

Neuronale Netze in der Softwaretechnik und ihre aktuell bekannten Grenzen

Robin Schramm, Konstantin Rosenberg, Ravell Heerdegen Hochschule Reutlingen, MKI WS 18/19, SAT

Betreuer Prof. Dr. Christian Kücherer

Einleitung

Wie können neuronale Netze in der Softwaretechnik eingesetzt werden?

Wo liegen die aktuellen Grenzen?

Gliederung

- 1. Neuronale Netze
- 2. Mustererkennung
- 3. Kosten- und Aufwandsschätzung
- 4. Softwarequalität
- 5. Fazit
- 6. Literaturverzeichnis

Neuronale Netze

- Lösung für komplexe Probleme
- Bestandteile:
 - Neuronen (Neurons)
 - Layer
 - Gewichte (Weights)
 - Aktivierungsfunktion

Neuronale Netze

Abbildung 1: Struktur neuronales Netz

- Allgemein
- Convolutional neural networks (CNNs)
- Spracherkennung
- Gefühlserkennung

Allgemein

Difference between Supervised Learning &Unsupervised Learning

Supervised Learning	Unsupervised Learning
Input data is labelled	Input data is unlabeled
Uses training dataset	Uses just input dataset
Used for prediction	Used for analysis
Classification and regression	Clustering, density estimation and dimensionality reduction

Abbildung 2: Vergleich learning Modelle PR

Convolutional neural networks

Convolutional neural networks

Abbildung 3: Beispielentwurf eines CNN

Spracherkennung

Hidden Markov Model

Spracherkennung und convolutional neural networks

Zwei Beispiele

Spracherkennung und residual neural networks

Gefühlserkennung

Abbildung 4: Kulturell unabhängige Gesichtsausdrücke

Gefühlserkennung und convolutional

neural networks

Zwei Beispiele

- Einleitung
- Stand der Technik
- COCOMO
- Soft-Computing Ansätze
- Leistungsbeurteilung
- Vergleich

Einleitung

- Software Projekt Management (SPM)
 - Projektkosten Management
 - Kosten- und Aufwandsschätzung

Stand der Technik

- Expertensysteme
- Lineare Systeme
- Nonlineare Modelle
- Soft-Computing

COCOMO

- Algorithmisches Modell
- Verschiedene Komplexitätsmodi
- Variierende Anzahl von Eingabeparametern
- Cost drivers

Soft-Computing

- Fuzzy-Logik
- Evolutionäre Algorithmen
- NNs
- Leicht generalisierbar
- Flexibel
- Abhängig von Traingingsdaten

Leistungsbeurteilung

- Qualitätsmessung
- Mean Relative Error (MRE)
 - Gutes Ergebnis wenn Fehlerwert < 25%
- NASA Projekte zum Testen von Algorithmen

Vergleich

- 1. Abrahamsson et al.
 - 1 Mathematisches Modell, 2 NNs
 - Ein NN schnitt besser ab als mathematisches, eins schlechter

Khalifelu

 NN und Support Vector Machine liefern bessere Ergebnisse und sind performanter

3. Gharehchopogh

11 Projekte, 90% lieferte NN bessere Ergebnisse als COCOMO

- Einleitung
- Automatisiertes Testen
- Evaluation von Softwarequalität
- Vorhersage von Softwarequalität

Einleitung

- Softwarequalität -> Erfüllung von Anforderungen eines Softwareprodukts nach ISO/<u>IEC</u> 25000
- Methoden zur Qualitätssicherung
 - Testmethoden
 - Testwerkzeug
 - Schulungen von Mitarbeitern
 - ...

Automatisiertes Testen

- Absicherung eines bestehenden Systems durch funktionale Softwaretests
 - Erzeugen von Testdaten
 - Erzeugen von Erwartungswerten
 - Training des NN mit Testdaten und Erwartungswerten
 - Ableiten von Testfällen

Automatisiertes Testen

Pro	Contra
Spart Arbeit	Begrenzt einsetzbar
Spart Zeit	Initialer Aufwand

Software Metriken

- Softwareeigenschaften werden Zahlen zugeordnet
- Bsp. Anzahl Verzweigungen, Anzahl der Klassen…
- Dient der qualitativen Einschätzung eines Softwareprodukts

Evaluation von Softwarequalität

- Motivation:
 - Frühzeitiges Erkennen von Mängeln
 - Bessere Planung
- Verarbeitung von Software Metriken

Evaluation von Softwarequalität

- Evaluation der Methode anhand alter Projekte
- Ergebnisse:
 - Genaue Einschätzung
 - Unzureichende Ergebnisse → Schlechte Ergebnisse

Vorhersage von Softwarequalität

- Motivation:
 - Bessere Planung
 - Frühes Erkennen von Defiziten
 - Erkennen von Zusammenhängen in der Entwicklung
- Software Metriken dienen als Input

Vorhersage von Softwarequalität

- Einsatz von Fuzzy NN's
- Software Metriken dienen als Input
- Ergebnisse:
 - Genaue Vorhersage
 - Zeigt Ursache und Wirkung von Entscheidungen
 - Kommt mit vielerlei Dateiformaten aus

Fazit

Meng, J., Zhang, J., Zhao, H.: Overview of the speech recognition technology. Proceedings - 4th International Conference on Computational and Information Sciences, ICCIS 2012, pp. 199{202 (2012). https://doi.org/10.1109/ICCIS.2012.202

Vydana, H.K., Vuppala, A.K.: Residual neural networks for speech recognition. 25th European Signal Processing Conference, EUSIPCO 2017 pp. 543{547. https://doi.org/10.23919/EUSIPCO.2017.8081266

Guiming, D., Xia, W., Guangyan, W., Yan, Z., Dan, L.: Speech recognition based on convolutional neural networks. 2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016 pp. 708{711. https://doi.org/10.1109/SIPROCESS.2016.7888355

Maind, M.S.B., Wankar, M.P.: Research Paper on Basic of Articial Neural Network. International Journal on Recent and Innovation Trends in Computing and Communication 2(1), 96{100 (2014). https://doi.org/10.1109/Oceans-Spain.2011.6003625, http://www.ijritcc.org

Tang, X.: Hybrid hidden markov model and arti cial neural network for automatic speech recognition. Proceedings of the 2009 Pacic-Asia Conference on Circuits, Communications and System, PACCS 2009, pp. 682{685 (2009). https://doi.org/10.1109/PACCS.2009.138

Khalifelu, Z.A., Gharehchopogh, F.S.: Comparison and evaluation of data mining techniques with algorithmic models in software cost estimation. Procedia Technology 1, 65{71 (2012). https://doi.org/10.1016/j.protcy.2012.02.013

Jayashree, P., Melvin Jose, J., Premkumar: Machine learning in automatic speech recognition: A survey. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India) 32(4), 240{251 (2015). https://doi.org/10.1080/02564602.2015.1010611

A. K. Jain, Robert P. W. Duin, J. Mao: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis And Machine Intelligence, Vol. 22, No. 1, January 2000 22(1), 4{37 (2000)

Awasthi, A.: Facial Emotion Recognition Using Deep Learning. IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI) Dec. 22, 2017 1(September), 9{12 (2013). https://doi.org/10.1145/2818346.2830593

Santos, R.M., Matos, L.N., Macedo, H.T., Montalvao, J.: Speech recognition in noisy environments with convolutional neural networks. Proceedings - 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015 pp. 175{179 (2016). https://doi.org/10.1109/BRACIS.2015.44

Deng, L., Yu, D.: Automatic speech recognition, Springer Verlag, vol. 9 (2015). https://doi.org/10.1007/BF02747521

Aracena, C., Basterrech, S., Snasel, V., Velasquez, J.: Neural Networks for Emotion Recognition Based on Eye Tracking Data. Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 pp. 2632{2637 (2016). https://doi.org/10.1109/SMC.2015.460

Surace, L., Patacchiola, M., Sonmez, E.B., Spataro, W., Cangelosi, A.: Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classi ers. Proceeding ICMI 2017 Proceedings of the 19th ACM International Conference on Multimodal Interaction Pages 593-597 pp. 593{597 (2017). https://doi.org/10.1145/3136755.3143015

Huang, C.: Combining convolutional neural networks for emotion recognition. 2017 IEEE MIT Undergraduate Research Technology Conference, URTC 2017 pp. 1{4 (2018). https://doi.org/10.1109/URTC.2017.8284175

Bajta, M.E., Idri, A., Ros, J.N., Fernandez-Aleman, J.L., Gea, J.M.C.D., Garca, F., Toval, A.: Software project management approaches for global software development: a systematic mapping study. Tsinghua Science and Technology 23(6), 690{714 (2018). https://doi.org/10.26599/TST.2018.9010029

Matson, J.E., Barrett, B.E., Mellichamp, J.M.: Software development cost estimation using function points. IEEE Transactions on Software Engineering 20(4), 275{287 (1994). https://doi.org/10.1109/32.277575

Bilgaiyan, S., Mishra, S., Das, M.: A Review of Software Cost Estimation in Agile Software Development Using Soft Computing Techniques. In: 2016 2nd International Conference on Computational Intelligence and Networks (CINE), Computational Intelligence and Networks (CINE), 2016 2nd International Conference on, cine. p. 112. IEEE. https://doi.org/10.1109/CINE.2016.27

Jeery, D.R., Low, G.: Calibrating estimation tools for software development. Software Engineering Journal 5(4), 215{221 (1990). https://doi.org/10.1049/sej.1990.0024

Heemstra, F.J.: Software Cost Estimation. Handbook of Software Engineering, Hong Kong Polytechnic University 34(10) (1992). https://doi.org/10.1142/97898123897010014

Huang, X., Ho, D., Ren, J., Capretz, L.F.: Improving the COCOMO model using a neuro-fuzzy approach. Applied Soft Computing 7(1), 29{40 (2007). https://doi.org/10.1016/J.ASOC.2005.06.007

Huang, S.J., Lin, C.Y., Chiu, N.H.: Fuzzy decision tree approach for embedding risk assessment information into software cost estimation model. Journal of Information Science and Engineering 22(2), 297{313 (2006)

Jain, R., Sharma, V.K., Hiranwal, S.: Reduce mean magnitude relative error in software cost estimation by HOD-COCOMO algorithm. In: 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). pp. 708{712. https://doi.org/10.1109/ICCICCT.2016.7988044

Chen, Z., Menzies, T., Port, D., Boehm, B.: Feature subset selection can improve software cost estimation accuracy. ACM SIGSOFT Software Engineering Notes 30(4), 1 (2005). https://doi.org/10.1145/1082983.1083171

Abrahamsson, P., Moser, R., Pedrycz, W., Sillitti, A., Succi, G.: Eort Prediction in Iterative Software Development Processes { Incremental Versus Global Prediction Models. In: First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007). Pp. 344{353 (2007). https://doi.org/10.1109/ESEM.2007.16

Boetticher, G.D.: Using Machine Learning to Predict Project Eort: Empirical Case Studies in Data-Starved Domains. Model Based Requirements Workshop pp. 17{24 (2001). https://doi.org/10.1.1.19.111

Setyawati, B.R., Sahirman, S., Creese, R.C.: Neural Networks for Cost Estimation. AACE International Transactions p. 13.1 (2002)

Finnie, G.R., Wittig, G.E.: Al tools for software development eort estimation. Software Engineering: Education and Practice, 20 1996. Proceedings. International Conference pp. 346{353 (1996). https://doi.org/10.1109/SEEP.1996.534020

Gharehchopogh, F.S.: Neural networks application in software cost estimation: A case study. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications. pp. 69{73 (2011). https://doi.org/10.1109/INISTA.2011.5946160

Franz, K.: Handbuch zum Testen von Web- und Mobile-Apps, Springer- Verlag Berlin Heidelberg (2015). https://doi.org/10.1007/978-3-662-44028-5

Antinyan, V., Derehag, J., Sandberg, A., Staron, M.: Mythical unit test coverage. IEEE Software (3), 73{79 (2018). https://doi.org/10.1109/MS.2017.3281318

Committee, S.&.S.E.S., Others: IEEE Std 1061-1998-IEEE Standard for a Software Quality Metrics Methodology. IEEE Computer Society, Tech. Rep (1998)

Wu, L., Liu, B., Jin, Y., Xie, X.: Using back-propagation neural networks for functional software testing. In: 2nd International Conference on Anti-counterfeiting, Security and Identication, ASID 2008. https://doi.org/10.1109/IWASID.2008.4688385

Majma, N., Babamir, S.M.: Software test case generation & test oracle design using neural network. 22nd Iranian Conference on Electrical Engineering, ICEE 2014 pp. 1168{1173 (2014). https://doi.org/10.1109/IranianCEE.2014.6999712

Pomorova, O., Hovorushchenko, T.: Arti cial neural network for software quality evaluation based on the metric analysis. Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2013 pp. 0{3 (2013). https://doi.org/10.1109/EWDTS.2013.6673193

Peng, W., Yao, L., Miao, Q.: An approach of software quality prediction based on relationship analysis and prediction model. In: Proceedings of 2009 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009. https://doi.org/10.1109/ICRMS.2009.5270097

Abbildung 1: Maind, M.S.B., Wankar, M.P.: Research Paper on Basic of Articial Neural Network. International Journal on Recent and Innovation Trends in Computing and Communication 2(1), 96{ 100 (2014). https://doi.org/10.1109/Oceans-Spain.2011.6003625

Abbildung 2: http://kindsonthegenius.blogspot.com/2018/01/what-is-difference-between-supervised.html

Abbildung 3: https://s3.amazonaws.com/cdn.ayasdi.com/wp-content/uploads/2018/06/21100605/Fig2GCNN1.png

Abbildung 4: https://www.researchgate.net/figure/Human-facial-expressions-of-six-basic-Ekman-emotions_fig2_267391519

Vielen Dank für Ihre Aufmerksamkeit