Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

	1	2	2	4	n
	1	2	3	4	Запас
					Ы
1	7	8	3	5	10
2	2	6	5	2	17
3	5	2	4	3	12
Потре	7	9	16	7	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 10 + 17 + 12 = 39$$

$$\sum b = 7 + 9 + 16 + 7 = 39$$

Занесем исходные данные в распределительную таблицу.

	1	2	2	1	Запас
	1		3	4	Janac
					Ы
1	7	8	3	5	10
2	2	6	5	2	17
3	5	2	4	3	12
Потре	7	9	16	7	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	7	8	3[10]	5	10
2	2[7]	6	5[3]	2[7]	17
3	5	2[9]	4[3]	3	12
Потре	7	9	16	7	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 3*10 + 2*7 + 5*3 + 2*7 + 2*9 + 4*3 = 103$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 0$	$v_2 = 1$	$v_3 = 3$	$v_4 = 0$
$u_1 = 0$	7	8	3[10]	5

$u_2 = 2$	2[7]	6	5[3]	2[7]
$u_3=1$	5	2[9]	4[3]	3

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ij}$.

Минимальные затраты составят:

$$F(x) = 3*10 + 2*7 + 5*3 + 2*7 + 2*9 + 4*3 = 103$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.