

Przemysław Adrich

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Źródła

Ten w wykład w dużej mierze bazuje na materiałach opracowanych przez G. Cosmo, M.Asai, M. Novak, V. Ivanchenko na potrzeby oficjalnych kursów Geant4 w CERN. W szczególności kursu: Geant4 beginners at CERN, Geneva (Switzerland), 25-31 May 2021

Plan kursu

Wykłady

- 1. Wstęp do Geant4. Rys historyczny. Zastosowania. Przegląd możliwości. Instalacja. Dokumentacja.
- 2. Podstawowa struktura kodu. Hierarchie klas. Klasy użytkownika (obowiązkowe, opcjonalne). Interfejsy. System jednostek. Liczby losowe. Śledzenie przebiegu symulacji ("verbosity").
- 3. Geometria i materialy.
- 4. Źródło. Fizyka. Wizualizacja.
- 5. Detektory typu "primitive scorer", "probe". (Phasespace).
- 6. Detektory użytkownika ("Hits").
- 7. Obiekty typu "UserAction" jako detektory. Histogramy i n-tuple. Niepewność statystyczna w obliczeniach Monte Carlo. Geant4 na klastrze CiŚ.

Przegląd zagadnień pozostawionych na przyszłość:

- wielowątkowość ("multithreading"),
- własne interfejsy ("messengers"),
- interfejs Roota (histogramy, n-tuple), interfejs python
- redukcja wariancji, "physics biasing", "event biasing", "geometrical biasing",
- fotony optyczne, fizyka hadronowa, procesy i cząstki użytkownika,
- obcięcia energetyczne zależne od cząstki, regionu geometrii,
- zmiany geometrii i detektorów w trakcie wykonania programu,
- pole EM,
- światy równoległe,
- trackInformation, eventInformation, runInformation
- "stacking",
- fast simulation,
- import geometrii z CAD,
- periodic boundary conditions,
- specjalistyczne kody bazujące na Geant4 (G4Beamline, GAMOS, GATE ...),
- **–** ...

* "Monte Carlo First Run"

Geant4 - Materialy.

Geant4 zna:

Związki chemiczne, mieszaniny

1

Pierwiastki

Izotopy

Gęstość, stan skupienia, temperatura, ciśnienie, długość radiacyjna, średnia droga swobodna, dE/dx, współczynnik załamania światła, itp.

Efektywna liczba atomowa, efektywna liczba nukleonów, efektywna masa molowa, liczba izotopów, energie powłok atomowych, przekroje czynne na atom, itp.

Liczba atomowa, liczba nukleonów, masa molowa, itp.

CONTENTS

Introduction

Getting Started with Geant4 - Running a Simple Example

Toolkit Fundamentals

Detector Definition and Response

Geometry

Material

General considerations

Introduction to the Classes

Recipes for Building Elements and Materials

The Tables

Model materii w Geant4

- Odzwierciedla rzeczywistość: materiały są zbudowane z pierwiastków, a pierwiastki z izotopów.
- Gęstość materiału nie może być zerowa.
- Opcjonalnie można zdefiniować temperaturę i ciśnienie materiału
 - domyślnie warunki normalne: temperatura 293,15 K, ciśnienie 1 atm = 101,325 kPa
- Materiał może być w stanie stałym, ciekłym lub gazowym
 - domyślnie materiał jest w stanie stałym lub gazowym w zależności od gęstości (kGasThreshold = 10 mg/cm³)
- Materiały w stanie stałym mają strukturę amorficzną (rozwijane jest rozszerzenie w kierunku uwzględnienia pewnych aspektów struktury krystalicznej)
- Klasy bazowe tworzące model materii:
 - G4Isotope
 - G4Element
 - G4Material
- Materiały można tworzyć albo definiując własne izotopy, pierwiastki, materiały albo korzystając z bazy gotowych materiałów (NIST)
- Wskaźnik do każdego stworzonego obiektu jest automatycznie zapisywany w globalnej tabeli i dzięki temu dostępny z każdego miejsca w programie (osobne tabele dla izotopów, pierwiastków i materiałów)

- Zalecana do stosowania gdziekolwiek się da (gwarancja dużej dokładności i spójności)
- Zawiera ponad 3000 izotopów
- Zawiera pierwiastki o liczbach atomowych 1 < Z < 108, z naturalnymi abundancjami izotopów (zgodnie z danymi z bazy <u>NIST Atomic Weights and Isotopic Compositions data</u>)
- Pierwiastek z bazy można uzyskać podając jego symbol chemiczny albo liczbę atomową
 - Wszystkie potrzebne obiekty G4lsotope opisujące izotopy tego pierwiastka zostaną utworzone automatycznie
 - Metoda "find or build" pozwala uniknąć zbędnego powielania obiektów już istniejących

```
// get the carbon G4Element object from the NTST data base: by its symbol
G4Element* elC = G4NistManager::Instance()->FindOrBuildElement("C");

// get the silicon G4Element object from the NIST data base: by its Z
G4Element* elSi = G4NistManager::Instance()->FindOrBuildElement(14);
```

- Oprócz pierwiastków i izotopów baza zawiera obszerną kolekcję złożonych materiałów z ich predefiniowanymi własnościami:
 - gęstość, skład pierwiastkowy (z naturalnymi abundancjami), średni potencjał jonizacji, współczynniki zdolności hamowania (density effect parameter), itd.

Związki chemiczne

Ncomp		Name	density(g/cm^3)		
6	=====		1.127		=======
	1	0.101327			
	6	0.7755			
	7	0.035057			
	8	0.0523159			
	9	0.017422			
	20				
3		_	0.7899	64.2	
	6	3			
	1	6			
	8	1			
2	_	_	0.0010967	58.2	
	6	2			
_	1	2			
3	_	G4_ADENINE	1.6	71.4	
_	6	5			
	1	5			
	7	5	0.05	63.0	
7		DIPOSE_TISSUE_ICRP	0.95	63.2	
	1 6	0.114 0.598			
	7	0.007			
	8	0.278			
	11	0.001			
	16	0.001			
	17	0.001			
4			0.00120479	85.7	
	6	0.000124		0317	
	7	0.755268			
	8				
	18	0.012827			
4			1.42	71.9	
	6	3			
	1	7			
	7	1			
	8	2			
2		G4_ALUMINUM_OXIDE	3.97	145.2	A1_20_3
	13	2			
	8	3			
3		G4_AMBER	1.1	63.2	
	1	0.10593			
	6	0.788974			
	8	0.105096			

HEP and Nuclear Materials

Ncomp		Name d	density(g/cm^3)	I(eV)	ChFormula
1		G4_1H2	0.0708	21.8	
1		G4_1N2	0.807	82	
1		G4_102	1.141	95	
1		G4_1Ar	1.396	188	
1		G4_1Br		343	
1		G4_1Kr		352	
1		G4_1Xe		482	
3		G4_PbWO4	8.28	0	
	8	4			
	82	1			
	74	1			
1		G4_Galactic		21.8	
1		G4_GRAPHITE_POROUS	1.7	78	Graphite
3		G4_LUCITE	1.19	74	
	1	0.080538			
	6	0.599848			
	8	0.319614			
3		G4_BRASS	8.52	0	
	29	62			
	30	35			
	82	3			
3		G4_BRONZE	8.82	0	
	29	89			
	30	9			
	82	2			
3		G4_STAINLESS-STEEL	8	0	
	26	74			
	24	18			
	28	8			
3		G4_CR39	1.32	0	
	1	18			
	6	12			
	8	7			
3		G4_OCTADECANOL	0.812	0	
	1	38			
	6	18			
	8	1			

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

 Materiały predefiniowane w bazie NIST można uzyskać poprzez ich nazwę (rozpoczynającą się zawsze od "G4")

```
// Use the NIST data base to get predefined materials: carbon, silicon
//
// get the simple pre-defined carbon material from the NIST data base
G4Material* matC = G4NistManager::Instance()->FindOrBuildMaterial("G4 C");
// get the simple pre-defined silicon material from the NIST data base
G4Material* matSi = G4NistManager::Instance()->FindOrBuildMaterial("G4 Si");
// Use the NIST data base to get pre-defined compound materials:
//
// get the NIST manager (just to simplify)
G4NISTManager* nistMGR = G4NistManager::instance();
// get the pre-defined liquid argon ("G4_lAr") from the NIST DB
G4Material* matLAr = nistMGR->FindOrBuildMaterialr("G4 lAr");
// get the pre-defined concrete ("G4_CONCRETE") from the NIST DB
G4Material* matConcr = nistMGR->FindOrBuildMaterial("G4_CONCRETE");
```


Definiowanie materiałów: baza NIST - przykład

```
// DetectorConstruction.cc
#include "DetectorConstruction.hh"
G4bool checkOverlaps = true;
DetectorConstruction::DetectorConstruction()
: G4VUserDetectorConstruction(),
  // World:
  solidWorld(0), logicWorld(0), physWorld(0),
                                                                          Inicializacie
  World Material(0),
  world_size_X(100*cm), world_size_Y(100*cm), world size Z(200*cm),
  // Phantom:
  PDDPhantomNLayers(40), PDDPhantomLayerThickness(2.0*mm)
  nist = G4NistManager::Instance();
  World Material = nist->FindOrBuildMaterial("G4 AIR");
  PhantomMaterial = nist->FindOrBuildMaterial("G4 WATER");
G4VPhysicalVolume* DetectorConstruction::Construct()
  G4cout << " DetectorConstruction::Construct() Przystepuje do budowy Swiata ... " << G4endl;
  solidWorld = new G4Box("World", 0.5*world size X, 0.5*world size Y, 0.5*world size Z);
  logicWorld = new G4LogicalVolume(solidWorld, World Material, "World");
  physWorld = new G4PVPlacement(0, G4ThreeVector(), logicWorld, "World", 0, false, 0,
             checkOverlaps);
  SetupPhantom();
```

return physWorld;

- Z poziomu interfejsu użytkownika można uzyskać listę wszystkich predefiniowanych materiałów:
 - /material/nist/printElement <SYMBOL>
 - /material/nist/listMaterials <CATEGORY>
 dostępne kategorie: "simple", "compound", "hep", "space", "bio", "all".
- To samo z poziomu kodu aplikacji:

```
// List the pre-defined NIST ELEMENT(S) with its(their) isotope composition:
//
// element name can be: the element SYMBOL i.e. "Al" or "all"
const G4String nistElementName = "Al";
G4NistManager::Instance()->PrintElement(nistElementName);
//
// List the pre-defined NIST MATERIALS with their element composition:
//
// category name can be: "simple", "compound", "hep", "space", "bio", "all"
const G4String nistMatCategoryName = "simple";
G4NistManager::Instance()->ListMaterials(nistMatCategoryName);
```


Definiowanie materiałów bez użycia bazy NIST

Tylko jeśli absolutnie niezbędne, np. potrzebujemy materiału, którego nie ma w bazie.

CONTENTS

Introduction

Getting Started with Geant4 - Running a Simple Example

Toolkit Fundamentals

Detector Definition and Response

Geometry

Material

General considerations

Introduction to the Classes

Recipes for Building Elements and Materials

The Tables

Definiowanie materiałów: pierwiastki i izotopy

1. Model pierwiastka bez podania składu izotopowego:

```
// simple way of Carbon element definition
G4Element* elC = new G4Element(name="Carbon", symbol="C", z = 6., a = 12.01*g/mole);
należy zdefiniować nazwę, symbol, Z i A (efektywna liczba atomowa i masa molowa)
izotopy zostaną dodane automatycznie z naturalnymi abundancjami (A zostanie nadpisane)
```

2. Model pierwiastka z podaniem nienaturalnego składu izotopowego:

```
// Define "enriched uranium" element as 90 % of U235 and 10 % of U 238:
//
// create the isotopes; iz = number of protons and n = number of nucleons
G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235);
G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238);
// create the element and build up by adding the isotopes with their abundance
G4Element* elU = new G4Element(name="enriched uranium",symbol="U",numisotopes=2);
elU->AddIsotope(U5, abundance = 90.*perCent);
elU->AddIsotope(U8, abundance = 10.*perCent);
```

należy

utworzyć izotopy definiując ich nazwy, liczby protonów i nukleonów w jądrze utworzyć pierwiastek definiując jego nazwę, symbol i liczbę izotopów dodać izotopy do pierwiastka podając ich względne abundancje

Definiowanie materiałów: prosty, jednorodny materiał

Prosty materiał składa się tylko z jednego pierwiastka przy czym nie przekazujemy obiektu typu G4Element odpowiadającego temu pierwiastkowi.

Przykład:

Potrzebny obiekt typu G4Element zostanie utworzony automatycznie (z naturalnymi abundancjami izotopów)

Definiowanie materiałów: prosty związek chemiczny

Definicja materiału przez podanie pierwiastków i liczby ich atomów w cząsteczce.

```
Przykład - woda

// Create water material as molecule based on its chemical formula (H20)

//

// create the necessary H and 0 elements (natural isotope abundance):

G4Element* elH = new G4Element(name = "Hydrogen", symbol = "H", z=1.0, a = 1.01 * g/mole);

G4Element* el0 = new G4Element(name = "Oxygen", symbol = "O", z=8.0, a = 16.00 * g/mole);

// create the water material (name, density, number of components):

G4Material* matH20 = new G4Material(name = "Water", density = 1.0 * g/cm3, ncomponents = 2);

// add the elements to the material with their composition numer

matH20->AddElement(elH, numberOfatoms = 2);

matH20 >AddElement(el0, numberOfatoms = 1);
```

Tworzymy pierwiastki,

Tworzymy **materiał** podając jego nazwę, gęstość i liczbę tworzących go pierwiastków Do materiału dodajemy pierwiastki podając ich liczby w cząsteczce

Definiowanie materiałów: mieszanina

Definicja materiału jako mieszaniny.

Można tworzyć mieszaniny atomów lub złożonych materiałów lub atomów i złożonych materiałów

Przykład 1 – materiał jako mieszanina atomów. Propan pod ciśnieniem 2 atm, w temperaturze 20 st. C

```
// C3H8, 20 C, 2 atm
G4double density = 3.758*mg/cm3;
G4Material* C3H8 = new G4Material("C3H8",density,2, kStateGas, 293.15*kelvin, 2*atmosphere);
C3H8->AddElementByNumberOfAtoms(elC, 3);
C3H8->AddElementByNUmberOfAtoms(elH, 8);

Potrzebne pierwiastki najlepiej pobrać z bazy NIST, czyli:
G4Element* elC = G4NistManager::Instance()->FindOrBuildElement("C");
```

Przykład 2 – materiał jako mieszanina atomów i materiałów złożonych.

Udziały składników podajemy jako względne udziały masowe!

```
// ALICE mixture TPC_Ne-CO2-2
G4doubledensity = 0.939*mg/cm3;
G4Material* NeCO2 =
new G4Material("TPC_Ne-CO2-2", density, 2, kStateGas, NTP_Temperature, 1.*atmosphere);
NeCO2->AddElementByMassFraction( elNe, 0.8039 );
NeCO2->AddMaterial( carbon_dioxide, 0.1961 );
```


