2) Energy transfer between BC and GC vesicles

1. Preparation

Add **BC** and **GC** vesicles solutions (1mL, 10⁻⁴ M, THF) into water (5mL), respectively.

Mix BC and GC Vesicles solution.

Drop cast mixed vesicles solution on a quartz slide.

Investigate the energy transfer between the vesicles by Laser Scanning Confocal Microscope.

2. Observation with LSCM

Figure 8. LSCM analysis of (A) BC and GC mixed vesicles, (B) Energy transfer efficiency profile.

The LSCM-observed discrete **BC** and **GC** vesicles indicate no interchanges between **BC** and **GC** molecules during the vesicle formation processes (Fig. 8A). Energy transfer behaviors can be observed on the **BC-GC** contacted vesicles as exciting on **BC** vesicles (Fig. 8B).

. Potential application of the fluorescent hollow vesicles

1) Preparation of QDs inside the vesicles

Mix a BC vesicle solution (200 μ L, 10⁻⁴ M, THF) with CdSe dried from a hexane solution.

Drop cast the mixed Solution on a quartz slide.

Investigate the energy transfer by LSCM.

2) Observation with TEM and LSCM

Figure 9. LSCM analysis of BC and CdSe mixed solution.

- (A) TEM image of QDs-encapsulated vesicles
- (B) Overlap of BC and CdSe
- 1. The CdSe quantum dots aggregating into a cluster was surrounded by blue light-emitting BC vesicles (Fig. 9A). The core-shell structure emits their individual fluorescence as observed by LSCM (Fig. 9B), and performs efficient energy transfer behavior due to the good spectral overlap.
- 2. TEM and LSCM results indicate that QDs were encapsulated inside the vesicles. Therefore, these self-assembled vesicles may have potential to serve as capsule for drug delivery with optical tracking ability.

Conclusions

- 1. Two organic molecules (BC and GC), which are able to have light-emitting and selfactions have been successfully synthesized.
- 2. Intermolecular forces such as hydrogen-bonding, van der Waals forces, and $\pi-\pi$ interactions, appeared to play important roles in self-assembly.
- 3. Due to their good spectral overlap, efficient energy transfer behaviors between **BC** and **GC** vesicles have been verified by fluorescence titration and LSCM analyses.
- 4. The hollow nature of our light-emitting vesicles can be potentially used as an optical-tracking capsule for delivery purpose.

References

- 1. George M. Whitesides and Bartosz Grzybowski, Science, 2002, 295, 2418.
- 2. Kuo-Pi Tseng, Fu-Chuan Fang, Jing-Jong Shyue, Ken-Tsung Wong, Guillaume Raffy, André Del Guerzo, and Dario M. Bassani, *Angew. Chem. Int. Ed.* **2011**, *50*, 7032.
- 3. Adrien Kaeser, Irén Fischer, Robert Abbel, Pol Besenius, Debarshi Dasgupta, Martijn A. J. Gillisen, Giuseppe Portale, Amy L. Stevens, Laura M. Herz, and Albertus P. H. J. Schenning, *ACS Nano*, **2013**, 7, 408.
- 4. Amy L. Stevens, Adrien Kaeser, Albertus P. H. J. Schenning, and Laura M. Herz, *ACS Nano*, **2012**, *6*, 4777.

 (All photos by authors.)