Laboratorium 03 - Interpolacja

Błażej Naziemiec i Szymon Żuk

25 marca 2025

Wstęp

Celem laboratorium było zaimplementowanie interpolacji wielomianowej w trzech wariantach: z wykorzystaniem macierzy Vandermonde'a, metody Newtona oraz Lagrange'a. Następnie należało przetestować wszystkie metody na danych populacji Stanów Zjednoczonych w latach 1900-1980. W przypadku macierzy Vandermonde'a należało dodatkowo wykonać ekstrapolację dla roku 1990 w przypadku, gdy dane są zaokrąglone do pełnych milionów oraz kiedy nie są.

W tym celu wykorzystaliśmy dane przedstawione w tabeli poniżej

Rok	Populacja
1900	76 212 168
1910	$92\ 228\ 496$
1920	106 021 537
1930	123 202 624
1940	132 164 569
1950	151 325 798
1960	179 323 175
1970	203 302 031
1980	$226\ 542\ 199$

Następnie dla podanych czterech funkcji bazowych:

1.

$$\phi_j(t)=t^j$$

2.

$$\phi_j(t) = (t - 1900)^j$$

3.
$$\phi_j(t) = (t-1940)^j$$
 4.
$$\phi_j(t) = ((t-1940)/40)^j$$

Wyznaczliśmy współczynniki wielomianu ósmego stopnia wykorzystując właśnie interpolację. W tym celu stworzyliśmy dla każdej funkcji bazowej macierz Vandermonde'a, a następnie wyznaczyliśmy współczynniki uwarunkowania dla każdej z nich.

Cond1: 2.7565085275005417e+41 Cond2: 5994335190596687.0 Cond3: 9315536038627.47 Cond4: 1605.4437004786505

Ostatnia baza jest najlepiej uwarunkowana, zatem użyjemy jej do wyznaczenia wielomianu interpolacyjnego. Za pomocą funkcji np.linalg.solve(vander, y_vec) wyznaczyliśmy współczynniki:

```
[-3.15180235e+08 1.89175576e+08 6.06291250e+08 -3.42668456e+08 -3.74614715e+08 1.82527130e+08 1.02716315e+08 4.61307656e+07 1.32164569e+08]
```

Następnie użyliśmy schematu Hornera aby wyznaczyć wartości wielomianu dla każdego roku. Zaimplementowaliśmy schemat w następujący sposób:

```
def horner(a_vec, x):
ret = 0
for a in a_vec:
    ret = a + x * ret
return ret
```


Wartość z ekstrapolacji: 82749141 Prawdziwa wartość: 248709873

Błąd względny: 0.67

Otrzymana z ekstrapolacji wartość jest znacznie mniejsza niż wartość prawdziwa.

Po zaokrągleniu danych za pomocą funkcji np.around(y_vec, -6) otrzymaliśmy następujące współczynniki wielomianu:

Współczynniki z zaokrąglonych danych: [-2.94196825e+08 1.86920635e+08 5.70311111e+08 -3.38-3.56755556e+08 1.81111111e+08 1.00141270e+08 4.59571429e+07 1.32000000e+08]

Współczynniki z podpunktu c): [-3.15180235e+08 1.89175576e+08 6.06291250e+08 -3.42668456e+0-3.74614715e+08 1.82527130e+08 1.02716315e+08 4.61307656e+07

1.32164569e+08]

Współczynniki zaokrąglonego wielomianu różnią się od poprzednio wyznaczonych współczynników, różnica ta wynosi maksymalnie 7%.

Wartość z ekstrapolacji: 109000000

Prawdziwa wartość: 248709873

Błąd względny: 0.56

Otrzymana wartość jest większa od wartości otrzymanej w podpunkcie d). Błąd względny dla ekstrapolacji za pomocą wielomianu wyznaczonego z zaokrąglonych danych jest trochę mniejszy niż dla wcześniej wyznaczonego wielomianu, lecz wciąż duży.

Bibliografia

- Materiały zamieszczone na platformie Microsoft Teams w zespole MOwNiT~2025 w zakładce Materiały~z~zajęć/lab03/lab-intro03.pdf