MTL101:: Tutorial 2:: Linear Algebra

Notation: $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $\mathcal{P}_n := \{ f \in \mathbb{F}[x] : \deg f < n \}$

- (1) Suppose $v_1 = (1, 2)$ $v_2 = (0, 1) \in \mathbb{R}^2$.
 - (a) Describe geometrically the subsets $W_1 := \{tv_1 : t \in \mathbb{R}\}, W_2 := \{tv_2 : t \in \mathbb{R}\}, W_3 := \{sv_1 + tv_2 : s, t \in \mathbb{R}\} \text{ and } W_4 := \{sv_1 + tv_2 : 0 \le s, t \le 1\}.$
 - (b) Which of W_1, W_2, W_3, W_4 are subspaces of \mathbb{R}^2 ? Justify your answer in each case.
 - (c) Show that $\{v_1, v_2\}$ is a linearly independent subset of \mathbb{R}^2 .
 - (d) Suppose $v_3 = (2,3)$. Is $\{v_1, v_2, v_3\}$ linearly independent?
- (2) Suppose $V := \mathbb{C}^2$ is the complex vector space (over \mathbb{C}) under component-wise addition.
 - (a) Show that $\{(1+i,2), (2,1)\}$ is linearly independent.
 - (b) Show that $\{(1,2),(0,i),(i,1-i)\}$ is linearly dependent.
 - (c) Show that every ordered pair can be written as a linear combination of $v_1 = (1 + i, 2)$ and $v_2 = (2, 1)$. Also show that up to change of order (of v_1 and v_2) such a linear combination is unique (for each ordered pair).
 - (d) Show that every ordered pair can be written as a linear combination of $v_1 = (1, 2)$, $v_2 = (0, i)$, $v_3 = (i, 1 i)$ in more than one ways.
- (3) Show that $X = \{(1+i, 1-i), (1-i, 1+i), (2,i), (3,2i)\}$ is linearly independent in $\mathbb{C}^2(\mathbb{R})$. Express (a+ib, c+id) as an \mathbb{R} -linear combination of vectors belonging to X.
- (4) Let V be a vector space over \mathbb{F} . Show that $u, v, w \in V$ are linearly independent if and only if u + v, v + w, w + u are linearly independent.
- (5) (a) Find the coordinates of $(a, b, c) \in \mathbb{R}^3$ relative to the ordered basis $\{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$.
 - (b) Find the coordinates of $a + bX + cX^2$ relative to the ordered basis $\{1, 1 + X, 1 + X^2\}$ in the space \mathcal{P}_3 of polynomials of degree at most 2 with coefficients from \mathbb{R} .
 - (c) Find the coordinate vectors of an element of \mathbb{R}^3 with respect to the following bases $B_1 = \{(1,2,1),(1,2,3),(0,1,1)\}$ and $B_2 = \{(1,0,0),(1,1,0),(1,1,1)\}$. Also write the change of coordinate matrix.
- (6) (a) Show that if $v \in V$ then $\mathbb{F}v := \{\lambda v : \lambda \in \mathbb{F}\}$ is a subspace of any vector space V over \mathbb{F} .
 - (b) Show that if W_1, W_2 are subspaces of V, then $W_1 \cap W_2$ is a subspace of V.
 - (c) Show that the intersection of any collection of subspaces of a vector space is a subspace.
 - (d) Suppose W_1 and W_2 are subspaces of a vector space V. Show that $W_1 \cup W_2$ is a subspace of V if and only if either $W_1 \subset W_2$ or $W_1 \supset W_2$.
 - (e) Let X be a nonempty subset of a vector space V over \mathbb{F} . Let $\mathrm{span}(X) := \{\sum_{i=1}^n a_i v_i : n \in \mathbb{N}, a_i \in \mathbb{F}, v_i \in X\}$ and let $\langle X \rangle$ be the intersection of all the subspaces of V which contain X. Show that $\mathrm{span}(X)$ and $\langle X \rangle$ are subspaces of V. Also show that $\mathrm{span}(X) = \langle X \rangle$.
- (7) In each case show that $W_1 + W_2 = V$ (directly) and find $\dim(W_1 \cap W_2)$. Verify the formula $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
 - (a) $V = \mathbb{R}^2$, W_1 is the X-axis, W_2 is the Y-axis.
 - (b) $V = \mathbb{R}^2$, W_1 and W_2 are distinct lines through the origin.
 - (c) $V = \mathbb{R}^3$, W_1 is the XY plane and W_2 is the YZ plane.
 - (d) $V = M_n(\mathbb{R}), W_1 = \{A \in M_n(\mathbb{R}) : A \text{ is upper triangular } \}, W_2 := \{A \in M_n(\mathbb{R}) : A \text{ is lower triangular } \}.$
 - (e) $V = M_n(\mathbb{R})$, where W_1 is the space of $n \times n$ symmetric matrices and W_2 is the space of $n \times n$ skew-symmetric matrices.
- (8) Which of the following is a linear transformation? Justify.
 - (a) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T_1(x,y) = (x^2 + y^2, x y)$ over \mathbb{R} .
 - (b) $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T_2(x,y) = (x+y+1, x-y)$ over \mathbb{R} .
 - (c) $T_3: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T_3(x,y) = (ax + by, cx + dy)$ over \mathbb{R} .
 - (d) $T_4: \mathbb{C} \to \mathbb{C}$ define by $T(z) = \bar{z}$ over \mathbb{C} .
 - (e) \mathbb{R}^2 to \mathbb{R}^2 the rotation about the origin by an angle θ . (Write an expression for rotation.)
 - (f) $T_5: M_{m \times n}(\mathbb{F}) \to M_{n \times m}(\mathbb{F})$ defined by $T_5(A) = A^t$ (A^t is the transpose of A).
 - (g) $T_6: M_n(\mathbb{F}) \to \mathbb{F}$ defined by $T_6(A) = \operatorname{tr}(A)$.
 - (h) $T_7: \mathcal{P}_n \to \mathcal{P}_n$ such that $T_7(p)(x) = p(x-1)$.
 - (i) $T_8: \mathcal{P}_n \to \mathcal{P}_{n+1}$ such that $T_8(p)(x) = xp(x) + p(1)$.