NOIP 模拟赛

题目名称	魔法矩阵	卡片	车站
提交文件	matrix.cpp	card. cpp	station.cpp
输入文件	matrix.in	card. in	station.in
输出文件	matrix.out	card. out	station.out
时间限制	1s	1s	3s
空间限制	128M	128M	128M
测试点个数	10	10	10
每个测试点得分	10	10	10

1. 魔法矩阵(matrix.cpp)

matrix.in/matrix.out

现在有一个 n*m 的矩阵,横坐标为 $1, 2, \cdots, n$,纵坐标为 $1, 2, \cdots, m$ 。一开始,矩阵内的 所有元素值都为 0。GISPZJZ 现在对矩阵使用了 p 次魔法,每次使用魔法,GISPZJZ 会选择 矩阵中的一个子矩阵 (x1, y1, x2, y2),将所有横坐标在 [x1, x2],纵坐标在 [y1, y2] 的所有元素值加 1。

使用完 p 次魔法后,矩阵的元素发生了一定的改变。这时,AceSrc 过来问了 q 个问题,每个问题是给定一个子矩阵(x1,y1,x2,y2),求所有横坐标在[x1,x2],纵坐标在[y1,y2]的所有元素的和是多少?

你需要正确的回答每一个问题。

输入:

第一行四个正整数 n, m, p, q,表示矩阵的大小,使用魔法的次数以及问题个数。接下来 p 行,每行 4 个正整数 x1, y1, x2, y2,表示使用魔法的矩形。接下来 q 行,每行 4 个正整数 x1, y1, x2, y2,表示询问的矩形。

输出:

一共q行,第i行表示第i个询问的答案。

样例输入:

3 3 2 3

1 1 2 2

2 2 3 3

2 2 2 2

2 1 3 2

1 1 3 3

样例输出:

2

4

8

样例说明:

使用了所有魔法后,矩阵的元素如下(第i行第j列表示坐标为(i,j)的元素):

1 1 0

1 2 1

数据范围:

对于 30%的数据, 1<=n, m<=100, 1<=p, q<=100。

对于 60%的数据, 1<=n, m<=2000, 1<=p, q<=5000。

对于 100%的数据, 1<=n, m<=2000, 1<=p, q<=500000, 1<=x1<=x2<=n, 1<=y1<=y2<=m。

2. 卡片(card.cpp)

card. in/card. out

有 m 种卡片, 卡片上分别标号为 1, 2, …, m, 每种卡片都有无穷多张。

现在有n个人排成一排,编号分别为1, 2, …, n。,GISPZJZ 要给每个人发一张卡片。GISPZJZ 认为k 是一个不吉利的数字,他希望任意两个相邻的人的卡片点数和不能等于k。 现在 GISPZJZ 想知道,他有多少种分发卡片的方式。两种方式被认为是不同的,当且仅当存在一个人,在两种方式中获得的卡片点数不同。

输入:

第一行三个正整数 m, n, k, 表示卡片的种数, 人数以及不吉利的数字。

输出:

一行一个正整数 x,表示答案。由于答案可能很大,输出答案对 1000000007 取模的结果。

样例输入:

3 3 3

样例输出:

17

数据范围:

对于 10%的数据, 2<=m, n<=8。

对于 30%的数据, 2<=m, n<=400。

对于 60%的数据, 2<=m, n<=10⁵。

对于额外 20%的数据, 2<=m<=10, 2<=n<=10^9。

对于 100%的数据, 2<=m, n<=10⁹, 2<=k<=2m。

3. 车站(station.cpp)

station.in/station.out

在一条公路上,有 n 个村庄,编号分别为 1, 2, 3, ···, n。每两个相邻的村庄之间的距离都是 1km。在第 i 个村庄里住着 ai 个人。现在接连发生了 q 个事件,第 i 个事件可以表示为 (pi, bi),即第 pi 个村庄增加了 bi 个人(bi 可能是负的,表示第 pi 个村庄减少了-bi 个人。) zyb 现在想建一个车站,使得所有村庄的所有人到车站的距离和最短。zyb 希望车站就建立在某个村庄,如果存在多个村庄满足所有人到车站的距离和最短,zyb 希望选择编号最小的村庄建立车站。

现在 zvb 想知道,在每个事件发生后,车站应该建立在哪个村庄。

由于测试规模较大,设第 i 次事件发生后,车站应该建立在第 xi 个村庄,你只需要输出 $\sum_{i=1}^q 19260817^i \cdot x_i$ 对 998244353 取模后的答案。

输入:

第一行两个正整数 n, q。

第二行 n 个正整数 a1, a2, …, an。

接下来 q 行, 第 i 行两个正整数(pi, bi), 表示第 i 个事件: 第 pi 个村庄增加了 bi 人。输入数据保证,任何时刻,每个村庄的人数都大于 0。

输出:

总共 q 行, 第 i 行一个正整数, 表示第 i 个事件发生后 zyb 建立车站的位置。

样例输入:

- 3 3
- 4 2 2
- 1 -2
- 3 2
- 3 1

样例输出:

186493280

样例说明:

三次事件发生后,对应的答案分别为2,2,3。

第 1 个事件发生后,每个村庄的人数为(2,2,2),车站建立在第 2 个村庄时,所有人到车站的总距离为2*|1-2|+2*|2-2|+2*|3-2|=4此时最短,故车站建立在第 2 个村庄。。

第 2 个事件发生后,每个村庄的人数为(2,2,4),车站建立在第 2 个村庄时,总距离为 2*|1-2|+2*|2-2|+4*|3-2|=6 , 车 站 建 立 在 第 3 个 村 庄 时 , 总 距 离 为 2*|1-3|+2*|2-3|+4*|3-3|=6。两距离相同时,优先选择编号较小的村庄,故车站建立在第 2 个村庄。

数据范围:

对于 20%的数据, 1<=n<=1000, 1<=q<=1000。

对于 60%的数据, 1<=n<=200000, 1<=q<=80000。

对于 100%的数据, 1<=n<=200000, 1<=q<=1000000, 1<=ai, bi<=100000000.