2017학년도 9월 고1 전국연합학력평가 정답 및 **해설**

수학 영역

1	3	2	1	3	4	4	(5)	5	4
6	2	7	3	8	(5)	9	3	10	5
11	1	12	2	13	2	14	4	15	1
16	2	17	4	18	2	19	3	20	5
21	1	22	53	23	40	24	32	25	2
26	6	27	240	28	27	29	33	30	25

수학 영역

해 설

- 1. [출제의도] 교집합 원소의 개수 구하기 $A \cap B = \{1, 2, 4\}$ 이므로 원소의 개수는 3
- 2. [출제의도] 다항식의 연산 계산하기 $A+2B=5x^2-9x+1+4x^2+6x-8$ $=9x^2-3x-7$
- 3. [출제의도] 다항식의 인수분해 계산하기 $x^3-2^3=(x-2)(x^2+2x+4)$ 이므로 a=2 , b=2 따라서 a+b=4

4. [출제의도] 연립방정식 계산하기

$$\begin{cases} y = 2x + 3 & \cdots \\ x^2 + y = 2 & \cdots \\ \end{cases}$$

① 을 $\mathbb C$ 에 대입하면 $x^2+2x+1=0\;,\;(x+1)^2=0$ 따라서 $x=-1\;,\;y=1$ 이므로 a+3b=2

5. [출제의도] 절댓값이 있는 부등식 이해하기

 $|x+a| \le 8$ 을 풀면 $-8-a \le x \le 8-a$ 이때 주어진 부등식의 해가 $b \le x \le 2$ 이므로 a=6 , b=-14 따라서 a-b=20

6. [출제의도] 조건과 진리집합 이해하기

조건 p의 진리집합 $P=\{1,\,2,\,3,\,4,\,6,\,8\}$ 조건 $\sim p$ 의 진리집합 $P^C=\{5,\,7\}$ 따라서 모든 원소의 합은 12

7. [출제의도] 복소수의 성질을 이용하여 추론하기

 a^2 이 최솟값이고 bc가 최댓값일 때 a^2-bc 는 최솟값을 갖는다. a^2 의 최솟값은 a=5i일 때 -25, bc의 최댓값은 b=-4i, c=5i 또는 b=5i, c=-4i일 때 20 따라서 a^2-bc 의 최숫값은 -45

8. [출제의도] 곱셈공식 이해하기

 $2ab = (a+b)^2 - (a^2+b^2) = 3^2 - 7$ 이므로 ab = 1 $a^4 + b^4 = (a^2+b^2)^2 - 2(ab)^2 = 7^2 - 2 \times 1^2$ 따라서 $a^4 + b^4 = 47$

9. [출제의도] 허근의 성질 이해하기

 $x^3+x^2+x-3=(x-1)(x^2+2x+3)=0$ 이므로 z_1 , z_2 는 이차방정식 $x^2+2x+3=0$ 의 두 허근이다. 이차방정식의 근과 계수의 관계에 의해 $z_1z_2=3$ 이고 $z_1=\overline{z_2}$, $z_2=\overline{z_1}$ 따라서 $z_1\overline{z_1}+z_2\overline{z_2}=2z_1z_2=6$

10. [출제의도] 세 점을 지나는 원의 방정식 이해하기 원의 방정식 $x^2+y^2+ax+by+c=0$ 에 주어진 세 점의 좌표를 대입하면

$$\begin{cases} 4-2a+c=0\\ 16+4a+c=0\\ 5+a+2b+c=0 \end{cases}$$
 위 식을 연립하여 풀면
$$a=-2\,,\;b=\frac{5}{2}\,,\;c=-8$$

$$x^2+y^2-2x+\frac{5}{2}y-8=0$$

$$(x-1)^2 + \left(y + \frac{5}{4}\right)^2 = \left(\frac{13}{4}\right)^2$$

따라서 p=1, $q=-rac{5}{4}$ 이므로 $p+q=-rac{1}{4}$

11. [출제의도] 원의 성질 이해하기

선분 AB 의 수직이등분선을 l이라 하면 직선 l은 선분 AB 의 중점 $M\left(2,\,\frac{a+1}{2}\right)$ 을 지나고, 주어진원의 넓이를 이등분하므로 원의 중심 $(-2,\,5)$ 를 지난다.

직선 l의 기울기는 $\frac{a-9}{8}$

직선 AB의 기울기는 $\frac{a-1}{2}$

두 직선이 서로 수직이므로 $\frac{a-9}{8} \times \frac{a-1}{2} = -1$ 따라서 a=5

12. [출제의도] 미지수가 3개인 방정식을 이용하 여 수학 외적 문제 해결하기

포도 1송이의 가격을 x원, 사과 1개의 가격을 y원, 바나나 1송이의 가격을 z원이라 하면

$$\begin{cases} 2x + y = 5500 \\ 2y + z = 6000 \\ 2z + x = 8000 \end{cases}$$

위 식을 연립하여 풀면 $x=2000 \,,\; y=1500 \,,\; z=3000$ 따라서 D세트의 가격은 11,000 원

13. [출제의도] 도형의 이동을 이용하여 추론하기

방정식 f(x+1, -(y-2))=0이 나타내는 도형은 방정식 f(x, y)=0이 나타내는 도형을 x 축에 대하여 대칭이동한 후, x 축의 방향으로 -1, y 축의 방향으로 2 만큼 평행이동한 도형이므로 그림과 같다.

(별해) 방정식 f(x+1, -y+2)=0이 나타내는 도형은 방정식 f(x, y)=0이 나타내는 도형을 x축의 방향으로 -1, y축의 방향으로 -2만큼 평행이동한 후 x축에 대하여 대칭이동한 도형이다.

14. [출제의도] 필요조건을 이용하여 수학 내적 문제 해결하기

두 조건 p, q의 진리집합을 각각 P, Q라 하면 p는 q이기 위한 필요조건이므로 $Q \subset P$

원의 중심 (0, a)와 직선 3x - 4y + 5 = 0사이의 거리가 원의 반지름의 길이인 a이상이 되어야 하므로 1 - 4a + 5

$$\frac{|-4a+5|}{\sqrt{9+16}} \ge a$$

-4a+5>0 이므로 식을 정리하면 $-4a+5\geq 5a$ 따라서 p 는 q이기 위한 필요조건이 되기 위한 a의 최댓값은 $\frac{5}{9}$

15. [출제의도] 도형의 이동을 이용하여 수학 내 적 문제 해결하기

직선 $y=-\frac{1}{2}x-3$ 을 x축의 방향으로 a만큼 평행이동한 직선은 $y=-\frac{1}{2}(x-a)-3$ 이고 이를 직선 y=x에 대하여 대칭이동한 직선 l은 $x=-\frac{1}{2}(y-a)-3$, 즉 2x+y-a+6=0 직선 l이 원에 접하므로 원의 중심 (-1,3)에서 직선 l까지의 거리 $d=\frac{|-2+3-a+6|}{\sqrt{5}}=\sqrt{5}$ 따라서 a=2,12이므로 모든 a값의 합은 14

16. [출제의도] 점과 직선사이의 거리를 이용하여 수학 외적 문제 해결하기

레이더의 위치를 원점으로 하고 동서를 x축, 남북을 y축으로 하면 본부는 (-30, 20), A 지점은 (-30, -40), B 지점은 (50, 0) 물체가 지나간 경로의 직선의 방정식은 x-2y-50=0 이므로 이 물체가 본부와 가장 가까워졌을 때의 거리는 $\frac{|-30-40-50|}{\sqrt{5}}=24\sqrt{5}$

17. [출제의도] 다항식의 연산을 이용하여 수학

내적 문제 해결하기

$$\begin{split} \{f(x+1)\}^2 &= (x-1)(x+1)(x^2+5) + 9 \, ^{\alpha} |\mathcal{X}| \\ \{f(x)\}^2 &= x(x-2)(x^2-2x+6) + 9 \\ &= (x^2-2x)(x^2-2x+6) + 9 \\ &= (x^2-2x+3)^2 \end{split}$$

f(x)<0 이므로 $f(x)=-x^2+2x-3$ $f(x+a)=-(x+a)^2+2(x+a)-3$ 에 대하여 f(x+a)=g(x)라 하면 g(x)를 x-2로 나눈나머지가 -6이 되기 위해서는

 $g(2) = -(2+a)^2 + 2(2+a) - 3 = -6$ 따라서 $a^2 + 2a - 3 = 0$ 이므로 이차방정식의 근과 계수의 관계에 의해 모든 상수 a의 값의 곱은 -3

18. [출제의도] 이차함수와 직선의 위치관계를 이 용하여 추론하기

두 점 A , B 의 x 좌표를 각각 α , β $(\alpha < 0 < \beta)$ 라 하면

lpha, eta는 이차방정식 $-rac{x^2}{2}+k=mx$ 의 근이 므로 이차방정식의 근과 계수의 관계에 의해 lpha+eta=-2m, lphaeta=-2k

두 점 A , B 는 직선 y=mx 위의 점이므로 $A(\alpha, m\alpha)$, $B(\beta, m\beta)$

$$\begin{split} &\overline{\mathrm{OA}} = -\alpha \times \boxed{\sqrt{1+m^2}}, \ \overline{\mathrm{OB}} = \beta \times \boxed{\sqrt{1+m^2}} \\ &\frac{1}{\overline{\mathrm{OA}}} + \frac{1}{\overline{\mathrm{OB}}} \\ &= \frac{1}{-\alpha \times \boxed{\sqrt{1+m^2}}} + \frac{1}{\beta \times \boxed{\sqrt{1+m^2}}} \\ &= \frac{\alpha - \beta}{\alpha \beta \times \boxed{\sqrt{1+m^2}}} \\ &= \frac{-\sqrt{4m^2 + \boxed{8k}}}{-2k \times \boxed{\sqrt{1+m^2}}} \end{split}$$

실수 m 의 값에 관계없이 $\frac{1}{OA} + \frac{1}{OB}$ 이 갖는 일정한 값을 t 라 하자.

$$t^2 = \frac{4m^2 + \boxed{8k}}{\left(2k \times \boxed{\sqrt{1+m^2}}\right)^2} \,$$
이므로

이를 정리하면

 $4(1-k^2t^2)m^2+4(2k-k^2t^2)=0\cdots$

이때
$$\frac{1}{\overline{OA}} + \frac{1}{\overline{OB}} = \frac{1}{k}$$
 이다.

$$f(m) = \sqrt{1+m^2}$$
, $g(k) = 8k$, $p = \frac{1}{2}$ 이므로

$$f(p){\times}\,g(p){=}\,\sqrt{1+\left(\frac{1}{2}\right)^2}\,{\times}\,4=2\,\sqrt{5}$$

19. [출제의도] 나머지 정리를 이용하여 추론하기

ㄱ. $\{f(0)\}^3 = 1$ 이므로 f(0)=1 (참)

ㄴ. f(x)의 차수를 n이라 하면 좌변의 차수는 3n, 우변의 차수는 n+2이므로 n=1

f(x)=ax+b 라 하면 좌변의 최고차항의 계수는 a^3 , 우변의 최고차항의 계수는 4a 이므로 $a^3=4a$ a>0 이므로 f(x) 의 최고차항의 계수는 2 (거짓) \Box . 그과 ㄴ에 의해 f(x)=2x+1 이므로 $\{f(x)\}^3$ 을 x^2-1 로 나눈 몫을 Q(x), 나머지를 cx+d라 하면 $\{f(x)\}^3=(x^2-1)Q(x)+cx+d$ 이므로

 ${f(1)}^3 = c + d = 27$

 $\{f(-1)\}^3 = -c + d = -1$ 이를 연립하여 풀면 c = 14, d = 13따라서 $\{f(x)\}^3 을 <math>x^2 - 1$ 로 나눈 나머지는 14x + 13 (참)

20. [출제의도] 원의 방정식과 삼각형 무게중심의 성질을 이용하여 수학 내적 문제 해결하기

원 C 위의 점 P(a, b)에 대하여 삼각형 PAB의 무게중심의 좌표를 (x, y)라 하면

$$x = \frac{a+4+1}{3} \; , \; y = \frac{b+3+7}{3}$$

a = 3x - 5, b = 3y - 10 ... \bigcirc

점 P 는 원 C 위의 점이므로 $(a-1)^2+(b-2)^2=4$ \cdots ① 을 \bigcirc 에 대입하면

$$(x-2)^2 + (y-4)^2 = \left(\frac{2}{3}\right)^2$$

직선 AB 의 방정식은 4x+3y-25=0 이므로 삼각형 PAB 의 무게중심이 그리는 원의 중심 $(2,\ 4)$ 와 직 선 AB 사이의 거리는 1

구하고자 하는 거리의 최솟값은 삼각형 PAB의 무게중심이 그리는 원과 직선 AB 사이의 최단거리 이므로 $1-\frac{2}{3}=\frac{1}{3}$

21. [출제의도] 삼각형의 무게중심의 성질을 이용하여 수학 내적 문제 해결하기

점 D (0, 0), 점 B (-1, 0), 점 C (1, 0), 점 A (a, b)라 하면 $\overline{AB} = 2\sqrt{3}$, $\overline{AD} = \sqrt{7}$ 이므로 $(a+1)^2 + b^2 = (2\sqrt{3})^2$, $a^2 + b^2 = (\sqrt{7})^2$ 을 연립하여 풀면 점 A 의 좌표는 $(2, \sqrt{3})$

 \overline{AC} = 2 이므로 삼각형 ABC 는 이등변삼각형 이다. 이등변삼각형의 성질에 의해 선분 \overline{CE} 는 선분 AB의 수직이등분선이다. 따라서 \overline{CE} = 1 이고 점 P는 삼각형 ABC의 무게중심이다.

$$\overline{\mathrm{AP}}$$
: $\overline{\mathrm{PD}}$ = $2:1$ 이므로 $\overline{\mathrm{AP}}$ = $\frac{2\sqrt{7}}{3}$, $\overline{\mathrm{PD}}$ = $\frac{\sqrt{7}}{3}$

 $\overline{\text{CP}}$: $\overline{\text{PE}} = 2:1$ 이므로 $\overline{\text{CP}} = \frac{2}{3}$, $\overline{\text{PE}} = \frac{1}{3}$

삼각형 EPA에서 선분 PR이 각 APE의 이동 분선이므로 각의 이동분선의 성질에 의해 $\overline{PA}:\overline{PE}=\overline{AR}:\overline{ER}=2\sqrt{7}:1$

삼각형 ABC 의 넓이를 S라 하면 삼각형 EPA 의 넓이는 삼각형 ABC 의 넓이의 $\frac{1}{6}$ 이므로

$$S_1 = S \times \frac{1}{6} \times \frac{1}{2\sqrt{7}+1}$$

같은 방법으로 삼각형 CPD 에서 $\overline{PD}: \overline{PC} = \overline{DQ}: \overline{CQ} = \sqrt{7}: 2$

삼각형 CPD 의 넓이는 삼각형 ABC 의 넓이의 $\frac{1}{c}$

이므로
$$S_2 = S \times \frac{1}{6} \times \frac{2}{\sqrt{7} + 2}$$

$$\frac{S_2}{S_1}$$
= $8-2\sqrt{7}$ 이므로 $a=8$, $b=-2$

따라서 ab = -10

(별해) 점 D가 선분 BC의 중점이므로 $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AD}^2 + \overline{CD}^2)$ 이 성립한다. 따라서 $\overline{AC} = 2$ 이고 삼각형 ABC는 이동변삼각형이다.

22. [출제의도] 복소수 계산하기

(7+2i)(7-2i)=49+4=53

23. [출제의도] 나머지정리 이해하기

 $2^3 + 5 \times 2^2 + 4 \times 2 + 4 = 40$

24. [출제의도] 집합의 연산을 이용하여 추론하기

따라서 n(A) = 5 이므로 부분집합의 개수는 $2^5 = 32$

25. [출제의도] 이차함수의 성질 이해하기

이차방정식 $x^2 + 2(a-4)x + a^2 + a - 1 = 0$ 의 판별식을 D라 하면

$$D/4 = (a-4)^2 - (a^2 + a - 1) < 0$$

$$-9a+17<0, a>\frac{17}{9}$$

따라서 정수 a의 최솟값은 2

26. [출제의도] 부등식의 영역 이해하기

연립부등식의 영역을 좌표평면 위에 나타내면 그림과 같다.

따라서 넓이는 $\frac{1}{2} \times 3 \times 4 = 6$

27. [출제의도] 원의 성질을 이용하여 수학 외적 문제 해결하기

처음 상자에 담은 통조림통의 밑면의 중심을 O_1 이라 하고 상자의 남은 공간에 담을 수 있는 원기둥 모양 통조림통 밑면의 중심을 O_2 라 하자. 상자의 밑면의 한 꼭짓점이 원점에 오도록 좌표평면에 두면, 그림과 같이 두 원의 중심은 각각 $O_1(16,9)$, $O_2(r,r)$

 $\overline{{\rm O}_1{\rm O}_2}^2=(16-r)^2+(9-r)^2=(9+r)^2$ $r^2-68r+256=0,\ r=4$ 또는 r=64 $r\leq 9$ 이므로 r=4 따라서 부피의 최댓값은 $\pi{ imes}16{ imes}15=240\pi$

28. [출제의도] 이차함수의 그래프를 이용하여 수 학 내적 문제 해결하기

$$y=2x(x-a)=2\Big(x-\frac{a}{2}\Big)^2-\frac{a^2}{2}$$
이므로 점 $A\Big(\frac{a}{2},\ -\frac{a^2}{2}\Big)$, 점 $B(a,\ 0)$ 함수 $f(x)=-(x-a)(x-a-3)$ 이고 함수 $y=f(x)$ 의 그래프가 점 A 를 지나므로 $-\frac{a^2}{2}=-\Big(-\frac{a}{2}\Big)\Big(-\frac{a}{2}-3\Big)$ $a^2-6a=0$, a 는 양수이므로 $a=6$ 따라서 삼각형 A CB의 넓이는 $\frac{1}{2}\times 3\times 18=27$

29. [출제의도] 이차함수와 직선을 이용하여 수학 내적 문제 해결하기

 $2 \le x \le 4$ 에서 이차함수 $y = (x - 2a)^2 + b$ 는 그래프의 축 x = 2a의 위치에 따라 최솟값을 갖는 x의 좌표가 달라진다.

- (i) a<1인 경우, 함수의 최솟값은 x=2일 때 $(2-2a)^2+b=4$ 이므로 $b=-4(a-1)^2+4$ (ii) $1\leq a<2$ 인 경우, 함수의 최솟값은 꼭짓점의
- y 좌표이므로 b=4(iii) $a \ge 2$ 인 경우, 함수의 최솟값은 x=4일 때

$$(4-2a)^2+b=4$$
이므로 $b=-4(a-2)^2+4$
그러므로

$$b = \left\{ \begin{array}{rr} -4(a-1)^2 + 4 & (a < 1) \\ \\ 4 & (1 \le a < 2) \\ \\ -4(a-2)^2 + 4 & (a \ge 2) \end{array} \right.$$

2a+b=k라 두면

 $b = -4(a-2)^2 + 4$ 와 b = -2a + k 가 접할 때 k는 최댓값을 갖는다.

따라서 $M=\frac{33}{4}$ 이고 4M=33

30. [출제의도] 원과 직선의 위치관계를 이용하여 수학 내적 문제 해결하기

주어진 조건 (7)에 의해 $x_2=-2x_1+6$ 이므로 점 $Q(-2x_1+6,\ y_2)$ 라 하고 이를 원 C_2 에 대입하면 $(-2x_1)^2+(y_2-4+6\sqrt{3})^2=16$ \cdots \bigcirc 점 $P(x_1,\ y_1)$ 가 원 C_1 위의 점이므로 대입하면 $x_1^2+(y_1-4)^2=4$ \cdots \bigcirc \bigcirc 과 \bigcirc 을 연립하여 정리하면

$$(y_1 - 4)^2 = \left(\frac{y_2}{2} - 2 + 3\sqrt{3}\right)^2$$

조건 (나)에 의해

$$y_1-4 \leq 0$$
 , $\frac{y_2}{2}-2+3\sqrt{3} \geq 0$ 이므로

$$-y_1 + 4 = \frac{y_2}{2} - 2 + 3\sqrt{3}$$

이를 정리하면 $2y_1+y_2=12-6\sqrt{3}$

양변을 3으로 나누면 $\frac{2y_1+y_2}{3}=4-2\sqrt{3}$

그러므로 점 $(2, 4-2\sqrt{3})$ 은 선분 PQ 를 1:2로

 $x_1=0$ 일 때, $P(0,\,2),\,\,Q(6,\,8-6\,\sqrt{3}\,)$ $x_1=1$ 일 때, $P(1,\,4-\sqrt{3}\,),\,\,Q(4,\,4-4\,\sqrt{3}\,)$ 이고 이때 직선 PQ의 방정식은 $y=-\sqrt{3}\,x+4$ 이므로 두 원 $C_1,\,\,C_2$ 의 중심을 지난다.

내분하는 점이다.

 $0 \le x_1 \le 1$ 이므로 선분 PQ가 지나간 부분은 그림의 어두운 부분과 같다.

원 C_1 의 중심을 $O_1(0, 4)$, 원 C_2 의 중심을 $O_2(6, 4-6\sqrt{3})$, A(0, 2), $B(1, 4-\sqrt{3})$, $C(2, 4-2\sqrt{3})$, $D(6, 8-6\sqrt{3})$ 이라 하자. 점 B 에서 y 축에 내린 수선의 발을 H라 하면 삼각형 O_1HB 는 직각삼각형이고 $\overline{BH}=1$, $\overline{O_1H}=\sqrt{3}$ 그러므로 $\angle HO_1B=30$ °

 S_1 의 넓이는 삼각형 $O_1 AC$ 의 넓이에서 부채꼴 $O_1 AB$ 의 넓이를 뺀 값과 같다. 삼각형 $O_1 AC$ 의 넓이는 $\frac{1}{2} \times 2 \times 2 = 2$ 이고 부채꼴 $O_1 AB$ 의 넓이는

$$\pi \times 2^2 \times \frac{30^{\circ}}{360^{\circ}} = \frac{\pi}{3}$$

즉, S_1 의 넓이는 $2-\frac{\pi}{3}$

삼각형 O_1 AC 와 삼각형 O_2 DC 는 닮음이다. 닮음비가 1:2이므로 S_1 과 S_2 의 넓이의 비는 1:4 그러므로 S_2 의 넓이는 $8-\frac{4}{3}\pi$

선분 PQ 가 그리는 도형의 넓이는 $10-\frac{5}{3}\pi$

따라서 a=10, $b=\frac{5}{3}$ 이므로 a+9b=25