Problem (Problem 1): Let $U \subseteq \mathbb{C}$ be a nonempty open set.

Given a sequence $(z_n)_n \subseteq U$, we write $z_n \to \partial U$ if, for every compact subset $K \subseteq U$, there exists some $N = N(K) \in \mathbb{N}$ such that $z_n \notin K$ whenever $n \ge N$.

Given a function $u: U \to \mathbb{R}$, define

$$\limsup_{z \to \partial U} \mathfrak{u}(z) = \inf_{\substack{\mathsf{K} \subseteq \mathsf{U} \\ \mathsf{K} \text{ compact}}} \sup_{z \in \mathsf{U} \setminus \mathsf{K}} \mathfrak{u}(z).$$

(a) For each positive integer $n \in \mathbb{N}$, define

$$K_n := \left\{ z \in U \mid |z| \le n, \operatorname{dist}_{\mathbb{C} \setminus U}(z) \ge \frac{1}{n} \right\}.$$

Show that:

- (i) each K_n is compact;
- (ii) $K_n \subseteq K_{n+1}^{\circ}$;
- (iii) $U = \bigcup_{n=1}^{\infty} K_n$.
- (b) Let $L := \limsup_{z \to \partial U} u(z)$.
 - (i) Show that for each S > L, there is a compact subset $K \subseteq U$ such that $u(z) \leq S$ for all $z \in U \setminus K$.
 - (ii) Show that there exists a sequence $(z_n)_n$ in U with $z_n \to \partial U$ and $\limsup_{n \to \infty} u(z_n) \le L$.
- (c) Prove that

$$\limsup_{z \to \partial U} \mathbf{u}(z) = \sup_{\substack{(z_n)_n \subseteq U \\ z_n \to \partial U}} \limsup_{n \to \infty} \mathbf{u}(z_n),$$

where the supremum is over all sequences $(z_n)_n$ with $(z_n)_n \to \partial U$.

Solution:

(a) We claim that the set

$$C_n = \left\{ z \in U \mid \operatorname{dist}_{\mathbb{C} \setminus U}(z) \geqslant \frac{1}{n} \right\}$$

is closed. Then, we observe that $K_n = B(0,n) \cap C_n$ would then be an intersection of a closed set with a closed and bounded set, hence a closed and bounded set, hence compact. Towards this end, suppose $(w_k)_k \subseteq C_n$ converges to $w \in \mathbb{C}$. Then, for each k, we have

$$\inf_{z\in\mathbb{C}\setminus\mathcal{U}}|w_{k}-z|\geqslant\frac{1}{n}.$$

Observe then that for any $z \in \mathbb{C} \setminus U$, we have

$$|w_k - z| \geqslant \frac{1}{n}$$

for each k, meaning that

$$\lim_{k\to\infty} |w_k - z| \geqslant \frac{1}{n},$$

or that

$$|w-z|\geqslant \frac{1}{n}.$$

In particular, it must be the case that $w \in U$, and that

$$\inf_{z\in\mathbb{C}\setminus\mathsf{U}}|w-z|\geqslant\frac{1}{\mathsf{n}},$$

so that $w \in C_n$, and thus C_n is closed, and K_n is compact.

To see that $K_n \subseteq K_{n+1}^\circ$, we show that $C_n \subseteq C_{n+1}^\circ$ by understanding the picture of C_n° . Towards this end, we see that $z \in C_n^\circ$ if and only if $z \in U$ and there is some r > 0 such that $\operatorname{dist}_{\mathbb{C}\setminus U}(w) \geqslant \frac{1}{n}$ for all $w \in U(z,r)$.

Observe that if $\varepsilon > 0$, then if z satisfies $\operatorname{dist}_{\mathbb{C}\setminus U}(z) \ge \frac{1}{n} + \varepsilon$, then if $w \in \mathbb{C}\setminus U$ and $\zeta \in U(z, \varepsilon/2)$, we have

$$\frac{1}{n} + \varepsilon \le |z - w|$$

$$\le |z - \zeta| + |\zeta - w|$$

$$< \varepsilon/2 + |\zeta - w|,$$

meaning that $|\zeta - w| \ge \frac{1}{n} + \varepsilon/2$ for all $w \in \mathbb{C} \setminus U$, so that $\operatorname{dist}_{\mathbb{C} \setminus U}(\zeta) \ge \frac{1}{n}$. In particular, this means that C_n° consists of all z for which there exists ε such that $\operatorname{dist}_{\mathbb{C} \setminus U}(z) \ge \frac{1}{n} + \varepsilon$, or more succinctly,

$$C_n^{\circ} = \left\{ z \in U \mid \operatorname{dist}_{\mathbb{C} \setminus U}(z) > \frac{1}{n} \right\}.$$

In particular, since $\frac{1}{n} > \frac{1}{n+1}$, it follows that $C_n \subseteq C_{n+1}^{\circ}$. Paired with the fact that $B(0,n) \subseteq U(0,n+1)$, we obtain that

$$K_{n} = B(0, n) \cap C_{n}$$

$$\subseteq U(0, n + 1) \cap C_{n+1}^{\circ}$$

$$= (B(0, n + 1) \cap C_{n})^{\circ}$$

$$= K_{n+1}^{\circ}.$$

Finally, to show that $U = \bigcup_{n=1}^{\infty} K_n$, we write

$$\bigcup_{n=1}^{\infty} K_n = \bigcup_{n=1}^{\infty} (B(0, n) \cap C_n)$$
$$= \left(\bigcup_{n=1}^{\infty} B(0, n)\right) \cap \left(\bigcup_{n=1}^{\infty} C_n\right),$$

and since $\bigcup_{n=1}^{\infty} B(0,n) = \mathbb{C}$, it follows that we must show that

$$\bigcup_{n=1}^{\infty} C_n = U.$$

Towards this end, we prove that if $A \subseteq \mathbb{C}$ is any subset, then $\operatorname{dist}_A(z) = 0$ if and only if $z \in \overline{A}$. Towards this end, if $\operatorname{dist}_A(z) = 0$, then for any k, there is $w \in A$ such that $|w - z| < \frac{1}{n}$, so that we may construct a sequence $(w_n)_n$ in A such that $(w_n)_n \to z$, or that $z \in \overline{A}$. Similarly, if $z \in \overline{A}$, then if $(w_n)_n$ is a sequence in A converging to z, and $\varepsilon > 0$, it follows that $|w_n - z| < \varepsilon$ for sufficiently large n, so that $\inf_{w \in Z} |w - z| = 0$.

Since U is open, it follows that for any $z \in \mathbb{C} \setminus U$, since $\mathbb{C} \setminus U = \overline{\mathbb{C} \setminus U}$, $\operatorname{dist}_{\mathbb{C} \setminus U}(z) = 0$. Equivalently, if $z \in U$, we must have $\operatorname{dist}_{\mathbb{C} \setminus U}(z) > 0$, so that there exists n sufficiently large such that $\operatorname{dist}_{\mathbb{C} \setminus U}(z) \ge 1/n$; this means $z \in \mathbb{C}_n$, so that

$$U \subseteq \bigcup_{n=1}^{\infty} C_n$$
.

Meanwhile, if $z \in \bigcup_{n=1}^{\infty} C_n$, then there is some N such that $\operatorname{dist}_{\mathbb{C}\setminus U}(z) \ge 1/N$, meaning that $\operatorname{dist}_{\mathbb{C}\setminus U}(z) > 0$, meaning $z \notin \mathbb{C} \setminus U$, so that $z \in U$.

(b)

- (i) If $S = L + \varepsilon$ for $\varepsilon > 0$, it follows by the definition of the infimum that there exists a compact subset $K \subseteq U$ such that $\sup_{z \in U \setminus K} u(z) \le S$. Therefore, for all $z \in U \setminus K$, $u(z) \le S$.
- (ii) Let $L_n = L + \frac{1}{n}$. We find $K_{j_n} \subseteq U$ that satisfies
 - $u(z) \leq L_n$ for all $z \in U \setminus K_{i_n}$;
 - $|z| \leq j_n$ for all $z \in K_{j_n}$;
 - $\operatorname{dist}_{\mathbb{C}\setminus \mathcal{U}}(z) \geqslant \frac{1}{i_n}$.

The existence of such a K_{j_n} follows from the proof in (i) and the definitions in part (a). We may find $z_n \in U \setminus K_{j_n}$, so that $u(z_n) \leq L_n$.

The sequence $(z_n)_n$ thus escapes all the K_{j_n} , and since any $K \subseteq U$ is contained in some sufficiently large K_{j_n} , it follows that $(z_n)_n \to \partial U$. Furthermore, since $\mathfrak{u}(z_n) \leqslant L_n$ for each n, we have

$$\limsup_{n \to \infty} u(z_n) \le \limsup_{n \to \infty} L_n$$

$$= I$$

Problem (Problem 2): Let

$$U = \{z \in \mathbb{C} \mid |z| < 1, Im(z) > 0\}.$$

- (a) Construct a conformal map from U to $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$
- (b) Construct an unbounded harmonic function $u: U \to (0, \infty)$ such that for all $(x_0, y_0) \in \partial U \setminus \{(1, 0)\}$, we have that $\lim_{(x,u)\to(x_0,y_0)} u(x,y) = 0$.
- (c) Suppose that $v: U \to (0, \infty)$ is an unbounded harmonic function such that for all $(x_0, y_0) \in \partial U \setminus \{(1,0)\}$, we have that $\lim_{(x,y)\to(x_0,y_0)} \nu(x,y) = 0$. Show that there exists a sequence $((x_n,y_n))_n$ in U converging to (1,0) and $\lim_{n\to\infty} \nu(x_n,y_n) = \infty$.

Solution:

(a) We start by taking the Cayley transform, mapping \mathbb{H} to \mathbb{D} , given by $\frac{z-i}{z+i}$. The inverse Cayley transform, which maps \mathbb{D} to \mathbb{H} , is then given by the inverse transform, which takes

$$Q(z) = i\frac{1+z}{1-z}.$$

By taking $a + bi \in U$ with b > 0 and $a^2 + b^2 \le 1$, we find that

$$i\frac{1+(\alpha+bi)}{1-\alpha-bi} = \frac{1}{(1-\alpha)^2+b^2} (-2b+i\big(1-\alpha^2-b^2\big)\big).$$

Therefore, we observe that the inverse transform maps U to the second quadrant, admitting argu-

ments between $\frac{\pi}{2}$ and π . By squaring, we have

$$(Q(z))^2 = -\left(\frac{z+1}{1-z}\right)^2,$$

which maps to complex numbers with arguments between π and 2π . Multiplying by -1, we get

$$H(z) = \left(\frac{z+1}{1-z}\right)^2$$

mapping from U to the upper half-plane. Since we composed a series of bijective holomorphic maps (and, within a correct domain for the case of square root, ones that have holomorphic inverse), it follows that H is a bijective holomorphic map with holomorphic inverse, hence conformal

(b) Consider the function

$$u(x,y) = Im(H(x + yi)).$$

We observe that $\mathfrak u$ is the imaginary part of a holomorphic function, so it is harmonic. Since H maps U conformally to the upper half-plane, it follows that $\mathfrak u$ maps U to $(0,\infty)$, and that $\mathfrak u$ is unbounded, as H is unbounded. It remains to show that $\mathfrak u$ maps $\mathfrak d \mathfrak U$ to 0 in limit save for (1,0). Towards this end, we split the case into two parts.

If $x_0 + iy_0 = e^{i\theta}$ for some $0 < \theta_0 < \pi$, then

$$\begin{split} \frac{e^{\mathrm{i}\theta}+1}{1-e^{\mathrm{i}\theta}} &= \frac{(1+\cos(\theta)+\mathrm{i}\sin(\theta))(1-\cos(\theta)+\mathrm{i}\sin(\theta))}{2-2\cos(\theta)} \\ &= \frac{1}{2-2\cos(\theta)} \big(1-\cos^2(\theta)-\sin^2(\theta)+2\mathrm{i}\sin(\theta)\big) \\ &= \frac{2\mathrm{i}\sin(\theta)}{2-2\cos(\theta)}. \end{split}$$

Squaring, we then get

$$\left(\frac{e^{i\theta} + 1}{1 - e^{i\theta}}\right)^2 = -\frac{1}{2}\cot^2(\theta/2)$$
 $\in \mathbb{R},$

so that $u(x_0,y_0)=0$ whenever $x_0+iy_0=e^{i\theta}$ for some $0<\theta_0<\pi$.

Meanwhile, if $x_0 + iy_0 = x_0$, then

$$H(x_0 + iy_0) = \left(\frac{x_0 + 1}{1 - x_0}\right)^2$$

$$\in \mathbb{R},$$

so that $u(x_0, y_0) = 0$ yet again.

(c) We let $v \equiv u$, where u is defined as above. Since u is unbounded, it follows that for each $N \geqslant 1$, there is $(x_N, y_N) \in U$ such that $u(x_N, y_n) \geqslant N$. Inductively, this allows us to construct a sequence $(x_n, y_n) \subseteq U$ such that $u(x_n, y_n) \geqslant n$, meaning that $\lim_{n \to \infty} u(x_n, y_n) = \infty$.

Since $\mathfrak u$ is harmonic, it is subharmonic, so by a previously established theorem, it follows that $((x_n,y_n))_n\to\partial U$. Yet, this sequence cannot converge to any element of $\partial U\setminus\{(1,0)\}$, as otherwise, we would have $\mathfrak u(x_n,y_n)\to 0$, which would contradict the fact that $\mathfrak u$ is continuous as it is harmonic. Therefore, we have $((x_n,y_n))_n\to (1,0)$.

Problem (Problem 3): Let

$$U = \{ z \in \mathbb{C} \mid 0 < \text{Re}(z) < 1 \}.$$

Let $f: \overline{U} \to \mathbb{C}$ be a continuous bounded function for which $f|_U$ is holomorphic. Suppose there exist constants $M_0 \ge 0$ and $M_1 \ge 0$ such that

$$\sup_{\text{Re}(z)=0} |f(z)| \leq M_0$$

$$\sup_{\text{Re}(z)=1} |f(z)| \leq M_1.$$

Show that for all $r \in [0, 1]$,

$$\sup_{\text{Re}(z)=r} |f(z)| \le M_0^{1-r} M_1^r.$$

Solution: Let $\varepsilon > 0$ be fixed. Define

$$f_{\varepsilon}(z) = f(z)M_0^{z-1}M_1^{-z}e^{\varepsilon(z^2-1)}.$$

We will show that $\sup_{z \in \overline{\mathbb{U}}} |f_{\varepsilon}(z)| \le 1$. Towards this end, if $\operatorname{Re}(z) = 0$, we have z = bi for some $b \in \mathbb{R}$; since $M_0, M_1 \in \mathbb{R}_{\geqslant 0}$, we then get

$$\begin{split} \left| f(z) M_0^{z-1} M_1^{-z} e^{\varepsilon \left(z^2 - 1 \right)} \right| &= \left| f(z) M_0^{\mathfrak{b}\mathfrak{i} - 1} M_1^{-\mathfrak{b}\mathfrak{i}} e^{-\varepsilon \left(\mathfrak{b}^2 + 1 \right)} \right| \\ &= \left| f(z) M_0^{-1} e^{-\varepsilon \left(\mathfrak{b}^2 + 1 \right)} \right| \\ &\leq \left| f(z) M_0^{-1} \right| \\ &\leq 1. \end{split}$$

Similarly, if Re(z) = 1, then we have z = 1 + bi for some $b \in \mathbb{R}$, and since $M_0, M_1 \in \mathbb{R}_{\geq 0}$, we have

$$\begin{split} \left| f(z) M_0^{z-1} M_1^{-z} e^{\varepsilon (z^2 - 1)} \right| &= \left| f(z) M_0^{bi} M_1^{-bi - 1} e^{\varepsilon (-2bi - b^2)} \right| \\ &= \left| f(z) M_1^{-1} e^{-b^2 \varepsilon} \right| \\ &\leq \left| f(z) M_1^{-1} \right| \\ &\leq 1. \end{split}$$

Since $|f_{\varepsilon}(z)| \le 1$ holds on both Re(z) = 0 and Re(z) = 1, it follows by the maximum modulus principle that we must have $|f_{\varepsilon}(z)| \le 1$ on the interior. In particular, this means that

$$\sup_{z \in \overline{\mathbf{U}}} |\mathsf{f}_{\varepsilon}(z)| \leq 1.$$

Since $\varepsilon > 0$ is arbitrary, it follows that

$$|f(z)M_0^{z-1}M_1^{-z}| \le 1$$

for all $z \in \overline{U}$, so that

$$|f(z)| \le |M_0^{1-z}| |M_1^z|$$

= $M_0^{1-\text{Re}(z)} M_1^{\text{Re}(z)}$.

In particular, this means that for Re(z) = r, we have

$$|f(z)| \leqslant M_0^{1-r} M_1^r,$$

meaning this holds for the supremum over all z with Re(z) = r, yielding

$$\sup_{\text{Re}(z)=r} |f(z)| \le M_0^{1-r} M_1^r.$$