Matplotlib Notes

Pyplot Interface

```
import matplotlib.pyplot as plt
```

```
fig, ax = plt.subplots()
```

plt.show()

Adding Data to Axes

```
ax.plot(< \mathsf{DATAFRAME} > [``< \mathsf{COLUMN} >"] \ , < \underbrace{\mathsf{DATAFRAME}} > [``< \mathsf{COLUMN} >"]
```

Х

У

Adding Markers

```
ax.plot(< DATAFRAME >["< COLUMN >"] , < DATAFRAME >["< COLUMN >"] , marker = "o")
```

Setting Linestyle

```
ax.plot(< DATAFRAME >["< COLUMN >"], < DATAFRAME >["< COLUMN >"], linestyle = "--")
```

Eliminating Liines with Linestyle

```
ax.plot(< DATAFRAME >["< COLUMN >"], < DATAFRAME >["< COLUMN >"], linestyle ="None")
```

Choosing Colour

```
ax.plot(< DATAFRAME > ["< COLUMN >"] \;, < DATAFRAME > ["< COLUMN >"] \;, \; color = = "r")
```

Customizing Axes Labels

```
ax.set_xlabel("< LABEL >)
```

ax.set_ylabel("< LABEL >)

Adding Title

```
ax.set_title("< TITLE >)
```

Small Multiples with plt.subplots

```
fig, ax = plt.subplots(<\#>, <\#>)
```

Row

Column

Sharing the y-Axis range

fig, ax = plt.subplots(<#> , <#> , sharey=True)

DateTimeIndex

< DATAFRAME >.index

Plotting Time-Series Data

ax.plot(< DATAFRAME >.index , < DATAFRAME >["< COLUMN >"])

Plotting Two Time-Series Together

Using Twin Axes

```
ax.plot(< DATAFRAME >.index \ , < DATAFRAME >["< COLUMN 1 >"]) \\ Ax2 = ax.twinx() \\ ax2.plot(< DATAFRAME >.index \ , < DATAFRAME >["< COLUMN 2 >"]) \\
```

Separating Variables by Color

```
ax.plot(< DATAFRAME >.index , < DATAFRAME >["< COLUMN 1 >"] , color= "blue")

ax.set_xlabel("< LABEL >)

ax.set_ylabel("< LABEL > , color= "blue")

Ax2 = ax.twinx()

ax2.plot(< DATAFRAME >.index , < DATAFRAME >["< COLUMN 2 >"] , color="red")

ax2.set_ylabel("< LABEL > , color= "red")
```

Colouring the Ticks

```
ax.tick_parmas("y", color="blue")
ax.tick_params("y", color= "red")
```

A Function That Plots Time-Series

Def plot_timeseries(axes, x, y, color, xlabel, ylabel)

Using Function

plot_timeseries(ax, < DATAFRAME >.index, < DATAFRAME >[<COLUMN>], "blue",
< LABEL >, < LABEL >)

Bar Chart

ax.bar(< DATAFRAME >.index , < DATAFRAME >["< COLUMN >"])

Rotate Charts

ax.set_xticklabels (< DATAFRAME >.index, rotation= 90)

Stacked Bar Chart (2)

ax.bar(< DATAFRAME >.index , < DATAFRAME >["< COLUMN 1 >"]) ax.bar(< DATAFRAME >.index , < DATAFRAME >["< COLUMN 2 >"], bottom= < DATAFRAME >["< COLUMN 1 >"])

Stacked Bar Chart (3+)

ax.bar(< DATAFRAME >.index , < DATAFRAME >["< COLUMN 3 >"], bottom= < DATAFRAME >["< COLUMN 1 >"] + < DATAFRAME >["< COLUMN 2 >"])

Adding a Legend

ax.legend()

Histogram

ax.hist(< DATAFRAME >["< COLUMN >"])

Histogram Labels

ax.hist(< DATAFRAME >["< COLUMN >"], label= "< LABEL >")

Setting Number of Bins

ax.hist(< DATAFRAME >["< COLUMN >"], label= "< LABEL >", bin= < # >)

Setting Bin Boundaries

ax.hist(< DATAFRAME >("< COLUMN >"], label= "< LABEL >", bin=[150, 160, 170, 180, 190, 200, 210])

Setting Transparency

ax.hist(< DATAFRAME >["< COLUMN >"], label= "< LABEL >", histtype = "step")

Adding Error Bars to Bar Charts

```
 ax.bar("< LABEL >", < DATAFRAME > ["< COLUMN >"].mean(), \\  yerr= < DATAFRAME > ["< COLUMN >"].std())
```

Adding Error Bars to Plots

```
ax.errorbar(< DATAFRAME >["< MEAN COLUMN >"],
yerr= < DATAFRAME >["< STD COLUMN >"])
```

Boxplots

ax.boxplot(< DATAFRAME >["< COLUMN >"])

Scatterplots

ax.scatter(< DATAFRAME >["< COLUMN 1>"],< DATAFRAME >["< COLUMN 2 >"])

Choosing a Style

plt.style.use(< STYLE >)

Back to default >>> plt.style.use(default)

Saving Figure to File

```
fig.savefig("< FIG.NAME >.png")
fig.savefig("< FIG.NAME >.jpg")
```

fig.savefig("< FIG.NAME >.svg")

Figure Resolution

fig.savefig("< FIG.NAME >.png", dpi= 300)

Figure Size

```
fig.set_size_inches([< # > ,< # >])
```

Width

Height