실험탐구 각각의 유전자는 생합성 경로에서 작용을 하는 효소들을 지정하나?

실험 솝과 호로위츠는 그 당시 스탠터드대학에서 곰팡이 Neurospore crassa를 가지고 연구하면서 비들과 테이텀의 실험 방법을 이용하여 테지에서 살아남기 위해 아르기난이 필요한 돌연변이체를 분리하였다(그림 17.2). 이 연구자들은 이 돌연변이체품이 됐 개의 부류로 나뉘고 각 부류는 각기 다른 유전자에 결함이 있음을 보여주었다. 포유류의 간세포툟 이용한 다른 연구로부터 그들은 아르기닌 생합성의 대사경로는 오른쪽 모식 도에서 보는 것처럼 전구영양물질과 중근물질인 오르니틴과 시트롤린이 필요하다고 추정하였다.

여기에 소개된 그들의 가장 유명한 불형은 1 유전자-1 효소'라는 가설과 그들이 가정한 아르기닌 생합성 경 로를 동시에 시험하는 것이다. 이 실험에서 그들은 세 부류의 돌연변이체를 아래의 결과란에서 보듯이 네 개 의 다른 조건 아래 배양하였다. 이들은 최소배지(MM)에서 야생형의 세포는 자라고 돌연변이체는 자라지 못하 기 때문에 대조군으로 최소배지를 포함시켰다(밑의 시험관 참조)

자라지 않음: 자라지 않고 분열하지 못하는 돌연변이 세포

대조군: 최소배지

결과 오른쪽 표에 보이는 것처럼, 야생형 균주는 단지 최소배지만을 필요로 하고, 모든 배양조건에 서 다 자랄 수 있었다. 다른 세 부류의 돌연변이체 들은 각기 특정한 세트의 생장 요구 조건을 필요로 한다. 예를 들면 두 번째 부류의 돌연변이체는 오 르니틴을 배지에 넣었을 때는 자라지 못하나 시트 룰린이나 아르기닌을 넣었을 때는 자랐다.

0.0	결과표	A STATE OF THE STA	Neurospora crassa의 분류			
137		야생형	첫 번째 부류	두 번째 부류	세 번째 부류	
조건	최소배지 (MM) (대조군)					
	MM + 오르니틴	j	j			
	MM + 시트룰린			J		
	MM + 아르기닌 (대조군)					
	결과 요약	어떤 첨가물을 넣든 안넣든 자란다	오르니틴, 시트룰린 또는 아르기닌을 넣으면 자란다.	시트룰린 또는 아르기닌을 넣으면 자란다.	반드시 아르기닌만 넣어야 자란다.	

결론 돌연변이체의 생장 양상을 보아 솝과 호르 위츠는 각 돌연변이체는 아르기닌을 생합성하는 과정에서 한 단계만을 수행하지 못하는데, 그 이유 는 오른쪽 표에서 보는 것처럼 필요한 효소가 없기 때문이라고 추론해 냈다. 각각의 돌연변이체는 단 일 유전자가 돌연변이 되었기 때문에 그들은 각각 의 돌연변이가 일어난 유전자는 정상일 때 하나의 효소를 합성하도록 지시한다고 결론지었다. 그들 의 결과는 비틀과 테이텀이 제시한 1 유전자 효 소'라는 가설을 지지하였으며 또한 포유류의 간에 서 일어나는 아르기닌 합성 경로가 Neurospora에 서도 작용함을 확인하였다. (결과 표에서 돌연변이 체는 결함이 있는 과정 다음에 생성되는 화합물을 첨가해야만 결함을 극복하기 때문에 자랄 수 있음 에 주목하라)

참고문헌 A, M, Srb and N, H, Horowitz, The ornithine cycle in Neurospora and its genetic control, Journal of Biological Chemistry 154; 129-139 (1944).

WHAT IF? ➤ 만약 이 연구에서 첫 번째 부류의 돌연변이체가 최소배지에 오르니틴이나 아르기닌을 첨가하면 자라며, 두 번 부류는 시트룰린이나 오르니틴, 아르기닌을 넣어주면 자란다고 가정하자. 과학자들은 생합성 경로와 첫 번째와 두 번째 부류의 여변이체의 결함과 관련하여 어떠한 결론을 내릴 것인가?