

SONY - SP0402

SERVICE MANUAL

MODEL

DEST.

CHASSIS NO.

MODEL

DEST.

CHASSIS NO.

PVM-20M2U

PVM-20M4U

PVM-20M2E

US Canadian US

Canadian

AEP

SCC-G61H-A

SCC-G61F-A

SCC-G62GA

,C-GBIT-A

PVM-20M4E

PVM-20M4A

AEP

SCC-G62E-A

Australian SCC-N17C-A

TrinitronPVM-20M2U/20M2E

TRINITRON® COLOR VIDEO MONITOR

SONY

SPECIFICATIONS

Video signal

For PVM-14M4U/14M4E/20M4U/20M4E:

Color system

NTSC, PAL, SECAM, NTSC4.43

Resolution

800 TV lines

Aperture correction 0 dB to +6 dB

Frequency response

LINE

10 MHz ± 3 dB (Y signal)

RGB

 $10 \text{ MHz} \pm 3 \text{ dB}$

Synchronization

AFC time constant 1.0 msec.

For PVM-14M2U/14M2E/20M2U/20M2E:

Color system

NTSC, PAL, SECAM, NTSC4.43

Resolution

600 TV lines

Aperture correction 0 dB to +6 dB

Frequency response

LINE

10 MHz ± 3 dB (Y signal)

RGB

 $10 \text{ MHz} \pm 3 \text{ dB}$

Synchronization

AFC time constant 1.0 msec.

Picture performance

For PVM-14M4U/14M4E/14M2U/14M2E:

Normal scan

7 % over scan of CRT effective screen

area

Under scan

5 % underscan of CRT effective screen

area

H. linearity

Less than 4.0 % (typical) Less than 4.0 % (typical)

V. linearity Convergence

Central area:

0.4 mm (typical)

Peripheral area:

0.5 mm (typical)

Raster size stability H: 1.0%, V: 1.5%

High voltage regulation

3.5 %

Color temperature

D65/D93, selectable

USER (3,200K-10,000K, factory

setting is D65)

For PVM-20M4U/20M4E:

Normal scan

7 % over scan of CRT effective screen

area

Under scan

5 % underscan of CRT effective screen

H. linearity

Less than 5.0 % (typical)

V. linearity

Less than 5.0 % (typical)

Convergence

Central area:

0.5 mm (typical)

Peripheral area: 0.7 mm (typical)

Raster size stability H: 1.0%, V: 1.5%

High voltage regulation

4.0%

Color temperature

D65/D93, selectable

USER (3,200K-10,000K, factory

setting is D65)

For PVM-20M2U/20M2E

Normal scan

7 % over scan of CRT effective screen

area

Under scan

5 % underscan of CRT effective screen

H. linearity

Less than 5.0 % (typical)

V. linearity

Less than 5.0 % (typical)

Convergence

Central area:

0.6 mm (typical)

Peripheral area: 1.0 mm (typical)

Raster size stability H: 1.0%, V: 1.5%

High voltage regulation

4.0 %

Color temperature

D65/D93, selectable

USER (3,200K-10,000K, factory

setting is D65)

Inputs

For PVM-14M4U/14M4E/20M4U/20M4E:

LINE A/B

VIDEO IN

BNC connector (×2), 1Vp-p ±6 dB,

sync negative

Automatic 75 ohms termination

Phono jack (×2), -5 dBu^{a)}, more than

47 kilo-ohms

LINE C

Y/C IN

4-pin mini-DIN (×1)

See the pin assignment on page 19.

AUDIO IN

AUDIO IN

Phono jack (×1), -5 dBu^{a)}, more than

47 kilo-ohms

RGB/COMPONENT

R/R-Y,G/Y,B/B-Y IN: BNC connector (×3)

R, G, B channels: 0.7 Vp-p, ±6 dB

Sync on green: 0.3 Vp-p, negative

R-Y, B-Y channels: 0.7 Vp-p, ±6 dB

Y channel: 0.7 Vp-p, ±6 dB

(Standard color bar signal of 75%

chrominance)

Automatic 75 ohms termination

AUDIO IN

Phono jack (×1), -5 dBua), more than

47 kilo-ohms

EXT SYNC IN

BNC connector (x1) 4 Vp-p, ±6 dB, sync negative

REMOTE

20-pin connector (×1)

See the pin assignment on page 19.

a) 0 dBu = 0.775 Vr.m.s.

For PVM-14M2U/14M2E/20M2U/20M2E: LINE A/B BNC connector (x2), 1 Vp-p VIDEO IN ± 6dB, sync negative Automatic 75 ohms termination **AUDIO IN** Phono jack (×2), -5 dBua), more than 47 kilo-ohms LINE C 4-pin mini-DIN (×1) Y/C IN See the pin assignment on page 19. Phono jack ($\times 1$), -5 dBu^{a)}, more than **AUDIO IN** 47 kilo-ohms RGB/COMPONENT R/R-Y,G/Y,B/B-Y IN: BNC connector (×3) R, G, B channels: 0.7 Vp-p ± 6dB Sync on green: 0.3 Vp-p negative R-Y, B-Y channel: 0.7 Vp-p ± 6dB Y channel: 0.7 Vp-p ± 6dB (Standard color bar signal of 75% chrominance) Automatic 75 ohms termination Phono jack ($\times 1$), -5 dBu^{a} , more than **AUDIO IN** 47 kilo-ohms **EXT SYNC IN** BNC connector $(\times 1)$ 4 Vp-p, ±6 dB, sync negative

a) 0 dBu = 0.775 Vr.m.s.

Outputs (common to all models)

LINE A/B

REMOTE

VIDEO OUT BNC connector (×2) loop-through,

20-pin connector (×1)

Automatic 75 ohms termination

See the pin assignment on page 19.

AUDIO OUT Phono jack (×2) loop-through

LINE C

Y/C OUT 4-pin mini-DIN (×1) loop-through,

Automatic 75 ohms termination

AUDIO OUT Phono jack (×1) loop-through

RGB/COMPONENT

AUDIO OUT

R/R-Y,G/Y,B/B-Y OUT: BNC connector (×3)

loop-through

Automatic 75 ohms termination

Phono jack (×1) loop-through **EXT SYNC OUT** BNC connector (×1)

Automatic 75 ohms termination

Speaker output Output level: 0.8 W General

For PVM-14M4U:

SMPTE-C phosphor **CRT** Power consumption 90 Wh (with SDI: 99 Wh)

Power requirements 120 V AC, 50/60Hz

Operating temperature

0 to $+35^{\circ}$ C (32 to 95° F)

Storage temperature -10 to +40°C (14 to 104°F)

Operating humidity 35 to 85% (no condensation)

0 to 90% Storage humidity

Dimensions (w/h/d) Approx. $346 \times 340 \times 431$ mm

 $(13\frac{5}{8} \times 13\frac{1}{2} \times 17 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 16.7kg (36 lb 13 oz)

Accessory supplied AC power cord (1)

AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-14M4E:

CRT EBU phosphor

Power consumption 90 Wh (with SDI: 99 Wh) Power requirements 100 to 240 V AC, 50/60Hz

Operating temperature

0 to +35°C (32 to 95°F)

Storage temperature -10 to +40°C (14 to 104°F) Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $346 \times 340 \times 431$ mm

 $(13\frac{5}{8} \times 13\frac{1}{2} \times 17 \text{ inches})$

not incl. projecting parts and controls

Approx. 16.7kg (36 lb 13 oz) Mass

Accessory supplied AC power cord (1)

> AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-14M2U:

CRT P-22 phosphor

Power consumption 90 Wh (with SDI: 99 Wh)

Power requirements 120 V AC, 50/60Hz

Operating temperature

0 to $+35^{\circ}$ C (32 to 95° F)

Storage temperature -10 to +40°C (14 to 104°F) Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $346 \times 340 \times 431$ mm

 $(13\frac{5}{8} \times 13\frac{1}{2} \times 17 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 16.7kg (36 lb 13 oz)

Accessory supplied AC power cord (1) AC plug holder (1)

Tally label (1)

Cable with a 20-pin connector (1)

For PVM-14M2E:

CRT P-22 phosphor

Power consumption 90 Wh (with SDI: 99 Wh) Power requirements 100 to 240 V AC, 50/60Hz

Operating temperature

0 to +35°C (32 to 95°F)

Storage temperature -10 to $+40^{\circ}$ C (14 to 104° F) Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $346 \times 340 \times 431$ mm

 $(13\frac{5}{8} \times 13\frac{1}{2} \times 17 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 16.7kg (36 lb 13 oz)

Accessory supplied AC power cord (1)

AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-20M4U:

CRT SMPTE-C phosphor

Power consumption 125 Wh (with SDI: 135 Wh)

Power requirements 120 V AC, 50/60Hz

Operating temperature

 $0 \text{ to } +35^{\circ}\text{C} (32 \text{ to } 95^{\circ}\text{F})$

Storage temperature -10 to +40°C (14 to 104°F) Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $450 \times 458 \times 503$ mm

 $(17^{3}/4 \times 18^{1}/8 \times 19^{7}/8 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 30.0 kg (66 lb 2 oz)

Accessory supplied AC power cord (1)

AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-20M4E:

CRT EBU phosphor

Power consumption 130 Wh (with SDI: 140 Wh) Power requirements 100 to 240 V AC, 50/60Hz

Operating temperature

0 to +35°C (32 to 95°F)

Storage temperature -10 to +40°C (14 to 104°F)
Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $450 \times 458 \times 503$ mm

 $(17^{3}/4 \times 18^{1}/8 \times 19^{7}/8 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 30.0 kg (66 lb 2 oz)

Accessory supplied AC power cord (1)

AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-20M2U:

CRT P-22 phosphor

Power consumption 115 Wh (with SDI: 125 Wh)

Power requirements 120 V AC, 50/60Hz

Operating temperature

 $0 \text{ to } +35^{\circ}\text{C} (32 \text{ to } 95^{\circ}\text{F})$

Storage temperature -10 to +40°C (14 to 104°F)
Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $450 \times 458 \times 503$ mm

 $(17^{3}/4 \times 18^{1}/8 \times 19^{7}/8 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 30.0 kg (66 lb 2 oz)

Accessory supplied AC power cord (1)

AC plug holder (1) Tally label (1)

Cable with a 20-pin connector (1)

For PVM-20M2E:

CRT P-22 phosphor

Power consumption 120 Wh (with SDI: 130 Wh) Power requirements 100 to 240 V AC, 50/60Hz

Operating temperature

 $0 \text{ to } +35^{\circ}\text{C} (32 \text{ to } 95^{\circ}\text{F})$

Storage temperature -10 to +40°C (14 to 104°F)

Operating humidity 35 to 85% (no condensation)

Storage humidity 0 to 90%

Dimensions (w/h/d) Approx. $450 \times 458 \times 503$ mm

 $(17^{3}/4 \times 18^{1}/8 \times 19^{7}/8 \text{ inches})$

not incl. projecting parts and controls

Mass Approx. 30.0 kg (66 lb 2 oz)

Accessory supplied AC power cord (1)

AC plug holder (1)

Tally label (1)

Cable with a 20-pin connector (1)

Design and specifications are subject to change

without notice.

Pin assignment

Y/C IN connector (4-pin mini-DIN)

Pin No.	Signal	Description
1	Y-input	1 Vp-p, sync negative, 75 ohms
2	CHROMA subcarrier-input	300m Vp-p, burst Delay time between Y and C: within 0 ± 100 nsec., 75 ohms
3	GND for Y-input	GND
4	GND for CHROMA-input	GND

REMOTE connector (20-pin)

Pin No.	Signal	Wire color
1	Blue only	Brown
2	H/V DELAY	Red
3	MAIN/SUB*	Orange
4	EXT SYNC	Yellow
5	DEGAUSS	Green
6	R ch ON/OFF*	Blue
7	TALLY	Purple
8	LINE B	Grey
9	GND	White
10	GND	Black
11	GND	Pink
12	GND	Light Blue
13	LINE A	Spiral Orange
14	LINE/RGB	Spiral Yellow
15	GND	Spiral Green
16	L ch ON/OFF*	Spiral Blue
17	REMOTE	Spiral Purple
18	LINE C	Spiral Grey
19	UNDER SCAN	Spiral Pink
20	16:9	Spiral Light Blue

(* For digital audio control)

How to connect a remote control unit Connect No.17 pin to one of the GND pins (No.9 – 12, and 15), then connect pins for the functions you want to use to other GND pins (No.9 – 12, and 15).

How to light the tally lamp Connect No.7 pin to one of the GND pins (No.9 - 12, and 15).

SAFETY CHECK-OUT

(US Model only)

After correcting the original service problem, perform the following safety checks before releasing the set to the customer:

- Check the area of your repair for unsoldered or poorly-soldered connections. Check the entire board surface for solder splashes and bridges.
- Check the interboard wiring to ensure that no wires are "pinched" or contact high-wattage resistors.
- Check that all control knobs, shields, covers, ground straps, and mounting hardware have been replaced. Be absolutely certain that you have replaced all the insulators.
- 4. Look for unauthorized replacement parts, particularly transistors, that were installed during a previous repair. Point them out to the customer and recommend their replacement.
- Look for parts which, though functioning, show obvious signs of deterioration. Point them out to the customer and recommend their replacement.
- Check the line cords for cracks and abrasion.
 Recommend the replacement of any such line cord to the customer.
- Check the B+ and HV to see if they are at the values specified. Make sure your instruments are accurate; be suspicious of your HV meter if sets always have low HV.
- Check the metal trim, metallized knobs, screws, and all other exposed metal parts for AC leakage.

Check leakage as described below.

LEAKAGE TEST

The AC leakage from any exposed metal part to earth ground and from all exposed metal parts to any exposed metal part having a return to chassis, must not exceed 0.5mA (500 microampers). Leakage current can be measured by any one of three methods.

- A commercial leakage tester, such as the Simpson 229 or RCA WT-540A. Follow the manufactures' instructions to use these instruments.
- A battery-operated AC milliammeter. The Data Precision 245 digital multimeter is suitable for this job.
- 3. Measuring the voltage drop across a resistor by means of a VOM or battery-operated AC voltmeter. The "limit" indication is 0.75V, so analog meters must have an accurate low-voltage scale. The Simpson 250 and Sanwa SH-63Trd are examples of a passive VOM that is suitable. Nearly all battery operated digital multimeters that have a 2V AC range are suitable. (See Fig. A)

HOW TO FIND A GOOD EARTH GROUND

A cold-water pipe is guaranteed earth ground; the cover-plate retaining screw on most AC outlet boxes is also at earth ground. If the retaining screw is to be used as your earth-ground, verify that it is at ground by measuring the resistance between it and a cold-water pipe with an ohmmeter. The reading should be zero ohms. If a cold-water pipe is not accessible, connect a 60-100 watts trouble light (not a neon lamp) between the hot side of the receptacle and the retaining screw. Try both slots, if necessary, to locate the hot side of the line, the lamp should light at normal brilliance if the screw is at ground potential. (See Fig. B)

TABLE OF CONTENTS

<u>Se</u>	ction	<u>Title</u>	<u>Page</u>	Se	ction	<u>Title</u>	Page
1,	GEN	IERAL		5.	CIR	CUIT ADJUSTMENTS	
	Featur	res	8		5-1.	A Board Adjustments	2
	Locat	ion and Function of Parts and Controls	9			•	
	Using	On-screen Menus	11	6.	DIA	GRAMS	
	Conne	ections	13		6-1.	Block Diagrams (1)	39
						Block Diagrams (2)	
2.	DISA	ASSEMBLY			6-2.	Frame Schematic Diagram	
	2-1.	Top Cover and Rear Cover Removal	14		6-3.	Circuit Boards Location	
	2-2.	Terminal Board Removal			6-4.	Printed Wiring Boards and Schematic Diagrams	52
	2-3.	J and H Boards Removal				• A Board (1/3)	
	2-4.	Picture Tube Removal	14			• A Board (2/3)	60
	2-5.	Service Position	15			• A Board (3/3)	69
						• Q Board	74
3.	SET-	-UP ADJUSTMENTS				• G Board	70
	3-1.	Preparations (1)	16			• J Board	76
	3-2.	Preparations (2) Initialization				• X Board	76
	3-3.	Writing Model Data				• H Board	78
	3-4.	Picture Output	20			• S Board	78
	3-5.	Landing Adjustment	20			• C Board	
	3-6.	Convergence Adjustment (1)	21		6-5.	Semiconductors	87
	3-7.	Deflection Yoke Neck Rotation Adjustment	22				
	3-8.	Convergence Adjustment (2)	22	7.	EXP	LODED VIEWS	
	3-9.	G2 Adjustment	23		7-1.	Chassis	89
	3-10.	White Balance Adjustment	23		7-2.	Picture Tube	90
	3-11.	Blue-Only White Balance Adjustment	24				
	3-12.	Sub Brt Adjustment	24	8.	ELE	CTRICAL PARTS LIST	. 91
	3-13.	Focus Adjustment	24				
	CAE	ETV DEL ATED AD HISTMENT	25				
4	SAFI	ETY RELATED ADJUSTMENT	. 25				

(CAUTION)

SHORT CIRCUIT THE ANODE OF THE PICTURE TUBE AND THE ANODE CAP TO THE METAL CHASSIS, CRT SHIELD, OR CARBON PAINTED ON THE CRT, AFTER REMOVING THE ANODE.

WARNING!!

AN ISOLATION TRANSFORMER SHOULD BE USED DURING ANY SERVICE TO AVOID POSSIBLE SHOCK HAZARD, BECAUSE OF LIVE CHASSIS.

THE CHASSIS OF THIS RECEIVER IS DIRECTLY CONNECTED TO THE AC POWER LINE.

SAFETY-RELATED COMPONENT WARNING!!

COMPONENTS IDENTIFIED BY SHADING AND MARK & ON THE SCHEMATIC DIAGRAMS, EXPLODED VIEWS AND IN THE PARTS LIST ARE CRITICAL FOR SAFE OPERATION. REPLACE THESE COMPONENTS WITH SONY PARTS WHOSE PART NUMBERS APPEAR AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS PUBLISHED BY SONY. CIRCUIT ADJUSTMENTS THAT ARE CRITICAL FOR SAFE OPERATION ARE IDENTIFIED IN THIS MANUAL. FOLLOW THESE PROCEDURES WHENEVER CRITICAL COMPONENTS ARE REPLACED OR IMPROPER OPERATION IS SUSPECTED.

(ATTENTION)

APRES AVOIR DECONNÈCTE LE CÁP DE L'ANODE, COURT-CIRCUITER L'ANODE DU TUBE CATHODIQUE ET CELUI DE L'ANODE DU CAP AU CHASSIS METALLIQUE DE L'APPAREIL, OU AU COUCHE DE CARBONE PEINTE SUR LE TUBE CATHODIQUE OU AU BLINDAGE DU TUBE CATHODIQUE.

ATTENTION!!

AFIN D'EVITER TOUT RESQUE D'ELECTROCUTION PROVENANT D'UN CHÁSSIS SOUS TENSION, UN TRANSFORMATEUR D'ISOLEMENT DOIT ETRE UTILISÉ LORS DE TOUT DÉPANNAGE. LE CHÁSSIS DE CE RÉCEPTEUR EST DIRECTEMENT RACCORDÉ À L'ALIMENTATION SECTEUR.

ATTENTION AUX COMPOSANTS RELATIFS À LA SÉCURITÉ!!

LES COMPOSANTS IDENTIFIÈS PAR UNE TRAME ET PAR UNE MARQUE À SUR LES SCHÉMAS DE PRINCIPE, LES VUES EXPLOSÉES ET LES LISTES DE PIECES SONT D'UNE IMPORTANCE CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT. NE LES REMPLACER QUE PAR DES COMPOSANTS SONY DONT LE NUMÉRO DE PIÉCE EST INDIQUÉ DANS LE PRÉSENT MANUEL OU DANS DES SUPPLÉMENTS PUBLIÉS PAR SONY. LES RÉGLAGES DE CIRCUIT DONT L'IMPORTANCE EST CRITIQUE POUR LA SÉCURITÉ DU FONCTIONNEMENT SONT IDENTIFIES DANS LE PRÉSENT MANUEL. SUIVRE CES PROCÉDURES LORS DE CHAQUE REMPLACEMENT DE COMPOSANTS CRITIQUES, OU LORSQU'UN MAUVAIS FONCTIONNEMENT EST SUSPECTÉ.

SECTION 1 GENERAL

The operating instructions mentioned here are partial abstracts from the Operating Instruction Manual. The page numbers of the Operating Instruction Manual remain as in the manual.

Features

Picture

HR (High Resolution) Trinitron ¹⁾ picture tube for PVM-14M4U/14M4E/20M4U/20M4E HR Trinitron tube provides a high resolution picture. Horizontal resolution is more than 800 TV lines at the center of the picture.

Trinitron¹) picture tube for PVM-14M2U/14M2E/20M2U/20M2E Trinitron tube provides a high resolution picture. Horizontal resolution is more than 600 TV lines at the center of the picture.

Comb filter

When NTSC video signals are received, a comb filter activates to make more accurate Y/C separation. This contributes to less of a decrease in resolution, cross color and cross luminance phenomena.

Beam current feedback circuit
The built-in beam current feedback circuit assures
stable white balance.

Four color system available
The monitor can display NTSC, PAL, SECAM and
NTSC+43²⁾ signals. The appropriate color system is
selected automatically.

Blue only mode

In the blue only mode, an apparent monochrome display is obtained with all three cathodes driven with a blue signal. This facilitates color saturation and phase adjustments and observation of VCR noise.

Input

Analog RGB/component input connectors Analog RGB or component (Y, R-Y and B-Y) signals from video equipment can be input through these connectors.

Y/C input connectors

The video signal, split into the chrominance signal (C) and the luminance signal (Y), can be input through this connector, eliminating the interference between the two signals, which tends to occur in a composite video signal, ensuring video quality.

External sync input

When the EXT SYNC selector is in the on position, the monitor can be operated on the sync signal supplied from an external sync generator.

Automatic termination (connector with -\/\rangle mark only)

The input connector is terminated at 75 ohms inside when no cable is connected to the loop-through output connector. When a cable is connected to an output connector, the 75-ohm termination is automatically released.

Functions

Underscan mode

The signal normally scanned outside of the screen can be monitored in the underscan mode.

Note

When the monitor is in the underscan mode, the dark RGB scanning lines may appear on the top edge of the screen. These are caused by an internal test signal, rather than the input signal.

Horizontal/vertical delay mode
The horizontal and vertical sync signals can be
checked simultaneously in the H/V delay mode.

Auto/manual degaussing

Degaussing of the screen can be performed automatically when the power is turned on, or manually by pressing the DEGAUSS button.

On-screen menus

You can set color temperature, CHROMA SET UP, and other settings by using the on-screen menus.

Five menu languages

You can select the menu language from among five languages on the menu.

EIA standard 19-inch rack mounting By using an MB-502B mounting bracket (for a 14-inch monitor, not supplied) or SLR-103A slide rail (for a 20-inch monitor, not supplied), the monitor can be mounted in an EIA standard 19-inch rack.

For details on mounting, refer to the instruction manuals supplied with the mounting bracket kit or slide rail kit.

SDI (Serial Digital Interface) Kit By using the following optional SDI Kits, the monitor can display SMPTE 259M 4:2:2 serial digital signal from a digital VCR. (ex. Sony 4:2:2 VCR)

- BKM-101C: Component SDI Kit (for video)
- BKM-102: Component SDI Kit (for audio)

Note

When the serial number of the BKM-101C you want to connect is less than 2,010,000, an optional connecting harness (part no. 1-900-230-35) will be required.

Serial Remote Interface Kit

By using the optional BKM-103 Serial Remote Interface Kit, the monitor can be controlled from personal computers via the RS-422A serial interface.

1) "Trinitron" is a registered trademark of Sony Corporation.

²⁾ The NTSC 443 system refers to an NTSC color system in which the subcarrier frequency is modified to 4.43MHz. When all NTSC (CCOUCU VIOCO PROGRAM is played back with a Trident (PALISECAMINTSC 443) VTR, the NTSC 433 signal is output.

Location and Function of Parts and Controls

Lights up when the video camera connected to this monitor is selected, indicating that the picture is being

For details on how to light the tally lamp, see page 19.

2 POWER switch and indicator

Depress to turn on the monitor. The indicator will light green.

REMOTE indicator

Lights up when you select ON on the USER PRESET menu (see page 13), or when you connect a supplied cable to the REMOTE connector. The controls on the front panel do not work when this indicator lights up.

For details on how to connect the cable, see page 19.

◆ VOLUME control Turn this control clockwise or counterclockwise to obtain the desired volume.

⑤ CONTRAST control

Turn this control clockwise to make the contrast higher or counterclockwise to make it lower.

@ PHASE control

This control is effective only for the NTSC and NTSC443 color systems. Turn it clockwise to make the skin tones greenish or counterclockwise to make them

CHROMA control

Turn this control clockwise to increase the color intensity or counterclockwise to decrease it.

BRIGHT (brightness) control Turn this control clockwise to increase the brightness

or counterclockwise to decrease it.

APERTURE control

Turn this control clockwise to increase sharpness or counterclockwise to decrease sharpness.

The PHASE (6), CHROMA (7) and APERTURE (9) controls have no effect on the pictures of RGB signals.

MENU (EXIT) button

Press this button to display the main menu. When a menu is on the display, you can return to the previous menu by pressing this button.

● ENTER (SELECT) button

Press the button to confirm a selected item on the menu

1 (+)/ **↓** (-) buttons

Press the buttons to move the cursor (>) or adjust selected item on the menu.

16:9 selector

Press this selector (light on) to monitor the signals of 16:9 picture.

H/V DELAY selector

Press this selector (light on) to observe the horizontal and vertical sync signals at the same time. The horizontal sync signal is displayed in the left quarter of the screen; the vertical sync signal is displayed near the center of the screen.

UNDER SCAN selector

Press this selector (light on) for underscanning. The display size is reduced by approximately 5% so that four corners of the raster are visible.

BLUE ONLY selector RESET button

· As the BLUE ONLY selector, press this selector (light on) to eliminate the red and green signals. Only blue signal is displayed as an apparent monochrome picture on the screen. This facilitates "chroma" and "phase" adjustments and observation of VCR noise.

("Phase" adjustment is effective only for the NTSC signals.)

· As the RESET button, you can reset the menu settings by pressing this button when a menu is on the display.

DEGAUSS button

Press this button momentarily. The screen will be demagnetized. Wait for 10 minutes or more before using this button again.

(BEXT SYNC (external sync) selector

- · Set this selector to the off position (light off) to operate the monitor on the sync signal from the displayed video signal.
- · Set this selector to the on position (light on) to operate the monitor on an external sync signal through the EXT SYNC connector.

LINE/RGB input selector

Press this selector to select the input to be monitored.

- Set this selector to the off position (light off) to monitor the signal through the LINE A, LINE B or LINE C connectors.
- . Set this selector to the on position (light on) to monitor the signal through the RGB/COMPONENT connectors.

@ C/SDI selector

- When the LINE/RGB input selector is set to the LINE position (light off), press this selector (light on) to monitor the signal through the LINE C
- When the LINE/RGB input selector is set to the RGB position (light on), press this selector (light on) to monitor the SDI signal (optional kits are required).

B/COMPONENT selector

- When the LINE/RGB input selector is set to the LINE position (light off), press this selector (light on) to monitor the signal through the LINE B connectors.
- · When the LINE/RGB input selector is set to the RGB position (light on), press this selector (light on) to monitor the component signal through the RGB/ COMPONENT connectors.

2 A/RGB selector

- · When the LINE/RGB input selector is set to the LINE position (light off), press this selector (light on) to monitor the signal through the LINE A connectors.
- . When the LINE/RGB input selector is set to the RGB position (light on), press this selector (light on) to monitor the RGB signal through the RGB/ COMPONENT connectors.

Rear Pane

AC IN socket

Connect the supplied AC power cord to this socket and to a wall outlet.

Q LINE A. LINE B connectors

Two groups (A and B) of line input connectors for the composite video and audio signals and their loop-through output connectors.

To monitor the input signal through these connectors, set the LINE/RGB selector to the LINE position (light off) and press the A/RGB or B/COMPONENT selector (light on).

VIDEO IN (BNC)

Connect to the video output of video equipment, such as a VCR or a color video camera.

For a loop-through connection, connect to the video output of another monitor.

VIDEO OUT (BNC)

Loop-through output of the VIDEO IN connector. Connect to the video input of a VCR or another monitor

When the cable is connected to this connector, the 75-ohm termination of the input is automatically released, and the signal input to the VIDEO IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or to a microphone via a suitable microphone amplifier. For a loop-through connection, connect to the audio output of another monitor.

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN connector. Connect to the audio input of a VCR or another monitor.

3 LINE C connectors

Y/C IN (4-pin mini-DIN)

Connect to the Y/C separate output of a video carnera, VCR or other video equipment.

For a loop-through connection, connect to the Y/C separate output of a VCR or another monitor.

Y/C OUT (4-pin mini-DIN)

Loop-through output of the Y/C IN connector.

Connect to the Y/C separate input of a VCR or another monitor.

When the cable is connected to this connector, the 75ohm termination of the input is automatically released, and the signal input to the Y/C IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or a microphone (via a suitable microphone amplifier).

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN connector. Connect to the audio input of a VCR or another monitor.

◆ REMOTE connector (20-pin)

Connect to the tally output of a control console, special-effect generator, etc. The tally lamp on the front panel will be turned on and off by the connected equipment. This connector can also be used for connecting a remote control unit.

For details on the pin assignment of this connector, see page 19.

⑤ RGB/COMPONENT connectors

RGB signal or component signal input connectors and their loop-through output connectors.

To monitor the input signal through these connectors, set the LINE/RGB selector to the RGB position (light on), and press the A/RGB or B/COMPONENT selector (light on).

R/R-Y IN, G/Y IN, B/B-Y IN (BNC)

When the EXT SYNC selector is set to the off position (light off), the monitor operates on the sync signal from the G/Y channel.

To monitor the RGB signal

Connect to the analog RGB signal outputs of a video camera, etc.

To monitor the component signal Connect to the R-Y/Y/B-Y component signal outputs of a Sony Betacam video camera, etc.

R/R-Y OUT, G/Y OUT, B/B-Y OUT (BNC) Loop-through outputs of the R/R-Y IN, G/Y IN, B/B-Y IN connectors.

When the cables are connected to these connectors, the 75-ohm termination of the inputs is automatically released, and the signal inputs to the R/R-Y IN, G/Y IN, B/B-Y IN connectors are output from these connectors.

To output the RGB signal Connect to the analog RGB signal inputs of a video printer or another monitor. To output the component signal Connect to the R-Y/Y/B-Y component signal inputs of a Betacam video recorder, etc.

AUDIO IN (phono jack)

Connect to the audio output of video equipment when the analog RGB or component signal is input.

AUDIO OUT (phono jack)

Loop-through outputs of the AUDIO IN connector.

⑤ EXT SYNC (external sync) connectors Press the EXT SYNC selector (light on) to use the sync signal through this connector.

IN (BNC)

When this monitor operates on an external sync signal, connect the reference signal from a sync generator to this connector.

OUT (BNC)

Loop-through output of the IN connector. Connect to the external sync input of video equipment to be synchronized with this monitor.

When the cable is connected to this connector, the 75ohm termination of the input is automatically released, and the signal input to the IN connector is output from this connector.

You can make various settings and adjustments of the monitor using the on-screen menus.

► 24 LANDING screen*

Operation through On-Screen Menus

Menu operation buttons

There are five menu operation buttons on the front panel of the monitor.

The following table shows how these five buttons function when using the menus.

Button	To select manu item To adjust the item selected
MENU	return to the previous menu
EXIT	return to the previous menu
2 ENTER	decide a selected item
SELECT	select an adjustment item
6 t	move the cursor (►) upwards
	increase selected value
	move the cursor (▶) downwards
	decrease selected value
9 RESET	reset current settings to the factory setting

The buttons that can be used on the menus and adjustment screens are displayed at the bottom of the screen. You can perform menu operation using the displayed buttons.

Display of the usable menu operation buttons

Operating procedures

To display the menu, follow this procedure.

- 1 Press the MENU/EXIT (1) button.
 - MENU (1 : main menu) appears.
- 2 Move the cursor (▶) to the desired setting menu by pressing the ♣/- or ♠/+ (♠, ♠) button.
- 3 Press the ENTER/SELECT (2) button.

The setting menu selected in step 2 appears.

- 4 Move the cursor (►) to the desired item by pressing the \(\blacktriangle \) or \(\blacktriangle \) (4, (3) button.
- 5 Press the ENTER/SELECT (2) button.

The adjustment screen or setting menu selected in step 4 appears.

For detailed information of menus, see Functions of On-Screen Menust on page 12.

^{1) 5} CAPTION VISION menu is provided with PVM-14M4U/14M2U/20M4U/20M2U only.

^{2) 24} LANDING screen is provided with PVM-20M4U/20M4E only.

To display the next (or previous) page of the

Select NEXT PAGE on the menu to display the next page and PREVIOUS PAGE on the menu to display the previous page.

How to display the next or the previous page

To close the menu (to return to the regular screen)

Each time you press the MENU/EXIT (1) button, the on-screen menu returns to the one previously displayed. Press the MENU/EXIT (1) button repeatedly until the regular screen appears.

For PVM-14M4E/14M2E/20M4E/20M2E:

For the first time when the monitor is turned on, the LANGUAGE menu (23) will appear on the screen. So, select the language you want to use.

1 Move the cursor (▶) to the desired language by pressing the $\frac{1}{2}$ /- or $\frac{1}{2}$ /+ (4), (3) button.

2 Press the MENU/EXIT (1) button.

Unless you press the MENU/EXIT (1) button in the procedure above, the LANGUAGE menu will always appear whenever you turn on the monitor.

Functions of On-Screen Menus

There are four types of on-screen menus.

Main menu

You can enter another menu such as status menu or setting menu.

Status menu

You can confirm the current settings.

Setting menu

You can select an item or enter an adjustment screen on this menu by using the 1/+, 1/- and ENTER/SELECT buttons.

Adjustment screen

You can make adjustments on this screen. The adjustments you made remain unchanged until next change even if you turn off the power.

([] indicates the factory setting.)

1 Main menu

Select another menu and press ENTER/SELECT to go to the menu.

2a STATUS 1 menu

Shows the current settings.

2b STATUS 2 menu

Shows what optional kit is installed in the monitor.

3CHROMA SET UP menu

Select ON on this menu to activate "chroma" and "phase" (NTSC signal only) adjustments done on the AUTO ADJUST screen (7).

4 COLOR TEMP/BAL menu

Select the color temperature from among D65, D93 and USER. USER is set to D65 as the factory setting. You can adjust or change the color temperature in USER mode (a measuring instrument is required).

(D65)

5 CAPTION VISION menu

This menu is provided only for PVM-14M4U/14M2U/ 20M4U/20M2U.

The monitor can display the signal with Caption Vision. To display it, select the caption type in this

6a USER CONFIG 1 menu

Select an item to adjust on the menus and screens (12) through 19). To go to the USER CONFIG 2 menu, select NEXT PAGE.

6b USER CONFIG 2 menu

Select an item to adjust on the menus and screens (20) through 24). To go to the USER CONFIG I menu select PREVIOUS PAGE.

7 AUTO ADJUST screen

Select the color bar signal (full, SMPTE, EIA) and press ENTER/SELECT to start automatic "chroma" and "phase" (NTSC signal only) adjustments. To activate these adjustments, select ON on the CHROMA SET UP menu (3).

8 ADJUST GAIN screen Adjust GAIN in USER mode.

9 ADJUST BIAS screen Adjust BIAS in USER mode.

10 COLOR TEMP RANGE menu

Select the color temperature range in USER mode. [5000K-10000K]

11 USER COPY menu

Store the factory setting of D65 or D93 as the value for USER mode.

12 COLOR SYSTEM DISPLAY menu

Select the color system type. When AUTO is selected, the color system type being used appears on the screen each time you change the signal input. [AUTO]

13358 TRAP FILTER menu

Color spill or color noise may be eliminated if you select ON (NTSC signal only). Normally select OFF. [OFF]

14SUB CONTROL menu

Select an item (CONTRAST, BRIGHT, CHROMA and PHASE controls on the front panel) to finely adjust on the SUB CONTROL screen (15).

15 SUB CONTROL screen

Finely adjust the selected item on the SUB CONTROL menu (14). Each control (CONTRAST, BRIGHT, CHROMA and PHASE control) has a click position at the center of its adjustment range. You can adjust the setting of the click position with this feature.

16USER PRESET menu

If you select ON on this menu, the REMOTE indicator lights up and the controls on the front panel do not work. The monitor operates with the user preset

To adjust the user preset settings, select the PRESET ADJUST menu (17).

17 PRESET ADJUST menu

You can preset the BRIGHT, CHROMA, PHASE, CONTRAST, VOLUME, and APERTURE controls to a desired level and can use these settings by selecting ON on the USER PRESET menu (16).

18 PRESET ADJUST screen

Adjust the selected item (BRIGHT, CHROMA, PHASE, CONTRAST, VOLUME, and APERTURE control) on the PRESET ADJUST menu (17).

19V HOLD screen

Adjust the vertical hold if the picture rolls vertically. When you cannot read the display, select the input that is not connected.

20 COMPONENT LEVEL menu

Select the component level from among three modes. N10/SMPTE for 100/0/100/0 signal BETA 7.5 for 100/7.5/75/7.5 signal BETA 0 for 100/0/75/0 signal

[BETA 7.5]

For PVM-14M4U/14M2U/20M4U/20M2U For PVM-14M4E/14M2E/20M4E/20M2E

[N10/SMPTE]

Using On-Screen Menus

21NTSC SETUP LEVEL menu

Select the NTSC setup level from two modes.

The 7.5 setup level is mainly used in north America.

The 0 setup level is mainly used in Europe.

For PVM-14M4U/14M2U/20M4U/20M2U

For PVM-14M4E/14M2E/20M4E/20M2E

[7.5] [0]

22 ACC menu

Set ACC (Auto Color Control) circuit on or off. When the fine adjustment is necessary, select OFF on the ACC menu.

Normally select ON. [ON]

23 LANGUAGE menu

You can select the menu language from among five languages (English, German, French, Italian, Spanish).
[ENGLISH]

24 LANDING screen

This menu is provided only for PVM-20M4U/20M4E. If the color is not uniform even after you press the DEGAUSS button, you can adjust the landing so as to obtain color uniformity on this screen.

The following two methods are available to adjust the landing.

When the signals of the horizontal lines are input and displayed:

Press the \$\frac{1}{2}\-\ or \$\frac{1}{2}\-\ button until the lines are displayed on the screen as horizontally as possible. When the signals of the white color are input and displayed:

Press the \$\frac{1}{2}/-\ or \$\frac{1}{2}/+\ button until the white color on the screen become as uniform as possible.

To reset the setting to standard (00), press the RESET button.

Connections

How to Connect the AC Power Cord

Connect the AC power cord (supplied) to the AC IN socket and to a wall outlet.

To remove the AC power cord Pull out the AC plug holder while pressing the lock levers.

To connect an AC power cord securely with an AC plug holder

the AC plug holder (supplied) on top of the AC power cord.

How to Connect a Cable to a BNC Connector

Connect a coaxial cable with the BNC plugs to the BNC connectors on the rear panel as illustrated below.

SECTION 2 DISASSEMBLY

2-1. TOP COVER AND REAR COVER REMOVAL

2-2. TERMINAL BOARD REMOVAL

2-3. J AND H BOARDS REMOVAL

2-4. PICTURE TUBE REMOVAL

When exchange the Picture tube of PVM-20M4 series and if the magnet had stuck on the neck of the Picture tube, peel it.

2-5. SERVICE POSITION

• REMOVAL OF ANODE-CAP

NOTE: Short circuit the anode of the picture tube and the anode cap to the metal chassis, CRT shield or carbon paint on the CRT, after removing the anode.

• REMOVING PROCEDURES

① Turn up one side of the rubber cap in the direction indicated by the arrow ①.

- ② Using a thumb pull up the rubber cap firmly in the direction indicated by the arrow ⑤.
- When one side of the rubber cap is separated from the anode button, the anode-cap can be removed by turning up the rubber cap and pulling up it in the direction of the arrow .

• HOW TO HANDLE AN ANODE-CAP

- ① Don't hurt the surface of anode-caps with sharp shaped material!
- ② Don't press the rubber hardly not to hurt inside of anodecaps! A material fitting called as shatter-hook terminal is built in the rubber.
- 3 Don't turn the foot of rubber over hardly! The shatter-hook terminal will stick out or hurt the rubber.

SECTION 3 SET-UP ADJUSTMENTS

3-1. PREPARATIONS (1)

Service Mode

This set is provided with a switch for service on the front panel that can be used to make various adjustments. The operation method of this switch is explained in detail below.

1. Entering the service mode

Simultaneously press the [ENTER] key and the [DEGAUSS] key shown on the display of the menu.

2. Service mode display

(1)	(5)	(4)	(3)	(6)
(2)			_	

Range of Service Mode Display

- The service items are largely classified into 16 types displayed by titles.
- (2) The names of the service items or READ/WRITE guidance, etc., are displayed. The names are displayed to the left and the guidance to the right.
- (3) This is the serial number for each of the service items. 1-120.
- (4) This is the adjustment data for the service items that are now stored in the RAM. Adjustments can be made by changing these values, but as long as nothing is written to the ROM the adjustment values will be erased by turning off the power or by reading, so please be careful.
- (5) When the adjustment data that is now displayed is identical with the data in the ROM, the cursor (►) is displayed.
- (6) The present status is displayed.
 - [*]: Writing to the ROM. Make sure not to turn off the power while this display is on.
 - [?]: ROM reading error. In this case, an image is output with the standard adjustment data that the microcomputer itself possesses. [¿]: Problem in the I2C bus.

3. Finishing the service mode

Simultaneously press the [ENTER] key and the [DEGAUSS] key shown on the display of the menu.

4. Easy ON/OFF of the service mode

If once entering the service mode after having turned on the power, easy ON/OFF is possible by once more pressing the A, B or C switch on the front panel (the LED lights) as long as the power is not turned off or as long as the service mode is not finished.

5. Change of position of the service mode display

If the switch is continuously pressed when turning on in the above easy mode, the display position moves in the V direction. This method is used when the display is outside of the effective screen area

6. Change of service items

The items are returned with the [MENU] key and forwarded with the [ENTER] key. When a key is continuously pressed, the operation will be repeated.

7. Change of service data

The service data is made larger with the [†] key and smaller with the [‡] key. When continuously pressing the keys, the operation will be repeated.

8. Reading of service data

When reading data from the ROM to the RAM, press the [B/O] key once and check than the READ display is shown in the guidance, and then press the [B/O] key once again. The adjustment data that is written will return to its previous state, so please be careful.

9. Writing of service data

When writing data from the RAM to the ROM, press the [DE-GAUSS] key once and check that the WRITE display shown in the guidance, and then press the [DEGAUSS] key once again. Not only the displayed data will be written, but all data, so please be careful.

10. Carrying out FACTORY RESETTING

In case the adjustment data has been destroyed for some reason, and you keep pressing the [B/O] key at the beginning of the above reading, the READ guidance will change to FACTORY RESET guidance in approximately 3 seconds so that the factory resetting can be carried out. By once again pressing the [B/O] key after this, resetting will be carried out ([*] will be displayed as status) and factory resetting will be executed. However, in case the data available at the time of shipment from the factory has been destroyed, or if the ROM has been replaced, etc., or if factory setting mentioned later on has been carried out, factory resetting is executed.

11. Carrying out FACTORY SETTING

Make sure to make possible the above factory resetting by making a copy of the adjustment data when replacing the ROM. If you keep pressing the [DEGAUSS] key at the beginning of the above writing, the WRITE guidance will change into FACTORY RESET guidance after approximately 3 seconds. By once again pressing the [DEGAUSS] key after this, setting will be carried out ([*] will be displayed as status) and the data will be copied. By carrying out this operation, the selection items of the menu and the adjustment values will be reset to the standard conditions, so please be careful. If this operation is carried out once, it cannot be carried out again, but the FACTORY SET FLAG (No. 120) in the service mode can be set to 1.

** Signify (The setting is vary with the destination.)
Refer to the "Table 3-1 Table map (2)."

	<u> </u>						Refer to the Table 5-1 Tab		
No.	SERVICE ITEM		MAX	STD	No.	SERVICE ITEM	<u> </u>	MAX	STD
1	NOR 50 DEF	H FREQUENCY	255	85	61	C/T1 D??	BIAS <red></red>	1023	_
2		VIDEO PHASE	255	139	62		BIAS <green></green>	1023	512
3		V SIZE	255	139	63		BIAS <blue></blue>	1023	396
4	NOR 60 DEF	H FREQUENCY	255	96	64		GAIN <red></red>	1023	660
5		VIDEO PHASE	255	115	65		GAIN <green></green>	1023	620
6		V SIZE	255	137	66		GAIN <blue></blue>	1023	602
7	NOR DEF	V CENTER	255	103	67		B/O <red></red>	255	115
8		H SIZE	255	108	68		B/O <green></green>	255	115
9		PIN PHASE	255	128	69	C/T2 D??	3200K SW	1	0
10		PIN AMP	255	128	70		BIAS <red></red>	1023	256
11		LOWER PIN AMP	255	128	71		BIAS <green></green>	1023	512
12		UPPER PIN AMP	255	128	72		BIAS <blue></blue>	1023	512
13		SEXY	255	128	73	·	GAIN <red></red>	1023	602
14		V LINEARITY	255	120	74		GAIN <green></green>	1023	700
15		V BOW	ස	32	75		GAIN <blue></blue>	1023	672
16		LOWER BOW	63	32	76		B/O <red></red>	255	95
17		V ANGLE	63	32	77		B/O <green></green>	255	108
18	U/S DEF	V SIZE <50>	255	100	78	W/B	SUB CON <4 :3,NORMAL>	255	178
19		V SIZE <60>	255	100	79		SUB CON <4:3,HN DELAY>	255	97
20		H SIZE	255	118	80		SUB CON <16 : 9,NORMAL>	255	150
21		PIN PHASE	255	128	81		SUB CON <16 :9,H/V DELAY>	255	78
22		PIN AMP	255	100	82		SUB BRIGHT	255	69
23	16:9 NOR DEF	V SIZE <50>	255	72	83		USER B/O <red></red>	255	115
24		V SIZE <60>	255	60	84		USER B/O <green></green>	255	115
25		PIN PHASE	255	135	85	OTHER	LANDING	255	64
26		PIN AMP	255	90	86		V HOLD	255	128
27	16 : 9 U/S DEF	V SIZE <50>	255	61	87		H BLANKING	255	73
28		V SIZE <60>	255	39	88		V BLANKING <50>	255	82
29		PIN PHASE	255	135	89		16:9 BLANKING START <50>	255	32
30		PIN AMP	255	65	90		16:9 BLANKING END <50>	255	176
31	COMPONENT	SUB PHASE	255	130	91		V BLANKING <60>	255	161
32		SUB CHROMA <normal></normal>	255	182	92		16:9 BLANKING START <50>	255	42
33		SUB CHROMA <smpte></smpte>	255	170	93		16:9 BLANKING END <50>	255	226
34		R-Y LEVEL	255	163	94		H DELAY	255	142
35	NTSC	BURST GATE PULSE WIDTH	255	52	95		V DELAY	255	104
36		CRYSTAL	255	59	96	· · · · · · · · · · · · · · · · · · ·	HP POSITION	255	145
37		PHASE <normal></normal>	255	80	97		HP WIDTH <normal></normal>	255	148
38		PHASE <acc off=""></acc>	255	96	98		HP WIDTH <h delay="" v=""></h>	255	62
39		B-Y PHASE	255	162	99	SYSTEM	SDI AUDIO	7	5
40		CHROMA <normal></normal>	255	98	100		358 TRAP FILTER	1	
41		CHROMA <acc off=""></acc>	255	27	101		ACC	1	0
42		R-Y LEVEL	255	98	102		CAPTION VISION	7	0
	NTSC 443	CRYSTAL	255	82	103		COMPONENT LEVEL	3	*
44		PHASE <normal></normal>	255	62	104		NTSC SETUP LEVEL	1	*
45		PHASE <acc off=""></acc>	255	64	105		CHROMA SET UP	1	0
46		B-Y PHASE	255	181	106		COLOR SYSTEM DISPLAY	3	0
47	-	CHROMA < NORMAL >	255	104	107		COLOR TEMPERATURE	3	0
48		CHROMA <acc off=""></acc>	255	36	108		USER PRESET	1	0
49		R-Y LEVEL	255	100	109		LANGUAGE	7	0
50	PAL	PHASE <normal></normal>	255	110	110		RGB SYNC	1	0
51		PHASE <acc off=""></acc>	255	105	111		OPTION BOARD	7	-
52		B-Y PHASE	255	122	112		AGING MODE	1	-
53		CHROMA < NORMAL>	255	109	113		PAL-M	1	0
54		CHROMA <acc off=""></acc>	255	41	114		MODEL	31	*
55		R-Y LEVEL	255	121	115		COLOR TEMP DISP 1	127	*
56	SECAM	CHROMA	255	93	116	· · · · · · · · · · · · · · · · · · ·	COLOR TEMP DISP 2	127	*
57		R-Y LEVEL	255	181	117		REMOTE ADDRESS	63	-
58		COLOR BALANCE <r-y></r-y>	255	118	118		RESERVED 1	1	-
59		COLOR BALANCE <b-y></b-y>	225	135	119		RESERVED 2	2	- ö
60	C/T1 D??	3200K SW	1	.50	120		FACTORY SET FLAG	1	-
~	311D::	0200N 011	لينيا		ر در		I ACTOM SET FLAG		

Table 3-1 Table map (2)

Model Name	Component level	NTSC Set-up level	Model	Color temp disp 1	Color temp disp 2
PVM-20M4U	1	1	0	65	93
PVM-20M2U	1	1	1	65	93
PVM-20M4J	2	0	2	93	65
PVM-20M4E	2	0	3	65	93
PVM-20M2E	2	0	4	65	93
PVM-14M4U	1	1	5	65	93
PVM-14M2U	1	1	6	65	93
PVM-14M4J	2	0	7	93	65
PVM-14M1J	2	0	8	93	65
PVM-14M4E	2	0	9	65	93
PVM-14M2E	2	0	10	65	93
PVM-20M4A	2	0	11	65	93
PVM-14M4A	2	0	12	65	93
PVM-14M2A	2	0	13	65	93
PVM-14M4B	1	1	14	65	93
BVM-14M4DJ	2	0	15	93	65
BVM-14M4DE	2	0	16	65	93
PVM-20M4T	2	0	17	93	65
PVM-14M4T	1	0	18	93	65

3-2. Preparation (2). Initialization

 Supply composite video or component signals as shown in Table 3-2.

Table 3-2

Signal		Details of signal	Standard level P-W
Composite video	358NT)	100% white	0.714V
video	443NT }	75% white	0.536V
]	PALM	100% white	0.7V
	SECAM	75% white	0.525V
		100% white Y	0.7V
	BETA0	75% white Y	0.525V
		75%color B-Y, R-Y	
Component		(P-P for this item only)	0.7V
·		100% white Y	0.7V
	SMPTE	75% white Y	0.525V
		75%color B-Y, R-Y (P-P for this item only)	0.525V
Voice	/sound	–5dBs	0.436Vrms
VOICE	/Sound	_5ubs	U.400VIIIIS

^{*} Refer to Table 3-3 for groups of models.

Table 3-3

Group of models		Models	
1	PVM-14M4U PVM-14M4A	PVM-14M4J	PVM-14M4E
2	PVM-14M2U	PVM-14M2E	PVM-14M2A
3	PVM-14M1J		
4	PVM-20M4U PVM-20M4A	PVM-20M4J	PVM-20M4E
5	PVM-20M2U	PVM-20M2E	

^{*} In this chapter, indicates the control items in the service mode.

Example: 60 H-FREQ

3-3. Writing model data

1. Write model data on respective models in the service mode at the location of No.114 MODEL in accordance with Table 3-4.

Table 3-4

Model	Model data
PVM-20M4U	0
PVM-20M2U	1
PVM-20M4J	2
PVM-20M4E	3
PVM-20M2E	4
PVM-14M4U	5 .
PVM-14M2U	6
PVM-14M4J	7
PVM-14M1J	8
PVM-14M4E	9
PVM-14M2E	10
PVM-20M4A	11
PVM-14M4A	12
PVM-14M2A	13

Write the following data in the service mode at the location of No.115 COLOR TEMP DISP 1.

COLOR TEMP DISP 1

U/C, AEP

J <u>93</u>

3. Write the following data in the service mode at the location of No.116 COLOR TEMP DISP 2.

COLOR TEMP DISP 2

U/C, AEP 93

65

Standard inspection state Unless otherwise specified in this manual, make adjustment under the following conditions:

APERTURE (Turn FLAT fully counterclockwise.) MIN **BRIGHT** 50% (Center click) **CHROMA** 50% (Center click) **PHASE** 50% (Center click) **CONTRAST** 80% (Center click) **VOLUME** 50%

^{*} Before turning off the power after adjustment in the service mode, write the adjustment data. When the power is turned off before writing, adjusted data will all be lost.

3-4. Picture output

1. AC input voltage setting

- Input VIDEO signals and AUDIO signals to respective terminals on the connector panel.
- 2. Set the sliduck AC voltage as shown in Table 3-5.

Table 3-5

Group o	Voltage	
PVM-14M4J(J) PVM-14M1J(J)	PVM-20M4J(J)	AC 100±3V (Distortion factor:3% max.)
PVM-14M4U(U/C) PVM-20M2U(U/C)	PVM-14M2U(U/C) PVM-20M4U(U/C)	AC 120±3V (Same as above)
PVM-14M4E(AEP) PVM-14M2A(AUS) PVM-20M4E(AEP) PVM-20M4A(AUS)	PVM-14M2E(AEP) PVM-14M4A(AUS) PVM-20M2E(AEP)	AC 220±3V (Same as above)

3-5. Landing adjustment

- 1. CONT ... MAX BRT ... Conspicuous position
- 2. Roughly adjust the white balance, G2, and convergence.
- 3. Switch the rotary SW of the single color switch to change the color into green only.
- 4. Adjust the purity knob so that the green will come to the center of the screen. Make R and B almost identical. (Fig. 3-1)
- 5. Switch to B only, R only, and G only and verify each. (Figs. 3-1, 3-2, and 3-3)
- Bring the deflection yoke gradually forward and adjust the deflection yoke so that R and B on both sides of the screen will be green. (Fig.3-2 → Fig. 3-3)
- If the deflection yoke comes forward too much, the pattern shown in Fig.3-4 will appear. If so, move the deflection yoke backward. (Fig.3-4 → Fig.3-3)
- 8. Switch the single color switch to B and verify the single color. (Fig.3-6)
- 9. Switch the single color switch to R and verify the single color. (Fig.3-9)
- 10. When two colors are mixed, set the mixed color as the standard, and repeat operations 6 and 7.
- 11. Switch to an all-white signal and check the uniformity.
- 12. When the deflection yoke position is determined, fasten it with the fixture.

Fig.3-11

Fig.3-12

Note: Attach NTC magnets for 20M4 to the locations shown in Fig.3-13.

Fig. 3-13

3-6. Convergence adjustment (1)

- 1. Input a dot pattern signal.
 - CONT ... Conspicuous position BRT ... MIN
- 2. Align the horizontal R, G, and B dots at the center of the screen with the H-START VR.
- * When H-CENT is changed after H-STAT adjustment, readjust H-STAT. (H-STAT will change by means of H-CENT VR.)
- 3. Align the vertical location of R, G, and B in the center of the screen with the V-STAT Mg. (Fig.3-14, 3-15)
- * After V-STAT adjustment, paint-lock the knob.

V-STAT Mg knob

While keeping the angles A and B equal (I = I'), align the vertical convergence.

Fig. 3-14 Good example

If the A and B knobs are not symmetrical ($I \neq I'$), the focus may deteriorate, beam striking or other adverse effects may occur.

Fig. 3-15 Bad example

4. For HMC, use the BMC Mg to adjust the R and B dots so that they will be symmetrical horizontally with respect to the G dot.

Fig. 3-16

5. For VMC, use the MBC Mg to adjust the R and B dots so that they will be symmetrical vertically with respect to the G dot.

Fig. 3-17

6. Repeat adjustments 2. to 5.

- * The above adjustment may affect the landing, so after adjustment, check the landing again.
- 7. Paint-lock the knobs after adjustment.

3-7. Deflection yoke neck rotation adjustment

- If there is nonconvergence on both sides of the X or Y axis of the screen, turn the neck of the deflection yoke in the direction of the arrow to hold the nonconvergence for the entire CRT screen within the tolerance.
- * Applicable only to groups of models 1, 2, 3, and 5.
- (1) Reverse cross (2) Regular cross misconvergence misconvergence pattern pattern Move the deflection yoke Move the deflection yoke upward. BGR RGB RGB G G G က်က်ခဲ RGB BGR Fig. 3-19 Fig. 3-18 (3) Pattern of left-sided (4) Pattern of right-sided deflection yoke deflection yoke Move the defication Move the deflection yoke to the right when yoke to the left when viewed from the CRT viewed from the CRT screen. screen. Fig. 3-20 Fig. 3-21 2 zone 1 zone
- 2. Turn the neck of the deflection yoke to align the V pin vertically.

Fig. 3-23

* Applicable only to group of models 4.

3. Insert the wedge between the deflection yoke and CRT funnel to lock the deflection yoke. (Fig.3-24)

Groups of models 1,2,3,and 5 have been treated.

Group of models 4 have been treated.

Fig. 3-24

4. The following patterns cannot be corrected by turning the neck. (Figs.3-25, 3-26, and 3-27)

*Gun rotatuon

The X-axis and Y-axis beams are distorted on both sides.

Fig. 3-25

* HCR Large(Small)

The horizontal portion of the G raster is wider(narrower) than that of the RB raster on both sides of the screen.

Fig. 3-26

*VCR Large(Small)

The vertical portion of the G raster is wider(narrower) than that of the RB raster on both sides of the screen.

Fig. 3-27

3-8. Convergence adjustment (2)

Fig. 3-28 Convergence compensation VR,coil,and compensator

Note: When adjustment is insufficient, use permalloy for perfect adjustment.

1. Group of models 4 (See Table 3-3.)

- 1. Input a cross-hatch signal.
- Make adjustment with the TLV, YCH, YBH VR, and XCV coils of the deflection yoke to minimize nonconvergence.
- When the nonconvergence of the TILT component is included in the horizontal convergence, make adjustment with the TLH compensator. (Fig. 3-28)

2. Groups of models 1, 2, and 3 (See Table 3-3.)

- 1. Input a cross-hatch signal.
- 2. Make adjustment with the TLV, YCH VR, and XCV coils of the deflection yoke to minimize nonconvergence.
- When the nonconvergence of the TILT component is included inthe horizontal convergence, insert the TLH compensator into the deflection yoke for adjustment. (Fig.3-28)

3. Group of models 5 (See Table 3-3.)

- 1. Input a cross-hatch signal.
- Make adjustment with the XCV coil of the deflection yoke to minimize nonconvergence.
- When the nonconvergence of the TILT component is included in the vertical convergence, insert the TLV compensator into the deflection yoke for adjustment. (Fig.3-28)

3-9. G2 adjustment

- 1. Input a 525 monoscope signal.
- 2. Connect the probe of the oscilloscope to TP403 on the A board.
- 3. Measure the lowest reference pulse of the three.
- 4. Make adjustment with SCREEN VR so that the left end of the waveform will be 1.35 V±0.05 V.

Fig. 3-29

3-10. White balance adjustment

- 1. Input a 525 monoscope signal. (Input from LINE A or B with no burst.)
- 2. Set as follows:

CONT: 0%

BRT: 50%

 Adjust <u>SUB-BRIGHT</u> in the service mode so that the 20-tone gray scale will be as follows:

0 and 5 IRE → Cut off

10 IRE → Slight glow

- 4. Input 525 all-white (COMPOSITE signal without burst).
- 5. Set CONT VR to 80%.
- Adjust the all-white luminance so that the screen luminance will be 3 NIT.
- 7. Press MENU and select COL TEMP/BAL.
- 8. Select 6500K.

Set 3200K SW to "0" for both 9300K and 6500K.

- 9. Put the unit into the service mode.
- 10. Adjust to the standard values with <RED> and <BLUE> of C/T1 6500K BIAS) or C/T2 6500K BIAS). Set cut-off to 3 NIT.

<GREEN>

Group of models (Table 3-3)	Fix as follows:
2, 3, 5	"40O"
1, 4	"512"

- 11. Switch the all-white signal luminance to 100 IRE.
- 12. Adjust to the standard values with <RED> and <BLUE> of C/T26500KGAIN .

 Green>

Set it to <u>"700."</u>

- 13. Repeat adjustment (10, 11, and 12) until the adjustment is complete, and then write the adjustment data.
- 14. Press MENU and select COL TEMP/BAL.
- 15. Select 9300K.
- Adjust CT2 9300K BIAS CT2 9300K GAIN or CT1 9300K BIAS
 CT1 9300K GAIN in the same manner as adjustments 1013.

BIAS < GREEN>

Group of models (Table 3-3)	Fix as follows:
2, 3, 5	"400 " "
1, 4	"5¹2 " '

GAIN <GREEN>
Fix it at "700."

3-11. Blue-only white balance adjustment

- Turn ON the blue-only of the user controller SW. (To set blueonly.)
- Input all-white (COMPOSITE signal without burst). The all-white signal luminance shall be 100 IRE. CONT: 80% BRT: 50%
- 3. Select COL TEMP/BAL.
- 4. Select 6500K.
- 5. Adjust to the standard values with C/T1 6500K B/O<RED> and C/T1 6500K B/O<GREEN> or C/T2 6500K B/O<RED> and C/T1 6500K B/O<GREEN>
- 6. Select COL TEMP/BAL.
- 7: Select 9300K.
- 8. Adjust to the standard values with C/T2 9300K B/O<RED> and C/T2 9300K B/O<GREEN> Or C/T1 9300K B/O<RED> and C/T1 9300K B/O<GREEN>
- Adjust the all-white signal luminance, and check that the white balance is satisfactory when the luminance of the screen is 8NIT.

3-12. SUB BRT adjustment

- 1. Input a 525 monoscope signal.
- 2. CONT ... MIN BRT CENTER (50&)
- 3. Select SUB BRIGHT in the service mode.
- Adjust SUB BRIGHT so that 10 IRE glows slightly and 0 IRE is cut off.

3-13. Focus adjustment

1. PVM-20M4 Series

- Adjust the H focus (upper side of focus pack) by means of a dot signal.
- Adjust the V focus (lower side of focus pack) by means of a dot signal.
- Turn the H focus fully clockwise when viewed from the front by means of a dot signal.
- Turn the H focus counterclockwise and focus well the dot in the center of the screen. When the dot is well focused, it will be divided into two sections.
- Turn the H focus VR clockwise (returning direction) so that the dot will be as shown in Fig.3-30. At that time, both ends of the central section of the screen are in the same state.

Fig. 3-30

- 6. Check that the resolution is more than 800 lines by means of a digital monoscope signal.
- Check that the magenta ring is unconspicuous by means of an all-white signal.

Fig.3-31 Movement of VR when viewed from the front

2. PVM-14M4 Series

- Adjust the H focus (upper side of focus pack) by means of a dot signal.
- Adjust the V focus (lower side of focus pack) by means of a dot signal.
- Turn the H focus fully clockwise when viewed from the front by means of a dot signal.
- Turn the H focus counterclockwise and focus the dot in the center of the screen well. The dot signal is divided into two sections at that time.
- 5. Turn the H focus VR counterclockwise so that the dost will be as shown in Fig.3-32. At that time, both ends of the central section of the screen are in the same state.

Fig. 3-32

- Check that the resolution is more than 800 lines by means of a digital monoscope signal.
- Check that the magenta ring is unconspicuous by means of an all-white signal.

Fig.3-33 Movement of VR when viewed from the front

3. PVM-14M2 Series (CRT14MG)

Make adjustment so that the dots in the central section (right and left edges) will be undivided, respectively. (When well-focused, the dot is divided into two sections.)

Fig. 3-34

4. PVM-20M2 Series

Focus the character "30" in the center of monoscope well is usualy.

SECTION 4 SAFETY RELATED ADJUSTMENT

When the parts (with a mark on the circuit diagram) shown below are replaced, confirm the matters described in items 4-1 and 4-2 shown below.

■ R1536

∠ R551, R506, R519, R518, R516, R515, R508, R517, R1560, R1537, C549, C512, C513, C523, C592, D501, D533, Q500, O511, IC500, and IC507

When the following parts are replaced, check the +B voltage: IC600, IC602, D610, C615, C631, C621, C632, and T603

Confirmation procedure

- 1. Input 120 VAC.
- 2. Input a monoscope signal, and minimize CONTRAST and BRIGHT.
- 3. Check that the voltage of the CN605 @ pin is 115.7 VDC.

4-1. CONFIRAMATION OF +B MAXIMUM

Standard: Less than 115.7 VDC(CN605 pin 4) Check Condition Input voltage: 130 VAC

Note: Use NF Power Supply or make sure that distortion factor is

3% or less.

Input signal: Monoscope

Controls : BRT & CONT → Normal

4-2. CONFIRAMATION OF HOLD-DOWN CIRCUIT

Check Condition Input voltage: 130 VAC

Input signal: White &Dot

Controls: BRT & Cont → Max. & Min.

4-2-1.Hold-Down Circuit (+B)

- a) Adjust the beam current to 600±50µA with the pin 4 of CN605 with the external DC power supply (less than 127.0 VDC)to the point just before the hold-down circuit works. Input Signal: White
- b) Adjust the beam current to $80\pm20\mu\text{A}$ with the pin ④ of CN605 with the external DC power supply (less than 127.0 VDC)to the point just before the hold-down circuit works. Input Signal: Dot

4-2-2. Hold-Down Circuit (3rd Wire voltage of FBT)

Check item: Check of pin ① of IC500 voltage: more than 110.0VDC

- Adjust the beam current to 600±50µA with the pin ① of IC500 with the external DC power supply (less than 141.0 VDC)to the point just before the hold-down circuit works.
 - Input Signal: White
- b) Adjust the beam current to 80±20µA with the pin 11 of IC500 with the external DC power supply (less than 141.0 VDC)to the point just before the hold-down circuit works. Input Signal: Dot

SECTION 5 CIRCUIT ADJUSTMENTS

5-1. A BOARD ADJUSTMENT

1. PREPARATION/SIGNAL SPECIFICATIONS

1. Signal specifications

* Supply a composite video or component signals from the CN301 connector. Refer to Table 5-1 to take into consideration the effect on the Q board.

The level of the signal to supply should equal to values shown in Table 5-1 plus/minus 2% max.

Table 5-1

Signal		Details ofsignal	Standard level (Pedestal white)	Reduction rate %	Connector supply level (P·W)
		100% white	0.714V	93%	0.664V
	358NT)	75% white	0.536V	*	0.498V
Composite video	443NT	Burst (Green section) (P-P for this item only)	286mV (632mV)	94% (94%)	269mV (594mV)
bar)		100% white	0.7V	*	0.651V
	PAL	75% white	0.525V	"	0.488V
	SECAM }	PAL burst (Green section) (P-P for this item only)	300mV (664mV)	94% (94%)	282mV (624mV)
		100% white	0.7V	94.8%	0.664V
	BETA 0	75% white	0.525	1	0.498V
Compo- nent		75% color B-Y, R-Y (P-P for this item only)	0.7V	,	0.664V
(75% color		100% white	0.7V	*	0.664V
bar)		75% white	0.525V	,	0.498V
	SMPTE	75% color B-Y, R-Y (P-P for this item only)	0.525	4	0.498V

2. Preparation

* In this chapter, indicates the control items in the service mode.

Example: 60 H-FRQ

Write the applicable model data at the location of NO.114 MODEL in the service mode.

Group of models 4 ... 0

Group of models 5 ... 1

Group of models 1 ... 5

Group of models 2 ... 6

Group of models 3 ... 8

* Refer to Table 5-2 for the following groups of models.

Table 5-2

Group of models		Models	
1	PVM-14M4U PVM-14M4A	PVM-14M4J	PVM-14M4E
2	PVM-14M2U	PVM-14M2E	PVM-14M2A
3	PVM-14M1J		
4	PVM-20M4U PVM-20M4A	PVM-20M4J	PVM-20M4E
5	PVM-20M2U	PVM-20M2E	

* CONT 80% is the center click position of the user controller.

2. ADJUSTMENT OF DEFLECTION SYSTEM

1. Adjustment of horizontal oscillation frequency

- 1. Input a 525 monoscope signal.
- 2. CONT ... 80%
 - BRT 50%
- 3. Set the unit in the service mode.

 Connect the IC507 ① PIN on the A board to GND via the 100μ/ 16V chemical capacitor. (Use CN505 ③ PIN for GND.) Or insert the H-FREQ jig into CN505.

Fig.5-1 H-FREQ jig

- Adjust 60 H-FREQ so that the slanting lines on the screen will be vertical. (Fig.5-2)
- 6. Input a 625 monoscope signal.
- Adjust 50 H-FREQ so that the slanting lines on the screen will be vertical. (Fig.5-2)

Fig.5-2

2. H BLANKING adjustment

- 1. Input a 525 monoscope signal.
- 2. CONT ... 80% BRT 50%
- 3. Set the unit in the service mode.
- Observe the anode of TP300 or D516 with an oscilloscope, and adjust <u>H-BLANKING</u> so that the waveform will be as shown in Fig.5-3.

Fig.5-3

3. Picture phase adjustment

- 1. Input a 525 monoscope signal.
- 2. Set the unit in the UNDER SCAN mode.
- 3. CONT ... Min. BRT Max.
- 4. Set the unit in the service mode.
- Adjust <u>U/N H-SIZE</u> so that the white frame of the monoscope will be approx. 1 cm to the inside of the effective screen.
- 6. Turn RV501 (H-CENT) so that B = B'.
- Adjust 60 VIDEO PHASE so that the signal area will be in the center (A = A') of the deflection area. (Fig. 5-4)
- 8. Input a 625 monoscope signal.
- 9. Adjust 50 VIDEO PHASE in the same manner.

Fig.5-4

4. V BLANKING adjustment

- 1. Input a 525 monoscope signal.
- 2. Set the unit in the UNDER SCAN mode.
- 3. CONT ... Min. BRT ... Max.
- 4. Set the unit in the service mode.
- 5. Adjust V-BLANKING <60> so that the white frame in the upper section of the monoscope will be about to be blanked.

Note: Blanking up to the point 1H away from the white frame is permissible, but the adjusting center should be up to the point 0.5H away from the frame.

- Cancel the UNDER SCAN mode, and set the unit in the normal 16:9 mode.
- Adjust 16:9 BLANKING START<60> and 16:9 BLANKING END<60> that the number of frames in the vertical direction in the lumnous section of the screen will be 11.74 and the BLK quantity it the top and bottom will be the same.

Note: Make adjustment before 16:9 V-SIZE adjustment.

- 8. Input a 625 monoscope signal.
- 9. In the same way as 5. shown above, adjust V-BLANKING <50>.
- 10. Adjust [16:9 BLANKING START<50> and [16:9 BLANKING END<50>], in the same was as 6. and 7., so that the number of frames in the vertical direction in the luminous section of the screen will be 11.2 and the BLK quantity at the top and bottom will be the same.

5. Vertical deflection adjustment

- 1. Input a 525 monoscope signal.
- 2. CONT ... 80% BRT ... 50%
- 3. Set the unit in the service mode.
- 4. Roughly adjust NOR 60 V.SIZE so that the size will be 12 frames. Adjust V.LIN with V.LIN.

Adjust CENT with V.CENT

V.CENT must be reviewed after adjustment of V.LIN.

Adjust NOR 60 V.SIZE so that it will equal the standard value.

- 5. Set the unit in the 16:9 mode by the user controller SW.
- 6. Make the same adjustment with 16:9 NOR V.SIZE <60>.
- 7. Set the unit in the NORMAL SCAN mode.
- 8. Input a 625 signal.
- Adjust NOR 50 V.SIZE so that the SIZE will equal the standard value.
- 10. Set the unit in the 16:9 mode.
- 11. Adjust 16:9 NOR V.SIZE <50> so that it will equal the standard value.

Table 5-3 NORMAL V. SIZE standard

		525	625	
4:3	4:3 11.75±0.2 frames 11.2±0.2 fram		11.2±0.2 frames	
16.0	14"	154mm	4	
16:9	20"	217mm	←	

6. Horizontal deflection adjustment (Normal scan adjustment)

- 1. Input a 525 monoscope signal.
- 2. CONT ... 80% BRT 50%
- 3. Set the unit in the service mode.
- 4. Rough adjustment of H.SIZE

Roughly adjust NOR H.SIZE so that H.SIZE will be 15.75 frames.

- Adjust the horizontal deflection by means of <u>NOR PIN AMP</u>, <u>NOR PIN PHASE</u>, <u>NOR U.PIN AMP</u>, <u>SEXY</u>, <u>V BOW</u>, <u>V ANGL</u>, <u>NOR H SIZE</u>, <u>L PIN AMP</u>, and <u>L V BOW</u>.
 - (While correcting a distorted parallelogram and curvature with V.ANGL and BOW, make adjustment so that the horizontal and vertical lines of the screen will be straight.)
- 6. Set the unit in the 16:9 mode.
- 7. Make the same adjustment as 5. with 16:0 NOR PIN AMP and 16:9 NOR PIN PHASE

Table 5-4 NORMAL H. SIZE standard

	525	625
4:3	11.75±0.2 frames	15.0±0.2 frames
16:9	11.75±0.2 frames	15.0±0.2 frames

Fig.5-5

Horizontal deflection adjustment (UNDER SCAN adjustment)

- 1. Input a 525 monoscope signal.
- 2. CONT ... 80% BRT 50%
- 3. Set the unit in the U/S mode.
- 4. Set the unit in the service mode.
- Adjust <u>U/S V SIZE <60></u> so that UNDER V.SIZE will be within the standard.
- Adjust <u>UNH SIZE</u> so that UNDER H.SIZE will be within the standard.
- Adjust <u>U/S FIN AMP</u> and <u>U/S FIN-PHASE</u>. (Adjust tracking according to 5., 6., and 7.)
- 8. After adjustment, the white frame of the monoscope shall not be out of the effective screen.
- 9. Set the unit in the 16:9 mode.
- 10. Make the same adjustment with 5. and 7. by means of [16:9 U/S V SIZE <60>], [16:9 U/S PIN-AMP] and [16:9 U/S PIN-PHASE].

Table 5-5
Standerd values for groups of models 1, 2, and 3 (14")

	525	625
U/S H-SIZE V-SIZE	252mm 188mm	4
16 : 9 U/S V-SIZE	142mm	-

Table 5-6
Standerd values for groups of models 4 and 5 (20")

	525	625
U/S H-SIZE V-SIZE	364mm 272mm	4
16 : 9 U/S V-SIZE	205mm	4

- 11. Set the unit in the 16:9 mode.
- 12. Input a monoscope signal.
- 13. Make the same adjustment with 5. by means of U/S V SIZE <50>.
- 14. Set the unit in the 16:9 mode.
- 15. Make the same adjustment with 5. by means of 16:9 U/S V SIZE <50>.

Note: If there is not time enough for adjustment (5. Vertical deflection adjustment and 6. and 7. Horizontal deflection adjustment), confirm that the respective sections will operate normally and that adjustment is possible, and then input standard adjustment values.

8. H/V-DELAY adjustment

Note: This item applies only to groups of models 1, 2, 4, and 5.

- 8-1. H-DELAY adjustment
- 1) Input a 525 monoscope signal.
- 2) CONT ... 80% BRT 50%
- 3) Set the unit in the H/V DELAY mode.
- 4) Set the unit in the service mode.
- 5) Connect the probe of an oscilloscope to IC503 ⑦ PIN. Adjust HDELAY so that the output waveform will be as shown in Fig.5-6.

Fig.5-6

- 8-2. V-DELAY adjustment
- 1) Input a 525 monoscope signal.
- 2) CONT ... 80% BRT 50%
- 3) Set the unit in the H/V DELAY mode.
- 4) Set the unit in the service mode.
- 5) Connect the probe of an oscilloscope to IC502 ⑦ PIN. Adjust V DELAY so that the output waveform will be as shown in Fig.5-7.

Fig.5-7

8-3. Confirmation of screen Confirm that the screen is as shown in Fig.5-8.

Fig.5-8

9. Writing adjustment results

Write the adjustment results.

Note: Do not turn off the power before writing the adjustment results; otherwise, they will all be lost.

3. Signal system adjustment

1. SUB CON adjustment during NORM and H/V DL

Note: H/V-DL is not applicable to the group of models 3.

Adjustment must be completed before the HUE adjustment of NTSC358/443.PAL.

1. Input a vertical white line signal.

Note: Use a vertical white line signal (without 525 burst; H width of 3µS; 100IRE).

- 2. CONT ... 80% BRT 50%
- Connect the probe of an oscilloscope to CN401 ③ PIN on the A board.
- 4. Set the unit in the service mode.
- Temporarily input "69" as an adjustment value for SUB.BRIGHT. Set the values in Table 5-7 as BIAS and GAIN data of C.TEMP1 and C.TEMP2.

Table 5-7

Group of models	1, 4	2, 3, 5
BIAS GREEN	512	400
GAIN GREEN	700	700

 Adjust the pedestal or the distance between SYNCTIP and WHITE by means of <u>SUB CON <4:3, NORS</u>,

SUB CON <4:3, H/V DELAY), SUB CON <16:9, NOR>, and SUB CON <16:9, NOR>, SUB CON <4:3. NOR>

SUB-CON 4:3. H/V-DL SUB-CON 16:9. H/V-DL

SUB CON <16:9. NOR> (Fig.5-9)

Group of models	4	1	5	2	3
4:3	1.39Vp-p	1.16Vp-p	1.37Vp-p	1.47Vp-p	1.47Vp-p
16:9	1.22Vp-p	1.04Vp-p	1.19Vp-p	1.32Vp-p	1.32Vp-p

Fig. 5-9

SUB CON <4:3. H/V DELAY>
SUB CON <16:9. H/V DELAY> (Fig.5-10)

SUB-CON 4:3. H/V-DL SUB-CON 16:9. H/V-DL

Group of models	4	1	5	2
4:3	1.39Vp-p	1.16Vp-p	1.37Vp-p	1.47Vp-p
16:9	1.22Vp-p	1.04Vp-p	1.19Vp-p	1.32V p -p

Fig. 5-10

Note: Not applicable to PVM-14M1J

2. SUB PHASE adjustment

Note: Not applicable to the group of models 3.

- Input a component color bar (R-Y) and EXT SYNC. (BETA 0 level signal)
- 2. Set the unit in the EXT SYNC mode for component input.
- 3. Connect the probe of an oscilloscope to IC404 @ PIN or TP402.
- 4. Set the unit in the service mode.
- 5. Adjust SUB PHASE so that the output waveform will be minimum (15 mVp-p or less). (Fig.5-11)

3. SUB PHASE adjustment

Note: Not applicable to groups of models 1, 2, 4, and 5.

- 1. Input an NTSC color bar.
- Connect L309 to GND and TP307 to 5V line (L320 line), respectively.
- 3. Set the unit in the service mode.
- 4. Adjust SUB PHASE so that the output waveform will be minimum (15 mVp-p or less). (Fig.5-11)

4. SUB CHROMA adjustment

Note: Not applicable to the group of models 3.

- Input component color bars (R-Y, Y, and B-Y). (BETA 0 level signal)
- 2. Set COMPONENT LEVEL to BETA 0 via MENU.
- 3. Connect the probe of an oscilloscope to IC404 **②** PIN or TP402.
- 4. Set the unit in the service mode.
- 5. Adjust SUB CHROMA NORMAL so that the peaks of waveforms will be flush with each other as shown in Fig.5-12.

Fig. 5-12

5. SUB COL adjustment

Note: Not applicable to groups of models 1, 2, 4, and 5.

- 1. Set the unit in the service mode.
- 2. Input adjustment value 98 to SUB CHROMA NORMAL. (Fig. 5-12)

6. R-Y LEVEL adjustment

Note: Not applicable to the group of models 3.

- Input component color bars (R-Y, Y, and B-Y). (BETA 0 level signal)
- 2. Set COMPONENT LEVEL to BETA 0 via MENU.
- 3. Connect the probe of an oscilloscope to IC404 PIN or TP401.
- 4. Set the unit in the service mode.
- Adjust R-Y LEVEL COMPONENT so that the peaks of waveforms will be flush with each other as shown in Fig.5-13.

Make adjustment so that B = D as shown above. (20 mV max.) Check that the difference between B and C is 30 mV or less.

Fig. 5-13

7. SUB CHROMA N10/SMPTE

Note: Not applicable to the group of models 3.

- Input component color bars (R-Y, Y, and B-Y). (SMPTE level signal)
- 2. Set COMPONENT LEVEL to N10/SMPTE via MENU.
- 3. Connect the probe of an oscilloscope to IC404 @ PIN or TP402.
- 4. Set the unit in the service mode.
- Adjust <u>SUB CHROMA SMPTE</u> so that the levels of B and D will be the same. (Fig.5-14)

Fig. 5-14

8. Adjustment of burst gate pulse width

- 1. Input an NTSC color bar.
- 2. Connect the probe of an oscilloscope to TP301 (COMP-SYNC) and Q363 (E) or IC305 ① PIN. (Exercise care since IC305 (1) PIN is a high-impedance line.)
- 3. Set the unit in the service mode.
- Adjust BGP WIDTH so that the output waveforms will be as shown in Fig.5-15.

Fig. 5-15

9. VXO adjustment

9-1. X'tal 358

- 1) Input an NTSC color bar.
- 2) Connect a frequency counter to IC305 ② PIN.
- 3) Set the unit in the service mode.
- 4) Connect IC305 ① PIN as shown in Fig.5-16.
- 5) Adjust NTSC CRYSTAL so that the counter reading will be within the standard values shown below. (Adjustment may be made at a point at which the color flickering stops.)

X'tal 358 standard vlaue: 3579545±20 Hz

(Arrange 4 Di's as close as possible to ①PIN at the shortest possible distance.)

Fig. 5-16

9-2. X'tal 443

- 1) Input a 443 NTSC color bar.
- 2) Connect a frequency counter to IC305 ② PIN.
- 3) Set the unit in the service mode.
- 4) Connect IC305 ① PIN in the same way as 9.-4) in 9. VXO adjustment.
- 5) Adjust NTSC 443 CRYSTAL in the same way as 9.-5) in 9. VXO adjustment.

X'tal 443 standard value: 4433619±20 Hz

10. NTSC · NTSC443 · PAL color demodulation adjustment

Note: 10-1, is not applicable to the group of models 3.

10-1. NT358PHASE (NORMAL)

- 1) Input an NTSC color bar.
- 2) Connect the probe of an oscilloscope to TP306.
- 3) Set the unit in the H/V DELAY mode.
- 4) Set the unit in the service mode.
- 5) Adjust PHASE NTSC 358 NOR so that the burst section of the output waveform will be straight. (Fig.5-17)

10-2. NT 358 PHASE (ACC OFF)

- 1) Conduct ACC OFF via MENU.
- 2) Make adjustment in the same way as 10-1. shown above by means of [PHASE NTSC 443 ACC OFF]. (Fig. 5-17)

Fig. 5-17

10-3. NT 358 B-Y PHASE

Note: Make adjustment after PHASE adjustment and before CHROMA adjustment.

- Input an NTSC color bar. (Input only the R-Y component. B-Y and Y should be OFF.)
- 2) Connect the probe of an oscilloscope to TP305.
- 3) Set the unit in the service mode.
- Adjust B-Y PHASE NTSC 358 so that the color components will be straight.

10-4. NT 358 CHROMA (NORMAL)

- 1) Input an NTSC color bar.
- 2) Connect the probe of an oscilloscope to IC404 @ PN or TP402.
- 3) Set the unit in the service mode.
- 4) Adjust CHROMA NTSC 358 NOR so that the peaks of waveforms will be flush with each other as shown in Fig.5-18.

10-5. NT 358 CHROMA (ACC OFF)

Note: 10-5. is not applicable to the group of models 3.

- 1) Conduct ACC OFF via MENU.
- 2) Adjust CHROMA NTSC 358 ACC OFF in the same way as 10-4. shown above. (Fig. 5-18)

Fig. 5-18

10-6. NTSC 358 R-Y LEVEL

Note: Be sure to set ACC in the ON position before this adjustment.

- 1) Input an NTSC 358 color bar.
- 2) Connect the probe of an oscilloscope to IC 404 @PIN or TP401.
- 3) Set the unit in the service mode.
- Adjust RYLEVEL NTSC 358 so that the peaks of waveforms will be flush with each other as shown in Fig.5-19.

Make adjustment so that B=D as shown above.(20mV max.) Check that the difference between B and C is less than 60mV.

Fig. 5-19

10-7. NTSC 443 PHASE (NORMAL)

Note: 10-7-3). is not applicable to the group of models 3.

- 1) Input an NTSC 433 color bar.
- 2) Connect the probe of an oscilloscope to TP306.
- 3) Set the unit in the H/V DELAY mode.
- 4) Set the unit in the service mode.
- 5) Adjust PHASE NTSC 443 NOR so that the burst section of the output waveform will be straight. (Fig. 5-20)

Fig. 5-20

10-8. NTSC 443 PHASE (ACC OFF)

Note: 10-8. is not applicable to group of models 3.

- 1) Conduct ACC OFF via MENU.
- 2) Adjust PHASE NTSC 443 ACC OFF in the same way as 10-7-5). (Fig.5-21)

Fig. 5-21

10-9. NTSC 443 B-Y PHASE NTSC 443 CHROMA NOR

Note: Be sure to set ACC in the ON position before this adjust-

men

Note: Remove HV.DELAY before this adjustment.

- 1) Input an NTSC 443 color bar.
- 2) Connect the probe of an oscilloscope to TP402.
- 3) Set the unit in the service mode.
- 4) While tracking by means of **B-Y PHASE NTSC 443** and **CHROMA NTSC 443 NOR**, make adjustment so that the peaks of waveforms will be the same. (Fig. 5-22)

Fig. 5-22

10-10. NTSC 443 CHROMA (ACC OFF)

Note: 10-10. is not applicable to the group of models 3.

- 1) Conduct ACC OFF via MENU.
- 2) Adjust [CHROMA NTSC 443 ACC OFF] in the same way as 10-9-4). (Fig.5-23)

Fig. 5-23

10-11. NT 443 R-Y LEVEL

Note: Be sure to set ACC in the ON position before this adjustment.

- 1) Input an NTSC 443 color bar.
- 2) Connect the probe of an oscilloscope to TP401.
- 3) Set the unit in the service mode.
- 4) Adjust R-Y LEVEL NTSC 443 in the same way as 10-6-4). (Fig.5-24)

Make adjustment so that B = D. (20 mV max.) Check that the difference between B and C is 60 mV or less.

Fig. 5-24

10-12. PAL PHASE (NORMAL)

- 1) Input a PAL SP color bar.
- 2) Connect the probe of an oscilloscope to TP306.
- 3) Set the unit in the service mode.
- 4) Adjust PHASE PAL NOR so that the waveform of the B-Y anti-PAL signal will be "0."

*The signal waveform differs slightly every hour. Adjust it to "0."

Fig. 5-25 R-Y OUT

10-13. PAL PHASE (ACC OFF)

Note: 10-13. is not applicable to the group of models 3.

- 1) Conduct ACC OFF via MENU.
- 2) Adjust PHASE PAL ACC OFF in the same way as 10-12-4).

10-14. PAL B-Y PHASE

Note: Be sure to set ACC in the ON position before this adjustment.

- 1) Input a PAL SP color bar.
- 2) Connect the probe of an oscilloscope to TP305.
- 3) Set the unit in the service mode.
- Adjust <u>B-YPHASE PAL</u> so that the waveform of the R-Y anti-PAL signal will be "0." (Fig. 5-26)

*The signal waveform differs slightly every hour. Adjust it to "0."

Fig. 5-26 B-Y OUT

10-15. PAL CHROMA (NORMAL)

- 1) Input a PAL color bar.
- 2) Connect the probe of an oscilloscope to IC404 30 PIN or TP402.
- 3) Set the unit in the service mode.
- Adjust CHROMA PAL NOR so that the peaks of waveforms will be flush with each other. (Fig. 5-27)

10-16. PAL CHROMA (ACC OFF)

Note: 10-16 is not applicable to the group of model 3.

- 1) Conduct ACC OFF via MENU.
- Adjust CHROMA PAL ACC OFF in the same way as 10-15-4). (Fig. 5-27)

Fig. 5-27

10-17. PAL R-Y LEVEL

Note: Be sure to set ACC in the ON position before this adjustment.

- 1) Input a PAL color bar.
- 2) Connect the probe of an oscilloscope to IC404 ① PIN or TP401.
- 3) Set the unit in the service mode.
- 4) Adjust R-Y LEVEL PAL so that the peaks of waveforms will be flush with each other as shown on the right. (Fig. 5-28)

Fig. 5-28

11. SECAM adjustment

Note: Make adjustment after deflection adjustment.

Note: Subject to H-FREQ, H-BLK, VIDEO-PHASE, ANGLE,

BOW, H-DELAY, etc.

Note: 11. SECAM adjustment is not applicable to the group of models 3.

11-1. HP WIDTH (NORMAL) adjustment

1) Input a SECAM color bar.

Note: The board is roughly adjusted in 11-1., and IC317 ® PIN pulse width may be used for control.

- 2) Set the unit in the UNDER SCAN mode.
- 3) Set the unit in the service mode.
- 4) Adjust HP WIDTH NOR so that the color section at the left edge of the upper portion of the screen is about to disappear. (Fig.5-29)

Make adjustment so that colors are about to disappear.

Fig. 5-29

11-2. Writing HP.WIDTH (NORMAL) data

Note: Not applicable to groups of models 1, 2, 4, and 5.

- 1) Set the unit in the service mode.
- 2) Input 102 to HP.WIDTH (NOR).

11-3. HP POSITION adjustment

Note: 11-3. is not applicable to the group of models 3.

- 1) Input a SECAM color bar.
- 2) Set the HV-DL mode.
- 3) Set the unit in the service mode.
- 4) Adjust HP POSITION as shown in Fig.5-30.

Note: The same as 11-3. The phase relationship between the beginning of IC317 ① PIN pulse and the input VIDEO signal may be used for control.

Bring the BLK edge to this position by HP WIDTH H/V.

Fig. 5-30

11-4. HP WIDTH (H/V-DL) adjustment

Note: 11-4. is not applicable to the group of models 3.

- 1) Input a SECAM color bar.
- 2) Set the unit in the HV-DELAY mode.
- 3) Set the unit in the service mode.
- 4) Adjust HP WIDTH H/V-DELAY as shown in Fig.5-30. (Note: Check HP POSITION. If it is not in position, repeat 2) and 3).)

11-5. SECAM COL BALANCE

Note: 11-5. is not applicable to the group of models 3.

- 1) Input a SECAM color bar.
- 2) Connect the probe of an oscilloscope to TP306.
- 3) Set the unit in the service mode.
- Adjust <u>SECAM COLOR BALANCE R-Y</u> so that the level in the achromatic color will be straight.

- 5) Connect the probe of an oscilloscope to TP305.
- 6) Adjust SECAM COLOR BALANCE B-Y so that the level in the achromatic color will be straight.

11-6. SECAM CHROMA

- 1) Input a SECAM color bar.
- 2) Connect the probe of an oscilloscope to IC404 39 PIN or TP402.
- 3) Set the unit in the service mode.
- 4) Adjust CHROMA SECAM so that the peaks of waveforms will be flush with each other as shown in Fig.5-31.

11-7. SECAM R-Y LEVEL

- 1) Input a SECAM color bar.
- 2) Connect the probe of an oscilloscope to IC404 @ PIN or TP401.
- 3) Set the unit in the service mode.
- 4) Adjust R-Y LEVEL SECAM so that the peaks of waveforms will be flush with each other as shown in Fig.5-32.

IC404 @PIN Make adjustment so that B=D.

Fig. 5-32

12. Writing adjustment results

Write adjustment results in the memory.

SECTION 6 DIAGRAMS

6-1. BLOCK DIAGRAMS (1)

- 41 -

6-2. FRAME SCHEMATIC DIAGRAM

MEMO
7

6-3. CIRCUIT BOARDS LOC.

6-4. PRINTED WIRING BOAF

Note:

- All capacitors are in µF unless othe
 50 WV or less are not indicated except
- Indication of resistance, which does r electrical power, is as follows.

Pitch: 5 mm Rating electrical power 1/4 W

- All resistors are in ohms.
- nonflammable resistor.
- fusible resistor.
- All variable and adjustable resistors have been unless otherwise noted.
- The components identified by in diagram have been carefully factory-s order to satisfy regulations regarding X-Should replacement be required, replacement by required.
- When replacing components identific necessary adjustments indicated. If r specified value, change the compone repeat the adjustment until the speci (Refer to R1536 adjust on Page 25 and
- When replacing the part in below table related adjustment.

Part replaced (2)

C512, C513, C523, C549, C592, D533, IC500, IC507, Q500, Q51 R508, R515, R516, R517, R518, R551, R1537, R1560............. (A E

6-3. CIRCUIT BOARDS LOCATION

6-4. PRINTED WIRING BOARDS AND SCHEMATIC DIAGRAMS

Note:

- All capacitors are in μF unless otherwise noted. pF: μμF 50 WV or less are not indicated except for electrolytics.
- Indication of resistance, which does not have one for rating electrical power, is as follows.

Pitch: 5 mm Rating electrical power 1/4 W

- All resistors are in ohms.
- : nonflammable resistor.
- : fusible resistor.
- △ : internal component.
- panel designation, and adjustment for repair. All variable and adjustable resistors have characteristic curve
- B. unless otherwise noted. The components identified by

 ☐ in this basic schematic
- diagram have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.
- When replacing components identified by ... make the necessary adjustments indicated. If results do not meet the specified value, change the component identified by **\bargeta** and repeat the adjustment until the specified value is achieved. (Refer to R1536 adjust on Page 25 and 26.)
- · When replacing the part in below table, be sure to perform the related adjustment.

related adjustment.	
Part replaced (☑)	Adjustment (►)
C512, C513, C523, C549, C592, D501, D533, IC500, IC507, Q500, Q511, R506, R508, R515, R516, R517, R518, R519, R551, R1537, R1560	R1536 (HOLD-DOWN)

- All voltages are in V.
- Voltage are dc with respect to ground unless otherwise noted.
- Readings are taken with a color-bar signal input.
- Voltage variations may be noted due to normal production tolerances.
- : B + bus. • --- : B - bus.
- signal path.
- No mark: with PAL colour-bar signal sreceived or common voltage.

METAL FILM

SOLID

 For the respective voltage ratings in SECAM, NTSC 3.58, NTSC 4.43 S-VIDEO, and ANALOG RGB modes, see the table

NONFLAMMABLE CARBON

NONFLAMMABLE FUSIBLE

Reference information

: RC

: FPRD

· FUSE

: ALR

RESISTOR : RN

: RW NONFLAMMABLE WIREWOUND NONFLAMMABLE METAL OXIDE : RS NONFLAMMABLE CEMENT : RB COIL : LF-8L MICRO INDUCTOR CAPACITOR : TA TANTALUM STYROL : PS : PP POLYPROPYLENE : PT MYLAR. : MPS METALIZED POLYESTER : MPP METALIZED POLYPROPYLENE : ALB BIPOLAR : ALT HIGH TEMPERATURE

HIGH RIPPLE

Note: The components identified by shading and mark A are critical for safety. Replace only with part number specified.

Note: Les composants identifiés par une trame et par une marque A sont d'une importance critique pour la sécurité. Ne les remplacer que par des pièces de numéro spécifié.

A BOARD (COMPONENT SIDE)

C
C102 B-2 C200 A-6 C1010 C-10 C300 G-3 C104 B-2 C308 G-3 C106 C-3 C311 G-3 C106 B-1 C107 C-2 C316 F-5 C106 B-1 C107 C-2 C322 G-1 C1010 C-3 C322 G-1 C1010 C-3 C322 G-1 C1010 B-1 C1112 B-2 C335 D-1 C1112 B-2 C340 F-1 C1112 B-2 C340 F-1 C1112 B-2 C340 F-1 C1112 B-2 C344 E-3 C1301 G-2 C302 G-3 C343 E-4 C301 G-2 C302 G-3 C343 E-4 C301 G-2 C302 G-3 C344 E-3 C300 G-2 C306 F-3 C335 D-3 C3313 G-5 C306 F-3 C335 D-3 C3313 G-5 C330 G-2 C348 E-2 C3313 G-5 C331 E-3 C3356 D-2 C335 F-1 C336 C-3 C331 E-3 C3356 D-2 C335 F-1 C336 C-3 C331 E-3 C3356 D-2 C335 F-1 C336 C-3 C331 E-3 C335 G-1 C333 E-3 C331 E-3 C335 G-1 C333 E-3 C331 C-3 C335 G-1 C332 E-3 C331 C-3 C336 C-3 C331 C-3 C331 C-3 C336 C-3 C331 C-3 C336 C-3 C331 C-3 C331 C-3 C332 C-3 C331 C-3 C332 C-3 C331 C-3 C331 C-3 C332 C-3 C332 C-3 C331 C-3 C332 C-3 C331 C-3 C332 C-3
C104 B-2 C308 G-3 D100 D-5 C105 B-3 C311 G-3 D104 B-1 C107 C-2 C316 F-5 D106 B-4 C109 C-3 C320 E-3 D108 E-5 C110 C-3 C322 E-3 D108 E-5 C110 C-3 C322 E-3 D108 E-5 C111 B-2 C335 D-1 D110 B-1 C111 B-2 C334 E-3 D114 F-2 C301 G-2 C342 E-3 D300 G-2 C302 G-3 C343 E-3 D311 E-5 C301 G-2 C344 E-3 D301 D-2 C305 E-1 C305 G-2 C348 E-2 D308 F-2 C306 F-3 C306 F-3 C307 C307
Q105 A-3 Q525 A-6 ne3i310n
Q107 A-3 Q526 G-6 RV501 B-9

1	omponent Side>	3	4	5	6	7		8	9
50	7.V=		170999299929®/		PACE NO.			U514	C584
									X89-#
0 1	1 6 10 m						里自己	Ca Co	HOTELS:
Bala			110	00000					
					全国的		300		1536
	100000000000000000000000000000000000000	gereckert 1				450			
	A CONTRACT OF THE PARTY OF THE	Tiple in the state of the state			多义体			1527	- To 2
		THE STATE OF THE S	3 3 3 7 1 2					o c	0
					直到加	3000		1 Jan 1	75 W
道道。								1589	
	11-12-12-12-12-12-12-12-12-12-12-12-12-1	Av. of Lane						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
O	3-9-40-50	A CREATE STATES		000000000000000000000000000000000000000		A POTO			
, j.t.				min Se		000000			
					计。监理			-1← 0524	
								C518 C518	\mathbb{P}_{4}
i i i i i i i i i i i i i i i i i i i	i sontion	747						The second secon	
	一个								20 E806
			10000 10000	O D O O O O D CHARLE O					
			do la la						
				ALCHOO Die P					
						551			MINT.
	9 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								لالأ
	in-eight	## ##					<u> </u>		
					建 市計				
			持結器					TURE!	
						600		(0-8) 33-64 49-64 (40) 4-64 (40) 4-64	
	1322	TI ALCOH	S E E						0 %0
	规划的	A COLOR	100 to 10	ALL THE PROPERTY OF THE PARTY O		E PROPERTY		1727	146

A BOARD (CONDUCTOR SIDE)

Q369 Q375 Q401 Q402 Q403	Q336 Q338 Q339 Q345 Q349 Q350 Q351 Q352 Q355 Q361 Q363 Q364 Q367 Q368	Q333 Q334	Q101 Q111 Q113 Q114 Q200 Q201 Q301 Q302 Q303 Q305 Q306 Q307 Q309 Q310 Q312 Q318 Q319 Q319 Q321 Q322 Q323 Q325 Q326 Q327 Q328 Q329 Q329 Q329 Q329 Q329 Q329 Q321	IC512	IC101 IC108 IC200 IC303 IC404 IC500 IC505 IC507 IC511	I
E-8 D-8 B-6 B-6		D-9 F-9	9 10 7 8 5 5 8 10 6 8 7 8 8 8 7 7 8 6 10 8 6 6 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	A-3	A-9 B-8 A-5 E-9 D-6 G-3 E-4 D-4 A-2	C
D309 D310 D311 D315 D317 D320	D101 D102 D103 D107 D111 D115 D116 D200 D301 D303 D304 D307	DIO	Q439 Q444 Q4448 Q500 Q501 Q502 Q503 Q505 Q506 Q507 Q508 Q509 Q510 Q511 Q512 Q513 Q514 Q515 Q516 Q517 Q519 Q520 Q522 Q522 Q525 Q526 Q527 Q528 Q529 Q530 Q531 Q532 Q2501	Q431 Q434 Q439	Q417 Q418 Q419 Q420 Q421 Q422 Q423 Q424 Q428	Q405 Q407 Q409
G-8 G-9 E-8 D-9 D-9	B-9 B-9 B-9 B-9 B-9 B-9 G-4 G-7 G-7 G-8		\$	B-5 C-5 C-6	, , , , , , , , , , , , , , , , , , ,	C-6 C-7 D-7
VARIA RESIS	D527 D528 D529 D530 D531 D532 D533 D534 D536 D542 D546 D547 D548	D525 D526	D404 D405 D407 D410 D411 D421 D422 D425 D427 D500 D501 D502 D503 D504 D505 D506 D507 D508 D509 D510 D511 D511 D512 D513 D514 D515 D516 D517 D518 D517 D518 D517 D518 D519 D523 D524	D364 D401 D402	D325 D326 D333 D337 D344 D345 D346 D347 D363	D322 D323 D324
	B-3 A-1 A-2 A-1 B-4 B-2 B-4 G-2 B-4 E-1 D-4 G-2	C-2 B-4	- 6575655566222122555555552547545422	E-8 B-7 B-7	D-8 E-9 C-9 E-8 D-8 E-7 E-7 E-7 E-8	D-9 C-9 E-9

A BOARD (CONDUCTOR SIDE)

NOTE:

The circuit indicated as left contains high voltage of over 600 Vp-p. Care must be paid to prevent an electric shock in inspection or repairing.

• : Pattern from the side which enables seeing.

A BOARD WAVEFORMS

A BOARD (1/3) * MARK LIST

3.6 Vp-p(V)

	PVM-20M4U/E/A	PVM-20M2U/E
R414	10k : CHIP	0:CHIP
		# : Not Used

	PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDE
0 0	2.3 4.5	2.4 4.6	2.2 4.5	2.2 4.4	2.0 4.4
© 0	4.1 3.4	3.4 3.5	0 3.5	0.1 3.5	3.1
9	0	0	0	0	0
0	4.9 5.0 5.0	5.0 5.0 5.0	0	5.0 0	0
(9) (9) (8)	0	5.0	0	0	0
3 9	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	0
9	5.0	5.0 4.1	5.0 4.6	5.0 5.0	5.0
S	4.0	4.0	4.6	5.0	3.6
<u> </u>	4.2	0.1	4.3	4.2	4.2
S	0.5	0.9	1.0	0.8	3.1
9	3.6 4.0	3.0 4.0	2.9 4.0	3.2 4.0	3.9
C103 ®	0.2 2.3	0 2.3	0.2 2.2	0.2 2.2	0 2.0
(9) C105 (3)	3.5 2.3	3.5 2.3	3.5 2.2	3.5 2.2	3.1
© •	0 2.6	2.7	0.1 2.7	0 2.6	11.8 2.8
09 0106 (3)	5.4 2.3	5.4 2.3	5.4 2.2	5.4 2.2	6.6 2.1
(S)	5.4 2.4 7.8	5.4 2.4 7.8	5.4 2.4 7.8	5.4 2.4 7.7	4.1 0.5 5.5
9	5.1	5.1	5.1 10.5	5.1 10.5	4.0
(I) (I)	3.1	3.1	2.6	3.1	2.7
(B)	6.3	6.3 3.6	11.9	9.0	10.7
00 C107 (2)	0.8 4.6	1.8	0.4	0.3	2.4
(a)	2.3 2.8	2.3	2.2	0 2.8	2.1
<u>©</u>	1.5 2.9	1.4 2.9	1.4 2.9	1.4 2.9	2.3 2.1
(B)	2.6 2.9	2.6 2.9	2.6 2.9	2.6 2.9	2.9 2.6
(D)	2.6 3.2	2.6 3.2	2.8 5.4	2.8 5.4	2.8 5.3
8	4.5 6.3	4.6 6.3	5.0 6.1	5.0 6.1	3.7 6.0
C109 ②	4.6 2.3	4.5 2.3	4.5 2.2	4.5 2.2	2.1
9	11.9	11.9	0.1	0	0.1
C110 ③ ④	2.3 7.2 5.8	7.2 5.8	7.2 5.8	7.2 5.8	8.3 6.2
(b)	11.9	11.9	11.9 7.9	11.9	7.8
© C111 @	3.7 0.3	3.7	3.5 0.3	3.5 0.3	3.5
0	0.2	5.0	0.1 5.0	0.1 5.0	0.1
(3) C402 (2)	5.0 3.1	5.0 3.9	5.0 2.9	5.0 3.0	3.0
3	0 2.9	2.3 2.9	2.3 2.9	0	2.2 2.9
C403 ① ②	0.8	0.8 1.2	0.8	0.B 0.B	0.8
3	0.8	1.3 0.8	0.9	0.9	1.3 0.8
6	0.6	0.5	0.6	0.6	0.6
	1.6	1.0	1.0	1.0	0.8
0	0.9 0.6	1.4 1.0 0.6	1.0 1.0 0.6	1.0 1.0 0.6	0.8 0
C404 (6)	3.0	3.0	3.0 4.9	3.0 4.9	4.5
0	5.6 5.6	5.6 5.6	5.6 5.6	5.6 5.6	5.6 5.6
(6)	0 3.8	0.1 4.0	0 4.1	0 4.2	4.0
Ø	7.1 1.4	6.6 1.3	8.0 1.2	8.0 1.1	7.7
<u> </u>	7.0	7.3 1.3	8.1 1.2	7.8 1.1	7.8 1.2
9	7.8 6.9	7.8	7.7	7.8	8.0 7.6
<u>0</u>	7.2	7.2	7.2	7.2	8.3
€ €	7.2 6.6	7.2 6.6	7.2 6.6	7.2 6.6	6.9 5.5
C405 (1) (2) (3)	1.6 1.4 1.2	1.5	0.9 0.9	0 0	1.4
<u> </u>	1.4	1.3	1.0	0	1.1
0	0.5 0.5	0.5 0.5	0.6 0.6	1.0	0.3
0	1.2	1.2	0.8	1.1	1.2
(9	1.2	1.2	0.8 1.0	1.2	1.2
C406 ①	4.8 0.8	5.1	4.8 0.9	4.8 0.9	4.8 0.8
<u> </u>	1.0	1.0	1.0	1.0	0.8 0.8
C407 ①	5.1 1.2	5.1 1.2	4.9 0.9	4.9 1.2	1.2
<u> </u>	1.4	1.3	1.0	0.3 1.3	1.2
<u> </u>	2.0	1.8	2.0	0.5 2.0	0.5 2.0
<u>6</u>	11.7 5.5	10.7 5.5	11.6 5.5	11.3 5.5	5.4
<u> </u>	5.5 1.4	1.4	5.5 1.0	5.5 1.3	1.2
	2.0	1.7	2.0	2.0	2.0
C408 ① ⑦	2.0 3.1 4.1	1.7 2.9 3.8	2.0 2.9 3.9	2.0 3.1 4.1	3.7
C409 ①	0	8.8 0.6	9.0 0.4	9.4 0.3	0 0.3
<u> </u>	5.9 5.9	5.9 5.9	6.3	0 6.0	5.9 5.9
					,
0	5.9 0.1	5.9 1.8	6.3 0.5	6.0 1.2	5.9 0.1

• A BOARD WAVEFORMS

①	$^{\circ}$ \wedge \wedge	3
4.3 Vp-p(H)	5.6 Vp-p (10MHz)	4.8 Vp-p (V)
4 PAL 0.3 Vp-p (H) SECAM 0.32 Vp-p (H)	(4) NTSC3.58 4.43 0.28 Vp-p (H) S-V10E0 0.35 Vp-p (H)	(S)
(5)	5 - 1000 1000 0.45 Vp-p (H)	6 0.57 Vp-p(H) SECAM 0.45 Vp-p(H)
(A) (1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	PAL 2. 4 Vp-p (H) SECAM 2. 3 Vp-p (H)	7 VP-P(H) NTSC4.43 2.2 VP-P(H)
Э 5-VI0E0 2.4 Vp-p (Н)	⑦	8 MM MM MM ANALOG ROB O . 6 Vp-p (H)
9 AMALOG RGB 0.6 Vp-p (H)	AMALOG ROB O. 6 Vp-p (H)	PAL 2.6 Vp-p (H) SECAH 2.5 Vp-p (H)
NTSC3.58 2.4 Vp-p (H) NTSC4.45 Vp-p (H)	5-V1960 2.4 Vp-p (H)	ANALOG ROB 3.0 Vp-p(H)
(2) 4.6 Vp-p (V)	PAL 1 . 8 Vp-p (H) SECAM 1 . 9 Vp-p (. H)	NTSC3.58 Vp-p (H) NTSC4.67 Vp-p (H)
(H) q-qv e ^{2.7} 10-2	ANALOG RGB 2.4 Vp-p (H)	3.7 Vp-p(H)
(3) 3.6 Vp-p (V)		

A BOARD (1/3) * MARK LIST

	PVM-20M4U/E/A	PVM-20M2U/E
R414	10k : CHIP	0: CHIP
		# : Not Used

A BOARD (1/3) * MARK

A BOA	ARD (1	/3) *	MARK			
	PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALOG RGB
C101 @	2.3	2.4	2.2	2.2	2.0	2.3
<u> </u>	4.5 4.1	4.6 3.4	4.5 0	0.1	4.4 0	4.5 0
Ø	3.4 0	3.5 0	3.5 0	3.5 0	3.1 4.8	3.5 0
- ⊗	0	Ö	0	0	0	4.9
9	4.9 5.0	5.0 5.0	0	5.0	0	0
0	5.0 0	5.0 5.0	0	0	0	0
Ø Ø	0.1	0	0.1	0.1	4.9	0.1
3	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	4.9	5.0 0.1
9	5.0	5.0	5.0	5.0	5.0	0.1
S	4.2	4.1	4.6 4.6	5.0 5.0	3.9 3.6	3.9
9	0.3 4.2	4.4 0.1	0.1 4.3	0.7 4.2	0.1 4.2	0.1 4.3
Q	4.0	3.4	3.6	3.7	3.9	4.0
S	0.5 3.0	0.9 2.5	1.0	0.8 2.3	3.1	1.9
9	3.6	3.0	2.9	3.2	3.9	4.0
C103 (6)	0.2	4.0	0.2	4.0 0.2	2.9 0	4.0
C104 @	2.3 3.5	2.3 3.5	2.2 3.5	2.2 3.5	2.0 3.1	2.3 3.5
C105 3	2.3	2.3	2.2	2.2	0	2.3
<u> </u>	2.6	2.7	2.7	0 2.6	11.8 2.8	0 2.6
G) C106 (3)	5.4 2.3	5.4 2.3	5.4 2.2	5.4 2.2	6.6 2.1	8.1 2.3
⑤	5.4	5.4	5.4	5.4	4.1	5.4
<u> </u>	2.4 7.8	7.8	7.8	7.7	0.6 5.5	2.4 7.6
®	5.1 0.1	5.1	5.1	5.1 10.5	10.9	5.1 10.5
0	3.1	3.1	2.6	3.1	2.7	2.5
(9)	6.3	4.6 6.3	11.9	9.0	10.7	3.2
20	3.6 0.8	3.6 1.8	4.8 0.4	3.6 0.3	4.3 2.4	9.5 3.1
C107 ②	4.6	4.5	4.5	4.5	4.4	4.5
<u> </u>	2.3 2.8	2.3	2.2	0 2.8	3.3	2.8
6	1.5 2.9	1.4 2.9	1.4	1.4 2.9	2.3	1,4 2.9
•	2.6	2.6	2.6	2.6	2.9	2.6
(9)	2.9	2.9	2.9	2.9 2.8	2.6	2.9 2.8
<u> </u>	3.2 4.5	3.2 4.6	5.4 5.0	5.4 5.0	5.3 3.7	5.4 5.0
0	6.3	6.3	6.1	6.1	6.0	6.1
IC109 ②	2.3	4.5 2.3	4.5 2.2	4.5 2.2	2.1	4.4 2.3
0	11.9	11.9	11.9 0.1	11.9	11.9 0.1	0.1
IC110 ③	2.3	2.4	2.2	2.2	2.0	2.2
<u> </u>	7.2 5.8	7.2 5.8	7.2 5.8	7.2 5.8	8.3 6.2	7.2 5.8
(1)	11.9	11.9 7.9	11.9 7.9	11.9 7.9	7.8 7.8	11.9 7.9
Ø	3.7	3.7	3.5	3.5	3.5	3.6
IC111 @	0.3	0.3	0.3	0.3	0.1	0.3
0	5.0	5.0 5.0	5.0 5.0	5.0 5.0	0	5.0 5.0
IC402 ②	3.1	3.9	2.9	3.0	3.0	3.6
<u> </u>	2.9	2.3	2.3	0	2.2	2.2
IC403 ①	0.8	1.2	0.8	0.8 0.8	0.8	0.9
3	1.4	1.3	0.9	0.9	1.3	0
<u>(4)</u>	0.8	0.8	0.9	0.9	0.8	0.6
<u>6</u>	0.5 1.0	0.6	0.6	0.6	0.6	1,1
9	1.6	1.5	1.1	1.1	1.4	1.6
0	0.9	1.4	1.0	1.0	0.8	1.5
(3) IC404 (6)	0.6 3.0	0.6 3.0	0.6 3.0	0.6 3.0	0 4.5	0.6
0	4.9	4.9	4.9	4.9	4.7	6.1
<u> </u>	5.6 5.6	5.6 5.6	5.6 5.6	5.6 5.6	5.6 5.6	5.8 5.8
®	3.8	0.1 4.0	0 4.1	0 4.2	4.0	4.4 3.6
8	7.1	6.6	8.0	8.0	7.7	7.9
9	7.0	7.3	8.1	7.8	7.8	7.8
⊗	1.4 7.8	1.3 7.8	1.2 7.7	1.1 7.8	1.2 8.0	1.5 7.7
(3)	6.9	7.1	7.8	7.7	7.6	7.6
	7.2	7.2	7.2	7.2	1.2 8.3	7.2
<u>6</u>	7.2 6.6	7.2 6.6	7.2 6.6	7.2 6.6	6.9 5.5	7.0
IC405 ①	1.6	1.5	1.1	1.3	1.4	1.6
3	1.4	1.4	0.9	0	1.2	1.5
<u>(4)</u>	1.4	1.3	1.0	0	1.2	1.4
0	0.5	0.5	0.6	1.0	0.3	0.2
0	1.2	0.5 1.2	0.6	1.3	1.2	1.3
0	1.4	1.3	0.9	1.3	1.3	1.4
(§) IC406 (I)	1.4	1.3	1.0	1.3	1.2	1.5
3	0.8	0	0.9	0.9	4.8 0.8	1.0
<u> </u>	1.0	0.9	1.0	1.0	0.8	1.1
⑦ IC407 ①	5.1	5.1	4.9	4.9	4.9	5.1
②	0.4	- 0.1	0.9	0.3	0.4	1.3 0.5
<u> </u>	0.6	1.3	0.7	1.3 0.5	1.2 0.5	0.7
<u> </u>	2.0	1.8	2.0	2.0	2.0	2.0
	11.7 5.5	10.7 5.5	11.6 5.5	11.3 5.5	11.7 5.4	11.2 8.5
<u>6</u>	5.5	5.5	5.5	5.5	5.4	8.4
® 9			0.7	1.3 0.6	1.2 0.5	0.6
® 9 0	1.4 0.6	- 0.1				
®	1.4 0.6 2.0	- 0.1 1.7	2.0	2.0	2.0	2.0
8 9 0 0 0 0 0 10 10 10	1.4 0.6 2.0 2.0 3.1	- 0.1 1.7 1.7 2.9	2.0 2.0 2.9	2.0 3.1	2.0 3.7	2.0 3.4
(B) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O	1.4 0.6 2.0 2.0 3.1 4.1	- 0.1 1.7 1.7 2.9 3.8 8.8	2.0 2.0 2.9 3.9 9.0	2.0 3.1 4.1 9.4	2.0 3.7 4.2 0	2.0
(B) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	1.4 0.6 2.0 2.0 3.1 4.1	- 0.1 1.7 1.7 2.9 3.8	2.0 2.0 2.9 3.9 9.0 0.4	2.0 3.1 4.1 9.4 0.3	2.0 3.7 4.2 0 0.3	2.0 3.4 4.1 7.5 1.6
(B) (9) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	1.4 0.6 2.0 2.0 3.1 4.1 0 0 5.9 5.9	- 0.1 1.7 1.7 2.9 3.8 8.8 0.6 5.9	2.0 2.0 2.9 3.9 9.0 0.4 6.3 6.3	2.0 3.1 4.1 9.4 0.3 0 6.0	2.0 3.7 4.2 0 0.3 5.9 5.9	2.0 3.4 4.1 7.5 1.6 5.9 5.9
(B) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	1.4 0.6 2.0 2.0 3.1 4.1 0 0 5.9	-0.1 1.7 1.7 2.9 3.8 8.8 0.6 5.9	2.0 2.0 2.9 3.9 9.0 0.4 6.3	2.0 3.1 4.1 9.4 0.3	2.0 3.7 4.2 0 0.3 5.9	2.0 3.4 4.1 7.5 1.6 5.9

	PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALOG RGB
IC410 ①	3.8	4.0	4.0	4.0	0	3.9
2	3.0	3.1	2.4	3.1	0	4.0 1.5
<u> </u>	1.3 3.5	0.7 3.6	3.0	3.8	3.9	3.9
6	0.6	1.3	1.1	1.1	3.1	1.7
6	4.0	4.0	4.0	3.9	0	0
0	0	2.0	1.9	1.8	2.5	1.4
(9)	2.0	2.3	2.3	2.0	1.8	3.0
IC411 ①	4.1	2.0	3.9	3.8	4.2	4.1
0	1.8	2.0	1.9	2.1	2.5 1.8	3.0
C412 ②	0.4	0.5	0.4	0.4	5.9	0.6
(8.9	8.9	8.9	8.9	8.9	8.3
(5)	9.0	8.9	9.0	8.9	8.9	8.3
0	6.0	6.0	6.0	6.0	6.0	0
0	0.4	0.5	0.4	0.4	5.9	0.5
C413 ②	7.9	8.0 5.5	8.0 5.5	8.0 5.5	5.4	6.9
6	0 5.5	5.5	5.5	5.5	5.4	8.6
0	3.1	3.1	3.1	3.1	0	5.1
0	3.1	3.1	3.1	3.1	6.0	5.1
6	7.9	7.9	8.0	7.9	6.3	6.9
Q102 B	10.9	10.9	10.9	10.9	10.7	10.9
С	8.1	8.1	8.1	8.1	0	8.1
E	11.5	11.5	11.5	11.5	11.3	11.5
0104-1 B	- 0.2	0	- 0.2	0	0	- 0.2
Q107 B	5.0	5.0	5.0	5.0	5.0	0.1
0108 C	2.6	2.6	2.6	2.6	2.9	5.0 2.6
Q108 C	2.6	2.6	2.6	2.6	2.9	2.6
0111 B	5.0	5.0	0	0	4.9	4.9
C	0.4	0.4	Ö	Ö	0.4	0.4
Q113 C	4.1	4.3	4.2	4.2	3.8	4.0
0401 B	1.1	0.8	1.5	1.6	1.2	1.0
<u>c</u>	7.5	5.5	6.0	5.2	8.4	10.0
Q402 B	0.5	0.5	3.2 0.5	3.4 0.5	3.1	0.5
C C	9.5	7.7	8.1	7.4	10.4	6.9
E	1.4	1.6	3.2	3.3	3.2	1.0
Q404 B	5.3	4.1	4.9	5.2	5.3	5.2
E	6.1	6.3	6.0	6.1	6.1	6.2
Q405 B	1.3	1.3	1.2	1.1	1.2	1.4
Q406 B	0.7	0.7	0	0.7	0.7	0.7
Q407 B	0	1.5	1,0	1.5	1.4	1.6 0.6
C C	6.6	6.6	6.6	6.6	5.4	0.8
O408 B	5.3	4.7	4.9	5.0	5.2	5.2
E	6.0	6.2	5.9	6.1	6.0	6.1
O409 B	1.9	1.6	1.6	1.6	1.7	1.6
E	2.0	2.2	2.2	2.2	2.3	2.2
Q411 C	1.4	1.4	0.9	1.3	1.3	1.4
Q412 B	1.3	1.3	1.0	1.3	1.1	2.0
Q413 G	2.0	- 15.1	1.6	- 2.2	1.8	- 2.1
D	2.0	1.9	- 4.3	0	2.2	2.0
S	2.0	1.9	1.7	1.9	1.8	2.0
Q417 B	1.4	1.4	1.2	1.2	1.2	1.4
0418 C	2.1	2.1	1.7	1.7	1.7	2.0
O419 B	2.0	1.4	1.2	1.7	1.2	1.5 2.0
Q420 B	1.2	1.2	1.0	1.0	1.8	1.3
E	1.8	1.8	1.6	1.6	1.8	1.9
0422 C	2.1	2.1	1.7	1.7	1.8	2.0
O423 B	0.5	0.3	0.4	0.4	0.4	0.2
0425 C	4.5	4.5	4.5	4.5	4.7	4.5
0426 C	0.8	0.8	0.7	0.7	0.7	0
Q429 B	0.1	0.8 - 2.3	- 1.2	0.4	0.1	0.1
Q432 B	- 0.3	- 3.8	- 3.4	- 2.7	- 0.1	- 3.9
С	11.9	11.6	11.8	11.8	12.0	11.6
O433 B	0	- 0.1	0	0	0	2.7
C	3.0	3.0	3.0	3.0	4.5	0
Q434 B	- 0.1	0	0	0	- 0.1	0.4
O438 B	3.6 - 0.4	4.7 - 2.9	4.5 - 3.1	4.8 - 2.4	2.9	- 2.4
C C	11.7	11.4	11.7	11.7	11.6	11.7
Q439 B	2.0	1.9	1.8	1.7	1.8	2.0
E	2.6	2.5	2.4	2.4	0	2.6
Q440 B	2.6	2.5	2.5	2.5	2.4	2.7
Q441 G	- 1.1*	- 13.0	1.7	- 4.8	0	- 0.7
D	2.0	1.9	- 8.1	1.9	1.8	2.0
S	2.0	1.9	1.6	1.9	1.8	2.0
Q442 B	0.9	1.3	0.7	1.1	1.1	2.1
Q444 C	1.2	0.9	0.7	1.4	2.2	1.5
Q445 C	0.4	1.2	1.4	1.3	0.3	0.4

- 63 -

A BOARD (2/3) * MARK

	PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALOG RGB
C301 ①	2.8	0	2.8	3.0	3.0	2.3
2	2.0	0	1.8	1.7	1.7	3.5
:302 ①	2.9	2.9	2.9	0.3	2.9	2.9
⑤	5.3	5.1	4.5	4.5	4.5	4.5
0	10.5	8.4	0	0	0	0
303 ®	2.3	2.6	2.2	2.2	2.6	2.8
•	0.1	4.2	0.6	0.6	0.6	0.1
•	3.9	2.8	3.1	3.1	3.3	3.9
304 (2.2	2.6	2.2	2.2	2.2	2.2
9	9.4	0.1	9.4	9.4	9.4	9.4
0	7.3	7.3	2.5	2.5	2.6	2.5
0	7.3	7.3	2.5	2.6	2.6	2.5
(0)	1.9	1.9	2.2	2.2	2.2	2.2
(3)	2.5	2.5	2.2	2.2	2.3	2.2
305 ①	2.8	2.8	2.8	0	2.8	2.8
(4)	2.5	1.1	2.5	2.4	2.4	1.3
0	4,1	4.1	4.1	4.1	4.2	4.5
9	0.4	0.2	0	0	0	0.1
0	2.6	2.6	2.5	2.4	2.5	2.7
- 8	0	0	0.8	0.8	0.9	0.9
69	2.1	2.7	1.9	1.9	1.9	2.7
306 ①	8.1	8.1	8.1	8.1	8.1	0
②	0	0	0	0.1	0.1	4.4
309 ②	3.6	0	3.6	3.6	3.6	3.6
•	0	0	0	0	0	4.4
310 ①	6.2	6.2	6.2	6.2	6.2	5.9
3	6.3	6.3	6.2	6.2	6.2	5.9
0	5.9	5.9	6.0	6.3	5.9	5.9
311 ①	0	6.2	6.2	6.2	6.2	6.2
2	6.2	6.2	6.2	6.2	6.2	5.9
0	6.2	6.3	6.3	6.2	6.2	5.9
(6)	3.3	3.3	2.9	2.9	2.9	0
. 0	5.9	5.9	5.9	6.2	5.8	5.9
0	0.4	0.4	0.4	0.4	0.5	0.7
312 ②	3.6	0	3.6	3.6	3.6	3.6
<u> </u>	0	0	0	12.0	0.1	4.5
2313 ①	0	6.3	Ö	6.3	6.3	6.3
	0	3.0	7.6		3.0	
				0		0
<u> </u>	0	0	0	0	2.9	0.1
2315 ①	0.4	0.4	0.4	0.4	0.4	0.6
<u> </u>	0.6	0	0.6	0.6	0.6	0.6
<u> </u>	9.4	9.3	9.3	9.2	9.3	9.4
0	2.5	2.5	2.5	2.5	2.5	7.2
0	0.4	0.4	0.4	0.4	0.4	0.6
	0.4	0.4	0.4	0.4	0.4	0.6
2317 @	2.0	0	2.0	2.1	2.0	12.0
®	12.0	0	12.0	12.0	12.0	12.0
9	10.7	10.6	10.6	10.6	10.5	10.7
•	9.4	9.4	9.4	9.4	9.1	9.4
318 🕲	11.5	11.5	0	11.4	11.4	11.4
320 ①	6.3	6.3	6.3	6.3	6.3	· 0
0	3.0	0	0	3.1	0	0
0	0	0	0	0	3.3	0
321 ②	0	0.1	0.1	0	2.9	0
(4)	0	0	0	0	0.1	2.7
C322 (S)	5.8	5.9	6.0	6.3	5.9	5.9
323 (\$)	6.2	6.3	6.2	6.2	6.2	5.9
0	0	5.6	5.6	5.6	5.6	5.6
324 ⑤	6.2	6.2	6.2	6.2	6.2	5.9
C326 ①	5.9	5.9	6.0	6.3	5.9	5.9
			5.9	6.2	5.8	5.9
<u> </u>	5.9	5.9	5.9			
	5.9	5.9		6.2	5.8	5.9
•	1.7	1.9	1.6	1.6	2.1	2.1
<u> </u>	2.4	1.0	2.3	2.3	2.3	4.6
	0	- 0.1	10.8	0	- 0.1	0
(8)	6.3	6.3	6.3	6.3	6.2	5.9
9	6.3	6.3	6.3	6.3	6.2	5.9

	PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALOG RGB
C326 Ø	6.2	6.2	6.2	6.2	6.2	5.9
0	6.2	6.2	6.2	6.3	6.2	5.9
0	6.2	6.2	6.2	6.2	6.2	5.9
C350 ①	6.6	6.5	6.4	6.3	6.1	6.9
0	6.2	6.2	6.2	6.3	6.0	6.4
3	6.2	6.2	6.2	6.3	6.0	6.4
Q300 B	2.5	2.5	2.2	2.2	2.2	2.2
c	10.2	10.2	10.4	10.5	10.4	10.5
E	1.9	1.9	1.6	1.6	1.6	1.6
Q301 E	8.6	8.5	8.2	8.3	8.5	9.8
Q303 E	5.7	5.7	5.7	5.7	5.5	5.7
Q304 B	6.3	6.3	6.3	6.4	6.2	6.3
E	5.7	5.7	5.7	5.7	5.5	5.7
Q305 B	8.6	8.5	8.2	8.3	8.5	9.8
E E	7.9	7.9	7.6	7.7	7.9	9.1
Q307 E	1.4	1.4	1.1	1.2	1.4	2.7
O309 B	1.4	1.4	1.1	1.2	1.4	2.6
С	0.1	0.1	0.2	0.1	0.1	0
E	0.7	1.8	1.7	1.8	0	1.8
Q312 C	8.2	8.2	8.6	8.3	B.3	B.1
Q313 B	8.2	8.2	8.6	8.3	8.2	8.1
E	8.8	8.8	9.3	9.0	8.9	8.7
Q314 B	11.9	6.4	11.9	11.9	11.9	11.9
C	0	11.9	0	0	0	- 0
Q315 B	3.3	3.2	2.9	3.1	3.2	3.3
E	3.9	3.9	3.5	3.8	3.8	4.0
	12.1	12.0	11.7	11.9		
Q318 B C					12.1	12.1
	1.0	1.0	1.2	1.0	1.0	0.9
Q322 B	2.4	2.4	2.3	2.3	5.6	2.4
<u>E</u>	1.8	1.8	1.8	1.8	5.0	1.8
O323 B	5.0	5.0	0	0	0	0
С	0	0	3.5	3.5	3.5	3.6
Q324 B	4.1	4.2	0	0	0	0
C	0	0	0.8	0.8	0.8	0.9
Q328 B	2.2	2.2	2.2	2.2	2.0	1.3
С	2.8	2.8	2.8	2.8	0	0
Q329 D	2.1	2.1	2.2	2.4	0	2.2
G	0	0	1.6	0	2.9	2.8
Q332 B	4.9	5.0	0	4.9	0	0
C	0	0	4.4	0	4.3	4.4
Q333 B	1.7	1.7	1.9	1.8	1.7	1.7
E	1.5	1.5	1.7	1.5	1.5	1.4
Q336 G	4.7	4.6	4.6	4.7	4.2	4.8
D D	4.3	4.3	4.3	4.3	4.5	4.3
Q339 B	12.3	12.5	12.5	12.4	12.5	12.3
O347 B	0.1	4.2	0.1	0.1	0.6	0.1
C	9.4	0.1	9.4	9.4	9.4	9.4
Q349 B	2.8	2.7	2.7	2.7	2.2	2.8
E	3.4	3.3	3.4	3.4	2.8	3.4
Q354 B	12.0	0.6	0	0	0	0
E	12.0	0.4	0	0	0	- 0.2
Q358 E	2.2	2.2	0	2.2	2.2	2.2
0360 1	6.2	6.2	6.2	6.3	6.1	6.4
3	6.2	6.2	6.2	6.3	6.0	6.4
5	1.3	4.7	2.2	4.1	5.3	3.8
Q361 B	4.9	4.9	5.0	5.0	5.0	0.8
C	0.1	0	0	0	0.1	4.9
Q362 C	9.0	9.0	9.0	9.5	9.2	8.5
Q364 C	3.3	3.3	2.9	2.9	2.8	2.9
Q365 B	0.4	0	0.3	0.3	0.4	0.4
		0.9			0.9	4.9
0369 B	0.8		0.8	0.8		
Q372 B	0	0	1	1 .0	0	4.9
С	11.7	11.7	11.8	11.8	11.7	0
Q374 B	10.4	10.3	10.1	10.3	10.7	6.4
C	0	0	0	0	6.2	6.7
E	6.4	6.4	6.3	6.3	6.1	6.7
Q375 B	10.7	10.8	10.7	10.7	10.7	5.9
С	0	0	0	0	6.3	6.4

·A BOARD WAVEFORMS

(6)	(1)	\bigcirc
ı 📥 u	Ter ter	- ليمينه له
المعال	J-VIDEO	יער יונ
1.0 Vp-p (H)	0.94 Vp-p(H)	0.85 Vp-p(H)
()	(19)	(19
"tarliar		1 1 1
5-VIBED 0.94 Vp-p(H)	S-VIĐEO () / > - ()	5-V19E0
	0.6 Vp-p(H)	0.6 Vp-p (H)
20	20	
	NTSCS SB	
PAL . 0.2 Vp-p (H)	NTSC3.58 0.24 Vp-p(H) NTSC4.43 0.12 Vp-p(H)	
		6
0	2)	
Budger 1	THE PERSON NAMED IN	NTSC3.58. 4.43
PAL 0.27 Vp-p(H)	SECAM 0.17 Vp-p (H)	NTSC3.58.4.43 0.24 Vp-p (H) s-video 0.27 Vp-p (H)
23	23	23
المسسمال	المسمال	H .
PAL 0. 4 Vp-p (H)	MTSC3.58 0.37 Vp-p(H)	S-VIDEO
0.36 Vp-p (H)	NTSC4.43 4.0 Vp-p (H)	S-VIDED 0.4 Vp-p(H)
23	29	29
		10
ANALOG RGB 1.9 Vp-p (H)		PAL
	1.0 Vp-p(H)	0.26 Vp-p (H)
(E)	9	25
	} []	
SECAM 0.2 Vp-p (H)	NTSC3.58.4.43 0.23 Vp-p (H)	S-VIDEO O. 18 Vp-p (H)
3	② M A A	② n n n
V = V = V	+1-ling-ling-lin	NTSC3.58 4.43
5.4 Vp-p (H)	PAL 1.0 Vp-p (H)	S-VIDEO 1.1 Vp-p (H)
28	28	29
111/4-111/4-	100mm 100mm	חחחת חחחת
		I IIIIIII IIIIIIII
0.8 Vp-p (H)	0.73 Vp-p (H)	0000000
	0.73 Vp-p(H) s-vieco 0.9 Vp-p(H)	ANALOG RGB 0.7 Vp-p(H)
0.8 Vp-p (H) 0.85 Vp-p (H)	0.73 Vp-p(H)	ANALOG RGB 0.7 Vp-p(H)
0.8 Vp-p(H) 0.85 Vp-p(H)	0.73 Vp-p(H) s-vieco 0.9 Vp-p(H)	3
0.85 Vp-p(H) 0.85 Vp-p(H)	0.73 Vp-p (H)	(3) Munnun
0.8 Vp-p (H) 0.85 Vp-p (H) 30 ANALOG ROB 0.7 Vp-p (H)	0.73 Vp-p (H) 0.9 Vp-p (H) 3) ANALOG RGB 0.7 Vp-p (H)	5-V1050,7 Vp-p(H)
0.85 Vp-p(H) 0.85 Vp-p(H)	0.73 Vp-p (H)	(3) Munnun
0.8 Vp-p (H) 0.85 Vp-p (H) 30 ANALOG ROB 0.7 Vp-p (H)	0.73 Vp-p (H) 0.9 Vp-p (H) 3) ANALOG RGB 0.7 Vp-p (H)	5-V1050,7 Vp-p(H)
0.8 Vp-p (H) 0.85 Vp-p (H) 0.7 Vp-p (H) ANALOS FOB 0.7 Vp-p (H)	33 Vp-p(H) S-Vi060 0.9 Vp-p(H) ANALOG RGB 0.7 Vp-p(H)	5-V10E0 7 Vp-p (H)
0.8 Vp-p(H) 0.85 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H)	3) ANALOG ROB 0.7 Vp-p(H) 33	5-V10E0,7 Vp-p (H) (3) ANALOO RGB 1.4 Vp-p (H)
0.8 Vp-p(H) 0.85 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H)	33 Vp-p(H) S-Vi060 0.9 Vp-p(H) ANALOG RGB 0.7 Vp-p(H)	5-V10E0 7 Vp-p (H)
0.8 Vp-p(H) 0.85 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H)	3) ANALOG ROB 0.7 Vp-p(H) 33	5-V10E0,7 Vp-p (H) (3) ANALOO RGB 1.4 Vp-p (H)
0.8 Vp-p(H) 0.85 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H)	3) ANALOG ROB 0.7 Vp-p(H) 33	5-V10E0, 7 Vp-p (H) 33
0.8 Vp-p (H) 0.85 Vp-p (H) 0.85 Vp-p (H) 0.70 Vp-p (H) 20 ANALOG ROB 1.4 Vp-p (H) 34 5-v10e0 1.3 Vp-p (H)	33 S-VIDED 1.3 Vp-p(H) 33 S-VIDED 1.3 Vp-p(H) 34 ANALOG RGB 1.4 Vp-p(H)	(3) 5-V1060, 7 Vp-p (H) (3) AMALOO RGB 1.4 Vp-p (H) (3) PAL 0.3 Vp-p (H)
30 ANALOS POB PP (H) 30 ANALOS POB PP (H) 32 ANALOS POB PP (H) 32 ANALOS POB PP (H) 32 ANALOS POB PP (H)	S-VIDED 1.3 Vp-p (H) 3 Vp-p (H)	\$\frac{3}{1.7} \partial \parti
30 ANALOG POB PP (H) 30 ANALOG POB PP (H) 32 ANALOG POB PP (H) 34 S-VIOCO 1.3 VP-P (H)	30.7 Vp-p(H) 30.9 Vp-p(H) 30.7 Vp-p(H) 33 S-VIDED 1.3 Vp-p(H) 34 ANALDOR RGB 0.7 Vp-p(H) 35 ANALDOR RGB 1.4 Vp-p(H)	(3) 5-V1060 1.7 Vp-p(H) (3) ANALOG RGB 1.4 Vp-p(H) (3) PAL 0.3 Vp-p(H) (5)
0.8 Vp-p (H) 0.85 Vp-p (H) 0.85 Vp-p (H) 0.70 Vp-p (H) 20 ANALOG ROB 1.4 Vp-p (H) 34 5-v10e0 1.3 Vp-p (H)	33 S-VIDED 1.3 Vp-p(H) 33 S-VIDED 1.3 Vp-p(H) 34 ANALOG RGB 1.4 Vp-p(H)	(3) 5-V1060, 7 Vp-p (H) (3) AMALOO RGB 1.4 Vp-p (H) (3) PAL 0.3 Vp-p (H)
0.8 Vp-p (H) 80 ANALOG ROB 1.4 Vp-p (H) 30 ANALOG ROB 1.4 Vp-p (H) 34 5-V106D 1.3 Vp-p (H)	30.7 Vp-p(H) 30.9 Vp-p(H) 30.7 Vp-p(H) 33 S-VIDED 1.3 Vp-p(H) 34 ANALDOR RGB 0.7 Vp-p(H) 35 ANALDOR RGB 1.4 Vp-p(H)	\$\frac{1}{5}\frac{1}{1}\frac{1}{7
0.8 Vp-p(H) 80 85 Vp-p(H) 80 ANALOG RGB 0.7 Vp-p(H) 82 ANALOG RGB 1.4 Vp-p(H) 84 5-V10ED 1.3 Vp-p(H)	33 S-VIDED 1.3 Vp-p (H) 33 S-VIDED 1.3 Vp-p (H) 34 ANALOG ROB 1.4 Vp-p (H) 35 ANALOG ROB 1.4 Vp-p (H)	(3) 5-V1060 1.7 Vp-p(H) (3) ANALOG RGB 1.4 Vp-p(H) (3) PAL 0.3 Vp-p(H) (5)
30 ANALOG RGB O. 7 Vp-p (H) 30 ANALOG RGB O. 7 Vp-p (H) 32 ANALOG RGB O. 7 Vp-p (H) 33 SECAM O. 1 Vp-p (H) 35	33 S-VIDEO ROB 0.7 Vp-p(H) 33 S-VIDEO 1.3 Vp-p(H) 34 ANALOG ROB 1.4 Vp-p(H) 35 NTSCS. 58 0.15 Vp-p(H)	\$\frac{1}{5}\text{-V10E0}{1.7}\text{Vp-p}(H)\$ \$\frac{3}{1.4}\text{Vp-p}(H)\$ \$\frac{3}{5}\text{PAL}(0.3)\text{Vp-p}(H)\$ \$\frac{3}{5}\text{Vp-p}(H)\$ \$\frac{3}{5}\text{Vp-p}(H)\$
0.8 Vp-p (H) 80 ANALOG ROB 1.4 Vp-p (H) 30 ANALOG ROB 1.4 Vp-p (H) 34 5-V106D 1.3 Vp-p (H)	33 S-VIDED 1.3 Vp-p (H) 33 S-VIDED 1.3 Vp-p (H) 34 ANALOG ROB 1.4 Vp-p (H) 35 ANALOG ROB 1.4 Vp-p (H)	\$\frac{1}{5}\frac{1}{1}\frac{1}{7
30 ANALOG RGB O. 7 Vp-p (H) 30 ANALOG RGB O. 7 Vp-p (H) 32 ANALOG RGB O. 7 Vp-p (H) 33 SECAM O. 1 Vp-p (H) 35	33 S-VIDEO ROB 0.7 Vp-p(H) 33 S-VIDEO 1.3 Vp-p(H) 34 ANALOG ROB 1.4 Vp-p(H) 35 NTSCS. 58 0.15 Vp-p(H)	\$\frac{1}{5}\text{-V10E0}{1.7}\text{Vp-p}(H)\$ \$\frac{3}{1.4}\text{Vp-p}(H)\$ \$\frac{3}{5}\text{PAL}(0.3)\text{Vp-p}(H)\$ \$\frac{3}{5}\text{Vp-p}(H)\$ \$\frac{3}{5}\text{Vp-p}(H)\$
30 ANALOG ROB 1. 4 Vp-p (H) 30 ANALOG ROB 1. 4 Vp-p (H) 34 SECAM 0. 1 Vp-p (H) 35 SECAM 0. 1 Vp-p (H) 35 SECAM 0. 2 Vp-p (H)	33 ANALOG RGB 0.7 Vp-p(H) 33 S-VIBED 1.3 Vp-p(H) 34 ANALOG RGB 1.4 Vp-p(H) 35 ANALOG RGB 0.15 Vp-p(H) 36 PAL 0.3 Vp-p(H)	(3) S-V1860 1.7 Vp-p(H) (3) ANALOG ROB 1.4 Vp-p(H) (3) PAL 0.3 Vp-p(H) (3) NTSC4.43 0.3 Vp-p(H) (3)
30.8 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H) 33 5-V10ED 0.2 Vp-p(H) 35	30 ANALOG ROB D-VIBEO 0.7 Vp-p(H) 33 S-VIBEO 1.3 Vp-p(H) 34 ANALOG ROB NTSCS.58 0.15 Vp-p(H) 36 PAL 0.3 Vp-p(H) 36	5-V10E0, 7 Vp-p (H) 33
0.8 Vp-p(H) (30) ANALOG ROB (0.7 Vp-p(H)) (32) ANALOG ROB (1.4 Vp-p(H)) (34) SECAM (0.1 Vp-p(H)) (35) SECAM (0.1 Vp-p(H)) (36) NTSC3.58 Vp-p(H)	33 ANALOG RGB 0.7 Vp-p(H) 33 S-VIBED 1.3 Vp-p(H) 34 ANALOG RGB 1.4 Vp-p(H) 35 ANALOG RGB 0.7 Vp-p(H) 36 ANALOG RGB 0.15 Vp-p(H) 36 PAL 0.3 Vp-p(H) 36 NTSC4.43 0.28 Vp-p(H)	(3) S-V1860 1.7 Vp-p(H) (3) ANALOG ROB 1.4 Vp-p(H) (3) PAL 0.3 Vp-p(H) (3) NTSC4.43 0.3 Vp-p(H) (3)
30.8 Vp-p(H) 30 ANALOG RGB 0.7 Vp-p(H) 32 ANALOG RGB 1.4 Vp-p(H) 33 5-V10ED 0.2 Vp-p(H) 35	30 ANALOG ROB D-VIBEO 0.7 Vp-p(H) 33 S-VIBEO 1.3 Vp-p(H) 34 ANALOG ROB NTSCS.58 0.15 Vp-p(H) 36 PAL 0.3 Vp-p(H) 36	5-V10E0, 7 Vp-p (H) 33

A BOARD (2/3) * MARK LIST

	PVM-20M4U/E/A	PVM-20M2U/E
2525	0.0115 2kV : PP	0.012 2kV : PP
21524	100	#
21525	0.0047 2kV E	#
21531	0.1 25V B :CHIP	#
21532	47 25V	#
21534	47 25V	#
21535	47 25V	#
21536	0.1 :MPS	#
21537	0.33 100V :MPS	#
N509	3P WHT :S-MICRO	#
0544	MA111	#
0545	MA111	#
0546	V11N	#
0548	RD16ESB2	#
C511	LA6500-FA	#
C512	NJM79M12FA	#
506	1-459-087-00	1-459-104-00
.509	1-459-087-00	1-459-104-00
2526	2SC4686A	#
2527	2SC4686A	#
2531	2SA1037K	#
2532	IRF520	#
1562	47 1/4W : FPRD	22 1/4W : FPRD
3566	47k : RN-CP	27k : RN-CP
3574	47k : CHIP	#
3577	10k : CHIP	#
1581	1k : CHIP	#
3584	3.9k : CHIP	10k : CHIP
71506	1k : CHIP	470 : CHIP
71539	100k : CHIP	#
71542	22 : FPRD	#
11564	560 : RN-CP	#
71580	27k : CHIP	#
11581	10M 1W:RS	#
31582	2M 1W : RS	#
71583	470 1/2W : RF	#
11584	9.1k : RN-CHIP	#
11585	1.8k : CHIP	#
71586 51597	47k : RN-CHIP	#
31587	2.2k : CHIP	#
31588	2.2 : CHIP	#
31590	10 : CHIP	#
31591	0.47 : FPRD	#
31592	4.7k 1/2W : FPRD	#
31593	8.2 1/2W : FPRD	#
31594	8.2 1W : RS	#
71599	10k 1/2W : RC	#
32506	150k : CHIP	120k : CHIP
32507	330k : CHIP	220k : CHIP

A BOARD IC303 CXA1214P

A BOARD IC305 M51279FP

3.0 Vp-p(H)

3.2 Vp-p(H)

\$7 –

- 69 -

-7

€ BOA

10.0 V

3.9 V 48 5.0 V

4.2 V (5) 11.0 V

3.8 V 3.70 V

5.9 V

·A BOARD WAVEFORMS

BASE BAND HUE PROCESS MATRIX AXIS SW VIDEO SW

SHP AMP

CLAMP

A BOARD IC200 AN5265

A BOARD IC101 μPD78013YCW

A BOARD IC404 CXA1739S

A BOARD IC200 AN5265

A BOARD IC101 $\,\mu$ PD78013YCW

Schematic diagram

Schematic diagrams

(A(3/3)) board

-73 -

GHJ QXS boards →

CN108 3P BLK-L :S-MICRO ALLY C CN602

-G BOARD-

-G BOARD-

-H BOARD-

-Q BOARD-

-J BOARD-

-S BOARD-PVM-20M2U/20M4U ONLY

-X BOARD-

C BOARD * MARK LIST

CV KR G1 G4 HV

PVM-20M4U:M49LCB20X PVM-20M4E/20M4A:M49LCB21X

	PAL	SEÇAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALOG RGB
Q701 B	2.0	1.9	1.73	1.8	1.8	2.0
E	1.4	1.3	1.1	1.1	1.2	1.4
Q702 B	2.0	1.9	1.7	1.7	1.8	2.0
E	1.5	1.3	1.1	1.1	1.2	1.4
0703 B	1.9	1.8	1.6	1.6	1.8	1.9
E	1.3	1.2	1.0	1.0	1.2	1.3
Q704 B	143.6	148.0	153.9	153.4	144.9	143.8
С	129.0	134.3	135.4	134.5	31.2	111.5
E	139.7	144.4	150.3	149.6	140.4	140.1
Q705 B	141.7	145.8	154.9	154.2	145.0	141.8
С	124.9	130.2	132.3	130.4	60.4	106.6
E	138.3	142.3	151.3	150.6	140.7	138.5
Q706 B	149.7	151.5	160.4	159.8	144.9	148.6
C	134.5	138.3	141.2	141.1	103.2	114.7
Е	146.2	148.0	157.1	156.4	140.8	145.0
Q707 C	143.8	148.0	154.0	153.4	144.9	143.7
Q708 C	141.9	145.9	155.2	154.3	145.0	141.8
Q709 C	149.8	151.5	160.6	159.9	144.9	148.5
0710 B	172.8	173.1	174.3	173.9	167.0	173.5
E	160.9	164.0	162.9	162.2	154.0	161.2
0711 B	172.8	173.2	174.3	173.9	167.0	173.5
C	160.6	161.0	162.3	161.8	154.1	161.3
Q712 B	172.9	173.2	174.0	174.2	167.0	173.5
E	161.6	163.6	164.1	164.8	154.5	161.4
Q713 B	172.8	173.2	173.9	173.9	166.8	173.5
С	184.2	184.5	184.7	184.6	176.6	183.8
E	173.3	173.6	174.3	174.3	167.2	173.9
Q714 C	173.6	173.7	174.5	174.4	167.4	174.1
Q715 B	146.7	148.6	157.6	157.0	140.3	145.7
С	149.5	151.5	160.6	159.9	144.9	148.5
E	146.1	148.0	157.2	156.5	140.7	145.0
Q716 B	139.2	143.3	152.5	151.5	140.7	139.4
С	141.7	145.8	155.2	154.2	145.1	141.8
Ε	138.2	142.3	151.4	150.5	140.6	138.4
Q717 B	140.9	145.4	151.7	150.8	140.6	141.2
С	143.6	148.0	154.1	153.4	144.9	143.8
E	139.8	144.4	150.5	149.6	140.4	140.0

D703	PROTECT 3
D704	PROTECT 4
D705	PROTECT 5
D706	PROTECT 6
D707	PROTECT 7
D708	PROTECT 8
D709	PROTECT 9
D713	PROTECT 10
D715	PROTECT 11
D716	PROTECT 12
D717	PROTECT 13
Q701	B DRIVE
Q702	G DRIVE
Q703	R DRIVE
Q704	B BUFF
Q705	G BUFF
Q706	R BUFF
Q707	B OUT
Q708	G OUT
Q709	R OUT
Q710	IK SW 1
Q711	IK SW 2
0712	IK SW 3
Q713	V. BLK OUT
Q714	V. BLK INT
0715	TRACE SW 1
Q716	TRACE SW 2
Q717	TRACE SW 3

D701 PROTECT 1
D702 PROTECT 2

WAVEFORMS

,(н)	2 \$6.0 Vp-p (H) \$6.0 Vp-p (H)	② NTSC3.58 82.0 Vp-p(H) NTSC4.43 80.0 Vp-p(H)	2 5-V19E0 69.0 Vp-p (H) AMALOG ROB 88.0 Vp-p (H)	3
р (H)	3 5-V10E0 78.0 Vp-p (H)	P90.0 Vp-p(H)	4 1111111 11733.58 \$\frac{1}{73}.60 \$\frac{1}{7}\$-\$\frac{1}{7}\$ (H)	4

[R.G.B OUT] BOARD- PVI

-C BOARD- PVM-20M2U/20M2E ONLY

-C BOARD- PVM-20M4U/20M4E/20M4A ONLY

- 86 **-**

6-5. SEMICONDUCTORS

SECTION 7 EXPLODED VIEWS

NOTE:

· Items with no part number and no description are not stocked because they are seldom required for routine service.

7-1. CHASSIS

+BVTP 3X12 **•** : 7-685-648-79 +PS 4X8 **I**: 7-682-661-01 +BVTP 3X8 **▲**: 7-685-646-79 **+BVTP 4X16 ♦**: 7-685-663-79

1-543-653-11 CORE ASSY, BEAD (DIVISION TYPE)

*4-043-690-01 BRACKET, MAIN

- · The construction parts of an assembled part are indicated with a collation number in the remark column.
- Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.

The componants identified by shading and mark A are critical for safety.

Les composants identifies par une trame et une marque A sont critiques pour la securite Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark Δ are criti-Replace only with part number specified. 7-2. PICTURE TUBE +BVTP 3X12 • : 7-685-648-79 +BVTP 4X16 △ : **7-685-663-71** ☐ : **7-682-563-09** +B 4X12

Les composants identifies par une trame et une marque 🛦 sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

					$\overline{}$		
REF. NO	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
51	X-4034-348-1	BEZEL ASSY (20M2U/E)	52-57	74	4-901-947-01	LEG	
	X-4034-352-1	BEZEL ASSY (20M4U/E/A)	52-57	İ			
52	4-052-200-01	HANDLE, PROTECTOR		75 A	8-736-135-05	PICTURE TUBE 20FZ5 (D	ARK) (20M2U/E)
53	¥ 4-043-670-01	REINFORCEMENT (R), HANDLE		1 4	8-736-379-05	PICTURE TUBE 20MT1 (I	PVM) (20M4E/A)
54	4-043-669-01	REINFORCEMENT (L), HANDLE		4	8-736-381-05	PICTURE TUBE 20MT3 (I	PVM) (20M4U)
				76	3-704-372-01	HOLDER, HV CABLE	
	4-043-797-01	PLATE, BLIND		77	3-703-961-01	SPACER, DY	
	4-043-672-01	BRACKET (A), PICTURE TUBE		ļ			
		BRACKET (B), PICTURE TUBE				DEFLECTION YOKE (Y2	
		BRACKET ASSY (R), SIDE				DEFLECTION YOKE (Y2	
59	* A-1450-185-A	BRACKET ASSY (L), SIDE				NA3012-M4 (20M4U/E/A)	
						C BOARD, COMPLETE (2	
60	4-044-606-01			•	* A-1331-628-A	C BOARD, COMPLETE (2	20M4U/E/A)
	4-043-671-01			!			
		X BOARD, COMPLETE				COIL, DEMAGNETIZATI	ON
63	4-379-192-01	SCREW, TAPPING, STEP (20M4U/E	E/A)			SPRING (20M4U/E/A)	
64 '	4-379-189-01	CUSHION, SPEAKER (20M4U/E/A)		83 A	. 1-411-657-11	COIL, LANDING CORRE	CTION (20M4U/E/A)
				84	1-543-827-11	CLAMP, SLEEVE FERRIT	E
65	1-544-063-12	SPEAKER		İ		(2	OM2E/20M4E/20M4A)
		H BOARD, COMPLETE		85	4-389-025-01	SCREW (M4) (EXT TOOT	'H WASHER)
67	4-043-802-02						
68		COVER, AC SWITCH					
69	4-043-683-01	BUTTOM, POWER SWITCH		87	4-365-808-01	SCREW (5), TAPPING	
			000000000000000000000000000000000000000	88	4-308-870-00	CLIP,LEAD WIRE	
		SWITCH,PUSH (A.C., POWER)		89	1-452-032-00	MAGNET,DISK; 10mmø	
		J BOARD, COMPLETE		90	1-452-094-00	MAGNET,ROTATABLE D	DISK ; 15mmø
		CABINET ASSY, BOTTOM	73,74				
73	X-4031-740-1	CABINET, BOTTOM		91	4-051-736-21	PIECE A(90), CONV. COR	RECT

(20M2E/20M4E/20M4A)

4-043-688-01 PANEL, CONNECTOR *4-058-363-01 TERMINAL, EARTH

4-057-971-01 BRACKET, FOCUS VOLUME Δ 1-223-417-12 RESISTOR ASSY (HIGH-VOLTAGE)

(20M4U/E/A) 4-043-677-11 COVER, REAR

SECTION 8 ELECTRICAL PARTS LIST

NOTE:

Les composants identifies par une trame et une marque Λ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark \triangle are critical for safety. Replace only with part number specified.

- The components identified by
 M in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.
- Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.
- All variable and adjustable resistors have characteristic curve B, unless otherwise noted.

When indicating parts by reference number, please include the board name.

RESISTORS

- · All resistors are in ohms
- F : nonflammable
- CAPACITORS PF : μμ F
- There are some cases the reference number on one board overlaps on the other board. Therefore, when ordering parts by the reference number, please include the board name.

						pies	ise include the bo	oaru name.	•	
REF, NO.	PART NO.	DESCRIPTION	R	REMARK	REF. NO.	PART NO.	DESCRIPTION		Ē	REMARK
	* A-1298-003-A	A BOARD, COMPLETE (I	PVM-20N	M4U/E/A)	C200 C201	1-126-963-11 1-137-353-11		4.7MF 0.047MF	20% 10%	50V 100V
	* A-1298-005-A	A BOARD, COMPLETE (I	PVM-20N	M2U/E)	C202 C203 C204	1-163-017-00 1-126-963-11 1-126-964-11		0.0047MF 4.7MF 10MF	10% 20% 20%	50V 50V 50V
	* 4-043-994-01	SOCKET, IC (20M4U/E/A) PLATE (CF), SHIELD SCREW (M3X10), P, SW (+	.)		C205 C206	1-126-767-11 1-128-526-11	ELECT	1000MF 100MF	20% 20%	16V 25V
		SCREW +PSW 3X8	,		C207 C208 C209	1-104-665-11 1-126-964-11 1-126-963-11	ELECT	100MF 10MF 4.7MF	20% 20% 20%	25V 50V 50V
		<band filter="" pass=""></band>			C300 C301		CERAMIC CHIP CERAMIC CHIP		0.25PF	50V 50V
BPF400	1-236-363-11	FILTER, BAND PASS			C302 C304		CERAMIC CHIP CERAMIC CHIP		0.25PF 10%	50V 25V
		<capacitor></capacitor>			C304 C305 C306	1-163-259-91	CERAMIC CHIP CERAMIC CHIP	220PF	5%	50V 50V
C105 C106		CERAMIC CHIP 100PF CERAMIC CHIP 100PF	5% 5%	50V 50V	C309		CERAMIC CHIP			50V
C114 C115	1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF		50V 50V	C310 C311	1-163-809-11	CERAMIC CHIP	0.047MF	10% 10%	25V 25V
C116 C117		CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF		50V 50V	C312 C313 C314		CERAMIC CHIP CERAMIC CHIP		20% 5% 5%	50V 50V 50V
C117 C118 C119	1-163-259-91	CERAMIC CHIP 0.01MIF CERAMIC CHIP 0.1MF	5%	50V 50V	C314	1-126-964-11		10MF	20%	50V
C121 C123	1-163-237-11	CERAMIC CHIP 27PF CERAMIC CHIP 0.1MF	5%	50V 50V	C316 C317		CERAMIC CHIP		20% 5%	25V 50V
C124		CERAMIC CHIP 100PF	5%	50V	C318 C319	1-126-964-11 1-163-222-11	ELECT CERAMIC CHIP	10MF 5PF	20% 0.2 5 PF	50V 50V
C132 C133 C134	1-163-251-11	CERAMIC CHIP 0.001MF CERAMIC CHIP 100PF CERAMIC CHIP 100PF	5% 5% 5%	50V 50V 50V	C320 C322		CERAMIC CHIP CERAMIC CHIP		5%	50V 50V
C135		CERAMIC CHIP 100PF	5%	50V	C323 C324	1-163-231-11	CERAMIC CHIP CERAMIC CHIP	15PF	5% 5%	50V 50V
C136 C140	1-164-004-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.1MF	5% 10%	50V 25V	C325	1-126-964-11	ELECT	10MF	20%	50V
C141 C142	1-163-259-91	CERAMIC CHIP 0.0022MF CERAMIC CHIP 220PF	10% 5%	50V 50V	C326 C327	1-164-004-11	CERAMIC CHIP	0.1MF	10% 10%	25V 25V
C143 C144		CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF		50V 50V	C328 C329 C330	1-163-251-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	100PF	5% 5%	50V 50V 50V
C145 C154	1-165-319-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.022MF	10%	50V 50V	C331		CERAMIC CHIP		5%	50V
C155 C156		CERAMIC CHIP 0.015MF CERAMIC CHIP 0.0068MF	10% 10%	50V 50V	C332 C333	1-163-031-11	CERAMIC CHIP	0.01MF	10%	25V 50V
C157 C158		CERAMIC CHIP 0.0068MF CERAMIC CHIP 0.047MF	10% 10%	50V 25V	C334 C335		CERAMIC CHIP CERAMIC CHIP		5% 5%	50V 50V
C158 C159 C161		CERAMIC CHIP 0.068MF	10% 10% 20%	25V 25V 25V	C336 C337	1-104-664-11 1-163-031-11	ELECT CERAMIC CHIP	47MF 0.01MF	20%	25V 50V
C162	1-163-141-00	CERAMIC CHIP 0.001MF		50V	C338 C339	1-163-119-00 1-163-231-11	CERAMIC CHIP CERAMIC CHIP	120PF 15PF	5% 5%	50V 50V
C164 C165	1-165-319-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF	100	50V 50V	C340		CERAMIC CHIP			50V
C166 C167 C168	1-104-004-11 1-126-925-11 1-126-925-11		10% 20% 20%	25V 10V 10V	C341 C342 C343	1-163-018-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.0056MF	5% 10%	50V 50V 50V
C169	1-164-232-11	CERAMIC CHIP 0.01MF	10%	50V	C344 C345	1-163-141-00	CERAMIC CHIP CERAMIC CHIP	0.001MF	5% 5%	50V 50V 50V
C171 C174		CERAMIC CHIP 100PF CERAMIC CHIP 47PF	5% 5%	50V 50V	C346	1-126-960-11	ELECT	1MF	20%	50V
				i	C347	1-163-243-11	CERAMIC CHIP	47PF	5%	50V

L									
REF. NO.	PART NO.	DESCRIPTION		REMARK	REF. NO.	PART NO.	DESCRIPTION]	REMARK
C348	1-164-004-11	CERAMIC CHIP 0.1MF	10%	25V	C421	1-164-222-11	CERAMIC CHIP 0.22MF		25V
C349	1-163-141-00	CERAMIC CHIP 0.001M		50V	C422	1-126-960-11	ELECT 1MF	20%	50V
C350	1-163-141-00	CERAMIC CHIP 0.001M	F 5%	50V	C423		CERAMIC CHIP 0.047MF CERAMIC CHIP 0.047MF	10% 10%	25V 25V
C351	1-104-664-11	ELECT 47MF	20%	25V	C424	1-103-609-11	CERAMIC CHIF 0.047MI	1070	23 4
C352		CERAMIC CHIP 0.01MF	2070	50V	C426	1-163-243-11	CERAMIC CHIP 47PF	5%	50V
C353		CERAMIC CHIP 0.1MF		50V	C427		CERAMIC CHIP 0.01MF		50V
C354		CERAMIC CHIP 150PF	5%	50V	C428	1-104-661-91		20%	16V 50V
C355	1-126-960-11	ELECT 1MF	20%	50V	C429 C430	1-104-661-91	CERAMIC CHIP 0.01MF ELECT 330MF	20%	16V
C356	1-126-963-11	ELECT 4.7MF	20%	50V	0.50				
C357		CERAMIC CHIP 0.01MF		50V	C431	1-165-319-11	CERAMIC CHIP 0.1MF	100	50V
C358 C359	1-163-031-11 1-104-664-11	CERAMIC CHIP 0.01MF ELECT 47MF	20%	50V 25V	C432 C433		CERAMIC CHIP 0.1MF CERAMIC CHIP 22PF	10% 5%	25V 50V
C360		CERAMIC CHIP 0.01MF	10%		C434		CERAMIC CHIP 0.1MF	10%	25V
					C435	1-163-089-00	CERAMIC CHIP 6PF	0.25PF	50V
C361 C362		CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF		50V 50V	C436	1-164-004-11	CERAMIC CHIP 0.1MF	10%	25V
C363		CERAMIC CHIP 18PF	5%	50V	C437		CERAMIC CHIP 0.1MF	10%	25V
C364		CERAMIC CHIP 0.01MF		50V	C438		CERAMIC CHIP 0.047MF	10%	25V
C365	1-106-343-00	MYLAR 0.001M	F 10%	100V	C439		CERAMIC CHIP 0.047MF	10% 10%	25V 25V
C366	1-163-031-11	CERAMIC CHIP 0.01MF		50V	C440	1-104-004-11	CERAMIC CHIP 0.1MF	1070	23 4
C367		CERAMIC CHIP 0.01MF		50V	C441	1-126-962-11		20%	50V
C368	1-124-261-00	ELECT 10MF	20%		C442		CERAMIC CHIP 0.047MF	10%	25V
C369	1-164-298-11	CERAMIC CHIP 0.15MF	10%		C443		CERAMIC CHIP 39PF	5%	50V 50V
C370	1-104-664-11	ELECT 47MF	20%	25V	C444 C445		CERAMIC CHIP 0.1MF CERAMIC CHIP 0.047MF	10%	25V
C371	1-104-664-11	ELECT 47MF	20%	25V	C445	1-105-007 11	CERTAIN COMM	.070	
C372		CERAMIC CHIP 0.01MF		50V	C446		CERAMIC CHIP 12PF	5%	50V
C373		CERAMIC CHIP 0.001M		50V	C447		CERAMIC CHIP 330PF CERAMIC CHIP 39PF	5% 5%	50V 50V
C374 C375	1-126-960-11	ELECT 1MF CERAMIC CHIP 220PF	20% 5%	50V 50V	C448 C449		CERAMIC CHIP 10PF	0.5PF	50V
C313	1 103-237-71	CERTIFIC CITE 22011	2,0	20.	C450		CERAMIC CHIP 0.047MF	10%	25V
C376	1-126-959-11		20%		0451	1 164 004 11	CED AMIC CUID O IME	10%	25V
C377 C378		CERAMIC CHIP 0.047M CERAMIC CHIP 0.047M			C451 C452		CERAMIC CHIP 0.1MF CERAMIC CHIP 330PF	5%	50V
C379		CERAMIC CHIP 0.01MF		50 V	C453		CERAMIC CHIP 0.1MF	10%	25V
C380	1-126-767-11			16 V	C454		CERAMIC CHIP 39PF	5%	50V
C381	1 162 021 11	CERAMIC CHIR ONLINE		50V	C455	1-163-263-11	CERAMIC CHIP 330PF	5%	50V
C382		CERAMIC CHIP 0.01MF CERAMIC CHIP 47PF	5%	50 V	C456	1-163-229-11	CERAMIC CHIP 12PF	5%	50V
C383	1-104-664-11	ELECT 47MF	20%		C457		CERAMIC CHIP 0.1MF	10%	25V
C384		CERAMIC CHIP 82PF	5%	50V	C458 C459		CERAMIC CHIP 82PF CERAMIC CHIP 0.1MF	5%	50V 50V
C385	1-104-664-11	ELECT 47MF	20%	25V	C459		CERAMIC CHIP 0.1MF	10%	25V
C386	1-124-261-00		20%						****
C387		CERAMIC CHIP 0.001M		50V	C461		CERAMIC CHIP 120PF CERAMIC CHIP 0.1MF	5% 10%	50V 25V
C388 C389	1-124-261-00 1-104-664-11		20% 20%		C462 C463		CERAMIC CHIP 0.1MF	10%	25V 25V
C390		CERAMIC CHIP 47PF	5%	50V	C464	1-164-299-11	CERAMIC CHIP 0.22MF	10%	25V
G201			200	0537	C465	1-163-231-11	CERAMIC CHIP 15PF	5%	50V
C391 C392	1-104-664-11	ELECT 47MF CERAMIC CHIP 0.15MF	20% 10%		C466	1-163-119-00	CERAMIC CHIP 120PF	5%	50V
C393		CERAMIC CHIP 0.15MF			C467	1-163-119-00	CERAMIC CHIP 120PF	5%	50V
C394	1-104-664-11		20%		C469		CERAMIC CHIP 0.022MF	10%	50V
C395	1-163-235-11	CERAMIC CHIP 22PF	5%	50V	C470 C471		CERAMIC CHIP 47PF CERAMIC CHIP 33PF	5% 5%	50V 50V
C396	1-164-299-11	CERAMIC CHIP 0.22MF	10%		1 24/1				
C397	1-104-664-11	ELECT 47MF	20%		C472		CERAMIC CHIP 0.01MF		50V
C398 C399	1-104-664-11		20% 20%		C473 C475		CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF		50V 50V
C400	1-104-664-11 1-164-004-11	CERAMIC CHIP 0.1MF	10%		C476		CERAMIC CHIP 0.01MF		50V
		_			C477	1-164-299-11	CERAMIC CHIP 0.22MF	10%	25V
C401 C402	1-164-346-11 1-126-967-11	CERAMIC CHIP 1MF ELECT 47MF	20%	16V 50V	C478	1-126-964-11	ELECT 10MF	20%	50V
C403		CERAMIC CHIP 0.01MF			C479		CERAMIC CHIP 150PF	5%	50V
C406	1-126-965-11	ELECT 22MF	20%		C482	1-126-925-11		20%	10V
C407	1-104-664-11	ELECT 47MF	20%	25V	C483 C484		CERAMIC CHIP 82PF CERAMIC CHIP 68PF	5% 5%	50V 50V
C408	1-164-232-11	CERAMIC CHIP 0.01MF	10%	50V	C404	1-103-113-00	CERTAIN CHII UOFF	570	
C409	1-163-031-11	CERAMIC CHIP 0.01MF		50V	C485		CERAMIC CHIP 68PF	5%	50V
C410	1-126-965-11	ELECT 22MF	20%		C486		CERAMIC CHIP 82PF	5% 5%	50V 50V
C411 C414		CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF	10%	25V 50V	C487 C490		CERAMIC CHIP 22PF CERAMIC CHIP 0.33MF	5%	25V
	4-103-031-11	CERTIFIC CHIP U.VIMI		. 504	C491		CERAMIC CHIP 0.33MF		25V
C415	1-126-964-11		20%		C402	1 164 226 11	CED AMIC CUID 0 221 CF		25V
C416 C417		CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF			C492 C493		CERAMIC CHIP 0.33MF CERAMIC CHIP 0.047MF	10%	50V
C418		CERAMIC CHIP 0.00331		50V	C494	1-164-005-11	CERAMIC CHIP 0.47MF		25V
C419	1-126-925-11		20%		C495	1-126-964-11	ELECT 10MF CERAMIC CHIP 82PF	20% 5%	50V 50V
C420	1-163-809-11	CERAMIC CHIP 0.047M	F 10%	25V	C496	1-103-247-11	CRUMING CHIL OTH,	5 70	50.

The componants identified by shading and mark \triangle are critical for safety.

Replace only with part number specified.

Les composants identifies par une trame et une marque Λ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

REF. NO.	PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION			REMARK
C497	1-163-011-11	CERAMIC CHIP	0.0015MF	10%	50V	C572	1-104-709-11		4.7MF	0	160V
C498 C499	1-126-961-11	ELECT CERAMIC CHIP	2.2MF	20%	50V 50V	C573 C575	1-136-177-00	FILM CERAMIC CHIP	1MF 0.01MF	5%	50V 50V
C500	1-164-004-11	CERAMIC CHIP	0.1MF	10%	25V					100	500V
C501	1-164-182-11	CERAMIC CHIP	0.0033MF	10%	50V	C576 C577	1-102-244-00 1-107-906-11		220PF 10MF	10% 20%	50V
C502	1-163-141-00	CERAMIC CHIP CERAMIC CHIP	0.001MF	5% 5%	50V 50V	C578 C579	1-136-111-00 1-107-910-11		1MF 100MF	5% 20%	200V 50V
C503 C504	1-136-495-11	FILM	0.068MF	5%	50V	C580	1-136-105-00		0.33MF	5%	200V
C505 C506	1-163-199-00 1-126-959-11	CERAMIC CHIP ELECT	560PF 0.47MF	5% 20%	50V 50V	C581	1-126-963-11	ELECT	4.7MF	20%	50V
			100MF	20%	25V	C582 C583	1-102-002-00 1-136-541-11		680PF 1.5MF	10% 5%	500V 200V
C507 C508	1-128-526-11 1-130-497-00	MYLAR	0.15MF	5%	50V	C584	1-107-949-11	ELECT	2.2MF	20%	160V
C509 C511	1-128-566-11 1-107-368-11		470MF 0.047MF	20% 10%	100V 200V	C585	1-107-960-11	ELECT	4.7MF	20%	250V
C512	1-126-959-11		0.47MF	20%	50V	C586 C587	1-126-942-61 1-102-030-00		1000MF 330PF	20% 10%	25V 500V
C513	1-124-261-00		10MF	20%	50V	C588	1-107-906-11	ELECT	10MF	20%	50V
C514 A C515	1-129-718-91	FILM CERAMIC CHIP	0.022MF 0.047MF	10% 10%	630V 25V	C589 C590	1-102-030-00 1-107-903-11		330PF 2,2MF	10% 20%	500V 50V
C516	1-102-030-00	CERAMIC	330PF	10%	500V		1-107-365-91		0.015MF	10%	200V
C517	1-163-024-00	CERAMIC CHIP	U.018MF	10%	50V	C591 C592	1-107-635-11	ELECT	4.7MF	20%	160V
C518 C519	1-107-947-11	ELECT CERAMIC CHIP	220MF	20% 10%	160V 50V	C593 C594		CERAMIC CHIP CERAMIC CHIP		5%	50V 50V
C520	1-163-257-11	CERAMIC CHIP	180PF	5%	50V	C595	1-107-889-11		220MF	20%	25V
C521 C522	1-162-114-00 1-126-768-11		0.0047MF 2200MF	20%	2KV 16V	C596	1-104-665-11		100MF	20%	25V
C523	1-107-902-11	FIFCT	1MF	20%	50V	C597 C598		CERAMIC CHIP CERAMIC CHIP			16V 16V
	1-136-081-00		0.012MF	3%	2KV	C599	1-124-261-00 1-104-664-11	ELECT	10MF 47MF	20% 20%	50V 25V
C525 A	§1-136-904-11	FILM	0.0115MF	3%	(20M2UÆ) 2KV	C1300					
C526 4	1-162-116-91	CERAMIC	680PF	(2) 10%	0M4U/E/A) 2KV	C1301 C1302	1-104-664-11 1-163-131-00	ELECT CERAMIC CHIP	47MF 390PF	20% 5%	25V 50V
C529	1-107-901-11		0.47MF	20%	50V	C1304 C1305	1-104-664-11 1-104-664-11		47MF 47MF	20% 20%	25V 25V
C530	1-104-666-11		220MF	20%	25V			CERAMIC CHIP		2070	50V
C531 C532	1-104-664-11	ELECT CERAMIC CHIP	47MF 0.01MF	20%	25V 50V	C1307	1-163-031-11	CERAMIC CHIP	0.01MF		50V
C533	1-102-212-00	CERAMIC	820PF	10%	500V	C1308	1-126-933-11	ELECT	100MF	20% 5%	10V 50V
C534	1-107-662-11	ELECT	22MF	20%	250V	C1309 C1310	1-163-031-11	CERAMIC CHIP CERAMIC CHIP	0.01MF		50V
C537 C538	1-126-971-11 1-137-150-11		470MF 0.01MF	20% 10%	50V 100V	C1311	1-104-664-11	ELECT	47MF	20%	25V
C539	1-130-480-00	FILM	0.0056MF		50V 50V	C1312 C1313		CERAMIC CHIP CERAMIC CHIP			50V 50V
C540 C541	1-163-133-00	CERAMIC CHIP ELECT	4.7MF	20%	50V	C1314	1-104-664-11	ELECT	47MF	20%	25V
C542	1-136-481-11	MYLAR	0.0022MF	10%	100V	C1315 C1316	1-104-664-11 1-163-031-11	ELECT CERAMIC CHIP	47MF 0.01MF	20%	25V 50V
C543	1-136-481-11	MYLAR	0.0022MF 0.01MF		100V 100V	C1317	1-104-664-11	EI ECT	47MF	20%	25V
C544 C545	1-137-150-11 1-102-212-00	CERAMIC	820PF	10%	500V	C1318	1-104-664-11	ELECT	47MF	20%	25V
C546	1-163-119-00	CERAMIC CHIP	120PF	5%	50V	C1319 C1320	1-163-037-11 1-104-664-11	CERAMIC CHIP ELECT	0.022MF 47MF	10% 20%	50V 25V
C547	1-163-251-11 1-102-212-00	CERAMIC CHIP	100PF 820PF	5% 10%	50V 500V	C1321	1-104-664-11		47MF	20%	25V
C548 C549	1-107-906-11	ELECT	10MF	20%	50V	C1322	1-126-934-11		220MF	20%	16V
C550 C551	1-107-905-11 1-106-375-12		4.7MF 0.022MF	20% 10%	50V 100V	C1323 C1324		CERAMIC CHIP CERAMIC CHIP			50V 50V
	1-107-889-11		220MF	20%	25V	C1325 C1326	1-163-031-11 1-104-664-11	CERAMIC CHIP	0.01MF 47MF	20%	50V 25V
C552 C553	1-106-389-00	MYLAR	0.082MF	10%	200V					2010	
C554 C555	1-130-736-11 1-126-964-11		0.01MF 10MF	5% 20%	50V 50V	C1327 C1328		CERAMIC CHIP			50V 50V
C556	1-126-964-11		10MF	20%	50V	C1329 C1330	1-126-964-11		10MF	20%	50V 50V
C557	1-106-381-12		0.039MF	10%	100V	C1331	1-103-031-11		47MF	20%	25V
C558 C559	1-126-960-11 1-136-173-00		1MF 0.47MF	20% 5%	50V 50V	C1332	1-104-664-11	ELECT	47MF	20%	25V
C561	1-136-159-00	FILM	0.033MF 10MF	5% 20%	50V 50V	C1333 C1334	1-104-664-11		47MF	20% 0.5PF	25V 50V
C564	1-126-964-11					C1335	1-104-664-11	ELECT	47MF	20%	25V
C565 C566	1-126-960-11 1-137-150-11		1MF 0.01MF	20% 10%	50V 100V	C1336	1-104-664-11	ELECT	47MF	20%	25V
C567	1-136-499-11 1-126-960-11	FILM	0.047MF 1MF	5% 20%	50V 50V	C1338 C1339		CERAMIC CHIP CERAMIC CHIP			50V 50V
C568 C569		TANTALUM	3.3MF	10%	25V	C1340	1-163-031-11	CERAMIC CHIP	0.01MF		50V
C570	1-126-767-11	ELECT	1000MF	20%	16V	C1341 C1342		CERAMIC CHIP		% %	50V 50V
C571		CERAMIC CHIP		10%	50V	C1343		CERAMIC CHIP		5%	50V
						01545	- 100 110-00	CERTAIN CHIL	JUI 1	~/•	201

REF. NO.	PART NO.	DESCRIPTION		Ē	REMARK	REF. NO.	PART NO.	DESCRIPTION			REMARK
C1344 C1345 C1346	1-163-083-00 1-124-261-00 1-124-589-11		1PF 10MF 47MF	0.25PF 20% 20%	50V 50V 16V	C1525	1-162-114-00	CERAMIC	0.0047MF		2KV 20M4U/E/A)
C1347	1-163-031-11	CERAMIC CHIP	0.01MF	5%	50V 50V	C1530 C1531		CERAMIC CHIP CERAMIC CHIP		10%	50V 25V 20M4U/E/A)
C1348 C1349 C1350	1-163-117-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	100PF	5% 10%	50V 50V	C1532	1-104-664-11	ELECT	47MF	20% `	25V 25W 20M4U/E/A)
C1351 C1352	1-126-960-11 1-163-023-00	ELECT CERAMIC CHIP	1MF 0.015MF	20% 10%	50V 50V	C1534	1-104-664-11		47MF		25V 20M4U/E/A)
C1353 C1354		CERAMIC CHIP CERAMIC CHIP		5%	50V 50V	C1535	1-104-664-11	ELECI	47MF	20%	25V 20M4U/E/A)
C1355 C1356	1-163-235-11	CERAMIC CHIP	22PF	5% 5%	50V 50V	C1536	1-136-165-00		0.1MF		50V 20M4U/E/A)
C1357 C1358	1-104-661-91 1-124-589-11		330MF 47MF	20% 20%	16V 16V	C1537 C1538	1-130-783-00 1-102-074-00		0.33MF 0.001MF	10% 10%	100V 20M4U/E/A) 50V
C1359 C1360	1-163-263-11	CERAMIC CHIP CERAMIC CHIP	330PF	5%	50V 50V	C2501 C2502	1-164-232-11	CERAMIC CHIP CERAMIC CHIP	0.01MF	10% 10%	50V 50V
C1362 C1363		CERAMIC CHIP CERAMIC CHIP		5% 5%	50V 50V			.CONDECTOR.			
C1364 C1365		CERAMIC CHIP CERAMIC CHIP		5% 0.5PF	50V 50V	CN101	*1.572.070-11	<connector></connector>		BUVD	D 11D
C1366	1-104-664-11	ELECT	47MF 47MF	20% 20%	25V 25V	CN101 CN102 CN104	*1-564-514-11	PLUG, CONNEC PLUG, CONNEC	TOR 11P	DUAK	אוור
C1367 C1369		CERAMIC CHIP	27PF	5%	50V	CN104 CN105 CN201	*1-565-503-11	CONNECTOR, B PLUG, CONNEC	OARD TO	BOAR	D 12P
C1370 C1372	1-104-664-11		47MF	5% 20%	50V 25V	CN301		PLUG, CONNEC			
C1373 C1374	1-104-664-11 1-104-664-11		47MF 47MF	20% 20%	25V 25V	CN302 CN303		PLUG, CONNEC CONNECTOR, B		BOAR	D 12P
C1375	1-126-963-11	ELECT	4.7MF	20%	50V	CN305 CN401		PIN, CONNECTO PLUG, CONNEC			
C1378 C1380		CERAMIC CHIP CERAMIC CHIP		5% 5%	50V 50V	CN402	*1-564-515-11	PLUG, CONNEC	TOR 12P		
C1381 C1382	1-163-163-00 1-126-933-11	CERAMIC CHIP	18PF 100MF	5% 20%	50V 10V	CN501 CN501		PLUG (MINIATU CONNECTOR PI			
C1383	1-104-664-11		47MF	20%	25V	CN502 CN503	*1-573-964-11	PIN, CONNECTO PIN, CONNECTO	OR (PC BO	ÀRD) 6	P
C1384 C1385		CERAMIC CHIP CERAMIC CHIP			25V 50V	CN504	* 1-564-506-11	PLUG, CONNEC	TOR 3P		
C1386 C1387		CERAMIC CHIP CERAMIC CHIP			50V 50V	CN505 CN507		PLUG, CONNECTAB (CONTACT			
C1388		CERAMIC CHIP		5%	50V	CN508 CN509		PIN, CONNECTO PLUG, CONNEC			
C1393 C1400		CERAMIC CHIP CERAMIC CHIP		5%	50V 50V						
C1401 C1402	1-136-173-00 1-163-031-11	FILM CERAMIC CHIP	0.47MF 0.01MF	5%	50V 50V			<composition< td=""><td>CIRCUIT</td><td>BLOCI</td><td><></td></composition<>	CIRCUIT	BLOCI	<>
C1403	1-136-173-00		0.47MF	5%	50V	CP300 CP301	1-236-365-11	MODULE, TRAP			
C1404 C1405	1-163-235-11	CERAMIC CHIP	22PF	10% 5%	25V 50V	CP302 CP303	1-808-654-21 1-466-162-61	MODULE FILTER BLOCK,	COM (CFI	3-4)	
C1406 C1407 C1408	1-163-085-00	CERAMIC CHIP	2PF	0.25PF 0.25PF				<diode></diode>			
C1400	1-105-107-00	CERAMIC CHIP	2200MF	5% 20%	30V 16V	D100	8-719-404-49	DIODE MAIII			
C1501 C1505	1-126-925-11 1-136-165-00	ELECT	470MF 0.1MF	20% 5%	10V 50V	D101 D102	8-719-800-76	DIODE 1SS226 DIODE 1SS226			
C1506 C1507	1-104-661-91		330MF	20% 5%	16V 50V	D103 D104	8-719-045-70	DIODE 1SV230T DIODE 1SS226	РН3		
C1508	1-126-963-11		4.7MF	20%	50V	D105		DIODE 1SS226			
C1509 C1510	1-126-964-11 1-126-963-11		10MF 4.7MF	20% 20%	50V 50V	D107 D108		DIODE 1SS226 DIODE 1S2836			
C1511 C1512		CERAMIC CHIP			50V 50V	D109 D111	8-719-801-78	DIODE 1SS184 DIODE DTZ6.2			
C1513	1-163-197-00	CERAMIC CHIP		5%	50V	D114	8-719-404-49	DIODE MA111			
C1514 C1515	1-130-477-00 1-126-964-11	ELECT	0.0033MF 10MF	20%	50V 50V	D115 D116	8-719-404-49	DIODE DTZ6.2 DIODE MA111			
C1516 C1517	1-163-063-91 1-128-526-11	CERAMIC CHIP ELECT	0.022MF 100MF	10% 20%	50V 10V	D200 D300		DIODE DTZ13C DIODE 1SV232-1	грн3		
C1518 C1520	1-107-909-11		47MF 150PF	20% 10%	16V 2KV	D301 D303		DIODE MA111 DIODE DTZ6.2			
C1521		CERAMIC CHIP	47PF	5%	50V	D304	8-719-801-78	DIODE 1SS184			
C1524	1-107-910-11	ELECI	100MF	20%	50V)M4U/E/A)	D305 D307		DIODE 1SS226 DIODE MA111			
					•						

REF. NO.	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
D308 D309 D310 D311 D313	8-719-404-49 8-719-104-34 8-719-045-70	DIODE MA111 DIODE MA111 DIODE 1S2836 DIODE 1SV230TPH3 DIODE 1SS184		D518 D519 D520 D521	8-719-404-49 8-719-801-78	DIODE MA111 DIODE MA111 DIODE 1SS184 DIODE MA111	
D314 D315 D317 D320 D322	8-719-404-49 8-719-404-49 8-719-404-49 8-719-404-49	DIODE MA111 DIODE MA111 DIODE MA111 DIODE MA111 DIODE MA111		D522 D523 D524 D525 D526	8-719-977-05 8-719-920-76 8-719-200-02 8-719-200-02	DIODE DTZ6.2 DIODE 1S2076 DIODE 10E-2 DIODE 10E-2 DIODE MAI11	
D323 D324 D325 D326 D327	8-719-404-49 8-719-045-70 8-719-801-78 8-719-045-70	DIODE MA111 DIODE 1SV230TPH3 DIODE 1SS184 DIODE 1SV230TPH3 DIODE 1S2836		D527 D528 D529 D530 D531	8-719-300-76 8-719-200-02 8-719-300-76	DIODE 10E-2 DIODE RH-1A DIODE 10E-2 DIODE RH-1A DIODE DTZ11B	
D332 D333 D335 D336 D337	8-719-404-49 8-719-404-49 8-719-404-49	DIODE MAIII DIODE MAIII DIODE MAIII DIODE MAIII DIODE MAIII		D532 D533 D534 D535 D536 D537	8-719-302-43 8-719-404-49 8-719-800-76	DIODE 1SS226 DIODE EL1Z DIODE MA111 DIODE MA111 DIODE 1SS226 DIODE 1SS226	
D338 D339 D344 D345 D346	8-719-404-49 8-719-801-78 8-719-104-34	DIODE MA111 DIODE MA111 DIODE 1SS184 DIODE 1S2836 DIODE 1S2836		D537 D538 D539 D540 D541 D542	8-719-800-76 8-719-920-76 8-719-404-49 8-719-801-78	DIODE 1SS226 DIODE 1SS226 DIODE 1S2076 DIODE MA111 DIODE 1SS184 DIODE MA111	
D347 D360 D361 D362 D363	1-216-295-91 1-216-295-91 8-719-158-40	DIODE 1S2836 CONDUCTOR, CHIP CONDUCTOR, CHIP DIODE RD10SB1 DIODE RD10SB1		D543 D544 D545 D546 D547	8-719-404-49 8-719-404-49 8-719-901-19	DIODE MAIII DIODE MAIII (20M4U/E/A) DIODE MAIII (20M4U/E/A) DIODE VIIN (20M4U/E/A) DIODE MAIII	
D364 D365 D381 D401 D404	8-719-404-49 8-719-404-49 8-719-404-49	DIODE 1S2836 DIODE MA111 DIODE MA111 DIODE MA111 DIODE 1SS226		D548	8-719-110-46	DIODE RD16ESB3 (20M4U/E/A) <delay line=""> DELAY LINE, Y</delay>	
D405 D406 D407 D408 D410	8-719-404-49 8-719-404-49 8-719-404-49	DIODE 1SS184 DIODE MA111 DIODE MA111 DIODE MA111 DIODE MA111		DL301 DL401	1-415-632-11	DELAY LINE, Y DELAY LINE <ferrite bead=""></ferrite>	
D411 D414 D415 D416 D417	8-719-801-78 8-719-801-78 8-719-801-78	DIODE MA111 DIODE 1SS184 DIODE 1SS184 DIODE 1SS184 DIODE 1SS184		FB501	1-410-396-41	FERRITE BEAD INDUCTOR 0.45 <filter></filter>	UH
D418 D421 D422 D423 D424	8-719-404-49 8-719-404-49 8-719-800-76	DIODE 1SS184 DIODE MA111 DIODE MA111 DIODE 1SS226 DIODE MA111		FL300 FL401	1-236-547-11 1-236-364-11	TRAP, LC FILTER, BAND PASS <ic></ic>	
D425 D427 D500 D501 D502	8-719-800-76 8-719-404-49 8-719-404-49 8-719-977-03	DIODE 1SS226 DIODE MA111 DIODE MA111 DIODE DTZ5.6B DIODE UF5406		IC101 IC101 IC102 IC103 IC104	8-759-462-05 8-759-354-28 8-759-008-48 8-759-262-59	SOCKET, IC (20M2U/E) IC uPD78P018FYCW-M01 (20M4U IC ST24C02FM6TR IC MC74HC86F IC uPD6451AGT-632-E2	J/E/A)
D503 D504 D505 D506 D507	8-719-404-49 8-719-901-83 8-719-028-72 8-719-033-83	DIODE MA111 DIODE 1SS83 DIODE RGP02-17EL-6433 DIODE ERD07-15 DIODE 1SS226		IC105 IC106 IC107 IC108 IC109	8-759-196-70 8-759-196-70 8-759-042-02	IC M62358FP-E1 IC M62358FP-E1 IC M62358FP-E1 IC S-80743AL-A7-S IC M62358FP-E1	
D508 D509 D510 D512 D513	8-719-800-76 8-719-404-49 8-719-302-43 8-719-979-80	DIODE 1SS226 DIODE MA111 DIODE EL1Z DIODE UF5406 DIODE MA111		IC110 IC111 IC112 IC200 IC301	8-759-009-22 8-759-354-27 8-759-420-04 8-752-053-21	IC CXA1211M	
D514 D515 D516 D517	8-719-971-20 8-719-404-49	DIODE ERC38-06 DIODE ERC38-06 DIODE MA111 DIODE MA111		IC302 IC303 IC304 IC305 IC306	8-759-932-67 8-759-631-08	IC LM358D IC CXA1214P IC BU4053BCF IC M51279FP IC NJM2245M	

Les composants identifies par une trame et une marque \(\hat{L}\) sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark ∆ are critical for safety.
Replace only with part number specified.

REF. NO.	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
IC309 IC310 IC311 IC312 IC313	8-759-932-67 8-759-008-67 8-759-711-32	IC NJM2245M IC BU4053BCF IC MC14066BF IC NJM2245M IC MM1113XFF		L314 L316 L317 L319	1-412-011-31 1-410-090-41 1-408-421-00	INDUCTOR C INDUCTOR 18 INDUCTOR 18	HIP 27UH BmH DOUH
IC314 IC315 IC316 IC317 IC318	8-759-932-67 8-759-084-76 8-759-009-51	IC MM1113XFF IC BU4053BCF IC MM1111XF IC MC14538BF IC MC14584BF		L320 L401 L402 L403 L404	1-410-478-11 1-410-215-31 1-410-215-31 1-410-215-31	INDUCTOR 47 INDUCTOR C INDUCTOR C INDUCTOR C	7UH HIP 82UH HIP 82UH HIP 82UH
IC320 IC321 IC322 IC323 IC324	8-759-287-89 8-759-287-89 8-759-287-89	IC MM1113XFF IC MM1113XFF IC MM1113XFF IC MM1113XFF IC MM1113XFF		L405 L406 L407 L408 L409	1-408-419-00 1-408-413-00 1-408-413-00	INDUCTOR 68 INDUCTOR 68 INDUCTOR 22 INDUCTOR 22 INDUCTOR C	BUH BUH BUH
IC325 IC326 IC327 IC350 IC401	8-759-060-00 8-759-008-67 8-759-100-96	IC MM1113XFF IC BA10324AF IC MC14066BF IC uPC4558G2 IC BA7655AF-E2		L500 L501 L502 L503 L504	1-407-365-00 1-407-365-00 1-410-093-11 1-410-666-31	COIL (WITH C COIL, CHOKE COIL, CHOKE INDUCTOR 33 INDUCTOR 18	SmH SUH
IC402 IC403 IC404 IC405 IC406	8-759-008-67 8-752-067-05	IC CXA1211M IC MC14066BF IC CXA1739S IC BU4053BCF IC LM358D		L505 L506 L506 L507 L508	1-459-087-00 1-459-104-00 1-410-686-11		ST CORE 3.9mH (20M4U/E/A) CORE (20M2U/E) nH
IC407 IC408 IC409 IC410 IC411	8-759-509-91 8-759-060-00 8-759-009-06	IC MC14066BF IC XRA10393F IC BA10324AF IC MC14052BF IC MC14024BF		L509 L510 L512 2 L513 L514	1-459-106-00 1-459-232-11 1-412-447-11	COIL, DUST C	9mH
IC412 IC413 IC500 IC502 IC503	8-759-932-67 8-759-932-67 8-749-010-08 8-759-009-51	IC BU4053BCF IC BU4053BCF	-	L515 L517		COIL, DUST COINDUCTOR 68	оин
IC504 IC505 IC506 IC507	8-752-053-21 8-759-520-07 8-759-009-51 8-759-100-60	IC CXA1211M IC XRA17812T IC MC14538BF IC uPC1377C		NL500		<pre>LAMP, NEON </pre> <pre><transistor< pre=""></transistor<></pre>	
IC508 IC509 IC510 IC511 IC512	8-759-998-98 8-759-009-51 8-759-803-42	IC CXA1211M IC LM358D IC MC14538BF IC LA6500-FA (20M4U/E/A) IC LM7912CT (20M4U/E/A)		Q101 Q102 Q103 Q104 Q105	8-729-216-22 8-729-216-22 8-729-907-26	TRANSISTOR TRANSISTOR TRANSISTOR	2SA1162-G
JR302 JR307 JR310	1-216-295-91	<chip conductor=""> CONDUCTOR, CHIP CONDUCTOR, CHIP CONDUCTOR, CHIP</chip>		Q107 Q108 Q109 Q110 Q111	8-729-422-29 8-729-422-29 8-729-422-29 8-729-027-38	TRANSISTOR TRANSISTOR TRANSISTOR	2SD601A-S 2SD601A-S DTA144EKA-T146
JK510	1-210-293-91	<coil></coil>		Q113 Q114 Q200 Q201	8-729-422-29 8-729-422-29 8-729-140-96	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	2SD601A-S 2SD601A-S 2SD774-34
L101 L102 L104 L105 L300	1-408-417-00 1-408-425-00 1-410-482-31	INDUCTOR 33UH INDUCTOR 47UH INDUCTOR 220UH INDUCTOR 100UH INDUCTOR 47UH		Q300 Q301 Q302 Q303 Q305	8-729-422-29 8-729-216-22 8-729-422-29	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	2SD601A-S 2SA1162-G 2SD601A-S
L301 L302 L303 L304 L305	1-412-008-31 1-408-416-00 1-412-008-31	INDUCTOR 15UH INDUCTOR CHIP 15UH INDUCTOR 39UH INDUCTOR CHIP 15UH INDUCTOR CHIP 2.2UH		Q306 Q307 Q308 Q309 Q310	8-729-422-29 8-729-422-29 8-729-422-29 8-729-422-37	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	2SD601A-S 2SD601A-S 2SD601A-S 2SB709A-R
L306 L307 L308 L309 L311	1-408-411-00 1-410-466-41 1-410-470-11	INDUCTOR 39UH INDUCTOR 15UH INDUCTOR 4.7UH INDUCTOR 10UH INDUCTOR 10UH		Q311 Q312 Q313 Q314	8-729-422-37 8-729-422-29 8-729-422-37 8-729-027-38	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	2SB709A-R 2SD601A-S 2SB709A-R DTA144EKA-T146
L312	1-412-011-31	INDUCTOR CHIP 27UH		Q315 Q316		TRANSISTOR TRANSISTOR	

REF. NO.	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
Q318 Q319 Q320 Q321	8-729-422-29 8-729-422-29	TRANSISTOR 2SB709A-R TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q419 Q420 Q421 Q422 Q423	8-729-422-37 8-729-027-59 8-729-120-28	TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SD601A-S	
Q322 Q323 Q324 Q325 Q326	8-729-027-59 8-729-027-59 8-729-422-29	TRANSISTOR 2SD601A-S TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q424 Q425 Q426 Q428 Q429	8-729-027-59 8-729-027-59 8-729-027-59 8-729-422 ⁻ 37	TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R	
Q327 Q328 Q329 Q330 Q331	8-729-141-53 8-729-141-53 8-729-422-37	TRANSISTOR 2SB709A-R TRANSISTOR 2SK94-X2X3X4 TRANSISTOR 2SK94-X2X3X4 TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R		Q430 Q431 Q432 Q433 Q434	8-729-422-29 8-729-422-29 8-729-422-29 8-729-027-59	TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S	
Q332 Q333 Q334 Q335 Q336	8-729-422-29 8-729-422-37 8-729-422-29	TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SB709A-R TRANSISTOR 2SD601A-S TRANSISTOR 2SK94-X4		Q435 Q436 Q437 Q438 Q439	8-729-027-59 8-729-027-59 8-729-027-59 8-729-422-29	TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SA1162-G	
Q337 Q338 Q339 Q341 Q342	8-729-120-28 8-729-422-37 8-729-920-39	TRANSISTOR 2SD601A-S TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SB709A-R TRANSISTOR IMT1US TRANSISTOR IMT1US		Q440 Q441 Q442 Q443 Q444	8-729-422-29 8-729-141-53 8-729-422-29 8-729-216-22	TRANSISTOR 2SD601A-S TRANSISTOR 2SK94-X2X3X4 TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S	
Q343 Q345 Q346 Q347 Q348	8-729-422-29 8-729-422-29 8-729-027-59	TRANSISTOR IMT1US TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SB709A-R		Q445 Q446 Q447 Q448 Q449	8-729-027-59 8-729-027-59 8-729-027-59 8-729-027-59	TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146	
Q349 Q350 Q351 Q352 Q353	8-729-422-37 8-729-422-29 8-729-422-29	TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q500 Q501 Q502 Q505	8-729-422-37 8-729-821-87 8-729-119-80 8-729-422-29	TRANSISTOR 2SB709A-R TRANSISTOR 2SD1878-CA TRANSISTOR 2SC2688-LK TRANSISTOR 2SD601A-S	
Q354 Q355 Q356 Q357 Q358	8-729-422-29 8-729-027-59 8-729-422-29	TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q506 Q507 Q508 Q509 Q510	8-729-422-29 8-729-422-37 8-729-027-38 8-729-027-59	TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR 2SB709A-R TRANSISTOR DTA144EKA-T1 46 TRANSISTOR DTC144EKA-T1 46	
Q359 Q360 Q361 Q362 Q363	8-729-907-26 8-729-027-38 8-729-422-29	TRANSISTOR 2SB709A-R TRANSISTOR IMX1 TRANSISTOR DTA144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q511 Q513 Q514 Q515 Q516	8-729-122-03 8-729-901-00 8-729-106-92	TRANSISTOR 2SD601A-S TRANSISTOR 2SA1220A-P TRANSISTOR DTC124EK TRANSISTOR 2SC2690A-Q TRANSISTOR DTC144EKA-F146	
Q364 Q366 Q367 Q368 Q369	8-729-027-59 8-729-422-37 8-729-422-37 8-729-422-37	TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR DTA144EKA-T146		Q517 Q518 Q519 Q520 Q522	8-729-027-59 8-729-027-59 8-729-021-82	TRANSISTOR DTA144EKA-F1 46 TRANSISTOR DTC144EKA-F1 46 TRANSISTOR DTC144EKA-F1 46 TRANSISTOR 2SD2396K TRANSISTOR 2SD601A-S	
Q372 Q373 Q401 Q402	8-729-027-59 8-729-027-59 8-729-422-29 8-729-422-29	TRANSISTOR DTC144EKA-T146 TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q523 Q524 Q525 Q526	8-729-422-29 8-729-422-29 8-729-422-37	TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S TRANSISTOR 2SB709A-R TRANSISTOR 2SC4686A(LBSON	
Q403 Q404 Q405 Q406 Q407	8-729-422-37 8-729-422-37 8-729-422-29	TRANSISTOR DTC144EKA-T146 TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SD601A-S TRANSISTOR 2SD601A-S		Q527 Q528 Q529	8-729-802-71	TRANSISTOR 2SC4686A(LBSON	(20M4U/E/A)
Q408 Q409 Q410 Q411	8-729-422-37 8-729-422-37 8-729-907-26 8-729-422-29	TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR IMX1 TRANSISTOR 2SD601A-S		Q530 Q531 Q532 Q2501	8-729-027-59 8-729-216-22 8-729-927-31	TRANSISTOR DTC144EKA-146 TRANSISTOR 2SA1162-G (2)M/4/ TRANSISTOR IRF520 (20M/4)//E/ TRANSISTOR 2SD601A-S	U/E/A)
Q412 Q413		TRANSISTOR 2SA1162-G TRANSISTOR 2SK94-X2X3X4				<resistor></resistor>	
Q414 Q415 Q416 Q417 Q418	8-729-422-37 8-729-422-37 8-729-422-37	TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SB709A-R TRANSISTOR 2SC1623-L5L6		R101 R102 R103 R104 R105	1-216-025-91 1-216-025-91 1-216-073-00	METAL GLAZE 100	1/10W 1/10W 1/10W 1/10W 1/10W

REF. NO.	PART NO.	DESCRIPTION		R	REMARK	REF. NO.	PART NO.	DESCRIPTION		R	EMARK
R106	1-216-065-00	METAL GLAZE	4.7K 5	5%	1/10W	R313	1-216-648-11	METAL CHIP	750	0.50%	1/10W
R107		METAL GLAZE		5%	1/10W	D214	1 216 000 00	METAL CLATE	1201	E01	1/1031/
R108 R109		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R314 R315		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R110		METAL GLAZE		5%	1/10W	R316	1-216-049-91	METAL GLAZE	1K	5%	1/10W
D112	1 016 005 00	METAL CLASE	221/ 4	:n	1/10W	R317 R318		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R113 R117		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	K310	1-210-049-91	METAL GLAZE	112	3 70	1/10**
R119	1-216-073-00	METAL GLAZE	10K 5	5%	1/10W	R319		METAL GLAZE		5%	1/10W
R124 R130		CONDUCTOR, C METAL GLAZE		5%	1/10W	R320 R321		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
KIJU	1-210-099-00	METAL OLALL	120K .	7 70	1/10**	R322		METAL GLAZE		5%	1/10W
R132		METAL GLAZE		5%	1/10W	R323	1-216-109-00	METAL GLAZE	330K	5%	1/10 W
R133 R134		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R324	1-216-101-00	METAL GLAZE	150K	5%	1/10W
R135	1-216-085-00	METAL GLAZE	33K 5	5%	1/10W	R325	1-216-037-00	METAL GLAZE	330	5%	1/10W
R137	1-216-065-00	METAL GLAZE	4.7K 5	5%	1/10W	R326 R328		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R140	1-216-033-00	METAL GLAZE	220 5	5%	1/10W	R329		METAL GLAZE		5%	1/10W
R141		METAL GLAZE		5%	1/10W	D220	1 216 090 01	METAL GLAZE	47 V	5%	1/10W
R144 R149		CONDUCTOR, C METAL GLAZE		5%	1/10W	R330 R331		METAL GLAZE		5%	1/10W
R151		METAL GLAZE		5%	1/10W	R332	1-216-097-91	METAL GLAZE	100K	5%	1/10W
R154	1-216-065-00	METAL GLAZE	47K 4	5%	1/10W	R333 R334		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R155		METAL GLAZE		5%	1/10W						
R157		METAL GLAZE		5%	1/10W	R335		METAL GLAZE		5% 5%	1/10W 1/10W
R158 R159		CONDUCTOR, C METAL GLAZE		5%	1/10W	R336 R337		METAL GLAZE METAL GLAZE		5%	1/10W
						R338	1-216-091-00	METAL GLAZE	56K	5%	1/10W
R160 R162		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R339	1-216-071-00	METAL GLAZE	8.2K	5%	1/10 W
R163		METAL GLAZE		5%	1/10W	R340	1-216-089-91	METAL GLAZE		5%	1/10W
R164		METAL GLAZE		5%	1/10W	R341		METAL CHIP	8.2K	0.50% 5%	1/10W 1/10W
R165	1-210-293-91	CONDUCTOR, C	.nir			R342 R343		METAL GLAZE METAL GLAZE		5%	1/10W
R167		METAL GLAZE		5%	1/10W	R344		METAL GLAZE		5%	1/10W
R168 R169		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R345	1-216-063-91	METAL GLAZE	3 9K	5%	1/10W
R171		METAL GLAZE		5%	1/10W	R346		METAL GLAZE		5%	1/10W
R172	1-216-295-91	CONDUCTOR, C	HIP			R347 R348		METAL GLAZE		5% 5%	1/10W 1/10W
R177	1-216-214-00	METAL GLAZE	4.7K 5	5%	1/8W	R349		METAL GLAZE METAL CHIP	62K	0.50%	1/10W
R181	1-216-065-00	METAL GLAZE	4.7K 5	5%	1/10W	D250	1 01/ 00/ 00	METAL CLATE	2017	F.01	1/10337
R184 R185		METAL CHIP METAL GLAZE).50% 5%	1/10W 1/10W	R350 R351		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R187		METAL GLAZE		5%	1/10W	R352	1-216-675-11	METAL CHIP	10K	0.50%	1/10W
R189	1-216.073.00	METAL GLAZE	10K 4	5%	1/10W	R353 R354		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R190		METAL GLAZE		5%	1/10W	NJJ4	1-210-119-00	METAL GLALL	OZUK	570	1710 11
R192		METAL GLAZE		5%	1/10W	R355		METAL GLAZE		5%	1/10W
R195 R197		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R356 R357		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
						R358	1-216-053-00	METAL GLAZE	1.5K	5%	1/10W
R199 R200		CONDUCTOR, C METAL CHIP).50%	1/10W	R359	1-216-065-00	METAL GLAZE	4.7K	5%	1/10W
R201	1-216-049-91	METAL GLAZE	1K 5	5%	1/10W	R360		METAL GLAZE		5%	1/10W
R202 R203	1-212-857-00			5% 5%	1/4W F 1/2W	R361 R362		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
	1-260-095-11	CARBON	4/0 .	70	1/2 W	R363		METAL GLAZE		5%	1/10W
R204	1-260-072-11			5%	1/2W	R364	1-216-113-00	METAL GLAZE	470K	5%	1/10W
R205 R206		METAL CHIP METAL GLAZE).50% 5%	1/10W 1/10W	R366	1-216-065-00	METAL GLAZE	4.7K	5%	1/10W
R207	1-216-065-00	METAL GLAZE	4.7K 5	5%	1/10W	R367	1-216-051-00	METAL GLAZE	1.2K	5%	1/10W
R208	1-216-065-00	METAL GLAZE	4.7K	5%	1/10W	R368 R371		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R209	1-216-073-00	METAL GLAZE	10K 5	5%	1/10W	R372		METAL GLAZE		5%	1/10W
R210 R211		METAL GLAZE		5%	1/10W 1/4W F	D272	1 216 645 11	METAL CHIP	560	0.50%	1/10W
R211	1-249-393-11 1-216-089-91	METAL GLAZE		5% 5%	1/4W F	R373 R374		METAL CHIP	680	0.50%	1/10W
R301		METAL GLAZE		5%	1/10W	R375	1-216-053-00	METAL GLAZE	1.5K	5%	1/10W
R302	1-216-025-01	METAL GLAZE	100	5%	1/10W	R376 R378		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R303	1-216-025-91	METAL GLAZE	100 5	5%	1/10W						
R304 R305		METAL GLAZE		5%	1/10W	R379 R380		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R306		CONDUCTOR, C				R381	1-216-689-11	METAL GLAZE	39K	5%	1/10W
				e or	1/100	R382	1-216-101-00	METAL GLAZE	150K	5%	1/10W
R307 R308		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R383	1-210-001-00	METAL GLAZE	J.JK	5%	1/10W
R311	1-216-055-00	METAL GLAZE	1.8K 5	5%	1/10W	R384		METAL GLAZE		5%	1/10W
R312	1-216-073-00	METAL GLAZE	10K 5	5%	1/10W	R385	1-216-065-00	METAL GLAZE	4./K	5%	1/10W

REF. NO.	PART NO.	DESCRIPTION]	REMARK	REF. NO.	PART NO.	DESCRIPTION		R	EMARK
R386		METAL GLAZE			1/10W	R460	1-216-295-91	CONDUCTOR, C	HIP		
R387 R388		METAL GLAZE METAL GLAZE			1/10W 1/10W	R462			1K		1/10W
			000	E O OT	1/1033/	R463		METAL GLAZE		5% 5%	1/10W 1/10W
R389	1-216-649-11	METAL CHIP	820 0.3 10 59	50% %	1/10W 1/4W F	R464 R465		METAL GLAZE METAL GLAZE		5%	1/10W
R390 R391		METAL GLAZE			1/10W	R466		METAL GLAZE		5%	1/10W
R393		METAL GLAZE			1/10W	10.00					
R394		METAL GLAZE		%	1/10W	R467		METAL GLAZE		5%	1/10W
		LOTAL CIUD	177 0	ena	1/1033/	R468		METAL GLAZE		5% 5%	1/10W 1/10W
R395	1-216-651-11	METAL CHIP METAL GLAZE		50% %	1/10W 1/10W	R469 R470		METAL GLAZE METAL GLAZE		5%	1/10W
R396 R397	1-216-113-00	METAL GLAZE	470K 59		1/10W	R471		METAL GLAZE		5%	1/10W
R398	1-216-105-91	METAL GLAZE	220K 59		1/10W						
R399	1-216-111-91	METAL GLAZE	390K 59	%	1/10W	R472		METAL GLAZE		5%	1/10W
D 400	1 01/ 110 00	METAL CLASE	470V 50	77.	1/1037	R473 R474		METAL GLAZE METAL CHIP	1M 820	5% 0.50%	1/10W 1/10W
R400 R401		METAL GLAZE METAL GLAZE			1/10W 1/10W	R475		METAL GLAZE		5%	1/10W
R402	1-216-053-00	METAL GLAZE			1/10W	R476		METAL GLAZE		5%	1/10W
R403	1-216-069-00	METAL GLAZE	6.8K 59		1/10W						
R404	1-216-029-00	METAL GLAZE	150 59	%	1/10W	R477		METAL GLAZE		5%	1/10W 1/10W
D405	1 216 121 01	METAL GLAZE	1M 59	Z.	1/10W	R478 R479		METAL GLAZE METAL GLAZE		5% 5%	1/10W
R405 R406		METAL GLAZE			1/10W	R480		METAL GLAZE		5%	1/10W
R407		METAL GLAZE			1/10W	R481		METAL GLAZE		5%	1/10W
R408	1-216-689-11	METAL CHIP	39K 0.:	50%	1/10W	- 40-			0.015	***	1 (1033)
R410	1-216-069-00	METAL GLAZE	6.8K 59	%	1/10W	R482		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R411	1 216-022-00	METAL GLAZE	220 59	%	1/10W	R483 R484		METAL CHIP	1K	0.50%	1/10W
R411		METAL GLAZE			1/10W	R485		METAL GLAZE		5%	1/10W
R413	1-216-121-91	METAL GLAZE	1M 59		1/10W	R486	1-216-681-11	METAL CHIP	18K	0.50%	1/10 W
R414	1-216-073-00	METAL GLAZE	10K 59		1/10W	D 407	1 216 652 11	METAL CHIP	1 017	0.50%	1/10 W
R414	1 216 205 01	CONDUCTOR, C	THIP (20M2) I/		0M4U/E/A)	R487 R488		METAL CHIP	1.2K 10K	5%	1/10W
K414	1-210-293-91	COMBOCION,	2011201	~,		R489		METAL GLAZE		5%	1/10W
R416	1-216-113-00	METAL GLAZE			1/10W	R490		METAL GLAZE		5%	1/10W
R417		METAL CHIP		50%	1/10W	R491	1-216-063-91	METAL GLAZE	3.9K	5%	1/10 W
R418		METAL CHIP METAL GLAZE		50% Z	1/10W 1/10W	R492	1-216-085-00	METAL GLAZE	33K	5%	1/10W
R420	1-210-103-91	METAL OLALL	220K 37		0M4U/E/A)	R493		CONDUCTOR, C		5,0	1,10
R422	1-216-073-00	METAL GLAZE	10K 59		1/10W	R494	1-216-696-11	METAL CHIP	75K	0.50%	1/10W
			1075 50			R495		METAL CHIP	1 K		1/10W
R423		METAL GLAZE METAL GLAZE			1/10W 1/10W	R496	1-210-073-00	METAL GLAZE	10K	5%	1/10 W
R424 R425		METAL GLAZE			1/10W	R497	1-216-653-11	METAL CHIP	1.2K	0.50%	1/10W
R426	1-216-039-00	METAL GLAZE	390 59	6	1/10W	R498	1-216-063-91	METAL GLAZE		5%	1/10W
R427	1-216-033-00	METAL GLAZE	220 59	%	1/10W	R499		METAL GLAZE		5%	1/10W
R428	1 216 007 01	METAL GLAZE	100K 59	%	1/10W	R500 R501		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R420 R429		METAL GLAZE			1/10W	KJ01	1-210-077-00	METTE GETEEL	1 Jan	5,0	1,10
R430	1-216-119-00	METAL GLAZE	820K 59		1/10W	R502		METAL CHIP	12K		1/10 W
R431		METAL GLAZE			1/10W	R503		METAL CHIP	12K		1/10 W 1/10 W
R432	1-216-089-91	METAL GLAZE	47K 59	10	1/10W	R504 R505		METAL GLAZE METAL GLAZE		5% 5%	1/10 W
R434	1-216-109-00	METAL GLAZE	330K 59	%	1/10W	R506		METAL GLAZE		5%	1/10W
R435	1-216-105-91	METAL GLAZE	220K 59	%	1/10W						
R436		METAL GLAZE			1/10W	R507		METAL GLAZE		5%	1/10 W 1/10 W
R437 R438		METAL GLAZE METAL GLAZE			1/10W 1/10W	R508 R509		METAL GLAZE METAL GLAZE		5% 5%	1/10W
K436	1-210-055-00	MILIAL OLALL	1.51		1/10 11	R510		METAL GLAZE		5%	1/10 W
R439		METAL GLAZE			1/10W	R511	1-216-099-00	METAL GLAZE	120K	5%	1/10 W
R440		METAL GLAZE			1/10W	D. 610	1 216 055 00	METAL CLASE	1.077	Em	1/1037
R441		METAL CHIP METAL CHIP		50% 50%	1/10W 1/10W	R512 R513		METAL GLAZE CONDUCTOR, C		5%	1/10 W
R442 R443		METAL GLAZE			1/10W	R514		CONDUCTOR, C			
X	. 2.0 0 .5 7 .					R515		METAL CHIP	10K		1/10 W
R444		METAL GLAZE			1/10W	R516	1-216-097-91	METAL GLAZE	100K	5%	1/10 W
R445	1-216-095-00	METAL GLAZE METAL GLAZE	82K 59 6.8K 59		1/10W 1/10W	R517	1-214-896-81	METAI	20K	1%	1/2W
R447 R448	1-216-049-91	METAL GLAZE	1K 59		1/10W	R518	1-260-123-11		100K	5%	1/2W
R449		METAL GLAZE			1/10W	R519	1-216-017-91	METAL GLAZE	47	5%	1/10W
		1.00m41.01.40m	13.6	rt	1/10***	R520	1-249-423-11		3.3K	5%	1/4W F
R450		METAL GLAZE METAL GLAZE			1/10W 1/10W	R521	1-210-065-00	METAL GLAZE	4./K	5%	1/10 W
R451 R452		METAL CHIP		v 50%	1/10W 1/10W	R523	1-215-892-11	METAL OXIDE	1K	5 %	2W F
R453	1-216-097-91	METAL GLAZE	100K 59		1/10W	R524	1-216-093-00	METAL GLAZE	68K	5%	1/10 W
R455		METAL GLAZE		6	1/10 W	R525		METAL GLAZE		5%	1/10W
D/54	1 216 052 00	METAL GLAZE	1.5K 59	%	1/10W	R526 R527		METAL GLAZE METAL GLAZE		5% 5%	1/10 W 1/10 W
R456 R457		METAL GLAZE			1/10W	NJ21	1-210-007-71	WIET AL VLAZE	7/K	30	1/1044
R458	1-216-113-00	METAL GLAZE	470K 59	6	1/10W	R528		METAL GLAZE		5%	1/10 W
R459	1-216-649-11	METAL CHIP	820 0.5	50%	1/10W	R529	1-216-089-91	METAL GLAZE	47K	5%	1/10 W
					•						

REF. NO.	PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION		F	REMARK
R530 R531 R532	1-216-077-00	METAL OXIDE METAL GLAZE METAL OXIDE	15K	5% 5% 5%	2W F 1/10W 3W F	R592 R593	1-247-688-11 1-216-647-11	CARBON METAL CHIP	10 680	5% 0.50%	1/4W F 1/10W
R533 R534 R535 R536	1-247-723-71 1-216-085-00 1-249-448-11 1-216-101-00	CARBON METAL GLAZE CARBON METAL GLAZE	6.8K 33K 1.2 150K	5% 5% 5%	1/4W F 1/10W 1/4W F 1/10W	R594 R595 R596 R597 R598	1-214-754-00 1-249-417-11	METAL GLAZE METAL	11 K 1 K	5% 5% 1% 5% 5%	1/2W 1/10W 1/4W 1/4W F 1/10W
R537 R539 R540 R541	1-216-065-00 1-216-113-00 1-249-383-11	METAL GLAZE METAL GLAZE METAL GLAZE CARBON METAL GLAZE	4.7K 470K 1.5	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/4W F 1/10W	R599 R1103 R1104 R1105 R1106	1-216-077-00 1-216-699-11 1-216-073-00	METAL CHIP METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE	100K 10K	0.50% 5% 0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W
R542 R543 R544	1-212-883-00 1-216-095-00	FUSIBLE METAL GLAZE	120 82K	5% 5%	1/4W F 1/10W	R1107 R1108	1-216-059-00 1-216-681-11	METAL GLAZE METAL CHIP	2.7K 18K	5% 0.50%	1/10W 1/10W
R545 R546 R547 R548	1-249-425-11 1-216-091-00	METAL GLAZE CARBON METAL GLAZE METAL GLAZE	4.7K 56K	5% 5% 5% 5%	1/10W 1/4W F 1/10W 1/10W	R1111 R1112 R1113	1-216-065-00 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 22K	5% 5% 5%	1/10W 1/10W 1/10W
R549 R550 R551 R552 R553	1-216-053-00 1-216-077-00 1-216-033-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	15K 220	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R1115 R1116 R1117 R1118	1-216-049-91 1-216-677-11 1-216-069-00 1-216-113-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE	1K 12K 6.8K 470K	5% 0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W
R554 R555 R556 R558 R559	1-216-692-11 1-216-463-00 1-215-868-00	METAL GLAZE METAL CHIP METAL OXIDE METAL OXIDE METAL GLAZE	51K 12K 680	5% 0.50% 5% 5% 5%	1/10W 1/10W 2W F 1W F 1/10W		1-216-089-91 1-216-071-00 1-216-113-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 470K	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W
R560 R561 R562	1-216-091-00 1-216-049-91 1-247-692-71	METAL GLAZE METAL GLAZE CARBON	56K 1K 22	5% 5% 5%	1/10W 1/10W 1/4W F (20M2U/E)	R1126 R1128 R1129 R1130 R1131	1-216-065-00 1-216-071-00 1-216-049-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 8.2K 1K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W
R562 R563	1-247-696-11 1-216-017-91	CARBON METAL GLAZE	47 47	5% (2 5%	1/4W F 20M4U/E/A) 1/10W	R1133	1-216-069-00	METAL GLAZE METAL GLAZE	6.8K	5% 5%	1/10W 1/10W
R564 R565 R566	1-216-033-00	METAL GLAZE METAL GLAZE METAL CHIP		5% 5% 0.50%		R1134 R1136 R1137	1-216-097-91 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	100K 10K	5% 5% 5%	1/10W 1/10W 1/10W
R566		METAL CHIP	47K		20M4U/E/A)	R1139 R1140	1-216-055-00 1-216-653-11	METAL GLAZE METAL CHIP	1.8K 1.2K	5% 5% 0.50%	1/10W 1/10W 1/10W
R568	1-216-073-00	METAL GLAZE	10K	5% 5%	1/10W 1/10W	R1141 R1142	1-216-653-11	METAL CHIP METAL CHIP	1.2K 1.2K	5% 0.50% 0.50%	1/10W 1/10W 1/10W
R569 R571 R572 R573	1-216-059-00 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.7K 8.2K	5% 5% 5% 5%	1/2W 1/10W 1/10W 1/10W	R1143 R1144 R1145 R1146 R1147	1-216-073-00 1-216-067-00 1-216-057-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	10K 5.6K 2.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W
R574 R575 R576	1-249-383-11	METAL GLAZE CARBON METAL GLAZE	1.5	5% (2 5% 5%	1/10W 20M4U/E/A) 1/4W F 1/10W	R1151 R1155	1-216-081-00 1-216-133-00	METAL GLAZE METAL GLAZE METAL GLAZE	22K 3.3M	5% 5% 5%	1/10W 1/10W 1/10W
R577 R578		METAL GLAZE METAL CHIP	10K 56K	5% (2 0.50%	1/10W 20M4U/E/A) 1/10W		1-218-768-11	METAL CHIP METAL CHIP	1M 470K	0.50% 0.50%	1/10W 1/10W
R580 R581	1-216-049-91	METAL GLAZE METAL GLAZE	1 K		1/10W 1/10W 20M4U/E/A)		1-216-049-91 1-216-049-91 1-216-097-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1K 1K 100K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W
R582 R583 R584	1-216-039-00	METAL GLAZE METAL GLAZE METAL GLAZE	390	5% 5% 5% (2	1/10W 1/10W 1/10W 20M4U/E/A)	R1168 R1169 R1170 R1171	1-216-097-91 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 47K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W
R584 R585		METAL GLAZE	220	5% 5%	1/10W (20M2U/E) 1/10W		1-216-295-91	METAL GLAZE CONDUCTOR, C	CHIP	5%	1/10W
R586 R587 R588	1-216-686-11 1-216-675-11 1-216-077-00	METAL CHIP METAL CHIP METAL GLAZE	30K 10K 15K	0.50% 0.50% 5%	1/10W 1/10W	R1174 R1177 R1179 R1180	1-216-071-00 1-216-041-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 470 47K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W
R589 R590 R591	1-216-081-00	METAL GLAZE METAL GLAZE METAL CHIP		5% 5% 0.50%	1/10W 1/10W 1/10W	R1182 R1183 R1184	1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	8.2K	5% 5% 5%	1/10W 1/10W 1/10W

REF. NO.	PART NO.	DESCRIPTION		REMARK	REF. NO.	PART NO.	DESCRIPTION		R	EMARK
R1185		METAL GLAZE 8.2K	5%	1/10W	R1357		METAL GLAZE		5%	1/10W
R1186		METAL GLAZE 2.7M METAL GLAZE 8.2K	5% 5%	1/10W 1/10W	R1358 R1359		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1187	1-210-071-00	MEIAL GLAZE 6.2K	3 70	1/10 W	R1360		METAL GLAZE		5%	1/10W
R1188		METAL GLAZE 2.7M	5%	1/10W	R1361	1-216-113-00	METAL GLAZE	470K	5%	1/10W
R1189 R1190		METAL GLAZE 8.2K METAL GLAZE 2.7M	5% 5%	1/10W 1/10W	R1362	1-216-676-11	METAL CHIP	11K	0.50%	1/10W
R1190		METAL GLAZE 2.7M METAL GLAZE 8.2K	5%	1/10W	R1363		METAL GLAZE		5%	1/10W
R1192		METAL GLAZE 2.7M	5%	1/10W	R1364		METAL GLAZE		5%	1/10W 1/10W
R1193	1-216-025-91	METAL GLAZE 100	5%	1/10W	R1365 R1366		METAL GLAZE METAL GLAZE		5% 5%	1/10W
R1194	1-216-085-00	METAL GLAZE 33K	5%	1/10W						4 14 0377
R1195		METAL GLAZE 100	5% 5%	1/10W 1/10W	R1367 R1368		METAL CHIP METAL GLAZE	2.4K	0.50% 5%	1/10W 1/10W
R1196 R1197		METAL GLAZE 33K METAL GLAZE 100	5%	1/10W	R1369		METAL GLAZE		5%	1/10W
		A ATTENDA OF A CITY OF A CITY	E 07	1 (1037)	R1370		METAL GLAZE		5% 5%	1/10W 1/10W
R1198 R1301		METAL GLAZE 33K METAL GLAZE 150	5% 5%	1/10W 1/10W	R1371	1-210-113-00	METAL GLAZE	4/UK	3%	1/10 **
R1302	1-216-029-00	METAL GLAZE 150	5%	1/10W	R1372		METAL GLAZE		5%	1/10W
R1303		METAL GLAZE 390 METAL GLAZE 39K	5% 5%	1/10W 1/10W	R1373 R1374		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1304	1-210-009-11	METAL OLAZE JAK	370	1/10**	R1375		METAL CHIP	560	0.50%	1/10W
R1305		METAL GLAZE 220	5%	1/10W	R1376	1-216-647-11	METAL CHIP	680	0.50%	1/10 W
R1306 R1307		METAL CHIP 560 METAL GLAZE 56K	0.50% 5%	1/10W 1/10W	R1377	1-216-055-00	METAL GLAZE	1.8 K	5%	1/10W
R1307		METAL CHIP 560	0.50%	1/10W	R1378	1-216-065-00	METAL GLAZE	4.7K	5%	1/10W
R1309	1-216-025-91	METAL GLAZE 100	5%	1/10W	R1379 R1380		METAL GLAZE METAL CHIP	330 560	5% 0.50%	1/10W 1/10W
R1311	1-216-089-91	METAL GLAZE 47K	5%	1/10W	R1381		METAL CHIP	680	0.50%	1/10W
R1312		METAL GLAZE 120	5%	1/10W	D 1202	1 214 072 00	METAL CLAZE	1017	501	1/10W
R1313 R1314		METAL GLAZE 100K METAL GLAZE 22K	5% 5%	1/10W 1/10W	R1382 R1383		METAL GLAZE METAL CHIP	10K 18K	5% 0.50%	1/10W
R1315		METAL GLAZE 100	5%	1/10W	R1384		METAL GLAZE		5%	1/10W
R1316	1 216 065 00	METAL GLAZE 4.7K	5%	1/10W	R1385 R1386		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1317		METAL GLAZE 220	5%	1/10W						
R1318		METAL GLAZE 47K	5% 5%	1/10W 1/10W	R1387 R1388		METAL CHIP METAL CHIP	1.2K 39K	0.50% 0.50%	1/10W 1/10W
R1319 R1320		METAL GLAZE 33K METAL GLAZE 2.2K	5%	1/10W	R1389		METAL CHIP	2K	0.50%	1/10W
			0.500	1 (1037	R1390		METAL CHIP	680	0.50%	1/10W
R1321 R1322		METAL CHIP 820 METAL GLAZE 2.2K	0.50% 5%	1/10W 1/10W	R1391	1-210-023-91	METAL GLAZE	100	5%	1/10W
R1324	1-216-061-00	METAL GLAZE 3.3K	5%	1/10W	R1392		METAL GLAZE		5%	1/10W
R1325 R1326		METAL CHIP 1.1K METAL GLAZE 10K	0.50% 5%	1/10W 1/10W	R1393 R1394		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
K1320	1-210-075-00	METAL CLINED TOR	370		R1395	1-216-071-00	METAL GLAZE	8.2K	5%	1/10W
R1327		METAL GLAZE 10K METAL GLAZE 1.5M	5% 5%	1/10W 1/10W	R1396	1-216-071-00	METAL GLAZE	8.2K	5%	1/10W
R1328 R1329		METAL GLAZE 1.5M METAL GLAZE 180K	5%	1/10W	R1397	1-216-065-00	METAL GLAZE	4.7K	5%	1/10W
R1330		METAL GLAZE 22K	5%	1/10W	R1399		METAL GLAZE		5%	1/10W
R1331	1-216-679-11	METAL CHIP 15K	0.50%	1/10W	R1401 R1402		METAL GLAZE CONDUCTOR, C		5%	1/10W
R1332		METAL CHIP 6.8K	0.50%		R1403			1K	0.50%	1/10W
R1333 R1334	1-216-049-91	METAL GLAZE 1K METAL GLAZE 3.9K	5% 5%	1/10W 1/10W	R1404	1-216-681-11	METAL CHIP	18K	0.50%	1/10W
R1335	1-249-401-11		5%	1/4W F	R1405	1-216-071-00	METAL GLAZE		5%	1/10W
R1336	1-216-095-00	METAL GLAZE 82K	5%	1/10W	R1406 R1407		METAL CHIP METAL GLAZE	1.2K	0.5 0% 5%	1/10W 1/10W
R1337	1-216-061-00	METAL GLAZE 3.3K	5%	1/10W	R1408		METAL GLAZE		5%	1/10W
R1338	1-216-647-11	METAL CHIP 680	0.50%	1/10W 1/10W	D1400	1 216 205 01	CONDUCTOR, C	ш		
R1339 R1340		METAL GLAZE 220 METAL GLAZE 220	5% 5%	1/10W	R1409 R1410		METAL GLAZE		5%	1/10W
R1341		METAL GLAZE 220	5%	1/10W	R1411	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R1342	1-216-083-00	METAL GLAZE 27K	5%	1/10W	R1412 R1413		METAL GLAZE METAL GLAZE	7 7 7	5% 5%	1/10W 1/10W
R1343	1-216-037-00	METAL GLAZE 330	5%	1/10W					270	
R1344		METAL GLAZE 68K	5%	1/10W	R1414		METAL GLAZE		5% 5%	1/10 W 1/10 W
R1345 R1346		METAL GLAZE 330K METAL GLAZE 100K	5% 5%	1/10W 1/10W	R1415 R1416		METAL GLAZE METAL GLAZE		5% 5%	1/10W
					R1417		METAL GLAZE		5%	1/10W
R1347 R1348		METAL GLAZE 10K METAL GLAZE 8.2K	5% 5%	1/10W 1/10W	R1418	1-210-033-00	METAL GLAZE	220	5%	1/10 W
R1349	1-216-035-00	METAL GLAZE 270	5%	1/10W	R1419		METAL GLAZE		5%	1/10W
R1350 R1351		METAL GLAZE 10K METAL GLAZE 220	5% 5%	1/10W 1/10W	R1420 R1421		METAL GLAZE METAL CHIP	47K 820	5% 05 0%	1/10 W 1/10 W
					R1422	1-216-085-00	METAL GLAZE	33K	5%	1/10W
R1352 R1353		METAL GLAZE 4.7K METAL GLAZE 4.7K	5% 5%	1/10W 1/10W	R1423	1-216-057-00	METAL GLAZE	2.2K	5%	1/10W
R1354	1-216-089-91	METAL GLAZE 47K	5%	1/10W	R1424		METAL GLAZE		5%	1/10W
R1355 R1356		METAL GLAZE 220 METAL GLAZE 220K	5% 5%	1/10W 1/10W	R1425 R1426		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
KIJJO	* ***O-100-21		2.0		R1427			18K	050%	1/10W
					•					

The components identified by

 in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.

Les composants identifies par une trame et une marque Δ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark \triangle are critical for safety.
Replace only with part number specified.

REF. NO.	PART NO.	DESCRIPTION		R	EMARK	REF. NO.	PART NO.	DESCRIPTION		R	EMARK
		***************************************	2 21/2				1 216 640 11	METAL CHIP	820	0.50%	1/10W
R1428		METAL GLAZE		5%	1/10W	R1500 R1501		METAL CHIP		5%	1/10W
R1429 R1430		METAL CHIP METAL GLAZE		0.50% 5%	1/10W 1/10W	R1502	1-260-105-11	CARBON	3.3K	5%	1/2W
R1431		METAL GLAZE		5%	1/10W	R1503		METAL GLAZE		5%	1/10W
R1432	1-216-089-91	METAL GLAZE	47K	5%	1/10W	R1504		METAL CHIP	30K	0.50%	1/10W
R1433	1-216-085-00	METAL GLAZE	33K	5%	1/10W	R1505	1-247-688-11		10	5%	1/4W F
R1434	1-216-645-11	METAL CHIP	560	0.50%	1/10W	R1506	1-216-041-00	METAL GLAZE	470	5%	1/10W (20M2U/E)
R1435	1-216-055-00	METAL GLAZE		5%	1/10W						
R1436		METAL GLAZE		5%	1/10W	R1506	1-216-049-91	METAL GLAZE	1 K	5%	1/10W
R1437		METAL GLAZE		5%	1/10W 1/10W	R1507	1 216 065 00	METAL GLAZE	17¥	5%)M4U/E/A) 1/10W
R1438	1-210-073-00	METAL GLAZE	IUK	5%	1/10 W	R1508		METAL GLAZE		5%	1/10W
R1439	1-216-059-00	METAL GLAZE	2.7K	5%	1/10W	R1509		METAL GLAZE		5%	1/10W
R1440		METAL GLAZE		5%	1/10W	R1510	1-216-077-00	METAL GLAZE	15 K	5%	1/10W
R1441		METAL GLAZE		5%	1/10W 1/10W	R1511	1 216 260 11	METAL OXIDE	8.2	5%	1W F
R1442 R1443		METAL GLAZE METAL GLAZE		5% 5%	1/10W	R1512		METAL CAIDE	680	0.50%	1/10W
101445	1 210 015 00	WIETTE GETEE		570	2,20,,	R1513	1-247-752-11		1K	5%	1/2W F
R1444		METAL GLAZE		5%	1/10W	R1514	1-247-711-11		680	5%	1/4W F
R1445		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1515	1-216-350-11	METAL OXIDE	1.2	5%	IW F
R1446 R1447		METAL GLAZE		5%	1/10W	R1516	1-216-101-00	METAL GLAZE	150K	5%	1/10W
R1448		METAL GLAZE		5%	1/10W	R1517	1-216-109-00	METAL GLAZE	330K	5%	1/10W
						R1518		METAL OXIDE		5%	lW F
R1449		METAL GLAZE		5%	1/10W	R1519		METAL OXIDE		5% 5%	1W F 1/10W
R1450 R1451		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1520	1-210-027-00	METAL GLAZE	120	370	1/10W
R1452		METAL GLAZE		5%	1/10W	R1521	1-216-029-00	METAL GLAZE	150	5%	1/10W
R1453	1-216-013-00	METAL GLAZE	33	5%	1/10W	R1523		METAL OXIDE		5%	IW F
			4 577	F.01	1/1011	R1524		METAL OXIDE METAL GLAZE		5%	1W F 1/10W
R1454 R1455		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1525 R1526		METAL GLAZE		5% 5%	1/10W 1/10W
R1456		METAL GLAZE		5%	1/10W	KISZO	1-210-005-51	METAL OBTEL	77.12	5.0	
R1457		METAL GLAZE		5%	1/10W	R1527	1-249-413-11		470	5%	1/4W F
R1458	1-216-085-00	METAL GLAZE	33K	5%	1/10W	R1528		METAL OXIDE	1K 8.2K	5% 20%	1W F 1/2W
R1459	1-216-133-00	METAL GLAZE	3 3M	5%	1/10W	R1529 R1530	1-202-829-11	METAL GLAZE		20% 5%	1/10W
R1460		METAL GLAZE		5%	1/10W	R1531	1-247-697-11		56	5%	1/4W F
R1461	1-216-645-11	METAL CHIP	560	0.50%	1/10W					-~	
R1462		METAL CHIP	560	0.50%	1/10W 1/10W	R1532 R1533	1-216-059-00 1-249-414-11	METAL GLAZE	2.7K 560	5% 5%	1/10W 1/4W F
R1463	1-210-045-11	METAL CHIP	560	0.50%	1/10W	R1534		METAL CHIP	2.2K	0.50%	1/10W
R1464	1-216-057-00	METAL GLAZE	2.2K	5%	1/10W	E €R1536		METAL CHIP			1/10W
R1465		METAL GLAZE		5%	1/10W	R1537	1-249-389-11	CARBON	4.7	5%	1/4W F
R1466 R1467		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1538	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R1468		METAL GLAZE		5%	1/10W	R1539		METAL GLAZE		5%	1/10W
											M4U/E/A)
R1469 R1470		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1540 R1541		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1470		METAL GLAZE		5%	1/10W	R1542	1-247-692-71		22	5%	1/4W F
R1472		METAL GLAZE		5%	1/10W						M4U/E/A)
R1473	1-216-081-00	METAL GLAZE	22K	5%	1/10W	71540	1 01 (007 00	1. CT 4.7E	100	E.01	1/1037
R1475	1 014 477 11	METAL CUID	12K	0.50%	1/10W	R1543 R1547		METAL GLAZE METAL OXIDE		5% 5%	1/10W 3W F
R1476		METAL CHIP METAL GLAZE		5%	1/10W	R1548		METAL GLAZE		5%	1/10W
R1477	1-216-057-00	METAL GLAZE	2.2K	5%	1/10W	R1549	1-260-094-11	CARBON	390	5%	1/2W
R1478		METAL GLAZE		5%	1/10W	R1550	1-216-105-91	METAL GLAZE	220K	5%	1/10W
R1480	1-216-089-91	METAL GLAZE	4/K	5%	1/10W	R1551	1-249-393-11	CARRON	10	5%	1/4W F
R1481	1-216-115-00	METAL GLAZE	560K	5%	1/10W	R1552		METAL GLAZE		5%	1/10W
R1482	1-216-089-91	METAL GLAZE	47K	5%	1/10W	R1553		METAL GLAZE		5%	1/10W
R1483		METAL GLAZE		5%	1/10W	R1554		METAL GLAZE		5%	1/10W
R1484 R1485		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1555	1-210-293-91	CONDUCTOR, C	THE		
111100	1 210-115-00	METAL GENER	******	570	1/10	R1556	1-216-071-00	METAL GLAZE	8.2K	5%	1/10W
R1486		METAL GLAZE		5%	1/10W	R1557	1-218-760-11	METAL CHIP	220K	0.50%	1/10W
R1487		METAL GLAZE		5%	1/10W	R1558	1-249-393-11		10 10	5% 5%	1/4W F
R1488 R1489		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R1559 R1560	1-249-393-11 1-216-049-91	METAL GLAZE		5%	1/10W
R1490		METAL GLAZE		5%	1/10W	11.500	1 0				
				= ~		R1564	1-216-645-11	METAL CHIP	560		1/10W
R1491 R1492		METAL GLAZE		5% 5%	1/10W 1/10W	R1567	1_216_090.01	METAL GLAZE	47K	5% (20	M4U/E/⊾) 1/10W
R1492 R1493		METAL GLAZE METAL GLAZE		5% 5%	1/10W	R1568		METAL GLAZE		5%	1/10W
R1494		METAL GLAZE		5%	1/10W	R1569	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R1495		METAL GLAZE		5%	1/10W	R1570	1-216-073-00	METAL GLAZE	10 K	5%	1/10W
R1496	1-216-020-01	METAL GLAZE	47K	5%	1/10W	R1571	1-216-103-00	METAL GLAZE	180K	5%	1/10W
R1498		METAL GLAZE		5%	1/10W	R1572		METAL GLAZE		5%	1/10W
R1499		METAL GLAZE		5%	1/10W	R1573	1-216-073-00	METAL GLAZE	10 K	5%	1/10W

REF. NO.	PART NO.	DESCRIPTION		j	REMARK	REF. NO.	PART NO.	DESCRIPTION		F	REMARK
R1574		METAL GLAZE		5% 5%	1/10W 1/10W	R2331 R2332		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1575	1-210-023-91	METAL GLAZE	100			R2333	1-216-089-91	METAL GLAZE	47K	5%	1/10W
R1576		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2334 R2335		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1577 R1578		METAL GLAZE		5%	1/10W						
R1579		METAL CHIP METAL GLAZE	39K	0.50% 5%	1/10W 1/10W	R2336 R2337		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1580	1-210-063-00	METAL OLAZE	2/K		0M4U/E/A)	R2338	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R1581	1-208-612-11	METAL OXIDE	10M	5%	1W	R2339 R2340		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
				(2	0M4U/E/A)						1/1037
R1582	1-208-610-11	METAL OXIDE	2 M	5% (2	1W 0M4U/E/A)	R2341 R2342		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1583	1-212-998-00	FUSIBLE	470	5%	1/2W F	R2343 R2344		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1584	1-216-674-11	METAL CHIP	9.1K		0M4U/E/A) 1/10W	R2345		METAL CHIP	18K	0.50%	1/10W
			101	5% (2	0M4UÆ/A) 1/10W	R2346	1-216-061-00	METAL GLAZE	3 3K	5%	1/10W
R1585	1-210-055-00	METAL GLAZE	1.0K		0M4U/E/A)	R2347	1-216-061-00	METAL GLAZE	3.3K	5%	1/10W
R1586	1.216.601.11	METAL CHIP	47K	0.50%	1/10W	R2348 R2349		METAL GLAZE METAL CHIP	3.3K 15K	5% 0.50%	1/10W 1/10W
KIJOU				(2	0M4U/E/A)	R2350		METAL GLAZE		5%	1/10W
R1587	1-216-057-00	METAL GLAZE	2.2K	5%	1/10W 0M4U/E/A)	R2351	1-216-061-00	METAL GLAZE	3.3K	5%	1/10W
R1588	1-216-298-00	METAL GLAZE	2.2	5%	1/10W	R2352	1-216-061-00	METAL GLAZE	3.3K	5%	1/10W
R1589	1-216-386-11	METAL OXIDE	0.56	5% (2	0M4U/E/A) 3W F			METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1590		METAL GLAZE		5%	1/10W	R2358		METAL GLAZE		5%	1/10W
				(2	OM4U/E/A)	R2361	1-216-099-00	METAL GLAZE	120K	5%	1/10W
R1591	1-249-443-11	CARBON	0.47	5%	1/4W F	R2362 R2363		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1592	1-247-760-11	CARBON	4.7K	5%	0M4U/E/A) 1/2W F	R2364	1-216-025-91	METAL GLAZE	100	5%	1/10W
R1593	1-249-485-11	CAPRON	8.2	5% (2	0M4U/E/A) 1/2W F	R2365	1-216-687-11	METAL CHIP	33K	0.50%	1/10W
				(2	0M4U/E/A)	R2366		METAL GLAZE		5%	1/10W
R1594	1-216-360-11	METAL OXIDE	8.2	5% (2	1W F 0M4U/E/A)	R2367 R2368		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1595	1-216-101-00	METAL GLAZE	150K	5%	1/10W	R2369		METAL CHIP	10K	0.50% 5%	1/10W 1/10W
R1596	1-216-073-00	METAL GLAZE	10 K	5%	1/10W	R2371	1-210-049-91	METAL GLAZE	117		
R1597		METAL GLAZE		5% 5%	1/10W 1/10W	R2372 R2374		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R1598 R1599	1-202-830-00	METAL GLAZE SOLID	10K	20%	1/2W	R2375	1-216-089-91	METAL GLAZE	47K	5%	1/10W
R2300	1_216_065_00	METAL GLAZE	4 7K	5% (2	0M4U/E/A) 1/10W	R2376 R2377		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2301 R2302		METAL GLAZE METAL CHIP	4.7K 6.8K	5% 0.50%	1/10W 1/10W	R2378 R2379		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2303	1-216-093-00	METAL GLAZE	68K	5%	1/10W	R2380	1-216-089-91	METAL GLAZE	47K	5% 5%	1/10W 1/10W
R2304 R2305		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2381 R2382		METAL GLAZE METAL GLAZE		<i>⊃</i> % 5%	1/10W
	1 216 000 01	METAL GLAZE	ATK	5%	1/10W	R2383	1-216-033-00	METAL GLAZE	220	5%	1/10W
R2306 R2307	1-216-033-00	METAL GLAZE	220	5%	1/10W	R2384	1-216-689-11	METAL GLAZE	39K	5%	1/10W
R2308 R2309		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2385 R2386		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2310		METAL GLAZE		5%	1/10W	R2387		METAL GLAZE		5%	1/10W
R2311	1-216-073-00	METAL GLAZE	10K	5%	1/10W	R2388	1-216-073-00	METAL GLAZE	10 K	5%	1/10W
R2312	1-216-053-00	METAL GLAZE	1.5K	5%	1/10W 1/10W	R2389 R2390		METAL GLAZE METAL CHIP	220 680	5% 050 %	1/10W 1/10W
R2313 R2314		METAL GLAZE METAL CHIP	560	5% 0.50%	1/10W	R2391	1-216-647-11	METAL CHIP	680	050%	1/10W
R2315	1-216-679-11	METAL CHIP	15K	0.50%	1/10W	R2392	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R2316	1-216-081-00	METAL GLAZE	22K	5%	1/10W	R2393		METAL GLAZE		5%	1/10W
R2317 R2318		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2394 R2396		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2319	1-216-093-00	METAL GLAZE	68K	5%	1/10W	R2397	1-216-113-00	METAL GLAZE	470K	5%	1/10W
R2320	1-216-677-11	METAL CHIP	12K	0.50%	1/10W	R2398	1-216-109-00	METAL GLAZE	330K	5%	1/10W
R2321		METAL GLAZE		5%	1/10W	R2399		METAL GLAZE		5%	1/10W 1/10W
R2322 R2323		METAL GLAZE METAL CHIP	4.7K 22K	5% 0.50%	1/10W 1/10W	R2501 R2502		METAL GLAZE METAL GLAZE		5% 5%	1/10W
R2324	1-216-073-00	METAL GLAZE	10K	5% 5%	1/10W 1/10W	R2503 R2504	1-216-097-91	METAL GLAZE METAL GLAZE	100K	5% 5%	1/10W 1/10W
R2325		METAL GLAZE									
R2326 R2327		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2505 R2506		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2328	1-216-049-91	METAL GLAZE	1K	5%	1/10W						(20M2U/E) 1/10W
R2329 R2330		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R2506	1-210-101-00	METAL GLAZE	JUK	5% (20	0M4U/E/A)

Les composants identifies par une trame et une marque Λ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark ∆ are critical for safety.
Replace only with part number specified.

REF. NO.	PART NO.	DESCRIPTION		F	REMARK	REF. NO.	PART NO.	DESCRIPTION		I -	REMARK
R2507	1-216-105-91	METAL GLAZE	220K	5%	1/10W	R3385		METAL GLAZE		5%	1/10W
R2507	1-216-109-00	METAL GLAZE	330K	5%	(20M2U/E) 1/10W	R3390	1-216-057-00	METAL GLAZE METAL GLAZE	2.2K	5% 5%	1/10W 1/10W
				(20)M4U/E/A)	R3394 R3395		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2551 R2552		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R3396		METAL GLAZE		5%	1/10W
R2553	1-216-083-00	METAL GLAZE	27K	5%	1/10W	R3398	1-216-688-11	METAL CHIP	36K	0.50%	1/10W
R2555 R2556		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R4401 R4402		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2557		METAL GLAZE		5%	1/10W	R4404	1-216-073-00	METAL GLAZE	10K	5%	1/10 W
R2558	1-216-057-00	METAL GLAZE	2.2K	5%	1/10W	R4405	1-216-069-00	METAL GLAZE	6.8K	5%	1/10W
R2559 R2560		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R4407 R4408		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2561	1-216-001-00	METAL GLAZE	10	5%	1/10W	R4409 R4410		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W
R2562 R2563	1-216-001-00 1-249-421-11	METAL GLAZE	10 2.2 K	5% 5%	1/10W 1/4W	R4411		METAL GLAZE		5%	1/10W
R3301	1-216-073-00	METAL GLAZE	10 K	5%	1/10W	R4412	1-216-113-00	METAL GLAZE	470K	5%	1/10W
R3302 R3303		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	R4413 R4414		CONDUCTOR, C			
					1/10W	R4415		CONDUCTOR, C			
R3304 R3305	1-216-061-00	METAL GLAZE METAL GLAZE	3.3K	5% 5%	1/10W	R4416	1-216-295-91	CONDUCTOR, C	CHIP		
R3306 R3308		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W						
R3309		METAL GLAZE		5%	1/10W			<variable re<="" td=""><td>SISTOR></td><td></td><td></td></variable>	SISTOR>		
R3310		METAL GLAZE		5%	1/10W	RV501	1-223-102-00	RES, ADJ, WIRE	WOUND 1	20	
R3311 R3312		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W						
R3317 R3320		METAL CHIP METAL GLAZE	10K 33K	0.50% 5%	1/10W 1/10W			<transforme< td=""><td>R></td><td></td><td></td></transforme<>	R>		
						T300	1-406-781-11		CEDDITE	(IIDT)	
R3323 R3333		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	T500 T501		TRANSFORMER TRANSFORMER			
R3334 R3335		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	T501 T501		RING, SHORT SCREW +BVTP	AYIK TVDE	:0 IT_3	
R3337		METAL GLAZE		5%	1/10W						
R3338		METAL GLAZE		5%	1/10W	T502 T503		TRANSFORMER TRANSFORMER		(DFI)	
R3339 R3340		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W						
R3344 R3345	1-216-081-00	METAL GLAZE METAL GLAZE	22K	5% 5%	1/10W 1/10W			<thermistor:< td=""><td>></td><td></td><td></td></thermistor:<>	>		
						TH500	1-807-970-11	THERMISTOR			
R3346 R3347		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W						
R3348 R3349		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W			<test pin=""></test>			
R3350		METAL GLAZE		5%	1/10W	TP300 TP301		CHIP, CHECKER CHIP, CHECKER			
R3351		METAL GLAZE		5%	1/10W	TP305	*1-535-877-22	CHIP, CHECKER	Ł		
R3353 R3355		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	TP306 TP307		CHIP, CHECKER CHIP, CHECKER			
R3356 R3357	1-216-051-00	METAL GLAZE	1.2K	5%	1/10W 1/10W	TP311		CHIP, CHECKER			
		METAL GLAZE		5%		TP312	* 1-535-877-22	CHIP, CHECKER	2		
R3358 R3359		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	TP401 TP402		CHIP, CHECKER CHIP, CHECKER			
R3360	1-216-073-00	METAL GLAZE	10 K	5%	1/10W	TP403		CHIP, CHECKER			
R3361 R3362		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	TP501		CHIP, CHECKER			
R3363	1-216-049-91	METAL GLAZE	1 K	5%	1/10W	TP502 TP503		CHIP, CHECKER CHIP, CHECKER			
R3364 R3365		METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W	TP504	* 1-535-877-22	CHIP, CHECKER			
R3366	1-216-093-00	METAL GLAZE	68K	5%	1/10W			-ODMOTAL.			
R3367		METAL GLAZE		5%	1/10W			<crystal></crystal>			
R3368 R3369		METAL GLAZE		5% 5%	1/10W 1/10W	X101 X300		VIBRATOR, CER VIBRATOR, CR			
R3376 R3377	1-216-081-00	METAL GLAZE	22K	5%	1/10W	X300 X301	3-741-396-01	INSULATOR VIBRATOR, CRY			
R3378		METAL GLAZE		5% 5%	1/10W 1/10W	X301		INSULATOR	SIAL		
R3379	1-216-107-00	METAL GLAZE	270K	5%	1/10W						
R3381 R3382		METAL GLAZE METAL CHIP	470 560	5% 0.50%	1/10W 1/10W	*****	****	*******	******	******	*****
R3383 R3384	1-216-069-00	METAL GLAZE	6.8K	5% 5%	1/10W						
POCCA	1-210-003-91	METAL GLAZE	J.7K	J70	1/10W						

REF. NO	D. PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION			REMAR	K
	* A-1316-302-A	4 G BOARD, CO				D616 D617 D618	8-719-110-44	DIODE ERA15- DIODE RD16ES DIODE EGP200	B1			
	* 4-374-846-11 4-382-854-11	HOLDER, FUSE COVER, CAPAC SCREW (M3X10 RUBBER, SILIC	CITOR, CAI)), P, SW (+)				<ferrite bea<="" td=""><td>.D></td><td></td><td></td><td></td></ferrite>	.D>			
	7-322-003-19	<capacitor></capacitor>	ON KIV (F	LE49U W	')	FB601 FB602 FB603 FB604	1-410-396-41 1-410-396-41	FERRITE BEAD INDUCTOR 0.45UH FERRITE BEAD INDUCTOR 0.45UH FERRITE BEAD INDUCTOR 0.45UH				
C602 C603	1-130-711-00 1-130-711-00		0.22MF 0.22MF	20% 20%	250V 250V	FB605		FERRITE BEAL FERRITE BEAL				
C604 C605 C606	1-113-924-11 1-113-924-11 1-113-924-11	CERAMIC CERAMIC CERAMIC	0.0047MF 0.0047MF 0.0047MF	20% 20% 20%	250V 250V 250V	FB606 FB607 FB608 FB609	1-410-396-41 1-410-397-21 1-410-397-21	FERRITE BEAL FERRITE BEAL FERRITE BEAL FERRITE BEAL	INDUCTO INDUCTO INDUCTO	OR 0.45U OR 1.1UI OR 1.1UI	JH H H	
C607 C608	1-113-924-11 1-113-924-11	CERAMIC	0.0047MF 0.0047MF 0.0047MF	20%	250V 250V	FB610		FERRITE BEAD				
C609 C610 C611	1-113-924-11 1-113-924-11 1-113-924-11	CERAMIC	0.0047MF 0.0047MF 0.0047MF	20%	250V 250V 250V	FB611 FB612 FB613	1-410-397-21	FERRITE BEAD FERRITE BEAD FERRITE BEAD	INDUCT	OR 1.1 UI	H	
C612 C613	1-137-484-11 1-137-484-11	FILM	0.47MF 0.47MF	10% 10%	630V 630V			<ic></ic>				
C614 C615	1-129-718-00 1-136-619-11	FILM	0.0016MF		630V 2KV	IC601		SHEET, INSULA	ATING			
C616 C617	1-107-909-11 1-107-430-91		47MF 0.0033MF	20% 10%	35V 1KV	IC601 IC602 IC603	8-749-010-47	IC STR-M6524 IC STR-S3115 IC NJM78M05F.	A			
C618 C619	1-107-906-11 1-107-911-11	ELECT	10MF 220MF	20% 20%	50V 50V	IC604	8-759-231-53		· •			
C621 C622	1-117-791-11 1-102-038-00		1000MF 0.001MF	20%	160V 500V	IC605	8-759-231-58	IC TA7812S				
C623 C624	1-107-900-51 1-102-038-00		4700MF 0.001MF	20%	35V 500V			<coil></coil>				
C625 C626	1-107-900-51 1-102-038-00	ELECT	4700MF 0.001MF	20%	35V 500V	L601 L1601		COIL, CHOKE 2 INDUCTOR 270				
C627	1-107-900-51	ELECT	4700MF	20%	35V	L1602 L2601	1-421-421-00	COIL, CHOKE COIL (WITH CO		ſ		
C628 C629	1-102-038-00 1-107-891-11	ELECT	0.001MF 3300MF	20%	500V 25V							
C630 C631 C632	1-126-964-11 1-136-853-11 1-107-492-11	FILM	10MF 0.56MF 47MF	20% 5% 20%	50V 200V 160V	PH601	9 740 022 50	PHOTO COUPL		VC.		
C633	1-107-885-11		3300MF	20%	16V	riiooi	6-749-923-30	THOTO COUPL	ER PCIII	13		
C634 C636	1-107-911-11 1-107-909-11	ELECT	220MF 47MF	20% 20%	50V 50V			<transistor:< td=""><td>•</td><td></td><td></td><td></td></transistor:<>	•			
C637 C638	1-107-910-11 1-137-484-11		100MF 0.47MF	20% 10%	50V 630V	Q601 Q603		TRANSISTOR 2 TRANSISTOR 2				
C2601	1-102-038-00	CERAMIC	0.001MF		500V			<resistor></resistor>				
		<connector></connector>				R601	1-202-719-00		1M	2)%	1/2W	
CN601 CN602 CN603	* 1-695-561-11	PIN, CONNECTO PIN, CONNECTO PIN, CONNECTO	OR (PC BOA	ARD) 7	P	R602 R603 R604 R605			56K 39K 1.2K	5% 5% 5%	3W 3W 1/4W	F F
CN605 CN606	* 1-573-964-11	PIN, CONNECTO PLUG, CONNEC	OR (PC BOA			R606		WIREWOUND	680 0.15	5% 11%	1/4W 3W	F
CN607		PLUG, CONNEC				R607 R608	1-249-426-11 1-249-428-11	CARBON	5.6K 8.2K	5% 5%	1/4W 1/4W	-
CN609	1-508-786-00	PIN, CONNECTO	OR (5mm PI	TCH) 2	:P	R609 R610	1-249-428-11 1-249-428-11		8.2K 8.2K	5% 5%	1/4W 1/4W	
		<diode></diode>			į	R611 R612	1-249-417-11 1-249-404-00		1K 82	5% 5%	1/4W 1/4W	F
D601 D605		DIODE D4SB60I DIODE EGP20G	_			R613 R614	1-249-419-11 1-249-385-11	CARBON	1.5K 2.2	5% 5%	1/4W	F
D606 D607	8-719-300-33	DIODE RGP15K- DIODE RU-3AM			1	R615	1-202-727-00		4.7M	11%	1/2W	
D608		DIODE BU 2AM			1 1 1 1	R617 R618	1-202-933-61 1-202-933-61	FUSIBLE	0.1 0.1	11%	1/2W 1/2W	F F
D609 D610 D612	8-719-029-04	DIODE RU-3AM DIODE D5L60 DIODE FML-G12				R619 R620 R621	1-202-933-61 1-202-933-61	FUSIBLE	0.1 0.1	11% 11% 5r	1/2W 1/2W 1W	F F F
D612 D613 D614	8-719-979-85	DIODE FML-G12 DIODE EGP20G DIODE FML-G12				R622	1-249-401-11	METAL OXIDE	22K 47	5% 5%	1 W 1/4W	F
D615		DIODE EGP20G				R623 R626	1-249-417-11 1-247-895-91	CARBON	1K 470K	5% 5% 5%	1/4W 1/4W	•

REF. NO.	PART NO.	DESCRIPTION			REMARK		REF. NO.	PART NO.	DESCRIPTION			REMAR	<u>K</u>
R627 R628		METAL OXIDE METAL OXIDE		5% 5%	3W 3W	F F	CN702 CN703 CN704	1-695-915-11	PIN, CONNECT TAB (CONTAC TAB (CONTAC	Γ)		iΡ	
R629 R630 R631	1-202-727-00 1-216-490-11 1-249-412-11	METAL OXIDE	4.7M 39K 390	10% 5% 5%	1/2W 3W 1/4W	F F	01 1761	. 030 310 11	<diode></diode>	-) (201110			
R632 R1602	1-249-401-11 1-202-842-11	CARBON	47 220K	5% 20%	1/4W 1/2W	F	D701		DIODE 1SS119-				
R1603	1-202-842-11	SOLID	220K	20%	1/2W		D702 D703 D704 D705	8-719-911-19 8-719-911-19	DIODE 1SS119- DIODE 1SS119- DIODE 1SS119- DIODE 1SS119-	25 25			
		<relay></relay>					D706		DIODE 1SS119-				
RY601	1-515-738-11		7 n ~				D707 D708 D709	8-719-901-83 8-719-901-83 8-719-901-83	DIODE 1SS83 DIODE 1SS83 DIODE 1SS83				
T601	1-426-716-11	<transforme< p=""> TRANSFORME</transforme<>		TER (I	FT)		D713 D715		DIODE 1SS83				
T602 T603	1-426-716-11	TRANSFORMER TRANSFORMER	R, LINE FIL	.TER (I	LFT)		D716 D717	8-719-901-83	DIODE 1SS83 DIODE 1SS83				
		<thermistor< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td><jack></jack></td><td></td><td></td><td></td><td></td></thermistor<>	>						<jack></jack>				
THP601	1-808-059-31	THERMISTOR,	POSITIVE				J701 J701		SOCKET, PICTU SOCKET, PICTU				
TTD1 (01	1 #0< 0#4 00	<test pin=""></test>							<coil></coil>				
TP1601	1-536-354-00	POST PIN					L702 L703		INDUCTOR 22U INDUCTOR 27U				
		<varistor></varistor>					L703 L704 L705	1-408-608-31 1-412-530-31	INDUCTOR 27U INDUCTOR 27U	H H (20M2U	J/E)		
	1-809-942-71 1-809-942-71				•		L705	1-412-532-11	INDUCTOR 39U	JH (20M4U	J/E/A)		
****	***	******					L706	1-410-667-31	INDUCTOR 22U	H			
,,,,,,,,,		C BOARD, CO							<transistor:< td=""><td>•</td><td></td><td></td><td></td></transistor:<>	•			
		**************************************	********* MPLETE (F			,	Q701 Q702 Q703	8-729-119-78 8-729-119-78	TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2	SC2785-НІ SC2785-НІ	FE		
	7-682-949-01	SCREW +PSW 3					Q704 Q705		TRANSISTOR 2				
	7 002-545 01	SCREW ITOW S					Q706 Q710		TRANSISTOR 2 TRANSISTOR 2				
		<capacitor></capacitor>					Q711 Q712	8-729-200-17	TRANSISTOR 2 TRANSISTOR 2	SA1091-O			
C701 C702	1-102-116-00 1-102-116-00	CERAMIC	680PF	10% 10%	50V 50V		Q713		TRANSISTOR 2				
C703 C704 C705	1-102-116-00 1-102-121-00 1-104-665-11	CERAMIC	680PF 0.0022MF 100MF	10% 10% 20%	50V 50V 16V		Q714 Q715 Q716 Q717	8-729-255-12 8-729-255-12	TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2	SC2551-O SC2551-O			
C706 C707	1-102-074-00 1-162-116-00		0.001MF 680PF	10% 10%	50V 2KV		Q ,	0 .2. 200 12					
C708 C710	1-136-601-11 1-101-880-00	CERAMIC	0.01MF 47PF	10% 5%	630V 50V				<resistor></resistor>				
C711	1-101-880-00		47PF	5%	50V		R702 R704	1-247-897-11 1-215-404-00	METAL	560K 200	5% 1%	1/4W 1/4W	
C712 C714 C715	1-101-880-00 1-102-976-00 1-102-976-00	CERAMIC	47PF 180PF 180PF	5% 5% 5%	50V 50V 50V		R705 R706 R707	1-215-404-00 1-215-404-00 1-249-429-11	METAL	200 200 10K	1% 1% 5%	1/4W 1/4W 1/4W	
C716 C724	1-102-976-00 1-107-929-11	CERAMIC	180PF 10MF	5% 20%	50V 100V		R708	1-249-429-11		10K	5%	1/4W	
C=0.4					(20M2U/	E)	R709 R710	1-249-429-11 1-215-388-00	CARBON METAL	10K 43	5% 1%	1/4W 1/4W	
C726 C733 C734	1-107-662-11	ELECT	22MF 10MF	20% 20%	250V 250V		R711 R712	1-215-390-00 1-215-388-00		51 43	1% 1%	1/4W 1/4W	
C737 C740	1-101-888-00 1-102-934-00 1-162-114-00	CERAMIC	68PF 1PF 0.0047MF	5% 0.25PF	50V 50V 2KV		R715 R716	1-202-818-00	SOLID METAL OXIDE	1K	20% 5%	1/2W 3W	F
2	- 402-114-00	ODEN MAIO	0.0047111		20M4U/E/	A)	R717 R718	1-202-818-00		1 K	20% 5%	1/2W 3W	F
		<connector></connector>					R719	1-202-818-00	SOLID	1K	20%	1/2W	
CN701	* 1-564-511-11	PLUG, CONNEC	TOR 8P			l	R720 R722	1-216-486-00 1-202-883-11	METAL OXIDE SOLID	8.2K 680K	5% 20%	3W 1/2W	F

The components identified by shading and mark Δ are critical for safety.
Replace only with part number specified.

Les composants identifies par une trame et une marque Δ sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

		DESCRIPTION			DEMARK		DEC NO	DADE NO	DECONTRACT			DEMARK
REF. NO.	PART NO.	DESCRIPTION			REMARK		REF. NO.	PART NO.	DESCRIPTION			REMARK
R723 R724 R725	1-202-838-00 1-202-842-11 1-202-838-00	SOLID	100K 220K 100K	20% 20% 20%	1/2W 1/2W 1/2W		R2137 R2138	1-249-414-11 1-249-414-11		560 560	5% 5%	1/4W 1/4W
R726	1-202-846-00		470K	20%	1/2W (20M2U/	E)	R2139 R2140 R2141	1-249-414-11 1-249-414-11 1-249-414-11	CARBON	560 560 560	5% 5% 5%	1/4W 1/4W 1/4W
R728	1-202-837-00	SOLID	82K	20%	1/2W (20M2U/	E)	R2142 R2143	1-249-414-11 1-249-414-11		560 560	5% 5%	1/4W 1/4W
R729	1-202-549-00	SOLID	100	20%	1/2W (20M2U/			1-249-414-11		560	5%	1/4W
R731 R732	1-247-815-91 1-247-815-91		220 220	5% 5%	1/4W 1/4W		R2145 R2147 R2148	1-249-414-11 1-215-427-00 1-215-419-00	CARBON METAL	560 1.8K 820	5% 1% 1%	1/4W 1/4W 1/4W
R733 R734	1-247-815-91 1-249-409-11		220 220	5% 5%	1/4W 1/4W	F	R2149	1-215-414-00	METAL	510	1%	1/4W
R735	1-249-409-11	CARBON	220	5%	1/4W	F	R2150	1-215-409-00		330	1%	1/4W
R736 R737	1-249-409-11 1-247-807-31		220 100	5% 5%	1/4W 1/4W	F	R2151 R2152	1-215-407-00 1-215-404-00	METAL	270 200	1% 1%	1/4W 1/4W
R738	1-247-807-31	CARBON	100	5%	1/4W		R2153 R2154	1-215-401-11 1-215-399-00		150 120	1% 1%	1/4W 1/4W
R739	1-247-807-31 1-249-433-11	CARBON	100 22K	5% 5%	1/4W 1/4W	F	R2155	1-215-397-00	METAI	100	1%	1/4W
R740 R741	1-249-433-11		22K 22K	5%		F	R2156	1-215-397-00		1K	1%	1/4W 1/4W
R742	1-249-433-11	CARBON	22K	5%	1/4W	F	R2157 R2158	1-215-416-00 1-215-410-00		620 360	1% 1%	1/4W 1/4W
R744	1-247-843-11		3.3K	5%	1/4W		R2159	1-215-405-00		220	1%	1/4W
R745 R746	1-249-429-11 1-215-879-11	CARBON METAL OXIDE	10K 47K	5% 5%		F	R2160	1-215-421-00	METAL	1 K	1%	1/4W
R747 R748	1-247-725-11 1-249-923-11		10K 1K	5% 5%		F						
R749		METAL OXIDE		5%		F			<variable re<="" td=""><td>SISTOR></td><td></td><td></td></variable>	SISTOR>		
R751	1-247-887-00	CARBON	220K	5%	1/4W	1	RV2101		RES, VAR, CAR			
R752 R753	1-247-887-00 1-247-887-00		220K 220K	5% 5%	1/4W 1/4W	ĺ	RV2105	1-225-385-11	RES, VAR, CAR	BON 20K		
R754	1-247-863-91		22K	5%	1/4W		RV2109 RV2113	1-225-385-11	RES, VAR, CAR RES, VAR, CAR	BON 20K		
R755	1-249-434-11 1-249-440-11		27K 82K	5% 5%	1/4W 1/4W				RES, VAR, CAR			
R756 R760	1-249-400-11		39	5%	1/4W	F	KV211/	1-241-230-21	RES, VAR, CAR	DON ZUK		
		<variable re<="" td=""><td>SISTOP~</td><td></td><td></td><td></td><td></td><td></td><td><\$WITCH></td><td></td><td></td><td></td></variable>	SISTOP~						<\$WITCH>			
							S2101		SWITCH, KEY B			
RV708 RV709		RES, ADJ, META				j	S2102 S2103		SWITCH, KEY B SWITCH, KEY B			
						Ì	S2104 S2105		SWITCH, KEY B SWITCH, KEY B			
		<spark gap=""></spark>					S2106		SWITCH, KEY B			
SG701		GAP, SPARK (20					S2107	1-570-969-11	SWITCH, KEY B	OARD		
SG702 SG703		GAP, SPARK (20 GAP, SPARK (20					S2108 S2109		SWITCH, KEY B SWITCH, KEY B			
SG704		GAP, SPARK (20					S2110	4 404 44	SWITCH, KEY B			
							S2111 S2112		SWITCH, KEY B SWITCH, KEY B			
*****	******	*******	*****	*****	******	*	S2113	1-570-969-11	SWITCH, KEY B	OARD		
•	* A-1372-302-A	H BOARD, CO					S2114	1-5/0-969-11	SWITCH, KEY B	OARD		
		******	******									
•	~ 4-548-208-00	HOLDER, LED							*******		·	·
		<connector></connector>					*	'A-1388-193-A	J BOARD, COM			
		PLUG, CONNEC PLUG, CONNEC							<connector></connector>			
		<diode></diode>					CN608 *	1-695-561-11	PIN, CONNECTO	R (PC BOA	ARD) 7	P
D2102		DIODE SLP281C	-50						<switch></switch>			
D2103 D2104		DIODE TLY123 DIODE 1SS133T-	-77				S601 ∆	1-692-921-11	SWITCH, PUSH (A.C. POW	ER .	
						*			The second secon		~~~~ <u>~~~</u>	
		<resistor></resistor>					*****	******	******	*****	*****	*****
R2101	1-249-419-11		1.5K	5%	1/4W							
R2107 R2136	1-249-430-11 1-249-414-11		12K 560	5% 5%	1/4W 1/4W	ļ						

Les composants identifies par une trame et une marque \(\Lambda\) sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie.

The componants identified by shading and mark ∆ are critical for safety.
Replace only with part number specified.

REF. NO.	PART NO.	DESCRIPTION		1	REMARK	REF. NO.	PART NO.	DESCRIPTION			REMARK
	* A-1390-704-A	X BOARD, CO				C2404 C2405	1-104-396-11 1-124-589-11		10MF 47MF	20% 20%	16V 16V
		<connector></connector>	•			C2406 C2407 C2408	1-104-396-11 1-104-396-11	ELECT	10MF 10MF	20% 20%	16V 16V
CN108	* 1-564-518-11	PLUG, CONNEC	TOR 3P			C2408 C2409 C2410	1-104-396-11 1-124-234-00 1-163-033-91		10MF 22MF 0.022MF	20% 20%	16V 16V 50V
		<diode></diode>				C2411 C2412	1-104-396-11 1-104-396-11		10MF 10MF	20% 20%	16V 16V
D001		DIODE SEL3810				C2412 C2413 C2414	1-163-117-00	CERAMIC CHIP	100PF	20% 5% 20%	50V
D002 D003 D004	8-719-023-78	DIODE SEL3810 DIODE SEL3810	DLC05			C2415		CERAMIC CHIP			50V 50V
						C2416 C2418		CERAMIC CHIP		20%	16V 50V
*****	******	*******	******	******	******	C2422 C2423	1-124-234-00 1-124-234-00	ELECT	22MF 22MF	20% 20%	16V 16V
	* A-1390-705-A	S BOARD, CO				C2424		CERAMIC CHIP		000	50V
		********		'M-20M	2U/20M4U)		1-124-589-11 1-124-589-11	ELECT	47MF 47MF	20% 20%	16V 16V
		<capacitor></capacitor>				C2427 C2428	1-124-234-00 1-163-033-91	ELECT CERAMIC CHIP	22MF 0.022MF	20%	16V 50V
C805	1-102-978-00		220PF	5%	50V	C2429	1-124-234-00		22MF	20%	16V
C806	1-136-165-00	FILM	0.1MF	5%	50V	C2430		CERAMIC CHIP			50V
C807 C810	1-130-477-00 1-136-165-00		0.0033MF 0.1MF	5% 5%	50V 50V	C2431 C2432	1-124-234-00 1-124-234-00		22MF 22MF	20% 20%	16V 16V
C811	1-136-165-00		0.1MF	5%	50V	C2433 C2434		CERAMIC CHIP	0.022MF 0.1MF	20%	50V 50V
C812	1-136-495-11		0.068MF	5%	50V					2070	
C813 C818	1-124-261-00 1-136-165-00		10MF 0.1MF	20% 5%	50V 50V	C2435 C2436	1-163-033-91 1-124-234-00	CERAMIC CHIP ELECT	0.022MF 22MF	20%	50V 16V
						C2437 C2438	1-163-033-91 1-124-234-00	CERAMIC CHIP	0.022MF 22MF	20%	50V
		<connector></connector>	•			C2439	1-124-234-00		22MF	20%	16V 16V
CN801	*1-573-896-11	SOCKET, CONN	ECTOR 12	P		C2440	1-163-033-91	CERAMIC CHIP	0.022MF		50V
		•				C2441 C2442	1-124-234-00 1-124-234-00		22MF 22MF	20% 20%	16V 16V
		<coil></coil>				C2443	1-124-234-00	ELECT	22MF	20%	16V
L801	1-410-470-11	INDUCTOR 10U	Н			C2444	1-124-234-00	ELECT	22MF	20%	16V
						C2445 C2446		CERAMIC CHIP CERAMIC CHIP			50V 50V
		<resistor></resistor>				C2447	1-124-234-00	ELECT	22MF	20%	16V
R802	1-249-435-11	CARBON	33K	5%	1/4W	C2448 C2449	1-124-234-00 1-124-234-00		22MF 22MF	20% 20%	16V 16V
R803 R804	1-247-863-91 1-215-454-00		22K 24K	5% 1%	1/4W 1/4W	C2450	1-124-234-00	FLECT	22MF	20%	16V
R805	1-215-461-00	METAL	47K	1%	1/4W	C2451	1-124-589-11	ELECT	47MF	20%	16V
R808	1-249-417-11	CARBON	1K	5%	1/4W	C2452 C2454	1-124-589-11 1-126-163-11		47MF 4.7MF	20% 20%	16V 25V
R812 R813	1-249-417-11 1-249-417-11		1K 1K	5% 5%	1/4W 1/4W	C2461		CERAMIC CHIP			50V
R815	1-247-843-11	CARBON	3.3K	5%	1/4W	C2462		CERAMIC CHIP			50V
R816 R817	1-249-418-11 1-249-418-11		1.2K 1.2K	5% 5%	1/4W 1/4W	C2463 C2464		CERAMIC CHIP CERAMIC CHIP			50V 50V
R818	1-249-418-11		1.2 K	5%	1/4W	C2465 C2466	1-165-319-11	CERAMIC CHIP CERAMIC CHIP	0.1MF		50V 50V
R819	1-249-418-11	CARBON	1.2K	5%	1/4W						
R820	1-249-422-11	CARBON	2.7K	5%	1/4W	C2467 C2468		CERAMIC CHIP CERAMIC CHIP			50V 50V
						C2469 C2470		CERAMIC CHIP CERAMIC CHIP			50V 50V
*****	********	*******	******	*****	*****	C2470	1-105-515-11	CERAMIC CIII	O.LIVIA		30 V
		TERMINAL BOA		*****	•			<connector></connector>			
				(Q BOARD)	CN306 CN307		PLUG, CONNEC			
	2-990-241-02 3-178-213-21	HOLDER (A), F				CN308		PLUG, CONNEC			
	7-685-135-19	SCREW +P 3X1 SCREW +P 2.62		SLIT				TERMINAL, (S)	(WITH SW		
		<capacitor></capacitor>				CN2403 CN2404		TERMINAL, S (V CONNECTOR, M			
C2401	1-163-111-00	CERAMIC CHIP	56PF	5%	50V						
C2402 C2403	1-104-396-11 1-104-396-11	ELECT	10MF 10MF	20% 20%	16V 16V						

A	REF. NO.	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION		REMARK
December December			<diode></diode>						
22406							,		
DAGE ST19-800-16 DIODE ISS226 R821 1-216-295-91 CONDUCTOR, CHIP	D2405	8-719-800-76	DIODE 1SS226		JR47	1-216-295-91	CONDUCTOR, CHIP		
D2409									
D2409 8-719-800-76 DIODE ISS226	D2408	8-719-800-76	DIODE 1SS226		JR60	1-216-295-91	CONDUCTOR, CHIP		
20411 8-719-80-76 DIODE ISS226 D2416 8-719-80-76 DIODE ISS226 D2416 8-719-80-76 DIODE ISS226 D2418 8-719-80-76 DIODE ISS226 D2428 8-719-80-76 DIODE ISS226 D2428 8-719-80-75 DIODE RD2758-T1 D2421 8-719-037-55 DIODE RD2758-T1 D2422 8-719-037-55 DIODE RD2758-T1 D2423 8-719-037-55 DIODE RD2758-T1 D2423 8-719-037-55 DIODE RD2758-T1 D2424 8-719-037-55 DIODE RD2758-T1 D2424 8-719-037-55 DIODE RD2758-T1 D2424 8-719-037-55 DIODE RD2758-T1 D2425 8-719-037-55 DIODE RD2758-T1 D2426 8-739-10-80-80 RD2758-T1 D2427 8-719-037-55 DIODE RD2758-T1 D2428 R-719-037-55 DIODE RD2758-T1 D2429 R-719-037-55 D2429 R-719	D2409	8-719-800-76	DIODE 1SS226				∠TD A NICICTODS		
12416 8-719-800-76 DIODE ISSZ26 Q2402 8-739-216-22 TRANSISTOR 2SA1162-G	D2411	8-719-800-76	DIODE 1SS226						
D2417 3-719-800-76 D10DE ISS226 D2429 8-719-207-21 RANISITOR 25A116-2-G D2429 8-719-907-55 D10DE R0Z78B-T1 D2421 8-719-907-55 D10DE R0Z78B-T1 D2422 8-719-907-55 D10DE R0Z78B-T1 D2422 8-719-907-55 D10DE R0Z78B-T1 D2422 8-719-907-55 D10DE R0Z78B-T1 D2422 8-719-907-55 D10DE R0Z78B-T1 D2423 8-719-907-55 D10DE R0Z78B-T1 D2424 8-729-120-28 RANISITOR 25C1623-15.16 D2424 8-729-120-28 RANISITOR 25C1623-15.16 D2424 8-729-120-28 RANISITOR 25C1623-15.16 D2424 8-729-120-28 RANISITOR 25C1623-15.16 D2425 8-729-120-28 RANISITOR 25C1623-15.16 D2426 RANISITOR 25C1623-15.16	D2415	8-719-800-76	DIODE 1SS226		Q2402			L6	
D2448 8-719-800-76 D10DE ISS226 D2429 8-719-907-55 D10DE RD2758-T1 D2421 8-719-037-55 D10DE RD2758-T1 D2421 8-719-037-55 D10DE RD2758-T1 D2422 8-719-037-55 D10DE RD2758-T1 D2423 8-719-037-55 D10DE RD2758-T1 D2423 8-719-037-55 D10DE RD2758-T1 D2423 8-719-037-55 D10DE RD2758-T1 D2424 8-729-120-38 TRANSISTOR 25C1623-L51.6 D2424 R-729-120-38 TRANSISTOR 25C1623-L51.6 D2424 R-729-120-28 TRANSISTOR 25C1623-L51.6 D2424 R-729-120-2						8-729-216-22	TRANSISTOR 2SA1162-G		
D2421 8-719-037-53 DIODE RDZ7SB-T1	D2418	8-719-800-76	DIODE 1SS226						
D2422 8-719-037-53 DIODE RD2758-T1 Q2411 8-729-120-28 TRANSISTOR 25C1623-L5L6									
C2411 R-739-130-28 TRANSISTOR 2SC1633-LSL6	D2422	8-719-037-53	DIODE RD27SB-T1						
C2411 8-79-19-28 TRANSISTOR 2SC1623-LSL6		8-719-037-53	DIODE RD27SB-T1			8-729-120-28	TRANSISTOR 2SC1623-L5	L6	
C2401 8-759-509-71 CXRU4021BF-E2 Q2416 8-729-120-28 TRANSISTOR 2SC1623-LSL6 C2402 8-759-509-71 CXRU4021BF-E2 Q2417 8-729-120-28 TRANSISTOR 2SC1623-LSL6 C2403 8-759-0847-70 CMM1113KF C2404 8-759-287-80 CMM1113KF C2405 C2			40.						
C2402 8-759-59-71 C XRU4021BF-E2 \$\bar{Q}2417 8-729-120-28 TRANSISTOR 2SC1623-LSL6					Q2415	8-729-120-28	TRANSISTOR 2SC1623-L5		
C2405 8-759-287-89 C MMIIIISF R2401 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2402 1-26-03-91 METAL GLAZE 50K 5% 1/10W R2403 1-26-03-91 METAL GLAZE 47K 5% 1/10W R2403 1-26-03-91 METAL GLAZE 47K 5% 1/10W R2403 1-26-03-91 METAL GLAZE 47K 5% 1/10W R2404 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2405 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2406 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2407 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2408 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2408 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2408 1-26-03-91 METAL GLAZE 10K 5% 1/10W R2413 1-216-03-91 METAL GLAZE 10K 5% 1/10W R2413 1-216-								L6	
C2405 8-759-287-89 C MMII13XFF	IC2403								
CACKS							<resistor></resistor>		
1.562-261-71 CONNECTOR, COAXIAL (BNC) R2404 1-216-073-00 METAL GLAZE 10K 59 1/10W R2405 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2406 1-216-073-00 METAL GLAZE 10K 59 1/10W R2406 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2407 1-216-073-00 METAL GLAZE 10K 59 1/10W R2409 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1-216-073-00 METAL GLAZE 47K 59 1/10W R2410 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1-216-073-00 METAL GLAZE 47K 59 1/10W R2413 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2413 1-216-073-00 METAL GLAZE 47K 59 1/10W R2413 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2414 1-216-073-00 METAL GLAZE 47K 59 1/10W R2415 1-507-302-41 JACK, PIN (MOUNT TYPE) R2415 1-507-302-41 JACK, PIN (MOUNT TYPE) R2415 1-507-302-41 JACK, PIN (MOUNT TYPE) R2416 1-216-073-00 METAL GLAZE 47K 59 1/10W R2415 1-507-302-41 JACK, PIN (MOUNT TYPE) R2417 1-216-073-00 METAL GLAZE 47K 59 1/10W R2419 1-216-073-00 METAL GLAZE 47K 59 1/10W R2420 1-216-073-00 METAL GLAZE 50K 59 1/10W				į					
1-2402 1-766-738-1 BNC (WITH SW) R2407 1-216-089-91 METAL GLAZE 47K 5% 1/10W 1-2404 1-766-738-1 BNC (WITH SW) R2409 1-216-073-00 METAL GLAZE 47K 5% 1/10W 1/2007 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2409 1-216-073-00 METAL GLAZE 10K 5% 1/10W 1/2007 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2409 1-216-073-00 METAL GLAZE 10K 5% 1/10W 1/2007 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2410 1-216-089-91 METAL GLAZE 10K 5% 1/10W 1/2008 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1-216-089-91 METAL GLAZE 10K 5% 1/10W 1/2009 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1-216-089-91 METAL GLAZE 10K 5% 1/10W 1/2009 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2412 1-216-073-00 METAL GLAZE 10K 5% 1/10W 1/2009 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2413 1-216-073-00 METAL GLAZE 10K 5% 1/10W 1/2009 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2413 1-216-073-00 METAL GLAZE 10K 5% 1/10W 1/2009 1-507-802-41 ACK, PIN (MOUNT TYPE) R2416 1-216-089-91 METAL GLAZE 10K 5% 1/10W 1/2009 1/2009 METAL GLAZE 10K 5% 1/10W 1/2009 METAL GLAZE 10K			<jack></jack>						
1-562-261-71 CONNECTOR, COAXIAL (BNC) R2403 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2408 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2405 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2408 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2407 1-216-073-00 METAL GLAZE 47K 5% 1/10W R2409 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2410 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2409 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2410 1-766-738-11 BNC (WITH SW) R2413 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2413 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2412 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2413 1-566-738-11 BNC (WITH SW) R2413 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2413 1-507-802-41 JACK, PIN (MOUNT TYPE) R2415 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2415 1-507-802-41 JACK, PIN (MOUNT TYPE) R2415 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2415 1-507-802-41 JACK, PIN (MOUNT TYPE) R2416 1-507-802-41 JACK, PIN (MOUNT TYPE) R2417 1-216-073-00 METAL GLAZE 10K 5% 1/10W R2418 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2418 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2419 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 10K 5% 1/10W R2419 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 47K 5% 1/10W R2420 1-216-095-91 CONDUCTORS R2419 1-216-097-90 METAL GLAZE 10K 5% 1/10W R2420 1-216-095-91 CONDUCTOR CHIP R2421 1-216-097-90 METAL GLAZE 10K 5% 1/10W R2425 1-216-									
1.562-261-71 CONNECTOR, COAXIAL (BNC) R2408 1.216-078-00 METAL GLAZE 10K 5% 1/10W 1.2407 1.562-261-71 CONNECTOR, COAXIAL (BNC) R2410 1.216-078-00 METAL GLAZE 10K 5% 1/10W 1.2407 1.562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1.216-073-00 METAL GLAZE 10K 5% 1/10W 1.2409 1.562-261-71 CONNECTOR, COAXIAL (BNC) R2411 1.216-073-00 METAL GLAZE 10K 5% 1/10W 1.2410 1.766-738-11 BNC (WITH SW) R2414 1.216-689-91 METAL GLAZE 10K 5% 1/10W R2411 1.562-261-71 CONNECTOR, COAXIAL (BNC) R2412 1.216-073-00 METAL GLAZE 10K 5% 1/10W R2413 1.216-073-00 METAL GLAZE 10K 5% 1/10W R2413 1.567-802-41 BNC (WITH SW) R2414 1.216-689-91 METAL GLAZE 10K 5% 1/10W R2413 1.507-802-41 JACK, PIN (MOUNT TYPE) R2415 1.216-073-00 METAL GLAZE 10K 5% 1/10W R2415 1.507-802-41 JACK, PIN (MOUNT TYPE) R2418 1.216-089-91 METAL GLAZE 10K 5% 1/10W R2416 1.507-802-41 JACK, PIN (MOUNT TYPE) R2418 1.216-089-91 METAL GLAZE 10K 5% 1/10W R2419 1.507-802-41 JACK, PIN (MOUNT TYPE) R2420 1.216-089-91 METAL GLAZE 10K 5% 1/10W R2419 1.507-802-41 JACK, PIN (MOUNT TYPE) R2421 1.216-073-00 METAL GLAZE 10K 5% 1/10W R2419 1.507-802-41 JACK, PIN (MOUNT TYPE) R2421 1.216-073-00 METAL GLAZE 10K 5% 1/10W R2421 1.216-073-00 METAL	J2403	1-562-261-71	CONNECTOR, COAXIAL (BNC)						
1-766-738-11 BNC (WITH SW) R2410 1-216-089-91 METAL GLAZE 47K 59 1/10W		1-562-261-71	CONNECTOR, COAXIAL (BNC)		R2408	1-216-089-91	METAL GLAZE 47K	5%	1/10W
1-766-738-11 BNC (WITH SW) R2412 1-216-089-91 METAL GLAZE 47K 59 1/10W R2410 1-766-738-11 BNC (WITH SW) R2413 1-216-089-91 METAL GLAZE 47K 59 1/10W R2411 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2413 1-216-089-91 METAL GLAZE 47K 59 1/10W R2411 1-562-261-71 CONNECTOR, COAXIAL (BNC) R2415 1-216-089-91 METAL GLAZE 47K 59 1/10W R2411 1-507-802-41 JACK, PIN (MOUNT TYPE) R2416 1-216-089-91 METAL GLAZE 47K 59 1/10W R2416 1-216-089-91 METAL GLAZE 47K 59 1/10W R2417 1-507-802-41 JACK, PIN (MOUNT TYPE) R2417 1-216-089-91 METAL GLAZE 47K 59 1/10W R2417 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 47K 59 1/10W R2417 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 10K 59 1/10W R2419 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 10K 59 1/10W R2420 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-089-91 METAL GLAZE 10K 59 1/10W R2420 1-507-802-41 JACK, PIN (MOUNT TYPE) R2421 1-216-073-00 METAL GLAZE 10K 59 1/10W R2420 1-216-073-00 METAL GLAZE 10K 59 1/10W R2421 1-216-073-00 METAL GLAZE 10K 59 1/10W R2421 1-216-073-00 METAL GLAZE 10K 59 1/10W R2421 1-216-295-91 CONDUCTOR, CHIP R2423 1-216-073-00 METAL GLAZE 10K 59 1/10W R13 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-077-00 METAL GLAZE 10K 59 1/10W R13 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-077-00 METAL GLAZE 10K 59 1/10W R14 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-077-00 METAL GLAZE 10K 59 1/10W R2431 1-216-075-91 CONDUCTOR, CHIP R2431 1-216-075-91 METAL GLAZE 10K 59 1/10W R2431 1-216-0					R2410	1-216-089-91	METAL GLAZE 47K	5%	1/10W
R2410 1-766-738-11 BNC (WITH SW) R2414 1-216-089-91 METAL GLAZE 10K 59 1/10W					R2411	1-216-073-00	METAL GLAZE 10K	5%	1/10W
Path 1-562-261-71 CONNECTOR, COAXIAL (BNC) Path									
1-766-738-11 BNC (WITH SW) R2412 1-766-738-11 BNC (WITH SW) R2413 1-507-802-41 JACK, PIN (MOUNT TYPE) R2414 1-507-802-41 JACK, PIN (MOUNT TYPE) R2415 1-507-802-41 JACK, PIN (MOUNT TYPE) R2418 1-216-089-91 METAL GLAZE 10K 59			,		R2414	1-216-089-91	METAL GLAZE 47K	5%	1/10W
1-216-295-91 CONDUCTOR, CHIP R2417 1-216-095-91 METAL GLAZE 10K 59 1/10W R2415 1-507-802-41 JACK, PIN (MOUNT TYPE) R2418 1-216-089-91 METAL GLAZE 47K 59 1/10W R2419 1-216-039-91 METAL GLAZE 47K 59 1/10W R2418 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-039-91 METAL GLAZE 10K 59 1/10W R2418 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-039-91 METAL GLAZE 10K 59 1/10W R2418 1-507-802-41 JACK, PIN (MOUNT TYPE) R2420 1-216-039-91 METAL GLAZE 10K 59 1/10W R2420 1-507-802-41 JACK, PIN (MOUNT TYPE) R2422 1-216-039-91 METAL GLAZE 10K 59 1/10W R2424 1-216-039-91 METAL GLAZE 10K 59 1/10W R2425 1-216-073-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-216-025-91 CONDUCTOR, CHIP R2427 1-216-039-91 METAL GLAZE 10K 59 1/10W R2429 1-216-295-91 CONDUCTOR, CHIP R2429 1-216-025-91 METAL GLAZE 10K 59 1/10W R2429 1-216-295-91 CONDUCTOR, CHIP R2430 1-216-115-00 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-039-91 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 10K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 10K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-105-91 METAL GLAZE 10K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-105-91 METAL GLAZE 10K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2437 1-216-025-91 METAL	J2412	1-766-738-11	BNC (WITH SW)						
1.216 1.507-802-41 JACK, PIN (MOUNT TYPE) R2420 1.216-073-00 METAL GLAZE 10K 59 1/10W 1/2418 1.507-802-41 JACK, PIN (MOUNT TYPE) R2421 1.216-073-00 METAL GLAZE 10K 59 1/10W 1/2418 1.507-802-41 JACK, PIN (MOUNT TYPE) R2421 1.216-073-00 METAL GLAZE 10K 59 1/10W 1/2420 1.507-802-41 JACK, PIN (MOUNT TYPE) R2422 1.216-089-91 METAL GLAZE 10K 59 1/10W R2420 1.507-802-41 JACK, PIN (MOUNT TYPE) R2423 1.216-073-00 METAL GLAZE 10K 59 1/10W R2425 1.216-295-91 CONDUCTOR, CHIP R2428 1.216-105-91 METAL GLAZE 10K 59 1/10W R7 1.216-295-91 CONDUCTOR, CHIP R2428 1.216-105-91 METAL GLAZE 10K 59 1/10W R7 1.216-295-91 CONDUCTOR, CHIP R2430 1.216-115-00 METAL GLAZE 10K 59 1/10W R12 1.216-295-91 CONDUCTOR, CHIP R2430 1.216-115-00 METAL GLAZE 10K 59 1/10W R13 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R15 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R16 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-91 METAL GLAZE 10K 59 1/10W R16 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-115-00 METAL GLAZE 10K 59 1/10W R17 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R17 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R2431 1.216-295-91 CONDUCTOR, CHIP R2432 1.216-115-00 METAL GLAZE 10K 59 1/10W R231 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R231 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R231 1.216-295-91 CONDUCTOR, CHIP R2431 1.216-077-00 METAL GLAZE 10K 59 1/10W R231 1.216-295-9	J2414	1-507-802-41	JACK, PIN (MOUNT TYPE)						
1-216-089-91 METAL GLAZE 47K 59 1/10W 1/2417 1-507-802-41 JACK, PIN (MOUNT TYPE) R2421 1-216-073-00 METAL GLAZE 47K 59 1/10W 1/2418 1-507-802-41 JACK, PIN (MOUNT TYPE) R2421 1-216-073-00 METAL GLAZE 10K 59 1/10W 1/2420 1-507-802-41 JACK, PIN (MOUNT TYPE) R2422 1-216-073-00 METAL GLAZE 10K 59 1/10W R2420 1-507-802-41 JACK, PIN (MOUNT TYPE) R2423 1-216-073-00 METAL GLAZE 10K 59 1/10W R2424 1-216-089-91 METAL GLAZE 10K 59 1/10W R2425 1-216-073-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-216-025-91 METAL GLAZE 10K 59 1/10W R2426 1-216-025-91 METAL GLAZE 10K 59 1/10W R2428 1-216-025-91 METAL GLAZE 10K 59 1/10W R2429 1-216-025-91 METAL GLAZE 10K 59 1/10W R2429 1-216-025-91 METAL GLAZE 10K 59 1/10W R2429 1-216-025-91 METAL GLAZE 10K 59 1/10W R2430 1-216-115-00 METAL GLAZE 560K 59 1/10W R2431 1-216-097-90 METAL GLAZE 15K 59 1/10W R2431 1-216-097-90 METAL GLAZE 15K 59 1/10W R2431 1-216-097-90 METAL GLAZE 15K 59 1/10W R2431 1-216-097-90 METAL GLAZE 10K 59 1/10W R2431 1-216-095-91 CONDUCTOR, CHIP R2433 1-216-097-90 METAL GLAZE 10K 59 1/10W R2436 1-216-095-91 CONDUCTOR, CHIP R2437 1-216-095-91 CONDUCTOR, CHIP R2438 1-216-095-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R231 1-216-295-91 CONDUCTOR, CHIP R2439	J2415		·						
1-507-802-41 JACK, PIN (MOUNT TYPE)					R2420	1-216-089-91	METAL GLAZE 47K		
1-507-802-41 JACK, PIN (MOUNT TYPE) R2423 1-216-073-00 METAL GLAZE 10K 59 1/10W R2424 1-216-089-91 METAL GLAZE 10K 59 1/10W R2425 1-216-073-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL GLAZE 10K 59 1/10W R2426 1-216-097-91 METAL GLAZE 10K 59 1/10W R2428 1-216-105-91 METAL GLAZE 10K 59 1/10W R2429 1-216-295-91 CONDUCTOR, CHIP R2428 1-216-105-91 METAL GLAZE 10K 59 1/10W R2429 1-216-295-91 CONDUCTOR, CHIP R2430 1-216-1025-91 METAL GLAZE 560K 59 1/10W R2431 1-216-077-00 METAL GLAZE 560K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-097-91 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 10K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 10K 59 1/10W R2436 1-216-295-91 CONDUCTOR, CHIP R2435 1-216-105-91 METAL GLAZE 10K 59 1/10W R2436 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 10K 59 1/10W R216-1295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R216-295-91 CONDUCTOR, CHIP R2439 1-216-295-91 CONDUCTOR, CHIP R2439 1-216-295-91 CONDUCTOR, CHIP R2439 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-095-91 METAL GLAZE 15K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-095-91 METAL GLAZE 10K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-095-91 METAL GLAZE 10K 59 1/10W R35 1-21	J2418	1-507-802-41	JACK, PIN (MOUNT TYPE)						
R2425 1-216-073-00 METAL GLAZE 10K 59 1/10W R2426 1-214-775-00 METAL R2K 19 1/4W R2426 1-214-775-00 METAL R2K 19 1/4W R2427 1-216-097-91 METAL GLAZE 100K 59 1/10W R2428 1-216-095-91 CONDUCTOR, CHIP R2428 1-216-105-91 METAL GLAZE 220K 59 1/10W R2 1-216-295-91 CONDUCTOR, CHIP R2430 1-216-115-00 METAL GLAZE 560K 59 1/10W R2 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-077-00 METAL GLAZE 15K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2432 1-214-775-00 METAL GLAZE 100K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 100K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-097-91 METAL GLAZE 100K 59 1/10W R2435 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-025-91 METAL GLAZE 220K 59 1/10W R2435 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 560K 59 1/10W R2436 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 560K 59 1/10W R21 1-216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 560K 59 1/10W R21 1-216-295-91 CONDUCTOR, CHIP R2439 1-216-115-00 METAL GLAZE 560K 59 1/10W R21 1-216-295-91 CONDUCTOR, CHIP R2439 1-216-077-00 METAL GLAZE 560K 59 1/10W R230 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-105-91 METAL GLAZE 20K 59 1/10W R30 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 20K 59 1/10W R30 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 20K 59 1/10W R335 1-216-295-91 CONDUCTOR, CHIP R2442 1-216-097-91 METAL GLAZE 20K 59 1/10W R355 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-097-91 METAL GLAZE 20K 59 1/10W R355 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-097-91 METAL GLAZE 20K 59 1/10W R355 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-097-91 METAL GLAZE 20K 59 1/10W					R2423	1-216-073-00	METAL GLAZE 10K	5%	1/10W
R1									
R2428 1-216-025-91 METAL GLAZE 220K 59 1/10W R5 1-216-295-91 CONDUCTOR, CHIP R2429 1-216-025-91 METAL GLAZE 100 59 1/10W R7 1-216-295-91 CONDUCTOR, CHIP R2430 1-216-115-00 METAL GLAZE 560K 59 1/10W R2430 1-216-295-91 CONDUCTOR, CHIP R2431 1-216-077-00 METAL GLAZE 15K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2432 1-214-775-00 METAL GLAZE 100K 59 1/10W R14 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 100K 59 1/10W R15 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 220K 59 1/10W R16 1-216-295-91 CONDUCTOR, CHIP R2435 1-216-025-91 METAL GLAZE 100 59 1/10W R17 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 560K 59 1/10W R2436 1-216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R2431 1-216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R23 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R23 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL GLAZE 15K 59 1/10W R23 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 220K 59 1/10W R30 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-097-91 METAL GLAZE 100K 59 1/10W R34 1-216-295-91 CONDUCTOR, CHIP R2442 1-216-025-91 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL			<chip conductor=""></chip>		R2426	1-214-775-00	METAL 82K	1%	1/4W
R5									
R2431 1-216-077-00 METAL GLAZE 15K 59 1/10W	JR5	1-216-295-91	CONDUCTOR, CHIP		R2429	1-216-025-91	METAL GLAZE 100	5%	1/10W
R14 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 100K 59 1/10W R15 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 220K 59 1/10W R16 1-216-295-91 CONDUCTOR, CHIP R2435 1-216-105-91 METAL GLAZE 100 59 1/10W R17 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 560K 59 1/10W R19 1-216-295-91 CONDUCTOR, CHIP R2437 1-216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R23 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL R24K 19 1/4W R23 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 220K 59 1/10W R30 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 220K 59 1/10W R34 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-097-91 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2442 1-216-025-91 METAL GLAZE 100 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1/1									
R14 1-216-295-91 CONDUCTOR, CHIP R2433 1-216-097-91 METAL GLAZE 100K 59 1/10W R15 1-216-295-91 CONDUCTOR, CHIP R2434 1-216-105-91 METAL GLAZE 220K 59 1/10W R16 1-216-295-91 CONDUCTOR, CHIP R2435 1-216-105-91 METAL GLAZE 100 59 1/10W R17 1-216-295-91 CONDUCTOR, CHIP R2436 1-216-115-00 METAL GLAZE 560K 59 1/10W R19 1-216-295-91 CONDUCTOR, CHIP R2437 1-216-295-91 CONDUCTOR, CHIP R2438 1-216-077-00 METAL GLAZE 15K 59 1/10W R23 1-216-295-91 CONDUCTOR, CHIP R2439 1-214-775-00 METAL R24K 19 1/4W R23 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 220K 59 1/10W R30 1-216-295-91 CONDUCTOR, CHIP R2440 1-216-105-91 METAL GLAZE 220K 59 1/10W R34 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-097-91 METAL GLAZE 100K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2442 1-216-025-91 METAL GLAZE 100 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 59 1/10W R35 1/1	JR13	1-216-295-91	CONDUCTOR, CHIP		R2432	1-214-775-00	METAL 82K	19	1/4W
R16	JR14	1-216-295-91	CONDUCTOR, CHIP		R2433	1-216-097-91	METAL GLAZE 100K	5%	
R19	JR16	1-216-295-91	CONDUCTOR, CHIP		R2435	1-216-025-91	METAL GLAZE 100	5%	1/10W
R20			·					3%	1/10W
R21								5%	1/10W
IR30 1-216-295-91 CONDUCTOR, CHIP R2441 1-216-097-91 METAL GLAZE 100K 5% 1/10W IR34 1-216-295-91 CONDUCTOR, CHIP R2442 1-216-025-91 METAL GLAZE 100 5% 1/10W IR35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 5% 1/10W	JR21	1-216-295-91	CONDUCTOR, CHIP	ļ	R2439	1-214-775-00	METAL 82K	19	1/4W
R35 1-216-295-91 CONDUCTOR, CHIP R2443 1-216-115-00 METAL GLAZE 560K 5% 1/10W									
				l					

PVM-20M2U/20M4U PVM-20M2E/20M4E/20M4A

Les composants identifies par une trame et une marque A sont critiques pour la securite. Ne les remplacer que par une piece portant le numero specifie. The componants identified by shading and mark A are critical for safety.
Replace only with part number specified.

REF. NO.	PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION			REMARK
		**************			*		******				
R2446	1-214-775-00	METAL	82K	1%	1/4W	R3421	1-216-689-11	METAL GLAZE	39K	5%	1/10W
R2447		METAL GLAZE		5%	1/10W					•	
				• /		R3422	1-216-049-91	METAL GLAZE	1 K	5%	1/10W
R2448	1-216-007-01	METAL GLAZE	100K	5%	1/10W	R3423		METAL GLAZE		5%	1/10W
R2449		METAL GLAZE		5%	1/10W	R3424					
								METAL GLAZE		5%	1/10W
R2450		METAL GLAZE		5%	1/10W	R3425		METAL GLAZE		5%	1/10W
R2451		METAL GLAZE		5%	1/10W	R3426	1-216-099-00	METAL GLAZE	120	5%	1/10W
R2452	1-216-089-91	METAL GLAZE	47K	5%	1/10W						
						R3427	1-216-089-91	METAL GLAZE	47K	5%	1/10W
R2453	1-216-073-00	METAL GLAZE	10K	5%	1/10W	R3428	1-216-073-00	METAL GLAZE	10K	5%	1/10W
R2455		METAL GLAZE		5%	1/10W	R3429	1-216-089-91	METAL GLAZE	47K	5%	1/10W
R2458	1-216-205-01	CONDUCTOR, C	THIP	0		R3430		METAL GLAZE		5%	1/10W
R2463		METAL GLAZE		5%	1/10W	R3431		METAL GLAZE		5%	1/10W
						10431	1-210-009-91	METAL OLAZE	4/10	370	1/10W
R2465	1-210-073-00	METAL GLAZE	IUK	5%	1/10W	D0400	1 01/ 000 00	1.00m + 1.00m	1075		1 (1 0337
						R3432		METAL GLAZE		5%	1/10W
R2466	1-216-073-00	METAL GLAZE	10K	5%	1/10W	R3435		METAL GLAZE		5%	1/10W
R2467	1-216-073-00	METAL GLAZE	10 K	5%	1/10W	R3436	1-216-045-91	METAL GLAZE	680	5%	1/10W
R2470	1-214-702-00	METAL	75	1%	1/4W	R3437	1-216-045-91	METAL GLAZE	680	5%	1/10W
R2471		METAL GLAZE		5%	1/10W	R3438		METAL GLAZE		5%	1/10W
R2472		METAL GLAZE		5%	1/10W	115 100			000	<i>5</i>	.,
ILL-172	1-210-005-71	METAD OPICE	3.71	5 70	*****	R3439	1-216-045-01	METAL GLAZE	680	5%	1/10W
D0472	1 01/ 027 00	METAL CLASE	220	E OI	1/10337	K3439	1-210-043-91	METAL OLAZE	000	3 70	1/10**
R2473		METAL GLAZE		5%	1/10W						
R2474		METAL GLAZE		5%	1/10W						
R2475	1-216-091-00	METAL GLAZE	56K	5%	1/10W			<switch></switch>			
R2476	1-214-702-00	METAL	75	10%	1/4W						
R2477	1-216-091-00	METAL GLAZE	56K	5%	1/10W	S2401	1-570-598-11	SWITCH, DIP			
	- 410 071 00				-,,						
R2478	1 216 062 01	METAL GLAZE	3 OF	5%	1/10W						
					1/10W	*****	*****	*****	******	******	****
R2479		METAL GLAZE		5%		***************************************					
R2480		METAL GLAZE		5%	1/10W						
R2481		METAL GLAZE		5%	1/10W			MISCELLANEO			
R2482	1-214-702-00	METAL	75	1%	1/4W			*****	***		
R2483	1-216-091-00	METAL GLAZE	56K	5%	1/10W		N 1-223-417-12	RESISTOR ASSY	' (HIGH-V	OLTAG	Б
R2484		METAL GLAZE		5%	1/10W	_			•		CM4U/E/A)
R2485		METAL GLAZE		5%	1/10W	,	N 1.239.369.11	RESISTOR ASSY	HIOH.VO		
					1/10W	4	01 230 300 11	nedigitor ago.	,	,,,,,,,	COM2U/E)
R2486		METAL GLAZE		5%				700 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COBRECE		(UMIZUIC)
R2487	1-216-093-00	METAL GLAZE	08K	5%	1/10W	4	D 1-411-03/-11	COIL, LANDING	CORRECT		
											(M4U/E/A)
R2488	1-214-702-00	METAL	75	1%	1/4W	4	<u> 1-426-505-11</u>	COIL, DEMAGN	ETIZATIOI	¥	
R2489	1-216-091-00	METAL GLAZE	56K	5%	1/10W	2	M1-451-349-11	DEFLECTION Y	OKE (Y20F	ZA) (20)M2U/E)
R2490		METAL GLAZE		5%	1/10W					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
R2491		METAL GLAZE		5%	1/10W		N 1-451-456-11	DEFLECTION Y	OKE (VOOL	ATA Y	
R2492		METAL GLAZE		5%	1/10W	•					OM4U/E/A)
112472	1-210-049-91	METAL OLALL	110	3 /0	1/10**	************************	1 452 022 00	MAGNET,DISK :	10mma	20000000000000000000000000000000000000	Control Control Control
D2402	1 01/ 000 00	METAL OF AGE	CO17	EM	1/1007					W . 15.	
R2493		METAL GLAZE		5%	1/10W			MAGNET,ROTA	I ABLE DIS	N ; 131	nnø
R2494	1-214-702-00		75	1%	1/4W		1-544-063-12				020000000000000000000000000000000000000
R2495	1-214-702-00		75	1%	1/4W		∆1-576-231-11	FUSE (H.B.C.) 4/	V/250Y		
R2496	1-216-091-00	METAL GLAZE	56K	5%	1/10W						
R2497	1-216-063-91	METAL GLAZE	3.9K	5%	1/10W	ž.	11-590-910-11	CORD SET, POW	ER (20M2)	e, 20M4	EA)
							1-765-268-11	CORD, CONNEC	TION		
R2498	1-216-037-00	METAL GLAZE	330	5%	1/10W			CORD SET, POW		1/20M4	a)
R2499		METAL GLAZE		5%	1/10W			NA3012-M4 (20M			7
D 4 40 0								****		2 K. 740	KOT IZEN
R3400		METAL GLAZE		5%	1/10W	4	n 0*/20*133*13	PICTURE TUBE	wrwiuAi	MAJ (20	weu/ is)
R3402		METAL GLAZE		5%	1/10W	000000000000000000000000000000000000000				en en en en en en en en en en en en en e	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
R3404	1-216-063-91	METAL GLAZE	3.9K	5%	1/10W			PICTURE TUBE			
					i	4	A 8-736-381-05	PICTURE TUBE	ZUMT3 (PV	M) (20	MU)
R3405	1-216-037-00	METAL GLAZE	330	5%	1/10W						
R3406		METAL GLAZE		5%	1/10W						
R3408		METAL GLAZE		5%	1/10W	*****	*******	******	******	*****	****
R3409			75		1/4W						•
	1-214-702-00			1%			A COROCODITO	C AND DACKING	NAATTOY.	AT C	
R3410	1-410-031-00	METAL GLAZE	JOK	5%	1/10W			S AND PACKING			
D044 -			4 0		4 # 0		~~~~ <i>********</i>	~~~~ ~~~~~	~~~~**	~ ~ ~ ~	
R3411		METAL GLAZE		5%	1/10W						
R3412	1-216-037-00	METAL GLAZE	330	5%	1/10W		3-170-078-01	HOLDER (B), PL	UG		
R3413	1-216-073-00	METAL GLAZE	10K	5%	1/10W			MANUAL, INSTI			
R3414		METAL GLAZE		5%	1/10W		· •••	,)M2E/2	014E only)
R3416		METAL GLAZE		5%	1/10W		3-859-663-22	MANUAL, INSTI	RUCTION		
4 0	1-21U-U - 77-71	MULTINE OUNCE		5 10	.,,		* 4_043_760_01	CUSHION (UPPE	D) (ACCV)		
R3417	1 214 002 00	METAL GLAZE	60V	501	1/1032					`	
				5%	1/10W	•	4-043-770-01	CUSHION (LOW	EK) (A33 I	,	
R3418	1-214-702-00		75	1%	1/4W		101101				
R3419		METAL GLAZE		5%	1/10W			LABEL, TALLY			
R3420	1-216-023-00	METAL GLAZE	82	5%	1/10W			INDIVIDUAL CA			
							* 4-381-155-01	BAG, PROTECTI	ON		

Printed by: Schaltungsdienst Lange, Berlin (GERMANY)

Sony Corporation

En glish 970/24**-1**30-1