Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: January 21, 2020

Contents

Chapte	r I	Topics in Fractal Geometry	
1	Dimer	sion Theory	1
	1.1	Constructing Measures in Metric Spaces	1
	1.2	Hausdorff Measure and Dimension	2
	1.3	Box Dimensions	5

I. Topics in Fractal Geometry

1 Dimension Theory

1.1 Constructing Measures in Metric Spaces

[TODO: fill in proofs and transfer to measure section] Let X be a metric space.

Definition. Given $A, B \subseteq X$, say $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Say A, B have **positive separation** if d(A, B) > 0.

If A, B are compact and disjoint, then they have positive separation. We say that an outer measure μ^* is a **metric outer measure** if $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when A, B have positive separation.

Example. The Lebesgue outer measure is a metric outer measure. [TODO: prove]

1.1 Theorem. μ^* is a metric outer measure if and only if every Borel set is μ^* -measurable (in the sense of Caratheodory).

Proof [TODO: prove this (homework), and find a proof of the converse? (may not be true)]

Suppose $A \subseteq \mathcal{B}$ are both covers of X containing \emptyset and $\mathcal{C} : \mathcal{B} \to [0, \infty]$ with $\mathcal{C}(\emptyset)$. Let $\mu_{\mathcal{A}}^*$ and $\mu_{\mathcal{B}}^*$ be the corresponding extensions of \mathcal{C} and $\mathcal{C}|_{\mathcal{A}}$. Then by definition, $\mu_{\mathcal{B}}^*(E) \le \mu_{\mathcal{A}}^*(E)$ for all $E \in \mathcal{P}(X)$.

Let X be a metric space, \mathcal{A} cover X containing \emptyset . Suppose for each $x \in X$ and $\delta > 0$, there exists $A \in \mathcal{A}$ such that $x \in A$ and $A \leq \delta$. Let $\mathcal{C} : \mathcal{A} \to [0, \infty]$ with $\mathcal{C}(\emptyset) = 0$. Set $\mathcal{A}_{\epsilon} = \{A \in \mathcal{A} : (A) \leq \epsilon\}$, and define μ_{ϵ}^* by extending $\mathcal{C}|_{\mathcal{A}_{\epsilon}}$. In particular, as ϵ decreases, μ_{ϵ}^* increases, and define

$$\mu^*(E) = \sup_{\epsilon} \mu_{\epsilon}^*(E) = \lim_{\epsilon \to 0} \mu_{\epsilon}^*(E)$$

1.2 Theorem. As defined above, μ^* is a metric outer measure.

Proof [TODO: prove this, homework]

Example. The Lebesgue measure arises this way; in fact, the μ_{ϵ}^* are all the same outer measure.

Definition. We say that a collection of subsets C is a **semi-algebra** if it contains \emptyset , is closed under finite intersections, and complements are finite disoint unions of sets in C. We then say that μ is a **measure on a semi-algebra** if $\mu: C \to [0, \infty]$ has

- (i) $\mu(\emptyset) = 0$
- (ii) If $E_1, ..., E_n \in \mathcal{C}$ are disjoint and $\bigcup_{i=1}^n E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n n\mu(E_i)$.
- (iii) If $\{E_i\}_{i=1}^{\infty} \in \mathcal{C}$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} E_i \in \mathcal{C}$, then $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$

An **algebra** is a semi-algebra which is closed under finite unions and complements. Then a **measure on an algebra** is a map μ satisfying the same above constraints.

1.3 Theorem. A measure μ on a semi-algebra \mathcal{C} has a unique extension to a measure on $\mathcal{A} = \langle \mathcal{C} \rangle$, the algebra generated by \mathcal{C} .

PROOF It is easy to verify that \mathcal{A} is the set of all finite unions of elements in \mathcal{C} . Thus we extend μ to \mathcal{A} where if $A = \bigcup_{i=1}^{n} C_i$, set $\mu(A) = \sum_{i=1}^{n} \mu(C_i)$.

Check: well-defined and a measure

We then appeal to Caratheodory extension theorem to get a measure μ (on a σ -algebra) that extends μ from A.

Let $\Sigma = \{1, ..., k\}$ be our alphabet and let Σ^* denote the set of all words on Σ . We then associate to Σ^* a heirarchy of subsets of \mathbb{R}^n where to each $\sigma \in \Sigma$, get some subset X_σ ; set $\mathcal{C} = \{X_\sigma : \sigma \in \Sigma^*\}$. We also assume that

$$X_{\sigma} \supseteq \bigcup_{i=1}^{k} X_{\sigma i}.$$

Suppose $\mu: \mathcal{C} \cup \{\emptyset\} \to [0, \infty]$ has $\mu(\emptyset) = 0$ and $\mu(X_{\sigma}) = \sum_{i=1}^k \mu(X_{\sigma i})$. We assume that for every infinite sequence (i_1, i_2, \ldots) , with $\sigma_j = (i_1, \ldots, i_j)$, $\lim_{j \to \infty} |X_{\sigma_j}| = 0$ and $\lim_{j \to \infty} \mu(X_{\sigma_j}) = 0$.

1.2 Hausdorff Measure and Dimension

For the remainder of this chapter, if X is a metric space and $U \subseteq X$, we denote |U| = (U). **Definition.** A δ -cover of a set $F \subseteq X$ is any countable collection $\{U_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} U_n \supseteq F$ and $|U_n| \le \delta$.

Let $A = \mathcal{P}(X)$, and $A_{\delta} = \{A \subseteq X : |A| \le \delta\}$. For $\delta \ge 0$, put $\mathcal{C}_s(A) = |A|^s$. Then for $s \ge 0$, $\delta > 0$, and $E \subseteq$, we define

$$H_{\delta}^{s}(E) = \inf \left\{ \sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta \text{-cover of } E \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} C_{s}(U_{n}) : \bigcup_{n=1}^{\infty} U_{n} \supseteq E, U_{n} \in \mathcal{A}_{\delta} \right\}$$

This is the outer measure as constructed in $\ref{eq:this}$ with covering family A_δ and function \mathcal{C}_s . In particular, as $\delta \to 0$, H^s_δ increases; in particular, by Theorem 1.2, $H^s(E) = \sup_\delta H^s_\delta(E)$ is a metric outer measure. Then apply Caratheodory ($\ref{eq:this}$) to get the s-dimensional Hausdorff measure, which is a complete Borel measure.

Example. (i) H^0 is the counting measure on any metric space.

(ii) Take $X = \mathbb{R}$ and s = 1. Then H^1 is the Lebesgue measure (on Borel sets). To see this, we have

$$\lambda(E) = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : \bigcup_{n=1}^{\infty} I_n \supseteq E, |I_n| \le \delta \right\}$$

$$\ge H_{\delta}^{1}(E)$$

for any $\delta > 0$; and conversely, take any δ -cover of E, say $\{U_n\}_{n=1}^{\infty}$ and set $I_n = \overline{\operatorname{conv} U_n}$ so $|I_n| = |U_n| \le \delta$. Thus $\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} |I_n| \ge \lambda(E)$ for any such cover, so $\lambda(E) = H_{\delta}^1(E)$ for any $\delta > 0$. Thus $\lambda(E) = H^1(E)$ for any Borel set E.

(iii) More generally, if $X = \mathbb{R}^n$ and s = n, then $\lambda = \pi_n \cdot H^n$ where π_n is the n-dimensional volume of the ball of diameter 1.

We will verify that $H^n \le m$ where m is n-dimensional Lebesgue measure on \mathbb{R}^n ; the general result is harder and left as an exercise. To see this, we have

$$m(E) = \inf \left\{ \sum_{i=1}^{\infty} (C_i) : C_i \text{ cube,} \bigcup_{i=1}^{\infty} C_i \supseteq E, \text{sides } \le \frac{1}{\sqrt{n}} \delta \right\}$$

$$= \inf \left\{ \sum_{i=1}^{\infty} \left(\frac{1}{\sqrt{n}} \right)^n |C_i|^n : \{C_i\} - \delta \text{-cover of cubes of } E \right\}$$

$$\geq c_n \inf \left\{ \sum_{i=1}^{\infty} |c_i|^n : \text{all } \delta \text{-covers of } E = c_n H_{\delta}^n(E) \right\}$$

where $c_n = (1/\sqrt{n})^n \le 1$.

(iv) If s < t, then $H^s(E) \ge H^t(E)$.

Suppose s < t. Clearly $H^s(E) \ge H^t(E)$, but we can in fact make stronger statements. Suppose we have some U_i where $|U_i| \le \delta$, and

$$\sum_{i=1}^{\infty} |U_i|^t = \sum_{i=1}^{\infty} |U_i|^s |U_i|^{t-s} \le \delta^{t-s} \sum_{i=1}^{\infty} |U_i|^s$$

so that

$$H^t_{\delta}(E) \le \delta^{t-s} \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\}_{i=1}^{\infty} \ \delta - \text{cover of } E \right\} = \delta^{t-s} H^s_{\delta}(E).$$

In particular, as $\delta \to 0$, $H^t_{\delta}(E) \to H^t(E)$ and $H^s_{\delta}(E) \to H^s(E)$ and $\delta^{t-s} \to 0$ since s < t. Thus if $H^s(E) \neq \infty$, then $H^t(E) = 0$ for all t > s. Similarly, if $H^t(E) > 0$, then $H^s(E) = \infty$ for all s < t. As a result, there exists some unique number $S_0 := \dim_H(E) \geq 0$ such that for all $s < S_0$, $H^s(E) = \infty$, and for all $t > S_0$, $H^t(E) = 0$. We call this value the **Hausdorff dimension** of E. Note that $H^{S_0}(E) \in [0,\infty]$ and all choices are possible.

Example. (i) Since $1 = m([0,1]) = H^1([0,1])$, $\dim_H[0,1] = 1$

- (ii) $\dim_H \mathbb{R} = 1$ but $m(\mathbb{R}) = H^1(\mathbb{R}) = \infty$.
- (iii) It is possible to have $S_0 = 1$ but m(E) = 0.
- (iv) There is a Cantor-like set with Hausdorff-dimension 0.
- (v) If *E* is countable and s > 0, $H^s_{\delta}(E) \le \sum_{x \in E} |\{x\}|^s = 0$. In particular, there exist compact countable sets, and in this case, $\dim_H C = 0$ while $H^0(C) = \infty$.

Here are some basic properties of Hausdorff dimension.

- **1.4 Proposition.** (Properties of Hausdorff Dimension) (i) If $A \subseteq B$, then $\dim_H A \le \dim_H B$.
 - (ii) If $F \subseteq \mathbb{R}^n$, then $\dim_H F \leq n$.
- (iii) If $U \subset \mathbb{R}^n$ is open, then $\dim_H U = n$.
- (iv) If $F = \bigcup_{i=1}^{\infty} F_i$, then $\dim_H(F) = \sup_{i \in \mathbb{N}} \dim_H F_i$.

PROOF (i) If $H^s(B) = 0$, then $H^s(A) = 0$ by monotonicity of measures so $\dim_H A \le \dim_H B$.

(ii) First consider the unit cube $I^n \subset \mathbb{R}^n$. Then

$$H^{s}_{\sqrt{n}\delta}(I^{n}) \le \left(\frac{2}{\delta}\right)^{n} (\sqrt{n}\delta)^{s} = 2^{n} \sqrt{n}^{n} \delta^{s-n}$$

so if s > n, then $\delta^{s-n} \to 0$ as $\delta \to 0$. Thus for all s > n, $H^s(I^n) = \lim_{\delta \to 0} H^s_{\sqrt{n}\delta}(I^n) = 0$ so that $\dim_H(I^n) \le n$. Moreover, \mathbb{R}^n is the countable union of unit cubes, so that $H^s(\mathbb{R}^n) = 0$ and $\dim_H(\mathbb{R}^n) \le n$. Then appeal to (i).

- (iii) Cubes have positive Hausdorff n-measure.
- (iv) If $s > \sup\{\dim_H F_i\}$, then $H^s(F_i) = 0$ for all i and by subadditivity $H^s(F) = 0$. Thus $s \ge \dim_H F$. By monotonicity, $\dim_H F \ge \dim_H F_i$ for all j.

Suppose $X = \mathbb{R}^n$, $E \subseteq \mathbb{R}^n$, $\lambda > 0$. Set $\lambda E = \{\lambda e : e \in E\}$: then $H^s(\lambda E) = \lambda^s H^s(E)$ since there is a bijection between δ -covers and $\lambda \delta$ -covers.

Definition. Let X, Y be metric spaces. A function $f: X \to Y$ is called **Lipschitz** if there exists C such that $d(f(x), f(y)) \le Cd(x, y)$.

Certainly if f is Lipschitz, then f is uniformly continuous. Functions $f : \mathbb{R} \to \mathbb{R}$ with bounded derivative are Lipschitz by the mean value theorem.

Definition. A function $f: X \to Y$ is **Hölder continuous** with exponent α if there exists c such that $d(f(x), f(y)) \le cd(x, y)^{\alpha}$.

Example. (i) If $\alpha = 1$, then f is Lipschitz, and if $\alpha = 0$, then f is bounded.

- (ii) If $f : \mathbb{R}^n \to \mathbb{R}^n$ and $\alpha > 0$, then f is constant (by considering derivatives). Thus the most interesting cases occur for $0 < \alpha \le 1$.
 - **1.5 Proposition.** If $f: X \to Y$ is Hölder continuous with exponent α . Then $H^{s/\alpha}(f(E)) \le cH^s(E)$ for some constant c.

PROOF If $\{U_i\}$ are a δ -cover of E, then $\{f(U_i)\}$ cover f(E). Then $f(U_i) = \sup\{d(f(x), f(y)): x, y \in U_i\} \le c \sup\{d(x, y)^\alpha : x, y \in U_i\} = C \cdot (U_i)^\alpha$. Thus if $\{U_i\}$ is a δ -cover of E, then $\{f(U_i)\}$ is a $\epsilon \delta^\alpha$ -cover of E. Passing through the definition, we get E.

We then have the easy corollaries

- **1.6** Corollary. $\dim_H f(X) \leq \frac{1}{\alpha} \dim_H X$.
- **1.7 Corollary.** If f is an isometry, then $H^s(f(X)) = H^s(X)$.
- **1.8 Corollary.** If $f: X \to Y$ are bi-Lipschitz, then $\dim_H X = \dim_H Y$.

Example. Let C denote the Cantor set. Let's show that $\frac{1}{2} \le H^s(C) \le 1$ for $s = \frac{\log 2}{\log 3}$. In particular, this implies that $\dim_H C = \frac{\log 2}{\log 3}$.

Let $\delta = 3^{-n}$ and cover C with a δ -covering with generation n Cantor intervals. Then $H^s_{\delta}(C) \leq \sum_{I \in C_m} |I|^s = 2^n 3^{-ns} = 1$ by choice of s. Thus $\lim_{\delta \to 0} H^s_{\delta}(C) = \lim_{n \to \infty} H^s_{3^{-n}}(C) \leq 1$.

For the lower bound, take any δ -cover $\{U_i\}$ of C. Without loss of generality, we may assume that the U_i are open intervals. Since C is compact, get some finite subcover U_1, \ldots, U_N . For each i, get $k_i \in \mathbb{N}$ so that $3^{-(k_i+1)} \le |U_i| < 3^{-k_i}$; set $k = \max\{k_1, \ldots, k_N\}$. Since

 U_i intersects at most 1 interval in C_{k_i} , U_i intersects at most 2^{k-k_i} intervals of C_k . Thus $2^k \le \sum_{i=1}^N 2^{k-k_i}$ where $2^{k-k_i} = 2^k 3^{-sk_i} = 2^k 3^{-s(k_i+1)} \le 2^k |U_i|^s 3^s$. Thus

$$2^{k} \le \sum_{i=1}^{N} 2^{k} |U_{i}|^{s} 3^{s}$$

so $\frac{1}{2} = 3^{-s} \le \sum_{i=1}^{N} |U_i|^s \le \sum_{i=1}^{\infty} |U_i|^s$ so $H_{\delta}^s(C) \ge \frac{1}{2}$ so $H^s(C) \ge \frac{1}{2}$.

1.9 Proposition. Let (X, d) be a metric space. If $\dim_H X < 1$, then X is totally disconnected.

PROOF Let $x \in X$ and define $f: X \to [0, \infty)$ by f(z) = d(z,x). Then f is Lipschitz with constant 1 so $\dim_H f(X) \le \dim_H X < 1$ so m(f(X)) = 0. Then if $y \ne x$, d(y,x) = f(y) > 0 while f(x) = 0. In particular, $(0, f(y)) \not\subset f(X)$ so there exists 0 < r < f(y) such that $r \not\in f(X)$. Then $U_1 = \{z \in X : f(z) < r\}$ and $U_2 = \{z \in X : f(z) > r\}$ are disconnecting sets for X separating x and y.

1.3 Box Dimensions

Definition. Let $E \subseteq \mathbb{R}^n$ be a bounded Borel set, and for each $\delta > 0$, let $N_{\delta}(E)$ be the least number of closed balls of diameter δ . We then define the **upper box dimension** of E

$$\overline{\dim}_B E = \limsup_{\delta \to 0} \frac{\log N_{\delta}(E)}{|\log \delta|}$$

and similarly $\underline{\dim}_B E$ (the **lower box dimension**) with a liminf in place of limsup. If $\underline{\dim}_B E = \overline{\dim}_B E$, then we define the **box dimension** to be this shared quantity.

If I is any interval, it is easy to see that $\dim_B I = 1$. Note that if $N_{\delta}(E) \sim \delta^{-s}$, then $\dim_B E = S$.

Example. Let's show that the box dimension of $C_{1/3}$ exists, and compute it. Given some $\delta > 0$, let n be so that $3^{-n} \le \delta < 3^{-(n-1)}$. Certainly we can cover $C_{1/3}$ by Cantor intervals of level n, so that $N_{\delta}(C_{1/3}) \le 2^n$. Moreover, the endpoints of Cantor inversals of level n-1 are distance at least $3^{-(n-1)} > \delta$ apart. Thus $N_{\delta}(C_{1/3})$ is at least the number of endpoints of level n-1, i.e. $N_{\delta}(C_{1/3}) \ge 2^n$. Thus $N_{\delta}(C_{1/3}) = 2^n$, so that

$$\frac{\log 2}{\log 3} = \frac{\log 2^n}{\log 3^n} \le \frac{\log N_{\delta}(C_{1/3})}{|\log \delta|} \le \frac{\log 2^n}{\log 3^{n-1}} = \frac{n}{n-1} \cdot \frac{\log 2}{\log 3}$$

and, as $\delta \to 0$, $n \to \infty$ so that the $C_{1/3} = \frac{\log 2}{\log 3}$.

More generally, using the same technique, we may compute $C_r = \frac{\log 2}{\log 1/r}$.

However, the box dimension has poor properties: for example, we may verify $\dim_B\{0,1,1/2,1/3,\ldots\} = \frac{1}{2}$. In particular, the box dimension does not have countable stability (the box dimension of any singleton is 0). But this is very concerning from a measure theoretic perspective, since this is a countable set with larger "dimension" than some uncountable sets (e.g. C_r for small r).

1.10 Theorem. The value of the various box dimensions are equal for all following definitions of $N_{\delta}(E)$:

- 1. least number of open balls of radius δ that cover E
- 2. least number of cubes of side length δ
- 3. the number of δ -mesh cubes that intersect $E: [m_1\delta, (m_1+1)\delta] \times \cdots \times [m_n\delta, (m_n+1)\delta]$ for $(m_1, \ldots, m_n) \in \mathbb{Z}^n$.
- 4. the largest number of disjoint closed balls of radius δ with centers in E.

Proof Throughout, from the logarithms in the definition, it suffices to bound $N_{\delta}^{(i)}(E)$ with respect to $N_{\delta}(E)$ up to some constant factor either with respect to δ or with respect to N_{δ} .

- 1. Exercise.
- 2. Exercise.
- 3. In general, the diameter of a δ -cube in \mathbb{R}^n is $\sqrt{n}\delta$. Let $N_\delta^{(3)}(E)$ denote the number of δ -mesh cubes intersecting E. Then the cubes which intersect E cover E and these have diameter $\sqrt{n}\delta$, so $N_{\sqrt{n}\delta}(E) \leq N_\delta^{(3)}(E)$. Conversely, any set with diameter at most δ is contained in at most $3^n \delta$ -mesh cubes. Thus $N_\delta^{(3)}(E) \leq 3^n N_\delta(E)$.
- 4. Let $N_{\delta}^{(4)}$ denote the largest number of disjoint balls of radius δ centred in E. Say $B_1, \ldots, B_{N_{\delta}^{(4)}(F)}$ are such balls. If $x \in F$, then $d(x, B_i) \le \delta$ for some i, else $B(x, \delta)$ would be disjoint from all B_i , contradicting maximality. Thus the balls $B_1^1, \ldots, B_{N_{\delta}^{(4)}(E)}^1$ cover

E and have diameter 4δ , so $N_{4\delta}(E) \leq N_{\delta}^{(4)}(E)$. Conversely, let $U_1, \ldots, U_{N_{\delta}(E)}$ be any collection of sets of diameter at most δ that cover E. Let B_1, \ldots, B_m be any disjoint balls with radius δ and centres $x_i \in E$. Since the U_j cover E, each $x_i \in U_{j(i)}$ for some j(i) so $U_{j(i)} \subseteq B_i$ and $U_{j(i)} \cap B_k = \emptyset$ for $k \neq i$. Thus $N_{\delta}(E) \geq N_{\delta}^{(4)}(E)$.

Note that, in the box dimension computation, it suffices to verify along a sequence of $(\delta_k)_{k=1}^{\infty} \to 0$ such that $\delta_{k+1} \ge c \cdot \delta_k$ for some c > 0 (i.e. not faster than exponentially).

1.11 Proposition. $\dim_H(E) \leq \underline{\dim}_R(E)$.

Proof Suppose we cover E by $N_{\delta}(E)$ sets of diameter at most δ . Then $\inf\{\sum |U_i|^s: \{U_i\}\delta$ -cover of $E\} \leq \delta^s N_{\delta}(E)$ so that $H^s_{\delta}(E) \leq \delta^s N_{\delta}(E)$. Suppose $s < \dim_H E$, so $H^s(E) > \lambda$ for some $\lambda > 0$. Then $\delta^s N_{\delta}(E) \geq \lambda$ so that $\frac{\log N_{\delta}(E)}{-\log \delta} \geq s + \frac{\log \lambda}{-\log \delta}$. Then as $\delta \to 0$, $\liminf \frac{\log N_{\delta}(E)}{-\log \delta} \geq s$. Thus $\dim_B E \geq \dim_H E$.

- 1.12 Proposition. (Properties of Box Dimension) (i) $\underline{\dim}_B E = \underline{\dim}_B \overline{E}$ and $\overline{\dim}_B E = \underline{\dim}_B \overline{E}$
 - (ii) $\dim_B E = n$ if E is dense in an open set in \mathbb{R}^n .
- (iii) $\overline{\dim}_B(E \cup F) = \max(\overline{\dim}_B E, \overline{\dim}_B F)$. However, $\underline{\dim}_B E \cup \underline{\dim}_B F \ge \max\{\underline{\dim}_B E, \underline{\dim}_B F\}$ and the inequality can hold strictly.
- (iv) Box dimension is Lipschitz invariant.
- **1.13 Theorem.** (Mass Distribution Principle) Let μ be a finite Borel measure on F with $\mu(F) > 0$. Suppose there exists c > 0 and $\delta_0 > 0$ such that whenever $|U| \le \delta_0$, $\mu(U) \le \frac{1}{2} U|^s$. Then $H^s(F) \ge \frac{\mu(F)}{c} > 0$.

PROOF Let $\{U_i\}$ be a δ -cover of F with $\delta \leq \delta_0$. Then $\mu(F) \leq \mu(\bigcup_{i=1}^{\infty} U_i) \leq \sum_{i=1}^{\infty} \mu(U_i) \leq c \sum_{i=1}^{\infty} |U_i|^s$. Thus $\inf\{\sum_{i=1}^{\infty} |U_i|^s : \{U_i\}\delta$ -cover of $F\} \geq \frac{\mu(F)}{c}$ and let $\delta \to 0$.