ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: A

ĐỀ CHÍNH THỰC

Thời gian làm bài: 180 phút, không kể thời gian phát đề.

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):

Câu I (2,0 điểm)

Cho hàm số $y = \frac{x+2}{2x+3}$ (1).

- 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
- 2. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt *A*, *B* và tam giác *OAB* cân tại gốc toạ độ *O*.

Câu II (2,0 điểm)

- 1. Giải phương trình $\frac{(1-2\sin x)\cos x}{(1+2\sin x)(1-\sin x)} = \sqrt{3}.$
- 2. Giải phương trình $2\sqrt[3]{3x-2} + 3\sqrt{6-5x} 8 = 0 \ (x \in \mathbb{R}).$

Câu III (1,0 điểm)

Tính tích phân $I = \int_{0}^{\frac{\pi}{2}} (\cos^3 x - 1) \cos^2 x \, dx$.

Câu IV (1,0 điểm)

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a, CD = a; góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60° . Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD), tính thể tích khối chóp S.ABCD theo a.

Câu V (1,0 điểm)

Chứng minh rằng với mọi số thực dương x, y, z thoả mãn x(x + y + z) = 3yz, ta có:

$$(x+y)^3 + (x+z)^3 + 3(x+y)(x+z)(y+z) \le 5(y+z)^3$$
.

PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)

A. Theo chương trình Chuẩn

Câu VI.a (2,0 điểm)

- 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng $\Delta: x+y-5=0$. Viết phương trình đường thẳng AB.
- 2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 2x-2y-z-4=0 và mặt cầu $(S): x^2+y^2+z^2-2x-4y-6z-11=0$. Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn. Xác định toạ độ tâm và tính bán kính của đường tròn đó.

Câu VII.a (1,0 điểm)

Gọi z_1 và z_2 là hai nghiệm phức của phương trình $z^2 + 2z + 10 = 0$. Tính giá trị của biểu thức $A = \left|z_1\right|^2 + \left|z_2\right|^2$.

B. Theo chương trình Nâng cao

Câu VI.b (2,0 điểm)

- 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): $x^2 + y^2 + 4x + 4y + 6 = 0$ và đường thẳng Δ : x + my 2m + 3 = 0, với m là tham số thực. Gọi I là tâm của đường tròn (C). Tìm m để Δ cắt (C) tại hai điểm phân biệt A và B sao cho diện tích tam giác IAB lớn nhất.
- 2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x-2y+2z-1=0 và hai đường thẳng $\Delta_1: \frac{x+1}{1} = \frac{y}{1} = \frac{z+9}{6}$, $\Delta_2: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z+1}{-2}$. Xác định toạ độ điểm M thuộc đường thẳng Δ_1 sao cho khoảng cách từ M đến đường thẳng Δ_2 và khoảng cách từ M đến mặt phẳng (P) bằng nhau.

Câu VII.b (1,0 điểm)

Giải hệ phương trình
$$\begin{cases} \log_2(x^2 + y^2) = 1 + \log_2(xy) \\ 3^{x^2 - xy + y^2} = 81 \end{cases} (x, y \in \mathbb{R}).$$

Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.

Họ và tên thí sinh: Số báo danh.