Linear Algebra

[KOMS120301] - 2023/2024

13.2 - Jenis Transformasi Linier

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 13 (November 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan konsep berbagai jenis transformasi linier antar vektor dalam ruang vektor;
- melakukan transformasi linier (refleksi, proyeksi, rotasi, dilatasi, ekspansi, geser) pada suatu vektor dalam ruang vektor.

Transformasi Matriks Dasar di \mathbb{R}^2 dan \mathbb{R}^3

(page 259 of Elementary LA Applications book)

1. Refleksi

Operator refleksi pada \mathbb{R}^2

Operator refleksi adalah operator pada \mathbb{R}^2 (atau \mathbb{R}^3) yang memetakan setiap titik ke dalam gambar simetrisnya terhadap garis atau bidang yang memuat titik asal.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the <i>x</i> -axis T(x, y) = (x, -y)	$T(\mathbf{x})$ (x, y) (x, y)	$T(\mathbf{e}_1) = T(1,0) = (1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	(-x, y) = (x, y) $T(x)$ x	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	T(x) = x $(y, x) y = x$ $(x, y) x$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Operator refleksi pada \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the <i>xy</i> -plane $T(x, y, z) = (x, y, -z)$	$T(\mathbf{x}) = \begin{pmatrix} z \\ x \\ y \end{pmatrix}$ $T(\mathbf{x}) = \begin{pmatrix} x \\ y \\ y \end{pmatrix}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz -plane T(x, y, z) = (x, -y, z)	(x, -y, z) $T(x)$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane $T(x, y, z) = (-x, y, z)$	$T(\mathbf{x}) = \begin{cases} (-x, y, z) \\ (x, y, z) \end{cases}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

2. Proyeksi

Operator proyeksi pada \mathbb{R}^2

Operator proyeksi atau operator proyeksi ortogonal adalah operator matriks pada \mathbb{R}^2 (atau \mathbb{R}^3) yang memetakan setiap titik ke dalam proyeksi ortogonalnya ke garis tetap atau bidang yang melalui titik asal.

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection onto the x-axis $T(x, y) = (x, 0)$	(x, y) $T(x)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	(0, y) $T(x)$ x x	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Operator proyeksi pada \mathbb{R}^3

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy -plane $T(x, y, z) = (x, y, 0)$	x x (x, y, z) y (x, y, 0)	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz -plane $T(x, y, z) = (x, 0, z)$	(x, 0, z) $T(x)$ x y x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz -plane $T(x, y, z) = (0, y, z)$	$T(\mathbf{x}) = \begin{cases} (0, y, z) \\ T(\mathbf{x}, y, z) \end{cases}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Untuk memahami proyeksi pada \mathbb{R}^3 dengan lebih baik, Anda dapat menyimak video ini.

https://www.youtube.com/watch?v=RxRwK81CVew

3. Rotasi

Operator rotasi pada \mathbb{R}^2

Operator rotasi adalah operator matriks pada \mathbb{R}^2 atau \mathbb{R}^3 yang memindahkan titik sepanjang busur lingkaran yang berpusat di asal.

Cara mencari matriks standar untuk operator rotasi $T: \mathbb{R}^2 \to \mathbb{R}^2$ yang memindahkan titik berlawanan arah jarum jam di sekitar titik asal melalui sudut positif θ ?

 $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$ Matriks transformasi standar untuk T adalah:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Review terkait "angle"

Konversi dari o ke rad

- $\bullet \ 180^o = 1\pi \ \mathrm{rad}$
- ullet $1^o=rac{\pi}{180}$ rad

Operator rotasi pada \mathbb{R}^2 (cont.)

Matriks:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

disebut matriks rotasi untuk \mathbb{R}^2 .

Misalkan $\mathbf{x}=(x,y)\in\mathbb{R}^2$ dan $\mathbf{w}=(w_1,w_2)$ menjadi bayangannya saat diputar. Kemudian:

$$\mathbf{w} = R_{\theta}\mathbf{x}$$

with:

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	y (w_1, w_2) θ x (x, y) x	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Contoh: operator rotasi

Carilah bayangan $\mathbf{x}=(1,1)$ dengan rotasi $\pi/6$ rad $(=30^{o})$ terhadap titik asal.

Solusi:

Kita tahu bahwa $\sin(\pi/6) = \frac{1}{2} \operatorname{dan} \cos(\pi/6) = \frac{\sqrt{3}}{2}$.

Dari formula sebelumnya:

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

Rotasi di \mathbb{R}^3

Rotasi dalam \mathbb{R}^3 umumnya digambarkan sebagai sumbu rotasi dan vektor satuan ${\bf u}$ di sepanjang garis tersebut.

Aturan tangan kanan digunakan untuk menentukan tanda sudut rotasi.

- Jika sumbunya adalah sumbu x, y, atau z, maka ambillah vektor satuan \mathbf{i} , \mathbf{j} , dan \mathbf{k} .
- Sudut rotasi akan menjadi *positif jika berlawanan arah jarum jam* menghadap ke titik asal sepanjang sumbu koordinat positif dan akan menjadi *negatif jika searah jarum jam*.

Rotasi di \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	X X	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive z-axis through an angle θ	x w	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

4. Dilatasi dan kontraksi

Dilatasi dan kontraksi

Misalkan $k \in \mathbb{R}, k \geq 0$. Operatornya:

$$T(\mathbf{x}) = k\mathbf{x}$$

pada \mathbb{R}^2 atau \mathbb{R}^3 mendefinisikan penambahan atau pengurangan panjang vektor \mathbf{x} dengan faktor k.

- Jika k > 1, disebut dilatasi dengan faktor k;
- Jika $0 \le k \le 1$, maka disebut kontraksi dengan faktor k.

Dilatasi & kontraksi di \mathbb{R}^2

Operator	Illustration $T(x, y) = (kx, ky)$	Effect on the Unit Square	Standard Matrix
Contraction with factor k in R^2 $(0 \le k < 1)$	$T(\mathbf{x}) = \begin{cases} \mathbf{x} & (x, y) \\ (kx, ky) & x \end{cases}$	$(0,1)$ $(0,k)$ \vdots $(k,0)$	[<i>k</i> 0]
Dilation with factor k in R^2 $(k > 1)$	Y $T(\mathbf{x})$ (kx, ky) \mathbf{x} (x, y)	$(0,1) \qquad (0,k) \qquad \uparrow \uparrow \qquad \vdots \qquad$	[0 k]

Dilatasi & kontraksi di \mathbb{R}^3

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	z $T(\mathbf{x}) = (kx, ky, kz)$ y	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 $(k > 1)$	$z \qquad (kx, ky, kz)$ $T(x) \qquad \qquad x \qquad (x, y, z)$	[0 0 k]

5. Ekspansi dan kompresi

Ekspansi dan kompresi

Dalam dilatasi atau kontraksi \mathbb{R}^2 atau \mathbb{R}^3 , **semua koordinat** dikalikan dengan faktor non-negatif k.

Sekarang bagaimana jika hanya satu koordinat dikalikan dengan k?

- Jika k > 1, disebut ekspansi dengan faktor k searah sumbu koordinat (x, y, atau z);
- Jika $0 \le k \le 1$, disebut kompresi

Ekspansi dan kompresi in \mathbb{R}^2 (pada arah x)

Operator	Illustration $T(x, y) = (kx, y)$	Effect on the Unit Square	Standard Matrix
Compression in the x -direction with factor k in R^2 $(0 \le k < 1)$	$ \begin{array}{c} y \\ (kx, y) \\ T(x) \\ x \end{array} $	(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)	$\begin{bmatrix} k & 0 \end{bmatrix}$
Expansion in the x -direction with factor k in R^2 $(k > 1)$	(x, y) (kx, y)	(0, 1) (0, 1) (0, 1) (0, 1) (0, 1)	[0 1]

Ekspansi dan kompresi in \mathbb{R}^2 (pada arah y)

Operator	Illustration $T(x, y) = (x, ky)$	Effect on the Unit Square	Standard Matrix
Compression in the y-direction with factor k in R^2 $(0 \le k < 1)$	(x, y) (x, ky) (x, ky) (x, ky)	(0,1) $(0,k)$ $(1,0)$	[1 0]
Expansion in the y-direction with factor k in R^2 $(k > 1)$	T(x) $T(x)$	(0, 1) (0, k) 1 1 1 (1, 0)	[0 k]

6. Shear

Shear

Operator matriks berbentuk:

$$T(x,y) = (x + ky, y)$$

menerjemahkan titik (x, y) pada bidang xy yang sejajar dengan sumbu x dengan jumlah ky yang sebanding dengan koordinat y titik tersebut.

Ini disebut geser ke arah x dengan faktor k.

Demikian pula, operator matriks:

$$T(x,y) = (x, y + kx)$$

disebut geser ke arah y dengan faktor k.

Jika k > 0, maka gesernya ke arah positif. Ketika k < 0, arahnya negatif.

Shear

Operator	Effect on the Unit Square	Standard Matrix
Shear in the x -direction by a factor k in R^2 $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \line(0,1) \lin$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear in the y-direction by a factor k in R^2 $T(x, y) = (x, y + kx)$	$(0,1) \qquad (0,1) \qquad (0,1) \qquad (0,1) \qquad (1,k) \qquad (1,k) \qquad (1,k) \qquad (1,k) \qquad (1,k)$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Contoh

Jelaskan operator matriks yang matriks standarnya sebagai berikut:

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solusi:

Dari tabel pada slide sebelumnya kita dapat melihat bahwa:

- A_1 berhubungan dengan pergeseran ke arah x dengan faktor 2;
- A_2 berhubungan dengan pergeseran ke arah x dengan faktor -2;
- A₃ berhubungan dengan pelebaran dengan faktor 2;
- A_4 berhubungan dengan perluasan ke arah x dengan faktor 2.

Contoh (cont.)

Jelaskan secara geometris hasil transformasinya:

Latihan

bersambung..