Дискретная математика и математическая логика

Конспект по 1 семестру специальностей «экономическая кибернетика» и «компьютерная безопасность»

(лектор В. И. Бенедиктович)

Оглавление

1 Высказывания 2

Глава 1

Высказывания

Высказывания, операции над нами. Формулы логики высказываний (ФЛВ). Равносильные формулы, тавтологии, противоречия. Теорема о подстановке формулы вместо переменной. Теорема о замене подформулы равносильной ей формулой

Высказывания

• Высказывание - повествовательное предложение, относительно которого можно сделать вывод, что его содержание истинно или ложно (далее \mathbf{M} - истинно, \mathbf{J} - ложно).

Свойства высказываний:

- 1. Закон исключения третьего
 - Всякое высказывание является либо истинным, либо ложным.
- 2. Закон непротиворечивости

Никакое высказывание не может быть одновременно быть истинным и ложным.

ПРИМЕР

- Сейчас дождь (Л);
- 2. 2+3=5 (M);
- 3. 2+3>5 (Π);
- 4. Закройте дверь (не высказывание);
- 5. Идёт ли дождь? (не высказывание);

Обозначаем высказывания большими латинскими буквами (A, B, ..., Z).

Логические операции

Из имеющихся высказываний можно получить другие спомощью логических операций **Логические операции**:

1. Отрицание

A - некоторое высказывание

Высказывание типа: «неверно, что A» $(\bar{A}/\neg A)$

Таблица истинности: $\begin{array}{c|c} A & \overline{A} \\ \hline U & \Pi \\ \hline \Pi & U \end{array}$

2. Конъюнкция

Пусть A и B - некоторые высказывания

Конъюнкцией высказываний A и B называется высказывание, которое обозначается $A \wedge B$ или $A \cdot B$ и которое принимает значение истинности тогда и только тогда, когда оба значения (A и B) принимают значение «истинно».

3. Дизъюнкция

Пусть A и B - некоторые высказывания

Дизъюнкцией этих высказываний, которое обозначается $A \lor B$, называется высказывание, которое принимает значение «истинно» тогда и только тогда, когда хотя бы одно из высказываний истинно

 $\overline{A \vee B}$ BAИ И И Л Таблица истинности: И И Л И И Л Л Л

4. Импликация

Пусть A и B - некоторые высказывания

Импликация - высказывание, обозначается $A \Rightarrow B$, типа «если A, то B», которое принимает значение «ложь», когда высказывание A - истинно, а B - ложно.

Также A - посылка, B - заключение.

Если импликация является истинной, то B - необходимое условие для A, либо A является достаточным условием для B , либо A влечёт B. Если импликация является ложной, то из A не следует B ($A \Rightarrow B$)

B $A \Rightarrow B$ AИ И И Таблица истинности: И Л Л Л И И Л И Л

Свойства импликации:

- (a) транзитивность: $D=((A\Rightarrow B)\wedge (B\Rightarrow C))\Rightarrow (A\Rightarrow C)$ принимает значение **И** при любых наборах A,B,C
- 5. Эквивалентность Высказывание A называют эквивалентным высказыванию B ,если выполняется A необходимое и достаточное условие для B.

 \overline{B} $\overline{A} \Leftrightarrow B$ AИ И И И Таблица истинности: Л Л Л И Л Л Л И

Соглашение о приоритетах логических операций

- 1) Отприцание приоритетнее всех остальных операций
- 2) Конъюнкция приоритетнее 3)
- 3) Дизъюнкция приоритетнее 4-5)
- 4) Импликация приоритетнее 5)
- 5) Эквивалентность

Понятие пропозициональной формулы

- выражение, построенное из пропозициональных букв A,B,C,\ldots по следующим правилам:
 - 1. Все буквы пропозициональны и является пропозициональной формулой
 - 2. Если A, B, C пропозициональные формулы, то и выражения с логическими операциями тоже являются пропозициональными формулами
 - 3. Других формул нет

обозначение пропозициональной формулы:

Пропозициональная формула определяется на множестве всех возможных наборов значений переменных функции принимающие аргументы И Π

Такая функция может быть задана с помощью конечной таблицы истинности, содержащей 2^n строк. Формулы, выражающие одну и ту же формулу, принимают дно и то же значение, называют эквивалентными (одна и та же таблица истинности).

Примеры эквивалентных формул:

- 1. $\neg(\neg X) = X$ (закон двойного отрицания);
- 2. $X \lor Y = Y \lor X$ (коммутативность дизъюнкции);
- 3. $X \wedge Y = Y \wedge X$ (коммутативность конъюнкции):
- 4. $(X \vee Y) \vee Z = X \vee (Y \vee Z)$ (ассоциативность дизъюнкции);
- 5. $(X \wedge Y) \wedge Z = X \wedge (Y \wedge Z)$ (ассоциативность конъюнкции);
- 6. $X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z)$ (дистрибутивность конъюнкции относительно дизъюнкции);

- 7. $X \lor (Y \land Z) = (X \lor Y) \land (X \lor Z)$ (дистрибутивность дизъюнкции относительно конъюнкции);
- 8. $X \lor X = X$ (закон идемпотентности дизъюнкции);
- 9. $X \wedge X = X$ (законы идемпотентности конъюнкции);
- 10. $X \vee \Pi = ;$
- 11. $X \wedge \Pi = \Pi$;
- 12. $U \wedge X = X$;
- 13. $X \lor \top = \top$;
- 14. $X \vee (\neg X) = \top$;
- 15. $X(\neg X) = \Pi;$
- 16. $\neg (X \land Y) = (\neg X) \lor (\neg Y);$
- 17. $\neg (X \lor Y) = (\neg X)(\neg Y)$ (законы двойственности, или де Моргана);
- 18. $(X \Rightarrow Y) = (\neg X) \lor Y$;
- 19. $(X \Leftrightarrow Y) = (x \Rightarrow Y)(Y \Rightarrow X) = (\neg X \lor Y) \land (X \Rightarrow Y);$
- 20. $(X \Rightarrow Y) = (\neg Y \Rightarrow \neg X)$ (закон обращения, или контрапозиции).
- 21. $X \lor (X \land Y) = X$ (закон поглощения относительно дизъюнкции);
- 22. $X(X \lor Y) = X$ (закон поглощения относительно конъюнкции);
- 23. $X\Rightarrow (Y\Rightarrow Z)=(X\wedge Y)\Rightarrow Z$ (закон объединения посылок);
- 24. $X\Rightarrow (Y\Rightarrow Z)=Y\Rightarrow (X\Rightarrow Z)$ (закон перестановки посылок);
- 25. $(A \land X) \lor (A \land \neg X) = ($ элементарное склеивание);
- 26. $(A \wedge X) \vee (B \wedge \neg X) = (A \wedge X) \vee (B \wedge (\neg X)) \vee (A \wedge B)$ (обобщенное склеивание).