

Ebola virus sequencing protocol

Josh Quick¹

¹University of Birmingham

1 Works for me dx.doi.org/10.17504/protocols.io.7nwhmfe

ARTIC

cDNA preparation

Mix the following components in an 0.2mL 8-strip tube;

Component Volume 50µM random hexamers 10mM dNTPs mix (10mM each) _**□**1 μl Template RNA **■10** μl Total **■12 μl**

Viral RNA input from a clinical sample should be between Ct 18-35. If Ct is between 12-15, then dilute the sample 100fold in water, if between 15-18 then dilute 10-fold in water. This will reduce the likelihood of PCR-inhibition.

- Gently mix by pipetting and pulse spin the tube to collect liquid at the bottom of the tube.
- Incubate the reaction as follows:

```
8 65 °C for © 00:05:00
Place on ice for © 00:01:00
```

Add the following to the annealed template RNA:

Component	Volume
SSIV Buffer	⊒4 μl
100mM DTT	□1 µl
RNaseOUT RNase Inhibitor	□1 μl
SSIV Reverse Transcriptase	□ 1 μl
Total	⊒20 µl

- 5 Gently mix by pipetting and pulse spin the tube to collect liquid at the bottom of the tube.
- 6 Incubate the reaction as follows:

Primer pool preparation

7 If required resuspend lyophilised primers at a concentration of $100\mu M$ each

<u>Ebola V2</u> primers for this protocol were designed using <u>Primal Scheme</u> and generate overlapping 400nt amplicons. Primer names and dilutions are listed in the table below.

8 Generate primer pool stocks by adding $\frac{1}{2}$ 5 μ I of each primer pair to a $\frac{1.5}{2}$ mI Eppendorf labelled either "Pool 1 (100 μ M)" or "Pool 2 (100 μ M)". Total volume should be $\frac{1}{2}$ 505 μ I for Pool 1 (100 μ M) and $\frac{1}{2}$ 530 μ I for Pool 2 (100 μ M). These are your 100 μ M stocks of each primer pool.

Primers should be prepped and aliquoted prior to departure in a sterile PCR cabinet. At no stage should primers or PCR reagents be anywhere near the template until cDNA addition.

Dilute this primer pool 1:10 in molecular grade water, to generate $10\mu M$ primer stocks. It is recommend that multiple aliquots of each primer pool are made to in case of degradation or contamination.

Name	Sequence	Name	Sequence	Pool	Stock
Ebov-10- Pan_1_L EFT	TGTGTGCGAATAACTATGAG GAAGA	Ebov-10-Pan_1_RIGHT	TTTCCAATGTTTTACCCCAAGC	1	100μΜ
		Ebov-10- Pan_1_RIGHT_alt1	TTTCCAATGCTTTACCCCAAGC TTT	1	100μΜ
		Ebov-10- Pan_1_RIGHT_alt2	TTTCCAATGTTTTACCCCAAGT TTT	1	100μΜ
Ebov-10- Pan_2_L EFT	CAAGCAAGATTGAGAATTAAC CTTGGT	Ebov-10-Pan_2_RIGHT	ATCTCCCTGGTACGCATGATGA	2	100μΜ

Ebov-10- Pan_2_L EFT_alt1	CAAGCAAGATTGAGAATTAAC CTTGAT	Ebov-10- Pan_2_RIGHT_alt1	ATCTCCTTGGTACGCATGATGA	2	100μΜ
Ebov-10- Pan_3_L EFT	GGCCTTTGAAGCAGGTGTTG AT	Ebov-10-Pan_3_RIGHT	TCAGTCCTTGCTCTGCATGTAC	1	100μΜ
Ebov-10- Pan_4_L EFT	CCTTTGCAAGTCTATTCCTTC	Ebov-10-Pan_4_RIGHT	CTGAGTGCAGCCTTAAAGGAG T	2	100μΜ
Ebov-10- Pan_4_L EFT_alt1	CTTTTGCAAGTCTATTCCTTC			2	100μΜ
Ebov-10- Pan_5_L EFT	AGTTCGTCTCCATCCTCTTGC A	Ebov-10-Pan_5_RIGHT	CTGGAAGCTGATTTCGTTCTTT	1	100μΜ
Ebov-10- Pan_6_L EFT	GAGTCTCGCGAACTTGACCA TC	Ebov-10-Pan_6_RIGHT	TCCTCGTCGTCCTCGTCTAGAT	2	100μΜ
Ebov-10- Pan_6_L EFT_alt1	GAATCTCGCGAACTTGACCAT C	Ebov-10- Pan_6_RIGHT_alt1	TCCTCATCGTCCTCGTCTAGAT	2	100μΜ
Ebov-10- Pan_7_L EFT	AGCTACGGCGAATACCAGAG TT	Ebov-10-Pan_7_RIGHT	GTCCCTGTCCTGCTCTTCATCA	1	100μΜ
		Ebov-10- Pan_7_RIGHT_alt1	GTCCCTGTCCTGTTCTTCATCA	1	100μΜ
		Ebov-10- Pan_7_RIGHT_alt2	GTCCCTGTCCTGTTCTTCATCG	1	100μΜ
Ebov-10- Pan_8_L EFT	TTAACGAAGAGGCAGACCCA CT	Ebov-10-Pan_8_RIGHT	TTCCTCTTCAAGGGAGTCTGG A	2	100μΜ
Ebov-10- Pan_8_L EFT_alt1	TCAACGAAGAGGCAGACCCA CT	Ebov-10- Pan_8_RIGHT_alt1	TTCCTCTTCAAGGGAGTCCGG A	2	100μΜ
Ebov-10- Pan_9_L EFT	GTGACAACACCCAGTCAGAAC A	Ebov-10-Pan_9_RIGHT	TCTTCCTGTTTTCGTTCCTTGA CT	1	100μΜ
Ebov-10- Pan_9_L EFT_alt1	GTGACAACACCCAGCCAGAAC A	Ebov-10- Pan_9_RIGHT_alt1	TCTTCCTGTTTGCGTTCCTTGA CT	1	100μΜ
		Ebov-10- Pan_9_RIGHT_alt2	TCTTCCTGTTTGCGTTTCTTGA CT	1	100μΜ
Ebov-10- Pan_10_ LEFT	ACAATGGGATGATTCAACCG ACA	Ebov-10-Pan_10_RIGHT	TCGAGTGCTAGAGAATTCAATT GACG	2	100μΜ
Ebov-10- Pan_10_ LEFT_alt	ATAATGGGATGATTTAACCG ACA			2	100μΜ
Ebov-10- Pan_11_ LEFT	ACCTACTAGCCTGCCCAACAT T	Ebov-10-Pan_11_RIGHT	AATTGGGTCCGTTTGGGTTTG A	1	100μΜ
Ebov-10- Pan_11_ LEFT_alt	ACCTACTAGCCTACCCAACAT T	Ebov-10- Pan_11_RIGHT_alt1	AATTGGATCCGTTTGGGTTTG A	1	100μΜ

Ebov-10- Pan_12_ LEFT	CCCAAATGCAACAAACGAAGC C	Ebov-10-Pan_12_RIGHT	TCAATCTTACCCCGAATCGCAC	2	100μΜ
Ebov-10- Pan_12_ LEFT_alt	CCCAAATGCAACAAACAAAGC C	Ebov-10- Pan_12_RIGHT_alt1	TCAATCTTACCCCGAATTGCAC	2	100μΜ
Ebov-10- Pan_13_ LEFT	TATTGGGCCGAACATGGTCA AC	Ebov-10-Pan_13_RIGHT	TGACAGGTGGAGCAGCATCTT G	1	100μΜ
Ebov-10- Pan_13_ LEFT_alt	TATTGGGCTGAACATGGTCA AC			1	100μΜ
Ebov-10- Pan_14_ LEFT	CATTCATGCTGAGTTCCAGG	Ebov-10-Pan_14_RIGHT	GCGAGATATGAACAATTTTATC TTGGTCG	2	100μΜ
		Ebov-10- Pan_14_RIGHT_alt1	GCGAGATAAGGACAATTTATC TTGGTCG	2	100μΜ
		Ebov-10- Pan_14_RIGHT_alt2	GCGAGATAAGAACAATTTTATC TTGGTCG	2	100μΜ
Ebov-10- Pan_15_ LEFT	TGAGTATCAGCCCTGGATAA TATAAGTCA	Ebov-10-Pan_15_RIGHT	TCGATGGAGTGTCCCCATTGA C	1	100μΜ
Ebov-10- Pan_15_ LEFT_alt	TGAGTATCAGCCCTAGATAAT ATAAGTCA	Ebov-10- Pan_15_RIGHT_alt1	TCGATGGAGTGTCTCCATTGA C	1	100μΜ
Ebov-10- Pan_16_ LEFT	GCAACAGCAATACAGGCTTCC T	Ebov-10-Pan_16_RIGHT	GAAAGCCTGGTTTCCAATTCGC	2	100μΜ
Ebov-10- Pan_16_ LEFT_alt	GCAACAACAATACAGGCTTCC T	Ebov-10- Pan_16_RIGHT_alt1	GAAGGCCTGGTTTCCAATTCG C	2	100μΜ
Ebov-10- Pan_17_ LEFT	CCACTTGTCAGAGTCAATCG GC	Ebov-10-Pan_17_RIGHT	GTTTCTGGCACTTCGATTCCCA	1	100μΜ
		Ebov-10- Pan_17_RIGHT_alt1	GTTTCTGGCACTTCGATACCCA	1	100μΜ
Ebov-10- Pan_18_ LEFT	AAAATCCAAGCAATAATGACT TCACTCC	Ebov-10-Pan_18_RIGHT	TTGATCAATTAAAAGTGTCTCC TCTAATGG	2	100μΜ
		Ebov-10- Pan_18_RIGHT_alt1	TCGATCAATTTAAAGTATCTCC TCTAATGG	2	100μΜ
		Ebov-10- Pan_18_RIGHT_alt2	TTGATCAATTAAAAGTATCTCC TCTAATAG	2	100μΜ
Ebov-10- Pan_19_ LEFT	AGATCCAGTTTTATAGAATCT TCTCAGGGA	Ebov-10-Pan_19_RIGHT	AGAAGGGCAATGTCTGTACTT GG	1	100μΜ
Ebov-10- Pan_19_ LEFT_alt	AGATCCAGTTTTACAGAATCT TCTCAGGGA	Ebov-10- Pan_19_RIGHT_alt1	AGAAGGGCGATGTCTGTGCTT GG	1	100μΜ
Ebov-10- Pan_20_ LEFT	AGCCAGTGTGACTTGGATTG GA	Ebov-10-Pan_20_RIGHT	AGTTTGTCGACATCACTAACCT GT	2	100μΜ

Ebov-10- Pan_21_ LEFT	AGAACATTTTCCATCCCACTT GGA	Ebov-10- Pan_20_RIGHT_alt1 Ebov-10-Pan_21_RIGHT	AGTTTGTCGACATCACTAACTT GT AAGCACCCTCTTTATGGAAGGC	1	100μM 100μM
		Ebov-10- Pan_21_RIGHT_alt1	AAGCACCCTCTTTGTGGAAGG	1	100μΜ
Ebov-10- Pan_22_ LEFT	TGCCGGTATGTGCACAAAGT AT	Ebov-10-Pan_22_RIGHT	ATATATTGTCTCATTCAGCTGG AGCA	2	100μΜ
Ebov-10- Pan_23_ LEFT	CGAGGTTGACAATTTGACCT ACGT	Ebov-10-Pan_23_RIGHT	GCAAGGGTTGTTAGATGCGAC A	1	100μΜ
		Ebov-10- Pan_23_RIGHT_alt1	GCAAGGGTTGTCAGATGCGAC A	1	100μΜ
Ebov-10- Pan_24_ LEFT	TGCAATGGTTCAAGTGCACA GT	Ebov-10-Pan_24_RIGHT	CTGGCACTCTCTCTCCGGTAT	2	100μΜ
Ebov-10- Pan_24_ LEFT_alt	TGCAATGGTTCAAGTGCACA AT			2	100μΜ
Ebov-10- Pan_25_ LEFT	ACCACAACAAGTCCCCAAAAC C	Ebov-10-Pan_25_RIGHT	TAGCTCAGTTGTGGCTCTCAG G	1	100μΜ
		Ebov-10- Pan_25_RIGHT_alt1	TAGCTCGGTTGTGGCTCTCAG G	1	100μΜ
Ebov-10- Pan_26_ LEFT	ATCTGTGGGTTGAGACAGCT GG	Ebov-10-Pan_26_RIGHT	GCTTTTCCATGAAGCAATCTGA AGA	2	100μΜ
Ebov-10- Pan_26_ LEFT_alt	ATCTGTGGATTGAGGCAGCT GG	Ebov-10- Pan_26_RIGHT_alt1	GCTTTGCCATGAAGCAATCTGA AGA	2	100μΜ
Ebov-10- Pan_26_ LEFT_alt	ATCTGTGGGTTGAGGCAGCT GG			2	100μΜ
Ebov-10- Pan_27_ LEFT	TGGAGTTACAGGCGTTATAA TTGCA	Ebov-10-Pan_27_RIGHT	AAAGGCTTCTTTCCCTTGTCAC T	1	100μΜ
Ebov-10- Pan_28_ LEFT	TCATCCTTGATTCTACAATCA TGACAGT	Ebov-10-Pan_28_RIGHT	AGGTGCTGGAGGAACTGTTAA TG	2	100μΜ
Ebov-10- Pan_28_ LEFT_alt	TCATCCTTGATTCTACAATCA TAACAGT			2	100μΜ
Ebov-10- Pan_29_ LEFT	GAGTACCGTCAATCAAGGAG CG	Ebov-10-Pan_29_RIGHT	CACAGCACATAGAGTCAACAAT GC	1	100μΜ
Ebov-10- Pan_30_ LEFT	GATCAAGACGGCAGAACACT GG	Ebov-10-Pan_30_RIGHT	ATCAGACCATGAGCATGTCCCC	2	100μΜ

Ebov-10- Pan_31_ LEFT	CTGCTGTCGTTGTTTCAGGG TT	Ebov-10-Pan_31_RIGHT	ATGGGATGGATCGTTGCTACC T	1	100μΜ
		Ebov-10- Pan_31_RIGHT_alt1	ATGGGATGGATCGTTGCCC	1	100μΜ
		Ebov-10- Pan_31_RIGHT_alt2	ATGAGATGGATCGTTGCTACC	1	100μΜ
Ebov-10- Pan_32_ LEFT	GCCAAGCATACCTCTTGCACA A	Ebov-10-Pan_32_RIGHT	TGGACTACCCTGAAATAGTACT TTGC	2	100μΜ
Ebov-10- Pan_33_ LEFT	TGCGGAGGTCTGATAAGAAT AAACC	Ebov-10-Pan_33_RIGHT	TTCAACCTTGAAACCTTGCGCT	1	100μΜ
		Ebov-10- Pan_33_RIGHT_alt1	TTCAACTTTGAAACCTTGCGCT	1	100μΜ
Ebov-10-	GCTGAAAAGAAGCTTACCTAC		TCCTTGTCATTGACCATGCAGG	2	100µM
Pan_34_ LEFT	AACG				
Ebov-10- Pan_34_ LEFT_alt	GTTGAAAAAAGGCCTACCTAC AACG			2	100μΜ
Ebov-10- Pan_34_ LEFT_alt	GCTGAAAAGAAGCCCACCTAC AACG			2	100μΜ
Ebov-10- Pan_35_ LEFT	GTGACTCACAAAGGAATGGC CC	Ebov-10-Pan_35_RIGHT	ACAATCCGTTGTAGTTCACGAC A	1	100μΜ
		Ebov-10- Pan_35_RIGHT_alt1	ACAACCCGTTGTAGTTCACGAC A	1	100μΜ
Ebov-10- Pan_36_ LEFT	TGCTGTCGTTGATTCGATCC AA	Ebov-10-Pan_36_RIGHT	AGCAGAGATGTCAAGATAACTA TTGAGT	2	100μΜ
Ebov-10- Pan_37_ LEFT	ACACGAATGCAAAGTTTGATT CTTGA	Ebov-10-Pan_37_RIGHT	TGAAACCTAACACATGTGACCT GC	1	100μΜ
		Ebov-10- Pan_37_RIGHT_alt1	TGAAACCTAACACACGTGACCT GC	1	100μΜ
Ebov-10- Pan_38_ LEFT	CCCTCAAACAAGAGATTCCAA GACA	Ebov-10-Pan_38_RIGHT	ACAGTTGCGTAGTTGCGGATT A	2	100μΜ
Ebov-10- Pan_38_ LEFT_alt	CCCTCAAATAAGAGATTCCAA GACA			2	100μΜ
Ebov-10- Pan_38_ LEFT_alt	TCCTCAAATAAGAGATTCCAA GACA			2	100μΜ
Ebov-10- Pan_39_ LEFT	ACCTAGTCACTAGAGCTTGC GG	Ebov-10-Pan_39_RIGHT	ACATTTGATGTAAAAATTCATT GCCCTG	1	100μΜ
Ebov-10- Pan_40_ LEFT	GTGGGTGCTCAAGAAGACTG TG	Ebov-10-Pan_40_RIGHT	TGAGATTAGAGTTGTGTTGAA TCGACA	2	100μΜ

Ebov-10- Pan_40_ LEFT_alt	GTGGGTGCTCAAGAGGACTG TG	Ebov-10- Pan_40_RIGHT_alt1	TGAGATTAGAGTCGTGTTGAA TCGACA	2	100μΜ
Ebov-10- Pan_41_ LEFT	AAGAAGCGGTTCAAGGGCAT AC	Ebov-10-Pan_41_RIGHT	CTATGGAATTCACGGATCTTTT GAGC	1	100μΜ
Ebov-10- Pan_41_ LEFT_alt	AAGAAGCAGTTCAAGGGCAT AC	Ebov-10- Pan_41_RIGHT_alt1	CTATGGAATTCACGGATCTTTT GATC	1	100μΜ
Ebov-10- Pan_42_ LEFT	TGCATTTAGCTGTAAATCACA CCCT	Ebov-10-Pan_42_RIGHT	AATCATTGGCAACGGAGGGAA T	2	100μΜ
Ebov-10- Pan_43_ LEFT	GTCAAGGATCTTGGTACAGT GTTACT	Ebov-10- Pan_42_RIGHT_alt1 Ebov-10-Pan_43_RIGHT	AATCATTGGCAACGGGGGGAA T TGAGAAAGAAAAGTTCCGATAT TGTGGT	1	100μM 100μM
Ebov-10- Pan_43_ LEFT_alt	GCCAAGGGTCTTGGTACAGT GTTACT	Ebov-10- Pan_43_RIGHT_alt1	TGAGAAAGAAAAATTCCGGTAT TGTGGT	1	100μΜ
Ebov-10- Pan_43_ LEFT_alt	GTCAAGGGTCTTGGTACAGT GTTACT	Ebov-10- Pan_43_RIGHT_alt2	TGAGAAAGAAAAATTCCGATAT TGTGGT	1	100μΜ
Ebov-10- Pan_44_ LEFT	TTGAGAATGTTCTTTCCTACG CACA	Ebov-10-Pan_44_RIGHT	ACGGTTGCAATATTCTATAAAA GGTGC	2	100μΜ
Ebov-10- Pan_44_ LEFT_alt	TTGAGAATGTTCTTTCCTACG CGCA	Ebov-10- Pan_44_RIGHT_alt1	ACGGTTGCAATATTCGATAAAA GGTGC	2	100μΜ
		Ebov-10- Pan_44_RIGHT_alt2	ACGGTTACAATATTCTATAAAA GGTGC	2	100μΜ
Ebov-10- Pan_45_ LEFT	CCACAGTTAGAGGGAGTAGC TTTG	Ebov-10-Pan_45_RIGHT	GCTCGTCTGCGTCAGTCTCTAA	1	100μΜ
Ebov-10- Pan_45_ LEFT_alt	CCACAGTTAGAGGGAGTAGT			1	100μΜ
Ebov-10- Pan_46_ LEFT	AAGTTACGCTCAGCTGTGAT GG	Ebov-10-Pan_46_RIGHT	ATGGAAAGCTGCGGTTATCCT G	2	100μΜ
Ebov-10- Pan_47_ LEFT	TAGGCACTGCTTTTGAGCGA TC	Ebov-10-Pan_47_RIGHT	CACAAAGTCAATGGCAGTGCA G	1	100μΜ
Ebov-10- Pan_47_ LEFT_alt	TAGGCACCGCTTTTGAGCGG TC			1	100μΜ
Ebov-10- Pan_47_ LEFT_alt	TAGGCACTGCTTTTGAACGA TC			1	100μΜ

Ebov-10- Pan_48_ LEFT	TCTCCGAATGATTGAGATGG ATGATT	Ebov-10-Pan_48_RIGHT	CTCAGTCTGTCCAAAACCGGTG	2	100μΜ
Ebov-10- Pan_48_ LEFT_alt	TCTCCGAATGATTGGGATGG ATGATT			2	100μΜ
Ebov-10- Pan_49_ LEFT	GATATCTTTTCACGCACGCCG A	Ebov-10-Pan_49_RIGHT	CCACCTGGTTGCTTTGCATTTG	1	100μΜ
Ebov-10- Pan_49_ LEFT_alt	GATATCTTTTCACGCACGCCC A	Ebov-10- Pan_49_RIGHT_alt1	CCACCAGGTTGCTTTGCATTTG	1	100μΜ
Ebov-10- Pan_50_ LEFT	TCAAAGTGTTTTGGCTGAAA CCCT	Ebov-10-Pan_50_RIGHT	TCCTGAGTAATGTGAAGGGGT CA	2	100μΜ
Ebov-10- Pan_50_ LEFT_alt	TCAAAGTGGTTTGGCTGAAA CCCT	Ebov-10- Pan_50_RIGHT_alt1	TCCTGAGTAATGTGAAGGAGT CA	2	100μΜ
Ebov-10- Pan_51_ LEFT	AACAGTGACTTGCTAATAAAA CCATTTTTG	Ebov-10-Pan_51_RIGHT	AAATACTGAGCTGGTACTTCCC G	1	100μΜ
Ebov-10- Pan_51_ LEFT_alt	AACAGTGACTTGCTAATAAAG CCATTTTTG			1	100μΜ
Ebov-10- Pan_51_ LEFT_alt	AACAGTGATTTGCTAATAAAA CCATTTTTG			1	100μΜ
Ebov-10- Pan_52_ LEFT	AATCGTGCTCACCTTCATCTA ACT	Ebov-10-Pan_52_RIGHT	CCCAAAACTGTACAGAAGTCCT ATCT	2	100μΜ
Ebov-10- Pan_53_ LEFT	ACAGACCCAATTAGCAGTGG AGA	Ebov-10-Pan_53_RIGHT	ACAATTGTTCCGCGATTAATTA TCCAT	1	100μΜ
Ebov-10- Pan_53_ LEFT_alt	ACAGACCCAATTAGCAGCGG AGA	Ebov-10- Pan_53_RIGHT_alt1	ACAATTGTTCCGCGATTAATTA TCCACT	1	100μΜ
Ebov-10- Pan_54_ LEFT	TCTCAGATGCGGCCAGGTTA TT	Ebov-10-Pan_54_RIGHT	TGACCATCACTGTTGTTGTGC T	2	100μΜ
Ebov-10- Pan_54_ LEFT_alt	TCTCAGATGCGGCCAGATTA TT			2	100μΜ
Ebov-10- Pan_55_ LEFT	TGGAGGAGCAGACACAGAAA CA	Ebov-10-Pan_55_RIGHT	ATGACGTTAATTGGCGTGTCC C	1	100μΜ
Ebov-10- Pan_55_ LEFT_alt	TGGAGGAGCAGGAAA CA	Ebov-10- Pan_55_RIGHT_alt1	ATGACGTCAATTGGCGTGTCC C	1	100μΜ

Ebov-10- Pan_55_ LEFT_alt	TGGAGAAGCAGGCACAGAAA CA	Ebov-10- Pan_55_RIGHT_alt2	ATGACGTTAATTGGCGCGTCC C	1	100μΜ
Ebov-10- Pan_56_ LEFT	CTCACACCGTCTAGTCCTACC T	Ebov-10-Pan_56_RIGHT	TTTGACATAACAGGTAGAAGCA TCCT	2	100μΜ
Ebov-10- Pan_56_ LEFT_alt	CTCGCACCGTCTAGTCCTACC T			2	100μΜ
Ebov-10- Pan_56_ LEFT_alt	CTCACATCGTCTAGTCCTACC T			2	100μΜ
Ebov-10- Pan_57_ LEFT	ACACGCTAGCTACTGAGTCCA G	Ebov-10-Pan_57_RIGHT	ATTGGCTTAATTAAATAACCAG TGGCA	1	100μΜ
Ebov-10- Pan_58_ LEFT	TGAAAGCAGTGGTCCTTAAA GTCT	Ebov-10-Pan_58_RIGHT	TGCTCTAAGATGTGCTAAGTG CTG	2	100μΜ
		Ebov-10- Pan_58_RIGHT_alt1	TGCTCTAAGATGTGCCAAGTG CTG	2	100μΜ
Ebov-10- Pan_59_ LEFT	CGTCGATTCAAAAAGAGGTC CACT	Ebov-10-Pan_59_RIGHT	TCAGAAGCCCTGTCAGCCTTTC	1	100μΜ
Ebov-10- Pan_60_ LEFT	AGATTGCAATTGTGAAGAAC GTTTCT	Ebov-10-Pan_60_RIGHT	AGAGTGCAGAGTTTATTATGT TGCGT	2	100μΜ
Ebov-10- Pan_61_ LEFT	TCACAATGCAGCATGTGTGA CA	Ebov-10-Pan_61_RIGHT	AGGTATTTCTGATTTTACAGTC CTGCC	1	100μΜ
		Ebov-10- Pan_61_RIGHT_alt1	AGGTATTTATGATTTTACAGTC CTGCC	1	100μΜ
		Ebov-10- Pan_61_RIGHT_alt2	AGGTATTTCTGATTTTACAGTC ATGCC	1	100μΜ
Ebov-10- Pan_62_ LEFT	CCTGTCAGATGGAATAGTGT	Ebov-10-Pan_62_RIGHT	AATTTTTGTGTGCGACCATTTT TCC	2	100μΜ

Primers need to be used at a final concentration of $0.015\mu\text{M}$ per primer. In this case, Pool 1 has 101 primers in it so the requirement is $3.8\mu\text{L}$ of Pool 1 ($10\mu\text{M}$) primers per $25\mu\text{L}$ reaction. Pool 2 has 106 primers the requirement is $4.0\mu\text{L}$ of Pool 2 ($10\mu\text{M}$) primers per $25\mu\text{L}$ reaction. For other schemes, adjust the volume added appropriately.

10 In the mastermix hood set up the multiplex PCR reactions as follows in 0.2mL 8-strip PCR tubes:

ComponentPool 1Pool 2NEB Q5 Polymerase 2X MasterMix \Box 12.5 μ I \Box 12.5 μ IPrimer Pool 1 or 2 (10 μ M) \Box 3.8 μ I \Box 4 μ IWater \Box 6.2 μ I \Box 6 μ ITotal \Box 22.5 μ I \Box 22.5 μ I

The **mastermix hood** should prepared by sterilising with UV and treated with MediPal wipes, DNAway and RNAseZap reagents. Wipe down the hood with each sequentially, allowing 5 minutes for drying between each. Pipettes should also be treated in the same way, and UV treated for 30 mins between library preparations.

This step should be carried out in the mastermix hood and template should not be taken anywhere near the mastermix hood at any stage.

- In the template hood add 2.5μ cDNA to each tube and mix well by pipetting.
 - The **template hood** should prepared by sterilising with UV and treated with MediPal wipes, DNAway and RNAseZap reagents. Wipe down the hood with each sequentially, allowing 5 minutes for drying between each. Pipettes should also be treated in the same way, and UV treated for 30 mins between library preparations.
- 12 Pulse centrifuge the tubes to collect the contents at the bottom of the tube.
- 13 Set-up the following program on the thermal cycler:

Step	Tempe	rature Time		Cycles
Heat Activation	₽ 98 °C	© 00:00:30	1	
Denaturation	8 98 °C	© 00:00:15	25-35	
Annealing	8 65 °C	© 00:05:00	25-35	
Hold	8 4 °C	Indefinite	1	

Cycle number should be 25 for Ct 18-21 up to a maximum of 35 cycles for Ct 35 $\,$

PCR clean-up

Combine the entire contents of "Pool 1" and "Pool 2" PCR reactions for each biological sample into to a single 1.5 ml Eppendorf tube.

Clean-up the amplicons using the following protocol: 15 Amplicon clean-up using SPRI beads PREVIEW RUN by Josh Quick 15.1 Vortex SPRI beads thoroughly to ensure they are well resuspended, the solution should be a homogenous brown colour. 88 Agencourt AMPure XP by Beckman Coulter Catalog #: A63880 Add an equal volume (1:1) of SPRI beads to the sample tube and mix gently by either flicking or pipetting. For example add 15.2 □50 μl SPRI beads to a □50 μl reaction. Pulse centrifuge to collect all liquid at the bottom of the tube. 15.3 Incubate for $\bigcirc 00:05:00$ at room temperature. 15.4 15.5 Place on magnetic rack and incubate for © 00:02:00 or until the beads have pelleted and the supernatant is completely clear. Carefully remove and discard the supernatant, being careful not to touch the bead pellet. 15.6 15.7 Add 200 µl of room-temperature [M]70 % volume ethanol to the pellet. Carefully remove and discard ethanol, being careful not to touch the bead pellet. 15.8 15.9 go to step #7 and repeat ethanol wash.

Pulse centrifuge to collect all liquid at the bottom of the tube and carefully remove as much residual ethanol as possible using a

15.10

P10 pipette.

16.1	Remove Lambda DNA 400 ng/ μ L standard from the freezer and leave on ice to thaw. Remove ONE dsDNA dye solution from the fridge and allow to come to room temperature.
	QuantiFluor(R) ONE dsDNA System, 500rxn by Promega Catalog #: E4870
16.2	Set up two □0.5 ml tubes for the calibration and label them 'Blank' and 'Standard'
16.3	Add ⊒200 µl ONE dsDNA Dye solution to each tube.
16.4	Mix the Lambda DNA standard 400 ng/ μ L standard by pipetting then add $\Box 1$ μ l to one of the standard tube.
16.5	Mix each sample vigorously by vortexing for $© 00:00:05$ and pulse centrifuge to collect the liquid.
16.6	Allow both tubes to incubate at room temperature for $© 00:02:00$ before proceeding.
16.7	Selection 'Calibrate' then 'ONE DNA' then place the blank sample in the reader then select 'Read Blank'. Now place the standard in the reader and select 'Read Std'.
16.8	Set up the required number of 0.5 ml tubes for the number of DNA samples to be quantified.
	Use only thin-wall, clear, 0.5mL PCR tubes such as Axygen #PCR-05-C
16.9	Label the tubes on the lids, avoid marking the sides of the tube as this could interfere with the sample reading.

<mark>1</mark>6.10

Add 199 µl ONE dsDNA dye solution to each tube.

6.11	Add 11 µl of each user sample to the appropriate tube.
	Use a P2 pipette for highest accuracy.
6.12	Mix each sample vigorously by vortexing for $© 00:00:05$ and pulse centrifuge to collect the liquid.
6.13	Allow all tubes to incubate at room temperature for $© 00:02:00$ before proceeding.
6.14	On the Home screen of the Quantus Fluorometer, select `Protocol`, then select `ONE DNA` as the assay type.
	If you have already performed a calibration for the selected assay you can continue, there is no need to perform repeat calibrations when using ONE DNA pre diluted dye solution. If you want to use the previous calibration, skip to step 11. Otherwise, continue with step 9.
6.15	On the home screen navigate to 'Sample Volume' and set it to $\ \ \ \ \ \ \ \ \ \ \ \ \ $
6.16	Load the first sample into the reader and close the lid. The sample concentration is automatically read when you close the lid.
6.17	Repeat step 16 until all samples have been read.
6.18	The value displayed on the screen is the dsDNA concentration in $ng/\mu L$, carefully record all results in a spreadsheet or laboratory notebook.
17	Label a 1.5 ml Eppendorf tube for each sample.
	This is a 'one-pot ligation' protocol for native barcoded ligation libraries. We have seen no reduction in performance compared to standard libraries, and is made faster by using the Ultra II® ligation module which is compatible with the Ultra II® end repair/dA-tailing module removing a clean-up step.

Normalise the input but adding □10 ng amplicon pools to each tube and diluting to □10 μl to have an input concentration of [M]1 ng/μL

Quantity of amplicons can vary from 10-50ng depending on the amplicon length, any more than this and the molarity of DNA ends will be too high for efficient barcoding. You need to have 6 samples per native barcoded library to have sufficient material at the end.

Native barocoding

19 Barcode the amplicon pools using native barcodes.

19.1 Set up the following reaction for each sample:

Component	Volume
DNA amplicons	⊒10 μl
Ultra II End Prep Reaction Buffer	□1.4 μl
Ultra II End Prep Enzyme Mix	⊒ 0.6 µl
Total	⊒12 μl

19.2 Incubate at room temperature for © 00:10:00
Incubate at § 65 °C for © 00:05:00

Incubate on ice for **© 00:01:00**

19.3 Add the following directly to the previous reactions:

Component	Volume
NBXX barcode	⊒ 2.5 μl
Ultra II Ligation Master Mix	□14.5 μl
Ligation Enhancer	□ 0.5 μl
Total	⊒ 29.5 μl

Use one native barcode from the EXP-NBD104 (1-12) or EXP-NBD114 (13-24) per sample. Use from 6 to 24 barcodes in a library, any fewer and there will be insufficient total material to achieve good yields.

	ate at & 70 °C for © 00:10:00 ate on ice for © 00:01:00		
	The 70°C incubation is to inactivate to next step.	he DNA ligase to prevent barcode cross-ligation when re	actions are pooled in 1
Pool a	all barcoded fragments together into a r	new 1.5 ml Eppendorf tube.	
	Amplicon clean-up using SPRI bea	ads PREVIEW RUN	
Quant	tify the barcoded amplicon pools using	the Quantus Fluorometer using the ONE dsDNA assay.	
Quant	DNA quantification using the Quan		
	DNA quantification using the Quar	ntus fluorometer PREVIEW RUN	
Set up	DNA quantification using the Quantification us	ntus fluorometer PREVIEW RUN	
Set up	DNA quantification using the Quantification us	ntus fluorometer PREVIEW RUN	
Set up Comp	DNA quantification using the Quantification us	ntus fluorometer PREVIEW RUN action: Volume	
Set up Comp Barco NEBN	DNA quantification using the Quantification and possible p	ntus fluorometer PREVIEW RUN action: Volume	
Set up Comp Barco NEBN AMII a	DNA quantification using the Quantification and possible p	ntus fluorometer PREVIEW RUN action: Volume 30 μl 10 μl	
Set up Comp Barco NEBN AMII a	DNA quantification using the Quantification and possible properties. The possible properties of the possible	PREVIEW RUN Action: Volume 30 µl 10 µl 5 µl	

19.9 Add 50 µl (1:1) of SPRI beads to the sample tube and mix gently by either flicking or pipetting. Vortex SPRI beads thoroughly before use to ensure they are well resuspended, the solution should be a homogenous brown colour. Pulse centrifuge to collect all liquid at the bottom of the tube. **1**9.10 **1**9.11 Incubate for **© 00:05:00** at room temperature. 19.12 Place on magnetic rack and incubate for \odot 00:02:00 or until the beads have pelleted and the supernatant is completely clear. **1**9.13 Carefully remove and discard the supernatant, being careful not to touch the bead pellet. **1**9.14 Add 200 µl SFB and resuspend beads completely by pipette mixing. SFB will remove excess adapter without damaging the adapter-protein complexes. Do not use 70% ethanol as in early clean-ups. Pulse centrifuge to collect all liquid at the bottom of the tube. 19.15 Remove supernatant and discard. **1**9.16 Repeat steps 14-16 to perform a second SFB wash. **1**9.17 Pulse centrifuge and remove any residual SFB. **1**9.18 You do not need to allow to air dry with SFB washes. 9.19 Add 15 µl EB and resuspend beads by pipette mixing. 19.20 Incubate at room temperature for $\bigcirc 00:02:00$.

Place on magnetic rack. 9.21 Transfer final library to a new 1.5mL Eppendorf tube. 19.22 Quantify the final library using the Quantus Fluorometer using the ONE dsDNA assay. 20 DNA quantification using the Quantus fluorometer **PREVIEW** RUN by Josh Quick Final library can be now be stored in EB at 4°C for up to a week if needed otherwise proceed directly to MinION sequencing Remove Lambda DNA 400 ng/µL standard from the freezer and leave on ice to thaw. Remove ONE dsDNA dye solution from the 20.1 fridge and allow to come to room temperature. QuantiFluor(R) ONE dsDNA System, 500rxn by Promega Catalog #: E4870 20.2 Set up two 0.5 ml tubes for the calibration and label them 'Blank' and 'Standard' 20.3 Add 200 µl ONE dsDNA Dye solution to each tube. 20.4 Mix the Lambda DNA standard 400 ng/µL standard by pipetting then add □1 µI to one of the standard tube. 20.5 Mix each sample vigorously by vortexing for © 00:00:05 and pulse centrifuge to collect the liquid. 20.6 Allow both tubes to incubate at room temperature for © 00:02:00 before proceeding. Selection 'Calibrate' then 'ONE DNA' then place the blank sample in the reader then select 'Read Blank'. Now place the standard in 20.7 the reader and select 'Read Std'.

20.8	Set up the required number of 0.5 ml tubes for the number of DNA samples to be quantified.	
	Use only thin-wall, clear, 0.5mL PCR tubes such as Axygen #PCR-05-C	
20.9	Label the tubes on the lids, avoid marking the sides of the tube as this could interfere with the sample reading.	
0.10	Add 199 µl ONE dsDNA dye solution to each tube.	
0.11	Add 11 µl of each user sample to the appropriate tube.	
	Use a P2 pipette for highest accuracy.	
0.12	Mix each sample vigorously by vortexing for $@00:00:05$ and pulse centrifuge to collect the liquid.	
0.13	Allow all tubes to incubate at room temperature for $© 00:02:00$ before proceeding.	
0.14	On the Home screen of the Quantus Fluorometer, select `Protocol`, then select `ONE DNA` as the assay type.	
	If you have already performed a calibration for the selected assay you can continue, there is no need to perform repeat calibrations when using ONE DNA pre diluted dye solution. If you want to use the previous calibration, skip to step 11. Otherwise, continue with step 9.	
0.15	On the home screen navigate to 'Sample Volume' and set it to $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
0.16	Load the first sample into the reader and close the lid. The sample concentration is automatically read when you close the lid.	
0.17	Repeat step 16 until all samples have been read.	
0.18	The value displayed on the screen is the dsDNA concentration in $ng/\mu L$, carefully record all results in a spreadsheet or laboratory notebook.	

MinION sequencing				
21	Prime the flowcell and load 30 ng sequencing library onto the flowcell.			
	Priming and loading a MinION flowcell PREVIEW RUN by Josh Quick			
	From experience we know 30 ng is optimum loading input for short amplicons.			
21.1	Thaw the following reagents at room temperature before placing on ice:			
	Sequencing buffer (SQB) Loading beads (LB) Flush buffer (FLB) Flush tether (FLT)			
21.2	Add 30 µl FLT to the FLB tube and mix well by vortexing.			
21.3	If required place a new MinION flowcell onto the MinION by flipping open the lip and pushing one end of the flowcell under the clip and pushing down gently.			
21.4	Rotate the inlet port cover clockwise by 90° so that the priming port is visible.			
21.5	Take a P1000 pipette and tip and set the volume to $\[\]$ 800 μ I . Place the tip in the inlet port and holding perpendicularly to the plane of the flowell remove any air from the inlet port by turning the volume dial anti-clockwise.			
	Be careful not to remove so much volume that air is introduced onto the rectangular array via the outlet.			
21.6	Load $\blacksquare 800~\mu I$ of FLB (plus FLT) into the flow cell via the inlet port, dispense slowly and smoothly trying to avoid the introduction of any air bubbles.			
21.7	Wait for © 00:05:00 .			
21.8	Gently lift the SpotON cover to open the SpotON port.			

- 21.9 Load another 200 µl of FLB (plus FLT) into the flow cell via the inlet port, this will initiate a siphon at the SpotON port to allow you to load the library dilution.
- 21.10 In a new tube prepare the library dilution for sequencing:

Component	Volume
SQB	⊒ 37.5 μl
LB	⊒25.5 μl
Final library	□12 μl
Total	⊒75 μl

- 21.11 Mix the prepared library gently by pipetting up and down just prior to loading.
- 21.12 Add the 75 µl library dilution to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop siphons into the port before adding the next.
- 21.13 Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the inlet port and close the MinION lid.
 - 22 Start the sequencing run using MinKNOW.

- 22.1 If required plug the MinION into the computer and wait for the MinION and flowcell to ben detected.
- 22.2 Choose flow cell 'FLO-MIN106' from the drop-down menu.
- 22.3 Then select the flowcell so a tick appears.

- 22.4 Click the 'New Experiment' button in the bottom left of the screen.
- 22.5 On the New experiment popup screen, select the running parameters for your experiment from the individual tabs:

Experiment: Name the run in the experiment field, leave the sample field blank.

Kit: Selection: Select LSK109 as there is no option for native barcoding (NBD104).

Run Options: Set the run length to 6 hours (you can stop the run once sufficient data has been collected as determined using RAMPART).

Basecalling: Leave basecalling turned but select 'fast basecalling'.

Output: The number of files that MinKNOW will write to a single folder. By default this is set to 4000 but can be reduced to make RAMPART update more frequently.

Click 'Start run'.

22.6 Monitor the progress of the run using the MinKNOW interface.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited