Confidence intervals. Part I Statistics

Anton Afanasev

Higher School of Economics

DSBA 211 December 10, 2022

Seminar Overview

- 1 Quiz
- 2 Interval estimation

Motivation
Definition
How to derive

3 Confidence intervals for population mean

Population variance is known Population variance is unknown Independence of sample mean and sample variance Accuracy of estimation

- 4 Confidence intervals for population variance
 - Population mean is unknown Population mean is known

Quiz

Please find maximum likelihood estimation of θ using sample X_1, \ldots, X_n , generated from a normal distribution with parameters:

1
$$\mu = 0, \sigma^2 = \theta^2,$$

$$2 \mu = \theta, \sigma^2 = 2\theta.$$

What good of a point estimate?

Example

- Let $X \sim \mathcal{N}(0,9)$.
- As a result of experiment, we have a sample with 3 observations:

$$x_1 = 4$$
, $x_2 = 5$, $x_3 = 6$.

• Our best point estimate of $\mu = 0$ is:

$$\overline{x} = \frac{4+5+6}{3} = 5,$$

which is pretty far away from real μ .

• In order to give a quantitative perspective on how confident we are that the resulting value of a point estimate is close to real parameter, interval estimation is introduced.

Confidence intervals

• Let $X_1, ..., X_n$ be a random sample from a population with parameter θ .

Definition

Confidence interval for θ with confidence level $1 - \alpha$ is a pair of random variables $L(X_1, \ldots, X_n)$ and $U(X_1, \ldots, X_n)$, such that:

$$\mathsf{P}\left(L(X_1,\ldots,X_n)\leq\theta\leq U(X_1,\ldots,X_n)\right)=1-\alpha.$$

- α significance level.
- Sometimes confidence interval for θ with confidence level 1α is defined as

$$P(L(X_1,\ldots,X_n) \le \theta \le U(X_1,\ldots,X_n)) \ge 1 - \alpha,$$

which is used when probabilities are partially identified, e.g. discrete cases.

Anton Afanasev (HSE) Seminars 19-20 December 10, 2022 5 / 27

How to find confidence intervals?

Algorithm

- 1 Determine, which point estimator you will be using:
 - $\mu \to \overline{X}$ (mean),

• $p \to \widehat{P}$ (proportion),

• $\sigma^2 \to S^2$ (variance),

• $\theta \to \widehat{\theta}$ (arbitrary parameter).

Make sure you know the distribution of that point estimator.

2 Find a pivot function *h*, which depends only on the sample and estimated parameter. It must have a table distribution:

$$h(X_1,\ldots,X_n;\theta)\sim Z,\chi_k^2,t_k,F_{p,k},\text{etc.}$$

3 Constrain pivot function with critical values:

$$P\left(x_{1-\alpha/2} \leq h(X_1,\ldots,X_n;\theta) \leq x_{\alpha/2}\right) = 1 - \alpha.$$

4 Express θ in the inequality above.

□▶→□▶→車▶→車→車→

Population variance σ^2 is known

- Let $X_1, ..., X_n$ be a random sample from a population with mean μ and variance σ^2 . The value of σ^2 is known.
- Pivot function in this case is the standardized \overline{X} :

$$h(X_1,\ldots,X_n;\mu) = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\text{CLT}}{\sim} \mathcal{N}(0,1).$$

• Confidence interval of μ with confidence level $1 - \alpha$ then:

$$\mathsf{P}\left(-z_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right) = 1 - \alpha.$$

$$\mathsf{P}\left(\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Anton Afanasev (HSE) Seminars 19-20 December 10, 2022 7/27

Population variance σ^2 is known

• $(1 - \alpha) \cdot 100\%$ confidence interval for μ can be written as:

$$(\mu)_{1-\alpha} \in \overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

• $\frac{\sigma}{\sqrt{n}}$ is called standard error of \overline{X} :

$$S.E.(\overline{X}) = \frac{\sigma}{\sqrt{n}}.$$

 Overall, for symmetric distributions of pivot functions, confidence intervals have the following view:

$$(\operatorname{Param})_{1-\alpha} \in \operatorname{Point Est.} \pm \operatorname{Crit. Value}\left(\frac{\alpha}{2}\right) \times \operatorname{S.E.}(\operatorname{Point Est.}).$$

←□ → ←□ → ← = → ← = → へへ

Population variance σ^2 is known

- Let's simulate experiments to calculate sample mean and see, how confidence intervals are constructed.
- Refer to the 1st block in the link:

Confidence intervals for μ

- Common misconception:
 - This is NOT a correct interpretation of confidence intervals: " 1α is a probability that μ belongs to CI".
 - This is:

"1 – α is a probability that CI contains μ ",

since μ is a constant, while CI itself is a random variable.

Manager of a restaurant wants to estimate the mean amount μ that a visitor spends for a lunch. A sample contains 36 visitors. Sample mean is $\bar{x} = \$3.60$. Manager knows that the standard deviation for one visitor is \$0.72. Find the confidence level corresponding to the interval (\$3.5; \$3.7).

A college admission officer for an *MBA* program has determined that historically candidates have undergraduate grade point averages that are normally distributed with standard deviation 0.45. A random sample of twenty-five applications from the current year is taken, yielding a sample mean grade average of 2.90.

- 1 Find a 95% confidence interval for the population mean.
- 2 Based on these sample results, a statistician computes for the population mean a confidence interval running from 2.81 to 2.99. Find the probability content associated with this interval.

Population variance σ^2 is unknown

- Let $X_1, ..., X_n$ be a random sample from a population, distributed as $\mathcal{N}(\mu, \sigma^2)$. The value of σ^2 is unknown.
- Old pivot function has unknown parameter:

$$h(X_1,\ldots,X_n;\mu)=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}.$$

• Let's substitute σ with its estimate $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$:

$$h(X_1,\ldots,X_n;\mu)=\frac{\overline{X}-\mu}{S/\sqrt{n}}.$$

• Both \overline{X} and S are random variables $\Rightarrow h(X_1, \dots, X_n; \mu)$ is not normally distributed.

Anton Afanasev (HSE) Seminars 19-20 December 10, 2022 12 / 27

Population variance σ^2 is unknown

• Fisher's lemma:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

• Applying Fisher's lemma to $h(X_1, ..., X_n; \mu)$:

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$

• Confidence interval of μ with confidence level $1 - \alpha$ then:

$$\mathsf{P}\left(-t_{n-1;\;\alpha/2} \leq \frac{\overline{X} - \mu}{S/\sqrt{n}} \leq t_{n-1;\;\alpha/2}\right) = 1 - \alpha.$$

$$\mathsf{P}\left(\overline{X}-t_{n-1;\,\alpha/2}\cdot\frac{S}{\sqrt{n}}\leq\mu\leq\overline{X}+t_{n-1;\,\alpha/2}\cdot\frac{S}{\sqrt{n}}\right)=1-\alpha.$$

Anton Afanasev (HSE) Seminars 19-20 December 10, 2022 13 / 27

Population variance σ^2 is unknown

• $(1 - \alpha) \cdot 100\%$ confidence interval for μ can be written as:

$$(\mu)_{1-\alpha} \in \overline{X} \pm t_{n-1; \alpha/2} \cdot \frac{S}{\sqrt{n}}.$$

• $\frac{S}{\sqrt{n}}$ is called estimated standard error of \overline{X} :

$$E.S.E.(\overline{X}) = \frac{S}{\sqrt{n}}.$$

• If n is large (n > 30), we can use z-values, instead of t-values:

$$t_{n-1; \alpha/2} \xrightarrow[n \to \infty]{} z_{\alpha/2}$$
 and $S \xrightarrow[n \to \infty]{} \sigma$.

• For simulations refer to the 2nd block in the link:

Confidence intervals for μ

A random sample of 5 observations from a normal distribution with mean μ and variance σ^2 gives a sample mean 100. An independent random sample of size 10 from the same population has sample variance 9. Find a 90% confidence interval for the population mean.

\overline{X} and S^2 are independent

- Assuming that sample X_1, \ldots, X_n is derived from a normal population, statistics \overline{X} and S^2 are independent.
- This allows us to state that

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1},$$

since numerator Z and denominator $\sqrt{\chi^2}$ should be independent to create a t-distribution.

\overline{X} and S^2 are independent

Proof

• Let's consider vector of residuals:

$$\mathbf{X} = \begin{pmatrix} X_1 - \overline{X} & \dots & X_n - \overline{X} \end{pmatrix}^{\top}.$$

• Each component of **X** is uncorrelated with \overline{X} :

$$\mathsf{Cov}(X_j - \overline{X}, \overline{X}) = \mathsf{Cov}(X_j, \overline{X}) - \mathsf{Cov}(\overline{X}, \overline{X}) = \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0,$$

thus making \overline{X} and X uncorrelated.

- If components of multivariate normal distribution are uncorrelated ⇒ they are independent.
- \overline{X} and X are independent as components of vector $(\overline{X} \ X)^{\top}$.
- Inherently, \overline{X} is independent with $\mathbf{X}^{\top}\mathbf{X} = (n-1)S^2$.

Uncorrelatedness in multivariate normal distribution

• On the example of bivariate case. Let vector $(X \ Y)^{\top}$ be bivariate normal with joint p.d.f.:

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right] \right),$$
 where $\rho = \text{Corr}(X,Y)$.

• Let $\rho = 0$:

$$\begin{split} f(x,y) &= \frac{1}{2\pi\sigma_X\sigma_Y} \exp\left(-\frac{1}{2}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]\right) = \\ &= \frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_X}{\sigma_X}\right)^2\right] \cdot \frac{1}{\sqrt{2\pi}\sigma_Y} \exp\left[-\frac{1}{2}\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right] = \\ &= f_X(x) \cdot f_Y(y). \end{split}$$

• *X* and *Y* are independent by definition.

Accuracy of estimation

- Accuracy of estimation *e* is a half-width of the corresponding confidence interval.
- For μ with known σ^2 :

$$\begin{split} (\mu)_{1-\alpha} \in \overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \\ e = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}. \end{split}$$

• How many observations required to get the accuracy *e*:

$$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le e,$$

$$n \ge \frac{z_{\alpha/2}^2 \cdot \sigma^2}{e^2}.$$

The reaction time of a patient to a certain stimulus is known to have a standard deviation of 0.05 seconds. How large a sample of measurements must a psychologist take in order to be 95% confident and 99% confident, respectively, that the error in the estimate of the mean reaction time will not exceed 0.01 seconds?

- **1** A student constructed two 95% confidence intervals for unknown parameter $\theta: (-\infty, 4.2)$ and $(3.5, \infty)$. What could be the confidence of the interval (3.5, 4.2)?
- **2** A student constructed two 95% confidence intervals for unknown parameter θ : (-5, 4.2) and (3.5, 7). What could be the confidence of the interval (3.5, 4.2)?

Confidence interval for population variance σ^2

Population mean μ is unknown

- Let $X_1, ..., X_n$ be a random sample from a population, distributed as $\mathcal{N}(\mu, \sigma^2)$. The value of μ is unknown.
- Unbiased estimator of σ^2 is:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

• Pivot function is given by Fisher's lemma:

$$h(X_1,...,X_n;\sigma^2) = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

• Confidence interval of σ^2 with confidence level $1 - \alpha$ then:

$$P\left(\chi_{n-1; 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1; \alpha/2}^2\right) = 1 - \alpha.$$

Anton Afanasev (HSE) Seminars 19-20 December 10, 2022 22 / 27

Confidence interval for population variance σ^2

Population mean μ is unknown

$$\mathsf{P}\left(\frac{1}{\chi_{n-1;\,1-\alpha/2}^2} \ge \frac{\sigma^2}{(n-1)S^2} \ge \frac{1}{\chi_{n-1;\,\alpha/2}^2}\right) = 1 - \alpha.$$
$$\mathsf{P}\left(\frac{(n-1)S^2}{\chi_{n-1;\,\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1;\,1-\alpha/2}^2}\right) = 1 - \alpha.$$

• $(1 - \alpha) \cdot 100\%$ confidence interval for σ^2 can be written as:

$$(\sigma^2)_{1-\alpha} \in \left(\frac{(n-1)S^2}{\chi^2_{n-1; \alpha/2}}; \frac{(n-1)S^2}{\chi^2_{n-1; 1-\alpha/2}}\right).$$

• For simulations refer to the 1st block in the link:

Confidence intervals for σ^2 , p, $p_x - p_y$, $\mu_x - \mu_y$

A manufacturer bonds a plastic coating to a metal surface. A random sample of nine observations on the thickness of this coating is taken from a week's output. The sample thickness (in millimeters) were as follows:

19.8 21.2 18.6 20.4 21.6 19.8 19.9 20.3 20.8

Assuming that the population distribution is normal, find a 90% confidence interval for the population variance.

Confidence interval for population variance σ^2

Population mean μ is known

- Let $X_1, ..., X_n$ be a random sample from a population, distributed as $\mathcal{N}(\mu, \sigma^2)$. The value of μ is known.
- Unbiased estimator of σ^2 is:

$$\varsigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

Pivot function:

$$h(X_1,\ldots,X_n;\sigma^2)=\frac{n\varsigma^2}{\sigma^2}\sim\chi_n^2.$$

• Confidence interval of σ^2 with confidence level $1 - \alpha$ then:

$$\mathsf{P}\left(\chi_{n;\,1-\alpha/2}^2 \le \frac{n\varsigma^2}{\sigma^2} \le \chi_{n;\,\alpha/2}^2\right) = 1 - \alpha.$$

Confidence interval for population variance σ^2

Population mean μ is known

$$\mathsf{P}\left(\frac{n\varsigma^2}{\chi^2_{n;\,\alpha/2}} \le \sigma^2 \le \frac{n\varsigma^2}{\chi^2_{n;\,1-\alpha/2}}\right) = 1 - \alpha.$$

• $(1 - \alpha) \cdot 100\%$ confidence interval for σ^2 can be written as:

$$(\sigma^2)_{1-\alpha} \in \left(\frac{n\varsigma^2}{\chi^2_{n; \alpha/2}}; \frac{n\varsigma^2}{\chi^2_{n; 1-\alpha/2}}\right).$$

• For simulations refer to the 2nd block in the link:

Confidence intervals for σ^2 , p, $p_x - p_y$, $\mu_x - \mu_y$

Look at the time!