Desherborator

U.V. 5.8 - Robotique Ingénierie Système

Benoît Zerr Joris Tillet Rémi Rigal

Alexandre Houdeville

Élodie Noëlé

Fabrice Poirier

Romain Dussot

Maxime Do Rosario

Évann Clavier

Sommaire

- Présentation du projet
- Exigences initiales
- Solutions techniques
- Taiga
- **■**Github
- Modifications du cahier des charges
- RETEX
- Défauts du produit final
- Conclusion

Présentation du projet

Objectifs:

- Robot désherbeur capable d'évoluer dans un milieu terrestre plan délimité par des murs
- Système de vision pour percevoir l'environnement
- Destruction des herbes à l'aide d'un LASER
- Déplacement à l'aide d'une plateforme roulante

Présentation du projet

■Spécifications:

Robot:

- Taille et vitesse du robot réalistes
- Libre choix des capteurs de navigation (GPS, LIDAR, encodeurs, sonars, etc)
- Prise en compte de l'évitement d'obstacles non requise
- Aspect énergétique non pris en compte

■ Terrain:

- Représentation simplifiée du terrain (fluidité et implémentation rapide du simulateur)
- Temps d'efficacité du laser accéléré pour la simulation

4

Exigences initiales

ous-exigences	Critères	Tags
ate-forme roulante aliste	Vitesse linéaire: [0-10] km/h	A 1
étection de auvaises herbes	Système de vision	A2
estruction de auvaises herbes	LASER désherbeur agit en 3 minutes* (*temps réel et non simulé)	А3
ille restreinte	Cube de 0.5 m de côté	A4
calisation et apping	Capteurs intéroceptifs et extéroceptifs (bruités)	A5
our plane orizontale	Sol de (10m x 10m) gris	B1
urets	Mur de 0.5m de haut	B2
	Positions aléatoires de cylindres verts (h*d:10x[2-15] cm)	В3
	ate-forme roulante aliste etection de auvaises herbes estruction de auvaises herbes lle restreinte calisation et apping our plane rizontale urets	vite-forme roulante aliste vitesse linéaire: [0-10] km/h vitection de survaises herbes struction de auvaises herbes LASER désherbeur agit en 3 minutes* (*tempsréel et non simulé) Cube de 0.5 m de côté Calisation et apping Capteurs intéroceptifs et extéroceptifs (bruités) Positions aléatoires de cylindres verts

Solutions Techniques - Hardware

6

Solutions Techniques - Software

	Tags	Exigences Techniques	Solutions apportées	Mots-clefs
	A 1	Vitesse linéaire: [0-10] km/h	Régulateur et Seuil	PID
\	A2	Système de vision	Caméra et traitement d'image	HSV, Isolation, Barycentre
	A3	LASER désherbeur agit en 3 minutes* (* temps réel et non simulé)	Bras articulé (2 ddl)	GAZEBO Architecture Xacro / URDF
	A4	Cube de 0.5 m de côté	Architecture globale	GAZEBO Architecture Xacro / URDF
	A5	Capteurs intéroceptifs et extéroceptifs (bruités)	GPS, LIDAR & Caméra	SLAM, Régulation
	B1	Sol de (10m x 10m) gris		Xacro /URDF, Distribution Aléatoire, Xacro Création Dynamique
	B2	Mur de 0.5m de haut	Architecture sur Gazebo	
	В3	Positions aléatoires de cylindres verts (h*d:10x[2-15] cm)		

10

GitHub

GitHub Repository:

Launch pour lancer l'ensemble

Modélisation du robot (mécanique & algorithmes)

précédent

suivant

Modifications du cahier des charges

Changement de map:

Défauts du produit final

- Simulateur dépendant de la version de ROS
- Action du LASER conditionnée par un temps constant et non un résultat sur l'aspect de l'herbe
- Action du LASER parfois déclenchée dans le vide

Retour d'expérience

■Gazebo:

- Beaucoup de problèmes rencontrés liés à l'origine de la version de ROS ou linux et conflits entre ROS et python
- Problème de gestion des collisions entre les éléments (départ du robot dans un mur)

Retour d'expérience

■Git:

- Problèmes au niveau du git workflow: nombreux conflits gérés par le product owner
- Mauvaise séparation entre la branche de développement et la branche master (éléments non fonctionnels présents sur la branche master)
- Gestion git des fichiers dépendant des machines (fichiers de compilation: CMakelist)
- Mise à jour sous forme de packets et non le workspace complet

Retour d'expérience

Outil de gestion de projet Taiga:

- Répartition claire et détaillée des tâches
- Suivien temps réel de l'état du projet
- Recommandations établies initialement non respectées en totalité au fil du projet

Conclusion

Bilan:

- Robot désherbeur conçu avec succès et produit final correspondant aux exigences initiales
- Adaptation aux changements d'exigences du client grâce à l'architecture organisée choisie
- Recommandations/suggestions pour la prochaine promo:
- Proposer un Workflow pour Github et gestion AGILE si demandé par les étudiants
- Format de projet très intéressant et positif
- Apportez des cookies pour les gagnants!