Equipment for Gas-Liquid Mass Transfer Operations

Agitated Vessels and Sparged Vessels

Mechanically Agitated Contactor (MAC)

Or, Sparged Vessel

Agitated tanks are preferred where the gas flow rate is low and in the presence of suspended solids, either as a reactant or catalyst.

Agitated Vessels and Sparged Vessels

Gas and liquid can conveniently be contacted, with gas dispersed as bubbles, in agitated vessels whenever multistage counter-current effects are not required. This is particularly the case when a chemical reaction between the dissolved gas and a constituent of the liquid is required.

Examples: Carbonation of lime slurry, **hydrogenation of vegetable oils**, aeration of fermentation broths, as in the production of penicillin, production of citric acid from sugar beat by action of microorganisms, aeration of activated sludge for biological oxidation.

In most of the above processes, solids are suspended in the liquids. As the more complicated counter-current towers have a tendency to clog with such solids, the agitated vessels are usually more successful in such services, because solids can be suspended in the liquids easily.

Oxidation of Acetaldehyde to Acetic Acid: Cascade Bubble Column

Biological Wastewater Purification (Aerobic): Bubble Column with internal loop/ Downflow Bubble Column

Hydrogenation of Benzene to Cyclohexane: Bubble Column (slurry) with external loop

Fischer-Tropsch Synthesis in Liquid Phase: Slurry Bubble Column

Types of Bubble Column

Tray Towers

Vapor Reflux Drum Reflux Pump Distillate _ Reflux Distillate Feed Reflux Distillate Vapor Reboiler _ Steam Condensate **Bottoms** Bottoms, liquid product Condenser Cooling water Upflowing vapor Downflowing liquid

Overhead

Absorption Column

Distillation Column with Side Draw

Sieve Tray

Valve Tray

Bubble-cap Tray

Typical Bubble-cap Design

Single Valve

Selection of Trays

Gas and Liquid Flow in Sieve Tray Tower

Priming

Dumping

Coning

Tray Performance Constraints

Adverse vapor/liquid flow conditions can cause:

- Foaming
- Entrainment
- Flooding
- Weeping/dumping
- Downcomer flooding

Tray Performance Constraints

Adverse vapor/liquid flow conditions can cause:

- Foaming
- Entrainment
- Flooding
- Weeping/dumping
- Downcomer flooding

Gas rate

Operating Characteristics of Sieve Tray

Correlation of flooding velocity in bubble-cap column and perforated plate column by Fair and Matthews

Tray Arrangements

Liquid Dispersed Type Gas-Liquid Contactors

Venturi Scrubber

Wetted-wall Column

Spray Tower

Packed Towers

Raschig Ring

Lessing Ring

Cross Partition Ring

Pall Ring

Berl Saddle

Intalox Saddle

Metal Tellerettes

Plastic Tellerettes

Atmospheric Crossflow Cooling Tower

Desirable Characteristics of Packings

A tower packing or fill should possess the following characteristics:

- **▶**Provide large interfacial surface between liquid and gas. The surface of packing per unit volume of packed space (a_p) should be large.
- **Possess desirable fluid flow characteristics. This ordinarily** means that the fractional void volume, ε, or fraction of empty space, in the packed bed should be large.
- >Be chemically inert to fluids being processed.
- >Have structural strength to permit easy handling and installation.
- >Represent low cost.

Loading and Flooding in Packed Towers

Pressure Drop and Flooding in Random-packed Towers

Tray Towers Vs. Packed Towers

- 1. Gas Pressure Drop: Packed towers require smaller pressure drop.
- 2. Liquid hold-up: Packed towers provide substantially smaller liquid hold up.
- 3. Liquid/Gas ratio: Very low values of L/G ratio are best handled in tray Towers; high values in packed towers.
- 4. Liquid cooling: Tray towers are suitable.
- 5. Side streams: More readily removed from tray towers.
- 6. Foaming systems: Packed towers are more suitable.
- 7. Corrosion: Packed towers are more suitable.
- 8. Cleaning: Frequent cleaning is easier with tray towers.

CO₂ Absorption Column

Tray Tower with inter-tray Liquid Cooling

Tray Tower with Side Draw

Thank you