

Compression of k-mers set with counters

Leonardo Gemin, Enrico Rossignolo

November 10, 2022

Outline

- Introduction
- k-mer set representations
- Methods
- Results
- Conclusions

Introduction

 \blacksquare k-mer \longrightarrow substring of length k

■ Huge list (4^k) \Longrightarrow bottleneck

- Wide range of application:
 - genome assembly
 - metagenomics
 - database searching
 -

k-mer set representations

- (counting) de Bruijn graphs → Metagraph
- contigs → Metagraph
- unitigs → BCALM2

- \blacksquare simplitigs \longrightarrow prophAsm
- \blacksquare SPSSs \longrightarrow UST

k-mer set representations: dBGs (1/2)

- **dBG(K)**: G = (V, A) where
 - V = K
 - $\blacksquare A = \{(u, v) \in K^2 | suf_{k-1}u = pref_{k-1}v \}$

counting: external data structures

k-mer set representations: dBGs (2/2)

- RRR and Multi-BRWT for binary matrix
- row diff transform for annotations arrays
 - successors assigned arbitrarily
 - anchors are unchanged and break the recursion
 - ⇒ labels represented with less bits!
 - lacksquare \Longrightarrow binary matrix sparsified!

contigs: any path in a dBG

■ unitigs: any path with non-branching internal nodes

■ simplitigs: ?

k-mer set representations: simplitigs

- simplitigs: any path on a disjoint path cover in a dBG
- \blacksquare $CL = n_k + (k-1) \cdot NS \implies CL \ge n_k + k 1$
- not tight: $CL^* = 9 + (3 1) = 11 < 15$
- ProphAsm is sub-optimal with a greedy approach

Individual k-mers: ACG, CGA, GAA, AAG, AGC, CGT, GTA, TAG, CGG

$$CGA \longrightarrow GAA \longrightarrow AAG$$
 $AGC \longrightarrow NS = 9$
 $CL = 27$

Maximal unitigs: ACG, CGAAG, CGTAG, AGC, CGG

$$CGA \longrightarrow GAA \longrightarrow AAG$$
 $CGT \longrightarrow GTA \longrightarrow TAG$
 AGC
 CGS
 CGS
 AGC
 CGS
 CGS
 AGC
 CGS
 CGS
 AGC
 AGC

Maximal simplitigs: ACGAAGC, CGTAG, CGG

■ **k-spectrum** of a string *s*:

$$sp^{k}(s) \triangleq \{\{\text{canonized k-mers of } s\}\}$$

for a set S:

$$sp^k(S) \triangleq \bigcup_{s \in S} sp^k(s)$$

- S is a **Spectrum Preserving String Set** of a k-mer set K iff
 - 1 $sp^k(S) = sp^k(K)$
 - $|s| \ge k \ \forall s \in S$

k-mer set representations: SPSS (2/2)

Let S^{opt} be a minimum SPSS representing K and W^{opt} a minimum path cover of cdBG(K). Then

$$weight(S^{opt}) = |K| + |W^{opt}| \cdot (k-1)$$

- lacktriangledown W is an SPSS of $K\Longrightarrow$ equivalence with simplitigs
- Lower bound (not tight)

$$weight(S^{opt}) \ge |K| + \left(\left\lceil \frac{n_{dead} + n_{sp}}{2} \right\rceil + n_{iso}\right) \cdot (k-1)$$

where
$$n_{sp} = \sum_{(u,su)\in(V,\{0,1\})} max\{0,|B_{u,su}|-1\}$$

■ UST is sub-optimal with a greedy approach

Methods (1/2)

Accession	Description		
SRR000001	Human haplotype map		
SRR21394969	E. Coli		
SRR21394970	Coronavirus 2		
SRR21284212	Salmonella		
SRR21073883	N. Gonorrhea		
RND1664714109	Random sequence		

Methods (2/2)

Workflow:

- from FASTA to k-mer
 - help: bash script
 - k-mer length: 7, 15, 23, 31
- with vs without counts
- compression
 - Izma
 - MFCompress
 - gZip

Results (without counts)

Results (with counts)

A particular case

SRR21073883 (N. Gonorrhea): really high compression ratios!

k-mer lenght	bcalm	prophasm	ust	metagraph	contigs
15	34.37	352.40	393.78	308.85	366.26
23	80.034	323.00	442.52	256.55	369.77
31	90.89	304.78	409.91	224.03	346.93

(a) without counts

k-mer length	bcalm	ust	metagraph	contigs
15	34.12	260.98	201.39	252.74
23	75.41	308.95	181.29	274.31
31	83.90	300.16	162.52	262.04

(b) with counts

Conclusions

- First observations:
 - tools return compression ratios higher than with a direct compression
 - low k-mer length → high compression ratio
- Bcalm → no advantage, depends on repetitiveness
- ProphAsm (only without counts) \longrightarrow better with k = 7
- $lue{}$ UST \longrightarrow the best among all
- Metagraph → not particularly efficient
 - contigs → rivals UST

The End

Thanks for your attention!

Compression of k-mers set with counters

Leonardo Gemin, Enrico Rossignolo

November 10, 2022