MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name:	Last name:	Points:

Assignment 3, due Thursday, February 13, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous complex-valued functions on a non-empty complete metric space X, and assume for each $x\in X$, the limit $f(x)=\lim_n f_n(x)$ exists.

- a. Prove that there exists an open set $V \neq \emptyset$ and a number M>0 such that for each $x \in V$ and $n \in \mathbb{N}$, $|f_n(x)| < M$.
- b. Given $\varepsilon>0$, prove that there is an open set $W\neq\emptyset$ and an integer N>0 such that for each $x\in W$ and $n\geq N$, $|f_n(x)-f(x)|<\varepsilon$.

Hint: Baire's theorem.

Problem 2

If μ is a measure and $f \in L^{\infty}(\mu)$, then we can define a multiplication operator

$$M_f:L^2(\mu)\to L^2(\mu), M_fg=fg$$
 .

- a. Show that $\|M_f\| \leq \|f\|_{\infty}$. For which measures is it true that $\|M_f\| = \|f\|_{\infty}$ holds for each $f \in L^{\infty}(\mu)$? Hint: regularity.
- b. For which $f \in L^{\infty}(\mu)$ does M_f map $L^2(\mu)$ onto $L^2(\mu)$?