Exercise Sheet 3

- 1. Let Ω be our sample space, and define two independent random variables on it: Y_1 and Y_2 . Let $Y_i \sim \text{Bernoulli}(\theta)$ for i = 1, 2. Note that Bernoulli a distributed r.v. Y_i takes values 0 or 1 with the parameter θ corresponding to $P(Y_i = 1)$. We consider only two parameters $\theta \in \Theta = \{\frac{1}{3}, \frac{2}{3}\}$.
 - What possible realisations of (Y_1, Y_2) could you get?
 - For each of them, write down the likelihood for both parameter values.
 - What is the maximum likelihood estimator for each sample?
 - Interpret.
 - Once you have obtained $\widehat{\beta}$ how would you define your Bayes classifier?
- 2. For the logit model we had

$$P(Y_i = y | X_i = x_i; \beta) = \frac{1}{1 + e^{-x_i^T \beta}}$$

and log-likelihood

$$l(\beta) = \sum_{i=1}^{n} \left[y_i \log P(Y_i = 1 | X_i = x_i; \beta) + (1 - y_i) \log(1 - P(Y_i = 1 | X_i = x_i; \beta)) \right].$$

- Explain the principle of MLE. How do we find β ?
- For our numerical procedure we require the $l'(\beta) = \frac{dl(\beta)}{d\beta}$. Derive it.
- Does the solution look somewhat familiar? Explain.
- 3. We are trying to predict individual defaults (y) using account balance (x_1) and income (x_2) as inputs/predictors. You can use generative AI as guidance for the following exercises but make sure to always double-check!
 - Install and load the R library ISLR and use the data Default.
 - Split the dataset into a training and a validation set.
 - Plot defaults as a function of balance.
 - Add a logistic regression line to this plot.
 - Now estimate the logistic regression for the model with both x_1 and x_2 as predictors.
 - Plot the defaults (y) with different colours in (x_1, x_2) space.
 - Derive and add the Bayes decision boundary to this plot.
- 4. Advanced: Implement the Maximum Likelihood estimator for $\widehat{\beta}$ based on the likelihood (and its gradient) in Question 1. Hint: use the function optim(b, fn = 11, gr = grad) where b is the start value, 11 is the likelihood function (as a function of b) and grad is the gradient of 11 also as a function of b.