Products' Classification Engine with text & image feasibility study

Goal of "Place de Marché" is to enhance users' experience sorting products *reliably* in categories through a *scaled* and *automated* products classification engine

Project's scope: Feasibility study expectations

Feasibility study contents

*.csv files for intermediate results

Global EDA

- O Inputs:
 - One *.csv files with 1050 products descriptions & image filename
 - O 1050 jpg files
- O Target:
 - O Category: product_category_tree
- 14 features:
 - Among 6 possible primary keys: keep "image" and use df index
 - Remove 10 useless features
 - Build an extended description (brand, name, description)
 - Filling by ' ' the 32 % missing "brand" information
- Consistency checked between 'image' & image files folder

🎤 uniq_id crawl timestamp product_url product_name product_category_tree 🥦 pid retail price discounted price 🎤 image is_FK_Advantage_product description product rating overall rating brand product_specifications

Global EDA: Products Categories Clip or Collect?

- O Pattern is: 1st level >> 2nd level >> ... >> n level >> concat(Product_name, ProductDescription) ending with '...'
- Extraction of tree depth, level's labels & observation of products count's balance:

Beauty

Baby

- Compound the composition of t
 - Remedy unbalanced classes,
 - o e.g. with similar amount of similar products at a given category level
 - Dealing with cross category similarity and internal category dissimilarity
- Alternate approaches:
 - O Either clip data to same-sized classes (e.g. by sampling), but not enough inputs,
 - Or collect additional descriptions and images e.g. through an API: purpose of the company's project.

Text processing: pre-process

please refer to Explorations NB: section 2. Dupyter

- Product's "description" is a string, with average 80 words count.
- It appears being a concatenation of many inputs, with repeated info and details such as size, price, etc.
- To get an adequate corpus, we pre-process text:
- Switching to lower case,
- Getting rid of punctuation, numbers, < 3 words length,
- Tokenizing
- Stemming
- Removing **default's stop words** & **custom's** (iteratively)
- Result is a **processed_description** for each product

We compute **tf-idf matrix**, illustrated through t-sne 2D projections

Text processing: Bag of Words

O NMF with "as few" topics as Ivl 1 categories:

NMF approach	"raw" processed	
Topics table	0	5 6 abstract cm singl varrantl blanket pack doubl design flipkartcom color multicolor inch floral cover home print
Rough t-sne 2D projection Warnings: Neither classified nor clustered & stochastic	Cor, M, 3 There for the formation g Number of	

Coherence score to get an optimal* topics numbers (NMF)

NMF with "optimal"* topics number:

- Reduces the size of "carryall" topic,
- Highest **sparsity**, with few topics for a single 1st level category,
- "Mixed topics & categories" area split into **smaller areas**,
- Still a high level of confusion for products with "weak" coordinates.

LDA "optimal" as alternate approach

Image processing: pre-process

please refer to Explorations NB: section 3. Cyupyter

Pictures of various sizes are stored in BGR mode

Computer vision is not Human vision: we decided to explore processors from a feature extraction and matching perspective (SIFT)

- 1 -

Color space / Contrast / Brightness

Adjust size & keep ratio

Enhanced Contrast (through L of LAB space)

Emphasize shape (through binarize & dilate)

Visualize results:

before & after processing

- 3 -

Explore* through samples SIFT features extraction & matching:

Process all images to fill folders of image sets

Image processing: pre-process

please refer to Explorations NB: section 3. Supplementary please refer to Explorations NB: section 3.

Processors	"raw"		resized		equalized		enhanced contrast		enh. contrast & resized		emphasize shape	
sample				! grayscale								
test	Bodysuit	Dress	Bodysuit	Dress	Bodysuit	Dress	Bodysuit	Dress	Bodysuit	Dress	Bodysuit	Dress
nb keypts	medium	massive	low	medium	medium	massive	high	massive	low	medium	high	massive
match rate	33 %	40%	44%	41%	28%	36%	45%	39%	49%	43%	48%	41%
Improve	baseline	baseline	++	same	-	-	++	same	+++	+	+++	same
50 keypts	low	low	low	low	low	low	low	low	low	low	low	Low
match rate	38%	22%	42%	44%	32%	30%	48%	50%	46%	36%	32%	52%
improve	+		++	+	same		+++	++	++	-	same	+++

- matching rate is "nb matching / avg(keypoints)" and trends observed differs from on sample to another.
- while **scale** shouldn't matter in SIFT case, keypoints total number **depends on it**.
- Introduces idea of a **minimum viable threshold** for keypoints number

Image processing: Bags of Visual Words

O Again a process, with 3 interdependent steps: 1., 2. and 4.

- Key points: we identify 3 steps where an optimum could be searched:
 - Find an optimal image set
 - Find an optimal nb of keypoints
 - O Find an optimal vocab size
- We proceed with:
 - Enhanced constrast images and medium size (for easy data handling)
 - O 2 alternate image features:
 - 50 keypoints & 150 BoVW
 - "Free" keypoints & 300 BoVW

With same rough t-sne parameters, we don't see a nice projection.

* Caution: consider classifier results to get valid results

Image processing: CNN transfer learning

please refer to P6 01 CNN Dedicated NB.ipynb Supyter

- 1. Explore ability to **create features** from pre-trained VGG16 ImageNet model
- 2. First, the full original CNN provides top classes for an image sample:

Top 3 classes reach 98% 44% Sweatshirt 35% Jersey 19% Bulletproof Vest!

3. we cut at last pooling layer: goal is to get a flatten vector, here dim 512.

4. Make the usual t-sne 2D projection observations

Using rough t-sne after alternate dim reducers (nfm 7)

5. Further work about CNN: training of the model with our dataset (ima generator & augmentation)

Browse combinations of text / image features

Observations of rough clustering ARI score

- We build alternate combinations of text or image features (incl. single text nor image)
- After a PCA 80% reduction, it consists in an assembly of 4 text and 3 image inputs of different resulting [sizes]
 - or triangleright or responsible of the results of t
 - NMF BoW [14] or LDA BoW [14]
 - SIFT BoVW [98] optimum [72] cnn_vgg [512]

Ranking by ARI score:

Observations:

- Results are unstable and we shall proceed statistically
- cnn_vgg is on top, enhancetxt, opposite to sift BoVW
- Confirm this trend with reduced or adjusted inputs dimension.

"Adjusted" dim to [14]:

"Reduced" dim to [7]:

We "chained" PCA and MNF sliding negative to positive data with an offset.

Dead end in case of [14]

- Mainly lower results
- Ranking seems irrelevant
- Trend is not confirmed

Promising in case of [7]

- Being aware of instability of our rough results
- Being aware of our ability to tune any method
- Combination of cnn_image and text BoW could even improve results
- We should keep both feature and reduction and balance between image and text is a key point.

"Best" clustering visualizations: Ida_optim & cnn_vgg

t-sne 2D projection

Confusion matrix: ARI 46%

With such combination, clusters are almost balanced:

Digging deeper (Cat level 2), we find only one restricted product's panel. Strong similarity has been recognized through our study.

Guess what kind of "storage" product we have?

Alternate case to understand combination: Ida_optim only

t-sne 2D projection

Confusion matrix: ARI 20%

With text LDA BoW only, clusters are more imbalanced:

Nb 1 is our "carry-all" cluster: il contains "Watches" and a wide range of other categories.

Digging deeper (Cat level 2), we find restricted product's panel. Strong similarity has been recognized through our study.

Guess what the product of "Baby & Kids Gifts" is about?

Further steps

- Our recommendation is to engage further work on both text & image topics, with key points:
 - O Enhance the hierarchical decomposition through multi-labelling of products
 - Remedy imbalanced classes (through API)
 - Refine the scope & target, in order to dig deeper only on right and valuable directions, meaning
 - Refine the search space, choose among alternate techniques (processors, extractors, reducers)

Expected decisions: Feasibility study validation Y N

Engage next step: risk & opportunity matrix, project plan Y N

Time for Q&A, Thank you for your attention!