ЛЕКЦИЯ Б2. Функции. Образ, прообраз функции. Композиция функций. Свойства композиции. Инъективные, сюръективные, биективные функции. Характеристические функции и их свойства

Функции. Бинарное отношение f между элементами множеств X и Y называется функцией, если (а) $D_f = X$; (б) $R_f \subseteq Y$; (в) $\forall x \in X, \forall y_1, y_2 \in Y \ \langle x, y_1 \rangle, \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2$. Выполнение условий (а)—(в) кратко будем обозначать $f: X \to Y$ или говорить, что f — функция из X в Y. Если f — функция, то пишем y = f(x) вместо $\langle x, y \rangle \in f$. Множество всех функций из X в Y обозначается через Y^X , т.е. $Y^X = \{f \mid f: X \to Y\}$.

Упражнение 2.3. Доказать, что если множества X,Y конечны, то $|Y^X| = |Y|^{|X|}$.

Указание. Воспользоваться рассуждениями, аналогичными доказательству утверждения 1.1.

Функция $f: X \to Y$ называется: (а) *сюръективной*, если $R_f = Y$; (б) *инъективной*, если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$; (в) *биективной*, если f одновременно сюръективна и инъективна.

Равенство функций f=g по определению означает: (a) $D_f=D_g$; (б)

$$\forall x \in D_f = D_g f(x) = g(x)$$
.

Сопоставление аргументу $x \in X$ значения $f(x) \in Y$ принято обозначать при помощи ограниченной стрелки: $x \mapsto f(x)$.

Образ, прообраз множества относительно функционального отображения. Образом множества $A \subseteq X$ относительно $f: X \to Y$ называется множество $f(A) = \{f(x) \mid x \in A\}$; прообразом множества $B \subseteq Y$ называется множество $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$.

Утверждение 2.5. Для любой функции $f: X \to Y$ и любых множеств $A_1, A_2 \subseteq X$ справедливо: (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;

(6)
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$
; (B) $f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$.

Доказательство. (a) $y \in f(A_1 \cup A_2) \Rightarrow \exists x \in A_1 \cup A_2 : y = f(x) \Rightarrow y = f(x)$,

$$\begin{bmatrix} x \in A_1 \Rightarrow y \in f(A_1) \\ x \notin A_1 \Rightarrow x \in A_2 \Rightarrow y \in f(A_2) \end{bmatrix} \Rightarrow y \in f(A_1) \cup f(A_2);$$

$$y \in f(A_1) \cup f(A_2) \Rightarrow \Rightarrow \begin{bmatrix} y \in f(A_1) \Rightarrow \exists x_1 \in A_1 : y = f(x_1) \\ y \notin f(A_1) \Rightarrow y \in f(A_2) \Rightarrow \exists x_2 \in A_2 : y = f(x_2) \end{bmatrix} \Rightarrow$$

$$\Rightarrow \exists x \in A_1 \cup A_2 : y = f(x) \Rightarrow y \in f(A_1 \cup A_2);$$

(б)

$$y \in f(A_1 \cap A_2) \Rightarrow \exists x \in A_1 \cap A_2 : y = f(x) \Rightarrow x \in A_1, x \in A_2, y = f(x) \Rightarrow y \in f(A_1), y \in f(A_2) \Rightarrow y \in f(A_1) \cap f(A_2);$$

(p)

$$y \in f(A_1) \setminus f(A_2) \Rightarrow y \in f(A_1), y \notin f(A_2) \Rightarrow \exists x \in A_1 : y = f(x), x \notin A_2 \Rightarrow \exists x \in A_1 \setminus A_2 : y = f(x) \Rightarrow y \in f(A_1 \setminus A_2).$$

Утверждение 2.6. Если функция $f: X \to Y$ инъективна, то справедливы равенства: (г) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$; (д) $f(A_1 \setminus A_2) = f(A_1) \setminus f(A_2)$.

Доказательство. (г) В силу утверждения 2.5(б), осталось доказать, что $f(A_1 \cap A_2) \supseteq f(A_1) \cap f(A_2)$. Действительно,

 $y \in f(A_1) \cap f(A_2) \Rightarrow y \in f(A_1), y \in f(A_2) \Rightarrow \exists x_1 \in A_1, x_2 \in A_2 : y = f(x_1), y = f(x_2) \Rightarrow (B \text{ CM-}$ лу инъективности функции f) $\Rightarrow \Rightarrow x_1 = x_2 = x \Rightarrow x \in A_1 \cap A_2$, $y = f(x) \Rightarrow y \in f(A_1 \cap A_2)$.

(д) В силу утверждения 2.5(в) осталось доказать, что $f(A_1 \setminus A_2) \subseteq f(A_1) \setminus f(A_2)$. Действительно.

 $y \in f(A_1 \setminus A_2) \Rightarrow \exists x \in A_1 \setminus A_2 : y = f(x) \Rightarrow x \in A_1, x \notin A_2, y = f(x) \Rightarrow y \in f(A_1), y \notin f(A_2)$ (предположим, что $y \in f(A_2)$, тогда

 $\exists x' \in A_2: y = f(x') \Rightarrow f(x') = y = f(x) \Rightarrow x' = x \Rightarrow x \in A_2$, что противоречит условию $x \in A_1 \setminus A_2 \implies y \in f(A_1) \setminus f(A_2)$.

Утверждение 2.7. Для любой функции $f: X \to Y$ и любых мно-

жеств $B_1, B_2 \subseteq Y$ справедливо: (e) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$; (ж)

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2); (3) \ f^{-1}(B_1 \setminus B_2) = = f^{-1}(B_1) \setminus f^{-1}(B_2).$$

Доказательство. (e) $x \in f^{-1}(B_1 \cup B_2) \Rightarrow f(x) \in B_1 \cup B_2 \Rightarrow$

$$\Rightarrow \begin{bmatrix} f(x) \in B_1 \Rightarrow x \in f^{-1}(B_1) \\ f(x) \notin B_1 \Rightarrow f(x) \in B_2 \Rightarrow x \in f^{-1}(B_2) \end{bmatrix} \Rightarrow x \in f^{-1}(B_1) \cup f^{-1}(B_2)$$

$$\Rightarrow \begin{bmatrix} f(x) \in B_1 \Rightarrow x \in f^{-1}(B_1) \\ f(x) \notin B_1 \Rightarrow f(x) \in B_2 \Rightarrow x \in f^{-1}(B_2) \end{bmatrix} \Rightarrow x \in f^{-1}(B_1) \cup f^{-1}(B_2);$$

$$x \in f^{-1}(B_1) \cup f^{-1}(B_2) \Rightarrow \Rightarrow \begin{bmatrix} x \in f^{-1}(B_1) \Rightarrow f(x) \in B_1 \\ x \notin f^{-1}(B_1) \Rightarrow x \in f^{-1}(B_2) \Rightarrow f(x) \in B_2 \end{bmatrix} \Rightarrow f(x) \in B_1 \cup B_2 \Rightarrow$$

 $\Rightarrow x \in f^{-1}(B_1 \cup B_2); (\mathfrak{X})$

$$x \in f^{-1}(B_1 \cap B_2) \Leftrightarrow f(x) \in B_1 \cap B_2 \Leftrightarrow \Leftrightarrow f(x) \in B_1, f(x) \in B_2 \Leftrightarrow$$

$$x \in f^{-1}(B_1), x \in f^{-1}(B_2) \Leftrightarrow x \in f^{-1}(B_1) \cap f^{-1}(B_2)$$
; (3) доказывается аналогично (ж).

Композиция функций. *Композицией* двух функций $g: X \to Y$ и $f: Y \to Z$ называется функция $fg: X \to Z$, определяемая равенством $(fg)(x) = f(g(x)), \forall x \in X$ (т.е. $fg = g \circ f$). Eдиничной (или тождественной) функцией $e_X: X \to X$ называется функция, переводящая каждый элемент x в себя, т.е. $\forall x \in X \ e_x(x) = x$.

Отметим некоторые свойства композиции функций.

(a)
$$\forall f:X\to Y$$
 $fe_X=f$, $e_Yf=f$; (б) если $h:X\to Y$, $g:Y\to Z$, $f:Z\to V$, то $f(gh)=(fg)h$; (в) если $g:X\to Y$, $f:Y\to Z$ – биекции, то $fg:X\to Z$ — биекция.

Доказательство (а) очевидно. Докажем (б). Заметим, что $f(gh), (fg)h : X \to V$. Осталось (см. определение равенства функций) сравнить значения этих функций на произвольном элементе $x \in X : [f(gh)](x) = f[(gh)(x)] = f[g(h(x))] = (fg)[h(x)] = [(fg)h](x)$. Докажем (в). Сюрьек-**ТИВНОСТЬ**: $\{(fg)(x) \mid x \in X\} = \{f(g(x)) \mid x$

$$= f(g(X)) = f(Y) = Z$$
. Инъективность: $x_1 \neq x_2 \Rightarrow g(x_1) \neq g(x_2) \Rightarrow f(g(x_1)) \neq f(g(x_2)) \Rightarrow (fg)(x_1) \neq (fg)(x_2)$.

Обращение функций. Если f – инъективная функция вида $f: X \to Y$, то бинарное отношение $f^{-1} \subseteq R_f \times X$ является биективной функцией вида $f^{-1}: R_f \to X$ и называется обрамной к f. При этом $y = f(x) \Leftrightarrow \langle x, y \rangle \in f \Leftrightarrow \langle y, x \rangle \in f^{-1} \Leftrightarrow x = f^{-1}(y)$.

Упражнение 2.4. Докажем, что f^{-1} – функция. Действительно,

$$\begin{split} \forall y \in R_f, \forall x_1, x_2 \in X & \left\langle y, x_1 \right\rangle, \left\langle y, x_2 \right\rangle \in f^{-1} \Rightarrow \\ \Rightarrow \left\langle x_1, y \right\rangle, \left\langle x_2, y \right\rangle \in f \Rightarrow f(x_1) = y = f(x_2) \Rightarrow x_1 = x_2 \,. \end{split}$$

Упражнение 2.5. Докажем, что функция f^{-1} сюръективна. Очевидно, что для любого бинарного отношения ρ выполняются равенства: $D_{\rho}=R_{\rho^{-1}}, R_{\rho}=D_{\rho^{-1}}$, а следовательно, $R_{f^{-1}}=D_f=X$.

Упражнение 2.6. Докажем, что функция f^{-1} инъективна. Пусть $y_1, y_2 \in R_f, f^{-1}(y_1) = f^{-1}(y_2) = x \in X$. Тогда $\langle y_1, x \rangle, \langle y_2, x \rangle \in f^{-1} \Rightarrow \langle x, y_1 \rangle, \langle x, y_2 \rangle \in f$, откуда, используя то, что f – функция, получаем $y_1 = y_2$.

Характеристическая функция множества. Пусть U – непустое множество. Для любого подмножества A множества U введем в рассмотрение характеристическую функцию множе-

ства
$$A$$
 вида $\chi_A^U: U \to \{0;1\}$, определяемую равенством $\chi_A^U(x) = \begin{cases} 1, \text{ если} & x \in A, \\ 0, \text{ если} & x \notin A. \end{cases}$

Упражнение 2.7. Докажем, что (а)
$$\chi_U^U(x) \equiv 1$$
; (б) $\chi_\varnothing^U(x) \equiv 0$; (в) $\chi_{\overline{A}}^U(x) = 1 - \chi_A^U(x)$; (г) $\chi_{A \cap B}^U(x) = \chi_A^U(x)\chi_B^U(x)$; (д) $\chi_{A \cup B}^U(x) = \chi_A^U(x) + \chi_B^U(x) - \chi_A^U(x)\chi_B^U(x)$; (е) $\chi_{A \setminus B}^U(x) = \chi_A^U(x) - \chi_A^U(x)\chi_B^U(x)$.

Решение. Утверждения (а), (б) очевидны. Случай (в) обосновывается табл. 2.1, в которой перечислены все возможные случаи относительно произвольного элемента $x \in U$, и в каждом из них левая часть доказываемого равенства равна правой его части (см. совпадение двух последних столбцов):

$x \in A$	$x \in \overline{A}$	$\chi_A^U(x)$	$1-\chi_A^U(x)$	$\chi_{\overline{A}}^{U}(x)$
да	нет	1	0	0
нет	да	0	1	1

Табл. 2.1

Утверждение (г) обосновывается табл. 2.2, в которой перечислены все возможные случаи относительно произвольного элемента $x \in U$, и в каждом из них левая часть доказываемого равенства равна правой его части (см. совпадение двух последних столбцов):

$x \in A$	$x \in B$	$x \in A \cap B$	$\chi_A^U(x)$	$\chi_B^U(x)$	$\chi_{A\cap B}^{U}(x)$	$\chi_A^U(x)\chi_B^U(x)$
да	да	да	1	1	1	1
да	нет	нет	1	0	0	0
нет	да	нет	0	1	0	0
нет	нет	нет	0	0	0	0

Табл. 2.2

Утверждение (д) обосновывается табл. 2.3, в которой перечислены все возможные случаи относительно произвольного элемента $x \in U$, и в каждом из них левая часть доказываемого равенства равна правой его части (см. совпадение двух последних столбцов):

$x \in A$	$x \in B$	$x \in A \cup B$	$\chi_A^U(x)$	$\chi_B^U(x)$	$\chi_{A\cup B}^{U}(x)$	$\chi_A^U(x) + \chi_B^U(x) - \chi_A^U(x)\chi_B^U(x)$
да	да	да	1	1	1	1
да	нет	да	1	0	1	1
нет	да	да	0	1	1	1
нет	нет	нет	0	0	0	0

Табл.2.3

Для доказательства утверждения (e), в силу $A \setminus B = A \cap \overline{B}$, а также, используя (в), (г), имеем: $\chi_{A \setminus B}^U(x) = \chi_{A \cap \overline{B}}^U(x) = \chi_A^U(x) \chi_{\overline{B}}^U(x) = \chi_A^U(x) (1 - \chi_B^U(x)) = \chi_A^U(x) - \chi_A^U(x) \chi_B^U(x)$.