$$\mathsf{CH}_3 \xrightarrow{\mathsf{CH}_3} \mathsf{CH}_3 \xrightarrow{\mathsf{CI}_2} \mathsf{CH}_3 \xrightarrow{\mathsf{CH}_3} \mathsf{CH}_3 \xrightarrow{\mathsf{NaOH}} \mathsf{CH}_3 \xrightarrow{\mathsf{CH}_3} \mathsf{CH}_3 \xrightarrow{\mathsf{CH}_3} \mathsf{CH}_3 \xrightarrow{\mathsf{CH}_3} \mathsf{CH}_3$$

$$CH_3$$
 CH_3 + CH_3CI \longrightarrow TM

北京化工大学 2012 —— 2013 学年第二学期

《有机化学》期中考试试卷参考答案

课程代码C	Н	M	2	3	4	0	0	Т
-------	---	---	---	---	---	---	---	---

班级:_		姓名:		学号:		分数:	
题号	_		三	四	Ti.	六	总分
得分							

一、用系统命名法命名下列化合物,必要时标明构型(R/S,顺/反或 Z/E)。如果要求用英文命名的,须用英文命名,如果要求名称写结构的直接画出相应的化学结构(每题 1 分,共 12 分)。

序号	化合物结构	序号	化合物结构
1,	CH3 CH2CH2CH2CH3 I I CH3CH2CHCHCH2CHCHCH3 I CH2CH2CH3 CH3	2,	H ₃ C CI
5-甲	基-4 乙基-7-(1-甲基乙基)-十一烷		6-甲基-2-氯-螺[3.4]-辛烷
3,	H ₃ C CH(CH ₃) ₂ CH ₂ CH ₃ Br CH ₂ CH ₃	4.	H CH ₃ CH ₂ CHCH ₃
(:	3R,4S)-2,3,4-三甲基-4-溴-己烷		(4R)-2-甲基-4-环戊基-戊烷
5,	CH ₃ H	6.	CH₂CI CH₂CI CH₃
	反-1,4-二甲基-环己烷		(2R,3R)-2,3-二氯-戊烷
7、	CH ₃ H CH ₂ CH ₃ (中英文名称各 1 分)	8.	乙基异丙基叔丁基甲烷

中文名称: (1S,3S)-1-甲基-3-乙基-环己烷 英文名称: (1S,3S)-1-ethyl-3-methyl-cyclohexane	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
9、	10、 (2S,3R)-2-氯-3-碘丁烷 (用费歇尔式表示)
中文名称: 3,7-二甲基-7-乙基双环[4.1.0] 庚烷 英文名称: 7-ethyl-3,7-dimethyl-bicyclo[4.1.0]heptane,	H—————————————————————————————————————

- 二、选择题(每题只有一个答案,每题1分,共16分)
- 1、具有旋光性的化合物是(C)

2、顺-1-甲基-3-异丙基环己烷的优势构象是(B

$$A. \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{CH_3} \xrightarrow{H_3C} \xrightarrow{CH_3} \xrightarrow$$

- 3、下列化合物具有顺反异构体的是(D)
 - A. 环己烯 B. 甲基环戊烷 C. 1-丁烯 D. 3,4-二甲基-3-己烯
- 4、下列化合物沸点最高的是(A)
 - A. 正戊烷 B. 异戊烷 C. 新戊烷 D. 异丁烷
- 5. 下列化合物熔点最高的是(C)
 - A. 正戊烷 B. 异戊烷 C. 新戊烷 D. 异丁烷
- 6、下列化合物酸性最大的是(C)
 - A. 乙醇; B. 2-氯乙醇; C. 2-氟乙醇; D. 丙醇
- 7、下列碳正离子稳定性从大到小顺序正确的是:(C)

四、回答下列问题(共24分)。

1. (6分) 判断下列化合物之间的关系(同一物、对映体、非对映体)

a 与 b: 非对映体

a 与 c: 对映体

a 与 d: 非对映体

b与c: 非对映体

b与d: 同一物

c与d: 非对映体

2. (3分)将 0.50 g的抗肿瘤活性的天然产物溶于 10毫升的乙醇,将此溶液置于旋光管中用旋光仪测得旋光度为+0.53度。如果旋光管长(/)为 5 cm,求这个化合物的比旋光值。

比旋光值[α]=+21.2

3. (3分) 取代反应 $CH_3Cl + OH \rightarrow CH_3OH + Cl$ 的速率对氯甲烷和氢氧根的浓度都是一级反应。假设速率常数 $k = 3.5 \times 10^{-3} \text{ mol}^{-1} \text{ L s}^{-1}$, 求当浓度分别为 $[CH_3Cl] = 0.50 \text{ mol } L^{-1}$; $[OH] = 0.015 \text{ mol } L^{-1}$ 反应的速率。

答:

 $V=k\times[CH_3C1][OH^-]=3.5\times10^{-3}\times0.5\times0.015=2.625\times10^{-5}\ mol\ L^{-1}s^{-1}$

4. (3分)下列 a 和 b 两个共振式中,哪个更稳定?原因是什么?

答:

a 稳定具有更多八电子结构

5. (3分)下列构象哪一个更加稳定,陈述有关原因。

$$\begin{array}{c} H & \stackrel{\text{Cl}}{\longleftrightarrow} H \\ H & \stackrel{\text{OH}}{\longleftrightarrow} \end{array}$$

答:

A 更稳定,大取代基虽然处于邻位交叉构象,但这构象中,羟基与氯之间可形成氢键,更加稳定

6. (3分) 画出下列结构最稳定的椅式构象。

答:

7. 在乙醇中,正常条件下一级卤代烃 $CH_2CH_2CH_2CH_2CI$ 的 S_N1 反应活性远比 $CH_3CH_2OCH_2CI$ 的 S_N1 反应活性小。请解释有关原因。

答: 生成中间体碳正离子:

CH₃CH₂CH₂CH₂⁺ 不稳定

CH₃CH₂OCH₂⁺↔ CH₃CH₂O⁺=CH₂稳定

五、反应机理(共10分)。

1. (5 分) 某烷烃分子式为 C_6H_{14} ,在光照下发生氯代反应,生成两种一氯代物,试写出该烷烃的结构及反应机理。

答:

链引发: Cl₂ → 2 Cl^{*}

链增长:

链终止: 略

2. (5分)写出下列反应的机理。

答:

六、用指定原料合成下列分子,所需溶剂或其他试剂任选。(每题 4 分, 共 24 分)。

1. 从丁烷合成 CH₃CH₂CHICH₃

答:

2. 从丁烷合成 CH₃CH₂CH₂CH₂I 答:

3. 从环己烷合成环己烯 答:

4. 从环己烷合成环己醇

答:

6. 从甲烷和 2-甲基丙烷合成(CH₃)₃COCH₃ 答: