Package 'BetterReg'

October 12, 2022

Type Package
Title Better Statistics for OLS and Binomial Logistic Regression
Version 0.2.0
Author Chris Aberson
Maintainer Chris Aberson <cla18@humboldt.edu></cla18@humboldt.edu>
Description Provides squared semi partial correlations, tolerance, Mahalanobis, Likelihood Ratio Chi Square, and Pseudo R Square. Aberson, C. L. (2022) <doi:10.31234 osf.io="" s2yqn="">.</doi:10.31234>
License GNU General Public License version 3
Encoding UTF-8
LazyData true
Imports car (>= 3.0-0), stats (>= 3.5.0), dplyr (>= 0.8.0)
Depends R (>= $3.5.0$)
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-30 17:00:01 UTC
R topics documented:
indbcomp
LRchi
Mahal
parts
R2change
testlog
testreg
tolerance
Index

2 depbcomp

depbcomp	Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes
	Power(All)

Description

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

Usage

```
depbcomp(
  data = NULL,
  y = NULL,
  x1 = NULL,
  x2 = NULL,
  x3 = NULL,
  x4 = NULL,
  x5 = NULL,
  numpred = NULL,
  comps = "abs"
)
```

Arguments

data	name of data file
У	dependent variable name
x1	first predictor variable name
x2	second predictor variable name
x3	third predictor variable name
x4	fourth predictor variable name
x5	fifth predictor variable name
numpred	number of predictors
comps	Type of comparison, "abs" for absolute values or "raw" for raw coefficients

Value

Comparing Dependent Coefficients in Multiple Regression

Examples

```
depbcomp(data=testreg,y=y,x1=x1,x2=x2,x3=x3,x4=x4,x5=x5, numpred=5,comps="abs")
```

indbcomp 3

7	nd	h	10	nn
	пu	υv	ıU	III

Comparing Independent Coefficients in Multiple Regression

Description

Comparing Independent Coefficients in Multiple Regression

Usage

```
indbcomp(model1 = NULL, model2 = NULL, comps = "abs")
```

Arguments

model1	Summary of first model (see example for how to summarize)
model2	Summary of second model (see example for how to summarize)
comps	Type of comparison. "abs" - absolute value of coefficient (recommended). "raw" raw values of coefficient

Value

Comparing Independent Coefficients in Multiple Regression

Examples

```
\label{eq:continuous_problem} $$y_1<-rnorm(200); x1_1<-rnorm(200); x2_1<-rnorm(200) $$y_2<-rnorm(200); x1_2<-rnorm(200); x2_2<-rnorm(200) $$df1<-as.data.frame(cbind(y_1, x1_1,x2_1)) $$df2<-as.data.frame(cbind(y_2, x1_2,x2_2)) $$model1_2<-summary(lm(y_1^x1_1+x2_1, data=df1)) $$model2_2<-summary(lm(y_2^x1_2+x2_2, data=df2)) $$indbcomp(model1 = model1_2, model2 = model2_2, comps="abs") $$
```

LRchi

Compute Likelihood Ratio Chi-square for Binomial Logistic Regression with up to 10 predictors

Description

Compute Likelihood Ratio Chi-square for Binomial Logistic Regression with up to 10 predictors

4 LRchi

Usage

```
LRchi(
    data = NULL,
    y = NULL,
    x1 = NULL,
    x2 = NULL,
    x3 = NULL,
    x4 = NULL,
    x5 = NULL,
    x6 = NULL,
    x7 = NULL,
    x8 = NULL,
    x9 = NULL,
    numpred = NULL
)
```

Arguments

data	name of your datafile, loaded
У	dependent variable name
x1	first predictor variable name
x2	second predictor variable name
x3	third predictor variable name
x4	fourth predictor variable name
x5	fifth predictor variable name
x6	sixth predictor variable name
x7	seventh predictor variable name
x8	eighth predictor variable name
x9	ninth predictor variable name
x10	tenth predictor variable name
numpred	number of predictors

Examples

```
LRchi(data=testlog, y="dv", x1="iv1", x2="iv2",numpred=2)
```

Mahal 5

Mahal

Compute Mahalanobis Distance for Multiple Regression

Description

Compute Mahalanobis Distance for Multiple Regression

Usage

```
Mahal(model = NULL, pred = NULL, values = 5)
```

Arguments

model name of model pred number of predictors

values number of Mahal values to print (highest values). Default is 10

Value

Mahalanobis Distance to detect MV outliers

Examples

```
mymodel<-lm(y~x1+x2+x3+x4, testreg)
Mahal(model=mymodel, pred=5, values = 10)</pre>
```

parts

Compute squared semi partial correlations for Multiple Regression

Description

Compute squared semi partial correlations for Multiple Regression

Usage

```
parts(model = NULL, pred = NULL)
```

Arguments

model name of model pred number of predictors

Value

Squared semipartial correlations for MRC with up to 10 predictors

R2change

Examples

```
mymodel<-lm(y~x1+x2+x3+x4+x5, data=testreg)
parts(model=mymodel, pred=5)</pre>
```

pseudo

Pseudo R-square Values for Binomial Logistic Regression

Description

Pseudo R-square Values for Binomial Logistic Regression

Usage

```
pseudo(model = NULL)
```

Arguments

mode1

name of model

Value

Pseudo R-square Values for Logistic Regression

Examples

```
\label{eq:mymodel} $$ mymodel < -glm(dv^iv1+iv2+iv3+iv4, testlog, family = binomial()) $$ pseudo(model=mymodel) $$
```

R2change

R-square change for Hierarchical Multiple Regression

Description

R-square change for Hierarchical Multiple Regression

Usage

```
R2change(model1 = NULL, model2 = NULL)
```

Arguments

model1	first regression model
model2	second regression model

testlog 7

Examples

```
mymodel1<-lm(y~x1+x2, data=testreg)
mymodel2<-lm(y~x1+x2+x3+x4, data=testreg)
R2change(model1=mymodel1, model2=mymodel2)</pre>
```

testlog

testlog

Description

A dataset to test logistic regression functions

Usage

testlog

Format

A data frame with 164 rows and 11 variables:

- dv DV
- iv1 1st predictor
- iv2 2nd predictor
- iv3 3rd predictor
- iv4 4th predictor
- iv5 5th predictor
- iv6 6th predictor
- iv7 7th predictor
- iv8 8th predictor
- iv9 9th predictor
- iv10 10th predictor

8 tolerance

testreg

testreg

Description

A dataset to test regression functions

Usage

testreg

Format

A data frame with 1000 rows and 6 variables:

- y DV
- x1 1st predictor
- x2 2nd predictor
- x3 3rd predictor
- **x4** 4th predictor
- x5 5th predictor

tolerance

Compute tolerance for Multiple Regression

Description

Compute tolerance for Multiple Regression

Usage

```
tolerance(model = NULL)
```

Arguments

model

name of model

Value

Tolerance for MR

Examples

```
\label{eq:mymodel} \begin{tabular}{ll} mymodel &<-lm(y^x1+x2+x3+x4+x5, data=testreg) \\ tolerance(model=mymodel) \end{tabular}
```

Index

```
* datasets
testlog, 7
testreg, 8

depbcomp, 2
indbcomp, 3

LRchi, 3

Mahal, 5
parts, 5
pseudo, 6

R2change, 6

testlog, 7
testreg, 8
tolerance, 8
```