Architektura Systemów Komputerowych Laboratorium – sprawozdanie

Temat ćwiczenia: Analiza układu synchronicznego.

Nr ćwiczenia:	1
Nazwisko i imię – pierwsze sprawozdanie:	Kacper Kania CAD
Nazwisko i imię – drugie sprawozdanie:	Jakub Cwynar CAD
Grupa laboratoryjna:	
Płyta montażowa nr:	
Termin zajęć – dzień:	Środa
Termin zajęć – godzina:	17 ⁰⁵

OPIS I ZASADA DZIAŁANIA UKŁADU SYNCHRONICZNEGO

Układ synchroniczny to taki układ, którego stan wyjść zależy taktowania zegara (czasu). W tym ćwiczeniu będziemy wykorzystywać dwa rodzaje przerzutników: D oraz JK, które są elementarnymi rodzajami pamięci. W celu uzyskania satysfakcjonujących wyników ćwiczenia wejścia programujące ustawiamy na stan wysoki.

Przerzutnik typu D:

Stan wyjścia jest równy stanowi poprzedniego wejścia. Tablica stanów dla tego przerzutnika wygląda następująco:

y(t)	D	<i>y</i> (<i>t</i> + <i>1</i>)
0	0	0
0	1	1
1	0	0
1	1	1

Przerzutnik typu JK:

Ma w sobie dwa wejścia informacyjne. Stan wyjścia zależy od stanów obu wejść. Tablica stanów dla JK wygląda następująco:

y(t)	J	K	<i>y</i> (<i>t</i> +1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

SYNTEZA UKŁADU DO POSTACI SKŁADAJĄCEJ SIĘ Z BRAMEK NAND

Funkcja wzbudzająca dla przerzutnika D₁:

$$D_1 = A + B$$

$$A = x\overline{y_1}$$

$$B = xy_2$$

$$D_1 = x\overline{y_1} + xy_2$$

Funkcja wzbudzająca dla przerzutnika D₂:

$$D_2 = A + B$$

$$A = xy_2$$

$$B = xy_1$$

$$D_2 = xy_2 + xy_1$$

Tabela stanów-wyjść dla tego przerzutników (zakładając, że stan początku dla $y_1y_2=00$):

X	D_{I}	D_2	y_1	<i>y</i> ₂	
1	1	0	0	0	
1	1	1	0	1	
1	0	1	1	0	
1	1	1	1	1	
RESET					
		RESET			
0	0	RESET 0	0	0	
0	0	0 0	0	0	
0 0 0	0 0 0	0 0 0	0 0 1	0 1 0	

SYNTEZA UKŁADU DO POSTACI SKŁADAJĄCEJ SIĘ Z BRAMEK NAND

Konwersja do postaci, w której układ składa się wyłącznie z bramek NAND. Korzystamy przy tym z prawa De Morgana.

$$D = \overline{A}\overline{B} = A + B$$

SYNTEZA UKŁADU DO POSTACI SKŁADAJĄCEJ SIĘ Z DWÓCH PRZERZUTNIKÓW *JK*

Aby przekształcić układ do takiej postaci, wykorzystujemy tabelkę prezentującą zachowanie przerzutnika:

y(t)	J	K	y(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

W uproszczone postaci:

y(t)	J	K	y(t+1)
0	0	×	0
0	1	×	1
1	×	0	1
1	×	1	0

Dzięki tej tabeli możemy zbudować kolejną tablicę pokazującą zależność między wyjściami a stanami wejść:

X	<i>y</i> 1	<i>y</i> 2	D_1	D_2	J_1	K_1	J_2	K_2
0	0	0	0	0	0	×	0	×
0	0	1	0	0	0	×	×	1
0	1	0	0	0	×	1	0	×
0	1	1	0	0	×	1	×	1
1	0	0	1	0	1	×	0	×
1	0	1	1	1	1	×	×	0
1	1	0	0	1	×	1	1	×
1	1	1	1	1	×	0	×	0

SYNTEZA UKŁADU DO POSTACI SKŁADAJĄCEJ SIĘ Z DWÓCH PRZERZUTNIKÓW JK

Teraz budujemy mapę Karnaugh dla każdego z wejść przerzutników JK:

J_1				
<i>x y</i> 1 <i>y</i> 2	0	1		
00	0	1		
01	0	1		
11	×	×		
10	×	×		

$$J_1 = x$$

$$K_1 = \bar{x} + \overline{y_2}$$

K_1				
<i>x y</i> 1 <i>y</i> 2	0	1		
00	×	×		
01	×	×		
11	1	0		
10	1	1		

J_2				
<i>x y</i> 1 <i>y</i> 2	0	1		
00	0	0		
01	×	×		
11	×	×		
10	0	1		

$$J_2 = xy_1$$
$$K_2 = \bar{x}$$

K_2				
<i>x y</i> 1 <i>y</i> 2	0	1		
00	×	×		
01	1	0		
11	1	0		
10	×	×		

Wykresy zależności wyniku funkcji od wprowadzanych zmiennych

Wykres dla podanej sekwencji "X" dla układu z przerzutnikami D

Wykres dla podanej sekwencji "X" dla układu z przerzutnikami JK

REALIZACJA UKŁADU Z PRZERZUTNIKAMI JK, WYNIKI EKSPERYMENTU, TABLICA PRZEJŚĆ - WYJŚĆ

Zadany na początku ćwiczenia układ

Układ z realizacją przerzutników JK

REALIZACJA UKŁADU Z PRZERZUTNIKAMI JK, WYNIKI EKSPERYMENTU, TABLICA PRZEJŚĆ - WYJŚĆ

Tablica przejść-wyjść:

x y_1y_2	0	1	Z
00	00	10	0
01	00	11	0
10	00	01	0
11	00	11	1

Wyniki eksperymentu:

czas	t_5	t_4	t_3	t_2	t_1	t_0
X	1	1	1	1	0	0
y_1y_2	10	01	11	11	00	00
\overline{Z}	0	0	1	1	0	0

LITERATURA:

- 1. Nuhrmann, Dieter. Elektronika łatwiejsza niż przypuszczasz, Warszawa 1986, Wydawnictwa Komunikacji i Łączności.
- 2. Pieńkos, Jan. Turczyński, Janusz. Układy scalone TTL w systemach cyfrowych, Warszawa 1980, Wydawnictwa Komunikacji i Łączności.
- 3. Dokumentacja przerzutników:
 - http://www.ti.com/lit/ds/symlink/sn54s74.pdf
 - http://www.ti.com/lit/ds/symlink/sn5476.pdf
- 4. Informacje nt. syntezy układów sekwencyjych:
 - http://www.fpga.agh.edu.pl/tc/tc_pliki/uklsekw2.pdf
 - https://www.youtube.com/watch?v=2ecMG_OciLo