DPENCLASSROOMS

Prédiction de la demande en électricité

Projet 9: Prédisez la demande en électricité

Contexte

Mission pour une société spécialisée dans les énergies renouvelables

Ces énergie sont intermittentes : difficile de prévoir les capacité de production de l'électricité

La demande en électricité varie au cours du temps (météo, température, luminosité..)

Stratégie: Créer un modèle permettant de prévoir la consommation sur une année

But: Répondre au besoin d'électricité (adéquation entre l'offre et la demande)

	U	nnamed: 0	JAN	FÉV	MAD	AVO							_		
	0	2010			MAR	AVK	MAI	JUN	JUI	AOÛ	SEP	OCT	NOV	DÉC	TOTAL
	U	2010	624.8	474.7	414.9	292.7	260.6	112.6	46 E	02.0				DEC	TOTAL
	1	2010 2011	507.2	408.6	260.7	202.0		112.0	40.5	93.8	163.6	286.4	419.3	644.1	3833.8
		2011		400.0	300.7	202.0	165.6	117.2	122.5	84.7	101.9	232.3	338.0	424.0	2070
- 1	$\int d^{2}$	rác I.											550.0	424.8	30/3.4

Degrés Jour Unifiés pour la climatisation de 2010 à 2018 pour la France

										J11 C		oto	d Z	OTS I	1
_	Unnamed: 0	JAN	FÉV	MAR	AVR	MAI									_
0	Unnamed: 0 2010	0	0	0.0		MAI	JUN	JUI	AOÛ	SEP	OCT	NOV	DÉC	TOTAL	
1	2010 2011	·	U	0.0	2.6	7.6	27.5	61.1	24.4	44	1.0	•		TOTAL	
	2011	0	0	0.1	7.8	10.8	27.7	11 7	20.0		1.9	0	0	129.4	
	2011							11.7	28.8	26.8	6.3	0	0	120.0	

df_clim

Nettoyage de la Dataframe df_energie :

Sélection du territoire : France

	Mois	qualite		territoire	consommation
0	0000-00	Données consolidées		Grand-Est	3364
1	0000-00	Données définitives	Nouvelle-Aquitaine		3222
2	0000-00	Données définitives	Auvergne-R	hône-Alpes	5010
3	0000-00	Données définitives	Bourgogne-Fran	che-Comté	1533
4	0000-00	Données définitives		Bretagne	1493

Suppression des mois 0000

Suppression des dates non en communs avec le DJU (< 2018-06-01)

	Mois	consommation
0	2010-01-01	56342
1	2010-02-01	48698
2	2010-03-01	48294
3	2010-04-01	38637
4	2010-05-01	37284
96	2018-01-01	48807
97	2018-02-01	50236
98	2018-03-01	48484
99	2018-04-01	36236
100	2018-05-01	33949
101 r	ows × 2 colu	umns

Nettoyage de la Dataframe df_chauffage et df_clim :

Addition des valeurs dju chauffage et clim

	Unnamed: 0	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	OCT	NOV	DÉC	TOTAL
0	2010	624.8	474.7	414.9	292.7	260.6	112.6	46.5	93.8	163.6	286.4	419.3	644.1	3833.8
1	2011	507.2	408.6	368.7	202.0	165.6	117.2	122.5	84.7	101.9	232.3	338.0	424.8	3073.4

Unnamed: 0 JAN FÉV MAR AVR MAI JUN JUI AOÛ SEP OCT NOV DÉC TOTA 0 4020 624.8 474.7 414.9 295.3 268.2 140.1 107.6 118.2 168.0 288.3 419.3 644.1 3963. 1 4022 507.2 408.6 368.8 209.8 176.4 144.9 134.2 113.5 128.7 238.6 338.0 424.8 3193.

Degrés jours unifiés

 Différence entre la température extérieure et une température de référence : estimation de la consommation d'En thermique

	Annee	01	02	03	04	05	06	07	80	09	10	11	12
0	2010	624.8	474.7	414.9	295.3	268.2	140.1	107.6	118.2	168.0	288.3	419.3	644.1
1	2011	507.2	408.6	368.8	209.8	176.4	144.9	134.2	113.5	128.7	238.6	338.0	424.8
2	2012	454.5	555.6	335.4	344.5	205.0	143.0	119.6	112.8	175.6	263.2	403.3	455.7

Colonne renommé et l'année est divisé par 2

Nettoyage de la Dataframe df_chauffage et df_clim :

Transformation en datetime

for Annee in dju_total.index.values:
 for Mois in dju_total.columns:
 dju_final['Mois'].append(f"{Annee}-{Mois}-01")
 dju_final['dju'].append(dju_total.loc[Annee,Mois])

0.0

0.0

0.0

105 2018-10-01

106 2018-11-01

107 2018-12-01

Suppression des dates < 2018-06-01

Merge des Dataframes :

Mois	consommation			Mois	dju
0 2010-01-01	56342	_	0	2010-01-01	624.8
1 2010-02-01	48698	_	1	2010-02-01	474.7
2 2010-03-01	48294		2	2010-03-01	414.9

Merge sur les Mois

	consommation	dju
Mois		
2010-01-01	56342	624.8
2010-02-01	48698	474.7
2010-03-01	48294	414.9

Correction de l'effet température avec une régression linéaire :

Régression linéaire

Régression linéaire

• Méthode statistique de prédiction : une variable (X) expliquée est modélisée par une fonction affine d'une autre variable (y)

OLS: Ordinary Least Squares

 Technique d'analyse : comparaison de la différence entre les points du data set et les prédictions afin de mesurer l'erreur

OLS Regression Results						
Dep. Varia	able:	consommati	on R-sq	uared:		0.952
Model:		C	LS Adj.	R-squared:		0.952
Method:		Least Squar	es F-st	atistic:		1983.
Date:	Th	u, 19 Aug 20	21 Prob	(F-statisti	c):	2.69e-67
Time:		10:01:	11 Log-	Likelihood:		-887.64
No. Observ	/ations:	1	01 AIC:			1779.
Df Residua	als:		99 BIC:			1785.
Df Model:			1			
Covariance	Type:	nonrobu	ist			
	coef	std err	t		[0.025	0.975]
const	2.638e+04				2.57e+04	2.71e+04
dju	48.0958	1.080	44.533	0.000	45.953	50.239
Omnibus:				in-Watson:		1.691
Prob(Omnib	ous):			ue-Bera (JB)	:	0.266
Skew:			.03 Prob			0.875
Kurtosis:		3.1	.44 Cond	. No.		739.

Correction de l'effet température avec une régression linéaire :

Correction de l'effet température avec une régression linéaire :

Test sur les résidus

Résidus

 Différence entre la valeur observée et la valeur prédite du modèle

Test shapiro

p-value =0.96

HO: L'échantillon est normalement distribué

Ha: L'échantillon n'est pas normalement distribué p value > 0.05): L'échantillon suit une loi normale

Normalité: distribution normale

Les résidus suivent une loi normale

Correction de l'effet température avec une régression linéaire :

Test sur les résidus

Test d'homoscédasticité

Test Goldfeld et Quandt

p-value =0.40

HO: Les échantillons possèdent une variance égale

Ha: Les échantillons possèdent des variances différentes

p value > 0.05 : Il y a homoscédasticité des résidus

Test de corrélation

Test Durbin-Watson

r = 1,69

(r -> 2): Il n'y a pas d'auto-corrélation

Il y a homoscédasticité et il n'y a pas d'auto-corrélation

Correction de l'effet température avec une régression linéaire :

	consommation	dju	conso_corrige
Mois			
2010-01-01	56342	624.8	56430.430531
2010-02-01	48698	474.7	49211.254213
2010-03-01	48294	414.9	46335.126673
2010-04-01	38637	295.3	40582.871593
2010-05-01	37284	268.2	39279.476002
2018-01-01	48807	417.9	46479.414008
2018-02-01	50236	537.6	52236.478666
2018-03-01	48484	426.6	46897.847279
2018-04-01	36236	233.6	37615.362074
2018-05-01	33949	180.9	35080.714559

Correction de l'effet température avec une régression linéaire :

Test de stationnarité

Série temporelle stationnaire

 Les propriétés statistiques (espérance, variance, autocorrélation) ne varient pas dans le temps

Test d'adfuller

p-value =0.10

H0: La série comporte une racine unitaire

Ha: Les séries ne comportent pas de racine unitaire (stationnaire)

p value > 0.05: La série n'est pas stationnaire

Il n'y a pas de stationnarité

Racine unitaire

 Caractéristique qui cause des problèmes d'inférence statistique (non stationnaire)

Désaisonnalisation de la consommation corrigée avec les MM :

Seasonal_decompose

Seasonal_decompose

 Séparation des séries en composantes : - La tendance potentielle (hausse ou baisse de la moyenne) - La saisonnalité (un cycle récurrent) – Les résidus aléatoires

Consommation corrigée

Tendance globale : Moyenne mobile

Saisonnalité de 12 mois

Résidus : observé – (tendance + saisonnalité)

Désaisonnalisation de la consommation corrigée avec les MM :

Moyenne mobile

 Moyenne utilisée pour supprimer les fluctuations transitoires (recalculée de façon continue)

	•	
	conso_corrige	MM
Mois		
2010-01-01	56430.430531	NaN
2010-02-01	49211.254213	NaN
2010-03-01	46335.126673	NaN
2010-04-01	40582.871593	NaN
2010-05-01	39279.476002	NaN
2018-01-01	46479.414008	39279.876800
2018-02-01	52236.478666	39901.113936

	Consommation corrigé et moyenne mobile — conso_corrige
55000	— MM
50000	
₩ 45000 9	
40000	
35000	VVVVVVV
20	10 2011 2012 2013 2014 2015 2016 2017 2018 Année

12 périodes

Désaisonnalisation de la consommation corrigée avec les MM :

 $Conso_{corrigdiff} = conso_{corrig\'e} - moyenne_{mobile (12 \ p\'eriodes)}$

•						
	conso_corrige	MM	conso_corrig_diff			
Mois						
2010-01-01	56430.430531	NaN	NaN			
2010-02-01	49211.254213	NaN	NaN			
2010-03-01	46335.126673	NaN	NaN			
2010-04-01	40582.871593	NaN	NaN			
2010-05-01	39279.476002	NaN	NaN			
2018-01-01	46479.414008	39279.876800	7199.537208			
2018-02-01	52236.478666	39901.113936	12335.364730			
2018-03-01	46897.847279	40331.571151	6566.276127			
2018-04-01	37615.362074	40001.313474	-2385.951400			
2018-05-01	35080.714559	39960.832861	-4880.118301			

Désaisonnalisation de la consommation corrigée avec les MM :

Test de stationnarité de la consommation corrigée différenciée

Test d'adfuller

p-value =1.19e-9

HO: La série comporte une racine unitaire

Ha: Les séries ne comportent pas de racine unitaire (stationnaire)

p value < 0.05 : La série est stationnaire

La consommation corrigée différenciée est stationnaire

Prévision de la consommation corrigée avec le lissage exponentiel :

Lissage exponentiel

Lissage exponentiel

 Méthode de lissage et de prévision de données chronologiques : 3 types

Additif

La série est la somme de ses composantes

Multiplicative

La série est le produit de ses composantes

Lissage exponentiel simple (SES)

Ce lissage suppose que la série n'a pas de changement (tendance et saisonnalité)

Lissage exponentiel double (HES)

Ce lissage permet à la série d'avoir une composante de tendance

Lissage exponentiel triple (WES)

Ce lissage permet à la série d'avoir une composante de tendance et d'inclure la saisonnalité

Prévision de la consommation corrigée avec le lissage exponentiel :

Préparation des données

Prévision de la consommation corrigée avec le lissage exponentiel :

Indicateurs d'écart

 Comparer les observations avec les prédictions Erreur quadratique moyenne

12727394 Gwh²

Erreur moyenne absolue

3009 Gwh

Erreur moyenne en pourcentage

7.6 %

Prévision de la consommation corrigée avec le lissage exponentiel :

Lissage exponentiel triple: Holt Winter multiplicatives

Erreur quadratique moyenne

8969770 Gwh²

Erreur moyenne absolue

2411 Gwh

Erreur moyenne en pourcentage

5.9 %

Prévision de la consommation corrigée avec le lissage exponentiel :

Lissage exponentiel double: Holt multiplicatives

Erreur quadratique moyenne

27703914871 Gwh²

Erreur moyenne absolue

134306 Gwh

Erreur moyenne en pourcentage

336 %

Prévision de la consommation corrigée avec la méthode SARIMA :

Integrated - value denoted by d

Modèle ARIMA

 Modèles de prévision qui visent à décrire les autocorrélations dans la série

SARIMA

Extension d'AMIRA qui prend en charge la composante saisonnière

Prévision de la consommation corrigée avec la méthode SARIMA :

ACF

 Fonction d'autocorrélation : description de l'autocorrélation entre une observation et une observation à un temps antérieur

Différenciation

 Remplacement de la série originale par la série des différences de points adjacents

Autocorrélation pour un grand nombre de décalages : nécessite une différenciation

Prévision de la consommation corrigée avec la méthode SARIMA :

Encore une autocorrélation pour un grand nombre de décalages : différenciation

Données Mission 1 Mission 3 Conclusion Mission 2

Prévision de la consommation corrigée avec la méthode SARIMA :

Différenciation I – B12

Test d'adfuller

p-value =8.85e-11

HO: La série comporte une racine unitaire

Ha: Les séries ne comportent pas de racine

unitaire (stationnaire)

p value < 0.05 La série est stationnaire

Autocorrélation décline rapidement vers 0 : Série stationnaire

Prévision de la consommation corrigée avec la méthode SARIMA :

Différenciation I – B12

PACF

 Fonction d'autocorrélation partielle : description de la relation directe entre une observation et son décalage

Autocorrélation significative à 12, 24, 36 mois : période saisonnière de 12 mois

Prévision de la consommation corrigée avec la méthode SARIMA :

Détermination du meilleur modèle SARIMA

smodel.summary()

Best model: ARIMA(1,0,2)(0,1,1)[12]
Total fit time: 30.035 seconds


```
ARIMA(1,0,2)(0,1,1)[12]
                                     : AIC=1349.086, Time=0.51 sec
ARIMA(1,0,2)(0,1,0)[12]
                                     : AIC=1379.345, Time=0.09 sec
ARIMA(1,0,2)(1,1,1)[12]
                                     : AIC=1355.942, Time=0.64 sec
ARIMA(1,0,2)(0,1,2)[12]
                                     : AIC=1356.057, Time=1.10 sec
ARIMA(1,0,2)(1,1,0)[12]
                                     : AIC=1359.889, Time=0.31 sec
                                     : AIC=1356.239, Time=1.27 sec
ARIMA(1,0,2)(1,1,2)[12]
ARIMA(0,0,2)(0,1,1)[12]
                                     : AIC=1366.459, Time=0.09 sec
ARIMA(1,0,3)(0,1,1)[12]
                                     : AIC=1354.601, Time=0.28 sec
ARIMA(0,0,3)(0,1,1)[12]
                                     : AIC=1367.950, Time=0.11 sec
ARIMA(2,0,3)(0,1,1)[12]
                                     : AIC=1370.288, Time=0.36 sec
```

auto.arima()

 Approche par étape pour rechercher plusieurs combinaisons des paramètres p,d,q

AIC

• Akaike's Information Criterion : estime le modèle par une méthode de maximum de vraisemblance (pénalise les modèles comportant trop de variables)

Sélection du modèle avec le AIC le plus faible

Prévision de la consommation corrigée avec la méthode SARIMA:

→ Modèle SARIMA

SARIMAX Results

```
Dep. Variable:
                                                        No. Observations:
Model:
                   SARIMAX(1, 0, 2)x(0, 1, [1], 12)
                                                       Log Likelihood
                                                                                       -669.543
Date:
                                    Sat, 21 Aug 2021
                                                       AIC
                                                                                       1349.086
                                                                                                             AIC le plus faible
Time:
                                            11:09:07
                                                                                       1360,469
                                                        BIC
Sample:
                                                        HOIC
                                                                                       1353.618
                                                 - 84
Covariance Type:
                          std err
                                                   P> | z |
                                                              [0.025
                                                                           0.9751
                                                   0.000
                                                               0.928
               0.9513
                            0.012
                                                                            0.975
ar.L1
                                      79.071
ma.L1
                                                                           -0.737
              -0.8717
                            0.069
                                     -12.676
                                                   0.000
                                                              -1.006
ma.L2
              -0.0183
                            0.076
                                      -0.241
                                                   0.809
                                                              -0.167
                                                                           0.131
ma.S.L12
              -0.4237
                            0.073
                                      -5.820
                                                   0.000
                                                              -0.566
                                                                           -0.281
sigma2
Ljung-Box (L1) (Q):
                                       3.70
                                              Jarque-Bera (JB):
                                                                                  1.09
                                              Prob(JB):
Prob(Q):
                                       0.05
                                                                                  0.58
Heteroskedasticity (H):
                                       0.84
                                                                                 -0.28
                                               Skew:
Prob(H) (two-sided):
                                                                                  3.20
```


Prévision de la consommation corrigée avec la méthode SARIMA:

Visualisation du modèle SAMIRA

Erreur quadratique moyenne

7976462 Gwh²

Erreur moyenne absolue

2252 Gwh

Erreur moyenne en pourcentage

5.4 %

Prévision de la consommation corrigée avec la méthode SARIMA :

Analyse des résidus

- ☐ La régression linéaire a permis de corriger l'effet température Série non stationnaire
- Les moyennes mobiles ont permis la désaisonnalisation de la série corrigée Série stationnaire
- ☐ Le lissage exponentiel a permis la prévision de la consommation en énergie
- □ Le modèle SARIMA a permis la prévision de la consommation et a nécessité une différenciation :
 - Série non différenciée
 Série non stationnaire
 - Série différenciée 1-B
 Série non stationnaire
 - Série différenciée 1-B12
 Série stationnaire

	Holt multiplicative	Holt-Winters additif	Holt-Winters multiplicative	SARIMA
Erreur moyenne en pourcentage	336 %	7.6 %	5.9 %	5.4 %
Graphique	Reprisentation de la commentation complex en lest et la prédiction H multiplicative	Representation du la consumentant complex en test et la prédiction IVIII addition Test T	Representative de la consumentan compris en les el la prédiction IFF multiplicable 3000 9000 9000 9000 9000 9000 9000	Représentation de la consumention comple en feat et la prédiction de auren. Not Prédiction de a

Meilleur modèle : <u>SARIMA</u>

Prévision de la consommation en énergie d'une année pour l'adéquation entre l'offre et la demande de **ENERCOOP**

Merci pour votre attention

