Содержание

1	Пре	Предельные теоремы и законы больших чисел				
2	Bap	иационные ряды и их характеристики	2			
	2.1	Генеральная и выборочная совокупности, объём выборки	2			
	2.2	Варианционный ряд, варианта, частота. Виды вариационных ря-				
		дов. Гистограмма, полигон	2			
	2.3	Формулы числовых характеристик. Эмперическая функция рас-				
		пределения (ЭФР). Свойства ЭФР	4			
	2.4	Эмперическая функция распределения ЭФР. Свойства ЭФР	5			
3	Оце	енки параметров распределения	6			
	3.1	Понятия статистики, оценки, выборочной характеристики	6			
	3.2	Несмещённые, состоятельные и эффективные оценки	6			
	3.3	Теорема о несмещённой состоятельной оценке мат. ожидания .	7			
	3.4	Дополнительная информация	8			
	3.5	Теорема о несмещённой и состоятельной оценке дисперсии	8			
	3.6	Теорема о несмещённой и состоятельной оценке функции рас-				
		пределения	9			
	3.7	Теорема об эффективной оценке математического ожидания	11			
	3.8	Теорема о единственности эффективной оценки	12			
		3.8.1 Определение регулярной параметрической модели. Ин-				
		формация Фишера.	13			
	3.9	Неравенство Рао-Крамера. Построение эффективной по Рао-Крамер	у			
		оценки для пуассоновского распределения	14			
4	Mea	годы построения оценок	14			
	4.1	Метод моментов. Пример (биномиальное распределение)	14			
	4.2	Функция правдоподобия. Метод максимального правдоподобия.				
		Пример (биномиальное распределение)	16			

1 Предельные теоремы и законы больших чисел

2 Вариационные ряды и их характеристики

2.1 Генеральная и выборочная совокупности, объём выборки.

Рассмотрим постановку задачи математической статистики: по результатам наблюдения за некоторой случайной величиной ξ требуется сделать выводы о неизветном законе распределения этой величины $\mathcal{L}(x,\theta)$ либо о неизвестных парамерах θ_1,\ldots,θ_n известного распределения.

Пусть ξ — случайная величина с некоторой (теоретической) функцией распределения $F_{\xi}(x) = P\{\xi < x\}, \quad x \in R.$

Определение:

Совокупность n независимых одинаково распределённых случайных величин X_1, X_2, \ldots, X_n называется выборкой (выборочной совокупностью), извлечённой из распределения случайной величины ξ .

Определение:

Под генеральной совокупностью понимается множество всех возможных значений случайной величины ξ .

Определение:

Объёмом совокупности называется количество всех её элементов, объём выборки или выборочной совокупности обозачается n, генеральной совокупности — N.

2.2 Варианционный ряд, варианта, частота. Виды вариационных рядов. Гистограмма, полигон.

Определение:

Пусть x_1, x_2, \dots, x_n — выборка из генеральной совокупности значений.

Вариационным рядом называется последовательность $x_1^*, x_2^*, \dots, x_n^*$ элементов выборки расположенных в порядке неубывания, т.е. $x_1^* \le x_2^* \le \dots \le x_n^*$.

 x_i^* — варианта.

 n_i — частота появления варинты x_i^* в выборке.

Определение:

Точечным вариационным рядом называется:

x_i	x_1	x_2	 x_m
n_i	n_1	n_2	 n_m

 x_i — варианта, n_i — частота соответствуующей варианты.

m — количество групп (различных вариант (вариант в таблице)).

$$n = \sum_{i=1}^m n_i$$
, где n_i — объём выборки.

Для графического представления точечных вариационных рядов используется полигон частот — ломанная с вершинами в точках (x_i, n_i) .

Определение:

Интервальным вариационным рядом называется:

x_i	$[x_1, x_2]$	$(x_2, x_3]$	 $(x_m, x_{m+1}]$
n_i	n_1	n_2	 n_m

 x_i — варианты, n_i — частота.

m — количество групп (интервалов).

$$n = \sum_{i=1}^m n_i$$
, где n_i — объём выборки.

Для графического представления интервальных вариационных рядов используется гистограмма частот — фигура, составленная из прямоугольников, одной стороной которых служат интервалы $(x_i, x_{i+1}]$, а длина второй равна n_i .

2.3 Формулы числовых характеристик. Эмперическая функция распределения (ЭФР). Свойства ЭФР.

Определение:

Выборочным средним называется величина:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X_i}.$$

Если данные представлены в виде точечного или интервального вариационного ряда, то для вычисления используют формулу:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i * n_i,$$

где m — количество групп в точечном или интервалов в интервальном вариационном ряду, n_i — частота, т.е. количество элементов выборки, принадлежащихх i-той группе или i-тому интервалу, x_i — варианта для точечного ряда и середина i-того интервала для интервального ряда.

Определение:

Выборочной дисперсией (смещённой) называется величина:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{x})^{2}.$$

Она характеризует среднее из квадратов отклонений наблюдаемой величины от выборочного среднего. Величина $S=\sqrt{S^2}$ называется выборочным средним

квадратическим отклонением (смещённым) величин выборки от выборочного среднего.

Если данные представлены в виде точечного или интервального вариационного ряда, то для вычисления используют формулу:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{m} (x_{i} - \overline{x})^{2} n_{i}.$$

или

$$S^2 = \left(\frac{1}{n} \sum_{i=1}^m x_i^2 n_i\right) - \overline{x}^2.$$

Здесь m — количество групп в точечном или интервалов в интервальном вариационных рядах, n_i — частота. т.е. количество элементов выборки, принадежащих i-той группе или i-тому интервалу, x_i — варианта для точечного ряда и середина i-того интервала для интервального ряда.

Определение:

Выборочной дисперсией (несмещённой) называется величина:

$$\overline{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{x})^2.$$

Аналогично, величина $\overline{\sigma} = \sqrt{\overline{\sigma}^2}$ называется выборочным несмещённым средним квадратическим отклонением.

Очевидно, что смещённая и несмещённая выборочные дисперсии связаны формулой:

$$\overline{\sigma}^2 = \frac{n}{n-1}S^2.$$

2.4 Эмперическая функция распределения ЭФР. Свойства ЭФР.

Эмперическая функция распределения ЭФР

Эмперической функцией распределения (ЭФР) называется функция

$$\tilde{F}_n(x) = \frac{1}{n} \sum_{i=1}^n e(x - X_i),$$

где e(x) = 1, при x > 0 e(x) = 0, при $x \le 0$.

Таким образом, если X_i , то e(x)=1, если $X_i\geq x$, то e(x)=0, а сумма $e(x-X_i)$ будет равна количеству элементов выборки, которые приняли значение, строго меньше некоторого $x\in R$.

Пусть x_1, x_2, \ldots, x_n — реализация выборки X_1, X_2, \ldots, X_n , т.е. наблюдавшиеся значения случайной величины ξ .

Обозначим $\mu(x)$ — число элементов выборки, строго меньших $x \in R$. Тогда эмпирическая функция распределения $\tilde{F}_n(x)$ может быть определена как

$$\tilde{F}_n(x) = \frac{\mu(x)}{n}.$$

Свойства ЭФР:

- 1. $0 \le \tilde{F}_n(x) \le 1$, t.k. $0 \le \mu(x) \le n$;
- 2. неубывающая непрерывная слева функция;
- 3. $\tilde{F}_n(x)$ ступенчатая функция для всех типов распределений;
- 4. $\tilde{F}_n(x)$ сходится по распределению к $F_{\xi}(x)$.

3 Оценки параметров распределения

3.1 Понятия статистики, оценки, выборочной характеристики.

Определение:

Пусть $g(t_1,\ldots,t_n)$ — непрерывная функция. Оценкой θ назовём $\tilde{\theta}=g(X_1,\ldots,X_2)$. Если $g(X_1,\ldots,X_n)=T$ некоторая функция, то T — статистика.

Определение:

Выборочными характеристиками называются функции от наблюдений (точечные оценки), приближённо оценивающие соответствующие числовые характеристики случайной величины.

3.2 Несмещённые, состоятельные и эффективные оценки

Определение:

Оценка $ilde{ heta}_n$ называется несмещённой оценкой параметра heta, если $M(ilde{ heta}_n)= heta.$

Определение:

Оценка $\tilde{\theta}_n$ называется состоятельной оценкой параметра θ , если $\tilde{\theta}_n$ сходится по вероятности к θ .

Определение:

Оценка $\tilde{\theta}_n$ называется эффективной, или оптимальной, или наилучшей несмещённой оценкой с минимальной дисперсией (НОМД), если $M(\tilde{\theta}_n)=\theta$ и $D(\tilde{\theta}_n)=\inf_{\tilde{\theta}_n^*}D\tilde{\theta}_n^*$.

3.3 Теорема о несмещённой состоятельной оценке мат. ожидания

Пусть $\xi \sim L(x,\theta),\ L(x,\theta)$ — закон распределения известен с точностью до параметра.

$$\overline{\theta} = (\Theta_1, \dots, \Theta_n)$$

По результатам X_1, \ldots, X_n наблюдений за ξ требуется построить оценку θ .

Теорема:

Пусть $X_1,\dots,X_n\sim L_\xi(x,\theta)$, где ξ — случайная величина с $M\xi=a<+\infty$ $D\xi=\sigma^2$. Тогда выборочное среднее $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$ является несмещённой и состоятельной оценкой $M\xi$.

Доказательство:

$$M\overline{x} = M\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n}\sum_{i=1}^{n}Mx_i =$$

 $x_i=|x_i$ — н. о. р. случайной величины $\Rightarrow Mx_i=M\xi \quad orall i|=rac{1}{n}\sum_{i=1}^n M\xi=0$

$$=\frac{1}{n}*n*a=a\Rightarrow \overline{x}$$
 — несмещённое

Состоятельность $\forall \epsilon > 0 \quad P\{|\overline{x} - a| < \epsilon\} \rightarrow_{n \to \infty} 1$

По неравенству Чебышёва:

$$\forall \epsilon > 0 \quad P\{|\overline{x} - a| < \epsilon\} \ge 1 - \frac{D\overline{x}}{\epsilon^2} = 1 - \frac{1}{\epsilon^2} D\left(\frac{1}{n} \sum_{i=1}^n x_i\right) =$$
$$= \left| \text{H. o. p.} \quad Dx_i = \sigma^2 \right| =$$

$$= 1 - \frac{1}{n^2} \epsilon^2 D\xi = 1 - \frac{n\sigma^2}{n^2 \epsilon^2} = 1 - \frac{\sigma^2}{n\epsilon^2} \to_{n \to \infty} 1 - 0$$

Т.к. $P(A) \leq 1 \quad \forall A$, то $\lim_{n \to \infty} P\{|\overline{x} - a| < \epsilon\} = 1 \Rightarrow \overline{x}$ — состоятельная.

Дополнительная информация

Определение:

Выборочной дисперсией (смещённой) называется величина $S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x_i)^n$

Для группированных данных: $S^2 = \frac{1}{n} \sum_{i=1}^m (x_i - \overline{x})^2 * n_i$.

Определение:

Выборочной дисперсией (несмещённой) называется оценка $\tilde{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - x_i)^n$ \overline{x})².

Для группированных данных: $\tilde{\sigma}^2 = \frac{n}{n-1} * S^2$.

Теорема о несмещённой и состоятельной оценке диспер-3.5 сии

Теорема:

Пусть $X_1,\dots,X_n \sim L(x,\theta)$, где $M\xi=a<+\infty,\,D\xi=\sigma^2.$ Тогда несмещённой и состоятельной оценкой $D\xi$ является величина $\tilde{\sigma}^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2.$

Доказательство:

1. Dopavan necnenjemoczó (HG = 62):

$$\mathcal{M}_{\widetilde{b}}^{2} = \mathcal{M}\left(\frac{1}{N-1} \underbrace{\overset{H}{\underset{i \geq 1}{\mathcal{L}}}}_{\stackrel{1}{\downarrow} \geq 1}\left(\chi_{i}^{2} - 2\chi_{\overline{i}\overline{\chi}} + \overline{\chi}^{2}\right)\right) = \frac{1}{N-1}\left(\underbrace{\overset{N}{\underset{i \geq 1}{\mathcal{L}}}}_{N-1}\left(\chi_{i}^{2} - 2\mathcal{M}(\chi_{i}\overline{\chi}) + \mathcal{M}\overline{\chi}^{2}\right)\right) = \frac{1}{N-1}\left(\underbrace{\overset{N}{\underset{i \geq 1}{\mathcal{L}}}}_{N-1}\left(\chi_{i}^{2} - 2\mathcal{M}(\chi_{i}\overline{\chi}) + \mathcal{M}\overline{\chi}^{2}\right)\right)$$

Howgin zhoushux arranges:
$$MX_{i}^{2} = Mg^{2} = Dg + (Mg)^{2} = g^{2} + a^{2}$$

$$Dg = Mg^{2} - (Mg)^{2}$$

$$MX_{i}\overline{X} = M(X_{i} \cdot \frac{1}{H} \underbrace{\frac{H}{S}}_{j=1}^{2} X_{j}) = \frac{1}{H} (M(X_{i}X_{i}) + M(X_{i}X_{2}) + ... + MX_{i}^{2} + ... + MX_{i}X_{M}) = \frac{1}{H} (M(X_{i}X_{M}) + M(X_{i}X_{M}) + M(X_{i}X_{M}) = \frac{1}{H} (A^{2} + a^{2} + ... + (G^{2}a^{2}) + ... + a^{2}) = \frac{Ha^{2} + G^{2}}{H} = a^{2} + \frac{G^{2}}{H}$$

$$M\overline{X}^{2} = M\overline{X} \cdot \overline{X} = M(\underbrace{\frac{1}{H} \underbrace{\frac{H}{S}}_{i=1}^{2} X_{i} \overline{X}}) = \frac{1}{H} \underbrace{\frac{H}{S}}_{i=1}^{2} MX_{i}\overline{X} = \frac{1}{H} \cdot H \cdot (a^{2} + \frac{G^{2}}{H}) = a^{2} + \frac{G^{2}}{H}$$

$$= \frac{1}{H-1} \cdot H \left(\frac{1}{6} + \frac{1}{4} - 2 \left(\frac{1}{4} + \frac{1}{4} \right) + \left(\frac{1}{4} + \frac{1}{4} \right) \right) = \frac{H}{H-1} \left(\frac{1}{6} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right) = \frac{H}{H-1} \cdot \frac{H-1}{H} \cdot \frac{1}{H} \cdot \frac{1}{H}$$

Состочний не допечивается.

3.6 Теорема о несмещённой и состоятельной оценке функции распределения

Определение:

Europunecraa pyhrujua pacripeguierium:
$$F_{n}(x) = \frac{M_{n}(x)}{H}$$
; $M_{n}(x) - Rac-60$ europunecraa pyhrujua pacripeguierium: $F_{n}(x) = \frac{M_{n}(x)}{H}$; $M_{n}(x) - Rac-60$ europunecraa pyhrujua pacripeguierium: $F_{n}(x) = \frac{M_{n}(x)}{1} =$

Теорема:

Пусть $X_1, \ldots, X_n \sim L_\xi(x, \theta)$, где $F_\xi(x)$ — функция распределения случайной величины ξ . Тогда эмперическая функция распределения $\tilde{F}_n(x)$ является несмещённой и состоятельной оценкой функции распределения $F_\xi(x)$.

Доказательство:

Ποκανικών μεωιειμών μος $(H(\widetilde{F}_{H}(x)) = F_{\mathcal{E}}(x) - P_{\mathcal{E}}(x) = X_{\mathcal{E}}^{2})$

$$\mathcal{M} \widetilde{F_n}(x) = \mathcal{H}\left(\frac{1}{n} \underset{i=1}{\overset{n}{\leq}} e\left(x - x_i\right)\right) = \frac{1}{n} \underset{i=1}{\overset{n}{\leq}} \mathcal{M}e(x - x_i)$$

Постреши раз р-я се.в. е (х-хі):

$$P\{x-x_{i} \leq 0\} = P\{x \leq x_{i}\} = P\{x_{i} \geq x\} = 1-F_{x}(x)$$

 $P\{x-x_{i} > 0\} = P\{x > x_{i}\} = P\{x_{i} < x\} = F_{x_{i}}(x)$

$$\mathcal{M} \ e(x - \chi_{i}) = O \cdot (1 - F_{\chi_{i}}(x)) + 1 \cdot F_{\chi_{i}}(x) = F_{\chi_{i}}(x) \quad \forall_{i}$$

$$\mathcal{M} e^{2}(x - \chi_{i}) = O^{2}(1 - F_{\chi_{i}}(x)) + 1^{2} \cdot F_{\chi_{i}}(x) = F_{\chi_{i}}(x)$$

$$De(x - \chi_{i}) = F_{\chi_{i}}(x) - F_{\chi_{i}}^{2}(x) = F_{\chi_{i}}(x) \underbrace{(1 - F_{\chi_{i}}(x))}_{0.5 \cdot 5}$$

Noranceu coetaateubrooto $\widetilde{F}_{H}(x) \xrightarrow{P} F_{\Xi}(x)$:

To repotentify "eformicles:

$$\forall e>0 \quad P! \left| \widetilde{F}_{H}(x) - F_{\underline{S}}(x) \right| \leq e^{\frac{2}{3}} \geq 1 - \frac{D\widetilde{F}_{H}(x)}{e^{2}} = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{e}(x - Y_{\overline{e}}) \right) = 1 - \frac{1}{H^{2}e^{2}} \cdot H F_{\underline{S}}(x) \left(1 - F_{\underline{S}}(x) \right) = 1 - \frac{F_{\underline{E}}(x) \left(1 - F_{\underline{S}}(x) \right)}{H^{2}e^{2}} \cdot H F_{\underline{S}}(x) = 1 - \frac{F_{\underline{E}}(x) \left(1 - F_{\underline{S}}(x) \right)}{H^{2}e^{2}} \cdot H F_{\underline{S}}(x) = 1 - \frac{F_{\underline{E}}(x) \left(1 - F_{\underline{S}}(x) \right)}{H^{2}e^{2}} \cdot H F_{\underline{S}}(x) = 1 - \frac{F_{\underline{E}}(x) \left(1 - F_{\underline{S}}(x) \right)}{H^{2}e^{2}} \cdot H F_{\underline{S}}(x) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1}{H} \underbrace{E}_{\underline{E}}(x - Y_{\underline{E}}) \right) = 1 - \frac{1}{e^{2}} D \left(\frac{1$$

3.7 Теорема об эффективной оценке математического ожидания

Определение:

Пусть $\tilde{\theta}_n$ — несмещённая оценка. $\tilde{\theta}_n$ — называется эффективной оценкой, если

$$D\tilde{\theta}_n = \inf_{\tilde{\theta}_n^*} D\tilde{\theta}_n^*$$

Теорема:

Пусть $X_1, \dots, X_n \sim L_\xi(x,\theta)$, где ξ — случайная величина с $M\xi = a < +\infty$. Тогда выборочное среднее $\overline{x} = \frac{1}{n} \sum_{i=1}^n X_i$ является эффективной оценкой $M\xi$ в классе линейных несмещённых оценок.

Доказательство:

Pace - u repushousing out onserting
$$\widetilde{\Theta}_{n} = \underset{i=1}{\overset{H}{\leq}} \times_{i} X_{i}$$
:

Mongon quenepouro overku
$$\widetilde{\Theta}_{h}$$
:
$$D\widetilde{\Theta}_{h} = D\underset{i=1}{\overset{H}{\succeq}} \mathcal{L}_{i} \times_{i} = \underset{i=1}{\overset{H}{\succeq}} \mathcal{L}_{i}^{2} DX_{i} = \begin{bmatrix} \chi_{1} - \\ \mu \circ p \\ \alpha \cdot \dot{b} \cdot \end{bmatrix} = \underset{i=1}{\overset{H}{\succeq}} \mathcal{L}_{i}^{2} G^{2} = G^{2} \underset{i=1}{\overset{H}{\succeq}} \mathcal{L}_{i}^{2} = G^{2} g (\forall_{1}, ..., \forall_{h})$$

$$D \widetilde{O}_{M}$$
 goermant with ma tex $d_{\tilde{i}}$, the restopoint $g(d_{1},...,d_{M}) \Rightarrow miM$

Puis gor-les bornaissyeurs netogan larganges nouvrain garabhara muhumyuna

$$g(\mathcal{A}_{l}) = \underset{i=1}{\overset{\mathsf{M}}{\succeq}} \mathcal{A}_{l}^{2}$$

$$L(\mathcal{A}_{l}, \lambda) = \underset{i=1}{\overset{\mathsf{M}}{\succeq}} \mathcal{A}_{l}^{2} + \lambda \left(\underset{i=1}{\overset{\mathsf{M}}{\succeq}} \mathcal{A}_{l}^{2} - 1\right)$$

Konzein rpousbognose L (Li, 2), R- const laupannia

$$\begin{cases}
\frac{\partial L(\lambda_{1}, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \lambda_{i} - 1 = 0 \\
\frac{\partial L(\lambda_{1}, \lambda)}{\partial \lambda_{i}} = 2\lambda_{i} + \lambda = 0
\end{cases} \Rightarrow \lambda_{l} = -\frac{\lambda}{2}$$

Cuegoboraismo, expopertribuoti agentoti abusetas $\widetilde{\Theta}_{\mu} = \overset{!}{H} \overset{H}{\underset{i=1}{\overset{!}{\sim}}} X_{\bar{l}} = \widetilde{X}.$

3.8 Теорема о единственности эффективной оценки

теорема:

Пусть $X_1,\ldots,X_n\sim L_\xi(x,\theta)$, где θ — параметр распределения, и пусть $\widetilde{\theta}(\overline{X}_n)$ и $\widehat{\theta}_n(\overline{X}_n)$ — две эффективные оценки θ . Тогда $\widetilde{\theta}_n(\overline{X}_n)=\widehat{\theta}_n(\overline{X}_n)$. То есть $P\{(x_1,\ldots,x_n):\widetilde{\theta}_n(\overline{X}_n)\neq\widehat{\theta}_n(\overline{X}_n)\}=0.$

Доказательство:

Dok-bo: M. K.
$$\hat{\theta}_{1}$$
 u $\hat{\theta}_{2}$ - $\Im \varphi \varphi_{1}$, mo ho oup. $\hat{M}\tilde{\theta}_{1} = \hat{M}\tilde{\theta}_{2} = \theta$. $\hat{D}\tilde{\theta}_{1}$ u $\hat{D}\tilde{\theta}_{2}$ ecmb in $f \hat{D}\tilde{\theta}_{1}$, m. k. in f equium., mo $\hat{D}\tilde{\theta}_{1} = \hat{D}\tilde{\theta}_{2}$. \hat{D} are \hat{u} . $\hat{\theta} = \frac{\hat{\theta}_{1} + \hat{\theta}_{2}}{2}$:

 $\hat{M}\hat{\theta} = \frac{1}{2}(\hat{M}\tilde{\theta}_{1} + \hat{M}\tilde{\theta}_{2}) = \frac{1}{2}(\hat{\theta} + \hat{\theta}) = \hat{\theta} \Rightarrow \hat{\theta} - \text{Hechiey. Oyenka}$
 $\hat{D}\hat{\theta}_{2} = \frac{1}{4}(\hat{D}\tilde{\theta}_{1} + \hat{D}\tilde{\theta}_{2}) + 2\cos(\tilde{\theta}_{1}, \hat{\theta}_{2})) = \frac{1}{2}(\hat{D}\tilde{\theta}_{1} + \cos(\hat{\theta}_{1}, \hat{\theta}_{2}))$ (*)

 $|\cos(\hat{\theta}_{1}, \hat{\theta}_{2})| = |M(\hat{\theta}_{1} - M\tilde{\theta}_{1})(\hat{\theta}_{2} - M\tilde{\theta}_{2})| \leq \sqrt{M(\hat{\theta}_{1} - M\tilde{\theta}_{1})^{2}} \cdot \sqrt{M(\hat{\theta}_{2} - M\tilde{\theta}_{2})^{2}} = \sqrt{\hat{D}\tilde{\theta}_{1}} \cdot \sqrt{\hat{D}\tilde{\theta}_{2}} = \hat{D}\tilde{\theta}_{1}$, m. e. $|\cos(\hat{\theta}_{1}, \hat{\theta}_{2})| \leq \hat{D}\tilde{\theta}_{1}$
 $\hat{D}\hat{\theta}_{1} = |D\hat{\theta}_{1}| = \frac{1}{2}|D\hat{\theta}_{1} + \cos(\hat{\theta}_{1}, \hat{\theta}_{2})| \leq \frac{1}{2}(|D\hat{\theta}_{1}| + |\cos(\hat{\theta}_{1}, \hat{\theta}_{2})|) \leq \frac{1}{2}(|D\hat{\theta}_{1}| + |D\tilde{\theta}_{1}|) = 2\hat{\theta}_{1} = ih + \hat{D}\hat{\theta}_{1} \Rightarrow \hat{D}\hat{\theta}_{1} = \hat{D}\hat{\theta}_{1}$

Permulu (*): $\hat{D}\hat{\theta}_{1} = \frac{1}{2}(\hat{D}\hat{\theta}_{1} - \cos(\hat{\theta}_{1}, \hat{\theta}_{2})) \Rightarrow \hat{D}\hat{\theta}_{1} = \cos(\hat{\theta}_{1}, \hat{\theta}_{2})$
 $\hat{H}\hat{\theta}_{2} = a\hat{H}\hat{\theta}_{1} + \hat{\theta}$ (Hecm.)

 $\hat{\theta} = a\hat{\theta} + \hat{\theta}$ $\Rightarrow \hat{\theta} = 1, \hat{\theta} = 0 \Rightarrow \hat{\theta}_{1} = \hat{\theta}_{2} \Rightarrow 0$
 $1 \cdot \hat{\theta} + 0 = a\hat{\theta} + \hat{\theta}$ $\Rightarrow \hat{\theta}_{2} = a\hat{\theta}_{1}$ oyenka equium. $\Rightarrow |\hat{\theta}_{2}|$

3.8.1 Определение регулярной параметрической модели. Информация Фишера.

Определение:

Пусть ξ — наблюдаемая случайная величина.

Выборочным пространством X_n называется $\{\overline{X}_n = (X_1, \dots, X_n)\}.$

Параметрическим множеством называется Θ — множество значений параметра $\theta.$

Определение:

Параметрической моделью называется

$$\{\mathbf{X}_n; F_{\xi}(x,\theta) : \theta \in \Theta\}$$

Определение:

Параметрическая модель называется регулярной, если:

- 1. параметрическое множество Θ открытое множество;
- 2. носитель распределён, то есть множество $A = \{x: f(x) > 0\}$ не зависит от параметров;
- 3. $\forall \theta$ и $x \in A$ существует производная $\frac{\partial f(x,\theta)}{\partial \theta} < +\infty$;

4.
$$\forall \theta \in \Theta \ M\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right) = 0 \ M\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2 < +\infty;$$

5. Дважды допустимо дифференцирование под знаком интеграла по парамету.

Определение:

Пусть ξ — случайная величина с функцией плотности $f(x,\theta)$. Тогда информацией Фишера для случайного вектора \overline{X}_n называется $I_n(\theta)=M(\frac{\partial}{\partial \theta}\ln f(x,\theta))^2$

3.9 Неравенство Рао-Крамера. Построение эффективной по Рао-Крамеру оценки для пуассоновского распределения

Неравенство Рао-Крамера:

Пусть дана регулярная параметрическая модель. Тогда для любой несмещённой оценки $\tilde{\theta}$ параметра θ $D\tilde{\theta} \geq \frac{1}{nI_n(\theta)}$.

Определение:

Величину $e(\theta)=\frac{1}{nI(\theta)*D\tilde{\theta}}$ называют показаелем эффективности по Рао-Крамеру.

Для любой несмещённой оценки $0 < e(\theta) \le 1$. Если $e(\theta) = 1$, то $\tilde{\theta}_n$ называется эффективной по Рао-Крамеру, следовательно, просто эффективна.

Построение эффективной по Рао-Крамеру оценки для пуассоновского распределения:

$$(X_1,...,X_h) \sim P_0; s(1)$$
. Froethouth 3pqp. (onsumantings) oyenty 1.
 $P\{\S = k\} = \frac{e^{-t}}{k!} \Rightarrow \forall X; P\{X_i = k\} = P\{\S = k\}$
 $M_{X_1} = 1, D_{X_2} = 1^*$ (up TB) $M_{X_1^*} = 1^* + 1$
Syumb $\overline{X} = \frac{1}{k}; \stackrel{?}{=}, X_i - \text{oyenta} 1$.
 $M\overline{X} = 1, D\overline{X} = D(\frac{1}{k}; \stackrel{?}{=}, X_i) = \frac{1}{k^*}; \stackrel{?}{=}, DX_i^* = \frac{1}{k^*} \cdot h \cdot 1 = \frac{1}{k}$.
 $Ha\overline{u}gen I(1) - b ognow hatnogenum:$

$$I(1) = M(\frac{\partial e_k(\frac{1}{k!})}{\partial 1}) = M(\frac{\partial}{\partial 1}(\S ln 1 - 1 - ln \S!)^*) = M(\frac{1}{1} - 1) = M(\frac{1}{1^*} - \frac{1}{1} + 1) = \frac{1}{1^*}M\S^* - \frac{1}{1}M\S + 1 = \frac{1}{1^*}(1^* + 1) - \frac{1}{1} \cdot 1 + 1 = 1 + \frac{1}{1} - 2 + 1 = \frac{1}{1}$$
.
Burumum $e(\overline{X}) = \frac{1}{h} \cdot h \cdot \frac{1}{1} = 1 \Rightarrow \overline{X} - ontumantinal oyenna hapamempa 1.$

4 Методы построения оценок

4.1 Метод моментов. Пример (биномиальное распределение) Определение:

Начальным теоретическим моментом k-го порядка называется $m_k=M\xi^k$, если $M|\xi|^k<+\infty$.

Определение:

Центральным теоретическим моментом k-го порядка называется $\mu_k=M(\xi-M\xi)^k,$ если $M|\xi|<+\infty.$

Определение:

Выборочным начальным моментом k-го порядка называется $\tilde{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

Определение:

Выборочным центральным моментом k-го порядка называется $\tilde{\mu}_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{x})^k$.

Метод моментов:

Метод моментов состоит в том, что за оценку параметров принимается решение системы уравнений:

$$\begin{cases}
 m_k = \tilde{m}_k \\
 \mu_k = \tilde{\mu}_k
\end{cases}$$
(1)

Пример (биномиальное распределение):

Plyoth
$$X_1,..., X_N \sim B_{iN} (M_i, p)$$
 $M - ROL - BO$ regalise. Hermanic Deprysion

 $p - Bepo - To$ yerrerea

Planewith P_{MM}

Pennemie: $M_1 = M_1 \implies M_2 = X \implies p = \overline{X}$

Taken opposion, $P_{MM} = \overline{X} = \frac{1}{N \cdot M} \stackrel{M}{\underset{N=1}{\sim}} X_i$

4.2 Функция правдоподобия. Метод максимального правдоподобия. Пример (биномиальное распределение)

Определение:

Пусть $X_1, \ldots, X_n \sim L_\xi(x,\theta)$, причём $f_\xi(x,\theta)$ — известна, а θ неизвестен. Функцией правдоподобия нахывают $L(\overline{X}_n,\theta) = \prod_{i=1}^n f(X_i,\theta) = f(X_1,\theta) * \cdots * f(X_n,\theta)$.

Метод максимального правдоподобия:

Рассмотрим $\ln L(\overline{X}_n, \theta) = \sum_{i=1}^n \ln f(X_i, \theta)$.

Метод максимального правдоподобия состоит в том, что за оценку параметра θ принимается точка максимума функции правдоподобия.

Алгоритм:

- 1. Построить функцию $L(\overline{X}_n, \theta)$;
- 2. Взять её логарифм $\ln L(\overline{X}_n, \theta)$;
- 3. $\frac{\partial \ln L(\overline{X}_n, \theta)}{\partial \theta} = 0 \Rightarrow \theta;$
- 4. Если значение второй производной строго меньше нля, то оценка параметра $\tilde{\theta}$ и есть θ_0 .

$$rac{\partial^2 \ln L(\overline{X}_n, heta)}{\partial heta^2}|_{ heta_0} < 0,$$
 то $ilde{ heta} = heta_0$

Пример (биномиальное распределение):

2.
$$\ln L(\overline{X}_{H}; p) = \underset{i=1}{\overset{M}{\underset{}}} \ln C_{M} + M \overline{X} \ln p + (MM - M \overline{X}) \ln (4-p)$$

$$\overline{X} - P \overline{X} - (m - \overline{X}) P = 0$$

$$P_0 = \frac{\overline{X}}{m}.$$

$$\frac{\partial^{2} L(\overline{X_{H}}, \overline{P})}{\partial P^{2}} = -\frac{M\overline{X}}{P^{2}} - \frac{MM - M\overline{X}}{1 - P^{2}} \Big|_{P_{0}} = -M \left(\frac{\overline{X}}{\overline{X}^{2}/M^{2}} + \frac{(M - \overline{X})^{2}/M^{2}}{(M - \overline{X})^{2}/M^{2}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline{X}} + \frac{M}{M - \overline{X}} \right) = -M^{2}M \left(\frac{1}{\overline$$

$$\Rightarrow \widetilde{p}_{MM\Pi} = p_0 = \frac{\overline{X}}{M}$$

Ощения по методу ММП не ави-ия нешець по пос-ию, но они состоятельные им асшитостически сос-ые.