Detect Al-generated content with Finite-context Models

Grupo 9

Daniel Ferreira 102885 Inês Castro 98384 João Teles 123456

Table of Contents

Finite-context Models

03

Implementation

02

Dataset creation

)4

Results

2

Finite-context models

Figure 1: Finite-context mode with M=5, the probability of the next outcome, $x\ t+1$, is conditioned by the M last outcomes.¹

Finite-context Models

- Type of markov chain
- Used for lossy data compression
- Estimates probabilities of symbols appearing within a context
- Can we use it for classification tasks?

Dataset creation*

Dataset Structure

2 columns

Text	Label
Celebrities have always been a sub	1
Have you ever went to someone for	0
There are a few people who think	1

Human texts Al texts

Training Dataset: 693.95 MB

Testing Dataset: 193.72 MB

Data Preprocessing

- Eliminate duplicate text
- Remove missing values
- Dataset balancing based on the character count

Figure 1: Unbalanced training dataset.

Figure 2: Balanced training dataset based on character count.

Dataset Analysis

Based on the training set character count distribution

Figure 3: Human texts (label 0) letter distribution - training set.

Figure 4: Human texts (label 0) letter distribution - testing set.

Figure 5: AI texts (label 1) letter distribution - training set.

Model Parameters

k	Integer representing the context length or order of the model
smoothing_factor	Float value used for Laplace smoothing
alphabet	String containing the characters in the alphabet
ignore_case	Boolean flag indicating whether the model should ignore case when processing characters
scaling_factor	Integer used to scale down counts when they reach the maximum value (UINT32_MAX)
id	String identifier of the model

Model Structure

Model Persistence

(1) save(output); Serializes model parameters and data to a binary (.bin) file.

(2) load(source); Load the pre-trained model for prediction, inference, or retraining on new data.

Core functionality

Training:

update(source);
 Updates context counts based on input text/file.

(2) increment (counts, event); Increments event count within a context; Uses fail-safe mechanism to prevent overflow using scaling factor.

Inference:

(3) estimate_bits(source); Estimates total bits for encoding text/file.

(4) estimate_bits(context, event); Estimates bits needed to encode a character in a context.

(5) probability (context, event); Calculates probability of a character in a context.

Results

Alphabet parameter tuning

Figure 6: Comparison of the different alphabet's result

Impact of context length k on model performance

(a) Model Size (MB) as a function of k

(b) Training time (s) as a function (c) Evaluation Time (s) as a function of k

Figure 7: Impact of context length k on model performance

Accuracy as a function of context length (k)

Figure 8: Accuracy as a function of context length (k)

4.9 Average size of word in English

Source: https://www.wyliecomm.com/2021/11/whats-the-b est-length-of-a-word-online (New York Times) ³

Accuracy as a function of target text length

Figure 9: Accuracy as a function of target text length

Model evaluation

Approximately 50 combinations tested with:

Parameter	Value
smoothing_factor	0.5
k	7
alphabet	[a-zA-Z0-9]
Training time (s)	342.5
Evaluation time (s)	206.5
Average evaluation time (s)	206.5
Total Bytes (MB)	35.14
Accuracy $(\%)$	99.43

Table 5: Confusion Matrix for the best model.

		Predicted	
		Human	AI
Actual	Human	55,560	285
	AI	205	30,537

Table 6: Model Evaluation Metrics for the best model.

Accuracy	Recall	Precision	F1-Score
99.43	99.33	99.07	99.20

Model's Binary File Size: ~324 MB

Conclusions

- (1) The model demonstrates exceptional performance in distinguishing between human-written and Al-written texts. With an accuracy of 99.43%
- (2) For a greater k the model gets more complex, but not necessarily more accurate
- (3) Despite the accuracy, the model may be overfitted because the training and the testing dataset are very similar. It may not work as well in a real scenario
- (4) Maybe data compression can be explicitly used to address classification problems, removing the need for a separate feature extraction stage

References

- 1. "Fig. 1. Finite-context model: the probability of the next outcome, x...," ResearchGate. (May, 2024). url: https://www.researchgate.net/figure/Finite-context-model-the-probability-of-the-next-outcome-x-t-1-is-conditioned-by-the_fig1_221907789
- 2. tai-dgt. Accessed 6 May 2024. May 2024. url: https://www.kaggle.com/datasets/danielnivalis/tai-daigt.
- 3. Ann Wylie. "What's the Best Length of a Word Online?" In: Wylie Communications, Inc. (Jan, 2024). url: https://www.wyliecomm.com/2021/11/whats-the-best-length-of-a-word-online.