MAT-0001 Brukerkurs i matematikk

Prosjekt 2

Amund H. Strøm, Morten Jansen, og Henrik Haatuft Oktober 24.2021

OPPGAVE 4 a)

Målepunkt: A B C

OPPGAVE 4 b) og c)

OPPGAVE 4 b) og c)

Grafen ser slik ut, der x-aksen er høyden på hullene i melkekartongen, og y-aksen er distansen strålen. Den grønne grafen (h) tilsvarer resultatet til forsøket vårt. Den blå grafen (d) er gitt i oppgave 4 d). Punktene A, B, og C er målepunktene. Linjene H, H2, og H0 er de forskjellige høydene til væsken i kartongen, målt fra bakkenivå. H tilsvarer full kartong, H2 tilsvarer halvfull, og H0 er bakkenivå.

Ut i fra vår modell så går vannstrålen lengst horisontalt når høyden til væsken er 6,8 cm av max høyde 20 cm. Dette gir distanse på strålen lik 10 cm.

Modell oppgitt i oppgaven c) h = 0, h = H/2 og h = H:

Modellen vår avviker fra denne modellen. Modellen som er oppgitt har toppunkt når kartongen er halvfull, men i vårt tilfelle når kartongen er fylt 6,8 cm av 20 cm over bakkenivå, altså før den er halvfull.

OPPGAVE 4D)

Det er et ganske stort avvik fra det vi fant ut av i praksis. Etter våre beregninger er den maksimale distansen på strålen 10 cm, når høyden på hullet er 6,8 cm.

OPPGAVE 5 a)

$$\begin{array}{c} \left(6, |\cdot|0^{5} + \frac{5}{(3,8 \cdot 10^{-5})^{2}}\right) \cdot \left(3,8 \cdot 10^{-3} - 4,424 \cdot 10^{-5}\right) \\ \\ \left(\frac{61}{10} \cdot 10^{5} + \frac{2677 \cdot 10^{-1}}{3.8^{2} \cdot (10^{-3})^{2}}\right) \cdot \left(\frac{19}{5} \cdot \frac{1}{10^{5}} - \frac{553}{125} \cdot 10^{5}\right) \\ \\ \left(6|\cdot|0^{4} + \frac{2677 \cdot 10^{-1}}{500} \cdot 10^{-1}\right) \cdot \left(\frac{19}{5 \cdot 10^{5}} - \frac{553}{125 \cdot 10^{5}}\right) \\ \\ \left(6|\cdot|0^{4} + \frac{2677 \cdot 10^{-1}}{500}\right) \cdot \left(\frac{475 \cdot 10^{2} - 553}{125 \cdot 10^{5}}\right) \\ \\ \left(6|\cdot|0^{4} + \frac{2677 \cdot 10^{4}}{500}\right) \cdot \left(\frac{475 \cdot 100 - 553}{125 \cdot 10^{5}}\right) \\ \\ \left(6|\cdot|0^{4} + \frac{2677 \cdot 10^{4}}{722}\right) \cdot \left(\frac{46947}{125 \cdot 10^{5}}\right) \\ \\ \left(\frac{46719 \cdot 10^{4}}{722}\right) \cdot \left(\frac{46947}{125 \cdot 10^{5}}\right) \\ \\ \left(\frac{46719 \cdot 10^{4}}{722}\right) \cdot \left(\frac{46947}{125 \cdot 10^{5}}\right) \\ \\ \left(\frac{46947}{722}\right) \cdot \left(\frac{46947}{125 \cdot 10^{5}}\right) \\ \\ \\ \left(\frac{46947}{722}\right) \cdot \left(\frac{46947}{125 \cdot 10^{5}}\right) \\ \\ \end{array}$$

OPPGAVE 5 b)

5b) a=5,354.101 Pam6/mol2 b=4,424.105 m3/mol
a = 0,5354 Pa m6/mol ² 1 Pa m6/mol ² = 1 j·m/mol ² = 10 L'bar/mol a = 0,5354·10 L'bar/mol ²
a = 5,354 L ² bar/mol ² => Nitro clioxide
$b = 0,000044124 \text{ m}^3/\text{mol}$ $1 \text{ m}^3 = 1000 \text{ L}$ $b = 0,00004424 \cdot 10^3 \text{ L/mol}$
b = 0,04424 L/mal => Nites dioxide
Mitro clioxide es stattet det er snach om

OPPGAVE 5 c)

OPPGAVE 5 d)

OPPGAVE 5 e i)

5160 Celsius = 5433.15 Kelvin

Vi ser i punktet A, at x-verdien (altså V_m) må være $0.07408~\text{m}^3/\text{mol}$

OPPGAVE 5 e ii)

4	Α	В	С	D	E	F	G	н	1	J	K	L	М	N
1 a		0,5354		V0	1		V1	0,67532709		V2	0,45910028		V3	0,3152918
2 b		0,00004424												
3 p		610000		f(V0)	0,925905475		f(V1)	0,274202331		f(V2)	0,08114906		f(V3)	0,02397735
4 R		8,314		f'(V0)	2,851810073		f'(V1)	1,268123648		f'(V2)	0,56428564		f'(V3)	0,25150428
5 <i>T</i>		5433,15		h(V0)	0,67532709		h(V1)	0,45910028		h(V2)	0,3152918		h(V3)	0,21995605
6														
7														
8				V4	0,219956049		V5	0,157253333		V6	0,1168369		V7	0,09215086
9														
10				f(V4)	0,007057028		f(V5)	0,002056518		f(V6)	0,00058356		f(V7)	0,0001534
11				f'(V4)	0,112547404		f'(V5)	0,050883212		f'(V6)	0,02363931		f'(V7)	0,01182031
12				h(V4)	0,157253333		h(V5)	0,116836897		h(V6)	0,09215086		h(V7)	0,07917287
13														
14														
15				V8	0,079172875		V9	0,074663358		V10	0,07409243			
16														
17				f(V8)	3,18968E-05		f(V9)	3,23163E-06		f(V10)	4,8673E-08			
18				f'(V8)	0,007073218		f'(V9)	0,005660306		f'(V10)	0,00549013			
19				h(V8)	0,074663358		h(V9)	0,07409243		h(V10)	0,07408356			
20														

OPPGAVE 5 e iii)

 $0.07408 = 7.408 \cdot 10^{-2}$ Det er naturlig å bruke 4 gjeldene siffer siden resten av oppgaven har brukt 4 gjeldende siffer.

Kilder:

https://en.wikipedia.org/wiki/Van_der_Waals_constants_(data_page) publisert av Wikipedia, sist endret 27.02.2021, lest 05.10.2021.