Zusammenfassung Homologische Algebra

© M Tim Baumann, http://timbaumann.info/uni-spicker

Kategorientheorie

Bem. Die Topologie-Zusammenfassung bietet eine Übersicht über Grundbegriffe der Kategorientheorie.

Def. Eine Kategorie \mathcal{C} heißt **lokal klein**, wenn $\operatorname{Hom}(X,Y)$ für alle $X,Y\in\operatorname{Ob}(\mathcal{C})$ eine Menge (keine echte Klasse) ist. Sie heißt **klein**, wenn auch die Klasse ihrer Objekte eine Menge ist. Sie heißt **endlich**, wenn Objekt- und Hom-Mengen sogar nur endlich sind.

Def. Sei **Cat** die Kategorie mit kleinen Kategorien als Objekten und Funktoren als Morphismen.

Def. Eine Kategorie \mathcal{D} heißt **Unterkategorie** einer Kategorie \mathcal{C} (notiert $\mathcal{D} \subseteq \mathcal{C}$), wenn für alle geeigneten X, Y, f, g gilt:

 $\mathrm{Ob}(\mathcal{D})\subseteq \mathrm{Ob}(\mathcal{C}),\ \mathrm{Hom}_{\mathcal{D}}(X,Y)\subseteq \mathrm{Hom}_{\mathcal{C}}(X,Y)\ \mathrm{und}\ f\circ_{\mathcal{D}}g=f\circ_{\mathcal{C}}g.$

Def. Eine Unterkategorie $\mathcal{D} \subseteq \mathcal{C}$ heißt voll, wenn

$$\forall X, Y \in \mathrm{Ob}(\mathcal{D}) : \mathrm{Hom}_{\mathcal{D}}(X, Y) = \mathrm{Hom}_{\mathcal{C}}(X, Y).$$

Def. Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ heißt ...

- ... treu, wenn für alle $X, Y \in \text{Ob}(\mathcal{C})$ die Abbildung $F : \text{Hom}_{\mathcal{C}}(X, Y) \to \text{Hom}_{\mathcal{D}}(FX, FY)$ injektiv ist.
- ... voll, wenn diese Abb. für alle $X, Y \in Ob(\mathcal{C})$ surjektiv ist.

Bem. Die Einbettung einer (vollen) Unterkategorie ist ein (voll-)treuer Funktor.

- **Def.** Ein Objekt $X \in \text{Ob}(\mathcal{C})$ heißt **initiales Objekt**, falls für alle $Y \in \text{Ob}(Y)$ genau ein Morphismus $f \in \text{Hom}_{\mathcal{C}}(X, Y)$ existiert.
- Ein Objekt $Z \in Ob(\mathcal{C})$ heißt **terminales Objekt**, falls für alle $Y \in Ob(Y)$ genau ein Morphismus $f \in Hom_{\mathcal{C}}(Y, Z)$ existiert.

Def. Ein Funktor $F:\mathcal{C}\to\mathcal{D}$ ist ein **Kategorienäquivalenz**, falls es einen Funktor $G:\mathcal{D}\to\mathcal{C}$ mit $F\circ G\simeq \mathrm{Id}_{\mathcal{D}}$ und $G\circ F\simeq \mathrm{Id}_{\mathcal{C}}$ gibt. Die Funktoren F und G heißen dann zueinander **quasiinvers** und die Kategorien \mathcal{C} und \mathcal{D} äquivalent.

Prop. $F: \mathcal{C} \to \mathcal{D}$ ist genau dann eine Kategorienäquivalenz, wenn: • F ist volltreu, • $\forall Y \in \mathrm{Ob}(\mathcal{D}) : \exists X \in \mathrm{Ob}(\mathcal{C}) : Y \cong F(X)$

Bsp. Sei B ein lokal wegzshgder, semi-lokal einfach zshgder topol. Raum. Dann ist die Kategorie Cov(B) der Überlagerungen von B äquivalent zur Kategorie $[\pi(B), \mathbf{Set}]$ der Mengen-wertigen Funktoren auf dem Fundamentalgruppoid von B. Dabei ist

$$\begin{split} F: \operatorname{Cov}(B) &\to [\pi(B), \mathbf{Set}], \quad F(p: \tilde{B} \to B) \coloneqq G_{\tilde{B},p}, \\ G_{\tilde{B},p}(b \in B) &\coloneqq p^{-1}(b), \quad G_{\tilde{B},p}(\gamma: [0,1] \to B)(\tilde{b} \in p^{-1}(\gamma(0))) \coloneqq \tilde{\gamma}(1), \\ & \text{mit } \tilde{\gamma} \text{ Liftung von } \gamma \text{ mit } \tilde{\gamma}(0) = \tilde{b}. \end{split}$$

Def. Zwei Ringe A und B heißen Morita-äquivalent, wenn ihre Kategorien der (Links/Rechts)-Moduln äquivalent sind.

Def. Sei C eine Kategorie, $X \in Ob(C)$. Der kontravariante Hom-Funktor $h_X : C^{op} \to \mathbf{Set}$ ist definiert durch

$$h_X(Y) := \operatorname{Hom}(Y, X), \quad h_X(h: Y' \to Y)(g: Y \to X) := g \circ h.$$

Allgemeiner gibt es den Funktor Hom : $\mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathbf{Set}$ mit

$$\operatorname{Hom}(h:Y'\to Y,f:X\to X')(g:Y\to X)\coloneqq f\circ g\circ h.$$

Notation. $\hat{\mathcal{C}} := [\mathcal{C}^{op}, \mathbf{Set}]$

Def. Ein Element $x \in X(Y) := \text{Hom}(Y, X)$ heißt Y-Element von X.

Def. Ein Funktor $F \in \text{Ob}(\hat{\mathcal{C}})$ wird **dargestellt** durch $X \in \text{Ob}(\mathcal{C})$, falls $F \cong h_X$. Er heißt **darstellbar**, falls ein solches X existiert.

Def. Die Yoneda-Einbettung ist der Funktor

$$Y: \mathcal{C} \to \hat{\mathcal{C}}, \ X \mapsto h_X, \ \phi \mapsto (\phi \circ -: X(Y) \to X'(Y))_{Y \in \mathrm{Ob}(\mathcal{C})}.$$

Lemma (Yoneda). Sei C eine Kategorie. Es gibt es eine nat. Bij.

$$\operatorname{Hom}_{\hat{\mathcal{C}}}(h_X, F) \cong F(X)$$
 für alle $X \in \operatorname{Ob}(\mathcal{C}), F \in \hat{\mathcal{C}}.$

Korollar. Die Yoneda-Einbettung ist volltreu und liefert eine Kategorienäquivalenz von \mathcal{C} und der vollen Unterkategorie der darstellbaren Funktoren in $\hat{\mathcal{C}}$.

Korollar. Ein darstellbarer Funktor wird von genau einem Objekt dargestellt (bis auf Isomorphie).

Def. Das **Produkt** von $X, Y \in \text{Ob}(\mathcal{C})$ ist ein Obj. $Z \in \text{Ob}(\mathcal{C})$, das $F : \mathcal{C}^{\text{op}} \to \mathbf{Set}, \ U \mapsto X(U) \times Y(U), \ \phi \mapsto ((-\circ \phi) \times (-\circ \phi))$ darstellt.

Bem. Diese Definition ist äquivalent zur folgenden: Das Produkt von X,Y ist $Z\in \mathrm{Ob}(\mathcal{C})$ zusammen mit Morphismen $p_X:Z\to X$ und $p_Y:Z\to Y$, wenn für alle $Z'\in \mathrm{Ob}(\mathcal{C})$ mit Morphismen $p_X':Z'\to X$ und $p_Y':Z'\to Y$ genau ein $f:Z'\to Z$ mit $p_X'=p_X\circ f$ und $p_Y'=p_Y\circ f$ existiert.

Def. Seien $\phi: X \to S$ und $\psi: Y \to S$ Abb. von Mengen. Das Faserprodukt von X und Y über S ist

$$X \times_S Y := \{(x, y) \in X \times Y \mid \phi(x) = \psi(y)\}.$$

Def. Sei $\phi \in \operatorname{Hom}_{\mathcal{C}}(X,S)$ und $\psi \in \operatorname{Hom}_{\mathcal{C}}(Y,S)$. Das **Faserprodukt** von X und Y über S ist ein Obj. in \mathcal{C} , das den Funktor $F:\mathcal{C}^{\operatorname{op}} \to \mathbf{Set}, \ U \mapsto X(U) \times_{S(U)} Y(U)$ darstellt.

Bem. Das Faserprodukt von X und Y über S ist das Produkt von $X \xrightarrow{\phi} S$ und $Y \xrightarrow{\psi} S$ in der Scheibenkategorie \mathcal{C}/S .

Def. Eine **Gruppenstruktur** auf einem Objekt $X \in \text{Ob}(\mathcal{C})$ ist gegeben durch Gruppenstrukturen auf Hom(Y,X) für alle $Y \in \text{Ob}(\mathcal{C})$ und Gruppenmorphismen $\text{Hom}(Y,X) \to \text{Hom}(Y',X)$ für jeden Morphismus $\phi: Y' \to Y$ (die die offensichtlichen Axiome erfüllen).

Bem. Falls \mathcal{C} ein term. Obj. 1 und die Produkte $X \times X$ und $X \times X \times X$ besitzt, dann ist eine Gruppenstr. auf X geg. durch Morphismen

$$m: X \times X \to X$$
 (Mult.), $i: X \to X$ (Inv.), $e: 1 \to X$ (Einheit),

die die offensichtlichen Axiome erfüllen.

(Ko-)Limiten

Def. Seien \mathcal{J}, \mathcal{C} Kat'en. Der **Diagonal-Funktor** $\Delta: \mathcal{C} \to [\mathcal{J}, \mathcal{C}]$ ist

$$(\Delta X)(J \in \mathrm{Ob}(\mathcal{J})) \coloneqq X, \quad (\Delta X)(\phi) \coloneqq \mathrm{id}_X, \quad (\Delta f)_{J \in \mathrm{Ob}(\mathcal{J})} \coloneqq f.$$

Def. Seien \mathcal{J}, \mathcal{C} Kategorien, \mathcal{J} klein. Der (**projekte**) Limes eines Funktors $F: \mathcal{J} \to \mathcal{C}$ ist ein Objekt $X \in \text{Ob}(\mathcal{C})$, das den Funktor

$$G \in \hat{\mathcal{C}}, \quad G(Y) := \operatorname{Hom}_{[\mathcal{J}, \mathcal{C}]}(\Delta Y, F), \quad G(f)(\eta) := \eta \circ \Delta f$$

darstellt. Man notiert $X = \lim_{\longrightarrow} F$.

Def. Ein Möchtegern-Limes eines Funktors $F: \mathcal{J} \to \mathcal{C}$ ist ein Objekt $X \in \mathrm{Ob}(\mathcal{C})$ mit Projektionsabbildungen $f_J: X \to F(J)$ für alle $J \in \mathrm{Ob}(\mathcal{J})$, sodass $\forall h \in \mathrm{Hom}_{\mathcal{J}}(J,I): f_I = F(h) \circ f_J$.

Bem. Der Limes X ist durch folgende **universelle Eigenschaft** charakterisiert: Er ist ein terminales Objekt in der Kategorie der Möchtegern-Limiten, d. h. er ist ein Möchtegern-Limes und für jeden weiteren Möchtegern-Limes X' gibt es genau einen Morphismus $g \in \operatorname{Hom}_{\mathcal{C}}(X',X)$ mit $\forall J \in \operatorname{Ob}(\mathcal{J}): f_J' = f_J \circ g$.

Bem. Die univ. Eigenschaft zeigt: Der Limes ist funktoriell, d.h. wenn in \mathcal{C} alle \mathcal{J} -Limiten (d.h. Limiten von Funktoren $\mathcal{J} \to \mathcal{C}$) existieren, dann gibt es einen Funktor $\lim : [\mathcal{J}, \mathcal{C}] \to \mathcal{C}$.

Bem.Folgende Konzepte lassen sich als Spezialfall des Limes über eine spezielle Indexkategorie $\mathcal J$ auffassen:

Konzept	Indexkategorie \mathcal{J}
Terminales Objekt	Ø (leere Kategorie)
Produkt	$2 \coloneqq \{0,1\}$ (kein nichttrivialer Morphismus)
Faserprodukt	$1 \to 0 \leftarrow 2$ (zwei nichttriviale Morphismen)
Differenzkern	$0 \Rightarrow 1$ (zwei nichttriviale Morphismen)

Def. Sei \mathcal{J} klein. Der Kolimes / induktive Limes eines Funktors $F: \mathcal{J} \to \mathcal{C}$ ist ein Objekt $X \in \text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$, das den Funktor

$$G\in\mathcal{C}^{\mathrm{\hat{o}p}}=[\mathcal{C},\mathbf{Set}],\ \ G(Y)\coloneqq\mathrm{Hom}_{[\mathcal{J},\mathcal{C}]}(F,\Delta Y),\ \ G(f)(\eta)\coloneqq\Delta f\circ\eta$$
darstellt. Man notiert $X=\lim F.$

Bem. Der Kolimes von $F: \mathcal{J} \to \mathcal{C}$ ist der Limes von $F^{\mathrm{op}}: \mathcal{J}^{\mathrm{op}} \to \mathcal{C}^{\mathrm{op}}$.

Bem. Wenn in $\mathcal C$ alle $\mathcal J$ -Kolimiten existieren, dann gibt es einen Funktor $\varinjlim: [\mathcal J,\mathcal C] \to \mathcal C$.

Bem. Folgende Konzepte sind ein Spezialfall des Kolimes:

Konzept	Indexkategorie \mathcal{J}
Initiales Objekt	Ø (leere Kategorie)
Koprodukt	$2 := \{0, 1\}$ (kein nichttrivialer Morphismus)
Kofaserprodukt	$1 \to 0 \leftarrow 2$ (zwei nichttriviale Morphismen)
Kodifferenzkern	$0 \rightrightarrows 1$ (zwei nichttriviale Morphismen)

Satz. Angenommen, eine Kategorie $\mathcal C$ enthält ein term. Objekt, den Differenzkern von allen parallelen Morphismen $f,g\in \operatorname{Hom}_{\mathcal C}(X,Y)$ und das Produkt $X\times Y$ von allen Paaren von Objekten. Dann existieren alle endlichen Limiten in $\mathcal C$, d. h. der Limes von jedem Funktor $F:\mathcal J\to\mathcal C$, wobei $\mathcal J$ endlich ist. Duales gilt für endl. Kolimiten mit initialem Obj., Kodifferenzkern und Koprodukten.

Korollar. In Set existieren alle endlichen Limiten und Kolimiten.

Bem. Angenommen, in $\mathcal C$ existieren alle $\mathcal J$ -Limiten. Sei $\mathcal I$ eine bel. Kategorie. Dann ex. alle $\mathcal J$ -Limiten in $[\mathcal I,\mathcal C]$ und die Limiten werden objektweise berechnet: Sei $F:\mathcal J\to [\mathcal I,\mathcal C]$ ein Funktor, dann ist

$$(\underline{\lim} F)(I) = \underline{\lim} (F(-)(I)), \quad (\underline{\lim} F)(f) = \underline{\lim} (F(-)(f)).$$

Def. Ein Funktor $F:\mathcal{C}\to\mathcal{D}$ heißt **stetig**, wenn er **Limiten bewahrt**, d. h. für alle Funktoren $D:\mathcal{J}\to\mathcal{D}$ (mit \mathcal{J} klein) mit lim $D\in \mathrm{Ob}(\mathcal{C})$ ex. auch der Limes von $F\circ G$ in \mathcal{D} und es gilt

$$\varprojlim(F\circ D)\cong F(\varprojlim D).$$

Ein Funktor F heißt kostetig, wenn er Kolimiten bewahrt.

Adjunktionen

Def. Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ heißt linksadjungiert zum Funktor $G: \mathcal{C} \to \mathcal{D}$, wenn es einen natürlichen Isomorphismus

$$\operatorname{Hom}_{\mathcal{D}}(F(-),-) \cong \operatorname{Hom}_{\mathcal{C}}(-,G(-))$$

gibt (dabei sind beide Seiten Funktoren $C^{\text{op}} \times \mathcal{D} \to \mathbf{Set}$). Dann heißt G auch rechtsadjungiert zu F. Man notiert $F \dashv G$.

Bem. Sei $F:\mathcal{C}\to\mathcal{D}$ ein Funktor. Dann besitzt F genau dann einen Rechtsadjungierten $G:\mathcal{D}\to\mathcal{C}$, wenn für alle $Y\in \mathrm{Ob}(\mathcal{D})$ der Funktor

$$\mathcal{C}^{\mathrm{op}} \to \mathbf{Set}, \quad X \mapsto \mathrm{Hom}_{\mathcal{D}}(FX, Y), \quad f \mapsto (- \circ F(f))$$

darstellbar ist, d. h. es existiert $GY \in Ob(\mathcal{C})$ und Isomorphismen

$$a_X^Y : \operatorname{Hom}_{\mathcal{D}}(FX, Y) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(X, GY)$$

 $\begin{array}{l} \text{mit } \forall \phi \in \operatorname{Hom}(X',X) \, : \, a_{X'}^Y(-\circ F(\phi)) = a_X^Y(-) \circ \phi. \\ \text{Dann ist } G \text{ auf Morphismen definiert durch} \end{array}$

$$G(f \in \operatorname{Hom}_{\mathcal{D}}(Y, Y')) := a_{GY}^{Y'} \left(f \circ \left(a_{GY}^{Y} \right)^{-1} \left(\operatorname{id}_{GY} \right) \right).$$

Bem. Sei $F: \mathcal{C} \to \mathcal{D}$ linksadjungiert zu $G: \mathcal{D} \to \mathcal{C}$. Setze

$$\eta_X \coloneqq a_X^{FX}(\mathrm{id}_{FX}) : X \to GFX,$$

$$\epsilon_Y \coloneqq (a_{GY}^Y)^{-1}(\mathrm{id}_{GY}) : FGY \to Y.$$

Dann sind $\eta: \mathrm{Id}_{\mathcal{C}} \to G \circ F$ (genannt **Einheit**) und $\epsilon: F \circ G \to \mathrm{Id}_{\mathcal{C}}$ (genannt **Koeinheit**) natürliche Transformationen und es gilt

$$(G \xrightarrow{\eta G} GFG \xrightarrow{G\epsilon} G) = id_G, \quad (F \xrightarrow{\epsilon F} FGF \xrightarrow{F\eta} F) = id_F.$$

Umgekehrt definieren zwei solche natürliche Transformationen η und ϵ , die diese Gleichungen erfüllen, eine Adjunktion zwischen F und G. Dabei ist η_X universell unter den Morphismen von $X \in \mathrm{Ob}(\mathcal{D})$ zu einem Objekt der Form GY: Für alle $f \in \mathrm{Hom}_{\mathcal{D}}(X,GY)$ gibt es genau ein $h \in \mathrm{Hom}(FX,Y)$ mit $f = G(h) \circ \eta_X$, und zwar $h = (a_X^Y)^{-1}(f)$. Duales gilt für ϵ_Y .

Lemma (Verknüpfung von Adjunktionen).

Sei $F_1: \mathcal{C} \to \mathcal{D}$ zu $G_1: \mathcal{D} \to \mathcal{C}$ und $F_2: \mathcal{D} \to \mathcal{E}$ zu $G_2: \mathcal{E} \to \mathcal{D}$ linksadj. Dann ist $F_2 \circ F_1: \mathcal{C} \to \mathcal{E}$ zu $G_1 \circ G_2: \mathcal{E} \to \mathcal{C}$ linksadjungiert.

Lemma (Eindeutigkeit des adjungierten Funktors).

• Gelte $F \dashv G_1$ und $F \dashv G_2$. Dann sind G_1 und G_2 nat. isomorph.

• Gelte $F_1 \dashv G$ und $F_2 \dashv G$. Dann sind F_1 und F_2 nat. isomorph.

Bem. Sei $(F: \mathcal{C} \to \mathcal{D}) \dashv (G: \mathcal{D} \to \mathcal{C})$ eine Adjunktion und \mathcal{J} klein. Dann gibt es eine ind. Adjunktion $(F \circ - : [\mathcal{J}, \mathcal{C}] \to [\mathcal{J}, \mathcal{D}]) \dashv (G \circ -)$.

Bspe. • Angenommen, in \mathcal{C} existieren \mathcal{J} -Limiten bzw. \mathcal{J} -Kolimiten. Dann gibt es eine Adjunktion $\Delta \dashv \underline{\lim}$ bzw. $\underline{\lim} \dashv \Delta$.

- Sei F: Set → Grp der Funktor, der die freie Gruppe über einer Menge bastelt und V: Grp → Set der Vergiss- funktor. Dann gilt F ⊢ V. Gleiches gilt für viele weitere "freie" Konstruktionen.
- Sei KHaus die Kat. der kompakten Hausdorffräume und K: Top → KHaus die Stone-Čech-Kompaktifizierung und I: KHaus → Top die Inklusion. Dann gilt K ⊢ I.

Def. Im Spezialfall, dass \mathcal{C} und \mathcal{D} Präordnungskategorien sind, wird ein Paar von adjungierten Funktoren (d. h. monotonen Abbildungen) zwischen \mathcal{C} und \mathcal{D} auch **Galoisverbindung** genannt.

Bspe. • $([-]: \mathbb{R} \to \mathbb{Z}) \dashv (i: \mathbb{Z} \hookrightarrow \mathbb{R}) \dashv ([-]: \mathbb{R} \to \mathbb{Z})$

• Sei $L \supset K$ eine endl. Körpererweiterung. Für eine Zwischenerw. $L \supseteq M \supseteq K$ sei $Gal(L, M) := \{ f \in Aut(L) | f|_M = id_M \}$ die Galoisgruppe von L über M. Dann ist

{ Untergruppen von
$$\,\mathrm{Gal}(L,K)\,$$
} \leftrightarrow { Zwischenerw. $\,L\supseteq M\supseteq K\,$ }
$$G\mapsto \{x\in L\,|\,\forall\,\sigma\in G\,:\,\sigma(x)=x\}$$
 $\,\mathrm{Gal}(L,M) \leftrightarrow M\,$

eine Galoisverbindung (dabei sind Untergruppen durch Inklusion und Zwischenerweiterungen umgekehrt durch Inklusion geordnet).

Lemma. Sei $F \dashv G$ eine Adjunktion. Dann gilt:

- F bewahrt Kolimiten (LAPC, left-adjoints preserve colimits).
- G bewahrt Limiten (RAPL, right-adjoints preserve limits).

Beweis (RAPL). Sei \mathcal{J} eine kleine Indexkategorie. Es gilt:

$$\begin{split} (F \circ \neg) \circ (\Delta : \mathcal{C} \to [\mathcal{J}, \mathcal{C}]) &\dashv (\varprojlim : [\mathcal{J}, \mathcal{C}] \to \mathcal{C}) \circ (G \circ \neg), \\ (\Delta : \mathcal{D} \to [\mathcal{J}, \mathcal{D}]) \circ F &\dashv G \circ (\varprojlim : [\mathcal{J}, \mathcal{D}] \to \mathcal{D}). \end{split}$$

Da $(F \circ -) \circ \Delta \equiv \Delta \circ F$, folgt aus der Eindeutigkeit des Rechtsadjungierten $\lim (G \circ D) \cong G(\lim D)$ natürlich in D.

Def. Eine monoidale Kategorie $\mathcal C$ besitzt einen Funktor $\otimes: \mathcal C \times \mathcal C \to \mathcal C$ (genannt Tensorprodukt), ein Objekt $1 \in \mathrm{Ob}(\mathcal C)$ und natürliche Isomorphismen (die zwei Kohärenzbedingungen erfüllen)

$$a_{X,Y,Z}: (X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z), \ \lambda_X: 1 \otimes X \cong X, \ \rho_X: X \otimes 1 \cong X.$$

Def. Sei (\mathcal{C}, \otimes) eine monoidale Kategorie. Ein **interner Hom-Funktor** ist ein Funktor $[-,-]:\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathcal{C}$, der sodass für alle $X\in\mathrm{Ob}(\mathcal{C})$ der Funktor $-\otimes X$ linksadjungiert zu [X,-] ist, d. h.

$$\operatorname{Hom}_{\mathcal{C}}(Y \otimes X, Z) \cong \operatorname{Hom}_{\mathcal{C}}(Y, [X, Z]).$$

 $[X,Y] =: Y^X$ heißt auch **Exponentialobjekt**.

Def. Eine monoidale Kategorie heißt kartesisch abgeschlossen, wenn sie einen internen Hom-Funktor besitzt.

Bspe. Set, AbGrp, k – Vect und Cat sind kartesisch abgeschl.

Simpliziale Mengen

Def. Verklebedaten sind gegeben durch einen Funktor

$$X: \Delta_{\mathrm{strikt}}^{\mathrm{op}} \to \mathbf{Set}.$$

Dabei ist Δ_{strikt} die Kategorie mit den Mengen $[n] := \{0, 1, \dots, n\}$ für $n \in \mathbb{N}$ als Objekten und streng monotonen Abbildungen.

Notation. $X_{(n)} := X([n])$ heißt Menge der n-Simplizes.

Def. Das Standard-n-Simplex $\Delta_n \subset \mathbb{R}^{n+1}$ ist die von den (n+1) Standardbasisvektoren aufgespannte affinlineare Hülle. Eine streng monotone Abb $f:[n] \to [m]$ induziert durch Abbilden des i-ten Basisvektors auf den f(i)-ten eine Inklusion $\Delta_f:\Delta_n \to \Delta_m$,

 ${\bf Def.}\;$ Die geometrische Realisierung von Verklebedaten X ist der topologische Raum

$$|X| \coloneqq \left(\coprod_{n \in \mathbb{N}} (\Delta_n \times X_{(n)}) \right) / R$$

Dabei ist $X_{(n)}$ diskret. Die Äquivalenzrelation R wird erzeugt von $(\Delta_f(t), x) \sim (t, X(f)(x))$ mit $t \in \Delta_m, x \in X_{(n)}, f : [m] \rightarrow [n]$ s.m.s.

Def. Das k-Skelett $\operatorname{sk}_k X$ von Verklebedaten X ist definiert durch $(\operatorname{sk}_k X)_{(n)} := \{x \in X_{(n)} \mid n \leq k\}, \ (\operatorname{sk}_k X)(f) := X(f) \text{ sofern möglich}$

Def. Eine simpliziale Menge ist ein Funktor

$$X: \Lambda^{\mathrm{op}} \to \mathbf{Set}$$
.

Dabei ist Δ die Kategorie mit den Mengen $[n] := \{0, 1, \dots, n\}$ für $n \in \mathbb{N}$ als Objekten und monotonen Abbildungen.

Notation. $X_n := X([n])$ heißt Menge der n-Simplizes.

Def. Eine simpliziale Abbildung zw. simpl. Mengen X und Y ist eine nat. Transformation zwischen den Funktoren $X, Y : \Delta^{op} \to \mathbf{Set}$.

Def. Die Kategorie der simplizialen Mengen ist $\mathbf{sSet} := [\Delta^{\mathrm{op}}, \mathbf{Set}].$

Def. Die geometrische Realisierung einer simplizialen Menge X ist der topologische Raum

$$|X| := \left(\prod_{n \in \mathbb{N}} (\Delta_n \times X_n)\right) / R$$

Die Äquivalenzrelation R wird dabei erzeugt von

$$(\Delta_f(t), x) \sim (t, X(f)(x))$$
 mit $t \in \Delta_m, x \in X_n$ u. $f \in \operatorname{Hom}_{\Delta}([m], [n])$.

Def. Ein topologischer Raum heißt **trianguliert**, wenn er die Realisierung von Verklebedaten ist.

Def. Der Nerv einer Überdeckung $X = \bigcup_{\alpha \in A} U_{\alpha}$ eines topologischen Raumes ist die simpliziale Menge

$$X_n := \{ (\alpha_0, ..., \alpha_n) \in A^{n+1} \mid U_{\alpha_0} \cap ... \cap U_{\alpha_n} \neq \emptyset \}$$

$$X(f)(\alpha_0, ..., \alpha_n) := (\alpha_{f(0)}, ..., \alpha_{f(m)}) \quad \text{für } f : [m] \to [n].$$

Bem. Falls die Überdeckung lokal endlich ist und alle nichtleeren, endlichen Schnitte $U_{\alpha_1}\cap\ldots\cap U_{\alpha_n}$ zusammenziehbar sind, so ist die geom. Realisierung des Nerves der Überdeckung homotopieäq. zu X.

Def. Sei Y ein topol. Raum. Die simpliziale Menge X der singulären Simplizes in Y ist

$$X_n := \{ \text{ stetige Abb. } \sigma : \Delta_n \to Y \}, \quad X_n(f)(\sigma) := \sigma \circ \Delta_f.$$

Bem. Diese Konstruktion stiftet eine Funktor Sing : $\mathbf{Top} \to \mathbf{sSet}$.

$$\mathbf{Def.} \ \Delta[p]_n \coloneqq \{\, g: [n] \to [p] \ \mathrm{monoton \ steigend} \, \}, \, \Delta[p](f)(g) \coloneqq g \circ f$$

Def. Der klassifizierende Raum einer Gruppe G ist gegeben durch die Realisierung der simpl. Menge BG mit $(BG)_n := G^n$ und

$$BG(f:[m] \to [n])(g_1, \dots, g_n) := (h_1, \dots, h_m), \quad h_i = \prod_{j=f(i-1)+1}^{f(i)} g_j.$$

Def. Ein *n*-Simplex $x \in X_n$ heißt **degeneriert**, falls eine monotone surjektive Abbildung $f : [n] \to [m], n > m$ und ein Element $y \in X_m$ existiert mit x = X(f)(y).

 $\mathbf{Def.}\,$ Seien X Verklebedaten. Wir konstruieren eine dazugehörende simpliziale Menge \tilde{X} wie folgt:

$$\tilde{X}_n := \{(x,g) \mid x \in X_{(k)}, g : [n] \to [k] \text{ monoton und surjektiv}\},$$

Für eine monotone Abbildung $f:[m] \to [n]$ und $(x,g) \in \tilde{X}_n$ schreiben wir zunächst $g \circ f = f_1 \circ f_2$ mit einer Injektion f_1 und einer Surjektion f_2 und setzen $\tilde{X}(f)(x,g) := (X(f)(x), f_2)$.

Prop. Eine simpliziale Menge \tilde{X} kann genau dann aus (dann eindeutigen) Verklebedaten gewonnen werden, falls für alle nicht-degenerierten Simplizes $x \in \tilde{X}_n$ und streng monotonen Abbildungen $f:[m] \to [n]$ auch $\tilde{X}(f)(x) \in \tilde{X}_m$ nicht degeneriert ist.

Prop. Seien X Verklebedaten, \tilde{X} die entsprechende simpliziale Menge. Dann gilt $|X| \approx |\tilde{X}|$.

Def. Das k-Skelett $\operatorname{sk}_k X$ einer simplizialen Menge X ist geg. durch

$$(\operatorname{sk}_k X)_n := \{X(f)(x) \mid p \le k, f : [n] \to [p] \text{ monoton}, x \in X_p\}.$$

Def. Eine simpliziale Menge X hat **Dimension** n, falls $X = \operatorname{sk}_n X$.

Prop. Geom. Realisierung ist ein Funktor $|-|: \mathbf{sSet} \to \mathbf{Top}$.

Bspe. • Eine Überdeckung $(U_{\alpha})_{\alpha \in A}$ eines topologischen Raumes ist Verfeinerung von $(V_{\beta})_{\beta \in B}$, wenn es eine Abbildung $\psi: A \to B$ gibt, sodass $U_{\alpha} \subset V_{\psi(\alpha)}$ für alle $\alpha \in A$. Dies induziert eine simpliziale Abb. zwischen den Nerven der Überdeckungen durch

$$F_n(\alpha_0,\ldots,\alpha_n) := (\psi(\alpha_0),\ldots,\psi(\alpha_n)).$$

• Ein Gruppenhomomorphismus $\phi: G \to H$ stiftet eine Abbildung $BG \to BH$ zwischen den klassifizierenden Räumen durch

$$F(g_1,\ldots,g_n) := (\phi(g_1),\ldots,\phi(g_n)).$$

Def. Ein simplizialer topologischer Raum ist ein Funktor

$$X: \Delta^{\mathrm{op}} \to \mathbf{Top}.$$

Bem. Die geometrische Realisierung eines simplizialen topol. Raumes ist definiert wie die einer simplizialen Menge mit dem Unterschied, dass X_n im Allg. nicht die diskrete Topologie trägt.

Def. Eine bisimpliziale Menge ist ein Funktor

$$X: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \to \mathbf{Set}$$
.

Notation. $X_{nm} := X([n], [m])$

Bsp. Das direkte Produkt von simplizialen Mengen X und Y ist die bisimpliziale Menge

$$(X \times Y)_n := X_n \times Y_n, \quad (X \times Y)(f,g)(x,y) := (f(x),g(y)).$$

Def. Die **Diagonale** DX einer bisimplizialen Menge X ist die simpliziale Menge mit $(DX)_n := X_{nn}$ und DX(f) := X(f, f).

Def. Sei X eine bisimpliziale Menge.

- Setze $|X|^D := |DX|$.
- Definiere einen simplizialen topologischen Raum X^I durch

$$X_n^I := |X_{\bullet n}|, \quad X^I(g) := |X(\mathrm{id}, g)|.$$

Setze $|X|^{I,II} := |II, I|$.

• Definiere analog $|X|^{II,I}$.

Satz (Eilenberg-Zilber). $|X|^D \cong |X|^{I,II} \cong |X|^{II,I}$ kanonisch.

Def. Der Nerv \mathcal{NC} einer kleinen Kategorie \mathcal{C} ist die simpl. Menge

$$\mathcal{NC}_n := \left\{ \text{ Diagramme } X_0 \xrightarrow{\varphi_1} X_1 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_n} X_n \text{ in } \mathcal{C} \right\}$$

$$\mathcal{NC}(f:[m] \to [n])(X_0 \xrightarrow{\varphi_1} \dots \xrightarrow{\varphi_n} X_n) := (Y_0 \xrightarrow{\psi_1} \dots \xrightarrow{\psi_m} Y_m)$$

mit $Y_i := X_{f(i)}, \ \psi_i := \varphi_{f(i)} \circ \dots \circ \varphi_{f(i-1)+1}$

Bsp. $\Delta[n] = \mathcal{NC}(\text{Präordnungskategorie mit Objekten } \{0, \dots, n\})$

Bem. • Der Nerv ist volltreuer Funktor $\mathcal{NC}: \mathbf{Cat} \to \mathbf{sSet}$.

- Jede kleine Kat. kann aus ihrem Nerv zurückgewonnen werden.
- $\mathcal{N}(\mathcal{C} \times \mathcal{D}) = D(\mathcal{N}\mathcal{C} \times \mathcal{N}\mathcal{D})$

Bem. Mit $X*Y \coloneqq D(X\times Y)$ wird **sSet** zu einer monoidalen Kategorie.

Prop. sSet ist kartesisch abgeschlossen. Dabei ist

$$[X,Y]_n = (Y^X)_n := \operatorname{Hom}_{\mathbf{sSet}}(\Delta[n] * X, Y).$$

Prop. Der Nervfunktor ist verträglich mit dem internen Hom: Seien \mathcal{C}, \mathcal{D} kleine Kategorien. Dann ist

$$\mathcal{N}([\mathcal{C},\mathcal{D}]_{\mathbf{Cat}}) \cong [\mathcal{NC},\mathcal{ND}]_{\mathbf{sSet}}$$

Garben

Def. • Eine mengenwertige **Prägarbe** \mathcal{F} auf einem topol. Raum X ist ein Funktor $\mathcal{F}: \mathbf{Ouv}(X)^{\mathrm{op}} \to \mathbf{Set}$. Dabei ist $\mathbf{Ouv}(X)$ die Präordnungs-Kategorie der offenen Teilmengen von X geordnet durch Inklusion.

- Allgemeiner ist eine C-wertige Prägarbe ein Funktor
 F: Ouv(X)^{op} → C (z. B. C = AbGrp, R-Mod, Top).
- Ein Morphismus zwischen Prägarben F und G auf demselben topol. Raum ist eine natürliche Transformation zwischen F und G.

Notation. Sei \mathcal{F} eine Prägarbe

- $\Gamma(U, \mathcal{F}) := \mathcal{F}(U)$ heißt Menge der **Schnitte** von \mathcal{F} über U.
- $r_{UV} := \mathcal{F}(V \subseteq U) : \mathcal{F}(U) \to \mathcal{F}(V)$ heißt Restriktionsabb.
- $x|_V := r_{UV}(x)$ für $V \subseteq U$ und $x \in \mathcal{F}(U)$ heißt Einschränkung von x auf V.

Def. Eine Garbe auf einem topol. Raum X ist eine Prägarbe \mathcal{F} , für die gilt: Für alle Familien $(U_i)_{i\in I}$ von offenen Teilmengen und Schnitten $(s_i \in \mathcal{F}(U_i))_{i\in I}$, die miteinander verträglich sind, d. h.

$$\forall i, j \in I : s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j},$$

gibt es genau einen Schnitt $s \in \mathcal{F}(\cup_{i \in I} U_i)$ mit $\forall i \in I : s_i = s|_{U_i}$. Ein Morphismus zw. Garben ist ein Morphismen zw. den Prägarben.

Bem. Sei \mathcal{F} eine (Prä-)Garbe auf X und $U\subseteq X$ offen. Dann definiert $(\mathcal{F}|U)(V):=\mathcal{F}(U\cap V)$ eine (Prä-)Garbe auf U.

Def. Eine Sequenz $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$ von (Prä-)Garben abelscher Gruppen auf X heißt **exakt** bei \mathcal{G} , falls für alle offenen $U \subset X$ die Sequenz $\mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$ exakt bei $\mathcal{G}(U)$ ist.

Def. Sei $f:\mathcal{F}\to\mathcal{G}$ ein Morphismus von Prägarben auf X. Definiere Prägarben \mathcal{K} und \mathcal{C} auf X durch

$$\mathcal{K}(U) := \ker(f_U : \mathcal{F}(U) \to \mathcal{G}(U)), \quad \mathcal{C}(U) := \mathcal{G}(U) / \operatorname{im}(f_U).$$

Prop. Sei $f: \mathcal{F} \to \mathcal{G}$ sogar ein Morphismus von Garben. Dann ist auch \mathcal{K} eine Garbe.

Achtung. Aber C ist im Allgemeinen keine Garbe!

Def. Sei \mathcal{F} eine Garbe auf Y. Der **Halm** von \mathcal{F} in $y \in Y$ ist

$$\mathcal{F}_y \coloneqq \{(U,s) \,|\, U \subseteq Y \text{offen}, y \in U, s \in \mathcal{F}(U)\} / \sim,$$

$$(U,s) \sim (V,t) \ : \iff \exists \, W \subset U \cap V \text{ offen}, y \in W \ : s|_W = t|_W.$$

Notation. $s_y := [(U, s)]$ für $s \in \mathcal{F}(U)$ mit $y \in U$.

Sprechweise. Elemente $[t] \in \mathcal{F}_y$ heißen Keime in y.

Def. Sei \mathcal{F} eine Garbe auf $Y, Z \subseteq Y$ beliebig. Definiere

$$\Gamma(Z, \mathcal{F}) := \lim_{\longrightarrow} \Gamma(U, \mathcal{F}),$$

wobei der Limes über alle offenen $U\subset X$ mit $Z\subseteq U$ läuft.

Beobachtung. $\mathcal{F}_y = \Gamma(\{y\}, \mathcal{F})$

Def. Der Totalraum F einer Prägarbe \mathcal{F} auf Y ist

$$F \coloneqq \coprod_{y \in Y} \mathcal{F}_y$$

mit der Topologie erzeugt durch die Mengen

$$\{s_u \mid y \in U\}$$
 für $U \subseteq X$ offen, $s \in \mathcal{F}(U)$.

Bem. Mit dieser Topologie ist die Projektion $\pi: F \to Y$ stetig und ein lokaler Homöomorphismus.

Def. Sei \mathcal{F} eine Prägarbe auf Y. Die **Garbifizierung** \mathcal{F}^+ von \mathcal{F} ist die Garbe der stetigen Schnitte von $\pi: \mathcal{F} \to Y$, also **Def.** Ein **geringter Raum** ist ein Paar (M, \mathcal{O}_M) , wobei M ein topol. Raum und \mathcal{O}_M eine Ringgarbe auf M ist.

$$\mathcal{F}^+(U) := \{ f : U \to F \mid \pi \circ f = (i : U \hookrightarrow Y) \}.$$

Prop. Es ex. ein kanonischer Morphismus $f: \mathcal{F} \to \mathcal{F}^+$ def. durch

$$s \in \mathcal{F}(U) \mapsto (y \mapsto s_y : U \to F).$$

Wenn \mathcal{F} schon eine Garbe ist, dann ist f ein Isomorphismus.

Def. Sei A eine Menge (oder ab. Gruppe, ...), Y ein topol. Raum.

 $\bullet\,$ Die konstante Prägarbe A mit Faser Aauf Y ist def. durch

$$\mathbf{A}(U) := A, \quad r_{UV} := \mathrm{id}_A \quad \text{für alle } V \subseteq U \subseteq Y.$$

Die konstante Garbe mit Faser A ist die Garbifizierung
 A = A⁺ von A.

Def. Eine Garbe \mathcal{F} auf Y heißt **lokal konstant**, falls jeder offene Punkt in Y eine offene Umgebung U besitzt, sodass F|U isomorph zu einer konstanten Garbe ist.

Def. Eine Garbe \mathcal{F} auf einem topologischen Raum Y heißt ...

• ... welk (flabby, flasque), wenn die Einschränkungsabbildungen

$$\Gamma(Y,\mathcal{F}) \to \Gamma(U,\mathcal{F})$$

für alle offenenen $U \subseteq Y$ surjektiv sind.

• ... weich (soft, mou), wenn die Einschränkungsabbildungen

$$\Gamma(Y,\mathcal{F}) \to \Gamma(A,\mathcal{F})$$

für alle abgeschlossenen $A \subseteq Y$ surjektiv sind.

Def. Eine Garbe \mathcal{F} ab. Gruppen auf einem topol. Raum Y heißt **fein** (fine, fin), wenn für je zwei disjunkte, abgeschlossene Teilmengen $A_1, A_2 \subseteq Y$ ein Garbenmorphismus $\alpha : \mathcal{F} \to \mathcal{F}$ existiert, sodass α auf einer offenen Umgebung von A_1 Null und auf einer offenen Umgebung von A_2 die Identität ist.

(Lokal) geringte Räume

Def. Eine topol. / glatte Mannigfaltigkeit ist ein Paar (M, \mathcal{O}_M) , wobei M ein Hausdorffraum und \mathcal{O}_M eine Garbe auf M ist, sodass jeder Punkt $x \in M$ eine offene Umgebung U besitzt, sodass $\mathcal{O}_M|U$ isomorph zu einer Garbe von stetigen / glatten Funktionen auf einer offenen Teilmenge des \mathbb{R}^n ist.

Def. Ein Morphismus $\Phi:(M,\mathcal{O}_M)\to (N,\mathcal{O}_N)$ zwischen topol. / glatten Mften. ist geg. durch eine stetige Abb. $\phi:M\to N$, sodass

$$\forall U \subseteq N \text{ offen } : \forall f \in \Gamma(U, \mathcal{O}_N) : f \circ \phi \in \Gamma(\phi^{-1}(U), \mathcal{O}_M).$$

Bem. Diese Definitionen sind äquivalent zu den üblichen Alte-Römer-Definitionen von Mannigfaltigkeiten über Atlanten.

Def. Ein **geringter Raum** ist ein Paar (M, \mathcal{O}_M) , wobei M ein topol. Raum und \mathcal{O}_M eine Ringgarbe auf M ist. Ein Morphismus $\Phi: (M, \mathcal{O}_M) \to (N, \mathcal{O}_N)$ zwischen geringten Räumen ist ein Paar (φ, θ) , wobei $\varphi: M \to N$ stetig und

$$\theta = (\theta_U : \Gamma(U, \mathcal{O}_N) \to \Gamma(\varphi^{-1}(U), \mathcal{O}_M))_{U \otimes N \text{ offen}}$$

eine Familie von Ringhomomorphismen ist, sodass

$$\forall V \otimes U \otimes N : \theta_U(-)|_{\varphi^{-1}(V)} = \theta_V(-|_V).$$

Sprechweise. \mathcal{O}_M heißt Strukturgarbe.

Bem. Man kann θ als Garbenmorph. $\theta: \mathcal{O}_N \to \varphi_{\bullet}(\mathcal{O}_M)$ auffassen.

Bsp. Sei (M, \mathcal{O}_M) eine glatte Mft. Sei \mathcal{D}_M die Garbe der linearen, derivativen Operatoren, also

$$\mathcal{D}_M(U) := \{ P : \mathcal{O}_M(U) \to \mathcal{O}_M(U), P = \sum f_I(z) \frac{\partial^I}{\partial z^I} \text{ in lok. Koord. } \}.$$

Dann ist (M, \mathcal{D}_M) ein geringter Raum.

Def. Sei A ein komm. Ring. Das **Spektrum** von A ist

$$\operatorname{Spec}(A) := \{ \operatorname{Primideale} \mathfrak{p} \subsetneq A \}$$

mit der sogenannten Zariski-Topologie mit offenen Mengen

$$\mathcal{T} := \{ D(S) \mid S \subseteq A \} \subset \mathcal{P}(\operatorname{Spec}(A)), \ D(S) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid S \not\subseteq \mathfrak{p} \}.$$

Die abgeschlossenen Mengen sind von der Form V(S) für $S \subseteq A$ mit

$$V(S) \coloneqq \operatorname{Spec}(A) \setminus D(S) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \, | \, S \subseteq \mathfrak{p} \}.$$

Für $U\subseteq\operatorname{Spec}(A)$ offen sei $\Delta(U)$ das Komplement der Vereinigung der Ideale in U. Da $\Delta(U)$ multiplikativ abgeschlossen ist und $V\subseteq U\Longrightarrow \Delta(V)\subseteq \Delta(U)$ gilt, können wir eine Prägarbe komm. Ringe \mathcal{O}' auf $\operatorname{Spec}(A)$ wie folgt definieren:

$$\mathcal{O}'(U) := (\Delta(U))^{-1} A, \quad r_{UV}(\left[\frac{s}{t}\right]) := \left[\frac{s}{t}\right].$$

Sei $\mathcal{O} := \mathcal{O}_{\operatorname{Spec}(A)} := (\mathcal{O}')^+$ die Garbifizierung von \mathcal{O}' . Der geringte Raum (Spec(A), \mathcal{O}) heißt **affines Schema** von A.

Bem. Sei A ein Integritätsbereich. Dann ist das Nullideal $(0) \in \operatorname{Spec}(A)$ ein generischer Punkt, d. h. der topologische Abschluss von (0) ist ganz $\operatorname{Spec}(A)$.

Lemma.
$$(\mathcal{O}_{\operatorname{Spec}(A)})_{\mathfrak{p}} \cong A_{\mathfrak{p}} := \Delta(\mathfrak{p})^{-1}A$$
 für alle $\mathfrak{p} \in \operatorname{Spec}(A)$

Def. Ein Ring R heißt lokal, wenn er eine der folgenden äquivalenten Bedingungen erfüllt:

- Er besitzt genau ein maximales Linksideal.
- Er besitzt genau ein maximales Rechtsideal.
- Wenn eine endliche (evtl. leere) Summe von Ringelementen eine Einheit ist, dann auch einer der Summanden (insb. gilt 0 ≠ 1).
- \bullet Spec(R) hat genau einen abgeschl. Punkt (das maximale Ideal).

Bem. In lok. Ringen stimmen max. Links- und Rechtsideal überein.

Def. Seien R und S lokale Ringe mit max. Idealen $\mathfrak{m} \subset R$ und $\mathfrak{n} \subset S$. Ein **lokaler Ringhomomorphismus** zwischen R und S ist ein Ringhomomorphismus $f: R \to S$ mit $f(\mathfrak{m}) \subseteq \mathfrak{n}$.

Def. Ein geringter Raum (M, \mathcal{O}_M) heißt **lokal geringt**, wenn die Fasern $\mathcal{O}_{M,x}$ für alle $x \in M$ lokale Ringe sind. Ein Morphismus $\Phi = (\varphi, \theta) : (M, \mathcal{O}_M) \to (N, \mathcal{O}_N)$ heißt **Morph. von lokal geringten Räumen**, wenn für alle $x \in M$ die ind. Abb.

$$\theta_x: \mathcal{O}_{N,y} \to \mathcal{O}_{M,x}$$

ein lokaler Homomorphismus von lokalen Ringen ist.

Bspe. Affine Schemata und Mften sind lokal geringte Räume.

Def. Ein **Schema** ist ein lokal geringter Raum (S, \mathcal{O}_S) , der lokal isomorph zum affinen Spektrum eines Ringes ist, d. h. jedes $x \in S$ besitzt eine offene Umgebung U, sodass $(U, \mathcal{O}_S|U)$ als lokal geringter Raum isomorph zum affinen Schema eines komm. Ringes ist.

Garben auf Siten

Def. Sei $\mathcal S$ eine Kategorie. Ein **Sieb** auf $U\in \mathrm{Ob}(\mathcal S)$ ist eine Menge $\Phi=\{\varphi_i\in \mathrm{Hom}_{\mathcal S}(U_i,U)\,|\,i\in I\}$ von Morphismen nach U, sodass gilt:

$$\forall V \in \mathrm{Ob}(\mathcal{S}), i \in I, \psi \in \mathrm{Hom}_{\mathcal{S}}(V, U_i) : \varphi_i \circ \psi \in \Phi.$$

Bem. Sei Φ ein Sieb auf $U, f \in \text{Hom}(V, U)$. Dann ist

$$f^*(\Phi) := \{ \varphi \in \operatorname{Hom}_{\mathcal{S}}(W, V) \mid W \in \operatorname{Ob}(\mathcal{S}), f \circ \varphi \in \Phi \}$$

ein Sieb auf V, die **Einschränkung** von Φ auf V (über f).

Def. Eine **Grothendieck-Topologie** auf einer Kategorie \mathcal{S} ist gegeben durch eine Menge C(U) von Sieben auf U für jedes $U \in \mathrm{Ob}(\mathcal{S})$ (den sogenannten **überdeckenden Sieben**), sodass gilt:

- Für alle $U \in \text{Ob}(\mathcal{S})$ ist das Sieb aller Abb. nach U in C(U).
- Die Einschränkung $f^*(\Phi)$ eines Siebes $\Phi \in C(U)$ über $f \in \operatorname{Hom}_{\mathcal{S}}(V, U)$ ist in C(U).
- Die Überdeckungseigenschaft lässt sich lokal testen:
 Für Ψ ein bel. Sieb auf U und Φ ∈ C(U) überdeckend. Angenommen, für alle (φ_i : U_i → U) ∈ Φ ist die Einschränkung von Ψ über φ_i überdeckend, also φ_i*(Ψ) ∈ C(U_i). Dann ist auch Ψ ∈ C(U).

Def. Ein Situs ist eine Kategorie S mit Grothendieck-Topologie.

- **Def.** Eine **Prägarbe** von Mengen auf einem Situs S ist ein kontravarianter Funktor $G: S^{op} \to \mathbf{Set}$.
- Allgemeiner ist eine C-wertige Prägarbe ein Funktor $\mathcal{F}: \mathcal{S}^{op} \to \mathcal{C}$ (z. B. $\mathcal{C} = \mathbf{AbGrp}, \mathbf{R}\text{-}\mathbf{Mod}, \mathbf{Top}$).
- Ein Morphismus zwischen Prägarben F und G auf demselben Situs ist eine natürliche Transformation zwischen F und G.

Def. Eine Garbe auf einem Situs S ist eine Prägarbe F, für die gilt: Für alle überdeckenden Siebe $\Phi \in C(U)$ und Familien von Schnitten $(s_{\varphi} \in \mathcal{F}(V))_{(\varphi:V \to U) \in \Phi}$, die miteinander vertr. sind, d. h.

$$\forall (\varphi: V \to U) \in \Phi: \forall \psi: W \to V: s_{\varphi \circ \psi} = s_{\varphi}|_{W} := \mathcal{F}(\psi)(s_{\varphi}),$$

gibt es genau einen Schnitt $s \in \mathcal{F}(U)$ mit

$$\forall (\varphi: V \to U) \in \Phi : s_{\varphi} = s|_{V} := \mathcal{F}(\varphi)(s).$$

Ein Morphismus zw. Garben ist ein Morphismen zw. den Prägarben.

Bem. Die Notationen und Sprechweisen für (Prä-)Garben auf gew. topol. Räumen werden auch für Garben auf Siten angewendet. Man notiert weiterhin $s|_V \coloneqq \mathcal{G}(f)(s)$ für für die Einschränkung eines Schnittes $s \in \mathcal{G}(U)$ über $f \in \operatorname{Hom}_{\mathcal{S}}(V, U)$ (wohlwissend, dass die Einschränkung auch von f abhängt).

Bsp. Sei G eine Gruppe und S_G die Kategorie der Mengen mit G-Wirkung und äguivarianten Abbildungen. Man nennt ein Sieb Φ über $U \in \text{Ob}(\mathcal{S}_G)$ überdeckend, wenn $U = \bigcup_{(\varphi:V \to U) \in \Phi} \varphi(V)$. Sei \mathbf{Sh}_G die Kategorie der Garben über dem Situs \mathcal{S}_G . Sei $G_l := G \in \text{Ob}(\mathcal{S}_G)$ mit der Linkswirkung g.h := gh. Es gibt einen Funktor $\alpha: \mathbf{Sh}_G \to \mathcal{S}_G$ mit $\alpha(F) := F(G_I) \in \mathrm{Ob}(\mathcal{S}_G)$, wobei G auf $F(G_l)$ durch $g.x := F(h \mapsto hg)(x)$ für $x \in F(G_l)$ wirkt.

Prop. $\alpha: \mathbf{Sh}_G \to \mathcal{S}_G$ ist eine Kategorienäquivalenz.

Komplexe und (Ko-)Homologie

Def. • Ein Kettenkomplex C_{\bullet} ist eine Folge $(C_n)_{n\in\mathbb{N}}$ von abelschen Gruppen und Gruppenhomomorphismen $\partial_n: C_n \to C_{n-1}$ mit der Eigenschaft $\partial_{n-1} \circ \partial_n = 0$.

• Ein Kokettenkomplex C^{\bullet} ist eine Folge $(C^n)_{n\in\mathbb{N}}$ von abelschen Gruppen und Gruppenhomomorphismen $\delta^n: \mathbb{C}^n \to \mathbb{C}^{n+1}$ mit der Eigenschaft $\delta^{n+1} \circ \delta^n = 0$.

Def. Sei C_{\bullet} ein Kettenkomplex.

- C_n heißt Gruppe der n-Ketten,
- $\partial: C_n \to C_{n-1}$ heißt Randabbildung,
- $Z_n(C_{\bullet}) := \ker \partial_n \subset C_n(C_{\bullet})$ heißt Gruppe der n-Zykel,
- $B_n(C_{\bullet}) := \operatorname{im} \partial_{n+1} \subset Z_n(C_{\bullet})$ heißt Gruppe der *n*-Ränder,
- $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$ heißt n-te Homologiegruppe.

Analog nennt man für einen Kokettenkomplex C^{\bullet}

- C^n n-Koketten. • δ^n Korandabbildung.
- $Z^n := \ker \delta^n \ n$ -Kozykel, $B^n := \operatorname{im} \delta^{n-1} \ n$ -Koränder,
- $H^n(C^{\bullet}) := Z^n(C^{\bullet})/B^n(C^{\bullet})$ n-te Kohomologiegruppe.

Def. Eine Morphismus $f: C_{\bullet} \to D_{\bullet}$ (bzw. $f: C^{\bullet} \to D^{\bullet}$) zwischen (Ko-)Kettenkomplexen ist eine Familie von Abbildungen

$$(f_n: C_n \to D_n)_{n \in \mathbb{N}}$$
 (bzw. $(f^n: C^n \to D^n)_{n \in \mathbb{N}}$),

die mit den Randabbildungen verträglich sind, d. h.

$$f_{n-1} \circ \partial_n^C = \partial_n^D \circ f_n$$
 (bzw. $f^{n+1} \circ \delta_C^n = \delta_D^n \circ f^n$) für alle n .

Prop. H_n (bzw. H^n) ist ein Funktor von der Kategorie der (Ko-)Kettenkomplexe in die Kategorie der abelschen Gruppen.

Def. Sei X eine simpl. Menge. Sei $C_n(X)$ die von den n-Simplizes X_n erzeugte abelsche Gruppe (d. h. die Gruppe der endl. formalen Linearkombinationen mit Koeffizienten in \mathbb{Z}). Sei $\delta_n^i:[n-1]\to[n]$ diejenige streng monotone Abb. mit $i \notin \text{im } \delta_n^i$. Definiere

$$\partial_n : C_n(X) \to C_{n-1}(X), \quad \sum_{\sigma \in X_n} \lambda_{\sigma} \cdot \sigma \mapsto \sum_{\sigma \in X_n} \lambda_{\sigma} \sum_{i=0}^n (-1)^i X(\partial_n^i)(\sigma).$$

Prop. $(C_{\bullet}(X), \partial_{\bullet})$ ist ein Kettenkomplex (d. h. $\partial_{n-1} \circ \partial_n = 0$)

Def. Sei X eine simpl. Menge und A eine ab. Gruppe. Dann ist . . .

• ... der Kettenkomplex $(C_{\bullet}(X;A), \partial_{\bullet})$ von X mit Koeffizienten in A definiert durch

$$C_n(X;A) := C_n(X) \otimes_{\mathbb{Z}} A$$
, $\partial_n := \partial_n \otimes \mathrm{id} : C_n(X;A) \to C_{n-1}(X;A)$. ein kohomologisches Koeffizientensystem auf X.

• ... der Kokettenkomplex $(C^{\bullet}(X;A), \delta^{\bullet})$ von X mit **Koeffizienten** in A definiert durch

$$C^{n}(X; A) := \operatorname{Hom}(C^{n}(X), A),$$

$$\delta^{n} : C^{n}(X; A) \to C^{n+1}(X; A), \ f \mapsto f \circ \delta_{n+1}.$$

Beobachtung. $C_n(X;\mathbb{Z}) = C_n(X)$

Notation. Sei X eine simpliziale Menge. Setze

- $H^n(X) := H^n(C^{\bullet}(X; \mathbb{Z})),$ • $H_n(X) := H_n(C_{\bullet}(X)),$
- $H_n(X;A) := H_n(C_{\bullet}(X;A)), \bullet H^n(X;A) := H^n(C^{\bullet}(X;A)).$

Prop. Für jede simpl. Menge X ex. ein kanonischer Isomorphismus

 $H_0(X,\mathbb{Z}) \cong$ freie ab. Gr. erzeugt von Zshgskomponenten von |X|.

Def. Der Kegel CX über Verklebedaten X ist definiert durch

$$(CX)_{(0)} := X_{(0)} \coprod \{\star\}, \quad (CX)_{(n)} := X_{(n)} \coprod (X_{(n-1)} \times \{\star\}),$$

 $(CX)(f)(x) := X(f)(x),$

$$(CX)(f)(x,*) := \begin{cases} X(i \mapsto f(i) - 1)(x), & \text{wenn } f(0) > 0, \\ (X(i \mapsto f(i+1) - 1)(x), *), & \text{wenn } f(0) = 0. \end{cases}$$

Def. Für Verklebedaten ist der zugeh. (Ko-)Kettenkomplex (mit Koeffizienten) genauso definiert wie für simpliziale Mengen.

Prop. $H_0(CX) = \mathbb{Z}, H_{>0}(CX) = 0$

Def. Sei X eine simpliziale Menge.

• Ein homol. Koeffizientensystem A auf X ist ein Funktor

$$\mathcal{A}: (1 \downarrow X) \to \mathbf{AbGrp}.$$

Dabei ist $1: \mathbf{1} \to \mathbf{Set}$ der Funktor, der konstant $\{\star\}$ ist (und 1 die Kategorie mit einem Objekt und einem Morphismus). Expliziter besteht ein Koeffizientensystem aus einer abelschen Gruppe \mathcal{A}_{σ} für jedes *n*-Simplex $\sigma \in X_n$ und Abbildungen $\mathcal{A}(f,\sigma):\mathcal{A}_{\sigma}\to\mathcal{A}_{X(f)(\sigma)}$ für alle $\sigma\in X_n,\ f\in \mathrm{Hom}_{\Delta}([m],[n])$ mit

$$\mathcal{A}(\mathrm{id},\sigma) = \mathrm{id}, \quad \mathcal{A}(f \circ q,\sigma) = \mathcal{A}(q,X(f)(\sigma)) \circ \mathcal{A}(f,\sigma).$$

• Ein kohomol. Koeffizientensystem \mathcal{B} auf X ist ein Funktor

$$\mathcal{B}: (1 \downarrow X)^{\mathrm{op}} \to \mathbf{AbGrp}$$

• Ein Morphismus zw. (ko-)homologischen Koeffizientensystemen auf derselben simpl. Menge ist eine natürliche Transformation.

Bsp. Sei Y ein topol. Raum, $(U_{\alpha})_{\alpha \in A}$ eine offene Überdeckung und X deren Nerv. Dann definiert

$$\mathcal{F}_{\alpha_0,\dots,\alpha_n} := \{ U_{\alpha_0} \cap \dots \cap U_{\alpha_n} \to \mathbb{R} \text{ stetig} \},$$

$$\mathcal{F}(f,(\alpha_0,\dots,\alpha_n))(\phi) := \text{passende Einschränkung von } \phi.$$

Def. Sei \mathcal{A} ein homologisches Koeffizientensystem auf einer simplizialen Menge X. Wir setzen

$$C_n(X; \mathcal{A}) \coloneqq \{ \text{ formale endl. Linearkomb.} \sum_{\sigma \in X_n} \lambda_\sigma \cdot \sigma \text{ mit } \lambda_\sigma \in \mathcal{A}_\sigma \}$$

und definieren $\partial_n: C_n(X; \mathcal{A}) \to C_{n-1}(X; \mathcal{A})$ durch

$$\sum_{\sigma \in X_n} \lambda_\sigma \cdot \sigma \ \mapsto \sum_{\sigma \in X_n} \sum_{i=0}^n \ (-1)^i \mathcal{A}(\partial_n^i,\sigma) (\lambda_\sigma) \cdot X(\partial_n^i)(\sigma).$$

Die Homologiegruppen des so def. Kettenkomplexes $C_{\bullet}(X; \mathcal{A})$ heißen Homologiegruppen von X mit Koeffizienten in A.

Def. Sei \mathcal{B} ein kohomologisches Koeffizientensystem auf einer simplizialen Menge X. Wir setzen

$$C^n(X; \mathcal{B}) := \{ \text{ Funktionen } f : (\sigma \in X_n) \to \mathcal{B}_{\sigma} \}$$

und definieren $\delta_n: C^n(X;\mathcal{B}) \to C_{n+1}(X;\mathcal{B})$ durch

$$\delta^n(f)(\sigma) \coloneqq \sum_{i=0}^{n+1} (-1)^i \mathcal{B}(\partial^i_{n+1}, \sigma)(f(X(\partial^i_{n+1})(\sigma))).$$

Die Kohomologiegruppen des so def. Kokettenkomplexes $C^{\bullet}(X;\mathcal{B})$ heißen Kohomologiegruppen von X mit Koeffizienten in B.

Bsp. Sei Y ein topol. Raum, $U = (U_{\alpha})_{\alpha \in A}$, X und \mathcal{F} wie im letzten Beispiel. Die Homologiegruppen $H^n(X,\mathcal{F})$ werden Čech-Kohomologiegruppen der Garbe der stetigen Funktionen auf Y bzgl. der Überdeckung U genannt.

Def. Eine (lange) exakte Sequenz ab. Gruppen ist ein (Ko-)Kettenkomplex mit verschwindenden Homologiegruppen, d. h.

$$\operatorname{im} \partial_n = \ker \partial_{n-1}$$
 für alle n .

Def. Eine kurze ex. Sequenz (k. e. S.) ist eine ex. Seq. der Form $0 \to A \to B \to C \to 0$.

Def. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. in einer abelschen Kategorie A. Die Sequenz heißt spaltend, falls sie isomorph zur k. e. S. $0 \to A \to A \oplus C \to C$ ist.

Prop. Für eine Sequenz $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ sind äquivalent:

- Die Sequenz spaltet.
- Es existiert eine Retraktion $r: B \to A$ mit $r \circ f = \mathrm{id}_A$.
- Es existiert ein Schnitt $s: C \to B$ mit $g \circ s = \mathrm{id}_C$.

Def. Eine Sequenz $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ von Komplexen heißt **exakt**, wenn für alle n die Seq. $0 \to A_n \to B_n \to C_n \to 0$ exakt ist.

Prop. Eine kurze exakte Sequenz $0 \to A^{\bullet} \xrightarrow{i^{\bullet}} B^{\bullet} \xrightarrow{p^{\bullet}} C^{\bullet} \to 0$ von Kokettenkomplexen induziert eine lange exakte Sequenz

$$\ldots \to H^n(A^\bullet) \xrightarrow{H^n(i^\bullet)} H^n(B^\bullet) \xrightarrow{H^n(p^\bullet)} H^n(C^\bullet) \xrightarrow{\delta^n} H^{n+1}(A^\bullet) \to \ldots$$

Lemma. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. ab. Gruppen und X eine simpl. Menge. Dann sind ebenfalls exakt:

$$0 \to C_{\bullet}(X; A) \to C_{\bullet}(X; B) \to C_{\bullet}(X; C) \to 0,$$

$$0 \to C^{\bullet}(X; A) \to C^{\bullet}(X; B) \to C^{\bullet}(X; C) \to 0.$$

Korollar. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. ab. Gruppen und X eine simpl. Menge. Dann existieren lange exakte Sequenzen

$$\dots \to H_n(X;A) \to H_n(X;B) \to H_n(C) \to H_{n-1}(X;A) \to \dots$$

$$\dots \to H^n(X;A) \to H^n(X;B) \to H^n(C) \to H^{n+1}(X;A) \to \dots$$

Def. Eine Sequenz $0 \to \mathcal{B}' \to \mathcal{B} \to \mathcal{B}'' \to 0$ von (ko-)homologischen Koeffizientensystemen auf einer simpl. Menge X heißt **exakt**, falls

$$0 \to \mathcal{B}'_{\sigma} \to \mathcal{B}_{\sigma} \to \mathcal{B}''_{\sigma} \to 0$$
 für alle $\sigma \in X_n$ exakt ist.

Lemma. Eine kurze exakte Sequenz $0 \to \mathcal{B}' \to \mathcal{B} \to \mathcal{B}'' \to 0$ von (ko-)homologischen Koeff'systemen induziert kurze ex. Sequenzen

$$0 \to C_{\bullet}(X; \mathcal{B}') \to C_{\bullet}(X; \mathcal{B}) \to C_{\bullet}(X; \mathcal{B}'') \to 0,$$

$$0 \to C^{\bullet}(X; \mathcal{B}') \to C^{\bullet}(X; \mathcal{B}) \to C^{\bullet}(X; \mathcal{B}'') \to 0$$

und damit auch entsprechende lange exakte Sequenzen.

Def. Eine simpl. ab. Gruppe ist ein Funktor $A: \Delta^{op} \to \mathbf{AbGrp}$.

Def. Sei A eine simpliziale abelsche Gruppe. Dann ist (A_{\bullet}, ∂) ein Kettenkomplex mit

$$\partial_n: A_n \to A_{n-1}, \quad a \mapsto \sum_{i=0}^n (-1)^i A(\partial_n^i)(a).$$

Def. Eine kosimpl. ab. Gruppe ist ein Funktor $A: \Delta \to \mathbf{AbGrp}$.

Def. Sei A eine kosimpliziale abelsche Gruppe. Dann ist (A^{\bullet}, δ) ein Kokettenkomplex mit

$$\delta^n: A^n \to A^{n+1}, \quad a \mapsto \sum_{i=0}^n (-1)^i A(\partial_{n+1}^i)(a).$$

Def. Sei Y ein topol. Raum, $(U_{\alpha})_{\alpha \in A}$ eine (nicht unbedingt offene) Überdeckung von Y und \mathcal{F} eine Garbe ab. Gruppen auf Y. Die kosimpliziale abelsche Gruppe $\check{C}(U,\mathcal{F})$ der $\check{\mathbf{Cech\text{-}Koketten}}$ ist

$$\check{C}^m(U,\mathcal{F}) := \prod_{\alpha_0,\dots,\alpha_m \in A} \mathcal{F}(U_{\alpha_0} \cap \dots \cap U_{\alpha_m}),$$

$$\check{C}(U,\mathcal{F})(f : [m] \to [n])((f_{\alpha_0,\dots,\alpha_m})_{\alpha_0,\dots,\alpha_m}) := (f_{\sigma(0),\dots,\sigma(m)}|U_{\alpha_0} \cap \dots \cap U_{\alpha_n})_{\alpha_0,\dots,\alpha_n}.$$

Bem. Die Randabb. im zugeh. Kokettenkomplex ist gegeben durch

$$(\delta^n \phi)_{\alpha_0,...,\alpha_{n+1}} := \sum_{i=0}^{n+1} (-1)^i \phi_{\alpha_0,...,\alpha_i,...,\alpha_{n+1}}.$$

Def. Die Kohomologiegruppen dieses Komplexes heißen Čech-Homologiegruppen von \mathcal{F} bzgl. der Überdeckung $(U_{\alpha})_{\alpha \in A}$.

Bem. $\check{H}(U,\mathcal{F}) \cong \Gamma(X,\mathcal{F})$ hängt nicht von der Überdeckung ab.

Def. Sei Y ein topol. Raum und X dessen simpl. Menge der singulären Simplizes. Die Homologiegruppen von $C_{\bullet}(X;A)$ heißen singuläre Homologiegruppen $H_n(Y;A)$ von Y mit Koeff. A.

Def. Sei M eine \mathcal{C}^{∞} -Mft, $\Omega^k(M)$ das $C^{\infty}(M)$ -Modul der k-Formen auf M. Die **äußere Ableitung** d: $\Omega^k(M) \to \Omega^{k+1}(M)$ ist in lokalen Koordinaten (x^1,\ldots,x^n) definiert durch

$$d\left(\sum_{|I|=k} f_I dx^I\right) = \sum_{|I|=k} \sum_{i=1}^n \frac{\partial f_I}{\partial x^i} dx^i \wedge dx^I.$$

Die Kohomologiegruppen des so definierten Komplexes $\Omega^{\bullet}(M)$ heißen De-Rham-Kohomologiegruppen.

Def. Sei \mathfrak{g} eine Lie-Algebra und A ein \mathfrak{g} -Modul. Setze $C^k(\mathfrak{g},A):=L(\wedge^k\mathfrak{g},A)$ und definiere $\mathrm{d}:C^k(\mathfrak{g},A)\to C^{k+1}(\mathfrak{g},A)$ durch eine allgemeine Cartan-Formel

$$(dc)(g_1, ..., g_{k+1}) := \sum_{1 \le j < l \le k+1} (-1)^{j+l-1} c([g_j, g_l], g_1, ..., \hat{g_j}, ..., \hat{g_l}, ..., g_{k+1})$$
$$+ \sum_{j=1}^{k+1} (-1)^j g_j c(g_1, ..., \hat{g_j}, ..., g_{k+1}).$$

Die Kohomologiegruppen des so definierten Kokettenkomplexes werden mit $H^{\bullet}(\mathfrak{g},A)$ bezeichnet.

Def. Eine Kettenhomotopie zw. Morphismen $f,g:C_{\bullet}\to D_{\bullet}$ von Kettenkomplexen ist eine Folge von Homomorphismen $k_n:C_n\to D_{n+1}$ mit $\forall\,n\in\mathbb{N}:\partial^D_{n+1}\circ k_n+k_{n-1}\circ\partial^C_n=f_n-g_n.$

Lemma. Seien $f, g: C_{\bullet} \to D_{\bullet}$ kettenhomotop. Dann gilt

$$H_n(f) = H_n(g)$$
 für alle $n \in \mathbb{N}$.

Prop. • Seien $\phi, \psi: X \to Y$ homotope Abbildungen zwischen topologischen Räumen. Dann sind die induzierten Abbildungen $\phi_*, \psi_*: C_{\bullet}(X; A) \to C_{\bullet}(Y; A)$ kettenhomotop.

• Seien $\phi, \psi: M \to N$ zwei glatt homotope Abbildungen von \mathcal{C}^{∞} -Mften. Dann sind $\phi^*, \psi^*: \Omega^{\bullet}(N) \to \Omega^{\bullet}(M)$.

Korollar. Homotopieäquivalente Räume besitzen isomorphe singuläre Homologiegruppen.