# THE UNIVERSITY OF SYDNEY FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

## MATH1901/1906 Differential Calculus (Advanced)

June 2012

LECTURER: C M Cosgrove

| TIME | ALLOWED: | One | and | а | half | hours |
|------|----------|-----|-----|---|------|-------|
|      |          |     |     |   |      |       |

| Family Name:                                                                                                                                                                       |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Other Names:                                                                                                                                                                       |             |
| SID: Seat Number:                                                                                                                                                                  |             |
|                                                                                                                                                                                    | Marker's us |
| This examination has two sections: Multiple Choice and Extended Answer.                                                                                                            |             |
| The Multiple Choice Section is worth 35% of the total examination; there are 20 questions; the questions are of equal value; all questions may be attempted.                       |             |
| Answers to the Multiple Choice questions must be entered on the Multiple Choice Answer Sheet.                                                                                      |             |
| The Extended Answer Section is worth 65% of the total examination; there are 4 questions; the questions are of equal value; all questions may be attempted; working must be shown. |             |
| Approved non-programmable non-graphics calculators may be used.                                                                                                                    |             |
| THE QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM.                                                                                                                  |             |



#### **Extended Answer Section**

Answer these questions in the answer book(s) provided.

Ask for extra books if you need them.

#### MARKS

3

4

2

3

3

2

3

4

- 1. (a) In the complex z-plane, z=x+iy, sketch the set satisfying the inequality,  $|z+4+3i| \leq 3$ .
  - (b) Factorise the polynomial,

$$P(z) = z^4 - 3z^3 + 10z^2 + 9z + 13,$$

into linear and/or quadratic factors with real coefficients, given that 2+3i is one of the roots of the polynomial.

- (c) Find all the non-real cube roots of -8, expressing your answers in Cartesian form.
- (d) Starting with the standard limit  $(\sin x)/x \to 1$  as  $x \to 0$ , deduce the value of  $\lim_{x \to 0} \frac{1 \cos x}{x^2}.$

(Do not use l'Hôpital's rule.)

- 2. (a) Let  $f: \mathbb{R}^2 \setminus \{0,0\} \to \mathbb{R}$ ,  $(x,y) \mapsto \ln(x^2 + 3y^2)$ , and let P denote the point (2,1) in the xy-plane.
  - (i) Calculate the directional derivative  $D_{\hat{\mathbf{u}}}f$  of f at P in the direction of the vector  $\mathbf{u} = 4\mathbf{i} \mathbf{j}$ .
  - (ii) Find the unit vector  $\hat{\mathbf{v}}$  in the direction in which the directional derivative of f at P is maximised, and give the corresponding value of the maximum directional derivative, that is,  $D_{\hat{\mathbf{v}}}f$  at P.
  - (iii) Find the equation of the tangent plane to the graph of z = f(x, y) at the point on the graph vertically above P. Express your answer in the form z = ax + by + c.
  - (b) Use any method to calculate the Taylor polynomial  $T_3(x)$  of order 3 about x = 0 of the function,  $f(x) = e^{2x} \cos x.$



4

3

4

5

3. (a) Find the following limits, showing the steps of your working clearly, or show that the limit does not exist. (You may use any valid method. Allow  $+\infty$  and  $-\infty$  as values that a limit can take.)

(i) 
$$\lim_{x \to 2} \frac{x^3 + 5x^2 - 32x + 36}{x^3 - 12x + 16}.$$

$$\lim_{x \to 0} (\cos x)^{\cot^2 x}.$$

(iii) 
$$\lim_{(x,y)\to(0,0)} \frac{3xy^3}{(x^2+y^2)^2}$$
.

(b) Calculator problem. Show that the transcendental equation,

$$\sinh x = 2x$$

has one and only one root on the interval [2.0, 2.5], and find an interval of length 0.1 that contains this root.

- 4. In this question,  $f(x) = \sin x$  and  $g(x) = \sin(x^3)$ .
  - (a) From the Taylor polynomial  $T_4(x)$  of order 4 for f(x) about x=0, deduce the Taylor polynomial  $T_{14}(x)$  of order 14 for g(x) about x=0. (The actual degree will be 9. You do not need to explain why this polynomial is a Taylor polynomial.)
  - (b) From the standard formula for the remainder term  $R_4(x)$  for f(x), deduce a suitable formula for the remainder term  $R_{14}(x)$  for g(x) about x = 0. (You may assume x > 0.) Conclude that

$$T_{14}(x) < \sin(x^3) < T_{15}(x)$$

whenever  $0 < x < (\pi/2)^{1/3}$ .

(c) Calculator problem. Use the results of parts (a) and (b) to give a numerical estimate for

$$\int_0^{1/2} \sin(x^3) \, dx$$

to seven decimal places, and prove that it is correct to this level of accuracy. (You will need to calculate upper and lower bounds to a bit more than seven decimal places.)



### Standard Derivatives

The following derivatives can be quoted without proof unless a question specifically asks you to show details. These results can be combined with the standard rules of differentiation (not listed here) to differentiate more complicated functions. For example,  $(d/dx)\sin(ax+b) = a\cos(ax+b)$ . Natural domains common to both sides are assumed.

1. 
$$\frac{d}{dx}x^k = kx^{k-1} \quad (k \in \mathbb{R})$$

$$2. \frac{d}{dx}e^x = e^x$$

3. 
$$\frac{d}{dx} \ln x = \frac{1}{x} \quad (x > 0)$$

4. 
$$\frac{d}{dx}\sin x = \cos x$$

$$5. \frac{d}{dx}\cos x = -\sin x$$

6. 
$$\frac{d}{dx} \tan x = \sec^2 x$$

7. 
$$\frac{d}{dx} \cot x = -\csc^2 x$$

8. 
$$\frac{d}{dx} \sec x = \sec x \tan x$$

9. 
$$\frac{d}{dx} \csc x = -\csc x \cot x$$

10. 
$$\frac{d}{dx} \sinh x = \cosh x$$

11. 
$$\frac{d}{dx} \cosh x = \sinh x$$

12. 
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

13. 
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}} \quad (|x| < 1)$$

14. 
$$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
 (|x| < 1)

15. 
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$

16. 
$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1+x^2}}$$

17. 
$$\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1)$$

18. 
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \quad (|x| < 1)$$

