A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH*

JIANXING HAN[†] AND MINGHUA CHEN[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** 68Q25, 68R10, 68U05
- 10 **1. Introduction.** The introduction introduces the context and summarizes the manuscript. It is importantly to clearly state the contributions of this piece of work.

For
$$\Omega = (0, 2T), 1 < \alpha < 2$$
, suppose $f \in C^{\beta}(\Omega), \beta > 4 - \alpha, ||f||_{\beta}^{(\alpha/2)} < \infty$

13 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

14 where

2

3

12

2324

25

27

15
$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

17 (1.3) $\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$

- and the solution $u \in C^{\alpha/2}(\Omega)$.
 - 2. Regularity.

20 Remark 2.1. 1. $C^k(U)$ is the set of all k-times continuously differentiable func-21 tions on open set U.

22 2. $C^{\beta}(U)$ is the collection of function f which for any $V \subset\subset U$ $f|_{V} \in C^{\beta}(V)$.

THEOREM 2.2. If $f \in C^{\beta}(\Omega), \beta > 2$ and $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

26 (2.1)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

THEOREM 2.3 (Regularity up to the boundary [1]).

29 (2.2)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

^{*}Submitted to the editors DATE.

[†]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

[‡]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

COROLLARY 2.4. Let u be a solution of (1.1) on Ω . Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

32 (2.3)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

The paper is organized as follows. Our main results are in section 4, experimental results are in section 7. Readers would better see section 6 before section 5 to avoid details.

3. Numeric Format.

36 (3.1)
$$x_i = \begin{cases} T\left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ 2T - T\left(\frac{2N-i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

37 where $r \geq 1$. And let

38 (3.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space.

41 (3.3)
$$\phi_j(x) = \begin{cases} \frac{1}{h_j}(x - x_{j-1}), & x_{j-1} \le x \le x_j \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_j \le x \le x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

42 And then, we can approximate u(x) with

43 (3.4)
$$u_h(x) := \sum_{j=1}^{2N-1} u(x_j)\phi_j(x)$$

44 For convience, we denote

45 (3.5)
$$I_h^{2-\alpha}(x_i) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_i - y|^{1-\alpha} u_h(y) dy$$

46 And now, we can approximate the operator (1.2) at x_i with (3.6)

$$D_h^{\alpha} u_h(x_i) := D_h^2 I_h^{2-\alpha}(x_i)$$

$$= \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} I_h^{2-\alpha}(x_{i-1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) I_h^{2-\alpha}(x_i) + \frac{1}{h_{i+1}} I_h^{2-\alpha}(x_{i+1}) \right)$$

Finally, we approximate the equation (1.1) with

49 (3.7)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = f(x_i), \quad 1 \le i \le 2N - 1$$

The discrete equation (3.7) can be written in matrix form

51 (3.8)
$$AU = F$$

where U is unknown, $F = (f(x_1), \dots, f(x_{2N-1}))$. The matrix A is constructed as follows: Since

$$I_{h}^{2-\alpha}(x_{i}) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u_{h}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u(x_{j}) \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} u(x_{j}) \frac{1}{\Gamma(2-\alpha)} \int_{x_{j-1}}^{x_{j+1}} |x_{i} - y|^{1-\alpha} \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{u(x_{j})}{\Gamma(4-\alpha)} \left(\frac{|x_{i} - x_{j-1}|^{3-\alpha}}{h_{j}} - \frac{h_{j} + h_{j+1}}{h_{j}h_{j+1}} |x_{i} - x_{j}|^{3-\alpha} + \frac{|x_{i} - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

$$=: \sum_{j=1}^{2N-1} \tilde{a}_{ij} u(x_{j}), \quad 0 \le i \le 2N$$

Then, substitute in (3.6), we have

56 (3.10)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{i=1}^{2N-1} a_{ij} \ u(x_j)$$

57 where

67

58 (3.11)
$$a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

4. Main results. Here we state our main results; the proof is deferred to sec-60 tion 5 and section 6.

Let's denote $h = \frac{1}{N}$, we have 61

Theorem 4.1 (Truncation Error). If f satisfy that $f \in C^{\beta}(\Omega), \beta > 4 - \alpha$, $\|f\|_{\beta}^{(\alpha/2)} < \infty, \alpha \in (1,2), \ and \ u(x) \ is \ a \ solution \ of \ the \ equation \ (1.1), \ where \ \|u\|_{\beta+\alpha}^{(-\alpha/2)} < 0$ 62

 ∞ , then there exists constants $C_1(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)},\|f\|_{\beta}^{(\alpha/2)})$, $C_2(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$,

such that the truncation error of the discrete format satisfies

$$\tau_{i} := |-\kappa_{\alpha} D_{h}^{\alpha} u_{h}(x_{i}) - f(x_{i})|$$

$$\leq C_{1} h^{\min\{\frac{r_{\alpha}}{2}, 2\}} \begin{cases} x_{i}^{-\alpha}, & 1 \leq i \leq N \\ (2T - x_{i})^{-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

$$+ C_{2}(r - 1)h^{2} \begin{cases} |T - x_{i-1}|^{1 - \alpha}, & 1 \leq i \leq N \\ |T - x_{i+1}|^{1 - \alpha}, & N < i \leq 2N - 1 \end{cases}$$

Theorem 4.2 (Convergence). The discrete equation (3.7) has substinut U, and 68 there exists a positive constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies 69

70

71 (4.2)
$$\max_{1 \le i \le 2N-1} |U_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.

5. Proof of Theorem 4.1. For convience, let's denote

74 (5.1)
$$I^{2-\alpha}(x) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha} u(y) dy$$

75 Then, the truncation error of the discrete format can be written as

$$-\kappa_{\alpha} D_{h}^{\alpha} u_{h}(x_{i}) - f(x_{i}) = -\kappa_{\alpha} \left(D_{h}^{2} I_{h}^{2-\alpha}(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha}(x_{i})\right) \\
= -\kappa_{\alpha} D_{h}^{2} \left(I_{h}^{2-\alpha} - I^{2-\alpha}\right)(x_{i}) - \kappa_{\alpha} \left(D_{h}^{2} - \frac{d^{2}}{dx^{2}}\right) I^{2-\alpha}(x_{i})$$

- 77 **5.1. Estimate of** $-\kappa_{\alpha}(D_h^2 \frac{d^2}{dx^2})I^{2-\alpha}(x_i)$.
- THEOREM 5.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that

79 (5.3)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 (x_i^{-\alpha/2 - 2/r} + (2T - x_i)^{-\alpha/2 - 2/r})$$

80 Proof. Since $f \in C^2(\Omega)$ and

81 (5.4)
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$$

- 82 we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \leq i \leq 1$
- 83 2N 1, we have (5.5)

84
$$-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i}) + \frac{1}{4!}\frac{2}{h_{i} + h_{i+1}}(h_{i}^{3}f''(\eta_{1}) + h_{i+1}^{3}f''(\eta_{2}))$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

86 (5.6)
$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3} C h^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

87 2. See Proof 25, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\begin{vmatrix}
\frac{1}{4!} \frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \\
\leq Ch^2 \begin{cases}
x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\
(2T - x_i)^{-\alpha/2 - 2/r}, & N \leq i \leq 2N - 1
\end{cases}$$

- 89 Summarizes, we get the result.
- 5.2. Estimate of R_i . Now, we study the first part of (5.2)

91 (5.8)
$$D_h^2(I^{2-\alpha} - I_h^{2-\alpha})(x_i) = D_h^2(\int_0^{2T} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

92 For convience, let's denote

93 (5.9)
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

94 And define

$$R_{i} := D_{h}^{2} (I^{2-\alpha} - I_{h}^{2-\alpha})(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \sum_{j=1}^{2N} \left(\frac{1}{h_{i}} T_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

We have some results about the estimate of R_i

THEOREM 5.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

98 (5.11)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2-2/r+1>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & \alpha/2-2/r+1=0\\ Ch^{r\alpha/2}x_{i}^{-1-\alpha}, & \alpha/2-2/r+1<0 \end{cases}$$

THEOREM 5.3. For $N/2 \le i \le N$, there exists constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$

101 such that

99

102 (5.12)
$$R_{i} \leq C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And for $N < i \le 2N - 1$, it is symmetric to the previous case.

To prove these results, we need some utils. Also for simplicity, we denote DEFINITION 5.4.

105 (5.13)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

106 then

107 (5.14)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

108 **5.3. Proof of Theorem 5.2.**

LEMMA 5.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le 110$ i < N/2,

111 (5.15)
$$\sum_{i=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

112 Proof. For $\max\{2i+1,i+3\} \leq j \leq N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)} \right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

114 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

116

LEMMA 5.6. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

119 (5.18)
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

120 Proof. For $1 \le i < N/2, N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

122

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

124 And by Lemma A.3

$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

126 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$h^{r\alpha/2+r} \le h^2$$

128 Summarizes, we get the result.

129 For i = 1, 2.

This manuscript is for review purposes only.

LEMMA 5.7. By Lemma C.5, Lemma 5.5 and Lemma 5.6 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

132

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

136

LEMMA 5.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le 138$ $i \le N, k = \lceil \frac{i}{2} \rceil$

139 (5.23)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

140 *Proof.* For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|\cdot - y|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1-\alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

142 And by Lemma A.3, Lemma C.3

143 (5.25)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

144 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

146 But

147 (5.27)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

148 So we have

149 (5.28)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 5.9. For convience, let's denote

151 (5.29)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

152

THEOREM 5.10. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

154 $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$,

155 (5.30)
$$I_3 = \sum_{i=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

157 LEMMA 5.11. Denote
$$y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1], \ by \ Lemma \ A.2$$

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - u_{h}(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{x_{j-1}}^{x_{j}} -\frac{\theta(1-\theta)}{2} h_{j}^{2} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{3} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) dy_{j}^{\theta}$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

- 159 where $\eta_{j1}^{\theta} \in [x_{j-1}, y_j^{\theta}], \eta_{j2}^{\theta} \in [y_j^{\theta}, x_j].$
- Now Let's construct a series of functions to represent T_{ij} .

Definition 5.12.

161 (5.32)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

162

163 (5.33)
$$y_{j-i}^{\theta}(x) = \theta y_{j-1-i}(x) + (1-\theta)y_{j-i}(x)$$

164

165 (5.34)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

166 Now, we define

167 (5.35)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

168

169 (5.36)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

- 170 And now we can rewrite T_{ij}
- 171 LEMMA 5.13. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} (\theta^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j2}^{\theta})) d\theta$$

Immediately, we can see from (5.29) that

174 LEMMA 5.14. For
$$3 \le i \le N-1$$
, $3 \le j \le N-1$,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{i-i}^{\theta}(x_i)$, but By Lemma A.1,

177 (5.39)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}{}''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

- By Leibniz formula, we calculate and estimate the derivations of h_{i-i}^3 , $u''(y_{i-i}^\theta(x))$
- and $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$ separately.
- 180 Firstly, we have
- Lemma 5.15. There exists a constant C = C(T,r) such that For $3 \le i \le N$
- 182 $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}],$

183 (5.40)
$$h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_i$$

184 (5.41)
$$(h_{i-1}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_i$$

185 (5.42)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_i$$

- The proof of this theorem see Lemma C.6 and Lemma C.7
- 187 Second,
- LEMMA 5.16. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 189 $3 \le i \le N 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}],$

190 (5.43)
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

191 (5.44)
$$(u''(y_{i-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

192 (5.45)
$$(u''(y_{j-i}^{\theta}(\xi)))'' \le Cx_i^{\alpha/2-4}$$

- 193 The proof of this theorem see Proof 32
- 194 And Finally, we have
- LEMMA 5.17. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \le i \le r$

196
$$N-1, 1 \le j \le \min\{2i-1, N-1\}, \xi \in [x_{i-1}, x_{i+1}],$$

197 (5.46)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

198 (5.47)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-1}$$

199 (5.48)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

200 where
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta)x_j$$

201 The proof of this theorem see Proof 33

202

LEMMA 5.18. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For

$$204 \quad 3 \leq i \leq N-1, \lceil \frac{i}{2} \rceil + 1 \leq j \leq \min\{2i-1, N-1\},$$

205 (5.49)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

206 where
$$y_{i}^{\theta} = \theta x_{j-1} + (1 - \theta) x_{j}$$

207 Proof. Since

208 (5.50)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

From (5.35), using Leibniz formula and Lemma 5.15, Lemma 5.16 and Lemma $5.17\square$

210

LEMMA 5.19. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that for

212 $3 \le i < N, k = \lceil \frac{i}{2} \rceil$.

213 For
$$k \le j \le \min\{2i - 1, N - 1\}$$
,

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

215 And for $k + 1 \le j \le \min\{2i, N\}$,

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_i} \right) \\
\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

217 where
$$\eta_{j}^{\theta} \in [x_{j-1}, x_{j}].$$

proof see Proof 34

219

Lemma 5.20. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that for

221
$$3 \le i < N, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N-1\},\$$

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{i-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

223 *Proof.* Since Lemma 5.14, by Lemma 5.18 and Lemma 5.19, we get the result immediately. \square

Now we can prove Theorem 5.10 using Lemma 5.20, $k = \lceil \frac{i}{2} \rceil$

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

LEMMA 5.21.

228 (5.55)
$$D_h P_{j-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_i, x_{i+1}]$$

Then, for $3 \le i \le N - 1$, $k = \lceil \frac{i}{2} \rceil$,

230 (5.56)
$$D_h P_{k-i}^{\theta}(x_i) \le C h^2 x_i^{-\alpha/2 - 2/r} h_j$$

231

227

232 *Proof.* Using Leibniz formula, by Lemma 5.15, Lemma 5.16 and Lemma 5.17, we 233 take j = k + 1, i = i + 1, we get

$$D_{h}P_{k-i}^{\theta}(x_{i}) \leq Ch^{2}x_{i+1}^{\alpha/2-2/r-1}|y_{k+1}^{\theta} - x_{i+1}|^{1-\alpha}h_{j+1}$$

$$\leq Ch^{2}x_{i}^{\alpha/2-2/r-1}|y_{k}^{\theta} - x_{i}|^{1-\alpha}h_{j}$$

$$\leq Ch^{2}x_{i}^{-\alpha/2-2/r}h_{j}$$

235

LEMMA 5.22. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N, k = \lceil \frac{i}{2} \rceil$,

(F F0)

238
$$I_2 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

239 And for $3 \le i < N/2$,

240
$$I_4 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

241 Proof. In fact,

$$\begin{array}{ll}
\frac{1}{h_{i+1}}(T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,k} \\
= \frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i})T_{i,k}
\end{array}$$

243 While, by Lemma A.2

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - u_h(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1}\Gamma(2-\alpha)} dy$$

$$\leq \int_{x_{k-1}}^{x_k} h_k^2 u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq Ch_k h^2 x_k^{2-2/r} x_{k-1}^{\alpha/2-2} |x_i - x_k|^{-\alpha}$$

$$\leq Ch_k h^2 x_i^{-\alpha/2-2/r}$$

245 Thus,

246 (5.62)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

247 For (5.63)

248

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta
+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,1}^{\theta})}{h_{i+1}} d\theta
- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,2}^{\theta})}{h_{i+1}} d\theta$$

249 And by Lemma 5.21

250 (5.64)
$$\frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} \le Ch^2 x_i^{-\alpha/2 - 2/r} h_k$$

251 And with Lemma 5.19, we can get

252 (5.65)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

253 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha}$$

$$\le C h^2 x_i^{-\alpha/2-2/r}$$

255 Summarizes, we have

256 (5.67)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

257 The case for I_4 is similar.

Now combine Lemma 5.8, Lemma 5.22, Theorem 5.10, Lemma 5.5 and Lemma 5.6 to get the final result.

260 For $3 \le i < N/2$

$$R_i = I_1 + I_2 + I_3 + I_4 + I_5$$

$$\leq Ch^2 x_i^{-\alpha/2 - 2/r} + \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & r\alpha/2 + r - 2 > 0 \\ Ch^2 (x_i^{-1 - \alpha} \ln(i) + \ln(N)), & r\alpha/2 + r - 2 = 0 \\ Ch^{\alpha/2 + r} x_i^{-1 - \alpha}, & r\alpha/2 + r - 2 < 0 \end{cases}$$

Combine with i = 1, 2, we get for $1 \le i \le N/2$

$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & r\alpha/2+r-2>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & r\alpha/2+r-2=0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & r\alpha/2+r-2<0 \end{cases}$$

5.4. Proof of Theorem 5.3. For $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$, we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \left(T_{i+1,k} + T_{i+1,k+1} \right) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \left(T_{i-1,2N-\lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N-\lceil \frac{N}{2} \rceil} \right) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2N-\lceil \frac{N}{2} \rceil + 1} \right)$$

$$+ \sum_{j=2N-\lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6} + I_{7}$$

- We have estimate I_1 in Lemma 5.8 and I_2 in Lemma 5.22. We can control I_3 in similar with Theorem 5.10 by Lemma 5.20 where $2i 1 \ge N 1$
- LEMMA 5.23. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$,

$$I_{3} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

Let's study I_5 before I_4 .

272 (5.72)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

- 273 Similarly, Let's define a new series of functions
- DEFINITION 5.24. For i < N, j > N,

275 (5.73)
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N - j + i}{N}$$

277 (5.74)
$$y_{j-i}'(x) = (2T - y_{j-i}(x))^{1-1/r} x^{1/r-1}$$

278 (5.75)
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

279 (5.76)

280

281 (5.77)
$$y_{j-i}^{\theta}(x) = \theta y_{j-i-1}(x) + (1-\theta)y_{j-i}(x)$$
282

283 (5.78)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

284

285 (5.79)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

286

287 (5.80)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Now we have, for $i < N, j \ge N + 2$.

(5.81)

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

Similarly, we first estimate

291 (5.82)
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

292 Combine lemmas Lemma C.8, Lemma C.9 and Lemma C.10, we have

LEMMA 5.25. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

294 $N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$, $\xi \in [x_{i-1}, x_{i+1}]$, we have

$$|P_{j-i}^{\theta}|''(\xi)| \leq Ch_{j}h^{2}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}) + |y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} + (r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha})$$

296 And

Lemma 5.26. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N$, $\xi \in [x_{i-1}, x_{i+1}]$, we have for $N+1 \le j \le 2N - \lceil \frac{N}{2} \rceil$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

300 for $N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{j}(|y_{i}^{\theta} - x_{i}|^{1-\alpha} + |y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N}))$$

- The proof see Proof 38.
- Combine (5.81), Lemma 5.25 and Lemma 5.26, we have
- Theorem 5.27. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N, N+2 \le j \le 2N \lceil \frac{N}{2} \rceil + 1$

$$V_{ij} \leq Ch^{2} \int_{x_{j-1}}^{x_{j}} (|y - x_{i}|^{1-\alpha} + |y - x_{i}|^{-\alpha} (|2T - x_{i} - y| + h_{N}) + |y - x_{i}|^{-1-\alpha} (|2T - x_{i} - y| + h_{N})^{2} + (r - 1)|y - x_{i}|^{-\alpha}) dy$$

- We can esitmate I_5 Now.
- THEOREM 5.28. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N$, we have

310 (5.87)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{5} = \sum_{j=N+2}^{2N-\lceil\frac{N}{2}\rceil} V_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-i}} + \int_{x_{2N-i}}^{x_{2N-\lceil\frac{N}{2}\rceil}} (|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha}) dy$$

$$= J_{1} + J_{2}$$

312 While $x_{N+1} \le y \le x_{2N-i} = 2T - x_i$,

313 (5.89)
$$T - x_{i-1} < x_{N+1} - x_i < y - x_i < x_{2N-i} - x_i < 2(T - x_{i-1})$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH

314 and

315 (5.90)
$$2T - x_i - y + h_N \le 2T - x_i - x_{N+1} + h_N = T - x_i \le T - x_{i-1}$$

316 So

$$J_{1} \leq Ch^{2}(x_{2N-i} - x_{N+1})(|T - x_{i-1}|^{1-\alpha} + (r-1)|T - x_{i-1}|^{-\alpha})$$

$$\leq Ch^{2}(|T - x_{i-1}|^{2-\alpha} + (r-1)|T - x_{i-1}|^{1-\alpha})$$

$$\leq Ch^{2}T^{2-\alpha} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

318 Otherwise, when $x_{2N-i} \leq y \leq x_{2N-\lceil \frac{N}{2} \rceil}$

319 (5.92)
$$x_i + y - 2T + h_N \le y - x_i$$

320

$$J_{2} \leq Ch^{2} \int_{x_{2N-i}}^{(2-2^{-r})T} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{2N-i} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T-x_{i}|^{1-\alpha} \leq Ch^{2} + C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha}$$

322 Summarizes two cases, we get the result.

For I_4 , we have

THEOREM 5.29. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for

$$325 \quad N/2 \le i \le N-1$$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

327 Proof. We use the similar skill in the last section, but more complicated. for

328
$$j = N$$
, Let

329 (5.95)
$$y_{i \to N-1}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

330

331 (5.96)
$$y_{i\to N}(x) = \frac{x^{1/r} - Z_i}{Z_1} h_N + T, \quad Z_i = T^{1/r} \frac{i}{N}, x_N = T$$

332 and

333 (5.97)
$$y_{i \to N+1}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

334 Thus,

335
$$y_{i \to N-1}(x_{i-1}) = x_{N-2}, \quad y_{i \to N-1}(x_i) = x_{N-1}, \quad y_{i \to N-1}(x_{i+1}) = x_N$$

336
$$y_{i\to N}(x_{i-1}) = x_{N-1}, \quad y_{i\to N}(x_i) = x_N, \quad y_{i\to N}(x_{i+1}) = x_{N+1}$$

337
$$y_{i \to N+1}(x_{i-1}) = x_N, \quad y_{i \to N+1}(x_i) = x_{N+1}, \quad y_{i \to N+1}(x_{i+1}) = x_{N+2}$$

338 Then, define

339 (5.98)
$$y_{i \to N}^{\theta}(x) = \theta y_{i \to N-1}(x) + (1 - \theta) y_{i \to N}(x)$$

340 (5.99)
$$y_{i\to N+1}^{\theta}(x) = \theta y_{i\to N}(x) + (1-\theta)y_{i\to N+1}(x)$$

341

342 (5.100)
$$h_{i\to N}(x) = y_{i\to N}(x) - y_{i\to N-1}(x)$$

343 (5.101)
$$h_{i\to N+1}(x) = y_{i\to N+1}(x) - y_{i\to N}(x)$$

344 We have

345 (5.102)
$$y_{i \to N-1}'(x) = y_{i \to N-1}^{1-1/r}(x)x^{1/r-1}$$

346 (5.103)
$$y_{i \to N-1}''(x) = \frac{1-r}{r} y_{i \to N-1}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

347 (5.104)
$$y_{i\to N}'(x) = \frac{1}{r} \frac{h_N}{Z_1} x^{1/r-1}$$

348 (5.105)
$$y_{i\to N}''(x) = \frac{1-r}{r^2} \frac{h_N}{Z_1} x^{1/r-2}$$

349 (5.106)
$$y_{i \to N+1}'(x) = (2T - y_{i \to N+1}(x))^{1-1/r} x^{1/r-1}$$

350 (5.107)
$$y_{i \to N+1}''(x) = \frac{1-r}{r} (2T - y_{i \to N+1}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

352 (5.108)
$$P_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^3 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i\to N}^{\theta}(x))$$

353 (5.109)
$$P_{i \to N+1}^{\theta}(x) = (h_{i \to N+1}(x))^3 \frac{|y_{i \to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i \to N+1}^{\theta}(x))$$

354 (5.110)
$$Q_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^4 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

355 (5.111)
$$Q_{i \to N+1}^{\theta}(x) = (h_{i \to N+1}(x))^4 \frac{|y_{i \to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 5.13, we can get for l = -1, 0, 1,

$$T_{i+l,N+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} P_{i\to N}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} Q_{i\to N}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+l,2}^{\theta})) d\theta$$

$$T_{i+l,N+1+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} P_{i\to N+1}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} Q_{i\to N+1}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+1+l,2}^{\theta})) d\theta$$

360 So we have

$$V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{h}^{2} P_{i\to N}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

362 N + 1 is similar.

364

We estimate $D_h^2 P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}{}''(\xi), \xi \in [x_{i-1}, x_{i+1}]$

LEMMA 5.30.

365 (5.115)
$$h_{i\to N}^3(\xi) \le Ch_N^3 \le Ch^3$$

366 (5.116)
$$h_{i\to N+1}^3(\xi) \le Ch_N^3 \le Ch^3$$

367
$$(5.117)$$
 $(h_{i\to N}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$

368 (5.118)
$$(h_{i\to N+1}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

369
$$(5.119)$$
 $(h_{i\to N}^3(\xi))'' \le C(r-1)h^2$

370 (5.120)
$$(h_{i \to N+1}^3(\xi))'' \le C(r-1)h^2$$

Proof.

371 (5.121)
$$h_{i\to N}(\xi) \le 2h_N, \quad h_{i\to N+1}(\xi) \le 2h_N$$

372

375

$$(h_{i\to N}^{l}(\xi))' = lh_{i\to N}^{l-1}(\xi)(y_{i\to N}'(\xi) - y_{i\to N-1}'(\xi))$$

$$= lh_{i\to N}^{l-1}(\xi)x_i^{1/r-1}(\frac{1}{r}\frac{h_N}{Z_1} - y_{i\to N-1}^{1-1/r}(\xi))$$

374 while (5.123)

$$\left| \frac{1}{r} \frac{h_N}{Z_1} - y_{i \to N-1}^{1-1/r}(\xi) \right| = \left| \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1} - \eta^{1-1/r} \right| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} \left| \left(\frac{N-t}{N} \right)^{r-1} - \left(\frac{N-s}{N} \right)^{r-1} \right| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} \left| 1 - \left(\frac{N-2}{N} \right)^{r-1} \right| \leq C T^{1-1/r} (r-1) \frac{2}{N}$$

376 Thus,

377
$$(5.124)$$
 $(h_{i\to N}^l(\xi))' \le C(r-1)h_N^{l-1}x_i^{1/r-1}h$

$$(h_{i\to N+1}^{l}(\xi))' = lh_{i\to N+1}^{l-1}(\xi)(y_{i\to N+1}'(\xi) - y_{i\to N}'(\xi))$$

$$= lh_{i\to N+1}^{l-1}(\xi)x_i^{1/r-1}((2T - y_{i\to N+1}(\xi))^{1-1/r} - \frac{1}{r}\frac{h_N}{Z_1})$$

379 Similarly, (5.126)

$$|(2T - y_{i \to N+1})^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1}| = |\eta^{1-1/r} - \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} |(\frac{N-s}{N})^{r-1} - (\frac{N-t}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} |(\frac{N-2}{N})^{r-1} - 1| \leq CT^{1-1/r} (r-1) \frac{2}{N}$$

381 And

 $(h_{i\to N}^{(3.127)}(\xi))'' = 3h_{i\to N}^2(\xi)h_{i\to N}''(\xi) + 6h_{i\to N}(\xi)(h_{i\to N}'(\xi))^2$

$$\leq Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} \left(\frac{1}{r} \frac{h_N}{Z_1} - y_{i\to N-1}^{1-2/r}(\xi) Z_{N-1-i}\right) + Ch_N(r-1)^2 h^2 x_i^{2/r-2}$$

$$\left|\frac{h_N}{rZ_1} - y_{i \to N-1}^{1-2/r}(\xi)Z_{N-1-i}\right| \le T^{1-1/r} + Cx_N^{1-2/r}x_N^{1/r} = CT^{1-1/r}$$

384 So

$$(h_{i\to N}^3(\xi))'' \le Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} + C(r-1)^2 h_N x_i^{2/r-2} h^2$$

$$\le C(r-1)h_N^2$$

$$h_{i\to N+1}^3(\xi)$$
 is similar.

Lemma 5.31.

387 (5.129)
$$u''(y_{i\to N}^{\theta}(\xi)) \le Cx_{N-2}^{-\alpha/2-2} \le C$$
388 (5.130)
$$(u''(y_{i\to N}^{\theta}(\xi)))' \le C$$

389 (5.131)
$$(u''(y_{i\to N}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(y_{i\to N}^{\theta}(\xi)))' = u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta'}(\xi)$$

$$\leq C(\theta y_{i\to N-1}'(\xi) + (1-\theta)y_{i\to N}'(\xi))$$

$$\leq Cx_i^{1/r-1}(\theta y_{i\to N-1}^{1-1/r}(\xi) + (1-\theta)\frac{h_N}{rZ_1})$$

$$\leq Cx_i^{1/r-1}x_N^{1-1/r}$$

391 And
$$(5.133) \qquad \Box$$

$$(u''(y_{i\to N}^{\theta}(\xi)))'' = u''''(y_{i\to N}^{\theta}(\xi))(y_{i\to N}^{\theta}(\xi))^{2} + u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta}(\xi)$$
392
$$\leq Cx_{i}^{2/r-2}x_{N}^{2-2/r} + C\frac{r-1}{r}x_{i}^{1/r-2}(\theta x_{N}^{1-2/r}Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{2/r-2} + C(r-1)x_{i}^{1/r-2}T^{1-1/r}$$

Lemma 5.32.

393 (5.134)
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

394 (5.135)
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

395 (5.136)
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

Proof.

$$(5.137) (y_{i\to N}^{\theta}(\xi) - \xi)' = (\theta(y_{i\to N-1}(\xi) - \xi) + (1-\theta)(y_{i\to N}(\xi) - \xi))'$$

$$= \theta(y_{i\to N-1}'(\xi) - 1) + (1-\theta)(y_{i\to N}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(y_{i\to N-1}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1-\theta)\xi^{1/r-1}(\frac{h_N}{rZ_1} - \xi^{1-1/r})$$

 $(y_{i\to N}^{\theta}(\xi) - \xi)'' = \theta(y_{i\to N-1}''(\xi)) + (1-\theta)(y_{i\to N}''(\xi))$ $= \frac{1-r}{r} \xi^{1/r-2} (\theta y_{i\to N-1}^{1-2/r}(\xi) Z_{N-1-i} + (1-\theta) \frac{h_N}{rZ_1}) \le 0$

399 And

397

400 (5.139)
$$|(y_{i\to N}^{\theta}(\xi) - \xi)''| \le C(r-1)\xi^{1/r-2}T^{1-1/r}$$

401 We have known

402 (5.140)
$$C|x_{N-1} - x_i| \le |y_{i \to N-1}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

403 If
$$\xi \le x_{N-1}$$
, then $(y_{i\to N}(\xi) - \xi)' \ge 0$, so

404 (5.141)
$$C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |y_{i \to N}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

405 If i = N - 1 and $\xi \in [x_{N-1}, x_N]$, then $y_{i \to N}(\xi) - \xi$ is concave, bigger than its two

406 neighboring points, which are equal to h_N , so

407 (5.142)
$$h_N = |x_N - x_{N-1}| \le |y_{i \to N}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

408 So we have

409 (5.143)
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

410 While

411 (5.144)
$$y_{i \to N-1}^{1-1/r}(\xi) - \xi^{1-1/r} \le (y_{i \to N-1}(\xi) - \xi)\xi^{-1/r}$$

412 and $(5.145) \\ |\frac{h_N}{rZ_1} - \xi^{1-1/r}| \le \max\{|\frac{h_N}{rZ_1} - x_{i-1}^{1-1/r}|, |\frac{h_N}{rZ_1} - x_{i+1}^{1-1/r}|\}$

414 So we have

415
$$(5.146)$$
 $(y_{i\to N}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$

416

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' = |y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)'$$

$$\leq |y_N^{\theta} - x_i|^{1-\alpha}$$

418 Finally,

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)''$$

$$+ \alpha(\alpha - 1)|y_{i\to N}^{\theta}(\xi) - \xi|^{-1-\alpha}((y_{i\to N}^{\theta}(\xi) - \xi)')^{2} \qquad \qquad \leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for $N/2 \le i \le N-1$, we have LEMMA 5.33.

(5.149)

$$D_h^{2} P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}{}''(\xi) \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha} + C(r-1)(h^3 |y_N^{\theta} - x_i|^{-\alpha} + h^2 |y_N^{\theta} - x_i|^{1-\alpha})$$

422 And

Lemma 5.34.

423 (5.150)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i+1})u'''(\eta_{N+1}^{\theta}) - Q_{i \to N}^{\theta}(x_i)u'''(\eta_N^{\theta})}{h_{i+1}} \right) \\ \leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

424 And immediately, For $N/2 \le i \le N-2$

$$V_{iN} \leq C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h^2 |y - x_i|^{-\alpha} + h|y - x_i|^{1-\alpha} dy$$

$$\leq Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_{N-1} - x_i|^{1-\alpha} + Chh_N |T - x_i|^{1-\alpha}$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

But expecially, when i = N - 1,

$$V_{N-1,N} = \int_{0}^{1} -\frac{\theta^{2-\alpha}(1-\theta)}{2} \frac{2}{h_{N-1} + h_{N}} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + \frac{1}{h_{N}} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i \to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

while combine Lemma 5.30

$$\frac{2}{h_{N-1} + h_N} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - \left(\frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N^{4-\alpha} u''(y_N^{\theta}) + \frac{1}{h_N} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) \\
= D_h^2 (h_{N-1 \to N}^{4-\alpha} (x_i) u''(y_{N-1 \to N}^{\theta} (x_i))) \\
\leq C h_N^{4-\alpha} + C(r-1) h_N^{3-\alpha} \leq C h^{4-\alpha} + C(r-1) h^2 |T - x_{N-1-1}|^{1-\alpha}$$

430 Similarly with j = N + 1.

 I_6 , I_7 is easy. Similar with Lemma 5.22 and Lemma 5.6, we have

433

Theorem 5.35. There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

435
$$N/2 \le i \le N$$

(5.154)

$$I_{6} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N - \lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N - \lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N - \lceil \frac{N}{2} \rceil + 1} \right) \leq Ch^{2}$$

437 *Proof.* In fact, let $l = 2N - \lceil \frac{N}{2} \rceil + 1$

438 (5.155)
$$\frac{1}{h_i}(T_{i-1,l} + T_{i-1,l-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,l}$$
$$= \frac{1}{h_i}(T_{i-1,l} - T_{i,l}) + \frac{1}{h_i}(T_{i-1,l-1} - T_{i,l}) + (\frac{1}{h_i} - \frac{1}{h_{i+1}})T_{i,l}$$

439 While, by Lemma A.2

$$\frac{1}{h_{i}}(T_{i-1,l} - T_{i,l}) = \int_{x_{l-1}}^{x_{l}} (u(y) - u_{h}(y)) \frac{|x_{i-1} - y|^{1-\alpha} - |x_{i} - y|^{1-\alpha}}{h_{i}\Gamma(2-\alpha)} dy$$

$$\leq C \int_{x_{l-1}}^{x_{l}} h_{l}^{2} u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq C h_{l}^{3} x_{l-1}^{\alpha/2-2} T^{-\alpha}$$

$$\leq C h_{l}^{3}$$

441 Thus,

442 (5.157)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l} - T_{i,l}) \le Ch_l^2$$

443 For

$$444 \quad \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{h_{l-1}^3 |y_{l-1}^\theta - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^\theta) - h_l^3 |y_l^\theta - x_i|^{1-\alpha} u''(\eta_l^\theta)}{h_i} d\theta$$

445 And Similar with Lemma 5.19, we can get

$$446 \quad (5.159) \quad \frac{h_{l-1}^3 |y_{l-1}^{\theta} - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^{\theta}) - h_l^3 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})}{(h_i + h_{i+1}) h_i} \le C h_l^2 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})$$

447 So

448 (5.160)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) \le Ch^2$$

449 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

450 (5.161)
$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,l} \le h_i^{-3} h^2 x_i^{1-2/r} h_l C h_l^2 x_{l-1}^{\alpha/2-2} |x_l - x_i|^{1-\alpha} < C h^2$$

451 Summarizes, we have

452 (5.162)
$$I_6 < Ch^2$$

- 453 And
- LEMMA 5.36. There is a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2\leq 455$ $i\leq N$,

$$I_{7} = \sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N} S_{ij}$$

$$\leq \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

457 *Proof.* For $i \leq N, j \geq 2N - \lceil \frac{N}{2} \rceil + 2$, we have

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)} \right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} |y - x_{i+1}^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

459

458

$$\sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{(2-2^{-r})T}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(2^{-r}T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

- Now we can conclude a part of the theorem Theorem 5.3 at the beginning of this section.
- 463 By Lemma 5.8 Lemma 5.22 Lemma 5.23 Theorem 5.29 Theorem 5.28 Theorem 5.35 Lemma 5.36 , we have
- Theorem 5.37. there exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i < N$,

$$R_{i} = \sum_{j=1}^{7} I_{j}$$

$$\leq C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And what we left is the case i = N. Fortunately, we can use the same department of R_i above, and it is symmetric. Most of the item has been esitmated by Lemma 5.8 and Theorem 5.35, we just need to consider I_3 , I_4 .

471

THEOREM 5.38. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

473 (5.166)
$$I_3 = \sum_{j=\lceil \frac{N}{2} \rceil + 1}^{N-1} V_{Nj} \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

474 Proof. Definition 5.39. For $N/2 \le j < N$, Let's define

475 (5.167)
$$y_j(x) = \left(\frac{Z_1}{h_N}(x - x_N) + Z_j\right)^r$$

We can see that is the inverse of the function $y_{i\to N}(x)$ defined in Theorem 5.29.

477 (5.168)
$$y'_j(x) = y_j^{1-1/r}(x) \frac{rZ_1}{h_N}$$

478 (5.169)
$$y_j''(x) = y_j^{1-2/r}(x) \frac{r(r-1)Z_1}{h_N}$$

- With the scheme we used several times, we can get
- LEMMA 5.40. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N, \xi \in [x_{N-1}, x_{N+1}],$

$$482 (5.170) h_j(\xi)^3 \le Ch^3$$

483
$$(5.171)$$
 $(h_i^3(\xi))' \le C(r-1)h^3$

484
$$(5.172)$$
 $(h_i^3(\xi))'' \le C(r-1)h^3$

485

486 (5.173)
$$u''(y_i^{\theta}(\xi)) \le C$$

487
$$(5.174)$$
 $(u''(y_i^{\theta}(\xi)))' \leq C$

488
$$(5.175)$$
 $(u''(y_i^{\theta}(\xi)))'' \leq C$

489

490 (5.176)
$$|\xi - y_j^{\theta}(\xi)|^{1-\alpha} \le C|x_N - y_j^{\theta}|^{1-\alpha}$$

491 (5.177)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})' \le C|x_N - y_i^{\theta}|^{1-\alpha}$$

492 (5.178)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})'' \le C|x_N - y_i^{\theta}|^{1-\alpha} + C(r-1)|x_N - y_i^{\theta}|^{-\alpha}$$

Lemma 5.41. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N$,

495 (5.179)
$$V_{Nj} \le Ch^2 \int_{x_{j-1}}^{x_j} |x_N - y|^{1-\alpha} + (r-1)|x_N - y|^{-\alpha} dy$$

496 Therefore,

497 (5.180)
$$I_{3} \leq Ch^{2} \int_{x_{\lceil \frac{N}{2} \rceil}}^{x_{N-1}} |x_{N} - y|^{1-\alpha} + (r-1)|x_{N} - y|^{-\alpha} dy$$

$$\leq Ch^{2} (|T - x_{N-1}|^{2-\alpha} + (r-1)|T - x_{N-1}|^{1-\alpha})$$

For
$$j = N$$
,

Lemma 5.42.

(5.181)

500

499
$$V_{N,N} = \frac{1}{h_N^2} \left(T_{N-1,N-1} - 2T_{N,N} + T_{N+1,N+1} \right) \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

Proof.

$$(5.182) \qquad \Box$$

$$V_{N,N} = \int_{0}^{1} -\frac{\theta(1-\theta)^{2-\alpha}}{2} \frac{1}{h_{N}^{2}} \left(h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - 2h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{N}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{N}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N+1,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,2}^{\theta})}{h_{N}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{N}} \right) d\theta$$

501 So combine Lemma 5.8, Theorem 5.35, Theorem 5.38, Lemma 5.42 We have Lemma 5.43.

502 (5.183)
$$R_N \le C(r-1)h^2|T-x_{N-1}|^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0\\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

and with Theorem 5.37 we prove the Theorem 5.3

5.5. Truncation error. combine Theorem 5.1, Theorem 5.2 and Theorem 5.3 we get For $1 \le i \le N$ (5.184)

$$R_{i} \leq C_{2}(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} C_{1}h^{2}x_{i}^{-\alpha/2-2/r}, & r\alpha/2+r-2>0\\ C_{1}h^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & r\alpha/2+r-2=0\\ C_{1}h^{r\alpha/2+r}x_{i}^{-1-\alpha/2}, & r\alpha/2+r-2<0 \end{cases}$$

507 But,

508 (5.185)
$$h^2 x_i^{-\alpha/2 - 2/r} \le T^{\alpha/2 - 2/r} \begin{cases} h^2 x_i^{-\alpha}, & \text{if } r\alpha/2 - 2 \ge 0 \\ h^{r\alpha/2} x_i^{-\alpha}, & \text{if } r\alpha/2 - 2 \le 0 \end{cases}$$

509 (5.186)
$$h^{r\alpha/2+r}x_i^{-1-\alpha} \le T^{-1}h^{r\alpha/2}x_i^{-\alpha}, \quad \text{if} \quad r\alpha/2-2 \le 0$$

510 (5.187)

And when $r\alpha/2 - 2 = -r < 0$,

$$h^2 x_i^{-1-\alpha} \ln(i) h^{-r\alpha/2} x_i^{\alpha} = h^r x_i^{-1} \ln(i)$$

$$= T^{-1} \frac{\ln(i)}{i^r} \le C(T, r)$$

513 and

514 (5.189)
$$h^{2}\ln(N)h^{-r\alpha/2}x_{i}^{\alpha} = h^{r}\ln(N)x_{i}^{\alpha} \le T^{\alpha}\frac{\ln(N)}{N^{r}} \le C(T, \alpha, r)$$

So for
$$1 \le i \le N$$
,

516 (5.190)
$$R_i \le C_2(r-1)h^2|T-x_{i-1}|^{1-\alpha} + C_1h^{\min\{\frac{r\alpha}{2},2\}}x_i^{-\alpha}$$

- 517 And for $i \ge N$, it is symmetric for i and 2N i.
- The proof of Theorem 4.1 completed.

6. Proof of Theorem 4.2. Review section 3,we have (3.9) and (3.11),

520 (6.1)
$$\tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_{j-1}|^{3-\alpha}}{h_j} - \frac{h_j + h_{j+1}}{h_j h_{j+1}} |x_i - x_j|^{3-\alpha} + \frac{|x_i - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

521

$$522 \quad (6.2) \qquad a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

523 Thus

Lemma 6.1.

(6.3)

$$\sum_{j=1}^{2N-1} \tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1} + \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}} \right)$$

- Definition 6.2. We call one matrix a M matrix, which means its entries are positive on major diagonal and nonpositive on others, and Strictly diagonally dominant in rows.
- Now we have
- Lemma 6.3. The matrix A defined by (3.11) is a M matrix. and

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \sum_{j=1}^{2N-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{a}_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i}} \tilde{a}_{i-1,j} \right)$$

$$\geq C(x_{i}^{-\alpha} + (2T - x_{i})^{-\alpha})$$

531 *Proof.* Let

532 (6.5)
$$g(x) = g_0(x) + g_{2N}(x)$$

533 where

534
$$g_0(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1}$$
535
$$g_{2N}(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}}$$

536 Then, for $2 \le i \le 2N - 2$,

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g_{0}''(\xi) + g_{2N}''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

538 While for $i \geq 2$

$$g_0''(\xi) = -\kappa_\alpha \frac{|\xi - x_0|^{1-\alpha} - |\xi - x_1|^{1-\alpha}}{\Gamma(2-\alpha)h_1}$$

$$= \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} |\xi - \eta|^{-\alpha}, \quad \eta \in [x_0, x_1]$$

$$\geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} x_{i+1}^{-\alpha} \geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} 2^{-r\alpha} x_i^{-\alpha}$$

540 when i = 1

$$\frac{2}{h_1 + h_2} \left(\frac{1}{h_2} g_0(x_2) - \left(\frac{1}{h_1} + \frac{1}{h_2} \right) g_0(x_1) + \frac{1}{h_1} g_0(x_0) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2)h_1 h_2}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2)h_1^{1-\alpha} h_2} h_1^{-\alpha}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha}}{2^r(2^r - 1)} h_1^{-\alpha}$$

542 but

543 (6.9)
$$1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha} > 0$$

544 So

545 (6.10)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_0(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_0(x_i) + \frac{1}{h_i} g_0(x_{i-1}) \right) \ge C x_i^{-\alpha}$$

546 symmetricly,

$$\begin{array}{l}
(6.11) & \square \\
\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_{2N}(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_{2N}(x_i) + \frac{1}{h_i} g_{2N}(x_{i-1}) \right) \ge C(\alpha, r) (2T - x_i)^{-\alpha}
\end{array}$$

548 Let

549 (6.12)
$$g(x) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}$$

550 And define

551 (6.13)
$$G = \operatorname{diag}(g(x_1), ..., g(x_{2N-1}))$$

552 Then

Lemma 6.4. The matrix B := AG, the major diagnal is positive, and nonpositive on others. And there is a constant $C = C(\alpha, r)$ such that

555 (6.14)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge -C(x_i^{1-\alpha} + (2T - x_i)^{1-\alpha}) + C \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

$$557 \quad (6.15) \qquad \qquad g(x) \equiv g_h(x)$$

558 by (3.9), we have

$$\tilde{M}_{i} := \sum_{j=1}^{2N-1} \tilde{b}_{ij} = \sum_{j=1}^{2N-1} \tilde{a}_{ij} g(x_{j})$$

$$= \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} g_{h}(y) dy = \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} g(y) dy$$

$$= \frac{-2}{\Gamma(4-\alpha)} |T - x_{i}|^{3-\alpha} + \frac{1}{\Gamma(4-\alpha)} (x_{i}^{3-\alpha} + (2T - x_{i})^{3-\alpha})$$

$$:= w(x_{i}) = p(x_{i}) + q(x_{i})$$

560 Thus,

$$M_{i} := \sum_{j=1}^{2N-1} a_{ij} g(x_{j})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} w(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) w(x_{i}) + \frac{1}{h_{i}} w(x_{i-1}) \right)$$

562 for $1 \le i < N - 1$, by Lemma A.1

$$P_{i} := -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} p(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) p(x_{i}) + \frac{1}{h_{i}} p(x_{i-1}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} |T - \xi|^{1 - \alpha} \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\geq \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} |T - x_{i-1}|^{1 - \alpha}$$

565

$$P_{N-1} := \frac{-2\kappa_{\alpha}}{h_{N-1} + h_{N}} \left(\frac{1}{h_{N}} p(x_{N}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) p(x_{N-1}) + \frac{1}{h_{N-1}} p(x_{N-2}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{2}{h_{N-1} + h_{N}} \left(-(\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{3-\alpha} + \frac{1}{h_{N-1}} (h_{N-1} + h_{N})^{3-\alpha} \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha)h_{N-1}} \left(-h_{N}^{2-\alpha} + (h_{N-1} + h_{N})^{2-\alpha} \right)$$

$$= \frac{4\kappa_{\alpha}}{(3 - \alpha)\Gamma(2 - \alpha)} \xi^{1-\alpha} \quad \xi \in [h_{N}, h_{N-1} + h_{N}]$$

$$\geq \frac{4\kappa_{\alpha}}{(3 - \alpha)\Gamma(2 - \alpha)} (h_{N-1} + h_{N})^{1-\alpha} = \frac{4\kappa_{\alpha}}{(3 - \alpha)\Gamma(2 - \alpha)} (T - x_{N-2})^{1-\alpha}$$

$$(6.20)$$

$$P_{N} := -\kappa_{\alpha} \frac{2}{h_{N} + h_{N+1}} \left(\frac{1}{h_{N+1}} p(x_{N+1}) - (\frac{1}{h_{N}} + \frac{1}{h_{N+1}}) p(x_{N}) + \frac{1}{h_{N}} p(x_{N-1}) \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha) h_{N}^{2}} h_{N}^{3 - \alpha}$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha)} (T - x_{N-1})^{1 - \alpha}$$

Symmetricly for $i \geq N$, we get

569 (6.21)
$$P_{i} \geq \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \leq N \\ |x_{i+1} - T|^{1-\alpha}, & i \geq N \end{cases}$$

570 Similarly, we can get

$$Q_{i} := -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} q(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) q(x_{i}) + \frac{1}{h_{i}} q(x_{i-1}) \right)$$

$$\geq \frac{-2^{r(\alpha-1)+1} \kappa_{\alpha}}{\Gamma(2-\alpha)} (x_{i-1}^{1-\alpha} + (1-x_{i+1})^{1-\alpha})$$

Notice that

573 (6.23)
$$x_i^{-\alpha} \ge (2T)^{-1} x_i^{1-\alpha}$$

- 574 We can get
- THEOREM 6.5. There exists a real $\lambda = \lambda(T, \alpha, r) > 0$ and $C = C(T, \alpha, r) > 0$ such that $B := A(\lambda I + G)$ is an M matrix. And

577 (6.24)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge C(x_i^{-\alpha} + (1-x_i)^{-\alpha}) + C \begin{cases} |\frac{1}{2} - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - \frac{1}{2}|^{1-\alpha}, & i \ge N \end{cases}$$

Proof. By 6.3 with C_1 and 6.4 with C_2 , it's sufficient to take $\lambda = 4TC_2/C_1$, then

579 (6.25)
$$M_i \ge C_2 \left((x_i^{-\alpha} + (1 - x_i)^{-\alpha}) + \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases} \right)$$

- Now, we can prove the convergency Theorem 4.2.
- For equation

582 (6.26)
$$AU = F \Leftrightarrow A(\lambda I + G)(\lambda I + G)^{-1}U = F$$
 i.e. $B(\lambda I + G)^{-1}U = F$

583 which means

584 (6.27)
$$\sum_{i=1}^{2N-1} b_{ij} \frac{\epsilon_j}{\lambda + g(x_j)} = \tau_i$$

- where $\epsilon_i = u(x_i) U_i$.
- 586 And if

$$|\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| = \max_{1 \le i \le 2N-1} |\frac{\epsilon_i}{\lambda + g(x_i)}|$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES38

Then, since $B = A(\lambda I + G)$ is an M matrix, it is Strictly diagonally dominant. Thus,

$$|\tau_{i_0}| = |\sum_{j=1}^{2N-1} b_{i_0,j} \frac{\epsilon_j}{\lambda + g(x_i)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= \sum_{j=1}^{2N-1} b_{i_0,j} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= M_{i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

- By Theorem 4.1 and Theorem 6.5,
- We knwn that there exists constants $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)}),$
- 592 and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

$$|\frac{\epsilon_i}{\lambda + g(x_i)}| \le |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| \le C_1 h^{\min\{\frac{r\alpha}{2}, 2\}} + C_2(r-1)h^2$$

- 594 as $\lambda + g(x_i) \le \lambda + T$
- So, we can get

596 (6.31)
$$|\epsilon_i| \le C(\lambda + T)h^{\min\{\frac{r\alpha}{2}, 2\}}$$

The convergency has been proved.

598

599

604

7. Experimental results.

8. Remarks. some remarks.

In Theorem 2.3 If $f \in L^{\infty}(\Omega)$ then $u \in C_{\alpha/2}(\Omega)$, which is Proposition 1.1 in [1].

When $||f||_{\beta}^{(\gamma)} < \infty$, where $\beta > 2 - \alpha$ and $\gamma \in [-\alpha, -\alpha/2]$, we observed convergent order min $\{r(\alpha+\gamma), 2\}$ in numerical experiments. And we can prove that kind theorems with the techneque we used in this paper.

Appendix A. Approximate of difference quotients.

LEMMA A.1. If g(x) is twice differentiable continuous function on open set Ω , there exists $\xi \in [x_{i-1}, x_{i+1}]$ such that

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

(A.2) $\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$ $= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$

610 And if $g(x) \in C^4(\Omega)$, then

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

612 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$

Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in [x_{i-1}, x_i]$$

614
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in [x_i, x_{i+1}]$$

615 Substitute them in the left side of (A.1), we have

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{h_{i}}{h_{i} + h_{i+1}} g''(\xi_{1}) + \frac{h_{i+1}}{h_{i} + h_{i+1}} g''(\xi_{2})$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

619 For the second equation, similarly

620
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

621
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

622 And the last equation can be obtained by

623
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$624 \quad g(x_{i+1}) = g(x_i) + h_{i+1}g'(x_i) + \frac{h_{i+1}^2}{2}g''(x_i) + \frac{h_{i+1}^3}{3!}g'''(x_i) + \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

625 Expecially,

$$\int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy = \frac{h_i^4}{4!} g''''(\eta_1)
\int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy = \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. Substitute them to the left side of (A.3), we can

628 get the result.

629 LEMMA A.2. If
$$y \in [x_{j-1}, x_j]$$
, denote $y = \theta x_{j-1} + (1 - \theta)x_j, \theta \in [0, 1]$,

630 (A.5)
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

632
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!}h_j^3(\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

- 633 where $\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j].$
- 634 *Proof.* By Taylor expansion, we have

635
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

636
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

637 Thus

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

639 The second equation is similar,

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$(1 - \theta)^2 h_j^2 \qquad (1 - \theta)^3 h_j^3$$

641
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

642 where $\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j]$. Thus

$$u(y_{j}^{\theta}) - u_{h}(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

644 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - u_h(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

646 If $x \in [0, x_1]$, with Corollary 2.4, we have

647 (A.8)
$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

648 Similarly, if $x \in [x_{2N-1}, 1]$, we have

649 (A.9)
$$|u(x) - u_h(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

650 Appendix B. Inequality.

Lemma B.1.

651 (B.1)
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

652

653 (B.2)
$$h_i \ge rT^{1/r}h \begin{cases} x_{i-1}^{1-1/r}, & 1 \le i \le N \\ (2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

654 *Proof.* For $1 \le i \le N$,

$$h_{i} = T\left(\left(\frac{i}{N}\right)^{r} - \left(\frac{i-1}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_{i}^{1-1/r}$$

656 657

$$h_i \ge rT\frac{1}{N} \left(\frac{i-1}{N}\right)^{r-1} = rT^{1/r} h x_{i-1}^{1-1/r}$$

658 For $N < i \le 2N$,

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r-1} = rT^{1/r}h(2T - x_{i-1})^{1-1/r}$$

$$h_{i} \geq rT\frac{1}{N}\left(\frac{2N - i}{N}\right)^{r-1} = rT^{1/r}h(2T - x_{i})^{1-1/r}$$

663 Lemma B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

665 (B.3)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

666
$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

667 For i = 1,

668
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

669 For 2 < i < N-1,

670
$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$

671 If $r \in [1, 2]$,

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i-1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{2-r} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{2-r} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

else if r > 2,

$$h_{i+1} - h_i = r(r-1)T N^{-2}\eta^{r-2} \le r(r-1)T h^2 \left(\frac{i+1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{r-2} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{r-2}r(r-1)T^{2/r}h^2 x_i^{1-2/r}$$

675 Since

676
$$2^r - 2 \le 2^{|r-2|} r(r-1), \quad r \ge 1$$

677 we have

678
$$h_{i+1} - h_i \le 2^{|r-2|} r(r-1) T^{2/r} h^2 x_i^{1-2/r}, \quad 1 \le i \le N-1$$

For i = N, $h_{N+1} - h_N = 0$. For $N < i \le 2N - 1$, it's central symmetric to the first

680 half of the proof, which is

$$681 h_i - h_{i+1} \le 2^{|r-2|} r(r-1) T^{2/r} h^2 (2T - x_i)^{1-2/r}$$

682 Summarizes the inequalities, we can get

683 (B.4)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

684 Appendix C. Proofs of some technical details.

685 Additional proof of Theorem 5.1. For $2 \le i \le N-1$,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

687 Since Lemma B.1, we have

688
$$h_i \le rT^{1/r}hx_i^{1-1/r}, \quad 1 \le i \le N$$

$$h_{i+1} \le rT^{1/r}hx_{i+1}^{1-1/r}, \quad 1 \le i \le N-1$$

690 and

686

691
$$x_{i-1}^{-2-\alpha/2} \le 2^{-r(-2-\alpha/2)} x_i^{-2-\alpha/2} 2 \le i \le N-1$$

$$x_{i+1}^{1-1/r} \le 2^{r-1} x_i^{1-1/r} \quad 1 \le i \le N-1$$

693 So there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

694
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

695 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

697 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

699 and we can get

$$\int_{0}^{x_{1}} f''(y) \frac{y^{3}}{3!} dy \le C \frac{1}{3!} \int_{0}^{x_{1}} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_{1}^{2-\alpha/2}$$

701 so

696

$$702 \qquad \frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

703 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\le r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\le 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can

706 conclude that

707
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

TOS LEMMA C.1. There is a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ for $2 \le j \le N$, if $y \in [x_{j-1}, x_j]$,

710 (C.1)
$$|u(y) - u_h(y)| \le Ch^2 y^{\alpha/2 - 2/r}$$

711 *Proof.* For $2 \le j \le N$, we have

712
$$x_j \le 2^r y, \quad x_{j-1} \ge 2^{-r} y$$

And by Lemma A.2, Lemma B.1 and Corollary 2.4, we have

$$u(y) - u_h(y) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

$$\leq \frac{\|u\|_{\beta+\alpha}^{(-\alpha/2)}}{4} r^2 T^{2/r} h^2 x_j^{2-2/r} x_{j-1}^{\alpha/2-2}$$

$$\leq Ch^2 2^{2r-2} y^{2-2/r} 2^{-r(\alpha/2-2)} y^{\alpha/2-2}$$

$$= C2^{-r\alpha/2+4r-2} h^2 y^{\alpha/2-2/r}$$

symmetricly, for $N < j \le 2N - 1$, we have

716 (C.2)
$$|u(y) - u_h(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$,

718 $\max\{2i+1, i+3\} \le j \le 2N \text{ and } y \in [x_{j-1}, x_j], \text{ we have }$

719 (C.3)
$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

720 *Proof.* Since $y \ge x_{i-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|y-\xi|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(y-x_{i+1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq (1-(\frac{2}{3})^r)^{-1-\alpha} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i < N/2, k = \begin{bmatrix} i \\ 2 \end{bmatrix}$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have

724 (C.4)
$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

725 Proof. Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

727

726

T28 LEMMA C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

730 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

731 (C.6)
$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$
$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

733 (C.7)
$$\sum_{i=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

734

736

735 (C.8)
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

Proof.

737
$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

738 So, by Lemma C.4

739
$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

740
741
$$S_{12} \leq \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \leq C x_1^{-\alpha/2}$$
742
743
$$S_{13} \leq \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \leq C x_1^{-\alpha/2}$$
744 But
745
$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2-2/r}$$
746 $i=2$ is similar.

747

Lemma C.6. There exists a constant C = C(T, r, l) such that For $3 \le i \le N$ 748 $1, k+1 = \lceil \frac{i}{2} \rceil, k \le j \le \min\{2i-1, N-1\}, \ l = 3, 4,$ 749

750 when
$$\xi \in [x_{i-1}, x_{i+1}],$$

751 (C.9)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

753 (C.10)
$$(h_{j-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j^2$$

Proof. From (5.32)754

755 (C.11)
$$y'_{j-i}(x) = y_{j-i}^{1-1/r}(x)x^{1/r-1}$$

756 (C.12)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

757 for l = 3, 4, by (5.34)

(C.13)
$$(h_{j-i}^{l}(\xi))' = l \ h_{j-i}^{l-1}(\xi)(y_{j-i}'(\xi) - y_{j-i-1}'(\xi))$$
$$= l \ h_{j-i}^{l-1}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi)) \ge 0$$

For $\xi \in [x_{i-1}, x_{i+1}]$ and $2 \le k \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1 759

$$h_{j-i}(\xi) \le h_{j-i}(x_{i+1}) = h_{j+1}$$

$$\le rT^{1/r} hx_{j+1}^{1-1/r} \le rT^{1/r}2^{r-1} hx_i^{1-1/r}$$

And 761

762 (C.14)
$$2^{-r}x_i \le x_{i-1} \le \xi \le x_{i+1} \le 2^r x_i$$

We have 763

764 (C.15)
$$\xi^{1/r-m} \le 2^{|mr-1|} x_i^{1/r-m}, \quad m = 1, 2$$

but 765

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-1} - (\xi^{1/r} + Z_{j-i-1})^{r-1}$$

$$= (r-1)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-2}, \quad \gamma \in [0,1]$$

$$= (r-1)T^{1/r}hy_{j-i-\gamma}^{1-2/r}(\xi)$$

(C.17)

768
$$4^{-r}x_i \le x_{\lceil \frac{i}{2} \rceil - 1} \le x_{j-2} = y_{j-i-1}(x_{i-1}) \le y_{j-i-\gamma}(\xi) \le y_{j-i}(x_{i+1}) = x_{j+1} \le x_{2i} \le 2^r x_i$$

769 Therefore,

770 (C.18)
$$y_{j-i-\gamma}^{1-2/r}(\xi) \le 2^{2|r-2|} x_i^{1-2/r}$$

771 So we can get

772 (C.19)
$$y'_{i-1}(\xi) - y'_{i-1}(\xi) \le (r-1)C(T,r)hx_i^{-1/r}$$

773 We get

774 (C.20)
$$(h_{i-1}^{l}(\xi))' \leq l(r-1)C h_{i+1}^{l-1} h x_{i}^{-1/r}$$

775 And by Lemma B.1,

776 (C.21)
$$h_{j+1} \le rTh\left(\frac{j+1}{N}\right)^{r-1} \le rTh2^{r-1}\left(\frac{j-1}{N}\right) = 2^{r-1}h_j$$

777

778 (C.22)
$$h_{j+1} \le rT^{1/r}hx_{j+1}^{1-1/r} \le rT^{1/r}hx_{2i}^{1-1/r} \le rT^{1/r}2^{r-1}hx_i^{1-1/r}$$

779 We can get

$$(h_{j-i}^{l}(\xi))' \leq l(r-1)C h_{j}^{l-2}h_{j+1}hx_{i}^{-1/r}$$

$$\leq l(r-1)Chh_{j}^{l-2}(hx_{i}^{1-1/r})x_{i}^{-1/r}$$

$$= (r-1)C h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

781 Meanwhile, we can get

782 (C.24)
$$h_{j-i}^3(\xi) \le h_{j+1}^3 \le Ch^2 x_i^{2-2/r} h_j$$

783 (C.25)
$$h_{j-i}^4(\xi) \le h_{j+1}^4 \le Ch^2 x_i^{2-2/r} h_j^2$$

784

There exists a constant C = C(T, r, l) such that For $3 \le i \le N - 1$, $\lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}$,

787 when $\xi \in [x_{i-1}, x_{i+1}],$

788 (C.26)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

789 *Proof.* From (C.11)

$$(h_{j-i}^{3}(\xi))'' = 6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2} + 3h_{j-i}^{2}(\xi)(y''_{j-i}(\xi) - y''_{j-i-1}(\xi))$$

$$= 6h_{j-i}(\xi)(\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi)))^{2}$$

$$+ 3\frac{1-r}{r}h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

791 Using the inequalities of the proof of Lemma C.6

$$6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2}$$

$$\leq 6h_{j+1}((r-1)Chx_{i}^{-1/r})^{2}$$

$$\leq C(r-1)^{2}h^{2}x_{i}^{-2/r}h_{j}$$

793 For the second partial

794 (C.29)
$$h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1}) \\ \leq Ch_{j+1}^{2}x_{i}^{1/r-2}((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi))Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi)Z_{1})$$

795 but

$$y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-2} - (\xi^{1/r} + Z_{j-i-1})^{r-2}$$

$$= (r-2)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-3}$$

$$= (r-2)T^{1/r}hy_{j-i-\gamma}^{1-3/r}(\xi)$$

$$\leq C(r-2)hx_i^{1-3/r}$$

797 So we can get

$$(C.31) h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

$$\leq Ch_{j}hx_{i}^{1-1/r}x_{i}^{1/r-2}(C(r-2)hx_{i}^{1-3/r}Z_{j-i} + Cx_{i}^{1-2/r}T^{1/r}h)$$

$$\leq Ch^{2}((r-2)x_{i}^{-3/r}x_{|j-i|}^{1/r} + x_{i}^{-2/r})h_{j}$$

$$\leq Ch^{2}x_{i}^{-2/r}h_{j}$$

799 Summarizes, we have

800 (C.32)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

801 proof of Lemma 5.16. From (5.32)

802 (C.33)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

803 (C.34)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

804 Since

808

$$x_{j-2} \le y_{j-i-1}(x_{i-1}) \le y_{j-i}^{\theta}(\xi) \le y_{j-i}^{\theta}(x_{i+1}) \le x_{j+1}$$

806 We have known (C.17)

807 (C.35)
$$u''(y_{j-i}^{\theta}(\xi)) \le C(y_{j-i}^{\theta}(\xi))^{\alpha/2-2} \le Cx_{j-2}^{\alpha/2-2} \le Cx_{\lceil \frac{i}{2} \rceil - 1}^{\alpha/2-2} \le C4^{r(2-\alpha/2)}x_i^{\alpha/2-2}$$

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}'(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 5.17.

(C.38)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

Since $|y_{j-i}(\xi) - \xi|$ is increasing about ξ , we have

814
$$\left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

Thus, 815 (C.40)

816
$$\left(\frac{2}{3}\right)^r |y_j^{\theta} - x_i| \le |y_{j-i}^{\theta}(\xi) - \xi| \le \left(\frac{3}{4}\right)^r (\theta |x_j - x_i| + (1 - \theta)|x_{j-1} - x_i|) = \left(\frac{3}{4}\right)^r |y_j^{\theta} - x_i|$$
817

818

(C.41)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{j}^{\theta} - x_{i}|^{1-\alpha}$$

Next, 819 (C.42)

(C.42)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|\xi^{1/r-1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi)) - 1|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}\xi^{1/r-1}|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

Similar with (C.39), we have 821

822 (C.43)
$$|y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}| \le C|x_j^{1-1/r} - x_i^{1-1/r}| \le C|x_j - x_i|x_i^{-1/r}$$

So we can get 823

$$|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$
824 (C.44)
$$\leq Cx_i^{-1/r}(\theta|x_{j-1} - x_i| + (1-\theta)|x_j - x_i|)$$

$$= Cx_i^{-1/r}|y_j^{\theta} - x_i|$$

Combine them, we get 825

(C.45)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{1/r-1} x_{i}^{-1/r} |y_{j}^{\theta} - x_{i}|$$
$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha} x_{i}^{-1}$$

Finally, we have 827

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}(\xi^{1/r - 1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1 - \theta)y_{j-i}^{1-1/r}(\xi)) - 1)^{2} + (1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}\frac{1 - r}{r}\xi^{1/r - 2}|\theta y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1} + (1 - \theta)y_{j-i}^{1-2/r}(\xi)Z_{j-i}|$$

829 Using the inequalities above, we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1} (\xi^{1/r - 1}(\theta y_{j-i-1}^{1 - 1/r}(\xi) + (1 - \theta) y_{j-i}^{1 - 1/r}(\xi)) - 1)^{2}$$
830 (C.47)
$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha - 1} (x_{i}^{-1}|y_{j}^{\theta} - x_{i}|)^{2}$$

$$= C|y_{j}^{\theta} - x_{i}|^{1 - \alpha} x_{i}^{-2}$$

831 And by

832 (C.48)
$$|Z_{j-i}| = |x_i^{1/r} - x_i^{1/r}| \le |x_j - x_i|x_i^{1/r-1}$$

833 we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} \xi^{1/r-2} |\theta y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1} + (1-\theta) y_{j-i}^{1-2/r}(\xi) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{1/r-2} x_{i}^{1-2/r} |\theta Z_{j-i-1} + (1-\theta) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{-2} |y_{j}^{\theta} - x_{i}|$$

$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha} x_{i}^{-2}$$

835 proof of Lemma 5.19. For $k \le j < \min\{2i - 1, N - 1\}$

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
336 (C.50)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$\leq Q_{j-i}^{\theta}(\xi)Cx_{j}^{\alpha/2-3} + Q_{j-i}^{\theta}(x_{i})Cu''''(\eta)\frac{h_{i} + h_{i+1}}{h_{i+1}}$$

837 where $\xi \in [x_i, x_{i+1}], \eta \in [x_{j-1}, x_{j+1}].$

From (5.36), by Lemma C.6 and Lemma 5.17, we have

839 (C.51)
$$Q_{j-i}^{\theta'}(\xi) \leq Ch^2 \frac{|y_{j+1}^{\theta} - x_{i+1}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i+1}^{1-2/r} h_{j+1}^2$$
$$\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{1-2/r} h_j^2$$

840 And by defination

841 (C.52)
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \le Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

842 With, we have

843 (C.53)
$$4^{-r}x_i \le x_{k-1} \le x_{j-1} < x_j \le x_{2i-1} \le 2^r x_i$$

844 So we have

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^{2} x_{i}^{\alpha/2-3} + Ch^{2} x_{i}^{2-2/r} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j}^{2} x_{j-1}^{\alpha/2-4}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}^{2}$$

846 while

$$h_{i} \le h_{2i-1} \le 2^{r} h_{i}$$

848 Substitute into the inequality above, we get the goal

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$
849 (C.55)
$$\leq \frac{1}{h_{i}}Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j} 2^{r} h_{i}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

850 While, the later is similar.

851

Lemma C.8. There exists a constant
$$C = C(T,r)$$
 such that For $N/2 \le i < N$,

853
$$N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \ l = 3,4 \ , \ \xi \in [x_{i-1},x_{i+1}], \ we have$$

854 (C.56)
$$h_{i-i}^{l}(\xi) \le Ch_{i}^{l} \le Ch^{2}h_{i}^{l-2}$$

855 (C.57)
$$(h_{i-i-1}^{l}(\xi))' \le C(r-1)h^2 h_i^{l-2}$$

856 (C.58)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 h_i$$

Proof.

(C.59)
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

858 Thus,

859 (C.60)
$$Ch_j \le h_{j-1}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_j$$

860 So as $4^{-r}T \le 2T - x_j \le T, 2^{-r}T \le x_i \le T$, we have

861 (C.61)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{j}^{l-2} \le Ch^{2}h_{j}^{l-2}$$

862 Since

$$|(2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}|$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1}|$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0, 1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

864 we have

865 (C.63)
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

866 And

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(C.65) \qquad (D.65) \qquad (C.65) \qquad (D.65) \qquad ($$

Lemma C.9. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

871
$$N/2 \leq i < N, \ N+2 \leq j \leq 2N-\lceil \frac{N}{2} \rceil+1$$
 , $\xi \in [x_{i-1},x_{i+1}], \ we have$

872 (C.66)
$$u''(y_{i-i}^{\theta}(\xi)) \le C$$

(u"
$$(y_{j-i}^{\theta}(\xi))$$
)' $\leq C$

874 (C.68)
$$(u''(y_{j-i}^{\theta}(\xi)))'' \le C$$

Proof.

875 (C.69)
$$x_{j-2} \le y_{j-i}^{\theta}(\xi) \le x_{j+1} \Rightarrow 4^{-r}T \le 2T - y_{j-i}^{\theta}(\xi) \le T$$

876 Thus, for l = 2, 3, 4,

877 (C.70)
$$u^{(l)}(y_{i-i}^{\theta}(\xi)) \le C(2T - y_{i-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

878 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$
879 (C.71)
$$= \xi^{1/r-1} (\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$\leq C(2T - x_{j-2})^{1-1/r} \leq C$$

880 With

881 (C.72)
$$Z_{2N-j-i} \le 2T^{1/r}$$

882

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T-y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T-y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

884 Therefore,

885 (C.74)
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$
 $< C$

886

887 (C.75)
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

888

LEMMA C.10. There exists a constant
$$C = C(T, \alpha, r)$$
 such that

890 (C.76)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

891 (C.77)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N)$$

(C.78)

892
$$(|y_{i-i}^{\theta'}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_{i}^{\theta} - x_{i}|^{-\alpha} + C|y_{i}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N})^{2}$$

Proof.

893 (C.79)
$$(y_{j-i}^{\theta}(\xi) - \xi)' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i}'(\xi) - 1$$

895 (C.80)
$$|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}|$$
$$< \xi^{1/r-1} |2T - \xi - y_{j-i}(\xi)| \xi^{-1/r}$$

896

897 (C.81)
$$|2T - \xi - y_{j-i}(\xi)| \le \max \begin{cases} |2T - x_{i-1} - x_{j-1}| \\ |2T - x_{i+1} - x_{j+1}| \end{cases}$$
$$< |2T - x_i - x_j| + h_{i+1} + h$$

$$(y_{j-i}^{\theta}(\xi) - \xi)'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)}) \le 0$$

900 It's concave, so

901 (C.83)
$$y_{j-i}(\xi) - \xi \ge \min\{x_{j+1} - x_{i+1}, x_{j-1} - x_{i-1}\} \ge C(x_j - x_i)$$

902 We have

903 (C.84)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

904

905 (C.85)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'$$

$$\leq C|y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{i+1} + h_{i-1})$$

906 (C.86)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{\theta}(\xi) - 1)^{2}$$

$$\leq C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})^{2}$$

Proof. From (5.24), by Lemma C.8 and Lemma C.10, we have $\xi \in [x_i, x_{i+1}]$

909 (C.87)
$$Q_{j-i}^{\theta'}(\xi) \le Ch^2h_j^2((r-1)|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N))$$

911 (C.88) $Q_{j-i}^{\theta}(\xi) \le Ch^2 h_j^2 |y_j^{\theta} - x_i|^{1-\alpha}$

912 So use the skill in Proof 34 with Lemma C.9

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta})}{h_{i+1}} \right) \\
\leq Ch^2 h_i (|y_i^{\theta} - x_i|^{1-\alpha} + |y_i^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_i^{\theta}| + h_N))$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES\$49

914	(C.90) $a^{1-\theta} a^{\theta} - b^{\theta} \le a - b , \theta \in [0, 1]$
915 916	Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.
917	REFERENCES
918 919 920 921	 X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www.sciencedirect.com/science/article/pii/S0021782413000895.