Cardinalidade de conjuntos

Dizemos que dois conjuntos $A \in B$ são **equipotentes** e escrevemos $A \sim B$, ou que têm o mesmo **cardinal** e escrevemos |A| = |B| (ou #A = #B), se existir uma bijeção $f : A \rightarrow B$.

Ex.:

- $\begin{cases} \pi, 0, -1 \end{cases} \sim \{1, 2, 3\} \text{ porque, por exemplo,} \\ f: \{\pi, 0, -1\} & \rightarrow & \{1, 2, 3\} \\ \pi & \mapsto & 1 & \text{\'e uma funç\~ao bijetiva.} \\ 0 & \mapsto & 3 \\ -1 & \mapsto & 2 \end{cases}$
- ► $\{\pi, 2\pi\}$ $\not\sim$ $\{1, 2, 3\}$ porque não existe nenhuma função sobrejetiva $\{\pi, 2\pi\} \rightarrow \{1, 2, 3\}$

Outros exemplos

- ► Consideremos o conjunto $S = \{n^2 \mid n \in \mathbb{N}\} \subsetneq \mathbb{N}$. $\mathbb{N} \sim S$, pois $f : \mathbb{N} \rightarrow S$ é uma função bijetiva. $n \mapsto n^2$ (Galileu, 1638)
- ▶ $\mathbb{N}_0 \sim \mathbb{N}$, pois $f: \mathbb{N}_0 \rightarrow \mathbb{N}$ é uma função bijetiva. $n \mapsto n+1$
- $\mathbb{N} \sim \mathbb{Z}$, pois $f: \mathbb{N} \rightarrow \mathbb{Z}$ $n \mapsto \begin{cases} \frac{n}{2} & \text{se } n \in \text{par} \\ -\frac{n+1}{2} & \text{se } n \in \text{impar} \end{cases}$

é uma função bijetiva.

Sejam A, B e C conjuntos.

- 1. $A \sim A$.
- 2. Se $A \sim B$, então $B \sim A$.
- 3. Se $A \sim B$ e $B \sim C$, então $A \sim C$.

(Como já vimos que $\mathbb{N}_0 \sim \mathbb{N}$ e $\mathbb{N} \sim \mathbb{Z}$, podemos afirmar que $\mathbb{Z} \sim \mathbb{N}_0$.)

Seja A um conjunto.

- ▶ A diz-se finito se $A = \emptyset$ ou $A \sim \{x \in \mathbb{N} \mid 1 \le x \le n\}$, para algum $n \in \mathbb{N}$.
- A diz-se infinito se não é finito.
- A diz-se infinito numerável se A ~ N.
- A diz-se numerável se A é finito ou infinito numerável.

Sejam n, m números naturais; se $n \neq m$, então $\{x \in \mathbb{N} \mid 1 \le x \le n\} \not\sim \{x \in \mathbb{N} \mid 1 \le x \le m\}$

Dado um conjunto A, o que será o cardinal de A (que se representa por |A| ou #A)?

- $|\emptyset| = 0$
- ► Se *A* for um conjunto finito não vazio, |A| é o único $n \in \mathbb{N}$ tal que $A \sim \{x \in \mathbb{N} \mid 1 \le x \le n\}$
- ▶ $|\mathbb{N}| = \aleph_0$ (lê-se "álefe-zero")
- **▶** ...?

 $\{\pi, 0, -1\}$ é finito e $|\{\pi, 0, -1\}| = 3$.

 \mathbb{Z} é infinito numerável, logo $|\mathbb{Z}| = \aleph_0$

Q é também infinito numerável:

Ordene-se todas as frações positivas como indicado abaixo,

cancelando as frações que representem números repetidos (por exemplo, $\frac{2}{2} = \frac{1}{1}$, ou $\frac{2}{4} = \frac{1}{2}$); teremos uma sucessão $(q_n)_{n \in \mathbb{N}}$ $(q_1 = 1; q_2 = 2; q_3 = \frac{1}{2}; q_4 = \frac{1}{3};$ $q_5 = 3;...)$ que percorrerá todo o conjunto \mathbb{Q}^+ $(q_1 = 1; q_2 = 2; q_3 = \frac{1}{2}; q_4 = \frac{1}{3};$ sem repetição.

será bijetiva.

A função
$$f: \mathbb{Z}$$
 —

$$n \mapsto \begin{cases} q_n & \text{se } n > 0 \\ 0 & \text{se } n = 0 \\ -q_{-n} & \text{se } n < 0 \end{cases}$$

 \mathbb{N} , \mathbb{Z} e \mathbb{Q} são conjuntos infinitos numeráveis.

Haverá conjuntos infinitos não numeráveis?

Sim. \mathbb{R} é infinito não numerável (Georg Cantor, 1874, 1891):

Seja $f: \mathbb{N} \to \mathbb{R}$ uma função; para cada $n \in \mathbb{N}$, consideremos a expansão decimal de f(n) (sem sequências finais de 9s):

$$f(n) = \alpha_0^n, \alpha_1^n \alpha_2^n \alpha_3^n \alpha_4^n \dots$$

 $(\alpha_0^n \in \mathbb{Z} \text{ e, para cada } i, \alpha_i^n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\};$ além disso, por exemplo, usamos 1,0000 . . . e não 0,9999 . . .)

Para cada *i*, seja
$$b_i = \begin{cases} 1 & \text{se } \alpha_i^i = 0 \\ 0 & \text{se } \alpha_i^i \neq 0 \end{cases}$$
;

consideremos o número $b = 0, b_1b_2b_3b_4...$

6. Cardinalidade de conjuntos

•

Temos

$$f(1) = a_0^1, a_1^1 a_2^1 a_3^1 a_4^1 \dots$$

$$f(2) = a_0^2, a_1^2 a_2^2 a_3^2 a_4^2 \dots$$

$$f(3) = a_0^3, a_1^3 a_2^3 a_3^3 a_4^3 \dots$$

$$f(4) = a_0^4, a_1^4 a_2^4 a_3^4 a_4^4 \dots$$

$$\vdots$$

$$b = 0, b_1 b_2 b_3 b_4 \dots$$

$$b \neq f(1)$$
; $b \neq f(2)$; $b \neq f(3)$; $b \neq f(4)$; ...

Logo $b \notin \mathsf{CDom}(f)$ e portanto f não é sobrejetiva.

(Esta é a demonstração diagonal de Cantor.)

Além disto, prova-se que $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.

Se existir uma função injetiva $f: A \rightarrow B$, escreve-se $|A| \leq |B|$.

Se $|A| \le |B|$ e $A \not\sim B$ (isto é, $|A| \ne |B|$), escreve-se |A| < |B|.

Sejam A e B conjuntos.

- $\blacktriangleright A \nsim \mathcal{P}(A)$
- $\qquad |A| < |\mathcal{P}(A)|$
- ► Se A é finito, $|\mathcal{P}(A)| = 2^{|A|}$
- ► Se A e B são finitos, $|A \times B| = |A| \times |B|$
- Se A é infinito, A ~ A × A

Sejam A, B e C conjuntos.

- |A| ≤ |A|
- Se $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|(Teorema de Schröder-Bernstein)
- ► Se $|A| \le |B|$ e $|B| \le |C|$, então $|A| \le |C|$