PHASM426 / PHAS4426 Advanced Quantum Theory Problem Sheet 1

To be handed in by 5pm on Tuesday 31rst October 2017.

Please hand in your completed work at the **end** of the lecture on that day. If you are unable to attend the lecture, you may scan your work, save it as a single PDF file and email it to me **prior** to this lecture. You may also bring the work to me in my office (B12) before the lecture. **Make sure your completed work is clearly labelled with your name and college**. Please note that UCL places severe penalties on late-submitted work.

1. Consider the vector space of real-valued polynomials of the power not larger than 3:

$$P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
.

- (a) Write down a set of functions that form a basis of this vector space. [1]
- (b) What is the dimension of this vector space? [1]
- 2. Consider the basis of vectors $|\phi_j\rangle$ where j spans from 1 to n. Show that if the basis of vectors $\{|\phi_j\rangle\}$ is linearly independent, then for any vector $|\Psi\rangle$ the coefficients c_j of the expansion

$$|\Psi\rangle = \sum_{j=1}^{n} c_j |\phi_j\rangle$$

are unique. *Hint:* Two prove uniqueness you need to assume that there is another set of coefficients that will expand the state $|\Psi\rangle = \sum_{j=1}^{n} a_j |\phi_j\rangle$ and then prove that $a_j = c_j$.

- 3. The Hamiltonian of a quantum system is written in its spectral decomposition as $H = \sum_{n=1}^{d} \lambda_n |\phi_n\rangle \langle \phi_n|$, with $\langle \phi_m |\phi_n\rangle = \delta_{m,n}$ where the closure relationship is satisfied i.e. $\mathbb{1} = \sum_{n=1}^{d} |\phi_n\rangle \langle \phi_n|$. Prove that the exponential of H takes the form $e^H = \sum_{n=1}^{d} e^{\lambda_n} |\phi_n\rangle \langle \phi_n|$.
- 4. Given two arbitrary vectors $|\phi_1\rangle$ and $|\phi_2\rangle$ belonging to the inner product space \mathcal{H} , the Cauchy-Schwartz inequality states that

$$\left| \langle \phi_1 | \phi_2 \rangle \right|^2 \le \langle \phi_1 | \phi_1 \rangle \langle \phi_2 | \phi_2 \rangle. \tag{1}$$

[3]

The purpose of this problem is to use the properties of inner product to prove this inequality. To proceed with the proof consider the vector $|\Psi\rangle$ defined as:

$$|\Psi\rangle = |\phi_1\rangle + \lambda |\phi_2\rangle$$

where λ is a complex number that can be written as $\lambda = a + ib$.

- (a) Write an expression for the inequality $\langle \Psi | \Psi \rangle \geq 0$ as a function of λ i.e. $f(\lambda)$. Then, re-write this expression as a function of a and b i.e. f(a,b).
- [2]

(b) Show that the value of λ that minimises $\langle \Psi | \Psi \rangle$ is

$$\lambda_{min} = -\frac{\langle \phi_2 | \phi_1 \rangle}{\langle \phi_2 | \phi_2 \rangle} \tag{2}$$

Hint: Compute the derivates of the function f(a, b) obtained in (a) with respect to a and b. Solve these equations to obtain a_{min} and b_{min} and then compute λ_{min} .

- [2]
- (c) Substitute Eq. (2) in the expression of $f(\lambda)$ derived in (a) and show that it reduces to the expression for the Cauchy-Schwuartz inequality (Eq. (1)).
- [2]
- (d) Which relation do $|\phi_1\rangle$ and $|\phi_2\rangle$ satisfy such that the equality in Eq. (1) is realised?
- [1]
- (e) Discuss in which cases the Cauchy-Schwartz inequality is important in quantum mechanics
- [1]
- 5. Consider a Hermitian operator A with eigenvalues $\{\lambda_1, \lambda_2, \cdots \lambda_n\}$ and eigenvectors $\{|\psi_1\rangle, |\psi_2\rangle \cdots |\psi_n\rangle\}$. Show that A can be written in terms of a unitary transformation U as $A = UDU^{\dagger}$, where D is a diagonal matrix.
- [2]
- 6. Consider a quantum system with Hamiltonian H and consider the measurement of an observable with a non-degenerate spectral decomposition $A = \sum_n a_n |\psi_n\rangle \langle \psi_n|$. H and A do not commute. The system is initially in the eigenstate $|\psi_n\rangle$ of A, with eigenvalue a_n . A series of ideal measurements on the observable A are carried out. The first measurement is carried out at time $t = \theta$. Then subsequent measurements are made at $t = 2\theta$, $t = 3\theta$ and so on. Here θ is very small.
 - (a) Expand the state of the system to second order in time t and show that the probability of obtaining the eigenvalue a_n at $t = \theta$ is given by

$$w_{nn}(\theta) \simeq 1 - (\Delta E)_n^2 \theta^2$$

where $(\Delta E)_n^2 = \langle \psi_n | H^2 | \psi_n \rangle - \langle \psi_n | H | \psi_n \rangle^2$. Notice that $w_{nn}(\theta)$ is the probability that the system is still in the initial state.

[3]

(b) Show that after k measurements i.e. at $\tau = k\theta$, the probability $w_{nn}(\tau)$ becomes

$$w_{nn}(\tau) \simeq [1 - (\Delta E)_n^2 \theta^2]^k.$$

[3]

(c) Assume k is large and τ is fixed such that $\theta/k \to 0$. Show that in this limit

$$w_{nn}(\tau) \simeq \exp[-(\Delta E)_n^2 \tau \theta] \to 1.$$

You may use without proof the fact that

[2]

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$