

=> Data Creation For Practice

```
In [ ]: import pandas as pd
        data = {
             'Hours Studied': [
                 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
                 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
             'Sleep Hours': [
                 8,7.8,7.6,7.4,7.2,7,6.8,6.6,
                 6.4,6.2,6,5.8,5.6,5.4,5.2,5,4.8,4.6,
                 4.4,4.2,4,3.8,3.6,3.4,3.2,3,2.8,2.6,2.4,2.2
             'Assignments Completed': [
                 1,1,2,2,3,3,4,4,5,5,6,6,
                 7,7,8,8,9,9,10,10,11,11,
                 12, 12, 13, 13, 14, 14, 15, 15
             ],
             'Exam Score': [
                 50,55,58,61,64,68,72,75,77,79,
                 82,84,86,87,89,90,91,92,93,94,94.5,
                 95,95.3,95.6,96,96.2,96.5,96.7,97,97.2
             ]
        df = pd.DataFrame(data)
         print(f"The Shape Of Data Is: {df.shape}", end="\n\n")
         print(df)
```

The Shape Of Data Is: (30, 4)

	Hours_Studied	Sleep_Hours	Assignments_Completed	Exam_Score
0	1	8.0	1	50.0
1	2	7.8	1	55.0
2	3	7.6	2	58.0
3	4	7.4	2	61.0
4	5	7.2	3	64.0
5	6	7.0	3	68.0
6	7	6.8	4	72.0
7	8	6.6	4	75.0
8	9	6.4	5	77.0
9	10	6.2	5	79.0
10	11	6.0	6	82.0
11	12	5.8	6	84.0
12	13	5.6	7	86.0
13	14	5.4	7	87.0
14	15	5.2	8	89.0
15	16	5.0	8	90.0
16	17	4.8	9	91.0
17	18	4.6	9	92.0
18	19	4.4	10	93.0
19	20	4.2	10	94.0
20	21	4.0	11	94.5
21	22	3.8	11	95.0
22	23	3.6	12	95.3
23	24	3.4	12	95.6
24	25	3.2	13	96.0
25	26	3.0	13	96.2
26	27	2.8	14	96.5
27	28	2.6	14	96.7
28	29	2.4	15	97.0
29	30	2.2	15	97.2

=> Exploring Feature Relationships

```
plt.subplot(1, 3, 2)
plt.scatter(df['Sleep Hours'], df['Exam Score'], color='green')
plt.title('Sleep_Hours vs Exam Score')
plt.xlabel('Sleep Hours')
plt.ylabel('Exam Score')
plt.grid(True)
# Plot 3: Assignments Completed vs Exam Score
# ===============
plt.subplot(1, 3, 3)
plt.scatter(df['Assignments Completed'], df['Exam_Score'], color='orange')
plt.title('Assignments Completed vs Exam Score')
plt.xlabel('Assignments Completed')
plt.ylabel('Exam Score')
plt.grid(True)
plt.tight_layout()
plt.show()
```


=> Building the Model

```
In []: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score, mean_squared_error

X = df[['Hours_Studied', 'Sleep_Hours', 'Assignments_Completed']]
    y = df[['Exam_Score']]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randout poly = PolynomialFeatures(degree=2)
    X_train_poly = poly.fit_transform(X_train)
    X_test_poly = poly.transform(X_test)

model = LinearRegression()
model.fit(X_train_poly, y_train)

y_pred_poly = model.predict(X_test_poly)
```

```
print("R2 Score:", r2 score(y test, y pred poly))
         print("MSE:", mean squared error(y test, y pred poly))
         results = pd.DataFrame({'Actual': y test['Exam Score'], 'Predicted': y pred pd
         print(results)
         # polynomial features of degree 3
         # poly2 = PolynomialFeatures(degree = 3)
         # X train poly2 = poly2.fit transform(X train)
         \# X \text{ test poly2} = poly2.transform(X \text{ test})
         # model2 = LinearRegression()
         # model2.fit(X train poly2, y train)
         # y pred poly2 = model2.predict(X test poly2)
         # print("R<sup>2</sup> Score for degree 3:", r2 score(y test, y pred poly2))
       R<sup>2</sup> Score for degree 3: 0.9988872139189806
       MSE: 0.06575978435059322
In [35]: print(X test poly)
         # print(X train poly2)
        [[ 1.
                  28.
                          2.6
                                14.
                                      784.
                                              72.8 392.
                                                             6.76 36.4 196.
                          5.
                                8.
                                      256.
                                              80.
                                                    128.
                                                            25.
                                                                   40.
                                                                          64.
           1.
                  16.
                                                                                1
           1.
                  24.
                          3.4
                                12.
                                      576.
                                              81.6 288.
                                                            11.56 40.8 144. 1
                                              82.8 162.
                                                            21.16 41.4 81. ]
                          4.6 9.
                                      324.
        [
           1.
                  18.
                                 5.
                                              57.6
                                                     45.
                                                            40.96 32.
                                                                          25. 1
        ſ
           1.
                 9.
                          6.4
                                       81.
          1.
                  10.
                          6.2
                                 5.
                                      100.
                                              62.
                                                     50.
                                                            38.44 31.
                                                                          25. ]]
        ſ
```

=> Linear Regression (Degree = 1)

```
In [60]: from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2 score, mean squared error
         import pandas as pd
         X = df[['Hours_Studied', 'Sleep_Hours', 'Assignments_Completed']]
         y = df[['Exam Score']]
         X train, X test, y train, y test = train test split(X, y, test size=0.2, randd
         model = LinearRegression()
         model.fit(X train, y train)
         y pred linear = model.predict(X test)
         print("R2 Score:", r2 score(y test, y pred linear))
         print("MSE:", mean_squared_error(y_test, y_pred_linear), end="\n")
         print(' ' * 30, end="\n\n")
         results = pd.DataFrame({
             'Actual': y test['Exam Score'],
             'Predicted': y pred linear.flatten().round(2)
         })
         print(results)
```

R² Score: 0.6124901660811444 MSE: 22.899785993814245

	Actual	Predicted	
27	96.7	102.58	
15	90.0	83.75	
23	95.6	96.30	
17	92.0	86.89	
8	77.0	73.08	
9	79.0	74.34	

=> <a> Plot: Actual vs. Predicted (Linear & Polynomial)

```
In [ ]: import matplotlib.pyplot as plt
        import numpy as np
        # 🎨 Visualization: Compare Actual, Linear, and Polynomial Predictions
        plt.figure(figsize=(8, 5))
        sorted idx = np.argsort(y test.index)
        # Plot Actual Exam Scores
        plt.plot(
            y test.values[sorted idx],
            color='gray',
            linewidth=2.5,
            label='Actual Data'
        # Plot Linear Regression Predictions
        plt.plot(
            y_pred_linear[sorted_idx],
            color='dodgerblue',
            linewidth=2,
            linestyle='--',
            label='Linear Regression'
        # Plot Polynomial Regression Predictions
        plt.plot(
            y pred poly[sorted idx],
            color='orange',
            linewidth=2,
            linestyle='-.',
            label='Polynomial Regression (deg=2)'
        plt.title('Actual vs Linear vs Polynomial Regression', fontsize=14)
        plt.xlabel('Test Sample Index', fontsize=11)
        plt.ylabel('Exam Score', fontsize=11)
```

```
plt.legend(fontsize=10)
plt.grid(True, linestyle=':')
plt.tight_layout()
plt.show()
```

Actual vs Linear vs Polynomial Regression

