Tabela Hash

Victor Hugo, Maria Julia, Francisco Ochoa

¹PUCPR

Resumo. Uma tabela hash, também conhecida como hash table ou hash map, é uma estrutura de dados fundamental na estrutura de dados que oferece uma maneira eficiente de armazenar e recuperar valores associados a chaves. Ela se baseia no princípio de mapeamento de chaves para índices usando uma função de hash, que permite um acesso rápido aos dados armazenados. Neste trabalho, abordaremos os conceitos essenciais relacionados a tabelas hash, incluindo sua estrutura, operações, vantagens e desafios.

1. Vantagens

Acesso Eficiente: As tabelas hash oferecem um tempo médio de acesso constante, tornando-as ideais para operações de busca e recuperação de dados.

Flexibilidade: Elas são amplamente utilizadas em uma variedade de aplicações, incluindo dicionários, conjuntos, caches e muito mais.

Desempenho Rápido: As tabelas hash podem proporcionar um desempenho excepcional na maioria das operações.

2. Desvantagens

Colisões: Colisões ocorrem quando duas chaves resultam no mesmo índice. Estratégias como listas encadeadas, árvores ou rehashing são usadas para lidar com colisões.

Função de Hash Eficiente: A escolha de uma função de hash eficaz é crucial para evitar colisões e garantir a distribuição uniforme das chaves.

3. Tabelas

Hash Resto						
Tamanho	Inserção	Busca	Colisões			
10	0.0071	9.6136	11			
100	0.0396	0.2237	621			
500	1.8521	1.0108	3744			
10000	7.0463	0.3177	494758			
50000	118.288	0.3199	8475833			
Média						
	25.44662	11,4857	1.794.993			

Hash Multiplicação						
Tamanho	Inserção	Busca	Colisões			
10	0.0126	11.3274	13			
100	0.0869	0.1726	435			
500	0.882	0.575	9374			
10000	8.1711	1.3377	61936			
50000	104.7158	1.1955	9766708			
Média						
•	22,77368	14,6082	1.967.693			

Hash Dobramento						
Tamanho	Inserção	Busca	Colisões			
10	0.0086	10.8747	11			
100	0.2015	0.3237	378			
500	0.9916	0.4358	4692			
10000	446.097	0.4817	38261984			
50000	12860.6885	1.5514	1183118419			
Média						
•	25.721.466	13,6673	244.277.096			

4. Conclusão

As tabelas hash são essenciais para qualquer programador, permitindo o desenvolvimento de soluções eficazes para muitos problemas atualmente. Se utilizadas com cuidado e consideração, as tabelas hash podem ter um ótimo desempenho, podendo ser muito útil em estrutura de dados.