1 Lezione del 08-11-24

1.1 Contatori e divisione in frequenza

Si ha che i contatori *contano* i cicli di clock a cui sono sottoposti (cioè incrementano per ogni ciclo). Possiamo usare un contatore per **dividere** la frequenza del clock per un dato valore. Ad esempio, il MSB di un contatore in base 3 va 3 volte più lento del clock che lo pilota. In generale, si ha che per un contatore a N cifre in base 2 che riceve clock a periodo T, l'MSB è a periodo $2^N \cdot T$.

Si potrebbe pensare di usare l'uscita di riporto del contatore in MSB come uscita divisa del clock: questo non è raccomandabile in quanto l'uscita di riporto è un **uscita combinatoria**, che non è né **stabile** né a **temporizzazione certa** (a differenza dell'uscita di un registro).

1.2 Registro multifunzionale

Un registro multifunzionale è una rete che, all'arrivo del clock, memorizza nello stesso registro una tra K funzioni combinatorie possibili, scelte impostando un certo numero di variabili di comando $W = \log_2 K$.

L'implementazione effettiva del registro è data da un multiplexer da 0 a K-1 reti combinatorie, dove W è la variabile di comando, la cui uscita viene inviata a un certo registro (che spedisce poi la sua uscita in retroazione alle reti combinatorie funzionali, e così via).

1.3 Modello di reti sequenziali sincronizzate

Definiamo tre modelli per le RSS (che abbiamo già introdotto parlando delle regole di pilotaggio):

1.3.1 Modello di Moore

Una RSS di Moore è definita a partire da:

- Un insieme di *N* variabili logiche di ingressi:
- Un insieme di *M* variabili logiche di uscita;
- Un meccanismo di marcatura, che a ogni istante marca uno stato interno presente, scelto fra K finito stati interni $S \equiv \{S_0, ..., S_{K-1}\}$;
- Una legge di evoluzione nel tempo $A: X \times S \to S$, che mappa una coppia, data da un X stato di ingresso e un elemento $s \in S$ stato interno, ad un nuovo stato interno (diciamo $s' \in S$);
- Una legge di evoluzione nel tempo $B: S \to Z$, che mappa uno stato interno $s \in S$ a uno stato di uscita Z.

La rete riceve **segnali di sincronizzazione**, come ad esempio le transizioni da 0 a 1 del segnale di clock (avevamo detto il *leading edge*). La legge di temporizzazione di una RSS di Moore è quindi la seguente: dato un elemento $s \in S$, stato interno marcato ad un certo istante, e dato X ingresso ad un certo istante immediatamente precedente l'arrivo di un segnale di sincronizzazione:

- 1. Si individua il nuovo stato interno da marcare s' = A(X, s);
- 2. Si aspetta T_{prop} dopo l'arrivo del segnale di sincronizzazione;
- 3. Si promuove s' al rango di **stato interno marcato**.

Lo stato interno marcato viene memorizzato in un apposito registro, detto **STAR** (da *STAtus Register*). Questo viene implementato con una batteria di D flip-flop non trasparenti.

In una RSS di Moore si hanno quindi i seguenti vincoli di pilotaggio:

$$\begin{cases} T \geq T_{hold} + T_{a_monte} + T_A + T_{setup} \\ T \geq T_{prop} + T_A + T_{setup} \\ T \geq T_{prop} + T_Z + T_{a_valle} \end{cases}$$

che riguardano rispettivamente i tempi ingresso-STAR, STAR-STAR e STAR-uscita.

1.3.2 Flip-flop JK

Un'esempio di RSS di Moore è il flip-flop JK, che valuta due ingressi j e k e si comporta come segue:

j	$\mid k \mid$	Azione
0	0	Conserva
1	0	Setta
0	1	Resetta
1	1	Commuta

Un modo di vedere questa rete è come un registro multifunzionale ad un bit, con tabella di applicazione:

$$\begin{array}{c|ccccc} q & q' & j & k \\ \hline 0 & 0 & 0 & - \\ 0 & 1 & 1 & - \\ 1 & 0 & - & 1 \\ 1 & 1 & - & 0 \\ \end{array}$$

quando puoi fai un ripassone

Vediamone la sintesi: visto che conosciamo soltanto la sintesi di reti combinatorie attraverso le mappe di Karnaugh, basterà sintetizzare le due reti combinatorie, dalla definizione di rete di Moore. \mathbf{RCA} e \mathbf{RCB} che implementano le funzioni A e B. Il registro STAR conterrà a questo punto lo stato interno, che nel caso del flip-flop JK ridurrà RCB a un cortocircuito per ogni uscita del registro.

Per la sintesi di RCA, invece, dovremo consultare la tabella di flusso: riportala e applica Karnaugh