Optimization

Lagrange Multiplier

Def. Lagrange Multiplier.

Use to convert a optimization problem with constraints to one without constraints.

$$\begin{array}{ll} \min_{\omega} & f(\omega) \\ s.t. & g_i(\omega) \leq 0 \quad i = 1, \cdots, k \quad \Rightarrow \\ & h_j(\omega) = 0 \quad j = 1, \cdots, l \\ \min_{\omega, \alpha, \beta} \mathcal{L}(\omega, \alpha, \beta) = f(\omega) + \sum_{i=1}^k \alpha_i g_i(\omega) + \sum_{j=1}^l \beta_j h_j(\omega) \end{array}$$

 α_i,β_j are so-called Lagrange multiplier, $\alpha_i\geq 0.$

Lagrange Duality

The solution to the dual problem provides a lower bound to the solution of the primal problem.

Def. Lagrange Dual Function

$$\begin{split} \mathcal{G}(\alpha,\beta) &= \inf_{\omega \in \mathcal{D}} \mathcal{L}(\omega,\alpha,\beta) \\ &= \inf_{\omega \in \mathcal{D}} \left(f(\omega) + \sum_{i=1}^k \alpha_i g_i(\omega) + \sum_{j=1}^l \beta_j h_j(\omega) \right) \end{split}$$

 $\ \ \, \mathbb{I} \ \,$ The Lagrange dual problem with respect to the primal problem. The optimal value is d^* , and $d^* < p^*$.

$$\begin{aligned} \max_{\alpha,\beta} & \mathcal{G}(\alpha,\beta) \\ s.t. & \alpha \geq 0 & \forall i=1,\cdots,k \end{aligned}$$

Karush-Kuhn-Tucker (KKT) Conditions

 \square Let ω^* be a primal optimal point and (α^*, β^*) be a dual optimal solution.

Def. KKT Conditions

$$\begin{array}{l} \mathbb{I} \ \ \text{Stationarity:} \ \nabla f\left(\omega^*\right) + \sum_{i=1}^k \alpha_i^* \nabla g_i\left(\omega^*\right) + \sum_{j=1}^l \beta_j^* \nabla h_j\left(\omega^*\right) = 0 \\ \mathbb{I} \ \ \text{Primal feasibility:} \ g_i\left(\omega^*\right) \leq 0, \forall i=1,\cdots,k \\ h_j\left(\omega^*\right) = 0, \forall j=1,\cdots,l \\ \mathbb{I} \ \ \text{Distributions} \ \ \delta^* \geq 0, \forall i=1,\cdots,k \\ \end{array}$$

 $\ \Box$ Dual feasibility: $\alpha_i^* \geq 0, \forall i=1,\cdots,k$

 $\ \square$ Complementary slackness: $\alpha_i^*g_i(\omega^*)=0,\ \forall i=1,2,\cdots,k$

Proof. Stationarity Condition

–
$$\omega^*$$
 is the minimizer of $\mathcal{L}(\omega,\alpha^*,\beta^*)$ over $\omega.$ Thus, $\nabla\mathcal{L}=0$

The primal feasibility conditions holds natrually.

Proof. Dual Feasibility

– If
$$\alpha \geq 0$$
 and $\tilde{\omega}$ is feasible, then

$$-\ f(\tilde{\omega}) \geq \mathcal{L}(\tilde{\omega},\alpha,\beta) \geq \mathcal{G}(\alpha,\beta) = \inf\nolimits_{\omega \in \mathcal{D}} \mathcal{L}(\omega,\alpha,\beta)$$

Proof. Complementary Slackness

- If strong duality holds, then

$$f(\omega^*) = \mathcal{G}(\alpha^*,\beta^*)$$

$$- \qquad \qquad \leq f(\omega^*) + \sum_{i=1}^k \alpha^* g_i(\omega^*) + \sum_{j=1}^l \beta_j^* h_J(\omega^*)$$

$$\leq f(\omega^*)$$

$$- : \sum_{i=1}^k \alpha_i^* g_i(\omega^*) = 0$$

$$\begin{split} & \leq f(\omega^*) \\ - & \therefore \sum_{i=1}^k \alpha_i^* g_i(\omega^*) = 0 \\ - & \text{ Since each term is nonpositive, } \alpha_i^* g_i(\omega) = 0. \end{split}$$

Convex Optimization

 $\ \square$ If objective function $f(\omega)$ and inequality constraints $g_i(\omega)$ are convex, and the equality constraints $h_{i}(\omega)$ are affine functions. A convex optimization problem can be represented by

$$\begin{aligned} \min_{\omega} & f(w) \\ \text{s.t.} & g_i(w) \leq 0, i = 1, \cdots, k \\ & Aw - b = 0 \end{aligned}$$

 $\label{eq:lambda} \mathbb{I} \ \ \text{where, } A \in \mathbb{R}^{l \times n} \ \text{and} \ b \in \mathbb{R}^l.$

Theorem. Slarter's Condition (one of so-called constraint qualification, a sufficient condition)

Strong duality holds for a convex problem if it is strictly feasible, i.e.,

$$\exists \omega \in \operatorname{relint} \mathcal{D} : g_i(\omega) < 0, i = 1, \dots, m, Aw = b$$

relint (relative interior)