PHIMECA

JU Open TURNS 07/06/2011

Méta-modèles

Thierry YALAMAS

Sommaire

- Les incertitudes
- Les surfaces de réponses
- Illustrations
- Conclusions

Méthodologie générale

Étape B

Quantification des sources d'incertitudes

Étape A

Modèle(s)
Critère(s)

Étape C

Propagation des incertitudes

Modèle physique

Densité de proba.

Moments

Prob. de défaillance

Hiérarchisation des incertitudes

Étape C'

Uncertainty in industrial practice - A guide to quantitative uncertainty management, E. de Rocquigny, N. Devictor, S. Tarantola (Eds.), John Wiley, 2008

Éléments d'une surface de réponse (1)

La classe de modèle :

type de représentation mathématique de la surface de réponse

Modèles simples : surface polynomiale (données d'entrée déterministes),
 chaos polynomial (données d'entrée aléatoires)

Modèle le plus courant : Surface de Réponse Quadratique (SRQ), correspondant à une surface polynomiale d'ordre 2

L'algorithme de calcul :

pour identifier les paramètres du méta-modèle à partir des points d'apprentissage de la surface de réponse

- Régression, projection
- Apprentissage

•

Éléments d'une surface de réponse (2)

Le plan d'expérience

- Plans spécifiques au choix du modèle
- Plans génériques (utilisables avec plusieurs modèles différents)

Le plan d'expérience a pour but de sélectionner les points les plus adaptés à la construction du méta-modèle

La taille du plan d'expérience est à l'origine du coût de calcul Il est donc à choisir avec soin

Exemples : données déterministes

Illustration:

Régression polynomiale de degré 2

Régression SVM

Sommaire

- Les incertitudes
- Les surfaces de réponses Régression SVM
- Illustrations
- Conclusions

Introduction aux SVM (1)

Un problème de classification linéaire :

- Un ensemble de données étiquetées X_i , i=1...n définies dans un domaine D
- On suppose 2 classes : $C_i \in \{+1;-1\}$
- Exemple en fiabilité des structures :
 - +1 : la classe sûreté,
 - -1 : la classe défaillance
- Objectif: trouver un hyperplan qui classe « le mieux possible » l'ensemble des données
- On cherche donc un séparateur des classes...

Introduction aux SVM (2)

Un problème de classification linéaire :

• On cherche un hyperplan de la forme :

Il faut maximiser la marge

Le séparateur est défini uniquement à partir des réalisations sur la marge: les points ou vecteurs supports

Introduction aux SVM (3)

Le problème d'optimisation :

 ullet Maximiser la marge correspond à la minimisation de la norme de ω , le problème d'optimisation s'écrivant :

$$\begin{cases} \min \frac{1}{2} \|\omega\|^2 \\ sous(c_i(\langle \omega, X_i \rangle + b \ge 1)) & i = 1,...,n \end{cases}$$

Formulation de Lagrange :

fonction quadratique convexe

$$L(\omega,b,\alpha) = \frac{\|\omega\|}{2} - \sum_{i=1}^{n} \alpha_i \left[c_i \left(\langle \omega, X \rangle + b \right) - 1 \right]$$

Conditions d'optimalités de Karush - Kuhn - Tucker :

$$\frac{\partial L(\omega, b, \alpha)}{\partial b} = 0 = \sum_{i=1}^{n} \alpha_{i} c_{i}$$

$$\frac{\partial L(\omega, b, \alpha)}{\partial \omega} = 0 = \omega - \sum_{i=1}^{n} \alpha_{i} c_{i} X_{i}$$

Introduction aux SVM (4)

Le problème d'optimisation :

• Les α i non nuls correspondent aux réalisations sur la marge, elles sont

nommées les vecteurs supports

séparateur • Le peut être uniquement défini à partir de ces réalisations, où S est le nombre de vecteurs supports

$$\omega^* = \sum_{i=1}^{S} \alpha_i c_i X_i$$

$$b^* = -\frac{1}{2} \langle \omega^*, X_{+1} + X_{-1} \rangle$$

Pour affiner la séparation, seules les réalisations dans la marge sont utiles, les autres peuvent être classées sans calcul à partir de la connaissance du séparateur

Introduction aux SVM (5)

Le passage au non-linéaire :

 On se ramène au cas linéairement séparable présenté précédemment par une transformation de l'espace :

Un projecteur non linéaire ϕ transforme l'espace de départ vers un espace de dimension supérieure : feature space

The Kernel Trick

Le produit scalaire est remplacé par une fonction noyau K plus générale

$$K(X_1, X_2) = \langle \Phi(X_1), \Phi(X_2) \rangle$$

Sommaire

- Les incertitudes
- Les surfaces de réponsesInterpolation par Krigeage
- Illustrations
- Conclusion

La théorie de Krige & Matheron

Les hypothèses du krigeage

 $y(\mathbf{x})$ est une trajectoire à identifier d'un processus gaussien $Y(\mathbf{x})$ à identifier.

Soit $Y(\mathbf{x})$ le processus gaussien non stationnaire :

PG non stationnaire
$$Y(\mathbf{x}) = \mu(\mathbf{x}) + Z(\mathbf{x})$$
PG centré stationnaire Partie déterministe (tendance)

On introduit également le *vecteur aléatoire* des observations

$$\mathbf{Y} \square \mathbf{N} \left(\mathbf{\mu}_{\mathbf{Y}}, \sigma^2 \left[\mathbf{R}_{\mathbf{YY}} \right] \right)$$
 avec $\sigma^2 R_{Y_i Y_j} = Cov \left[Y_i, Y_j \right], \quad i = 1, ..., m$ $j = 1, ..., m$

aux sites

La théorie de Krige & Matheron

\blacksquare Le meilleur prédicteur linéaire sans biais de $Y(\mathbf{x})$

D'où le résultat final

$$\begin{cases} \hat{Y}(\mathbf{x}) = \mu(\mathbf{x}) + \mathbf{r}(\mathbf{x})^{t} [\mathbf{R}_{\mathbf{YY}}]^{-1} (\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}}) \\ MSE(\mathbf{x}) = \sigma^{2} (1 - \mathbf{r}(\mathbf{x})^{t} [\mathbf{R}_{\mathbf{YY}}]^{-1} \mathbf{r}(\mathbf{x})) \end{cases}$$

(le BLUP « moyen »)

(la « variance de krigeage »)

· Illustration (IC à 95%, fonction réelle : $y(x) = x \sin(x)$)

La théorie de Krige & Matheron

Détermination des paramètres

- On ne connaît pas les moments du processus $Y(\mathbf{x})$, on va donc les modéliser :
 - La *moyenne* est <u>choisie</u> parmi une classe de *modèle de régression* :

$$\left[\mu(\mathbf{x}) = \mathbf{f}(\mathbf{x})^{\mathsf{t}} \boldsymbol{\beta} \right] \qquad e.g. \ \mathbf{f}_{\mathsf{poly}}(\mathbf{x}) = \langle 1 \ x \ x^2 \rangle^{\mathsf{t}}$$

L'autocorrélation est également choisie dans une classe paramétrée connue :

$$C(\mathbf{x}, \mathbf{x}') = \sigma^2 R_{\theta}(\mathbf{x} - \mathbf{x}')$$

Sous ses hypothèses additionnelles, le BLUP « moyen » s'écrit :

$$\hat{Y}(\mathbf{x}) = \mathbf{f}(\mathbf{x})^{t} \boldsymbol{\beta} + \mathbf{r}_{\theta}(\mathbf{x}) [\mathbf{R}_{\theta}]^{-1} (\mathbf{Y} - [\mathbf{F}] \boldsymbol{\beta})$$

$$F_{ij} = f_{j}(\mathbf{s}_{i}), \quad i = 1, ..., m \quad j = 1, ..., p$$

Et le vecteur des observations est ainsi entièrement paramétré :

$$\mathbf{Y} \square \mathbf{N} ([\mathbf{F}]\boldsymbol{\beta}, \sigma^2[\mathbf{R}_{\boldsymbol{\theta}}])$$

On peut donc estimer les paramètres *optimaux* recherchés β^* , σ^{2*} , θ^* par les méthodes d'inférence paramétriques usuelles à partir du vecteur des observations constatées v.

Pratique la plus courante : le Maximum de Vraisemblance

Sommaire

- Les incertitudes
- Les surfaces de réponses
- Illustration (Projet ANR Kidpocket)
- Conclusions

Objectifs

- Utilisation de méta-modèles
 - Études des moments statistiques
 - Études de quantiles particuliers
- Comparaison de méta-modèles
 - Régression par SVM (Support Vector Machine)
 - · Interpolation par la méthode du Krigeage
 - Chaos polynomial adaptatif

Les données d'entrée

Issues d'un code de calcul électromagnétique

Les données analysées sont des valeurs de SAR (Specific Absorption Rate)

- Caractéristiques des données
 - A) Une Bases de données 27 points générées par un schéma de quadrature
 - B) Une base de données de 25 points générées par un plan d'expérience aléatoire de type carré Latin
 - Dimension de l'espace : 3 variables aléatoires dépendantes

$$\mathbf{R} = \begin{bmatrix} 1 & 0.33 & 0.25 \\ 0.33 & 1 & 0.69 \\ 0.25 & 0.69 & 1 \end{bmatrix}$$

• Les données sont traitées dans l'espace standard (gaussien centré et normé)

Méthodologie

Les outils

Tous les résultats ont été obtenus sous Matlab/python à l'aide d'outils internes

Les toolbox

- Support Vector regression (SVR): SpiderSVM, interface Matlab pour LibSVM
- Krigeage : DACE
- Chaos adpatatif (gPC) : développements internes

Simulation des données

Population générée pour l'évaluation des moments

Résultats - base schéma de quadrature

Comparaisons des histogrammes

Note: les moments sont évalués sur 100 000 simulations de Monte-Carlo

Résultats - base LHS

Comparaisons des histogrammes

$$95\% = 7.447$$

$$m = 5.578$$

$$\sigma = 1.004$$

$$95\% = 7.432$$

= 1.004

95% = 7.453

Note : les moments sont évalués sur 100 000 simulations de Monte-Carlo

2.

25

Explications

Répartition des expériences numériques du schéma de quadrature

Explications

Répartition des expériences numériques du schéma de quadrature (en bleu) et points d'évaluation pour les moments (en rouge)

Explications

Répartition des expériences numériques du plan LHS

Sommaire

- Les incertitudes
- Les surfaces de réponses
- Illustration sur une application industrielle
- Conclusions

Elaboration du Méta-modèle

Plan d'expérience:

- LHS
- Complet sur 2 facteurs

Résultats de la régression:

Résultats de l'analyse fiabiliste

Modèle	$\log(D)$	ΔS
Krigeage	61 ans (0.85)	249 ans (0.82)
SVR	76 ans (0.95)	211 ans (0.95)

Résultats de la simulation de Monte-Carlo

- avec le méta-modèle
- suivant les distributions inférées

Conclusions

La validité d'un méta-modèle dépend de celle du plan d'expérience (par rapport à une information recherchée)

Le choix d'un type de méta-modèle dépend de la « physique » du phénomène représenté... dans la plage considérée

