Solving Two-player Games with QBF Solvers in General Game Playing

Yifan He¹
Abdallah Saffidine ¹
Michael Thielscher ¹

¹UNSW Sydney, Australia

Game Playing Al

- Deep Blue (1996), AlphaGo (2016)
- AlphaZero (2018)

Game Playing Al

- Deep Blue (1996), AlphaGo (2016)
- AlphaZero (2018)
- Can an Al play all perfect information games?

Game Playing Al

- Deep Blue (1996), AlphaGo (2016)
- AlphaZero (2018)
- Can an Al play all perfect information games?

General Game Playing Challenge

 Rules described in Game Description Language (GDL)

•

```
next(cell(X,Y,P)) := true(cell(X,Y,blank)), does(P,mark(X,Y)).
```

FluxPlayer, CadiaPlayer, Ary, GGPZero...

Game Playing Al

- Deep Blue (1996), AlphaGo (2016)
- AlphaZero (2018)
- Can an Al play all perfect information games?

General Game Playing Challenge

 Rules described in Game Description Language (GDL)

•

```
next(cell(X,Y,P)) := true(cell(X,Y,blank)), does(P,mark(X,Y)).
```

- FluxPlayer, CadiaPlayer, Ary, GGPZero...
- Play well not play perfectly

Solving 1-player game with ASP (Thielscher, 2009)

• Can the player win the game within T_{max} steps.

Solving 1-player game with ASP (Thielscher, 2009)

- Can the player win the game within T_{max} steps.
- Convert GDL G to Time-extended ASP Ext(G) true(cell(X, Y, P), T + 1): -true(cell(X, Y, blank), T), time(T) does(P, mark(X, Y), T).

Solving 1-player game with ASP (Thielscher, 2009)

- Can the player win the game within T_{max} steps.
- Convert GDL G to Time-extended ASP Ext(G) true(cell(X, Y, P), T + 1): -true(cell(X, Y, blank), T), time(T) does(P, mark(X, Y), T).
- An additional ASP program P
 - 1 legal move per step before termination
 - 1 $\{does(r, M, T) : move(M)\}$ 1 :- not terminated(T).
 - :-not legal(r, M, T), does(r, M, T).
 - The player must reach terminal within T_{max} steps
 - The player must achieve its goal when termination

Solving 1-player game with ASP (Thielscher, 2009)

- Can the player win the game within T_{max} steps.
- Convert GDL G to Time-extended ASP Ext(G)
 true(cell(X, Y, P), T + 1): -true(cell(X, Y, blank), T), time(T)
 does(P, mark(X, Y), T).
- An additional ASP program P
 - 1 legal move per step before termination
 - 1 $\{does(r, M, T) : move(M)\}$ 1 :- not terminated(T).
 - :-not legal(r, M, T), does(r, M, T).
 - The player must reach terminal within T_{max} steps
 - The player must achieve its goal when termination
- Use ASP planner Clingo to solve Ext(G) ∪ P
- ASP approach > forward search in some games

Solving Games with QBF Solvers

Two-player Zero-sum Turn-taking games

Chess, Go, Connect-4, Generalized
 Tic-Tac-Toe, Breakthrough, Dots and Boxes...

Solving Games with QBF Solvers

Two-player Zero-sum Turn-taking games

- Chess, Go, Connect-4, Generalized
 Tic-Tac-Toe, Breakthrough, Dots and Boxes...
- Encode to Quantified Boolean Formula
 - Connect-4 (Gent, 2003)
 - Generalized Tic-Tac-Toe (Diptarama et al., 2016)
 - Positional board games (Saffidine et al., 2020)
 - Positional + some non-positional board games in BDDL (Shaik et al., 2023)
- QBF method outperforms Proof Number Search in Generalized Tic-Tac-Toe

Our Work

Motivation

- Solving 1-p games with ASP works well in GGP
- Solving 2-p games with QBF is promising

Overall approach

- Can x win a 2-player game within T_{max} steps no matter what o does
- GDL ^{Directly} QBF
 - GDL stable model VS QBF classical model
- GDL \Longrightarrow QASP $\xrightarrow{Converter}$ QBF \xrightarrow{QBF} Solver W/L
 - GDL stable model, QASP stable model
 - QASP to QBF (Fandinno et al., 2021)

QASP Review

P is a logic program with ground atoms **A**.

$$Q_1 X_1 \dots Q_n X_n P$$

 $Q_i \in \{\exists, \forall\}$. fix(X, Y), where $Y \subseteq X \subseteq A$, as the logic program $\{: -not \ x. \mid x \in Y\} \cup \{: -x. \mid x \in X \setminus Y\}$.

- P is satisfiable iff it has a stable model.
- If the QASP has form $\exists X \mathbf{Q} P$ (resp. $\forall X \mathbf{Q} P$), the program is satisfiable iff **there exists** (resp. **for all**) $Y \subseteq X$ such that the program $\mathbf{Q} (P \cup fix(X, Y))$ is satisfiable.

- Convert the game G to Ext(G)
- Use an ASP P to model the Constraints:
 - \bigcirc The game must terminates within T_{max} steps
 - When the game terminates, player 1 wins
 - Before the game terminates player 1 must make a legal move per turn
 - Before the game terminates player 2 must make a legal move per turn

- Convert the game G to Ext(G)
- Use an ASP P to model the Constraints:
 - \bullet The game must terminates within T_{max} steps
 - When the game terminates, player 1 wins
 - Before the game terminates player 1 must make a legal move per turn
 - Before the game terminates player 2 must make a legal move per turn
 - logarithmic encoding in positional games
 - Actions of the player 2: does(o, mark(1..3,1..3), T).
 - Introduce: moveL(o,0..3, T) {moveL(o,0..3, T)}:-time(T). does(o,mark(1,1),T):-moveL(o,0,T), not moveL(o,1,T), not moveL(o,2,T), not moveL(o,3,T), legal(o,mark(1,1),T).

- Convert the game G to Ext(G)
- Use an ASP P to model the Constraints:
 - The game must terminates within T_{max} steps
 - When the game terminates, player 1 wins
 - Before the game terminates player 1 must make a legal move per turn
 - Before the game terminates player 2 must make a legal move per turn
- All the stable models of Ext(G) ∪ P corresponds to a playing sequence of G
 - Terminates within T_{max} steps
 - The first player wins

- All the stable models of Ext(G) ∪ P corresponds to a playing sequence of G
 - Terminates within T_{max} steps
 - The first player wins

- All the stable models of Ext(G) ∪ P corresponds to a playing sequence of G
 - Terminates within T_{max} steps
 - The first player wins
- Add quantifiers to Ext(G) ∪ P
 - A quantifier prefix \mathbf{Q} , \mathbf{Q} ($Ext(G) \cup P$) is satisfiable iff the game G is a win for player 1 within T_{max} steps.

- All the stable models of Ext(G) ∪ P corresponds to a playing sequence of G
 - Terminates within T_{max} steps
 - The first player wins
- Add quantifiers to Ext(G) ∪ P
 - A quantifier prefix Q, Q (Ext(G) ∪ P) is satisfiable iff the game G is a win for player 1 within T_{max} steps.

```
\exists does(x, M_1, 1), does(x, M_2, 1), ..., does(x, M_n, 1)

\forall moveL(o, 1, 1), moveL(1, 2, 1), ..., moveL(o, K, 1)

...

\exists does(x, M_1, T_{max}), does(x, M_2, T_{max}), ..., does(x, M_n, T_{max})

\forall moveL(o, 1, T_{max}), moveL(1, 2, T_{max}), ..., moveL(o, K, T_{max})
```

- All the stable models of Ext(G) ∪ P corresponds to a playing sequence of G
 - Terminates within T_{max} steps
 - The first player wins
- Add quantifiers to Ext(G) ∪ P
 - A quantifier prefix Q, Q (Ext(G) ∪ P) is satisfiable iff the game G is a win for player 1 within T_{max} steps.

```
\exists does(x,M_1,1), does(x,M_2,1),..., does(x,M_n,1)\\ \forall moveL(o,1,1), moveL(1,2,1),..., moveL(o,K,1)\\ ...\\ \exists does(x,M_1,T_{max}), does(x,M_2,T_{max}),..., does(x,M_n,T_{max})\\ \forall moveL(o,1,T_{max}), moveL(1,2,T_{max}),..., moveL(o,K,T_{max})\\ \bullet & \text{Quantify remaining atoms (e.g., } legal(x,M,T)) \text{ as early as possible, based on atom dependency} \\ \end{tabular}
```

- Example: *a* : *b*, *c*.
- a is quantified no earlier than b and c.

 Connect-4, Breakthrough, Generalized Tic-Tac-Toe, Dots and Boxes

- Connect-4, Breakthrough, Generalized Tic-Tac-Toe, Dots and Boxes
- Convert GDL games at a certain depth to QBF
 - QBF solver DepQBF and Caqe + bloqqer preprocessor
- Minimax + Transposition table solver in C++

- Connect-4, Breakthrough, Generalized Tic-Tac-Toe, Dots and Boxes
- Convert GDL games at a certain depth to QBF
 - QBF solver DepQBF and Caqe + bloqqer preprocessor
- Minimax + Transposition table solver in C++
 - We record
 - μ_G length of the longest playing sequence that the first player wins
 - T_{max} the depth of the game
 - Red: the first player winnable within T_{max} steps
 - Blue: the first player cannot win at any depth
 - Orange: the first player cannot win within T_{max} < μ_G depth
 - Solving time of DepQBF, Caqe, and Minimax
 - Time limit 1000s/game

Game	Config	μ_G	T _{max}	DepQBF	Caqe	Minx
	4×4	15	15	1.48	1.21	1.42
Connect-4	5×5	25	21	372.85	137.77	517.50
	6×6	35	19	*	597.56	*
	elly	15	7	6.91	4.38	9.75
	fat.	15	15	204.11	411.91	307.38
GTTT-1-1	knob.	15	15	379.34	705.57	*
	skin.	15	15	394.47	*	206.59
	tip.	15	9	16.99	8.42	30.94
GTTT-2-2	fat.	14	14	171.36	313.55	*
	skin.	14	14	390.11	548.99	662.32
	2×5	21	21	6.66	5.95	0.36
	2×6	29	15	12.49	11.78	2.86
Breakthrough	3×4	19	19	9.98	9.50	1.09
	3×5	31	19	*	847.31	92.41
	4×4	25	25	159.73	69.63	106.20
D&B	2×2	12	12	6.70	6.46	0.63
	2×3	17	17	*	605.09	15.06

- Both Caqe and DepQBF can solve most instances to a reasonable depth
- QBF is comparable with Minimax search

Summary and Future Work

Contribution

- Convert from 2-player games in GDL to QBF
- Outperforms forward search in some games
 - Inline with 1-player games while generalizing it to 2-player zero-sum games
- Strong winnability of multi-player games

Future Work

- Obtain a smaller encoding
 - Lifted encoding technique (Shaik et al., 2023)
- Embed the translation into a GGP player