Design and Evaluation of Two Spherical Robots for 3D Mapping*

Marawan Khalil, Fabian Arzberger, and Andreas Nüchter

Computer Science XVII – Robotics

Julius-Maximilians-University

Würzburg, Germany

marawan.khalil@stud-mail.uni-wuerzburg.de, {fabian.arzberger, andreas.nuechter}@uni-wuerzburg.de

Abstract—This document is a model and instructions for Lagarantees. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert.

I. Introduction

In recent decades, robotics has evolved from a niche discipline into a transformative technology impacting a wide range of industries, including manufacturing, healthcare, space exploration, and personal assistance. Among the diverse types of robotic systems, spherical robots have recently begun to attract increased attention from researchers. These robots represent a relatively unconventional design compared to more familiar, rotation-restricted systems such as UAVs, handheld devices, and wheeled vehicles.

Unlike traditional wheeled or legged robots, spherical robots offer several key advantages, including omnidirectional movement, enhanced maneuverability in unpredictable environments, and improved protection for internal components. These features make them well-suited for a variety of applications such as surveillance, inspection, environmental monitoring in hazardous conditions, and search-and-rescue operations. Their spherical design enables them to access environments that are difficult or impossible for other robotic systems to navigate, such as steep tunnels, underground mines, narrow passageways, and other confined or dangerous spaces. The sealed outer shell of a spherical robot provides full protection against dust, hazardous chemicals, liquids, and external impacts. Recent research has focused on developing more robust motion mechanisms [1]-[3] and incorporating technologies like LiDAR for 3D mapping, further expanding their capabilities in complex and unpredictable environments [4]-[6].

This thesis focuses on the development and evaluation of two custom-built spherical robots equipped with advanced LiDAR-based SLAM systems. To address the challenges of autonomous navigation in compact and dynamic environments, the robots integrate Fast-LIO2 and Fast-LIVO2—state-of-the-art LiDAR-inertial odometry algorithms known for their real-time performance and accuracy. Section 2 reviews recent ad-

vancements in spherical robot designs and the latest developments in SLAM, with particular emphasis on LiDAR-inertial methods. Section 3 presents the hardware Implementation of the two spherical robots developed in this research. Section 4 describes the software integration, detailing the implementation of Fast-LIO2 and Fast-LIVO2, as well as the motion control mechanisms used for the actuated sphere. Finally, Section 5 provides a comprehensive evaluation, comparing the proposed systems with existing solutions in terms of physical performance and mapping quality.

A. Maintaining the Integrity of the Specifications

II. STATE OF THE ART

A. Abbreviations and Acronyms

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as "3.5-inch disk drive"
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m²" or "webers per square meter", not "webers/m²".
 Spell out units when they appear in text: ". . . a few henries", not ". . . a few H".
- Use a zero before decimal points: "0.25", not ".25". Use "cm³", not "cc".)

C. Equations

Number equations consecutively. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in:

$$a + b = \gamma \tag{1}$$

Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(1)", not "Eq. (1)" or "equation (1)", except at the beginning of a sentence: "Equation (1) is . . ."

D. \(\mathbb{E}T_FX\)-Specific Advice

Please use "soft" (e.g., \eqref{Eq}) cross references instead of "hard" references (e.g., (1)). That will make it possible to combine sections, add equations, or change the order of figures or citations without having to go through the file line by line.

Please don't use the {eqnarray} equation environment. Use {align} or {IEEEeqnarray} instead. The {eqnarray} environment leaves unsightly spaces around relation symbols.

Please note that the {subequations} environment in LATEX will increment the main equation counter even when there are no equation numbers displayed. If you forget that, you might write an article in which the equation numbers skip from (17) to (20), causing the copy editors to wonder if you've discovered a new method of counting.

BIBT_EX does not work by magic. It doesn't get the bibliographic data from thin air but from .bib files. If you use BIBT_EX to produce a bibliography you must send the .bib files.

LATEX can't read your mind. If you assign the same label to a subsubsection and a table, you might find that Table I has been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a \label command before the command that updates the counter it's supposed to be using, the label will pick up the last counter to be cross referenced instead. In particular, a \label command should not go before the caption of a figure or a table.

Do not use \nonumber inside the {array} environment. It will not stop equation numbers inside {array} (there won't be any anyway) and it might stop a wanted equation number in the surrounding equation.

E. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum μ_0 , and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o".
- In American English, commas, semicolons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset", not an "insert". The word alternatively is preferred to the word "alternately" (unless you really mean something that alternates).

- Do not use the word "essentially" to mean "approximately" or "effectively".
- In your paper title, if the words "that uses" can accurately replace the word "using", capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect", "complement" and "compliment", "discreet" and "discrete", "principal" and "principle".
- Do not confuse "imply" and "infer".
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al.".
- The abbreviation "i.e." means "that is", and the abbreviation "e.g." means "for example".

An excellent style manual for science writers is [?].

F. Authors and Affiliations

The class file is designed for, but not limited to, six authors. A minimum of one author is required for all conference articles. Author names should be listed starting from left to right and then moving down to the next line. This is the author sequence that will be used in future citations and by indexing services. Names should not be listed in columns nor group by affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization).

G. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include Acknowledgments and References and, for these, the correct style to use is "Heading 5". Use "figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract", will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced.

H. Figures and Tables

a) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert

TABLE I TABLE TYPE STYLES

Table	Table Column Head		
Head	Table column subhead	Subhead	Subhead
copy	More table copy ^a		

^aSample of a Table footnote.

Fig. 1. Example of a figure caption.

figures and tables after they are cited in the text. Use the abbreviation "Fig. 1", even at the beginning of a sentence.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity "Magnetization", or "Magnetization, M", not just "M". If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization $\{A[m(1)]\}$ ", not just "A/m". Do not label axes with a ratio of quantities and units. For example, write "Temperature (K)", not "Temperature/K".

ACKNOWLEDGMENT

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g". Avoid the stilted expression "one of us (R. B. G.) thanks ...". Instead, try "R. B. G. thanks...". Put sponsor acknowledgments in the unnumbered footnote on the first page.

REFERENCES

Please number citations consecutively within brackets [?]. The sentence punctuation follows the bracket [?]. Refer simply to the reference number, as in [?]—do not use "Ref. [?]" or "reference [?]" except at the beginning of a sentence: "Reference [?] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the abstract or reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [?]. Papers that have been accepted for publication should be cited as "in press" [?]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [?].

REFERENCES

- [1] M. Oevermann, D. Pravecek, G. Jibrail, R. Jangale, and R. O. Ambrose, "Roboball: An all-terrain spherical robot with a pressurized shell," in 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024, pp. 13502–13508.
- [2] W. Ren, Y. Wang, H. Liu, S. Jin, Y. Wang, Y. Liu, Z. Zhang, T. Hu, and G. Li, "Spherical robot: A novel robot for exploration in harsh unknown environments," 2023. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12099
- [3] H. Kolbari, A. Ahmadi, M. Bahrami, and F. Janati, "Impedance estimation and motion control of a pendulum-driven spherical robot," pp. 6–11, 2018.
- [4] F. Arzberger, T. Schubert, F. Wiecha, J. Zevering, J. Rothe, D. Borrmann, S. Montenegro, and A. Nüchter, "Delta-and kalman-filter designs for multi-sensor pose estimation on spherical mobile mapping systems," *Robotics and Autonomous Systems*, vol. 184, p. 104852, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889024002367
- [5] A. P. Rossi, F. Maurelli, V. Unnithan, H. Dreger, K. Mathewos, N. Pradhan, D.-A. Corbeanu, R. Pozzobon, M. Massironi, S. Ferrari, C. Pernechele, L. Paoletti, E. Simioni, M. Pajola, T. Santagata, D. Borrmann, A. Nüchter, A. Bredenbeck, J. Zevering, F. Arzberger, and C. A. R. Mantilla, "Daedalus-descent and exploration in deep autonomy of lava underground structures," 2021.
- [6] F. Arzberger, A. Bredenbeck, J. Zevering, D. Borrmann, and A. Nüchter, Towards spherical robots for mobile mapping in human made environments, 2021, vol. 1. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2667393221000041

IEEE conference templates contain guidance text for composing and formatting conference papers. Please ensure that all template text is removed from your conference paper prior to submission to the conference. Failure to remove the template text from your paper may result in your paper not being published.