What is claimed is:

1. Use of at least one metal complex of formula (1)

 $[L_n Me_m X_p]^2 Y_q \qquad (1),$

wherein

Me is manganese; titanium; iron; cobalt; nickel or copper,

X is a coordinating or bridging radical,

n and m are each independently of the other an integer having a value of from 1 to 8, p is an integer having a value of from 0 to 32,

z is the charge of the metal complex,

Y is a counter-ion,

q = z/(charge of Y), and

15 L is a ligand of formula (2)

wherein

Q₁ is N or CR₁₀,

Q₂ is N or CR₁₁,

R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of the others hydrogen; unsubstituted or substituted C₁-C₁₈alkyl or unsubstituted or substituted aryl; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein

R₁₂ is in each case hydrogen, a cation or unsubstituted or substituted C₁-C₁₈alkyl or unsubstituted or substituted aryl;

25 -SR₁₃; -SO₂R₁₃ or -OR₁₃ wherein

 R_{13} is in each case hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or unsubstituted or substituted aryl;

-NR₁₄R₁₅; -(C₁-C₆alkylene)-NR₁₄R₁₅; -N[®]R₁₄R₁₅R₁₆; -(C₁-C₆alkylene)-N[®]R₁₄R₁₅R₁₆;

-N(R₁₃)-(C₁-C₆alkylene)-NR₁₄R₁₅; -N[(C₁-C₆alkylene)-NR₁₄R₁₅]₂;

 $-N(R_{13})-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}; -N[(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}]_2; -N(R_{13})-N-R_{14}R_{15}$ or $-N(R_{13})-N^{\oplus}R_{14}R_{15}R_{16},$ wherein

R₁₃ is as defined above and

 R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or unsubstituted or substituted aryl, or

 R_{14} and R_{15} , together with the nitrogen atom linking them, form an unsubstituted or substituted 5-, 6- or 7-membered ring which may contain further hetero atoms, as catalysts for oxidation reactions with organic peroxy acids and/or precursors of organic peroxy acids and H_2O_2 and or a precursor of H_2O_2 .

10

5

- 2. Use according to claim 1, wherein Me is manganese, which is in oxidation state II, III, IV or V.
- 3. Use according to either claim 1 or claim 2, wherein

 X is CH₃CN, H₂O, F⁻, Cl⁻, Br⁻, HOO⁻, O₂²⁻, O²⁻, R₁₇COO⁻, R₁₇O⁻, LMeO⁻ or LMeOO⁻, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl, and L and Me are as defined in claim 1.
- 4. Use according to any one of claims 1 to 3, wherein

 Y is R₁₇COO⁻, ClO₄⁻, BF₄⁻, PF₆⁻, R₁₇SO₃⁻, R₁₇SO₄⁻, SO₄⁻, NO₃⁻, F⁻, Cl⁻, Br⁻ or l⁻, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl.
 - 5. Use according to any one of claims 1 to 4, wherein n is an integer having a value of from 1 to 4, especially 1 or 2.

25

- 6. Use according to any one of claims 1 to 5, wherein m is an integer having a value of 1 or 2, especially 1.
- 7. Use according to any one of claims 1 to 6, wherein30 p is an integer having a value of from 0 to 4, especially 2.
 - 8. Use according to any one of claims 1 to 7, wherein z is an integer having a value of from 8- to 8+.

9. Use according to claim 1 to 8, wherein

R₅ is C₁-C₁₂alkyl; phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxy, sulfo, hydroxy, amino, N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino,

N-naphthylamino, phenyl, phenoxy or by naphthyloxy; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂

wherein R_{12} is in each case hydrogen, a cation, C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above; $-SR_{13}$, $-SO_2R_{13}$ or $-OR_{13}$ wherein R_{13} is in each case hydrogen, C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above;

-N(R₁₃)-NR₁₄R₁₅

10

25

30

wherein R_{13} is as defined above and R_{14} and R_{15} are each independently of the other hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above,

or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or C₁-C₄alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; -NR₁₄R₁₅ or -N[®]R₁₄R₁₅R₁₆ wherein R₁₄, R₁₅ and R₁₆ are each independently of the other(s) hydrogen, unsubstituted or hydroxy-substituted C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above,

or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or C₁-C₄alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; N-mono- or N,N-di-C₁-C₄alkyl-N[®]R₁₄R₁₅R₁₆ unsubstituted or substituted by hydroxy in the alkyl moiety,

wherein R_{14} , R_{15} and R_{16} are each independently of the others hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above,

or R_{14} and R_{15} , together with the nitrogen atom linking them, form a pyrrolidine, piperazine, morpholine or azepane ring which is unsubstituted or substituted by at least one C_1 - C_4 alkyl or by at least one unsubstituted C_1 - C_4 alkoy and/or substituted C_1 - C_4 alkyl, wherein the nitrogen atom may be quaternised; N-mono- or N,N-di- C_1 - C_4 alkyl-NR₁₄R₁₅ unsubstituted or substituted by hydroxy in the alkyl moiety, wherein R_{14} and R_{15} may have any one of the above meanings.

10. Use according to claim 1 to 9, wherein L have the following formula (3)

$$R'_3 \xrightarrow{A}_N \xrightarrow{B}_N C R'_7$$
 (3)

wherein

5

10

20

R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

R'₅ is C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised.

15 11. Use according to claim 1 to 10, wherein L have the following formula (3)

wherein

R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

R'₅ is C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that

are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C_1 - C_4 alkyl, wherein the amino groups may be quaternised, with the proviso that

5 (i) at least one of the substituents R'3, R'5 and R'7 is one of the radicals

$$-\left(CH_{2}\right)_{0-4} \times \left(C_{1}-C_{4}alkylene-1\right) \times \left(C_{1}-$$

and/or
$$-N$$
 $+$
 C_1 - C_4 alkyl
 C_1 - C_4 alkyl

wherein R_{15} and R_{16} are independently from each other hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or unsubstituted or substituted aryl and

- wherein the unbranched or branched alkylene group may be unsubstituted or substituted, and wherein the C₁-C₄alkyl groups, which are branched or unbranched independently of one another, may be unsubstituted or substituted and wherein the piperazine ring may be unsubstituted or substituted.
- 15 12. Use according to claim 1 to 9, wherein L have the following formula (4) and/or (5)

wherein

is C₁-C₄alkoxy; Cl; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety; or -NR₁₄R₁₅; -(C₁-C₆alkylene)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylene)-NR₁₄R₁₅; -N[(C₁-C₆alkylene)-NR₁₄R₁₅]₂; or -N(R₁₃)-N-R₁₄R₁₅, wherein

 R_{13} is hydrogen; C_{1} - C_{12} alkyl or unsubstituted phenyl or phenyl substituted by (substituted in the alkyl moiety by hydroxy) N-mono- or

5

10

15

20

25

N,N-di-C₁-C₄alkylamino-, N-phenylamino-, N-naphthylamino-, phenyl-, phenoxy- or naphthyloxy, and

 R_{14} and R_{15} are each independently of the other hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or

R₁₄ and R₁₅, together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring that is unsubstituted or substituted by at least one unsubstituted C₁-C₄alkyl and/or substituted C₁-C₄alkyl, especially a pyrrolidine, piperidine, piperazine, morpholine or azepane ring, and

R'₃ and R'₇ are each independently of the other hydrogen; C₁-C₄alkoxy; Cl; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino substituted by hydroxy in the alkyl moiety; or -NR₁₄R₁₅; - (C₁-C₆alkylene)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylene)-NR₁₄R₁₅; -N[(C₁-C₆alkylene)-NR₁₄R₁₅]₂; or -N(R₁₃)-N-R₁₄R₁₅, wherein

R₁₃ is hydrogen; C₁-C₁₂alkyl or unsubstituted phenyl or phenyl substituted by (substituted in the alkyl moiety by hydroxy) N-mono- or N,N-di-C₁-C₄alkylamino-, N-phenylamino-, N-naphthylamino-, phenyl-, phenoxy- or naphthyloxy, and

 R_{14} and R_{15} are each independently of the other hydrogen; unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or

R₁₄ and R₁₅, together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring that is unsubstituted or substituted by at least one unsubstituted C₁-C₄alkyl and/or substituted C₁-C₄alkyl, especially a pyrrolidine, piperidine, piperazine, morpholine or azepane ring.

13. Use according to claim 1 to 9, wherein L have the following formula (4) and/or (5)

30
$$R'_{3} \xrightarrow{A} \xrightarrow{N} \xrightarrow{R'_{5}} (4) \qquad R'_{3} \xrightarrow{A} \xrightarrow{N} \xrightarrow{R'_{5}} (5)$$

5

10

15

wherein R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; Cl; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

R'₅ is C₁-C₄alkoxy; Cl; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolldine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

(i) at least one of the substituents R'3, R'5 and R'7 is one of the radicals

$$-\left(\text{CH}_{2}\right)_{\overline{04}}\text{N} \\ \begin{array}{c} + \text{R}_{15} \\ \text{N} \\ \text{R}_{16} \end{array} \\ - \text{C}_{1}\text{-C}_{4}\text{alkylene} - \text{N} \\ \begin{array}{c} + \text{C}_{1}\text{-C}_{4}\text{alkyl} \\ \text{C}_{1}\text{-C}_{4}\text{alkyl} \end{array},$$

wherein R₁₅ and R₁₆ are independently from each other hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or unsubstituted or substituted aryl and
wherein the unbranched or branched alkylene group may be unsubstituted or substituted, and wherein the C₁-C₄alkyl groups, which are branched or unbranched independently of one another, may be unsubstituted or substituted and wherein the piperazine ring may be unsubstituted or substituted.

- 14. Use according to any of the preceeding claims wherein at least one mono- or poly-peroxy acid having at least 1 to 20 carbon atoms in the alkyl chain and/or its corresponding precursor and H_2O_2 is used.
 - 15. Use according to any of the preceeding claims wherein at least one

organic peroxy acids of formula R₁₈ C-O-OM

wherein

5

15

M signifies hydrogen or a cation,

 R_{18} signifies unsubstituted C_1 - C_{18} alkyl; substituted C_1 - C_{18} alkyl; unsubstituted aryl; substituted aryl; -(C_1 - C_6 alkylene)-aryl, wherein the alkylene and/or the alkyl group may be substituted; and phthalimido C_1 - C_8 alkylene, wherein the phthalimido and/or the alkylene group may be substituted is used.

- 16. Use according to any of the preceeding claims,
- 10 wherein CH₃COOOH or ε-phthalimido peroxy hexanoic acid or a alkali salt thereof is used.
 - 17. Use according to any of the preceeding claims, wherein TAED and/or NOBS as precursors of peroxy acids and sodium percarbonate and/or sodium perborate are used.
 - 18. Use according to any one of claims 1 to 17 for the bleaching of stains or of soiling on textile material, or for the prevention of redeposition of migrating dyes, or for the cleaning of hard surfaces.
- 19. Use according to any one of claims 1 to 17, wherein the metal complex compounds of formula (1) are used as catalysts for reactions using peroxo acids or their precursors for bleaching in the context of paper making.
- 20. Use according to any one of claims 1 to 17, wherein the metal complex compounds of formula (1) are used in detergent, cleaning, disinfecting or bleaching compositions.
 - 21. Use according to any one of claims 1 to 17, wherein the metal complex compounds of formula (1) are used in automatic dishwasher formulations.
- 22. Use according to daim 20, wherein the metal complex compounds of formula (1) are formed *in situ* in the detergent, cleaning, disinfecting or bleaching composition.
 - 23. A detergent, cleaning, disinfecting or bleaching composition containing

5

10

25

- I) from 0 to 50 wt-%, preferably from 0 to 30 wt-%, A) of at least one anionic surfactant and/or B) of a non-ionic surfactant,
- II) from 0 to 70 wt-%, preferably from 0 to 50 wt-%, C) of at least one builder substance,
- III) 1 99 wt-%, preferably 1 50 wt-%, D) of at least one peroxy acid and/or at least one precursors of peroxy acid, the latter in combination with hydrogen peroxide and/or a precursor of hydrogen peroxide as defined in claims 14, 15, 16 and 17,
- IV) E) at least one metal complex compound of formula (1) as defined in claims 1 13 in an amount that, in the liquor, gives a concentration of from 0.5 to 100 mg/litre of liquor, preferably from 1 to 50 mg/litre of liquor, when from 0.5 to 20 g/litre of the detergent, cleaning, disinfecting or bleaching agent are added to the liquor, and
- V) water ad 100 wt-%, wherein the percentages are in each case percentages by weight, based on the total weight of the composition.
- 15 24. A solid formulation containing
 - a) from 1 to 99 wt-%, preferably from 1 to 40 wt-%, especially from 1 to 30 wt-%, of at least one metal complex compound of formula (1) as defined in claim 1 13 and at least one organic peroxy acid and/or at least one precursor of an organic peroxy acid and H₂O₂ as defined in claims 14, 15, 16 and 17,
- b) from 1 to 99 wt-%, preferably from 10 to 99 wt-%, especially from 20 to 80 wt-%, of at least one binder,
 - c) from 0 to 20 wt-%, especially from 1 to 20 wt-%, of at least one encapsulating material,
 - d) from 0 to 20 wt-% of at least one further additive and
 - e) from 0 to 20 wt-% water.

25. A solid formulation according to claim 24, which is in the form of granules.