

William Stallings Computer Organization and Architecture 9th Edition

Chapter 10
Computer Arithmetic

Arithmetic & Logic Unit (ALU)

- Bagian dari komputer yang melakukan operasi aritmatika dan logis pada data
- Priorita pekerjaan utama semua elemen lain dari sistem komputer adalah untuk membawa data ke ALU untuk diproses dan kemudian mengambil hasilnya kembali
- Melalui penggunaan perangkat logika digital sederhana yang dapat menyimpan digit biner dan melakukan operasi logika Boolean sederhana

Input dan Output ALU

Figure 10.1 ALU Inputs and Outputs

Representasi Integer

- Dalam sistem bilangan biner, bilangan arbitrer dapat direpresentasikan dengan:
- Digital 0 dan 1
- Tanda Minus (untuk bilangan negatif)
- radix point (untuk bilangan pecahan)
- Untuk tujuan penyimpanan dan pemrosesan komputer, ALU tidak memerlukan simbol khusus untuk tanda minus dan radix point
- Hanya digit biner (0,1) yang dapat digunakan untuk mewakili bilangan

Pengertian Sistem bilangan

Merupakan tata aturan atau susunan dalam menentukan nilai suatu bilangan, antara lain sistem desimal, biner, hexadesimal, oktal, BCD, Grey Code, Exess-3 dan lain-lainnya yang dibagi berdasarkan basis yang digunakan dalam penentuan nilai dari bilangan tersebut. Sistem bilangan yang umum dipakai adalah sistem bilangan desimal.

Sistem Bilangan

Sistem	Radiks	Himpunan/elemen Digit	Contoh
Desimal	r=10	{0,1,2,3,4,5,6,7,8,9}	255 ₁₀
Biner	r=2	{0,1}	1111111112
Oktal	r= 8	{0,1,2,3,4,5,6,7}	377 ₈
Heksadesimal	r=16	{0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F}	FF ₁₆

Bilangan Desimal

- Sistem Bilangan Desimal (Decimal Numbering System) dengan basis 10.
- Menggunakan 10 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Cara penulisan -> 743 D, 743(10) , 743(D), 743(d), dll.
- Contoh bilangan desimal: 8598

Bilangan Desimal

Sistem-Sistem Bilangan secara matematis:

Bilangan :
$$D_r = d_{n-1}d_{n-2}\cdots d_1d_0d_{-1}\cdots d_{-n}$$

Nilai : $D_r = \sum_{i=-n}^{n-1} d_i \times r^i$

Contoh:
 5185.68₃₀ = 5x10³ + 1x10² + 8x10¹ + 5x10⁰ + 6 x 10⁻¹ + 8 x 10⁻²

BILANGAN BINER

- · Sistem Bilangan Biner (Binary Numbering System) dengan basis 2,
- Menggunakan 2 macam simbol bilangan, yaitu 0(OFF) dan 1(On)
- Cara penulisan -> 101 B, 101(2), 101(B), 101(b), dll.
- Contoh sistem bilangan biner 1101011(b)

BILANGAN BINER

- Bit ke-0 (bit paling kanan) dari bilangan biner merupakan bit yang tidak signifikan (LSB, Least Significant Bit).
- Bit paling kiri dari bilangan biner merupakan bit yang paling signifikan (MSB, Most Significant Bit).
- Contoh

Catt.

Untuk pekerjaan dalam elektronika digital, Anda harus menghafal simbol biner yang digunakan untuk cacah paling sedikit sampai 9.

BILANGAN OCTAL

- Sistem Bilangan Octal (Octenary Numbering System), dengan basis 8,
 Menggunakan 8 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7
- Cara penulisan -> 743 O, 743(8) , 743(0), 743(o), dll.

BILANGAN HEXADESIMAL

- Sistem Bilangan Hexadesimal (Hexadenary Numbering System) dg basis 16.
 - menggunakan 16 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5,6, 7, 8, 9, A,B,
 C, D, E, F
 - Cara penulisan -> 743 H, 743(16) , 743(H), 743(h), dll.

Konversi Bilangan

- Konversi dari bilangan Desimal ke Biner, Oktal dan Hexadecimal dengan cara membagi bilangan Desimal dengan basis bilangan masing-masing hingar
- sisa akhir <= basis -> tidak dibagi lagi

Konversi Bilangan

· Konversi untuk bilangan pecahan, harus dikalikan sampai diperoleh nilai 0 dibelakang koma

0,6875	0,375	0,750	0,50
x 2	x 2	x 2	x
1,375	0,75	1,500	1,00

 $0,6875_{10} = 0,1011_{2}$

Desimal **⊙**ktal

■ Pecahan

c. Desimal → Heksadesimal

Pecahan

2. Biner a. Biner \rightarrow desimal

```
1010110_2 = (1x2^6) + (0x2^5) + (1x2^4) + (0x2^3) + (1x2^2)
                    +(1x2^1)+(0x2^0)
                   = 64 + 0 + 16 + 0 + 4 + 2 + 0
                   = 86_{10}
       cara cepat :
               1 0 1 0 1 1 0 (tulis binernya)
                26 25 24 23 22 21 20
             64 32 16 8 4 2 1 → 86
(jumlahkan bilangan yang tidak dicoret)
```

 $1011,1010 = (1x2^3) + (0x2^2) + (1x2^1) + (1x2^0) + (1x2^{-1})$ $+ (0x2^{-2}) + (1x2^{-3}) + (0x2^{-4})$ = 8 + 0 + 2 + 1 + 0,5 + 0 + 0,125 + 0= 11,62510

h Biner → oktal

Setara dengan pengelompokan biner 3 bit 010 111 1012 = 2758

c. Biner \rightarrow Heksadesimal

Setara dengan pengeelompokan biner 4 bit $\underbrace{\frac{1101}{D} 0110}_{0110} 1010_{2} = D6A_{16}$

3. Oktal

```
a. Oktal \rightarrow Desimal
   ex: 326_8 = (3x8^2) + (2x8^1) + (6x8^0)
                    = 192 + 16 + 6
                    = 214<sub>10</sub>
```

b. Oktal \rightarrow Biner ex: $624_8 \rightarrow 6 2 4$

110 010 100

4. Hexadesimal

$$\begin{aligned} \text{a. Hexadesimal} &\rightarrow \text{Desimal} \\ \text{ex}: 2\text{A6}_{16} = (2\text{x}16^2) + (10\text{x}16^1) + (6\text{x}16^0) \\ &= 512 + 160 + 6 \\ &= 678_{10} \end{aligned}$$

 b. Hexadesimal → Biner ex: A9₁₆ → A A9₁₆= 101010012 1010 1001

Latihan Soal

210 =₈ =₂ =_H =₁₀

Operasi Aritmatika

• Add (+)

• Subtract (-)

• Multiply (x)

• Divide (/)

Operasi Aritmatika Biner

Peniumlahan:

• 0 + 0 = 0 carry 0

• 0 + 1 = 1 carry 0

• 1 + 0 = 1 carry 0

• 1 + 1 = 0 carry 1

 Contoh 15 + 20 = 35 -> 1111, + 10100, = 100011,

-> 1111 10100 + 100011

Operasi Aritmatika Biner

· Pengurangan:

0 - 0 = 0

• 1 - 1 = 0

• 1 - 0 = 1 • 0 - 1 = 1 borrow 1

Contoh

29 - 11 = 18 -> 11101, - 1011, = 10010, -> 11101 1011 10010

Bilangan Biner Bertanda

Bit Tanda (sign bit):

• bit paling kiri dalam bilangan biner bertanda

• '0' = positif, '1' = negatif

• Komplemen-1:

semua bit dikomplemenkan

• Komplemen-2:

• komplemen-1 + 1

Operasi Aritmatika Biner

Contoh:

1. Konversikan +35₁₀ ke bentuk 2's complement-nya Jawab: 35 = 0100011
2's compl: 0100011

2. Konversikan -35₁₀ ke bentuk 2's complement-nya Jawab : 35 = 010011 1's compl : 101100 + 1 :

2's compl : 101101

3. Konversikan bentuk 2's complement 1101 1101 kembali ke bentuk desimal-nya Jawab : 2's compl : 1101 1101 1's compl : 0010 0010 + 1

biner: 0010 0011 desimal: +35

4.Konversikan -98₁₀ ke bentuk 2's complement-nya Jawab : biner : 0110 0010 1's compl : 1001 1101 + 1 2's compl : 1001 1110

Operasi Aritmatika Biner

Perkalian Biner

• 0 x 0 = 0 • 0 x 1 = 0

• 1 x 0 = 0 • 1 x 1 = 1

-> 1110

10101000

14 x 12 = 168 -> 1110₂ x 1100₂ = 10101000₂

Operasi Aritmatika Biner

 Pembagian Biner: Aturan pembagian pada biner:

1. 0/1=0

2. 1/1=1
Contoh

125/5=25-25

10

25

Operasi Aritmatika Octal

- Aturan dasar penjumlahan octal . Ilah bari 8 maka hasil penjumlahan dikurangi 8 dan akan memiliki carry 1 . Ilah hasil penjumlahan lebih dari 8 maka hasil penjumlahan dikurangi 8 dan akan memiliki carry 1 . $125+46=173_a \longrightarrow 5+6=11-8=3 > carry 1$. 140=1 . 140=1 . 140=1

- Aturan dasar pengurangan octal - Jika meminjam maka di tambah 8 dan jika dipinjam dikurangi 1 - Contoh 125 – 67 = 36 \rightarrow 5 – 7 + 8[pinjam] = 6 - 2 – 6 – 1.(pinjam] + 8[pinjam] = 3 - 1 habis karena dipinjam sebelumyan

Operasi Aritmatika Octal

Langkah –langkah perkalian octal

1. Kalikan masing-masing kolom secara desimal

2 Uhah dari desimal ke ortal

3. Tuliskan hasil dari digit paling kanan hasil octal

Apabila hasil perkalian tiap-tiap kolom terdiri dari 2 digit, maka digit paling kiri merupakan carry untuk ditan pada hasil perkalian kolom selanjutnya

5. Tahap terakhir jumlahkan tiap-tiap kolom dengan memberikan jarak 1 angka ke kiri. C

146 146₈ 314 — Hasil akhir 1774₈

Operasi Aritmatika Octal

```
    Langkah –langkah pembagian
```

5 x 4 = 20₁₀ = 2 4₈ 4 merupakan hasil dari 20 – (8+8) dan 2 adalah carrynya karena melewati 2 kali octal 2 x 4 + 2 (carry) = 10₂₀ = 1 2₈ 2 merupakan hasil dari 10 - 8 dan 1 adalah carrynya jadi hasil dari 25 x 14 adalah 124₈

Operasi Aritmatika Hexadesimal

- Operasi penjumlahan heksadesimal sama seperti penjumlahan pada desimal (hanya untuk angka diatas 9 diganti huruf)
- 10 = A 11 = B 12 = C 13 = D 14 = E 15 = F
- Contoh B25
- 12A +
- Penjelasan:
- 5 + A(10) = 15 (F) 2 + 2 = 4
- B(11) + 1 = 12 (C) Jadi Hasil Akhirnya, C4F

Operasi Aritmatika Hexadesimal

```
    Operasi Perkalian hexadecimal
```

• AC x 1B = 1224 AC → B(11 Bx 8(ca = 1224 → B(11) x C(12) = 132₁₀=8 4₁₆ 8(carry) + B(11) x A(10) = 118₁₀ = 76₁₆ -> 764₁₆

• AC x 1B = 1224 AC 1x C 1x C AC₁₆ 1x A

1x C(12) = 12₁₀=12(C)₁₆ 1x A(10) = 10₁₀ = 10(A)₁₆ -> AC₁₆

• 764 + AC = 1224 764 4

6+ C(12) = 18_{10} =1 2_{16} 2 merupakan hasil dari pengurangan 18-16 dan 1 adalah carry 7+ A(10) + 1(carry) = 18_{10} =1 2_{16} 2 merupakan hasil dari pengurangan 18-16 dan 1 adalah carry Hasil akhir, 1224 $_{16}$

Operasi Aritmatika Hexadesimal

- Operasi Pembagian hexadecimal
- Contoh

5 x 1 = 5₁₀ = 5₁₆

1 x 1 = 1₁₀ = 1₁₆ -> Hasil akhirnya 15

5 x 7 = 35₁₀ = 23₁₆ 3 merupakan hasil dari pengurangan 35 – 32 dan 2 adalah carry karena sudah dua kali overflow jadi 16x2 = 32

1 x 7 + 2 (carry) = 9₁₀=9₁₆ Hasil Akhirnya 93₁₆

Operasi Aritmatika Hexadesimal

- Operasi penjumlahan heksadesimal sama seperti penjumlahan pada desimal (hanya untuk angka diatas 9 diganti huruf)
- 10 = A 11 = B 12 = C 13 = D 14 = E 15 = F

 Contoh B25

12A+ C4F

Penjelasan:

5 + A(10) = 15 (F) 2 + 2 = 4

B(11) + 1 = 12 (C) Jadi Hasil Akhirnya, C4F

Operasi Aritmatika Hexadesimal

```
• Operasi Pengurangan hexadecimal
```

```
    Contoh

  3242<sub>16</sub> - 1987<sub>16</sub> = 18BB<sub>16</sub>
```

2-7+16 (pinjam) = 11 (B)

4-8-1 (dipinjam) + 16(pinjam) = 11 (B)

2 – 9 – 1 (dipinjam) + 16(pinjam) = 8

3 – 1 – 1 (dipinjam) = 1

Jadi hasil akhirnya 18BB