Multivariate Data Analysis: Overview and Applications

Multivariate Analysis

- What is it?
- Why use it?
 - ✓ Measurement
 - ✓ Explanation & Prediction
 - ✓ Hypothesis Testing

Basic Concepts of Multivariate Analysis:

- The Variate
- Measurement Scales
 - Nonmetric
 - Metric
- Multivariate Measurement
- Measurement Error
- Types of Techniques

$$Variate (Y') = X_1W_1 + X_2W_2 + ... + X_nW_n$$

Each respondent has a variate value (Y').

The Y' <u>value</u> is a <u>linear combination</u> of the entire set of variables that best achieves the statistical objective.

Potential Independent Variables:

 $X_1 = income$

 X_2 = education

 X_3 = family size

 X_4 = occupation

 $X_5 = ? ?$

"Bad" Opposit Model of the Sologian of the S 12 in caids Combined **Regression** "Good" **Gp #2** Gp #1 **Discriminant Variat Variat Values Values** "Bad" Var # 3/ Var #1 Var # 4 **Factor** Var # 5 Var # 6

Small Overlap

Types of Data and Measurement Scales

Multivariate Measurement

Multi-Item Constructs:

<u>Independent</u>

- Attitudes
- Psychographics
- Expectations
- Opinions

<u>Dependent</u>

- Likely Future Usage/Patronage
- Loyalty/Satisfaction
- Likely to Recommend
- Commitment Job & Organization

Multivariate Measurement

"General Satisfaction Measures"

- 1. How satisfied are you with ____?
- 2. How likely are you to purchase/return ____in the future?
- 3. How likely are you to recommend ____to a friend?

"Actionable Satisfaction Measures"

How satisfied are you with

- service
- 2. product/service selection
- 3. facility
- 4. personnel
- 5. hours
- 6. location

The Secure Customer Index

% Definitely Recommend to Others

TM

Burke, Inc.

The Secure Customer Index

Three Components:

- 1. Percentage of customers who are VERY SATISFIED.
- 2. Percentage of customers who will DEFINITELY REPURCHASE your company's products/services in the future.
- 3. Percentage of customers who will DEFINITELY RECOMMEND your company to others if the occasion arises.

Very Dissatisfied			Very Satisfied
Definitely Not Repurchase			Definitely Repurchase
Definitely Not Recommend	1		Definitely Recommend

Multivariate Measurement Multi-Item Constructs

Sources of Items/Statements:

- Published Scales?
- Prior Research ?
- Theory?
- Practice Current Business Situation ?
- Intuition ?

Types of Errors:

- Non-response = refusal, sampling, problem definition, etc.
- Response = respondent or interviewer
- Data Collection
 - Construct Development
 - Scaling Measurement
 - Questionnaire Design/Sequence, etc.
- Data Analysis
- Interpretation

Two Types of Multivariate Techniques:

- 1. Dependence
- 2. Interdependence

Classification of Multivariate Methods:

Multiple Regression

A metric dependent variable is predicted by several metric independent variables.

Multiple Regression

Dependent = # of credit cards

Independent Variables

 $X_1 = income$

 X_2 = education

 $X_3 = family size$

 $X_4 = occupation$

 $X_5 = ? ?$

Example of Multiple Regression Application in Financial Services Industry

Outcome Measures:

- 1. Customer Satisfaction
- 2. Likely to Recommend
- 3. Future Purchases

Bank Selection Factors:

- 1. Trust
- 2. Competent Employees
- 3. Excellent Customer Service
- 4. Good Financial Services
- 5. Friendly Employees
- 6. Interest Rates Paid
- 7. Convenient Locations
- 8. Interest Rates Charged
- 9. Care about Community
- 10. Open When You Want
- 11. Innovative Services

Discriminant Analysis

A non-metric (categorical) dependent variable is predicted by

several metric independent variables.

Examples:

- Gender Male vs. Female
- Heavy Users vs. Light Users
- Purchasers vs. Non-purchasers
- Good Credit Risk vs. Poor Credit Risk
- Member vs. Non-Member

Discriminant Analysis

Independent Variables:

 $X_1 = income$

 X_2 = education

 $X_3 = family size$

 $X_4 = occupation$

 $X_5 = ? ?$

Example of Discriminant Analysis Application in Consumer Products Industry

Bath Soap

Product Features:

- Pleasant smell.
- Skin creme feel.
- Lathers well.
- Cleans well.
- Deodorant.
- Rinses off easily.
- Moisturizing.
- No soap residue in soap dish.
- No ring around sink or tub.

Outcome Measure:

- ✓ Will Purchase
- ✓ Will Not Purchase

MANOVA

Several metric dependent variables are predicted by a set of nonmetric (categorical) independent variables.

ANOVA/MANOVA

Metric Dependent Variables

	<u>Company</u>	
Progressive		Not Progressive
Modern		Traditional
	Product	
High Quality		Low Quality
Expensive		_ Not Expensive
	Salesforce	
Friendly		Not Friendly
Knowledgeabl	'e	_ Not Knowledgeable

ANOVA/MANOVA

Non-Metric Independent Variables

<u>Type of Ad</u> = <u>Treatment</u>

X, Humorous Non-Humorous

X₂ Color Black & White

X₃ People No People

X₄ Black White
Models Mixed Models
Only Only

MANOVA

CANONICAL ANALYSIS

Several metric dependent variables are predicted by several metric independent variables.

CANONICAL ANALYSIS

<u>Credit Usage</u> <u>Demos, etc.</u>

- # cards
- average balance
- amount of purchases
- types of purchases
 - food
 - lodging
 - cars
 - travel
 - appliances

- age
- income
- education
- gender
- ✓ interest rate
- debt amount
- # late payments

CONJOINT ANALYSIS

... is used to understand respondents' preferences for products and services.

In doing this, it determines the importance of <u>both</u>:

attributes and

<u>levels of attributes</u>

. . . based on a smaller subset of combinations of attributes and levels.

Conjoint Analysis

Three Automobile Attributes:

<u>Style</u>	<u>Color</u>
Sports Car	red
Sedan	blue
SUV	black
	Sports Car Sedan

 $3 \times 3 \times 3 = 27$

Conjoint Analysis

Typical Applications:

- Soft Drinks
- Candy Bars
- Cereals
- * Beer
- Apartment Buildings; Condos
- * Solvents; Cleaning Fluids

Factor Analysis

. . . . analyzes the structure of the interrelationships among a large number of variables to determine a set of common underlying dimensions (factors).

Cluster Analysis

. . . . groups objects (respondents, products, firms, variables, etc.) so that each object is similar to the other objects in the cluster and different from objects in all the other clusters.

Multivariate Analysis Learning Checkpoint:

- 1. What is multivariate analysis?
- 2. Why use multivariate analysis?
- 3. Why is knowledge of measurement scales important in using multivariate analysis?
- 4. What basic issues need to be examined when using multivariate analysis?
- 5. Describe the process for applying multivariate analysis.

Multidimensional Scaling

- ... identifies "unrecognized" dimensions that affect purchase behavior based on customer judgments of:
 - similarities or
 - preferences

and transforms these into distances represented as perceptual maps.

Correspondence Analysis

... uses non-metric data and evaluates either linear or non-linear relationships in an effort to develop a perceptual map representing the association between objects (firms, products, etc.) and a set of descriptive characteristics of the objects.

Guidelines for Multivariate Analysis and Interpretation:

- Establish Practical Significance as well as Statistical Significance.
- Sample Size Affects all Results.
- Know Your Data.
- Strive for Model Parsimony.
- Look at Your Errors.
- Validate Your Results.

A Structured Approach to Multivariate Model Building:

Stage 1: Define the Research Problem, Objectives, and

Multivariate Technique(s) to be Used

Stage 2: Develop the Analysis Plan

Stage 3: Evaluate the Assumptions Underlying the Multivariate Technique(s)

Stage 4: Estimate the Multivariate Model and Assess
Overall Model Fit

Stage 5: Interpret the Variate(s)

Stage 6: Validate the Multivariate Model

Description of Employee Survey Variables

 	Restaurani
//	- UESCON.

<u>Variable Description</u> <u>Variable Type</u>

Work En	<u>vironment Measures</u>	
X_{1}	I am paid fairly for the work I do.	Metric
X_2	I am doing the kind of work I want.	Metric
X_3	My supervisor gives credit an praise for work well done.	Metric
X_4	There is a lot of cooperation among the members of my work group.	Metric
X_5	My job allows me to learn new skills.	Metric
X_6	My supervisor recognizes my potential.	Metric
X_7	My work gives me a sense of accomplishment.	Metric
X_8	My immediate work group functions as a team.	Metric
X_9	My pay reflects the effort I put into doing my work.	Metric
X ₁₀	My supervisor is friendly and helpful.	Metric
X_{11}	The members of my work group have the skills and/or training	
	to do their job well.	Metric
X_{12}	The benefits I receive are reasonable.	Metric
Relations	ship Measures	
X ₁₃	Loyalty – I have a sense of loyalty to Samouel's restaurant.	Metric
X ₁₄	Effort – I am willing to put in a great deal of effort beyond that	
	expected to help Samouel's restaurant to be successful.	Metric
X ₁₅	Proud – I am proud to tell others that I work for Samouel's restaurant.	Metric
Classific	<u>ation Variables</u>	
X_{16}	Intention to Search	Metric
X ₁₇	Length of Time an Employee	Nonmetric
X ₁₈	Work Type = Part-Time vs. Full-Time	Nonmetric
X ₁₉	Gender	Nonmetric
X ₂₀	Age	Nonmetric
Y	Performance	Metric

Description of Customer Survey Variables

vs. Colo

<u>Variable Description</u> <u>Variable Type</u>

	1/2	
4011	9/1,	Desc
YYT Restau	<u>Va</u> ı	riable Desc
Restaura		erceptions

Itostad	<u>nanti ciocptions</u>	
X_1	Excellent Food Quality	Metric
X_2	Attractive Interior	Metric
X_3	Generous Portions	Metric
X_4	Excellent Food Taste	Metric
X ₅	Good Value for the Money	Metric
X_6	Friendly Employees	Metric
X ₇	Appears Clean & Neat	Metric
X_8	Fun Place to Go	Metric
X_9	Wide Variety of menu Items	Metric
X ₁₀	Reasonable Prices	Metric
X ₁₁	Courteous Employees	Metric
X ₁₂	Competent Employees	Metric

Selection Factor Rankings

X ₁₃	Food Quality	Nonmetric
X ₁₄	Atmosphere	Nonmetric
X ₁₅	Prices	Nonmetric
X	Employees	Nonmetric

Relationship Variables

X ₁₇	Satisfaction	Metric
X ₁₈	Likely to Return in Future	Metric
X ₁₉	Recommend to Friend	Metric
X ₂₀	Frequency of Patronage	Nonmetric
X ₂₁	Length of Time a Customer	Nonmetric

Classification Variables

X_{22}	Gender	Nonmetric
X ₂₃	Age	Nonmetric
X ₂₄	Income	Nonmetric
X ₂₅	Competitor	Nonmetric
X ₂₆	Which AD Viewed (#1, 2 or 3)	Nonmetric
X ₂₇	AD Rating	Metric
X ₂₈	Respondents that Viewed Ads	Nonmetric

DESCRIPTION OF DATABASE VARIABLES

V	ariable Description	Variable Type	
PER	CEPTIONS OF HATCO		
X ₁	Delivery speed	Metric	
X ₂	Price level	Metric	
X_3	Price flexibility	Metric	
X	Manufacturer's image	Metric	
X ₅	Overall service	Metric	
X ₆	Salesforce image	Metric	
X ₇	Product quality	Metric	
PUR	CHASE OUTCOMES		
X ₉	Usage level	Metric	
X ₁₀	Satisfaction level	Metric	
PUR	CHASER CHARACTERISTICS		
X_8	Size of firm	Nonmetric	
X ₁₁	Specification buying	Nonmetric	
X ₁₂	Structure of procurement	Nonmetric	
X ₁₃	Type of industry	Nonmetric	
X ₁₄	Type of buying situation	Nonmetric	

Multivariate Analysis Learning Checkpoint:

- 1. What is multivariate analysis?
- 2. Why use multivariate analysis?
- 3. Why is knowledge of measurement scales important in using multivariate analysis?
- 4. What basic issues need to be examined when using multivariate analysis?
- 5. Describe the process for applying multivariate analysis.