EAE1223: ECONOMETRIA III AULA 2 - PROCESSOS ESTOCÁSTICOS

Luis A. F. Alvarez

29 de fevereiro de 2024

ESPAÇO DE PROBABILIDADE

- Formalmente, o conceito utilizado para se definir a noção de incerteza associada a um problema é o de espaço de probabilidade.
- Um espaço de probabilidade é uma tripla $(\Omega, \Sigma, \mathbb{P})$, onde:
 - Ω é um conjunto, denominado espaço amostral, contendo todos as possíveis realizações da incerteza.
 - Σ é uma coleção de subconjuntos de Ω , denominada σ -álgebra. A cada subconjunto de Ω pertencente a Σ damos o nome de evento. Os elementos de Σ são aqueles para os quais somos capazes de definir a incerteza.
 - uma lei de probabilidade $\mathbb P$ que atribui, a cada conjunto $E \in \Sigma$, um número $\mathbb P[E]$ entre 0 e 1. A lei de probabilidade satisfaz os axiomas de Kolmogorov.
- Por que não definimos a probabilidade para todo subconjunto de Ω ?
 - **Resposta:** se Ω é "complexo" (por exemplo, [0,1]), é impossível definir uma probabilidade que satisfaça todos os axiomas de Kolmogorov para todo subconjunto do espaço.

EXEMPLO

- Considere um lançamento de um dado não viciado.
- Nesse caso, espaço amostral é $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Como lançamento é não viciado, sabemos que:

$$\mathbb{P}[\{1\}] = \mathbb{P}[\{2\}] = \mathbb{P}[\{3\}] = \mathbb{P}[\{4\}] = \mathbb{P}[\{5\}] = \mathbb{P}[\{6\}] = 1/6 \,.$$

- Pelos axiomas da probabilidade, segue que podemos tomar Σ como o conjunto de todos os subconjuntos de Ω , e, para qualquer $E\subset \Sigma$:

$$\mathbb{P}[E] = \mathbb{P}[\cup_{e \in E} \{e\}] = \sum_{e \in E} \mathbb{P}[\{e\}] = \frac{\#E}{6},$$

onde #E é o número de elementos de E.

- Exemplo: probabilidade de que o lançamento de um número par é:

$$\mathbb{P}[\{2,4,6\}] = \frac{3}{6} = \frac{1}{2}$$

Variável aleatória e processo estocástico

- Uma variável aleatória Z é uma função, com domínio no espaço amostral (onde definimos a incerteza), e valores em outro espaço (para nossos fins, os reais).
 - Por exemplo, $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade descrevendo a incerteza associada aos retornos de ativos financeiros, e $Z:\Omega\mapsto\mathbb{R}$ é a variável aleatória que representa o retorno de um fundo.
 - Incerteza em $(\Omega, \Sigma, \mathbb{P})$ traduz-se em incerteza em Z, i.e. Z é incerto pois o valor $\omega \in \Omega$ que ocorre é incerto.
- Um processo estocástico é uma coleção de variáveis aleatórias $\{X_t: t \in \mathcal{T}\}$, com domínio no **mesmo** espaço de probabilidade e indexada por um conjunto \mathcal{T}
- Uma série de tempo é um processo estocástico indexado no tempo, i.e. \mathcal{T} é um conjunto de períodos.
 - Como tomaremos $\mathcal{T}=\mathbb{Z}$ ou $\mathcal{T}=\mathbb{N}.$
 - Para cada $\omega \in \Omega$, $\{X_t(\omega) : t \in \mathcal{T}\}$ é uma possível trajetória da série de tempo. Para cada $t \in \mathcal{T}$, X_t é uma variável aleatória.

SÉRIE DE TEMPO ESTRITAMENTE ESTACIONÁRIA

- Uma série de tempo $\{X_t: t \in \mathcal{T}\}$ é dita estritamente estacionária se, para todo $t \in \mathcal{T}$, $j \in \mathbb{N}$:

$$(X_t, X_{t+1}, \dots, X_{t+j}) \stackrel{d}{=} (X_{t+h}, X_{t+1+h}, \dots, X_{t+j+h}), \quad \forall h \geq 0,$$

onde $\stackrel{d}{=}$ significa igualdade das distribuições conjuntas, i.e. ?

$$\mathbb{P}[X_t \le c_1, X_{t+1} \le c_2, \dots, X_{t+j} \le c_j] = \\ \mathbb{P}[X_{t+h} \le c_1, X_{t+1+h} \le c_2, \dots, X_{t+j+h} \le c_j], \quad \forall c_1, c_2, \dots, c_j.$$

- Estacionariedade estrita requer que distribuição de qualquer número finito de períodos do processo seja a mesma ao longo do tempo.

SÉRIE DE TEMPO FRACAMENTE ESTACIONÁRIA

Função de autocovariância

Ruído branco

Ruído branco (ilustração)

Ruído branco (ilustração)

PROCESSO MA(Q)

Processo MA(Q) (ilustração)

Processo AR(1) estacionário

Processo AR(1) estacionário (ilustração)

Processo AR(p) estacionário

OPERADOR DEFASAGEM

Estacionariedade do AR(p)