Lecture 7: Stochastic models for small groups such as households

A Brief History of the Reed-Frost Model

- PD En'ko (1889) Deterministic difference equations
- L Reed and WH Frost (1930) Marbles and shoots
- M Greenwood (1931) Alternative formulation
- H Abbey (1952) 1st analysis as a stochastic process
- L Elveback, JP Fox, E Ackerman (1960) 1st computer program and lots of theory

Reed-Frost Model

Lowell Reed 1886 - 1966

Wade Hampton Frost 1880–1938

Both Former Deans: Johns Hopkins School of Public Health

Helen Abbey 1915 - 2001

Eugene Ackerman 1920 -

John P. Fox Died around 1989

Reed-Frost Model

Stochastic process: discrete state space and time $t_0, t_1, t_2 \dots$

- Infectious agent natural history
 - ◆ Infectious for one time unit
- Social contact structure
 - Random mixing
 - p = 1 q, probability two people make contact sufficient to transmit
- $\blacksquare \mathbf{R}_0 = (n-1)p$

Reed-Frost Model

$$P(I_{t+1}|S_t,I_t) = {S_t \choose I_{t+1}} (1-q^{I_t})^{I_{t+1}} q^{I_t(S_t-I_{t+1})}, S_t \ge I_{t+1},$$

$$S_{t+1} = S_t - I_{t+1},$$

$$R_{t+1} = R_t + I_t,$$

$$S_{t+1} = S_t - I_{t+1},$$
 $R_{t+1} = R_t + I_t,$ $S_t + I_t + R_t = n, \forall t,$

$$P[S(0) = n-1] = 1, P[I(0) = 1] = 1, P[R(0) = 0] = 1$$

$$\{S_t, I_t\}_{t=0,1,...}$$
 is a Markov chain

Greenwood Model

$$P(I_{t+1}|S_t,I_t) = \begin{pmatrix} S_t \\ I_{t+1} \end{pmatrix} (1-q^{I_t})^{I_{t+1}} q^{I_t}^{(S_t-I_{t+1})}, S_t \ge I_{t+1},$$

$$S_{t+1} = S_t - I_{t+1},$$

$$R_{t+1} = R_t + I_t,$$

$$\begin{aligned} S_{t+1} &= S_t - I_{t+1}, \\ R_{t+1} &= R_t + I_t, \\ S_t + I_t + R_t &= n, \forall t, \end{aligned}$$

$$P[S(0) = n-1] = 1, P[I(0) = 1] = 1, P[R(0) = 0] = 1$$

$$\{S_t, I_t\}_{t=0,1,...}$$
 is a Markov chain

A Chain

$$I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_r$$

$$P(I_0, I_1, I_2, \cdots, I_r) =$$

$$P(I_1 \mid S_0, I_0)P(I_2 \mid S_1, I_1) \cdots$$

$$P(I_r \mid S_{r-1}, I_{r-1})$$

$$T = \inf_{t \geq 0} \{t : S_t I_t = 0\}.$$

Example

Possible individual chains when $S_0 = 3$, $I_0 = 1$

Chain	Probability	Final Size
$\{i_0, i_1, i_2,, i_T\}$		R_T
$\{1\}$	q^3	1
$\phantom{00000000000000000000000000000000000$	$3pq^4$	2
$\overline{\{1,1,1\}}$	$6p^2q^4$	3
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$3p^2q^3$	3
$\overline{\{1,1,1,1\}}$	$6p^{3}q^{3}$	4
	$3p^{3}q^{2}$	4
	$3p^3q\left(1+q\right)$	4
$ = \{1,3\} $	p^3	4
	·	·

Epidemic in the Community

Community Structure

n - Households (Semiclosed Groups)

"IN ACCEPTING THE FAMILY

AS A SEMICLOSED GROUP, ONE

MUST BELIEVE THAT INFECTIONS

IN SUCCESSIVE FAMILY MEMBERS

WITHIN A SHORT PERIOD OF

TIME ARE MORE LIKELY TO BE

RELATED TO EACH OTHER THAN

TO HAVE BEEN SEPERATELY AC
QUIRED FROM OUTSIDE SOURCES.

THIS IS ESSENTUALLY AN ACT

OF FAITH AND NEARLY IMPOSSIBLE

TO ESTABLISH IN TERMS OF EXACT

PROBABILITY "

Buck, C. Acute upper respiratory infections in families Am. J. Hyg. 63, 1-12, 1956.

1. NATURAL HISTORY OF S-I-R INFECTION PROCESS

FLU: $\mathcal{E}(T_1) \cong \mathcal{E}(T_2) \cong \mathcal{Q}$ DAYS $\mathcal{E}(T_2) \cong \mathcal{Q}$ DAYS

MEASLES:
$$\mathcal{E}(T_1) \cong \mathcal{S}$$
 DAYS
$$\mathcal{E}(T_2) \cong \mathcal{S}$$
 DAYS
$$\mathcal{E}(T_2) \cong \mathcal{S}$$

PROBABILITY MODEL FOR ACUTE INFECTIOUS DISEASES

 $\pi_{i,j}$ PROB. THAT i OUT OF j PERSONS ARE INFECTED, i \leq j

ASSUMPTIONS:

- 1. T AND T₂ ARE FIXED (B = b^t and Q = q^{t₂})
- 2. RANDOM MIXING WITHIN HOUSEHOLDS
- 3. PROB. FAMILY MEMBER INFECTED FROM COMM.

 IS INDEPENDENT OF # INFECTED IN HOUSEHOLD

3. TRANSMISSION PROBABILITIES

WITHIN FAMILIES:

p = PROB. INFECTED GIVEN CONTACT PER UNIT OF TIME

$$q = 1 - p$$

$$Q = E(q^{T_2}),$$

 $SAR = (1 - Q) \times 100$ SECONDARY ATTACK RATE

FROM COMMUNITY SOURCES:

T = DURATION OF THE EPIDEMIC IN THE COMMUNITY

a = PROB. INFECTED FROM COMMUNITY SOURCES OVER

THE COURSE OF THE EPIDEMIC, b = 1 - a

$$B = E(b^{T})$$

CPI = 1 - B COMMUNITY PROBABILITY OF INFECTION

PARTITION SAMPLE SPACE INTO i INFECTIVES AND j - i ESCAPES. WHERE THERE ARE $\binom{j}{i}$ SUCH PARTITIONS

FOR ONE PARTITION OF THE SAMPLE SPACE:

E - EVENT i OUT OF i INFECTED

$$P(E) = II_{ii}$$

$$F - EVENT j - i ESCAPE$$

$$P(F|E) = B^{j-i} Q^{i(j-i)}, i < j$$

THEN WE HAVE

$$II_{i,j} = P(E \cap F) = P(E) P(F|E)$$

$$\Pi_{i,j} = \Pi_{i,i} B^{j-i} Q^{i(j-i)}, i < j,$$

$$\Pi_{\mathbf{j}\mathbf{j}} = 1 - \sum_{\mathbf{i}=0}^{\mathbf{j}-1} \Pi_{\mathbf{i}\mathbf{j}}$$

SPECIAL CASES

BINOMIAL: WHEN Q = 1. THEN

$$II_{i,j} = {j \choose i} (1 - B)^i B^{j-i}, i \le j$$

REED-FROST-EN'KO MODEL: WHEN AND B = 1, AND THERE ARE $i_0 \ge 1$ INITIAL INFECTIVES, THEN

$$\Pi_{i,j} = {j \choose i} \Pi_{i,i} Q^{(i_0+i)(j-i)}, i < j.$$

$$\pi_{\mathbf{j}\mathbf{j}} = 1 - \sum_{\mathbf{i}=0}^{\mathbf{j}-1} \pi_{\mathbf{i}\mathbf{j}}$$

BAILEY (1975), LUDWIG (1975)

"DISCORDANT COUPLES MODEL": WHEN j=1, $i_o=1$, AND B < 1, THEN $II_{O1}=BQ$ AND $II_{11}=1-BQ$.

$$\pi_{ij} = {\binom{j}{i}} \ \pi_{ii} \ B^{j-i} \ Q^{i(j-i)}, \ i < j.$$

$$\pi_{jj} = 1 - \sum_{i=0}^{j-1} \pi_{ij}$$

LONGINI & KOOPMAN (1982), LONGINI, ET AL. (1982)

$$T_{01} = B$$

$$T_{01} = I - B$$

PROBABILITY MASS FUNCTION FOR A HOUSEHOLD WITH FIVE SUSCEPTIBLES

DISTRIBUTION OF RESPIRATORY SYMPTOMS DURING H3N2 EPIDEMIC PERIOD OF 1977-78 IN TECUMSEH

NUMBER	<u> </u>	UMBER OF INDI	VIDUALS/HO	USEHOLD	
INFECTED	1	2	3	4	5
C	38	48 (48)	13 (13)	6 (6)	4 (
1	19	29 (44)	19 (27)	13 (20)	3 (
2		25 (10)	20 (18)	17 (24)	9 (
3			10(4)	23 (13)	8
4				7 (3)	5 '
5		,			6
TOTAL	57	102	62	66	35
	b .	· b _	n.	b _	

LIKELIHOOD FUNCTION

n - Total number of households

n - Number of households with j initial susceptibles

n_{ij}- Number of households with i of j
 individuals infected

$$(\sum_{i} n_{ij} = n_{j}, \sum_{j} \sum_{i} n_{ij} = \sum_{j} n_{j} = n)$$

$$L(Q,B) = \prod_{j} \prod_{i} \pi_{i,j}$$

Wass

LONGING & KUOPMAN (1982)

DISTRIBUTION OF INFECTIONS BY HOUSEHOLDS

Number of Susceptibles/Household

			•	j			•	
Infected	1	2	3		 •	•	•	. J
i			`					
0.	ⁿ 01	ⁿ 02	ⁿ 03				•	. ⁿ oJ
1	n ₁₁	ⁿ 12	ⁿ 13		 •		•	. n ₁ J
2	-	n ₂₂	ⁿ 23		 •		•	. n ₂ J
•	٠	•	•					•
•	•	•	• .					•
•	•	•	•			•,		•
•	•	•	•					•
•	•	•	•					•
•	•	•	•					•
J	•••	-	_		 		•	ⁿ JJ

 $^{\mathrm{n}}.1$ $^{\mathrm{n}}.2$ $^{\mathrm{n}}.3$ \cdots $^{\mathrm{n}}.J$ $^{\mathrm{n}}$

DISTRIBUTION OF INFLUENZA A(H3N2) INFECTIONS 1980-81 TECUMSEH DATA

Number	of	Suscept	ibles	/Household
--------	----	---------	-------	------------

Number		i			
Infected	1	2	3	4	
0	44	62	47	38	
1	10	13	8	11	
2	-	9	2	7	
3	ejum-	-	3	5	
4		***	***	1	
	54	84	60	62	260
	b. (n. 2	4.3	h,4	

MAXIMUM LIKELIHOOD ESTIMATION

In L = C+ \(\frac{1}{2}\) \(\lambda_{ij} \) \(\la

$$0 = \frac{\partial \ln L}{\partial Q}\Big|_{\hat{Q},\hat{B}} = 22 nij \{ \frac{\partial T_{ii}}{\partial Q} + \frac{i(i-i)}{Q} \},$$

SOLVE BY METHOD OF SCORING WHICH

ALSO PROVIDES

VOL (Q), VOL (B) AND COV (Q,B).

ALSO QNN AND BNN LARGE N.

LONGINI & KOOPMAN (1982)

$$-\mathcal{E}\left(\frac{\partial_{3} \mathcal{P}_{VY}}{\partial \mathcal{O}_{5}}\right) = \underbrace{\mathcal{E}}_{K} \underbrace{\mathcal{E}}_{VK} \underbrace{\mathcal{W}^{2K}}_{VK} \underbrace{\mathcal{W}^{2L}}_{W^{2L}} \left[\underbrace{\mathcal{W}^{2L}}_{V} \left(\frac{\partial \mathcal{W}^{2L}}{\partial \mathcal{W}^{2L}}\right)_{7}^{2} - \frac{\partial_{5} \mathcal{W}^{2L}}{\partial \mathcal{O}_{5}}\right]$$

$$-\mathcal{E}\left(\frac{\partial B_{3}}{\partial B_{3}}\right) = \frac{2}{5} \sum_{k=1}^{3} N_{k} M^{2k} \left\{ \frac{M^{22}}{M^{22}} \left[\frac{M^{22}}{\partial B_{3}} \right]_{3} - \left(\frac{\partial B_{3}}{\partial B_{3}} \right) \right]$$

LOG-LINEAR MODEL FOR SMALL POPULATION GROUPS

$$w_{ij} = {j \choose i} w_{ii} B^{(j-i)} Q^{j(j-i)}$$
, $i < j$

$$LOG \pi_{ij} - LOG \pi_{ii} - LOG \binom{j}{i} = (j-i) LOG B + j(j-i) LOG Q,$$

$$i < j$$

Let
$$a_{ij} = LOG \binom{j}{i}$$
, $\beta = LOG B$, $\gamma = LOG Q$, $(B = e^{\beta})$, $(Q = e^{\gamma})$

and substituting we have

$$LOG \pi_{ij} - LOG \pi_{ii} - a_{ij} = (j-i) \beta + j(j-i) \gamma$$

$$\underline{A} LOG \underline{\pi} - \underline{a} = \underline{X} \underline{\beta}$$

Log-Linear Model

WEIGHTED LEAST - SQUARES
HABER, LONGINI, COTSONIS (1988)

PARAMETER ESTIMATION COMPARING PROBABILITY AND

LOG-LINEAR MODELS - INFLUENZA A(H3N2)

1980-81 TECUMSEH DATA

I. Probability Model Using Maximum Likelihood

Number of Susceptibles/Household

Number		1	2			3	4		
Infected	Obs	Exp	Obs	Ехр	Obs	Ехр	Obs	Ехр	
0	44	47.6	62	65.3	47	41.1	38	37.4	
1	10	6.4	13	14.0	8	10.6	11	10.3	
2	-	_	9	4.7	2	5.7	7	6.6	
3		-	444	-	3	2.6	5	4.9	
4	-	_	-	•••			1	2.8	
Total	54	54.0	84	84.0	60	60.0	62	62.0	

$$\chi_8^2 = 11.6$$
 p = .17,

$$\hat{S}AR = 20.1 \pm 3.5$$
 , $\hat{C}PI = .118 \pm .013$

II. Log-Linear Model Using Weighted Least Squares

$$\chi_8^2 = 9.9 \quad p = .27$$
,

$$\hat{S}AR = 22.8 \pm 2.0$$
 . $\hat{C}PI = .110 \pm .007$

OBSERVED AND EXPECTED DISTRIBUTION OF INFLUENZA B 1977 - TECUMSEH DATA

NUMBER OF SUSCEPTIBLES/HOUSEHOLD

Number Infected	1			2		3	ı	ł	5	
	Овѕ.	Exp.	OBs.	Exp.	Овѕ.	Exp.	OBs.	Exp.	Овѕ.	Exp.
0	42	44.1	79	71.4	23	26.4	16	17.8	6	5,5
1	14	11.9	24	36.9	24	19.6	19	16.9	7	6.2
2	_	-	12	6.7	7	6.9	8	8.5	· 4	4.0
3	_	-	_	-	0	1.1	2	2.5	- 1	1.7
4	_	_	-	-	_	-	1	.4	0	.5
5	-	_	-	-	_	-	-	– .	0	.1
TOTAL	56	56.0	115	115.0	54	54.0	46	46.1	18	18.0

$$\hat{Q} = .960$$

$$\hat{B} = .788$$
 CPI = .212

$$V_{AR}(\hat{Q}) = .0007$$

$$V_{AR}(\hat{B}) = .0003$$

$$V_{AR}(\hat{Q}) = .0007$$
 $V_{AR}(\hat{B}) = .0003$ $Cov(\hat{Q}, \hat{B}) = -.0002$

$$\chi^2(13) = 15.1$$
 P = .30

$$P = .30$$

OBSERVED AND EXPECTED DISTRIBUTION OF RESPIRATORY SYMPTOMS DURING H3N2 EPIDEMIC PERIOD OF 1977-78 IN TECUMSEH

Number	1		2		3		4		5	
ILLNESSES	Овѕ.	Exp.	OBS.	Exp.	Овѕ.	EXP.	OBs.	Exp.	0вѕ.	Ехр.
0	38	35.4	48	39. 5	13	14.9	6	9.9	4	3.3
1	19	21.6	29	40.0	19	18.9	13	14,9	3	4.8
2			25	22.5	20	17.8	17	16.4	9	6.3
3					10	10.4	23	15.9	8	7.6
4							7	9.8	5	7,.9
5									6	5.2
TOTAL	57	57.0	102	102.0	62	62.0	66	66.0	35	35.1

$$\hat{Q} = 0.835 \pm 0.024$$
, Actual SAR = 16.5 ± 2.4, Apparent SAR = 46.7,

$$\hat{B} = 0.622 \pm 0.020$$
; $\hat{CPI} = 0.378 \pm 0.020$, $Cov(\hat{Q}, \hat{B}) = -0.0002$,

$$X^{2}(13) = 14.95$$
, P value = 0.31, N = 322.

OBSERVED AND EXPECTED DISTRIBUTION OF INFLUENZA A(H1N1) 1978-1979
TECUMSEH DATA

Number						
Infected	0 _B s.	Exp.	OBS.	Exp.	<u>3</u>	Exp.
0	28	34.1	22	18.7	4	2.3
1	33	26.9	18	22.9	3	3.2
2			20	18.4	5	4.0
3					1	3.5
Total	61	61.0	60	60.0	13	13.0

$$\widehat{SAR} = 22.5 \pm 8.6$$
, APPARENT SAR = 48.2, $\widehat{CPI} = 0.441 \pm 0.038$, $x^2(4) = 7.62$, $p = .106$

PARAMETERS

r - level of susceptibility (r = 1, 2, ..., R)

h - level of infectiousness (h = 1,2,...,H)

 B_{r} = probability of escape from the community

 $CPI_r = 1 - B_r$ community probability of infection

Q_{rh} = probability of escape from infected household member

SAR_{rh} = (1-Q_{rh}) x 100 secondary attack rate

DATA STRUCTURE

Household with s initial susceptibles

Susceptibility
$$\mathbf{r} = (r_1, \dots, r_s)$$

Infectiousness
$$h = (h_1, \dots, h_s)$$

Infection
$$\mathbf{x} = (x_1, \dots, x_s)$$

where
$$x_j = \begin{cases} 0 & \text{if } j-\text{th person not infected,} \\ 1 & \text{if } j-\text{th person infected.} \end{cases}$$

$$\mathbf{k}_h$$
 - number persons infected at h-th level $\mathbf{k} = \sum_h \mathbf{k}_h$

Find
$$P[x|r,h] : 2^{5}x R^{5} x H^{5}$$

e.g., $R = 2$, $H = 2$, $s = 5$
 $2^{5} \times 2^{5} \times 2^{5} = 32.768$

PROBABILITY MODEL

 $p(\mathbf{x}|\mathbf{r},h) = \begin{cases} \mathbf{x} & \mathbf{B}_{\mathbf{r}} \\ \mathbf{p}(\mathbf{1}_{\mathbf{k}}|\mathbf{r}_{\mathbf{j}},h_{\mathbf{j}}) & \mathbf{x} & \mathbf{B}_{\mathbf{r}} & \mathbf{x} & [\mathbf{Q}_{\mathbf{r},h}] \\ \mathbf{1} & \mathbf{x}_{\mathbf{i}} = \mathbf{0} & \mathbf{1} & \mathbf{h} = 1 \end{cases}$ $1 - \mathbf{z} & p(\mathbf{x}|\mathbf{r},h) \\ \mathbf{x} & \mathbf{z} = \mathbf{x}_{\mathbf{i}} < \mathbf{k} \end{cases}$ \mathbf{f} $\mathbf{x} = \mathbf{e} \mathbf{s} \quad \mathbf{f} \quad \mathbf{f} \quad \mathbf{e} \mathbf{f} \quad \mathbf$ for k = 0.

where $j \in (j_1, ..., j_k)$ are the indices of the k infected individuals. $r_j = (r_{j_1}, \dots, r_{j_k})$ and $h_j = (h_{j_1}, \dots, h_{j_k})$. Also, 1_k denotes the array (1,...,1) of order k.

Constructed recursively -- e.g., R = 2, H = 2, s = 5

There are 37,448 probabilities.

EXAMPLE R=2, S=1,2, H=1

$$P(0|1) = B_1$$
 $P(1|1) = 1-B_1$
 $P(0|2) = B_2$ $P(1|2) = 1-B_2$

$$P(0,0|1,1) = B_1^2$$
 $P(0,0|1,2) = P(0,0|2,1) = B_1B_2$
 $P(0,0|2,2) = B_2^2$

$$P(1,0|1,1) = B_1Q_1P(1|1) = B_1(1-B_1)Q_1 = P(0,1|1,1)$$

$$P(1,0|1,2) = B_2Q_2P(1|1) = B_2(1-B_1)Q_2 = P(0,1|2,1)$$

$$P(1,0|2,1) = B_1Q_1P(1|2) = B_1(1-B_2)Q_1 = P(0,1|1,2)$$

$$P(1,0|2,2) = B_2Q_2P(1|2) = B_2(1-B_2)Q_2 = P(0,1|2,2)$$

$$P(1,1|1,1) = 1 - B_1^2 - 2B_1(1-B_1)Q_1$$

$$P(1,1|1,2) = 1 - B_1B_2 - 2B_2(1-B_1)Q_2 = P(1,1|2,1)$$

$$P(1,1|2,2) = 1 - B_2^2 - 2B_2(1-B_2)Q_2$$

Infection attack rates by pre-season hemagglutination inhibition (HI) titer level stratified by age group: Influenza A(H3N2) epidemic seasons (1977-1978) and (1980-1981) combined in Tecumseh, Michigan

	Infection status											
Pre-HI titer (1:x)	No. infected	No. not infected	Total	Attack Rate [†]	Risk Ratio							
Children (0-17)			: · · ·		7							
Low level (x<8)	100	200	300	0.333	3.330							
Higher level (8\(\frac{1}{2}\)x\(\frac{1}{2}\)	20	180	200	0.100								
Total	120	3 9 0	500***	0.240								
		****	•)									
Adults (18+)	·	· [4]	ton v									
Low level (x<8)	96	440	536 ⁾	0.179	1.884							
Higher level (8\(\frac{1}{2}\)x\(\frac{1}{2}\)	42	402	444	0.095								
Total	138	842	980 ^{***}	0.141								

Attack rate = No. infected/No. at risk

The total of 1480 individuals does not include the 26 "immune" individuals

The risk ratios across levels of age or across levels of pre-season Hi tite are different (p < 0.0001) using the chi-square test for lack of interaction.

STATISTICS NOT APPROPRIATE

Risk ratio = Ratio of the attack rates

p < 0.001

Observed and expected frequencies for households by the number of susceptibles from the influenza A(H3N2) seasons (1977-1978) and (1980-1981) combined.

in Tecumseh, Michigan, stratified by pre-season HI titer level

No. suscept	ible/household	No.	infecte	d/household		No. of h	ouseholds
Pre-season low	titer level higher	Pre-	low	titer level higher		observed	expected
1	0		O 1	0	63	4 5 18	52.7 10.3
0	1		0	0	70	6 5 5	63.6 6.4
2	0		0 1 2	0 . 0 0	71	52 11 8	49.6 14.4 7.0
1	1		0 0 1 1	0 1 0 1	66	52 2 8 4	50.1 3.8 9.6 2.5
•	2		0 0 0	0 1 2	,	45 6 1	42.9 (8.5(a 0.6(a
3 3 (A)	0		0 1 2 3	0 0 0	A	17 4 3 5	16.9 5.5 3.9 2.7
2			0 0 1 1 2 2	0 1 0 1 0	ų.	28 1 6 0 2 2	24.7 1.3(b 7.0 1.4(b 3.3 1.2(b
1	2		0 0 0 1 1	0 1 2 0		16 6 0 2 1	17.2 2.5(c 0.1(c 3.2 1.7(c 0.2(c

O	3	0 0 0	0 1 2 3	11 4 0 0	11.2 3.3(d 0.5(d 0.0(d
. 4	O .	0 1 2 3 4	0 0 0 0	16 4 6 0 2	13.7 4.3 3.5 3.5 3.0
3	1	0 0 1 1 2 2 2 3 3	0 1 0 1 0 1 0	13 0 6 1 1 0 5	13.8 0.6(e 4.3 0.6(e 3.0 0.8(e 2.0(e 0.8(e
2	2	0 0 0 1 1 1 2 2 2	0 1 2 0 1 2 0 1 2	11 0 1 3 1 3 0 0	11.5 1.3(f 0.1(f 3.2 1.2(f) 0.1(f 1.5(f) 1.0(f) 0.2(f)
1	3	0 0 0 0 1 1 1	0 1 2 3 0 1 2 3	10 5 0 0 2 1 2	12.5 2.7 0.3(g 0.0(g 2.3(g 1.7(g) 0.4(g) 0.0(g)
0	4	0 0 0 0 0	0 1 2 3 4	10 (2 0 0 0	8.2 3.1(h) 0.7(h) 0.1(h) 0.0(h)

	5	0	0 (all other	3 3	2.4 3.6
	4	1	0 all other	2 4	2.7 3.3
	3 ^{**}	2*		4	Milyspa-
	2	3	0 all other	0 4 6	5.2 4.8
	1**	4*	,	2	 .
-1.4	0**	5 [*]		3	<u>-</u>
· ·	Total			567	

Point estimates and standard errors:

Low pre-season antibody titer $\hat{CPI}_1 = 0.164 \pm 0.015$ $\hat{SAR}_1 = 26.0 \pm 3.0$ Higher pre-season antibody titer $\hat{CPI}_2 = 0.092 \pm 0.013$ $\hat{SAR}_2 = 2.1 \pm 2.6$ Overall goodness-of-fit $\chi^2(28df)^* = 33.01$, p = 0.235

Tests: H_0 : $CPI_1/CPI_2 = 1$ $\hat{R}R = 1.783$ p < 0.0005

 $H_0: SAR_1/SAR_2 = 1$ $\hat{R}R = 12.4$ p < 0.0001

Only households with 5 or fewer susceptibles are included.

⁽a)-(h) Outcomes with the same letter were pooled for the goodness-of-fit test.

These combinations were not included in the goodness-of-fit test.

INFLUENZA A(H3N2) CONTINUED

VARIABLE SUSCEPTIBILITY: PRE-SEASON ANTIBODY \times AGE r = 1, 2, 3, 4.

1. LOW, 0 - 17

2. HIGHER, 0 - 17

3. LOW, 18⁺

4. HIGHER, 18⁺

Estimated CPIs and SARs

A a a		RR					
Age		X < 8		8 ≤ X ≤ 64	Low to high titer		
Children	CPI ₁	0.23 ± 0.03	CPI ₂	0.09 ± 0.03	2.5**		
	SAR ₁	36.6 ± 6.2	SAR ₂	3.4 ± 4.7	10.8**		
Adults	CPI ₃	0.13 ± 0.02	CPI ₄	0.09 ± 0.01	1.5		
	SAR ₃	18.2 ± 4.4	SAR ₄	1.6 ± 3.7	11.4**		
Goodness-of-fit χ^2 = 24.8 (df = 23), p = 0.36, **p < 0.05							

ANTIBUDY EFFICACY

DIRECT MEASURES

ESTIMATED ANIBODY EFFICACY

INDEX	CHILDREN	AOULTS	CRUPE	
AR	0.700	0.469	0.588	
CPE	0,593	0.321	0.439	
SARLK	0.907	0.9/2	0.919	

X
Maximum likelihood estimates and standard errors for parameters of the model of influenza
A(H3N2) infections in 1977-1978 and 1980-1981 combined epidemics in Tecumseh,
Michigan, with unrestricted contact parameters by age (0-17 vs 18+)

		Estimate	Transformation
Constant distribution:	$T_{\rm I} \equiv 4.1$		
	•	$^{a}\beta_{11} = .0805 \pm .0208$	$SAR_{11} = 28.1186 \pm 6.1227$
		$\beta_{12} = .0354 \pm .0291$	$SAR_{12} = 13.4996 \pm 10.314$
		$\beta_{21} = .0268 \pm .0135$	$SAR_{21}^{12} = 10.4080 \pm 4.9593$
		$\beta_{22} = .0401 \pm .0127$	$SAR_{22} = 15.1662 \pm 4.4096$
Child		$B_1 = .8184 \pm .0254$	$CPI_1 = .1816 \pm .0254$
Adult		$B_2 = .8897 \pm .0128$	$CPI_2 = .1103 \pm .0128$
	Log likelih	ood $= -522.333$	

^{*} ADDY, ET AL. BIOMETRICS 47, 961-974 (1991)

Sciencexpress

Report

The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus

Yang Yang, ¹ Jonathan D. Sugimoto, ^{1,2} M. Elizabeth Halloran, ^{1,3} Nicole E. Basta, ^{1,2} Dennis L. Chao, ¹ Laura Matrajt, ⁴ Gail Potter, ⁵ Eben Kenah, ^{1,3,6} Ira M. Longini Jr. ^{1,3}*

¹Center for Statistics and Quantitative Infectious Diseases, Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA, USA. ²Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA. ⁴Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA. ⁴Department of Applied Mathematics, University of Washington, Seattle, WA, USA. ⁵Department of Statistics, University of Washington, Seattle, WA, USA. ⁶Department of Global Health, University of Washington, Seattle, WA, USA.

*To whom correspondence should be addressed. E-mail: longini@scharp.org

Pandemic influenza A (H1N1) 2009 (pandemic H1N1) is spreading throughout the planet. It has become the dominant strain in the southern hemisphere, where the influenza season is underway. Here, based on reported case clusters in the USA, we estimate the household secondary attack rate for pandemic H1N1 to be 27.3% [95% confidence interval (CI) 12.2%-50.5%]. From a school outbreak, we estimate a school child infects 2.4 (95% CI: 1.8-3.2) other children within the school. We estimate the basic reproductive number, R_0 , to range from 1.3 to 1.7 and the generation interval to range from 2.6 to 3.2 days. We use a simulation model to evaluate the effectiveness of vaccination strategies in the USA for Fall 2009. If vaccine were available soon enough, vaccination of children, followed by adults, reaching 70% overall coverage, in addition to high risk and essential workforce groups, could mitigate a severe epidemic.

corresponding to the rainy season. The last influenza pandemic was the Hong Kong A (H3N2) 1968-1969 pandemic. At that time, the first large epidemic was in Hong Kong in July 1968, followed by epidemics in South East Asia in August-September 1968, in the upper northern hemisphere between September 1968 and April 1969 (peaking in late December 1968 and early January 1969) and in the lower southern hemisphere between June and September 1969 (9). In the USA and the upper northern hemisphere, shifted (i.e., pandemic) or drifted strains of influenza tend to have a relatively small Spring "herald wave" before returning in the Fall (10). In the upper northern hemisphere, the 1918–1919 A (H1N1) pandemic had a mild Spring 1918 herald wave, followed by a severe second wave in the Fall of 1918. Pandemic Asian influenza A (H2N2), 1957-1958, caused mid-Summer 1957 outbreaks in Louisiana schools that were open in the Summer because of the need for children helping

Sciencexpress

/ www.sciencexpress.org / 10 September 2009 / Science 30 October 2009: 326, 729 - 33

METHODS 3

Estimating Transmissibility

- Natural history of disease
 - Incubation period: $\Pr(\delta = l) = \alpha_l$, subject to $\sum_{l=\delta_{\min}}^{\delta_{\max}} \alpha_l = 1$
 - Infectious period: from ILI onset \tilde{t}_i to $\tilde{t}_i + D$, and probability of being infectious is β_d for day $\tilde{t}_i + d 1$.
- Transmission model

Likelihood

- Daily transmission probabilities: b (C2P) and p(t) (P2P)
- Daily escape probability

$$e_i(t) = (1-b) \prod_{i \in h(i)} (1-p(t)\beta_{t-\tilde{t}_j+1})$$

$$L_{i}(b, p \mid \tilde{\mathbf{t}}_{h}) = \begin{cases} \prod_{t=1}^{T} e_{i}(t), & \tilde{t}_{i} = \infty, \\ \sum_{t=\tilde{t}_{i}-\delta_{\min}}^{\tilde{t}_{i}-\delta_{\min}} \alpha_{\tilde{t}_{i}-t}(1-e_{i}(t)) \prod_{\tau=1}^{t} e_{i}(t), & \tilde{t}_{i} < T \end{cases}$$

METHODS 4

Estimating Transmissibility (continue)

- Accounting for missing data
 - Household sizes and some ILI onset dates are missing
 - Multiple imputation (Schaffer, 1997).
- Calculating SAR and Ro for US data

$$SAR = 1 - \prod_{d=1}^{D} (1 - p\beta_{d})$$

$$R_{0} = f(R_{H} + R_{C} + R_{S}) + (1 - f)(R_{H} + R_{C})$$

$$R_{H} = N_{H} \times SAR_{H}, R_{S} = N_{S} \times SAR_{S}, R_{C} = \rho R_{H}$$

- Calculating Ro for Mexican data
 - For large population, chain binomial becomes Poisson.
 - Assume each case corresponds to K-1 uninfected people.

RESULTS 5

Household SAR

		Individuals 11 and 12 are infected		Individuals 11 and 12 are not infected			
	-	Estimates	s.e.	95% CI	Estimates	s.e.	95% CI
Individual 10) is an ir	idex case					
p_{\cdot}	H	0.0625	0.0268	(0.0265, 0.140)	0.0457	0.0213	(0.0181, 0.111)
S	AR_H	0.273	0.101	(0.122, 0.505)	0.207	0.0870	(0.0849, 0.425)
R	$\cdot H$	0.82	0.303	(0.397, 1.693)	0.622	0.261	(0.274, 1.416)
Individual 10) is a sec	condary case					
p_{\cdot}	H	0.0709	0.0288	(0.0314, 0.152)	0.0543	0.0232	(0.0231, 0.122)
S	AR_H	0.304	0.105	(0.143, 0.535)	0.242	0.0915	(0.107, 0.459)
R	$\cdot H$	0.913	0.314	(0.466, 1.791)	0.726	0.274	(0.346, 1.523)

Household SAR: Sensitivity

		Incubation Period			Infectious Period		
		Estimates	s.e.	95% CI	Estimates	s.e.	95% CI
Short [†]							
	p_H	0.0447	0.0208	(0.0177, 0.108)	0.0662	0.0305	(0.0262, 0.157)
	SAR_H	0.204	0.0854	(0.0834, 0.418)	0.203	0.0853	(0.0833, 0.417)
	R_H	0.611	0.256	(0.268, 1.390)	0.610	0.256	(0.268, 1.388)
Long [†]							
	p_H	0.0462	0.0216	(0.0183, 0.112)	0.0376	0.0176	(0.0149, 0.0919)
	SAR_H	0.210	0.0880	(0.0857, 0.429)	0.211	0.0884	(0.0862, 0.431)
	R_H	0.629	0.264	(0.276, 1.432)	0.632	0.265	(0.278, 1.438)

[†] Short incubation period: $\delta_{min} = 1$, $\delta_{max} = 3$ and $(\alpha_1, \alpha_2, \alpha_3) = (0.6, 0.3, 0.1)$

Long incubation period: $\delta_{min} = 1$, $\delta_{max} = 4$ and $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (0.25, 0.25, 0.25, 0.25)$

Short infectious period: D = 7 and $(\beta_1, \dots, \beta_7) = (1.0, 1.0, 0.6, 0.4, 0.2, 0.1, 0.05)$

Long infectious period: D = 8 and $(\beta_1, \dots, \beta_8) = (1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.4, 0.1)$

		Article	Cases SAR	Type of Confirmed	Data Source
A (H1N1)	2009	this paper	27.3 [12.2, 50.5]	ILL	U.S.
A (H5N1)	2006	(19) Yang 2007	29 [15, 51]	ILL-LAB	Sumatra
A (H2N2)	1957 (pandemic) 1957 (pandemic) 1957 (pandemic)	(20) Nishiura 2007 (20) Nishiura 2007 (21) Longini 1982	7.06 [4.73-9.44] 9.07 [6.73-11.53] 16.6 [1, 32.5] (hh3)	ILL ILL	Tokyo Osaka Sugiyama
A (H1N1)	pre 1978 1978-79 ^a 1978-79	(21) Longini 1982 (22) Longini 1982 (21) Longini 1982	39.9 (hh4) 30.6 [21.9, 39.3] 33.6 (hh5)	ILL LAB ILL	Hope,Simpson,Sutherland Seattle Hope,Simpson,Sutherland
A (H3N2)	1977-78 1978-79 1977-78, 80-81 1999-2000 1999-2000 1999-2000 1999-2000	(22) Longini 1982 (22) Longini 1982 (23) Longini 1988 (24) Viboud 2004 (25) Cauchemez 2004 (25) Cauchemez 2004 (25) Cauchemez 2004 (25) Cauchemez 2004 (25) Cauchemez 2004	14.7 [11, 18.4] 20.6 [16.5, 24.7] 26 [23, 29] 18.1 43 [39, 48] (hh2) 31 [28, 36] (hh3) 25 [22, 27] (hh4) 21 [18, 24] (hh5)	LAB LAB LAB ILL ILL ILL ILL ILL	Tecumseh Seattle Tecumseh France France France France France France
В	1961 ^b 1961 1975-76	(20) Nishiura 2007 (20) Nishiura 2007 (22) Longini 1982	18.41 [11.37, 25.95] 10.51 [8.01, 13.15] 12.7 [7.8, 17.6]	ILL ILL LAB	Osaka Osaka Seattle
Mixed	1998-1999 and 2000-2001° 1998-1999 and 2000-2001° 1998-1999 and 2000-2001° 1998-1999 and 2000-2001° 2007 ^h 2007 2007 2007	(28) Yang 2009 ^d (31) Halloran 2007 (32) Yang 2007 (11) Yang 2006 (33) Cowling 2008 (33) Cowling 2008 (33) Cowling 2008 (33) Cowling 2008 (33) Cowling 2008	12.6 [6.5, 23.2] 17.5 [12.6, 23.2] 12.8 [9.9,15.7] 8.9 [6.4, 11.4] 6 [3, 10] 18 [13, 24] 11 [7, 16] 4 [2, 6]	ILL-LAB ILL-LAB ILL-LAB ILL-LAB ILL-LAB IAB ILL ILL	Hong Kong trial Hong Kong trial Hong Kong trial Hong Kong trial

