

Management großer Softwareprojekte

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin, Institut für Informatik

Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST

Wo stehen wir?

1. Einleitung: Begriffe, Definitionen, ...

- System, Projekt, Managementaufgaben
- Besonderheiten bei der SW-Entwicklung

2. Projektphasen

- Produktzyklus
- Projektentwicklungszyklus

3. Projektorganisation

- Aufbauorganisation
- Ablauforganisation, CMM

4. Aufwandsschätzung

- Schätzverfahren
- Kostenmodelle

5. Planungsmethoden

- Planungsarten
- Netzplantechnik, Gantt-Pläne
- Werkzeuge und Algorithmen

Planung

• Ziele:

- Zeitschätzung und Terminbestimmung
- Planung der Vergabe von Ressourcen

Resultate

- Übersicht über Stand des Projekts
- grafischer Überblick über geplanten Ablauf
- Entscheidungs-, Steuerungs- und Kontrollunterlage

Planungsarten und Planungstechniken

Planungsarten

- Aktivitätenlisten, Projektstrukturpläne
- Projektablaufpläne
- Terminpläne, Kostenpläne, Kapazitätspläne

• Planungstechniken:

- Netzpläne
- Balkendiagramme (Gantt-Diagramme)
- Einsatzmittel-Auslastungsdiagramme (EAD)

Planungsvorgang

Systematik der Planung

- Planung des Ziels
 - welches (Teil-) Produkt soll geliefert werden?
- Planung der Tätigkeiten
 - vollständige Liste zur Erreichung des Ziels
- Planung der Bedingungen
 - Methoden und Verfahren, Abhängigkeiten
- Planung der Ressourcen
 - Mitarbeiter-Anforderungsprofile, Maschinenbelegung etc.
- Planung der Kosten
 - in Übereinstimmung mit vorheriger Schätzung
- Planung der Termine
 - in Abhängigkeit von Kosten und Ressourcen

Hilfsmittel

- Aktivitätenliste
- Projektstrukturplan (PSP)
- Projektablaufplan (PAP)
- Terminplan
- Kapazitätsplan
- Kostenplan

Aktivitätenliste

- Sammlung aller notwendigen Aktivitäten
- Gruppierung in Themenbereiche (vgl. einleitendes Beispiel Himalaya-Expedition)

Beispiel Hausbau

Projektstrukturplan

Aktivitätenliste als Baum, zur Übersicht über das Projekt

Bildung von Teil- und Unterprojekten

Aufzeigen von Zusammenhängen und Definition von

Schnittstellen

Regeln zur Erstellung eines PSPs

- Unterteilung soweit, dass ein Blatt komplett von einer OE bearbeitet werden kann
- klar abgegrenzte Arbeitspakete (AP)
- klar definierte Arbeitsergebnisse

Projektablaufplan

- Betrachtung der logischen Zusammenhänge der definierten Arbeitspakete (AP)
- Festlegung der parallel bearbeitbaren AP

Schätzung von Kapazitäts- und Zeitbedarf für die

Terminplan

- **Ziel:** Terminierung des Planungsablaufes
- Mittel: Anfangs- und Endtermine, Stichtage, Meilensteine
- Formen: Liste, Balkendiagramm

Nr.	Verantwortlich	Termin					
Arbeits- paket		von	bis				
1.1.	Emsig	15.2.	18.3.				
1.2.							
2.1.							
2.2.							
2.3.							
2.4.							
2.5.			. ,				
2.6.			,				

Nr. Arbeits- paket	Wochen												
1.1.	2												
2.1.	4												
2.2.	4												
2.3.	2,5								<u> </u>				
2.4.	3												
2.5.	5												
1.2.	4												
		1	2	3	4	5	6	7	8	9	10	11	12

Zeit [Wochen

Kapazitätsplan

- Ziel: Zuordnung von erforderlichen und verfügbaren Ressourcen
- Ergebnis: Übersicht über die erforderlichen Kapazitäten zu den geplanten Terminen während der Projektlaufzeit

Kostenplan

- Kosten = Verzehr an Gütern und Dienstleistungen
- Menge mal Preis
- in SW-Projekten in erster Linie Personalkosten
- Kosten je Arbeitspaket als Gesamtübersicht über die Projektlaufzeit; ggf. auch kumuliert oder tabellarisch

H. Schlingloff, Management großer Softwareprojekte

Aufgabe

 Erstellen Sie PSP, PAP und Terminplan für das Pizzaservice-Beispiel!

Netzplantechnik

- graphische oder tabellarische Darstellung aller Abläufe/Teilaufgaben mitsamt deren Abhängigkeiten unter Einbeziehung der Ergebnisse der Kapazitäts-, Termin- und Kostenplanung
- umfassendes Planungsinstrument für komplexe Projekte
- übersichtlicher Überblick über den Projektablauf, inklusive der eindeutigen Darstellung der Abhängigkeiten einzelner Vorgänge im Ablauf
- ermöglicht genaue Zeitschätzung bzw. Terminfestlegung für den Gesamtablauf sowie für einzelne Vorgänge

Wozu Netzplantechnik

- Erkennen der zeitintensivsten Ablauffolge: "kritischer Weg"
- ermöglicht relativen Vergleich der Konsequenzen von Terminen, Kosten und Einsatzmitteln verschiedener Planungsvarianten
- fördert rechtzeitige Entscheidungen, da mögliche Konsequenzen im Netzplan ersichtlich sind
- geeignet für:
 - Strukturplan
 - Zeitplan
 - Einsatzmittelplan
 - Kostenplan

- bekannteste Arten von Netzplänen:
 - CPM: Critical Path Method (Vorgangspfeil-Netzplan)
 - PERT: Program Evaluation and Review Technic (Ereignisknoten-NP)
 - MPM: Metra-Potential-Method (Vorgangsknoten-Netzplan)
- zahlreiche Softwareprodukte (MS Project u.a.) unterstützen den Einsatz der Netzplantechnik; oft: Zusammenfassung verschiedener Arten von Netzplänen, daher: Vorsicht auf Konsistenz!

Darstellungsarten für Netzpläne

- Vorgangs-Pfeil-Darstellung (CPM)
 Vorgang als Pfeil, Ereignis als Kreis dargestellt
 Schwerpunkt Vorgang (Tätigkeit) mit Dauer
- Ereignis-Knoten-Darstellung (PERT)
 Ereignis als Knoten (meist Kreis) dargestellt,
 Pfeil gilt als Beziehung: Zustandsübergang mit Dauer
 Schwerpunkt Ereignis
 Zustandsübergang kann mehrere Vorgänge umfassen, die
 - Zustandsübergang kann mehrere Vorgänge umfassen, die nicht näher beschrieben werden
- Vorgangs-Knoten-Darstellung (MPM)
 Vorgang als Knoten (meist Rechteck) dargestellt,
 Pfeil gilt als Beziehung

CPM-Netzpläne (1)

CPM: Vorgangs-Pfeil-Darstellung

- Knoten: symbolisiert einen Zustand
 - Beispiel: Programm erstellt, Startbereit für Test
 - Darstellung: als Kreis oder Rechteck
- Ereignisknoten enthält folgende Bestimmungsstücke:

CPM-Netzpläne (2)

- *gerichtete Kante*: symbolisiert Vorgang oder Tätigkeit innerhalb eines Projektes
 - kein Zusammenhang zwischen der Länge des Pfeils und der Dauer des Vorgangs
- Vorgangsbeschreibung: verbal oder Indexeintrag oberhalb des Pfeils
- Vorgangsdauer: numerischer Eintrag unter dem Pfeil

CPM-Regeln

Regel 1:

Ein Vorgang kann erst beginnen, wenn alle vorangehenden Vorgänge abgeschlossen sind. Dabei fällt, mit Ausnahme des ersten Vorgangs, das Anfangsereignis mit dem Endereignis des vorangehenden Vorgangs zusammen.

CPM-Regeln (2)

Regel 2:

Müssen mehrere Vorgänge beendet sein, bevor ein weiterer Vorgang beginnen kann, so enden sie im Anfangsereignis des nachfolgenden Vorgangs.

Regel 3:

Können mehrere Vorgänge beginnen, nachdem ein vorangehender Vorgang beendet ist, so beginnen sie im Endereignis des vorangehenden Vorgangs.

CPM-Regeln (3)

Regel 4:

Haben zwei oder mehr Vorgänge gemeinsame Anfangs- und Endereignisse, so ist ihre eindeutige Kennzeichnung durch Einfügen von Scheinvorgängen zu gewährleisten.

CPM-Regeln (4)

Regel 5:

Beginnen und enden in einem Ereignis mehrere Vorgänge, die nicht alle voneinander abhängig sind, so ist der richtige Ablauf durch Auflösung der Unabhängigkeiten mittels Scheinvorgängen darzustellen.

Regel 6:

Innerhalb einer Folge von Vorgängen können beliebig viele Scheinvorgänge eingefügt werden. Sie dienen neben der logischen Verknüpfung auch der besseren Übersicht.

CPM-Regeln (5)

Regel 7:

Kann ein Vorgang beginnen, bevor der vorangehende vollständig beendet ist, so ist der vorangehende weiter zu unterteilen, damit ein "Zwischen-Ereignis" definiert werden kann.

Regel 8:

Jeder Vorgang kann nur einmal ablaufen. Daher dürfen im CPM-Netzplan keine Schleifen auftreten.

Netzplantechnik - Schritte

die **Netzplantechnik** umfasst dann folgende *Schritte*:

- Erstellen der T\u00e4tigkeitsliste aufgrund des Projektstrukturplans
- Erstellen des Netzplans
- Errechnen des kritischen Weges
- Berechnen der Vorgangszeitpunkte und Pufferzeiten
- Verwendung des Netzplans als Basis von
 - Balkendiagrammen, z.B. Belegungsplan, Einsatzplan
 - Einsatzmittel-Auslastungsdiagrammen, z.B. zwecks Bedarfsglättung

Tätigkeitsliste

Erstellen der **Tätigkeitsliste** als Grundlage jedes Netzplans:

- entsprechend der Projektstruktur werden alle Teilprojekte in Einzeltätigkeiten zerlegt;
- für jede Tätigkeit: Definition der
 - erforderlichen Vorbedingungen (Abschluss anderer Tätigkeiten)
 - voraussichtlichen Dauer
 - ggf. der direkten Nachfolgetätigkeiten
- Erstellung der T\u00e4tigkeitsliste (auch "Vorgangsliste")
 Beispiel siehe n\u00e4chste Folie

Beispiel einer Tätigkeitsliste

Vorgangsliste	Projekt: Aussteller:	Nr.: Datum:	Seite:
		J.	

	Projekttätigkeit	Vorgangszeitpunkte				Vorgang	Direkter	Direkter	Pufferzeiten			Bedarf	
Nr.	Arbeitspaket (Tätigkeit)	FA	SA	FE	SE	Dauer	Vorläufer	Nachfolger	PG	PF	PU	MA	SM
Α	Arbeitspaket 01					5		B,C,D					
В	Arbeitspaket 02					6		E]	
С	Arbeitspaket 03					I _ 7		E				<u> </u>	
D	Arbeitspaket 04					8		E		 			
E	Arbeitspaket 05		T			4						<u> </u>	
F	Arbeitspaket 06		Ţ - -			6		G				1	
G	Arbeitspaket 07		T			6						I	
H	Arbeitspaket 08		T	T		3						I = I = I	
 -	Arbeitspaket 09		T	T		4		K					
Γĸ	Arbeitspaket 10					5							

TFA = Termin mit frühestmöglichem Anfang des Vorgangs

TSA = Termin mit spätestzulässigem Anfang des Vorgangs

TSE = Termin mit spätestzulässigem Ende des Vorgangs

TFE = Termin mit frühestmöglichem Ende des Vorgangs

PG = Gesamte Pufferzeit

PF = Freie Pufferzeit

PU = Unabhängige Pufferzeit

MA = Personal (Mitarbeiter/Mitarbeiterin)

SM = Sachmittel (pro Vorgang)

(Jenny, Abb. 4.04, S. 340)

Erstellen eines Netzplanes

- Eintragen der logischen Abhängigkeiten zwischen Tätigkeiten
- Darstellung als gerichteter Graph
- Eintragen der geschätzten Dauer zu einzelnen Tätigkeiten

Errechnen der Zeitwerte

Vorwärtsrechnung

- Beginn bei 0
- dann: Addieren der Zeiteinheiten nach der logischen Reihenfolge und Eintrag in das linke untere Feld des Ereigniskreises
- Bedeutung: Bestimmung der frühesten Ereigniszeitpunkte

Rückwärtsrechnung

- vom Endereignis und dessen Zeitwert aus der Vorwärtsrechnung ausgehend
- Bestimmung der spätesten Ereigniszeitpunkte durch Subtraktion der Zeitwerte
- Eintrag in den rechten unteren Teil des Ereignisknotens

Bestimmung des kritischen Weges

- Der kritische Weg umfasst alle Ereignisse, deren früheste und späteste Ereigniszeitpunkte gleich sind
- der kritische Weg enthält alle Tätigkeiten, die keine Pufferzeiten erlauben
- zwischen dem geplanten Ende einer Tätigkeit und dem Start der Folgetätigkeit gibt es keine zeitliche Verschiebungsmöglichkeit, wenn das Ende des gesamten Vorhabens unbeeinflusst bleiben soll

Beispiel eines Netzplans

Netzplantechnik - CPM

- Berechnen der Vorgangszeitpunkte ("Tätigkeitszeitpunkte"):
 - frühester Anfangszeitpunkt des Ereignisses: FA
 - spätester Endzeitpunkt eines Vorganges:
 - frühester Endzeitpunkt eines Ereignisses: FE
 - spätester Anfangszeitpunkt eines Vorganges: SA
- Zweck: Berechnung der Pufferzeiten und Erstellen des Einsatz-Auslastungsdiagramms, z.B. zwecks Bedarfsglättung

H. Schlingloff, Management großer Softwareprojekte

17.12.2002

Pufferzeiten – gesamte Pufferzeit

- Aufgrund der Vorwärts- und Rückwärtsrechnung sind bekannt: FA (FZ) und SE (SZ)
 - FE(V1) = FA(V1) + D(V1)
 - SA(V1) = SE(V1) D(V1)
- Gesamte Pufferzeit (GP):
 - GP = SE(j) FA(i) D oder
 - GP = SZ(j) FZ(i) D
 - GP gibt an, wie lange ein Vorgang höchstens verlängert/verzögert werden kann, ohne dass der Endtermin beeinträchtigt wird

Pufferzeiten – freie Pufferzeit

- Freie Pufferzeit (FP):
 - FP = FE(j) FA(i) D oder
 - FP = FZ(j) FZ(i) D
- Freie Pufferzeit entsteht, wenn mehrere Vorgänge, die nicht alle zeitbestimmend sind, in einem Ereignis münden
- Die freie Pufferzeit gibt den Zeitunterschied zwischen der zeitbestimmenden und der auf einem anderen Weg berechneten frühesten Lage eines Ereignisses an
- FP gibt an, wie lange ein Vorgang höchstens ausgedehnt/verzögert werden kann, ohne den Anfangszeitpunkt der Folgevorgänge zu beeinflussen

Pufferzeiten – unabhängige Pufferzeit

- Unabhängige Pufferzeit (UP):
 - UP = FE(j) SA(i) D
- UP gibt die Dauer an, die der Vorgang mit den Folgevorgaben ausgedehnt oder verschoben werden kann:
 - a) das Startereignis muss zum spätest erlaubten Zeitpunkt beginnen und
 - b) der Vorgang muss den frühest möglichen Endzeitpunkt einhalten können.
- weitere Kenngröße: Schlupf im Zustand i:
 - SL(i) = SZ(i) FZ(i)

Übersicht zu Pufferzeiten und Schlupf

(Böhm Abb. 9.24 S. 278)

Legende:

Puffer	Vorgang	V1	V2
Gesamt-Puffer (GP)		früheste Lage (FL)	späteste Lage (SL)
Freier Puffer (FP)		früheste Lage (FL)	früheste Lage (FL)
Freier Rückwärtspuffe	er (FRP)	späteste Lage (SL)	späteste Lage (SL)
Unabhängige Pufferze	it (UP)	späteste Lage (SL)	früheste Lage (FL)