COMP 2804 Assignment 2

October 11, 2020

Question 1.

Name: Braeden Hall

Student Number: 101143403

Question 2.

The area of a rectangle is defined as $l \times w$ which in this case is $20 \times 30 = 600$. So the area of R is $600m^2$. We can divide R into $600 \ 1m \times 1m$ boxes and call the number of boxes n, so n = 600. The set S contains 601 points, p = 601, to be divided into the n boxes.

$$\left\lceil \frac{p}{n} \right\rceil = \left\lceil \frac{601}{600} \right\rceil = 2$$

Therefore, by the pigeon hole principle there is at least one box that contains at least 2 points. To achieve maximum spacing between these 2 points in the same box you would want to place them in corners diagonally across from one another. Call the distance between these 2 points d, d can be calculated using Pythagorean's theorem as follows:

$$d = \sqrt{1^2 + 1^2}$$

$$d = \sqrt{2}$$

Since $d = \sqrt{2}$ m and $\sqrt{2} < 2$ these 2 points will be less than 2m apart. Therefore, there will be at least 2 covidiots in the set S.

Question 3.

i) Define the set of pigeons as $\alpha_1, \alpha_2, \ldots, \alpha_7$, so p = 7. The interval $[-\pi/2, \pi/2]$ has a total length of π . This interval can be divided into 6 equal disjoint parts of length $\pi/6$, this defines our number of holes, n = 6. The points $\alpha_1, \alpha_2, \ldots, \alpha_7$ are all contained in the interval $[-\pi/2, \pi/2]$ so each point will fall into one of the 6 sections.

$$\left\lceil \frac{p}{n} \right\rceil = \left\lceil \frac{7}{6} \right\rceil = 2$$

Therefore, by the pigeon hole principle there is at least one interval of length $\pi/6$ that contains at least 2 points, say α_i and α_j . Since α_i and α_j are contained within the same section of length $\pi/6$, the distance between them must be between 0 and $\pi/6$. Assuming, without loss of generality, that α_i is greater than α_j , then $0 \le \alpha_i - \alpha_j \le \pi/6$.

ii) For each $i \in \{1, 2, ..., 7\}$, let p_i be the point with coordinates $(1, a_i)$. Call the angle between the vector from the origin to p_i and the x-axis b_i .

$$tan(b_i) = \frac{a_i}{1} = a_i \tag{1}$$

Because the x coordinate of each point p_i is positive, we know that each angle b_i is within the interval $[-\pi/2, \pi/2]$. By part i, we know that there exists 2 indices, i, j such that $0 \le b_i - b_j \le \pi/6$. Now, tan(0) = 0

and $tan(\pi/6) = \frac{1}{\sqrt{3}}$, so $0 \le tan(b_i - b_j) \le \frac{1}{\sqrt{3}}$.

$$tan(b_i - b_j) = \frac{tan(b_i) - tan(b_j)}{1 + tan(b_i)tan(b_j)}$$
$$= \frac{a_i - a_j}{1 + a_i a_j} \qquad \text{(by (1))}$$

Therefore, $0 \le \frac{a_i - a_j}{1 + a_i a_j} \le \frac{1}{\sqrt{3}}$.

Question 4.

Base case: n = 0

Sub n = 0 into the equation $f(n) = 7 \times 5^n - 3n^2$:

$$f(0) = 7 \times 5^{0} - 3(0)^{2}$$
$$= 7 \times 1 - 0$$
$$= 7$$

This is the defined value of f(0).

Inductive hypothesis: Assume $f(k) = 7 \times 5^k - 3k^2$ for all $k \in \{0, 1, \dots, n-1\}$. Inductive case:

Sub inductive hypothesis into $f(n) = 5 \times f(n-1) + 12n^2 - 30n + 15$

$$\begin{split} f(n) &= 5 \times (7 \times 5^{n-1} - 3(n-1)^2) + 12n^2 - 30n + 15 \\ &= 7 \times 5^n - 15(n-1)^2 + 12n^2 - 30n + 15 \\ &= 7 \times 5^n - 15(n^2 - 2n + 1) + 12n^2 - 30n + 15 \\ &= 7 \times 5^n - 15n^2 + 30n - 15 + 12n^2 - 30n + 15 \\ &= 7 \times 5^n - 3n^2 \end{split}$$

Therefore, QED.

Question 5.

Mystery function:

$$f(1) = 1$$

 $f(n) = n + (n/2)$ (when $n \ge 2$)

Claim: f(n) = 2n - 1

Base case:

Sub n = 1 into f(n) = 2n - 1

$$f(1) = 2(1) - 1$$

= 2 - 1
= 1

This is the defined value of f(1).

Inductive hypothesis: Assume that f(k) = 2k - 1 for each $k \in \{1, 2, 4, \dots, n/2\}$ Inductive case:

Sub inductive hypothesis into f(n) = n + (n/2)

$$f(n) = n + \left(2\left(\frac{n}{2}\right) - 1\right)$$
$$= n + n - 1$$
$$= 2n - 1$$

Therefore, QED.

Question 6.

i) B is a set of (x, y) where both x and y are 00-free bitstrings of length n - 1. The number of 00-free bitstrings of length n - 1 is $f_{n-1+2} = f_{n+1}$. The number of combinations of (x, y) is equal to the number of ways get x times the number of ways to get y. So by the product rule $|B| = f_{n+1} \times f_{n+1} = f_{n+1}^2$.

ii) Since x and y are both bitstrings of length n-1 the concatenation of them is of length 2n-2. Each different element (x,y) of B will generate a different bitstring of length 2n-2, so there exists a bijection between bitstrings of length 2n-2 and elements (x,y) of B. Therefore, the number of elements (x,y) of B where the concatenation xy is 00-free is equal to the number of 00-free bitstrings of length 2n-2 which is $f_{2n-2+2} = f_{2n}$.

iii) For the concatenation xy to not be 00-free the last bit of x must be 0 and the first bit of y must also be 0.

- For x to be a 00-free bitstring of length n-1 that ends with 0 the string must start with a 00-free bitstring of length n-3 followed by the 2 bits 10. The number of ways to generate a string x is $f_{n-3+2} = f_{n-1}$.
- For y to be a 00-free bitstring of length n-1 that starts with 0 the string must start with the 2 bits 01 followed by a 00-free bitstring of length n-3. The number of ways to generate a string y is $f_{n-3+2} = f_{n-1}$.

Therefore, by the product rule the number of non 00-free concatenations of elements (x, y) of B is $f_{n-1} \times f_{n-1} = f_{n-1}^2$

iv) B is the set of all elements (x, y) where both x and y are 00-free bitstrings of length n - 1. Let S be the set of 00-free concatenations xy of elements (x, y) of B.

So $B \setminus S$ is the set non 00-free concatenations xy of elements (x, y) of B.

By part i, we know $|B| = f_{n+1}^2$. From part ii, we know that $|S| = f_{2n}$ and from part iii, we know that $|B \setminus S| = f_{n-1}^2$.

So by the complement rule

$$|S| = |B| - |B \setminus S|$$

 $f_{2n} = f_{n+1}^2 - f_{n-1}^2$

Question 7.

i) Base case: n = 0

The bitstring s_0 is defined as 1 so it is 00-free.

General case: n > 0

In order to obtain s_n you must use s_{n-1} and replace each 1 with 10 and each 0 with 1. There is no possible sequence of bits in s_{n-1} that will generate a 00 in s_n . The sequence 11 will become 1010, the sequence 10

will become 101 and the sequence 01 will become 110. Even the sequence 00, which is impossible in s_{n-1} , would generate 11. Therefore, for every value of $n \ge 0$ s_n will be 00-free.

ii)
$$L_0 = 1$$

$$O_0 = 1$$

$$L_1 = 2$$

$$O_1 = 1$$

- iii) The bitstring s_n is generated using s_{n-1} and every bit of s_{n-1} generates a sequence of bits in s_n that contains exactly one 1. So the number of 1's in s_n , or O_n , is equal to the length of s_{n-1} , or L_{n-1} .
- iv) As s_n is made from using each bit of s_{n-1} to generate some sequence of s_n , the length of s_n must be at least the length of s_{n-1} , or L_{n-1} . Each bit equal to 1 in s_{n-1} will generate one extra bit in s_n , this will make s_n longer than s_{n-1} . To account for these extra bits in s_n we can simply add the number of 1's in s_{n-1} to its length, since each 1 generates one extra bit. The number of 1's in s_{n-1} is O_{n-1} , so O_{n-1} , so O_{n-1} is O_{n-1} .
- v) Determining L_n :

$$L_n = L_{n-1} + O_{n-1}$$
 (by part iv)
= $L_{n-1} + L_{n-2}$ (by part iii)

Define the function $f: \{0, 1, 2, \dots\} \to L_n$ as:

$$f(0) = 1$$

 $f(1) = 2$
 $f(n) = f(n-1) + f(n-2)$ (when $n > 2$)

We have seen in class that the Fibonacci sequence is defined $f: \{0, 1, 2, \dots\} \to \mathbb{Z}$:

$$fib(0) = 0$$

$$fib(1) = 1$$

$$fib(n) = fib(n-1) + fib(n-2)$$
 (when $n \ge 2$)

We can see that for $n \ge 2$ f(n) and fib(n) have the same recursive definition. However, function f starts 2 iterations ahead of fib. So f(n) = fib(n+2) for every value of n, and since every value of $f(n) = L_n$ therefore,

$$L_n = fib(n+2) \tag{2}$$

Determining O_n :

$$O_n = L_{n-1}$$
 (by part iii)

$$= L_{n-2} + O_{n-2}$$
 (by part iv)

$$= L_{n-2} + L_{n-3}$$
 (by part iii)

$$= fib(n-2+2) + fib(n-3+2)$$
 (by (2))

$$= fib(n) + fib(n-1)$$

$$= fib(n+1)$$

Therefore, $O_n = fib(n+1)$.

vi) Each 1 in s_{n-1} generates exactly one 0 in s_n . So the number of 0's in s_n is equal to the number of 1's in s_{n-1} . So $Z_n = O_{n-1}$.

By part v we know that $O_n = fib(n+1)$, since $Z_n = O_{n-1}$, Z_n must be equal to fib(n). Therefore, $Z_n = fib(n)$.

Question 8.

```
i)  A_2 = 2 \; (\{00,11\}) \\ A_3 = 4 \; (\{000,011,110,111\}) \\ A_4 = 7 \; (\{0000,0011,0110,0111,1100,1110,1111\}) \\ A_5 = 12 \; (\{00000,00011,00110,00111,01100,01111,01100,1111,11000,11011,11100,11111,11111)
```

- ii) A string counted by A_n must either
 - start with 0 followed by any string counted by A_{n-1} ; OR
 - start with 11 followed by some sequence of n-2 bits such that the resulting string is happy, this is the definition of B_n

Therefore, $A_n = A_{n-1} + B_n$.

- iii) If $n \ge 4$ then $n 1 \ge 3$. So by part ii, $A_{n-1} = A_{n-2} + B_{n-1}$.
- iv) A string counted by B_n must either
 - start with 110 followed by any string counted by A_{n-3} ; OR
 - start with 111 followed by some sequence of n-3 bits such that the resulting string is happy. If we only consider bits 2 though n then this is a happy bitstring of length n-1 that starts with 11, this is the definition of B_{n-1} .

Therefore, $B_n = A_{n-3} + B_{n-1}$.

 $\mathbf{v})$

$$\begin{split} A_n &= 2A_{n-1} - A_{n-2} + A_{n-3} \\ &= 2(A_{n-2} + B_{n-1}) - A_{n-2} + A_{n-3} \\ &= 2A_{n-2} - A_{n-2} + 2B_{n-1} + A_{n-3} \\ &= A_{n-2} + B_{n-1} + B_n \\ &= A_{n-1} + B_n \\ &= A_n \end{split} \qquad \text{(by part iii)}$$