ВМ-1. Лекція 1 за 21.09.20.

Лекцію 1 переписати в зошит для конспекту лекцій з ВМ-1 (ЛА-АГ). Обов'язково на кожній сторінці конспекту напишіть у верхньому правому куті сторінки ваше прізвище та ініциали.

Лекція 1. Визначники.

Означення матриці.

Матрицею А розміром т \times *п* називають прямокутну таблицю чисел a_{ij} розташованих у *т* рядках та *п* стовпцях, і позначають

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Числа a_{ij} називаються *елементами матриці,* перший індекс i означає номер рядка $(i=1,2,\cdots m)$, другий індекс j номер стовпця $(j=1,2,\cdots n)$ на перетині яких стоїть даний елемент. Елементами a_{ij} матриці можуть бути функції або алгебраїчні вирази.

Матрицю позначають також так $A=\left(a_{ij}\right)$ або $A_{m\times n}=\left(a_{ij}\right)_{m\times n}$. i -й рядок (завдовжки n) матриці $A_{m\times n}$ позначають \overleftarrow{a}_i = $\left(a_{i1} \ a_{i2} \ \cdots \ a_{in}\right)$.

$$j$$
 -й стовпець (заввишки m) матриці A позначають $\vec{a}_j = \begin{pmatrix} \vec{a}_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$.

Матриця A має m рядків $\ddot{a}_1, \ddot{a}_2, \cdots, \ddot{a}_k$ та n стовпців $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n$.

Приклад. Розглянемо матрицю A розміру 2×2 та випишимо її елементи, рядки та стовпці.

$$A = \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix}, \ a_{11} = 1, \ a_{12} = 2, a_{21} = 5, a_{22} = 7.$$

Рядки:
$$\ddot{a}_1=(1\quad 2),\ \ddot{a}_2=(5\quad 7).$$
 Стовпці: $\vec{a}_1=\begin{pmatrix}1\\5\end{pmatrix},\ \vec{a}_2=\begin{pmatrix}2\\7\end{pmatrix}.$

Якщо $m \neq n$, то матрицю A називають прямокутною, якщо m = n, тобто кількість рядків дорівнює кількісті стовпців, то $A - \kappa Badpamha$ матриця n - 20 порядку:

$$A = (a_{ij})_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Матриця A в прикладі 1 це квадратна матриця 2— го порядку. Для квадратних матриць вводиться поняття головної та побічної діагоналі. Елементи $a_{11}, a_{22}, \cdots, a_{nn}$ розташовані на головній діагоналі, елементи a_{1n}, \cdots, a_{n1} на побічній діагоналі.

Визначники.

Розглянемо довільну квадратну матрицю n -го порядку $A=\left(a_{ij}\right)_{n\times n}$.

Визначником (детермінантом) квадратної матриці А називається певне число, що позначається символами

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$
 afo Δ_n , $det A$

та обчислюється за наведеними далі правилами.

Елементи a_{ij} матриці A називаються *елементами визначника,* а рядки та стовпці матриці A — рядками та стовпцями визначника.

Зауваження. 1. Визначник для неквадратної матриці не означують.

2. Будьте уважні щодо позначення матриці A та її визначника detA, наприклад,

$$A=\begin{pmatrix}1&2\\5&7\end{pmatrix}$$
, дужки круглі; $det A=\begin{bmatrix}1&2\\5&7\end{bmatrix}$, дужки прямі $!!$

Правила обчислення визначників матриць 1-го, 2-го та 3-го порядку.

1. Визначник **1-го** порядку матриці $A = (a_{11})$:

$$det A = |a_{11}| = a_{11}.$$

Приклад 1. A = (-5), det A = |-5| = -5.

2. Визначник 2-го порядку матриці $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ обчислюється за формулою:

$$\Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

Для обчислення визначника 2-го порядку потрібно від добутку елементів, що стоять на головній діагоналі, відняти добуток елементів, розміщених на побічній діагоналі. Схематично це правило зображають так:

$$\begin{vmatrix} \bullet & \bullet \\ \bullet & \bullet \end{vmatrix} = \begin{vmatrix} \bullet & \circ \\ \bullet & \bullet \end{vmatrix} - \begin{vmatrix} \circ & \bullet \\ \bullet & \circ \end{vmatrix}$$

Приклад 2. Обчислити визначник.

$$\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} = 2 \cdot 4 - 1 \cdot (-3) = 8 + 3 = 11.$$

3. Правило трикутників для обчислення визначника 3-го порядку. Схематично це правило зображають так:

За правилом трикутників визначник 3-го порядку дорівнює сумі 6 доданків, перші три доданки зі знаком плюс є добутками елементів, що стоять на головній діагоналі і в вершинах двох трикутників, у яких одна сторона паралельна головній діагоналі. Аналогічно утворюються доданки зі знаком мінус, де за основу береться побічна діагональ.

Приклад 3. Обчислити визначник за правилом трикутників

$$\Delta_3 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ -1 & 4 & 5 \end{vmatrix} = 1 \cdot 1 \cdot 5 + 2 \cdot 4 \cdot (-1) + 3 \cdot 2 \cdot 4 - (-1) \cdot 1 \cdot 3 - 2 \cdot 2 \cdot 5 - 1 \cdot 4 \cdot 4 =$$

$$= 5 - 8 + 24 + 3 - 20 - 16 = 32 - 44 = -12. \quad \blacksquare$$

Обчислення визначників методом розкладу за елементами рядка або стовпця.

Означення. Мінором M_{ij} елемента a_{ij} визначника n —го порядку називається визначник (n-1) —го порядку, отриманий з даного визначника викресленням i —го рядка та j —го стовпця, тобто рядка та стовпця на перетині яких стоїть елемент a_{ij} .

Зауваження. Мінор M_{ij} називають також доповняльним мінором.

Означення. Алгебраїчним доповненням A_{ij} елемента a_{ij} визначника називається його мінор M_{ij} , взятий зі знаком $(-1)^{i+j}$, тобто

$$A_{ij} = (-1)^{i+j} M_{ij}.$$

Приклад 4. Для визначника Δ_3 з **прикладу 3** обчислити мінор та алгебраїчне доповнення елементів a_{11} та a_{12} .

Для обчислення мінора M_{11} викреслюємо з визначника Δ_3 1-й рядок та 1-й стовпець, отримаємо визначник 2-го порядку, якому за означенням дорівнює мінор M_{11} :

$$M_{11} = \begin{vmatrix} 1 & 4 \\ 4 & 5 \end{vmatrix} = 1 \cdot 5 - 4 \cdot 4 = -11, \ A_{11} = (-1)^{1+1} M_{11} = M_{11} = -11.$$

Для обчислення мінора M_{12} викреслюємо з Δ_3 1-й рядок та 2-й стовпець $M_{12}=\begin{vmatrix}2&4\\-1&5\end{vmatrix}=2\cdot 5-(-1)\cdot 4=14,\ A_{12}=(-1)^{1+2}M_{12}=-M_{12}=-14.$

Теорема. (про розклад визначника за елементами рядка (стовпця)). Визначник n —го порядку дорівнює сумі добутків елементів будь-якого рядка (стовпця) на їх алгебраїчні доповнення.

Застосуємо теорему до визначника 3-го порядку

$$\Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Напишемо деякі формули для обчислення Δ_3 .

- 1) Розкладом за елементами 1-го рядка: $\Delta_3 = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$.
- 2) Розкладом за елементами 2-го рядка: $\Delta_3 = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$.
- 3) Розкладом за елементами 3-го стовпця: $\Delta_3 = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$.

Зауваження. При обчисленні визначника розкладом за будь-яким рядком або стовпцем *отримаємо одне й теж число*.

Приклад 5. Обчислити визначник методом розкладу за елементами 1-го рядка.

$$\Delta_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ -1 & 4 & 5 \end{bmatrix} = [a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}] = 1 \cdot A_{11} + 2 \cdot A_{12} + 3 \cdot A_{13}.$$

Обчислимо алгебраїчне доповнення A_{13} , оскільки $A_{11}=-11$ та $A_{12}=-14$ відомо з прикладу 4.

$$M_{13} = \begin{vmatrix} 2 & 1 \\ -1 & 4 \end{vmatrix} = 2 \cdot 4 - (-1) \cdot 1 = 9, \ A_{13} = (-1)^{1+3} M_{13} = M_{13} = 9.$$

Отже $\Delta_3 = A_{11} + 2A_{12} + 3A_{13} = -11 - 28 + 27 = -12$. Отримали таку відповідь, як при обчисленні цього визначника за правилом трикутників в прикладі 3.

Властивості визначників.

Заміну рядків матриці її відповідними стовпцями, а стовпців — відповідними рядками, називають *транспонуванням* матриці.

Означення. Матрицю розміром $n \times m$, яку одержують з матриці A розміром $m \times n$ транспонуванням стовпців (рядків), називають *транспонованою* матрицею до A і позначають A^T .

Приклади. 1)
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
, $A^T = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 \end{pmatrix}$; 2) $A = \begin{pmatrix} 1 & 2 & 3 \\ -5 & 4 & 1 \end{pmatrix}$, $A^T = \begin{pmatrix} 1 & -5 \\ 2 & 4 \\ 3 & 1 \end{pmatrix}$.

Розглянемо (на прикладі визначників другого порядку) основні властивості визначників.

1) (*Рівноправність рядків та стовпців*). Транспонування матриці не змінює її визначника:

$$detA = detA^{T}, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix}.$$

3 властивості 1) випливає, що всі подальші властивості справедливі і для рядків і для стовпців.

2) Якщо *переставити місцями* два стовпці (рядки) визначника, то він *змінить знак на протилежний*:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = [\vec{a}_1 \leftrightarrow \vec{a}_2] = - \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}.$$

3) Спільний множник, що міститься в усіх елементах *одного* стовпця (рядка) можна виносити за знак визначника:

$$\begin{vmatrix} a_{11} & ka_{12} \\ a_{21} & ka_{22} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} ka_{11} & ka_{12} \\ a_{21} & a_{22} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

- **4)** (Умови рівності нулю визначника). Визначник дорівнює нулю, якщо він містить:
- 1) нульовий стовпець (рядок);
- 2) два однакові стовпці (рядки);
- 3) пропорційні стовпці (рядки):

$$\begin{vmatrix} a_{11} & a_{12} \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ ka_{11} & ka_{12} \end{vmatrix} = 0.$$

5) (*Лінійність*). Якщо стовпець (рядок) визначника є сумою двох стовпців (рядків), то визначник дорівнює сумі двох відповідних визначників:

$$\begin{vmatrix} a_{11} & a_{12} + b_{12} \\ a_{21} & a_{22} + b_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{12} \\ a_{21} & b_{22} \end{vmatrix}.$$

6) Визначник не зміниться, якщо до елементів деякого рядка (стовпця) додати відповідні елементи іншого рядка (стовпця), помножені на одне й те саме число:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{bmatrix} \overleftarrow{a}_2 \to \overleftarrow{a}_2 + k\overleftarrow{a}_1 \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} + ka_{11} & a_{22} + ka_{12} \end{vmatrix}.$$

Доведення 6):

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} + ka_{11} & a_{22} + ka_{12} \end{vmatrix} = [\text{за власт. 5})] = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ ka_{11} & ka_{12} \end{vmatrix} =$$
$$= [\text{за власт. 4})] = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + 0 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

7). (*Теорема анулювання*). Сума добутків елементів стовпця (рядка) визначника на алгебричні доповнення відповідних елементів іншого стовпця (рядка) дорівнює нулю.

Обчислення визначника методом Гауса (зведенням до трикутного вигляду).

Означення. Визначник n—го порядку, всі елементи якого розташовані нижче від головної діагоналі дорівнюють нулю, називають визначником трикутного вигляду.

$$\Delta_3 = egin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$
 — визначник 3 — го порядку трикутного вигляду .

Теорема. Визначник трикутного вигляду дорівнює добутку елементів, розташованих на головній діагоналі.

$$\Delta_n = a_{11} \cdot a_{22} \cdot a_{33} \cdot \cdots \cdot a_{nn}$$

Доведення (для визначника 3 — го порядку).

$$\Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = \begin{bmatrix} \text{обчислимо розкладом за} \\ \text{елементами } 1 - \text{го стовпця} \end{bmatrix} = a_{11} \cdot A_{11} + 0 \cdot A_{21} + 0 \cdot A_{31} = a_{11} \cdot (-1)^{1+1} M_{11} + 0 = a_{11} \cdot M_{11} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ 0 & a_{33} \end{vmatrix} = a_{11} \cdot a_{22} \cdot a_{33}.$$

Метод Гауса зведення визначника до трикутного вигляду полягає в перетворенні визначника до вигляду, коли всі елементи, розташовані нижче від головної діагоналі, дорівнюють нулю, але всі діагональні елементи $a_{ii} \neq 0$. Для цього застосовують властивості **2), 3)** та **6)** визначника. Нехай $\Delta_n = detA$ визначник матриці $A = \begin{pmatrix} a_{ij} \end{pmatrix} n$ - го порядку . Метод Гауса:

Крок 1. Ведучий рядок перший $\bar{a}_1=(a_{11} \quad \cdots \quad a_{1n})$, ведучий елемент a_{11} .

1) Якщо $a_{11}=0$, то треба переставити 1-й стовпець з будь-яким стовпцем, розташованим правіше ніж 1-й, або переставити 1-й рядок з будь-яким рядком, розташованим нижче ніж 1-й. При цьому визначник змінить знак на протилежний.

Нехай $a_{11} \neq 0$. Робимо за допомогою першого рядка рівними нулю всі елементи 1-го стовпця, розташовані нижче діагонального a_{11} :

- 2) Від елементів 2-го рядка віднімаємо відповідні елементи 1-го рядка, помножені на число $\frac{a_{21}}{a_{11}}$. Позначаємо це так: $\ddot{a}_2 \to \ddot{a}_2 \frac{a_{21}}{a_{11}} \ddot{a}_1$.
- 3) Від елементів 3-го рядка віднімаємо відповідні елементи 1-го рядка, помножені на число $\frac{a_{31}}{a_{11}}$. Позначаємо це так: $\ddot{a}_3 \to \ddot{a}_3 \frac{a_{31}}{a_{11}} \ddot{a}_1$.
- 4) Від елементів 4-го рядка віднімаємо відповідні елементи 1-го рядка, помножені на число $\frac{a_{41}}{a_{11}}$. Позначаємо це так: $\ddot{a}_4 \to \ddot{a}_4 \frac{a_{41}}{a_{11}} \ddot{a}_1$.

Продовжуємо так далі до останнього n -го рядка.

Крок 2. Ведучий рядок другий \hat{a}_2 , ведучий елемент a_{22} .

1) Якщо $a_{22}=0$, то треба переставити 2-й стовпець з будь-яким стовпцем, розташованим правіше ніж 2-й, або переставити 2-й рядок з будь-яким рядком, розташованим нижче ніж 2-й. При цьому визначник змінить знак на протилежний.

Нехай $a_{22} \neq 0$. Робимо за допомогою 2-го рядка рівними нулю всі елементи 2-го стовпця, розташовані нижче діагонального a_{22} :

- 2) Від елементів 3-го рядка віднімаємо відповідні елементи 2-го рядка, помножені на число $\frac{a_{32}}{a_{22}}$. Позначаємо це так: $\overleftarrow{a}_3 \to \overleftarrow{a}_3 \frac{a_{32}}{a_{22}} \overleftarrow{a}_2$.
- 3) Від елементів 4-го рядка віднімаємо відповідні елементи 2-го рядка, помножені на число $\frac{a_{42}}{a_{22}}$. Позначаємо це так: $\ddot{a}_4 \to \ddot{a}_4 \frac{a_{42}}{a_{22}} \ddot{a}_2$.

Продовжуємо так далі до останнього n -го рядка.

Крок 3. Ведучий рядок другий \tilde{a}_3 , ведучий елемент a_{33} . Виконується аналогічно.

Крок (n-1). Ведучий рядок другий \tilde{a}_{n-1} , ведучий елемент $a_{n-1,n-1}$. Виконується аналогічно. Це останній Крок.

Приклад 6. Обчислити визначник зведенням до трикутного вигляду

$$\begin{vmatrix} 1 & -1 & 0 & 0 \\ 4 & -3 & 3 & 1 \\ 0 & 2 & 4 & -6 \\ 5 & -7 & -2 & 0 \end{vmatrix} = \begin{bmatrix} a_{11} = 1 \neq 0 \\ \tilde{a}_2 \to \tilde{a}_2 - 4\tilde{a}_1 \\ \tilde{a}_4 \to \tilde{a}_4 - 5\tilde{a}_1 \end{bmatrix} = \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 4 & -6 \\ 0 & -2 & -2 & 0 \end{vmatrix} = \begin{bmatrix} a_{22} = 1 \neq 0 \\ \tilde{a}_3 \to \tilde{a}_3 - 2\tilde{a}_2 \\ \tilde{a}_4 \to \tilde{a}_4 + 2\tilde{a}_2 \end{bmatrix} = \begin{bmatrix} a_{11} = 1 \neq 0 \\ \tilde{a}_1 \to \tilde{a}_2 \to \tilde{a}_1 & 0 \\ \tilde{a}_2 \to \tilde{a}_3 \to \tilde{a}_3 - 2\tilde{a}_2 \end{bmatrix} = \begin{bmatrix} a_{11} = 1 \neq 0 \\ \tilde{a}_3 \to \tilde{a}_3 \to \tilde{a}_3 - 2\tilde{a}_2 \\ \tilde{a}_4 \to \tilde{a}_4 + 2\tilde{a}_2 \end{bmatrix} = \begin{bmatrix} a_{11} = 1 \neq 0 \\ \tilde{a}_1 \to \tilde{a}_2 \to \tilde{a}_3 \to \tilde{a}_3 - 2\tilde{a}_2 \\ \tilde{a}_2 \to \tilde{a}_3 \to \tilde{$$

$$= \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & -2 & -8 \\ 0 & 0 & 4 & 2 \end{vmatrix} = \begin{bmatrix} a_{33} = -2 \neq 0 \\ \tilde{a}_4 \to \tilde{a}_4 + 2\tilde{a}_3 \end{bmatrix} = \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & -2 & -8 \\ 0 & 0 & 0 & -14 \end{vmatrix} =$$

=
$$\begin{bmatrix} визначник трикутного вигляду \\ дорівнює добутку елементів, \\ розташованих на головній діагоналі \end{bmatrix}$$
 = $1 \cdot 1 \cdot (-2) \cdot (-14) = 28$. ■