

Fall 2023

Digital Engineering

Dr. Hatem Yousry

1

Agenda

- Conversions.
- Complements.
- Boolean Algebra.

- 1. Boolean Algebra This forms the algebraic expression showing the operation of the logic circuit for each input variable either True or False that results in a logic "1" output.
- 2. Truth Table A truth table defines the function of a logic gate by providing a concise list that shows all the output states in tabular form for each possible combination of input variable that the gate could encounter.
- 3. Logic Diagram This is a graphical representation of a logic circuit that shows the wiring and connections of each individual logic gate, represented by a specific graphical symbol, that implements the logic circuit.

Complements

- There are two types of complements for each **base-***r* system: the radix (base) complement and diminished radix complement.
- Diminished Radix Complement (r-1)'s Complement
 - Given a number N in base r having n digits, the (r-1)'s complement of N is defined as:

$$(r^n-1)-N$$

- Example for 6-digit <u>decimal</u> numbers:
 - 9's complement is $(r^n 1) N = (10^6 1) N = 999999 N$
 - 9's complement of 546700 is 999999–546700 = 453299
- Example for 7-digit binary numbers:
 - 1's complement is $(r^n 1) N = (2^7 1) N = 11111111 N$
 - 1's complement of 1011000 is 1111111-1011000 = 0100111
- Observation:
 - Subtraction from $(r^n 1)$ will never require a borrow
 - Diminished radix complement can be computed digit-by-digit
 - For binary: 1 0 = 1 and 1 1 = 0

Complements

- 1's Complement (*Diminished Radix* Complement)
 - All '0's become '1's
 - All '1's become '0's

```
Example (10110000)_2

\Rightarrow (01001111)_2
```

If you add a number and its 1's complement ...

Binary Logic

Definition of Binary Logic

- Binary logic consists of binary variables and a set of logical operations.
- The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0,
- Three basic logical operations: AND, OR, and NOT.
 - 1. AND: This operation is represented by a dot or by the absence of an operator. For example, $x \cdot y = z$ or xy = z is read "x AND y is equal to z," The logical operation AND is interpreted to mean that z = 1 if only x = 1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)
 - 2. OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to z," meaning that z = 1 if x = 1 or y = 1 or if both x = 1 and y = 1. If both x = 0 and y = 0, then z = 0.
 - 3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, x' = z (or $\overline{x} = z$) is read "not x is equal to z," meaning that z is what z is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to

Binary Logic

• Truth Tables, Boolean Expressions, and Logic Gates

AND

x	y	z
0	0	0
0	1	0
1	0	0
1	1	1

OR

x	y	z
0	0	0
0	1	1
1	0	1
1	1	1

NOT

x	z
0	1
1	0

$$z = x \cdot y = x y$$

$$\begin{array}{c} x \\ y \end{array}$$

$$z = x + y$$

$$x$$
 y
 $-z$

$$z = \overline{x} = x$$

Switching Circuits

Binary Logic

 $z = x \cdot y$

Logic gates

 \boldsymbol{x}

• Graphic Symbols and Input-Output Signals for Logic gates:

z = x + y

Binary Logic

- Logic gates
 - Graphic Symbols and Input-Output Signals for Logic gates:

(a) Three-input AND gate

(b) Four-input OR gate

5400/7400 Quad NAND gate

Logic Chips II

5402/7402 Quad NOR gate

7400 Quad 2-input NAND Gates

5408/7408 Quad AND gate

5432/7432 Quad OR gate

5486/7486 Quad XOR gate

5404/7404 Hex inverter

Integration levels

- SSI (small scale integration)
 - Introduced in late 1960s
 - 1-10 gates (previous examples)
- MSI (medium scale integration)
 - Introduced in late 1960s
 - 10-100 gates
- LSI (large scale integration)
 - Introduced in early 1970s
 - 100-10,000 gates
- VLSI (very large scale integration)
 - Introduced in late 1970s
 - More than 10,000 gates

fig 4.1 A SOC DEVICE

Logic Functions

- Logical functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical form

Truth table:

Inp	out	Output
Α	В	C=(A . B)
0	0	1
0	1	1
1	0	1
1	1	0

Graphical Symbol:

Example: Majority function

- Output is 1 whenever majority of inputs is 1
- We use 3-input majority function

3-input majority function

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logical expression form

$$F = AB + BC + AC$$

Logical Equivalence

• All three circuits implement $F = A \cdot B$ function

Logical Equivalence

- Proving logical equivalence of two circuits
- Derive the logical expression for the output of each circuit
- Show that these two expressions are equivalent, Two ways:
 - You can use the truth table method
 - For every combination of inputs, if both expressions yield the same output, they are equivalent
 - Good for logical expressions with small number of variables
 - You can also use algebraic manipulation
 - Need Boolean identities

Derivation of logical expression from a circuit

- Trace from the input to output
- Write down intermediate logical expressions along the path

Truth Table Method

Α	В	F1 = A B	$F3 = (A + B) (A + \overline{B}) (\overline{A} + B)$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Boolean Algebra

Name	AND version	OR version
Identity	$x \cdot 1 = x$	x + 0 = x
Complement	$\mathbf{x} \cdot \overline{\mathbf{x}} = 0$	$x + \overline{x} = 1$
Commutative	$x \cdot y = y \cdot x$	x + y = y + x
Distribution	$X \cdot (y+z) = Xy+Xz$	$x + (y \cdot z) =$
		(x+y) (x+z)
Idempotent	$X \cdot X = X$	X + X = X
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1

Name	AND version	OR version
Involution	$\overline{\overline{X}} = X$	
Absorption	$x \cdot (x+y) = x$	$x + (x \cdot y) = x$
Associative	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	x + (y + z) =
		(x+y)+z
de Morgan	$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	$\overline{x + y} = \overline{x} \cdot \overline{y}$

Boolean Algebra

- Complement
 - $x+x'=1 \rightarrow 0+0'=0+1=1; 1+1'=1+0=1$
 - $x.x'=0 \rightarrow 0. 0'=0. 1=0; 1. 1'=1. 0=0$
- Duality
 - Form the dual of the expression
 - a + (bc) = (a + b)(a + c)
 - Following the replacement rules...
 - a(b+c) = ab + ac
- Absorption Property (Covering)
 - x + xy = x

\overline{x}	y	xy	<i>x</i> + <i>xy</i>
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Basic Theorems

Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

DeMorgan's Theorem

•
$$(x+y)'=x'y'$$

•
$$(xy)'=x'+y'$$

• By means of truth table

A NAND gate is equivalent to an inversion followed by an OR

$$\hat{A} + \overline{B} = \hat{A} + \overline{B}$$

A NOR gate is equivalent to an inversion followed by an AND

x	y	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y)'	<i>x'y'</i>	xy	x'+y'	(xy) '
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

De Morgan's Theorem

$$(A \cap B)' = A' \cup B'$$

$$(A \cup B)' = A' \cap B'$$

$$1. \quad xy + xz + yz = xy + xz$$

2.
$$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z) - (dual)$$

NCT

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
 - Parentheses
 - NOT
 - AND
 - OR

Highest

```
() []
! +++ --
* / % ^
+ -
< <= > >=
== !=
&&
||
?:
```

Lowest

Logic Circuit Design Process

- Problem specification.
- Truth table derivation.
- Derivation of logical expression.
- Simplification of logical expression.
- Implementation.

gu	sry
ineering	Yousi
Ingin	tem
ital I	r. Ha
Dig	D

		Inp	uts	Output		
	Α	В	С	D	'	
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
10	1	0	1	0		
11	1	0	1	1		
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

Examples

- $F_1 = x y z'$
- $F_2 = x + y'z$
- $F_3 = x'y'z + x'yz + xy'$
- $F_4 = x y' + x'z$

-						
\boldsymbol{x}	y	Z	F_1	F_2	F_3	F_4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Boolean Functions

Example

1.
$$x(x'+y) = xx' + xy = 0 + xy = xy$$

2.
$$x+x'y = (x+x')(x+y) = 1 (x+y) = x+y$$

3.
$$(x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x$$

4.
$$xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + x'z(1+y) = xy + x'z$$

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (consensus theorem with duality)

Thank You

Dr. Hatem Yousry @nctu.edu.eg

