0.1 Inner Products

Definition 0.1.1: Inner Product

An inner product (-,-) on V is a function $(-,-): V \times V \mapsto F$ satisfying:

- 1. (-,) is linear functional with $(c\alpha + \beta, \gamma) = c(\alpha, \gamma) + (\beta, \gamma)$
- 2. $(\beta, \alpha) = \overline{(\alpha, \beta)}$
- 3. $\forall \alpha \in \mathbb{F} \setminus \{0\} \ ((\alpha, \alpha) > 0)$

Note:-

If $F = \mathbb{R}$, $(\beta, \alpha) = (\alpha, \beta)$. Thus 1. and 2. leads $(\cdot, -)$ is also linear. Thus (\cdot, \cdot) is symmetric bilinear form.

But If $F = \mathbb{C}$, then $(\alpha, c\gamma) = \overline{c(\gamma, \alpha)}$. In this case, we call bbC is sesqui-linear. Also, $(\alpha, \alpha) = \overline{(\alpha, \alpha)}$, thus $(\alpha, \alpha) \in \mathbb{R}$.

Example 0.1.1 (Standard Inner Product)

 $V:=\mathbb{C}^n,$ $[x_i],[y_i]\in\mathbb{C}^n.$ Then $([x_i],[y_i])=\sum_{i=1}^nx_i\bar{y_i}$ is called the standard inner product.

Example 0.1.2 (Positive Definite)

 $F = \mathbb{R}^n$. $A : n \times n$ real mat. s.t. $\forall x \in \mathbb{R}^n$, $x^T A x > 0$. Then A is called positive definite. When A is symmetric pos. def., then $(x, y)_A := x^T A y$.

Exercise 0.1.1

Prove that $(x, y)_A$ is an inner product on \mathbb{R}^n .

Theorem 0.1.1

 $F = \mathbb{R}$, $V = \mathbb{R}^n$. Let $(\ ,\): V \times V \mapsto F$ be an arbitrary inn. prod. on V. Then \exists a sym. pos. def. mat. A s.t. $(\ ,\) = (\ ,\)_A$.

Proof. Choose a basis, the standard basis for convenient. $(e_i, e_j) =: g_{ij}$. Define $A := [g_{ij}]$. Let $x, y \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n x_i e_i$ and $y = \sum_{j=1}^n y_j e_j$. $(x, y) = \sum_i \sum_j x_i y_j e_i e_j = \sum_i \sum_j x_i g_{ij} y_j = \sum_i x_i \sum_j g_{ij} y_j = [x^T]_{\mathfrak{B}} A[y]_{\mathfrak{B}}$.

Definition 0.1.2: Hermitian Matrix

 $n \times n$ mat. A is called Hermitian if $A^* = A = [a_{ij}]$ where $[A^*]_{ij} = [\overline{a_{ji}}] = \overline{A^T}$.

Theorem 0.1.2

 $V = \mathbb{C}^n$. Let $(,): V \times V \mapsto F$ be an inn. prod. on V. Then $(x, y) = x^*Ay$ for some Hermitian pos. def. mat. A and vice versa.

1

Example 0.1.3

 $V = C([a, b] \rightarrow \mathbb{C}) : \mathbb{C}$ -v.s. of continuous functions on [a, b]. Define $f, g \in V$ as $(f,g) := \int_a^b f(t)\overline{g(t)}dt$. Then it is an inn. prod. on V of ∞ -dim.

Definition 0.1.3: Quadratic Form

V: v.s. with inn. prod. Define the quadratic form $\alpha \mapsto ||\alpha||^2 = (\alpha, \alpha) \ge 0$ and $\alpha = 0 \iff$ $\|\alpha\|^2 = 0.$

Exercise 0.1.2 Polarization Identity

$$\begin{split} \|\alpha+\beta\|^2 &= \|\alpha\|^2 + 2\Re(\alpha,\beta) + \|\beta\|^2. \ F = \mathbb{R}, \ (\alpha,\beta) = \frac{1}{4}(\|\alpha+\beta\|^2 - \|\alpha-\beta\|^2). \ F = \mathbb{C}, \\ (\alpha,\beta) &= \frac{1}{4}(\|\alpha+\beta\|^2 - \|\alpha-\beta\|^2 + i\|\alpha+i\beta\|^2 - i\|\alpha-i\beta\|^2). \end{split}$$

0.2 **Inner Product Spaces**

Definition 0.2.1: Inner Product Space

 $F = \mathbb{R}$ or $F = \mathbb{C}$. A vector space V/F with a specified inn. prod. called inner product space.

Note:-

$$\|\alpha\| = \sqrt{(\alpha, \alpha)}.$$

Theorem 0.2.1

V: inn. prod. space. $\forall \alpha, \beta \in V \ \forall c \in F$, we have properties:

- 1. $||c\alpha|| = |c|||\alpha||$
- 2. $\|\alpha\| > 0$ for $\alpha \neq 0$
- 3. $|(\alpha, \beta)| \le ||\alpha|| ||\beta||$
- 4. $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$

Proof. 1 and 2 are obvious from definition of inn. prod. For 3, just take $\alpha \neq 0$. Let $\beta^{\parallel} := \frac{(\beta, \alpha)}{\|\alpha\|^2} \alpha$, $\beta^{\perp} := \beta - \beta^{\parallel}$.

This is because: $(\beta^{\perp}, \alpha) = 0 \iff (\beta, \alpha) = c(\alpha, \alpha)$, thus $c = \frac{(\beta, \alpha)}{(\alpha, \alpha)}$.

$$0 \le \|\beta^{\perp}\|^2 = (\beta^{\perp}, \beta^{\perp}) = (\beta, \beta) - |c|^2(\alpha, \alpha) = \|\beta\|^2 - \frac{|(\alpha, \beta)|^2}{\|\alpha\|^2} \Rightarrow |(\alpha, \beta)| \le \|\alpha\| \|\beta\|.$$

 $0 \le \|\beta^{\perp}\|^{2} = (\beta^{\perp}, \beta^{\perp}) = (\beta, \beta) - |c|^{2}(\alpha, \alpha) = \|\beta\|^{2} - \frac{|(\alpha, \beta)|^{2}}{\|\alpha\|^{2}} \Rightarrow |(\alpha, \beta)| \le \|\alpha\| \|\beta\|.$ For 4, $\|\alpha + \beta\|^{2} = (\alpha + \beta, \alpha + \beta) = (\alpha, \alpha) + (\alpha, \beta) + (\beta, \alpha) + (\beta, \beta) \le (\|\alpha\| + \|\beta\|)^{2}$. Since both side are positive, we can just take off square.

Note:-

The "angle" is defined as inner product. Using 3, we can derive $-1 \le \frac{(\alpha,\beta)}{\|\alpha\|\|\beta\|} \le 1$. Then for nonzero α , β , define angle θ as:

$$\cos \theta = \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\|}$$

Definition 0.2.2: Orthogoanl and Orthogonal, Orthonormal Set

V: inn. prod. space. We say $\alpha, \beta \in V$ are orthogonal or perpendicular if their inn. prod. is 0. If $S \subset V$, S is orthogonal set if $\forall \alpha \neq \beta \in S$, $(\alpha, \beta) = 0$. If all element of S satisfies $||\alpha|| = 1$, we say S is orthonormal.

Theorem 0.2.2

Suppose $S \subset V$ be orthogonal set. Then S is lin. indep.

Proof. Take $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ as distinct vectors in S. Then $\beta = c_1 \alpha_1 + \dots + c_m \alpha_m$. So $(\beta, \alpha_k) = (\sum_j c_j \alpha_j, \alpha_k) = \sum_j c_j (\alpha_j, \alpha_k) = c_k (\alpha_k, \alpha_k)$. Since $(\alpha_k, \alpha_k) \neq 0$, $c_k = \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2}$ for $1 \leq k \leq m$. When $\beta = 0$, this leads $\forall c_i = 0$, so S is lin. indep. set.

Theorem 0.2.3 Gram-Schmidt

Let V be an inn. prod. space and let β_1, \ldots, β_n be any indep. vec. in V. Then we can construct orthogonal vectors $\alpha_1, \ldots, \alpha_n$ in V s.t. for each $k \in [n]$ the set $\{\alpha_1, \ldots, \alpha_k\}$ is a basis for the subspace spanned by β_1, \ldots, β_k .

Proof. We can apply Gram-Schmidt orthogonalization process. $\alpha_1 := \beta_1$. $\beta_2 = \beta_2^{\perp \{\alpha_1\}} + \beta_2^{\parallel \{\alpha_1\}}$. $\alpha_2 = \beta_2^{\perp \{\alpha_1\}} = \beta_2 - \beta_2^{\parallel \{\alpha_1\}} = \beta_2 - \frac{(\beta_2, \alpha_1)}{\parallel \alpha_1 \parallel^2} \alpha_1$. $\beta_3 = \beta_3^{\perp \{\alpha_1, \alpha_2\}} + \beta_3^{\parallel \{\alpha_1, \alpha_2\}}$. $\alpha_3 = \beta_3^{\perp \{\alpha_1, \alpha_2\}} = \beta_3 - \frac{(\beta_3, \alpha_1)}{\parallel \alpha_1 \parallel^2} \alpha_1 - \frac{(\beta_3, \alpha_2)}{\parallel \alpha_2 \parallel^2} \alpha_2$, and so on. We can take orthogonal basis with this process.

Corollary 0.2.1

All f.d. inn. prod. space has orthogonal basis.

Definition 0.2.3: Best Approximation

V : inn. prod. space. $W \subset V$, $\beta \in V \setminus W$. A best approximation of β to *W* is $\alpha \in W$ s.t. $\forall \gamma \in W \ (\|\beta - \alpha\| \le \|\beta - \gamma\|)$.

Theorem 0.2.4

Let W be a subspaces of an inn. prod. space V and let β be a vec. in V. Then

- 1. $\alpha \in W$ is a best approx. to β by vec. in $W \iff \beta \alpha$ is orthogonal to every vec. in W
- 2. If a best approx. to β by vec. in W exists, it is unique
- 3. If W is f.d. and $\{\alpha_1, \ldots, \alpha_n\}$ is any ortho. basis for W, then the vec. $\alpha = \sum_k \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2} \alpha_k$ is the unique best approx. to β by vec. in W

Proof. Note that $\forall \gamma \in W$, $\beta - \gamma = (\beta - \alpha) + (\alpha - \gamma)$, and $\|\beta - \gamma\|^2 = \|\beta - \alpha\|^2 + 2\Re(\beta - \alpha, \alpha - \gamma) + \|\alpha - \gamma\|^2$. Now suppose $\beta - \alpha$ is ortho. to every vec. in W. Then since $(\alpha - \gamma) \in W$, we can see $\|\beta - \gamma\|^2 = \|\beta - \alpha\|^2 + \|\alpha - \gamma\|^2 \ge \|\beta - \alpha\|^2$.

Conversely, suppose $\forall \gamma \in W \ (\|\beta - \gamma\| \ge \|\beta - \alpha\|)$. Then from above we can find that $\forall \gamma \in W \ (2\Re(\beta - \alpha, \alpha - \gamma) + \|\alpha - \gamma\|^2 \ge 0)$. Since every vec. in W may be expressed in the form $\alpha - \gamma$ with $\gamma \in W$, we see that $2\Re(\beta - \alpha, \tau) + \|\tau\|^2 \ge 0$. We may take $\tau = -\frac{(\beta - \alpha, \alpha - \gamma)}{\|\alpha - \gamma\|^2}(\alpha - \gamma)$.

Then the equality reduces to the statement $-\frac{|(\beta-\alpha,\alpha-\gamma)|^2}{\|\alpha-\gamma\|^2} \ge 0$, which holds iff $(\beta-\alpha,\alpha-\gamma)=0$. This completes the proof of 1. and ortho. condition is evidently satisfied by at most one vec. in W, thus proves 2.

Now suppose W is f.d. and let $\{\alpha_1, \ldots, \alpha_n\}$ be ortho. basis for W. We know $\beta - \alpha$ is ortho. to each elements of basis, i.e., to every vec. in W, so α it is best approx. to β , which leads $\|\beta - \gamma\| \ge \|\beta - \alpha\|$. Therefore $\alpha \in W$ and it is best approx. to β .

Definition 0.2.4: Orthogonal Complement

 $W^{\perp} := \{ \beta \in V \mid \alpha \perp \beta \, \forall \alpha \in W \}.$

Exercise 0.2.1

V: f.d. inn. prod. space. Then $V = W \oplus W^{\perp}$

Proof. $\beta \in V$. Then $E\beta$ is best approx. lies in W. It is easy to see that this is proj. Also, since $\alpha - E\alpha$ and $\beta - E\beta$ are each ortho. to W, $c(\alpha - E\alpha) + (\beta - E\beta) = (c\alpha + \beta) - (cE\alpha + E\beta) \in W^{\perp}$. Thus E is linear transformation by uniqueness of ortho. proj.

Note that $(\beta \in W^{\perp}) \iff (E\beta = 0)$. The eq. $\beta = E\beta + (\beta - E\beta)$ shows $V = W + W^{\perp}$. Also, $W \cap W^{\perp} = \{0\}$, so $V = W \oplus W^{\perp}$.

0.3 Linear Functionals and Adjoints

Theorem 0.3.1

 $V: \text{f.v.s.}/\mathbb{R} \text{ or } \mathbb{C}, V^*: \text{dual vec. space. Let } f \in V^*. \text{ Then } \exists ! \beta \in V \text{ } (f(-) = (-, \beta)).$

Proof. Choose ortho basis $\{\alpha_1, \ldots, \alpha_n\}$ of V. For uniqueness, try $\beta = \sum_{i=1}^n c_i \alpha_i$. We can see $f(\alpha_j) = (\alpha_j, \sum_{i=1}^n c_i \alpha_i) = \sum_{i=1}^n \overline{c_i}(\alpha_j, \alpha_i) = \overline{c_j}(\alpha_j, \alpha_j)$. If such β exists, then it must be $\beta = \sum_{i=1}^n \frac{f(\alpha_i)}{\|\alpha_i\|^2} \alpha_i$.

So take this as β . Now let's prove $f(-) = (-, \beta)$. We can see $(\alpha_j, \beta) = \sum_{i=1}^n \frac{f(\alpha_i)}{\|\alpha_i\|^2} (\alpha_i, \alpha_j) = \frac{f(\alpha_j)}{\|\alpha_j\|^2} (\alpha_j, \alpha_j) = f(\alpha_j)$. Thus such inn. prod. which corresponds to linear functional exists and unique.

Note:-

Usually V and V^* are not naturally related. But if V has inn. prod., then we can have an isomorphism.

Theorem 0.3.2

T: endo. on f.d.v.s. V/\mathbb{R} or \mathbb{C} . Then $\exists !T:V\to T$ s.t. $(T\alpha,\beta)=(\alpha,T^*\beta)$ where T^* is a unique linear operator. If $F=\mathbb{R}$, T^* is transpose and if $F=\mathbb{C}$, T^* is conjugate transpose.

Proof. Fix $\beta \in V \Rightarrow (-,\beta) \in V^*$. Let's modify it a bit to get what we want. Theorem 0.3.1 says that $\exists ! \beta' \in V \ ((T(-),\beta) = (-,\beta'))$. Define $T^* : V \to V : \beta \mapsto \beta'$. This mapping is well-defined. Also, easy to show that T^* is linear, and since for any $\beta \in V$, $T^*\beta$ is uniquely determined, thus uniqueness holds.

Theorem 0.3.3

T: endo. on f.d.v.s. V/\mathbb{F} or \mathbb{C} , $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be an orthonormal basis. Let $A := [T]_{\mathfrak{B}} = [A]_{ij}$. Then $A_{ij} = (T\alpha_j, \alpha_i)$.

Proof. $\alpha \in V$. $\alpha = \sum_{i=1}^{n} (\alpha, \alpha_i) \alpha_i$. A is defined by A_{ij} s.t. $T(\alpha_j) = \sum_{i=1}^{n} A_{ij} \alpha_i$. Since $T\alpha_j = \sum_{i=1}^{n} (T\alpha_j, \alpha_i) \alpha_i$, $A_{ij} = (T\alpha_j, \alpha_i)$.

Corollary 0.3.1

T: endo. on f.d.v.s. V/\mathbb{F} or \mathbb{C} , $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be an orthonormal basis. Then $[T^*]_{\mathfrak{B}} = ([T]_{\mathfrak{B}})^*$ where L.H.S. is adjoint s.t. $(T\alpha, \beta) = (\alpha, T^*\beta)$ and R.H.S. is conjugate transpose.

Proof.
$$A := [T]_{\mathfrak{B}} = [A_{ij}], B := [T^*]_{\mathfrak{B}} = [B_{ij}].$$
 Then $A_{ij} = (T\alpha_j, \alpha_i)$ and $B_{ij} = (T^*\alpha_j, \alpha_i).$ Then $\overline{B_{ij}} = (\alpha_i, T^*\alpha_j) \Rightarrow \overline{B_{ii}} = (\alpha_j, T^*\alpha_i) = A_{ij}.$

Exercise 0.3.1

$$(T_1 + T_2)^* = T_1^* + T_2^*, (cT)^* = \overline{c}T^*, (T_1T_2)^* = T_2^*T_1^*.$$

Definition 0.3.1: Hermitian

T: endo. on f.d.v.s. V/\mathbb{R} or \mathbb{C} . We say T is Hermitian or self-adjoint if $T = T^*$.

0.4 Unitary Operators

Definition 0.4.1: Preserve

 $T: V \to W$ on inn. prod. space V and W. Then we say T preserves the inn. prod. if $\forall \alpha, \beta \in V \ (T\alpha, T\beta) = (\alpha, \beta)$. We say this is isometry.

Definition 0.4.2: Isomorphism of Inner Product Spaces

An isomorphism of inn. prod. space is a linear transf. s.t. it is an isomorphism of vec. spaces and preserves the inn. prod.

Theorem 0.4.1

 $T: V \to W$ with same dim f.d. inn. prod. spaces. TFAE:

- i) T preserves inn. prod.
- ii) T is an isomorphism of inn. prod. spaces
- iii) For arbitrary orthonormal basis $\mathfrak B$ of V, $T\mathfrak B$ is an orthonormal basis for W
- iv) For some orthonormal basis mfB of V, $T\mathfrak{B}$ is an orthonormal basis for W

Proof. i) \Rightarrow ii): Suppose $\exists \alpha \in N(T)$. Then $(T\alpha, T\alpha) = ||T\alpha||^2 = ||\alpha||^2 = 0$. Thus $\alpha = 0$. Since $\dim(V) = \dim(W)$, T is one-to-one, Thus T is an isomorphism.

- ii) \Rightarrow iii): Let \mathfrak{B} an arbitrary orthonormal basis $\{\alpha_1, \ldots, \alpha_n\}$. Then $(\alpha_i, \alpha_j) = \delta_{ij}$. Since T preserves, $(T\alpha_i, T\alpha_j) = \delta_{ij}$. Isomorphic condition of T implies then $T\mathfrak{B}$ is basis for W while $\{T\alpha_1, \ldots, T\alpha_n\}$ is an orthonormal set.
 - iii) \Rightarrow iv): Trivial.
 - iv) \Rightarrow i): Let \mathfrak{B} an orthonormal basis of V s.t. $T\mathfrak{B}$ is also an orthonormal basis.

Claim 0.4.1

 $\forall \alpha, \beta \in V \ ((T\alpha, T\beta) = (\alpha, \beta)).$

Proof. $\alpha := \sum x_i \alpha_i$, $\beta := \sum y_i \alpha_i$. Then $T\alpha = \sum x_i T\alpha_i$ and $T\beta = \sum y_i T\alpha_i$. We can see $(T\alpha, T\beta) = (\sum x_i T\alpha_i, y_j T\alpha_j) = \sum_j \sum_i x_i \overline{y_j}(\alpha_i, \alpha_j)$ while $(\alpha, \beta) = (\sum x_i \alpha_i, \sum y_j \alpha_j) = \sum_j \sum_i x_i \overline{y_j}(\alpha_i, \alpha_j)$, and both are δ_{ij} .

Theorem 0.4.2

 $T: V \to W$ on inn. prod. space with preserving $\iff ||T\alpha|| = ||\alpha||$.

Proof. (\Rightarrow): Trivial since $||T\alpha||^2 = (T\alpha, T\alpha) = (\alpha, \alpha) = ||\alpha||^2$. (\Leftarrow): By using polarization identity, we can easily derive this direction.

Definition 0.4.3: Unitary Operator

T is unitary operator if it is an isomorphism on inn. prod. space.

Theorem 0.4.3

 $U:V\to V$ on inn. prod. space. Then U is unitary $\iff U^*$ exists and $UU^*=U^*U=I$.

Proof. (\Rightarrow): If U is unitary, then, isomorphism, so $\exists U^{-1}: V \to V$ and $(U\alpha, \beta) = (U\alpha, I\beta) = (U\alpha, UU^{-1}\beta) = (\alpha, U^{-1}\beta)$. Thus $U^{-1} = U^*$.

(\Leftarrow): Suppose $\exists U^*: V \to V$ s.t. $UU^* = U^*U = I$. Then U is invertible where $U^* = U^{-1}$. Then $(U\alpha, U\beta) = (\alpha, U^*U\beta) = (\alpha, \beta)$.

Definition 0.4.4: Unitary

 $A: n \times n$ mat. on \mathbb{R} or \mathbb{C} . We say A is unitary if $AA^* = A^*A = I$.

Theorem 0.4.4

 $U:V\to V$ on inn. prod. space. Then U is unitary $\iff [U]_{\mathfrak{B}}$ for orthonormal basis \mathfrak{B} is a unitary mat.

Proof. $[U]_{\mathfrak{B}}$ is unitary $\iff U$ is unitary. Then iff condition follows from Theorem 0.4.3. \square

Corollary 0.4.1

If U_1 and U_2 are unitary, then U_1U_2 also. Furthermore, U_1^{-1} is also unitary.

Definition 0.4.5: Unitary Group - Optional

For f.d.inn. prod. space, let U(V) be a collection of all unitary op. on V. This is a group, i.e., closed under mat. multiplication.

Note:-

OPTIONAL.

When $V = \mathbb{C}^n$, $U(\mathbb{C}^n) = U(n)$: the *n*-th unitary group.

 $V = \mathbb{R}^n$, $A : n \times n$ mat. on \mathbb{R} s.t. $AA^t = A^tA = I$. Then O(n) is the real orthogonal group. $V = \mathbb{C}^n$, $A : n \times n$ mat. on \mathbb{C} s.t. $AA^t = A^tA = I$. Then $O(n, \mathbb{C})$ is the complex orthogonal group.

 $SU(n) = \{A \in U(n) \mid \det(A) = 1\}$ is special unitary group.

 $SO(n) = \{A \in O(n) | \det(A) = 1\}$ is special orthogonal group. For example, SO(2) is rotation and SO(3), with $SO(3) \times \mathbb{R}^3$ is rigid motion.

0.5 Normal Operators

Definition 0.5.1: Normal

T: endo on f.d.inn. prod. space. V/F. We say T is normal if $TT^* = T^*T$.

Note:-

Q. When do we have an orthonormal basis $\mathfrak B$ on V s.t. vec. in $\mathfrak B$ are also char. vec. of T?

Theorem 0.5.1

T: endo on f.d.inn. prod. space. V/F. Suppose T is normal. For char. vec. α of T, $c \in F$ is char. value $\iff \overline{c}$ is char. value for T^* with char. vec. α .

Proof.

Claim 0.5.1

If *U* is normal, then $||Uv|| = ||U^*v||$.

Proof.
$$||Uv||^2 = (Uv, Uv) = (v, U^*Uv) = (v, UU^*v) = (U^*v, U^*v) = ||U^*v||^2$$
.

 $\forall c \in F, U := T - cI$ is normal for normal T. Then $U^* = T^* - \overline{c}I$. $UU^* = U^*U$ is obvious. Thus $||(T - cI)\alpha|| = ||(T^* - \overline{c}I)\alpha||$ by Claim 0.5.1. Thus $(T - cI)\alpha = 0 \iff (T^* - \overline{c}I)\alpha = 0$. \square

Theorem 0.5.2

T as Theorem 0.5.1 but not normal. Suppose \exists orthonormal basis \mathfrak{B} s.t. $[T]_{\mathfrak{B}}$ is upper triangular. Then T is normal $\iff [T]_{\mathfrak{B}}$ is diagonal.

Proof. (\Leftarrow): Let $A := [T]_{\mathfrak{B}}$. $A^* = [T^*]_{\mathfrak{B}}$. A is diagonal, so A^* also. Trivially $AA^* = A^*A$, thus $TT^* = T^*T$, i.e., T is normal.

(⇒): Suppose *T* is normal. We are given that *A* is upper triangular. Let $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$. Then

$$A = [T]_{\mathfrak{B}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix}$$

where T is normal, and α_1 is char. vec., where a_{11} are char. value w.r.t. α_1 . By Theorem 0.5.1, $T^*\alpha_1 = \overline{a_{11}}\alpha_1$. On the other hand, since $[T^*]_{\mathfrak{B}} = A^*$, $T^*\alpha_1 = \overline{a_{11}}\alpha_1 + \overline{a_{12}}\alpha_2 + \cdots + \overline{a_{1n}}\alpha_n$. Thus

$$A = [T]_{\mathfrak{B}} = \begin{bmatrix} a_{11} & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix}.$$

Applying this algorithm to each α_i leads A is diagonal.

Lemma 0.5.1 T: endo on f.d.inn. prod. space. V/\mathbb{R} or \mathbb{C} . Let $W\subset V$ be T-inv. subspace. Then W^{\perp} is automatically T^* -inv.

Proof. Let $\beta \in W^{\perp}$. N.T.S. $T^*\beta \in W^{\perp}$, i.e., $\forall \alpha \in W \ ((\alpha, T^*\beta) = (T\alpha, \beta) = 0)$. Since W is *T*-inv., this clearly holds.

T: endo on f.d.inn. prod. space. V/\mathbb{C} . Then \exists orthonormal basis $\mathfrak B$ for V s.t. $[T]_{\mathfrak B}$ is upper triangular mat.

Proof. We prove it by induction on $n = \dim(V)$. If n = 1, it is obvious. So suppose n > 1 and assume Theorem 0.5.3 holds for any inn. prod. space with dim < n. Since $F = \mathbb{C}$, applying Fundamental Theorem of Algebra to T^* , \exists char. value $c \in \mathbb{C}$, and a char. vec. α s.t. $T^*\alpha = c\alpha$. By replacing α to $\frac{\alpha}{\|\alpha\|}$, α itself has length 1. Define $W = \text{span}\{\alpha\}^{\perp}$. Since $\text{span}\{\alpha\}$ is T^* -inv, which leads $W = \operatorname{span}\{\alpha\}^{\perp}$ is T-inv. by the Lemma 0.5.1. Then we can see

$$T: V \longrightarrow V \quad \dim(V) = n$$

$$\uparrow \qquad \uparrow$$

$$T|_{W}: W \longrightarrow W \quad \dim(W) = n-1$$

By induction hypothesis, \exists orthonormal basis $\mathfrak{B}' = \{\alpha_1, \dots, \alpha_{n-1}\}$ s.t. $[T|_W]_{\mathfrak{B}'}$ is upper triangular. Take $\alpha_n := \alpha$, and $\mathfrak{B} = \mathfrak{B}' \cup \{\alpha_n\}$. Then

$$[T]_{\mathfrak{B}} = \begin{bmatrix} [T|_{W}]_{\mathfrak{B}'} & * \\ 0 & * \end{bmatrix}.$$

Thus $[T]_{\mathfrak{B}}$ is upper triangular.

Corollary 0.5.1

T: endo on f.d.inn. prod. space. V/\mathbb{C} where T is normal. Then V has orthonormal basis consisting of char. vec. of T. In particular, T is diagonalizable.

Corollary 0.5.2

With Theorem 0.5.2 and Theorem 0.5.3, if $A \in M_{n \times n}(\mathbb{C})$, \exists unitary mat. $P \in U(n)$ s.t. $P^{-1}AP$ is upper triangular. In case $AA^* = A^*A$, $P^{-1}AP$ is diagonal, i.e., A is normal implies A is unitary diagonalizable.

Example 0.5.1

T: endo on f.d.inn. prod. space. V/F. If T is hermitian, i.e., self-adjoint, then T is normal. Also, if T is unitary operator, it is normal.