An efficient sieving based secant method for sparse optimization problems with least-squares constraints

Defeng Sun

Department of Applied Mathematics

Beihang University, January 21, 2024

Joint work with Qian Li (PolyU), Yancheng Yuan (PolyU)

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Least-squares constrained optimization problem

We consider the following least-squares constrained optimization problem

$$\min_{x \in \mathbb{R}^n} \left\{ p(x) \mid ||Ax - b|| \le \varrho \right\},\tag{CP}(\varrho)$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given data, ϱ (noise level) is a given parameter satisfying $0 < \varrho < \|b\|$, and $p : \mathbb{R}^n \to (-\infty, +\infty]$ is a proper closed convex function with p(0) = 0.

We assume that $(CP(\varrho))$ admits an active solution.

Examples:

- ▶ The ℓ_1 penalty : $p(x) = ||x||_1$, $x \in \mathbb{R}^n$.
- ▶ The sorted ℓ_1 penalty : $p(x) = \sum_{i=1}^n \gamma_i |x|_{(i)}$, $x \in \mathbb{R}^n$ with given parameters $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_n \geq 0$ and $\gamma_1 > 0$, where $|x|_{(1)} \geq |x|_{(2)} \geq \cdots \geq |x|_{(n)}$.
- ► The fused lasso penalty, ...

The level set methods

▶ Method 1 [Van den Berg-Friedlander 2008, 2011] solves $(CP(\varrho))$ by finding a root of the following univariate nonlinear equation

$$\phi(\tau) = \varrho, \tag{E_{\phi}}$$

where $\phi(\cdot)$ is the value function of the following level-set problem

$$\phi(\tau) := \min_{x \in \mathbb{R}^n} \{ \|Ax - b\| \, | \, p(x) \le \tau \}, \quad \tau \ge 0.$$
 (1)

Feasibility issue with a dimension reduction technique applied to (1) ?

Method 2 [Li-Sun-Toh 2018] solves (CP(ρ)) by finding a root of the following equation:

$$\varphi(\lambda) := ||Ax(\lambda) - b|| = \varrho,$$
 (E_{\varphi})

where $x(\lambda) \in \Omega(\lambda)$ is any solution to

$$\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} ||Ax - b||^2 + \lambda p(x) \right\}, \quad \lambda > 0.$$
 (PLS(\lambda))

The secant method

Let $f: \mathbb{R} \to \mathbb{R}$ be a locally Lipschitz continuous function which is semismooth at a solution x^* to the equation f(x)=0.

The secant method :

Step 1. Given $x^0, x^{-1} \in \mathbb{R}$. Let k = 0.

Step 2. Let

$$x^{k+1} = x^k - \left(\frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}\right)^{-1} f(x^k).$$

Step 3. k := k + 1. Go to Step 2.

- ▶ If f is smooth, the secant method is superlinearly convergent with Q-order at least $(1+\sqrt{5})/2$ [Traub 1964] .
- ▶ If f is (strongly) semismooth, then the secant method is 3-step Q-superlinearly (Q-quadratically) convergent [Potra-Qi-Sun 1998].

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Properties of the value function $\varphi(\cdot)$

The dual of $(P_{LS}(\lambda))$ can be written as

$$\max_{y \in \mathbb{R}^m, u \in \mathbb{R}^n} \left\{ -\frac{1}{2} ||y||^2 + \langle b, y \rangle - \lambda p^*(u) | A^T y - \lambda u = 0 \right\}.$$
 (D_{LS}(\lambda))

We assume

$$\lambda_{\infty} := \Upsilon(A^T b \,|\, \partial p(0)) > 0 \tag{2}$$

and that for any $\lambda>0$, there exists $(y(\lambda),u(\lambda),x(\lambda))\in\mathbb{R}^m\times\mathbb{R}^n\times\mathbb{R}^n$ satisfying the following Karush–Kuhn–Tucker (KKT) system

$$x \in \partial p^*(u), \quad y = b - Ax, \quad A^T y - \lambda u = 0.$$
 (KKT)

Proposition

Assume that $\lambda_{\infty} > 0$. It holds that

- for all $\lambda \geq \lambda_{\infty}$, $y(\lambda) = b$ and $0 \in \Omega(\lambda)$;
- ▶ the value function $\varphi(\cdot)$ is nondecreasing on $(0,+\infty)$ and for any $\lambda_1 > \lambda_2 > 0$, $\varphi(\lambda_1) = \varphi(\lambda_2)$ implies $p(x(\lambda_1)) = p(x(\lambda_2))$, where for any $\lambda > 0$, $x(\lambda)$ is an optimal solution to $(P_{LS}(\lambda))$.

Properties of $\varphi(\cdot)$ when p is a gauge function

When $p(\cdot)$ is a gauge function, $p^*(\cdot)=\delta(\cdot\,|\,\partial p(0))$ and the optimization problem $(\mathcal{D}_{\mathrm{LS}}(\lambda))$ is equivalent to

$$\max_{y \in \mathbb{R}^m} \left\{ -\frac{1}{2} \|y\|^2 + \langle b, y \rangle \mid \lambda^{-1} y \in Q \right\}, \quad Q := \{ z \in \mathbb{R}^m \mid A^T z \in \partial p(0) \}.$$
 (3)

The unique solution to (3) is

$$y = -\lambda \Pi_Q(\lambda^{-1}b).$$

Proposition

Let $p(\cdot)$ be a gauge function. Assume that $\lambda_{\infty} > 0$. It holds that

- (i) the functions $y(\cdot)$ and $\varphi(\cdot)$ are locally Lipschitz continuous on $(0, +\infty)$;
- (ii) the function $\varphi(\cdot)$ is strictly increasing on $(0, \lambda_{\infty}]$;
- (iii) if the set Q is tame, then $\varphi(\cdot)$ is semismooth on $(0, +\infty)$;
- (iv) if Q is globally subanalytic, then $\varphi(\cdot)$ is γ -order semismooth on $(0,+\infty)$ for some $\gamma>0$.

Let $p(\cdot) = \|\cdot\|_*$ be the nuclear norm function defined on $\mathbb{R}^{d \times n}$. Then $Q = \{z \in \mathbb{R}^m \, | \, \mathcal{A}^*z \in \partial p(0) \}$ is a tame set and $\Pi_Q(\cdot)$ is semismooth.

Properties of $\varphi(\cdot)$ when p is a gauge function Cont.

Proposition

Let $p(\cdot)$ be a gauge function. Define $\Phi(x):=\frac{1}{2}\|Ax-b\|^2,\,x\in\mathbb{R}^n$ and

$$H(x,\lambda) := x - \operatorname{Prox}_p(x - \lambda^{-1} \nabla \Phi(x)), \quad (x,\lambda) \in \mathbb{R}^n \times \mathbb{R}_{++}.$$

For any $(x,\lambda) \in \mathbb{R}^n \times \mathbb{R}_{++}$, denote $\partial_x H(x,\lambda)$ as the Canonical projection of $\partial H(x,\lambda)$ onto \mathbb{R}^n . It holds that

- ▶ if $\Pi_{\partial p(0)}(\cdot)$ is strongly semismooth and $\partial_x H(\bar x, \bar \lambda)$ is nondegenerate at some $(\bar x, \bar \lambda)$ satisfying $H(\bar x, \bar \lambda) = 0$, then $y(\cdot)$ and $\varphi(\cdot)$ are strongly semismooth at $\bar \lambda$:
- ▶ if $p(\cdot)$ is further assumed to be polyhedral, the function $y(\cdot)$ is piecewise affine and $\varphi(\cdot)$ is strongly semismooth on \mathbb{R}_{++} .

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

The HS-Jacobian of $\varphi(\cdot)$

Assume that $p(\cdot)$ is a polyhedral gauge function. Then the set $\partial p(0)$ is polyhedral, which can be assumed to take the form of

$$\partial p(0) := \{ u \in \mathbb{R}^n \mid Bx \le d \} \tag{4}$$

for some $B \in \mathbb{R}^{q \times n}$ and $d \in \mathbb{R}^q$.

▶ We will derive the HS-Jacobian [Han-Sun 1997] of the function $\varphi(\cdot)$ to prove that the Clarke Jacobian of $\varphi(\cdot)$ at any $\lambda \in (0, \lambda_{\infty})$ is positive.

Let $\lambda \in (0,\lambda_\infty)$ be arbitrarily chosen. Let $(y(\lambda),u(\lambda))$ be the unique solution to

$$\max_{y \in \mathbb{R}^m, u \in \mathbb{R}^n} \left\{ -\frac{1}{2} \|y\|^2 + \langle b, y \rangle - \lambda p^*(u) \, | \, A^T y - \lambda u = 0 \right\} \tag{DLS(\lambda)}$$

with the parameter $\lambda.$ We denote $(y,u)=(y(\lambda),u(\lambda))$ to simplify our notation.

The HS-Jacobian of $\varphi(\cdot)$ Cont.

▶ There exists $x \in \Omega(\lambda)$ such that (y, u, x) satisfies the following KKT system :

$$u = \Pi_{\partial p(0)}(u+x), \quad y-b+Ax = 0, \quad A^T y - \lambda u = 0.$$
 (5)

$$u = \Pi_{\partial p(0)}(u+x) \Leftrightarrow u = \arg\min_{z \in \mathbb{R}^n} \left\{ \frac{1}{2} \|z - (u+x)\|^2 \, | \, Bz \le d \right\}. \tag{6}$$

► The augmented KKT system :

$$\begin{cases}
B^{T}\xi - x = 0, & Bu - d \le 0, \quad \xi \ge 0, \quad \xi^{T}(Bu - d) = 0, \\
y - b + Ax = 0, & A^{T}y - \lambda u = 0.
\end{cases}$$
(7)

Let $M(\lambda)$ be the set of Lagrange multipliers associated with (y,u) defined as

$$M(\lambda):=\left\{(x,\xi)\in\mathbb{R}^n\times\mathbb{R}^l\,|\,(y,u,x,\xi)\text{ satisfies (7)}\right\}.$$

The HS-Jacobian of $\varphi(\cdot)$ Cont.

Since $x = B^T \xi$, we obtain the following system by eliminating the variable x in (7):

$$\begin{cases}
Bu-d \le 0, & \xi \ge 0, \quad \xi^T (Bu-d) = 0, \\
y-b+\widehat{A}\xi = 0, \quad A^T y - \lambda u = 0,
\end{cases}$$
(8)

where $\widehat{A} = AB^T \in \mathbb{R}^{m \times q}$. Denote

$$\widehat{M}(\lambda) := \left\{ \xi \in \mathbb{R}^q \,|\, (y, u, \xi) \text{ satisfies (8)} \right\}. \tag{9}$$

Denote the active set of u as

$$I(u) := \{ i \in l \mid B_i : u - d_i = 0 \}.$$
(10)

For any $\lambda \in (0, \lambda_{\infty})$, we define

$$\mathcal{B}(\lambda) := \left\{ K \subseteq [q] \mid \exists \ \xi \in \widehat{M}(\lambda) \text{ s.t. } \operatorname{supp}(\xi) \subseteq K \subseteq I(u) \text{ and } \operatorname{rank}(\widehat{A}_{:K}) = |K| \right\}. \tag{11}$$

The HS-Jacobian of $\varphi(\cdot)$ Cont.

▶ Define the HS-Jacobian of $y(\cdot)$ as

$$\mathcal{H}(\lambda) := \left\{ h^K \in \mathbb{R}^m \mid h^K = \widehat{A}_{:K} (\widehat{A}_{:K}^T \widehat{A}_{:K})^{-1} d_K, \ K \in \mathcal{B}(\lambda) \right\}, \quad \lambda \in (0, \lambda_\infty),$$
(12)

where d_K is the subvector of d indexed by K. For notational convenience, for any $\lambda \in (0, \lambda_{\infty})$ and $K \in \mathcal{B}(\lambda)$, denote

$$P^{K} = I - \widehat{A}_{:K}(\widehat{A}_{:K}^{T}\widehat{A}_{:K})^{-1}\widehat{A}_{:K}^{T}.$$
(13)

Define

$$\mathcal{V}(\lambda) := \left\{ t \in \mathbb{R} \, | \, t = \lambda \|h\|^2 / \varphi(\lambda), \, \, h \in \mathcal{H}(\lambda) \right\}, \quad \lambda \in \mathcal{D}, \tag{14}$$

where $\mathcal{D} = \{\lambda \in (0, \lambda_{\infty}) \mid \varphi(\lambda) > 0\}.$

Nondegeneracy of $\partial \varphi(\bar{\lambda})$ for any $\bar{\lambda} \in (0, \lambda_{\infty})$

Lemma

Let $\bar{\lambda} \in (0, \lambda_{\infty})$ be arbitrarily chosen. It holds that

$$y(\bar{\lambda}) = P^K b + \bar{\lambda} h^K, \quad \forall h^K \in \mathcal{H}(\bar{\lambda}). \tag{15}$$

Moreover, there exists a positive scalar ς such that $\mathcal{N}(\bar{\lambda}) := (\bar{\lambda} - \varsigma, \bar{\lambda} + \varsigma) \subseteq (0, \lambda_{\infty})$ and for all $\lambda \in \mathcal{N}(\bar{\lambda})$,

- \blacktriangleright $\mathcal{B}(\lambda) \subset \mathcal{B}(\bar{\lambda})$ and $\mathcal{H}(\lambda) \subset \mathcal{H}(\bar{\lambda})$;
- $y(\lambda) = y(\bar{\lambda}) + (\lambda \bar{\lambda})h, \quad \forall h \in \mathcal{H}(\lambda).$

Theorem

For any $\bar{\lambda} \in (0, \lambda_{\infty})$, it holds that

- for any positive integer $k \geq 1$, the function $\varphi(\cdot)$ is piecewise C^k in an open interval containing $\bar{\lambda}$;
- ▶ all $v \in \partial \varphi(\bar{\lambda})$ are positive.

Nondegeneracy of HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions

Proposition

Suppose that $p(\cdot)$ is a polyhedral gauge function and $\partial p(0)$ has the expression as in (4). Let $\bar{\lambda} \in (0, \lambda_{\infty})$ be arbitrarily chosen. Let $\mathcal{B}(\bar{\lambda})$ and $\mathcal{V}(\bar{\lambda})$ be the sets defined as in (11) and (14) for $\lambda = \bar{\lambda}$. If $d_K \neq 0$ for all $K \in \mathcal{B}(\bar{\lambda})$, then v > 0 for all $v \in \mathcal{V}(\bar{\lambda})$. Moreover, $d_K \neq 0$ for all $K \in \mathcal{B}(\bar{\lambda})$ when $p(\cdot) = \|\cdot\|_1$.

▶ This proposition shows that for the least-squares constrained Lasso problem, $\partial_{\mathrm{HS}} \varphi(\bar{\lambda})$ is positive for any $\bar{\lambda} \in (0, \lambda_{\infty})$.

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

The convergence properties of the secant method

Let $f:\mathbb{R} \to \mathbb{R}$ be a locally Lipschitz continuous function which is semismooth at a solution x^* to the following equation

$$f(x) = 0. (16)$$

The secant method :

Step 1. Given $x^0, x^{-1} \in \mathbb{R}$. Let k = 0.

Step 2. Let

$$x^{k+1} = x^k - \left(\frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}\right)^{-1} f(x^k).$$

Step 3. k := k + 1. Go to step 2.

Denote

$$\bar{d}^- := -f'(\bar{x}; -1)$$
 and $\bar{d}^+ := f'(\bar{x}; 1),$ (17)

The convergence properties of the secant method

Proposition

Suppose that $f:\mathbb{R} \to \mathbb{R}$ is semismooth at a solution x^* to (16). Let d^- and d^+ be the lateral derivatives of f at x^* as defined in (17). If d^- and d^+ are both positive (or negative), then there are two neighborhoods $\mathcal U$ and $\mathcal N$ of x^* , $\mathcal U \subseteq \mathcal N$, such that for $x^{-1}, x^0 \in \mathcal U$, The secant method is well defined and produces a sequence of iterates $\{x^k\}$ such that $\{x^k\} \subseteq \mathcal N$. The sequence $\{x^k\}$ converges to x^* 3-step Q-superlinearly, i.e., $|x^{k+3}-x^*| = o(|x^k-x^*|)$. Moreover, it holds that

- (i) $|x^{k+1} x^*| \le \frac{|d^+ d^- + o(1)|}{\min\{|d^+|, |d^-|\} + o(1)|} |x^k x^*|$ for $k \ge 0$;
- (ii) if $\alpha:=\frac{|d^+-d^-|}{\min\{|d^+|,|d^-|\}}<1$, then $\{x^k\}$ converges to x^* Q-linearly with Q-factor α ;
- (iii) if f is γ -order semismooth at x^* for some $\gamma>0$, then $|x^{k+3}-x^*|=O(|x^k-x^*|^{1+\gamma})$ for sufficiently large k; the sequence $\{x^k\}$ converges to x^* 3-step quadratically if f is strongly semismooth at x^* .
 - ▶ When $|d^+ d^-|$ is small and f is strongly semimsooth, we know from the above proposition that the secant method converges with a fast Q-linear rate and 3-step Q-quadratic rate.

A numerical example for the secant method

We test the secant method with $x^{-1}=0.01$ and $x^0=0.005$ for finding the zero $x^{\ast}=0$ of

$$f(x) = \begin{cases} x(x+1) & \text{if } x < 0, \\ -\beta x(x-1) & \text{if } x \ge 0, \end{cases}$$
 (18)

where β is chosen from $\{1.1, 1.5, 2.1\}$.

- Case I : $\beta = 1.1, d^+ = 1.1, d^- = 1$, and $\alpha = 0.1$;
- Case II : $\beta = 1.5, d^+ = 1.5, d^- = 1, \text{ and } \alpha = 0.5;$
- Case III : $\beta = 2.1, \ d^+ = 2.1, \ d^- = 1, \ \text{and} \ \alpha = 1.1.$

Table – The numerical performance of finding the zero of (18).

Case	Iter	1	2	3	4	5	6	7	8
	x	-5.1e-5	-4.3e-6	2.2e-10	-2.2e-11	-1.8e-12	4.1e-23	-4.1e-24	-3.4e-25
- II	x	-5.1e-5	-1.7e-5	8.4e-10	-4.2e-10	-1.1e-10	4.5e-20	-2.2e-20	-5.6e-21
III	x	-5.1e-5	-2.6e-5	1.3e-9	-1.5e-9	-5.1e-10	7.4e-19	-8.2e-19	-2.8e-19

The convergence properties of the secant method cont.

Theorem

Let x^* be a solution to (16). Assume that $\partial f(x^*)$ is a singleton and nondegenerate. It holds that

- (i) if f is semismooth at x^* , the sequence $\{x^k\}$ generated by the secant method converges to x^* Q-superlinearly;
- (ii) if f is strongly semismooth at x^* , the sequence $\{x^k\}$ generated by the secant method converges to x^* Q-superlinearly with Q-order $(1+\sqrt{5})/2$.

A function satisfying the assumptions in (ii) of the above theorem is not necessarily piecewise smooth. For example

$$f(x) = \begin{cases} \kappa x, & \text{if } x < 0, \\ -\frac{1}{3} \left(\frac{1}{4^k}\right) + (1 + \frac{1}{2^k})x, & \text{if } x \in \left[\frac{1}{2^{k+1}}, \frac{1}{2^k}\right] \quad \forall k \ge 0, \\ 2x - \frac{1}{3} & \text{if } x > 1, \end{cases}$$
 (19)

where κ is a given constant.

A numerical example for the secant method cont.

Set $\kappa=1$. Note that $x^*=0$ is the unique solution of (19). In the secant method, we choose $x^0=0.5$ and $x^{-1}=x^0+0.1\times f(0.5)^2=0.545$. The numerical results are shown in the following table.

Table – The numerical performance of the secant method on finding the zero of (19).

		· · · ·		_0.0 0. (_0
3	4 5	6	7	8
4.0e-3 1.0	e-4 2.7e-7	2.0e-11	4.0e-18	6.1e-29
4.0e-3 1.0	e-4 2.7e-7	2.0e-11	4.0e-18	6.1e-29
	3 4.0e-3 1.0	3 4 5 4.0e-3 1.0e-4 2.7e-7	3 4 5 6 4.0e-3 1.0e-4 2.7e-7 2.0e-11	3 4 5 6 7 4.0e-3 1.0e-4 2.7e-7 2.0e-11 4.0e-18 4.0e-3 1.0e-4 2.7e-7 2.0e-11 4.0e-18

We can observe that the generated sequence $\{x_k\}$ converges to the solution $x^*=0$ superlinearly with Q-order $(1+\sqrt{5})/2$.

A globally convergent secant method for $(CP(\varrho))$

The globally convergent secant method for $(CP(\varrho))$:

- ▶ Step 1. Given $\mu \in (0,1)$, $\lambda_{-1},\lambda_0,\lambda_1$ in $(0,\lambda_\infty)$ satisfying $\varphi(\lambda_0) > \varrho$, and $\varphi(\lambda_{-1}) < \varrho$. Set $i=0,\,\underline{\lambda}=\lambda_{-1}$, and $\overline{\lambda}=\lambda_0$. Let k=0.
- ► Step 2. Compute

$$\hat{\lambda}_{k+1} = \lambda_k - \frac{\lambda_k - \lambda_{k-1}}{\varphi(\lambda_k) - \varphi(\lambda_{k-1})} (\varphi(\lambda_k) - \varrho).$$
 (20)

- ▶ Step 3. If $\hat{\lambda}_{k+1} \in [\lambda_{-1}, \lambda_0]$, then continue, else, go to Step 4.
 - 1. Compute $x(\hat{\lambda}_{k+1})$ and $\varphi(\hat{\lambda}_{k+1})$. Set i = i+1.
 - 2. If either (i) or (ii) holds: (i) $i \geq 3$ and $|\varphi(\hat{\lambda}_{k+1}) \varrho| \leq \mu |\varphi(\lambda_{k-2}) \varrho|$ (ii) i < 3, then set $\lambda_{k+1} = \hat{\lambda}_{k+1}$, $x(\lambda_{k+1}) = x(\hat{\lambda}_{k+1})$; else go to Step 4.
 - 3. Go to Step 5.
- ▶ Step 4. If $\varphi(\hat{\lambda}_{k+1}) > \varrho$, then set $\overline{\lambda} = \min\{\overline{\lambda}, \hat{\lambda}_{k+1}\}$; else set $\underline{\lambda} = \max\{\underline{\lambda}, \hat{\lambda}_{k+1}\}$. Set $\lambda_{k+1} = 1/2(\overline{\lambda} + \underline{\lambda})$. Compute $x(\lambda_{k+1})$ and $\varphi(\lambda_{k+1})$. Set i = 0.
- Step 5. if $\varphi(\lambda_{k+1}) > \varrho$, then set $\overline{\lambda} = \min\{\overline{\lambda}, \lambda_{k+1}\}$; else set $\underline{\lambda} = \max\{\underline{\lambda}, \lambda_{k+1}\}$.
- ▶ Step 6. k = k + 1. Go to Step 2.

The convergence properties of the globally convergent secant method

Theorem

Let $p(\cdot)$ be a gauge function. Denote λ^* as the solution to (E_{φ}) . Then the globally convergent secant method is well defined and the sequences $\{\lambda_k\}$ and $\{x(\lambda_k)\}$ converge to λ^* and a solution $x(\lambda^*)$ to $(\operatorname{CP}(\varrho))$, respectively. Denote $e_k=\lambda_k-\lambda^*$ for all $k\geq 1$. Suppose that both d^+ and d^- of $\varphi(\cdot)$ at λ^* as defined in (17) are positive, the following properties hold for all sufficiently large integer k:

- (i) If $\varphi(\cdot)$ is semismooth at λ^* , then $|e_{k+3}| = o(|e_k|)$;
- (ii) if $\varphi(\cdot)$ is γ -order semismooth at λ^* for some $\gamma > 0$, then $|e_{k+3}| = O(|e_k|^{1+\gamma})$;
- (iii) if $\partial \varphi(\lambda^*)$ is a singleton and $\varphi(\cdot)$ is semismooth at λ^* , then $\{e_k\}$ converges to zero Q-superlinearly; if $\partial \varphi(\lambda^*)$ is a singleton and $\varphi(\cdot)$ is strongly semismooth at λ^* , then $\{e_k\}$ converges to zero Q-superlinearly with Q-order $(1+\sqrt{5})/2$.

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot)$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

The adaptive sieving technique [Yuan-Lin-Sun-Toh 2023]

Consider the problem

$$\min_{x \in \mathbb{R}^n} \left\{ \Phi(x) + P(x) \right\},\tag{21}$$

where $\Phi:\mathbb{R}^n\to\mathbb{R}$ is a continuously differentiable convex function, and $P:\mathbb{R}^n\to(-\infty,+\infty]$ is a closed proper convex function. We define the proximal residual function $R:\mathbb{R}^n\to\mathbb{R}^n$ as

$$R(x) := x - \operatorname{Prox}_{P}(x - \nabla \Phi(x)), \quad x \in \mathbb{R}^{n}.$$
(22)

Algorithm AS for (21) (simplified form):

- ▶ Step 1. Given an initial index set $I_0 \subseteq [n]$, a given tolerance $\epsilon \geq 0$ and a given positive integer k_{\max} . Find an approximate solution x^0 to (21) with the constraint $x_{I_0^c} = 0$. Let s = 0.
- ▶ Step 2. Create $J_{s+1} = \left\{j \in I_s^c \mid (R(x^s))_j \neq 0\right\}$. If $J_{s+1} = \emptyset$, let $I_{s+1} \leftarrow I_s$; otherwise, set a integer $0 < k \leq \min\{|J_{s+1}|, k_{\max}\}$ and define

$$\widehat{J}_{s+1} = \big\{ j \in J_{s+1} \bigm| |(R(x^s))_j| \text{ is among the first } k \text{ largest values in } \{|(R(x^s))_i|\}_{i \in J_{s+1}} \Big\}.$$

Update $I_{s+1} \leftarrow I_s \cup \widehat{J}_{s+1}$.

- ▶ Step 3. Find an approximate solution x^{s+1} to (21) with the constraint $x_{I_{s+1}^c} = 0$.
- ▶ Step 5. Set s = s + 1. Go to Step 2.

SMOP : A root finding based secant method for $(CP(\varrho))$:

- ▶ Step 1. Given $0 < \underline{\lambda} < \lambda_1 < \lambda_0 \le \overline{\lambda} \le \lambda_\infty$ satisfying $\varphi(\underline{\lambda}) < \varrho < \varphi(\overline{\lambda})$. Call Algorithm AS with $I_0 = \emptyset$ to solve $(P_{LS}(\lambda))$ with $\lambda = \lambda_0$ and obtain the solution $x(\lambda_0)$. Compute $\varphi(\lambda_0)$. Let k = 1.
- ▶ Step 2. Set $I_0^k = \{i \in [n] \mid (x(\lambda_{k-1}))_i \neq 0\}.$
- ▶ Step 3. Call Algorithm AS with $I_0 = I_0^k$ to solve ($P_{LS}(\lambda)$) with $\lambda = \lambda_k$ to obtain $x(\lambda_k)$ and compute $\varphi(\lambda_k)$.
- ▶ Step 4. Generate λ_{k+1} by the globally convergent secant method.
- ▶ Step 5. Set k = k + 1. Go to Step 2.

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

Numerical experiments

Table - Statistics of the UCI test instances.

Problem idx	Name	m	n	Sparsity(A)	norm(b)
1	E2006.train	16087	150360	0.0083	452.8605
2	log1p.E2006.train	16087	4272227	0.0014	452.8605
3	E2006.test	3308	150358	0.0092	221.8758
4	log1p.E2006.test	3308	4272226	0.0016	221.8758
5	pyrim5	74	201376	0.5405	5.7768
6	triazines4	186	635376	0.6569	9.1455
7	abalone7	4177	6335	0.8510	674.9733
8	bodyfat7	252	116280	1.0000	16.7594
9	housing7	506	77520	1.0000	547.3813
10	mpg7	392	3432	0.8733	489.1889
11	space_ga9	3107	5005	1.0000	33.9633

Table – The values of c to obtain $\varrho = c \|b\|$ when $p(\cdot) = \|\cdot\|_1$.

idx	1	2	3	4	5	6	7	8	9	10	11
								0.001 107			0.15 168

ℓ_1 penalty

Table – The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and ADMM (A4), in solving ${\sf CP}(\varrho)$ with $\varrho=c\|b\|$.

	time (s)	η	outermost iter						
idx	A1 A2 A3 A4	A1 A2 A3 A4	A1 A2 A3 A4						
	$stoptol = 10^{-4}$								
1	1.91+0 2.21+2 3.54+2 2.39+2	2.4-5 4.9-5 1.0-4 1.0-4	24 29 7342 1048						
2	2.11+0 5.19+2 1.46+3 7.00+2	3.1-6 7.8-5 9.0-5 8.7-5	12 16 3445 1470						
3	6.09-1 5.91+1 3.22+2 9.98+1	9.4-6 2.6-5 1.0-4 1.0-4	24 30 21094 5374						
4	1.63+0 2.09+2 7.21+2 9.96+1	1.2-5 7.3-5 9.5-5 1.3-5	13 15 3174 854						
5	2.50-1 1.22+1 9.99+0 5.92+0	6.8-6 5.4-6 7.4-5 6.9-5	6 14 498 274						
6	3.50+0 1.81+2 3.36+2 1.06+2	5.6-6 4.4-5 9.1-5 7.5-5	9 17 1987 571						
7	1.59+0 6.88+0 1.56+1 4.73+0	1.7-6 8.6-6 1.0-4 1.8-5	15 19 1030 174						
8	4.53-1 9.11+0 9.11+0 8.53+0	2.8-5 5.9-5 9.8-5 9.9-5	15 18 539 575						
9	5.16-1 9.13+0 1.30+1 5.94+0	2.6-5 8.6-5 1.0-4 5.2-5	10 14 515 310						
10	9.38-1 1.66+0 1.95+0 1.72-1	4.6-5 4.6-6 9.8-5 8.8-5	16 24 8424 441						
11	3.66+0 5.47+0 9.05+1 4.39+1	3.1-6 5.0-5 9.6-5 1.0-4	20 20 13908 3457						
		$stoptol = 10^{-6}$							
1	1.95+0 3.24+2 1.52+3 5.10+2	2.5-7 6.1-8 9.9-7 1.0-6	25 36 28172 2441						
2	2.25+0 6.72+2 1.76+3 3.47+3	1.1-7 3.5-8 9.2-7 9.9-7	13 24 4155 8725						
3	$6.71-1 \mid 7.46+1 \mid 2.12+3 \mid 2.17+2$	1.1-8 2.3-7 <u>6.2-6</u> 1.0-6	25 35 <u>100000</u> 11848						
4	1.75+0 3.45+2 1.04+3 5.75+2	1.3-9 5.7-7 7.2-7 9.9-7	14 26 4584 5570						
5	2.50-1 1.63+1 4.63+1 6.69+2	9.9-8 6.0-8 9.1-7 4.8-7	7 19 2468 32568						
6	4.22+0 2.14+2 8.31+2 3.50+3	5.4-7 4.0-7 8.2-7 9.5-7	10 23 5578 19525						
7	1.58+0 9.24+0 7.39+1 4.20+1	5.5-9 8.3-8 9.0-7 6.4-7	16 25 4686 1769						
8	4.69-1 1.18+1 9.24+0 1.17+1	1.9-9 9.6-7 2.7-7 9.6-7	17 22 544 798						
9	5.31-1 1.46+1 3.89+1 6.03+1	2.4-7 8.4-8 4.0-7 6.4-7	11 24 1539 3293						
10	1.08+0 2.19+0 3.66+1 4.37-1	2.6-7 1.3-7 9.8-7 1.0-6	17 30 69836 1122						
11	3.70+0 8.97+0 9.17+1 1.18+2	1.8-7 3.5-7 8.5-7 1.0-6	21 28 14074 9341						

The ratio of computation time between BMOP (B) and NMOP (N) to the computation time of SMOP in solving $(CP(\varrho))$

BMOP : Bisection method only for root-finding. NMOP : Bisection method and the semismooth Newton method for root-finding.

Generating a solution path for $(CP(\varrho))$.

Fig. stoptol = 10^{-6}

Fig. stoptol = 10^{-8}

sorted ℓ_1 penalty

Table – Left : The test performance of SMOP in solving (CP(ϱ)) with $\varrho=c\|b\|$. Right : The computation time of Newt-ALM (NALM) and ADMM in solving a single (P_{LS}(λ)) with λ setting to be the solution λ^* to (E_φ). The tolerance is set to 10^{-6} . In the table, No. P_{LS}(λ) represents the number of P_{LS}(λ) solved by SMOP in solving a single (CP(ϱ)).

F	CD	/ _ \

For $C\Gamma(\varrho)$									
			perfor	mance of	SMOP				
	idx	С	nnz(x)	η	time (s)	No. $\mathrm{P_{LS}}(\lambda)$			
	2	0.15	3	1.1-7	3.8	8			
	4	0.1	3	6.0-7	4.5	10			
	5	0.1	95	1.6-7	0.7	7			
	6	0.15	409	1.9-7	3.7	9			
setting	7	0.23	11	8.8-7	0.7	10			
ett	8	0.002	18	2.4-9	0.7	14			
ĬŎ.	9	0.15	91	4.5-8	0.9	10			
	10	0.08	122	3.5-9	0.6	16			
	11	0.18	26	1.4-8	0.4	15			
	1	0.1	316	1.9-7	23.0	25			
	2	0.1	100	9.8-8	11.9	13			
	3	0.08	234	1.7-8	5.3	25			
	4	0.08	384	1.9-8	16.4	15			
2	5	0.05	91	6.1-7	0.8	6			
.u	6	0.1	844	3.1-7	7.9	10			
setting 2	7	0.2	45	2.4-7	3.1	16			
	8	0.001	94	2.6-7	1.3	15			
	9	0.1	148	2.4-7	1.8	12			
	10	0.05	369	5.6-8	5.2	18			
	11	0.15	175	1.5-7	9.5	19			

For $P_{LS}(\lambda^*)$

	LD.	
time	e (s)	η_l
NALM	ADMM	ADMM
9.1 10.6 5.4 21.9 0.7 4.1 3.3 0.4 0.5	1570.3 2305.1 201.5 1221.8 107.5 296.3 353.2 10.2 57.4	1.0-6 9.4-7 3.0-3 4.4-3 8.3-7 6.9-4 2.1-5 3.0-6 9.1-8
16.3 20.4 21.5 26.1 7.4 46.3 2.6 10.0 11.5 1.5 9.5	283.1 3091.6 135.6 2581.2 202.1 1304.4 238.8 299.3 359.4 10.9 141.2	1.1-1 1.8-2 2.8-2 4.2-2 3.5-4 2.0-2 3.0-3 4.9-2 1.2-4 7.3-3 1.5-2

ℓ_1 penality cont.

Table – Comparison of computation time : SMOP to solve $\mathsf{CP}(\varrho)$ vs. SSNAL and the smoothing Newton algorithm (SmthN) to solve reduced $\mathsf{P}_{\mathrm{LS}}(\lambda^*)$ for some large scale instances. In this test, the stopping tolerance is 10^{-6} .

	id×	reduced n	SMOP	SSNAL	SmthN	SMOP/SSNAL	SMOP/SmthN
	1	339	1.95	0.70	0.12	2.78	16.02
l	2	110	2.25	0.98	0.03	2.29	72.58
Test I	3	247	0.67	0.09	0.01	7.14	61.00
	4	405	1.75	0.78	0.08	2.23	21.81
	1	796	2.03	2.36	0.14	0.86	14.50
	2	629	7.84	11.07	0.65	0.71	11.99
Test II	3	517	0.77	0.14	0.03	5.50	24.84
	4	758	3.17	1.25	0.31	2.54	10.33

The reduced $P_{LS}(\lambda^*)$:

- 1. Obtain the non-zero index set I of the solution generated by SSNAL for the original problem ${\rm P_{LS}}(\lambda^*).$
- 2. Remove all the columns from matrix A that correspond to the complement of index set I.

Least-squares constrained optimization problem

Level-set : Properties of the value function $\varphi(\cdot)$

The HS-Jacobian of $\varphi(\cdot)$ for polyhedral gauge functions $p(\cdot$

The convergence properties of the secant method

Adaptive sieving

Numerical experiments

- When $p(\cdot)$ is a gauge function, we prove that $\varphi(\cdot)$ is (strongly) semismooth for a wide class of instances of $p(\cdot)$.
- ▶ When $p(\cdot)$ is a polyhedral gauge function, we show that $\varphi(\cdot)$ is locally piecewise C^k on $(0,\lambda_\infty)$ for any integer $k\geq 1$; and for any $\bar{\lambda}\in(0,\lambda_\infty)$, v>0 for any $v\in\partial\varphi(\bar{\lambda})$.
- ▶ Under the assumption that $p(\cdot)$ is a polyhedral gauge function, we show that the secant method converges at least 3-step Q-quadratically for solving (E_{φ}) . Moreover, if $\partial_{\mathrm{B}}\varphi(\lambda^*)$ is a singleton, we further prove that the secant method converges superlinearly with Q-order $(1+\sqrt{5})/2$.
- ▶ We target to address the computational challenges for solving $(CP(\varrho))$: Level-set approach + Secant method + adaptive sieving ("nonlinear column generation").

Reference

Qian Li, Defeng Sun, and Yancheng Yuan. "An efficient sieving based secant method for sparse optimization problems with least-squares constraints." arXiv preprint arXiv:2308.07812 (2023).

Thank you for your attention!

[Van den Berg-Friedlander 2008] Ewout Van den Berg, and Michael P. Friedlander. "Probing the Pareto frontier for basis pursuit solutions." Siam journal on scientific computing 31.2 (2008): 890-912.

[Van den Berg-Friedlander 2011] Ewout Van den Berg, and Michael P. Friedlander. "Sparse optimization with least-squares constraints." SIAM Journal on Optimization 21.4 (2011): 1201-1229.

[Li-Sun-Toh 2018] Xudong Li, Defeng Sun, and Kim-Chuan Toh. "On efficiently solving the subproblems of a level-set method for fused lasso problems." SIAM Journal on Optimization 28.2 (2018): 1842-1866.

[Traub 1964] Joseph Frederick Traub. Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs, 1964.

[Potra-Qi-Sun 1998] Florian A. Potra, Liqun Qi, and Defeng Sun. "Secant methods for semismooth equations." Numerische Mathematik 80 (1998): 305-324.

[Han-Sun 1997] Jiye Han, and Defeng Sun. "Newton and quasi-Newton methods for normal maps with polyhedral sets." Journal of optimization Theory and Applications 94.3 (1997): 659-676.

[Yuan-Lin-Sun-Toh 2023] Yancheng Yuan, Meixia Lin, Defeng Sun, and Kim-Chuan Toh. "Adaptive sieving: A dimension reduction technique for sparse optimization problems." arXiv preprint arXiv:2306.17369 (2023).