

| 도입 사례 |

미국에서 682명의 여성고객을 대상으로 슈퍼마켓에서의 행동을 조사한 자료에 의하면 그들 중 593명이 그들이 정상적으로 구입하는 상품에 대해 쿠폰을 사용했고 그들 중 95%가 최근 한 달 내에 쿠폰을 사용했으며 한 가구당 방문한 슈퍼마켓은 2.9개의 점포에 해당한다는 것이 밝혀졌습니다.

한편, 위에서 수집한 쿠폰사용과 소득간의 관계를 특정한 표로 동시에 정리(통계용어로는 cross-tabulation)하고 이들 현상간의 관계를 분석함으로써 (1) 모든 소득수준의 가구가 쿠폰을 사용하고 있음을 알 수 있었고, (2) 하위 소득수준의 가구는 중간이나 고소득수준의 가구보다 쿠폰을 훨씬 더 많이 사용하는 것을 밝힌바 있습니다. 그리고 이와 같은 소득수준과 쿠폰사용간의 관계는 통계적으로 유의한 것으로 나타났습니다. 슈퍼마켓에서 쿠폰과 관련된 전략을 수립할 경우에 그와 같은 발견은 유용하게 사용될 수 있었습니다.

생각해 볼 문제----

- ① 어떤 기준으로 사회현상들간에 상호관계가 존재한다고 말할 수 있을까요?
- ② 현상간에 존재하는 상호관계가 현상간의 인과관계 설명에 어떠한 역할을 할까요?

1. 상관관계분석이란?

[그림 10-1] 기술통계분석

◆ 기술통계분석에서는 사회현상 X와 Y에 대해 각각 설명

[그림 10-2] 상호관계분석

- ◆ 제10장부터는 현상들간의 관계(relationship)에 대해 설명
- ♦ 과학의 목표가 현상들간의 관계를 설명해 주는 것
- ◆ 즉 현상들간에 인과관계(causal relationship)가 존재하는지를 알아보아야 할 것
- ◆ 인과관계가 밝혀지기 위해서는 <u>우선 두 개의 현상이 동시에 변하는 현상인지를 밝</u> <u>힐 필요</u>
- ◆ **상관관계분석**(analysis of association)
 - □ 상호관계분석에 속하는 추리통계기법으로, 조사연구대상 변수들간의 관련성이 있 는지를 분석하는 데 사용되는 기법
 - □ 하나의 변수가 다른 변수와 동시에 변하는지, 또 변한다면 어떤 방향(같은 방향 혹은 반대 방향)으로 변하는지, 그리고 그 변화 정도는 어떠한지 등을 분석할 때 사용하는 방법
 - 상관관계분석에서는 두 현상의 동반변화에 대한 관심
 - □ 그러나 상관관계분석이 인과관계분석의 기초분석으로 사용될 수 있음
 - 예1) 한국고교 학생들의 영어점수와 수학점수간의 상관관계분석
 - 예2) 광고비와 매출간의 상관관계분석

2. 상관관계분석의 원리

⇒ 계량적 자료수집 시 사용된 근원척도의 유형에 따라 상관관계분석 기법이 상이

1] 등간/비율척도로 측정된 현상들간의 상관관계분석

- ◆ 기술통계분석의 산포도(dispersion measures) 측정도구
 - □ 범위(range), 편차(deviation), 분산(variance), 표준편차(standard deviation)
 - ☞ <u>하나의 현상(</u>변수)의 변화폭을 측정해 주는 도구

滐

제1절 상관관계분석이란 무엇인가?

- ◆ 공분산(covariance: *COV_{xy}*)
 - □ 두 가지 현상(변수)이 동시에 변화하는 정도를 측정해 주는 도구
 - □ 하나의 현상의 변동폭을 알려주는 도구인 분산과 밀접한 관련이 있으면서, 두 현 상들간의 관계분석기능을 수행하는 도구
 - \Box 하나의 변수 (X_i) 가 평균 (\overline{X}) 을 기준으로 변함에 따라, 다른 변수 (Y_i) 가 평균 (\overline{Y}) 을 기준으로 어떤 방향으로 얼마나 변화하는가를 보여주는 도구
 - □ 표본크기가 증가할수록 ∑(X;¬X)(Y;¬Y)의 값도 커지므로 이 값을 표본의 크기 N (실제로는 N-1)으로 나누어서 표본의 크기에 영향을 받지 않는 두 변수의 동반변 화폭을 알려주는 도구 (n-1로 나누어야 추정결과가 불편추정치가 되기 때문)
 - □ 현상을 측정할 때 어떠한 측정단위(예: 섭씨 혹은 화씨로 온도 측정; kg 혹은 lb로 무게 측정; cm 혹은 inch로 키 측정 등)를 사용하는가에 따라 동일한 현상에 대한 공분산이 달라질 수 있음-> X, Y 단위에 영향을 받음,

상관관계 <mark>정도</mark> 알려주는 지표가 되지 못함

공분산(covariance)

(식 10-1)

 $COV_{xy} = \sum (X_i)$ 의 변화폭) (Y_i) 의 변화폭)/(표본크기-1) $= \sum (X_i - \overline{X})(Y_i - \overline{Y})/(N-1)$

♦ Pearson 상관계수

- 공분산을 표준화한 도구
- □ 동일한 측정수준(예: 비율척도)이라도 상이한 측정단위(예: kg혹은 lb로 몸무게 측정)에 따라 변할 수 있는 공분산의 단점을 제거하면서 <u>두 변수간의 동반변화 여부</u> 및 정도를 판단할 수 있는 도구
 - ☞ 표본의 크기가 30 이상인 경우 등간척도 이상으로 측정된 두 변수가 정규분포를 따르게 되므로 Pearson 상관계수를 구해서 두 변수간의 <u>상관관계를 판단</u>

☞ -1 ≤ Pearson 상관계수 ≤ 1

Pearson 상관계수

(식 10-2)

 $r = COV_{xy}/$ 표준화 도구

= $COV_{xv}/(X$ 의 표준편차)(Y의 표준편차)

 $= COV_{xy}/s_x s_y$

(:'표준편차: 측정단위와 관계없이 하나의 변수의 변화폭을 표시해 주는 도구)

滐

제1절 상관관계분석이란 무엇인가?

- ◆ 적률상관계수(product-moment correlation coefficient)
 - □ Pearson 상관계수
 - □ 두 분포의 1차율의 적(積), 즉 곱
- ◆ 편차(deviation: $X_i \overline{X}$)
 - □ 분포의 1차율(first moments of a distribution), 편차의 제곱은 분포의 2차율, 편차의 세제곱은 분포의 3차율

적률상관계수(=Pearson 상관계수) (식 10-3) $r = \sum (X_i) = \sum (X_j) = \sum (X_j)$

☞ 실제로는 SPSS Statistics와 같은 통계분석 프로그램에 분석명령을 내림과 거의 동시에 분석결과가 계산됨

<표 10-1> SUV의 전호도와 보유기간

응답자 번호	SUV 선호도(<i>Y_i</i>)	SUV 보유기간(X_i)
1	6	10
2	9	12
3	8	12
4	3	4
5	10	12
6	4	6
7	5	8
8	2	2
9	11	18
10	9	9
11	10	17
12	2	2

• SUV 선호도 : 1(매우 싫어함) ~ 11(매우 좋아함), 등간척도

• SUV 보유기간 : 개월 수, 비율척도

滐

業

제1절 상관관계분석이란 무엇인가?

<표 10-2> Pearson 상관계수 계산결과

$$\overline{X} = \sum X_i / N = (10 + 12 + \dots + 2) / 12 = 9.33$$
 $\overline{Y} = \sum Y_i / N = (6 + 9 + \dots + 2) / 12 = 6.58$

$$\sum (X_i - \overline{X})(Y_i - \overline{Y}) = (10 - 9.33)(6 - 6.58) + (12 - 9.33)(9 - 6.58) + \dots + (2 - 9.33)(2 - 6.58) = 179.6668$$

$$\sum (X_i - \overline{X})^2 = (10 - 9.33)^2 + (12 - 9.33)^2 + \dots + (2 - 9.33)^2 = 304.6668$$

$$\sum (Y_i - \overline{Y})^2 = (6 - 6.58)^2 + (9 - 6.58)^2 + \dots + (2 - 6.58)^2 = 120.9168$$

$$r = 179.6668 / \sqrt{(304.6668)(120.9168)} = 0.9361$$

2] 서열척도로 측정된 현상들간의 상관관계분석

- (1) Spearman 서열상관계수
- ◆ 서열척도로 측정된 수는 가감승제의 의미가 없음
 - ☞ Pearson 상관관계 적용 불가 (∵ 평균/표준편차 구할 수 없음)
- ◆ Spearman 서열상관계수
 - 서열척도로 측정된 두 개의 변수들간의 상관관계
- ◆ Spearman 서열상관계수의 **기본논리**
 - □ 서열척도로 측정된 두 개의 변수들에 대한 응답자의 응답순위가 완전히 일치될 때에는 한 변수의 순위에서 다른 변수의 순위를 뺀 차이는 0이 될 것임
 - <u> 두 변수들간의 서열이 다를수록 차이는 점차 커진다</u>고 할 수 있음
 - ☞ <u>두 변수의 서열의 차이정보를 가공해서</u> 서열상관계수를 구함

〈표 10-3〉 영어와 구학의 석차

시험자 번호	영어석차(<i>X_i</i>)	수학석차(Y_i)	$d_i = X_i - Y_i$	d _i ²
1	1	1	0	0
2	4	3	1	1
3	8	4	4	16
4	7	6	1	1
5	10	10	0	0
6	9	9	0	0
7	5	5	0	0
8	2	2	0	0
9	3	8	- 5	25
10	6	7	- 1	1
n=10	-	-	-	$\sum d_i^2 = 44$

제1절 상관관계분석이란 무엇인가?

Spearman 서열상관계수 $r_s = 1 - 6\sum d_i^2 / n (n^2 - 1)$

(식 10-4)

<표 10-4> Spearman 서열상관계수 계산결과

$$r_s = 1 - 6 \sum d_i^2 / n (n^2 - 1)$$

= 1 - 6 × 44 / 10 (100 - 1)
= 1 - 264 / 990
= 0.73

(2) Kendall의 일치계수

- ◆ Kendall의 일치계수 (W, Kendall's coefficient of concordance)
- □ 서열변수로 측정된 3개 이상의 변수들, 즉 k개의 변수들간에 존재하는 상관관계를 파악하는 데 사용(Spearman 서열상관계수는 두 개 변수들간 존재 상관관계분석 가능)

<표 10−5> 국어, 영어와 구학의 석차

시험자 번호	국어석차(<i>X_i</i>)	영어석차(<i>Y_i</i>)	수학석차(<i>Z_i</i>)	$R_i = X_i + Y_i + Z_i$
1	1	1	1	3
2	4	3	3	10
3	8	4	4	16
4	7	6	6	19
5	10	10	10	30
6	9	9	9	27
7	5	5	5	15
8	2	2	2	6
9	3	8	8	19
10	6	7	7	20
n=10	-	-	-	$\frac{\overline{R}}{R}$ =16.5

滐

제1절 상관관계분석이란 무엇인가?

- ◆ Kendall의 일치계수의 **기본논리**
 - □ 변수간의 **서열의 합**을 이용
 - ☞ 만일 <u>3개 변수의 서열의 합이 완벽히 일치한다면</u>, 그 서열의 합은 3, 6, 9, ... 등으로 나타날 것이고, <u>3개 변수의 서열이 전혀 일치하지 않는다면</u> 그 서열의 합은 거의 동일해질 것임

Kendall의 일치계수(= W)

(식 10-5)

W =실제로 얻어진 R_i 의 변화폭/ R_i 의 최대의 변화폭

 $= R_i$ 편차 제곱의 합/ k개 변수간 순위가 완전 일치할 때의 R_i 의 총합

 $= \sum (R_i - \overline{R})^2 / \frac{1}{12} k^2 (n^3 - n)$

단, R_i 은 서열순위의 합R은 서열순위의 합의 평균R는 변수(혹은 평가자)의 수R은 표본의 크기

<표 10-6> Kendall의 일치계수 계산결과

$$W = \sum (R_i - \overline{R})^2 / \frac{1}{12} k^2 (n^3 - n)$$

$$= [(3 - 16.5)^2 + (10 - 16.5)^2 + \dots + (20 - 16.5)^2] / \frac{1}{12} 3^2 (10^3 - 10)$$

$$= (182.25 + 42.25 + \dots + 12.25) / \frac{1}{12} 3^2 (10^3 - 10)$$

$$= 654.5 / 742.5$$

$$= 0.88$$

- ☞ Kendall의 일치계수는 부(-)의 값을 갖지 않음
- ☞ Pearson 상관계수와는 다른 급(class)의 상관관계 판단도구

※ Kendall의 서열상관계수

- = Kendall의 T
- = 두 개의 서열변수간의 상관계수
- # Kendall의 일치계수

3) 명목척도로 측정된 현상들간의 상관관계분석

- ◆ 명목척도로 측정된 수도 가감승제의 의미가 없음
 - ☞ Pearson 상관관계 적용 불가
- ◆ 유관표(contingency table)
 - □ 두 변수를 교차(cross)하여 작성한 표

〈표 10-7〉 정별과 보유 차종 1

	남	ਰ	소 계		
Sonata	25(a) 25(b)	25(c) 25(d)	50		
SM5	25(b)	25(d)	50		
 소 계	50	50	100		

☞ 명목척도로 측정된 두 변수간에 **관련성이 거의 없는** 경우

<표 10-8> 정별과 보유 차쫑 2

	남여		소 계
Sonata	50(e) 0(f)	0(g) 50(h)	50
SM5	0(f)	50(h)	50
소 계	50	50	100

☞ 명목척도로 측정된 두 변수간에 **관련성이 매우 큰** 경우

* 실제 표본조사 시행 시에는 표 10-7, 10-8의 중간에 해당하는 현상이 관찰됨

業

제1절 상관관계분석이란 무엇인가?

χ² 값

- □ 표본에서 관찰된 결과가 우연에 의한 결과와 의미 있게 다른지를 알려주는 도구
- χ²란 우연에 의해서 기대되는 빈도와 실제 관찰되는 빈도를 비교한 값

(식 10-6)

$$\chi^2 = \sum (O_{ij} - E_{ij})^2 / E_{ij}$$

단, O_{ij} 는 표본에서 <u>실제 관찰</u>한 빈도 E_{ij} 란 우연에 의해 <u>기대</u>되는 빈도

<표 10-9> χ²의 계산 예

$$\chi^2 = [(25-25)^2 + (25-25)^2 + (25-25)^2 + (25-25)^2]/25$$

$$= (0 + 0 + 0 + 0)/25$$

$$= 0$$

<표 10-8>의 χ² 값(예 b)

$$\chi^2 = [(50-25)^2 + (0-25)^2 + (50-25)^2 + (0-25)^2]/25$$

$$= (625 + 625 + 625 + 625)/25$$

- ◆ 일반적으로 χ²값이 클수록, 표본에서 관찰된 빈도와 우연에 의해 기대되는 빈도와 의 차이가 커짐
- ◆ χ² 분포는 자유도(df)에 의해 분포의 구체적인 형태가 변화함
- ◆ χ² 의 자유도는 <식 10-7>에 의해 결정
- * x²의 자유도

(식 10-7)

df = [유관표의 행(row)수-1] [유관표의 열(column)수-1] = (r-1)(c-1)

예) 2×2 표에서는 df = (2-1)(2-1)=13×3 표에서는 df = (3-1)(3-1)=44×3 표에서는 df = (4-1)(3-1)=6

- 실제 관찰빈도와 기대관찰빈도가 계산되고, 이에 따른 χ^2 값, 자유도가 결정되면, 가설설정시에 연구자가 주관적으로 정해 두었던 유의도 수준(그러나 관행적으로 는 p=.01 혹은 .05)에 비추어 두 변수간에 관계가 있는지 없는지를 판단하게 됨
- ♦ χ²검정(χ² test)
 - $_{ extstyle }$ 명목척도로 측정된 변수간에 관계가 있는지 여부를 χ^2 를 이용하여 판단하는 방법
 - □ <u>관계의 여부만을 판단해 줄 뿐, 두 변수간의 관계의 크기를 분석해 주지는 못함,</u> 즉 <u>두 변수의 독립성 여부만을 판단</u>해 주는 것

- ◆ 유관계수 혹은 분할계수(contingency coefficient: **C**)
 - 두 변수간의 관계의 크기를 분석할 수 있는 상관관계분석방법
 - 이 계수의 계산도 χ²값에 의존

유관계수/분할계수(contingency coefficient[=C]) (식 10-8)

$$C = \sqrt{\frac{\chi^2}{N + \chi^2}}$$

〈표 10-10〉 유관계수/분할계수 계산 예

$$C = \sqrt{\frac{100}{100 + 100}}$$

= .707

- * 정의상 유관계수는 Pearson 상관계수처럼 1이 될 수 없으므로. 두 변수간에 완벽한 상관관계가 있는 경우에도 크기가 실제보다 작게 계산될 수 있음. 이 계수에 부호도 없고 여러가지 측면에서 해석상의 어려움이 있음
 - => 완벽하지는 않더라도 카이제곱 (χ^2) 검정과 유관계수(C)를 동시에 사용해서 자료를 해석하는 것이 바람직함

淼

with with

제2절 상관관계분석 결과는 어떻게 해석할 것인가?

- ◆ 상관관계분석
 - □ 표본을 기초로 한 기술통계분석 결과를 이용하여 <u>모집단에서의 변수들간 관계를</u> <u>추정하는</u> 추리통계분석기법
 - □ 표본을 대상으로 관찰한 변수들의 측정값으로 표본통계량을 계산하고, 표본통계량 과 해당 표본통계량의 표본분포(sampling distribution)에 근거해서 모집단에서도 상관관계가 성립하는지에 대한 <u>가설을 검정</u>하게 되는 것
- ◆ 모든 상관관계분석시의 가설의 일반적인 형태(<표 10-11> 참조)

연구가설(*H*₁): 두 변수(현상)간에는 상관관계가 존재할 것이다.

귀무가설(H_0): 두 변수(현상)간에는 상관관계가 존재하지 않을 것이다.

1) 등간/비율척도로 측정된 현상들간의 상관관계분석결과의 해석

- ◆ 분석의 대상 변수는
 - '현재급여'와 '최초급여'
 - □ 급여이므로 비율척도의 수준으로 측정된 사회현상
- ◆ 연구가설(*H*₁)
 - "현재급여와 최초급여간에는 상관관계가 존재할 것이다"
- [[]♦ 귀무가설(*H*₀)
 - "현재급여와 최초급여간에는 상관관계가 존재하지 않을 것이다"
- ◆ 통계가설형태로 표현된 연구가설(H₁)과 귀무가설(H₀)
 - ☞ <표 10-12>
 - P = 0라는 가정하에서, 표본에서 얻은 P = 0 모집단의 P = 0로부터 얼마나 멀리 떨어져 있는지를 판단하는 것이 상관관계분석시의 가설검정내용
 - r 구체적으로 r을 이용한 검정통계량(test statistic)을 계산해서 가설을 검정

 $H_1: \rho \neq 0$

 $H_0: \rho = 0$

Pearson 상관계수의 검정통계량

(식 10-9)

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

단, *n* 은 표본의 크기 *r* 은 표본에서 계산한 Pearson 상관계수의 크기 *t* 는 *n* – 2 의 자유도를 가진 *t* 분포를 따름

[그림 10-3] Pearson 상관계수의 해석

2) 서열척도로 측정된 현상들간의 상관관계분석결과의 해석

- ◆ 분석의 대상 변수는
 - '직종구분'과 '피교육연수'
 - □ 서열척도로 가정
- ◆ 연구가설(*H*₁)
 - "직종구분과 피교육연수간에는 상관관계가 존재할 것이다"
- ◆ 귀무가설(*H*₀)
 - □ "직종구분과 피교육연수간에는 상관관계가 존재하지 않을 것이다"

(1) Spearman 서열상관계수의 해석

◆ 통계가설형태로 표현된 귀무가설(*H*₀)

$$^{\Box}$$
 " H_0 : $\rho = 0$ "

- $P > H_0$: $\rho = 0$ 라는 가정하에서, 표본에서 얻은 r_s 이 모집단의 ρ 로부터 얼마나 멀리 떨어져 있는지를 판단하는 것이 서열상관관계분석시의 가설검정내용
- → 구체적으로 r_s을 이용한 검정통계량(test statistic)을 계산해서 가설을 검정Spearman 서열상관계수 검정통계량(식 10-10)

$$t = r_s \sqrt{\frac{N-2}{1-(r_s)^2}}$$

단, t - n-2의 자유도를 가진 t 분포를 따름

[그림 10-4] 서열앙관계수의 해석 talistics Viewer *출력결과2 [문서2] - IBM SPSS Statistics Viewer X 편집(E) 보기(V) 데이터(D) 변환(T) 삽입(I) 유틸리티(U) 형식(0) 분석(A) 다이렉트 마케팅(M) 그래프(G) 확장(X) 도움말(H) 창(W) ■ 출력결과 비모수 상관 출 Ⅱ모수 상관 --(출) 제목 - 노트 상관관계 - 🕍 상관관계 피교육년수 직종구분 .415** Kendall의 타우-b 피교육년수 상관계수 1.000 유의확률 (양측) .000 N 474 474 .415 직종구분 상관계수 1.000 유의확률 (양측) .000 474 474 484** Spearman의 rho 피교육년수 상관계수 1.000 유의확률 (양측) .000 N 474 474 .484** 직종구분 상관계수 1.000 유의확률 (양측) .000

474

474

^{**.} 상관관계가 0.01 수준에서 유의합니다(양측).

(2) Kendall 서열상관계수의 해석

- ◆ 통계가설형태로 표현된 귀무가설(*H*₀)
 - $^{\Box}$ " H_0 : T = 0"
- 즉, H_0 : τ =0라는 가정하에서, 표본에서 얻은 Kendall 서열상관계수가 모집단의 τ 로부터 얼마나 멀리 떨어져 있는지를 판단하는 것이 Kendall 서열상관관계분석시의 가설검정내용

Kendall 서열상관계계수 검정통계량

(식 10-11)

$$z = \frac{\tau - \mu_{\tau}}{\sigma_{\tau}} = \frac{\tau}{\sqrt{\frac{2(2N+5)}{9N(N-1)}}}$$

단, ${\it z}$ 검정통계량은 평균 μ_{τ} =0, 표준편차 σ_{τ} = $\sqrt{\frac{2(2N+5)}{9N(N-1)}}$ 를 가지는 정규분포에 접근

➡ 다시 [그림 10-4] 참조

3) 명목척도로 측정된 현상들간의 상관관계분석 결과의 해석

- ♦ 분석 대상 변수
 - · '소수민족여부'와 '직종구분'
- ◆ 연구가설(*H*₁)
 - "소수민족여부와 직종구분간에는 상관관계가 존재할 것이다"
- ◆ 귀무가설(*H*₀)
 - "소수민족여부와 직종구분간에는 상관관계가 존재하지 않을 것이다"

(1) χ²검정

- ◆ 명목변수의 실제 관찰빈도
- ◆ 기대관찰빈도
 - 우연(chance)에 의해 기대할 수 있는 빈도
 - " "두 변수는 서로 독립적이다(즉, 관계가 없다)"는 귀무가설(H₀)하에서 기대할 수 있는 빈도
- ◆ χ² 값과 자유도 결정
 - ☞ <u>x²값이 클수록</u>실제관찰 빈도가 기대빈도와 차이가 많이 나게 되고, 따라서 이러한 결과는 우연(chance)에 의한 것이 아닐 가능성, 즉 <u>귀무가설이 거짓일 가능성을 제고</u>시키는 것

[그림 10-5] 명목변수간의 상관관계의 해석 1

(2) 유관계수/분할계수 분석결과

- ♦ 유관계수
 - □ 명목척도로 측정된 두 변수간의 상관관계의 크기까지는 분석

<표 10-13> 명목변수간의 상관관계의 해석 2

대칭적 측도

		값	근사 유의확률
명목척도 대 명목척도	파이	.235	.000
	Cramer의 V	.235	.000
	분할계수	.229	.000
유효 케이스 수		474	

濼

제3절 상관관계분석은 어떻게 실행하는가?

◆ 모든 SPSS Statistics분석을 위해서는 분석대상 자료파일이 열려져 있어야 함 [그림 10-6] 분석대상 자료파일 열기

) l		E 1	7	<u> </u>	Te H		유틸리티(U)	\$ ■	A ()	● ABS					
	A A A A A A A A A A A A A A A A A A A										J			표/	VI: 10 / 10
	🔗 번호 🔒	성별	⅔ 생년월일	제 피교육	🗞 직종	🔗 현재급여	🔗 최초급여	♦ 근무월수		🗞 소수민족	변수	변수	변수	변수	변
1	1 m		02/03/1952	15	3	\$57,000	\$27,000	98	144	0					
2	2 m		05/23/1958	16	1	\$40,200	\$18,750	98	36	0					
3	3 f		07/26/1929	12	1	\$21,450	\$12,000	98	381	0					
4	4 f		04/15/1947	8	1	\$21,900	\$13,200	98	190	0					
5	5 m		02/09/1955	15	1	\$45,000	\$21,000	98	138	0					
6	6 m		08/22/1958	15	1	\$32,100	\$13,500	98	67	0					
7	7 m		04/26/1956	15	1	\$36,000	\$18,750	98	114	0					
8	8 f		05/06/1966	12	1	\$21,900	\$9,750	98	0	0					
9	9 f		01/23/1946	15	1	\$27,900	\$12,750	98	115	0					
10	10 f		02/13/1946	12	1	\$24,000	\$13,500	98	244	0					
11	11 f		02/07/1950	16	1	\$30,300	\$16,500	98	143	0					
12	12 m		01/11/1966	8	1	\$28,350	\$12,000	98	26	1					
13	13 m		07/17/1960	15	1	\$27,750	\$14,250	98	34	1					
14	14 f		02/26/1949	15	1	\$35,100	\$16,800	98	137	1					
15	15 m		08/29/1962	12	1	\$27,300	\$13,500	97	66	0					
16	16 m		11/17/1964	12	1	\$40,800	\$15,000	97	24	0					
17	17 m		07/18/1962	15	1	\$46,000	\$14,250	97	48	0					
18	18 m		03/20/1956	16	3	\$103,750	\$27,510	97	70	0					
19	19 m		08/19/1962	12	1	\$42,300	\$14,250	97	103	0					
20	20 f		01/23/1940	12	1	\$26,250	\$11.550	97	48	0	ANNEXAMA				
	기 변수 보기			100-	-1		***								

제3절 상관관계분석은 어떻게 실행하는가?

1] 등간/비율척도로 측정된 현상들간의 상관관계분석의 실행

- ◆ [그림 10-6]처럼 분석대상 자료파일을 열고, [그림 10-7]과 같이 **분석(A)** → **상관분** 석(C) → 이변량 상관계수(B)를 차례로 선택
- ◆ [그림 10-7]에서와 같은 절차를 밟게 되면, [그림 10-8]에서와 같은 작은 창이 열리 게 됨
 - 이 창에서는 상관관계분석대상 변수 두 개를 지정하는 창, 두 개 변수간의 상관계수(즉, 이변량 상관관계)를 분석하는 방법 3개, 그리고 가설의 유의성 검정시단측검정(즉, 한쪽검정) 혹은 양측검정(즉, 양쪽검정) 여부를 선택할 수 있는 등의 선택을 수행할 수 있게 되어 있음
 - ☞ 이변량 상관계수 분석 창에서 먼저, 분석대상 변수 두 개를 선택
 - ☞ [그림 10-8]에서의 분석대상 변수: '현재급여'와 '최초급여'

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-7] 등간/비율적도로 측정된 연상들간의 상관관계분석의 실행

滐

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-8] 이변량 상관계수분석 창

제3절 상관관계분석은 어떻게 실행하는가?

- ◆ 분석대상 변수 두 개를 선택한 다음에는, Pearson(N)을 클릭(체크)합니다. 즉, 3개의 상관계수기법 중 등간/비율척도 수준으로 측정된 변수들간의 상관계수를 분석해주는 Pearson 상관관계분석을 선택
- ◆ 상관계수분석시 가설은 "두 변수간에 상관관계가 있다"이므로 가설에는 + 혹은 -의 방향이 없음
 - ☞ 검정통계량의 유의성 검정은 **양쪽**을 선택합니다. 한편, 상관계수가 유의하게 판명되는 경우 별(*)표시를 하라는 옵션도 선택을 하는 것이 일반적
- ◆ 다음 확인 버튼을 클릭하게 되면, [그림 10-9]와 같은 결과 창을 얻게 됨

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-9] Pearson 앙관관계분석 결과 항

2) 서열척도로 측정된 현상들간의 서열상관관계 분석의 실행

- ◆ 먼저 [그림 10-6]처럼 분석대상 자료파일을 열고,
- ◆ [그림 10-7]과 같이 **분석(A)** → **상관분석(C)** → **이변량 상관계수(B)**를 차례로 선택
- ◆ [그림 10-10]에서와 같은 절차를 밟게 되면, [그림 10-11]에서와 같은 작은 창이 열 리게 됨
 - □ Pearson 상관관계를 선택할 때와 동일한 창
 - ☞ 이 창에서는 상관관계분석대상 변수 두 개를 지정하는 창, 두 개 변수간의 상관계수(즉, 이변량 상관관계)를 분석하는 방법 3개, 그리고 가설의 유의성 검정시단축검정(즉, 한쪽검정) 혹은 양측검정(즉, 양쪽검정) 여부를 선택할 수 있는 등의 선택을 수행할 수 있음
 - ☞ 분석대상 변수 두 개를 선택

滋 [그림 10-10] 서열적도로 측정된 현상들간의 상관관계분석의 실행

業

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-11] 이변항 상관계수 분석 항

[그림 10-12] 서열상관계수 분석결과 창

- □ X 파일(E) 편집(E) 보기(V) 데이터(D) 변환(T) 삽입(I) 형식(Q) 분석(A) 다이렉트 마케팅(M) 그래프(G) 유틸리티(U) 확장(X) 창(W) 도움말(H)

비모수 상관

상관관계

			직종구분	피교육년수
Kendall의 타우-b	직종구분	상관계수	1.000	.415**
		유의확률 (양측)	14	.000
		N	474	474
	피교육년수	상관계수	.415**	1.000
		유의확률 (양측)	.000	
		N	474	474
Spearman≗ rho	직종구분	상관계수	1.000	.484**
		유의확률 (양측)		.000
		N	474	474
	피교육년수	상관계수	.484**	1.000
		유의확률 (양측)	.000	
		N	474	474

^{**.} 상관관계가 0.01 수준에서 유의합니다(양측).

- ◆ 이어서 확인 버튼을 클릭
 - ☞ [그림 10-12]와 같은 결과 창을 얻게 됨
- ◆ 분석결과를 해석

3) 명목척도로 측정된 현상들간의 상관관계분석의 실행

- ◆ 먼저 [그림 10-6]처럼 분석대상 자료파일을 열고,
- ◆ [그림 10-13]에서와 같이 **분석(A)** → **기술통계량(E)** → **교차분석(C)**을 차례로 선택

[그림 10-13] 명목적도로 측정된 현상들간의 상관관계분석의 실행

- ◆ [그림 10-13]에서와 같은 절차를 밟게 되면, [그림 10-14]에서와 같은 교차분석 창 이 열리게 됨
 - ☞ 이 창은 상관관계 분석대상 변수 두 개를 지정하는 창, 두 개 변수간의 상관관계의 크기를 분석하는 방법을 선택할 수 있는 '통계량'버튼 등의 선택을 수행할 수 있게 설계되어 있음

- ◆ 교차분석 창에서 분석대상 변수 두 개를 선택
 - ☞ 목표는 두 변수간에 존재하는 상관관계를 파악하는 것이기에, 행과 열에 들어가 는 변수를 서로 바꾸어도 무방

鸈

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-14] 교차분석 항

ൂ

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-15] 변수 선택

- ◆ 다음에는 교차분석 창의 **통계량** 버튼을 눌러서 명목척도로 측정된 두 변수간의 관계가 존재하는지를 검정으로 파악하고
- ◆ 두 변수간의 상관관계의 크기는 분할계수(혹은 파이, Cramer의 V 등)의 분석으로 파악함
 - ☞ 즉, [그림 10-16]의 통계량 창에서 **카이제곱(H)**과 **분할계수(O)**를 클릭함
- ◆ 교차분석 창에서 계속 버튼을 클릭하게 되면 [그림 10-17]과 같이 교차분석 창이 다 시 열리게 됨
- ◆ 이어서 교차분석 창의 확인을 클릭하게 되면, [그림 10-18]과 같이 명목변수 수준에 서 측정된 변수들간에 존재하는 상관관계 그리고 이 상관관계의 크기가 계산됨

[그림 10-16] 통계량 항에서 χ^2 검정 및 분할계수의 선택

灕

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-17] 교자분석 항에서 χ^2 검정 및 분할계수계산

淼

제3절 상관관계분석은 어떻게 실행하는가?

[그림 10-18] 교차분석결과: 명목변수간의 상관관계 분석 결과

IBM SPSS Statistics 프로세서 준비 완료

Unicode:ON H: 398, W: 756 pt.