

Serial No. 10/014,189

Docket No. US010576

In the Claims:

1. (Currently amended) A method for partitioning a plurality of items into clusters of similar items, said plurality of items corresponding to a selection history by at least one third party, said method comprising identifying one or more mean items for a plurality of items, J, each of said items having at least one symbolic attribute, each of said symbolic attributes having at least one possible value[,J];

wherein for each mean identified, said method comprising the steps of: computing a variance is computed of said plurality of items, J, for each of said possible symbolic values, x_{μ} , for each of said symbolic attributes; and selecting for each of said symbolic attributes, at least one symbolic value, x_{μ} , that minimizes said variance as the mean symbolic value is selected; and,

wherein for at least one cluster, a given symbolic attribute has more than one value such that more than one mean symbolic value is determined for that symbolic attribute.

2. (Original) The method of claim 1, wherein said mean symbolic value for each of said symbolic attributes comprises said mean of said plurality of items.

3. (Original) The method of claim 1, wherein said mean symbolic value for each of said symbolic attributes comprises one or more hypothetical items.

4. (Original) The method of claim 1, further comprising the step of assigning a label to said plurality of items using at least one symbolic value from said at least one mean of said plurality of items.

5. (Original) The method of claim 1, wherein said plurality of items are a cluster including similar items.

6. (Original) The method of claim 1, wherein said items are programs.

7. (Original) The method of claim 1, wherein said items are content.

Serial No. 10/014,189

Docket No. US010576

8. (Original) The method of claim 1, wherein said items are products.
9. (Original) The method of claim 1, wherein said step of computing a variance is performed as follows: $\text{Var}(J) = \text{SIGMA}_{\text{sub.}i} \epsilon J (x_{\text{sub.}i} - x_{\text{sub..mu.}})^2$ where J is a cluster of items from the same class, $x_{\text{sub.}i}$ is a symbolic feature value for item i , and $x_{\text{sub..mu.}}$ is an attribute value from one of the items in J such that it minimizes said $\text{Var}(J)$.
10. (Currently Amended) A method for partitioning a plurality of items into clusters of similar items, said plurality of items corresponding to a selection history by at least one third party, said method comprising the steps of:

characterizing a plurality of items, J , each of said items having at least one symbolic attribute, each of said symbolic attributes having at least one possible value[[.,.]];
said method comprising the steps of: computing a variance of said plurality of items, J , for each of said possible symbolic values, x_{μ} , for each of said symbolic attributes; and characterizing said plurality of items, J , with at least one mean item by selecting for each of said symbolic attributes at least one symbolic value, x_{μ} , that minimizes said variance as the mean symbolic value; and,
wherein for at least one cluster, a given symbolic attribute has more than one value such that more than one mean symbolic value is determined for that symbolic attribute.
11. (Original) The method of claim 10, wherein said mean symbolic value for each of said symbolic attributes comprises at least one mean of said plurality of items.
12. (Original) The method of claim 10, further comprising the step of assigning a label to said plurality of items using at least one symbolic value from said at least one mean item.
13. (Original) The method of claim 10, wherein said plurality of items are a cluster

Serial No. 10/014,189

Docket No. US010576

including similar items.

14. (Original) The method of claim 10, wherein said mean symbolic value for each of said symbolic attributes comprises one or more hypothetical items.

15. (Original) The method of claim 10, wherein said step of computing a variance is performed as follows: $\text{Var}(J) = \text{SIGMA}_{i \in J} (\text{epsilon}_{i \in J} (\text{x}_{i \in J} - \mu_{i \in J})^2)$, where J is a cluster of items from the same class, $x_{i \in J}$ is a symbolic feature value for item i , and $\mu_{i \in J}$ is an attribute value from one of the items in J such that it minimizes said $\text{Var}(J)$.

16. (Currently amended) A system for partitioning a plurality of items into clusters of similar items, said plurality of items corresponding to a selection history by at least one third party, wherein said partitioning is achieved by identifying one or more mean items for a plurality of items, J, each of said items having at least one symbolic attribute, each of said symbolic attributes having at least one possible value, said system comprising:

a memory for storing computer readable code; and

a processor operatively coupled to said memory, said processor configured to: compute a variance of said plurality of items, J , for each of said possible symbolic values, x_μ , for each of said symbolic attributes; and select for each of said symbolic attributes at least one symbolic value, x_μ , that minimizes said variance as the mean symbolic value; and,

wherein for at least one cluster, a given symbolic attribute has more than one value such that more than one mean symbolic value is determined for that symbolic attribute.

17. (Original) The system of claim 16, wherein said mean symbolic value for each of said symbolic attributes comprises said mean of said plurality of items.

18. (Original) The system of claim 16, wherein said mean symbolic value for each of said symbolic attributes comprises one or more hypothetical items.

Best Available Copy

Serial No. 10/014,189

Docket No. US010576

19. (Original) The system of claim 16, wherein said processor is further configured to assign a label to said plurality of items using at least one symbolic value from said at least one mean of said plurality of items.

20. (Original) The system of claim 16, wherein said plurality of items are a cluster including similar items.

21. (Original) The system of claim 16, wherein said processor computes said variance as follows: $\text{Var}(J) = \text{SIGMA}_{\text{sub.}i} \epsilon_i J(x_{\text{sub.}i} - x_{\text{sub.}\mu})^2$ where J is a cluster of items from the same class, $x_{\text{sub.}i}$ is a symbolic feature value for item i , and $x_{\text{sub.}\mu}$ is an attribute value from one of the items in J such that it minimizes said $\text{Var}(J)$.

22. (Currently amended) An article of manufacture for partitioning a plurality of items into clusters of similar items, said plurality of items corresponding to a selection history by at least one third party, wherein said partitioning is achieved by identifying one or more mean items for a plurality of items, J, each of said items having at least one symbolic attribute, each of said symbolic attributes having at least one possible value, the article of manufacture comprising:

a computer readable medium having computer readable code means embodied thereon, said computer readable program code means comprising: a step to compute a variance of said plurality of items, J , for each of said possible symbolic values, x_{μ} , for each of said symbolic attributes; and a step to select for each of said symbolic attributes at least one symbolic value, x_{μ} , that minimizes said variance as the mean symbolic value; and,

wherein for at least one cluster, a given symbolic attribute has more than one value such that more than one mean symbolic value is determined for that symbolic attribute.

23. (Currently amended) A system for partitioning a plurality of items into clusters of similar items, said plurality of items corresponding to a selection history by at least one

Serial No. 10/014,189

Docket No. US010576

third party, wherein said partitioning is achieved by identifying one or more mean items for a plurality of items, J, each of said items having at least one symbolic attribute, each of said symbolic attributes having at least one possible value, said system comprising:

means for computing a variance of said plurality of items, J, for each of said possible symbolic values, x_μ , for each of said symbolic attributes; and

means for selecting for each of said symbolic attributes at least one symbolic value, x_μ , that minimizes said variance as the mean symbolic value; and,

wherein for at least one cluster, a given symbolic attribute has more than one value such that more than one mean symbolic value is determined for that symbolic attribute.

Best Available Copy