Announcements

- Homework 3 is out on Gradescope
 - Due on Exam date (Thursday Oct 7th)
- Exam is next Week (Oct 7th).
 - > D01 will have it available on Thursday 9am central time till Saturday midnight.
 - Will still need to do it in 90 minutes
- Exam content
 - Till lecture 11 (MDP)
- Review Session on October 4th week
 - Monday 4th 3-5 pm by TA (Solving questions and review questions)
 - Wednesday 6th 1-3 pm and 6-7 pm by me (Bring your questions session)
 - > If you need anything else or cannot make it to any, by appointment
 - All will be hosted via zoom. Links are to be announced later
- Review session questions will be available on blackboard by Thursday

Exam Format

- You are allowed to have a cheat sheet
 - > A4 two sides
- You may need a calculator so bring yours
- Exam questions are in the following format
 - > 6-8 questions in total
 - One question is True or False (True:1, False:-1, Blank: 0. So, Don't answer randomly)
 - > The other 5-7 questions are solving problems
 - Similar to the exam prep/review question format

CS 3568: Intelligent Systems

Markov Decision Processes (part 3)

Instructor: Tara Salman

Texas Tech University

Computer Science Department

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]
Texas Tech University

Tara Salman

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - > Start state s₀

Quantities:

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)

The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship among optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

g a s, a s' s' s'

Value Iteration

■ Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

■ Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Efficiency: O(AS²) per iteration

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- □ Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Texas Tech University

Tara Salman

Computing Actions from Values

- □ Let's imagine we have the optimal values V*(s)
- How should we act?
 - > It's not obvious!

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Texas Tech University

Computing Actions from Q-Values

■ Let's imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Texas Tech University

11

Tara Salman

Problems with Value Iteration

□ Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 \square Problem 1: It's slow – O(S²A) per iteration

- □ Problem 2: The "max" at each state rarely changes
- □ Problem 3: The policy often converges long before the values

13

Texas Tech University

Texas Tech University 14 Tara Salman

Texas Tech University

15

Tara Salman

Texas Tech University 17 Tara Salman

18

Texas Tech University

Texas Tech University

k=10

Texas Tech University 23 Tara Salman

k=100

Texas Tech University 24 Tara Salman

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- \square Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - > We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - > They differ only in whether we plug in a fixed policy or max over actions