

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE COMPUTAÇÃO COMPUTAÇÃO GRÁFICA CMP 1170 – 2019/1 PROF. MSC. GUSTAVO VINHAL

Aula 12 Realismo Visual e Iluminação

Realismo Virtual

- Criar imagens é o objetivo final da Computação Gráfica.
- Realismo virtual são conjuntos de técnicas de tratamento computacional aplicadas a objetos sintéticos com o objetivo de deixá-los mais próximos da realidade.
- Duas etapas:

Estáticas: cenas sem movimentos

Dinâmicas: animação

PUC GOIÁS

Realismo Virtual

Aplicações:

Modelagem de apartamentos;

PUC GOIÁS

- Aplicações:
 - Filmes;

- Aplicações:
 - Propagandas;

- Aplicações:
 - Jogos;

PUC GOIÁS

- Aplicações:
 - Hospitais.

PUC goiás

- Rendering;
- Rasterização;
- Iluminação;
- Texturas;
- Hiper-Realismo

- Computação gráfica = síntese de imagens ≠ mostrar um objeto (gerado por um dispositivo) na tela.
- Sintetizar imagens é criar imagens considerando:
 - Suas informações;
 - Geometria da cena;
 - Informações sobre cores e texturas;
 - Iluminação ambiente;
 - Posição de observação da cena.
- Rendering é sintetizar um objeto ou cena até eles possuírem uma aparência de algo real.

Rendering

Construção do modelo:

 Utiliza alguma técnica de modelagem para geração do objeto com base nas suas informações.

		VÉRTICES							
		A	В	C	D	E	F	G	Н
VÉRTICES	A	(6,6,6)	(-2,6,6)		(6,-2,6)	(6,6,-2)			
	В	(2,6,6)	(-6,6,6)	(-6,-2,6)			(-6,6,-2)		
	С		(-6,2,6)	(-6,-6,6)	(2,-6,6)			(-6,-6,-2)	
	D	(6,2,6)		(-2,-6,6)	(6,-6,6)				(6,-6,-2)
	E	(6,6,2)				(6,6,-6)	(-2,6,-6)		(6,-2,-6)
	F		(-6,6,2)			(2,6,-6)	(-6,6,-6)	(-6,-2,-6)	
	G			(-6,-6,2)		·	(-6,2,-6)	(-6,-6,-6)	(2,-6,-6)
	Н				(6,-6,2)	(6,2,-6)		(-2,-6,-6)	(6,-6,-6)

Transformações lineares:

- Aplica transformações lineares nos modelos de modo que ele tenha aparência tridimensional;
- Consiste na utilização de projeções e perspectivas adequadas.

Eliminação de polígonos ou faces escondidas:

- Devido a posição do objeto em relação ao observador, algumas faces estarão ocultas;
- Essa etapa remove as faces.

Recortes (clipping):

Partes das cenas que não serão mostradas são desconsideradas.

Rasterização:

- Conversão da representação tridimensional para uma bidimensional (3D para 2D);
- Representação em forma de pixels.

PUC goiás

Rendering

Eliminação de elementos escondidos:

Eliminação de partes de um objetos ocasionados pela obstrução visual

de outro objeto;

 As vezes esta etapa é realizada junto com a terceira etapa:

tratamento de partes escondidas.

PUC goiás

Rendering

Coloração:

- Colorir cada pixels individualmente;
- Deve-se levar em consideração:
 - Luzes presentes na cena (suas intensidades e direções);
 - Superfície: transparência, brilho reflexão e textura;
 - Influência de um objeto em outro e sobre a cena (sombras).

Acabamentos Não-fotográficos

- Renders realísticos tentam fazer uma imagem sintética o mais próximo de uma fotografia;
- Em contrapartida, os não realísticos (NPR *non-photorealistic rendering*) são aqueles que constroem cenas que se distanciam das reais porém mantendo a essência da cena.

Rasterização

- Conversão da representação tridimensional para uma bidimensional (3D para 2D);
- Representação em forma de pixels.
- Transformação de tempo contínuo para tempo discreto.

Rasterização

Rasterização de retas – Algoritmo de Bresenham para traçado de linhas

- O algoritmo de Bresenham considera como dados de entrada os dois pixels $(x_1, y_1)(x_2, y_2)$ da reta a ser rasterizada;
- Para cada ponto a ser traçado, o algoritmo verifica sua distância entre a posição do próximo pixel e a localização da reta no grid.

Rasterização

Rasterização de polígonos

 Os polígonos são rasterizados, primeiramente, rasterizando todos os seus lados;

```
Se abs(x_2 - x_1) \ge abs(y_2 - y_1) então 

Tamanho = abs(x_2 - x_1) else 

Tamanho = abs(y_2 - y_1) end if 

\Delta x = (x_2 - x_1) / Tamanho 

\Delta y = (y_2 - y_1) / Tamanho 

i = 1
```


Enquanto i \leq Tamanho faça

DesenhaPonto(Arredonda(x), Arredonda(y)) $\{Arredonda: valor arredondado de x e y\}$

$$x = x + \Delta x$$

$$y = y + \Delta y$$

$$i = i + 1$$

Fim Enquanto

Exercícios

- Aplicando as técnicas de rasterização, rasterize as seguintes formas utilizando:
 - a. Uma matriz 50x50 com pixel de largura 1;
 - b. Uma matriz 100x100 com pixel de largura 0,5.

REFERÊNCIAS BIBLIOGRÁFICAS:

AZEVEDO, Eduardo; CONCI, Aura. **Computação gráfica:** teoria e prática. Rio de Janeiro: Campus, 2003.