Conceptual Approaches to Scaling up: Fostering Discussion

Derek T. Robinson

2019/09/09

"While there is a rich body of conceptual studies as well as local case studies in different environments documenting how in local contexts land-use decisions are made, there [is] no global overview of how these characteristics and attitudes influence land-use decisions around the globe."

(Malek et al. 2019).

"... two main challenges: how to develop models that are generalizable and still applicable in specific cases, and how to scale up the processes of interactions of a few agents to interactions among many agents."

(Janssen and Ostrom (2006)

Scaling up ABMs

• How do we represent humans (individuals, households, firms) making decisions that drive land-use change across very large spatial extents (e.g., national, contental, or global)?

Why do we want to do this?

- More is different (Anderson 1972)
- Close the system
 - Represent processes endogenously that we typically represent exogenously (e.g., migration, telecoupling)
- Quantify processes and outcomes of potential scenarios at large spatial extents (e.g., policy introduction)
- Some processes are not place based (e.g., global market prices)
- Improve global models lacking endogenous human decision-making

Ideal scaling method would

- cover large geographic areas
- be scale independent
- be applicable at different spatial units (e.g., DAs to CSDs or CSDs to CDs, CAN census)
- require as little data as possible
- clear to enable replication by others
- can be validated

- provide a level of heterogeneity that takes advantage of the ABM approach
- be standardized across space and time, which may require general classifications for global applications to accommodate for differences in data detail and availability (e.g., IPCC Tier 1-3)

Scaling Up

- Fewer agents cover larger spatial extents
 - Individual super (Parry and Bithell 2012) or meta (Holland 1992) agents
 - We are only concerned with the scale of decisions and spatio-temporal outputs at this level
 - This is all the data we have
 - Agents are designed for this scale (e.g., municipal, province or state agents)
 - Super agent as a collection of agents
 - Selected from a distribution of sample or population agent characteristics, but then how do we ensure internal consistentcy and correlation among those characteristics?
 - Maintain cursory representation of agents and their characteristics represented by super agent, but decisions are made only by super agents

agents Super

Super Agents

Spatial results

10,000 individuals, density at 20 days: (l-r) Individual-based simulation, superindividual simulation scale factor 10, 100 and 1,000

Scaling Out

- Represent as many agents as possible, which probably requires HPC
- Representative sample of detailed agents whose results are applied with a scaling factor/coefficent/expansion factor to the population

caling

Discussion items...

- Are all macro agents institutions?
- When to scale up versus scale out?
- Do we have examples to illustrate methods or can we implement examples?
- OR do we want to develop a uniform framework and apply it to different locations?
- Do we want types of agents and/or variability in agent characteristics for scaling out or hierarchical agents for scaling up?
- Where should and shouldn't we scale up (e.g., dynamic mesh, areas of low activity scale up versus areas of high activity)?
- What is our benchmark for validation or ensuring our approach is well done?
- How would a global scale (scaled up ABM) help society?
- How would a global scale (scaled up ABM) advance science?
- How to go from Malek et al. 2019 typology of 6 decision-making agent types to operationalized model with available data

