

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:	MATEMÁTICA II	Nº Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2022		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).

Leia o texto com atenção e responda às questões que se seguem

2014 0 1	exto com atenção e responda as questoes que se seguem.
	Seja o conjunto dos números naturais $N = \{1, 2, 3,n,\}$. A expressão falsa é:
1.	 A. Né o conjunto infinito B. Né o conjunto ordenado C. ∀n, p∈ N s = n + p em conjunto N definida soma de dois números naturais E. N contem o elemento mais pequeno B. Né o conjunto ordenado D. ∀n, p∈ N r = n - p em conjunto N definida diferença de dois números naturais
2.	Três números $a = \frac{1}{\sqrt{\pi}}$, $b = \frac{1}{\sqrt{e}}$, $c = \frac{1}{\sqrt{3}}$, onde $\pi \approx 3.14$; $e \approx 2.72$, satisfazem a designaldade dupla: A. $a < b < c$ B. $c < a < b$ C. $c < a > b$ D. $c < b < a$ E. $a < c < b$
3.	Um táxi andou 1500 metros com uma velocidade de 15 quilómetros por hora; depois 3 quilómetros durante 9 minutos e o resto do caminho com uma velocidade de 30 km/h durante meia hora. Então, a velocidade média de viagem em quilómetros por hora é: A. 41 B. 65/3 C. 30,5 D. 26 E. 21
4.	Qual é o aumento percentual da área de um círculo cujo raio R é aumentado por 50%?A. 50%B. 100%C. 125%D. 150%E. 200%
5.	Segundo o inquérito, numa turma de 25 alunos foi registado que 18 alunos praticam basquetebol e 20 alunos futebol. Quantos alunos praticam basquetebol e futebol? A. 2 B. 13 C. 38 D. 7 E. 19
6.	As possibilidades de eleger 3 representantes de uma turma que contém 20 alunos são de: A. 60 B. 4520 C. 8000 D. 800 E. 1140
7.	O resultado da operação da negação da expressão lógica $(P \rightarrow Q) \land Q \lor R$ é: A. $\neg P$ B. $P \land R$ C. $\neg P \land \neg R$ D. $\neg P \lor \neg R$ E. $\neg R$
8.	A probabilidade de ocasiões que num número aleatório de três algarismos todos sejam distintos, é de:A. 0,31B. 0,45C. 0,54D. 0,72E. 0,83
9.	O termo a_1 e a razão d duma progressão aritmética cujos termos $a_{21} = 62$ e $a_{31} = 92$, são: A. $a_1 = 2$; $d = 5$ B. $a_1 = 2$; $d = 4$ C. $a_1 = 3$; $d = 3$ D. $a_1 = 2$; $d = 3$ E. $a_1 = 3$; $d = 2$
10.	A soma se todos os números da sucessão numérica 5; 1; 0,2; 0,04; é igual a: A. 5 B. 5,75 C. 6,25 D. 7 E. ∞
11.	Um viajante andou numa planície 6 quilómetros na direcção de Norte e depois 8 quilómetros na direcção de Leste. A distância recta entre o ponto inicial e o ponto final da viajem é igual a:

Exame d	e admissão de Matemática II		DAU		Página 2 de
	A. 14 km	B. 10 km	C. 8 km	D. 6 km	E. 2 km
12.				1,3,0) e $B(4,7,2\sqrt{6})$	
	A. $15 + 2\sqrt{6}$	· ·	C. 5	D. 7	E. 8
13.		$ x ^2 - 5 x + 1$ definid par C. não é	a em R é: par, nem ímpar I	$0. \ \text{par para} x > 0$	E. impar para $x < 0$
					$t^2 + b$, (t dias). Sendo o
14.	preço inicial 30,00N produto passando i		oois de três dias 21,	00Mt, qual será o pr	eço de uma unidade do
	A. 15	B. 12	C. 10	D. 7	E. 5
15.	A função inversa y A. $y = -x^2 + 1$	= $f^{-1}(x)$ da função B. $y = -x^2 - 1$	$f(x) = \sqrt{x-1}$ é: C. $y = x^2 - 1$	D. $y = x^2 + 1$	E. não existe
16.	O domínio de defin	icão da funcão $f(x)$	$=\frac{\log_2(x -1)}{\sqrt{2}} \text{ \'e:}$		
16.	A. ∅ B. ⊅	$x \in]-1.1[$ C. x	$\sqrt{4-x^2} \in]-2, -1[\cup]1.2[$	D. $x \in [-2,2]$	E. $x \in R$
17.	PASSE PARA A PI			[_,_]	
1,.	A lei de movimento	de um ponto material	l sob a acção do seu		oo de gravidade da Terra
	(o problema do pêr	ndulo matemático) d	efine-se pela funçã	o $S(t) = s_0 \operatorname{sen} \left(t \cdot \right)$	$\frac{\overline{g}}{I}$, onde s_0 e l são os
18.	parâmetros geométri	cos do pêndulo, g é a mónicas de pêndulo	celeração da força de	gravidade, t é o temp	oo. Determine o período
	v 9	$\mathbf{B.} \ \ T = 2\pi \cdot \sqrt{\frac{g}{l}}$	$C. T = \frac{2\pi}{s_0}$	$\mathbf{D.} \mathbf{T} = 2\pi$	$E. T = 2\pi gl$
	O valor de $\lim_{x\to 0} \frac{sen^4}{tg9}$	$\frac{4x^2}{x^2}$ é igual a:			
19.	$x \rightarrow 0 ig \rightarrow 0$	B. $\frac{4}{2}$	C. $\frac{2}{3}$	D. $\frac{3}{}$	E. 1
	4	B. 9	3	D. 2	L . 1
	Para que a função	$f(x) = \begin{cases} -x^2 + x + 1 \end{cases}$	1; $x \in]-\infty, 0]$ seign	a contínua no ponto	x = 0, o parâmetro b
20.	deve ser igual a:	$(e^{x-b};$	$x \in]0, \infty[$	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,
	A. - 1	B. 0	C. 1	D. 2	E. $\forall b \in R$
21.	A soma das raízes o A. 0	la equação x ⁴ — 132 B. 10	$x^2 + 36 = 0$ é igua C 5		E. 13
					2, 10
22.	Simplificando a exp	pressão $\frac{1+\cos\alpha}{1+\cos\alpha}$	senα obtém-se a	expressão:	
22.	A —	B. $\frac{1}{2}$ sen α	C. $\frac{1}{2}\cos^2\alpha$	D. 2	E. $\frac{1}{2}$
					sen2x no intervalo [0,
23.	π]?		_		
	A. k = 4 Resolvendo a equaç	$\frac{\mathbf{B.} \ \mathbf{k} = 3}{\mathbf{c} \mathbf{a} \mathbf{o} \ log_{w}(2x-1) = }$	C. k = 2 -1 a resposta é:	D. k = 1	E. $k = 0$
24.	A. $x = -0.5$	B. $x = 1$	$\mathbf{C.} \mathbf{x} = 2$	D . $x = 0.5$	E. Ø
	A solução da inequ	$ação \frac{x^2-1}{x-5} \ge 0 \ \'e o i$	ntervalo:		
25.	A. R B.	[1,5] C.	[-1,1] ∪]5,∞[D. $]-\infty, -1]$	E. R \ {5}
		$ação \sqrt{4-3x} \leq \sqrt{7}$			
26.	$\mathbf{A.} \ x \in \left] -\infty, -\frac{2}{7} \right[$	B. $x \in \left] -\frac{2}{7}, 0 \right[$	C. $x \in \left[\frac{1}{5}, \frac{4}{3}\right]$	D. $x \in \left[\frac{5}{3}, \frac{11}{3}\right]$	$\mathbf{E}.\ x \in \left[\frac{11}{3}, \infty\right]$

A curva, cujo gráfico está representado na figura, tem a seguinte equação:

$$y(x) = \frac{2-x}{x-1}$$
 $y(x) = \frac{-x}{x+1}$ $y(x) = \frac{x+2}{x+1}$

27.

28.

D. E.
$$y(x) = \frac{2-x}{1-x}$$
 $y(x) = \frac{x}{1-x}$

$$y(x) = \frac{x}{1 - x}$$

A curva representada geometricamente na figura, tem a seguinte equação:

A.
$$y(x) = (x-1)^2$$

A.
$$y(x) = (x-1)^2 - 1$$
 B. $y(x) = (x-1)^2 + 1$

C.
$$y(x) = -(x+1)^2$$

C.
$$y(x) = -(x+1)^2 + 1$$
 D. $y(x) = -(x-1)^2 - 1$

As assintotas verticais A_V , horizontais A_H , oblíquas A_O da função $f(x) = e^T$, $T = \frac{1}{2}$ são:

A.
$$A_{V}$$
: $x = 1$; A_{H} : $y = e$; A_{O} : $y = x + 1$

B.
$$A_y$$
: $x = 1$; A_H : $y = 1$; A_O : $y = x$

C.
$$A_V: x = 0$$
; $A_H: y = 0$; $A_O: n\tilde{a}o existe$ **D.** $A_V: x = 0$; $A_H: y = 1$; $A_O: n\tilde{a}o existe$

D.
$$A_{v}$$
: x = 0; A_{u} : $v = 1$; A_{o} : não existe

Na figura ao lado estão representados os fragmentos dos gráficos de uma função y = f(x) e de uma tangente à curva no ponto P.

Compare os valores da derivada da função nos pontos P e Q.

Então:

30.

31.

C.
$$f'(-2) = f'(-4)$$

f'(-2) < f'(-4)В.

D. Nenhuma das alternativas

E. Os valores de
$$f'(-2)e$$
 $f'(-4)$ são não comparáveis

Um ponto material move-se pelo eixo recto segundo a lei $R(t) = -\frac{1}{6}t^3 + 3t^2 - 5$, (t - segundos, R - metros).

A velocidade de movimento v(t) em (m/s) e o instante do tempo T em (s) quando a aceleração de movimento é nula correspondem a:

A.
$$v(1)=3$$
; $T=1$

B.
$$v(3) = 9$$
; $T = 3$

C.
$$v(4) = 12;$$
 $T = 4$

C.
$$v(4) = 12;$$
 D. $v(5) = 16;$ $T = 5$

E.
$$v(6) = 18;$$
 $T = 6$

PASSE PARA A PERGUNTA SEGUINTE. 32.

Resolvendo o sistema linear $\begin{cases} x + y = 5(x - y) \\ 2x - 3y = 5 \end{cases}$ a soma dos valores de x e y é igual a: 33.

- **A.** 0
- **B.** 1
- **D.** 3
- E. nenhuma das alternativas

As rectas no plano cartesiano $y = \frac{1}{2}x + 5$ e $y = k \cdot x - b$ são perpendiculares quando:

- 34. **A.** k = 2, b = 5
- **B.** k = 2, b = -5
- **C.** $k = -0.5, b \in R$ **D.** $k = 1, b \in R$ **E.** $k = -2, b \in R$

Exame d	le admissão de Matemática II		DAU	U	Páş	gina 4 de
35.	os números complexo	os?			z e \overline{z} (conjugado do z) são	
	A. círculo fechado I	3. círculo aberto	C. circunferência	D. elipse	E. duas rectas intersectadas	ì
	O raio da circunferê	O raio da circunferência cujo centro é o ponto $O'(\sqrt{18},0)$ e as rectas $y=x$ e $y=-x$ são suas				
36.	tangentes, é igual a: A. 1	3. 2	C. 3	D. 4	E. 5	
	O resultado de multip	olicação da matriz	$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$	$\mathbf{por} \ B = \begin{pmatrix} \\ \\ \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ é a matriz:	
37.	$\mathbf{A.} \begin{pmatrix} -1 & -2 & -3 \\ 0 & 0 & 0 \\ -1 & -2 & -3 \end{pmatrix}$	B. $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ C.	$\begin{pmatrix} -1 & 0 & -3 \\ -1 & 0 & -3 \end{pmatrix} \mathbf{D}$	$\begin{array}{ccc} -1 & -1 \\ -2 & -2 \\ -3 & -3 \end{array}$	E. não existe	
	No Δ ABC o lado a =	6 cm, o lado c = 3	cm, o ângulo ∠B	= 60° . A med	lida do lado b é igual à:	
38.	A. 5 B. 5	√3 C. 4	D. $3\sqrt{3}$	E. $\sqrt{3}$	B 60° a	≥c
39.	O raio de base dum co seja diminuído por 15° A. B $6\sqrt{3}$ vezes $4\sqrt{3}$. Em quantas vez	es diminuirá o vol	$\mathbf{lume} \ V \mathbf{do} \mathbf{co}$	$\alpha = 60^{\circ}$ com a base. O ângul one?	ο α
	A primitiva $F(x)$ da função $f(x) = sen3x$, sendo C uma constante arbitrária é:					
40.	$\mathbf{A.} F(x) = -\cos 3x + $	C	В.	$F(x) = \frac{1}{3}\cos^{2}\theta$	s3x + C	
	C. $F(x) = -\frac{1}{3}\cos 3x$	+ <i>C</i>		$F(x) = 3\cos^{3}$		
	$\mathbf{E}_{x} F(x) = 3\cos x + C$					

Fim!

 $\mathbf{E.} \quad F(x) = 3\cos x + C$