ИНЖЕНЕРНЫЕ РЕШЕНИЯ ПРЯМЫХ И ОБРАТНЫХ ТЕХНОЛОГИЧЕСКИХ ЗАДАЧ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ СЛОЕВ.

ПОЛУЧЕНИЕ СТРУКТУР МЕТОДОМ ДИФФУЗИИ

Диффузия легирующих примесей в полупроводниковые кристаллы вошла в промышленное производство в 60-е годы и до сих пор является востребованным технологическим методом создания электрически гетерогенных структур при изготовлении различных типов дискретных полупроводниковых приборов и отдельных МЭМС. Для осуществления диффузии полупроводниковую пластину помещают в нагретую до высокой температуры кварцевую трубу диффузионной печи. Через трубу пропускают пары легирующей примеси, которые адсорбируются на поверхности пластины и диффундируют в кристаллическую решетку полупроводника.

Отличительные особенности диффузии в планарной технологии состоят в том, что примесь вводят в полупроводниковую пластину локально в ограниченные защитной маской окна, а сам процесс осуществляют в две стадии: предварительная загонка нужного количества примеси и последующая разгонка на требуемую глубину и до необходимого уровня концентрации. Важными технологическими факторами являются способы проведения диффузии и виды диффузантов.

В практике технологических расчетов диффузионных структур большое распространение получили прямые задачи по определению профилей распределения примесей по заданным режимам диффузии и обратные задачи определение длительности и температуры диффузии по известному типу примеси, ее концентрации и глубине залегания р-п-перехода. Создание ИМС диффузионных потребовало разработки методов изоляции элементов, размещаемых на одной подложке, а также изготовления не только активных, но и пассивных элементов (резисторов, конденсаторов). Введение примесей диффузионным способом сопровождается их воздействием на кристаллическую решетку полупроводника, что приводит к возникновению дефектов в диффузионных структурах. Знание особенностей образования и возможных способов предотвращения таких дефектов необходимо овладения процессом диффузии. В немалой степени этому способствуют методы контроля диффузионных структур: измерение глубины залегания р-nперехода, поверхностного сопротивления и концентрации, плотности дислокаций.

1. Распределение примеси при диффузии

Диффузия примесных атомов в твердом теле происходит вследствие хаотического теплового движения в направлении убывания их концентрации. Микроскопическое перемещение атомов происходит либо по вакансиям, либо по междоузлиям. Диффузия основных легирующих примесей в

полупроводниках совершается, как правило, по вакансиям, тогда как прочих примесей — по междоузлиям. В полупроводниковой технологии наибольший интерес представляют два случая распределения примесных атомов.

1. Если диффузия идет из источника с ограниченным содержанием примеси, находящейся в начальный момент в бесконечно тонком поверхностном слое, то профиль распределения концентрации имеет вид

$$C(x,t) = \frac{N}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
 (1)

где N — плотность атомов примеси под единицей площади поверхности, неизменная в любой момент диффузии, ат/см 2 ; х— глубина, соответствующая данной концентрации, см; D — коэффициент диффузии примеси, см 2 /с; t — длительность диффузии, с. Глубина залегания диффузионного p-n-перехода

$$x_i = 2\sqrt{Dt}\sqrt{\ln(C_0/C_B)}$$
 (2)

где C_B — концентрация примеси в исходной пластине полупроводника. При x=0 поверхностная концентрация примеси

$$C_0 = \frac{N}{\sqrt{\pi Dt}}$$
 (3)

Для многих практических случаев глубина p-n-перехода

$$x_j \approx 6\sqrt{Dt} \tag{4}$$

2. Если диффузия идет из источника с постоянной поверхностной концентрацией примесных атомов $C_{\rm 0}$, то распределение имеет вид

$$C(x,t) = C_0 \operatorname{erfc} \frac{x}{2\sqrt{Dt}}$$
 (5)

Для допустимого упрощения вместо erfc-функции можно использовать аппроксимацию

$$\operatorname{erfc} \frac{x}{2\sqrt{Dt}} \approx \exp \left[-\left(\frac{x}{2\sqrt{Dt}} + 0.3\right)^2 \right]$$
 (6)

Для этого случая глубина залегания р-п-перехода

$$x_{j} = 2\sqrt{Dt}(\sqrt{\ln(C_{0}/C_{B})} - 0.3)$$
 (7)

При последовательной диффузии ряда примесей пластина полупроводника подвергается многократным циклам диффузии. Для расчета C(x,t) в этом случае следует использовать сумму:

$$Dt = D_1 t_1 + D_2 t_2 + D_3 t_3 + \dots (8)$$

Электронно-дырочные переходы, образованные методом диффузии, обладают плавным распределением примеси, крутизна которого характеризуется градиентом концентрации.

Рис. 1. Зависимость коэффициентов диффузии примесей в кремнии (a) и арсениде галлия (б) от температуры

2. Методы расчетов диффузионных структур

При проведении расчетов диффузионных структур решают два основных типа задач: определение профиля распределения концентрации примеси на основании заданного технологического режима (прямая задача) и определение режима процесса диффузии на основании параметров конечного распределения примеси в структуре (обратная задача). Рассмотрим примеры решения прямых задач.

Расчет распределения примеси в случае двухстадийной диффузии. Как отмечалось, особенностью диффузии в планарной технологии является разбиение ее на две стадии. Стадия загонки примеси осуществляется в течение

короткого времени t_1 при постоянной поверхностной концентрации C_{01} . Введенное при загонке количество примесных атомов $N\left(\mathrm{at/cm}^2\right)$ служит источником диффузанта

Рис. 2. Зависимость предельной растворимости примесных элементов в кремнии от температуры

при последующей разгонке в течение времени t_2 с изменяющейся во времени поверхностной концентрацией:

$$C_{02} = N / \sqrt{\pi D_2 t_2}$$

Для построения профиля распределения примеси в случае двухстадийной диффузии необходимо знать температуры и длительности загонки и разгонки. Температура T_1 задает коэффициент диффузии примеси D_1 и поверхностную концентрацию C_{01} , определяемую предельной растворимостью примеси.

Поверхностная плотность атомов примеси, введенной на стадии загонки, определяется интегрированием распределения примеси:

$$N = \int_{0}^{\infty} C(x)dx = \int_{0}^{\infty} C_{01} erfc \frac{x}{2\sqrt{D_{1}t_{1}}} dx = 2C_{01}\sqrt{\frac{D_{1}t_{1}}{\pi}}$$
 (10)

Распределение примеси после стадии разгонки определяется выражением

$$C(x,t) = \frac{2C_0}{\pi} \sqrt{\frac{D_1 t_1}{D_2 t_2}} \exp\left(-\frac{x^2}{4D_2 t_2}\right) = \frac{N}{\sqrt{\pi D_2 t_2}} \exp\left(-\frac{x^2}{4D_2 t_2}\right)$$
(11)

Пример 1. Построить профиль распределения примеси и определить глубину залегания p-n-перехода в случае двухстадийной диффузии фосфора в кремний с электропроводностью p-типа с удельным сопротивлением 10 Ом·см, проводимой в режиме: $T_1 = 1050$ °C, $t_1 = 10$ мин, $T_2 = 1150$ °C, $t_2 = 2$ ч.

- 1. Определим C_{01} . Пользуясь рис. 2, найдем, что для $T_1 = 1050\,^{\circ}C$ предельная растворимость фосфора в кремнии составляет $1,2\cdot 10^{21}$ см⁻³. Принимаем $C_{01} = 1,2\cdot 10^{21}c_{M}^{-3}$.
- 2. Определим $D_{\rm 1}$. С помощью рис. 1, для $T=1050\,^{\circ}C$ найдем, что $D_{\rm 1}=2,5\cdot 10^{-14}\,c{\it m}^2\,/\,c$
 - 3. Вычислим N:

$$N = 2C_{01}\sqrt{\frac{D_1t_1}{\pi}} = 2 \cdot 1, 2 \cdot 10^{21}\sqrt{\frac{2,5 \cdot 10^{-14} \cdot 10 \cdot 60}{3,14}} = 5, 2 \cdot 10^{15} cm^{-2}$$

- 4. Определяем D_2 . С помощью рис. 1, для $T_2=1150\,^{\circ}C$ найдем, что $D_2=4\cdot 10^{-13}\,cm^2\,/c$.
 - 5. Построим кривую распределения:

$$C(x,t) = \frac{N}{\sqrt{\pi D_2 t_2}} \exp\left(-\frac{x^2}{4D_2 t_2}\right) =$$

$$= \frac{5.2 \cdot 10^{15}}{\sqrt{3.14 \cdot 4 \cdot 10^{-13} \cdot 2 \cdot 60 \cdot 60}} \exp\left(-\frac{x^2}{4 \cdot 4 \cdot 10^{-13} \cdot 2 \cdot 60 \cdot 60}\right) = 5.5 \cdot 10^{19} \exp\left(-\frac{x^2}{1.15 \cdot 10^{-8}}\right)$$

Профиль распределения концентрации фосфора после разгонки показан на рис. 3. Для сравнения там же приведена кривая распределения фосфора после стадии загонки:

$$C(x,t) = C_{01} \operatorname{erfc} \frac{x}{2\sqrt{D_1 t_1}} = 1.2 \cdot 10^{21} \operatorname{erfc} \frac{x}{7.75 \cdot 10^{-6}}$$

6. Определяем глубину залегания p-n-перехода. Согласно формуле (2) $x_i = 2\sqrt{D_2 t_2} \sqrt{\ln(C_{01}/C_B)}$

Значение концентрации примеси в исходной пластине найдем с помощью кривой $\rho = f(c)$ на рис. 4: для $\rho_p = 10$ Ом·см, $C_B = 1,2 \cdot 10^{15} \, cm^{-3}$. Тогда

$$x_j = 2\sqrt{4 \cdot 10^{-13} \cdot 2 \cdot 60 \cdot 60} \sqrt{1,2 \lg \frac{5,5 \cdot 10^{19}}{1,2 \cdot 10^{15}}} = 3,5 \cdot 10^{-4} \, c\text{M} = 3,5 \, \text{MKM} \; .$$

Расчет по упрощенной формуле (4) дает

$$x_j = 6\sqrt{D_2 t_2} = 6\sqrt{2,88 \cdot 10^{-9}} = 3,2$$
 мкм

что достаточно близко к точному значению.

Расчет распределения примеси при диффузии из слоя конечной толщины. Рассмотренный пример 1 наглядно показывает, что при выполнении $(1.5 \cdot 10^{-11} < 2.88 \cdot 10^{-9})$ форма профиля распределения $D_1 t_1 < D_2 t_2$ условия примеси на стадии загонки не влияет на профиль распределения после разгонки, ибо глубины залегания этих распределений несопоставимы. Если условие $D_1 t_1 < D_2 t_2$ не выполняется, то глубина диффузии на стадии разгонки сравнима с глубиной диффузии на стадии загонки, поэтому нельзя считать, -что разгонка осуществляется из бесконечно тонкого слоя с ограниченным сополучается примеси. ЭТОМ случае комбинированное В распределение, определяемое решением уравнения Фика для диффузии из слоя конечной толщины:

$$C(x, t_1, t_2) = \frac{2C_{01}}{\pi} \int_{-\frac{\pi}{2}}^{\infty} \exp(-y^2) erf(ay) dy, \qquad (12)$$

у — переменная интегрирования;

$$z = \frac{x^2}{4(D_1t_1 + D_2t_2)}, \quad a = \sqrt{D_1t_1/D_2t_2}.$$

Поверхностная концентрация после стадии разгонки $C_{02} = C(x=0,t_1,t_2)$

$$C_{02} = \frac{2}{\pi} C_{01} arctg(a)$$
.

Интеграл (12) вычислен и табулирован для различных а и z (табл. 1).

Таблица 1

												1 40	лица	1
a Z		0,1		0,3		0,5		1,0		2,0		3,0		5,0
.0,1		0,0		0,0		0,0		0,0		0,0		0,0		0,0
	9015		7376		6035		3655		1340		0491		0066	
0,3		0,2		0,2		0,1		0,1		0,0		0,0		0,0
	6295		1403		7422		0416		3725		1333		0174	
0,5		0,4		0,3		0,2		0,1		0,0		0,0		0,0
	1626		3557		7058		5812		5419		1866		0224	
0,7		0,5		0,4		0,3		0,1		0,0		0,0		0,0
	4464		3340		4515		9596		6398		2120		0242	
0,9		0,6		0,5		0,3		0,2		0,0		0,0		0,0
	4829		0812		9903		1979		6867		2213		0245	
1,5		0,8		0,6		0,4		0,2		0,0		0,0		0,0
	4509		3065		7586		4431		7141		2247		0246	
3,0		0,9		0,6		0,4		0,2		0,0		0,0		0,0
	9920		8698		9825		4708		7147		2247		0246	
		1,0		0,6		0,4		0,2		0,0		0,0		0,0
	2843		8892		9843		4709		7147		2247		0246	

Рис.3. Рассчетные профили распределения фосфора после загонки (1) и разгонки (2)

Пример 2. Рассчитать распределение примеси для двухстадийной диффузии фосфора в кремний, проводимой в режиме: $T_1 = 1250 \,^{\circ}C$, $t_1 = 10$ мин, $T_2 = 1150 \,^{\circ}C$, $t_2 = 2$ и. Определить глубину залегания p-n-перехода.

- 1. С помощью рис. 1 определим коэффициенты диффузии фосфора в кремнии: $D_1 = 4\cdot 10^{-12}$ см 2 / с , $D_2 = 4\cdot 10^{-13}$ см 2 / с
- 2. Так $D_1t_1=4\cdot 10^{-12}\cdot 10\cdot 60=2,4\cdot 10^{-9}\approx D_2t_2=4\cdot 10^{-13}\cdot 2\cdot 60\cdot 60=2,88\cdot 10^{-9}\,cm^2\,,$ то следует использовать формулу (12).
 - 3. Определим *а* и *z* :

$$a = \sqrt{D_1 t_1 / (D_2 t_2)} = \sqrt{2,4 \cdot 10^{-9} / (2,88 \cdot 10^{-9})} \approx 0,9,$$

$$z = \frac{x^2}{4(D_1 t_1 + D_2 t_2)} = \frac{x^2}{4(2,4 \cdot 10^{-9} + 2,88 \cdot 10^{-9})} = \frac{x^2}{2,11 \cdot 10^{-8}}.$$

- 4. Определим поверхностную концентрацию после разгонки. Согласно кривой C = f(T) на рис. 2. при $T_1 = 1250 \,^{\circ}C$ $C_{01} = 1,2 \cdot 10^{21} \, cm^{-3}$.
 - 5. Поверхностная концентрация после разгонки

$$C_{02} = \frac{2C_{01}}{\pi} arctg(a) = \frac{2 \cdot 1, 2 \cdot 10^{21}}{3.14} arctg(0,9) = 5,6 \cdot 10^{20} c M^{-3}$$
.

6. Построим распределение. Пользуясь табл.1, зададим значения z = 0,1, 0,3, 0,5 и т. д. и определим для a = 0,9 значения интеграла. При построении графика найдем глубину (см):

$$x = 2\sqrt{(D_1t_1 + D_2t_2)z} = 1,45 \cdot 10^{-4} \sqrt{z}$$
.

7. На стадии загонки распределение примеси имеет вид

$$C(x) = 1.2 \cdot 10^{21} erfc \frac{x}{2\sqrt{2.4 \cdot 10^{-9}}} = 1.2 \cdot 10^{21} erfc \frac{x}{0.98 \cdot 10^{-4}}$$
.

Оба профиля — после загонки 1 и после разгонки 2— показаны на рис. 5. Уже на стадии загонки глубина диффузии составляет около 3/4 полной глубины после разгонки.

8. Глубину залегания p-n-перехода определим по приближенной формуле (4), в которой учтем наличие двух сравнимых по глубинам диффузии стадий:

$$x_j = 6\sqrt{D_1t_1 + D_2t_2} = 6\sqrt{5,28 \cdot 10^{-9}} = 4,35 \cdot 10^{-4}$$
 см = 4,35 мкм.

9. Для сравнения построим профиль распределения без учета реального соотношения между D_1t_1 и D_2t_2 , используя кривую Гаусса при $(Dt)_{s\phi} = D_1t_1 + D_2t_2$:

$$C(x) = \frac{N}{\sqrt{\pi (Dt)_{9\phi}}} \exp \left[-\frac{x^2}{4(Dt)_{9\phi}} \right],$$

где

$$N = 2C_{01}\sqrt{\frac{D_1t_1}{\pi}} = 2 \cdot 1, 2 \cdot 10^{21}\sqrt{\frac{2,4 \cdot 10^{-9}}{3,14}} = 6,6 \cdot 10^{16} \, \text{cm}^{-2};$$

$$C(x) = \frac{6.6 \cdot 10^{16}}{\sqrt{3.14 \cdot 5.28 \cdot 10^{-9}}} \exp\left(-\frac{x^2}{2.11 \cdot 10^{-8}}\right) = 5.1 \cdot 10^{20} \exp\left(-\frac{x^2}{2.11 \cdot 10^{-8}}\right)$$

Это распределение показано на рис. 5. кривой 3, которая хорошо аппроксимирует кривую 2 на малых глубинах, но при $x > 4_{MKM}$ завышает концентрацию почти на порядок.

Рис. 4. Зависимость удельного сопротивления Si, Ge и GaAs от концентрации примеси

Рис.5. Расчетные профили распределения фосфора при двухстадийной диффузии

Расчет распределения примеси в случае двойной последовательной диффузии. При изготовлении диффузионных транзисторов, тиристоров, варикапов и многих других приборов и интегральных микросхем активную структуру получают путем последовательной диффузии примесей, создающих слои с различным типом электропроводности. Если ведется двойная последовательная диффузия акцепторной примеси с параметрами C_{0a} , D_a , t_a а затем донорной примеси с параметрами C_{0g} , D_{g} , t_{g} в полупроводник с электропроводностью t_{g} , то суммарное распределение концентрации имеет вид

$$C(x,t) = C_{0a} \exp\left(-\frac{x^2}{4D_a t_a}\right) - C_{0A} \operatorname{erfc} \frac{x}{2\sqrt{D_A t_A}} - C_B.$$
(13)

Так как атомы акцепторной и донорной примесей взаимно компенсируют друг друга, то при расчете профиля распределения значениям концентраций придают положительный (для акцепторов) и отрицательный (для доноров) знаки или наоборот. Первая диффузия является более глубокой, последующая — более мелкой, но с более высокой концентрацией, поэтому при двойной последовательной диффузии будут получены структуры п-р-п согласно формуле (13) или р-п-р, если поменять местами типы примесей. Подобное распределение является типичным при получении структуры диффузионного транзистора. Первую диффузию с низкой поверхностной концентрацией и большой глубиной называют базовой. Она служит для создания базовой робласти. Вторую диффузию с высокой поверхностной концентрацией и малой глубиной называют эмиттерной. Она предназначена для получения эмиттерной области с электропроводностью n-типа.

Базовую диффузию осуществляют в две стадии, поэтому ее вклад в суммарное распределение (13) отражен в виде кривой Гаусса, тогда как эмиттерную диффузию обычно ведут в одну стадию и распределение примеси описывается erfc-функцией. Выражение (13) справедливо только в том случае, если во время эмиттерной диффузии не происходит заметного перемещения акцепторной примеси. В более общем случае

$$C(x,t) = C_{0a} \exp\left[-\frac{x^2}{4(D_a t_a + D_a^* t_A)}\right] - C_{0A} \operatorname{erfc} \frac{x}{2\sqrt{D_A t_A}} - C_B,$$
 (14)

где

$$C_{0a} = \frac{N_a}{\sqrt{\pi(D_a t_a + D_a^* t_A)}};$$

 D_a^* — коэффициент диффузии акцепторов при температуре диффузии доноров.

Для определения глубины залегания эмиттерного p-n-перехода приравняем суммарную концентрацию нулю и учтем, что C_B во много раз меньше концентраций диффундирующих доноров и акцепторов. Тогда для распределения (13)

$$C_{0,I}$$
 erfc $\frac{x_{j\ni}}{2\sqrt{D_{II}t_{II}}} = C_{0a} \exp{-\frac{x_{j\ni}^2}{4D_a t_a}}$

Воспользуемся аппроксимацией erfc-функции:

$$C_{0,I} \exp \left[-\left(\frac{x_{j9}}{2\sqrt{D_{I}t_{I}}} + 0.3 \right)^{2} \right] = C_{0a} \exp \left(-\frac{x_{j9}^{2}}{4\sqrt{D_{a}t_{a}}} \right)$$
 (16)

Преобразуя (9.16), получим

$$x_{j\ni} = \left[\left(\frac{1}{2\sqrt{D_{\mathcal{A}}t_{\mathcal{A}}}} + \frac{0.3}{x_{j\ni}} \right)^{2} - \frac{1}{4D_{a}t_{a}} \right]^{-1/2} \sqrt{\ln(C_{0\mathcal{A}}/C_{0a})}.$$

(17)

Это уравнение решим методом итерации, принимая за начальное значение

$$x_{j\ni 0} = 6\sqrt{D_{\mathcal{I}}t_{\mathcal{I}}} , \qquad (18)$$

тогда

$$x_{j \ni 1} \approx \left[\frac{1}{4D_{\mathcal{A}}t_{\mathcal{A}}} - \frac{1}{4D_{a}t_{a}} \right]^{-1/2} \sqrt{\ln(C_{0\mathcal{A}}/C_{0a})}$$

(19)

Уточненное значение глубины залегания эмиттерного р-n-перехода

$$x_{j9} = \left[\left(\frac{1}{2\sqrt{D_{\mathcal{A}}t_{\mathcal{A}}}} + \frac{0.3}{x_{j91}} \right)^{2} - \frac{1}{4D_{a}t_{a}} \right]^{-1/2} \sqrt{\ln(C_{0\mathcal{A}}/C_{0a})}$$
 (20)

При определении глубины залегания коллекторного перехода следует учесть его смещение при эмиттерной диффузии, поэтому

$$x_{jk} = 2\sqrt{D_a t_a + D_a^x t_{ij}} \sqrt{\ln(C_{0a}/C_B)},$$

где C_{0a} определяется формулой (15).

Пример 3. Рассчитать профиль распределения концентрации примеси в n-p-n-структуре, полученной последовательной диффузией бора и фосфора в кремний с электропроводностью n-типа и удельным сопротивлением 0,15 Ом·см и проводимой в режимах: $T_a = 1200 \, ^{\circ}C$, $t_a = 1 \, ^{\prime}u$, $T_{\pi} = 1100 \, ^{\circ}C$, $t_{\pi} = 2 \, ^{\prime}u$. Поверхностная плотность атомов бора $N_a = 5 \cdot 10^{14} \, cm^{-2}$, диффузия фосфора ведется из неограниченного источника примеси с поверхностной концентрацией, равной предельной растворимости.

- 1. С помощью рис.4. найдем концентрацию донорной примеси в исходной пластине кремния $C_{\scriptscriptstyle B} = 5 \cdot 10^{16} \, \text{см}^{-3}$.
- 2. Определим коэффициенты диффузии. Согласно рис. 9.5, a, $D_a = 2 \cdot 10^{-12} \, cm^2 \, / c$, $D_a^* = 2.5 \cdot 10^{-13} \, cm^2 \, / c$, $D_{\mathcal{A}} = 10^{-13} \, cm^2 \, / c$. Согласно рис. 2. $C_{0\mathcal{A}} = 1.2 \cdot 10^{21} \, cm^{-3}$.

Сопоставим произведения $D_a t_{\mathcal{A}}$ и $D_a^* t_{\mathcal{A}}$:

$$D_a t_{\mathcal{A}} = 2 \cdot 10^{-12} \cdot 1 \cdot 60 \cdot 60 = 7, 2 \cdot 10^{-9} \, cm^2,$$

$$D_a^* t_{\mathcal{A}} = 2, 5 \cdot 10^{-13} \cdot 2 \cdot 60 \cdot 60 = 1, 8 \cdot 10^{-9} \, cm^2.$$

Таким образом, $D_a t_a >> D_a^* t_a$ и для построения распределений можно использовать формулу (13):

$$C(x,t) = C_{0a} \exp\left(-\frac{x^2}{4D_a t_a}\right) - C_{0A} \operatorname{erfc} \frac{x}{2\sqrt{D_A t_A}} - C_B,$$

гле

$$C_{0a} = \frac{N_a}{\sqrt{\pi D_a t_a}} = \frac{5 \cdot 10^{14}}{\sqrt{3,14 \cdot 7,2 \cdot 10^{-9}}} = 3,3 \cdot 10^{18} \, cm^{-3} .$$

4. Для рационального выбора шага по оси x при построении распределения определим глубину залегания коллекторного и эмиттерного переходов:

$$x_{jk} = 2\sqrt{D_a t_a} \sqrt{2,3 \lg(C_{0a}/C_B)} = 2\sqrt{7,2 \cdot 10^{-9}} \sqrt{2,3 \lg(3,3 \cdot 10^{18} / 5 \cdot 10^{16})} = 3,5 \cdot 10^{-4}$$
см $= 3,5$ мкм

Для определения глубины залегания эмиттерного перехода используем формулы (18) — (20):

$$\begin{aligned} x_{j30} &= 6\sqrt{D_{\mathcal{A}}t_{\mathcal{A}}} = 6\sqrt{1\cdot10^{-13}\cdot2\cdot60\cdot60} = 1,6\cdot10^{-4}\,c_{\mathcal{M}} = 1,6\,\text{Mkm}\,.\\ x_{j31} &= \left(\frac{1}{4D_{\mathcal{A}}t_{\mathcal{A}}} - \frac{1}{4D_{a}t_{a}}\right)^{-\frac{1}{2}}\sqrt{2,3\lg(C_{0\mathcal{A}}/C_{0a})} =\\ &= \left(\frac{1}{4\cdot7,2\cdot10^{-10}} - \frac{1}{4\cdot7,2\cdot10^{-9}}\right)^{-\frac{1}{2}}\sqrt{2,3\lg\left[1,2\cdot10^{21}/(3,3\cdot10^{18})\right]} = 1,35\cdot10^{-4}\,c_{\mathcal{M}} = 1,35\,\text{Mkm}\\ x_{j3} &= \left[\left(\frac{1}{2\sqrt{D_{\mathcal{A}}t_{\mathcal{A}}}} + \frac{0,3}{x_{j31}}\right)^{2} - \frac{1}{4D_{a}t_{a}}\right]^{-\frac{1}{2}}\sqrt{2,3\lg(C_{0\mathcal{A}}/C_{0a})} =\\ &= \left[\left(\frac{1}{2\sqrt{7,2\cdot10^{-10}}} + \frac{0,3}{1,35\cdot10^{-4}}\right)^{2} - \frac{1}{4\cdot7,2\cdot10^{-9}}\right]^{-\frac{1}{2}}\sqrt{2,3\lg\frac{1,2\cdot10^{21}}{3,3\cdot10^{18}}} =\\ &= 1,2\cdot10^{-4}\,c_{\mathcal{M}} = 1,2\,\text{Mkm} \end{aligned}$$

5. Построим распределение:

$$C(x,t) = 3.3 \cdot 10^{18} \exp\left(-\frac{x^2}{2.84 \cdot 10^{-8}}\right) - 1.2 \cdot 10^{21} erfc \frac{x}{5.35 \cdot 10^{-5}} - 5 \cdot 10^{16} cm^{-3}$$

До глубины x=1,2 мкм используем шаг 0,3 мкм, на глубинах x=1,5—3,5 мкм используем шаг 0,5 мкм. Обычно такое распределение принято представлять в виде отдельных кривых

(рис. 6). С помощью этих кривых можно найти, глубину залегания эмиттерного и коллекторного переходов по точкам пересечения. На рис.6. показано также распределение концентрации примеси в исходной:

эпитаксиальной структуре с толщиной эпитаксиального слоя 5,5 мкм и концентрацией примеси в подложке $5\cdot 10^{18}\, cm^{-3}$. Толщина области базы p-типа $w=x_{jk}-x_{j9}=3,5-1,2=2,3$ мкм .

Рис. 6. Расчетные профили распределения примеси в n-p-n транзисторе, полученном двойной последовательной диффузией

3. Определение режимов диффузии

Обратимся к решению обратных задач. Обратные задачи имеют большое практическое значение. В их связи с реальной практикой состоит специфика их решений — они не однозначны в отношении выбора температуры и длительности процесса диффузии. Выбор этих параметров определяют особенности технологического процесса конкретные возможности технологического оборудования. Строгое решение обратных задач приводит к определению произведения Dt. Затем чаще всего задаются температурой T и по найденному значению коэффициента диффузии определяют длительность диффузии t. Иногда в выборе режимов следует учитывать не только температурную зависимость коэффициента диффузии, но и предельную растворимость примеси.

Определение режимов диффузии на основании заданных параметров распределения примеси. Для расчета стадии разгонки или одностадийной диффузии обратная задача достаточно проста. Пусть диффузия ведется из предварительно созданного с помощью ионной имплантации ограниченным содержанием примеси, тогда на основании формулы

$$x_i = 2\sqrt{Dt}\sqrt{\ln(C_0/C_B)}$$

запишем

$$Dt = \frac{x_j^2}{4\ln(C_0/C_B)}$$

Теперь нужно выбрать либо температуру, либо время процесса. Если нас лимитирует производительность или иные соображения, требующие задать некоторое минимальное время t, то температуру процесса определим на основании вычисленного коэффициента диффузии:

$$D = \frac{x_j^2}{4t \ln(C_0/C_B)}$$

Пример 4. Определить температуру разгонки мышьяка, предварительно внедренного помощью ионной имплантации В кремний электропроводностью р-типа и удельным сопротивлением 1 Ом-см, если распределение должно обладать глубиной залегания p-n-перехода $x_i = 0.5 \text{мкм}$, поверхностной концентрацией $C_0 = 1,5 \cdot 10^{20} \, cm^{-3}$, а длительность процесса составляет 1 ч. Вычислить количество атомов мышьяка N, которое должно быть внедрено в кремний.

- 1.С помощью рис.4. найдем, что $C_B = 1.5 \cdot 10^{16} \, cm^{-3}$.

2.Определим коэффициент диффузии:
$$D = \frac{x_j^2}{4t \ln(C_0/C_B)} = \frac{0,25 \cdot 10^{-8}}{4 \cdot 1 \cdot 60 \cdot 60 \cdot 2,3 \lg\left[1,5 \cdot 10^{20} / \left(1,5 \cdot 10^{10}\right)\right]} = 1,9 \cdot 10^{-14} \, cm^2 / c \; .$$

3. Найденному коэффициенту диффузии мышьяка в кремнии соответствует температура 1070°С (см. рис 1.).

4. Количество атомов As, внедренных на единице площади, определим на основании выражения для поверхностной концентрации:

$$C_0 = \frac{N}{\sqrt{\pi Dt}};$$

$$N = C_0 \sqrt{\pi Dt} = 1.5 \cdot 10^{20} \sqrt{3.14 \cdot 1.9 \cdot 10^{-14} \cdot 1.60 \cdot 60} = 2.2 \cdot 10^{15} cm^{-2}.$$

Пример 5. Определить режим диффузии, проводимой в одну стадию при постоянной поверхностной концентрации для условий примера 4.

1. Распределение примеси описывается erfc-функцией, поэтому воспользуемся ее аппроксимацией (6) и формулой (7):

$$x_j = 2\sqrt{Dt} \left(\sqrt{\ln \frac{C_0}{C_B}} - 0.3 \right).$$

На основании (7) определим коэффициент диффузии:

$$D = \frac{x_j^2}{4t(\sqrt{\ln(C_0/C_B)} - 0.3)^2} = \frac{0.25 \cdot 10^{-8}}{4 \cdot 1 \cdot 60 \cdot 60(\sqrt{2.3 \lg[1.5 \cdot 10^{20} / (1.5 \cdot 10^{16})]} - 0.3)^2} = 2.3 \cdot 10^{-14} \, \text{cm}^2 / c$$

2. Найденному коэффициенту диффузии соответствует температура 1080° C (см. рис.1.). При такой температуре предельная растворимость As в кремнии составляет $1,7\cdot10^{21}$ см⁻³ (см. рис.2.), поэтому для диффузии следует использовать обедненный источник, чтобы получить $C_0 = 1,5\cdot10^{20}$ см⁻³.

Решение обратной задачи для двухстадийной диффузии производят в два этапа. Вначале определим режим разгонки, затем на основании полученных данных— режим загонки. Режим разгонки найдем, используя выражение (10):

$$N = 2C_{01}\sqrt{D_1t_1/\pi}$$

Отсюда после преобразования рассчитаем произведение:

$$D_1 t_1 = \frac{\pi}{4} (N/C_{01})^2 = D_2 t_2 \left(\frac{\pi}{2} \frac{C_{02}}{C_{01}} \right)^2.$$

Это выражение показывает, что для двухстадийной диффузии необходимо регулировать поверхностную концентрацию при загонке C_{01} , либо задавать температуру загонки T_{1} определяющую два параметра D_{1} и C_{01} а время загонки рассчитывать по известным данным:

$$t_1 = \frac{D_2}{D_1} \left(\frac{\pi}{2} \frac{C_{02}}{C_{01}} \right)^2 t_2 .$$

Пример 6. Определить температуры и длительности процессов загонки и разгонки в случае двухстадийной диффузии бора в кремний с электропроводностью п-типа, с удельным сопротивлением 10 Ом·см, если искомое распределение примеси должно иметь следующие параметры: $C_{02} = 5 \cdot 10^{18} \, cm^{-3}$, $x_j = 2$, $m\kappa M$.

- 1.По графику рис.4. находим, что $C_B = 4.5 \cdot 10^{14} \, cm^{-3}$
- 2. Рассчитаем произведение $D_2 t_2$

$$D_2 t_2 = \frac{x_j^2}{4 \ln(C_{02}/C_B)} = \frac{6.25 \cdot 10^{-8}}{4 \cdot 2.3 \lg[5 \cdot 10^{18} / (4.5 \cdot 10^{14})]} = 1.7 \cdot 10^{-9} cm^2$$

3.3ададим температуру $T_2=1150\,^{\circ}C$. Согласно рис.1. $D_2=7,2\cdot 10^{-13}\,c{\it M}^2\,/c$, тогда

$$t_2 = 1.7 \cdot 10^{-9} / D_2 = 1.7 \cdot 10^{-9} / (7.2 \cdot 10^{-13}) = 2.36 \cdot 10^3 c \approx 40$$
мин

4.Зададим температуру загонки бора $T_1 = 1050\,^{\circ}C$, тогда $C_{01} = 3\cdot 10^{20}$ см⁻³ (см. рис.2.), а $D_1 = 6.9\cdot 10^{-14}$ см² / c (см. рис. 1.).

5. Длительность загонки

$$t_1 = \frac{D_1}{D_2} \left(\frac{\pi}{2} \frac{C_{02}}{C_{01}} \right)^2 t_2 = \frac{7.2 \cdot 10^{-13}}{6.9 \cdot 10^{-14}} \left(\frac{3.14}{2} \frac{5 \cdot 10^{18}}{3 \cdot 10^{20}} \right)^2 2.4 \cdot 10^3 = 10.6c.$$

Такая длительность загонки не может быть выдержана практически, поэтому необходимо использовать обедненный источник бора или вводить примесь методом ионной имплантации.

6. Количество атомов бора, которое необходимо ввести на стадии загонки,

$$N = C_{02} \sqrt{\pi D_2 t_2} = 5 \cdot 10^{18} \sqrt{3,14 \cdot 1,7 \cdot 10^{-9}} = 3,6 \cdot 10^{14} cm^{-2}.$$

При использовании обедненного источника диффузанта задают длительность загонки t_1 и определяют произведение:

$$D_1 C_{01}^2 = D_2 C_{02}^2 \left(\frac{\pi}{2}\right)^2 \frac{t_2}{t_1}.$$

7. Зададим $t_1 = 10$ мин, тогда

$$D_1 C_{02}^2 = 7.2 \cdot 10^{-13} \cdot 25 \cdot 10^{36} \left(\frac{3.14}{2}\right)^2 \frac{2.4 \cdot 10^3}{6 \cdot 10^2} = 1.78 \cdot 10^{26} \frac{1}{c M^4 \cdot c}$$

8. Зададим $T_2 = 1150\,^{\circ}C$, тогда $D = 6.9\cdot 10^{-14}\,c\text{м}^2\,/c$ (см. рис. 1.) и $C_{01} = \sqrt{1.78\cdot 10^{26}\,/D_1} = \sqrt{1.78\cdot 10^{26}\,/(6.9\cdot 10^{-14})} \approx 5\cdot 10^{19}\,c\text{m}^{-3}$.

Определение режимов последовательной диффузии. В рассмотренных примерах примесь диффундирует в однородно легированный полупроводник. При двойной последовательной диффузии эмиттерная диффузия идет в неоднородно легированную базовую область, поэтому расчет технологических режимов усложняется. Исходными данными для расчета являются глубины залегания коллекторного и эмиттерного переходов x_{jk} , x_{j3} , концентрация примеси в эпитаксиальном слое C_B , поверхностные концентрации диффундирующих акцепторной и донорной примесей C_{0a} , C_{0d} . Определяемые параметры: режимы загонки (T_{a1}, t_{a1}, N_a) и разгонки (T_{a2}, t_{a2}) акцепторной примеси при базовой диффузии и режим разгонки (T_{d1}, t_{d2}) донорной примеси при эмиттерной диффузии.

Расчет режима базовой диффузии выполняют аналогично расчету режима двухстадийной диффузии в однородно легированный полупроводник. Для упрощения расчетов принимают, что в процессе эмиттерной диффузии не происходит заметного смещения распределения концентрации акцепторной примеси, т. е.

$$(Dt)_{ab} = D_{a2}t_{a2} + D_{a3}t_{II} \approx D_{a2}t_{a2}$$
,

где D_{a3} — коэффициент диффузии акцепторной примеси при эмиттерной диффузии.

Для расчета режима эмиттерной диффузии используют равенство (17), полученное при определении глубины залегания эмиттерного перехода. Решив его относительно произведения $D_{_{\it I}}t_{_{\it I}}$ определяют температуру или длительность диффузии:

$$D_{\mathcal{I}}t_{\mathcal{I}} = \frac{x_{j9}^{2}}{4\left[\sqrt{\ln(C_{0\mathcal{I}}/C_{0a}) + x_{j9}^{2}/(4D_{a}t_{a})} - 0.3\right]^{2}}$$

Пример 7. Определить режим загонки (T_{a1},t_{a1},N_a) и разгонки (T_{a2},t_{a2}) при базовой диффузии бора и режим загонки $T_{\mathcal{A}},t_{\mathcal{A}}$ при эмиттерной диффузии фосфора в кремний, если задано: $C_B=5\cdot 10^{16}\,cm^{-3}$, $x_{j3}=1,2m\kappa m$, $x_{jk}=3,5m\kappa m$, $C_{0a}=3,3\cdot 10^{18}\,cm^{-3}$, $C_{0\mathcal{A}}=1,2\cdot 10^{21}\,cm^{-3}$.

Вначале определим режимы базовой диффузии.

1. Найдем произведение:

$$D_{a2}t_{a2} = \frac{x_{jk}^2}{4\ln(C_{0a}/C_B)} = \frac{12,25}{4\cdot 2,3\lg(3,3\cdot 10^{18}/(5\cdot 10^{16}))} = 7,3\cdot 10^{-9} \,\text{cm}^2$$

2. Зададим температуру разгонки $T_{2a}=1150^{\circ}C$, тогда $D_{a2}=7,2\cdot 10^{-13}c_{M}{}^{2}/c$ (см. рис.1.). Получаем

$$t_{a2} = 7,3 \cdot 10^{-9} \ / \ D_{a2} = 7,3 \cdot 10^{-9} \ / (7,2 \cdot 10^{-13}) = 1,01 \cdot 10^4 \ c = 2450$$
мин .

3. Найдем поверхностную плотность атомов бора, необходимую для базовой диффузии:

$$N_a = C_{0a} \sqrt{\pi D_{a2} t_{a2}} = 3.3 \cdot 10^{18} \sqrt{3.14 \cdot 7.3 \cdot 10^{-9}} = 5 \cdot 10^{14} c M^{-2}$$

4. Режим загонки выберем на основании произведения

$$D_{a1}t_{a1} = \frac{\pi}{4} \left(\frac{N_a}{C_{0a1}} \right)^2 = D_{a2}t_{a2} \left(\frac{\pi}{2} \frac{C_{0a}}{C_{0a1}} \right)^2.$$

Зададим температуру загонки бора $T_{a1}=1050^{\circ}C$, тогда $C_{0a1}=3\cdot10^{20}$ cм $^{-3}$ (см. рис.2.), а $D_{a1}=6.9\cdot10^{-14}$ cм 2 (см. рис. 1.).

5. Длительность загонки бора

$$t_{a1} = \frac{D_{a2}}{D_{a1}} \left(\frac{\pi}{2} \frac{C_{0a}}{C_{0a1}} \right)^2 t_{a2} = \frac{7,2 \cdot 10^{-13}}{6,9 \cdot 10^{-14}} \left(\frac{3,14}{2} \frac{3,3 \cdot 10^{18}}{3 \cdot 10^{20}} \right)^2 1,01 \cdot 10^4 \approx 30c.$$

Такую длительность практически трудно реализовать в связи с большим периодом установления стационарного потока диффузанта в диффузионной

печи, поэтому, как и в примере 6, следует задать время $t_{a1} = 10$ мин и вычислить произведение:

$$D_{a1}C_{0a1}^2 = D_{a2}C_{0a}^2 \left(\frac{\pi}{2}\right)^2 t_{a2} / t_{a1} = 7.2 \cdot 10^{-13} (3.3 \cdot 10^{18})^2 \left(\frac{3.14}{2}\right)^2 \frac{1.01 \cdot 10^4}{6 \cdot 10^2} = 3.24 \cdot 10^{26} \frac{1}{cm^4 \cdot c}$$

6. Зададим $C_{0a1} = 5 \cdot 10^{19} \, cm^{-3}$, тогда

$$D_{a1} = 3,24 \cdot 10^{26} / C_{0a1}^2 = 3,24 \cdot 10^{26} / (5 \cdot 10^{19})^2 = 1,3 \cdot 10^{-13} c M^2 / c$$
,

что соответствует температуре $T_{a1} \approx 1065$ °C (см. рис. 1.).

Сопоставляя полученные режимы загонки и разгонки бора с режимами прямой задачи, рассмотренной в примере 3, видим, что они несколько отличаются, что обусловлено возможностью произвольного выбора температуры, длительности и поверхностной концентрации.

- 7. Для определения режима эмиттерной диффузии найдем произведение:
- 8. Зададим длительность эмиттерной диффузии $t_{\mathcal{A}} = 1$ ч, тогда значение коэффициента диффузии фосфора

$$D_{\mathcal{A}} = 7.2 \cdot 10^{-10} / t_{\mathcal{A}} = 7.2 \cdot 10^{-10} / (60 \cdot 60) = 2 \cdot 10^{-13} c_{\mathcal{A}}^2 / c$$

что соответствует температуре $T_{II} = 1125^{\circ}C$ (см. рис. 1.).

9. Оценим справедливость допущения о неизменности распределения концентрации бора во время эмиттерной диффузии. Для $T=1125\,^{\circ}C$ $D_{a2}=4\cdot 10^{-3}\,c\text{M}^2\,/c$; следовательно, $D_{a3}t_{_{\scriptstyle H}}=4\cdot 10^{-13}\cdot 60\cdot 60=1,44\cdot 10^{-9}\,c\text{M}^2$, $D_{a2}t_{a2}=7,3\cdot 10^{-9}\,c\text{M}^2$.

Таким образом, соотношение $D_{a2}t_{a2}>>D_{a3}t_{\mathcal{A}}$ выполняется достаточно хорошо.

Теперь рассмотрим расчет режимов диффузии в том случае, когда смещением коллекторного перехода в процессе эмиттерной диффузии пренебречь нельзя.

Пример 8. Определить количество атомов бора, которое необходимо ввести в структуру методом ионной имплантации для создания области базы, и режим разгонки T_{a2} , t_{a2} , а также количество атомов фосфора $N_{\mathcal{A}}$, которое необходимо ввести с помощью ионной имплантации для создания эмиттерной области, и режим разгонки $T_{\mathcal{A}}$, $t_{\mathcal{A}}$ если концентрация донорной примеси в исходном эпитаксиальном слое кремния с электропроводностью n-типа составляет $C_{\mathcal{B}} = 5 \cdot 10^{15} \, cm^{-3}$, $x_{jk} = 2m\kappa m$, $C_{0a} = 3 \cdot 10^{18} \, cm^{-3}$, $C_{0\mathcal{A}} = 5 \cdot 10^{20} \, cm^{-3}$.

1. Рассмотрим базовую диффузию. Чтобы учесть воздействие высокой температуры при эмиттерной диффузии, введем величину

$$D_a t_a = D_{a2} t_{a2} + D_{a3} t_{\mathcal{A}}$$

где D_{a3} — коэффициент диффузии бора при температуре $T_{\mathcal{A}}$. Найдем произведение:

$$D_a t_a = \frac{x_{jk}^2}{4 \ln(C_{0a}/C_B)} = \frac{4 \cdot 10^{-8}}{4 \cdot 2.3 \lg[3 \cdot 10^{18}/(5 \cdot 10^{15})]} = 1,565 \cdot 10^{-9} c M^2$$

2. Количество атомов бора, которое необходимо ввести на единице поверхности,

$$N_a = C_{0a} \sqrt{\pi D_a t_a} = 3 \cdot 10^{18} \sqrt{3,14 \cdot 1,565 \cdot 10^{-9}} = 2,1 \cdot 10^{14} cm^{-2}$$

3. Рассмотрим эмиттерную диффузию. Так как атомы фосфора вводят методом ионной имплантации, то эмиттерная диффузия аналогична стадии разгонки из слоя с ограниченным содержанием примеси, поэтому глубина залегания эмиттерного перехода определяется из условия равенства двух распределений, описываемых кривыми Гаусса:

$$C_{0,I} \exp\left(-\frac{x_{j9}^2}{4D_{II}t_{II}}\right) = C_{0a} \exp\left(-\frac{x_{j9}^2}{4D_{a}t_{a}}\right)$$

Отсюда найдем произведение:

$$D_{\mathcal{A}}t_{\mathcal{A}} = \left[\frac{4\ln\left(C_{0\mathcal{A}}/C_{oa}\right)}{x_{j9}^{2}} + \frac{1}{D_{a}t_{a}}\right]^{-1} = \left[\frac{4\cdot2.3\lg\left[5\cdot10^{20}/\left(3\cdot10^{18}\right)\right]}{1\cdot10^{-8}} + \frac{1}{1,565\cdot10^{-9}}\right]^{-1} = 3.73\cdot10^{-10}c^{20}$$

4. Определим количество атомов фосфора, которое необходимо ввести на единице поверхности:

$$N_{\mathcal{A}} = C_{0\mathcal{A}} \sqrt{\pi D_{\mathcal{A}} t_{\mathcal{A}}} = 5 \cdot 10^{20} \sqrt{3,14 \cdot 3,73 \cdot 10^{-10}} = 1,71 \cdot 10^{16} \, cm^{-2}$$

5. Зададим температуру эмиттерной диффузии $T_{\mathcal{A}} = 1100^{\circ}C$, при которой коэффициент диффузии фосфора $D_a = 1,1\cdot 10^{13} \, c \text{M}^2/c$ (см. рис. 1.), поэтому длительность эмиттерной диффузии

$$t_{\mathcal{A}} = 3,73 \cdot 10^{-10} \ / D_{\mathcal{A}} = 3,73 \cdot 10^{-10} \ / (1,1 \cdot 10^{-13}) = 3,39 \cdot 10^{3} \, c = 56,5$$
 мин

6. Определим режим базовой диффузии. При $T_{\mathcal{A}} = 1100^{\circ}C$ коэффициент диффузии бора $D_{a3} = 2,5 \cdot 10^{-13} \ cm^2/c$ (см. рис. 1.). Найдем

$$D_{a2}t_{a2} = D_at_a - D_{a3}t_{\mathcal{A}} = 1{,}565\cdot 10^{-9} - 2{,}5\cdot 10^{-13}\cdot 3{,}39\cdot 10^3 = 7{,}2\cdot 10^{-10}\,\text{cm}^2\,.$$

7. Выберем температуру базовой диффузии Ta2= 1150° C, что соответствует коэффициенту диффузии бора $D_{a2}=7,2\cdot 10^{-13}\,c\text{M}^2\,/\,c$ (см. рис. 1.): Длительность базовой диффузии

$$t_{a2} = 7.2 \cdot 10^{-10} / D_{a2} = 7.2 \cdot 10^{-10} / (7.2 \cdot 10^{-13}) = 10^3 c = 16$$
 мин 45c.

8. Оценим параметры диффузионного базового слоя после базовой диффузии. Поверхностная концентрация бора

$$C_{0a}^* = \frac{N_a}{\sqrt{\pi D_{a2} t_{a2}}} = \frac{2,1 \cdot 10^{14}}{\sqrt{3,14 \cdot 7,2 \cdot 10^{-10}}} = 4,4 \cdot 10^{18} \, \text{cm}^{-3}$$

Глубина залегания коллекторного перехода

$$x'_{jk} = 2\sqrt{D_{a2}t_{a2}}\sqrt{2.3\lg(C'_{0a}/C_B)} = 2\sqrt{7.2\cdot10^{-10}}\sqrt{2.3\lg[4.4\cdot10^{18}/(5\cdot10^{15})]} \approx 1.4\cdot10^{-4} c_M = 1.4 \text{ мкм}$$

Таким образом, значения поверхностной концентрации бора и глубины коллекторного перехода после базовой диффузии значительно отличаются от требуемых значений, которые достигаются только после эмиттерной диффузии.

Примеры 7 и 8 показывают, что в зависимости от соотношения произведений $D_{a2}t_{a2}$ и $D_{a3}t_{\it Д}$ следует учитывать или пренебрегать влиянием эмиттерной диффузии на распределение примеси, полученное при базовой диффузии.