Sparse 2D Matrix Format

PROFESSIONAL & CONTINUING EDUCATION

2D Matrix

A 2D Matrix is a rectangular data structure with rows and columns.

Each matrix element is uniquely identified by a row and column.

All matrix elements have the same type.

-(Not so in a table!)

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

2D Matrix

- A 2D Matrix is a rectangular data structure with rows and columns.
- Each matrix element is uniquely identified by a row and column index.
- All matrix elements have the same type. (Not so in a table!)

>>> np.random.random_integers(low=1, high=9, size=[5, 7])

Here is Python code
to generate a 2D
matrix

PROFESSIONAL & CONTINUING EDUCATION

2D Matrix

- A 2D Matrix is a rectangular data structure with rows and columns.
- Each matrix element is uniquely identified by a row and column index.
- All matrix elements have the same type. (Not so in a table!)

```
>>> np.random.random_integers(low=1, high=9, size=[5, 7])
Here is Python code
                                    array([
 to generate a 2D
      matrix
                                                                 1],
                                        9,
                                                                 4],
                                     [4,
 Result of the Python
                                         3,
                                     [9,
                                                                 6],
  code. The row and
                                     [3,
column indices are not
                                    ])
                                                                         NAL & CONTINUING EDUCATION
        shown
```

2D Matrix Format

- A 2D Matrix is a rectangular data structure with rows and columns.
- Each matrix element is uniquely identified by a row and column.
- All matrix elements have the same type. (Not so in a table!)

Sparse 2D Matrix Format

- In a Sparse 2D Matrix most of the matrix elements are null.
- The traditional matrix layout is wasteful for large sparse matrices

PROFESSIONAL & CONTINUING EDUCATION

Sparse 2D Matrix Format

- In a Sparse 2D Matrix most of the matrix elements are null.
- The traditional matrix layout is wasteful for large sparse matrices
- An efficient representation would only reference non-null values.

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Sparse 2D Matrices

- >Examples of Sparse 2D-Matrix Manipulation in a relational database.
- Matrix Addition
- Scalar Multiplication
- Matrix Multiplication
- Inner Product (Dot Product, Scalar Product)
- Outer Product (Cartesian Product)
- Matrix Transposition
- >http://www.scipylectures.org/advanced/scipy_sparse/coo_matrix.htm

Sparse 2D Matrix Format

Use COO Sparse Matrix Format

PROFESSIONAL & CONTINUING EDUCATION

Data as Multi-Dimensional Sparse Matrices

How algorithms view tables

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Sparse Matrices

Cartesian product

- http://en.wikipedia.org/wiki/Cartesian_product
- The Cartesian product of two sets A and B is the set of all ordered pairs ab, where a is element of A and b is element of B.

Relational Algebra

- http://en.wikipedia.org/wiki/Relational_algebra
- In Relational Algebra we need the Cartesian product to combine tuples into a single tuple.
 The Cartesian product creates a new schema (relation) from other relations.

Hyperrectangle (Sparse Multi-Dimensional Matrix)

- http://en.wikipedia.org/wiki/Hyperrectangle
- Hyperrectangle is the generalization of a rectangle for higher dimensions and is defined as the Cartesian product of intervals

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Sparse Matrices 2-Dimensional Matrix PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

Multi-dimensional Sparse Matrix

Machine learning algorithms use tables as their primary structure.

>A row in a table = a point in multi-D space

>A table = a multi-D sparse matrix

Use these matrices to manipulate(transform) the data.

Data as Multi-Dimensional Sparse Matrices

How Algorithms view Tables

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

W