Financial Engineering II Lab Assignment 2

Kumar Harsha, 11012318 January 17, 2014

Contents

1	Question 1				
	1.1	Initial Price of Options			
	1.2	Dependence of Option Prices on Variables			
2	Cod	Code			
	2.1	Function for Valuating a European Option			
	2.2	Code for Analysing European Options			

1 Question 1

1.1 Initial Price of Options

	Set 1	Set 2
Call Option	12.0854	12.1230
Put Option	4.3970	4.4347

1.2 Dependence of Option Prices on Variables

Dependence on Starting Price of Asset

Dependence on Strike Price

Dependence on Rate

Dependence on Volatility

Dependence on Number of Steps

2 Code

2.1 Function for Valuating a European Option

```
function [ price ] = european( start, strike, rate, steps, sigma,
   T, callorput , up, down)
%compute value of european option
    start = price of asset at t = 0
%
    strike = strike price for the option
%
  rate = risk free interest rate
  steps = number of time steps
%
   sigma = volatility
%
  T = total time
    callorput = 0 for call, 1 for put
optionprices = zeros(steps+1);
dt = T/steps;
p = (exp(rate*dt) - down)/(up - down);
for i = 1:steps+1
    if callorput == 0 %call option
        optionprices (i, steps+1) = \max(start*(up^(steps-i+1))*(down
           (i-1) - strike, 0);
    elseif callorput == 1 %put option
        optionprices (i, steps +1) = \max(strike - start *(up^(steps-i
           +1))*(down^(i-1)), 0);
end
for i = 1: steps
    for i = 1:steps+1-i
        optionprices (j, steps+1-i) = (optionprices (j, steps+2-i)*p +
            optionprices (i+1, steps+2-i)*(1-p) *exp(-rate*dt);
    end
end
price = optionprices(1,1);
```

end

2.2 Code for Analysing European Options

```
format long; clc; clear all; %initial values s0 = 100; strike = 100; T = 1; M = 100; rate = 0.08; sigma = 0.2; %compute option prices for two sets of u and d up1 = exp(sigma*sqrt(T/M));
```

```
down1 = exp(-sigma*sqrt(T/M));
ce1 = european(s0, strike, rate, M, sigma, T, 0, up1, down1);
pe1 = european(s0, strike, rate, M, sigma, T, 1, up1, down1);
up2 = exp(sigma*sqrt(T/M) + (rate-sigma*sigma*0.5)*T/M);
down2 = exp(-sigma*sqrt(T/M) + (rate-sigma*sigma*0.5)*T/M);
ce2 = european(s0, strike, rate, M, sigma, T, 0, up2, down2);
pe2 = european(s0, strike, rate, M, sigma, T, 1, up2, down2);
%varying starting price S(0)
range = 50;
optiondata = zeros(2*range+1, 5);
for i=s0-range:s0+range
    optiondata (i-s0+range+1, 1) = i;
    optiondata (i-s0+range+1, 2) = european(i, strike, rate, M,
       sigma, T, 0, up1, down1);
    optiondata (i-s0+range+1, 3) = european(i, strike, rate, M,
       sigma, T, 1, up1, down1);
    optiondata (i-s0+range+1, 4) = european(i, strike, rate, M,
       sigma, T, 0, up2, down2);
    optiondata (i-s0+range+1, 5) = european(i, strike, rate, M,
       sigma, T, 1, up2, down2);
end
figure
plot(optiondata(:,1), optiondata(:,2), optiondata(:,1), optiondata
   (:,3), optiondata(:,1), optiondata(:,4), optiondata(:,1),
   optiondata (:,5))
title ('Varying _ Starting _ price _ of _ Asset')
legend('Call_option, _set_1', 'Put_option, _set_2', 'Call_option, _
   set 2', 'Put option, set 2')
%varying strike price K
range = 50;
strikedata = zeros(2*range+1, 5);
for i=strike-range:strike+range
    strikedata(i-s0+range+1, 1) = i;
    strikedata(i-s0+range+1, 2) = european(s0, i, rate, M, sigma,
      T, 0, up1, down1);
    strikedata(i-s0+range+1, 3) = european(s0, i, rate, M, sigma,
      T, 1, up1, down1);
    strikedata(i-s0+range+1, 4) = european(s0, i, rate, M, sigma,
      T, 0, up2, down2);
    strikedata(i-s0+range+1, 5) = european(s0, i, rate, M, sigma,
      T, 1, up2, down2);
end
figure
plot(strikedata(:,1), strikedata(:,2), strikedata(:,1), strikedata
   (:,3), strikedata(:,1), strikedata(:,4), strikedata(:,1),
   strikedata(:,5))
title ('Varying _ Strike _ price')
```

```
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
       for _ set _2')
%varying interest rate
range = 4;
r = 8;
ratedata = zeros(2*range+1, 5);
for i=r-range:r+range
          ratedata(i-r+range+1, 1) = i/100;
          ratedata(i-r+range+1, 2) = european(s0, strike, i/100, M,
                sigma, T, 0, up1, down1);
          ratedata(i-r+range+1, 3) = european(s0, strike, i/100. M.
                sigma, T, 1, up1, down1);
          ratedata(i-r+range+1, 4) = european(s0, strike, i/100, M,
                sigma, T, 0, up2, down2);
          ratedata(i-r+range+1, 5) = european(s0, strike, i/100, M,
                sigma, T, 1, up2, down2);
end
figure
x = plot(ratedata(:,1), ratedata(:,2), ratedata(:,1), ratedata
       (:,3), ratedata(:,1), ratedata(:,4), ratedata(:,1), ratedata
       (:,5));
title ('Varying Interest rate')
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
       for set 2')
%varying sigma
s = 20:
range = 10;
sigmadata = zeros(2*range+1, 5);
for i=s-range:s+range
         u1 = \exp(i*sqrt(T/M)/100); d1 = \exp(-i*sqrt(T/M)/100);
         u2 = \exp(i*sqrt(T/M)/100 + (rate-i*i*0.5/10000)*T/M); d2 = \exp(i*sqrt(T/M)/100 + (rate-i*i*0.5/10000)*T/M); d2 = exp(i*sqrt(T/M)/100 + (rate-i*i*0.5/10000)*T/M); d3 = exp(i*sqrt(T/M)/10000)*T/M); d3 =
                (-i*sqrt(T/M)/100 + (rate-i*i*0.5)*(T/M)/10000);
         sigmadata(i-s+range+1, 1) = i/100;
         sigmadata(i-s+range+1, 2) = european(s0, strike, rate, M, i
                /100, T, 0, u1, d1);
         sigmadata(i-s+range+1, 3) = european(s0, strike, rate, M, i
                /100, T, 1, u1, d1);
         sigmadata(i-s+range+1, 4) = european(s0, strike, rate, M, i)
                /100, T, 0, u2, d2);
         sigmadata(i-s+range+1, 5) = european(s0, strike, rate, M, i)
                /100, T, 1, u2, d2);
end
figure
plot(sigmadata(:,1), sigmadata(:,2), sigmadata(:,1), sigmadata(:,1)
       (:,3), sigmadata(:,1), sigmadata(:,4), sigmadata(:,1),
       sigmadata (:,5))
```

```
title('Varying _SIGMA')
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
   for set 2')
%varying steps and strike prices
range = 50;
K = [95, 100, 105];
stepdata = zeros(2*range+1, 13);
for i=M−range:M+range
    stepdata(i-M+range+1, 1) = i;
    for i=1:3
        stepdata (i-M+range+1, 2+(j-1)*4) = european(s0, K(j), rate
           , i, sigma, T, 0, up1, down1);
        stepdata (i-M+range+1, 3+(j-1)*4) = european(s0, K(j), rate
           , i, sigma, T, 1, up1, down1);
        stepdata(i-M+range+1, 4+(j-1)*4) = european(s0, K(j), rate
           , i, sigma, T, 0, up2, down2);
        stepdata(i-M+range+1, 5+(j-1)*4) = european(s0, K(j), rate
           , i, sigma, T, 1, up2, down2);
    end
end
for i = 1:3
    figure
    plot (stepdata (:,1), stepdata (:,2+(i-1)*4), stepdata (:,1),
       stepdata(:,3+(i-1)*4), stepdata(:,1), stepdata(:,4+(i-1)*4)
       , stepdata (:,1), stepdata (:,5)+(i-1)*4
    title (['Varying _Steps, _Strike _=', num2str(K(i))])
    legend('Call_option, _set_1', 'Put_option, _set_1', 'Call_option
       , _set _2', 'Put_option , _set _2')
end
```