

Mediation Analysis with Bayesian Nonlinear Joint Models: Evaluating Treatment Pathways via Tumor Growth Kinetics.

Georgios Kazantzidis 1,2 , François Mercier 1 , Virginie Rondeau 2

 1 F. Hoffmann-La Roche AG, Basel, Switzerland 2 Bordeaux Population Health, Inserm U1219, France

Background

In oncology, it is crucial to quantify how much of a treatment's survival benefit operates through **tumor dynamics** to inform *surrogacy* and mechanism-of-action claims.

The Proportion of Treatment Effect (PTE) is a well know estimand in mediation analysis.

Tumor size attributes are already practically used as surrogates of overall survival without extensive validation.

Objectives

Introduce a **Bayesian joint-model mediation** framework: a nonlinear Tumor Growth Inhibition (TGI) model for longitudinal tumor size SLD (sum of longest diameters) measurements coupled with a parametric survival model.

Estimate **natural direct/indirect effects** and the **PTE** mediated by tumor kinetics to Overall Survival (OS).

Compare biologically motivated link functions between tumor size attributes and OS.

Evaluate bias via simulations; apply to IMbrave150 clinical trial.

Longitudinal Sub-model: Tumor growth inhibition Stein-Fojo

$$y_{ij} = g_i(t_{ij})(1 + \epsilon_{ij})$$

$$g_i(t) = \underbrace{\mu_{m_0} e^{\xi_{m_0}}}_{m_0} [exp\{\underbrace{\mu_{k_g} e^{\xi_{k_{g_i}} + \beta_{k_g} Z_i}}_{k_g} t\} + exp\{-\underbrace{\mu_{k_s} e^{\xi_{k_{s_i}} + \beta_{k_s} Z_i}}_{k_s} t\} - 1]$$

 y_{ij} Observed SLD for subjet i at time j

g(t) Expected SLD (mm)

 k_q Tumor growth rate $(year^{-1})$

 k_s Tumor shrinkage rate $(year^{-1})$

 m_0 Baseline expected SLD (mm)

 $\xi_{k_{s_i}}, \xi_{k_{g_i}}, \xi_{m_{0_i}}$ random effects

 $\mu_{k_s}, \mu_{k_g}, \mu_{m_0}$ population effects

 $\beta_{k_s}, \beta_{k_g}, Z_i$ Treatment effect and indicator

Survival Sub-model: Proportional hazard

$$\lambda_i(t|h(\cdot)) = \lambda_0(t) \exp\{\eta h(\cdot) + \beta_{os} Z_i\}$$

 $\lambda_i(t|h(\cdot))$: Hazard function linked to the TGI process. $\lambda_0(t)$: Baseline hazard function. η : Parameter of association. β_{os} : Parameter of treatment (Z_i) effect on the survival process.

Description	Mathematical Expression
Expected tumor size	$g_i(t)$
Tumor growth	$\log k_{g_i}$
Tumor shrinkage	$\log k_{s_i}$
Slope of tumor size	$g_i'(t)$
Time to nadir	$\frac{\log\left(\frac{k_{s_i}}{k_{g_i}}\right)}{k_{s_i} + k_{g_i}}$

Proportion of Treatment Effect - Counterfactuals

Natural Indirect Effect: $NIE(t) = \mathbb{S}_{11}(t) - \mathbb{S}_{10}(t)$ Natural Direct Effect: $NDE(t) = \mathbb{S}_{10}(t) - \mathbb{S}_{00}(t)$

 $h(\cdot)$: Link function.

Total Effect: $TE(t) = \mathbb{S}_{11}(t) - \mathbb{S}_{00}(t)$ Proportion of Treatment Effect: $PTE(t) = \frac{NIE(t)}{TE(t)}$

Methods: DAG

Simulation Study

Design: Low/average/high mediation; n=200 vs n=800; link functions matching biology.

Results: Survival/tumor parameters recovered with small bias ($\lesssim 5\%$) and high coverage ($\gtrsim 90\%$).

Notes: Slight NIE underestimation at small n; baseline size μ_{m_0} less identifiable.

Application: IMbrave150 (HCC)

Table 1. Best model (by LOOIC): link = tumor slope; treatment on both k_s and k_q

Variable	Median	SD	2.5%	97.5%	\hat{R}	ESS		
Survival Model								
Treatment vs control (β_{os})	-0.307	0.151	-0.597	-0.015	1.00	1735		
Association (η)	0.012	0.002	0.009	0.016	1.00	1802		
Longitudinal Model								
Treatment on k_s (β_{k_s})	1.091	0.290	0.534	1.661	1.00	973		
Treatment on k_g (eta_{k_g})	-0.193	0.249	-0.652	0.314	1.01	930		
Tumor growth (μ_{k_a})	0.199	0.050	0.118	0.314	1.00	980		
Tumor shrinkage (μ_{k_s})	0.163	0.051	0.085	0.284	1.02	1019		
Baseline tumor (μ_{m_0})	66.01	2.230	62.02	70.68	1.00	250		
σ_{prop}	0.177	0.003	0.172	0.183	1.00	2796		

Mediation estimates	0.2 y	0.5 y	1 y	2 y
PTE	0.404	0.354	0.295	0.239
NDE	0.008	0.032	0.071	0.110
NIE	0.005	0.014	0.024	0.022
TE	0.012	0.045	0.095	0.130

Discussion

Framework joins nonlinear TGI with survival in a causal mediation.

Link choice matters: slope/TTN often outperform other links; results decompose the TE differently. Limitations: Identifiability of μ_{m_0} ; LOOIC PSIS diagnostics; no mediator—outcome confounders assumption.

Implication: tumor dynamics mediate a **modest** fraction ($\sim 25\%-40\%$) of survival benefit in IM-brave150.

Conclusions

Provides a robust Bayesian tool to **quantify natural effects** with non linear longitudinal mediators. Supports **surrogate endpoint** evaluation and mechanism-of-action insights.

Future: extend to a multi-state semi-competing risk join model accounting for treatment switching.