

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 1 di 26

CONTROLLO EDIZIONE

EDIZIONE	MOTIVO	DATA
-	Edizione	17-07-2015
А	Cambio formato	20-06-2016
В	Aggiornamento	24-01-2017

Eseguito da: Nome: Itxaso Segues Guridi Nome: Mikel Xabier Rodrigo

Firma: Data: 24-01-2017 Approvato da:

Firma:

Data: 24-01-2017 Verificato da:

Nome: Arnaud Faget

Data: 24-01-2017

Mod. 06.02-BZ-06 C

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 2 di 26

INDICE

1.	SISTEM	A DI TRAZIONE	3
		CHITETTURA DI POTENZA	
•	1.2. DIM	ENSIONAMENTO GENERALE DELLA CATENA DI TRAZIONE	
	1.2.1.	Requisiti generali	4
	1.2.2.	Motore di trazione	4
	1.2.3.	Caso 3000V	5
	1.2.4.	Caso 1500V	8
	1.2.5.	Sintesi	11
		RTITORE DI TRAZIONE	
		HEMA GENERALE DI POTENZA	
2	2.2. INVI	ERTER DI TRAZIONE	15
2	2.3. DC-	LINK	16
2	2.4. DC/I	DC DI TRAZIONE	17
2	2.5. CON	NDENSATORE DI BUS	17
2	2.6. MOI	DULO DI POTENZA	
	2.6.1.	Requisiti dimensionamento	18
	2.6.2.	IGBT	18
	2.6.3.	Driver di porta IGBT	
		Busbar	
		UTTANZA DEL DCDC	
2	2.8. SEZ	IONATORE DC	20
		NTATTORE D'INGRESSO	
2		CUITO DI PRECARICA	
		Moduli resistenze precarica	
		Contattore di precarica	
2		TRO D'INGRESSO	
	2.11.1.	Impedenza d'ingresso	22
	2.11.2.	Induttanza d'ingresso	23
		Condensatore di filtro	
2	2.12. RES	SISTENZA DI SCARICA PERMANENTE	24
	2.12.1.	Modulo resistenze scarica permanente	24
2	2.13. SEN	ISORIZZAZIONE	25
	2.13.1.	Sensori di tensione	25
	2.13.1.	Sensore di corrente	25
	2.13.1.	Sensore di temperatura	25
3.	RIFERIN	MENTI	26

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 3 di 26

SISTEMA DI TRAZIONE

1.1. ARCHITETTURA DI POTENZA

La ¡Error! No se encuentra el origen de la referencia. mostra gli elementi fondamentali che definiscono l'architettura di potenza del sistema di trazione.

Figura 1. Architettura potenza convertitore trazione

Codice	Descrizione	
IR	Sezionatore	
L1, L11	Induttanza filtro	
	ingresso	
L2, L3, L12, L13	Induttanza DCDC	
MC1, MC2, MC11, MC12	Contattore principale	
DCDC1, DCDC2, DCDC11,	Convertitore DC/DC	
DCDC12		
INV1, INV2, INV11, INV12	Inverter	
M	Motore di trazione	
CAUX1, CAUX2	Convertitore	
	ausiliario	

Tabella 1. Descrizione elementi schema

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 4 di 26

1.2. DIMENSIONAMENTO GENERALE DELLA CATENA DI TRAZIONE

1.2.1. Requisiti generali

Secondo i requisiti specifici del progetto:

- Si dimensiona la catena di trazione in modo tale che gli elementi limitanti dell'intera catena siano i motori di trazione, il che significa che tutti gli altri elementi della catena devono sopportare qualsiasi punto di funzionamento che può sopportare il motore.
- 2. Un solo CAUX può lavorare a potenza nominale con l'altro CAUX scollegato, senza che ciò influisca sulle prestazioni di trazione stabilite per la catena.
- 3. L'impianto deve essere in grado di fornire tutta la potenza di trazione con una tensione di linea minima di 3000V.

1.2.2. Motore di trazione

Dato che in questo upgrade si mantengono i motori di trazione, si mantengono anche le loro prestazioni originali:

Figura 2. Potenza alle ruote e distribuzione tra i motori

Partendo dai dati esistenti del fabbricante del motore (Ref. 1), la potenza massima su asse a cui è stata provata è di 1500kW. Trattandosi di un motore a raffreddamento forzato le perdite meccaniche del motore saranno minime e si stima che sono di circa il 3% della potenza massima.

Secondo la specifica del motore (Ref. 2) le sue caratteristiche generali sono le seguenti:

Caratteristiche generali				
Nº poli	4			
Connessione	Stella			
Tensione linea a onda quadra	3240V			
Frequenza di passaggio a ond quadra	a 72Hz			
Frequenza massima di alimentazione	di 115Hz			

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 5 di 26

Curva prestazione continua				
Tensione di linea	2610V			
Frequenza	58Hz			
Potenza massima	1250kW			
Corrente massima	333A			
Velocità	1740rpm			
Cos φ	0.87			
Curva di pres	stazioni avviamento			
Tensione linea 3240V				
Frequenza	72Hz			
Potenza massima	1333kW			
Corrente massima	283A			
Velocità	2160rpm			
Cos φ	0.87			
Curva di prestazioni sovraccarico (20 minuti)				
Tensione di linea	3240V			
Frequenza	72Hz – 115Hz			
Potenza massima	1538kW			

Tabella 2. Caratteristiche del motore di trazione.

1.2.3. **Caso 3000V**

1.2.3.1 Tutti i dispositivi in funzionamento

Tutti i dispositivi del sistema sono attivi e i consumi sono equamente distribuiti.

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 6 di 26

Figura 3. Tutti i dispositivi OK a 3000V

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 7 di 26

1.2.3.2 Modalità degradata A: guasto 1 CAUX

Figura 4. Guasto CAUX2 a 3000V

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 8 di 26

1.2.3.3 Modalità degradata B: guasto 1 CAUX + 1 catena di trazione

Figura 5. Guasto totale catena 1 + guasto CAUX2 a 3000V

1.2.4. **Caso 1500V**

Nel caso della linea aerea di contatto a 1500V, non ci sono requisiti definiti pertanto si prende come limitante per la definizione dei requisiti i livelli di corrente delle induttanze in ingresso (1222 A_{nom}) e DCDC (630 A_{nom}), di tutti i casi in linee aeree di contatto a 3000V.

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 9 di 26

1.2.4.1 Tutti i dispositivi in funzionamento

Figura 6. Tutti i dispositivi OK a 1500V

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 10 di 26

1.2.4.2 Modalità degradata A: guasto 1 CAUX

Figura 7. Guasto CAUX2 a 1500V

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 11 di 26

1.2.4.3 Modalità degradata B: guasto 1 CAUX + 1 catena di trazione

Figura 8. Guasto totale catena 1 + guasto CAUX2 a 1500V

1.2.5. **Sintesi**

1.2.5.1 Tabella riassuntiva delle modalità di funzionamento

MODALITÀ	ID	DESCRIZIONE
1	¡Error! No	
	se	@ 3000V
	encuentra	
	el origen	
	de la referencia.	
2	1.2.3.2	100% TRACTION + 50% AUX @
_		3000V
3	1.2.3.3	75% TRACTION + 50% AUX @
		3000V

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00 EDIZIONE: B Pag. 12 di 26

MODALITÀ	ID	DESCRIZIONE
4	¡Error! No	100% TRACTION + 100% AUX
	se	@ 1500V
	encuentra el origen de la referencia.	
5	1.2.4.2	100% TRACTION + 50% AUX @ 1500V
6	1.2.4.3	75% TRACTION + 50% AUX @ 1500V

1.2.5.2 **Tabella riassuntiva dimensionamento punto di funzionamento continuo**

MODALITÀ PARAM	1	2	3	4	5	6
VCAT	3000V	3000V	3000V	1500V	1500V	1500V
ICAT	2199A	2200A	1601A	1968A	1984A	1353A
IL1	1100A	1222A	623A	984A	1262A	631A
IL2	550A	611A	0A	492A	631A	0A
IL3	550A	611A	623A	492A	631A	631A
IL11	1100A	979A	979A	984A	722A	722A
IL12	550A	490A	490A	492A	361A	361A
IL13	550A	490A	490A	492A	361A	361A
PINV1	1394kW	1394kW	0kW	499kW	499kW	0kW
PINV2	1394kW	1394kW	1116kW	499kW	499kW	210kW
PINV3	1394kW	1394kW	1394kW	499kW	499kW	499kW
PINV4	1394kW	1394kW	1394kW	499kW	499kW	499kW
PCAUX1	326kW	652kW	652kW	326kW	652kW	652kW
PCAUX2	326kW	0kW	0kW	326kW	0kW	0kW
PDCDC1	1563kW	1726kW	0kW	668kW	832kW	0kW
PDCDC2	1563kW	1726kW	1778kW	668kW	832kW	869kW
PDCDC3	1563kW	1399kW	1399kW	668kW	504kW	504kW
PDCDC4	1563kW	1399kW	1399kW	668kW	504kW	504kW

Tabella 3. Funzionamento continuo

1.2.5.3 **Tabella riassuntiva dimensionamento punto di funzionamento massimo**

	1	2	3
VCAT	3000V	3000V	3000V
ICAT	2522A	2523A	1816
IL1	1261A	1385A	678A

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00 EDIZIONE: B Pag. 13 di 26

	1	2	3
IL2	630A	692A	0A
IL3	630A	692A	678A
IL11	1261A	1138A	1138A
IL12	630A	569A	569A
IL13	630A	569A	569A
PINV1	1771kW	1934kW	0kW
PINV2	1771kW	1934kW	1937kW
PINV3	1771kW	1608kW	1608kW
PINV4	1771kW	1608kW	1608kW
PCAUX1	326kW	652kW	652kW
PCAUX2	326kW	0kW	0kW
PDCDC1	1777kW	1941kW	0kW
PDCDC2	1777kW	1941kW	1945kW
PDCDC3	1777kW	1614kW	1614kW
PDCDC4	1777kW	1614kW	1614kW

Tabella 4. Sovraccarico massimo durante 20 minuti

1.2.5.4 Input per dimensionamento impianto di potenza

Nel caso della linea aerea di contatto a 3000V, gli impianti di potenza si dimensionano per mantenere le prestazioni della vecchia locomotiva, perciò il caso più limitante è quello presentato in 1.2.3.2.

Nel caso della linea aerea di contatto a 1500V, l'elemento limitante è l'induttanza secondo il caso presentato in 1.2.4.2, ragion per cui si stabiliscono le prestazioni di questo tipo di linea aerea di contatto per questo caso.

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 14 di 26

2. Convertitore di trazione

2.1. SCHEMA GENERALE DI POTENZA

Figura 9. Schema generale potenza del convertitore di trazione

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 15 di 26

2.2. INVERTER DI TRAZIONE

Un inverter di trazione alimenta un motore di trazione, come viene mostrato nella

. Ogni inverter si collega al suo corrispondente DC-Link (si veda ¡Error! No se encuentra el origen de la referencia.).

Figura 10. Inverter + motore di trazione

Figura 11. Potenza, tensione e corrente all'uscita dell'inverter

Tensione DC-Link: 3600V...4200V

Potenza massima: 1596kW Potenza nominale: 1383kW

Corrente nominale uscita inverter: 333A Corrente massima uscita inverter: 500A

Topologia: bilivello

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 16 di 26

2.3. DC-LINK

Il DC-Link da un lato collega il DCDC con l'inverter e dall'altro alimenta il convertitore ausiliario.

Figura 12. DC-LINK

È composto da un busbar laminato (si veda ¡Error! No se encuentra el origen de la referencia.), dove si collegano sia i moduli di potenza sia i condensatori del DC-Link. Per il collegamento tra il backplane e i moduli di potenza si usa un busbar a L.

Figura 13. Backplane del busbar (sx) e busbar L (dx).

Per il dimensionamento dell'impianto di trazione si stabilisce che nel peggiore dei casi (1 dei 2 convertitori ausiliari della locomotiva in funzionamento a piena potenza) si consumeranno 326kW aggiuntivi per ogni DC-Link all'uscita del DCDC, oltre a quanto consuma l'inverter di trazione.

Fabbricante: ELDRE

Tensione nominale: 4200V

LOCOMOTIVA E401

CODICE: B.20.93.206.00 | EDIZIONE: B

Pag. 17 di 26

2.4. DC/DC DI TRAZIONE

L'obiettivo del DC/DC è adattare la tensione della linea aerea di contatto in modo che la tensione del DC-Link sia compresa tra 3600V e 4200V durante il funzionamento del convertitore.

Figura 14. Convertitore DCDC

Deve fornire tutta l'energia necessaria per alimentare i carichi collegati al DC-Link

(inverter + convertitore ausiliario)
Tensione massima ingresso: 4200V
Tensione uscita: 3600V...4200V

Corrente nominale ingresso: 630A (Tabella 3) Corrente massima ingresso: 692A (Tabella 4)

Topologia: Boost

2.5. CONDENSATORE DI BUS

Questo condensatore è parte del filtro di ingresso del convertitore.

Fabbricante: EPCOS

Tensione nominale di funzionamento: 4000V Tensione massima di funzionamento: 4400V

Corrente nominale: 100A Corrente massima: 120A

Capacità nominale: 1000µF ± 5%

Figura 15. Condensatore di bus

2.6. MODULO DI POTENZA

Sia il DCDC che l'inverter di trazione si fabbricano usando moduli di potenza plug-in. Si montano 4 moduli IGBT con i loro rispettivi driver di porta su un coldplate raffreddato ad

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 18 di 26

acqua. I collegamenti elettrici interni al modulo, così come i collegamenti verso l'esterno, si realizzano attraverso un busbar laminato che si monta sui moduli IGBT.

Nel caso dell'inverter + chopper di frenatura i 2 rami del modulo si usano in modo indipendente. Sono quindi necessari 2 moduli di potenza per formare le 3 fasi dell'inverter + 1 ramo di chopper di frenatura.

Nel caso del DCDC si parallelizzano i 2 rami di un modulo di potenza per formare un ramo unico che si collega a ciascun DC-Link.

2.6.1. Requisiti dimensionamento

I moduli di potenza sono stati dimensionati per il peggior caso termico/elettrico.

Potenza massima: 1596kW Potenza nominale: 1383kW Tipo di raffreddamento: Liquido

Tensione in ingresso DCDC: 1000V – 4200V Tensione in ingresso inverter: 3600V – 4200V

Figura 16. Moduli di potenza (sinistra: 2 rami indipendenti; destra: 2 rami parallelizzati)

2.6.2. **IGBT**

Fabbricante: ABB

Tensione di blocco Vce: 6500V Corrente nominale In: 750A

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 19 di 26

Figura 17. IGBT 5SNA 0750G650300 (ABB)

2.6.3. **Driver di porta IGBT**

Fabbricante: Power Integrations

Driver master: 1SP0335V2M1-5SNA0750G650300 Driver slave: 1SP0335D2S1-5SNA0750G650300

Isolamento DC/DC: ISO5125I-65

Figura 18. Da sinistra a destra: isolamento DC/DC, Driver Slave e Driver Master

2.6.4. **Busbar**

Gli IGBT sono collegati attraverso questo busbar al backplane e quindi ai condensatori di bus. Il busbar garantisce che il collegamento tra semiconduttori e bus abbia un'induttanza parassita minima.

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 20 di 26

Figura 19. Busbar IGBT

Fabbricante: ELDRE Tensione nominale: 4200V

2.7. INDUTTANZA DEL DCDC

La funzione dell'induttanza montata all'ingresso di ogni convertitore DCDC è di filtrare la corrente choppata dallo stesso convertitore, per far sì che la corrente in ingresso sia accettabile.

In questo progetto si riutilizza l'induttanza precedentemente montata sul treno.

Corrente nominale: 630A Corrente massima: 730A

Corrente di ripple massima: 110App¹

Frequenza ripple: 400Hz Valore induttivo: 24mH + 10%

2.8. SEZIONATORE DC

La funzione di questo elemento è di isolare e scollegare l'impianto di potenza.

Fabbricante: Secheron Modello: XMS 40 08 Corrente nominale: 800A Tensione nominale: 4000V

Mod. 06.02-BZ-06 C

¹ Valore da confermare nella fase di prove.

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 21 di 26

Figura 20. Sezionatore DC.

2.9. CONTATTORE D'INGRESSO

La funzione del contattore d'ingresso è di isolare la parte del circuito di potenza che si trova a valle di tale elemento. Si dimensiona affinché possa sopportare i livelli di corrente stabiliti per l'applicazione e interrompere la circolazione di tale corrente in caso di necessità.

Fabbricante: Schaltbau Modello: CT1130/08 Corrente nominale: 800A

Tensione nominale di isolamento: 4800V

Figura 21. Contattore d'ingresso.

2.10. CIRCUITO DI PRECARICA

Secondo i requisiti specifici del progetto (MANUALE PARTE 1, PAGINA 3-47), il dispositivo deve essere in grado di effettuare 8 precariche consecutive con una tensione di linea di 4000V (tempo tra precariche 5s). Il ciclo si ripete ogni 300s, continuamente.

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 22 di 26

2.10.1. Moduli resistenze precarica

Valore Ohmico: 80Ω

Potenza nominale: 1500W

Tensione nominale di isolamento: 4000V

Figura 22. Modulo di resistenza di precarica

2.10.1. Contattore di precarica

Fabbricante: Schaltbau Modello: CH1130/02 Corrente nominale: 200A

Tensione nominale di isolamento: 4800V

Figura 23. Contattore di precarica

2.11. FILTRO D'INGRESSO

La funzione del filtro d'ingresso è di minimizzare le armoniche di corrente inserite nella linea di alimentazione e adattare l'impedenza d'ingresso della locomotiva per soddisfare i requisiti specifici di compatibilità del progetto.

2.11.1. Impedenza d'ingresso

Secondo i requisiti specifici del progetto, l'impedenza d'ingresso del treno deve essere induttiva per frequenze superiori a 32Hz.

Dipendendo dallo stato dei contattori d'ingresso di ogni catena di trazione, l'impedenza d'ingresso del veicolo varierà.

LOCOMOTIVA E401

Power & Automation

CODICE: B.20.93.206.00 EDIZIONE: B Pag. 23 di 26

Tabella 5. Possibili configurazioni di impedenza d'ingresso

Figura 24. Diagramma di Bode dell'impedenza d'ingresso della locomotiva per diverse configurazioni

Dato che l'induttanza d'ingresso si riutilizza, l'unica possibilità di modificare lo spettro dell'impedenza è regolare il valore capacitivo del condensatore d'ingresso, il quale è stato dimensionato per soddisfare questo requisito.

2.11.2. Induttanza d'ingresso

In questo progetto si riutilizza l'induttanza precedentemente montata sul treno.

Corrente nominale: 1260A Corrente massima: 1460A

Ripple massimo corrente: 10App

Frequenza ripple: 1600Hz

LOCOMOTIVA E401

CODICE: B.20.93.206.00 | EDIZIONE: B

Pag. 24 di 26

Valore induttivo: 16mH +10% -5% Valore induttivo a 50Hz: >19mH

2.11.3. Condensatore di filtro

Fabbricante: EPCOS

Tensione nominale di funzionamento: 4000V Tensione massima di funzionamento: 4400V

Corrente nominale: 20A Corrente massima: 40A

Capacità nominale: 1500µF ± 5%

Figura 25. Condensatore di bus

2.12. RESISTENZA DI SCARICA PERMANENTE

Nel caso in cui il convertitore si fermi senza ordinare una scarica di bus, i condensatori si devono scaricare attraverso le loro resistenze di scarica permanente in meno di 5 minuti.

In totale si montano 4 moduli di resistenze per scarica permanente; ogni modulo è composto da 2 resistenze tubolari.

2.12.1. Modulo resistenze scarica permanente

Valore Ohmico: 22kΩ Potenza nominale: 800W

Tensione nominale di isolamento: 4000V

Figura 26. Modulo resistenza scarica permanente

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 25 di 26

2.13. SENSORIZZAZIONE

I sensori sono necessari per il controllo del convertitore e per la sua protezione. Esistono tre tipi di sensori nel convertitore, quelli di tensione, quelli di corrente e quelli di temperatura.

2.13.1. Sensori di tensione

Con questo sensore si misurano le tensioni della linea aerea di contatto e dei due bus.

Fabbricante: LEM Modello: LV 100-4000

Tensione nominale primaria: 4000V

Figura 27. Sensori di tensione LEM.

2.13.1. Sensore di corrente

Ci sono due modelli di sensori diversi nell'impianto.

Fabbricante: LEM Modello: LTC 1000 - SF

Corrente nominale primario: 1000A

Fabbricante: LEM

Modello: LTC 1000 – SF/SP8 Corrente nominale primario: 1300A

2.13.1. Sensore di temperatura

Ciascun modulo di potenza ha due sensori di temperatura PT100 posizionati sul coldplate per misurarne costantemente la temperatura e poter in questo modo controllare la temperatura dei semiconduttori.

LOCOMOTIVA E401

CODICE: B.20.93.206.00

EDIZIONE: B

Pag. 26 di 26

3. Riferimenti

Ref. 1 0001 376088 1 00 Relazione di colladu dei motori di trazione tipo MTA-F4-1250V

in opera sulle locomotive E 402A

Ref. 2 0030 371ME01901B 1 00 Specifica generale di prodotto motore tipo MTA-F4-

1250V Loco E402.006-035