3.10 (5). Теорема об арифметической иерархии: $\sum_{n} \neq \sum_{n+1}, \sum_{n} \neq \prod_{n}$

Опр Классы арифметической иерархии

Говорят, что множество A принадлежит классу Σ_n , если существует такое разрешимое множество $R \in \mathbb{N}^{k+1}$, что

$$x \in A \iff \exists y_1 \ \forall y_2 \ \exists y_3 \mathcal{Q} y_n [(x, y_1, ..., y_k) \in R]$$

Аналогично, говорят, что A принадлежит классу Π_n , если существует такое разрешимое множество $R \in \mathbb{N}^{k+1}$, что

$$x \in A \iff \forall y_1 \ \exists y_2 \ \forall y_3 \mathcal{Q} y_n [(x, y_1, ..., y_k) \in R]$$

Согласно этому определению, $\Sigma_0 = \Pi_0$ (классы Σ_0 и Π_0 совпадают с классом всех разрешимых множеств)

 Σ_1 - перечислимые, Π_1 - коперечислимые

Теорема 1. Для любого n в классе \sum_n существует множество, универсальное для всех множеств класса \sum_n . (Его дополнение будет универсальным в классе \prod_n .)

Говоря об универсальном множестве из класса \sum_n , мы имеем в виду множество пар натуральных чисел, которое принадлежит классу \sum_n и среди сечений которого встречаются все множества натуральных чисел, принадлежащие классу \sum_n .

 \blacktriangle Для класса \sum_1 (перечислимых множеств) существование универсального множества мы уже обсуждали (билет ххх) С его помощью можно построить универсальные множества и для более высоких классов иерархии. (Начинать надо с первого уровня, так как на «нулевом» уровне не существует универсального разрешимого множества.)

По определению свойства класса \prod_2 имеют вид $\forall y \exists z R(x,y,z)$, где R — некоторое разрешимое свойство. Но их можно эквивалентно определить и как свойства вида $\forall y P(x,y)$, где P — некоторое перечислимое свойство. Теперь уже видно, как построить универсальное множество класса \prod_2 . Возьмём универсальное перечислимое свойство U(n, x, y), из которого фиксацией различных n получаются все перечислимые свойства пар натуральных чисел. Тогда из свойства $T(n,x) = \forall y U(n,x,y)$ при различных натуральных n получаются все \prod_2 -свойства натуральных чисел. C другой стороны, само свойство T по построению принадлежит классу \prod_2 .

Дополнение к универсальному \prod_2 -множеству будет, очевидно, универсальным \sum_2 -множеством - так как отрицание чего-либо меняет все кванторы на противоположные, благодаря чему и само множество, и все его сечения по такому свойству также принадлежат \sum_2 - значит, это универсальное \sum_2 -множество.

Аналогично можно действовать и для \sum_n - и \prod_n -множеств. \blacksquare

Теорема 2. Универсальное \sum_n -множество не принадлежит классу \prod_n . Аналогичным образом, универсальное \prod_n -множество не принадлежит классу \sum_n .

▲ Рассмотрим универсальное \sum_n -свойство T(m,x). По определению это означает, что среди его сечений (получающихся, если зафиксировать m) есть все \sum_n -свойства. Пусть Т принадлежит классу \prod_n . Тогда его диагональ, свойство D(x) = T(x,x), также лежит в \prod_n (например, потому, что $D \leq_m T$), а её отрицание, свойство $\neg D(x)$, принадлежит классу \sum_n . Но этого не может быть, так как $\neg D$ отлично от всех сечений свойства T (оно отличается от m-го сечения в точке m), а T универсально. ■

Если $\sum_n = \sum_{n+1}$, то $\prod_{n+1} = \prod_n$ (как отрицание \sum_n и \sum_{n+1}). Т.к. $\sum_n \subset \prod_{n+1} = \prod_n$, а $\prod_n \subset \sum_{n+1} = \sum_n$, то $\sum_{n+1} = \prod_{n+1}$, что противоречит теореме выше. Основная теорема доказана.