Тема. Правильні многокутники. Формули радіусів вписаних і описаних кіл

<u>Мета:</u> Познайомитися з формулами радіусів вписаних і описаних кілп равильних многокутників, вчитися розв'язувати задачі на застосування цих формул

Повторюємо

- Які многокутники називають правильними?
- Як знайти величину кута правильного многокутника?
- Як знайти величину зовнішнього кута правильного многокутника?

Ознайомтеся з інформацією та зробіть конспект

Будь-який правильний многокутник є як вписаним у коло, так і описаним навколо кола, причому центри описаного та вписаного кіл збігаються.

Многокутник вписаний у коло, якщо всі його вершини лежать на колі.

Многокутник описаний навколо кола, якщо всі його сторони дотикаються до кола.

Зверніть увагу, що ці кола будуть різними, якщо многокутник одночасно і вписаний у коло, і описаний навколо кола.

Корисний факт: для того, щоб знайти центр правильного многокутника, достатньо знайти точку перетину серединних перпендикулярів, проведених до двох сусідніх сторін многокутника. Отримана точка і буде центром правильного многокутника.

- Центральний кут правильного n-кутника дорівнює $\frac{360^{\circ}}{n}$.
- Радіус кола, описаного навколо правильного n-кутника зі стороною а обчислюється за формулою: $R = \frac{a}{2sin\left(\frac{180^{\circ}}{n}\right)}$.
- Радіус кола, описаного навколо правильного n-кутника зі стороною а, для деяких n-кутників:

• Радіус кола, уписаного в правильний n-кутник зі стороною а обчислюється за формулою: $r = \frac{a}{2tg\left(\frac{180^{\circ}}{n}\right)}$.

Формули радіусів вписаних і описаних кіл

Загальна формула	n = 3	n = 4	n = 6
$r = \frac{a_n}{2 \lg \frac{180^\circ}{n}}$	$r=\frac{a_3}{2\sqrt{3}}=\frac{a_3\sqrt{3}}{6}$	$r=\frac{a_4}{2}$	$r = \frac{a_6\sqrt{3}}{2}$
$R = \frac{a_n}{2\sin\frac{180^\circ}{n}}$	$R=\frac{a_3}{\sqrt{3}}=\frac{a_3\sqrt{3}}{3}$	$R = \frac{a_4}{\sqrt{2}} = \frac{a_4\sqrt{2}}{2}$	$R = a_6$
$r = R \cos \frac{180^{\circ}}{n}$	$r = \frac{R}{2}$	$r = \frac{R\sqrt{2}}{2}$	$r = \frac{R\sqrt{3}}{2}$

Розв'язування задач

Задача 1

Чому дорівнює радіус кола, що вписане у правильний шестикутник зі стороною $2\sqrt{3}$?

Розв'язання

Скористаймося формулою для обчислення радіуса вписаного кола.

$$r = \frac{a}{2tg\left(\frac{180^{\circ}}{n}\right)}$$

Підставивши замість а число $2\sqrt{3}$ та замість n число 6, отримаємо:

$$r = \frac{2\sqrt{3}}{2tg\left(\frac{180^{\circ}}{6}\right)} = \frac{2\sqrt{3}}{2tg(30^{\circ})} = \frac{2\sqrt{3}}{2\frac{1}{\sqrt{3}}} = 3.$$

Задача 2

Чому дорівнює сторона правильного трикутника, якщо радіус уписаного в нього кола дорівнює $\sqrt{3}$?

Розв'язання

$$r = \frac{a}{2tg\left(\frac{180^{\circ}}{n}\right)} = > a = 2rtg\left(\frac{180^{\circ}}{n}\right)$$
$$r = \sqrt{3}, \ n = 3$$
$$a = 2*\sqrt{3}*tg(60^{\circ}) = 2*\sqrt{3}*\sqrt{3} = 6.$$

Задача 3

Чому дорівнює радіус кола, описаного навколо правильного трикутника зі стороною $4\sqrt{3}$?

Розв'язання

3 формули для обчислення радіуса кола, описаного навколо правильного многокутника, отримаємо:

$$R = \frac{a}{2sin\left(\frac{180^{\circ}}{n}\right)}$$

3 умови задачі $a = 4\sqrt{3} \ ma \ n = 3$.

Підставимо ці значення та отримаємо: $R=\frac{4\sqrt{3}}{2sin\left(60^{\circ}\right)}=4.$

Задача 4

Чому дорівнює сторона правильного трикутника, якщо радіус кола, описаного навколо цього трикутника, дорівнює $\sqrt{3}$?

Розв'язання

У формулі для обчислення радіуса $R = \frac{a}{2sin\left(\frac{180^{\circ}}{n}\right)}$.

Знайдемо з цієї рівності α.

Отримаємо:
$$a = 2Rsin\left(\frac{180^{\circ}}{n}\right)$$

Підставивши $R = \sqrt{3}$

$$n = 3$$
.

отримаємо:
$$a = 2\sqrt{3} * \frac{\sqrt{3}}{2} = 3$$
.

Поміркуйте

Яку величину має зовнішній кут правильного трикутника?

Домашнє завдання

- Опрацювати конспект
- Розв'язати №736,746, 750

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту

Джерело

- Всеукраїнська школа онлайн
- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017