# **Produit scalaire**

 $||-2\overrightarrow{v}||$ .

Nexercice 3:

## 1. Introduction

#### Histoire:

- Descartes (XVII) : transformer les problèmes géométriques en problèmes de calcul;
- Grassmann (XIX): «produit linéaire» (produit scalaire) issu d'un travail sur les marées.

Dans ce chapitre, on travaille dans des repères orthonormés :



## 2. Outils et rappels

- **Définition 1 : Coordonnées** de  $\overrightarrow{AB} = \begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix} = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$
- **Définition 2 :** On appelle **norme** de  $\overrightarrow{u} = \overrightarrow{AB}$  la distance entre l'origine et l'extrémité du vecteur, donnée par :

$$||\overrightarrow{u}|| = \sqrt{(x_B-x_A)^2 + (y_B-y_A)^2} = \sqrt{\Delta x^2 + \Delta y^2}$$



**\ Exercice 1 :** On a  $\overrightarrow{v} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ . Calculer  $||\overrightarrow{v}||$ . En déduire

**Exercice 2** : A(1;4), B(3;1) et C(4;6).

Faire de même pour  $\stackrel{'}{AB}-\stackrel{'}{BC}$ .

3. Calculer les coordonnées de  $\overrightarrow{u} = -2\overrightarrow{AB} + 0.5\overrightarrow{BC}$ .

 $\overrightarrow{BA} + \overrightarrow{CB} + \overrightarrow{AC}$ .

1. Calculer les coordonnées de  $\stackrel{.}{AB}$  et  $\stackrel{.}{BC}$ 

2. Déterminer  $\overrightarrow{AB} + \overrightarrow{BC}$  et donner ses coordonnées.

4. Donner les coordonnées du translaté de C par  $\overrightarrow{u}$ .

• Simplifier, en utilisant la relation de Chasles :

- $oxed{igspace{-}{|}}$  **Propriété 1 :** Si k est un réel,  $||\overrightarrow{ku}|| = |k|\,||\overrightarrow{u}||$
- Définition 3 : Somme et produit par un réel :

Si k et un nombre et  $\overrightarrow{u}=\begin{pmatrix} x \\ y \end{pmatrix}$  et  $\overrightarrow{v}=\begin{pmatrix} x' \\ y' \end{pmatrix}$  sont deux vecteurs

$$k\overrightarrow{u}igg(kx \ kyigg)$$
 et  $\overrightarrow{u}+\overrightarrow{v}igg(x+x' \ y+y'igg)$ 

**Définition 4 :** Si  $A(x_A \ y_A)$  et  $\overrightarrow{u} \begin{pmatrix} x_{\overrightarrow{u}} \\ y_{\overrightarrow{u}} \end{pmatrix}$  sont un point

et un vecteur du plan, alors on dit que le point C est l'image  $\longrightarrow$   $\longrightarrow$   $\longrightarrow$ 

de A par la **translation** de vecteur  $\overrightarrow{u}$  lorsque  $\overrightarrow{AC} = \overrightarrow{u}$ , donc  $C\left(x_A + x_{\overrightarrow{u}} \quad y_A + y_{\overrightarrow{u}}\right)$ .

Propriété 2 : Relation de Chasles : Si A, B et C sont trois points quelconques, alors :

$$\overrightarrow{A} \overrightarrow{\underline{B}} + \overrightarrow{\underline{B}} \overrightarrow{C} = \overrightarrow{A} \overrightarrow{C}$$

## Propriété 3 : Projections : rappels

Lorsque  $\overrightarrow{u}$  fait un angle  $\alpha$  avec l'axe des abscisses,

on a : 
$$\overrightarrow{u} = \begin{pmatrix} |\overrightarrow{u}| \cos \alpha \\ |\overrightarrow{u}| \sin \alpha \end{pmatrix}$$

**Exercice 4**:  $\overrightarrow{u}$  est un vecteur de norme 5 et fait un angle de  $30^\circ$  avec l'axe horizontal. Calculer ses coordonnées.

• Simplifier  $2\overrightarrow{AB} + \overrightarrow{CB} + 3\overrightarrow{BC}$ .

**Exercice 5** :  $\overrightarrow{v} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$  ; calculer son angle avec l'axe horizontal.

#### 2.1. Colinéarité

**Définition**  $5: \overrightarrow{u} = \binom{x}{y}$  et  $\overrightarrow{v} = \binom{x'}{y'}$  sont deux vecteurs non nuls. On passe du vecteur  $\overrightarrow{u}$  au vecteur  $\overrightarrow{v}$  en tournant d'un angle  $\alpha$ . Le **déterminant** de ces deux vecteurs est un nombre pouvant se calculer de deux manères :

- ullet à partir des coordonnées  $\det\left(\overrightarrow{u;v}
  ight) = \det\left(inom{x}{y};inom{x'}{y'}
  ight) = xy' yx'$
- à partir des normes et de l'angle :  $\det\left(\overrightarrow{u};\overrightarrow{v}\right) = ||\overrightarrow{u}||||\overrightarrow{v}||\sin lpha$  ;

**Propriété 4**:  $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$  et  $\overrightarrow{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$  sont **colinéaires** (noté  $\overrightarrow{u}//\overrightarrow{v}$ , c'est à dire qu'ils ont **même direction** (mais pas forcément de même sens)) lorsque (les conditions suivantes sont équivalentes):



- $\det\left(\overrightarrow{u};\overrightarrow{v}\right) = 0$
- L'angle entre  $\overrightarrow{u}$  et  $\overrightarrow{v}$  est de 0° ou 180°.



**Exercice 6 :** On donne  $\overrightarrow{u} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$  et  $\overrightarrow{v} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$ .

Démontrer que ces vecteurs sont colinéaires et donner leur coefficient de colinéarité.

- **Propriété 5 :** Trois points A, B et C du plan sont alignés lorsque  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  sont colinéaires.
- **Remarque 1 :** Le déterminant de deux vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$  correspond à l'aire du parallélogramme dont deux côtés sont  $\overrightarrow{u}$  et  $\overrightarrow{v}$  (tracés avec la même origine) ; l'aire est comptée négativement si l'on passe de  $\overrightarrow{u}$  à  $\overrightarrow{v}$  en tournant dans le sens indirect.

**Exercice 7:** 

Dans un repère orthonormé, on a  $\overrightarrow{u}=\begin{pmatrix} 3\\ -2 \end{pmatrix}$  et  $\overrightarrow{v}=\begin{pmatrix} 0.7\\ 2.4 \end{pmatrix}$ ; tracer les deux vecteurs à partir de l'origine d'un repère orthonormé; calculer leur déterminant et en déduire l'angle entre ces deux vecteurs.



## 3. Produit scalaire et applications

## 3.1. Définitions et propriétés fondamentales

**Définition 6**:  $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$  et  $\overrightarrow{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$  sont deux vecteurs non nuls. On passe du vecteur  $\overrightarrow{u}$  au vecteur  $\overrightarrow{v}$  en tournant d'un angle  $\alpha = (\overrightarrow{u}; \overrightarrow{v})$ . Le **produit scalaire** de ces deux vecteurs est un nombre noté  $\overrightarrow{u} \cdot \overrightarrow{v}$  et pouvant se calculer de deux manères :



- ullet à partir des coordonnées  $\overrightarrow{u}\cdot\overrightarrow{v}=inom{x}{y}\cdotinom{x'}{y'}=xx'+yy'$  ;
- à partir des normes et de l'angle :  $\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| ||\overrightarrow{v}|| \cos \alpha$  ;

# Propriété 6 : Nullité du produit scalaire = orthogonalité $\overrightarrow{u}\cdot\overrightarrow{v}=0 \Leftrightarrow \overrightarrow{u}\perp\overrightarrow{v}$

# Propriété 7 : Symétrie :

Pour tous vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$ :  $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$ 

**\ Exercice 8 :** Déterminer les couples de vecteurs orthogonaux :  $\overrightarrow{u}=inom{-3}{-9}; \overrightarrow{v}=inom{3}{-1}; \overrightarrow{w}=inom{9}{3}$ 

**Exercice 9 :** Deux vecteurs de normes 2 et 3 font un angle de  $\frac{\pi}{3}$ . Calculer leur produit scalaire.

**Exercice 10 :** Deux vecteurs de normes 2 et 3 ont un produit scalaire de -3. Calculer la mesure de l'angle géométrique entre ces deux vecteurs et dessiner deux configurations possibles.

**Exercice 11 :** ★ Démontrer que deux droites sont perpendiculaires lorsque le produit de leurs coefficients directeurs vaut −1.

## 🦲 Propriété 8 : Produit scalaire de deux vecteurs colinéaires :

Lorsque  $\overrightarrow{u}$  et  $\overrightarrow{u}$  sont colinéaires :

• s'ils ont même sens, alors  $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| |\overrightarrow{v}||$ ;

• s'ils sont de sens opposés, alors  $\overrightarrow{u} \cdot \overrightarrow{v} = -||\overrightarrow{u}|||\overrightarrow{v}||.$ 

En effet, deux vecteurs colinaires de même sens font un angle de mesure 0, dont le  $\cos$  vaut 1. S'ils sont de sens opposés, ils font un angle de  $\pi$ , dont le  $\cos$  est -1.

#### 3.2. Signe du produit scalaire et interprétation physique

Lorsqu'un objet M soumis à plusieurs forces effectue un déplacement rectiligne (en mètres)  $\overrightarrow{v} \neq \overrightarrow{0}$ , la contribution énergétique, en Joules, de la force  $\overrightarrow{u} \neq \overrightarrow{0}$  (exprimée en Newtons) à ce déplacement est donnée par  $\overrightarrow{u} \cdot \overrightarrow{v}$ . On appelle cette énergie le **travail** de  $\overrightarrow{u}$  selon  $\overrightarrow{v}$ .



**Propriété 9 :** Les mesures d'angles sont à  $2\pi$  près :

1. si 
$$\dfrac{-\pi}{2} < \widehat{\left(\overrightarrow{u},\overrightarrow{v}
ight)} < \dfrac{\pi}{2} ext{ alors } \overrightarrow{u} \cdot \overrightarrow{v} > 0$$
 ;

on dit que la force  $\overrightarrow{u}$  produit un travail moteur : elle contribue au mouvement.

2. si 
$$(\overrightarrow{u,v}) = \pm \frac{\pi}{2}$$
 alors  $\overrightarrow{u} \cdot \overrightarrow{v} = 0$  ;

la force  $\overrightarrow{u}$  ne produit aucun travail : elle ne contribue pas au mouvement.

3. si 
$$\frac{\pi}{2}<\widehat{(\overrightarrow{u},\overrightarrow{v})}<\frac{3\pi}{2}$$
 alors  $\overrightarrow{u}\cdot\overrightarrow{v}<0$  ;

on dit que la force  $\overrightarrow{u}$  produit un travail résistif : elle résiste au mouvement.

**Exercice 12 :**  $\bigstar$  Un objet roule sur un plan incliné à 45°, entraîné seulement par son poids (Énergie cinétique :  $E_c = \frac{1}{2} m v^2$ .

Sur quelle longueur doit-il rouler pour atteindre une vitesse de 2 m/s ?

#### 3.3. Calcul vectoriel et produit scalaire

**Propriété 10 :** soit  $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ ,  $\overrightarrow{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ ,  $\overrightarrow{w} = \begin{pmatrix} x'' \\ y'' \end{pmatrix}$  trois vecteurs et k un nombre réel.

On a:

$$\bullet \overrightarrow{u} \cdot \left(\overrightarrow{v} + \overrightarrow{w}\right) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$\bullet \ \left(\overrightarrow{u} + \overrightarrow{v}\right) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$$

$$\bullet \ \left(\overrightarrow{ku}\right) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \left(\overrightarrow{kv}\right) = k \left(\overrightarrow{u} \cdot \overrightarrow{v}\right)$$

**Définition 7 : Carré scalaire :** 

On note  $\overrightarrow{u}^2$  le nombre  $\overrightarrow{u}\cdot\overrightarrow{u}=|\overrightarrow{u}|^2$ .

Propriété 11 : Identités remarquables :

• 
$$\left(\overrightarrow{u}\pm\overrightarrow{v}\right)^2=\overrightarrow{u}^2+\overrightarrow{v}^2\pm2\overrightarrow{u}\cdot\overrightarrow{v}$$

$$ullet \overrightarrow{u^2} - \overrightarrow{v^2} = \left(\overrightarrow{u} + \overrightarrow{v}\right) \left(\overrightarrow{u} - \overrightarrow{v}\right)$$

**Exercice 13 :** Démontrer les deux propriétés précédentes.

Remarque 2 : Le produit scalaire est donc distributif sur l'addition de vecteurs. Il est donc possible de calculer avec les vecteurs de la même manière qu'avec des nombres, à l'exception du fait qu'un produit scalaire n'a que deux facteurs. On peut donc utiliser des identités remarquables.

## 3.4. Application : Égalité du #parallélogramme#

## **Exercice 14:**

Le bateau M est soumis :

- à un courant marin  $\overrightarrow{u}$  qui le déplacerait, sous sa seule influence, au point C en une heure ;
- à un vent  $\overrightarrow{v}$  qui le déplacerait, sous sa seule influence, au point V en une heure ;

Le bateau va subir les influences combinées du vent et du courant : pour connaître sa position réelle, notée F, dans une heure, on va calculer la somme des deux vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$ .

- 1. Lire et noter les coordonnées de  $\overrightarrow{u}$  et de  $\overrightarrow{v}$  et calculer les normes de ces vecteurs.
- 2. Calculer les coordonnées de  $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ , le tracer sur la figure avec pour origine M et calculer aussi sa norme. Placer la position F du bateau dans une heure.
- 3. Calculer les coordonnées de  $\overrightarrow{d}=\overrightarrow{u}-\overrightarrow{v}$ , ainsi que sa norme.

Tracer un représentant de ce vecteur à partir du

point V. S'agit-il du vecteur  $\overrightarrow{VC}$  ?

4. Quelle est la nature du quadrilatère MCFV ?

Que représentent les vecteurs  $\overrightarrow{w}$  et  $\overrightarrow{d}$  pour ce quadrilatère ?

- 5. Calculer la somme des carrés des longueurs des 4 côtés du parallélogramme ; calculer la somme des carrés des longueurs des diagonales. Qu'observe-t-on ?
- 6. Développer  $(\overrightarrow{u} \overrightarrow{v})^2 + (\overrightarrow{u} + \overrightarrow{v})^2$ ; conclure.



## Théorème 1 : Égalité du parallélogramme :

Dans un parallélogramme, la somme des carrés des longueurs des deux diagonales est égale à la somme des carrés des quatre côtés.

**Exercice 15 :** ★ La réciproque est-elle vraie ? Un quadrilatère dont la somme des carrés des longueurs des deux diagonales est égale à la somme des carrés des quatre côtés est-il toujours un parallélogramme ?

## 3.5. Application: Théorème d'Al-Kashi

## Théorème 2 : Théorème d'Al-Kashi

Ce théorème, d'un grand mathématicien perse, lie les longueurs des côtés d'un triangle à ses angles.

Soit MAB un triangle quelconque. Alors :

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos lpha$$



#### 🥄 Exercice 16 : Écriture de la formule et démonstration :

- 1. Écrire l'égalité analogue pour l'angle  $\beta$ .
- 2. Démontrer ce théorème en développant (compléter) :  $BC^2 = \overrightarrow{BC}^2 = \left(\overrightarrow{AC} \overrightarrow{\ldots B}\right)^2$

#### Nexercice 17 :

- Un triangle a des côtés de 3 et 4 cm qui forment un angle de  $\frac{\pi}{3}$ . Calculer la longueur de son troisième côté.
- Un triangle a des côtés de 10, 8 et 5 cm. Donner les angles de ce triangle au degré près.