MATH237 Lecture 09

Peter He

January 24 2020

1 Clicker!

Consider

$$f(x,y) = |xy|$$

. You are given $f(0,0) = f_x(0,0) = f_y(0,0) = 0$. Is f differentiable at (0,0)?

Yes!

2 Relationship between Continuity and Differntiability

- Continuity doesn't imply existence of partial derivatives or differentiability
- Existence of partial derivatives does not imply diff or continuity
- However, differentiability does imply continuity

Theorem 1. If $f: B(r,\underline{a}) \subset \mathbb{R}^n \to \mathbb{R}^m$, R > 0 is differentiable at \underline{a} then it is continuous at \underline{a} .

Proof. Differentiability implies f is defined at $\underline{a} = (a, b)$. It must be shown that $\lim_{\underline{x} \to \underline{a}} f(\underline{x}) = f(\underline{a})$ or $\lim_{\underline{x} \to \underline{a}} |f(\underline{x}) - f(\underline{a})| = 0$.

$$0 \le |f(\underline{x}) - f(\underline{a})| \le |f(\underline{x}) - f(\underline{a}) - f_x(\underline{a})(x - a) - f_y(\underline{a})(y - b)| + |f_x(\underline{a})(x - a) + f_y(\underline{a})(y - b)|$$

$$= |f(\underline{x}) - L(\underline{x})| + |f_x(\underline{a})(x - a) + f_y(\underline{a})(y - b)|$$

$$= \frac{|f(\underline{x}) - L(\underline{x})|}{||\underline{x} - \underline{a}||} ||\underline{x} - \underline{a}|| + |f_x(\underline{a})(x - a)| + |f_y(\underline{a})(y - b)|$$

Since f is differentiable, $\lim_{x\to\underline{a}}\frac{|f(\underline{x})-L(\underline{x})|}{||\underline{x}-\underline{a}||}=0$ by definition of differentiability. The Product Limit Theorem and Sum Limit theorem imply the limit of the right hand side is 0. Thus, by the Squeeze theorem $\lim_{x\to a}|f(\underline{x})-f(\underline{a})|=0$. By definition, f is continuous at \underline{a} .