MATH247: Honours Applied Linear Algebra

Matthew He

January 7, 2025

Abstract

1 Preliminaries

1.1 Fields

Definition 1 (Field). A (nonempty) set with two (inner) operations, addition and multiplication:

$$: K \times K \mapsto K, \cdot (x, y) = x \cdot y$$

$$+ : K \times K \mapsto K, +(x, y) = x + y$$

is called a field if the following axioms hold for all $x, y, z \in K$:

(F1)
$$x + (y + z) = (x + y) + z$$
, $x(yz) = (xy)z$, (Associativity)

(F2)
$$x + y = y + x$$
, $xy = yx$, (Commutativity)

(F3)
$$x + (y + z) = (x + y) + z$$
, $x(yz) = (xy)z$, (Distributivity)

(F4)
$$\exists o \in K \text{ such that } x + o = x, \exists e \in K \text{ such that } x \cdot e = x,$$
 (Neutral elements)

(F5a)
$$\exists a \in K \text{ such that } x + a = o,$$
 (Additive inverses)

(F5b)
$$\exists b \in K \text{ such that } x \cdot b = e$$
, (Multiplicative inverses)

Subfields Write $(K, +, \cdot)$ to point out notation for a field.

Example 1 (\mathbb{F}_2 - finite field)

Let $K = \{0,1\}$ be a set with $1 \neq 0$, and define the operations +, · as follows:

$$0+x=x+0$$
, $0+1=1$, $1+0=1$, $1+1=0$
 $0\cdot 0=0$, $0\cdot 1=0$, $1\cdot 0=0$, $1\cdot 1=1$

Theorem 1. Let $(K, +, \cdot)$ be a field. Then for all x, y, z:

(a)
$$x + y = x + z \Rightarrow y = z$$
 (Cancellation)

(b)
$$xy = xz \Rightarrow y = z, \forall x \in K \setminus \{0\}$$

(c) $x \cdot o = o$

(d)
$$x \cdot y = o \Rightarrow x = o \lor y = o$$
 (Free of zero divisors)

Proof. (a) Let a be the odd

The field of complex number

Complex numbers C is born out of necessity to solve equations like

$$x^2 + t = 0.$$

Definition 2 (Complex number). We set

$$\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}\$$

where "i" is the imaginary unit

$$i^2 = -1 \quad (\star).$$

Using ordinary unit for addition and multiplication in $\mathbb R$ and (\star) , $(\mathbb{C}, +, \cdot)$ becomes a field containing \mathbb{R} as a subfield.

Given $z = a + bi \in \mathbb{C}$ we define:

$$= a - bi$$
 conjugate

$$R(z) = a$$

$$Jm() = b$$

Theorem 2. Let $u, v \in \mathbb{C}$

References