Princípio da Redução

Teoria da Computação

INF05501

Relembrando

- Vimos que a solucionabilidade de problemas pode ser verificada usandose problemas de decisão descritos na forma de problemas de reconhecimento de linguagens
- Desta forma, um problema é solucionável se a correspondente linguagem é recursiva e é parcialmente solucionável se a linguagem for enumerável recursivamente
- Vimos também que usamos uma função bijetora para codificar programas e/ou máquinas para podermos transformá-los em problemas de decisão do tipo de reconhecimento de linguagens

Problema da Auto-Aplicação

Dado um programa monolítico arbitrário P para a Máquina Norma, decidir se a função computada $\langle P, Norma \rangle$ é definida para p, onde p é a codificação de P

Problema da Auto-Aplicação

Dado um programa monolítico arbitrário P para a Máquina Norma, decidir se a função computada $\langle P, Norma \rangle$ é definida para p, onde p é a codificação de P

Isto é:

"Existe um programa monolítico em Norma capaz de processar a si mesmo?"

Problema da Auto-Aplicação (cont.)

- ullet Logo, o problema da auto-aplicação corresponde a, dado um programa monolítico arbitrário P para Norma, decidir se a computação de P em Norma termina para a entrada p
- Podemos descrever tal problema como uma linguagem:

```
L_{AA} = \{p \mid \langle P, Norma \rangle (p) \text{ \'e definida, } P \text{ \'e programa de Norma e } p = cod\_bij(P)\}
```

Problema da Auto-Aplicação é Parcialmente Solucionável

Problema da Auto-Aplicação é Parcialmente Solucionável

Isto é, a linguagem L_{AA} é enumerável recursivamente

Problema da Auto-Aplicação é Parcialmente Solucionável

Isto é, a linguagem L_{AA} é enumerável recursivamente

Para a prova, precisamos mostrar que existe um programa monolítico ${\cal Q}$ para Norma, tal que:

$$ACEITA(Q) = L_{AA}$$

 $REJEITA(Q) \cup LOOP(Q) = \Sigma^* - L_{AA}$

Prova do Teorema 1

Sejam:

P um **programa monolítico** qualquer para Norma

 ${\it Q}$ um **programa monolítico** para Norma capaz de **simular qualquer outro programa**

A entrada para $Q \not\in p = cod_bij(P)$, sendo que Q simula P para a entrada p

 $p \in ACEITA(Q)$ sss $\langle P, Norma \rangle(p)$ é definido, ou seja, a **computação** de P em Norma é **finita**

 $p \in LOOP(Q)$ sss $\langle P, Norma \rangle(p)$ é indefinido, ou seja, a **computação** de P em Norma é **infinita**

 $REJEITA(Q) = \emptyset$ (consequência dos dois casos acima)

Portanto:

$$ACEITA(Q) = L_{AA}$$

$$REJEITA(Q) \cup LOOP(Q) = \Sigma^* - L_{AA}$$

Portanto:

$$ACEITA(Q) = L_{AA}$$

$$REJEITA(Q) \cup LOOP(Q) = \Sigma^* - L_{AA}$$

Do que se conclui que L_{AA} é enumerável recursivamente

Portanto:

$$ACEITA(Q) = L_{AA}$$

$$REJEITA(Q) \cup LOOP(Q) = \Sigma^* - L_{AA}$$

Do que se conclui que L_{AA} é enumerável recursivamente

Logo, o Problema da Auto-Aplicação é parcialmente solucionável

Problema da Auto-Aplicação é Não-Solucionável

Problema da Auto-Aplicação é Não-Solucionável

Isto é, a linguagem L_{AA} não é recursiva

Problema da Auto-Aplicação é Não-Solucionável

Isto é, a linguagem L_{AA} não é recursiva

A prova é por absurdo, portanto, supõe-se que L_{AA} é recursiva Então, existe uma programa Q para Norma tal que:

$$ACEITA(Q) = L_{AA}$$

 $REJEITA(Q) = \Sigma^* - L_{AA}$
 $LOOP(Q) = \emptyset$

Prova do Teorema 2

Suponha um programa R igual a Q, mas que possui um **trecho de programa** a mais, o qual é **executado ao final de cada computação finita** de Q Tal trecho tem a seguinte **função**:

- Ao final da computação, testa o valor de saída de Q
- Se Q aceita ou rejeita, então R fica em loop infinito
- Se Q fica em loop infinito, então R aceita

Assim, para a aplicação de R como entrada de R, tem-se, dado que $r=cod_bij(R)$, que:

- R fica em loop infinito quando Q, ao simular R, aceita ou rejeita $\Rightarrow R$ fica em loop infinito quando Q para
- R para quando Q, ao simular R, fica em loop infinito $\Rightarrow R$ para quando Q fica em loop infinito

Assim, para a aplicação de R como entrada de R, tem-se, dado que $r = cod_bij(R)$, que:

- R fica em loop infinito quando Q, ao simular R, aceita ou rejeita $\Rightarrow R$ fica em loop infinito quando Q para
- R para quando Q, ao simular R, fica em loop infinito $\Rightarrow R$ para quando Q fica em loop infinito

Isto caracteriza uma **contradição** e, portanto, L_{AA} não é recursiva

Assim, para a aplicação de R como entrada de R, tem-se, dado que $r = cod_bij(R)$, que:

- R fica em loop infinito quando Q, ao simular R, aceita ou rejeita $\Rightarrow R$ fica em loop infinito quando Q para
- R para quando Q, ao simular R, fica em loop infinito $\Rightarrow R$ para quando Q fica em loop infinito

Isto caracteriza uma **contradição** e, portanto, L_{AA} não é recursiva

Logo, o Problema da Auto-Aplicação é não-solucionável

Princípio da Redução

- Consiste na construção de um algoritmo de mapeamento entre linguagens que codificam problemas
- Sabendo-se a classe de uma das linguagens envolvidas, pode-se estabelecer certas conclusões acerca da outra linguagem
- Deste modo, sendo conhecida a classe de solucionabilidade de um dos problemas codificados como uma linguagem, é possível derivarem-se informações sobre a classe a que o outro problema codificado pertence

Princípio da Redução (cont.)

- Para o estudo do Princípio da Redução, supõe-se o seguinte:
 - Função de codificação bijetora codigo para qualquer Máquina Universal
 - Problema da Auto-Aplicação para qualquer Máquina Universal
- Tais suposições garantem a generalidade das definições e resultados a serem estudados
- Para a comparação de linguagens, usa-se uma máquina de redução

Máquina de Redução

Sejam dois problemas A e B e as correspondentes linguagens L_A e L_B Uma Máquina de Redução R de L_A para L_B é tal que, para $w \in \Sigma$:

- Se $w \in L_A$, então $R(w) \in L_B$
- Se $w \notin L_A$, então $R(w) \notin L_B$

Portanto, o mapeamento de linguagens é uma função computável total

Teorema da Redução

Sejam dois problemas A e B e as correspondentes linguagens L_A e L_B Se existe uma máquina de redução R de L_A para L_B (sobre um alfabeto Σ), então os seguintes resultados podem ser estabelecidos:

- Se L_B é recursiva, então L_A é recursiva (Caso 1)
- Se L_B é enumerável recursivamente, então L_A é enumerável recursivamente (Caso 2)
- Se L_A não é recursiva, então L_B não é recursiva (Caso 3)
- Se L_A não é enumerável recursivamente, então L_B não é enumerável recursivamente (Caso 4)

Prova do Teorema da Redução

Seja R uma Máquina de Turing de Redução que sempre para e que reduz L_A a L_B

Iremos considerar cada caso para a prova.

Caso 1: L_B é recursiva

Caso 1: L_B é recursiva

Se L_B é recursiva, então deve existir uma **Máquina Universal** M_B que aceita L_B e **sempre para para qualquer entrada**

Seja a seguinte Máquina Universal M:

Pode-se concluir que:

- M sempre para qualquer entrada, pois R e M_B sempre param
- Se $w \in L_A$, então M aceita w, pois $R(w) \in L_B$
- Se $w \notin L_A$, então M rejeita w, pois $R(w) \notin L_B$

Portanto, M aceita L_A e sempre para para qualquer entrada

Logo, L_A é uma linguagem recursiva

Caso 2: L_B é enumerável recursivamente

Caso 2: L_B é enumerável recursivamente

Se L_B é enumerável recursivamente, então deve existir uma **Máquina Universal** M_B tal que

$$ACEITA(M_B) = L_B$$

 $REJEITA(M_B) \cup LOOP(M_B) = \Sigma^* - L_B$

Seja a seguinte Máquina Universal M:

Pode-se concluir que:

- Se $w \in L_A$, então M aceita w, pois $R(w) \in L_B$
- Se $w \notin L_A$, então M rejeita w ou fica em loop infinito, pois M_B rejeita ou fica em loop infinito para a entrada R(w)

Portanto, M aceita L_A , mas pode ficar em loop infinito para entradas que não pertencem à L_A

Logo, L_A é uma linguagem enumerável recursivamente

Por contraposição, os casos 3 (L_A não é recursiva) e 4 (L_A não é enumerável recursivamente) são equivalentes aos casos 1 e 2, respectivamente

Isto é,

 $r_A: A$ é recursiva

 $r_B: B$ é recursiva

 $e_A: A$ é enumerável recursivamente

 $e_B: B$ é enumerável recursivamente

$$(r_B \to r_A) \Leftrightarrow (\neg r_A \to \neg r_B)$$

 $(e_B \to e_A) \Leftrightarrow (\neg e_A \to \neg e_B)$

Podemos estabelecer as seguintes relações entre problemas e linguagens que os codificam:

Linguagem recursiva ⇔ Problema solucionável

Linguagem enumerável recursivamente \Leftrightarrow Problema parcialmente solucionável

Então, dados dois problemas A e B, se for possível reduzir A a B, temos que

• Se B é solucionável, então A é solucionável

Então, dados dois problemas A e B, se for possível reduzir A a B, temos que

- Se B é solucionável, então A é solucionável
- ullet Se B é parcialmente solucionável, então A é parcialmente solucionável

Então, dados dois problemas A e B, se for possível reduzir A a B, temos que

- Se B é solucionável, então A é solucionável
- ullet Se B é parcialmente solucionável, então A é parcialmente solucionável
- Se A é não-solucionável, então B é não-solucionável

Então, dados dois problemas A e B, se for possível reduzir A a B, temos que

- Se B é solucionável, então A é solucionável
- ullet Se B é parcialmente solucionável, então A é parcialmente solucionável
- Se A é não-solucionável, então B é não-solucionável
- Se A não é parcialmente solucionável, então B não é parcialmente solucionável

Tarefa

Em grupos de 2 ou 3 componentes, realizar o seguinte:

- Escolher um **problema indecidível**
- Enviar, por e-mail, nomes dos componentes do grupo e problema escolhido até 14/06
- Escrever uma **pequena monografia** onde constem:
 - Descrição informal do problema
 - Definição formal do problema em termos de um problema de reconhecimento de linguagens
 - Demonstração da indecidibilidade do problema descrito (indicando o uso do Princípio da Redução)
 - Bibliografia utilizada (livro(s))
- Entregar monografia e apresentar o trabalho ao professor no dia 23/06