Geometria

Lic. Ciências da Computação 19/04/2017 Primeiro Teste

Todas as respostas devem ser justificadas e os cálculos devem ser apresentados.

1. Seja \mathcal{A} um plano euclidiano munido de referencial $\mathcal{R} = \{O, \mathcal{B} = (\vec{v}_1, \vec{v}_2)\}$, verificando

$$\vec{v}_1 \cdot \vec{v}_1 = 2$$
, $\vec{v}_1 \cdot \vec{v}_2 = -1$, $\vec{v}_2 \cdot \vec{v}_2 = 1$.

- (a) Determine a amplitude do ângulo (não orientado) formado por \vec{v}_1 e \vec{v}_2 ;
- (b) Determine a distância entre os pontos $A \in B$, onde $A = (1,0)_{\mathcal{R}} \in B = (2,1)_{\mathcal{R}}$.
- 2. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado. Sejam A, B e C três pontos de \mathcal{A} tais que

$$d(A, B) = 1$$
, $d(A, C) = 2$, $\cos \angle (\overrightarrow{AB}, \overrightarrow{AC}) = 1/2$.

Determine d(B, C).

- 3. Seja \mathcal{A} um espaço afim tridimensional munido de referencial ortonormado. Determine a área do paralelogramo formado pelos vetores $\vec{u} = (2, 0, -1)$ e $\vec{v} = (1, -1, 1)$.
- 4. Seja \mathcal{A} um espaço afim tridimensional munido de referencial ortonormado. Considere a reta r e o plano π dados na forma vetorial por

$$r = \langle (2,1,0) \rangle$$
 e $\pi = (1,-1,2) + \langle (1,1,1), (-1,0,1) \rangle$

- (a) Determine um sistema de equações cartesianas de r.
- (b) Determine uma equação cartesiana de π .
- (c) Verifique se a reta r é ou não paralela ao plano π .
- 5. Seja \mathcal{A} um espaço afim tridimensional munido de referencial ortonormado. Mostre que as retas

$$r = (1, 2, 0) + \langle (1, 0, 1) \rangle$$
 e $s = (0, 2, -1) + \langle (1, 0, -1) \rangle$

são complanares e determine a equação cartesiana do plano que contém r e s.

6. Seja \mathcal{A} um espaço afim tridimensional munido de referencial ortonormado. Considere a reta r e o plano π dados na forma cartesiana por

$$r: \left\{ \begin{array}{l} x = 1 + z \\ y = -1 \end{array} \right.$$
 e $\pi: x + z - 2 = 0.$

Mostre todos os pontos de r têm como projeção ortogonal em π o ponto $Q=(\frac{3}{2},-1,\frac{1}{2})$. Interprete geometricamente este resultado.

Cotações: 1) 1+1 valores; 2) 1 valor; 3) 1 valor; 4) 1+1+1 valores; 5) 1.5 valores; 6) 1.5 valores.