# High-pass filters

==>passes signals at frequencies higher than the cutoff frequency.

RC Circuit Z

==> At  $\omega = \infty$ , the capacitor behaves as a s.c, so the capacitor voltage is zero.





==> At  $\omega$  = 0, the capacitor behaves as an o.c, so no current on R.







High-pass filters



$$H(s) = \frac{s}{s + 1/RC}$$

$$\omega_c = 1/RC$$



$$H(s) = \frac{s}{s + R/L}$$

$$\omega_c = R/L$$

$$H(s) = \frac{s}{s + \omega_c}$$

### Band-pass filters

passes a source veltage to the output only when the source frequency is within the band defined by the two cutoff frequencies.

==> Ideal bandpass filters have two cutoff frequencies.

### Series RLC Circuit

==> At ω = 0: the capacitor behaves like an o.c, and the inductor behaves like a s.c.

==> At ω = , the capacitor behaves like a s.c. and the inductor behaves like an o.c.





$$\omega_{o} = \sqrt{\frac{1}{LC}}.$$

$$\omega_{c1} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)},$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)}.$$

$$\omega_o = \sqrt{\omega_{c1} \cdot \omega_{c2}}$$

$$\beta = \omega_{c2} - \omega_{c1}$$

$$\beta = \frac{R}{L}$$

RELATIONSHIP AMONG QUALITY FACTOR CENTER FREQUENCY AND BANDWIDTH  $Q = \frac{\omega_o}{\beta}$ 

QUALITY FACTOR, SERIES RLC FILTERS  $Q = \sqrt{\frac{L}{R^2C}}.$ 





### Series RLC Circuit



#### Parallel I C Circuit



## Band-reject filter

passes a source voltage to the output only when the source frequency is outside the band defined by the two cutoff frequencies.

==>At  $\omega$  = 0. the capacitor behaves like an o.c, and the inductor behaves like a s.c.

==> At ω = ∞: the capacitor behaves like a s.c. and the inductor behaves like an o.c.















## Filter Design Process

