Tutoría 9 Pequeña Señal y polarización

Capítulo 4 del Razavi:

1) (Razavi 4.21 a) y b)) Determine el punto de operación y el modelo de pequeña señal de Q1 para cada circuito de la Fig. 4.57. Considere Is = 8×10 –16 A, $\beta = 100$ y VA= ∞ .

Figure 4.57

2) (Razavi 4.22 a) y b)) Determine el punto de operación y el modelo de pequeña señal de Q1 para cada circuito de la Fig. 4.58. Considere Is = 8×10 –16 A, $\beta = 100$ y VA= ∞ .

Figure 4.58

3) (Razavi 4.31) Considere el circuito de la Figura 4.62, donde l1 es una fuente de corriente ideal de 1-más e

Is = $3 \times 10 - 17$ A. Determine

- 1) VB con VA= ∞
- 2) VB con VA= 5V, Ic=1mA y VCE=1.5V

Figure 4.62

4) (Razavi 4.45)Determine el punto de operación y el modelo de pequeña señal de

Q1, sabiendo que Is = $3 \times 10 - 17$ A, , $\beta = 100$ y VA= ∞ .

Capítulo 5 del Razavi:

5,9) Calculate the bias point of the circuits shown in Fig. 5.110. Assume $\beta=100$, Is $=5\times10$ -16 A, and V A $=\infty$.

Figure 5.110

5,17) In the circuit of Fig. 5.116, determine the maximum value of R 2 that guarantees operation of Q 1 in the active mode. Assume $\beta=100$, I S = 10 -17 A, and V A = ∞ .

Figure 5.116

5,23) Consider the circuit shown in Fig. 5.122, where I S = 6 \times 10 -16 A, β = 100, and V A = ∞ . Calculate the operating point of Q 1 .

Figure 5.122