SUB TASK2

Train Info

Constraint

Sub-task	Augmentation	Ensemble	Memory (과거 데이터셋)	Multimodal	외부 데이터셋	외부 사전학습 모델
1	허용	불허	해당사항 없음	허용	허용	허용
2		허용	해당사항 없음	불허	불허	불허
3		허용	불허	허용	불허	허용
4		허용	해당사항 없음	허용	허용	허용

Environment

Python3.11.8

PyTorch: 2.2.2+cu121

GPU: NVIDIA GeForce RTX 4070 Ti SUPER

Base Model

https://github.com/baaivision/EVA

Subtask2는 Pretrain 불가능 + 모델크기 제한이 있었음

ViT 기반 모델은 Conv 모델에 비해 더 많은 데이터셋이 있어야 성능이 좋다고 알려져 있지만, Subtask2에서는 사전 학습이 없어도, ViT기반 모델이 더 성능이 좋았음. (비교모델: ConvNeXt, MobileNet)

Base Train Environments

EVA02 Tiny + CrossEntropy + AdamW + CosineAnnealingWarmRestarts

Albumentation Augmentation

Augmentation

- SubTask2는 이미지 색을 맞추는 Task기 때문에 Augmentation은 색의 변화를 주지 않는 Augmentation만 적용하였음.
- HSV Transform은 성능 향상에 좋지 않았음
- 이미지를 확률적으로 Crop하여 해당 이미지의 색을 맞추는 테스트도 하였지만 효과가 크지 않았음.
- Remove Background + Raw Data를 한번에 학습하는 테스트도 하였지만, 효과가 크지 않았음.
- CutMix + Mixup을 적용해봤지만, 성능 향상에 좋지 않았음 => 색을 판단해야 하는데 Mixup은 데이터에 노이즈만 추가한 것이라 생

Etc

- Test Score는 Validation Acc를 대부분 정직하게 따라갔음.
- Asymmetric Loss와 Focal Loss의 경우 성능이 좋지 않았음.
- 모든 학습 데이터 셋이 10~15 Epcch 사이에서 더이상 학습하지 못하고 발산함.

SUB TASK2

Train Experiments

20240812 112319

Not Crop + Not Sampler

ConvNeXt 테스트

2024.09.18 Comments: 나름 잘 수렴했다고 생각해서 더 사용해봤으면 어땠을까 생각이 듬

20240812 175729

EVA02 테스트

20240813 124501

RandAugment + RandomErasing + Class Weight Sampler + Mixup

2

Acc가 0.6을 넘지 못하여 사용 X

SUB TASK2

Mixup + CutMix 의 효과가 크지 않다고 판단됨. ⇒ 색을 판단해야 하는데 Mixup은 학습에 방해요소라고 생각

20240813 152337

RandAugment + RandomErasing + Class Weight Sampler + Mixup

MobileNetv3

왜 Train loss 가 Validation 보다 낮은지 해석 X

20240813 172804

Not Crop + Not Sampler MobileNetv3

Validation Loss & Acc 가 EVA의 성능에 비해 너무 뒤쳐짐. 사용불가 판단

20240818 170120

Base Train Environments

Crop + Class Weight Sampler

Ir 1e-4

3

Result: 0.862

20240818 193616

Base Train Environments

Crop + Class Weight Sampler

Ir 5e-5

Result: 0.842

20240820 154600

Base Train Environments

Crop + Class Weight Sampler + HSV Trasnform

Ir 1e-4

기존 모델은 Best Validation Acc가 0.64까지 오르지만 HSV Transform을 적용시켰을 때는 0.6을 넘지 못함

Result: None

20240831134638

Crop + Class Weight Sampler

Ir 1e-4

데이터의 색을 맞추는데 있어서 Remove Background가 도움이 될 것이라 생각했고, 같이 학습한다면 배경이 있는 환경에서도 잘 학습할 수 있다고 생각했음

Remove Background를 하고, 해당 데이터셋과 Raw 데이터셋을 합쳐서 Train

Result: 0.846

20240910 093447

Base Train Environments

Crop + Class Weight Sampler

Ir 1e-4

Result: 0.867