Analytic Singular Perturbations of Elliptic Systems

JOSEPH FRÉDÉRIC BONNANS

INRIA (Institut National de Recherche en Informatique et en Automatique), Domaine de Voluceau, BP 105, Rocquencourt, 78153 Le Chesnay Cédex, France

AND

EDUARDO CASAS AND MIGUEL LORO

Departamento de Ecuaciones Funcionales, Facultad de Ciencias, Universidad de Santander, 39005 Santander, Spain

Submitted by C. L. Dolph

Received May 17, 1985

We study a singular perturbation problem for a system defined under a variational form. We show the analytic dependence of the solution of the equation with respect to a small, nonnull parameter ε , and make explicit the terms of the power series. This result improves a theorem of Chap. I of J. L. Lions ("Perturbations singulières dans les problèmes aux limites et en contrôle optimal," Springer-Verlag, Berlin 1973) in which the variational forms are supposed to be symmetric and no analycity result is given. We give an application to the study of a stationary thermical system with a small convection coefficient.

I. SETTING OF THE PROBLEM

Let V be a complex Hilbert space and V_1 , V_2 two closed subspaces of V such that $V = V_1 \oplus V_2$. Let us denote by $\|\cdot\|$ the norm of V. Let $a_i(\cdot,\cdot)$, i = 1, 2, be two sesquilinear continuous forms on V such that, for two numbers $\gamma_1 > 0$, $\gamma_2 > 0$,

$$\forall v \in V, \quad v = v_1 + v_2, \quad v_i \in V_i, \quad i = 1, 2, \quad \text{we have}$$

$$\text{Re } a_i(v, v) \geqslant \gamma_i ||v_i||^2, \quad i = 1, 2.$$

$$a_1(u, v_2) = a_1(v_2, u) = 0, \quad \forall u \in V, \ V_2 \in V_2.$$
 (2)

Let L be an antilinear continuous form on V. The state equation is

find
$$u \in V$$
 such that $a_1(u, v) + \varepsilon a_2(u, v) = L(v), \forall v \in V$. (3)

The problem is to analyse the behaviour of the solution of system (3) when $\varepsilon \to 0$. We notice that, in general, the system has no solution if $\varepsilon = 0$.

II. Existence and Unicity of the Solution for a Small, Nonnull ϵ

For any $\alpha > 0$, we put

$$D_{\alpha} = \{ \varepsilon \in \mathbb{C}, \, \varepsilon \neq 0, \, |\varepsilon| < \alpha \}.$$

We show that system (3) has a unique solution if ε is in some D_{α} :

THEOREM 1. Under hypotheses (1) and (2) there exists $\alpha_0 > 0$ such that (3) has a unique solution for any ε in D_{α_0} .

Proof. Let us write any v of V as $v_1 + v_2$, with $v_i \in V_i$, i = 1, 2. Using (2), we see that (3) is equivalent to:

(i)
$$u_{\varepsilon} = u_1 + u_2$$
; $u_i \in V_i$, $i = 1, 2,$

(ii)
$$a_1(u_1, v_1) + \varepsilon a_2(u_1 + u_2, v_1) = L(v_1), \forall v_1 \in V_1,$$
 (4)

(iii)
$$\varepsilon a_2(u_1 + u_2, v_2) = L(v_2), \forall v_2 \in V_2.$$

Let us write (4)(iii), for $\varepsilon \neq 0$, under the form

$$a_2(u_2, v_2) = \frac{1}{\varepsilon} L(v_2) - a_2(u_1, v_2), \forall v_2 \in V_2.$$

Hypothesis (1) and Lax-Milgram's lemma allow to write u_2 as

$$u_2 = \frac{1}{\varepsilon} v_0 + T u_1, \tag{5}$$

where $v_0 \in V_2$ and $T \in \mathcal{L}(V)$ do not depend on ε . From (5) and (4)(ii) it follows that u_1 is a solution to

$$a_1(u_1, v_1) + \varepsilon a_2(u_1 + Tu_1, v_1) = L(v_1) - a_2(v_0, v_1), \forall v_1 \in V_1.$$
 (6)

Thanks to (1), Lax-Milgram's lemma can be used if $|\varepsilon|$ is small. This implies the existence and unicity of the solution of (6), from which the theorem follows.

III. Expansion of u_{ε} in Laurent Series

We establish the analycity of the mapping $\varepsilon \to u_{\varepsilon}$, for ε in D_{x_0} , and caracterize the terms of the Laurent series.

Theorem 2. For $\alpha_0 > 0$ small enough, the mapping $\varepsilon \to u_\varepsilon$ is analytical from D_{α_0} into V. The point $\varepsilon = 0$ is at most a simple pole of u_ε , i.e.,

$$u_{\varepsilon} = \sum_{k=-1}^{\infty} \varepsilon^{k} u^{k}, \tag{7}$$

and $\{u^k\}_{k=-1}^{\infty}$ is the solution of

$$u^{-1} \in V_2,$$

 $a_2(u^{-1}, v_2) = L(v_2), \quad \forall v_2 \in V_2;$
(8)

$$a_1(u^0, v) + a_2(u^{-1}, v) = L(v), \qquad \forall v \in V,$$

$$a_2(u^0, v_2) = 0, \qquad \forall v_2 \in V_2;$$
(9)

$$a_1(u^k, v) + a_2(u^{k-1}, v) = 0,$$
 $\forall v \in V,$
 $a_2(u^k, v_2) = 0,$ $\forall v_2 \in V_2; k = 1 \text{ to } \infty.$ (10)

Proof. Let us define the operators A_i in $\mathcal{L}(V, V')$, i = 1, 2, V' being the antidual of V, by

$$\langle A_i u, v \rangle = a_i(u, v), \quad \forall u, v \in V, i = 1, 2.$$

Let α_0 be such that Theorem 1 holds and let ε belongs to D_{α_0} . Put $T = A_1 + \varepsilon A_2$. Theorem 1 implies that T is an isomorphism between V and V'. For any $\varepsilon' \neq \varepsilon$ in D_{α_0} , we have

$$u_{\varepsilon'} - u_{\varepsilon} = [(I + (\varepsilon' - \varepsilon) T^{-1} A_2)^{-1} - I] T^{-1} L$$

and, with the resolvant identity

$$u_{\varepsilon'} - u_{\varepsilon} = -(\varepsilon' - \varepsilon)[I + (\varepsilon' - \varepsilon)T^{-1}A_2]^{-1}T^{-1}A_2T^{-1}L,$$

hence,

$$\frac{du_{\varepsilon}}{d\varepsilon} = -T^{-1}A_2T^{-1}L,$$

which implies the analyticity of u_{ε} in D_{α_0} (see [2]). Consequently there exists a unique expansion in Laurent series of u_{ε} around 0. Let us prove that $\varepsilon = 0$ is at most a simple pole of u_{ε} . System (8) has a unique solution u^{-1} ; put $v^{\varepsilon} = u_{\varepsilon} - (1/\varepsilon) u^{-1}$. Then, using (3), (8), we get

$$a_1(v^{\varepsilon}, v) + \varepsilon a_2(v^{\varepsilon}, v) = L(v) - a_2(u^{-1}, v), \quad \forall v \in V.$$
 (11)

Put $v^{\varepsilon} = v_1^{\varepsilon} + v_2^{\varepsilon}$, $v_i^{\varepsilon} \in V_i$, i = 1, 2. Take $v = v_2^{\varepsilon}$ in (11). From (8) we deduce

that $a_2(v^e, v_2^e) = 0$, which implies with (1), the existence of $C_1 > 0$ such that $||v_2^e|| \le C_1 ||v_1^e||$. Then, taking $v = v_1^e$ in (11), we deduce from (1) the existence of C_2 , $C_3 > 0$ such that

$$\gamma_1 \|v_1^{\varepsilon}\|^2 \le |\varepsilon| C_2 (1 + C_1) \|v_1^{\varepsilon}\|^2 + C_3 \|v_1^{\varepsilon}\|.$$

This proves that v^{ε} is bounded uniformly near zero. Hence $\varepsilon = 0$ is at most a simple pole of u_{ε} (see [1, 2]). This proves (7), (8). Replacing u_{ε} by its expansion in (3) we deduce (9), (10).

Remark. The sequence $\{u^k\}$ can be computed in a recurrent way from (8), (9), (10).

IV. AN APPLICATION

The functional spaces considered here are complex. Let Ω be an open bounded subset of \mathbb{R}^n , with smooth boundary Γ . Consider the system

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) = f \quad \text{in} \quad \Omega,$$

$$\varepsilon u + \partial_{n_{A}} u = g \quad \text{on} \quad \Gamma,$$
(12)

where a_{ij} , i, j = 1 to n, are in $C(\bar{\Omega})$, ∂_{n_4} being defined by

$$\partial_{n_A} u = \sum_{i,j=1}^n a_{ij} \frac{\partial u}{\partial x_i} n_j,$$

and f, g being given in $L^2(\Omega) \times L^2(\Gamma)$. The variational formulation corresponding to (12) is

$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial \bar{v}}{\partial x_{j}} + \varepsilon \int_{\Gamma} u\bar{v} = \int_{\Omega} f\bar{v} + \int_{\Gamma} g\bar{v}; \quad \forall v \in H^{1}(\Omega).$$

Under the hypothesis of the existence of some $\beta > 0$ such that

$$\operatorname{Re}\left(\sum_{i,j=1}^{n} a_{ij}(x) \zeta_{i} \overline{\zeta_{j}}\right) \geqslant \beta \sum_{i=1}^{n} |\zeta_{j}|^{2}, \quad \forall x \in \Omega, \, \forall \zeta \in \mathbb{C}^{n},$$

we can apply the general result with $V = H^1(\Omega)$ and

$$V_1 = \left\{ u \in H^1(\Omega); \int_{\Gamma} u = 0 \right\}; \ V_2 \equiv \mathbb{C},$$

and

$$a_1(u, v) = \sum_{i,j=1}^n \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \bar{v}}{\partial x_j} dx; a_2(u, v) = \int_{\Gamma} u\bar{v} d\gamma,$$

$$L(v) = \int_{\Omega} f\bar{v} dx + \int_{\Gamma} g\bar{v} d\gamma.$$

If $\varepsilon \neq 0$ is small enough, (12) has a unique solution u satisfying (7), with

$$u^{-1} = \frac{1}{m(\Gamma)} \left[\int_{\Omega} f \, dx + \int_{\Gamma} g \, d\gamma \right].$$

Then u^0 is the solution of

$$-\sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u^0}{\partial x_i} \right) = f \quad \text{in} \quad \Omega,$$

$$\frac{\partial u^0}{\partial n} = -u^{-1} \quad \text{on} \quad \Gamma; \quad \int_{\Gamma} u^0 = 0.$$

Finally the equation of u^k , $k \ge 1$, is

$$-\sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u^k}{\partial x_i} \right) = 0 \quad \text{in} \quad \Omega,$$

$$\frac{\partial u^k}{\partial n} = -u^{k-1} \quad \text{on} \quad \Gamma; \quad \int_{\Gamma} u^k = 0.$$

REFERENCES

- H. Cartan, "Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes," Herman, Paris, 1961.
- 2. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators," Part I, Wiley, New York, 1958.
- 3. T. Kato, "Perturbation Theory for Linear Operators," Springer, Berlin, 1976.
- J. L. LIONS, "Perturbations singulières dans les problèmes aux limites et en contrôle optimal," Springer, Berlin, 1973.
- M. LOBO HIDALGO AND E. SANCHEZ-PALENCIA, Perturbation of spectral properties for a class of stiff problems, in "4éme Colloque Int. sur les Meth. de Calcul Scient. et Technique," Versailles, 1979.