Data Formatting

Nicholas J. Gotelli

February 2, 2017

This vignette gives some simple code for reformatting data sets into the long format.

```
library(reshape)
library(xtable)
set.seed=100 # for reproducible results
```

Community Ecology Abundance Matrices

A very commmon data format for community ecologists is an abundance or incidence matrix in which the rows are species or taxa, the columns are sites or samples, and the entries are abundance or incidence of a taxa in a site. Here is an example of a tiny data set in this format:

```
MyData <- matrix(rpois(50,lambda=1),nrow=5) # create a matrix of random integers, in
  cluding some zeroes
rownames(MyData) <- paste("Species",as.character(1:5),sep="")

colnames(MyData) <-paste("Site",LETTERS[1:10],sep="")

print(xtable(MyData), type = "html",
    html.table.attributes = "align = 'center'") #demo for basic use of xtable packa
ge with html</pre>
```

SiteASiteBSiteCSiteDSiteESiteFSiteGSiteHSiteISiteJ

Species1	0	1	0	3	0	1	0	1	0	0
Species2	3	0	0	2	0	2	0	1	2	0
Species3	0	1	0	2	0	0	1	1	2	0
Species4	2	1	1	2	1	0	2	3	1	1
Species5	1	0	2	0	0	1	3	0	0	1

Converting an Abundance Matrix into the Long Format

Here we will use the reshape package to turn this matrix into a data frame in the more usable long format:

```
MyData.Long <- melt(MyData,id=colnames(MyData))
print(MyData.Long)</pre>
```

1 of 5

##		х1	Х2	value
##	1	Species1	SiteA	0
##	2	Species2	SiteA	3
##	3	Species3	SiteA	0
##	4	Species4	SiteA	2
##	5	Species5	SiteA	1
##	6	Species1	SiteB	1
##	7	Species2	SiteB	0
##	8	Species3	SiteB	1
##	9	Species4	SiteB	1
##	10	Species5	SiteB	0
##	11	Species1	SiteC	0
##	12	Species2	SiteC	0
##	13	Species3	SiteC	0
##	14	Species4	SiteC	1
##	15	Species5	SiteC	2
##	16	Species1	SiteD	3
##	17	Species2	SiteD	2
##	18	Species3	SiteD	2
##	19	Species4	SiteD	2
##	20	Species5	SiteD	0
##	21	Species1	SiteE	0
##	22	Species2	SiteE	0
##	23	Species3	SiteE	0
##	24	Species4	SiteE	1
##	25	Species5	SiteE	0
##	26	Species1	SiteF	1
##	27	Species2	SiteF	2
##	28	Species3	SiteF	0
##	29	Species4	SiteF	0
##	30	Species5	SiteF	1
##	31	Species1	SiteG	0
##	32	Species2	SiteG	0
##	33	Species3	SiteG	1
##	34	Species4	SiteG	2
##	35	Species5	SiteG	3
##	36	Species1	SiteH	1
##	37	Species2	SiteH	1
##	38	Species3	SiteH	1
##	39	Species4	SiteH	3
##	40	Species5	SiteH	0
##	41	Species1	SiteI	0
##	42	Species2	SiteI	2
##	43	Species3	SiteI	2
##	44	Species4	SiteI	1
##	45	Species5	SiteI	0
##	46	Species1	SiteJ	0
##	47	Species2	SiteJ	0
##	48	Species3	SiteJ	0
##	49	Species4	SiteJ	1

2 of 5 2/22/2018, 3:40 PM

```
## 50 Species5 SiteJ 1
```

Let's rename the variables and then check the structure:

```
MyData.Long <- rename(MyData.Long,c(X1="Species",X2="Site",value="Abundance"))
head(MyData.Long) # print the first 6 lines</pre>
```

```
str(MyData.Long)
```

```
## 'data.frame': 50 obs. of 3 variables:
## $ Species : Factor w/ 5 levels "Species1", "Species2", ..: 1 2 3 4 5 1 2 3 4 5 ..

## $ Site : Factor w/ 10 levels "SiteA", "SiteB", ..: 1 1 1 1 1 2 2 2 2 2 2 ...
## $ Abundance: int 0 3 0 2 1 1 0 1 1 0 ...
```

Notice how the reshape package has converted the data from a matrix to a data frame, with factors properly set up for Species and Site. Very nice! In this format, it is easy, for example, to conduct a one-way analysis of variance to test for differences in average abundance among species and then plot the results in a boxplot.

```
attach(MyData.Long)
Species.ANOVA <- aov(Abundance~Species)
summary(Species.ANOVA)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 4 4.0 1.0000 1.059 0.388
## Residuals 45 42.5 0.9444
```

```
boxplot(Abundance~Species, col="goldenrod")
```

3 of 5 2/22/2018, 3:40 PM

Converting from the Long Format Back to a Species Abundance Matrix

Once your data are in the long format, it is easy to convert them to other structures. For example, to recreate the original data matrix we use the <code>cast</code> function:

Converting From the Long Format with Aggregation

Often when we convert the data from the long format, we will want to aggregate. For example, here is an

4 of 5 2/22/2018, 3:40 PM

aggregated table giving the mean abundances of each species:

```
Species.Means <- cast(MyData.Long, Species~., value="Abundance", mean)
print(Species.Means)</pre>
```

```
## Species (all)
## 1 Species1  0.6
## 2 Species2  1.0
## 3 Species3  0.7
## 4 Species4  1.4
## 5 Species5  0.8
```

Alternatively, we could use this function to calculate the total abundance in each of the samples

```
Site.Abundance <- cast(MyData.Long, Site~., value = "Abundance", sum)
print(Site.Abundance)</pre>
```

```
## Site (all)
## 1 SiteA 6
## 2 SiteB 3
## 3 SiteC 3
## 4 SiteD 9
## 5 SiteE 1
## 6 SiteF 4
## 7 SiteG 6
## 8 SiteH 6
## 9 SiteI 5
## 10 SiteJ 2
```

The aggregate function works the same way (and maintains the variable label for abundance):

```
Species.Means2 <- aggregate(Abundance ~ Species, data = MyData.Long, mean)
print(Species.Means2)</pre>
```

5 of 5