Identifikace z přechodových charakteristik

V tomto cvičení se budeme zabývat identifikací soustav prvního a druhého řádu z přechodových charakteristik.

1 Potlačení vlivu šumu

V některých případech je měřený výstup ze systému zašuměný a pro identifikaci nevhodný. Vliv šumu na přesnost identifikace lze potlačit dvěma způsoby:

- Zvětšit odstup signál/šum zvětšením vstupního signálu a posléze získaný výstupní signál zmenšit stejným poměrem.
- Provést několik měření se stejnými počátečními podmínkami a všechny měření zprůměrovat.

Volba metody potlačení šumu závisí na typu soustavy. Pokud je soustava lineární a neobsahuje nelinearitu typu nasycení tak lze použít metodu zvětšení vstupního signálu. Pokud se jedná o soustavu "bez paměti" a lze opakováním dosáhnout stejného výsledku lze použít metodu průměrování z několika měření. Co v žádné případě nelze provést je průměrování jediného měření – došlo by ke změně tvaru přechodové charakteristiky a identifikovali bychom zcela jinou soustavu.

2 Soustava prvního řádu

Po odstranění šumu je identifikace jednoduchá. Nejdříve je nutné identifikovat dopravní zpoždění – v tomto případě se jedná o čas, kdy začíná přechodová charakteristika. A posléze odečíst hodnotu zesílení (hodnota přechodové charakteristiky v nekonečnu) a časové konstanty (čas kdy tečna vedená z počátku protne hodnotu zesílení mínus dopravní zpoždění).

Obrázek 1: Přechodová charakteristika systému prvního řádu s dopravním zpožděním [1]

3 Soustava druhého a vyššího řádu

Na první pohled se přechodová charakteristika druhého řádu liší tím, že je zde patrná doba průtahu (T_u) . Pro účely identifikace je nejprve potřeba normalizovat přechodovou charakteristiku na jednotkové zesílení (podělit všechny hodnoty zesílením) a zjistit polohu inflexního bodu. Na přechodové charakteristice systému druhého řádu lze inflexní bod identifikovat jako bod s největší derivací $(max(\frac{dh(t)}{dt}))$. Souřadnice inflexního bodu jsou označeny t_i a y_i . Pokud sestrojíme tečnu v inflexním bodě tak jak je naznačeno na obrázku OBR, získáme zároveň průsečíky této přímky s hodnotami nula a jedna. Z času těchto průsečíků odečteme doby průtahu a náběhu. Podle poměru těchto hodnot lze zjistit, zdali se jedná o soustavu s různými nebo stejnými časovými konstantami.

Obrázek 2: Přechodová charakteristika systému druhého řádu s dopravním zpožděním [1]

$$\tau = \frac{T_u}{T_n} \tag{1}$$

$$\tau \begin{cases}
< 0.1, & F_1(p) = \frac{k_s}{(T_1 p + 1)(T_2 p + 1)} \\
> 0.1, & F_2(p) = \frac{k_s}{(T_2 p + 1)^n}
\end{cases}$$
(2)

Z grafu odečteme čas t_1 , kdy přechodová charakteristika dosáhne hodnoty $y_1 = 0.72$ (proto bylo nutné charakteristiku normalizovat na jednotkové zesílení). Součet časových konstant je dán rovnicí:

$$T_1 + T_2 = \frac{t_1}{1.2564} \tag{3}$$

Pokud známe součet konstant (i bez znalosti jednotlivých časových konstant), tak můžeme zjistit čas t_2 jako:

$$t_2 = 0.3574(T_1 + T_2) \tag{4}$$

A z grafu opět odečteme hodnotu y_2 . Pokud jsme dobří na matematiku, nebo umíme ovládat symbolic toolbox v matlabu tak můžeme z následující rovnice vyjádřit hodnotu τ_2 :

$$y_2 = 1 + \frac{1}{\tau_2 - 1} e^{-0.3574(1+\tau_2)} + \frac{1}{\frac{1}{\tau_2} - 1} e^{-0.3574(1+\frac{1}{\tau_2})}$$
 (5)

Další možností je odečtení τ_2 z následující tabulky:

y_2	0.3	0.28	0.26	0.24	0.22	0.2	0.18	0.1611
$ au_2$	0.0	0.0435	0.0837	0.128	0.1838	0.2639	0.4031	1.0

Teď když známe τ_2 tak víme i podíl časových konstant:

$$\tau_2 = \frac{T_2}{T_1} \tag{6}$$

A ze znalosti podílu a součtu časových konstant (dvou rovnice o dvou neznámých) získáme hodnoty T_1 a T_2

V případě, že hodnota τ naznačuje dvě stejné časové konstanty, tak se situace značně zjednoduší a stačí zjistit řád soustavy ze znalosti polohy inflexního bodu y_i a hodnoty τ . Časové konstanty zjistíme z rovnice 7.

7	n	2	3	4	5	6	7	8	9	10
		0.104								
	y_i	0.264	0.327	0.353	0.371	0.384	0.394	0.401	0.407	0.413

$$T = \frac{t_i}{n-1} \tag{7}$$

4 Kmitavá soustava

Jedná se o soustavu, která obsahuje komplexně sdružené kořeny. V krajním případě (bez tlumení) lze tuto soustavu dostat až na mez stability.

Obrázek 3: Přechodová charakteristika kmitavého systému [1]

Vycházíme z následujícího popisu kmitavé soustavy:

$$F(p) = \frac{k_s \omega_0^2}{p^2 + 2\xi \omega_0 p + \omega_0^2} \tag{8}$$

Nejdříve je nutné zjistit souřadnice lokálních maxim a minim (y_1, t_1, y_2, t_2) a poté s těmito hodnotami vyřešit dvě rovnice o dvou neznámých:

$$y_1 = K(1+M)$$
 (9)
 $y_2 = K(1-M^2)$

Po zjištění M spočítáme tlumení

$$\xi = \frac{-\ln M}{\sqrt{\pi^2 + (\ln M)^2}} \tag{10}$$

Z periody oscilací $T=t_2-t_1=\frac{2\pi}{\omega_0\sqrt{1-\xi^2}}$ určíme

$$\omega_0 = \frac{2\pi}{T\sqrt{1-\xi^2}} = \frac{2}{T}\sqrt{\pi^2 + (\ln M)^2}$$
(11)

5 Zadání cvičení

Podle postupu uvedeného víše identifikujte všechny soustavy zadané na stránce: https://sites.google.com/site/modelovaniaidentifikace/cvi%C4%8Den%C3%AD/cviceni-2---n

Reference

[1] P. Blaha. Neparametrické metody identifikace. Přednáškové materiály k předmětu Modelování a Identifikace. UAMT FEKT VUTBR.