

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

Computing the Modular Inverse of a Polynomial Function over GF(2^P) Using Bit Wise Operation

Seshagiri Prabhu N Guide: Raphael Fourquet

April 27, 2013

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- Introduction
- Contribution of this paper
- Problem Description
- Proposed Algorithm
- Implementation of Algorithm
- Conclusion

Introduction

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 2 Introduction

- Relevance of Modulo arithmetic in public key crypto system
- The use of Extended Euclidean Algorithm (EEA) to evaluate the multiplicative inverse

Contribution of this paper

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

3 Contribution of this paper

Contribution of this paper

Computerized algorithm for the determination of the multiplicative inverse of a polynomial over GF(2^P) using simple bit wise shift and XOR operations.

sed Al

Problem Description

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 4 Problem Description

EEA

Let A(x) and B(x) be polynomials. EEA gives U and V such that

gcd(A, B) = U * A + V * B

Note

If A is irreducible, then its gcd is 1, and we are only interested in V, which is the inverse of B[modA]

Problem Description

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

4 Problem Description

Polynomial representation

The finite field is a representative of a polynomial function with respect to one variable x: $GF(2^p) = x^{p-1} + x^{p-2} + ... + x^2 + x^1$

Finite field $GF(2^8) = x^8 + x^4 + x^3 + x + 1$ $53_{10} \rightarrow 1010011_2 \rightarrow (x^6 + x^4 + x + 1)$ The EEA of 53 on $GF(2^8)$ is $x^7 + x^6 + x^3 + x$

Proposed Algorithm

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

5 Proposed Algorithm

```
procedure Multiplicative Inverse(A_3[], B_3[])
   C_1 = A_2 = B_2 = 0;
   while (B_3>1) do

⊳ Step 1 do

      Q=0;
      Temp = B_3:
      while (A3 > Temp \mid\mid BitSize(C) > BitSize(Temp)) do
         Q_1 = 1;
         while (A_{3MSR} == B_{3MSR}) do
            B_3 = B_3 << LinearLeftShift;
            Q_1 = Q_1 * 2;
         end while
         Q = Q + Q_1:
         A_3 = A_3[] \oplus B_3[];
         B_2 = Temp;
      end while
      A_2 = B_2; B_3 = A_3; A_3 = Temp;
      N = BitSize(Q);
                                                                     Temp = B_2: C_2 = 0:

⊳ Step2

      while (N > 1) do
         C_2 = 0_{d}:
         if (Q_N == 1) then
                                                               Desting if Nth bit of Q is 1
            C_1 = B_2 << N-1:
                                                              C_2 = C_2 \oplus C_1:
         end if
         N - -:
      end while
      B_2 = C_2; A_2 = Temp; B_2 = B_2 \oplus A_2;
                                                                    4日 > 4周 > 4 至 > 4 至 > 3 至
   end while
```

Implementation of Algorithm Let's apply EEA to A=283 and B=42

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

6 Implementation of Algorithm

i	Operation	Binary	U	V
0	A	100011011	1	0
1	В	000101010	0	1
	3 << B	101010000	0	1000
2	$A \leftarrow A \oplus (3 << B)$	001001011	1	1000
	1 << B	001010100	0	0010
3	$A \leftarrow A \oplus (1 << B)$	000011111	1	1010
	$A < B A \rightleftharpoons B$			
	A	000101010	00	00001
	В	000011111	01	01010
	1 << B	000111110	10	10100
4	$A \leftarrow A \oplus (1 << B)$	000010100	10	10101
	$A < B A \rightleftharpoons B$			
	A	000011111	01	01010
	В	000010100	10	10101
5	$A \leftarrow A \oplus B$	000001011	11	11111
	$A < B A \rightleftharpoons B$			
	A	000010100	010	010101
	В	000001011	011	011111
	1 << B	000010110	110	111110
6	$A \leftarrow A \oplus (1 << B)$	000000010	100	101011
	$A < B A \rightleftharpoons B$	000001011	00011	00011111
	A	000001011	00011	00011111
	B 2 5 5 B)	000000010 000001000	00100 10000	00101011 10101100
7	$2 \ll B$		10000	10101100
8	$A \leftarrow A \oplus (1 << B)$	000000011	10011	10110011
8	$A \leftarrow A \oplus B$	000000001	10111	10011000

Conclusion

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

- 7 Conclusion

- This algorithm can be easily extended for determining the elements of the S-Box used in AES.
- This algorithm is efficient for determining the multiplicative inverse of polynomial over $GF(2^{\mathbf{P}})$

Future works

Computing the Modular Inverse of a Polynomial Function over Using Bit Wise Operation

7 Conclusion

Possible future works

- Optimize the algorithm
- Comparative study with many existing algorithm
- Implementation in hardware for real time applications

7 Conclusion

Questions?

Seshagiri Prabhu seshagiriprabhu@gmail.com

