All Women Shortlists Methodology

Contents

1	Des	scriptive Statistics	3
2	Me	ethodology	4
	2.1	Linguistic Inquiry and Word Count	4
		2.1.1 Women vs Men	5
		2.1.2 Shortlists vs Non-Shortlists	5
		2.1.3 Conservatives vs Labour	8
		2.1.4 All MPs Gender Differences	8
	2.2	POS Analysis	9
	2.3	Tokenising / Keyness	10
		2.3.1 Men vs Women	10
		2.3.2 Shortlists vs Non-Shortlists	11
		2.3.3 Labour vs Conservative	13
	2.4	Bigrams	15
	2.5	· ·	16
	2.6		16
		2.6.1 Shortlists vs Non-Shortlists - K30	16
		2.6.2 Full topic model summary - k45	30
		·	34
3	Dis	scussion	13
		11	
4			14
	4.1		44
	4.2		44
		· v	55
	4.0	· · · · · · · · · · · · · · · · · · ·	58
	4.3		$\frac{35}{2}$
		· v	76
		· •	32
	4.4		93
			93
		4.4.2 Full topic model summary - k0	
		4.4.3 Full topic model estimate summary - k0	
	4.5	AWS References to Constituents in Context	32
R	efere	ences 14	12
т	ict	of Tables	
L	150	of Tables	
	1	Labour MPs and Intakes	3
	2	Number of Speeches and Words in Dataset	3
	3	Effect Sizes for Male and Female Labour MPs	5
	4	Effect Sizes for Female Labour MPs by selection process	7
	5	Effect Sizes for All Labour and Conservative MPs	8
	6	Effect Sizes for Male and Female MPs, All Parties	9
	7	Part-of-Speech Effect Sizes for Male and Female Labour MPs	9
	8	Part-of-Speech Effect Sizes for AWS and non-AWS Labour MPs	10

9	Estimate Effects – $k45$	18
10	Distribution of Topics Among Female Labour MPs – k45	20
11	Count and Distribution of Topics – k45	21
12	Words in topic - k45	24
13		45
14		47
15		48
16	Words in Topic - K30	52
17		66
18	Words in topic - K60	69
19	Count and Distribution of Topics – k0	95
20	Words in topic - k0	99
21	A random sample of KWIC's	32
List	of Figures	
1	Occurence of selected LIWC terms	6
2	Keyness between Labour MPs, by Gender	11
3	Keyness between Female Labour MPs, by Selection Process	12
4	Keyness between Labour and Conservative MPs	14
5	Bigram Keyness in Female Labour MPs by Selection Process	15
6	Fruchterman-Reingold plot of k45 Network	17
7	Coherence of k45 Topic Models	20
8	k45 Pyramid Chart	23
9	k45 Bar Chart	24
10	k45 Topic Proportions	30
11	Fruchterman-Reingold plot of K30 Network	44
12	Coherence of K30 Topic Models	45
13	K30 Pyramid Chart	50
14	K30 Bar Chart	51
15	K30 Topic Proportions	52
16	Fruchterman-Reingold plot of K60 Network	65
17	Coherence of K60 Topic Models	66
18	K60 Pyramid Chart	68
19	K60 Bar Chart	69
20	Fruchterman-Reingold plot of k0 Network	94
21	Coherence of k0 Topic Models	95
22	k0 Pyramid Chart	98
23	k0 Bar Chart	99

1 Descriptive Statistics

Data in Table 1 is from House of Commons Library reports (Audickas, Hawkins, & Cracknell, 2017; Kelly & White, 2016). All women shortlists were not used by Labour during the 2001 General Election.

Table 1: Labour MPs and Intakes

General Election	Total MPs	Labour MPs	Female Labour MPs	Labour MPs Intake	Intake Women	Intake Shortlist	Nominated Shortlist
1997	659	418	101 (24%)	177	64 (36%)	35	38
2001	659	412	95~(23%)	38	4 (11%)	0	0
2005	646	355	98~(28%)	40	26~(65%)	23	30
2010	650	258	81 (31%)	64	32~(50%)	28	63
2015	650	232	99~(43%)	49	31~(63%)	31	77

Table 2: Number of Speeches and Words in Dataset

Gender	Speeches	Words
A11	1,101	139,679
All	657,513	111,320,077
Female	149,799	26,369,159
Conservatives		
Female	1,055	128,958
All Women Shortlists	42	9,167
Male	507,714	84,950,918
Labour		
Male	4	1,554
All	285,291	44,800,169
Female	48,768	7,363,031
Male	236,523	37,437,138
All	261,942	$46,\!494,\!850$
Liberal Democrat		
Female	84,569	15,897,929
Non-All Women Shortlists	28,651	5,415,005
All Women Shortlists	55,918	10,482,924
Other		
Male	177,373	30,596,921
All	72,716	13,485,902
Female	$7,\!552$	1,503,459
Male	65,164	11,982,443
All	$36,\!463$	$6,\!399,\!477$
Female	7,813	1,466,615
Male	28,650	4,932,862

2 Methodology

Previous research on gender differences in political speech patterns has focused on differences between male and female politicians (Yu, 2014) or on variations in Hilary Clinton's speech patterns (Bligh, Merolla, Schroedel, & Gonzalez, 2010; Jones, 2016). This paper focuses on differences in speech patterns between female Labour MPs nominated through All Women Shortlists (AWS) and female Labour MPs nominated through open shortlists. We examined differences in speaking styles using the Linguistic Inquiry and Word Count 2015 (LIWC) dictionary (Pennebaker, Boyd, Jordan, & Blackburn, 2015) and the spaCy (Honnibal & Montani, 2017) Parts-of-Speech (POS) tagger. We examined differences in the topics discussed by AWS and non-AWS MPs, using χ^2 tests for individual words and for bigrams. We trained a Naive Bayes classifier to distinguish AWS and non-AWS speeches. We used structured topic models (STM) to identify the topics discussed by AWS and non-AWS MPs.

To account for the possible effects of age, parliamentary experience and cohort, and in order to compare women selected through all women shortlists to women who were not (but who theoretically had the opportunity to contest all-women shortlists), our analysis is been restricted only to Labour MPs first elected to the House of Commons in the 1997 General Election, up to but excluding the 2017 General Election. Comparisons between MPs of different parties are also restricted to MPs first elected in the 1997 General Election, and before the 2017 General Election. Speeches made by the Speaker, including Deputy Speakers, were also excluded. Words contained in parentheses were removed, as they are added by Hansard to provide additional information not actually spoken by the MP. Speeches and data on MPs' gender and party affiliation are from a previously assembled dataset (Odell, 2018). Information on candidates selected through all women shortlists is from the House of Commons Library (Kelly & White, 2016). Unsuccessful General Election candidates selected through all women shortlists who were subsequently elected in a byelection are classified as having been selected on an all women shortlist, regardless of the selection process for that byelection. Speeches made by MPs while suspended from the Labour party where classified the same as if they had not been suspended. The dataset includes 408 different Labour MPs, 167 female MPs, 119 elected from All Women Shortlists and 48 elected from open shortlists, along with 241 male MPs.

2.1 Linguistic Inquiry and Word Count

Word classification used the Linguistic Inquiry and Word Count 2015 (LIWC) dictionary (Pennebaker et al., 2015) and tokenising tools from the Quanteda R package (Benoit, 2018). Word counts and words-persentence were calculated using stringi (Gagolewski, 2018), a wrapper to the ICU regex library.

Following research by Yu (2014) and Newman, Groom, Handelman, & Pennebaker (2008) on gender differences in language, we compared MPs speeches using the following LIWC categories:

- All Pronouns (pronoun)
- First person singular pronouns (i)
- First person plural pronouns (we)
- Verbs (verb)
- Auxiliary verbs (auxverb)
- Social processes (social)
- Positive emotions (posemo)
- Negative emotions (negemo)
- Tentative words (tentat)
- Articles (article)
- Prepositions (preps)
- Anger words (anger)
- Swear words (swear)
- Cognitive processes (cogproc)

¹e.g. a reference to "the member for Bethnal Green and Bow" in keeping with Parliamentary convention of identifying MPs by their seat rather than their name would be followed by "(Rushnara Ali)".

• Words longer than six letters (Sixltr)

We also included mean words-per-sentence (WPS), total speach word count (WC) and Flesch-Kincaid grade level (FK) (Kincaid, Fishburne, Rogers, & Chissom, 1975), calculated using Quanteda (Benoit, 2018) and stringi (Gagolewski, 2018).

2.1.1 Women vs Men

Table 3: Effect Sizes for Male and Female Labour MPs

	Wo	men	M	en	Effec	t Size
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.07	4.60	10.15	4.99	0.02	negligible
First person singular pronouns	1.89	2.41	2.02	2.55	0.05	negligible
First person plural pronouns	0.98	1.42	0.99	1.51	0.01	negligible
Verbs	12.82	5.00	12.67	5.35	-0.03	negligible
Auxiliary verbs	7.91	3.45	7.93	3.69	0.01	negligible
Social processes	8.46	4.81	8.16	5.11	-0.06	negligible
Positive emotions	2.73	2.49	2.57	2.54	-0.06	negligible
Negative emotions	1.15	1.69	1.07	1.78	-0.05	negligible
Tentative words	1.48	1.74	1.58	1.90	0.05	negligible
More than six letters	10.62	3.67	10.26	3.92	-0.10	negligible
Articles	7.64	3.30	7.96	3.55	0.09	negligible
Prepositions	12.58	4.41	12.14	4.73	-0.10	negligible
Anger words	0.23	0.83	0.24	0.79	0.01	negligible
Swear words	0.00	0.06	0.00	0.09	0.01	negligible
Cognitive processes	8.68	4.83	8.82	5.15	0.03	negligible
Words per Sentence	43.99	19.92	41.43	20.30	-0.13	negligible
Total Word Count	402.72	691.10	370.13	647.25	-0.05	negligible
Flesh-Kincaid Grade Level	10.97	7.77	9.91	7.96	-0.13	negligible

There are no categories where gender differences meet the effect size threshold of |0.2| suggested by Cohen (1988, pp. 25–26) to indicate a small effect. 4 categories – words with more than six letters, prepositions, words-per-sentence and Flesh-Kincaid grade level – exceeded the |0.1| threshold suggested by Newman et al (2008).

2.1.2 Shortlists vs Non-Shortlists

The following plots show changes in the occurrences of selected LIWC terms, words-per-sentence, total word count and Flesch-Kincaid grade level, over the course of an MP's career. There do not appear to be any notable changes in speaking style over the course of female Labour MPs' careers.

Occurence of selected LIWC terms

Figure 1: Occurence of selected LIWC terms

Table 4: Effect Sizes for Female Labour MPs by selection process

	All Wome	en Shortlists	Open S	horlists	Effec	t Size
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.01	4.66	10.19	4.47	-0.04	negligible
First person singular pronouns	1.86	2.41	1.95	2.42	-0.04	negligible
First person plural pronouns	0.88	1.36	1.16	1.51	-0.19	negligible
Verbs	12.88	5.10	12.69	4.80	0.04	negligible
Auxiliary verbs	7.94	3.49	7.86	3.38	0.02	negligible
Social processes	8.46	4.93	8.44	4.58	0.00	negligible
Positive emotions	2.69	2.52	2.81	2.42	-0.05	negligible
Negative emotions	1.17	1.69	1.13	1.68	0.02	negligible
Tentative words	1.48	1.75	1.49	1.73	0.00	negligible
More than six letters	10.56	3.72	10.74	3.56	-0.05	negligible
Articles	7.69	3.38	7.55	3.14	0.04	negligible
Prepositions	12.55	4.54	12.63	4.14	-0.02	negligible
Anger words	0.23	0.79	0.24	0.91	-0.01	negligible
Swear words	0.00	0.06	0.00	0.05	0.01	negligible
Cognitive processes	8.59	4.90	8.85	4.69	-0.05	negligible
Words per Sentence	44.39	20.69	43.21	18.31	0.06	negligible
Total Word Count	401.70	704.15	404.73	664.87	0.00	negligible
Flesh-Kincaid Grade Level	11.13	8.06	10.64	7.15	0.07	negligible

There are no categories among female Labour MPs by selection process meeting the |0.2| threshold. Only one category – first person plural pronouns, d=0.19 – exceeded |0.1|.

2.1.3 Conservatives vs Labour

Table 5: Effect Sizes for All Labour and Conservative MPs

	Lab	our	Conser	vatives	Effec	t Size
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.12	4.87	10.61	4.84	0.10	negligible
First person singular pronouns	1.98	2.51	2.14	2.56	0.06	negligible
First person plural pronouns	0.98	1.48	1.22	1.70	0.15	negligible
Verbs	12.72	5.24	12.92	5.14	0.04	negligible
Auxiliary verbs	7.93	3.61	8.16	3.58	0.06	negligible
Social processes	8.26	5.02	8.11	4.80	-0.03	negligible
Positive emotions	2.63	2.52	2.85	2.66	0.09	negligible
Negative emotions	1.10	1.75	1.04	1.79	-0.03	negligible
Tentative words	1.55	1.85	1.57	1.88	0.01	negligible
More than six letters	10.38	3.84	10.31	3.75	-0.02	negligible
Articles	7.86	3.47	7.81	3.45	-0.01	negligible
Prepositions	12.28	4.63	12.35	4.49	0.02	negligible
Anger words	0.24	0.80	0.24	0.82	0.00	negligible
Swear words	0.00	0.08	0.00	0.10	0.00	negligible
Cognitive processes	8.77	5.05	8.85	5.06	0.01	negligible
Words per Sentence	42.26	20.22	43.07	20.39	0.04	negligible
Total Word Count	380.64	661.91	336.23	594.06	-0.07	negligible
Flesh-Kincaid Grade Level	10.25	7.91	10.54	7.99	0.04	negligible

There are no categories with effect sizes exceeding |0.2| between Labour and Conservative MPs, like inter-Labour differences.

2.1.4 All MPs Gender Differences

There are no categories with effect sizes exceeding |0.2| when comparing all male and female MPs elected from 1997 onwards. There is only one category, "Articles", with an effect size of 0.11, greater than the |0.1| threshold suggested by Newman et al. (2008).

Table 6: Effect Sizes for Male and Female MPs, All Parties

	Wom	en	Me	n	Effec	t Size
	Mean	$\overline{\mathrm{SD}}$	Mean	$\overline{\mathrm{SD}}$	Cohen's D	Magnitude
All Pronouns	1	1	1	1	1	1
First person singular pronouns	2	2	2	2	2	2
First person plural pronouns	3	3	3	3	3	3
Verbs	4	4	4	4	4	4
Auxiliary verbs	5	5	5	5	5	5
Social processes	6	6	6	6	6	6
Positive emotions	7	7	7	7	7	7
Negative emotions	8	8	8	8	8	8
Tentative words	9	9	9	9	9	9
More than six letters	10	10	10	10	10	10
Articles	11	11	11	11	11	11
Prepositions	12	12	12	12	12	12
Anger words	13	13	13	13	13	13
Swear words	14	14	14	14	14	14
Cognitive processes	15	15	15	15	15	15
Words per Sentence	16	16	16	16	16	16
Total Word Count	17	17	17	17	17	17
Flesh-Kincaid Grade Level	18	18	18	18	18	18

2.2 POS Analysis

Table 7: Part-of-Speech Effect Sizes for Male and Female Labour MPs

	Women		Men		Effect Size		
Word Type	Mean	SD	Mean	SD	Cohen's D	Magnitude	
All Nouns	22.17	9.56	21.67	10.92	-0.05	negligible	
Plural Nouns	5.86	3.71	5.04	3.79	-0.22	small	
Singular Nouns	15.61	9.81	16.01	11.16	0.04	negligible	
Adjectives	9.58	4.77	9.28	5.29	-0.06	negligible	
Adverbs	4.91	4.25	5.06	4.91	0.04	negligible	
Verbs	20.97	9.52	20.81	10.28	-0.02	negligible	

Table 8: Part-of-Speech Effect Sizes for AWS and non-AWS Labour MPs

	All Wome	All Women Shortlists		horlists	Effect Size	
Word Type	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Nouns	22.16	8.72	22.18	9.97	-0.04	negligible
Plural Nouns	6.03	3.59	5.77	3.76	-0.16	negligible
Singular Nouns	15.50	8.93	15.67	10.23	0.03	negligible
Adjectives	9.83	4.58	9.45	4.86	-0.02	negligible
Adverbs	4.95	3.76	4.89	4.49	0.03	negligible
Verbs	20.92	9.02	21.00	9.77	-0.02	negligible

Part-of-speech (POS) tagging was done using spaCy (Honnibal & Montani, 2017) and the spacyr package (Benoit & Matsuo, 2018). There is one small gender difference (d = |0.22|) in the use of plural nouns, which make up 5.86% of the words used by female Labour MPs, compared to 5.04% of words spoken by male Labour MPs. As with LIWC, there are no categories where d >= |0.2| when comparing female Labour MPs by selection process.

2.3 Tokenising / Keyness

The most commonly used words by both men and women would be protocol decorum expressions, so we calculate the keyness of words to identify gender differences in the choices of topics raised by men and women, and by short-list and non-shortlist women.

2.3.1 Men vs Women

Keyness – a linguistic measure of the frequency of different words in two groups of texts – reveals clear gender differences in the most disproportionately common words used by female and male Labour MPs. Unsurprisingly, despite male MPs saying almost twice as many words (30,596,921 vs 15,897,929) as their female colleagues, female Labour MPs were more than two-and-a-half (2.61) times as likely to say "women". They were also much more likely to use "women's" and "woman" in parliamentary debate. Female Labour MPs also appear much more likely to discuss "children", "people", "care", "families", "home", "parents", "work" and social policy areas such as "services", "disabled [people]" and "housing" than their male colleagues. Male MPs were more likely to refer to military topics ("Iraq", "nuclear"), and to parliamentary process and protocol – "question", "political", "conservative", "electoral", "house", "party", "argument" "liberal" and "point" are far more common in speeches by male Labour MPs than by female ones. This could suggest that male Labour MPs are more comfortable using the traditional language of House of Commons debate, and are more concerned with the rules, procedures and processes of the parliamentary system than their female colleagues.

Keyness between Labour MPs, by Gender

Figure 2: Keyness between Labour MPs, by Gender

2.3.2 Shortlists vs Non-Shortlists

Keyness differences by selection process are not as obviously stereotypical. Nonetheless, the most common words amongst AWS MPs included "carers", "disabled", "bedroom" and "sen" (Special Educational Needs).

Also of note is AWS MPs making more references to their "constituency" and its "constituents", suggesting that AWS MPs may draw on the fact they were elected by their constituents as a source political legitimacy, at least more than non-AWS MPs.

Keyness between Female Labour MPs, by Selection Process

Figure 3: Keyness between Female Labour MPs, by Selection Process

2.3.3 Labour vs Conservative

The keyness differences between Labour and Conservative MPs are much greater than gender differences within Labour. The very high use of "Lady" by Conservative MPs is reflective of the greater proportion of female MPs in other parties, as it is often used to refer to comments by other members of the house. It may also represent a greater use of traditional hosue decorum by Conservative MPs.

Keyness between Labour and Conservative MPs

Figure 4: Keyness between Labour and Conservative MPs

2.4 Bigrams

We created bigrams of all first person plural and singular pronouns for female Labour MPs. As above, AWS MPs are far more likely to make references to their constituency or their constituents.

Bigram Keyness in Female Labour MPs by Selection Process

Figure 5: Bigram Keyness in Female Labour MPs by Selection Process

2.5 Naive Bayes classification

We trained a Naive Bayes classifier with document-frequency priors and a multinomial distribution to predict the gender of speakers when given speeches by all Labour MPs in our dataset, and the selection process when only given female Labour MPs. The accuracy of both models were roughly equivalent, 70.67% accuracy when predicting gender and 71.22% when predicting shortlists. By contrast, the classifier could distinguish between Labour and Conservative speeches with 74.23% accuracy.

2.6 Topic Models

Using topic models to classify text is widely used in social sciences (Grimmer & Stewart, 2013), as, when combined with the large volume of plain text data available, it allows for a rapid and consistent method of analysis. Topic modelling and other statistic methods of textual analysis are not a substitute for reading the texts themselves, but can augment other analysis or – as in this case – analyse and classify larger amounts of text than would be feasible using human coders (Grimmer & Stewart, 2013). Topic models classify a series of documents (in this case individual speeches) into one of a given number of topics, identifying terms that are common in some documents but rare in others. When developing topic models, there is a trade-off between high precision in the classification of each document with broader topics when using smaller numbers of topics, or lower precision in individual speech classification with more finely-grained topics when using larger numbers of topics. Grimmer & Stewart (2013) also highlight the importance of validating unsurpervised topic models when applied to new sets of texts.

The R package stm (Roberts, Stewart, & Tingley, 2018) implements a structured topic model (STM) (Arora et al., 2013; Roberts, Stewart, & Airoldi, 2016). An STM incorporates data about the writer or speaker into the topic classification algorithm. This differs from traditional topic modelling methods using latent variables to identify topics (e.g. with latent Dirichlet allocation Blei, Ng, & Jordan, 2003), and then comparing proportions of each topic to one or more external variables. STM allows us to incorporate the variables we are interested in to the topic model itself, i.e. the proportion of speechs classified as belonging to each topic can vary as a function of the AWS variable.

We incorporated the AWS status of speakers into our topic model, using all speeches by female Labour MPs, with their AWS status as a covariate in classifying topics. We then matched these topics to speeches by male Labour MPs.

In addition to the structured topic model presented below, we produced three additional STM implementations, with different numbers of topics (K),

The first implementation used an algorithm developed by Lee & Mimno (2014), implemented in the stm package (Roberts et al., 2018), to estimate the number of topics across all speeches made by female Labour MPs, using the "spectral" method developed by Arora et al. (2013), implemented by Roberts et al. (2018). The resulting topic model has 84 topics, across 81,651 documents and a dictionary of 119,586 words. However, the topic quality with K=84 is poor, and several topics have poor semantic coherence (see 21, and the appendix), or contain only a small number of speeches.

2.6.1 Shortlists vs Non-Shortlists - K30

As seen in the word lists in the appendix, there is relatively scattershot semantic coherence, although exclusivity is high, when using the 84 topic models suggested by Lee and Mimno's (2014) algorithm. We therefore re-ran the analysis, using 30 topic models, which resulted in increased semantic coherence, albeit with slightly lower exclusivity, as illustrated in Figure 12. The lower number of models also makes accurate hand-coding of topics more straightforward. The topic model has 81,651 documents and uses a dictionary of 119.586 words.

We created a Fruchterman-Reingold (Fruchterman & Reingold, 1991) diagram to show the connections between different topics. Larger vertices indicate more common topics, and the plot uses a colour scale to

indicate the proportion of speeches classed in that topic made by AWS and non-AWS female Labour MPs. The space between vertices indicate the closeness or distance of two topics. E.g. closer vertices represent topics with more overlapping words than more distant topics.

• check citations of roberts 2016 to see how other people use it/select K

[INSERT ANALYSIS AND DISCUSSION OF GRAPH]

The stm package includes the estimateEffect function to create a regression model using individual documents (speeches) as individual observations, with the number of documents fitting each topic as the dependent variable and model covariates (AWS status) as independent variables.

Figure 6: Fruchterman-Reingold plot of k45 Network

Table 9: Estimate Effects – k45

Estimate	Standard Error	t value	Р	Topic	Type	Stars
0.0204951	0.0004357	47.0388656	0.0000000	1	Intercept	***
-0.0027715	0.0005642	-4.9118480	0.0000009	1	Shortlist	***
0.0111603	0.0003740	29.8431222	0.0000000	2	Intercept	***
0.0000021	0.0004470	0.0046176	0.9963157	2	Shortlist	
0.0181549	0.0003848	47.1762985	0.0000000	3	Intercept	***
0.0010537	0.0004747	2.2197525	0.0264383	3	Shortlist	*
0.0188190	0.0005151	36.5377744	0.0000000	4	Intercept	***
-0.0002286	0.0006446	-0.3546268	0.7228701	4	Shortlist	
0.0155164	0.0005274	29.4196623	0.0000000	5	Intercept	***
0.0041718	0.0006684	6.2416932	0.0000000	5	Shortlist	***
0.0369191	0.0003572	103.3593472	0.0000000	6	Intercept	***
0.0019932	0.0004520	4.4095241	0.0000104	6	Shortlist	***
0.0193233	0.0002769	69.7757473	0.0000000	7	Intercept	***
-0.0015222	0.0003369	-4.5181702	0.0000062	7	Shortlist	***
0.0088852	0.0003911	22.7208888	0.0000000	8	Intercept	***
0.0056158	0.0005583	10.0591596	0.0000000	8	Shortlist	***
0.0098254	0.0003698	26.5672671	0.0000000	9	Intercept	***
0.0004830	0.0004499	1.0736694	0.2829740	9	Shortlist	
0.0216374	0.0005614	38.5414647	0.0000000	10	Intercept	***
-0.0047448	0.0006901	-6.8754406	0.0000000	10	Shortlist	***
0.0315911	0.0004328	72.9868880	0.0000000	11	Intercept	***
0.0032136	0.0005360	5.9955681	0.0000000	11	Shortlist	***
0.0346276	0.0007013	49.3765546	0.0000000	12	Intercept	***
-0.0072062	0.0009216	-7.8193054	0.0000000	12	Shortlist	***
0.0116992	0.0003687	31.7292056	0.0000000	13	Intercept	***
0.0062273	0.0005079	12.2613344	0.0000000	13	Shortlist	***
0.0170285	0.0004634	36.7487676	0.0000000	14	Intercept	***
-0.0032567	0.0006142	-5.3027038	0.0000001	14	Shortlist	***
0.0166912	0.0003689	45.2502390	0.0000000	15	Intercept	***
-0.0011792	0.0004466	-2.6404137	0.0082821	15	Shortlist	**
0.0254973	0.0004412	57.7934363	0.0000000	16	Intercept	***
-0.0092979	0.0005123	-18.1499708	0.0000000	16	Shortlist	***
0.0259225	0.0004042	64.1249473	0.0000000	17	Intercept	***
-0.0055092	0.0005029	-10.9538546	0.0000000	17	Shortlist	***
0.0177248	0.0004528	39.1456454	0.0000000	18	Intercept	***
0.0004121	0.0005445	0.7568560	0.4491383	18	Shortlist	
0.0165421	0.0005372	30.7921455	0.0000000	19	Intercept	***
0.0039280	0.0006518	6.0267450	0.0000000	19	Shortlist	***
0.0181318	0.0005770	31.4254794	0.0000000	20	Intercept	***
0.0038897	0.0006771	5.7446879	0.0000000	20	Shortlist	***
0.0240590	0.0006107	39.3976962	0.0000000	21	Intercept	***
-0.0061956	0.0007251	-8.5444161	0.0000000	21	Shortlist	***
0.0361958	0.0006524	55.4817458	0.0000000	22	Intercept	***
0.0100003	0.0008491	11.7771875	0.0000000	22	Shortlist	***
0.0131313	0.0005736	22.8924484	0.0000000	23	Intercept	***

Table 9: Estimate Effects – k45 (continued)

Estimate	Standard Error	t value	Р	Topic	Type	Stars
0.0015186	0.0006502	2.3357162	0.0195084	23	Shortlist	*
0.0082622	0.0003690	22.3906594	0.0000000	24	Intercept	***
0.0039135	0.0004591	8.5248900	0.0000000	24	Shortlist	***
0.0201256	0.0004772	42.1772030	0.0000000	25	Intercept	***
0.0008824	0.0005734	1.5388927	0.1238344	25	Shortlist	
0.0117383	0.0003692	31.7957233	0.0000000	26	Intercept	***
-0.0017104	0.0004553	-3.7563020	0.0001726	26	Shortlist	***
0.0214066	0.0004909	43.6080908	0.0000000	27	Intercept	***
-0.0059868	0.0005908	-10.1331915	0.0000000	27	Shortlist	***
0.0143883	0.0004594	31.3221513	0.0000000	28	Intercept	***
0.0031430	0.0005676	5.5377105	0.0000000	28	Shortlist	***
0.0198918	0.0005707	34.8529943	0.0000000	29	Intercept	***
0.0087491	0.0007096	12.3302419	0.0000000	29	Shortlist	***
0.0396870	0.0003927	101.0746740	0.0000000	30	Intercept	***
0.0072088	0.0004836	14.9080255	0.0000000	30	Shortlist	***
0.0327820	0.0004285	76.5078922	0.0000000	31	Intercept	***
0.0010358	0.0005401	1.9177144	0.0551507	31	Shortlist	
0.0267140	0.0003235	82.5682752	0.0000000	32	Intercept	***
0.0015700	0.0004071	3.8566176	0.0001151	32	Shortlist	***
0.0272253	0.0005598	48.6337038	0.0000000	33	Intercept	***
-0.0056761	0.0006441	-8.8130920	0.0000000	33	Shortlist	***
0.0323227	0.0005824	55.4985666	0.0000000	34	Intercept	***
-0.0127358	0.0007145	-17.8254003	0.0000000	34	Shortlist	***
0.0283326	0.0006990	40.5305987	0.0000000	35	Intercept	***
-0.0010465	0.0008688	-1.2045914	0.2283646	35	Shortlist	
0.0157183	0.0003785	41.5295616	0.0000000	36	Intercept	***
0.0015106	0.0004918	3.0716326	0.0021296	36	Shortlist	**
0.0236898	0.0003723	63.6244645	0.0000000	37	Intercept	***
0.0061934	0.0004939	12.5408451	0.0000000	37	Shortlist	***
0.0280932	0.0003783	74.2669410	0.0000000	38	Intercept	***
-0.0065536	0.0005128	-12.7808644	0.0000000	38	Shortlist	***
0.0109064	0.0003871	28.1746087	0.0000000	39	Intercept	***
0.0038214	0.0004934	7.7454016	0.0000000	39	Shortlist	***
0.0285239	0.0004084	69.8489231	0.0000000	40	Intercept	***
0.0009309	0.0004652	2.0011298	0.0453817	40	Shortlist	*
0.0259846	0.0005548	46.8332442	0.0000000	41	Intercept	***
-0.0052635	0.0006605	-7.9686725	0.0000000	41	Shortlist	***
0.0168733	0.0004266	39.5551893	0.0000000	42	Intercept	***
0.0083566	0.0005743	14.5508370	0.0000000	42	Shortlist	***
0.0132703	0.0003983	33.3144736	0.0000000	43	Intercept	***
0.0070761	0.0005366	13.1880997	0.0000000	43	Shortlist	***
0.0676878	0.0004210	160.7921664	0.0000000	44	Intercept	***
-0.0154158	0.0005242	-29.4053779	0.0000000	44	Shortlist	***
0.0168136	0.0003105	54.1483487	0.0000000	45	Intercept	***
-0.0005819	0.0003854	-1.5096692	0.1311317	45	Shortlist	

Figure 7: Coherence of k45 Topic Models

Table 10: Distribution of Topics Among Female Labour MPs - k45

Topic	One or more speeches	Five or more speeches
Business	140	72
Disease	143	74
Parties	152	96
Health Care	155	114
Disasters	150	79
Energy	128	57
Volunteering	132	64
Infrastructure	132	57
Local authorities	141	72
Universities and Skills	149	87
Schools	139	96
Roads	128	55
Transport	149	89
Police	147	81
Budgets and tax	157	127
Drugs	125	66
Culture and sport	131	66
Children and familie	143	82
Planning and land-use	113	45

Table 10: Distribution of Topics Among Female Labour MPs – k45 $\left(continued\right)$

Topic	One or more speeches	Five or more speeches
Security	127	61
Elections	135	70
Benefits and pensions	151	93
Members	129	67
Call to action	156	116
Reports	155	101
Disability	144	86
Amendments	123	57
Justice	146	82
Military intervention	155	112
Financial system	124	56
Debate	161	105
Public bodies	119	52
Devolution	104	43
Gender	149	85
Bills	136	79
European Union	152	91
Environment	143	89
Constituency	151	81
Responses	158	123
Interventions	120	40
Housing	141	74
Questions	165	132
Technology	121	49
Food and farming	123	57
Animals	109	32

Table 11: Count and Distribution of Topics – k45

Topic Number	AWS Speeches	Percent of AWS	Non-AWS Speeches	Percent of non-AWS	Male MP Speeches	Percent of Male MP
-		Speeches		Speeches		Speeches
Topic 1	759	1.41%	576	2.07%	2,841	1.68%
Topic 2	552	1.03%	297	1.07%	1,908	1.13%
Topic 3	667	1.24%	323	1.16%	2,646	1.56%
Topic 4	1,092	2.03%	568	2.04%	588	0.35%
Topic 5	1,299	2.42%	478	1.72%	2,048	1.21%
Topic 6	2,286	4.25%	857	3.08%	4,633	2.74%
Topic 7	508	0.94%	255	0.92%	1,046	0.62%
Topic 8	825	1.53%	245	0.88%	2,338	1.38%
Topic 9	450	0.84%	207	0.74%	1,192	0.7%
Topic 10	994	1.85%	788	2.83%	1,565	0.92%
Topic 11	1,491	2.77%	663	2.38%	7,505	4.43%
Topic 12	$2,\!255$	4.19%	1,577	5.66%	4,855	2.87%
Topic 13	795	1.48%	222	0.8%	1,663	0.98%

Table 11: Count and Distribution of Topics – k45 (continued)

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Topic 14	673	1.25%	569	2.04%	2,183	1.29%
Topic 15	668	1.24%	351	1.26%	1,279	0.76%
Topic 16	477	0.89%	569	2.04%	2,165	1.28%
Topic 17	855	1.59%	649	2.33%	3,107	1.83%
Topic 18	1,058	1.97%	512	1.84%	3,239	1.91%
Topic 19	1,430	2.66%	529	1.9%	3,491	2.06%
Topic 20	1,601	2.98%	582	2.09%	4,181	2.47%
Topic 21	1,199	2.23%	815	2.93%	3,112	1.84%
Topic 22	3,712	6.9%	1,295	4.65%	10,692	6.31%
Topic 23	903	1.68%	386	1.39%	1,762	1.04%
Topic 24	647	1.2%	219	0.79%	1,773	1.05%
Topic 25	1,179	2.19%	619	2.22%	1,275	0.75%
Topic 26	486	0.9%	291	1.04%	1,363	0.8%
Topic 27	766	1.42%	652	2.34%	2,041	1.21%
Topic 28	1,006	1.87%	328	1.18%	4,391	2.59%
Topic 29	1,818	3.38%	594	2.13%	$3,\!335$	1.97%
Topic 30	2,247	4.18%	621	2.23%	8,740	5.16%
Topic 31	1,482	2.76%	683	2.45%	4,975	2.94%
Topic 32	992	1.84%	429	1.54%	1,624	0.96%
Topic 33	971	1.81%	742	2.66%	$4,\!525$	2.67%
Topic 34	$1,\!215$	2.26%	1,239	4.45%	$4,\!450$	2.63%
Topic 35	$2,\!153$	4%	1,223	4.39%	9,983	5.9%
Topic 36	755	1.4%	360	1.29%	2,030	1.2%
Topic 37	1,409	2.62%	460	1.65%	5,138	3.03%
Topic 38	676	1.26%	508	1.82%	2,387	1.41%
Topic 39	716	1.33%	203	0.73%	2,374	1.4%
Topic 40	1,344	2.5%	539	1.93%	5,389	3.18%
Topic 41	1,271	2.36%	918	3.29%	5,573	3.29%
Topic 42	1,380	2.57%	394	1.41%	3,854	2.28%
Topic 43	896	1.67%	277	0.99%	1,823	1.08%
Topic 44	3,309	6.15%	2,931	10.52%	19,842	11.72%
Topic 45	521	0.97%	320	1.15%	2,417	1.43%

Figure 8: k45 Pyramid Chart

Figure 9: k45 Bar Chart

2.6.1.1 Word Occurences

The table below shows the ten most common words in each topic, and the ten words with the highest FREX score, a measure that uses a harmonic mean of word exclusivity and topic coherence (Airoldi & Bischof, 2016).

Table 12: Words in topic - k45

Topic Number	Top Ten Words	Top Ten FREX
Topic 1	business, businesses, companies, small, tax, company, sector, economy, industry, private, uk, employees, public, economic, enterprise, finance, rates, contracts, revenue, firms	businesses, medium-sized, avoidance, employees, enterprise, corporation, business, hmrc, enterprises, smes, shares, employee, firms, competitiveness, stamp, revenue, company, small, evasion, entrepreneurs
Topic 2	safety, road, bbc, air, licence, car, vehicles, traffic, driving, vehicle, cars, drivers, roads, use, radio, public, noise, also, health, number	caa, herbal, vehicles, primodos, accidents, taxi, bbc, drivers, pedestrians, parking, fireworks, noise, radio, cycling, nats, licence, vehicle, hse, bikes, mph

Table 12: Words in topic - k45 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 3	member, members, debate, said, made, also, north, heard, spoke, south, friends, raised, east, mentioned, talked, speech, west, comments, pointed, issues	member, thoughtful, spoke, eastmr, westmr, hayes, eloquently, southmr, northmr, bermondsey, dorsetmr, bromley, holborn, durhammr, talked, wright, redwood, selly, rushcliffemr, greenmr
Topic 4	women, violence, men, domestic, equality, women's, pay, discrimination, equal, woman, rights, sexual, girls, gender, work, victims, marriage, many, trafficking, sex	gender, women, women's, fgm, discrimination, equality, female, men, male, equalities, equal, slavery, marriage, gay, violence, trafficked, girls, marriages, transgender, domestic
Topic 5	housing, homes, private, social, home, affordable, london, accommodation, sector, rent, need, property, properties, tenants, landlords, buy, council, rented, many, bedroom	rent, tenants, landlords, rented, homelessness, homeless, rents, tenancies, tenancy, leasehold, properties, housing, landlord, accommodation, leaseholders, affordable, two-bedroom, homes, renting, bedroom
Topic 6	agree, ensure, made, support, make, aware, welcome, department, progress, thank, taking, work, recent, government, statement, can, action, given, assessment, continue	agree, aware, progress, steps, thank, friend's, assessment, recent, taking, department, assure, ensure, statement, welcome, discussions, strategy, reply, plans, discuss, commitment
Topic 7	information, service, access, advice, available, services, staff, provide, data, use, can, agency, provided, guidance, also, providers, ensure, national, agencies, system	information, data, advice, pilot, broadband, digital, communication, access, pilots, records, electronic, advisers, providers, telephone, computer, service, check, communications, hearing, communicate
Topic 8	food, plymouth, farmers, industry, environment, waste, rural, marine, sea, fishing, cornwall, products, environmental, fish, uk, meat, agricultural, fisheries, farming, affairs	marine, fishing, fisheries, fishermen, cod, beef, gm, dairy, camborne, plymouth, fish, seafarers, meat, mmo, cornwall, farmers, food, agriculture, sugar, cornish
Topic 9	regulation, insurance, regulatory, animals, code, industry, fsa, dogs, dog, animal, ombudsman, welfare, standards, ban, regime, protection, enforcement, act, lord, regulator	dogs, dog, policyholders, fur, mink, sia, mesothelioma, circuses, fsa, snares, rspca, penrose, ombudsman, maladministration, regulatory, animals, animal, regulation, wild, regulators
Topic 10	health, treatment, cancer, mental, research, medical, disease, condition, patients, can, national, also, conditions, screening, risk, group, one, many, heart, diagnosis	embryos, prostate, cervical, hepatitis, cancers, transplant, fertilisation, embryonic, endometriosis, cancer, piercing, immunisation, flu, diabetes, anaemia, cord, cells, abortion, screening, embryology

Table 12: Words in topic - k45 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 11	government, labour, conservative, policy, opposition, party, government's, said, members, previous, us, say, now, ministers, back, public, let, liberal, conservatives, nothing	conservative, conservatives, liberal, tory, tories, democrats, labour, manifesto, benches, opposition, democrat, coalition, promises, interruption, promise, lib, party, party's, government, previous
Topic 12	health, care, nhs, services, hospital, patients, service, staff, social, trust, hospitals, trusts, patient, doctors, primary, new, nurses, waiting, need, emergency	dentists, dentistry, helier, dental, pct, dentist, nurses, hospitals, nhs, hospital, discharges, trusts, commissioning, e, pharmacies, beds, nursing, gp, doctors, dementia
Topic 13	family, constituent, mr, families, man, years, fire, death, case, died, life, told, two, lost, mrs, home, mother, received, lives, day	firefighters, mrs, constituent, fire, died, son, daughter, ms, husband, tragedy, loved, fires, wife, contacted, tragically, funeral, tragic, sister, man, rescue
Topic 14	energy, market, fuel, companies, water, prices, price, bills, consumers, competition, gas, customers, efficiency, oil, consumer, electricity, winter, costs, poverty, households	ofgem, fuel, electricity, gas, supplier, energy, tariff, prices, oil, water, meters, bills, winter, suppliers, price, aluminium, insulation, tariffs, heat, wholesale
Topic 15	community, organisations, groups, voluntary, communities, society, sector, social, prison, charities, support, organisation, role, charity, church, many, faith, can, together, group	volunteering, voluntary, charities, prisons, organisations, church, volunteers, probation, prisoners, charity, religious, prison, charitable, faith, volunteer, groups, reoffending, gift, milton, community
Topic 16	new, investment, areas, post, office, building, rural, programme, communities, future, build, years, development, infrastructure, offices, million, projects, need, country, economic	post, offices, mail, regeneration, investment, rural, urban, vision, invested, building, infrastructure, sub-post, investing, renewal, closures, build, gateway, invest, projects, sub-postmasters
Topic 17	local, authorities, funding, council, authority, areas, government, councils, services, area, money, resources, communities, needs, grant, level, proposals, provision, fund, provide	authorities, local, councils, funding, authority, grant, formula, councillors, allocation, allocated, council, county, unitary, locally, hertfordshire, allocations, grants, resources, settlement, bids
Topic 18	education, skills, training, young, students, university, college, higher, science, employers, opportunities, apprenticeships, universities, colleges, research, learning, engineering, student, qualifications, courses	students, apprenticeships, universities, ema, fe, graduates, colleges, apprenticeship, student, skills, vocational, qualifications, courses, university, careers, engineering, sixth-form, training, apprentices, college

Table 12: Words in topic - k45 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 19	schools, school, education, children, teachers, parents, pupils, educational, special, needs, primary, good, free, standards, learning, teacher, teaching, secondary, provision, autism	schools, teachers, pupils, sen, academies, ofsted, pupil, grammar, school, educational, teacher, autism, leas, academisation, academy, classroom, curriculum, attainment, teaching, dyslexia
Topic 20	transport, london, rail, regional, bus, services, line, travel, train, network, passengers, regions, capacity, manchester, fares, public, region, service, trains, station	rail, bus, passengers, fares, railways, hs2, freight, high-speed, electrification, crossrail, railtrack, trains, transport, passenger, buses, heathrow, fare, railway, commuter, concessionary
Topic 21	police, crime, officers, behaviour, policing, antisocial, community, force, forces, communities, tackle, neighbourhood, powers, home, serious, can, chief, streets, officer, number	policing, antisocial, graffiti, crime, officers, police, constable, pcsos, asbos, behaviour, gang, cctv, neighbourhood, knife, constables, violent, anti-social, gangs, dna, constabulary
Topic 22	million, year, budget, cuts, cut, billion, tax, government, increase, chancellor, jobs, economy, spending, years, pay, last, growth, government's, impact, economic	obr, budget, millionaires, wage, cuts, cut, billion, deficit, vat, recession, spending, unemployment, wages, inflation, chancellor, hit, fiscal, 50p, 2010, chancellor's
Topic 23	alcohol, drugs, people, drug, smoking, young, use, ban, tobacco, israel, advertising, public, online, problem, drinking, health, misuse, palestinian, cannabis, israeli	tobacco, cannabis, cull, tb, palestinians, hamas, pornography, israelis, sunbeds, psychoactive, sunbed, israeli, gaza, culls, alcohol, palestinian, israel's, misuse, israel, smoking
Topic 24	culture, sport, media, football, clubs, arts, club, sports, bradford, slough, games, creative, cultural, tickets, music, many, swimming, lottery, olympic, industry	sport, games, gambling, betting, venues, lap-dancing, touts, football, casinos, sporting, hove, slough, bradford, arts, swimming, sports, olympic, music, creative, musicians
Topic 25	children, child, care, families, parents, family, carers, support, children's, poverty, social, young, working, many, vulnerable, start, parent, home, one, can	csa, same-sex, child, lone, carers, parent, children's, childcare, caring, couples, adoption, children, mothers, child's, parents, carer, adopters, cafcass, fathers, trans
Topic 26	planning, land, development, sites, site, national, green, buildings, use, policy, new, building, environment, plan, co-operative, application, applications, area, permission, forest	gypsies, gypsy, planning, brownfield, land, sites, co-operative, belt, site, gospels, nppf, forestry, spaces, developers, hectares, forest, forests, restoration, travellers, gardens
Topic 27	home, secretary, security, inquiry, investigation, office, terrorism, serious, threat, powers, control, police, orders, fraud, need, evidence, prevent, intelligence, also, risk	tpims, isc, sfo, reviewer, terrorism, investigations, tpim, intercept, investigation, detention, terrorist, proscription, intelligence, inquiry, ipcc, fraud, secretary's, counter-terrorism, hillsborough, suspects

Table 12: Words in topic - k45 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 28	vote, political, parliament, people, election, parties, elected, party, elections, democracy, register, electoral, one, voting, referendum, registration, politics, members, system, democratic	electoral, polling, voting, vote, turnout, votes, referendums, voter, elections, voters, political, gibraltar, parliaments, elected, ballot, electorate, democracy, constitution, canvass, candidates
Topic 29	benefit, tax, pension, benefits, credit, income, pensions, pensioners, allowance, system, changes, scheme, state, pay, age, universal, savings, welfare, government, paid	pension, claimants, pensions, pensioners, allowance, retirement, pensioner, income, uprating, earnings, credits, universal, cpi, esa, entitlement, benefits, benefit, carer's, jobseeker's, dwp
Topic 30	one, get, time, going, go, just, know, say, think, said, even, things, problem, like, back, many, now, us, another, want	going, things, get, lot, something, really, go, thing, talking, got, saying, enough, told, else, bit, happen, happening, think, anything, thought
Topic 31	report, review, year, last, said, response, decision, published, number, asked, questions, consultation, evidence, since, received, ministers, made, may, following, office	report, official, published, review, vol, march, july, january, written, response, november, december, october, june, february, publish, questions, september, april, letter
Topic 32	people, work, young, many, help, support, need, get, disabled, can, employment, constituency, job, working, lives, people's, want, life, disability, often	disabled, people, disability, people's, work, disabilities, job, youth, unemployed, older, employment, young, pip, help, getting, jobcentre, lives, get, dla, elderly
Topic 33	clause, amendment, new, amendments, act, provisions, regulations, section, 1, power, provision, clauses, made, apply, may, 2, powers, tabled, person, make	nos, clause, clauses, amendments, insert, amendment, affirmative, schedule, section, provisions, page, definition, regulations, tabled, b, amend, wording, drafted, amended, specified
Topic 34	cases, law, court, legal, justice, case, criminal, courts, offence, rights, evidence, system, victims, act, offences, person, appeal, human, protection, prosecution	defendants, defendant, court, courts, magistrates, prosecution, offence, judges, cps, conviction, tribunal, judge, witnesses, convictions, offences, jury, lawyers, criminal, judiciary, crb
Topic 35	international, defence, world, forces, countries, armed, war, foreign, human, development, aid, rights, government, un, conflict, military, security, british, united, country	military, iraq, humanitarian, veterans, nato, sri, sierra, zimbabwe, burma, iraqi, leone, kashmir, yemen, daesh, afghan, ceasefire, congo, burmese, assad, taliban
Topic 36	financial, money, bank, debt, scheme, banks, credit, costs, pay, cost, interest, payments, fees, paid, fund, unions, banking, loan, payment, loans	loan, lending, payday, fca, lenders, debt, bank, banking, banks, farepak, debts, loans, financial, rock, bonuses, mortgage, rbs, bankers, taxpayer, creditors
Topic 37	debate, members, many, today, us, speech, house, day, time, first, great, speak, years, leader, opportunity, thank, like, country, proud, parliament	backbench, leader, proud, speak, queen's, speech, privilege, back-bench, anniversary, gracious, fought, speaking, honour, holocaust, chamber, tomorrow, apologise, mp, pride, celebrate

Table 12: Words in topic - k45 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 38	public, commission, role, work, new, independent, standards, set, framework, national, paper, board, bodies, ensure, arrangements, also, practice, white, civil, duty	audit, framework, bodies, commission, accountability, responsibilities, governance, board, independent, white, functions, appointments, paper, accountable, duties, civil, objectives, arrangements, servants, body
Topic 39	wales, scotland, scottish, northern, england, ireland, welsh, assembly, devolution, united, parliament, uk, kingdom, devolved, cardiff, government, powers, english, national, executive	wales, scotland, scottish, ireland, welsh, snp, scotland's, holyrood, cymru, calman, assembly, scots, nationalists, s4c, devolved, devolution, newport, cardiff, northern, administrations
Topic 40	bill, committee, members, legislation, debate, time, hope, proposals, select, support, many, opportunity, scrutiny, concerns, place, detail, believe, changes, measures, reading	committee, bill, select, scrutiny, detail, legislation, debated, bill's, reading, discussion, draft, committees, passage, debates, committee's, consensus, discussed, principle, legislative, scrutinise
Topic 41	european, uk, eu, union, countries, trade, europe, british, country, states, immigration, united, britain, us, rights, foreign, negotiations, asylum, workers, treaty	asylum, nationals, enlargement, treaty, lisbon, immigration, dubs, seekers, european, brexit, eu, europe, accession, eurozone, migration, negotiations, passport, union, migrants, france
Topic 42	secretary, state, change, climate, industry, green, jobs, future, government, can, uk, risk, flood, steel, state's, power, carbon, need, new, wind	solar, flood, steel, state's, climate, renewables, state, low-carbon, flooding, wind, secretary, floods, energy-intensive, carbon, tata, defences, nuclear, renewable, nissan, decarbonisation
Topic 43	constituency, city, centre, constituents, area, town, west, north, hull, council, south, residents, petition, yorkshire, east, local, many, jobs, north-east, one	petitioners, visteon, swindon, humber, hull, petition, burton, yorkshire, halifax, hull's, declares, newcastle, warrington, hackney, town, wakefield, tyneside, lincolnshire, immingham, valley
Topic 44	can, important, point, take, need, issue, make, want, issues, whether, must, however, understand, look, sure, different, hope, well, know, consider	point, important, understand, issue, look, different, certainly, makes, consider, issues, matter, take, possible, extremely, making, sure, whether, want, decisions, course
Topic 45	house, question, order, move, mr, speaker, put, motion, lords, deputy, agreed, time, read, lord, second, ask, beg, minutes, commons, shall	question, lords, beg, motion, speaker, house, agrees, forthwith, order, noble, deputy, agreed, indicated, read, o'clock, notes, madam, move, mr, minutes

Proportion of speeches made by AWS MPs (right side) relative to non–AWS MPs (left side)

Figure 10: k45 Topic Proportions

2.6.2 Full topic model summary - k45

```
## A topic model with 45 topics, 81651 documents and a 119586 word dictionary.
##
  Topic 1 Top Words:
         Highest Prob: business, businesses, companies, small, tax, company, sector
##
##
         FREX: businesses, medium-sized, avoidance, employees, enterprise, corporation, business
##
         Lift: 1,643, 3.12, 32.2, aaronson, anti-abuse, anti-tax, bacs
         Score: businesses, tax, companies, business, company, avoidance, hmrc
##
  Topic 2 Top Words:
##
##
         Highest Prob: safety, road, bbc, air, licence, car, vehicles
##
         FREX: caa, herbal, vehicles, primodos, accidents, taxi, bbc
         Lift: aerodromes, blagdon, bonfires, caa, csm, gatwick's, grantee
##
##
         Score: bbc, safety, vehicles, traffic, licence, road, fireworks
##
  Topic 3 Top Words:
         Highest Prob: member, members, debate, said, made, also, north
##
##
         FREX: member, thoughtful, spoke, eastmr, westmr, hayes, eloquently
##
         Lift: acoba, erdington, islesmr, northsteve, sedgemore, shoreditchmr, strathspey
##
         Score: member, north, members, spoke, east, south, debate
##
  Topic 4 Top Words:
         Highest Prob: women, violence, men, domestic, equality, women's, pay
##
##
         FREX: gender, women, women's, fgm, discrimination, equality, female
##
         Lift: 77p, amirah, berelowitz, bishoprics, board-level, bride, brothel-keeping
         Score: women, violence, women's, men, equality, sexual, discrimination
##
## Topic 5 Top Words:
```

```
##
         Highest Prob: housing, homes, private, social, home, affordable, london
##
         FREX: rent, tenants, landlords, rented, homelessness, homeless, rents
##
         Lift: 1,624, afon, bramwell, bron, clearsprings, commonhold, infestation
         Score: housing, homes, rent, tenants, rented, landlords, affordable
##
## Topic 6 Top Words:
##
         Highest Prob: agree, ensure, made, support, make, aware, welcome
         FREX: agree, aware, progress, steps, thank, friend's, assessment
##
         Lift: ina, manya, ona, 10.42, 101269, 101548, 101549
##
##
         Score: statement, agree, department, assessment, aware, steps, progress
## Topic 7 Top Words:
##
         Highest Prob: information, service, access, advice, available, services, staff
         FREX: information, data, advice, pilot, broadband, digital, communication
##
##
         Lift: north-westdr, saneline, 1,001, 1,752, 1,997, 109648, 114061
         Score: information, service, advice, data, access, staff, digital
##
## Topic 8 Top Words:
##
         Highest Prob: food, plymouth, farmers, industry, environment, waste, rural
##
         FREX: marine, fishing, fisheries, fishermen, cod, beef, gm
##
         Lift: fishermen, incineration, inshore, mmo, 0157, 1-tonne, 1,004
##
         Score: food, farmers, plymouth, marine, fishing, fisheries, fishermen
## Topic 9 Top Words:
##
         Highest Prob: regulation, insurance, regulatory, animals, code, industry, fsa
##
         FREX: dogs, dog, policyholders, fur, mink, sia, mesothelioma
##
         Lift: 13652, 13653, 13654, arculus, attachment-free, attribution, bee-friendly
         Score: fsa, animals, regulation, dogs, regulatory, insurance, animal
##
## Topic 10 Top Words:
##
         Highest Prob: health, treatment, cancer, mental, research, medical, disease
##
         FREX: embryos, prostate, cervical, hepatitis, cancers, transplant, fertilisation
         Lift: embryonic, endometriosis, fibrosis, hfea, piercing, @cfaware, #500
##
##
         Score: cancer, mental, health, patients, disease, treatment, screening
## Topic 11 Top Words:
         Highest Prob: government, labour, conservative, policy, opposition, party, government's
##
##
         FREX: conservative, conservatives, liberal, tory, tories, democrats, labour
##
         Lift: lib, #nationalistsconfused, 1.135, 1125, 15-years, 1945-51, 1980s-interruption
##
         Score: conservative, government, labour, party, liberal, opposition, conservatives
##
  Topic 12 Top Words:
##
         Highest Prob: health, care, nhs, services, hospital, patients, service
##
         FREX: dentists, dentistry, helier, dental, pct, dentist, nurses
##
         Lift: #10.89, #14, #20, #225, #3.3, #47, #620
         Score: nhs, patients, care, hospital, health, patient, hospitals
##
## Topic 13 Top Words:
         Highest Prob: family, constituent, mr, families, man, years, fire
##
##
         FREX: firefighters, mrs, constituent, fire, died, son, daughter
##
         Lift: firefighters, #ftvote, #timeforthetruth, 03, 0315, 0345, 1,000-year
##
         Score: constituent, fire, mr, mrs, died, family, ambulance
## Topic 14 Top Words:
         Highest Prob: energy, market, fuel, companies, water, prices, price
##
##
         FREX: ofgem, fuel, electricity, gas, supplier, energy, tariff
##
         Lift: 1,105, 1,345, 106.89, 6,196, 840,000, abebrese, able-to-pay
##
         Score: energy, fuel, prices, consumers, gas, water, electricity
## Topic 15 Top Words:
##
         Highest Prob: community, organisations, groups, voluntary, communities, society, sector
##
         FREX: volunteering, voluntary, charities, prisons, organisations, church, volunteers
##
         Lift: aid-style, allison's, atheists, bronzefield, caron, cascs, catholicism
```

Score: community, prison, organisations, voluntary, charities, prisons, prisoners

##

```
## Topic 16 Top Words:
         Highest Prob: new, investment, areas, post, office, building, rural
##
##
         FREX: post, offices, mail, regeneration, investment, rural, urban
         Lift: sub-post, #1.8, #21.5, #210, #28.5, #450, 0207
##
##
         Score: investment, post, rural, regeneration, offices, mail, infrastructure
## Topic 17 Top Words:
         Highest Prob: local, authorities, funding, council, authority, areas, government
##
         FREX: authorities, local, councils, funding, authority, grant, formula
##
         Lift: banham, brs-bids, central-local, devolves, lga's, maas, merrick
##
         Score: local, authorities, funding, councils, authority, council, county
##
  Topic 18 Top Words:
         Highest Prob: education, skills, training, young, students, university, college
##
##
         FREX: students, apprenticeships, universities, ema, fe, graduates, colleges
##
         Lift: 16-19, 16-to-19, apostrophe, apprenticeships, as-levels, baccalaureate, co-financed
##
         Score: students, education, skills, training, young, apprenticeships, universities
## Topic 19 Top Words:
##
         Highest Prob: schools, school, education, children, teachers, parents, pupils
##
         FREX: schools, teachers, pupils, sen, academies, ofsted, pupil
##
         Lift: 11-plus, 26-place, academisation, academised, asperger, authority-maintained, carpetrigh
##
         Score: schools, school, teachers, pupils, children, education, parents
## Topic 20 Top Words:
         Highest Prob: transport, london, rail, regional, bus, services, line
##
##
         FREX: rail, bus, passengers, fares, railways, hs2, freight
         Lift: 12-car, 15.15, 50.1, a69, adac, adtranz, agglomeration
##
##
         Score: rail, transport, bus, passengers, fares, regional, london
## Topic 21 Top Words:
##
         Highest Prob: police, crime, officers, behaviour, policing, antisocial, community
##
         FREX: policing, antisocial, graffiti, crime, officers, police, constable
##
         Lift: asbos, #22k, #29k, 1-2-3, 1,011, 1,075, 1,112
##
         Score: police, crime, officers, policing, antisocial, behaviour, constable
## Topic 22 Top Words:
##
         Highest Prob: million, year, budget, cuts, cut, billion, tax
##
         FREX: obr, budget, millionaires, wage, cuts, cut, billion
##
         Lift: double-dip, #1,150, 0.38, 0.76p, 1,003, 1,130, 1,196
##
         Score: tax, cuts, budget, wage, unemployment, chancellor, billion
## Topic 23 Top Words:
##
         Highest Prob: alcohol, drugs, people, drug, smoking, young, use
##
         FREX: tobacco, cannabis, cull, tb, palestinians, hamas, pornography
##
         Lift: #230, #4.5, #600, #700, #no2lgbthate, 0.7p, 1,000-almost
##
         Score: alcohol, smoking, israel, drugs, tobacco, drug, palestinian
## Topic 24 Top Words:
         Highest Prob: culture, sport, media, football, clubs, arts, club
##
##
         FREX: sport, games, gambling, betting, venues, lap-dancing, touts
##
         Lift: betting, casinos, #12, 070, 1-that, 1,000-it, 1,200-i
         Score: sport, football, arts, tickets, sports, clubs, games
## Topic 25 Top Words:
##
         Highest Prob: children, child, care, families, parents, family, carers
##
         FREX: csa, same-sex, child, lone, carers, parent, children's
##
         Lift: 193,000, aynsley-green, bont, brat, browne-wilkinson, capstick, child-focused
##
         Score: child, children, parents, carers, care, families, children's
## Topic 26 Top Words:
##
         Highest Prob: planning, land, development, sites, site, national, green
##
         FREX: gypsies, gypsy, planning, brownfield, land, sites, co-operative
         Lift: #tartantories, 1,000-year-old, 1,314, 1,375, 1,500-place, 10-we, 10,996
##
```

```
Score: planning, land, sites, site, development, brownfield, museum
## Topic 27 Top Words:
         Highest Prob: home, secretary, security, inquiry, investigation, office, terrorism
##
##
         FREX: tpims, isc, sfo, reviewer, terrorism, investigations, tpim
##
         Lift: intercept, 1,454, 1004, 107674, 11-point, 1141, 124a
         Score: terrorism, secretary, home, terrorist, police, investigation, tpims
##
## Topic 28 Top Words:
         Highest Prob: vote, political, parliament, people, election, parties, elected
##
##
         FREX: electoral, polling, voting, vote, turnout, votes, referendums
##
         Lift: voter, @leamingtonsbc, @maggieannehayes, @nhconsortium, #keeptweeting, 1,166, 1,294
##
         Score: vote, electoral, elections, referendum, voting, democracy, political
## Topic 29 Top Words:
##
         Highest Prob: benefit, tax, pension, benefits, credit, income, pensions
##
         FREX: pension, claimants, pensions, pensioners, allowance, retirement, pensioner
##
         Lift: 2046, 25.55, actuarially, benefit-to, benefit's, brethren's, decumulation
##
         Score: pension, tax, pensioners, allowance, pensions, credit, income
## Topic 30 Top Words:
##
         Highest Prob: one, get, time, going, go, just, know
##
         FREX: going, things, get, lot, something, really, go
##
         Lift: 1,500-more, 1.37, 10-hours, 10-week-old, 10.65, 100,000-i, 11-month
##
         Score: get, going, things, think, told, hours, really
## Topic 31 Top Words:
         Highest Prob: report, review, year, last, said, response, decision
##
         FREX: report, official, published, review, vol, march, july
##
##
         Lift: cayton's, 0.15, 01, 1-2mc, 1-who, 1,033, 1,124,818
##
         Score: report, review, published, consultation, official, vol, decision
## Topic 32 Top Words:
##
         Highest Prob: people, work, young, many, help, support, need
##
         FREX: disabled, people, disability, people's, work, disabilities, job
##
         Lift: bip, ciara, dominoes, glencraft, specs, upper-rate, whizz-kidz
##
         Score: people, young, disabled, work, disability, youth, employment
## Topic 33 Top Words:
##
         Highest Prob: clause, amendment, new, amendments, act, provisions, regulations
##
         FREX: nos, clause, clauses, amendments, insert, amendment, affirmative
##
         Lift: 153a4, 21-day, 22a, 287, 44a, 4a1, 51b
         Score: clause, amendment, amendments, nos, insert, clauses, provisions
##
## Topic 34 Top Words:
##
         Highest Prob: cases, law, court, legal, justice, case, criminal
##
         FREX: defendants, defendant, court, courts, magistrates, prosecution, offence
##
         Lift: 2,744, 931, 933, acquit, adults-and, anabah, bailiff's
         Score: court, offence, courts, criminal, offences, rape, prosecution
##
## Topic 35 Top Words:
         Highest Prob: international, defence, world, forces, countries, armed, war
##
##
         FREX: military, iraq, humanitarian, veterans, nato, sri, sierra
##
         Lift: 2249, 45s, acquis, afghans, alabed, aleppo, asia-pacific
##
         Score: un, military, armed, afghanistan, forces, syria, iraq
## Topic 36 Top Words:
##
         Highest Prob: financial, money, bank, debt, scheme, banks, credit
##
         FREX: loan, lending, payday, fca, lenders, debt, bank
##
         Lift: 0.21, 0.33, 0.84, 1,021, 1,413, 1,665, 1,734
##
         Score: debt, banks, bank, financial, loan, banking, lending
## Topic 37 Top Words:
##
         Highest Prob: debate, members, many, today, us, speech, house
##
         FREX: backbench, leader, proud, speak, queen's, speech, privilege
```

```
##
         Score: leader, debate, speech, holocaust, house, backbench, members
## Topic 38 Top Words:
##
         Highest Prob: public, commission, role, work, new, independent, standards
##
         FREX: audit, framework, bodies, commission, accountability, responsibilities, governance
         Lift: 1,087, 10-seek, 103-4, 108-are, 11-children, 11,076, 1246
##
         Score: commission, public, audit, responsibilities, accountability, bodies, auditor
##
## Topic 39 Top Words:
##
         Highest Prob: wales, scotland, scottish, northern, england, ireland, welsh
##
         FREX: wales, scotland, scottish, ireland, welsh, snp, scotland's
##
         Lift: house16, calman, scotland, 1,009, 1,099, 1,296, 1,333
         Score: wales, scottish, scotland, welsh, assembly, ireland, northern
##
## Topic 40 Top Words:
         Highest Prob: bill, committee, members, legislation, debate, time, hope
##
##
         FREX: committee, bill, select, scrutiny, detail, legislation, debated
##
         Lift: 12-minute, guillotined, mdu, noakes, post-legislative, volte, 1080
         Score: bill, committee, legislation, scrutiny, select, members, committees
##
  Topic 41 Top Words:
         Highest Prob: european, uk, eu, union, countries, trade, europe
##
##
         FREX: asylum, nationals, enlargement, treaty, lisbon, immigration, dubs
##
         Lift: 2.95, 54,500, anti-european, anti-trust, australian-style, benefitted, buns
         Score: eu, european, immigration, treaty, asylum, union, europe
##
## Topic 42 Top Words:
         Highest Prob: secretary, state, change, climate, industry, green, jobs
##
##
         FREX: solar, flood, steel, state's, climate, renewables, state
##
         Lift: solar, #solar, 1-yes, 1,343, 1,528, 1,631, 1,720
##
         Score: secretary, state, climate, carbon, flood, steel, emissions
## Topic 43 Top Words:
##
         Highest Prob: constituency, city, centre, constituents, area, town, west
##
         FREX: petitioners, visteon, swindon, humber, hull, petition, burton
         Lift: ablewell, annesley, bamford's, barwick, binnie, brackla, brancepeth
##
##
         Score: petitioners, constituency, petition, hull, city, town, yorkshire
## Topic 44 Top Words:
         Highest Prob: can, important, point, take, need, issue, make
##
##
         FREX: point, important, understand, issue, look, different, certainly
##
         Lift: advocate-interruption, available-not, cakes-let, change-although, cipfa-a, community-but
##
         Score: point, important, issue, issues, decisions, can, want
## Topic 45 Top Words:
##
         Highest Prob: house, question, order, move, mr, speaker, put
##
         FREX: question, lords, beg, motion, speaker, house, agrees
##
         Lift: closurestanding, 1,142,600, 10.00, 109b, 11.00, 135wh, 14f2
##
         Score: house, lords, speaker, mr, question, motion, deputy
```

Lift: @daisydumble, @percyblakeney63, #neverthelesshepersisted, 1,084, 1.00, 10-government, 10

2.6.3 Full topic model estimate summary - k45

##

```
##
## Call:
## estimateEffect(formula = 1:45 ~ short_list, stmobj = topic_model_k45,
## metadata = lab_corpus_fem_stm$meta, uncertainty = "Global")
##
##
Topic 1:
##
```

```
## Coefficients:
##
              Estimate Std. Error t value
                                             Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0027730 0.0005614 -4.939
                                          0.000000786 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 2:
##
## Coefficients:
               Estimate Std. Error t value
                                             Pr(>|t|)
##
             ## (Intercept)
## short_listTRUE 0.000007184 0.000446309
                                0.016
                                                0.987
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 3:
## Coefficients:
              Estimate Std. Error t value
             ## (Intercept)
## short listTRUE 0.0010534 0.0004736 2.224
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 4:
## Coefficients:
##
              Estimate Std. Error t value
                                            Pr(>|t|)
## (Intercept)
              ## short_listTRUE -0.0002344 0.0006456 -0.363
                                              0.717
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 5:
##
## Coefficients:
              Estimate Std. Error t value
##
                                            Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0041825 0.0006762 6.185 0.000000000623 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 6:
##
## Coefficients:
              Estimate Std. Error t value
                                            Pr(>|t|)
             ## (Intercept)
## short listTRUE 0.0019861 0.0004522 4.392
                                           0.0000113 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 7:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0015241 0.0003423 -4.452
                                                 0.00000851 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Topic 8:
##
## Coefficients:
                Estimate Std. Error t value
                                                 Pr(>|t|)
               0.0088805 0.0003904
                                 22.75 <0.0000000000000000 ***
## (Intercept)
## short listTRUE 0.0056217 0.0005610 10.02 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 9:
## Coefficients:
                Estimate Std. Error t value
##
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE 0.0004890 0.0004463
                                 1.096
                                                    0.273
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 10:
##
## Coefficients:
##
                Estimate Std. Error t value
                ## (Intercept)
## short_listTRUE -0.0047485 0.0006934 -6.848
                                         0.0000000000754 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 11:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               0.0315972  0.0004334  72.912 < 0.0000000000000000 ***
## short_listTRUE 0.0032074 0.0005345
                                 6.001
                                              0.0000000197 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
```

```
## Topic 12:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                   Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0072002 0.0009113 -7.901 0.00000000000000281 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 13:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               0.0117016 0.0003674
                                 31.85 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0062224 0.0005053 12.31 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 14:
## Coefficients:
                Estimate Std. Error t value
                                                   Pr(>|t|)
                0.0170251 0.0004576 37.204 < 0.000000000000000 ***
## (Intercept)
## short_listTRUE -0.0032528  0.0006131  -5.306
                                                0.000000112 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 15:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                   Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0011872 0.0004433 -2.678
                                                    0.00741 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 16:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                  Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0093026  0.0005046  -18.44 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 17:
## Coefficients:
##
                 Estimate Std. Error t value
                                         Pr(>|t|)
```

```
## (Intercept)
             ## short_listTRUE -0.0055061 0.0005067 -10.87 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 18:
##
## Coefficients:
##
             Estimate Std. Error t value
                                          Pr(>|t|)
## (Intercept)
             ## short_listTRUE 0.0004174 0.0005417
                             0.771
                                             0.441
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 19:
## Coefficients:
##
             Estimate Std. Error t value
                                           Pr(>|t|)
             ## (Intercept)
## short listTRUE 0.0039444 0.0006547 6.025
                                       0.000000017 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 20:
##
## Coefficients:
##
             Estimate Std. Error t value
                                           Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0038848 0.0006787
                             5.724
                                        0.000000105 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 21:
##
## Coefficients:
##
              Estimate Std. Error t value
                                           Pr(>|t|)
             ## (Intercept)
## short_listTRUE -0.0061885  0.0007254  -8.531 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 22:
##
## Coefficients:
             Estimate Std. Error t value
                                          Pr(>|t|)
             ## (Intercept)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
##
## Topic 23:
##
## Coefficients:
##
              Estimate Std. Error t value
                                             Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0015181 0.0006380 2.379
                                              0.0173 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 24:
##
## Coefficients:
##
              Estimate Std. Error t value
                                             Pr(>|t|)
             ## (Intercept)
## short listTRUE 0.0039102 0.0004573 8.551 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 25:
##
## Coefficients:
              Estimate Std. Error t value
## (Intercept)
             ## short_listTRUE 0.0008854 0.0005699
                              1.554
                                                0.12
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 26:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept)
              ## short_listTRUE -0.0017147 0.0004590 -3.735
                                              0.000188 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 27:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
##
              ## (Intercept)
## short_listTRUE -0.0059906 0.0005997 -9.989 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 28:
##
```

```
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0031539 0.0005604
                                            0.000000183 ***
                               5.628
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 29:
##
## Coefficients:
               Estimate Std. Error t value
##
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0087407 0.0007031
                               12.43 < 0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 30:
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0072133 0.0004836 14.92 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 31:
## Coefficients:
##
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0010278 0.0005356
                               1.919
                                                 0.055 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 32:
##
## Coefficients:
               Estimate Std. Error t value
##
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0015707 0.0004060
                               3.869
                                               0.000109 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 33:
##
## Coefficients:
               Estimate Std. Error t value
## (Intercept) 0.0272215 0.0005582 48.763 <0.00000000000000000002 ***
## short listTRUE -0.0056705 0.0006372 -8.899 <0.00000000000000002 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 34:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
               0.0323316  0.0005781  55.93  <0.0000000000000000 ***
## short_listTRUE -0.0127477  0.0007015  -18.17 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 35:
##
## Coefficients:
                Estimate Std. Error t value
               ## (Intercept)
## short_listTRUE -0.0010562 0.0008695 -1.215
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 36:
## Coefficients:
               Estimate Std. Error t value
##
                                                Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0015146 0.0004902
                                3.089
                                                 0.00201 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 37:
##
## Coefficients:
##
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0061929 0.0004971 12.46 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 38:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0065612 0.0005148 -12.74 <0.0000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
```

```
## Topic 39:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
              0.0109084 0.0003918 27.839 < 0.0000000000000000 ***
## short_listTRUE 0.0038209 0.0004992 7.653 0.0000000000000198 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 40:
##
## Coefficients:
##
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0009296 0.0004707
                               1.975
                                                0.0483 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 41:
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
               0.0259806  0.0005469  47.501 < 0.000000000000000 ***
## short_listTRUE -0.0052569 0.0006507 -8.079 0.000000000000000663 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 42:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 43:
##
## Coefficients:
               Estimate Std. Error t value
##
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0070828 0.0005324 13.30 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 44:
## Coefficients:
##
                Estimate Std. Error t value
                                       Pr(>|t|)
```

```
0.0676859
                            0.0004198 161.23 < 0.0000000000000000 ***
## (Intercept)
                            0.0005234
                                      short listTRUE -0.0154128
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
## Topic 45:
##
## Coefficients:
##
                   Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept)
                  0.0168129
                            0.0003064 54.878 < 0.0000000000000000 ***
  short_listTRUE -0.0005807
                            0.0003839
##
                                      -1.512
                                                            0.13
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

3 Discussion

There do not appear to be substantial or meaningful differences in the speaking styles of female Labour MPs selected through all women shortlists when compared to their female colleagues selected through open shortlists using LIWC. This is possibly due to the speaking style dominant in British parliamentary debate, which is more formal than the speech used in most day-to-day conversation. LIWC was developed by American researchers, and the LIWC dictionary may not be able to capture stylistic differences between American and British English, and may not include words commonly used in formal British English speech, limiting its usefulness in the context of British political debate.

There is more gender distinction in some selected terms and topics. AWS MPs are far more likely to make reference to their constituency and their constituents. In the debate between whether MPs should be "delegates" or "trustees" – the "mandate-independence controversy" outlined by Pitkin (1967) – the references to their constituents and constituencies suggests AWS MPs shy away from the Burkean concept of trusteeship and see themselves more as strict representatives of their constituents. In Andeweg & Thomassen's (2005) typology of ex ante/ex post and above/below political representation, AWS MPs lean towards representation "from below", although their selection process is ex ante/ex post.

AWS MPs refer to their constituents both specifically and in the abstract, particularly when criticising government policy. For example, in debate on 4th March 2015, Gemma Doyle, than the Labour MP for West Dunbartonshire (elected on an AWS in 2010), when asked if she would give way to Conservative MP Stephen Mosley, responded:

No, I will not [give way], because my constituents want me to make these points, not to give more time to Conservative Members.

On 2nd June 2010, during debate on Israel-Palestine, Valerie Vaz, MP for Walsall South:

My constituents want more than pressure. Will the Foreign Secretary come back to the House and report on a timetable for the discussions on a diplomatic solution, just as we did on Ireland?

On 4th April 2001, Betty Williams, member for Conwy from 1997–2010, raised the case of a wilderness guide in her constituency unable to access parts of the countryside due to foot and mouth disease:

Is my right hon. Friend aware that there is continuing concern about the limited access to the countryside and crags of north Wales? May I draw his attention to the circumstances of my constituent, Ric Potter? Like many others, he has had to travel to Scotland, where there is greater access. Will my right hon. Friend help us to enable people such as Ric Potter to find work in outdoor pursuits?

4 Appendix

4.1 K30

4.2 K30

Figure 11: Fruchterman-Reingold plot of K30 Network

Figure 12: Coherence of K30 Topic Models

In all but five topics (gender, immigration, international, children and the environment) the model found p values of < 0.01, and in every topic except the aforemention and "people", p values of < 0.001.

Table 13: Topic Estimates

	Estimate	Standard Error	t value	$\Pr(> t)$	
Topic 1 – Bills					
Intercept	0.0458712	0.0006687	68.5967730	< 0.001	***
Shortlist	-0.0075157	0.0008269	-9.0888187	< 0.001	***
Topic 2 – Consult	tations				
Intercept	0.0649563	0.0005503	118.0343306	< 0.001	***
Shortlist	-0.0140309	0.0006285	-22.3234213	< 0.001	***
Topic 3 – Membe	ers				
Intercept	0.0399446	0.0005134	77.8024696	< 0.001	***
Shortlist	0.0062783	0.0006517	9.6344019	< 0.001	***
Topic 4 – Gender					
Intercept	0.0221288	0.0005909	37.4516418	< 0.001	***
Shortlist	0.0006035	0.0006962	0.8668347	0.39	
Topic 5 – Civic so	ociety				
Intercept	0.0713523	0.0005573	128.0428552	< 0.001	***
Shortlist	-0.0196368	0.0006444	-30.4737756	< 0.001	***

Topic 6 - International

Table 13: Topic Estimates (continued)

	Estimate	Standard Error	t value	$\Pr(> t)$	
Intercept	0.0459968	0.0008849	51.9825874	< 0.001	***
Shortlist	-0.0041436	0.0011006	-3.7650060	< 0.001	***
Topic 7 – Disa					
Intercept	0.0268169	0.0005674	47.2626207	< 0.001	***
Shortlist	0.0121432	0.0007535	16.1160112	< 0.001	***
Topic 8 – Rura					
Intercept	0.0141966	0.0004702	30.1956254	< 0.001	***
Shortlist	0.0060430	0.0006038	10.0088599	< 0.001	***
Topic 9 – Imm					distrib
Intercept	0.0364745	0.0006414	56.8679257	< 0.001	***
Shortlist	-0.0116333	0.0007598	-15.3110110	< 0.001	***
Topic 10 – He		0.000=004	F0.00F0000	0.004	***
Intercept	0.0435391	0.0007381	58.9852893	< 0.001	***
Shortlist	-0.0103242	0.0009364	-11.0248381	< 0.001	11-11-11-
Topic 11 – Par		0.0004004	70 F00F000	. 0.004	***
Intercept Shortlist	0.0318576	0.0004334	73.5007388	< 0.001	***
	0.0036454	0.0005796	6.2895304	< 0.001	
Topic 12 – Con		0.0005105	40,000,000	. 0.001	***
Intercept Shortlist	$\begin{array}{c} 0.0224602 \\ 0.0080669 \end{array}$	0.0005105 0.0006417	43.9923920 12.5711053	< 0.001 < 0.001	***
		0.000417	12.5711055	< 0.001	
Topic 13 – Sec	0.0229229	0.0005022	45.6444006	< 0.001	***
Intercept Shortlist	-0.0000187	0.0006082	-0.0307897	0.001	
		0.0000032	-0.0301031	0.90	
Topic 14 – Inv Intercept	0.0262868	0.0005331	49.3047507	< 0.001	***
Shortlist	-0.0039607	0.000551 0.0006502	-6.0911071	< 0.001	***
Topic 15 – You		0.0000002	0.0011011	(0.001	
Intercept	0.0229374	0.0005563	41.2335950	< 0.001	***
Shortlist	-0.0027399	0.0006784	-4.0386617	< 0.001	***
Topic 16 – End		0.00000.02			
Intercept	0.0358344	0.0007108	50.4144444	< 0.001	***
Shortlist	-0.0005301	0.0009133	-0.5804305	0.56	
Topic 17 – Loc					
Intercept	0.0398938	0.0005175	77.0911318	< 0.001	***
Shortlist	-0.0089663	0.0006147	-14.5854986	< 0.001	***
Topic 18 – Ped	ople				
Intercept	0.0846622	0.0005583	151.6480097	< 0.001	***
Shortlist	0.0003609	0.0007016	0.5143636	0.61	
Topic 19 – Ed	ucation				
Intercept	0.0282652	0.0007088	39.8782762	< 0.001	***
Shortlist	0.0038531	0.0008284	4.6515266	< 0.001	***
Topic 20 – Tra	ansport				
Intercept	0.0228144	0.0005964	38.2503548	< 0.001	***
Shortlist	0.0049493	0.0007864	6.2932709	< 0.001	***
Topic 21 – Ho	using				
Intercept	0.0202289	0.0005974	33.8635917	< 0.001	***

Table 13: Topic Estimates (continued)

	Estimate	Standard Error	t value	Pr(> t)	
Shortlist	0.0037302	0.0007063	5.2816361	< 0.001	***
Topic 22 – Tax					
Intercept	0.0440624	0.0008150	54.0645801	< 0.001	***
Shortlist	0.0126805	0.0010399	12.1941360	< 0.001	***
Topic 23 – Police					
Intercept	0.0300247	0.0006072	49.4510917	< 0.001	***
Shortlist	-0.0070468	0.0007877	-8.9465204	< 0.001	***
Topic 24 – Media					
Intercept	0.0112192	0.0004444	25.2473086	< 0.001	***
Shortlist	0.0049904	0.0005075	9.8340202	< 0.001	***
Topic 25 – Famili	es				
Intercept	0.0257938	0.0006263	41.1829844	< 0.001	***
Shortlist	-0.0035639	0.0008010	-4.4494426	< 0.001	***
Topic 26 – Enviro	onment				
Intercept	0.0145389	0.0004338	33.5173169	< 0.001	***
Shortlist	0.0022637	0.0005731	3.9497888	< 0.001	***
Topic 27 – Minist	ers				
Intercept	0.0419318	0.0005313	78.9270295	< 0.001	***
Shortlist	0.0151578	0.0006857	22.1040444	< 0.001	***
Topic 28 – Region	ns				
Intercept	0.0228703	0.0005291	43.2214145	< 0.001	***
Shortlist	0.0055559	0.0006821	8.1450003	< 0.001	***
Topic 29 – Pensio	ons				
Intercept	0.0265448	0.0005760	46.0861797	< 0.001	***
Shortlist	0.0017499	0.0007287	2.4014058	0.016	*
Topic 30 – Techno	ology				
Intercept	0.0135798	0.0003319	40.9146539	< 0.001	***
Shortlist	0.0020723	0.0004256	4.8692516	< 0.001	***

Table 14: Distribution of Topics Among Female Labour MPs – $\mathrm{K}30$

Topic	One or more speeches	Five or more speeches
Bills	138	82
Health Care	157	117
Parties	141	87
Constituencies	162	100
Security	145	69
Investment	129	67
Youth	142	73
Energy	157	124
Local authorities	151	100
People	165	146
Education	153	115
Consultations	156	107
Transport	157	102

Table 14: Distribution of Topics Among Female Labour MPs – K30 (continued)

Topic	One or more speeches	Five or more speeches
Housing	145	74
Tax	159	131
Police	151	97
Media	136	68
Families	149	94
Environment	131	63
Ministers	163	139
Regions	138	86
Pensions	143	92
Members	153	104
Technology	127	48
Gender	153	90
Civic society	157	118
International	163	137
Disability	155	119
Rural Issues	141	80
Immigration	147	84

There is no topic that every single female Labour MP has discussed at least once. The most widely used is the topic "People", which out of 167 female Labour MPs in the dataset, 16 500% made at least one speech in that topic. 88.5% of those MPs made five or more speeches about "People".

Table 15: Count and Distribution of Topics – K30

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Bills	1,819	3.38%	1,263	4.53%	8,176	4.83%
Consultations	1,997	3.71%	1,824	6.55%	9,027	5.33%
Members	2,146	3.99%	844	3.03%	8,694	5.13%
Gender	1,039	1.93%	553	1.98%	882	0.52%
Civic society	2,050	3.81%	1,839	6.6%	7,616	4.5%
International	3,138	5.83%	1,891	6.79%	13,834	8.17%
Disability	2,266	4.21%	601	2.16%	2,787	1.65%
Rural Issues	1,043	1.94%	366	1.31%	2,370	1.4%
Immigration	1,197	2.23%	1,073	3.85%	4,655	2.75%
Health Care	2,382	4.43%	1,780	6.39%	4,728	2.79%
Parties	1,004	1.87%	497	1.78%	4,055	2.39%
Constituencies	1,029	1.91%	370	1.33%	2,897	1.71%
Security	1,002	1.86%	501	1.8%	2,810	1.66%
Investment	852	1.58%	632	2.27%	3,098	1.83%
Youth	884	1.64%	582	2.09%	1,323	0.78%
Energy	2,339	4.35%	1,188	4.26%	7,621	4.5%
Local authorities	1,316	2.45%	988	3.55%	4,371	2.58%
People	6,345	11.8%	2,922	10.49%	30,543	18.04%

Table 15: Count and Distribution of Topics – K30 (continued)

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Education	2,187	4.07%	936	3.36%	4,801	2.84%
Transport	1,769	3.29%	689	2.47%	4,882	2.88%
Housing	1,319	2.45%	540	1.94%	2,058	1.22%
Tax	3,968	7.38%	1,422	5.1%	10,953	6.47%
Police	1,425	2.65%	971	3.48%	3,523	2.08%
Media	762	1.42%	256	0.92%	2,050	1.21%
Families	1,271	2.36%	791	2.84%	1,112	0.66%
Environment	712	1.32%	282	1.01%	1,706	1.01%
Ministers	3,159	5.87%	921	3.31%	8,380	4.95%
Regions	1,421	2.64%	441	1.58%	6,218	3.67%
Pensions	1,445	2.69%	723	2.59%	3,022	1.78%
Technology	502	0.93%	177	0.64%	1,149	0.68%

Figure 13: K30 Pyramid Chart

Figure 14: K30 Bar Chart

AWS are – proportionally – more likely than non-AWS MPs to discuss Topics 29 (parliament), 7 (disability) and 24 (media). They are proportionally less likely to mention Topics 15 (justice), 2 (consultations) and 9 (disease). See Figure 15 for more details. Perhaps surprisingly, AWS MPs are slightly less likely to mention gender issues (Topic 3), although the difference is not statistically significant (see the appendix for details).

Figure 15: K30 Topic Proportions

4.2.0.1 Word Occurences

The table below shows the ten most common words in each topic, and the ten words with the highest FREX score, a measure that uses a harmonic mean of word exclusivity and topic coherence (Airoldi & Bischof, 2016).

Table 16: Words in Topic - K30

Topic Number	Top Ten Words	Top Ten FREX
Topic 1	bill, clause, amendment, new, legislation, amendments, act, committee, provisions, regulations, powers, government, place, provision, lords, power, 1, house, order, section	clause, amendment, amendments, clauses, nos, insert, provisions, bill, regulations, tabled, bill's, schedule, affirmative, section, lords, legislation, passage, drafted, draft, beg
Topic 2	made, report, review, information, issue, issues, concerns, process, matter, consultation, consider, taken, whether, aware, raised, clear, take, evidence, point, however	review, consultation, guidance, recommendations, published, concerns, assessment, considering, raised, representations, specific, matter, report, detailed, considered, indicated, raises, process, consideration, details
Topic 3	member, members, debate, house, committee, said, made, many, time, issues, today, issue, important, also, heard, hope, speech, opportunity, us, support	member, debates, select, debate, backbench, sides, spoke, thoughtful, back-bench, westmr, remarks, debating, members, comments, northmr, southmr, eastmr, speeches, tone, eloquently

Table 16: Words in Topic - K30 (continued)

Topic Number	Top Ten Words	Top Ten FREX		
Topic 4	women, men, pay, rights, equality, women's, discrimination, equal, society, gender, many, woman, age, charities, human, girls, commission, ethnic, church, work	women, equality, gender, discrimination, female, equal, women's, ethnic, bishops, equalities, men, religion, church, shortlists, male, religious, all-women, asian, race, girls		
Topic 5	work, ensure, important, can, need, support, public, service, also, new, must, working, make, role, services, national, welcome, organisations, provide, good	ensure, ensuring, organisations, important, role, voluntary, together, range, steps, closely, improve, framework, progress, friend's, ways, expertise, approach, effective, departments, best		
Topic 6	european, countries, eu, international, uk, world, british, union, europe, defence, trade, foreign, united, forces, country, states, government, rights, us, human	military, refugees, humanitarian, israel, troops, palestinian, russia, israeli, gaza, nato, zimbabwe, syrian, burma, iraqi, accession, russian, enlargement, wto, yemen, daesh		
Topic 7	people, work, care, support, benefit, employment, disabled, social, carers, working, benefits, workers, many, help, employers, families, hours, job, disability, get	disabled, jobcentre, incapacity, carers, esa, dla, carer's, atos, dwp, lone, disability, claimants, remploy, zero-hours, employers, caring, pip, disabilities, jobcentres, employment		
Topic 8	food, post, office, rural, petition, offices, farmers, waste, royal, constituency, mail, closure, petitioners, government, many, products, house, residents, areas, therefore	petition, farmers, petitioners, meat, cull, tb, labelling, badgers, badger, bovine, beef, culling, sub-post, gm, dairy, sub-postmasters, mail, vegetables, cattle, poultry		
Topic 9	cases, legal, law, court, case, justice, rights, act, courts, system, immigration, criminal, offence, human, appeal, can, person, civil, asylum, complaints	fur, attorney-general, mink, asylum, immigration, sfo, magistrates, sia, appeal, appeals, lawyers, legal, dogs, fraud, dog, court, extradition, judges, courts, seekers		
Topic 10	health, nhs, care, services, patients, hospital, cancer, service, treatment, medical, staff, trust, hospitals, patient, doctors, trusts, primary, research, year, nurses	patients, cancer, patient, clinical, gps, gp, dentists, dental, pct, pcts, dementia, clinicians, dentistry, flu, embryos, dentist, palliative, prostate, cervical, hepatitis		
Topic 11	government, labour, conservative, party, policy, government's, opposition, public, previous, years, liberal, cuts, conservatives, tory, members, policies, proposals, now, country, hull	liberal, democrats, conservatives, conservative, tory, tories, democrat, lib, hull, manifesto, coalition, labour, benches, promises, party's, party, pledge, rhetoric, abolish, promise		
Topic 12	constituency, people, years, many, constituents, one, day, life, first, proud, work, now, like, family, great, city, lives, south, just, two	helier, maiden, salford, st, burnley, merton, mp, halifax, mitcham, miners, famous, trafford, mum, honour, morden, proud, pride, jo, dad, hackney		
Topic 13	mr, speaker, order, security, home, deputy, terrorism, threat, fire, safety, control, emergency, investigation, intelligence, orders, terrorist, put, evidence, risk, attacks	sri, tpims, firefighters, isc, lankan, tpim, intercept, proscription, terrorist, yarl's, proscribed, extremism, terrorists, detainees, tamil, terrorism, lanka, mr, fire, speaker		

Table 16: Words in Topic - K30 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 14	companies, financial, company, market, business, public, bank, competition, regulation, sector, industry, banks, insurance, interest, consumers, accounts, private, treasury, regulatory, services	liabilities, policyholders, penrose, shareholders, regulators, auditor, accounting, competition, banking, oft, nao, corporate, comptroller, profits, shares, fsa, equitable, company's, cdc, rbs
Topic 15	young, people, health, mental, youth, prison, drug, drugs, problems, age, services, 16, treatment, community, offenders, prisons, prisoners, can, suicide, use	prisons, probation, cannabis, reoffending, mental, self-harm, drug, prison, youth, drugs, young, prisoners, psychoactive, suicides, suicide, offending, psychiatric, rehabilitation, keynes, milton
Topic 16	jobs, businesses, business, investment, economy, industry, energy, economic, new, small, growth, uk, future, change, climate, sector, government, skills, development, support	manufacturing, renewable, renewables, solar, low-carbon, carbon, onshore, climate, nissan, flood, steel, oil, biofuels, wind, emissions, businesses, apprentices, enterprise, energy-intensive, economy
Topic 17	local, authorities, funding, areas, council, services, authority, community, area, communities, money, councils, million, new, social, needs, resources, fund, regional, planning	local, authorities, councils, funding, authority, formula, grant, areas, county, councillors, deprived, locally, council, allocated, allocation, partnerships, deprivation, surrey, lancashire, partnership
Topic 18	people, want, one, can, get, say, know, think, us, make, many, need, go, time, much, just, see, point, said, take	things, think, say, something, want, going, get, lot, go, thing, trying, talking, really, saying, absolutely, quite, might, difficult, come, bit
Topic 19	children, schools, education, school, child, parents, teachers, children's, training, skills, learning, needs, young, pupils, educational, care, special, provision, primary, good	teachers, pupils, curriculum, sen, academies, ofsted, pupil, grammar, attainment, vocational, classroom, fe, gcses, gcse, schools, autism, dyslexia, school, academy, educational
Topic 20	transport, rail, bus, london, road, travel, line, services, network, train, air, passengers, service, traffic, new, roads, station, car, north, fares	rail, bus, passengers, trains, buses, passenger, airports, heathrow, congestion, railways, hs2, freight, high-speed, electrification, crossrail, franchising, commuters, cod, gatwick, tolls
Topic 21	housing, homes, london, private, people, home, social, affordable, accommodation, need, sector, property, rent, properties, tenants, many, council, new, building, landlords	housing, properties, tenants, landlords, rented, homelessness, homeless, rents, tenant, tenancies, tenancy, rent, landlord, homes, two-bedroom, renting, accommodation, affordable, leaseholders, hmos
Topic 22	tax, year, million, budget, increase, billion, cut, cuts, chancellor, government, poverty, rate, pay, impact, families, cost, years, spending, figures, last	vat, obr, millionaires, 50p, deficit, budget, tax, fiscal, billion, chancellor, inflation, rate, hit, cut, credits, rising, chancellor's, borrowing, unemployment, poverty

Table 16: Words in Topic - K30 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 23	police, crime, officers, behaviour, policing, home, people, antisocial, tackle, community, force, serious, powers, number, action, use, alcohol, forces, communities, smoking	policing, constable, gangs, dubs, tobacco, pcsos, crime, asbos, soca, antisocial, drinking, sunbeds, officers, police, gang, sunbed, graffiti, smoking, constabulary, behaviour
Topic 24	bbc, sport, media, culture, football, arts, club, clubs, sports, radio, television, many, creative, games, licence, music, tickets, cultural, events, event	bbc, sports, radio, games, olympic, gambling, bbc's, broadcasting, hove, betting, lap-dancing, touts, sport, fans, arts, music, casinos, copyright, creative, football
Topic 25	children, child, violence, victims, domestic, abuse, family, sexual, families, cases, protection, home, parents, support, vulnerable, many, rape, marriage, justice, one	abortion, csa, same-sex, rape, adoptive, adopters, barring, marriage, sexual, marriages, victims, abuse, survivors, adoption, violence, cafcass, trafficked, domestic, grooming, couples
Topic 26	planning, land, development, site, water, plymouth, sites, environment, area, many, marine, town, buildings, national, one, environmental, building, also, green, new	forestry, gypsies, habitats, gypsy, memorials, marine, woodland, conservation, plymouth, wilberforce, mmo, gospels, museum, vellum, nppf, biodiversity, site, hectares, open-cast, forests
Topic 27	secretary, state, house, last, statement, given, answer, said, thank, now, tell, department, may, ministers, week, today, question, home, can, office	secretary, statement, answer, confirm, state, reply, official, vol, state's, tell, minister's, urgent, yesterday, please, answers, questions, written, announcement, departmental, november
Topic 28	parliament, wales, scotland, vote, scottish, political, northern, ireland, commission, welsh, people, assembly, election, elected, house, referendum, england, parties, elections, one	scottish, electoral, polling, voting, ireland, vote, scotland, hereditary, referendum, referendums, welsh, devolution, assembly, voter, votes, elections, gibraltar, wales, snp, registration
Topic 29	scheme, pension, credit, people, energy, pensions, pensioners, money, debt, pay, savings, income, bills, payments, fuel, schemes, costs, help, advice, payment	pension, payday, pensioners, prepayment, retirement, savings, debt, pensioner, saving, pensions, bills, payments, ofgem, lenders, payment, loan, means-testing, credit, scheme, winter
Topic 30	access, research, data, information, students, university, technology, science, fees, online, higher, internet, use, universities, student, mobile, digital, government, study, website	broadband, data, electronic, student, internet, online, universities, superfast, mobile, computer, students, science, university, fees, mesothelioma, pornography, graduates, technology, degrees, tuition

${\bf 4.2.1}\quad {\bf Full\ topic\ model\ summary\ -\ K30}$

A topic model with 30 topics, 81651 documents and a 119586 word dictionary.

Topic 1 Top Words:

```
##
         Highest Prob: bill, clause, amendment, new, legislation, amendments, act
##
         FREX: clause, amendment, amendments, clauses, nos, insert, provisions
##
         Lift: #185, #85, 0.003, 05, 1-competences, 1-impact, 1,924
         Score: clause, amendment, amendments, bill, provisions, lords, nos
##
## Topic 2 Top Words:
         Highest Prob: made, report, review, information, issue, issues, concerns
##
         FREX: review, consultation, guidance, recommendations, published, concerns, assessment
##
         Lift: 01, 1-who, 1,595, 115661, 118127, 14,940, 152w
##
         Score: consultation, information, guidance, review, assessment, report, process
##
## Topic 3 Top Words:
##
         Highest Prob: member, members, debate, house, committee, said, made
         FREX: member, debates, select, debate, backbench, sides, spoke
##
##
         Lift: barracking, dg, dydd, guillotined, gwyl, islesmr, jopling
         Score: member, committee, members, debate, house, opposition, select
##
## Topic 4 Top Words:
##
         Highest Prob: women, men, pay, rights, equality, women's, discrimination
##
         FREX: women, equality, gender, discrimination, female, equal, women's
##
         Lift: 1871, 744,000, 77p, abbess, aid-style, anti-cancer, bachelet's
##
         Score: women, women's, equality, men, discrimination, gender, girls
## Topic 5 Top Words:
##
         Highest Prob: work, ensure, important, can, need, support, public
##
         FREX: ensure, ensuring, organisations, important, role, voluntary, together
         Lift: 101998, 112172, 120517, 153306, 1998.84161, 2,128, 27591
##
         Score: work, service, important, sector, services, ensure, organisations
##
## Topic 6 Top Words:
##
         Highest Prob: european, countries, eu, international, uk, world, british
##
         FREX: military, refugees, humanitarian, israel, troops, palestinian, russia
         Lift: aleppo, congo, daesh, #420, #84.3, #87.2, #aleppo
##
##
         Score: eu, european, countries, un, military, foreign, syria
## Topic 7 Top Words:
##
         Highest Prob: people, work, care, support, benefit, employment, disabled
##
         FREX: disabled, jobcentre, incapacity, carers, esa, dla, carer's
##
         Lift: 0300, 1-to-1, 1,030, 1,052, 1,366, 1,482, 1,500-more
##
         Score: carers, disabled, care, disability, allowance, people, wage
## Topic 8 Top Words:
##
         Highest Prob: food, post, office, rural, petition, offices, farmers
##
         FREX: petition, farmers, petitioners, meat, cull, tb, labelling
##
         Lift: sub-post, #210, #450, 00, 0157, 1-tonne, 1,000-year
##
         Score: food, farmers, petitioners, petition, rural, post, cull
## Topic 9 Top Words:
         Highest Prob: cases, legal, law, court, case, justice, rights
##
         FREX: fur, attorney-general, mink, asylum, immigration, sfo, magistrates
##
         Lift: snares, 0.037, 0.044, 1-sale, 1,000-for, 1,000-to, 1,033
##
##
         Score: court, offence, courts, criminal, prosecution, immigration, legal
## Topic 10 Top Words:
         Highest Prob: health, nhs, care, services, patients, hospital, cancer
##
##
         FREX: patients, cancer, patient, clinical, gps, gp, dentists
##
         Lift: dentists, embryonic, endometriosis, pandemic, @cfaware, #20, #500
##
         Score: nhs, patients, health, cancer, hospital, care, patient
## Topic 11 Top Words:
##
         Highest Prob: government, labour, conservative, party, policy, government's, opposition
##
         FREX: liberal, democrats, conservatives, conservative, tory, tories, democrat
##
         Lift: lib, 0.37, 1,009, 1,220, 1,333, 1,608, 1,814
```

Score: conservative, government, labour, party, liberal, conservatives, tory

##

```
## Topic 12 Top Words:
##
         Highest Prob: constituency, people, years, many, constituents, one, day
         FREX: helier, maiden, salford, st, burnley, merton, mp
##
##
         Lift: balham, harlesden, helier, 0.27, 0.51, 1,000-square-feet, 1,060
##
         Score: constituency, helier, maiden, salford, city, constituents, st
## Topic 13 Top Words:
         Highest Prob: mr, speaker, order, security, home, deputy, terrorism
         FREX: sri, tpims, firefighters, isc, lankan, tpim, intercept
##
##
         Lift: 1998designated, 83e, abscond, absconded, al-mansour, amir, amna
##
         Score: mr, terrorism, speaker, terrorist, detention, sri, tpims
## Topic 14 Top Words:
         Highest Prob: companies, financial, company, market, business, public, bank
##
##
         FREX: liabilities, policyholders, penrose, shareholders, regulators, auditor, accounting
##
         Lift: bnfl's, cdfi, securitisation, liabilities, ofwat, rbs, #1.8
##
         Score: companies, fsa, company, consumers, banking, banks, bank
## Topic 15 Top Words:
##
         Highest Prob: young, people, health, mental, youth, prison, drug
##
         FREX: prisons, probation, cannabis, reoffending, mental, self-harm, drug
##
         Lift: 0.48, 1-but, 1,000-and, 1,000-such, 1,054,000, 1,099, 1,145
##
         Score: young, mental, prison, drug, drugs, youth, health
## Topic 16 Top Words:
##
         Highest Prob: jobs, businesses, business, investment, economy, industry, energy
         FREX: manufacturing, renewable, renewables, solar, low-carbon, carbon, onshore
##
         Lift: #12.5, #140,000, #23, #25, 0.49, 0.83, 1-are
##
         Score: energy, jobs, businesses, manufacturing, economy, investment, industry
##
## Topic 17 Top Words:
##
         Highest Prob: local, authorities, funding, areas, council, services, authority
         FREX: local, authorities, councils, funding, authority, formula, grant
##
##
         Lift: #12,000, #14, #148, #225, #3.6, #4.9, #5,000
##
         Score: local, authorities, funding, councils, council, authority, services
## Topic 18 Top Words:
##
         Highest Prob: people, want, one, can, get, say, know
##
         FREX: things, think, say, something, want, going, get
##
         Lift: gamu, hailers, intricately, monoglots, unwillingly, 1,027, 1234
##
         Score: people, get, think, want, things, going, say
## Topic 19 Top Words:
##
         Highest Prob: children, schools, education, school, child, parents, teachers
##
         FREX: teachers, pupils, curriculum, sen, academies, ofsted, pupil
##
         Lift: 14-19, 949,000, academised, as-levels, asperger, authorities-not, authority-maintained
##
         Score: schools, children, school, education, child, parents, teachers
## Topic 20 Top Words:
##
         Highest Prob: transport, rail, bus, london, road, travel, line
##
         FREX: rail, bus, passengers, trains, buses, passenger, airports
##
         Lift: a49, caa, firstbus, m6, multi-operator, nifca, railways
         Score: rail, transport, bus, passengers, fares, trains, congestion
## Topic 21 Top Words:
##
         Highest Prob: housing, homes, london, private, people, home, social
##
         FREX: housing, properties, tenants, landlords, rented, homelessness, homeless
##
         Lift: 1,113, 1,624, 45.6, 47e, 88.85, 99-year, a24
##
         Score: housing, homes, tenants, rented, rent, landlords, properties
## Topic 22 Top Words:
##
         Highest Prob: tax, year, million, budget, increase, billion, cut
##
         FREX: vat, obr, millionaires, 50p, deficit, budget, tax
```

Lift: 0.38, 1,869, 107,500, 13,600, 137.50, 2,073, 2.57

##

```
Score: tax, budget, cuts, poverty, billion, chancellor, unemployment
## Topic 23 Top Words:
##
         Highest Prob: police, crime, officers, behaviour, policing, home, people
##
         FREX: policing, constable, gangs, dubs, tobacco, pcsos, crime
##
         Lift: 1.24, adz, anelka, asbos, barchetti, beverages, constable
         Score: police, crime, officers, policing, antisocial, smoking, behaviour
##
## Topic 24 Top Words:
         Highest Prob: bbc, sport, media, culture, football, arts, club
##
##
         FREX: bbc, sports, radio, games, olympic, gambling, bbc's
##
         Lift: asentewa, bacta, bandwidth, barbering, benidorm, betting, bluecoat
         Score: sport, bbc, arts, football, tickets, sports, clubs
##
## Topic 25 Top Words:
         Highest Prob: children, child, violence, victims, domestic, abuse, family
##
         FREX: abortion, csa, same-sex, rape, adoptive, adopters, barring
##
##
         Lift: same-sex, 0.025, 1,000-discriminates, 1,046, 1,483, 1,746, 10-month-old
##
         Score: violence, children, child, sexual, rape, victims, abuse
## Topic 26 Top Words:
##
         Highest Prob: planning, land, development, site, water, plymouth, sites
##
         FREX: forestry, gypsies, habitats, gypsy, memorials, marine, woodland
##
         Lift: 1791, 45-day, addingham, aesthetic, archaeological, archival, bee-friendly
##
         Score: land, marine, site, plymouth, sites, planning, museum
## Topic 27 Top Words:
         Highest Prob: secretary, state, house, last, statement, given, answer
##
         FREX: secretary, statement, answer, confirm, state, reply, official
##
##
         Lift: 1-2mc, ashleys, burne, cokey, concentrix's, cover-up, dhar
         Score: secretary, state, statement, leader, house, answer, confirm
##
  Topic 28 Top Words:
         Highest Prob: parliament, wales, scotland, vote, scottish, political, northern
##
##
         FREX: scottish, electoral, polling, voting, ireland, vote, scotland
##
         Lift: federalists, gentry, house16, randomisation, calman, voter, @leamingtonsbc
##
         Score: scottish, vote, electoral, scotland, referendum, wales, elections
## Topic 29 Top Words:
##
         Highest Prob: scheme, pension, credit, people, energy, pensions, pensioners
##
         FREX: pension, payday, pensioners, prepayment, retirement, savings, debt
##
         Lift: 1,105, 1,345, 123,000, 2046, 840,000, aps, boakye
##
         Score: pension, pensioners, energy, credit, pensions, fuel, debt
## Topic 30 Top Words:
##
         Highest Prob: access, research, data, information, students, university, technology
##
         FREX: broadband, data, electronic, student, internet, online, universities
##
         Lift: csps, gmail, green-collar, loans-based, msc, remissions, super-fast
##
         Score: students, data, university, universities, fees, internet, online
     Full topic model estimate summary - K30
```

```
##
## Call:
## estimateEffect(formula = 1:30 ~ short_list, stmobj = topic_model_k30,
## metadata = lab_corpus_fem_stm$meta, uncertainty = "Global")
##
##
Topic 1:
##
## Coefficients:
```

```
##
              Estimate Std. Error t value
                                          Pr(>|t|)
             ## (Intercept)
## short listTRUE -0.0075086 0.0008280 -9.068 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 2:
##
## Coefficients:
              Estimate Std. Error t value
                                          Pr(>|t|)
             ## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 3:
##
## Coefficients:
##
             Estimate Std. Error t value
                                          Pr(>|t|)
            ## (Intercept)
## short_listTRUE 0.0062753 0.0006533 9.605 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 4:
##
## Coefficients:
##
             Estimate Std. Error t value
                                          Pr(>|t|)
## (Intercept)
            ## short_listTRUE 0.0006006 0.0006995
                            0.859
                                            0.391
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 5:
##
## Coefficients:
              Estimate Std. Error t value
             ## (Intercept)
## short listTRUE -0.0196229 0.0006432 -30.51 <0.00000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 6:
##
## Coefficients:
             Estimate Std. Error t value
##
                                          Pr(>|t|)
             ## (Intercept)
                                          0.000181 ***
## short listTRUE -0.004150 0.001108 -3.744
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 7:
##
## Coefficients:
              Estimate Std. Error t value
##
                                            Pr(>|t|)
             ## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 8:
##
## Coefficients:
##
              Estimate Std. Error t value
                                            Pr(>|t|)
## (Intercept)
             0.0141986 0.0004616
                             30.76 < 0.0000000000000000 ***
## short_listTRUE 0.0060356 0.0005999
                             ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 9:
##
## Coefficients:
##
               Estimate Std. Error t value
                                            Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0116329  0.0007588  -15.33  <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 10:
##
## Coefficients:
##
              Estimate Std. Error t value
                                            Pr(>|t|)
             ## (Intercept)
## short_listTRUE -0.0103227  0.0009207  -11.21 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 11:
##
## Coefficients:
##
              Estimate Std. Error t value
                                            Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0036483 0.0005811
                              6.278
                                      0.00000000344 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 12:
```

```
##
## Coefficients:
              Estimate Std. Error t value
##
              ## (Intercept)
## short_listTRUE 0.0080737 0.0006433 12.55 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 13:
## Coefficients:
                Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.00002093  0.00060587  -0.035
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 14:
##
## Coefficients:
               Estimate Std. Error t value
##
                                               Pr(>|t|)
## (Intercept) 0.0262823 0.0005314 49.459 < 0.000000000000000002 ***
## short_listTRUE -0.0039574 0.0006547 -6.045
                                           0.000000015 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 15:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE -0.0027425 0.0006936 -3.954
                                               0.000077 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 16:
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0005362 0.0009124 -0.588
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 17:
##
## Coefficients:
##
              Estimate Std. Error t value
                                              Pr(>|t|)
             ## (Intercept)
```

```
## short_listTRUE -0.0089577 0.0006104 -14.67 <0.00000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 18:
## Coefficients:
##
              Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0003553 0.0007006
                               0.507
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 19:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0038451 0.0008289 4.639
                                             0.00000351 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 20:
##
## Coefficients:
                                               Pr(>|t|)
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0049424 0.0007851
                               6.295
                                      0.00000000309 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 21:
## Coefficients:
              Estimate Std. Error t value
                                               Pr(>|t|)
##
              ## (Intercept)
## short listTRUE 0.0037387 0.0007003
                               5.338
                                            0.000000094 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 22:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
              0.0440592 0.0008083
                               ## (Intercept)
## short_listTRUE 0.0126838 0.0010308 12.30 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
##
## Topic 23:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               ## (Intercept)
## short listTRUE -0.0070665 0.0007944 -8.895 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 24:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0049891 0.0005043 9.893 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 25:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0035651 0.0007985 -4.465
                                                0.00000803 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 26:
##
## Coefficients:
               Estimate Std. Error t value
                                                 Pr(>|t|)
              0.0145462  0.0004389  33.143 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE 0.0022597 0.0005701
                                3.964
                                                0.0000739 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 27:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
                                22.04 <0.0000000000000000 ***
## short_listTRUE 0.0151747 0.0006886
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 28:
##
## Coefficients:
```

```
Estimate Std. Error t value
                                                       Pr(>|t|)
##
## (Intercept) 0.0228763 0.0005312 43.066 < 0.000000000000000002 ***
## short listTRUE 0.0055464 0.0006802 8.154 0.000000000000000358 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 29:
##
## Coefficients:
                 Estimate Std. Error t value
                                                      Pr(>|t|)
                0.0265499 0.0005796
                                     45.80 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0017402 0.0007281
                                       2.39
                                                        0.0168 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 30:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                       Pr(>|t|)
## (Intercept)
              0.0135774  0.0003273  41.489 < 0.0000000000000000 ***
## short_listTRUE 0.0020772 0.0004225 4.916
                                                    0.000000885 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.3 K60

Figure 16: Fruchterman-Reingold plot of K60 Network

Figure 17: Coherence of K60 Topic Models

Table 17: Count and Distribution of Topics – K60

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Topic 1	184	0.34%	150	0.54%	540	0.32%
Topic 2	543	1.01%	210	0.75%	1,526	0.9%
Topic 3	689	1.28%	341	1.22%	3,046	1.8%
Topic 4	821	1.53%	447	1.6%	301	0.18%
Topic 5	1,122	2.09%	796	2.86%	3,005	1.77%
Topic 6	2,029	3.77%	786	2.82%	4,255	2.51%
Topic 7	168	0.31%	60	0.22%	175	0.1%
Topic 8	837	1.56%	143	0.51%	1,734	1.02%
Topic 9	501	0.93%	183	0.66%	1,630	0.96%
Topic 10	890	1.65%	656	2.35%	1,418	0.84%
Topic 11	752	1.4%	264	0.95%	1,575	0.93%
Topic 12	1,905	3.54%	1,212	4.35%	4,343	2.56%
Topic 13	307	0.57%	91	0.33%	534	0.32%
Topic 14	432	0.8%	328	1.18%	1,389	0.82%
Topic 15	660	1.23%	440	1.58%	2,102	1.24%
Topic 16	1,434	2.67%	789	2.83%	5,056	2.99%
Topic 17	677	1.26%	405	1.45%	2,867	1.69%

Table 17: Count and Distribution of Topics – K60 (continued)

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Topic 18	484	0.9%	227	0.81%	904	0.53%
Topic 19	1,872	3.48%	773	2.77%	5,577	3.29%
Topic 20	1,391	2.59%	498	1.79%	3,654	2.16%
Topic 21	839	1.56%	449	1.61%	1,385	0.82%
Topic 22	2,584	4.8%	748	2.68%	6,015	3.55%
Topic 23	724	1.35%	282	1.01%	1,434	0.85%
Topic 24	523	0.97%	198	0.71%	1,541	0.91%
Topic 25	554	1.03%	363	1.3%	995	0.59%
Topic 26	483	0.9%	257	0.92%	1,218	0.72%
Topic 27	709	1.32%	276	0.92%	1,627	$0.12\% \\ 0.96\%$
Topic 28	777	1.44%	252	0.9%	3,762	2.22%
Topic 29	1,333	2.48%	514	1.84%	2,903	1.71%
Topic 30	232	0.43%	96	0.34%	882	0.52%
_						
Topic 31	594	1.1%	328	1.18%	1,973	1.17%
Topic 32	1,719	3.2%	538	1.93%	2,452	1.45%
Topic 33	962	1.79%	305	1.09%	3,374	1.99%
Topic 34	434	0.81%	232	0.83%	1,179	0.7%
Topic 35	2,021	3.76%	1,072	3.85%	9,682	5.72%
Topic 36	702	1.31%	396	1.42%	1,632	0.96%
Topic 37	817	1.52%	236	0.85%	2,673	1.58%
Topic 38	961	1.79%	485	1.74%	3,719	2.2%
Topic 39	616	1.15%	194	0.7%	1,111	0.66%
Topic 40	1,213	2.26%	806	2.89%	6,070	3.58%
Topic 41	743	1.38%	415	1.49%	3,874	2.29%
Topic 42	699	1.3%	545	1.96%	1,588	0.94%
Topic 43	685	1.27%	215	0.77%	1,466	0.87%
Topic 44	105	0.2%	36	0.13%	100	0.06%
Topic 45	1,572	2.92%	1,029	3.69%	7,673	4.53%
Topic 46	449	0.83%	96	0.34%	522	0.31%
Topic 47	1,183	2.2%	1,352	4.85%	4,523	2.67%
Topic 48	322	0.6%	222	0.8%	409	0.24%
Topic 49	3,174	5.9%	1,095	3.93%	16,080	9.5%
Topic 50	2,284	4.25%	2,364	8.48%	14,030	8.29%
Topic 51	448	0.83%	196	0.7%	1,798	1.06%
Topic 52	1,003	1.86%	796	2.86%	4,085	2.41%
Topic 53	782	1.45%	304	1.09%	1,819	1.07%
Topic 54	547	1.02%	240	0.86%	1,516	0.9%
Topic 55	895	1.66%	595	2.14%	1,063	0.63%
Topic 56	1,001	1.86%	265	0.95%	2,685	1.59%
Topic 57	273	0.51%	138	0.5%	587	0.35%
Topic 58	669	1.24%	723	2.59%	2,569	1.52%
Topic 59	459	0.85%	411	1.48%	1,696	1.52%
Topic 03	400	0.0070	411	1.40/0	1,030	1/0

Figure 18: K60 Pyramid Chart

Figure 19: K60 Bar Chart

4.3.0.1 Word Occurences

The table below shows the ten most common words in each topic, and the ten words with the highest FREX score, a measure that uses a harmonic mean of word exclusivity and topic coherence (Airoldi & Bischof, 2016).

Table 18: Words in topic - K60

Topic Number	Top Ten Words	Top Ten FREX
Topic 1	information, practice, guidance, data, available, advice, use, service, code, complaints, technology, website, ensure, provided, commissioner, records, details, also, internet, communication	code, information, data, ombudsman, practice, complaints, electronic, guidance, communications, website, requests, communication, records, sharing, dissent, assent, accurate, codes, advisers, privacy
Topic 2	safety, regulation, standards, regulations, industry, health, air, indicated, risk, use, regulatory, enforcement, licensing, directive, environmental, licence, noise, aviation, also, legislation	hse, caa, indicated, sunbeds, sunbed, fireworks, noise, aviation, herbal, safety, medicines, airlines, airports, directive, regulation, gatwick, asbestos, air, supplements, co-proxamol

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 3	member, members, said, made, north, heard, spoke, also, debate, friends, speech, south, east, mentioned, talked, raised, west, pointed, many, comments	member, thoughtful, spoke, eastmr, hayes, eloquently, southmr, westmr, redwood, bermondsey, northmr, talked, holborn, wokinghammr, rushcliffemr, durhammr, norfolkmr, harlingtonjohn, valleymr, dorsetmr
Topic 4	women, violence, men, domestic, women's, pay, woman, work, girls, equal, gender, gap, female, equality, sexual, male, many, maternity, still, victims	women, fgm, women's, shortlists, men, male, female, violence, girls, domestic, gender, paternity, woman, refuges, men's, maternity, all-women, pregnant, sanitary, refuge
Topic 5	police, crime, officers, behaviour, policing, antisocial, home, community, people, tackle, force, forces, powers, communities, serious, neighbourhood, chief, streets, officer, support	policing, antisocial, police, crime, officers, pcsos, behaviour, constable, graffiti, asbos, soca, neighbourhood, gang, constabulary, knife, cctv, constables, gangs, burglary, wardens
Topic 6	made, make, department, progress, taking, recent, ensure, action, assessment, impact, government, steps, statement, discussions, plans, strategy, development, northern, commitment, measures	progress, steps, discussions, assessment, taking, department, recent, strategy, northern, representations, developing, action, plans, statement, department's, ireland, implementation, priority, targets, departmental
Topic 7	hearing, touch, aids, people, hiv, database, dna, blind, deaf, can, also, copyright, loss, helpline, remploy, national, impaired, epilepsy, use, however	deaf, remploy, epilepsy, b12, aids, impaired, copyright, hiv, hearing, blind, hpa, dna, touch, database, rnib, visually, helpline, impairment, fortification, nerve
Topic 8	food, water, rural, flood, farmers, environment, flooding, products, risk, people, affairs, meat, floods, agency, agricultural, country, waste, industry, eat, agriculture	flood, flooding, beef, dairy, meat, ofwat, food, floods, water, cocoa, trussell, defences, labelling, fruit, sugar, eat, farmers, agriculture, flooded, gm
Topic 9	animals, marine, dogs, animal, fishing, dog, sea, welfare, fish, industry, ban, fisheries, wildlife, environment, conservation, also, many, fishermen, morecambe, species	fishing, fishermen, species, fur, cod, mink, circuses, snares, rspca, seafarers, mmo, animals, peat, fish, marine, dog, cfp, puppies, animal, fisheries
Topic 10	health, mental, treatment, cancer, medical, disease, patients, can, condition, national, people, screening, conditions, problems, heart, also, clinical, group, research, diagnosis	cancer, flu, prostate, cervical, cancers, endometriosis, piercing, mental, screening, immunisation, stroke, breast, diagnosis, mrsa, diagnosed, symptoms, diabetes, infection, infections, disease
Topic 11	cuts, cut, council, government, liberal, local, hull, city, councils, services, public, democrats, tories, budget, country, tory, budgets, areas, coalition, democrat	lib, liberal, tories, cuts, hull, democrats, democrat, pledge, cut, dem, budgets, tory, scrapped, cutting, dems, scrapping, scrap, coalition, slashed, lewisham

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 12	care, health, nhs, services, hospital, patients, service, social, trust, hospitals, staff, trusts, patient, need, primary, people, nurses, waiting, community, e	helier, hospitals, pct, nhs, hospital, trusts, e, nursing, commissioning, dementia, beds, gp, acute, pharmacies, patients, nurses, pcts, patient, midwives, in-patient
Topic 13	emergency, fire, service, phone, mobile, calls, john, ambulance, rescue, sir, public, incident, call, incidents, services, phones, blood, ms, lives, firefighters	firefighters, fire, phones, cpr, mobile, phone, rescue, ambulance, masts, fires, coastguard, emergency, ms, ambulances, john, crews, paramedics, emergencies, gannet, clyde
Topic 14	companies, company, tax, competition, financial, market, consumers, uk, industry, regime, rules, fair, business, public, fsa, services, regulatory, transparency, profits, trading	fsa, competition, hmrc, corporate, policyholders, liabilities, shares, avoidance, shareholders, dependencies, evasion, penrose, regulators, liability, company's, companies, oft, company, equitable, directors
Topic 15	community, organisations, work, role, services, voluntary, support, public, social, groups, sector, important, programme, working, service, together, play, good, society, project	voluntary, organisations, bbc, programmes, role, play, project, organisation, exclusion, innovative, radio, groups, community, initiatives, volunteers, volunteering, bristol, ideas, develop, charter
Topic 16	jobs, economy, economic, investment, growth, industry, regional, future, new, development, need, skills, uk, manufacturing, country, sector, world, north-east, infrastructure, region	manufacturing, steel, economy, growth, regional, economic, jobs, productivity, economies, north-east, prosperity, regions, industries, inward, recession, region, construction, investment, downturn, invest
Topic 17	million, funding, money, increase, billion, extra, year, additional, fund, spending, cost, costs, investment, resources, budget, spent, 1, new, funds, next	funding, million, expenditure, formula, extra, billion, grant, spent, fund, allocated, money, spending, funds, additional, funded, spend, invested, allocation, plymouth, 2007-08
Topic 18	communities, black, language, minority, community, church, ethnic, faith, people, country, religious, english, many, groups, forced, prevent, muslim, marriage, freedom, hate	sikh, hatred, muslim, humanist, holocaust, islam, ethnic, extremism, church, racism, asian, black, hate, religious, muslims, faith, faiths, priests, minority, minorities
Topic 19	education, schools, school, children, teachers, students, skills, pupils, educational, learning, special, parents, college, primary, needs, university, training, good, standards, higher	teachers, pupils, curriculum, sen, academies, ofsted, pupil, grammar, schools, fe, gcses, school, education, teaching, post-16, educational, teacher, students, academy, attainment
Topic 20	transport, rail, bus, services, line, travel, network, train, passengers, london, fares, service, public, capacity, trains, new, road, main, manchester, railway	rail, bus, fares, buses, hs2, freight, high-speed, electrification, crossrail, franchising, railtrack, passengers, apd, transport, trains, railways, passenger, congestion, commuter, fare

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 21	housing, homes, social, affordable, need, accommodation, home, people, new, council, building, homelessness, families, build, benefit, live, homeless, built, buy, houses	homelessness, housing, homeless, accommodation, homes, affordable, associations, rough, sleeping, starter, first-time, empty, decent, hamlets, houses, sleepers, overcrowded, stock, 106, ladder
Topic 22	tax, chancellor, poverty, budget, families, pay, rate, wage, living, working, income, year, cut, increase, impact, minimum, people, credits, benefit, vat	obr, millionaires, 50p, vat, wage, credits, chancellor, tax, inflation, fiscal, chancellor's, wages, deficit, forecast, incomes, exchequer, earning, poverty, taxes, richest
Topic 23	alcohol, smoking, people, ban, tobacco, online, israel, advertising, young, drinking, public, palestinian, israeli, pubs, gaza, internet, cull, smoke, images, tb	tobacco, palestinian, israeli, gaza, palestinians, hamas, israelis, culls, israel's, israel, two-state, cull, smoking, tb, alcohol, pornography, images, drinking, badger, badgers
Topic 24	culture, sport, media, football, clubs, arts, club, sports, creative, games, lottery, music, cultural, olympics, swimming, facilities, olympic, events, many, event	sport, games, olympic, gambling, lap-dancing, olympics, arts, casinos, creative, swimming, music, sports, football, club, sporting, venues, lottery, gaming, lincoln, rugby
Topic 25	rights, human, law, act, equality, discrimination, legislation, bill, civil, commission, society, convention, marriage, legal, protection, couples, duty, age, equal, respect	csa, same-sex, rights, discrimination, gay, abortion, couples, lesbian, human, equality, married, ehrc, abortions, lgbt, discriminated, sexuality, convention, law, heterosexual, discriminate
Topic 26	planning, development, land, sites, site, building, new, green, buildings, national, infrastructure, use, environment, urban, forest, application, policy, developments, heritage, permission	gypsies, gypsy, planning, sites, museum, nppf, forest, brownfield, site, belt, stevenage, open-cast, forestry, spaces, travellers, heritage, buildings, land, parks, dean
Topic 27	family, constituent, families, case, death, inquiry, happened, told, man, died, lost, home, many, never, victims, justice, life, mrs, received, day	inquest, bereaved, constituent, mrs, died, son, hillsborough, survivors, daughter, tragedy, husband, death, contacted, inquiry, loved, tragic, coroner, happened, wife, primodos
Topic 28	vote, political, election, people, parties, elected, party, democracy, elections, electoral, register, voting, parliament, general, politics, voted, system, registration, democratic, one	electoral, vote, voting, elections, votes, democracy, polling, voter, political, ballot, voters, elected, turnout, voted, electorate, democratic, election, parties, candidate, candidates
Topic 29	scheme, pension, pensions, benefit, pensioners, credit, system, income, benefits, insurance, payments, savings, schemes, payment, age, people, universal, retirement, changes, paid	pension, annuity, pensions, pensioners, retirement, annuities, pensioner, payment, insurance, payments, entitlement, take-up, scheme, qualify, savings, saving, income, earnings, universal, eligible

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 30	years, time, now, two, one, first, three, past, week, months, last, ago, 10, five, still, next, every, four, times, long	months, years, three, two, ago, past, five, time, four, weeks, week, now, 10, six, days, hours, times, half, first, long
Topic 31	year, number, since, last, report, figures, said, show, official, april, march, 2010, figure, published, increase, end, 1997, increased, january, month	official, march, january, figures, april, june, since, 2011, november, july, september, december, figure, vol, october, year, 1997, february, 2008, 2010
Topic 32	people, work, young, support, disabled, carers, help, employment, get, many, benefit, need, youth, disability, benefits, older, job, allowance, person, social	disabled, carers, dla, incapacity, disabilities, jobcentre, esa, caring, young, unemployed, jobcentres, youth, disability, jsa, pip, older, apprenticeships, atos, jobseeker's, carer
Topic 33	question, order, asked, mr, answer, questions, speaker, put, deputy, point, ask, written, agreed, made, may, read, minutes, letter, correct, call	answer, question, questions, speaker, mr, order, deputy, asked, apologise, forthwith, answers, madam, write, written, answered, correct, minutes, o'clock, asking, advise
Topic 34	drugs, drug, road, charities, people, car, vehicles, charity, use, driving, vehicle, drivers, cars, problem, driver, can, cannabis, also, parking, misuse	crb, cannabis, bikes, barring, motor, taxi, drivers, vehicles, driver, gift, vehicle, supervised, parking, substances, barred, drugs, drug, mph, donations, charities
Topic 35	international, defence, forces, world, armed, countries, foreign, security, war, british, un, conflict, military, aid, us, support, country, uk, afghanistan, must	iraq, syria, troops, nato, sierra, zimbabwe, syrian, burma, iraqi, leone, yemen, daesh, afghan, genocide, ceasefire, congo, burmese, assad, taliban, libya
Topic 36	home, office, immigration, uk, security, country, system, asylum, people, british, fraud, identity, applications, rules, citizens, border, foreign, migration, checks, passport	immigration, asylum, passport, passports, seekers, migration, nationals, identity, fraud, cards, border, id, points-based, nationality, appeals, migrants, deported, biometric, visa, visas
Topic 37	house, members, debate, time, today, parliament, leader, opportunity, us, committee, chamber, motion, speak, place, debates, business, sides, many, issue, parliamentary	house, debates, leader, debate, backbench, chamber, sides, debating, members, debated, motion, tonight, recess, session, tomorrow, cross-party, commons, lobby, back-bench, sitting
Topic 38	committee, report, public, review, independent, commission, select, work, evidence, recommendations, process, set, scrutiny, system, role, board, audit, also, national, government	select, recommendations, committees, audit, scrutiny, committee's, independent, review, committee, recommendation, report, accountability, reviews, panel, appointed, chairman, reports, appointments, conclusions, oversight

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 39	wales, prison, welsh, assembly, england, prisoners, cardiff, prisons, offenders, justice, probation, service, commissioner, swansea, newport, custody, devolution, devolved, sentences, bridgend	wales, welsh, prisons, cymru, assembly, prison, prisoners, s4c, reoffending, prisoner, probation, hmp, cardiff, newport, neath, bridgend, swansea, llanwern, llanelli, custody
Topic 40	european, eu, scotland, scottish, uk, union, europe, united, countries, states, trade, parliament, kingdom, agreement, negotiations, treaty, british, national, council, referendum	scottish, lisbon, scotland, eu, european, brexit, treaty, wto, europe, gibraltar, snp, holyrood, negotiations, membership, enlargement, scotland's, accession, union, euro, scots
Topic 41	government, labour, conservative, government's, policy, opposition, party, back, previous, us, country, nothing, let, said, speech, support, conservatives, now, failed, proposals	conservative, conservatives, opposition, labour, government, benches, failed, previous, party, nothing, queen's, policy, party's, opposed, promises, abolish, back, government's, rhetoric, interruption
Topic 42	staff, workers, work, training, employers, pay, working, service, contracts, contract, job, new, employment, employees, force, unions, doctors, trade, recruitment, dentists	dentists, dental, dentistry, employers, contract, contracts, workers, posts, concentrix, junior, employer, employees, recruitment, employee, zero-hours, recruit, dentist, employed, contractors, redundancies
Topic 43	constituency, council, area, centre, residents, west, north, local, county, petition, constituents, town, south, yorkshire, city, closure, east, borough, close, petitioners	petitioners, declares, petition, immingham, swindon, county, lincolnshire, durham, lancashire, warrington, hackney, essex, yorkshire, derbyshire, halifax, humber, wakefield, closure, residents, urges
Topic 44	making, access, decision, decisions, make, made, interests, lack, best, without, case, open, taken, powerful, criteria, capacity, clear, digital, ability, delay	broadband, decisions, decision, making, access, criteria, powerful, interests, crawley, advocacy, decision-making, superfast, digital, lack, delay, firmly, cdc, roll-out, easier, healthwatch
Topic 45	bill, clause, amendment, new, amendments, legislation, act, provisions, committee, lords, powers, section, power, 1, provision, clauses, may, made, regulations, 2	clause, amendment, amendments, nos, insert, clauses, provisions, lords, bill, bill's, schedule, tabled, section, page, passage, definition, beg, amend, amended, drafted
Topic 46	private, sector, public, tenants, landlords, property, rent, bedroom, move, properties, many, rented, pay, cap, nottingham, affected, letting, rents, room, impact	private, hmos, landlords, bedroom, tenants, letting, privately, tenancy, discretionary, rented, sector, arrears, tenancies, tenant, rent, nottingham, eviction, spare, landlord, rents
Topic 47	cases, court, legal, justice, case, criminal, law, courts, evidence, offence, victims, offences, prosecution, system, orders, serious, rape, person, can, whether	cps, defendants, defendant, tpims, courts, court, attorney-general, judicial, prosecution, magistrates, extradition, sfo, offence, warrant, judges, conviction, judge, prosecutions, tpim, offences

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 48	research, science, trafficking, human, engineering, technology, stem, slough, university, slavery, census, universities, scientific, uk, cell, cells, trafficked, statistics, exploitation, embryos	stem, embryonic, slavery, embryos, fss, science, census, trafficked, cloning, slough, trafficking, research, ons, prostitution, embryo, slave, fertilisation, cell, engineering, hfea
Topic 49	people, want, get, one, say, think, know, us, go, see, going, just, said, much, make, like, can, things, good, many	think, things, say, something, going, get, want, lot, saying, go, really, thing, talking, talk, quite, trying, thought, bit, got, idea
Topic 50	important, issue, point, take, need, issues, however, consider, whether, can, possible, must, matter, deal, understand, also, place, course, different, hope	important, issues, consider, point, issue, possible, understand, makes, matter, certainly, raised, points, extremely, different, course, lady, gentleman's, shall, considering, take
Topic 51	constituency, people, proud, many, labour, great, speech, one, first, new, world, also, years, life, history, maiden, city, parliament, member, like	maiden, famous, queen, pride, miners, proud, memorial, anniversary, honour, thatcher, jo, fusiliers, predecessor, rochdale, predecessors, mp, gracious, lothian, nelson, battalion
Topic 52	energy, fuel, climate, change, prices, green, gas, companies, carbon, bills, power, market, price, emissions, oil, efficiency, electricity, new, winter, wind	electricity, renewables, solar, ofgem, feed-in, energy, tariffs, fuel, carbon, renewable, climate, gas, oil, emissions, dioxide, generators, kyoto, tariff, wind, co2
Topic 53	bank, debt, financial, banks, credit, advice, fees, people, interest, pay, money, banking, loan, loans, lending, levy, payday, cost, many, citizens	loan, lending, payday, bureaux, loans, farepak, debt, bank, fees, debts, lenders, banking, banks, rbs, rock, fca, bankers, borrowers, imf, high-cost
Topic 54	can, welcome, sure, aware, may, many, work, thank, constituents, support, particularly, hope, ensure, constituency, concern, done, great, pleased, especially, grateful	welcome, aware, sure, thank, friend's, discuss, pleased, assure, concern, attention, grateful, particularly, especially, constituents, giving, reply, share, done, join, delighted
Topic 55	children, child, care, parents, families, family, children's, support, vulnerable, abuse, parent, social, need, many, help, start, home, adoption, working, needs	child, adopters, children's, children, parent, adoption, child's, parents, dubs, lone, looked-after, cafcass, parental, adoptive, mothers, grandparents, foster, nursery, nurseries, placement
Topic 56	secretary, state, ministers, tell, whether, said, statement, confirm, today, explain, minister's, us, can, now, yesterday, ask, yet, says, announcement, response	secretary, state, confirm, state's, tell, minister's, ministers, explain, please, announcement, yesterday, urgent, assurances, clarify, press, statement, under-secretary, cabinet, talks, expects
Topic 57	london, mayor, property, estate, market, value, tickets, charge, sale, westminster, charges, sold, duty, stamp, boroughs, buy, london's, ticket, selling, land	leaseholders, leasehold, leases, touts, freehold, londoners, boroughs, london, london's, kensington, stamp, lease, tickets, mayor, seller, chelsea, estate, leaseholder, redbridge, ticket

Table 18: Words in topic - K60 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 58	local, authorities, authority, areas, area, consultation, services, proposals, new, needs, communities, government, councils, ensure, provision, provide, system, level, set, paper	authorities, authority, local, consultation, locally, strategic, councils, areas, proposals, provision, forums, white, stakeholders, partnerships, councillors, paper, area, flexibility, consult, authority's
Topic 59	small, business, businesses, office, post, offices, royal, rates, mail, service, network, rural, services, new, firms, many, shops, waste, large, shop	mail, offices, sub-post, post, businesses, small, medium-sized, sub-postmasters, smes, business, entrepreneurs, enterprises, recycling, branches, consignia, shop, stores, retail, q, postcomm
Topic 60	agree, given, accept, absolutely, totally, unacceptable, surely, mentions, describes, reconsider, entirely, country, describing, fact, across, rather, imperative, take, can, putting	agree, given, accept, absolutely, mentions, totally, describes, unacceptable, surely, reconsider, describing, entirely, imperative, rather, fact, putting, country, completely, across, regret

4.3.1 Full topic model summary - K60

```
## A topic model with 60 topics, 81651 documents and a 119586 word dictionary.
## Topic 1 Top Words:
         Highest Prob: information, practice, guidance, data, available, advice, use
##
##
         FREX: code, information, data, ombudsman, practice, complaints, electronic
         Lift: @daisydumble, @percyblakeney63, 1-on, 1,200-i, 1.3-that, 108-are, 1082
##
##
         Score: information, data, code, practice, guidance, complaints, ombudsman
## Topic 2 Top Words:
         Highest Prob: safety, regulation, standards, regulations, industry, health, air
##
##
         FREX: hse, caa, indicated, sunbeds, sunbed, fireworks, noise
##
         Lift: aerodromes, aps, aristolochia, atol-protected, caa, calor, cay
         Score: safety, regulation, aviation, fireworks, airports, noise, regulations
##
## Topic 3 Top Words:
         Highest Prob: member, members, said, made, north, heard, spoke
##
##
         FREX: member, thoughtful, spoke, eastmr, hayes, eloquently, southmr
##
         Lift: 1028, 12-he, 1270s, 130b, 17-year-olds-those, 1993-more, 2,065
         Score: member, north, members, spoke, east, south, speech
##
##
  Topic 4 Top Words:
         Highest Prob: women, violence, men, domestic, women's, pay, woman
##
##
         FREX: women, fgm, women's, shortlists, men, male, female
##
         Lift: #112, #7, #9, #neverthelesshepersisted, 1-breast-feed, 1,678, 1.57
##
         Score: women, violence, women's, men, girls, gender, domestic
## Topic 5 Top Words:
##
         Highest Prob: police, crime, officers, behaviour, policing, antisocial, home
##
         FREX: policing, antisocial, police, crime, officers, pcsos, behaviour
##
         Lift: antisocial, asbos, constabulary, hmic, #22k, #29k, 1-2-3
##
         Score: police, crime, officers, policing, antisocial, behaviour, constable
## Topic 6 Top Words:
         Highest Prob: made, make, department, progress, taking, recent, ensure
```

```
##
         FREX: progress, steps, discussions, assessment, taking, department, recent
##
         Lift: cancun, ofa, 1-2ws, 10.42, 101269, 101548, 101549
##
         Score: assessment, statement, progress, department, steps, northern, ireland
## Topic 7 Top Words:
##
         Highest Prob: hearing, touch, aids, people, hiv, database, dna
         FREX: deaf, remploy, epilepsy, b12, aids, impaired, copyright
##
         Lift: b12, deaf, epilepsy, fortification, #640, 0.01, 1-to-1
##
         Score: aids, hearing, hiv, deaf, dna, remploy, database
##
## Topic 8 Top Words:
         Highest Prob: food, water, rural, flood, farmers, environment, flooding
##
##
         FREX: flood, flooding, beef, dairy, meat, ofwat, food
         Lift: 1072, 70-80, 915, abebrese, allergen, at-a-glance, awb's
##
         Score: food, water, farmers, flood, flooding, rural, floods
##
## Topic 9 Top Words:
##
         Highest Prob: animals, marine, dogs, animal, fishing, dog, sea
##
         FREX: fishing, fishermen, species, fur, cod, mink, circuses
##
         Lift: aquaculture, bee-friendly, birdlife, braniff, bull-type, by-catch, bycatch
##
         Score: animals, marine, fishing, animal, dogs, fishermen, fisheries
## Topic 10 Top Words:
         Highest Prob: health, mental, treatment, cancer, medical, disease, patients
##
##
         FREX: cancer, flu, prostate, cervical, cancers, endometriosis, piercing
##
         Lift: 1169, 20-fold, ablation, antigen, arrhythmogenic, asymptomatic, bed-occupancy
         Score: cancer, mental, health, patients, disease, treatment, screening
##
## Topic 11 Top Words:
         Highest Prob: cuts, cut, council, government, liberal, local, hull
##
##
         FREX: lib, liberal, tories, cuts, hull, democrats, democrat
##
         Lift: lib, 0.2966, 0.37, 0.5524, 1,439, 1,608, 1,814
##
         Score: cuts, liberal, hull, cut, democrats, councils, local
## Topic 12 Top Words:
##
         Highest Prob: care, health, nhs, services, hospital, patients, service
##
         FREX: helier, hospitals, pct, nhs, hospital, trusts, e
##
         Lift: 2005-6, acos, admittances, ent, epsom's, farm's, fieldman
##
         Score: nhs, care, patients, hospital, health, services, patient
## Topic 13 Top Words:
         Highest Prob: emergency, fire, service, phone, mobile, calls, john
##
##
         FREX: firefighters, fire, phones, cpr, mobile, phone, rescue
##
         Lift: firefighters, #ftvote, #timeforthetruth, 03, 0315, 0345, 070
##
         Score: fire, ambulance, emergency, mobile, phone, firefighters, rescue
## Topic 14 Top Words:
##
         Highest Prob: companies, company, tax, competition, financial, market, consumers
##
         FREX: fsa, competition, hmrc, corporate, policyholders, liabilities, shares
##
         Lift: #45, 1,643, 1,699,137, 10-month, 10,000-with, 1174, 12,965.80
##
         Score: companies, tax, fsa, company, consumers, competition, hmrc
## Topic 15 Top Words:
         Highest Prob: community, organisations, work, role, services, voluntary, support
##
##
         FREX: voluntary, organisations, bbc, programmes, role, play, project
         Lift: cbbc, communitybuilders, connectives, counterfeiter, county-sized, futurebuilders, inter
##
         Score: organisations, community, voluntary, bbc, sector, services, programmes
##
## Topic 16 Top Words:
         Highest Prob: jobs, economy, economic, investment, growth, industry, regional
##
##
         FREX: manufacturing, steel, economy, growth, regional, economic, jobs
##
         Lift: #1,150, #12.5, #140,000, #23, #25, 1,126, 1,443
##
         Score: jobs, economy, manufacturing, investment, growth, industry, economic
```

Topic 17 Top Words:

```
##
         Highest Prob: million, funding, money, increase, billion, extra, year
##
         FREX: funding, million, expenditure, formula, extra, billion, grant
##
         Lift: #3,850, 0.15, 0.41, 000-to, 1,808, 1.245, 1.637
         Score: funding, million, money, billion, spending, fund, investment
##
## Topic 18 Top Words:
         Highest Prob: communities, black, language, minority, community, church, ethnic
##
         FREX: sikh, hatred, muslim, humanist, holocaust, islam, ethnic
##
         Lift: #356, #38, 1,027, 1,483, 10-46, 100,000-and, 107th
##
         Score: ethnic, religious, muslim, church, holocaust, hatred, marriage
##
## Topic 19 Top Words:
##
         Highest Prob: education, schools, school, children, teachers, students, skills
##
         FREX: teachers, pupils, curriculum, sen, academies, ofsted, pupil
##
         Lift: curriculum, gcses, headteachers, school's, sen, 1,000-pupil, 1,051
         Score: schools, school, education, teachers, pupils, students, children
##
## Topic 20 Top Words:
##
         Highest Prob: transport, rail, bus, services, line, travel, network
##
         FREX: rail, bus, fares, buses, hs2, freight, high-speed
##
         Lift: euston, franchising, #145, 0.1p, 0.45, 1-very, 1,658
##
         Score: rail, transport, bus, passengers, fares, trains, hs2
## Topic 21 Top Words:
##
         Highest Prob: housing, homes, social, affordable, need, accommodation, home
##
         FREX: homelessness, housing, homeless, accommodation, homes, affordable, associations
##
         Lift: 1,624, bramwell, clearsprings, clts, sleepers, #19, #21.5
         Score: housing, homes, affordable, homelessness, accommodation, homeless, rent
##
## Topic 22 Top Words:
##
         Highest Prob: tax, chancellor, poverty, budget, families, pay, rate
##
         FREX: obr, millionaires, 50p, vat, wage, credits, chancellor
         Lift: obr, #3.5, #840, 0.38, 0.76p, 1,196, 1,226
##
##
         Score: tax, wage, poverty, credits, chancellor, budget, vat
## Topic 23 Top Words:
         Highest Prob: alcohol, smoking, people, ban, tobacco, online, israel
##
##
         FREX: tobacco, palestinian, israeli, gaza, palestinians, hamas, israelis
##
         Lift: #no2lgbthate, 0.7p, 1,000-almost, 1,010, 1,032, 1,366,082, 1,424
##
         Score: smoking, alcohol, israel, tobacco, palestinian, israeli, gaza
## Topic 24 Top Words:
##
         Highest Prob: culture, sport, media, football, clubs, arts, club
##
         FREX: sport, games, olympic, gambling, lap-dancing, olympics, arts
##
         Lift: aquatics, asentewa, athletes, bacta, blatter, bluecoat, casinos
##
         Score: sport, arts, football, sports, clubs, games, olympic
## Topic 25 Top Words:
         Highest Prob: rights, human, law, act, equality, discrimination, legislation
##
         FREX: csa, same-sex, rights, discrimination, gay, abortion, couples
##
         Lift: 193,000, admixed, bpas, cre, discriminator, drc's, ehrc
##
         Score: rights, human, discrimination, equality, marriage, law, couples
## Topic 26 Top Words:
         Highest Prob: planning, development, land, sites, site, building, new
##
##
         FREX: gypsies, gypsy, planning, sites, museum, nppf, forest
##
         Lift: broadfield, gypsies, #tartantories, 1,000-year-old, 10-we, 10,996, 10.20
##
         Score: planning, land, sites, site, development, museum, brownfield
## Topic 27 Top Words:
##
         Highest Prob: family, constituent, families, case, death, inquiry, happened
##
         FREX: inquest, bereaved, constituent, mrs, died, son, hillsborough
##
         Lift: 1,454, 10,000-seat, 1004, 113-page, 1141, 124a, 13822
         Score: constituent, died, families, death, inquiry, family, inquest
##
```

```
## Topic 28 Top Words:
##
         Highest Prob: vote, political, election, people, parties, elected, party
##
         FREX: electoral, vote, voting, elections, votes, democracy, polling
         Lift: 1-would, 1,333, 1,516,000, 1034, 1053, 121543, 128,000
##
##
         Score: vote, electoral, elections, voting, election, democracy, political
## Topic 29 Top Words:
         Highest Prob: scheme, pension, pensions, benefit, pensioners, credit, system
##
         FREX: pension, annuity, pensions, pensioners, retirement, annuities, pensioner
##
         Lift: gwp, annuities, pension, #20,000, #400, 1,000-that, 1,482
##
         Score: pension, pensioners, pensions, scheme, insurance, credit, retirement
##
  Topic 30 Top Words:
##
         Highest Prob: years, time, now, two, one, first, three
##
         FREX: months, years, three, two, ago, past, five
##
         Lift: frazzled, lilian's, non-stipendiary, term-time, 10-week-old, 11-month, 196b
##
         Score: years, time, months, hours, week, weeks, ago
## Topic 31 Top Words:
##
         Highest Prob: year, number, since, last, report, figures, said
##
         FREX: official, march, january, figures, april, june, since
##
         Lift: 1-2mc, 601, 1,033, 1,124,818, 1,130, 1,337, 1,367
##
         Score: year, figures, official, vol, since, report, last
## Topic 32 Top Words:
##
         Highest Prob: people, work, young, support, disabled, carers, help
##
         FREX: disabled, carers, dla, incapacity, disabilities, jobcentre, esa
         Lift: all-work, carersequal, ciara, dominoes, easy-read, first-aider, pre-apprenticeship
##
##
         Score: carers, young, disabled, people, disability, allowance, youth
## Topic 33 Top Words:
##
         Highest Prob: question, order, asked, mr, answer, questions, speaker
##
         FREX: answer, question, questions, speaker, mr, order, deputy
##
         Lift: 1080, 11.00, 11.57, 1105, 1186, 12.26, 1212
##
         Score: mr, speaker, question, deputy, answer, order, questions
## Topic 34 Top Words:
##
         Highest Prob: drugs, drug, road, charities, people, car, vehicles
##
         FREX: crb, cannabis, bikes, barring, motor, taxi, drivers
##
         Lift: 199,000, aid-style, amphetamine, angelus, barbering, barchetti, blagdon
##
         Score: drug, drugs, cannabis, vehicles, charities, parking, drivers
## Topic 35 Top Words:
##
         Highest Prob: international, defence, forces, world, armed, countries, foreign
##
         FREX: iraq, syria, troops, nato, sierra, zimbabwe, syrian
##
         Lift: 2249, 45s, afghans, alabed, aleppo, asia-pacific, ba'athist
##
         Score: armed, un, military, afghanistan, syria, forces, iraq
## Topic 36 Top Words:
##
         Highest Prob: home, office, immigration, uk, security, country, system
##
         FREX: immigration, asylum, passport, passports, seekers, migration, nationals
##
         Lift: arcs, cardholders, clandestinely, europol's, fiancées, fingerprinted, immigration
         Score: immigration, asylum, home, passport, migration, fraud, nationals
## Topic 37 Top Words:
         Highest Prob: house, members, debate, time, today, parliament, leader
##
##
         FREX: house, debates, leader, debate, backbench, chamber, sides
##
         Lift: vashem, yad, @donna_smiley, @jimspin, @richswitch, @timregency, @trojanfan1969
##
         Score: house, debate, members, leader, parliament, motion, chamber
## Topic 38 Top Words:
##
         Highest Prob: committee, report, public, review, independent, commission, select
##
         FREX: select, recommendations, committees, audit, scrutiny, committee's, independent
##
         Lift: 1003, 15-however, 15-which, 1905, 1992-specifies, 1993-04, 2000-which
```

```
Score: committee, report, select, scrutiny, review, recommendations, committees
## Topic 39 Top Words:
##
         Highest Prob: wales, prison, welsh, assembly, england, prisoners, cardiff
         FREX: wales, welsh, prisons, cymru, assembly, prison, prisoners
##
##
         Lift: 0.48, 1,000-such, 1,009, 1,099, 1,145, 1,296, 1,500-place
         Score: wales, prison, welsh, assembly, prisoners, prisons, probation
##
## Topic 40 Top Words:
         Highest Prob: european, eu, scotland, scottish, uk, union, europe
##
##
         FREX: scottish, lisbon, scotland, eu, european, brexit, treaty
##
         Lift: 07, 1-46, 1,166, 1,294, 10,182, 10.91, 10249
##
         Score: eu, european, scottish, scotland, treaty, union, europe
## Topic 41 Top Words:
##
         Highest Prob: government, labour, conservative, government's, policy, opposition, party
##
         FREX: conservative, conservatives, opposition, labour, government, benches, failed
##
         Lift: cokey, draghi, moira's, 1-of, 1,057, 1.14, 1228
##
         Score: government, conservative, labour, party, opposition, conservatives, policy
## Topic 42 Top Words:
##
         Highest Prob: staff, workers, work, training, employers, pay, working
##
         FREX: dentists, dental, dentistry, employers, contract, contracts, workers
##
         Lift: concentrix, dentistry, dentists, lldc, #i'm, 1-who, 1.03
##
         Score: employers, dentists, staff, workers, dental, contract, contracts
## Topic 43 Top Words:
         Highest Prob: constituency, council, area, centre, residents, west, north
##
         FREX: petitioners, declares, petition, immingham, swindon, county, lincolnshire
##
##
         Lift: 1950son, a49, annesley, binnie, brancepeth, picturehouse, thelwall
         Score: petitioners, petition, residents, constituency, county, yorkshire, council
##
  Topic 44 Top Words:
         Highest Prob: making, access, decision, decisions, make, made, interests
##
##
         FREX: broadband, decisions, decision, making, access, criteria, powerful
##
         Lift: 0844, 1-will, 1,000-by, 1059, 12-are, 123991, 126382
##
         Score: decision, decisions, access, making, broadband, digital, crawley
## Topic 45 Top Words:
##
         Highest Prob: bill, clause, amendment, new, amendments, legislation, act
##
         FREX: clause, amendment, amendments, nos, insert, clauses, provisions
##
         Lift: #185, #85, 1-competences, 1-impact, 1-sale, 10-application, 10-changes
##
         Score: clause, amendment, amendments, bill, lords, provisions, nos
## Topic 46 Top Words:
##
         Highest Prob: private, sector, public, tenants, landlords, property, rent
##
         FREX: private, hmos, landlords, bedroom, tenants, letting, privately
##
         Lift: 88.85, accommodation-and, afon, bron, condensation, hoogstraten, landlords-there
         Score: private, sector, landlords, tenants, rented, rent, bedroom
##
## Topic 47 Top Words:
         Highest Prob: cases, court, legal, justice, case, criminal, law
##
##
         FREX: cps, defendants, defendant, tpims, courts, court, attorney-general
##
         Lift: intercept, 1,046, 1,237, 1,368, 1,878, 104961, 109648
         Score: court, offence, courts, criminal, offences, prosecution, rape
##
## Topic 48 Top Words:
##
         Highest Prob: research, science, trafficking, human, engineering, technology, stem
##
         FREX: stem, embryonic, slavery, embryos, fss, science, census
##
         Lift: 2,744, 45-day, benin, biomedicine, biopharmaceutical, bioscience, brothel-keeping
         Score: research, science, trafficking, embryos, slavery, trafficked, slough
##
## Topic 49 Top Words:
##
         Highest Prob: people, want, get, one, say, think, know
##
         FREX: think, things, say, something, going, get, want
```

```
##
         Lift: about-one, achieved-but, again-let, amendments.hon, beginning-with, braintreejames, buck
##
         Score: people, get, think, want, things, going, say
## Topic 50 Top Words:
##
         Highest Prob: important, issue, point, take, need, issues, however
##
         FREX: important, issues, consider, point, issue, possible, understand
##
         Lift: academy-albeit, advocate-general-i, advocate-interruption, billion-interruption, can-ena
         Score: important, point, issues, issue, matter, points, lady
##
## Topic 51 Top Words:
##
         Highest Prob: constituency, people, proud, many, labour, great, speech
##
         FREX: maiden, famous, queen, pride, miners, proud, memorial
##
         Lift: 22s, aaful, aching, adventurers, allaun, austin's, baked-bean
         Score: maiden, constituency, labour, speaker, proud, memorial, queen
##
## Topic 52 Top Words:
##
         Highest Prob: energy, fuel, climate, change, prices, green, gas
##
         FREX: electricity, renewables, solar, ofgem, feed-in, energy, tariffs
##
         Lift: 1,105, 1,345, 106.89, 2008-12, 21p, 6,196, 807
##
         Score: energy, fuel, carbon, emissions, gas, climate, prices
  Topic 53 Top Words:
         Highest Prob: bank, debt, financial, banks, credit, advice, fees
##
##
         FREX: loan, lending, payday, bureaux, loans, farepak, debt
##
         Lift: 0.21, 0.33, 0.76, 0.84, 1,021, 1,025, 1,189
         Score: debt, banks, bank, payday, loan, loans, lending
##
## Topic 54 Top Words:
         Highest Prob: can, welcome, sure, aware, may, many, work
##
##
         FREX: welcome, aware, sure, thank, friend's, discuss, pleased
         Lift: 1565, 18-the, 6,563, 65s, 75-year-olds, already-the, ask-in
##
         Score: thank, aware, welcome, constituents, friend's, constituency, sure
##
## Topic 55 Top Words:
##
         Highest Prob: children, child, care, parents, families, family, children's
##
         FREX: child, adopters, children's, children, parent, adoption, child's
##
         Lift: litem, nyas, pelka, dubs, @mandatenow, #900,000, 1-regardless
##
         Score: children, child, parents, care, children's, families, adoption
## Topic 56 Top Words:
         Highest Prob: secretary, state, ministers, tell, whether, said, statement
##
##
         FREX: secretary, state, confirm, state's, tell, minister's, ministers
##
         Lift: secretary, 1-yes, 1,631, 1135, 17,850, 2.5bn, 2013-a
##
         Score: secretary, state, statement, confirm, state's, ministers, tell
## Topic 57 Top Words:
         Highest Prob: london, mayor, property, estate, market, value, tickets
##
##
         FREX: leaseholders, leasehold, leases, touts, freehold, londoners, boroughs
##
         Lift: alg, all-staff, annington, aplenty, assignee, chrysalis, commonhold
##
         Score: london, leaseholders, tickets, mayor, leasehold, boroughs, ticket
## Topic 58 Top Words:
##
         Highest Prob: local, authorities, authority, areas, area, consultation, services
##
         FREX: authorities, authority, local, consultation, locally, strategic, councils
         Lift: appeal-a, central-local, laa, maas, place-shaping, placemaking, pps10
##
##
         Score: local, authorities, authority, councils, consultation, communities, areas
## Topic 59 Top Words:
##
         Highest Prob: small, business, businesses, office, post, offices, royal
##
         FREX: mail, offices, sub-post, post, businesses, small, medium-sized
##
         Lift: sub-post, #1.8, #10,000, #210, #450, #57, 1,352
##
         Score: businesses, business, post, small, offices, mail, postal
## Topic 60 Top Words:
##
         Highest Prob: agree, given, accept, absolutely, totally, unacceptable, surely
```

```
## FREX: agree, given, accept, absolutely, mentions, totally, describes
## Lift: agree, mentions, given, describes, totally, accept, describing
## Score: agree, given, accept, absolutely, mentions, totally, unacceptable
```

4.3.2 Full topic model estimate summary - K60

```
##
## Call:
## estimateEffect(formula = 1:60 ~ short_list, stmobj = topic_model_k60,
     metadata = lab corpus fem stm$meta, uncertainty = "Global")
##
##
##
## Topic 1:
## Coefficients:
               Estimate Std. Error t value
                                               Pr(>|t|)
                        ## (Intercept)
               0.013033
## short_listTRUE -0.003122
                       0.000334 -9.348 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 2:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0020852 0.0004274 -4.879
                                               0.00000107 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 3:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0011223 0.0004225
                                2.656
                                                 0.0079 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 4:
##
## Coefficients:
               Estimate Std. Error t value
## (Intercept)
              ## short_listTRUE 0.0002091 0.0005554
                                0.377
                                                 0.706
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 5:
```

```
##
## Coefficients:
                Estimate Std. Error t value
               ## (Intercept)
## short_listTRUE -0.0060125 0.0006148 -9.78 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 6:
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0025403 0.0005308
                                4.786
                                               0.00000171 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 7:
##
## Coefficients:
               Estimate Std. Error t value
##
                                                Pr(>|t|)
              0.0039769  0.0001842  21.595 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE 0.0007478 0.0002314
                                3.232
                                                 0.00123 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 8:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
                                13.45 < 0.0000000000000000 ***
## short listTRUE 0.0064980 0.0004831
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 9:
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0019990 0.0003973 5.031
                                              0.000000488 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 10:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               0.0175441 0.0004551 38.548 < 0.0000000000000000 ***
## (Intercept)
```

```
## short_listTRUE -0.0031669 0.0005660 -5.596 0.000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 11:
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0047560 0.0004012 11.85 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 12:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0045678 0.0007059 -6.47 0.0000000000982 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 13:
##
## Coefficients:
                                                Pr(>|t|)
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0022134 0.0003262 6.786
                                      0.000000000116 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 14:
## Coefficients:
                Estimate Std. Error t value
                                                Pr(>|t|)
##
              0.0131850 0.0003517 37.491 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE -0.0025206 0.0004267 -5.907
                                            0.00000000349 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 15:
##
## Coefficients:
##
                Estimate Std. Error t value
                                               Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0045711 0.0004718 -9.689 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
##
## Topic 16:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                Pr(>|t|)
               ## (Intercept)
## short listTRUE -0.0006678 0.0005791 -1.153
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 17:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0015002 0.0004221 -3.554
                                                  0.00038 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Topic 18:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0006005 0.0004105
                                1.463
                                                  0.143
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 19:
##
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
                                35.52 < 0.0000000000000000 ***
## (Intercept)
              0.0190554 0.0005365
## short listTRUE 0.0035203 0.0006889
                                  5.11
                                             0.000000323 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 20:
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
                                           0.000000000275 ***
## short_listTRUE 0.0042650 0.0006756 6.313
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 21:
##
## Coefficients:
```

```
##
                 Estimate Std. Error t value
                ## (Intercept)
## short listTRUE -0.0001370 0.0005183 -0.264
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 22:
##
## Coefficients:
                Estimate Std. Error t value
                                                  Pr(>|t|)
               0.0196851 0.0005850
                                  33.65 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0108642 0.0007227
                                  15.03 < 0.00000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 23:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
               ## (Intercept)
## short_listTRUE 0.0023013 0.0005414
                                  4.251
                                                  0.0000213 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 24:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
               0.0075411 0.0003092 24.393 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0017586 0.0003627 4.848
                                                 0.00000125 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 25:
##
## Coefficients:
                 Estimate Std. Error t value
                                                    Pr(>|t|)
                0.0131931  0.0004223  31.239 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE -0.0013621 0.0004803 -2.836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 26:
## Coefficients:
                 Estimate Std. Error t value
##
                                                    Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0011148  0.0004311  -2.586
                                                    0.00971 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 27:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0034830 0.0004601
                                  7.57 0.000000000000378 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 28:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0028709 0.0004118
                                6.971
                                        0.0000000000316 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 29:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
              0.0170793  0.0004539  37.625 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0034736 0.0005954
                                5.834
                                            0.0000000544 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 30:
##
## Coefficients:
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short listTRUE 0.0002565 0.0002426
                                                   0.29
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 31:
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0005422 0.0003628
                                1.494
                                                  0.135
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 32:
```

```
##
## Coefficients:
##
              Estimate Std. Error t value
             ## (Intercept)
## short_listTRUE 0.0058560 0.0005089 11.51 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 33:
## Coefficients:
              Estimate Std. Error t value
                                            Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0023208 0.0003837
                             6.049
                                       0.0000000147 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Topic 34:
##
## Coefficients:
              Estimate Std. Error t value
##
                                            Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0008223 0.0004491 -1.831
                                              0.0671 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 35:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE -0.00005179 0.00080734 -0.064
                                                0.949
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 36:
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0024413 0.0005356 -4.558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 37:
##
## Coefficients:
##
              Estimate Std. Error t value
                                           Pr(>|t|)
             ## (Intercept)
```

```
## short_listTRUE 0.0037585 0.0003284 11.44 <0.00000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 38:
## Coefficients:
               Estimate Std. Error t value
##
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0016699 0.0004805 -3.476
                                               0.00051 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 39:
##
## Coefficients:
##
              Estimate Std. Error t value
                                             Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0035161 0.0003941 8.923 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 40:
##
## Coefficients:
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0036907 0.0005525
                                -6.68 0.00000000024 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 41:
## Coefficients:
              Estimate Std. Error t value
##
             ## (Intercept)
## short listTRUE 0.0005358 0.0003623
                               1.479
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 42:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
                                          0.00000000386 ***
## short_listTRUE -0.0031268 0.0005308 -5.891
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
##
## Topic 43:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                      Pr(>|t|)
                0.0117521 0.0004177 28.132 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE 0.0038099 0.0005147 7.402 0.00000000000136 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 44:
##
## Coefficients:
##
                  Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept)
                 0.0091581 0.0001386 66.093 < 0.0000000000000000 ***
## short_listTRUE -0.0004892 0.0001680 -2.912
                                                        0.00359 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 45:
##
## Coefficients:
##
                  Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept)
                 0.0318756 0.0006173
                                      51.63 < 0.000000000000000 ***
## short_listTRUE -0.0048638 0.0007529
                                      -6.46
                                                  0.00000000105 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 46:
##
## Coefficients:
                 Estimate Std. Error t value
                                                      Pr(>|t|)
                ## (Intercept)
## short listTRUE 0.0033259 0.0003482 9.551 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 47:
##
## Coefficients:
                  Estimate Std. Error t value
                 0.0307985 0.0005942 51.83 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE -0.0133691 0.0007729 -17.30 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 48:
##
## Coefficients:
```

```
##
                 Estimate Std. Error t value
                0.0086541 0.0003011 28.738 < 0.000000000000000 ***
## (Intercept)
## short listTRUE -0.0009993 0.0003686 -2.711
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 49:
##
## Coefficients:
                Estimate Std. Error t value
                                                  Pr(>|t|)
               ## (Intercept)
## short_listTRUE 0.0026589 0.0004686
                                  5.674
                                                0.000000014 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 50:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                  Pr(>|t|)
                0.0557500 0.0003557 156.75 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE -0.0144800 0.0004331 -33.43 <0.00000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 51:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
               0.0099028 0.0003715 26.66 < 0.000000000000000 ***
## (Intercept)
## short_listTRUE 0.0017927 0.0004609
                                    3.89
                                                   0.0001 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 52:
##
## Coefficients:
                Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0039593 0.0006859 -5.773
                                               0.00000000782 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 53:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                  Pr(>|t|)
               ## (Intercept)
## short_listTRUE 0.0028311 0.0004779
                                 5.924
                                            0.00000000316 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 54:
##
## Coefficients:
               Estimate Std. Error t value
              ## (Intercept)
## short_listTRUE 0.0001306 0.0002511
                                  0.52
                                                 0.603
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 55:
##
## Coefficients:
##
                Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
               0.0174579  0.0004944  35.315  <0.0000000000000000 ***
## short_listTRUE -0.0008204 0.0005934 -1.382
                                                  0.167
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 56:
##
## Coefficients:
##
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 57:
##
## Coefficients:
               Estimate Std. Error t value
              0.0066541 0.0002759 24.119 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE 0.0014066 0.0003393
                                4.146
                                               0.0000339 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 58:
## Coefficients:
##
                Estimate Std. Error t value
                                               Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0097553  0.0004520  -21.58 <0.0000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 59:
```

```
##
## Coefficients:
                  Estimate Std. Error t value
##
                                                       Pr(>|t|)
                 0.0123941 0.0003540 35.010 < 0.0000000000000000 ***
## (Intercept)
## short listTRUE -0.0027862 0.0004022 -6.928
                                                0.0000000000431 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 60:
##
## Coefficients:
                                                      Pr(>|t|)
##
                  Estimate Std. Error t value
## (Intercept)
                0.00382563 0.00003757 101.83 < 0.0000000000000000 ***
## short_listTRUE 0.00064418 0.00004683
                                      ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.4 K0

4.4.1 Shortlists vs Non-Shortlists - k0

The first implementation used an algorithm developed by Lee & Mimno (2014), implemented in the stm package (Roberts et al., 2018), to estimate the number of topics across all speeches made by female Labour MPs, using the "spectral" method developed by Arora et al. (2013), implemented by Roberts et al. (2018). The resulting topic model has 84 topics, across 81,607 documents and a dictionary of 115,477 words. However, the topic quality with K = 84 is poor, and several topics have poor semantic coherence (see 21).

There are several clusters of topics in 20. For instance, we can see the closeness of Topic 15 (unemployment) and Topic 43 (housing), as both are social issues include discussions of budgets and costs, while Topics 23 (bill amendments) and 16 (education) are very far apart.

THIS NEEDS TO BE RUN

Figure 20: Fruchterman-Reingold plot of k0 Network

Figure 21: Coherence of k0 Topic Models

Table 19: Count and Distribution of Topics - k0

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Topic 1	800	1.49%	249	0.89%	2,245	1.33%
Topic 2	699	1.3%	397	1.42%	3,275	1.93%
Topic 3	264	0.49%	218	0.78%	1,012	0.6%
Topic 4	1,255	2.33%	506	1.82%	1,979	1.17%
Topic 5	1,601	2.98%	1,342	4.82%	4,025	2.38%
Topic 6	218	0.41%	74	0.27%	351	0.21%
Topic 7	45	0.08%	25	0.09%	121	0.07%
Topic 8	1,287	2.39%	1,142	4.1%	$7,\!256$	4.28%
Topic 9	10	0.02%	2	0.01%	9	0.01%
Topic 10	699	1.3%	527	1.89%	2,151	1.27%
Topic 11	421	0.78%	202	0.72%	1,292	0.76%
Topic 12	744	1.38%	440	1.58%	350	0.21%
Topic 13	341	0.63%	97	0.35%	672	0.4%
Topic 14	98	0.18%	54	0.19%	536	0.32%
Topic 15	138	0.26%	57	0.2%	382	0.23%
Topic 16	538	1%	331	1.19%	1,757	1.04%
Topic 17	1,023	1.9%	801	2.87%	4,076	2.41%

Table 19: Count and Distribution of Topics – k0 (continued)

Topic Number	AWS Speeches	Percent of AWS	Non-AWS Speeches	Percent of non-AWS	Male MP Speeches	Percent of Male MP
		Speeches		Speeches		Speeches
Topic 18	373	0.69%	110	0.39%	1,019	0.6%
Topic 19	5	0.01%	2	0.01%	NA	NA%
Topic 20	848	1.58%	469	1.68%	1,402	0.83%
Topic 21	832	1.55%	573	2.06%	2,731	1.61%
Topic 22	611	1.14%	283	1.02%	1,462	0.86%
Topic 23	1,125	2.09%	414	1.49%	2,779	1.64%
Topic 24	687	1.28%	236	0.85%	1,522	0.9%
Topic 25	743	1.38%	465	1.67%	1,841	1.09%
Topic 26	462	0.86%	144	0.52%	2,383	1.41%
Topic 27	1,183	2.2%	435	1.56%	5,936	3.51%
Topic 28	876	1.63%	254	0.91%	1,986	1.17%
Topic 29	1,013	1.88%	484	1.74%	3,881	2.29%
Topic 30	523	0.97%	275	0.99%	1,860	1.1%
Topic 31	582	1.08%	367	1.32%	586	0.35%
Topic 32	460	0.86%	639	2.29%	2,648	1.56%
Topic 33	417	0.78%	109	0.39%	1,330	0.79%
Topic 34	61	0.11%	31	0.11%	25	0.01%
Topic 35	506	0.94%	242	0.87%	1,661	0.98%
Topic 36	490	0.91%	272	0.98%	1,303	0.77%
Topic 37	346	0.64%	347	1.25%	757	0.45%
Topic 38	915	1.7%	279	1%	4,973	2.94%
Topic 39	1,149	2.14%	582	2.09%	4,542	2.68%
Topic 40	974	1.81%	780	2.8%	4,241	2.5%
Topic 41	434	0.81%	109	0.39%	583	0.34%
Topic 42	884	1.64%	331	1.19%	4,092	2.42%
Topic 43	363	0.67%	105	0.38%	1,011	0.6%
Topic 44	452	0.84%	316	1.13%	1,521	0.9%
Topic 45	1,103	2.05%	633	2.27%	1,659	0.98%
Topic 46	756	1.41%	285	1.02%	3,008	1.78%
Topic 47	1,291	2.4%	544	1.95%	5,110	3.02%
Topic 48	514	0.96%	129	0.46%	1,020	0.6%
Topic 49	932	1.73%	489	1.76%	1,067	0.63%
Topic 50	848	1.58%	592	2.12%	2,617	1.55%
Topic 51	953	1.77%	425	1.53%	2,233	1.32%
Topic 52	275	0.51%	161	0.58%	834	0.49%
Topic 53	474	0.88%	350	1.26%	1,408	0.83%
Topic 54	774	1.44%	363	1.3%	4,264	2.52%
Topic 55	1,429	2.66%	208	0.75%	1,604	0.95%
Topic 56	263	0.49%	438	1.57%	1,597	0.94%
Topic 57	1,314	2.44%	328	1.18%	5,316	3.14%
Topic 58	40	0.07%	NA	NA%	37	0.02%
Topic 59	113	0.21%	88	0.32%	474	0.28%
Topic 60	676	1.26%	251	0.9%	1,055	0.62%
Topic 61	555	1.03%	351	1.26%	2,610	1.54%
_0p10 01	333	1.00/0	001	1.20/0	2,010	1.01/0

Table 19: Count and Distribution of Topics – k0 (continued)

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches	Male MP Speeches	Percent of Male MP Speeches
Topic 62	1,633	3.04%	543	1.95%	4,237	2.5%
Topic 63	242	0.45%	144	0.52%	428	0.25%
Topic 64	308	0.57%	261	0.94%	873	0.52%
Topic 65	300	0.56%	113	0.41%	747	0.44%
Topic 66	465	0.86%	325	1.17%	682	0.4%
Topic 67	616	1.15%	509	1.83%	2,270	1.34%
Topic 68	541	1.01%	246	0.88%	1,468	0.87%
Topic 69	225	0.42%	102	0.37%	547	0.32%
Topic 70	255	0.47%	132	0.47%	1,416	0.84%
Topic 71	1,143	2.13%	779	2.8%	5,695	3.36%
Topic 72	726	1.35%	200	0.72%	1,060	0.63%
Topic 73	1,974	3.67%	827	2.97%	6,342	3.75%
Topic 74	704	1.31%	425	1.53%	2,272	1.34%
Topic 75	523	0.97%	540	1.94%	2,441	1.44%
Topic 77	675	1.25%	517	1.86%	2,741	1.62%
Topic 78	160	0.3%	75	0.27%	236	0.14%
Topic 79	982	1.83%	415	1.49%	3,243	1.92%
Topic 80	903	1.68%	328	1.18%	3,132	1.85%
Topic 81	434	0.81%	99	0.36%	1,199	0.71%
Topic 82	2	0%	1	0%	NA	NA%
Topic 83	1,172	2.18%	525	1.88%	2,834	1.67%
Topic 84	NA	NA%	5	0.02%	1	0%

Figure 22: k0 Pyramid Chart

Figure 23: k0 Bar Chart

4.4.1.1 Word Occurences

The table below shows the ten most common words in each topic, and the ten words with the highest FREX score, a measure that uses a harmonic mean of word exclusivity and topic coherence (Airoldi & Bischof, 2016).

Table 20: Words in topic - k0

Topic Number	Top Ten Words	Top Ten FREX
Topic 1	secretary, state, ministers, tell, home, department, confirm, explain, said, today, now, us, office, chief, state's, announcement, yet, says, given, told	secretary, state, confirm, ministers, state's, tell, explain, clarify, assurances, announcement, update, talks, cabinet, chaos, conversations, expects, commit, please, u-turn, under-secretary
Topic 2	clause, amendment, amendments, new, clauses, tabled, committee, government, 1, provisions, 2, lords, provision, part, regulations, power, schedule, 3, 5, ensure	nos, amendments, clause, clauses, schedule, tabled, amendment, commencement, drafting, consequential, affirmative, proceedings, wording, provisions, exemption, tabling, drafted, technical, 5, paragraph

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 3	move, second, read, leave, line, agreed, reading, lords, beg, end, page, notes, agrees, b, time, amendment, shall, 1, 2, insert	page, beg, read, insert, reading, agrees, move, b, welcomes, notes, second, agreed, leave, disagrees, withdraw, lords, ordered, line, thereof, closurestanding
Topic 4	housing, homes, private, social, affordable, accommodation, home, rent, sector, tenants, properties, need, landlords, rented, property, homelessness, buy, families, homeless, council	tenants, landlords, rented, homelessness, homeless, rents, tenancies, tenancy, rent, housing, hmos, one-bedroom, affordable, accommodation, properties, associations, landlord, homes, tenant, rough
Topic 5	nhs, hospital, patients, staff, trust, hospitals, health, service, services, doctors, trusts, patient, nurses, new, care, emergency, medical, e, waiting, gp	dentists, dental, dentistry, hospitals, hospital, nurses, pct, nhs, e, trusts, doctors, junior, ambulance, reconfiguration, dentist, reorganisation, pcts, midwives, acute, gp
Topic 6	make, sure, policy, statement, progress, plans, difference, future, towards, responsibilities, government's, easier, statements, commitments, milton, keynes, departmental, reference, clear, announcements	make, statement, sure, progress, policy, difference, plans, departmental, milton, easier, responsibilities, keynes, commitments, towards, statements, announcements, future, autumn, reference, clearer
Topic 7	can, ensure, welcome, work, aware, continue, done, ensuring, commitment, especially, assure, friend's, share, colleagues, recently, offer, closely, working, throughout, particularly	ensure, aware, welcome, can, friend's, assure, ensuring, continue, closely, especially, commitment, reassure, done, share, welcomed, assurance, colleagues, confident, offer, continuing
Topic 8	issues, hope, however, must, consider, understand, matter, deal, take, possible, concerns, forward, may, place, shall, concern, raised, look, able, certainly	issues, consider, understand, matter, concerns, possible, certainly, hope, concern, forward, raised, considering, carefully, matters, deal, proper, shall, properly, concerned, expressed
Topic 9	agree, making, absolutely, rather, completely, entirely, argument, whatever, step, message, precisely, fact, powerful, totally, send, direction, lead, suggests, unacceptable, crucial	agree, absolutely, making, completely, entirely, precisely, argument, whatever, totally, message, powerful, send, rather, direction, mentions, danger, describes, step, suggests, unfortunate
Topic 10	community, communities, organisations, work, role, sector, voluntary, together, partnership, groups, play, new, social, working, society, involved, develop, project, opportunities, areas	voluntary, community, partnership, organisations, play, communities, co-operative, role, partnerships, together, innovative, involvement, groups, develop, volunteers, sector, project, volunteering, projects, facilities
Topic 11	air, airport, indicated, airports, heathrow, aviation, noise, reconsider, environmental, pollution, security, flights, passengers, expansion, safety, capacity, assent, aircraft, gatwick, uk	aviation, flights, gatwick, dissent, airlines, runway, caa, apd, airports, airport, heathrow, indicated, air, noise, nats, pollution, reconsider, assent, prestwick, baa

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 12 Topic 13	women, men, women's, pay, woman, gender, equal, equality, girls, female, gap, many, age, male, still, discrimination, work, labour, day, society made, number, clear, impact, changes, recent, accomment, review, offset, level	women, shortlists, gender, women's, all-women, men, female, male, bishops, men's, waspi, girls, equal, sanitary, woman, fawcett, pregnant, equalities, feminist, woman's made, recent, assessment, changes, impact, representations, discussions
	recent, assessment, review, effect, level, discussions, change, proposed, likely, potential, representations, effects, implications, levels, estimate	impact, representations, discussions, clear, effect, number, estimate, implications, level, regarding, effects, review, proposed, department's, potential, likely
Topic 14	years, now, two, three, past, months, 10, ago, next, just, five, four, times, weeks, six, days, half, almost, 20, 30	years, three, past, ago, months, two, four, five, 10, weeks, now, six, next, half, days, times, seven, eight, 30, almost
Topic 15	whether, question, given, thank, ask, asked, put, answer, questions, response, grateful, earlier, giving, learned, knows, minister's, written, press, asking, received	answer, question, ask, questions, thank, asked, grateful, whether, answers, written, response, knows, asking, minister's, answered, learned, write, answering, giving, earlier
Topic 16	post, office, petition, offices, closure, rural, royal, mail, petitioners, residents, service, services, network, closures, house, request, dog, therefore, commons, dogs	petition, petitioners, sub-post, sub-postmasters, offices, mail, declares, post, consignia, postcomm, closures, closure, urges, etc, signatures, postwatch, basildon, dog, branches, branch
Topic 17	energy, climate, water, change, fuel, companies, bills, prices, green, carbon, market, power, gas, electricity, price, efficiency, emissions, wind, new, winter	energy, renewables, solar, ofgem, feed-in, electricity, carbon, generators, renewable, wind, shale, climate, tariff, ofwat, energy-efficient, decarbonisation, fuel, water, meters, tariffs
Topic 18	constituency, constituents, many, great, proud, speech, represent, mine, new, constituencies, town, campaign, labour, also, mp, like, hackney, hope, south, maiden	maiden, constituency, hackney, mine, constituents, mp, swindon, halifax, constituencies, cleethorpes, represent, predecessor, gracious, burnley, grimsby, shoreditch, proud, predecessors, pride,
Topic 19	want, go, really, wants, putting, ahead, prepared, urge, end, beyond, put, allowed, solution, hold, push, easily, outside, real, walk, oh	famous really, go, want, wants, prepared, ahead, putting, oh, bits, push, conversation, easily, beyond, walk, solution, dear, wanting, urge, sounds, likes
Topic 20	health, care, services, social, mental, service, need, problems, needs, older, national, home, provide, provision, quality, primary, commissioning, professionals, elderly, adult	mental, health, care, suicide, commissioning, services, discharge, discharges, intermediate, psychiatric, social, professionals, healthwatch, wellbeing, adolescent, older, packages, illness, residential, cambs

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 21	police, officers, crime, policing, home, force, fire, forces, officer, chief, service, neighbourhood, community, cuts, serious, public, numbers, resources, work, constable	constables, officers, policing, constable, police, soca, fire, firefighters, pcsos, neighbourhood, constabulary, officer, hmic, metropolitan, front-line, crime, beat, incidents, pc, teams
Topic 22	marriage, church, ethnic, black, minority, faith, religious, community, many, law, society, communities, country, gay, couples, religion, freedom, forced, civil, muslim	gay, same-sex, humanist, marriage, holocaust, church, religious, ethnic, marriages, bisexual, transgender, asian, hatred, religion, faiths, lesbian, faith, racism, marry, sexuality
Topic 23	transport, bus, rail, services, travel, train, line, service, fares, network, passengers, trains, public, buses, main, operators, coast, railway, use, station	bus, fares, buses, concessionary, franchising, railtrack, fare, trains, railways, rail, electrification, train, commuters, journeys, railway, transport, franchise, tolls, coast, travel
Topic 24	smoking, ban, charities, animals, food, charity, health, tobacco, advertising, animal, products, public, welfare, smoke, use, fireworks, evidence, dogs, gift, industry	tobacco, fur, mink, circuses, sunbeds, sunbed, snares, smoking, animals, smoke, obesity, fireworks, hunting, smokers, ban, animal, smoke-free, puppies, gift, labelling
Topic 25	home, immigration, uk, country, asylum, office, system, british, refugees, identity, border, migration, passport, britain, rules, foreign, illegal, cards, seekers, citizens	immigration, asylum, seekers, passports, nationality, migration, passport, migrants, refugees, id, biometric, identity, deported, visa, nationals, deportation, refugee, visas, border, cards
Topic 26	said, us, even, let, enough, wrong, simply, saying, never, told, fact, thought, nothing, seems, say, believe, says, still, anything, happened	wrong, let, thought, saying, anything, seems, though, got, nothing, never, enough, surely, happened, even, anyone, went, nobody, word, changed, simply
Topic 27	get, know, think, say, much, see, going, just, like, things, come, back, problem, find, might, something, look, us, better, can	get, going, things, think, something, lot, talking, say, trying, see, know, talk, thing, find, getting, quite, come, happening, much, sort
Topic 28	debt, banks, bank, credit, financial, fees, pay, advice, money, loan, loans, interest, banking, companies, lending, cost, consumer, charges, mortgage, many	payday, lending, loans, farepak, loan, banks, lenders, fees, debt, debts, rbs, banking, mortgage, bank, mortgages, fca, borrowers, timeshare, bankers, high-cost
Topic 29	million, funding, money, cuts, increase, extra, year, spending, billion, cut, additional, fund, cost, budget, costs, spent, investment, grant, resources, already	funding, million, grant, formula, spending, extra, expenditure, money, allocated, budgets, billion, fund, spent, cuts, additional, grants, spend, real-terms, funds, 2007-08
Topic 30	year, since, last, report, figures, number, said, official, april, march, show, 2010, published, end, figure, month, january, october, 25, june	march, january, october, official, 2011, figures, november, december, vol, since, april, june, year, july, february, september, figure, 2008, month, latest

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 31	abuse, children, protection, child, sexual, vulnerable, trafficking, sex, home, online, exploitation, victims, protect, need, risk, safe, cases, also, internet, missing	pornography, barring, crb, trafficked, abuse, grooming, trafficking, exploitation, stalking, barred, abused, safeguarding, sex, prostitution, bullying, fgm, abusers, survivors, slavery, images
Topic 32	act, person, offence, order, law, orders, powers, reasonable, circumstances, section, control, can, power, whether, criminal, used, use, test, may, might	orders, offence, reasonable, person, tpims, proportionate, surveillance, safeguards, liberty, lawful, definition, intercept, reviewer, reasonably, beaconsfieldmr, suspects, unlawful, penalties, premises, jurisdiction
Topic 33	sport, football, club, clubs, sports, games, event, tickets, olympics, events, market, swimming, olympic, music, media, ticket, culture, league, fans, team	touts, games, olympic, football, copyright, olympics, sport, sports, club, swimming, lap-dancing, sporting, rugby, basketball, clubs, cup, fans, tickets, stadium, prs
Topic 34	good, best, bad, called, practice, tories, examples, old, must, challenge, century, news, modern, ideas, luton, deal, change, example, better, 21st	good, bad, tories, luton, ideas, examples, 21st, luck, century, grasp, called, hat, old, dynamic, sound, modern, constant, practice, best, spread
Topic 35	parliament, scotland, scottish, united, kingdom, devolution, uk, devolved, england, glasgow, english, executive, snp, powers, aberdeen, edinburgh, administrations, rest, government, ayrshire	scotland, scottish, snp, scotland's, holyrood, calman, vellum, administrations, scots, ayrshire, devolved, glasgow, perthshirepete, devolution, parliament, stirling, wishart, perth, dundee, barnett
Topic 36	bristol, arts, national, great, heritage, many, area, tourism, museum, engineering, cultural, visit, creative, countryside, forest, culture, centre, visitors, also, british	museum, arts, gospels, morecambe, bristol, heritage, museums, seaside, tourism, lincoln, tourist, sssis, resorts, dance, bay, restoration, cockle, peat, beach, dean
Topic 37	research, medical, science, use, stem, human, health, blood, cell, consent, scientific, cells, many, tissue, used, also, pregnancy, embryos, disease, may	embryos, abortion, hepatitis, cloning, organs, abortions, embryonic, piercing, co-proxamol, anaemia, embryology, hfea, primodos, transplantation, tissue, b12, sickle, embryo, cell, stem
Topic 38	vote, political, election, parties, elected, parliament, democracy, elections, electoral, voting, politics, system, register, general, democratic, referendum, party, commission, chamber, registration	electoral, vote, voting, elections, voters, votes, democracy, political, politics, polling, electorate, candidates, elected, election, democratic, ballot, turnout, hereditary, politicians, voter
Topic 39	economy, economic, jobs, growth, investment, chancellor, budget, sector, public, unemployment, long-term, future, billion, deficit, recession, plan, need, cuts, private, spending	recession, economy, growth, productivity, deficit, obr, gdp, forecast, forecasts, unemployment, borrowing, chancellor, austerity, economic, boost, chancellor's, fiscal, stimulus, double-dip, recovery

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 40	international, countries, world, development, aid, developing, uk, country, trade, global, nations, africa, united, un, commonwealth, government, foreign, political, overseas, british	zimbabwe, burma, dfid, congo, burmese, sri, cancun, sierra, lanka, leone, sub-saharan, africa, mugabe, lankan, china, g8, burundi, commonwealth, international, doha
Topic 41	group, needs, special, learning, training, disabled, all-party, disability, disabilities, provision, autism, educational, also, support, services, hearing, sen, language, access, awareness	autism, sen, deaf, autistic, dyslexia, disabilities, special, all-party, learning, spectrum, mainstream, advocacy, educational, group, hearing, disability, transition, taskforce, asperger's, language
Topic 42	defence, forces, armed, service, personnel, military, army, royal, afghanistan, veterans, ministry, families, base, war, nuclear, british, equipment, mod, future, covenant	veterans, mod, naval, hms, reservists, submarines, regiment, battalion, dockyard, culls, armed, marines, covenant, ta, navy, personnel, cull, fusiliers, tb, regiments
Topic 43	government, government's, labour, country, previous, policies, yet, record, failed, real, crisis, seen, failure, now, despite, rise, coalition, thousands, instead, across	government, government's, previous, failed, coalition, promise, labour's, labour, reality, policies, promised, failure, promises, rising, queen's, facing, risen, failing, millions, tory
Topic 44	information, available, guidance, data, advice, details, arrangements, national, required, provide, agency, provided, officials, issued, informed, department, office, used, detailed, systems	information, data, details, guidance, accurate, issued, officials, records, requests, census, informed, reviews, detailed, check, publish, monitoring, monitor, sharing, advice, arrangements
Topic 45	violence, domestic, victims, justice, prison, rape, criminal, cases, offenders, crime, prisons, prisoners, sexual, crimes, system, prosecution, sentence, victim, probation, service	prison, probation, reoffending, prisons, rape, sentences, prisoners, violence, sentence, sentencing, offenders, cps, offender, domestic, solicitor-general, prisoner, fss, custody, conviction, victim
Topic 46	food, farmers, industry, environment, rural, oil, waste, environmental, sea, marine, fishing, uk, fish, fisheries, gas, farming, meat, agricultural, north, sustainable	fisheries, fishermen, cod, visteon, mmo, farmers, fishing, fish, oil, cfp, biofuels, marine, recycling, lpg, beef, meat, stocks, agriculture, sea, crops
Topic 47	security, peace, foreign, war, conflict, threat, syria, international, iraq, terrorism, israel, us, un, united, military, attacks, humanitarian, civilians, must, terrorist	israel, palestinian, israeli, gaza, yemen, daesh, palestinians, hamas, palestine, israelis, assad, aleppo, saddam, isil, proscription, isis, israel's, airstrikes, two-state, syria
Topic 48	london, city, north, north-east, hull, liverpool, country, areas, manchester, yorkshire, cities, west, across, east, mayor, region, greater, newcastle, south, sheffield	hull, city, north-east, mayor, london, newcastle, liverpool, yorkshire, humber, cities, tyneside, lincolnshire, powerhouse, durham, london's, manchester, tyne, boroughs, sheffield, londoners

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 49	children, child, parents, families, care, children's, family, start, parent, many, adoption, early, lone, centres, provision, working, child's, places, work, mothers	csa, child's, adopters, lone, parents, parent, children's, childcare, child, four-year-olds, adoption, children, looked-after, nursery, parental, mothers, adoptive, fathers, foster, placement alcohol, antisocial, asbos, alcohol-related, drinking, binge, misuse, cannabis, graffiti, behaviour, knife, anti-social, gang, knives, nuisance, substances, psychoactive, theft, licensing, bikes
Topic 50	behaviour, crime, antisocial, alcohol, drugs, drug, problem, use, problems, tackle, licensing, powers, driving, street, also, drinking, misuse, used, police, disorder	
Topic 51	scheme, pension, pensions, pensioners, schemes, insurance, savings, income, age, retirement, saving, contributions, fund, save, basic, money, credit, receive, national, system	pension, pensioners, retirement, pensions, scheme, pensioner, annuity, saving, savings, take-up, schemes, occupational, insurance, annuities, auto-enrolment, retire, isas, isa, cpi, means-testing
Topic 52	public, proposals, consultation, new, service, access, paper, white, use, proposal, civil, document, reform, set, technology, options, consult, open, internet, consulted	proposals, consultation, paper, white, document, broadband, electronic, consult, responses, consulted, consulting, public, servants, options, communications, proposal, consultations, access, internet, proposes
Topic 53	planning, land, development, new, building, site, sites, homes, built, buildings, estate, green, build, residents, use, plan, areas, housing, developments, houses	brownfield, planning, leaseholders, eco-towns, land, developers, leasehold, builders, lease, leases, site, buildings, belt, sites, estate, spaces, nppf, freehold, garden, registry
Topic 54	members, opposition, conservative, party, said, heard, hear, liberal, today, labour, conservatives, many, front, position, perhaps, listen, benches, say, back, democrats	conservative, liberal, democrats, opposition, conservatives, benches, democrat, party, bench, remind, surprised, manifesto, interruption, benchers, party's, opposed, front-bench, sorry, lib, listening
Topic 55	benefit, work, people, benefits, disabled, allowance, system, welfare, credit, universal, payments, disability, support, payment, claimants, reform, claim, assessment, pensions, employment	esa, dla, atos, claimants, incapacity, dwp, allowance, jsa, jobseeker's, disabled, universal, pip, uc, benefit, sanctioned, welfare, benefits, jobcentre, claiming, sanctions
Topic 56	case, decision, process, decisions, cases, evidence, taken, review, lord, appeal, basis, decide, individual, circumstances, application, system, whether, considered, judgment, accept	appeal, decision, judgment, decisions, case, judicial, decide, lord, appeals, application, process, proceed, criteria, judgments, delay, merits, deciding, applicant, decides, basis
Topic 57	house, debate, may, order, mr, speaker, deputy, leader, today, motion, day, business, opportunity, meeting, chamber, debates, join, yesterday, us, morning	leader, speaker, deputy, house, apologise, madam, motion, mr, backbench, tomorrow, monday, debate, order, debates, recess, tuesday, thursday, back-bench, sitting, morning

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 58 Topic 59	one, time, last, long, week, speak, later, little, another, call, every, short, come, chance, met, running, minutes, return, limit, interventions important, need, point, issue, also,	one, time, long, call, week, short, later, last, speak, running, interventions, minutes, little, chance, missed, minute, limit, another, intervene, finished important, point, different, issue,
	different, part, well, makes, particular, points, extremely, particularly, recognise, needs, approach, address, whole, gentleman's, across	makes, extremely, points, need, recognise, particular, gentleman's, raises, approach, considerable, address, relation, part, addressed, well, wider
Topic 60	poverty, poor, social, low, living, average, poorest, areas, tackle, high, levels, target, income, food, rates, country, gap, highest, families, tackling	poverty, deprivation, poorest, poor, poorer, inequality, inequalities, low, lowest, low-income, mobility, highest, average, target, rich, affluent, relative, incomes, joseph, expectancy
Topic 61	bill, legislation, act, law, provisions, powers, introduced, place, measure, introduce, measures, regulations, private, protection, already, believe, members, allow, bill's, draft	bill, legislation, bill's, passage, provisions, legislative, draft, measure, introduce, member's, statute, introducing, legislate, regulations, introduced, seeks, stages, passed, contains, safeguards
Topic 62	tax, rate, families, pay, income, credits, chancellor, cut, budget, vat, increase, year, benefit, credit, working, paying, cost, hit, revenue, changes	tax, 50p, vat, credits, taxes, avoidance, taxation, millionaires, hmrc, exchequer, gaar, corporation, revenue, rate, allowances, earning, gains, evasion, relief, hit
Topic 63	people, young, many, lives, people's, life, age, youth, live, person, feel, need, 16, experience, must, often, future, older, 18, become	young, people, people's, youth, lives, 16, age, younger, feel, older, live, stay, 18, life, connexions, person, ordinary, 17-year-olds, many, ages
Topic 64	programme, strategy, department, national, plan, safety, key, management, programmes, priority, effective, working, work, performance, improving, improvements, including, set, risk, standards	programme, strategy, pilot, flu, performance, priority, programmes, adjourned, pilots, improvements, improving, evaluation, implementing, implementation, management, delivery, improvement, plan, vaccine, safety
Topic 65	heart, trade, unions, union, stroke, disease, slough, industrial, strike, life, today, death, members, mouth, rochdale, conditions, history, movement, many, cardiac	mesothelioma, cpr, heart, stroke, asbestos, cardiomyopathy, slough, unions, rochdale, cardiac, mouth, jo, defibrillators, slave, gmb, strokes, forestry, romford, ash, sudden
Topic 66	treatment, cancer, patients, screening, clinical, condition, disease, patient, nhs, diagnosis, drugs, pain, breast, medical, national, available, treatments, drug, gps, specialist	prostate, cervical, endometriosis, breast, screening, cancer, treatment, palliative, fibrosis, radiotherapy, cancers, diagnosis, symptoms, treatments, hospice, diagnosed, pain, hospices, nice, ectopic

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 67	local, authorities, council, authority, councils, area, areas, government, communities, services, county, provision, needs, power, councillors, level, central, locally, powers, duty	local, authorities, councils, authority, councillors, council, county, unitary, locally, localism, council's, lancashire, authority's, parish, councillor, district, exeter, area, norwich, boards
Topic 68	rights, wales, human, northern, ireland, commission, welsh, assembly, convention, act, equality, discrimination, commissioner, government, england, cardiff, duty, law, uk, respect	ireland, welsh, rights, assembly, wales, convention, human, northern, commissioner, cymru, discrimination, ehrc, commissions, echr, equality, assembly's, cardiff, strands, commission, belfast
Topic 69	east, st, south, friends, heard, west, birmingham, leicester, north, eastmr, smith, sunderland, helier, brent, ealing, croydon, under-secretary, speeches, jones, called	helier, cooper, bromley, stuart, croydon, ealing, castlefordyvette, ewellchris, holborn, normanton, coventry, dobson, eastmr, hayes, brent, epsom, helens, mitcham, bury, stoke-on-trent
Topic 70	member, members, debate, speech, also, spoke, mentioned, made, congratulate, talked, comments, north, remarks, raised, pointed, referred, said, follow, pleasure, excellent	member, spoke, remarks, talked, thoughtful, eloquently, pleasure, pointed, cambridgeshiremr, bermondsey, reminded, clarke, powerfully, norfolkmr, southwark, comments, passion, eloquent, congratulate, passionately
Topic 71	european, eu, union, uk, europe, states, british, countries, negotiations, treaty, us, trade, agreement, united, britain, foreign, council, single, country, national	treaty, lisbon, european, eu, accession, brexit, euro, negotiations, enlargement, europe, gibraltar, negotiating, brussels, eurozone, sovereignty, directive, currency, treaties, meps, esm
Topic 72	carers, family, constituent, told, families, life, home, caring, day, mother, many, man, lives, mrs, person, case, died, hours, week, can	carers, constituent, dementia, caring, mrs, husband, son, carer, daughter, mum, mother, wife, contacted, loved, father, respite, died, dad, sister, stories
Topic 73	schools, education, school, teachers, students, university, children, pupils, skills, college, primary, teaching, higher, standards, system, universities, learning, colleges, training, free	schools, teachers, academies, grammar, fe, gcses, pupils, school, post-16, students, teaching, pupil, education, leas, academy, colleges, academisation, teacher, curriculum, gcse
Topic 74	regional, development, road, investment, transport, new, economic, infrastructure, regeneration, project, regions, region, roads, major, projects, north-west, speed, traffic, link, area	hs2, regional, rdas, high-speed, rda, crossrail, regeneration, roads, cycling, north-west, regions, cornwall, connectivity, road, freight, motorway, speed, essex, highways, inward
Topic 75	company, companies, financial, regulation, standards, competition, regulatory, market, regime, services, code, business, system, consumers, fsa, rules, sector, also, assets, set	policyholders, fsa, regulatory, corporate, ombudsman, regulators, liabilities, equitable, competition, shares, rock, penrose, code, regulation, shareholders, auditors, liability, assets, directors, regulator

Table 20: Words in topic - k0 (continued)

Topic Number	Top Ten Words	Top Ten FREX
Topic 76	course, indeed, lady, meet, happy, note, glad, understanding, intend, correct, round, shortly, brief, briefly, intention, generous, lady's, asks, stress, finds	lady, course, indeed, happy, note, glad, lady's, brief, correct, intend, meet, shortly, round, understanding, tibshelf, asks, briefly, generous, betws, deincourt
Topic 77	legal, court, justice, courts, inquiry, investigation, cases, law, aid, complaints, mr, system, advice, case, families, trial, family, evidence, lawyers, compensation	lawyers, legal, investigation, solicitors, inquest, magistrates, hillsborough, court, lawyer, coroners, complaints, trial, witness, investigated, tribunals, disciplinary, allegations, alleged, inquiry, jury
Topic 78	support, help, take, taking, action, taken, measures, provide, steps, improve, encourage, supported, supporting, providing, tackle, department, reduce, assist, efforts,	taking, support, help, steps, action, take, measures, encourage, supporting, assist, taken, improve, supported, provide, providing, supports, efforts, practical, package, assistance
Topic 79	small businesses, business, industry, small, companies, manufacturing, uk, steel, industries, jobs, innovation, company, enterprise, constituency, british, many, firms, skills, trade, supply	steel, gambling, tata, businesses, manufacturing, medium-sized, smes, enterprises, innovation, betting, nissan, commerce, industries, start-ups, business, aerospace, beer, teesside, small, pub
Topic 80	committee, report, select, public, members, scrutiny, recommendations, government, independent, work, commission, role, chair, parliament, reports, committees, evidence, accountability, committee's, accounts	committee's, select, committee, scrutiny, committees, recommendations, recommendation, chairman, accountability, report, nao, panel, isc, pre-legislative, sir, chair, oversight, scrutinise, recommended, appointments
Topic 81	bbc, flood, radio, flooding, media, news, television, licence, risk, floods, environment, digital, insurance, charter, fee, coverage, cumbria, defences, resilience, programmes	bbc, flood, floods, flooding, radio, bbc's, cumbria, defences, broadcasters, broadcasting, s4c, flooded, television, re, ofcom, tv, charter, resilience, editorial, broadcaster
Topic 82	first, contribution, intervention, acknowledge, secondly, worth, reply, begin, plymouth, contribute, thirdly, south-west, field, quick, sake, devon, doncaster, mentioning, appreciated, pertinent	first, intervention, secondly, contribution, acknowledge, reply, begin, worth, thirdly, plymouth, quick, pertinent, sake, mentioning, devon, noting, south-west, contribute, field, intervening
Topic 83	work, pay, employment, working, workers, job, jobs, employers, wage, minimum, training, skills, staff, paid, national, hours, employees, new, contracts, opportunities	zero-hours, apprenticeships, employers, wage, workers, apprenticeship, employment, minimum, employees, employer, apprentices, job, part-time, unemployed, full-time, wages, low-paid, contracts, employed, remploy
Topic 84	pleased, many, major, like, also, use, comment, given, much, recently, particularly, hope, place, throughout, still, able, used, know, fact, lack	pleased, comment, major, willingness, recently, throughout, breastfeeding, lobbied, along, like, enormous, lack, particularly, soon, urge, succeeded, supportive, produced, birth, similar

4.4.2 Full topic model summary - k0

```
## A topic model with 84 topics, 81651 documents and a 119586 word dictionary.
## Topic 1 Top Words:
##
         Highest Prob: secretary, state, ministers, tell, home, department, confirm
##
         FREX: secretary, state, confirm, ministers, state's, tell, explain
##
         Lift: qatada, 1-yes, 1,631, 1120, 1135, 173-178, 1990s-tens
         Score: secretary, state, confirm, home, ministers, state's, department
## Topic 2 Top Words:
         Highest Prob: clause, amendment, amendments, new, clauses, tabled, committee
##
##
         FREX: nos, amendments, clause, clauses, schedule, tabled, amendment
##
         Lift: 10.00, 1022, 108-111, 108a, 11-an, 112ten, 113three
##
         Score: clause, amendment, amendments, nos, clauses, lords, provisions
## Topic 3 Top Words:
         Highest Prob: move, second, read, leave, line, agreed, reading
##
##
         FREX: page, beg, read, insert, reading, agrees, move
##
         Lift: 1,000,000, 22a, 4a1, 4b, 50b, 8a, paragraph5
         Score: move, beg, lords, read, insert, page, reading
##
## Topic 4 Top Words:
##
         Highest Prob: housing, homes, private, social, affordable, accommodation, home
##
         FREX: tenants, landlords, rented, homelessness, homeless, rents, tenancies
##
         Lift: landlords, renters, rents, #19, 1,026, 1,083, 1,161
##
         Score: housing, homes, rented, tenants, rent, landlords, affordable
## Topic 5 Top Words:
##
         Highest Prob: nhs, hospital, patients, staff, trust, hospitals, health
##
         FREX: dentists, dental, dentistry, hospitals, hospital, nurses, pct
         Lift: 2.24, 22,600, acos, addenbrookes, ambience's, anti-falls, appointable
##
##
         Score: nhs, patients, hospital, dentists, hospitals, patient, dental
## Topic 6 Top Words:
         Highest Prob: make, sure, policy, statement, progress, plans, difference
##
##
         FREX: make, statement, sure, progress, policy, difference, plans
##
         Lift: 102938, 106583, 107305, 107883, 108542, 112172, 113404
##
         Score: make, statement, progress, policy, sure, plans, difference
## Topic 7 Top Words:
##
         Highest Prob: can, ensure, welcome, work, aware, continue, done
##
         FREX: ensure, aware, welcome, can, friend's, assure, ensuring
##
         Lift: #ne, access-suggests, achieve-interruption, agency-so, anti-lobbying, area-will, beth's
##
         Score: can, ensure, aware, welcome, assure, friend's, work
## Topic 8 Top Words:
##
         Highest Prob: issues, hope, however, must, consider, understand, matter
         FREX: issues, consider, understand, matter, concerns, possible, certainly
##
##
         Lift: beneficial-we, bill-albeit, billion-interruption, bullying-and, community-but, cyberbull
##
         Score: issues, matter, consider, hope, raised, shall, concerns
##
  Topic 9 Top Words:
##
         Highest Prob: agree, making, absolutely, rather, completely, entirely, argument
         FREX: agree, absolutely, making, completely, entirely, precisely, argument
##
##
         Lift: 1998-it, 19992002, 200yd, about-creating, ages-have, apologise-the, behaviour-that
##
         Score: agree, absolutely, making, completely, entirely, argument, rather
## Topic 10 Top Words:
##
         Highest Prob: community, communities, organisations, work, role, sector, voluntary
##
         FREX: voluntary, community, partnership, organisations, play, communities, co-operative
##
         Lift: allison's, b4box, communitybuilders, compacts, divi, elisabeth, futurebuilders
##
         Score: community, communities, voluntary, sector, organisations, partnership, role
```

```
## Topic 11 Top Words:
         Highest Prob: air, airport, indicated, airports, heathrow, aviation, noise
##
##
         FREX: aviation, flights, gatwick, dissent, airlines, runway, caa
##
         Lift: apd, caa, 0.45, 0315, 0345, 1.00, 11.63
##
         Score: airport, air, heathrow, airports, aviation, noise, indicated
## Topic 12 Top Words:
         Highest Prob: women, men, women's, pay, woman, gender, equal
##
         FREX: women, shortlists, gender, women's, all-women, men, female
##
##
         Lift: 1-breast-feed, 1,087, 1,574, 1.57, 102nd, 107.4, 11-even
##
         Score: women, women's, men, gender, girls, equality, female
## Topic 13 Top Words:
         Highest Prob: made, number, clear, impact, changes, recent, assessment
##
##
         FREX: made, recent, assessment, changes, impact, representations, discussions
         Lift: 104193, 104963, 105754, 114267, 115661, 118130, 119876
##
##
         Score: made, assessment, impact, changes, recent, discussions, number
## Topic 14 Top Words:
##
         Highest Prob: years, now, two, three, past, months, 10
##
         FREX: years, three, past, ago, months, two, four
##
         Lift: 103677, 38-1,140, basher, boasted-i, childcare-and, crucified, djodjo
##
         Score: years, two, months, three, ago, past, weeks
## Topic 15 Top Words:
         Highest Prob: whether, question, given, thank, ask, asked, put
##
##
         FREX: answer, question, ask, questions, thank, asked, grateful
         Lift: 150-million, 494th, 8k, 97755, 97800, 97801, age-discrimination
##
##
         Score: question, answer, thank, questions, whether, asked, ask
## Topic 16 Top Words:
         Highest Prob: post, office, petition, offices, closure, rural, royal
##
##
         FREX: petition, petitioners, sub-post, sub-postmasters, offices, mail, declares
##
         Lift: #450, 11,900, 7.12, ablewell, aesop's, aldred, annesley
##
         Score: post, petitioners, petition, offices, mail, declares, postal
## Topic 17 Top Words:
##
         Highest Prob: energy, climate, water, change, fuel, companies, bills
##
         FREX: energy, renewables, solar, ofgem, feed-in, electricity, carbon
##
         Lift: #2,500, #solar, 1,069, 1,105, 1,310, 1,345, 1,345-and
##
         Score: energy, carbon, fuel, climate, emissions, renewable, electricity
## Topic 18 Top Words:
##
         Highest Prob: constituency, constituents, many, great, proud, speech, represent
##
         FREX: maiden, constituency, hackney, mine, constituents, mp, swindon
         Lift: 1,365, 10-of, 10th-highest, 11,800, 12.22, 138th, 1711
##
         Score: constituency, constituents, maiden, hackney, town, swindon, labour
##
## Topic 19 Top Words:
##
         Highest Prob: want, go, really, wants, putting, ahead, prepared
##
         FREX: really, go, want, wants, prepared, ahead, putting
##
         Lift: 11,600-and, 3,000-i, about-by, achieve-but, achieved-but, achieved-is, acknowledging-int
##
         Score: go, want, really, wants, ahead, prepared, oh
## Topic 20 Top Words:
##
         Highest Prob: health, care, services, social, mental, service, need
##
         FREX: mental, health, care, suicide, commissioning, services, discharge
##
         Lift: 0.06, 1,395, 1,417, 104962, 12436, 131a, 158145
##
         Score: health, care, mental, services, social, service, suicide
## Topic 21 Top Words:
##
         Highest Prob: police, officers, crime, policing, home, force, fire
```

FREX: constables, officers, policing, constable, police, soca, fire

Lift: hmic, #22k, #29k, 1-2-3, 1,011, 1,027, 1,043

##

##

```
Score: police, officers, crime, policing, forces, constable, neighbourhood
## Topic 22 Top Words:
##
         Highest Prob: marriage, church, ethnic, black, minority, faith, religious
         FREX: gay, same-sex, humanist, marriage, holocaust, church, religious
##
##
         Lift: anelka, buddhists, burslem, celebrants, cohabit, gurdwaras, hersh
         Score: marriage, religious, holocaust, church, ethnic, gay, religion
##
## Topic 23 Top Words:
         Highest Prob: transport, bus, rail, services, travel, train, line
##
##
         FREX: bus, fares, buses, concessionary, franchising, railtrack, fare
##
         Lift: 10.03, 12-car, 125s, 15.15, 33.6, 416,000, adac
##
         Score: rail, bus, transport, fares, passengers, trains, buses
## Topic 24 Top Words:
         Highest Prob: smoking, ban, charities, animals, food, charity, health
##
         FREX: tobacco, fur, mink, circuses, sunbeds, sunbed, snares
##
##
         Lift: coursing, snares, #0.5, 0.037, 0.044, 027, 1,000-almost
##
         Score: smoking, animals, tobacco, ban, animal, fireworks, fur
## Topic 25 Top Words:
##
         Highest Prob: home, immigration, uk, country, asylum, office, system
##
         FREX: immigration, asylum, seekers, passports, nationality, migration, passport
##
         Lift: immigration, seekers, #35,000, 0.025, 1,116, 1,256, 10,410
##
         Score: immigration, asylum, refugees, seekers, migration, passport, nationals
## Topic 26 Top Words:
##
         Highest Prob: said, us, even, let, enough, wrong, simply
         FREX: wrong, let, thought, saying, anything, seems, though
##
##
         Lift: 2-can, 2-or, 5,000-if, am-if, analysis-this, antoine, anybody-need
         Score: wrong, us, even, said, let, saying, told
## Topic 27 Top Words:
         Highest Prob: get, know, think, say, much, see, going
##
##
         FREX: get, going, things, think, something, lot, talking
         Lift: 6,000-they, 70.70, allowance-have, assembly-but, barrels-i, britons-20, coal-to
##
##
         Score: get, going, think, things, know, say, lot
## Topic 28 Top Words:
##
         Highest Prob: debt, banks, bank, credit, financial, fees, pay
##
         FREX: payday, lending, loans, farepak, loan, banks, lenders
##
         Lift: overdraft, payday, 0.21, 0.33, 0.84, 1,021, 1,189
##
         Score: banks, debt, bank, payday, loan, loans, lending
## Topic 29 Top Words:
##
         Highest Prob: million, funding, money, cuts, increase, extra, year
##
         FREX: funding, million, grant, formula, spending, extra, expenditure
##
         Lift: #47, #500,000, 0.41, 000-to, 1,608, 1,808, 1,838
         Score: funding, million, cuts, money, billion, spending, budget
##
## Topic 30 Top Words:
         Highest Prob: year, since, last, report, figures, number, said
##
##
         FREX: march, january, october, official, 2011, figures, november
##
         Lift: may-second, reportscm, rethishkumar, vol, 01, 1,033, 1,124,818
##
         Score: year, last, figures, report, official, since, april
## Topic 31 Top Words:
##
         Highest Prob: abuse, children, protection, child, sexual, vulnerable, trafficking
##
         FREX: pornography, barring, crb, trafficked, abuse, grooming, trafficking
##
         Lift: crb, @mandatenow, 1,746, 12,992, 12j, 135wh, 16-only
         Score: abuse, sexual, trafficking, children, child, sex, trafficked
##
## Topic 32 Top Words:
##
         Highest Prob: act, person, offence, order, law, orders, powers
##
         FREX: orders, offence, reasonable, person, tpims, proportionate, surveillance
```

```
##
         Lift: 1,125, 10-application, 10-duty, 106b, 106c, 106d, 11-failure
##
         Score: offence, orders, offences, person, terrorism, criminal, powers
## Topic 33 Top Words:
##
         Highest Prob: sport, football, club, clubs, sports, games, event
##
         FREX: touts, games, olympic, football, copyright, olympics, sport
##
         Lift: abebrese, aquatics, athletes, atterbury, bpa, cafeteria, friedrich
         Score: sport, tickets, football, sports, clubs, games, olympic
##
## Topic 34 Top Words:
##
         Highest Prob: good, best, bad, called, practice, tories, examples
##
         FREX: good, bad, tories, luton, ideas, examples, 21st
         Lift: 070, 1,000-by, 1,126, 158.8, 1676, 18,000-plus, 1979-80
##
         Score: good, tories, bad, luton, practice, called, best
##
## Topic 35 Top Words:
         Highest Prob: parliament, scotland, scottish, united, kingdom, devolution, uk
##
##
         FREX: scotland, scottish, snp, scotland's, holyrood, calman, vellum
##
         Lift: acoba, alloway, archival, auchinleck, bonis, calman, circumstantial
         Score: scottish, scotland, parliament, devolution, snp, kingdom, devolved
##
  Topic 36 Top Words:
##
         Highest Prob: bristol, arts, national, great, heritage, many, area
##
         FREX: museum, arts, gospels, morecambe, bristol, heritage, museums
##
         Lift: archaeology, lindisfarne, 1,314, 1,468, 1,983, 1.41, 114864
##
         Score: arts, museum, bristol, heritage, tourism, engineering, countryside
## Topic 37 Top Words:
         Highest Prob: research, medical, science, use, stem, human, health
##
##
         FREX: embryos, abortion, hepatitis, cloning, organs, abortions, embryonic
##
         Lift: anonymisation, blar, henna, hfea, look-back, nihr, o'malley
##
         Score: embryos, research, tissue, cell, cloning, abortion, cells
## Topic 38 Top Words:
##
         Highest Prob: vote, political, election, parties, elected, parliament, democracy
##
         FREX: electoral, vote, voting, elections, voters, votes, democracy
         Lift: 1,294, 1,516,000, 121543, 128,000, 146,567, 149,615, 16-just
##
##
         Score: vote, electoral, elections, democracy, political, voting, referendum
## Topic 39 Top Words:
         Highest Prob: economy, economic, jobs, growth, investment, chancellor, budget
##
##
         FREX: recession, economy, growth, productivity, deficit, obr, gdp
##
         Lift: a-plus, face-the, fitch, forecasters, olivier, peashooter, second-round
##
         Score: economy, jobs, growth, unemployment, chancellor, investment, economic
## Topic 40 Top Words:
         Highest Prob: international, countries, world, development, aid, developing, uk
##
##
         FREX: zimbabwe, burma, dfid, congo, burmese, sri, cancun
##
         Lift: cancun, congo, lars, rohingya, suu, #640, 0.26
         Score: countries, international, un, africa, sri, sierra, zimbabwe
##
## Topic 41 Top Words:
##
         Highest Prob: group, needs, special, learning, training, disabled, all-party
##
         FREX: autism, sen, deaf, autistic, dyslexia, disabilities, special
         Lift: ilas, sen2, autistic, deaf, sen, 1,204, 1,333,430
##
##
         Score: autism, sen, disability, disabled, learning, disabilities, all-party
## Topic 42 Top Words:
##
         Highest Prob: defence, forces, armed, service, personnel, military, army
##
         FREX: veterans, mod, naval, hms, reservists, submarines, regiment
##
         Lift: 45s, adventurers, asia-pacific, canberra, casd, cimic, cnd
##
         Score: armed, defence, forces, military, veterans, personnel, afghanistan
## Topic 43 Top Words:
##
         Highest Prob: government, government's, labour, country, previous, policies, yet
```

```
##
         FREX: government, government's, previous, failed, coalition, promise, labour's
##
         Lift: 1071, 1945-51, 2010-interruption, 2010-yields, 2018-fully, 218.2, 21s-not
##
         Score: government, labour, government's, crisis, tory, previous, coalition
## Topic 44 Top Words:
##
         Highest Prob: information, available, guidance, data, advice, details, arrangements
         FREX: information, data, details, guidance, accurate, issued, officials
##
         Lift: 2003-morecambe, 22-year-old's, 2b1, apn, appropriations-in-aid, baythe, biographic
##
         Score: information, data, guidance, advice, available, census, registration
##
## Topic 45 Top Words:
##
         Highest Prob: violence, domestic, victims, justice, prison, rape, criminal
##
         FREX: prison, probation, reoffending, prisons, rape, sentences, prisoners
         Lift: fss, hmp, #7, #9, 0.48, 1,145, 10,000-of
##
##
         Score: violence, prison, rape, victims, domestic, offenders, prisons
## Topic 46 Top Words:
##
         Highest Prob: food, farmers, industry, environment, rural, oil, waste
##
         FREX: fisheries, fishermen, cod, visteon, mmo, farmers, fishing
##
         Lift: 0.8p, 0157, 1-tonne, 1,004, 1,129, 1.88, 1.98
##
         Score: farmers, food, marine, oil, fishing, fisheries, fishermen
## Topic 47 Top Words:
##
         Highest Prob: security, peace, foreign, war, conflict, threat, syria
##
         FREX: israel, palestinian, israeli, gaza, yemen, daesh, palestinians
##
         Lift: airlifts, airstrikes, al-mansour, alabed, aleppo, alevi, amona
##
         Score: syria, israel, palestinian, israeli, iraq, civilians, gaza
## Topic 48 Top Words:
##
         Highest Prob: london, city, north, north-east, hull, liverpool, country
##
         FREX: hull, city, north-east, mayor, london, newcastle, liverpool
##
         Lift: richmondshire, xcase, #356, #38, 1,018, 1,386, 1,507
         Score: london, city, hull, north-east, liverpool, mayor, yorkshire
##
## Topic 49 Top Words:
         Highest Prob: children, child, parents, families, care, children's, family
##
##
         FREX: csa, child's, adopters, lone, parents, parent, children's
##
         Lift: bont, creche, creches, daycare, demand-side-only, dummies, ehcps
##
         Score: children, child, parents, care, children's, families, adoption
  Topic 50 Top Words:
##
         Highest Prob: behaviour, crime, antisocial, alcohol, drugs, drug, problem
##
##
         FREX: alcohol, antisocial, asbos, alcohol-related, drinking, binge, misuse
##
         Lift: 1,113, 199,000, 664, acpo's, adz, airsoft, alleygator
##
         Score: antisocial, alcohol, crime, behaviour, drug, drugs, cannabis
## Topic 51 Top Words:
##
         Highest Prob: scheme, pension, pensions, pensioners, schemes, insurance, savings
##
         FREX: pension, pensioners, retirement, pensions, scheme, pensioner, annuity
##
         Lift: 13a, 92.15, a-day, aggregators, amoco, aps, avc
##
         Score: pension, pensioners, scheme, pensions, retirement, insurance, savings
## Topic 52 Top Words:
         Highest Prob: public, proposals, consultation, new, service, access, paper
##
##
         FREX: proposals, consultation, paper, white, document, broadband, electronic
         Lift: 109648, 111535, 113697, 114061, 119621, 126118, 127924
##
         Score: proposals, consultation, public, paper, service, white, access
##
## Topic 53 Top Words:
         Highest Prob: planning, land, development, new, building, site, sites
##
##
         FREX: brownfield, planning, leaseholders, eco-towns, land, developers, leasehold
##
         Lift: 44a, addingham, bandstand, brickmaking, brs-bids, commonhold, commutable
##
         Score: planning, land, sites, site, leaseholders, developers, brownfield
## Topic 54 Top Words:
```

```
##
         Highest Prob: members, opposition, conservative, party, said, heard, hear
##
         FREX: conservative, liberal, democrats, opposition, conservatives, benches, democrat
##
         Lift: 11,511, 15-years, 2million, 350bn, 42,000-a, 65-i, 74p
         Score: conservative, opposition, party, members, liberal, conservatives, democrats
##
## Topic 55 Top Words:
         Highest Prob: benefit, work, people, benefits, disabled, allowance, system
##
         FREX: esa, dla, atos, claimants, incapacity, dwp, allowance
##
         Lift: dla, esa, #400, 0300, 0^{\circ}, 1-to-1, 1,052
##
##
         Score: disabled, allowance, disability, claimants, benefit, credit, welfare
## Topic 56 Top Words:
##
         Highest Prob: case, decision, process, decisions, cases, evidence, taken
##
         FREX: appeal, decision, judgment, decisions, case, judicial, decide
##
         Lift: 1,220, 1,237, 114042, 120946, 131294, 15.45, 1501
##
         Score: decision, case, judicial, appeal, cases, decisions, process
## Topic 57 Top Words:
##
         Highest Prob: house, debate, may, order, mr, speaker, deputy
##
         FREX: leader, speaker, deputy, house, apologise, madam, motion
##
         Lift: 10,000-signature, 11.40, 1105, 114063, 1170, 12.26, 12.40
         Score: house, speaker, leader, debate, mr, deputy, motion
##
## Topic 58 Top Words:
##
         Highest Prob: one, time, last, long, week, speak, later
         FREX: one, time, long, call, week, short, later
##
##
         Lift: 4.27, 6.47pm, business-on, cities-but, concerned-hon, contentment, directly-we
         Score: one, time, last, week, long, speak, later
##
## Topic 59 Top Words:
##
         Highest Prob: important, need, point, issue, also, different, part
##
         FREX: important, point, different, issue, makes, extremely, points
##
         Lift: aquaplaning, authorities-wrongly, available-not, better-grip, business-of, campaigns-by,
##
         Score: important, point, need, issue, makes, different, points
## Topic 60 Top Words:
##
         Highest Prob: poverty, poor, social, low, living, average, poorest
##
         FREX: poverty, deprivation, poorest, poor, poorer, inequality, inequalities
##
         Lift: after-housing-costs, attachment-free, before-housing-costs, harker, seacroft, 0207, 1,05
##
         Score: poverty, poorest, inequalities, inequality, incomes, deprivation, income
##
  Topic 61 Top Words:
##
         Highest Prob: bill, legislation, act, law, provisions, powers, introduced
##
         FREX: bill, legislation, bill's, passage, provisions, legislative, draft
##
         Lift: 1431, 1865, 2006-which, 6-7, 61094, 647, add-selection
         Score: bill, legislation, provisions, powers, bill's, law, regulations
##
## Topic 62 Top Words:
         Highest Prob: tax, rate, families, pay, income, credits, chancellor
##
##
         FREX: tax, 50p, vat, credits, taxes, avoidance, taxation
##
         Lift: anti-tax, cgt, raiser, tax-avoidance, #127, #3.5, #840
##
         Score: tax, credits, vat, income, avoidance, chancellor, hmrc
## Topic 63 Top Words:
         Highest Prob: people, young, many, lives, people's, life, age
##
##
         FREX: young, people, people's, youth, lives, 16, age
##
         Lift: 1034, 1053, 15-interruption, 16-should, 17-year-olds-interruption, 17-years-old, 18-it
##
         Score: people, young, youth, age, people's, lives, older
## Topic 64 Top Words:
##
         Highest Prob: programme, strategy, department, national, plan, safety, key
##
         FREX: programme, strategy, pilot, flu, performance, priority, programmes
##
         Lift: avian, influenza, #62, 0.09, 0.16, 1,705, 106249
##
         Score: programme, strategy, safety, programmes, vaccine, flu, department
```

```
## Topic 65 Top Words:
##
         Highest Prob: heart, trade, unions, union, stroke, disease, slough
##
         FREX: mesothelioma, cpr, heart, stroke, asbestos, cardiomyopathy, slough
         Lift: 124,665, abolitionists, arrhythmogenic, black-outs, bowen, cardiopulmonary, cardioverter
##
##
         Score: unions, trade, stroke, heart, union, disease, slough
## Topic 66 Top Words:
         Highest Prob: treatment, cancer, patients, screening, clinical, condition, disease
         FREX: prostate, cervical, endometriosis, breast, screening, cancer, treatment
##
##
         Lift: her2, endometriosis, fibrosis, herceptin, hpv, radiotherapy, @cfaware
         Score: cancer, treatment, patients, screening, breast, clinical, diagnosis
##
## Topic 67 Top Words:
         Highest Prob: local, authorities, council, authority, councils, area, areas
##
##
         FREX: local, authorities, councils, authority, councillors, council, county
##
         Lift: banham, central-local, laa, lsp, place-shaping, sev, un-ring-fenced
##
         Score: local, authorities, councils, authority, council, county, councillors
## Topic 68 Top Words:
##
         Highest Prob: rights, wales, human, northern, ireland, commission, welsh
##
         FREX: ireland, welsh, rights, assembly, wales, convention, human
##
         Lift: cre, guatemalan, meathygiene, melding, securitynorthern, 1,099, 1,748
##
         Score: rights, wales, human, welsh, assembly, ireland, northern
## Topic 69 Top Words:
##
         Highest Prob: east, st, south, friends, heard, west, birmingham
##
         FREX: helier, cooper, bromley, stuart, croydon, ealing, castlefordyvette
         Lift: 0.37, 0.66, 1,000-square-feet, 1,131, 12.70, 130b, 15.18
##
##
         Score: helier, st, east, sunderland, ealing, worthing, bromley
## Topic 70 Top Words:
##
         Highest Prob: member, members, debate, speech, also, spoke, mentioned
##
         FREX: member, spoke, remarks, talked, thoughtful, eloquently, pleasure
##
         Lift: 1028, 1993-more, 31.2, business-let, career-which, cases-a, chamber-pointed
##
         Score: member, members, debate, spoke, speech, north, talked
## Topic 71 Top Words:
##
         Highest Prob: european, eu, union, uk, europe, states, british
##
         FREX: treaty, lisbon, european, eu, accession, brexit, euro
##
         Lift: 1-2, 1-of, 1,057, 1.14, 10-month, 10249, 10516
##
         Score: eu, european, treaty, union, europe, negotiations, brexit
## Topic 72 Top Words:
##
         Highest Prob: carers, family, constituent, told, families, life, home
##
         FREX: carers, constituent, dementia, caring, mrs, husband, son
##
         Lift: 62-year-old, brechin, gravestones, haemophiliac, jayden's, mnd, stepfather
##
         Score: carers, caring, constituent, dementia, carer, family, mother
## Topic 73 Top Words:
##
         Highest Prob: schools, education, school, teachers, students, university, children
##
         FREX: schools, teachers, academies, grammar, fe, gcses, pupils
##
         Lift: apostrophe, headteachers, academisation, gcses, grammar, school's, #8,000
         Score: schools, school, education, teachers, pupils, students, teaching
## Topic 74 Top Words:
##
         Highest Prob: regional, development, road, investment, transport, new, economic
##
         FREX: hs2, regional, rdas, high-speed, rda, crossrail, regeneration
##
         Lift: #145, 1-very, 10-is, 109g, 1185, 12375, 128406
         Score: regional, transport, regeneration, hs2, infrastructure, development, roads
##
## Topic 75 Top Words:
         Highest Prob: company, companies, financial, regulation, standards, competition, regulatory
##
##
         FREX: policyholders, fsa, regulatory, corporate, ombudsman, regulators, liabilities
##
         Lift: #45, 1-on, 1,699,137, 1003, 1174, 1297, 130-with
```

```
Score: fsa, regulatory, company, regulation, companies, consumers, competition
## Topic 76 Top Words:
##
         Highest Prob: course, indeed, lady, meet, happy, note, glad
##
         FREX: lady, course, indeed, happy, note, glad, lady's
##
         Lift: about-who, betws, chaplaincies, constituents-members, course-politics, ditch-a-policy-a-
         Score: lady, course, indeed, happy, meet, glad, note
##
## Topic 77 Top Words:
         Highest Prob: legal, court, justice, courts, inquiry, investigation, cases
##
##
         FREX: lawyers, legal, investigation, solicitors, inquest, magistrates, hillsborough
##
         Lift: asphyxia, blagging, blameworthiness, cairns's, carlyle-clarke's, ccrc's, defamed
##
         Score: court, legal, courts, justice, investigation, magistrates, inquiry
## Topic 78 Top Words:
##
         Highest Prob: support, help, take, taking, action, taken, measures
##
         FREX: taking, support, help, steps, action, take, measures
##
         Lift: 101997, 103264, 103684, 105939, 107320, 113698, 117890
##
         Score: support, help, steps, taking, action, measures, take
## Topic 79 Top Words:
##
         Highest Prob: businesses, business, industry, small, companies, manufacturing, uk
##
         FREX: steel, gambling, tata, businesses, manufacturing, medium-sized, smes
##
         Lift: budgen, killie, s's, steel, #12.5, #140,000, #23
##
         Score: businesses, industry, business, manufacturing, steel, companies, small
## Topic 80 Top Words:
         Highest Prob: committee, report, select, public, members, scrutiny, recommendations
##
         FREX: committee's, select, committee, scrutiny, committees, recommendations, recommendation
##
##
         Lift: isc's, post-legislative, 1,924, 1080, 109657, 109658, 1240s
##
         Score: committee, select, report, scrutiny, committees, recommendations, committee's
## Topic 81 Top Words:
##
         Highest Prob: bbc, flood, radio, flooding, media, news, television
         FREX: bbc, flood, floods, flooding, radio, bbc's, cumbria
##
##
         Lift: landslips, one-in-200-year, reithian, bellwin, #bbcdiversity, 1,000-year, 1,800-strong
##
         Score: bbc, flood, flooding, floods, radio, defences, digital
## Topic 82 Top Words:
##
         Highest Prob: first, contribution, intervention, acknowledge, secondly, worth, reply
##
         FREX: first, intervention, secondly, contribution, acknowledge, reply, begin
##
         Lift: @daisydumble, @percyblakeney63, abba, available-probably, avenger, average-a, bagging
         Score: first, contribution, plymouth, intervention, reply, secondly, acknowledge
##
## Topic 83 Top Words:
##
         Highest Prob: work, pay, employment, working, workers, job, jobs
         FREX: zero-hours, apprenticeships, employers, wage, workers, apprenticeship, employment
##
##
         Lift: zero-hours, 1,030, 1,308, 1,650, 1,735, 1,803, 10-hours
         Score: wage, employers, employment, workers, jobs, apprenticeships, work
##
## Topic 84 Top Words:
##
         Highest Prob: pleased, many, major, like, also, use, comment
##
         FREX: pleased, comment, major, willingness, recently, throughout, breastfeeding
##
         Lift: height-variable, available-most, better-at, board-young, breastmilk, buggies-could, cons
##
         Score: pleased, breastfeeding, comment, many, major, constituents, nsf
```

4.4.3 Full topic model estimate summary - k0

```
##
## Call:
## estimateEffect(formula = 1:84 ~ short_list, stmobj = topic_model_k0,
## metadata = lab_corpus_fem_stm$meta, uncertainty = "Global")
```

```
##
##
## Topic 1:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              0.0128866  0.0002383  54.07 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0048994 0.0002873 17.05 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 2:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0018934  0.0005107  -3.707
                                                  0.00021 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 3:
##
## Coefficients:
                Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0012045 0.0003118 -3.863
                                                 0.000112 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 4:
##
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0030543 0.0005785
                                5.28
                                              0.00000013 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 5:
##
## Coefficients:
                Estimate Std. Error t value
                                                Pr(>|t|)
##
               ## (Intercept)
## short_listTRUE -0.0069940 0.0007739 -9.037 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 6:
##
```

```
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
               0.00869833 0.00009762 89.103 < 0.0000000000000000 ***
## short_listTRUE 0.00023492 0.00012104 1.941
                                                   0.0523 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 7:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0019487 0.0001389 -14.03 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 8:
## Coefficients:
                Estimate Std. Error t value
               ## (Intercept)
## short listTRUE -0.0057599 0.0002625 -21.94 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 9:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
               0.00668298 0.00006629 100.81 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.00022484 0.00007570
                                    2.97
                                                   0.00298 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 10:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0051479 0.0004241 -12.14 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 11:
##
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
               ## short listTRUE 0.0006462 0.0003605
                                 1.792
                                                  0.0731 .
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 12:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               0.0110024 0.0003905 28.175 < 0.0000000000000000 ***
## short_listTRUE 0.0001780 0.0004879 0.365
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 13:
##
## Coefficients:
                Estimate Std. Error t value
                                                  Pr(>|t|)
               0.0104919 0.0001332 78.782 < 0.0000000000000000 ***
## (Intercept)
                                  ## short listTRUE 0.0013421 0.0001603
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 14:
## Coefficients:
                  Estimate Std. Error t value
##
                                                    Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.00007168  0.00016019  -0.447
                                                       0.655
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 15:
##
## Coefficients:
##
                Estimate Std. Error t value
               0.0105005 0.0001064 98.660 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0010389 0.0001343 7.734 0.000000000000105 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 16:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               ## short_listTRUE 0.0002038 0.0004385
                                  0.465
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
```

```
## Topic 17:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                   Pr(>|t|)
## (Intercept)
                0.0154784 0.0004379 35.349 < 0.0000000000000000 ***
## short listTRUE -0.0032849 0.0005570 -5.898
                                                0.000000037 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 18:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
               0.0079821 0.0002067
                                 38.62 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0036804 0.0002566 14.34 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 19:
## Coefficients:
                 Estimate Std. Error t value
                                                     Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.00029399 0.00008299 -3.543
                                                     0.000396 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 20:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                   Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0012426 0.0004266 -2.913
                                                    0.00358 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 21:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                   Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0036329 0.0005957 -6.099
                                               0.0000000107 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 22:
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
```

```
## (Intercept)
             ## short_listTRUE 0.0009436 0.0004333 2.178
                                                  0.0294 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 23:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
               0.0107244 0.0004882 21.968 < 0.0000000000000000 ***
## short_listTRUE 0.0029691 0.0005712
                                 5.198
                                              0.000000202 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 24:
## Coefficients:
##
               Estimate Std. Error t value
## (Intercept)
               ## short listTRUE 0.0031717 0.0004609 6.881 0.0000000000597 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 25:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0019784 0.0005182 -3.818
                                                  0.000135 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 26:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
               0.0171470 0.0001834 93.52 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0025460 0.0002271 11.21 <0.00000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 27:
##
## Coefficients:
               Estimate Std. Error t value
                                                 Pr(>|t|)
               ## (Intercept)
                                 5.804
## short_listTRUE 0.0013265 0.0002286
                                           0.00000000651 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
##
## Topic 28:
##
## Coefficients:
##
              Estimate Std. Error t value
                                             Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0039083 0.0004726 8.27 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 29:
##
## Coefficients:
##
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0001840 0.0003993 -0.461
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 30:
##
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
## (Intercept)
             ## short_listTRUE 0.0007048 0.0002996
                              2.352
                                              0.0187 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 31:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
## (Intercept)
              ## short_listTRUE -0.0012487 0.0004212 -2.965
                                               0.00303 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 32:
##
## Coefficients:
               Estimate Std. Error t value
                                              Pr(>|t|)
##
              ## (Intercept)
## short_listTRUE -0.0075585 0.0004433 -17.05 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 33:
##
```

```
## Coefficients:
##
              Estimate Std. Error t value
                                            Pr(>|t|)
             ## (Intercept)
## short_listTRUE 0.0022723 0.0003197 7.108
                                     0.00000000000119 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 34:
##
## Coefficients:
              Estimate Std. Error t value
##
                                            Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0001472 0.0001101 -1.337
                                              0.181
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 35:
## Coefficients:
              Estimate Std. Error t value
             ## (Intercept)
## short listTRUE 0.0001052 0.0003918 0.269
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 36:
##
## Coefficients:
##
              Estimate Std. Error t value
                                           Pr(>|t|)
## (Intercept)
             ## short_listTRUE 0.0003419 0.0003898
                             0.877
                                              0.38
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 37:
##
## Coefficients:
              Estimate Std. Error t value
##
                                             Pr(>|t|)
              ## (Intercept)
## short_listTRUE -0.0034016 0.0004524 -7.519 0.000000000000556 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 38:
##
## Coefficients:
              Estimate Std. Error t value
                                            Pr(>|t|)
## (Intercept)
             ## short listTRUE 0.0030272 0.0004438 6.822 0.00000000000907 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 39:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
               ## short_listTRUE 0.0010571 0.0004556
                                 2.32
                                                   0.0203 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 40:
##
## Coefficients:
                Estimate Std. Error t value
                                                   Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0045000 0.0005680 -7.923 0.00000000000000235 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 41:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                  Pr(>|t|)
               0.0068644 0.0002438 28.152 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0018094 0.0003187
                                 5.678
                                              0.000000137 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 42:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                  Pr(>|t|)
               0.0086580 0.0004195 20.64 < 0.000000000000000 ***
## (Intercept)
## short_listTRUE 0.0027449 0.0005288
                                 5.19
                                                0.00000021 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 43:
##
## Coefficients:
                                                 Pr(>|t|)
##
                Estimate Std. Error t value
## (Intercept)
               15.23 < 0.0000000000000000 ***
## short_listTRUE 0.0034638 0.0002274
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
```

```
## Topic 44:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                 Pr(>|t|)
## (Intercept)
               ## short listTRUE -0.0022506 0.0003127 -7.197 0.000000000000621 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 45:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0019698 0.0005719 -3.444
                                                 0.000574 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 46:
## Coefficients:
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0024989 0.0005122 4.878
                                              0.00000107 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 47:
##
## Coefficients:
               Estimate Std. Error t value
##
                                                Pr(>|t|)
## (Intercept)
              0.0137948 0.0005357
                                 25.75 < 0.0000000000000000 ***
## short listTRUE 0.0023404 0.0006430
                                  3.64
                                                0.000273 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 48:
##
## Coefficients:
               Estimate Std. Error t value
##
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0044987 0.0003268 13.77 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 49:
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
```

```
## (Intercept)
             ## short_listTRUE 0.0006861 0.0004760
                               1.441
                                                  0.15
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 50:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
               0.0134293  0.0004220  31.82 < 0.0000000000000000 ***
## short_listTRUE -0.0026492 0.0004852
                                 -5.46
                                            0.0000000478 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 51:
##
## Coefficients:
##
               Estimate Std. Error t value
## (Intercept)
              ## short listTRUE 0.0015280 0.0005006 3.052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 52:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0021449 0.0002416 -8.878 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 53:
##
## Coefficients:
##
               Estimate Std. Error t value
                                                Pr(>|t|)
               ## (Intercept)
## short_listTRUE -0.0027912 0.0003878 -7.197 0.000000000000619 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 54:
##
## Coefficients:
##
               Estimate Std. Error t value
                                              Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0003747 0.0002864
                               1.308
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
##
## Topic 55:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 56:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                Pr(>|t|)
               0.0171032 0.0002387
                                 71.65 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE -0.0060454 0.0002979 -20.30 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 57:
##
## Coefficients:
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0045580 0.0003278 13.90 <0.000000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 58:
##
## Coefficients:
                Estimate Std. Error t value
                                                Pr(>|t|)
## (Intercept)
              0.00871704 0.00006437 135.41 < 0.0000000000000000 ***
## short_listTRUE 0.00103234 0.00008269 12.48 <0.00000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 59:
##
## Coefficients:
                Estimate Std. Error t value
                                                Pr(>|t|)
##
               ## (Intercept)
## short_listTRUE -0.0038754 0.0001691 -22.92 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 60:
##
```

```
## Coefficients:
##
               Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               0.000424
                                               0.000000294 ***
## short_listTRUE 0.002174
                                 5.128
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 61:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                    Pr(>|t|)
## (Intercept)
                0.0153744 0.0002706 56.823 < 0.0000000000000000 ***
## short_listTRUE -0.0013718  0.0003493  -3.928
                                                   0.0000859 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 62:
## Coefficients:
                Estimate Std. Error t value
               0.0140840 0.0004659 30.231 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0059448 0.0006486 9.166 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 63:
## Coefficients:
##
                  Estimate Std. Error t value
                                                     Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.00009548  0.00020619  -0.463
                                                       0.643
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 64:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                   Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0035600 0.0002896 -12.29 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 65:
##
## Coefficients:
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               0.0051104 0.0002204 23.189 < 0.0000000000000000 ***
## short listTRUE 0.0005220 0.0002699
                                  1.934
                                                    0.0531 .
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 66:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0022132 0.0004272 -5.181
                                                 0.000000221 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Topic 67:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                   Pr(>|t|)
                ## (Intercept)
## short listTRUE -0.0038345 0.0003586 -10.69 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 68:
##
## Coefficients:
                Estimate Std. Error t value
##
                                                   Pr(>|t|)
               0.0079524 0.0002819 28.205 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0013677 0.0003486
                                  3.923
                                                   0.0000876 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 69:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
               0.0051642  0.0002140  24.135 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0017690 0.0002854 6.198
                                              0.00000000574 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 70:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept)
               0.0103966 0.0001825
                                  ## short_listTRUE 0.0002397 0.0002261
                                    1.06
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
```

```
## Topic 71:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept)
                0.0171814 0.0004688 36.652 < 0.0000000000000000 ***
## short listTRUE -0.0033350 0.0005519 -6.042
                                               0.0000000152 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 72:
##
## Coefficients:
##
                Estimate Std. Error t value
                                                 Pr(>|t|)
               0.0084307 0.0003818
                                 22.08 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0050625 0.0004652 10.88 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 73:
## Coefficients:
                Estimate Std. Error t value
                                                  Pr(>|t|)
## (Intercept)
               ## short_listTRUE 0.0031402 0.0006395 4.911
                                                0.00000091 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 74:
##
## Coefficients:
                 Estimate Std. Error t value
##
                                                   Pr(>|t|)
## (Intercept)
                ## short_listTRUE -0.0012734 0.0004726 -2.694
                                                    0.00705 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 75:
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                  Pr(>|t|)
                ## (Intercept)
## short_listTRUE -0.0059030 0.0004610 -12.80 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 76:
## Coefficients:
##
                  Estimate Std. Error t value
                                                    Pr(>|t|)
```

```
## (Intercept)
              0.00394192  0.00003248  121.38  <0.0000000000000000 ***
## short_listTRUE -0.00054643 0.00003867 -14.13 <0.0000000000000000 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 77:
##
## Coefficients:
##
                Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0037164 0.0004009 -9.27 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 78:
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
               ## short_listTRUE -0.0011789 0.0001399 -8.426 <0.0000000000000000 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 79:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
              ## short_listTRUE 0.0009727 0.0005207
                                1.868
                                                0.0617 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 80:
##
## Coefficients:
##
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
## short_listTRUE 0.0015595 0.0004256
                               3.664
                                               0.000248 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 81:
##
## Coefficients:
               Estimate Std. Error t value
                                               Pr(>|t|)
              ## (Intercept)
                               11.95 < 0.0000000000000000 ***
## short listTRUE 0.0030898 0.0002586
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
##
## Topic 82:
##
## Coefficients:
##
                   Estimate Std. Error t value
                                                           Pr(>|t|)
                 0.00308541 0.00002993 103.100 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.00009994 0.00003668
                                         2.725
                                                            0.00643 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Topic 83:
##
## Coefficients:
##
                  Estimate Std. Error t value
                                                         Pr(>|t|)
                 0.0147526 0.0003403
                                        43.35 < 0.0000000000000000 ***
## (Intercept)
## short_listTRUE 0.0009714 0.0004518
                                         2.15
                                                           0.0316 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Topic 84:
##
## Coefficients:
                    Estimate Std. Error t value
                                                            Pr(>|t|)
## (Intercept)
                 0.002166039 0.000020726 104.509 < 0.0000000000000000 ***
## short_listTRUE 0.000002153 0.000023569
                                           0.091
                                                               0.927
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.5 AWS References to Constituents in Context

A random selection of 2% of all references to "my constituency", "my constituent" and "my constituents", by AWS MPs, in context.

Table 21: A random sample of KWIC's

Pre	Keyword	Post
. I was briefed by a vehicle hire company in	my constituency	called Reflex and , quite frankly , if such banking
150 per cent . two years ago . Another of	my constituents	has advised me of an application for an 85 per
already begun, for example just over the border from	my constituency	in the constituency of my hon . Friend the Member
in which Cornish children study . Three secondary schools in	my constituency	will be located on the same site, and one
Manchester has been doing a major infrastructure project, and	my constituents	are at the end of their tether about the lack
patient at the BRI , and Airedale hospital is in	my constituency	. The hon . Member for South CambridgeshireMr . Lansley
, but the reality is there to be seen in	my constituency	. On Saturday I met a delegation of workers from

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
to use their abilities and develop their talents . In I believe that the most effective	my constituency my constituency	, 366 young people who have been unemployed for more is mum . It is mum who fills in
electoral registration officer in can arise from defective gas appliances, because two of	my constituents	the , young students in their 20s , died from carbon
£ 3.6 million . Some 9 % of people in	my constituency	are hard-working, entrepreneurial self-employed
my right hon . Friend congratulate Aldercar community	my constituency	people , and today is and its staff and pupils ? The percentage of pupils
school in n " , " One particular concern for many of	my constituents	is bus fares . As I have said , my
, " Jobs and employment are the biggest issue in	my constituency	and the latest figures now show that just under 2,000
otherwise reach . The Psychiatric Rehabilitation Association is based in	my constituency	and was set up in 1959-it is no coincidence that
financial inclusion fund . Where would the Minister suggest that	my constituents	who are struggling with debt and excessive and escalating charges
and without the full participation of the British people,	my constituents	and the country will never forgive them . \ n
. There is an additional problem that is relevant to if they continue to propose new	my constituency my constituents	. It contains a large outdoor venue called the National 'view , favour the administration
services that , in in red tape . That will be a	My constituency	of the hospital or and the town in which it is
turn-off . With my right hon . Friend's	my constituency	situated has a , she will know that many of my
local knowledge of " , to close a wide range of	my constituency's	constituents are local hospital , St Helier . Most
services at I am extremely worried for	my constituents	of the controversy in Ashton-under-Lyne, Droylsden and Failsworth, and for people
One of the shortlisted sites is at Barnard Castle in	my constituency	, and that would produce 1,000 jobs . \setminus n
making ends meet has been raised with me repeatedly by	my constituents	, including Graeme McGrory , who cares for his partner
One piece of transport infrastructure that	my constituency	and that of the hon . Member for Buckingham John Bercow
A director of Sirus Automotive who lives in	my constituency	would like to take on apprentices , but he has
"Three people who know that better than most are	my constituents	Mark, Joanne and Ben King. In 2011,
There are 3,540 women affected by the changes in	my constituency	. Does my hon . Friend agree that the 1995
have been down in the detail of rail provision in	my constituency	, but these are important matters for many of those
just a few examples of the work being done in	my constituency	. I recently had the privilege of accompanying the Gateshead

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
, but that does not help the large number of	my constituents	who have lost some , if not all , of
was the only mainstream candidate in the general election in	my constituency	who did not have their picture taken while pointing to
was not even in the mortgage application, NatWest told	my constituents	that it was in the process of adding it .
is a measure of the Government's achievement that people in	my constituency	and elsewhere in Northamptonshire can look forward to a secure
clothing company announced the closure of two more factories in	my constituency	and the neighbouring Erewash constituency . A huge number of
my primary care trust in north-east Derbyshire and dentists in	my constituency	to find a local solution . These reforms coincide with
Cross, just a few miles up the road from	my constituency	. That pipe manufacturing works has been taken over by
go ahead . There is huge concern about this in	my constituency	and across the north. Was the Prime Minister told
backgrounds, including poor backgrounds, and is representative of	my constituency	. That is the sort of school that Labour Members
are subject to a TPIM . This information would let	my constituents	know whether potential terrorism suspects had returned to London
. Gentleman for his generosity . Is he aware that	my constituency	is probably the one with the highest number of gas
because I have had direct experience of the issue in	my constituency	. A woman came over here as the wife of
. Let us take the feed-in tariff fiasco . In	my constituency	alone, we are losing many jobs, because a
What practical advice can the Secretary of State give to	my constituents	, as some 3,000 householders in my constituency face a
sport, that this is good enough for kids in	my constituency	?
a fair deal on jobs, getting young people in	my constituency	and others involved in working our way out of the
argument is best explained by reference to the case of	my constituent	, Neil Kenny , who raised his concerns about the
to LEAs give rise to some questions, including in	my constituency	from Unison, which is concerned that LEAs might use
Such travel will be available to all 17,600 pensioners in	my constituency	. \ n " , " In February I visited
n ", " What point is there in forcing	my constituent	who is a single dad who has his two children
replies, perhaps he can respond to the questions that	my constituent	has raised. What is she to do? She
ask my hon . Friend to offer an undertaking to	my constituents	in Mitcham and Morden that an option appraisal of intermediate
he would be interested to hear the Minister's response to	my constituent	Maureen Davenport . The Minister said that the maximum state

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
in child benefit , which will help 13,800 families in	my constituency	. My real reason for tabling the question is to
for Finchley and Golders GreenMike Freer) , many of Hall the plight of former United	my constituents my constituency	killed by lorries have died at junctions, including some who will not receive the returns
Engineering Forgings workers in London has had Oyster cards for	my constituents	from their final salary are still waiting . Although
nine years , but again have a university .	my constituency	Transport for Greater Manchester is hopes to change all that , and I
However, Nene college in Enforcement Campaign-in Cardiff, and particularly to the work of	my constituent	support strongly , Professor John Shepherd , who works in the dental
and assets than non-disabled people . In London , where	my constituency	and the constituency of my hon . Friend the Member
in particular from the circumstances of students in Northampton .	My constituency	contains both a higher education and a further education college
the marine Bill on the grounds of its irrelevance to	my constituents	, because , like the hon . Lady , I
deepest concern for the families involved, especially given that	my constituency	neighbours that of my hon . Friend the Member for
services can expand on the slow line so that all	my constituents	benefit from the west coast main line upgrade?
rehabilitation . $\ \ n$ " , " The people of	my constituency	have been horrified by those cases , and it is
Labour Government we have achieved a tremendous amount . In	my constituency	the number of people claiming jobseeker's allowance has almost halved
they complain? Where will the local accountability go?	My constituents	very much value the highly accessible local service that they
n ", " Since helping the Jarrow marchers,	my constituency	has continued to welcome people from throughout the UK,
and not-for-profit groups , of which there are many in	my constituency	, doing immensely valuable work . They all too often $$
as soon as possible . Indeed , for some of	·	, reform is already coming too late . $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
bus travel in Wales . I have met pensioners in	my constituency	who say that it has transformed their lives . As
and Sir Malcolm Thornton . All have represented part of	my constituency	and all left this House on 20 April or 1
Ports is the operator at the port of Immingham in	my constituency	. The companies there firmly believe that they have paid
Conservative-controlled Bradford city council excluded the wonderful Ilkley lido in	my constituency	from the free swimming initiative for young people and pensioners
for my hon . Friend's reply , and many of	my constituents	who have come across the benefit integrity project will be
Tero was not properly treated and offer the apology that	my constituent	deserves . \ n "

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
about their corporate social responsibilities . For the sake of	my constituents	in Mitcham , Morden and Colliers Wood who want something
change in the law . Regrettably , not only in	my constituency	but in many northern towns and cities, I see
on an issue that has been of great concern to	my constituents	. While I appreciate the cross-party consensus that exists on
In	my constituency	of West Lancashire, the national lottery has supported 266
to meet the skills gap in engineering and construction in	my constituency	. $\ n$ ", " When I talk to
sat with the parents of the two children who were	my constituents	, as has Ken Livingstone , who made a private
who have been strongly encouraged to save The consultation in	my constituency	on the pensioners tax credit was extremely successful . The
Government for investing in the city of Bradford , helping	my constituents	to realise their potential . But in reality little has
visited Dot To Dot , a community arts project in	my constituency	. It has a good record of involving the community
one regret the fact that Westminster, which covers half	my constituency	, has so far concentrated CCTV bids-I am sure with
also significant gaps in the Bill . One example from	my constituency	concerns a community hydro project in Saddleworth that might not
hon . Friend for that reply , but most of	my constituents	probably do not know what a low carbon transition plan
has provided opportunities where there were none before . In	my constituency	, there have been far more opportunities in the past
to find examples of such practices . Another case in	my constituency	, with which I am dealing , involves elderly victims
. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	my constituency	is fragile, because it serves an area in which
certainly applies to me because the acute trust that covers	my constituents	, who desperately need care , has the mother and
reveal a trend, and I see it happening in	my constituency	. It is a demonstrable fact that the polarisation between
	My constituent	, John Warren , has specifically asked me to raise
\ n " , " Bridges Project in Musselburgh in	my constituency	does a brilliant job in supporting young people . A
Spowart, a small firm of legal aid solicitors in	my constituency	. Solicitors at the firm are paid generally between £
, both as a national concern and as it affects	my constituency	. I am grateful to my hon . Friend for
, nor , sadly , are far too many of	my constituents	. \ n "
	My constituents	in Hull are baffled by the Government's approach . At
issue and go after these criminals who are preying on	my constituents	?

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
even begin for another 12 months . Young people in	my constituency	should not have to spend another year on the dole
with the nutrition they need outside term time . In	my constituency	, several schools run summer programmes funded through the pupil
takes umbrage at being forced to do repairs-as some of	my constituents	, sadly , know to their cost . \setminus n
" , " I recently visited a care home in	my constituency	that is provided by a small charity and is rated
House and members of the armed forces , such as	my constituent	, 19-year-old Private James Kenny of C company , 3rd
as out to Kent . There are seven stations in	my constituency	: Hither Green , Blackheath , Lee , Grove Park
Can my right hon . Friend give any assurance to	my constituent	, Mr . Peter Dyson , who has written to
Commons Library to conduct an analysis of the impact in	my constituency	. I discovered that 4,300 women and 3,800 men would
100 days of the new Parliament? Many businesses in	my constituency	are struggling significantly and would undoubtedly welcome a period of
in 1992, as the Member for Woolwich, before	my constituency	was formed for the 1997 election . John Austin is
were building up and seemed to take action only once	my constituents	had suffered a very high level of nuisance and there
that further education institutions , such as Blackburn College in	my constituency	, will not receive a real-terms funding cut as a
n ", " On a more serious note ,	my constituency	is home to manufacturers varying from Corus to Cadbury ,
costs and cuts to working tax credits , families in	my constituency	will be worse off . I will not vote in
be warm . It paid for basics like that in	my constituency	. I will not revisit the pain of tuition fees
is a national issue . The 900 steel workers in	my constituency	whose jobs are on the line expect him to guarantee
to begin by speaking about the NHS as experienced by	my constituents	. Getting an appointment to see a GP can be
I was struck by what one of	my constituents	said last weekend, which was that the attacks that
n " , " On 18 February , Llandudno in	my constituency	hosted the first North Wales criminal justice board conference .
my hon . Friend foresee for the young people in	my constituency	if they are to suffer possible cuts alongside that idiosyncratic
busways and widen the M1 . Is he aware that	my constituency	will have the new Translink guided busway by 2008 due
Last week, I hosted a jobs fair in	my constituency	, as have many hon. Members on both sides
in the south-east will be dealt with in Parliament?	My constituents	want to know where we are going and what the
him to visit the brand-new children's centre in Elland in	my constituency	, which is due to open in January , and

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
realities for people affected by this situation . One of	my constituents	is stuck out in Saudi Arabia . His work has
the past few days. When the problems started in	my constituency	on Monday night, we saw copycat criminality, mindless
those branches , in Catford and Blackheath , are in	my constituency	and two others, in Lewisham and Greenwich, are
	My constituent	, Richard Belmar , has now spent nearly three years
Postwatch because I am unhappy about the consultation process in	my constituency	. I fully accept many of my hon . Friend's
area of Keighley last Friday and talking to many of	my constituents	and taking on board many of their anxieties. On
of the major issues raised with me by carers in	my constituency	. We must take such issues on board . \backslash
that the voucher company Farepak , which is based in	my constituency	, collapsed this week , robbing thousands of people on
scientific reports recommend restricted phone use by younger children.	My constituents	do not believe that such recommendations tally with the telecommunications
. Mullin) . This is a big issue in	my constituency	, where inappropriate development on garden sites is taking place
scrutiny process, but it is impossible for me,	my constituents	or councillors of any party not involved in that enterprise
" , " At the time , I was consulting	my constituents	about their attitudes to crime and antisocial behaviour, and
you prove it ? " \setminus n " , "	My constituency	is served by two hospitals: Dewsbury and District hospital
% reduction . What reassurances can the Minister give to	my constituents	and firefighters that those latest cuts will not jeopardise or
. \ n " , " Horwich visiting service in	my constituency	has lost funding and can no longer employ its part-time
I have spoken to many businesses in	my constituency	. Will the hon . Gentleman concede that the Government's
prevent businesses from going into administration, as many in	my constituency	are likely to do . Finally , the local authority
I do not know whether my experience in	my constituency	has been exactly the same as that of my right
? $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	my constituency	, and I want to ensure that the skills base
that population live in Salford , the local authority for	my constituency	$\cdot \setminus n$, In last year's debate
It is an issue that has been simmering away in	my constituency	and recently the rumours have turned to reality as the
of the parenting lessons that go on in schools in	my constituency	to great effect . The hon . Gentleman ignores those
a distraught couple who run a hedgehog rescue centre in	my constituency	. They are currently nursing back to health a hedgehog
people to think that that was the total sum of	my constituency	. It is an extremely nice place to spend Christmas

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
transparency about the impact . \backslash n $"$, $"$	My constituents	are also anxious about the Government's proposals to allow fracking
some of its provisions will have on vulnerable people in	my constituency	. \backslash n " , " I shall first raise
key elements of creative business growth . Creative businesses in	my constituency	and in a large area to the west of London
In Pembrokeshire we have two oil refineries, one in	my constituency	. They were both affected by the blockades in September
thank the Minister for his reply . Head teachers in	my constituency	are concerned that Government have still not come forward with
the work of local authorities in my area . In	my constituency	, there are no high profile arts venues that hit
many of the early asbestosis claims from Hebden Bridge in	my constituency	might not have succeeded under the proposed 75 per cent
job first . $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	My constituency	is pronounced \backslash " Erreywash \backslash ", not \backslash
that is not regulated properly, with the result that	my constituents	, who have small sums of money available to invest
a picture of the winning design, but people in	my constituency	have seen many pictures before . I want work to
hour . I have written to all the headteachers in	my constituency	over the last few weeks , and they tell me
this debate falls on an anniversary well worth remembering for	my constituents	. It is 20 years to the month that post-war $$
people of the east end, including the people of	my constituency	, talk to me about how excited they still are
I recently visited Bishop Barrington school in	my constituency	, which has got a new science lab and sports
the extent of the disruption and the problems caused for	my constituents	? I would be happy to do that . \
increase in the number of new homes being built in	my constituency	over the past 10 years or so . For the
junior doctors who are the problem , but him ?	My constituents-hundreds	of whom have written to me-overwhelmingly feel that he
, \backslash n " , " I do not think	my constituents	has knew whether to laugh or cry . \
about to be built in Walkden in the centre of	my constituency	The new local improvement finance trust-LIFT-centre will include GP
is higher, and the dole queue is lengthening.	My constituents	are only too well aware of the exploitative practices of
" I am fortunate in having a research centre in	my constituency	at the university of Durham , which concentrates on enabling
is talking about the wrong hospital, which many of	my constituents	will find most amusing .
of the Land Registry would be bad not just for	my constituents	but for the public as a whole . The revenue
The food banks in	my constituency	, which currently number at least six , tell me

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
of those issues . $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	my constituency	, the credit union benefits from capital and revenue from
children . I am indebted to a law company in	my constituency	called Just for Kids Law , which has raised with
hope they are not giving false hope to many of	my constituents	. Will they just admit that they have made a
I have a range of energy-intensive industries in	my constituency	, including steel, glass, paper and the entire
the save Lewisham hospital campaign . But for now ,	my constituents	still face the prospect of seriously downgraded services at their
from and bugbear for my constituents . On behalf of	my constituents	and their families, I very much look forward to
" , " helped motorists and the hard-pressed hauliers in	my constituency-or	they could have looked at jobs for young people .
Staff at Trinity , Bluecoat and Fernwood schools in	my constituency	are desperate for extra investment in their buildings . Will
The point about geography is critical in Cumbria , where	my constituency	is . Under the proposals , we will end up
will affect disabled youngsters . The What? centre in	my constituency	, which gives counselling to all youngsters , still does
closure of the offices is having a direct impact on	my constituency	. Walsall faces the closure of its HMRC office ,
. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	my constituents	: for many years , they have felt marginalised and
, larger numbers of people are choosing to live in	my constituency	but work in London . If we are to take $$
ethnic minority children , of whom there are many in	my constituency	. \backslash n " , " We have dealt a
single parents in the country-I will return to that point-and	my constituents	think that the measure is unfair . How people in
should not come back from our holidays to find that	my constituents	, and those of my neighbours , have lost their
their area; I fully intend to do so in	my constituency	. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
too much movement . I want Airedale general hospital in	my constituency	not just to survive, but to prosper. It
", " During the summer and autumn months,	my constituents	and those of many other hon. Members were affected
put a human face on many of the difficulties that	my constituents	experience . $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Parent Action Network , which has its national headquarters in	my constituency	. It has just received nearly £ 400,000 in lottery
sector . On Friday , an independent community pharmacist in	my constituency	told me that he estimated that the Government cuts would
it becomes an empty gesture . A community group in	my constituency	is setting up a community development trust, and it
since June and doubled since 2006 . Young people in	my constituency	have been particularly badly hit , with a 288 $\%$
police get back to strength to defend the people in	my constituency	of Mitcham and Morden?

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
to address have been influenced by what has happened in , including those of Allied Steel and Wire's pensioners in	my constituency my constituency	in the past 10 days as a series of incidents? They took the case to court through the unions
Indeed, it is a stealth cut. In	my constituency	, the Tories will have to make
communities across the UK . I understand the concerns of	my constituents	stealth cuts such . I understand that when a family from a different
a vested interest in ensuring the safety and security of	my constituency	, which in the past has been a military target
infrastructure project is a massive economic opportunity for	my constituency	in particular . Will the Minister assure the House that
Wales and Nottingham that stands to lose most is the Meadows in	my constituency	. Before the last election , the Meadows , one
am here this afternoon specifically to represent the concerns of	my constituents	who are trade union members in Parliament , as they
. Nothing could be further from the truth , as	my constituency	exemplifies . As I have already said , I represent
making are the very ones that have been made by	my constituents	, by the constituents of my hon . Friends and-I
, but wanted to take the opportunity to read out	my constituent's	comments so that Ministers understand the worry and concern .
firm of Hickman and Rose , which is based in	my constituency	? She was due to speak at a conference organised
Majesty's Opposition . That public money could be used for	my constituent	Grace Ryder , aged 9 , who was recently diagnosed
changes that will affect 650 families and 1,500 children in	my constituency	. \setminus n ", " These are ideologically driven
deal more about the birdlife in both estuaries that surround	my constituency	. \ n " , " The Bill establishes a
	My constituent	, the wonderful campaigner Marie Lyons , has doggedly pursued
\backslash " vote for their Muslim brother \backslash " .	My constituents	were told that that was their religious duty . When
. It will bring huge benefits to many families in	my constituency	who are on low or not very generous incomes .
anywhere . \setminus n " , " The diversity of	my constituency	is one of the reasons why it is the best
c " The NHS in	my constituency	has moved beyond special measures into the success regime
invited my right hon . and learned Friend to meet	my constituents	to hear what they think about our local NHS .
fleeing Ebola-affected countries are not left destitute and homeless?	My constituents	, Mr and Mrs Mahmood , have been working in
pension credit , but I wondered whether Ministers could give	my constituent	and me advice on whether the notional sum tied up

Table 21: A random sample of KWIC's (continued)

Pre	Keyword	Post
first home. There are so many young people in	my constituency	who see homes priced out of their reach and for
There are also problems for low-income families, such as	my constituent	on Colleymoor Leys lane who says : \ n "
term . I know from the experience of businesses in	my constituency	and in the surrounding west midlands area that New Street
that he needs those, but he failed to tell	my constituents	watching yesterday that a 1p cut in duty will not
average , which show that over a fifth-22 $\%$ in	my constituency-of	people who resort to food banks for an emergency food

References

Airoldi, E. M., & Bischof, J. M. (2016). Improving and Evaluating Topic Models and Other Models of Text. *Journal of the American Statistical Association*, 111(516), 1381–1403. https://doi.org/10.1080/01621459. 2015.1051182

Andeweg, R. B., & Thomassen, J. J. (2005). Modes of Political Representation: Toward a New Typology. Legislative Studies Quarterly, 30(4), 507–528. https://doi.org/10.3162/036298005X201653

Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., ... Zhu, M. (2013). A Practical Algorithm for Topic Modeling with Provable Guarantees. In S. Dasgupta & D. McAllester (Eds.), *Proceedings of the 30th International Conference on Machine Learning* (Vol. 28, pp. 280–288). Atlanta, Georgia, USA: PMLR. Retrieved from http://proceedings.mlr.press/v28/arora13.pdf

Audickas, L., Hawkins, O., & Cracknell, R. (2017). *UK Election Statistics: 1918-2017* (Briefing Paper No. CBP7529) (p. 89). London: House of Commons Library. Retrieved from http://researchbriefings.parliament. uk/ResearchBriefing/Summary/CBP-7529

Benoit, K. (2018). Quanteda: Quantitative Analysis of Textual Data. https://doi.org/10.5281/zenodo.1004683

Benoit, K., & Matsuo, A. (2018). Spacyr: Wrapper to the 'spaCy' 'NLP' Library. Retrieved from http://github.com/quanteda/spacyr

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), 993–1022.

Bligh, M., Merolla, J., Schroedel, J. R., & Gonzalez, R. (2010). Finding Her Voice: Hillary Clinton's Rhetoric in the 2008 Presidential Campaign. Women's Studies, 39(8), 823-850. https://doi.org/10.1080/00497878. 2010.513316

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, N.J.: L. Erlbaum Associates.

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1002/spe.4380211102

Gagolewski, M. (2018). R package stringi: Character string processing facilities. https://doi.org/10.5281/zenodo.1292492

Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. *Political Analysis*, 21(03), 267–297. https://doi.org/10.1093/pan/mps028

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. *To Appear*. Retrieved from https://spacy.io

Jones, J. J. (2016). Talk "Like a Man": The Linguistic Styles of Hillary Clinton, 1992-2013. *Perspectives on Politics*, 14(03), 625–642. https://doi.org/10.1017/S1537592716001092

Kelly, R., & White, I. (2016). *All-women shortlists* (Briefing Paper No. 5057) (p. 34). London: House of Commons Library. Retrieved from https://researchbriefings.parliament.uk/ResearchBriefing/Summary/SN05057

Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel: Fort Belvoir, VA: Defense Technical Information Center. https://doi.org/10.21236/ADA006655

Lee, M., & Mimno, D. (2014). Low-dimensional Embeddings for Interpretable Anchor-based Topic Inference. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)* (pp. 1319–1328). Doha, Qatar: Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1138

Newman, M. L., Groom, C. J., Handelman, L. D., & Pennebaker, J. W. (2008). Gender Differences in Language Use: An Analysis of 14,000 Text Samples. *Discourse Processes*, 45(3), 211–236. https://doi.org/10.1080/01638530802073712

Odell, E. (2018). Hansard Speeches and Sentiment V2.5.1 [dataset]. https://doi.org/10.5281/zenodo.1306964

Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The Development and Psychometric Properties of LIWC2015, 26. Retrieved from https://repositories.lib.utexas.edu/bitstream/handle/2152/31333/LIWC2015_LanguageManual.pdf

Pitkin, H. F. (1967). The concept of representation (1. paperback ed., [Nachdr.]). Berkeley, Calif.: Univ. of California Press.

Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2016). A Model of Text for Experimentation in the Social Sciences. *Journal of the American Statistical Association*, 111(515), 988–1003. https://doi.org/10.1080/01621459.2016.1141684

Roberts, M. E., Stewart, B. M., & Tingley, D. (2018). $Stm: R\ Package\ for\ Structural\ Topic\ Models.$ Retrieved from http://www.structuraltopicmodel.com

Yu, B. (2014). Language and gender in Congressional speech. Literary and Linguistic Computing, 29(1), 118-132. https://doi.org/10.1093/llc/fqs073