Zadanie 1.

Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny:

$$Pr(N = k) = \frac{5}{6} \cdot \left(\frac{1}{6}\right)^k, \qquad k = 0,1,2,...$$

Wartości kolejnych szkód $Y_1, Y_2, ..., Y_N$ są i.i.d., niezależne od zmiennej N. Rozkład wartości pojedynczej szkody określony jest na przedziale (0,1] i ma wartość oczekiwaną równą $E(Y) = \frac{1}{2}$.

Ubezpieczyciel wystawia na to ryzyko polisę z sumą ubezpieczenia 1, z pokryciem każdej kolejnej szkody proporcjonalnym do "nieskonsumowanej do tej pory" części sumy ubezpieczenia, a więc:

- za (ewentualną) szkodę Y_1 wypłaca odszkodowanie w pełnej wysokości Y_1
- za (ewentualną) szkodę Y_2 wypłaca odszkodowanie w wysokości $(1-Y_1)\cdot Y_2$
- za (ewentualną) szkodę Y_3 wypłaca odszkodowanie w wysokości $[1-Y_1-(1-Y_1)\cdot Y_2]\cdot Y_3$, co równe jest $(1-Y_1)\cdot (1-Y_2)\cdot Y_3$
- za (ewentualną) szkodę Y_4 wypłaca odszkodowanie w wysokości $[1-Y_1-(1-Y_1)Y_2-(1-Y_1)(1-Y_2)Y_3]\cdot Y_4$, to znaczy $(1-Y_1)(1-Y_2)(1-Y_3)\cdot Y_4$, itd.

Oczekiwana wartość odszkodowań z tego ubezpieczenia wynosi:

- $(A) \qquad \frac{1}{8}$
- (B) $\frac{1}{9}$
- (C) $\frac{1}{10}$
- (D) $\frac{1}{11}$
- (E) $\frac{1}{12}$

Zadanie 2.

Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ , wariancji $\sigma^2 < \infty$ oraz momencie centralnym μ_{2k} rzędu 2k zachodzą nierówności (typu Czebyszewa):

$$\Pr(X > \mu + t \cdot \sigma) < \frac{1}{t^{2k}} \cdot \frac{\mu_{2k}}{\sigma^{2k}}.$$
 $k = 1, 2, ..., t > 0.$

Jeśli $\mu_4 < \infty$, wtedy istnieje taka liczba t^* , że:

- dla $t < t^*$ ściślejsze ograniczenie na prawdopodobieństwo $\Pr(X > \mu + t \cdot \sigma)$ otrzymujemy przyjmując k = 1,
- zaś dla $t > t^*$ ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

Wiemy, że zmienna losowa X jest sumą pięciu niezależnych zmiennych losowych o identycznych rozkładach:

• z zerową wartością oczekiwaną, wariancją równą 4, oraz momentem centralnym czwartego rzędu równym 13·4².

Liczba t^* dla zmiennej losowej X wynosi:

- (A) $2\sqrt{2}$
- (B) $\sqrt{5}$
- (C) $\sqrt{13}$
- (D) $\sqrt{\frac{13}{5}}$
- (E) $\sqrt{2}$

Zadanie 3.

Rozważamy klasyczny model procesu nadwyżki $U(t) = u + ct - S_{N(t)}$, gdzie:

- *u* jest nadwyżką początkową,
- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności $\lambda = 1$,
- $S_n = \sum_{i=1}^n Y_i$ jest sumą wypłat,
- pojedyncze wypłaty Y_i są zmiennymi losowymi o identycznym rozkładzie, niezależnymi nawzajem i od procesu N(t).

Niech L oznacza maksymalną stratę, F_L jej dystrybuantę, zaś $\Psi(u)$ prawdopodobieństwo ruiny przy nadwyżce początkowej u. Wtedy dla każdego $u \ge 0$ zachodzi $F_L(u) = 1 - \Psi(u)$.

Gęstość rozkładu wartości pojedynczej szkody jest na półosi dodatniej dana wzorem:

$$\bullet \quad f_{Y}(y) = \frac{4}{3} \left(\frac{3}{3+y} \right)^{5}$$

Niech c^* oznacza najmniejszą z takich wartości parametru intensywności składki c, przy której $E(L) \le 6$. Parametr c^* wynosi:

- (A) 4/3
- (B) 5/4
- (C) 6/5
- (D) 7/6
- (E) 8/7

Zadanie 4.

W procesie nadwyżki U(t) c oznacza intensywność składki na jednostkę czasu, u=U(0) oznacza nadwyżkę początkową, zaś para $\left(T_n,Y_n\right)$ oznacza moment zajścia i wartość n-tej szkody. Oznaczmy przez $\Delta T_n = T_n - T_{n-1}$ czas oczekiwania na n-tą szkodę (oczywiście $\Delta T_1 = T_1$).

Przyjmujemy, że:

- $\Delta T_1, Y_1, \Delta T_2, Y_2, \Delta T_3, Y_3, \dots$ są niezależne,
- $\Delta T_1, \Delta T_2, \Delta T_3,...$ mają ten sam rozkład (mówić będziemy o rozkładzie ΔT),
- $Y_1, Y_2, Y_3,...$ mają ten sam rozkład (mówić będziemy o rozkładzie Y).

Rozważmy model 1, gdzie:

- ΔT ma rozkład wykładniczy o wartości oczekiwanej λ^{-1} ,
- Y ma rozkład wykładniczy o wartości oczekiwanej β^{-1} ; oraz model 2, gdzie:
 - ΔT ma rozkład Gamma z parametrami $(2,\lambda)$ o wartości oczekiwanej $2\lambda^{-1}$,
 - *Y* ma rozkład Gamma z parametrami $(2, \beta)$ o wartości oczekiwanej $2\beta^{-1}$;

Oznaczmy współczynnik dopasowania oraz funkcję prawdopodobieństwa ruiny w pierwszym modelu przez R_1 oraz $\Psi_1(u)$, zaś w drugim przez R_2 oraz $\Psi_2(u)$.

Załóżmy, że $c > \lambda \beta^{-1}$.

Spośród poniższych zdań wybierz zdanie prawdziwe:

(A)
$$R_1 = R_2 \text{ oraz } \bigvee_{u \ge 0} \Psi_1(u) < \Psi_2(u)$$

(B)
$$R_1 = R_2 \text{ oraz } \bigvee_{u \ge 0} \Psi_1(u) > \Psi_2(u)$$

(C)
$$R_1 > R_2 \text{ oraz } \bigvee_{u>0} \Psi_1(u) < \Psi_2(u)$$

(D)
$$R_1 < R_2 \text{ oraz } \bigvee_{u>0} \Psi_1(u) > \Psi_2(u)$$

(E) Żadne z powyższych zdań nie jest prawdziwe

Zadanie 5.

W pewnym ubezpieczeniu liczba szkód, które w ciągu t lat wygeneruje ubezpieczony charakteryzujący się wartością λ parametru ryzyka Λ ma rozkład warunkowy Poissona z wartością oczekiwaną λt .

Zakładamy, że rozkład wartości parametru ryzyka Λ w populacji ubezpieczonych dany jest na półosi dodatniej gęstością:

•
$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta \lambda)$$
,

z pewnymi nieznanymi dodatnimi parametrami (α, β) .

Na podstawie próbki ubezpieczonych wylosowanych z tej populacji obserwowanych przez dwa kolejne lata oszacowane zostały dwa parametry:

- prawdopodobieństwo p_0 iż losowo wybrany ubezpieczony w ciągu jednego roku nie zgłosi szkody (uzyskano ocenę 0.8)
- prawdopodobieństwo $p_{0,0}$ iż losowo wybrany ubezpieczony w ciągu dwóch kolejnych lat nie zgłosi szkody (uzyskano ocenę 2/3).

Wszystkie pozostałe informacje z próbki zostały zagubione, poza tym że wiemy iż była to próbka o wielkich rozmiarach. Jeśli więc przyjmiemy iż prawdziwe wartości parametrów p_0 i $p_{0,0}$ równają się ich oszacowaniom, to wartości parametrów (α,β) wynoszą:

(A)
$$(\alpha, \beta) = (1, \frac{1}{2})$$

(B)
$$(\alpha, \beta) = (2, 5)$$

(C)
$$(\alpha, \beta) = (2, 4)$$

(D)
$$(\alpha, \beta) = (1, 5)$$

(E)
$$(\alpha, \beta) = (1, 4)$$

Zadanie 6.

Łączna wartość szkód z pewnego kontraktu $X = Y_1 + ... + Y_N$ ma złożony rozkład Poisson z rozkładem wartości pojedynczej szkody danym w tabeli:

k	Pr(Y = k)
1	0.4
2	0.3
3	0.2
4	0.1

Wyznaczono częściowo (z dokładnością do 4 miejsc dziesiętnych) rozkład zmiennej X:

k	Pr(X = k)
0	0.1353
1	0.1083
2	0.1245
3	0.1306

Wobec tego Pr(X = 4) wynosi (z przybliżeniem do 3 miejsc dziesiętnych):

- (A) 0.123
- (B) 0.126
- (C) 0.129
- (D) 0.132
- (E) 0.135

Zadanie 7.

Poniższa tabela reprezentuje tzw. trójkąt danych, zawierając w odpowiednich klatkach wartości szkód zaszłych w ciągu roku t i zlikwidowanych w ciągu roku (t+j), dla:

t = 2002,2003,2004,2005;

j = 0,1,2,3;

 $t + j \le 2005$:

Łączna wartość		Liczby lat opóźnienia likwidacji (j)			
szkód	według:	0	1	2	3
Roku	2002	83	59	38	20
zajścia	2003	98	75	52	
szkody	2004	119	91		
(t)	2005	130			

Wyznacz wartość rezerwy na szkody niezlikwidowane na koniec roku 2005 dotyczącej szkód zaszłych w latach 2002-2005 najprostszym wariantem metody Chain Ladder (bez uwzględnienia inflacji, nie poprzedzając obliczeń ważeniem poszczególnych wierszy, zakładając że wszystkie szkody likwidowane są z opóźnieniem nie większym niż trzy lata, itd.)

- (A) 325
- (B) 330
- (C) 310
- (D) 315
- (E) 320

Zadanie 8.

Łączna wartość szkód $X = Y_1 + ... + Y_N$ ma złożony rozkład Poissona, gdzie rozkład wartości pojedynczej szkody Y jest określony na półosi nieujemnej, i ma dodatnie i skończone momenty zwykłe pierwszych trzech rzędów.

Przy powyższych założeniach iloraz współczynnika skośności i współczynnika zmienności zmiennej X daje się ograniczyć od dołu. Efektywne ograniczenie to najmniejsza liczba c^* spośród takich liczb c, że dla dowolnego rozkładu zmiennej X spełniającego założenia zachodzi:

$$\frac{\gamma_X}{V_X} \ge c$$

gdzie γ_X to współczynnik skośności (stosunek trzeciego momentu centralnego do sześcianu odchylenia standardowego) a V_X to stosunek odchylenia standardowego do wartości oczekiwanej.

- (A) $c^* = \frac{1}{2}$
- (B) $c^* = \frac{2}{3}$
- (C) $c^* = 1$
- (D) $c^* = 2$
- (E) $c^* = \frac{3}{2}$

Wskazówka: Potrzebną nierówność dotyczącą momentów zwykłych zmiennej losowej Y otrzymasz rozważając wartość oczekiwaną iloczynu $E(ZW(Z-W)^2)$, gdzie Z,W to niezależne zmienne losowe o rozkładzie takim jak rozkład zmiennej Y

Zadanie 9.

Mamy trzy zmienne losowe dotyczące szkody, do której doszło w ciągu danego roku:

- T czas zajścia szkody w ciągu tego roku kalendarzowego, o rozkładzie jednostajnym na odcinku (0,1),
- *D* czas, jaki upływa od momentu zajścia szkody do momentu jej likwidacji, także o rozkładzie jednostajnym na odcinku (0, 1),
- *Y* wartość szkody.

Jednostką pomiaru czasu (tak dla zmiennej T, jak i dla zmiennej D) jest 1 rok.

- Zmienne *T* oraz *D* są nawzajem niezależne.
- Wartość szkody jest rosnącą funkcją czasu zajścia szkody, a także występuje tendencja do szybkiej likwidacji małych szkód i dłużej trwającej likwidacji dużych szkód. Oba te zjawiska razem wyraża następujące założenie:

$$E(Y|D,T) = \left(1 + \frac{1}{5}T\right)\left(3 + 3D\right)$$

Warunkowa oczekiwana wartość szkody pod warunkiem, że szkoda ta na koniec roku pozostaje jeszcze nie zlikwidowana, a więc:

$$E(Y|T+D>1)$$

wynosi:

- (A) $5\frac{1}{2}$
- (B) $5\frac{5}{9}$
- (C) $5\frac{3}{5}$
- (D) $5\frac{13}{20}$
- (E) $5\frac{2}{3}$

Zadanie 10.

Łączna wartość roszczeń z jednego wypadku $X = Y_1 + ... + Y_M$ ma rozkład złożony, przy czym:

- wartość oczekiwana pojedynczego roszczenia wynosi $E(Y) = \ln 16$,
- liczba roszczeń z jednego wypadku *M* ma rozkład o niezerowych prawdopodobieństwach na zbiorze liczb naturalnych (bez zera), spełniających zależność rekurencyjną:

$$\frac{\Pr(M=k)}{\Pr(M=k-1)} = \frac{1}{2} \cdot \left(1 - \frac{1}{k}\right), \qquad k = 2,3,4,...$$

Wobec tego oczekiwana wartość roszczeń z jednego wypadku E(X) wynosi:

- (A) 4
- (B) 2
- (C) 2ln2
- (D) $\frac{4}{\ln 2}$
- (E) $4(\ln 2)^2$

Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko K L U C Z	O D P O W I E D Z I
Dasal	

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	В	
3	В	
4	В	
5	E	
6	A	
7	C	
8	С	
9	D	
10	A	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.