Vektoren

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} (u_2v_3) - (u_3v_2) \\ (u_3v_1) - (u_1v_3) \\ (u_1v_2) - (v_2u_1) \end{pmatrix}$$

Die Länge eines Vektors ist $\sqrt{v_1^2 + \dots v_n^2}$.

Der Vektor $\vec{n} = \vec{u} \times \vec{v}$ ist normal auf die Vektoren \vec{u} und \vec{v} . Zwei Vektoren sind dann normal wenn ihr Skalarprodukt null ist.

Die Normalenform einer Ebene E in \mathbb{R}^3 ist

$$E = \{ \vec{x} \in \mathbb{R}^3 \mid (\vec{x} - \vec{a})\vec{n} = 0 \}$$

mit \vec{n} normal auf \vec{a} . Parameterform ist

$$E = \{ \vec{a} + \lambda \vec{u} + \sigma \vec{v} \mid \lambda, \sigma \in \mathbb{R} \}$$

wobe
i \boldsymbol{a} übl. Ortsvektor und $\boldsymbol{u},\boldsymbol{v}$ ausgehend vo
n $\boldsymbol{a}.$

Von Gleichungsform ax + by + cz = d einer Ebene auf Normalenform: Normalvektor ist $(a\ b\ c)^T$, dann \vec{a} finden mit $\vec{a}\vec{n} = d$. Von Parameterform in Normalenform: $n = u \times v$, a bleibt. Von Normalenform auf Gleichungsform: Ausrechnen.

Orthogonalisierung einer Basis $\{v_1, \ldots, v_n\}$:

1)
$$w_1 = v_1$$
, dann für $i = 2, ..., n$

2)
$$w_i = v_i - (\text{proj}_{w_1}(v_i) + \dots + \text{proj}_{w_{i-1}}(v_i))$$

mit

$$\operatorname{proj}_{u}(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} \cdot u$$

(Wenn v_1, \ldots, v_n keine Basis bilden bzw. linear abhängig sind funktioniert es auch, dann ist aber ein $w_i = \vec{0}$. Vektoren w_i können beliebig skaliert werden.)

Vektoren eines Orthogonalsystems sind immer linear unabhängig.

Matrizen

Eine (quadr.) Matrix A ist singulär wenn det(A) = 0, also wenn sie nicht invertierbar ist, bzw. ihre Spalten linear abhängig sind. Anderfalls ist sie regulär.

$$\det\left(\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}\right) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Für 3×3 :

$$a_{1,1} \begin{pmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{pmatrix} - a_{1,2} \begin{pmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{pmatrix} + a_{1,3} \begin{pmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix}$$

Eine Basistransformationsmatrix A_C^B ("B ausgedr. durch C") ist

$$A_C^B = ((v_1)_C \cdots (v_n)_C)$$

mit $B = \{v_1, \dots, v_n\}.$

Alle $v \in K^n \setminus \{\vec{0}\}$ mit

$$A \cdot v = \lambda \cdot v$$

heißen Eigenvektoren, λ sind zugehörige Eigenwerte.

Eigenwerte einer Matrix A sind Nullstellen von

$$\chi_A(\lambda) = \det(A - \lambda E_n).$$

Algebraische Vielfachheit ist die Potenz der Nullstelle. Dimension des Eigenraums ist geometrische Vielfachheit. Es gilt alg. $V \ge geo. V$.

Der Eigenraum zu einem Eigenwert λ ist

$$E_{A,\lambda} = \operatorname{Ker}(A - \lambda E_n)$$
$$\{\vec{v} \mid (A - \lambda E_n) = \vec{0}\}$$

Zur Diagonalisierung (λ sind Eigenwerte, v sind Eigenräume):

$$P^{-1} \cdot A \cdot P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$
 mit $P = (v_1, \dots, v_n)$

Nur möglich wenn für alle Werte alg. V. = geo V.

Zeilen- und Spaltenraum ist die lineare Hülle der Zeilen- bzw. Spaltenvektoren. (Auf Dimension aufpassen!)

Vertauschungsmatrix $T_{i,j}$ vertauscht Zeilen i und j. In Einheitsmatrix Zeilen i u. j. vertauschen. Skalierungsm. $S_i(\lambda)$ skaliert Zeile i mit λ . Additionsmatrix $R_{i,j}(\lambda)$ addiert das λ -fache der Zeile j zur Zeile i. In Einheitsmatrix λ bei (i,j).

Es gilt $\dim Z(A) = \dim S(A) = \operatorname{Rg}(A)$. Alle Nichtnull-Zeilen der Matrix in Zeilenstufenf. bilden Basis von Z(A). Spalten der urspr. Matrix A in denen in Zeilenstufenf. ein Pivot-El. ist sind Basis von S(A). Ausserdem dim Z(A) + dim $\operatorname{Ker}(A) = n$ bei $A^{m \times n}$.

$$\dim \operatorname{Ker}(A) = n - \operatorname{Rg}(A)$$
$$\dim \operatorname{Coker}(A) = m - \operatorname{Rg}(A)$$

Strukturen

 \mathbb{Z}_n ist dann ein Körper wenn n prim ist. Ein $x \in \mathbb{Z}_n$ ist dann teilbar wenn ggT(n, x) = 1. Die Gleichung

$$ax + by = c$$

hat dann eine Lösung in \mathbb{N} wenn $\operatorname{ggT}(a,b) \mid c$.

In der Menge $\mathbb{Z}_n[x]/(f)$ sind $n^{\deg(f)}$ Elemente. Das multiplikative Inverse eines Elements einer solchen Menge kann durch den EEA ermittelt werden.

Beim EEA gilt

$$u_i = u_{i-2} - (u_{i-1} \cdot q_i)$$

(Selbiges gilt für v.)

Polynome

Für Nullst. von $a_2x^2 + a_1x + a_0$

$$\frac{-a_1 \pm \sqrt{a_1^2 - 4a_0 a_2}}{2a_2}$$

Sei $p = a_n x^n + \dots + a_1 x + a_0$. Wenn p eine Nullstelle $\frac{a}{b} \in \mathbb{Q}$ besitzt dann $a \mid a_0$ und $b \mid a_n$. (Bei Polynom in \mathbb{Z}_n ist oft ausprobieren aller möglichen Nullstellen einfacher. Bei Polynom in \mathbb{Q} sind alle Nullst. $\frac{a}{b}$, "erraten" werden *alle* Nullstellen.)

Hat ein Pol. eine Nullst. n so enthält es den Faktor (x-n). Somit ist es reduzibel. Alles in \mathbb{C} ist reduzibel (kompl. Lösungsformel). Wenn in \mathbb{Z}_n Nullstelle dann reduzibel.