## ■ 우리 수업때 사용하게 될 머신러닝 / 딥러닝 API

### 1) 스파크 MLlib



- https://spark.apache.org/mllib/

### 2) 스파클링 워터(H20)



#### ■ 상관분석

- 1) 상관분석은 독립변수와 종속변수간의 관계의 강도, 즉 얼마만큼 밀접하게 관련되어 있는지 분석하는 것
- 2) 이때 상관분석에서는 변수들 간에 상관성 유무만 확인 할 뿐, 서로 인과관계는 분석하지 않음
- 3) 상관분석의 핵심은 상관계수를 구하는 것



- 4) 여러 독립변수와 종속변수의 관계를 함수식으로 설명하는 방법
- 5) 종속변수란?
- 사실 우리가 알고 싶어하는 결과값(기대값 or 예상값이라고도 함)
- 6) 독립변수란?
- 결과값에 영향을 주는 입력값
- 7) 종속변수와 독립변수의 예



- 이때 상관관계를 함수식으로 규명하는 것이 회귀분석

# ■ 회귀분석

- 1) 회귀(regression)이라는 것은 말 그대로 '원 위치로 돌아간다'라는 뜻으로 상 관과 밀접한 연관되어 있음
- 2) 회귀의 어원은 영국의 프랜시스 골턴이 세대별 키의 상관관계를 연구하다가 다윈의 진화론에 문제가 있음을 지적함

| 성인     | ,               |                    |      |      | 부모 키 |      |      |      |      |      |                  |        |
|--------|-----------------|--------------------|------|------|------|------|------|------|------|------|------------------|--------|
| 자녀     | <64.0           | 64.5               | 65.5 | 66.5 | 67.5 | 68.5 | 69.5 | 70.5 | 71.5 | 72.5 | >73.0            | Totals |
| >73.7  |                 |                    | _    | _    |      | ·    | 5    | 3    | 2    | 4    | :                | 14     |
| 73.2   | 2 <del></del> 2 | _                  | -    | -    | _    | 3    | 4    | 3    | 2    | 2    | 3                | 17     |
| 72.2   | ·               | _                  | 1    |      | 4    | 4    | 11   | 4    | 9    | 7    | W.               | • 41   |
| 71.2   | ( <del></del> ) | 9-07               | 2    |      | 11   | 18   | 20   | 7    | 4    | 2.)  |                  | 64     |
| 70.2   | _               | 2 <del>.—</del> 0/ | 5    | 4    | 19   | 21   | 25   | 14   | 10   | 1    | _                | 99     |
| 69.2   | 1               | 2                  | 7    | 13   | 38   | 48   | 33   | 18   | (5)  | 2    | -                | 167    |
| 68.2   | 1               | _                  | 7    | 14   | 28   | 34). | (20) | 12   | 3    | 1    | -                | 120    |
| 67.2   | 2               | 5                  | 11   | 17   | 38   | 31   | 27   | 3    | 4    | -    |                  | 138    |
| 66.2   | 2               | (5)                | (11) | 17)  | 36   | 25   | 17   | 1    | 3    | _    |                  | 117    |
| 65.2   | 1               | 1                  | 7    | 2    | 15   | 16   | 4    | 1    | 1    | 4:   | -                | 48     |
| 64.2   | 4               | 4                  | 5    | 5    | 14   | 11   | 16   |      | -    | -    | -                | 59     |
| 63.2   | (2)             | 4                  | 9    | 3    | 5    | 7    | 1    | 1    | -    | -    |                  | 32     |
| 62.2   |                 | 1                  | _    | 3    | 3    | -    | -    |      | -    |      |                  | 7      |
| <61.7  | 1               | 1                  | 1    | _    |      | 1    | -    | 1    | 1,11 | -    | 6 <del></del> 8/ | 5      |
| Totals | 14              | 23                 | 66   | 78   | 211  | 219  | 183  | 68   | 43   | 19   | 4                | 928    |



- 3) 골턴은 부모와 자식 간 키와 몸무게의 상관 관계를 분석했는데, 키가 큰 아버지의 아들은 아버지보다 작은 경향이 있고, 반대로 키가 작은 아버지의 아들은 키가 큰 경향이 있다는 사실을 발견함
- 4) 그래서, '아버지 + 아들의 키는 평균으로 회귀한다'라는 표현을 사용했고, 그이후 이러한 형태 분석법을 '회귀분석'이라고 부르게 되었음
- 5) 즉, 꼭 결과가 회귀해야만 '회귀분석'은 절대로 아님
- 6) 회귀의 종류
- 선형 회귀
- 로지스틱 회귀
- 다항 회귀
- 단계적 회귀
- 리지 회귀
- 라소 회귀
- 엘라스티뉴 회귀
- 7) API를 활용하여 분석이 가능함

## ■ 신경망의 이해와 딥러닝

### 1) 인간과 컴퓨터



$$\int_{-b^{2}}^{b} = a^{2} - 2ab + b^{2} \qquad (a - b)^{2} = a^{2} - 2ab + b^{2} \qquad (a + b)(a - b) = a^{2}$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad (a - b) = a^{2} - b^{2} \qquad tg\alpha = \frac{\sin \alpha}{\cos \alpha} (a + b)$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad (a - b)^{2} = a^{2} - 2ab + b^{2} \qquad tg\alpha = \frac{s}{c}$$

$$\int_{0}^{x} \frac{t^{n} dt}{e^{t} - 1} \qquad \sin^{2} \alpha + \cos^{2} \alpha = 1$$

| 문제                 | 컴퓨터 | 사람  |  |  |
|--------------------|-----|-----|--|--|
| 수학 공식(수천개의 숫자 곱하기) | 쉬 움 | 어려움 |  |  |
| 사진에서 강아지 찿기        | 어려움 | 쉬 움 |  |  |

- 2) 1과 0으로 구성된 차갑고 딱딱한 논리 기반(if~then)의 기계가 미묘하고 모호 한 생물학적인 두뇌의 사고 체계를 달성하는 것은 불가능한 일이라고 믿게 됨
- 3) 기발한 아이디어가 등장 : 꿀벌이나 비둘기가 매우 단순한 뇌 구조를 가졌음에 도 복잡한 업무를 수행할 수 있음 / 즉 동물의 뇌를 그대로 복제함으로써 인공두 뇌를 만들 아이디어가 나타남
- 딱딱한 흑백논리를 가진 알고리즘보다 부드럽고 유기적인 사고 체계를 도입하자는 아이디어
- 4) 인간의 뉴런을 본따서 '신경망'이 등장함 : 신경망은 오래전부터 있던 아이디어
- 5) 2010년 캐나다 토론토대학의 제프리 힌튼 교수 연구팀이 '세계 최대 이미지 인식 경연대회'에 출전하여, 옥스퍼드, 도쿄대, 독일 예나대, 제록스 연구소 등의 유명 연구기관이 개발한 인공지능을 압도적인 차이로 누르며 우승함
- 다른 팀이 오답률 26%대의 소수점 공방을 벌일때 '딥러닝'이라는 기법을 사용한 '슈퍼비전'팀은 15%의 오답률을 기록함



6) 신경망을 촘촘히 여러층으로(deep) 구성하여 인공지능 분야의 엄청난 발전이 일어남

### ■ 간단한 예측자

1) 머신러닝 / 딥러닝과 다른 프로그래밍의 차이는?



- 기존 프로그래밍 '알고리즘'을 만들고 입력값을 넣어서 '출력'을 얻음
- 머신러닝은 '입력'과 '출력'을 빅데이터로 넣어줘서 학습시켜 '알고리즘'을 만들어 냄
- 2) 가장 기초적인 신경망의 이해(간단한 예측자 이해)
- 선형 관계의 예측자 만들기
- 킬로미터를 마일로 변환하는 예측자

## 마일 = 킬로미터 x c(c는 상수)

- 결국 상수 C를 구하는 방법
- 빅데이터(사실 스몰데이터)가 필요함

| km  | mi           |
|-----|--------------|
| 0.1 | 0.0621371192 |
| 0.2 | 0.1242742384 |
| 0.3 | 0.1864113577 |
| 0.4 | 0.2485484769 |
| 0.5 | 0.3106855961 |
| 0.6 | 0.3728227153 |
| 0.7 | 0.4349598346 |
| 0.8 | 0.4970969538 |
| 0.9 | 0.5592340730 |
| 1   | 0.6213711922 |
| 1.1 | 0.6835083115 |
| 12  | 0 7456454307 |

- 만약 0.5를 대입해본다면

100 -> 100 x 0.5 -> 50 오차는 12.137...

- 만약 0.6을 대입한다면

100 -> 100 x 0.6 -> 60 오차는 2.137...

- 만약 0.7을 대입한다면

100 -> 100 x 0.7 -> 70 오차는 -7.863...

- 오버슈팅 발생
- 다시 0.61을 대입

100 -> 100 x 0.61 -> 61 오차는 1.137...

- 꽤 정확한 값을 얻음
- 3) 위의 방식으로 인공 신경망을 학습시키는 핵심과정 : 강화학습
- 반복을 통해 점점 더 정답에 가까운 값을 스스로 얻음