Introduktion til numerisk analyse

Blok 1, 2020

Date: 2.09.2020

Test eksamen II

Ansvarlige: M. Bladt og S. Talebi

Opgave 1.

- (a) Betragt følgen $x_n = \alpha n^2 3^{-n}$ for $n \in \mathbb{N}$, hvor α er en konstant.
 - (i) Er følgen stabil? Forklar hvorfor.
 - (ii) Skriv en differenligning som har x_n som en generisk løsning.
- (b) Betragt differenligningen $5x_{n+2} 3x_{n+1} 2x_n = 0$.
 - (i) Find dens generiske løsning.
 - (ii) Find løsningen så at $x_0 = 1$ og $x_1 = -1$.
- (c) Antag at differenligningen i (b) er modificeret til $5x_{n+3} 3x_{n+1} 2x_n = 0$. Er denne differensligning stabil? Forklar hvorfor.

Solution:

(a) (i) Yes, it is stable as for all n, since $|x_n|$ is bounded. Indeed $x_1 = \alpha/3$ and $\lim_{n \to \infty} n^2 3^{-n} = 0$, so for some $n \ge n_0$ large enough, x_n is decreasing. To find n_0 , we have:

$$(n_0+1)^2 3^{-(n_0+1)} < n_0^2 3^{-n_0}$$

which gives $2n_0^2 - 2n_0 - 1 > 0$, which is valid for all $n_0 \ge 3$. (ii) Note that $x_n = \alpha n^2 3^{-n} = \alpha n^2 \left(\frac{1}{3}\right)^n$. Hence, we need to form a difference equation, whose characteristic polynomial has a triple root of $\lambda = 1/3$. In other words, $p(\lambda)$ has a factor of $(\lambda - \frac{1}{3})^3 = \lambda^3 - \lambda^2 + \frac{1}{3}\lambda - \frac{1}{27}$. One example is:

$$x_{n+3} - x_{n+2} + \frac{1}{3}x_{n+1} - \frac{1}{27}x_n = 0.$$

- (b) $5\lambda^2 3\lambda 2 = 0$. Roots: $\lambda = 1, -0.4$, thus leading to the general solution: $x_n = \alpha + \beta \left(-\frac{2}{5}\right)^n$. Now using $x_0 = 1$ and $x_1 = -1$, we arrive at $\alpha = -\frac{3}{7}$ and $\beta = \frac{10}{7}$.
- (c) The characteristic polynomial is: $5\lambda^3 3\lambda 2 = 0$. Easy to verify that as in (b), $\lambda = 1$ is a root. Hence, p admits the form

$$p(\lambda) = (\lambda - 1)(a\lambda^2 + b\lambda + c)$$

To find a, b, and c, we may use Horner's method. Alternatively, we may find them by inspection as follows:

$$(\lambda - 1)(a\lambda^2 + b\lambda + c) = a\lambda^3 + (b - a)\lambda^2 + (c - b)\lambda - c$$

Now, we require that for all λ , $5\lambda^3 - 3\lambda - 2 = a\lambda^3 + (b-a)\lambda^2 + (c-b)\lambda - c$, which implies a = 5, b = 5, and c = 2. Hence, the other roots are

$$\lambda = \frac{1}{10}(-5 + \sqrt{15}i)$$
 and $\lambda = \frac{1}{10}(-5 - \sqrt{15}i)$.

Therefore, it is stable as $|\lambda| \le 1$.

Opgave 2. For hver af nedenstående funktioner, foreslå en metode til udregning af y som undgår tab af præcision for små værdier af x

(a)
$$y = \sqrt{e^x - e^{-3x}}$$
 (Ignorer led som er $o(x^3)$.)
(b) $y = \sqrt{1 + e^x} - \sqrt{1 + e^{-2x}}$ (Ignorer led som er $o(x^3)$.)
(c) $y = \sqrt{e^x - e^{-x}} - \sqrt{e^{2x} - e^{-3x}}$ (Ignorer led som er $o(x^3)$.)
(d) $y = \frac{1-x}{1+x} - \frac{1}{2x+1}$ (Ignorer led som er $o(x^3)$.)
(e) $y = \log(\sqrt{1 + x^3} - 1)$ (Ignorer led som er $o(x^4)$.)
(f) $y = \log(e^x - e^{-x}) - \log(1 - e^{-2x})$ (Ignorer led som er $o(x^3)$.)

Solution:

(a)

$$y = e^{x/2} \sqrt{1 - e^{-4x}} \approx e^{x/2} \sqrt{1 - \left(1 - 4x + 8x^2 - \frac{32}{3}x^3\right)}$$
$$= 2e^{x/2} \sqrt{x} \sqrt{1 - 2x + \frac{8}{3}x^2}$$
$$= 2e^{x/2} \sqrt{x} \sqrt{1 - 2x \left(1 - \frac{4}{3}x\right)}.$$

Finally note that using the inequality $\sqrt{1+z} \approx 1+z/2$, which is valid for small z=o(1), we can further simplify:

$$y \approx 2e^{x/2}\sqrt{x}\left(1 - x\left(1 - \frac{4}{3}x\right)\right).$$
(b)
$$y = \left(\sqrt{1 + e^x} - \sqrt{1 + e^{-2x}}\right) \times \frac{\sqrt{1 + e^x} + \sqrt{1 + e^{-2x}}}{\sqrt{1 + e^x} + \sqrt{1 + e^{-2x}}}$$

$$= \frac{e^x(1 - e^{-3x})}{\sqrt{1 + e^x} + \sqrt{1 + e^{-2x}}}$$

$$\approx \frac{e^x}{\sqrt{1 + e^x} + \sqrt{1 + e^{-2x}}}\left(3x - \frac{9}{2}x^2 + \frac{9}{2}x^3\right)$$

$$= \frac{3xe^x}{\sqrt{1 + e^x} + \sqrt{1 + e^{-2x}}}\left(1 - \frac{3}{2}x\left(1 - x\right)\right).$$

(c)

$$y = \sqrt{e^{x} - e^{-x}} - \sqrt{e^{2x} - e^{-3x}} = e^{x/2} \sqrt{1 - e^{-2x}} - e^{x/2} \sqrt{e^{x} - e^{-4x}}$$

$$\approx e^{x/2} \left(\sqrt{1 - \left(1 - 2x + 2x^{2} - \frac{4}{3}x^{3}\right)} - \sqrt{\left(1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3}\right) - \left(1 - 4x + 8x^{2} - \frac{32}{3}x^{3}\right)} \right)$$

$$= e^{x/2} \sqrt{x} \left(\sqrt{2 - 2x + \frac{4}{3}x^{2}} - \sqrt{5 - \frac{15}{2}x + \frac{65}{6}x^{2}} \right)$$

$$= e^{x/2} \sqrt{x} \left(\sqrt{2\left(1 - x\left(1 - \frac{2}{3}x\right)\right)} - \sqrt{5\left(1 - x\left(\frac{3}{2} - \frac{13}{6}x\right)\right)} \right).$$

Similarly to (a), we can further simplify the last result (though not necessary) as follows:

$$y \approx e^{x/2} \sqrt{x} \left(\sqrt{2} \left(1 - \frac{1}{2} x + \frac{1}{3} x^2 \right) - \sqrt{5} \left(1 - \frac{3}{4} x + \frac{13}{18} x^2 \right) \right)$$

$$= e^{x/2} \sqrt{x} \left(\sqrt{2} - \sqrt{5} + c_1 x - c_2 x^2 \right)$$

$$= e^{x/2} \sqrt{x} \left(\sqrt{2} - \sqrt{5} + c_1 x \left(x + \frac{c_2}{c_1} x \right) \right),$$

with $c_1 = \frac{3\sqrt{5}}{4} - \frac{\sqrt{2}}{2}$ and $c_2 = \frac{\sqrt{2}}{3} - \frac{13\sqrt{5}}{18}$.

$$y = \frac{1-x}{1+x} - \frac{1}{2x+1} = \frac{(1-x)(2x+1) - (x+1)}{(1+x)(2x+1)} = \frac{-2x^2}{(1+x)(2x+1)}$$

(e) $y = \log(\sqrt{1+x^3} - 1) = \log\frac{x^3}{\sqrt{1+x^3} + 1} = 3\log x - \log(\sqrt{1+x^3} + 1).$

Another solution:

$$y = \log(\sqrt{1+x^3} - 1) \approx \log(1+x^3/2 - 1) = 3\log(x) - \log(2)$$

where we used $\sqrt{1+z} \approx 1+z/2$, which is valid for small z = o(1).

(f)
$$y = \log(e^x - e^{-x}) - \log(1 - e^{-2x}) = x + \log(1 - e^{-2x}) - \log(1 - e^{-2x}) = x.$$

Opgave 3. I denne opgave ønsker vi at beregne grundtallet for den naturlige logaritme, *e*, med 4 decimalers præcision. Problemet skal løses ved at opstille en ligning hvis løsning er *e*, og som derefter løses ved brug af Newton's metode. Der skal redegøres for detaljerne i udregningen såsom initialpunkt, iterationer, og begrundelse for stopkriteriet.

(Vink: brug at log(e) = 1 til at opstille en passende ligning)

Løsning: Lad $f(x) = \log(x) - 1$. Så er f(e) = 0. Newton's algoritmer bliver så

$$x_{n+1} = x_n - \frac{\log(x_n) - 1}{1/x_n} = 2x_n - x_n \log(x_n).$$

Lad $x_0 = 3$. Så er

$$x_1 = 2.704163133$$

$$x_2 = 2.718245099$$

$$x_3 = 2.718281828.$$

Vi gætter på de fire decimalers præcision er 2.7182..... For at verificere at dette faktisk er tilfældet, noterer vi, at

$$f(2.7183) > 0$$
 og $f(2.7182) < 0$

og konkluerer dermed at nulpunktet for f må være i det åbne interval (2.7182, 2.7183), og dermed må de fire postulerede decimaler holde.

Opgave 4. Vis, at man kan udregne den afledede f'(x) som

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h^2).$$

Bemærk, at for $h \downarrow 0$ bruges udelukkende punkter til højre for x. Denne formel kan bruges hvis der skal findes afledede i et randpunkt. (Vink: se på rækkeudviklingerne for f(x+2h) og f(x+h))

Løsning: Da

$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2!} + f^{(3)}(x)\frac{h^3}{3!} + \dots$$

$$f(x+2h) = f(x) + f'(x)2h + f''(x)\frac{4h^2}{2!} + f^{(3)}(x)\frac{8h^3}{3!} + \dots$$

så er

$$4f(x+h) - f(x+2h) = 3f(x) + 2hf'(x) + O(h^3)$$

hvoraf

$$f'(x) = \frac{4f(x+h) - f(x+2h) - 3f(x)}{2h} + \frac{O(h^3)}{2h} = \frac{4f(x+h) - f(x+2h) - 3f(x)}{2h} + O(h^2)$$

Opgave 5. Betragt punkterne (1,1), (2,0) og (3,0). Find det entydigt bestemte polynomium som interpolerer disse punkter på hhv. Lagrange form og Newon's form.

Løsning: Lagrange: Kardinalpolynomierne er

$$\ell_0(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{1}{2}(x-2)(x-3)$$

$$\ell_1(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)} = -(x-1)(x-3)$$

$$\ell_2(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)} = \frac{1}{2}(x-1)(x-2)$$

så dermed er det interpolerende polynomium givet ved

$$p(x) = \ell_0(x) = \frac{1}{2}(x-2)(x-3).$$

Newton's metode: Vi starter med polynomiet der går gennem det første punkt,

$$p_0(x) = 1.$$

Dernæst tilføjer vi et punkt, (2,0),

$$p_1(x) = p_0(x) + c_1(x-1)$$

og c_2 er således at $p_1(2) = 0$, i.e.

$$0 = p_0(2) + c_1(2-1) \implies c_1 = -1.$$

Dvs.

$$p_1(x) = 1 - (x - 1) = 2 - x.$$

Endelig tilføjer vi det sidste punkt, (3,0),

$$p_2(x) = p_1(x) + c_2(x-1)(x-2)$$

således at $p_2(3) = 0$, i.e.

$$0 = p_2(3) = p_1(3) + 2c_2 \implies c_2 = \frac{1}{2}.$$

Dvs.

$$p_2(x) = p_1(x + \frac{1}{2}(x - 1)(x - 2)) = 2 - x + \frac{1}{2}(x - 1)(x - 2).$$

Opgave 6. Vi ønsker at udregne omkredsen *O* af en ellipse med radier 1 og 2, hvilket er givet ved formlen

$$O = 4 \int_0^{\pi/2} \sqrt{1 - \frac{3}{4} \sin^2(\theta)} d\theta.$$

- (a) Beregn O ved brug af Trapez formlen med $h = \pi/4$ og $h = \pi/8$.
- (b) Anvend Richardson ekstrapolation og angiv resultatet.
- (c) Estimer fejlen på O ved Trapezmetoden og $h = \pi/8$

Vink: Det kan uden bevis anvendes, at hvis $f(\theta) = \sqrt{1 - \frac{3}{4}\sin^2(\theta)}$ så er f''(x) voksende i hele $[0, \pi/2]$ med f''(0) = -3/4 og $f''(\pi/2) = 1.5$. Desuden kan følgende værdier af f bruges:

Løsning:

(a) For $h = \pi/4$ fås

$$I(h) := \frac{h}{2}(f(0) + 2f(h) + f(2h)) = \frac{\pi}{8}(f(0) + f(\pi/2) + 2f(\pi/4)) = 1.2100$$

og

$$I(h/2) = \frac{\pi}{16} \left(f(0) + 2 * f(\pi/8) + 2 * f(\pi/4) + 2 * f(3 * \pi/8) + f(\pi/2) \right) = 1.2111.$$

(b) Richardson ekstrapolation fås ved brug af (a),

$$\frac{4}{3}I(h/2) - \frac{1}{3}I(h) = 1.2114.$$

(c) Fejl på Trapezmetoden er

$$E = -\frac{\frac{\pi}{2} - 0}{12} h^2 f''(\xi).$$

Ved brug af vinket, så fås

$$|E| < \frac{\pi}{24}h^21.5.$$