Course Outline

- Semiconductor Industry and Technology Overview
- IC Design Flows
- Timing in Digital Systems
- Front-end Design Flow
- Back-end Design Flow
- Interconnection and Signal Integrity
- Low-Power Design
- Design-for-Testability (DFT)

What the ASIC flow is about?

Verification is a much bigger problem !!!

Timing Constraints: Create Clock

```
create_clock [-name clock_name]
-period period_value
[-waveform edge_list]
[clock_source_list]
```


create_clock -name CLK1 -period 20 -waveform {0 10} [get_ports I_CLK]

Timing Constraints: Create Generated Clock

create_generated_clock -name CLK2 -source [get_ports I_CLK] -divide_by 2 [get_pins DF/QN]

Timing Constraints: Set Input Delay


```
set_input_delay 1 -clock [get_clocks {CLK1}] [getports {In1}]
```

Timing Constraints: Set Output Delay

set_output_delay 1 -clock [get_clocks {CLK1}] [getports {Out1}]

Timing Constraints: Set Drive


```
set_drive [-min]
[-max]
[-rise]
[-fall]
drive_strength
port_list
```

set_drive 1 [get_ports {In1}]

Timing Constraints: Set Load


```
set_load [-min]
[-max]
[-pin_load]
[-wire_load]
load_value
port_list
```

set_load 1 [get_ports {Out1}]

```
set input delay $1MPUT DELAY -clock $CLK NAME [list [all imputs]]
set max area 0
 # Use only plain DFF cells
set dont use [list c35 CORELIB.db:c35 CORRLIB/NFE
                    e35 CORELIB.db:e35 CORRLIB/JK*
set fix multiple port nets -all
     SSHARE RESOURCES
   set resource allocation area only
  elne
   set resource allocation none
```

```
-path full
eport timing
             "delay max
             -nworst 1
             -max paths 1 \
             -significant digits 2 \
             *nosplit \
             "BOLT by group
```

VLSI Design, Fall 2021

Course Outline

- Semiconductor Industry and Technology Overview
- IC Design Flows
- Timing in Digital Systems
- Front-end Design Flow
- Back-end Design Flow
- Interconnection and Signal Integrity
- Low-Power Design
- Design-for-Testability (DFT)

Traditional APR Flow

Gate-Level netlist (verilog)
Physical Library (LEF)
Timing Library (LIB)
Timing constraints (sdc)
IO constraint

LEF Data

Process technology

- Define layers: poly, contact, metal1, via1, metal2, ...
- Design Rules: net width, net spacing, antenna, current density, ...
- Parasitics

APR

 Unit, site, routing pitch, default direction, via generation, via stacking, ...

Routing Pitch

Via Generation

- To connect wide metal, create a via array to reduce the overall via resistance.
- APR LEF data defines formulas for via generation.

Layer Metal1
Direction HORIZONTAL
OVERHANG 0.2
Layer Metal2
Direction VERTICAL
OVERHANG 0.2
Layer Via1
RECT -0.14 -0.14 0.14 0.14
SPACING 0.56 BY 0.56

Via Stacking

- Higher density routing.
- Easier access to upper metal.
- Must use minimum area rules.

Traditional APR Flow

Gate-Level netlist (verilog)
Physical Library (LEF)
Timing Library (LIB)
Timing constraints (sdc)
IO constraint

IO Assignment

Version: 1

Pad: CORNER0 NW

Pad: PAD_CLK N

Pad: PAD HALT N

Pad: CORNER1 NE

Pad: PAD X1 W

Pad: PAD X2 W

Pad: CORNER2 SW

Pad: PAD IOVDD1 S

Pad: PAD_IOVSS1 S

Pad: CORNER3 SE

Pad: PAD VDD1 E

Pad: PAD VSS1 E

PG Assignment

Specify Floorplan

Placement

Press this button to move macro block

Scan Chain Reordering

Power Planning

IR Drop – Power Analysis

Electron Migration – Power Analysis

Clock Tree Topology

Clock Tree Synthesis

Clock Tree Synthesis

Clock Tree Synthesis Constraints

```
AutoCTSRootPin clockRootPinName

MaxDelay number{ns|ps}

MinDelay number{ns|ps}

SinkMaxTran number{ns|ps}

➤ maximum input transition time for sinks(clock pins)

BufMaxTran number{ns|ps}

➤ maximum input transition time for buffers

MaxSkew number{ns|ps}
```

There are a lot more details to it...

Display Clock Tree

By Level

By Phase

Confirm Power Analysis

Power Route

Power Route

Cell Placement & Routing

Add Fillers

Routing

Post-Layout Physical Verification

Post-Layout Physical Verification

