

في دارة التفرع الموضحة في الشكل قدرة المقاومة 3370 VA هي 466 فإذا كانت الدارة كلها تأخذ VA و3370 VA بعامل قدرة 0.937 سابق. أوجد قيمة Z.

التمرين الثاني؛(03 نقاط)

تأخذ دارة التسلسل الموضحة في الشكل 36,5 VA بعامل قدرة 0,856 لاحق. إذا كانت قدرة المقاومة Ω5 هي w 31.25 w، أوجد قيمة Z.

التمرين الثالث:(07 نقاط)

لتكن الدارة الموضحة في الشكل، أحسب القدرة الفعالة و القدرة الإرتكاسية في الفرع 3+j4, 0 و ذلك باستعمال نظرية تفنين.

التمرين الرابع:(07 نقاط)

ليكن النظام ثلاثي الأطوار الممثل في الشكل يصل حمولة متصلة على شكل نجم.

- أوجد تيارات الأطوار ثم استنتج التيار في الأحادي،
 - أوجد جهود الخطوط ثم أرسم مخطط فرينال،
 - أحسب القدرة الكلية باستعمال طريقة
 جهازي الواتمتر إذا وضعا في الخطين A و B .

$$Z_A = Z_B = Z_C = 22 / 30^\circ \quad \Omega$$

 $V_{AN} = 220 / 240^{\circ} \text{ V} \quad V_{BN} = 220 / 0^{\circ} \text{ V} \quad V_{CN} = 220 / 120^{\circ} \text{ V}$

GE المتعان GE 2012-1-19 المكن الجمد ٧ هو المرجع عدد المناوية ٥٠ عدد المناوية ١٠ عدد المناوية ١١ عدد المناوية ١٠ عدد ا سعد الحوّل (03)! 3 62 P3 = R3. I2 => I2 = V 666 = 14,89 A 6,25 و التيارية لحق الجمد ٧، إذن: 6,80 I2 = 14,89 [-63,43° A (22 = 3+j6, 12 = 6,66-j13,31,4 (2= asofg = 2 -> P2 = 63,4) V= (Ze). I2 = 6,7.14,89 = 99,88 V (V= 99,88 LO°, V) (0,5) $S = V.I \Rightarrow I = \frac{S}{V} = \frac{3370}{99.88} = 33,7 A (0,0)$ ولان التارة سابق الجمد ٧ بزاوية المانية ١٠ عادن: I = 33,7 (20,44, A (COV = 0,937 -> 4 = 20,44°) = 31,5++j11,+6, A (0,5 I, = I - I2 = 31,57+11,76 - 6,66+113,31 = 24,91+125,07, A = 35,34 145,18°, A 65 Z = V = 39,88 L0° = 2,82 1-45,18°, 52 6,5 Z=2-j2,52 المقريف النامي (33 ن): P5 = 31,25 W P5 = R5. I = I = \(\frac{31,25}{5} = 2,5 A \(\text{Q5} \) S=36,5 VA => P= S. en P=36,5.0,856 = 31,25 W O,5

 $P_{5} = 31,25 \text{ W} \qquad P_{5} = R_{5}.I^{2} \Rightarrow I = \sqrt{31,25} = 2,5 \text{ A} \qquad 0.5$ $S = 36,5 \text{ VA} \Rightarrow P_{7} = 5.\text{ e.o.} \varphi = 36,5.0,856 = 31,25 \text{ W} \qquad 0.5$ $P_{2} = P_{7} - P_{5} = 0 \qquad P_{7} \qquad Q_{7} = \sqrt{5^{2}} = 18,86 \text{ VAR} \qquad 0.25$ $Q_{7} = Q_{2} + Q_{2} \qquad Q_{2} = X_{2}.I^{2} = 2.2,5^{2} = 12,5 \text{ VAR} \qquad 0.5$ $Q_{7} = Q_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$ $Q_{7} = X_{7} - Q_{7} = 18,86 - 12,5 = 6,36 \text{ VAR} \qquad 0.5$

WT= WA+ WB

WA = VAC. IA. ED X VAC

= 380.10. cm 60° = 1900 W

WB = VBC. IB. CO X VBC =

= 380.10. cn0°

= 3800 W

WT: 1900 + 3800 = 5700 X/ 6,25