201-SH2-AB - Exercises #5 - Continuity

- 1. Match each part below to the graph which best illustrates the condition at x=2.
 - (a) f(2) is undefined.
- (b) $\lim_{x\to 2} f(x)$ DNE
- (c) $\lim_{x \to 2} f(x) \neq f(2)$
- (d) f is continuous at x = 2

GRAPH #1:

GRAPH #2:

GRAPH #3:

GRAPH #4:

2. Given the graph of f, fill in the table that follows.

Point of Discontinuity	Criteria of Continuity NOT Satisfied (choose all that apply)		
x =	$\Box f(a)$ undefined	$\Box \lim_{x \to a} f(x)$ DNE	$ \Box \lim_{x \to a} f(x) \neq f(a) $
x =	$\Box f(a)$ undefined	$\Box \lim_{x \to a} f(x)$ DNE	$\Box \lim_{x \to a} f(x) \neq f(a)$
x =	$\Box f(a)$ undefined	$\Box \lim_{x \to a} f(x)$ DNE	$\Box \lim_{x \to a} f(x) \neq f(a)$
x =	$\Box f(a)$ undefined	$\Box \lim_{x \to a} f(x)$ DNE	$\Box \lim_{x \to a} f(x) \neq f(a)$
	* Which of the points of discontinuity above are removable?		

- **3.** Consider the function $f(x) = \frac{(x-4)(x+1)}{x-a}$.
 - (a) Explain why f(x) will always have a discontinuity at x = a, regardless of the value of a.
 - (b) For what value (s) of a will $\lim_{x\to a} f(x)$ exist?
- **4.** * Show that $f(x) = \frac{x^2 5x + 6}{x^2 4}$ has a removable discontinuity at x = 2.

Determine the values of x at which the given function is discontinuous. Justify your answers. *Describe the type of discontinuity.

$$5. \ f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

6.
$$f(x) = \frac{x+2}{x^2+x-2}$$

7.
$$f(x) = \frac{3x^2}{6x + x^2}$$

8.
$$f(x) = \frac{x-3}{x^2-3x}$$

9.
$$f(x) = \frac{x^2}{4x - x^2}$$

10.
$$f(x) = \frac{4-x}{x^2-7x+12}$$

11.
$$f(x) = \begin{cases} \frac{x-2}{(x-3)(x+1)} & x < 4\\ \frac{3}{x-5} & x \ge 4 \end{cases}$$

12.
$$f(x) = \begin{cases} \frac{4x-1}{x^2-5x-6} & x \le 5\\ 3x+2 & x > 5 \end{cases}$$

13.
$$f(x) = \begin{cases} \frac{x-3}{(x-6)(x-2)} & x < 4\\ \frac{x+1}{5-x} & x \ge 4 \end{cases}$$

14.
$$f(x) = \begin{cases} 2x - 1 & x \le 3\\ \frac{5x - 1}{x^2 - 6x + 8} & x > 3 \end{cases}$$

15.
$$f(x) = \begin{cases} \frac{7}{x^2 + 2x - 15} & x < 2\\ 5 & x = 2\\ x^2 - 5 & x > 2 \end{cases}$$

16.
$$f(x) = \begin{cases} \frac{5x+10}{(x+2)(x-5)} & x \le 0\\ 2x^2 - 3x - 1 & x > 0 \end{cases}$$

17.
$$f(x) = \begin{cases} \frac{5}{x+1} & x \le 0\\ \frac{-3x^2 + 5x}{x} & 0 < x < 1\\ 2x - 1 & x \ge 1 \end{cases}$$

18.
$$f(x) = \begin{cases} \frac{30}{(x+5)(x-3)} & x < 0 \\ -3 & x = 0 \\ 5x^2 + 3x - 2 & x > 0 \end{cases}$$

19.
$$f(x) = \begin{cases} \frac{(x+1)(x-4)}{(x-2)(x+1)} & x < 1\\ \frac{3}{2-x} & x \ge 1 \end{cases}$$

$$\mathbf{20.} \ \ f(x) = \begin{cases} \frac{3x+12}{x^2+2x-8} & x \le -2 \\ x^2 & -2 < x < 2 \\ \frac{4}{3-x} & x \ge 2 \end{cases}$$

21.
$$f(x) = \begin{cases} \frac{x^2 + 2x}{x^2 - 4} & x \le 0\\ x & 0 < x < 3\\ \frac{x}{x - 5} & x \ge 3 \end{cases}$$

$$\mathbf{22.} \ f(x) = \begin{cases} \frac{x-1}{x^2 - 2x} & x < 1\\ \frac{x^2 - 3x + 2}{x^2 - x - 2} & 1 \le x \le 3\\ \frac{1}{x+1} & 3 < x \end{cases}$$

23.
$$f(x) = \begin{cases} \frac{1}{x+4} & x \le 1\\ \frac{x^2 - 1}{x^2 + 8x - 9} & 1 < x \le 2\\ \frac{3}{x^2 + 4} & 2 < x \end{cases}$$

24.
$$f(x) = \begin{cases} \frac{x-2}{x^2+x-6} & x < 2\\ \frac{1}{x+3} & 2 \le x \le 4\\ \frac{1}{x-5} & 4 < x \end{cases}$$

25.
$$f(x) = \begin{cases} \frac{x+9}{(x-2)(x+4)} & x \le 1\\ -2 & 1 < x < 8\\ \sqrt{3x+1} & 8 \le x \end{cases}$$

26.
$$f(x) = \begin{cases} \frac{-2x-1}{x+2} & x \le -1\\ \sqrt{x+1} & -1 < x \le 3\\ 2x-4 & x > 3 \end{cases}$$

$$\mathbf{27.} \ f(x) = \begin{cases} \frac{1}{x^2 - 4} & x \le -4\\ \frac{x^2 + 5x + 6}{x^2 - x - 12} & -4 < x \le 0\\ \frac{3}{x - 6} & x > 0 \end{cases}$$

Find the value(s) of the appropriate constant(s) such that the given function is continuous everywhere.

28.
$$f(x) = \begin{cases} \frac{x^2 + 2x - 3}{x - 1} & x \neq 1 \\ k^2 & x = 1 \end{cases}$$

29.
$$f(x) = \begin{cases} k^2 - \frac{12k}{x} & x \le -4\\ 2k - 5x & x > -4 \end{cases}$$

30.
$$f(x) = \begin{cases} -x^2 - 7k & x < 3 \\ k^2 - \frac{81}{x} & x \ge 3 \end{cases}$$

31.
$$f(x) = \begin{cases} x^2 + k^2 x - 4k & x \le 1\\ 7x + k & x > 1 \end{cases}$$

32.
$$f(x) = \begin{cases} \frac{x^2 - 64}{x - 8} & x \neq 8 \\ k & x = 8 \end{cases}$$

33.
$$f(x) = \begin{cases} 5 & x \le 0 \\ ax - b & 0 < x < 8 \\ 3 & x \ge 8 \end{cases}$$

34.
$$f(x) = \begin{cases} k^2 x^2 + 3kx - 8 & x < 2 \\ kx & x \ge 2 \end{cases}$$

35.
$$f(x) = \begin{cases} kx + k^2 & x \neq -1 \\ 2 & x = -1 \end{cases}$$

36.
$$f(x) = \begin{cases} kx & x \le 2\\ \frac{x^2 + 9x + 8}{x + k} & x > 2 \end{cases}$$

37.
$$f(x) = \begin{cases} \frac{3}{x-k} & x < 2\\ \frac{k}{1-x} & x \ge 2 \end{cases}$$

38.
$$f(x) = \begin{cases} ae^{-x} + be^{x} & x \le 0\\ ax^{2} + b - 1 & 0 < x \le 1\\ \ln x & x > 1 \end{cases}$$

39.
$$f(x) = \begin{cases} k^2 + 2x & x < -1 \\ -kx & x \ge -1 \end{cases}$$

40.
$$f(x) = \begin{cases} k^2 + 3x & x < 1\\ 3 + 5kx & x \ge 1 \end{cases}$$

41.
$$f(x) = \begin{cases} ax + 5 & x \le -3 \\ 1 - x & -3 < x \end{cases}$$

42.
$$f(x) = \begin{cases} 2k^2 + 3x & x \le 2\\ x(9-k) & x > 2 \end{cases}$$

43.
$$f(x) = \begin{cases} x^2 + k^2 x & x \le 1\\ 5k + 7x & x > 1 \end{cases}$$

44.
$$f(x) = \begin{cases} a^2x^2 - 9 & x < -1 \\ \frac{2ax + 6}{2x + 3} & x \ge -1 \end{cases}$$

45.
$$f(x) = \begin{cases} k + 10x & x < 2\\ 3k^2 - 4kx - 5x & x \ge 2 \end{cases}$$

ANSWERS

1. (a) #2

(b) #3

(c) #1

(d) #4

2. x = -1; f(-1) undefined, $\lim_{x \to -1} f(x) \neq f(-1)$

x = 1; $\lim_{x \to \infty} f(x)$ DNE, $\lim_{x \to \infty} f(x) \neq f(1)$

x=2 f(2) undefined, $\lim_{x\to 2} f(x)$ DNE, $\lim_{x\to 2} f(x) \neq f(2)$

x = 3 $\lim_{x \to 3} f(x) \neq f(3)$

x = 3 is a removable point of discontinuity.

3. (a) f(a) will be undefined regardless of the value of a.

(b) a = 4 and a = -1.

4. Hint: Show that $\lim_{x\to 2} f(x)$ exists, but that f(2) does not.

5. x = -1: *infinite, x = 1: *removable

6. x = -2: *removable, x = 1: *infinite

7. x = -6: *infinite, x = 0: *removable

8. x = 0: *infinite, x = 3: *removable

9. x = 0: *removable, x = 4: *infinite

10. x = 3: *infinite, x = 4: *removable

11. x = -1: *infinite, x = 3: *infinite, x = 4: *jump, x = 5: *infinite

12. x = -1: *infinite, x = 5: *jump

13. x = 2: *infinite, x = 4: *jump, x = 5: *infinite

14. x = 3: *jump, x = 4: *infinite

15. x = -5: *infinite, x = 2: *removable

16. x = -2: *removable

17. x = -1: *infinite, x = 1: *jump

18. x = -5: *infinite, x = 0: *removable

19. x = -1: *removable, x = 2: *infinite

20. x = -4: *removable, x = -2: *jump, x = 3: *infinite

21. x = -2: *removable, x = 3: *jump, x = 5: *infinite

22. x = 0: *infinite,x = 2: *removable, x = 3: *jump

23. x = -4: *infinite, x = 2: *jump

24. x = -3: *infinite, x = 4: *jump, x = 5: *infinite

25. x = -4: *infinite, x = 8: *jump

26. x = -2: *infinite, x = -1: *jump

27. x = -4: *jump, x = -3: *removable, x = 6: *infinite

28. $k = \pm 2$

29. k = -9, 2

30. k = -5, 4

31. k = -1, 6

32. k = 16

33. a = 1, b = -5

34. k = -2, 1

35. k = -1, 2

36. k = 3 (not k = -5)

37. k = 3 (not k = -1)

38. a = -1, b = 2

39. k = -1, 2

40. k = 0, 5

41. a = 1/3

42. k = -3, 2

43. k = -1, 6

44. a = -5, 3

45. k = -2, 5