Unsupervised Learning & naïve bayes

Vladislav Goncharenko MIPT, 2019

Outline

- 1. Naïve Bayes
- 2. Unsupervised learning
 - a. Maniflod learning

Naïve Bayes

Naive assumption of features independence leads to simple and easy to calculate result

$$P(y|x_1,\ldots,x_n) = P(y) \cdot \frac{P(x_1,\ldots,x_n|y)}{P(x_1,\ldots,x_n)}$$

$$P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y)$$

$$P(y|x_1,\ldots,x_n) = P(y) \cdot \frac{\prod_i P(x_i|y)}{P(x_1,\ldots,x_n)}$$

$$P(x_1,\ldots,x_n) \equiv const$$

$$\hat{y} = \arg\max_{y} P(y) \cdot \prod_{i} P(x_i|y)$$

What $P(x_i|y)$ really is?

Typical likelihood of the features

- 1. Gaussian
- 2. Multinomial
- 3. Bernoulli

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

$$P(x_i \mid y) = P(i \mid y)x_i + (1 - P(i \mid y))(1 - x_i)$$

Supervised learning

Unsupervised learning

Manifold learning

Manifold assumption

The data lie approximately on a manifold of much lower dimension than the input space

So problem dimensionality could be (non-)linearly reduced

Approach doesn't require any labels

<u>Tenenbaum, de Silva, Langford</u>
A Global Geometric Framework for Nonlinear Dimensionality Reduction

Multi-dimensional Scaling (MDS)

Goal:

Linearly embed to given lower space Solution:

PCA

$$L = ||D_x - D_y||_2 \to \min_{y = Ax}$$

$$y = \Lambda^{1/2} V^T$$

Voting patterns in the United States House of Representatives

Params: p - target dimensionality

Isomap

Now make distancies geodesic! And measure distances on the produced graph

Params:

Original article

n - number of neighbours to connect

p - dimensionality of manifold

Locally linear embedding (LLE)

Idea:

Smooth manifold can be locally approximated linearly. Linear peases can be flattened

Original article

Locally linear embedding (LLE)

Two steps of embedding and two objective functions:

1. estimate point by its K neighbours

$$\varepsilon(W) = \sum_{i=1}^{n} ||x_i - \sum_{j=1}^{K} W_{ij} x_j||^2$$

2. Estimate new points based on known relations

$$\Phi(Y) = \sum_{i=1}^{n} ||y_i - \sum_{j=1}^{n} W_{ij} y_j||^2$$

Params:

n - number of neighbours to connect

p - dimensionality of manifold

Many more...

- Hessian Eigenmapping
- Spectral Embedding
- Local Tangent Space Alignment
- Riemannian Geometry
-

t-SNE

t-distributed Stochastic Neighbor Embedding

SNE

original article

Stochastic Neighbor Embedding

Idea:

Convert pairwise distances to probabilities

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$

asymmetric probability of object i chooses j as its neighbour

$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

the same in target space

Let's construct embedding s.t. this distributions are close. What are close distributions?

Kullback-Leibler divergence

$$D_{KL}(P || Q) = \sum_{i,j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Suspiciously similar to Shannon entropy

Learn more

Stochastic Neighbor Embedding

$$p_{j|i} = \frac{\exp(-\frac{||x_i - x_j||^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{||x_i - x_k||^2}{2\sigma_i^2})}$$
$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

$$D_{KL}(P \mid\mid Q) \to \min_{Y}$$

t-distributed Stochastic Neighbor Embedding

Patches over SNE:

- 1. make distribution symmetric
- 2. make it decrease faster than Gaussian (use <u>Student's t-distribution</u>)

$$q_{ij} = \frac{\frac{1}{1+||y_i - y_j||^2}}{\sum_{k \neq i} \frac{1}{1+||y_i - y_k||^2}}$$

Original article

Links

- 1. Good lecture on MDS, Isomap, LLE
- 2. <u>Lecture on t-SNE</u> (this one is good too)
- 3. Slides about clusterization
- 4. Metrics in clusterization
- 5. Slides about ICA