Homework 6

》 课后习题

- □ 已知要求GBW_{DM}=50MHz, GBW_{CM}=100MHz, C_L=5pF。设计一共模 模&差模相位裕度均大于70°的运放。通过仿真给出:
 - 差模增益
 - 功耗
 - 共模抑制比CMRR

- 差模-蓝色
- 共模-红色
- ・ 偏置-黑色

电路图过于老旧,其架构不适合我们工艺所要求的1.8V 电源电压

$$V_{OUT}-V_{GS5}=V_{r2}$$
 $V_{r2}-V_{GS7}>V_{DSat}$
 $V_{OUT}+V_{GS1}< V_{DD}-V_{DSat}$

$$V_{GS5} + V_{GS7} + V_{DSat} < V_{OUT} < V_{DD} - V_{DSat} - V_{GS1}$$

方案1:使用3.3V电源

方案2:弱反型区电路

方案3:修改电路

Homework 6

Solution 1: Using 3.3V supply

• $GBW_{DM} = 50MHz$, $C_L = 5pF$

$$GBW_{DM} = \frac{g_{m1}}{2\pi C_L}$$

$$g_{m1} = GBW_{DM} \cdot 2\pi C_L = 1.57mA/V$$

合理假设 $g_m/I_D=10$, $V_{GST}=0.2$

$$I_{D1} = 157uA$$

又根据
$$I_D = \frac{1}{2} K P_P \frac{W}{L} (V_{GS} - V_{TH})^2$$

得到
$$\left(\frac{W}{L}\right)_1 = \frac{2I_D}{KP_P \cdot (V_{GS} - V_{TH})^2} = \frac{2 \cdot 157u}{70u \cdot 0.04} = 112$$

不妨先设
$$\left(\frac{W}{L}\right)_1 = \frac{56u}{500n}$$

• GBW_{CM}=100MHz, $C_L=5pF$

$$GBW_{CM} = \frac{g_{m7}}{4\pi C_L}$$

$$g_{m7} = GBW_{CM} \cdot 4\pi C_L = 6.28mA/V$$

合理假设 $g_m/I_D=10$, $V_{GST}=0.2$

$$I_{D7} = 628uA$$

还根据
$$I_D = \frac{1}{2}KP_N\frac{W}{L}(V_{GS} - V_{TH})^2$$

得到
$$\left(\frac{W}{L}\right)_7 = \frac{2I_D}{KP_N \cdot (V_{GS} - V_{TH})^2} = \frac{2 \cdot 628u}{280u \cdot 0.04} = 112$$

不妨再设
$$\left(\frac{W}{L}\right)_7 = \frac{56u}{500n}$$

己知
$$I_{D7} = 628uA$$

得到
$$I_{D4} = 628uA$$

$$I_{D3}=628uA$$

$$I_{B2} = 1.256mA$$

已知
$$I_{D1} = 157uA$$

得到
$$I_{B1} = 314uA$$

根据 $I_{D4}和I_{D1}$ 得到 $I_{D2} = 785uA$

全部假设 $g_m/I_D=10$, $V_{GST}=0.2$

$$r_{DS} = \frac{V_E L}{I_{DS}} = \frac{40 \cdot 0.5}{628u} \approx 30k$$

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	56/0.5	70/0.5	56/0.5	224/0.5	?	?	56/0.5

源极跟随器的频率响应较为复杂,具 体内容参考《电子电路》课件CH6+ 频率响应,这里不做具体要求:

源随器主极点:

$$\frac{1}{R_S C_{GD} + \frac{C_L + C_{GS}}{g_m}}$$

源随器主极点就是Net5处极点

因为源随器的CL的较小,gm和CGS的要求就是特征频率

因此,W/L=36u/180n, I_D=1.12mA可以支持50GHz

F785uA 785uA

1

314*uA*

628*uA*

628*uA*

M4

628uA

1.256mA

 V_{DD}

降低电流至112uA

3

M5

2

M6

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	56/0.5	70/0.5	56/0.5	224/0.5	36/0.18	10/0.5	56/0.5

M5

2

M6

源极跟随器的频率响应较为复杂,具体内容参考《电子电路》课件CH6+频率响应,这里不做具体要求:

源随器驱动能力:

112uA的驱动电流,如果想要支持 1Vpp的摆幅,电阻R_a至少需要 4.46K Ohm,考虑到负载电阻上 的电流消耗,R_a取10K Ohm.

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	56/0.5	70/0.5	56/0.5	224/0.5	36/0.18	10/0.5	56/0.5

仿真得到:

- $r_{04} = 25.5K$ $g_{m1} = 1.41m$

计算得到:

- $A_0 = 31.1 dB$
- GBW=44.9M

增加g_{m1} by 增加电流I_{B1} 或增加(W/L)₁

修改(W/L)₁=56/0.25后

- $A_0 = 34.2 dB$
- GBW=61.1M
- ✓ 增益的瓶颈在于M4的 电阻值,因此降低M1 的长度不会降低增益

晶体管	M1	M2	M3
尺寸(um)	56/0.5	70/0.5	56/0.5
	56/0.25		

增加r₀₄ by 增加L₄

- ✓ r₀₄上升至78K
- ✓ GBW保持不变,增益 上升9dB至43.9dB

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	56/0.5	70/0.5	56/0.5	224/0.5	36/0.18	10/0.5	56/0.5
	56/0.25			224/2			

共模测试,差分信号采取开环设置,否则V_{out}的值在作用在共模反馈差分对M7的同时,也将通过差模反馈回路作用到M1

- ・ 经过仿真,g_{m7}=5.6mA/V,略低于所需要的6.28mA/V。
- · 发现相位裕度只有29度,次极点出现在34.5M左右(相移135度)。

Net3: 反馈电阻R=10K的情况下

- $C_{GS7} = 130f$
- $f_{nd} = 244M$

Net4:

- $C_{G4} = 2.74 pF$
- $g_{m4} = 2.39 m$
- · f_{nd}=46M

减小M4的尺寸,会使得增益再次减 小,在没有增益要求的时候,可以 如此修改。

W/L4重新改小一半,Net5:

- $C_{G4} = 0.67 pF$
- PM=65
- $f_{nd} = 130M$

在稍修改M7尺寸后

	M7尺寸后 =101M			(RP) 3.0 1.0 1.0 -3.0 -5.0		60.346deg 12.48mdB	(%ep) NIVDdOOT TOODGAIN (Gep)
晶体管	M1	M2	M3	00 7 <u> </u>	101.077MHz	1410	€ 25.0
尺寸(um)	56/0.5	70/0.5	56/0.5	224/2	36/0.18	10/0.5	56/0.5
修改后	56/0.25			112/1			80/0.2

628uA

M4

M5

9.0

7.0

5.0

314*uA*

I_{B1}

628uA

M4

M5

628uA

M4 لهل

4

 V_{DD}

85.0

80.0

75.0

70.0

>>> 课后习题

□ 将上述设计的差分运放,通过电阻设置成10倍放大,观察输入差模和共 模信号分别有100mVpp,10kHz的正弦信号时,差模输出信号的大小, 并分析是否符合预期。

$$\begin{cases} \frac{V_{out} - V_t}{10R} = \frac{V_t - V_{in}}{R} \\ V_{out} = -A \cdot V_t \end{cases}$$

从之前的仿真结果知晓:

• $A_0 = 34.2 dB = 51$

- ・ 输入: 差分100mV
- · 由于有限的增益,导致运放的输入端无法实现"虚短"的特性,出现了20mV的输入
- · 由于有限的增益,运放无 法按电阻的比例进行放大

- ・ 输入: 共模100mV
- · 由于电路的全对称结构, 因此没有系统性失调的存 在,差分输出约等于0
- · 输出的共模变化为71uV, 由于共模反馈环路的存在, 共模输入/共模输出的 CMRR从原来的18dB增加 到57dB,增加量即为共模 反馈的环路增益(39dB)

Homework 6

Solution 2: Using Weak Inversion

电路图过于老旧,其架构不适合我们工艺所要求的1.8V 电源电压

$$V_{OUT}-V_{GS5}=V_{r2}$$
 $V_{r2}-V_{GS7}>V_{DSat}$
 $V_{OUT}+V_{GS1}< V_{DD}-V_{DSat}$

$$V_{GS5} + V_{GS7} + V_{DSat} < V_{OUT} < V_{DD} - V_{DSat} - V_{GS1}$$

• $GBW_{DM} = 50MHz$, $C_L = 5pF$

$$GBW_{DM} = \frac{g_{m1}}{2\pi C_L}$$

$$g_{m1} = GBW_{DM} \cdot 2\pi C_L = 1.57mA/V$$

$$g_{m7} = GBW_{CM} \cdot 4\pi C_L = 6.28mA/V$$

合理假设g_m/I_D=20

$$I_{D1} = 79uA$$

$$I_{D7} = 314uA$$

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	?	35/0.5	56/0.5	56/0.5	?	10/0.5	?

仿真得到:

- $GBW_{DM} = 58M$
- PM=82

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	224/0.2	35/0.5	56/0.5	56/0.5	144/0.18	10/0.5	224/0.2

仿真得到:

- $GBW_{CM} = 48M$
- PM=22

显然次极点出现导致GBW不足以 及PM过小。

通过同样的分析,发现Net4的极点在800M,Net3的极点在38M。

因此需要: 1.减小R_a的阻值; 2. 增加g_{m5}的值; 3.增加I₅以增加驱

动能力

晶体管	M1	M2	M3	M4	M5	М6	M7
尺寸(um)	224/0.2	35/0.5	56/0.5	56/0.5	144/0.18	10/0.5	224/0.2
						40/0.5	

》 课后习题

□ 将上述设计的差分运放,通过电阻设置成10倍放大,观察输入差模和共 模信号分别有100mVpp,10kHz的正弦信号时,差模输出信号的大小, 并分析是否符合预期。

从之前的仿真结果知晓:

•
$$A_0 = 34.2 dB = 51$$

$$V_{out} = -A \cdot V_t$$

$$V_{out} = -\frac{10 \cdot A}{A + 11} \cdot V_{in} = -8.2 \times V_{in}$$

- ・ 输入: 差分100mV
- · 由于驱动力以及电压裕度 的不足,输出信号出现了 明显的失真

- ・ 输入: 共模100mV
- · 由于电路的全对称结构, 因此没有系统性失调的存 在,差分输出约等于0
- · 输出的共模变化为86uV, 由于共模反馈环路的存在, 共模输入/共模输出的 CMRR表现优异。

Homework 6

Solution 3: Using different circuit configuration

电路图过于老旧,其架构不适合我们工艺所要求的1.8V 电源电压

$$V_{OUT}-V_{GS5}=V_{r2}$$
 $V_{r2}-V_{GS7}>V_{DSat}$
 $V_{OUT}+V_{GS1}< V_{DD}-V_{DSat}$

$$V_{GS5} + V_{GS7} + V_{DSat} < V_{OUT} < V_{DD} - V_{DSat} - V_{GS1}$$

✓ 我们可以在共模反馈回路中使用PMOS差分对!

采用PMOS后,电路的静态工作区间要求变成了:

$$V_{OUT}$$
- V_{GS5} = V_{r2} > V_{DSat}
 V_{r2} < VDD - V_{DSat} - V_{GS7}
 V_{OUT} + V_{GS1} < V_{DD} - V_{DSat}

$$\begin{cases} V_{OUT} < V_{DD} - V_{DSat} - V_{GS1} \\ V_{GS5} + V_{DSat} < V_{OUT} < V_{DD} - V_{DSat} + V_{GS5} - V_{GS7} \\ V_{GS5} + V_{DSat} < V_{OUT} < V_{DD} - V_{DSat} - V_{GS1} \end{cases}$$

✓ 输出范围增大了一个V_{GS}

Homework 7

- 设计一轨到轨输入的单级运放,要求指标:
 - $V_{DD} = 1.8V$
 - GBW=100MHz, $C_L = 10pF$, PM=60
- · 因为GBW较高,采用强反型区, 因此使用下图电路:

单级运放,采用最简 单的电流镜有源负载

