Nombres aléatoires

Azzouz Dermoune

6 février 2017

Table des matières

1	No	mbres aléatoires uniformément distribués	3			
	1.1	Nombres uniformément distribués sur $\{1,\ldots,M\}$	3			
		1.1.1 Nombres distribués selon la loi de Bernoulli de para-				
		mètre p	5			
	1.2	Nombres 2-uniformément distribués sur $\{1,\ldots,M\}$	6			
	1.3	Nombres d -uniformément distribués sur $\{1,\ldots,M\}$	7			
		1.3.1 La loi binomiale de paramètre (N, p)	7			
	1.4	Nombre aléatoire uniformément distribué sur $\{1,\ldots,M\}$	8			
	1.5	Nombres (m,d) -uniformément distribués sur $\{1,\ldots,M\}$	9			
		1.5.1 Loi géométrique de paramètre p	9			
		1.5.2 Loi de Poisson de paramètre λ	10			
2	Construction physique des nombres aléatoires 1					
	2.1	· · · _	11			
	2.2	Construction des nombres aléatoires à l'aide d'un dé	12			
3	Lan	gage probabiliste, variable aléatoire discrète	13			
	3.1	Variable aléatoire	13			
	3.2	Événements	13			
		3.2.1 Probabilité d'un événement	14			
	3.3	Moyenne, espérance mathématique	14			
		3.3.1 Variable centrée	14			
	3.4	Variance	14			
		3.4.1 Variable centrée réduite	15			
4	Nombres aléatoires uniformément distribués sur [0,1] 16					
	4.1	Echauffements	16			
	4.2	Nombres 1-uniformément distribués	17			

		4.2.1 Fonction de répartition et densité de la loi uniforme	
		$\mathrm{sur}\;[0,1]$	17
		4.2.2 Intégrale de Riemann et la loi uniforme sur $[0,1]$	18
		4.2.3 Nombres 1-uniformément distribués sur $[a, b]$	18
		4.2.4 Nombres distribués selon la loi exponentielle de para-	
		mètre λ	19
	4.3	Nombres 2-uniformément distribués	20
	4.4	Nombres 3-uniformément distribués	21
	4.5	Nombres d-uniformément distribués	23
	4.6	Nombres aléatoires uniformes sur $[0,1]$	23
5	Fon	action de répartition et densité d'une loi de probabilité	
	sur	\mathbb{R}	25
	5.1	Fonction de répartition d'une loi de probabilité sur $\mathbb R$	25
		5.1.1 Interprétation probabiliste de la fonction de répartition	25
	5.2	La densité d'une loi de probabilité sur \mathbb{R}	28
	5.3	Formule de changement de variable	30
	5.4	Loi de Weibull	30
	5.5	La fonction Gamma	31

Chapitre 1

Nombres aléatoires uniformément distribués

Soit un entier $M \geq 2$ et $\{1, \ldots, M\}$ l'ensemble des nombres entiers $1, \ldots, M$.

1.1 Nombres uniformément distribués sur $\{1, \dots, M\}$

Définition. Une suite (x_0, \ldots, x_{n-1}) d'entiers ayant n termes est uniformément distribuée sur $\{1, \ldots, M\}$ si pour chaque $m \in \{1, \ldots, M\}$

$$card\{0 \le i \le n-1: x_i = 1\} = \dots = card\{0 \le i \le n-1: x_i = m\} = \dots$$

= $card\{0 \le i \le n-1: x_i = M\} := q_n$.

Conséquence. Si la suite (x_0, \ldots, x_{n-1}) est uniformément distribuée sur $\{1, \ldots, M\}$ alors forcément

$$card\{0 \le i \le n-1: x_i = m\} = \frac{n}{M} = q_n$$

et alors M divise n. La suite (x_0, \ldots, x_{n-1}) visite q_n chaque entier $m \in \{1, \ldots, M\}$. C'est-à-dire le pourcentage

$$\frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i=m]}}{n} = \frac{1}{M}, \quad \forall m \in \{1, \dots, M\}.$$

Définition. Une suite $(x_i : i = 0,...)$ d'entiers ayant un nombre infini de termes est uniformément distribuée sur $\{1,...,M\}$ si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} \to \frac{1}{M}, \quad \forall m = 1, \dots, M.$$
 (1.1.1)

Exercice 1. a) On suppose que la suite a seulement n termes x_0, \ldots, x_{n-1} et qu'elle est uniformément distribuée sur $\{1, \ldots, M\}$. Dans ce cas

$$\frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} = \frac{1}{M}, \quad \forall \, m = 1, \dots, M.$$

Donner un exemple avec n = 6 et M = 3.

b) On suppose que x_0 , x_1 , ... est une suite ayant un nombre infini de termes et 1-uniformément distribuée sur $\{1, \ldots, M\}$. i) Montrer que, pour chaque $1 \le m \le M$,

$$\nu^n(m) = q_n + o(n),$$

où o(n) est un entier qui peut dépendre de m et il vérifie $\frac{o(n)}{n} \to 0$ lorsque $n \to +\infty$.

ii) On définit pour chaque $1 \leq m \leq M$ l'ensemble $\{i \in \mathbb{N}: x_i = m\}$. Montrer que $\{i \in \mathbb{N}: x_i = m\}$ est infini et que les égalités suivantes ont lieu:

$$\{i \in \mathbb{N}: \quad x_i \le m\} = \bigcup_{k=1}^m \{i \in \mathbb{N}: \quad x_i = k\},$$
$$\{i \in \mathbb{N}: \quad x_i > m\} = \bigcup_{k=m+1}^M \{i \in \mathbb{N}: \quad x_i = k\}.$$

Définition : Loi uniforme. Une suite (x_i) est uniformément distribuée sur une ensemble E, ayant un nombre fini M d'éléments, si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = e]}}{n} = \frac{1}{M}, \quad \forall e \in E.$$

Le pour centage $\frac{1}{M}$ s'interprète comme la probabilité de tirer au has ard l'élément e dans l'ensemble E.

La somme des pourcentages $(\frac{1}{M}, \dots, \frac{1}{M})$ est égale à 1. La suite $(\frac{1}{M}, \dots, \frac{1}{M})$ s'appelle la distribution de probabilités uniforme (ou simplement loi uniforme) sur E.

Exemple : La loi de Bernoulli de paramètre $\frac{1}{2}$. $E = \{0, 1\}$ et sa loi uniforme $(\frac{1}{2}, \frac{1}{2})$.

Exercice 2. a) Transformation linéaire de la loi uniforme. Soit (x_i) une suite uniformément distribuée sur $\{1, \ldots, M\}$. Soient a, b deux nombres réels avec $a \neq 0$. Montrer que la suite $y_0 = ax_0 + b$, $y_1 = ax_1 + b$, ... est 1-uniformément distribuée sur l'ensemble $E = \{a + b, 2a + b, \ldots, Ma + b\}$.

b) Transformation non linéaire de la loi uniforme. Soit (x_i) une suite 1-uniformément distribuée sur $\{1, \ldots, 6\}$. On définit la suite

$$y_i = |x_i - 3|, \quad i = 0, 1, \dots$$

Calculer pour chaque entier m = 0, 1, 2, 3 la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

Montrer que (p_0, p_1, p_2, p_3) est une distribution de probabilités sur l'ensemble $\{0, 1, 2, 3\}$. Cette distribution est-elle uniforme?

1.1.1 Nombres distribués selon la loi de Bernoulli de paramètre p

Soit (x_i) une suite uniformément distribuée sur $\{1, \ldots, M\}$. On fixe $1 \le k < M$. On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]}, \quad i = 0, 1, \dots$$

Montrer l'égalité

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=1]}}{n} = \frac{k}{M}.$$

Les nombres (y_i) sont les nombres de Bernoulli de paramètre $p = \frac{k}{M}$. Le couple (1-p,p) est la distribution de probabilités de Bernoulli de paramètre p sur $\{0,1\}$.

Définition. Soit $p \in]0,1[$ fixé. Une suite (y_i) de nombres 0 ou bien 1 est dite 1-distribuée selon la loi de Bernoulli de paramètre p si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=1]}}{n} = p.$$

Interprétation. Soit (y_i) une suite de Bernoulli de paramètre p. Le coût pour envoyer tous les termes qui vérifient $y_i = 0$ est égal à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = 0]}}{n} = 1 - p.$$

Le coût pour envoyer tous les termes qui vérifient $y_i=1$ est égal à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i=0]}}{n} = p.$$

Si on veut envoyer tous les termes, alors le coût est

$$(1-p) + p = 1.$$

Exercice 3. Soit (y_i) une suite distribuée selon la loi de Bernoulli de paramètre p. Calculer les limites

$$\lim_{\substack{n \to +\infty}} \frac{\sum_{i=0}^{n-1} y_i}{n} = moyenne,$$

$$\lim_{\substack{n \to +\infty}} \left\{ \frac{\sum_{i=0}^{n-1} y_i^2}{n} - \left(\frac{\sum_{i=0}^{n-1} y_i}{n}\right)^2 \right\} = variance.$$

1.2 Nombres 2-uniformément distribués sur $\{1, \dots, M\}$

Exercice 4. Soit (x_i) une suite 1-uniformément distribuée sur $\{1, \ldots, 6\}$. On définit la suite

$$y_i = x_i + x_{i+1}, \quad i = 0, 1, \dots$$

Soit $2 \le m \le 12$. Expliquer pourquoi on ne peut pas calculer la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n}.$$

Définition. Une suite (x_i) de nombres entiers est 2-uniformément distribuée sur $\{1, \ldots, M\}$ si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m_0, x_{i+1} = m_1]}}{n} = \frac{1}{M^2}, \quad \forall m_0, m_1 = 1, \dots, M. \tag{1.2.1}$$

Le pourcentage $p(m_0, m_1) = \frac{1}{M^2}$ est la probabilité de tirer au hasard le couple (m_0, m_1) . La suite $(p(m_0, m_1): m_0, m_1 = 1, ..., M)$ est la distribution de probabilités uniforme sur l'ensemble des couples $\{1, ..., M\}^2$.

Exercice 3. Soient (x_i) des nombres entiers 2-uniformément distribués sur $\{1, \ldots, 6\}$. On considère la nouvelle suite

$$y_i = x_i + x_{i+1}, \quad i = 0, 1, \dots$$

- a) Quels sont les valeurs possibles pour le terme général y_i .
- b) Calculer pour chaque entier $2 \le m \le 12$ la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

- c) Montrer que la suite (p_2, \ldots, p_{12}) est une distribution de probabilités sur $\{2, \ldots, 12\}$.
- c) Soit (x_i) une suite 2-uniformément distribuée sur $\{0,1\}$. On définit la suite

$$y_i = x_i + x_{i+1} + x_{i+2}, \quad i = 0, 1, \dots$$

Soit $0 \le m \le 3$. Expliquer pourquoi on ne peut pas calculer la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i = m]}}{n}.$$

1.3 Nombres d-uniformément distribués sur $\{1, \ldots, M\}$

Définition. Soit (x_i) une suite dont le terme général appartient à $\{1,\ldots,M\}$. Soient $d \geq 1$ un entier et $(m_0,\ldots,m_{d-1}) \in \{1,\ldots,M\}^d$. L'effectif des vecteurs $(x_0,\ldots,x_{d-1}),(x_1,\ldots,x_d),\ldots,(x_{n-1},\ldots,x_{n-1+d-1})$ qui visite le vecteur (m_0,\ldots,m_{d-1}) est égal à

$$\nu^{n}(m_0,\ldots,m_{d-1}) = \sum_{i=0}^{n-1} \mathbf{1}_{[x_i=m_0,\ldots,x_{i+d-1}=m_{d-1}]}.$$

Les nombres entiers (x_i) sont d-uniformément distribués, si

$$\lim_{n \to +\infty} \frac{\nu^n(m_0, \dots, m_{d-1})}{n} = \frac{1}{M^d}, \quad \forall 1 \le m_0, \dots, m_{d-1} \le M. \tag{1.3.1}$$

Notation. La fonction indicatrice

$$\mathbf{1}_{[x_i=m_0,\dots,x_{i+d-1}=m_{d-1}]}=1, \quad \text{si} \quad x_i=m_0,\dots,x_{i+d-1}=m_{d-1}, \\ \mathbf{1}_{[x_i=m_0,\dots,x_{i+d-1}=m_{d-1}]}=0, \quad \text{si pour au moins un indice } k \quad x_k \neq m_k.$$

1.3.1 La loi binomiale de paramètre (N, p)

Proposition. Soit $0 \le m \le N$ un entier. Le nombre des vecteurs $(i_1, \ldots, i_N) \in \{0, 1\}^N$ tels que

$$\sum_{k=1}^{N} i_k = m$$

est égal à

$$\binom{N}{m} = \frac{N!}{m!(N-m)!}.$$

Exercice 4 : La loi binomiale de paramètre $(N, \frac{1}{2})$. Soit $d \ge N \ge 1$ deux entiers fixés et (x_i) une suite d-uniformément distribuée sur $\{0,1\}$. On définit la suite

$$y_i = x_i + \ldots + x_{i+N-1}, \quad i = 0, 1, \ldots$$

a) Calculer pour chaque entier $0 \le m \le N$ la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \mathbf{1}_{[y_i = m]}}{n} = p_m.$$

b) Montrer que la suite (p_0, \ldots, p_N) est une distribution de probabilités sur $\{0, \ldots, N\}$. Le pourcentage p_m est la probabilité d'obtenir m piles dans N lancers d'une pièce de monnaie équilibrée.

Exercice 5 : La loi binomiale de paramètre (N, p). Soit $d \ge N \ge 1$ deux entiers fixés et (x_i) une suite d-uniformément distribuée sur $\{0, 1\}$. On fixe $1 \le k < M$ et on pose $p = \frac{k}{M}$.

On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]} + \ldots + \mathbf{1}_{[1 \le x_{i+N-1} \le k]}, \quad i = 0, 1, \ldots$$

a) Montrer l'égalité

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n} \mathbf{1}_{[y_i = m]}}{n} = \binom{N}{m} p^m (1-p)^{N-m} := p_m.$$

- b) Montrer que la suite (p_0, \ldots, p_N) est une distribution de probabilités sur $\{0, \ldots, N\}$. Le pourcentage p_m est la probabilité d'obtenir m piles dans N lancers d'une pièce de monnaie équilibrée.
 - c) Calculer la moyenne et la variance.

1.4 Nombre aléatoire uniformément distribué sur $\{1, \ldots, M\}$

Définition. La suite de nombres entiers (x_i) dont le terme générale appartient à $\{1, \ldots, M\}$ est aléatoire et uniformément distribuée sur $\{1, \ldots, M\}$ si elle est d-uniformément distribué sur $\{1, \ldots, M\}$.

Question. Si les nombres $(x_0, x_1, ...)$ sont aléatoires et uniformément distribués sur $\{1, ..., M\}$, les nombres $(x_0, x_2, x_4, ...)$ sont ils aléatoires et uniformément distribués sur $\{1, ..., M\}$?

La réponse est donnée dans la section suivante.

1.5 Nombres (m, d)-uniformément distribués sur $\{1, \ldots, M\}$

Soit $(x_0, x_1, ...)$ une suite de nombres d'entiers qui prennent des valeurs entre 1 et M. Soit $d, m \ge 1$ un couple de nombres entiers et $0 \le j \le m - 1$.

L'effectif des vecteurs $(x_{km+j}, \ldots, x_{km+j+d-1}), k = 0, \ldots, n-1$ qui coïncident avec (m_0, \ldots, m_{d-1}) est égal à

$$\nu_j^n(m_0,\ldots,m_{d-1}) = \sum_{k=0}^{n-1} \mathbf{1}_{[x_{km+j}=m_0,\ldots,x_{km+j+d-1}=m_{d-1}]}.$$

Les nombres entiers x_0, x_1, \ldots sont (m, d)-uniformément distribués, si

$$\lim_{n \to +\infty} \frac{\nu_j^n(m_0, \dots, m_{d-1})}{n} = \frac{1}{M^d},$$
(1.5.1)

pour tout vecteur $(m_0, \ldots, m_{d-1}) \in \{1, \ldots, M\}^d$ et pour tout entier $j = 0, \ldots, m-1$.

Le résultat suivant a été démontré par Ivan Niven, H.S. Zuckerman, Donald E. Knuth.

Theorem 1.5.1. Les nombres aléatoires uniformément distribués sur $\{1, \ldots, M\}$ sont (m, d)-uniformément distribués pour tous les couples d'entiers $m, d \geq 1$.

Exercice 6. Soit (x_i) des nombres aléatoires et uniformément distribués. Montrer que les nombres suivants sont aussi aléatoires et uniformément distribués : a) (x_{2i}) , b) (x_{2i+1}) , c) (x_{3i}) , d) (x_{3i+1}) , e) (x_{3i+2}) .

1.5.1 Loi géométrique de paramètre p

Soit (x_i) des nombres aléatoires et uniformément distribués sur $\{1, \ldots, M\}$. On fixe $1 \le k < M$ et on pose $p = \frac{k}{M}$. On définit $y_i = \mathbf{1}_{[1 \le x_i \le k]}$ et

$$z_i = \min\{k: y_{i+k} = 1\}, i = 0, 1, \dots$$

Exercice. 1) Montrer les égalités

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[z_i = 0]}}{n} = p,$$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[z_i = m]}}{n} = (1 - p)^{m-1} p, \quad \forall m \ge 1.$$

Montrer que la suite $(p, (1-p)p, (1-p)^2p, \ldots)$ est une distribution de probabilités sur \mathbb{N} . Si on lance une infinité de fois une pièce de monnaie de paramètre de succès p, la probabilité d'obtenir pile pour la première fois au lancer numéro m est égale à p_m .

2) Calculer la moyenne et la variance.

1.5.2 Loi de Poisson de paramètre λ

Soit (x_i) des nombres aléatoires et uniformément distribués sur $\{1, \ldots, M\}$. On fixe $1 \le k < M, N \ge 1$ et on pose $p = \frac{k}{M}$. On définit la suite

$$y_i = \mathbf{1}_{[1 \le x_i \le k]} + \ldots + \mathbf{1}_{[1 \le x_{i+N-1} \le k]}, \quad i = 0, 1, \ldots$$

a) On suppose que $Np \to \lambda$ lorsque $N, M \to +\infty$. Montrer que pour chaque entier $m=0,1,\ldots,$

$$\lim_{N \to +\infty} \binom{N}{m} p^m (1-p)^{N-m} = \exp(-\lambda) \frac{\lambda^m}{m!} := p_m.$$

- b) Montrer que la suite $(p_m: m=0,1,\ldots)$ est une distribution de probabilités sur \mathbb{N} .
 - c) Calculer la moyenne et la variance.

Chapitre 2

Construction physique des nombres aléatoires

2.1 Nombres aléatoires binaires : les lancers d'une pièce de monnaie

Si on lance une infinité de fois une pièce de monnaie, alors on obtient une suite $x_0, x_1, \ldots \in \{0, 1\}$. La valeur $x_i = 0$ signifie que le *i*-ème lancer est face. La valeur $x_i = 1$ signifie que le *i*-ème lancer est pile. Le lancer initial est noté x_0 . Les chiffres 0 et 1 sont appelés en anglais binary digit (bit).

Le vecteur (b_0, \ldots, b_{d-1}) , où b_i est un bit, est appelé un mot de d bits. L'ensemble des mots à d bits est égal à $\{0,1\}^d$. Il y a 2^d mots à d bits.

Si la pièce est parfaite, alors on admet que les nombres x_0, x_1, \ldots sont aléatoires et uniformément distribués sur $\{0, 1\}$.

Exercice. On rappelle que chaque entier $m \leq 2^d - 1$ a une unique représentation (appelée la représentation en base 2) de la forme

$$m = a_0(m)2^0 + a_12 + \ldots + a_{d-1}(m)2^{d-1},$$

où $a_0(m), \ldots, a_{d-1}(m) \in \{0,1\}$. Le vecteur $(a_0(m), \ldots, a_{d-1}(m)) \in \{0,1\}^d$ est la représentation binaire de l'entier m.

Soit (x_i) des nombres aléatoires binaires uniformément distribués. Montrer que les nombres entiers

$$y_n = x_n 2^0 + \ldots + x_{n+d-1} 2^{d-1}, \quad n = 0, 1, \ldots,$$

sont 1-uniformément distribués sur $\{0, \dots, 2^d - 1\}$.

2.2 Construction des nombres aléatoires à l'aide d'un dé

Si on lance une infinité de fois un dé, alors on obtient une suite $x_0, x_1, \ldots \in \{1, \ldots, 6\}$. La valeur $x_i = j$ signifie que le i-ème lancer est la face j. Le vecteur $(x_0, \ldots, x_{d-1}) \in \{1, \ldots, 6\}^d$ peut prendre 6^d possibilités. Si le dé est parfait, alors on admet que les nombres x_0, x_1, \ldots sont aléatoires et uniformément distribués sur $\{1, \ldots, 6\}$.

Chapitre 3

Langage probabiliste, variable aléatoire discrète

3.1 Variable aléatoire

Soit (p_1, \ldots, p_M) une distribution de probabilités sur $\{1, \ldots, M\}$, c'est-à-dire

$$0 < p_m < 1, \quad p_1 + \ldots + p_M = 1.$$

Une suite (x_i) de nombres entiers appartenant à $\{1, \ldots, M\}$ est 1-distribuée selon la distribution de probabilités (p_m) si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = m]}}{n} = p_m, \quad m = 1, \dots, M.$$

Un terme de la suite (x_i) pris au hasard sera noté par la variable X. Ainsi $X = x_0$, ou bien $X = x_1$, ou bien $U = x_2$, La variable X est une application

$$X: i \in \mathbb{N} \to x_i$$
.

Elle appelée variable aléatoire dont la loi est égale à (p_m) .

3.2 Événements

Pour chaque partie $A \subset \{1, \dots, M\}$, l'ensemble

$$\{i \in \mathbb{N}: x_i \in A\} := [X \in A]$$

est appelé événement $X \in A$. L'événement contraire de $X \in A$ est égal à

$$\{i \in \mathbb{N}: x_i \notin A\} := \{i \in \mathbb{N}: x_i \in \{1, \dots, M\} \setminus A\}$$

= $[X \notin A] = [X \in \{1, \dots, M\} \setminus A].$

3.2.1 Probabilité d'un événement

Si $A \subset \{1, \ldots, M\}$, alors

$$\mathbf{P}(X \in A) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_A(x_i)}{n} = \sum_{a \in A} p_a.$$

3.3 Moyenne, espérance mathématique

Soit $(p_m: m=1,\ldots,M)$ une distribution de probabilités sur l'ensemble $\{1,\ldots,M\}$, et (x_i) de nombres entiers appartenant à $\{1,\ldots,M\}$ 1-distribuée selon la distribution de probabilités (p_m) .

Définition. Moyenne, espérance mathématique :

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i}{n} = p_1 + 2p_2 + \ldots + Mp_M = \mathbf{E}[X].$$

Si $M = +\infty$, alors la somme devient une série et elle peut diverger.

Exercice. Moyenne d'une variable de Bernoulli de paramètre p. Moyenne d'une variable binomiale de paramètre (N,p). Moyenne d'une variable géométrique de paramètre p. Moyenne d'une variable de Poisson de paramètre λ .

3.3.1 Variable centrée

La moyenne E(X) est un paramètre statistique de la loi (p_m) . La nouvelle variable X - E(X): $i \in \mathbb{N} \to x_i - E(X)$ est centrée. Sa moyenne

$$E(X - E(X)) = \sum_{k=1}^{M} (k - E(X))p_k = 0.$$

3.4 Variance

Définition. Moment d'ordre deux :

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i^2}{n} = p_1 + 2^2 p_2 + \ldots + M^2 p_M = \mathbf{E}[X^2].$$

Si $M = +\infty$, alors la somme devient une série et elle peut diverger. **Définition. Variance :**

$$Var(X) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (x_i - E(X))^2}{n} = (1 - E(X))^2 p_1 + \dots + (M - E(X))^2 p_M.$$

Exercice. 1) La variance Var(X) = 0 si et seulement si il existe un seul terme $p_m = 1$ et les autres $p_k = 0$ pour $j \neq m$. Le pourcentage des termes $x_i \neq m$ est nul. Le pourcentage des termes $x_i = m$ est égale à $p_m = 1$.

2) Inégalité de Tchebechev : Pour tout entier l non nul

$$P(|X - E(X)| \ge \sqrt{lVar(X)}) = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[|x_i - E(X)| \ge \sqrt{lVar(X)}]}}{n} \le \frac{1}{l}.$$

3.4.1 Variable centrée réduite

La nouvelle variable

$$\frac{X - E(X)}{\sqrt{Var(X)}}$$

a pour moyenne nulle et de variance égale à 1. Il est toujours préférable de centrer et de réduire.

Chapitre 4

Nombres aléatoires uniformément distribués sur [0,1]

4.1 Echauffements

Soit E un ensemble non vide et $A \subset E$. La fonction indicatrice de A est définie par

$$\mathbf{1}_A(x) = 1$$
, si $x \in A$,
 $\mathbf{1}_A(x) = 0$, si $x \notin A$.

Si $A, B \subset E$ sont deux parties de E, alors

$$A \setminus B = \{ a \in A : a \notin B \}.$$

Proposition. 1) Si $B \subset A$, alors

$$\mathbf{1}_A(x) - \mathbf{1}_B(x) = \mathbf{1}_{A \setminus B}(x).$$

2) Si A, B sont quelconques, alors

$$\mathbf{1}_A(x) - \mathbf{1}_B(x) = \mathbf{1}_{A \setminus B}(x) - \mathbf{1}_{B \setminus A}(x).$$

Exemple. Si $E = \mathbb{R}$, a < b sont deux nombres réels, alors

$$\mathbf{1}_{[0,b]} - \mathbf{1}_{[0,a]} = \mathbf{1}_{]a,b]},$$

$$\mathbf{1}_{[0,b]} - \mathbf{1}_{[0,a[} = \mathbf{1}_{[a,b]},$$

$$\mathbf{1}_{[0,b[} - \mathbf{1}_{[0,a]} = \mathbf{1}_{]a,b[},$$

$$\mathbf{1}_{[0,b[} - \mathbf{1}_{[0,a]} = \mathbf{1}_{]a,b[}.$$

4.2 Nombres 1-uniformément distribués

Une suite $0 \le u_i \le 1$, i = 0, 1, ... de nombres réels est 1-uniformément distribuée si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[0,t]}(u_i)}{n} \to t, \quad \forall t \in [0,1].$$
 (4.2.1)

Exercice. Si la suite $0 \le u_i \le 1$, $i = 0, 1, \ldots$ est 1-uniformément distribuée sur [0, 1], alors nous avons pour tous les couples $0 \le a < b \le 1$:

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a,b]}(u_i)}{n} \to b - a,$$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a,b]}(u_i)}{n} \to b - a,$$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a,b]}(u_i)}{n} \to b - a,$$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a,b]}(u_i)}{n} \to b - a.$$

4.2.1 Fonction de répartition et densité de la loi uniforme $\operatorname{sur} [0,1]$

Exercice. a) Le pourcentage des visites de l'intervalle $(-\infty,t]$ par la suite u_0,\ldots,u_{n-1} est égal à

$$F^{n}(t) := \frac{\sum_{i=0}^{n-1} \mathbf{1}_{(-\infty,t]}(u_i)}{n}.$$

Tracer la courbe de la fonction

$$t \in \mathbb{R} \to F^n(t)$$
.

b) On suppose que la suite (u_i) est 1-uniformément distribuée sur [0,1]. Tracer la courbe de la fonction limite

$$t \in \mathbb{R} \to \lim_{n \to +\infty} F^n(t) = F(t).$$

La fonction F est appelée la fonction de répartition de la loi uniforme sur [0,1].

c) Calculer la fonction f telle que $F(t) = \int_{-\infty}^{t} f(x) dx$ pour tout nombre réel t. Tracer la courbe de f appelée la densité de la loi uniforme sur [0,1]. La fonction f est appelée la densité de la loi uniforme sur [0,1].

Intégrale de Riemann et la loi uniforme sur [0,1]

Théorème. Si la suite (u_i) est 1-uniformément distribuée sur [0,1], alors

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} g(u_i)}{n} \to \int_0^1 g(t)dt$$

pour toute fonction g Riemann intégrable sur [0,1].

Exemples de fonctions Riemann intégrables. Les fonctions continues, les fonctions continues par morceaux, les indicatrices $g(t) = \mathbf{1}_{[a,b]}(t)$, les fonctions en escaliers $g(t) = \sum_{i=1}^k c_i \mathbf{1}_{[a_i,b_i]}(t)$. **Exercice.** Soit (u_i) une suite 1-uniformément distribuée sur [0,1]. Cal-

culer les limites suivantes :

$$\begin{split} &\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a,b]}(u_i)}{n}, \quad o\grave{u} \quad 0 \leq a < b \leq 1, \\ &\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \frac{1}{\sqrt{u_i}}}{n}, \\ &Moyenne \quad m_1 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} u_i}{n}, \\ &Moment \ d'ordre \ deux \quad m_2 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} u_i^2}{n}, \\ &Variance \quad \sigma^2 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (u_i - m_1)^2}{n}. \end{split}$$

Vérifier l'égalité

$$\sigma^2 = m_2 - m_1^2.$$

4.2.3Nombres 1-uniformément distribués sur [a, b]

On suppose que la suite (u_i) est 1-uniformément distribuée sur [0,1]. Soient a < b deux nombres réels. On pose, pour chaque entier i,

$$x_i = (b - a)u_i + a.$$

Exercice.

1) Calculer les limites suivantes :

Moyenne
$$m_1 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i}{n}$$
,
Moment d'ordre deux $m_2 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i^2}{n}$,
Variance $\sigma^2 = \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (x_i - m_1)^2}{n}$.

Vérifier l'égalité

$$\sigma^2 = m_2 - m_1^2.$$

2) Calculer, pour chaque $t \in \mathbb{R}$,

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{(-\infty,t](x_i)}}{n} := F(t).$$

- 3) Tracer la courbe de la fonction $t \in \mathbb{R} \to F(t)$. La fonction F est appelée la fonction de répartition de la loi uniforme sur [a,b].
 - 4) Trouver la fonction f qui vérifie

$$F(t) = \int_{-\infty}^{t} f(u)du, \quad \forall t.$$

Tracer la courbe de f. La fonction f est appelée la densité de la loi uniforme sur [a,b].

4.2.4 Nombres distribués selon la loi exponentielle de paramètre λ

Exercice. On suppose que la suite (u_i) est 1-uniformément distribuée sur [0,1]. Soient $\lambda > 0$ un nombre réel.

1) Trouver pour chaque i, le nombre réel y_i solution de l'équation

$$1 - \exp(-\lambda x_i) = u_i$$
.

2) Calculer, pour chaque $t \in \mathbb{R}$,

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{]-\infty,t]}(x_i)}{n} := F(t).$$

3) Tracer la courbe de la fonction $t \in \mathbb{R} \to F(t)$. La fonction F est appelée la fonction de répartition de la loi exponentielle de paramètre λ .

Trouver la fonction f qui vérifie

$$F(t) = \int_{-\infty}^{t} f(x)dx, \quad \forall t.$$

Tracer la courbe de f. La fonction f est appelée la densité de la loi exponentielle de paramètre λ .

4) Calculer les limites suivantes :

$$m_1 := \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i}{n},$$

$$m_2 := \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} x_i^2}{n},$$

$$\sigma^2 := \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (x_i - m_1)^2}{n}.$$

Vérifier l'égalité $\sigma^2 = m_2 - m_1^2$.

Mêmes questions pour la suite y_i définie par

$$\exp(-\lambda y_i) = u_i.$$

Exercice. Soit (u_i) une suite 1-uniformément distribuée sur [0,1]. Soit $t \ge 0$ et

$$\Delta_t = \{(x, y) \in [0, 1]^2 : x + y \le t\}.$$

Peut-on calculer

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{\Delta_t}(u_i, u_{i+1})}{n}$$
?

4.3 Nombres 2-uniformément distribués

Une suite (u_i) de nombres réels appartenant à [0,1] est 2-uniformément distribuée si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[0,t_1] \times [0,t_2]}(u_i, u_{i+1})}{n} \to t_1 t_2, \quad \forall t_1, t_2 \in [0, 1].$$

Exercice. On suppose que la suite (u_i) est 2-uniformément distribuée sur [0,1].

1) Montrer que les suites suivantes sont 1-uniformément distribuées :

$$(u_i), (u_{i+1}).$$

2) Montrer l'égalité

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[a_1,b_1] \times [a_2,b_2]}(u_i, u_{i+1})}{n} \to (b_1 - a_1)(b_2 - a_2),$$

lorsque $0 \le a_1 \le b_1 \le 1$ et $0 \le a_2 \le b_2 \le 1$.

Théorème. Si la suite (u_i) est 2-uniformément distribuée, alors

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} f(u_i, u_{i+1})}{n} \to \int_0^1 \int_0^1 f(t_1, t_2) dt_1 dt_2$$

pour toute fonction f Riemann intégrable sur $[0,1]^2$.

Exemples de fonctions Riemann intégrables. Les fonctions continues, les fonctions continues par morceaux, les indicatrices $f(t_1, t_2) = \mathbf{1}_D(t_1, t_2)$ où D est un domaine de $[0, 1]^2$ (triangle, parallélogramme, trapèze, ...).

Exercice. Soit (u_i) une suite 2-uniformément distribuée sur [0,1].

a) Calculer la limite suivante :

Covariance =
$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} (u_i - \frac{1}{2})(u_{i+1} - \frac{1}{2})}{n}$$
.

b) On pose $y_i = u_i + u_{i+1}$. Calculer, pour chaque $t \in \mathbb{R}$, la limite suivante

$$F(t) := \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[0,t]}(y_i)}{n}.$$

Tracer la courbe de la fonction $t \in \mathbb{R} \to F(t)$. La suite (y_i) est-elle 1-uniformément distribuée sur [0,2]?

c) Peut-on calculer

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[0,t](u_i + u_{i+1} + u_{i+2})]}}{n}?$$

4.4 Nombres 3-uniformément distribués

Une suite (u_i) de nombres réels appartenant à [0,1] est 3-uniformément distribuée si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[u_i \le t_1, u_{i+1} \le t_2, u_{i+2} \le t_3]}}{n} \to t_1 t_2 t_3, \quad \forall t_1, t_2, t_3 \in [0, 1]^3,$$

ici pour simpifier nous avons posé

$$\mathbf{1}_{[u_i \le t_1, u_{i+1} \le t_2, u_{i+2} \le t_3]} := \mathbf{1}_{[0, t_1]}(u_i) \mathbf{1}_{[0, t_2]}(u_{i+1}) \mathbf{1}_{[0, t_3]}(u_{i+2}).$$

Exercice. On suppose que la suite (u_i) est 3-uniformément distribuée sur [0,1].

a) Montrer que les suites suivantes sont 2-uniformément distribuées :

$$(x_i), (x_{i+1}).$$

b) Montrer que les suites suivantes sont 1-uniformément distribuées :

$$(x_i), (x_{i+1}).$$

Théorème. Si la suite (u_i) est 3-uniformément distribuée, alors

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} f(u_i, u_{i+1}, u_{i+2})}{n} \to \int_0^1 \int_0^1 \int_0^1 f(t_1, t_2, t_3) dt_1 dt_2 dt_3$$

pour toute fonction f Riemann intégrable sur $[0,1]^3$.

Exemples de fonctions Riemann intégrables. Les fonctions continues, les fonctions continues par morceaux, les indicatrices $f(t_1, t_2, t_3) = \mathbf{1}_D(t_1, t_2, t_3)$ où D est un domaine $[0, 1]^3$.

Exercice. Soit (u_i) une suite 3-uniformément distribuée sur [0,1]. On pose $y_i = u_i + u_{i+1} + u_{i+2}$.

a) Calculer, pour chaque $t \in \mathbb{R}$, la limite suivante

$$F(t) := \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[y_i \le t]}}{n}.$$

Tracer la courbe de la fonction $t \in \mathbb{R} \to F(t)$. La suite (y_i) est-elle 1-uniformément distribuée sur [0,3].

b) Peut-on calculer

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[u_i + u_{i+1} + u_{i+2} + u_{i+3} \le t]}}{n}$$
?

4.5 Nombres d-uniformément distribués

Une suite (u_i) de nombres réels appartenant à [0,1] est d-uniformément distribuée si

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[u_i \le t_1, \dots, u_{i+d-1} \le t_d]}}{n} \to \prod_{i=1}^d t_i, \quad \forall t_1, \dots, t_d \in [0, 1]^d.$$

Exercice. On suppose que la suite (u_i) est d-uniformément distribuée sur [0,1].

a) Montrer que les deux suites suivantes sont d-1-uniformément distribuées :

$$(u_i), (u_{i+1}).$$

b) Montrer que les suites suivantes sont 1-uniformément distribuées :

$$(u_i), (u_{i+1}).$$

Théorème. Si la suite (u_i) est d-uniformément distribuée, alors

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} f(u_i, \dots, u_{i+d-1})}{n} \to \int_{[0,1]^d} f(t_1, \dots, t_d) dt_1 \dots dt_d$$

pour toute fonction f Riemann intégrable sur $[0,1]^d$.

Exemples de fonctions Riemann intégrables. Les fonctions continues, les fonctions continues par morceaux, les indicatrices $f(t_1, \ldots, t_d) = \mathbf{1}_D(t_1, \ldots, t_d)$ où D est un domaine de $[0, 1]^d$.

Exercice. Soit (u_i) une suite d-uniformément distribuée sur [0,1]. Calculer la limite suivante

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} u_i \dots u_{i+d-1}}{n}.$$

4.6 Nombres aléatoires uniformes sur [0,1]

Définition. Les nombres (u_i) sont aléatoires et uniformes sur [0,1] s'ils sont d-uniformément distribués sur [0,1] pour tout entier $d \ge 1$.

Exercice : Loi géométrique. Soit (u_i) des nombres aléatoires et uniformément distribués sur [0,1]. On définit, pour $t \in [0,1]$ fixé, la suite

$$x_i = \min\{k : u_{i+k} \le t\}, \quad i = 0, 1, \dots$$

Calculer pour chaque $k \geq 0$, la limite

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[x_i = k]}}{n} = p_k$$

Montrer que la suite $(p_k: k=0,1,\ldots)$ est une distribution de probabilités sur \mathbb{N} .

Chapitre 5

Fonction de répartition et densité d'une loi de probabilité sur \mathbb{R}

5.1 Fonction de répartition d'une loi de probabilité sur $\mathbb R$

Une fonction $F: \mathbb{R} \to [0,1]$ ayant les propriétés suivantes :

- 1) F est croissante,
- 2) F est continue à droite,
- 3) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$,

est appelée fonction de répartition d'une loi de probabilité.

5.1.1 Interprétation probabiliste de la fonction de répartition

Soit (x_i) une suite de nombres réels telle que pour chaque $x \in \mathbb{R}$

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{]-\infty,x]}(x_i)}{n} = F(x),$$

C'est le pourcentage des termes $x_i \leq x$ dans la suite (x_i) .

L'application $X: i \in \mathbb{N} \to x_i \in \mathbb{R}$ est appelée variable aléatoire ayant la fonction de répartition F. Le pourcentage des termes $x_i \leq x$ dans la suite (x_i) s'interprète comme la probabilité

$$\mathbf{P}(X \le x) = F(x).$$

Proposition. On admet que

$$\mathbf{P}(X < x) = \lim_{t \to x - 0} F(t) := F(x - 0).$$

Exercice. Montrer l'égalité

$$\mathbf{P}(a < X \le b) = F(b) - F(a), \quad \forall a < b,$$

$$\mathbf{P}(a \le X \le b) = F(b) - F(a - 0), \quad \forall a < b,$$

$$\mathbf{P}(a < X < b) = F(b - 0) - F(a), \quad \forall a < b,$$

$$\mathbf{P}(a < X < b) = F(b - 0) - F(a - 0), \quad \forall a < b.$$

En déduire que si F est continue, alors

$$P(a < X \le b) = P(a \le X \le b) = P(a \le X < b) = P(a < X < b) = F(b) - F(a).$$

Exemples. 1) On représente la face d'une pièce d'une pièce de monnaie par le chiffre 0 et pile par le chiffre 1. Si on lance une infinité de fois cette pièce de monnaie alors on obtient une suite (x_i) de nombres appartenant à $\{0,1\}$. L'application $X:i\in\mathbb{N}\to x_i\in\{0,1\}$ est appelée la variable aléatoire de Bernoulli. La probabilité d'obtenir 1 est égale à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{\{1\}}(x_i)}{n} := p = \mathbf{P}(X = 1).$$

Par conséquent la probabilité d'obtenir 0 est égale à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{\{0\}}(x_i)}{n} := \mathbf{P}(X=0) = 1 - p.$$

Le couple (1-p, p) est appelée la loi de probabilité de Bernoulli de paramètre de succès p. Sa fonction de répartition est égale à

$$x \in \mathbb{R} \to F(x) = \mathbf{P}(X \le x).$$

Elle est égale à

$$F(x) = 0$$
 $x < 0$,
 $F(x) = 1 - p$, $0 \le x < 1$,
 $F(x) = 1$, $1 < x$.

2) Une suite (x_i) de durée de vie des êtres humains définit l'application

$$X: i \in \mathbb{N} \to x_i \in [0, +\infty)$$

appelée la variable aléatoire durée de vie. La probabilité qu'un être humain décède avant l'âge t est égale à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[0,t]}(x_i)}{n} := \mathbf{P}(X \le t).$$

Par conséquent la probabilité qu'il reste en vie après l'âge t est égale à

$$\lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{[t,+\infty[}(x_i))}{n} := \mathbf{P}(X \ge t).$$

La fonction

$$F: t \in \mathbb{R} \to \mathbf{P}(X < t)$$

est la fonction de répartition de la loi de la durée de vie. Si

$$F(t) = 0, \quad t < 0,$$

 $F(t) = 1 - \exp(-\lambda t), \quad \forall t > 0,$

où $\lambda > 0$ est un paramètre indépendant du temps t (par exemple $\lambda = 1$), alors la durée de vie suit la loi de probabilité exponentielle de paramètre λ . Si

$$\begin{split} F(t) &= 0, \quad t < 0, \\ F(t) &= \frac{t-a}{b-a}, \quad \forall t \in [a,b], \\ F(t) &= 1, \quad \forall \, b \leq t, \end{split}$$

où 0 < a < b sont deux paramètres indépendant du temps t, alors la durée de vie suit la uniforme sur l'intervalle [a, b].

Exercice. Soit X une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$.

1) Absence de mémoire dans la loi exponentielle. Montrer l'égalité

$$P(X > t + s | X > t) = P(X > s), \forall s > 0, t > 0.$$

2) Moyenne, moment d'ordre 2, et variance de la loi exponentielle. Calculer

$$m_1 = \int_0^{+\infty} t\lambda \exp(-\lambda t) dt,$$

$$m_2 = \int_0^{+\infty} t^2 \lambda \exp(-\lambda t) dt,$$

$$\sigma^2 = m_2 - (m_1)^2.$$

3) Vérifier l'égalité

$$\sigma^2 = \int_0^{+\infty} (t - m_1)^2 \lambda \exp(-\lambda t) dt.$$

La densité d'une loi de probabilité sur \mathbb{R} 5.2

Soit F la fonction de répartition d'une loi de probabilité sur \mathbb{R} .

Proposition. Si la fonction F est continue et dérivable alors sa fonction dérivée $t \in \mathbb{R} \to f(t) = F'(t)$ vérifie

- 1) $f(t) \ge 0$,

2) $\lim_{a\to-\infty}\lim_{b\to+\infty}\int_a^b f(t)dt := \int_{-\infty}^{+\infty} f(t)dt = 1.$ **Preuve.** La croissance de F implique que $f(t) = F'(t) \ge 0$. L'égalité

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

implique

$$\lim_{a \to -\infty} \lim_{b \to +\infty} \{F(b) - F(a)\} = 1 = \int_{-\infty}^{+\infty} f(t)dt.$$

Définition. La fonction f(t) = F'(t) est appelée la densité d'une loi de probabilité sur \mathbb{R} .

Exercice. 1) Vérifier que la loi de Bernoulli n'a pas de densité.

2) Soit X une variable aléatoire dont la fonction de répartition F est dérivable. Montrer les égalités

$$\mathbf{P}(a < X \le b) = \mathbf{P}(a \le X \le b) = \mathbf{P}(a \le X < b) = \mathbf{P}(a < X < b) = F(b) - F(a)$$
pour touts les couples $a < b$.

Exemples. 1) La fonction de répartition de la loi de probabilité uniforme sur [a,b] est égale à

$$F(t) = 0, \quad t < a,$$

$$F(t) = \frac{t-a}{b-a}, \quad a \le t < b,$$

$$F(t) = 1, \quad t \ge b.$$

Sa dérivée

$$f(t) = 0, \quad t < a,$$

 $f(t) = \frac{1}{b-a}, \quad a \le t < b,$
 $f(t) = 0, \quad t \ge b,$

est la densité de la loi de probabilité uniforme sur [a, b]. Si X est la variable aléatoire ayant la fonction de répartition F, alors

$$\mathbf{P}(X \le t) = F(t) = \int_{-\infty}^{t} f(x)dx = \text{aire occupée par la densité } f \text{ durant }] - \infty, t].$$

2) La fonction de répartition de la loi de probabilité exponentielle de paramètre $\lambda>0$ est égale à

$$F(t) = 0, \quad t < 0,$$

 $F(t) = 1 - \exp(-\lambda t), \quad t \ge 0.$

Sa dérivée

$$f(t) = 0, \quad t < 0,$$

$$f(t) = \lambda \exp(-\lambda t), \quad t \ge 0,$$

est la densité de la loi de probabilité exponentielle. Si X est la variable aléatoire ayant la fonction de répartition F, alors

$$\mathbf{P}(X \le t) = F(t) = \int_{-\infty}^{t} f(x)dx = \text{aire occupée par la densité } f \text{ durant }]-\infty, t].$$

Exercice Médiane de la loi exponentielle. Soit X une variable aléatoire ayant la loi exponentielle de paramètre $\lambda > 0$.

1) Trouver le nombre $t_{1/2}$ (appelé médiane) tel que

$$\mathbf{P}(X \le t_{1/2}) = \frac{1}{2}.$$

2) Trouver le quartile $t_{1/4}$ de X solution de l'équation

$$\mathbf{P}(X \le t_{1/4}) = \frac{1}{4}.$$

3) Trouver le troisième quartile $t_{3/4}$ de \boldsymbol{X} solution de l'équation

$$\mathbf{P}(X \le t_{3/4}) = \frac{3}{4}.$$

5.3 Formule de changement de variable

Soit F une fonction de répartition d'une loi de probabilité, ayant une densité f = F'. Soit $X = (x_i)$ une variable aléatoire ayant la fonction de répartition F.

Proposition. 1) Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une bijection. La variable aléatoire $Y = (\varphi(x_i))$ a pour fonction de répartition

$$y \in \mathbb{R} \to \lim_{n \to +\infty} \frac{\sum_{i=0}^{n-1} \mathbf{1}_{]-\infty,y]}(y_i)}{n} = F(\varphi^{-1}(y)) := F_Y(y).$$

2) Si la fonction φ est dérivable avec $\varphi'(x) \neq 0$ pour tout x, alors la fonction de répartition F_Y a pour dérivée

$$f_Y(y) = F_Y'(y) = \frac{f(\varphi^{-1}(y))}{|\varphi'(\varphi^{-1}(y))|}.$$

Remarque Importante. Méthode pratique. On pose

$$y = \varphi(x), \quad x = \varphi^{-1}(y),$$

$$dy = |\varphi'(x)|dx, \quad dx = \frac{1}{|\varphi'(x)|}dy,$$

$$f_Y(y)dy = f_X(x)dx,$$

implique

$$f_Y(y) = f_X(x) \frac{dx}{dy}.$$

Exercice. Soit $X = (x_i)$ une suite uniformément distribuée sur [0,1]. On considère la nouvelle suite $y_i = -\ln(x_i)$. Trouver la densité de la loi de la variable aléatoire $Y = (y_i)$ en utilisant la densité

5.4 Loi de Weibull

Soit k > 0, $\lambda > 0$ fixés. La fonction

$$f(t) = 0, \quad t < 0,$$

$$f(t) = \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} \exp\{-\left(\frac{t}{\lambda}\right)^k\}, \quad t > 0,$$

est la densité de la loi de Weibull de paramètres (k, λ) .

Exercice. 1) Vérifier que f est une densité de probabilité sur \mathbb{R} .

2) Calculer la fonction de répartition de la loi de Weibull

$$F(t) = 1 - \exp\{-(\frac{t}{\lambda})^k\}, \quad t \ge 0.$$

Voir wikipedia.

5.5 La fonction Gamma

Exercice. 1) Soit a > 0. Montrer que

$$\Gamma(a) = \lim_{t \to +\infty} \int_0^t x^{a-1} \exp(-x) dx := \int_0^{+\infty} x^{a-1} \exp(-x) dx < +\infty.$$

La fonction $\Gamma:]0, +\infty[\to \Gamma(a)$ est appelée la fonction Gamma.

2) Calculer la moyenne, la variance et la médiane de la loi de Weibull de paramètre (k, λ) .