PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEM<u>ÁTICA</u>

Primer Semestre 2015

MAT1203 - Álgebra Lineal Interrogación 1 - miércoles 1 de abril - solución

1. a) Sea $u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \\ r \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ 1 \\ s \end{bmatrix}$ y $u_4 = \begin{bmatrix} 0 \\ 1 \\ s \end{bmatrix}$. Determine todas las condiciones posibles sobre los parámetros r y s tales que $u_4 \in \text{Gen}\{u_1, u_2, u_3\}$.

Solución:

El problema es equivalente a que el siguiente sistema tenga solución:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & r & s \end{bmatrix} x = \begin{bmatrix} 0 \\ 1 \\ s \end{bmatrix}.$$

Escalonando:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & r & s & s \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & r & s - 1 & s \end{bmatrix}. \quad \text{Important }$$

Si r = 0, entonces:

 $n = \infty$ Para s = 1 de la tercera fila no hay solución.

Para $s \neq 1$ hay tres pivotes y por lo tanto hay solución.

Si $r \neq 0$ se sigue escalonando:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & r & s & s \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & s - 1 - r & s - r \end{bmatrix}.$$

Q5p)

Para s-r=1 de la tercera fila no hay solución.

Para $s-r \neq 1$ hay tres pivotes y por lo tanto hay solución.

Desde aqui en adelante 1
podita incluir la anterior y que de 10
to

b) Sea $\{v_1, v_2\}$ un conjunto de vectores en \mathbb{R}^n linealmente independiente. Demuestre que el conjunto $\{2v_1 + 4v_2, 3v_1 + av_2\}$ es linealmente dependiente si y sólo si a = 6.

Solución:

 (\rightarrow) .

Si $\{2v_1 + 4v_2, 3v_1 + av_2\}$ es L.D., entonces existe α no nulo tal que

$$(2v_1 + 4v_2) = \alpha(3v_1 + av_2).$$

Esto último implica que $(2-3\alpha)v_1 + (4-a\alpha)v_2 = \vec{0}$.

Pero $\{v_1, v_2\}$ es L.I., entonces $(2-3\alpha) = (4-a\alpha) = 0$, es decir $\alpha = 2/3$ y a = 6.

 (\leftarrow) .

Si a=6, entonces $3(2v_1+4v_2)-2(3v_1+6v_2)=\vec{0}$. Luego el conjunto es L.D.

no hay divisiones

- 2. Sea A de 3×4 tal que la suma de todas sus columnas es $\begin{bmatrix} 1\\3\\4 \end{bmatrix}$ y su forma escalonada reducida es $\begin{bmatrix} 1&0&0&-1\\0&1&0&2\\0&0&1&3 \end{bmatrix}$.
 - a) Escriba la solución general del sistema $Ax = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$.

Solución:

Del enunciado se tiene que la solución general del sistema $Ax = \vec{0}$ es Gen $\left\{ \begin{bmatrix} -1 \\ -2 \\ -3 \\ 1 \end{bmatrix} \right\}$.

También del enunciado se tiene que $A\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3\\4 \end{bmatrix}$.

Entonces la solución general es de la forma: $x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ -2 \\ -3 \\ 1 \end{bmatrix}, \alpha \in \mathbb{R}.$

b) Determine, justificadamente, tres veces la segunda columna de A más cuatro veces la tercera columna de A.

Solución:

Se pide
$$A \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \end{bmatrix}$$
.

$$A \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \end{bmatrix} = A \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \\ -3 \\ 1 \end{bmatrix} \end{pmatrix} = A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - A \begin{bmatrix} 1 \\ -2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} - \vec{0} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

3. a) Sea $F: \mathbb{R}^2 \to \mathbb{R}^3$ una función tal que para todo $u, v \in \mathbb{R}^2$, $\alpha \in \mathbb{R}$ se tiene $F(u + \alpha v) = F(u) + \alpha F(v)$. Determine una matriz A tal que para todo vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$ se cumpla

$$F\left(\left[\begin{array}{c} a \\ b \end{array}\right]\right) = A\left[\begin{array}{c} a \\ b \end{array}\right].$$

Solución:

- Sea $u = \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$.

 Se tiene que $u = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- Aplicando F se tiene: $F(u) = F\left(a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = aF\begin{bmatrix} 1 \\ 0 \end{bmatrix} + bF\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$
 - Esto último es por definición el producto de una matriz de 3×2 cuyas columnas son $F \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ y $F \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ multiplicada por el vector $\begin{bmatrix} a \\ b \end{bmatrix}$.

b) Sea
$$M = \begin{bmatrix} 2 & 0 & 2 & 2 \\ 2 & 1 & 1 & 0 \\ -2 & 1 & -3 & -4 \end{bmatrix}$$
.

Calcule la imagen por M del hiperplano definido por $x_1 + x_2 = 1$. ¿ Corresponde este conjunto a un hiperplano? Justifique

Solución:

Sea x un vector en el hiperplano, entonces

$$A Mx = M \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_1 M \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_3 M \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 M \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Multiplicando:

$$Mx = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + x_1 \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}.$$

Pero
$$\begin{bmatrix} 2 & 2 & 0 \\ 1 & 0 & 1 \\ -3 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$
Por lo tanto la imagen es Gen
$$\left\{ \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix} \right\}.$$

Como es un conjunto generado por dos vectores L.I. en
$$\mathbb{R}^3$$
, entonces es un hiperplano.

- 4. Decida justificadamente si las siguientes afirmaciones son verdaderas o falsas:
 - a) Sea A matriz de 4×3 y $b \in \mathbb{R}^4$. Si el sistema Ax = b tiene solución única, entonces A tiene rango 3.

Solución:

Verdadero:

- Si el sistema tiene solución única, entonces la forma escalonada reducida de la amtriz ampliada $[A \mid b]$ no puede tener variables libres, por lo tanto debe el número de pivotes debe ser igual al número de variables que es 3.
- b) Si A es una matriz tal que $A\begin{bmatrix} 1\\1\\2\end{bmatrix} = \begin{bmatrix} 1\\3\end{bmatrix}$ y $A\begin{bmatrix} 1\\1\\3\end{bmatrix} = \begin{bmatrix} 1\\4\end{bmatrix}$, entonces el sistema $Ax = \begin{bmatrix} 1\\2\end{bmatrix}$ es consistente.

(15p)

Solución:

Verdadero:

Se tiene que

$$\left[\begin{array}{c}1\\2\end{array}\right]=2\left[\begin{array}{c}1\\3\end{array}\right]-\left[\begin{array}{c}1\\4\end{array}\right].$$

Reemplazando queda:

$$\left[\begin{array}{c}1\\2\end{array}\right] = 2A\left[\begin{array}{c}1\\1\\2\end{array}\right] - A\left[\begin{array}{c}1\\1\\3\end{array}\right] = A\left(2\left[\begin{array}{c}1\\1\\2\end{array}\right] - \left[\begin{array}{c}1\\1\\3\end{array}\right]\right).$$

Por lo tanto:

$$\left[\begin{array}{c}1\\2\end{array}\right] = A \left[\begin{array}{c}1\\1\\1\end{array}\right].$$

Descontan OSP si hoy qui evor numérico pero el argumento es el correcto. c) Sean A, B y C matrices tales que AB = C. Si las columnas de C forman un conjunto linealmente independiente, entonces las columnas de B forman un conjunto linealmente independiente.

Solución:

Verdadero:

Si las columnas de B son L.D., entonces existe $u \neq \vec{0}$ tal que $Bu = \vec{0}$.

Entonces existe $u \neq \vec{0}$ tal que $ABu = A\vec{0} = \vec{0}$.

Luego las columnas de C son L.D. y eso es una contradicción.

d) Sea A una matriz de 2×3 . Si la forma escalonada reducida de A tiene 2 pivotes, entonces el sistema $A^t x = \vec{0}$ tiene solución única.

Solución:

Verdadero:

A Si la forma escalonada reducida de A tiene 2 pivotes, entonces como A tiene 2 filas, estas son L.I.

Pero las filas de A son las columnas de A^t , luego las columnas de A^t son L.I. Por lo tanto el sistema $A^tx=\vec{0}$ tiene solución única.

En la c) se puede storger (55) si soben que columnos LI es equivalente a sistema []x=0 801. unica