SOLVING THE RBC MODEL IN DYNARE ECONOMICS 210C

Johannes Wieland jfwieland@ucsd.edu

Spring 2021

RBC MODEL

• Nonlinear equilibrium conditions:

$$(1-\alpha)\frac{Y_t}{N_t} = \frac{\chi N_t^{\varphi}}{C_t^{-\gamma}}$$

$$1 = E_t \left\{ \frac{\beta C_{t+1}^{-\gamma}}{C_t^{-\gamma}} \left[\alpha \frac{Y_{t+1}}{K_t} + (1-\delta) \right] \right\}$$

$$Y_t = C_t + K_t - (1-\delta)K_{t-1}$$

$$Y_t = A_t K_{t-1}^{\alpha} N_t^{1-\alpha}$$

$$A_t = A_{t-1}^{\rho_a} e^{\varepsilon_t^a}$$

WHY DYNARE?

- Can solve the log-linearized model by hand.
 - ▶ Useful to gain intuition.
- But:
 - Easy to make mistakes.
 - ► Is the solution unique?
 - ▶ Gets harder for more complex models.
 - ► How to estimate the model?

DYNARE

• Collection of very powerful Matlab codes:

► Log-linearize, find steady state, compute the model, estimate parameters...

Stable, efficient, well-tested codes.

Available at https://www.dynare.org/download/.

WRITING THE DYNARE CODE

• Dynare code is written in a ".mod" file.

We will create a file called "RBC.mod."

• First step is to create variables of the model.

▶ I will use lower case letters to denote log-deviations.

▶ So the variables in our model are y, n, c, k, a.

RBC.MOD FILE

• "var" tells Dynare that a list of variables follows.

• Every line in Dynare ends with a semi-colon.

var y, n, c, k, a;

RBC.MOD FILE

"varexo" declares the shocks.

• Note: this just includes the shocks. The TFP process (A_t) is included with the other endogenous variables.

RBC.MOD FILE

- Next we declare the parameters of the model using "parameters".
- Good habit to write out the names and use subscripts for the shock parameters.

parameters alpha, beta, gamma, delta, chi, phi, rho_a, sigma_a

PARAMETER VALUES

```
% 2. Calibration
alpha = 1/3;
beta = 0.984;
gamma = 1;
chi = 3.48;
phi = 1/4;
delta = 0.025;
rho_a = 0.979;
sigma_a = 0.0072;
```

DECLARING THE MODEL

- In this step we tell Dynare the first order conditions of our model.
- This is done inside the Model block, which begins with "model;" and ends with "end;".
- We want Dynare to log-linearize the model for us.
 - ▶ That is why we declared the lower-case letters as variables.

• So rather than write A_t in the model file, we write $exp(a_t)$.

A STATIC FOC

• Take our FOC for labor supply and labor demand:

$$(1-\alpha)\frac{Y_t}{N_t} = \frac{\chi N_t^{\varphi}}{C_t^{-\gamma}}$$

This becomes:

$$(1-alpha) * exp(y) / exp(n) = chi * exp(n)^phi * exp(c)^gamma$$

DATING VARIABLES

- Previous example was special in that all variables are dated "t".
- If there is an intertemporal dimension, we tell Dynare as follows:
 - x_{t+1} is x(+1).
 - x_{t-1} is x(-1).
- E.g., the production function:

$$Y_t = A_t K_{t-1}^{\alpha} N_t^{1-\alpha}$$

 $exp(y) = exp(a) * exp(k(-1))^alpha * exp(n)^(1-alpha);$

THE MODEL BLOCK

```
%-----
% 3. Model
model:
(1-alpha) * exp(y) / exp(n) = chi * exp(n)^phi * exp(c)^gamma
\exp(c)^{-(-gamma)} = beta * \exp(c(+1))^{-(-gamma)}
*( alpha * \exp(y(+1)) / \exp(k) + (1-delta) );
   \exp(y) = \exp(c) + \exp(k) - (1-\text{delta}) * \exp(k(-1));
   \exp(y) = \exp(a) * \exp(k(-1))^a + \exp(n)^(1-a);
   a = rho \ a * a(-1) + e \ a:
end:
```

THE MODEL BLOCK

No need to write down expectations operator.

▶ We later declare whether the economy is stochastic or not.

Good habits:

- Comment before every equation what it means.
- ▶ Leave plenty of space between equations and break up long equations.

THE INITVAL BLOCK

- Dynare needs to now what values the variable take in steady state.
- Can provide an initial guess for Dynare and let it compute the steady state: This is the initial block.

- The command "resid" will tell you how good this guess is.
- Generally, this only works for small models.
- We will see a more sophisticated way later.

THE INITVAL BLOCK

```
% 4. Steady State
initval;
    y = log(0.907658170398745);
   n = log(0.319336393586796);
    c = log(0.724338047313284);
    k = log(7.332804923418412);
    a = log(1);
end;
resid;
```

DECLARE THE VARIANCES

COMPUTING THE MODEL

```
%------
% 6. Computation
%------
steady;
check;
stoch_simul;
```

COMPUTING THE MODEL

- "steady" which computes the steady state given the initial values.
- "check" determines whether the solution is unique.
- "stoch_simul(options)" computes the dynamics of the model.
- Most important options:
 - order = 1, 2, or 3: this tells Dynare the order of the (log) approximation. The default is a second order approximation. Hence, typing "order=1" will have it do a linear approximation.
 - irf = integer: this will determine the horizon if the IRFs. The default is 40.
 - hpfiler = [smoothing parameter]: this will produce theoretical moments (variances, covariances, autocorrelations) after HP filtering the data (the default is to apply no filter to the data).

DYNARE CHECKS

Residuals of the static equations:

```
Equation number 1 : 0 : 1
Equation number 2 : 0 : 2
Equation number 3 : 0 : 3
Equation number 4 : 0 : 4
Equation number 5 : 0 : 5
Equation number 6 : 0 : a
```

DYNARE CHECKS

EIGENVALUES:

Imaginary	Real	Modulus
0	0.9361	0.9361
0	0.979	0.979
0	1.086	1.086
0	1.304e+16	1.304e+16

There are 2 eigenvalue(s) larger than 1 in modulus for 2 forward-looking variable(s)

The rank condition is verified.

POLICY FUNCTIONS

POLICY AN	D TRANSITIO	N FUNCTIONS			
	У	n	С	k	j
Constant	-0.09688	-1.14151	-0.32249	1.99235	-1.696
k(-1)	0.10854	-0.33718	0.53002	0.93607	-1.556
a(-1)	1.44609	0.70063	0.57029	0.12266	4.906
e_a	1.47711	0.71566	0.58252	0.12529	5.011

IMPULSE RESPONSE FUNCTIONS

• By default Dynare will produce the IRFs.

THEORETICAL MOMENTS

THEORETICAL	MOMENTS (HE	P filter, la	mbda = 1600)
VARIABLE	MEAN	STD. DEV.	VARIANCE
У	-0.0969	0.0139	0.0002
n	-1.1415	0.0067	0.0000
С	-0.3225	0.0060	0.0000
k	1.9924	0.0041	0.0000
i	-1.6965	0.0469	0.0022
a	0.0000	0.0094	0.0001

a	0.000	0 0.	0094	0.0001		
MATRIX OF	CORRELATIO	NS (HP f	ilter, l	ambda =	1600)	
Variables	У	n	С	k	i	a
У	1.0000	0.9713	0.9435	0.3899	0.9856	0.9995
n	0.9713	1.0000	0.8375	0.1595	0.9975	0.9784
С	0.9435	0.8375	1.0000	0.6731	0.8739	0.9323
k	0.3899	0.1595	0.6731	1.0000	0.2287	0.3600
i	0.9856	0.9975	0.8739	0.2287	1.0000	0.9906
a	0.9995	0.9784	0.9323	0.3600	0.9906	1.0000

THEORETICAL MOMENTS

COEFFICIE	NTS OF A	UTOCORRE	LATION ((HP filte	er, lambda	=	1600)
Order	1	2	3	4	5		
У	0.7237	0.4877	0.2905	0.1295	0.0017		
n	0.7071	0.4615	0.2599	0.0986	-0.0265		
С	0.7880	0.5895	0.4090	0.2490	0.1111		
k	0.9592	0.8609	0.7249	0.5677	0.4025		
i	0.7090	0.4645	0.2634	0.1021	-0.0233		
a	0.7199	0.4816	0.2834	0.1223	-0.0048		

• Can compare to our business cycle facts lecture.

WHERE IS THIS STUFF?

• Dynare stores IRFs under the name "x_e" for variable x's response to shock e.

- ► So y_e_a is the IRF of output to the TFP shock in our model.
- Lots of other good stuff is stored in M_ and oo_.

- ▶ M_− is a structure with information about the model.
- ▶ oo_ is a structure with information about the simulation.

LOOPING OVER PARAMETERS

- We will often want to loop over parameters.
- Write a separate matlab file called RBCloop.m:

```
clear all;
close all;
alpha = 1/3;
beta = 0.99;
gamma = 1;
chi = 1:
phi = 1;
delta = 0.025:
rho_a = 0.95;
sigma_a = 0.01;
```

save paramfile alpha beta gamma chi phi delta rho_a sigma_a;

LOOPING OVER PARAMETERS

for rho_a = [0.8,0.9,0.95]
save paramfile alpha beta gamma chi phi delta rho_a sigma_a;
dynare RBCloop noclearall nolog;

% save your output here, e.g. impulse response functions end

LOOPING OVER PARAMETERS

 Save previous mod file as RBC_looping.mod and change the following code:

```
% 2. Calibration
%-----
load paramfile;
set_param_value('alpha',alpha);
set_param_value('beta', beta);
set_param_value('gamma',gamma);
set_param_value('delta',delta);
set_param_value('chi',chi);
set_param_value('phi',phi);
set_param_value('rho_a',rho_a);
set_param_value('sigma_a',sigma_a);
```

COMPUTING THE STEADY STATE

- You can supply dynare with a matlab file that computes the steady state.
 - ▶ Much faster and more robust, especially for larger models.
 - Especially useful when you loop over parameters.
 - ► Can also be used to find the parameters that match certain moments.
- For your [filename].mod file it should be called [filename]_steadystate.m. So RBC_steadystate.m in our case.
- It has a predefined structure.

STEADY STATE FILE

```
[ys,params,check] = RBCloop_steadystate(ys,exo,M_,options_)
% initialize indicator
check = 0:
% same order as parameter declaration
alpha = M_.params(1);
beta = M_.params(2);
gamma = M_.params(3);
chi = M_.params(4);
phi = M_.params(5);
delta = M_.params(6);
rho_a = M_.params(7);
sigma_a = M_.params(8);
```

STEADY STATE FILE (CONT'D)

[add equations to compute steady state here]

end

```
%% end own model equations
NumberOfParameters = M_.param_nbr;
params=NaN(NumberOfParameters,1);
for iter = 1:length(M_.params) %update parameters set in the
 eval([ 'params(' num2str(iter) ') = ' M_.param_names{iter}
end
NumberOfEndogenousVariables = M_.orig_endo_nbr; %auxiliary var
for ii = 1:NumberOfEndogenousVariables
 varname = M_.endo_names{ii};
 eval(['ys(' int2str(ii) ') = ' varname ';']);
end
```

OTHER TIPS

• When you build a model start small.

▶ Add one element at a time and make sure nothing breaks.

Write a test script.

- Use version control (e.g. Git + Github).
- Dynare includes example files in Dynare/[version]/examples.

NEXT STEPS

• Compare model to the data.

Extend the model.

▶ Solve decentralized RBC model: Section.

Solve New Keynesian model.

Estimate the model.