Total No. of	Questions	:	3]
--------------	-----------	---	----

P-1297

[Total No. of Pages: 4

[6055]-204

S.Y. B.Sc. (Computer Science) MATHEMATICS

MTC - 242 : Operations Research

(2019 Pattern) (Semester - IV) (Paper - II) (24222)

Time: 2 Hours] [Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Non-programmable scientific calculator is allowed.

Q1) Attempt any Five of the following:

 $[2 \times 5 = 10]$

a) Draw a feasible region for the following constraints.

$$3x + y \le 6$$

$$x + 2y = 4$$

- b) Give any two fields where operations research is used.
- c) Define degeneracy in transportation problem.
- d) Solve the following assignment problem for minimization.

	A	В	C
1	12	10	8
2	8	9	11
3	14	11	12

e) Obtain Initial Basic Feasible Solution of the transportation problem by using least cost entry method.

	$\mathbf{D}_{_{1}}$	D_2	D_3	Supply
O_1	7	3	12	20
O_2	5	6	10	14
Demand	10	11	13	-

P.T.O.

f) Write dual of the following linear programming problem

$$Minimize Z = 3x_1 + 25x_2$$

Subject to

$$2x_1 + 4x_2 \ge 40$$

$$3x_1 + 2x_2 \ge 50$$

$$x_1, x_2 \ge 0$$

g) Write standard form of the following linear programming problem

Minimize
$$Z = 4x_1 + 3x_2$$

Subject to

$$2x_1 + x_2 \ge 10$$

$$-3x_1 + 2x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Q2) Attempt any Three of the following:

 $[3 \times 5 = 15]$

a) Solve the following assignment problem.

	I	II	III	IV	V
A	10	5	13	15	16
В	3	9	18	13	6
C	10	7	2	2	2
D	7	11	9	7	12
Е	7	9	10	4	12

b) Solve the linear programming problem by graphical method.

Minimize
$$Z = 5x + 2y$$

Subject to

$$10x + 2y \ge 20$$

$$5x + 5y \ge 30$$

$$x, y \ge 0$$

c) Solve the following linear programming problem by Big-M method.

Max
$$Z = 2x_1 + x_2$$

Subject to

$$2x_1 - x_2 \le 1$$

$$x_1 - x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

d) Obtain an Initial Basic Feasible solution to the following transportation problem by North-West corner method.

	$\mathbf{W}_{_1}$	$\mathbf{W}_{_2}$	\mathbf{W}_3	$\mathbf{W}_{_{4}}$	Capacity
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
Requiremen	t 5	8	7	14	34

e) Find an Initial Basic Feasible to the following Transportation Problem Using Vogel's Approximation method.

	D_1	D_2	D_3	D_4	Supply
P_{1}	2	3	11	7	6
P_2	1	0	6	1	1
P_3	5	8	15	9	10
Demand	7	5	3	2	17

Q3) Attempt any One of the following:

$$[1 \times 10 = 10]$$

a) Obtain initial basic feasible solution of the following transportation problem using modified Distribution method.

	$D_{_1}$	$\mathrm{D_2}$	D_3	D_4	
$\mathbf{W}_{_{1}}$	35)6	35) 1	9	3	70
\mathbf{W}_{2}	5 11	5	50) 2	8	55
\mathbf{W}_{3}	45) 10	12	4	45)7	90
	85	35	50	45	215

b) i) Solve the following linear programming problem by simplex method

$$\mathbf{Max} \qquad \mathbf{Z} = 7x_1 + 5x_2$$

Subject to

$$x_1 + 2x_2 \le 6$$

$$4x_1 + 3x_2 \le 12$$

$$x_1, x_2 \ge 0$$

ii) Solve the following assignment problem.

Machines

A В \mathbf{C} D \mathbf{J}_{1} 5 5 2 Jobs \boldsymbol{J}_2 7 4 2 3 9 \mathbf{J}_3 3 5 7 2 $\mathbf{J}_{_{4}}$ 6 7

$$\nabla \nabla \nabla \nabla$$