Part II – Riemann Surfaces

Based on lectures by Dr H. Krieger Notes taken by Bhavik Mehta

Michaelmas 2017

0 Complex analysis and complex log

Definition. A smooth function $f: U \to \mathbb{C}$ (where U is a domain in \mathbb{C}) is **holomorphic** or **analytic** if either of the following equivalent statements hold:

- (1) f is differentiable at all points of U, where differentiability is defined by limits, and checked by the Cauchy-Riemann equations
- (2) $\forall a \in U$, f has a power series expansion on a neighbourhood of a:

$$f(z) = \sum_{n \ge 0} a_n (z - a)^n$$

and the series converges on some disk about a with positive radius.

Sketch of proof of equivalence.

- (\Rightarrow) Use the Cauchy Integral Formula to construct a_n , and convergence.
- (\Leftarrow) Show directly that the term-by-term derivative exists, and that it agrees with the limit definition of the derivative.

Note that a power series tells you about local behaviour. If f(z) is not identically zero near $a \in U$, there exists some minimal n_0 such that $a_{n_0} \neq 0$. We can write f locally as

$$f(z) = a_{n_0}(z - a)^{n_0} + \sum_{n \ge n_0} a_n (z - a)^n$$
$$= a_{n_0}(z - a)^{n_0} \left(1 + \sum_{n \ge n_0} \frac{a_n}{a_{n_0}} (z - a)^{n - n_0} \right)$$

As $z \to a$, the sum $\to 0$ so the quantity in the brackets tends to 1. So, $f(z) = a_{n_0}(z - a)^{n_0}g(z)$, where g is analytic and nonzero on a neighbourhood of a. Consequently, we have the principle of isolated zeros: for f analytic on domain U, then for all $a \in U$ such that f(a) = 0, either f is identically 0 on a neighbourhood of a, or f is never 0 on a punctured disk centred at a. But recall a domain refers to an open and connected set. So, if f is identically 0 (improve this writing) on a neighbourhood of a, call it D_a . If $f \neq 0$ on a punctured disk about a, call it P_a^* . Construct

$$V = \bigcup_{\substack{a \in U \text{ such that} \\ f \equiv 0 \text{ on a neighbourhood of } a}} D_a \tag{1}$$

V and W are open, disjoint and $V \cup W = U$. Since U is connected, U = V or U = W. So either $f \equiv 0$ on U, or f has only isolated zeros. This will both be referred to as the principle of isolated zeros.

(corollary) (identity principle) If f and g are analytic on U, then either $f \equiv g$ on U, or $z \in U$: f(z) = g(z) consists of isolated points. Proof (clear)

(definition) If f is analytic on a punctured disk $\mathbb{D}^*(a,r)$, then we say a is an isolated singularity of f. If so, then there exists a Laurent expansion $\sum_{n=-\infty}^{\infty} a_n(z-a)^n$ near a, which come in three types.

I. Removable singularity. f extends to an analytic function on \mathbb{D}^*a, r . Phrased in terms of Laurent expansions, $a_n = 0 \forall n < 0$. (thm) (Removable singularities theorem) f has a removable singularity at a if and only if f is bounded on a punctured neighbourhood about a. (proof sketch) (= $\dot{\epsilon}$) follows from continuity of analytic functions ($\dot{\epsilon}$) Cauchy's theorem and integral formula still hold for punctured neighbourhoods so long as $f(z)(z-a) \to 0$ as $z \to a$. With a small circle about a, we can show directly that $a_n = 0$ for n < 0.

II. Poles: f has a pole at a if $a_n = 0$ for all $n < n_0$ for some n_0 . Locally, this occurs if and only if $|f(z)| \to \infty$ as $z \to a$ (using the Laurent series).

III. Essential singularity: $a_n \neq 0$ for finitely many n < 0, f has an essential singularity at a, then [Casorati-Weierstrass] If f has an essential singularity at a, then the image of f on any punctured neighbourhood of a is dense in \mathbb{C} . (proof sketch) Examine $\frac{1}{f(z)-\gamma}$ if the image of f misses a neighbourhood of γ .

Examples $f(z) = \frac{1}{e^z - 1}$ has poles wherever $e^z = 1$. At ∞ , we also have an isolated singularity, recalling that punctured neighbourhoods of ∞ are \mathbb{C}

 $\mathbb{D}(0, R)$. Since e^z takes all nonzero values or strips of \mathbb{C} , we cannot have $e^z \to 1$ as $z \to \infty$, hence f cannot have a pole. On the other hand, there exists arbitrarily large solutions (in modulus) to $e^z = 1$, and f cannot have a removable singularity at ∞ . Hence, this singularity is essential.

(edit: not isolated as every neighbourhood of infinity contains a singularity)

0.1 Complex logarithm

The complex logarithm is an example of a multivalued function, which arises as the inverse of an analytic function. Given nonzero z, if $e^w = z$, $z = re^{i\theta}$, then $w = \log r + (2\pi n + \theta i)$ for some $n \in \mathbb{Z}$. We cannot make a continuous choice of n on all of \mathbb{C} , so we define the complex log on domains like \mathbb{C}

 $\mathbb{R}_{\leq 0} =: U$. We have for each n, a choice of logarithm which can be analytically defined on U. Recall a *continuous* inverse of an analytic function is analytic.

Let
$$U_1 = \mathbb{C} \setminus \mathbb{R}_{>0}$$
.

Proposition. For $n \in \mathbb{Z}$, define h(z) on U, by

$$h(z) = \int_{-1}^{z} \frac{dw}{w} + (2n+1)\pi i$$

with integral along straight line joining -1 and z.

Then h is analytic on U_1 and is the inverse to the exponential function on U_1 .

Proof. Let $z \in U_1$. $\tau \in \mathbb{C}$ with $|\tau|$ sufficiently small, such that the triangle is entirely in the domain.

Then claim $\frac{h(z+\tau)-h(z)}{\tau}=\frac{1}{\tau}\int_z^{z+\tau}\frac{dw}{w}\to\frac{1}{z}$. The first equality follows from Cauchy's theorem, since h is continuous in the triangle.

$$\left| \frac{1}{\tau} \int_{z}^{z+\tau} \frac{dw}{w} - \frac{1}{2} \right| = \left| \frac{1}{\tau} \int_{z}^{z+\tau} \frac{z-w}{zw} dw \right|$$

$$< C\tau \to 0$$

Thus h is analytic on U_1 , with $h'(z) = \frac{1}{z}$.

Look at $g(z) = \frac{e^{h(z)}}{z}$, so $g'(z) = \frac{zh'(z)e^{h(z)}-e^{h(z)}}{z^2} = 0$, thus g is constant. But, we still need to find out what it's value us, so consider g(-1). $g(-1) = \frac{e^{h(-1)}}{-1} = -e^{(2n+1)\pi i} = 1$. Thus, $e^{h(z)} \equiv z$ on U_1 , so h is the inverse to the exponential.

Remark. We can't extend the function H continuously across the positive real axis.

0.2 Analytic continuation

Fix a domain $U \in \mathbb{C}$ which is path connected.

Definition (Direct Analytic Continuation). A function element (or function germ) on U is a pair, (f, D) where f is analytic on the domain $D \subseteq U$.

Two function elements (f, D) and g, E) are **equivalent** if $D \cap E \neq \emptyset$ and f = g on $D \cap E$. In this case, we say (g, E) is a **direct analytic continuation** of (f, D).

Remark. This is not an equivalence relation. In the diagram, (f_1, D_1) and (f_3, D_3) are not equivalent since $D_1 \cap D_3 = \emptyset$.

Definition (Analytic continuation along a path). We say (g, E) is an analytic continuation of (f, D) along a path $\gamma : [0, 1] \to U$, written as $(f, D) \sim_{\gamma} (g, E)$. If there exists $(f_1, D_1), \ldots, (f_n, D_n)$ and $0 = t_0 < t_1 < \cdots < t_n = 1$ with $\gamma([t_{i-1}, t_i]) \subseteq D_i$ for $1 \le i \le n$ and $(f_1, D_1) = (f, D), (f_n, D_n) = (g, E)$ and $(F_{i-1}, D_{i-1}) \sim (F_i, D_i)$, that is (f_i, D_i) is a direct analytic continuation of f_{i-1}, D_{i-1} .

Definition (Analytic continuation). We say (g, E) is an analytic continuation of (f, D) if there exists a path γ with $(f, D) \sim_{\gamma} (g, E)$. We write $(f, D) \approx (g, E)$.

Remark. \approx is an equivalence relation. Reflexivity and symmetry are easy, and transitivity can be seen from the diagram.

Definition. An equivalence class \mathcal{F} under \approx is a complete analytic function.

Example. Set $U = \mathbb{C}^* = \mathbb{C} \setminus 0$. Fix $(\alpha, \beta) \subseteq \mathbb{R}$, with $|\beta - \alpha| \le 2\pi$, and define

$$E_{\alpha,\beta} = \{ z = re^{i\theta} \mid \alpha < \theta < \beta \,, \ r > 0 \,\}$$

So we can see $U_1 = E_{(0,2\pi)}$. Define $f_{(\alpha,\beta)} : E_{(\alpha,\beta)} \to \mathbb{C}$ by $f_{(\alpha,\beta)}(re^{i\theta}) = \log r + i\theta$, $\theta \in (\alpha,\beta)$.

Write $L_{(\alpha,\beta)}$ for the function element $(f_{(\alpha,\beta)},E_{(\alpha,\beta)})$.

Consider the three function elements $L_{-\frac{\pi}{2},\frac{\pi}{2}}$, $L_{\frac{\pi}{6},\frac{7\pi}{6}}$, $L_{\frac{5\pi}{6},\frac{11\pi}{6}}$ We can see the direct analytic continuations, but we do not have direct analytic continuation (), but ().

Aim. Construct a surface on which log is well-defined by gluing together a bunch of domains on which it is well-defined.

For each $n \in \mathbb{Z}$, take a copy of $U_1 = E_{(0,2\pi)}$. Each has a well-defined choice of logarithm: $f_{(2\pi n, 2\pi(n+1))}, re^{i\theta} \mapsto \log r + (\theta + 2\pi n)i$, for $\theta \in (0, 2\pi)$. We can glue together these copies of U, so that the functions $f_{(2\pi n, 2\pi(n+1))}$ glue to give

a continuous function $L: U \to \mathbb{C}$.

Definition (Covering map). A covering map of a topological space X is is (sic) a continuous map $\pi: X \to X$, where X and X are Hausdorff and path connected, and π is a local homeomorphism. Specifically, $\forall \widetilde{x} \in \widetilde{X}$, \exists an open neighbourhood \widetilde{N} of \widetilde{x} on which π restricts to a homeomorphism. We say that X is the base space of π .

Note that this is likely weaker than the definition used in Algebraic Topology, which requires that $\forall x \in X, \exists$ an open neighbourhood N of x such that $\pi^{-1}(N)$ is a disjoint union of open sets which are mapped homeomorphically by π to N. We will call this a regular covering map.

Example. Non-regular covering map: Consider $\pi(z) = e^z$ on the domain

$$\{z \mid 0 < \operatorname{Im}(z) < 4\pi\} \tag{2}$$

Let x=1. From the diagram, we have a disjoint union of open neighbourhoods, but π does not map them homeomorphically.

Define $R := \bigsqcup_{n \in \mathbb{Z}} \mathbb{C}^* \times n$, and equip R with the topology from basis with elements of the two forms:

1. for $(\eta, n) \in R$ with $\eta \notin \mathbb{R}_{\leq 0}$ and any r > 0, such that $\mathbb{D}(\eta, r) \cap \mathbb{R}_{\leq 0} = \emptyset$, define an open set $D((\eta, n), r)$ to be the disk of radius r about η in the nth sheet:

$$D((\eta, n), r) := \{ (z, n) \mid |z - \eta| < r \}$$
 (3)

2. For (η, n) with $\eta \in \mathbb{R}_{<0}$, define

$$A((\eta, n), r) := \{ (z, n) \mid |z - \eta| < r, \text{ Im } z \ge 0 \} \sqcup (z, n - 1) ||z - \eta| < r, \text{ Im } z < 0 \quad (4)$$
 where $r < |\eta|$

This defines a path-connected, Hausdorff topology on R. The map $\pi: \mathbb{R} \to \mathbb{C}^*$ given by $\pi((z,n)) = z$ is a (regular) covering map. Define $f: R \to \mathbb{C}$ by $f(re^{i\theta}, n) = \log r + i(2\pi n + \theta)$ where $\theta \in [0, 2\pi)$. By construction, f is continuous, f is also a bijection, and (diagram). In this sense, f is a logarithm.

Note we can similarly construct a gluing spae for $z^{1/n}$ as a multivalued function, $z^{1/n} =$ $r^{1/n}e^{i\theta/n}e^{2\pi ki/n}$ so the nth sheet glues to the first. This is a regular covering map, but only because 0 is not included.

0.3Power series and continuation

Recall a power series is absolutely and uniformly convergent on any closed disk inside its radius of convergence. If that radius of convergence is not ∞ , what can we say about how far the series can be analytically continued? Without loss of generality assume we are working on the unit disk \mathbb{D} , that is a series about zero and radius of convergence 1. We denote $\mathbb{T} := \partial \mathbb{D}$ and write $f(z) = \sum_{k \ge 0} a_k z^k$.

Definition. We say that $z \in \mathbb{T}$ is **regular** if \exists an open disk N about z and an analytic function g on N such that f = g on $N \cap \mathbb{D}$. If z is not regular, it is **singular**.

Note the collection of regular points is open, and the collection of singular points is closed.

Warning: regularity is independent of series convergence!

(1) $f(z) := \sum_{k \ge 0} z^k$. This doesn't converge anywhere on \mathbb{T} , but as it agrees with $\frac{1}{1-z}$, all points except z = 1 are regular.

(2)
$$g(z) := \sum_{k=2}^{\infty} \frac{z^k}{k(k-1)}$$
 (5)

converges on \mathbb{T} but 1 is a singular point, as if g extends analytically to a neighbourhood of 1, so g'' does also, a contradiction.

Proposition. If $f(z) = \sum a_k z^k$ has radius of convergence 1, then \exists singular point on \mathbb{T} .

Proof. Suppose not, then for each $z \in \mathbb{T}$, $\exists D_z$ and analytic g_z on D_z with $f = g_z$ on $D_z \cap \mathbb{D}$. Given $z_1 \neq z_2$ on \mathbb{T} with $D_{z_1} \cap D_{z_2} \neq \emptyset$, then since these are disks centered at points of \mathbb{T} , $D_{z_1} \cap D_{z_2} \cap \mathbb{D} \neq \emptyset$, so $f = g_{z_1} = g_{z_2}$ on $\mathbb{D} \cap D_{z_1} \cap D_{z_2}$. By the identity principle $g_{z_1} = g_{z_2}$ on $D_{z_1} \cap D_{z_2}$, as \mathbb{T} is compact, it many be covered by finitely many of these disks, so f can be extended to the union \mathbb{D} with this finite collection of D_z , and that union contains $\mathbb{D}(0, 1 + \delta)$ for some $\delta > 0$, contradiction.

Definition. We say \mathbb{T} is a **natural boundary** of f if every point $z \in \mathbb{T}$ is singular.

Example. $f(z) := \sum_{k=0}^{\infty} z^{k!}$. Let ω be a root of unity, $\omega = e^{2\pi i p/q}$. Then

$$\begin{split} f(re^{2\pi i p/q}) &= \sum_{k=0}^{\infty} r^{k!} (e^{2\pi i p/q})^{k!} \\ &= \sum_{k=0}^{q-1} r^{k!} (e^{2\pi i p/q})^{k!} + \sum_{k=q}^{\infty} r^{k!} \\ &\text{bounded as } r \to 1 \end{split}$$

But

Definition. A Riemann surface is a connected, Hausdorff topological space R, together with a collection of open subsets $\mathcal{U}_{\alpha} \subset \mathbb{R}$ and homeomorphisms $\phi_{\alpha} : \mathcal{U}_{\alpha} \to D_{\alpha}$, where D_{α} is an open subset of \mathbb{C} satisfying

- 1. $\bigcup_{\alpha} \mathcal{U}_{\alpha} = R$
- 2. for any α, β with $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \neq \emptyset$, then the map

$$\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}) \to D_{\alpha}$$

is analytic as a map of open sets in \mathbb{C} .

The information $(\mathcal{U}_{\alpha}, \phi_{\alpha})$ is called a **chart** of R. The compositions $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ are the **transition functions** of R. The collection of charts $\{U_{\alpha}, \phi_{\alpha}\}$ is the **atlas** of R.

Remark.

- 1. As transitions are invertible with analytic inverses, they are conformal equivalences.
- 2. R is path connected as it is connected and locally path connected Fix $z_0 \in R$. Define $U = \{ z \in R \mid \exists \text{path from } z_0 \text{ to } z \}$. U is open, as it its complement. As R is connected, U^c is empty.
- 3. Occasionally, 'connected' will not be included in the definition, but this can be annoying without limiting the number of connected components.

Example. \mathbb{C} as a topological space, for instance $(\mathbb{C}, \phi(z) = z)$, $(\mathbb{C}, \phi(z) = z + 1)$, $(\mathbb{C}, \phi(z) = \overline{z})$.

Definition. Let R be a Riemann surface. Two atlases $\{(\mathcal{U}_{\alpha}, \phi_{\alpha})\}$, $\{(\mathcal{U}_{\beta}, \psi_{\beta})\}$ are equivalent if their refinement $\{(\mathcal{U}_{\beta}, \phi_{\beta})\} \cup \{(\mathcal{U}_{\beta}, \psi_{\beta})\}$ is an atlas. In other words,

$$\psi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(\mathcal{U}_{\alpha} \cap V_{\beta}) \to \psi_{\beta}(\mathcal{U}_{\alpha} \cap V_{\beta})$$

$$\tag{6}$$

is analytic (and similarly for $\phi_{\alpha} \circ \psi_{\beta}^{-1}$).

This defines an equivalence relation, as we will soon see.

Example. $(\mathbb{C}, \phi(z) = z)$, $(\mathbb{C}, \phi(z) = z + 1)$: the refinement has transition maps: identity, $z \mapsto z + 1$, $z \mapsto z - 1$, so these are equivalent atlases. Nonexample: $(\mathbb{C}, \phi(z) = z)$, $(\mathbb{C}, \phi(z) = \bar{z})$, the transition functions of the refinement are identity and complex conjugation, so these are *not* equivalent atlases.

Definition. We call an equivalence class of atlases a **conformal structure** on R.

Remark. 1. We could have defined a Riemann surface as a connected Hausdorff topological space which admits a conformal structure.

2. If $S \subset R$ is open, connected then R a Riemann surface implies S a Riemann surface via restriction of charts.

Definition. Let R, S be Riemann surfaces with atlases $\{(\mathcal{U}_{\alpha}, \phi_{\alpha})\}, \{(\mathcal{U}_{\beta}, \psi_{\beta})\}$ respectively, We say a map $f: R \to S$ is analytic if it is continuous and if for any $\mathcal{U}_{\alpha} cap f^{-1}(V\beta) \neq \emptyset$, the map

$$\psi_{\beta} \circ f \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(\mathcal{U}_{\alpha} \cap f^{-1}(V_{\beta})) \to \psi_{\beta}(f(\mathcal{U}_{\alpha} \cap f^{-1}(V_{\beta})))$$
 (7)

is analytic.

Definition. An analytic map $f: R \to S$ of Riemann surfaces is a **conformal equivalence** (biholomorphism or analytic isomorphism) if \exists analytic inverse $g: S \to R$ of f.

Example. We saw that $(\mathbb{C}, \phi(z) = z)$ and $(\mathbb{C}, \psi(z) = \bar{z})$ are inequivalent at lases, ie, define different conformal structures on \mathcal{C} . However, $f: (\mathbb{C}, \phi(z) = z) \to (\mathbb{C}, \psi(z) = \bar{z})$ given by $z \mapsto \bar{z}$ is a conformal equivalence of these two Riemann surfaces as the functions $(\psi \circ f \circ \phi^{-1})(z) = \bar{z} = z$ are conformal isomorphisms.

Lemma. The composition of analytic maps $f: R \to S$ and $g: S \to T$ of Riemann surfaces is analytic.

We need for any γ , α with $\mathcal{U}_{\alpha} \cap h^{-1}(W_{\gamma})$ that $\theta_{\gamma} \circ h \circ \phi_{\alpha}^{-1}$ is analytic on $\phi_{\alpha}(\mathcal{U}_{\alpha} \cap h^{-1}(W_{\gamma}))$. In this set, analyticity is local, so it suffces to show that for any β with $f^{-1}(V_{\beta}) \cap \mathcal{U}_{\alpha} \cap h^{-1}(W_{\gamma}) \neq \emptyset$, we have $\theta_{\gamma} \circ h \circ \phi_{\alpha}^{-1}|_{\phi_{\alpha}(\mathcal{U}_{\alpha} \cap h^{-1}(W_{\gamma}))}$ analytic on $\phi_{\alpha}()$.

Corollary. Equivalence of atlases is an equivalence relation.

Proof. Atlases a_1 and a_2 are equivalent by definition if the identity map $(R, a_1) \xrightarrow{\mathrm{id}} (R, a_2)$ is analytic. Reflexivity and symmetry are immediate, and transitivity follows from the previous lemma.

Proposition. Let R be a Riemann Surface and $\pi: \widetilde{R} \to R$ a covering map. Then $\exists !$ conformal structure on \widetilde{R} for which π is analytic.

Proof. Given $z \in \widetilde{R}$, \exists neighbourhood \widetilde{N}_z of z such that π is homeomorphic on \widetilde{N}_z . $\pi(z) \in U$ for some chart neighbourhood \mathcal{U} ; $\pi(\widetilde{N}) \cap \mathcal{U}$ is open in R, so define $V := \pi^{-1}(U) \cap \widetilde{N}$, an open set in \widetilde{R} . Define $\psi : V \to \mathbb{C}$ to be $\phi \circ \pi$, we obtain an atlas on \widetilde{R} , π is analytic as the composition functions are just the transitions of the atlas on R. So \exists conformal structure on \widetilde{R} for which π is analytic, call this atlas a. Suppose $\exists a^*$ on \widetilde{R} for which π is analytic; we will show these atlases are equivalent.

Say (W, θ) is a chart of a^* and $z \in W$, find (V, ψ) (and \widetilde{N} and \mathcal{U}) as above. We assumed that π is analytic for this atlas. As π is analytic, $\phi \circ \pi \circ \theta^{-1}$ is analytic; it is also a homeomorphism, so its inverse is also analytic. So both types of transitions are analytic and the atlases are equivalent.

$$R \xrightarrow{f} \mathbb{C}$$

$$\downarrow^{\pi} \text{exp}$$

$$\mathbb{C}^*$$

As a corollary, we see that the gluing surface R we constructed for log gives a conformal structure on R for which π is analytic. Note f is continuous by the open mapping theorem. It follows that f is analytic (looking locally) but f is a bijection. So f has an analytic inverse, because the inverse is continuous. So R is conformally equivalent to \mathbb{C} .

Example. The Riemann sphere. Let $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$, equipped with the topology whose open sets are of the form: open subset of \mathbb{C} or $\{\infty\} \cup \mathbb{C} \setminus K$ where $K \subseteq \mathbb{C}$ is compact. With this topology, \mathbb{C}_{∞} is homeomorphic to S^2 via stereographic projection and $\pi((0,0,1)) = \infty$. C_{∞} is connected, Hausdorff and compact. Define the atlas via two charts: $(\mathbb{C} : \phi(z) = z)$ and $(\mathbb{C}_{\infty} \setminus \{0\}, \phi(z) = \frac{1}{z})$. The transitions $\frac{1}{z}$ are analytic on \mathbb{C}^* .

Definition. We define the Riemann Sphere as the above surface.

Definition. If R is a Riemann surface, an analytic map $R \to \mathbb{C}$ is an analytic function: in terms of charts, if (\mathcal{U}, ϕ) is a chart for R, this required $f \circ \phi^{-1}$ is analytic.

Theorem (Inverse function theorem). Given g analytic on an open set $V \subseteq \mathbb{C}$, and $a \in V$ with $g'(a) \neq 0$, \exists neighbourhood N of a, $N \subseteq V$ such that $g|_N : N \to g(N)$ is a conformal equivalence.

Proof. Replace g with g(z) - g(a) to assume without loss of generality that g(a) = 0. Take a disk $\mathbb{D}(a, \epsilon)$ with

 $\operatorname{mathbb} D(a,\epsilon) \subseteq V$ on which a is the only zero of g, assume also $g'(z) \neq 0$ on $\overline{\mathbb{D}}(a,\epsilon)$. The argument principle tells us: if γ is positively oriented disk boundary, then $n(g \circ \gamma, 0) =$ number of zeros of g in the disk $g \circ \gamma$ is compact so closed, so choose a disk $g \circ \gamma$ centred at $g \circ \gamma = \emptyset$.

For all $w \in \Delta$, $n(g \circ \gamma, w) = 1$ so let $N = g^{-1}(\Delta)$. Then N is an open neighbourhood of a, and $g|_N : N \to \Delta$ is a bijection. The inverse of g is continuous by the open mapping theorem, and therefore analytic. So, N is as needed.

Suppose now that $a \in \mathcal{U} \subseteq \mathbb{C}$, and $g \not\equiv 0$ analytic function on \mathcal{U} domain with g(a) = 0. We may write $g(z) = (z-a)^r h(z)$ where $h(a) \neq 0$ and h is analytic on \mathcal{U} .

Choose $a \in \mathbb{R}$ and a disk $a \in D \subseteq \mathcal{U}$ such that h(D) is disjoint from the ray of angle α (can do by continuity and $h(a) \neq 0$) so we can define an analytic rth root of h by using this ray as a branch cut for log. So we can write

$$g(z) = f(z)^r$$
 on D , where $f(z) = (z - a)l(z) = f(z) = (z - a)h(z)^{\frac{1}{r}}$ (8)

and f has a simple zero at a. Therefore \exists open neighbourhood of a on which f(z) is a conformal equivalence by the inverse function theorem.

If $f: R \to \mathbb{C}$ is an analytic function of a Riemann Surface R, locally around $p_0 \in R$, we may find a chart $\phi: \mathcal{U} \to \mathbb{C}$. Without loss of generality $f(p_0) = 0$ and write $a = \phi(p_0)$. On a neighbourhood of a, we have $f \circ \phi^{-1}(z) = g(z)^r$, for some local conformal equivalence g and some r.