Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #7

2023/04/09

1 (4116)		
Student Number:		

1. 给出一个算子,它关于某个基的矩阵的对角线上全是非零数,但这个算子是不可逆的.

Name.

Proof.
$$T \in \mathcal{L}(\mathbf{R}^2)$$
, $Te_1 = Te_2 = e_1 + e_2$, where $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $M(T) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. However, T is not invertible.

2. Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and -4, 5, and $\sqrt{7}$ are eigenvalues of T. Prove that there exists $x \in \mathbf{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$.

设 $T \in \mathcal{L}(\mathbf{R}^3)$ 且 $-4, 5, \sqrt{7}$ 均为 T 的本征值. 证明存在 $x \in \mathbf{R}^3$ 使得 $Tx - 9x = (-4, 5, \sqrt{7})$.

Proof. Define $A \in \mathcal{L}(\mathbf{R}^3)$, A = T - 9I. A is invertible which is equivalent to A is injective. If Ax = 0, Tx = 9x. Since T has three distinct eigenvalues and a linear map in $\mathcal{L}(\mathbf{R}^3)$ has at most 3 distinct eigenvalues, then 9 is not an eigenvalue of T, then x = 0, A is injective.