EE5175:IMAGE SIGNAL PROCESSING

LAB-4

AQIL K H

EE20S049

1.Perform Gaussian blurring on Mandrill.pgm with standard deviation σ . Assume space-invariant blur and a kernel of size $\lceil 6\sigma + 1 \rceil \times \lceil 6\sigma + 1 \rceil$. Observe the outputs for these values of σ : 1.6, 1.2, 1.0, 0.6, 0.3 and 0.0.

Input:

Outputs:

sigma=1.6:

sigma=1.2:

sigma=1:

sigma=0.6:

sigma=0.3:

sigma=0:

 $\underline{\textbf{Observations:}} \ \, \text{As the value of } \textbf{standard deviation } \sigma \text{ decreases, blurring also decreases.}$