Infrastructures Parallèles de Calcul Clusters – Grids – Clouds

Stéphane Genaud

11/02/2011

Clusters - Grids - Clouds

- Clusters: assemblage de "PCs"
 + interconnexion rapide + espace disque partagé
- Grids : mutualisation de ressources à large échelle (middleware + VOs)
- Clouds: externalisation des ressources (coût=f(temps), virtualisation, SaaS/laaS/PaaS)

Stéphane Genaud () 11/02/2011 2 / 8

Clusters - Grids - Clouds

- Clusters: assemblage de "PCs"
 + interconnexion rapide + espace disque partagé
- Grids: mutualisation de ressources à large échelle (middleware + VOs)
- Clouds: externalisation des ressources (coût=f(temps), virtualisation, SaaS/laaS/PaaS)

Stéphane Genaud () 11/02/2011 2 / 8

Clusters - Grids - Clouds

- Clusters: assemblage de "PCs"
 + interconnexion rapide + espace disque partagé
- Grids: mutualisation de ressources à large échelle (middleware + VOs)
- Clouds: externalisation des ressources (coût=f(temps), virtualisation, SaaS/laaS/PaaS)

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : $32 \times 1 \times 2 = 64$ cores , Opteron 2.4GHz, 4GB RAM/server
 - hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : $2880 \times 2 \times 4 = 23040$ cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4 = 20480$ cores (Xeon) + AMD GPU: $2560 \times 1600 = 4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : $32 \times 1 \times 2 = 64$ cores , Opteron 2.4GHz, 4GB RAM/server
 - ▶ hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4$ =20480 cores (Xeon) + AMD GPU : 2560×1600 = 4096000 SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : $32 \times 1 \times 2 = 64$ cores , Opteron 2.4GHz, 4GB RAM/server
 - hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4=20480$ cores (Xeon) + AMD GPU : $2560 \times 1600=4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : 32 \times 1 \times 2 = 64cores , Opteron 2.4GHz, 4GB RAM/server
 - ▶ hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4=20480$ cores (Xeon) + AMD GPU : $2560 \times 1600=4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : 32 \times 1 \times 2 = 64cores , Opteron 2.4GHz, 4GB RAM/server
 - ▶ hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4=20480$ cores (Xeon) + AMD GPU : $2560 \times 1600=4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs \times processeurs \times cœurs
 - hpc (UdS) 2007 : 32 \times 1 \times 2 = 64cores , Opteron 2.4GHz, 4GB RAM/server
 - ▶ hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4=20480$ cores (Xeon) + AMD GPU : $2560 \times 1600=4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Matériel

- Calcul: serveurs × processeurs × cœurs
 - hpc (UdS) 2007 : 32 \times 1 \times 2 = 64cores , Opteron 2.4GHz, 4GB RAM/server
 - ▶ hpc (UdS) 2009 : $68 \times 2 \times 4 = 544$ cores,
 - jade (CINES) : 2880 \times 2 \times 4 = 23040 cores , 34GB RAM/server (267 Tflop/s)
 - Hybride Tianhe-1H (Chine): $2560 \times 2 \times 4=20480$ cores (Xeon) + AMD GPU : $2560 \times 1600=4096000$ SPU
- Mémoire : distribuée sur les serveurs, caches sur les processeurs/coeurs
- Réseau : TCP ou spécialisé (Infiniband, Quadrics, ...)
- Stockage: scratch, NFS, GPFS

Stéphane Genaud () 11/02/2011

Grids

Matériel

- 'grilles "maison" et Desktop Grid, Volunteer Computing (e.g Boinc)
 - Calcul, Mémoire : ordinateurs de bureau (complètement hétérogène)
 - Réseau: TCP. NREN ou ADSL
 - Stockage : local et parfois distribué à large échelle.
- Grille production (e.g EGI, TeraGrid): clusters

11/02/2011

Grids

Matériel

- 'grilles "maison" et Desktop Grid, Volunteer Computing (e.g Boinc)
 - Calcul, Mémoire : ordinateurs de bureau (complètement hétérogène)
 - Réseau: TCP. NREN ou ADSL
 - Stockage : local et parfois distribué à large échelle.
- Grille production (e.g EGI, TeraGrid): clusters
 - Calcul, Mémoire : clusters
 - Réseau : local=clusters et global=NREN
 - Stockage : type cluster et parfois distribué à large échelle

11/02/2011

Clouds

Matériel (©souvent secret industriel)

- Calcul, Mémoire: dépend du prix : [machine de bureau → cluster]
- Réseau : local=dépend du prix, global=NREN
- Stockage : type cluster

Amazon EC2						
instance	CPU	RAM (GB)		I/O &réseau	\$	
	mono-proc	1.7	160	modérée	1	
large	2 cores	7.5		élevée	2	
xtra large	4 cores	15	1690	élevée	4	
clstr compute	2×8 cores	23	1690	10 Gbps	33.5	

Stéphane Genaud () 11/02/2011

Clouds

Matériel (©souvent secret industriel)

- Calcul, Mémoire: dépend du prix : [machine de bureau → cluster]
- Réseau : local=dépend du prix, global=NREN
- Stockage : type cluster

Amazon EC2

instance	CPU	RAM (GB)	disque (GB)	I/O &réseau	\$
small	mono-proc	1.7	160	modérée	1
large	2 cores	7.5	850	élevée	2
xtra large	4 cores	15	1690	élevée	4
:					:
clstr compute	2×8 cores	23	1690	10 Gbps	33.5
cisti compute	2/10 00103		1000	_ 10 Gbp3	55.5

Stéphane Genaud () 11/02/2011

Clusters: Pros & Cons

Objectifs, Avantage

- HPC (Performances)
- Fiabilité de l'infrastructure
- Homogénéité des systèmes/logiciels installés
- Facilité d'accès aux données

Obstacles, Inconvénients

- Problèmes de coût et dimensionnement
- Difficulté de tirer toute la performance
- Environnement déporté

Stéphane Genaud () 11/02/2011

Clusters: Pros & Cons

Objectifs, Avantage

- HPC (Performances)
- Fiabilité de l'infrastructure
- Homogénéité des systèmes/logiciels installés
- Facilité d'accès aux données

Obstacles, Inconvénients

- Problèmes de coût et dimensionnement
- Difficulté de tirer toute la performance
- Environnement déporté

Stéphane Genaud () 11/02/2011

Grille: Pros & Cons

Objectifs, Avantage

- Mutualisation des ressources
- Meilleure utilisation des ressources (↓ coût)
- Ressources nombreuses

Obstacles, Inconvénients

- Instabilité de l'infrastructure (pannes)
- Hétérogénéité des matériels et logiciels
- Recensement difficile des ressources

Stéphane Genaud () 11/02/2011

Grille Pros & Cons

Objectifs, Avantage

- Mutualisation des ressources
- Meilleure utilisation des ressources (↓ coût)
- Ressources nombreuses

Obstacles, Inconvénients

- Instabilité de l'infrastructure (pannes)
- Hétérogénéité des matériels et logiciels
- Recensement difficile des ressources

11/02/2011 7 / 8

Clouds IaaS: Pros & Cons

Objectifs, Avantage

- Dimensionnement facile de l'infrastucture
- Pas de coût de possession pour les Clouds publics
- Environnement contrôlé et homogène grâce à la virtualisation
- Variété des types d'infrastructure et des modèles de programmation

Obstacles, Inconvénients

- Variance des performances dûes à la virtualisation
- Matériel utilisé non divulgué dans les clouds publics
- Perte des compétences sur l'infrastructure mtérielle

Stéphane Genaud () 11/02/2011

Clouds IaaS: Pros & Cons

Objectifs, Avantage

- Dimensionnement facile de l'infrastucture
- Pas de coût de possession pour les Clouds publics
- Environnement contrôlé et homogène grâce à la virtualisation
- Variété des types d'infrastructure et des modèles de programmation

Obstacles, Inconvénients

- Variance des performances dûes à la virtualisation
- Matériel utilisé non divulgué dans les clouds publics
- Perte des compétences sur l'infrastructure mtérielle

Stéphane Genaud () 11/02/2011

Domaines d'applications

	cluster	grid	grid prod.	cloud (IaaS)
resources	homogène	hétérogène	fédér. ho- mogènes	fédér. ho- mogènes
gestionnaire	batch	middleware	meta-batch	manuel+transp
marché dominant	HPC	calcul	calcul + I/O	web servers
parallélisme	div. domaine	distribution tâches	distribution programmes	distribution systèmes
modèle prog.	SMPD	client/server	séquentiel, workflow	tout
exemples	MPI [+OpenMP,] [+opencl], PGAS	Boinc, Condor	tout lang.	tout lang.

Stéphane Genaud () 11/02/2011 9 / 8