Nitride film 2 MT-455

Aim: To determine crystallite size and lattice strain for the given data.

Procedure:

Given the instrumental broadening value, $\mathbf{B_i} = 0.045^{\circ}$

Gaussian equation $B_R^2 = B_O^2 - B_i^2$

Comparing the above equation with y = bx + a $b = Slope = \eta$ Where, $a = Intercept = \frac{k\lambda}{L}$

2θ	θ(rad)	B _o (fwhm)	B _o (rad)	B _o ²	B _i (deg)	B _i (rad)	B _i ²
36.67767	0.320073	1.52066	0.026541	0.000704	0.045	0.000785	6.17E-07
42.30679	0.369196	2.95861	0.051637	0.002666	0.045	0.000785	6.17E-07
61.62263	0.537759	2.14505	0.037438	0.001402	0.045	0.000785	6.17E-07
73.8236	0.644232	2.28072	0.039806	0.001585	0.045	0.000785	6.17E-07

$B_r^2 = B_o^2 - B_i^2$	Br	B _r cosθ	sinθ
0.000704	0.026529	0.025182	0.314636
0.002666	0.051632	0.048152	0.360866
0.001401	0.03743	0.032147	0.512212
0.001584	0.039798	0.031821	0.600585

Equation	y = a + b*x
Plot	Brcosθ
Weight	No Weighting
Intercept	0.03862 ± 0.02381
Slope	-0.00961 ± 0.05159
Residual Sum of	2.80937E-4
Squares	
Pearson's r	-0.13062
R-Square (COD)	0.01706
Adj. R-Square	-0.47441

$$b = Slope = \eta$$

$$a = Intercept = \frac{k\lambda}{L}$$
Therefore, $\eta = 0.00961$

$$\frac{k\lambda}{L} = 0.03862$$

$$L = \frac{k\lambda}{0.03862}$$

$$L = \frac{0.94 \times 0.154}{0.03862}$$

$$L = 3.7483 \text{ nm}$$

Result

 $\eta = S$ train in the material=0.00961 L= Crystallite Size = 3.7483 nm