Convex Optimization

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Lin	ear Programming	1
	1.1	Primal Problem and Dual Problem	1
	1.2	Farkas' Lemma	1
	1.3	The Fundamental Theorem of Linear Programming	3
	1.4	Properties	3
2	Mir	nimizers	5
	2.1	Local Minimizers and Global Minimizers	5
	2.2	Main Results	6
3	Dua		7
	3.1	Definitions	7
	3.2	Lagrangian Dual	7
	3.3	Weak Dual and Strong Dual	9
	3.4	Weak Duality Theorem	10
	3.5	Perturbation	10

ii *CONTENTS*

Chapter 1

Linear Programming

1.1 Primal Problem and Dual Problem

DEFINITION (Primal Problem). Let $A \in \mathbb{R}^{m \times n}$. Let $b \in \mathbb{R}^m$. We define the **primal problem** to be the following.

(LP) minimize
$$c^{\top}x$$
 subject to $Ax = b$
$$x \ge 0$$

DEFINITION (Dual Problem). We define the **dual problem** of the above primal problem to be the following.

(LD) maximize
$$b^{\top}y$$
 subject to $A^{\top}y + s = c$
$$s \geq 0$$

1.2 Farkas' Lemma

LEMMA 1.1 (Farkas' Lemma). Let $A \in \mathbb{R}^{m \times n}$. Let $b \in \mathbb{R}^m$. Then exactly one of the following systems has a solution.

(1)
$$Ax = b, x \ge 0.$$

(2)
$$A^{\top}y \le 0, b^{\top}y > 0.$$

1.3 The Fundamental Theorem of Linear Programming

THEOREM 1.1 (The Fundamental Theorem of Linear Programming). Every linear programming problem has exactly one of the following properties:

- The linear programming is infeasible.
- The linear programming is unbounded.
- The linear programming has an optimal solution.

1.4 Properties

PROPOSITION 1.4.1. If the feasible region of an LP problem is a pointed polyhedron, then

- (1) whenever the LP problem is feasible, it has a feasible solution that is an extreme point of the feasible region;
- (2) whenever the LP problem has optimal solution(s), it has an optimal solution that is an extreme point of the feasible region.

THEOREM 1.2 (Duality Theorem - 1). If a LP has an optimal solution, then so does its LD and their optimal values are the same.

THEOREM 1.3 (Duality Theorem - 2). If a LP and its LD both have feasible solutions, then they both have optimal solutions and their optimal values are the same.

Chapter 2

Minimizers

2.1 Local Minimizers and Global Minimizers

PROPOSITION 2.1.1. Let f be a proper convex function. Then any local minimizer of f is a global minimizer.

```
Proof Appoach 1.
    Let f be a convex function.
    Let x_0 be a local minimizer of f, if any.
    Since x_0 is a local minimizer, \exists \delta > 0, \forall x \in \text{ball}(x_0, \delta), we have f(x) \geq f(x_0).
    Since f is proper, dom(f) \neq \emptyset.
    Let y be an arbitrary point in dom(f).
    Case 1. y \in \text{ball}(x_0, \delta).
    Since y \in \text{ball}(x_0, \delta), and \forall x \in \text{ball}(x_0, \delta), f(x) \geq f(x_0), we get f(y) \geq f(x_0).
    Case 2. y \notin \text{ball}(x_0, \delta).
    Define \lambda := \delta/\|x - y\|.
    Since y \notin \text{ball}(x_0, \delta), ||x - y|| > 0.
    Since \delta > 0 and ||x - y|| > 0, we get \lambda > 0.
    Since y \notin \text{ball}(x_0, \delta), ||x - y|| > \delta.
    Since \delta < ||x - y||, \lambda < 1.
    Define a point z := \lambda y + (1 - \lambda)x.
    Since f is convex, dom(f) is convex.
    Since
```

PROPOSITION 2.1.2. Any locally optimal point of a convex problem is globally optimal.

PROPOSITION 2.1.3. A point x is optimal if and only if it is feasible and for any feasible point y,

$$\nabla f_0(x) \cdot (y - x) \ge 0.$$

I forgot where this came from... and I don't know what it's talking about...

2.2 Main Results

THEOREM 2.1. Let f be a proper function from \mathbb{E} to \mathbb{R}^* . Then

$$\operatorname{argmin}(f) = \big\{ x \in \mathbb{E} : 0 \in \partial f(x) \big\}.$$

Proof.

$$\begin{split} x &\in \operatorname{argmin}(f) \\ \iff \forall y \in \mathbb{E}, f(x) \leq f(y) \\ \iff \forall y \in \mathbb{E}, \langle 0, y - x \rangle + f(x) \leq f(y) \\ \iff 0 \in \partial f(x). \end{split}$$

THEOREM 2.2. Let f be a proper, convex, and lower semi-continuous function from \mathbb{R}^d to \mathbb{R} . Let x be a point in \mathbb{R}^d . Then x is a global minimizer of f if and only if x is a fixed point of the proximal operator of f. i.e. $x = \text{prox}_f(x)$.

Chapter 3

Duality

3.1 Definitions

DEFINITION (Dual Problem).

3.2 Lagrangian Dual

3.2.1 Basics

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,...,m \\ & h_i(x)=0, \quad i=1,...,p \end{array}$$

where $x \in \mathcal{D} \subseteq \mathbb{R}^n$.

Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$.

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).$$

Lagrange Dual Function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$.

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu).$$

PROPOSITION 3.2.1. The Lagrange dual function is concave.

Proof. The Lagrange dual function is an infimum of an affine function and hence concave.

PROPOSITION 3.2.2. If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$ where p^* denotes the optimal value of the primal problem.

Proof. Let \bar{x} be an arbitrary feasible solution. Then

$$f_0(\bar{x}) \ge L(\bar{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu).$$

3.2.2 Dual of Linear Programming

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

The Lagrangian is

$$L(x, \lambda, \nu) = c^T x - \lambda^T x + \nu^T (Ax - b).$$

The Lagrange dual function is

$$g(\lambda, \nu) = \begin{cases} -b^T \nu, & A^T \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{cases}.$$

Note 1: g is linear on an affine domain: $\{(\lambda, \nu) : A^T \nu - \lambda + c = 0\}$ and hence concave. Note 2: The Lower Bound Property says that if $\lambda = A^T \nu + c \ge 0$, then $p^* \ge -b^T \nu$. Lagrange Dual Problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \ge 0$

Standard form LP and its dual:

(LP) minimize
$$c^Tx$$
 subject to $Ax=b, x\geq 0$ (Dual of LP) maximize $-b^T\nu$ subject to $A^T\nu+c\geq 0$

3.3 Weak Dual and Strong Dual

Weak Duality: $d^* \leq p^*$. String Duality: $d^* = p^*$.

THEOREM 3.1 (Slater). Consider an optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$
 $Ax = b$

where $f_0, f_1, ..., f_m$ are all convex functions. Then the strong duality holds if there exists a point x^* in $\operatorname{ri}(\mathcal{D})$ where $\mathcal{D} := \operatorname{dom}(f_0) \cap \bigcap_{i=1}^m \operatorname{dom}(f_i)$ such that $f_i(x^*) < 0$ for i = 1, ..., m and $Ax^* = b$.

THEOREM 3.2 (Complementary Slackness). Consider an optimization problem and its dual:

(Primal) minimize
$$f_0(x)$$
 (Dual) maximize $g(\lambda, \nu)$
subject to $f_i(x) \le 0$ $i = 1, ..., m$ subject to $\lambda \ge 0$
 $h_i(x) = 0$ $i = 1, ..., p$

Let x be a feasible solution to the primal and (λ, ν) be a feasible solution to the dual. Then x and (λ, ν) are both optimal if and only if

$$\lambda_i f_i(x) = 0$$

for each i = 1, ..., m. i.e.,

$$\lambda_i > 0 \implies f_i(x) = 0$$
, and $f_i(x) < 0 \implies \lambda_i = 0$

for each i = 1, ..., m.

3.4 Weak Duality Theorem

THEOREM 3.3 (Weak Duality Theorem). The duality gap is always greater than or equal to 0.

3.5 Perturbation

Primal

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,...,m \\ & h_i(x) = 0, \quad i=1,...,p \end{array}$$

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq u_i \quad i=1,...,m \\ & h_i(x) = v_i \quad i=1,...,p \end{array}$$