Homework 2

1. Show that for all $n, k \in \mathbb{N}$ we have

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

First we prove a lemma showing that for two sets A and B, if $A \cap B = \emptyset$ then $|A| + |B| = |A \cup B|$.

Proof. We use contradiction. Suppose, to the contrary, that if A and B are sets and $A \cap B = \emptyset$ then $|A| + |B| \neq |A \cup B|$. Then there are two cases.

Case 1: $|A| + |B| > |A \cup B|$. Then there exists an element which is in A and is in B since all elements in A or in B are in $A \cup B$. But this is a contradiction since $A \cap B = \emptyset$.

Case 2: $|A| + |B| < |A \cup B|$. Then there exists an element in $A \cup B$ which is not in A or in B. But this goes against the definition for $A \cup B$ and is a contradiction.

In both cases we have contradictions thus if $A \cap B = \emptyset$ then $|A| + |B| = |A \cup B|$.

Now we prove the original result.

Proof. Let S be a set with n elements and let $A \subseteq S$ such that A has k elements. Then for a given element $a \in S$, we see that either $a \in A$ or $a \notin A$ for all $A \subseteq S$. Now let $X = \{A \subseteq S \mid |A| = k, \ a \in A\}$ and let $Y = \{A \subseteq S \mid |A| = k, \ a \notin A\}$. Because it is never the case that for some $a \in S$, $a \in A$ and $a \notin A$ for any $A \subseteq S$, $A \in A$ and $A \in A$ and $A \in A$ have no common elements and so $A \cap Y = \emptyset$. Additionally, every subset of $A \in A$ with $A \subseteq A$ elements is either in $A \in A$ or in $A \in A$ and $A \in A$ have no contain subsets of $A \in A$ with $A \in A$ elements. We see that $A \cap A \in A$ contains all the subsets of $A \in A$ and since $A \cap A \in A$ has $A \in A$ and $A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \in A$ has $A \cap A \in A$ and $A \cap A \in A$ has $A \cap A \cap A \in A$ has $A \cap A \cap A \cap A \cap A$ has $A \cap A \cap A \cap A \cap A$ has $A \cap A \cap$

Now consider the set X. For every element $A \in X$, $A \subseteq S$, |A| = k and $a \in A$ for some $a \in S$. Then for every $A \in X$ there exists a set $B \subseteq S \setminus \{a\}$ such that $a \notin B$ and |B| = k - 1. Since X only contains subsets $A \subseteq S$ and $|S \setminus \{a\}| = n - 1$, we see that the number of elements of X is equal to the number of sets with k - 1 elements which are subsets of a set with n - 1 elements. Thus $|X| = \binom{n-1}{k-1}$.

Finally consider the set Y. For every element $A \in Y$, $A \subseteq S$, |A| = k and $a \notin A$. But if for all $A \subseteq S$, $a \notin A$, then $A \subseteq S \setminus \{a\}$. This is true for all $A \in Y$ since by definition, $A \in Y$ if $a \notin A$ for some $a \in S$. Then, since $|S \setminus \{a\}| = n - 1$, Y contains all the sets with k elements which are subsets of set with $k \in S$ elements. Thus, $|Y| = \binom{n-1}{k}$. But since $X \cap Y = \emptyset$, $|X \cup Y| = |X| + |Y|$ and so $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

2. (Binomial Theorem) Show that for all a, b and $n \in \mathbb{N}$ we have

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Proof. We use induction on n. We see that the theorem holds for n=1 since

$$\sum_{k=0}^{1} \binom{1}{k} a^k b^{1-k} = \binom{1}{0} a^0 b^1 + \binom{1}{1} a^1 b^0 = a + b = (a+b)^1.$$

Now we assume that $(a+b)^j = \sum_{k=0}^j {j \choose k} a^k b^{j-k}$ for some $j \in \mathbb{N}$ and show that it holds for j+1. We see that

$$\begin{split} &(a+b)^{j+1} = (a+b)^j(a+b) \\ &= \left(\sum_{k=0}^j \binom{j}{k}a^kb^{j-k}\right)(a+b) \\ &= \sum_{k=0}^j \binom{j}{k}a^{k+1}b^{j-k} + \sum_{k=0}^j \binom{j}{k}a^kb^{j+1-k} \\ &= \sum_{k=0}^{j-1} \binom{j}{k}a^{k+1}b^{j-k} + \sum_{k=1}^j \binom{j}{k}a^kb^{j+1-k} + \binom{j}{0}a^0b^{j+1} + \binom{j}{j}a^{j+1}b^0 \\ &= \sum_{k=1}^j \binom{j}{k-1}a^kb^{j+1-k} + \sum_{k=1}^j \binom{j}{k}a^kb^{j+1-k} + \binom{j}{0}a^0b^{j+1} + \binom{j}{j}a^{j+1}b^0 \\ &= \sum_{k=1}^j \left(\binom{j}{k-1} + \binom{j}{k}\right)a^kb^{j+1-k} + \binom{j}{0}a^0b^{j+1} + \binom{j}{j}a^{j+1}b^0 \\ &= \sum_{k=1}^j \binom{j+1}{k}a^kb^{j+1-k} + \binom{j+1}{0}a^0b^{j+1} + \binom{j+1}{j+1}a^{j+1}b^0 \\ &= \sum_{k=0}^j \binom{j+1}{k}a^kb^{j+1-k}. \end{split}$$

Since the theorem is true for n=1 and it's true for j+1 when it is true for j for all $j \in \mathbb{N}$ then we can conclude it is true for all $n \in \mathbb{N}$.

3. Prove that for all $n, k \in \mathbb{N}$ with $0 \le k \le n$ we have

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Proof. We use induction on n. We see that when n=1, k can either equal 0 or 1. When k=0 we have $\binom{1}{0}=1=\frac{1!}{(0!)(1-0)!}$ and when k=1 we have $\binom{1}{1}=1=\frac{1!}{(1!)(1-1)!}$. We now assume that $\binom{j}{k}=\frac{j!}{k!(j-k)!}$ for

some $j \in \mathbb{N}$ and $0 \le k \le j$ and show that this implies the statement is true for j + 1. Note that

$$\binom{j+1}{k} = \binom{j}{k} + \binom{j}{k-1}$$
 For $k \neq 0$ and $k \neq j+1$
$$= \frac{j!}{k!(j-k)!} + \frac{j!}{(k-1)!(j-(k-1))!}$$

$$= \frac{j!(j+1-k)+j!(k)}{k!(j+1-k)!}$$

$$= \frac{j!(j+1-k+k)}{k!(j+1-k)!}$$

$$= \frac{j!(j+1)}{k!(j+1-k)!}$$

$$= \frac{(j+1)!}{k!(j+1-k)!}$$
.

We must now show that if k=0 or k=j+1 the equality still holds. We see that $\binom{j+1}{0}=1$ since there is only one way to choose the empty set from a set with j+1 elements. But also $\frac{(j+1)!}{0!(j+1-0)!}=1$. So the equality holds. Additionally, $\binom{j+1}{j+1}=1$ since there is only one subset with j+1 elements in a set with j+1 elements and $\frac{(j+1)!}{(j+1)!(j+1-(j+1))!}=1$ and so the equality holds as well. Thus, the statement is true for all $0 \le k \le j+1$. Since we have shown the base case for n=1 and shown that the statement holds for j+1 when j is true for all $j \in \mathbb{N}$, we can conclude that it's true for all $n \in \mathbb{N}$.

4. Prove that for all $n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Proof. This is a special case of the Binomial Theorem. Let a = b = 1. Then we have

$$2^{n} = (1+1)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (1)^{k} (1)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k}$$

since $1^k = 1$ for all $k \in \mathbb{N}$.

5. Is it true that for all $n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0?$$

Proof. This is another special case of the Binomial Theorem. Let a=-1 and b=1. Then

$$0 = (-1+1)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} (1)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k}$$

since $1^{n-k} = 1$ and $0^n = 0$ for all $k, n \in \mathbb{N}$.