**Análise Fatorial** 

5

#### **Exemplo**



- Expectativa de vida
  - $\sqrt{\text{Referente à expectativa de vida (em anos) nos}}$ anos 60
    - Médias por país, idade e sexo
  - $\sqrt{\text{Fonte: Keyfitz e Flieger (1971)}}$
  - √ Apresentado em Everitt e Hothorn (2011)
  - √Dados: lifeex.txt

Exemplos

148

#### · Variáveis:



- √ Pais: país (fator com 31 níveis)
- √ m0: expectativa média de vida dos homens ao nascer (anos)
- √ m25: expectativa média de vida dos homens na juventude (anos)
- √ m50: expectativa média de vida dos homens na maturidade (anos)
- √ m75: expectativa média de vida dos homens na velhice (anos)
- √ w0: expectativa média de vida das mulheres ao nascer (anos)
- √ w25: expectativa média de vida das mulheres na juventude (anos)
- √ w50: expectativa média de vida das mulheres na maturidade (anos)
- √ w75: expectativa média de vida das mulheres na velhice (anos)





Análise de Dados Multivariados - 2017

D CI / ' D D . IIDID









Aplicação

159

• Características das marcas – Perguntas:

| -                             | -      |
|-------------------------------|--------|
| Р                             | ۲      |
| G                             | Α      |
| Progra<br>Pos-Gra<br>em Admir | aduaçã |

| Atributo | Exemplo de pergunta                         |  |
|----------|---------------------------------------------|--|
| perform  | Marca tem um forte desempenho?              |  |
| leader   | Marca é líder no mercado?                   |  |
| latest   | Marca tem os produtos mais recentes?        |  |
| fun      | Marca é divertida?                          |  |
| serious  | Marca é séria?                              |  |
| bargain  | Produtos da marca são uma pechincha         |  |
| value    | value Produtos da marca possuem um bom valo |  |
| trendy   | Marca está na moda?                         |  |
| rebuy    | Eu compraria a marca novamente?             |  |

• Fonte: Chapman, C.; Feit, E. M. *R for marketing research and analytics*, Springer, 2015

Análise de Dados Multivariados - 2017

161

## Exemplo

- Pesquisa de percepção de marcas:
  - √ Avaliação de características relacionadas à marca
  - √ Pergunta:
    - Quão [atributo] é a [marca]?
  - √ Variáveis:
    - Atributos: perform, leader, latest, fun, serious, bargain, value, trendy, rebuy
      - Níveis : 1 (menos) a 10 (mais)
    - brand:
      - Níveis: a a j
  - $\sqrt{\text{Respondentes}}$ : 100
  - √ Dados: *BD multivariada.xls/brand*

Análise de Dados Multivariados - 2017

160

160

162

# Determinação da Quantidade de Fatores



- Scree plot
- Reter fatores associados a autovalores maiores que 1
  - √ Quantidade de variância que pode ser atribuída a uma única variável
  - √ Fator que captura variância menor que a de uma variável é considerado desprezível

Análise de Dados Multivariados - 2017

162



165



• Testes para determinação de m:

> # scree tests
> library(nFactors)
> nScree(brand.sc[, 1:9])

noc naf nparallel nkaiser
1 3 2 3 3

√ Aplicando 4 métodos, 3 sugerem que os dados têm 3 fatores

• Autovalores:

> # autovalores
> eigen(cor(brand.sc[, 1:9]))\$values

[1] 2.9792956 2.0965517 1.0792549 0.7272110 0.6375459 0.5348432 0.3901044

[8] 0.3120464 0.2431469

√ Os 3 primeiros autovalores são maiores que 1.





# Rotação

G A

169

- Objetivo:
  - √Obter novas cargas fatoriais com a mesma proporção de variabilidade
- Tipos:
  - √ Ortogonal:
    - Construtos são independentes
  - √ Oblíqua:
    - Construtos podem estar correlacionados
- Ouestão:
  - √Você deseja permitir que os fatores estejam correlacionados ou não

Análise de Dados Multivariados - 2017

· Comparação dos modelos:



| > # Solu | ıção com | 3 fatore | es      |
|----------|----------|----------|---------|
| Loadings | з:       |          |         |
|          | Factor1  | Factor2  | Factor3 |
| perform  |          | 0.607    |         |
| leader   |          | 0.810    | 0.106   |
| latest   | -0.163   |          | 0.981   |
| fun      |          | -0.398   | 0.205   |
| serious  |          | 0.682    |         |
| bargain  | 0.826    |          | -0.122  |
| value    | 0.867    |          | -0.198  |
| trendy   | -0.356   |          | 0.586   |
| -        | 0.499    | 0.296    | -0.298  |

#### √ Modelo com 3 fatores:

- Acrescenta na compreensão dos dados conceito claramente interpretável
- Está consistente com sugestões:
  - (scree plot, autovalores, scree tests, mapas de percepção)
- Aparenta ser superior ao de 2 fatores porque os fatores são melhor interpretáveis

Análise de Dados Multivariados - 2017

168

### Rotação Oblíqua



- · Permitir correlação entre fatores relacionase mais com nosso conceito da estrutura latente subjacente e menos com os dados
- eixos dimensionais • Os não são perpendiculares, mas assimétricos pelas correlações entre os fatores

Análise de Dados Multivariados - 2017

170

• No exemplo:



√O líder pode colocar um preço especial e, portanto podemos esperar que esses dois construtos sejam correlacionados negativamente

(ao invés de independentes)

Análise de Dados Multivariados - 2017

171

### • Varimax e Oblimin – Diferenças:





G A

173

- √ Mostra separação distinta dos atributos entre os fatores
- $\sqrt{F1}$  é correlacionado com F2 (r = -0,39)
- √ Decisão entre as rotações:
  - Basear-se no conhecimento e domínio interpretativo, em vez da estatística

Análise de Dados Multivariados - 2017



172





177

· Uso dos escores para Determinar a posição das marcas nos construtos: > # Determinação da psoição da marca nos fatores brand.fa.mean <- aggregate(. ~ brand, data = brand.scores, mean) rownames(brand.fa.mean) <- brand.fa.mean[, 1] # brand names brand.fa.mean <- brand.fa.mean[, -1] names(brand.fa.mean) <- c("Leader", "Value", "Latest") brand.fa.mean Leader Value Latest a 0.23158792 -1.06993703 0.39326652 b 0.09686823 1.51913070 0.72391174 c -0.58937138 1.45069457 -0.07690784 √ Média de cada marca por construto Análise de Dados Multivariados - 2017 177

Scores dos fatores para as marcas:

√Estimativa da variável latente para cada

observação • Scores dos fatores para as marcas: observação # Bartlett scores brand.fa.ob <- factanal(brand.sc[, 1:9], factors = 3, rotation = "oblimin", scores = "Bartlett") brand.scores <- data.frame(brand.fa.ob\$scores) # get the factor scores brand.scores\$brand <- brand.sc\$brand # get the matching brands head(hrand scores) Factor1 Factor2 Factor3 brand 1 1.6521364 -0.6886749 0.5256104 2 -1.4005333 -1.6681901 -0.6764121 √Útil em modelos como os de regressão porque pode-se reduzir sua complexidade (número de dimensões) √ Permite visualizar os dados em um espaço com quantidade menor de dimensões Análise de Dados Multivariados - 2017





### Referências

#### **Usos da Análise Fatorial**



- Examinar a estrutura subjacente e as relações das variáveis
- Reduzir a complexidade dos dados em construtos mais simples e melhor interpretáveis

Análise de Dados Multivariados - 2017

180

180

### Bibliografia Recomendada



- FÁVERO, L. P.; BELFIORE, P; SILVA, F. L.; CHAN, B. L. Análise de dados: modelagem multivariada para tomada de decisões. Campus, 2009.
- JOHNSON, R. A.; WINCHERN, D. W. Applied Multivariate Statistical Analysis. Prentice Hall, 2007
- LATTIN, J.; CARROLL, J. D.; GREEN, P. E. Análise de Dados Multivariados. Cengage Learning, 2005.
- MANLY, B. J. F. Métodos Estatísticos Multivariados: uma Introdução. Bookman, 2008.

Análise de Dados Multivariados - 2017

103

182

183

D CI / ' E D . IIEII