

MagnTek

高分辨率、高速磁性角度编码器IC

特性和优势

- 基于先进的AMR各向异性磁阻技术, 0~360°绝对角度位置检测
- 输出分辨率为14位的绝对角度数据
- 支持最高转速25,000 RPM
- 角度输出的系统延时<2 us
- -40~125℃ 温度范围内均可工作
- 可支持增量ABZ、增量UVW、PWM绝对值和SPI总线输出
- 增量ABZ输出支持1~1024脉冲/圈,任意整数分辨率客户可编程
- 增量UVW输出支持1~16对极任意整数对极客户可编程
- AECQ-100认证

应用

- 绝对角度位置传感器
- 直流无刷电机控制
- 伺服电机控制
- 闭环步进电机控制
- 替代部分光电编码器应用

概述

MT6816是麦歌恩微电子推出的新一代基于 先进的各向异性磁阻(AMR)技术的高速高精 度角度编码器芯片。该芯片内部集成了互成45° 摆放的两对AMR惠斯通电桥组成的敏感元件以 及高性能的专用信号处理电路。由于AMR器件 在用作角度测量应用的时候工作于饱和区(饱和 磁场为300高斯),实际工作时,芯片只对平行 于芯片表面的磁场的方向变化做出响应,而与磁 场强度无关。所以MT6816可以根据x-y平面内 的旋转磁场产生两路正弦信号,来计算磁场旋转 角度。

由于芯片只对平行于芯片表面的磁场的方向 变化做出响应,MT6816在使用过程中,对于磁 铁本身的加工误差以及磁铁和芯片的安装距离误 差要求相对较低。

MT6816提供替代传统光电编码器的增量ABZ输出接口,增量输出最大分辨率为1024脉冲/圈或者是4096步/圈。还提供了替代霍尔的增量UVW信号,1~16对极可编程。

MT6816提供了3线或4线SPI接口,供上位机或者MCU来读取芯片内部的14位绝对角度数值。同时单线输出的PWM也可提供分辨率为12位的绝对角度数据。

高分辨率、高速磁性角度编码器IC

目录

特性	E和优势		1					
应用]		1					
概过	<u>\$</u>		1					
1	引脚定义		3					
2	型号列表		4					
3	芯片功能	国图	5					
4	极限参数.	极限参数 6						
5	正常工作组	正常工作条件 6						
6	电气性能	参数	7					
7	外加磁场	参数	9					
8	输出模式.		10					
	8.1 I/0	O引脚功能配置	10					
	8.2 Al	BZ、UVW和PWM参考电路	11					
	8.3 IE	交A、B和零位Z信号输出(ABZ 模式)	12					
	8.4 U	VW输出模式	17					
	8.5 脉	宽调制(PWM)输出模式	18					
	8.6 SF	PI接口	19					
	8.6.1	SPI参考电路	19					
	8.6.2	SPI时序	20					
	8.6.3	4线SPI	21					
	8.6.4	3线SPI	22					
	8.6.5	SPI读角度	23					
9	MTP编程		25					
10	磁铁安装	要求	26					
11	机械角度和方向 27							
12	封装信息							
13	版权和申	明	29					
14	版本信息.		30					

高分辨率、高速磁性角度编码器IC

1. 引脚定义

图-1: MT6816 SOP-8封装外观图

引脚列表

引脚名称	#	引脚类型	描述
CSN	1	数字输入	SPI使能控制脚
HVPP	2	电源	MTP编程或者SPI使能
OUT	3	数字输出	PWM输出
VDD	4	电源	3.3~5.0V供电电源
A/U	5	数字输入/输出	增量输出A/U或者SPI MOSI (4线), SDAT (3线)
B/V	6	数字输入/输出	增量输出B/V或者SPI MISO (4线)
Z/W	7	数字输入/输出	增量输出Z/W或者 SPI时钟
GND	8	地	地

高分辨率、高速磁性角度编码器IC

2. 型号列表

MT6816所有型号产品均为SOP-8封装 (**MSL-3湿敏等级**),包装形式为套管 **(100颗/管)**或者是卷盘 **(3000颗/盘)**。

型号列表

型号	功能描述
MT6816CT-STD	基础型号: 4线SPI; AB=1 脉冲/圈, Z=1 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-STT	基础型号: 3线SPI; AB=1 脉冲/圈, Z=1 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-AKD	AB=1,000 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-ACD	AB=1,024 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-ACE	AB=1,024 脉冲/圈, Z=1 LSB ; PWM=971 Hz; 逆时针角度增加
MT6816CT-A9D	AB=128 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-A400	AB=499 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-A200	AB=200 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-A100	AB=100 脉冲/圈, Z=4 LSB; PWM=971 Hz; 逆时针角度增加
MT6816CT-U7D	UVW=7 对极/圈; PWM=971 Hz; 逆时针角度增加
MT6816CT-U5D	UVW=5 对极/圈; PWM=971 Hz; 逆时针角度增加

高分辨率、高速磁性角度编码器IC

3. 芯片功能框图

MT6816是一颗基于先进的AMR磁感应技术和先进的信号处理技术的角度传感器芯片,它能够感应平行于芯片表面的磁场方向变化并输出相应的角度值。集成于芯片中心的磁感应元件检测磁场方向变化并输出电压值。

图-2: 芯片功能框图

如图-2所示,芯片内集成的两对AMR惠斯通电桥会随着外加磁场的方向变化,输出两路正余弦模拟电压信号;信号经过模拟前端电路的放大(G)和滤波后,被送入模数转换器(ADC);被放大并经数字量化的正余弦信号最终进入数字信号处理器(DSP)进行补偿、校准和求解角度的运算;计算出绝对角度后,输出解析模块会将此绝对角度解析为PWM、ABZ、UVW、SPI等各种输出形式,MT6816所有输出形式的源头都是这一绝对角度。另外系统中还包含了低压差稳压模块(LDO)、时钟振荡器(OSC)、非遗失性寄存器等模块。

MT6816芯片包括两路电源VDD和HVPP。其中VDD用于给芯片供电,经过内部LDO稳压后给AMR元件和内部专用计算电路供电;而HVPP是在需要烧录MTP时提供7V的烧录电压,同时做为SPI通信和ABZ选择引脚,SPI通信时接高电平,其余芯片工作时间接地。

高分辨率、高速磁性角度编码器IC

4. 极限参数(非正常工作条件)

以下所标称的芯片极限承受条件,不是芯片的正常工作条件范围,而是确保芯片不被损坏的极限条件。**任何超过"极限参数"所罗列的参数条件,将可能导致芯片的永久性损坏。**

参数	最小值	最大值	单位	说明
VDD电压	-0.5	6.5	V	
HVPP电压	-0.5	8	V	
管脚输入电压范围	-0.5	VDD	V	ABZ、OUT管脚
管脚输出电流	-20	20	mA	ABZ、OUT管脚
存储温度	-40	150	°C	
静电防护能力 (元件充电模式)	-	±1.0	KV	参考范围: AECQ-100-011
静电防护能力 (人体放电模式)	-	±2.0	KV	参考范围: AECQ-100-002

5. 正常工作条件

参数	最小值	最大值	单位
VDD管脚电压	3.0	5.5	V
HVPP管脚电压	7.0	7.2	V
磁场强度	30	1,000	mT
转速	-	25,000	RPM (转/分)
工作温度	-40	125	°C

高分辨率、高速磁性角度编码器IC

6. 电气性能参数

除非特殊说明,否则以下所有参数均为芯片工作在电源电压3.0~5.5V、温度在-40~125℃的区间内。

参数	描述	条件	最小值	典型值	最大值	单位
VDD	VDD管脚电压	-	3.0	3.3~5.0	5.5	V
HVPP	HVPP管脚电压	-	7.0	-	7.2	V
Idd	芯片工作电流	-	5	10	15	mA
LSB	最小分辨率(ABZ模式)	N步每圈	-	360°/N	-	o
INL	积分非线性	注释[1]	-	±0.75	±1.5	o
DNL	差分非线性(ABZ 模式), 如图-3	@2500 PPR	-	±0.01	-	o
TN	瞬态噪声(ABZ 模式),如图-3	25℃	-	0.005	-	°rms
Hyst	迟滞窗口(ABZ 模式)		-	0.022	-	o
T _{PwrUp}	系统上电准备时间	电源上电<10us	-	16	-	ms
T _{delay}	系统延时		-	1	3	us
RS	旋转速度				25,000	RPM

注释[1]: 这里的典型值,是在25℃磁铁和芯片没有偏心的情况下得到的。而最大值是在-40~125℃全温范围内,在最大的芯片和磁铁的允许间隙(AG)以及最大允许的偏心(DISP)情况下测到的。

图-3:INL, DNL,瞬态噪声图示(ABZ 10位分辨率模式下)

版本2.0 2022.03

高分辨率、高速磁性角度编码器IC

数字I/O特性

除非特殊说明,否则以下所有参数均为芯片工作在电源电压3.0~5.5V、温度在-40~125℃的区间内。

参数	说明	条件	最小值	典型值	最大值	单位
V _{IH}	数字I/O输入逻辑高电平	7	0.7*VDD	-	-	V
V_{IL}	数字I/O输入逻辑低电平	-	-	-	0.3*VDD	V
V _{OH}	数字I/O输出逻辑高电平	推挽输出 (lout=2mA)	VDD-0.25	-	-	V
V _{OL}	数字I/O输出逻辑低电平	推挽输出(lout=2mA)	-	-	0.25	V
I _{LK}	输入漏电流	CSN (内部上拉)	-100	-	1	uA
T _{RISE}	上升沿时间	推挽输出, C _{Load} =20pf			40	ns
T _{FALL}	下降沿时间	推挽输出, C _{Load} =20pf			40	ns

ABZ 输出参数

除非特殊说明,否则以下所有参数均为芯片工作在电源电压3.0~5.5V、温度在-40~125℃的区间内。

参数	说明	条件	最小值	典型值	最大值	单位
AB _{RES}	AB分辨率	可编程	1	-	1,024	脉冲/圈
AB _{Freq}	A或B频率	-	-	-	1.024	MHz

PWM 输出参数

除非特殊说明,否则以下所有参数均为芯片工作在电源电压3.0~5.5V、温度在-40~125℃的区间内。

参数	描述	条件	最小值	典型值	最大值	单位
FPWM	PWM频率	可编程	-8%	971.1/485.6	+8%	Hz
T _{rise}	上升沿时间	负载C _{Load} =1nF	-	-	1	us
T _{Fall}	下降沿时间	负载C _{Load} =1nF	-	-	1	us

高分辨率、高速磁性角度编码器IC

7. 外加磁场参数

除非特殊说明,否则以下所有参数均为芯片工作在电源电压3.0~5.5V、温度在-40~125℃的区间内,外加1对极径向充磁的圆柱形磁铁的情况。

参数	说明	条件	最小值	典型值	最大值	单位
Dmag	磁铁直径	推荐直径10mm的1对极 径向充磁磁铁	-	10	-	mm
Tmag	磁铁厚度	推荐磁铁厚度2.5mm	-	2.5	-	mm
Bpk	输入磁场大小 (平行于 芯片表面的水平方向)	在芯片表面测得	30	-	1,000	mT
AG	间隙	芯片表面和磁铁的距离	-	-	3.0	mm
RS	转速		-	-	25,000	RPM
DISP	偏心	磁体中心和芯片感应中心的偏差 (如图-4)	+	-	0.3	mm
TCmag1	设 织复序 <i>至</i> 粉	钕铁硼磁铁	-	-0.12	-	0/ /°C
TCmag2	磁铁温度系数	钐钴磁铁	-	-0.035	-	%/°C

图-4: 磁铁的安装

高分辨率、高速磁性角度编码器IC

8. 输出模式

MT6816可以输出ABZ、UVW和PWM信号,另外还可以通过4线或3线SPI接口读取14位的绝对角度寄存器。其中ABZ、UVW和SPI接口是互相复用I/O引脚的。SPI接口和ABZ/UVW之间是通过HVPP引脚进行配置的,当HVPP接高电平VDD时,相关I/O管脚切换至SPI模式;当HVPP接地时,芯片相关I/O切换至ABZ或UVW模式。ABZ和UVW模式的切换,由芯片内部相关寄存器控制。4线SPI和3线SPI也是通过芯片内部寄存器进行切换控制的,MT6816出厂默认配置为4线SPI。

8.1 I/O引脚功能配置

MT6816提供的ABZ、UVW、PWM以及SPI接口的引脚配置如下表。

1/0引脚配置表

管脚	3线 SPI	4线 SPI	ABZ+PWM	UVW+PWM
1	CSN	CSN	-	-
3	PWM	PWM	PWM	PWM
5	SDAT	MOSI	А	U
6	-	MISO	В	V
7	SCK	SCK	Z	W

高分辨率、高速磁性角度编码器IC

8.2 ABZ, UVW 和PWM模式参考电路

图-5:不做MTP编程的ABZ, UVW 和PWM 参考电路

图-6:做MTP编程的ABZ, UVW 和PWM 参考电路

高分辨率、高速磁性角度编码器IC

8.3 正交A、B和零位Z信号输出(ABZ模式)

如图-7 (1) 所示,当位于芯片正上方的磁铁(俯视)逆时针(CCW)转动时,B信号的上升沿领先于A信号的上升沿1/4周期,反之当顺时针(CW)转动时,A信号的上升沿领先B信号的上升沿1/4个周期。Z信号出现的位置代表0°的位置。在芯片上电以后的16ms以内是没有任何ABZ信号输出的,16ms以后,芯片才会输出稳定正确的ABZ信号。

图-7(1) ABZ输出(上电AB不输出当前绝对位置脉冲序列)

转动方向寄存器 'ROT DIR' (MTP)

寄存器 Rotation-Dir	转动方向
0x0	磁铁在芯片上方逆时针转动(俯视)B领先A(参考第10章)
0x1	磁铁在芯片上方顺时针转动(俯视)B领先A

^{*&#}x27; ROT DIR' 转动方向寄存器,对所有角度输出 (ABZ, UVW, PWM, SPI) 都起作用

高分辨率、高速磁性角度编码器IC

如图-7(2)所示,MT6816可以通过寄存器配置提供不同于图-7(1)的上电AB输出脉冲序列,对该AB脉冲序列的累加,可以计算得到上电初始时刻的绝对位置(相对于芯片的零点而言)。注意该脉冲序列频率先快后慢,在默认配置下16ms秒内输出完成。

图-7 (2) ABZ输出 (上电AB输出当前绝对位置脉冲序列)

高分辨率、高速磁性角度编码器IC

Z脉冲代表角度的零位,如图-8和图-9,Z脉冲宽度可选项为: 1,2,4,8,12,16 LSBs和180°。由设计保证Z脉冲每圈只出一个。零点位置用户可编程。

图-8: Z脉冲宽度为1, 2, 4, 8, 12和16LSBs时的ABZ输出

图-9: Z脉冲宽度为180°时的ABZ输出

高分辨率、高速磁性角度编码器IC

MT6816的ABZ输出,提供了1~1,024脉冲/圈的任意整数分辨率给客户自由编程。关于ABZ输出分辨率常用的单位:位、步/圈、脉冲/圈的相互对应关系如图-10和图-11所示。

10比特=210 步=1024 步=256 脉冲

图-10: ABZ输出分辨率=10比特

图-11: ABZ输出分辨率=1,000 脉冲/圈

高分辨率、高速磁性角度编码器IC

Z信号的宽度由一个3比特位宽的寄存器 'Z_PUL_WID[2:0]' 来定义。

Z信号宽度寄存器 'Z PUL WID[2:0]' (MTP)

寄存器: Z_Pulse_Width<2:0>	宽度 (LSBs或度)	寄存器: Z_Pulse_Width<2:0>	 宽度 (LSBs或度)
000	1	100	12
001	2	101	16
010	4	110	180°
011	8	111	1

Z信号的绝对角度位置由一个12比特位宽的寄存器 'ZERO_POS[11:0]';

Z信号角度位置寄存器(MTP)

寄存器	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Zero_MSB	NA	NA	NA	NA		Zero<	<11:8>	
Zero_LSB	Zero<7:0>							

ABZ输出分辨率由一个10比特位宽的寄存器 'ABZ_RES[9:0]' 来定义;

ABZ 分辨率寄存器(MTP)

寄存器	位7	位6	位5	位4	位3	位2	位1	位0
ABZ_RES	NA	NA	NA	NA	NA	NA	ABZ_RI	ES<9:8>
ABZ_RES	ABZ_RES<7:0>							

高分辨率、高速磁性角度编码器IC

8.4 UVW输出模式

MT6816提供互成120°的UVW输出,如图-12所示。每一圈的UVW对极数可以由用户编程。

图-12: UVW输出波形

UVW分辨率对极数寄存器(MTP)

寄存器UVW_RES<3:0>	UVW对极数(对极/圈)
0000	1
0001	2
0010	3
0011	4
0100	5
0101	6
0110	7
0111	8
1000	9
1001	10
1010	11
1011	12
1100	13
1101	14
1110	15
1111	16

高分辨率、高速磁性角度编码器IC

8.5 PWM输出模式

MT6816提供了单线的12比特绝对值PWM输出模式,如图-13所示。PWM输出是引脚3的默认输出形式。

PWM频率为971.1Hz和485.6Hz可选,用户可自由配置,出厂默认值为971.1Hz。PWM整个周期包含了4119个最小单位时钟周期,即一个周期平均分成了4119份,其中每一帧数据开始于连续16个最小单位周期的固定高电平,结束于8个连续最小单位时钟周期的固定低电平;中间4095个最小单位时钟周期用来表示0~360°绝对角度,高电平个数与绝对角度成线性关系。角度数据分辨率12比特,一个最小单位时钟周期代表0.088°,最小单位时钟周期默认为250ns(PWM 971.1Hz),也可以编程为500ns(PWM 485.6Hz)。

图-13: PWM输出

PWM 频率 寄存器(MTP)

寄存器 PWM_Freq	PWM频率
0	971.1Hz
1	485.6 Hz

8.6 SPI接口

MT6816提供了4线或者3线 ('SPI_Mode'寄存器置高来开启3线模式)SPI输出,用于上位机读取芯片内部角度信息。

8.6.1 SPI参考电路

SPI参考电路如图-14和图-15所示。

图-14: 4线SPI参考电路

图-15: 3线SPI参考电路

SPI模式寄存器(OTP)

寄存器: SPI_Mode	SPI 接口
0	4线Mode
1	3线Mode

高分辨率、高速磁性角度编码器IC

8.6.2 SPI时序

MT6816的SPI使用模式3(CPOL=1, CPHA=1)传输数据。如图-16所示,数据传输开始于CSN的下降沿,结束于CSN的上升沿,MT6816在时钟上升沿采样数据。

图-16: SPI时序图

SPI时序参数

参数	描述	最小值	典型值	最大值	单位
T_L	CSN下降沿到第一个时钟SCK下降沿的延时	100		-	ns
T _{SCK}	时钟周期	64		-	ns
T_{SCKL}	时钟低电平时间	30		-	ns
T _{SCKH}	时钟高电平时间	30		-	ns
T _H	SCK时钟最后一个上升沿到CSN上升沿的延时	0.5•TSCK		-	ns
T_R	数字信号的上升沿(有20pf的电容负载)	-	10	-	ns
T _F	数字信号的下降沿(有20pf的电容负载)	-	10	-	ns
T_DV	MISO数据等待时间(有20pf的电容负载)	-	-	15	ns
T _{ST}	MOSI数据建立时间	10	-	-	ns
T_{HD}	MOSI数据保持时间	10	-	-	ns

高分辨率、高速磁性角度编码器IC

8.6.3 4线SPI协议

图-17: 4线SPI协议时序

MT6816的CSN下降沿激活SPI通信,CSN的上升沿结束SPI通信。SCK时钟信号由上位机发送给MT6816,在非通信状态下,请保持SCK为高电平;MOSI(上位机输出、MT6816输入)和MISO(上位机输入、MT6816输出)是SPI接口的两路数据信号,数据都是在时钟信号SCK的下降沿发生改变,所以推荐使用SCK时钟信号的上升沿对数据进行采样。

比特 0: 读写标志位,。低电平为写操作,此时数据DI7~DI0写入芯片; 高电平为读操作,此时从芯片读出数据DO7~DO0。

比特 1-7: 地址A6~A0。 寄存器操作地址。

比特 8-15: 数据 DI7~DI0 (写模式)。会被写入芯片的数据 (MSB优先)。

比特 8-15: 数据DO7~DO0 (读模式)。 从芯片读出的数据(MSB优先)。

高分辨率、高速磁性角度编码器IC

8.6.4 3线SPI协议

图-18: 3线SPI时序

CSN的下降沿激活SPI通信,CSN的上升沿结束SPI通信。SCK时钟信号由上位机发送给MT6816,在非通信状态下,请保持SCK为高电平。SDA是数据输入输出信号数据,是在时钟信号SCK的下降沿发生改变,所以推荐使用SCK时钟信号的上升沿对数据进行采样。

Bit 0: 读写标志位,。低电平为写操作,此时数据DI7~DI0写入芯片;高电平为读操作,此时从芯片读出数据DO7~DO0。

Bit 1-7: 地址A6~A0。 寄存器操作地址。

Bit 8-15: 数据 D7~D0 (写模式)。会被写入芯片的数据 (MSB优先)。

Bit 8-15: 数据D7~D0 (读模式)。 从芯片读出的数据(MSB优先)。

高分辨率、高速磁性角度编码器IC

8.6.5 SPI读取角度数据 (4线SPI)

图-19: 4线SPI读取角度数据

角度数据寄存器

寄存器地址	位7	位6	位5	位4	位3	位2	位1	位0
0x03		Angle<13:6>						
0x04		Angle < 5:0 >					No_Mag_Warning	PC
0x05		N	IA		Over_Speed		NA	

0~360° 绝对角度 θ ,可使用下面的公式计算:

$$\theta = \frac{\sum_{i=0}^{13} Angle < i > \bullet 2^{i}}{16384} \bullet 360^{\circ}$$

0x04[1]是弱磁报警位No_Mag_Warning,当MT6816检测到磁场太弱时,这一位会置高电平。

0x04[0]是奇偶校验位PC,遵循偶校验规则。如果0x03[7:0]和0x04[7:1]总共有偶数个1, 0x04[0]=0。如果0x03[7:0] 和0x04[7:1]总共有奇数个1, 0x04[0]=1。

0x05[3]是超速报警位Over Speed, 当MT6816检测到速度超过最大限速时,这一位会至置高电平。

高分辨率、高速磁性角度编码器IC

MT6816还提供了3线SPI接口,3线SPI读角度时序如图-20所示。

图-20: 3线SPI读角度模式

高分辨率、高速磁性角度编码器IC

9. MTP编程

MT6816内部集成MTP (多次可擦写EPROM,可编写5次)存储器,用于编写分辨率、零点、Z脉冲宽度等参数。MTP编程需要使用SPI通信,并在HVPP引脚加7V-7.2V的电压。**此电压要求较为严格,请务必控制在要求范围内**。若此电压低于7V,MTP也能烧写成功,但数据存储的可靠性会存在风险;若高于7.2V,可能会损坏芯片。

芯片HVPP引脚内部**已经集成了150KΩ的下拉电阻,因此芯片外部可以不加下拉电阻。HVPP引 脚强烈建议按图-21推荐电路接1uf的去耦电容**。如需了解更多细节,请联系麦歌恩工作人员。

图-21: MTP编程

高分辨率、高速磁性角度编码器IC

10. 磁铁安装要求

MT6816在安装使用过程中,磁铁的中心必须对准芯片的磁感应中心位置,磁铁距离芯片的距离也要尽可能的小,以期获得最佳的性能。较大的安装间隙(AG)会减弱磁场,而磁铁和芯片的安装偏心(DISP)会引入非线性,从而恶化INL的性能。较大的偏心(DISP)和较大的间隙(AG)造成的INL恶化对直径较小的磁铁更加明显,如图-22和图-23所示。

图-22:磁铁安装

图-23: INL与AG、偏心关系

11. 机械角度和方向

俯视图

0 degree

| 8 | 7 | 6 | 5 |
| N | S | 4 |

逆时针旋转磁铁(CCW) ('Rotation-Dir' =0)

高分辨率、高速磁性角度编码器IC

12. 封装信息

Mr. Co	毫	米	英尺			
符号	最小值	最大值	最小值	最大值		
Α	1.450	1.750	0.057	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170	0.250	0.007	0.010		
D	4.700	5.100	0.185	0.201		
E	5.800	6.200	0.228	0.244		
E1	3.800	4.000	0.150	0.157		
е	1.270	(BSC)	0.050(BSC)			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		
Z	0.420	0.620	0.016	0.024		

高分辨率、高速磁性角度编码器IC

13. 版权和声明

- 本文的所有文字、图片信息的版权均归属上海麦歌恩微电子股份有限公司所有,未经上海麦歌恩微电子股份有限公司的书面同意和授权,不得复制和发表。
- 2. 上海麦歌恩微电子股份有限公司保留在未经事先通知的情况下修改、更新本说明书的权利。
- 3. 上海麦歌恩微电子股份有限公司的所有产品适用于一般的商业用途,但不适用于任何有特殊 失效风险控制的应用场合,包括但不限于: 航空航天设备和系统、核能设备和系统、医疗生命救 护设备和系统等。

请通过上海麦歌恩微电子股份有限公司的官方网站 www.magntek.com.cn,获取最新的产品说明书。

高分辨率、高速磁性角度编码器IC

14. 版本历史

版本号	日期	内容
1.0	2019.06	正式版发行
1.1	2019.06	更新 'CCW' 箭头方向
1.2	2019.07	更新 ESD(CDM) 信息 更新封装信息 更新SPI参考电路 更新SPI读数据操作 更新PWM频率
1.3	2019.09	更新 ABZ, UVW, PWM参考电路
1.4	2019.12	更新SPI时序参数
1.5	2020.05	更新SPI连读模式
1.6	2021.03	更新PWM时钟周期
1.7	2021.06	更新PWM频率范围
1.8	2021.09	更新AECQ-100 认证
1.9	2021.12	更新HVPP电压7.0~7.2V
2.0	2022.03	增加更多型号信息描述 增加GPIO参数 增加芯片上电输出AB脉冲序列计算绝对角度的描述