Aiding Television Media Planning Through Bayesian Inference and Forecasting

Matthew Tiger

Towson University

May 2018

- Introduction
- Data
- Model
- Model Fit
- Results
- Conclusion

Problem

TV Advertising Buying and Selling

Motivating Example

Baseball example

Formal Statement of Problem

Bayesian Inference

Baseball example

Types of Data

Programming Schedule

Forecasted Impressions

Audience Measurement

Training Data

Audience Size Comparison

Units of Observation and Analysis

Covariates

• Time-based covariates and Program-based covariates

Covariates

- Time-based covariates and Program-based covariates
- Derived from Media Schedule
 - Broadcast Month
 - Day of Week
 - Stratified Hour
 - Content
 - Lead-in Content

Covariates

- Time-based covariates and Program-based covariates
- Derived from Media Schedule
 - Broadcast Month
 - Day of Week
 - Stratified Hour
 - Content
 - Lead-in Content
- Derived from Audience Measurement Data
 - Genre
 - Live-program
 - First-run

Assumptions

• We assume that the response variables y_i are exchangeable given the parameters of the model and the covariates of the unit of observation.

Assumptions

- We assume that the response variables y_i are exchangeable given the parameters of the model and the covariates of the unit of observation.
- A sequence of random variable is exchangeable if the "joint probability density $p(y_1, \ldots, y_k)$ is invariant to permutations of the indexes."

Assumptions

- We assume that the response variables y_i are exchangeable given the parameters of the model and the covariates of the unit of observation.
- A sequence of random variable is exchangeable if the "joint probability density $p(y_1, ..., y_k)$ is invariant to permutations of the indexes."
- This allows us to model the data as independently and identically distributed given the covariates and unknown parameters.

Model Description

Define model \mathcal{M} to be

$$egin{aligned} y_i | X_i, n_i, \pi_i, \omega_i, \kappa_i &\sim \mathsf{Bin}(n_i, \pi_i) \ \pi_i | \omega_i, \kappa_i &\sim \mathsf{Beta}\left(\omega_i \kappa_i + 1, (1 - \omega_i) \kappa_i + 1
ight) \ \omega_i &= \mathsf{logit}^{-1}\left(eta_0 + \sum_{j=1}^{m-1} eta_j X_{ij}
ight), \quad eta_j \sim t_4(0, \sigma_j^2) \ &\qquad \qquad \mathsf{for} \ 0 \leq j \leq m \ \kappa_i | X_{im} &\sim \mathsf{Exp}(\lambda_p X_{im}), \quad \mathsf{for} \ p = 0, 1, \end{aligned}$$

where $logit^{-1}(\alpha) = \frac{exp \alpha}{1 + exp \alpha}$.

Model Description

• Prior distributions for coefficients β_j and concentration parameter κ_i are chosen to be *weakly informatative*.

- Prior distributions for coefficients β_j and concentration parameter κ_i are chosen to be *weakly informatative*.
- For the coefficients, this means that $\mu_j = 0, \nu_j = 4$ for all j and that $\sigma_j = 2.5$ if $1 \le j \le m$ otherwise $\sigma_0 = 5$.

- Prior distributions for coefficients β_j and concentration parameter κ_i are chosen to be *weakly informatative*.
- For the coefficients, this means that $\mu_j = 0, \nu_j = 4$ for all j and that $\sigma_j = 2.5$ if $1 \le j \le m$ otherwise $\sigma_0 = 5$.
- For the concentration parameter, this means that $\lambda_p = 10^{-4}$.

- Prior distributions for coefficients β_j and concentration parameter κ_i are chosen to be *weakly informatative*.
- For the coefficients, this means that $\mu_j = 0, \nu_j = 4$ for all j and that $\sigma_j = 2.5$ if $1 \le j \le m$ otherwise $\sigma_0 = 5$.
- For the concentration parameter, this means that $\lambda_p = 10^{-4}$.

Computation

• Inference was computed using pymc3, a probabilistic programming language and library for Python.

Computation

- Inference was computed using pymc3, a probabilistic programming language and library for Python.
- The library is powered by the No U-Turn Sampler (NUTS) which is a variant of Hamiltonian Monte Carlo (HMC).

Computation

- Inference was computed using pymc3, a probabilistic programming language and library for Python.
- The library is powered by the No U-Turn Sampler (NUTS) which is a variant of Hamiltonian Monte Carlo (HMC).
- Parameters used for sampling:
 - target_accept: 0.95tuned samples: 3000
 - drawn samples: 500
 - number of chains: 4

• Approximate convergence to posterior distribution is measured through the *Gelman-Rubin* statistic, denoted by \hat{R} .

- Approximate convergence to posterior distribution is measured through the *Gelman-Rubin* statistic, denoted by \hat{R} .
- Another convergence check is the number of effective samples produced by the simulation, denoted by $\hat{n_{eff}}$.

- Approximate convergence to posterior distribution is measured through the *Gelman-Rubin* statistic, denoted by \hat{R} .
- Another convergence check is the number of effective samples produced by the simulation, denoted by $\hat{n_{eff}}$.
- If \hat{R} is close to 1 then we may assume we have approximate convergence. Further it is recommended that $\hat{n_{\rm eff}} \geq 10M$ where M is the number of sampled Markov chains for all model parameters.

- Approximate convergence to posterior distribution is measured through the *Gelman-Rubin* statistic, denoted by \hat{R} .
- Another convergence check is the number of effective samples produced by the simulation, denoted by $\hat{n_{eff}}$.
- If \hat{R} is close to 1 then we may assume we have approximate convergence. Further it is recommended that $\hat{n_{\text{eff}}} \geq 10M$ where M is the number of sampled Markov chains for all model parameters.
- For each network model, we have that $0.99 \le \hat{R} \le 1.01$ and $\hat{n_{\rm eff}} > 400$ for all model parameters.

Posterior Predictive Checks

• "If the model fits, then replicated data under the model should look similar to observed data."

Posterior Predictive Checks

- "If the model fits, then replicated data under the model should look similar to observed data."
- Generating data using the posterior density and checking some aspect of the generated data set is called a *posterior predictive check*.

Posterior Predictive Checks

- "If the model fits, then replicated data under the model should look similar to observed data."
- Generating data using the posterior density and checking some aspect of the generated data set is called a *posterior predictive check*.

Let y be the observed data and θ be the vector of model parameters. Define y^{rep} to be the replicated data that could have been generated given θ , i.e.

$$p(y^{\mathsf{rep}}|y) = \int p(y^{\mathsf{rep}}|\theta)p(\theta|y)d\theta. \tag{1}$$

Replicated versus Actual Data

Replicated versus Actual Data

Test Statistics

• We can quantify model discrepancies by defining a test quantity $T(y,\theta)$ and then measuring the discrepancy between the observed data and the replicated data.

Test Statistics

- We can quantify model discrepancies by defining a test quantity $T(y,\theta)$ and then measuring the discrepancy between the observed data and the replicated data.
- Formally, we can compute a posterior predictive p-value defined as

$$p_B = \Pr\left(T(y^{\mathsf{rep}}, \theta) \geq T(y, \theta)|y\right).$$

Test Statistics

- We can quantify model discrepancies by defining a test quantity $T(y,\theta)$ and then measuring the discrepancy between the observed data and the replicated data.
- Formally, we can compute a posterior predictive p-value defined as

$$p_B = \Pr\left(T(y^{\mathsf{rep}}, \theta) \geq T(y, \theta)|y\right).$$

 Since we use simulated values of the posterior density, we have that the estimated p-value for S simulations is given by:

$$\hat{p_B} = \frac{1}{S} \sum_{i=1}^{S} [T(y_{(i)}^{\text{rep}}, \theta_{(i)}) \ge T(y, \theta_{(i)})].$$
 (2)

We define the following test quantities to use in evaluating the fit of model \mathcal{M} :

• $T_1(y,\theta) := \min(y)$,

We define the following test quantities to use in evaluating the fit of model \mathcal{M} :

- $T_1(y,\theta) := \min(y)$,
- $T_2(y,\theta) := \overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$,

We define the following test quantities to use in evaluating the fit of model \mathcal{M} :

- $T_1(y,\theta) := \min(y)$,
- $T_2(y,\theta) := \overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$,
- $T_3(y,\theta) := \max(y)$,

We define the following test quantities to use in evaluating the fit of model \mathcal{M} :

- $T_1(y,\theta) := \min(y)$,
- $T_2(y,\theta) := \overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$,
- $T_3(y,\theta) := \max(y)$,
- $T_4(y,\theta) := \operatorname{std}(y) = \sqrt{\frac{\sum_{i=1}^N (y_i \overline{y})^2}{N-1}}$.

Test Statistics - Evaluation - BCST network

$T(y, \theta)$	95% int. for $\mathcal{T}(y^{rep}, heta)$	pВ
3701	[6245, 14270]	0.99
227457.84	[2266852.49, 236367.09]	0.95
4311038	[3443885, 4989241]	0.34
334052.86	[325128.37, 364859.10]	0.90
	3701 227457.84 4311038	$T(y^{\text{rep}}, \theta)$ $T(y^{\text{rep}}, \theta)$ 3701 [6245, 14270] 227457.84 [2266852.49, 236367.09] 4311038 [3443885, 4989241]

Test Statistics - Evaluation - ETMT network

Test quantity	$T(y, \theta)$	95% int. for $\mathcal{T}(y^{rep}, heta)$	рв
$T_1(y,\theta)$ (min)	0	[9, 182]	1.0
$T_2(y,\theta)$ (mean)	16357.80	[16705.39, 17489.11]	1.0
$T_3(y,\theta)$ (max)	452762	[307901, 760822]	0.78
$T_4(y,\theta)$ (std)	17686.89	[20021.24, 23205.09]	1.0

Test Statistics - Evaluation - SPTS network

Test quantity	$T(y, \theta)$	95% int. for $\mathcal{T}(y^{rep}, heta)$	рв
$T_1(y, \theta)$ (min)	0	[0, 0]	1.0
$T_2(y, \theta)$ (mean)	3972.45	[3714.91, 4559.66]	0.73
$T_3(y, \theta)$ (max)	526816	[607186, 2239365]	0.99
$T_4(y, \theta)$ (std)	22300.18	[20012.59, 39808.44]	0.88

Residual Analysis

• For a model with unknown parameters θ and predictors x_i , the predicted value is $\mathsf{E}(y_i|x_i,\theta)$ and the residual is $r_i=y_i-\mathsf{E}(y_i|x_i,\theta)$.

Residual Analysis

- For a model with unknown parameters θ and predictors x_i , the predicted value is $E(y_i|x_i,\theta)$ and the residual is $r_i=y_i-E(y_i|x_i,\theta)$.
- The standardized residual is given by $r_i/\text{std}(y)$.

Residual Analysis

- For a model with unknown parameters θ and predictors x_i , the predicted value is $E(y_i|x_i,\theta)$ and the residual is $r_i = y_i E(y_i|x_i,\theta)$.
- The standardized residual is given by $r_i/\text{std}(y)$.
- Using the simulated posterior density, we can compute $E(y_i|x_i,\theta)$ to be the mean of the replicated hold-out data itself.

Residual Analysis - Actual versus Replicated

Residual Analysis - Test Statistic Evaluation

We can measure the residual mis-fit through the following test statistic:

$$T(y, \theta, x) = \frac{\overline{r}}{\operatorname{std}(y)}.$$

Residual Analysis - Test Statistic Evaluation

We can measure the residual mis-fit through the following test statistic:

$$T(y, \theta, x) = \frac{\overline{r}}{\operatorname{std}(y)}.$$

Units of Observation

Quantiled Media Plans

Sample frame title