## Chapter 3

Arithmetic for Computers



### **Arithmetic for Computers**

- Operations on integers
  - Addition and subtraction
  - Multiplication and division
  - Dealing with overflow
- Floating-point real numbers
  - Representation and operations

### **Integer Addition**

Example: 7 + 6



- Overflow if result out of range
  - Adding +ve and –ve operands, no overflow
  - Adding two +ve operands
    - Overflow if result sign is 1
  - Adding two –ve operands
    - Overflow if result sign is 0

#### Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

- +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
  - Subtracting two +ve or two –ve operands, no overflow
  - Subtracting +ve from –ve operand
    - Overflow if result sign is 0
  - Subtracting –ve from +ve operand
    - Overflow if result sign is 1

### **Dealing with Overflow**

- Some languages (e.g., C) ignore overflow
  - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
  - Use MIPS add, addi, sub instructions
  - On overflow, invoke exception handler
    - Save PC in exception program counter (EPC) register
    - Jump to predefined handler address
    - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

## Arithmetic Logic Unit Design



## One Bit ALU

- Performs AND, OR, and ADD
  - on 1-bit operands
  - components:
    - AND gate
    - OR gate
    - 1-bit adder

Multiplexor





## One Bit Full Adder

- Also known as a (3,2) adder
- Half Adder
  - no CarryIn

| Inputs |   |         | Outputs  |     |          |
|--------|---|---------|----------|-----|----------|
| а      | b | CarryIn | CarryOut | Sum | Comments |
| 0      | 0 | 0       | 0        | 0   | 0+0+0=00 |
| 0      | 0 | 1       | 0        | 1   | 0+0+1=01 |
| 0      | 1 | 0       | 0        | 1   | 0+1+0=01 |
| 0      | 1 | 1       | 1        | 0   | 0+1+1=10 |
| 1      | 0 | 0       | 0        | 1   | 1+0+0=01 |
| 1      | 0 | 1       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 0       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 1       | 1        | 1   | 1+1+1=11 |





# Carry Out Logic Equation

- CarryOut = (!a & b & CarryIn) | (a & !b & CarryIn)
  | (a & b & !CarryIn) | (a & b & CarryIn)
- CarryOut = (b & CarryIn) | (a & CarryIn) | (a & b)

| Inputs |   |         | Outputs  |     |          |
|--------|---|---------|----------|-----|----------|
| а      | b | CarryIn | CarryOut | Sum | Comments |
| 0      | 0 | 0       | 0        | 0   | 0+0+0=00 |
| 0      | 0 | 1       | 0        | 1   | 0+0+1=01 |
| 0      | 1 | 0       | 0        | 1   | 0+1+0=01 |
| 0      | 1 | 1       | 1        | 0   | 0+1+1=10 |
| 1      | 0 | 0       | 0        | 1   | 1+0+0=01 |
| 1      | 0 | 1       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 0       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 1       | 1        | 1   | 1+1+1=11 |

# Sum Logic Equation

Sum = (!a & !b & Carryln) | (!a & b & !Carryln)
 | (a & !b & !Carryln) | (a & b & Carryln)

| Inputs |   |         | Outputs  |     |          |
|--------|---|---------|----------|-----|----------|
| а      | b | CarryIn | CarryOut | Sum | Comments |
| 0      | 0 | 0       | 0        | 0   | 0+0+0=00 |
| 0      | 0 | 1       | 0        | 1   | 0+0+1=01 |
| 0      | 1 | 0       | 0        | 1   | 0+1+0=01 |
| 0      | 1 | 1       | 1        | 0   | 0+1+1=10 |
| 1      | 0 | 0       | 0        | 1   | 1+0+0=01 |
| 1      | 0 | 1       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 0       | 1        | 0   | 1+0+1=10 |
| 1      | 1 | 1       | 1        | 1   | 1+1+1=11 |