a set of linked list, each list corresponds to a single set.
- All elements of the set point to the first element which is the representative
- A pointer to the tail is maintained so elements are inserted at the end of the list

Union with linked lists

Analysis

• Using linked list, MAKE_SET and FIND_SET are constant operations, however UNION requires to update the representative for at least all the elements of one set, and therefore is linear in worst case time

• A series of m operations could take $\Theta(m^2)$

Improvement – Weighted Union

- Always append the shortest list to the longest list. A series of operations will now cost only $\Theta(m + n \log n)$
- MAKE_SET and FIND_SET are constant time and there are m operations.
- For Union, a set will not change it's representative more than log(n) times. So each element can be updated no more than log(n) time, resulting in nlogn for all union operations

Disjoint-Set Forests

- Maintain A collection of trees, each element points to it's parent. The root of each tree is the representative of the set
- We use two strategies for improving running time
 - Union by Rank
 - Path Compression

Make Set

• MAKE_SET(x)

$$p(x)=x$$

rank $(x)=0$

Find Set

• FIND_SET(d)

```
if d != p[d]
  p[d]= FIND_SET(p[d])
return p[d]
```


Union

• UNION(x,y)

• link(x,y)

```
if rank(x)>rank(y)
  then p(y)=x
  else
  p(x)=y
  if rank(x)=rank(y)
  then rank(y)++
```


Analysis

• In Union we attach a smaller tree to the larger tree, results in logarithmic depth.

 Path compression can cause a very deep tree to become very shallow

• Combining both ideas gives us (without proof) a sequence of m operations in $O(m\alpha(m,n))$

Exercise

• Describe a data structure that supports the following operations:

- find(x) returns the representative of x
- union(x,y) unifies the groups of x and y
- min(x) returns the minimal element in the group of x

Solution

- We modify the disjoint set data structure so that we keep a reference to the minimal element in the group representative.
- The find operation does not change (log(n))
- The union operation is similar to the original union operation, and the minimal element is the smallest between the minimal of the two groups

Example

• Executing find(5)

$$7 \rightarrow 1 \rightarrow 4 \rightarrow 4$$

	$ \begin{array}{c} 4 \\ 6 \end{array} $	
N	7	
	$\left(\begin{array}{c}2\end{array}\right)$	

	1	2	3	4	5	6	• •	N
Parent	4	7	4	4	7	6		
min				1		6		

Example

	1	2	3	4	5	6	• •	N
Parent	4	7	4	4	7	4		
min				1		1		

Exercise

• Describe a data structure that supports the following operations:

- find(x) returns the representative of x
- union(x,y) unifies the groups of x and y
- deUnion() undo the last union operation

Solution

• We modify the disjoint set data structure by adding a stack, that keeps the pairs of representatives that were last merged in the union operations

• The find operations stays the same, but we can not use path compression since we don't want to change the modify the structure after union operations

Solution

• The union operation is a regular operation and involves an addition push (x,y) to the stack

- The deUnion operation is as follows
 - $-(x,y) \leftarrow s.pop()$
 - $parent(x) \leftarrow x$
 - parent(y) \leftarrow y

Example

• Example why we can not use path compression.

T Table	(0.1)	
Union	(8.4)	
	(\circ,\cdot)	

- Find(2)
- Find(6)
- DeUnion()

	1	2	3	4	5	6	7	8	9	10	
parent	4	7	7	4	8	1	5	8	1	4	