GVI in Function Spaces

Gaussian Measures meet Bayesian Deep Learning

Veit D. Wild*, Robert Hu* and Dino Sejdinovic

Department of Statistics

25th of May 2022

Outline

Background
 Bayesian Deep Learning
 Variational Inference in Function Spaces
 Generalised Variational Inference
 Gaussian Measures on Hilbert Spaces

 Gaussian Wasserstein Inference Model description
 Parameterisation of GWI

3. Experiments

Contents

Background
 Bayesian Deep Learning
 Variational Inference in Function Spaces
 Generalised Variational Inference
 Gaussian Measures on Hilbert Spaces

2. Gaussian Wasserstein Inference Model description Parameterisation of GWI

3. Experiments

Let $\mathcal{D}:=\big\{(x_n,y_n)\,|\,n=1,\ldots,N\big\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

Let $\mathcal{D} := \{(x_n, y_n) | n = 1, \dots, N\} \subset \mathcal{X} \times \mathcal{Y}$ be data.

• Supervised Deep Learning:

$$Y = f(x) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

Let $\mathcal{D}:=\left\{(x_n,y_n)\,|\,n=1,\ldots,N\right\}\subset\mathcal{X}\times\mathcal{Y}$ be data.

• Supervised Deep Learning:

$$Y = f(x) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

• Bayesian Neural Network: Sample $W \sim p(w)$ and obtain random function F(x; W) as prior.

Let $\mathcal{D} := \{(x_n, y_n) | n = 1, \dots, N\} \subset \mathcal{X} \times \mathcal{Y}$ be data.

• Supervised Deep Learning:

$$Y = f(x) + \mathcal{N}(0, \sigma^2), \tag{1}$$

where f is a neural network f(x) = f(x; w) with parameters w.

- Bayesian Neural Network: Sample $W \sim p(w)$ and obtain random function F(x;W) as prior.
- Predictions for arbitrary $x^* \in \mathcal{X}$ follow from Bayes rule:

$$p(y^*|\mathcal{D}) = \int p(y^*|w)p(w|\mathcal{D}) dw$$
 (2)

$$= \int p(y^*|f(x^*;w))p(w|\mathcal{D}) dw$$
 (3)

Why Bayesian deep learning instead of standard deep learning?

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

Bayesian posterior can be used for uncertainty quantification

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

Bayesian posterior can be used for uncertainty quantification

Problem: p(w|D) is intractable! Approximations required.

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

• Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]

Why Bayesian deep learning instead of standard deep learning?

• Bayesian model averaging may improve predictive performance:

$$p(y^*|\mathcal{D}) = \int p(y^*|f(x^*; w))p(w|\mathcal{D}) dw$$
 (4)

• Bayesian posterior can be used for uncertainty quantification

Problem: $p(w|\mathcal{D})$ is intractable! Approximations required.

Sampling based approaches:

- Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]
- Langevin Dynamics [Welling and Teh, 2011]

Variational approach:

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν .

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$.

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

• The parameter space for w is large and the posterior multimodal.

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \left[\log p(y|w) \right] - \mathbb{D}_{KL} (q(w), p(w)), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$.

Problems:

- The parameter space for w is large and the posterior multimodal.
 - \longrightarrow challenging for sampling based approaches

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

- The parameter space for w is large and the posterior multimodal.
 → challenging for sampling based approaches
- Variational approaches often introduce strong assumptions for tractability.

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$.

- Problems:
 - The parameter space for w is large and the posterior multimodal.

 — challenging for sampling based approaches
 - Variational approaches often introduce strong assumptions for tractability.
 - \longrightarrow do we still capture enough of the true posterior? [Foong et al., 2020]

Variational approach:

Let $q(w) = q(w; \nu)$ be a distribution with unknown parameters ν . Learn ν by maximising

$$\mathcal{L}(\nu) := \mathbb{E}_{q(w)} \big[\log p(y|w) \big] - \mathbb{D}_{KL} \big(q(w), p(w) \big), \tag{5}$$

which is (often) tractable. Use $q(w; \nu) \approx p(w|\mathcal{D})$. Problems:

- The parameter space for w is large and the posterior multimodal.

 — challenging for sampling based approaches
- Variational approaches often introduce strong assumptions for tractability.
 - \longrightarrow do we still capture enough of the true posterior? [Foong et al., 2020]
- What priors on the function space are induced by p(w)?

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

• E an infinite dimensional (Polish) function space

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where \mathbb{Q}^{F} , $\mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

Challenges:

• How to specify priors on infinite dimensional function spaces?

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where \mathbb{Q}^{F} , $\mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 - \rightarrow Gaussian measures on Hilbert spaces

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 → Gaussian measures on Hilbert spaces
- The KL-divergence is (in general) intractable in infinite dimensions and may even be infinite [Burt et al., 2020].

Idea: perform inference in function space [Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and Hernández-Lobato, 2021]

$$\mathcal{L} = \mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] - \mathbb{D}_{KL} (\mathbb{Q}^F, \mathbb{P}^F), \tag{6}$$

where $\mathbb{Q}^{F}, \mathbb{P}^{F} \in \mathcal{P}(E)$ with:

- E an infinite dimensional (Polish) function space
- $\mathcal{P}(E)$ the space of Borel probability measures on E

- How to specify priors on infinite dimensional function spaces?
 - \rightarrow Gaussian measures on Hilbert spaces
- The KL-divergence is (in general) intractable in infinite dimensions and may even be infinite [Burt et al., 2020].
 - \rightarrow use generalised variational inference in infinite dimensions!

Find posterior as

Find posterior as

$$q^*(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \ \left\{ \mathbb{E}_{q(w)} \Big[\sum_{n=1}^N \ell(y_n, w) \Big] + D \big(q(w), p(w) \big) \right\}, \tag{7}$$

Find posterior as

$$q^*(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_n, w) \right] + D(q(w), p(w)) \right\}, \tag{7}$$

where:

Find posterior as

$$q^*(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \ \left\{ \mathbb{E}_{q(w)} \Big[\sum_{n=1}^N \ell(y_n, w) \Big] + D \big(q(w), p(w) \big) \right\}, \tag{7}$$

where:

• Q is a set of tractable pdfs

Find posterior as

$$q^*(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \Big[\sum_{n=1}^N \ell(y_n, w) \Big] + D \big(q(w), p(w) \big) \right\}, \tag{7}$$

where:

- Q is a set of tractable pdfs
- ℓ is a loss function

Find posterior as

$$q^*(w) := \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left\{ \mathbb{E}_{q(w)} \left[\sum_{n=1}^{N} \ell(y_n, w) \right] + D(q(w), p(w)) \right\}, \tag{7}$$

where:

- Q is a set of tractable pdfs
- ℓ is a loss function
- D an arbitrary divergence

• Idea: Use rule of three in infinite dimensional function spaces

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces
- We can target

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} (\mathbb{Q}^F, \mathbb{P}^F), \tag{8}$$

for inference where $\mathbb D$ is an arbitrary divergence.

- Idea: Use rule of three in infinite dimensional function spaces
- Theorem 1 in Knoblauch et al. [2019] holds for infinite dimensional parameter spaces
- We can target

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} \left(\mathbb{Q}^F, \mathbb{P}^F \right), \tag{8}$$

for inference where \mathbb{D} is an arbitrary divergence.

• How to define priors and variational measures \mathbb{P}^F and \mathbb{Q}^F in infinite dimensions?

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Definition (Gaussian Random Element)

A random mapping $F:\Omega\to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h \in H$.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Definition (Gaussian Random Element)

A random mapping $F:\Omega\to H$ is called Gaussian random element (GRE) if and only if

$$\langle \mathbf{F}, \mathbf{h} \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h \in H$.

The mean element of F is defined as

$$m := \mathbb{E}[F] := \int F(\omega) d\mathbb{P}(\omega) \in H$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Definition (Gaussian Random Element)

A random mapping $F:\Omega\to H$ is called Gaussian random element (GRE) if and only if

$$\langle F, h \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h \in H$.

The mean element of F is defined as

$$m := \mathbb{E}[F] := \int F(\omega) d\mathbb{P}(\omega) \in H$$
 (10)

and the (linear) covariance operator $C: H \to H$ of F is defined as

$$C(h) := \int \langle F(\omega), h \rangle F(\omega) \, d\mathbb{P}(\omega) - \langle m, h \rangle m, \, h \in H.$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.

Definition (Gaussian Random Element)

A random mapping $F:\Omega\to H$ is called Gaussian random element (GRE) if and only if

$$\langle F, h \rangle : \Omega \to \mathbb{R}$$
 (9)

is a scalar Gaussian variable for every $h \in H$.

The mean element of F is defined as

$$\mathbf{m} := \mathbb{E}[\mathbf{F}] := \int \mathbf{F}(\omega) \, d\mathbb{P}(\omega) \in \mathbf{H}$$
 (10)

and the (linear) covariance operator $C: H \to H$ of F is defined as

$$C(h) := \int \langle F(\omega), h \rangle F(\omega) d\mathbb{P}(\omega) - \langle m, h \rangle m, h \in H.$$
 (11)

By properties of the Bochner integral:

$$\langle F, h \rangle \sim \mathcal{N}(\langle m, h \rangle, \langle Ch, h \rangle),$$
 (12)

for any $h \in H$.

By properties of the Bochner integral:

$$\langle F, h \rangle \sim \mathcal{N}(\langle m, h \rangle, \langle Ch, h \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

By properties of the Bochner integral:

$$\langle F, h \rangle \sim \mathcal{N}(\langle m, h \rangle, \langle Ch, h \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

• $C: H \to H$ of a GRE is a positive self-adjoint trace-class operator.

By properties of the Bochner integral:

$$\langle F, h \rangle \sim \mathcal{N}(\langle m, h \rangle, \langle Ch, h \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

- \bullet C : H \to H of a GRE is a positive self-adjoint trace-class operator.
- For arbitrary $m \in H$ and arbitrary C positive, self-adjoint and trace-class there exists a GRE such that $F \sim \mathcal{N}(m, C)$.

By properties of the Bochner integral:

$$\langle F, h \rangle \sim \mathcal{N}(\langle m, h \rangle, \langle Ch, h \rangle),$$
 (12)

for any $h \in H$. Write $F \sim \mathcal{N}(m, C)$ for a GRE with mean element $m \in H$ and covariance operator C.

- $C: H \to H$ of a GRE is a positive self-adjoint trace-class operator.
- For arbitrary $m \in H$ and arbitrary C positive, self-adjoint and trace-class there exists a GRE such that $F \sim \mathcal{N}(m, C)$.

Definition (Gaussian Measure)

Let $F \sim \mathcal{N}(m, C)$ be a GRE. Then P defined as

$$P(A) := \mathbb{P}^{F}(A) := \mathbb{P}(F \in A) \tag{13}$$

for any (measurable) $A \subset H$ is called a Gaussian measure.

Contents

- Background
 Bayesian Deep Learning
 Variational Inference in Function Spaces
 Generalised Variational Inference
 Gaussian Measures on Hilbert Spaces
- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \big\lceil \log p(y|F) \big\rceil + \mathbb{D} \big(\mathbb{Q}^F, \mathbb{P}^F \big)$$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} (\mathbb{Q}^F, \mathbb{P}^F)$$
(14)

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} \left(\mathbb{Q}^F, \mathbb{P}^F \right)$$
 (14)

Gaussian Wasserstein Inference:

• $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \}$ with ρ input distribution on \mathcal{X}

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} \left(\mathbb{Q}^F, \mathbb{P}^F \right)$$
 (14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} \left(\mathbb{Q}^F, \mathbb{P}^F \right)$$
 (14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \left[\log p(y|F) \right] + \mathbb{D} \left(\mathbb{Q}^F, \mathbb{P}^F \right)$$
 (14)

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$
- $\mathbb{D}(\cdot,\cdot) = W_2(\cdot,\cdot)$ with W_2 given as Wasserstein-distance

Recall the generalised loss:

$$\mathcal{L} := -\mathbb{E}_{\mathbb{Q}} \big[\log p(y|F) \big] + \mathbb{D} \big(\mathbb{Q}^F, \mathbb{P}^F \big)$$
 (14)

Gaussian Wasserstein Inference:

- $E = L^2(\mathcal{X}, \rho, \mathbb{R}) := \{f : \mathcal{X} \to \mathbb{R} \mid \int |f(x)|^2 d\rho(x) < \infty \}$ with ρ input distribution on \mathcal{X}
- $P := \mathbb{P}^F \sim \mathcal{N}(m_P, C_P)$
- $Q := \mathbb{Q}^F \sim \mathcal{N}(m_Q, C_Q)$
- $\mathbb{D}(\cdot,\cdot) = W_2(\cdot,\cdot)$ with W_2 given as Wasserstein-distance

with:

$$C_{Pg} := \int k(\cdot, x')g(x') d\rho(x'), \qquad C_{Qg} := \int r(\cdot, x')g(x') d\rho(x') \qquad (15)$$

for all $g \in L^2(\mathcal{X}, \rho, \mathbb{R})$ where k and r are trace-class kernels.

Regression

Regression

For regression:

$$p(y|F) := \prod_{n=1}^{N} p(y_n|F) := \prod_{n=1}^{N} \mathcal{N}(y_n | F(x_n), \sigma^2), \tag{16}$$

where $\sigma^2 > 0$.

Regression

For regression:

$$p(y|F) := \prod_{n=1}^{N} p(y_n|F) := \prod_{n=1}^{N} \mathcal{N}(y_n | F(x_n), \sigma^2), \tag{16}$$

where $\sigma^2 > 0$.

The Wasserstein distance is tractable [Gelbrich, 1990]:

$$W_2^2(P,Q) = \|m_P - m_Q\|_2^2 + tr(C_P) + tr(C_Q) - 2 \cdot tr \left[\left(C_P^{1/2} C_Q C_P^{1/2} \right)^{1/2} \right], (17)$$

where $tr(\cdot)$ denotes the trace of an operator and $C_P^{1/2}$ is the square root of the positive, self-adjoint operator C_P .

Let
$$\widehat{\rho} := \frac{1}{N} \sum_{n=1}^{N} \delta_{x_n}$$

Let $\widehat{\rho} := \frac{1}{N} \sum_{n=1}^N \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{P} - \mathbf{m}_{Q}\|_{2}^{2} = \int (\mathbf{m}_{P}(\mathbf{x}) - \mathbf{m}_{Q}(\mathbf{x}))^{2} d\rho(\mathbf{x})$$
 (18)

$$\approx \frac{1}{N} \sum_{n=1}^{N} (m_{P}(x_{n}) - m_{Q}(x_{n}))^{2}$$
 (19)

Let $\widehat{\rho}:=\frac{1}{N}\sum_{n=1}^N \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{P} - \mathbf{m}_{Q}\|_{2}^{2} = \int (\mathbf{m}_{P}(\mathbf{x}) - \mathbf{m}_{Q}(\mathbf{x}))^{2} d\rho(\mathbf{x})$$
 (18)

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left(m_{P}(x_n) - m_{Q}(x_n) \right)^2$$
 (19)

Further:

Let $\widehat{\rho} := \frac{1}{N} \sum_{n=1}^{N} \delta_{x_n}$ and notice that

$$\|\mathbf{m}_{P} - \mathbf{m}_{Q}\|_{2}^{2} = \int (\mathbf{m}_{P}(\mathbf{x}) - \mathbf{m}_{Q}(\mathbf{x}))^{2} d\rho(\mathbf{x})$$
 (18)

$$\approx \frac{1}{N} \sum_{n=1}^{N} \left(m_{P}(x_n) - m_{Q}(x_n) \right)^2 \tag{19}$$

Further:

$$\operatorname{tr}(C_{P}) = \int k(x, x) \, d\rho(x) \approx \frac{1}{N} \sum_{n=1}^{N} k(x_{n}, x_{n})$$
 (20)

$$tr(C_Q) = \int r(x, x) d\rho(x) \approx \frac{1}{N} \sum_{n=1}^{N} r(x_n, x_n)$$
 (21)

The last term can be approximated as

$$\operatorname{tr}\left[\left(C_{P}^{1/2}C_{Q}C_{P}^{1/2}\right)^{1/2}\right] \approx \frac{1}{\sqrt{NN_{S}}} \sum_{s=1}^{N_{S}} \sqrt{\lambda_{s}\left(r(X_{S}, X)k(X, X_{S})\right)},$$
 (22)

The last term can be approximated as

$$\operatorname{tr}\left[\left(C_{P}^{1/2}C_{Q}C_{P}^{1/2}\right)^{1/2}\right] \approx \frac{1}{\sqrt{NN_{S}}} \sum_{s=1}^{N_{S}} \sqrt{\lambda_{s}\left(r(X_{S}, X)k(X, X_{S})\right)},$$
 (22)

where $X_S := (x_{S,1}, \dots, x_{S,N_S}), N_S \in \mathbb{N}$ with:

$$X_{S,1}, \dots, X_{S,N_S} \stackrel{\text{ind.}}{\sim} \hat{\rho}$$
 (23)

$$r(X_S, X) := \left(r(x_{S,s}, x_n)\right)_{s,n} \tag{24}$$

$$k(X, X_S) := \left(k(x_n, x_{S,s})\right)_{n,s} \tag{25}$$

and $\lambda_s(r(X_S,X)k(X,X_S))$ denotes the s-th eigenvalue of the matrix $r(X_S,X)k(X,X_S) \in \mathbb{R}^{N_S \times N_S}$.

The final loss:

$$\mathcal{L} = L + \widehat{W}^2 \tag{26}$$

The final loss:

$$\mathcal{L} = L + \widehat{W}^2 \tag{26}$$

with:

$$L := \frac{N}{2} \log(2\pi\sigma^2) + \sum_{n=1}^{N} \frac{(y_n - m_Q(x_n))^2 + r(x_n, x_n)}{2\sigma^2}$$
 (27)

$$\hat{W}^2 := \frac{1}{N} \sum_{n=1}^{N} (m_P(x_n) - m_Q(x_n))^2 + \frac{1}{N} \sum_{n=1}^{N} k(x_n, x_n)$$
 (28)

$$+\frac{1}{N}\sum_{n=1}^{N}r(x_{n},x_{n})-\frac{2}{\sqrt{NN_{S}}}\sum_{s=1}^{N_{S}}\sqrt{\lambda_{s}(r(X_{S},X)k(X,X_{S}))},$$
 (29)

The final loss:

$$\mathcal{L} = L + \widehat{W}^2 \tag{26}$$

with:

$$L := \frac{N}{2} \log(2\pi\sigma^2) + \sum_{n=1}^{N} \frac{(y_n - m_Q(x_n))^2 + r(x_n, x_n)}{2\sigma^2}$$
 (27)

$$\hat{W}^2 := \frac{1}{N} \sum_{n=1}^{N} (m_P(x_n) - m_Q(x_n))^2 + \frac{1}{N} \sum_{n=1}^{N} k(x_n, x_n)$$
 (28)

$$+\frac{1}{N}\sum_{n=1}^{N}r(x_{n},x_{n})-\frac{2}{\sqrt{NN_{S}}}\sum_{s=1}^{N_{S}}\sqrt{\lambda_{s}(r(X_{S},X)k(X,X_{S}))},$$
 (29)

 \bullet $\, \mathcal{L}$ is tractable for any m_P, m_Q, k and r

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of $m_{\rm Q}$ and $m_{\rm P}$

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - $N_{\rm B}$ evaluations of $m_{\rm Q}$ and $m_{\rm P}$

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - N_B evaluations of m_Q and m_P
 - $N_{\rm S} \cdot N_{\rm B}$ evaluations of r and k

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - N_B evaluations of m_Q and m_P
 - $N_S \cdot N_B$ evaluations of r and k
 - $\mathcal{O}(N_B + N_S^2 N_B + N_S^3)$ operations for the eigenvalue problem

- \mathcal{L} is tractable for any m_P, m_Q, k and r
- One evaluation of \mathcal{L} requires:
 - N evaluations of m_Q and m_P
 - $N_S \cdot N$ evaluations of r and k
 - $\mathcal{O}(N + N_S^2 N + N_S^3)$ operations for the eigenvalue problem
- One evaluation of \mathcal{L} in batch-mode requires:
 - N_B evaluations of m_Q and m_P
 - $N_{\rm S} \cdot N_{\rm B}$ evaluations of r and k
 - $\mathcal{O}(N_{\rm B}+N_{\rm S}^2N_{\rm B}+N_{\rm S}^3)$ operations for the eigenvalue problem
 - \longrightarrow very scalable for typical $N_S, N_B \ll N_S = N_B = 100$

Recovering Other Methods

Recovering Other Methods

• Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

$$m_Q(x) := m_P(x) + \sum_{m=1}^{M} \beta_m k_m(x)$$
 (30)

$$r(x,x') := k(x,x') - k_Z(x)^T k(Z,Z)^{-1} k_Z(x) + k_Z(x)^T \Sigma k_Z(x), \qquad (31)$$

where $\beta = (\beta_1, \dots, \beta_M) \in \mathbb{R}^M$ and $\Sigma \in \mathbb{R}^{M \times M}$ are variational parameters. Further $Z = (Z_1, \dots, Z_M)$ with $\{Z_m\}_{m=1}^M \stackrel{\text{iid}}{\sim} \widehat{\rho}$.

Recovering Other Methods

• Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

$$m_Q(x) := m_P(x) + \sum_{m=1}^{M} \beta_m k_m(x)$$
 (30)

$$r(x,x') := k(x,x') - k_Z(x)^T k(Z,Z)^{-1} k_Z(x) + k_Z(x)^T \Sigma k_Z(x), \eqno(31)$$

where $\beta = (\beta_1, \dots, \beta_M) \in \mathbb{R}^M$ and $\Sigma \in \mathbb{R}^{M \times M}$ are variational parameters. Further $Z = (Z_1, \dots, Z_M)$ with $\{Z_m\}_{m=1}^M \stackrel{\text{iid}}{\sim} \widehat{\rho}$.

• Decoupled SVGPs [Cheng and Boots, 2017]: Same kernel r as in SVGP but mean

$$m_{Q}(x) := m_{P}(x) + \sum_{n=1}^{N} \beta_{n} k_{n}(x),$$
 (32)

where $\widetilde{N} > M$.

Use neural net for posterior mean

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \ldots, L+1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$h^{\ell}(x) := \phi(g^{\ell}(x)), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $x \in \mathcal{X}$ where ϕ is an activation function.

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \ldots, L+1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$h^{\ell}(x) := \phi(g^{\ell}(x)), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $x \in \mathcal{X}$ where ϕ is an activation function.

• Define

$$m_Q(x) := g^{L+1}(x)$$
 (35)

for $x \in \mathcal{X}$.

Use neural net for posterior mean

- Let $L \in \mathbb{N}$ be the number of hidden layers.
- Let D_{ℓ} , $\ell = 0, \ldots, L+1$ be the width of layer ℓ with $D_0 := D$.
- Define $g^1(x) := W^1x + b^1$ and further

$$h^{\ell}(x) := \phi(g^{\ell}(x)), \tag{33}$$

$$g^{\ell+1}(x) := W^{\ell+1}h^{\ell}(x) + b^{\ell+1}$$
(34)

for $x \in \mathcal{X}$ where ϕ is an activation function.

• Define

$$m_Q(x) := g^{L+1}(x)$$
 (35)

for $x \in \mathcal{X}$.

and the SVGP kernel r in (31) for the posterior covariance.

Contents

- Background
 Bayesian Deep Learning
 Variational Inference in Function Spaces
 Generalised Variational Inference
 Gaussian Measures on Hilbert Spaces
- 2. Gaussian Wasserstein Inference Model description Parameterisation of GWI
- 3. Experiments

Toy Examples: GWI-net on 1-D data

Figure 1: \blacksquare : Training data \blacksquare : Unseen data \blacksquare : Inducing points We use N=1000 equidistant points and add white noise with $\epsilon \sim \mathcal{N}(0,0.5^2)$. The plot shows $m_Q(x) \pm 1.96 \sqrt{\mathbb{V}[Y^*(x)|Y]}$ where $\mathbb{V}[Y^*(x)|Y]$ is the posterior predictive variance given as $r(x,x) + \sigma^2$.

Toy Examples: GWI-net and "in-between" uncertainty

Figure 2: Regression on a 2D synthetic dataset (red crosses). The colour plots show the standard deviation of the output, $\sigma[f(\mathbf{x})]$, in 2D input space. The plots beneath show the mean with 2-standard deviation bars along the dashed white line (parameterised by λ). MFVI and MCDO are overconfident for $\lambda \in [-1, 1]$.

UCI Regression

UCI Regression

Dataset	N	D	GWI		FVI	VIP-BNN	VIP-NP	BBB	VDO	$\alpha = 0.5$	FBNN	EXACT GP
			SVGP	DNN-SVGP	1.41	VIF-DININ	VIF-INF	БББ	VDO	$\alpha = 0.5$	LDIMIN	EAACT GF
BOSTON	506	13	2.8±0.31	2.27 ± 0.06	2.33±0.04	2.45±0.04	2.45±0.03	2.76±0.04	2.63±0.10	2.45±0.02	2.30±0.10	2.46±0.04
CONCRETE	1030	8	3.24 ± 0.09	2.64 ± 0.06	2.88 ± 0.06	3.02 ± 0.02	3.13 ± 0.02	3.28 ± 0.01	3.23 ± 0.01	3.06 ± 0.03	3.09±0.01	3.05 ± 0.02
ENERGY	768	8	1.81 ± 0.19	0.91 ± 0.12	0.58 ± 0.05	0.56 ± 0.04	0.60 ± 0.03	2.17 ± 0.02	1.13 ± 0.02	0.95 ± 0.09	0.68 ± 0.02	0.54 ± 0.02
KIN8NM	8192	8	-0.86 ± 0.38	-1.2 ± 0.03	-1.15 ± 0.01	-1.12 ± 0.01	-1.05 ± 0.00	-0.81 ± 0.01	-0.83 ± 0.01	-0.92 ± 0.02	N/A±0.00	N/A±0.00
POWER	9568	4	3.35 ± 0.22	2.74 ± 0.02	2.69 ± 0.00	2.92 ± 0.00	2.90 ± 0.00	2.83 ± 0.01	2.88 ± 0.00	2.81 ± 0.00	N/A±0.00	N/A±0.00
PROTEIN	45730	9	2.84 ± 0.04	2.87 ± 0.0	2.85 ± 0.00	2.87 ± 0.00	2.96 ± 0.02	3.00 ± 0.00	2.99 ± 0.00	2.90 ± 0.00	N/A±0.00	N/A±0.00
RED WINE	1588	11	0.97 ± 0.02	0.76 ± 0.08	0.97 ± 0.06	0.97 ± 0.02	1.20 ± 0.04	1.01 ± 0.02	0.97 ± 0.02	1.01 ± 0.02	1.04±0.01	0.26 ± 0.03
YACHT	308	6	2.37 ± 0.55	0.29 ± 0.1	0.59 ± 0.11	-0.02 ± 0.07	0.59 ± 0.13	1.11 ± 0.04	1.22 ± 0.18	0.79 ± 0.11	1.03±0.03	0.10 ± 0.05
NAVAL	11934	16	-7.25 ± 0.08	-6.76 ± 0.1	-7.21 ± 0.06	-5.62 ± 0.04	-4.11 ± 0.00	-2.80 ± 0.00	-2.80 ± 0.00	-2.97 ± 0.14	-7.13±0.02	N/A±0.00
Mean Rank			5.5	2.06	2.22	3.33	4.94	7	6.11	4.83		

Table 1: The table shows the average test NLL on several UCI regression datasets. We train on random 90% of the data and predict on 10%. This is repeated 10 times and we report mean and standard deviation. The results for our competitors are taken from Ma and Hernández-Lobato [2021].

Classification

Classification

		FMNIST		CIFAR 10			
Model	Accuracy	NLL	OOD-AUC	Accuracy	NLL	OOD-AUC	
GWI-net	93.25 ± 0.09	0.250 ± 0.00	0.959 ± 0.01	83.82 ± 0.00	0.553 ± 0.00	0.618 ± 0.00	
FVI	91.60 ± 0.14	0.254 ± 0.05	0.956 ± 0.06	77.69 ± 0.64	0.675 ± 0.03	0.883 ± 0.04	
MFVI	91.20 ± 0.10	0.343 ± 0.01	0.782 ± 0.02	76.40 ± 0.52	1.372 ± 0.02	0.589 ± 0.01	
MAP	91.39 ± 0.11	0.258 ± 0.00	0.864 ± 0.00	77.41 ± 0.06	0.690 ± 0.00	0.809 ± 0.01	
KFAC-LAPLACE	84.42 ± 0.12	0.942 ± 0.01	0.945 ± 0.00	72.49 ± 0.20	1.274 ± 0.01	0.548 ± 0.01	
RITTER et al.	91.20 ± 0.07	0.265 ± 0.00	0.947 ± 0.00	77.38 ± 0.06	0.661 ± 0.00	0.796 ± 0.00	

Table 2: We report average accuracy, NLL and OOD-AUC on test data for 10 different train/test splits.

References I

- Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media, 2012.
- Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In International conference on machine learning, pages 1683–1691. PMLR, 2014.
- Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688. Citeseer, 2011.
- Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of approximate inference in bayesian neural networks. Advances in Neural Information Processing Systems, 33:15897–15908, 2020.

References II

- Chao Ma, Yingzhen Li, and José Miguel Hernández-Lobato. Variational implicit processes. In International Conference on Machine Learning, pages 4222–4233. PMLR, 2019.
- Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian neural networks. arXiv preprint arXiv:1903.05779, 2019.
- Tim GJ Rudner, Zonghao Chen, and Yarin Gal. Rethinking function-space variational inference in bayesian neural networks. In Third Symposium on Advances in Approximate Bayesian Inference, 2020.
- Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on stochastic process generators. Advances in Neural Information Processing Systems, 34, 2021.

References III

- David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and Mark van der Wilk. Understanding variational inference in function-space. arXiv preprint arXiv:2011.09421, 2020.
- Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized variational inference: Three arguments for deriving new posteriors. arXiv preprint arXiv:1904.02063, 2019.
- Matthias Gelbrich. On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces. Mathematische Nachrichten, 147(1):185–203, 1990.
- Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.
- Ching-An Cheng and Byron Boots. Variational inference for gaussian process models with linear complexity. Advances in Neural Information Processing Systems, 30, 2017.

