-

Protocols and the TCP/IP Suite

Chapter 4

Key Features of a Protocol

- Syntax
 - Concerns the format of the data blocks
- Semantics
 - Includes control information for coordination and error handling
- Timing
 - Includes speed matching and sequencing

Agents Involved in Communication

- Applications
 - Exchange data between computers (e.g., electronic mail)
- Computers
 - Connected to networks
- Networks
 - Transfers data from one computer to another

TCP/IP Layers

- Physical layer
- Network access layer
- Internet layer
- Host-to-host, or transport layer
- Application layer

TCP/IP Physical Layer

- Covers the physical interface between a data transmission device and a transmission medium or network
- Physical layer specifies:
 - Characteristics of the transmission medium
 - The nature of the signals
 - The data rate
 - Other related matters

4

TCP/IP Network Access Layer

- Concerned with the exchange of data between an end system and the network to which it's attached
- Software used depends on type of network
 - Circuit switching
 - Packet switching (e.g., X.25)
 - LANs (e.g., Ethernet)
 - Others

T:TCP/IP Internet Layer

- Uses internet protocol (IP)
- Provides routing functions to allow data to traverse multiple interconnected networks
- Implemented in end systems and routers

TCP/IP Host-to-Host, or Transport Layer

- Commonly uses transmission control protocol (tcp)
- Provides reliability during data exchange
 - Completeness
 - Order

TCP/IP Application Layer

- Logic supports user applications
- Uses separate modules that are peculiar to each different type of application

Protocol Data Units (PDUs)

4

Layers of the OSI Model

- Application
- Presentation
- Session
- Transport
- Network
- Data link
- Physical

OSI Application Layer

- Provides access to the OSI environment for users
- Provides distributed information services

OSI Presentation Layer

 Provides independence to the application processes from differences in data representation (syntax)

OSI Session Layer

- Provides the control structure for communication between applications
- Establishes, manages, and terminates connections (sessions) between cooperating applications

OSI Transport Layer

- Provides reliable, transparent transfer of data between end points
- Provides end-to-end error recovery and flow control

OSI Network Layer

- Provides upper layers with independence from the data transmission and switching technologies used to connect systems
- Responsible for establishing, maintaining, and terminating connections

OSI Data link Layer

- Provides for the reliable transfer of information across the physical link
- Sends blocks (frames) with the necessary synchronization, error control, and flow control

OSI Physical Layer

- Concerned with transmission of unstructured bit stream over physical medium
- Deals with accessing the physical medium
 - Mechanical characteristics
 - Electrical characteristics
 - Functional characteristics
 - Procedural characteristics

Antennas and Propagation

Chapter 5

Introduction

- An antenna is an electrical conductor or system of conductors
 - Transmission radiates electromagnetic energy into space
 - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception

Radiation Patterns

- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section
- Beam width (or half-power beam width)
 - Measure of directivity of antenna
- Reception pattern
 - Receiving antenna's equivalent to radiation pattern

Types of Antennas

- Isotropic antenna (idealized)
 - Radiates power equally in all directions
- Dipole antennas
 - Half-wave dipole antenna (or Hertz antenna)
 - Quarter-wave vertical antenna (or Marconi antenna)
- Parabolic Reflective Antenna

- Antenna gain
 - Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna)
- Effective area
 - Related to physical size and shape of antenna

Antenna Gain

Relationship between antenna gain and effective area

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

- G = antenna gain
- A_e = effective area
- f = carrier frequency
- $c = \text{speed of light } (3 \times 10^8 \text{ m/s})$
- λ = carrier wavelength

Propagation Modes

- Ground-wave propagation
- Sky-wave propagation
- Line-of-sight propagation

Ground Wave Propagation

Ground Wave Propagation

- Follows contour of the earth
- Can Propagate considerable distances
- Frequencies up to 2 MHz
- Example
 - AM radio

Sky Wave Propagation

Sky Wave Propagation

- Signal reflected from ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Reflection effect caused by refraction
- Examples
 - Amateur radio

Line-of-Sight Propagation

Line-of-Sight Propagation

- Transmitting and receiving antennas must be within line of sight
 - Satellite communication signal above 30 MHz not reflected by ionosphere
 - Ground communication antennas within *effective* line of site due to refraction
- Refraction bending of microwaves by the atmosphere
 - Velocity of electromagnetic wave is a function of the density of the medium
 - When wave changes medium, speed changes
 - Wave bends at the boundary between mediums

Line-of-Sight Equations

- Optical line of sight $d = 3.57\sqrt{h}$
- Effective, or radio, line of sight

$$d = 3.57\sqrt{Kh}$$

- d = distance between antenna and horizon (km)
- h = antenna height (m)
- K = adjustment factor to account for refraction, rule of thumb K = 4/3

•

Line-of-Sight Equations

• Maximum distance between two antennas for LOS propagation:

$$3.57\left(\sqrt{Kh_1} + \sqrt{Kh_2}\right)$$

- h_1 = height of antenna one
- h_2 = height of antenna two

LOS Wireless Transmission Impairments

- Attenuation and attenuation distortion
- Free space loss
- Noise
- Atmospheric absorption
- Multipath
- Refraction
- Thermal noise

Attenuation

- Strength of signal falls off with distance over transmission medium
- Attenuation factors for unguided media:
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error
 - Attenuation is greater at higher frequencies, causing distortion

Free Space Loss

Free space loss, ideal isotropic antenna

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$$

- $P_{\rm t}$ = signal power at transmitting antenna
- $P_{\rm r}$ = signal power at receiving antenna
- λ = carrier wavelength
- d = propagation distance between antennas
- $c = \text{speed of light } (3 \times 10^8 \text{ m/s})$

where d and λ are in the same units (e.g., meters)

Free Space Loss

Free space loss equation can be recast:

$$L_{dB} = 10\log\frac{P_t}{P_r} = 20\log\left(\frac{4\pi d}{\lambda}\right)$$

$$= -20\log(\lambda) + 20\log(d) + 21.98 \,\mathrm{dB}$$

$$= 20\log\left(\frac{4\pi f d}{c}\right) = 20\log(f) + 20\log(d) - 147.56 \,\mathrm{dB}$$

Free Space Loss

 Free space loss accounting for gain of other antennas

$$\frac{P_t}{P_r} = \frac{(4\pi)^2 (d)^2}{G_r G_t \lambda^2} = \frac{(\lambda d)^2}{A_r A_t} = \frac{(cd)^2}{f^2 A_r A_t}$$

- $G_t = gain of transmitting antenna$
- $G_r = gain of receiving antenna$
- A_t = effective area of transmitting antenna
- $A_{\rm r}$ = effective area of receiving antenna

Free Space Loss

 Free space loss accounting for gain of other antennas can be recast as

$$L_{dB} = 20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$$
$$= -20\log(f) + 20\log(d) - 10\log(A_t A_r) + 169.54dB$$

Categories of Noise

- Thermal Noise
- Intermodulation noise
- Crosstalk
- Impulse Noise

Thermal Noise

- Thermal noise due to agitation of electrons
- Present in all electronic devices and transmission media
- Cannot be eliminated
- Function of temperature
- Particularly significant for satellite communication

Thermal Noise

Amount of thermal noise to be found in a bandwidth of 1Hz in any device or conductor is:

$$N_0 = kT (W/Hz)$$

- N_0 = noise power density in watts per 1 Hz of bandwidth
- $k = Boltzmann's constant = 1.3803x10^{-23} J/K$
- \blacksquare T = temperature, in kelvins (absolute temperature)

•

Thermal Noise

- Noise is assumed to be independent of frequency
- Thermal noise present in a bandwidth of *B* Hertz (in watts):

$$N = kTB$$

or, in decibel-watts

$$N = 10 \log k + 10 \log T + 10 \log B$$
$$= -228.6 \text{ dBW} + 10 \log T + 10 \log B$$

Noise Terminology

- Intermodulation noise occurs if signals with different frequencies share the same medium
 - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
- Crosstalk unwanted coupling between signal paths
- Impulse noise irregular pulses or noise spikes
 - Short duration and of relatively high amplitude
 - Caused by external electromagnetic disturbances, or faults and flaws in the communications system

Expression E_b/N_0

 Ratio of signal energy per bit to noise power density per Hertz

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

- The bit error rate for digital data is a function of E_b/N_0
 - Given a value for E_b/N_0 to achieve a desired error rate, parameters of this formula can be selected
 - As bit rate R increases, transmitted signal power must increase to maintain required E_b/N_0

Other Impairments

- Atmospheric absorption water vapor and oxygen contribute to attenuation
- Multipath obstacles reflect signals so that multiple copies with varying delays are received
- Refraction bending of radio waves as they propagate through the atmosphere

Figure 5.10 Sketch of Three Important Propagation Mechanisms: Reflection (R), Scattering (S), Diffraction (D) [ANDE95]

Multipath Propagation

- Reflection occurs when signal encounters a surface that is large relative to the wavelength of the signal
- Diffraction occurs at the edge of an impenetrable body that is large compared to wavelength of radio wave
- Scattering occurs when incoming signal hits an object whose size in the order of the wavelength of the signal or less

The Effects of Multipath Propagation

- Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit