STAT 4100 Lecture Note

Week Thirteen (Dec 5, 7 & 9, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Dec/06 00:53:05

Large-sample hypothesis testing (con'd)

Wald test (CB pp. 493)

- $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
 - Wald statistic: $(\hat{\theta}_n \theta_0)/\sqrt{\operatorname{var}(\hat{\theta}_n)}$ (if $(\hat{\theta}_n \theta_0)/\sqrt{\operatorname{var}(\hat{\theta}_n)} \xrightarrow{d} \mathcal{N}(0,1)$ under H_0 as $n \to \infty$)
 - * Asymptotically equivalent to LRT for this two sided test if $\hat{\theta}_n = \hat{\theta}_{ML}$
 - * Substitute $\widehat{\text{var}}(\hat{\theta}_n)$ for $\text{var}(\hat{\theta}_n)$ if $\text{var}(\hat{\theta}_n)$ is well approximated by $\widehat{\text{var}}(\hat{\theta}_n)$ (obtained by the delta methods/bootstrap)
 - Level α Wald rejection region: $\{x: |\hat{\theta}_n \theta_0|/\sqrt{\operatorname{var}(\hat{\theta}_n)} \ge \Phi_{1-\alpha/2}^{-1}\}$
 - p-value = $2\Phi\left(-|\hat{\theta}_n \theta_0|/\sqrt{\operatorname{var}(\hat{\theta}_n)}\right)$

Score test (CB pp. 494)

- $H_0: \theta = \theta_0 \text{ vs. } H_1: \theta \neq \theta_0$
 - Score statistic: $S(\theta_0; \mathbf{X}) / \sqrt{I_n(\theta_0)} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$ under H_0 as $n \to \infty$)
 - Level α score rejection region: $\{x: |S(\theta_0;x)|/\sqrt{I_n(\theta_0)} \geq \Phi_{1-\alpha/2}^{-1}\}$.
 - p-value = $2\Phi\left(-|S(\theta_0; \boldsymbol{x})|/\sqrt{I_n(\theta_0)}\right)$

CB Examples 10.3.5 & 10.3.6

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p), p \in (0,1)$. Derive LRT, Wald and score tests for $H_0: p = p_0$ versus $H_1: p \neq p_0$.

Asymptotic confidence set

- Inverting rejection regions, e.g.,
 - -1α LRT confidence set for θ : $\{\theta : -2 \ln\{L(\theta; \boldsymbol{x})/L(\hat{\theta}_{\mathrm{ML}}; \boldsymbol{x})\} < \chi^2_{1,1-\alpha}\}$
 - -1α Wald confidence set for θ : $\{\theta : |\hat{\theta}_n \theta|/\sqrt{\operatorname{var}(\hat{\theta}_n)} < \Phi_{1-\alpha/2}^{-1}\}$
 - $-1-\alpha$ score confidence set for θ : $\{\theta: |S(\theta; \boldsymbol{x})|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$
- Bootstrap
 - 1. For j in 1 : B, do steps 2–3.
 - 2. Draw the jth resample x_j^* of size n from the empirical CDF (nonparametric bootstrap) OR a fitted parametric model (parametric bootstrap).
 - 3. Let $\hat{\theta}_j^* = \hat{\theta}(\boldsymbol{x}_j^*)$.

- 4. 1α bootstrap confidence interval for θ is $(q_{\alpha/2}, q_{1-\alpha/2})$, where $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are $\alpha/2$ and $1 \alpha/2$ sample quantiles of $\{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}$, respectively.
- Depending on probabilistic inequalities, e.g.,
 - Constructing a 1α confidence set of μ by finding the smallest c such that $\Pr(|\bar{X}_n \mu| \ge c) \le \alpha$ through the Chebyshev's inequality

CB Examples 10.4.2, 10.4.3 & 10.4.5

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, construct $1 - \alpha$ confidence set for p.

```
options(digits = 4)
set.seed(1)
B = 1e4L
n = 1e3L
alpha = .05
x = rbinom(n, 1, prob = .6)
theta_ml = mean(x)
theta_star_np = numeric(B)
theta_star_p = numeric(B)
# Nonparametric bootstrap
for (j in 1:B){
 x_star = sample(x, size = n, replace = T)
  theta_star_np[j] = mean(x_star)
}
quantile(theta_star_np, probs = c(alpha/2, 1-alpha/2))
# Parametric bootstrap
for (j in 1:B){
  x_star = rbinom(n, size = 1, prob = theta_ml)
  theta_star_p[j] = mean(x_star)
quantile(theta_star_p, probs = c(alpha/2, 1-alpha/2))
```

Recap for final

Statistical model

- Characterizing distributions
 - cdf/pdf/pmf
 - mgf
 - * Existence: if $\mathrm{E}\{\exp(tX)\}<\infty$ for all t inside a neighbourhood of 0
 - * $M_Y(t) = \exp(bt) \prod_i M_{X_i}(a_i t)$ if $Y = b + \sum_i a_i X_i$, where b and a_i are constants, X_1, \dots, X_p are independent, and each $M_{X_i}(\cdot)$ exists
- Exponential family
 - The pdf/pmf is of the following form

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left\{ \sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x) \right\}$$

- Special cases: normal, binomial, gamma, beta, Poisson, negative binomial
- Variable transformation
- Normal sampling theory

- $-\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$ if iid $X_1, \dots, X_n \sim \mathcal{N}(0, 1)$ $-X/\sqrt{Y/n} \sim t(n)$ if $X \sim \mathcal{N}(0, 1)$ and $Y \sim \chi^2(n)$ are independent

- $-(X/m)/(Y/n) \sim F(m,n) \text{ if } X \sim \chi^2(m) \text{ and } Y \sim \chi^2(n) \text{ are independent}$ $-(X/m)/(Y/n) \sim F(m,n) \text{ if } X \sim \chi^2(m) \text{ and } Y \sim \chi^2(n) \text{ are independent}$ $-n^{1/2}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1) \text{ if iid } X_1, \dots, X_n \sim \mathcal{N}(\mu,\sigma^2)$ $-(n-1)S^2/\sigma^2 \sim \chi^2(n-1) \text{ if iid } X_1, \dots, X_n \sim \mathcal{N}(\mu,\sigma^2)$ $-\bar{X} \text{ and } S^2 \text{ are independent of each other if iid } X_1, \dots, X_n \sim \mathcal{N}(\mu,\sigma^2)$
- $-n^{1/2}(\bar{X}-\mu)/S \sim t(n-1) \text{ if iid } X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- Checking independence
 - Separable joint cdf: $F_{X,Y}(x,y) = F_X(x)F_Y(y)$
 - Separable joint pdf or pmf: $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

 - conditional pdf or pmf: $f_{X|Y}(x \mid y) = f_X(x)$ Separable mgf: $E(e^{t_1X + t_2Y}) = E(e^{t_1X})E(e^{t_2Y})$
 - Basu's theorem
 - * Sometimes it is even more complex to find complete statistics than to obtain the joint pdf
 - Zero cov(X,Y) for joint normal (X,Y)
- Convergence of random variables
 - Definitions
 - * Convergence in probability $X_n \stackrel{p}{\to} X \iff \forall \epsilon > 0$, $\lim_{n \to \infty} \Pr(|X_n X| > \epsilon) = 0$
 - · To be verified through the Markov's/Chebyshev's inequality
 - * Almost sure convergence $X_n \xrightarrow{\text{a.s.}} X \iff \forall \epsilon > 0$, $\Pr(\lim_{n \to \infty} |X_n X| < \epsilon) = 1$
 - * Convergence in distribution $X_n \stackrel{d}{\to} X \iff \lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for each x with Pr(X = x) = 0
 - · Resort to CLT/delta methods if the limiting distribution is normal
 - (CMT) $\tau(\cdot)$ is continuous and $X_n \xrightarrow{\text{a.s./p/d}} X \Rightarrow \tau(X_n) \xrightarrow{\text{a.s./p/d}} \tau(X)$
 - The chain of implications

$$\xrightarrow{\text{a.s.}} \quad \Rightarrow \quad \xrightarrow{p} \quad \Rightarrow \quad \xrightarrow{d}$$

(The inverse is typically incorrect but $X_n \xrightarrow{d} \text{constant } c \Rightarrow X_n \xrightarrow{p} c$.)

- $-X_n \xrightarrow{\text{a.s./}p} X \text{ and } Y_n \xrightarrow{\text{a.s./}p} Y \Rightarrow$
 - $* aX_n + bY_n \xrightarrow{\text{a.s./p}} aX + bY$ $* X_nY_n \xrightarrow{\text{a.s./p}} XY$
- (Slutsky's theorem) $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d}$ constant $c \Rightarrow$
 - $* aX_n + bY_n \xrightarrow{d} aX + bc$
 - $* X_n Y_n \xrightarrow{d} cX$
- (LLN) X_1, \ldots, X_n are iid with finite mean $\mu \Rightarrow \bar{X}_n \xrightarrow{p/\text{a.s.}} \mu$
- (CLT) X_1, \ldots, X_n are iid with finite mean μ and finite variance $\sigma^2 \Rightarrow \sqrt{n}(\bar{X}_n \mu)/\sigma \xrightarrow{d} \mathcal{N}(0, 1)$

Point estimation

- MOM estimators
 - Equate raw moments to their empirical counterparts
 - Not unique but an acceptable starting point for iterative algorithms
- MLE
 - $\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x}) = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}; \boldsymbol{x})$
 - Maximizing $L(\boldsymbol{\theta}; \boldsymbol{x})$ or $\ell(\boldsymbol{\theta}; \boldsymbol{x})$ with respect to $\boldsymbol{\theta} \in \boldsymbol{\Theta}$
 - * For discrete Θ : compare $L(\theta; x)$ or $\ell(\theta; x)$ over all the possible values of θ
 - * For continuous Θ :
 - · If $S(\theta)$ has no zero point (i.e., stationary points): utilize the monotonicity of $L(\theta;x)$ or $\ell(\boldsymbol{\theta}; \boldsymbol{x})$

- · If $S(\theta)$ has zero point: solve $S(\theta) = 0$ for θ (to obtain stationary points) and then compare $L(\theta; x)$ or $\ell(\theta; x)$ over all the stationary points and boundary points
- - * Invariance: $\widehat{g(\boldsymbol{\theta})}_{\mathrm{ML}} = g(\hat{\boldsymbol{\theta}}_{\mathrm{ML}})$
 - * Consistency: $\tau(\hat{\theta}_{\mathrm{ML}}) \xrightarrow{p} \tau(\theta)$
 - * Asymptotic distribution (by delta methods)
 - $\tau'(\theta) \neq 0 \Rightarrow \sqrt{n} \{ \tau(\hat{\theta}_{\mathrm{ML}}) \tau(\theta) \} \xrightarrow{d} N(0, \{ \tau'(\theta) \}^2 / I_1(\theta)).$
 - $\quad \cdot \ \tau'(\theta) = 0 \text{ and } \tau''(\theta) \neq 0 \Rightarrow n\{\tau(\hat{\theta}_{\mathrm{ML}}) \tau(\theta)\} \xrightarrow{d} [\tau''(\theta)/\{2I_1(\theta)\}]\chi^2(1).$
- Evaluating estimators (univariate)
 - UMVUE/MVUE/Best unbiased estimator
 - * Minimizing the MSE subject to unbiasedness
 - * If T is unbiased for $\tau(\theta)$ and attains the CRLB (i.e., $E(T) = \tau(\theta)$ and $var(T) = {\tau'(\theta)}^2/I_n(\theta)$), then T is the UMVUE for $\tau(\theta)$. (The inverse is NOT correct!)
 - · (Expected) Fisher information (number) for iid sample of size n

$$I_n(\theta) = \text{var} \{ S(\theta; \mathbf{X}) \mid \theta \} = \mathbb{E}[\{ S(\theta; \mathbf{X}) \mid \theta \}^2] = -\mathbb{E}\{ H(\theta; \mathbf{X}) \mid \theta \}$$

- * (Lehmann-Scheffe) debias or Rao-Blackwellize a function of sufficient complete statistics, starting with, e.g.,
 - · $\sum_{i=1}^{n} t(X_i)$ (sufficient and complete for an exponential family) · MLE (often a function of sufficient complete statistics)
- Consistency: $\hat{\theta}_n \stackrel{p}{\rightarrow} \theta$
- Asymptotic efficiency: $\sqrt{n}\{\tau(\hat{\theta}_n) \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2/I_1(\theta))$
- ARE of T_n with respect to W_n , say ARE $(T_n, W_n) = \sigma_W^2(\theta)/\sigma_T^2(\theta)$, if
 - * $\sqrt{n}\{T_n \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \sigma_T^2(\theta)) \text{ and } \sqrt{n}\{W_n \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \sigma_W^2(\theta))$

Hypothesis testing

- $H_0: \boldsymbol{\theta} \in \boldsymbol{\Theta}_0 \text{ vs. } H_1: \boldsymbol{\theta} \in \boldsymbol{\Theta}_1.$
 - $-\Theta = \Theta_0 \cup \Theta_1$
 - $-\emptyset = \mathbf{\Theta}_0 \cap \mathbf{\Theta}_1$
- Characterization
 - Rejection region R: H_0 is rejected once $x \in R$
 - Test function $\phi = \phi(\mathbf{x}) = \mathbf{1}_{R}(\mathbf{x}), \mathbf{x} \in \text{supp}(\mathbf{X})$
- Power function of ϕ : $\beta_{\phi}(\boldsymbol{\theta}) = \Pr(\mathbf{X} \in R_{\phi} \mid \boldsymbol{\theta}) = \mathrm{E}\{\phi(\mathbf{X}) \mid \boldsymbol{\theta}\}$
 - Pr(type I error) = $\beta_{\phi}(\boldsymbol{\theta}^*)$ if H_0 is correct
 - Pr(type II error) = $1 \beta_{\phi}(\boldsymbol{\theta}^*)$ if H_1 is correct
 - Size α : $\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \beta_{\boldsymbol{\phi}}(\boldsymbol{\theta}) = \alpha$
 - Level α : $\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \beta_{\phi}(\boldsymbol{\theta}) \leq \alpha$
- UMP level α test
 - $-\phi$ is the UMP level α test $\iff \beta_{\phi}(\theta) \geq \beta_{\phi'}(\theta)$ for each $\theta \in \Theta_1$ and for each ϕ' of level α
 - (NP Lemma) for simple hypotheses $(H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0 \text{ vs. } H_1: \boldsymbol{\theta} = \boldsymbol{\theta}_1),$

$$\phi_c(\boldsymbol{x}) = \begin{cases} 1, & f(\boldsymbol{x} \mid \boldsymbol{\theta}_1) / f(\boldsymbol{x} \mid \boldsymbol{\theta}_0) > c, \\ 0, & f(\boldsymbol{x} \mid \boldsymbol{\theta}_1) / f(\boldsymbol{x} \mid \boldsymbol{\theta}_0) < c \end{cases}$$

is the UMP test of level α , where c>0 is determined so that $\beta_{\phi}(\theta_0)=\mathbb{E}\{\phi_c(\mathbf{X})\mid\theta=\theta_0\}=\alpha$ - (Karlin-Rubin theorem)

- * Prerequisite
 - · T sufficient for θ
 - $T \sim T_T(t \mid \theta)$ bearing the MLR, i.e., fixing $\theta_2 > \theta_1$, $f_T(t \mid \theta_2)/f_T(t \mid \theta_1)$ is nondecreasing with respect to t

* for $H_0: \theta = \theta_0$ OR $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_1$,

$$\phi_c(\boldsymbol{x}) = \begin{cases} 1, & T(\boldsymbol{x}) > c, \\ 0, & T(\boldsymbol{x}) < c \end{cases}$$

is the UMP test of level α , where c satisfies that $\Pr\{T(\mathbf{X}) > c \mid \theta = \theta_0\} = \alpha$ * for $H_0: \theta = \theta_0$ OR $H_0: \theta \geq \theta_0$ vs. $H_1: \theta < \theta_1$,

$$\phi_c(\boldsymbol{x}) = \begin{cases} 1, & T(\boldsymbol{x}) < c, \\ 0, & T(\boldsymbol{x}) > c \end{cases}$$

is the UMP test of level α , where c satisfies that $\Pr\{T(\mathbf{X}) < c \mid \theta = \theta_0\} = \alpha$

- UMP test at level $\alpha \iff$ UMP test at size α
- LRT (equivalent to the UMP test when the UMP test exists)
 - Test statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta} \mid \boldsymbol{x})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta} \mid \boldsymbol{x})} = \frac{L(\hat{\boldsymbol{\theta}}_{0,\mathrm{ML}} \mid \boldsymbol{x})}{L(\hat{\boldsymbol{\theta}}_{\mathrm{ML}} \mid \boldsymbol{x})}$$

– Level α rejection region: $R = \{x : \lambda(x) \le c\}$ where

$$\sup_{\boldsymbol{\theta} \in \Theta_0} \beta_{\phi}(\boldsymbol{\theta}) = \sup_{\boldsymbol{\theta} \in \Theta_0} \Pr\{\lambda(\mathbf{X}) \le c \mid \boldsymbol{\theta}\} = \alpha$$

- Asymptotic level α rejection region: $R \approx \{ \boldsymbol{x} : -2 \ln \lambda(\boldsymbol{x}) \geq \chi^2_{\nu,1-\alpha} \}$ since $-2 \ln \lambda(\mathbf{X}) \xrightarrow{d} \chi^2(\nu)$ under H_0
- Wald test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
 - Test statistic $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)}$ (if $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)} \xrightarrow{d} \mathcal{N}(0, 1)$ under H_0 as $n \to \infty$)
 - * Substitute $\widehat{\text{var}}(\hat{\theta}_n)$ for $\text{var}(\hat{\theta}_n)$ if $\text{var}(\hat{\theta}_n)$ is well approximated by $\widehat{\text{var}}(\hat{\theta}_n)$ (obtained by the delta methods/bootstrap)
 - Level α Wald rejection region: $\{x: |\hat{\theta}_n \theta_0|/\sqrt{\operatorname{var}(\hat{\theta}_n)} \geq \Phi_{1-\alpha/2}^{-1}\}$
 - Asymptotically equivalent to LRT for this two sided test if $\hat{\theta}_n = \hat{\theta}_{ML}$
- Score test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
 - Test statistic: $S(\theta_0; \mathbf{X}) / \sqrt{I_n(\theta_0)} \ (\xrightarrow{d} \mathcal{N}(0, 1) \text{ under } H_0 \text{ as } n \to \infty)$
 - Level α score rejection region: $\{\boldsymbol{x}: |S(\theta_0;\boldsymbol{x})|/\sqrt{I_n(\theta_0)} \geq \Phi_{1-\alpha/2}^{-1}\}$
- p-value
 - $-p(\mathbf{X})$ is valid (to be taken as a test statistic) $\iff \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \Pr\{p(\mathbf{X}) \leq \alpha \mid \boldsymbol{\theta}\} \leq \alpha$ for each $\alpha \in [0, 1]$.
 - * i.e., it is possible to define "level" and "size" if we take $p(\mathbf{X})$ as a test statistic.
 - * Level α rejection region (depending on p(x)): $R = \{x : p(x) \le \alpha\}$.
 - Specifically, if the rejection region is of the form that $R = \{x : T(x) \ge c\}$, then $p(x) = \sup_{\theta \in \Theta_0} \Pr\{T(\mathbf{X}) \ge T(x) \mid \theta\}$

$1 - \alpha$ confidence set of θ

- Inverting a level α rejection region for two-sided hypotheses
- Depending on probabilistic inequalities, e.g., the Markov's/Chebyshev's inequality
- Bootstrap