

Sequence Listing

<110> HENRY CHIU
HILARY CLARK
KATHRYN DENNIS
SHERMAN FONG
JILL SCHOENFELD
WILLIAM WOOD
THOMAS WU

<120> COMPOSITIONS AND METHODS FOR THE TREATMENT OF IMMUNE RELATED DISEASES

<130> P1973R1-US

<140> US 10/614,853
<141> 2003-07-08

<150> US 60/394,485
<151> 2002-07-08

<160> 28

<210> 1
<211> 1816
<212> DNA
<213> Homo sapien

<400> 1
gcacgagcga tgtcgctcggt gctgctaagc ctggccgcgc tgtgcaggag 50
cgccgtaccc cgagagccga ccgttcaatg tggctctgaa actgggccat 100
ctccagagtg gatgctacaa catgatctaa tccccggaga cttgagggac 150
ctccgagtag aacctgttac aactagtgtt gcaacagggg actattcaat 200
tttcatgaaat gtaagctggg tactccgggc agatgccagc atccgcttgt 250
tgaaggccac caagatttgt gtgacgggca aaagcaactt ccagtcctac 300
agctgtgtga ggtgcaatta cacagaggcc ttccagactc agaccagacc 350
ctctgggtggt aaatggacat tttcctacat cggcttccct gtagagctga 400
acacagtcta tttcattggg gcccataata ttcctaatgc aaatatgaat 450
gaagatggcc cttccatgtc tgtgaatttc acctcaccag gctgcctaga 500
ccacataatg aaatataaaa aaaagtgtgt caaggccgga agcctgtggg 550
atccgaacat cactgcttgt aagaagaatg aggagacagt agaagtgaac 600
ttcacacaacca ctccccctggg aaacagatac atggcttta tccaacacag 650

cactatcatc gggtttctc aggtgttg a gccacaccag aagaaacaaa 700
cgcgagctc agtggtgatt ccagtgactg gggatagtga aggtgctacg 750
gtgcagctga ctccatattt tcctacttgt ggcagcgact gcatccgaca 800
taaaggaaca gttgtgctct gcccacaaac aggcgccct ttccctctgg 850
ataacaacaa aagcaagccg ggaggctggc tgccctccct cctgctgtct 900
ctgctggtgg ccacatgggt gctggtgca gggatctatc taatgtggag 950
gcacgaaagg atcaagaaga cttccttttc taccaccaca ctactgcccc 1000
ccattaagg tcttgggtt tacccatctg aaatatgttt ccatcacaca 1050
atttggtaact tcactgaatt tcttcaaaac cattgcagaa gtgaggtcat 1100
ccttgaaaag tggcagaaaa agaaaatagc agagatgggt ccagtgcagt 1150
ggcttgccac tcaaaaagaag gcagcagaca aagtgcgttt ccttcttcc 1200
aatgacgtca acagtgtgtg cgatggtacc tgtggcaaga gcgagggcag 1250
tcccagttag aactctcaag actcttcccc ttgcctttaa cctttctgc 1300
agtgatctaa gaagccagat tcatctgcac aaatacgtgg tggctactt 1350
tagagagatt gataaaaaag acgattacaa tgctctcagt gtctgcccc 1400
agtaccacct catgaaggat gccactgctt tctgtgcaga acttctccat 1450
gtcaagtagc aggtgtcagc aggaaaaaaga tcacaagcct gccacgatgg 1500
ctgctgctcc ttgtagccca cccatgagaa gcaagagacc ttaaaggctt 1550
cctatccac caattacagg gaaaaaacgt gtgatgatcc tgaagcttac 1600
tatgcagcct acaaacagcc ttagtaatta aaacattta taccaataaa 1650
attttcaaat attgctaact aatgttagcat taactaacga ttggaaacta 1700
catttacaac ttcaaagctg ttttatacat agaaatcaat tacagttta 1750
attgaaaact ataaccattt tgataatgca acaataaagc atttcagcc 1800
aaaaaaaaaaa aaaaaaa 1816

<210> 2
<211> 426
<212> PRT
<213> Homo sapien

<400> 2
Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala
1 5 10 15
Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro

20	25	30
Ser Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu		
35	40	45
Arg Asp Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly		
50	55	60
Asp Tyr Ser Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp		
65	70	75
Ala Ser Ile Arg Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly		
80	85	90
Lys Ser Asn Phe Gln Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr		
95	100	105
Glu Ala Phe Gln Thr Gln Thr Arg Pro Ser Gly Gly Lys Trp Thr		
110	115	120
Phe Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val Tyr Phe		
125	130	135
Ile Gly Ala His Asn Ile Pro Asn Ala Asn Met Asn Glu Asp Gly		
140	145	150
Pro Ser Met Ser Val Asn Phe Thr Ser Pro Gly Cys Leu Asp His.		
155	160	165
Ile Met Lys Tyr Lys Lys Cys Val Lys Ala Gly Ser Leu Trp		
170	175	180
Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu Thr Val Glu		
185	190	195
Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr Met Ala Leu		
200	205	210
Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe Glu Pro		
215	220	225
His Gln Lys Lys Gln Thr Arg Ala Ser Val Val Ile Pro Val Thr		
230	235	240
Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro		
245	250	255
Thr Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu		
260	265	270
Cys Pro Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser		
275	280	285
Lys Pro Gly Gly Trp Leu Pro Leu Leu Leu Leu Ser Leu Leu Val		
290	295	300
Ala Thr Trp Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His		
305	310	315

Glu Arg Ile Lys Lys Thr Ser Phe Ser Thr Thr Thr Leu Leu Pro
320 325 330
Pro Ile Lys Val Leu Val Val Tyr Pro Ser Glu Ile Cys Phe His
335 340 345
His Thr Ile Cys Tyr Phe Thr Glu Phe Leu Gln Asn His Cys Arg
350 355 360
Ser Glu Val Ile Leu Glu Lys Trp Gln Lys Lys Lys Ile Ala Glu
365 370 375
Met Gly Pro Val Gln Trp Leu Ala Thr Gln Lys Lys Ala Ala Asp
380 385 390
Lys Val Val Phe Leu Leu Ser Asn Asp Val Asn Ser Val Cys Asp
395 400 405
Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro Ser Glu Asn Ser Gln
410 415 420
Asp Ser Ser Pro Cys Leu
425

<210> 3
<211> 1798
<212> DNA
<213> Homo sapien

<400> 3
gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50
ctggagacac catctccac cgagagtcat ggccccattt gcccctgcacc 100
tcctcgctt cgtccccatc ctccctcagcc tgggtggcctc ccaggactgg 150
aaggctgaac gcagccaaga ccccttcgag aaatgcatgc aggtacctga 200
ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250
agccccagag ggtgatttgtt gttggcgctg gtgtggccgg gctgggtggcc 300
gccaagggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350
taacaggatc gggggccgca tcttcaccta ccgggaccag aacacggct 400
ggattgggaa gctgggagcc atgcgcattgc ccagctctca caggatcctc 450
cacaagctct gccaggccct ggggctcaac ctgaccaagt tcacccagta 500
cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550
tggtgagaaa ggtgccccgag aagctgggct acgccttgcg tccccaggaa 600
aagggccact cgccccaga a catctaccatg atggctctca accaggccct 650
caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700

ggcacacgct cttgaaat at ctttcgggg agggAACCT gagccggccg 750
gccgtgcagc ttctggaga cgtatgtcc gaggatggct tcttctatct 800
cagttcgcc gaggccctcc gggcccacag ctgcctcagc gacagactcc 850
agtacagccg catcggttggt ggctgggacc tgctgcccg cgcgctgctg 900
agctcgctgt ccgggcttgt gctgttgaac gcgcggctgg tggcgatgac 950
ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000
gaaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcgg 1050
ccggcggta agcgcatcac ctttcgccc ccgctgcccc gccacatgca 1100
ggaggcgctg cggaggctgc actacgtgcc gcgcaccaag gtgttcctaa 1150
gcttcgcag gcccttctgg cgcgaggagc acattgaagg cgccactca 1200
aacaccgatc gcccgtcgcc catgatttc tacccgccc cgcgcgaggg 1250
cgcgctgctg ctggcctcgat acacgtggtc ggacgcggcg gcagcgatcg 1300
ccggcttgag ccggaaagag gcgttgcgt tggcgctgac cgacgtggcg 1350
gcattgcacg ggcctgtcgat gcccgcgc tggacggca ccggcgtcgat 1400
caagcggtgg gcggaggacc agcacagcca gggtggctt gtggtacagc 1450
cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500
cgcatctact ttgccccgca gcacaccgc tacccgcacg gctgggtgga 1550
gacggcggtc aagtccgcgc tgcgcgcgc catcaagatc aacagccgga 1600
aggggcctgc atcggacacg gccagccccg aggggcacgc atctgacatg 1650
gaggggcagg ggcattgtca tgggtggcc agcagccccct cgcatgacatg 1700
ggcaaaggaa gaaggcagcc accctccagt ccaaggccag ttatctctcc 1750
aaaacacgac ccacacgagg acctcgatt aaagtattt cgaaaaaa 1798

<210> 4
<211> 567
<212> PRT
<213> Homo sapien

<400> 4
Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu
1 5 10 15
Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln
20 25 30
Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu
35 40 45

Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln
 50 55 60
 Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala
 65 70 75
 Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala
 80 85 90
 Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn
 95 100 105
 Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser
 110 115 120
 His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu
 125 130 135
 Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His
 140 145 150
 Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys
 155 160 165
 Leu Gly Tyr Ala Leu Arg Pro Gln Glu Lys Gly His Ser Pro Glu
 170 175 180
 Asp Ile Tyr Gln Met Ala Leu Asn Gln Ala Leu Lys Asp Leu Lys
 185 190 195
 Ala Leu Gly Cys Arg Lys Ala Met Lys Lys Phe Glu Arg His Thr
 200 205 210
 Leu Leu Glu Tyr Leu Leu Gly Glu Gly Asn Leu Ser Arg Pro Ala
 215 220 225
 Val Gln Leu Leu Gly Asp Val Met Ser Glu Asp Gly Phe Phe Tyr
 230 235 240
 Leu Ser Phe Ala Glu Ala Leu Arg Ala His Ser Cys Leu Ser Asp
 245 250 255
 Arg Leu Gln Tyr Ser Arg Ile Val Gly Gly Trp Asp Leu Leu Pro
 260 265 270
 Arg Ala Leu Leu Ser Ser Leu Ser Gly Leu Val Leu Leu Asn Ala
 275 280 285
 Pro Val Val Ala Met Thr Gln Gly Pro His Asp Val His Val Gln
 290 295 300
 Ile Glu Thr Ser Pro Pro Ala Arg Asn Leu Lys Val Leu Lys Ala
 305 310 315
 Asp Val Val Leu Leu Thr Ala Ser Gly Pro Ala Val Lys Arg Ile
 320 325 330
 Thr Phe Ser Pro Pro Leu Pro Arg His Met Gln Glu Ala Leu Arg

335	340	345
Arg Leu His Tyr Val Pro Ala Thr Lys	Val Phe Leu Ser Phe Arg	
350	355	360
Arg Pro Phe Trp Arg Glu Glu His Ile	Glu Gly Gly His Ser Asn	
365	370	375
Thr Asp Arg Pro Ser Arg Met Ile Phe	Tyr Pro Pro Pro Arg Glu	
380	385	390
Gly Ala Leu Leu Leu Ala Ser Tyr Thr	Trp Ser Asp Ala Ala Ala	
395	400	405
Ala Phe Ala Gly Leu Ser Arg Glu Glu	Ala Leu Arg Leu Ala Leu	
410	415	420
Asp Asp Val Ala Ala Leu His Gly Pro	Val Val Arg Gln Leu Trp	
425	430	435
Asp Gly Thr Gly Val Val Lys Arg Trp	Ala Glu Asp Gln His Ser	
440	445	450
Gln Gly Gly Phe Val Val Gln Pro Pro	Ala Leu Trp Gln Thr Glu	
455	460	465
Lys Asp Asp Trp Thr Val Pro Tyr Gly	Arg Ile Tyr Phe Ala Gly	
470	475	480
Glu His Thr Ala Tyr Pro His Gly Trp	Val Glu Thr Ala Val Lys	
485	490	495
Ser Ala Leu Arg Ala Ala Ile Lys Ile	Asn Ser Arg Lys Gly Pro	
500	505	510
Ala Ser Asp Thr Ala Ser Pro Glu Gly	His Ala Ser Asp Met Glu	
515	520	525
Gly Gln Gly His Val His Gly Val Ala	Ser Ser Pro Ser His Asp	
530	535	540
Leu Ala Lys Glu Glu Gly Ser His Pro	Pro Val Gln Gly Gln Leu	
545	550	555
Ser Leu Gln Asn Thr Thr His Thr Arg	Thr Ser His	
560	565	

<210> 5
 <211> 3314
 <212> DNA
 <213> Homo sapien

<400> 5
 ggaggcagcg ggtgccgcgg cgccgggacc cgactcatcc ggtgcttgcg 50
 tgtggtggtg agcgcagcgc cgaggatgag gaggtgcaac agcggctccg 100
 ggccgcccggcc gtcgctgctg ctgctgctgc tgtggctgct cgcggttccc 150

ggcgctaacg cggcccccgcg gtcggcgctc tattgcctt ccgaccgc 200
gacgctgctg caggcggaca cggtgccgg cgccgtgctg ggctccgc 250
gcgcctggc cgtggagttc ttgcctcct ggtcgccca ctgcacgc 300
ttcgccccga cgtggaaaggc`gctggccaa gacgtcaaag cctggaggcc 350
ggccctgtat ctcgcgcgc tggactgtgc tgaggagacc aacagtgcag 400
tctgcagaga cttcaacatc cctggcttcc cgactgtgag gttcttcaag 450
gcctttacca agaacggctc gggagcagta tttccagtgg ctgggtgtga 500
cgtcagacg ctgcggaga ggctcattga cgcctggag tcccatcatg 550
acacgtggcc cccagcctgt ccccaactgg agcctgcca gctggaggag 600
attgatggat tctttgcgag aaataacgaa gagtacctgg ctctgatctt 650
tgaaaaggga ggctcctacc tggtagaga ggtggctctg gacctgtccc 700
agcacaaagg cgtggcggtg cgcagggtgc tgaacacaga ggccaatgtg 750
gtgagaaagt ttgggtgtcac cgacttcccc tcttgctacc tgctgttccg 800
aatggctct gtctcccgag tccccgtgct catggaatcc aggtccttct 850
ataccgctta cctgcagaga ctctctggc tcaccaggga ggctgcccag 900
accacagttg caccaaccac tgctaacaag atagctccca ctgtttggaa 950
attggcagat cgctccaaga tctacatggc tgacctggaa tctgcactgc 1000
actacatcct gcggatagaa gtgggcaggt tcccggtctt ggaaggcag 1050
cgccctggtgg ccctgaaaaa gtttggca gtgctggcca agtatttccc 1100
tggccggccc ttagtccaga acttcctgca ctccgtaat gaatggctca 1150
agaggcagaa gagaaataaa attccctaca gtttctttaa aactgccctg 1200
gacgacagga aagagggtgc cggttcttgc aagaaggta actggattgg 1250
ctgccagggg agtgagccgc atttccgggg ctttccctgc tccctgtggg 1300
tcctcttcca cttcttgact gtgcaggcag ctggcaaaa tgtagaccac 1350
tcacaggaag cagccaaggc caaggaggtc ctcccagcca tccgaggcta 1400
cgtgcactac ttcttcggct gccgagactg cgctagccac ttgcagcaga 1450
tggctgtgc ctccatgcac cgggtgggg gtcggcaacgc cgctgtcctc 1500
tggctctggc ctagccacaa cagggtaat gctgccttg caggtgcccc 1550
cagcgaggac ccccaaggttcc ccaagggtgca gtggccaccc cgtgaacttt 1600

gttctgcctg ccacaatgaa cgccctggatg tgcccgtgtg ggacgtggaa 1650
gccaccctca acttcctcaa ggcccacttc tccccaaagca acatcatcct 1700
ggacttcctc gcagctgggt cagctgccc gaggatgtg cagaatgtgg 1750
cagccgcccc agagctggcg atggagcccc tggagctgga aagccggaat 1800
tcaactctgg accctggaa gcctgagatg atgaagtccc ccacaaacac 1850
caccccacat gtgccggctg agggacactga ggcaagtcga cccccgaagc 1900
tgcaccctgg cctcagagct gcaccaggcc aggagcctcc tgagcacatg 1950
gcagagcttc agaggaatga gcaggagcag ccgcttggc agtggcactt 2000
gagcaagcga gacacagggg ctgcattgct ggctgagtcc agggctgaga 2050
agaaccgcct ctggggccct ttggaggtca ggccgtggg ccgcagctcc 2100
aagcagctgg tcgacatccc tgagggccag ctggaggccc gagctggacg 2150
ggcccgaggc cagtggctgc aggtgctggg agggggcttc tcttacctgg 2200
acatcagcct ctgtgtgggg ctctattccc tgtccttcat gggcctgctg 2250
ccatgtaca cctacttcca ggccaagata agggccctga agggccatgc 2300
tggccaccct gcagcctgaa ccacctgggg aggaggcggg agagggagct 2350
ccatctcta ggcacactaa gccccctgac cccattccct cccctccac 2400
cccttgctcc ttgtctggcc tagaagtgtg ggaaattcag gaaaacgagt 2450
tgctccagtg aagttcttg gggttgctag gacagagagc tccttgaca 2500
caaaagacag gacgagggtc caggttcccc tgctgtgcag ggagggcagc 2550
ccgggcagt gggcataggg cagtcagtc cctggcctct tagcaccaca 2600
ttcctgttt tcagcttatt tgaagtcctg cctcattctc actggagcct 2650
cagtcctcc tgcttggct tggccctcaa ctggggcaag tgaagccaga 2700
ggagggtccc ccagctgggt gggctggaat ggaactcctc actagctgct 2750
ggggctccgc ccaccctgct cccttccgga caatgaagaa gccttgcac 2800
cctggggagga aggaccaccc cggccctct atgcctggcc agcctccagc 2850
tcctcagacc tcctgggtgg gtttggctt caggggtgggg ttggaaagct 2900
tctgaaagtc gtgctggct cccaggtgag gcaagccatg gttgctggc 2950
tgttagggtga gtggcttgct tggtgggacc tgacgagttg gtggcatggg 3000
aaggatgtgg gtctctagtg cttgccttg gcttagctgc aggagaagat 3050

ggctgcttc acttcccccc attgagctct gctccctctg agcctggct 3100
tttgtcctt tttatgg tctccaagat gaatgctcat ctttgagg 3150
tgccaggtag aagctaggaa ggggagtgctc ttctctctcc aggttcacc 3200
ttccagtgtg cagaagtttag aagggtctgg cggggcagt gccttacaca 3250
tgcttgattc ccacgctacc ccctgccttggaggtgtgt ggaataaatt 3300
atttttgtta aggc 3314

<210> 6
<211> 747
<212> PRT
<213> Homo sapien

<400> 6
Met Arg Arg Cys Asn Ser Gly Ser Gly Pro Pro Pro Ser Leu Leu
1 5 10 15
Leu Leu Leu Leu Trp Leu Leu Ala Val Pro Gly Ala Asn Ala Ala
20 25 30
Pro Arg Ser Ala Leu Tyr Ser Pro Ser Asp Pro Leu Thr Leu Leu
35 40 45
Gln Ala Asp Thr Val Arg Gly Ala Val Leu Gly Ser Arg Ser Ala
50 55 60
Trp Ala Val Glu Phe Phe Ala Ser Trp Cys Gly His Cys Ile Ala
65 70 75
Phe Ala Pro Thr Trp Lys Ala Leu Ala Glu Asp Val Lys Ala Trp
80 85 90
Arg Pro Ala Leu Tyr Leu Ala Ala Leu Asp Cys Ala Glu Glu Thr
95 100 105
Asn Ser Ala Val Cys Arg Asp Phe Asn Ile Pro Gly Phe Pro Thr
110 115 120
Val Arg Phe Phe Lys Ala Phe Thr Lys Asn Gly Ser Gly Ala Val
125 130 135
Phe Pro Val Ala Gly Ala Asp Val Gln Thr Leu Arg Glu Arg Leu
140 145 150
Ile Asp Ala Leu Glu Ser His His Asp Thr Trp Pro Pro Ala Cys
155 160 165
Pro Pro Leu Glu Pro Ala Lys Leu Glu Glu Ile Asp Gly Phe Phe
170 175 180
Ala Arg Asn Asn Glu Glu Tyr Leu Ala Leu Ile Phe Glu Lys Gly
185 190 195
Gly Ser Tyr Leu Gly Arg Glu Val Ala Leu Asp Leu Ser Gln His

200	205	210
Lys Gly Val Ala Val Arg Arg Val Leu Asn Thr Glu Ala Asn Val		
215	220	225
Val Arg Lys Phe Gly Val Thr Asp Phe Pro Ser Cys Tyr Leu Leu		
230	235	240
Phe Arg Asn Gly Ser Val Ser Arg Val Pro Val Leu Met Glu Ser		
245	250	255
Arg Ser Phe Tyr Thr Ala Tyr Leu Gln Arg Leu Ser Gly Leu Thr		
260	265	270
Arg Glu Ala Ala Gln Thr Thr Val Ala Pro Thr Thr Ala Asn Lys		
275	280	285
Ile Ala Pro Thr Val Trp Lys Leu Ala Asp Arg Ser Lys Ile Tyr		
290	295	300
Met Ala Asp Leu Glu Ser Ala Leu His Tyr Ile Leu Arg Ile Glu		
305	310	315
Val Gly Arg Phe Pro Val Leu Glu Gly Gln Arg Leu Val Ala Leu		
320	325	330
Lys Lys Phe Val Ala Val Leu Ala Lys Tyr Phe Pro Gly Arg Pro		
335	340	345
Leu Val Gln Asn Phe Leu His Ser Val Asn Glu Trp Leu Lys Arg		
350	355	360
Gln Lys Arg Asn Lys Ile Pro Tyr Ser Phe Phe Lys Thr Ala Leu		
365	370	375
Asp Asp Arg Lys Glu Gly Ala Val Leu Ala Lys Lys Val Asn Trp		
380	385	390
Ile Gly Cys Gln Gly Ser Glu Pro His Phe Arg Gly Phe Pro Cys		
395	400	405
Ser Leu Trp Val Leu Phe His Phe Leu Thr Val Gln Ala Ala Arg		
410	415	420
Gln Asn Val Asp His Ser Gln Glu Ala Ala Lys Ala Lys Glu Val		
425	430	435
Leu Pro Ala Ile Arg Gly Tyr Val His Tyr Phe Phe Gly Cys Arg		
440	445	450
Asp Cys Ala Ser His Phe Glu Gln Met Ala Ala Ala Ser Met His		
455	460	465
Arg Val Gly Ser Pro Asn Ala Ala Val Leu Trp Leu Trp Ser Ser		
470	475	480
His Asn Arg Val Asn Ala Arg Leu Ala Gly Ala Pro Ser Glu Asp		
485	490	495

Pro Gln Phe Pro Lys Val Gln Trp Pro Pro Arg Glu Leu Cys Ser
 500 505 510
 Ala Cys His Asn Glu Arg Leu Asp Val Pro Val Trp Asp Val Glu
 515 520 525
 Ala Thr Leu Asn Phe Leu Lys Ala His Phe Ser Pro Ser Asn Ile
 530 535 540
 Ile Leu Asp Phe Pro Ala Ala Gly Ser Ala Ala Arg Arg Asp Val
 545 550 555
 Gln Asn Val Ala Ala Pro Glu Leu Ala Met Gly Ala Leu Glu
 560 565 570
 Leu Glu Ser Arg Asn Ser Thr Leu Asp Pro Gly Lys Pro Glu Met
 575 580 585
 Met Lys Ser Pro Thr Asn Thr Pro His Val Pro Ala Glu Gly
 590 595 600
 Pro Glu Ala Ser Arg Pro Pro Lys Leu His Pro Gly Leu Arg Ala
 605 610 615
 Ala Pro Gly Gln Glu Pro Pro Glu His Met Ala Glu Leu Gln Arg
 620 625 630
 Asn Glu Gln Glu Gln Pro Leu Gly Gln Trp His Leu Ser Lys Arg
 635 640 645
 Asp Thr Gly Ala Ala Leu Leu Ala Glu Ser Arg Ala Glu Lys Asn
 650 655 660
 Arg Leu Trp Gly Pro Leu Glu Val Arg Arg Val Gly Arg Ser Ser
 665 670 675
 Lys Gln Leu Val Asp Ile Pro Glu Gly Gln Leu Glu Ala Arg Ala
 680 685 690
 Gly Arg Gly Arg Gly Gln Trp Leu Gln Val Leu Gly Gly Gly Phe
 695 700 705
 Ser Tyr Leu Asp Ile Ser Leu Cys Val Gly Leu Tyr Ser Leu Ser
 710 715 720
 Phe Met Gly Leu Leu Ala Met Tyr Thr Tyr Phe Gln Ala Lys Ile
 725 730 735
 Arg Ala Leu Lys Gly His Ala Gly His Pro Ala Ala
 740 745

<210> 7
 <211> 4565
 <212> DNA
 <213> Homo sapien

<400> 7
 ggcgagctaa gccggaggat gtgcagctgc ggccggccgcg ccggctacga 50

agaggacggg gacaggcgcc gtgcgaaccg agcccagcca gccggaggac 100
gcgggcaggg cgggacggga gcccggactc gtctgccgcc gccgtcgctg 150
ccgtcggtcc ggcccccggt ccccgcgccg gagcgggagg agccgcccgc 200
acctcgccgc cgagccgccc cttagcgccg ccggcatgg tcccccttta 250
aaggcgcagg ccgcggcgcc gggggcgccc gtgcggaaca aagcgccggc 300
gcggggcctg cgggcggctc gggggcccg atgggcgcgg cgggcccgcg 350
gcggcggcg cgcgtccccg gccgggcctc gcggcgctag ggccggctgg 400
cctccgcggg cgggggcagc gggctgaggg cgcgcgggc ctgcggcgcc 450
ggcggcggcg gcggcggcg cccggcgccc ggagcggcgcc gggcatggcc 500
gcgcgcggcc ggccgcgcctg gtcagcggt ctgcgcggc tcgtcctggg 550
tttcgtgctg gcctcgccgc tcgtcctgccc ccgggttcc gagctgaagc 600
gagcgggccc acggcgccgc gccagcccg agggctgccc gtccgggcag 650
gcggcggctt cccaggccgg cggggcgccgc ggcatgcgc gcggggcgca 700
gctctggccg cccggctcg acccagatgg cggcccgccg gacaggaact 750
tttctttcg gggagtcatg accgcccaga aataacctgca gactcgggcc 800
gtggccgcct acagaacatg gtccaagaca attcctggga aagttcagtt 850
cttctcaagt gagggttctg acacatctgt accaattcca gtatgccac 900
tacgggtgt ggacgactcc taccggcccc agaagaagtc cttcatgtatg 950
ctcaagtaca tgcacgacca ctacttggac aagtatgaat ggtttatgag 1000
agcagatgt gacgtgtaca tcaaaggaga ccgtctggag aacttcctga 1050
ggagttgaa cagcagcgag ccccttttc ttgggcagac aggctgggc 1100
accacggaag aaatggaaa actggccctg gagcctggtg agaacttctg 1150
catggggggg cctggcgtga tcatgagccg ggaggtgctt cggagaatgg 1200
tgccgcacat tggcaagtgt ctccggaga tgtacaccac ccatgaggac 1250
gtggaggtgg gaagggtgtt ccggaggtt gcaggggtgc agtgtgtctg 1300
gtcttatgag atgcagcagc tttttatga gaattacgag cagaacaaaa 1350
aggggtacat tagagatctc cataacagta aaattcacca agtatacaca 1400
ttacacccca acaaaaaccc accctaccag tacaggctcc acagctacat 1450
gctgagccgc aagatatccg agctccgcca tcgcacaata cagctgcacc 1500

gcgaaattgt cctgatgagc aaatacagca acacagaaat tcataaagag 1550
gacctccagc tggaatccc tccctccttc atgaggttc agccccgcca 1600
gcgagaggag attcttggaaat gggagtttct gactggaaaa tacttgtatt 1650
cggcagttga cggccagccc cctcgaagag gaatggactc cgcccagagg 1700
gaagccttgg acgacattgt catgcaggtc atggagatga tcaatgccaa 1750
cgccaagacc agagggcgca tcattgactt caaagagatc cagtacggct 1800
accgcccgggt gaaccccatg tatggggctg agtacatcct ggacctgctg 1850
cttctgtaca aaaagcacaa aggaaagaaa atgacggtcc ctgtgaggag 1900
gcacgcgtat ttacagcaga ctttcagcaa aatccagttt gtggagcatg 1950
aggagcttga tgcacaagag ttggccaaga gaatcaatca ggaatcttga 2000
tccttgcct ttctctcaaa ctccctgaag aagctcgtcc ccttcagct 2050
ccctgggtcg aagagtgagc acaaagaacc caaagataaa aagataaaca 2100
tactgattcc tttgtctggg cgtttcgaca tgtttgcag atttatggga 2150
aactttgaga agacgtgtct tatccccat cagaacgtca agctcgttgt 2200
tctgctttc aattctgact ccaaccctga caaggccaaa caagttgaac 2250
tgatgacaga ttaccgcatt aagtacccta aagccgacat gcagattttg 2300
cctgtgtctg gagagtttc aagagccctg gccctggaag taggatcctc 2350
ccagtttaac aatgaatctt tgctttctt ctgcgacgtc gacctcgct 2400
ttactacaga attccttcag cgatgtcgag caaatacagt tctggccaa 2450
caaatatatt ttccaatcat cttagccag tatgacccaa agattgtta 2500
tagtggaaa gttcccagtg acaaccattt tgcccttact cagaaaactg 2550
gcttctggag aaactatggg tttggcatca cgtgtattta taagggagat 2600
cttgcgcag tgggtggctt tgatgtttcc atccaaggct gggggcttga 2650
ggatgtggac ctttcaaca aggttgtcca ggcaggttg aagacgtta 2700
ggagccagga agtaggagta gtccacgtcc accatcctgt ctttgcgtat 2750
ccaaatcttgc accccaaaca gtacaaaatg tgcttgggtt ccaaagcattc 2800
gacctatggg tccacacagc agctggctga gatgtggctg gaaaaaaaaatg 2850
atccaagttt cagtaaaagc agcaataata atggctcagt gaggacagcc 2900
taatgtccag ctttgcgttga aaagacgttt ttaattatct aatttatttt 2950

tcaaaaattt tttgtatgt cagttttga agtccgtata caaggatata 3000
ttttacaagt ggaaaaatc cataggactc ctttaagatt gagcttcgt 3050
aacaagaagg tgatcagtgt ttgccttga acacatctc ttgctgaaca 3100
ttatgttagca gacctgctta actttgactt gaaatgtacc tgatgaacaa 3150
aacttttta aaaaaatgtt ttcttttag acccttgct ccagtcctat 3200
ggcagaaaac gtgaacattc ctgcaaagta ttattgtaac aaaacactgt 3250
aactctggta aatgttctgt tgtgattgtt aacattccac agattctacc 3300
tttgcgttt tgaaaaatc ttttacaat tgaaaaat ccatttcgt 3350
ttccagttgt aagataagga aatgtgataa tagctgttc atcattgtct 3400
tcaggagagc tttccagagt tgatcatttc ccctcatggc actctgctca 3450
gcatggccac gtaggtttt tgaaaaatc gtttgcgtt tttttgaga 3500
cgaggatctca ctctgttacc caggctggaa tgcaatggcg caatcttggc 3550
tcacttaac ctccacttcc ctggtaaag caattcccc gccttgcct 3600
cccgagtagc tgggattaca ggcacacacc accacgccc gctagtttt 3650
ttgtatTTT agtagagacg gggtttcacc atgcaagccc agctggccac 3700
gttagttta aagcaagggg cgtaaagaag gcacagttag gtatgtggct 3750
gttctcggtt tagttcattc ggcctaaata gacctggcat taaatttcaa 3800
gaaggatttgc gcatTTTCTC ttcttgaccc ttctctttaa aggtaaaat 3850
attaatgttt agaatgacaa agatgaatta ttacaataaa tctgatgtac 3900
acagactgaa acacacacac atacacccta atcaaaacgt tggggaaaaa 3950
tgtatTTGTT ttgttcctt tcattctgtc tgttatgt ggggtggagat 4000
ggTTTTCATT ctTCATTAC tgTTTGTtT tATCCTTGT ATCTGAAATA 4050
cCTTAATTtTtTtTAATATC tgTTGTTCAg AGCTCTGCCA TTTCTTGAGT 4100
acCTGTTAGT tagtatttt tatgtgtatc gggagtgtgt ttagtctgtt 4150
ttatTTGCAg taaaccgatc tccaaagatt tcctttggaa aacgctttt 4200
cccCTCCtTA atTTTATATC tccttactgt tttactaaat attaagtgtt 4250
ctttgacaat ttgggtgctc atgtgtttt gggacaaaag tgaaatgaat 4300
ctgtcattat accagaaagt taaattctca gatcaaatgt gccttaataa 4350
atTTGTTTc atTTAGATTt caaacagtga tagacttgcc atTTtaatac 4400

acgtcattgg agggctgcgt atttgtaaat agcctgatgc tcatttgaa 4450
aaataaacca gtgaacaata ttttctatt gtactttca gaaccatTTT 4500
gtctcattat tcctgtttta gctgaagaat tgtattacat ttggagagta 4550
aaaaacttaa acacg 4565

<210> 8
<211> 802
<212> PRT
<213> Homo sapien

<400> 8
Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly
1 5 10 15
Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg
20 25 30
Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro
35 40 45
Glu Gly Cys Arg Ser Gly Gln Ala Ala Ser Gln Ala Gly Gly
50 55 60
Ala Arg Gly Asp Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser
65 70 75
Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly
80 85 90
Val Met Thr Ala Gln Lys Tyr Leu Gln Thr Arg Ala Val Ala Ala
95 100 105
Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gln Phe Phe
110 115 120
Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro
125 130 135
Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gln Lys Lys Ser Phe
140 145 150
Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu
155 160 165
Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile Lys Gly Asp Arg
170 175 180
Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu Pro Leu Phe
185 190 195
Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu
200 205 210
Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val
215 220 225

Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly
 230 235 240
 Lys Cys Leu Arg Glu Met Tyr Thr Thr His Glu Asp Val Glu Val
 245 250 255
 Gly Arg Cys Val Arg Arg Phe Ala Gly Val Gln Cys Val Trp Ser
 260 265 270
 Tyr Glu Met Gln Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys
 275 280 285
 Lys Gly Tyr Ile Arg Asp Leu His Asn Ser Lys Ile His Gln Ala
 290 295 300
 Ile Thr Leu His Pro Asn Lys Asn Pro Pro Tyr Gln Tyr Arg Leu
 305 310 315
 His Ser Tyr Met Leu Ser Arg Lys Ile Ser Glu Leu Arg His Arg
 320 325 330
 Thr Ile Gln Leu His Arg Glu Ile Val Leu Met Ser Lys Tyr Ser
 335 340 345
 Asn Thr Glu Ile His Lys Glu Asp Leu Gln Leu Gly Ile Pro Pro
 350 355 360
 Ser Phe Met Arg Phe Gln Pro Arg Gln Arg Glu Glu Ile Leu Glu
 365 370 375
 Trp Glu Phe Leu Thr Gly Lys Tyr Leu Tyr Ser Ala Val Asp Gly
 380 385 390
 Gln Pro Pro Arg Arg Gly Met Asp Ser Ala Gln Arg Glu Ala Leu
 395 400 405
 Asp Asp Ile Val Met Gln Val Met Glu Met Ile Asn Ala Asn Ala
 410 415 420
 Lys Thr Arg Gly Arg Ile Ile Asp Phe Lys Glu Ile Gln Tyr Gly
 425 430 435
 Tyr Arg Arg Val Asn Pro Met Tyr Gly Ala Glu Tyr Ile Leu Asp
 440 445 450
 Leu Leu Leu Tyr Lys Lys His Lys Gly Lys Lys Met Thr Val
 455 460 465
 Pro Val Arg Arg His Ala Tyr Leu Gln Gln Thr Phe Ser Lys Ile
 470 475 480
 Gln Phe Val Glu His Glu Glu Leu Asp Ala Gln Glu Leu Ala Lys
 485 490 495
 Arg Ile Asn Gln Glu Ser Gly Ser Leu Ser Phe Leu Ser Asn Ser
 500 505 510
 Leu Lys Lys Leu Val Pro Phe Gln Leu Pro Gly Ser Lys Ser Glu

515	520	525
His Lys Glu Pro Lys Asp Lys Lys Ile Asn Ile Leu Ile Pro Leu		
530	535	540
Ser Gly Arg Phe Asp Met Phe Val Arg Phe Met Gly Asn Phe Glu		
545	550	555
Lys Thr Cys Leu Ile Pro Asn Gln Asn Val Lys Leu Val Val Leu		
560	565	570
Leu Phe Asn Ser Asp Ser Asn Pro Asp Lys Ala Lys Gln Val Glu		
575	580	585
Leu Met Thr Asp Tyr Arg Ile Lys Tyr Pro Lys Ala Asp Met Gln		
590	595	600
Ile Leu Pro Val Ser Gly Glu Phe Ser Arg Ala Leu Ala Leu Glu		
605	610	615
Val Gly Ser Ser Gln Phe Asn Asn Glu Ser Leu Leu Phe Phe Cys		
620	625	630
Asp Val Asp Leu Val Phe Thr Thr Glu Phe Leu Gln Arg Cys Arg		
635	640	645
Ala Asn Thr Val Leu Gly Gln Gln Ile Tyr Phe Pro Ile Ile Phe		
650	655	660
Ser Gln Tyr Asp Pro Lys Ile Val Tyr Ser Gly Lys Val Pro Ser		
665	670	675
Asp Asn His Phe Ala Phe Thr Gln Lys Thr Gly Phe Trp Arg Asn		
680	685	690
Tyr Gly Phe Gly Ile Thr Cys Ile Tyr Lys Gly Asp Leu Val Arg		
695	700	705
Val Gly Gly Phe Asp Val Ser Ile Gln Gly Trp Gly Leu Glu Asp		
710	715	720
Val Asp Leu Phe Asn Lys Val Val Gln Ala Gly Leu Lys Thr Phe		
725	730	735
Arg Ser Gln Glu Val Gly Val Val His Val His His Pro Val Phe		
740	745	750
Cys Asp Pro Asn Leu Asp Pro Lys Gln Tyr Lys Met Cys Leu Gly		
755	760	765
Ser Lys Ala Ser Thr Tyr Gly Ser Thr Gln Gln Leu Ala Glu Met		
770	775	780
Trp Leu Glu Lys Asn Asp Pro Ser Tyr Ser Lys Ser Ser Asn Asn		
785	790	795
Asn Gly Ser Val Arg Thr Ala		
800		

<210> 9
<211> 2176
<212> DNA
<213> Homo sapien

<400> 9
tcctgtctca ggcaggccct gcgcctccta tgccggagatg ctactgccac 50
tgctgctgtc ctcgtgtcg ggccgggtccc aggctatgga tgggagattc 100
tggatacggag tgcaggagtc agtgtatggtg ccggaggggcc tgtgcacatctc 150
tgtgcacatctc tctttctcct acccccgaca agactggaca gggctacacc 200
cagcttatgg ctactggttc aaagcagtga ctgagacaac caagggtgct 250
cctgtggcca caaaccacca gagtcgagag gtggaaatga gcacccgggg 300
ccgattccag ctcactgggg atcccgccaa ggggaactgc tccttggtga 350
tcagagacgc gcagatgcag gatgagtac agtacttctt tcgggtggag 400
agaggaagct atgtgagata taatttcatg aacgatgggt tctttctaaa 450
agtaaacagcc ctgactcaga agcctgatgt ctacatcccc gagaccctgg 500
agcccccggca gccgggtgacg gtcatctgtg tggttaactg ggcctttgag 550
gaatgtccac ccccttcttt ctccctggacg ggggctgccc tctcctccca 600
aggaacccaaa ccaacgacct cccacttctc agtgcgtcagc ttacgcggcc 650
gaccccgagga ccacaacacc gacctcacct gccatgtgga cttctccaga 700
aagggtgtga gcgtacagag gaccgtccga ctccgtgtgg cctatgcggcc 750
cagagacctt gttatcagca tttcacgtga caacacgcca gcccctggagc 800
cccagccccc gggaaatgtc ccatacctgg aagcccaaaa aggccagttc 850
ctgcggctcc tctgtgtgc tgacagccag cccctgcca cactgagctg 900
ggtcctgcag aacagagtcc ttcctcgtc ccattccctgg ggccttagac 950
ccctggggct ggagctgccc ggggtgaagg ctggggattc agggcgctac 1000
acctgcccgg cgagaaacag gcttggctcc cagcagcggag ccctggaccc 1050
ctctgtgcag tatcctccag agaacctgag agtgtatggtt tcccaagcaa 1100
acaggacagt cctggaaaac cttggaaacg gcacgtctct cccagttactg 1150
gaggggccaaa gcctgtgcct ggtctgtgtc acacacagca gccccccagc 1200
caggctgagc tggacccaga ggggacaggt tctgagcccc tcccaagccct 1250
cagaccccgag ggtcctggag ctgcctcggtt tcataagtgga gcacgaagga 1300

gagttcacct gccacgctcg gcacccactg ggctcccagc acgtctctct 1350
cagcctctcc gtgcactact ccccgaagct gctgggcccc tcctgctcct 1400
gggaggctga gggctgcac tgcaagctgct cctcccaggc cagccggcc 1450
ccctctctgc gctggtggct tggggaggag ctgctggagg ggaacagcag 1500
ccaggactcc ttcgaggtca ccccaagctc agccgggccc tggccaaca 1550
gctccctgag cctccatgga gggctcagct ctggcctcag gctccgctgt 1600
gaggcctgga acgtccatgg ggcccagagt ggatccatcc tgcagctgcc 1650
agataagaag ggactcatct caacggcatt ctccaacgga gcgttctgg 1700
gaatcggcat cacggctt ctttcctct gcctggccct gatcatcatg 1750
aagattctac cgaagagacg gactcagaca gaaacccga ggcccaggtt 1800
ctcccgac acgacgatcc tggattacat caatgtggc cgcacggctg 1850
gccccctggc tcagaagcgg aatcagaaag ccacacaaa cagtcctcgg 1900
acccctttc caccaggtgc tccctccccaa gaatcaaaga agaaccagaa 1950
aaagcagtat cagttgccc a gttcccaga acccaaata tccactcaag 2000
ccccagaatc ccaggagagc caagaggagc tccattatgc cacgctcaac 2050
ttcccaggcg tcagacccag gcctgaggcc cgatgccc a gggcaccca 2100
ggcggattat gcagaagtca agttccaatg aggtctt aggctttagg 2150
actgggactt cgcttaggaa ggaagg 2176

<210> 10
<211> 697
<212> PRT
<213> Homo sapien

<400> 10
Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
1 5 10 15
Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met
20 25 30
Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr
35 40 45
Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp
50 55 60
Phe Lys Ala Val Thr Glu Thr Lys Gly Ala Pro Val Ala Thr
65 70 75
Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe

80	85	90
Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile		
95	100	105
Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val		
110	115	120
Glu Arg Gly Ser Tyr Val Arg Tyr Asn Phe Met Asn Asp Gly Phe		
125	130	135
Phe Leu Lys Val Thr Ala Leu Thr Gln Lys Pro Asp Val Tyr Ile		
140	145	150
Pro Glu Thr Leu Glu Pro Gly Gln Pro Val Thr Val Ile Cys Val		
155	160	165
Phe Asn Trp Ala Phe Glu Glu Cys Pro Pro Pro Ser Phe Ser Trp		
170	175	180
Thr Gly Ala Ala Leu Ser Ser Gln Gly Thr Lys Pro Thr Thr Ser		
185	190	195
His Phe Ser Val Leu Ser Phe Thr Pro Arg Pro Gln Asp His Asn		
200	205	210
Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly Val Ser		
215	220	225
Val Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro Arg Asp		
230	235	240
Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu Glu Pro		
245	250	255
Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys Gly Gln		
260	265	270
Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro Ala Thr		
275	280	285
Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser His Pro		
290	295	300
Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val Lys Ala		
305	310	315
Gly Asp Ser Gly Arg Tyr Thr Cys Arg Ala Glu Asn Arg Leu Gly		
320	325	330
Ser Gln Gln Arg Ala Leu Asp Leu Ser Val Gln Tyr Pro Pro Glu		
335	340	345
Asn Leu Arg Val Met Val Ser Gln Ala Asn Arg Thr Val Leu Glu		
350	355	360
Asn Leu Gly Asn Gly Thr Ser Leu Pro Val Leu Glu Gly Gln Ser		
365	370	375

Leu Cys Leu Val Cys Val Thr His Ser Ser Pro Pro Ala Arg Leu
 380 385 390
 Ser Trp Thr Gln Arg Gly Gln Val Leu Ser Pro Ser Gln Pro Ser
 395 400 405
 Asp Pro Gly Val Leu Glu Leu Pro Arg Val Gln Val Glu His Glu
 410 415 420
 Gly Glu Phe Thr Cys His Ala Arg His Pro Leu Gly Ser Gln His
 425 430 435
 Val Ser Leu Ser Leu Ser Val His Tyr Ser Pro Lys Leu Leu Gly
 440 445 450
 Pro Ser Cys Ser Trp Glu Ala Glu Gly Leu His Cys Ser Cys Ser
 455 460 465
 Ser Gln Ala Ser Pro Ala Pro Ser Leu Arg Trp Trp Leu Gly Glu
 470 475 480
 Glu Leu Leu Glu Gly Asn Ser Ser Gln Asp Ser Phe Glu Val Thr
 485 490 495
 Pro Ser Ser Ala Gly Pro Trp Ala Asn Ser Ser Leu Ser Leu His
 500 505 510
 Gly Gly Leu Ser Ser Gly Leu Arg Leu Arg Cys Glu Ala Trp Asn
 515 520 525
 Val His Gly Ala Gln Ser Gly Ser Ile Leu Gln Leu Pro Asp Lys
 530 535 540
 Lys Gly Leu Ile Ser Thr Ala Phe Ser Asn Gly Ala Phe Leu Gly
 545 550 555
 Ile Gly Ile Thr Ala Leu Leu Phe Leu Cys Leu Ala Leu Ile Ile
 560 565 570
 Met Lys Ile Leu Pro Lys Arg Arg Thr Gln Thr Glu Thr Pro Arg
 575 580 585
 Pro Arg Phe Ser Arg His Ser Thr Ile Leu Asp Tyr Ile Asn Val
 590 595 600
 Val Pro Thr Ala Gly Pro Leu Ala Gln Lys Arg Asn Gln Lys Ala
 605 610 615
 Thr Pro Asn Ser Pro Arg Thr Pro Leu Pro Pro Gly Ala Pro Ser
 620 625 630
 Pro Glu Ser Lys Lys Asn Gln Lys Lys Gln Tyr Gln Leu Pro Ser
 635 640 645
 Phe Pro Glu Pro Lys Ser Ser Thr Gln Ala Pro Glu Ser Gln Glu
 650 655 660
 Ser Gln Glu Glu Leu His Tyr Ala Thr Leu Asn Phe Pro Gly Val

665

670

675

Arg Pro Arg Pro Glu Ala Arg Met Pro Lys Gly Thr Gln Ala Asp
680 685 690

Tyr Ala Glu Val Lys Phe Gln
695

<210> 11

<211> 1724

<212> DNA

<213> Homo sapien

<400> 11

ccttcataacc ggcccttccc ctccggctttg cctggacagc tcctgcctcc 50
cgcaaggccc acctgtgtcc cccagcgccg ctccacccag caggcctgag 100
ccccctcttg ctgccagaca cccccctgctg cccactctcc tgctgctcgg 150
gttctgaggc acagcttgtc acaccgagggc ggattctctt tctctttctc 200
ttctggccca cagccgcagc aatggcgctg agttcctctg ctggagttca 250
tcctgcttagc tgggttcccg agctgccggt ctgagcctga ggcatggagc 300
ctcctggaga ctgggggcct cctccctgga gatccacccc cagaaccgac 350
gtcttgagggc tggtgctgta tctcaccttc ctgggagccc cctgctacgc 400
cccagctctg ccgtcctgca aggaggacga gtacccagtg ggctccgagt 450
gctgccccaa gtgcagtcca gtttatcgta tgaaggagggc ctgcggggag 500
ctgacggca cagtgtgtga accctgcctt ccaggcacct acattgccc 550
cctcaatggc ctaagcaagt gtctgcagtg ccaaattgtgt gacccagcca 600
tgggcctgca cgcgagccgg aactgctcca ggacagagaa cgccgtgtgt 650
ggctgcagcc cagggcactt ctgcacatcg caggacgggg accactgcgc 700
cgctgtccgc gcttacgcca cctccagccc gggccagagg gtgcagaagg 750
gaggcaccga gagtcaggac accctgtgtc agaactgccc cccggggacc 800
ttctctccca atgggaccct ggaggaatgt cagcaccaga ccaagtgcag 850
ctggctgggtg acgaaggccg gagctggac cagcagctcc cactgggtat 900
ggtggtttct ctcaggagc ctcgtcatcg tcattgttg ctccacagtt 950
ggcctaataca tatgtgtgaa aagaagaaaag ccaagggtg atgttagtcaa 1000
ggtgatcgac tccgtccagc ggaaaagaca ggaggcagaa ggtgaggcca 1050
cagtcattga ggccctgcag gcccctccgg acgtcaccac ggtggccgtg 1100

gaggagacaa taccctcatt cacggggagg agcccaaacc actgaccac 1150
agactctgca ccccgacgcc agagataacct ggagcgacgg ctgctgaaag 1200
aggctgtcca cctggcgaaa ccaccggagc ccggaggctt gggggctccg 1250
ccctgggctg gcttccgtct cctccagtgg agggagaggt ggggcccctg 1300
ctggggtaga gctggggacg ccacgtgcca ttcccatggg ccagtgaggg 1350
cctggggcct ctgttctgct gtggcctgag ctccccagag tcctgaggag 1400
gagcgccagt tgccctcgc tcacagacca cacacccagc ctcctggc 1450
cagcccaagag ggcccttcag accccagctg tctgcgcgtc tgactcttgt 1500
ggcctcagca ggacaggccc cgggcactgc ctcacagcca aggctggact 1550
gggttggctg cagtgtggtg ttttagtggat accacatcg aagtgatttt 1600
ctaaattgga tttgaattcc ggtcctgtct tctatttgtc atgaaacagt 1650
gtatttgggg agatgctgtg ggaggatgta aatatcttgt ttctcctcaa 1700
aaaaaaaaaaaa aaaaaaaaaaa aaaa 1724

<210> 12
<211> 283
<212> PRT
<213> Homo sapien

<400> 12
Met Glu Pro Pro Gly Asp Trp Gly Pro Pro Pro Trp Arg Ser Thr
1 5 10 15
Pro Arg Thr Asp Val Leu Arg Leu Val Leu Tyr Leu Thr Phe Leu
20 25 30
Gly Ala Pro Cys Tyr Ala Pro Ala Leu Pro Ser Cys Lys Glu Asp
35 40 45
Glu Tyr Pro Val Gly Ser Glu Cys Cys Pro Lys Cys Ser Pro Gly
50 55 60
Tyr Arg Val Lys Glu Ala Cys Gly Glu Leu Thr Gly Thr Val Cys
65 70 75
Glu Pro Cys Pro Pro Gly Thr Tyr Ile Ala His Leu Asn Gly Leu
80 85 90
Ser Lys Cys Leu Gln Cys Gln Met Cys Asp Pro Ala Met Gly Leu
95 100 105
Arg Ala Ser Arg Asn Cys Ser Arg Thr Glu Asn Ala Val Cys Gly
110 115 120
Cys Ser Pro Gly His Phe Cys Ile Val Gln Asp Gly Asp His Cys
125 130 135

Ala Ala Cys Arg Ala Tyr Ala Thr Ser Ser Pro Gly Gln Arg Val
 140 145 150
 Gln Lys Gly Gly Thr Glu Ser Gln Asp Thr Leu Cys Gln Asn Cys
 155 160 165
 Pro Pro Gly Thr Phe Ser Pro Asn Gly Thr Leu Glu Glu Cys Gln
 170 175 180
 His Gln Thr Lys Cys Ser Trp Leu Val Thr Lys Ala Gly Ala Gly
 185 190 195
 Thr Ser Ser Ser His Trp Val Trp Trp Phe Leu Ser Gly Ser Leu
 200 205 210
 Val Ile Val Ile Val Cys Ser Thr Val Gly Leu Ile Ile Cys Val
 215 220 225
 Lys Arg Arg Lys Pro Arg Gly Asp Val Val Lys Val Ile Val Ser
 230 235 240
 Val Gln Arg Lys Arg Gln Glu Ala Glu Gly Glu Ala Thr Val Ile
 245 250 255
 Glu Ala Leu Gln Ala Pro Pro Asp Val Thr Thr Val Ala Val Glu
 260 265 270
 Glu Thr Ile Pro Ser Phe Thr Gly Arg Ser Pro Asn His
 275 280

<210> 13
 <211> 1002
 <212> DNA
 <213> Homo sapien

<400> 13
 tgcaagtctgt ctgagggcgg ccgaagtggc tggctcattt aagatgaggc 50
 ttctgctgct tctcccttagtg gcggcgctcg cgatggtccg gagcgaggcc 100
 tcggccaatc tggccggcgt gccagcaaga gataaagat gcagtacgcc 150
 acggggccgc tgctcaagtt ccagatttgt gtttccttagt gttataggcg 200
 ggtgttttagt gactacatgc gggttatttag ccagcggtac ccagacatcc 250
 gcattgaagg agagaattac ctccctcaac caatatatacg acacatagca 300
 tcttcctgt cagttttcaa actagtatta ataggcttaa taattgttgg 350
 caaggatcct tttgtttct ttggcatgca agtccttagc atctggcagt 400
 ggggccaaga aaataagggtt tatgtcatgta tggatgggtt cttcttgagc 450
 aacatgattt agaaccagtg tatgtcaaca ggtgcatttg agataacttt 500
 aatgtatgtt cctgtgttgtt ctaagctgga atctggtcac cttccatcca 550

tgcaacaact tgttcaaatt cttgacaatg aaatgaagct caatgtgcac 600
atggattcaa tcccacacca tcgatcatag caccacctat cagcactgaa 650
aactctttt cattaaggga tcattgcaag agcagcgtga ctgacattat 700
gaaggcctgt actgaagaca gcaagctgtt agtacagacc agatgcttc 750
ttggcaggct cgttgtacct cttggaaaac ctcaatgcaa gatagtgttt 800
cagtgcgtgc atattttgga attctgcaca ttcatggagt gcaataatac 850
tgtatagctt tcccccacct cccacaaaaat cacccagttt atgtgtgtgt 900
gtgtgttttt tttaaggtaa acattactac ttgtaacttt ttttctttag 950
tcatatttgg aaaaagtaga aaattggagt tacatttggaa tttttttcc 1000
aa 1002

<210> 14
<211> 163
<212> PRT
<213> Homo sapien

<220>
<221> Unsure
<222> 17
<223> Unknown amino acid

<400> 14
Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val
1 5 10 15
Ser Xaa Gly Tyr Arg Arg Val Phe Glu Glu Tyr Met Arg Val Ile
20 25 30
Ser Gln Arg Tyr Pro Asp Ile Arg Ile Glu Gly Glu Asn Tyr Leu
35 40 45
Pro Gln Pro Ile Tyr Arg His Ile Ala Ser Phe Leu Ser Val Phe
50 55 60
Lys Leu Val Leu Ile Gly Leu Ile Ile Val Gly Lys Asp Pro Phe
65 70 75
Ala Phe Phe Gly Met Gln Ala Pro Ser Ile Trp Gln Trp Gly Gln
80 85 90
Glu Asn Lys Val Tyr Ala Cys Met Met Val Phe Phe Leu Ser Asn
95 100 105
Met Ile Glu Asn Gln Cys Met Ser Thr Gly Ala Phe Glu Ile Thr
110 115 120
Leu Asn Asp Val Pro Val Trp Ser Lys Leu Glu Ser Gly His Leu
125 130 135

Pro Ser Met Gln Gln Leu Val Gln Ile Leu Asp Asn Glu Met Lys
140 145 150

Leu Asn Val His Met Asp Ser Ile Pro His His Arg Ser
155 160

<210> 15

<211> 3002

<212> DNA

<213> Homo sapien

<400> 15

gtggcttggc attcaactggc aggtttcaga catttagatc tttctttaa 50
tgactaacac catgcctatac tgtggagaag ctggcaacat gtcacacccg 100
gaaattgttt ttcaacatta atactattat ttggcagtaa tccagattgc 150
tttgccacc aacctgaaga catatagagg cagaaggaca ggaataattc 200
tatttgttcc ctgtttgaa acttccatct gtaaggctat caaaaggaga 250
tgtgagagag ggtattgagt ctggcctgac aatgcagttc ttaaacccaaa 300
ggtcattat gcttctcctc tctgagaatc ctgacttacc tcaacaacgg 350
agacatggca cagtagccag cttggagact tctcagccaa tgctctgaga 400
tcaagtcgaa gacccaatat acagggttt gagctcatct tcatttcattca 450
tatgaggaaa taagtggtaa aatccttggaa aatacaatga gactcatcag 500
aaacatttac atattttgtta gtattgttat gacagcagag ggtgtatgctc 550
cagagctgcc agaagaaagg gaactgatga ccaactgctc caacatgtct 600
ctaagaaagg ttcccccgaga cttgaccctt gccacaacgca cactggattt 650
atcctataac ctccttttc aactccagag ttcagatttt cattctgtct 700
ccaaactgag agtttgatt ctagccata acagaattca acagctggat 750
ctcaaaacct ttgaattcaa caaggagttt agatatttag atttgtctaa 800
taacagactg aagagtgtaa cttggatttt actggcaggt ctcaggtatt 850
tagatcttcc tttaatgac tttgacacca tgcctatctg tgaggaagct 900
ggcaacatgt cacacctgga aatccttaggt ttgagtgggg caaaaataca 950
aaaatcagat ttccagaaaa ttgctcatct gcatctaaat actgtctct 1000
taggattcag aactcttcct cattatgaag aaggtagcct gcccacatctt 1050
aacacaacaa aactgcacat tggatccatca atggacacaa atttctgggt 1100
tctttgcgt gatgaaatca agacttcaaa aatattagaa atgacaaata 1150

tagatggcaa aagccaaattt gtaagttatg aaatgcaacg aaatcttagt 1200
ttagaaaatg ctaagacatc gggtcttattg cttaataaaag ttgattttact 1250
ctgggacgac ctttccctta tcttacaatt tgtttggcat acatcagtgg 1300
aacactttca gatccgaaat gtgacttttg gtggtaaggc ttatcttgac 1350
cacaattcat ttgactactc aaatactgta atgagaacta taaaatttga 1400
gcatgtacat ttcagagtgt tttacattca acaggataaa atcttattgc 1450
ttttgaccaa aatggacata gaaaacctga caatataaaa tgcacaaaatg 1500
ccacacatgc ttttcccgaa ttatcctacg aaattccaat atttaaattt 1550
tgccaataat atcttaacag acgagttgtt taaaagaact atccaactgc 1600
ctcacttgaa aactctcatt ttgaatggca ataaactgga gacactttct 1650
ttagtaagtt gcttgctaa caacacaccc ttggaacact tggatctgag 1700
tcaaaatcta ttacaacata aaaatgatga aaattgctca tggccagaaaa 1750
ctgtggtcaa tatgaatctg tcatacaata aattgtctga ttctgtcttc 1800
aggtgcttgc ccaaaagtat tcaaatactt gacctaata ataaccaaata 1850
ccaaactgta cctaaagaga ctattcatct gatggcctta cgagaactaa 1900
atattgcatt taatttctta actgatctcc ctggatgcag tcatttcagt 1950
agactttcag ttctgaacat taaaaatgaac ttcattctca gcccattctct 2000
ggattttgtt cagagctgcc aggaagttaa aactctaaat gcgggaagaa 2050
atccattccg gtgtacctgt gaattaaaaa atttcattca gcttgaaca 2100
tattcagagg tcatgatggt tggatggtca gattcataca cctgtgaata 2150
ccctttaaac ctaagggaa ttaggtaaa agacgttcat ctccacgaat 2200
tatcttgcaa cacagctctg ttgattgtca ccattgtggt tattatgcta 2250
gttctgggt tggctgtggc cttctgctgt ctccactttg atctgccctg 2300
gtatctcagg atgcttaggtc aatgcacaca aacatggcac agggtagga 2350
aaacaaccca agaacaactc aagagaaaatg tccgattcca cgcattttatt 2400
tcatacagt aacatgattc tctgtgggtg aagaatgaat tgatccccaa 2450
tctagagaag gaagatggtt ctatcttgat ttgcctttat gaaagctact 2500
ttgaccctgg caaaagcatt agtggaaata ttgttaagctt cattgagaaaa 2550
agctataagt ccatcttgc tttgtctccc aactttgtcc agaatgagtg 2600

gtgccattat gaattttact ttgcccacca caatctcttc catgaaaatt 2650
ctgatcatat aattcttatac ttactggaac ccattccatt ctattgcatt 2700
cccaccaggt atcataaaact gaaagctctc ctggaaaaaa aagcataactt 2750
ggaatggccc aaggataggc gtaaatgtgg gctttctgg gcaaacccttc 2800
gagctgctat taatgttaat gtattagcca ccagagaaat gtatgaactg 2850
cagacattca cagagttaaa tgaagagtcg cgaggttcta caatctct 2900
gatgagaaca gattgtctat aaaatcccac agtccttggg aagttgggga 2950
ccacatacac tggtggatg tacattgata caacctttat gatggcaatt 3000
tg 3002

<210> 16
<211> 811
<212> PRT
<213> Homo sapien

<400> 16
Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met
1 5 10 15
Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu
20 25 30
Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp
35 40 45
Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu
50 55 60
Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75
Val Leu Ile Leu Cys His Asn Arg Ile Gln Gln Leu Asp Leu Lys
80 85 90
Thr Phe Glu Phe Asn Lys Glu Leu Arg Tyr Leu Asp Leu Ser Asn
95 100 105
Asn Arg Leu Lys Ser Val Thr Trp Tyr Leu Leu Ala Gly Leu Arg
110 115 120
Tyr Leu Asp Leu Ser Phe Asn Asp Phe Asp Thr Met Pro Ile Cys
125 130 135
Glu Glu Ala Gly Asn Met Ser His Leu Glu Ile Leu Gly Leu Ser
140 145 150
Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln Lys Ile Ala His Leu
155 160 165
His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr Leu Pro His Tyr

170	175	180												
Glu	Glu	Gly	Ser	Leu	Pro	Ile	Leu	Asn	Thr	Thr	Lys	Leu	His	Ile
				185					190				195	
Val	Leu	Pro	Met	Asp	Thr	Asn	Phe	Trp	Val	Leu	Leu	Arg	Asp	Gly
				200					205				210	
Ile	Lys	Thr	Ser	Lys	Ile	Leu	Glu	Met	Thr	Asn	Ile	Asp	Gly	Lys
				215					220				225	
Ser	Gln	Phe	Val	Ser	Tyr	Glu	Met	Gln	Arg	Asn	Leu	Ser	Leu	Glu
				230				235				240		
Asn	Ala	Lys	Thr	Ser	Val	Leu	Leu	Leu	Asn	Lys	Val	Asp	Leu	Leu
				245				250				255		
Trp	Asp	Asp	Leu	Phe	Leu	Ile	Leu	Gln	Phe	Val	Trp	His	Thr	Ser
				260				265				270		
Val	Glu	His	Phe	Gln	Ile	Arg	Asn	Val	Thr	Phe	Gly	Gly	Lys	Ala
				275				280				285		
Tyr	Leu	Asp	His	Asn	Ser	Phe	Asp	Tyr	Ser	Asn	Thr	Val	Met	Arg
				290				295				300		
Thr	Ile	Lys	Leu	Glu	His	Val	His	Phe	Arg	Val	Phe	Tyr	Ile	Gln
				305				310				315		
Gln	Asp	Lys	Ile	Tyr	Leu	Leu	Leu	Thr	Lys	Met	Asp	Ile	Glu	Asn
				320				325				330		
Leu	Thr	Ile	Ser	Asn	Ala	Gln	Met	Pro	His	Met	Leu	Phe	Pro	Asn
				335				340				345		
Tyr	Pro	Thr	Lys	Phe	Gln	Tyr	Leu	Asn	Phe	Ala	Asn	Asn	Ile	Leu
				350				355				360		
Thr	Asp	Glu	Leu	Phe	Lys	Arg	Thr	Ile	Gln	Leu	Pro	His	Leu	Lys
				365				370				375		
Thr	Leu	Ile	Leu	Asn	Gly	Asn	Lys	Leu	Glu	Thr	Leu	Ser	Leu	Val
				380				385				390		
Ser	Cys	Phe	Ala	Asn	Asn	Thr	Pro	Leu	Glu	His	Leu	Asp	Leu	Ser
				395				400				405		
Gln	Asn	Leu	Leu	Gln	His	Lys	Asn	Asp	Glu	Asn	Cys	Ser	Trp	Pro
				410				415				420		
Glu	Thr	Val	Val	Asn	Met	Asn	Leu	Ser	Tyr	Asn	Lys	Leu	Ser	Asp
				425				430				435		
Ser	Val	Phe	Arg	Cys	Leu	Pro	Lys	Ser	Ile	Gln	Ile	Leu	Asp	Leu
				440				445				450		
Asn	Asn	Asn	Gln	Ile	Gln	Thr	Val	Pro	Lys	Glu	Thr	Ile	His	Leu
				455				460				465		

Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp
 470 475 480
 Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile
 485 490 495
 Glu Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser
 500 505 510
 Cys Gln Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg
 515 520 525
 Cys Thr Cys Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser
 530 535 540
 Glu Val Met Met Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr
 545 550 555
 Pro Leu Asn Leu Arg Gly Ile Arg Leu Lys Asp Val His Leu His
 560 565 570
 Glu Leu Ser Cys Asn Thr Ala Leu Leu Ile Val Thr Ile Val Val
 575 580 585
 Ile Met Leu Val Leu Gly Leu Ala Val Ala Phe Cys Cys Leu His
 590 595 600
 Phe Asp Leu Pro Trp Tyr Leu Arg Met Leu Gly Gln Cys Thr Gln
 605 610 615
 Thr Trp His Arg Val Arg Lys Thr Thr Gln Glu Gln Leu Lys Arg
 620 625 630
 Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser
 635 640 645
 Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu Glu Lys Glu Asp
 650 655 660
 Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp Pro Gly
 665 670 675
 Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys Ser Tyr
 680 685 690
 Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu Trp
 695 700 705
 Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu
 710 715 720
 Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe
 725 730 735
 Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
 740 745 750
 Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly

755	760	765
Leu Phe Trp Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu		
770	775	780
Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn		
785	790	795
Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys		
800	805	810

Leu

<210> 17
<211> 1911
<212> DNA
<213> Homo sapien

<400> 17
ccctgcgcgg ctgctggacc gacgggcgca cccaggtagg ggggcggctg 50
agccgcgcag tgcggaccct cgccgggaac tgcgccgcgg ccaccatgtc 100
tcaggaaggt gtggagctgg agaagagcgt ccggcgccctc cgggagaagt 150
ttcatggaa ggtatcctcc aagaaggcgg gggctctgat gaggaaattc 200
ggcagcgcacc acacgggagt gggcgctcc atcgtgtacg gggtaaagca 250
aaaagatggc caagaactaa gtaacgatct ggatgcccag gatccacccag 300
aagatatgaa gcaggaccgg gacattcagg cagtggcgac ctccctcctg 350
ccactgacag aagccaacct acgcatgtt caacgtgccc aggacgaccc 400
tatccctgct gtggaccggc agttgcctg ctcctcctgc gaccacgtct 450
ggtggcgccg cgtccccag cgaaaggagg tatcccggtg ccggaaatgc 500
cggaagcgc acgagccagt gccagctgac aagatgtgg gcctggctga 550
gttccactgc ccgaagtgtc ggcacaactt ccggggctgg gcacagatgg 600
ggtccccgtc cccctgctac gggtgccgct tccccgtgta tccaacacgg 650
atcctccccc cgccggggga ccgggacccg gatccgcgca gcacccacac 700
tcactcctgc tcagctgccc actgctacaa ccggcgagag ccccacgtgc 750
ctgggacatc ctgtgctcac cccaagagcc ggaagcagaa ccacctgccc 800
aaagtgcgtcc accccagcaa ccctcacatt agcagtggcc ccactgtggc 850
cacctgcttg agccagggtg gcctcctgga agacctggac aacctcatcc 900
tggaggaccc gaaggaggag gaggaggaag aggaggaggt ggaggacgag 950

gagggcgggc ccaggagtg acccctgcc a ggtgcagata caaaccagac 1000
acggtctgtg gctactttgt gttattataa gatatgagct caaaccgaga 1050
tatgaatgac cttggggagc catctgaggg caagatattg acggggggga 1100
ttcctgggtc ccatttcag cgcccaggg cacagatcca cagtggaaag 1150
ttctgtggga cacattggca ctgagccaca aagaaggtgt ggccagaaca 1200
acttgggctc ctgctgacca atgtcctcta gggccttaggg gacagaggaa 1250
cacagagtca cagcttcagg ggccgaatga gcatggcggc cttcctgaga 1300
gaatatgccc caccacgaaa ctcagccag tagacaccat cctggtagcg 1350
gcttcggtag tggccgcgt ggtgccacac accgttgagg ttggagtgg 1400
cacaggcatg gtaccaccag cctccccgt ggtacagggc acagttacct 1450
gaggggagag agagagtcca tgtcctctca ccagaataaa agcctctacc 1500
tgcacctcac agtgcaggc tttgccagg catccctgg cccctccat 1550
tcttattgaa tacaagccct gatcttccat ctcctcagca aaaaaatagg 1600
agccctggcc ccccaacttt cttcagagta atagcctaa ttccttcct 1650
atctccttac caaagtacaa gtcacatctt tcccacctt tctgcaaact 1700
aggagtctac cgttcattcc tttatcaaag aaaagtatct acttccttcc 1750
tagaataaga gtactagctc tcaccctctg cccttactt gaacaggagt 1800
cttgattctt ttttgcctc atcagagaag gaatctggac tccccatccc 1850
cccaccagga taaaagtccct gaccttggtt ctctgacgg aataaaagct 1900
tgcttatcct t 1911

<210> 18
<211> 291
<212> PRT
<213> Homo sapien

<400> 18
Met Ser Gln Glu Gly Val Glu Leu Glu Lys Ser Val Arg Arg Leu
1 5 10 15
Arg Glu Lys Phe His Gly Lys Val Ser Ser Lys Lys Ala Gly Ala
20 25 30
Leu Met Arg Lys Phe Gly Ser Asp His Thr Gly Val Gly Arg Ser
35 40 45
Ile Val Tyr Gly Val Lys Gln Lys Asp Gly Gln Glu Leu Ser Asn
50 55 60

Asp	Leu	Asp	Ala	Gln	Asp	Pro	Pro	Glu	Asp	Met	Lys	Gln	Asp	Arg
						65				70				75
Asp	Ile	Gln	Ala	Val	Ala	Thr	Ser	Leu	Leu	Pro	Leu	Thr	Glu	Ala
						80				85				90
Asn	Leu	Arg	Met	Phe	Gln	Arg	Ala	Gln	Asp	Asp	Leu	Ile	Pro	Ala
						95			100					105
Val	Asp	Arg	Gln	Phe	Ala	Cys	Ser	Ser	Cys	Asp	His	Val	Trp	Trp
						110			115					120
Arg	Arg	Val	Pro	Gln	Arg	Lys	Glu	Val	Ser	Arg	Cys	Arg	Lys	Cys
						125			130					135
Arg	Lys	Arg	Tyr	Glu	Pro	Val	Pro	Ala	Asp	Lys	Met	Trp	Gly	Leu
						140			145					150
Ala	Glu	Phe	His	Cys	Pro	Lys	Cys	Arg	His	Asn	Phe	Arg	Gly	Trp
						155			160					165
Ala	Gln	Met	Gly	Ser	Pro	Ser	Pro	Cys	Tyr	Gly	Cys	Gly	Phe	Pro
						170			175					180
Val	Tyr	Pro	Thr	Arg	Ile	Leu	Pro	Pro	Arg	Arg	Asp	Arg	Asp	Pro
						185			190					195
Asp	Arg	Arg	Ser	Thr	His	Thr	His	Ser	Cys	Ser	Ala	Ala	Asp	Cys
						200			205					210
Tyr	Asn	Arg	Arg	Glu	Pro	His	Val	Pro	Gly	Thr	Ser	Cys	Ala	His
						215			220					225
Pro	Lys	Ser	Arg	Lys	Gln	Asn	His	Leu	Pro	Lys	Val	Leu	His	Pro
						230			235					240
Ser	Asn	Pro	His	Ile	Ser	Ser	Gly	Pro	Thr	Val	Ala	Thr	Cys	Leu
						245			250					255
Ser	Gln	Gly	Gly	Leu	Leu	Glu	Asp	Leu	Asp	Asn	Leu	Ile	Leu	Glu
						260			265					270
Asp	Leu	Lys	Glu	Val	Glu	Asp	Glu							
						275			280					285
Glu	Gly	Gly	Pro	Arg	Glu									
					290									

<210> 19

<211> 1603

<212> DNA

<213> Homo sapien

<400> 19

ggtggtccag gaaaaggcgc tccgtcatgg ggatccagac gagccccgtc 50

ctgctggcct ccctgggggt ggggctggtc actctgctcg gcctggctgt 100

gggctcctac ttgggtcgga ggtcccgccg gcctcaggc actctcctgg 150
accccaatga aaagtacctg ctacgactgc tagacaagac gactgtgagc 200
cacaacaccca agaggttccg ctttgccctg cccaccgccc accacactct 250
ggggctgcct gtgggcaaac atatctacct ctccacccga attgatggca 300
acctggtcat caggccatac actcctgtca ccagtatgaa ggatcaaggc 350
tatgtggatc ttgtcatcaa ggtctacctg aagggtgtgc accccaaatt 400
tcctgagggaa gggaaagatgt ctcagttaccc ggtatgcctg aaggttggc 450
atgtggtggaa gtttcggggg ccaagcgggt tgctcactta cactggaaaa 500
ggcatttta acattcagcc caacaagaaa tctccaccag aaccccgagt 550
ggcgaagaaa ctggaaatga ttgccggcgg gacaggaatc accccaatgc 600
tacagctgat ccgggccccatc ctgaaagtcc ctgaagatcc aacccagatgc 650
tttctgcttt ttgccaacca gacagaaaaag gatatcatct tgcgggagga 700
cttagaggaa ctgcaggccc gctatcccaa tcgccttaag ctctggatca 750
ctctggatca tcccccaaaa gattgggcct acagcaaggg ctttgtact 800
gccgacatga tccggaaaca cctgcccgt ccagggatg atgtgctggt 850
actgcttgtt gggccacccc caatggtgca gctggcctgc catcccaact 900
tggacaaact gggctactca caaaagatgc gattcaccta ctgagcatcc 950
tccagcttcc ctgggtctgt tcgctgcagt tgttcccat cagtaactcaa 1000
gcactataag ccttagattc ctttcctcag agtttcaggt ttttcagtt 1050
acatctagag ctgaaatctg gatagttaccc gcaggaacaa tattcctgtta 1100
ccatggaaag aggcccaagg ctcagtcact ccttggatgg cctcctaaat 1150
ctccccgtgg caacaggtcc aggagaggcc catggagcag tctcttccat 1200
ggagtaagaa ggaagggagc atgtacgctt ggtccaaat tggcttagttc 1250
cttgatagca tcttactctc accttcttgc tgtctgtat gaaaggaaca 1300
gtctgtgcaa tgggtttac ttaaacttca ctgttcaacc tatgagcaaa 1350
tctgtatgtg tgagtataag ttgagcatag catacttcca gaggtggct 1400
tatggagatg gcaagaaagg aggaaatgat ttcttcagat ctcaaaggag 1450
tctgaaatat catatttctg tgtgtgtctc tctcagcccc tgcccaggct 1500
agagggaaac agctactgat aatcgaaaac tgctgtttgt ggcaggaacc 1550

cctggctgtg caaataatac tggctgaggc ccctgtgtga tattaaaaaa 1600
 aaa 1603
 <210> 20
 <211> 305
 <212> PRT
 <213> Homo sapien
 <400> 20
 Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val
 1 5 10 15
 Gly Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val
 20 25 30
 Arg Arg Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu
 35 40 45
 Lys Tyr Leu Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His Asn
 50 55 60
 Thr Lys Arg Phe Arg Phe Ala Leu Pro Thr Ala His His Thr Leu
 65 70 75
 Gly Leu Pro Val Gly Lys His Ile Tyr Leu Ser Thr Arg Ile Asp
 80 85 90
 Gly Asn Leu Val Ile Arg Pro Tyr Thr Pro Val Thr Ser Asp Glu
 95 100 105
 Asp Gln Gly Tyr Val Asp Leu Val Ile Lys Val Tyr Leu Lys Gly
 110 115 120
 Val His Pro Lys Phe Pro Glu Gly Gly Lys Met Ser Gln Tyr Leu
 125 130 135
 Asp Ser Leu Lys Val Gly His Val Val Glu Phe Arg Gly Pro Ser
 140 145 150
 Gly Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn Ile Gln Pro
 155 160 165
 Asn Lys Lys Ser Pro Pro Glu Pro Arg Val Ala Lys Lys Leu Gly
 170 175 180
 Met Ile Ala Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile
 185 190 195
 Arg Ala Ile Leu Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu
 200 205 210
 Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp
 215 220 225
 Leu Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe Lys Leu Trp
 230 235 240

Phe	Thr	Leu	Asp	His	Pro	Pro	Lys	Asp	Trp	Ala	Tyr	Ser	Lys	Gly
245									250					255
Phe	Val	Thr	Ala	Asp	Met	Ile	Arg	Glu	His	Leu	Pro	Ala	Pro	Gly
260								265						270
Asp	Asp	Val	Leu	Val	Leu	Leu	Cys	Gly	Pro	Pro	Pro	Met	Val	Gln
275								280						285
Leu	Ala	Cys	His	Pro	Asn	Leu	Asp	Lys	Leu	Gly	Tyr	Ser	Gln	Lys
290								295						300
Met	Arg	Phe	Thr	Tyr										
				305										

<210> 21
<211> 2728
<212> DNA
<213> Homo sapien

<400> 21
accgcggaaa gcatgttgtg gctgttccaa tcgctcctgt ttgtcttctg 50
cttgccca ggaaatgttag tttcacaaag cagcttaacc ccattgatgg 100
tgaacggat tctggggag tcagtaactc ttcccctgga gtttcctgca 150
ggagagaagg tcaacttcat cacttggctt ttcaatgaaa catctcttgc 200
cttcatacgta cccatgaaa ccaaaagtcc agaaatccac gtgactaatac 250
cgaaacaggg aaagcgactg aacttcaccc agtctactc cctgcaactc 300
agcaacctga agatggaaga cacaggctct tacagagccc agatatccac 350
aaagacctct gcaaagctgt ccagttacac tctgaggata ttaagacaac 400
tgaggaacat acaagttacc aatcacagtc agctatttca gaatatgacc 450
tgtgagctcc atctgacttg ctctgtggag gatgcagatg acaatgtctc 500
attcagatgg gaggccttgg gaaacacact ttcaagtcag ccaaacctca 550
ctgtcctcg ggaccccagg atttccagtg aacaggacta cacctgcata 600
gcagagaatg ctgtcagtaa tttatccttc tctgtctctg cccagaagct 650
ttgcgaagat gttaaaattc aatatacaga tacaaaaatg attctgttta 700
tggtttctgg gatatgcata gtcttcgggt tcatcatact gctgttactt 750
gttttgagga aaagaagaga ttccctatct ttgtctactc agcgaacaca 800
ggcccccgag tccgcaagga acctagagta tgttcagtg tctccaacga 850
acaacactgt gtatgcttca gtcactcatt caaacaggga aacagaaatc 900
tggacaccta gagaaaatga tactatcaca atttactcca caattaatca 950

ttccaaagag agtaaaccca cttttccag ggcaactgcc cttgacaatg 1000
tcgtgtaaat tgctgaaagg cctcagagga attcggaaat gacacgtctt 1050
ctgatcccat gagacagaac aaagaacagg aagcttggtt cctgttggtc 1100
ctggcaacag aatttgaata tcttaggatag gatgatcacc tccagtccctt 1150
cggaactaaa cctgcctacc tgagtcaaac acctaaggat aacatcattt 1200
ccagcatgtg gttcaaataa tattttccaa tccacttcag gccaaaacat 1250
gctaaagata acacaccagc acattgactc tctctttagt aactaagcaa 1300
atggaattat ggttgcacaga gagtttatga tccagaagac aaccacttct 1350
ctccttttag aaagcagcag gattgactta ttgagaaata atgcagtgtg 1400
ttggttacat gtgttgtc tggagttgga tggcccatc ctgatacaag 1450
ttgagcatcc cttgtctgaa atgcttggga ttagaaatgt ttcagatttc 1500
aattttttt cagattttgg aatatttgc atatatttttag cggttgagta 1550
tccaaatcca aaaatccaaa attcaaaatg ctccaataag cattccctt 1600
gagtttcatt gatgtcgatg cagtgcctaa aatctcagat tttggagcat 1650
tttggatatt ggatttttgg atttggatg ctcaacttgt acaatgtta 1700
tttagacacat ctcotggac atactgccta acctttggc gccttagtct 1750
cccagactga aaaaggaaga ggttggattt acatcagctc cattgttga 1800
gccaagaatc taagtcatcc ctgactccag tgtcttgac accaggccct 1850
ttggactcta cctcagaaat atttcttggc ccttccactt ctccctccaac 1900
tccttgacca ccattctgta tccaaaccatc accacctcta acctgaatcc 1950
taccttaaga tcagaacagt tgtcctcact tttgttcttg tccctctcca 2000
acccactctc cacaagatgg ccagagtaat gtttttaata taaattggat 2050
ccttcagttt cctgcttaaa accctgcagg tttcccaatg cactcagaaa 2100
gaaatccagt ttccatggcc ctggatggtc tggcccacct ccagcctcag 2150
ctagcattac cttcttgaca ctctctatgt agcctccctg atcttcttcc 2200
agctcctcta ttaaaggaaa agttctttagt gtttattt tacatcttcc 2250
tgcaggccct tcctctgcct gctggggtcc tcctattctt taggtttaat 2300
tttaaatatg tcacccctcta agagaaacct tcccgacca ctctttctaa 2350
aatgaatctt ctaggctggg catggtggtcacacccatgtatccagttac 2400

tttgggaggc caagggggga gatcaactgaa ggtcaggagt tcaagaccag 2450
cctggccaac ttggtaaac cccgtcttta ctaaaaatac aaaaaaatta 2500
gccaggcggtg gtgggcacc cctaaaatcc cagctacttg agagactgag 2550
gcaggagaat cgctgaaacc caggagggtgg aggttccagt gagccaaaat 2600
catgccaatg tattccagtc tgggtgacag agtgagactc tgtctcaaaa 2650
aataaataaaa taaaataaaa tgaaatagat cttataaaaa aaaaaaaaaa 2700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2728

<210> 22
<211> 331
<212> PRT
<213> Homo sapien

<400> 22
Met Leu Trp Leu Phe Gln Ser Leu Leu Phe Val Phe Cys Phe Gly
1 5 10 15
Pro Gly Asn Val Val Ser Gln Ser Ser Leu Thr Pro Leu Met Val
20 25 30
Asn Gly Ile Leu Gly Glu Ser Val Thr Leu Pro Leu Glu Phe Pro
35 40 45
Ala Gly Glu Lys Val Asn Phe Ile Thr Trp Leu Phe Asn Glu Thr
50 55 60
Ser Leu Ala Phe Ile Val Pro His Glu Thr Lys Ser Pro Glu Ile
65 70 75
His Val Thr Asn Pro Lys Gln Gly Lys Arg Leu Asn Phe Thr Gln
80 85 90
Ser Tyr Ser Leu Gln Leu Ser Asn Leu Lys Met Glu Asp Thr Gly
95 100 105
Ser Tyr Arg Ala Gln Ile Ser Thr Lys Thr Ser Ala Lys Leu Ser
110 115 120
Ser Tyr Thr Leu Arg Ile Leu Arg Gln Leu Arg Asn Ile Gln Val
125 130 135
Thr Asn His Ser Gln Leu Phe Gln Asn Met Thr Cys Glu Leu His
140 145 150
Leu Thr Cys Ser Val Glu Asp Ala Asp Asp Asn Val Ser Phe Arg
155 160 165
Trp Glu Ala Leu Gly Asn Thr Leu Ser Ser Gln Pro Asn Leu Thr
170 175 180
Val Ser Trp Asp Pro Arg Ile Ser Ser Glu Gln Asp Tyr Thr Cys
185 190 195

Ile Ala Glu Asn Ala Val Ser Asn Leu Ser Phe Ser Val Ser Ala
200 205 210
Gln Lys Leu Cys Glu Asp Val Lys Ile Gln Tyr Thr Asp Thr Lys
215 220 225
Met Ile Leu Phe Met Val Ser Gly Ile Cys Ile Val Phe Gly Phe
230 235 240
Ile Ile Leu Leu Leu Val Leu Arg Lys Arg Arg Asp Ser Leu
245 250 255
Ser Leu Ser Thr Gln Arg Thr Gln Gly Pro Glu Ser Ala Arg Asn
260 265 270
Leu Glu Tyr Val Ser Val Ser Pro Thr Asn Asn Thr Val Tyr Ala
275 280 285
Ser Val Thr His Ser Asn Arg Glu Thr Glu Ile Trp Thr Pro Arg
290 295 300
Glu Asn Asp Thr Ile Thr Ile Tyr Ser Thr Ile Asn His Ser Lys
305 310 315
Glu Ser Lys Pro Thr Phe Ser Arg Ala Thr Ala Leu Asp Asn Val
320 325 330

Val

<210> 23
<211> 4796
<212> DNA
<213> Homo sapien

<400> 23
gagaggacga ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 50
cggagccccag cccttccta acccaaccca accttagccca gtcccagccg 100
ccagcgccctg tccctgtcac ggaccccagc gttaccatgc atcctgccgt 150
cttcctatcc ttacccgacc tcagatgctc cttctgctc ctggtaactt 200
gggtttttac tcctgtaaca actgaaataa caagtcttga tacagagaat 250
atagatgaaa ttttaaacaa tgctgatgtt gcttttagtaa attttatgc 300
tgactggtgt cgtttcagtc agatgttgc tccaattttt gaggaagctt 350
ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 400
agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 450
caaataaccca accctcaaata tggatcgtaa tggatgtatg atgaagagag 500
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550

caaaaaagt accccattca agaaattcgg gacttagcag aaatcaccac 600
tcttgatcgc agcaaaagaa atatcattgg atattttag caaaaggact 650
cggacaacta tagagtttt gaacgagtag cgaatattt gcatgatgac 700
tgtgccttc tttctgcatt tggggatgtt tcaaaaacgg aaagatata 750
tggcgacaac ataatctaca aaccaccagg gcattctgct ccggatatgg 800
tgtacttggg agctatgaca aattttgatg tgacttacaa ttggattcaa 850
gataaatgtg ttcccttctgt ccgagaaata acatttgaaa atggagagga 900
attgacagaa gaaggactgc cttttctcat actcttcac atgaaagaag 950
atacagaaaag ttttagaaata ttccagaatg aagtagctcg gcaattaata 1000
agtaaaaaag gtacaataaa cttttacat gccgattgtg acaaatttag 1050
acatcctctt ctgcacatac agaaaactcc agcagattgt cctgtaatcg 1100
ctattgacag cttaggcat atgtatgtt ttggagactt caaagatgta 1150
ttaattcctg gaaaactcaa gcaattcgta tttgacttac attctggaaa 1200
actgcacaga gaattccatc atggacctga cccaaactgat acagccccag 1250
gagagcaagc ccaagatgta gcaagcagtc cacctgagag ctcctccag 1300
aaactagcac ccagtgaata taggtatact ctattgaggg atcgagatga 1350
gcttaaaaaa cttgaaaaac agtttgtaag cctttcaaca gcagcatcaa 1400
cctacgttgtt ggaaatagta aacctatatt ttcataattc tatgtgtatt 1450
tttattttga ataaacagaa agaaattttg ggttttaat tttttctcc 1500
ccgactcaaa atgcattgtc atttaatata gtagcctctt aaaaaaaaaa 1550
aaacctgcta ggattaaaaa ataaaaatca gaggcctatc tccactttaa 1600
atctgtcctg taaaagttt ataaatcaa tgaaaggtga cattgccaga 1650
aacttaccat taacttgcac tactaggta gggaggactt aggatgttc 1700
ctgtgtcgta tgtgttttc tttcttcatt atgatcaatt ctgttggtat 1750
tttcagttatc tcatttctca aagctaaaga gatatacatt ctggatactt 1800
gggaggggaa taaattaaag ttttcacact gtgtactgtg ttttactgat 1850
tggttggata ttgcttatga aaattccata gtggatattt tttggattct 1900
taatgtgtaa cttaaacata ctttgaagtg gaggagagtc ataagacaga 1950
acatttggca ggaattgtcc ttatgaaaca agaaaaagaa aatgaaaagt 2000

attattaagc ttctgtgttt gtctaaaaat gtggcatatg gatggcattt 2050
aaaactttga atgaattata cctaaatctg ggacagggag gtgacagtgg 2100
aacaggctac caatcagaac taatgtactt ttaaggctcc tcctattatg 2150
agacttcaat ttccaaagag aagaacttagc agagaaattt 2200
attttaagct cttctgtct tgttagtgtct tgtagatgtt gtataaatca 2250
aaaacacaga ataaggaaca tatttaactt ttttcatta taaaatggtt 2300
agaggaccct accccctcta gattccctga tttccccagg cctgcagcat 2350
acagtaagat gggccctgt gccaggcctc aatactgcc 2400
ccagagggag aggaccctca gtgtcatatc aggaagccc 2450
acagacaggt tcaaaactgg ctccctct gggctgggt tggtgctata 2500
ggccaagggt catttatac ttgggtataa atcaatccc 2550
agattatttt taagcttaaa aggctgacat gtgccattat atgttagtatg 2600
taatatatgt aacatcttcc aattctttta aaataaaatt aatatttata 2650
atggatattt aatgattgtt attttaaaa accagctt 2700
tatgcatgat ttatccaaag ttccatagt ttatcaaa ataataaatg 2750
ttaataagg 2800
aagaaagtag gatggagctt tctagaggtt gggcttagt tctgttatcc 2850
tcattgctt taaccaataa gttaaatgaa gtttaggtt tggcttcag 2900
gttagattat ggaccagatc tgtgagggc 2950
acaaggtagc acacaggacc aagagcagca catgcaatca actggaaataa 3000
tatagtaatc ctgtaactgg gttgaaaaaa ataatcaaca aaagatacaa 3050
ttcaagggtt aggttgcaga gagctggctt gagagtagtt attatgaaaa 3100
aggcctaag ggtacgtgt tcgtatgt 3150
ttaaaaagg 3200
ggccttaggc tctagccctg ccactatcat tgtctct 3250
gtcactgagg acaaggaaac taaatthaat gtctgtatca ctagtgccta 3300
gaatttctgg acacttagta gtcaccatca ggcgtttatt taatgaatga 3350
gaagcaaagt gaccttgggtt actttttac cctgaggggc tcagcactca 3400
ttaggacttg gtgcctaatt ttataaaaaag tcactaagct caagtgcctg 3450

gatgaaagga cagcgtggat aaaaagggtt ttaaaacatg gatgttaagg 3500
ctgtttgct tggagaagac ttgggactgg gacagtctt agatattatt 3550
tgaaatgctg gcactgtcta tctggatccc agggcttcaa ctaggattt 3600
aggaagtac agggaaagcag atttcagtc gacatttatt cagtgcagt 3650
tttttgtgc tgtatgtat gatgaaagat gtaaagctga ataaagcatt 3700
atttctgccc tagagttgtt cacagcctag tcaggcatat ggatatgtaa 3750
acaatgactg taacgtgtt tagatgtaaa gacaaaataa aggttaaaga 3800
gggcataaag gagcactcaa ttgcagagat ttgaggacat tattttatt 3850
ttgagcttta aaaagatgaa taggtgtct caggaggtag ggatctggct 3900
gagagggaat aatctgagca aaggtatgaa acagccta at gcattagaga 3950
aaaaagttct ttttagtaagg catttgggt tgggaagct agaaaaagaa 4000
atgggagctg gtcacacagg gccttgtgt ccagactaag gggttttag 4050
tatatattgt aggcaaga gatccatcaa cagattgcaa gcaaggaagt 4100
atgttcactt taaagttga gaaagaatag tgtggaaagca cgtctcaa at 4150
ttagacttac ttgtcccccc tctgaaccgt gaatcagacc atttcaggt 4200
gaagtcttcc ccggtttatac tgatctactc gggcctcag gcttctcagc 4250
tgggaagaga gnatgcaaga ccagactgaa gaacacggtt gagtccccag 4300
aaccaaaaagg gggctttct gcttcttagc cagctacctc ttcgagttt 4350
tcaaattgtg agggggacca taaaaggatg gaaactttt gatgacattc 4400
tacaaattat tttttcttt aaattaaaag aacctagcca ataagataga 4450
gaatggcat ctaaggcatc tcagagctc ctgatgaagc cagttgtca 4500
aagatcatt gcaaaaagaag gaaaaactgg catgacaaaa gctacagaga 4550
ggagagtgaa atatagaagt gtttgaatg ttcaagctca caataagctt 4600
aaatttatag aaaatgctaa ggttgtcaag aaggctttt ttttttctt 4650
ttttaaacct gagggcaaaa aggaatggat aaagtagtgt aatggattga 4700
caatcagggaa gaacagaata actcagttt ttttctcct acaaggagat 4750
atggctggac caaaataaaa tgacatgaaa ttgcaaaaat gaaaat 4796

<210> 24
<211> 451
<212> PRT
<213> Homo sapien

<400> 24

Arg	Gly	Arg	Gly	Ala	Ala	Ala	Trp	Arg	Ile	Leu	Arg	Cys	Arg	Arg
1				5					10					15
Leu	Pro	Glu	Pro	Ser	Pro	Phe	Leu	Thr	Gln	Pro	Asn	Leu	Ala	Gln
				20					25					30
Ser	Gln	Pro	Pro	Ala	Pro	Val	Pro	Val	Thr	Asp	Pro	Ser	Val	Thr
				35					40					45
Met	His	Pro	Ala	Val	Phe	Leu	Ser	Leu	Pro	Asp	Leu	Arg	Cys	Ser
				50					55					60
Leu	Leu	Leu	Leu	Val	Thr	Trp	Val	Phe	Thr	Pro	Val	Thr	Thr	Glu
				65					70					75
Ile	Thr	Ser	Leu	Asp	Thr	Glu	Asn	Ile	Asp	Glu	Ile	Leu	Asn	Asn
				80					85					90
Ala	Asp	Val	Ala	Leu	Val	Asn	Phe	Tyr	Ala	Asp	Trp	Cys	Arg	Phe
				95					100					105
Ser	Gln	Met	Leu	His	Pro	Ile	Phe	Glu	Glu	Ala	Ser	Asp	Val	Ile
				110					115					120
Lys	Glu	Glu	Phe	Pro	Asn	Glu	Asn	Gln	Val	Val	Phe	Ala	Arg	Val
				125					130					135
Asp	Cys	Asp	Gln	His	Ser	Asp	Ile	Ala	Gln	Arg	Tyr	Arg	Ile	Ser
				140					145					150
Lys	Tyr	Pro	Thr	Leu	Lys	Leu	Phe	Arg	Asn	Gly	Met	Met	Met	Lys
				155					160					165
Arg	Glu	Tyr	Arg	Gly	Gln	Arg	Ser	Val	Lys	Ala	Leu	Ala	Asp	Tyr
				170					175					180
Ile	Arg	Gln	Gln	Lys	Ser	Asp	Pro	Ile	Gln	Glu	Ile	Arg	Asp	Leu
				185					190					195
Ala	Glu	Ile	Thr	Thr	Leu	Asp	Arg	Ser	Lys	Arg	Asn	Ile	Ile	Gly
				200					205					210
Tyr	Phe	Glu	Gln	Lys	Asp	Ser	Asp	Asn	Tyr	Arg	Val	Phe	Glu	Arg
				215					220					225
Val	Ala	Asn	Ile	Leu	His	Asp	Asp	Cys	Ala	Phe	Leu	Ser	Ala	Phe
				230					235					240
Gly	Asp	Val	Ser	Lys	Pro	Glu	Arg	Tyr	Ser	Gly	Asp	Asn	Ile	Ile
				245					250					255
Tyr	Lys	Pro	Pro	Gly	His	Ser	Ala	Pro	Asp	Met	Val	Tyr	Leu	Gly
				260					265					270
Ala	Met	Thr	Asn	Phe	Asp	Val	Thr	Tyr	Asn	Trp	Ile	Gln	Asp	Lys
				275					280					285

Cys	Val	Pro	Leu	Val	Arg	Glu	Ile	Thr	Phe	Glu	Asn	Gly	Glu	Glu
				290					295					300
Leu	Thr	Glu	Glu	Gly	Leu	Pro	Phe	Leu	Ile	Leu	Phe	His	Met	Lys
				305					310					315
Glu	Asp	Thr	Glu	Ser	Leu	Glu	Ile	Phe	Gln	Asn	Glu	Val	Ala	Arg
				320					325					330
Gln	Leu	Ile	Ser	Glu	Lys	Gly	Thr	Ile	Asn	Phe	Leu	His	Ala	Asp
				335					340					345
Cys	Asp	Lys	Phe	Arg	His	Pro	Leu	Leu	His	Ile	Gln	Lys	Thr	Pro
				350					355					360
Ala	Asp	Cys	Pro	Val	Ile	Ala	Ile	Asp	Ser	Phe	Arg	His	Met	Tyr
				365					370					375
Val	Phe	Gly	Asp	Phe	Lys	Asp	Val	Leu	Ile	Pro	Gly	Lys	Leu	Lys
				380					385					390
Gln	Phe	Val	Phe	Asp	Leu	His	Ser	Gly	Lys	Leu	His	Arg	Glu	Phe
				395					400					405
His	His	Gly	Pro	Asp	Pro	Thr	Asp	Thr	Ala	Pro	Gly	Glu	Gln	Ala
				410					415					420
Gln	Asp	Val	Ala	Ser	Ser	Pro	Pro	Glu	Ser	Ser	Phe	Gln	Lys	Leu
				425					430					435
Ala	Pro	Ser	Glu	Tyr	Arg	Tyr	Thr	Leu	Leu	Arg	Asp	Arg	Asp	Glu
				440					445					450

Leu

<210> 25
<211> 810
<212> DNA
<213> Homo sapien

<400> 25
gctggagccg ggccggggcg atgtggagcg cggccgcgg cggggctgcc 50
tggccgggtgc tggggct gctgctggcg ctgttagtgc cggcgggtgg 100
tgccgccaag accgggtcg agctcgtgac ctgcgggtcg gtgctgaagc 150
tgctcaatac gcaccaccgc gtgcggctgc actcgcacga catcaaatac 200
ggatccggca gcggccagca atcgggtgacc ggcgttagagg cgtcgacga 250
cgcgaatagc tactggcgga tccgcggcg ctcggaggcgg gggtgcccgt 300
gcgggtcccc ggtgcgctgc gggcaggcg tgaggctcac gcatgtgctt 350
acgggcaaga acctgcacac gcaccacttc ccgtcgccgc tgtccaacaa 400

ccaggaggtg agtgccttg gggaaagacgg cgagggcgac gacctggacc 450
 tatggacagt gcgcgtcgtct ggacagcaact gggagcgtga ggctgctgtg 500
 cgcttacagc atgtggcac ctctgtgttc ctgtcagtca cgggtgagca 550
 gtatggaagc cccatccgtg ggcagcatga ggtccacggc atgcccagtg 600
 ccaacacgca caatacgtgg aaggccatgg aaggcatctt catcaagcct 650
 agtgtggagc cctctgcagg tcacgatgaa ctctgagtgt gtggatggat 700
 ggttggatgg agggtggcag gtggggcgtc tgcaggcca ctcttggcag 750
 agactttggg ttttagggg tcctcaagtg cctttgtat taaagaatgt 800
 tggcttatga 810

<210> 26
 <211> 221
 <212> PRT
 <213> Homo sapien

<400> 26
 Met Trp Ser Ala Gly Arg Gly Gly Ala Ala Trp Pro Val Leu Leu
 1 5 10 15
 Gly Leu Leu Leu Ala Leu Leu Val Pro Gly Gly Gly Ala Ala Lys
 20 25 30
 Thr Gly Ala Glu Leu Val Thr Cys Gly Ser Val Leu Lys Leu Leu
 35 40 45
 Asn Thr His His Arg Val Arg Leu His Ser His Asp Ile Lys Tyr
 50 55 60
 Gly Ser Gly Ser Gly Gln Gln Ser Val Thr Gly Val Glu Ala Ser
 65 70 75
 Asp Asp Ala Asn Ser Tyr Trp Arg Ile Arg Gly Gly Ser Glu Gly
 80 85 90
 Gly Cys Pro Cys Gly Ser Pro Val Arg Cys Gly Gln Ala Val Arg
 95 100 105
 Leu Thr His Val Leu Thr Gly Lys Asn Leu His Thr His His Phe
 110 115 120
 Pro Ser Pro Leu Ser Asn Asn Gln Glu Val Ser Ala Phe Gly Glu
 125 130 135
 Asp Gly Glu Gly Asp Asp Leu Asp Leu Trp Thr Val Arg Cys Ser
 140 145 150
 Gly Gln His Trp Glu Arg Glu Ala Ala Val Arg Leu Gln His Val
 155 160 165
 Gly Thr Ser Val Phe Leu Ser Val Thr Gly Glu Gln Tyr Gly Ser

170	175	180
Pro Ile Arg Gly Gln His Glu Val His Gly Met Pro Ser Ala Asn		
185	190	195
Thr His Asn Thr Trp Lys Ala Met Glu Gly Ile Phe Ile Lys Pro		
200	205	210
Ser Val Glu Pro Ser Ala Gly His Asp Glu Leu		
215	220	
<210> 27		
<211> 1256		
<212> DNA		
<213> Homo sapien		
<400> 27		
acgaggggag ctccggctgc gtctcccg agcgctaccc gccatgcgcc 50		
tgccgcgcgg ggccgcgtg gggctcctgc cgcttctgct gctgctgccg 100		
cccgcgccgg aggccgccaa gaagccgacg ccctgccacc ggtgccgggg 150		
gctggtggac aagttaacc agggatggt ggacaccgca aagaagaact 200		
ttggcggcgg gaacacggct tgggagaaaa agacgctgtc caagtacgag 250		
tccagcgaga ttgcgcctgct ggagatcctg gagggctgt gcgagagcag 300		
cgacttcgaa tgcaatcaga tgcttagaggc gcaggaggag cacctggagg 350		
cctgggtggct gcagctgaag agcgaatatac ctgacttatt cgagtggttt 400		
tgtgtgaaga cactgaaaatgt gtgctgtct ccaggaacct acggtcccga 450		
ctgtctcgca tgccaggcg gatcccagag gccctgcagc gggaatggcc 500		
actgcagcgg agatgggagc agacagggcg acgggtcctg ccgggccac 550		
atggggtacc agggcccgct gtgcactgac tgcattggacg gctacttcag 600		
ctcgctccgg aacgagaccc acagcatctg cacagcctgt gacgagtcct 650		
gcaagacgtg ctcgggcctg accaacagag actgcggcga gtgtgaagt 700		
ggctgggtgc tggacgaggg cgcctgtgtg gatgtggacg agtgtgcggc 750		
cgagccgcct ccctgcagcg ctgcgcagtt ctgtaagaac gccaacggct 800		
cctacacgtg cgaagatgtg gacgagtgct cactagcaga aaaaacctgt 850		
gtgagaaaa acgaaaactg ctacaatact ccagggagct acgtctgtgt 900		
gtgtcctgac ggcttcgaag aaacggaaga tgcctgtgtg ccggccgcag 950		
aggctgaagc cacagaagga gaaagccccga cacagctgcc ctcccgccaa 1000		
gacctgtaat gtgcggact tacccttaa attattcaga aggatgtccc 1050		

gtggaaaaatg tggccctgag gatgccgtct cctgcagtgg acagcggcgg 1100
ggagaggctg cctgctctct aacggttgat tctcatttgc cccttaaaca 1150
gctgcatttc ttgggtgttc ttaaacagac ttgtatattt tgatacagtt 1200
ctttgtataa aaattgacca ttgttaggaa tcagggaaaaaaa aaaaaaaaaa 1250
aaaaaaaa 1256

<210> 28
<211> 321
<212> PRT
<213> Homo sapien

<400> 28
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu
1 5 10 15
Leu Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro
20 25 30
Cys His Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met
35 40 45
Val Asp Thr Ala Lys Lys Asn Phe Gly Gly Asn Thr Ala Trp
50 55 60
Glu Glu Lys Thr Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu
65 70 75
Leu Glu Ile Leu Glu Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys
80 85 90
Asn Gln Met Leu Glu Ala Gln Glu Glu His Leu Glu Ala Trp Trp
95 100 105
Leu Gln Leu Lys Ser Glu Tyr Pro Asp Leu Phe Glu Trp Phe Cys
110 115 120
Val Lys Thr Leu Lys Val Cys Cys Ser Pro Gly Thr Tyr Gly Pro
125 130 135
Asp Cys Leu Ala Cys Gln Gly Gly Ser Gln Arg Pro Cys Ser Gly
140 145 150
Asn Gly His Cys Ser Gly Asp Gly Ser Arg Gln Gly Asp Gly Ser
155 160 165
Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu Cys Thr Asp Cys
170 175 180
Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr His Ser Ile
185 190 195
Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly Leu Thr
200 205 210

Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp Glu
215 220 225

Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr
245 250 255

Cys Glu Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val
260 265 270

Arg Lys Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys
275 280 285

Val Cys Pro Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro
290 295 300

Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu
305 310 315

Pro Ser Arg Glu Asp Leu
320