DL4J

skymind

DEEP LEARNING FOR ENTERPRISE

Deep Learning - why now?

Confluence of Algorithms Compute Data

Goals for today: Enable you

- The ten thousand foot view on "Why dl4j"
- Basics of the api: Some nuts and bolts

Skymind?

We are a distributed team living and working in every major time zone

WE BUILT DEEPLEARNING4J

WHY THE JVM?

"We are stuck with technology when what we really want is just stuff that works."

DOUGLAS ADAMS

Espresso

ENTERPRISE NEEDS

Data Gravity

- We need to process the data in workflows where the data lives If you move data you don't have big data
- Even if the data is not "big" we still want simpler workflows

Integration Issues

 Ingest, ETL, Vectorization, Modeling, Evaluation, and Deployment issues, security etc The JVM is great at network I/O and data access. Also great at streaming infrastructure. BUT...

When considering HPC on the JVM

Scientific computing & the JVM

- Vectorization
- Array indexing, 32 bit address space

FULLY native backend

https://github.com/deeplearning4j/libnd4j

JAVACPP OpenMP CUDA

JAVACPP

- Auto generate JNI bindings for C++ by parsing classes
- Allows for easy maintenance and deployment of C++ binaries in java
- Write efficient ETL pipelines for images via opency (javacy)
- 64 bit pointers (wasn't possible before)

ND4J

- Heterogenous codebase
- Supports cuda, x86 and Power
- Shared indexing logic for writing ndarray routines
- Memory management in java (even cuda memory!)

BOTTOMLINE:

When in production, what problems are you spending your time on? How do they align with your end goal?

Are you rearranging deck chairs on the titanic...

SCHEMATIC OVERVIEW

From the NeedForSpeed to Distributed Deep Learning

Switching to GPUs

```
<dependency>
<groupId>org.nd4j</groupId> <artifactId>nd4j-cuda-7.5</artifactId> <version>
${nd4j.version}</version>
</dependency>
```

Onto multi-GPUs

http://deeplearning4j.org/gpu

Deep Learning with Parameter Averaging

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

Onto Spark...

```
//Create the TrainingMaster instance
int examplesPerDataSetObject = 1;
TrainingMaster trainingMaster =
new ParameterAveragingTrainingMaster.
Builder(examplesPerDataSetObject).
(other configuration options ).build();
//Create the SparkDl4jMultiLayer instance
SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, net workConfig, trainingMaster);
//Fit the network using the training data:
sparkNetwork.fit(trainingData);
```

http://deeplearning4j.org/spark

Spark with a GPU cluster

Distributed GPUs With Spark...

http://deeplearning4j.org/spark-gpus

Tune appropriately and keep gpu memory into consideration

Double performance gains?

Huge gains on memory-intensive operations if you are willing to sacrifice some precision

```
DataTypeUtil.setDTypeForContext(DataBuffer.
Type.HALF);
```

DEEP LEARNING: A PRACTITIONER'S APPROACH

From the perspective of the practitioner Written by Skymind's Adam
Gibson and Josh Patterson.

Exercises

QUICK START

http://deeplearning4j.org/ quickstart

Get support on Gitter.

https://gitter.im/deeplearning4j/deeplearning4j

Example Repo

https://github.com/deeplearning4j/dl4jexamples

Inside the black box...

Use the UI

All this and more...

http://
deeplearning4j.org/
visualization

What happened here?

Here?

Scores vs. iteration

Here?

Here?

I don't understand why I get nans?!

The saga of the nans

 Not a saga - any numerical software/ scientific computing can/will run into this.
 Default data type is float, could change it to double.

 Most often - It's a tuning issue. If it's diverging just keep adjusting your parameters.

Nd4j exercises (take home)

Main gotcha - The idea of views.
 Reference here

Simple MLP example

- Example for reference <u>here</u>
- Build your own example fizz buzz.

CNN example

• Example for reference <u>here</u>, <u>LeNet</u>

RNN example

 Example for reference <u>here, UCI</u> <u>classification</u>

ADDITION as SeqToSeq

What is the random probability of getting an addition right?

Example <u>here</u>

BackUp

LET's TALK TUNING!

Learning Rate, updaters, batch size, loss functions,...

Normalize your data!

- continuous values
- discrete classes
- repeat the exact same method for training and test

Weight Initialization

- Xavier weight initialization
- RELU weight initialization

Learning Rate, Epochs, Iterations, Minibatch size

- A learning rate range typical range: 0.1 to 1e-6
- Multiple epochs and one iteration
- 16 to 128 minibatch, with a max 1k

Activation Functions, Loss Functions

- Regression/Classification: MSE
 (MAE,MAPE..)/ XENT (KLD..) + softmax
- relu, leakyrelu, identity, tanh, softsign

Remember overfitting and the bias/variance trade off?

Regularization

 I1, I2 regularization. Common values for I2 regularization are 1e-3 to 1e-6.

Dropout,

Dropconnect

Restrict network size

Early stopping

Updaters, Optimization Algorithms

- Updaters: momentum, RMSProp, adagrad etc
- Optimization Algorithms: SGD with line search, conjugate gradient and LBFGS optimization algorithms

Exploding and Vanishing...

Gradient Normalization

- gradientNormalization
- gradientNormalizationThreshold

All this and more...

http://deeplearning4j.org/ troubleshootingneuralnets

SKYMIND INTELLIGENCE LAYER (SKIL)

Reference Architecture

SKIL-DC/OS

SKIL/DL DOCKER DCOS + SPARK MESOS MULTI-GPUS

skymind

DEEP LEARNING FOR ENTERPRISE