Laplace Transform of the Convolution Integral

Masaru Sawata

May 7, 2025

There are several forms of the difinition of divergence and curl. One of them is using the integral form.

Definition 1 Divergence. The divergence of a vector field \vec{v} is defined as

$$\nabla \cdot \vec{v} = \lim_{V \to 0} \frac{\int_{\partial \Omega} \vec{v} \cdot d\vec{S}}{V}$$

where $\partial\Omega$ is the closed surface and the volume inside $\partial\Omega$ is V

Definition 2 Curl. The curl of a vector field \vec{v} is defined as

$$(\nabla \times \vec{v}) \cdot \vec{n} = \lim_{S \to 0} \frac{\oint_C \vec{v} \cdot d\vec{r}}{S}$$

where \vec{n} is a unit vector in an arbitrary direction, S is an area of plane perpendicular to \vec{n} and closed by curve C

Theorem Gauss Divergence Theorem.

$$\int_{\Omega} \nabla \cdot \vec{v} dV = \int_{\partial \Omega} \vec{v} \cdot d\vec{S}$$

Proof. First, we divide the region Ω into n regions. Each region is denoted as $\Omega_i(i = 1, 2, \dots, n)$. We can write the RHS of the theorem as follows.

$$\int_{\partial\Omega} \vec{v} \cdot d\vec{S} = \sum_{i=1}^n \int_{\partial\Omega_i} \vec{v} \cdot d\vec{S}$$

This is because the surface integral on the boundary between Ω_i and Ω_j cancels out due to the oposite direction of $d\vec{S}$. Let V_i be the volume of the region Ω_i . In addition, we define $|\Delta| = \max\{V_i; 1 \le i \le n\}$. We can increase the number of division so that $|\Delta|$ becomes less

than any positive value. Therefore,

$$\begin{split} \int_{\partial\Omega} \vec{v} \cdot d\vec{S} &= \sum_{i=1}^n \int_{\partial\Omega_i} \vec{v} \cdot d\vec{S} \\ &= \sum_{i=1}^n \frac{\int_{\partial\Omega_i} \vec{v} \cdot d\vec{S}}{V_i} \\ &\to \int_{\Omega} \nabla \cdot \vec{v} dV \quad (|\Delta| \to 0) \end{split}$$

Theorem Stokes' Theorem.

$$\int_{\Gamma} (\nabla \times \vec{v}) \cdot \vec{ds} = \oint_{C} \vec{v} \cdot \vec{dr}$$

Proof. First, we divide the surface Γ into n surfaces. Each surface is denoted as $\Gamma_i(i=1,2,\cdots,n)$, and the closed loop around Γ_i is C_i We can write the RHS of the theorem as follows.

$$\oint_C \vec{v} \cdot d\vec{r} = \sum_{i=1}^n \oint_{C_i} \vec{v} \cdot d\vec{r}$$

This is because the integral on the boundary between Γ_i and Γ_j cancels out due to the opposite direction of the integral. Let S_i be the are of the surface Γ_i . In addition, we define $|\Delta| = \max\{S_i; 1 \le i \le n\}$. We can increase the number of division so that $|\Delta|$ becomes less than any positive value. Therefore,

$$\oint_{C} \vec{v} \cdot d\vec{r} = \sum_{i=1}^{n} \oint_{C_{i}} \vec{v} \cdot d\vec{r}$$

$$= \sum_{i=1}^{n} \frac{\oint_{C_{i}} \vec{v} \cdot d\vec{r}}{S_{i}} S_{i}$$

$$\rightarrow \int_{\Gamma} (\nabla \times \vec{v}) \cdot d\vec{S} \quad (|\Delta| \rightarrow 0)$$

We can derive the divergence in Cartesian coordinate by considering the rectangular prism shown in Figure 1.

Figure 1: Rectangular prism

Using the Gauss divergence theorem,

$$\begin{split} \int_{\Omega} \nabla \cdot \vec{v} dV &= \int_{\partial \Omega} \vec{v} \cdot d\vec{S} \\ &= \int_{y}^{y + \Delta y} \int_{z}^{z + \Delta z} \left(v_{x}(x + \Delta x, y', z') - v_{x}(x, y', z') \right) dz' dy' \\ &+ \int_{z}^{z + \Delta z} \int_{x}^{x + \Delta x} \left(v_{y}(x', y + \Delta y, z') - v_{y}(x', y, z') \right) dx' dz' \\ &+ \int_{x}^{x + \Delta x} \int_{y}^{y + \Delta y} \left(v_{z}(x', y', z + \Delta z) - v_{z}(x', y', z) \right) dy' dx' \\ &= \int_{y}^{y + \Delta y} \int_{z}^{z + \Delta z} \int_{x}^{x + \Delta x} \frac{\partial v_{x}}{\partial x} dx' dz' dy' \\ &+ \int_{z}^{z + \Delta z} \int_{x}^{x + \Delta x} \int_{y}^{y + \Delta y} \frac{\partial v_{y}}{\partial y} dy' dx' dz' \\ &+ \int_{x}^{x + \Delta x} \int_{y}^{y + \Delta y} \int_{z}^{z + \Delta z} \frac{\partial v_{z}}{\partial z} dz' dy' dx' \\ &= \int_{x}^{x + \Delta x} \int_{y}^{y + \Delta y} \int_{z}^{z + \Delta z} \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z} \right) dz' dy' dx' \\ &= \int_{\Omega} \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z} \right) dV \end{split}$$

The above equation has to hold at any region Ω . Therefore,

$$\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

The x component of the curl of \vec{v} is

$$\begin{split} &(\nabla \cdot \vec{v}) \cdot \vec{e_x} = \lim_{\Delta y, \Delta z \to 0} \frac{\oint_C \vec{v} \cdot d\vec{r}}{\Delta y \Delta z} \\ &= \lim_{\Delta y, \Delta z \to 0} \frac{1}{\Delta y \Delta z} \left(\int_y^{y + \Delta y} v_y(x, y', z) dy' + \int_z^{z + \Delta z} v_z(x, y + \Delta y, z') dz' \right. \\ &\quad + \int_{y + \Delta y}^y v_y(x, y', z + \Delta z) dy' + \int_{z + \Delta z}^z v_z(x, y, z') dz' \right) \\ &= \lim_{\Delta y, \Delta z \to 0} \frac{\int_z^{z + \Delta z} (v_z(x, y + \Delta y, z') - v_z(x, y, z')) dz' - \int_y^{y + \Delta y} (v_y(x, y', z + \Delta z) - v_y(x, y', z)) dy'}{\Delta y \Delta z} \\ &= \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \end{split}$$

Similarly, we can compute the y component and z component, and we can obtain

$$\nabla \times \vec{v} = \begin{pmatrix} \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \\ \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \\ \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \end{pmatrix}$$

Theorem Green's Theorem.

$$\oint_C Pdx + Qdy = \int_{\Gamma} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dS$$

where $\Gamma \in \mathbb{R}^2$ which is closed by a contour C

Proof. Let \vec{v} be defined as follows.

$$\vec{v} = \begin{pmatrix} P \\ Q \\ 0 \end{pmatrix}$$

Using the Stokes' theorem,

$$\oint_{C} \vec{v} \cdot d\vec{r} = \oint_{C} P dx + Q dy$$

$$= \int_{\Gamma} (\nabla \times \vec{v}) \cdot d\vec{s}$$

$$= \int_{\Gamma} \begin{pmatrix} -\frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} \\ \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} dS$$

$$= \int_{\Gamma} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dS$$