Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Отчёт № 3. Анализ влияния числа процессов на время работы алгоритма нахождения простых чисел.

Работу выполнил **Пилюгин В.И.**

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм нахождения простых чисел методом решета Эратосфена.

Формат командной строки: <нижняя граница> <верхняя граница> Формат выходного файла: простые числа, разделенные пробелом

Описание алгоритма.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция MPI_Wtime().

Верификация: Для проверки корректности работы программы числа проверялись алгоритмом перебора делителей.

Основные функции:

- Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.
- Нахождение простых чисел. В рамках функции осуществляется нахождение простых чисел, параллельно, методом решета.

Результаты выполнения.

Проводилось нахождение простых чисел от 1 до 10 миллионов. Зависимость времени выполнения от количества процессов представлена на графике (время в секундах).

Основные выводы.

Исследования показывают, что увеличение числа процессов на моем двухъядерном компьютере существенно увеличивает время выполнения программы. Наименьшее время выполнения при числе процессов 2. Наихудшее время при числе процессов 16.