Computability - Exercise 11

All questions should be answered formally and rigorously unless stated otherwise

Due: June 25, 2020

Question 1

Classify the following languages to P, NP-hard, or coNP-hard. Prove your answer. Reminder: a language L is coNP-hard if for every language $L' \in \text{coNP}$, it holds that $L' \leq_p L$.

- 1. (Not for submission) A 2-dominating set in an undirected graph $G = \langle V, E \rangle$ is a set $S \subseteq V$ such that for every $u \in V$, either $u \in S$, or there is $v \in S$ such that $\{u, v\} \in E$, or there are $v \in S$ and $w \in V$ such that $\{u, w\}, \{w, v\} \in E$.
 - Now, 2-DS = $\{(G, k) : G \text{ is an undirected graph containing a 2-dominating set of size } k\}$.
- 2. $SPATH = \{\langle G, s, t, k \rangle : G \text{ is an undirected graph containing a simple path of length at most } k \text{ from } s \text{ to } t \}$
- 3. U-ST- $HAMPATH^{\leq} = \{\langle G, s, t, 1^k \rangle : G \text{ is an undirected graph that has no more than } k$ Hamiltonian paths from s to $t\}$
- 4. U-ST- $HAMPATH^{\geq k} = \{\langle G, s, t \rangle : G \text{ is an undirected graph that has at least } k \text{ Hamiltonian paths from } s \text{ to } t\}$
- 5. (Not for submission) A weighted graph is $G = \langle V, E, w \rangle$, where $w : E \to \mathbb{N}$ assigns a weight to each edge. The weight of a simple path $P \subseteq E$ is $w(P) = \sum_{e \in P} w(e)$.

Now, TSP = $\{(G, w, k) : G \text{ is a weighted undirected graph with a Hamiltonian cycle of weight at most } k\}$.

Question 2

Classify the language L below to P or NP-complete. Prove your answer. $L = \{\langle G \rangle \mid G \text{ is an undirected graph and there exist 3 cliques } V_1, V_2, V_3 \subseteq V \text{ such that } V = V_1 \cup V_2 \cup V_3 \}.$ Note that the sets V_1, V_2 , and V_3 need not be disjoint.

Question 3

In the set-cover problem, we are given a set U of n elements, a collection S_1, \ldots, S_m of m subsets of U ($S_i \subseteq U$ for all $1 \le i \le m$), and an integer k. The goal is to decide whether there is a collection C of at most k sets such that their union is equal to U. That is, $C \subseteq \{S_1, \ldots, S_m\}$ is such that $|C| \le k$ and $\bigcup_{S_i \in C} S_i = U$. As a motivating example, assume that U is a set of characters like "tall", "pregnant", "young",..., and that there are m candidates who want to join a journey to the moon. Each candidate $1 \le i \le m$ has a set S_i of his or her characters. We want to make sure that we cover all characters when we select the lucky passengers, but we have only k seats in our spaceship. Prove that the set-cover problem is NP-complete.

Question 4

For every natural k, a k-coloring of a graph $G = \langle V, E \rangle$ is a function $c : V \to \{1, \dots, k\}$, such that for every $\{u, v\} \in E$, we have that $c(u) \neq c(v)$. Thus, vertices connected by an edge are mapped to different colors. We say that a graph G admits a k-coloring if such a coloring of G exists. Let k- $COLOR = \{\langle G \rangle : G$ admits a k-coloring $\}$.

- 1. Show that 1-COLOR and 2-COLOR are in P (hint for 2: bipartite graphs).
- 2. Show that 3-COLOR is NP-complete.

Instruction: You may use the following construction (a reduction from 3-SAT to 3-COLOR) and prove its correctness and its running time, aside from proving that the language is in NP.

Construction: Let φ be a 3-CNF formula. We output the graph $G = \langle V, E \rangle$ constructed as follows. First, G has 3 special vertices that consist the palette gadget, which is simply a 3-clique. We call these vertices T, F, and U. Next, for every variable x, we have two vertices x and \overline{x} , and the edge $\{x, \overline{x}\}$ (this is the variable gadget). We also add, for every variable x, the edges $\{U, x\}$ and $\{U, \overline{x}\}$. Then, we define a clause gadget to be a composition of two OR-gadgets, one on top of the other, as depicted in Figure 1. We designate 3 vertices in the clause gadget as i_1, i_2, i_3 , and the top vertex as o, as depicted. For each clause $(l_1 \lor l_2 \lor l_3)$ we have a clause-gadget. We connect the top vertex o to U and F from the palette. The vertices i_1, i_2 and i_3 are the literal vertices l_1, l_2 and l_3 respectively (that is, they are the same vertices, and the clause gadget is "composed" on top of them). This completes the construction.

Figure 1: Clause gadget

3. Show that for every natural k, if k-COLOR is NP-complete, then so is (k+1)-COLOR. Remark: It follows inductively that k-COLOR is NP-Complete for every k > 2.