Üst bahçenin alanı alt bahçenin alanından büyük ise g(x) > f(x) omalıdır.

Buna göre
$$110x - 4x^2 > 50x - x^2$$

$$0 > 4x^2 - x^2 + 50x - 110x$$

$$0 > 3x^2 - 60x$$
 olur.

3x² – 60x ifadesi h fonksiyonu olarak adlandırıldığında,

$$h(x) = 3x^{2} - 60x = 3(x^{2} - 20x) = 3(x^{2} - 20x + 100 - 100)$$

$$= 3[(x - 10)^{2} - 10^{2}]$$

$$= 3[(x - 10 + 10) \cdot (x - 10 - 10)]$$

$$= 3x \cdot (x - 20) \text{ olur.}$$

Burada 3x cebirsel ifadesi k fonksiyonu, (x - 20) cebirsel ifadesi m fonksiyonu ile modellenirse, $h(x) = k(x) \cdot m(x)$ olur. k(x) = 3x için k fonksiyonun sıfırı x = 0, m(x) = x - 20 için m fonksiyonunun sıfırı x = 20 olmalıdır. h(x) < 0 eşitsizliğinin tablosu yapıldığına,

	_∞	0	20	∞
k(x)	-	0 +	- +	-
m(x)	_	_	- 0 +	-
h(x)	+	0 -	- 0 +	-

bulunur. Tabloya göre h(x) < 0 olduğu aralık (0, 20) dır.

Problem bağlamında değerlendirildiğinde alt bahçenin kısa kenar uzunluğunun alabileceği değer aralığı (0, 20) dır.

Grafik İnceleme

 $h(x) = 3x^2 - 60x = 3(x^2 - 20x) = 3(x^2 - 20x + 100 - 100) = 3[(x - 10)^2 - 100]$ fonksiyonunun grafiği, öteleme veya matematik yazılımı yardımı ile çizilir. $f(x) = x^2$ karesel referans fonksiyonunun x ekseni boyunca pozitif yönde 10 birim, y ekseni boyunca negatif yönde 100 birim ötelenip y değerlerinin 3 katına eşlenerek h fonksiyonunun grafik çizimi yapılır.

Görsel 4.11: h fonksiyonunun grafiği

Görsel 4.11'de eğrinin x eksenini kesen noktalarının T(0,0) ve S(20,0) olduğu görülmektedir. Grafik incelendiğinde h(x) < 0 şartını sağlayan aralık (0,20) dır. Bu durumda alt bahçenin kısa kenar uzunluğunun alabileceği değer aralığı (0,20) dır.