Fast radio followup

Tim Staley

four π sky

University of Southampton

TKP Meeting, December 2012

WWW: 4pisky.org, timstaley.co.uk

OUTLINE

5 MINUTE TOUR OF GRBS

SWIFT-AMI UPDATE

WHAT'S NEXT

OUTLINE

5 MINUTE TOUR OF GRBS

SWIFT-AMI UPDATE

WHAT'S NEXT

5 MINUTE TOUR OF GRBS

GRB PROGENITORS

7.4 milliseconds

Simulation begins

Black hole forms Mass: 2.9 suns Horizon diameter: 5.6 miles (9 km)

15.3 milliseconds 21.2 milliseconds

26.5 milliseconds

GRBs: Relativistic fireballs

M. Rees and P. Meszaros, 1992; W. Zhang and S. Woosley, 2004.

SYNCHROTRON AFTERGLOW

Gou, Fox & Meszaros 2007

5 Minute tour of GRBs Swift-AMI update What's next

SYNCHROTRON AFTERGLOW

Chandra and Frail, 2012.

TRANSITION: REVERSE SHOCK

central source

Z. Lucas Uhm, Bing Zhang, 2012

5 Minute tour of GRBs Swift-AMI update What's next

REVERSE SHOCK

Z. Lucas Uhm, Bing Zhang, 2012

5 Minute tour of GRBs Swift-AMI update What's next

RS+FS COMBINED

GRB110205A (Cucchiara et. al 2011)

5 MINUTE TOUR OF GRBS SWIFT-AMI UPDATE WHAT'S NEXT

RS IN THE RADIO ('FLARES')

(S. Kulkarni et. al 1999)

RS IN THE RADIO ('FLARES')

GRB051221A (Soderberg 2006)

MANUAL RADIO FOLLOW UP OF GRBS

Data from Chanda and Frail, 2012. \sim 8GHz.

Prior radio observations

(Excluding Dave Green et al. 1995)

Why is this interesting?

Reverse shocks and radio flares (or lack thereof) inform us on:

- Magnetization of GRB jets,
- Lorentz factor of ejecta,
- Nature of ejecta (Baryonic vs Poynting flux dominated).

Meanwhile...

- ► 'Dark' GRBs (Rol 2005; Zauderer 2012).
- ► Re-injection events (Soderberg 2006; Cucchiara 2011)
- Unknown phenomena (Bannister 2012).

5 Minute tour of GRBs Swift-AMI update What's Next

REBRIGHTENING

GRB110213A (Cucchiara 2011)

OUTLINE

5 MINUTE TOUR OF GRBs

SWIFT-AMI UPDATE

WHAT'S NEXT

AMI-LA (UK)

AMI-LA (UK)

Arcminute Microkelvin Imager — Large Array

- ▶ 15 GHz central frequency, 4.5 GHz bandwidth
- ► 5.5 arcmin primary beam (FoV)
- ▶ 30 arcsec synthesised beam (PSF FWHM)
- $ho \approx 0.1$ mJy noise level, 1 hr image

THE SYSTEM

(Staley et al 2012)

THE SYSTEM

(Staley et al 2012)

FASTER RESPONSE TIMES

Faster response times

OUTLINE

5 MINUTE TOUR OF GRBs

SWIFT-AMI UPDATE

WHAT'S NEXT

NETWORKING

[Transient] astronomy currently follows the "second grade soccer system" - everyone chases the same ball.

NETWORKING

OPTICAL FOLLOWUP: LT AND PT5M

OPTICAL FOLLOWUP: LT AND PT5M (LA PALMA)

QUESTIONS

- Classification
 - Teo, Adam, Gosia.
- Prioritization and scheduling
 - Well framed as an 'Intelligent Agents' / computer science project.
 - Collaborating with Southampton IA group (Amr Hussein).

SUMMARY

- Swift-AMI 'proof of concept' has piqued the interest from the GRB community.
- 'Plumbing' works fine.
- Reduction process continues to evolve.
- Follow-up prioritization and scheduling system now in design phase.