上 海 交 通 大 学理论力学A 卷答案

(20_09_ 至 20_10 学年 第 1 学期)

1. 如图所示 O_2 - \bar{e} 为惯性基, B_1 与 B_2 为两匀质杆,长均为 l ,质量分别为 m与 2m, B_1 的质心与 B_2 的一端分别与固定 铰支座 O_1 与 O_2 铰接。初始时 B_1 静止处 在水平位置, B_2 处在垂直位置无初速地向 B_1 翻倒。在水平位置 B_2 的端点 B_2 的端点 B_3 的端点 B_4 发生碰撞,恢复因素为 E_1 (两杆的厚度不计),求:

- (1) 碰撞后 B_1 与 B_2 的角速度。
- (2) 铰链 O_2 作用于杆 B_2 的约束冲量。 (20 分)

解: (1)

(1-1)(总2分)

设 ω_{20} 为 B_2 翻倒到水平位置时的角速度(ω_{20} 也为

 B_2 碰撞前的角速度), B_1 与 B_2 的质量分别为 m_1 与 m_2 。在 B_2 从垂直位置无初速地向 B_1 翻倒过程中,机械能守恒

$$\frac{1}{2} \cdot \frac{1}{3} m_2 l^2 \omega_{20}^2 = m_2 g \cdot \frac{l}{2}$$

$$\omega_{20} = \sqrt{\frac{3g}{l}} \ (2 \, \text{\refta})$$

(1-2)(总13分)

取 B_1 为研究对象,对 O_1 点应用动量矩定理的积分形式:

$$\frac{1}{12}m_{1}l^{2}(-\omega_{1\tau}-0) = -I_{A} \cdot \frac{l}{2} \implies ml(-\omega_{1\tau}-0) = -6I_{A}$$
 (1)

取 B_2 为研究对象,对 O_2 点应用动量矩定理的积分形式:

$$\frac{1}{3}m_2l^2(\omega_{2\tau} - \omega_{20}) = -I_B \cdot l \quad \vec{\boxtimes} \quad 2ml(\omega_{2\tau} - \omega_{20}) = -3I_B \quad (2) \quad (2 \text{ }\%)$$

$$I_A = I_B \tag{3}$$

消去 I_A , I_B ,得到

$$\frac{1}{6}m_{1}l\omega_{1\tau} = \frac{1}{3}m_{2}l(-\omega_{2\tau} + \omega_{20}) \quad \vec{\boxtimes} \quad \omega_{1\tau} = 4(-\omega_{2\tau} + \omega_{20}) \quad (4)$$

由于 B_1 和 B_2 分别绕 O_1 和 O_2 作定轴转动,碰撞前点 B 的速度 v_{R0} 为:

$$v_{B0} = \omega_{20}l$$

设 $\omega_{1\tau}$ 和 $\omega_{2\tau}$ 为碰撞后 B_1 与 B_2 的角速度,碰撞后点A和点B的速度 $v_{A\tau}$ 和 $v_{B\tau}$ 为

$$v_{A\tau} = \omega_{1\tau} \frac{l}{2}, \quad v_{B\tau} = \omega_{2\tau} l$$

由恢复因素的定义:

$$\frac{-v_{B\tau} - (-v_{A\tau})}{0 - (-v_{B0})} = e \quad (1 \text{ }\%)$$

得到

$$-\omega_{2\tau}l + \omega_{1\tau}\frac{l}{2} = e\omega_{20}l, \quad \text{if } 2\omega_{2\tau} - \omega_{1\tau} = -2e\omega_{20} \quad \text{if } 2\omega_{2\tau} = -\omega_{20} + \omega_{1\tau} \quad (5) \quad (2 \text{ }\%)$$

由(4)与(5)得

$$\omega_{1\tau} = \frac{2(e+1)m_2}{(m_1 + m_2)}\omega_{20} = \frac{2(e+1)m_2}{(m_1 + m_2)}\sqrt{\frac{3g}{l}} \quad \text{if} \quad \omega_{1\tau} = 2\omega_{20} = 2\sqrt{\frac{3g}{l}} \quad (2 \text{ fb})$$

$$\omega_{2\tau} = \frac{(m_2 - em_1)}{(m_1 + m_2)} \sqrt{\frac{3g}{l}} \quad \text{if} \quad \omega_{2\tau} = \frac{1}{2} \omega_{20} = \frac{1}{2} \sqrt{\frac{3g}{l}} \quad (2 \text{ f})$$

由(1)与(3)

$$I_{B} = I_{A} = \frac{1}{6} m_{1} l \omega_{1\tau} = \frac{1}{6} m_{1} l \frac{2(e+1)m_{2}}{(m_{1}+m_{2})} \omega_{20} = \frac{(e+1)m_{1}m_{2}}{3(m_{1}+m_{2})} l \omega_{20}$$

或
$$I_B = I_A = \frac{1}{6} ml\omega_{1\tau} = \frac{1}{3} ml\omega_{20} = \frac{1}{3} m\sqrt{3gl}$$

(2) (总5分)

取 B_2 为研究对象,应用动量定理的积分形式:

$$\bar{x}$$
方向: $0 = I_{O2x}$ (1分)

$$\vec{y}$$
 方向: $2m(-v_{C2\tau}-(-v_{C20}))=I_{O2y}+I_B$ (2分)

将关系式
$$v_{C2\tau} = \frac{l}{2}\omega_{2\tau}$$
, $v_{C20} = \frac{l}{2}\omega_{20}$ 代入上式:

$$ml(-\omega_{2\tau}+\omega_{20})=I_{O2y}+I_B$$

与 (2)
$$2ml(\omega_{2\tau}-\omega_{20})=-3I_B$$
 联立:

$$I_{O2y} = \frac{1}{2}I_B = \frac{1}{6}m\sqrt{3gl}$$
 (2 分)

得到

$$I_{O2x} = 0$$
, $I_{O2y} = \frac{1}{6}m\sqrt{3gl}$

- 2. 圆盘 B_2 与匀质杆 B_1 在 B 处铰接,杆 B_1 的端 A 搁置在光滑的墙面上,圆盘 B_2 可以在粗糙的地面上无滑动滚动。圆盘 B_2 的半径为r,质量均为 m。杆 B_1 的长度为 $2\sqrt{2} r$,质量为 m。图示瞬时杆 B_1 与铅垂线夹角为 45° ,BC 水平,系统无初速开始运动。用达朗贝尔原理求:
 - (1)该瞬时杆 B_1 的角加速度和圆盘 B_2 的角加速度。
 - (2) 端 A 作用于杆 B_1 的约束力。(20 分)

解:

(A)(总分8)

以O为基点,建立惯性基 \bar{e}

取 C 为基点,建立圆盘 B_2 的连体基 $C - \bar{x}^2 \bar{v}^2$

给定点 B 加速度为:

$$\vec{a}_B = \vec{a}_{2B}^e = \vec{a}_{2tB}^e + \vec{a}_{2cB}^e + \vec{a}_{2cB}^e$$
 (0.5 分)

其中,

$$\vec{a}_{2tR}^e = \vec{a}_C$$

$$\omega_2=0\;,\;\;a_{2\omega B}^e=0$$

$$a_{2aB}^e = r\alpha_2$$
 , $\vec{a}_B = \vec{a}_C + \vec{a}_{2aB}^e$ (1) (0.5 分),

因为圆盘作纯滚动, $a_C = r\alpha_2$ 。 (1分)

取 B 为基点,建立 B_1 的连体基 $B - \bar{x}^1 \bar{y}^1$,给定点 A 加速度为:

$$\vec{a}_A = \vec{a}_{1A}^e = \vec{a}_{1A} + \vec{a}_{1\alpha A}^e + \vec{a}_{1\omega A}^e$$
 (0.5 分)

其中,

$$\vec{a}_{1tA} = \vec{a}_B$$

$$\omega_{\rm l}=0$$
 , $a_{{\rm l}\,\omega\!{\rm A}}^e=0$

$$a_{1\alpha A}^{e} = 2\sqrt{2} r \alpha_{1} \qquad (0.5 \, \text{\reftar})$$

$$\vec{a}_A = \vec{a}_B + \vec{a}_{1\alpha A}^e \qquad (2)$$
 (0.5 分)

由(1), (2), 得到:

$$\vec{a}_A = \vec{a}_C + \vec{a}_{2\alpha B}^e + \vec{a}_{1\alpha A}^e$$
 (3) (0.5 %)

由于 $a_{Ax} = 0$,上式在 \bar{x} 轴投影:

$$0 = -a_C + a_{1\alpha A}^e \cos \varphi_1 = -a_C + a_{1\alpha A}^e \frac{\sqrt{2}}{2}$$

得到
$$\alpha_2 = 2\alpha_1$$
 (1分)

给定点 D 的加速度为:

<u>A</u>卷总<u>5</u>页第<u>4</u>页

$$\vec{a}_D = \vec{a}_{1D}^e = \vec{a}_{1tD}^e + \vec{a}_{1\omega D}^e + \vec{a}_{1\omega D}^e$$
 (0.5 分)

其中,

$$\vec{a}_{1tD}^{e} = \vec{a}_{B}$$

$$\omega_1 = 0$$
, $a_{1\omega D}^e = 0$

$$a_{1\omega D}^{e} = a_{1\omega D}^{e} = \sqrt{2} r \alpha_{1}$$
 (0.5 分)

将(1)代入上式,得到:

$$\vec{a}_D = \vec{a}_B + \vec{a}_{1\alpha D}^e \tag{4}$$

将(1)代入上式,得到

$$\vec{a}_D = \vec{a}_C + \vec{a}_{2\alpha B}^e + \vec{a}_{1\alpha D}^e$$

式 (4) 在 \bar{x} 轴和 \bar{y} 轴投影:

得到

$$a_{Dx} = -a_C + a_{1aD}^e \frac{\sqrt{2}}{2} = -r\alpha_1$$
 (0.5 分)

$$a_{Dy} = a_{1aD}^e \frac{\sqrt{2}}{2} - a_{2aB}^e = -r\alpha_1$$
 (0.5 分)

(B)(总分12) 先画受力图 惯性力的表达式为:

$$F_{1x}^* = ma_{Dx} = -mr\alpha_1$$
, (1 $\frac{4}{3}$)

$$F_{1y}^* = ma_{Dy} = -mr\alpha_1 \quad (1 \, \text{\reftar})$$

$$M_1^* = \frac{1}{12} m \left(2\sqrt{2}r \right)^2 \alpha_1 = \frac{2}{3} mr^2 \alpha_1$$
 (1 分)

$$F_2^* = ma_C = mr\alpha_2 = 2mr\alpha_1$$
 (1 分)

<u>A</u>卷总<u>5</u>页第<u>5</u>页

$$M_{2}^{*} = \frac{1}{2} \cdot mr^{2} \alpha_{2} = \frac{1}{2} mr^{2} \alpha_{2} = mr^{2} \alpha_{1}$$
 (1 分)

由达朗贝尔原理

取系统为研究对象,对 E 点取矩:

$$2mgr - M_2^* - F_2^*r + F_{1x}^* 2r + F_{1y}^* 2r + M_1^* - 3rF_A = 0 \quad (1 \, \text{\%})$$
 (5)

化简
$$2mgr - mr^2\alpha_1 - 2mr^2\alpha_1 - 4mr^2\alpha_1 + \frac{2}{3}mr^2\alpha_1 - 3rF_A = 0$$

得到:
$$2mgr - \frac{19}{3}mr^2\alpha_1 - 3rF_A = 0$$
 (1分) (6)

取 B_1 为研究对象,对 B 点取矩:

$$mgr + F_{1x}^*r + F_{1y}^*r + M_1^* - 2rF_A = 0$$
 (1 分) (7)

化简
$$mgr-2mr^2\alpha_1+\frac{2}{3}mr^2\alpha_1-2rF_A=0$$

得到:
$$mgr - \frac{4}{3}mr^2\alpha_1 - 2rF_A = 0$$
 (1分) (8)

$$(7) \times 2 - (8) \times 3$$
:

$$mgr - \frac{26}{3}mr^2\alpha_1 = 0$$

得到
$$\alpha_1 = \frac{3}{26} \frac{g}{r}$$
 (1分)

$$\alpha_2 = 2\alpha_1 = \frac{3}{13} \frac{g}{r} \quad (1 \, \mathcal{L})$$

代入 (8), 得到
$$F_A = \frac{11}{26} mg$$
 (1分)

3. 图示 $A-\bar{e}$ 为惯性基, 平衡系统由杆 AB、杆 CD、板 BD、滑块 E 和杆 OE 组成, 如图所示。铰 B、

D、E 为圆柱铰,铰 O、A、C 处为固定铰支座,滑块 E 可以在板 BD 的滑槽内滑动。杆 AB、杆 CD 和杆 OE 的长度均为 l。大小为 F 的铅垂力作用于板 BD 的 B 点,力偶 M_1 、 M_2 、 M_3 分别作用于杆 OE、板 BD 和杆 CD,不计各物体的重量和摩擦。图

示位置 $\varphi = \theta = 45^{\circ}$ 。用虚位移原理求:

- (1)系统平衡时 F、 M_1 、 M_2 和 M_3 之间的关系
 - (2) 铰点 O 沿 y 方向的约束力 (20 分)

解:

(1)(总10分) 解法1:虚速度法

系统为 1 个自由度问题。(1 **分**) 定义 θ 为广义坐标。 板 BD 平动

$$\vec{v}_R = \vec{v}_E \tag{1}$$

杆 CD 定轴转动

$$v_D = -l\dot{\theta} \tag{2}$$

定义板 BD 连体基 $D - \vec{e}^2$ 。动点 E

$$\vec{v}_E = \vec{v}_{2E} = \vec{v}_{2E}^r + \vec{v}_{2tE}^e + \vec{v}_{2\omega E}^e \tag{3}$$

 $v_{2tE}^e = v_D$, 板 BD 平动, $v_{2oE}^e = 0$, 所以

$$\vec{v}_E = \vec{v}_{2E} = \vec{v}_{2E}^r + \vec{v}_D \tag{4}$$

$$\vec{x}: \quad v_E \sin \theta = v_D \sin \theta \tag{5}$$

 $v_E = v_D$

$$l\dot{\varphi} = -l\dot{\theta} \tag{6}$$

$$\delta \varphi = -\delta \theta \tag{7} \tag{2 }$$

板 BD 平动,

$$v_{By} = v_{Dy} = -v_D \cos \theta = l\dot{\theta}\cos \theta$$

$$\delta y_B = l \delta \theta \cos \theta$$
 (8) (2分)

由虚位移原理:

$$M_1 \delta \varphi + M_2 \delta \psi + M_3 \delta \theta - F \delta y_B = 0$$
 (9) (2 分)

由于板 BD 平动, $\psi \equiv 0$

$$\delta \psi \equiv 0$$

将(7)和(8)代入(9):

$$(-M_1 + M_3 - Fl\cos\theta)\delta\theta = 0$$

对于任意 $\delta\theta$ 上式均成立,有

将 $\varphi = \theta = 45^{\circ}$ 代入,平衡时F、 M_1 、 M_2 和 M_3 之间的关系为:

$$-M_1 + M_3 - \frac{\sqrt{2}}{2}Fl = 0$$
 (1 分)

解法 2: 虚位移法 (总 10 分)

系统有一个自由度 (1分)

定义 6 为广义坐标。

如图1定义虚位移。

由虚位移原理:

$$M_1 \delta \varphi + M_2 \delta \psi + M_3 \delta \theta - F \delta y_B = 0$$
 (1) (2 \$\frac{1}{2}\$)

由于板 BD 平动, $\psi = 0$

$$\delta \psi \equiv 0 \tag{2} \tag{1 }$$

由几何约束关系约束

$$l\cos\theta + l\cos\varphi = b \tag{3}$$

$$y_B = -c + l\sin\theta \tag{4}$$

(3) 和(4) 两边求等时变分,得到:

 $-l\sin\theta\delta\theta = l\sin\varphi\delta\varphi \ ,$

$$\delta\varphi = -\frac{\sin\theta\delta\theta}{\sin\varphi} \tag{5}$$

$$\delta y_B = l \cos \theta \delta \theta$$
 (6) (2 $\frac{1}{2}$)

将(2) 、(5)和(6)代入(1):

$$\left(-M_1 \frac{\sin \theta}{\sin \varphi} + M_3 - Fl \cos \theta\right) \delta\theta = 0$$

对于任意 $\delta\theta$ 上式均成立,有

$$-M_1 \frac{\sin \theta}{\sin \varphi} + M_3 - Fl \cos \theta = 0 \, (1 \, \mathcal{L})$$

将 $\varphi = \theta = 45^{\circ}$ 代入,平衡时F、 M_1 、 M_2 和 M_3 之间的关系为:

$$-M_1 + M_3 - \frac{\sqrt{2}}{2}Fl = 0$$
 (1 %)

(2) 解法1(总10分)

释放铰点 C 沿 x 方向的约束,施加 x 方向的约束力 \vec{F}_{ox} 。如图 2 所示。系统为 2 个自由度问题。定义

广义坐标 x_0 , φ

$$\Leftrightarrow \delta \varphi = 0$$
, $\delta x_0 \neq 0$

杆OE平动

$$v_E = v_O = \dot{x}_O \tag{1}$$

杆 CD 定轴转动

$$v_{D} = -l\dot{\theta} \tag{2}$$

定义板 BD 连体基 $D - \vec{e}^2$ 。动点 E

$$\vec{v}_E = \vec{v}_{2E} = \vec{v}_{2E}^r + \vec{v}_{2tE}^e + \vec{v}_{2\omega E}^e$$
 (3)

 $v_{2tE}^e = v_D$,板 BD 平动, $v_{2\omega E}^e = 0$,所以

$$\vec{v}_E = \vec{v}_{2E} = \vec{v}_{2E}^r + \vec{v}_D \tag{4}$$

$$\vec{x}: \quad v_E = v_D \sin \theta \tag{5}$$

$$\dot{x}_{o} = -l\dot{\theta}\sin\theta\tag{6}$$

$$\delta x_0 = -l\delta\theta\sin\theta \tag{7}$$

板 BD 平动,

$$v_{By} = v_{Dy} = -v_D \cos \theta$$

将式 (5) 代入,

$$v_{By} = -\frac{v_E}{\tan \theta}$$

(8)

由式 (1),

$$\dot{y}_{By} = -\frac{\dot{x}_O}{\tan \theta}$$

$$\delta y_B = -\delta x_O \cot \theta$$

(9) (2分)

虚位移原理

$$M_3 \delta \theta - F \delta y_B + F_{Ox} \delta x_O = 0$$

将式 (7) (9) 代入

$$\left(\frac{-M_3}{l\sin\theta} + \frac{F}{\tan\theta} + F_{Ox}\right) \delta x_O = 0$$
 (11) (13)

$$-\frac{M_3}{l\sin\theta} + F\frac{1}{\tan\theta} + F_{Ox} = 0$$

$$F_{Ox} = \frac{M_3}{l\sin\theta} - \frac{F}{\tan\theta} = \frac{\sqrt{2}M_3}{l} - F$$

(13) (1分)

或者

$$rac{1}{2} \delta \theta = 0$$
, $\delta x_0 \neq 0$

S 为杆 OE 的速度瞬心

$$v_o = l \sin \varphi \omega_1, \ v_o dt = l \sin \varphi \omega_1 dt$$

$$\mathrm{d}x_O = -v_O \mathrm{d}t = -l\sin\varphi\omega_1 \mathrm{d}t$$

$$\delta x_O = -l\sin\varphi\delta\varphi$$
, $\delta\varphi = -\frac{\delta x_O}{l\sin\varphi}$

虚位移原理

$$M_1 \delta \varphi + F_{Ox} \delta x_O = 0$$
, \mathbb{P}

$$\left(-\frac{M_1}{l\sin\varphi} + F_{Ox}\right)\delta x_O = 0$$

$$F_{Ox} = \frac{M_1}{l\sin\varphi} = \frac{\sqrt{2}}{l}M_1$$

令 $\delta \varphi = 0$,取 θ 为广义坐标,由于杆 OE 和板 BD 平动, M_1 和 M_2 不做功。由虚位移原理:

$$F_{Ox}\delta x_O + M_3\delta\theta - F\delta y_B = 0$$
 (6) (2 $\frac{1}{2}$)

由关系式:

$$x_D = -b + l\cos\theta$$
, $y_B = -c + l\sin\theta$

$$\delta x_D = -l \sin \theta \delta \theta$$
, $\delta y_B = l \cos \theta \delta \theta$ (2 $\%$)

$$x_{Q} = x_{D} + l\cos\varphi$$
, $\pm \delta\varphi = 0$

$$\delta x_O = \delta x_D = -l\sin\theta\delta\theta \quad (2 \, \text{$\frac{1}{2}$})$$

代入(6),得到:

$$(-F_{0x}l\sin\theta + M_3 - Fl\cos\theta)\delta\theta = 0$$

对于任意 $\delta\theta$ 上式均成立,有

$$-F_{Ox}l\sin\theta + M_3 - Fl\cos\theta = 0$$

将
$$\varphi = \theta = 45^{\circ}$$
代入,得到:

$$F_{Ox} = \frac{M_3}{l\sin\theta} - F\cot\theta = \frac{\sqrt{2}M_3}{l} - F \quad (2 \, \text{fb})$$

或者

$$x_0 = -b + l\cos\theta + l\cos\varphi$$

$$\delta x_O = -l\sin\varphi\delta\varphi$$
, $\delta\varphi = -\frac{\delta x_O}{l\sin\varphi}$

由虚位移原理:

$$M_1 \delta \varphi + F_{Ox} \delta x_O = 0$$

$$\left(-\frac{M_1}{l\sin\varphi} + F_{Ox}\right)\delta x_O = 0, \quad F_{Ox} = \frac{M_1}{l\sin\varphi} = \frac{\sqrt{2}}{l}M_1$$

4. 图示一匀质圆环在粗糙的水平面上作纯滚动,匀质杆 AB 可在固结于圆环的圆弧槽内无摩擦地滑动。设圆环和杆 AB 的质量均为 m,圆环的半径为 r,杆 AB 的长度为 $\sqrt{3}$ r。

- (1) 写出系统的动能和势能。
- (2) 用第二类拉格朗日方程建立系统的二阶运动微分方程组。
- (3) 如果初始时刻,杆 AB 与水平夹角 θ 为 30 度,系统从静止开始运动,系统写出系统的初积分。(20 分)

解:

(1) (总8分)

C与AB距离为

$$CC_2 = \sqrt{r^2 - \left(\frac{\sqrt{3}r}{2}\right)^2} = \frac{r}{2}$$

建立惯性基 $O-\bar{xy}$,圆环连体基 $C-\bar{x}^1\bar{y}^1$,杆AB连体基 $C_2-\bar{x}^2\bar{y}^2$

系统的自由度为 2 (1分)

设独立广义坐标为 $\mathbf{q} = \begin{bmatrix} x_1 & \varphi_2 \end{bmatrix}^T$

圆环无滑动滚动

$$\dot{\varphi}_1 = -\frac{\dot{x}_1}{r} \quad (1 \ \text{\reftar})$$

圆环的动能为:

$$T_1 = \frac{1}{2}m\dot{x_1}^2 + \frac{1}{2}mr^2\dot{\phi_1}^2 = m\dot{x_1}^2$$
 (1 分)

杆 AB 质心的速度为:

$$x_{C2} = x_1 + \frac{r}{2}\sin\varphi_2 \quad (1)$$

$$y_{C2} = -\frac{r}{2}\cos\varphi_2 \quad (2)$$

对(1)和(2)求导,得到:

$$\dot{x}_{C2} = \dot{x}_1 + \frac{r}{2}\cos\varphi_2\dot{\varphi}_2$$
 (3)

$$\dot{y}_{C2} = \frac{r}{2}\sin\varphi_2\dot{\varphi}_2 \qquad (4)$$

$$\dot{x}_{C2}^{2} + \dot{y}_{C2}^{2} = \dot{x}_{1}^{2} + \frac{r^{2}}{4}\dot{\varphi}_{2}^{2} + r\dot{\varphi}_{2}\dot{x}_{1}\cos\varphi_{2}$$

或者

以 C 为基点,建立平动基 \bar{e}_1 ,如图 b 所示。

$$\vec{v}_{C2} = \vec{v}_{1tC2}^{e} + \vec{v}_{1C2}^{r}$$

$$v_{1tC2}^e = v_C = \dot{x}_1, \quad v_{1C2}^r = \frac{r}{2}\dot{\phi}_2$$

$$v_{C2}^{2} = \dot{x}_{1}^{2} + \left(\frac{r}{2}\dot{\varphi}_{2}\right)^{2} + 2\dot{x}_{1} \cdot \frac{r}{2}\dot{\varphi}_{2}\cos\varphi_{2} = \dot{x}_{1}^{2} + \frac{r^{2}}{4}\dot{\varphi}_{2}^{2} + r\dot{\varphi}_{2}\dot{x}_{1}\cos\varphi_{2}$$

杆 AB 的动能为:

$$T_{2} = \frac{1}{2}m(\dot{x}_{C2}^{2} + \dot{y}_{C2}^{2}) + \frac{1}{2} \cdot \frac{1}{12}m(\sqrt{3}r)^{2}\dot{\phi}_{2}^{2}$$

$$= \frac{1}{2}m(\dot{x}_{1}^{2} + \frac{1}{4}r^{2}\dot{\phi}_{2}^{2} + r\dot{\phi}_{2}\dot{x}_{1}\cos\phi_{2}) + \frac{1}{8}mr^{2}\dot{\phi}_{2}^{2} \qquad (3 \%)$$

$$= \frac{1}{2}m\dot{x}_{1}^{2} + \frac{1}{4}mr^{2}\dot{\phi}_{2}^{2} + \frac{1}{2}mr\dot{\phi}_{2}\dot{x}_{1}\cos\phi_{2}$$

系统的动能为:

$$T = \frac{3}{2}m\dot{x}_1^2 + \frac{1}{4}mr^2\dot{\varphi}_2^2 + \frac{1}{2}mr\dot{\varphi}_2\dot{x}_1\cos\varphi_2 \tag{1 }$$

系统的势能为:

$$V = -\frac{1}{2} mgr \cos \varphi_2 \tag{1 \%}$$

(2) (总4分)

拉格朗日函数为:

$$L = T - V = \frac{3}{2}m\dot{x}_1^2 + \frac{1}{4}mr^2\dot{\varphi}_2^2 + \frac{1}{2}mr\dot{\varphi}_2\dot{x}_1\cos\varphi_2 + \frac{1}{2}mgr\cos\varphi_2$$

$$\frac{\partial L}{\partial \dot{x}_1} = 3m\dot{x}_1 + \frac{1}{2}mr\dot{\varphi}_2\cos\varphi_2, \quad \frac{\partial L}{\partial x_1} = 0$$

$$\frac{\partial L}{\partial \dot{\varphi}_2} = \frac{1}{2} m r^2 \dot{\varphi}_2 + \frac{1}{2} m r \dot{x}_1 \cos \varphi_2 , \quad \frac{\partial L}{\partial \varphi_2} = -\frac{1}{2} m r \dot{\varphi}_2 \dot{x}_1 \sin \varphi_2 - \frac{1}{2} m g r \sin \varphi_2$$

第二类拉格朗日方程为:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_1} \right) - \frac{\partial L}{\partial x_1} = 0 , \quad (1 \, \cancel{2}) \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}_2} \right) - \frac{\partial L}{\partial \varphi_2} = 0 \quad (1 \, \cancel{2})$$

即

$$3m\ddot{x}_{1} + \frac{1}{2}mr\ddot{\varphi}_{2}\cos\varphi_{1} - \frac{1}{2}mr\dot{\varphi}_{2}^{2}\sin\varphi_{2} = 0 \quad (1 \, \text{分})$$
$$\frac{1}{2}mr^{2}\ddot{\varphi}_{2} + \frac{1}{2}mr\ddot{x}_{1}\cos\varphi_{2} + \frac{1}{2}mgr\sin\varphi_{2} = 0 \quad (1 \, \text{分})$$

(3) (总6分)

由于L不显含广义坐标 x_1 ,系统的循环积分为:

$$\frac{\partial L}{\partial \dot{x}_1} = 3m\dot{x}_1 + \frac{1}{2}mr\dot{\varphi}_2\cos\varphi_2 = C_1 \quad (2 \, \text{\refthat})$$

由于L不显含时间t, 且是定常约束, $T_2=T$, $T_0=0$, 系统的能量积分为:

$$T + V = \frac{3}{2}m\dot{x}_1^2 + \frac{1}{4}mr^2\dot{\varphi}_2^2 + \frac{1}{2}mr\dot{\varphi}_2\dot{x}_1\cos\varphi_2 - \frac{1}{2}mgr\cos\varphi_2 = C_2 \quad (2 \text{ } \text{\mathcal{T}})$$

初始条件:

$$x_1 = 0, \dot{x}_1 = 0;$$

$$\varphi_2 = \frac{\pi}{6}, \dot{\varphi}_2 = 0$$

$$C_1 = 0$$
 (1)

$$C_2 = -\frac{1}{2} mgr \cos \frac{\pi}{6} = -\frac{\sqrt{3}}{4} mgr$$
 (1)

$$\frac{3}{2}m\dot{x}_{1}^{2} + \frac{1}{4}mr^{2}\dot{\varphi}_{2}^{2} + \frac{1}{2}mr\dot{\varphi}_{2}\dot{x}_{1}\cos\varphi_{2} - \frac{1}{2}mgr\cos\varphi_{2} = -\frac{\sqrt{3}}{4}mgr \quad (1 \, \%)$$

若设独立广义坐标为 $\mathbf{q} = \begin{bmatrix} \varphi_1 & \varphi_2 \end{bmatrix}^T$

自由度为 2 (1分)

圆环无滑动滚动

$$\dot{x}_1 = -r\dot{\varphi}_1$$

圆环的动能为:

$$T_1 = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}mr^2\dot{\phi}_1^2 = mr^2\dot{\phi}_1^2$$
 (1 分)

杆 AB 质心的速度为:

$$x_{C2} = x_{10} - r\varphi_1 + \frac{r}{2}\sin\varphi_2 \quad (1)$$

$$y_{C2} = -\frac{r}{2}\cos\varphi_2 \quad (2)$$

对(1)和(2)求导,得到:

$$\dot{x}_{C2} = -r\dot{\phi}_1 + \frac{r}{2}\cos\varphi_2\dot{\phi}_2 \quad (3)$$

$$\dot{y}_{C2} = \frac{r}{2} \sin \varphi_2 \dot{\varphi}_2 \qquad (4)$$

$$\dot{x}_{C2}^2 + \dot{y}_{C2}^2 = r^2 \dot{\varphi}_1^2 + \frac{r^2}{4} \dot{\varphi}_2^2 - r^2 \dot{\varphi}_1 \dot{\varphi}_2 \cos \varphi_2$$

杆AB的动能为:

$$\begin{split} T_2 &= \frac{1}{2} m \left(\dot{x}_{C2}^2 + \dot{y}_{C2}^2 \right) + \frac{1}{2} \cdot \frac{1}{12} m \left(\sqrt{3} \, r \right)^2 \dot{\phi}_2^2 \\ &= \frac{1}{2} m \left(r^2 \dot{\phi}_1^2 + \frac{1}{4} r^2 \dot{\phi}_2^2 - r^2 \dot{\phi}_1 \dot{\phi}_2 \cos \phi_2 \right) + \frac{1}{8} m r^2 \dot{\phi}_2^2 \\ &= \frac{1}{2} m r^2 \dot{\phi}_1^2 + \frac{1}{4} m r^2 \dot{\phi}_2^2 - \frac{1}{2} m r^2 \dot{\phi}_1 \dot{\phi}_2 \cos \phi_2 \end{split}$$

 x_1

(2分)

系统的动能为:

$$T = \frac{3}{2}mr^2\dot{\varphi}_1^2 + \frac{1}{4}mr^2\dot{\varphi}_2^2 - \frac{1}{2}mr^2\dot{\varphi}_1\dot{\varphi}_2\cos\varphi_2 \tag{1 }$$

系统的势能为:

$$V = -\frac{1}{2} mgr \cos \varphi_2 \tag{1 \, \text{β}}$$

(4) (总6分)

拉格朗日函数为:

$$L = T - V = \frac{3}{2}mr^2\dot{\varphi}_1^2 + \frac{1}{4}mr^2\dot{\varphi}_2^2 - \frac{1}{2}mr^2\dot{\varphi}_1\dot{\varphi}_2\cos\varphi_2 + \frac{1}{2}mgr\cos\varphi_2$$

$$\frac{\partial L}{\partial \dot{\varphi}_1} = 3mr\dot{\varphi}_1 - \frac{1}{2}mr^2\dot{\varphi}_2\cos\varphi_2, \quad \frac{\partial L}{\partial \varphi_1} = 0$$

$$\frac{\partial L}{\partial \dot{\varphi}_2} = \frac{1}{2} m r^2 \dot{\varphi}_2 - \frac{1}{2} m r^2 \dot{\varphi}_1 \cos \varphi_2 , \quad \frac{\partial L}{\partial \varphi_2} = \frac{1}{2} m r^2 \dot{\varphi}_1 \dot{\varphi}_2 \sin \varphi_2 - \frac{1}{2} m g r \sin \varphi_2$$

第二类拉格朗日方程为:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}_1} \right) - \frac{\partial L}{\partial \varphi_1} = 0 , \quad (1 \text{ } \text{$\frac{1}{2}$}) \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}_2} \right) - \frac{\partial L}{\partial \varphi_2} = 0 \quad (1 \text{ } \text{$\frac{1}{2}$})$$

即

$$3mr\ddot{\varphi}_{1} - \frac{1}{2}mr\ddot{\varphi}_{2}\cos\varphi_{1} + \frac{1}{2}mr\dot{\varphi}_{2}^{2}\sin\varphi_{2} = 0$$
 (1 分)

$$\frac{1}{2}mr^2\ddot{\varphi}_2 - \frac{1}{2}mr^2\ddot{\varphi}_1\cos{\varphi}_2 + \frac{1}{2}mgr\sin{\varphi}_2 = 0$$
 (1 分)

(5) (总6分)

由于L不显含广义坐标 φ_1 ,系统的循环积分为:

$$\frac{\partial L}{\partial \dot{\varphi}_1} = 3mr\dot{\varphi}_1 - \frac{1}{2}mr^2\dot{\varphi}_2\cos\varphi_2 = C_1 \quad (2 \, \mathcal{L})$$

由于L不显含时间t,且是定常约束, $T_2=T$, $T_0=0$,系统的能量积分为:

初始条件:

$$\varphi_1 = 0, \dot{\varphi}_1 = 0;$$

$$\varphi_2 = \frac{\pi}{6}, \dot{\varphi}_2 = 0$$

$$C_1 = 0$$
 (1)

$$C_2 = -\frac{1}{2} mgr \cos \frac{\pi}{6} = -\frac{\sqrt{3}}{4} mgr$$
 (1)

$$3mr\dot{\varphi}_1 - \frac{1}{2}mr^2\dot{\varphi}_2\cos\varphi_2 = 0 \quad (1 \, \mathcal{L})$$

$$\frac{3}{2}mr^{2}\dot{\varphi}_{1}^{2} + \frac{1}{4}mr^{2}\dot{\varphi}_{2}^{2} - \frac{1}{2}mr^{2}\dot{\varphi}_{1}\dot{\varphi}_{2}\cos\varphi_{2} - \frac{1}{2}mgr\cos\varphi_{2} = -\frac{\sqrt{3}}{4}mgr$$
(1 \(\frac{\frac{1}}{2}\))

5. 如图动力学系统由滑块 B_1 、滑块 B_2 和杆 B_3 组成,滑块 B_2 和杆 B_3 在 C_2 处铰接滑块 B_1 和滑块 B_2 可以在固定斜面上滑动。不计摩擦。斜面的倾角为 α 。

设滑块 B_1 和滑块 B_2 的质量均为 2m,关于质心的转动 惯量均为 J。杆 B_3 的长度为 2l,质量为 m。水平力 F 作用于杆 B_3 的 D 点。

滑块间有线弹簧, 刚度为 k_1 , 原长为 l_0 。 C_2 处在滑块

 B_2 和杆 B_3 间有一卷簧,卷簧刚度为 k_2 ,当杆的连体基的基矢量 \bar{x}^3 铅垂向下时,卷簧无力偶。 以系统的位形坐标写出封闭的带拉格朗日乘子的第一类拉格朗日方程。(20 分)

解:

首先建立惯性基度

分别在四构件的质心建立连体基

$$\vec{e}^{i}$$
 ($i = 1, 2, 3$)

系统的位形坐标为

$$\mathbf{q} = \begin{pmatrix} \mathbf{q}_1^T & \mathbf{q}_2^T & \mathbf{q}_3^T \end{pmatrix}^T$$
$$\mathbf{q}_i = \begin{pmatrix} x_i & y_i & \varphi_i \end{pmatrix}^T (i = 1, 2, 3)$$

(1分)

系统的约束方程为:

$$\boldsymbol{\Phi} = \begin{pmatrix} x_1 \\ \varphi_1 \\ x_2 \\ \varphi_2 \\ x_3 - l\cos\varphi_3 - x_2 \\ y_3 - l\sin\varphi_3 - y_2 \end{pmatrix}$$
 (2 $\boldsymbol{\mathcal{D}}$)

雅可比阵和加速度约束方程的右项为:

$$\gamma = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
-l\cos\varphi_3\dot{\varphi}_3^2 \\
-l\sin\varphi_3\dot{\varphi}_3^2
\end{pmatrix} (2 \%)$$

增广主动力阵为:

$$\mathbf{Z} = diag(\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}), \quad \mathbf{Z}_{1} = \mathbf{Z}_{2} = \begin{pmatrix} 2m & 0 & 0 \\ 0 & 2m & 0 \\ 0 & 0 & J \end{pmatrix}, \quad \mathbf{Z}_{3} = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & ml^{2}/3 \end{pmatrix} \quad (2 \%)$$

重力对主动力阵的贡献:

$$\hat{\mathbf{F}}_{1} = \begin{pmatrix} 2mg\cos\alpha \\ 2mg\sin\alpha \\ 0 \\ 2mg\cos\alpha \\ 2mg\sin\alpha \\ 0 \\ 2mg\cos\alpha \\ 2mg\sin\alpha \\ 0 \end{pmatrix} \tag{1 } \mathcal{H})$$

弹簧力的分析

$$F_1 = F_1' = k_1(y_2 - y_1 - l_0)$$
 (1分)

 F_1' 作用在 B_1 上, F_1 作用在 B_2 上。

$$\hat{\mathbf{F}}_{2} = \begin{pmatrix} 0 \\ k_{1}(y_{2} - y_{1} - l_{0}) \\ 0 \\ 0 \\ -k_{1}(y_{2} - y_{1} - l_{0}) \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (1 $\frac{2}{3}$)

卷簧力偶的分析:

卷簧力偶为:
$$M = M' = k_2(\varphi_3 - \varphi_2 - \varphi_0)$$
 (1分)

M'作用在 B_2 上,M作用在 B_3 上。

当杆的连体基的基矢量 \bar{x}^3 铅垂向下时, $\varphi_3-\varphi_2=\alpha$,卷簧无力偶, $\varphi_0=\alpha$

卷簧力偶为:
$$M = M' = k_2(\varphi_3 - \varphi_2 - \varphi_0) = k_2(\varphi_3 - \varphi_2 - \alpha)$$
 (1分)

$$\hat{\mathbf{F}}_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ k_{2}(\varphi_{3} - \varphi_{2} - \alpha) \\ 0 \\ 0 \\ -k_{2}(\varphi_{3} - \varphi_{2} - \alpha) \end{pmatrix}$$
 (1 $\frac{2}{3}$)

水平力的分析

水平力 F 作用在 B_3 上,该力在 \vec{e} 上的坐标阵为 $F = \begin{bmatrix} F_x & F_y \end{bmatrix}^T = \begin{bmatrix} -F\sin\alpha & F\cos\alpha \end{bmatrix}^T$

该力在 \vec{e}^3 上的坐标阵为

$$\mathbf{F}' = \begin{bmatrix} F_x' \\ F_y' \end{bmatrix} = \mathbf{A}_3^T \mathbf{F} = \begin{bmatrix} \cos \varphi_3 & \sin \varphi_3 \\ -\sin \varphi_3 & \cos \varphi_3 \end{bmatrix} \begin{bmatrix} -F \sin \alpha \\ F \cos \alpha \end{bmatrix} = \begin{bmatrix} F \sin(\varphi_3 - \alpha) \\ F \cos(\varphi_3 - \alpha) \end{bmatrix}$$
(1 $\frac{1}{2}$)

作用点 D 在 \vec{e}^3 上的坐标阵为 $\rho'_D = \begin{bmatrix} l & 0 \end{bmatrix}^T$

该力对 C_3 的矩为

$$M_F = Fl\cos(\varphi_3 - \alpha)$$
 (1分)

$$\hat{F}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -F\sin\alpha \\ F\cos\alpha \\ Fl\cos(\varphi_3 - \alpha) \end{pmatrix}$$

增广主动力阵为:

$$\hat{F} = \begin{pmatrix} 2mg\cos\alpha \\ 2mg\sin\alpha + k_1(y_2 - y_1 - l_0) \\ 0 \\ 2mg\cos\alpha \\ 2mg\sin\alpha - k_1(y_2 - y_1 - l_0) \\ k_2(\varphi_3 - \varphi_2 - \alpha) \\ mg\cos\alpha - F\sin\alpha \\ mg\sin\alpha + F\cos\alpha \\ -k_2(\varphi_3 - \varphi_2 - \alpha) + Fl\cos(\varphi_3 - \alpha) \end{pmatrix}$$

$$\boldsymbol{\lambda} = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 & \lambda_6 \end{pmatrix}^T \quad (1 \, \boldsymbol{\%})$$

封闭的带拉格朗日乘子的第一类拉格朗日方程为:

$$\begin{bmatrix} \mathbf{Z} & \mathbf{\Phi}_{q}^{T} \\ \mathbf{\Phi}_{q} & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \lambda \end{bmatrix} = \begin{bmatrix} \hat{F} \\ \gamma \end{bmatrix} (2 \, \%)$$