Algoritmos para Análise de Sequências Biológicas

Alinhamentos de sequências por programação dinâmica

Sumário

- programação dinâmica
- algoritmo Needleman Wunsch
- algoritmo Smith Waterman

Alinhamento global

Conceito

- Algoritmo recursivo
- Novo alinhamento = Alinhamento anterior + ótimo local

Alternativas do ótimo local

- Substituir o último caratere em s1 pelo último caratere de s2
- 2 Inserir um espaçamento em s2
- 3 Inserir um espaçamento em s1

Algoritmo global

```
def score(s1, s2, g = -8):
    if s1 and s2:
        return max(
            score(s1[:-1], s2[:-1]) + subst(s1[-1], s2[-1]),
            score(s1[:-1], s2) + g,
            score(s1, s2[:-1]) + g)
    else: return max(len(s1), len(s2)) * g
```

Exemplo

```
>>> score("HGWAG","PHSWG")
9
```

Problemas do algoritmo recursivo

- Muito ineficiente
- O mesmo subproblema é calculado muitas vezes

score("HGWAG","PHSWG")

s1_s2	Contagem			
_P	450			
H	450			
H_P	321			
_	321			
_PH	170			
HG_	170			
H_PH	129			
HG_P	129			
`				

Programação dinâmica

- Não recalcula o mesmo subproblema
- Armazena todos os subproblemas numa estrutura de dados
- Conceito chama-se memoizing

Memoizing

Cria-se uma matriz M

```
n^{\circ} de colunas : tamanho de s1 + 1
n^{\circ} de linhas : tamanho de s2 + 1
```

- Primeira linha e coluna corresponde a gaps
- Cada célula corresponde a um subproblema
- M[i][j] corresponde a alinhar s1[:i] com s2[:j]

Needleman Wunsch

	gap	Н	G	W	Α	G
gap	0	-8	-16	-24	-32	-40
Р	-8	-2				
Н	-16					
S	-24					
W	-32					
G	-40					

$$M[1][1] = max(M[0][0] + subst('P', 'H'), M[1][0] - 8, M[0][1] - 8)$$

= $max(0 - 2, -8 - 8, -8 - 8) = -2$

Needleman Wunsch

- Mérito do melhor alinhamento é dado pela célula do canto inferior direito
- Para reconstruir o alinhamento, é necessário armazenar as opções utilizadas em cada célula
- Reconstrução do alinhamento faz-se de forma inversa

Needleman Wunsch

	gap	Н	G	W	Α	G
gap	0 4	-8	- -16 ◆	- -24 <	- -32 <	- -40
Р	-8	-2	-10	- -18	-25 <	-33
Н	-16	0	-4	-12	-20	-27
S	-24	-8	0	-7	-11 ◆	- -19
W	-32	-16	-8	11	3	- -5
G	-40	-24	-10	3	11	9

Alinhamento local Smith Waterman

- Não há valores negativos na matriz
- Todos os valores negativos são substituidos por zero
- Score corresponde ao maior valor encontrado na matriz
- A reconstrução usa a matriz de trace e para quando se encontra o primeiro zero

Smith Waterman

```
M[i, j] = max(
    M[i - 1][j - 1] + subst(s1[i - 1], s2[j - 1]),
    M[i - 1][j    ] + g,
    M[i    ][j - 1] + g,
    O)
```

Smith Waterman

	gap	Н	G	W	Α	G
gap	0	0	0	0	0	0
Р	0	0	0	0	0	0
Н	0	8	0	0	0	0
S	0	0	8	0	1	0
W	0	0	0	19	- 11 <	3
G	0	0	6	/11	19	17

H S W H S W G H G W A