# How Often is "Often"? Improving Assessment of the Externalizing Spectrum Using Absolute Frequency

Isaac T. Petersen<sup>1</sup>, Zachary Demko<sup>1</sup>, Philipp Doebler<sup>2</sup>, Loreen Sabel<sup>2</sup>,

Jacob J. Oleson<sup>3</sup>, and Robert F. Krueger<sup>4</sup>

<sup>1</sup> Department of Psychological and Brain Sciences, University of Iowa

<sup>2</sup> Fachgebiet für Statistische Methoden in den Sozialwissenschaften, Technische Universität

## Dortmund

<sup>3</sup> Department of Biostatistics, University of Iowa, University of Iowa

<sup>4</sup> Department of Psychology, University of Minnesota

### **Author Note**

Isaac T. Petersen https://orcid.org/0000-0003-3072-6673

Zachary Demko <a> <a href="https://orcid.org/0000-0002-5717-6205">https://orcid.org/0000-0002-5717-6205</a></a>

Philipp Doebler https://orcid.org/0000-0002-2946-8526

Loreen Sabel https://orcid.org/0000-0002-9832-8842

Jacob J. Oleson https://orcid.org/0000-0001-6343-3274

Robert F. Krueger https://orcid.org/0000-0001-9127-5509

The instruments, data, a data dictionary, analysis scripts, and a computational notebook for the present study are published online: <a href="https://osf.io/49m8q">https://osf.io/49m8q</a> (Petersen et al., 2025). The study hypotheses were preregistered: <a href="https://osf.io/cthju">https://osf.io/cthju</a> (Petersen & Demko, 2024). We have no conflicts of interest to disclose. The present study was approved by the University of Iowa Institutional Review Board (Study #: 202305374). The authors complied with APA ethical standards in the treatment of participants. Isaac T. Petersen was funded by Grant HD098235 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development

(NICHD). Zachary Demko was funded by Grants T32GM108540 and T32GM149386 from the National Institute of General Medical Sciences (NIGMS). Robert F. Krueger was supported partly by National Institutes of Health grants R01AG053217, R01AG077742, and U19AG51426.

Correspondence concerning this article should be addressed to Isaac T. Petersen, University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242.

Email: <u>isaac-t-petersen@uiowa.edu</u>

#### **Abstract**

Nearly all questionnaires of externalizing problems use vague quantifiers of relative frequency (e.g., rarely/sometimes/often) or true/false statements. Vague quantifiers have many problems, including imprecision and low interpretability. An alternative is numeric quantifiers that quantify, in absolute frequency, how many times the person engaged in the behavior during a given timeframe. This study evaluates whether absolute frequency provides utility for assessing the externalizing spectrum. Participants included adults recruited online and college students, for a combined sample of 1,237 adults (290 males; 947 females) spanning 18-92 years of age. A subset of items was adapted from the Externalizing Spectrum Inventory to assess absolute frequency, supplemented with additional items to ensure broad coverage. Using a 30-day reference period, participants indicated how many times they engaged in each behavior per day, per week, in the past month, or in the prior year. Externalizing problems showed age-related decreases from early to later adulthood. On average, men showed greater externalizing problems than women in early and older adulthood; women showed greater externalizing problems than men in middle adulthood. Latent scores derived from absolute frequency items demonstrated convergent validity with a widely used measure of externalizing problems (Adult Self-Report), discriminant validity with respect to internalizing problems, and criterion and incremental validity in relation to functional impairment and inhibitory control. Count data led to greater precision—less uncertainty in the estimate of each person's level of externalizing problems than dichotomized versions of the items. Findings suggest there is key utility in assessing absolute frequency of externalizing behavior.

*Keywords*: externalizing behavior problems; absolute frequency versus relative frequency; numeric quantifiers versus vague quantifiers; item response theory; adults

Public Significance Statement: The present study suggests that having respondents specify the number of times they engage in various problem behaviors is more useful than having respondents indicate how often the behavior occurred using subjective labels such as "rarely", "sometimes", and "often". Having respondents specify the number of times they engage in various problem behaviors may lead to better assessment for behavior problems.

# How Often is "Often"? Improving Assessment of the Externalizing Spectrum Using Absolute Frequency

In the Woody Allen movie Annie Hall, there is a scene with a split screen of Annie Hall and Alvy Singer—who are in a romantic relationship. On one side, Annie talks to her psychiatrist; on the other side, Alvy talks to his psychiatrist. Alvy and Annie are each asked by their psychiatrist how often they have sex with one another. Alvy responds, "Hardly ever; maybe three times a week." Annie responds, "Constantly; I'd say three times a week." That the same absolute frequency can be expressed as different relative frequencies illustrates a key challenge with assessing behavior frequency. The present study examines whether consideration of absolute frequency is useful for assessing the externalizing spectrum—a spectrum of disinhibition and antagonism encompassing behaviors such as aggression and substance use.

Frequency—in addition to onset, timing, duration, intensity, function, and resulting impairment—is a crucial dimension to consider when assessing behavior and psychopathology. Frequency is the most common dimension assessed regarding behavior (Schaeffer, 1991), and can be assessed in terms of absolute or relative frequency. Relative frequency may indicate, for instance, that a person engaged in a given behavior (e.g., binge drinking) "often", whereas absolute frequency may indicate that they engaged in the behavior "three times in the past week." Below, we outline key differences between assessments of absolute versus relative frequency and reasons to prefer absolute frequency when assessing externalizing behavior.

## **Ways to Assess Behavior Frequency**

There are multiple ways of assessing behavior frequency in a questionnaire. The most common ways of assessing frequency of externalizing behavior include true/false and Likert-type items. An example true/false item to assess whether a person frequently engages in

externalizing behavior is: "True or False: My child often breaks the rules" (Wirt et al., 2001).

Because true/false response options permit indicating endorsement or agreement rather than behavioral frequency per se, the present review focuses on Likert-type items and other formats that intrinsically permit respondents to indicate how often behaviors occur. Likert-type items commonly use vague quantifiers that assess relative frequency. Vague quantifiers are subjective labels that are intended to reflect differing frequencies of the target behavior. For instance, an example Likert-type item might ask whether the person breaks rules "never," "rarely," "sometimes," "often," or "very often." Examples of questionnaires that assess externalizing behavior using vague quantifiers are in Table S1.

There are other ways of assessing behavior frequency, such as with numeric quantifiers that assess absolute frequency. Absolute frequency refers to the actual number of occurrences of the behavior. For instance, a person might indicate how many times in the prior month they stole from a store. To the extent that numeric and vague quantifiers each capture the same frequency information, results based on either quantifier should not differ (Marincic, 2012). However, studies indicate that findings based on vague quantifiers may differ from findings based on numeric quantifiers—in terms of different inter-item associations (i.e., different factor structures; Marincic, 2012) and different associations with external criteria (e.g., Cole & Korkmaz, 2012). Below, we outline differences between vague and numeric quantifiers.

## **Vague Quantifiers to Assess Relative Frequency**

A strength of vague quantifiers, and arguably why they are so commonly used, is that they are quick and relatively easy for respondents to rate. However, vague quantifiers have many weaknesses, which are summarized in Table S2. Five key weaknesses are summarized here.

First, they are subjective. In a standard questionnaire, there is no operational definition of

"sometimes" or "often." It is therefore not known what frequency "rarely" corresponds to for a given person and behavior. Second, vague quantifiers are imprecise. The same label (e.g., "often") could span a wide range of frequency even for the same respondent. Third, most common applications of vague quantifiers uncritically assume that the quantifiers are meaningfully ordered in their degree with equal intervals. Fourth, the meaning of a quantifier can differ based on other quantifiers in the set (Bradburn & Miles, 1979) and their order (Chan, 1991). Respondents tend to choose the first response option that is acceptable to them among the ordered response options, thus leading to a primacy effect and satisficing (Chan, 1991).

Fifth, likely because of their subjectivity and imprecision, the meaning of a given vague quantifier (e.g., "often") differs by item characteristics and respondent demographic and reference groups. Differing interpretations is a crucial limitation of vague quantifiers and is described in detail below. For example, the meanings of vague quantifiers differ depending on item-level characteristics. As examples, the meaning of a given vague quantifier can differ depending on the behavior it refers to (Bradburn & Miles, 1979). For instance, prior work has shown that a given vague quantifier, such as "often," refers to a lower absolute frequency for less common events compared to more common events (Pepper & Prytulak, 1974). Thus, "often" may indicate lower frequency for externalizing behaviors with a lower base rate, such as physical aggression, versus externalizing behaviors with a higher base rate, such as arguing.

Moreover, meanings assigned to vague quantifiers differ between demographic groups. For instance, several studies have found that vague quantifiers differed in meaning as a function of the respondent's race, education, age, socioeconomic status, and geographic region (Borgers et al., 2003; Schaeffer, 1991; Wright et al., 1994). When group- or age-related differences in scores are observed, it is unclear the extent to which such differences reflect a difference in

interpretation of the vague quantifier versus a true difference in construct level, confounding group-related differences in scores. Further, there are cultural differences in response styles, including the likelihood that individuals of different cultures select midpoint versus extreme response options (e.g., Batchelor & Miao, 2016).

Such group difference in interpretation may be due in part to individuals' reference groups for norms around a behavior. Asking questions with vague quantifiers leads respondents to engage in a process of social or behavioral comparison to estimate a relative frequency (Cole & Korkmaz, 2013). That is, when considering whether a person engages in a behavior "often," the respondent implicitly decides what or whom to compare "often" against (i.e., "often" compared to what or whom?). Potential reference groups could include, for instance, (a) other people in general, (b) same-aged peers, (c) one's friend group or social peer group, or even (d) the respondent's expectation for how often the person should (or should not) engage in the behavior. Each reference group could yield different ratings for the same absolute frequency.

In a standard questionnaire, the reference group is typically not defined, and the respondent is left to select the reference group (Wänke, 2002). Burns et al. (2001) provided an example of why this is problematic for assessing externalizing behavior: "Consider the situation where two parents indicate that the [oppositional defiant disorder] symptom argues with adults occurs very often. For one parent, very often means many times per day, while for the other parent very often may mean a few times per week...The rating of very often probably means that the symptom occurs often enough to be a problem for both parents irrespective of the symptom's rate of occurrence...thus confounding different properties of the symptom." (p. 26). In addition,

<sup>&</sup>lt;sup>1</sup> Moreover, if a respondent uses one's same-aged peers as their reference group, this could have the effect of resulting in age-normed scores, which works against the goal of detecting group-level change/growth.

people may use their own behavior as the reference of comparison. If a person engages in a behavior frequently, their standard for what is considered "often" tends to be higher, and, ironically, they tend to use *lower*-frequency vague quantifier terms to describe their frequency of engaging in that behavior (Goocher, 1965). This is a key weakness because it obscures individual differences and works against the goal of assessing relative frequency in a meaningful way.

In sum, interpretations of vaguely quantified reports of frequency differ based on item characteristics such as the base rate of a behavior (Pepper & Prytulak, 1974) and the composition (Chase, 1969) and order (Chan, 1991) of the other quantifiers that appear alongside the given quantifier (e.g., "often") in the same response scale (e.g., "never", "rarely", "sometimes", "very often"), and respondent characteristics such as their demographic characteristics (Borgers et al., 2003; Schaeffer, 1991; Wright et al., 1994), their reference group (Wänke, 2002), their frequency of engaging in the behavior (Goocher, 1965), and their attitude toward the behavior (Goocher, 1965). Collectively, these factors may explain why conclusions based on absolute and relative frequencies sometimes differ (Schaeffer, 1991; Wänke, 2002).

# **Numeric Quantifiers to Assess Absolute Frequency**

Given the many limitations with reports of relative frequency and vague quantifiers, it is worth considering alternatives, including reports of absolute frequency. To assess absolute frequency, researchers use numeric quantifiers. A numeric quantifier of absolute frequency could be a single, total frequency of a behavior for a given reference period (e.g., the number of times in the past month) or it could be a rate per unit of time (e.g., the number of times per day). The numeric quantifier could be specified using an open-ended response prompt (i.e., fill in the blank; Cole & Korkmaz, 2013) or using a closed-ended response prompt with a scale of category ranges (e.g., not in the past 6 months; one time in the past 6 months; two times in the past 6

months; once per month in the past 6 months; once per week in the past 6 months; once per day in the past 6 months; more than once per day in the past 6 months; Burns et al., 2001).

## Weaknesses of Closed-Response Numeric Quantifiers

There are weaknesses of assessing numeric quantifiers of absolute frequency in closed-ended (Likert-type) form as opposed to in open-ended (fill-in-the-blank) form, as summarized in Table S2. One weakness of closed-ended numeric quantifiers is that they may suppress meaningful variability, because they constrain the number of response options to the number of points on the scale (Schaeffer & Charng, 1991). A second weakness is that different items—assessing behaviors of varying frequencies—may require different frequency response options. For instance, different frequency options may be needed for detecting individual differences in frequency of arguing (higher base rate) versus physical aggression (lower base rate).

A key third limitation of closed-ended ratings is that participants indicate different frequencies based on the range of response options provided by the researchers. Low-frequency response options tend to yield lower frequency responses, whereas high-frequency response options tend to yield higher frequency responses (Schwarz et al., 1985; Schwarz et al., 1988; Tourangeau & Smith, 1996). Part of the reason for this bias may be that response options suggest normative frequencies of a behavior in a population, decreasing disclosure of higher frequency engagement in stigmatized behaviors. There is a greater impact of the particular response options (a) the more poorly the behavior is represented in memory (leading to estimation) and (b) when the behavior is ill-defined because the response options influence how readers interpret the question and their estimation strategy (Schwarz, 1999).

## Measures that Assess Absolute Frequency of Externalizing Behavior

There are several examples of measures that use open-response numeric quantifiers to

assess absolute frequency of externalizing behavior. Some measures use numeric quantifiers to assess behavior frequency prospectively (e.g., Student Behavior Teacher Response; Pelham et al., 2008). Tracking and counting behavior instances prospectively is commonly used in clinical practice including treatments such as parent management training (i.e., home-based tallies; Fleischman et al., 1983) and school-based interventions (e.g., tallies on a daily report card; Holdaway et al., 2020). For instance, Daily Report Cards are used as part of an intervention in which children are rewarded for meeting behavioral goals.

There are also retrospective assessments of externalizing behavior that leverage numeric quantifiers (see Table S3). To our knowledge, the only retrospective measures of externalizing behavior that assess absolute frequency using open-ended response prompts are those that assess the number of instances that a person has used substances or engaged in delinquent behavior, as assessed by approaches such as the Timeline Follow-back. The Timeline Follow-back asks participants to indicate the number of days on which they used a substance, and the units of the substance they used each day (Sobell & Sobell, 1992). It does not include vague quantifiers or constraints on response options as do Likert response options such as "sometimes" or "1–2 times per week". A few self-reported delinquency measures assess absolute frequency using an open-response frequency count (e.g., Bendixen et al., 2003; Elliott & Ageton, 1980). Other measures incorporate a singular item that assesses absolute frequency (e.g., Rage Attacks Questionnaire; Budman et al., 2003). However, to our knowledge, no retrospective measures of general externalizing behavior have assessed absolute frequency using open-ended response prompts.

## Weaknesses of Open-Response Numeric Quantifiers

There are several weaknesses of open-ended numeric quantifiers. One weakness of numeric quantifiers is that they are relatively more difficult and burdensome than vague

quantifiers due to the involvement of mathematical calculations. The greater difficulty may lead, in some cases, to longer completion time and greater item-level missingness (Lenzner et al., 2010; Schaeffer, 1991). Such difficulty may be particularly salient to higher frequency behaviors, where error may be larger. However, the response burden of numeric quantifiers can be reduced by allowing participants to select the timeframe on which it is easiest to estimate the frequency of a behavior (e.g., per day, per week, per month, etc.).

Another challenge with numeric quantifiers is the complexity of scoring them. With scores from vague quantifiers, it is common to generate an aggregate scale-level score by averaging or summing scores across items. However, an average or sum score of numeric quantifiers is potentially more problematic because some behaviors are more common (and potentially less problematic) than other behaviors and thereby exert undue influence on the aggregate score. Thus, scale-level scoring of numeric quantifiers may require more complex scoring approaches, such as latent variable modeling that require larger samples.

# Strengths of Open-Response Numeric Quantifiers

For all of the reasons described earlier, researchers recommend asking about absolute frequencies using an open-response format, rather than using a closed-response format (Elliott & Ageton, 1980; Schaeffer & Charng, 1991; Schaeffer & Dykema, 2020; Schaeffer & Presser, 2003; Schwarz, 1999). Numeric quantifiers address many limitations with vague quantifiers. First, numeric quantifiers have more possible response options and therefore allow greater variability in scores, allowing for stronger associations with external criteria (Cole & Korkmaz, 2012). Second, count data provide more information—i.e., a greater reduction of uncertainty in the estimate of a person's level on the latent construct—than binary or polytomous items (Doebler et al., 2014).

Third, numeric quantifiers are a real metric, which leads to several strengths. The count of behavior frequency is potentially verifiable (Schaeffer, 1991)—they can be evaluated against observation or prospective tracking. As such, they are less vague, subjective, and ambiguous (Burns et al., 2001; Schaeffer, 1991). Responses to numeric quantifiers still involve some subjectivity, for example, defining what counts as a behavior occurrence. However, they are less subject to different interpretations or to confounding frequency with impairment than are vague quantifiers (Burns et al., 2001; Marincic, 2012). Indeed, numeric quantifiers have been found to reduce systematic measurement error related to different interpretations of vague quantifiers (Bradburn & Miles, 1979; Tourangeau & Smith, 1996).

Also stemming from their properties as a real metric, estimates of central tendency and variability are more meaningful. For instance, we could determine that, on average, people in their 30s drink alcohol ~2 times per month (median = 2, M = 6.37, SD = 10.26), that 29% did not drink in the prior year, that 8% drank in the prior year but not in the past month, and that individuals at the  $80^{th}$  percentile drank 3 times per week.<sup>2</sup> As a real metric, numeric quantifiers do not involve subjective judgments relative to a reference group, allowing for a comparable metric across social groups (Schaeffer, 1991; Schaeffer & Dykema, 2020; Wänke, 2002).

As an additional strength of being a real metric, numeric quantifiers provide a meaningful way to assess, in the same (i.e., isomorphic) way, behaviors that are considered clinically significant at different frequencies (Burns et al., 2001). For instance, intentionally setting fires with intent to cause property damage is considered clinically significant even at a low frequency of occurrence, whereas being mean to others is considered clinically significant at a medium frequency of occurrence, and fidgeting or squirming in one's seat is considered clinically

<sup>&</sup>lt;sup>2</sup> These are the rates in our sample for 30–39-year-olds in the present study.

significant at a high frequency of occurrence. Meaningfully assessing—in an isomorphic way—the frequency that a person engages in each of these behaviors is not possible when using vague quantifiers because "often" means something different for each behavior (Burns et al., 2001). Absolute frequency scores are thus more meaningful, interpretable, and clinically useful than relative frequency scores.

In sum, there are important benefits to assessing absolute rather than relative frequency. Questionnaires of externalizing behavior rely largely on vague quantifiers; those that use numeric quantifiers tend to be closed-ended, both of which have limitations that prevent accurate assessment of externalizing behavior frequency. Despite longstanding recommendations to assess behavior frequency using numeric quantifiers of absolute frequency with an open-response format (Schwarz, 1999), this practice has not been widely adopted in assessment of externalizing behavior. To our knowledge, no prior study has examined an open-response frequency count of general externalizing behavior (i.e., enumeration of absolute frequency).

# **The Present Study**

The present study examines whether assessing absolute frequency of externalizing behavior using an open-response frequency count has utility for assessment of the externalizing spectrum. We leverage modern item response theory methods that allow estimating people's level on a latent externalizing spectrum factor using absolute frequency count data.

To evaluate the utility of the count items and modeling approach, we adapt a subset of items from the Externalizing Spectrum Inventory to use open-ended numeric quantifiers to assess absolute frequency. We evaluate characteristics of the items and of the scale, and validity of the latent estimates of externalizing problems. We evaluate validity with respect to interpretations of the items' scores for the intended purpose of assessing the full range of individual differences in

externalizing problems, including clinical and subclinical levels. We had several hypotheses: (1) latent externalizing scores from items assessing absolute frequency will show greater measurement precision than the Externalizing scale of the Adult Self-Report (ASR), a widely used measure of externalizing problems; latent externalizing scores will show (2) convergent validity with the ASR Externalizing scale, (3) discriminant validity with respect to internalizing problems (i.e., ASR Internalizing scale), (4) criterion validity in predicting functional impairment and inhibitory control, and (5) incremental validity in predicting functional impairment and inhibitory control above and beyond variance explained by the ASR Externalizing scale. Deficits in inhibitory control—the ability to inhibit prepotent responses—are considered an underlying phenotype of externalizing behavior (Young et al., 2009). Hypotheses were preregistered: <a href="https://osf.io/cthju">https://osf.io/cthju</a> (Petersen & Demko, 2024). We also test non-preregistered secondary hypotheses: absolute frequency items will show (6) greater measurement precision and (7) incremental validity than dichotomized versions of the same items. We also had exploratory questions, including how externalizing problems differ across ages and by sex.

## Method

## **Participants**

Participants were recruited in Fall 2023 and Spring 2024. Participants included undergraduate students in the Elementary Psychology course at the University of Iowa and people who were recruited from online sources. Students at the University of Iowa were recruited using the Sona Systems platform, and they received credits toward completion of their research exposure requirement. Volunteers were recruited from various websites, including ResearchMatch.org, the Reddit forum "r/SampleSize" (<a href="https://www.reddit.com/r/SampleSize">https://www.reddit.com/r/SampleSize</a>), the Facebook group "Research/Survey" (<a href="https://www.facebook.com/groups/441242353271384/">https://www.facebook.com/groups/441242353271384/</a>),

and Twitter. The final sample included only participants recruited through Sona Systems or ResearchMatch.org. Inclusion and exclusion criteria are in Appendix S1. A participant flow chart is in Figure S1. To ensure legitimate responses, we included several validity checks and attention checks. The final sample included respondents who passed the validity checks and attention checks (N = 1,237; 290 males; 947 females). Participants ranged in age from 18 to 92 years of age (M = 38.36, SD = 21.18, median = 30). The racial/ethnic composition of the sample is provided in Table S4. Further description of the sample composition is in Appendix S1.

Of the final sample, 506 (40.9%) were recruited from the University of Iowa (137 males; 369 females;  $M_{\rm age} = 18.67$ ,  $SD_{\rm age} = 1.12$ ) and 731 (59.1%) were recruited from ResearchMatch.org (153 males; 578 females;  $M_{\rm age} = 51.99$ ,  $SD_{\rm age} = 17.43$ ). The racial/ethnic composition of the University of Iowa subsample was: Hispanic or Latino (12%), White (92%), Black (3%), American Indian or Alaska Native (1%), Asian (7%), Native Hawaiian or Other Pacific Islander (< 1%), Multiracial (6%), and other race (2%). The racial/ethnic composition of the ResearchMatch subsample was: Hispanic or Latino (3%), White (92%), Black (4%), American Indian or Alaska Native (1%), Asian (4%), Native Hawaiian or Other Pacific Islander (0%), Multiracial (4%), and other race (3%). Tests of systematic differences between the screened sample and the final sample are in Appendix S2.

## **Procedure**

Respondents completed all questionnaires online via the Research Electronic Data Capture (REDCap) platform (Harris et al., 2009). After completing the questionnaires, respondents also completed cognitive tasks. For concision, the present study focuses on the inhibitory control task given its relevance for externalizing problems.

## Measures

The REDCap instrument, go/no-go task, data, a data dictionary of study variables, analysis scripts, and a computational notebook are published online: <a href="https://osf.io/49m8q">https://osf.io/49m8q</a> (Petersen et al., 2025). Descriptive statistics and correlations of study variables are in Table 1. Tests of systematic missingness are in Appendix S3. was approved by the University of Iowa Institutional Review Board (Study #: 202305374).

**Table 1.**Correlation Matrix and Descriptive Statistics of Model Variables

|                   |                   |          |         | theta    | ASR           | ASR             |                 |       |
|-------------------|-------------------|----------|---------|----------|---------------|-----------------|-----------------|-------|
| Variable          | age               | sex      | theta   | (binary) | Externalizing | Internalizing   | BFIS (          | GNG   |
| age               | _                 |          |         |          |               |                 |                 |       |
| sex               | .04               | _        |         |          |               |                 |                 |       |
| theta             | 46 <sup>***</sup> | .00      | _       |          |               |                 |                 |       |
| theta (binary)    | 53***             | 01       | .77***  | _        |               |                 |                 |       |
| ASR Externalizin  | g –.27***         | .03      | .56***a | .56***a  | _             |                 |                 |       |
| ASR Internalizing | g23***            | $08^{*}$ | .47***b | .41***c  | .67***        | _               |                 |       |
| BFIS              | $08^{*}$          | 10***    | .35***d | .28***e  | .51***        | .61***          | _               |       |
| GNG               | .22***            | 01       | 18***f  | 14***g   | 13***         | 07 <sup>†</sup> | 10 <sup>*</sup> |       |
| n                 | 1237              | 1237     | 1237    | 123′     | 7 118         | 0 1180          | 1181            | 764   |
| missingness (%)   | 0.00              | 0.00     | 0.00    | 0.00     | 0 4.6         | 1 4.6           | 1 4.53          | 38.24 |
| M                 | 38.36             | 0.23     | -2.11   | 0.0      | 7.8           | 6 18.12         | 2 1.73          | 0.84  |
| SD                | 21.18             | 0.42     | 1.11    | 0.98     | 8 7.2         | 8 12.6          | 1 1.64          | 0.10  |
| minimum           | 18.00             | 0.00     | -7.82   | -3.40    | 0.0           | 0.00            | 0.00            | 0.39  |
| maximum           | 92.00             | 1.00     | 0.08    | 3.19     | 9 52.0        | 0 64.00         | 8.75            | 1.00  |
| skewness          | 0.54              | 1.25     | -1.13   | -0.12    | 2 1.5         | 2 0.79          | 9 1.35          | -1.03 |
| kurtosis          | -1.22             | -0.43    | 2.45    | 0.0      | 4 3.29        | 9 0.1'          | 7 1.56          | 1.04  |

*Note*. Sex is coded as female = 0, male = 1. "ASR" = Adult Self-Report; "BFIS" = Barkley Functional Impairment Scale; "GNG" = Go/No-Go task. "theta" represents the latent externalizing problem scores from the Bayesian item response theory model of count data. "theta (binary)" represents the latent externalizing problem scores from an item response theory model based on dichotomized items.

<sup>†</sup> p < .10. \*p < .05. \*\* p < .01. \*\*\* p < .001. a correlations do not significantly differ from each other at p < .05. b c d e correlations significantly differ from each other at p < .05. f g correlations differ from each other at a trend level (p < .10).

## Assessing the Absolute Frequency of Externalizing Behavior

Items to assess absolute frequency of externalizing behavior were largely adapted from items on the Externalizing Spectrum Inventory (ESI; Krueger et al., 2007). Not all items on the ESI represent discrete, countable behaviors; for items representing behavior that is not countable, we either modified the item to be countable or dropped the item. For example, we modified "Sometimes I threaten people" to "I threaten others". We supplemented with additional items as necessary to ensure broad coverage of the externalizing spectrum. Respondents rated the frequency with which they engaged in the behavior using a 30-day reference period. They indicated, within the prior 30 days, the number of times they engaged in the behavior, and the unit of time: "per day," "per week," or "in the past month." If respondents did not engage in the behavior in the past month, they indicated how many times they engaged in the behavior in the prior year. If they did not engage in the behavior in the prior year, they indicated "not in the past year." Questionnaire instructions are in Figure S4; an example item is depicted in Figure S5. For some low-base rate items, participants indicated how many times they engaged in the behavior in their lifetime. For examples of studies that have used a similar response format to assess the rate of various behaviors per the unit of time specified by the respondent, see Cole and Korkmaz (2013) and Peterson et al. (1982). In addition to absolute frequency items, participants also rated various other types of items, including the severity of their behavior for each item, some positive opposite items, and some items with differing response scales (e.g., Likert-type frequency, amount of credit card debt). However, the present study focused on the (non-reverse-scored) absolute frequency items so the items could be meaningfully modeled altogether.

Because frequencies were rated on different units of time, we first put all rated behaviors onto the same time scale by computing the person's rate of engaging in each behavior per year.

We put items onto the same timescale using the computeItemFrequencies() function of the petersenlab package version 1.1 (Petersen, 2025) in R version 4.3.1 (R Core Team, 2023). The function multiplied counts of behaviors rated "per day" by 365.25 (the number of days in a year); behaviors rated "per week" were multiplied by (365.25 / 7) (the number of weeks in a year); and behaviors rated "in the past month" were multiplied by (365.25 / 30) (the number of months in a year, standardized to 30 days per month). Items were then rounded up to the nearest integer, for the purposes of fitting the count data to a zero-inflated negative binomial model. Items rated on the lifetime scale were already in the integer form necessary for count data and were not rescaled. The final item selection process is described in Appendix S4. The final externalizing problem items are in Table S5. We discuss outlier handling in Appendix S5. Internal consistency estimates (based on log-transformed counts) were  $\alpha = .96$  and  $\omega_{hierarchical} = .95$ .

## External Criteria

**Behavior Problems.** As an external criterion, we assessed the Adult Self-Report (ASR; Achenbach & Rescorla, 2003). To evaluate convergent validity, we examined the Externalizing scale (35 items). To evaluate discriminant validity, we examined the Internalizing scale (38 items). For safety and ethical reasons, we did not assess one internalizing problem item ("I think about killing myself") because of the online administration of the questionnaires. Using the reference period of the past 6 months, participants rated items as "Not True" (0), "Somewhat or Sometimes True" (1), or "Very True or Often True" (2). Internal consistency estimates were  $\alpha$  = .90 and  $\omega$ <sub>hierarchical</sub> = .90 for externalizing problems, and were  $\alpha$  = .94;  $\omega$ <sub>hierarchical</sub> = .93 for internalizing problems. Scores were averaged across items and then multiplied by the number of items. Higher scores reflected more behavior problems. Mean *T*-scores were 48.67 (SD = 10.67) and 56.42 (SD = 12.53) for externalizing and internalizing problems, respectively.

Functional Impairment. To assess functional impairment, we used the Barkley Functional Impairment Scale (Barkley, 2011). Items assessed the degree to which people experienced impairment in various life domains during the past 6 months, ranging from "Not at all" (0) to "Severe" (9). We added one item to assess functional impairment relating to legal difficulties—i.e., impairment/difficulties "in your history with the law/authorities (fines, arrests, jail/prison time, etc.)". Internal consistency estimates were  $\alpha = .94$ ;  $\omega_{hierarchical} = .96$ . Scores were averaged across items. Higher scores reflected greater functional impairment.

Inhibitory Control. To assess inhibitory control, we used a go/no-go task. The task was administered online using jsPsych version 7.3.3 (de Leeuw et al., 2023). The task was adapted from the Experiment Factory (Sochat et al., 2016). On a given trial, either an orange square or a blue square appeared. Participants were instructed to respond to the go stimulus—a square of a particular color—by pressing the space bar. Participants were instructed not to respond to the no-go stimulus—a square of a different color. The go and no-go stimuli were counterbalanced across participants. On a given trial, participants were given 750 ms to respond, followed by a 250 ms pause before the next trial. There were 10 practice trials. In test trials, there were 250 go trials (83.3%) and 50 no-go trials (16.7%), for a total of 300 test trials.

We took several steps to ensure measurement quality. First, the task set the participant's screen to full-screen mode; we excluded trials in which the screen was no longer in full screen mode. Second, we excluded trials in which the reaction time was less than 200 ms, because such a response would be too fast for a person to respond deliberately to the target stimulus. Third, we dropped scores from 7 participants whose percent correct on go trials was less than 60% and whose percent correct on no-go trials was less than 25%, consistent with recommendations (Congdon et al., 2012). Because participants could receive a high score on no-go trials by

performing no action, we examined the degree to which respondents inhibited a response on nogo trials and activated a response on go trials. Consistent with Eisenberg et al. (2013), the participants' inhibition score was computed by multiplying mean proportion scores from inhibition (no-go) and activation (go) trials; the final score ranged from 0–1. Therefore, respondents who activated a behavior on go trials but inhibited on no-go trials received the highest scores, whereas respondents who infrequently activated (or always activated) a behavior received low scores. The average split-half reliability of scores on no-go trials of 15,000 split-halves was .79. Higher scores reflected greater inhibitory control.

## **Statistical Analysis**

First, we examined descriptive statistics of the externalizing problem items. We also examined inter-item and item-total correlations, to inform item selection. In addition, we examined whether frequency ratings for each item (i.e., behavior) differed by age. We identified the best-fitting form of age-related differences. Given the wide age range (18–92 years of age), we used generalized additive models (GAMs) to allow curvilinearity in the age-related estimates. To prevent overfitting, the GAMs used a *P*-spline-based smooth (i.e., penalized *B*-splines) using the gam() function of the mgcv package version 1.9-1 (Wood, 2017) in R.

Second, we examined whether measures' scores were able to be modeled with item response modeling by examining their scores in exploratory factor analysis. The method and results of the exploratory factor analysis are in Appendix S6.

Third, to obtain estimates of person and item parameters, we estimated Bayesian item response models, as described in Appendix S7. To allow for nonlinearity given the wide age range (18–92 years of age), we used a GAM. Fourth, we compared measurement precision of scores on the absolute frequency items to scores on the dichotomized versions of the same items

and to scores on the ASR Externalizing items. We operationalized measurement precision using item and test information. We describe the derivation of item and test information in Appendix S8. Fifth, we examined the latent scores from the Bayesian item response model in relation to ratings of externalizing and internalizing problems on the Adult Self-Report, to evaluate convergent and discriminant validity. As a test of discriminant validity, we examined whether the latent scores were more strongly associated with ASR Externalizing than with ASR Internalizing using Fisher's *r*-to-*z* test. Sixth, we evaluated whether the latent scores showed criterion and incremental validity in predicting functional impairment and inhibitory control above and beyond (a) ASR Externalizing and (b) latent scores from IRT models fit to dichotomized items. IRT models fit to dichotomized items were estimated using the mirt package version 1.42 (Chalmers, 2012) in R.

### Results

## **Descriptive Statistics**

Descriptive statistics of the externalizing problem items are in Table S6. Percentiles for behavior frequencies per year of each externalizing problem item are in Table S7. A histogram of inter-item correlations of the externalizing problem items is in Figure S6. A histogram of item—total correlations of the externalizing problem items is in Figure S7.

We observed differing age-related courses of different behaviors. Some behaviors showed decreases in frequency across ages; other behaviors showed increases in frequency across ages, and other behaviors showed inverted-U-shaped courses in which they peaked in middle adulthood. Frequencies by age of three example behaviors are depicted in Figure 1.

## Figure 1

hurts others' feelings snaps or raises voice gets in power struggles when irritated with others on purpose Frequency (times per month) 6 10 4 5 2 40 80 20 60 80 20 **4**0 60 40 60 80 20

Frequency (Per Month) of Engaging in Various Externalizing Behaviors by Age

*Note*. The solid-line is the model-implied estimate from a generalized additive model. The gray band is the 95% confidence interval.

Age (years)

# **Bayesian Item Response Model**

Model fit estimates from the Bayesian IRT model are in Table S8. Regression coefficients are in Table 2. Item characteristics from the model are in Table S9 and Figures S9–S10; item response functions are in Figure 2. Item—construct correlations are in Table S10 and Figure S12. Model-implied estimates of externalizing problems by age and sex, from the Bayesian IRT model, are in Figure 3.

 Table 2.

 Regression Coefficients of Bayesian Item Response Theory Model

| Parameter                                    | Estimate              | SE   | Lower | Upper |  |  |  |
|----------------------------------------------|-----------------------|------|-------|-------|--|--|--|
| D 14'                                        | D                     |      |       |       |  |  |  |
| Population                                   | Population Parameters |      |       |       |  |  |  |
| phi (intercept)                              | -2.05                 | 0.14 | -2.33 | -1.80 |  |  |  |
| zi (intercept)                               | -1.83                 | 0.29 | -2.39 | -1.25 |  |  |  |
| theta $\times$ female                        | -2.13                 | 0.25 | -2.63 | -1.64 |  |  |  |
| theta × male                                 | -2.08                 | 0.26 | -2.58 | -1.59 |  |  |  |
| beta (intercept)                             | 4.24                  | 0.42 | 3.45  | 5.09  |  |  |  |
| alpha (intercept)                            | 1.56                  | 0.09 | 1.38  | 1.75  |  |  |  |
| theta $\times$ age (shifted) $\times$ female | -0.26                 | 0.10 | -0.43 | -0.04 |  |  |  |

| theta $\times$ age (shifted) $\times$ male           | -0.21    | 0.17 | -0.43 | 0.23 |  |  |
|------------------------------------------------------|----------|------|-------|------|--|--|
| Multilevel Hyperp                                    | arameter | S    |       |      |  |  |
| SD of phi intercept                                  | 1.25     | 0.12 | 1.04  | 1.51 |  |  |
| SD of zi intercept                                   | 2.30     | 0.31 | 1.65  | 2.91 |  |  |
| SD of beta intercept                                 | 2.23     | 0.18 | 1.92  | 2.61 |  |  |
| SD of alpha intercept                                | 0.92     | 0.08 | 0.77  | 1.08 |  |  |
| Smoothing Spline Hyperparameters                     |          |      |       |      |  |  |
| $SD$ of theta $\times$ age (shifted) $\times$ female | 0.15     | 0.12 | 0.02  | 0.45 |  |  |
| $SD$ of theta $\times$ age (shifted) $\times$ male   | 0.12     | 0.15 | 0.00  | 0.55 |  |  |

*Note*. "Lower" and "Upper" represent the bounds of the 95% credible interval. Age in years was shifted (by subtracting 18) so that the value 0 represented an age of 18, the youngest age in the study.

Figure 2

Item Response Functions of Items From Bayesian Item Response Model



Note. Each line represents an item.

Figure 3



Model-Implied Latent Estimates of Externalizing Problems by Age and Sex

*Note*. The colored bands represent the 95% credible intervals based on the Bayesian IRT model.

In general, externalizing problems showed strong age-related decreases. The age-related decreases were significant for women (B = -0.26; 95% credible interval, CI [-0.43, -0.04]) but not for men (B = -0.21; 95% CI [-0.43, 0.23]). Unsurprisingly, men tended to show greater externalizing problems compared to women in early adulthood ( $\sim$ 18-30 years of age) and later adulthood ( $\sim$ 70 years of age and older). However, surprisingly, women tended to show greater externalizing problems than men in middle adulthood ( $\sim$ 40-60 years of age). Nevertheless, the credible intervals for men and women were largely overlapping.

## Measurement Precision

Item information functions are in Figure S12. Scores on the absolute frequency (i.e., count) items showed greater measurement precision across all levels of the construct compared to scores on the dichotomized items and the Adult Self-Report, as depicted in Figure 4. Test standard error of measurement and test reliability functions are in Figures S13–S14.

Figure 4

Test Information Functions of Absolute Frequency Versus Dichotomized Versus Adult Self-Report Items: Test Information as a Function of theta  $(\theta)$ 



Note. "Absolute Frequency" refers to count items from the Bayesian item response model; "Dichotomized" refers to dichotomized versions of the count items that were fit to an item response theory model; "Adult Self-Report" refers to items from the Adult Self-report that were fit to an item response theory model. "theta" represents the person's level on the latent externalizing problems factor. The Adult Self-Report includes fewer items than the absolute frequency/dichtomized count items.

## Convergent and Discriminant Validity

Latent externalizing problem scores from the Bayesian IRT model were moderately associated with ASR Externalizing scores (r = .56) and were more strongly associated with ASR Externalizing than with ASR Internalizing scores (r = .47; z = 4.59, p < .001).

## Concurrent Criterion-Related Validity

Latent externalizing problem scores from the Bayesian IRT model were moderately positively associated with functional impairment (r = .35, p < .001) and modestly negatively associated with inhibitory control (r = -.18, p < .001).

# Incremental Validity

Regression coefficients of the incremental validity analyses are in Table 3. Convergent, discriminant, criterion, and incremental validity analyses by age and sex are in Table S11. Latent externalizing problem scores from the Bayesian IRT model explained additional variance in functional impairment and inhibitory control above and beyond ASR Externalizing. ASR Externalizing was not significantly associated with inhibitory control above and beyond the latent externalizing problem scores. Latent externalizing problem scores also explained additional variance in functional impairment and inhibitory control above and beyond factor scores from an IRT model based on dichotomized items. The factor scores from the dichotomous items were not significantly associated with functional impairment or inhibitory control above and beyond the latent externalizing problem scores from the count data.

 Table 3.

 Regression Coefficients from Incremental Validity Analyses

| Predictor                              | В                              | β          | SE       | p      |  |
|----------------------------------------|--------------------------------|------------|----------|--------|--|
|                                        | Outcomo                        | Eumatianal | Impairma | nt     |  |
|                                        | Outcome: Functional Impairment |            |          |        |  |
| Incremental Validity vs ASR            |                                |            |          |        |  |
| ASR Externalizing                      | 0.102                          | 0.45       | 0.007    | < .001 |  |
| theta (Count)                          | 0.140                          | 0.09       | 0.045    | .001   |  |
| Incremental Validity vs theta (Binary) |                                |            |          |        |  |
| theta (Binary)                         | 0.031                          | 0.02       | 0.071    | .668   |  |
| theta (Count)                          | 0.494                          | 0.33       | 0.063    | < .001 |  |
| Incremental Validity vs ASR            | Outcome: Inhibitory Control    |            |          |        |  |
| <u>V</u>                               |                                |            |          |        |  |
| ASR Externalizing                      | 0.000                          | -0.02      | 0.001    | .593   |  |
| theta (Count)                          | -0.009                         | -0.10      | 0.004    | .049   |  |
| Age (Shifted)                          | 0.008                          | 0.17       | 0.002    | < .001 |  |

| Incremental Validity vs theta (Binary) |        |       |       |        |
|----------------------------------------|--------|-------|-------|--------|
| theta (Binary)                         | 0.007  | 0.07  | 0.006 | .258   |
| theta (Count)                          | -0.014 | -0.15 | 0.005 | .007   |
| Age (Shifted)                          | 0.009  | 0.19  | 0.002 | < .001 |

*Note*. Bolded coefficients are significant at p < .05 level. "theta (Count)" represents the latent externalizing problem scores from the Bayesian item response theory model of count data. "theta (Binary)" represents the latent externalizing problem scores from an item response theory model based on dichotomized items. "ASR" = Adult Self-Report. The models predicting inhibitory control include age as a covariate because of the known developmental changes in inhibitory control. Age in years was shifted (by subtracting 18) so that the value 0 represented an age of 18, the youngest age in the study.

### Discussion

## **Age-Related Courses of Externalizing Problems**

In general, we observed (cross-sectional) age-related decreases in externalizing problems from early to later adulthood. However, women showed significant age-related decreases whereas men did not. Similar to prior work, we observed that men showed greater externalizing problems than women in early and older adulthood. However, interestingly, we observed that women showed relatively greater externalizing problems than men in middle adulthood (~40–60 years of age). Based on visual inspection of particular items, items that tended to show higher levels for women than men during middle adulthood included items such as snapping or raising one's voice at others when irritated, using emotional skills to make others feel guilty, and making someone feel ashamed about something they have done. One possibility is that women—on average—engage more frequently than men in such behaviors directed toward their child given their greater likelihood of assuming parental responsibilities.

We observed differing age-related courses of different behaviors, consistent with the idea that externalizing behaviors change in manifestation across development (i.e., heterotypic continuity; Patterson, 1993; Petersen et al., 2015). For instance, some behaviors showed decreases in frequency across ages, whereas other behaviors showed increases in frequency

across ages, other behaviors showed inverted-U-shaped functions in which they peaked among middle-aged adults, and other behaviors showed no systematic differences in frequency by age. Many behaviors peaked among young adults—e.g., threatening others, binge drinking, and stealing. Other behaviors peaked among middle-aged adults—e.g., blaming others for one's own mistakes, avoidance or reluctance to engage in tasks that require sustained mental effort, snapping or raising voice at others, and use of cannabis and illegal drugs. Other behaviors peaked among older adults—e.g., arguing and number of occasions drinking alcohol. The differing age-related courses suggests different behaviors may be especially important to assess in different developmental periods. For example, in middle adulthood, it may be especially important to assess behaviors that may be related to parenting, such as snapping or raising one's voice at others. Understanding the frequency of a wide range of externalizing behaviors in the population has critical applications for public health, for instance, knowing that parenting-related externalizing behaviors are common in middle adulthood suggests that parent training programs may usefully decrease population externalizing problems for both children and parents. In addition, the assessment of absolute frequency allowed us to quantify the number of times that people engage in a behavior per year at each of various percentiles.

# Validity and Utility of Using Absolute Frequency to Assess Externalizing Problems

Latent scores from item response models using the items assessing absolute frequency demonstrated (a) moderate convergent validity with a widely used measure of externalizing problems (Adult Self-Report), (b) discriminant validity with respect to internalizing problems, (c) concurrent criterion validity in relation to functional impairment and inhibitory control, and (d) incremental validity in predicting functional impairment and inhibitory control above and beyond the Adult Self-Report and dichotomized versions of the same items. Moreover, scores on

the items assessing absolute frequency counts yielded (e) greater information, which led to greater precision and less uncertainty in the estimates of people's level on the latent externalizing spectrum, compared to scores on the dichotomized versions of the same items and the Adult Self-Report, which assesses relative frequency. Assessment of absolute frequency showed greater precision across all levels of the construct, including at low, medium, and high/clinical levels. Thus, assessment of absolute frequency shows promise for improving assessment of the externalizing spectrum for a wide range of purposes, such as diagnosis, screening to identify atrisk individuals for purposes of secondary prevention, and—consistent with arguments by Elliott and Ageton (1980)—evaluation of the full range of individual differences.

With few exceptions, findings of convergent, discriminant, criterion, and incremental validity were supported when examining the sample disaggregated by age and sex, providing further confidence in the findings. Nevertheless, the latent scores showed somewhat weaker discriminant validity among older adults, and incremental validity (above ASR Externalizing and dichotomized versions of the same items) was somewhat weaker in men.

An additional factor that may artificially inflate correlations is similarity in response format between measures, a form of shared method bias (Podsakoff et al., 2012). Because both the ASR and the functional impairment criterion (Barkley Functional Impairment Scale) use vague quantifiers, this may lead to spuriously higher criterion correlations than measures using numeric quantifiers. Consistent with this possibility, the ASR showed stronger criterion correlations (than absolute frequency) with functional impairment (both using vague quantifiers), whereas the absolute frequency items (which used numeric quantifiers) showed stronger criterion correlations (than the ASR) with inhibitory control (which was assessed with a numeric metric). This possibility warrants further investigation.

Our finding of incremental validity of absolute frequency over dichotomous items extends findings from Bendixen et al. (2003) that a (log-transformed) absolute frequency scale outperformed—but only modestly—a sum of the (dichotomous) presence/absence of various behaviors (i.e., a variety scale) in prediction. However, Bendixen et al. (2003) did not use a model specifically for count data (e.g., negative binomial); instead, they used a sum score, thus giving greater weight to higher frequency—but potentially less severe—behaviors. By contrast, our model accounted for the fact that different behaviors had different base rates and weighted behaviors according to how strongly each was associated with the latent externalizing factor.

Evidence has shown that relative frequencies are poor substitutes for absolute frequencies (Schaeffer, 1991). Given the importance of knowing the absolute frequency of a behavior, it can be valuable to ask it directly. Nevertheless, just because respondents provide a more precise response (with a numeric quantifier as opposed to a vague quantifier) does not necessarily mean it is accurate; apparent precision can create a false sense of accuracy (Wright et al., 1994). There can be biases in responding including percetual and recounting biases (Laursen et al., 2012).

We do not intend to discard vague quantifiers entirely—they can have utility.

Nevertheless, absolute frequency quantifiers likely provide incremental utility for assessment of externalizing behavior. Indeed, some have noted that, because "behavioral frequency reports are error-prone anyway, why bother asking respondents for reports that suggest more precision than they can provide? Unfortunately, vague frequency expressions carry their own load of problems...different respondents use the same term to mean different objective frequencies of the same behavior" (Sudman et al., 1996, p. 226). As noted by Schaeffer (1991), "despite their problems, absolute frequencies avoid the ambiguities of relative frequencies." (p. 416). Schwarz (1999) described use of vague quantifiers to assess behavior frequency as "the worst possible

choice" (p. 99).

Findings are mixed regarding whether vague or numeric quantifiers outperform the other in prediction; some studies have preferred numeric quantifiers (for a review, see Bradburn & Miles, 1979); others have preferred vague quantifiers (Al Baghal, 2014a, 2014b). The utility of one over the other may depend on the behavior assessed. Vague quantifiers may be preferred when rating the frequency of behaviors that are regular, similar, and relatively mundane or emotionally neutral over a longer reference period (Marincic, 2012). Enumerating (counting) the frequency of events (e.g., behaviors) is accurate when the event is salient/severe and infrequent and when the period of recall is shorter (Laursen et al., 2012; Marincic, 2012). When the event is more frequent or more mundane and lacks distinguishing features, forgetting and underreporting are a greater risk (Laursen et al., 2012; Marincic, 2012). Enumeration strategies (as opposed to estimation) can be enhanced by (a) asking participants to count specific events instead of estimating rates/frequencies, (b) alerting respondents about the task difficulty, and (c) reminding respondents about the importance of accurate reports (Laursen et al., 2012).

## Strengths, Limitations, and Constraints on Generality

The study had limitations. First, the sample was not nationally representative. Thus, the frequency estimates for engaging in various behaviors may not accurately reflect national norms. Because all participants were from the U.S., the utility of the items may differ in other countries and cultures. Second, the items were assessed via self-report, which may lead to social desirability bias and other reporting biases. Third, the ratings were made retrospectively. When comparing retrospective and prospective ratings of substance use, some studies have observed underreporting when using retrospective ratings (Poulton et al., 2018; Yang et al., 2023); one study observed overreporting (Willis et al., 2021). Fourth, the study was cross-sectional; thus, the

observed age-related differences could reflect cohort or sampling differences (e.g., college students versus online recruitment) rather than differences arising as a function of development. Fifth, the Bayesian item response model assumes unidimensionality of the externalizing spectrum. It will be valuable for future work to examine multidimensional models (e.g., Magnus & Garnier-Villarreal, 2022). Sixth, we did not include all items from the ESI because not all items could be easily converted to assess absolute frequency in a countable way. Thus, the assessment may have content gaps. Seventh, the items were modeled in terms of rate per year. However, the number of times in the past 30 days that a person engaged in a behavior may not extrapolate to the number of times that they engaged in the behavior in the past year. Eighth, the present study did not directly compare assessments of absolute versus relative frequency. This will be an important direction for future research.

The study also had key strengths. First, the study assessed absolute frequency—this is the first study to assess open-response frequency counts of general externalizing behavior in which the respondent is able to specify the most appropriate timeframe for each behavior. This allowed determining the frequency with which each behavior occurred. Second, the study spanned a wide age range and included older adults, unlike many studies that focus on college students. Third, we applied advanced modeling of the items to obtain latent externalizing problem scores. To our knowledge, this is the first study to apply an item response theory model specifically designed for count data to externalizing problems—a key step toward scoring individuals' levels of externalizing behavior based on absolute frequency. Fourth, we examined a performance-based task, which removes shared method biases. Fifth, we examined multiple aspects of validity, finding that scores on the assessment of absolute frequency showed convergent, discriminant, criterion, and incremental validity for assessing the externalizing spectrum. Sixth, we compared

count and dichotomous versions of the same items and found that scores on the count data led to greater precision and stronger criterion-related validity compared to scores on the dichotomized items.

### **Conclusions and Future Directions**

The assessment of absolute frequency in the present study led to important innovations. It allowed us to determine how common each behavior is. Latent scores derived from items assessing absolute frequency demonstrated convergent, discriminant, criterion, and incremental validity for assessing the externalizing spectrum, and they demonstrated improved precision compared to dichotomous items. In sum, our findings collectively suggest there is utility in assessing absolute frequency of externalizing behavior. Although the present study did not directly compare assessments of absolute versus relative frequency, our findings suggest that assessment of absolute frequency of externalizing behavior provides a more useful way to assess the externalizing spectrum (Burns et al., 2001). It will be important for future work to integrate frequency information with information about other aspects of the behavior, including its intensity, duration, and the impact of the behavior and resulting impairment. In addition, future work should compare absolute versus relative frequencies directly in terms of their utility for assessment of the externalizing spectrum. Finally, we expect that assessments of absolute frequency will also be valuable for other constructs, in addition to externalizing behavior.

## References

- Achenbach, T. M., & Rescorla, L. A. (2003). *Manual for the ASEBA adult forms & profiles*.

  University of Vermont, Research Center for Children, Youth, & Families.
- Al Baghal, T. (2014a). Is vague valid? The comparative predictive validity of vague quantifiers and numeric response options. *Survey Research Methods*, 8(3), 169–179. https://doi.org/10.18148/srm/2014.v8i3.5813
- Al Baghal, T. (2014b). Numeric estimation and response options: An examination of the accuracy of numeric and vague quantifier responses. 2014, 5(2), 18. https://doi.org/10.2458/v5i2.18476
- Barkley, R. A. (2011). Barkley Functional Impairment Scale (BFIS). Guilford Publications.
- Batchelor, J. H., & Miao, C. (2016). Extreme response style: A meta-analysis. *Journal of Organizational Psychology*, 16(2). https://articlearchives.co/index.php/JOP/article/view/3628
- Bendixen, M., Endresen, I. M., & Olweus, D. (2003). Variety and frequency scales of antisocial involvement: Which one is better? *Legal and Criminological Psychology*, 8(2), 135–150. https://doi.org/10.1348/135532503322362924
- Borgers, N., Hox, J., & Sikkel, D. (2003). Response quality in survey research with children and adolescents: The effect of labeled response options and vague quantifiers. *International Journal of Public Opinion Research*, *15*(1), 83–94. https://doi.org/10.1093/ijpor/15.1.83
- Bradburn, N. M., & Miles, C. (1979). Vague quantifiers. *Public Opinion Quarterly*, 43(1), 92–101. https://doi.org/10.1086/268494

- Budman, C. L., Rockmore, L., Stokes, J., & Sossin, M. (2003). Clinical phenomenology of episodic rage in children with Tourette syndrome. *Journal of Psychosomatic Research*, 55(1), 59–65. https://doi.org/10.1016/S0022-3999(02)00584-6
- Burns, G. L., Walsh, J. A., Patterson, D. R., Holte, C. S., Sommers-Flanagan, R., & Parker, C.
   M. (2001). Attention deficit and disruptive behavior disorder symptoms: Usefulness of a frequency count rating procedure to measure these symptoms. *European Journal of Psychological Assessment*, 17(1), 25–35. https://doi.org/10.1027//1015-5759.17.1.25
- Chalmers, R. P. (2012). mirt: a multidimensional item response theory package for the R environment. *Journal of Statistical Software*, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06
- Chan, J. C. (1991). Response-order effects in Likert-type scales. *Educational and Psychological Measurement*, 51(3), 531–540. <a href="https://doi.org/10.1177/0013164491513002">https://doi.org/10.1177/0013164491513002</a>
- Chase, C. I. (1969). Often is where you find it. *American Psychologist*, 24(11), 1043–1043. https://doi.org/10.1037/h0037829
- Cole, J. S., & Korkmaz, A. (2012). Estimation of expected academic engagement behaviors: The use of vague quantifiers versus tallied responses. Paper presented at the annual meeting of the American Educational Research Association, Vancouver, British Columbia, Canada. https://hdl.handle.net/2022/23831
- Cole, J. S., & Korkmaz, A. (2013). Estimating college student behavior frequencies: Do vague and enumerated estimation strategies yield similar results? *Journal of Applied Research* in Higher Education, 5(1), 58–71. https://doi.org/10.1108/17581181311310270

- Congdon, E., Mumford, J., Cohen, J., Galvan, A., Canli, T., & Poldrack, R. (2012). Measurement and reliability of response inhibition. *Frontiers in Psychology*, *3*.

  <a href="https://doi.org/10.3389/fpsyg.2012.00037">https://doi.org/10.3389/fpsyg.2012.00037</a></a>
- de Leeuw, J. R., Gilbert, R. A., & Luchterhandt, B. (2023). jsPsych: Enabling an open-source collaborative ecosystem of behavioral experiments. *Journal of Open Source Software*, 8(85), 5351. <a href="https://doi.org/10.21105/joss.05351">https://doi.org/10.21105/joss.05351</a>
- Doebler, A., Doebler, P., & Holling, H. (2014). A latent ability model for count data and application to processing speed. *Applied Psychological Measurement*, *38*(8), 587–598. https://doi.org/10.1177/0146621614543513
- Eisenberg, N., Edwards, A., Spinrad, T. L., Sallquist, J., Eggum, N. D., & Reiser, M. (2013). Are effortful and reactive control unique constructs in young children? *Developmental Psychology*, 49(11), 2082–2094. <a href="https://doi.org/10.1037/a0031745">https://doi.org/10.1037/a0031745</a>
- Elliott, D. S., & Ageton, S. S. (1980). Reconciling race and class differences in self-reported and official estimates of delinquency. *American Sociological Review*, 45(1), 95–110. <a href="https://doi.org/10.2307/2095245">https://doi.org/10.2307/2095245</a>
- Fleischman, M. J., Horne, A. M., & Arthur, J. L. (1983). *Troubled families: A treatment program*. Research PressPub.
- Goocher, B. E. (1965). Effects of attitude and experience on the selection of frequency adverbs.

  \*\*Journal of Verbal Learning and Verbal Behavior, 4(3), 193–195.\*

  https://doi.org/10.1016/S0022-5371(65)80020-2
- Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow

- process for providing translational research informatics support. *Journal of Biomedical Informatics*, 42(2), 377–381. https://doi.org/10.1016/j.jbi.2008.08.010
- Holdaway, A. S., Hustus, C. L., Owens, J. S., Evans, S. W., Coles, E. K., Egan, T. E., Himawan,
  L., Zoromski, A. K., Dawson, A. E., & Mixon, C. S. (2020). Incremental benefits of a
  daily report card over time for youth with disruptive behavior: Replication and extension.
  School Mental Health, 12(3), 507–522. <a href="https://doi.org/10.1007/s12310-020-09375-w">https://doi.org/10.1007/s12310-020-09375-w</a>
- Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. D. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. *Journal of Abnormal Psychology*, *116*(4), 645–666. https://doi.org/10.1037/0021-843X.116.4.645
- Laursen, B. P., Denissen, J., & Bjorklund, D. F. (2012). Event frequency measurement. In B. P. Laursen, T. D. Little, & N. A. Card (Eds.), *Handbook of developmental research methods* (pp. 66–81).
- Lenzner, T., Kaczmirek, L., & Lenzner, A. (2010). Cognitive burden of survey questions and response times: A psycholinguistic experiment. *Applied Cognitive Psychology*, 24(7), 1003–1020. https://doi.org/10.1002/acp.1602
- Magnus, B. E., & Garnier-Villarreal, M. (2022). A multidimensional zero-inflated graded response model for ordinal symptom data. *Psychological Methods*, *27*(2), 261–279. https://doi.org/10.1037/met0000395
- Marincic, J. L. (2012). Measurement models for behavioral frequencies: A comparison between numerically and vaguely quantified reports. *Mathematica Policy Research*, *Working Paper 10*. <a href="https://mathematica.org/">https://mathematica.org/</a>
  /media/publications/pdfs/measurement models wp.pdf

- Patterson, G. R. (1993). Orderly change in a stable world: The antisocial trait as a chimera.

  \*\*Journal of Consulting and Clinical Psychology, 61(6), 911–919.\*

  https://doi.org/10.1037/0022-006X.61.6.911
- Pelham, W. E., Greiner, A. R., & Gnagy, E. M. (2008). Student behavior teacher response observation code manual.
- Pepper, S., & Prytulak, L. S. (1974). Sometimes frequently means seldom: Context effects in the interpretation of quantitative expressions. *Journal of Research in Personality*, 8(1), 95–101. https://doi.org/10.1016/0092-6566(74)90049-X
- Petersen, I. T. (2025). *petersenlab: A collection of R functions by the Petersen Lab* [R package]. https://doi.org/10.32614/CRAN.package.petersenlab
- Petersen, I. T., Bates, J. E., Dodge, K. A., Lansford, J. E., & Pettit, G. S. (2015). Describing and predicting developmental profiles of externalizing problems from childhood to adulthood. Development and Psychopathology, 27(3), 791–818.

  https://doi.org/10.1017/S0954579414000789
- Petersen, I. T., & Demko, Z. (2024). Pre-registration of hypotheses in the developing a novel measure of the externalizing spectrum pilot study.

  https://doi.org/10.17605/OSF.IO/GSRD2
- Petersen, I. T., Demko, Z., Doebler, P., Sabel, L., Oleson, J. J., & Krueger, R. F. (2025). Data, analysis code, and research materials for "How Often is "Often"? Improving Assessment of the Externalizing Spectrum Using Absolute Frequency".

  <a href="https://doi.org/10.17605/OSF.IO/49M8Q">https://doi.org/10.17605/OSF.IO/49M8Q</a>
- Peterson, M. A., Honig, P. K., Chaiken, J. M., & Ebener, P. A. (1982). Survey of prison and jail inmates: Background and method. RAND Corporation.

- Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. *Annual Review of Psychology*, 63(1), 539–569. <a href="https://doi.org/10.1146/annurev-psych-120710-100452">https://doi.org/10.1146/annurev-psych-120710-100452</a>
- Poulton, A., Pan, J., Bruns, L. R., Sinnott, R. O., & Hester, R. (2018). Assessment of alcohol intake: Retrospective measures versus a smartphone application. *Addictive Behaviors*, 83, 35–41. https://doi.org/10.1016/j.addbeh.2017.11.003
- R Core Team. (2023). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. http://www.R-project.org
- Schaeffer, N. C. (1991). Hardly ever or constantly? Group comparisons using vague quantifiers.

  \*Public Opinion Quarterly, 55(3), 395–423. <a href="https://doi.org/10.1086/269270">https://doi.org/10.1086/269270</a>
- Schaeffer, N. C., & Charng, H.-W. (1991). Two experiments in simplifying response categories:

  Intensity ratings and behavioral frequencies. *Sociological Perspectives*, *34*(2), 165–182.

  <a href="https://doi.org/10.2307/1388989">https://doi.org/10.2307/1388989</a>
- Schaeffer, N. C., & Dykema, J. (2020). Advances in the science of asking questions. *Annual Review of Sociology*, 46, 37–60. https://doi.org/10.1146/annurev-soc-121919-054544
- Schaeffer, N. C., & Presser, S. (2003). The science of asking questions. *Annual Review of Sociology*, 29, 65–88. https://doi.org/10.1146/annurev.soc.29.110702.110112
- Schwarz, N. (1999). Self-reports: How the questions shape the answers. *American Psychologist*, 54(2), 93–105. <a href="https://doi.org/10.1037/0003-066X.54.2.93">https://doi.org/10.1037/0003-066X.54.2.93</a>
- Schwarz, N., Hippler, H.-J., Deutsch, B., & Strack, F. (1985). Response scales: Effects of category range on reported behavior and comparative judgments. *Public Opinion Quarterly*, 49(3), 388–395. https://doi.org/10.1086/268936

- Schwarz, N., Strack, F., Müller, G., & Chassein, B. (1988). The range of response alternatives may determine the meaning of the question: Further evidence on informative functions of response alternatives. *Social Cognition*, *6*(2), 107–117.

  https://doi.org/10.1521/soco.1988.6.2.107
- Sobell, L. C., & Sobell, M. B. (1992). Timeline follow-back. In R. Z. Litten & J. P. Allen (Eds.),

  Measuring alcohol consumption: Psychosocial and biochemical methods (pp. 41–72).

  Humana Press. https://doi.org/10.1007/978-1-4612-0357-5 3
- Sochat, V. V., Eisenberg, I. W., Enkavi, A. Z., Li, J., Bissett, P. G., & Poldrack, R. A. (2016).

  The experiment factory: Standardizing behavioral experiments. *Frontiers in Psychology*,

  7. <a href="https://doi.org/10.3389/fpsyg.2016.00610">https://doi.org/10.3389/fpsyg.2016.00610</a>
- Sudman, S., Bradburn, N. M., & Schwarz, N. (1996). *Thinking about answers: The application of cognitive processes to survey methodology*. Jossey-Bass.
- Tourangeau, R., & Smith, T. W. (1996). Asking sensitive questions: The impact of data collection mode, question format, and question context. *Public Opinion Quarterly*, 60(2), 275–304. <a href="https://doi.org/10.1086/297751">https://doi.org/10.1086/297751</a>
- Wänke, M. (2002). Conversational norms and the interpretation of vague quantifiers. *Applied Cognitive Psychology*, 16(3), 301–307. <a href="https://doi.org/10.1002/acp.787">https://doi.org/10.1002/acp.787</a>
- Willis, M., Marcantonio, T. L., & Jozkowski, K. N. (2021). Momentary versus retrospective reports of alcohol or cannabis use, sexual activity, and their co-occurrence. *Addictive Behaviors*, 119, 106932. https://doi.org/10.1016/j.addbeh.2021.106932
- Wirt, R. D., Lachar, D., Seat, P. D., & Broen, W. E. (2001). *Personality Inventory for Children—Second Edition*. Western Psychological Services.

- Wood, S. N. (2017). *Generalized additive models: An introduction with R* (2nd ed.). CRC press. https://doi.org/10.1201/9781315370279
- Wright, D. B., Gaskell, G. D., & O'Muircheartaigh, C. A. (1994). How much is 'quite a bit'?

  Mapping between numerical values and vague quantifiers. *Applied Cognitive Psychology*,

  8(5), 479–496. https://doi.org/10.1002/acp.2350080506
- Yang, J. J., Ou, T.-S., Lin, H.-C., Kyung Nam, J., Piper, M. E., & Buu, A. (2023). Retrospective and real-time measures of the quantity of e-cigarette use: An ecological momentary assessment study. *Nicotine & Tobacco Research*, *25*(10), 1667–1675.

  <a href="https://doi.org/10.1093/ntr/ntad094">https://doi.org/10.1093/ntr/ntad094</a>
- Young, S. E., Friedman, N. P., Miyake, A., Willcutt, E. G., Corley, R. P., Haberstick, B. C., & Hewitt, J. K. (2009). Behavioral disinhibition: Liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence. *Journal of Abnormal Psychology*, 118(1), 117–130. <a href="https://doi.org/10.1037/a0014657">https://doi.org/10.1037/a0014657</a>

## **Supplementary Appendix S1. Description of Participants.**

Inclusion criteria include: (1) the person is 18 years old or older and (2) the person lives in the U.S. Exclusion criteria include: (1) the person is unable to read or write proficiently in English, (2) the person does not have normal or corrected-to-normal vision, and (3) the person fails an attention or validity check.

In terms of gender, 903 (73.0%) identified as female, 295 (23.8%) identified as male, 33 (2.7%) identified as non-binary, and 6 (0.5%) identified as "Other" gender. A histogram of participants' ages is in Supplementary Figure S2. In terms of marital status, 720 (58.2%) were single/never married, 337 (27.2%) were married, 9 (0.7%) were separated, 120 (9.7%) were divorced, 23 (1.9%) were re-married, and 28 (2.2%) were widowed or a widower. In terms of educational attainment, 21 (1.7%) had some high school, 250 (20.2%) were high school graduates, 371 (30.0%) had some college, 62 (5.0%) had an associate degree, 234 (18.9%) had a bachelor's degree, 223 (18.0%) had a master's degree, 25 (2.0%) had a professional school degree, and 51 (4.1%) had a doctoral degree. Median family income was \$99,000 (SD = \$308,071; median absolute deviation = \$75,613). A histogram of participants' family incomes is in Supplementary Figure S3. In summary, compared to the U.S. population, participants in the sample were more likely to be female, Non-Hispanic White, single/never married, middle or upper class, and have a college or graduate degree. However, participant demographics were broadly reflective of the recruitment sources.

# Supplementary Appendix S2. Tests of Systematic Differences Between the Screened Sample and the Final Sample.

We examined whether there were systematic differences between the screened sample and the final sample in terms of demographic characteristics, socioeconomic status, and the recruitment source. Where systematic differences were observed, we also examined whether there were differences between the screened sample and the final sample among the ResearchMatch participants or the University of Iowa student participants, separately.

Compared to the screened sample, participants in the final sample were more likely to have been recruited from the University of Iowa Sona system, as opposed to from ResearchMatch, Twitter, Facebook, or Reddit. Although we recruited participants from a variety of online sources in addition to Sona, including ResearchMatch, Twitter, Facebook, and Reddit, no participants in the final sample were from Twitter, Facebook, or Reddit.

There were no differences between the screened and final sample in terms of the participant's sex or gender. In terms of age, participants in the final sample were more likely to be younger (M = 38.17 years) compared to the screened sample (M = 45.62 years; t[3,755.4] = 7.20, p < .001). This appears to be due to a higher rate of survey completion among the college student subsample than for the ResearchMatch subsample. Among the ResearchMatch subsample, the final sample tended to be older (M = 52.20 years) than the screened sample (M = 47.30 years; t[2798.6] = -4.48, p < .001). There were no age-related differences between the screened and final sample for the college student subsample.

In terms of the participant's race/ethnicity, compared to the screened sample (87%), participants in the final sample were more likely to be White (92%;  $\chi^2[1] = 11.67$ , p < .001), a difference which was at a trend-level in the ResearchMatch subsample ( $\chi^2[1] = 3.16$ , p = .076)

and was significant in the college student subsample ( $\chi^2[1] = 20.17$ , p < .001). Compared to the screened sample (8%), participants in the final sample were less likely to be Black (3%;  $\chi^2[1] = 19.51$ , p < .001), a difference which held in both the ResearchMatch ( $\chi^2[1] = 7.89$ , p = .005) and college student ( $\chi^2[1] = 8.95$ , p = .003) subsamples. There were no differences between the screened and final sample in terms of the participant's Hispanic/Latino ethnicity, American Indian, Asian, Arab/Middle Eastern/North African, Native Hawaiian or Other Pacific Islander, Multiracial, or Other Race.

In terms of education, compared to the screened sample, participants in the final sample tended to have lower education ( $\chi^2[8] = 105.32$ , p < .001), which could reflect the higher rate of survey completion among the college student subsample than for the ResearchMatch subsample. There were no education-related differences between the screened and final sample for the college student or ResearchMatch subsamples.

In terms of income, compared to the screened sample, participants in the final sample tended to have higher income (t[1,597.3] = -2.29, p = .022). This difference held in the ResearchMatch subsample (t[1,305.3] = -2.56, p = .011) but not in the college student subsample.

In sum, compared to the screened sample, participants in the final sample were somewhat more likely to be recruited from the University of Iowa (than from other online sources), to be older (among the ResearchMatch subsample), to be White and not Black, and to have higher education and income (among the ResearchMatch subsample). There were no differences between the screened and final sample in terms of the participant's sex, gender, Hispanic/Latino ethnicity, American Indian, Asian, Arab/Middle Eastern/North African, Native Hawaiian or Other Pacific Islander, Multiracial, or Other Race.

## Supplementary Appendix S3. Tests of Systematic Missingness.

We evaluated whether there was systematic missingness in the model variables. Among those who passed the validity and attention checks, there was essentially no missingness in scores on the externalizing problem items. Thus, for tests of systematic missingness, we focus on the other assessments: Adult Self-Report, Barkley Functional Impairment System, and go/no-go task. For the Adult Self-Report and Barkley Functional Impairment System, there was no systematic missingness as a function of sex, gender, race, ethnicity, education, or family income. However, there was some systematic missingness as a function of age and recruitment source. For the Adult Self-Report and Barkley Functional Impairment System, older adults and individuals recruited from ResearchMatch were more likely to be missing scores compared to younger adults (ASR: t[61.87] = -2.14, p = .036; BFIS: t[60.46] = -1.95, p = .056) and compared to individuals recruited through SONA Systems (ASR:  $\chi^2[1] = 14.52$ , p < .001; BFIS:  $\chi^2[1] = 11.91, p < .001$ ). This may be partially attributable to the lack of compensation for participants recruited online, whereas college students recruited from the University of Iowa received credits toward completion of their research exposure requirement. For the go/no-go task, there was no systematic missingness as a function of age, race, ethnicity, family income, or recruitment source. However, there was some systematic missingness as a function of sex/gender  $(\chi^2[1] = 5.77, p = .016)$  and education  $(\chi^2[7] = 20.47, p = .005)$ , with females and those with lower levels of education more likely to be missing scores than males and those with higher levels of education.

We performed Little's (1988) missing completely at random (MCAR) test to determine whether our data missingness significantly deviates from a missing completely at random pattern. To perform the MCAR test, we used the mcar test() function of the naniar package

version 1.1.0 (Tierney & Cook, 2023) in R. The MCAR test was nonsignificant ( $\chi^2[22] = 25.50$ , p = .274), indicating that the data missingness did not significantly deviate from a missing completely at random pattern.

## **Supplementary Appendix S4. Final Item Selection.**

For final item selection, we removed six items that had little or no variability ("generate or post online sexual content involving someone without their knowledge and/or explicit consent"; "threaten to tell others a secret or lie to convince someone to have sex"; "harm or threaten to harm someone physically to convince them to have sex"; "rob a bank, store, or other business"; "embezzle money"; "slip someone drugs so that I could take advantage of them"). We also removed one item that had weak associations with the total score and with the latent factor ("How many sexual partners have you had in your life?"). Although a few remaining items showed relatively modest associations with the total score and with the latent factor, they were retained given their strong conceptual relevance for the construct of externalizing problems (e.g., "forced someone into sexual activity"; "deliberately started fires that caused damage"). The final item set included 127 items.

### **Supplementary Appendix S5. Outlier Handling.**

Because we used an open-ended response format (rather than a closed-response format), we had some outlying responses. We winsorized outliers so that the outlying responses did not receive undue weight in the modeling. Because observations were on a nonnormally distributed count scale, we used an approach to outlier detection for skewed distributions. We used the adjboxStats() function from the robustbase package version 0.99-2 (Maechler et al., 2024) in R to identify outliers. The adjboxStats() function identifies the upper fence (upper whisker) of a box-and-whisker plot for skewed distributions based on methods proposed by Hubert and Vandervieren (2008). To account for the extent of skewness, the method uses the medcouple, which is a robust measure of the extent to which data deviate from a symmetric distribution (i.e., are skewed). Instead of the traditional boxplot (where the upper fence is defined as  $Q_3 + 1.5$ . IQR), the upper fence of the adjusted boxplot is defined as:

$$Q_3 + c \cdot e^{b \cdot M} \cdot IQR \tag{1}$$

where  $Q_3$  is the third quartile, c is a coefficient that determines how far the whiskers extend out from the box of the boxplot, b is a scaling factor that is mutliplied by the medcouple to determine the outlier boundaries, b is the medcouple, and IQR is the interquartile range ( $Q_3 - Q_1$ ). We used the default coefficients for identification of outliers (c = 1.5; b = 3). We examined the upper fence for each item under two conditions. First, we identified the upper fence for each item without excluding any count responses. Given the large proportion of 0s and 1s in the count data, the many 0/1 responses could greatly lower the threshold for what is considered an outlier. Thus, second, we identified the upper fence for each item when excluding 0 and 1 responses (i.e., 0 or 1 times per year). Based on these two upper fences for each item, to be conservative when identifying outliers, we selected the upper fence as the highest of these two

fence values for each item (i.e., the higher upper fence of the following: the upper fence of the raw data and the upper fence when excluding 0/1 responses). We then identified outliers as values that were greater than the upper fence for that item. To winsorize the outliers, we identified the highest value below the upper fence for each item. We then truncated the outliers by setting them to the highest value below the upper fence for that item and added 1 (so the response was slightly larger than the highest non-outlier, to retain order of individual differences in frequency).

## Supplementary Appendix S6. Exploratory Factor Analysis.

We first examined whether measures' scores were able to be modeled with item response modeling by examining their scores in exploratory factor analysis (EFA). We conducted EFA using the psych package version 2.4.6.26 (Revelle, 2021) in R.

We examined the externalizing problem items in EFA. Results of the EFA are in Table S10. Most items had a standardized factor loading above .20 on the latent externalizing problems factor. A one-factor model accounted for 17% of the variance. In a two-factor model, the second factor accounted for 4% of the variance. The ratio of the first eigenvalue to the second eigenvalue was greater than 4 (4.06), suggesting that the data are unidimensional enough for estimating a common latent factor (Slocum-Gori & Zumbo, 2011). Thus, although the externalizing problem items clearly assessed multiple dimensions, a single factor accounted for considerable variance, and accounted for considerably more variance than the second factor. Based on this evidence, the primary factor appeared to reflect a meaningful operationalization of externalizing problems. Thus, given our goals to examine a latent factor of externalizing problems, we conducted item response modeling with a single factor.

### Supplementary Appendix S7. Bayesian Item Response Theory Model.

We used a log-linear count data model to build an explanatory item response theory (IRT) model (i.e., an IRT model that incorporates predictors). We estimated the IRT model in a Bayesian mixed modeling framework using the brms package version 2.21.0 (Bürkner, 2017) in R. The unidimensional nonlinear IRT model allows us to simultaneously generate estimates of item and scale utility and to model the age-related course of externalizing problems. In the present study, externalizing problems ratings were count data. Due to overdispersion, with few exceptions, the conditional variance of items' scores was greater than the mean. Thus, we used a negative binomial response distribution instead of a Poisson distribution (Hu et al., 2011). Because many scores were zero, we used a zero-inflated negative binomial distribution for the outcome variable. A zero-inflated model assumes that the ratings of zero result from a mixture of two distributions (i.e., have two different origins): structural or sampling (Hu et al., 2011). The sampling zeros reflect the usual negative binomial distribution, which assumes that the ratings of zero happened by chance. By contrast, the structural zeros reflect a particular structure of the data that leads to excessive zeros above and beyond zeros due to random chance. Participants who are at risk of externalizing behavior but who report not having engaged in externalizing behavior during the given timeframe are considered sampling zeros. Participants who are not at risk of externalizing behavior—e.g., those who do not have the opportunity to engage in a given behavior—are considered structural zeros.

To account for the excess zeros, the IRT model estimates four parameters for each item, item j. Similar to a binary IRT model with intercept-slope parametrization (Beisemann, 2022), we include an easiness parameter ( $\beta_j$ ; i.e., beta, similar to an intercept) and a discrimination parameter ( $\alpha_i$ ; i.e., alpha, a factor loading). In addition, we include a zero-inflation parameter  $z_i$ ,

capturing excess zeros, and a shape parameter ( $\phi_j$ ; phi) for overdispersion, i.e., variance beyond what a Poisson count data model would imply. The intercept-slope parameterization results in

$$E(Y_{pj}) = (1 - z_j)\exp(\beta_j + \alpha_j \theta_p) \tag{1}$$

where  $E(Y_{pj})$  is the expected count response for person p on item j, and  $\theta_p$  is the level on the latent externalizing factor for person p. For  $z_j = 0$ , a log-linear model results, and the easiness is the log-expectation of an average person with  $\theta_p = 0$ . Values of  $z_j > 0$  indicate that the item has excess zeros, i.e.,  $z_j$  is the probability of the structural zero component. When  $z_j > 0$  the relationship of the expected counts and the easiness is still log-linear, with  $\ln (1 - z_j)$  as an offset. The item's discrimination parameter is how strongly the item is associated with the latent factor. In our study, easiness and discrimination provide information about the functioning and usefulness of each item and, collectively, the measure.

The resulting probability of observing a count  $y_{pj}$  in the zero-inflated negative binomial model is

$$P(Y_{pj} = y_{pj}) = \begin{cases} z_j + (1 - z_j) \left[ \left( \frac{\phi_j}{\mu_{pj} + \phi_j} \right)^{\phi_j} \right] & \text{if } y_{pj} = 0\\ (1 - z_j) \frac{\Gamma(y_{pj} + \phi_j)}{\Gamma(\phi_j) y_{pj!}} \left( \frac{\mu_{pj}}{\mu_{pj} + \phi_j} \right)^{y_{pj}} \left( \frac{\phi_j}{\mu_{pj} + \phi_j} \right)^{\phi_j} & \text{if } y_{pj} > 0 \end{cases}$$
 (2)

where the mu (location) parameter,  $\mu_{pj} = \exp(\beta_j + \alpha_j \theta_p)$ , is the expected count in the negative binomial mixture component, i.e.,  $\ln(\mu_{pj}) = \beta_j + \alpha_j \theta_p$ .

The Bayesian hierarchical model includes further assumptions: We estimated the probability of a structural zero,  $z_j$ , using a logistic mixed regression model while  $\alpha_j$ ,  $\beta_j$ , and  $\theta_p$  each use a linear mixed model. We use the notation of the brms R-package (Bürkner, 2017), where the random effects of the form  $(... \mid \text{item})$  all have mean zero normal distributions with freely estimated standard deviations. The person parameters' (theta) residual variance is fixed to

1, and the lower bound of the discrimination parameter is set to zero, following recommendations for model identification (Bürkner, 2020, 2021). We expected some curvilinearity given the wide age range (18–92 years of age) and the nonlinear trajectories of externalizing problems identified by prior studies (Bongers et al., 2004; Fanti & Henrich, 2010; Harris et al., 2025; Keijsers et al., 2012; Korhonen et al., 2018; Murray et al., 2022; Odgers et al., 2008; Petersen et al., 2015). We examined model fit using expected log predictive density (ELPD) from the widely applicable information criterion (WAIC). We compared a null model (with no predictors) with a linear, quadratic, and generalized additive model (GAM). The linear and quadratic models included the main effects of age and sex and their interaction. Below is the model formula for the GAM model.

$$logit(z_i) = 1 + (1|item) \tag{3}$$

$$\theta_p = \text{sex} + s(\text{age, sex}) + (1|\text{subject})$$
 (4)

$$\beta_j = 1 + (1|\text{item}) \tag{5}$$

$$\alpha_j = 1 + (1|\text{item}) \tag{6}$$

$$\log(\phi_i) = 1 + (1|\text{item}) \tag{7}$$

We modeled the sample's age-related course of latent externalizing problems by sex based on the estimated level on the latent externalizing problems ( $\theta_p$ ; theta) for each person p. Although there is a smooth interaction term in the model, i.e., s(age, sex), we also included the participant's sex as a fixed effect predictor of theta in Equation 4 for interpretability. We specified females as the reference group (female = 0, male = 1), because more females than males provided ratings. Here, s(..., sex) is a sex-specific smoothing spline, i.e., the latent mean of externalizing problems ( $\theta_p$ ; theta) is a function of age and sex. This allows the latent level of externalizing problems to follow a nonlinear course across the wide age range (18–92 years of age). To prevent overfitting,

we use a *P*-spline-based smooth (i.e., penalized *B*-splines) using the s() function of the mgcv package 1.9-1 (Wood, 2017) in R 4.2.2 (R Core Team, 2022). For easier interpretation and identification, age in years was shifted (by subtracting 18) so that the value 0 represented an age of 18, the youngest age in the study.

In a Bayesian model, the final step is to specify prior distributions for all remaining parameters in the model. With the exception of the distributional assumptions for the item and person parameters discussed above, we kept the default priors used in the brms package (Bürkner, 2017), which uses vague but proper priors. The default priors for regression parameters are multivariate normal with mean zero and unknown covariance matrix  $\Sigma$  which follows a LKJ-correlation prior (Lewandowski et al., 2009). All standard deviation parameters are given a half Student-t prior with 3 degrees of freedom.

We fit the Bayesian longitudinal mixed models using the brms package 2.21.0 (Bürkner, 2017) in R, which uses the cmdstanr 0.8.0 (Gabry et al., 2024) interface to Stan 2.32.2 (Stan Development Team, 2020) for Bayesian modeling. In total, 8,000 post-warmup draws resulted from four chains with 4,000 iterations each, discarding 2,000 draws for warmup.

We identified the best-fitting form of age-related differences in the Bayesian IRT model. Model fit estimates are in Table S8. The GAM model fit the best. Thus, we selected the GAM model as our final model to allow curvilinearity in the age-related estimates, which thus provides better theory—model fit compared to the null and linear models. R-hat values (all less than 1.05) and trace plots demonstrated that the Bayesian IRT model converged. The posterior predictive check indicated that the model's predicted values were close to the observed values (see Figure S8).

We also intended to examine age and sex as predictors of the item parameters, easiness

and discrimination, as a test of differential item functioning (DIF). However, given the additional model complexity, the DIF models did not converge. Thus, we did not include age or sex as predictors of the item parameters; however, as noted above, we included age and sex as predictors of the person parameters (theta). We calculated item information from the model as described in Appendix S8. People's factor scores on the latent externalizing factor were estimated from the posterior distribution by averaging model-predicted posterior samples across chains and iterations, using the posterior\_epred() function from the brms package.

## Supplementary Appendix S8. Calculating Item Information from the Bayesian Item Response Theory Model.

The Fisher Information (FI) is used in item response theory models to find analytical expressions for the asymptotic standard error of person parameter estimates. The FI is model-specific, and the FI of neither the well-known Rasch Poisson Count Model (e.g., Doebler et al., 2014) nor the Conway Maxwell Poisson Counts Model (Beisemann, 2022) is appropriate for the negative binomial (NB) model with discrimination parameters proposed here. The model without discrimination parameters by Man and Harring (2019) results as a special case, so we also derive the Fisher Information for this model. We derive the FI in two steps: First, we study the NB case. In the second step, we generalize to the zero-inflated case.

### Fisher Information of a Two-Parameter Negative Binomial Item

Omitting indices for ease of notation, the density of an NB random variable can be expressed as

$$f(n) = \text{NegBinomial2}(n|\mu, \phi) = {n + \phi - 1 \choose n} \left(\frac{\mu}{\mu + \phi}\right)^n \left(\frac{\phi}{\mu + \phi}\right)^{\phi}$$
(8)

with parameters  $\mu = \exp(\alpha\theta + \beta) \in \mathbb{R}^+$  and  $\phi \in \mathbb{R}^+$ . This is called the alternative parametrization in the Stan language (Stan Development Team, 2020) and is a reparameterization of more common ways to denote the NB density.  $S_{\theta}(n) = \frac{\partial}{\partial \theta} \ln(f(n))$  denotes the score function, and because well-known mild regularity conditions hold,  $I(\theta) = E_{\theta}(S_{\theta}(n)^2)$  is the FI of a single NB-item. The log-likelihood function  $\ell(n;\theta) := \ln(f(n))$  is

$$\ell(n;\theta) = \ln p(n) = \ln \binom{n+\phi-1}{n} + n \ln \mu - (n+\phi) \ln (\mu+\phi) + \phi \ln \phi. \tag{9}$$

Note that  $\ln \mu = \alpha \theta + \beta$ . The derivative of  $\ell(n; \theta)$  with respect to  $\theta$  is

$$\frac{\partial}{\partial \theta} \ell(n; \theta) = n \frac{\partial}{\partial \theta} \ln \mu - (n + \phi) \frac{\partial}{\partial \theta} \ln(\mu + \phi). \tag{10}$$

Computing the partial derivatives with respect to  $\mu$  and  $\theta$ 

$$\frac{\partial}{\partial \theta} \ln \mu = \alpha \text{ and } \frac{\partial}{\partial \theta} \ln(\mu + \phi) = \frac{1}{\mu + \phi} \frac{\partial \mu}{\partial \theta} = \frac{\mu \alpha}{\mu + \phi}$$
 (12)

and plugging these in, we obtain

$$\frac{\partial}{\partial \theta} \ell(n; \theta) = \alpha \left[ \frac{\phi(n-\mu)}{\mu + \phi} \right]. \tag{13}$$

As noted above, the FI  $I(\theta)$  is the expected value of the squared derivative, so

$$I(\theta) = E\left[\left(\frac{\partial}{\partial \theta}\ell(n;\theta)\right)^2\right] = E\left[\left(\alpha \frac{\phi(n-\mu)}{\mu+\phi}\right)^2\right] = \left(\alpha \frac{\phi}{\mu+\phi}\right)^2 E[(n-\mu)^2]$$
 (14)

Because n follows a negative binomial distribution with mean  $\mu$  and variance

$$Var[n] = E[(n - \mu)^2] = \mu + \frac{\mu^2}{\phi}$$
 (15)

we can write

$$I(\theta) = \left(\alpha \frac{\phi}{\mu + \phi}\right)^{2} \left(\mu + \frac{\mu^{2}}{\phi}\right)$$

$$= \left(\alpha \frac{\phi}{\mu + \phi}\right)^{2} \left(\frac{\mu(\phi + \mu)}{\phi}\right)$$

$$= \alpha^{2} \frac{\phi^{2}}{(\mu + \phi)^{2}} \cdot \frac{\mu(\mu + \phi)}{\phi}$$

$$= \alpha^{2} \frac{\phi^{2} \mu(\mu + \phi)}{(\mu + \phi)^{2} \phi}$$

$$= \alpha^{2} \frac{\phi \mu}{\mu + \phi}$$

$$(16)$$

### **Zero-Inflated Case**

In the zero-inflated case, the density of a single item is

$$\tilde{f}(n) = \begin{cases} \pi + (1 - \pi)f(0) & n = 0\\ (1 - \pi)f(n) & n > 0, \end{cases}$$
(17)

where  $0 \le \pi < 1$  is an additional parameter for zero-inflation. To derive the FI  $\tilde{I}(\theta)$  for a single zero-inflated NB-item, we note that well-known mild regularity conditions hold and that we can use the representation

$$\tilde{I}(\theta) = E(\tilde{S}_{\theta}(n)^2). \tag{18}$$

We now exploit that the zero-inflated NB is a discrete distribution. By re-arranging the infinite sums, we can express the FI with the help of the FI of the non-zero-inflated case (Equation 19):

$$\begin{split} \tilde{I}(\theta) &= \mathrm{E}\big(\hat{S}_{\theta}(n)^{2}\big) = \sum_{n=0}^{\infty} \tilde{f}(n)\tilde{S}_{\theta}(n)^{2} \\ &= \tilde{f}(0)\tilde{S}_{\theta}(0)^{2} + \sum_{n=1}^{\infty} \tilde{f}_{\theta}(n)\tilde{S}_{\theta}(n)^{2} \\ &= \left(\pi + (1-\pi)f(0)\right) \left(\frac{\partial}{\partial \theta} \ln(\pi + (1-\pi)f(0))\right)^{2} + \sum_{n=1}^{\infty} (1-\pi)f(n) \left(\frac{\partial}{\partial \theta} \ln((1-\pi)f(n))\right)^{2} \\ &= \left(\pi + (1-\pi)f(0)\right) \left(\frac{1}{\pi + (1-\pi)f(0)}(1-\pi)\frac{\partial}{\partial \theta}f(0)\right)^{2} \\ &+ \sum_{n=1}^{\infty} (1-\pi)f(n) \left(\frac{\partial}{\partial \theta} \ln(1-\pi) + \frac{\partial}{\partial \theta} \ln(f(n))\right)^{2} \\ &= \frac{(1-\pi)^{2} \left(\frac{\partial}{\partial \theta}f(0)\right)^{2}}{\pi + (1-\pi)f(0)} + \sum_{n=1}^{\infty} (1-\pi)f(n)S_{\theta}(n)^{2} \\ &= \frac{(1-\pi)^{2} \left(\frac{\partial}{\partial \theta}f(0)\right)^{2}}{\pi + (1-\pi)f(0)} - (1-\pi)f(0)S_{\theta}(0)^{2} + (1-\pi)\frac{\sum_{n=0}^{\infty} f(n)S_{\theta}(n)^{2}}{\pi + (1-\pi)f(0)} \\ &= \frac{(1-\pi)^{2} \left(\frac{\partial}{\partial \theta}f(0)\right)^{2}}{\pi + (1-\pi)f(0)} - (1-\pi)f(0)S_{\theta}(0)^{2} + (1-\pi)I(\theta) \end{split}$$

Where

$$S_{\theta}(0) = \frac{-\alpha\phi\mu}{\mu+\phi} \text{ and } I(\theta) = \frac{\alpha^2\phi\mu}{\mu+\phi}$$
 (20)

and

$$\frac{\partial}{\partial \theta} f(0) = \frac{\partial}{\partial \theta} {0 + \phi - 1 \choose 0} \left(\frac{\mu}{\mu + \phi}\right)^0 \left(\frac{\phi}{\mu + \phi}\right)^{\phi}$$

$$\stackrel{=}{=} 1 \qquad \stackrel{=}{=} 1$$

$$= \frac{\partial}{\partial \theta} \left(\frac{\phi}{\mu + \phi}\right)^{\phi}$$

$$= \phi \left(\frac{\phi}{\phi + \mu}\right)^{\phi - 1} \frac{0(\mu + \phi) - \phi \alpha \mu}{(\mu + \phi)^2}$$

$$= -\frac{\phi^{\phi + 1} \alpha \mu}{(\mu + \phi)^{\phi + 1}}$$
(21)

To implement this approach for estimating item information for items from the zero-inflated negative binomial model, we used the item\_info\_NB\_zero\_analytical() function of the petersenlab package version 1.1 (Petersen, 2025) in R version 4.3.1 (R Core Team, 2023). The item information functions are depicted in Supplementary Figure S12.

### **Test Information**

We estimated test information for the set of items, at a given level of theta, as the sum of item information at that level of theta. The test information functions for the absolute frequency items, the dichotomized versions of the same items, and the items from the Adult Self-Report are in Figure 4.

### **Test Standard Error of Measurement**

Test standard error of measurement was estimated as

$$SE(\theta) = \frac{1}{\sqrt{I(\theta)}}$$
 (22)

Test standard error of measurement for the absolute frequency items, the dichotomized versions of the same items, and the items from the Adult Self-Report are in Supplementary Figure S13.

## **Test Reliability**

Test reliability was estimated as

reliability(
$$\theta$$
) =  $\frac{I(\theta)}{I(\theta) + \sigma^2(\theta)}$  (23)

In the GAM, this amounts to reliability conditional on age and sex. Test reliability for the absolute frequency items, the dichotomized versions of the same items, and the items from the Adult Self-Report are in Supplementary Figure S14.

#### References

- Achenbach, T. M., & Rescorla, L. A. (2001). *Manual for the ASEBA school-age forms & profiles*. University of Vermont, Research Center for Children, Youth, and Families.
- Alexander, L. M., Salum, G. A., Swanson, J. M., & Milham, M. P. (2020). Measuring strengths and weaknesses in dimensional psychiatry. *Journal of Child Psychology and Psychiatry*, 61(1), 40–50. <a href="https://doi.org/10.1111/jcpp.13104">https://doi.org/10.1111/jcpp.13104</a>
- Anderson-Butcher, D., Amorose, A. J., Iachini, A., & Ball, A. (2013). *Community and Youth Collaborative Institute School Experience Surveys*. College of Social Work, The Ohio State University.
- Barkley, R. A. (2011). Barkley Adult ADHD Rating Scale-IV (BAARS-IV). The Guilford Press.
- Beisemann, M. (2022). A flexible approach to modelling over-, under- and equidispersed count data in IRT: The two-parameter Conway–Maxwell–Poisson model. *British Journal of Mathematical and Statistical Psychology*, 75(3), 411–443. https://doi.org/10.1111/bmsp.12273
- Bendixen, M., & Olweus, D. (1999). Measurement of antisocial behaviour in early adolescence and adolescence: Psychometric properties and substantive findings. *Criminal Behaviour and Mental Health*, 9(4), 323–354. <a href="https://doi.org/10.1002/cbm.330">https://doi.org/10.1002/cbm.330</a>
- Bongers, I. L., Koot, H. M., Ende, J. v. d., & Verhulst, F. C. (2004). Developmental trajectories of externalizing behaviors in childhood and adolescence. *Child Development*, 75(5), 1523–1537. <a href="https://doi.org/10.1111/j.1467-8624.2004.00755.x">https://doi.org/10.1111/j.1467-8624.2004.00755.x</a>
- Brown, B. B., Clasen, D. R., & Eicher, S. A. (1986). Perceptions of peer pressure, peer conformity dispositions, and self-reported behavior among adolescents. *Developmental Psychology*, 22(4), 521–530. https://doi.org/10.1037/0012-1649.22.4.521

- Brown, K., Atkins, M. S., Osborne, M. L., & Milnamow, M. (1996). A revised teacher rating scale for reactive and proactive aggression. *Journal of Abnormal Child Psychology*, 24(4), 473–480. https://doi.org/10.1007/BF01441569
- Budman, C. L., Rockmore, L., Stokes, J., & Sossin, M. (2003). Clinical phenomenology of episodic rage in children with Tourette syndrome. *Journal of Psychosomatic Research*, 55(1), 59–65. https://doi.org/10.1016/S0022-3999(02)00584-6
- Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal* of Statistical Software, 80(1), 28. https://doi.org/10.18637/jss.v080.i01
- Bürkner, P.-C. (2020). Analysing standard progressive matrices (SPM-LS) with Bayesian item response models. *Journal of Intelligence*, 8(1), 5.

  <a href="https://doi.org/10.3390/jintelligence8010005">https://doi.org/10.3390/jintelligence8010005</a>
- Bürkner, P.-C. (2021). Bayesian item response modeling in R with brms and Stan. *Journal of Statistical Software*, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05
- Burns, G. L., Lee, S., Servera, M., McBurnett, K., & Becker, S. P. (2018). *Child and Adolescent Behavior Inventory—Parent version 1.1*.

  <a href="https://static1.squarespace.com/static/5cdf50adf5b59400015725cd/t/5d5f4ce3106479000">https://static1.squarespace.com/static/5cdf50adf5b59400015725cd/t/5d5f4ce3106479000</a>

  1233ab2/1566526692691/CABI+Parent+1.1+2018+-+Complete+Measure.pdf
- Burns, G. L., Walsh, J. A., Patterson, D. R., Holte, C. S., Sommers-Flanagan, R., & Parker, C.
  M. (2001). Attention deficit and disruptive behavior disorder symptoms: Usefulness of a frequency count rating procedure to measure these symptoms. *European Journal of Psychological Assessment*, 17(1), 25–35. <a href="https://doi.org/10.1027//1015-5759.17.1.25">https://doi.org/10.1027//1015-5759.17.1.25</a>

- Carlson, G. A., Silver, J., & Klein, D. N. (2022). Psychometric properties of the Emotional

  Outburst Inventory (EMO-I): Rating what children do when they are irritable. *The Journal of Clinical Psychiatry*, 83(2), 21m14015. https://doi.org/10.4088/JCP.21m14015
- Carter, A. S., Briggs-Gowan, M. J., Jones, S. M., & Little, T. D. (2003). The Infant–Toddler Social and Emotional Assessment (ITSEA): Factor structure, reliability, and validity. 

  \*\*Journal of Abnormal Child Psychology, 31(5), 495–514.\*\*

  https://doi.org/10.1023/A:1025449031360
- Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., Ader, D., Fries, J. F., Bruce, B., Rose, M., & on behalf of the Promis Cooperative Group. (2007). The Patient-Reported Outcomes Measurement Information System (PROMIS): Progress of an NIH roadmap cooperative group during its first two years. *Medical Care*, 45(5), S3–S11. <a href="https://doi.org/10.1097/01.mlr.0000258615.42478.55">https://doi.org/10.1097/01.mlr.0000258615.42478.55</a>
- Choplin, E. G., Youngstrom, E., Hartsock, J. T., Smith, L. T., Anderson, S., Wilson, L., Howie,
  S., Salcedo, S., Thaker, I., Vincent, C., Kim, H., Van Meter, A., Langfus, J. A., Fogg, J.
  N., & Wall, A. (2018). *Child and Adolescent Disruptive Behavior Inventory (CADBI)*screener. <a href="https://osf.io/4j9gu">https://osf.io/4j9gu</a>
- Conners, C. K. (2022). *Conners 4* (4th ed.). MHS.
- Cook, C. R. (2012). Student Externalizing Behavior Screener (SEBS) APA PsycTests. https://doi.org/10.1037/t42705-000
- Crick, N. R., & Grotpeter, J. K. (1995). Relational aggression, gender, and social-psychological adjustment. *Child Development*, 66(3), 710–722. <a href="https://doi.org/10.1111/j.1467-8624.1995.tb00900.x">https://doi.org/10.1111/j.1467-8624.1995.tb00900.x</a>

- Curtiss, G., Rosenthal, R. H., Marohn, R. C., Ostrov, E., Offer, D., & Trujillo, J. (1983).
  Measuring delinquent behavior in inpatient treatment settings: Revision and validation of the Adolescent Antisocial Behavior Checklist. *Journal of the American Academy of Child Psychiatry*, 22(5), 459–466. <a href="https://doi.org/10.1016/S0002-7138(09)61509-0">https://doi.org/10.1016/S0002-7138(09)61509-0</a>
- Daniels, B., Briesch, A. M., Volpe, R. J., & Owens, J. S. (2021). Content validation of direct behavior rating multi-item scales for assessing problem behaviors. *Journal of Emotional and Behavioral Disorders*, 29(2), 71–82. https://doi.org/10.1177/1063426619882345
- Doebler, A., Doebler, P., & Holling, H. (2014). A latent ability model for count data and application to processing speed. *Applied Psychological Measurement*, *38*(8), 587–598. https://doi.org/10.1177/0146621614543513
- Egger, H. L., & Angold, A. (2004). The Preschool Age Psychiatric Assessment (PAPA): A structured parent interview for diagnosing psychiatric disorders in preschool children. In R. DelCarmen-Wiggins & A. Carter (Eds.), *Handbook of infant, toddler, and preschool mental health assessment* (pp. 223–243). Oxford University Press.
- Elliott, D. S., & Ageton, S. S. (1980). Reconciling race and class differences in self-reported and official estimates of delinquency. *American Sociological Review*, 45(1), 95–110. https://doi.org/10.2307/2095245
- Erickson, M. L., & Empey, L. T. (1963). Court records, undetected delinquency and decision-making. *Journal of Criminal Law, Criminology and Police Science*, *54*, 456.
- Essex, M. J., Boyce, W. T., Goldstein, L. H., Armstrong, J. M., Kraemer, H. C., & Kupfer, D. J. (2002). The confluence of mental, physical, social, and academic difficulties in middle childhood. II: Developing the MacArthur Health and Behavior Questionnaire. *Journal of*

- the American Academy of Child & Adolescent Psychiatry, 41(5), 588–603. https://doi.org/10.1097/00004583-200205000-00017
- Eyberg, S. M., & Ross, A. W. (1978). Assessment of child behavior problems: The validation of a new inventory. *Journal of Clinical Child Psychology*, 7(2), 113–116. https://doi.org/10.1080/15374417809532835
- Fanti, K. A., & Henrich, C. C. (2010). Trajectories of pure and co-occurring internalizing and externalizing problems from age 2 to age 12: Findings from the National Institute of Child Health and Human Development Study of Early Child Care. *Developmental Psychology*, 46(5), 1159–1175. https://doi.org/10.1037/a0020659
- Farmer, C. A., & Aman, M. G. (2009). Development of the Children's Scale of Hostility and Aggression: Reactive/Proactive (C-SHARP). *Research in Developmental Disabilities*, 30(6), 1155–1167. https://doi.org/10.1016/j.ridd.2009.03.001
- Farrell, A. D., Sullivan, T. N., Goncy, E. A., & Le, A.-T. H. (2016). Assessment of adolescents' victimization, aggression, and problem behaviors: Evaluation of the Problem Behavior Frequency Scale. *Psychological Assessment*, 28(6), 702–714.

  <a href="https://doi.org/10.1037/pas0000225">https://doi.org/10.1037/pas0000225</a>
- Frick, P. J. (2003). *The Inventory of Callous–Unemotional Traits* [Unpublished rating scale]. University of New Orleans.
- Furlong, M. J., Smith, D. C., & Bates, M. P. (2002). Further development of the Multidimensional School Anger Inventory: Construct validation, extension to female adolescents, and preliminary norms. *Journal of Psychoeducational Assessment*, 20(1), 46–65. <a href="https://doi.org/10.1177/073428290202000104">https://doi.org/10.1177/073428290202000104</a>

- Gabry, J., Češnovar, R., Johnson, A., & Bronder, S. (2024). *cmdstanr: R Interface to CmdStan*. https://mc-stan.org/cmdstanr
- Gadow, K. D., & Sprafkin, J. (1997). Child Symptom Inventory-4 (CSI-4). Checkmate Plus.
- Gartstein, M. A., & Rothbart, M. K. (2003). Studying infant temperament via the Revised Infant Behavior Questionnaire. *Infant Behavior and Development*, 26(1), 64–86. https://doi.org/10.1016/S0163-6383(02)00169-8
- Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research note. *Journal of Child Psychology and Psychiatry*, 38(5), 581–586. <a href="https://doi.org/10.1111/j.1469-7610.1997.tb01545.x">https://doi.org/10.1111/j.1469-7610.1997.tb01545.x</a>
- Gresham, F., & Elliott, S. N. (2008). *Social Skills Improvement System (SSIS) rating scales*.

  Pearson Assessments.
- Halperin, J. M., McKay, K. E., & Newcorn, J. H. (2002). Development, reliability, and validity of the Children's Aggression Scale-Parent Version. *Journal of the American Academy of Child & Adolescent Psychiatry*, 41(3), 245–252. <a href="https://doi.org/10.1097/00004583-200203000-00003">https://doi.org/10.1097/00004583-200203000-00003</a>
- Harris, J. L., LeBeau, B., & Petersen, I. T. (2025). Reactive and control processes in the development of internalizing and externalizing problems across early childhood to adolescence. *Development and Psychopathology*, 37(2), 836–858.
  <a href="https://doi.org/10.1017/S0954579424000713">https://doi.org/10.1017/S0954579424000713</a>
- Hindelang, M. J., Hirschi, T., & Weis, J. G. (1981). Measuring delinquency. Sage.
- Hu, M.-C., Pavlicova, M., & Nunes, E. V. (2011). Zero-inflated and hurdle models of count data with extra zeros: Examples from an HIV-risk reduction intervention trial. *The American*

- Journal of Drug and Alcohol Abuse, 37(5), 367–375. https://doi.org/10.3109/00952990.2011.597280
- Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions.

  \*Computational Statistics & Data Analysis, 52(12), 5186–5201.

  https://doi.org/10.1016/j.csda.2007.11.008
- Huizinga, D. (1991). *Denver Youth Survey: Youth Interview Schedule*. University of Colorado-Boulder, Institute of Behavioral Science.
- Inciardi, J. A. (1979). Heroin use and street crime. *Crime & Delinquency*, 25(3), 335–346. https://doi.org/10.1177/001112877902500304
- Jacobs, G. A., Phelps, M., & Rohrs, B. (1989). Assessment of anger expression in children: The pediatric anger expression scale. *Personality and Individual Differences*, 10(1), 59–65. https://doi.org/10.1016/0191-8869(89)90178-5
- Jellinek, M. S., Murphy, J. M., Robinson, J., Feins, A., Lamb, S., & Fenton, T. (1988). Pediatric Symptom Checklist: Screening school-age children for psychosocial dysfunction. *The Journal of Pediatrics*, 112(2), 201–209. <a href="https://doi.org/10.1016/S0022-3476(88)80056-8">https://doi.org/10.1016/S0022-3476(88)80056-8</a>
- Johnson, B. D., Goldstein, P., Preble, E., Schmeidler, J., Lipton, D. S., Spunk, B., Duchaine, N., Norman, R., Miller, T., Meggert, N., Kale, A., & Hand, D. (1983). Economic behavior of street opiate users. Final report to the National Institute on Drug Abuse and the National Institute of Justice. Narcotic and Drug Research, Inc.
- Kay, S. R., Wolkenfeld, F., & Murrill, L. M. (1988). Profiles of aggression among psychiatric patients: I. Nature and prevalence. *The Journal of Nervous and Mental Disease*, 176(9), 539–546.

- Kazdin, A. E., & Esveldt-Dawson, K. (1986). The interview for antisocial behavior:
   Psychometric characteristics and concurrent validity with child psychiatric inpatients.
   Journal of Psychopathology and Behavioral Assessment, 8(4), 289–303.
   https://doi.org/10.1007/BF00960727
- Keijsers, L., Loeber, R., Branje, S., & Meeus, W. (2012). Parent-child relationships of boys in different offending trajectories. A developmental perspective. *Journal of Child Psychology and Psychiatry*, *53*(12), 1222–1232. <a href="https://doi.org/10.1111/j.1469-7610.2012.02585.x">https://doi.org/10.1111/j.1469-7610.2012.02585.x</a>
- Kilgus, S. P., Eklund, K., von der Embse, N. P., Taylor, C. N., & Sims, W. A. (2016).
  Psychometric defensibility of the Social, Academic, and Emotional Behavior Risk
  Screener (SAEBRS) Teacher Rating Scale and multiple gating procedure within
  elementary and middle school samples. *Journal of School Psychology*, 58, 21–39.
  https://doi.org/10.1016/j.jsp.2016.07.001
- Korhonen, M., Luoma, I., Salmelin, R., Siirtola, A., & Puura, K. (2018). The trajectories of internalizing and externalizing problems from early childhood to adolescence and young adult outcome. *Journal of Child and Adolescent Psychiatry*, 2(3), 7–12.
- Koss, M. P., Abbey, A., Campbell, R., Cook, S., Norris, J., Testa, M., Ullman, S., West, C., & White, J. (2007). Revising the SES: A collaborative process to improve assessment of sexual aggression and victimization. *Psychology of Women Quarterly*, 31(4), 357–370. <a href="https://doi.org/10.1111/j.1471-6402.2007.00385.x">https://doi.org/10.1111/j.1471-6402.2007.00385.x</a>
- Kwon, M., Lee, J.-Y., Won, W.-Y., Park, J.-W., Min, J.-A., Hahn, C., Gu, X., Choi, J.-H., & Kim, D.-J. (2013). Development and validation of a Smartphone Addiction Scale (SAS). *PloS One*, 8(2), e56936. <a href="https://doi.org/10.1371/journal.pone.0056936">https://doi.org/10.1371/journal.pone.0056936</a>

- Ladd, G. W., & Profilet, S. M. (1996). The Child Behavior Scale: A teacher-report measure of young children's aggressive, withdrawn, and prosocial behaviors. *Developmental Psychology*, 32(6), 1008–1024. <a href="https://doi.org/10.1037/0012-1649.32.6.1008">https://doi.org/10.1037/0012-1649.32.6.1008</a>
- Landoll, R. R., La Greca, A. M., Lai, B. S., Chan, S. F., & Herge, W. M. (2015). Cyber victimization by peers: Prospective associations with adolescent social anxiety and depressive symptoms. *Journal of Adolescence*, 42(1), 77–86.

  https://doi.org/10.1016/j.adolescence.2015.04.002
- Lane, K. L., Oakes, W. P., Swogger, E. D., Schatschneider, C., Menzies, H. M., & Sanchez, J. (2015). Student Risk Screening Scale for internalizing and externalizing behaviors:

  Preliminary cut scores to support data-informed decision making. *Behavioral Disorders*, 40(3), 159–170. <a href="https://doi.org/10.17988/0198-7429-40.3.159">https://doi.org/10.17988/0198-7429-40.3.159</a>
- Le Blanc, M., & Fréchette, M. (2013). Male criminal activity from childhood through youth:

  Multilevel and developmental perspectives. Springer.
- LeBuffe, P. A., & Naglieri, J. A. (1999). *The Devereux early childhood assessment*. Kaplan Press.
- Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. *Journal of Multivariate Analysis*, 100(9), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008
- Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. *Journal of the American Statistical Association*, 83(404), 1198–1202. <a href="https://doi.org/10.2307/2290157">https://doi.org/10.2307/2290157</a>

- Little, T. D., Henrich, C. C., Jones, S. M., & Hawley, P. H. (2003). Disentangling the "whys" from the "whats" of aggressive behaviour. *International Journal of Behavioral Development*, 27(2), 122–133. <a href="https://doi.org/10.1080/01650250244000128">https://doi.org/10.1080/01650250244000128</a>
- Loeber, R., Stouthamer-Loeber, M., Van Kammen, W. B., & Farrington, D. P. (1989).

  Development of a new measure of self-reported antisocial behavior for young children:

  Prevalence and reliability. In M. W. Klein (Ed.), *Cross-National Research in Self-Reported Crime and Delinquency* (Vol. 50, pp. 203–225). Springer Netherlands.

  https://doi.org/10.1007/978-94-009-1001-0\_10
- Luteijn, E., Jackson, S., Volkmar, F. R., & Minderaa, R. B. (1998). Brief Report: The development of the Children's Social Behavior Questionnaire: Preliminary data. *Journal of Autism and Developmental Disorders*, 28(6), 559–565.
  <a href="https://doi.org/10.1023/A:1026060330122">https://doi.org/10.1023/A:1026060330122</a>
- Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., Conceicao, E. L., & di Palma, M. A. (2024). *robustbase: Basic robust statistics* (Version 0.99-2) [R package].
  <a href="https://doi.org/10.32614/CRAN.package.robustbase">https://doi.org/10.32614/CRAN.package.robustbase</a>
- Man, K., & Harring, J. R. (2019). Negative binomial models for visual fixation counts on test items. *Educational and Psychological Measurement*, 79(4), 617–635. https://doi.org/10.1177/0013164418824148
- Marsee, M. A., & Frick, P. J. (2007). Exploring the cognitive and emotional correlates to proactive and reactive aggression in a sample of detained girls. *Journal of Abnormal Child Psychology*, 35(6), 969–981. https://doi.org/10.1007/s10802-007-9147-y

- McCarney, S. B., & Arthaud, T. J. (2001). *Emotional and Behavior Problem Scale—Second Edition*. Hawthorne Educational Services, Inc.
- McCarney, S. B., & Arthaud, T. J. (2010). *Behavior Disorders Identification Scale: Renormed* (2nd ed.). Hawthorne Educational Services, Inc.
- Merrell, K. W. (1996). Social-emotional assessment in early childhood: The Preschool and Kindergarten Behavior Scales. *Journal of Early Intervention*, 20(2), 132–145. https://doi.org/10.1177/105381519602000205
- Moffitt, T. E., & Silva, P. A. (1988). Self-reported delinquency: Results from an instrument for New Zealand. Australian & New Zealand Journal of Criminology, 21(4), 227–240. <a href="https://doi.org/10.1177/000486588802100405">https://doi.org/10.1177/000486588802100405</a>
- Murray, A. L., Nagin, D., Obsuth, I., Ribeaud, D., & Eisner, M. (2022). Young adulthood outcomes of joint mental health trajectories: A group-based trajectory model analysis of a 13-year longitudinal cohort study. *Child Psychiatry & Human Development*, 53(5), 1083–1096. https://doi.org/10.1007/s10578-021-01193-8
- Nadeau, J. M., McBride, N. M., Dane, B. F., Collier, A. B., Keene, A. C., Hacker, L. E., Cavitt, M. A., Alvaro, J. L., & Storch, E. A. (2016). Psychometric evaluation of the Rage
  Outbursts and Anger Rating Scale in an outpatient psychiatric sample. *Journal of Child and Family Studies*, 25(4), 1229–1234. <a href="https://doi.org/10.1007/s10826-015-0303-7">https://doi.org/10.1007/s10826-015-0303-7</a>
- Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., Poulton, R., Sears, M. R., Thomson, W. M., & Caspi, A. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. *Development and Psychopathology*, 20(2), 673–716. <a href="https://doi.org/10.1017/S0954579408000333">https://doi.org/10.1017/S0954579408000333</a>

- Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt

  Impulsiveness Scale. *Journal of Clinical Psychology*, *51*(6), 768–774.

  <a href="https://doi.org/10.1002/1097-4679(199511)51:6">https://doi.org/10.1002/1097-4679(199511)51:6</a></a>768::AID-JCLP2270510607>3.0.CO;2-1
- Pelham, W. E., Greiner, A. R., & Gnagy, E. M. (2008). Student behavior teacher response observation code manual.
- Petersen, I. T. (2025). *petersenlab: A collection of R functions by the Petersen Lab* [R package]. https://doi.org/10.32614/CRAN.package.petersenlab
- Petersen, I. T., Bates, J. E., Dodge, K. A., Lansford, J. E., & Pettit, G. S. (2015). Describing and predicting developmental profiles of externalizing problems from childhood to adulthood. Development and Psychopathology, 27(3), 791–818.

  <a href="https://doi.org/10.1017/S0954579414000789">https://doi.org/10.1017/S0954579414000789</a></a>
- Peterson, M. A., Braiker, H. B., & Polich, R. (1980). *Doing crime: A survey of California prison inmates*. US Government Printing Office.
- Peterson, M. A., Honig, P. K., Chaiken, J. M., & Ebener, P. A. (1982). Survey of prison and jail inmates: Background and method. RAND Corporation.
- Plutchik, R., & van Praag, H. M. (1990). A self-report measure of violence risk, II.

  \*Comprehensive Psychiatry, 31(5), 450–456. <a href="https://doi.org/10.1016/0010-440X(90)90031-M">https://doi.org/10.1016/0010-440X(90)90031-M</a>
- Pontes, H. M., Király, O., Demetrovics, Z., & Griffiths, M. D. (2014). The conceptualisation and measurement of DSM-5 internet gaming disorder: The development of the IGD-20 test. *PloS One*, 9(10), e110137. https://doi.org/10.1371/journal.pone.0110137

- Prinstein, M. J., Boergers, J., & Vernberg, E. M. (2001). Overt and relational aggression in adolescents: Social-psychological adjustment of aggressors and victims. *Journal of Clinical Child & Adolescent Psychology*, 30(4), 479–491.

  <a href="https://doi.org/10.1207/S15374424JCCP3004\_05">https://doi.org/10.1207/S15374424JCCP3004\_05</a>
- R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. <a href="http://www.R-project.org">http://www.R-project.org</a>
- Raine, A., Dodge, K., Loeber, R., Gatzke-Kopp, L., Lynam, D., Reynolds, C., Stouthamer-Loeber, M., & Liu, J. (2006). The reactive–proactive aggression questionnaire:

  Differential correlates of reactive and proactive aggression in adolescent boys.

  Aggressive Behavior, 32(2), 159–171. https://doi.org/10.1002/ab.20115
- Revelle, W. R. (2021). *psych: Procedures for personality and psychological research*. https://doi.org/10.32614/CRAN.package.psych
- Reynolds, C. R., & Kamphaus, R. W. (2015). *Behavior Assessment System for Children–Third Edition (BASC–3)*. Pearson.
- Rojahn, J., Matson, J. L., Lott, D., Esbensen, A. J., & Smalls, Y. (2001). The Behavior Problems Inventory: An instrument for the assessment of self-injury, stereotyped behavior, and aggression/destruction in individuals with developmental disabilities. *Journal of Autism and Developmental Disorders*, 31(6), 577–588.

https://doi.org/10.1023/A:1013299028321

- Rothbart, M. K., Ahadi, S. A., Hershey, K. L., & Fisher, P. (2001). Investigations of temperament at three to seven years: The Children's Behavior Questionnaire. *Child Development*, 72(5), 1394–1408. https://doi.org/10.1111/1467-8624.00355
- Saunders, J. B., & Aasland, O. G. (1987). WHO collaborative project on the identification and treatment of persons with harmful alcohol consumption. Report on phase I: The development of a screening instrument. World Health Organization.

  https://iris.who.int/handle/10665/62031
- Simms, L. J., Goldberg, L. R., Roberts, J. E., Watson, D., Welte, J., & Rotterman, J. H. (2011).

  Computerized adaptive assessment of personality disorder: Introducing the CAT–PD project. *Journal of Personality Assessment*, 93(4), 380–389.

  <a href="https://doi.org/10.1080/00223891.2011.577475">https://doi.org/10.1080/00223891.2011.577475</a>
- Simonds, J., & Rothbart, M. K. (2004). The Temperament in Middle Childhood Questionnaire

  (TMCQ): A computerized self-report instrument for ages 7–10 [Poster presentation].

  Occasional Temperament Conference, Athens, GA, US.
- Slocum-Gori, S. L., & Zumbo, B. D. (2011). Assessing the unidimensionality of psychological scales: Using multiple criteria from factor analysis. *Social Indicators Research*, *102*(3), 443–461. https://doi.org/10.1007/s11205-010-9682-8
- Sobell, L. C., & Sobell, M. B. (1992). Timeline follow-back. In R. Z. Litten & J. P. Allen (Eds.), *Measuring alcohol consumption: Psychosocial and biochemical methods* (pp. 41–72). Humana Press. <a href="https://doi.org/10.1007/978-1-4612-0357-5">https://doi.org/10.1007/978-1-4612-0357-5</a> 3
- Sorgi, P., Ratey, J. J., Knoedler, D. W., Markert, R. J., & Reichman, M. (1991). Rating aggression in the clinical setting: A retrospective adaptation of the Overt Aggression

- Scale: Preliminary results. *The Journal of Neuropsychiatry and Clinical Neurosciences*, 3(2), S52–S56.
- Spielberger, C. D., Jacobs, G., Russell, S., Crane, R. S., Jacobs, G. A., & Worden, T. J. (1985).

  The experience and expression of anger: Construction and validation of an anger expression scale. In M. A. Cheney & R. H. Rosenamn (Eds.), *Anger and hostility in cardiovascular behavioral disorder* (pp. 5–30). Hemisphere/McGraw-Hill.
- Stan Development Team. (2020). *Stan modeling language users guide and reference manual*. https://mc-stan.org
- Steele, R. G., Legerski, J.-P., Nelson, T. D., & Phipps, S. (2009). The Anger Expression Scale for Children: Initial validation among healthy children and children with cancer. *Journal of Pediatric Psychology*, 34(1), 51–62. <a href="https://doi.org/10.1093/jpepsy/jsn054">https://doi.org/10.1093/jpepsy/jsn054</a>
- Straus, M. A., Hamby, S. L., Boney-McCoy, S., & Sugarman, D. B. (1996). The Revised

  Conflict Tactics Scales (CTS2): Development and preliminary psychometric data.

  Journal of Family Issues, 17(3), 283–316. https://doi.org/10.1177/019251396017003001
- Stringaris, A., Goodman, R., Ferdinando, S., Razdan, V., Muhrer, E., Leibenluft, E., & Brotman, M. A. (2012). The Affective Reactivity Index: A concise irritability scale for clinical and research settings. *Journal of Child Psychology and Psychiatry*, *53*(11), 1109–1117. https://doi.org/10.1111/j.1469-7610.2012.02561.x
- Sunderland, M., Slade, T., Krueger, R. F., Markon, K. E., Patrick, C. J., & Kramer, M. D.

  (2017). Efficiently measuring dimensions of the externalizing spectrum model:

  Development of the externalizing spectrum inventory-computerized adaptive test (ESI-CAT). *Psychological Assessment*, 29(7), 868–880. <a href="https://doi.org/10.1037/pas0000384">https://doi.org/10.1037/pas0000384</a>

- Swanson, J. M., Deutsch, C., Cantwell, D., Posner, M., Kennedy, J. L., Barr, C. L., Moyzis, R., Schuck, S., Flodman, P., Spence, M. A., & Wasdell, M. (2001). Genes and attention-deficit hyperactivity disorder. *Clinical Neuroscience Research*, 1(3), 207–216. https://doi.org/10.1016/S1566-2772(01)00007-X
- Swanson, J. M., Kraemer, H. C., Hinshaw, S. P., Arnold, L. E., Conners, C. K., Abikoff, H. B., Clevenger, W., Davies, M., Elliott, G. R., Greenhill, L. L., Hechtman, L., Hoza, B., Jensen, P. S., March, J. S., Newcorn, J. H., Owens, E. B., Pelham, W. E., Schiller, E., Severe, J. B., . . . Wu, M. (2001). Clinical relevance of the primary findings of the MTA: Success rates based on severity of ADHD and ODD symptoms at the end of treatment.

  Journal of the American Academy of Child & Adolescent Psychiatry, 40(2), 168–179.

  https://doi.org/10.1097/00004583-200102000-00011
- Thalmayer, A. G., Marshall, J., & Scalise, K. (2023). The International Mental Health

  Assessment: Validation of an efficient screening inventory. *Collabra: Psychology*, 9(1).

  <a href="https://doi.org/10.1525/collabra.74546">https://doi.org/10.1525/collabra.74546</a>
- Thornberry, T. P., & Farnworth, M. (1982). Social correlates of criminal involvement: Further evidence on the relationship between social status and criminal behavior. *American Sociological Review*, 47(4), 505–518. https://doi.org/10.2307/2095195
- Tierney, N., & Cook, D. (2023). Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations. *Journal of Statistical Software*, 105(7), 1–31. <a href="https://doi.org/10.18637/jss.v105.i07">https://doi.org/10.18637/jss.v105.i07</a>
- Wakschlag, L. S., Briggs-Gowan, M. J., Choi, S. W., Nichols, S. R., Kestler, J., Burns, J. L., Carter, A. S., & Henry, D. (2014). Advancing a multidimensional, developmental spectrum approach to preschool disruptive behavior. *Journal of the American Academy of*

- Child & Adolescent Psychiatry, 53(1), 82–96.e83. https://doi.org/10.1016/j.jaac.2013.10.011
- Waschbusch, D. A., & Elgar, F. J. (2007). Development and validation of the conduct disorder rating scale. *Assessment*, 14(1), 65–74. <a href="https://doi.org/10.1177/1073191106289908">https://doi.org/10.1177/1073191106289908</a>
- Watkins, L. E., Maldonado, R. C., & DiLillo, D. (2018). The Cyber Aggression in Relationships Scale: A new multidimensional measure of technology-based intimate partner aggression.

  \*Assessment\*, 25(5), 608–626. https://doi.org/10.1177/1073191116665696
- West, D. J., & Farrington, D. P. (1977). The delinquent way of life: Third report of the Cambridge Study in Delinquent Development. Heinemann Educational Books.
- White, H. R., & Labouvie, E. W. (1989). Towards the assessment of adolescent problem drinking. *Journal of Studies on Alcohol*, 50(1), 30–37.

  <a href="https://doi.org/10.15288/jsa.1989.50.30">https://doi.org/10.15288/jsa.1989.50.30</a></a>
- Willoughby, M., Kupersmidt, J., & Bryant, D. (2001). Overt and covert dimensions of antisocial behavior in early childhood. *Journal of Abnormal Child Psychology*, 29(3), 177–187. https://doi.org/10.1023/A:1010377329840
- Woicik, P. A., Stewart, S. H., Pihl, R. O., & Conrod, P. J. (2009). The substance use risk profile scale: A scale measuring traits linked to reinforcement-specific substance use profiles.

  \*Addictive Behaviors\*, 34(12), 1042–1055. https://doi.org/10.1016/j.addbeh.2009.07.001
- Wolraich, M. L., Feurer, I. D., Hannah, J. N., Baumgaertel, A., & Pinnock, T. Y. (1998).
   Obtaining systematic teacher reports of disruptive behavior disorders utilizing DSM-IV.
   Journal of Abnormal Child Psychology, 26(2), 141–152.
   https://doi.org/10.1023/A:1022673906401

- Wood, S. N. (2017). *Generalized additive models: An introduction with R* (2nd ed.). CRC press. https://doi.org/10.1201/9781315370279
- Woods-Groves, S. (2015). The Human Behavior Rating Scale–Brief: A tool to measure 21 century skills of K–12 learners. *Psychological Reports*, *116*(3), 769–796. https://doi.org/10.2466/03.11.PR0.116k29w0
- Young, K. S. (1998). Caught in the net: How to recognize the signs of internet addiction—and a winning strategy for recovery. John Wiley & Sons, Inc.
- Zeman, J., Shipman, K., & Suveg, C. (2002). Anger and sadness regulation: Predictions to internalizing and externalizing symptoms in children. *Journal of Clinical Child & Adolescent Psychology*, 31(3), 393–398.

https://doi.org/10.1207/S15374424JCCP3103 11

### **Supplementary Table S1.**

Example Measures of Externalizing Behavior (and Related Constructs) That Use Vague Quantifiers of Relative Frequency (or Ability/Recency/Severity).

|                    | Scale  |                                                                                                                             |                                                                                                                                            |
|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Type               | Points | Response Options                                                                                                            | Instrument (and Citation)                                                                                                                  |
| ability/disability | 7      | far above average; above average; slightly above average; average; slightly below average; below average; far below average | Strengths and Weaknesses of Attention-<br>Deficit/Hyperactivity-symptoms and<br>Normal-behaviors (SWAN; Swanson,<br>Deutsch, et al., 2001) |
| ability/disability | 7      | far above average; above average; slightly above average; average; slightly below average; below average; far below average | Extended Strengths and Weaknesses of Attention-Deficit/Hyperactivity-symptoms and Normal-behaviors (E–SWAN; Alexander et al., 2020)        |
| agreement          | 3      | not true; somewhat true; certainly true                                                                                     | Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997)                                                                              |
| agreement          | 3      | not true; somewhat true; certainly true                                                                                     | Affective Reactivity Index (ARI; Stringaris et al., 2012)                                                                                  |
| agreement          | 4      | not at all; just a little; quite a bit; very much                                                                           | Swanson, Nolan, and Pelham Rating<br>Scale–IV (SNAP–IV; Swanson,<br>Kraemer, et al., 2001)                                                 |
| agreement          | 4      | not at all; just a little; pretty much; very much                                                                           | Adolescent Antisocial Behavior<br>Checklist (AABC; Curtiss et al., 1983)                                                                   |
| agreement          | 4      | not true at all about me; 2 midpoint anchors; completely true about me                                                      | Little's Forms and Functions of Aggression (Little et al., 2003)                                                                           |
| agreement          | 4      | strongly disagree; disagree; strongly agree                                                                                 | Substance Use Risk Profile Scale (SURPS; Woicik et al., 2009)                                                                              |
| agreement          | 4      | not at all true; somewhat true; very true; definitely true                                                                  | Inventory of Callous-Unemotional Traits (ICU; Frick, 2003)                                                                                 |

| agreement | 4 | not true at all; just a little; pretty much true; very much true                                                                                                                                                                                                                                                                                                     | Conners-4 (Conners, 2022)                                                                               |
|-----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| agreement | 4 | not at all true; somewhat true; very true; definitely true                                                                                                                                                                                                                                                                                                           | Peer Conflict Scale (PCS; Marsee & Frick, 2007)                                                         |
| agreement | 5 | The child has never exhibited this behavior or attribute; (Use this number when the choice between '1' and '3' is difficult); The child displays this behavior or attribute about the same as other children his or her age; (Use this number when the choice between '3' and '5' is difficult); The child displays this behavior or attribute to a very high degree | Human Behavior Rating Scale (HBRS; Woods-Groves, 2015)                                                  |
| agreement | 5 | strongly disagree; disagree; neither agree or disagree; agree; strongly agree                                                                                                                                                                                                                                                                                        | Internet Gaming Disorder Test (IGD–20; Pontes et al., 2014)                                             |
| agreement | 5 | very untrue of me; moderately untrue of me; neither true nor untrue of me; moderately true of me; very true of me                                                                                                                                                                                                                                                    | Comprehensive Assessment of Traits<br>Relevant to Personality Disorder (CAT–<br>PD; Simms et al., 2011) |
| agreement | 6 | strongly disagree; disagree; weakly disagree; weakly agree; agree; strongly agree                                                                                                                                                                                                                                                                                    | Smartphone Addiction Scale (SAS;<br>Kwon et al., 2013)                                                  |
| agreement | 7 | extremely untrue of your child; quite untrue of your child; slightly untrue of your child; neither true nor false of your child; slightly true of your child; quite true of your child; extremely true of your child                                                                                                                                                 | Children's Behavior Questionnaire (CBQ; Rothbart et al., 2001)                                          |
| frequency | 3 | hardly ever; sometimes; often                                                                                                                                                                                                                                                                                                                                        | Pediatric Anger Expression Scale (PAES; Jacobs et al., 1989)                                            |
| frequency | 3 | never; sometimes; often                                                                                                                                                                                                                                                                                                                                              | Pediatric Symptom Checklist (PSC;<br>Jellinek et al., 1988)                                             |
| frequency | 3 | never; sometimes; often                                                                                                                                                                                                                                                                                                                                              | Reactive—Proactive Aggression<br>Questionnaire (RPAQ; Raine et al.,<br>2006)                            |
| frequency | 3 | not true; somewhat true/sometimes; very true/often                                                                                                                                                                                                                                                                                                                   | Infant–Toddler Social Emotional<br>Assessment (ITSEA; Carter et al., 2003)                              |

| frequency | 3 | never; sometimes; often                                                                                                                                  | Children's Social Behavior<br>Questionnaire (CSBQ; Luteijn et al.,<br>1998)                                                      |
|-----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| frequency | 3 | doesn't apply (seldom displays this behavior); applies sometimes (occasionally displays this behavior); certainly applies (often displays this behavior) | Child Behavior Scale (CBS; Ladd & Profilet, 1996)                                                                                |
| frequency | 3 | often true; sometimes true; not true                                                                                                                     | Behavior Problems Inventory (BPI;<br>Rojahn et al., 2001)                                                                        |
| frequency | 3 | hardly ever; sometimes; often                                                                                                                            | Children's Anger Management Scales (CAMS; Zeman et al., 2002)                                                                    |
| frequency | 3 | never; sometimes; very often                                                                                                                             | Revised Teacher Rating Scale for<br>Reactive and Proactive Aggression<br>(RPRA; Brown et al., 1996)                              |
| frequency | 4 | never; occasionally (sometimes); often; always                                                                                                           | Multidimensional School Anger<br>Inventory (MSAI; Furlong et al., 2002)                                                          |
| frequency | 4 | never; rarely/seldom; occasionally; frequently                                                                                                           | Student Externalizing Behavior Screener (SEBS; Cook, 2012)                                                                       |
| frequency | 4 | never; occasionally; often; very often                                                                                                                   | Vanderbilt ADHD Diagnostic<br>Parent/Teacher Rating Scale (Wolraich<br>et al., 1998)                                             |
| frequency | 4 | never or rarely; sometimes; often; very often                                                                                                            | Barkley Adult ADHD Rating Scale (BAARS; Barkley, 2011)                                                                           |
| frequency | 4 | never; sometimes; often; almost always                                                                                                                   | Behavior Assessment System for<br>Children–Third Edition (BASC–3;<br>Reynolds & Kamphaus, 2015)                                  |
| frequency | 4 | almost never; sometimes; often; almost always                                                                                                            | Anger Expression Scale (AES;<br>Spielberger et al., 1985); Anger<br>Expression Scale for Children (AESC;<br>Steele et al., 2009) |
| frequency | 4 | never; sometimes; often; almost always                                                                                                                   | Social Skills Improvement System (SSIS; Gresham & Elliott, 2008)                                                                 |

| frequency | 4 | never; occasionally; sometimes; frequently                                              | Student Risk Screening Scale—<br>Internalizing & Externalizing (SRSS—<br>IE; Lane et al., 2015)                       |
|-----------|---|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| frequency | 4 | never; sometimes; often; very often                                                     | Child/Adolescent Symptom Inventory–4 (CSI/ASI–4; Gadow & Sprafkin, 1997)                                              |
| frequency | 4 | never; sometimes; often; almost always                                                  | Social, Academic, and Emotional<br>Behavior Risk Screener (SAEBRS;<br>Kilgus et al., 2016)                            |
| frequency | 4 | never; rarely true; sometimes true; often true                                          | Preschool and Kindergarten Behavior<br>Scales (PKBS; Merrell, 1996)                                                   |
| frequency | 4 | never; sometimes; often; very often                                                     | Past Feelings and Acts of Violence (PFAV; Plutchik & van Praag, 1990)                                                 |
| frequency | 5 | never; almost never; sometimes; almost all of the time; all of the time                 | Children's Social Behavior Scale (CSBS; Crick & Grotpeter, 1995)                                                      |
| frequency | 5 | never; almost never; sometimes; almost always; always                                   | Patient Reported Outcome Measurement<br>Information System (PROMIS; Cella et<br>al., 2007)                            |
| frequency | 5 | not at all; rarely; occasionally; often; always                                         | Internet Addiction Test (IAT; Young, 1998)                                                                            |
| frequency | 5 | never; rarely; occasionally; frequently; very frequently                                | Devereux Early Child Assessment (DECA; LeBuffe & Naglieri, 1999)                                                      |
| frequency | 5 | very often; sometimes; seldom; never                                                    | Community and Youth Collaborative<br>Institute School Experience Surveys<br>(CAYCI; Anderson-Butcher et al.,<br>2013) |
| frequency | 6 | rarely; never; occasionally; often; almost always; always                               | Barratt Impulsiveness Scale (BIS;<br>Patton et al., 1995)                                                             |
| frequency | 7 | never; very rarely; less than half the time; about half the time; almost always; always | Infant Behavior Questionnaire–Revised (IBQ–R; Gartstein & Rothbart, 2003)                                             |
| frequency | 7 | never; seldom; sometimes; often; always                                                 | Eyberg Child Behavior Inventory (ECBI; Eyberg & Ross, 1978)                                                           |

| hybrid                           | 3 | never or not true; sometimes or somewhat true; often or very true                                                               | MacArthur Health and Behavior<br>Questionnaire (HBQ; Essex et al., 2002)                                                          |
|----------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| hybrid                           | 3 | not true; somewhat or sometimes true; very true or often true                                                                   | Child Behavior Checklist (CBCL;<br>Achenbach & Rescorla, 2001) and<br>Achenbach System of Empirically<br>Based Assessment (ASEBA) |
| hybrid                           | 3 | does not happen; mild or infrequent problem; moderately serious and/or frequent problem                                         | Children's Scale of Hostility and<br>Aggression: Reactive/Proactive (C-SHARP; Farmer & Aman, 2009)                                |
| hybrid                           | 5 | almost always untrue; usually untrue; sometimes true or sometimes untrue; usually true; almost always true                      | Temperament in Middle Childhood<br>Questionnaire (TMCQ; Simonds &<br>Rothbart, 2004)                                              |
| recency                          | 3 | recent or new problem (6 months or less); long time (more than 6 months); always                                                | Interview for Antisocial Behavior (IAB;<br>Kazdin & Esveldt-Dawson, 1986)                                                         |
| severity<br>(expanded<br>format) | 5 | response options are particular behaviors ranging from less to more severe; includes labels such as "minor", "major", "serious" | Modified Overt Aggression Scale (MOAS; Kay et al., 1988)                                                                          |
| severity                         | 6 | not a problem; slight problem; moderate problem; serious problem (responses allow midpoints)                                    | Direct Behavior Rating Multi-Item<br>Scales–Externalizing (DBR–MIS–E;<br>Daniels et al., 2021)                                    |

## **Supplementary Table S2.**

Relative Strengths and Weaknesses of Vague and Numeric Quantifiers.

|                                                                                     |                   | Closed-Ended               | Open-Ended                                                                                                              |
|-------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Consideration                                                                       | Vague Quantifiers | Numeric Quantifiers        | Numeric Quantifiers                                                                                                     |
| Time to complete                                                                    | shorter           | shorter                    | longer                                                                                                                  |
|                                                                                     |                   |                            | harder (but can be reduced<br>by allowing participants to<br>select the timeframe on<br>which it is easiest to estimate |
| Ease of completion                                                                  | easier            | easier                     | the frequency of a behavior)                                                                                            |
| Potential for item-level missingness                                                | lower             | lower                      | higher higher/may require more complex scoring approaches, such as latent variable modeling that require larger         |
| Difficulty to score                                                                 | lower             | lower                      | samples                                                                                                                 |
| Measurement error as behavior frequency increase                                    | s may increase    | may increase               | may increase                                                                                                            |
| Subjectivity/objectivity                                                            | more subjective   | more objective             | more objective                                                                                                          |
| Meaning of quantifier                                                               |                   |                            |                                                                                                                         |
| by rater (e.g., attitude toward behavior; their                                     |                   |                            |                                                                                                                         |
| frequency of engaging in behavior)                                                  | differs           | presumably does not differ | presumably does not differ                                                                                              |
| by demographic characteristics of rater                                             | differs           | presumably does not differ | presumably does not differ                                                                                              |
| by culture                                                                          | differs           | presumably does not differ | presumably does not differ                                                                                              |
| by situation                                                                        | differs           | presumably does not differ | presumably does not differ                                                                                              |
| by context in which quantifier is used (e.g., the response options and their order) | differs           | presumably does not differ | presumably does not differ                                                                                              |
| by item/behavior/event of interest (e.g., base rate                                 |                   | presumably does not differ | presumably does not differ                                                                                              |
| Susceptibility to bias including cultural bias                                      | higher            | lower                      | lower                                                                                                                   |

| Conflates frequency and impairment                  | yes                | no                           | no                             |
|-----------------------------------------------------|--------------------|------------------------------|--------------------------------|
| Involves social referencing (i.e., reference group) | yes                | no                           | no                             |
| Reference group used differs between raters         | yes                | n/a                          | n/a                            |
| Relation between actual frequency and reported      | can be inversely   |                              |                                |
| frequency                                           | related            | presumably positively relate | dpresumably positively related |
| Different items may require different frequency     |                    |                              |                                |
| response options                                    | no                 | yes                          | no                             |
| Provides normative presumptions to the responden    | t                  |                              |                                |
| for how commonly the behavior tends to occur in     |                    |                              |                                |
| the population, which may elicit lower endorsemen   | nt                 |                              |                                |
| rates for sensitive/stigmatized behavior            | no                 | yes                          | no                             |
| Frequency ranges provided by the researchers alter  |                    |                              |                                |
| responses                                           | n/a                | yes                          | no                             |
| Artificially restricted number of response options  | yes                | yes                          | no                             |
| Potential for restricted variability                | higher             | higher                       | lower                          |
| Potential for sensitivity to change (responsivity)  | lower              | lower                        | higher                         |
|                                                     | lower; can obscure |                              |                                |
|                                                     | differences across |                              |                                |
|                                                     | development/groups |                              |                                |
| Potential for sensitivity to differences in level   | due to social      |                              |                                |
| across development or groups                        | referencing        | medium                       | higher                         |
| Distance between the response categories            | differs            | can differ                   | does not differ                |
| Capacity to assess the full range of individual     |                    |                              |                                |
| differences                                         | lower              | medium                       | higher                         |
| Potential for examining associations with external  | 1                  | 1.                           | 1 . 1                          |
| criteria                                            | lower              | medium                       | higher                         |
| Potential for understanding construct of interest   | lower              | medium                       | higher                         |
| Potential for understanding how frequent a behavior |                    |                              |                                |
| is considered developmentally typical or atypical a |                    | m dinm                       | hi ah an                       |
| a given age                                         | lower              | medium                       | higher                         |
| Precision                                           | lower              | medium                       | higher                         |

| Interpretability                   | lower | medium | higher |
|------------------------------------|-------|--------|--------|
| Meaningfulness of central tendency | lower | medium | higher |

*Note*. Gray cells indicate relative strengths. Rows in the top section (i.e., before the first dashed line) indicate relative strengths of vague quantifiers. Rows in the middle section (i.e., in between the two dashed lines) indicate shared weaknesses of all quantifiers. Rows in the bottom section (i.e., after the second dashed line) indicate relative strengths of numeric quantifiers.

**Supplementary Table S3.** 

Example Measures of Externalizing Behavior (and Related Constructs) That Use Numeric Quantifiers of Absolute Frequency.

| Quantifier              | Scale<br>Points | Response Options                                                                                                                                            | Reference<br>Timeframe                | Instrument (and Citation)                                                               |
|-------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| numeric                 | 3               | never; once or twice; three or more times                                                                                                                   | not specified,<br>implied<br>lifetime | Self-Report Early Delinquency (SRED; Moffitt & Silva, 1988)                             |
| vague/numeric<br>hybrid | 3               | never; once or twice; more often                                                                                                                            | past 6 months                         | Self-Report of Antisocial<br>Behavior Scale (SRABS; Loeber<br>et al., 1989)             |
| vague/numeric<br>hybrid | 3               | never; once or twice; many times or often                                                                                                                   | past year                             | Self-Administered Questionnaire<br>of Delinquency (SAQD; Le<br>Blanc & Fréchette, 2013) |
| numeric                 | 4               | 0; 1; 2; 3+                                                                                                                                                 | past 12<br>months; since<br>age 14    | Sexual Experiences Survey–<br>Perpetration (SES–P; Koss et al., 2007)                   |
| numeric                 | 4               | never; once; two or three times; four or more (the specific numeric ranges differ from item to item)                                                        | past 3 years                          | Self-Reported Delinquency<br>(West & Farrington, 1977)                                  |
| numeric                 | 5               | never; once; monthly; weekly; daily                                                                                                                         | past 12 months                        | Conduct Disorder Rating Scale (CDRS; Waschbusch & Elgar, 2007)                          |
| numeric                 | 5               | never; 1–2 times; 3–5 times; 6–10 times; more than 10 times                                                                                                 | past year                             | Rutgers Alcohol Problem Index (RAPI; White & Labouvie, 1989)                            |
| numeric                 | 5               | never; once a month or less; once a week or less; 2–3 times a week; most days; some questions are: once or twice; 3–5 times; 6–10 times; more than 10 times | • •                                   | Children's Aggression Scale (CAS; Halperin et al., 2002)                                |
| numeric                 | 5               | never; once or twice; a few times; about once a week; a few times a week                                                                                    | not specified                         | (Revised) Peer Experiences<br>Questionnaire (R–PEQ; Prinstein<br>et al., 2001)          |

| numeric            |        | 5 | never; once or twice; a few times; about once a week; a few times a week                                                                                                                    | past 2 months                                                                | Cyber Peer Experiences<br>Questionnaire (C–PEQ; Landoll<br>et al., 2015)                                                   |
|--------------------|--------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| numeric            |        | 5 | once/month or less; once/week; three to four times/week; once/day; many times/day                                                                                                           | not specified                                                                | Types of Antisocial Behavior (TAB; Willoughby et al., 2001)                                                                |
| numeric            |        | 5 | never; monthly or less; 2–4 times a month; 2–3 times a week; 4 or more times a week                                                                                                         | some items,<br>but not all,<br>specify past<br>year                          | Alcohol Use Disorders<br>Identification Test (AUDIT;<br>Saunders & Aasland, 1987)                                          |
| numeric            |        | 5 | 0 times; 1–2 times; 3–5 times; 6–10 times; more than 10 times; if more than 10, participant is asked the number of times in an open-ended way                                               | the 3 years<br>prior to<br>beginning of<br>prison term                       | Prison Survey Questionnaire; (PSQ; Peterson et al., 1980)                                                                  |
| vague/nı<br>hybrid | umeric | 5 | never (0 times); sometimes (1–2 times); often (3–4 times); usually (5–10 times); always (> 10 times)                                                                                        | past week                                                                    | Retrospective Overt Aggression<br>Scale (ROAS; Sorgi et al., 1991)                                                         |
| vague/ni<br>hybrid | umeric | 5 | never; once or twice; 3 or 4 times; pretty often or almost every day  (adaptation by Posner & Vandell: never; once or twice; about once a week; 2–3 times per week; 4 or more times a week) | past month  (adaptation by Posner & Vandell: since beginning of school term) | Self-Reported Behavior Index<br>(SRBI; Brown et al., 1986),<br>adapted as the Misconduct Scale<br>(MS) by Posner & Vandell |
| numeric            |        | 6 | never; 1–2 times; 3–5 times; 6–9 times; 10–19 times; 20 or more times                                                                                                                       | past 30 days                                                                 | Problem Behavior Frequency<br>Scale (PBFS; Farrell et al., 2016)                                                           |
| vague/no<br>hybrid | umeric | 6 | never; rarely (less than once per week); some (1–3) days of the week; most (4–6) days of the week; every day of the week; many times each day                                               | past month                                                                   | Multidimensional Assessment of<br>Preschool Disruptive Behavior<br>(MAP–DB; Wakschlag et al.,<br>2014)                     |
| vague/n<br>hybrid  | umeric | 6 | almost never (never or about once per month);<br>seldom (about once per week); sometimes (several<br>times per week); often (about once per day); very                                      | past month                                                                   | Child and Adolescent Behavior<br>Inventory (CABI; Burns et al.,<br>2018)                                                   |

|                         |   | often (several times per day); almost always (many times per day)                                                                                                                                                                                        |               |                                                                                                   |
|-------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------|
| vague/numeric<br>hybrid | 6 | never; rarely; several times a month; weekly; at least 3 times/week; daily                                                                                                                                                                               | not specified | Emotional Outburst Inventory (EMO–I; Carlson et al., 2022)                                        |
| numeric                 | 7 | not in the last month (or never); once a month; about twice a month; once a week; about twice a week; more than twice a week / half the days; daily or almost daily                                                                                      | past month    | International Mental Health<br>Assessment (IMHA; Thalmayer<br>et al., 2023)                       |
| numeric                 | 7 | not in my presence; one time in several months; several times, up to one time a month; more than one time a month, up to one time a week; more than one time a week, up to once a day; more than once a day, up to once an hour; more than once an hour  | not specified | Emotional and Behavior Problem<br>Scale–2 (EBPS–2; McCarney &<br>Arthaud, 2001)                   |
| numeric                 | 7 | not in my presence; one time in several months; several times, up to one time a month; more than one time a month, up to one time a week; more than one time a week, up to once a day; more than once a day, up to once an hour; more than once and hour | not specified | Behavior Disorders Identification<br>Scale (BDIRS–2:R; McCarney &<br>Arthaud, 2010)               |
| numeric                 | 7 | not in the past 6 months; one time in the past 6 months; two times in the past 6 months; once per month in the past 6 months; once per week in the past 6 months; once per day in the past 6 months; more than once per day in the past 6 months         | past 6 months | Child and Adolescent Disruptive<br>Behavior Inventory–Parent<br>(CADBI–P; Burns et al., 2001)     |
| numeric                 | 7 | never; once a month; once every 2–3 weeks; once a week; 2–3 times a week; once a day; 2–3 times a day                                                                                                                                                    | past year     | Self-Report Delinquency (SRD)<br>in the National Youth Survey<br>(Elliott & Ageton, 1980)         |
| numeric                 | 8 | never in past month; 1–2 times in past month; 3-4 times in past month; 2–6 times per week; 1 time per day; 2–5 times per day; 6–9 times per day; 10 or more times per day                                                                                | past month    | Child and Adolescent Disruptive<br>Behavior Inventory Screener<br>(CADBI–S; Choplin et al., 2018) |

| numeric | 8              | this has never happened; once in the past 6 months; twice in the past 6 months; 3–5 times in the past 6 months; 6–10 times in the past 6 months; 11–20 times in the past 6 months; more than 20 times in the past 6 months; not in the past 6 months, but it did happen before | past 6 months                                                                              | Cyber Aggression in<br>Relationships Scale (CARS;<br>Watkins et al., 2018)                  |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| numeric | 8              | this has never happened; not in the past year, but it did happen before; once in the past year; twice in the past year; 3–5 times in the past year; 6–10 times in the past year; 11–20 times in the past year; more than 20 times in the past year                             | past year                                                                                  | Revised Conflict Tactics Scale (CTS2; Straus et al., 1996)                                  |
| numeric | unknown        |                                                                                                                                                                                                                                                                                | as a juvenile<br>(before age<br>18); as an adult<br>(since age 18)                         | Self-Report of Delinquency and<br>Crime (SRDC; Thornberry &<br>Farnworth, 1982)             |
| numeric | open-<br>ended | number of drinking days; number of drinks consumed on every drinking day                                                                                                                                                                                                       | varies; ranges<br>from 7 days to<br>24 months                                              | Timeline Follow-back (TLFB; Sobell & Sobell, 1992)                                          |
| numeric | open-<br>ended | observer tally of child behaviors during a 30-minute interval                                                                                                                                                                                                                  | 30 minutes                                                                                 | Student Behavior Teacher<br>Response System (SBTR;<br>Pelham et al., 2008)                  |
| numeric | open-<br>ended | First, the participant endorsed whether they have ever done/taken part in a behavior; if they indicated "Yes", they were asked how many times they engaged in the behavior: "about how many times this spring (from Christmas until now)?"                                     | academic<br>term—i.e.,<br>"this spring<br>(from<br>Christmas until<br>now)"; ~ 5<br>months | Bergen Questionnaire on<br>Antisocial Behavior (BQAB;<br>Bendixen & Olweus, 1999)           |
| numeric | open-<br>ended | number of instances per day for each of various criminal behaviors that resulted in economic benefit                                                                                                                                                                           | past 7 days                                                                                | Economic Behavior Study<br>Weekly/Daily Data Collection<br>Form (EBS; Johnson et al., 1983) |

| numeric                 | open-<br>ended | "How many times in the last year have you"?; "How often in the last year have you used"?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | past year                                                                                                                                          | Self-Report Delinquency (SRD)<br>in the National Youth Survey<br>(Elliott & Ageton, 1980) |
|-------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| numeric                 | open-<br>ended | number of instances for each of various delinquent<br>behaviors (up to a maximum of 99 per behavior)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | past year                                                                                                                                          | Seattle Self-Report Instrument (SSRI; Hindelang et al., 1981)                             |
| numeric                 | open-<br>ended | number of instances for each of various criminal behaviors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | past year                                                                                                                                          | Current Criminal Activity (CCA; Inciardi, 1979)                                           |
| numeric                 | open-<br>ended | number of instances for each of various criminal behaviors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cumulative<br>(i.e., during<br>adolescence<br>and up to the<br>mid-20s) and,<br>separately, per<br>year                                            | Semi-structured Interview of<br>Delinquency (SSID; Le Blanc &<br>Fréchette, 2013)         |
| numeric                 | open-<br>ended | number of instances for each of various criminal behaviors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lifetime                                                                                                                                           | Interview of Offending (Erickson & Empey, 1963)                                           |
| vague/numeric<br>hybrid | open-<br>ended | First, the participant endorsed whether they have ever done/taken part in a behavior; if they indicated "Yes", they indicated how many times they engaged in the behavior: "1 to 10" or "11 or more". If they indicated 1 to 10, they were asked how many times. If they indicated "11 or more", they were asked how many months they engaged in the behavior and the most appropriate timeframe ("everyday or almost everyday"; "several times a week; "every week or almost every week"; "less than every week") and how many times per that timeframe (e.g., per day, per week, or per month). | January 1 of<br>the year<br>preceding their<br>arrest for the<br>current<br>conviction<br>through the<br>month of their<br>arrest; 13–24<br>months | Rand Corporation Survey of<br>Prison and Jail Inmates (Peterson<br>et al., 1982)          |

## Measures with only one or a few numeric quantifier items

| numeric | 4              | no rage attacks occurred; 1–2 rage attacks occurred; 3–7 rage attacks occurred, but not every day; at least one rage attack occurred each day |               | Rage Outbursts and Anger Rating<br>Scale (ROARS; Nadeau et al.,<br>2016) |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|
| numeric | open-<br>ended | "How many times must you tell X to do something before s/he will do it?"                                                                      | not specified | Preschool Age Psychiatric<br>Assessment (PAPA; Egger &<br>Angold, 2004)  |
| numeric | open-<br>ended | "How many rage attacks of this type has your child had over the past week?"                                                                   | past week     | Rage Attacks Questionnaire (RAQ; Budman et al., 2003)                    |
| numeric | open-<br>ended | "How many times in the past year?"                                                                                                            | past year     | Denver Youth Survey (DYS;<br>Huizinga, 1991)                             |

**Supplementary Table S4.** 

Racial/Ethnic Composition of the Sample.

| Race/Ethnicity                            | n     | %    | Subclassification                               | n     | %    |
|-------------------------------------------|-------|------|-------------------------------------------------|-------|------|
| Hispanic, Latino/a/x, or Spanish origin   | 86    | 7.0  |                                                 |       |      |
| -                                         |       |      | Mexican, Mexican American, or                   | 47    | 3.8  |
|                                           |       |      | Chicano                                         |       |      |
|                                           |       |      | Puerto Rican                                    | 12    | 1.0  |
|                                           |       |      | Cuban                                           | 0     | 0.0  |
|                                           |       |      | Another Hispanic, Latino/a/x, or Spanish origin | 27    | 2.2  |
| White                                     | 1,137 | 92.0 | +                                               | 1,137 | 92.0 |
| Black or African American                 | -     | 3.6  |                                                 | 44    | 3.6  |
| American Indian or Alaska                 | 15    | 1.2  |                                                 | 15    | 1.2  |
| Native                                    |       |      |                                                 |       |      |
| Asian                                     | 64    | 5.2  |                                                 |       |      |
|                                           |       |      | Asian Indian                                    | 9     | 0.7  |
|                                           |       |      | Chinese                                         | 15    | 1.2  |
|                                           |       |      | Filipino                                        | 14    | 1.1  |
|                                           |       |      | Japanese                                        | 5     | 0.4  |
|                                           |       |      | Korean                                          | 4     | 0.3  |
|                                           |       |      | Vietnamese                                      | 11    | 0.9  |
|                                           |       |      | Other Asian                                     | 10    | 0.8  |
| Native Hawaiian or Other Pacific Islander | 1     | 0.1  |                                                 |       |      |
|                                           |       |      | Native Hawaiian                                 | 1     | 0.1  |
|                                           |       |      | Guamanian or Chamorro                           | 0     | 0.0  |
|                                           |       |      | Samoan                                          | 0     | 0.0  |
|                                           |       |      | Other Pacific Islander                          | 0     | 0.0  |
| Multiracial                               | 55    | 4.4  |                                                 | 55    | 4.4  |
| Other Race                                | 31    | 2.5  |                                                 |       |      |
|                                           |       |      | Arab, Middle Eastern, or North<br>African       | 11    | 0.9  |
|                                           |       |      | Other                                           | 20    | 1.6  |

*Note*. The racial and ethnic categories specified are based on the 2020 U.S. Census. We added an option for "Arab, Middle Eastern, or North African." The cells sum to greater than 100% because participants were allowed to select multiple racial categories.

# **Supplementary Table S5.**

### Externalizing Problem Items

| Variable        | Iten | n Wording                                                                       |
|-----------------|------|---------------------------------------------------------------------------------|
| es_frequency_1  | 1    | I show off                                                                      |
| es_frequency_2  | 2    | I brag or boast                                                                 |
| es_frequency_6  | 6    | I feel like I cannot stop engaging in an unessential activity                   |
| es_frequency_7  | 7    | I blame others for my own mistakes                                              |
| es_frequency_8  | 8    | I blame others for my poor performance                                          |
| es_frequency_10 | 10   | I get bored during a given activity                                             |
| es_frequency_14 | 14   | I injure other people to see them in pain                                       |
| es_frequency_15 | 15   | I threaten others                                                               |
| es_frequency_16 | 16   | I hurt others' feelings on purpose                                              |
| es_frequency_17 | 17   | I have fights with others to show who is on top                                 |
| es_frequency_18 | 18   | I use physical force, or threaten to use force, to get others to do what I want |
| es_frequency_27 | 27   | I tell little lies or "white" lies                                              |
| es_frequency_28 | 28   | I tell big lies                                                                 |
| es_frequency_29 | 29   | I cheat in games or activities                                                  |
| es_frequency_30 | 30   | I lie to get out of things that I don't want to do                              |
| es_frequency_31 | 31   | I lie to get ahead at work or school                                            |
| es_frequency_32 | 32   | I talk someone into having sex with me                                          |
| es_frequency_33 | 33   | I get things from people by making them feel sorry for me                       |
| es_frequency_34 | 34   | I exaggerate when describing events                                             |
| es_frequency_39 | 39   | I miss things I promised to attend                                              |
| es_frequency_40 | 40   | I have problems at work or school because I was irresponsible                   |
| es_frequency_41 | 41   | I complete tasks or assignments late                                            |
| es_frequency_42 | 42   | I do not live up to my end of a contract                                        |
| es_frequency_51 | 51   | I break or destroy things belonging to others on purpose                        |

| es_frequency_52  | 52  | I vandalize public property                                                     |
|------------------|-----|---------------------------------------------------------------------------------|
| es_frequency_53  | 53  | I vandalize a house or private property                                         |
| es_frequency_54  | 54  | I damage property                                                               |
| es_frequency_58  | 58  | I hang around people who get in trouble                                         |
| es_frequency_59  | 59  | My friends get drunk                                                            |
| es_frequency_60  | 60  | My friends use drugs                                                            |
| es_frequency_61  | 61  | My friends commit violent or property crime                                     |
| es_frequency_62  | 62  | My friends get suspended or fired                                               |
| es_frequency_64  | 64  | I avoid or am reluctant to engage in tasks that require sustained mental effort |
| es_frequency_65  | 65  | I lose things                                                                   |
| es_frequency_70  | 70  | I try to intimidate others                                                      |
| es_frequency_71  | 71  | I send messages to someone after they asked me to stop                          |
| es_frequency_72  | 72  | I check or track someone's Internet activity without their permission           |
| es_frequency_76  | 76  | I get hurt doing something for the thrill                                       |
| es_frequency_77  | 77  | I do something risky for enjoyment, fun, or pleasure                            |
| es_frequency_78  | 78  | I do something fun that others think is too dangerous                           |
| es_frequency_79  | 79  | I do something illegal because it is exciting                                   |
| es_frequency_80  | 80  | I seek out dangerous situations                                                 |
| es_frequency_81  | 81  | I do something to feel adrenaline                                               |
| es_frequency_89  | 89  | I act with hostility toward others                                              |
| es_frequency_90  | 90  | I snap or raise my voice at others when irritated                               |
| es_frequency_91  | 91  | I show anger or irritability in response to minor slights or insults            |
| es_frequency_92  | 92  | I get back at someone who I feel has wronged me                                 |
| es_frequency_96  | 96  | I talk a lot                                                                    |
| es_frequency_100 | 100 | I do things that put others in danger                                           |
| es_frequency_101 | 101 | I lose valuable goods or money because I decide things too quickly              |
| es_frequency_102 | 102 | I skip school, work, or meetings to satisfy sudden urges                        |
| es_frequency_112 | 112 | I leave dirty clothes on the floor for 30 minutes or longer                     |
| es_frequency_113 | 113 | I damage a relationship with a friend because of something irresponsible I do   |
| _ <i>-</i>       |     |                                                                                 |

| es_frequency_114 | 114 | I miss a rent or mortgage payment                                                                |
|------------------|-----|--------------------------------------------------------------------------------------------------|
| es_frequency_115 | 115 | I do things that may cause me trouble with the law                                               |
| es_frequency_123 | 123 | I get grumpy                                                                                     |
| es frequency 124 | 124 | I feel like I might snap                                                                         |
| es_frequency_125 | 125 | Other people get on my nerves                                                                    |
| es_frequency_126 | 126 | Things bother me                                                                                 |
| es_frequency_127 | 127 | I feel irritable                                                                                 |
| es_frequency_128 | 128 | I lose my temper                                                                                 |
| es_frequency_129 | 129 | I throw or kick things out of anger or frustration                                               |
| es_frequency_130 | 130 | I have sudden mood changes                                                                       |
| es_frequency_131 | 131 | I overreact to things                                                                            |
| es_frequency_136 | 136 | I have difficulty organizing tasks or activities                                                 |
| es_frequency_142 |     | I perform poorly at school or work                                                               |
|                  |     | I pretend to be angrier than I really am about someone's behavior in order to get them to behave |
| es_frequency_150 |     | differently in the future                                                                        |
| es_frequency_151 |     | I use emotional skills to make others feel guilty                                                |
| C 150            |     | I make someone feel ashamed about something that they have done in order to stop them from doing |
| es_frequency_152 |     | it again                                                                                         |
| es_frequency_153 |     | I pay someone compliments so that they are more likely to do things for me in the future         |
| es_frequency_168 |     | I argue                                                                                          |
| es_frequency_169 |     | I deliberately annoy others                                                                      |
| es_frequency_170 | 170 | I get in power struggles with others                                                             |
| es_frequency_175 | 175 | I physically fight someone                                                                       |
| es_frequency_176 | 176 | I hit, kick, or push someone                                                                     |
| es_frequency_177 | 177 | I throw something at someone who angers me                                                       |
| es_frequency_178 | 178 | I carry a weapon to use in a fight                                                               |
| es_frequency_187 | 187 | I break rules                                                                                    |
| es_frequency_188 | 188 | I cause problems by not following rules                                                          |
| es_frequency_189 | 189 | I perform acts that are grounds for arrest                                                       |
| es_frequency_192 | 192 | I gossip                                                                                         |
|                  |     |                                                                                                  |

| es_frequency_193 | 193 I pit people against each other                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------|
| es_frequency_194 | 194 I avoid talking to someone because I am upset with them                                                |
| es_frequency_195 | 195 I say mean things (that may or may not be true) about others when they are not around                  |
| es_frequency_196 | 196 I isolate or ostracize others from a group                                                             |
| es_frequency_197 | 197 I post, re-post, or text an embarrassing photo or video of someone that they do not want others to see |
| es_frequency_198 | 198 I intentionally ignore someone's phone calls or text messages to hurt their feelings                   |
| es_frequency_200 | 200 I send a sexually suggestive message or picture to another that they do not want to receive            |
| es_frequency_201 | 201 I pressure someone to send sexual or naked photos of themselves to me                                  |
| es_frequency_203 | 203 I threaten to tell others a secret or lie to convince someone to have sex                              |
| es_frequency_205 | 205 I threaten to break up with someone if they don't have sex                                             |
| es_frequency_214 | 214 I drink four or more (five or more for men) alcoholic beverages on one occasion?                       |
| es_frequency_215 | 215 I vape                                                                                                 |
| es_frequency_216 | 216 I use cannabis/pot/marijuana                                                                           |
| es_frequency_217 | 217 I use tobacco                                                                                          |
| es_frequency_218 | 218 I use illegal drugs                                                                                    |
| es_frequency_219 | 219 I use medicine without a doctor's prescription to change the way I feel                                |
| es_frequency_220 | 220 I drive while intoxicated                                                                              |
| es_frequency_221 | 221 I do risky things to get drugs                                                                         |
| es_frequency_222 | 222 I sell drugs to others                                                                                 |
| es_frequency_223 | 223 On how many occasions do you drink any kind of alcoholic beverage (e.g., beer, wine, liquor, etc.)?    |
| es_frequency_224 | 224 On these occasions, how many alcoholic beverages did you drink per occasion on average?                |
| es_frequency_226 | 226 I take an item from a store without paying for it                                                      |
| es_frequency_227 | 227 I download files illegally                                                                             |
| es_frequency_229 | 229 I take items that are more expensive than what I paid for                                              |
| es_frequency_230 | 230 I take things when others aren't looking                                                               |
| es_frequency_231 | 231 I buy things using a stolen credit card or credit card number                                          |
| es_frequency_232 | 232 I embezzle money                                                                                       |
| es_frequency_233 | 233 I break into someone else's home, car, or building                                                     |
| es_frequency_239 | 239 I get angry when others provoke me                                                                     |

```
es frequency 240
                          240 I get into verbal fights
es frequency 241
                          241 I shout or make loud noises angrily
es frequency 242
                          242 I curse or swear at people
es frequency 243
                          243 I insult others
es frequency 244
                          244 I tease others
es frequency 245
                          245 I verbally assault others
es frequency 246
                          246 I make hurtful comments to others
                          247 I make hurtful comments about others
es frequency 247
es frequencyLifetime 35 35 I defrauded others for money
es frequencyLifetime 55 55 I deliberately started fires that caused damage
es frequencyLifetime 103 103 I did something on impulse that led to others getting badly hurt or killed
es frequencyLifetime 117 117 I did not show up to court when I was supposed to
es frequencyLifetime 118 118 I was fired from a job
es frequencyLifetime 179 179 I used a weapon against someone
es frequencyLifetime 206 206 I forced someone into sexual activity
es frequencyLifetime 207 207 I slipped someone drugs so that I could take advantage of them
es frequencyLifetime 211 211 I contracted a sexually transmitted infection
es frequencyLifetime 212 212 I engaged in sexual activity that resulted in an unplanned pregnancy
es frequencyLifetime 225 225 I overdosed on drugs
es frequencyLifetime 234 234 I stole while confronting a victim
```

Note. For item 224, we computed how many drinks a person drank (per unit time) by multiplying (a) the number of occasions in which they drank (per unit time; i.e., their response to item 223) and (b) the number of drinks they had per occasion (i.e., their response to item 224). Items above the dashed line reflect number of times engaging in the behavior per year. Items below the line reflect number of times engaging in the behavior over the lifetime. Many of the items were adapted/reprinted with permission from "Efficiently measuring dimensions of the externalizing spectrum model: Development of the externalizing spectrum inventory-computerized adaptive test (ESI-CAT)" by M. Sunderland, T. Slade, R. F. Krueger, K. E. Markon, C. J. Patrick, M. D. Kramer, 2017, Psychological Assessment, 29(7), Supplementary Table 1 (https://doi.org/10.1037/pas0000384). Copyright 2017 by American Psychological Association.

Supplementary Table S6.

Descriptive Statistics of Externalizing Problem Items

| Item | n    | Missingness (%) | M     | SD     | Proportion Zero S | Skewness (log) k | Curtosis (log)C | Change |
|------|------|-----------------|-------|--------|-------------------|------------------|-----------------|--------|
| 1    | 1237 | 0.00            | 3.23  | 9.45   | .359              | 0.31             | -1.31           | _      |
| 2    | 1237 | 0.00            | 2.68  | 9.13   | .368              | 0.46             | -1.04           | _      |
| 6    | 1237 | 0.00            | 20.89 | 141.68 | .361              | 0.07             | -1.45           | _      |
| 7    | 1237 | 0.00            | 1.01  | 4.95   | .600              | 1.31             | 0.48            | _      |
| 8    | 1237 | 0.00            | 0.52  | 2.21   | .725              | 1.90             | 2.48            | _      |
| 10   | 1236 | 0.08            | 48.31 | 69.40  | .081              | -1.09            | 0.73            | _      |
| 14   | 1237 | 0.00            | 0.00  | 0.12   | .994              | 21.34            | 517.65          |        |
| 15   | 1237 | 0.00            | 0.09  | 1.13   | .957              | 6.33             | 42.06           | _      |
| 16   | 1237 | 0.00            | 0.20  | 1.10   | .824              | 2.77             | 6.87            | _      |
| 17   | 1237 | 0.00            | 0.12  | 1.26   | .941              | 5.25             | 28.04           | _      |
| 18   | 1237 | 0.00            | 0.06  | 0.95   | .983              | 9.51             | 94.84           | _      |
| 27   | 1237 | 0.00            | 7.80  | 26.48  | .231              | -0.17            | -1.14           | _      |
| 28   | 1237 | 0.00            | 0.40  | 1.62   | .665              | 1.60             | 1.29            | _      |
| 29   | 1237 | 0.00            | 0.36  | 1.61   | .779              | 2.11             | 3.30            | _      |
| 30   | 1237 | 0.00            | 2.07  | 6.20   | .317              | 0.16             | -1.30           | _      |
| 31   | 1237 | 0.00            | 0.39  | 2.88   | .856              | 2.92             | 7.93            | _      |
| 32   | 1237 | 0.00            | 0.06  | 1.01   | .969              | 7.67             | 62.12           |        |
| 33   | 1237 | 0.00            | 0.31  | 2.80   | .826              | 2.62             | 5.82            | _      |
| 34   | 1237 | 0.00            | 4.33  | 16.60  | .366              | 0.29             | -1.28           | _      |
| 39   | 1237 | 0.00            | 1.33  | 4.33   | .315              | 0.50             | -0.98           | _      |
| 40   | 1237 | 0.00            | 1.52  | 10.26  | .662              | 1.49             | 1.07            | _      |
| 41   | 1237 | 0.00            | 3.46  | 15.97  | .408              | 0.68             | -0.70           | _      |
| 42   | 1237 | 0.00            | 0.44  | 3.27   | .847              | 3.40             | 11.50           |        |
| 51   | 1237 | 0.00            | 0.01  | 0.09   | .987              | 15.25            | 263.59          |        |
| 52   | 1237 | 0.00            | 0.02  | 0.49   | .985              | 10.60            | 118.43          |        |
| 53   | 1237 | 0.00            | 0.01  | 0.16   | .996              | 20.45            | 436.04          |        |
| 54   | 1237 | 0.00            | 0.02  | 0.22   | .982              | 10.91            | 126.41          |        |
| 58   | 1237 | 0.00            | 1.46  | 12.94  | .793              | 2.42             | 5.10            | _      |
| 59   | 1237 | 0.00            | 3.26  | 6.65   | .448              | 0.33             | -1.51           | _      |
| 60   | 1237 | 0.00            | 5.58  | 46.22  | .674              | 1.41             | 0.62            | $\cap$ |
| 61   | 1237 | 0.00            | 0.11  | 1.37   | .959              | 6.60             | 46.38           | $\cap$ |
| 62   | 1237 | 0.00            | 0.03  | 0.31   | .945              | 6.40             | 46.18           |        |
| 64   | 1237 | 0.00            | 42.85 | 92.28  | .099              | -0.82            | 0.09            | $\cap$ |
| 65   | 1237 | 0.00            | 22.14 | 73.09  | .084              | -0.17            | -0.61           | $\cap$ |
| 70   | 1237 | 0.00            | 1.38  | 25.98  | .805              | 2.49             | 5.43            | _      |
| 71   | 1237 | 0.00            | 0.34  | 5.45   | .946              | 6.05             | 39.12           |        |
|      |      |                 |       |        |                   |                  |                 |        |

| 72  | 1227         | 0.00        | 1 01         | 9.86    | 076          | 2.45         | 11.55          |           |
|-----|--------------|-------------|--------------|---------|--------------|--------------|----------------|-----------|
|     | 1237<br>1237 | 0.00 $0.00$ | 1.01<br>0.62 | 5.00    | .876<br>.731 | 3.45<br>2.19 | 11.55<br>3.87  |           |
|     | 1237         | 0.00        | 3.06         | 14.69   | .731         | 0.86         | -0.59          |           |
|     | 1237         | 0.00        | 1.32         | 11.47   | .669         | 1.87         | 2.54           |           |
|     | 1237         | 0.00        | 1.32         | 14.78   | .745         | 1.07         | 2.34           |           |
|     | 1237         | 0.00        | 0.51         | 5.18    | .827         | 2.99         | 8.60           |           |
|     | 1237         | 0.00        | 2.66         | 13.53   | .556         | 1.11         | -0.07          |           |
|     | 1237         | 0.00        |              | 5.39    | .604         |              |                |           |
|     | 1237         | 0.00        | 1.15         | 21.88   | .288         | 1.28         | 0.45           | _         |
|     | 1237         | 0.00        | 3.63<br>2.59 | 10.40   |              | 0.14<br>0.61 | -1.26<br>-0.95 | $\bigcap$ |
|     | 1237         |             |              |         | .455         |              |                | 11        |
|     |              | 0.00        | 0.33         | 1.71    | .768         | 2.25         | 4.01           | _         |
|     | 1237<br>1237 | 0.00        |              | 1020.45 | .123         | -0.55        | -0.49          | _         |
|     |              | 0.00        | 0.25         | 2.56    | .893         | 4.21         | 18.25          |           |
|     | 1237         | 0.00        | 1.54         | 11.71   | .578         | 1.35         | 0.67           | _         |
|     | 1237         | 0.00        | 1.45         | 4.98    | .648         | 1.29         | 0.18           | _         |
|     | 1237         | 0.00        | 14.12        | 32.96   | .308         | -0.19        | -1.47          | _         |
|     | 1237         | 0.00        | 0.09         | 0.59    | .845         | 3.76         | 15.46          | _         |
|     | 1237         | 0.00        | 0.02         | 0.15    | .953         | 6.04         | 41.24          |           |
|     | 1237         | 0.00        | 1.43         | 15.96   | .825         | 2.74         | 6.60           | _         |
|     | 1237         | 0.00        | 16.09        | 89.24   | .061         | -0.59        | 0.31           | _         |
|     | 1237         | 0.00        | 6.39         | 23.60   | .289         | 0.22         | -1.13          | $\cap$    |
|     | 1237         | 0.00        | 22.98        | 54.83   | .046         | -0.54        | 0.10           | _         |
|     | 1237         | 0.00        | 43.63        | 149.09  | .037         | -0.67        | 0.62           | $\cap$    |
|     | 1237         | 0.00        | 25.47        | 100.49  | .053         | -0.63        | 0.39           | $\cap$    |
|     | 1237         | 0.00        | 2.75         | 13.56   | .345         | 0.56         | -0.74          |           |
|     | 1237         | 0.00        | 0.58         | 4.77    | .734         | 2.41         | 5.25           | _         |
|     | 1237         | 0.00        | 9.16         | 31.70   | .375         | 0.32         | -1.18          | _         |
|     | 1237         | 0.00        | 8.71         | 32.65   | .231         | 0.12         | -0.95          | _         |
|     | 1237         | 0.00        | 17.90        | 54.42   | .227         | -0.08        | -1.10          | Λ         |
|     | 1237         | 0.00        | 4.35         | 16.70   | .419         | 0.52         | -1.08          | $\cap$    |
|     | 1237         | 0.00        | 1.72         | 25.80   | .651         | 1.27         | 0.25           | _         |
|     | 1237         | 0.00        | 0.99         | 8.89    | .669         | 1.44         | 0.75           | _         |
|     | 1237         | 0.00        | 1.16         | 9.53    | .608         | 1.26         | 0.26           | $\cap$    |
|     | 1237         | 0.00        | 2.98         | 29.45   | .643         | 1.35         | 0.49           | $\cap$    |
|     | 1237         | 0.00        | 11.13        | 87.05   | .093         | -0.54        | -0.25          | +         |
|     | 1237         | 0.00        | 8.69         | 171.26  | .559         | 0.91         | -0.52          | _         |
|     | 1237         | 0.00        | 2.58         | 14.56   | .507         | 0.90         | -0.34          |           |
|     | 1237         | 0.00        | 0.02         | 0.51    | .976         | 10.32        | 121.94         |           |
|     | 1237         | 0.00        | 0.32         | 5.57    | .922         | 5.17         | 28.49          | _         |
|     | 1237         | 0.00        | 0.06         | 0.91    | .956         | 6.82         | 49.03          | _         |
| 178 | 1237         | 0.00        | 0.30         | 2.91    | .982         | 8.76         | 76.88          |           |

| 187 | 1237 | 0.00 | 4.27  | 19.77  | .537 | 0.88  | -0.63  | _      |
|-----|------|------|-------|--------|------|-------|--------|--------|
| 188 | 1237 | 0.00 | 0.50  | 2.93   | .814 | 2.48  | 5.24   | _      |
| 189 | 1237 | 0.00 | 1.13  | 14.13  | .886 | 3.66  | 12.99  | _      |
| 192 | 1237 | 0.00 | 19.71 | 98.47  | .169 | -0.25 | -0.81  | _      |
| 193 | 1237 | 0.00 | 0.24  | 3.01   | .899 | 4.29  | 18.98  | -      |
| 194 | 1237 | 0.00 | 3.45  | 13.32  | .232 | 0.04  | -1.10  | -      |
| 195 | 1237 | 0.00 | 3.30  | 19.35  | .533 | 0.86  | -0.62  | -      |
| 196 | 1237 | 0.00 | 0.22  | 1.62   | .886 | 3.76  | 13.93  | _      |
| 197 | 1237 | 0.00 | 0.21  | 4.32   | .929 | 5.13  | 27.42  | _      |
| 198 | 1237 | 0.00 | 0.83  | 6.52   | .812 | 2.65  | 6.45   |        |
| 200 | 1237 | 0.00 | 0.00  | 0.03   | .994 | 18.18 | 383.91 |        |
| 201 | 1237 | 0.00 | 0.00  | 0.03   | .998 | 29.58 | 919.21 |        |
| 205 | 1237 | 0.00 | 0.00  | 0.03   | .998 | 29.94 | 958.07 |        |
| 214 | 1237 | 0.00 | 1.50  | 4.17   | .569 | 0.95  | -0.61  | _      |
| 215 | 1237 | 0.00 | 33.49 | 186.49 | .804 | 2.30  | 4.03   | _      |
| 216 | 1237 | 0.00 | 4.04  | 16.86  | .682 | 1.64  | 1.39   | $\cap$ |
| 217 | 1237 | 0.00 | 12.93 | 81.33  | .884 | 3.58  | 12.09  | $\cap$ |
| 218 | 1237 | 0.00 | 2.49  | 26.24  | .935 | 6.03  | 37.98  | $\cap$ |
| 219 | 1237 | 0.00 | 0.67  | 17.20  | .957 | 6.82  | 50.25  |        |
| 220 | 1237 | 0.00 | 0.06  | 0.49   | .924 | 4.88  | 25.32  |        |
| 221 | 1237 | 0.00 | 0.28  | 8.54   | .981 | 8.79  | 79.22  |        |
| 222 | 1237 | 0.00 | 0.70  | 21.40  | .981 | 9.73  | 101.98 | $\cap$ |
| 223 | 1237 | 0.00 | 5.99  | 10.54  | .277 | -0.20 | -1.39  | +      |
| 224 | 1237 | 0.00 | 18.22 | 37.83  | .277 | -0.18 | -1.41  | +      |
| 226 | 1237 | 0.00 | 0.09  | 0.61   | .909 | 4.66  | 23.01  | _      |
| 227 | 1237 | 0.00 | 0.51  | 3.98   | .878 | 3.51  | 12.21  |        |
| 229 | 1237 | 0.00 | 0.05  | 0.44   | .951 | 6.07  | 38.83  | _      |
| 230 | 1237 | 0.00 | 0.05  | 0.51   | .953 | 6.82  | 50.29  |        |
| 231 | 1237 | 0.00 | 0.04  | 1.02   | .998 | 24.57 | 606.63 |        |
| 233 | 1237 | 0.00 | 0.00  | 0.01   | .997 | 18.87 | 373.58 |        |
| 239 | 1237 | 0.00 | 2.41  | 9.02   | .395 | 0.58  | -0.82  | _      |
| 240 | 1237 | 0.00 | 1.11  | 4.46   | .562 | 1.15  | 0.15   |        |
| 241 | 1237 | 0.00 | 1.92  | 11.08  | .563 | 1.21  | 0.25   |        |
| 242 | 1237 | 0.00 | 18.85 | 120.10 | .517 | 1.06  | -0.10  | _      |
| 243 | 1237 | 0.00 | 4.26  | 86.07  | .682 | 1.74  | 2.08   | _      |
| 244 | 1237 | 0.00 | 23.00 | 134.11 | .324 | 0.09  | -1.28  | _      |
| 245 | 1237 | 0.00 | 0.31  | 2.67   | .922 | 4.53  | 20.83  |        |
| 246 | 1237 | 0.00 | 0.63  | 4.30   | .810 | 2.55  | 5.72   | $\cap$ |
| 247 | 1237 | 0.00 | 1.18  | 5.55   | .708 | 1.63  | 1.28   | _      |
| 35  | 1237 | 0.00 | 0.72  | 14.82  | .977 | 10.73 | 132.90 |        |
| 55  | 1237 | 0.00 | 0.01  | 0.11   | .993 | 12.49 | 162.74 | +      |
|     |      |      |       |        |      |       |        |        |

| 103 1237 | 0.00 | 0.02 | 0.24 | .986 | 10.47 | 125.74 |        |
|----------|------|------|------|------|-------|--------|--------|
| 117 1237 | 0.00 | 0.06 | 0.50 | .973 | 7.39  | 59.43  | $\cap$ |
| 118 1237 | 0.00 | 0.38 | 1.34 | .804 | 2.51  | 7.50   | +      |
| 179 1237 | 0.00 | 0.09 | 1.60 | .982 | 9.20  | 91.84  | +      |
| 206 1237 | 0.00 | 0.01 | 0.16 | .994 | 13.51 | 188.97 | +      |
| 211 1237 | 0.00 | 0.28 | 0.98 | .836 | 2.91  | 10.21  | +      |
| 212 1237 | 0.00 | 0.35 | 2.92 | .833 | 2.32  | 4.54   | +      |
| 225 1237 | 0.00 | 0.10 | 0.71 | .963 | 5.98  | 37.55  |        |
| 234 1237 | 0.00 | 0.02 | 0.40 | .998 | 23.58 | 566.01 |        |

*Note*. The descriptive statistics in the table are based on the rate of engaging the behavior per month, whereas the items were modeled in terms of their frequency rate per year. The "Proportion Zero" column indicates the proportion of scores for that item that indicated a frequency count of zero. The "Change" column indicates significant age-related differences as a function of age from a generalized additive model: "+"indicates increases as a function of age (i.e., peak in older adulthood); "—" indicates decreases as a function of age (i.e., peak in early adulthood); "—" indicates an inverted-U-shaped pattern (i.e., increases and then decreases) as a function of age (i.e., peak in middle adulthood); no symbol indicates no significant age-related differences. Items above the dashed line reflect number of times engaging in the behavior over the lifetime.

Supplementary Table S7.

Percentiles for Behavior Frequencies by Externalizing Problem Item Per Year

|      |   |   |    |    |    |    |     |     |     |     |     | Perce | entile |     |     |     |      |      |      |      |      |
|------|---|---|----|----|----|----|-----|-----|-----|-----|-----|-------|--------|-----|-----|-----|------|------|------|------|------|
| Item | 0 | 5 | 10 | 15 | 20 | 25 | 30  | 35  | 40  | 45  | 50  | 55    | 60     | 65  | 70  | 75  | 80   | 85   | 90   | 95   | 100  |
| 1    | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 2   | 13  | 13    | 13     | 13  | 25  | 37  | 53   | 53   | 105  | 157  | 262  |
| 2    | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 2   | 3   | 13    | 13     | 13  | 13  | 25  | 37   | 53   | 53   | 122  | 367  |
| 6    | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 5   | 21  | 25  | 49    | 53     | 74  | 122 | 157 | 209  | 366  | 366  | 1096 | 2193 |
| 7    | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 1      | 1   | 2   | 4   | 13   | 13   | 25   | 53   | 210  |
| 8    | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 1   | 2    | 6    | 13   | 25   | 158  |
| 10   | 0 | 0 | 13 | 25 | 53 | 61 | 105 | 122 | 157 | 209 | 261 | 366   | 366    | 522 | 731 | 731 | 1096 | 1096 | 1461 | 1827 | 5480 |
| 14   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 53   |
| 15   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 62   |
| 16   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 1    | 3    | 13   | 62   |
| 17   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 62   |
| 18   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 106  |
| 27   | 0 | 0 | 0  | 0  | 0  | 1  | 4   | 13  | 13  | 13  | 25  | 25    | 37     | 53  | 53  | 61  | 105  | 108  | 183  | 366  | 523  |
| 28   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 1   | 2   | 2    | 13   | 13   | 25   | 62   |
| 29   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 1    | 3    | 13   | 25   | 158  |
| 30   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 1   | 2   | 4   | 6   | 13    | 13     | 13  | 25  | 25  | 37   | 49   | 53   | 105  | 262  |
| 31   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 3    | 25   | 367  |
| 32   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 54   |
| 33   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 1    | 3    | 13   | 62   |
| 34   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 2   | 3   | 10  | 13    | 13     | 25  | 25  | 37  | 53   | 53   | 105  | 209  | 315  |
| 39   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 1   | 1   | 2   | 2   | 3     | 5      | 13  | 13  | 13  | 25   | 25   | 37   | 53   | 208  |
| 40   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 1   | 3   | 13   | 13   | 37   | 61   | 732  |
| 41   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 2   | 3     | 6      | 13  | 13  | 25  | 25   | 37   | 53   | 108  | 367  |
| 42   | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0     | 0      | 0   | 0   | 0   | 0    | 1    | 2    | 13   | 367  |

| 51  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 25   |
|-----|---|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| 52  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 14   |
| 53  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 61   |
| 54  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 53   |
| 58  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 4    | 13   | 53   | 732  |
| 59  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 3   | 13  | 13  | 25  | 37  | 53  | 53   | 105  | 105  | 157  | 1000 |
| 60  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 13  | 25   | 53   | 105  | 366  | 1828 |
| 61  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 101  |
| 62  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 62   |
| 64  | 0 | 0 | 1 | 13 | 25 | 53 | 53 | 105 | 105 | 157 | 157 | 209 | 261 | 366 | 366 | 731 | 731  | 1096 | 1461 | 1827 | 5480 |
| 65  | 0 | 0 | 1 | 2  | 13 | 13 | 13 | 25  | 25  | 49  | 53  | 53  | 105 | 105 | 105 | 157 | 261  | 366  | 731  | 1096 | 2558 |
| 70  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 2    | 13   | 25   | 367  |
| 71  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 1    | 210  |
| 72  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 25   | 1097 |
| 76  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1    | 3    | 13   | 25   | 184  |
| 77  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 2   | 3   | 5   | 13  | 13  | 25   | 37   | 61   | 157  | 306  |
| 78  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2    | 10   | 13   | 39   | 160  |
| 79  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 2    | 13   | 25   | 61   | 262  |
| 80  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 1    | 3    | 13   | 158  |
| 81  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 3   | 5   | 13  | 25   | 37   | 53   | 122  | 367  |
| 89  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 10  | 13   | 13   | 25   | 53   | 306  |
| 90  | 0 | 0 | 0 | 0  | 0  | 0  | 1  | 2   | 3   | 5   | 13  | 13  | 13  | 13  | 25  | 25  | 37   | 53   | 61   | 105  | 210  |
| 91  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 2   | 3   | 13  | 13  | 13  | 25  | 25   | 49   | 53   | 105  | 367  |
| 92  | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 2    | 13   | 13   | 75   |
| 96  | 0 | 0 | 0 | 4  | 13 | 25 | 53 | 53  | 105 | 105 | 157 | 209 | 261 | 366 | 366 | 731 | 1096 | 1096 | 1827 | 3653 | 7306 |
| 100 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 3    | 106  |
| 101 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 4   | 13   | 13   | 25   | 53   | 210  |
| 102 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 5   | 13   | 25   | 53   | 105  | 262  |
| 112 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 7   | 13  | 25  | 53  | 53  | 105 | 105 | 157 | 244 | 366  | 366  | 366  | 731  | 2923 |

| 113 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1    | 2    | 123  |
|-----|---|---|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 114 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 53   |
| 115 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 13   | 53   | 732  |
| 123 | 0 | 0 | 4  | 13 | 13 | 25 | 25 | 37 | 49  | 53  | 53  | 74  | 105 | 105 | 157 | 157 | 168 | 261 | 366  | 731  | 1462 |
| 124 | 0 | 0 | 0  | 0  | 0  | 0  | 1  | 2  | 3   | 13  | 13  | 13  | 13  | 25  | 37  | 50  | 53  | 105 | 122  | 314  | 549  |
| 125 | 0 | 1 | 5  | 13 | 25 | 25 | 37 | 49 | 53  | 61  | 105 | 105 | 110 | 157 | 183 | 261 | 366 | 366 | 731  | 1096 | 1462 |
| 126 | 0 | 3 | 13 | 25 | 49 | 53 | 53 | 74 | 105 | 105 | 157 | 157 | 209 | 261 | 366 | 366 | 731 | 731 | 1096 | 1827 | 2923 |
| 127 | 0 | 0 | 13 | 13 | 25 | 25 | 37 | 53 | 53  | 61  | 105 | 105 | 105 | 157 | 186 | 261 | 366 | 366 | 731  | 1096 | 1567 |
| 128 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 1  | 1   | 2   | 2   | 5   | 13  | 13  | 13  | 13  | 25  | 37  | 53   | 105  | 419  |
| 129 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 13   | 25   | 315  |
| 130 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 2   | 5   | 13  | 13  | 25  | 25  | 49  | 53  | 105 | 157 | 209  | 366  | 1097 |
| 131 | 0 | 0 | 0  | 0  | 0  | 1  | 2  | 4  | 13  | 13  | 13  | 25  | 25  | 37  | 49  | 53  | 84  | 105 | 209  | 366  | 1097 |
| 136 | 0 | 0 | 0  | 0  | 0  | 1  | 6  | 13 | 13  | 25  | 37  | 53  | 53  | 98  | 105 | 157 | 209 | 366 | 522  | 1096 | 1828 |
| 142 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 2   | 5   | 13  | 13  | 25  | 25  | 37  | 53  | 105  | 157  | 367  |
| 150 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 13  | 13  | 25  | 25   | 53   | 367  |
| 151 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 3   | 13  | 13  | 25   | 50   | 184  |
| 152 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 4   | 13  | 13  | 25   | 53   | 184  |
| 153 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 6   | 13  | 25  | 53   | 105  | 315  |
| 168 | 0 | 0 | 1  | 3  | 13 | 13 | 13 | 25 | 25  | 25  | 37  | 53  | 53  | 53  | 74  | 105 | 122 | 157 | 261  | 366  | 523  |
| 169 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 2   | 13  | 13  | 25  | 37  | 53  | 105  | 209  | 732  |
| 170 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 3   | 13  | 13  | 13  | 25  | 37  | 53   | 105  | 732  |
| 175 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 54   |
| 176 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 2    | 210  |
| 177 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 38   |
| 178 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 366  |
| 187 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 2   | 10  | 13  | 25  | 37  | 57  | 105  | 261  | 732  |
| 188 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 13   | 25   | 210  |
| 189 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 25   | 836  |
| 192 | 0 | 0 | 0  | 0  | 2  | 6  | 13 | 25 | 25  | 37  | 53  | 53  | 61  | 105 | 105 | 157 | 209 | 366 | 366  | 1054 | 2558 |

| 193 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 3    | 106   |
|-----|---|---|---|---|---|---|---|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|------|-------|
| 194 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3  | 5  | 10 | 13 | 13 | 13  | 25  | 25  | 37  | 49  | 53  | 61  | 151  | 262   |
| 195 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 1  | 3   | 12  | 13  | 25  | 37  | 53  | 105 | 157  | 732   |
| 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 13   | 106   |
| 197 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 106   |
| 198 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 13  | 25   | 367   |
| 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 13    |
| 201 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 13    |
| 205 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 13    |
| 214 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 1   | 3   | 10  | 13  | 25  | 37  | 53  | 105  | 367   |
| 215 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 13  | 122 | 1827 | 36525 |
| 216 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 3   | 13  | 37  | 105 | 314  | 2193  |
| 217 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 105  | 18263 |
| 218 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1    | 7305  |
| 219 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 367   |
| 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2    | 62    |
| 221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 62    |
| 222 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 210   |
| 223 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5  | 13 | 25 | 25 | 37 | 49  | 53  | 61  | 105 | 105 | 157 | 209 | 366  | 732   |
| 224 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 11 | 18 | 30 | 49 | 74 | 105 | 147 | 185 | 244 | 314 | 418 | 627 | 1044 | 2610  |
| 226 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2    | 105   |
| 227 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 13   | 367   |
| 229 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 54    |
| 230 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 105   |
| 231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 366   |
| 233 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 2     |
| 239 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 1  | 2  | 2  | 4  | 13  | 13  | 13  | 25  | 25  | 48  | 53  | 105  | 523   |
| 240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 1   | 2   | 3   | 13  | 13  | 25  | 25  | 53   | 367   |
| 241 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 1   | 2   | 3   | 13  | 13  | 25  | 49  | 105  | 367   |
|     |   |   |   |   |   |   |   |    |    |    |    |    |     |     |     |     |     |     |     |      |       |

| 242 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 1  | 3  | 13 | 13  | 25  | 53  | 105 | 261 | 1096 | 2193 |
|-----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-----|-----|-----|-----|-----|------|------|
| 243 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 2   | 13  | 13  | 25  | 64   | 732  |
| 244 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 13 | 25 | 25 | 37 | 53 | 61 | 105 | 122 | 209 | 366 | 501 | 1096 | 2558 |
| 245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 3    | 262  |
| 246 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 2   | 13  | 25   | 367  |
| 247 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 2   | 5   | 13  | 37  | 53   | 210  |
| 35  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 500  |
| 55  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 2    |
| 103 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 6    |
| 117 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 10   |
| 118 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 1   | 2    | 30   |
| 179 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 6    |
| 206 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 3    |
| 211 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 1   | 1    | 20   |
| 212 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 1   | 1   | 2    | 6    |
| 225 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 6    |
| 234 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0    | 10   |

*Note*. Items above the dashed line reflect number of times engaging in the behavior per year. Items below the line reflect number of times engaging in the behavior over the lifetime.

**Supplementary Table S8.** 

Identifying the Best-Fitting Form of Age-Related Differences: Estimates of Model Fit from the Bayesian Item Response Theory Models

|                 | ELPD       | SE of ELPD   | )         | SE of      | Effective Number | SE of Effective      |           |            |
|-----------------|------------|--------------|-----------|------------|------------------|----------------------|-----------|------------|
| Model           | Difference | e Difference | ELPD      | ELPD       | of Parameters    | Number of Parameters | WAIC      | SE of WAIC |
| Generalized     |            |              |           |            |                  |                      |           | _          |
| Additive Mode   | 0.00       | 0.00         | -311725.3 | 31 1090.09 | 2052.37          | 45.50                | 623450.62 | 2180.18    |
| Linear          | -0.68      | 1.83         | -311725.9 | 991090.10  | 2052.44          | 45.54                | 623451.98 | 2180.19    |
| Quadratic       | -2.24      | 1.60         | -311727.5 | 55 1090.07 | 2053.88          | 45.42                | 623455.10 | 2180.14    |
| Null Model      |            |              |           |            |                  |                      |           |            |
| (No Predictors) | -2.89      | 6.69         | -311728.2 | 201089.86  | 2056.35          | 45.12                | 623456.40 | 2179.73    |

*Note*. "ELPD" = expected log predictive density (smaller is better), calculated based on WAIC; "WAIC" widely applicable information criterion (smaller is better); "ELPD Difference" = difference of model fit (ELPD) relative to generalized additive model; "SE" = standard error.

Supplementary Table S9.

Item Characteristics From the Bayesian Item Response Theory Model

| Item | Easiness (β) | Discrimination (α) | mu (µ) | phi (φ) | ZI   |
|------|--------------|--------------------|--------|---------|------|
| 1    | 5.11         | 0.88               | 41.00  | 0.41    | 0.18 |
| 2    | 5.17         | 1.05               | 33.22  | 0.35    | 0.12 |
| 6    | 6.55         | 0.59               | 271.89 | 0.51    | 0.32 |
| 7    | 4.72         | 1.60               | 8.95   | 0.21    | 0.08 |
| 8    | 4.76         | 1.98               | 5.15   | 0.16    | 0.15 |
| 10   | 7.56         | 0.64               | 695.67 | 0.81    | 0.07 |
| 14   | 2.20         | 1.99               | 0.90   | 0.06    | 0.81 |
| 15   | 3.32         | 3.29               | 0.18   | 0.07    | 0.26 |
| 16   | 4.17         | 2.39               | 1.50   | 0.12    | 0.10 |
| 17   | 3.11         | 2.12               | 0.93   | 0.06    | 0.33 |
| 18   | 3.39         | 2.97               | 0.47   | 0.07    | 0.56 |
| 27   | 5.64         | 0.72               | 89.83  | 0.63    | 0.17 |
| 28   | 3.52         | 1.32               | 4.15   | 0.17    | 0.04 |
| 29   | 4.41         | 1.80               | 4.84   | 0.10    | 0.12 |
| 30   | 4.77         | 0.88               | 29.08  | 0.71    | 0.20 |
| 31   | 4.37         | 1.86               | 4.29   | 0.06    | 0.16 |
| 32   | 1.54         | 0.66               | 2.28   | 0.04    | 0.54 |
| 33   | 3.20         | 1.37               | 2.85   | 0.08    | 0.11 |
| 34   | 5.70         | 1.17               | 47.05  | 0.55    | 0.23 |
| 39   | 4.09         | 0.84               | 15.72  | 0.38    | 0.02 |
| 40   | 5.63         | 1.92               | 13.54  | 0.18    | 0.18 |
| 41   | 4.87         | 0.94               | 29.24  | 0.22    | 0.02 |
| 42   | 4.29         | 1.84               | 4.02   | 0.05    | 0.06 |
| 51   | 1.03         | 2.49               | 0.08   | 0.07    | 0.48 |
| 52   | 2.23         | 2.43               | 0.31   | 0.06    | 0.55 |
| 53   | 3.34         | 2.56               | 1.92   | 0.05    | 0.83 |
| 54   | 2.73         | 2.95               | 0.21   | 0.04    | 0.41 |
| 58   | 6.14         | 2.76               | 5.99   | 0.09    | 0.08 |
| 59   | 5.39         | 0.75               | 66.89  | 0.73    | 0.40 |
| 60   | 6.37         | 1.29               | 76.24  | 0.16    | 0.39 |
| 61   | 3.35         | 3.25               | 0.19   | 0.05    | 0.23 |
| 62   | 1.22         | 1.42               | 0.39   | 0.04    | 0.20 |
| 64   | 7.76         | 0.88               | 575.81 | 0.70    | 0.07 |
| 65   | 6.79         | 0.80               | 248.57 | 0.41    | 0.00 |
| 70   | 5.25         | 2.50               | 3.74   | 0.10    | 0.10 |
| 71   | 4.59         | 3.08               | 0.84   | 0.03    | 0.19 |

| 72  | 5.34 | 1.79 | 12.72  | 0.03 | 0.12 |
|-----|------|------|--------|------|------|
| 76  | 4.54 | 2.01 | 3.94   | 0.13 | 0.04 |
| 77  | 5.42 | 1.38 | 25.39  | 0.21 | 0.05 |
| 78  | 3.83 | 1.19 | 7.00   | 0.12 | 0.03 |
| 79  | 6.27 | 2.61 | 8.74   | 0.10 | 0.05 |
| 80  | 4.64 | 2.59 | 1.76   | 0.10 | 0.06 |
| 81  | 5.47 | 1.43 | 24.57  | 0.16 | 0.05 |
| 89  | 5.22 | 1.77 | 11.19  | 0.34 | 0.26 |
| 90  | 4.82 | 0.84 | 32.53  | 0.64 | 0.17 |
| 91  | 5.47 | 1.28 | 30.96  | 0.60 | 0.31 |
| 92  | 3.87 | 1.81 | 2.74   | 0.12 | 0.06 |
| 96  | 7.56 | 0.54 | 807.16 | 0.40 | 0.06 |
| 100 | 3.51 | 2.10 | 1.24   | 0.05 | 0.11 |
| 101 | 4.29 | 1.24 | 10.25  | 0.19 | 0.07 |
| 102 | 5.99 | 1.88 | 20.51  | 0.29 | 0.36 |
| 112 | 6.15 | 0.40 | 246.74 | 0.64 | 0.29 |
| 113 | 2.32 | 1.49 | 0.96   | 0.09 | 0.04 |
| 114 | 0.99 | 0.98 | 0.73   | 0.10 | 0.47 |
| 115 | 5.23 | 1.97 | 8.34   | 0.06 | 0.11 |
| 123 | 6.62 | 0.95 | 166.44 | 1.04 | 0.04 |
| 124 | 6.11 | 1.38 | 50.38  | 0.49 | 0.09 |
| 125 | 7.07 | 0.99 | 243.27 | 0.84 | 0.01 |
| 126 | 7.51 | 0.87 | 457.81 | 0.79 | 0.01 |
| 127 | 7.00 | 0.94 | 246.21 | 0.92 | 0.02 |
| 128 | 5.17 | 1.27 | 23.62  | 0.35 | 0.02 |
| 129 | 4.43 | 1.85 | 4.50   | 0.11 | 0.03 |
| 130 | 7.01 | 1.56 | 93.27  | 0.52 | 0.24 |
| 131 | 6.50 | 1.37 | 75.60  | 0.45 | 0.04 |
| 136 | 6.84 | 0.91 | 222.51 | 0.35 | 0.09 |
| 142 | 5.56 | 1.13 | 43.25  | 0.31 | 0.16 |
| 150 | 4.39 | 0.84 | 21.26  | 0.29 | 0.45 |
| 151 | 4.63 | 1.45 | 10.33  | 0.19 | 0.22 |
| 152 | 4.23 | 1.21 | 10.08  | 0.16 | 0.04 |
| 153 | 4.64 | 0.85 | 27.15  | 0.15 | 0.25 |
| 168 | 5.66 | 0.65 | 103.11 | 0.75 | 0.04 |
| 169 | 6.61 | 1.70 | 50.04  | 0.35 | 0.36 |
| 170 | 5.23 | 1.19 | 28.52  | 0.24 | 0.16 |
| 175 | 1.88 | 2.92 | 0.08   | 0.05 | 0.28 |
| 176 | 3.96 | 2.42 | 1.19   | 0.04 | 0.10 |
| 177 | 2.87 | 2.82 | 0.23   | 0.05 | 0.21 |
| 178 | 5.28 | 1.22 | 54.35  | 0.04 | 0.69 |
|     |      |      |        |      |      |

| 187 | 5.28  | 0.72  | 62.69  | 0.23 | 0.30 |
|-----|-------|-------|--------|------|------|
| 188 | 4.44  | 1.86  | 4.62   | 0.11 | 0.22 |
| 189 | 6.26  | 3.18  | 3.56   | 0.04 | 0.09 |
| 192 | 7.06  | 1.08  | 209.37 | 0.56 | 0.10 |
| 193 | 3.82  | 2.39  | 1.08   | 0.06 | 0.13 |
| 194 | 4.92  | 0.86  | 34.86  | 0.52 | 0.06 |
| 195 | 6.15  | 1.51  | 42.79  | 0.35 | 0.33 |
| 196 | 4.12  | 2.24  | 1.83   | 0.05 | 0.11 |
| 197 | 4.27  | 2.86  | 0.82   | 0.04 | 0.14 |
| 198 | 4.10  | 1.41  | 6.48   | 0.06 | 0.08 |
| 200 | 1.56  | 1.71  | 0.66   | 0.10 | 0.82 |
| 201 | 2.27  | 2.39  | 2.50   | 0.07 | 0.88 |
| 205 | 1.03  | 2.27  | 0.60   | 0.15 | 0.82 |
| 214 | 4.37  | 0.53  | 33.90  | 0.36 | 0.44 |
| 215 | 7.67  | 0.66  | 809.05 | 0.05 | 0.39 |
| 216 | 4.94  | 0.55  | 58.92  | 0.07 | 0.09 |
| 217 | 5.66  | 0.07  | 295.08 | 0.02 | 0.30 |
| 218 | 6.37  | 2.74  | 8.58   | 0.02 | 0.17 |
| 219 | 4.09  | 1.78  | 4.44   | 0.02 | 0.35 |
| 220 | 0.85  | 0.43  | 1.33   | 0.04 | 0.27 |
| 221 | 3.29  | 3.52  | 0.15   | 0.04 | 0.36 |
| 222 | 3.69  | 4.37  | 0.06   | 0.05 | 0.32 |
| 223 | 4.55  | -0.01 | 95.06  | 0.65 | 0.25 |
| 224 | 6.13  | 0.26  | 305.14 | 0.48 | 0.24 |
| 226 | 2.98  | 2.06  | 0.78   | 0.06 | 0.13 |
| 227 | 3.33  | 0.77  | 8.54   | 0.03 | 0.15 |
| 229 | 2.36  | 1.72  | 0.85   | 0.06 | 0.37 |
| 230 | 1.65  | 0.99  | 1.24   | 0.02 | 0.27 |
| 231 | 3.07  | 3.26  | 1.90   | 0.07 | 0.82 |
| 233 | -0.71 | 2.48  | 0.03   | 0.25 | 0.58 |
| 239 | 5.40  | 1.35  | 25.81  | 0.41 | 0.13 |
| 240 | 4.76  | 1.45  | 11.66  | 0.23 | 0.09 |
| 241 | 4.90  | 1.35  | 15.90  | 0.18 | 0.06 |
| 242 | 7.60  | 1.90  | 98.69  | 0.13 | 0.02 |
| 243 | 6.20  | 2.48  | 9.84   | 0.15 | 0.08 |
| 244 | 7.26  | 1.06  | 263.10 | 0.46 | 0.25 |
| 245 | 4.73  | 2.94  | 1.16   | 0.05 | 0.17 |
| 246 | 4.73  | 2.05  | 4.53   | 0.08 | 0.09 |
| 247 | 5.17  | 1.61  | 13.95  | 0.19 | 0.32 |
| 35  | 3.22  | 2.48  | 0.69   | 0.02 | 0.38 |
| 55  | -1.05 | 0.57  | 0.35   | 0.25 | 0.78 |

| 103 | -0.86 | 1.14  | 0.11 | 0.17 | 0.53 |
|-----|-------|-------|------|------|------|
| 117 | -0.07 | 0.82  | 0.37 | 0.21 | 0.59 |
| 118 | -0.69 | 0.08  | 0.45 | 0.23 | 0.08 |
| 179 | -0.35 | 0.66  | 0.37 | 0.09 | 0.64 |
| 206 | 1.04  | 1.25  | 0.78 | 0.14 | 0.83 |
| 211 | -1.23 | -0.01 | 0.30 | 0.23 | 0.07 |
| 212 | -0.42 | 0.13  | 0.57 | 1.08 | 0.41 |
| 225 | -0.50 | 0.72  | 0.25 | 0.14 | 0.43 |
| 234 | 2.48  | 2.09  | 4.56 | 0.06 | 0.88 |

*Note*. "ZI" = zero-inflation probability. Items above the dashed line reflect number of times engaging in the behavior per year. Items below the line reflect number of times engaging in the behavior over the lifetime.

# **Supplementary Table S10.**

Item—Construct Correlations

| Item | EFA Loading | Item-Total Correlation | Item-Latent Correlation |
|------|-------------|------------------------|-------------------------|
| 1    | .49         | .53                    | .46                     |
| 2    | .50         | .53                    | .45                     |
| 6    | .41         | .40                    | .39                     |
| 7    | .58         | .60                    | .46                     |
| 8    | .50         | .52                    | .39                     |
| 10   | .42         | .44                    | .51                     |
| 14   | .17         | .12                    | .07                     |
| 15   | .42         | .38                    | .23                     |
| 16   | .50         | .50                    | .35                     |
| 17   | .41         | .38                    | .22                     |
| 18   | .29         | .26                    | .15                     |
| 27   | .46         | .47                    | .45                     |
| 28   | .53         | .54                    | .39                     |
| 29   | .43         | .45                    | .33                     |
| 30   | .55         | .58                    | .50                     |
| 31   | .42         | .41                    | .28                     |
| 32   | .12         | .08                    | .07                     |
| 33   | .42         | .41                    | .28                     |
| 34   | .55         | .58                    | .52                     |
| 39   | .50         | .51                    | .45                     |
| 40   | .54         | .55                    | .44                     |
| 41   | .44         | .43                    | .41                     |
| 42   | .37         | .35                    | .28                     |
| 51   | .24         | .20                    | .11                     |
| 52   | .19         | .16                    | .10                     |
| 53   | .14         | .12                    | .06                     |
| 54   | .25         | .22                    | .12                     |
| 58   | .61         | .60                    | .40                     |
| 59   | .53         | .55                    | .44                     |
| 60   | .53         | .51                    | .38                     |
| 61   | .45         | .40                    | .23                     |
| 62   | .36         | .32                    | .18                     |
| 64   | .46         | .48                    | .57                     |
| 65   | .44         | .44                    | .48                     |
| 70   | .55         | .56                    | .38                     |
| 71   | .34         | .30                    | .20                     |

| 72  | .28 | .27 | .21 |
|-----|-----|-----|-----|
| 76  | .52 | .53 | .38 |
| 77  | .56 | .58 | .47 |
| 78  | .51 | .50 | .36 |
| 79  | .60 | .60 | .42 |
| 80  | .51 | .50 | .36 |
| 81  | .50 | .51 | .41 |
| 89  | .59 | .60 | .48 |
| 90  | .48 | .48 | .47 |
| 91  | .57 | .59 | .52 |
| 92  | .55 | .55 | .37 |
| 96  | .42 | .45 | .46 |
| 100 | .39 | .37 | .25 |
| 101 | .52 | .52 | .39 |
| 102 | .56 | .58 | .45 |
| 112 | .34 | .34 | .35 |
| 113 | .45 | .43 | .27 |
| 114 | .25 | .21 | .14 |
| 115 | .48 | .45 | .30 |
| 123 | .52 | .55 | .63 |
| 124 | .57 | .60 | .60 |
| 125 | .51 | .53 | .66 |
| 126 | .44 | .46 | .61 |
| 127 | .50 | .53 | .64 |
| 128 | .52 | .53 | .52 |
| 129 | .47 | .46 | .35 |
| 130 | .57 | .60 | .59 |
| 131 | .58 | .62 | .61 |
| 136 | .42 | .42 | .47 |
| 142 | .45 | .47 | .46 |
| 150 | .47 | .49 | .38 |
| 151 | .51 | .52 | .41 |
| 152 | .48 | .49 | .40 |
| 153 | .39 | .39 | .32 |
| 168 | .45 | .46 | .51 |
| 169 | .51 | .54 | .47 |
| 170 | .47 | .48 | .42 |
| 175 | .36 | .31 | .16 |
| 176 | .38 | .36 | .23 |
| 177 | .35 | .32 | .19 |
| 178 | .17 | .14 | .09 |

| 187 | .52 | .51 | .40 |
|-----|-----|-----|-----|
| 188 | .54 | .53 | .35 |
| 189 | .47 | .44 | .30 |
| 192 | .48 | .52 | .52 |
| 193 | .39 | .37 | .25 |
| 194 | .49 | .51 | .51 |
| 195 | .51 | .53 | .47 |
| 196 | .37 | .37 | .25 |
| 197 | .28 | .28 | .20 |
| 198 | .46 | .44 | .31 |
| 200 | .13 | .09 | .05 |
| 201 | .15 | .11 | .05 |
| 205 | .17 | .12 | .06 |
| 214 | .44 | .43 | .31 |
| 215 | .33 | .31 | .23 |
| 216 | .36 | .33 | .24 |
| 217 | .21 | .15 | .09 |
| 218 | .40 | .32 | .22 |
| 219 | .24 | .19 | .12 |
| 220 | .21 | .17 | .10 |
| 221 | .36 | .31 | .17 |
| 222 | .35 | .29 | .18 |
| 223 | .23 | .21 | .13 |
| 224 | .30 | .28 | .19 |
| 226 | .39 | .36 | .24 |
| 227 | .19 | .17 | .15 |
| 229 | .31 | .26 | .17 |
| 230 | .30 | .25 | .15 |
| 231 | .27 | .21 | .08 |
| 233 | .15 | .13 | .07 |
| 239 | .58 | .59 | .54 |
| 240 | .57 | .57 | .46 |
| 241 | .52 | .52 | .43 |
| 242 | .59 | .59 | .50 |
| 243 | .64 | .64 | .48 |
| 244 | .42 | .44 | .42 |
| 245 | .47 | .43 | .27 |
| 246 | .52 | .50 | .35 |
| 247 | .55 | .55 | .39 |
| 35  | .31 | .23 | .14 |
| 55  | .00 | 04  | 02  |

| 103 | .22 | .15 | .09 |
|-----|-----|-----|-----|
| 117 | .23 | .15 | .10 |
| 118 | .04 | 02  | .01 |
| 179 | .14 | .08 | .05 |
| 206 | .02 | 01  | .01 |
| 211 | .03 | 03  | 07  |
| 212 | .06 | .00 | .02 |
| 225 | .24 | .19 | .14 |
| 234 | .22 | .14 | .06 |

*Note*. "EFA" = exploratory factor analysis. Items above the dashed line reflect number of times engaging in the behavior per year. Items below the line reflect number of times engaging in the behavior over the lifetime.

#### **Supplementary Table S11.**

Validity Analyses by Age and Sex

| Outcome: |  |  |
|----------|--|--|
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |

| Group           | r      | Discriminant Validity (Fisher's <i>r</i> -to- <i>z</i> ) |
|-----------------|--------|----------------------------------------------------------|
| Men             | .50*** | $z = 2.79^{**}$                                          |
| Women           | .58*** | $z = 3.57^{***}$                                         |
| Young Adults    | .52*** | $z = 4.10^{***}$                                         |
| Mid-Aged Adults | .57*** | $z = 2.02^*$                                             |
| Older Adults    | .51*** | z = 1.59                                                 |

Outcome: Functional Impairment

| Group           | r      | β (controlling for ASR) | β (controlling for dichotomous items) |
|-----------------|--------|-------------------------|---------------------------------------|
| Men             | .27*** | 0.05                    | 0.12                                  |
| Women           | .37*** | $0.10^{**}$             | $0.39^{***}$                          |
| Young Adults    | .35*** | 0.11**                  | 0.36***                               |
| Mid-Aged Adults | .32*** | 0.06                    | 0.21**                                |
| Older Adults    | .43*** | 0.21***                 | 0.27***                               |

Outcome: Inhibitory Control

| Group           | r              | β (controlling for ASR) | β (controlling for dichotomous items) |
|-----------------|----------------|-------------------------|---------------------------------------|
| Men             | 06             | 0.00                    | -0.06                                 |
| Women           | 23***          | $-0.14^{*}$             | -0.18**                               |
| Young Adults    | $10^{\dagger}$ | -0.09                   | -0.21**                               |
| Mid-Aged Adults | 12             | $-0.10^{\dagger}$       | -0.10                                 |
| Older Adults    | 07             | 0.00                    | -0.07                                 |

Note. The "r" column represents estimates of convergent and criterion-related validity of the latent externalizing problem scores from the Bayesian item response model in relation to the criterion (outcome variable), as operationalized with Pearson correlation. The " $\beta$ " column represents estimates of incremental validity of the latent externalizing problem scores from the Bayesian item response model above and beyond the Adult Self-Report (ASR) or dichotomous versions of the same items in predicting the outcome. The "Discriminant Validity" column represents estimates of discriminant validity—i.e., whether the latent externalizing problem scores from the Bayesian item response model are more strongly associated with the ASR Externalizing scale than with the ASR Internalizing scale (based on a Fisher's r-to-z test). "dichotomous items" represents the latent externalizing problem scores from an item response theory model based on dichotomized items. Age groups were partitioned to retain at least 300 participants per group for considerations relating to power, while still separating meaningful developmental periods. "Young adults" refer to ages 18-25 (n = 548); "Mid-aged adults" refer to ages 25-55 (n = 328); "Older adults" refer to ages 55 and over (n = 361). The models predicting

inhibitory control include age as a covariate because of the known developmental changes in inhibitory control.

#### Participant Flowchart



Supplementary Figure S2

Histogram of Participants' Age in the Sample



**Supplementary Figure S3** 

Histogram of Participants' Family Income in the Sample



*Note*. A rug plot is depicted with black lines below the histogram and along the x-axis.

#### Questionnaire Instructions

The following questions are meant to study a range of behaviors that many people engage in. When responding, please do your best to consider your actual behavior, not how you would ideally like to behave. Please answer all items as accurately as you can, even if some do not seem to apply to you. You can pause the survey and return later by pressing "save & return later" at the bottom of the screen.

<u>Please reflect on your behavior in the past month (30 days).</u> Please select the most appropriate timeframe and indicate how many times you engaged in the listed behavior during that timeframe. If you select "<u>in the past month</u>", please indicate the total number of times you engaged in the behavior in the past month. It might make more sense to think about how often you engaged in a behavior on a daily or weekly basis; in this case, please indicate the average number of times you engaged in the behavior "<u>per day</u>" or "<u>per week</u>", using the past month (30 days) as your timeframe of reference. Finally, you might have engaged in a behavior in the past year but not in the past month; in this case, please indicate the total number of times you engaged in the behavior and select "<u>in the past year</u>". If you did not engage in the behavior in the past year, please select "<u>not in the past year</u>" instead of entering 0.

For example, if within the past month you exercised, on average, 2 times per week, you would indicate that as shown here:

#### How often...



Example Questionnaire Item to Assess Absolute Frequency Count of Externalizing Behavior Per Unit Time



**Supplementary Figure S6** 

Histogram of Inter-Item Correlations of Final Items



*Note*. A rug plot is depicted with black lines below the histogram and along the x-axis.

**Supplementary Figure S7** 

Histogram of Item—Total Correlation of Final Items



*Note*. A rug plot is depicted with black lines below the histogram and along the x-axis.

**Supplementary Figure S8** 

Bayesian Item Response Model: Posterior Predictive Check



**Supplementary Figure S9** 

Item Parameters of Bayesian Item Response Model (Zero-Inflated Negative Binomial Model): mu, phi, and ZI



*Note*. Lines reflect the 95% quantile interval.

Item Response Theory Parameters of Items From Bayesian Item Response Model: Easiness and Discrimination



*Note*. Lines reflect the 95% quantile interval.

**Supplementary Figure S11** 

Histogram of Item-Latent Correlation of Final Items



*Note*. A rug plot is depicted with black lines below the histogram and along the x-axis.

**Supplementary Figure S12** 

Item Information Functions of Items From Bayesian Item Response Model: Item Information as a Function of theta



Test Standard Error of Measurement of Absolute Frequency Versus Dichotomized Versus Adult Self-Report Items: Test Standard

Error of Measurement as a Function of theta



*Note*. "Absolute Frequency" refers to count items from the Bayesian item response model; "Dichotomized" refers to dichotomized versions of the count items that were fit to an item response theory model; "Adult Self-Report" refers to items from the Adult Self-report that were fit to an item response theory model. "theta" represents the person's level on the latent externalizing problems factor.

Test Reliability of Absolute Frequency Versus Dichotomized Versus Adult Self-Report Items: Test Reliability as a Function of theta



*Note*. "Absolute Frequency" refers to count items from the Bayesian item response model; "Dichotomized" refers to dichotomized versions of the count items that were fit to an item response theory model; "Adult Self-Report" refers to items from the Adult Self-report that were fit to an item response theory model. "theta" represents the person's level on the latent externalizing problems factor.