-	Reference: C:\MA\COLIRS\ProgramsSampleFTC xmcd(R)
7	Reference C (MA)COLIRS/PROGRAMISSAMDIECTIC XINCOLR

Révisions: intervalles de confiance , Loi exponentielle

intervalies de comiance, Loi exponentiene
On mesure la durée de vie X de 84 transistors; 55 durées sont entre 0 et 2 ans (intervalle centré en 1), 18 durées entre 2 et 4 (intervalle centré en 3). Les nombres suivants selon le même principe sont 6, 3, 1, 0, 1. Les sommes et somme des carrés des durées sont 165.781 et 754.0754.
1. Donner les intervalle de confiance à 90, 95 et 99% pour l'espérance μ de X.
2. Tracer l'histogramme des densités. Quelle forme a-t-il?
3. On veut modéliser X par une loi exponentielle.
i. En regardant l'histogramme des densités de 2 et en raisonnant sur la valeur de la densité en 0 donner l'ordre de grandeur pour le λ correspondant à cet échantillon. ii. Raisonner sur l'espérance de la loi exponentielle pour calculer l'estimation $\lambda_{\mbox{est}}$. de λ .
iii. Tracez sur l'histogramme de 2 la densité obtenue avec $\lambda_{ extbf{est}}$.
4. Utilisez le modèle pour calculer la probabilité que la durée de vie soit i) entre 2 et 4 ans;ii) >6 ans.
5. Quelle est la durée de vie au delà de laquelle le transistor survit avec proba 0.5 ?

Loi de Poisson
On compte le nombre de mulots que l'on trouve sur des parcelle de 1m². Les pourcentages des parcelle sur lesquelles on trouve 0, 1, 2, 3,10 mulots sont donnés dans le vecteur suivant
$V := \begin{pmatrix} 8 & 20 & 21 & 19 & 11 & 9 & 6 & 3 & 2 & 1 & 0 \end{pmatrix}^T$
1. Représenter graphiquement ces fréquences relatives (pas les pourcentages) - et calculer le nombre moyen de mulots sur chaque parcelles.
2 . Proposer une loi de probabilité pour le nombre de mulot sur une parcelle - et estimer le ou les paramètres pour cette loi. Superposer les probabilités sur le diagramme des fréquences relatives.
3. Calculer la probabilité que d'après le modèle il y aiti. au moins un mulot sur une parcelle.ii. 3 ou 4 mulots.iii. moins de 6 mulots.