1. Mit mond ki a Bolzano-tétel?

Tfh.
$$f:[a,b]\to\mathbb{R}$$
 folytonos.
Ha $f(a)*f(b)<0$ akkor $\exists x\in[a,b]:f(x)=0$

2. Fogalmazza meg a Bolzano-Darboux-tételt.

Tfh.
$$f:[a,b]\to\mathbb{R}$$
 folytonos.
Ha $f(a)< f(b)$, akkor $\forall c\in (f(a),f(b)):\exists \xi\in [a,b]:f(\xi)=c$

3. Mit jelent az, hogy egy függvény Darboux-tulajdonságú?

$$f:[a,b]\to\mathbb{R}$$
 függyvény Darboux tulajdonságú, ha
$$\forall x_1< x_2,\quad (x_1,x_2\in[a,b]),\quad f(x_1)\neq f(x_2),\quad \forall c\in(f(x_2),f(x_1))\quad \exists \xi\in[x_1,x_2]:f(\xi)=c$$

4. Mi a kapcsolat a Darboux-tulajdonság és a folytonosság között?

Ha $f:[a,b]\to\mathbb{R}$ függyvény folytonos, akkor Darboux tulajdonságú.

5. Mit tud mondani az $f:[a,b] \to \mathbb{R}$ $(a < b, a, b \in \mathbb{R})$ inverz függyvényének folytonosságáról?

Ha $f:[a,b]\to\mathbb{R}$ folytonos és injektív, akkor f^{-1} is folytonos.

6. Milyen állítást ismer tetszőleges intervallumon értelmezett függvény inverzé-nek a folytonosságáról?

 $I \in \mathbb{R}$ intervallum, ha $f: I \to \mathbb{R}$ folytonos és injektív, akkor f^{-1} is folytonos.

7. Definiálja a megszüntethető szakadási hely fogalmát.

Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in D_f$ pontban megszüntethető szakadása van, ha

$$\exists \lim_{a} f \quad \text{v\'eges, \'es} \quad \lim_{a} f \neq f(a)$$

8. Definiálja az elsőfajú szakadási hely fogalmát.

Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in D_f$ pontban elsőfajú szakadása van, ha

$$\exists \lim_{a \to 0} f, \quad \exists \lim_{a \to 0} f \quad \text{v\'egesek, \'es} \quad \lim_{a \to 0} f \neq \lim_{a \to 0} f$$

9. Mit tud mondani monoton függvény szakadási helyeiről?

Ha $f:(a,b)\to\mathbb{R}$ monoton és $\alpha\in(a,b)$, akkor

$$a) \ f \in C(\alpha)$$

vagy

b) Elsőfajú szakadása van α -ban