Sections 4.1 Number Theory

Comp 232

Instructor: Robert Mearns

What is Number Theory?

- Number theory is the part of mathematics devoted to the study of the integers and their properties.
- 2. Key ideas in number theory include divisibility, modular arithmetic, prime integers, greatest common divisors and least common multiples.
- 3. Representations of integers, including binary and hexadecimal representations, are part of number theory. This will be used to represent different number types in computer memory
- 4. We will look at several computer applications of Number Theory.

Section 4.1

Divisibility Modular Arithmetic

Section 4.2

Computer representation of Integers

Section 4.3

Prime numbers Greatest Common Divisors

1. Terms and Definitions

Definition	Example
Division Algorithm	$\frac{11}{4} = 2 + \text{remainder } 3$
d is the divisor dividend q is the quotient remainder	Hence: 4 is the divisor 11 is the dividend
$\begin{split} & \text{Iff} \ \forall a,d \ \exists q,r, \ a,d,q,r \in \mathbf{Z}, \ d \geq 0, \ 0 \ \leq r < d, \\ & \text{a/d} = q + remainder \ r \end{split}$	2 is the quotient 3 is the remainder
Note: Remainder r is Positive or 0 and less than d Notation: q = a div d r = a mod d Notation: q = a div d panda2ició	da2ici _{agmail.com}
d d a	Ex 1 $\frac{12}{4}$ = 3 or 12 = 4 × 3
divides a is a factor of a is a multiple of d Iff $\forall a,d \exists q, \ a,d,q \in \mathbb{Z}, \ d \not \equiv 0,$	Hence: 4 divides 12: 4 12 4 is a factor of 12 12 is a multiple of a
a/d = q or a =dq	Ex 2 $\frac{11}{4}$ = 2 + remainder 3
Note: Remainder r is 0 Notation: d a is read as "d divides a" d a means a/b	4 11 because the remainder ≠ 0
	Division Algorithm d is the divisor a is the dividend q is the quotient remainder Iff $\forall a,d \exists q,r, \ a,d,q,r \in \mathbb{Z}, \ d \geq 0, \ 0 \leq r < d,$ $a/d = q + remainder r$ Note: Remainder r is Positive or 0 and less than d Notation: $q = a \text{ div } d$ $r = a \text{ mod } d$ $d \text{ divides a} \text{ is a factor of a} \text{ is a multiple of do} $ $a/d = q \text{ or } a = dq$ Note: Remainder r is 0 Notation: d a is read as "d divides a"

Terms and Definitions (continued)

Term	Definition	Example
Congruent	a is congruent to r, modulo m	Examples:
	Iff $\forall a,r,m, a,r \in \mathbb{Z}, m \in \mathbb{Z}^+$,	$m \mid (a-b) \rightarrow a \equiv b \mod m$
Modulo	m (a-r)	$3 \mid (3-0) \rightarrow 3 \equiv 0 \mod 3$
	Notation: a ≡ r mod m is read as	$3 \mid (4-1) \rightarrow 4 \equiv 1 \mod 3$
	"a is congruent to r modulo m"	$3 \mid (5-2) \rightarrow 5 \equiv 2 \mod 3$
	Note: a≡r mod m	$3 \mid (6 \text{-} 0) \rightarrow 6 \equiv 0 \mod 3$
	→ m (a-r) → a-r = mq, q∈Z	Note that the congruence
	\rightarrow a = mq + r	values b are really the
	→ Congruence value r (where r>0) is the remainder where a is divided by m Hence: r = a mod m	remainders when divide the given numbers a by 3:
	panda2ici	$\frac{5}{3} = 1 + \text{remainder } 2$
	@Pandazici@gmail.con	Hence $5 \equiv 2 \mod 3$

Ex 1: Does 7 divide 833 ? $\frac{833}{7}$ = 119 + remainder 0. Hence 7 divides 811

Write:

7 | 833 = 7 | (833-0) $833 \equiv 0 \mod 7$ or 0 = 833 mod 7 because 0 is the remainder when 833 is divided by 7

```
Ex 2: Does 7 | 377? (Use the calculator to get) \frac{377}{7} = 53.857142 \, 857142...

- Decimal part = 0.85... is not the remainder but 0.85... \rightarrow remainder \neq 0

- Remainder \neq 0 \rightarrow 7 377

- How do we calculate remainder: 377 - (53 \times 7) = 377 - 371 = 6, hence remainder = 6

- Write: 377/7 = 53 + \text{remainder} = 6 OR 377 = 6 \, \text{mod} = 7 OR 6 = 377 \, \text{mod} = 7

Ex 3: 50 = ? \, \text{mod} = 6

Step 1 \frac{50}{6} = 8.33..

Step 2 50 - 6 \times 8 = 2 \rightarrow \text{rem} = 2 \rightarrow 50 = 2 \, \text{mod} = 6 OR 2 = 50 \, \text{mod} = 6

Ex 4: 492 = ? \, \text{mod} = 15

Step 1 \frac{492}{15} = 32.8

Step 2 492 - 15 \times 32 = 12 \rightarrow \text{rem} = 12 \rightarrow 492 = 12 \, \text{mod} = 15 OR 12 = 492 \, \text{mod} = 15

Ex 5: 492 = ? \, \text{mod} = 6

Step 1 \frac{492}{6} = 82

Step 2 The rem = 0 \rightarrow 492 = 0 \, \text{mod} = 6 OR 0 = 492 \, \text{mod} = 6
```

2. The Mod m Relation is a Function

Ex 1: Consider mod 3 Relation with Domain as Z +

The Mod 3 function is many to 1

There are an infinite number of values that map from \mathbf{Z}^+ to each value in the Range $\{0,1,2\}$

Hence: 2,5,8,... all map to 2

If the Codomain = $\{0,1,2\}$ the Mod 3 function is Onto this Codomain

Note: The Mod m function maps every element in the Domain **Z** + (positive Integers) to a unique value in the set {0,1,2,3,..., m-1}

Ex 2: Consider negative Integers in the Domain of Mod m function.

Note:
$$\frac{b}{a} = q + \text{remainder r},$$

The remainder r is positive or 0 by definition and $\,0\,\leqslant\, r\,<\,a\,$

(i)
$$-44 \equiv ? \mod 3$$
:
Step1 $\frac{-44}{3} = -14.66$
 $\frac{-44}{3} = -14 - 0.66$ (- 0.66 is not the remainder but it \rightarrow the remainder \neq 0)
 $\frac{-44}{3} = -14 - 1 + 1 - 0.66 = -15 + 0.34$ (subtract / add 1 is done to ensure excess > 0)

Step 2
$$-44 - (-15 \times 3) = -44 + 45 = 1 \rightarrow \text{rem} = 1 \rightarrow 1 = -44 \mod 3$$

(ii)
$$-82 \equiv ? \mod 3$$

Step1 $\frac{-82}{3} = -27.33$
 $\frac{-82}{3} = -27 - 0.33 = -27 - 1 + 1 - 0.33 = -28 + 0.67$

Step 2
$$-82 - (-28 \text{ X } 3) = -82 + 84 = 2 \rightarrow \text{ the remainder} = 2 \rightarrow 2 = -82 \text{ mod } 3$$

(iii) In a similar way
$$\frac{-90}{3} \rightarrow \text{rem} = 0 \rightarrow 0 = -90 \mod 3$$

Conclusion: The Congruence function mod 3 maps Negative Integers onto the Codomain $\{0,1,2\}$ Hence the Congruence function mod 3 maps all Z onto the Codomain $\{0,1,2\}$

6.

3. Theorems concerning Division and Modular arithmetic

Note the three equivalent statements: $r = a \mod m + m \mid a - r + a \equiv r \mod m$

Ex 1: Theorem: For all $a, b \in \mathbb{Z}$, $(a \equiv b \mod m)$ iff $(a \mod m = b \mod m)$

Part 1 (if): If $(a \mod m = b \mod m)$ then $(a \equiv b \mod m)$

Proof (Direct)

1. Let a mod
$$m = r_1$$

2.
$$\rightarrow m | (a - r_1)$$

$$3. \qquad \rightarrow a - r_1 = m \, q_1, q_1 \in Z$$

$$4. \qquad \rightarrow r_1 = a - q_1 m$$

5. Similarly if
$$b \mod m = r_2$$

6.
$$\rightarrow r_2 = b - q_2 \text{ m}, q_2 \in \mathbf{Z}$$

7. Since
$$r_1 = r_2$$

$$a - q_1 m = a - q_2 m$$

$$9. \qquad \rightarrow a - b = m(q_1 - q_2)$$

10.
$$\rightarrow$$
 m | (a-b)
 \rightarrow a \equiv b mod m

QED

Def of mod m

Def Division

Algebra, get r₁ on LHS

Def Mod, Div, Algebra

Given

Substitute

Algebra, leave a-b on LHS

Def of Div

Def of mod m

Part 2 (only if): If $(a \equiv b \mod m)$ then $(a \mod m = b \mod m)$ Proof (Contradiction)

Either (a mod $m = b \mod m$) 1. $(a\ mod\ m\ \neq\ b\ mod\ m)$ 2. Assume a mod m \neq b mod m 3. let a mod $m = r_1$ $m \mid (a - r_1)$ 4. $a-r_1=m\ q_1,q_1\in Z$ 5. $r_1 = a - q_1 m$ 6. 7. Similarly if $b \mod m = r_2$ $r_2=b-q_2m,q_2\in Z$ 8. 9. Since $r_1 \neq r_2$ 10. $a - mq_1 \neq b - mq_2$ 11. $a-b\neq mq_1-mq_2$ 12. 13. m | a - b is false \rightarrow a \equiv b mod m is false 14.

list all possible conclusions

Assume not wanted conclusion

Def mod

Def of Div

Algebra, n_1 on LHS

Def mod, Div, Algebra

Assumption line 2

Substitute

Algebra, a-b on LHS

Algebra, Factor

Def of Div

Def mod

Given $a \equiv b \mod m$

Only remaining possibility in line 1

QED

15.

Contradiction

 \rightarrow a mod m = b mod m

Ex 2: Theorem: $\forall a,b,c,m \in \mathbb{Z}, \ m \ge 2, \ c > 0, \ \text{if} \ a \equiv b \ \text{mod} \ m \ \text{then and} \ ac \equiv bc \ \text{mod} \ mc$ Proof (Direct)

1.	$a \equiv b \mod m$	Given
2.	m (a-b)	Def of mod
3.	$a - b = qm, q \in Z$	Def division
4.	(a - b)c = qmc	Multiply by c
5.	ac - bc = q(mc)	Distributive, associative
6.	mc (ac - bc)	Def of division
7.	ac ≡ bc mod mc	Def. of mod
QED		
		I

- Ex 3: Consider the proposition: If $k \mid m$ n then $k \mid m$ or $k \mid n$. Is the proposition true or false. Prove your conjecture.
- Ex 4: When an Integer n is divided by 7 the remainder is 5. What is the remainder when 9n is divided by 7?
- Ex 5: State the value(s) of r if $r = n^2 \mod 8$, $n \in \mathbb{Z}^+$, n is odd
- Ex 6: Prove that $r = 7 \mod 13$ iff $4r = 2 \mod 13$