MP* - Anneaux principaux

Tous les anneaux dans la suite sont supposés commutatifs. Les démonstrations de résultats très faciles sont laissées au lecteur.

Définition 1: : Soit A un anneau.

Un idéal de A est une partie I de A telle que:

- (I, +) est un sous-groupe de (A, +).
- $\forall a \in I, \forall b \in A, ab \in I$.

Si A est un anneau et $a_1, ..., a_n \in A$, $a_1A + ... + a_nA = \{a_1b_1 + ... + a_nb_n \mid b_1, ..., b_n \in A\}$ est facilement un idéal, dit idéal engendré par $a_1, ..., a_n$.

On vérifie immédiatement la propriété:

Propriété 1: Une intersection d'idéaux d'un anneau A est un idéal de A.

Rappelons un résultat déjà vu:

Propriété 2:

- 1. Si K est un corps commutatif, les idéaux de K[X] sont du type AK[X], $A \in K[X]$.
- 2. Les idéaux de \mathbb{Z} sont du type $a\mathbb{Z}$, $a \in \mathbb{Z}$. (Dans \mathbb{Z} , il y a coïncidence entre idéal et sous-groupe)

Propriété 3: Le noyau d'un morphisme d'anneaux est un idéal de l'anneau de départ. La vérification est immédiate.

A partir de maintenant, en plus d'être commutatifs, les anneaux sont supposés intègres.

Définition 2: Soit A un anneau, et $a, b \in A$. On dit que a divise b si et seulement si il existe $c \in A$ tel que b = ac, ie si et seulement si $b \in aA$.

On va s'intéresser à certains types d'anneaux dans lesquels il y a une arithmétique, comme dans K[X] ou \mathbb{Z} , ie une notion d'irréductibles, et un théorème de décomposition.

Définition 3: Un anneau A est dit principal si tout idéal de A est du type aA, $a \in A$.

Ainsi K[X] et \mathbb{Z} sont des anneaux principaux.

Un autre exemple: On pose $\mathbb{Z}[i]=\{a+ib\mid a,b\in\mathbb{Z}\}$ (entiers de Gauss). C'est facilement un sous-anneau de \mathbb{C} .

Cet anneau a été introduit par Gauss pour étudier l'équation $x^2+z^2=y,\ x,y,z\in\mathbb{Z},$ car $x^2+y^2=(x+iy)(x-iy).$

Propriété 4: $\mathbb{Z}[i]$ est principal.

Démonstration:

Il y a dans $\mathbb{Z}[i]$ une espèce de division euclidienne (non unique):

Soient $x, y \in \mathbb{Z}[i], y \neq 0$.

 $\mathbb{Z}[i]$ est un réseau, de côtés de longueur 1. De ce fait (dessin), il existe $q \in \mathbb{Z}[i]$ tel que

 $|q-x/y| \leq \frac{1}{\sqrt{2}} < 1$ (demi diagonale d'un carré de côté 1).

On se donne un tel q.

Soit r = x - yq. $r \in \mathbb{Z}[i]$.

De plus |r| = |y||q - x/y| < |y|.

Soit maintenant I un idéal de $\mathbb{Z}[i]$. Si $I = \{0\}$, $I = 0\mathbb{Z}[i]$.

Supposons donc $I \neq 0$.

 $\mathbb{Z}[i]$ est discret, donc I aussi, donc on peut se donner $a \in I \setminus \{0\}$ de module minimal.

Comme I est un idéal, $a\mathbb{Z}[i] \subset I$.

Inversement, soit $b \in I$. On écrit b = aq + r avec $q, r \in \mathbb{Z}[i], |r| < |a|$.

r = b - aq et $a, b \in I$, donc $r \in I$.

Du fait de la minimalité de |a|, r=0 et $b=aq\in a\mathbb{Z}[i]$.

 $\mathbb{Z}[i]$ possédant une division euclidienne, on dit que $\mathbb{Z}[i]$ est euclidien, ce qui est plus fort que principal.

Propriété 5: $\mathbb{Z}[i]^{\times} = \{1, -1, i, -i\}$

Démonstration: Si $a, b \in \mathbb{Z}$, on pose $N(a+ib) = |a+ib|^2 = a^2 + b^2 \in \mathbb{N}$.

Si xy = 1, $x, y \in \mathbb{Z}[i]$, N(xy) = N(x)N(y) = 1, donc N(x) = 1, donc $x \in \{-1, 1, -i, i\}$.

De plus -1, 1, -i, i sont inversibles d'inverses -1, 1, i, -i.

Définition 4: Soit A un anneau. $x \in A$ est dit irréductible si et seulement si x est non nul, n'est pas inversible, et pour tous $y, z \in A$, si x = yz, alors y ou z est inversible. x, y sont dits associés si et seulement si il existe z inversible tel que x = yz.

Ainsi les irréductibles de \mathbb{Z} sont les nombres premiers et leurs opposés.

Ce qui suit n'est pas au programme, mais bon à connaître pour X/ENS.

Définition 5: Soient $a_1, ..., a_n \in A$, A étant principal. $a_1A + ... + a_nA$ qui est un idéal s'écrit cA. Tout $c \in A$ tel que $cA = a_1A + ... + a_nA$ est appelé un pgcd de $a_1, ..., a_n$.

Notons que si c est un pgcd, $a_i = a_1 \times 0 + ... + a_i \times 1 + ... + a_n \times 0 \in a_1 A + ... + a_n A = cA$, donc $c|a_i$.

Propriété 6: Si aA = bA si et seulement si a et b sont associés, et donc si A est principal, et c est un pgcd de $a_1, ..., a_n$, les autres sont les éléments associés à c.

Démonstration: Si c est inversible, $x = cc^{-1}x$, donc cA = A, et donc acA = aA, d'où \Leftarrow .

Inversement, si aA = bA avec $b \neq a$: $a \in bA$, et $b \in aA$, donc il existe $x, y \in A$ tels que a = bx et b = ay.

Disons $a \neq 0$. On a a(1 - xy) = 0 donc par intégrité xy = 1, et donc x, y sont inversibles, et a et b associés. \clubsuit

Propriété 7: A est principal. Si $a, b \in A$ sont irréductibles, soit ils sont associés, soit 1 est un pgcd de a et b.

Démonstration a, b irréductibles. Supposons que a et b ne sont pas associés.

Soit c un pgcd de a et b. cA = aA + bA.

c|a, c|b, donc on se donne x, y tels que a = cx et b = cy.

Si c n'était pas inversible, comme a et b sont irréductibles, x, y sont inversibles, et alors $a = b(y^{-1}x)$, et a et b sont associés, ce qui est absurde.

Donc c est inversible, et donc $1 = cc^{-1}$ qui est associé à c est aussi un pgcd de a et b.

Propriété 8: Lemme de Gauss.

A est principal. Soient $x, y, z \in A$ tels que x divise yz et x est premier à y, ie 1 est un pgcd de x

et y.

Alors x divise z.

Démonstration: On a xA+yA=1A=A. On peut donc se donner $u,v\in A$ tels que xu+vy=1. Alors z=xuz+vyz est divisé par x car x|yz.

Propriété 9: Théorème de décomposition.

A est principal. Soit $a \in A$ non inversible et non nul.

Alors il existe $b_1, ..., b_n$ irréductibles tels que $a = b_1 ... b_n$.

De plus, si $c_1, ..., c_k$ sont d'autres irréductibles tels que $a = c_1 ... c_k$, alors k = n, et quitte à renuméroter, c_i est associé à b_i pour tout i.

Démonstration:

Existence: Soit $a \in A$ non inversible et non nul.

Si a est irréductible, n = 1. a est décomposé.

Sinon, on peut se donner b_1, b_2 non inversibles tels que $a = b_1 b_2$.

Si b_1 et b_2 admettent des décompositions, c'est fini.

Sinon, disons que b_1 n'admet pas de décomposition. b_1 étant alors non irréductible, on écrit $b_1 = c_1c_2$ avec c_1c_2 non inversibles.

 b_1 étant non décomposable, c_1 ou c_2 ne l'est pas, disons que c_1 ne l'est pas.

etc...

On forme ainsi une suite croissante d'idéaux: ... $c1|b_1|a$, ce qui donne $aA \subset b_1A \subset c_1A \subset ...$, et en fait strictement croissante:

Si on avait $aA = b_1A$, a et b_1 seraient associés: on se donne x inversible tel que $a = b_1x$.

Alors $b_1b_2=b_1x$, et $b_1\neq 0$, donc par intégrité $x=b_2$ ce qui est absurde car b_2 est non inversible.

Ainsi $aA \neq b_1A$. Il en est de même pour la suite.

En renommant les choses, on a donc $(d_n A)_{n \in \mathbb{N}}$ une suite strictement croissante d'idéaux.

Notons $I = \bigcup d_n A$.

I est un idéal car si $x, y \in I$, il existe n1, n2 tels que $x \in d_{n_1}A$, $y \in d_{n_2}A$, et avec $n = \max(n_1, n_2)$, $x, y \in d_nA$, et donc $x + y, -x \in d_nA \subset I$, et si $z \in A$, $zx \in d_nA \subset I$.

On peut donc se donner $e \in A$ tel que $eA = \bigcup d_n A$.

 $n \in \mathbb{N}$

Alors, il existe N tel que $e \in d_N A$, ce qui implique que $eA \subset d_N A$ ie $I \subset d_N A$. Mais alors $d_N A = I$, et donc $\forall n \geq N$, $I \subset d_n A \subset I$, ie $d_n A = I$, ce qui contredit la stricte croissance.

Unicité aux inversibles près:

Supposons $a = b_1...b_n = c_1...c_k$ avec $\forall i, b_i, c_i$ irréductibles.

Si b_1 n'est pas associé à c_1 , par la propriété 7, b_1 est premier à c_1 , et alors divise $c_2...c_k$ par le lemme de Gauss.

Puis, si b_1 n'est pas associé à c_2 , b_1 divise $c_3...c_k$.

Au pire, on finit par $b_1|c_1$. Mais alors, comme c_1 est irréductible, et b_1 non inversible, $c_1 = b_1x$ avec x inversible.

Ainsi b_1 est associé à un c_i , disons c_1 . On écrit $b_1 = c_1 \varepsilon$, ε inversible.

Par intégrité on simplifie: $(\varepsilon b_2)b_3...b_n = c_2...c_k$. εb_2 est irréductible.

Et on recommence... ♣

Donnons un exemple de l'utilisation de l'arithmétique dans $\mathbb{Z}[i]$: le théorème des deux carrés:

Propriété 10: Soit $n \geq 2$ un entier.

Alors n est somme de deux carrés d'entiers si et seulement si pour tout nombre premier p divisant n et congru à 3[4], $v_p(n)$ est pair.

Nous allons décomposer la démonstration en plusieurs propriétés. Dans la suite, carré signifie

carré d'entier.

Propriété 11: Un entier $n \in \mathbb{N}$ est somme de deux carrés si et seulement si il existe $x \in \mathbb{Z}[i]$ tel que n = N(x) (N définie dans la propriété 5).

Un produit de somme de deux carrés est une somme de deux carrés.

Démonstration: La première assertion est triviale, et pour la seconde, on note que N(x)N(y) = N(xy).

On rappelle la propriété vue en exercice:

Propriété 12: Soit p un nombre premier ≥ 3 . Alors -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $p \equiv 1[4]$.

Propriété 13: Soit p un nombre premier congru à 1 modulo 4. Alors p est somme de deux carrés.

Démonstration: Nous allons utiliser $\mathbb{Z}[i]$.

On se donne donc p premier $\equiv 1[4]$.

Alors -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$.

Ainsi, il existe $a \in \mathbb{N}$ tel que $-1 \equiv a^2[p]$.

Alors p divise $a^2 + 1 = (a + i)(a - i)$ dans \mathbb{Z} , donc a fortiori dans $\mathbb{Z}[i]$.

Soit d un pgcd de p et a + i dans $\mathbb{Z}[i]$.

d divise p dans $\mathbb{Z}[i]$, donc N(d) divise $N(p) = p^2$ dans \mathbb{N} , donc $N(d) \in \{1, p, p^2\}$.

On examine les 3 cas.

Si N(d) = 1: d est inversible dans $\mathbb{Z}[i]$, donc p et a + i sont premiers entre eux, donc par le lemme de Gauss, p divise a - i.

On écrit alors a - i = p(c + id), $c, d \in \mathbb{Z}$. Alors pd = -1, absurde.

Si $N(d) = p^2$: d|p On écrit p = xd, $x \in \mathbb{Z}[i]$. $p^2 = N(p) = N(x)N(d) = N(x)p^2$, donc N(x) = 1, et $x \in \{1, -1, i, -i\}$ est inversible. d et p sont associés.

Donc d|a+i donne p|a+i, ce qui est impossible comme p|a-i dans le cas précédent.

Finalement N(d) = p, ce qui donne que p est somme de carrés d'entiers. .

A partir de là, notant que $2=1^1+1^2$ et $a^2=a^2+0^2$, en combinant les propriétés 11 et 13, on a le sens \Leftarrow de la propriété 11.

Concernant le sens \implies , si $n = a^2 + b^2$, et p est premier $\equiv 3[4]$ divise n:

On écrit $n = a^2 + b^2$. En passant aux classes dans $\mathbb{Z}/p\mathbb{Z}$, $\bar{a}^2 + \bar{b}^2 = 0$. Si $\bar{a} \neq 0$, on a $-1 = (\bar{b}\bar{a}^{-1})^2$, ce qui contredit la propriété 12. donc $\bar{a} = 0$. De même $\bar{b} = 0$.

Alors $p|a, p|b, p^2|n$, et on simplifie $n = a^2 + b^2$ par p^2 : $(n/p^2) = (a/p)^2 + (b/p^2)$.

Et on recommence.

Si $v_p(n) = 2k + 1$ est impair, en k étapes, on aboutit à $m := n/p^{2k}$ est somme de deux carrés, et $v_p(m) = 1$.

 $m=a^2+b^2$, on passe dans $\mathbb{Z}/p\mathbb{Z}$ comme précédemment, ce qui donne que $p^2|m$ ce qui est absurde. Ainsi $v_p(n)$ est pair.