GRAU DE MATEMÀTIQUES

Treball final de grau

Aspectos combinatorios del producto tensorial de conjuntos dendroidales

Autor: Roger Brascó Garcés

Director: Dr. Javier J. Gutiérrez

Realitzat a: Departament de Topología

Barcelona, 23 de enero de 2022

Resumen

²⁰¹⁰ Mathematics Subject Classification. 11G05, 11G10, 14G10

Agradecimientos

${\bf \acute{I}ndice}$

1.	Nociones previas 1			
	1.1.	Catego	orías	1
		1.1.1.	Functores	1
	1.2.	Opera	das	2
		1.2.1.	Operadas coloradas	2
2.	Conjuntos Simpliciales			3
	2.1.	Compl	lejos simpliciales	3
		2.1.1.	Morfismos simpliciales	3
	2.2.	Conju	ntos Delta	3
		2.2.1.	Morfismos Delta	3
	2.3.	Conju	nto simplicial	3
3.	Conjuntos Dendroidales			4
	3.1.	$\acute{\rm Arbol}$	como operadas	4
		3.1.1.	Caras	4
		3.1.2.	Funciones degenerativas	4
		3.1.3.	Identidades de morfismos	4
		3.1.4.	Árboles no planares	4
	3.2.	Conju	nto Dendroidal	4
	3.3.	Produ	cto tensorial de conjuntos dendroidales	4
		3.3.1.	Producto tensorial Boardman Vogt	4
		3.3.2.	Producto Producto tensorial de conjuntos dendroidales	4
4.	Injertos de árboles			5
	4.1.	Produ	cto tensorial de árboles lineales	5
	4.2.	Produ	cto tensorial de árboles	5
		4.2.1.	Injertos de árboles resultantes	5
	4.3.	Cálcul	o de árboles resultantes	5
		4.3.1.	Conjunto de árboles resultantes	5
		4.3.2.	Generarador de árboles en Python	5
5.	. Conclusiones			6

1. Nociones previas

1.1. Categorías

Definición 1.1. Categoría

Una categoría is una cuadrúpula $\mathbf{A} = (\mathcal{O}, \text{hom}, id, \circ)$ que consiste en:

- (1) Una clase \mathcal{O} que sus elementos serán llamados **A-objetos**. Usaremos la notación $Ob(\mathbf{A})$ oara simplificar.
- (2) Para cada pareja de objetos (A, B) de \mathbf{A} , tenemos un conjunto de hom(A, B), cuyos elementos serán llamados \mathbf{A} -morfismos de A a B; és decir, los morfismos $A \xrightarrow{f} B$ para todo $f \in \text{hom}(A, B)$.
- (3) Para cada objeto A de ${\bf A}$ definimos el morfismo $A \xrightarrow{id_A} A$ como la identidad A.
- (4) Sean $A \xrightarrow{f} B y B \xrightarrow{g} C$ dos morifismos de **A**, definimos la composición \circ como:

$$A \xrightarrow{f} B \downarrow_{g}$$

$$C$$

Composición que cumple con las siguientes condiciones:

- (a) Es asociativa: sean $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ y $C \xrightarrow{h} D$ morifismos de **A**, entonces se cumple $h \circ (g \circ f) = (h \circ g) \circ f$.
- (b) Respecta la identidad: para todo morfismo $A \xrightarrow{f} B$ de A, se cumple $id_B \circ f = f$ y $f \circ id_A = f$.

Ejemplo 1.2. Categoría **Set** cuyos objetos son todos los conjuntos y los morfismos son las funciones totales.

Definición 1.3. Categoría opuesta

Para toda categoría $\mathbf{A} = (\mathcal{O}, \hom_{\mathbf{A}}, id, \circ)$ definimos la categoría opuesta como $\mathbf{A}^{\mathrm{op}} = (\mathcal{O}, \hom_{\mathbf{A}^{\mathrm{op}}}, id, \circ^{\mathrm{op}})$, donde $\hom_{\mathbf{A}^{\mathrm{op}}}(A, B) = \hom_{\mathbf{A}}(B, A)$ y $f \circ^{\mathrm{op}} g = g \circ f$. Podemos observar que \mathbf{A} y \mathbf{A}^{op} tienen los mismos objetos y los mismos morfismos pero cambiados de dirección.

1.1.1. Functores

Definición 1.4. Functor

Sean \mathbf{A} y \mathbf{B} dos categorías, definimos un functor F de \mathbf{A} a \mathbf{B} como una función que asigna cada objeto $A \in Ob(\mathbf{A})$ un objeto $F(A) \in Ob(\mathbf{B})$, y para cada morfismo de \mathbf{A} $A \xrightarrow{f} A'$ un morfismo de \mathbf{B} $F(A) \xrightarrow{F(f)} F(A')$.

$$F: \mathbf{A} \longrightarrow \mathbf{B}$$
$$A \longmapsto F(A)$$
$$f \longmapsto F(f)$$

De manera que:

- (1) F conserva la composición: $F(f\circ g)=F(f)\circ F(g),$ siempre y cuando $f\circ g$ esté bien definido.
- (2) F conserva los morfismos identidad: $F(id_A)=id_{F(A)}$, para cada $A\in Ob(\mathbf{A})$.

1.2. Operadas

1.2.1. Operadas coloradas

2. Conjuntos Simpliciales

- ${\bf 2.1.}\quad {\bf Complejos\ simpliciales}$
- 2.1.1. Morfismos simpliciales
- 2.2. Conjuntos Delta
- 2.2.1. Morfismos Delta
- 2.3. Conjunto simplicial

3. Conjuntos Dendroidales

- 3.1. Árbol como operadas
- 3.1.1. Caras
- 3.1.2. Funciones degenerativas
- 3.1.3. Identidades de morfismos
- 3.1.4. Árboles no planares
- 3.2. Conjunto Dendroidal
- 3.3. Producto tensorial de conjuntos dendroidales
- 3.3.1. Producto tensorial Boardman Vogt
- 3.3.2. Producto Producto tensorial de conjuntos dendroidales

4. Injertos de árboles

- 4.1. Producto tensorial de árboles lineales
- 4.2. Producto tensorial de árboles
- 4.2.1. Injertos de árboles resultantes
- 4.3. Cálculo de árboles resultantes
- 4.3.1. Conjunto de árboles resultantes
- 4.3.2. Generarador de árboles en Python

5. Conclusiones

Referencias

- [1] Batut, C.; Belabas, K.; Bernardi, D.; Cohen, H.; Olivier, M.: User's guide to *PARI-GP*, pari.math.u-bordeaux.fr/pub/pari/manuals/2.3.3/users.pdf, 2000.
- [2] Chen, J. R.; Wang, T. Z.: On the Goldbach problem, Acta Math. Sinica, 32(5):702-718, 1989.
- [3] Deshouillers, J. M.: Sur la constante de Šnirel'man, Séminaire Delange-Pisot-Poitou, 17e année: (1975/76), Théorie des nombres: Fac. 2, Exp. No. G16, pág. 6, Secrétariat Math., Paris, 1977.
- [4] Deshouillers, J. M.; Effinger, G.; te Riele, H.; Zinoviev, D.: A complete Vinogradov 3-primes theorem under the Riemann hypothesis, *Electron. Res. Announc. Amer. Math. Soc.*, 3:99-104, 1997.
- [5] Dickson, L. E.: History of the theory of numbers. Vol. I: Divisibility and primality, Chelsea Publishing Co., New York, 1966.
- [6] Hardy, G. H.; Littlewood, J. E.: Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, *Acta Math.*, 44(1):1-70, 1923.
- [7] Hardy, G. H.; Ramanujan, S.: Asymptotic formulae in combinatory analysis, *Proc. Lond. Math. Soc.*, 17:75-115, 1918.
- [8] Hardy, G. H.; Wright, E. M.: An introduction to the theory of numbers, 5a edición, Oxford University Press, 1979.
- [9] Helfgott, H. A.: Minor arcs for Goldbach's problem, arXiv:1205.5252v4 [math.NT], diciembre de 2013.
- [10] Helfgott, H. A.: Major arcs for Goldbach's problem, arXiv:1305.2897v4 [math.NT], abril de 2014.
- [11] Helfgott, H. A.: The ternary Goldbach conjecture is true, arXiv:1312.7748v2 [math.NT], enero de 2014.
- [12] Helfgott, H. A.; Platt, D.: Numerical verification of the ternary Goldbach conjecture up to 8,875 · 10³⁰, arXiv:1305.3062v2 [math.NT], abril de 2014.
- [13] Klimov, N. I.; Pil'tjaĭ, G. Z.; Šeptickaja, T. A.: An estimate of the absolute constant in the Goldbach-Šnirel'man problem, *Studies in number theory*, *No.* 4, págs. 35-51, Izdat. Saratov. Univ., Saratov, 1972.
- [14] Liu, M. C.; Wang, T.: On the Vinogradov bound in the three primes Goldbach conjecture, *Acta Arith.*, 105(2):133-175, 2002.
- [15] Oliveira e Silva, T.; Herzog, S.; Pardi, S.: Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4 \cdot 10^{18}$, *Math. Comp.*, 83:2033-2060, 2014.
- [16] Ramaré, O.: On Šnirel'man's constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(4):645-706, 1995.

- [17] Riesel, H.; Vaughan, R. C.: On sums of primes, Ark. Mat., 21(1):46-74, 1983.
- [18] Rosser, J. B.; Schoenfeld, L.: Approximate formulas for some functions of prime numbers, *Illinois J. Math.*, 6:64-94, 1962.
- [19] Schnirelmann, L.: Über additive Eigenschaften von Zahlen, Math. Ann., 107(1):649-690, 1933.
- [20] Tao, T.: Every odd number greater than 1 is the sum of at most five primes, *Math. Comp.*, 83:997-1038, 2014.
- [21] Travesa, A.: Aritmètica, Colecció UB, No. 25, Barcelona, 1998.
- [22] Vaughan, R. C.: On the estimation of Schnirelman's constant, *J. Reine Angew. Math.*, 290:93-108, 1977.
- [23] Vaughan, R. C.: *The Hardy-Littlewood method*, Cambridge Tracts in Mathematics, No. 125, 2a edición, Cambridge University Press, 1997.
- [24] Vinogradov, I. M.: Sur le théorème de Waring, C. R. Acad. Sci. URSS, 393-400, 1928.
- [25] Vinogradov, I. M.: Representation of an odd number as a sum of three primes, *Dokl. Akad. Nauk. SSSR*, 15:291-294, 1937.