

MOSFET

OptiMOS[™] 5 Power-Transistor, 150 V

Features

- N-channel, normal level

- N-channel, normal level
 Excellent gate charge x R_{DS(on)} product (FOM)
 Very low on-resistance R_{DS(on)}
 Very low reverse recovery charge (Qrr)
 150 °C operating temperature
 Pb-free lead plating; RoHS compliant
 Qualified according to JEDEC¹⁾ for target application
 Ideal for high-frequency switching and synchronous rectification

Table 1 **Key Performance Parameters**

Parameter	Value	Unit					
V _{DS}	150	V					
R _{DS(on),max}	9.3	mΩ					
I _D	87	Α					
Q _{rr}	58	nC					

Type / Ordering Code	Package	Marking	Related Links
BSC093N15NS5	PG-TDSON-8	093N15NS	-

OptiMOS[™] 5 Power-Transistor, 150 V BSC093N15NS5

Table of Contents

Description	1
Maximum ratings	3
Thermal characteristics	3
Electrical characteristics	3
Electrical characteristics diagrams	5
Package Outlines	9
Revision History	0
Trademarks 1	0
Disclaimer	0

OptiMOS[™] 5 Power-Transistor, 150 V BSC093N15NS5

1 Maximum ratings at T_A =25 °C, unless otherwise specified

Table 2 **Maximum ratings**

Damana dan	O h l		Value	S		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current	I _D	-	-	87 55	А	T _C =25 °C T _C =100 °C
Pulsed drain current ¹⁾	I _{D,pulse}	-	-	348	Α	<i>T</i> _C =25 °C
Avalanche energy, single pulse ²⁾	E AS	-	-	130	mJ	$I_{\rm D}$ =50 A, $R_{\rm GS}$ =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	139	W	<i>T</i> _C =25 °C
Operating and storage temperature	T _j , T _{stg}	-55	-	150	°C	IEC climatic category; DIN IEC 68-1: 55/150/56

2 Thermal characteristics

Table 3 Thermal characteristics

Dovomotov	Cumbal	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	0.54	0.9	K/W	-	
Thermal resistance, junction - ambient, 6 cm ² cooling area ³⁾	R _{thJA}	-	-	50	K/W	-	

3 **Electrical characteristics**

Table 4 Static characteristics

Danamatan	Correction I		Values				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	150	-	-	V	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	$V_{\rm GS(th)}$	3.0	3.8	4.6	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 107 \mu {\rm A}$	
Zero gate voltage drain current	I _{DSS}	-	0.1 10	1 100	μΑ	V _{DS} =120 V, V _{GS} =0 V, T _j =25 °C V _{DS} =120 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I_{GSS}	-	1	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	7.9 8.7	9.3 10.5	mΩ	V _{GS} =10 V, I _D =44 A V _{GS} =8 V, I _D =22 A	
Gate resistance ⁴⁾	R _G	-	0.9	1.4	Ω	-	
Transconductance	g fs	34	67	-	S	V _{DS} >2 I _D R _{DS(on)max} , I _D =44 A	

See Diagram 3 for more detailed information
 See Diagram 13 for more detailed information
 Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection.

OptiMOS[™] 5 Power-Transistor, 150 V BSC093N15NS5

Table 5 Dynamic characteristics

Davamatar	Cumbal	Values			Linit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance ¹⁾	C _{iss}	-	2430	3230	pF	V _{GS} =0 V, V _{DS} =75 V, <i>f</i> =1 MHz
Output capacitance ¹⁾	Coss	-	604	803	pF	V _{GS} =0 V, V _{DS} =75 V, <i>f</i> =1 MHz
Reverse transfer capacitance ¹⁾	C _{rss}	-	15	26	pF	V _{GS} =0 V, V _{DS} =75 V, <i>f</i> =1 MHz
Turn-on delay time	t _{d(on)}	-	14	-	ns	$V_{\rm DD}$ =75 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =44 A, $R_{\rm G,ext}$ =3 Ω
Rise time	t _r	-	4.3	-	ns	V_{DD} =75 V, V_{GS} =10 V, I_{D} =44 A, $R_{\text{G,ext}}$ =3 Ω
Turn-off delay time	t _{d(off)}	-	14.4	-	ns	$V_{\rm DD}$ =75 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =44 A, $R_{\rm G,ext}$ =3 Ω
Fall time	t _f	-	3.8	-	ns	V_{DD} =75 V, V_{GS} =10 V, I_{D} =44 A, $R_{\text{G,ext}}$ =3 Ω

Table 6 Gate charge characteristics²⁾

Parameter	Cumbal		Values			Nata (Tant Oan didina
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	14	-	nC	$V_{\rm DD}$ =75 V, $I_{\rm D}$ =44 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge ¹⁾	Q_{gd}	-	6.8	10.2	nC	$V_{\rm DD}$ =75 V, $I_{\rm D}$ =44 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q _{sw}	-	13.4	-	nC	$V_{\rm DD}$ =75 V, $I_{\rm D}$ =44 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total ¹⁾	Qg	-	33	40.7	nC	$V_{\rm DD}$ =75 V, $I_{\rm D}$ =44 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	-	5.7	-	V	$V_{\rm DD}$ =75 V, $I_{\rm D}$ =44 A, $V_{\rm GS}$ =0 to 10 V
Output charge ¹⁾	Qoss	-	91	121	nC	V _{DD} =75 V, V _{GS} =0 V

Table 7 Reverse diode

Parameter	Sumb of		Values			Note / Took Condition	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Diode continous forward current	I _S	-	-	87	Α	<i>T</i> _C =25 °C	
Diode pulse current	I _{S,pulse}	-	-	348	Α	<i>T</i> _C =25 °C	
Diode forward voltage	V _{SD}	-	0.88	1.2	V	V _{GS} =0 V, I _F =44 A, T _j =25 °C	
Reverse recovery time ¹⁾	t _{rr}	-	49	98	ns	V _R =75 V, I _F =44, d <i>i</i> _F /d <i>t</i> =100 A/μs	
Reverse recovery charge ¹⁾	Qrr	-	58	116	nC	V _R =75 V, I _F =44, di _F /dt=100 A/μs	

 $^{^{1)}}$ Defined by design. Not subject to production test $^{2)}$ See "Gate charge waveforms" for parameter definition

4 Electrical characteristics diagrams

5 Package Outlines

DIM	MILLIMETERS					
DIM	MIN	MAX				
Α	0.90	1.10				
b	0.31	0.54				
b1	0.02	0.22				
С	0.15	0.35				
D	5.15	5.49				
D1	4.95	5.35				
D2	3.70	4.40				
E	5.95	6.35				
E1	5.70	6.10				
E2	3.40 3.80					
e	1.27					
N		8				
L	0.45	0.71				
М	0.45	0.75				
Θ	8.5°	12°				
aaa	0	0.25				
eee	0	.08				

Figure 1 Outline PG-TDSON-8, dimensions in mm

OptiMOS[™] 5 Power-Transistor, 150 V BSC093N15NS5

Revision History

BSC093N15NS5

Revision: 2016-06-10, Rev. 2.2

Previous Revision

Revision	Date	Subjects (major changes since last revision)				
2.0	2015-10-09	Release of final version				
2.1	2016-01-22	Update diagram 13				
2.2	2016-06-10	Update trr and Qrr				

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGan™, CoolMOS™, CoolSet™, CoolSic™, Corecontrol™, Crossave™, Dave™, Di-Pol™, DrBlade™, EasyPIM™, EconoBRIDGe™, EconoPual™, EconoPid™, EconoPid™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPack™, Infineon™, ISOFace™, IsoPack™, i-Wafer™, MIPAQ™, ModStack™, my-d™, NovalithIc™, OmniTune™, OPTIGa™, OptiMos™, ORIGa™, Powercode™, PRIMARION™, PrimePack™, PrimeStack™, Profet™, Prof-sil™, Rasic™, Real3™, Reversave™, Satric™, Sieget™, SipMos™, SmartLewis™, Solid Flash™, Spoc™, Tempfet™, thinq!™, Trenchstop™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Published by Infineon Technologies AG 81726 München, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.