

<u>Lecture 8: Distance measures</u>

15. Likelihood of a Poisson

课程 □ Unit 3 Methods of Estimation □ between distributions

Statistical Model

15. Likelihood of a Poisson Statistical Model

Review: Statistical Model for a Poisson Distribution

2/2 points (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim}\operatorname{Poiss}\left(\lambda^*\right)$ for some unknown $\lambda^*\in(0,\infty)$. Let $(E,\{\operatorname{Poiss}\left(\lambda\right)\}_{\lambda\in\Theta})$ denote the corresponding statistical model. What is the smallest possible set that could be \boldsymbol{E} ?

ℕ ∪ {0} □

 \mathbb{R}

The parameter space Θ can be written as an interval (a, ∞) . What is the smallest value of a so that $\{\operatorname{Poiss}(\lambda)\}_{\lambda \in (a, \infty)}$ represents all possible Poisson distributions?

☐ Answer: 0.0

Solution:

A Poisson random variable takes values on all non-negative integers $\{0,1,2,\ldots\}$. Hence, the smallest possible sample space is $\mathbb{N} \cup \{0\}$.

A Poisson random variable is specified by its mean λ , which is allowed to be any positive real number. Hence, a=0 is the correct choice.

提交

你已经尝试了2次(总共可以尝试2次)

Answers are displayed within the problem

Likelihood of a Poisson Statistical Model

I'm going to have to write-- so even let's do it for Xi.

I am going to have to take the product of those guy.

Well, it's lambda to the Xi over Xi factorial, e to the minus lambda.

That's just my PMF for a Poisson.

Now, if I take the product of those guys-so my likelihood X1 Xn lambda is just the product.

So it's lambda to the sum of the Xis, the product

of my denominators, Xi factorial, and then e to the minus, and then I have a product of those guys n times.

So I get e to the minus n times lambda. And now if you rearrange the terms, this is exactly what's written here,

Practice: Compute Likelihood of a Poisson Statistical Model

3/3 points (graded)

Let $X_1, \ldots, X_n \overset{iid}{\sim} \operatorname{Poiss}(\lambda^*)$ for some unknown $\lambda^* \in (0, \infty)$. You construct the associated statistical model $(E, \{\operatorname{Poiss}(\lambda)\}_{\lambda \in \Theta})$ where E and Θ are defined as in the answers to the previous question.

Suppose you observe two samples $X_1=1, X_2=2$. What is L_2 $(1,2,\lambda)$? Express your answer in terms of λ .

$$L_2\left(1,2,\lambda\right) = \boxed{\begin{array}{c} \exp(-2*\text{lambda})*\text{lambda}^{(1+2)/(1*2)} \\ \hline \frac{\exp(-2\cdot\lambda)\cdot\lambda^{1+2}}{1\cdot2} \end{array}}$$

Next, you observe a third sample $X_3=3$ that follows $X_1=1$ and $X_2=2$. What is L_3 $(1,2,3,\lambda)$?

$$L_{3}\left(1,2,3,\lambda\right) = \boxed{ \exp(-3* \text{lambda})* \text{lambda}^{(1+2+3)/(1*2*3*2)} } \qquad \qquad \Box \text{ Answer: e^{(-3* \text{lambda})* \text{lambda}^{6/12}}$$

Suppose your data arrives in a different order: $X_1=2, X_2=3, X_3=1$. What is L_3 $(2,3,1,\lambda)$?

STANDARD NOTATION

Solution:

The probability mass function of $\mathrm{Poiss}\,(\lambda)$ is $x\mapsto e^{-\lambda} rac{\lambda^x}{x!}$ where $x\in\mathbb{N}\cup\{0\}$. Hence by definition

$$L_n\left(x_1,\ldots,x_n,\lambda
ight)=\prod_{i=1}^n e^{-\lambda}rac{\lambda^{x_i}}{x_i!}=e^{-n\lambda}rac{\lambda^{\sum_{i=1}^n x_i}}{x_1!\cdots x_n!}.$$

Hence, first we plug in n=2, $\pmb{x_1}=\pmb{1},$ and $\pmb{x_2}=\pmb{2}$:

$$L_{2}\left(1,2,\lambda
ight) =e^{-2\lambda }rac{\lambda ^{1+2}}{2!1!}=e^{-2\lambda }rac{\lambda ^{3}}{2}.$$

When the next sample arrives, we can simply evaluate the density of a Poisson at the observation:

$$P\left(X_{3}=3
ight)=e^{-\lambda}rac{\lambda^{3}}{3!},\quad X\sim\operatorname{Poiss}\left(\lambda
ight)$$

and multiply this by the previous response:

$$L_{3}\left(1,2,3,\lambda
ight)=e^{-\lambda}rac{\lambda^{3}}{3!}L_{2}\left(1,2,\lambda
ight)=e^{-3\lambda}rac{\lambda^{6}}{12}.$$

Remark 1: Observe that we can compute the likelihood sequentially as the data arrives, updating it in the previous fashion after each new observation.

$$L_{3}\left(2,3,1,\lambda
ight) =e^{-3\lambda }rac{\lambda ^{6}}{12}.$$

Remark 2: Observe that the likelihood of observations $X_1 = x_1, \dots, X_n = x_n$ is independent of the *order* in which these observations arrive.

提交

你已经尝试了1次 (总共可以尝试3次)

☐ Answers are displayed within the problem

Properties of the Likelihood

1/1 point (graded)

Let $(E,\{P_{\theta}\}_{\theta\in\Theta})$ denote a discrete statistical model. Let p_{θ} denote the pmf of P_{θ} . Let $X_1,\ldots,X_n\stackrel{iid}{\sim}P_{\theta^*}$ where the parameter θ^* is unknown. Then the **likelihood** is the function

$$L_{n}:E^{n} imes\Theta\;
ightarrow\mathbb{R} \ (x_{1},\ldots,x_{n}, heta)\mapsto\prod_{i=1}^{n}p_{ heta}\left(x_{i}
ight).$$

For our purposes, we think of x_1,\ldots,x_n as observations of the random variables X_1,\ldots,X_n .

Which of the following are properties of the likelihood L_n ? (Choose all that apply.)

Hint: It may be useful to consider your responses from the previous question.

- \square The likelihood does not change with the parameter θ .
- The likelihood can be updated sequentially as new samples are observed. For example,

 $L_3\left(x_1,x_2,x_3, heta
ight)=L_1\left(x_3, heta
ight)L_2\left(x_1,x_2, heta
ight).$ \Box

- The likelihood is symmetric: it doesn't matter the order in which we plug in the observations. For example, $L_4\left(x_1,x_2,x_3,x_4, heta
 ight)=L_4\left(x_2,x_3,x_1,x_4, heta
 ight)$, and this is true for any rearrangement of x_1,x_2,x_3,x_4 . \Box
- lacksquare If we eliminate a single observation, then the likelihood remains unchanged. For example, L_3 $(x_1,x_2,x_3, heta)=L_2$ $(x_1,x_2, heta)$.

Solution:

We examine the choices in order.

- "The likelihood does not change with the parameter heta." is incorrect. Rather, it is crucial that we interpret the likelihood L_n as a function of heta. That is, L_n varies as heta ranges over the parameter space Θ . This is evident in the likelihoods for the Bernoulli and Poisson models in the previous problems.
- "The likelihood can be updated sequentially as new samples are observed. For example, $L_3\left(x_1,x_2,x_3, heta
 ight)=L_1\left(x_3, heta
 ight)L_2\left(x_1,x_2, heta
 ight)$." is also correct. In the previous problem, we saw that to compute the likelihood after observing $X_3=3$, we simply took the old likelihood $L_2\left(1,2,\lambda
 ight)$ and multiplied it by $L_1\left(3,\lambda
 ight)$. Note that $L_1\left(x_3, heta
 ight)=p_{ heta}\left(x_3
 ight)$, the density of $P_{ heta}$ evaluated at the new observation. Inspection of the defining formula

$$L_{n}\left(x_{1},\ldots,x_{n}, heta
ight)=\prod_{i=1}^{n}p_{ heta}\left(x_{i}
ight)$$

implies that the likelihood can be updated sequentially in this fashion.

• "The likelihood is symmetric" is correct. We observed in the previous problem that observing the samples in a different order does not affect the likelihood. This is also evident from the definition of the likelihood: we can take the product
$\prod_{i=1}^n p_{ heta}\left(x_i ight)$
in any order, and the result will still be the same.
• "If we eliminate a single observation, then the likelihood remains unchanged" is incorrect. In the previous question, we saw that for a Poisson statistical model, L_2 $(1,2,\lambda)$ and L_3 $(1,2,3,\lambda)$ do not have the same formula. Hence, deleting an observation from the sample will change the likelihood.
提交 你已经尝试了1次(总共可以尝试2次)
□ Answers are displayed within the problem

讨论

Likelihood of a Poisson Statistical Model

主题: Unit 3 Methods of Estimation:Lecture 8: Distance measures between distributions / 15.

© 保留所有权利

显示讨论