Kompleksna števila

Rešitve

Peter Andolšek

Oktober 2024

1. Imaginarna enota

Naloga 1.1

$$i^{2024} = i^{4.506} = (i^4)^{506} = 1^{506} = 1$$

2. Kompleksna števila

2.1 Algebrska oblika

Naloga 2.1 Kvadratna enačba oblike $ax^2 + bx + c = 0$ ima dve rešitvi oblike

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,.$$

V našem primeru torej:

$$x_{1,2} = \frac{+4 \pm \sqrt{16 - 4 \cdot 8}}{2} = 2 \pm \sqrt{-16} = 2 \pm 4i$$
.

Dve rešitvi sta torej

$$x_1 = 2 - 4i$$
 in $x_2 = 2 + 4i$.

Naloga 2.2

(a)
$$(4-5i)(12+11i) = 103-16i$$

(b)
$$(-3-i)-(6-7i)=-9+6i$$

(c)
$$8i(10+2i) = -16+80i$$

(c)
$$8i(10+2i) = -16+80i$$

(d) $\frac{7-i}{2+10i} = \frac{1}{26} - \frac{9}{13}i$

Naloga 2.3

- (a) z + w = 1
- (b) w z = -3 + 6i
- (c) wz = 7 + 9i

(d)
$$w/z = -\frac{11}{13} + \frac{3}{13}i$$

(e)
$$\operatorname{Im}(z/w) + z = \frac{17}{10} - 3i$$

Naloga 2.4 V kompleksni ravnini z_1 predstavlja točko (-1,0) in z_2 predstavlja točko (2,2). Izraz $|w-z_1|$ predstavlja oddaljenost točke w od točke z_1 , analogno velja tudi za z_2 . Zanima nas torej, kolikšna je lahko minimalna vsota razdalj od neke točke w do z_1 in z_2 . Iz geometrije vemo, da bo minimalna za tak w, ki se nahaja na zveznici med z_1 in z_2 , torej je minimizirana vrednost izraza enaka $|z_1 - z_2| = \sqrt{13}$.

2.2 Kompleksni konjugat

Naloga 2.5 Naj bo $z = a_1 + ib_1$ in $w = a_2 + ib_2$.

(a)
$$(z^*)^* = ((a_1 + ib_1)^*)^* = (a_1 - ib_1)^* = a_1 + ib_1 = z$$

(b)

$$(z+w)^* = ((a_1+ib_1) + (a_2+ib_2))^* =$$

$$= ((a_1+a_2) + i(b_1+b_2))^* =$$

$$= (a_1+a_2) - i(b_1+b_2) =$$

$$= (a_1-ib_1) + (a_2-ib_2) =$$

$$= z^* + w^*$$

(c)

$$(zw)^* = ((a_1 + ib_1)(a_2 + ib_2))^* =$$

$$= ((a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1))^* =$$

$$= (a_1a_2 - b_1b_2) - i(a_1b_2 + a_2b_1) =$$

$$= (a_1 - ib_1)(a_2 - ib_2) =$$

$$= z^*w^*$$

(d)

$$\left(\frac{z}{w}\right)^* = \left(\frac{a_1 + ib_1}{a_2 + ib_2}\right)^* =$$

$$= \left(\frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2}\right)^* =$$

$$= \frac{(a_1a_2 + b_1b_2) - i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} =$$

$$= \frac{z^*}{w^*}$$

Prehod iz predzadnjega v zadnji izraz najlažje vidimo tako, da preprosto razpišemo zadnji izraz in vidimo, da je enak predzadnjemu.

Naloga 2.6 Namig pravi, da je P realno število, torej je tudi x realno število (saj se nahaja na predpisanem realnem intervalu). Seštevamo po indeksu n, ki je zato naravno število. Kompleksne količine so potem samo f, c_n in i. Če vzamemo konjugat obeh strani, torej dobimo

$$f^*(x) = \frac{1}{P} \sum_{n=-\infty}^{\infty} c_n^* e^{-i2\pi nx/P}, \quad x \in [-P/2, P/2].$$

2.3 Trigonometrična in eksponentna oblika

Naloga 2.7 Narišemo skico in vidimo, da dobimo z_4 tako, da zavrtimo z_2 okrog z_1 za pravi kót. To lahko naredimo tako, da zmnožimo s številom, ki ima velikost 1 (tako da ohrani

razdaljo do izhodišča) in argument $\pi/2$ (tako da zavrti za pravi kót). To je $e^{i\pi/2}=i$. Sledi torej, da

$$z_4 = iz_2 = -2.34 + 6.54i$$
.

Če želimo dobiti z_3 , preprosto seštejemo z_2 in z_4 :

$$z_3 = z_2 + z_4 = 4.2 + 8.88i$$
.

Naloga 2.8 Razdalja je enaka absolutni vrednosti razlike med njima, za katero velja $|z| = \sqrt{zz^*}$:

$$|z_1 - z_2| = \sqrt{(z_1 - z_2)(z_1 - z_2)^*} =$$

$$= \sqrt{(r_1 e^{i\theta_1} - r_2 e^{i\theta_2})(r_1 e^{-i\theta_1} - r_2 e^{-i\theta_2})} =$$

$$= \sqrt{r_1^2 + r_2^2 - r_1 r_2 e^{i(\theta_1 - \theta_2)} - r_1 r_2 e^{-i(\theta_1 - \theta_2)}} =$$

$$= \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos(\theta_1 - \theta_2)}$$

Pri tem smo slučajno še izpeljali kosinusni izrek, ki povezuje dolžino tretje stranice z dolžinama dveh stranic in kota med njima:

$$c = \sqrt{a^2 + b^2 - 2ab\cos\gamma}.$$

Naloga 2.9

$$(\cos x + i\sin x)^n = \left(e^{ix}\right)^n = e^{inx} = \cos(nx) + i\sin(nx)$$

Naloga 2.10 Uporabimo n=3 in de Moivreovo formulo:

$$(\cos x + i\sin x)^3 = \cos(3x) + i\sin(3x).$$

Na desni strani enačbe že zapazimo, da je realni del enak želena količina. Spomnimo se, da sta kompleksni števili enaki, če sta njuna realna in imaginarna dela med sabo enaka. Če razpišemo levo stran, ugotovimo, da je realni del leve strani enak:

$$\cos^3 x - 3\cos x \sin^2 x.$$

Ker je realni del desne strani enak cos(3x), velja

$$\cos(3x) = \cos^3 x - 3\cos x \sin^2 x = \cos^3 x - 3\cos x (1 - \cos^2 x) = 4\cos^3 x - 3\cos x.$$

Naloga 2.11 Imenovalec desne strani enačbe je ravno e^2 . Levi izraz je torej enak e^{-2} . Če to razpišemo z uporabo definicije e^x za x = -2, dobimo ravno izraz na desni.

Naloga 2.12

$$\sin(i\pi/2) = \frac{e^{i \cdot i\pi/2} - e^{-i \cdot i\pi/2}}{2i} = i\frac{e^{\pi/2} - e^{-\pi/2}}{2} \approx -2,301i$$

Omenimo še, da je ta izraz natanko enak $-i\sinh(\pi/2)$, kjer je sinh hiperbolični sinus, definiran z izrazom

$$\sinh x = \frac{e^x - e^{-x}}{2} \,.$$

Naloga 2.13 * Ker imamo opravka s potenciranjem, najraje uporabimo eksponentno obliko, $x=re^{i\theta}$:

$$x^n = r^n e^{in\theta} = 1.$$

Velikost r mora biti torej enaka 1. Eksponentni del $e^{in\theta}$ pa bo enak 1 natanko tedaj, ko njegov argument $n\theta$ celoštevilski večkratnik 2π :

$$n\theta = 2\pi$$
.

Rešitve te enačbe so torej števila

$$x = e^{2\pi i/n}, \quad n \in \mathbb{Z}.$$

Pri tem smo navidezno dobili neskončno rešitev (za vsako celo število n), toda v resnici se rešitve ponovijo ("zaciklajo") s periodo n. Enolične rešitve so le

$$x = e^{2\pi i/n}, \quad n \in \{0, 1, \dots, n-1\}.$$

Naloga 2.14

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = 2$$

$$e^{iz} + e^{-iz} = 4$$

$$e^{2iz} - 4e^{iz} + 1 = 0$$

$$u^2 - 4u + 1 = 0, \quad u := e^{iz}$$

$$u_{1,2} = 2 \pm \sqrt{3} = e^{iz}$$

Naj bo iskana rešitev z = a + bi; $a,b \in \mathbb{R}$. Velja torej

$$e^{iz} = e^{-b}e^{ia} = 2 \pm \sqrt{3}$$
.

Velikost tega števila je

$$e^{-b} = 2 \pm \sqrt{3} \,,$$

torej $b=-\ln\left(2\pm\sqrt{3}\right)$. Ker je to število (v obeh primerih) pozitivno realno, je njegov argument

$$a=2\pi n; n\in\mathbb{Z}.$$

Iskani odgovor je torej

$$z = a + bi = 2\pi n - i \ln(2 \pm \sqrt{3}); \quad n \in \mathbb{Z}.$$

Rezultat pa lahko zapišemo še lepše. V primeru, ko je uporabljen negativni predznak pri \pm , lahko rezultat zapišemo v obliki:

$$z = 2\pi n - i \ln(2 - \sqrt{3}) = 2\pi n + i \ln\left(\frac{1}{2 - \sqrt{3}}\right) =$$
$$= 2\pi n + i \ln\left(\frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})}\right) = 2\pi n + i \ln(2 + \sqrt{3}).$$

Rezultat lahko torej v splošnem zapišemo raje v obliki

$$z = 2\pi n \pm \ln(2 + \sqrt{3}).$$

Ker je n poljubno celo število, lahko rezultat še lepše zapišemo v sledeči obliki:

$$z = \pm \left(2\pi n + \ln\left(2 + \sqrt{3}\right)\right); \quad n \in \mathbb{Z}.$$

Pri tem se najlepše vidi sodost funkcije kosinus.