Package 'Brundle'

September 18, 2017

Title Brundle: Tools for the normalisation of ChIP-Seq data

Type Package

Version 1.0.0

Author Andrew Holding
Maintainer Andrew Holding <andrew.holding@cruk.cam.ac.uk></andrew.holding@cruk.cam.ac.uk>
Description Brundle provides a series of convienice functions for normalising ChIP-seq data. This input can either be from DiffBind or a matrix formatted for DESeq2. The output is either a Diffbind object or the defualt DESeq2 output. Either can then be processed as normal.
License CC BY 4.0
Encoding UTF-8
LazyData true
Depends DiffBind, Rsamtools, DESeq2, lattice
RoxygenNote 6.0.1.9000
biocViews Software, Technology, Sequencing, ChIPSeq
R topics documented:
jg.applyNormalisation2jg.convertPeakset2jg.correctDBASizeFactors3jg.countAlignedMReads3jg.dbaGetPeakset3jg.getControlCounts4jg.getCorrectionFactor4jg.getDba5jg.getNormalizationCoefficient5jg.getSampleIds6jg.plotDeSeq6jg.plotDeSeqCombined7jg.plotMA7jg.plotNormalization8jg.runDeSeq9
Index 10

jg.convertPeakset

```
jg.applyNormalisation jg.applyNormalisation
```

Description

Takes the experimental peakset and applies the calculated coefficient and correction factor.

Usage

```
jg.applyNormalisation(jg.experimentPeakset, jg.coefficient, jg.correctionFactor,
    jg.treatedNames)
```

Arguments

```
jg.experimentPeakset
is the peakset extracted from the Diffbind object
jg.coefficient is the coefficient calculated by jg.getNormalizationCoefficient
jg.correctionFactor
is the correction factor calculated by jg.getCorrectionFactor
jg.treatedNames
is the names of the treated samples
```

Examples

```
data(jg.experimentPeakset, package="Brundle")
jg.experimentPeaksetNormalised<-jg.applyNormalisation(jg.experimentPeakset, 1.267618, 0.6616886, c("1b", "2</pre>
```

```
jg.convertPeakset jg.convertPeakset
```

Description

Converts a DiffBind object into a DESeq2 compatible form for the workflow.

Usage

```
jg.convertPeakset(jg.controlPeakset)
```

Arguments

```
jg.controlPeakset is the name of the DiffBind object to convert
```

```
jg.convertPeakset(jg.controlPeakset)
```

```
jg.correctDBASizeFactors
```

jg.correctDBASizeFactors

Description

Correct the size factors in a DiffBind object using our DESeq2 pipeline for normalisation.

Usage

```
jg.correctDBASizeFactors(dba, jg.controlSizeFactors)
```

Examples

```
jg.correctDBASizeFactors(dba,jg.controlSizeFactors)
```

```
jg.countAlignedMReads
```

Description

This function counts the number of aligned reads in millions from a list of bam files. It returns these in as a list of numbers in the same order.

Usage

```
jg.countAlignedMReads(jg.bamFiles)
```

Arguments

jg.bamFiles is a list of bam files to count.

jg.dbaGetPeakset

dbaGetPeakset

Description

Extracts a peakset from a dba object.

Usage

```
jg.dbaGetPeakset(dba)
```

Arguments

dba

is the name of the DiffBind object

```
data(dbaExperiment, package="Brundle")
jg.experimentPeakset <- jg.dbaGetPeakset(dbaExperiment)</pre>
```

```
jg.getControlCounts
jg.getControlCounts
```

Description

This function counts the number of aligned reads in millions from a list of bam files. It returns these in as a list of numbers in the same order.

Usage

```
jg.getControlCounts(jg.control, jg.controlSampleSheet, jg.Condition)
```

Arguments

Examples

```
data(jg.controlPeakset, package="Brundle")
fpath <- system.file("extdata", "samplesheet_SLX14438_hs_CTCF_DBA.csv",package="Brundle")
jg.controlSampleSheet<-fpath
jg.controlCountsTreated<-jg.getControlCounts(jg.controlPeakset, jg.controlSampleSheet,"Fulvestrant")</pre>
```

```
jg.getCorrectionFactor
```

jg.getCorrectionFactor

Description

Generates a correction factor that is applied before reinserting the data into the DiffBind object for analysis.

Usage

```
{\tt jg.getCorrectionFactor(jg.experimentSampleSheet, jg.treatedNames,} \\ {\tt jg.untreatedNames)}
```

Arguments

jg.getDba 5

Examples

```
data(jg.controlCountsTreated, package="Brundle")
data(jg.controlCountsUntreated, package="Brundle")
jg.coefficient<-jg.getNormalizationCoefficient(jg.controlCountsTreated, jg.controlCountsUntreated)</pre>
```

jg.getDba

jg.getDba

Description

Generates a DiffBind object from a valid SampleSheet with the required data for normalisation. No examples are provided as BAM files are not included in this package.

Usage

```
jg.getDba(jg.experimentSampleSheet, dbaSummits, ...)
```

Arguments

```
jg.experimentSampleSheet
```

is the filename of samplesheet to be loaded

dbaSummits

is the peak width in bp from summits (optional)

```
jg.getNormalizationCoefficient
```

jg.getNormalizationCoefficient

Description

This function allows the user to caryy out the normalisation and returns a coefficient by using a linear fit to the control data.

Usage

```
jg.getNormalizationCoefficient(jg.controlCountsTreated,
    jg.controlCountsUntreated)
```

Arguments

```
jg.controlCountsTreated
```

Control counts extracted from the Diffbind object for the treated condition using jg.getControlCounts

jg.controlCountsUntreated

Control ounts extracted from the Diffbind object for the untreated condition using jg.getControlCounts

jg.plotDeSeq

Examples

jg.getSampleIds

jg.getSampleIds

Description

Extracts the sample Id from DiffBind formatted SampleSheet in csv format.

Usage

```
jg.getSampleIds(jg.controlSampleSheet)
```

Arguments

jg.plotDeSeq

jg.plotDeSeq

Description

Plots the output from DESeq2 for the Brundle pipeline

Usage

```
jg.plotDeSeq(ma.df, p = 0.01, title.main = "Differential ChIP",
  log2fold = 0.5, flip = FALSE)
```

Arguments

ma.df is the result Dataframe from DESeq2

p is the minium FDR to highlight as significant

log2fold is the minimum log2 fold change for highlighted points

flip when set to TRUE flips the data

title is the plot title

```
data(jg.experimentResultsDeseq,package="Brundle")
jg.plotDeSeq(jg.experimentResultsDeseq,
  p=0.01,
  title.main="Fold-change in ER binding",
  flip=TRUE
)
```

jg.plotDeSeqCombined

```
jg.plotDeSeqCombined jg.plotDeSeqCombined
```

Description

Overlays the plots from the output from DESeq2 for the Brundle pipeline

Usage

```
jg.plotDeSeqCombined(jg.controlResultsDeseq, jg.experimentResultsDeseq,
  title.main, padjX, flip = FALSE)
```

Arguments

```
jg.controlResultsDeseq
```

is the result Dataframe from DESeq2 for the control conditions

title.main is the plot title

padjX is the minium FDR to highlight as significant

flip when set to TRUE flips the data

jg.experimentResultsDeseqis

the result Dataframe from DESeq2 for the experimental conditions

Examples

jg.plotMA

jg.plotMA

Description

This function plots both the control and experimental data on an MA plot. It also allows for the user to provide a normalisation coefficent for the data.

Usage

```
jg.plotMA(jg.experimentPeakset, jg.controlPeakset, jg.untreatedNames,
jg.treatedNames, jg.coefficient)
```

8 jg.plotNormalization

Arguments

```
jg.experimentPeakset
```

is the peakset of the experimental data extracted from a DiffBind ojbect with jg.dbaGetPeakset

jg.controlPeakset

is the peakset of the control data extracted from a DiffBind ojbect with jg.dbaGetPeakset

jg.untreatedNames

is a list of sample names for the control or untreated conditions

jg.treatedNames

is a list of sample samples for the treated conditions

jg.coefficient is a normalisation coefficent for the data that can be generated via the pipeline. Can be set to 1 to view before normalisation.

jg.plotNormalization jg.plotNormalization

Description

This function allows the user to visualize the normalisation. It is not needed for the pipeline but provides a helpful illustration of the process.

Usage

jg.plotNormalization(jg.controlCountsTreated, jg.controlCountsUntreated)

Arguments

 $\tt jg.controlCountsTreated$

Control counts extracted from the Diffbind object for the treated condition using jg.getControlCounts

jg.controlCountsUntreated

Control ounts extracted from the Diffbind object for the untreated condition using jg.getControlCounts

```
data(jg.controlCountsTreated, package="Brundle")
data(jg.controlCountsUntreated, package="Brundle")
jg.plotNormalization(jg.controlCountsTreated, jg.controlCountsUntreated)
```

jg.runDeSeq 9

jg.runDeSeq jg.runDeSeq

Description

Runs DESeq2 on our peakset after we have obtained the normalised size factors.

Usage

```
jg.runDeSeq(jg.PeaksetDeSeq, jg.conditions, jg.SizeFactors = NULL)
```

Arguments

```
jg.PeaksetDeSeq
is the experimental peakset formatted for DESeq2
jg.conditions is the list of conditions to be compared
```

jg.SizeFactors is the size factors generated from the control samples

```
jg.runDeSeq(jg.PeaksetDeSeq,jg.conditions, jg.SizeFactors = NULL)
```

Index

*Topic Convert	*Topic plot
jg.convertPeakset,2	jg.plotDeSeq,6
*Topic DESeq2	<pre>jg.plotDeSeqCombined, 7</pre>
jg.convertPeakset,2	jg.plotMA,7
<pre>jg.correctDBASizeFactors, 3</pre>	${\sf jg.plotNormalization}, 8$
jg.plotDeSeq,6	*Topic reads
jg.plotDeSeqCombined,7	jg.countAlignedMReads, 3
jg.runDeSeq,9	<pre>jg.getControlCounts,4</pre>
*Topic DiffBind	*Topic samplesheet
jg.convertPeakset,2	jg.getDba,5
jg.dbaGetPeakset,3	jg.getSampleIds,6
jg.getCorrectionFactor,4	*Topic sample
jg.getDba,5	jg.getSampleIds,6
jg.getSampleIds,6	
*Topic Diffbind	jg.applyNormalisation,2
jg.correctDBASizeFactors,3	jg.convertPeakset,2
*Topic bamFiles	jg.correctDBASizeFactors,3
jg.countAlignedMReads,3	jg.countAlignedMReads, 3
jg.getControlCounts,4	jg.dbaGetPeakset,3
*Topic bam	jg.getControlCounts,4
jg.countAlignedMReads,3	jg.getCorrectionFactor,4
jg.getControlCounts,4	jg.getDba,5
*Topic correction	jg.getNormalizationCoefficient, 5
jg.applyNormalisation,2	jg.getSampleIds, 6
jg.getCorrectionFactor,4	jg.plotDeSeq,6
*Topic counts	jg.plotDeSeqCombined,7
jg.dbaGetPeakset,3	jg.plotMA, 7
jg.getDba,5	jg.plotNormalization, 8
*Topic data	jg.runDeSeq,9
jg.plotDeSeq, 6	
jg.plotDeSeqCombined, 7	
*Topic load	
jg.getDba,5	
*Topic normalisation	
jg.applyNormalisation,2	
jg.getCorrectionFactor,4	
*Topic normalization	
jg.getNormalizationCoefficient, 5	
jg.plotMA, 7	
jg.plotNormalization, 8	
*Topic peakset	
jg.applyNormalisation, 2	
jg.dbaGetPeakset,3	