

Workshop 01/07/2019

Tithnara Nicolas SUN

Philippe Dhaussy (Lab-STICC) Lionel Van Aertryck (DGA-MI) Ciprian Teodorov (Lab-STICC)

Table of contents

- Introduction
 - Context
 - Research questions
 - Approach
- Target System Modeling
- SCADA Systems Cybersecurity
- Conclusion

Introduction Context

- Executable attack modeling on industrial control systems
- Some characteristics :
 - Cyber-physical interfaces
 - Dynamical systems
 - Semantic heterogeneity
 - Large number of specification and implementation languages
 - Large number of execution platforms
- Attack modeling
 - Attack trees, DAGs, graphs
 - Embedded attack strategies (embedded malicious code)
 - Either very abstract -> decoupled from the technical domain
 - Or very concrete -> coupled with the technical domain but low-level
 - Difficult to perform « execution-based » analysis

Introduction Research questions

- How to capture an abstract operational semantics of the targeted system and compose it with executable attack modeling?
- How to steer the focus towards architecture independent attack modeling?
- How to capture the attack surface of the system-under attack (SUA)?
- How to handle the semantic heterogeneity in the targeted system.

Introduction Research questions

- **Opportunism** The modeling language should allow an opportunism-based iterative refinement approach. The user should be able to detail only the points of interest, and provide very abstract (generic) implementation for the other parts.
- Cyber-separation Ideally, the functional system model should be decoupled from the attack/defense actor modeling aspects. Which will enable focused reasoning both on the system aspects, and attack/defense models
- Attack surface reification The attack surface should be exposed explicitly to ease the specification of attack/defense strategies
- Incomplete knowledge The attack/defense actors act on the system having a limited knowledge. As opposed to specification languages which strive to provide an omniscient view on the system, attack discovery and modeling formalism should enable restricting the access to the « system model » to the attack surface.
- **Execution support** -- The formalism should provide the mechanisms for representing the system dynamics, even in the presence of partial behavior specification.
- Multi-level abstraction : mix abstraction levels
- Semantic heterogeneity : mix different languages

Introduction Approach

- Methodology based on the integration of two correlated processes:
 - Target system modeling process TSM (captures the « situation »)
 - Executable attack modeling process EAM
- The TSM process enables capturing the semantics of the SUA
- The EAM process focuses on the specification of attack scenarios
- The TSM and EAM link is established at the semantic level through the formal definition of attack surface operations (operations exposed from the TSM semantics).

Introduction Approach

- 1. Target System Modeling Language [30/06/19]
- 2. Attack surface operations [1/09/19]
- 3. Attack modeling language [15/09/19]
- 4. OBP2 adapter, or hand-made simulator [30/09/19]
- 5. Case-study I [30/10/19]

	Mai	Juin	Juillet	Aout	Septembre	Octobre
Target System Modeling (TSM) Language						
Attack Surface operations						
Attack Modeling Language (AML)						
OBP2 adapter						
Case-study I						

Target System Modeling Requirements

System modeling for cybersecurity purposes:

Based on PimCA

Step-by-step attack scenario execution

Along with cases study

Lab-STICC Target System Modeling Progress

SCADA Systems Cybersecurity

Firewall

Password

"Vulnerability Assessment of Cybersecurity for SCADA Systems" C.Ten, C. Liu and G.

Manimaran: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4652578&isnumber=4652575

Conclusion

Conclusion

- To do (short-term)
 - Objectives?
 - Attack scenario showcase
 - Market manipulation scenario/ Openflexo
- To do (mid-term)
 - Objectives?
 - New attack scenario discovery
 - System nominal behavior
 - Market manipulation scenario/ Openflexo

Target System Modeling PimCA/Openflexo

Icône-Concept	Description
Machinery	Machinerie : système manipulant des Ressources (regroupement particulier) : voiture, animal, PC, processus
Performer	Exécutant (spécialise Machinerie) : ce qui transforme la Ressource, e.g. UC/Programme, cerveau, régulateur.
Network	Réseau (spécialise Machinerie) : zone d'échange de matière, d'information, d'énergie, etc. : câblage, tuyauterie, IPC Engine.
Customs	Douane (spécialise Machinerie): fonctionnalité particulière mise en place par une Machinerie pour identifier & autoriser une autre Machinerie: cadenas, garde, login, crypto
1nterface	Interface (spécialise Machinerie): permet de passer d'une Machinerie à une autre, du monde physique au monde virtuel et inversement: NIC, caméra, clavier, écran.
Gathering (non réifié)	Regroupement: ensemble logique d'objets de tout type, entrepôt sans Ressource. Un regroupement ne possède pas les infos propres à une machinerie, cà-d. executant, configuration, mémoire.
Repository	Entrepôt : zone de stockage de Ressource : armoire, bâtiment, disquette, database, file system

Icône-Concept	Description
Resource	Ressource : ce qui est transformé, manipulé par une Machinerie : matière, électricité, document, log, data
Instructions	Consigne (spécialise Ressource): La direction, les paramètres que l'exécutant suit : Fichier de configuration, ordre, politique de sécurité
Passeport	Passeport (spécialise Ressource) : élément à fournir à la Douane pour être identifié / autorisé : clef, carte d'identité, badge, login/password, clef de chiffrement

Lab-STICC Target System Modeling **Top 20**

The Top 20 Cyber Attacks Against Industrial Control Systems, https://static.waterfall-

Lab-STICC Target System Modeling

The Top 20 Cyber Attacks Against Industrial Control Systems, https://static.waterfall-

security.com/Top-20-ICS-Attacks.pdf

Attack Na	ne	Steps				
1 ICS Inside	r					
2 IT Insider						
3 Common I	3 Common Ransomware		- Première approc		mière approche (à	
4 Targeted I	Ransomware					
5 Zero-Day I	Ransomware			raffiner/faire évoluer) - Chaque type implique des guards/actions différentes		
6 Ukrainian	Attack					
7 Sophistica	ted Ukrainian Attack					
8 Market M	anipulation			gua	rus/actions differences	
9 Sophistica	ted Market Manipulation					
10 Cell-Phon	e WIFI					
11 Hijacked T	wo-Factor				Social engineering attack	
12 Industrial	Internet of Things Pivot				Malware injection	
13 Malicious	Outsourcing				Observation/Understanding/Design/Research	
14 Comprom	ised Vendor Website				Privilege elevation	
15 Comprom	ised Remote Site				Pivoting	
16 Vendor Ba	ick Door				Malware execution	
17 Stuxnet					Trace erasure	
18 Hardware	Supply Chain					
19 Nation-Sta	ate Crypto Compromise					
20 Sophistica	ted Credentialed ICS Insider					

Lab-STICC Target System Modeling Market Manipulation

Lab-STICC Target System Modeling Market Manipulation

