Science Society Clubhouse

Accurate and transferable molecularorbital-based machine learning (MOB-ML) for molecular modelling

Sherry Lixue Cheng

Miller group
Division of Chemistry & Chemical Engineering
California Institute of Technology

State-of-the-art of quantum simulations

Largest treatable system size

few e⁻

~20 Heavy atoms

More accurate, more expensive

~200 Heavy atoms

Up to 10⁶ atoms

108 atoms

ML for quantum chemistry: Many promising trials

Usual strategy

ML with atom-based features

Usual goal: DFT accuracy at force field

cost

Less direct: Complicated mapping

Less transferable: Model not

applicable to other atom/bond types

not seen

Our strategy

ML with MO-based features from HF

A more modest goal: Wavefunction theory accuracy at HF cost using MO

Direct: Easier mapping

Transferable: Across atom types &

diverse chemistries

Physical driven problem formulation & feature design

Advantageous factorization

$$E_{total} = E_{HF} + E_c \text{ and } E_c = \sum_{ij}^{occ} \epsilon_{ij}$$

Nesbet's theorem: For any given post-HF method, the correlation energy can be written as a sum of pair energies

$$\epsilon_{ij} = \epsilon(\{\phi_k\}^{ij})$$
 $\approx \epsilon(\mathbf{f}_{ij})$ A single function of the MOs (independent of i,j)

List of MO-based features associated with orbitals i, j.

Learning labels: Pair energies ϵ_{ij}

Feature design

Desired properties

- First principles
- Uniqueness
- Consistent ordering
- Size-consistency (improved feature)

Invariances

- Translational
- Rotational
- Atom index permutation
- Orbital index permutation

$$E_{MP2} = -\frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{virt} \frac{|\langle ab || ij \rangle|^2}{\mathbf{F}_{aa} + \mathbf{F}_{bb} - \mathbf{F}_{ii} - \mathbf{F}_{jj}}$$

Learning features: Energy matrix elements \mathbf{f}_{ij} in Fock matrix \mathbf{F} , Coulomb matrix \mathbf{J} , exchange matrix \mathbf{K} for each MO computed in HF

Electronic energy breakdown:

CPU time breakdown:

MOB-ML for small molecules

Symmetrized feature set

- Energy matrix elements from HF
- Symmetrize orbitals i & j for f_{ij} : $f_{ij}=f_{ji}$ to preserve $\epsilon_{ij}^{ML}=\epsilon_{ji}^{ML}$
- Order other MOs by centroid distances
- Fixed feature length & filled in zeros for non-existing elements

$$\hat{i}\rangle = \frac{1}{\sqrt{2}} \left(|i\rangle + |j\rangle \right)$$

$$|\hat{j}\rangle = \frac{1}{\sqrt{2}}(|i\rangle - |j\rangle)$$

Transfer across different configurations

- Full Gaussian process regression
- Train & test on thermalized water structures
- Same accuracy for all different theories
- Chemical accuracy (~2 mH) with one structure

Transfer across a family of molecules

- Full Gaussian process regression
- Train on small alkanes & test larger alkanes
- All the relative errors are smaller than chemical accuracy (~2 mH)

Caltech

Understand the chemical space by MOB representation

Observation from quantum computation

σ -bond orbital pair energy

- Local linearity of MOs
- Same type of MOs in different molecules have similar trend vs features

Chemical space by MOB features

T-SNE visualization of alkane

- Chemical space form clusters
- Conservative MOB features across molecules
- Supervised/Unsupervised clustering the chemical space
- Clustering + local GP may further scale MOB-ML

Improved MOB features and scalable GPR

Improved feature set (Husch et al, 2021)

- Keep all previous operations, except:
- Improved (Consistent) feature/orbital ordering
 - Centroid distance → Est. contribution to MP2/MP3 energy
- Ensure size consistency: correct scaling with distance
 - No interaction (ϵ_{ij} =0) in long distance
 - $-\epsilon_{ij}$ insensitive to far-away MO k

Size consistency: $E^{AB} = E^A + E^B$

$$M_{ij} \sim \frac{1}{1+r_{ij}^6} M_{ij}$$

$$M_{ik} \sim \frac{1}{r_{ik}^3}$$

Extend to big data regime by scalable exact GP (Sun et al, 2021)

- Approximated GP not working well
- AltBBMM: An alternative implementation of scalable GP algorithm (BBMM)
 - $O(N^2)$ time & O(N) memory
 - Training on over 1 million ϵ_{ij} with 6 hrs (AltBBMM)

All collected with improved features

Unsupervised clustering for organic chemical spaces

Gaussian Mixture model (GMM) clustering

Improved MOB feature enables unsupervised clustering

No additional classifier

Blackbox: Auto detections of number of clusters by Bayesian information criteria

Agree well w/ chemical intuition of MO types

Unsupervised clustering for organic chemical spaces

Gaussian Mixture model (GMM) clustering

Cluster + local GP provides STOA accuracy

Further bridge with regression: Local scalable GP for each cluster

Reducing & scale up MOB-ML training

No/little loss of transferability with clustering + local GP

Most accurate results from GMM/GPR

Conclusion

Research goal: Merging maximum physical knowledge into ML to create a general tool for chemical applications

Physical ML black-box knowledge Decompose energy as pair energies MOB representations preserve chemical

info & satisfy

physical limits

- Regressions for molecular energy
- Supervised/Unsupervis ed clustering for chemical space exploration
- Works for both small & big data regimes

Applications

- Organic chemistry
- Biomolecule interaction & transition metal complex

MOB-ML: Physical driven, black-box, interpretable, accurate and transferable molecular modelling method with HF costs

Caltech

Acknowledgement

MOB-ML developers

Prof. Thomas F. Miller III Dr. Matt Welborn Dr. Tamara Husch Jiace Sun Dr. Sebastian Lee Dr. J. Emiliano Deustua

My committee and Miller group members

Funding from

- U.S. Army Research Laboratory (W911NF-12-2-0023)
- U.S. Department of Energy (DE-SC0019390),
- Caltech DeLogi Fund
- Camille and Henry Dreyfus Foundation (Award ML-20-196).
- NERSC, a DOE Office of Science User Facility supported by the DOE Office of Science under contract DE-AC02-05CH11231.

Q & A