

Benchmarking Federated Learning in the SME Industry Context

Evaluation concerning Privacy, Complexity and Performance with an Application to real-world Image Classification Problem

Anna Hensel, master's thesis

KARLSRUHE SERVICE RESEARCH INSTITUTE (KSRI)
INSTITUTE OF INFORMATION SYSTEMS AND MARKETING (IISM)

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

^{*} SME: small medium-sized enterprise (dt. KMU)

Benchmarking Federated Learning in the SME Industry Context

Problems: too little data, lack of experience → poor performance

Anna Hensel, master's thesis

^{*} SME: small medium-sized enterprise (dt. KMU)

One model per company

Problems: too little data, lack of experience → poor performance

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

^{*} SME: small medium-sized enterprise (dt. KMU)

One model per company

Problems: too little data, lack of experience
→ poor performance

^{*} SME: small medium-sized enterprise (dt. KMU)

One model per company

Problems: too little data, lack of experience → poor performance

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

^{*} SME: small medium-sized enterprise (dt. KMU)

Federated learning model

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

Federated learning model

Federated learning model

Digital Service Innovation

Karlsruhe Service Research Institute

Institute of Information Systems and Marketing

Federated learning model

10

Federated learning model

11

Federated learning model

- Local training and model sharing preserves **privacy**
- Enables joint use of data of several companies → unlocks performance potential
- Complexity due to model sharing and update communication

Federated learning model

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

Research Questions and Contributions:

- 1. Under what conditions is federated learning (not) useful for SMEs in an industrial context?
- 2. How does federated learning compare to one model per company and all data model? What do SMEs need to consider in terms of privacy, complexity and performance?
- Implementation of a benchmarking pipeline to empirically investigate and simulate federated learning in relation to one model per company and all data model.

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Privacy	Complexity	Performance

14

Complexity

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Privacy

One model per company

Federated learning

All data model

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity Computational Complexity Organizational Complexity Implementation Complexity

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity

Computational Complexity

Number of communication rounds [2] / iterations / communicated bits [5] not relevant in SME setting as much less clients

Organizational Complexity

Implementation Complexity

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity

Computational Complexity

Number of communication rounds [2] / iterations / communicated bits [5] not relevant in SME setting as much less clients

Organizational Complexity

- FL: setting up network complexity, contracts, legal issues, sharing costs, ...
- The more companies the harder to organize

Implementation Complexity

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity

Computational Complexity

Number of communication rounds [2] / iterations / communicated bits [5] not relevant in SME setting as much less clients

Organizational Complexity

- FL: setting up network complexity, contracts, legal issues, sharing costs, ...
- The more companies the harder to organize

Implementation Complexity

- FL: reduced/shared modelling complexity
- One model per company: set up and implement own model

Privacy

+ One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction
 - Information inference

Complexity

Computational Complexity

 Number of communication rounds [2] / iterations / communicated bits [5] not relevant in SME setting as much less clients

Organizational Complexity

- FL: setting up network complexity, contracts, legal issues, sharing costs, ...
- The more companies the harder to organize

Implementation Complexity

- FL: reduced/shared modelling complexity
- One model per company: set up and implement own model

Performance

+ All data model

Federated learning

One model per company

Privacy

One model per company

Federated learning

All data model

Critical aspects:

- Company sends weights to central node [2]
- Weights reflect company data
- → Adversarial attacks from "malicious client" or "malicious server" possible [8]
 - Sample reconstruction

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Information inference

Complexity

Computational Complexity

 Number of communication rounds [2] / iterations / communicated bits [5] not relevant in SME setting as much less clients

Organizational Complexity

- FL: setting up network complexity, contracts, legal issues, sharing costs, ...
- The more companies the harder to organize

Implementation Complexity

- FL: reduced/shared modelling complexity
- One model per company: set up and implement own model

Performance

+ All data model

Federated learning

One model per company

Performance measure to enable comparability between and within companies

- Accuracy [2, 6]
 - Threshold needed
 - Unbalancedness
- AUC [9]
 - Abstracts from balancedness
 - Quality of score (no threshold needed)

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

The all data model can be seen as an upper bound

Company 1 50% of all data, balanced

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

- The all data model can be seen as an upper bound
- One model per company can be seen as a lower bound

Company 2 25% of all data, unbalanced

Company 3 25% of all data, unbalanced

All data model

FL model per company

per company One model

Company 1 50% of all data, balanced

Anna Hensel, master's thesis

Benchmarking Federated Learning in the SME Industry Context

Company 2 25% of all data, unbalanced

Company 3 25% of all data, unbalanced

- The all data model can be seen as an upper bound
- One model per company can be seen as a lower bound
- Companies with insufficient data profit more from the federated model

Training and validation auc (mean, sd ci)

Training and validation auc (mean, sd ci)

Company 1

50% of all data, balanced

Anna Hensel, master's thesis

AUC = 0.982

AUC = 0.985

Benchmarking Federated Learning in the SME Industry Context

train/val

0.95

0.90

0.80

0.70

1.00

0.95

0.90

o.85

0.80

0.75 train/val

0.85

Company 2 25% of all data, unbalanced

The all data model

- Companies with insufficient data profit more from the federated model
- For companies with sufficient data there is little incentive to take part in FL setting

AUC = 0.975

0.85

Company 3 25% of all data, unbalanced

Discussion topics

Measuring Performance

Do you know an alternative measure to AUC which suits to my industry/SME setting?

Measuring Incentives

Idea: Shapley Value with AUC as contribution measure
Do you have experience with it?
How to interpret the result?

Measuring Complexity

What kind of complexity does really matter for SMEs regarding my setting?

Benchmarking Federated Learning in the SME Industry Context

Anna Hensel, master's thesis

Thank you for your attention!

anna.hensel@student.kit.edu

- Karlsruhe Service Research Institute (KSRI)
 Institute of Information Systems and Marketing (IISM)
 Kaiserstr. 89 | Building 05.20
 D-76133 Karlsruhe
- www.ksri.kit.edu / https://dsi.iism.kit.edu/
- @ksri_kit

Sources

- 1. Bonawitz et al. 2019
- 2. McMahan et al. 2017
- 3. Murakonda et al. 2020
- 4. Konečný et al. 2016
- Sattler et al. 2021
- 6. Yang et al. 2019
- Schlagenhauf 2021
- 8. Enthoven and Al-Ars 2021
- 9. Hanley and McNeil 1982