تمرين جيد في الحساب للمراجعة و التدرب

نـص التمرين :

- 1) أ) أدرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 5^n على 1
 - . 7 على 2020 ب) إستنتج باقي قسمة العدد
- . $4(5^{n-2}+5^{n-3}+....+1)$ عين قيم العدد الطبيعي n التي من أجلها يكون : (2
 - $\cdot 2C_{n+1}^2 + A_{n+3}^2 = 2n^2 + 6n + 6$: یکون $\cdot 2C_{n+1}^2 + A_{n+3}^2 = 2n^2 + 6n + 6$ تحقق أنه من أجل كل عدد طبيعي
- . 7 مضاعفا للعدد $2C_{n+1}^2 + A_{n+3}^2$ عين قيم العدد الطبيعي n التي يكون من أجلها العدد (
 - n = 9: فيما يلى نفرض (4
 - . $C_{10}^2 x A_{12}^2 y = 15$ (E) : حيث (E) معادلة و لتكن المعادلة و عددين صحيحين و لتكن المعادلة
 - . (x,y) كم الأقل على الأقل على الأقل ما ، $PGCD\left(C_{10}^2;A_{12}^2\right)$ عين (أ
- . (E) المعادلة $y \equiv 0$ وأن $y \equiv 0$ فإن (x,y) علا المعادلة (x,y) بين أنه إذا كانت الثنائية
- . d = PGCD(x, y) : حيث d حيث ، ماهي القيم الممكنة ل عددين طبيعيين ، ماهي القيم الممكنة ل
- ب) عين الثنائيات (x,y) حلول المعادلة (E) بحيث يكونا العددين x و أوليان فيما بينهما .

حل مقترح للتمرين:

1) أ) بواقى قسمة العدد "5 على 7.

$$5^6 \equiv 1[7]$$
 , $5^1 \equiv 3[7]$, $5^4 \equiv 2[7]$, $5^3 \equiv 6[7]$, $5^2 \equiv 4[7]$, $5^1 \equiv 5[7]$, $5^0 \equiv 1[7]$; i.e., $5^1 \equiv 5[7]$, $5^2 \equiv 1[7]$. $5^3 \equiv 1[7]$ i.e., 5^3

قيم العدد الطبيعي n	6 <i>k</i>	6 <i>k</i> +1	6k + 2	6 <i>k</i> + 3	6k+4	6 <i>k</i> + 5
بواقي قسمة العدد °5 على 7	1	5	4	6	2	3

- . $1440^{(2019)^{2020}} \equiv 5^{(2019)^{2020}} [7]$: أي أن $= 5^{(2019)^{2020}} [7]$. أي أن $= 5^{(2019)^{2020}}$
- *) لنعين باقي قسمة العدد 2019^{2020} على 3 : [6] = 2019 أي : $[6] = 3^{2020} = 3^{2020}$ لكن نعلم أنه من أجل كل عدد طبيعي n يكون : $[6] = 3^{2020} = 3$ و منه : [6] = 3 و منه [6] = 3 و منه : [6] = 3
 - . $1440^{(2019)^{2020}} \equiv 6[7]$ أي $1440^{(2019)^{2020}} \equiv 5^{6k+3}[7]$ إذن
 - و منه باقى قسمة العدد $^{(2019)^{2020}}$ على 7 هو 6 .

. $(k \in \mathbb{N})$ مع n = 6k + 3 : إذن n - 1 = 6k + 2 مع

. $2C_{n+1}^2 + A_{n+3}^2 = 2n^2 + 6n + 6$: أي لنبين أن (3

 $: 2C_{n+1}^2 + A_{n+3}^2$: (*

$$2C_{n+1}^2 + A_{n+3}^2 = 2 \times \frac{(n+1)!}{(n+1-2)! \times 2!} + \frac{(n+3)!}{(n+3-2)!} = \frac{(n+1) \times n \times (n-1)!}{(n-1)!} + \frac{(n+3)(n+2)(n+1)!}{(n+1)!}$$

$$2C_{n+1}^2 + A_{n+3}^2 = (n+1)n + (n+3)(n+2) = n^2 + n + n^2 + 2n + 3n + 6$$
 و منه :

. بإذن
$$2C_{n+1}^2 + A_{n+3}^2 = 2n^2 + 6n + 6$$
 هو المطلوب

 $\cdot 2C_{n+1}^2 + A_{n+3}^2 \equiv 0[7]$: ب) لنعين قيم n بحيث يكون (ب

$$n^2 + 3n + 3 \equiv 0$$
[7] : يكون 7 يكون $2(n^2 + 3n + 3) \equiv 0$ الدينا $2(n^2 + 3n + 3) \equiv 0$ الدينا $2(n^2 + 3n + 3) \equiv 0$

.
$$n^2 + 3n \equiv 4[7]$$
 و منه $n^2 + 3n \equiv -3[7]$: أي

يمكن الإستعانة بالجدول التالي (الموافقة بترديد 7):

$n \equiv$	0	1	2	3	4	5	6	[7]
$n^2 \equiv$	0	1	4	2	2	4	1	[7]
3 <i>n</i> ≡	0	3	6	2	5	1	4	[7]
$n^2 + 3n \equiv$	0	4	3	4	0	5	5	[7]

 \cdot $(k\in\mathbb{N})$ مع n=7k+3 و بالتالي يكون n=7k+3 أو n=3[7] أو n=1[7] مع

.
$$C_{10}^2 x - A_{12}^2 y = 15 \dots (E)$$
: لدينا (4

$$: PGCD(C_{10}^{2}; A_{12}^{2})$$
 is (1)

$$45x-132y=15$$
 : تصبح (E) نعلم أن $A_{12}^2=\frac{12!}{10!}=132$ و $C_{10}^2=\frac{10!}{8!\times 2!}=45$: نعلم أن

. 15 و 3 يقسم 15 و PGCD(45,132) = 3 الأقل حلا في \mathbb{Z}^2 لأن \mathbb{Z}^2 و 3 يقسم

$$44y = 5(3x-1)$$
 : 44 $y = 15x-5$ أي تصبح : 5 $x-44y=5$ أي تصبح : 45 $x-44y=5$ أي تصبح : 44 $y=5$

لدينا: 5 يقسم 44 و 5 أولى مع 44 حسب مبرهنة غوص فإن: 5 يقسم ٧

و بالتالي يكون : y = 5k هو المطلوب .

* (E) لنحل المعادلة (*

x=15: نبحث أو لا عن الحل الخاص أي y=5: و منه y=5 و منه y=5 أي y=5 إذن

.
$$(x_0, y_0) = (5,15)$$
 : و منه

لدينا :
$$\begin{cases} 15x - 44y = 5 \\ 15(15) - 44(5) = 5 \end{cases}$$
 بالطرح نجد : $(y-5) = 44(y-5)$ بما أن 15 أولي مع 44 و حسب مبرهنة

.
$$y = 15k + 5$$
 و $x = 44k + 15$: إذن $x = 44k + 15$ و $x = 44k + 15$: غوص نستنج أن

.
$$(k \in \mathbb{Z})$$
 مع $(x,y)=(44k+15,15k+5)$: منه

PGCD(x,y)=d : و بما أن : 5x-44y=5 و بما أن : (x,y) حل للمعادلة (x,y) حل للمعادلة (x,y) أي يكون : (x,y) أي يكون : (x,y) فإن : (x,y) على المعادلة (x,y) و (x,y) و (x,y) فإن : (x,y) على المعادلة (x,y)

 $k \equiv 0[5]$: في $4k \equiv 0[5]$: $44k + 15 \equiv 0[5]$: 20[5] : 20[5] و منه 20[5] . 20[5] الندرس حالة 20[5] مع 20[5] مع 20[5] مع 20[5] مع 20[5] مع 20[5] مع 20[5]

 $k \neq 5\alpha$ لما d=1 : و بالتالي يكون $k=5\alpha$ لما d=5

. $(k \neq 5\alpha)$ مع (x,y) = (44k+15,15k+5) : و منه

كتابة الأستاذ: بلقاسم عبدالرزاق