Formal Methods in Software Developement Propositional Logic on Examples

Mădălina Erașcu

West University of Timișoara Faculty of Mathematics and Informatics

Based on slides of the lecture Satisfiability Checking (Erika Ábrahám), RTWH Aachen

October 4, 2018

$$\phi := \neg(a \to (b \lor \neg c))$$

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a ightarrow (b \lor \neg c))$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a \rightarrow (b \lor \neg c))$
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a ightarrow (b \lor \neg c))$
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a \rightarrow (b \lor \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a o (b \lor \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a ightarrow (b ee \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

a	b	С	$\neg(a ightarrow (b ee \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a o (b \lor \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	

$$\phi := \neg(a \to (b \lor \neg c))$$

а	b	С	$\neg(a ightarrow (b ee \neg c))$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

```
\begin{array}{lll} \operatorname{Eval}(\alpha, p) & = & \alpha(p) \\ \operatorname{Eval}(\alpha, \neg A) & = & \neg \operatorname{Eval}(\alpha, A) \\ \operatorname{Eval}(\alpha, A \vee B) & = & \operatorname{Eval}(\alpha, A) \vee \operatorname{Eval}(\alpha, B) \\ \operatorname{Eval}(\alpha, A \wedge B) & = & \operatorname{Eval}(\alpha, A) \wedge \operatorname{Eval}(\alpha, B) \\ \operatorname{Eval}(\alpha, A \to B) & = & \operatorname{Eval}(\alpha, \neg A) \vee \operatorname{Eval}(\alpha, B) \\ \operatorname{Eval}(\alpha, A \leftrightarrow B) & = & \operatorname{Eval}(\alpha, A \to B) \wedge \operatorname{Eval}(\alpha, A \leftarrow B) \end{array}
```

$$\phi := \neg(a \to (b \lor \neg c))$$

Example formula:

$$\phi := \neg(a \to (b \lor \neg c))$$

 α : a = 0, b = 0, c = 0:

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) =$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg$ Eval $(\alpha, a \rightarrow (b \lor \neg c))$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg$ Eval $(\alpha, a \to (b \lor \neg c))$ Eval $(\alpha, a \to (b \lor \neg c)) =$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg \text{Eval}(\alpha, a \to (b \lor \neg c))$ Eval $(\alpha, a \to (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$

Example formula:

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- \blacksquare Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg$ Eval $(\alpha, a \to (b \lor \neg c))$ $\text{Eval}(\alpha, a \to (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) =$

4 / 10

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg$ Eval $(\alpha, a \to (b \lor \neg c))$ Eval $(\alpha, a \to (b \lor \neg c)) =$ Eval $(\alpha, \neg a) \lor$ Eval $(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg$ Eval $(\alpha, a) =$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg$ Eval $(\alpha, a \to (b \lor \neg c))$ Eval $(\alpha, a \to (b \lor \neg c)) =$ Eval $(\alpha, \neg a) \lor$ Eval $(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg$ Eval $(\alpha, a) = 1$

Example formula:

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- \blacksquare Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg$ Eval $(\alpha, a \to (b \lor \neg c))$ $\text{Eval}(\alpha, a \to (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ $\mathsf{Eval}(\alpha, \neg a) = \neg \mathsf{Eval}(\alpha, a) = 1$ Eval $(\alpha, b \vee \neg c) =$

4 / 10

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \to (b \lor \neg c))) = \neg \text{Eval}(\alpha, a \to (b \lor \neg c))$ Eval $(\alpha, a \to (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg \text{Eval}(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c)$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- $\begin{aligned} & \quad \mathsf{Eval}(\alpha, \neg(\mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c}))) = \neg \mathsf{Eval}(\alpha, \mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c})) \\ & \quad \mathsf{Eval}(\alpha, \mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c})) = \mathsf{Eval}(\alpha, \neg \mathsf{a}) \lor \mathsf{Eval}(\alpha, \mathsf{b} \lor \neg \mathsf{c}) \\ & \quad \mathsf{Eval}(\alpha, \neg \mathsf{a}) = \neg \mathsf{Eval}(\alpha, \mathsf{a}) = 1 \\ & \quad \mathsf{Eval}(\alpha, \mathsf{b} \lor \neg \mathsf{c}) = \mathsf{Eval}(\alpha, \mathsf{b}) \lor \mathsf{Eval}(\alpha, \neg \mathsf{c})) \\ & \quad \mathsf{Eval}(\alpha, \mathsf{b}) = \end{aligned}$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- $\begin{aligned} & \mathsf{Eval}(\alpha, \neg(a \to (b \lor \neg c))) = \neg \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) \\ & \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) = \mathsf{Eval}(\alpha, \neg a) \lor \mathsf{Eval}(\alpha, b \lor \neg c) \\ & \mathsf{Eval}(\alpha, \neg a) = \neg \mathsf{Eval}(\alpha, a) = 1 \\ & \mathsf{Eval}(\alpha, b \lor \neg c) = \mathsf{Eval}(\alpha, b) \lor \mathsf{Eval}(\alpha, \neg c)) \\ & \mathsf{Eval}(\alpha, b) = 0 \end{aligned}$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- $\begin{aligned} & \quad \mathsf{Eval}(\alpha, \neg (\mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c}))) = \neg \mathsf{Eval}(\alpha, \mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c})) \\ & \quad \mathsf{Eval}(\alpha, \mathsf{a} \to (\mathsf{b} \lor \neg \mathsf{c})) = \mathsf{Eval}(\alpha, \neg \mathsf{a}) \lor \mathsf{Eval}(\alpha, \mathsf{b} \lor \neg \mathsf{c}) \\ & \quad \mathsf{Eval}(\alpha, \neg \mathsf{a}) = \neg \mathsf{Eval}(\alpha, \mathsf{a}) = 1 \\ & \quad \mathsf{Eval}(\alpha, \mathsf{b} \lor \neg \mathsf{c}) = \mathsf{Eval}(\alpha, \mathsf{b}) \lor \mathsf{Eval}(\alpha, \neg \mathsf{c})) \\ & \quad \mathsf{Eval}(\alpha, \mathsf{b}) = 0 \\ & \quad \mathsf{Eval}(\alpha, \neg \mathsf{c}) = \end{aligned}$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- $\begin{aligned} & \mathsf{Eval}(\alpha, \neg(a \to (b \lor \neg c))) = \neg \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) \\ & \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) = \mathsf{Eval}(\alpha, \neg a) \lor \mathsf{Eval}(\alpha, b \lor \neg c) \\ & \mathsf{Eval}(\alpha, \neg a) = \neg \mathsf{Eval}(\alpha, a) = 1 \\ & \mathsf{Eval}(\alpha, b \lor \neg c) = \mathsf{Eval}(\alpha, b) \lor \mathsf{Eval}(\alpha, \neg c)) \\ & \mathsf{Eval}(\alpha, b) = 0 \\ & \mathsf{Eval}(\alpha, \neg c) = \neg \mathsf{Eval}(\alpha, c) = \end{aligned}$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- $\begin{aligned} & \mathsf{Eval}(\alpha, \neg(a \to (b \lor \neg c))) = \neg \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) \\ & \mathsf{Eval}(\alpha, a \to (b \lor \neg c)) = \mathsf{Eval}(\alpha, \neg a) \lor \mathsf{Eval}(\alpha, b \lor \neg c) \\ & \mathsf{Eval}(\alpha, \neg a) = \neg \mathsf{Eval}(\alpha, a) = 1 \\ & \mathsf{Eval}(\alpha, b \lor \neg c) = \mathsf{Eval}(\alpha, b) \lor \mathsf{Eval}(\alpha, \neg c)) \\ & \mathsf{Eval}(\alpha, b) = 0 \\ & \mathsf{Eval}(\alpha, \neg c) = \neg \mathsf{Eval}(\alpha, c) = 1 \end{aligned}$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg \text{Eval}(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg \text{Eval}(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg \text{Eval}(\alpha, c) = 1$ Eval $(\alpha, b \lor \neg c) = \neg \text{Eval}(\alpha, c) = 1$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg \text{Eval}(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg \text{Eval}(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg \text{Eval}(\alpha, c) = 1$ Eval $(\alpha, b \lor \neg c) = 1$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg \text{Eval}(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg \text{Eval}(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg \text{Eval}(\alpha, c) = 1$ Eval $(\alpha, b \lor \neg c) = 1$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = 0$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg$ Eval $(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg$ Eval $(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg$ Eval $(\alpha, c) = 1$ Eval $(\alpha, b \lor \neg c) = 1$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = 1$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg$ Eval $(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg$ Eval $(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg$ Eval $(\alpha, c) = 1$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = 1$ Eval $(\alpha, \neg a \rightarrow (b \lor \neg c)) = 1$ Eval $(\alpha, \neg a \rightarrow (b \lor \neg c)) = 1$

$$\phi := \neg(a \to (b \lor \neg c))$$

- α : a = 0, b = 0, c = 0:
- Eval $(\alpha, \neg(a \rightarrow (b \lor \neg c))) = \neg$ Eval $(\alpha, a \rightarrow (b \lor \neg c))$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = \text{Eval}(\alpha, \neg a) \lor \text{Eval}(\alpha, b \lor \neg c)$ Eval $(\alpha, \neg a) = \neg$ Eval $(\alpha, a) = 1$ Eval $(\alpha, b \lor \neg c) = \text{Eval}(\alpha, b) \lor \text{Eval}(\alpha, \neg c))$ Eval $(\alpha, b) = 0$ Eval $(\alpha, \neg c) = \neg$ Eval $(\alpha, c) = 1$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = 1$ Eval $(\alpha, a \rightarrow (b \lor \neg c)) = 0$

NNF conversion

Only operators $\neg, \vee, \wedge,$ negation only in front of atomic propositions.

$$\phi := \neg(a \to (b \lor \neg c))$$

NNF conversion

Only operators $\neg, \vee, \wedge,$ negation only in front of atomic propositions.

$$\phi := \neg(a \to (b \lor \neg c))$$

$$\neg(a\rightarrow(b\vee\neg c))$$

NNF conversion

Only operators \neg , \lor , \land , negation only in front of atomic propositions.

$$\phi := \neg(a \to (b \lor \neg c))$$

$$\neg(a\rightarrow(b\vee\neg c))$$

$$=\neg(\neg a\vee(b\vee\neg c))$$

NNF conversion

Only operators \neg , \lor , \land , negation only in front of atomic propositions.

$$\phi := \neg(a \to (b \lor \neg c))$$

$$\neg(a\rightarrow(b\vee\neg c))$$
= $\neg(\neg a\vee(b\vee\neg c))$
= $\neg(\neg a\vee b\vee\neg c)$

NNF conversion

Only operators \neg , \lor , \land , negation only in front of atomic propositions.

$$\phi := \neg(a \to (b \lor \neg c))$$

$$\neg(a\rightarrow(b\lor\neg c))$$

$$=\neg(\neg a\lor(b\lor\neg c))$$

$$=\neg(\neg a\lorb\lor\neg c)$$

$$=a\land\neg b\land c$$

CNF: $\wedge_{i=1,\dots,n} \vee_{j=1,\dots,m} I_{ij}$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$(a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$= (a \vee (\neg c \wedge (d \vee e))) \wedge (b \vee (\neg c \wedge (d \vee e)))$$

$$= (a \vee (\neg c \wedge d) \vee (\neg c \wedge e)) \wedge (b \vee (\neg c \wedge d) \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee (\neg c \wedge e)) \wedge (a \vee d \vee (\neg c \wedge e)) \wedge (b \vee \neg c \vee (\neg c \wedge e)) \wedge (b \vee d \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee \neg c) \wedge (a \vee \neg c \vee e) \wedge (a \vee d \vee \neg c) \wedge (a \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee e)$$

CNF: $\wedge_{i=1,\dots,n} \vee_{j=1,\dots,m} I_{ij}$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$(a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$= (a \vee (\neg c \wedge (d \vee e))) \wedge (b \vee (\neg c \wedge (d \vee e)))$$

$$= (a \vee (\neg c \wedge d) \vee (\neg c \wedge e)) \wedge (b \vee (\neg c \wedge d) \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee (\neg c \wedge e)) \wedge (a \vee d \vee (\neg c \wedge e)) \wedge (b \vee \neg c \vee (\neg c \wedge e)) \wedge (b \vee d \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee \neg c) \wedge (a \vee \neg c \vee e) \wedge (a \vee d \vee \neg c) \wedge (a \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee \neg c \vee e) \wedge (b \vee d \vee \neg c) \wedge (b \vee d \vee e)$$

CNF: $\wedge_{i=1,...,n} \vee_{j=1,...,m} I_{ij}$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$(a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$= (a \vee (\neg c \wedge (d \vee e))) \wedge (b \vee (\neg c \wedge (d \vee e)))$$

$$= (a \vee (\neg c \wedge d) \vee (\neg c \wedge e)) \wedge (b \vee (\neg c \wedge d) \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee (\neg c \wedge e)) \wedge (a \vee d \vee (\neg c \wedge e)) \wedge (b \vee \neg c \vee (\neg c \wedge e)) \wedge (b \vee d \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee \neg c) \wedge (a \vee \neg c \vee e) \wedge (a \vee d \vee \neg c) \wedge (a \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e)$$

CNF: $\wedge_{i=1,\dots,n} \vee_{j=1,\dots,m} I_{ij}$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$(a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$= (a \vee (\neg c \wedge (d \vee e))) \wedge (b \vee (\neg c \wedge (d \vee e)))$$

$$= (a \vee (\neg c \wedge d) \vee (\neg c \wedge e)) \wedge (b \vee (\neg c \wedge d) \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee (\neg c \wedge e)) \wedge (a \vee d \vee (\neg c \wedge e)) \wedge (b \vee \neg c \vee (\neg c \wedge e)) \wedge (b \vee d \vee (\neg c \wedge e))$$

$$= (a \vee \neg c \vee \neg c) \wedge (a \vee \neg c \vee e) \wedge (a \vee d \vee \neg c) \wedge (a \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e) \wedge (b \vee \neg c \vee \neg c) \wedge (b \vee d \vee e)$$

CNF: $\wedge_{i=1,\ldots,n} \vee_{j=1,\ldots,m} I_{ij}$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$(a \land b) \lor (\neg c \land (d \lor e))$$

$$= (a \lor (\neg c \land (d \lor e))) \land (b \lor (\neg c \land (d \lor e)))$$

$$= (a \lor (\neg c \land d) \lor (\neg c \land e)) \land (b \lor (\neg c \land d) \lor (\neg c \land e))$$

$$= (a \lor \neg c \lor (\neg c \land e)) \land (a \lor d \lor (\neg c \land e)) \land (b \lor \neg c \lor (\neg c \land e)) \land (b \lor d \lor (\neg c \land e))$$

$$= (a \lor \neg c \lor \neg c) \land (a \lor \neg c \lor e) \land (a \lor d \lor \neg c) \land (a \lor d \lor e) \land (b \lor \neg c \lor \neg c) \land (b \lor \neg c \lor e) \land (b \lor d \lor \neg c) \land (b \lor d \lor e)$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

Example formula:

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

 $\blacksquare a_1 \leftrightarrow (a_2 \lor a_3)$

Example formula:

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

- $\blacksquare a_1 \leftrightarrow (a_2 \lor a_3)$
- $\blacksquare a_2 \leftrightarrow (a \land b)$

7 / 10

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

- $\blacksquare a_1 \leftrightarrow (a_2 \lor a_3)$
- $\blacksquare a_2 \leftrightarrow (a \land b)$
- $\blacksquare a_3 \leftrightarrow (\neg c \land a_4)$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

- $a_1 \leftrightarrow (a_2 \lor a_3)$
- $\blacksquare a_2 \leftrightarrow (a \land b)$
- $\blacksquare a_3 \leftrightarrow (\neg c \land a_4)$
- $\blacksquare a_4 \leftrightarrow (d \lor e)$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

- $\blacksquare a_1 \leftrightarrow (a_2 \lor a_3)$
- $\blacksquare a_2 \leftrightarrow (a \land b)$
- $\blacksquare a_3 \leftrightarrow (\neg c \land a_4)$
- $\blacksquare a_4 \leftrightarrow (d \lor e)$
- a₁

$$h \leftrightarrow (p_1 \land p_2)$$

$$\begin{array}{ll}
 & h \leftrightarrow (p_1 \lor p_2) \\
 &= (h \rightarrow (p_1 \lor p_2)) & \land (h \leftarrow (p_1 \lor p_2))
\end{array}$$

$$h \leftrightarrow (p_1 \land p_2)$$

In the previous formula, we have the following templates:

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \land & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \land & (h \lor \neg (p_1 \lor p_2))
\end{array}$$

$$h \leftrightarrow (p_1 \land p_2)$$

8 / 10

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \wedge & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \wedge & (h \lor \neg (p_1 \lor p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor (\neg p_1 \land \neg p_2))
\end{array}$$

$$h \leftrightarrow (p_1 \land p_2)$$

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \wedge & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \wedge & (h \lor \neg (p_1 \lor p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor (\neg p_1 \land \neg p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor \neg p_1) & \wedge & (h \lor \neg p_2)
\end{array}$$

$$h \leftrightarrow (p_1 \land p_2)$$

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \wedge & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \wedge & (h \lor \neg (p_1 \lor p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor (\neg p_1 \land \neg p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor \neg p_1) & \wedge & (h \lor \neg p_2)
\end{array}$$

$$\begin{array}{c} \textbf{2} \ h \leftrightarrow (p_1 \wedge p_2) \\ = (h \rightarrow (p_1 \wedge p_2)) \\ \end{array} \wedge (h \leftarrow (p_1 \wedge p_2))$$

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \wedge & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \wedge & (h \lor \neg (p_1 \lor p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor (\neg p_1 \land \neg p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor \neg p_1) & \wedge & (h \lor \neg p_2)
\end{array}$$

$$\begin{array}{lll} & h \leftrightarrow (p_1 \wedge p_2) \\ & = (h \rightarrow (p_1 \wedge p_2)) \\ & = (\neg h \vee (p_1 \wedge p_2)) \end{array} & \wedge & (h \leftarrow (p_1 \wedge p_2)) \\ & \wedge & (h \vee \neg (p_1 \wedge p_2)) \end{array}$$

$$\begin{array}{lll}
\mathbf{1} & h \leftrightarrow (p_1 \lor p_2) \\
&= (h \rightarrow (p_1 \lor p_2)) & \wedge & (h \leftarrow (p_1 \lor p_2)) \\
&= (\neg h \lor (p_1 \lor p_2)) & \wedge & (h \lor \neg (p_1 \lor p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor (\neg p_1 \land \neg p_2)) \\
&= (\neg h \lor p_1 \lor p_2) & \wedge & (h \lor \neg p_1) & \wedge & (h \lor \neg p_2)
\end{array}$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$h \leftrightarrow (p_1 \lor p_2) = (\neg h \lor p_1 \lor p_2) \land (h \lor \neg p_1) \land (h \lor \neg p_2) h \leftrightarrow (p_1 \land p_2) = (\neg h \lor p_1) \land (\neg h \lor p_2) \land (h \lor \neg p_1 \lor \neg p_2)$$

```
a_1 \leftrightarrow (a_2 \lor a_3) = a_2 \leftrightarrow (a \land b) = a_3 \leftrightarrow (\neg c \land a_4) = a_4 \leftrightarrow (d \lor e) =
```

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$h \leftrightarrow (p_1 \lor p_2) = (\neg h \lor p_1 \lor p_2) \land (h \lor \neg p_1) \land (h \lor \neg p_2) h \leftrightarrow (p_1 \land p_2) = (\neg h \lor p_1) \land (\neg h \lor p_2) \land (h \lor \neg p_1 \lor \neg p_2)$$

$$a_1 \leftrightarrow (a_2 \lor a_3) = (\neg a_1 \lor a_2 \lor a_3) \land (a_1 \lor \neg a_2) \land (a_1 \lor \neg a_3)$$

$$a_2 \leftrightarrow (a \land b) =$$

$$a_3 \leftrightarrow (\neg c \land a_4) =$$

$$a_4 \leftrightarrow (d \lor e) =$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$h \leftrightarrow (p_1 \lor p_2) = (\neg h \lor p_1 \lor p_2) \land (h \lor \neg p_1) \land (h \lor \neg p_2) h \leftrightarrow (p_1 \land p_2) = (\neg h \lor p_1) \land (\neg h \lor p_2) \land (h \lor \neg p_1 \lor \neg p_2)$$

$$\begin{array}{lll} a_1 \leftrightarrow (a_2 \vee a_3) & = (\neg a_1 \vee a_2 \vee a_3) & \wedge (a_1 \vee \neg a_2) & \wedge (a_1 \vee \neg a_3) \\ a_2 \leftrightarrow (a \wedge b) & = (\neg a_2 \vee a) & \wedge (\neg a_2 \vee b) & \wedge (a_2 \vee \neg a \vee \neg b) \\ a_3 \leftrightarrow (\neg c \wedge a_4) & = \\ a_4 \leftrightarrow (d \vee e) & = \end{array}$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$h \leftrightarrow (p_1 \lor p_2) = (\neg h \lor p_1 \lor p_2) \land (h \lor \neg p_1) \land (h \lor \neg p_2) h \leftrightarrow (p_1 \land p_2) = (\neg h \lor p_1) \land (\neg h \lor p_2) \land (h \lor \neg p_1 \lor \neg p_2)$$

$$\begin{array}{lll} a_1 \leftrightarrow (a_2 \vee a_3) & = (\neg a_1 \vee a_2 \vee a_3) & \wedge (a_1 \vee \neg a_2) & \wedge (a_1 \vee \neg a_3) \\ a_2 \leftrightarrow (a \wedge b) & = (\neg a_2 \vee a) & \wedge (\neg a_2 \vee b) & \wedge (a_2 \vee \neg a \vee \neg b) \\ a_3 \leftrightarrow (\neg c \wedge a_4) & = (\neg a_3 \vee \neg c) & \wedge (\neg a_3 \vee a_4) & \wedge (a_3 \vee c \vee \neg a_4) \\ a_4 \leftrightarrow (d \vee e) & = \end{array}$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

$$h \leftrightarrow (p_1 \lor p_2) = (\neg h \lor p_1 \lor p_2) \land (h \lor \neg p_1) \land (h \lor \neg p_2) h \leftrightarrow (p_1 \land p_2) = (\neg h \lor p_1) \land (\neg h \lor p_2) \land (h \lor \neg p_1 \lor \neg p_2)$$

$$\begin{array}{lll} a_1 \leftrightarrow (a_2 \vee a_3) &= (\neg a_1 \vee a_2 \vee a_3) & \wedge (a_1 \vee \neg a_2) & \wedge (a_1 \vee \neg a_3) \\ a_2 \leftrightarrow (a \wedge b) &= (\neg a_2 \vee a) & \wedge (\neg a_2 \vee b) & \wedge (a_2 \vee \neg a \vee \neg b) \\ a_3 \leftrightarrow (\neg c \wedge a_4) &= (\neg a_3 \vee \neg c) & \wedge (\neg a_3 \vee a_4) & \wedge (a_3 \vee c \vee \neg a_4) \\ a_4 \leftrightarrow (d \vee e) &= (\neg a_4 \vee d \vee e) & \wedge (a_4 \vee \neg d) & \wedge (a_4 \vee \neg e) \end{array}$$

$$\phi := (a \wedge b) \vee (\neg c \wedge (d \vee e))$$

where: a_1 , a_2 , a_3 , a_4 are newly introduced variables.