Chapter 5 Mechanisms with higher pairs and other problems in the theory of mechanisms

- Slider-crank Mechanism Equivalence of Higher Order Joints
- Cam Mechanisms
- Parasitic motions
- · Passive elements in linkages

2022 - L. Ciupitu

1

Slider-Crank mechanism: in the family of "four-bar" mechanism with one link regarded as infinitely long

2022 - L. Ciupitu

2

Slider-Crank Mechanism (remember)

In-line slider crank mechanism

The line of travel of the hinged joint of the slider passes through the base joint of the crank.

The mechanism has a stroke B_1B_2 equal twice the crank length r_2 .

Locations B_1 and B_2 are called the extreme positions (limiting) of the slider

3

Slider-Crank Mechanism (remember)

Offset slider-crank mechanism

Extreme positions of offset slider-crank mechanism are obtained by intersections between arches with minimum radius $R_{\min} = r_3 - r_2$ and maximum radius $R_{\text{max}} = r_3 + r_2$ with line of slider travel, respectively. Generally slider has a kinematic dimension too (represented usually by a vertical bar) so that the joint B to be not located at e distance.

2022 - L. Ciupitu

4

Classifications of pairs (remember)

- From kinematics point of view kinematic pairs are classified in classes k, representing the number of restricted motions:
 - revolute, prismatic and helical pairs have k = 5;
 - cylindrical pairs have k = 4;
 - spherical and plane pairs have k = 3.
- From geometrical point of view (i.e. contact between the links) kinematic pairs are classified in:
 - lower pairs in case of surface contacts (linkages mechanisms);
 - higher pairs in case of point or line contacts (cam and gear mechanisms).

2022 - L. Ciupitu 5

5

Equivalence of Higher Order Joints

$$M_3 = 3 m - 2 I_p - h_p = 3 \times 3 - 2 \times 4 - 0 = 1$$

 $A = \{1,2\}$ revolute joint $B = \{2,3\}$ revolute joint $D = \{1,3\}$ higher pair

$$M_3 = 3 m' - 2 I_p' - h_p' = 3 \times (3 - 1) - 2 \times (4 - 2) - 1 = 1$$

2022 - L. Ciupitu 6

Example of a plane mechanisms with higher pairs

$$M_3 = 3 m - 2 I_p - h_p = 3 \times 7 - 2 \times 9 - 2 = 1$$

 $M_3 = 3 m' - 2 I_p' - h_p' = 3 \times (7+2) - 2 \times (9+4) - 0 = 1$

2022 - L. Ciupitu 7

7

Clasiffication of mechanisms

- Linkage mechanisms
- Screw mechanisms
- Cam mechanisms
- Gear mechanisms

8

2022 - L. Ciupitu

Higher Order Joints

2022 - L. Ciupitu

9

Internal Combustion Engine

L. Ciupitu 10

Flat Follower Cams

2022 - L. Ciupitu 12

13

Rotating cams and translating followers

2022 - L. Ciupitu

13

Classifications of pairs (remember)

- From constructional point of view kinematic pairs are classified in:
 - form-closed pairs (Ex.: revolute pair, prismatic pair in two-side slot, cylindrical pair, helical pair, cam mechanisms in which cam has a track);
 - force-closed pairs contact maintained by a force; usually the force of a spring (Ex.: prismatic pair in one-side slot, cam-follower higher pair, flat lower pair);
- From functional point of view kinematic pairs are classified in:
 - active pairs (pair variables are the generalised coordinates of mechanism);
 - passive pairs (pair variables are function of active pairs variables).

2022 - L. Ciupitu 14

Form-closed Cams

(a) Form-closed cam with translating follower

(b) Form-closed cam with oscillating follower

15

16

2022 - L. Ciupitu

15

Roller Follower Cams

Higher pair maintained by the force of a spring

Higher pair maintained by the form of a track on the cam

2022 - L. Ciupitu

Translating Cams

Follower link with sliding motion and roll

Follower link with rotating motion and roll

17

Attention: Identify all joints of these mechanisms! Start counting of element by ground with 1. Denote lower and higher joints in the format:

Joint name = {first element number, second element number} and write about each joint the type of it according to the joint classification criteria

2022 – L. Ciupitu

17

Special Cam Mechanisms

Attention: Identify all joints of these mechanisms! Start counting of element by ground with 1. Denote lower and higher joints in the format:

Joint name = {first element number, second element number} and write about each joint the type of it according to the joint classification criteria

2022 – L. Ciupitu 18

Knife-edge Follower Cams

2022 - L. Ciupitu 19

19

Cylindrical Cam Mechanism

Spatial Cam Mechanism

2022 - L. Ciupitu

21

21

Oscillating Cam-Follower

(a) An oscillating cam-follower has an effective pin-jointed fourbar equivalent

Observation: Equivalent mechanism is a four-bar mechanism!

22

2022 - L. Ciupitu

Degrees of freedom and equivalence of higher pairs

$$M_3 = 3 m - 2 l_p - h_p = 3 \times 2 - 2 \times 2 - 1 = 1$$

After equivalence:

$$M_3 = 3 m' - 2 l_p' - h_p' = 3 \times 3 - 2 \times 4 - 0 = 1$$

23

24

2022 - L. Ciupitu

23

Degrees of freedom – uncontrolled motions (parasitic motions)

$$M_{3,a} = 3 m - 2 l_p - h_p =$$

= $3 \times 3 - 2 \times 3 - 1 = 2!$

$$M_{3,b)} = 3 m' - 2 l_p' - h_p' =$$

= $3 \times 2 - 2 \times 2 - 1 = 1$

Observation: Motion of roll 2 does not change the position and the function of cam mechanism!

function of cam mechanism!

2021 - L. Ciupitu

Passive elements in linkages

$$M_3 = 3 m - 2 l_p - h_p$$

= $3 \times 3 - 2 \times 4 - 0 = 1$

Observation: Supplementary element 5 does not change the functioning of parallelogram mechanism which remain to have only one degree of mobility!

2022 - L. Ciupitu

25

Functioning phases of Cam mechanisms

2022 - L. Ciupitu

26

25

Synthesis of motion laws

2022 - L. Ciupitu

27

27

Synthesis of motion laws

Example 1 of "sine" motion law type:

$$s = h\left[\frac{\varphi}{\Phi} - \frac{1}{2\pi}\sin(2\pi\frac{\varphi}{\Phi})\right]$$
$$v = \frac{h\omega}{\Phi}\left[1 - \cos(2\pi\frac{\varphi}{\Phi})\right]$$
$$a = \frac{2\pi h\omega^2}{\Phi^2}\sin(2\pi\frac{\varphi}{\Phi})$$

28

Synthesis of motion laws

Example 2 of "cosine" motion law type

$$s = \frac{h}{2} [1 - \cos(\frac{\pi}{\Phi}\varphi)]$$

$$v = \frac{\pi h \omega}{2\Phi} \sin(\frac{\pi}{\Phi}\varphi)$$

$$a = \frac{\pi^2 h \omega^2}{2\Phi^2} \cos(\frac{\pi}{\Phi}\varphi)$$

29

29

Conclusions

- Higher pairs are used in many types of mechanisms, not only to geared and cam mechanisms;
- A higher pair could be equivalate by a fictive element and 2 fictive lower pairs between this fictive element and the 2 elements which are in contact into the higher pair;
- Cam mechanisms are irreversible mechanisms and the motion of cam and of follower link could be mainly:
 - of rotational type
 - of translational type
- Cam mechanisms are used in order to obtain a specific given motion low of output element which is the follower link. This is a synthesis problem.

2022 - L. Ciupitu 30