Topologie et normes.

Coralie RENAULT

12 décembre 2014

Exercice

Soient $f_1, \ldots, f_n : [0,1] \to \mathbb{R}$ continues.

A quelle condition l'application

$$N: (x_1, \ldots, x_n) \mapsto ||x_1 f_1 + \cdots + x_n f_n||_{\infty}$$

définit-elle une norme sur \mathbb{R}^n ?

Exercice

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique telle que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers B dans $\mathcal{M}_n(\mathbb{R})$.

Que dire de B?

Exercice

Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application bijective.

a) Déterminer la nature de

$$\sum_{n\geqslant 1}\frac{1}{\sigma(n)^2}$$

b) Même question pour

$$\sum_{n\geqslant 1} \frac{1}{\sigma(n)}$$

Exercice

On note $E = \mathcal{C}^1([0,1], \mathbb{R})$.

a) Pour $f \in E$, on pose

$$N(f) = |f(0)| + ||f'||_{\infty}$$

Montrer que N est une norme sur E.

b) Pour $f \in E$, on pose

$$N'(f) = ||f||_{\infty} + ||f'||_{\infty}$$

On vérifie aisément que N' est une norme sur E. Montrer qu'elle est équivalente à N.

c) Les normes N et N' sont elles équivalentes à $\|\cdot\|_{\infty}$?

Exercice

Soient l'espace $E = \{ f \in \mathcal{C}^1([0,1], \mathbb{R})/f(0) = 0 \}$ et N_1, N_2 les applications définies sur E par

$$N_1(f) = ||f'||_{\infty}$$
 et $N_2(f) = ||f + f'||_{\infty}$

- a) Montrer que N_1 et N_2 définissent des normes sur E.
- b) Montrer que N_2 est dominée par N_1 .
- c) En exploitant l'identité

$$f(x) = e^{-x} \int_0^x (f(t) + f'(t)) e^t dt$$

montrer que N_1 est dominée par N_2 .

Exercice

Sur $\mathbb{R}[X]$ on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- a) Montrer que N_1 et N_2 sont deux normes sur $\mathbb{R}[X]$.
- b) Etudier la convergence pour l'une et l'autre norme de la suite de terme général

$$P_n = \frac{1}{n}X^n$$

c) Les normes N_1 et N_2 sont-elles équivalentes?

Exercice

Soient $E = \mathcal{C}([0,1], \mathbb{R})$ et E^+ l'ensemble des fonctions de E qui sont positives et ne s'annulent qu'un nombre fini de fois. Pour toute fonction $\varphi \in E^+$ et pour toute fonction $f \in E$ on pose

$$||f||_{\varphi} = \int_0^1 |f(t)| \, \varphi(t) \, \mathrm{d}t$$

- a) Montrer que $\|\,.\,\|_{\varphi}$ est une norme sur E
- b) Montrer que si φ_1 et φ_2 sont deux applications strictement positives de E^+ alors les normes associées sont équivalentes.
- c) Les normes $\| \cdot \|_x$ et $\| \cdot \|_{x^2}$ sont elles équivalentes?

Exercice

Soit σ une permutation de \mathbb{N}^* .

Quelle est la nature de

$$\sum \frac{\sigma(n)}{n^2 \ln n}?$$

Exercice

Soit $f: \mathbb{R} \to \mathbb{R}$ croissante. Montrer que l'ensemble des points de discontinuité de f est au plus dénombrable.

Exercice

On appelle nombre algébrique, tout nombre complexe x solution d'une équation de la forme

$$a_n x^n + \dots + a_1 x + a_0 = 0$$
 avec $a_0, a_1, \dots, a_n \in \mathbb{Z}$ et $a_n \neq 0$

On appelle degré d'un nombre algébrique x, le plus petit $n \in \mathbb{N}$ tel que x soit solution d'une équation comme ci-dessus.

- a) Quels sont les nombres algébriques de degré 1?
- b) Montrer que l'ensemble des nombres algébriques de degré au plus n est dénombrable.
- c) L'ensemble de tous les nombres algébriques est-il dénombrable?