Prob1: Equivalence of Functional Dependencies

R=(A C D E H)
F: A
$$\rightarrow$$
C
G: A \rightarrow CD
AC \rightarrow D
E \rightarrow AH
E \rightarrow AD
E \rightarrow H
a) F \subseteq Gb) F \supseteq Gc) F=Gd) F \neq G

use G –FD's to compute closure of F Attributes (A) + = ACD

(AC) = ACD

(E)= EAHCD

 $F \subseteq G$ All the FD of F is computed using G FD

use F –FD's to compute closure of G Attributes

$$(A)^+ = ACD$$

$$(E)^+ = EADHC$$

G⊆F All the FD of G is computed using F FD's

$$F \subseteq G \& G \subseteq F$$

therfore F=G

Closure of set of FD

Closure of set of FD F is set of all FD's that include F as well as all dependencies that can be inferred from F denoted as F⁺

- R(ABCGHI)
- F={ A \rightarrow B,A \rightarrow C,CG \rightarrow H,CG \rightarrow I,B \rightarrow H} F+= { A \rightarrow H (as per transitivity rule If X \rightarrow Y and WY \rightarrow Z, then WX \rightarrow Z)

CG
$$\rightarrow$$
 HI (as per Union rule If X \rightarrow Y and X \rightarrow Z, then X \rightarrow YZ)

$$AG \rightarrow H$$

 $AG \rightarrow I$

Minimal/Canonical Cover

```
    R(A B C)
    F={ A → B,AB → C } B is erroneous att
    FD's are Redundant
    A+ = ABC
    A →B, A → C (B can be removed)
```

```
R(A B C)

F={ A \rightarrow B,B \rightarrow C,A \rightarrow C }

A \rightarrow C is redundant FD

F' = { A \rightarrow B,B \rightarrow C}
```

- 1. Single RHS
- 2. No Extraneous attribute in LHS
- 3. No redundant FD

Minimal set of FD(cannonical form)

- R(W X Y Z)
- $X \rightarrow W$
- $WZ \rightarrow XY$
- $Y \rightarrow WXZ$

Decomposition rule $\alpha \rightarrow \beta r$

$$\alpha \rightarrow \beta$$

$$\alpha \rightarrow r$$

 $X \rightarrow W$

 $WZ \rightarrow X$

 $WZ \rightarrow Y$

 $Y \rightarrow W$

 $Y \rightarrow X$

 $Y \rightarrow Z$

FDs maybe Redundant

- 1. L.H.S Redundancy
- 2. R.H.S Redundancy
- 3. $\alpha \rightarrow \beta$ is redundant
- 4. One attribute in R.H.S
- 5. No erroneous attr in L.H.S
- 6. No redundant FD

Compute Closure

$$X^{+} = XW$$

$$X^{+} = X$$

$$(WZ)^{+} = WZXY$$

$$(WZ)^{+} = WZYX$$

$$(WZ)^{+} = WZ$$

$$Y^{+} = YWXZ$$

$$Y^{+} = YWXZ$$

$$Y^{+} = YXW$$

$$X \rightarrow W$$

$$Y \rightarrow X$$

$$Y \rightarrow Z$$

LHS att are redundant

```
(WZ)^+ = WZYX
W^+ = W
z + z WZ is essential
x \rightarrow w
WZ \rightarrow y
y \rightarrow xz (Union Rule y \rightarrow x
                                    y \rightarrow z
x \rightarrow W
                          x \rightarrow w
wz \rightarrow xy \rightarrow wz \rightarrow y (x is redt)
               y \rightarrow xz (w is redt)
y \rightarrow w XZ
```

Cover of set of FD's

 A set of functional dependency F is said to be the cover of another set of FD's G if every FD in G is also in F⁺.

$$G \subseteq F^+ = F \text{ covers } G$$

$$F \subseteq G^+ = G \text{ covers } F$$

if both $F \equiv G$ – no common set

$$G \subseteq F^+, F \subseteq G^+ = F^+ = G^+$$

Equivalence Example

```
R(ABC)
F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}
G=\{C \rightarrow B, B \rightarrow A, A \rightarrow C\}
F≣G
F \subseteq G^+ G \subseteq F^+ G^+ = F^+
If F covers G
Use function dependency in G
Ring Closure
C_F^+ = CAB C \rightarrow B in G is derived using F
B_F^+=BCA B\rightarrow A in G is derived using F
A_{F}^{+} = ABC A \rightarrow C in G is derived using F
All FD in G is derived using F. so F cover G.
```

If G covers F

```
A_{G}^{+} = ACB A \rightarrow B is derived using G.
```

$$B_{G}^{+}$$
 = BAC B \rightarrow C is derived using G.

$$C_{G}^{+}$$
 = CBA C \rightarrow B is derived using G.

All FD in F is derived using G,SO G Covers F.

$$F \subseteq G^+$$

$$G \subseteq F^+$$

$$G^+ = F^+$$

$$F^+ = \{ABC\}$$

$$G^+ = \{CBA\}$$

Minimal Cover

```
R(A B C D E)
F=\{A \rightarrow D,BC \rightarrow AD,C \rightarrow B,E \rightarrow A,E \rightarrow D\}
Single att in RHS
A \rightarrow D,C \rightarrow B,E \rightarrow A,E \rightarrow D
but BC \rightarrow AD
BC \rightarrow AD
BC \rightarrow D
```

Compute B+ = B (can't eliminate

C⁺ = CBAD (we can eliminate since C⁺ closure include B remove B.

So BC \rightarrow A will become C \rightarrow A

BC
$$\rightarrow$$
D

B+= B C+= CBD (remove B)

C \rightarrow D

A \rightarrow D C \rightarrow A C \rightarrow A

C \rightarrow B E \rightarrow A E \rightarrow D

A+= A A \rightarrow D

C \rightarrow A, C+= CDB no A present

C \rightarrow D C+= CBAD D is present

Remove C \rightarrow D

$$C \rightarrow B$$

$$C^+ = CAD$$

B is not present.

$$E \rightarrow A$$

$$E^+ = ED$$

$$E \rightarrow D$$

$$E^+ = EAD$$

Remove $E \rightarrow D$

$$A \rightarrow D$$

$$C \rightarrow A$$

$$C \rightarrow B$$

$$E \rightarrow A$$