RAID

von Maximilian Kerst und Benedict Gulla

Gliederung

- Motivation
- Grundlagen
- RAID Level
- Spare Speichermedium
- RAID erweitern
- Hardware-/Software-RAID
- Fehlererkennung
- Rebuild

Motivation

- Heimcomputer:
 - alle Daten auf einem physischen Volume gespeichert
- Server:
 - alle Daten auf einem logischen Volume gespeichert
 - RAID-Set mit Ausfalltoleranz einer Festplatte

Motivation

- Heimcomputer:
 - System bei Ausfall des Speichermediums offline
- Server:
 - System bei Ausfall eine Speichermediums weiterhin online
 - Performance eingeschränkt
 - Rebuild ausstehend

Motivation

Grundlagen RAID

- <u>R</u>edundant <u>A</u>rray of <u>I</u>ndependent <u>D</u>isks
 - früher: Redundant Array of Inexpensive Disks
- Erster Einsatz von RAID in 90er Jahren
- kein Ersatz für Backup
- Speichermedien gleicher Kapazität verwenden

Grundlagen - Mirroring

- alle Daten werden auf Speichermedium 1 und 2 gespeichert
- kein Datenverlust bei Ausfall eines Speichermediums

Grundlagen - Striping

- Daten werden auf allen Speichermedien verteilt geschrieben
- Datenverlust bei Ausfall eines Speichermediums

- Striping
- Min. 2 Speichermedien
- Nutzungskapazität: 100%
- Pro:
 - hohe Performance bei großen, zusammenhängenden Dateien
- Contra:
 - keine Ausfallsicherheit
 - Bei kleinen Files limitiert Zugriffszeit des Speichermediums

- Mirroring
- min. 2 Speichermedien
- Nutzungskapazität: ≤50%

- Pro:
 - Ausfallsicherheit des Spiegels
- Contra:
 - geringe Nettospeicherkapazität
 - hohe Kosten

- Daten werden per Striping auf mehrere Speichermedien geschrieben
- Paritätsinformation über Speicherung der Daten auf weiterem Speichermedium
- Je nach RAID Typ unterschiedlicher Algorithmus
 - RAID5: XOR

- Daten werden per Striping auf mehrere Speichermedien geschrieben
- Paritätsinformation über Speicherung der Daten auf weiterem Speichermedium
- Je nach RAID Typ unterschiedlicher Algorithmus
 - RAID5: XOR

XOR				
Α	В	С		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Parity-Generierung			
Laufwerk	Inhalt		
Laufwerk A	11101100		
Laufwerk B	10110011		
Laufwerk C	01001101		
Parity-Laufwerk	00010010		

	vor dem Ausfall	Ausfall eines Datenlaufwerks	Ausfall des Parity- Laufwerks
Laufwerk A	11101100	11101100	11101100
Laufwerk B	10110011	xxxxxxx	10110011
Laufwerk C	01001101	01001101	01001101
Parity-Laufwerk	00010010	00010010	XXXXXXX
Datenrekonstruktion		10110011	00010010

Option A:

- RAID-Controller schreibt neue Datenblöcke auf Laufwerk
- Neuberechnung Paritätsinformationen
 - → Nachfolgend erneutes Lesen aller betroffenen Blöcke
- → Bei Schreiboperationen Zugriff auf alle Speichermedien erforderlich

• Option B:

- RAID-Controller liest zu überschreibenden Datenblock ein
- Berechnung veränderte Bits mittels XOR
- Verknüpfung Paritätsinformationen und vorheriges XOR Resultat mittels XOR
 Abspeichern von neuen Paritätsinformationen
- → Bei Schreiboperationen nur Zugriff auf zwei Speichermedien erforderlich

- Striping und Parity
- min. 3, max. 16 Speichermedien
- Nutzungskapazität: 67% 94%
- Pro:
 - hohe Nettospeicherkapazität
 - hohe Lesegeschwindigkeit
- Contra:
 - Initialisierung erforderlich
 - langsame Schreibgeschwindigkeit
 - langsamer restore

- Striping und Parity
- min. 4, max. 16 Speichermedien
- Nutzungskapazität: 50% 88%
- Parity redundant auf zwei Speichermedien
- Pro:
 - Ausfallsicherheit zweier Speichermedien
- Contra:
 - geringere Nettospeicherkapazität als RAID5
 - schlechtere Schreibgeschwindigkeit als RAID5

- Mirroring und Striping
- Min. 4 Speichermedien
- Nutzungskapazität: 50%

- Pro:
 - Hohe Schreib/Lesegeschwindigkeit
 - Ausfallsicherheit zweier Laufwerke
- Contra:
 - geringe Nettospeicherkapazität

- Mirroring, Striping und Parity
- min. 6 Speichermedien
- Nutzungskapazität: >67%
- Pro:
 - höhere Ausfallsicherheit als bei RAID5
- Contra:
 - geringere Nettospeicherkapazität als bei RAID5

- Mirroring, Striping und zusätzliche Parity
- Min. 8 Speichermedien
- Nutzungskapazität: >50%
- Pro:
 - höhere Ausfallsicherheit als bei RAID50
- Contra:
 - Geringere Nettospeicherkapazität als bei RAID50

Spare Speichermedium

- zusätzliches Speichermedium
- Bei Ausfall einer Festplatte erfolgt sofortiger restore auf Spare Festplatte
- Global Spare
 - Spare für alle Speichermedien
- Dedicated Spare
 - Spare f
 ür bestimmtes RAID-Set
 - zB ein RAID-Set für Produktivsystem, eins für Lab
- Enclosure Spare
 - Spare für bestimmtes Gehäuse (bei mehreren Gehäusen in Storage-System)

RAID erweitern

nativ nicht vorgesehen

Optionen:

- a) herstellerbedingt ggf. Erweiterung möglich
- b) Daten sichern, RAID neu konfigurieren, Daten wiederherstellen
- c) weiteres Volume mit zusätzlichen Speichermedien erzeugen

Hardware-RAID vs. Software-RAID

Durch RAID entsteht zusätzlicher Rechenaufwand → Umgang?

Hardware-RAID vs. Software-RAID

Hardware-RAID

Application Os Os Q Q Q Q

Software-RAID

Software-RAID

- Rein software-seitig umgesetzt
- Unter Umständen einzige Implementierungsmöglichkeit (siehe ZFS)
- Keine Zusatzkosten für Hardware
- Moderne Hardware kompensiert Overhead, aber dennoch vorhanden
- Anfälligkeit ggü. Malware und Fehlern zur Boot-Zeit
- Kein Batteriebackup möglich (nicht verwechseln mit USV)

Hybrid-RAID

- Teilweise hardwarebeschleunigtes Software-RAID, bereitgestellt durch HBA oder Mainboard, evtl. mit XOR-Beschleuniger
- Schutz des RAIDs zur Boot-Zeit
- Treiber als Abstraktionsschicht
- Moderate Zusatzkosten
- Dennoch anfällig für Malware
- Evtl. eingeschränkter Treiber-Support
- Kein Batteriebackup möglich

Hardware-RAID

- Vollständig in Hardware gelöst, unabhängig vom Host (Addin-Karte oder RAID-on-Chip)
- Eigener Prozessor + RAM
- Entlastet Host durch Übernahme des RAID-Overheads
- OS-unabhängig
- Batteriebackup bietet höhere Datensicherheit und ermöglicht Schreibcache (Performancegewinn)
- Vendor-Lock-in
- Hohe zusätzliche Kosten (siehe nächste Folie)

Suchbegriff eingeben

Broadcom LSI MegaRAID SAS 9361-8i - Speichercontroller (RAID) - SATA 6Gb/s / SAS 12Gb/s Low-Profile - 12 Gbit/s - RAID 0, 1, 5, 6, 10, 50, 60 - PCle 3.0 x8 (05-25420-08)

Broad	Icom (05-25420-08)	ArtNr: 1917966D	GTIN: 0830343003075	***** (1)
0	Sofort lieferbar			€471 ,84
0	Noch 8 Stück verfügb	ar	inkl. 19% MwS	t. Versandkostenfre
	a yPal RATENZAHLUNG hlen Sie in 12 monatlich	3 nen Raten. Ratenrechner		
		1	In den Wa	renkorb

RAID Fehlererkennung

RAID Fehlererkennung

Zustand	RAID online	RAID degraded	RAID offline
Lesbarkeit	Ja	Ja	nein
Bedeutung	Alles in Ordnung	Defekt(e) liegen vor, aber Array noch funktional	Defekt(e) liegen vor, Daten nicht mehr zugänglich
Handlungsempfehlung	-	Backup erstellen, Rebuild; alternativ Backup auf neuem Array wiederherstellen	Datenrettung beauftragen oder letztes Backup auf neuem Array wiederherstellen

RAID Rebuild

- Ziel: degraded Array wiederherstellen
- Ablauf:
 - Ggf. der Software ankündigen
 - Defekte Platte(n) durch intakte ersetzen
 - Rebuild in Software oder Controller-BIOS starten
 - Verbleibende Platten werden sektorweise gelesen
 - Verlorengegangene Informationen werden wiederhergestellt und geschrieben

RAID Rebuild

- RAID 0: kein Rebuild möglich
- RAID 1: gespiegelte Daten werden kopiert, keine Möglichkeit zur Integritätsprüfung
- RAID 5 / 6: verlorengegangene Paritäten / Nutzdaten werden errechnet

RAID Rebuild

Live-Demonstration eines Rebuilds

welches RAID ist nun für mich passend?

Bei Bedarf Rückfrage in der Fragenrunde stellen

Weiterführende Links

- RAID Calculator
 - https://www.synology.com/en-us/support/RAID_calculator
- Reed-Solomon-Code
 - https://www.lntwww.de/Kanalcodierung/Definition und Eigenschaften von Reed%E2%80%93Solomon%E2%80%93Codes

Quellen

- [Stae19] Stäheli, Marcel: Die wichtigsten RAID-Systeme erklärt, 2019. https://www.globalsystem.ch/ratgeber/raid-systeme-erklaert/ Abruf: 27.03.2021
- [Fis15] Fischer, Werner: RAID, 2015. https://www.thomas-krenn.com/de/wiki/RAID Abruf: 27.03.2021
- [Att15] Attingo Datenrettung: RAID Datenrettung, 2015. https://www.thomas-krenn.com/de/wiki/RAID_Datenrettung Abruf: 27.03.2021
- [Adm21] Administrator: RAID Level Verfügbarkeit und Performance für Festplatten und SSDs mit Hot Spare, 2021. https://www.storitback.de/service/raid-level-hot-spare.html Abruf: 27.03.2021
- [Lut18] Luther, Jörg: RAID im Überblick RAID 0 bis 7, 2018
 https://www.tecchannel.de/a/raid-im-ueberblick-grundlagen-raid-0-bis-7,401665 Abruf: 27.03.2021
- [Adm21A] Administrator: RAID-Level 5(2 / 3 / 4), 2021. https://www.elektronik-kompendium.de/sites/com/1001021.htm Abruf: 28.03.2021

Quelle

- [ada06] Adaptec, Inc.: Hardware RAID vs. Software RAID: Which Implementation is Best for my Application?, 2021. https://www.adaptec.com/nr/rdonlyres/14b2fd84-f7a0-4ac5-a07a-214123ea3dd6/0/4423_sw_hwraid_10.pdf Abruf: 27.03.2021
- [tho15a] Thomas-Krenn: RAID, 2015. https://www.thomas-krenn.com/de/wiki/RAID Abruf: 27.03.2021
- [tho15b] Thomas-Krenn: RAID Datenrettung, 2015. https://www.thomas-krenn.com/de/wiki/RAID_Datenrettung Abruf: 28.03.2021
- [tho18] Thomas-Krenn: Mdadm recovery und resync, 2018. https://www.thomas-krenn.com/de/wiki/Mdadm recovery_und_resync Abruf: 29.03.2021
- [tld21] The Linux Documentation Project: RAID-HOWTO, 2021. https://tldp.org/HOWTO/Software-RAID-HOWTO-6.html#ss6.1 Abruf: 28.03.2021
- [bou06] Bourbonnais, Roch: WHEN TO (AND NOT TO) USE RAID-Z, 2006. https://blogs.oracle.com/roch/when-to-and-not-to-use-raid-z Abruf: 28.03.2021
- [ell16] Ellingwood, Justin: How To Create RAID Arrays with mdadm on Ubuntu 16.04, 2016. https://www.digitalocean.com/community/tutorials/how-to-create-raid-arrays-with-mdadm-on-ubuntu-16-04 Abruf: 30.03.2021
- [baj19] Bajrami, Valentin: Replacing a failed RAID 6 drive with mdadm, 2019. https://www.redhat.com/sysadmin/raid-drive-mdadm Abruf: 30.03.2021