COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 3 EXERCISES
ENTITY-RELATIONSHIP (E-R) MODEL
AND DATA BASE DESIGN

EXERCISE I: UNIVERSITY APPLICATION

We want to record information about students, departments, courses and course teaching teams.

- For each student we store the student id, name and majors.
- For each department we store a unique code and name.
- For each course we store a unique course id, name, department and prerequisites.
- For each offering of a course we store the section, semester and year.
- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.
- For each course offering that a student takes we store the grade.
- Each course offering's teaching team has one or more staff, who is either an instructor or a TA.
- For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.
- For each instructor we store their academic title (e.g., professor).

For the university application E-R diagram, identify keys and discriminators of entities, weak entities and their identifying relationship(s) and show relationship cardinality and participation constraint.

EXERCISE I: UNIVERSITY APPLICATION— E-R DIAGRAM

Student

studentId name {major} Department

code name Course

courseld name Offering

section semester year Staff

hkid name officeNumber Instructor

title

TA

EXERCISE I: UNIVERSITY APPLICATION— KEYS OF ENTITY TYPES

- For each student we store the student id, name and majors.
- For each department we store a unique code and name.
- For each course we store a unique course id, name, department and prerequisites.
- For each offering of a course we store the section, semester and year.
- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.
- For each course offering that a student takes we store the grade.
- Each course offering's teaching team has one or more staff, who is either an instructor or a TA.
- For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.
- For each instructor we store their academic title (e.g., professor).

Instructor

TA

4

EXERCISE I: UNIVERSITY APPLICATION— KEYS OF ENTITY TYPES

For each offering of a course we store the section, semester and year.

What kind of entity is Offering?

→ Weak entity.

Is there a discriminator for Offering?

⇒ Yes — section, semester, year.

EXERCISE I: UNIVERSITY APPLICATION—GENERALIZATION COVERAGE

• Each course offering's teaching team has one or more staff, who is either an instructor or a TA.

What should be the completeness constraint?

 \Rightarrow total

What should be the disjointness constraint?

 \implies disjoint

 For each course we store a unique course id, name, department and prerequisites.

What should be the cardinality constraint (max-card) for Department?

⇒ many (A department can offer many courses—domain knowledge.)

What should be the participation constraint (min-card) for Department?

⇒ unknown (Could be partial or total; need to verify with client. Leave unspecified.)

What should be the cardinality constraint (max-card) for Course?

⇒ unknown (Could be 1 or N; need to verify with client. Leave unspecified.)

What should be the participation constraint (min-card) for Course?

⇒ total (Every course must be offered by some department—domain knowledge.)

 For each course we store a unique course id, name, department and prerequisites.

What should be the cardinality constraints?

→ Course (prerequisite) many (A course can be a prerequisite for several courses.)

Course (course) many (A course can have several prerequisites.)

What should be the participation constraints?

→ Course (prerequisite) partial (A course does not have to be a prerequisite.)

Course (course) partial (A course can have no prerequisites.)

• For each offering of a course we store the section, semester and year.

Is Offering dependent on Course?

→ Yes.

What should be the cardinality constraint (max-card) for Offering?

⇒ 1 (Every offering is for at most one course—domain knowledge.)

What should be the participation constraint (min-card) for Offering?

⇒ total (Every offering must be for some course—domain knowledge.)

What about for Course?

⇒ (?,many) min-card most likely 0, but need to verify with client. Leave unspecified.

- Each student must enroll in one to five course offerings.
- Each course offering can enroll zero to sixty students.

Is a student required to enroll in an offering as soon as the student's record is created?

Is Offering dependent on Student?

 \Rightarrow No.

No!

(domain knowledge)

What should be the cardinality constraint (max-card) for Student?

⇒ 5 (A student can enroll in at most 5 course offerings.)

What should be the participation constraint (min-card) for Student?

⇒ total (A student must enroll in at least 1 course offering.)

What about for Offering?

 \implies (0, 60)

Does the participation constraint for Student make sense?

 Each course offering's teaching team has one or more staff, who is either an instructor or a TA

Is an offering required to have a staff assigned to it?

Is Offering dependent on Staff?

 \rightarrow No.

Need to verify with client!

What should be the cardinality constraint (max-card) for Offering?

⇒ many (An offering can have several staff assigned to it.)

What should be the participation constraint (min-card) for Offering?

⇒ total (An offering has at least one staff assigned to it.)

What about for Staff?

⇒ (?,many) min-card most likely 0, but need to verify with client. Leave unspecified.

Does the participation constraint for Offering make sense?

 For each staff assigned to a course offering's teaching team we store the hkid, name, department and office number.

What should be the cardinality constraint (max-card) for Staff?

⇒ 1 (For each staff ... we store the ... department)

What should be the participation constraint (min-card) for Staff?

⇒ total (Every staff must be appointed in some department—domain knowledge.)

What should be the cardinality constraint (max-card) for Department?

⇒ many (A department can appoint several staff—domain knowledge.)

What should be the participation constraint (min-card) for Department?

⇒ unknown (Could be partial or total; need to verify with client. Leave unspecified.)

Anything else? \Rightarrow No.

EXERCISE I: UNIVERSITY APPLICATION— **E-**R DIAGRAM

Student

studentId

{major}

Department

code name

Course courseld

name

Offering section

semester year

Staff

hkid name officeNumber

Instructor title

TΑ

EXERCISE 2: BUS COMPANY APPLICATION

We want to keep track of bus routes and schedules for a bus company.

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.
- For each departure time of each route, a driver and a bus can be assigned; however, information about the driver or the bus may sometimes be missing.
- A driver has a unique employee id, a name and a phone number.
- A bus is identified by its license number and has a maximum seating capacity.

For the bus company application E-R diagram, identify keys and discriminators of entities, weak entities and their identifying relationship(s) and show relationship cardinality and participation constraint.

EXERCISE 2: BUS COMPANY APPLICATION— E-R DIAGRAM

©2020 L3: EXERCISES 15

Route

routeNo

EXERCISE 2: BUS COMPANY APPLICATION— KEYS OF ENTITIES

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.
- A driver has a unique employee id, a name and a phone number.
- A bus is identified by its license number and has a maximum seating capacity.

Route routeNo

Schedule departureTime

Driver

empld
name
phoneNo

Bus licenseNo maxSeating Station name

EXERCISE 2: BUS COMPANY APPLICATION— RELATIONSHIP CARDINALITY & PARTICIPATION

- Each bus route has a unique route number, a departure station and a destination station.
- For each bus route, there is a schedule, which records the departure times of buses.

What type of entity is Schedule?

Weak entity dependent on Route.

Is there a discriminator for Schedule? \Rightarrow Yes — departureTime.

What should be the cardinality constraint (max-card) for Schedule? => 1

What should be the participation constraint (min-card) for Schedule? \Rightarrow total

What about for Route? ⇒ cardinality many; participation unknown.

Does every route have to have a schedule? Verify with client.

EXERCISE 2: BUS COMPANY APPLICATION— RELATIONSHIP CARDINALITY & PARTICIPATION

 For each departure time of each route, a driver and a bus can be assigned; however, information about the driver or the bus may sometimes be missing.

Does every driver/bus have to be assigned to/used by a schedule? Verify with client.

 Each bus route has a unique route number, a departure station and a destination station.

EXERCISE 2: BUS COMPANY APPLICATION— E-R DIAGRAM

Route routeNo

Schedule

departureTime

Driver

empld
name
phoneNo

Bus licenseNo maxSeating Station <u>name</u>