Statistical and Mathematical Methods for Data Analysis

Dr. Faisal Bukhari
Punjab University College of Information Technology
(PUCIT)

Textbooks

- □ Probability & Statistics for Engineers & Scientists, Ninth Edition, Ronald E. Walpole, Raymond H. Myer
- □Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- □ Elementary Statistics, 13th Edition, Mario F. Triola

Reference books

- Probability and Statistical Inference, Ninth Edition, Robert V. Hogg, Elliot A. Tanis, Dale L. Zimmerman
- ☐ **Probability Demystified**, Allan G. Bluman
- □Schaum's Outline of Probability, Second Edition, Seymour Lipschutz, Marc Lipson
- □ Python for Probability, Statistics, and Machine Learning, José Unpingco
- □ Practical Statistics for Data Scientists: 50 Essential Concepts,
 Peter Bruce and Andrew Bruce
- ☐ Think Stats: Probability and Statistics for Programmers, Allen Downey

References

Readings for these lecture notes:

- ☐ Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- □ Probability & Statistics for Engineers & Scientists, Ninth Edition, Ronald E. Walpole, Raymond H. Myer
- ☐ **Probability Demystified**, Allan G. Bluman
- Practical Statistics for Data Scientists: 50 Essential Concepts, Peter Bruce and Andrew Bruce
- https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/
- □ http://www.thefreedictionary.com/statistics

These notes contain material from the above three resources.

Distribution of points

Midterm = 30 points

Final term = 40 points

Sessional points = 30 points

- I. Assignments = $2 \times 4 = 10$ points
- II. Hands-on Python in class = $0.5 \times 5 = 2.5$ points
- III. Quizzes = $0.5 \times 5 = 2.5$ points
- IV. Journal/conference paper presentation = 5
- V. Mini project (its report should be in an IEEE journal paper format) = 10 points

Target Journals

Some of the journals that are relevant to health care and the medical field, based on computer science.

- Medical Decision Making, JCR Impact Factor (2017-18) = 2.793
- 2. Health Informatics Journal, JCR Impact Factor (2017-18) = 2.297
- 3. Informatics for Health and Social Care, JCR Impact Factor (2017-18) = 1.137
- 4. Health Care Analysis, , JCR Impact Factor (2017-18) = 1.043
- 5. International Journal of Health Care Quality Assurance, JCR Impact Factor (2017-18) = 1.218

Target Journals

Some of the journals that are relevant to education, based on computer science.

- 1. Computers & Education, JCR Impact Factor (2017-18) = 5.627
- 2. Computer Applications in Engineering Education, JCR Impact Factor (2017-18) = 1.435
- **3. Journal of Computing in Higher Education**, JCR Impact Factor (2017-18) = **1.870**
- **4. Acm Transactions on Computing Education**, , JCR Impact Factor (2017-18) = **1.356**
- **5. Assessment & Evaluation In Higher Education**, JCR Impact Factor (2017-18) = **2.473**
- 6. Educational Assessment Evaluation and Accountability, JCR Impact Factor (2017-18) = 1.772
- 7. Computer Applications in Engineering Education = Impact Factor: 1.435

- □PAKISTAN: ROAD TRAFFIC ACCIDENTS
- \Box Deaths = 30,046
- \square % = 2.42 (of total death in Pakistan)
- \square Rate = 17.12
- □World Rank = 95
- □According to the latest WHO data published in 2018 Road Traffic Accidents Deaths in Pakistan reached 30,046 or 2.42% of total deaths. The age adjusted Death Rate is 17.12 per 100,000 of population ranks Pakistan #95 in the world. Review other causes of death by clicking the links below or choose the full health profile.

Reference: https://www.worldlifeexpectancy.com/pakistan-road-traffic-accidents

□Road injuries killed 1.4 million people in 2016, about three-quarters (74%) of whom were men and boys.

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016, Geneva, World Health Organization; 2018.

Reference: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Basic concepts [1]

□ Probability can be defined as the mathematics of chance.

□Statisticians use the word **experiment** to describe any process that **generates a set of data**.

OR

□A probability experiment is a chance process that leads to well defined outcomes or results. For example, tossing a coin can be considered a probability experiment since there are two well-defined outcomes—heads and tails.

Basic concepts [2]

In probability theory, an **experiment or trial** is any procedure that can be **infinitely repeated** and has a **well-defined** set of possible **outcomes**, known as the **sample space**.

□An **outcome** of a probability experiment is the result of a single trial of a probability experiment.

Basic concepts [3]

☐ The set of all possible outcomes of a statistical experiment is called the **sample space** and is represented by the symbol *S*.

OR

☐ The set of all outcomes of a probability experiment is called a **sample space**. Some sample spaces for various probability experiments are shown here.

Experiment	Sample space
Toss one coin	Н, Т
Roll a die	1, 2, 3, 4, 5, 6
Toss two coins	HH, HT, TH, TT

Basic concepts [4]

- □ Each outcome in a sample space is called an **element** or a **member** of the sample space, or simply a **sample point**.
- □ Each outcome of a probability experiment occurs at random.

□ Each outcome of the experiment is **equally likely** unless otherwise stated.

Basic concepts [5]

An event then usually consists of one or more outcomes of the sample space.

OR

- ☐ An event is a subset of a sample space.
- □An event with one outcome is called a **simple** event.
- □An event consists of two or more outcomes, it is called a **compound event**.

Example

A single die is rolled. List the outcomes in each event:

- a. Getting an odd number
- b. Getting a number greater than four
- c. Getting less than one

Example cont.

Solution:

$$S = \{1, 2, 3, 4, 5, 6\}$$

a. Let A be the event contains the outcomes 1, 3, and 5.

$$A = \{1, 3, 5\}, n(A) = 3$$

b. Let B be the event contains the outcomes 5, and 6.

$$B = \{5, 6\}, n(B) = 2$$

c. Let C be the event that contains a number less than one

$$C = \{\}$$

Basic concepts [7]

Classical Probability:

The formula for determining the probability of an event **E** is

$$P(E) = \frac{n(E)}{n(S)}$$

OR

 $P(E) = \frac{\text{Number of outcomes contained in the event E}}{\text{Total number of outcomes in the sample space}}$

Example:

Two coins are tossed; find the probability that both coins land heads up.

Solution:

```
S = {HH, HT, TH, and TT}

n(S) = 4

Let A be the event of getting a both heads

A = {HH}

n(A) = 1

P (A) = \frac{1}{4} = 0.25 (or 25 %)
```

Example:

A die is tossed; find the probability of each event:

a. Getting a two

b. Getting an even number

c. Getting a number less than 5

Example cont.

Solution:

$$S = \{1, 2, 3, 4, 5, 6\}$$

n(S) = 6

$$P(E) = \frac{Number of outcomes contained in the event E}{Total number of outcomes in the sample space}$$

a. Let A be the event of getting a "two"

A = {2}
n(A) = 1
P(A) =
$$\frac{1}{6}$$
 = 0.1667 (or 16.67%)

Example cont.

b. a. Let B be the event of getting a "even number"

A = {2, 4, 6}
n(A) = 3
P(B) =
$$\frac{3}{6} = \frac{1}{2} = 0.5$$
 (or 50%)

c. a. Let C be the event of getting a "less than 5"

C = {1, 2, 3, 4}
n(C) = 4
P(C) =
$$\frac{4}{6} = \frac{2}{3} = 0.6666$$
 (or 66.67%)

Basic concepts [8]

Rule 1: The probability of any event will always be a number from zero to one. Probabilities cannot be negative nor can they be greater than one.

Rule 2: When an event cannot occur, the probability will be zero.

Example: A die is rolled; find the probability of getting a 7.

Basic concepts [9]

Rule 3: When an event is certain to occur, the probability is 1.

Example: A die is rolled; find the probability of getting a number less than 7.

Rule 4: The sum of the probabilities of all of the outcomes in the sample space is 1.

Example:
$$P(H) = \frac{1}{2}$$
, $P(T) = \frac{1}{2}$, $P(H) + P(T) = 1$.

Basic concepts [10]

Complement: The **complement** of an event A with respect to S is the subset of all elements of S that are not in A. We denote the complement of A by the symbol A' or \overline{A} or A^c

Rule 5: The probability that an event will not occur is equal to 1 minus the probability that the event will occur.

Example:
$$P(H) = \frac{1}{2}$$
, $P(T) = 1 - P(H) = \frac{1}{2}$

Basic concepts

The **probability** of an event *A* is the sum of the weights of all **sample points** in *A*.

Therefore,

$$I. \qquad 0 \le P(A) \le 1$$

II.
$$P(\varphi) = 0$$

III.
$$P(S) = 1$$
.

Basic concepts

□When the probability of an event is close to zero, the occurrence of the event is relatively unlikely. For example, if the chances that you will win a certain lottery are 0.00l or one in one thousand, you probably won't win, unless of course, you are very "lucky."

□When the probability of an event is 0.5 or $\frac{1}{2}$, there is a 50-50 chance that the event will happen—the same.

Basic concepts

When the probability of an event is close to one, the event is almost sure to occur. For example, if the chance of it snowing tomorrow is 90%, more than likely, you'll see some snow.

Empirical Probability [1]
Probabilities can be computed for situations that do not use sample spaces. In such cases, frequency distributions are used and the probability is called empirical probability.

Rank	Frequency
Freshmen	4
Sophomores	6
Juniors	8
Seniors	7
TOTAL	25

Empirical Probability [2]

$$P(E) = \frac{Frequency of E}{Sum of the frequencies}$$

$$P(E) = \frac{1}{4}$$

Empirical probability is sometimes called relative frequency probability.

Law of large numbers

□In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times.

According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.

Law of large numbers

□The LLN is important because it "guarantees" stable long-term results for the averages of some random events.

□For example, while a casino may lose money in a single spin of the roulette wheel, its earnings will tend towards a predictable percentage over a large number of spins.

An illustration of the law of large numbers using a particular run of rolls of a single die. As the number of rolls in this run increases, the **average** of the values of all the results approaches **3.5**.

Law of Large Numbers

□Solution: Probably not.

☐ However, as the number of **tosses increases**, the ratio of the number of heads to the total number of tosses will get closer to $\frac{1}{2}$.

☐ This phenomenon is known as the law of large numbers.

Suggested Readings

2.1 Sample space

2.2 Events

2.3 Counting Sample Points