南京大学数学系期末试卷 (A) 参考答案

2021/2022	学年第一学期 考试形式 闭	整课程名称	高等代数
班级	学号	姓名	
	2022.1.8 上午 8:00 至 10:00	任课教师	

題号	-	=	Ξ	四	五	六	七	八	总分
得分									

约定: 本试卷中, F表示数域.

- 一、(20分) 判断下列陈述是否正确. 若正确,请在括号内打"+";若错误,请在括号内打"-"(本题共 10 小题,每小题 2 分).
- 1. 若任一 n 维向量都可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出,则 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性 无关. (+)
- 2. 设齐次线性方程组的系数矩阵的秩为 r,未知量的个数为 n,则该方程组的任意 n-r 个解向量都是它的一个基础解系. (-)
- 3. 设 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是 n 维列向量, A 是 n 级可逆矩阵,则 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性相关 当且仅当 $A\alpha_1, A\alpha_2, \cdots, A\alpha_r$ 线性相关. (+)
- 4. 设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 都是非齐次线性方程组 $AX=\beta$ 的解,则 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 的任一 线性组合也是该方程组的解.
- 5. 设 A 为 $s \times n$ 矩阵, 则 A 的秩大于等于 r $(r \ge 1)$ 当且仅当 A 中有一个非零的 r 级子式.
- 6. 设 A 为 n 级方阵 (n≥2), 则 |A|≠0 当且仅当 A 的行向量组线性无关. (+)
- 7. 两个 $s \times n$ 矩阵相抵 (或等价) 当且仅当它们的行向量组等价. (-)
- 8. 设 A 为 n 级方阵,则 A 是对角矩阵当且仅当 A 与所有 n 级方阵可交换. ()
- 9. 设 $A \in M_n(F)$, 则 |A| = 1 当且仅当 A 可表为有限个倍加初等矩阵 E(i, j(b)) 的乘 积, 其中 $b \in F$.
- 10. 设 A, B 为 n 级方阵. 如果 $(AB)^2 = I_n$, 则 $(BA)^2 = I_n$. (+)

二、(40分) 填空题 (本题共 10 小题, 每小题 4 分).

- 2. 设矩阵 A 的伴随矩阵 $A^* = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ -1 & 2 & 1 \end{pmatrix}$, 则 $A^{-1} = \underline{\pm \frac{1}{2}A^*}$.
- 3. 设 $\alpha_1 = (2,1,0), \alpha_2 = (3,2,5), \alpha_3 = (5,4,t), 则 <math>\alpha_1,\alpha_2,\alpha_3$ 线性相关的充要条件是 $t = \underline{15}$.
- 4. 设 α, β 是 n 维列向量, $\beta' \alpha \neq 1$, 则 $(I_n \alpha \beta')^{-1} = I_n + \frac{1}{1 \beta' \alpha} \alpha \beta'$.
- 5. 设 A 为 3 级方阵, A^* 为 A 的伴随矩阵, 并且 |A|=2, 则 $\left|A^*-\left(\frac{1}{4}A\right)^{-1}\right|=\underline{-4}$.
- 6. 设 3 级方阵 A 的秩为 1, $B = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 3 & 7 \\ 3 & 2 & k \end{pmatrix}$, 并且 AB = 0, 则 k = 8.
- 7. 设 $A \neq n \times m$ 实矩阵, 并且 rank A = r, 则 $rank(AA') = \underline{r}$.
- 8. 矩阵方程 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$ 的解为 $\underline{\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}}$.

9.
$$\mathfrak{P} A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}, \ \mathfrak{P} A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}.$$

10. 设 4 元非齐次线性方程组为 $AX = \beta$, rank A = 3, 且 η_1 , η_2 , η_3 是它的 3 个解向量, 其中, $\eta_1 = (2,3,4,5)'$, $\eta_2 + \eta_3 = (1,2,3,4)'$, 则该方程组的通解为 $\eta_1 + k(3,4,5,6)'$, 其中 k 为任意数.

三、 (10分) 设向量组 $\alpha_1=(1,-1,2,4),$ $\alpha_2=(0,3,1,2),$ $\alpha_3=(3,0,7,14),$ $\alpha_4=(1,-1,2,0),$ $\alpha_5=(2,1,5,6).$

- 1. 求 α1, α2, α3, α4, α5 的秩;
- 2. 求 α1, α2, α3, α4, α5 的一个极大线性无关组;
- 3. 将 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 中其余向量表为极大线性无关组的线性组合.

$$\begin{array}{llll} \mathbf{MZ} \colon & (\alpha_1', \alpha_2', \alpha_3', \alpha_4', \alpha_5') = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & -4 & -2 \end{pmatrix} \\ \longrightarrow \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 1. α1, α2, α3, α4. α5 的秩为 3.
- α₁, α₂, α₄ (α₁, α₃, α₄ 或 α₂, α₃, α₄ 或 α₁, α₂, α₅ 或 α₁, α₃, α₅ 或 α₂, α₃, α₅ 或 α₁, α₄, α₅ 或 α₂, α₄, α₅ 或 α₃, α₄, α₅) 是一个极大线性无关组.
- 3. $\alpha_3 = 3\alpha_1 + \alpha_2, \alpha_5 = \alpha_1 + \alpha_2 + \alpha_4$

四、(10分)讨论 \ 为何值时实数域上的线性方程组

$$\begin{cases} (1-\lambda)x_1 + 2x_2 + 2x_3 = 0\\ 2x_1 + (4-\lambda)x_2 + 4x_3 = 2\\ 2x_1 + 4x_2 + (4+\lambda)x_3 = \lambda + 1 \end{cases}$$

- 1. 无解并说明理由:
- 2. 有唯一解并求其解:
- 3. 有无穷多解并用其导出组的基础解系表示该非齐次线性方程组的一般解.

$$\begin{split} & \Re \colon \left(\begin{array}{cccc} 1 - \lambda & 2 & 2 & 0 \\ 2 & 4 - \lambda & 4 & 2 \\ 2 & 4 & 4 + \lambda & \lambda + 1 \end{array} \right) \to \left(\begin{array}{cccc} 2 & 4 - \lambda & 4 & 2 \\ 2 & 4 & 4 + \lambda & \lambda + 1 \\ 1 - \lambda & 2 & 2 & 0 \end{array} \right) \\ & \to \left(\begin{array}{ccccc} 2 & 4 - \lambda & 4 & 2 \\ 0 & \lambda & \lambda & \lambda - 1 \\ 0 & -\frac{\lambda}{2}(\lambda - 5) & 2\lambda & \lambda - 1 \end{array} \right) \to \left(\begin{array}{ccccc} 2 & 4 - \lambda & 4 & 2 \\ 0 & \lambda & \lambda & \lambda - 1 \\ 0 & 0 & (\lambda - 1)\frac{\lambda}{2} & (\lambda - 1)\frac{\lambda - 3}{2} \end{array} \right). \end{aligned}$$

- 1. 当 $\lambda = 0$ 时无解,原因是增广矩阵的秩与系数矩阵的秩不等;
- 2. 当 $\lambda \neq 0,1$ 时有唯一解: $x_1 = \frac{2}{\lambda}, x_2 = \frac{2}{\lambda}, x_3 = \frac{\lambda-3}{\lambda}$.
- 3. λ=1 时,方程组有无穷多解.

此时,原方程组同解于方程组
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 2 \\ x_2 + x_3 = 0 \end{cases}$$
 该方程组的一个特解为 $\gamma_0 = (1,0,0)'$,导出组的一个基础解系为 $\eta = (-\frac{1}{2},-1,1)'$. 所以原方程组一般解为 $\gamma = \gamma_0 + k\eta = (1,0,0)' + k(-\frac{1}{2},-1,1)'$,其中 k 为任意常数.

五、(10分) 设 $A \in M_n(F)$. 证明:

$$3A^2 + 4A + I_n = 0$$
 当且仅当 $\operatorname{rank}(A + I_n) + \operatorname{rank}(3A + I_n) = n$.

证明: 因为 $rank(A + I_n) + rank(3A + I_n)$

$$= \operatorname{rank} \begin{pmatrix} A + I_n & 0 \\ 0 & 3A + I_n \end{pmatrix}$$

$$= \operatorname{rank} \begin{pmatrix} A + I_n & 3A + I_n \\ 0 & 3A + I_n \end{pmatrix} = \operatorname{rank} \begin{pmatrix} A + I_n & -2I_n \\ 0 & 3A + I_n \end{pmatrix}$$

$$= \operatorname{rank} \begin{pmatrix} 0 & -2I_n \\ \frac{1}{2}(3A^2 + 4A + I_n) & 3A + I_n \end{pmatrix}$$

$$= \operatorname{rank} \begin{pmatrix} 0 & 2I_n \\ -\frac{1}{2}(A^2 + 4A + 3I_n) & 0 \end{pmatrix} = n + \operatorname{rank}(3A^2 + 4A + I_n).$$
所以 $3A^2 + 4A + I_n = 0$ 当且仅当 $\operatorname{rank}(A + I_n) + \operatorname{rank}(3A + I_n) = n.$

六、 (10分) 设 $A,B \in M_n(F)$, AB = BA, 方程组 AX = 0 和 BX = 0 的基础解系分别 为 $\alpha_1, \dots, \alpha_k$ 和 β_1, \dots, β_l . 证明: $\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l$ 恰为方程组 ABX = 0 的基础解系当且仅当存在 $C,D \in M_n(F)$ 使得 $CA + DB = I_n$.

证明: 因为 $\operatorname{rank} A + \operatorname{rank} B \leq \operatorname{rank}(AB) + n$,

所以 $(n - \operatorname{rank} A) + (n - \operatorname{rank} B) \ge n - \operatorname{rank}(AB)$,

因此, ABX = 0 的基础解系中解的个数 $n - \text{rank}(AB) \leq k + l$.

由于 $\alpha_1,\cdots,\alpha_k,\beta_1,\cdots,\beta_l$ 是方程组 ABX=0 的解, 这组解恰好构成 ABX=0 的基础解系当且仅当它们线性无关, 当且仅当 AX=0 与 BX=0 没有非零公共解, 即 $\begin{pmatrix}A\\B\end{pmatrix}X=0$ 只有零解, 当且仅当 $\mathrm{rank}\begin{pmatrix}A\\B\end{pmatrix}=n$.

列满秩矩阵都可以用行变换化为标准形,即存在可逆矩阵 $\begin{pmatrix} C & D \\ E & F \end{pmatrix}$ 使得 $\begin{pmatrix} C & D \end{pmatrix} \begin{pmatrix} A \end{pmatrix} \begin{pmatrix} J_1 \end{pmatrix} \dots$

$$\begin{pmatrix} C & D \\ E & F \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} I_n \\ 0 \end{pmatrix}, 从而 CA + DB = I_n.$$

七、 (10分) 设
$$A \in M_{3\times 2}(F), B \in M_{2\times 3}(F)$$
,并且 $AB = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. 证明: $BA = 3I_2$.

证明: 易知 ${\rm rank}(AB)=2$,从而由 ${\rm rank}(AB)\leqslant {\rm min}\{{\rm rank}A,{\rm rank}B\}\leqslant 2$ 知 ${\rm rank}A={\rm rank}B=2$. 因此齐次线性方程组 AX=0 与 YB=0 都只有零解.

直接计算得 $(AB)^2 = 3AB$. 所以 $A(BA-3I_2)B = 0$. 从而 $BA-3I_2 = 0$, 即 $BA = 3I_2$. □

八、 (10分) 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B \in M_3(F)$. 若 $AB = BA$, 证明: 存在 $g(x) \in F[x]$ 使得 $B = g(A)$.

证明: 直接计算得:

(1) 対任意
$$n \in \mathbb{N}$$
, $A^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$;

(2)
$$B = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix}$$
, $\sharp \div a, b, c \in F$.

 $\psi g(x) = a_0 + a_1 x + a_2 x^2 \in F[x],
 其中 a_0, a_1, a_2 为待定系数。 今 B = a(A) 图$

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix} = \begin{pmatrix} a_0 + 2a_1 + 4a_2 & 0 & 0 \\ 0 & a_0 + a_1 + a_2 & a_1 + 2a_2 \\ 0 & 0 & a_0 + a_1 + a_2 \end{pmatrix}.$$

所以

$$\begin{cases} a_0 + 2a_1 + 4a_2 = a \\ a_0 + a_1 + a_2 = b \\ a_1 + 2a_2 = c \end{cases}$$

解上述方程组得
$$\begin{cases} a_0 = a - 2c, \\ a_1 = -2a + 2b + 3c, \\ a_2 = a - b - c. \end{cases}$$
故 $g(x) = a - 2c + (-2a + 2b + 3c)x + (a - b - c)x^2$ 満足 $g(A) = B$.