MA439: Functional Analysis Tychonoff Spaces: Exercises 2.1 - 2.6, Ben Mathes

Huan Q. Bui

Due: Wed, Sep 2, 2020

Exercise 1 (2.1). Let d denote the Euclidean metric on \mathbb{R}^3 . Prove that d actually is a metric.

Proof. Let $u, v \in \mathbb{R}^3$ be given.

$$d(u,v) = \sqrt{\sum_{i=1}^{3} (u_i - v_i)^2}.$$

It is clear that $d(u,v) \ge 0$ and d(u,v) = 0 if and only if $u_i = v_i$ for i = 1,2,3, i.e., u = v. Next, because $(u_i - v_i)^2 = (v_i - u_i)^2$ for any pair of numbers $u_i, v_i, d(u,v) = d(v,u)$. Finally, consider $w \in \mathbb{R}^3$:

$$(d(u,v) + d(v,w))^{2} = \left(\sqrt{\sum_{i=1}^{3} (u_{i} - v_{i})^{2}} + \sqrt{\sum_{i=1}^{3} (v_{i} - w_{i})^{2}}\right)^{2}$$

$$= \sum_{i=1}^{3} (u_{i} - v_{i})^{2} + 2\sqrt{\sum_{i=1}^{3} (u_{i} - v_{i})^{2} \cdot \sum_{i=1}^{3} (u_{i} - v_{i})^{2}} + \sum_{i=1}^{3} (v_{i} - w_{i})^{2}$$

$$\geq \sum_{i=1}^{3} \left[(u_{i} - v_{i})^{2} + 2(u_{i} - v_{i})(v_{i} - w_{i}) + (v_{i} - w_{i})^{2} \right], \quad \text{C-S inequality}$$

$$= \sum_{i=1}^{3} (u_{i} - w_{i})^{2}$$

$$= (d(u, w))^{2}.$$

Since $d(u, v) \geq 0$ for all u, v, we can take the square root on both sides and obtain the desired triangle inequality. Thus, d is a bona-fide metric on \mathbb{R}^3 .

Exercise 2 (2.2). Let $\mathcal{X} = \{a, b, c\}$, and suppose d is a symmetric function with d(a, b) = 1, d(b, c) = 1, $d(a, c) = \sqrt{2}$, and d(a, a) = d(b, b) = d(c, c) = 0. Show that d is a metric, and find a subset of $\mathcal{B}(\mathcal{X})$ that is isometric to (\mathcal{X}, d) .

Proof. By definition, $d(u,v) \geq 0$ for all $u,v \in \mathcal{X}$ and $d(u,v) = 0 \iff u = v$. Next, since d is a symmetric function, d(u,v) = d(v,u) for any $u,v \in \mathcal{X}$. Finally, consider $u,v,w \in \mathcal{X}$. If u = v = w then d(u,v) + d(v,w) = d(v,w) = 0. Else, assume $u \neq v$, then $d(u,v) + d(v,w) \geq \sqrt{2} = \max\{d(u,v) : u,v \in \mathcal{X}\}$. Thus, the triangle inequality property is satisfied. Therefore, d is a metric on \mathcal{X} . Now, consider the set $\mathcal{F} = \{f_a, f_b, f_c\}$ where

$$f_a(x) = d(x, a) - d(x, a), \quad f_b(x) = d(x, b) - d(x, a), \quad f_c(x) = d(x, c) - d(x, a)$$

We want to show that \mathcal{F} is isometrically isomorphic to (\mathcal{X},d) . Since $d(x,y)<\infty$ for all $x,y\in\mathcal{X}$, we have that $\|f_x\|_{\infty}=\sup_{x'}|f_x(x')|=\sup_{x'}|d(x',x)-d(x',a)|<\infty$ for all $x\in\mathcal{X}$, i.e., f_x is

bounded for all $x \in \mathcal{X}$. So, $\mathcal{F} \subseteq \mathcal{B}(\mathcal{X})$. Further, the map $x \mapsto f_x$ is (clearly) bijective and is distance-preserving:

$$||f_{x_1} - f_{x_2}||_{\infty} = \sup_{x'} |(d(x', x_1) - d(x', a)) - (d(x', x_2) - d(x', a))|$$

$$= \sup_{x'} |d(x', x_1) - d(x', x_2)|$$

$$= d(x_1, x_2)$$

because

$$\sup_{x'} |d(x', a) - d(x', b)| = 1 = d(a, b)$$

$$\sup_{x'} |d(x', b) - d(x', c)| = 1 = d(b, c)$$

$$\sup_{x'} |d(x', c) - d(x', a)| = \sqrt{2} = d(c, a).$$

Thus, \mathcal{F} is isometrically isomorphic to (\mathcal{X}, d) .

Exercise 3 (2.3). If d is obtained from a norm via d(s,t) = ||s-t||, prove that d is a metric.

Proof. Let s, t, u be given. First, $d(s, t) = ||s - t|| \ge 0$, and d(s, t) = ||s - t|| = 0 if and only if s = t. Next, d(s, t) = ||s - t|| = ||t - s|| = d(t, s). Finally, $d(s, t) + d(t, u) = ||s - t|| + ||t - u|| \ge ||s - u|| = d(s, u)$. Thus, d is a metric.

Exercise 4 (2.4). On \mathbb{R}^2 define a function $\|\cdot\|_3 : \mathbb{R}^3 \to \mathbb{R}$ by $\|(x,y)\|_3 = (|x|^3 + |y|^3)^{1/3}$. Prove this is a norm.

Proof. Before showing $\|\cdot\|_3$ is a norm, we treat some special cases of known inequalities¹:

Lemma 0.1 (Young's Inequality). For positive numbers p, q such that 1/p + 1/q = 1 and $a, b \ge 0$:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Proof. If a=0 or b=0 then the result is clear. Thus, assume that $a,b\neq 0$, we have

$$ab = \exp\left(\ln a + \ln b\right)$$

$$= \exp\left(\frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q\right)$$

$$\leq \frac{1}{p}e^{\ln a^p} + \frac{1}{q}e^{\ln b^q}$$

$$= \frac{a^p}{p} + \frac{b^q}{q}$$

where the last inequality follows because the exponential function is convex and 1/q + 1/p = 1.

Lemma 0.2 (Hölder's Inequality). For positive numbers p, q such that 1/p+1/q=1, and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$

$$|\mathbf{a} \cdot \mathbf{b}| = \sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} \left(\sum_{k=0}^{n} |b_k|^q\right)^{1/q} = \|\mathbf{a}\|_p \|\mathbf{b}\|_q.$$

¹Stein & Shakarchi, Functional Analysis, Princeton Lectures in Analysis IV, Princeton University Press 2011.

Proof. If $\mathbf{a}=0$ or $\mathbf{b}=0$ then the result follows directly. Thus, assume that $\mathbf{a}\neq 0, \mathbf{b}\neq 0$. Let $\mathbf{u}=\mathbf{a}/\|\mathbf{a}\|_p$ and $\mathbf{v}=\mathbf{b}/\|\mathbf{b}\|_q$, so that $\|\mathbf{u}\|_p=\|\mathbf{v}\|_q=1$. It follows from Young's inequality that for all $n\in\mathbb{N}_+$,

$$|u_n v_n| \le \frac{|u_n|^p}{p} + \frac{|v_n|^q}{q}.$$

Thus, from the triangle inequality we have

$$|\mathbf{u} \cdot \mathbf{v}| \le \frac{1}{p} \sum_{k=1}^{n} |u_k|^p + \frac{1}{q} \sum_{k=1}^{n} |v_k|^q = \frac{1}{p} ||\mathbf{u}||_p + \frac{1}{q} ||\mathbf{v}||_p = \frac{1}{p} + \frac{1}{q} = 1.$$

Thus,

$$|\mathbf{a} \cdot \mathbf{b}| \le ||\mathbf{a}||_p ||\mathbf{b}||_q$$

as desired.

Lemma 0.3 (Minkowski's Inequality for sums). Let p > 1 and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$,

$$\left\|\mathbf{a} + \mathbf{b}\right\|_p \le \left\|\mathbf{a}\right\|_p + \left\|\mathbf{b}\right\|_p$$

Proof. If $\mathbf{a} + \mathbf{b} = 0$ then the result follows directly. Thus, assume that $\mathbf{a} + \mathbf{b} \neq 0$. Let q = p/(p-1) so that 1/p + 1/q = 1. Then,

$$(\|\mathbf{a} + \mathbf{b}\|_{p})^{p} = \sum_{k=1}^{n} |a_{k} + b_{k}|^{p} = \sum_{k=1}^{n} |a_{k} + b_{k}| |a_{k} + b_{k}|^{p-1}$$

$$\leq \sum_{k=1}^{n} (|a_{k}| + |b_{k}|) |a_{k} + b_{k}|^{p-1}$$

$$= \sum_{k=1}^{n} |a_{k}| |a_{k} + b_{k}|^{p-1} + \sum_{k=1}^{n} |b_{k}| |a_{k} + b_{k}|^{p-1}$$

$$(\text{H\"{o}lder's ineq.}) \leq \left(\sum_{k=1}^{n} |a_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} |a_{k} + b_{k}|^{q(p-1)}\right)^{1/q} + \left(\sum_{k=1}^{n} |b_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} |a_{k} + b_{k}|^{q(p-1)}\right)^{1/q}$$

$$= \left(\sum_{k=1}^{n} |a_{k} + b_{k}|^{p}\right)^{1/q} \left(\|\mathbf{a}\|_{p} + \|\mathbf{b}\|_{p}\right)$$

$$= (\|\mathbf{a} + \mathbf{b}\|_{p})^{p/q} \left(\|\mathbf{a}\|_{p} + \|\mathbf{b}\|_{p}\right).$$

Since p - p/q = p(1 - 1/q) = p/p = 1, we have

$$\|\mathbf{a} + \mathbf{b}\|_p \le \|\mathbf{a}\|_p + \|\mathbf{b}\|_p$$

as desired.

Now are ready to prove the statement of Exercise 2.4. Let $(x_1, x_2) \in \mathbb{R}^2$ be given. Since $|x| \ge 0$ for all $x \in \mathbb{R}$ with equality occurring if and only if x = 0, $||(x_1, x_2)||_3 = (|x_1|^3 + |x_2|^3)^{1/3} \ge 0$ for all $x_1, x_2 \in \mathbb{R}$ and $||(x_1, x_2)||_3 = 0$ if and only if $(x_1, x_2) = 0$. Next, let $\alpha \in \mathbb{R}$. We have $||(x_1, x_2)||_3 = (|\alpha x_1|^3 + |\alpha x_2|^3)^{1/3} = |\alpha|(|x_1|^3 + |x_2|^3)^{1/3} = |\alpha||(x_1, x_2)||_3$. Finally, let $x, y \in \mathbb{R}^2$. By Minkowski's inequality for sums,

$$||x + y||_3 \le ||x||_3 + ||y||_3$$

Thus, $\|\cdot\|_3$ is a norm.

Exercise 5 (2.5). Provide the details in the proof of Theorem 2:

Theorem 0.4. Every metric space (\mathcal{X}, d) is isometrically isomorphic to a subset of $\mathcal{B}(\mathcal{X})$.

Proof. Fix an element $x_0 \in \mathcal{X}$ and for each $x \in \mathcal{X}$ define a real valued function f_x by

$$f_x(x') = d(x', x) - d(x', x_0).$$

Let \mathcal{F} denote the collection $\{f_x : x \in \mathcal{X}\}$. We first verify that $\mathcal{F} \subseteq \mathcal{B}(\mathcal{X})$. To this end, we verify that f_x is bounded:

$$||f_x||_{\infty} = \sup_{x'} |f_x(x')|$$

$$= \sup_{x'} |d(x',x) - d(x',x_0)|$$

$$\leq \sup_{x'} |d(x,x_0)|, \quad \text{triangle inequality, since } d \text{ is a metric}$$

$$= d(x,x_0)$$

$$< \infty.$$

Thus, $\mathcal{F} \subseteq \mathcal{B}(\mathcal{X})$. Next, we verify that the map $x \mapsto f_x$ is a distance-preserving bijection. It is clear that the map is a bijection. Let $x_1, x_2 \in \mathcal{X}$ be given, by the previous argument, we find

$$||f_{x_1} - f_{x_2}||_{\infty} = \sup_{x'} |(d(x', x_1) - d(x', x_0)) - (d(x', x_2) - d(x', x_0))|$$

$$= \sup_{x'} |d(x', x_1) - d(x', x_2)|$$

$$= d(x_1, x_2), \quad \text{triangle inequality, and maximum attained at } x' = x_1 \text{ or } x_2$$

which implies that the map $x \mapsto f_x$ is distance-preserving, as desired. Therefore, \mathcal{F} is isomorphically isometric to (\mathcal{X}, d) .

Exercise 6 (2.6). Assume that $\rho: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ satisfies the first two conditions for a metric, but does not satisfy the triangle inequality. Define a function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ by

$$d(x,y) = \inf \left\{ \sum_{i=1}^{n} \rho(x_i, x_{i-1}) : \{x_0, x_1, \dots, x_n\} \subset \mathcal{X}, x_0 = x, x_n = y \right\}.$$

Show that d is a metric.

Proof. Since $\rho(x,y)$ is a symmetric function, d(x,y) is also a symmetric function, by construction. Next, since $\rho(x,y) \geq 0$ for all $x,y \in \mathcal{X}$, $d(x,y) \geq 0$ for all $x,y \in \mathcal{X}$. Now, suppose x=y=0, because ρ is nonnegative, we have

$$d(0,0) = \inf \left\{ \sum_{i=1}^{n} \rho(x_i, x_{i-1}) : \{0, x_1, \dots, x_{n-1}, 0\} \subset \mathcal{X} \right\} = 0$$

occurring when $x_0 = x_1 = \cdots = x_n = x = y = 0$. Conversely, if d(x, y) = 0 then because ρ is nonnegative and $\rho(x_i, x_{i-1}) = 0$ if and only if $x_i = x_{i-1} = 0$, we must have that $x_0 = x_1 = \cdots = x_n = 0$, or x = y = 0. Finally, to verify that d satisfies the triangle inequality, let $x, y, z \in \mathcal{X}$ be

given. Fix $\{x, x_1', x_2', \dots, x_{n-1}', y\} \subset \mathcal{X}$ and $\{y, y_1', y_2', \dots, y_{n-1}', z\} \subset \mathcal{X}$. Because $\rho(a, b) \geq 0$ for all $a, b \in \mathcal{X}$, we have that

$$d(x,y) + d(y,z) = \inf \left\{ \sum_{i=1}^{n} \rho(x_{i}, x_{i-1}) : \{x_{0}, \dots, x_{n}\} \subset \mathcal{X}, x_{0} = x, x_{n} = y \right\}$$

$$+ \inf \left\{ \sum_{i=1}^{n} \rho(x_{i}, x_{i-1}) : \{x_{0}, \dots, x_{n}\} \subset \mathcal{X}, x_{0} = y, x_{n} = z \right\}$$

$$\geq \left[\rho(x, x'_{1}) + \rho(x'_{1}, x'_{2}) + \dots + \rho(x'_{n-1}, y) \right] + \left[\rho(y, y'_{1}) + \rho(y'_{1}, y'_{2}) + \dots + \rho(y'_{n-1}, z) \right]$$

$$\geq \rho(x, x'_{1}) + \rho(x'_{1}, x'_{2}) + \dots + \rho(x'_{n-2}, x'_{n-1}) + \rho(y'_{n-1}, z)$$

$$\geq \inf \left\{ \sum_{i=1}^{n} \rho(x_{i}, x_{i-1}) : \{x_{0}, x_{1}, \dots, x_{n}\} \subset \mathcal{X}, x_{0} = x, x_{n} = z \right\}$$

$$= d(x, z).$$

So, d satisfies the triangle inequality as desired. Therefore, d is a bona-fide metric on \mathcal{X} .