Fast Realistic Rendering

Pere-Pau Vázquez

- Pere-Pau Vázquez, <u>pere.pau@cs.upc.edu</u>,
 Omega 137
 - Use "FRR" in subject

What is Computer Graphics?

- CG is Image Synthesis
 - Computerized creation of images
 - Based on physics and light behavior

What is Computer Graphics?

Not all light sources are equal...

...not all materials are the same...

... and the atmosphere ...

... and our visual system ...

... and animation ...

... and geometry micro-detail ...

Computer Graphics

- Need to simulate light behavior
 - From different light sources
 - For different materials
 - With detailed geometry
 - In participating media
 - ... very, very quick!!!!

But we have Physics!!!

But we have Physics!!!

$$L_{
m o}({f x},\,\omega_{
m o},\,\lambda,\,t) \,=\, L_{e}({f x},\,\omega_{
m o},\,\lambda,\,t) \,+ \, \int_{\Omega} f_{
m o}({f x},\,\omega_{
m i},\,\omega_{
m o},\,\lambda,\,t) \, L_{
m i}({f x},\,\omega_{
m i},\,\lambda,\,t) \, (\omega_{
m i}\,\cdot\,{f n}) \,\,{
m d}\,\omega_{
m i}$$

But we have Physics!!!

$$L_{
m o}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t)\,=\,L_{e}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t)\,+\,\int_{\Omega}f_{r}(\mathbf{x},\,\omega_{
m i},\,\omega_{
m o},\,\lambda,\,t)\,L_{
m i}(\mathbf{x},\,\omega_{
m i},\,\lambda,\,t)\,(\omega_{
m i}\,\cdot\,\mathbf{n})\;{
m d}\,\omega_{
m i}$$

This is recursive!!!!

CG by physics

- Is too slow
 - We use tricks
 - ... that approximate the rendering equation in different ways ...
 - ... to synthesize images

Rendering

Means realistic image synthesis

Fast Realistic Rendering

- Means realistic image synthesis
- ... very, very quick
 - ... using the GPU to accelerate
- GPU is (only) good for triangle-based rendering
 - ... until very recently

Contents:

- GPU texturing (1 session)
- Physically-based rendering (lab)
- Hard & soft shadows (2 sessions)
- Deferred rendering (1 session)
- Ambient occlusion (2 sessions)
- Image-based rendering (2 sessions)
- Skin rendering (1 session)
- Paper presentations (1 session)
- Advanced OpenGL concepts (1 session)

- Evaluation:
 - Paper presentation (30%)
 - Programming project (40%)
 - Final exam (30%)

- Paper presentation:
 - 2 Sessions: TBD
 - Each presentation: 20-25 min. + questions
 - Prepare questions for the other students
 - I will suggest papers

- Programming project (tentative):
 - Physically-based rendering (50%)
 - Ambient occlusion (50%)

Tentative schedule Lab:

- Physically-based rendering:
 - Dates: 14th, 21st February, 6th, 13th, and 20th March.
 - Delivery: 26th March.
 - Presentation: 3rd April.
- Ambient occlusion:
 - Dates: 27th March, 3rd, 17th, 24th April, 7th, 15th, 22th May.
 - Delivery: 28th May.
 - Presentation: 29th May.