Metody Obliczeniowe

Różniczkowanie numeryczne

1. Metoda Taylora.

Wzór główny dla pochodnej pierwszego stopnia:

$$f^{(1)}(x) = \frac{1}{h} \left[\nabla f(x) + \frac{1}{2} \nabla^2 f(x) + \frac{1}{3} \nabla^3 f(x) + \cdots \right]$$

Obliczenie wartości h:

$$h = x_1 - x_0$$

Przykład 1.

Dana jest tabela:

x	1	3	5	7	9	11	13
f(x)	2	7	9	12	21	29	36

Obliczyć wartość pierwszej pochodnej dla $x_0=13.\,$

Rozwiązanie:

Na początku należy skonstruować tabelę różnic wstecznych.

x	f(x)	$\nabla f(x)$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 f(x)$	$\nabla^5 f(x)$	$\nabla^6 f(x)$
1	2	5	-3	4	1	-13	32
3	7	2	1	5	-12	19	
5	9	3	6	-7	7		
7	12	9	-1	0			
9	21	8	-1				
11	29	7					
13	36						

Obliczanie wartości dla tabeli różnic wstecznych zaprezentowano na powyższej tabeli. Np. dla $\nabla^2 f(x)$:

$$7 - 8 = -1$$

 $8 - 9 = -1$
 $9 - 3 = 6$
 $3 - 2 = 1$
 $2 - 5 = -3$

Dla pozostałych analogicznie.

Następnie wstawiamy odpowiednie wartości do wzoru końcowego:

$$h = 3 - 1 = 2$$

$$f^{(1)}(x_0) = \frac{1}{2} \left[7 + \frac{1}{2} * (-1) + \frac{1}{3} * 0 + \frac{1}{4} * 7 + \frac{1}{5} * 19 + \frac{1}{6} * 32 \right] = \frac{1}{2} \left[7 - \frac{1}{2} + \frac{7}{4} + \frac{19}{5} + \frac{32}{6} \right]$$

$$= \frac{1}{2} \left[\frac{420}{60} - \frac{30}{60} + \frac{105}{60} + \frac{228}{60} + \frac{320}{60} \right] = \frac{1}{2} * \frac{1043}{60} = \frac{1043}{120}$$

2. Metoda Stirlinga.

Wzór główny dla pochodnej pierwszego stopnia:

$$f^{(1)}(x) = \frac{1}{h} \left[\left(\frac{f\left(x - \frac{1}{2}h\right) + \delta f\left(x + \frac{1}{2}h\right)}{2} \right) - \frac{1}{6} \left(\frac{\delta^3 f\left(x - \frac{1}{2}h\right) + \delta^3 f\left(x + \frac{1}{2}h\right)}{2} \right) + \frac{1}{30} \left(\frac{\delta^3 f\left(x - \frac{1}{2}h\right) + \delta^3 f\left(x + \frac{1}{2}h\right)}{2} \right) + \dots \right]$$

Obliczenie wartości h:

$$h = x_1 - x_0$$

Przykład 1.

Dana jest tabela:

x	1	3	5	7	9	11	13
f(x)	2	7	9	12	21	29	36

Obliczyć wartość pierwszej pochodnej dla $x_0 = 7$.

Rozwiązanie:

Na początku należy skonstruować tabelę centralnych.

x	f(x)	$\delta f(x)$	$\delta^2 f(x)$	$\delta^3 f(x)$	$\delta^4 f(x)$	$\delta^5 f(x)$	$\delta^6 f(x)$
1	2	5	-3	4	1	-13	32
3	7	2	1	5	-12	19	
5	9	3	6	-7	7		
7	12	9	-1	0			
9	21	8	-1				
11	29	7					
13	36						

Obliczanie wartości dla tabeli różnic centralnych zaprezentowano na powyższej tabeli.

Np. dla $\delta^2 f(x)$:

$$7 - 8 = -1$$

 $8 - 9 = -1$
 $9 - 3 = 6$
 $3 - 2 = 1$
 $2 - 5 = -3$

Dla pozostałych analogicznie.

Następnie wstawiamy odpowiednie wartości do wzoru końcowego:

$$h = \frac{3 - 1}{2} = 2$$

$$f^{(1)}(x_0) = \frac{1}{2} \left[\left(\frac{3 + 9}{2} \right) - \frac{1}{6} \left(\frac{5 + (-7)}{2} \right) + \frac{1}{30} \left(\frac{-13 + 19}{2} \right) \right] = \frac{1}{2} \left[6 + \frac{1}{6} + \frac{1}{10} \right] = \frac{1}{2} \left[\frac{180}{30} + \frac{5}{30} + \frac{3}{30} \right] = \frac{1}{2} * \frac{188}{30} = \frac{188}{60}$$

Reasumując, można stwierdzić, iż obie metody są bardzo proste.