Data Science & Artificial Intelligence

Data Structures
Through Python

TREES

Lecture No.- 01

Recap of Previous Lecture

Linear Probing =
$$h(k, \hat{x}) = (h_1(k) + \hat{x}) \cdot / N$$

- Quadratic Probing = $h(k, \hat{x}) = (h_1(k) + \hat{x}^2) \cdot / N$
Double Houshing = $h(k, \hat{x}) = [h_1(k) + \hat{x} h_2(k)] \cdot / N$
 $h_2(k) = k \cdot / N | \hat{x} = 0, 1, 2, ... do$

he
$$(k)$$
= $k \cdot / N1$ 2= 0,1,2, -- for Each tay

 $N = \text{Table Size}$

Topics to be Covered

TREES Dates Structure

Terminology

Types of Binary Trees

TREES

- Non-linear DS
- Elements (Nodes) ave represented in multiple levels
- So, It is also called as Hierarchical Data stoucture

Level, Depth, Height (Numbering starts from Zero)

The Number of Edges from Root Node to respective whode (Root depth == 0)

Height: The Maximum Number of Edges in as path from Leaf node to Despective Node (Leaf Height == 0)

Example:

Level of a Node ==depth of a Node

h(A) = 0 h(A) = 0Level 0 h(A) = 4 h(A) = 4Level (Tree) = Maximum Level Depth (Tree) = Max { depths} Level 1 Height (Tree) = Max {Heighth $(\!\epsilon\!)$ Level (T) == depth(T)

Binary Tree: A Tree whose degree <= 2

- A Binary Tree is a Tree in which Maximum Number of Children Per Node == 2 i.e A Node can have either No child, (or) I child (or) 2 children.

Ex: 2

Ex:3

Binary Tree

Binary Tree

Binary Tree

的曲

deg(H)==3==deg(Tree)==3

Not a Binary Toee

Types of Binary Trees

- Full Binary Tree /
- Complete Binary Tree
- Perfect Binary Tree
- Skewed Binary Tree
- Degenerated Binary Tree
- Binary Search Tree /
- Binary Heap/
- AVL Tree
- Red Black Tree, Segment Tree, B-Tree, B+ Tree ---

Full Binary Tree

- A Binary Tree whose degree = 0 or 2.
- Each node can have either 0 child (or) 2 children

PBT

NOTE: Every PBT is FBT, but Every FBT is Not PBT

Complete Binary Tree

- A Binary Tree in which

- Every PBT is FBT, CBT

- Every CBT is not PBT, not PBT

Skewed Binary Tree

A Binary Tree in which

- Each Non-leaf Node degree = =1

- All Non-leaf nodes have

Either only left child (ox)

only right child

Left stewed

Right Skewed

Degenerated Binary Tree

- Each Node degree == 1 (EXCEPT leaf Node)

- It can be either left (01) Right child

2 mins Summary

- -Tree Terminology
 - degree, depth, height, level
 - Root, Siblings, leaf, ancestor, Predecemor
- Types of Binary Trees
 - FBT, PBT, CBT, SBT, DBT

To be contd...

THANK - YOU