

PROJET MAJEURE - ROBOTIQUE DE SERVICE CPE LYON 2020/2021 5^{IÈME} ANNÉE

SUJET 5: AIDE À LA CONCEPTION D'UN PROTOTYPE DE ROBOT AFIN DE RÉALISER UN SCÉNARIO DE ROBOTIQUE DE SERVICE PROPOSÉ PAR LA COMPÉTITION WORLDSKILLS

GROUPE 7: BRIAND/GUY/KAHAN/MARTINEZ

ENCADRANTS: RAPHAEL LEBER & FABRICE JUMEL

SOMMAIRE:

- Le projet
- L'architecture hard/soft
- Configuration master
- Capteurs navigation
- Vision
- Implémentation sur robot réel
- IHR et HIL-3D
- Vidéo

LE PROJET

SCENARIO WORLDSKILLS

- Un robot autonome
- Un labyrinthe
- Des zones de couleurs
- Des cannettes de couleurs
- Visualisation de son états et de l'environnement

CAHIER DES CHARGES

- Robots avec capteurs
- Robot capable de se déplacer dans un environnement connu
- Capable de reconnaitre les couleurs
- Capable de reconnaitre des cannettes
- Capable d'informer sur son état et l'environnement
- Afficher les informations

ARCHITECTURE

CONFIGURATION CARTE MASTER

CONFIGURATION DE LA CARTE MASTER

OBJECTIFS

- Contrôler la carte à distance et lancer l'application
- Communiquer avec le PC pour mettre à jour des informations sur l'états du robot et son environnement

CONTRAINTES

- Supporter certains package ROS
- Connection ssh avec le PC
- Supporter Opencv pour darknet

CONFIGURATION DE LA CARTE MASTER

Carte: Raspberry Pi

- Wifi
- Bluetooth
- 4 port USB
- Processeur ARM Cortex-A53 -
- 1.4GHz
- Ram: 1 Go
- Supporte Os linux

ROS distribution: MELODIC

Package rplidar → melodic

- **Environnement linux**
- Interface graphique (mate)
- Plus léger que Ubuntu
- Environnement maîtrisé
- Compatible avec ROS melodic

Problématiques majeurs rencontrées:

- ROS melodic build avec python2 et non 3
- Le build d'un workspace demande beaucoup de RAM avec certains pkg > parfois plantage
- La gestion des par-feux

CONFIGURATION DE LA CARTE MASTER & COMMUNICATION

ROS Nodes

/ultrason

Initializing global node /matlab_global_node_73383 with NodeURI http://192.168.43.26:63391/
/command
/object_detected
/obstacle
/obstacle_spot
/rosout
/rosout_agg
/scan

Shutting down global node /matlab global node 28936 with NodeURI http://192.168.43.26:50477/

Node [main_template_matlab] started>> main_and_ihm Shutting down global node /matlab global node 73383 with NodeURI http://192.168.43.26:63391/

GESTION DES CAPTEURS DE NAVIGATION

Objectifs:

- Naviguer en autonomie
- Connaître sa position, son orientation
- Pouvoir mapper son environnement
- Pouvoir éviter des obstacles

• Contraintes:

- Tous les capteurs doivent communiquer avec la RaspberryPi
- Le prix des capteurs ne doit pas être supérieur à 300 euros

CHOIX DES CAPTEURS (1)

Capteurs à ultrason HC-SR04

Permet d'évaluer la distance entre un obstacle et la base roulante

- Utilise des ultrasons pour déterminer la distance
- Echo de l'onde émise proportionnelle à la distance
- Divise le temps par 2 pour avoir la distance
- Prix très faible (Environ 3 euros)
- Mesure de haute précision et stable
- Création d'un Publisher ROS "command"

CHOIX DES CAPTEURS (2)

Centrale inertielle – MPU9250 – 9 axes

Permet de connaitre la position angulaire et accélération

- Magnétomètre AK8963 → Champ magnétique
- Accéléromètre (MPU6050) → Accélération
- Gyroscope (MPU6050) \rightarrow Position angulaire
- Permet de connaître le PITCH/YAW/ROLL
- Connection I2C avec la RaspberryPi
- Création d'un Publisher ROS "IMU"

CHOIX DES CAPTEURS (3)

• RPLidar A2 de chez SLAMTEC

Permet de mapper l'environnement et connaitre la position d'obstacles autour du robot

- Rayon d'action de 16 mètres
- Beaucoup de package ROS déjà existant
- Possibilité d'utiliser SLAM pour avoir un mapping
- Prix plutôt raisonable (250 euros)
- Récéption des coordonnées du mapping grace au topic /scan/ranges (liste avec toutes les coordonés)

GESTION DE LA VISION

GESTION DE LA VISION DU ROBOT

• Objectifs:

- Détecter des canettes dans l'environnement
- Sélectionner une canette particulière
- Déterminer la position de la canette

SOLUTION 1 : UTILISATION DE PIXY

La camera Pixy2 est une camera intelligente qui est capable de reconnaitre des couleurs

Utilisation:

- 7 signatures de couleurs
- Récupération de la position des bounding box
- Calcul approximatif de la position en z à partir de la taille de l'objet
- Création d'un fichier vision_publisher sous ROS
- On publie un msg contenant: signature + position en x + position en z pour chaque signature
- La position en x est relative au centre du robot

Problèmes :

- Très sensible à la luminosité
- Besoin d'objets de couleurs uniformes

SOLUTION 2: UTILISATION DE DARKNET

On entraine un détecteur d'objet personnalisé grâce à darknet

Utilisation:

- Détecte les canettes
- Récupération de la position des bounding box
- Création d'un fichier personal_darknet_publisher sous ROS
- On publie un msg contenant : position en x pour chaque objet détecté
- La position en x est relative au centre du robot

Problèmes:

- Ne fais pas la différence entre les différentes canettes

FUSION DES SOLUTIONS

On utilise darknet et le module pixy2 pour déterminer l'objet et la couleur voulue

- On créé des listeners aux deux publishers précédemment décrit
- On publie la position x relative au robot

En principe on essaye de centrer le robot sur l'objet que l'on cherche à récupérer

Ceci nous permet:

- D'utiliser l'ultrason pour calculer la distance restante à l'objet
- D'avoir le bras en face de l'objet pour le récupérer

IMPLEMENTATION SUR ROBOT RÉEL

IMPLÉMENTATION SUR ROBOT RÉEL

Objectifs:

- Ajouter de la Raspberry Pl
- Ajouter des capteurs:
 - Lidar
 - IMU
 - Ultrason
- Programmation des mouvements sur Arduino IDE et ROS
 - Topic /command \rightarrow met a jour la cmd
 - 0 stop
 - 1 forward
 - 2 turn_left
 - 3 turn_right
 - 4 bras_haut_pince_ouverte
 - 5 bras_haut_pince_fermee
 - 6 bras_bas_pince_ouverte
 - 7 bras_bas_pince_fermee

INTERFACE HOMME MACHINE ET SIMULATION DU ROBOT

INTERFACE HOMME-ROBOT: CONFIG

Acquisition

Création de carte

Mise en mémoire pour UX

٠,		
	map_matrix	5000x5000 double
	margin_error_list	[]
	step_count	0
	🛨 step_list	[]
	🛨 step_operations_list	[]
	→ waypoints	[]
	x1_coord_list	[]
	x2_coord_list	[]
Λ	x_operations_list	0x0 cell
Ш	H y1_coord_list	[]
	H y2_coord_list	[]
Ш	y_operations_list	0x0 cell

Traitement

Global planner

Post-Traitement

SLAM Rosbag

1									
	MATLAB Variable: path 15 janv. 2021								
	1	2							
1	500	2500							
2	501	2501							
3	502	2502							
4	503	2503							
5	504	2504							
6	505	2505							
7	506	2506							
8	507	2507							
9	508	2508							
10	509	2509							
11	510	2510							
12	511	2511							
13	512	2512							
14	513	2513							
15	514	2514							
16	515	2515							
17	516	2516							
18	517	2517							
19	518	2518							
20	519	2519							
21	520	2520							
22	521	2521							
23	522	2522							
24	523	2523							

IHM ET CAPTEURS

Objectif:

- Afficher et transmettre l'états actuel du robot
- Transmettre les consignes

Solutions:

- ROS matlab
 - Connection à la Raspberry et ses topics
 - Le topics /command met à jour l'IHM et le robot 3D
- Création d'un objet « robot »
 - Permet de protéger des variables
 - Création de méthodes spécifique à matlab
 - Compatible avec l'IHM pour récupérer des donnée
- Les fonctions callback sur matlab mettent à jour les propriétés de « robot »

HIL: VISUALISATION TRIDIMENSIONNELLE

Acquisition

CAO

URDF

- ✓ Pas d'origin pour les Links
- ✓ Pas de collision
- ✓ Pas de physique
- Pas d'export SdWs .STL

MAIS

- Définition manuelle Joint
 - ☐ Axis
 - Origin

Traitement

Movelt Setup

Define Planning Groups Define Robot Poses

Create and edit 'joint model' groups for your robot based o Create poses for the robot. Poses are defined as subset of the robot you want to plan for. Note: when adding

Current Groups

HIL group

▼ Joints

chassis_bras - Revolute bras pince - Revolute

Links ▼ Chain

robot/chassis -> robot/pince Subgroups

	Pose Name	Group Name	
1	bras_haut_pince_ouverte	HIL_group	
2	bras_haut_pince_fermee	HIL_group	
3	bras_bas_pince_ouverte	HIL_group	
4	bras_bas_pince_fermee	HIL_group	

Movelt Demo: HIL

Projet Majeur Video de démonstration

CONCLUSION

CE QUI FONCTIONNE

- IHM qui se met à jour
- Détection obstacles (arrêt de mvt) & objectifs (cannettes)
- Suite de commandes via la raspberry pi
- HIL
- Global Planner

A AMÉLIORER

- Local Planner
- Commande de la pince en fonction de la vision
- Commande depuis Matlab après le global planner
- Local planner -> evitement

RÉPARTITION DES TÂCHES

	Intégration	hardware	Vision	IHM	HIL
Briand	+++	+		+	
Guy	+	+++			
Kahan				+++	+++
Martinez			+++		11/01/11