HIGHLY CORROSION RESISTANT AND HIGH STRENGTH Fe-Cr BASE BULK AMORPHOUS ALLOY

Patent number: JP2001303218
Publication date: 2001-10-31

Inventor: INOUE AKIHISA; CHO TO

Applicant: JAPAN SCIENCE & TECH CORP Classification:

- international: C22C45/02; C23C26/00

Application number: JP20000126277 20000420
Priority number(s): JP20000126277 20000420

Abstract of JP2001303218

- european:

PROBLEM TO BE SOLVED: To solve such a problem that, the conventional Fe-Cr series amorphous alloy, because of its small amorphous formability, the obtained amorphous alloy shape is limited to the thin strip one, filamintary one and powdery one, and the alloy has not been provided with dimensions applicable to general industrial materials. SOLUTION: This highly corrosion resistant and high strength Fe-Cr base bulk amorphous alloy excellent in amorphous formability has a composition expressed by the formula of Fe100-a-b-cCra TMb (C1-xBxPv)c Iwherein. TM=at least one or more kinds selected from V. Nb. Mo. Ta. W. Co. Ni and Cu, and as to (a), (b), (c), (x) and (y), respectively, 5 atomic %<=a<=30 atomic %, 5 atomic %<=b<=20 atomic %, 10 atomic % <=c<=35 atomic %, 25 atomic %<=a+b<=50 atomic %, 35 atomic %<=a+b+c<=60 atomic %, 0.11<=x<=0.85 and 0<=y<=0.57 are satisfied), containing an amorphous phase combining a super cooled liquid region of >=50 K and a glass transition temperature of >=850 K at >=50% by volume percentage and excellent in amorphous formability.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(51) Int.Cl.7

C22C 45/02

(12) 公開特許公報(A)

FΙ

C22C 45/02

(74)代理人 100108671

弁理士 西 装之 Fターム(参考) 4KO44 AA01 AB03 AB05 AB10 BA01

CA27

(11)特許出願公開番号 特開2001-303218 (P2001-3032184)

(P2001-303216A)							
(43)公開日	平成13年10月31日(2001.10.31)						

テーマコート*(参考)

Z 4K044

C 2 3 C 26/00)	C23C 26/00		L				
		審查請求	未請求	請求項の数4	OL	(全	6	頁)
(21)出願番号	特願2000-126277(P2000-126277)	(71)出顕人						
(22)出顧日	平成12年4月20日(2000.4.20)	(72)発明者	井上 1	仙台市青葉区川			т	内伯
		(72)発明者	張濟					

验别紀号

【目的】 従来のFe-Cェ系アモルファス合金は、アモルファス内金能が小さいために、得られるアモルファス合金形が消帯状、フィラメント状、粉粒体状に殴られており、一般的な工業材料へ応用できる寸法を有しているとは言えなかった。

【構成】 式: Fe_{1,00-m-b-c}Cr_a TM_b (C_{1-x}B_xP_y)_c [ただし、式中: TM=V, Nb, Mo, Ta, NC, Co, Ni, Cuの少なくとも一種以上, a, b, c, x, yは、それぞれ5原子% ≤ a ≤ 3 0 原子%。5原子% 5 を 2 0 原子%。1 0 原子% ≤ 3 5 原子% 9、2 5 原子% a + b + c ≤ 6 0 原子%。0. 11 ≤ x ≤ 0. 8 5, 0 ≤ 5 5 7 で示される組成を有し、5 0 K以上の過方組体傾散と8 5 0 K以上のカラス海移租度を兼備した非晶質相を体積100分率で50%以上含む非晶質形成膨胀を優れた高耐触性・高強度Fe-Cr基ベルクアモルファス合金

宮城県仙台市太白区金剛沢3-17-30

BB01 BC01 BC02 BC07 CA24

【特許請求の範囲】

【請求項1】 式: Fe_{100-a-b-o}Cr_a TM_b (C_{1-X} B_vP_n) [ただし、式中、TM=V, Nb, Mo, T a, W, Co, Ni, Cuの少なくとも一種以上、a, b. c. x. vは、それぞれ5原子% ≤a≤30原子 %, 5原子%≤b≤20原子%, 10原子%≤c≤35 原子%, 25原子%≤a+b≤50原子%, 35原子% $\leq a+b+c \leq 60$ 原子%, 0. $11 \leq x \leq 0$. 85, 0≤y≤0.57]で示される組成を有し、50K以上 の渦冷却液体領域と850K以上のガラス遷移温度を兼 備した非晶質相を体積100分率で50%以上含む非晶 質形成能に優れた高耐蝕性・高強度Fe-Cr基ベルク アモルファス合金。

【請求項2】 TMがMoであることを特徴とする請求 項1記載の高耐蝕性・高強度Fe-Cr基パルクアモル ファス合金。 【請求項3】 0.5 mm2 以上の断面積と2,500

MPa以上の圧縮強度を有していることを特徴とする請 求項1記載の非晶質形成能に優れた高耐蝕性・高強度F e-Cr基バルクアモルファス合金。 【請求項4】 請求項1記載のFe-Cr基バルクアモ

ルファス合金を被覆した耐蝕性基材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非晶質形成能に優 れた高耐蝕性・高強度Fe-Cr基バルクアモルファス 合金に関するものである。 【従来の技術】最近、結晶化に対する過冷却液体の優れ

[0002]

た安定性によって、厚みが数mmを上回るバルクアモル ファス合金の形成を可能にすることが認識され、過冷却 液体領域の幅が広いアモルファス合金が非常に注目され ている。50 Kを超える広い温度範囲の過冷却液体領域 が、Mg系、ランタニド (Ln) 系、Zr系、Fe系、 Pd-Cu系、Co系、またはTi系合金など種々のア モルファス合金で得られることが報告されている。 【0003】この経験則に従って、Fe系、Co系、お よびTi系パルクアモルファス合金がここ数年の間に開 発されてきた。例えば、特開平10-265917号公 報には、ΔTxが60K以上であり、式(Fe_{1-a-b} C o n N i b) 100-x-y-z MxBy Tz [式中、Mは、Z r, Nb, Ta, Hf, Mo, W, Crのうちの1種又 は2種以上からなる元素であり、Tは、Ru、Rh、P d. Os. Ir. Pt. Al. Si. Ge. C. Po5 ちの1種又は2種以上の元素であり、かつ0 \leq a \leq 0. 29、0≤b≤0.43、5原子%≤x≤15原子%、 17原子%≤y≤22原子%、0原子%≤z≤5原子% である] からなる高硬度金属ガラス合金が開示されてい

【0004】また、特開平11-71602号公報に

は、ΔTxが60K以上であり、式 (Fe_{1-a-b} Co_a Ni,),00----- M, B, T, [ただし、0≤a≤ 0. 29, 0≤b≤0. 43, 5原子%≤x≤20原子 %、10原子%≤v≤22原子%、0原子%≤z≤5原 子%であり、Mは、Zr, Nb, Ta, Hf, Mo, T i. Vのうちの1種又は2種以上からなる元素、Tは、 Cr. W. Ru, Rh. Pd. Os, Ir, Pt. A I, Si, Ge, C, Pのうちの1種又は2種以上の元 素である] で示される合金粉末を焼結して微細な凹凸部 を有する部品の製造方法が開示されている。

【0005】 本発明者らは、先に、30K以上の渦冷却 液体領域と800K以上のガラス遷移温度を兼備したア モルファス相を体積百分率で50%以上含む高強度・高 耐蝕性Ni基アモルファス合金を発明し、特許出願した (特願平11-163045号)。また、式: Ni

のw, x, y, z は原子比率であり、0. 1 ≤ w ≤ 1 0, 0≤x≤20, 0≤y≤15, 4≤z≤6]で示さ れる組成を有し、過冷却液体領域 ΔTxが50K以上で ある高強度・高耐蝕性Ni基アモルファス合金を発明 し、特許出願した(特願平11-230951号)。 [0006]

【発明が解決しようとする課題】Fe72-Cr8-P13 -C7 , Fe45-Cr25-Mo10-P13-C7 , Fe50 - Cr₁₆-Mo₁₆-C₁₈の組成のアモルファス合金は優 れた耐蝕性を有することが知られている。しかし、これ らのFe-Cr系アモルファス合金は、アモルファス形 成能が小さいために、得られるアモルファス合金形状が 薄帯状、フィラメント状、粉粒体状に限られており、一 般的な工業材料へ応用できる寸法を有しているとは言え なかった。

[0007]

【課題を解決するための手段】そこで、本発明者らは、 Fe-Cr系アモルファス合金においてバルクアモルフ ァス合金が得られる条件を探索し、Fe-Cr-TM (TM=V, Nb, Mo, Ta, W, Co, Ni, C u) からなる3成分以上を基本成分とする合金系にCお よびBを加えた5成分以上の合金系、さらに、これにP を加えた6成分以上の合金系において50K以上の渦巻 却液体領域を有する非晶質形成能に優れ、かつ耐蝕性に も優れた高強度のFe-Cr基バルクアモルファス合金 を見出した。

【0008】すなわち、本発明は、 式: Fe 100-00-00-00 Cr. TM, (C_{1-x}B_xP_x)。[ただし、式中、TM =V, Nb, Mo, Ta, W, Co, Ni, Cuの少な くとも一種以上、a, b, c, x, yは、それぞれ5原 子% ≤a≤30原子%, 5原子%≤b≤20原子%, 10原子%≤c≤35原子%,25原子%≤a+b≤5 0原子%、35原子%≤a+b+c≤60原子%、0. 1 1 ≤ x ≤ 0. 8 5. 0 ≤ y ≤ 0. 5 7] で示される組 成を有し、50K以上の過冷却液体領域と850K以上 のガラス遷移温度を兼備した非晶質相を体積100分率 で50%以上含む非晶質が成能に優れた高耐触性・高強 度Fe-Cr基バルクアモルファス合金である。

[0009]また、本発明は、0.5mm²以上の斯面 積と2,500MPa以上の圧縮強度を有していること を特徴とする上記の非晶質形成能に優れた高面触性・高 暗度Fe-Cr基バルクアモルファス合金である。

【0010】また、本発明は、上記の非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基ベルクアモルファス 今金を被釋した耐蝕性基材である。

[0011] なお、本明年事中の「過冷却被依衡域」と は、毎分40℃の加熱速度で示差主査熱量分析を行うこ とにより得られるガラス遍路健度Tgと結晶化温度Tx の差ΔTx (=Tx−Tg) で定義される。「過冷却液 体領域」ムTxの値は、加工性を示す数値である。 [0012]

【発明の実施の形態】 本発明のFe - Cr 基ベルクフモ ルファス合金において、Cr に耐蝕性の基本となる元素 である。Cr には、5原子%以上30原子%以下とする。 5原子%未満では、高い耐を生が得られない、30原子 %を超えると、非晶質形成能が低くなる。より好ましい 範囲は、10原子%以上20原子%以下である。

【0013】TM群の元素であるV, Nb, Mo, Ta, W, Co, Ni, Cuの少なくとも1種以上は、Crと同時に含有させることにより相乗的に耐触性を向上

する。TM群の元素は、5原子%以上20原子%以下と する。5原子%未満または20%を超えると非晶質形成 能が低くなる。より好ましい範囲は、10原子%以上2 0原子%以下である。

 $[0\ 0\ 14]$ C、B、Pの合計含者量は $1\ 0$ 原子%以下 5 人。 表象分の割合は、 C_{1-X} B_X P_y で示される。 B の含有量 x は、 $0\ 1\ 1$ \le x \le $0\ 8\ 5$ (すなわち。= 3 \le 0 たき $4\ 4$ \le 3 \le 0 原子%) で示される範囲とする。より好ましくは、 $0\ 1\ 1$ \le x \le 0 \le 2 \le である。 \ge 3 \le 2 \le 1 \le 3 \le 2 \le 2 \le 3 \le 2 \le 3 \le 3 \le 2 \le 4 \le 3 \le 3 \le 3 \le 3 \le 4 \le 4 \le 5 \le 6 \le 8 \le 6 \le 6 \le 7 \le 7 \le 7 \le 8 \le 8 \le 8 \le 8 \le 8 \le 9 \le 8 \le 9 \le 9 \le 8 \le 9 \ge 9

【0015】 Pは、B、Cと併用することにより非晶質 形成能を高くする元素であり、本発明の合金に必要に応 じて含有させることができる。 Pの含有量は0 \leq y \leq 0.5 γ 0

範囲、より好ましくは、0 \leq y \leq 0.2 γ 0

範囲とする。

 $[0\ 0\ 1\ 6]$ 图 1は、具体例として、 $(C_{1-n}$ B $_2$ P $_2$ P $_3$ P $_3$ P $_2$ P $_3$ P $_3$ P $_3$ P $_3$ P $_3$ 250 $^{\circ}$ 干ルファス全金の Δ T $_3$ M $_3$ M $_4$ C $_1$ E $_3$ P $_2$ D $_3$ 250 $^{\circ}$ 干ルファス全金の Δ T $_3$ M $_3$ B $_4$ C $_4$ R $_3$ E $_4$ E

No.	合金組成	Τg	Тx	ΔТх
1	Fe43Cr16Mo16C20B5	890	949	59
2	Fe43Cr16Mo16C17.5B7.5	886	963	77
3	Fe49Cr16Mo16C15B10	885	979	94
4	Fe49Cr16Mo16C10B15	896	965	69
5	Fe49Cr16Mo16C15B5 P5	867	938	71
6	Fe49Cr16Ma16C10B10P5	883	956	73
7	Fe43Cr16Mo16C10B5 P10	873	943	70
8	Fe43Cr16Mo16C25	850	894	4 4
9	Fe41Cr16Mo16C20P5	848	901	53
10	Fe45Cr16Mo16C15P10	855	907	52
1.1	Fa. Cr. Mo. C. P	876	012	3.6

【0018】図1に示すように、504た場合大きな ΔT×がC:5~23原子%、B:2~18原子%、 P:0~14原子%の超成範囲で得られる。C:7~2 0原子%、B:3~17原子%、P:0~12原子%の 組成範囲で60长を超えるΔT×が得られる。C:12 ~17原子%、B:8~12原子% では、80Kを超える大きなΔT×が得られる。表1に、 では、80Kを超える大きなΔT×が得られる。表1に、

36 | 312 | 36 | 376 | 912 | 36 | 374 b/tk. No. 1 ~ 70 村成の合金では、いずれも ΔT ×が50 K以上でも。 T gは850 K以上である。 【0019 No. 9とNo. 10では、Bを含有しなくてもΔT × が50 K以上であるが、No. 5, 6, 7と対比するとことととおき含有させることによりΔT × を顕著に備大させることができ、かつ耐蝕性を顕著に向上させることができることが分かる。

【0020】本発明のFe基アモルファス合金は、公知 のアモルファス合金と同様、溶融状態から公知の片ロー ル法、双ロール法、回転被申結系法、アトマイズ法等の 種々の方法で冷却固化させ、薄帯状、フィラメント状、 粉粒体状のアモルファス固体を得ることができる。ま た、本発明のFe基アモルファス合金は、大幅にアモル ファス形成能が改善されているため、上述の公知の製造 方法のみならず、好ましくは、溶融合金を金型に充填鋳 造することにより0.5 mm2以上の断面積の任意の形 状のバルクアモルファス合金を得ることができる。

【0021】例えば、代表的な金型鋳造法においては、 合金を石英管中でアルゴン雰囲気中で溶融した後、溶融 合金を噴出圧0.5~3.0kg/cm2で銅製の金型 内に充填凝固させることにより1、2mm径(1, 13 mm2 の断面積) までの丸棒状などのバルクアモルファ ス合命塊を得ることができる。さらには、アーク溶解 法、石英管水焼き入れ法、ダイカストキャスティング法 およびスクイズキャスティング法等の製造方法を適宜用 いることもできる。

【0022】メルトスピンした合金は、全組成範囲で結 品件を示さず、アモルファス相の形成を確認した。さら に、 ΔTxが50Kを超える上記の限定された組成範囲 では銅鋳型鋳造法によりパルクアモルファス合金を容易 に形成できることを確かめた。本発明のFe-Cr基バ ルクアモルファス合金は、非晶質相を体積100分率で 50%以上含んでいればその所定の特性が得られる。

【0023】本発明の合金は、例えば、強度と耐摩耗性 が要求される小型精密機器の部品および耐蝕性が要求さ れる配管等に適する特性を有している。粉末形態で得ら れた本発明の合金粉末あるいは粉末状以外の形態で得ら れた合金を粉末化したものを成型用型に充填し、焼結す る方法により特定の形状の部品を製造することもでき

【0024】本発明のFe基バルクアモルファス合金 は、例えば、Fe₄₀Cr₁₆Mo₁₆C₁₈B₈ 合金で、35 0 0MPaの高い圧縮強度(σf), 240GPaのヤ ング率 (E) . 1. 7%の破断伸び (ε f) および 1 300のビッカース硬さ (Hv) を示す。降伏伸び (ε v) ~9. 8Hv/3Eおよび ϵ f = σ f/Eの比は、 対応する単ロールアモルファスリボンの値とほぼ同じで ある。

[0025]

【実施例】以下、本発明の実施例について説明する。 実施例1~5

Fe. Cr. Moの綜金圏および純結晶B、Cの混合物 をAr雰囲気中で高周波誘導加熱により溶解し下記の組 成のFe基合金のプレアロイインゴットを調製した。

実施例1 · · · Fe₄₇Cr₁₆Mo₁₆C₁₈B₃ 実施例2・・・Fe₄₆Cr₁₆Mo₁₆C₁₈B₄

実施例3···Fe₄₄Cr₁₆Mo₁₆C₁₈B₆

実施例4・・・Fe₄₂Cr₁₆Mo₁₆C₁₈B₈

実施例5・・・Fe₄₀Cr₁₆Mo₁₆C₁₈B₁₀ プレアロイインゴットから丸棒材を銅鋳型鋳造法により

製造した。銅鋳型の内部空隙は、長さは約45mmで一 定であり、直径は1.2mmとした。

【0026】アモルファス構造は、X線回折法および光 学顕微鏡により観察した。熱的安定性は、0,67K/ s の加熱速度で示差走査熱量分析を用いて評価した。結 晶化した構造は、X線回折法および透過電子顕微鏡によ って観察した。機械的性質は室温で4. 4×10⁻⁴ s⁻¹ の歪み速度でインストロン型試験機を用いて測定した。 破断面は走査電子顕微鏡で観察した。

【0027】図2は、実施例の丸棒材(直径1.2m m. 長さ4.5 mm) の形状と外観を示す。丸棒材は良好 な金属光沢を有している。結晶相の析出に基づく表面の でこぼこはもちろん、ガスの混入に基づく空隙も丸棒材 の外面に見られない。

【0028】図3は、実施例1~5の各丸棒材のX線回 折パターンを示す。各実施例の合金は、結晶のピークの ない広いピークから明らかなようにアモルファス相のみ からなる。

【0029】図4は、実施例2、3、4のアモルファス 合金のDSC曲線を示す。各合金は、矢印で示す温度の ガラス遷移、続いて過冷却液体領域、次いで結晶化を示 した。表2にこれらの実施例のガラス遷移温度Tg、結 晶化温度Tx、過冷却液体領域△Tx、融点Tm、ガラ ス遷移温度/融点Tg/Tmの具体的数値を示す。

[0030] 【表2】

	合金組成	Тg	Тx	ΔТх	Tm	Tg/Tm
実施例2	Fe46Cr16Mo16C18B4	862	915	53	1389	0.62
実施例3	Fe44Cr16Mo16C18B6	870	932	62	1414	0.62
宝施强人	FearCrieMoneCreBe	887	947	6.0	1405	0, 63

[0031] 178と子文は、B含有量の権力に作い、 1 でいた、Bが名原子が七は60Kに転下する。Tg 62Kから887Kおよび915Kから947Kの範囲 でそれぞれ増加する。過冷却液体領域△Txは、Bが4 原子%では53Kであり、Bが6原子%で62Kを示

/Tmは0.62~0.63であり、TmからTgまで の温度域は小さい。 【0032】図5は、実施例2、3、4の合金を大気中 で298Kの1M、6M, 12Mの塩酸溶液中で測定した定電位分極曲線である。各実施例のFe-Cr基アモルファス合金は、いずれも不働能化している。また、1000mVの高電位まで分極しても孔食が発生しない優れた耐蝕性を示していることが明らかである。

【0033】図6は、同様の条件で測定した電位の時間 変化曲線である。図7は、同様の条件で168時間測定 した結果による1年当たりの腐食速度 (mm) を示して いる。図含有量が8原子%の実施例4は最も耐蝕性が優 れている。

(0034) 実施何2の丸棒材とメルトスピンしたリボッ材の圧縮液断消度(σ f)、 ヤング率(E)、および 別性値(ϵ f)を含む全伸は、実施何2の丸棒材では、それぞれ、3 ϵ 50 0MP a、2 ϵ 40 GP a、および ϵ 1、%、リボン材では、それぞれ、3 ϵ 40 GP a、および ϵ 1、7%、リボン材では、それぞれ、3 ϵ 40 0MP a、2 ϵ 6 GP a、および ϵ 2. 0% であり、機械的性質については別瞭な差はないことを示している。丸棒材のビッカー環ぎは、H ϵ 13 00 であり、ゆえた ϵ 9. ϵ 14 ϵ 15 ϵ 2 Eおよび ϵ 5 ϵ 7 ϵ 7 ϵ 8 ϵ 14 ϵ 7 ϵ 8 ϵ 15 ϵ 7 ϵ 8 ϵ 15 ϵ 7 ϵ 8 ϵ 16 ϵ 7 ϵ 8 ϵ 17 ϵ 9 ϵ 18 ϵ 17 ϵ 9 ϵ 18 ϵ 18 ϵ 18 ϵ 19 ϵ 1

[0035]

【発明の効果】以上説明したように、本発明は、非晶質 形成能に優れた高耐蝕性・高強度の新規なF e 基ベルク アモルファス合金を提供するものであり、Fe 基アモルファス合金の構造材料、化学材料等の分野への実用化に 寄与するところ大である。

【図面の簡単な説明】

- 【図1】図1は、Fe₄₃Cr₁₆Mo₁₆(C_{1-x}B_xP_y) ₂₅パルクアモルファス合金のΔTxのB, C, P組成依 存性を示す。
- 【図2】図2の(a)は、実施例1の丸棒材、同じく
- (b) は、実施例2の丸棒材の形状と外観を示す図面代 用写真である。
- 【図3】図3は、実施例1~5の各丸棒材のX線回折バターンを示すグラフである。
- 【図4】図4は、実施例2、3、4のバルクアモルファ ス合金のDSC曲線を示すグラフである。
- 【図5】図5は、実施例2、3、4の合金を大気中で2 98Kの1M、6M, 12Mの塩酸溶液中で測定した定 酸位分級曲線を示すグラフである。
- 【図6】図6は、実施例2、3、4の合金を大気中で2 98Kの1M、6M, 12Mの塩酸溶液中で測定した電 位の時間変化曲線を示すグラフである。
- [図7] 図7は、実施例2、3、4の合金を大気中で2 98Kの1M、6M, 12Mの塩酸溶液中で168時間 測定した結果による1年当たりの腐食速度(mm)を示 すグラフである。

[2]1]

[図2]

[図4]

[図3] [図5]

