МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Лабораторная работа 5

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЛИНЕЙНЫХ КОМПОНЕНТОВ ЦЕПЕЙ

5. ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЛИНЕЙНЫХ КОМПОНЕНТОВ ЦЕПЕЙ

Цель работы – изучение методов измерения параметров линейных компонентов, а также основных технических характеристик, устройства и применения измерителя иммитансных параметров E7-15.

Программа работы включает измерение параметров резисторов, конденсаторов и катушек индуктивности. Предусмотрена статистическая обработка результатов измерений и расчет погрешностей измерений.

5.1. Метод измерения иммитансных параметров линейных компонентов

К иммитансным параметрам электро- и радиокомпонентов электрических цепей относятся: сопротивление R или проводимость G=1/R, индуктивность L, емкость C. Кроме них иногда требуется измерять также относительные параметры: фактор потерь D (тангенс угла потерь) или добротность Q=1/D.

Полное сопротивление Z=R+jX содержит в общем случае активную R и реактивную X составляющие (рис. 5.1). Если реактивное сопротивление носит индуктивный характер, то $X=\omega L=2\pi fL$, а если емкостной, то $X=-1/(\omega C)=-1/(2\pi fC)$, ω – круговая частота, а f – частота, на которой проводят измерения. При индуктивном характере сопротивления в последовательной эквивалентной схеме (рис. 5.1) $Q=\omega L/R=1/D$, в случае емкостного характера сопротивления $D=\omega CR=1/Q$.

Полная проводимость Y = G + jB в общем случае состоит из активной G и реактивной B составляющих (рис. 5.2). Для проводимости емкостного характера $B = \omega C = 2\pi fC$, а при индуктивном характере $B = -1/\omega L = -1/2\pi fL$. В параллельной схеме (рис. 4.2) $D = 1/\omega CR = G/\omega C = 1/Q$.

Рис. 5.1. Полное сопротивление

Рис. 5.2. Полная проводимость

Измеритель иммитанса Е7-15 предназначен для измерения иммитансных параметров электрорадиокомпонентов: резисторов, конденсаторов, катушек индуктивности.

Структурная схема прибора приведена на рис. 5.3. Напряжение рабочей частоты генератора подается на измеряемый объект, подключаемый к преобразователю $Y \to U_{\rm T}, U_{\rm H}$. Преобразователь формирует два напряжения, одно из которых $U_{\rm T}$ пропорционально току, протекающему через измеряемый объект, а другое $U_{\rm H}$ — напряжению на нем. Отношение комплексных амплитуд этих напряжений равно полной проводимости Y или полному сопротивлению Z.

Рис. 5.3. Структурная схема измерителя иммитанса Е7-15

Измерение отношения напряжений проводится аппаратно-программным логометром. Его аппаратная часть состоит из двух коммутаторов S1 и S2, масштабного усилителя, перемножителя, фильтра нижних частот и цифрового вольтметра, использующего метод двойного интегрирования. Итогом работы программной части логометра является расчет отношения напряжений.

На рис. 5.4 изображены комплексные амплитуды $\dot{U}_{\rm T}$ и $\dot{U}_{\rm H}$ и опорные вспомогательные напряжения $U_{\rm O\Pi}$ и $jU_{\rm O\Pi}$.

Проекции комплексных амплитуд $\dot{U}_{\rm T}$ и $\dot{U}_{\rm H}$ на опорное напряжение $U_{\rm OII}$ и $jU_{\rm OII}$ выделяются с помощью перемножителя и фильтра нижних частот, после чего измеряются в некотором произвольном масштабе цифровым вольтметром. Полная проводимость определяется выражением

$$Y = G + jB = \frac{\dot{I}}{\dot{U}} = k_Y \frac{\dot{U}_T}{\dot{U}_H} = k_Y \frac{\dot{U}_X}{\dot{U}_0} = k_Y \frac{E + jF}{S + jT},$$
 (5.1)

где G – активная проводимость; B – реактивная проводимость; \dot{I} и \dot{U} – комплексные амплитуды тока и напряжения на исследуемом элементе; k_Y – известный коэффициент, имеющий размерность проводимости; \dot{U}_X – числитель измеряемого отношения; \dot{U}_0 – знаменатель измеряемого отношения; E, F, S, T – проекции $\dot{U}_{\rm T}$ и $\dot{U}_{\rm H}$ на оси опорных напряжений $U_{\rm OII}$ и $jU_{\rm OII}$. Из (5.1) следует

$$G = k_Y \frac{ES + FT}{S^2 + T^2}, \quad B = k_Y \frac{FS - ET}{S^2 + T^2}.$$
 (5.2)

Аналогичные соотношения имеют место для вычисления полного сопротивления

Рис. 5.4. Векторная диаграмма напряжений

$$Z = R + jX = \frac{\dot{U}}{\dot{I}} = k_Z \frac{U_H}{\dot{U}_T} =$$

$$= k_Z \frac{\dot{U}_X}{\dot{U}_0} = k_Z \frac{E + jF}{S + jT},$$

где R — активное сопротивление, X — реактивное сопротивление, вычисляемые по формулам, k_Z — известный коэффициент, имеющий размерность сопротивления

$$R = k_Z \frac{ES + FT}{S^2 + T^2}, X = k_Z \frac{FS - ET}{S^2 + T^2}.$$
 (5.3)

Таким образом, для определения полной проводимости или полного сопротивления необходимо измерить проекции векторов E, S, F и T.

При измерении высокоомных объектов (1–4 пределы измерения), когда генератор сигнала является источником напряжения, предпочтительнее осу-

ществлять измерения в виде составляющих полной проводимости $(\dot{U}_x = \dot{U}_{\mathrm{T}}, \ \dot{U}_0 = \dot{U}_{\mathrm{H}}).$

В случае измерения низкоомных объектов источник сигнала работает как генератор тока (5-й – 8-й пределы измерения) и более удобным является измерение в форме составляющих полного сопротивления $(\dot{U}_X = \dot{U}_{\rm H}, \ \dot{U}_0 = \dot{U}_{\rm T})$. Требуемая форма иммитанса достигается пересчетом из первичной формы (G, B или R, X) и осуществляется контроллером. Расширение пределов измерения достигается за счет изменения коэффициента передачи усилительного тракта логометра при измерении составляющей \dot{U}_X в 10, 100 и 1000 раз.

С выхода усилителя гармоническое напряжение $U_m \sin(\omega_0 t + \phi)$, пропорциональное току $U_{\rm T}$ или напряжению $U_{\rm H}$ в зависимости от состояния переключателя S1, поступает на перемножитель. На второй вход перемножителя поступает опорное напряжение с генератора: $U_0 \sin(\omega_0 t)$ либо $U_0 \cos(\omega_0 t)$ в зависимости от состояния переключателя S2. При этом на выходе перемножителя получают, соответственно, напряжения

$$U_m \sin(\omega_0 t + \varphi)U_0 \cos(\omega_0 t) = \frac{U_0}{2} U_m \sin\varphi + \frac{U_0}{2} U_m \sin(2\omega_0 t + \varphi);$$

$$U_m \sin(\omega_0 t + \varphi)U_0 \sin(\omega_0 t) = \frac{U_0}{2} U_m \cos\varphi - \frac{U_0}{2} U_m \cos(2\omega_0 t + \varphi).$$

Переменные составляющие с удвоенной частотой подавляются фильтром нижних частот. Постоянные составляющие напряжения, пропорциональные $U_m \cos \varphi$ и $U_m \sin \varphi$ и называемые квадратурными компонентами, измеряются поочередно цифровым вольтметром. Косинусные составляющие позволяют определить компоненты E и S, а синусные – компоненты F и T (рис. 5.4). Измеренные значения вводятся в блок управления, после чего производятся вычисления по формулам (5.2) или (5.3).

5.2. Краткое описание характеристик измерителя иммитанса Е7-15

Прибор предназначен для автоматического измерения параметров конденсаторов, катушек индуктивности и резисторов на частотах 100 Гц и 1 кГц. Основные измеряемые величины и пределы измерений даны в табл. 5.1 и 5.2.

Таблица 5.1

Предел	Емкость C н	Проводимость G	
измерения	0,1	1	
1	11600 пФ	0,1160,0 пФ	150 нСм
2	0,0116,00 нФ	11600 пФ	0,011,00 мкСм
3	0,1160,0 нФ	0,0116,00 нФ	0,110,0 мкСм
4	11600 нФ	0,1160,0 нФ	1100 мкСм
5	1,60016,00 мкФ	160,01600 нФ	_
6	16,00160,0 мкФ	1,60016,00 мкФ	_
7	160,01600 мкФ	1,60016,00 мкФ	_
8	1,60020,00 мФ	160,01600 мкФ	_

Таблица 5.2

Предел	Индуктивность L на частотах, к Γ ц		Сопротивление, <i>R</i>
измерения	0,1	1	
1	1,6001600 кГн	160,01600 Гн	1,00020,00 МОм
2	160,01600 Гн	16,00160,0 Гн	100,01000 кОм
3	16,00160,0 Гн	1,60016,00 Гн	10,00100,0 кОм
4	1,60016,00 Гн	160,01600 мГн	1,00010,00 кОм
5	11600 мГн	0,1160,0 мГн	11000 Ом
6	0,1160,0 мГн	0,0116,00 мГн	0,1100,0 Ом
7	0,0116,00 мГн	11600 мкГн	0,0110,00 Ом
8	11600 мГн	0,1160,0 мкГн	11000 мОм

Пределы допускаемого значения основной погрешности измерения иммитансных параметров на частотах 0,1 и 1 к Γ ц должны быть равны значениям, указанным в табл. 5.3...5.10. C', L', R', G' — максимальные значения измеряемых на каждом из пределов величин (табл. 5.1 и 5.2).

Таблица 5.3

Параметр	Предел измерения Погрешность измерения				
	1	$[2,5(1+D)C+1.3C']10^{-3}$			
	24	$[2,5(1+D)C+0,63C']10^{-3}$			
С	57	$\left[2,5(1+D)+6.3\frac{C}{C'}\right]10^{-3}C$			
	8	$\left[2,5(1+D)+13\frac{C}{C'}\right]10^{-3}C$			

Таблица 5.4

Параметр	Предел измерения	Погрешность измерения			
	1	$\left[2,5(1+D)+13\frac{L}{L'}\right]10^{-3}L$			
L	24	$\left[2,5(1+D)+6,3\frac{L}{L'}\right]10^{-3}L$			
	57	$[2,5(1+D)L+0,63L']10^{-3}$			
	8	$[2,5(1+D)L+1,3L']10^{-3}$			

Таблица 5.5

Параметр	Предел измерения	Погрешность измерения			
	1	$\left[2,5(1+Q)+40\frac{R}{R'}\right]10^{-3}R$			
R	24	$\left[2,5(1+Q)+10\frac{R}{R'}\right]10^{-3}R$			
	57	$[2,5(1+Q)R+R']10^{-3}$			
	8	$[2,5(1+Q)R+2R']10^{-3}$			

Таблица 5.6

Параметр	Предел измерения	Погрешность измерения	
C	1	$[2,5(1+Q)G+40G']10^{-3}$	
G	24	$[2,5(1+Q)G+10G']10^{-3}$	

Таблица 5.7

Параметр	Предел измерения Погрешность измерения		
	1	$2.5 \cdot 10^{-3} (1+D^2) + 2 \cdot 10^{-3} \frac{C'}{C} (1+D)$	
	24	$2.5 \cdot 10^{-3} (1+D^2) + 1 \cdot 10^{-3} \frac{C'}{C} (1+D)$	
(для емко- стей)	57	$2.5 \cdot 10^{-3} (1+D^2) + 10 \cdot 10^{-3} \frac{C}{C'} (1+D)$	
	8	$2.5 \cdot 10^{-3} (1+D^2) + 20 \cdot 10^{-3} \frac{C}{C'} (1+D)$	

Таблица 5.8

Параметр	Предел измерения Погрешность измерения			
<i>D</i>	1	$2.5 \cdot 10^{-3} (1 + D^2) + 20 \cdot 10^{-3} \frac{L}{L'} (1 + D)$		
	24	$2.5 \cdot 10^{-3} (1+D^2) + 10 \cdot 10^{-3} \frac{L}{L'} (1+D)$		
(для идук- тивностей)	57	$2.5 \cdot 10^{-3} (1 + D^2) + 1 \cdot 10^{-3} \frac{L'}{L} (1 + D)$		
	8	$2,5 \cdot 10^{-3} (1+D^2) + 2 \cdot 10^{-3} \frac{L'}{L} (1+D)$		

Таблица 5.9

Параметр	Предел измерения Погрешность измерения		
Q (THE SHEET	1	$2,5 \cdot 10^{-3} (1+Q^2) + 1,3 \cdot 10^{-3} \frac{C'}{C} Q(1+Q)$	
(для емко- стей)	24	$2.5 \cdot 10^{-3} (1 + Q^2) + 0.63 \cdot 10^{-3} \frac{C'}{C} Q (1 + Q)$	

Параметр	Предел измерения	Погрешность измерения
Q	57	$2.5 \cdot 10^{-3} \left(1 + Q^2\right) + 6.3 \cdot 10^{-3} \frac{C}{C'} Q (1 + Q)$
(для емко- стей)	8	$2,5 \cdot 10^{-3} (1+Q^2) + 13 \cdot 10^{-3} \frac{C}{C'} Q(1+Q)$

Таблица 5.10

Параметр	Предел измерения	рения Погрешность измерения		
<i>Q</i> (для идук- тивностей)	1	$2,5 \cdot 10^{-3} (1+Q^2) + 13 \cdot 10^{-3} \frac{L}{L'} Q(1+Q)$		
	24	$2.5 \cdot 10^{-3} (1 + Q^2) + 6.3 \cdot 10^{-3} \frac{L}{L'} Q (1 + Q)$		
	57	$2.5 \cdot 10^{-3} (1 + Q^2) + 0.63 \cdot 10^{-3} \frac{L'}{L} Q (1 + Q)$		
	8	$2,5 \cdot 10^{-3} (1+Q^2) + 1,3 \cdot 10^{-3} \frac{L'}{L} Q (1+Q)$		

5.3. Описание лабораторного макета

Лабораторный макет используют для измерений прибором E7-15. Он содержит: 30 резисторов, любой из которых с помощью переключателей S1...S3 можно подключить к гнездам R_x ; 30 конденсаторов, подключаемых теми же переключателями к гнездам C_x ; конденсатор с диэлектриком из сегнетокерамики, соединенный с гнездами $CE\Gamma HETOKEPAMU YECKU MKOH JEHCATOP$, а также катушку индуктивности с сердечником из феррита, подключенную к гнездам $KATY IIIKAC \Phi EPPOMA \Gamma H. CEP JEY HUKOM$.

5.4. Задание и указания к выполнению работы

Проведение измерений. Прибор E7-15 может измерять активные и реактивные параметры иммитансов измеряемых объектов по параллельной (на 1...4 пределах измерения) или последовательной (на 5...8 пределах измерения) эквивалентной схеме. Относительные параметры измеряются в форме фактора потерь D или добротности Q.

Включите прибор и перед началом измерений установите при помощи кнопок на передней панели прибора следующие режимы: *ПАРАМЕТР RG*, *ПРЕДЕЛ A* (автоматический выбор), *ЧАСТ 1 kHz*, *СМЕЩЕНИЕ ВЫКЛ*.

Для проведения измерений достаточно подключить измеряемый объект к зажимам и установить нужный режим измерения. Нажатием кнопки ΠA -

PAMETP пользователь может установить прибор в режим измерения реактивной (L или C) либо активной (R или G) составляющей иммитанса или в режим измерения относительного параметра (D или Q).

Клавишей *ЧАСТ* установить требуемую частоту 100 Hz или 1 kHz.

При измерении емкости электролитических конденсаторов нажатием кнопки CMEIIIEHUE можно подать поляризующее напряжение + 4,8 B (со стороны выводов I, U).

При нажатии кнопки *ПРЕДЕЛ* прибор производит автоматическое переключение пределов с 1 по 8 и установку прибора в режим автоматического выбора предела измерения. Номер установленного предела и режим автоматического выбора индицируется при этом на дисплее прибора (1...8, A). Для установки требуемого предела измерения необходимо отпустить кнопку *ПРЕДЕЛ* в тот момент времени, в который на дисплее высвечивается требуемый номер предела (или режим автоматического выбора предела).

При необходимости узнать номер установленного предела нужно нажать кнопку $\Pi PE \Pi E\Pi$, считать номер предела и отпустить кнопку до момента изменения предела (около 1,5 c). Нахождение прибора в режиме ручной установки предела индицируется зажиганием светодиодного указателя ΦUKC .

Если установленный вручную предел приводит к перегрузке измерительной цепи, на дисплее прибора появляется символ *ПРГР*.

5.4.1. Измерение сопротивлений резисторов прибором Е7-15

Подготовка прибора к работе. Перед измерениями включите прибор. Переключатели *ПАРАМЕТР* установите в положение RG, $VACT\ 1\ kHz$, IIPE- $IIEII\ A$, IIEIII IIEII IIEIII IIEIII

Измерение сопротивлений резисторов. Изменяя положения переключателей S2 (положения 1...3) и S3 (положения 1...10), поочередно измерьте сопротивления S30 резисторов, запишите результаты измерений. Рассчитайте статистические параметры, характеризующие разброс их значений: среднее значение сопротивления \overline{R} , среднее значение отклонения $\overline{\Delta R}$ от номинального значения S30 казанного на резисторе, и выборочную дисперсию S41.

$$\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_1; \qquad \overline{\Delta R} = \overline{R} - R_{\text{HOM}}; \qquad \sigma^2 = \frac{1}{m-1} \sum_{i=1}^{m} (R_i - \overline{R})^2,$$

где m — объем выборки; R_i — измеренное значение; $R_{\rm HOM}$ = 12 кОм. При этом выполните расчеты для m = 10 (первые десять измерений), m = 20 (первые двадцать измерений) и m = 30.

Значения $\Delta R/R_{\rm HOM}$ лежат в интервале $\delta_1 \leq \Delta R/R_{\rm HOM} \leq \delta_2$ (доверительный интервал) с доверительной вероятностью γ . Для определения δ_1 и δ_2 необходимо знать закон распределения случайной величины $\Delta R/R_{\rm HOM}$. При малом объеме выборки m он соответствует распределению Стьюдента, а при $m \to \infty$ асимптотически приближается к нормальному.

Определите границы доверительного интервала для трех значений m, пользуясь коэффициентом Стьюдента $t(\gamma, m)$, представляющим собой табулированное значение интеграла Стьюдента, %:

$$\delta_{1,2} = \left[\overline{\Delta R} \pm t(\gamma, m) \sqrt{\sigma^2 / m} \right] 100 / R_{\text{HOM}}.$$

Задайте $\gamma = 0.95$. Тогда при m = 10 значение t(0.95; 10) = 2.228; для m = 20 значение t(0.95; 20) = 2.086; для m = 30 значение t(0.95; 30) = 2.042. Результаты измерений и расчетов оформите в виде табл. 5.11.

5.4.2. Измерение емкостей конденсаторов прибором Е7-15

Переключатели $\Pi APAMETP$ установите в положение LC, $VACT\ 1\ kHz$, $\Pi PEДЕЛ\ A$, $CMEIЩЕНИЕ\ BЫКЛ$. Одно из гнезд C_{χ} с помощью соединительного кабеля подключите к гнездам $I,\ U$ прибора, другое — к $I',\ U'$.

Изменяя положения переключателей S2 (положения 1...3) и S1 (положения 1...10), поочередно измерьте емкости 30 конденсаторов. Произведите статистическую обработку результатов измерений по методике 5.4.1 для трех значений объема измерений: m=10 (первые десять измерений), m=20 (первые двадцать измерений) и m=30. Значения $C_{\text{ном}}=1200$ пФ. Результаты измерений расчетов оформите в виде табл. 5.12.

5.4.3. Измерение емкости и фактора потерь сегнетокерамического конденсатора

Соедините гнезда *I*, *U* и *I'*, *U'* с гнездами *СЕГНЕТОКЕРАМИЧЕСКИЙ КОНДЕНСАТОР* лабораторного макета. Переключатели *ПАРАМЕТР* установите в положение *LC*, *ЧАСТ 1 kHz*, *ПРЕДЕЛ А*, *СМЕЩЕНИЕ ВЫКЛ*. Запишите измеренное значение емкости конденсатора, схему измерения (последовательная или параллельная – в левом верхнем углу прибора E7-15). Спи-

шите также предел, на котором проводилось измерение. Для этого нажмите на короткий промежуток времени (менее 1,5 c) клавишу $\Pi PE \mathcal{L}E \mathcal{I}$ и спишите показания индикатора (цифра в пределах 1...8). При длительном нажатии клавиши $\Pi PE \mathcal{L}E \mathcal{I}$ происходит последовательное переключение предела измерения и для его восстановления нужно удерживать клавишу $\Pi PE \mathcal{L}E \mathcal{I}$ до появления символа A. После этого нужный предел измерения будет установлен автоматически. Для проверки установленного предела вновь на короткий промежуток времени нажмите клавишу $\Pi PE \mathcal{L}E \mathcal{I}$ и считайте установленное значение предела.

Установите клавишу $\Pi APAMETP$ в положение DQ. Измерьте значение фактора потерь и спишите значение предела измерения.

Повторите измерения емкости и фактора потерь конденсатора на частоте 100 Гц, для чего воспользуйтесь клавишей *ЧАСТ*. Не забывайте при этом записывать номер предела, на котором проводилось измерение и вид схемы измерения: последовательная или параллельная – в левом верхнем углу прибора Е7-15. Рассчитайте пределы допускаемого значения погрешности измерения емкости и фактора потерь на двух частотах. Для этого воспользуйтесь техническими характеристиками прибора, приведенными в 5.2. По измеренным значениям емкости и фактора потерь рассчитайте также значение сопротивления или проводимости потерь конденсатора для двух частот. Для этого воспользуйтесь материалами из 5.1.

Сегнетоэлектрический конденсатор является нелинейным элементом, его емкость зависит от приложенного к нему постоянного напряжения. Это объясняется изменением диэлектрической проницаемости сегнетоэлектрической керамики при ее поляризации. Повторите проведенные измерения при напряжении смещения, приложенном к конденсатору, равном 4,8 В. Для этого нажмите кнопку ВКЛ СМЕЩЕНИЕ. При измерении емкости конденсатора с подачей напряжения смещения следует учитывать, что постоянная заряда измеряемого конденсатора составляет десятки секунд и требуется время для установления показаний прибора.

При записи результатов измерений и их погрешностей необходимо, чтобы их низшие разряды были одинаковы, а в числовых значениях показателей точности было не более двух значащих цифр. При этом, если значение погрешности начинается с цифр 1 или 2, то округление погрешности производится до двух значащих цифр, а в противном случае – до одной цифры.

Результаты сведите в табл. 5.13.

5.4.4. Измерение индуктивности и фактора потерь катушки с ферромагнитным сердечником

Установите клавишу ПАРАМЕТР в положение DQ. Измерьте значение фактора потерь и спишите значение предела измерения.

Повторите измерения индуктивности и фактора потерь катушки на частоте 100 Γ ц при отключенном и включенном смещении, для чего воспользуйтесь клавишей VACT. Не забывайте при этом записывать номер предела, на котором проводилось измерение, и вид схемы измерения: последовательная или параллельная — в левом верхнем углу прибора E7-15. Рассчитайте пределы допускаемого значения погрешности измерения индуктивности и фактора потерь на двух частотах. Для этого воспользуйтесь техническими характеристиками прибора, приведенными в 5.2. По измеренным значениям индуктивности и фактора потерь рассчитайте также значение сопротивления потерь катушки, ее добротность. Воспользуйтесь для этого материалами из 5.1. Определите также погрешность определения добротности для двух частот по формуле $\Delta Q = \Delta D/D^2$.

Результаты сведите в табл. 5.14.

5.5. Содержание отчета

Отчет должен содержать структурную схему прибора, векторные диаграммы и основные расчетные соотношения; результаты измерений и расчетов по всем пунктам работы, оформленные в виде таблиц по установленной форме; краткие выводы и анализ полученных результатов.

5.6. Рекомендуемые формы таблиц

Таблица 5.11

Сопротивл	AIIIIA				i	
Сопротивл	СНИС	1	2		•••	30
R_i , кОм	1					
m = 10	$\overline{R} =$	$\overline{\Delta R}$	=	$\sigma^2 =$	$\delta_1 = \%$	$\delta_2 = \%$
m = 20	$\overline{R} =$	$\overline{\Delta R}$	=	$\sigma^2 =$	$\delta_1 = \%$	$\delta_2 = \%$
m = 30	$\overline{R} =$	$\overline{\Delta R}$	=	$\sigma^2 =$	$\delta_1 = \%$	$\delta_2 = \%$

Таблица 5.12

Емкость		i							
		1	2		30				
C_i , пФ									
m = 10	\overline{C} =	$\overline{\Delta C} =$	σ^2	$=$ δ_1 $=$ $\%$	$\delta_2 = \%$				
m = 20	$\overline{C} =$	$\overline{\Delta C} =$	σ^2	$= \qquad \qquad \delta_1 = \%$	$\delta_2 = \%$				
m = 30	$\overline{C} =$	$\overline{\Delta C} =$	σ^2	$= \qquad \qquad \delta_1 = \%$	$\delta_2 = \%$				

Таблица 5.13

Частота	С	Посл./ парал.	Предел	D	C'	ΔC	ΔD	R/G
1 кГц								
Смещ.								
выкл.								
1 кГц								
Смещ.								
вкл.								
100 Гц								
Смещ.								
выкл.								
100 Гц								
Смещ.								
вкл.								

Таблица 5.14

Частота	L	Посл./ парал.	Предел	D	L'	ΔL	ΔD	R	Q	ΔQ
1 кГц										
100 Гц										·

Примечание: не забывайте указывать во всех таблицах наряду с числовыми значениями единицы измерения физических величин.

5.7. Контрольные вопросы

1. Перечислите иммитансные параметры компонентов цепей и приведите соответствующие эквивалентные схемы.

- 2. Поясните назначение элементов структурной схемы измерителя иммитанса Е7-15.
- 3. Поясните принцип работы измерителя иммитанса Е7-15.
- 4. Какими параметрами оценивают разброс значений при измерении большой партии однотипных элементов? Поясните смысл и методику определения этих параметров.
- 5. Как определяются погрешности измерения емкости конденсатора и фактора потерь?
- 6. Как определяются погрешности измерения индуктивности катушки и ее добротности?
- 7. Как формируются и измеряются квадратурные компоненты напряжений, пропорциональных току, протекающему через исследуемый элемент, и напряжению на нем?
- 8. Какую роль выполняет фильтр нижних частот, какой вид имеет напряжение на его входе и выходе?
- 9. В чем состоит разница при измерении параметров высокоомных и низкоомных объектов?
- 10. Какие функции выполняет блок управления?
- 11. Выведите формулу для определения погрешности косвенного измерения добротности катушки ΔQ по измеренному фактору потерь D и рассчитанной погрешности его измерения ΔD .
- 12. Как зависят границы доверительного интервала от количества измерений и доверительной вероятности?
- 13. Изобразите эквивалентную схему сегнетоэлектрического конденсатора и объясните, почему его емкость зависит от приложенного к нему постоянного напряжения смещения.