• $\mu_1 = -1$, $\mu_2 = 0$ • E step: $p(y=i|x^j;\theta_t) \propto \exp\left(-\frac{1}{2\sigma^2}(x^j-\mu_i)^2\right)$ t=0: • $P(y=1|x^1) \propto \exp(-0.5 \times (-1+1)^2) = 1$ M step: $\mu_i = \frac{\sum_{j=1}^m p(y=i|x^j;\theta_t)x^j}{\sum_{j=1}^m p(y=i|x^j;\theta_t)}$ $P(y=2|x^1) \propto \exp(-0.5\times(-1-0)^2) = 0.6$ • $P(y=1|x^1) = 0.63$, $P(y=2|x^1)=0.37$ • $P(y=1|x^2) \propto \exp(-0.5 \times (0+1)^2) = 0.6$ • $P(v=2|x^2) \propto \exp(-0.5 \times (0-0)^2) = 1$ • $P(y=1|x^2) = 0.37$, $P(y=2|x^2)=0.63$ • $P(y=1|x^3) \propto \exp(-0.5 \times (2+1)^2) = 0.07$ • $P(v=2|x^3) \propto \exp(-0.5 \times (2-0)^2) = 0.93$

Initialization, random means and σ =1:

• $P(y=1|x^3) = 0.01$, $P(y=2|x^3)=0.93$

• $\mu^1 = (0.63 \times -1 + 0.37 \times 0 + 0.07 \times 2) / (0.63 + 0.07 \times 2)$

Pick K random cluster centers, $\mu_1...\mu_k$

For t=1..T

0

2 0.37 + 0.07) = -0.45
•
$$\mu^2 = (0.37 \times -1 + 0.67 \times 0 + 0.93 \times 2) / (0.37 + 0.67 + 0.93) = 0.75$$

t=1:

• learning continues, when do we stop?