Chap. 1 Ensembles et applications

1.1 Ensembles

Définition 1.1. Si $E = \{a, b, ...\}$ est l'ensemble dont les éléments sont a, b, ..., on dit que E est défini en extension. Si $E = \{x, P(x)\}$ est l'ensemble des x qui satisfont la proposition P, on dit que E est défini en compréhension.

Exemple 1.1.

(I) Ensemble défini en extension:

$$E = \left\{0, 1, 1 + \sqrt{2}, 3, 7, 15\right\}$$

(II) Ensemble défini en compréhension:

$$F = \left\{ n \in \mathbb{N} : n \text{ est un multiple de 3} \right\}$$

Définition 1.2.

- 1. On note \emptyset l'ensemble vide qui ne contient aucun élément.
- 2. Un ensemble à un élément est un singleton.
- 3. Un ensemble à deux éléments (distincts) est une paire.
- 4. Le cardinal d'un ensemble E noté card(E) ou #(E) est le nombre (fini ou infini) d'éléments de E.

Définition 1.3 (Inclusion). On dit que l'ensemble F est contenu, est une partie, est un sous ensemble ou est inclus dans E et on écrit $F \subset E$ si tout élément de F est élément de E. Sinon, on écrit $F \not\subset E$. L'ensemble de toutes les parties de E se note $\mathcal{P}(E)$.

Exemple 1.2.

(I) A sous ensemble de E:

$$E = \left\{0, 1, 1 + \sqrt{2}, 3, 7, 15\right\}, \quad A = \left\{0, 1, 1 + \sqrt{2}\right\}$$

(II) B sous ensemble de F:

$$F = \left\{ n \in \mathbb{N} : n \text{ est un multiple de 3} \right\}, \quad B = \left\{ 0, 3, 6, 18, 21, 99, 102 \right\}$$

Remarque 1.1. On a toujours

- 1. $E \subset E$ (réflexivité).
- 2. Si $F \subset E$ et $G \subset F$ alors $G \subset E$ (transitivité).
- 3. $(E = F) \Leftrightarrow [(E \subset F) \text{ et } (F \subset E)] \text{ (antisymétrie)}$

Définition 1.4 (Complémentaire). Si $F \subset E$, le complémentaire de F dans E est l'ensemble C_E^F , aussi noté F^c (lorsque le rôle de E est clair), défini par

$$F^{c} = \{ x \in E, x \notin F \} \tag{2.1}$$

Proposition 1.1. On a toujours

- 1. $(F^c)^c = F$.
- 2. $F \subset G \Leftrightarrow G^c \subset F^c$

Preuve.

- 1. évident.
- 2. Supposons que $F \subset G$.

Soit $x \in G^c \Rightarrow x \notin G \Rightarrow x \notin F(\operatorname{car} F \subset G) \Rightarrow x \in F^c$. Alors $G^c \subset F^c$.

Définition 1.5 (Intersection). L'intersection de deux ensembles E et F est l'ensemble $E \cap F$ des éléments x qui sont à la fois dans E et dans F. On dit que deux ensembles E et F sont disjoints si $E \cap F = \emptyset$.

$$E \cap F = \{x, x \in E \text{ et } x \in F\}$$
 (2.2)

Proposition 1.2. On a toujours

- 1. $E \cap F = F \cap E$ (commutativité).
- 2. $E \cap (F \cap G) = (E \cap F) \cap G$ (associativité).

3.
$$(E \subset F \cap G) \Leftrightarrow [(E \subset F) \text{ et } (E \subset G)]$$

Définition 1.6 (Union). L'union de de deux ensembles E et F est l'ensemble $E \cup F$ des éléments x qui sont dans E, dans F ou dans les deux à la fois.

$$E \cap F = \{x, x \in E \text{ ou } x \in F\}$$

Proposition 1.3. On a toujours

- 1. $(F \cap G)^c = F^c \cup G^c$.
- 2. $(F \cup G)^c = F^c \cap G^c$.

Preuve.

- 1. Soit $x \in (F \cap G)^c \Leftrightarrow x \notin (F \cap G) \Leftrightarrow x \notin F$ ou $x \notin G \Leftrightarrow x \in F^c$ ou $x \in G^c \Leftrightarrow x \in F^c \cup G^c$. Alors $(F \cap G)^c = F^c \cup G^c$.
- 2. Similaire que (1).

Définition 1.7 (Différence). Si E et F sont deux ensembles, la différence $E \to E$ est l'ensemble des éléments de E qui ne sont pas dans F. La différence symétrique $E \triangle F$ de E et F est

$$\mathsf{E}\triangle\mathsf{F} = (\mathsf{E}\backslash\mathsf{F}) \cup (\mathsf{F}\backslash\mathsf{E}) \tag{2.4}$$

Définition 1.8 (Partition d'un ensemble). Une partition $\mathcal{A} = \{A_1, A_2, A_3, \dots, A_n\}$ d'un ensemble E est un ensemble de parties de E telles que

- 1. $\forall i, A_i \neq \emptyset$,
- $2. \ \forall i,j \ \mathrm{tel} \ \mathrm{que} \ i \neq j \ \mathrm{on} \ \alpha, A_i \cap A_j = \emptyset.$
- 3. $\bigcup_{i=1}^n A_i = E$

Définition 1.9 (Produit cartésien). Le produit cartésien de deux ensembles E et F est l'ensemble

$$E \times F = \{(x, y), x \in E \text{ et } y \in F\}$$

$$(2.5)$$

La diagonale d'un ensemble E est

$$\triangle = \{(x, x), x \in E\} \subset E \times E \tag{2.6}$$

1.2 Relations

Définition 1.10 (Relation). On appelle relation d'un ensemble A vers un ensemble B toute correspondance \mathcal{R} , qui lie d'une certaine façon des éléments de A à des éléments de B.

- 1. On dit que A est l'ensemble de départ et B est l'ensemble d'arrivée de la relation \mathcal{R} .
- 2. Si x est lié à y par la relation \mathcal{R} , on dit que x est en relation \mathcal{R} avec y; ou (x,y) vérifiée la relation \mathcal{R} et on écrit : $x\mathcal{R}y$ ou $\mathcal{R}(x,y)$, sinon on écrit : $x\mathcal{R}y$ ou $\mathcal{R}(x,y)$.
- 3. Une relation de A vers A est dite relation sur A.

Exemple 1.3.

1. Soit E l'ensemble des formateurs du pépartement de mathématiques du CRMEF BK, et F, l'ensemble des étudiants stagiaires du CRMEF BK. On détermine une relation $\mathcal R$ allant de E vers F en posant que

$$\forall (x,y) \in E \times F, x\mathcal{R}y \Leftrightarrow x \text{ est le formateur de } y$$

- 2. Autres exemples de relations humaines: « être le frère de », « avoir le même age que ».
- 3. Soit $A = B = \mathbb{Z}$, On détermine une relation \mathcal{R} sur de \mathbb{Z} vers \mathbb{Z} en posant que

$$\forall (x,y) \in \mathbb{Z}^2, x\mathcal{R}y \Leftrightarrow 2 \mid (x-y)$$

Ainsi, on a que $1\mathcal{R}7$, puisque 2 divise -6 = (1-7). Notons que $18\mathcal{R}7$, puisque 2 ne divise pas 11 = (18-7).

4. La correspondance \mathcal{R}' qui lie les chiffres aux voyelles utilisées pour écrire le chiffre en toutes lettres est une relation de l'ensemble $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vers l'ensemble $\{a, e, i, 0, u, y\}$.

On a par exemple $0\mathcal{R}'e$, $0\mathcal{R}'0$, $0\mathcal{R}'a$, 9, $'\mathcal{R}'y$, $6\mathcal{R}'i$ et $1\mathcal{R}'u$

Définition 1.11 (Graphe d'une relation). Soit \mathcal{R} une relation d'un ensemble A vers un ensemble B. Le graphe de \mathcal{R} (noté $G_{\mathcal{R}}$) est l'ensemble défini par :

$$G_{\mathcal{R}} = \{(x, y) \in A \times B/x\mathcal{R}y\}$$
 (1.1)

Exemple 1.4.

- 1. Reprenons la relation \mathcal{R} de l'exemple 3 précédent, alors : $(1,7) \in G_{\mathcal{R}}$ et $(18,7) \notin G_{\mathcal{R}}$.
- 2. Si on reprend la relation \mathcal{R}' donnée par l'exemple $\ref{eq:condition}$, on aura : $G_{\mathcal{R}'} = \{(0,e),(0,o),(1,u),(2,e$

$$(5,i), (6,i), (7,e), (8,u), (8,i), (9,e), (9,u)$$

Remarque 1.2. Étant donné deux relations $\mathcal{R}=(A,B,R)$ et $\mathcal{R}'=(A',B',R')$, l'affirmation \ll les relations \mathcal{R} et \mathcal{R}' sont égales \gg signifie que A=A',B=B' et R=R': même source,

1.2.1. Représentation d'une relation binaire

On s'intéresse à nouveau à des relations binaires sur deux ensembles A et B donnés.

- 1. Représentation ensembliste : On liste tout simplement les couples satisfaisant la relation.
- 2. Représentation à l'aide d'un diagramme sagittal : Schéma avec deux courbes pour des A et B quelconques (une première courbe pour la source A, et l'autre pour le but B). Lorsque A=B, on peut soit conserver le schéma à deux courbes, soit tout ramener dans une seule courbe représentant A. Cette dernière vision est souvent fort instructive.
- 3. Représentation a l'aide d'un graphique cartésien : Particulièrement commode pour des relations binaires sur $\mathbb R$ (ou encore sur $\mathbb N$ ou $\mathbb Z$).
- 4. Représentation a l'aide d'une formule : Par exemple la relation \mathcal{R} sur \mathbb{R} telle que : $\mathcal{R}\mathcal{R}\mathcal{Y}$ ssi $\mathcal{R}^2 = \mathcal{Y}^2$.

1.2.2. Propriétés d'une relation binaire sur un ensemble

On s'intéresse maintenant à une relation binaire dont la source coïncide avec le but. On se retrouve donc avec une relation sur un ensemble A donné. Nous nous intéressons ici aux principales propriétés que peut posséder ou non une telle relation binaire.

Définition 1.12. Soit \mathcal{R} , une relation (binaire) sur un ensemble A. On dit que \mathcal{R} est

- 1. réflexive lorsque pour tout $a \in A$, on a $a\mathcal{R}a$;
- 2. symétrique lorsque pour tout couple $(a, b) \in A^2$, $a\mathcal{R}b$ impliquent $b\mathcal{R}a$;
- 3. transitive lorsque pour tout trio d'éléments $a,b,c \in A, (aRb \text{ et } bRc)$ impliquent (a R c);
- 4. antisymétrique lorsque pour tout $(a,b) \in A^2$ si $(a\mathcal{R}b \text{ et } b\mathcal{R}a)$, alors (a=b).

Exemple 1.5.

- 1. Soit $A = B = \mathbb{Z}$ et $R = \{(a,b) \in \mathbb{Z}^2 : 2 \mid (a-b)\}$. On a alors que \mathcal{R} est réflexive, symétrique, transitive, mais pas antisymétrique.
- 2. Etant donnée l'univers \mathcal{U} , la relation d'inclusion, qui relie deux parties de $\mathcal{U}(X \subseteq Y)$, est elle aussi réflexive, transitive et antisymétrique, mais pas symétrique.
- 3. Soit la relation \mathcal{R} définie sur \mathbb{Z} par : $x\mathcal{R}y \Leftrightarrow x$ divise y
 - (a) Soit $x \in \mathbb{Z}$, on a x divise x (même 0 divise 0). donc $\forall x \in \mathbb{Z} : x\mathcal{R}x$, alors \mathcal{R} est réflexive.
 - (b) Soit $x, y \in \mathbb{Z}$, on a $x\mathcal{R}y \Rightarrow (x \text{ divise } y) \Rightarrow (y \text{ divise } x)$ par exemple 1 divise 4 et 4 ne divise pas 1 alors \mathcal{R} n'est pas symétrique.
 - (c) Soit $x, y \in \mathbb{Z}$, on a $(x\mathcal{R}y)$ et $(y\mathcal{R}x) \Rightarrow ((x \text{ divise } y) \text{ et } (y \text{ divise } x)) \Rightarrow (x = y)$. Par exemple (1 divise -1) et (-1 divise 1) et $1 \neq -1$; alors \mathcal{R} n'est pas antisymétrique.

(d) Soit $x, y, z \in \mathbb{Z}$, on a $(x\mathcal{R}y)$ et $(y\mathcal{R}z) \Rightarrow ((x \text{ divise } y) \text{ et } (y \text{ divise } z)) \Rightarrow (x \text{ divise } z) \Rightarrow x\mathcal{R}z$. Alors \mathcal{R} est transitive.

1.2.3. Relation d'équivalence

Définition 1.13. Soit \mathcal{R} une relation sur un ensemble A.

- 1. \mathcal{R} est dite relation d'équivalence si \mathcal{R} est réflexive, symétrique et transitive.
- 2. Si \mathcal{R} est une relation d'équivalence, alors
 - (a) Pour chaque $a \in A$ l'ensemble $\dot{a} = \{x \in A/x\mathcal{R}a\}$ est appelé classe d'équivalence de a modulo \mathcal{R} .
 - (b) L'ensemble $A_{/\mathcal{R}} = \{\dot{\mathfrak{a}}/\mathfrak{a} \in A\}$ est appelé l'ensemble quotient de A par \mathcal{R} .

1.2.4. Relation d'ordre

Définition 1.14. Soit \mathcal{R} une relation sur un ensemble A.

- 1. \mathcal{R} est dite relation d'ordre si \mathcal{R} est réflexive, antisymétrique et transitive.
- 2. (a) Si \mathcal{R} est une relation d'ordre, on écrit souvent $\leq_{\mathcal{R}}$ au lieu de \mathcal{R} .
 - (a) $\leq_{\mathcal{R}}$ est dite relation d'ordre total, si

$$\forall x,y \in A: (x \leq_{\mathcal{R}} y) \vee (y \leq_{\mathcal{R}} x)$$

(b) $\leq_{\mathcal{R}}$ est une relation d'ordre partiel, si

$$\exists x, y \in A : ((x \leq_{\mathcal{R}} y) \land (y \leq_{\mathcal{R}} x))$$

Remarque 1.3. Deux éléments x et y sont dits comparables par $\leq_{\mathcal{R}}$, si $x\leq_{\mathcal{R}} y$ ou $y\leq_{\mathcal{R}} x$.

Définition 1.15 (Eléments particuliers). Soit \mathcal{R} une relation d'ordre sur un ensemble E, et soit A une partie de E.

- 1. Un élément $\mathfrak{m} \in \mathsf{E}$ est appelé un minimum de A ssi
 - (a) $\mathfrak{m} \in A$,
 - (b) pour tout $x \in A$, on a $m \leq_{\mathcal{R}} x$. (On dit aussi de m qu'il est un plus petit élément de A.)
- 2. Un élément $M \in E$ est appelé un maximum de A ssi
 - a) $M \in A$,
 - b) pour tout $x \in A$, on a $x \leq_{\mathcal{R}} M$. (On dit aussi de M qu'il est un plus grand élément de A.)
- 3. Un extremum est un élément qui est un minimum ou un maximum.

- 4. Un élément $u \in E$ est appelé un minorant de A ssi pour tout $x \in A$, on a $u \leq_{\mathcal{R}} x$. (On dit aussi que A est minoré par \mathfrak{u}).
- 5. Un élément $U \in E$ est appelé un majorant de A ssi pour tout $x \in A$, on a $x \leq_{\mathcal{R}} U$. (On dit aussi que A est majoré par U).
- 6. L'ensemble A est dit minoré dans E si A admet un minorant dans E; A est dit majoré dans E si A admet un majorant dans E; et A est dit borné dans E si A est à la fois minoré et majoré.
- 7. Un élément $v \in E$ est appelé une borne inférieure de A ssi
 - (a) ν est un minorant de A,
 - (b) pour tout minorant ν' de A, on a $\nu' \leq_{\mathcal{R}} \nu$. (On dit aussi que ν est un infimum de A.) Notation : $v = \inf(A)$.
- 8. Un élément $V \in E$ est appelé une borne supérieure de A ssi
 - (a) V est un majorant de A,
 - (b) pour tout majorant V' de A, on a $V \leq_{\mathcal{R}} V'$. (On dit aussi que V est un supremum de A.) Notation : $V = \sup(A)$.

Exemple 1.6. Soient
$$E=[-1,2]$$
 et $A=\left\{\frac{1}{n}:n\in\mathbb{N}^*\right\}$ alors
$$\inf A=0 \text{ et } \sup A=1.$$

Fonctions et applications. 1.3

1.3.1. **Fonctions**

Définition 1.16.

1. Une relation f de E vers F est dite fonction si tout $x \in E$ a au plus une image y dans F. On dit aussi que f est une fonction et on écrit alors y = f(x) au lieu de xfy. On écrit aussi

$$f: E \to F$$
$$x \mapsto f(x)$$

2. Le domaine de définition d'une fonction f (noté D_f) c'est l'ensemble des éléments x de E pour lesquels f(x) existe.

Définition 1.17. Soit la fonction $f: E \to F$, A est une partie de E et B est une partie de F.

1. L'image de A par f est

$$f(A) = \{f(x), x \in A\}$$

2. L'image réciproque de B par f est

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

Définition 1.18.

1. La composée de la fonction $f: E \to F$ et de la fonction $g: F \to G$ est la fonction

$$g \circ f : E \to G$$
$$x \mapsto g(f(x))$$

2. Toute restriction d'une fonction reste une fonction.

1.3.2. Applications

Définition 1.19. Une fonction f est une application si tout élément de E à (exactement) une image dans F. On note $\mathcal{F}(E,F)$ l'ensemble de toutes les applications de E dans F.

Remarque 1.4. Une fonction f est une application si et seulement si son domaine de définition est E tout entier.

Proposition 1.4. Soit $f: E \to F$ une application.

- 1. Soient A et B deux parties de E. Alors,
 - (a) Si $A \subset B$, on a $f(A) \subset f(B)$
 - (b) On a toujours

$$f(A \cup B) = f(A) \cup f(B)$$

(c) On a toujours

$$f(A \cap B) \subset f(A) \cap f(B.)$$

- 2. Soient A et B deux parties de F. Alors,
 - (a) Si $A \subset B$, alors $f^{-1}(A) \subset f^{-1}(B)$.
 - (b) On a toujours

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

(c) On a toujours

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

3. (a) Si A est une partie de E, on a $A \subset f^{-1}(f(A))$. Si B est une partie de f, on a $f(f^{-1}(B)) \subset B$.

Preuve. Voir TD.

1.3.3. Injection, surjection, bijection

Soit E, F deux ensembles et $f: E \to F$ une application.

Définition 1.20.

1. f est injective si tout élément de F a au plus un antécédent dans E. Autrement dit :

$$\forall x, y \in E, f(x) = f(y) \Rightarrow x = y$$

2. f est surjective si tout élément de F à au moins un antécédent dans E. Autrement dit :

$$\forall y \in F, \exists x \in E, f(x) = y$$

3. f est bijective si elle est à la fois injective et surjective (tout élément de F a exactement un antécédent dans E).

Remarque 1.5. On peut faire les remarques suivantes :

- 1. Une application est injective si et seulement si la relation réciproque est une fonction.
- 2. Une application est surjective si et seulement si son image est son ensemble d'arrivée.
- 3. Une application est bijective si et seulement si la relation réciproque est une application.

Proposition 1.5.

- 1. Si $f: E \to F$ et $g: F \to G$ sont deux applications injectives, surjectives ou bijectives, alors $g \circ f: E \to G$ l'est aussi.
- 2. Une application $f: E \to F$ est bijective si et seulement s'il existe une application $q: F \to E$ telle que $q \circ f = \mathrm{Id}_E$ et $f \circ q = \mathrm{Id}_E$. On a alors $q = f^{-1}$.
- 3. Si $f: E \to F$ et $g: F \to G$ sont deux applications avec $g \circ f: E \to G$ injective, alors f est aussi injective. De même, si $g \circ f$ est surjective, alors g est surjective.

Preuve. 1. (a) Supposons que f, g sont des applications injectives. Soit $x_1, x_2 \in E$ tel que : $g \circ f(x_1) = g \circ f(x_2) \Rightarrow g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2)$ (car g est injective) $\Rightarrow x_1 = x_2$. D'où $g \circ f$ est injective.

- (b) Supposons que f, g sont des applications surjectives. Soit $z \in G$ alors $\exists y \in F$ g(y) = z (car g est surjective). Et comme f est surjective alors $\exists x \in F$ g(x) = y alors $\exists x \in F$ g(f(x)) = z d'où $\exists x \in F$ g(f(x)) = z. Donc $g \circ f$ est surjective.
- (c) Évident d'après (a) et (b).
- 2. Voir TD.
- 3. Voir TD.

1.4 Exercices

Exercice 1.4–1

Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :

1.
$$a \in E$$
, 2) $a \subset E$, 3) $\{a\} \subset E$, 4) $\emptyset \in E$, 5) $\emptyset \subset E$, 6) $\{\emptyset\} \subset E$?

Exercice 1.4–2

Soient $A =]-\infty, 3], B =]-2, 7[$ et $C =]-5, +\infty[$ trois parties de \mathbb{R} . Déterminer $A \cap B$, $A \cup B$, $B \cap C$, $B \cup C$, A^c , $A \setminus B$, $A^c \cap B^c$, $(A \cup B)^c$, $(A \cap B) \cup (A \cap C)$ et $A \cap (B \cup C)$.

Exercice 1.4–3

Écrire l'ensemble des parties de E = a, b, c, d et donné une partition de E.

Exercice 1.4–4

A, B et C trois parties d'un ensemble E. Montrer que:

- 1. $A \setminus B = A \cap B^C$.
- 2. $A\triangle B = (A \cup B) \setminus (A \cap B)$.
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Exercice 1.4–5

Dire si les relations suivantes sont réflexives, symétriques, antisymétriques, transitives :

- 1. $E = \mathbb{R} \text{ et } x\mathcal{R}y \Leftrightarrow x = -y$.
- 2. $E = \mathbb{R} \text{ et } x\mathcal{R}y \Leftrightarrow \cos^2(x) + \sin^2(y) = 1.$
- 3. $E = \mathbb{N}$ et $x\mathcal{R}y \Leftrightarrow \exists p, q \geq 1, y = px^q$ (p et q sont des entiers).

Quelles sont parmi les exemples précédents les relations d'ordre et les relations d'équivalence?

Exercice 1.4–6

Soit \mathcal{R} une relation d'équivalence sur un ensemble non vide $\mathsf{E}.$ Montrer que

$$\forall x, y \in E \quad x\mathcal{R}y \quad \Leftrightarrow \quad \dot{x} = \dot{y}$$

Exercice 1.4–7

Soit \mathcal{R}_3 la relation définie dans \mathbb{Z} par : $x\mathcal{R}_3y \Leftrightarrow 3$ divise x-y.

- 1. Montrer que \mathcal{R}_3 est une relation d'équivalence. Elle est appelée congruence modulo 3 et on note $\mathbf{x} \equiv \mathbf{y} \mod (3)$ au lieu de $\mathbf{x} \mathcal{R}_3 \mathbf{y}$.
- 2. Pour tout $x \in \mathbb{Z}$, déterminer la classe de x modulo 3 .
- 3. On note $\mathbb{Z}/3\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} par \mathcal{R}_3 . Quel est son cardinal?

Exercice 1.4–8

On définit sur \mathbb{N}^* la relation \mathcal{R} par : $x\mathcal{R}$ y si et seulement si x divise y.

- 1. Montrer que \mathcal{R} est une relation d'ordre sur \mathbb{N} .
- 2. Est-ce une relation d'ordre total?
- 3. Décrire $\{x \in \mathbb{N}^*, x\mathcal{R}5\}$ et $\{x \in \mathbb{N}^*, x\mathcal{R}5\}$.
- 4. \mathbb{N}^* possède-t-il un plus petit élément? un plus grand élément?

Exercice 1.4–9

Soit $f: E \to F$ une application.

- 1. Soient A et B deux parties de E. Alors,
 - (a) Si $A \subset B$, on a $f(A) \subset f(B)$
 - (b) On a toujours

$$f(A \cup B) = f(A) \cup f(B)$$

(c) On a toujours

$$f(A \cap B) \subset f(A) \cap f(B.)$$

- 2. Soient ${\sf A}$ et ${\sf B}$ deux parties de F. Alors,
 - (a) Si $A \subset B$, alors $f^{-1}(A) \subset f^{-1}(B)$.
 - (b) On a toujours

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

(c) On a toujours

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

- 3. (a) Si A est une partie de E, on a $A \subset f^{-1}(f(A))$.
 - (b) Si B est une partie de f, on a $f\left(f^{-1}(B)\right)\subset B.$

Exercice 1.4–10

Soit fl'application de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^2 + x - 2$.

- 1. Donner la définition de $f^{-1}(4)$. Calculer $f^{-1}(4)$.
- 2. L'application f est-elle bijective?
- 3. Donner la définition de f([-1,1]). Calculer f([-1,1]).
- 4. Donner la définition de $\mathsf{f}^{-1}([-2,4]).$ Calculer $\mathsf{f}^{-1}([-2,4]).$

Exercice 1.4–11

Soit $f:\mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{2x}{1+x^2}.$

- 1. f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g:[-1,1] \longrightarrow [-1,1], g(x)=f(x)$ est une bijection.

Exercice 1.4–12

Soient f une application de E dans F, g une application de F dans G et $h = g \circ f$.

- 1. Montrer que si h est injective, f
 l'est aussi et que si h est surjective, $\mathfrak g$ l'est aussi.
- 2. Montrer que si h est surjective et $\mathfrak g$ injective, alors $\mathfrak f$ est surjective.
- 3. Montrer que si h est injective et f surjective alors g est injective.