

LA INTEGRAL DEFINIDA

EJEMPLO

1)
$$I = \int_{2}^{4} (x^2 + 3x - 2) dx$$

La integral existe, dado que la función $f(x) = x^2 + 3x - 2$ es continua en el intervalo [2,4]

2)
$$I = \int_{-3}^{3} \frac{3}{x - 2} dx$$

La integral no existe, dado que la función $f(x) = \frac{3}{x-2}$ no es continua en el intervalo [-3,3]

Si
$$x - 2 = 0 \Rightarrow x = 2 \in [-3, 3]$$

La función $f(x) = \frac{3}{x-2}$ no es está definida en el intervalo [-3,3]

3)
$$I = \int_{0}^{4} \frac{4x+2}{x+3} dx$$

La integral existe, dado que la función $f(x) = \frac{4x+2}{x+3}$ es continua en el intervalo [0,4]

Si
$$x + 3 = 0 \Rightarrow x = -3 \notin [0, 4]$$

La función $f(x) = \frac{4x+2}{x+3}$ está definida en el intervalo [0, 4]

PROPIEDADES DE LA INTEGRAL DEFINIDA

Dadas las funciones f y g integrables en [a,b] y $k \in \Re$.

1.
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

2.
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

3.
$$\int_{-a}^{a} f(x)dx = 0$$
, si $f(x)$ es impar

Función impar:

$$\mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$$

Por ejemplo

Calcular el valor de

$$I = \int_{-2}^{2} (x^3 + 3x) dx$$

Solución

Verificar si $f(x) = x^3 + 3x$ es una función impar

Si
$$f(-x) = (-x)^3 + 3(-x) = -x^3 - 3x = -(x^3 + 3x) = -f(x)$$

Luego, la función es impar.

Por tanto,
$$I = \int_{-2}^{2} (x^3 + 3x) dx = 0$$

4.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
, si $a > b$.

Por ejemplo

$$\int_{3}^{0} (x^2 - 3x) dx = -\int_{0}^{3} (x^2 - 3x)$$

5. Si c es un punto interior de [a,b] entonces: $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$

Por ejemplo

Dada la función

$$f(x) = \begin{cases} \sin(x) & \text{si} \quad 0 \le x < 2 \\ x^2 & \text{si} \quad 2 < x < 4 \end{cases}$$

$$\int_0^4 f(x) \, dx = \int_0^2 f(x) \, dx + \int_2^4 f(x) \, dx$$

$$\int_{0}^{4} f(x) dx = \int_{0}^{2} \sin(x) dx + \int_{2}^{4} x^{2} dx$$

TEOREMA FUNDAMENTAL DEL CÁLCULO

Sea f una función continua en el intervalo [a,b] y sea F una función tal que $F'(x) = f(x) \quad \forall \in [a,b]$ entonces

$$\int_{a}^{b} f(x)dx = \begin{bmatrix} F(x) \\ \end{bmatrix}_{a}^{b} = F(b) - F(a)$$

Por esomplo:

$$\int_{0}^{1} (x^{2}+2)dx = \left[\frac{x^{3}}{3} + 2x \right]_{0}^{1}$$

$$= \frac{(1)^{3}}{3} + 2(1) - \left[\frac{(0)^{3}}{3} + 2(0) \right]$$

$$= \frac{1}{3}$$

FJFMPI O

1) Evalúe la siguiente integral $\int_{0}^{\pi} f(x)dx$ donde

$$f(x) = \begin{cases} \sin\left(\frac{\pi \ x^9}{4}\right) &, & -\pi/3 \le x \le \pi/3 \\ \cos^2(3x) &, & \pi/3 < x < \pi \end{cases}$$

2) Evalúe la siguiente integral $\int_{0}^{2\pi} f(x)dx$ donde

$$f(x) = \begin{cases} \left(x - \frac{\pi}{3}\right)^3 + \frac{\pi}{5} &, \quad 0 \le x \le \pi/2 \\ \left(\frac{3}{\pi}\right) \cdot \sin^2\left(\frac{5x}{2}\right) &, \quad \pi/2 < x < 2\pi \end{cases}$$

3) Evalúe la siguiente integral

$$\int\limits_{0}^{2\pi}r(x)dx$$

donde

$$r(x) = \begin{cases} -\frac{6}{\pi^2} (x - \frac{\pi}{2})^2 + 1, & 0 \le x < \frac{\pi}{6} \\ \sec^2 \left(\frac{x}{2}\right), & \frac{\pi}{6} \le x < 2\pi \end{cases}$$

4) Evalúe la siguiente integral

$$\int_{-\pi/4}^{\pi} g(x) \, \mathrm{d}x$$

donde

$$g(x) = \begin{cases} \sin^3\left(\frac{\pi \ x^{15}}{15}\right) - 12 & , & -\pi/4 \le x \le \pi/4 \\ \\ 2 + \cos^2(4x) & , & \pi/4 < x < \pi \end{cases}$$

EJEMPLO (cambio de variable)

1) Dada la integral

$$I = \int_{-1}^{4} (5ax + 1)\sqrt{x + 5} \, dx \,,$$

determinar el valor de la constante a si:

$$\frac{1}{2}(I-9) = 15.$$

Dada la integral

$$I = \int_{1}^{17} \left(5x - \frac{3}{2} \cdot z \right) \sqrt{26 - x} \, dx$$

determinar el valor de la constante z si:

$$3(I - 277) = 7063$$

3) Dada la integral

$$I = \int_{-2}^{5} (1 - 3bx^2) \sqrt[3]{3 + x} \, dx ,$$

determinar el valor de la constante a si:

$$\frac{100}{3807} \left(I - \frac{45}{2} \right) = -2$$

Dada la integral

$$I = \int_{-3}^{4} \left(x^2 + \frac{2}{3} \cdot t \right) \sqrt[3]{5 - x} \ dx ,$$

determinar el valor de la constante

$$2\left(I - \frac{6141}{140}\right) = 45$$

EJEMPLO (por partes recurrencia)

1) Sea

$$I_n = \int_0^1 (3x)^n e^{x/2} dx \quad \text{para } n \ge 0$$

Y la fórmula recursiva $n \ge 1$,

$$I_n = 2(3)^n e^{1/2} - 6nI_{n-1}$$

Hallar I_3

2) Sea
$$I_n = \int_{0}^{2} (2+3x)^n \cdot e^{-4x} dx$$
 para $n \ge 0$.

a) Verifique que para $n \ge 1$, se cumple

$$I_n = -\frac{8^n e^{-8}}{4} + \frac{2^n}{4} + \frac{3n}{4} \cdot I_{n-1}$$

b) Halle I_2

3) Sea
$$I_n=\int\limits_0^2 (2+3x)^n\cdot e^{-4x}dx$$
 para $n\geq 0$. Halle I_2
4) Sea $I_n=\int\limits_0^0 (1-5x)^n\cdot e^{7x}dx$ para $n\geq 0$. Halle I_2

4) Sea
$$I_n = \int_{-5}^{0} (1-5x)^n \cdot e^{7x} dx$$
 para $n \ge 0$. Halle I_2