

2-3.여러 가지 방정식과 부등식

2-3-1.삼차방정식과 사차방정식_천재(이준열)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-03-05
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[삼·사차방정식의 풀이]

- •인수정리와 조립제법을 이용하여 인수분해한 후 방정식의 해를 구한 다
- 공통부분이 있으면 그것을 하나의 문자로 치환하여 인수분해한 후 방정식의 해를 구한다.

[삼차방정식의 근과 계수와의 관계]

삼차방정식 $ax^3 + bx^2 + cx + d = 0$ (a, b, c, d는 상수, $a \neq 0$)의 세 근을 α, β, γ 라 하면

$$\bullet \ \alpha + \beta + \gamma = -\frac{b}{a}, \ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}, \ \alpha \beta \gamma = -\frac{d}{a}$$

기본문제

[예제]

- **1.** 방정식 $x^4 5x^2 + 4 = 0$ 을 풀었을 때 해가 아닌 것은?
 - ① x = 1
- ② x = -1
- (3) x = 2
- (4) x = 3
- (5) x = -2

[문제]

- **2.** 삼차방정식 $x^3 + ax^2 2x 8 = 0$ 의 한 근이 2일 때, 실수 a의 값은?
 - $\bigcirc -5$
- ② -3
- (3) -1
- **4**) 1

(5) 3

[문제]

- **3.** 방정식 $x^4 16 = 0$ 을 풀었을 때 해가 아닌 것은?
 - \bigcirc 2

 $\bigcirc -2$

- $\Im i$
- (4) 2*i*
- (5) 2i

[예제]

- **4.** 방정식 $x^4 x^3 4x^2 + 2x + 4 = 0$ 을 풀었을 때 해 가 아닌 것은?
 - $\bigcirc -2$
- 2 2
- $\sqrt{2}$
- $\bigcirc 4 \sqrt{2}$
- (5) -1

- [문제]
- **5.** 방정식 $x^4 4x^3 + 12x 9 = 0$ 을 풀었을 때 해가 아닌 것은?
 - ① $\sqrt{3}$
- ② $-\sqrt{3}$
- 3 3
- (4) 1
- \bigcirc -1

[예제]

- 6. 어느 자동차 회사에서는 직육면체 모양의 적재함을 생산하는데, 이 적재함의 가로, 세로의 길이는 각각 2.5 m, 6.3 m이고, 높이는 x m이고 x가 삼차방정식 $2x^3-7x^2+2x+3=0$ 의 한 근일 때, 적재함의 높이는? (단, 높이는 가로의 길이보다 길다.)
 - ① 3 m
- ② $\frac{7}{2}$ m
- 3 4 m
- $\frac{9}{2}$ m
- ⑤ 5 m

[문제]

7. 다음 그림과 같이 가로, 세로의 길이가 모두 x m이고 높이가 (x+3) m인 직육면체가 있다. 이 직육면체에 가로, 세로의 길이가 모두 $\frac{x}{2}$ m이고 높이가 4 m인 직육면체 모양의 구멍을 팠더니 남은 부분의 부피가 16 m3가 되었다고 할 때, x의 값은?

1

② $\frac{5}{4}$

- $3\frac{3}{2}$
- $4 \frac{7}{4}$

⑤ 2

평가문제

[소단원 확인 문제]

- **8.** 방정식 $x^4 + 3x^3 + 2x^2 2x 4 = 0$ 을 풀었을 때 해 가 아닌 것은?
 - ① 1
- ② 1+i
- 3 1 + i
- (4) -1-i
- (5) 2

[소단원 확인 문제]

- **9.** 삼차방정식 $x^3 + ax^2 + bx 8 = 0$ 의 한 근이 -2i 일 때, 실수 a, b의 값에 대하여 a + b의 값은?
 - $\bigcirc -2$
- ② 0
- 3 2
- 4
- **⑤** 6

[소단원 확인 문제]

- **10.** 사차방정식 $x^4 x^3 + 7x^2 9x 18 = 0$ 의 두 허근을 α , β 라고 할 때, $\alpha^2 + \beta^2$ 의 값은?
 - (1) 2
- 2 8
- 3 18
- (4) -32
- $\bigcirc 50$

[소단원 확인 문제]

11. 다음 그림과 같이 밑면의 반지름의 길이와 높이 가 모두 x cm인 원기둥 모양의 그릇에 75π cm³의 물을 부었더니 그릇의 위에서부터 2 cm 만큼이 채워지지 않았을 때, x의 값은?

① 2

② 3④ 5

- 3 4

⑤ 6

[중단원 연습 문제]

12. 방정식 $2x^4-5x^2+2=0$ 을 풀었을 때 해가 아닌 것은?

①
$$\frac{\sqrt{2}}{2}$$

②
$$-\frac{\sqrt{2}}{2}$$

$$3\frac{\sqrt{3}}{2}$$

$$4 \sqrt{2}$$

(5) $-\sqrt{2}$

[중단원 연습 문제]

- **13.** 방정식 $(x^2+1)^2-2(x^2+1)-15=0$ 을 풀었을 때해가 아닌 것은?
 - ① 2
- 32i
- 4 i

[중단원 연습 문제]

- **14.** 삼차방정식 $x^3 + ax^2 + bx + 5 = 0$ 의 한 근이 2+i일 때, 실수 a, b에 대하여 a+b의 값은?
 - $\bigcirc -2$
- (3) 0
- **4** 1
- ⑤ 2

[중단원 연습 문제]

- **15.** 삼차방정식 $x^3 2x^2 + (k-3)x + k = 0$ 의 근이 모두 실수가 되도록 하는 실수 k의 값의 범위는?
 - ① $k \leq \frac{4}{9}$
- ② $k \ge \frac{4}{9}$
- $3 k \leq \frac{9}{4}$
- $4 k \ge \frac{9}{4}$

[중단원 연습 문제]

- **16.** 사차식 $x^4 + ax^2 + b$ 가 이차식 $(x-1)(x+\sqrt{2})$ 로 나누어떨어질 때, 사차방정식 $x^4 + bx^2 + a = 0$ 의 근이 아닌 것은? (단, a, b는 실수)
 - ① $\sqrt{3}i$
- ② $-\sqrt{3}i$
- ③ 1
- \bigcirc -1

(5) 2

[중단원 연습 문제]

- **17.** 방정식 $x^3+1=0$ 의 한 허근을 ω 라고 할 때, $\omega+\frac{1}{\omega}-\omega^2-\frac{1}{\omega^2}$ 의 값을 구하시오.
 - $\bigcirc -1$
- ② 0
- 3 1
- **4** 2
- ⑤ 3

[중단원 연습 문제]

18. 다음 그림과 같이 한 모서리의 길이가 x cm인 정육면체 세 개를 쌓아 만든 도형의 부피가 $A \text{ cm}^3$, 겉넓이가 $B \text{ cm}^2$ 이다. 5A-2B=8일 때, x의 값은?

- ① $\frac{3}{2}$
- ② $\frac{7}{4}$

- 3 2
- $4 \frac{9}{4}$
- $(5) \frac{5}{2}$

[대단원 종합 문제]

- **19.** 이차방정식 $x^2+x+2=0$ 의 두 근이 모두 삼차방 정식 $x^3+ax^2+bx+6=0$ 의 근일 때, a+b의 값은? (단, a, b는 실수)
 - ① 13
- ② 11
- 3 9
- (4) 7

(5) 5

- [대단원 종합 문제]
- **20.** 사차방정식 $x^4 + 3x^3 + 2x^2 2x 4 = 0$ 의 두 실근을 α , β 라고 할 때, $\alpha^3 + \beta^3$ 의 값은?
 - $\bigcirc -5$
- (2) 6
- (3) 7
- $\bigcirc -8$
- (5) 9

[대단원 종합 문제]

- **21.** 삼차방정식 $x^3 2x^2 + kx 2k = 0$ 이 중근을 갖도록 하는 모든 실수 k의 값의 합은?
 - $\bigcirc -3$
- $\bigcirc -4$
- 3 5
- $\bigcirc 4 6$
- (5) 7

정답 및 해설

1) [정답] ④

[해설]
$$x^2 = X$$
로 놓으면 주어진 방정식은
$$X^2 - 5X + 4 = 0, \ (X - 1)(X - 4) = 0$$

$$X = 1 \ \text{또는} \ X = 4,$$
 즉 $x^2 = 1 \ \text{또는} \ x^2 = 4$
$$x = \pm 1 \ \text{또는} \ x = \pm 2$$

2) [정답] ④

3) [정답] ③

[해설]
$$x^2 = X$$
로 놓으면 주어진 방정식은 $X^2 - 16 = 0$, $(X+4)(X-4) = 0$ $X = -4$ 또는 $X = 4$, 즉 $x^2 = -4$ 또는 $x^2 = 4$ $x = \pm 2i$ 또는 $x = \pm 2$

4) [정답] ①

수분해하면

[해설]
$$P(x) = x^4 - x^3 - 4x^2 + 2x + 4$$
라고 하면 $P(-1) = 0$, $P(2) = 0$ 이므로 인수정리에 의하여 $x+1$, $x-2$ 는 다항식 $P(x)$ 의 인수이다. 따라서 조립제법을 이용하여 다항식 $P(x)$ 를 인

5) [정답] ⑤

[해설]
$$P(x) = x^4 - 4x^3 + 12x - 9$$
라고 하면 $P(1) = 0$, $P(3) = 0$ 이므로 인수정리에 의하여 $x - 1$, $x - 3$ 은 다항식 $P(x)$ 의 인수이다. 따라서 조립제법을 이용하여 다항식 $P(x)$ 를 인수분해하면

$$P(x) = (x-1)(x-3)(x^2-3)$$

즉, 주어진 방정식은 $(x-1)(x-3)(x^2-3) = 0$
 $x=1$ 또는 $x=3$ 또는 $x=\pm\sqrt{3}$

6) [정답] ①

[해설]
$$P(x) = 2x^3 - 7x^2 + 2x + 3$$
이라고 하면
$$P(1) = 0$$
이므로 인수정리에 의하여 $x-1$ 은 다항 식 $P(x)$ 의 인수이다.

따라서 조립제법을 이용하여 다항식 P(x)를 인수분해하면

$$P(x) = (x-1)(2x^2 - 5x - 3)$$

즉, 주어진 방정식은 $(x-1)(2x^2 - 5x - 3) = 0$
 $(x-1)(x-3)(2x+1) = 0$
 $x = 1$ 또는 $x = 3$ 또는 $x = -\frac{1}{2}$

그런데 x > 2.5이므로 적재함의 높이는 3 m이다.

7) [정답] ⑤

[해설] 가로, 세로의 길이가 모두
$$x$$
 m이고 높이가 $(x+3)$ m인 직육면체의 부피는 $x \times x \times (x+3) = x^3 + 3x^2$

가로, 세로의 길이가 모두
$$\frac{x}{2}$$
 m이고 높이가 4

m인 직육면체 모양의 구멍의 부피는

$$\frac{x}{2} \times \frac{x}{2} \times 4 = x^2$$

$$(x^3+3x^2)-x^2=x^3+2x^2=16$$

$$= x^3 + 2x^2 = 16, \quad x^3 + 2x^2 - 16 = 0$$

$$P(x) = x^3 + 2x^2 - 16$$
이라고 하면

P(2) = 0이므로 인수정리에 의하여 x-2은 다항 식 P(x)의 인수이다.

따라서 조립제법을 이용하여 다항식 P(x)를 인수분해하면

$$P(x) = (x-2)(x^2+4x+8)$$

즉, 주어진 방정식은

$$(x-2)(x^2+4x+8)=0$$

따라서 x는 1보다 큰 실수이므로 x=2

8) [정답] ②

[해설] $P(x)=x^4+3x^3+2x^2-2x-4$ 라고 하면 $P(1)=0,\ P(-2)=0$ 이므로 인수정리에 의하여 $x-1,\ x+2$ 는 다항식 P(x)의 인수이다. 따라서 조립제법을 이용하여 다항식 P(x)를 인수분해하면

$$P(x) = (x-1)(x+2)(x^2+2x+2)$$

즉, 주어진 방정식은 $(x-1)(x+2)(x^2+2x+2) = 0$
따라서 $x=1$ 또는 $x=-2$ 또는 $x=-1\pm i$

9) [정답] ③

[해설] $P(x) = x^3 + ax^2 + bx - 8$ 라고 하면 P(x)의 한 근이 -2i이므로 켤레근인 2i도 삼차 방정식의 해이다. $(x+2i)(x-2i) = x^2 - (2i)^2 = x^2 + 4$ 즉 P(x)는 $x^2 + 4$ 를 인수로 가진다. 상수인 c에 대하여 P(x)의 x^3 의 계수가 1이므로 $P(x) = (x^2 + 4)(x - c)$ 라고 하면 $(x^2 + 4)(x - c) = x^3 - cx^2 + 4x - 4c$ 이고 P(x)의 상수항이 -8이므로 c = 2이다. 따라서 $P(x) = x^3 - 2x^2 + 4x - 8$ 이므로 a = -2, b = 4이고 a + b = 2

10) [정답] ③

[해설] $P(x)=x^4-x^3+7x^2-9x-18$ 이라고 하면 P(-1)=0, P(2)=0이므로 인수정리에 의하여 x+1, x-2는 다항식 P(x)의 인수이다. 따라서 조립제법을 이용하여 다항식 P(x)를 인수부해하면

 $P(x) = (x+1)(x-2)(x^2+9)$ 즉, 주어진 방정식은 $(x+1)(x-2)(x^2+9) = 0$ x = -1 또는 x = 2 또는 $x = \pm 3i$ 따라서 두 허근은 3i 또는 -3i이고 $\alpha^2 + \beta^2 = (3i)^2 + (-3i)^2 = -9 - 9 = -18$

11) [정답] ④

수분해하면

[해설] 그릇에 채워진 물의 부피는 $\pi\times x\times x\times (x-2)=(x^3-2x^2)\pi=75\pi$ 즉 $x^3-2x^2-75=0$ $P(x)=x^3-2x^2-75$ 라고 하면 P(5)=0이므로 인수정리에 의하여 x-5는 다항식 P(x)의 인수이다. 따라서 조립제법을 이용하여 다항식 P(x)를 인

 $P(x) = (x-5)(x^2+3x+15)$ 즉, 주어진 방정식은 $(x-5)(x^2+3x+15) = 0$

따라서 x=5 또는 $x=-\frac{3}{2}\pm\frac{\sqrt{51}}{2}i$ 이므로 실수 x의 값은 5

12) [정답] ③

[해설] $x^2=X$ 로 놓으면 주어진 방정식은 $2X^2-5X+2=0, \ (2X-1)(X-2)=0$ $X=\frac{1}{2} \ \text{또는 } X=2,$ 즉 $x^2=\frac{1}{2} \ \text{또는 } x^2=2$ $x=\pm \frac{\sqrt{2}}{2} \ \text{또는 } x=\pm \sqrt{2}$

13) [정답] ④

[해설] $x^2+1=X$ 로 놓고 좌변을 인수분해하면 $X^2-2X-15=0$, (X-5)(X+3)=0 X=5 또는 X=-3 이때, $X=x^2+1$ 이므로 $x^2+1=5$ 또는 $x^2+1=-3$ 즉 $x^2-4=0$ 또는 $x^2+4=0$ (x-2)(x+2)=0 또는 (x-2i)(x+2i)=0 따라서 주어진 방정식의 근은 $x=\pm 2$ 또는 $x=\pm 2i$

14) [정답] ①

[해설] $P(x) = x^3 + ax^2 + bx + 5$ 라고 하면 P(x)의 한 근이 2+i이므로 켤레근인 2-i도 삼 차방정식의 해이다. $\{x-(2+i)\}\{x-(2-i)\}=x^2-4x+2^2-i^2$ $=x^2-4x+5$ 즉 P(x)는 x^2-4x+5 를 인수로 가진다. 상수인 c에 대하여 P(x)의 x^3 의 계수가 1이므로 $P(x)=(x^2-4x+5)(x-c)$ 라고 하면 $(x^2-4x+5)(x-c)=x^3-(c+4)x^2+(4c+5)x-5c$

이고

P(x)의 상수항이 5이므로 c=-1이다. 따라서 $P(x) = x^3 - 3x^2 + x + 5$ 이므로 a = -3, b = 1이고 a + b = -2

15) [정답] ③

[해설] $P(x) = x^3 - 2x^2 + (k-3)x + k$ 라고하면 P(-1) = 0이므로 x + 1을 인수로 가진다. $x^3-2x^2+(k-3)x+k=(x+1)(x^2-3x+k)$ 이차방정식 $x^2-3x+k=0$ 의 판별식을 D라고 하 면 실근을 가져야하므로 $D = (-3)^2 - 4 \times 1 \times k = -4k + 9 \ge 0$ 따라서 $k \leq \frac{9}{4}$

16) [정답] ⑤

[해설] $P(x) = x^4 + ax^2 + b$ 라고 하면 P(x)가 이차식 $(x-1)(x+\sqrt{2})$ 로 나누어떨어지 므로 x=1, $x=-\sqrt{2}$ 를 근으로 가진다. $x=-\sqrt{2}$ 를 근으로 가지므로 켤레근 $x=\sqrt{2}$ 도 근으로 가진다. 상수인 c에 대하여 x^4 의 계수가 1이므로 $P(x) = (x-1)(x+\sqrt{2})(x-\sqrt{2})(x-c)$ $=x^4-(c+1)x^3+(c-2)x^2+(2c+2)x-2c$ x^3 의 계수와 x의 계수가 0이므로 c=-1

즉 $P(x) = x^4 - 3x^2 + 2$ 이므로 a = -3, b = 2 $x^4 + 2x^2 - 3 = 0$ 에서 $x^2 = X$ 로 놓으면 주어진 방정식은 $X^2+2X-3=0$, (X+3)(X-1)=0 $X = -3 \, \, \pm \frac{1}{2} \, \, X = 1$ 즉 $x^2 = -3$ 또는 $x^2 = 1$ $x = \pm \sqrt{3}i$ $\mathfrak{L} = \pm 1$

17) [정답] ④

[해설] $x^3+1=(x+1)(x^2-x+1)$ 이므로 $\omega^2 - \omega + 1 = 0$ 양변을 ω 로 나누면 $\omega-1+\frac{1}{\omega}=0$, 즉 $\omega+\frac{1}{\omega}=1$ $\omega + \frac{1}{\omega} = 1$ 이므로 $\left(\omega + \frac{1}{\omega}\right)^2 = \omega^2 + 2 + \frac{1}{\omega^2} = 1$, $\stackrel{\sim}{\neg} \omega^2 + \frac{1}{\omega^2} = -1$ 따라서 $\omega + \frac{1}{\omega} - \omega^2 - \frac{1}{\omega^2} = 1 - (-1) = 2$

18) [정답] ③

[해설] 정육면체 하나의 부피는 x^3 이므로 $A=3x^3$ 앞쪽과 뒤쪽에 보이는 도형의 겉넓이는 $2x^2 + 2x^2 = 4x^2$ 왼쪽과 오른쪽에 보이는 도형의 겉넓이는

$$3x^2 + 3x^2 = 6x^2$$

위쪽과 아래쪽에 보이는 도형의 겉넓이는

$$2x^2 + 2x^2 = 4x^2$$

$$rac{\Delta}{2}$$
 $B = 14x^2$

5A-2B=8에서 $A=3x^3$. $B=14x^2$ 이므로

$$15x^3 - 28x^2 - 8 = 0$$

 $P(x) = 15x^3 - 28x^2 - 8$ 이라고 하면

P(2) = 0이므로 인수정리에 의하여 x-2는 다항 식 P(x)의 인수이다.

따라서 조립제법을 이용하여 다항식 P(x)를 인 수분해하면

 $P(x) = (x-2)(15x^2+2x+4)$

즉. 주어진 방정식은

$$(x-2)(15x^2+2x+4) = 0$$

한편 $15x^2 + 2x + 4 = 0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = 1^2 - 15 \times 4 = -59 < 0$$

따라서 실근 x=2

19) [정답] ③

[해설] $P(x) = x^3 + ax^2 + bx + 6$ 이라고 하면

P(x)는 $x^2 + x + 2$ 를 인수로 가진다.

상수인 c에 대하여 P(x)의 x^3 의 계수가 1이므로

$$P(x) = (x^2 + x + 2)(x - c)$$
라고 하면

 $(x^2+x+2)(x-c) = x^3+(1-c)x^2+(2-c)x-2c$

P(x)의 상수항이 6이므로 c=-3이다.

따라서 $P(x) = x^3 + 4x^2 + 5x + 6$ 이므로

a = 4. b = 5이고 a + b = 9

20) [정답] ③

[해설] $P(x) = x^4 + 3x^3 + 2x^2 - 2x - 4$ 라고 하면

P(1) = 0, P(-2) = 0이므로 인수정리에 의하여 x-1, x+2는 다항식 P(x)의 인수이다.

따라서 조립제법을 이용하여 다항식 P(x)를 인 수분해하면

 $P(x) = (x-1)(x+2)(x^2+2x+2)$ 즉, 주어진 방정식은 $(x-1)(x+2)(x^2+2x+2)=0$ $x = 1 + x = -2 + x = -1 \pm i$ 따라서 실근은 1, -2이므로

$$1^3 + (-2)^3 = -7$$

- 21) [정답] ②
- [해설] $P(x) = x^3 2x^2 + kx 2k$ 라고 하면

$$P(2) = 0$$
이므로

$$P(x) = (x-2)(x^2+k)$$

즉, 주어진 방정식은 $(x-2)(x^2+k)=0$

$$x-2=0$$
 또는 $x^2+k=0$

주어진 삼차방정식이 중근을 가지려면

x=2가 중근이거나 $x^2+k=0$ 이 중근을 가지면 된다.

(i) x=2가 중근일 때,

x=2가 $x^2+k=0$ 의 근이어야 하므로

$$4+k=0$$
, $k=-4$

(ii) $x^2 + k = 0$ 이 중근을 가질 때,

이차방정식 $x^2+k=0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = 0^2 - 1 \times k = -k = 0, \ k = 0$$

따라서 모든 실수 k의 값의 합은

-4+0=-4