Land Surface Model Assimilation of SMOS Soil Moisture Retrievals

Clay Blankenship (USRA)
Jonathan Case (ENSCO Inc.)
Bradley Zavodsky (NASA)

Objectives

Goal: Assimilate SMAP satellite retrievals of soil moisture into a regional land surface model.

- Demonstrate impact on: LSM soil moisture field coupled NWP forecasts
- Transition a real-time version of LIS output to end users.

Using SMOS assimilation to prepare for SMAP.

LIS Noah near-surface soil moisture

WRF Convective Available Potential Energy (CAPE)

Motivation

 Improve model depiction of soil moisture and related variables (Direct Applications) drought monitoring, flood forecasting, agriculture

Better numerical weather forecasts using coupled NWP/LSM
 Available moisture affects humidity, sensible/latent heating, diurnal heating rate, and convection.

Short-term Prediction Research and Transition (SPoRT) Center

<u>Mission</u>: Transition unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale.

- Close collaboration with numerous WFOs and National Centers across the country
- SPoRT activities began in 2002, first products to AWIPS in 2003
- Co-funded by NOAA since 2009 through Proving Ground activities
- Proven paradigm for transition of research and experimental data to operations

Benefit:

- Demonstrate capability of NASA and NOAA experimental products to weather applications and societal benefit
- Take satellite instruments with climate missions and apply data to solve shorter-term weather problems

Land Information System (LIS)

SPORT-LIS total column soil moisture displayed in AWIPS II

- Framework for running LSMs incorporating a wide variety of meteorolc forcing data and land surface parameters
 - Developed at NASA-GSFC
 - Includes data assimilation capability.
 - Can be run coupled with WRF.
- Experiments done in Noah 3.2 Land Surface Model (LSM) within LIS
- NASA SPORT maintains near-real-time and experimental LIS runs
 - SE US (3-km), shared with WFO's
 - East Africa, shared with Kenya Meteorological Service (KMS)

East Africa LIS domain

Applications: Flood Potential

Contrasting antecedent soil moisture likely played a strong role in the different outcomes

Analysis of several events suggests typical moderate-heavy synoptic rainfall events over deep-layer relative soil moisture values exceeding 55-60% will lead to more substantial moderate or heavier flooding events

White and Case, 2015. AMS Annual Mtg. P520.

SMOS and SMAP

- L-band radiometers (and radars) can be used to estimate soil moisture near the surface
 - Compared to higher frequency instruments:
 - Sees deeper in the soil (~5 cm)
 - Better vegetation penetration
 - Higher sensitivity (accuracy)
- SMAP radar gives improved horizontal resolution
- Assimilating retrievals from Soil Moisture and Ocean Salinity (SMOS) satellite
- Preparing for assimilation of NASA Soil Moisture Active/Passive (SMAP) retrievals

Name	AMSR-E	SMOS		SMAP	
Agency	NASA/JAX A	ESA	NASA		
Launch	2002	2009	Jan. 2015		
Orbit	Polar	Polar	Polar		
Sensor Type	Passive	Passive	Passive	Active (Failed July 2015)	Combined
Frequency	6.9 GHz (C-band)	1.4 GHz (L-band)	1.41 GHz	1.2 GHz	
Resolution	56 km	35-50 km	36 km	3 km	9 km
Accuracy	6 cm ³ /cm ³	4 cm ³ /cm ³	4 cm³/cm³	6 cm ³ /c m ³	4 cm ³ /cm ³

The SMAP Active/Passive product maintains the high accuracy of SMOS with better spatial resolution, enabling reduced representativeness error due to inhomogeneities.

Data Assimilation in LIS

Figure from J. Anderson, NCAR.

- Uses Ensemble Kalman Filter in LIS
- Combines Background (Model) and Observations (Satellite Retrievals), weighted by their uncertainties, to provided a new analysis
- Observation operator relates the top model layer of soil moisture (0-10 cm) to the bias-corrected observations (~5 cm).
- Better depiction of top layer can improve deeper layers through drainage and diffusion.

Bias Correction

CDFs of Soil Moisture Observations

Correction Curves

- LIS can apply point-by-point correction curves. To increase the background dataset size, we are aggregating points by landcover type. We will also explore correction at each point and aggregating by soil type.
- In general, observations are drier than the model but have a higher dynamic range.

Bias Correction

Implemented landcover-based CDF matching correction for SMOS retrievals.

Example DA (rice irrigation)

hydrologic modeling

national crop yield due to each state.

3-km results (14 May 2011)

Experiment Design

- Southeastern/Central USA 3-km domain
- MODIS/IGBP Vegetation Type
- STATSGO Soil Type
- Daily MODIS GVF
- North American Land Data Assimilation 22) forcing
- Precip: Stage IV (radar+gauge)

- 1-yr spinup, 1 month perturbations, 32 ensemble members
- Experiment run March-October 2011
- SMOS DA
 - State, Observation, and Forcing Perturbations
- Control (Open loop with perturbations)
- Validation
 - North American Soil Moisture Database
 - Due to scale mismatch, expect correlations to be most useful metric

SMOS DA Validation

0-10 cm model soil moisture Compared open loop run to SMOS DA run.

Results from validation against soil moisture networks in US (North American Soil Moisture Database)

- Better correlations
- Improved dynamic range

SMOS DA Validation

	Near Surface (0-10 cm)		Root Zone (10-100 cm)			
	Bias	Err SD	Corr.	Bias	Err SD	Corr.
Control	3.6%	23.5%	0.47	4.0%	10.6%	0.61
SMOS DA	-0.5%	21.8%	0.57	10.6%	11.8%	0.67

SMOS DA Validation

	Near Surface (0-10 cm)			Root Zone (10-100 cm)		
	Bias	Err SD	Corr.	Bias	Err SD	Corr.
Control	3.6%	23.5%	0.47	4.0%	10.6%	0.61
SMOS DA	-0.5%	21.8%	0.57	10.6%	11.8%	0.67

WRF impact tests

- Coupled LIS/WRF runs
 - –NWP provides forcing for LSM
 - LSM provides fluxes and surface conditions to NWP model
- Assess impact of SMAP DA on NWP for coupled runs
 - Verify NWP forecasts against surface obs, soundings, and precipitation analyses
 - Examine impact on significant events

Validation Datasets				
Domain	T, q, wind	Precipitation		
CONUS	MADIS	MRMS		
East Africa	WMO network	GPM IMERG		

WRF impact tests

- Weather impacts of improved LSM states
 - Moisture
 - Surface fluxes
 - Diurnal heating rates
 - Convection

Impact of using high-res LIS output in WRF rather than NAM fields. (Case et al. 2008, J. Hydro.)

- Soil moisture and associated surface fields have known impacts on weather
- How much can SMAP retrievals improve weather forecasts?

Summary and Plans

Successful validation of SMOS DA showing improved correlations with ground observations for upper layer (0-10 cm) and root zone (10-100 cm).

Future Plans

- Assimilate SMAP data
 - L2 Active-Passive Retrieval (9 km) product (limited time period)
 - L2 Passive Retrieval (36 km)
 - Awaiting info on other SMAP products
- Coupled LIS-WRF experiments using NU-WRF
 - NWP validation over US and East Africa
- Implement DA in near-real-time LIS runs
 - Transition products to NWS and international partners
- Further investigate bias correction

Predicted Impacts

- Improved resolution of SMAP Active-Passive product will reduce representativeness errors due to heterogeneity while maintaining high accuracy
- Better depiction of gradients and structure for coupling with NWP models at convectionallowing resolution (3 km) for regional forecasting

Extras/scratch space...

Applications: Drought Monitoring

- Soil moisture from SPoRT LIS has been used by NWS forecasters to refine drought indices on the county scale (Huntsville, Houston, Raleigh)
- Soil moisture and GVF output from LIS could also be applied to situational awareness and forecasts of red flag warnings and potential for fires