GEOMETRY HOMEWORK 4

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

October 14, 2011

Problem 3.

- (a) 假設 $\kappa(s) \neq 0, \tau(s) \neq 0$,由四點決定一球,討論空間曲線 $\gamma(s)$ 的密切球,並決定球心與半徑。
- (b) 討論螺線 $(a\cos t, a\sin t, bt)$ 的密切球, a > 0。

Proof. (a) Assume that the sphere is |X - C| = R

Problem 4. $\kappa \neq 0, \tau \neq 0$ 為兩常數,請決定 $\kappa(s) = \kappa, \tau(s) = \tau$ 的曲線方程式。 (長度參數 s)

Proof. Upto translations and rotations, all space curves $\alpha(s)$ satisfying the condition are of the following form

$$\begin{split} &\alpha(s) = (\frac{\kappa}{\kappa^2 + \tau^2} \sin \sqrt{\kappa^2 + \tau^2} s, \frac{\kappa}{\kappa^2 + \tau^2} \cos \sqrt{\kappa^2 + \tau^2} s, \frac{\tau}{\sqrt{\kappa^2 + \tau^2}} s) \\ &T(s) = (\frac{\kappa}{\sqrt{\kappa^2 + \tau^2}} \cos \sqrt{\kappa^2 + \tau^2} s, -\frac{\kappa}{\sqrt{\kappa^2 + \tau^2}} \sin \sqrt{\kappa^2 + \tau^2} s, \frac{\tau}{\sqrt{\kappa^2 + \tau^2}}) \\ &\|T(s)\| = 1 \quad (\text{arc-length}) \\ &T'(s) = (-\kappa \sin \sqrt{\kappa^2 + \tau^2} s), -\kappa \cos \sqrt{\kappa^2 + \tau^2} s, 0) \\ &\kappa(s) = \|T(s)\| = \kappa \\ &N(s) = (-\sin \sqrt{\kappa^2 + \tau^2} s), -\cos \sqrt{\kappa^2 + \tau^2} s, 0) \\ &B(s) = T(s) \times N(s) = (\frac{\tau}{\sqrt{\kappa^2 + \tau^2}} \cos \sqrt{\kappa^2 + \tau^2} s, -\frac{\tau}{\sqrt{\kappa^2 + \tau^2}} \sin \sqrt{\kappa^2 + \tau^2} s, -\frac{\kappa}{\sqrt{\kappa^2 + \tau^2}}) \\ &B'(s) = (-\tau \sin \sqrt{\kappa^2 + \tau^2} s, -\tau \cos \sqrt{\kappa^2 + \tau^2} s, 0) \\ &\tau(s) = B'(s)/N(s) = \tau \end{split}$$

Problem 5 (Darboux vector). $\gamma(s)$ arc length

(a) 說明 \exists vector $\omega(s)$ (called Darboux vector) such that

$$\begin{cases}
T' = \omega \times T \\
N' = \omega \times N \\
B' = \omega \times B
\end{cases}$$

(b)
$$V(s)$$
 is a vector along $\gamma(s) \boxtimes w.r.t(T, N, B)$, $V(s) = (v_1(s), v_2(s), v_3(s)) \Rightarrow V' = (v'_1, v'_2, v'_3) + \omega \times V$

(c) 說明
$$\omega = \frac{1}{2}(T \times T' + N \times N' + B \times B')$$

Proof. (a) Let $\omega(s) = -\tau T + \kappa B$, then:

$$\omega \times T = (-\tau T + \kappa B) \times T$$

$$= \kappa N$$

$$= T'$$

$$\omega \times N = (-\tau T + \kappa B) \times N$$

$$= -\kappa T - \tau B$$

$$= N'$$

$$\omega \times B = (-\tau T + \kappa B) \times B$$

$$= \tau N$$

$$= B'$$

So $\omega(s)$ satisfy the conditions.

$$\begin{split} V &= v_1 T + v_2 N + v_3 B \\ &\to V' = v_1' T + v_2' N + v_3' B + v_1 T' + v_2 N' + v_3 B' \\ &= v_1' T + v_2' N + v_3' B + v_1 \omega \times T + v_2 \omega \times N + v_3 \omega \times B \\ &= v_1' T + v_2' N + v_3' B + \omega \times (v_1 T) + \omega \times (v_2 N) + \omega \times (v_3 B) \\ &= v_1' T + v_2' N + v_3' B + \omega \times (v_1 T + v_2 N + v_3 B) \\ &= (v_1', v_2', v_3') + \omega \times V \end{split}$$

(c)

$$\frac{1}{2}(T \times T' + N \times N' + B \times B') = \frac{1}{2}(T \times \kappa N + N \times (-\kappa T - \tau B) + B \times \tau N)$$
$$= \frac{1}{2}(\kappa B + \kappa B - \tau T - \tau T)$$
$$= -\tau T + \kappa B$$
$$= \omega$$

Problem 8.

- (a) 令函數 $x_i: rac{\mathbb{R}^n o \mathbb{R}.}{(x_1,\cdots,x_n)\mapsto x_i}$ 。 計算 $[dx_i]$,在不同的 $a\in \mathbb{R}^n$, dx_i 如何隨 a 變化。
- (b) 由上題將微分式 $df=rac{\partial f}{\partial x_1}dx_1+\cdots+rac{\partial f}{\partial x_n}dx_n$ 與映射 df 結合起來。
- (c) $f: \mathbb{R}^n \to \mathbb{R}^m$, 怎麽利用上題幫你計算 df

Proof.

(a)
$$[dx_i](v) = \left(\frac{d(x_i(\gamma(t)))}{dt}\right)_{t=0}$$
, where $\gamma(0) = a, \gamma'(0) = v$ 令 $\gamma(t) = (\gamma_1(t), \cdots, \gamma_n(t))$, 則 $x_i(\gamma(t)) = \gamma_i(t)$ $\rightarrow \left(\frac{d(x_i(\gamma(t)))}{dt}\right)_{t=0} = \left(\frac{d(\gamma_i(t))}{dt}\right)_{t=0} = v_i = x_i(v)$ $\rightarrow [dx_i] = e_i^T$. 故 dx_i 不隨 a 變化.

(b) 因為 $[df](e_i)=\frac{d}{dt}(f\circ\gamma(t))\Big|_{t=0}$,其中 $\gamma(0)=a,\gamma'(0)=e_i$,因此左式會變成 $\lim_{t\to 0}(f(a+te_i)-f(a))/t=\frac{\partial f}{\partial x_i}(a)$ 。於是對於一般的 $v=(v_1,v_2,\cdots,v_n)\in\mathbb{R}^n$, $df:T_p\mathbb{R}^n\to T_p\mathbb{R}$,而且 $[df](v)=[df](\sum_{k=1}^n v_ke_k)=\sum_{k=1}^n [df](e_k)\cdot v_k=\sum_{k=1}^n \frac{\partial f}{\partial x_k}(a)\cdot [dx_k](v)$ 。於是可以得到我們要的結果 $df=\frac{\partial f}{\partial x_1}dx_1+\cdots+\frac{\partial f}{\partial x_n}dx_n$ 。

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

$$= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \vdots \\ \frac{\partial f_m}{\partial x_1} \end{bmatrix} e_1^T + \dots + \begin{bmatrix} \frac{\partial f_1}{\partial x_n} \\ \vdots \\ \frac{\partial f_m}{\partial x_n} \end{bmatrix} e_n^T$$

$$= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$