Systemy cyfrowe i komputerowe Dokumentacja projektu "exe_unit_w1"

Karol Ambroziński Nr. albumu: 318488

Spis treści

1	Wejścia, wyjścia, parametry i zakresy ich wartości	2
	1.1 Parametry	2
	1.2 Wejścia	2
	1.3 Wyjścia	2
2	Realizowane funkcje i ich argumenty	2
	2.1 Podmoduł <i>mod</i> 1:	2
	2.2 Podmoduł <i>mod2</i> :	3
	2.3 Podmoduł <i>mod3</i> :	3
	2.4 Podmoduł <i>mod4</i> :	3
3	Schemat blokowy struktury jednostki	4
4	Sygnały zaimplementowanych flag i ich wartości	4
5	Przykład użycia modułu	5
6	Lista plików	5
7	Raport z syntezy logicznej	6

1 Wejścia, wyjścia, parametry i zakresy ich wartości

1.1 Parametry

- m określa wielkość w bitach główne wejścia danych i wyjść,
- n określa ilość operacji.

1.2 Wejścia

- i_oper n-bitowe wejście określające wykonywaną operację,
- i_argA m-bitowe wejście,
- i_argB m-bitowe wejście,
- i_clk 1 bitowe wejście zegarowe,
- i_rsn 1 bitowe wejście resetu synchronicznego.

1.3 Wyjścia

- o_status m-bitowe wyjście,
- o_result 4 bitowe wyjście.

2 Realizowane funkcje i ich argumenty

Układ realizuje 4 operacje (4 podmoduły):

2.1 Podmoduł mod1:

Odejmowanie argumentów (A - B); jeśli operacja nie może zostać wykonana, jednostka zgłasza błąd, a wyjście jest niezdefiniowane. Kod modułu **i_oper**: 00.

Wejścia

- i argA m-bitowe wejście,
- i_argB m-bitowe wejście,

Wyjścia

- o_result m-bitowe wyjście,
- o_status 4 bitowe wyjście.

2.2 Podmoduł mod2:

Porównanie argumentów (A < B); jeśli warunek jest spełniony to wynikiem jest liczba 1, w przeciwnym wypadku wynikiem jest 0. Kod modułu *i_oper*: 01.

Wejścia

- i_argA m-bitowe wejście,
- i_argB m-bitowe wejście,

Wyjścia

- o_result m-bitowe wyjście,
- o status 4 bitowe wyjście.

2.3 Podmoduł *mod3*:

Ustawienie bitu w argumencie A na wartość 0; numer bitu jest określony w argumencie B; zgłoszenie błędu jeśli wartość B jest ujemna lub przekrasza liczbę bitów argumentu A. Kod modułu *i_oper*: 10.

Wejścia

- i_argA m-bitowe wejście,
- i_argB m-bitowe wejście,

Wyjścia

- o_result m-bitowe wyjście,
- o_status 4 bitowe wyjście.

2.4 Podmoduł *mod4*:

Konwersja argumentu A z kodu ZNAK-MODUŁ na U2; jeśli konwersja nie może zostać wykonana - zgłaszany jest błąd a wynik jest nieokreślony. Kod modułu *i_oper*: 11.

Wejścia

• i argA - m-bitowe wejście,

Wyjścia

- o_result m-bitowe wyjście,
- o_status 4 bitowe wyjście.

3 Schemat blokowy struktury jednostki

Ilustracja nr. 1: Schemat blokowy exe_unit_w1

4 Sygnały zaimplementowanych flag i ich wartości

Zaimplementowane flagi o_status:

- ERROR operacja nie została wykonana o_status = 0b0001,
- NEG wynik jest liczbą ujemną; o_status = 0b0010,
- EVEN w wyniku jest parzysta liczba jedynek; o_status = 0b0100,
- **ONES** wszystkie bity o_result ustawione; **o_status** = 0b1000.

Jeśli wynik jest nieokreslony (flaga **ERROR**) to pozostałe bity nie są ustawiane; warunki pozostałych flag nie są sprawdzane.

5 Przykład użycia modułu

Na ilustracji nr. 2 przedstawiono wykonanie dwóch operacji: odejmowanie liczb A i B oraz zmianę bitu w argumencie A oznaczonego indeksem B (moduły: *mod1* i *mod3*). Przy pierwszej operacji na początku wynik jest niezdefiniowany i flaga błędu ustawiona na 1; przepełnienie wartości. W kolejnej operacji w argumencie B został zmieniony na indeksie B: B równe jest 3, więc bit nr. 3 (liczony od zera) w A został zmieniony na 0. Przy operacji ustawiania bitu poprzez B widać ustawienie flagi 0b0100 która oznacza że wynik posiada parzystą liczbę jedynek (co też jest widoczne na wyjściu result).

Ilustracja nr. 2: Widok wykonania testbenchu RTL i oryginalnych plikow w GTKWave

6 Lista plików

- exe_unit_w1.sv plik zawierający główny moduł,
- otherModules.sv plik zawierający wszystkie podmoduły głównego modułu (mod1, mod2, mod3 i mod4),
- exe_unit_w1_rtl.sv plik główny modułu po syntezie,
- synth.log plik raportu Yosysa po syntezie.

7 Raport z syntezy logicznej

Podmoduł mod1		
Number of wires:	88	
Number of wire bits:	115	
Number of public wires:	12	
Number of public wire bits:	39	
Number of memories:	0	
Number of memory bits:	0	
Number of processes:	0	
Number of cells:	84	
\$_AND_	33	
\$_NOT_	16	
\$_OR_	24	
\$_XOR_	11	
Estimated number of transistors:	506	

Podmoduł mod2		
Number of wires:	50	
Number of wire bits:	105	
Number of public wires:	11	
Number of public wire bits:	66	
Number of memories:	0	
Number of memory bits:	0	
Number of processes:	0	
Number of cells:	41	
\$_AND_	14	
\$_NOT_	9	
\$_OR_	15	
\$_XOR_	3	
Estimated number of transistors:	228	

Podmoduł mod3		
Number of wires:	30	
Number of wire bits:	79	
Number of public wires:	8	
Number of public wire bits:	57	
Number of memories:	0	
Number of memory bits:	0	
Number of processes:	0	
Number of cells:	30	
\$_AND_	13	
\$_NOT_	7	
\$_OR_	7	
\$_XOR_	3	
Estimated number of transistors:	170	

Podmoduł mod4		
Number of wires:	17	
Number of wire bits:	32	
Number of public wires:	6	
Number of public wire bits:	21	
Number of memories:	0	
Number of memory bits:	0	
Number of processes:	0	
Number of cells:	16	
\$_AND_	7	
\$_NOT_	4	
\$_OR_	4	
\$_XOR_	1	
Estimated number of transistors:	86	

Moduł główny: exe_unit_w	1
Number of wires:	256
Number of wire bits:	445
Number of public wires:	54
Number of public wire bits:	243
Number of memories:	0
Number of memory bits:	0
Number of processes:	0
Number of cells:	241
\$_AND_	103
\$_NOT_	38
\$_OR_	74
\$_SDFF_PNO_	8
\$_XOR_	18
Estimated number of transistors:	1354+