

Report No.: EED32L00034602 Page 1 of 38

TEST REPORT

Product : uKit Robot
Trade mark : UBTECH

Model/Type reference : EREI101, EREwxyy

Serial Number : N/A

Report Number : EED32L00034602 FCC ID : 2AHJX-UKITERE Date of Issue : Apr. 02, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Kevin Lan

Kevin Lan

Ware Xin

Ware Xin

Approved by:

Kevin Yang

Check No.: 3096316262

Page 2 of 38

2 Version

Version No.	Date	Date Description			
00	Apr. 02, 2019		Original		
		100	75	/05	
((c ²)	(642)	(67)	

Report No.: EED32L00034602 Page 3 of 38

3 Test Summary

J rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: EREI101, EREwxyy

Only the model EREI101 was tested, EREwxyy ("w"can be a-z, indicating the product version; "x" can be 0-9, indicating the product category; "y" can be 0-9, indicating the product attributes.). All models are identical in interior structure, electrical circuits and components, only different from model name and color.

4 Content

•	Contone	
1 (COVER PAGE	1
2 ١	VERSION	2
3 7	TEST SUMMARY	3
4 (CONTENT	4
5 7	TEST REQUIREMENT	5
	5.1 TEST SETUP	5
	5.1.1 For Conducted test setup	
	5.1.2 For Radiated Emissions test setup	
	5.1.3 For Conducted Emissions test setup	
	5.3 TEST CONDITION	
	GENERAL INFORMATION	
	6.1 CLIENT INFORMATION	
	6.2 GENERAL DESCRIPTION OF EUT	
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	6.4 DESCRIPTION OF SUPPORT UNITS	
	6.5 TEST LOCATION	
	6.6 DEVIATION FROM STANDARDS	
	6.7 ABNORMALITIES FROM STANDARD CONDITIONS	
	6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	EQUIPMENT LIST	
8 F	RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
	Appendix A): 6dB & 99% Occupied Bandwidth	15
	Appendix B): Conducted Peak Output Power	17
	Appendix C): Band-edge for RF Conducted Emissions	
	Appendix D): RF Conducted Spurious Emissions	
	Appendix E): Power Spectral Density	
	Appendix G): AC Power Line Conducted Emission	
	Appendix H): Restricted bands around fundamental frequency (Radiated)	
	Appendix I): Radiated Spurious Emissions	
Pŀ	HOTOGRAPHS OF TEST SETUP	36
Pŀ	HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	38

Report No.: EED32L00034602 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for	r RF test:	
Temperature:	26°C	
Humidity:	50% RH	Daniel Daniel
Atmospheric Pressure:	101kPa	

5.3 Test Condition

Test channel:

Cot onarmor.					
Test Mode	* Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
	2402WH2 ~2480 WH2	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				
Charging mode:	Charging the EUT through charger.				

6 General Information

6.1 Client Information

Applicant:	UBTECH ROBOTICS CORP LTD
Address of Applicant:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Manufacturer:	UBTECH ROBOTICS CORP LTD
Address of Manufacturer:	16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
Factory:	UBTECH ROBOTICS CORP LTD BAOAN BRANCH
Address of Factory:	1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

6.2 General Description of EUT

uKit Robot					
EREI101, ER	Ewxyy				
EREI101					
UBTECH	(0.)				
BT 4.2 Dual n	BT 4.2 Dual mode, 2402-2480MHz				
AC Adapter	Model: PS1012-096HIB100 Input: 100-240V~ 50/60Hz, 0.4A Output: 9.6V===1.0A				
Battery	Rechargeable Lithium-ion Ploymer Battery:1800mAh 7.4V				
V2.1(manufacturer declare)					
V1.1.13(manufacturer declare)					
Feb. 26, 2019					
Mar. 11, 2019	Mar. 11, 2019 to Mar. 28, 2019				
	EREI101, ER EREI101 UBTECH BT 4.2 Dual n AC Adapter Battery V2.1(manufact V1.1.13(manufact V1.1.13(manufact Feb. 26, 2019				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	N/A
Test Software of EUT:	BLUETOOL_MI_1.9.2.0(manufacturer declare)
Antenna Type:	PCB printed Antenna
Antenna Gain:	0dBi
Test Voltage:	AC 120V, 60Hz

Report No.: EED32L00034602 Page 8 of 38

-0.7			-	100		205	
Operation F	requency eac	h of channe	1	(23)			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32L00034602 Page 9 of 38

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00034602 Page 10 of 38

7 Equipment List

RF test system					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page	11	of 38	

	Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019						
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019						
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020						
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020						
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019						
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019						
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020						
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019						
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020						

Report No. : EED32L00034602 Page 12 of 38

3M Semi/full-anechoic Chamber									
Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date				
	Wallulacturer	Wiodel No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)				
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019				
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019				
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020				
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021				
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021				
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021				
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019				
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019				
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019				
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019				
Receiver	R&S	ESCI7	100938-0 03	11-23-2018	11-22-2019				
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020				
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019				
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019				
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020				
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020				
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019				
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020				
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020				
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020				
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-09-2019 01-09-2019	01-08-2020 01-08-2020				
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020				
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-09-2019	01-08-2020				
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020				
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020				
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020				
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020				
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020				

Report No.: EED32L00034602 Page 13 of 38

3M full-anechoic Chamber									
Equipment	Manufac turer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
RSE Automatic test software	JS Tonscen d	JS36-RSE	10166	06-20-2018	06-19-2019				
Receiver	Keysight	N9038A	MY57290136	03-28-2018 03-27-2019	03-27-2019 03-25-2020				
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020				
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020				
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021				
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021				
TRILOG Broadband Antenna	Schwarz beck	VULB 9163	9163-1148	04-25-2018	04-23-2021				
Horn Antenna	Schwarz beck	BBHA 9170	9170-832	04-25-2018	04-23-2021				
Horn Antenna	Schwarz beck	BBHA 9170	9170-829	04-25-2018	04-23-2021				
Communication Antenna	Schwarz beck	CLSA 0110L	1014	02-15-2018	02-14-2019				
Biconical antenna	Schwarz beck	VUBA 9117	9117-381	04-25-2018	04-23-2021				
Horn Antenna	ETS- LINDGR EN	3117	00057407	07-10-2018	07-08-2021				
Preamplifier	EMCI	EMC184055SE	980596	06-20-2018	06-19-2019				
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020				
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019				
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019				
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018	05-01-2019				
Signal Generator	KEYSIG HT	E8257D	MY53401106	03-13-2018	03-12-2019				
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021				
Filter bank	JS Tonscen JS08		188060094	04-10-2018	04-08-2021				
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020				
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020				
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020				
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020				

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Appendix A): 6dB & 99% Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5047	1.1068	PASS
BLE	MCH	0.5054	1.1075	PASS
BLE	НСН	0.5055	1.1073	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graphs

Report No.: EED32L00034602

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.353	PASS
BLE	MCH	1.685	PASS
BLE	HCH	1.014	PASS

Test Graphs

Report No.: EED32L00034602

Report No. : EED32L00034602 Page 19 of 38

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	1.228	-59.318	-18.77	PASS
_	BLE	НСН	0.972	-59.752	-19.03	PASS

Test Graphs

Page 20 of 38 Report No.: EED32L00034602

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.157	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.506	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	0.832	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 22 of 38

Page 23 of 38

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.474	8	PASS
BLE	MCH	-15.075	8	PASS
BLE	HCH	-15.690	8	PASS

Test Graphs

Report No.: EED32L00034602 Page 25 of 38

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB printed Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: EED32L00034602 Page 26 of 38

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	z-30MHz		
	1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other to which was bonded to the gradient for the unit being measure multiple power cables to a exceeded.	o AC power source throch provides a 50Ω/50μunits of the EUT were ground reference planed. A multiple socket of	ough a LISN 1 (Line uH + 5Ω linear imp connected to a sec in the same way a outlet strip was use	e Impedance edance. The cond LISN 2 as the LISN ed to connec
	3)The tabletop EUT was place reference plane. And for floorizontal ground reference	oor-standing arrangem		
	4) The test was performed w EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane f plane. This distance was be	ne vertical ground refer ed to the horizontal gro the boundary of the u for LISNs mounted or	rence plane. The vence pland reference pland init under test and in top of the ground	ertical groun ne. The LISI bonded to nd referenc
	All other units of the EUT a	•		
(FI)	All other units of the EUT a	and associated equipn m emission, the relativ	nent was at least 0. e positions of equip	8 m from th oment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables	and associated equipn m emission, the relativ must be changed a	nent was at least 0. e positions of equip	8 m from th oment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables	and associated equipn m emission, the relativ must be changed a Limit (c	nent was at least 0. e positions of equiposcording to ANSI	8 m from thom thoment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximular of the interface cables conducted measurement.	and associated equipn m emission, the relativ must be changed a	nent was at least 0. e positions of equip	8 m from thom thoment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz)	and associated equipn m emission, the relativ must be changed a Limit (c	nent was at least 0. e positions of equipoccording to ANSI IBµV) Average	8 m from thom thoment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	and associated equipn m emission, the relativ must be changed a Limit (c	nent was at least 0. e positions of equipoccording to ANSI IBµV) Average 56 to 46*	8 m from thom thoment and a
Limit:	All other units of the EUT a LISN 2. 5) In order to find the maximular of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	m emission, the relative must be changed as Limit (conditional limit) Limit (conditional limit) Quasi-peak 66 to 56* 56 60 with the logarithm of	nent was at least 0. e positions of equipoccording to ANSI BBµV) Average 56 to 46* 46 50 the frequency in the	8 m from the comment and a C63.10 o
Limit: Charging mode:	All other units of the EUT a LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	m emission, the relative must be changed a Limit (conditional conditions). Limit (conditional conditions) with the logarithm of icable at the transition	nent was at least 0. e positions of equipoccording to ANSI BBµV) Average 56 to 46* 46 50 the frequency in the	8 m from the

Report No.: EED32L00034602 Page 27 of 38

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

		Read	ling_Le	vel	Correct	M	leasurem	ent	Lin	nit	Mai	rgin		
No.	Freq.	(0	dBuV)		Factor		(dBuV)		(dB	uV)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4860	34.83		14.47	9.89	44.72		24.36	56.24	46.24	-11.52	-21.88	Р	
2	0.6380	28.75		9.66	9.96	38.71		19.62	56.00	46.00	-17.29	-26.38	Р	
3	1.2579	29.95		9.67	9.79	39.74		19.46	56.00	46.00	-16.26	-26.54	Р	
4	1.7500	30.11		12.60	9.74	39.85		22.34	56.00	46.00	-16.15	-23.66	Р	
5	2.3100	27.70		9.53	9.72	37.42		19.25	56.00	46.00	-18.58	-26.75	Р	
6	2.8900	27.32		8.50	9.72	37.04		18.22	56.00	46.00	-18.96	-27.78	Р	

Page 28 of 38

		Read	ding_Le	evel	Correct	N	leasurem	nent	Lin	nit	Mai	rgin		
N	o. Freq.	(0	dBuV)		Factor		(dBu∀)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2819	34.20		17.41	9.98	44.18		27.39	60.76	50.76	-16.58	-23.37	Р	
2	0.3980	28.43		18.52	9.89	38.32		28.41	57.89	47.89	-19.57	-19.48	Р	
3	0.5060	31.09		20.94	9.90	40.99		30.84	56.00	46.00	-15.01	-15.16	Р	
4	1.0140	27.44		18.05	9.81	37.25		27.86	56.00	46.00	-18.75	-18.14	Р	
5	1.8180	26.29		16.70	9.74	36.03		26.44	56.00	46.00	-19.97	-19.56	Р	
6	16.4500	23.42		13.77	9.96	33.38		23.73	60.00	50.00	-26.62	-26.27	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32L00034602 Page 29 of 38

Appendix H): Restricted bands around fundamental frequency (Radiated)

(110010100)	183 7	19.3	2	\	362 1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(3)
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximum polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 det e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show co	dure as below: on the top of a roschoic camber. The of the highest rate ters away from top of a variable-between value of the finatenna are set to emission, the EUT of to heights from grees to 360 degreem was set to Penum Hold Mode, end of the restricts.	otating table he table was adiation. the interfer neight ante meter to food to be also arranged to the table to find eak Detect	e 0.8 meter as rotated 3 rence-receinna tower. our meters h. Both hor measurement of 4 meters at the maximum function a	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotation reading and Specified the transmit	to a, whic ound t rertical ad the able
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Characterist 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced	trum analyzer plot the channel strum as below: Sove is the test site of the change form of the change form of the channel of	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Ab cositioning fo t is worse ca	dulation nambe ove
₋imit:	Frequency	Limit (dBµV	/m @3m)	Rer	mark	
	30MHz-88MHz	40.0	/	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	-	eak Value	
	216MHz-960MHz	46.0)	Quasi-pe	eak Value	
	960MHz-1GHz	54.0) (4	Quasi-pe	eak Value	
		54.0 54.0	167	· /	eak Value je Value	
	960MHz-1GHz Above 1GHz	< 1 / · · · · · · · · · · · · · · · · · ·) (Averag		
Test Ambient:	Above 1GHz	54.0) (Averag	je Value	CH.

Report No.: EED32L00034602 Page 30 of 38

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	46.56	49.74	74.00	24.26	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	81.69	84.83	74.00	-10.83	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402	7
Remark:	Peak	(0)	7)	1/

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	47.30	50.48	74.00	23.52	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	76.50	79.64	74.00	-5.64	Pass	Vertical

Page 31 of 38

-7	Mode:	GFSK Transmitting	Channel:	2480
- \	Remark:	Peak	3	(0.)

Test Graph

PK Limit AV Limit Horizontal PK

★ PK Detector * AV Detector

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8185	32.37	13.39	-42.39	79.67	83.04	74.00	-9.04	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	46.06	49.42	74.00	24.58	Pass	Horizontal

Mode:	Mode: GFSK Transmitting		2480
Remark:	Peak		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2128	32.37	13.39	-42.40	73.23	76.59	74.00	-2.59	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	46.84	50.20	74.00	23.80	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-0-	300
)	0.490MHz-1.705MHz	24000/F(kHz)	-	(4)	30
/	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
(0,0)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 24°C Humid.: 56% Press.: 101kPa

Report No.: EED32L00034602 Page 33 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mo	ode:		GFSK Tra	nsmitting			Channel:		2480			
Re	mark:	QP	QP									
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	37.8578	11.61	0.69	-32.11	33.27	13.46	40.00	26.54	Pass	Horizontal		
2	67.5428	9.64	0.94	-32.05	31.44	9.97	40.00	30.03	Pass	Horizontal		
3	120.0250	9.20	1.30	-32.07	37.83	16.26	43.50	27.24	Pass	Horizontal		
4	192.0062	10.14	1.62	-31.96	43.30	23.10	43.50	20.40	Pass	Horizontal		
5	375.0635	14.85	2.31	-31.88	32.29	17.57	46.00	28.43	Pass	Horizontal		
6	687.5318	19.70	3.14	-32.06	37.59	28.37	46.00	17.63	Pass	Horizontal		

Mode	e:		GFSK Tra	nsmitting			Channel:		2480			
Remark:			QP	QP								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
1	52.5063	12.80	0.82	-32.10	35.96	17.48	40.00	22.52	Pass	Vertical		
2	67.4457	9.66	0.93	-32.04	40.14	18.69	40.00	21.31	Pass	Vertical		
3	120.0250	9.20	1.30	-32.07	40.80	19.23	43.50	24.27	Pass	Vertical		
4	208.8859	11.13	1.71	-31.94	45.85	26.75	43.50	16.75	Pass	Vertical		
5	320.9321	13.66	2.12	-31.82	34.54	18.50	46.00	27.50	Pass	Vertical		
6	625.0575	19.20	2.97	-31.98	33.75	23.94	46.00	22.06	Pass	Vertical		

Remark: All the channels are tested, only the worst data were reported.

Report No. : EED32L00034602 Page 34 of 38

Transmitter Emission above 1GHz

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1595.8596	29.03	3.07	-42.89	52.65	41.86	74.00	32.14	Pass	Н	PK	
2	2871.9872	33.00	4.30	-42.20	50.71	45.81	74.00	28.19	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	49.85	48.24	74.00	25.76	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	44.35	45.45	74.00	28.55	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	41.99	45.50	74.00	28.50	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.21	43.11	48.81	74.00	25.19	Pass	Н	PK	
7	1388.8389	28.29	2.88	-42.69	51.65	40.13	74.00	33.87	Pass	V	PK	
8	1973.8974	31.53	3.44	-42.62	55.51	47.86	74.00	26.14	Pass	V	PK	
9	2992.5993	33.19	4.53	-42.13	50.93	46.52	74.00	27.48	Pass	V	PK	
10	4804.0000	34.50	4.55	-40.66	45.30	43.69	74.00	30.31	Pass	V	PK	
11	7206.0000	36.31	5.81	-41.02	43.85	44.95	74.00	29.05	Pass	V	PK	
12	9608.0000	37.64	6.63	-40.76	42.65	46.16	74.00	27.84	Pass	V	PK	

Mode:		GFSK T	ransmitt	ing			Channel:		2440	40		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1598.4598	29.05	3.07	-42.90	53.42	42.64	74.00	31.36	Pass	Н	PK	
2	2835.1835	32.94	4.23	-42.21	51.64	46.60	74.00	27.40	Pass	Н	PK	
3	4880.0000	34.50	4.80	-40.60	44.38	43.08	74.00	30.92	Pass	H	PK	
4	7320.0000	36.42	5.85	-40.92	44.40	45.75	74.00	28.25	Pass	Н	PK	
5	9760.0000	37.70	6.73	-40.62	42.16	45.97	74.00	28.03	Pass	Н	PK	
6	12200.0000	39.42	7.67	-41.17	42.38	48.30	74.00	25.70	Pass	Н	PK	
7	1405.8406	28.31	2.91	-42.69	51.38	39.91	74.00	34.09	Pass	٧	PK	
8	1955.8956	31.41	3.43	-42.64	53.65	45.85	74.00	28.15	Pass	V	PK	
9	4880.0000	34.50	4.80	-40.60	44.26	42.96	74.00	31.04	Pass	V	PK	
10	7320.0000	36.42	5.85	-40.92	43.98	45.33	74.00	28.67	Pass	V	PK	
11	9760.0000	37.70	6.73	-40.62	41.95	45.76	74.00	28.24	Pass	V	PK	
12	12200.0000	39.42	7.67	-41.17	42.58	48.50	74.00	25.50	Pass	V	PK	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00034602 Page 35 of 38

	200			100		100	7%		70%		
Mode) :	GFSK T	ransmitt	ing			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1226.4226	28.13	2.67	-42.87	50.79	38.72	74.00	35.28	Pass	Н	PK
2	1597.2597	29.04	3.07	-42.89	52.07	41.29	74.00	32.71	Pass	Н	PK
3	3010.4007	33.20	4.91	-42.11	50.49	46.49	74.00	27.51	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	44.54	43.33	74.00	30.67	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	44.90	46.47	74.00	27.53	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	42.04	46.12	74.00	27.88	Pass	Н	PK
7	1394.0394	28.29	2.89	-42.68	55.06	43.56	74.00	30.44	Pass	V	PK
8	1913.2913	31.13	3.42	-42.66	54.30	46.19	74.00	27.81	Pass	V	PK
9	3109.8573	33.24	4.69	-42.05	49.81	45.69	74.00	28.31	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	44.12	42.91	74.00	31.09	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	44.59	46.16	74.00	27.84	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	40.95	45.03	74.00	28.97	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2)Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: EREI101

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32L00034602 Page 37 of 38

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32L00034602 Page 38 of 38

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32L00034601 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

