🌟 Tamizhan Skills SE RISE Internship – Machine Learning & AI

Project 3: Loan Eligibility Predictor Using Logistic Regression & Random Forest

■ Name:Harshita

* Course: B.Tech CSE (AI & ML), 2023-2027

Project Summary:

> Objective:

To build a classification model that predicts whether a person is eligible for a loan based on personal and financial information.

>Dataset Description:

Column	Description
Age	Age of applicant
Income	Monthly income
Education	Graduate or Not Graduate
Credit_Score	Numeric credit score
Employment_Status	Employed / Self-employed /Unemployed
Loan_Status Target	Variable: (Approved), N (Rejected)

Dataset used: loan_data.csv

✓ Total entries: 10✓ No missing values

> Tools & Libraries Used:

Python

Google Colab

Pandas, Numpy, Matplotlib, Seaborn Scikit-learn (for model building & evaluation)

Code Used :

Import Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_curve

Load Dataset

df = pd.read_csv('/content/loan_data.csv')
df.head()

	Age	Income	Education	Credit_Score	Employment_Status	Loan_Status
0	25	50000	Graduate	700	Employed	Υ
1	35	60000	Not Graduate	650	Self-employed	N
2	45	80000	Graduate	800	Employed	Υ
3	29	45000	Graduate	600	Unemployed	N
4	62	90000	Not Graduate	750	Employed	Υ

Data Preprocessing

```
le = LabelEncoder()
df['Education'] = le.fit_transform(df['Education'])
df['Employment_Status'] = le.fit_transform(df['Employment_Status'])
df['Loan_Status'] = df['Loan_Status'].map({'Y': 1, 'N': 0})
df.head()
```

•••		Age	Income	Education	Credit_Score	Employment_Status	Loan_Status
	0	25	50000	0	700	0	1
	1	35	60000	1	650	1	0
	2	45	80000	0	800	0	1
	3	29	45000	0	600	2	0
	4	62	90000	1	750	0	1

Train-Test Split

```
X = df.drop('Loan_Status', axis=1)
y = df['Loan_Status']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Logistic Regression

```
Ir = LogisticRegression()
Ir.fit(X_train, y_train)
y_pred_Ir = Ir.predict(X_test)
```

Random Forest

```
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
```

- Model Evaluation
- 1) Logistic Regression Evaluation
 - a) Confusion Matrix

sns.heatmap(confusion_matrix(y_test, y_pred_lr), annot=True, fmt='d')

b) Classification Report

print(classification_report(y_test, y_pred_lr))

 Logistic Regr		ification	Report:		
	precision	recall	f1-score	support	
Ø	0.00	0.00	0.00	1	
1	0.50	1.00	0.67	1	
accuracy			0.50	2	
macro avg	0.25	0.50	0.33	2	
weighted avg	0.25	0.50	0.33	2	

c) ROC Curve

fpr_Ir, tpr_Ir, _ = roc_curve(y_test, Ir.predict_proba(X_test)[:,1])
plt.plot(fpr_Ir, tpr_Ir, label='Logistic Regression')

2) Random Forest Evaluation

a) Confusion Matrix

sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, fmt='d')

- b) Classification Report
- b) Classification Report

print(classification_report(y_test, y_pred_rf))

·· Random Forest	Classificat precision		t: f1-score	support
•	0.00	0.00	0.00	1
1	0.50	1.00	0.67	1
accuracy			0.50	2
macro avg	0.25	0.50	0.33	2
weighted avg	0.25	0.50	0.33	2

c) ROC Curve

```
fpr_rf, tpr_rf, _ = roc_curve(y_test, rf.predict_proba(X_test)[:,1])
plt.plot(fpr_rf, tpr_rf, label='Random Forest')
plt.show()
```


3) Combined ROC Curve

```
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve Comparison")
plt.legend()
plt.grid(True)
```


>Result Summary:

Model Performance Accuracy (Visual)

Logistic Regression Simple, fast Moderate

Random Forest More accurate High

✓ Best Model: Random Forest

Best use-case: Fintech mock apps or fast eligibility checks