Оптимизация гиперпараметров

Бахтеев Олег

МФТИ

23.10.2019

Что такое гиперпараметры

Определение

Априорным распределением $p(\mathbf{w}|\mathbf{h})$ параметров модели назовем вероятностное распределение, соответствующее предположениям о распределении параметров модели.

Определение

Гиперпараметрами $\mathbf{h} \in \mathbb{H}$ модели назовем параметры априорного распределения (параметры распределения параметров модели).

2 / 29

Постановка задачи

Задана дифференцируемая по параметрам модель, приближающая зависимую переменную y:

$$\mathbf{f}: \mathbb{R}^n \to \mathbb{Y}, \quad \mathbf{w} \in \mathbb{R}^u.$$

Функция \mathbf{f} задает правдоподобие выборки $\log p(\mathbf{y}|\mathbf{X},\mathbf{w})$.

Пусть также задано априорное распределение параметров $p(\mathbf{w}|\mathbf{h})$. Пример:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}),$$

где $\mathbf{A}^{-1}=\operatorname{diag}[lpha_1,\ldots,lpha_u]^{-1}$ — матрица ковариаций диагонального вида, определяемая гиперпараметрами $[lpha_1,\ldots,lpha_u]=\mathbf{h}$.

Постановка задачи

Пусть $oldsymbol{ heta} \in \mathbb{R}^s$ — множество всех оптимизируемых параметров.

 $L(heta, \mathbf{h})$ — дифференцируемая функция потерь по которой производится оптимизация функции \mathbf{f} . $Q(heta, \mathbf{h})$ — дифференцируемая функция определяющая итоговое качество модели \mathbf{f} и приближающая интеграл.

Требуется найти параметры θ^* и гиперпараметры \mathbf{h}^* модели, доставляющие минимум следующему функционалу:

$$egin{aligned} \mathbf{h}^* &= rg\max_{\mathbf{h} \in \mathbb{H}} Q(oldsymbol{ heta}^*(\mathbf{h}), \mathbf{h}), \ oldsymbol{ heta}(\mathbf{h})^* &= rg\min_{oldsymbol{ heta} \in \mathbb{R}^s} L(oldsymbol{ heta}, \mathbf{h}). \end{aligned}$$

4 / 29

Байесовский вывод

Пусть $\boldsymbol{\theta} = [\mathbf{w}]^{\mathsf{T}}$. Первый уровень:

$$oldsymbol{ heta}^* = rg \max ig(-L(oldsymbol{ heta}, \mathbf{h}) ig) =
ho(\mathbf{w}|\mathbf{X}, \mathbf{y}, \mathbf{h}) = rac{
ho(\mathbf{y}|\mathbf{X}, \mathbf{w})
ho(\mathbf{w}|\mathbf{h})}{
ho(\mathbf{y}|\mathbf{X}, \mathbf{h})}.$$

Второй уровень:

$$p(\mathbf{h}|\mathbf{X},\mathbf{y}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{h})p(\mathbf{h}),$$

Полагая распределение параметров $p(\mathbf{h})$ равномерным на некоторой большой окрестности, получим задачу оптимизации гиперпараметров:

$$Q(oldsymbol{ heta}, \mathbf{h}) = p(\mathbf{y}|\mathbf{X}, \mathbf{h}) = \int_{\mathbf{w} \in \mathbb{R}^{oldsymbol{u}}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\mathbf{h})
ightarrow \max_{\mathbf{h} \in \mathbb{H}}.$$

Кросс-валидация

Разобьем выборку $\mathfrak D$ на k равных частей:

$$\mathfrak{D}=\mathfrak{D}_1\sqcup\cdots\sqcup\mathfrak{D}_k.$$

Запустим k оптимизаций модели, каждую на своей части выборки. Положим $\theta = [\mathbf{w}_1, \dots, \mathbf{w}_k]$, где $\mathbf{w}_1, \dots, \mathbf{w}_k$ — параметры модели при оптимизации k. Пусть L — функция потерь:

$$L(\boldsymbol{\theta}, \mathbf{h}) = -\frac{1}{k} \sum_{q=1}^{k} \left(\frac{k}{k-1} \log p(\mathbf{y} \setminus \mathbf{y}_q | \mathbf{X} \setminus \mathbf{X}_q, \mathbf{w}_q) + \log p(\mathbf{w}_q | \mathbf{h}) \right). \tag{1}$$

Пусть Q — функция качества модели:

$$Q(\boldsymbol{\theta}, \mathbf{h}) = \frac{1}{k} \sum_{q=1}^{k} k \log p(\mathbf{y}_q | \mathbf{X}_q, \mathbf{w}_q).$$

6 / 29

Вариационная нижняя оценка

Пусть L = -Q:

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{A}) \geq \sum_{\mathbf{x},\mathbf{y}} \log p(\mathbf{y}|\mathbf{x},\hat{\mathbf{w}}) - D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{A})) = -L(\theta,\mathbf{A}^{-1}) = Q(\theta,\mathbf{A}^{-1}),$$

где q — нормальное распределение с диагональной матрицей ковариаций:

$$q \sim \mathcal{N}(oldsymbol{\mu}_q, \mathbf{A}_q^{-1}),$$

$$D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})\big) = \frac{1}{2}\big(\mathsf{Tr}[\mathbf{A}\mathbf{A}_q^{-1}] + (\boldsymbol{\mu} - \boldsymbol{\mu}_q)^\mathsf{T}\mathbf{A}(\boldsymbol{\mu} - \boldsymbol{\mu}_q) - u + \mathsf{In}\ |\mathbf{A}^{-1}| - \mathsf{In}\ |\mathbf{A}_q^{-1}|\big).$$

В качестве оптимизируемых параметров heta выступают параметры распределения q:

$$\boldsymbol{\theta} = [\alpha_1, \dots, \alpha_u, \mu_1, \dots, \mu_u].$$

Evidence vs Кросс-валидация

Оценка Evidece:

$$\log p(\mathfrak{D}|\mathbf{f}) = \log p(\mathfrak{D}_1|\mathbf{f}) + \log p(\mathfrak{D}_2|\mathfrak{D}_1,\mathbf{f}) + \cdots + \log p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\mathbf{f}).$$

Оценка leave-one-out:

LOU = Elog
$$p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\mathbf{f}).$$

Кросс-валидация использует среднее значение последнего члена $p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\mathbf{f})$ для оценки сложности.

Evidence учитывает **полную** сложность описания заданной выборки, определяющую предсказательную способность модели с самого начала.

23.10.2019

Базовые методы оптимизации гиперпараметров

Варианты:

- Поиск по решетке;
- Случайный поиск.

Оба метода страдают от проклятия размерности.

Случайный поиск может быть более эффективным, если пространство гиперпараметров вырождено.

Bergstra et al., 2012

Гауссовый процесс

Идея:

Будем моделировать $Q(\theta(\mathbf{h})^*, \mathbf{h})$ гауссовым процессом, зависящим от \mathbf{h} .

Плюсы:

- Гибкость модели.
- Дешевле, чем обучения модели.

Минусы: кубическая сложность по количеству гиперпараметров.

Shahriari et. al, 2016. Пример работы гауссового процесса.

Градиентные методы

Идея: Будем производить оптимизацию вдоль всей траектории оптимизации параметров.

Плюсы:

- Оптимизация гиперпараметров будет учитывать оптимизацию параметров.
- Сложность меняется незначительно от количества гиперпараметров.

Минусы: вычилсительно дорого.

Maclaurin et. al, 2015. Пример работы.

Формальная постановка задачи: градиентная оптимизация

Определение

Оператором T назовем оператор стохастического градиентного спуска, производящий η шагов оптимизации:

$$\hat{\boldsymbol{\theta}} = T \circ T \circ \cdots \circ T(\boldsymbol{\theta}_0, \mathbf{h}) = T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h}), \tag{2}$$

где

$$T(\theta, \mathbf{h}) = \theta - \beta \nabla L(\theta, \mathbf{h})|_{\hat{\mathfrak{D}}},$$

 γ — длина шага градиентного спуска, θ_0 — начальное значение параметров θ , $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$\mathbf{h}^* = rg \max_{\mathbf{h} \in \mathbb{H}} \mathit{Q}(\mathit{T}^{\eta}(oldsymbol{ heta}_0, \mathbf{h})),$$

где $heta_0$ — начальное значение параметров heta.

Forward-mode differentiation

Идея дифференцирования: применение формулы:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial w_{n-1}} \frac{\partial w_{n-1}}{\partial x} = \frac{\partial y}{\partial w_{n-1}} \left(\frac{\partial w_{n-1}}{\partial w_{n-2}} \frac{\partial w_{n-2}}{x} \partial x \right) = \dots$$

Пример (wiki):

$$x_1x_2+\sin(x_1)$$

Reverse-mode differentiation

Идея дифференцирования: применение формулы:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial w_1} \frac{\partial w_1}{\partial x} = \left(\frac{\partial y}{\partial w_2} \frac{\partial w_2}{\partial w_1}\right) \frac{\partial w_1}{\partial x} = \dots$$

14 / 29

RMAD, Maclaurin et. al, 2015

Алгоритм RMAD основывается на Reverse-mode differentiation.

- ① Провести η шагов оптимизации с моментом γ : $\theta = T(\theta_0, \mathbf{h})$.
- ② Положим $\hat{
 abla}\mathbf{h} =
 abla_{\mathbf{h}}Q(oldsymbol{ heta},\mathbf{h}).$
- **3** Положим $d\mathbf{v} = \mathbf{0}$.
- lacktriangle Для $au=\eta\dots 1$ повторить:
- \bullet Вычислить $\boldsymbol{\theta}^{\tau-1}$.
- f 0 Вычислить градиент на шаге au-1, используя RMD.

DrMAD

Алгоритм DrMad — упрощенный RMAD. Вводится предположение о линейности траектории обновления параметров θ .

- ① Провести η шагов оптимизации с моментом γ : $\theta = T(\theta_0, \mathbf{h})$.
- $oldsymbol{2}$ Положим $\hat{
 abla}\mathbf{h}=
 abla_{\mathbf{h}}Q(oldsymbol{ heta},\mathbf{h}).$
- **3** Положим $d\mathbf{v} = \mathbf{0}$.
- \P Для $au = \eta \dots 1$ повторить:
- \bullet Вычислить $\theta^{\tau-1}$.
- $oldsymbol{6}$ Вычислить градиент на шаге au-1, используя RMD.

- $oldsymbol{1}$ Провести η шагов оптимизации с моментом $\gamma\colon oldsymbol{ heta}=\mathcal{T}(oldsymbol{ heta}_0,\mathbf{h}).$
- ② Положим $\hat{\nabla}\mathbf{h} = \nabla_{\mathbf{h}}Q(\boldsymbol{\theta},\mathbf{h}).$
- \bigcirc Положим $d\mathbf{v} = \mathbf{0}$.
- $oldsymbol{\Phi}$ Для $au=\eta\dots 1$ повторить:
- $oldsymbol{\mathbb{G}}$ Вычислить градиент на шаге au-1, используя RMD.

Аналитическая формула оптимизации параметров

Утверждение (Pedregosa, 2016)

Пусть L — дифференцируемая функция, такая что все стационарные точки L являются локальными минимумами. Пусть также гессиан \mathbf{H}^{-1} функции потерь L является обратимым в каждой стационарной точке.

Тогда

$$\nabla_{\mathbf{h}} Q(T(\boldsymbol{\theta}_0, \mathbf{h}), \mathbf{h}) = \nabla_{\mathbf{h}} Q(\boldsymbol{\theta}^{\eta}, \mathbf{h}) - \nabla_{\mathbf{h}} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{\eta}, \mathbf{h})^{\mathsf{T}} \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}^{\eta}, \mathbf{h}).$$

Жадная оптимизация гиперпараметров

На каждом шаге оптимизации параметров $oldsymbol{ heta}$:

$$\mathbf{h}' = \mathbf{h} - \beta_{\mathbf{h}} \nabla_{\mathbf{h}} Q (T(\boldsymbol{\theta}, \mathbf{h}), \mathbf{h}) = \mathbf{h} - \beta_{\mathbf{h}} \nabla_{\mathbf{h}} Q (\boldsymbol{\theta} - \beta \nabla L(\boldsymbol{\theta}, \mathbf{h}), \mathbf{h})),$$

где β_h — длина шага оптимизации гиперпараметров.

- Можно рассматривать как упрощение алгоритма RMAD, использующее только один элемент истории обновления параметров.
- ullet Является приближением к решению аналитической формуле в случае ${f H}^{-1}\sim {f I}.$

HOAG

Численное приближение аналитической формулы:

$$\nabla_{\mathbf{h}} \mathit{Q}(\boldsymbol{\theta}^{\eta}, \mathbf{h}) - \nabla_{\mathbf{h}} \nabla_{\boldsymbol{\theta}} \mathit{L}(\boldsymbol{\theta}^{\eta}, \mathbf{h})^{\mathsf{T}} \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} \mathit{Q}(\boldsymbol{\theta}^{\eta}, \mathbf{h}).$$

- f 0 Провести η шагов оптимизации: $m heta = T(m heta_0, m heta)$.
- $oldsymbol{2}$ Решить линейную систему для вектора $oldsymbol{\lambda}$: $oldsymbol{\mathsf{H}}(oldsymbol{ heta})oldsymbol{\lambda} =
 abla_{oldsymbol{ heta}}Q(oldsymbol{ heta},oldsymbol{\mathsf{h}}).$
- ③ Приближенное значение градиентов гиперпараметра вычисляется как: $\hat{\nabla}_{\mathbf{h}}Q = \nabla_{\mathbf{h}}Q(\theta,\mathbf{h}) \nabla_{\theta,\mathbf{h}}L(\theta,\mathbf{h})^T \boldsymbol{\lambda}$.

Итоговое правило обновления:

$$\mathbf{h}' = \mathbf{h} - \gamma_{\mathbf{h}} \hat{\nabla}_{\mathbf{h}} Q.$$

Сравнение алгоритмов

Алгоритм	+	-
Random search	Легко реализовать	Проклятие размерности
Жадная оптимизация	Оптимизация проводится внутри цикла оптимизации параметров. Легко реализовать	Жадность, неоптимальность.
HOAG	Быстрая сходимость.	Качество результатов зависит от решения линейного уравнения $\mathbf{H}(oldsymbol{ heta}) oldsymbol{\lambda} = abla_{oldsymbol{ heta}} Q(oldsymbol{ heta}, \mathbf{h}).$
DrMAD	Учитывает особенности оператора оптимизации. Можно использовать для оптимизации мета-параметров.	Неустойчив при больших значениях длины градиентного шага $\gamma_{ m h}$. Качество оптимизации зависит от кривизны траектории обновления параметров.

20 / 29

Эксперименты: полиномы

Эксперименты: WISDM

Эксперименты: MNIST

Эксперименты: MNIST

Добавление гауссового шума $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$:

 $\sigma = 0.1$

 $\sigma = 0.25$

 $\sigma = \text{0.5}$

ДЗ: выбор задания

Дедлайн: 30 октября, 0 часов.

from zlib import crc32

theory = crc32('фамилия кириллицей'.lower().encode('utf-8'))%2+1

practice = crc32('фамилия латиницей'.lower().encode('utf-8'))%2+1

Задания заливаются на github:

https://github.com/Intelligent-Systems-Phystech/model_selection/фамилия латиницей

ДЗ: теория

Формат: tex + pdf.

- Доказать утверждение (Pedregosa, 2016);
 - ► Воспользоваться (Pedregosa, 2016);
- Расписать с комментариями RMAD для SGD без момента;
 - ▶ Воспользоваться (Maclaurin et al., 2015).

ДЗ: практика

Формат: ipynb. Реализовать пример оптимизации гиперпараметров на небольшой выборке с ошибкой на валидации в качестве функции Q.

Количество гиперпараметров: не менее 20.

Рассмотреть алгоритмы: случайный поиск, гауссовый процесс (библиотечная реализация) и:

- 4 HOAG;
- Жадный алгоритм.

При оценивании будут учитываться аккуратность кода ноутбуков и наглядность примера.

Пример должен быть выполнен на простых игрушечных синтетических данных.

Используемые материалы

- David J. C. MacKay, Information Theory, Inference & Learning Algorithms, 2003
- 2 Christopher Bishop, Pattern Recognition and Machine Learning, 2006
- 3 Bergstra et al., Random Search for Hyper-Parameter Optimization, 2012
- 4 Dougal Maclaurin et. al, Gradient-based Hyperparameter Optimization through Reversible Learning, 2015
- Jelena Luketina et. al, Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters, 2016
- Iie Fu et. al, DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks, 2016
- Fabian Pedregosa, Hyperparameter optimization with approximate gradient, 2016
- Bobak Shahriari et. al, Taking the Human Out of the Loop: A Review of Bayesian Optimization, 2016
- Bakhteev, Strijov, Comprehensive analysis of gradient-based hyperparameter optimization algorithms, 2018
- Feurer et al, AUTOML: METHODS, SYSTEMS, CHALLENGES