# Homework #1

(Due on Canvas by Sat, Sep. 7)

# 1. Gradient, divergence, and curl

Suppose  $\vec{a}$  and  $\vec{b}$  are constant vectors and  $\vec{r} = r\hat{r}$  is a vector field, calculate the following expressions and simplify them to the fullest.

- (1)  $\nabla \times (\vec{r}/r)$
- (2)  $\nabla \cdot (\vec{r}/r)$
- (3)  $\nabla (\vec{a} \cdot \vec{r})$
- (4)  $\nabla \cdot [(\vec{a} \cdot \vec{r})\vec{b}]$
- (5)  $\nabla \times [(\vec{a} \cdot \vec{r})\vec{r}]$

#### 2. The divergence theorem

For vector field  $\vec{v} = x^2 \hat{x} + y^2 \hat{y} + z \hat{z}$ , verify the divergence theorem in the cubic region bounded by  $0 \le x \le a$ ,  $0 \le y \le a$ ,  $0 \le z \le a$ .



#### 3. The Stokes' theorem

For vector field  $\vec{v} = s^2 \hat{\phi} + \phi \hat{z}$  expressed in the cylindrical coordinates, verify the Stokes' theorem in the circular region (with radius a) centered at the origin within the z = 0 plane.



## 4. Line charge distribution

Calculate the electric field vector at distance z above the center of a circular loop of radius a that carries a uniform line charge  $\lambda$ .

## 5. Surface charge distribution

Consider a spherical surface of radius a carrying a uniform surface charge density  $\sigma$ , use (1) the Gauss's law and (2) the Coulomb's law to calculate the electric field vector at distance z (with z > a) from the center of the sphere. Compare the results.

# 6. Point charge distribution

An electric dipole consists of one positive charge +q and one negative charge -q separated by a distance d. Calculate the electric field vector at a distance r from the center of the dipole. Approximations can be adopted assuming  $r \gg d$ . Perform your work in the spherical coordinates.



## 7. Volume charge distribution

Two spheres, each of radius a and carrying uniform volume charge densities  $+\rho$  and  $-\rho$ , respectively, are placed so that they partially overlap. Call the vector from the positive center to the negative center  $\vec{d}$ . Show that the electric field vector in the region of overlap is constant, and find its expression.

