LECTURE 3

Unit 2

INTRODUCTION

- Relational algebra is the basic set of operations for the relational model.
- These operations enable a user to specify basic retrieval requests (or queries).
- The result of an operation is a new relation, which may have been formed from one or more input relations.
- A sequence of relational algebra operations forms a relational algebra expression.
- The result of a relational algebra expression is also a relation that represents the result of a database query (or retrieval request)

OPERATIONS - 1/2

- Unary Relational Operations
 - SELECT (symbol: σ (sigma))
 - PROJECT (symbol: π (pi))
 - RENAME (symbol: ρ (rho))
- Relational Algebra Operations From Set Theory
 - UNION (U), INTERSECTION (∩), DIFFERENCE (or MINUS, –)
 - CARTESIAN PRODUCT (x)

OPERATIONS - 1/2

Binary Relational Operations

- JOIN
- EQUIJOIN
- NATURAL JOIN

Additional Relational Operations

- AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)
- LEFT JOIN, RIGHT JOIN, OUTER JOIN, OUTER UNION

UNARY RELATIONAL OPERATIONS

 The relational algebra is a set of operators that take and return relations

- Unary operations take one relation, and return one relation:
 - SELECT operation
 - PROJECT operation
 - RENAME operation

SELECT OPERATION - 1/4

- The SELECT operation (denoted by σ (sigma))
 is used to select a subset of the tuples from a
 relation based on a selection condition.
- The selection condition acts as a filter.
- Keeps only those tuples that satisfy the qualifying condition.
- Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out).

SELECT OPERATION - 2/4

- Examples:
- Select the EMPLOYEE tuples whose department number is 4:

$$\sigma_{DNO=4}$$
 (EMPLOYEE)

 Select the employee tuples whose salary is greater than \$30,000:

$$\sigma_{SALARY>30,000}$$
 (EMPLOYEE)

SELECT OPERATION - 3/4

where

- The symbol σ (sigma) is used to denote the select operator
- The selection condition is a Boolean (conditional) expression specified on the attributes of relation R

SELECT OPERATION - 4/4

 Tuples that make the condition true are selected and appear in the result of the operation

 Tuples that make the condition false are filtered out discarded from the result of the operation

PROPERTIES OF SELECT - 1/2

- The SELECT operation
 σ <selection condition>(R)
 produces a relation S that has the same schema (same attributes) as R
- SELECT σ is commutative:

$$\sigma$$
 < condition 1>(σ < condition 2> (R))
$$\equiv$$
 σ < condition 2> (σ < condition 1> (R))

PROPERTIES OF SELECT - 2/2

 A cascade of SELECT operations may be replaced by a single selection with a conjunction of all the conditions:

```
\sigma<cond1>(\sigma< cond2> (\sigma<cond3>(R))

\equiv
\sigma <cond1> AND < cond2> AND < cond3>(R)))
```

- The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R
- For any selection-condition c, we have $|\sigma_{<c>}(R)| \le |R|$

THE PROJECT OPERATION - 1/3

 The PROJECT operation, selects certain columns from a relation and discards the columns that are not in the PROJECT list

The PROJECT operation is denoted by:

$$\pi_{\text{}}$$
 (R)

Where **attribute-list** is a list of attributes from the relation R

THE PROJECT OPERATION -2/3

- The degree of the relation resulting from a PROJECT operation is equal to the number of attributes in attribute-list.
- If only non-key attributes appear in an attribute-list, duplicate tuples are likely to occur. The PROJECT operation, however, removes any duplicate tuples –this is called duplicate elimination
- The PROJECT operation is not commutative

THE PROJECT OPERATION - 3/3

Results of SELECT and PROJECT operations.

- (a) $\sigma_{(DNO=4 \text{ AND SALARY}>25000)}$ OR (DNO=5 AND SLARY>30000) (EMPLOYEE).
- (b) $\pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)
- (c) $\pi_{SEX,SALARY}$ (EMPLOYEE).

(a)	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	Franklin	T	Wong	333445555	1955-12-08	638 Voss,Houston,TX	М	40000	888665555	5
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 FireOak,Humble,TX	М	38000	333445555	5

(b)	LNAME	FNAME	SALARY
	Smith	John	30000
	Wong	Franklin	40000
	Zelaya	Alicia	25000
	Wallace	Jennifer	43000
	Narayan	Ramesh	38000
	English	Joyce	25000
	Jabbar	Ahmad	25000
	Borg	James	55000

 SEX
 SALARY

 M
 30000

 M
 40000

 F
 25000

 M
 38000

 M
 25000

 M
 55000

SET OPERATIONS

- Two relations R₁ and R₂ are said to be union compatible if they have the same degree and all their attributes (correspondingly) have the same domain.
- The UNION, INTERSECTION, and SET DIFFERENCE operations are applicable on union compatible relations
- The resulting relation has the same attribute names as the first relation

THE UNION OPERATION - 1/2

The result of UNION operation on two relations, R₁ and R₂, is a relation, R₃, that includes all tuples that are either in R₁, or in R₂, or in both R₁ and R₂.

The UNION operation is denoted by:

$$R_3 = R_1 \cup R_2$$

 The UNION operation eliminates duplicate tuples

THE UNION OPERATION - 2/2

RESULT = RESULT 1 ∪ RESULT 2

RESULT1	SSN		RESULT2	SSN	RESULT	SSN
	123456789			333445555		123456789
	333445555			888665555		333445555
	666884444					666884444
	453453453					453453453
		•				888665555

THE INTERSECTION OPERATION

The result of INTERSECTION operation on two relations, R₁ and R₂, is a relation, R₃, that includes all tuples that are in both R₁ and R₂.

The INTERSECTION operation is denoted by:

$$R_3 = R_1 \cap R_2$$

 The both UNION and INTERSECTION operations are commutative and associative operations

THE SET DIFFERENCE OPERATION - 1/2

The result of SET DIFFERENCE operation on two relations, R₁ and R₂, is a relation, R₃, that includes all tuples that are in R₁ but not in R₂.

The SET DIFFERENCE operation is denoted by:

$$R_3 = R_1 - R_2$$

The SET DIFFERENCE (or MINUS) operation is not commutative

THE SET DIFFERENCE OPERATION - 2/2

- (a) Two union-compatible relations (b) STUDENT ∪ INSTRUCTOR.
- (c) STUDENT ∩ INSTRUCTOR (d) STUDENT INSTRUCTOR.
- (e) INSTRUCTOR STUDENT

(d)

(a)	STUDENT	FN	LN
	STODENT	ГІ	LIN
		Susan	Yao
		Ramesh	Shah
		Johnny	Kohler
		Barbara	Jones
		Amy	Ford
		Jimmy	Wang
		Ernoot	Gilbort

INSTRUCTOR	FNAME	LNAME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

(e)

FN	LN
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

FN	LN		
Susan	Yao		
Ramesh	Shah		

FN	LN		
Johnny	Kohler		
Barbara	Jones		
Amy	Ford		
Jimmy	Wang		
Ernest	Gilbert		

FNAME	LNAME
John	Smith
Ricardo	Browne
Francis	Johnson

(b)

RENAME OPERATION -1/3

• We can write a single relational algebra expression as follows:

$$\Pi_{\text{FName,LName,Salary}}(\sigma_{\text{DNo=5}}(\text{EMPLOYEE}))$$

 We can explicitly show the sequence of operations, giving a name to each intermediate relation:

DEPS_EMPS
$$\leftarrow \sigma_{DNo=5}$$
 (EMPLOYEE)

RESULT
$$\leftarrow \Pi_{\text{FName},\text{LName},\text{Salary}}(\text{DEPS_EMPS})$$

RENAME OPERATION - 2/3

 Rename the attributes in the intermediate and result relations

DEPS_EMPS $\leftarrow \sigma_{DNo=5}$ (EMPLOYEE)

R(FirstName, LastName, Salary) \leftarrow $\Pi_{\text{FName,LName,Salary}}$ (DEPS_EMPS)

 Define a formal RENAME operation-which can rename either the relation name or the attribute names, or both

RENAME OPERATION - 3/3

- Has three forms:
 - Rename both relation and attributes

$$\rho_{S(B_1,B_2,\ldots Bn)}(R)$$

- Rename only relation $\rho_S(R)$
- Rename only attributes

$$\rho_{(B_1,B_2,\ldots B_n)}(R)$$

CARTESIAN PRODUCT OPERATION - 1/3

 This operation (also known as CROSS PRODUCT or CROSS JOIN) denoted by:

$$R_3 = R_1 \times R_2$$

The resulting relation, R_3 , includes all combined tuples from two relations R_1 and R_2

- Degree (R_3) = Degree (R_1) + Degree (R_2)
- $|R_3| = |R_1| \times |R_2|$

CARTESIAN PRODUCT OPERATION - 2/3

The CARTESIAN PRODUCT (CROSS PRODUCT)

EMB DEDENDENTS	FNAME	LNAME	SSN	ESSN	DEDENDENT NAME	SEX	BDATE	
EMP_DEPENDENTS					DEPENDENT_NAME		DUATE	•••
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	•••
	Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	• • •
	Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	• • •
	Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	• • •
	Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	• • •
	Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	• • •
	Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	• • •
	Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	• • •
	Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	• • •
	Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	• • •
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	• • •
	Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	• • •
	Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	• • •
	Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	• • •
	Joyce	English	453453453	333445555	Alice	F	1986-04-05	• • •
	Joyce	English	453453453	333445555	Theodore	М	1983-10-25	• • •
	Joyce	English	453453453	333445555	Joy	F	1958-05-03	• • •
	Joyce	English	453453453	987654321	Abner	М	1942-02-28	• • •
	Joyce	English	453453453	123456789	Michael	М	1988-01-04	• • •
	Joyce	English	453453453	123456789	Alice	F	1988-12-30	• • •
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	• • •

CARTESIAN PRODUCT OPERATION - 3/3

The CARTESIAN PRODUCT (CROSS PRODUCT)

ACTUAL_DEPENDENTS	FNAME	LNAME	SSN	ESSN	DEPENDENT_NAME	SEX	BDATE	• • •
	Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	•••

RESULT	FNAME	LNAME	DEPENDENT_NAME
	Jennifer	Wallace	Abner

BINARY RELATIONAL OPERATIONS

- An important operation for any relational database is the JOIN operation, because it enables us to combine **related tuples** from two relations into single tuple
- The JOIN operation is denoted by:

$$R_3 = R_1 \bowtie <_{join condition} R_2$$

• The degree of resulting relation is $degree(R_1) + degree(R_2)$

THE JOIN OPERATION - 1/2

- The difference between CARTESIAN PRODUCT and JOIN is that the resulting relation from JOIN consists only those tuples that satisfy the join condition
- The JOIN operation is equivalent to CARTESIAN PRODUCT and then SELECT operation on the result of CARTESIAN PRODUCT operation, if the selectcondition is the same as the join condition

THE JOIN OPERATION - 2/2

Result of the JOIN operation

 $\mathsf{DEPT_MGR} \leftarrow \mathsf{DEPARTMENT} \bowtie_{\mathsf{MGRSSN=SSN}} \mathsf{EMPLOYEE}.$

DEPT_MGR	DNAME	DNUMBER	MGRSSN	• • •	FNAME	MINIT	LNAME	SSN	• • •
	Research	5	333445555	• • •	Franklin	Т	Wong	333445555	• • •
	Administration	4	987654321	• • •	Jennifer	S	Wallace	987654321	• • •
	Headquarters	1	888665555	• • •	James	Е	Borg	888665555	• • •

THE EQUIJOIN OPERATION

 If the JOIN operation has equality comparison only (that is, = operation), then it is called an EQUIJOIN operation

 In the resulting relation on an EQUIJOIN operation, we always have one or more pairs of attributes that have identical values in every tuples

THE NATURAL JOIN OPERATION - 1/2

- In EQUIJOIN operation, if the two attributes in the join condition have the same name, then in the resulting relation we will have two identical columns.
- In order to avoid this problem, we define the NATURAL JOIN operation
- The NATURAL JOIN operation is denoted by:

$$R_3 = R_1 * R_2$$

 In R₃ only one of the duplicate attributes from the list are kept

THE NATURAL JOIN OPERATION - 2/2

- (a) $PROJ_DEPT \leftarrow PROJECT * DEPT.$
- (b) DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS.

(a)	PROJ_DEPT	PNAME	PNUMBER	PLOCATION	DNUM	DNAME	MGRSSN	MGRSTARTDATE
		ProductX	1	Bellaire	5	Research	333445555	1988-05-22
		ProductY	2	Sugarland	5	Research	333445555	1988-05-22
		ProductZ	3	Houston	5	Research	333445555	1988-05-22
		Computerization	10	Stafford	4	Administration	987654321	1995-01-01
		Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
		Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

(b)	DEPT_LOCS	DNAME	DNUMBER	MGRSSN	MGRSTARTDATE	LOCATION
		Headquarters	1	888665555	1981-06-19	Houston
		Administration	4	987654321	1995-01-01	Stafford
		Research	5	333445555	1988-05-22	Bellaire
		Research	5	333445555	1988-05-22	Sugarland
		Research	5	333445555	1988-05-22	Houston

ADDITIONAL RELATIONAL OPERATIONS

- Statistical queries cannot be specified in the basic relational algebra operation
- We define aggregate functions that can be applied over numeric values such as, SUM, AVERAGE, MAXIMUM, MINIMUM, and COUNT
- The aggregate function is denoted by

$$m{\mathcal{F}}$$
 (R)

(a)	R	DNO	NO_OF_EMPLOYEES	AVERAGE_SAL	
		5	4	33250	
		4	3	31000	
i		1	1	55000	

(b)	DNO	COUNT_SSN	AVERAGE_SALARY		
	5	4	33250		
	4	3	31000		
	1	1	55000		

(c)	COUNT_SSN	AVERAGE_SALARY
	8	35125

FIGURE 6.9 The AGGREGATE FUNCTION operation. (a) $\rho_{R(DNO, NO_OF_EMPLOYEES, AVERAGE_SAL)}$ (DNO \mathfrak{F} COUNT SSN, AVERAGE SALARY (EMPLOYEE)). (b) DNO \mathfrak{F} COUNT SSN, AVERAGE SALARY (EMPLOYEE). (EMPLOYEE).