寻找 Hash 碰撞,基于 [1]

方理楠

November 2020

1 Hash

哈希函数可以将任意比特长度的消息压缩为固定长度的比特串,该比特串通常称为散列值(Hash Value)。散列值生成过程可表示为

$$h = H(M)$$

其中,M 是一个变长消息,H 是 Hash 函数,h 是定长的散列值。哈希函数主要应用于消息认证和数字签名。

2 抗碰撞性

哈希函数应具有如下性质:

- 抗弱碰撞性 对任何给定的消息 x, 找到满足 $y \neq x$ 且H(x) = H(y) 的消息 y 在计算上是不可行的。
- 抗强碰撞性 找到任何满足 H(x) = H(y) 的偶对 x, y 在计算上是不可行的。

抗强碰撞性的哈希函数比抗弱碰撞性的哈希函数的安全性要高,即满 足抗强碰撞性的哈希函数肯定满足抗弱碰撞性,反之不成立。

3 Hash 函数结构

Hash 函数的一般结构如图 1 所示 [2], 称为 MD 结构。其中, f 表示 压缩函数, IV 是初始值, y_i 称为链接变量, m_i 是消息分组, 即将一个消

图 1: Merkle-Damgård construction

息划分为若干个等长的子消息,如果不能正好分割,则进行消息填充,使最后划分的消息分组都有相同的长度。f 有两个输入值,一个输出值,主流的哈希算法 f 中都有非线性函数。最后生成的链接变量 y_l 作为散列值。

4 碰撞构造方法

- (1) 首先引入差分的概念, 差分可以分为两类:
 - 异或差分 设 X 和 $X^{'}$ 为 32 位比特串,异或差分 = $X \bigoplus X^{'}$ 。例如 X = 0...011, $X^{'} = 0...010$,异或结果为 0...001,我们就说 0...001 为 X 和 $X^{'}$ 的异或差分。
 - 模差分
 设 X 和 X['] 为 32 位比特串, 令 result = (X X[']) mod n, 我们 就说 result 为 X 和 X['] 的模差分,记为 ΔX。
- (2) 对任意两个 l 比特长的消息 M 和 $M^{'}$, $M=(M_{0},M_{1},\ldots,M_{K-1}),M^{'}=(M_{0}^{'},M_{1}^{'},\ldots,M_{K-1}^{'})$,Hash 函数中引入差分如下:

$$\Delta H_0 \overset{(M_0,M_0')}{\longrightarrow} \Delta H_1 \overset{(M_1,M_1')}{\longrightarrow} \Delta H_2 \overset{(M_2,M_2')}{\longrightarrow} \dots \Delta H_{K-1} \overset{(M_{K-1},M_{K-1}')}{\longrightarrow} \Delta H$$

其中, ΔH_0 是初始值的模差分并且 $\Delta H_0=0$, ΔH_i 是第 i 轮后生成的链接变量的模差分。 ΔH 是两个散列值的模差分,显然,如果 $\Delta H=0$,我们就说 M 和 $M^{'}$ 产生了碰撞,称 $\{\Delta H_0, \Delta H_1, \ldots, \Delta H_{K-1}, \Delta H\}$ 为差分路径。通过消除输入的差分,得到 $\Delta H=0$ 。

(3) 构造可以产生碰撞的消息 M 和 M'[1], 步骤如下:

- Step 1 寻找 ΔM ($\Delta M = M M^1$) 以及差分路径,使得 $P(\Delta H = 0)$ 接近于1,P 表示事件发生的概率。
- Step 2 给定 ΔM , 推算出可以使差分路径成立的充分条件。
- Step 3 ΔM 不变,修改 M ($M^{'}=M+\Delta M$) 使得推算出的充分条件 有比较高的概率可以实现。

5 符号说明

令 x_i 表示第 i 轮产生的链接变量, $x_{i,j} (j \ge 1)$ 表示 x_i 的第 j 个比特值。 $x_i [j]$ 表示 $x'_{i,j} - x_{i,j} = 1$, $x_i [-j]$ 表示 $x'_{i,j} - x_{i,j} = -1$ 。

6 step-2 方法概括 [3]

对于 ΔH_i ,假设压缩函数有 64 步,那么从第 64 步开始倒推差分成立的充分条件。

- (1) 构造充分条件
 - 充分条件可以分成两类:
 - 控制链接变量中借位 (carry) 的长度 例如,对于 $\Delta x_2 = 2^6$,如果是 x_2 [7],则不会产生借位;如果是 x_2 [-7],即 $x_{2,7}' = 0$, $x_{2,7} = 1$ 。那么第 7 位就会向 x 的更高位借位,这种借位对于模加运算没有影响,但会对压缩函数中的非线性 函数产生影响。所以,如果想要阻止差分的扩散,便令 x_2 [7];相 反,如果想要扩散差分,便令 x_2 [-7],并且可以扩散至任意位,如 x_2 [-7, -8,...,+n]。因此,构建充分条件时,首先停止差分扩散,当有条件互相矛盾时,选择扩散差分,具体扩散多少,视情况而定。
 - 控制非线性函数 ϕ 的输出值 (常量不能控制) 假设链接变量 x_1 的差分是 $x_1[-26,\pm 32], x_2$ 的差分是 $x_2[-26,\pm 32], x_3$ 的差分是 $x_3[\pm 32], \phi(x_1,x_2,x_3) = (x_1 \vee \neg x_3) \bigoplus x_2$ 并且 $\Delta \phi = \pm 2^{31}$ 。首先我们要令 $\Delta \phi_{,26} = 0$,所有的变化可由表 1 表示:从表 1 可以知道, $x_{3,26} = 1$ 时,可得 $\Delta \phi_{,26} = 0$ 。同理可得 $\Delta \phi_{,32} = \pm 1$ 的充分条件为 $x_{1,32} = x_{3,32}$ 。

x_1, x_2, x_3	$\phi(x_1, x_2, x_3)$	$\phi' = \phi(\neg x_1, \neg x_2, x_3)$	$\Delta \phi$
0,0,0	1	0	-1
0,0,1	0	0	0
0,1,0	0	1	1
0,1,1	1	1	0
1,0,0	1	0	-1
1,0,1	1	1	0
1,1,0	0	1	1
1,1,1	0	0	0

表 1: $\Delta \phi_{.26}$

(2) 避免矛盾的产生

有两种方法来避免产生互相矛盾的充分条件:

• 扩展借位

当需要 $\Delta \phi_{i,j} \neq 0$,但是输入 ϕ 的链接变量第 j 位都为 0 时,不可能生成所需要的差分。这时,需要从小于 j 并最接近 j 的差分处扩展借位直到 j。

如 $\Delta \phi_i = -2^{19}$,输入的链接变量值为 $x_i[5]$ $y_i[-16]$ $z_i[10,11,-12]$,最接近 -2^{19} 的是 $y_i[-16]$,所以进行借位扩展成 $y_i[16,17,18,19,-20]$ 。

改变 Δφ

 $\Delta \phi$ 的值是不变的,但是表示形式可以变化。例如 $\Delta \phi = 2^{20}$,可以表示成 $\Delta \phi = -2^{20} + 2^{21}$,或者 $\Delta \phi = -2^{20} - 2^{21} + 2^{22}$ 。

7 step-3 方法概括

消息修改通过修改 M 提前满足一些充分条件,减少搜索能产生碰撞的 M, $M'(M'=M+\Delta M)$ 的时间。如果一个随机消息不能满足所有条件,则重新选择一个随机消息,同样进行消息修改,使得提前满足一部分条件,然后观察修改后的消息是否满足所有充分条件。

消息修改方法有两种:

• 单个消息修改

仅修改单个消息,以满足压缩函数的第一轮中的充分条件。例如,[1]

中,关于 c1 有三个充分条件: $c_{1,8}=0, c_{1,12}=0, c_{1,20}=0$ 。 c_1 由下式 计算得到:

$$c_1 = (d_1 + (c_0 + \phi(d_1, a_1, b_0) + m_2 + t) \iff 17) \mod 2^{31}$$

以如下方式修改 $m_2[4]$:

- a. 生成一个随机 32 比特消息 m_2^{old} , 并计算 c_1^{old} 。
- b. 计算 c_1^{new} 。

$$c_1^{new} \longleftarrow c_1^{old} - c_{1,7}^{old} \cdot 2^6 - c_{1,12}^{old} \cdot 2^{11} - c_{1,20}^{old} \cdot 2^{19}$$

c. 修改 m_2 使得 c_1^{new} 恒成立。

$$m_2^{new} \longleftarrow ((c_1^{new} - d_1) \gg 17) - c_0 - \phi(d_1, a_1, b_0) - t$$

• 多消息修改

多消息修改用于满足压缩函数第二轮中的充分条件,。[1] 中, a_5 有充分条件 $a_5^{32}=0$, 如果 $a_{5,32}=1$, 则需要进行修改,修改方式如下:

$$a_5 = (b_4 + (a_4 + \phi(b_4, c_4, d_4) + m_1 + t) \ll 5) \mod 2^{31}$$

- a. 因为循环左移 5 位,所以修改 $m_{1,27}$ 。
- b. 因为 m_1 在第一轮中也同样参与计算, m_1 的改变会影响第一轮中后面的运算,所以还要做额外的修改。

修改细节如下:

1) 修改 m_1 (step 2) $m_1 \longleftarrow m_1 + 2^{26}$ 那么:

$$d_1^{new} = (a_1 + (d_0 + \phi(a_1, b_0, c_0) + m_1 + t) \lll 12) \mod 2^{31}$$

2) 修改 m₂ (step 3)

$$c_1' \longleftarrow (d_1^{new} + (c_0 + \phi(d_1^{new}, a_1, b_0) + m_2 + t) \ll 17) \mod 2^{31}$$
要使 c_1 保持不变,则:

$$m_2 \longleftarrow ((c_1 - d_1^{new}) \gg 17) - c_0 - \phi(d_1^{new}, a_1, b_0) - t$$

3) 修改 m_3, m_4, m_5 (step 4, 5, 6) 同理,继续修改消息,直到 d_1^{new} 的影响消失。

$$m_3 \leftarrow ((b_1 - c_1) \gg 22) - b_0 - \phi(c_1, d_1^{new}, a_1) - t$$

 $m_4 \leftarrow ((a_2 - b_1) \gg 7) - a_1 - \phi(b_1, c_1, d_1^{new}) - t$
 $m_5 \leftarrow ((d_2 - a_2) \gg 12) - d_1^{new} - \phi(a_2, b_1, c_1) - t$

参考文献

- [1] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In *Advances in Cryptology –EUROCRYPT 2005*, volume 3494, pages 19–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. Series Title: Lecture Notes in Computer Science.
- [2] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård Revisited: How to Construct a Hash Function. In Advances in Cryptology -CRYPTO 2005, volume 3621, pages 430–448. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. Series Title: Lecture Notes in Computer Science.
- [3] Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama, Noboru Kunihiro, and Kazuo Ohta. How to Construct Sufficient Condition in Searching Collisions of MD5. page 9.
- [4] Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved collision attack on md5.