Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 point

1/1 point

- $\bigcirc \hspace{0.1in} x^{(i) < j >}$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc \ x^{(j) < i >}$
- $\bigcap x^{< j > (i)}$

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

x<3>

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct

Correct!

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \text{Estimating} \ P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- $\bigcirc \ \ \operatorname{Estimating} P\big(y^{< t>}\big)$
- \bigcirc Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point

What are you doing at each time step t?

- \bigcirc (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t^>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- \bigcirc (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

~	Correc
	Yes!

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem? 1 / 1 point

- O Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with
	100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

1 / 1 point

O 1

100

300

0 10000

✓ Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1 / 1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . i.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . i. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \odot Betty's model (removing Γ_{r}), because if $\Gamma_{u} \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Betty's model (removing Γ_{τ}), because if $\Gamma_{u}\approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

✓ Corre

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

9. Here are the equations for the GRU and the LSTM:

1/1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

LSTM

$$\Gamma_{\!u} = \sigma(W_{\!u}[\,c^{< t-1>},x^{< t>}] + b_u)$$

$$\Gamma_u = \sigma(W_u[\,a^{< t-1>},x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\ c^{< t-1>}, x^{< t>}] + b_r)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$a^{< t>} = c^{< t>}$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 $igotimes \Gamma_u$ and $1-\Gamma_u$

 \bigcirc Γ_u and Γ_r

 $\bigcirc \ 1 - \Gamma_u$ and Γ_u

 \bigcirc Γ_r and Γ_u

✓ c

Yes, correct!

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 / 1 point

	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
(E	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{<365>}$
) ı	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.
~	Correct Yes!