Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

Содержание

1	Раз	азностные уравнения		
	1.1	Однородные линейные разностные уравнения	2	
	1.2	Минимальная ЛОРУ: метод аннигиляторов	3	
	1.3	Неоднородные линейные разностные уравнения	4	
	1.4	Системы разностных уравнений	6	

1 Разностные уравнения

Определение

Разностное уравнение — соотношение между элементами последовательности (или векторной последовательности), задающее правило перехода от шага $t \times t+1$ или к нескольким последующим шагам. В этом разделе: ЛОРУ (линейные однородные разностные уравнения) и их расширения.

Однородные линейные разностные уравнения

Пример. Решите однородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 0 (1)$$

Определение. Линейное однородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = 0, \quad c_k \neq 0$$
 (2)

Пара «уравнение + k начальных условий» задаёт единственное решение.

Идея решения: метод характеристических корней. Полагаем $a_t = r^t \Rightarrow$

$$r^{t}(1 + c_{1}r^{-1} + c_{2}r^{-2} + \dots + c_{k}r^{-k}) = 0 \iff r^{k} + c_{1}r^{k-1} + \dots + c_{k} = 0$$
(3)

т.е. характеристический многочлен $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k$. Его корни целиком описывают форму общего решения.

Обозначения

• $p_i(t), q_i(t)$ — полиномы по t степени $\leq j$

Таблица 1: Выбор формы решения по типу корней характеристического многочлена

Условия на корни	Вклад в решение
Действительный корень r кратности $m \geq 1$	$p_{m-1}(t) r^t$
Комплексно-сопряжённая пара $\rho e^{\pm i\theta}$ кратности $s \geq 1$	$\rho^{t}(p_{s-1}(t)\cos(\theta t) + q_{s-1}(t)\sin(\theta t))$

Итоговое общее решение — сумма форм всех корней:

$$a_t = \sum_j p_{m_j-1}(t) r_j^t + \sum_k \rho_k^t (p_{s_k-1}(t) \cos(\theta_k t) + q_{s_k-1}(t) \sin(\theta_k t)),$$

где r_j — действительные корни кратности $m_j,\, \rho_k e^{\pm i \theta_k}$ — комплексно-сопряжённые корни кратности s_k . Сумма кратностей всех корней равна порядку k.

Начальные условия. Подставляем $t=0,1,\ldots,k-1$ в общий вид, решаем линейную систему на α -коэффициенты.

Алгоритм. Алгоритм решения однородных разностных уравнений.

- Шаг 1: Нормализация. Привести уравнение к виду $a_t + \sum_{j=1}^k c_j a_{t-j} = 0, c_k \neq 0.$ Шаг 2: Характеристический многочлен. Записать $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k.$
- Шаг 3: Корни и кратности. Найти корни r и их кратности m ($\sum m = k$).
- Шаг 4: Общий вид решения (см. таблицу 1). Для каждого корня/пары взять соответствующий вклад из таблицы и сложить их.
- Шаг 5: Подгонка под начальные условия. Подставить k заданных значений подряд и решить линейную систему для постоянных.

Минимальная ЛОРУ: метод аннигиляторов

TL:DR

Минимальная ЛОРУ (линейное однородное разностное уравнение с постоянными коэффициентами), для которой данные последовательности являются решениями, строится так:

- 1. к каждой заданной последовательности приписать аннигилятор (многочлен от E);
- 2. взять НОК этих аннигиляторов как многочлен $L(\lambda)$;
- 3. развернуть L(E) y = 0 в явную рекурренту. Степень L минимальный порядок.

Методика

Пусть даны частные решения $y^{(1)}, \dots, y^{(m)}$.

 \mathbf{A} том \rightarrow аннигилятор Для каждой последовательности выпишите минимальный аннигилирующий многочлен:

Таблица 2: Атом $ ightarrow$ аннигилятор					
Атом (последовательность)	Минимальный аннигилятор $L(\lambda)$				
r^t	$(\lambda - r)$				
$\int t^k r^t$	$(\lambda - r)^{k+1}$				
$\rho^t \cos(\omega t), \rho^t \sin(\omega t)$	$Q_{\rho,\omega}(\lambda) = \lambda^2 - 2\rho\cos\omega\lambda + \rho^2$				
$t^k \rho^t \cos / \sin(\omega t)$	$Q_{ ho,\omega}(\lambda)^{k+1}$				
t^k	$(\lambda-1)^{k+1}$				
$(-1)^t$	$(\lambda + 1)$				

Шаг 2. Собрать общий аннигилятор Возьмём НОК (наименьший общий кратный) всех многочленов из шага 1:

$$L(\lambda) = \operatorname{lcm}(L_1(\lambda), \dots, L_m(\lambda)).$$

При одинаковых базах/частотах выбирается максимальная кратность (а не сумма).

Шаг 3. Развернуть в рекуррент Если $L(\lambda) = \lambda^k + c_1 \lambda^{k-1} + \dots + c_k$, то искомое уравнение:

$$y_{t+k} + c_1 y_{t+k-1} + \dots + c_k y_t = 0$$

Минимальность. Любой многочлен P(E), который зануляет все данные последовательности, обязан делиться на L(E). Поэтому $\deg L$ — минимально возможный порядок.

Простой пример. Дано: $y_t^{(1)} = 3^t$, $y_t^{(2)} = (-2)^t$.

Шаг 1: Аннигиляторы: $(\lambda - 3)$ и $(\lambda + 2)$.

Шаг 2: НОК: $(\lambda - 3)(\lambda + 2) = \lambda^2 - \lambda - 6$. Шаг 3: Развёртка: $y_{t+2} - y_{t+1} - 6y_t = 0$.

Проверка: обе последовательности являются решениями; порядок 2 минимален.

Пример посложнее. Дано: $y_t^{(1)}=2^t,\;y_t^{(2)}=t2^t,\;y_t^{(3)}=(-1)^t,\;y_t^{(4)}=3^t\cos\frac{\pi t}{3}.$ Замечание. Шаг 1. Аннигиляторы: Для 2^t : $(\lambda-2)$. Для $t2^t$: $(\lambda-2)^2$. Для $(-1)^t$: $(\lambda+1)$. Для $3^t \cos \frac{\pi t}{3}$: $Q_{3,\pi/3}(\lambda) = \lambda^2 - 3\lambda + 9$. Замечание. Шаг 2. НОК: Учитываем максимальную кратность по базе 2: $L(\lambda) = (\lambda - 2)^2(\lambda + 1)(\lambda^2 - 3\lambda + 9)$. Замечание. Шаг 3. Развёртка: Сначала $(\lambda - 2)^2(\lambda + 1) = (\lambda^2 - 4\lambda + 4)(\lambda + 1) = \lambda^3 - 3\lambda^2 + 4$. Затем умножаем на $\lambda^2 - 3\lambda + 9$ и получаем $L(\lambda) = \lambda^5 - 6\lambda^4 + 18\lambda^3 - 23\lambda^2 - 12\lambda + 36$. Отсюда рекуррентное соотношение: $y_{t+5} - 6y_{t+4} + 18y_{t+3} - 23y_{t+2} - 12y_{t+1} + 36y_t = 0$. Комментарий: это и есть минимальная ЛО- $\overline{\text{РУ}}$, аннигилятор которой равен $L(\lambda)$.

1.3 Неоднородные линейные разностные уравнения

Пример. Решите неоднородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t (4)$$

Определение. Линейное неоднородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = f(t), \quad c_k \neq 0$$
 (5)

где f(t) — заданная функция (неоднородность).

Структура общего решения: $a_t = a_t^{(h)} + a_t^{(p)}$, где:

- $a_t^{(h)}$ общее решение однородного уравнения (см. раздел 1.1) $a_t^{(p)}$ частное решение неоднородного уравнения

Метод неопределённых коэффициентов для $a_{+}^{(p)}$.

Пусть характеристический многочлен однородного уравнения:

$$\chi(r) = r^k + c_1 r^{k-1} + \dots + c_k$$
 и $\chi(r) = \prod_i (r - r_i)^{m_i} \prod_{\ell} Q_{\rho_{\ell}, \theta_{\ell}}(r)^{s_{\ell}},$

где

$$Q_{\rho,\theta}(r) = (r - \rho e^{i\theta})(r - \rho e^{-i\theta}) = r^2 - 2\rho\cos\theta \, r + \rho^2.$$

Правило «множитель \to вклад» (однородная часть):

- Линейный $(r-r_0)^m \Rightarrow \sum_{j=0}^{m-1} \alpha_j t^j r_0^t$.
- Квадратный $Q_{\rho,\theta}(r)^s \Rightarrow \rho^t \left(\sum_{j=0}^{s-1} t^j \left(a_j \cos(\theta t) + b_j \sin(\theta t) \right) \right).$

Итог: $a_t^{(h)}$ — сумма всех таких вкладов по всем множителям χ .

Выбор формы частного решения $a_t^{(p)}$:

Обозначения

- $P_n(t)$ полином степени n
- $Q_n(t), R_n(t)$ полиномы
- $\lambda \in \mathbb{C}$ комплексное число
- ullet s- кратность резонанса (кратность соответствующего множителя в χ)

Таблица 3: Выбор формы частного решения и проверка резонанса

\mathbf{H} еоднородность $f(t)$	Проверка резонанса	Базовая форма $a_t^{(p)}$
$P_n(t) \lambda^t$	$\chi(\lambda) = 0?$	$Q_n(t) \lambda^t$
$\rho^t \cos(\theta t), \rho^t \sin(\theta t)$	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^t (A\cos(\theta t) + B\sin(\theta t))$
$P_n(t) \rho^t \cos(\theta t)$ (или \sin)	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^{t}(Q_{n}(t)\cos(\theta t) + R_{n}(t)\sin(\theta t))$
Чистый полином $P_n(t)$	$\chi(1) = 0?$	$Q_n(t)$

Правило резонанса: если проверка даёт резонанс кратности s, домножьте базовую форму на t^s .

Алгоритм. Алгоритм решения неоднородного уравнения.

Шаг 1: Однородная часть. Найти $a_t^{(h)}$ методом характеристических корней (см. раздел 1.1).

Шаг 2: Форма частного решения. По таблице 3 выбрать форму $a_t^{(p)}$ с учётом правила резонанca.

Шаг 3: Подстановка. Подставить $a_t^{(p)}$ в исходное неоднородное уравнение и найти неопределённые коэффициенты.

Шаг 4: Общее решение. $a_t = a_t^{(h)} + a_t^{(p)}$.

Шаг 5: Начальные условия. Подставить k заданных значений и найти константы в $a_t^{(h)}$

Пример. Решите разностное уравнение третьего порядка с постоянными коэффициентами:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t$$

Найти общее решение y_t .

Решение.

1) Однородная часть. Характеристический многочлен:

$$\chi(r) = r^3 - 3r^2 + 6r - 4 = (r - 1)(r^2 - 2r + 4),$$

корни: $r_1 = 1$, $r_{2,3} = 1 \pm i\sqrt{3} = 2e^{\pm i\pi/3}$.

Отсюда

$$y_t^{(h)} = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right).$$

2) Частное решение $y_t^{(p)}$. Правая часть $f(t) = 2^t + t$ — сумма двух типов.

Экспонента 2^t : $\chi(2)=8-12+12-4=4\neq 0 \Rightarrow$ резонанса нет, берём $y_{(1)}^{(p)}=\alpha\,2^t$.

Полином t: $\chi(1)=0$ (кратность 1) \Rightarrow резонанс порядка s=1. Базовая форма для $P_1(t)-At+B$, домножаем на t:

$$y_{(2)}^{(p)} = t(At + B) = At^2 + Bt.$$

Итого

$$y_t^{(p)} = \alpha 2^t + At^2 + Bt.$$

3) Подстановка и определение коэффициентов. Обозначим линейный оператор:

$$\mathcal{L}[y_t] = y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t.$$

Для экспоненты: $\mathcal{L}[2^t]=\chi(2)\,2^t=4\cdot 2^t\Rightarrow 4\alpha\,2^t=2^t,$ значит $\alpha=\frac{1}{4}.$

Для полинома At^2+Bt прямой подсчёт даёт:

$$\mathcal{L}[At^2 + Bt] = 6At + (3A + 3B).$$

Требуем $\mathcal{L}[At^2 + Bt] = t$, откуда

$$6A = 1 \Rightarrow A = \frac{1}{6}, \qquad 3A + 3B = 0 \Rightarrow B = -\frac{1}{6}.$$

Следовательно,

$$y_t^{(p)} = \frac{1}{4} 2^t + \frac{t^2 - t}{6}.$$

4) Общее решение.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right) + \frac{1}{4} 2^t + \frac{t^2 - t}{6}$$

(константы C_1, C_2, C_3 находятся по начальным условиям).

1.4 Системы разностных уравнений

Пример. Решите систему разностных уравнений: $\begin{cases} x_{t+1} = 4x_t + y_t \\ y_{t+1} = 2y_t \end{cases}$, с начальными условиями

$$\mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Заметим, что матрица явно не указана. Однако справа находятся её элементы. Запишем в матричном виде:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$
, где $A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$, $\mathbf{x}_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix}$.

3десь A — это матрица коэффициентов системы

Определение

Система линейных разностных уравнений первого порядка с постоянными коэффициентами: $\mathbf{x}_{t+1} = A\mathbf{x}_t$, где задано \mathbf{x}_0 , $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}_t \in \mathbb{R}^n$. Цель: найти $\mathbf{x}_t = A^t\mathbf{x}_0$.

Идея решения: возведение матрицы A в степень t. Для этого используем спектральное разложение матрицы.

Обозначения: λ_i — собственные значения, \mathbf{v}_i — собственные векторы, $\chi_A(\lambda) = \det(\lambda I - A)$ — характеристический многочлен.

Таблица 4: Выбор метода решения по типу собственных значений

Условия на собственные значения	Рекомендуемый метод
Разные действительные корни, полный базис собственных векторов	Диагонализация
Повторный корень, недостаточно собственных векторов	Жорданова форма
Комплексно-сопряжённая пара	Реальный блок поворота
Матрица 2 × 2 (любой случай)	Кэли–Гамильтон

1. Диагонализация

Условие применения: матрица A имеет n линейно независимых собственных векторов (диагонализуема).

Теорема. Если A диагонализуема, то $A = S\Lambda S^{-1}$, где $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ — диагональная матрица собственных значений, $S = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ — матрица собственных векторов.

Алгоритм. Алгоритм диагонализации.

- 1. Характеристический многочлен: $\chi_A(\lambda) = \det(\lambda I A)$.
- 2. Собственные значения: решить $\chi_A(\lambda) = 0$.
- 3. Собственные векторы: для каждого λ_i решить $(A \lambda_i I)\mathbf{v}_i = \mathbf{0}$.
- 4. Проверка диагонализуемости: $\det S \neq 0$.
- 5. Диагонализация: $A = S\Lambda S^{-1}$.
- 6. Возведение в степень: $A^{t} = S\Lambda^{t}S^{-1}$.
- 7. Решение: $\mathbf{x}_t = A^t \mathbf{x}_0$.

Пример. Та же система. Решение: $A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$.

Шаг 1. Характеристический многочлен:

$$\chi_A(\lambda) = \det(\lambda I - A) = \det\begin{pmatrix} \lambda - 4 & -1 \\ 0 & \lambda - 2 \end{pmatrix} = (\lambda - 4)(\lambda - 2) = \lambda^2 - 6\lambda + 8$$

Шаг 2. Собственные значения: $\lambda^2 - 6\lambda + 8 = 0 \Rightarrow \lambda_1 = 4, \lambda_2 = 2$

Шаг 3. Собственные векторы:

• Для $\lambda_1 = 4$: $(A - 4I)\mathbf{v}_1 = \mathbf{0}$:

$$\begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow v_{12} = 0$$

Выбираем $\mathbf{v}_1=\begin{pmatrix}1\\0\end{pmatrix}$ о Для $\lambda_2=2$: $(A-2I)\mathbf{v}_2=\mathbf{0}$:

$$\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_{21} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow 2v_{21} + v_{22} = 0$$

Выбираем $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Шаг 4. Матрицы диагонализации:

$$S = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$
$$S^{-1} = \frac{1}{\det S} \begin{pmatrix} -2 & -1 \\ 0 & 1 \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -2 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & -\frac{1}{2} \end{pmatrix}$$

Шаг 5. Возведение в степень:

$$A^{t} = S\Lambda^{t}S^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 4^{t} & 0 \\ 0 & 2^{t} \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & -\frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 4^{t} & \frac{4^{t}}{2} \\ 0 & -\frac{2^{t}}{2} \end{pmatrix} = \begin{pmatrix} 4^{t} & \frac{4^{t}-2^{t}}{2} \\ 0 & 2^{t} \end{pmatrix}$$

Шаг 6. Решение системы:

$$\mathbf{x}_{t} = A^{t} \mathbf{x}_{0} = \begin{pmatrix} 4^{t} & \frac{4^{t} - 2^{t}}{2} \\ 0 & 2^{t} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4^{t} + \frac{4^{t} - 2^{t}}{2} \\ 2^{t} \end{pmatrix} = \begin{pmatrix} \frac{3 \cdot 4^{t} - 2^{t}}{2} \\ 2^{t} \end{pmatrix}$$

2. Жорданова форма (повторный корень)

Условие применения: матрица A имеет повторное собственное значение, но недостаточно собственных векторов для диагонализации.

Теорема. Если A имеет единственное собственное значение λ кратности n, то $A = \lambda I + N$, где N— нильпотентная матрица ($N^m = 0$ для некоторого $m \le n$).

Ключевая идея: используем биномиальную формулу для $(I + \lambda^{-1}N)^t$.

Алгоритм. Алгоритм Жордановой формы.

- 1. Собственное значение λ .
- 2. Нильпотентная матрица $N = A \lambda I$.
- 3. Индекс нильпотентности: $N^m = 0$.
- 4. Формула: $A^t = \lambda^t \sum_{k=0}^{m-1} {t \choose k} (\lambda^{-1} N)^k$.
- 5. Решение: $\mathbf{x}_t = A^t \mathbf{x}_0$.

Пример. Система
$$\begin{cases} x_{t+1} = 2x_t + y_t \\ y_{t+1} = 2y_t \end{cases}$$
 . Для $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

$$\chi_A(\lambda) = \det(\lambda I - A) = \det\begin{pmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 2 \end{pmatrix} = (\lambda - 2)^2 = 0 \Rightarrow \lambda = 2$$
 (кратности 2)

Шаг 2. Нильпотентная матрица:

$$N = A - \lambda I = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Шаг 3. Индекс нильпотентности:

$$N^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \Rightarrow m = 2$$

Шаг 4. Применение формулы Жордана:

Шаг 5. Решение системы:

$$\mathbf{x}_t = A^t \mathbf{x}_0 = 2^t \begin{pmatrix} 1 & \frac{t}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2^t \begin{pmatrix} 1 + \frac{t}{2} \\ 1 \end{pmatrix}$$

3. Комплексная пара (реальный блок)

Условие применения: матрица $A \ 2 \times 2$ имеет комплексно-сопряжённые собственные значения $\lambda = \rho e^{\pm i\theta}$.

Теорема. Для матрицы $A \ 2 \times 2 \ c$ комплексными корнями $\lambda = \rho e^{\pm i\theta}$ справедливо:

$$A^{t} = \rho^{t} \begin{pmatrix} \cos(t\theta) & -\sin(t\theta) \\ \sin(t\theta) & \cos(t\theta) \end{pmatrix}$$

Ключевая идея: комплексные корни соответствуют повороту с масштабированием в вещественном пространстве.

Алгоритм. Алгоритм для комплексной пары.

- 1. Проверка: $(\operatorname{tr} A)^2 4 \det A < 0$. 2. $\rho = \sqrt{\det A}, \cos \theta = \frac{\operatorname{tr} A}{2\rho}$. 3. $A^t = \rho^t \begin{pmatrix} \cos(t\theta) & -\sin(t\theta) \\ \sin(t\theta) & \cos(t\theta) \end{pmatrix}$.
- 4. Решение: $\mathbf{x}_t = A^t$

Пример.
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Шаг 1. Проверка условия комплексности:

$$\operatorname{tr} A=1+1=2,\quad \det A=1\cdot 1-(-1)\cdot 1=2$$

$$(\operatorname{tr} A)^2-4\det A=2^2-4\cdot 2=4-8=-4<0\Rightarrow$$
 комплексные корни

Шаг 2. Вычисление параметров:

$$\rho = \sqrt{\det A} = \sqrt{2}$$

$$\cos \theta = \frac{\operatorname{tr} A}{2\rho} = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \Rightarrow \theta = \frac{\pi}{4}$$

Шаг 3. Применение формулы:

$$A^{t} = \rho^{t} \begin{pmatrix} \cos(t\theta) & -\sin(t\theta) \\ \sin(t\theta) & \cos(t\theta) \end{pmatrix} = (\sqrt{2})^{t} \begin{pmatrix} \cos\left(\frac{\pi t}{4}\right) & -\sin\left(\frac{\pi t}{4}\right) \\ \sin\left(\frac{\pi t}{4}\right) & \cos\left(\frac{\pi t}{4}\right) \end{pmatrix}$$

Шаг 4. Решение системы (с начальными условиями $\mathbf{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$):

$$\mathbf{x}_{t} = A^{t} \mathbf{x}_{0} = (\sqrt{2})^{t} \begin{pmatrix} \cos\left(\frac{\pi t}{4}\right) & -\sin\left(\frac{\pi t}{4}\right) \\ \sin\left(\frac{\pi t}{4}\right) & \cos\left(\frac{\pi t}{4}\right) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= (\sqrt{2})^{t} \begin{pmatrix} \cos\left(\frac{\pi t}{4}\right) \\ \sin\left(\frac{\pi t}{4}\right) \end{pmatrix}$$

Интерпретация: Решение описывает спираль с радиусом $(\sqrt{2})^t$ и углом поворота $\frac{\pi t}{4}$ на каждом шаге.

4. Кэли-Гамильтон (универсальный метод)

Условие применения: универсальный метод для матриц любого размера, особенно удобен для

Теорема Кэли—**Гамильтона.** Матрица A удовлетворяет своему характеристическому уравнению: $\chi_A(A) = 0.$

Ключевая идея: используем тождество $\chi_A(A) = 0$ для построения рекуррентного соотношения на степени матрицы.

Алгоритм. Алгоритм Кэли–Гамильтона (2×2) .

- 1. $\chi_A(\lambda) = \lambda^2 (\operatorname{tr} A)\lambda + \det A$.
- 2. Рекуррентное: $A^{t+2} = (\operatorname{tr} A)A^{t+1} (\det A)A^t$.
- 3. Представление: $A^t = \alpha_t A + \beta_t I$.
- 4. Решить на α_t , β_t и получить \mathbf{x}_t .

Пример. Для
$$A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$

Шаг 1. Характеристический многочлен:

$$\chi_A(\lambda) = \det(\lambda I - A) = \det\begin{pmatrix} \lambda - 3 & -2 \\ 2 & \lambda + 1 \end{pmatrix} = (\lambda - 3)(\lambda + 1) - (-2) \cdot 2$$

$$= \lambda^2 - 2\lambda - 3 + 4 = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$$

Шаг 2. Рекуррентное соотношение: По теореме Кэли-Гамильтона: $\chi_A(A) = A^2 - 2A + I = 0$, откуда $A^2 = 2A - I$

Умножая на A^t : $A^{t+2} = 2A^{t+1} - A^t$

Шаг 3. Представление A^t : Ищем $A^t = \alpha_t A + \beta_t I$ для некоторых α_t, β_t

Из рекуррентного соотношения: $\alpha_{t+2} = 2\alpha_{t+1} - \alpha_t$ с начальными условиями:

- t = 0: $A^0 = I = \alpha_0 A + \beta_0 I \Rightarrow \alpha_0 = 0, \beta_0 = 1$ t = 1: $A^1 = A = \alpha_1 A + \beta_1 I \Rightarrow \alpha_1 = 1, \beta_1 = 0$

Решение рекуррентного уравнения: $\alpha_t = t, \; \beta_t = 1-t$

Шаг 4. Итоговая формула:

$$A^{t} = tA + (1 - t)I = t \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} + (1 - t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3t & 2t \\ -2t & -t \end{pmatrix} + \begin{pmatrix} 1-t & 0 \\ 0 & 1-t \end{pmatrix} = \begin{pmatrix} 2t+1 & 2t \\ -2t & 1-2t \end{pmatrix}$$

Шаг 5. Решение системы (с начальными условиями $\mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$):

$$\mathbf{x}_t = A^t \mathbf{x}_0 = \begin{pmatrix} 2t+1 & 2t \\ -2t & 1-2t \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2t+1+2t \\ -2t+1-2t \end{pmatrix} = \begin{pmatrix} 4t+1 \\ 1-4t \end{pmatrix}$$

Общий алгоритм решения систем разностных уравнений

- 1. Анализ матрицы: $\operatorname{tr} A$, $\det A$, $\chi_A(\lambda)$.
- 2. Выбор метода по типу спектра.
- 3. Получить A^t соответствующим методом.
- 4. Решить $\mathbf{x}_t = A^t \mathbf{x}_0$.
- 5. Проверка: $A^0 = I$, $A^1 = A$.

Полезные проверки:

- Начальные условия: $A^0 = I$, $A^1 = A$.
- Жорданова форма: если $A = \lambda I + N$, проверить $N^m = 0$.
- Комплексная пара: $\det A = \rho^2$, $\operatorname{tr} A = 2\rho \cos \theta$.
- Биномиальные коэффициенты: не забыть $\binom{t}{k}$ в формуле Жордана.