Exercise 6.1. Find Galois groups for the following polynomials f over \mathbb{Q} :

1.
$$(t^2-3)(t^2+1)$$

Solution. We first note that t^2-3 is irreducible by Eisenstein's Criterion with p=3, and t^2+1 is irreducible since -1 is not a square in \mathbb{Q} . Then, f has 4 roots: $\alpha_{1,2}=\pm i,\ \alpha_{3,4}=\pm\sqrt{3}$. Since $\deg(\mu_i^{\mathbb{Q}})=2$ and $\deg(\mu_{\sqrt{3}}^{\mathbb{Q}})=2$, we have that $[\mathbb{Q}(i):\mathbb{Q}]=2$ and $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$ respectively by the tower law. Hence, for $L=\mathbb{Q}(i,\sqrt{3})$, we have that $[L:\mathbb{Q}]=[L:\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=4$. Suppose we have some non-constant polynomial $P\in L[t]$ such that $P(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=0$. Let $\sigma\in S_4$ such that $(\alpha_{\sigma(1)},\alpha_{\sigma(2)},\alpha_{\sigma(3)},\alpha_{\sigma(4)})=0$. We know that σ can only permute algebraic conjugates, so $\pm i\mapsto \mp i$ and $\pm\sqrt{3}\mapsto \mp\sqrt{3}$. Thus, the only options for σ are e,(12),(34), and (12)(34). Hence $\mathrm{Gal}_{\mathbb{Q}}(f)=\{e,(12),(34),(12)(34)\}\cong \mathbb{Z}_2\oplus \mathbb{Z}_2$

2. $t^4 - t^2 + 1$

Solution. Note that $t^4 - t^2 + 1 = \Phi_{12}$. From lecture, we saw that $\operatorname{Gal}_{\mathbb{Q}}(\Phi_n) \cong \mathbb{Z}_n^*$, the multiplicative group of units mod n. Noting that $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$, we can see that the order of each element is 2. Thus $\operatorname{Gal}_{\mathbb{Q}}(\Phi_n) \cong \mathbb{Z}_{12}^* \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

3. $t^4 - 2$

Solution. By Eisenstein's criterion with p=2, this polynomial is irreducible and the four roots are $\alpha_{1,2}=\pm\sqrt[4]{2},\alpha_{3,4}=\pm i\sqrt[4]{2}$. The splitting field extension for this polynomial is $\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}$, so let $L=\mathbb{Q}(\sqrt[4]{2},i)$. Since $[L:\mathbb{Q}(i)]=4$ and $[\mathbb{Q}(i):\mathbb{Q}]=2$, we have that $[L:\mathbb{Q}]=8$ by the tower law. We know any permutation of roots can only permute algebraic conjugates of the same minimum polynomial over \mathbb{Q} . Since $\mu_{\sqrt[4]{2}}^{\mathbb{Q}}=t^4-2$, it has conjugates $\pm\sqrt[4]{2},\pm i\sqrt[4]{2}$. Also $\mu_i^{\mathbb{Q}}=t^2+1$, so it has conjugates i,-i. Define a permutation σ such that $\sigma(\sqrt[4]{2})=i\alpha$ and $\sigma(i)=i$, and let τ be complex conjugation. This gives us that $\sigma^k(\sqrt[4]{2})=i^k\sqrt[4]{2},\sigma^4=e$, and $\tau^2=e$. Next, we have

$$\tau \circ \sigma \circ \tau(\sqrt[4]{2}) = \tau \circ \sigma(\tau(\sqrt[4]{2})) = \tau \circ \sigma(\sqrt[4]{2}) = \tau(i\sqrt[4]{2}) = \tau(i)\tau(\sqrt[4]{2}) = (-i)\sqrt[4]{2}$$

and

$$\sigma^{-1}(\sqrt[4]{2}) = \sigma^{3}(\sqrt[4]{2}) = i^{3}\sqrt[4]{2} = (-i)\sqrt[4]{2}.$$

Hence, $\tau \sigma \tau = \sigma^{-1}$. The identities $\sigma^4 = e$, $\tau^2 = e$, and $\tau \sigma \tau = \sigma^{-1}$ indicate that the Galois group of this polynomial is isomorphic to D_4 , the dihedral group of 4 points. Hence $\operatorname{Gal}_{\mathbb{Q}}(f) \cong D_4 \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2$

Exercise 6.2.1. Find $Gal_{\mathbb{F}_3(t^2)}$ ($\mathbb{F}_3(t)$).

Solution. Let $K = \mathbb{F}_3(t^2)$ and $L = \mathbb{F}_3(t)$. In K[t], the element t is a root of the polynomial $x^2 - t^2 = (x+t)(x-t)$. Any field automorphism $\sigma \in \operatorname{Gal}_K(L)$ can only permute between algebraic conjugates, so the only two automorphisms are $\sigma(t) = t$ and $\sigma(t) = -t \equiv 2t \pmod{3}$. Thus $\operatorname{Gal}_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t)) \cong \mathbb{Z}_2$.

Exercise 6.2.2. Find $Gal_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t))$.

Solution. Similarly to the exercise above, the element t is a root of $x^2 - t^2 = (x + t)(x - t)$. However, note that $-t \equiv t \pmod{2}$. Thus the only automorphism possible is $\sigma(t) = t$, whence $\operatorname{Gal}_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t)) = \{e\}$, the trivial group.

Josh Park

Exercise 6.3.1. Let K-M-L be a field extension and L:K is a normal extension. Prove that L:Mis also a normal extension.

Solution. By theorem, L:K is normal \iff L is a splitting field for some $f\in K[t]$. By definition of K[t], $f(t) = \sum_{i=0}^{n} c_i t^i$ for $c_i \in K$. However, $K - M \implies K \subseteq M \implies k \in M \ \forall k \in K \implies f \in M[t]$. Hence all coefficients of f are contained in M and L is a splitting field for some $f \in M[t] \iff L : M$ is a normal extension.

Exercise 6.3.2. Give an example of three fields K, M, L such that [L:K] = 4 and [M:K] = [L:M] = 2(hence K - M and M - L are normal extensions) but L : K is not a normal extension.

Solution. Consider the tower of fields $\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt{2}):\mathbb{Q}$. Observe that $\mu_{\sqrt{2}}^{\mathbb{Q}}(x)=x^2-2$, whence $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$ $\mathbb{Q}]=2. \text{ Thus } \mathbb{Q}(\sqrt{2}): \mathbb{Q} \text{ is normal. Additionally, } \mu_{\sqrt[4]{2}}^{\mathbb{Q}(\sqrt{2})}(x)=x^2-\sqrt{2}, \text{ whence } [\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt{2})]=2. \text{ Thus } \mathbb{Q}(\sqrt{2})=0$ $\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt{2})$ is normal. By definition, L:K is normal extension if every $f\in K[t]$ that has a root in L splits over L. However upon inspecting the extension $\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}$, we notice that $\mu_{\sqrt[4]{2}}^{\mathbb{Q}}=x^4-2$ has roots $\pm \sqrt[4]{2}$ and $\pm i\sqrt[4]{2}$. Since $i\sqrt[4]{2} \notin \mathbb{Q}(\sqrt[4]{2})$, the extension is thus not normal.

Exercise 6.4. Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that $|Gal_K(L)|$ divides $(\deg f)!$.

Solution. Since L is the splitting field extension for f over K, we know that $Gal_K(L) = Gal_K(f)$. By lemma, we have that $Gal_K(f) \leq S_{\deg f}$ and by Lagrange, $|Gal_K(f)| \mid |S_{\deg f}| = (\deg f)!$.

Exercise 6.5.1. Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .

Solution. We can see that $f(1) = 1 + 1 + 1 \equiv 1 \pmod{2} \neq 0$ and $f(0) = 1 \neq 0$, whence f is irreducible over \mathbb{F}_2 . If $\mathbb{F}_2(\alpha)$ is some extension field of \mathbb{F}_2 where α is a root of f, we know $[\mathbb{F}_2(\alpha):\mathbb{F}_2]=3$. Moreover, an \mathbb{F}_2 -homomorphism $\sigma: \mathbb{F}_2(\alpha) \to \mathbb{F}_2$ is unique to the destination of α , and we know α can only be sent to its own algebraic conjugates, of which there are 3. Hence, $|Gal_{\mathbb{F}_2}(f)| = 3$, and the only group of order 3 is \mathbb{Z}_3 .

Exercise 6.5.2. Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to S_3 .

Solution. Typo?