Partícula en un Campo electromagnético

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

26 de agosto de 2024

Agenda

1 Fuerza de Lorentz una una fuerza generalizada

El potencial vector

Sección

• Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$
- La ecuación de Lagrange es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) \frac{\partial L}{\partial x_i} = 0$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$
- La ecuación de Lagrange es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) \frac{\partial L}{\partial x_i} = 0$
- Con lo cual $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$
- La ecuación de Lagrange es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) \frac{\partial L}{\partial x_i} = 0$
- Con lo cual $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$

3/5

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$
- La ecuación de Lagrange es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) \frac{\partial L}{\partial x_i} = 0$
- Con lo cual $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Las fuerzas generalizadas dependen de coordenadas y de velocidades.

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $L = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$
- La ecuación de Lagrange es $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) \frac{\partial L}{\partial x_i} = 0$
- Con lo cual $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Las fuerzas generalizadas dependen de coordenadas y de velocidades.
- La fuerza de Lorentz constituye una fuerza generalizada

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

Consideremos las ecuaciones de Maxwell

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi \rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

• Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times (\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}) = 0$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- y también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- y también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- y también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$
- Hemos utilizado $\mathbf{v} imes (
 abla imes \mathbf{A}) =
 abla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot
 abla) \mathbf{A}$

Título transparencia

