GY7702: Coursework 1

James A. Hardwick (179001497)

04/11/2020

Introduction

This document has been created to increase the **reproducibility** of this coursework assignment, written in RMarkdown. To support the reproducibility of the document please refer to the *GitHub data repository* for the commits that document the development of this Coursework 1

Libraries

This coursework use the library tidyverse

```
library(tidyverse)
```

Also the library knitr

```
library(knitr)
```

Other libraries are also used for specific question for instance in question 2 the library **palmerpenguins** these specific libraries will be referred to within each question

Questions

Question 1: Question 1 deals with a vector of 25 numbers between 1 and 7, with each value representing answers to survey questions. Some values are missing. Vector was defined by the question:

```
# vector survey_responses contains 25 elements
survey_responses <- c(NA, 3, 4, 4, 5, 2, 4, NA, 6, 3, 5, 4, 0, 5, 7, 5, NA, 5,
2, 4, NA, 3, 3, 5, NA)
```

```
# specify the survey_response variable
survey_responses %>%
    # using na.omit removes NA values from the vector
na.omit() %>%
    # is. element will return logical output, if 7 or completely agree was answered in the
    # survey it will be returned as TRUE
    is.element(7) %>%
    # is. element will return logical output, if 1 or completely agree was answered in the
    # survey it will be returned as TRUE
    is.element(1)
```

Question 1.1:

```
## [1] FALSE FALSE
```

Question 1.2 Extract the indexes who at least somewhat agreed or more (values 5 to 7)

```
# Function which see if any value between 5 and 7 and return the index of each
# survey participant
which(survey_responses %in% 5:7)
```

```
## [1] 5 9 11 14 15 16 18 24
```

###Question 2: Question 2 looks data from Adélie, Chinstrap, and Gentoo penguins observed on islands in the Palmer Archipelago near Palmer Station, Antarctica. Palmerpenguins library can be found at Palmerpenguins GitHub Repositry

Question 2.1 Question 2.1 ask for the library (palmerpenguins) to be installed and loaded

```
library(tidyverse)
library(knitr)
# install.packages("palmerpenguins")
library(palmerpenguins)
```

Question 2.2 Question 2.2 creates a table showing *species, island, bill length and body mass* of the 10 Gentoo penguins in the penguins table with the highest body mass

```
# Starts from the entire palmerpenguins libraries
palmerpenguins::penguins %>%
    # Selects only the necessary columns
    dplyr::select(species, island, bill_length_mm, body_mass_g
) %>%
    # Retain only rows representing the Gentoo species
    dplyr::filter(species == "Gentoo"
) %>%
    # Sort by descending body mass in g
    dplyr::arrange(desc(body_mass_g))
```

```
## # A tibble: 124 x 4
##
      species island bill_length_mm body_mass_g
##
      <fct>
             <fct>
                              <dbl>
                                          <int>
## 1 Gentoo Biscoe
                               49.2
                                           6300
##
   2 Gentoo Biscoe
                               59.6
                                           6050
## 3 Gentoo Biscoe
                               51.1
                                           6000
## 4 Gentoo Biscoe
                               48.8
                                           6000
## 5 Gentoo
             Biscoe
                               45.2
                                           5950
##
                               49.8
                                           5950
  6 Gentoo Biscoe
## 7 Gentoo Biscoe
                               48.4
                                           5850
## 8 Gentoo Biscoe
                               49.3
                                           5850
## 9 Gentoo Biscoe
                               55.1
                                           5850
## 10 Gentoo Biscoe
                               49.5
                                           5800
## # ... with 114 more rows
```

Question 2.3 Question 2.3 creates a table with average bill length per island, ordered by average bill length

```
# Starts from the entire palmerpenguins libraries
palmerpenguins::penguins %>%
    # Selects only the necessary columns
    dplyr::select(bill_length_mm, island) %>%
    # Grouped by island
    dplyr::group_by(island) %>%
```

```
# Drops rows containing NAs in the bill_length_mm column
# otherwise the mean function will return NA
dplyr::filter(!is.na(bill_length_mm)) %>%
# Calculates the average of bill_length_mm
dplyr::summarise(average_bill_length = mean(bill_length_mm)) %>%
# Ordered by descending average_bill_length
dplyr::arrange(desc(average_bill_length)) %>%
# kable improves tibble format
knitr::kable()
```

average_bill_length
45.25749
44.16774
38.95098

Question 2.4 Question 2.4 creates a table showing the *minimum*, *median and maximum* proportion between *bill length and bill depth by species*

```
# Starts from the entire palmerpenguins libraries
palmerpenguins::penguins %>%
  # Selects only the necessary columns
  dplyr::select(species, bill_length_mm, bill_depth_mm) %>%
  # Grouped by species
  dplyr::group_by(species) %>%
  # Drops rows containing NAs in the bill_length_mm column
  # otherwise the mean function will return NA
  dplyr::filter(!is.na(bill_length_mm))%>%
  # Drops rows containing NAs in the bill_depth_mm column
  # otherwise the mean function will return NA
  dplyr::filter(!is.na(bill_depth_mm)) %>%
  # Calculates the bill length to bill depth ratio
  dplyr::summarise(Proportion=
                     (bill_length_mm/bill_depth_mm)) %>%
   # using summariase again the minimum, median and maximum for each species can be calculated
  dplyr::summarise(min(Proportion),
                   median(Proportion),
                   max(Proportion)) %>%
  # Using the function kable formats the table
  knitr::kable()
```

species	$\min(\text{Proportion})$	median(Proportion)	$\max(\text{Proportion})$
Adelie Chinstrap	$1.639810 \\ 2.350516$	$\begin{array}{c} 2.136842 \\ 2.661577 \end{array}$	2.450000 3.258427
Gentoo	2.566474	3.166667	3.612676

Question 3:

Question 3 looks at a topical data set of new and cumulative **COVD19** cases in the UK between March 1st and October 17th 2020. **COVID19** data is sourced from the HM Government Coronavirus in the UK

Question 3.1 Question 3.1 asks for the data covid19 cases to be loaded

```
#using readr (part of tidyverse)
library(readr)
# reads the .CSV file with the correct directory
# Imports covid19_cases_20200301_20201017.csv and assings to a new variable
#covid_data
covid_data <-readr::read_csv("covid19_cases_20200301_20201017.csv")</pre>
```

Question 3.2 This question asked for an area specific table to be generated. Here **Brentwood** (Essex) COVID19 is presented. Brentwood Borough Council (COVID19 response and information)[https://www.brentwood.gov.uk/index.php?cid=2937]

Question 3.3

load library lubridate

Initally, library lubdridate is loaded to aid with date format.

```
library("lubridate")
```

Second part of this question converts day_before into character from following year month and day format and reformats the table

Lastly, Brentwood_day_before and Brentwood_complete_covid_data are joined using a left join. With day_before being equal to specimen_date. Then a new column is added showing the daily percentage change of cases. Stored in a variable <code>Brentwood_covid_development</code>

Question 3.4 495 COVID-19 cases were recorded in the Brentwood area between 2020-03-02 to 2020-10-09. Development of cases was not linear instead three distinct phases can be observed. Phase-1 began between the period 2020-03-03 to 2020-03-16, only two cases where recorded. Between 2020-03-17 to 2020-05-14 cases increased rapidly with percentage of new cases of day before peaking at 800%. During phase-3, new cases began to slow and stabilised overall between 2020-05-15 and 2020-08-19. Daily percentage change fell over

time (e.g. 200% to 0%). Within this general trend there was some short-scale variability (e.g. 2020-05-17 to 2020-05-21 of 0% to 25% to 133% before returning to 0%). Stabilisation of cases, during phase-2, was short lived with phase-3 mirroring the initial phase-1 development of new cases starting from 2020-08-20. During Phase-3 percentage of new cases was rapidly rising averaging 100.71% daily increase, a higher magnitude than phase-1 (i.e 84%).

###Question 4

Importing population per local authority and COVID19 case data

```
# import lad19_population data and assigned to a new variable LAD_pop
LAD_pop<- readr::read_csv("lad19_population.csv")
# import COVID19 case data and assigned to a new variable LAD_covid_cases
LAD_covid_cases <- readr::read_csv("covid19_cases_20200301_20201017.csv")</pre>
```

Carrying out table join for LAD_pop and LAD_covid_cases

```
# need to rename LAD_pop column lad19_area_name to area_name to match
# LAD_covid_cases table
covid_cases_lad_pop <- dplyr::rename(LAD_pop,area_name = lad19_area_name) %>%
# table join between LAD_pop and LAD_covid_cases
dplyr::left_join(LAD_covid_cases, LAD_pop, by = "area_name")
```

####Description and Interpretation