From the foregoing, it should be clear that the rapid ¹⁰ cycling of valves **52**, **54** and **56**, individually, allows for various forms of capacity control with the amount of time a particular valve is on relative to the time that it is off determining the degree of modulation of capacity. The frequency of modulation for typical systems can range from ¹⁵ 0.1 to 100 seconds.

Although preferred embodiments of the present invention have been illustrated and described, other changes will occur to those skilled in the art. It is therefore intended that the scope of the present invention is to be limited only by the cope of the appended claims.

What is claimed is:

1. In a system serially including a compressor, a discharge line, a condenser, an expansion device, an evaporator and a suction line, means for achieving capacity control comprising:

- a solenoid valve in said suction line;
- means for rapidly pulsing said solenoid valve whereby the rate of flow in said suction line to said compressor is 30 modulated;
- a fluid path extending from a point intermediate said condenser and said expansion device to said compressor at a location corresponding to an intermediate point
 of compression in said compressor;

a bypass line connected to said fluid path and said suction line:

- a solenoid valve in said bypass line;
- means for rapidly pulsing said solenoid valve in said bypass line whereby the rate of flow of bypass to said suction line is modulated.
- 2. The capacity control of claim 1 further including;
- an economizer circuit connected to said fluid path;
- a solenoid valve in said economizer circuit; and
- means for rapidly pulsing said solenoid valve in said economizer circuit whereby the rate of economizer flow to said compressor is modulated.
- 3. In a system serially including a compressor, a discharge line, a condenser, an expansion device, an evaporator and a suction line, means for achieving capacity control comprising:
 - a solenoid valve in said suction line;
 - means for rapidly pulsing said solenoid valve whereby the rate of flow in said suction line to said compressor is modulated;
 - a fluid path extending from a point intermediate said condenser and said expansion device to said compressor at a location corresponding to an intermediate point of compression in said compressor;
 - an economizer circuit connected to said fluid path;
 - a solenoid valve in said economizer circuit; and
 - means for rapidly pulsing said solenoid valve in said economizer circuit whereby the rate of economizer flow to said compressor is modulated.

Principal from 1872 and 1875 from 1875 from 1870 from 1885 from 1875 from 18

Jua. O