

Universidade do Estado do Rio de Janeiro - UERJ Instituto de Matemática e Estatística - IME Departamento de Informática e Ciências da Computação

Estudo sobre o número de cruzamentos em um desenho do grafo de Kneser K(n,k)

Autor: António David Reis de Sousa

Orientador(a): Luerbio Faria

Conceitos

- Um grafo G é um conjunto de vértices e arestas entre esses vértices
- O número de cruzamentos de um grafo é o número de interseções entre arestas mínimo de um grafo
- O número de cruzamentos é conhecido para poucas classes de grafos
- Começou a ser estudado por Turan, a partir do estudo do número de cruzamentos do grafo bipartido completo
- O objetivo do trabalho é estudar o número de cruzamentos em 2-páginas de um grafo de kneser K(n,2)
- Um grafo de kneser K(n,k) é um grafo em que todos os vértices são subcojuntos de k elementos de um conjunto de n elementos, e 2 vértices são adjacentes se e somente se os conjuntos dos vértices correspondentes são disjuntos
- Um desenho em 2-páginas é um desenho de um grafo definido sobre uma espinha, que é um caminho hamiltoniano do grafo, de tal modo que as arestas estão no plano acima ou abaixo da espinha

$$cr(K_{m,n})=\lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{m}{2} \rfloor \lfloor \frac{m-1}{2} \rfloor$$

grafo de kneser K(5,2)

Resultados Anteriores

- Um algoritmo exaustivo de um trabalho anterior, realizado por Jonas Carvalho, calcula o desenho com o número de cruzamentos mínimo em 2páginas para o K(6,2)
- O Algoritmo do Slope obtem um desenho em 2-páginas para o grafo completo com o número mínimo de cruzamentos em 2-páginas
- O Algoritmo de Berge obtem uma cobertura de clique mínima para o K(n,2)

Cruzamento

Metodologia

Desenho Proposto

- 1. Faça um desenho $D(K_{2\left[\frac{n}{2}\right]-1})$ em 2-páginas de $K_{2\left[\frac{n}{2}\right]-1}$ usando o algoritmo do slope
- 2. Substitua cada vértice de $K_{2\left[\frac{n}{2}\right]-1}$ por $q=\left[\frac{n-1}{2}\right]$ vértices correspondentes a clique $C_i,\ i\in\{1,2,\cdots,2\left[\frac{n}{2}\right]-1\}$ seguindo a ordem do ciclo hamiltoniano obtido pelo algoritmo de berge
- 3. Liga as arestas entre os vértices de duas cliques distintas C_i e C_j de acordo com a posição geométrica das arestas de $D(K_{2\left[\frac{n}{2}\right]-1})$
- 4. Desenhe as arestas internas dos vértices de cada $K_{2\left[\frac{n}{2}\right]-1}$ com um desenho em 1-página de tal modo que as arestas ficam orientadas para cima ou para baixo de acordo com a opção que cause o menor número de cruzamentos no desenho do K(n,2)

Método de Cálculo

Os 5 conjuntos de cruzamentos são os seguintes:

- $cr_1(n)$ cruzamentos provenientes do $K_{2\left[\frac{n}{2}\right]-1}$
- $cr_2(n)$ cruzamentos internos de cada clique C_i
- $cr_3(n)$ cruzamentos entre as arestas internas de uma clique C_i e as arestas que saem dessa clique para outra clique C_i
- $cr_4(n)$ cruzamentos entre as arestas que partem de uma clique C_i para um clique C_j
- $cr_5(n)$ cruzamentos entre as arestas que ligam uma clique C_i com uma clique C_j com as arestas que ligam a clique C_i com uma clique C_k

Resultados

- Um desenho automático para K(6, 2) com 62 cruzamentos
- Um desenho automático para K(8, 2) com 2050 cruzamentos
- Foi encontrado um limite inferior e superior para o caso n par, de tal modo que assintoticamente ambos são de mesma ordem

$$\frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4}{2^7} - \frac{n^3}{2^9} \le v\left(K(n,2)\right) \le v_2\left(K(n,2)\right) \le \frac{n^8}{2^{10}} - \frac{3n^7}{2^8} + \frac{31n^6}{2^83} + \frac{7n^5}{2^6} - \frac{563n^4}{2^73} + \frac{517n^3}{2^53} - \frac{267n^2}{2^5} + \frac{107n}{2^33} + \frac{107n}{2^73} + \frac{107n}{2$$

$$\mathbf{v}_{2}(\mathbf{K}(\mathbf{n},2)) = \mathbf{\Theta}(\mathbf{n}^{8}) = \mathbf{v}(\mathbf{K}(\mathbf{n},2))$$

Bibliografia Produzida Durante o Projeto

1. de Sousa, A. D. R., Carneiro, J., Faria, L., Pabon, M. V., How to draw a K(n,2) Kneser graph?, in Proceedings of the 10th Latin American Workshop on Cliques in Graphs - LAWCG' 22 (resumo), pp. 45. https://www.lawcg.mat.br/lawcq22/

2._de Sousa, A. D. R., Carneiro, J., Faria, L., Pabon, M. V., Sobre o número de cruzamentos do grafo de Kneser K (n, 2). In: Anais do VII Encontro de Teoria da Computação. SBC, 2022. p. 61-64.

https://sol.sbc.org.br/index.php/etc/article/view/20659/20486

3._de Sousa, A. D. R., Carneiro, J., Faria, L., Pabon, M. V., Sobre o número de cruzamentos do grafo de Kneser K(n, 2) (resumo), II Encontro de Mulheres na Matemática, 2022. https://drive.google.com/file/d/1yC6RkN-VvT6UCCjCG6VPNgrlgQ9kVJ1z/view

LAWCG' 22 45

How to draw a K(n,2) Kneser graph?[†]

A. D. R. de Sousa^{1*} J. C. Carneiro¹ L. Faria¹ M. V. Pabon²

¹ UERJ ² Université Paris-13

Keywords: Kneser graph K(n,k), crossing number, 2-page crossing number

Take a 2-page drawing $D(K_{2\lceil\frac{n}{2}\rceil-1})$ of the complete graph $K_{2\lceil\frac{n}{2}\rceil-1}$ from algorithm (de Klerk, Pasechnik and Salazar (2013)) (a), (b) and (c). Replace each vertex of $K_{2\lceil\frac{n}{2}\rceil-1}$ by $q=\lceil\frac{n-1}{2}\rceil$ vertices corresponding to clique $C_i, i \in \{1,2,\ldots,2\lceil\frac{n}{2}\rceil-1\}$ with the order of the Hamiltonian cycle from algorithm (Berge (1973)). Add the edges between the pair of vertices of each 2 cliques according to the geometric position of the $D(K_{2\lceil\frac{n}{2}\rceil-1})$ edges. Place the 1-page drawing of $K_{\lceil\frac{n-1}{2}\rceil}$ from (de Klerk, Pasechnik and Salazar (2013)) for each clique C_i on the half-plane with the fewest outgoing edges of the vertex C_i of $D(K_{2\lceil\frac{n}{3}\rceil-1})$ (d).

Let v(G) and $v_2(G)$ be the minimum number of crossings for a drawing D(G) of G, respectively, in the plane, and into a 2-page drawing, we prove that $\frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4}{2^7} - \frac{n^3}{2^9} \le v(K(n,2)) \le v_2(K(n,2)) \le \frac{n^8}{2^{10}} - \frac{3n^7}{2^8} + \frac{31n^6}{2^8} + \frac{7n^5}{2^6} - \frac{563n^4}{2^73} + \frac{517n^3}{2^53} - \frac{267n^2}{2^5} + \frac{107n}{2^33}$.

Figure 1 2-page drawing construction of K_5 in (a) and (b), and 2-page drawings of K_5 in (c) and K(6,2) in (d).

 $^{^\}dagger$ CAPES 001, CNPq 406036/2021-7, 308654/2018-8, 152340/2021-1, FAPERJ E26/202.902/2018.

Sobre o número de cruzamentos do grafo de Kneser $K(n,2)^*$

A. D. R. de Sousa, J. C. Carneiro, L. Faria¹, M. V. Pabon²

¹Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro, RJ - Brasil ²Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villataneuse, France

> antoniodrsousa@gmail.com, jonas.uerj@yahoo.com.br luerbio@ime.uerj.br, valencia@lipn.univ-paris13.fr

Abstract. The crossing number $\nu(G)$ of a graph G=(V,E) is the minimum number of crossings in a drawing D(G) in the plane of G. Let r be a straight line, called spine, $p\geq 1$, and $S_1\ldots,S_p$ be p distinct half-planes bounded by r. A drawing of G=(V,E) in p-pages has the vertices of V drawn in r and each edge of G is drawn in one of S_1,\ldots,S_p . The crossing number in p-pages $\nu_p(G)$ of G is the minimum number of crossings in a drawing in p-pages of G. We prove that if $n=2q\geq 6$, then $\frac{n^8}{2^{13}}-9\frac{n^7}{2^{13}}-\frac{n^6}{2^{10}}-\frac{n^4}{2^7}-\frac{n^3}{2^9}\leq \nu(K(n,2))\leq \nu_2(K(n,2))\leq \frac{n^8}{2^{10}}-\frac{3n^7}{2^8}+\frac{31n^6}{2^83}+\frac{7n^5}{2^6}-\frac{563n^4}{2^73}+\frac{517n^3}{2^53}-\frac{267n^2}{2^5}+\frac{107n}{2^33}$. Like complete graphs, $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ and the leading term is $\ell(n)$, such that $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.

Resumo. O número de cruzamentos $\nu(G)$ de um grafo G=(V,E) é o menor número de cruzamentos em um desenho D(G) no plano de G. Dada uma reta r, chamada espinha, $p\geq 1$, e $S_1\ldots,S_p$ serem p semiplanos distintos limitados por r. Um desenho de G=(V,E) em p-páginas tem os vértices de V desenhados em r e cada aresta de G é desenhada em um S_1,\ldots,S_p . O número de cruzamentos em p-páginas $\nu_p(G)$ de G é o menor número de cruzamentos em um desenho de G em p páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8}{2^{13}}-9\frac{n^7}{2^{13}}-\frac{n^6}{2^{10}}-\frac{n^4}{2^7}-\frac{n^3}{2^8}\leq \nu(K(n,2))\leq \nu_2(K(n,2))\leq \frac{n^8}{2^{10}}-\frac{3n^7}{2^8}+\frac{31n^6}{2^83}+\frac{7n^5}{2^6}-\frac{563n^4}{2^73}+\frac{517n^3}{2^53}-\frac{267n^2}{2^5}+\frac{107n}{2^33}$. Como os grafos completos $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ cujo termo líder $\ell(n)$ satisfaz $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.

1. Introdução

Martin Kneser [Kneser 1955] definiu os grafos de Kneser em 1955. Dados n,k dois inteiros com $0 < k \le n$ o grafo de Kneser K(n,k) = (V,E) tem V a coleção dos $\binom{n}{k}$ subconjuntos com k elementos de $\{1,2,3,\ldots,n\}$ e $uv \in E$ se e somente $u \cap v = \emptyset$. O grafo K(n,k) possui inúmeras aplicações na classificação de fenômenos da combinatória, por exemplo K(n,2) é o complemento do grafo de linha de um grafo completo K_n . Algumas propriedades dos grafos de Kneser são que $|E| = \binom{n}{k}\binom{n-k}{k}/2$, K(n,k) é um grafo $\binom{n-k}{k}$ -regular, com número de clique $\omega(K(n,2)) = \lceil \frac{n-1}{2} \rceil$ e partição mínima de cliques $\lambda(K(n,2)) = 2\lceil \frac{n}{2} \rceil - 1$. O problema do número de cruzamentos é difícil [Hlinený 2006] mesmo para cúbicos e é conhecido exatamente para pouquíssimas classes de grafos,

^{*}O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, do CNPq (406036/2021-7 Universal, 308654/2018-8 Produtividade, 152340/2021-1 Iniciação Científica) e da FAPERJ (B26/202.902/2018 CNE).

Sobre o número de cruzamentos do grafo de Kneser K(n,2)

A. D. R. de Sousa¹, J. C. Carneiro¹, L. Faria¹, e M. V. Pabon²

¹ Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro, RJ - Brasil ² Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villataneuse, France antoniodrsousa@gmail.com, jonas.uerj@yahoo.com.br, luerbio@ime.uerj.br, valencia@lipn.univ-paris13.fr

Martin Kneser [3] definiu os grafos de Kneser em 1955. Dados n, k dois inteiros com $0 < k \le n$ o grafo de Kneser K(n,k)=(V,E) tem $V=\binom{n}{k}$ – a coleção dos subconjuntos de $\{1,2,3,\ldots,n\}$ com k elementos e existe uma aresta $uv \in E$ se e somente $u \cap v = \emptyset$. O grafo K(n,k) possui inúmeras aplicações na classificação de fenômenos da combinatória e da teoria dos grafos como na partição de ciclos de um grafo completo. Algumas propriedades dos grafos de Kneser são que $|V(K(n,k))| = \binom{n}{k}, |E(K(n,k))| = \binom{n}{k}\binom{n-k}{k}/2, K(n,k)$ é um grafo $\binom{n-k}{k}$ -regular, com número de clique $\omega(K(n,2)) = \lceil \frac{n-1}{2} \rceil$ e partição mínima de cliques $\lambda(K(n,2)) = 2\lceil \frac{n}{2} \rceil - 1$. O número de cruzamentos $\nu(G)$ de um grafo G=(V,E) é o menor número de cruzamentos em um desenho D(G)no plano de G. Dada uma reta r, chamada $espinha, p \ge 1, e S_1 \dots, S_p$ serem p semiplanos distintos limitados por r. Um desenho de G = (V, E) em p-páginas tem os vértices de V desenhados em r e cada aresta de G é desenhada em um S_1, \ldots, S_p . O número de cruzamentos em p-páginas $\nu_p(G)$ de G é o menor número de cruzamentos em um desenho de G em p páginas. O número de cruzamentos é conhecido exatamente para pouquíssimas classes de grafos, entre elas K_n os grafos completos [1] e alguns limites para Q_n os n-cubos [2]. O único resultado conhecido para os grafos de Kneser é que o grafo de Petersen - K(5,2) tem $\nu(K(5,2)) = \nu_2(K(5,2)) = 2$. Nossa contribuição principal nesse artigo é a função de cruzamentos $\nu(K(n,2)) = \nu_2(K(n,2)) = \Theta(n^8)$ e o desenho que a realiza. O número de cruzamentos do desenho não é ótimo, mesmo para K(6,2). Com o auxílio do computador encontramos um desenho com 49, nossa construção possui 61 e nosso limite superior prevê 83 cruzamentos.

Figura 1: Um desenho em 2 páginas de K(6,2) com 61 cruzamentos.

Nós provamos que se $n=2q\geq 6$, então $\frac{n^8}{2^{13}}-9\frac{n^7}{2^{13}}-\frac{n^6}{2^{10}}-\frac{n^4}{2^7}-\frac{n^3}{2^9}\leq \nu(K(n,2))\leq \nu_2(K(n,2))\leq \frac{n^8}{2^{10}}-\frac{3n^7}{2^8}+\frac{31n^6}{2^83}+\frac{7n^5}{2^6}-\frac{563n^4}{2^73}+\frac{517n^3}{2^53}-\frac{267n^2}{2^5}+\frac{107n}{2^33}$. Como os grafos completos $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ cujo termo líder $\ell(n)$ satisfaz $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.

Teorema 1. Se $n=2q\geq 6, q\in \mathbb{N}$, então $\nu_2(K(n,2))\leq \frac{6q^8-36q^7+62q^6+84q^5-563q^4+1034q^3-801q^2+214q}{24}$ onde $n=2q\geq 6, q\in \mathbb{N}$.

Referências

- [1] B. M. ÁBREGO, O. AICHHOLZER, S. FERNÁNDEZ-MERCHANT, P. RAMOS, AND G. SALAZAR, The 2-page crossing number of K_n , Discret. Comput. Geom., 49 (2013), pp. 747–777.
- [2] L. Faria, C. M. H. de Figueiredo, R. B. Richter, and I. Vrt'o, The same upper bound for both: The 2-page and the rectilinear crossing numbers of the n-cube, J. Graph Theory, 83 (2016), pp. 19–33.
- [3] M. Kneser, Aufgabe 360, jber. deutsch. math, Verein, 58 (1955), p. 27.