Definition and First Properties of Varieties

1 Varieties

Definition 1. A variety over an algebraically closed field k is an integral separated scheme of finite type over Spec k.

Yang: Suppose that \mathbf{k} is not algebraically closed, let $\mathbf{k'}$ be an algebraic extension of \mathbf{k} . What is the relation between $X, X_{\mathbf{k'}}, X(\mathbf{k'})$ and $X_{\mathbf{k'}}(\mathbf{k'})$?

2 Geometric properties

3 Points in varieties

Proposition 2. Let \mathcal{K} be a field and ℓ an extension of \mathcal{K} . Let X be a variety over \mathcal{K} . Then we have the following:

- (a) there is a natural bijection between $X(\ell)$ and $X_{\ell}(\ell)$;
- (b) let m/ℓ be an extension, then there is a natural inclusion $X(\ell) \subseteq X(m)$;
- (c) suppose that $X = \operatorname{Spec} \mathcal{k}[T_1, ..., T_n]/I$ is an affine variety, then there is a natural bijection between $X(\ell)$ and the set $\{(x_1, ..., x_n) \in \ell^n | f(x_1, ..., x_n) = 0, \forall f \in I\}$.

Date: August 30, 2025, Author: Tianle Yang, My Homepage

