STAT 515

Homework #4, due Friday, Feb. 17 at 2:30pm

Please make every assignment easier to grade by neatly organizing your writeup and clearly labeling your final answers when appropriate. Try using AT_EX !

- 1. Suppose that in a branching process with $X_0 = 1$, each individual produces some number of offspring that is Poisson with mean 1, independently of all other individuals.
 - (a) What is the expected number of generations until the process either dies out or attains size $X_n \geq 5$?
 - (b) What is the probability that the process will ever attain size $X_n \geq 5$?
- 2. Define a Markov chain on the nonnegative integers as follows: $P_{0j} = I\{j = 1\}$, and for i > 0,

$$P_{ij} = \begin{cases} i/(i+1) & \text{if } j = i+1\\ 1/(i+1) & \text{if } j = 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Argue that this chain is irreducible and aperiodic.
- (b) Prove that all states are recurrent.
- (c) Prove that all states are null recurrent. (You may assume without proof that null recurrence is a class property.)
- 3. Consider the symmetric one-dimensional random walk of Example 4.15 with p=1/2.
 - (a) Let T_i be the time at which the random walk first revisits state i given that it begins in state i. That is, $T_i = \inf\{n > 0 : X_n = i \mid X_0 = i\}$. For any n > 0, find $P(T_i = 2n)$.

Hint: Read the ballot problem example of Section 3.5 and the discussion following it.

(b) Prove that all states are null recurrent by showing that $E(T_i) = \infty$.

Hint: Read the random walk example of Section 4.3 for an idea about how to show this.

- 4. Read the random walk example of Section 4.8 and the discussion of the Ehrenfest model following it.
 - (a) Simulate the simple Ehrenfest diffusion process with total number of particles M = 30. Start the process at $X_0 = 10$. Run the process for 100,000 steps and draw a histogram of the resulting values of X_t .
 - (b) On the same histogram, indicate the true values that would be expected from a sample of size 100,000 from a binomial (n = 30, p = 1/2) distribution. See the example R code for ideas on how to do this.
 - (c) Explain what you observe from the comparison in part (b). Is the Markov chain you are simulating ergodic?
- 5. Let Q be a transition "matrix" for an irreducible Markov chain on the set \mathbb{Z} of all integers; i.e., $Q_{ij} = P(X_n = j \mid X_{n-1} = i)$ for all $i, j \in \mathbb{Z}$. Assume that $Q_{ij} > 0$ if and only if $Q_{ji} > 0$ and that $Q_{ii} > 0$ for all i. Also suppose that

$$\sum_{i \in \mathbb{Z}} \pi_i = 1 \quad \text{and } \pi_i > 0 \text{ for all } i \in \mathbb{Z}$$

and define

$$\alpha(i,j) = \min\left(\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right) \quad \text{for all } i, j \in \mathbb{Z}.$$

Consider a second Markov chain with transition probabilities given by

$$P_{ij} = \begin{cases} \alpha(i,j)Q_{ij} & \text{if } j \neq i \\ Q_{ii} + \sum_{k \neq i} Q_{ik}(1 - \alpha(i,k)) & \text{if } i = j, \end{cases}$$

Using time reversibility arguments, show that the second Markov chain has stationary probabilities $\{\pi_i\}$ and that these stationary probabilities are also the limiting probabilities of the Markov chain.

6. The lifetimes of two machines are independent with exponential distributions with rates λ_1 and λ_2 , respectively. Suppose machine 1 starts working now and machine 2 starts working t units of time later. What is the probability that machine 1 will fail before machine 2?