6 一北京工业大学 2013-2014 学年第一学期期末 数理统计与随机过程(研)课程试卷

学号	姓名	成绩

注意: 试卷共七道大题, 请写明详细解题过程。数据结果保留3位小数。

考试方式: 半开卷, 考试时**只允许看教材**《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时**允许使用计算器**。

考试时间 120 分钟。

- 一、(10 分)设学生某次考试成绩服从正态分布 $N(\mu,\sigma^2)$,现从中随机抽取 36 位的考试成绩,算得平均分为 66.5,标准差为 15 分。问在显著性水平 0.05 下,从样本看,
 - (1)是否接受 " $\mu = 70$ "的假设?
 - (2)是否接受" $\sigma^2 \le 16^2$ "的假设?

解: 已知 $\overline{X} = 66.5, S = 15, n = 36, \alpha = 0.05$

(1)
$$H_0: \mu = 70, H_1: \mu \neq 70$$

由书中结论知,检验问题的拒绝域为

$$\left|\frac{\overline{X} - 70}{S/\sqrt{n}}\right| \ge t_{\frac{\alpha}{2}}(n-1)$$

(2)
$$H_0: \sigma^2 \le 16^2, H_1: \sigma^2 > 16^2$$

检验问题的拒绝域为

$$\frac{(n-1)S^2}{16^2} \ge \chi_\alpha^2(n-1)$$

$$\frac{(n-1)S^2}{16^2} = \frac{(36-1)15^2}{16^2} = 30.7617 \,, \quad \chi_{\alpha}^2(n-1) = \chi_{0.05}^2(36-1) = 49.802 \,, \quad \text{所以,接受原假设。}$$

X、(15分)在某公路上观察汽车通过情况,取 15 秒为一个时间单位,记下锅炉汽车的辆数。连续观察 200 个单位时间,得数据如下:

过路的辆数	0	1	2	3	1 4	>5	
频数	92	68	28	11	1	0	

问在一个时间单位内通过公路的汽车辆数 X 的分布能否看成是 Poisson 分布?(显著 性水平取 $\alpha = 0.05$)

$$\widehat{R}: \ \widehat{\lambda} = \overline{x} = \frac{0*92+1*68+2*28+3*11+4*1}{200} = 0.805$$

A_{i}	f_i		\hat{p}_{i}	nį),	$f_i^2 / n\hat{p}_i$
A_0	92	2	0. 447	89.		94. 676
$A_{\rm l}$	68		0.360	72	2	64. 222
A_2	28	}	0. 145	29		27. 034
A_3	11		0.039	7.8		
A_4	1	12	0.008	1.6	9.6	15
A_5	0		0.001	0. 2		$\Sigma = 200.932$

并组后 k=4, 而此处 r=1, 故自由度为 k-r-1=2, 200. 932-200=0. 932< $\chi^2_{0.05}(2)=5.991$, 所以是 Poisson 分布

三、(15 分) 为考察某种维尼纶纤维的耐水性能,安排了一组试验,测得甲醇浓度 x 及相应的"缩醇化度" y 数据如下:

Х	18	20	22	24	26	28	30	1
У	26.86	28. 35	28. 75	28. 87	29. 75	30	30. 36	

- (1)建立"缩醇化度" y 对甲醇浓度 x 的一元线性回归方程;
- (2)对建立的回归方程进行显著性检验: (取 $\alpha = 0.01$);

解答:

77		T 7.		
X	y	x ² i	$\perp \perp y^2$	xy
18	26. 86	324	721. 4596	483. 48
20	28. 35	400	803. 7225	567
22	28. 75	484	826. 5625	632. 5
24	28. 87	576	833. 4769	692. 88

26	29. 75	676	885. 0625	773. 5
28	30	784	900	840
30	30. 36	900	921. 7296	910. 8
$\sum 168$	202. 94	4144	5892. 0136	4900.16

$$S_{xx} = \sum_{i=1}^{7} x_i^2 - \frac{1}{n} (\sum_{i=1}^{7} x_i)^2 = 4144 - \frac{1}{7}168^2 = 112$$

$$S_{xy} = \sum_{i=1}^{7} x_i y_i - \frac{1}{n} (\sum_{i=1}^{7} x_i) (\sum_{i=1}^{7} y_i) = 4900.16 - \frac{1}{7}168 * 202.94 = 29.6$$

$$S_{yy} = \sum_{i=1}^{7} y_i^2 - \frac{1}{n} (\sum_{i=1}^{7} y_i)^2 = 5892.0136 - \frac{1}{7}202.94^2 = 8.4931$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = \frac{29.6}{112} = 0.2643, \quad \hat{a} = \bar{y} - \hat{b}\bar{x} = 22.6486$$
于是,一元线性回归方程为
$$\hat{y} = 22.6486 + 0.2643x$$

(2) 对回归方程进行检验: $H_0: b=0$

$$Q_e = S_{yy} - \hat{b}S_{xy} = 8.4831 - 0.2643 * 29.6 = 0.6598$$

$$\hat{\sigma}^2 = \frac{Q_e}{n - 2} = 0.13196, \quad \hat{\sigma} = 0.3633$$

$$|t| = \frac{|\hat{b}|}{\hat{\sigma}} \sqrt{S_{xx}} = \frac{0.2643}{0.3633} \sqrt{112} = 7.699$$

 $t_{\frac{\alpha}{2}}(n-2) = t_{0.05}(5) = 2.0150$, $|t| > t_{\frac{\alpha}{2}}(n-2)$,所以拒绝原假设,回归方程很显著。

(3) 区间预测:

$$(\hat{a} + \hat{b}x_0 \pm t_{\alpha/2}(n-2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}})$$

代入数值计算得, (31.066, 33.3332)

四、(15分)茶是世界上最为广泛的一种饮料,但很少人知其营养价值。任一种茶叶都含有叶酸,它是一种维他命 B。如今已有测定茶叶中叶酸含量的方法。为研究各产地的绿茶的叶酸含量是否有显著差异,特选三个产地绿茶,其中每个产地的绿茶制作了5个样品,共15个样品。按随机次序测试其叶酸含量(单位: mg),测试结果如下:

		-
rettt A	and and A	
/ 2011	叶酸含量	

4					
A_1	7.3	8.3	7.6	8.4	8.3
A_2	5.4	7.4	7. 1	6.8	5. 3
A_3	7. 9	9.5	10.0	9.8	8. 4
		I			U. T

- (1)三个产地的绿茶的叶酸含量有无显著性差异?(显著性水平 $\alpha = 0.05$)
- (2) 如果三个产地的绿茶的叶酸含量有显著性差异,求均值差 $\mu_{A_1} \mu_{A_2}$ 的置信水平 为95%的置信区间。

解:
$$s=3$$
, $n_1==n_2=n_3=5$, $n=15$,
$$T_{\bullet 1} = \sum_{i=1}^{n_1} X_{ij} = 39.9, \quad T_{\bullet 2} = \sum_{i=1}^{n_{21}} X_{ij} = 32 \quad T_{\bullet 3} = \sum_{i=1}^{n_{31}} X_{ij} = 45.6,$$

$$T_{\bullet \bullet} = \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij} = 117.5 \quad \overline{X} = 7.8333$$

$$S_T = \sum_{j=1}^{s} \sum_{i=1}^{n_j} X_{ij}^2 - \frac{T_{\bullet \bullet}^2}{n} = 947.31 - 920.4167 = 26.8933$$

$$S_A = \sum_{j=1}^{s} \frac{T_{\bullet j}^2}{n_j} - \frac{T_{\bullet \bullet}^2}{n} = 939.092 - 920.4167 = 18.6753$$

$$S_E = S_T - S_A = 8.218$$

列方差分析表如下:

	来源	平方和			
		十万州	自由度	均方	F值
	因素 A	18. 6753	2	9. 3377	- IE.
	误差	8. 218	1.0		F=13. 6356
ļ	F (0, 10)		12	0.6848	1 -10.0000

 $F_{0.05}$ (2, 12) =3.89 < F=13.6353, 检验结果拒绝 H。

$$t_{0.025}(n-s) = t_{0.025}(12) = 2.1788$$

$$t_{0.025}(16)\sqrt{\overline{S_{\rm E}}(\frac{1}{n_j}+\frac{1}{n_k})}=2.1788\sqrt{0.6848\times\frac{2}{5}}=1.1403$$
 ,

故置信区间为:

 $7.98 - 6.4 \pm 1.1403 = 1.58 \pm 1.1403 = (0.4397, 2.7203)$.

五、(15分) 顾客依 Poisson 过程到达某商店,速率为 $\lambda=4$ 人/小时。已知商店上午 9:00 开门。

- (1) 试求到 9:30 时仅到一位顾客,而到 11:30 时总计已到达 5 位顾客的概率。
- (2) 试求到 10:00 时仅到两位顾客的条件下,下午 1:00 时已到达 10 位顾客的概

$$E N (t) \chi t$$

$$\lambda = \frac{E N(t)}{t} = E \frac{N(t)}{L} dt$$

率:

(3) 试求此 Poisson 过程 $\{N(t), t \geq 0\}$ 的协方差函数 $C_N(s,t)$,写出推导过程。

(1)
$$P(N(\frac{1}{2}) - N(0) = \{ , N(\frac{1}{2}) - N(0) = 5 \} = P(N(\frac{1}{2}) = 1, N(\frac{1}{2}) = 1, N$$

(2)

$$P\{N(4) = 10 \mid N(1) = 2\} = \frac{P\{N(4) = 10, N(1) = 2\}}{P\{N(1) = 2\}}$$

$$EX^{2} = D(X) + (E(X)^{2})$$

$$= \frac{P\{N(1) = 2, N(4) - N(1) = 8\}}{P\{N(1) = 2\}} = \frac{P\{N(1) = 2\}P\{N(4) - N(1) = 8\}}{P\{N(1) = 2\}}$$

$$= \frac{P\{N(1) = 2, N(4) - N(1) = 8\}}{P\{N(1) = 2\}} = \frac{P\{N(1) = 2\}P\{N(4) - N(1) = 8\}}{P\{N(1) = 2\}}$$

$$= \frac{P\{N(1) = 2, N(4) - N(1) = 8\}}{P\{N(1) = 2\}} = \frac{P\{N(1) = 2\}P\{N(1) = 2\}P\{N(1) = 2\}}{P\{N(1) = 2\}P\{N(1) = 2\}}$$

$$= \frac{P\{N(1) = 2, N(1) = 2\}P\{N(1) = 2\}P\{N(1) = 2\}P\{N(1) = 2\}}{P\{N(1) = 2\}P\{N(1) =$$

 $= EN(s)[Ntt) - N(s) + N(s)] - \lambda s \cdot \lambda t$ $(3) C_N(s,t) = \lambda \min\{s,t\}, \underline{s,t} > 0, 过程略。 = EN(s)[Ntt) - N(s) + N(s)] + N(s)^2 - \lambda^2 s t$ = ENIS) · [NIt] -NIS] + ENIS) 2-2256

DIX) = VOVIX)

初始分布P(X₀=0)=0.3, P(X₀=1)=0.4, P(X₀=2)=0.3。

- (1)求概率P(X₀=0, X₁=1, X₂=2);
- (2)求概率P($X_0=1$ | $X_1=0$, $X_2=2$);
- (3)判断 $\{X_n, n \ge 0\}$ 是否为遍历的,请说明理由;若是遍历的,求其平稳分布。

$$P^{2} = \begin{bmatrix} 0.26 & 0.6 & 0.14 \\ 0.18 & 0.19 & 0.63 \\ 0.74 & 0.18 & 0.08 \end{bmatrix} \qquad P(X_{1}=1) P(X_{0}=0) \qquad PB$$

$$P(X_{0}=0,X_{1}=1,X_{2}=2) = P(X_{2}=2 \mid X_{1}=1) P(X_{1}=1 \mid X_{0}=0) P(X_{0}=0)$$

$$= 0.63 * 0.6 * 0.3 = 0.1134 \qquad P(X_{2}=2) P(X_{1}=1) P(X_{1}=1 \mid X_{0}=0) P(X_{0}=0)$$

$$P(X_1=0)$$
 (日) $P(X_1=0)$ (日) $P($

解: 由已知,
$$EZ_1 = EZ_2 = -1*\frac{1}{2} + 1*\frac{1}{2} = 0$$
,
$$E(X(t)) = E(Z_1 \cos \lambda t + Z_2 \sin \lambda t) = \cos \lambda t EZ_1 + \sin \lambda t EZ_2 = 0$$

又因为: $EZ_1^2 = EZ_2^2 = (-1)^2 * \frac{1}{2} + 1^2 * \frac{1}{2} = 1$,由 Z_1, Z_2 的独立性, $EZ_1Z_2 = EZ_1EZ_2 = 0$,故得:

$$R_{X}(t,s) = E(Z_{1}\cos\lambda t + Z_{2}\sin\lambda t)(Z_{1}\cos\lambda s + Z_{2}\sin\lambda s)$$

$$= E(Z_{1}^{2}\cos\lambda t\cos\lambda s + Z_{2}^{2}\sin\lambda t\sin\lambda s + Z_{1}Z_{2}(\cos\lambda t\sin\lambda s + \sin\lambda t\cos\lambda s))$$

$$= \cos(\lambda(t-s)) \qquad = \cos(\lambda(t-s))$$

所以,X(t)是平稳过程。