Avec solutions

TRIGONOMÉTRIE1

Leçon: TRIGONOMÉTRIE1 Présentation globale

- I) Le radian et le cercle trigonométrique :
- II) Les abscisse curviligne d'un point sur le cercle trigonométrique et l'angle orienté de deux demidroites (ou de deux vecteurs):
- III)Les rapports trigonométriques d'un nombre réel.

I) Le radian et le cercle trigonométrique :

1) Le radian

Définition : Soit un cercle C de centre O et de rayon 1. On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.

Remarque1: On peut étendre cette définition à tout cercle de rayon R, en appelant radian la mesure d'un angle interceptant un arc dont la longueur est R.

Remarque2:

Le radian est aussi une unité de

mesure permettant de mesurer la longueur des arcs sur le cercle trigonométrique

2) Cercle trigonométrique

Définition1: Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre.

Définition2: on appelle

cercle trigonométrique tout cercle de centre O et de rayon 1 muni d'un point d'origine I

et d'un sens de parcours appelé direct (sens contraire au sens APPLICATION : des aiguilles d'une montre)

3) La relation entre le degré et le radian

Proposition:

- Les mesures en radian et en degré d'un même angle sont proportionnelles
- Si x est la mesure d'un angle en radian et y sa mesure en

degré alors :
$$\frac{x}{\pi} = \frac{y}{180}$$

Exemples:

1)Un angle plein (tour complet) mesure 2π radians.

Prof/ATMANI NAJIB

En effet on a $v = 360^{\circ}$

Et on a :
$$\frac{x}{\pi} = \frac{y}{180}$$
 donc $\frac{x}{\pi} = \frac{360}{180}$ donc $\frac{x}{\pi} = 2$ donc

$$x = 2\pi$$
 rad

2)on a:
$$\frac{1rad}{\pi} = \frac{y}{180}$$
 donc $\pi y = 180 rad$ donc

$$y = \frac{180}{\pi} \approx \frac{180}{3,14} \approx 57,3^{\circ}$$

Donc: $1rad \approx 57.3^{\circ}$

3) Correspondance degrés et radians

Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360°.

Par proportionnalité, on obtient les correspondances suivantes:

Mesure en radians <i>x</i> rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
Mesure en degrés y [⊙]	0	30°	45°	60°	90°	180°	360°

- 1) Donner la mesure en radians de l'angle de mesure 33°.
- 2) Donner la mesure en degrés de

	3π	
l'angle de mesure		rad.
E	8	

π	?	$\frac{3\pi}{8}$
180°	33°	?

1)
$$x = 33 \times \frac{\pi}{180} = \frac{11\pi}{60}$$
 2) $y = \frac{3\pi}{8} \times \frac{\pi}{180} = 67,5^{\circ}$

II) Les abscisse curviligne d'un point sur le cercle trigonométrique et l'angle orienté de deux demidroites (ou de deux vecteurs):

1)Les abscisse curviligne d'un point sur le cercle trigonométrique

Activité : Enroulement d'une droite autour du cercle trigonométrique

si le zéro de droite l'origine *I* cercle trigonométrique; et on enroule la demi-droite des réels positifs sur le cercle trigonométrique Dans le sens direct et on

enroule la demi- droite

des réels négatifs sur le cercle trigonométrique Dans le sens Exemples : inverse chaque point M du cercle est ainsi recouvert par une infinité de nombres réels qui s'appellent : abscisses curvilignes de M

b) Définition : soit M un point du cercle trigonométrique d'origine I

Et soit α la longueur de l'arc IM l(on allant de I vers Mdans le sens direct) en radian

Tout réel qui s'écrit sous la forme : $\alpha + 2k\pi$ avec $k \in \mathbb{Z}$ s'appelle abscisse curviligne de M

Proposition: si x et x' deux abscisses curvilignes du même point M dans le cercle trigonométrique alors il existe un $k \in \mathbb{Z}$ tel que : $x - x' = 2k\pi$ on écrit : $x \equiv x' [2\pi]$: Et on lit : x est congrue a x' modulo 2π

Exemples:

1) si M = I alors II = 0 donc les abscisses curvilignes de I sont de la forme :

 $0+2k\pi$ avec $k\in\mathbb{Z}$ par ex : 0, 2π , -2π , 4π , -4π ...

2) si M = J alors $IJ = \frac{\pi}{2}$ donc les abscisses curvilignes

de J sont de la forme : $\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

par ex : $\frac{\pi}{2}$, $-\frac{3\pi}{2}$, $\frac{5\pi}{2}$, $-\frac{7\pi}{2}$, $\frac{9\pi}{2}$

3) si M = I' alors $II' = \pi$ donc les abscisses curvilignes de I' sont de la forme : $\pi + 2k\pi$ avec $k \in \mathbb{Z}$ par ex: π , $-\pi$, 3π , -3π , 5π

4) si
$$M = J'$$
 alors $IJ' = \frac{3\pi}{2}$ donc les abscisses

curvilignes de J' sont de la forme : $\frac{3\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

par ex :
$$\frac{3\pi}{2}$$
 , $-\frac{\pi}{2}$, $-\frac{5\pi}{2}$, $\frac{7\pi}{2}$, $\frac{11\pi}{2}$

5)
$$\frac{49\pi}{6} = \frac{48\pi}{6} + \frac{\pi}{6} = 8\pi + \frac{\pi}{6} = \frac{\pi}{6} + 4 \times 2\pi$$
. Par

numérique coïncide avec conséquent les réels $\frac{49\pi}{6}$ et $\frac{\pi}{6}$ sont représentés par un

même point sur le cercle trigonométrique.

2) abscisse curviligne principale

Définition: parmi les abscisses curvilignes d'un point Mdu cercle trigonométrique une seule se situe dans l'intervalle $]-\pi$; π] et on l'appelle abscisse curviligne principale du point M

1) les abscisses curvilignes de I sont de la forme : $0 + 2k\pi$ avec $k \in \mathbb{Z}$

Donc 0 est l'abscisses curviligne principale de I car $0 \in]-\pi;\pi]$

2) pour
$$J$$
 on a $\frac{\pi}{2} \in]-\pi; \pi]$ Donc $\frac{\pi}{2}$ est l'abscisses

curviligne principale de J

3) de même I' on a $\pi \in [-\pi, \pi]$ Donc π est l'abscisses curviligne principale de I^\prime

4) de même
$$J'$$
 on a $-\frac{\pi}{2} \in]-\pi; \pi]$ Donc $-\frac{\pi}{2}$ est

l'abscisses curviligne principale de J^\prime

APPLICATION:

1)Déterminer l'abscisses curviligne principale de chacune des abscisses suivantes

$$7\pi$$
, $\frac{110\pi}{3}$, $\frac{19\pi}{4}$, $-\frac{131\pi}{3}$, $-\frac{217\pi}{6}$

2)Placer sur le cercle trigonométrique les points

$$A(0); B\left(\frac{\pi}{2}\right); C\left(\frac{\pi}{4}\right); D\left(\frac{\pi}{3}\right) ; E\left(\frac{\pi}{6}\right) ; M\left(\frac{7\pi}{2}\right)$$

$$F\left(\frac{5\pi}{6}\right); G\left(-\frac{\pi}{2}\right); H\left(-\frac{\pi}{4}\right); N\left(\frac{3\pi}{2}\right); I\left(\frac{2007\pi}{4}\right)$$

Correction:

• $x = 7\pi$ et soit α l'abscisses curviligne principale

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d $\alpha = 7\pi + 2k\pi$ et $\alpha \in]-\pi;\pi]$ c a d $-\pi < 7\pi + 2k\pi \le \pi$ et $k \in \mathbb{Z}$

ssi $\pi - 7\pi < 2k\pi \le \pi - 7\pi$ ssi $-8 < 2k \le -6$ ssi $-4 < k \le -3$ et $k \in \mathbb{Z}$

alors k = -3 et donc

$$\alpha = 7\pi + 2(-3)\pi = 7\pi - 6\pi = \pi$$

donc l'abscisses curviligne principale associée a $x = 7\pi$ est $\alpha = \pi$

• $x = \frac{110\pi}{3}$ et soit α l'abscisses curviligne principale

associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d

$$\alpha = \frac{110\pi}{3} + 2k\pi \text{ et } \alpha \in]-\pi;\pi]$$

c ad
$$-\pi < \frac{110\pi}{3} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi - \frac{110\pi}{3} < 2k\pi \le \pi - \frac{110\pi}{3}$$
 ssi

$$-\frac{113\pi}{3} < 2k\pi \le -\frac{107\pi}{3} \quad \text{ssi} \quad -\frac{113}{6} < k \le -\frac{107}{6}$$

et $k \in \mathbb{Z}$ ssi $-18.83 < k \le -17.83$ et $k \in \mathbb{Z}$ alors k = -18 et donc

$$\alpha = \frac{110\pi}{3} + 2k\pi = \frac{110\pi}{3} + 2(-18)\pi = \frac{110\pi - 108\pi}{3} = \frac{2\pi}{3}$$

Donc l'abscisses curviligne principale associée a

$$x = \frac{110\pi}{3} \text{ est } \alpha = \frac{2\pi}{3}$$

•
$$x = \frac{19\pi}{4}$$

On a
$$\frac{19\pi}{4} = \frac{16\pi}{4} + \frac{3\pi}{4} = 4\pi + \frac{3\pi}{4} = \frac{3\pi}{4} + 2 \times 2\pi$$

et $\frac{3\pi}{4} \in]-\pi; \pi]$ donc l'abscisses curviligne principale

associée a
$$\frac{19\pi}{4}$$
 est $\alpha = \frac{3\pi}{4}$

• $x = -\frac{131\pi}{3}$ et soit α l'abscisses curviligne principale

associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d

$$\alpha = -\frac{131\pi}{3} + 2k\pi \text{ et } \alpha \in]-\pi;\pi]$$

c ad
$$-\pi < -\frac{131\pi}{3} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi + \frac{131\pi}{3} < 2k\pi \le \pi + \frac{131\pi}{3}$$
 ssi

$$\frac{128\pi}{3} < 2k\pi \le \frac{134\pi}{3}$$

ssi
$$\frac{128}{6} < k \le \frac{134}{6}$$
 et $k \in \mathbb{Z}$ ssi

$$21.33 < k \le 22.33$$
 et $k \in \mathbb{Z}$

alors k = 22 et donc

$$\alpha = -\frac{131\pi}{3} + 2k\pi = -\frac{131\pi}{3} + 2(22)\pi = \frac{-131\pi + 132\pi}{3} = \frac{\pi}{3}$$

donc l'abscisses curviligne principale associée a

$$x = -\frac{131\pi}{3}$$
 est $\alpha = \frac{\pi}{3}$

• $x = -\frac{217\pi}{6}$ et soit α l'abscisses curviligne principale

associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d

$$\alpha = -\frac{217\pi}{6} + 2k\pi \text{ et } \alpha \in]-\pi;\pi]$$

c ad
$$-\pi < -\frac{217\pi}{6} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi + \frac{217\pi}{6} < 2k\pi \le \pi + \frac{217\pi}{6}$$
 ssi

$$\frac{211\pi}{6} < 2k\pi \le \frac{223\pi}{6}$$

ssi
$$\frac{211}{12} < k \le \frac{223}{12}$$
 et $k \in \mathbb{Z}$

ssi
$$17.58 < k \le 18.58$$
 et $k \in \mathbb{Z}$

alors k = 18 et donc

$$\alpha = -\frac{217\pi}{6} + 2k\pi = -\frac{217\pi}{6} + 2(18)\pi = \frac{-217\pi + 216\pi}{6} = -\frac{\pi}{6}$$

donc l'abscisses curviligne principale associée a

$$x = -\frac{217\pi}{6}$$
 est $\alpha = -\frac{\pi}{6}$

2)Placer sur le cercle trigonométrique les points

$$A(0); B\left(\frac{\pi}{2}\right); C\left(\frac{\pi}{4}\right); D\left(\frac{\pi}{3}\right) ; ; M\left(\frac{7\pi}{2}\right) E\left(\frac{\pi}{6}\right)$$

$$F\left(\frac{5\pi}{6}\right); G\left(-\frac{\pi}{2}\right); H\left(-\frac{\pi}{4}\right); N\left(\frac{3\pi}{2}\right); I\left(\frac{2007\pi}{4}\right)$$

•
$$x = \frac{7\pi}{2}$$
 On a

$$\frac{7\pi}{2} = \frac{8\pi - \pi}{2} = \frac{8\pi}{2} - \frac{\pi}{2} = 4\pi - \frac{\pi}{2} = -\frac{\pi}{2} + 2 \times 2\pi$$

$$\begin{bmatrix} -\frac{\pi}{2} \in]-\pi;\pi \end{bmatrix}$$

donc l'abscisses curviligne principale associée a $x = \frac{7\pi}{2}$

est
$$\alpha = -\frac{\pi}{2}$$

Methode1: On divise 2007 par 4 on trouve 501,75 on prend le nombre entier proche ex : 502

Donc:
$$\frac{2007\pi}{4} - 502\pi = \frac{2007\pi}{4} - \frac{2008\pi}{4} = -\frac{\pi}{4}$$

$$\frac{2007\pi}{4} = -\frac{\pi}{4} + 502\pi = -\frac{\pi}{4} + 2 \times 251\pi \text{ et } -\frac{\pi}{4} \in \left] -\pi ; \pi\right]$$

donc l'abscisses curviligne principale associée a $x = \frac{2007\pi}{4}$

est
$$\alpha = -\frac{\pi}{4}$$

$$Methode2: -\pi < \frac{2007\pi}{4} + 2k \ \pi \le \pi$$

$$-1 < \frac{2007}{4} + 2k \le 1 \text{ ssi } -1 - \frac{2007}{4} < 2k \le 1 - \frac{2007}{4}$$

ssi
$$-\frac{2011}{8} < k \le -\frac{2003}{8}$$
 donc

$$-251,3 \simeq -\frac{2011}{8} < k \le -\frac{2003}{8} \simeq -250,3$$

Donc k = -251 Donc

$$\alpha = \frac{2007\pi}{4} + 2(-251)\pi = -\frac{\pi}{4}$$

chacune des points suivants

$$M_0\left(\frac{9\pi}{2}\right)$$
; $M_1\left(\frac{11\pi}{3}\right)$; $M_2\left(\frac{67\pi}{4}\right)$; $M_3\left(\frac{19\pi}{3}\right)$

Correction:

Methode1:
$$\frac{9\pi}{2} = \frac{8\pi + \pi}{2} = \frac{8\pi}{2} + \frac{\pi}{2} = 4\pi + \frac{\pi}{2} = 2 \times 2\pi + \frac{\pi}{2}$$

et $\frac{\pi}{2} \in]-\pi; \pi]$ donc l'abscisses curviligne principale du

point
$$M_0$$
 est $\alpha = \frac{\pi}{2}$

Methode2:
$$-\pi < \frac{9\pi}{2} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{9}{2} + 2k \le 1$$
 Donc

$$-1 - \frac{9}{2} < -\frac{9}{2} + \frac{9}{2} + 2k \le 1 - \frac{9}{2}$$

Donc
$$-\frac{11}{2} < 2k \le -\frac{7}{2}$$
 Donc $-\frac{11}{4} < k \le -\frac{7}{4}$

Donc
$$-2,7 \simeq -\frac{11}{4} < k \le -\frac{7}{4} \simeq -1,7$$
 et $k \in \mathbb{Z}$

Donc k = -2 Donc

$$\alpha = \frac{9\pi}{2} + 2(-2)\pi = \frac{9\pi}{2} - 4\pi = \frac{9\pi - 8\pi}{2} = \frac{\pi}{2}$$

donc l'abscisses curviligne principale du point M_0 est $\alpha = \frac{\pi}{2}$

$$M_1 \left(\frac{11\pi}{3} \right)$$

Methode 1: On a
$$\frac{11\pi}{3} = \frac{12\pi - \pi}{3} = 4\pi - \frac{\pi}{3} = -\frac{\pi}{3} + 2 \times 2\pi$$

et $-\frac{\pi}{2} \in]-\pi; \pi]$ donc l'abscisses curviligne principale du

point
$$M_1$$
 est $\alpha = -\frac{\pi}{3}$

Methode2:
$$-\pi < \frac{11\pi}{3} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{11}{3} + 2k \le 1$$
 Donc

$$-1 - \frac{11}{3} < -\frac{11}{3} + \frac{11}{3} + 2k \le 1 - \frac{11}{3}$$

Donc
$$-\frac{14}{3} < 2k \le -\frac{8}{3}$$
 Donc $-\frac{7}{3} < k \le -\frac{4}{3}$

Exercice1: Déterminer l'abscisses curviligne principale de Donc
$$-2, 3 = -\frac{7}{3} < k \le -\frac{4}{3} = -1, 3$$
 et $k \in \mathbb{Z}$

Donc
$$k = -2$$
 Donc

$$\alpha = \frac{11\pi}{3} + 2(-2)\pi = \frac{11\pi}{3} - 4\pi = \frac{11\pi - 12\pi}{3} = -\frac{\pi}{3}$$

Donc l'abscisses curviligne principale du point

$$M_1$$
 est $\alpha = -\frac{\pi}{3}$

•
$$M_2\left(\frac{67\pi}{4}\right)$$

Methode1: On a

$$\frac{67\pi}{3} = \frac{64\pi + 3\pi}{4} = \frac{64\pi}{4} + \frac{3\pi}{4} = 16\pi + \frac{3\pi}{4} = 2 \times 8\pi + \frac{3\pi}{4}$$

et $\frac{3\pi}{4} \in]-\pi; \pi]$ donc l'abscisses curviligne principale du

point
$$M_2$$
 est $\alpha = \frac{3\pi}{4}$

Methode2:
$$-\pi < \frac{67\pi}{4} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{67}{4} + 2k \le 1$$

Donc
$$-1 - \frac{67}{4} < -\frac{67}{4} + \frac{67}{4} + 2k \le 1 - \frac{67}{4}$$

Donc
$$-\frac{71}{4} < 2k \le -\frac{63}{4}$$

Donc
$$-8.8 \approx -\frac{71}{8} < k \le -\frac{63}{8} \approx -7.8 \text{ et } k \in \mathbb{Z}$$

Donc k = -8 Donc:

$$\alpha = \frac{67\pi}{4} + 2(-8)\pi = \frac{67\pi}{4} - 16\pi = \frac{67\pi - 64\pi}{4} = \frac{3\pi}{4}$$

donc l'abscisses curviligne principale du point M_2

est
$$\alpha = \frac{3\pi}{4}$$

$$M_3\left(\frac{19\pi}{3}\right)$$

On a
$$\frac{19\pi}{3} = \frac{18\pi + \pi}{3} = \frac{18\pi}{3} + \frac{\pi}{3} = 6\pi + \frac{\pi}{3} = 2 \times 3\pi + \frac{\pi}{3}$$

et $\frac{\pi}{2} \in]-\pi$; π] donc l'abscisses curviligne principale du

point M_3 est $\alpha = \frac{\pi}{2}$

3)L'angle orienté de deux demi-droites

• **Définition**: Soit [Ox) et [Oy) deux demi-droites ayant même origine O

Le couple ([Ox);[Oy)) constitué des demi-droites

[Ox] et [Oy] (dans cet ordre) détermine un angle orienté $\overline{(Ox;Oy)} = \pi + 2k\pi$ ou $\overline{(Ox;Oy)} = \pi[2\pi]$ qu'on le note : ([Ox);[Oy))

Remarque: Le couple

([Oy);[Ox)) constitué des

demi-droites [Oy] et [Ox]

(dans cet ordre) détermine un

angle orienté qu'on le note : ([Oy);[Ox))

deux demi-droites

d'origine O et soit (C) le cercle

trigonométrique de centre O

Soit A et B les points d'intersections

de (C)avec les demi-

droites [Ox] et [Oy] respectivement

si a et b sont deux abscisses curvilignes respectives de A et B .

Définitions :

✓ On appelle mesure de l'angle orienté (Ox; Oy) tout réel qui s'écrit sous la forme :

 $b-a+2k\pi$ avec $k \in \mathbb{Z}$ et on le note :

$$\overline{(Ox;Oy)} = b - a + 2k\pi$$

✓ Parmi Toute les mesures de (Ox; Oy)

Une seule se situe dans l'intervalle $]-\pi;\pi]$ et elle

s'appelle abscisse curviligne principale de l'angle (Ox; Oy)

Cas particuliers: 1) L'angle orienté nul:

$$\overline{(Ox;Ox)} = 0 + 2k\pi$$
 ou $\overline{(Ox;Ox)} = 0[2\pi]$

2)L'angle orienté plat : [Ox) et [Oy) opposées

$$\overline{(Ox;Oy)} = \pi + 2k\pi \text{ ou } \overline{(Ox;Oy)} \equiv \pi [2\pi]$$

2)L'angle orienté droit direct

$$\overline{(Ox;Oy)} = \frac{\pi}{2} + 2k\pi$$
 ou $\overline{(Ox;Oy)} = \frac{\pi}{2} [2\pi]$

L'angle orienté droit indirect

$$\overline{(Ox;Oy)} = -\frac{\pi}{2} + 2k\pi$$
 ou $\overline{(Ox;Oy)} \equiv -\frac{\pi}{2} [2\pi]$

Relation de Chasles pour les angles orientés de deux demi-droites

Soit [Ox) et [Oy) et [Oz) trois demi-droites d'origine O

On a:
$$\overline{(Ox;Oy)} + \overline{(Oy;Oz)} \equiv \overline{(Ox;Oz)} [2\pi]$$

Conséquence:

$$\overline{\left(Ox;Oy\right)} \equiv -\overline{\left(Oy;Ox\right)} \left[2\pi\right]$$

4)L'angle orienté de deux vecteurs

Soit \overrightarrow{U} et \overrightarrow{V} deux vecteurs non nuls et [Ox)et [Oy) deux demi-droites dirigées

respectivement par \overrightarrow{U} et \overrightarrow{V}

Définition : l'angle orienté des vecteurs non nuls \overrightarrow{U} et \overrightarrow{V} dans cet ordre est l'angle orienté (Ox; Oy)

et on le note : $(\vec{U}; \vec{V})$

✓ Les mesures de $(\overrightarrow{U}; \overrightarrow{V})$ sont Les mesures de l'angle orienté (Ox; Oy)

✓ La mesure principale de (\vec{U}, \vec{V}) est La mesure principale de (Ox; Oy) et on la note : $(\overrightarrow{U}; \overrightarrow{V})$

Propriétés : Pour tout vecteur *u* non nul, on a :

1)
$$\overline{\left(\vec{u};\vec{u}\right)} = 0[2\pi]$$

2)
$$(\vec{u}; -\vec{u}) \equiv \pi [2\pi]$$

 Relation de Chasles pour les angles orientés de deux vecteurs:

Pour tous vecteurs u, v et wnon nuls, on a:

$$(\overrightarrow{u}; \overrightarrow{v}) + (\overrightarrow{v}; \overrightarrow{w}) \equiv (\overrightarrow{u}; \overrightarrow{w}) [2\pi]$$

orientés que nous allons démontrer Et soit S le projeté orthogonal de M sur (OJ)à l'aide de la relation de Chasles:

Propriété: On considère deux vecteurs non nuls \vec{u} et \vec{v} .

 $|\vec{v}(\vec{v}, \vec{u})| = -(\vec{u}, \vec{v}) + 2k\pi$

 $(-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$

 $(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + 2k\pi$

 $(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$ où k est entier relatif

Démonstration :

1.D'après la relation de Chasles :

$$(\vec{u}, \vec{v}) + (\vec{v}, \vec{u}) = (\vec{u}, \vec{u}) = 0 + 2k\pi$$

$$Donc(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v}) + 2k\pi$$

2. D'après la relation de Chasles:

$$(-\vec{u}, \vec{v}) = (-\vec{u}, \vec{u}) + (\vec{u}, \vec{v}) + 2k\pi = \pi + (\vec{u}, \vec{v}) + 2k\pi$$

Donc $(-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$

3. D'après la relation de Chasles :

4. D'après la relation de Chasles :

$$(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + (\vec{v}, -\vec{v}) + 2k\pi = (\vec{u}, \vec{v}) + \pi + 2k\pi$$

$$D_{\text{onc}}(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$$

III)Les rapports trigonométriques d'un nombre réel. 1)Repère orthonormé lié au cercle trigonométrique

Soit (C) un cercle trigonométrique de centre O et d'origineI et Soit J un point de (C) tel que L'angle

orienté (OI;OJ) soit droit et direct

On a donc OI = OJ = 1 et $(OI) \perp (OJ)$

Le Repère orthonormé $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ est appelé Repère

orthonormé lié au cercle trigonométrique $\,(\,C\,)\,$

2)Les rapports trigonométriques d'un nombre réel. Soit $x \in \mathbb{R}$ il existe un point M de (C) unique tel que x

est une abscisse curviligne de M \checkmark Sinus et cosinus du nombre réel x

Voici des propriétés sur les angles Soit C le projeté orthogonal de M sur (OI)

Définitions:

- Le <u>cosinus du nombre réel</u> x est l'abscisse de M et on note cos x.
- Le sinus du nombre réel x est l'ordonnée de M et on note $\sin x$.

\checkmark Tangente du nombre réel x

Soit (Δ) la droite tangente a (C) en I

Si $M \neq J$ et $M \neq J'$ alors la droite (OM) coupe la

tangente (Δ) en un point T

Le nombre réel IT l'abscisse de T sur l'axe (Δ) est

appelé: La tangente du nombre réel x et on note tan x.

Remarques:

 \checkmark Les rapports trigonométriques : $\cos x$ et $\sin x$ et $\tan x$. sont aussi appelés cosinus et sinus et tangente de l'angle orienté (OI; OM)

$$\checkmark \tan x \text{ existe ssi } x \neq \frac{\pi}{2} + 2k\pi \text{ et } x \neq -\frac{\pi}{2} + 2k\pi \text{ avec}$$
7) $\tan(\pi - x) = -\tan x \text{ et } \tan(\pi + x) = \tan x \text{ si } x \neq \frac{\pi}{2} + k\pi$

$$k \in \mathbb{Z} \text{ cad } x \neq -\frac{\pi}{2} + k\pi$$

✓ La cotangente de x est le nombre réel x noté cotant x et

on a :
$$\cot x = \frac{1}{\tan x}$$

3) Cosinus, sinus et tangente d'angles remarquables :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Propriétés : Pour tout nombre réel x, on a :

- 1) $-1 \le \cos x \le 1$
- 2) $-1 \le \sin x \le 1$
- 3) $\cos^2 x + \sin^2 x = 1$ 4) $\cos x = \cos(x + 2k\pi)$ où $k \in \mathbb{Z}$
- 5) $\sin x = \sin(x + 2k\pi)$ où k entier relatif

6) si
$$x \neq \frac{\pi}{2} + k\pi$$
 avec $k \in \mathbb{Z}$ alors : $\tan x = \frac{\sin x}{\cos x}$

7) si
$$x \neq \frac{\pi}{2} + k\pi$$
 avec $k \in \mathbb{Z}$ alors : $\tan(x + k\pi) = \tan x$

Démonstration : 4) et 5)

Aux points de la droite orientée d'abscisses x et $x + 2k\pi$ ont fait correspondre le même point du cercle trigonométrique.

3) le triangle (OCM) est rectangle en C. Le théorème de Pythagore donne alors

$$OC^2 + CM^2 = 1$$
. Or $OC = \cos x$ et $CM = OC = \sin x$

En remplaçant, il vient que : $\cos^2 x + \sin^2 x = 1$

Remarque :

On dit que cosinus et sinus sont périodiques de période 2π .

Conséquence :

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

3)Propriétés de Cosinus, sinus et tangente

Pour tout nombre réel x, on a :

- 1) $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$
- 2) $\cos(\pi + x) = -\cos x$ et $\sin(\pi + x) = -\sin x$

3)
$$\cos(\pi - x) = -\cos x$$
 et $\sin(\pi - x) = \sin x$ 4)

$$\left|\cos\left(\frac{\pi}{2} + x\right)\right| = -\sin x \text{ et } \sin\left(\frac{\pi}{2} + x\right) = \cos x$$

5)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

6)
$$\tan(\pi - x) = -\tan x$$
 et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$

$$\tan(\pi - x) = -\tan x \text{ et } \tan(\pi + x) = \tan x \text{ si } x \neq \frac{\pi}{2} + k\pi$$

Par symétries, on démontre les résultats :

APPLICATION: Calculer les rapports trigonométriques des nombre réel suivantes 7π , $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{4}$, $-\frac{4\pi}{3}$

Solution:

$$\checkmark \cos(7\pi) = \cos(\pi + 6\pi) = \cos(\pi + 2 \times 3\pi) = \cos(\pi) = -1$$

$$\sin(7\pi) = \sin(\pi + 6\pi) = \sin(\pi + 2 \times 3\pi) = \sin(\pi) = 0$$

$$\tan(7\pi) = \tan(0+7\pi) = \tan(0) = 0$$

✓ On a:
$$\frac{5\pi}{6} = \frac{6\pi - \pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6} = \pi - \frac{\pi}{6}$$

$$\cos\left(\frac{5\pi}{6}\right) = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

$$\left|\sin\left(\frac{5\pi}{6}\right)\right| = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$\tan\left(\frac{5\pi}{6}\right) = \tan\left(\pi - \frac{\pi}{6}\right) = \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$$

$$\checkmark$$
 On a: $\frac{7\pi}{6} = \frac{6\pi + \pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \pi + \frac{\pi}{6}$

$$\cos\left(\frac{7\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

$$\sin\left(\frac{7\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

$$\tan\left(\frac{7\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

$$\checkmark \quad \text{On a: } \frac{3\pi}{4} = \frac{4\pi - \pi}{4} = \frac{4\pi}{4} - \frac{\pi}{4} = \pi - \frac{\pi}{4}$$

$$\cos\left(\frac{3\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$$

$$\checkmark \quad \text{On a: } \frac{4\pi}{3} = \frac{3\pi + \pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \pi + \frac{\pi}{3}$$

$$\cos\left(-\frac{4\pi}{3}\right) = \cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

$$\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right) = -\sin\left(\pi + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right$$

Exercice2: montrer que :_{1+(tan x)² = $\frac{1}{(\cos x)^2}$ si $x \neq \frac{\pi}{2} + k\pi$}

Solution:

$$1 + \left(\tan x\right)^2 = 1 + \left(\frac{\sin x}{\cos x}\right)^2 = 1 + \frac{\left(\sin x\right)^2}{\left(\cos x\right)^2} = \frac{\left(\cos x\right)^2 + \left(\sin x\right)^2}{\left(\cos x\right)^2}$$

Et on a: $\cos^2 x + \sin^2 x = 1$ donc: $1 + (\tan x)^2 = \frac{1}{(\cos x)^2}$

4) Signe de Cosinus, sinus

Le sinus et le cosinus de tout nombre réel font partie de l'intervalle [-1; 1]. Plus précisément, la position de M nous permet d'en savoir plus sur le cosinus et le sinus de x. Ainsi

• $Si - \frac{\pi}{2} \le x \le \frac{\pi}{2}$ alors $\cos x \ge 0$

• Si $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$ alors $\cos x \le 0$

• Si $0 \le x \le \pi$ alors $\sin x \ge 0$

• Si $\pi \le x \le 2\pi$ alors $\sin x \le 0$

Exercice 3: montrer que : $\tan x = \frac{1}{3}$ et $\frac{\pi}{2} < x < \pi$

Calculer: 1) $\cos x$ 2) $\sin x$

Solution : 1) on a : $1 + (\tan x)^2 = \frac{1}{(\cos x)^2}$ donc

$$1 + \left(\frac{1}{3}\right)^2 = \frac{1}{\cos^2 x}$$

Donc $1 + \frac{1}{9} = \frac{1}{\cos^2 x}$ Donc $\frac{10}{9} = \frac{1}{\cos^2 x}$ Donc

 $10\cos^2 x = 9$

Donc
$$\cos^2 x = \frac{9}{10}$$
 Donc $\cos x = \sqrt{\frac{9}{10}}$ et $\cos x = -\sqrt{\frac{9}{10}}$

Et on a $\frac{\pi}{2} < x < \pi$: donc $\cos x \le 0$ Donc :

$$\cos x = -\sqrt{\frac{9}{10}} = -\frac{3\sqrt{10}}{10}$$

2) on a: $\tan x = \frac{\sin x}{\cos x}$ donc $\sin x = \tan x \times \cos x$ donc

$$\sin x = -\frac{1}{3} \times \frac{3\sqrt{10}}{10} = -\frac{\sqrt{10}}{10}$$

Exercice4: simplifier les expressions suivantes:

$$A = \sin(\pi - x) \times \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) \times \cos(\pi - x)$$

$$B = \frac{\sin x + \sin(\pi - x)}{\cos(\pi - x)}$$

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right)$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$E = \tan(\pi - x) + \tan(\pi + x)$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$$

Solution: on a: donc

$$A = \sin(\pi - x) \times \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) \times \cos(\pi - x)$$

$$A = \sin(x) \times \sin(x) - \cos x \times (-\cos x) = \sin^2 x + \cos^2 x = 1$$

$$B = \frac{\sin x + \sin(\pi - x)}{\cos(\pi - x)} = \frac{\sin x + \sin x}{-\cos x} = -\frac{2\sin x}{\cos x} = -2\tan x$$

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right) = \cos\left(\frac{6\pi - \pi}{6}\right) + \sin\left(\frac{6\pi - \pi}{6}\right) - \tan\left(\frac{6\pi - \pi}{6}\right)$$

$$C = \cos\left(\pi - \frac{\pi}{6}\right) + \sin\left(\pi - \frac{\pi}{6}\right) - \tan\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{6}\right)$$

$$C = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)} = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sqrt{3}}{3} = -\frac{3\sqrt{3}}{6} + \frac{3}{6} + \frac{2\sqrt{3}}{6}$$

Donc :
$$C = \frac{3 - \sqrt{3}}{6}$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$D = \sin(10\pi + \pi - x) + \cos(4\pi + \pi + x) + \cos(2 \times 7\pi - x)$$

$$D = \sin(\pi - x) + \cos(\pi + x) + \cos(-x)$$

$$D = \sin(x) - \cos(x) + \cos(x) = \sin(x)$$

$$E = \tan(\pi - x) + \tan(\pi + x) = -\tan(x) + \tan(x) = 0$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$$

On a
$$\frac{\pi}{5} + \frac{3\pi}{10} = \frac{2\pi}{10} + \frac{3\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$$
 donc : $\frac{3\pi}{10} = \frac{\pi}{2} - \frac{\pi}{5}$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos^2\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{\pi}{5}\right) = 1$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

On a
$$\frac{\pi}{7} + \frac{6\pi}{7} = \pi$$
 donc: $\frac{\pi}{7} = \pi - \frac{6\pi}{7}$

Et on a
$$\frac{2\pi}{7} + \frac{5\pi}{7} = \pi$$
 donc : $\frac{5\pi}{7} = \pi - \frac{2\pi}{7}$

Et on a
$$\frac{3\pi}{7} + \frac{4\pi}{7} = \pi$$
 donc : $\frac{4\pi}{7} = \pi - \frac{3\pi}{7}$

Donc:

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\pi - \frac{3\pi}{7}\right) + \cos\left(\pi - \frac{2\pi}{7}\right) + \cos\left(\pi - \frac{\pi}{7}\right)$$

Donc:

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right) = 0$$

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$$

On a
$$\frac{\pi}{8} + \frac{7\pi}{8} = \pi$$
 donc : $\frac{7\pi}{8} = \pi - \frac{\pi}{8}$

Et on a
$$\frac{3\pi}{8} + \frac{5\pi}{8} = \pi$$
 donc : $\frac{5\pi}{8} = \pi - \frac{3\pi}{8}$

Donc:

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{\pi}{8}\right)$$

Done '

$$H = +\sin^{2}\left(\frac{3\pi}{8}\right) + \sin^{2}\left(\frac{3\pi}{8}\right) + \sin^{2}\left(\frac{\pi}{8}\right) = 2\sin^{2}\left(\frac{\pi}{8}\right) + 2\sin^{2}\left(\frac{3\pi}{8}\right)$$

Et on a
$$\frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2}$$
 donc : $\frac{3\pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}$

Donc on a:
$$H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\sin^2\left(\frac{\pi}{2} - \frac{\pi}{8}\right)$$

Dono

$$H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\cos^2\left(\frac{\pi}{8}\right) = 2\left(\sin^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{\pi}{8}\right)\right) = 2 \times 1 = 2$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

