弗兰克-赫兹实验 实验报告

隋源 2000011379

Dec 17 2021

1 实验目的及器材

1.1 实验目的

本实验要求通过进行弗兰克-赫兹实验,了解弗兰克-赫兹用伏安法证明原子存在能级的原理和方法,同时学习微电流的测量。

1.2 实验仪器

弗兰克-赫兹实验仪、填充 Hg 的弗兰克-赫兹管、数字万用表等。

2 实验设计和原理

为测量 Hg/Ar 的原子第一激发电位,需要依据实验室提供的参考值,调整第一栅极与阴极间的电压 U_{Kg1} 和反向减速电压 U_{pg2} 至适当的值(Hg 要在 180 度条件下,Ar 室温即可),然后开始实验。可通过弗兰克-赫兹实验仪读出加速电压 U_{Kg2} ,通过直接或间接读取微电流大小进行数据测量。首先调节加速电压 U_{Kg2} ,粗侧各峰与谷的位置,之后根据粗侧的结果恰当安排测量点进行细测,得到实验数据并作图观察。之后,对每个峰的具体位置进行线性拟合,得到 Hg/Ar 原子第一激发电位的测量值;还可改变反向电压 U_{Ag2} 进行测量,对比反向电压对数据和极值点的影响。

3 数据记录和处理

3.1 测定 Ar 的 F-H 曲线

开始实验仪的设定值为 $V_{HH}=2.5\mathrm{V}, V_{Ag2}=6.5\mathrm{V}, V_{Kg2}=2.0\mathrm{V}$ 放大倍数为 10^{-9} ,经过粗测判断好极值位置,细测得到的数据图和极值位置如下(所有的原始数据表附在最后)

利用最小二乘法拟合得到

$$E = 11.60 \text{ev}, \quad r = 0.9998$$

$$\sigma_a = E\sqrt{\frac{1/r^2 - 1}{6 - 2}} = 0.12 \text{eV}, \quad \sigma_b = \frac{e/\sqrt{3}}{\sqrt{\sum_{n=1}^6 (n - \bar{n})^2}} = 0.01 \text{eV}$$

$$\sigma_E = \sqrt{(\sigma_a)^2 + (\sigma_b)^2} = 0.12 \text{eV}$$

故 Ar 原子第一激发态电位的测量结果为

$$E \pm \sigma_E = (11.60 \pm 0.12) \text{eV}$$

3.2 测定 Hg 的 F-H 曲线

同样,调节 $U_1=1.50\mathrm{V}, U_3=2.00\mathrm{V}$ 开始测量,注意到 $U_2=U_{Kg2}-U_1=U_{g1g2}$,得到的极值位置和数据图如下

$$U_{g1g2}(V)$$
 | 5.1 | 9.9 | 14.7 | 19.5 | 24.5 | 29.6

同样利用最小二乘法拟合

$$E = 4.89 \text{ev}, \quad r = 0.99992$$

$$\sigma_a = E\sqrt{\frac{1/r^2 - 1}{6 - 2}} = 0.03 \text{eV}, \quad \sigma_b = \frac{e/\sqrt{3}}{\sqrt{\sum_{n=1}^6 (n - \bar{n})^2}} = 0.01 \text{eV}$$

$$\sigma_E = \sqrt{(\sigma_a)^2 + (\sigma_b)^2} = 0.03 \text{eV}$$

即Hg原子第一激发态电位的测量结果为

$$E \pm \sigma_E = (4.89 \pm 0.03) \text{eV}$$

3.3 思考题: 改变反向电压测定 Hg 的 F-H 曲线变化

在上一个实验中,先后改变反向电压 $U_3 = 1.00$ V 和 3.00V 进行后两个峰的测量,将得到的数据绘制在一张图内进行对比如下。可以看出,反向电压越大峰值位置越小,电流强度越大。这个结果是易于理解的。

首先,增大反向电压电流强度减小是很显然的,因为反向电压意味着对电子最小动能的筛选,反向电压越大,满足动能大于反向电压的电子数目越少,且最终达到极板的动能越小,自然会导致电流强度的减小。

其次,增大反向电压峰值位置变大可以用一种简单的模型来理解。假设电子在行进过程中与原子充分碰撞(即达到极板的电子动能没有大于第一激发电位的),则可在电子的概率密度-动能分布图上画出间隔为第一激发电位的一系列竖线,最终到达极板的电流强度取决于每两竖线间区域的动能相对大小和该位置概率密度共同决定。显然,根据先前的实验条件,想要达到极值位置,电子的动能概率分布函数和竖线族的相对位置为一周期性定值。(认为电子动能概率分布性质类似于正态分布,且调节加速电压会使其中心值增大),则当反向电压增大时,相当于竖线族整体向右平移,则为了达到原先的极值情形,对应的加速电压也要变大。

4 结果分析与讨论

4.1 实验中测得的各种曲线主要有什么特征?如何理解?

实验中测量得到的 Hg 与 Ar 的弗兰克-赫兹曲线都具有明显的周期性增减。经过测量可以发现相邻的峰与峰的间距都相等。对此现象进行物理理解之后,可以发现,原子吸收电子的能量是量子化的,并不是任何能量的电子都能与原子发生非弹性碰撞。这个实验给出了Hg 原子与 Ar 原子的第一激发电位。

4.2 分析测量第一激发电位的误差来源

进行实验测量时,仪器的读数不稳定,有时在增加有时在衰减,或者不停波动,难以进行一个统一标准的测量,这是最主要的测量误差。

在粗测获得弗兰克-赫兹曲线峰值之后,对峰值位置的判断有一定的主观性,这种主观性有时会代入到测量读数中,进一步对读数带来误差。

5 实验收获与感想

本次实验让我体会到弗兰克赫兹实验的精妙之处,更直观地体会到原子的能级量子化, 也增加了对实验测量误差的经验,,遇到不能获得更精确的读数情况时,应该采用更合理的 读数和处理数据的方式以尽量减小误差。感谢老师的细致讲解和指导!

6 附: 测量的原始数据表

反向由压为	1.00V 和	3.00V F	Hø	后两峰曲	线的测量数据
	1.00 V 7H	9.00 V H	115	// //	

$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$
22.1	176	24.2	735	26.2	183	28.9	730
22.4	220	24.3	737	26.5	178	29.0	750
22.7	260	24.4	735	26.8	199	29.1	775
23.0	340	24.5	723	27.2	255	29.2	787
23.3	430	24.6	685	27.5	313	29.3	795
23.5	500	24.7	640	27.8	386	29.4	793
23.6	530	24.8	600	28.1	460	29.5	787
23.7	565	24.9	560	28.4	560	29.6	780
23.8	610	25.0	490	28.5	600	29.7	761
23.9	650	25.3	380	28.6	640	29.8	731
24	690	25.6	280	28.7	670	29.9	699
24.1	720	25.9	213	28.8	700	30.0	680
$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$
22.0	15	24.4	195	25.4	148	28.8	115
22.4	16	24.5	203	25.5	125	29.0	150
22.8	20	24.6	207	26.0	72	29.3	200
23.0	27	24.7	208	26.4	45	29.4	211
23.4	60	24.8	206	26.8	31	29.5	226
23.8	110	24.9	204	27.0	25	29.6	231
24.0	143	25.0	198	27.4	26	29.7	234
24.1	160	25.1	188	27.8	30	29.8	233
24.2	170	25.2	176	28.0	38	29.9	230
24.3	182	25.3	164	28.4	76	30.0	225

Hg 曲线测量数据

$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$	$U_{g1g2}(V)$	$U_{out}(mV)$
0.0	8.0	9.2	104.0	15.2	176.0	23.3	190.0
0.5	8.0	9.3	111.0	15.3	142.0	23.6	271.0
1.0	8.0	9.4	127.0	15.6	85.0	23.9	354.0
1.5	8.0	9.5	130.0	15.9	43.0	24.0	380.0
2.0	8.0	9.6	140.0	16.2	27.0	24.1	400.0
2.5	8.0	9.7	152.0	16.5	22.0	24.2	417.0
3.0	8.0	9.8	156.0	16.8	24.0	24.3	426.0
3.3	10.0	9.9	158.0	17.1	26.0	24.4	438.0
3.6	12.0	10.0	156.0	17.4	41.0	24.5	441.0
3.9	13.0	10.1	152.0	17.7	61.0	24.6	435.0
4.2	17.0	10.2	140.0	18.0	99.0	24.7	429.0
4.3	18.0	10.3	123.0	18.3	145.0	24.8	416.0
4.4	20.0	10.4	100.0	18.6	205.0	24.9	400.0
4.5	21.0	10.5	72.0	18.7	240.0	25.0	370.0
4.6	24.0	10.8	38.0	18.8	260.0	25.3	280.0
4.7	27.0	11.1	19.0	18.9	273.0	25.6	207.0
4.8	29.0	11.4	14.0	19.0	310.0	25.9	147.0
4.9	31.0	11.7	13.0	19.1	335.0	26.2	89.0
5.0	33.0	12.0	15.0	19.2	350.0	26.5	71.0
5.1	35.0	12.3	23.0	19.3	360.0	26.8	61.0
5.2	34.0	12.6	32.0	19.4	384.0	27.1	66.0
5.3	33.0	12.9	56.0	19.5	388.0	27.4	91.0
5.4	31.0	13.2	85.0	19.6	383.0	27.7	135.0
5.5	29.0	13.5	121.0	19.7	372.0	28.0	179.0
5.6	27.0	13.8	170.0	19.8	337.0	28.3	245.0
5.7	25.0	13.9	195.0	19.9	300.0	28.6	317.0
6.0	16.0	14.0	215.0	20.0	282.0	28.9	413.0
6.3	12.0	14.1	230.0	20.3	226.0	29.2	478.0
6.6	10.0	14.2	244.0	20.6	133.0	29.3	490.0
6.9	9.0	14.3	259.0	20.9	85.0	29.4	503.0
7.2	11.0	14.4	269.0	21.2	46.0	29.5	506.0
7.5	13.0	14.5	289.0	21.5	35.0	29.6	510.0
7.8	19.0	14.6	291.0	21.8	33.0	29.7	505.0
8.1	26.0	14.7	293.0	22.1	39.0	29.8	488.0
8.4	39.0	14.8	280.0	22.4	59.0	29.9	465.0
8.7	56.0	14.9	260.0	22.7	87.0	30.0	453.0
9.0	81.0	15.0	224.0	23.0	138.0		
9.1	95.0	15.1	199.0				

Ar 曲线测量数据

$U_{Kg2}(V)$	$I_{n}(nA)$	$U_{K,g2}(V)$	$I_{p}(nA)$	则里级仍 $U_{K,g2}(V)$	$I_{p}(nA)$	$U_{Kg2}(V)$	$I_{p}(nA)$
0.0	0.0	25.0	19.1	44.0	72.1	65.2	124.5
8.0	0.0	25.5	20.9	44.5	65.4	65.4	125.2
8.5	0.4	26.0	23.7	45.0	56.0	65.6	125.0
9.0	0.9	26.5	28.7	45.5	47.0	65.8	124.9
9.5	1.5	27.0	33.3	46.0	38.0	66.0	123.3
10.0	2.3	27.5	38.5	46.5	32.0	66.5	121.6
10.5	3.3	28.0	43.0	47.0	31.0	67.0	118.0
11.0	4.3	28.5	46.7	47.5	34.0	67.5	112.9
11.5	5.8	29.0	49.5	48.0	42.0	68.0	105.9
12.0	7.3	29.4	52.3	48.5	51.8	68.5	96.1
12.5	9.8	30.0	54.3	49.0	61.2	69.0	86.3
13.0	11.9	30.2	54.6	49.5	69.6	69.5	77.0
13.5	14.6	30.4	56.4	50.0	77.0	70.0	69.2
14.0	17.3	30.6	55.8	50.5	85.0	70.5	65.3
14.5	19.8	30.8	56.1	51.0	91.3	71.0	66.2
15.0	21.4	31.0	56.4	51.5	97.0	71.5	70.7
15.5	23.2	31.2	56.5	52.0	100.6	72.0	77.8
16.0	24.6	31.4	56.4	52.5	103.2	72.5	86.0
16.2	24.7	31.6	56.1	53.0	104.8	73.0	95.7
16.4	24.8	31.8	55.5	53.2	105.0	73.5	102.3
16.6	25.3	32.0	55.0	53.4	105.2	74.0	111.3
16.8	25.6	32.5	52.3	53.6	105.0	74.5	117.8
17.0	25.9	33.0	47.9	53.8	104.8	75.0	124.0
17.2	26.1	33.5	44.2	54.0	104.4	75.5	130.2
17.4	26.5	34.0	37.9	54.5	102.5	76.0	134.2
17.6	26.6	34.5	33.0	55.0	99.5	76.5	138.0
17.8	26.9	35.0	26.0	55.5	94.6	77.0	140.8
18.0	27.0	35.5	24.2	56.0	86.7	77.2	140.9
18.2	27.2	36.0	23.9	56.5	77.6	77.4	141.4
18.4	27.5	36.5	26.0	57.0	68.0	77.6	141.8
18.6	27.7	37.0	36.1	57.5	56.8	77.8	141.9
18.8	27.8	37.5	45.6	58.0	47.4	78.0	141.8
19.0	27.9	38.0	54.0	58.5	44.4	78.2	141.6
19.2	28.0	38.5	59.3	59.0	46.5	78.4	141.2
19.4	28.3	39.0	65.8	59.5	52.9	78.6	140.5
19.6	28.2	39.5	71.0	60.0	62.8	78.8	139.6
19.8	28.1	40.0	75.2	60.5	71.0	79.0	138.9
20.0	28.0	40.5	78.2	61.0	80.6	79.5	134.9
20.2	27.9	41.0	80.5	61.5	92.0	80.0	129.3
20.4	27.8	41.2	81.0	62.0	98.3	80.5	122.3
20.6	27.7	41.4	81.6	62.5	105.2	81.0	114.2
20.8	27.5	41.6	82.3	63.0	110.2	81.5	106.7
21.0	27.3	41.8	82.4	63.5	116.1	82.0	99.5
21.5	27.1	42.0	82.7	64.0	120.3	82.5	94.7 92.5
22.0	25.9 24.4	42.2	82.6	64.2 64.4	121.0	83.0	
22.5	24.4	42.4 42.6	82.3 82.0	64.4 64.6	122.0	83.5 84.0	94.1
23.0 23.5	23.8 22.9	42.6 42.8	82.0 81.3	64.6 64.8	123.0 123.4	84.0 84.5	97.9 103.3
23.5	22.9	42.8	81.3 80.4	65.0	123.4	85.0	103.3
24.0	20.4 19.3	43.5	76.9	03.0	123./	65.0	103.2
24.5	13.3	43.3	70.9				