COMS10013 - Exam Questions

Ross Bowden

Summer 2022

Preface

NOTE(2025): This exam was done via Blackboard due to Covid, so the 'pool' system of questions is different to an in-person exam. The types of exam question are representative.

One question should be selected randomly from each of the following pools of questions.

Pool 1 — Hessians & Fixed Points

[3]

- (1) Consider the function $z(x,y) = ax^3y + by^2 3axy$, where a and b are real, positive constants. Which of the following statements is true.
 - A. The point $(x,y)=(1,\frac{a}{b})$ is a local maxima of z.
 - B. The point $(x,y) = (1,\frac{a}{b})$ is a local minima of z.
 - C. The point $(x,y) = (1,\frac{a}{b})$ is a saddle point of z.
 - D. None of the above.
- (2) Consider the function $z(x,y) = ax^3y + by^2 3axy$, where a and b are real, positive constants. Which of the following statements is true.
 - A. The point $(x,y) = (-1, -\frac{a}{h})$ is a local maxima of z.
 - B. The point $(x,y) = (-1, -\frac{a}{b})$ is a local minima of z.
 - C. The point $(x,y) = (-1, -\frac{a}{b})$ is a saddle point of z.
 - D. None of the above.
- (3) Consider the function $z(x,y) = ax^3y + by^2 3axy$, where a and b are real, positive constants. Which of the following statements is true.
 - A. The point $(x,y) = (\sqrt{3},0)$ is a local maxima of z.
 - B. The point $(x,y) = (\sqrt{3},0)$ is a local minima of z.
 - C. The point $(x,y) = (\sqrt{3},0)$ is a saddle point of z.
 - D. None of the above.
- (4) Consider the function $z(x,y) = ax^3y + by^2 3axy$, where a and b are real, positive constants. Which of the following statements is true.
 - A. The point $(x,y) = (-\sqrt{3},0)$ is a local maxima of z.
 - B. The point $(x, y) = (-\sqrt{3}, 0)$ is a local minima of z.
 - C. The point $(x, y) = (-\sqrt{3}, 0)$ is a saddle point of z.
 - D. None of the above.

Solution: The gradient of z can be computed as $\nabla z = (3) ay(x^2 - 1)$ $ax(x^2 - 3) + 2by$

which gives the zero vector for all four possible points. The Hessian of z is H =

 $(6) axy3a(x^2 - 1)$ $3a(x^2 - 1)2b$

. Note H(x,y)=H(-x,-y), so answers for (1) and (2) (resp. (3) and (4)) are the same. For $(x,y)=(1,\frac{a}{b})$, we have $\det(H)=12a^2>0$ and $H_{11}=\frac{6a^2}{b}>0$, so we have a local minima. For y=0, we have $\det(H)=-9a^2(x^2-1)^2<0$ irrespective of x, so we have a saddle point (note a is non-zero).

Pool 2 — 2nd Order Diff Eq

[3]

- (1) The function y(t) satisfies $\frac{d^2y}{dt^2} 4\frac{dy}{dt} + 13y = 0, y(0) = 1$ and $y(\frac{\pi}{6}) = e^{\frac{\pi}{3}}$. Given that $(y(\frac{\pi}{12}))^2 = 2e^{\frac{c\pi}{6}}$, find the value c. Please write your answer as a number, with no full stop at the end.
- (2) The function y(t) satisfies $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 26y = 0, y(0) = 1$ and $y(\frac{\pi}{10}) = e^{-\frac{\pi}{10}}$. Given that $(y(\frac{\pi}{20}))^2 = 2e^{\frac{c\pi}{10}}$, find the value c. Please write your answer as a number, with no full stop at the end.
- (3) The function y(t) satisfies $\frac{d^2y}{dt^2} 8\frac{dy}{dt} + 17y = 0, y(0) = 1$ and $y(\frac{\pi}{2}) = e^{2\pi}$. Given that $(y(\frac{\pi}{4}))^2 = 2e^{\frac{c\pi}{2}}$, find the value c. Please write your answer as a number, with no full stop at the end.
- (4) The function y(t) satisfies $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 13y = 0, y(0) = 1$ and $y(\frac{\pi}{4}) = e^{-\frac{3\pi}{4}}$. Given that $(y(\frac{\pi}{8}))^2 = 2e^{\frac{c\pi}{4}}$, find the value c. Please write your answer as a number, with no full stop at the end.

Solution: Solving the characteristic polynomial gives $\lambda=\alpha\pm\beta i$, giving the general solution $y(t)=e^{\alpha t}(A\cos(\beta t)+B\sin(\beta t))$. The first IC gives A=1. The second IC is of the form $y(\frac{\pi}{2\beta})=e^{\frac{\alpha\pi}{2\beta}}$ which gives B=1. The relation is of the form $(y(\frac{\pi}{4\beta}))^2=2e^{\frac{c\pi}{2\beta}}$. Evaluating the LHS gives $(\sqrt{2}e^{\frac{\alpha\pi}{4\beta}})^2=2e^{\frac{\alpha\pi}{2\beta}}$, so $c=\alpha$.

- (1) 2
- (2) -1
- (3) 4
- (4) -3

Pool 3 — Polar Form

[3]

- (1) Let $z = (3+i)^3 + (3-i)^3$. By considering the polar form of 3+i or otherwise, compute the modulus of z. Please write your answer as an integer, with no full stop at the end.
- (2) Let $z = (-1+2i)^3 + (-1-2i)^3$. By considering the polar form of -1+2i or otherwise, compute the modulus of z. Please write your answer as an integer, with no full stop at the end.
- (3) Let $z = (2+i)^3 + (2-i)^3$. By considering the polar form of 2+i or otherwise, compute the modulus of z. Please write your answer as an integer, with no full stop at the end.
- (4) Let $z = (1+3i)^3 + (1-3i)^3$. By considering the polar form of 1+3i or otherwise, compute the modulus of z. Please write your answer as an integer, with no full stop at the end.

Solution: By construction the expression is real, (and an integer). In general we have $z = (a+bi)^3 + (a-bi)^3 = 2a^3 - 6ab^2$ which can be derived in multiple ways algebraically (eg. by the polar form substitution suggested). The modulus is then just the absolute value of this expression. Alternatively, a numerical approach will suffice coupled with the stipulation that the result is an integer.

- (1) 36
- (2) 22
- (3) 4
- (4) 52

Pool 4 — Taylor Series

[3]

- (1) You will need a calculator for this question. Let $f(x) = e^{\frac{x^2}{2} + \frac{3}{4}}$, and let $T_n(x)$ denote the *n*'th Taylor polynomial approximation to f around the point $x_0 = 0$. Find the minimum value n such that the approximation $T_n(1)$ is within 0.1 of f(1).
- (2) You will need a calculator for this question. Let $f(x) = e^{\frac{x^2}{2} + \frac{4}{5}}$, and let $T_n(x)$ denote the *n*'th Taylor polynomial approximation to f around the point $x_0 = 0$. Find the minimum value n such that the approximation $T_n(1)$ is within 0.1 of f(1).
- (3) You will need a calculator for this question. Let $f(x) = e^{\frac{x^2}{2} + \frac{5}{6}}$, and let $T_n(x)$ denote the *n*'th Taylor polynomial approximation to f around the point $x_0 = 0$. Find the minimum value n such that the approximation $T_n(1)$ is within 0.1 of f(1).
- (4) You will need a calculator for this question. Let $f(x) = e^{\frac{x^2}{2} + \frac{6}{7}}$, and let $T_n(x)$ denote the *n*'th Taylor polynomial approximation to f around the point $x_0 = 0$. Find the *minimum* value n such that the approximation $T_n(1)$ is within 0.1 of f(1).

Solution: Write $f(x) = Ae^{\frac{x^2}{2}}$ for convenience. By computing $f^{(n)}(0)$ for successive n, we find $f^{(0)}(0) = f^{(2)}(0) = A$, $f^{(1)}(0) = f^{(3)}(0) = 0$, and $f^{(4)}(0) = 3A$ etc. and so $T_0(x) = T_1(x) = A$, $T_2(x) = T_3(x) = A(1 + \frac{x^2}{2})$, and $T_4(x) = A(1 + \frac{x^2}{2} + \frac{x^4}{8})$. Evaluating each T_n at x = 1, we find that $T_4(1)$ is within the required range.

(1) Suppose the function y(t) satisfies the differential equation y'(t) + a(t)y(t) = b(t) where the functions a(t) and b(t) are not constant. Define the function z(t) = y(2t). Which of the following differential equations is z(t) a solution to?

A.
$$z'(t) + 2a(t)z(t) = 2b(t)$$

B.
$$z'(t) + 2a(2t)z(t) = 2b(2t)$$

C.
$$z'(t) + a(t)z(t) = b(t)$$

D.
$$z'(t) + a(2t)z(t) = b(2t)$$

(2) Suppose the function y(t) satisfies the differential equation y'(t) + a(t)y(t) = b(t) where the functions a(t) and b(t) are not constant. Define the function z(t) = y(3t). Which of the following differential equations is z(t) a solution to?

A.
$$z'(t) + 3a(t)z(t) = 3b(t)$$

B.
$$z'(t) + 3a(3t)z(t) = 3b(3t)$$

C.
$$z'(t) + a(t)z(t) = b(t)$$

D.
$$z'(t) + a(3t)z(t) = b(3t)$$

(3) Suppose the function y(t) satisfies the differential equation y'(t) + a(t)y(t) = b(t) where the functions a(t) and b(t) are not constant. Define the function z(t) = y(4t). Which of the following differential equations is z(t) a solution to?

A.
$$z'(t) + 4a(t)z(t) = 4b(t)$$

B.
$$z'(t) + 4a(4t)z(t) = 4b(4t)$$

C.
$$z'(t) + a(t)z(t) = b(t)$$

D.
$$z'(t) + a(4t)z(t) = b(4t)$$

(4) Suppose the function y(t) satisfies the differential equation y'(t) + a(t)y(t) = b(t) where the functions a(t) and b(t) are not constant. Define the function z(t) = y(5t). Which of the following differential equations is z(t) a solution to?

A.
$$z'(t) + 5a(t)z(t) = 5b(t)$$

B.
$$z'(t) + 5a(5t)z(t) = 5b(5t)$$

C.
$$z'(t) + a(t)z(t) = b(t)$$

D.
$$z'(t) + a(5t)z(t) = b(5t)$$

Solution: By making the substitution s = ct, where c is the relevant constant, and using the chain rule, we obtain z'(t) = cy'(s). Substituting this into each candidate answer, **B** returns our original equation, so this is the correct answer.