Случайные процессы и цепи. Марковские цепи. Случайные блуждания

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 12.03.2024

1/8

Случайные процессы

Определение: $T \subseteq \mathbb{N}$ – дискретное время, M – пространство состояний.

Случайным процессом с дискретным временем называется последовательность $\xi_n, n \in T$, где $\forall \ n \in T$ справедливо

$$\operatorname{Im}(\xi_n) \subseteq M, \sum_{s \in M} Pr\{\xi_n = s\} = 1.$$

Строго говоря, M может не быть дискретным и $\Rightarrow \xi_n$ будут непрерывными случайными величинами.

Но в рамках курса считаем M нбчс и ξ_n будет ДСВ-ми.

Определение: Случайный процесс с дискретным временем называют **случайной** цепью.

Определение: **Траекторией** длины n случайного процесса называют последовательность r_0,\dots,r_n такую, что $\xi_i=r_i \ \forall i\in \overline{0:n}$ — первое n+1 состояние, через которое прошла система.

Пример

Пример: случайные блуждания по точкам с целой координатой числовой прямой. Если в данный момент в точке x, то с вероятностью p совершается переход в точку x+1, и с вероятностью 1-p в точку x-1.

$$Pr\{\xi_n=xig|\xi_0=x_0,\dots,\xi_{n-1}=x_{n-1}\}=p$$
, если $x_{n-1}+1=x$ и $=1-p$, если $x_{n-1}-1=x$ и 0 иначе.

Марковские цепи

В предыдущем примере распределение ξ_n зависит только от значения ξ_{n-1} и не зависит от предыдущих состояний системы и n.

T.e.
$$Pr\{\xi_n = x \mid \xi_0 = x_0, \dots, \xi_{n-1} = x_{n-1}\} = Pr\{\xi_n = x \mid \xi_{n-1} = x_{n-1}\}.$$

Определение: Процессы, пространство состояний которых конечно или счетно, и в которых вероятность перехода в очередное состоние зависит исключительно от состояния, достигнутого на предыдущем шаге $\forall \ i_0, i_1, \ldots, i_n, j \in M$ верно

$$Pr\{\xi_{n+1} = j \mid \xi_0 = i_0, \dots, \xi_n = i_n\} = Pr\{\xi_{n+1} = j \mid \xi_n = i\},\$$

называются марковскими процессами или цепями.

Определение: Обозначим |M|=m. Стохастическая матрица $P_n=P_n[m,m]$ такая, что

$$P_{i,j} = Pr\{\xi_{n+1} = j \mid \xi_n = i\},\$$

называется **матрицей переходных вероятностей** в момент времени n.

Сумма всех значений на любой строке матрицы равна единице и все значения P_{ij} неотрицательны: $\sum_{m}^{m}P_{n_{ij}}=1,\ \forall i\in\overline{1:m}$ и $P_{ij}\geq0.$

Пример: матрица переходных вероятностей для процесса бросания монетки, пока не выпадет 5 орлов (если 5 орлов выпало, то с вероятностью 1 остаемся в этом состоянии).

	0	1	2	3	4	5
0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
1	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
2	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
3	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0
4	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$
5	0	0	0	0	0	1

Свойства марковских цепей

Пусть $P\{\xi_0=i\}=\lambda_i$. Найдём как вычисляется вероятность того, что система находится в состоянии $i_0,i_1,...,i_n$ в моменты времени $0,1,\ldots,n$.

По определению условной вероятности имеем

$$P\{\xi_0 = i_0, \xi_1 = i_1, \dots, \xi_n = i_n\} = P\{\xi_n = i_n \mid \xi_0 = i_0, \dots, \xi_{n-1} = i_{n-1}\} \cdot P\{\xi_0 = i_0, \xi_1 = i_1, \dots, \xi_{n-1} = i_{n-1}\}.$$

Но по определению марковского процесса имеем

$$P\{\xi_n = i_n \mid \xi_0 = i_0, \dots, \xi_{n-1} = i_{n-1}\} = P\{\xi_n = i_n \mid \xi_{n-1} = i_{n-1}\} = P_{i_{n-1}, i_n}.$$

Подставляя и продолжая по индукции, получаем

$$P\{\xi_0 = i_0, \xi_1 = i_1, \dots, \xi_n = i_n\} = P_{i_{n-1}, i_n} P_{i_{n-2}, i_{n-1}} \dots P_{i_0, i_1} \lambda_{i_0}.$$

6/8

Свойства марковских цепей

Теперь нас интересует вероятность $P\{\xi_n=j\}$ того, что в момент n наша система находится в состоянии j.

Для
$$n=1$$
:

$$P\{\xi_n = j\} = \sum_{i \in M} P\{\xi_0 = i, \xi_1 = j\} = \sum_{i \in M} \lambda_i P_{ij} = (\lambda P)_j,$$

где $\lambda = (\lambda_1, \dots, \lambda_m)$ – начальное распределение состояний цепи.

Для общих значений n:

$$P\{\xi_n = j\} = \sum_{i_0, \dots, i_{n-1}} P\{\xi_0 = i_0, \xi_1 = i_1, \dots, \xi_n = j\} = \sum_{i_0, \dots, i_{n-1}} \lambda_{i_0} P_{i_0 i_1} \dots P_{i_{n-1} j} = (\lambda P^n)_j.$$

Свойства марковских цепей

Чему равна вероятность $P\{\xi_0=i,\xi_n=j\}$ запустить процесс из состояния i и закончить на n-ом шаге в состоянии j?

Рассмотрим $P\{\xi_0=i,\xi_n=j\}=\sum_{i_1,...,i_{n-1}}P\{\xi_0=i,\xi_1=i_1,...,\xi_n=j\}=\sum_{i_1,...,i_{n-1}}\lambda_iP_{i,i_1}...P_{i_{n-1},j}P_{ij}=\lambda_i(P^n)_{ij}.$

$$P\{\xi_n = j \mid \xi_0 = i\} = \frac{P\{\xi_0 = i, \xi_n = j\}}{P\{\xi_0 = i\}} = \frac{\lambda_i(P^n)_{ij}}{\lambda_i} = (P^n)_{ij}.$$

Значит, элемент $(P^n)_{ij}$ матрицы P^n дает вероятность перехода за n шагов из состояния i в состояние j.

$$P\{\xi_{m+n}=j \mid \xi_m=i\}=(P^n)_{ij}$$
 (однородность).

Определение: Если существует $\lim_{t\to +\infty} \mu P^t = \pi$, то π называют **стационарным** распределением Марковской цепи.

Замечание:
$$\pi = \lim_{t \to +\infty} \mu \cdot P^{t-1} \cdot P = \pi \cdot P$$

 π – собственный вектор оператора умножения на P.

8/8