The California Housing Dataset in Python - Multiple Linear Regression

1. Importing necessary libraries

First, we need to import the libraries required for data manipulation, modeling, and visualization.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```

2. Loading the California housing dataset

Next, we load the California housing dataset and create a Pandas DataFrame for easier manipulation.

```
california = fetch_california_housing()
data = pd.DataFrame(california.data, columns = california.feature_names)
data['MEDIAN_PRICE'] = california.target
                                            # target variable
# Displaying the first few rows of the dataset
data.head()
\rightarrow
         MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude MEDIAN_PRICE
                                                                                                             \blacksquare
      0 8.3252
                      41.0 6.984127
                                       1.023810
                                                       322.0 2.555556
                                                                           37.88
                                                                                     -122.23
                                                                                                     4.526
                                                                                                              d.
                      21.0 6.238137
                                       0.971880
                                                      2401.0 2.109842
      1 8.3014
                                                                           37 86
                                                                                     -122.22
                                                                                                     3 585
                      52.0 8.288136
      2 7.2574
                                       1.073446
                                                       496.0 2.802260
                                                                           37.85
                                                                                     -122.24
                                                                                                     3.521
      3 5.6431
                      52.0 5.817352
                                       1.073059
                                                       558.0 2.547945
                                                                           37.85
                                                                                     -122.25
                                                                                                     3 4 1 3
                                       1 001001
                                                       565 N
                                                              2 101/67
                            C 2010E3
                                                                                      100 05
                                                                                                     2 122
```

New interactive sheet

3. Preparing the data for modeling

Generate code with data

Next steps:

We now select features for the model and split the dataset into training and testing sets.

View recommended plots

4. Building the multiple linear regression model

Here, we create and fit the multiple linear regression model.

5. Making predictions using the model

With the model built, we can make predictions on the test dataset, and compare the predicted values with the actual ones.

```
y_pred = model.predict(X_test)
compare = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred})
compare.head()
\overline{2}
                                                  \blacksquare
              Actual value Predicted value
      14740
                      1.369
                                      2.281107
       10101
                      2.413
                                      2.790091
      20566
                                      1.903328
                      2 007
       2670
                      0.725
                                      1.017603
       15700
                       1 600
                                      2 0/852/
 Next steps:
               Generate code with compare
                                               View recommended plots
                                                                                 New interactive sheet
```

6. Evaluating the model's performance

Next, we evaluate the performance of the model using metrics like Mean Squared Error (MSE) and R-squared score.

7. Visualising the results

Finally, we visualise the actual vs predicted prices and include the regression equation.

```
# Preparing the regression equation
eqn_parts = [f"{coef:.2f}*{name}" for coef, name in zip(coefficients, X.columns)]
eqn = "MEDIAN_PRICE = " + " + ".join(eqn_parts)

# Plotting the results with the regression equation
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, color='blue', label='Predicted Prices', s=100)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linewidth=2, label='Perfect Prediction Line')
plt.title('Actual vs Predicted Median Prices')
plt.xlabel('Actual Median Prices')
plt.ylabel('Predicted Median Prices')
plt.legend()
plt.grid()

# Displaying the regression equation
plt.gca().text(1.05, 0.5, eqn, fontsize=12, color='green', transform=plt.gca().transAxes, verticalalignment='center')
plt.show()
```

