

HCAI5DS02 – Data Analytics and Visualization. Lecture – 07 Statistical Modeling

Statistical Inference and Hypothesis Testing.

Siman Giri

1. Statistical Inference.

{"What can we say about the population?"}

1.1 Statistical Inference – Introduction.

• Definition:

- Statistical inference is the process of drawing conclusions about a population
 - based on **information from a sample** supported by **probability theory**.
- Goals:
 - Estimate unknown population parameters (e.g. mean, variance).
 - Test hypotheses (e.g. is a new product better?)
 - Quantify uncertainty (e.g. confidence intervals).
 - Make probabilistic statements.
- Key Tools:
 - Point estimation (e.g. sample mean).
 - Confidence intervals.
 - Hypothesis testing.
 - p values and test statistics.
 - t tests, z tests, chi square tests.

• Example:

- You conduct a survey of 500 people to estimate the average income of an entire city.
 - You use a **confidence interval** to report the **likely range** of **the true mean**.

1.2 Statistical Inference and Hypothesis Testing.

- Statistical inference allows us to evaluate claims about a population parameter using observed data.
 - This is done **through hypothesis testing**, where we:
 - 1. Formulate a null hypothesis (e.g. no effect, no difference)
 - 2. Collect sample data
 - 3. Calculate a test statistic (e.g. t value, z score)
 - 4. Evaluate the evidence against the null hypothesis using probability (p values)
 - 5. Make a decision: reject or fail to reject the null.

©Explain xkcd.

1.2.1 Why Hypothesis Testing?

- One key goal of statistical inference is to **make informed decisions** or **judgements** about an **unknown population parameter using sample data**.
 - For example:
 - A company wants to know if a **new digital marketing campaign** has **increased average weekly sales**.
 - You collect post campaign data and compute a 95% confidence interval for the new average sales:
 - [Rs: 9,800 Rs: 10,200]
 - What the **Confidence Interval** tells us:
 - We're 95% confident that average weekly sales lie between Rs: 9,800 and Rs: 10,200.
 - It gives a range of plausible values, but not a definitive yes or no about whether sales actually increased.
- Why is not a confidence interval enough?
 - A confidence interval tells us the likely range of a parameter (like average sales),
 - but it **doesn't give us** a clear decision about whether a change is real or due to chance.
 - Is the increase from the old average (Rs: 10,000) statistically significant?
 - Is this observed change real or just random variation?
 - Should we continue investing the campaign?
- That's where **Hypothesis testing** comes in:
 - **Hypothesis testing** answers **yes/no** questions like:
 - "Did the campaign cause a significant increase in average sales?"

1.3 So, What is Hypothesis Testing?

- A statistical hypothesis is a statement or assumption about a population parameter or a real world phenomenon
 - that can be tested using data.
 - "It is a claim, which we want to evaluate with evidence."
- For Example:
 - "This new teaching method improves student performance."
 - "Customers prefer Brand A over Brand B."
 - These are hypotheses claims we can test with data.
- There are usually two competing hypotheses:
 - The null hypothesis, denoted H_0 is the hypothesis to be tested.
 - This is the **default assumption**.
 - In statistical notations H_0 : $\mu = \mu_0$
 - we call μ_0 the null value, and when we run a hypothesis test, μ_0 will be replaced by some number.
 - The alternative hypothesis, denoted H_A is the alternative to null.
 - In statistical notations H_A : $\mu \neq \mu_0$ The true mean is different from the null value.

1.3.1 Understanding What a Hypothesis Can Test?

- 1. Single Sample Hypothesis (One Group vs. a value):
 - You are testing whether the population mean of one group is equal to some fixed number or benchmark.
 - Example: Is the average delivery time less than 30 minutes?
 - Hypothesis:
 - null \rightarrow H₀: $\mu = 30$; alternate \rightarrow H_a: $\mu < 30$
- 2. Two Sample Hypothesis (Between two Groups):
 - You are testing whether two different groups have the same mean, proportion etc.
 - Example: Do male and female employees earn the same average salary?
 - Hypothesis:
 - null \rightarrow H₀: $\mu_1 = \mu_2$; alternate \rightarrow H_a: $\mu_1 \neq \mu_2$
- 3. Hypothesis about relationships (Between Variables):
 - You are testing whether two variables are related (not necessarily groups).
 - Example: Is there a correlation between study time and exam score?
 - Hypothesis:
 - null \rightarrow H₀: $\rho = 0$ (no correlation); alternate \rightarrow H_a: $\rho \neq 0$
 - This tests for **association**, not difference between groups.

- Example: Hypothesis About the Mean:
 - Claim: "This new teaching method improves student performance."
 - Suppose student performance is measured by average test scores.
 - Step 1 Define the parameter:
 - Let μ = the true mean test score of students using the new method
 - Let μ_0 = the known or historical mean score under the old method (e.g. 70)
 - Step 2 Setup the null Hypothesis:
 - The **null Hypothesis** always states that there is **no difference**, **no relationship** between **variables in a study**.
 - In hypothesis testing,
 - the null hypothesis serves as the default or starting assumption that researchers aim to test.
 - For example:
 - 1. In a clinical trial,
 - the null hypothesis might state that a new drug has no effect on a disease compared to a placebo.
 - 2. In an experiment comparing two teaching methods,
 - **the null hypothesis** might state that there is **no difference** in the **average test scores** of students taught by the two methods.
 - 3. In a study examining the relationship between two variables,
 - the null hypothesis might state that there is no correlation between them.
 - In our problem null hypothesis can be stated as:
 - H_0 : the mean of the population is $\rightarrow \mu = 70 (== \mu_0)$.

- Step 3 Setup Alternate Hypothesis:
 - The alternative hypothesis (denoted as H_1 or H_a) is the statement that researchers
 - aim to provide evidence for in a statistical hypothesis test.
 - It is the opposite of the null hypothesis and represents
 - the presence of an effect, difference, or relationship that the researcher expects or hopes to find.
 - For Example:

Example 1:	The new drug has no effect on the disease compared to a placebo.		
Scenario	Null Hypothesis	Alternate Hypothesis	In Practice
Clinical Trial: New Drug vs. Placebo	 No difference in effect. H₀: μ_{drug} = μ_{placebo} 	 H_a: μ_{drug} ≠ μ_{placebo} Two-sided test. 	 H₁: μ_{drug} > μ_{placebo} We are only interested in improvement. One – sided alternative.

Example 2:	There is no difference in average test scores between methods A and methods B		
Scenario	Null Hypothesis	Alternate Hypothesis	In Practice
Teaching Methods Experiment Method A vs. Method B	H ₀ :?	H ₁ :?	H ₁ :?

- Step 3 Setup Alternate Hypothesis:
 - The alternative hypothesis (denoted as H_1 or H_a) is the statement that researchers
 - aim to provide evidence for in a statistical hypothesis test.
 - It is the opposite of the null hypothesis and represents
 - the presence of an effect, difference, or relationship that the researcher expects or hopes to find.
 - For Example:

Example 1:	The new drug has no effect on the disease compared to a placebo.		
Scenario	Null Hypothesis	Alternate Hypothesis	In Practice
Clinical Trial: New Drug vs. Placebo	 No difference in effect. H₀: μ_{drug} = μ_{placebo} 	 H_a: μ_{drug} ≠ μ_{placebo} Two-sided test. 	 H₁: μ_{drug} > μ_{placebo} We are only interested in improvement. One – sided alternative.

Example 2:	There is no difference in average test scores between methods A and methods B.		
Scenario	Null Hypothesis	Alternate Hypothesis	In Practice
Teaching Methods Experiment Method A vs. Method B	H_0 : $\mu_A = \mu_B$	H_1 : $\mu_A \neq \mu_B$	H_1 : $\mu_A > \mu_B$

- Step 4 Test your Hypothesis:
- Example: Hypothesis About the Mean:
 - Claim: "This new teaching method improves student performance."
 - Suppose student performance is measured by average test scores.
 - After implementing the new method in a sample of classrooms,
 - we observe an average score of 73 (which was 70 earlier).
 - We now test whether this observed increase is **statistically significant**, or just due to chance.

```
• H_0: \mu = 70

H_a: \mu > 70
```

- How:
 - I. Collect a sample test scores using the new method.
 - II. Compute the sample mean (\bar{x})
 - III. Conduct a test (e.g. one sample t test)
 - IV. Calculate the p value.
- To understand:
 - The null hypothesis serves as a **starting point** a baseline assumption that any **observed pattern in the data is due to random chance**.
 - Nothing unusual is happening. Show me strong enough evidence to believe otherwise.

- Step 5 Making Decisions:
 - The hypothesis we want to test is **whether H_a is likely true**.
 - So, there are two possible outcomes:
 - Reject H₀ and accept H_a because of sufficient evidence in the sample in favor of H_a.
 - Do not reject H₀ because of insufficient evidence to support H_a.

Very important!!!

Note that failure to **reject** H_0 does not mean the null hypothesis is true. There is no formal outcome that says "accept H_0 ". It only means that we do not have sufficient evidence to **support** H_a .

2. Types of Hypothesis Testing.

{One Vs. Two Tailed Test.}

2.1 One – Tailed Test.

- One-Tailed Test:
 - Purpose:
 - A one-tailed test is used when you are interested in detecting a difference in a specific direction.
 - You hypothesize that the true parameter is either greater than or less than a certain value, but not both.
 - Examples:
 - **Right-Tailed Test**: Testing if a new drug is more effective than the standard drug.
 - Left-Tailed Test: Testing if a machine produces fewer defective items than the industry standard.
 - Null and Alternative Hypotheses:

• Right Tailed:

$$H_0: \mu \leq \mu_0$$

 $H_a: \mu > \mu_0$


```
• Left Tailed:  H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0
```


2.2 Two – Tailed Test.

• Purpose:

- A two-tailed test is used when you are interested in detecting any significant difference
 - from the null hypothesis, regardless of the direction.
- You hypothesize that the true parameter is different from a specific value, but you don't specify a direction.

Examples:

- Testing if the average height of a group is different from a known average (it could be either greater or less).
- Testing if a new teaching method leads to a different average test score compared to the traditional method (it could be higher or lower).
- Null and Alternative Hypotheses:

• Two Tailed: H_0 : $\mu = \mu_0$ H_a : $\mu \neq \mu_0$

A. Before we Perform {Hypothesis}Test ...

{Let's define some of the terminologies used ...

A.1 Remember – Statistic ...

- Sample Statistic:
 - This is a statistic specifically used
 - to estimate a corresponding population parameter.
 - Sample Statistic are used to infer values
 - about the population.

Example: Sample Statistics.		
Population Parameter Sample Statistic		
Population mean µ	Sample mean x	
Population proportion p	Sample proportion p	
Population variance σ ²	Sample variance s ²	

Common Forms of Test Statistics			
Test Type	Formula	Description	
One – sample t - test	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$	Sample mean vs. hypothesized mean	
Z - test	$z = \frac{\widehat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$	Sample proportion vs. population proportion	
Two – sample t - test	$t = \frac{\overline{x_1} - \overline{x_2}}{SE_{diff}}$	Comparing two sample means.	

- Test Statistic:
 - A **test statistic** is a specific kind of statistic used to
 - determine **how far** the sample data **deviate** from
 - what is expected under the null hypothesis.
 - "A test statistic measures the distance (in standard error units) between your sample estimate and the null hypothesis value."
 - It converts the **difference between**
 - your observed value and the null value into a standardized value
 - (e.g., a z-score or t-score)
 - that can be compared to a **critical value**.
 - It answers the question:
 - "Is the observed result unusual enough to reject the null hypothesis?"

A.1.1 Test Statistic – How it is used?

- Calculate the test statistic from your sample data.
- Compare it to **the critical value** or use it to **compute the p value**.
- Make a decision:
 - Is the **test statistic** in **the rejection region**?
 - Is the result **statistically significant?**

A.1.2 How to Compute test statistics.

- A test statistic tells us how many standard errors our observed sample result is from the value specified in the null hypothesis.
 - Test statistics = $\frac{\text{sample estimate -Null value}}{\text{Standard error}}$
- First determine one sample or two sample test:
 - One sample test:
 - You have **one sample** and
 - want to test whether its mean (or proportion) is equal to a known or hypothesized population value.
 - Example: Is the average weight of packaged rice equal to 1 kg?
 - $\begin{cases}
 H_0: \mu = 1 \\
 H_a: \mu \neq 1
 \end{cases}$
 - Two sample test:
 - You want to compare the means or proportions of two independent groups.
 - Example: Do customers who received a discount spend more than those who didn't?
 - $\begin{cases}
 H_0: \mu_1 = \mu_2 \\
 H_1: \mu_1 \neq \mu_2
 \end{cases}$

ing CENTER FOR AI.

A.1.3 Test Statistic for Z test.

- Used when:
 - Population standard deviation σ is known or
 - Sample size $n \ge 30$
 - One sample Z test:
 - for Mean:

•
$$\mathbf{z}_{\text{statistic}} = \frac{\bar{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}}$$

• for proportion:

•
$$\mathbf{z}_{\text{statistic}} = \frac{\widehat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

- Two sample Z test:
 - for mean:

•
$$z_{\text{statistic}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}}$$

• for proportion:

•
$$\mathbf{z}_{\text{statistic}} = \frac{\widehat{\mathbf{p}_1} - \widehat{\mathbf{p}}_2}{\sqrt{\widehat{\mathbf{p}}(1-\widehat{\mathbf{p}})\left(\frac{1}{\mathbf{n}_1} + \frac{1}{\mathbf{n}_2}\right)}}$$

• $\widehat{\mathbf{p}} \to \frac{\mathbf{x_1} + \mathbf{x_2}}{\mathbf{n_1} + \mathbf{n_2}} \to \text{called pooled proportion and } \mathbf{x} \to \text{number of sucess in group } \mathbf{1}(\mathbf{x_1}) \text{ and } \mathbf{2}(\mathbf{x_2}).$

A.1.4 Test Statistic for t – test.

- Used when:
 - σ unknown and
 - Typically, small sample sizes n < 30
 - One sample t test for mean:

•
$$t_{statistic} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$
; for $df = n - 1$

• Two sample t – test for mean:

•
$$t_{\text{statistic}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- This is called **Welch's t-test** (default in most statistical software)
 - and used when we have unequal variances.
- Degrees of freedom welch Satterthwaite Approximation:

• **df** =
$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1^2)^2}{n_1-1} + \frac{(s_2^2/n_2^2)^2}{n_2-1}}$$

Standard Normal PDF

Significance Level (α =0.05)

A.2 Some Key Concepts – Significance Level.

- Significance level (denoted α):
 - The **significance level** α is the **threshold** we set **before** doing the test to decide
 - how much evidence we need to reject the null hypothesis.
 - It is the **maximum probability** of making a **Type I error** (**rejecting a true null hypothesis**)
 - that we are **willing to tolerate**.
 - **Typical Values**: Common significance levels are **0.05**, **0.01**, **and 0.10**.
 - Usage:

• It is used to determine the critical value(s) and to interpret the p-value.

Left-Tailed Hypothesis Test Illustration

• If the *p-value is less than* α , the **null hypothesis** is *rejected*.

• The shaded red area in the plots represents the critical region, which has a total area equal to α .

A.3 Some Key Concepts - Critical Value.

Critical Value:

- A critical value is the cutoff point on the distribution curve that defines the boundary of the rejection region in a hypothesis test.
- It is the value beyond which we consider a result to be statistically significant at a given significance level α .
- It is **fixed before the test** and acts like a **benchmark**.

What Does It Do?

- The **critical value** helps you decide:
 - When your test statistic is far enough from the null hypothesis value
 - Whether to reject the null hypothesis.

General Rule:

- If the test statistic exceeds the critical value (in the direction specified by the alternative hypothesis),
 - you reject the null hypothesis.

• Depends On:

- **Type of test** (z, t, etc.)
- Significance level ($\alpha \rightarrow 0.05, 0.01$)
- One-tailed or two-tailed test
- Degrees of freedom (for t-tests)

Test Statistic vs. Critical Value

A.3.1 How to Compute the Critical Value?

- For a **z test** when population standard deviation is known or large n:
 - Two tailed test:
 - $\mathbf{z}_{\text{critical}} = \pm \mathbf{z}_{\frac{\alpha}{2}}$
 - One tailed test:
 - $\mathbf{z}_{critical} = \mathbf{z}_{\alpha}(\text{right tail}) \text{ or } \mathbf{z}_{critical} = -\mathbf{z}_{\alpha}(\text{left tail})$

```
from scipy.stats import norm

alpha = 0.05

z_critical_two_tail = norm.ppf(1 - alpha/2) # For two-tailed
z_critical_right = norm.ppf(1 - alpha) # For right-tailed
z_critical_left = norm.ppf(alpha) # For left-tailed
```


- Interpretation:
 - Since the observed z-score (1.80) is greater than the critical z-value (1.64), it falls into the critical region.
 - Alternatively, since the p-value (0.036) is less than the significance level ($\alpha = 0.05$),
 - we would reject the null hypothesis at the 0.05 significance level.
- This suggests there is enough evidence to support the alternative hypothesis in a right-tailed test.

A.3.1 How to Compute the Critical Value?

- For a **t test** when population std is unknown and small sample size:
- Use the t distribution with calculated degree of freedom:
 - Two tailed test:
 - $\mathbf{t}_{\text{critical}} = \pm \mathbf{t}_{\frac{\alpha}{2}}$
 - One tailed test:
 - $t_{critical} = t_{\alpha}(right \ tail) \ or \ t_{critical} = -t_{\alpha}(left \ tail)$

```
from scipy.stats import t

df = 29
alpha = 0.05

t_critical_two_tail = t.ppf(1 - alpha/2, df)
t_critical_right = t.ppf(1 - alpha, df)
t_critical_left = t.ppf(alpha, df)
```


Standard Normal PDF

A.4 Some Key Concepts – p –Value.

- The **p-value** is the **probability of obtaining a result** as extreme (or more extreme)
 - than the observed test statistic, assuming the null hypothesis is true.
- It answers:
 - "If H₀ is true, how rare is this result?"
- Decision Rule:
 - If p value $< \alpha \rightarrow$ Reject the null hypothesis.
 - If p value $\geq \alpha \rightarrow$ Do not reject.
- Important p value is calculated from the data and α is chosen before the test.
- How to compute the p value?
 - The p-value is the area under the curve beyond the observed test statistic (depends on test direction).


```
from scipy.stats import t
t stat = 2.2; df = 29 # your test statistic
# Two-tailed
p two tailed = 2 * (1 - t.cdf(abs(t stat), df))
# Right-tailed
p right = 1 - t.cdf(t_stat, df)
# Left-tailed
p_left = t.cdf(t_stat, df)
                                                 othesis Testing
```


Left-Tailed Hypothesis Test Illustration

A.5 Hypothesis Testing: Error.

- When we perform a hypothesis test, we make a **decision**
 - either to reject or not reject the null hypothesis H₀
 - But since we're using a sample (not the full population),
 - there's always a chance of making the **wrong decision**.
- There are **two main types of errors**:
 - Type I Error (False Positive)
 - Type II Error (False Negative)

	H_0 is true	H_1 is true
Do not reject H_0	Correct decision	Type II error
Reject H_0	Type I error	Correc t decision

Fig: Types of error in Hypothesis Testing.

A.5.1 Hypothesis Testing: Error.

Type – I Error

- Definition:
 - Rejecting the null hypothesis when it is actually true.
 - Controlled by the **significance level** α .
 - The **probability** of committing a **Type I error**
 - is called the **level of significance**.
- "I'm willing to accept a $\alpha = 5\%$ chance of incorrectly thinking the new page is better when it's not."

Type – II Error

- Type II Error (False Negative)
 - Definition:
 - **Failing to reject** the null hypothesis when it is actually **false**.
 - Probability is denoted by β .
 - Power = 1β :
 - probability of correctly rejecting a false H_0

Getting Back to Hypothesis testing ...

{3. Critical Value and Decision Rule.}

3.1 Step 1: Determine the Critical Value.

- Find the **critical value** from the appropriate distribution (e.g., t-distribution or z-distribution), based on:
 - The chosen significance level α .
 - The **degrees of freedom** (if applicable)
 - The **type of test** (one-tailed or two-tailed)

3.1 Step 1: Determine the Critical Value.

- Find the **critical value** from the appropriate distribution (e.g., t-distribution or z-distribution), based on:
 - The chosen significance level α .
 - The **degrees of freedom** (if applicable)
 - The **type of test** (one-tailed or two-tailed)

3.2 Step 2: Decision Rule (Based on Tail Type)

- Left Tailed Test:
 - Reject the null hypothesis if:
 - test statistic ≤ crtical value

- Right Tailed Test:
 - Reject the null hypothesis if:
 - test statistic ≥ crtical value

- Two Tailed Test:
 - · Reject the null hypothesis if:
 - $|test statisti| \ge |crtical value|$ or
 - test statistic \leq -crtical value or test statistic \geq critical value

3.2 Step 2: Decision Rule (Based on Tail Type)

Let's do an Example ...

Evaluating Sales Training ...

• Background:

CENTER FOR AL

• Your company recently conducted a **sales training program** for a group of sales employees, aiming to improve their monthly sales performance. Now, management wants to know whether the training actually led to a **statistically significant improvement** in average sales.

• Objective:

• Use a two-sample t-test to determine whether the trained group has a significantly higher average monthly sales than the untrained group.

Data Summary:			
Group	Sample Size (n)	Mean Monthly Sales (Rs.)	Sample Std. Deviation (Rs.)
Trained Group	30	9,800	1,100
Untrained Group	35	9,200	1,000

Evaluating Sales Training ...

Questions:

- 1. State the null and alternative hypotheses.
 - Be clear about whether it is one-tailed or two-tailed.
- **2.** Check if the assumptions for using a two-sample t-test are satisfied:
 - Are the samples independent?
 - Is it reasonable to assume normality or use the Central Limit Theorem?
- 3. Calculate the test statistic and degrees of freedom using the Welch's t-test formula (unequal variances assumed).
- 4. Determine the p-value and interpret the result at $\alpha = 0.05$.
- 5. Make a business recommendation:
 - Should the company roll out the training program company wide?
 - Discuss the risk of **Type I** and **Type II errors** in your conclusion.

1. State the Hypotheses.

- Goal:
 - Test if the training improved sales (i.e., trained group's mean is greater than untrained group).
 - Let:
 - μ₁: mean sales of trained group
 - μ₂: mean sales of untrained group
 - Hypotheses Statement:

```
 \begin{cases} H_0: \mu_1 = \mu_2 \ (no \ improvement) \\ H_a: \mu_1 > \mu_2 \ (training \ improved \ sales) \end{cases}
```

• Right Tailed Test.

2. Assumptions Check ...

- Two **independent** samples.
- Sample Sizes > 30 → CLT applies i.e. normality assumption can be made reasonably.
- **Unequal variances** → we will use **Welch's t test**.

Data Summary:			
Group	Sample Size (n)	Mean Monthly Sales (Rs.)	Sample Std. Deviation (Rs.)
Trained Group	30	9,800	1,100
Untrained Group	35	9,200	1,000

3. Compute the Test Statistic

• Formula (Welch's t – test):

•
$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$$

Given:

$$\begin{array}{l} \bullet \quad \bar{x}_1=9800, s_1=1100, n_1=30 \\ \bullet \quad \bar{x}_2=9200, s_2=1000, n_2=35 \\ \bullet \quad t=\frac{9800-9200}{\sqrt{\frac{1100^2}{30}+\frac{1000^2}{35}}}=\frac{600}{\sqrt{40333.33+28571.43}}\approx 2.287 \end{array}$$

- Compute Degree of Freedom:
 - Using welch Satterthwaite approximation:

• df =
$$\frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}} \approx 57.3$$

4. Find a p – value.

• Using scipy.stats.t:

Cautions !!!			
Test Type	Condition	Python Code	
Right - tailed	t > 0	p_val= 1 - t.cdf(t_stat, df)	
Left - tailed	t < 0	p_val= t.cdf(t_stat, df)	
Two - tailed	any	p_val= 2 *(1 - t.cdf(abs(t_stat), df))	

• Expected Output:

t-statistic: 2.287

• Degrees of freedom: 57.31

• p-value: 0.0129

5. Decision and Interpretation.

- $p = 0.0129 < \alpha = 0.05$
- Decision: Reject H₀
- Interpretation:
 - There is **statistically significant** evidence at the **5% level** that the sales training program
 - increased average monthly sales.
 - The company should consider rolling out the program more broadly.

Thank You.