МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Формирование и первичная обработка выборки. Ранжированный и интервальный ряды.

Студент гр. 8383	 Киреев К.А.
Студент гр. 8383	 Муковский Д.В.
Преподаватель	Середа АВ.И.

Санкт-Петербург

Цель работы

Ознакомление с основными правилами формирования выборки и подготовки выборочных данных к статистическому анализу.

Основные теоретические положения

Ранжированный ряд — это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются. Вариационный ряд — последовательность значений заданной выборки $x^m = (x_1, ..., x_m)$, расположенных в порядке неубывания:

$$\chi^{(1)} \leq \chi^{(2)} \leq \cdots \leq \chi^{(m)}$$

Интервальный ряд распределения — это таблица, состоящая из двух столбцов (строк) — интервалов варьирующего признака X_i и числа единиц совокупности, попадающих в данный интервал (частот - f_i), или долей этого числа в общей численности совокупностей (частостей - d_i). Полигоном частот называют ломанную, отрезки которой соединяют точки $(x_1,n_1),(x_2,n_2),...,(x_k,n_k)$. Для построения полигона частот на оси абсцисе откладывают варианты x_i , а на оси ординат — соответствующие им частоты n_i . Точки (x_i,n_i) соединяют отрезками прямых и получают полигон частот. Гистограммой частот (частостей) называется ступенчатая фигура, состоящая из прямоугольников с основаниями, равными интервалам значений h_i и высотами, равными отношению частот (или частостей) к шагу. Эмпирической функцией распределения, построенной по выборке $x^m = (x_1, ..., x_m)$ объема m, называется случайная функция $\hat{F}_m(x)$, равная

$$\widehat{F}_m(x) = \frac{1}{m} \sum_{i=1}^m I_{\{x_i < x\}}.$$

Значения эмпирической функции распределения принадлежат отрезку [0,1].

Постановка задачи

Осуществить формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных. Осуществить последовательное преобразование полученной выборки в ранжированный, вариационный и интервальный ряды. Применительно к интервальному ряду построить и отобразить графически полигон, гистограмму и эмпирическую функцию распределения для абсолютных и относительных частот. Полученные результаты содержательно проинтерпретировать.

Выполнение работы

Выборка состоит из данных наблюдений относительно объемного веса $nu\left(\frac{\Gamma}{\text{см}^3}\right)$ при влажности 10% и модуля упругости $E\left(\frac{\kappa\Gamma}{\text{см}^2}\right)$ при сжатии вдоль волокон древесины резонансной ели.

Формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных представлено в таблице 1. Объём выборки: 104.

Таблица 1

Nº	nu	E	Nº	nu	E	Nº	nu	E	Nº	nu	E	Nº	nu	E
1	460	124.5	25	394	112.1	49	411	112.9	73	428	131.6	97	378	103.8
2	525	148.3	26	434	118.6	50	451	124.3	74	510	140.6	98	576	170.1
3	503	146.6	27	518	151.3	51	466	130.3	75	478	126.6	99	452	116.1
4	482	148.2	28	522	143.8	52	433	130.0	76	421	115.1	100	543	155.4
5	470	124.0	29	511	149.5	53	492	137.5	77	510	153.9	101	538	165.0
6	400	114.6	30	437	124.3	54	503	148.5	78	351	102.9	102	523	172.8
7	398	109.0	31	352	87.7	55	451	128.6	79	493	149.7	103	434	108.7
8	514	174.6	32	406	112.4	56	415	107.1	80	411	115.2	104	458	128.0
9	518	154.0	33	448	125.9	<i>57</i>	459	145.4	81	422	108.6			
10	383	109.7	34	493	129.7	58	442	123.4	82	402	120.8			
11	412	117.9	35	468	128.9	59	424	117.1	83	438	126.7			
12	320	64.5	36	345	95.9	60	397	108.6	84	485	138.6			
13	473	137.9	<i>37</i>	523	152.6	61	414	113.5	85	496	155.3			

14	438	134.1	38	498	144.3	62	437	129.2	86	453	126.4		
15	359	71.9	39	482	139.9	63	512	169.9	87	377	96.1		
16	569	157.4	40	487	146.0	64	525	165.9	88	540	156.7		
17	423	115.9	41	331	84.6	65	546	177.0	89	502	137.2		
18	460	140.7	42	416	120.5	66	422	122.9	90	408	110.0		
19	372	81.7	43	358	98.3	67	495	150.9	91	417	124.3		
20	383	107.4	44	463	144.9	68	452	131.0	92	474	132.5		
21	409	116.7	45	462	138.8	69	465	140.7	93	480	153.9		
22	444	130.0	46	413	110.8	70	391	107.5	94	483	130.3		
23	463	136.7	47	506	153.5	71	426	128.2	95	472	135.6		
24	482	150.1	48	465	140.9	72	482	136.4	96	477	146.0		

В таблице 2 представлена выборка только для nu.

Таблица 2

i	x_i	i	x_i	i	x_i	i	x_i	i	x_i
1	460	25	394	49	411	73	428	97	378
2	525	26	434	50	451	74	510	98	576
3	503	27	518	51	466	<i>7</i> 5	478	99	452
4	482	28	522	52	433	76	421	100	543
5	470	29	511	53	492	77	510	101	538
6	400	30	437	54	503	78	351	102	523
7	398	31	352	55	451	79	493	103	434
8	514	32	406	56	415	80	411	104	458
9	518	33	448	57	459	81	422		
10	383	34	493	58	442	82	402		
11	412	35	468	59	424	83	438		
12	320	36	345	60	397	84	485		
13	473	37	523	61	414	85	496		
14	438	38	498	62	437	86	453		
15	359	39	482	63	512	87	377		
16	569	40	487	64	525	88	540		
17	423	41	331	65	546	89	502		
18	460	42	416	66	422	90	408		
19	372	43	358	67	495	91	417		
20	383	44	463	68	452	92	474		
21	409	45	462	69	465	93	480		

Продолжение таблицы 2

22	444	46	413	70	391	94	483	
23	463	47	506	71	426	95	472	
24	482	48	465	72	482	96	477	

о Ранжированный ряд

В таблице 3 представлено преобразование выборки в ранжированный ряд.

Таблица 3

i	x_i	i	x_i	i	x_i	i	x_i	i	x_i
1	320	25	413	49	452	73	482	97	525
2	331	26	414	50	452	74	483	98	525
3	345	27	415	51	453	<i>7</i> 5	485	99	538
4	351	28	416	52	458	76	487	100	540
5	352	29	417	53	459	77	492	101	543
6	358	30	421	54	460	78	493	102	546
7	359	31	422	55	460	79	493	103	569
8	372	32	422	56	462	80	495	104	576
9	377	33	423	<i>57</i>	463	81	496		
10	378	34	424	58	463	82	498		
11	383	35	426	59	465	83	502		
12	383	36	428	60	465	84	503		
13	391	37	433	61	466	85	503		
14	394	38	434	62	468	86	506		
15	397	39	434	63	470	87	510		
16	398	40	437	64	472	88	510		
17	400	41	437	65	473	89	511		
18	402	42	438	66	474	90	512		
19	406	43	438	67	477	91	514		
20	408	44	442	68	478	92	518		
21	409	45	444	69	480	93	518		
22	411	46	448	70	482	94	522		
23	411	47	451	71	482	95	523		
24	412	48	451	72	482	96	523		

В таблице 3 можно заметить, что наименьшее значение в выборке $x_{min}=320,$ а наибольшее значение $x_{max}=576.$

о Вариационный ряд

В таблицах 4 и 5 представлено преобразование полученной выборки в вариационный ряд с абсолютными и относительными частотами соответственно.

Таблица 4

i	x_i	n_i	i	x_i	n_i	i	x_i	n_i	i	x_i	n_i
1	320	1	22	412	1	43	453	1	64	493	2
2	331	1	23	413	1	44	458	1	65	495	1
3	345	1	24	414	1	45	459	1	66	496	1
4	351	1	25	415	1	46	460	2	67	498	1
5	352	1	26	416	1	47	462	1	68	502	1
6	358	1	27	417	1	48	463	2	69	503	2
7	359	1	28	421	1	49	465	2	70	506	1
8	372	1	29	422	2	50	466	1	71	510	2
9	377	1	30	423	1	51	468	1	72	511	1
10	378	1	31	424	1	52	470	1	73	512	1
11	383	2	32	426	1	53	472	1	74	514	1
12	391	1	33	428	1	54	473	1	<i>7</i> 5	518	2
13	394	1	34	433	1	55	474	1	76	522	1
14	397	1	35	434	2	56	477	1	77	523	2
15	398	1	36	437	2	<i>57</i>	478	1	78	525	2
16	400	1	37	438	2	58	480	1	79	538	1
17	402	1	38	442	1	59	482	4	80	540	1
18	406	1	39	444	1	60	483	1	81	543	1
19	408	1	40	448	1	61	485	1	82	546	1
20	409	1	41	451	2	62	487	1	83	569	1
21	411	2	42	452	2	63	492	1	84	576	1

Таблица 5

i	x_i	$\overline{n_i}$	i	x_i	$\overline{n_i}$	i	x_i	$\overline{n_i}$	i	x_i	$\overline{n_i}$
1	320	0.0096	22	412	0.0096	43	453	0.0096	64	493	0.0192
2	331	0.0096	23	413	0.0096	44	458	0.0096	65	495	0.0096
3	345	0.0096	24	414	0.0096	45	459	0.0096	66	496	0.0096
4	351	0.0096	25	415	0.0096	46	460	0.0192	67	498	0.0096
5	352	0.0096	26	416	0.0096	47	462	0.0096	68	502	0.0096

Продолжение таблицы 5

6	358	0.0096	27	417	0.0096	48	463	0.0192	69	503	0.0192
7	359	0.0096	28	421	0.0096	49	465	0.0192	70	506	0.0096
8	372	0.0096	29	422	0.0192	50	466	0.0096	71	510	0.0192
9	377	0.0096	30	423	0.0096	51	468	0.0096	72	511	0.0096
10	378	0.0096	31	424	0.0096	52	470	0.0096	73	512	0.0096
11	383	0.0192	32	426	0.0096	53	472	0.0096	74	514	0.0096
12	391	0.0096	33	428	0.0096	54	473	0.0096	<i>75</i>	518	0.0192
13	394	0.0096	34	433	0.0096	55	474	0.0096	76	522	0.0096
14	397	0.0096	35	434	0.0192	56	477	0.0096	77	523	0.0192
15	398	0.0096	36	437	0.0192	<i>57</i>	478	0.0096	78	525	0.0192
16	400	0.0096	37	438	0.0192	58	480	0.0096	79	538	0.0096
17	402	0.0096	38	442	0.0096	59	482	0.0385	80	540	0.0096
18	406	0.0096	39	444	0.0096	60	483	0.0096	81	543	0.0096
19	408	0.0096	40	448	0.0096	61	485	0.0096	82	546	0.0096
20	409	0.0096	41	451	0.0192	62	487	0.0096	83	569	0.0096
21	411	0.0192	42	452	0.0192	63	492	0.0096	84	576	0.0096

о Интервальный ряд

С помощью формулы Стерджесса было вычислено количество интервалов:

$$k = 1 + 3.31 * \lg N = 7$$

Получено нечетное количество интервалов.

Ширина интервала h была вычислена по формуле:

$$h = \frac{x_{max} - x_{min}}{k} = \frac{576 - 320}{7} \approx 37$$

В таблице 6 представлен полученный интервальный ряд.

Таблица 6

Границы	Середины	Абсолютная	Относительная		
интервалов	интервалов	частота	частота		
[320, 357)	338.5	5	0.048		
[357, 394)	375.5	8	0.077		
[394, 431)	412.5	23	0.221		

Продолжение таблицы 6

[431, 468)	449.5	25	0.240
[468, 505)	486.5	24	0.231
[505, 542)	523.5	15	0.144
[542, 576)	559	4	0.038

Графики для интервального ряда абсолютных частот Полигон представлен на рис. 1.

Рисунок 1 – Полигон для абсолютных частот

Гистограмма, представлена на рис. 2.

Рисунок 2 – Гистограмма для абсолютных частот

 Графики для интервального ряда относительных частот Полигон представлен на рис. 3.

Рисунок 3 – Полигон для относительных частот

Гистограмма, представлена на рис. 4.

Рисунок 4 – Гистограмма для относительных частот

Эмпирическая функция распределения, построенная применительно к интервальному ряду для относительных частот представлен на рис. 5.

Функция распределения:

$$F(x) = \begin{cases} 0, & x = 338.5 \\ 0.048, & x = 375.5 \\ 0.125, & x = 412.5 \\ 0.346, & x = 449.5 \\ 0.587, & x = 486.5 \\ 0.817, & x = 523.5 \\ 0.962, & x = 559 \\ 1, & x > 559 \end{cases}$$

Рисунок 5 – График эмпирической функции распределения

Выводы

В ходе данной лабораторной работы была выбрана двумерная генеральная совокупность, согласованная с преподавателем. Из генеральной совокупности была сформирована репрезентативная выборка.

Выборка была преобразована в ранжированный, вариационный и интервальный ряды. Используя полученный интервальный ряд был построен полигон и гистограмма для абсолютных и относительных частот. Для интервального ряда относительных частот был построен график эмпирической функции распределения.

Элементы ранжированного ряда расположены в порядке возрастания их значений, поэтому можно определить минимальный и максимальный элемент выборки. Для данной выборки $x_{min} = 320$, $x_{max} = 576$.

Вариационный ряд получается в результате объединения одинаковых элементов, поэтому можно определить варианту с наибольшей частотой повторения

в выборке. Для данной выборки это $x_{59}=482$ с абсолютной частотой $n_{59}=4$ и относительной частотой $\overline{n_{59}}=0.0385$.

Интервальный ряд был построен с помощью деления вариационного ряда на интервалы. По формуле Стерджесса было получено нечетное количество интервалов k=7. По сформированному интервальному ряду можно увидеть, что наибольшая частота попадания значений вариант в интервале [431,468).

Такой же результат можно увидеть на построенных полигоне и гистограмме. Форма графиков не меняется для абсолютных и относительных частот, меняется ось ординат, которая для полигонов обозначает частоты (абсолютные или относительные), а для гистограмм уже площадь прямоугольника обозначает частоты, что можно проверить путем умножения высоты столбца на ширину h=37. Сумма площадей прямоугольников гистограммы для абсолютных частот равна объему выборки n=104, а для относительных частот равна 1. На графике эмпирической функции распределения можно увидеть отношение накопленных частот до середины интервалов к объему выборки.

По виду полигона и гистограммы можно сделать предположение о том, что анализируемая переменная имеет примерно нормальное распределение.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД

```
# %%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
# %% [markdown]
# ## Выборка
# %%
raw = pd.read_csv('c:/Users/gandh/dev/unv/smoed/data/sample.csv')
df = pd.read_csv('c:/Users/gandh/dev/unv/smoed/data/main_data.csv')
df.to_csv('data/data1.csv', index=False)
n = len(df)
n
# %% [markdown]
# ## Распределение
# %%
sns.set_theme(style="whitegrid", palette='deep', context='notebook',
font scale=1.3)
ax = sns.catplot(data=raw, kind='box', height=8.27, aspect=11.7/8.27)
plt.savefig('pics/1.png')
# %%
sns.set_theme(style="whitegrid", palette='deep', context='notebook',
font_scale=1.3)
ax = sns.catplot(data=df, kind='box', height=8.27, aspect=11.7/8.27)
plt.savefig('pics/2.png')
```

```
# %% [markdown]
# ## Одна переменная
# %%
df2 = df.drop('E', axis=1)
df2.to csv('data/data2.csv', index=False)
df2.head()
# %% [markdown]
# ## Ранжированный ряд
# %%
df2 = df2.sort_values(by=['nu'], ignore_index = True)
df2.to_csv('data/data3.csv', index=False)
df2.head()
# %%
df2.min()
df2.max()
# %%
X = df2['nu']
# %% [markdown]
# ## Вариационный ряд
# %%
table_af = X.value_counts().sort_index()
table_rf = X.value_counts(normalize=True).sort_index()
table_af = pd.DataFrame({'nu': table_af.index, 'af': table_af.values})
table_rf = pd.DataFrame({'nu': table_rf.index, 'rf': table_rf.values})
table_rf2 = table_rf.copy()
table rf2['rf'] = np.round(table rf2['rf'], 4)
table_af.to_csv('data/data4.csv', index=False)
table_rf2.to_csv('data/data5.csv', index=False)
# %% [markdown]
# ## Интервальный ряд
# %%
k = 1+3.31*np.log10(n)
```

```
k = int(np.floor(k))
k
# %%
min(X)
max(X)
# %%
h = (\max(X) - \min(X))/k
h = int(np.ceil(h))
h
# %%
data interval = pd.concat([table af, table rf], ignore index=True,
axis=1).drop(2, axis=1)
data interval.columns = ['nu', 'af', 'rf']
data_interval.to_csv('data/data6.csv', index=False)
# %%
ivs = np.hstack((np.arange(min(X), max(X), h), np.array(max(X))))
# %%
data_interval['inter'] = pd.cut(data_interval['nu'], bins=ivs,
                                right=False)
data_interval['inter'].value_counts().sort_index()
data_interval.iloc[83, 3] = data_interval.iloc[82, 3]
# %%
f_inter = data_interval.groupby(['inter'])[['af', 'rf']].apply(sum).re-
set index()
f inter['avg inter'] = np.array([np.mean([ivs[i], ivs[i+1]], axis=0) for
i in range(k)])
f inter = f inter[['inter', 'avg inter', 'af', 'rf']]
f inter.to csv('data/data7.csv', index=False)
```

```
# %% [markdown]
# ## Графики абсолют
# %%
ax = sns.relplot(data=f inter, x='avg inter', y='af', kind='line',
height=8.27, aspect=11.7/8.27)
ax.set_axis_labels('Середина интервала', 'Частота')
ax.set(ylim=[0,28], xticks=f_inter['avg_inter'])
ax.fig.suptitle('Полигон для абсолютных частот')
plt.savefig('pics/3.png')
# %%
ax = sns.displot(data=df, x='nu', bins=ivs, kind='hist', height=8.27, as-
pect=11.7/8.27, stat='probability')
ax.set axis labels('Середина интервала', 'Частота')
ax.set(ylim=[0,.26],xticks=f_inter['avg_inter'])
ax.fig.suptitle('Гистограмма для абсолютных частот')
plt.savefig('pics/4.png')
# %%
f inter['sum rf'] = f inter['rf'].cumsum()
f inter
# %%
ax = sns.relplot(data=f inter, x='avg inter', y='sum rf', s=80,
                 kind='scatter', height=8.27, aspect=11.7/8.27,
color='b')
for i in range(6):
    plt.hlines(f inter['sum rf'][i], f inter['avg inter'][i], f in-
ter['avg inter'][i+1], color='b')
plt.hlines(1, 559, 589, color='b')
for i in range(6):
```

```
plt.vlines(f_inter['avg_inter'][i+1], f_inter['sum_rf'][i], f_in-
ter['sum rf'][i+1], color='b', linestyle='--')
plt.vlines(338.5, 0, 0.048, color='b', linestyle='--')
ax.set_axis_labels('Середина интервала', '')
ax.set(xticks=f inter['avg inter'])
ax.fig.suptitle('Эмпирическая фукнция распределения')
plt.savefig('pics/5.png')
# %% [markdown]
# ## Графики относительно
# %%
ax = sns.relplot(data=f inter, x='avg inter', y='rf', kind='line',
height=8.27, aspect=11.7/8.27)
ax.set_axis_labels('Середина интервала', 'Частота')
ax.set(ylim=[0,0.26], xticks=f inter['avg inter'])
ax.fig.suptitle('Полигон для относительных частот')
plt.savefig('pics/6.png')
# %%
ax = sns.displot(data=df, x='nu', bins=ivs, kind='hist', height=8.27, as-
pect=11.7/8.27, stat='density')
ax.set_axis_labels('Середина интервала', 'Частота')
ax.set(xticks=f_inter['avg_inter'])
ax.fig.suptitle('Гистограмма для относительных частот')
plt.savefig('pics/7.png')
# %%
f inter['af']/h
f inter['rf']/h
```