- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

	(Cognome)											(N	ome	e)				lum		ma	trice	ola)						

CODICE = 478143

Α	В	С	D	Ε	
11	ב	\sim	ר		

1	
2	00000
3	0000
4	0000
5	0000
6	0000
7	
8	
9	
10	00000

1. Per quali b,c la funzione $f(x)=\left\{ egin{array}{ll} |x| & \mbox{per } x\leq 1\\ & & \mbox{è derivabile in }\mathbb{R}.\\ x^2+bx+c & \mbox{per } x>1 \end{array} \right.$

A: (b,c) = (-1,0) B: (b,c) = (0,1) C: N.A. D: N.E. E: (b,c) = (-1,1)

- 2. Dato il problema di Cauchy $y'(x)=\frac{y(x)}{x}$ con y'(1)=1. Allora y'(2) vale A: 1/2 B: -1 C: N.A. D: 0 E: 1
- 3. Data $f(x) = \cos(x^2)$. Allora $f^{(IV)}(0)$ è uguale a A: -12 B: -1 C: 0 D: N.A. E: 1
- 4. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} n^{\alpha+1} < +\infty \}$$

valgono

A: N.A. B: $\{-\infty, N.E., -2, N.E.\}$ C: $\{-1, -1, +\infty, N.E.\}$ D: $\{-1, N.E., 1, 1\}$ E: $\{-\infty, N.E., +\infty, N.E.\}$

5. Il limite

$$\lim_{x \to 0^+} \frac{\sin(3x)}{e^{4x} - 1}$$

vale

A: N.E. B: $-\frac{3}{4}$ C: 0 D: N.A. E: $\frac{3}{4}$

6. La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da $f(x) = \frac{1}{|x|^{\pi}}$ è

A: iniettiva B: monotona decrescente C: monotona crescente D: limitata E: N.A.

7. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt{k+x^2}$ in $x_0 = 0$ vale

A:
$$-\frac{(\pi k)^2}{4}$$
 B: N.A. C: $y(x) = \sqrt{k}$ D: $1 + kx$ E: $-\frac{1}{2}(1 + \tan^2(k))x^2$

8. L'integrale

$$\int_1^0 \frac{x}{x^2+1} \, dx$$

vale

A: 0 B:
$$\frac{\log(2)}{2}$$
 C: $-\frac{\log(2)}{2}$ D: N.A. E: $\log(2) - \log(1)$

9. Dato $x \in \mathbb{R}$, la serie

$$\sum_{n=1}^{\infty} \left(\frac{x-1}{x+2} \right)^n$$

converge per

A:
$$x > -\frac{1}{2}$$
 B: $x > -2$ C: N.A. D: $x < -2$ E: $x \ge -\frac{1}{2}$

10. Gli argomenti di $z = \sqrt[3]{i^2}$ valgono

A:
$$\left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\}$$
 B: $\left\{-\frac{\pi}{3}, 0, \frac{\pi}{3}\right\}$ C: $\left\{3\pi, 5\pi, 7\pi\right\}$ D: $\left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{3}\right\}$ E: N.A

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

	(Cognome)											(N	ome	e)				lum		ma	trice	ola)						

Α	В	\mathbf{C}	D	\mathbf{E}	
11	יב	\sim	ט		

1	
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

1. Il limite

$$\lim_{x\to 0^+} \frac{\sin(3x)}{e^{4x}-1}$$

vale

A: N.A. B: $-\frac{3}{4}$ C: 0 D: $\frac{3}{4}$ E: N.E.

- 2. Dato il problema di Cauchy $y'(x) = \frac{y(x)}{x}$ con y'(1) = 1. Allora y'(2) vale A: 1 B: 1/2 C: -1 D: N.A. E: 0
- 3. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} n^{\alpha+1} < +\infty \}$$

valgono

A: N.A. B:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 C: $\{-1, N.E., 1, 1\}$ D: $\{-\infty, N.E., -2, N.E.\}$ E: $\{-1, -1, +\infty, N.E.\}$

4. Dato $x \in \mathbb{R}$, la serie

$$\sum_{n=1}^{\infty} \left(\frac{x-1}{x+2} \right)^n$$

converge per

A:
$$x < -2$$
 B: N.A. C: $x > -2$ D: $x \ge -\frac{1}{2}$ E: $x > -\frac{1}{2}$

5. Per quali b,c la funzione $f(x)=\left\{ egin{array}{ll} |x| & \mbox{per } x\leq 1\\ & & \mbox{è derivabile in }\mathbb{R}.\\ x^2+bx+c & \mbox{per } x>1 \end{array} \right.$

A:
$$(b, c) = (-1, 1)$$
 B: N.E. C: $(b, c) = (0, 1)$ D: N.A. E: $(b, c) = (-1, 0)$

6. L'integrale

$$\int_{1}^{0} \frac{x}{x^2 + 1} \, dx$$

vale

A:
$$\frac{\log(2)}{2}$$
 B: N.A. C: $\log(2) - \log(1)$ D: $-\frac{\log(2)}{2}$ E: 0

7. Data $f(x) = \cos(x^2)$. Allora $f^{(IV)}(0)$ è uguale a

8. La funzione $f:\ \mathbb{R}\backslash\{0\}\to\mathbb{R}$ definita da $f(x)=\frac{1}{|x|^\pi}$ è

A: limitata B: N.A. C: monotona crescente D: iniettiva E: monotona decrescente

9. Gli argomenti di $z = \sqrt[3]{i^2}$ valgono

A:
$$\left\{-\frac{\pi}{3}, 0, \frac{\pi}{3}\right\}$$
 B: $\left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{3}\right\}$ C: $\left\{3\pi, 5\pi, 7\pi\right\}$ D: N.A. E: $\left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\}$

10. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt{k+x^2}$ in $x_0 = 0$ vale

A:
$$y(x) = \sqrt{k}$$
 B: $1 + kx$ C: $-\frac{(\pi k)^2}{4}$ D: N.A. E: $-\frac{1}{2}(1 + \tan^2(k))x^2$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

	(Cognome)										(No	me)			_		ume	i ma	tric	ola)						

Α	В	\mathbf{C}	D	\mathbf{E}	
	_	_	_		

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Per quali b,c la funzione $f(x)=\left\{ egin{array}{ll} |x| & \mbox{per } x\leq 1\\ & & \mbox{è derivabile in }\mathbb{R}.\\ x^2+bx+c & \mbox{per } x>1 \end{array} \right.$

A: (b, c) = (-1, 1) B: N.A. C: (b, c) = (0, 1) D: N.E. E: (b, c) = (-1, 0)

2. Data $f(x)=\cos(x^2).$ Allora $f^{(IV)}(0)$ è uguale a

A: 0 B: 1 C: N.A. D: -12 E: -1

3. Dato $x \in \mathbb{R}$, la serie

$$\sum_{n=1}^{\infty} \left(\frac{x-1}{x+2} \right)^n$$

converge per

A: x > -2 B: N.A. C: x < -2 D: $x > -\frac{1}{2}$ E: $x \ge -\frac{1}{2}$

4. Dato il problema di Cauchy $y'(x) = \frac{y(x)}{x}$ con y'(1) = 1. Allora y'(2) vale

A: -1 B: 1/2 C: 1 D: N.A. E: 0

5. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt{k+x^2}$ in $x_0 = 0$ vale

A: $y(x) = \sqrt{k}$ B: $-\frac{(\pi k)^2}{4}$ C: $-\frac{1}{2}(1 + \tan^2(k))x^2$ D: N.A. E: 1 + kx

6. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} n^{\alpha+1} < +\infty \}$$

valgono

A: $\{-1, -1, +\infty, N.E.\}$ B: $\{-1, N.E., 1, 1\}$ C: $\{-\infty, N.E., +\infty, N.E.\}$ D: N.A. E: $\{-\infty, N.E., -2, N.E.\}$

7. Gli argomenti di $z = \sqrt[3]{i^2}$ valgono

A: $\{-\frac{\pi}{3}, 0, \frac{\pi}{3}\}$ B: $\{3\pi, 5\pi, 7\pi\}$ C: $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{3}\}$ D: N.A. E: $\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\}$

8. L'integrale

$$\int_{1}^{0} \frac{x}{x^2 + 1} dx$$

vale

A: 0 B: $\log(2) - \log(1)$ C: $\frac{\log(2)}{2}$ D: $-\frac{\log(2)}{2}$ E: N.A.

9. La funzione $f:\ \mathbb{R}\backslash\{0\}\to\mathbb{R}$ definita da $f(x)=\frac{1}{|x|^\pi}$ è

A: monotona crescente B: iniettiva C: N.A. D: limitata E: monotona decrescente

10. Il limite

$$\lim_{x \to 0^+} \frac{\sin(3x)}{e^{4x} - 1}$$

vale

A: 0 B: $-\frac{3}{4}$ C: $\frac{3}{4}$ D: N.A. E: N.E.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

	(Cognome)											(N	ome	e)				lum		ma	trice	ola)						

A	В	С	D	Ε	
		_			

1	
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

- 1. Dato il problema di Cauchy $y'(x) = \frac{y(x)}{x}$ con y'(1) = 1. Allora y'(2) vale A: 0 B: 1/2 C: 1 D: N.A. E: -1
- 2. Data $f(x) = \cos(x^2)$. Allora $f^{(IV)}(0)$ è uguale a A: -12 B: 1 C: N.A. D: 0 E: -1
- 3. Gli argomenti di $z = \sqrt[3]{i^2}$ valgono
 - A: $\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{3}\}$ B: N.A. C: $\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\}$ D: $\{-\frac{\pi}{3}, 0, \frac{\pi}{3}\}$ E: $\{3\pi, 5\pi, 7\pi\}$
- 4. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} n^{\alpha+1} < +\infty \}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{-1, N.E., 1, 1\}$ C: $\{-\infty, N.E., -2, N.E.\}$ D: N.A. E: $\{-1, -1, +\infty, N.E.\}$

- 5. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt{k+x^2}$ in $x_0 = 0$ vale A: N.A. B: $y(x) = \sqrt{k}$ C: 1 + kx D: $-\frac{1}{2}(1 + \tan^2(k))x^2$ E: $-\frac{(\pi k)^2}{4}$
- 6. L'integrale

$$\int_1^0 \frac{x}{x^2 + 1} \, dx$$

vale

A: 0 B:
$$\frac{\log(2)}{2}$$
 C: N.A. D: $\log(2) - \log(1)$ E: $-\frac{\log(2)}{2}$

7. Il limite

$$\lim_{x \to 0^+} \frac{\sin(3x)}{e^{4x} - 1}$$

vale

A: 0 B: N.E. C: N.A. D:
$$-\frac{3}{4}$$
 E: $\frac{3}{4}$

8. Dato $x \in \mathbb{R}$, la serie

$$\sum_{n=1}^{\infty} \left(\frac{x-1}{x+2} \right)^n$$

converge per

A:
$$x > -2$$
 B: $x \ge -\frac{1}{2}$ C: $x > -\frac{1}{2}$ D: N.A. E: $x < -2$

9. Per quali b,c la funzione $f(x)=\left\{ egin{array}{ll} |x| & \mbox{per } x\leq 1\\ & & \mbox{è derivabile in }\mathbb{R}.\\ x^2+bx+c & \mbox{per } x>1 \end{array} \right.$

A: N.E. B: N.A. C:
$$(b,c) = (0,1)$$
 D: $(b,c) = (-1,1)$ E: $(b,c) = (-1,0)$

- 10. La funzione $f: \mathbb{R} \backslash \{0\} \to \mathbb{R}$ definita da $f(x) = \frac{1}{|x|^{\pi}}$ è
 - A: limitata B: monotona decrescente C: iniettiva D: N.A. E: monotona crescente

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	С	D	Ε	

1	\bigcirc
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	\mathbf{C}	D	\mathbf{E}	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	\mathbf{C}	D	\mathbf{E}	
		\sim			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

1	\bigcirc
2	$\bullet \circ \circ \circ \circ$
3	
4	
5	
6	
7	
8	
9	
10	

3 luglio 2010

PARTE B

1. Studiare, al variare del parametro $\lambda \in \mathbb{R}$ il numero di soluzioni dell'equazione

$$\frac{x^2 - 3x + 2}{x^3} = \lambda, \qquad \text{per } x \ge 0.$$

Soluzione: Derivata di $f(x) = \frac{x^2 - 3x + 2}{x^3}$ si annulla per $x = 3 \pm \sqrt{3}$ Il minimo locale è $y_m = \frac{-5 + 3\sqrt{3}}{\left(-3 + \sqrt{3}\right)^3}$, mentre il massimo locale è $y_M = \frac{5 + 3\sqrt{3}}{\left(3 + \sqrt{3}\right)^3}$. Inoltre

$$\lim_{x \to 0^+} f(x) = +\infty \qquad \lim_{x \to +\infty} f(x) = 0$$

Figura 1: $f(x) = \frac{x^2 - 3x + 2}{x^3}$

Si ha 1 soluzione per $\lambda > y_M$, 2 soluz. per $\lambda = y_M$, 3 soluz. per $\lambda \in]0, y_M[$, 2 soluz. per $\lambda \in]y_m, 0]$, 1 soluz. per $\lambda = y_m$ e nessuna soluz. per $\lambda < y_m$.

2. Trovare tutte le soluzioni dell'equazione differenziale

$$y''(t) + y(t) = e^t \sin(t)$$

Soluzione:

$$y(t) = A\cos(t) + B\sin(t) + \frac{1}{5}e^{t}\sin(t) - \frac{2}{5}e^{t}\cos(t)$$

3. Studiare la convergenza dell'integrale generalizzato e eventualmente calcolarlo

$$\int_{1}^{+\infty} \frac{x^2 - x + 1}{x^2(x+1)} \, dx$$

Soluzione: non converge perchè $\frac{x^2-x+1}{x^2(x+1)}=\mathcal{O}(1/x)$ per $x\to +\infty$

4. Sia $f:\,\mathbb{R}\to\mathbb{R}$ una funzione continua. Definita

$$\Phi(x) = \int_0^x f(t \, x) \, dt$$

Calcolare $\Phi'(x).$ (Sugg. Introdurre il cambio di variabile tx=y)

Soluzione:
$$\Phi'(x) = 2f(x^2) - \frac{1}{x^2} \int_0^{x^2} f(y) dy$$