

김도연, 김혜원, 장서연, 정세은

CONTENTS

01대회소개 02전처리

03모델링 04결론

집케어추천일고리즘 경진대회

잡케어 추천 알고리즘 경진대회

- 목적: 잡케어 서비스에 적용 가능한 추천 알고리즘 개발.
- 성능 지표: F1 score

$$\begin{array}{lll} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \end{array}$$

- 리더보드
 - a. 평가 산식: F1-score
- precision(정밀도): 모델이 True라고 분류한 것 중에서 실제 True인 것의 비율
- recall(재현율): 실제 True인 것 중에서 모델이 True라고 예측한 것의 비율
- F1: precision과 recall의 조화평균
- => F1 값은 0 ~ 1사이이며, 클 수록 예측 성능이 좋음을 의미.

잡케어 추천 알고리즘 경진대회

● 변수 설명

id: 회원의 아이디	person_prefer_c : 회원 선호 속성 C	contents_attribute_i : 컨텐츠 속성 I	contents_attribute_e : 컨텐츠 속성 E
d_l_match_yn : 속성 D 대분류 매칭 여부	person_prefer_d_1 : 회원 선호 속성 D 1번	contents_attribute_a : 컨텐츠 속성 A	contents_attribute_h : 컨텐츠 속성 H
d_m_match_yn: 속성 D 세분류 매칭 여부	person_prefer_d_2 : 회원 선호 속성 D 2번	contents_attribute_j_1 : 컨텐츠 속성 J 하위 속성 1	person_rn : 사용자번호
d_s_match_yn: 속성 D 코드 매칭 여부	person_prefer_d_3 : 회원 선호 속성 D 3번	contents_attribute_j : 컨텐츠 속성 J	contents_rn : 컨텐츠번호
h_l_match_yn : 속성 H 대분류 매칭 여부	person_prefer_e : 회원 선호 속성 E	contents_attribute_c : 컨텐츠 속성 C	contents_open_dt : 컨텐츠 열람 일시
h_m_match_yn : 속성 H 중분류 매칭 여부	person_prefer_f : 회원 선호 속성 F	contents_attribute_k : 컨텐츠 속성 K	target : 컨텐츠 사용 여부 (라벨)
h_s_match_yn : 속성 H 코드 매칭 여부	person_prefer_g : 회원 선호 속성 G	contents_attribute_l : 컨텐츠 속성 L	
person_attribute_a : 회원 속성 A	person_prefer_h_1 : 회원 선호 속성 H 1번	contents_attribute_d : 컨텐츠 속성 D	
person_attribute_a_1 : 회원 속성 A 하위 속성 1	person_prefer_h_2 : 회원 선호 속성 H 2번	contents_attribute_m : 컨텐츠 속성 M	
person_attribute_b : 회원 속성 B	person_prefer_h_3 : 회원 선호 속성 H 3번		

개인 속성 및 선호 속성 관련 변수

컨텐츠 속성 및 정보 관련 변수

[2]· [2]· [2]·

집케어추천일고라즘 경진대회

● 데이터 불러오기

: train, test, 속성_D_코드, 속성_H_코드, 속성_L_코드

train_data.shape: (501951, 35)

test_data.shape:

(46404, 34)

```
train_data = pd.read_csv("train.csv")

test_data = pd.read_csv("test.csv")

d_code = pd.read_csv('속성_D_코드.csv', index_col=0).T.to_dict()
h_code = pd.read_csv('속성_H_코드.csv', index_col=0).T.to_dict()
l_code = pd.read_csv('속성_L_코드.csv', index_col=0).T.to_dict()

print("train_data.shape: ", train_data.shape)

print("test_data.shape: ", test_data.shape)
```

● d_code, h_code, l_code 풀어서 변수 추가

```
def add code(df, d code, h code, l code):
 df = df.copy()
 # D Code
 df['person prefer d 1 n'] = df['person prefer d 1'].apply(lambda x: d code[x]['속성 D 세분류코드'])
 df['person prefer d 1 s'] = df['person prefer d 1'].apply(lambda x: d code[x]['속성 D 소분류코드'])
 df['person prefer d 1 m'] = df['person prefer d 1'].apply(lambda x: d code[x]['속성 D 중분류코드'])
 df['person prefer d 1 l'] = df['person prefer d 1'].apply(lambda x: d code[x]['속성 D 대분류코드'])
 # H Code
 df['person prefer h 1 l'] = df['person prefer h 1'].apply(lambda x: h code[x]['속성 H 대분류코드'])
 df['person prefer h 1 m'] = df['person prefer h 1'].apply(lambda x: h code[x]['속성 H 중분류코드'])
 # L Code
 df['contents_attribute_l_s'] = df['contents_attribute_l'].apply(lambda x: l_code[x]['속성 L 소분류코드'])
 df['contents attribute l m'] = df['contents attribute l'].apply(lambda x: l code[x]['속성 L 중분류코드'])
 df['contents attribute l l'] = df['contents attribute l'].apply(lambda x: l code[x]['속성 L 대분류코드'])
 return df
```

● 날짜 변환

: YYYY-MM-DD 형태를 년, 월, 일로 각각 분할

```
def preprocessing_contents_open_dt(data):
    data['contents_open_dt'] = data['contents_open_dt'].astype('str')
    DATE = data['contents_open_dt'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S'))
   DATE = pd.DataFrame(DATE)
    DATE = DATE.rename(columns = {'contents_open_dt': 'date'})
    DATE['year'] = DATE['date'].apply(lambda x: x.timetuple()[0])
    DATE['month'] = DATE['date'].apply(lambda x: x.timetuple()[1])
   DATE['day'] = DATE['date'].apply(lambda x: x.timetuple()[2])
   DATE['id'] = data['id']
   data = data.merge(DATE, on = 'id', how = 'left')
    data = data.drop(columns = ['date', 'contents_open_dt'])
    return data
train_data = preprocessing_contents_open_dt(train_data)
test_data = preprocessing_contents_open_dt(test_data)
```

● 변수 drop

1. ID

```
train_data.drop('id', axis=1, inplace=True)
test_data.drop('id', axis=1, inplace=True)
```

2. unique value가 1개인 변수

```
train_data.drop(['person_prefer_f', 'person_prefer_g', 'year'], axis = 1, inplace = True)
test_data.drop(['person_prefer_f', 'person_prefer_g', 'year'], axis = 1, inplace = True)
```

3. unique value가 너무 많은 변수

```
train_data.drop(['person_rn', 'contents_rn'], axis = 1, inplace = True)
test_data.drop(['person_rn', 'contents_rn'], axis = 1, inplace = True)
```

● boolean형을 int형으로 변환

```
cols = x_train2.select_dtypes(bool).columns.tolist()
x_train2[cols] = x_train2[cols].astype(int)
```

```
cols = x_test2.select_dtypes(bool).columns.tolist()
x_test2[cols] = x_test2[cols].astype(int)
```

다. 모델링

집케어 추천 일고리즘 경진대회

Pycaret을 이용한 모델 선택

[60] top3 = compare_models(n_select = 3, sort = 'F1')

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
catboost	CatBoost Classifier	0.6253	0.6757	0.6722	0.6144	0.6420	0.2507	0.2518	160.216
xgboost	Extreme Gradient Boosting	0.6221	0.6708	0.6708	0.6111	0.6396	0.2443	0.2455	182.522
lightgbm	Light Gradient Boosting Machine	0.6149	0.6614	0.6699	0.6034	0.6349	0.2299	0.2313	14.056
rf	Random Forest Classifier	0.6199	0.6683	0.6330	0.6166	0.6247	0.2397	0.2398	241.633
gbc	Gradient Boosting Classifier	0.6006	0.6434	0.6377	0.5935	0.6148	0.2013	0.2019	294.476
et	Extra Trees Classifier	0.6138	0.6596	0.6152	0.6132	0.6142	0.2275	0.2275	200.122
ada	Ada Boost Classifier	0.5924	0.6317	0.6182	0.5877	0.6025	0.1848	0.1851	69.339
ridge	Ridge Classifier	0.5846	0.0000	0.6063	0.5809	0.5933	0.1693	0.1694	2.149
lda	Linear Discriminant Analysis	0.5846	0.6186	0.6063	0.5809	0.5933	0.1693	0.1694	6.242
knn	K Neighbors Classifier	0.5614	0.5817	0.5790	0.5590	0.5688	0.1227	0.1228	74.038
lr	Logistic Regression	0.5662	0.5932	0.5709	0.5653	0.5681	0.1324	0.1324	96.391
nb	Naive Bayes	0.5686	0.5893	0.5468	0.5714	0.5589	0.1371	0.1372	0.595
dt	Decision Tree Classifier	0.5488	0.5488	0.5505	0.5484	0.5495	0.0977	0.0977	15.058
qda	Quadratic Discriminant Analysis	0.5650	0.5962	0.5458	0.5770	0.5389	0.1300	0.1381	3.828
svm	SVM - Linear Kernel	0.5129	0.0000	0.5817	0.5026	0.4398	0.0258	0.0358	157.977
dummy	Dummy Classifier	0.5002	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.315

1) Gradient Boosting Classifier

● 파라미터 튜닝 시도

```
clf_grid.fit(x_train2, y_train) ==
best_param = clf_grid.best_params_
best_param
```

11시간 돌아간 후 런타임이 끊겨 결과를 도출하지 못함

1) Gradient Boosting Classifier

● default 값으로 모델링 진행

```
scores = []
models = []
                                                                CrossValidation 이용
for tri, vai in cv.split(x_train2):
   print("="*50)
   preds = []
   model = GradientBoostingClassifier(random_state=42)
                                                                          1. train 데이터로 모델링
   model.fit(x_train2.iloc[tri], y_train[tri])
   gb_pred = model.predict(x_train2.iloc[vai])
                                                                         2. validation 데이터로 예측
   score = f1_score(y_train[vai], gb_pred)
                                                                         3. f1 score 계산
   models.append(model)
   scores.append(score)
   if is_holdout:
      break
print(scores)
print(np.mean(scores))
```

[0.6132768905137579, 0.6185311494308084, 0.613427752227375, 0.6122970015740777, 0.615257048092869] 0.6145579683677777

1) Gradient Boosting Classifier

● threshold를 조점하여 예측력 높이기

```
threshold = 0.35

pred_list = []
scores = []
for i,(tri, vai) in enumerate( cv.split(x_train2) ):
    pred = models[i].predict_proba(x_train2.iloc[vai])[:, 1]
    pred = np.where(pred >= threshold , 1, 0)
    score = f1_score(y_train[vai],pred)
    scores.append(score)
    pred = models[i].predict_proba(x_test2)[:, 1]
    pred_list.append(pred)
print(scores)
print(np.mean(scores))
```

[0.6803539823008851, 0.6825540330555162, 0.6789544948639241, 0.6819163807345279, 0.6811952878618601] 0.6809948357633427

> predict를 이용하여 target을 예측할 때보다 predict_proba를 이용해 확률을 구한 후 threshold를 조정하면서 target을 예측할 때 f1 score가 더 높음.

● 결과 제출

=> 0.6825586746

```
pred = np.mean( pred_list , axis = 0 )
pred = np.where(pred >= threshold , 1, 0)

sample_submission = pd.read_csv('sample_submission.csv')
sample_submission['target'] = pred
sample_submission.to_csv('gradient_boost.csv', index=False)
```

2) Random Forest Classifier

● GridSearchCV를 이용한 하이퍼 파라미터 튜닝

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import fl_score
from sklearn.model_selection import GridSearchCV
#하이퍼 파라미터 튜닝
params = {
    'n_estimators': [50,100,200],
    'max_depth': [5,10,15,20],
    'min_samples_leaf': [8,12,18],
    'min_samples_split': [10,15,20,25],
#RandomForestClassifier 객체 생성 후 GridSearchCV 수행
model_rf = RandomForestClassifier(n_jobs=-1, random_state=1234)
grid_cv = GridSearchCV(model_rf, param_grid = params, cv=2, n_jobs=-1)
X_train = train_data.drop(['target'], axis = 1)
y_train = train_data['target']
grid_cv.fit(X_train,y_train)
print('최적 하이퍼 파라미터:\n', grid_cv.best_params_)
print('최고 예측 F1_score {0:4f}'.format(grid_cv.best_score_))
```

- 최적 하이퍼 파라미터: {'max_depth': 15, 'min_samples_leaf': 12, 'min_samples_split': 25, 'n_estimators': 200}

- 최고 예측 F1_score: 0.592709

2) Random Forest Classifier

● Random Foreset Classifier 최종 모형

```
#최적의 하이퍼 파라미터로 다시 RandomForestClassifier 학습
model_rf1 = RandomForestClassifier(max_depth=15, min_samples_leaf=12, min_samples_split=25, n_estimators=200, n_jobs=-1, random_state=1234)
model_rf1.fit(X_train,y_train)

#예측성능
preds = model_rf1.predict(test_data)
```


최적의 하이퍼 파라미터로 학습한

Random Forest Classifier의 F1 score: 0.62792267

3) LightGBM

● trial함수 생성

```
cat_feature = X.columns[X.nunique() > 2].tolist()
def objective(trial):
    train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.3)
    param = {
        "objective": trial.suggest_categorical("objective", ["binary"]),
        "depth": trial.suggest_int("depth", 1, 12),
        "learning rate" : 0.01.
        "used_ram_limit": "3gb",
        "cat_features" : cat_feature,
        'eval_metric': 'F1',
        'random_seed' : 42
    gbm = Igbm.LGBMClassifier(**param)
    gbm.fit(train_x, train_y, eval_set=[(valid_x, valid_y)], verbose=0, early_stopping_rounds=100)
   preds = gbm.predict(valid_x)
   pred_labels = np.rint(preds)
    f1 = f1_score(valid_y, pred_labels)
   return f1
```

파라미터 지정

3) LightGBM

study = optuna.create_study(direction="maximize")

● optuna 01용

```
study.optimize(objective, n_trials=20, timeout=600)
[I 2022-01-25 06:19:30,516] A new study created in memory with name: no-name-
[| 2022-01-25 06:19:51,756] Trial O finished with value: 0.6218981507055308 a
[| 2022-01-25 06:20:13,045] Trial 1 finished with value: 0.6240453662896416 a
[I 2022-01-25 06:20:33,984] Trial 2 finished with value: 0.6214808498107374 a
[| 2022-01-25 06:20:54,941] Trial 3 finished with value: 0.6212758077955746 a
[I 2022-01-25 06:21:15,862] Trial 4 finished with value: 0.6220074541178782 a
[| 2022-01-25 06:21:36,803] Trial 5 finished with value: 0.6258334095830664 a
[| 2022-01-25 06:21:57,745] Trial 6 finished with value: 0.6232307456744756 (
[| 2022-01-25 06:22:18,831] Trial 7 finished with value: 0.6258111471960755
[I 2022-01-25 06:22:39,925] Trial 8 finished with value: 0.6206585531599432
[I 2022-01-25 06:23:01,122] Trial 9 finished with value: 0.6249770183975388 :
[I 2022-01-25 06:23:22,337] Trial 10 finished with value: 0.6242103444872175
[| 2022-01-25 06:23:43,485] Trial 11 finished with value: 0.622122396233962 a
[| 2022-01-25 06:24:04,682] Trial 12 finished with value: 0.6229667245921168
[I 2022-01-25 06:24:25,938] Trial 13 finished with value: 0.6224703161141094
[I 2022-01-25 06:24:46,731] Trial 14 finished with value: 0.6228219137625517
[I 2022-01-25 06:25:07,158] Trial 15 finished with value: 0.6219583546322925
[I 2022-01-25 06:25:27,885] Trial 16 finished with value: 0.6232023128498494
[I 2022-01-25 06:25:48,351] Trial 17 finished with value: 0.6217770335163888
[I 2022-01-25 06:26:08,754] Trial 18 finished with value: 0.6213296313435138
[I 2022-01-25 06:26:29,471] Trial 19 finished with value: 0.6220398434764447
```

best trial

```
Number of finished trials: 20
Best trial:
    Value: 0.6258334095830664
    Params:
        objective: binary
        depth: 2
```

3) LightGBM

● CrossValidation 01号

cat_params = study.best_trial.params

```
NFOLDS = 5
folds = StratifiedKFold(n_splits=NFOLDS, random_state=42, shuffle=True)
predictions = np.zeros(len(X_test))
for fold, (train_index, test_index) in enumerate(folds.split(X, y)):
    print("--> Fold {}".format(fold + 1))

    X_train, X_valid = X.iloc[train_index], X.iloc[test_index]
    y_train, y_valid = y.iloc[train_index], y.iloc[test_index]

    lgbm_model = lgbm.LGBMClassifier(**cat_params).fit(X_train, y_train, eval_set=[(X_valid, y_valid)], early_stopping_rounds=300, verbose=0)

    y_preds = lgbm_model.predict_proba(X_valid)[:,1]
    predictions += lgbm_model.predict_proba(X_test)[:,1] / folds.n_splits
```

```
--> Fold 1
--> Fold 2
--> Fold 3
--> Fold 4
--> Fold 5
```

● threshold 지점

```
threshold = 0.4

predictions= np.where(predictions >= threshold , 1, 0)

sample = pd.read_csv('/content/gdrive/MyDrive/sample_submission (1).csv')

sample['target'] = predictions
sample.to_csv('lgbm(optuna).csv',index=False)
```

=> 0.6850464489

4) XGBoost

) 모델링

```
1 from xgboost import XGBClassifier
3 xgb = XGBClassifier()
4 xgb.fit(X, y)
5 pred = xgb.predict(test_data)
6 pred
```

```
array([0, 0, 0, ..., 1, 1, 1])
```

=> 0.6188207635

```
1 from xgboost import plot_importance
3 fig,ax = plt.subplots(1,1,figsize=(5,5))
4 plot_importance(xgb, max_num_features=20, ax=ax)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f7f7da1b910>

4) XGBoost

● 파라미터 튜닝

```
1 from sklearn.model_selection import GridSearchCV
2 from xgboost import XGBClassifier
4 xgb = XGBClassifier()
6 xgb_param = {
       'min_child_weight': [1, 5, 10],
       'gamma': [0.5, 1, 1.5, 2, 5],
       'max_depth': [3, 4, 5],
       'subsample': [0.6, 0.8, 1.0],
       'colsample_bytree': [0.6, 0.8, 1.0],
      'learning_rate': [0.01, 0.05, 0.1],
13
       'n_estimators': [100, 500, 1000]
14 }
15
                                                                     cv=5)
16 xgb_grid = GridSearchCV(xgb, param_grid=xgb_param, scoring='f1'
17 xgb_grid.fit(X, y)
```

[단계적으로 파라미터 튜닝 진행]

```
xgboost best param: {'gamma': 5, 'min_child_weight': 5}
xgboost best f1-score: 0.60637257718265
     xgb = XGBClassifier(gamma = 5, min_child_weight = 5)
xgboost best param: {'max_depth': 5}
xgboost best f1-score: 0.6141511020964833
    xgb = XGBClassifier(gamma = 5, min_child_weight = 5, max_depth = 5)
xgboost best param: {'colsample_bytree': 0.6, 'subsample': 1.0}
xgboost best f1-score: 0.615486914869084
    xgb = XGBClassifier(gamma = 5, min_child_weight = 5, max_depth = 5,
                        colsample_bytree = 0.6, subsample = 1.0)
xgboost best param: {'learning_rate': 0.05, 'n_estimators': 1000}
xgboost best f1-score: 0.6158611125311999
```

=〉 성능이 미세하게 향상.

4) XGBoost

● XGBoost 최종 모형

array([0, 0, 0, ..., 1, 1, 1])

=**>** 0.6298912006

```
1 from xgboost import plot_importance
2
3 fig,ax = plt.subplots(1,1,figsize=(5,5))
4 plot_importance(xgb_fin, max_num_features=20, ax=ax)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f7f7d6b1c90>

F score

● default 값으로 모델링 진행

0.6599131204981634

```
cat_features = x_test.columns[x_test.nunique() > 2].tolist()
is_holdout = False
n_splits = 5
iterations = 3000
patience = 50
cv = KFold(n_splits=n_splits, shuffle=True, random_state = 0)
scores = []
models = []
models = []
for tri, vai in cv.split(x_train):
   print("="*50)
   preds = []
    model = CatBoostClassifier(iterations=iterations,random_state=0,task_type="GPU", eval_metric="F1",cat_features=cat_features,one_hot_max_size=4)
    model.fit(x_train.iloc[tri], y_train[tri],
           eval_set=[(x_train.iloc[vai], y_train[vai])],
           early_stopping_rounds=patience ,
           verbose = 100
    models.append(model)
    scores.append(model.get_best_score()["validation"]["F1"])
    if is_holdout:
       break
print (scores)
print(np.mean(scores))
[0.6722609277041889, 0.6733883344339754, 0.6423987302463599, 0.6329791935512383, 0.6785384165550546]
```

D default 값으로 모델링 진행

```
pred_list = []
scores = []
for i,(tri, vai) in enumerate( cv.split(x_train) ):
    pred = models[i].predict_proba(x_train.iloc[vai])[:, 1]
    pred = np.where(pred >= threshold , 1, 0)
    score = f1_score(y_train[vai],pred)
    scores.append(score)
    pred = models[i].predict_proba(x_test)[:, 1]
    pred_list.append(pred)
print(scores)
print(np.mean(scores))
[0.7087538367096378, 0.7030424982646607, 0.6640228363065336, 0.6684528507099419, 0.7063731722822633]
```

0.6901290388546074

```
pred = np.mean( pred_list , axis = 0 )
pred = np.where(pred >= threshold , 1, 0)
```

● 결과 제출

```
sample_submission = pd.read_csv('sample_submission.csv')
sample_submission['target'] = pred
sample_submission.to_csv('catboost_CV 5Fold.csv', index=False)
```

=> 0.698701425

● month rank 생성

```
train_data['month'].value_counts()
      50424
      49029
      47444
      47129
      45683
      45605
      44979
      44458
      42790
      42393
      42017
Name: month, dtype: int64
test_data['month'].value_counts()
      46404
Name: month, dtype: int64
```

```
month_rank = {2:1,3:2,6:3,7:4,12:5,1:6,10:7,11:8,8:9,4:10,9:11,5:12}

train_data['month_rank'] = train_data['month'].map(month_rank)

test_data['month_rank'] = test_data['month'].map(month_rank)
```

● x_train,y_train,x_test 및 cat_features 지점

```
x_train = train_data.drop(['target'], axis = 1)
x_train.shape

(501951, 60)

y_train = train_data['target']
y_train.shape

(501951,)

x_test = test_data.copy()
```

····· 변수 drop

```
bestTest = 0.8278177386
bestIteration = 2996
Shrink model to first 2997 iterations.
```

```
cat_features = x_train.columns[x_train.nunique() > 2].tolist()
```

CatBoost Feature Importance

plot_feature_importance(model.get_feature_importance(),x_train.columns,'CATBOOST|')

importance이 0.5보다 작은 변수 drop

● 학습 파라미터

```
is_holdout = False
n_splits = 5
iterations = 1000
patience = 50

cv = KFold(n_splits=n_splits, shuffle=True, random_state=1234)
```

● CV 결과 확인

```
np.mean(scores)
=> 0.6794525221030916
```

● 학습시키기

```
scores = []
models = []
for tri, vai in cv.split(x_train):
    print("="*50)
    preds = []
    model = CatBoostClassifier(iterations=iterations, random_state=1234, task_type="GPU",
                               eval_metric="F1",cat_features=cat_features,one_hot_max_size=4)
    model.fit(x_train.iloc[tri], y_train[tri],
            eval_set=[(x_train.iloc[vai], y_train[vai])],
            early_stopping_rounds=patience ,
            verbose = 100
    models.append(model)
    scores.append(model.get_best_score()["validation"]["F1"])
    if is_holdout:
        break
```

● threshold 값에 따른 검증점수 예측

```
pred_list = []
scores = []

for i,(tri, vai) in enumerate( cv.split(x_train) ):
    pred = models[i].predict_proba(x_train.iloc[vai])[:, 1]
    pred = np.where(pred >= threshold , 1, 0)
    score = f1_score(y_train[vai],pred)
    scores.append(score)
    pred = models[i].predict_proba(x_test)[:, 1]
    pred_list.append(pred)
```

```
np.mean(scores)
=> 0.7074832526201054
```

● 산술평균 암상블

```
pred = np.mean( pred_list , axis = 0 )
pred = np.where(pred >= threshold , 1, 0)
```

● 제출

```
sample_submission = pd.read_csv('sample_submission.csv')
sample_submission['target'] = pred
sample_submission.to_csv('catboost.csv', index=False)
```

=〉 최종 LB Score: 0.7019695836

이년· 열론·

집케어 추천 일고리즘 경진대회

성능비교

● 5개 모델링 결과 비교

	f1 score 기준 LB 점수			
Gradient Boosting Classifier	0.68255867			
Random Forest Classifier	0.62792267			
LightGBM	0.68504645			
XGBoost	0.62989120			
Catboost Classifier	0.69870142			

최종 점수

ocatboost 성능 비교

	f1 score 기준 LB 점수	
군집화변수 추가	0.6999074841	
threshold 0.35	0.6982639574	
month_rank, day_rank 추가	0.6993971595	
optuna 사용	0.691233626	
feature importance	0.7019695836	
# El	팀멤버 점수	

data leakage 발생

제출수

78 ENjoy!

0.70196

34

BAITHEILE.

김도연,김혜원,장서연,정세은