Chapitre 1

Interpolation de fonctions

Étant donné une fonction $f \in \mathcal{C}^0([a,b])$, on cherche un polynôme p_m de degré m qui approche au mieux f.

Théorème 1.0.1 (Théorème d'approximation de Weierstrass). Pour toute fonction continue sur un segment f et tout entier n il existe un polynôme p_n de degré inférieur ou égal à n tel que

$$\lim_{n \to +\infty} ||f - p_n|| = 0.$$

Remarque. Pour toute fonction continue il existe une suite de polynôme qui converge uniformément vers cette fonction.

1.1 Polynôme de Lagrange

Étant donné une fonction continue f sur un segment [a, b] et n évaluations connues de f $f(x_1), \ldots, f(x_n)$ on peut construire le polynôme p_n de degré n passant par ces n évaluations.