449 HW#1

- 1) Show that the components of the momentum operator commute: $[\hat{p}_x, \hat{p}_y] = 0$.
- 2) Let $|p\rangle$ be the eigenvectors of the momentum operator, with eigenvalues $\hbar k$, and $|r\rangle$ the eigenvectors of the position operator. Find the position representation $\langle r|p\rangle$ of the momentum eigenstates.
- 3) Show that in a region of space with V(r) = const, $E = \frac{\hbar^2 k^2}{2 m} + V$ are the eigenvalues of the Schrodinger equation, and $|p\rangle$ are the eigenvectors.
- 4) Snell's law for matter waves: suppose $V(r) = \begin{cases} V_0 & z < 0 \\ V_1 & z > 0 \end{cases}$. A beam of particles with momentum $\hbar \, \boldsymbol{k}_i$ impinges upon the plane z = 0, with $\hat{\boldsymbol{z}} \cdot \boldsymbol{k}_i = k_i \cos(\theta_i)$. At z = 0, the beam is partially reflected and partially transmitted. Show that the reflected beam has $\hat{\boldsymbol{z}} \cdot \boldsymbol{k}_r = -k_i \cos(\theta_i)$, and find the value of $\hat{\boldsymbol{z}} \cdot \boldsymbol{k}_t = k_t \cos(\theta_t)$ for the transmitted beam.
- 5) Fresnel coefficients for matter waves: Use boundary conditions at z = 0 to find the amplitudes of the reflected and transmitted beams.
- 6) Let $V_0 = 0$, $V_1 = \frac{\hbar^2 Q^2}{2m}$. Plot the transmitted probability as a function of k_i , for $\theta_i = 45^\circ$.
- 7) Why is the beam totally reflected for Q < k < 1.4 Q?
- 8) Suppose that in 2 dimensions the potential energy is $V(x, y) = V_x(x) + V_y(y)$, so that $H = H_x(x) + H_y(y)$. Calculate $[H_x, H_y]$ and use your result to argue that the eigenstates must be of the form $\psi(x, y) = \psi_x(x) \psi_y(y)$. Find the Schrödinger equations obeyed by ψ_x and ψ_y .
- 9) Find the energies and eigenstates for motion in the potential $V(x, y) = \begin{cases} \frac{1}{2} \kappa x^2 & 0 < y < \alpha \\ \infty & \text{Elsewhere} \end{cases}$.

Name your two quantum numbers n_x and n_y . Plot the lowest 10 energy levels for the case $\frac{m \, a^4 \, \kappa}{\hbar^2} = \frac{\pi^4}{4}$ and be sure to note any degeneracies.