Computer Architecture Ch. 3-2: ALU Design, Add/Sub

Spring, 2005

Sao-Jie Chen (csj@cc.ee.ntu.edu.tw)

Review: Functional Specification of the ALU

 ALU Control Lines (ALUop) 	Function	
000	And	
001	Or	
010	Add	
110	Subtract	

Set-on-less-than

111

MIPS arithmetic instructions

Instruction	Example	Meaning	Comments
add	add \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands; exception possible
subtract	sub \$1,\$2,\$3	1 = 2 - 3	3 operands; exception possible
add immediate	addi \$1,\$2,80	\$1 = \$2 + 80	+ constant; exception possible
add unsigned	addu \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands; no exceptions
subtract unsigned	dsubu \$1,\$2,\$3	1 = 2 - 3	3 operands; no exceptions
add imm. unsign.	addiu \$1,\$2,80	\$1 = \$2 + 80	+ constant; no exceptions
multiply	mult \$2,\$3	Hi, Lo = 2×3	64-bit signed product
multiply unsigned	multu\$2,\$3	Hi, Lo = 2×3	64-bit unsigned product
divide	div \$2,\$3	Lo = $$2 \div 3 ,	Lo = quotient, Hi = remainder
		$Hi = $2 \mod 3	
divide unsigned	divu \$2,\$3	$Lo = $2 \div $3,$	Unsigned quotient & remainder
		$Hi = $2 \mod 3	
Move from Hi	mfhi \$1	\$1 = Hi	Used to get copy of Hi
Move from Lo	mflo \$1	\$1 = Lo	Used to get copy of Lo

MIPS logical instructions

Instruction	Example	Meaning	Comment
and	and \$1,\$2,\$3	\$1 = \$2 & \$3	3 reg. operands; Logical AND
or	or \$1,\$2,\$3	\$1 = \$2 \$3	3 reg. operands; Logical OR
xor	xor \$1,\$2,\$3	\$1 = \$2 \oplus \$3	3 reg. operands; Logical XOR
nor	nor \$1,\$2,\$3	\$1 = ~(\$2 \$3)	3 reg. operands; Logical NOR
and immediate	andi \$1,\$2,10	\$1 = \$2 & 10	Logical AND reg, constant
or immediate	ori \$1,\$2,10	\$1 = \$2 10	Logical OR reg, constant
xor immediate	xori \$1, \$2,10	\$1 = \$2 ⊕ 10	Logical XOR reg, constant
shift left logical	sll \$1,\$2,10	\$1 = \$2 << 10	Shift left by constant
shift right logical	srl \$1,\$2,10	\$1 = \$2 >> 10	Shift right by constant
shift right arithm.	sra \$1,\$2,10	\$1 = \$2 >> 10	Shift right (sign extend)
shift left logical	sllv \$1,\$2,\$3	\$1 = \$2 << \$3	Shift left by variable
shift right logical	srlv \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right by variable
shift right arithm.	srav \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right arith. by variable

Additional MIPS ALU requirements

- Xor, Nor, Xori
 Logical XOR, logical NOR or use 2 steps: (A OR B) XOR 1111...1111
- SII, SrI, Sra
 Need left shift, right shift arithmetic by 0 to 31 bits
- Mult, MultU, Div, DivU
 Need 32-bit multiply and divide, signed and unsigned

Add XOR to ALU

Expand Multiplexor

Shifters

Three different kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

rotating-- shifted out bits are wrapped around (not in MIPS)

Note: these are single bit shifts. A given instruction might request 0 to 32 bits to be shifted!

Barrel Shifter

• Technology-dependent solutions:

Compare and Branch

Compare and Branch

BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch

BNE rs, rt, offset ≠

Compare to zero and branch

BLEZ rs, offset if R[rs] <= 0 then PC-relative branch

BGTZ rs, offset >

• BLT <

• BGEZ ≥

BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)

• BGEZAL ≥

MIPS ALU requirements

- Add, AddU, Sub, SubU, AddI, AddIU
 => 2's complement adder with overflow detection & inverter
- SLTI, SLTIU (set less than)
 => 2's complement adder with inverter, check sign bit of result
- BEQ, BNE (branch on equal or not equal)
 => 2's complement adder with inverter, check if result = 0
- And, Or, Andi, Ori=> Logical AND, logical OR
- ALU from last lecture supports these ops

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: (a-b) < 0 implies a < b
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

• Can we figure out the idea?

Addition & Subtraction

Just like in grade school (carry/borrow 1s)

0111 0110 + 0110 - 0110 - 0101

- Two's complement operations easy
 - subtraction using addition of negative numbers

0111 + 1010

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number

0111

+ 0001 1000 note that overflow term is somewhat misleading, it does not mean a carry "overflowed"

Overflow Detection

Overflow: the result is too large (or too small) to represent properly

- Example: 8 <= 4-bit binary number <= 7
- When adding operands with different signs, overflow cannot occur!
- Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive

Homework exercise: Prove you can detect overflow by:

Carry into MSB! = Carry out of MSB

Overflow Detection Logic

- Carry into MSB ! = Carry out of MSB
 - For a N-bit ALU: Overflow = CarryIn[N 1] XOR CarryOut[N 1]

Zero Detection Logic

- Zero Detection Logic is just a one BIG NOR gate
 - Any non-zero input to the NOR gate will cause its output to be zero

Test for equality

Notice control lines:

000 = and

001 = or

010 = add

110 = subtract

111 = slt

Note: zero is a 1 when the result is zero!

Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - we'll look at two examples for addition and multiplication

The Disadvantage of Ripple Carry

- The adder we just built is called a Ripple Carry Adder
 - The carry bit may have to propagate from LSB to MSB
 - Worst case delay for a N-bit adder: 2N-gate delay

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it? Use sum-of-products

$$c_1 = b_0c_0 + a_0c_0 + a_0b_0$$
 $c_2 = b_1c_1 + a_1c_1 + a_1b_1$
 $c_2 = (b_1+a_1) (b_0c_0+a_0c_0+a_0b_0) + a_1b_1$
 $c_3 = b_2c_2 + a_2c_2 + a_2b_2$
 $c_4 = b_3c_3 + a_3c_3 + a_3b_3$
 $c_4 = ...$

Not feasible! Why?

The Theory Behind Carry Lookahead

- Recalled: CarryOut = (B & CarryIn) | (A & CarryIn) | (A & B)
 - Cin1 = Cout0 = (B0 & Cin0) | (A0 & Cin0) | (A0 & B0)
 - Cin2 = Cout1 = (B1 & Cin1) | (A1 & Cin1) | (A1 & B1)
- Substituting Cin1 into Cin2:
 - Cin2 = (A1 & B0 & Cin0) | (A1 & A0 & Cin0) | (A1 & A0 & B0) | (B1 & B0 & Cin0) | (B1 & A0 & Cin0) | (B1 & A0 & B0) | (A1 & B1)
- Now define two new terms:
 - Generate Carry at Bit i
 gi = Ai & Bi
 - Propagate Carry via Bit i pi = Ai or Bi

Carry-lookahead adder

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry?
 g_i = a_i b_i
 - When would we propagate the carry? $p_i = a_i + b_i$
- Did we get rid of the ripple?

$$c_1 = b_0c_0 + a_0c_0 + a_0b_0 = g_0 + p_0c_0$$
 $c_2 = g_1 + p_1c_1$
 $c_2 = g_1 + p_1g_0 + p_1p_0c_0$
 $c_3 = g_2 + p_2c_2$
 $c_3 = g_2 + p_2g_1 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$
 $c_4 = g_3 + p_3c_3$
 $c_4 = g_1 + g_2c_0$

The Theory Behind Carry Lookahead (Continued)

- Using the two new terms we just defined:
 - Generate Carry at Bit i
 gi = Ai & Bi
 - Propagate Carry via Bit i pi = Ai or Bi
- We can rewrite:
 - Cin1 = $g0 \mid (p0 \& Cin0)$
 - Cin2 = g1 | (p1 & g0) | (p1 & p0 & Cin0)
 - Cin3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & Cin0)
- Carry going into bit 3 is 1 if
 - We generate a carry at bit 2 (g2)
 - Or we generate a carry at bit 1 (g1) and bit 2 allows it to propagate (p2) ⇒ (p2 & g1)
 - Or we generate a carry at bit 0 (g0) and bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
 - Or we have a carry input at bit 0 (Cin0) and bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

Carry Look Ahead (Design trick: peek)

cs 152 L4 Cost.34

Plumbing as Carry Lookahead Analogy

Cascaded Carry Look-ahead (16-bit): Abstraction

2nd level Carry, Propagate as Plumbing

CS 152 L4 Cost.37 DAP Fa 1997 ©UCB

A Partial Carry Lookahead Adder

- It is very expensive to build a "full" carry lookahead adder
 - Just imagine the length of the equation for Cin31
- Common practices:
 - Connects several N-bit Lookahead Adders to form a big adder
 - Example: connects four 8-bit carry lookahead adders to form a 32-bit partial carry lookahead adder

Carry Select Adder

- Consider building a 8-bit ALU
 - Simple: connects two 4-bit ALUs in series

Lec 6-2 ALU.30

Carry Select Adder (Continued)

Consider building a 8-bit ALU A[3:0] CarryIn Expensive but faster: uses three 4-bit ALUs Result[3:0] ALU B[3:0] A[7:4] X[7:4] Sel ALU 2 to 1 MUX B[7:4] A[7:4] Result[7:4] C0 Y[7:4] ALU B[7:4] C1 C4 0 2 to 1 MUX Sel CarryOut

Summary

- An Overview of the Design Process
 - Design is an iterative process-- successive refinement
 - Do NOT wait until you know everything before you start
- An Introduction to Binary Arithmetic
 - If you use 2's complement representation, subtract is easy.
- ALU Design
 - Designing a Simple 4-bit ALU
 - Other ALU Construction Techniques
- On-line Design Notebook
 - Open a window and keep an editor running while you work
 - Refer to the handout as an example

To Get More Information

- Chapter 3 of your text book:
 - David Patterson & John Hennessy, Computer Organization & Design, 3rd Ed., @2004, Morgan Kaufmann Publishers.
- A good book:
 - David Winkel & Franklin Prosser, The Art of Digital Design: An Introduction to Top-Down Design, 2nd Ed., @1987, Prentice-Hall, Inc.

Lec 6-2 ALU.33