ICCS310: Assignment 3

Possawat Sanorkam possawat2017@hotmail.com February 7, 2021

1: NFA vs. DFA Expressiveness

(1) For every $k \geq 1$, there is an NFA with k+1 states that recognizes C_k .

Proof: We want to directly show that there is an NFA with k+1 states that recognizes C_k .

Suppose there is $G_k = (Q, \Sigma, \delta, q_0, F)$ and each G_k contains $Q = \{s_0, s_1, ..., s_k\}$ with each state showing how many of the last k bits that G_k has seen for every $k \ge 1$. Then, let $\delta(s_0, b) = s_0$, $\delta(s_0, a) = \{s_0, s_1\}$, $\delta(s_{i-1}, a) = s_i$ and $\delta(s_{i-1}, b) = s_i$ for $0 \le i \le k$. So, let $0 \le i \le k$ so, and it may process any character until $i \le i$ found. Once, $i \le i$ for the processes into two and we will get one process starts on $i \le i$ found and $i \le i$ found, fork the processes into two and we will get one process starts on $i \le i$ found and $i \le i$ for $i \le i$ for all $i \le i$ found and $i \le i$ for all $i \le i$ for all

Therefore, for every $k \geq 1$, there is an NFA with k+1 states that recognizes C_k . \square

(2) If M is a DFA that correctly recognizes C_k , then M has at least 2^k states. *Proof*:

2: Regular or Not

(1)
$$L_1 = \{xyx^R | x, y \in \Sigma^*, x \neq \varepsilon\}$$

Proof:

 S_0 represents the state where first character is not known.

 S_1 represents the state where first character is p.

 S_2 represents the state where first character is q.

 S_3 represents the state where last character is p, accepted.

 S_4 represents the state where last character is q, accepted.

The idea is that we do not care what is the given y, we only care what character starts first and that character must be the ending character since the reverse of px is xp and qx is xq where $x \in \Sigma^*$.

(2)
$$L_2 = \{xyx^R | x \in \Sigma^*, x \neq \varepsilon\}$$

Proof:

3: Nonregular

(1)
$$L = \{10^{n^2} | n \ge 0\}$$

Proof:

(2)
$$E = \{0^i x | i \ge 0 x \in \{0, 1\}^*, \text{ and } |x| \le i\}$$

Proof:

4: HackerRank Challenge

My username is Possawat2017. All problems solved.