Anomaly Detection

Davin Ahn

November 04, 2022

Inhalt

- 1. Ausreißererkennung durch Isolation Forest
 - 1.1 Hyperparameter einsetzen
 - 1.2 Trainierung
 - 1.3 Visualisieren
 - 1.4 Resultat
- 2. Model Trainieren mit anomalen erkannten Daten
 - 2.1 Resultat
 - 2.2 Analyse

Hyperparameter einsetzen

1 train = iForest(data_train, contamination = float(0.004), random_state = 42)

Hyperparameter einsetzen

Trainierung

```
1 def iForest(ds, n_estimators = 100, max_samples = "auto", contamination = 'auto', max_features = 1.0, random_state = None):
     clf = IsolationForest(n estimators = n estimators, max samples = max samples.
                           contamination = contamination, max features = max features, random state = random state)
     dataset = ds.drop(columns = ['timestamp', 'sensor'])
     clf.fit(dataset)
     # Ausreißer erkennen, danach auf jeden Datenpunkt zeichnen
     dataset['anomaly'] = clf.predict(dataset)
     # filtern die Daten, die als Ausreißer gezeigt sind
     outliers = dataset.loc[dataset['anomaly'] == -1]
     outlier index = list(outliers.index)
     # Anzahl der Anomalien und normalen Daten. Daten, die mit -1 klassifiziert sind, sind anomal
     print(dataset['anomaly'].value_counts())
    8482
ame: anomaly, dtype: int64
```

```
scaler = StandardScaler()
data scaled = scaler.fit transform(dataset)
# Reduktion hochdimensionaler Daten in niedrigdimensionale Daten durch PCA(Principal Component Analysis)
pca = PCA(n components = 3)
data reduce = pca.fit transform(data scaled)
fig = plt.figure()
ax = fig.add subplot(projection='3d')
# Plot the compressed data points
ax.scatter(data_reduce[:, 0], data_reduce[:, 1], zs = data_reduce[:, 2], s = 4, lw = 1, label = "inliers", c = "green")
# Plot x's for the ground truth outliers
ax.scatter(data reduce[outlier index.0], data reduce[outlier index.1], data reduce[outlier index.2],
           lw = 2, s = 60, marker = "x", c = "red", label = "outliers")
ax.legend()
plt.show()
pca = PCA(2)
#Reduction of high-dimensional data into low-dimensional data
data reduce = pca.fit transform(data scaled)
res = pd.DataFrame(data reduce)
b1 = plt.scatter(res[0], res[1], c = 'green', s = 20, label = "normal points")
b1 = plt.scatter(res.iloc[outlier index,0], res.iloc[outlier index,1], c = 'green', s = 20,
                 edgecolor = "red",label = "predicted outliers")
plt.legend(loc = "lower right")
plt.show()
```

entfernen die Ausreißer, danach das Index initialisieren, danach die column 'index' entfernen
returnData = ds.drop(index=outlier_index).reset_index().drop(columns = ['index'], axis = 1)

Resultat

```
1 train = iForest(data_train, contamination = float(0.004), random_state = 42)
1  8482
-1  35
Name: anomaly, dtype: int64
```


Resultat

```
1 test = iForest(data_test, contamination = float(0.004), random_state = 42)
1    2725
-1    11
Name: anomaly, dtype: int64
```


Model Trainieren mit anomalen erkannten Daten

Resultat

Evaluation mit originalem Datensatz

Evaluation mit anomalien erkanntem Datensatz

Model Trainieren mit anomalen erkannten Daten

Resultat

Evaluation mit originalem Datensatz

Evaluation mit anomalien erkanntem Datensatz

Model Trainieren mit anomalen erkannten Daten Analyse