Combination of distributed search and multi-search in Peers-med. d

MARIA PAOLA BONACINA

DEPT. OF COMPUTER SCIENCE
THE UNIVERSITY OF IOWA

Overview of Peers-med.d

Logic: equational

Mod AC: Yes

Inference: paramodulation

simplification

rules

functional subsumption

Search: Several

plans: eager-contraction

best-first search

Strategies: contraction-based

Overview of Peers-med.d (continued)

Parallelization : methodology

Modified Clause-Diffusion

Sequential base:

EQP 0.9d [Bill McCare 1998]

Language:

C+ MPI

Ancestors:

at CADE 1998

CADE 1997

(fastest Robbins)

CADE 1994

(zemotely)

New features

Combination of

distributed search lparallel processes search different parts of search space)

and multi-search (parallel processes search whole space by different search plans)

Recall Modified Clause-Diffusion

sequential > MCD > distributed strategy (complete)

- · Parallel search by N concurrent asynchronous communicating processes.
- · Peer processes: no master-slaves.
- · N separate derivations:

 one succeds => all halt.
- · N separate data bases: separate memories ⇒ mo conflicts.

EQPO.9d -> MCD -> Peezs-mcd.d

Distributed search in MCD

Subdivide search space:

Dynamic partition of generated clauses => subdivision of inferences

Every ψ assigned to unique p_i : $7A \vee p = q$ "belongs" to p_i $7A \vee p[s] = q$ s = t $5 \nleq t$ $7A \vee p[t] = q$

allowed only to Pi

Basic mechanism

Remarks

- · No meed of master / scheduler for subdivision: every process subdivides the clauses it generates.
- · No need of master for communication: asynchronous broad casting.
- · Eager forward/backward contraction: Keep each db: inter-reduced.
- · Backward contraction: subdivide simplifications not deletions

Adding multi-search

Three ways to make search plan different:

- 1) Different premise selection mechanism.
- 2) Different ratio of breadth-first search and best-first search.
- 3) Different heuristic function to sort equations for premise selection.

Different premise selection mechanism

Flag. Diverse-sel = 1

Pi uses "given-clause" if i odd
"pair" if i even
algorithm if i even

Given - clause:

best-first search on equations heuristic function: weight

Pair: heuristic function: sum of weights
best-first search on pairs of
equations < < \psi, \phi >
L> \text{9}...\text{9}.

Different breadth-first/best-first ratio

Parameter pick-Given-RATIO = x: algorithm picks oldest rather than lightest once every x+1 choices.

Flag Diverse-Pick = 1

Pi resets pick-GiVEN-RATIO = x+i

Different heuristic functions

Flag HEURISTIC - SEARCH = 1

Pi uses

$$h_1$$
 h_2

if i mod 3 = 0

 h_1

if i mod 3 = 1

instead of weight for given-clause.

$$h_0 = occ-nest$$
 $h_1 = cP-im-goal$
 $h_2 = goal-im-cP$

measure

syntactic similarity

equation / goal

[Siva Ananthazaman and Nizina Andzia nazive Po 1990]

[Jözg Denzinger and Matthias Fuchs 1994]

Three modes in Peers-med.d

- Puze distributed search:
 DECIDE-OWNER-STRAT # NO_SUBDIVIDE
 DIVERSE-SEL V DIVERSE-PICK V
 HEURISTIC-SEARCH = 0
- Puze multi seazch:
 DECIDE OWNER STRAT = NO_SUBDIVIDE
 (bzoadcast based om Reuzistic)
 Diverse sel v diverse Pick v
 HEURISTIC SEARCH = 1
- Hybrid:
 DECIDE-OWNER-STRAT # NO-SUBDIVIDE
 DIVERSE-SEL V DIVERSE-PICK V
 HEURISTIC SEARCH = 1

Experiments: Moufang identities

Alternative ring (* not associative)

Moufang identities: "approximations" of associativity

First proofs by general-purpose prover: [Siva Amantharaman & Jieh Hsiang 1990] using

built-in cancellation laws
[Hsiang - Rusinowitch - Sakai 1987]
inequality ordered saturation rule

Try without camellation and Ios.

Left Moufang identity

Mode	Search plan	EQP0.9d	1-Peer	2-Peers	4-Peers	6-Peers	8-Peers
D	given(32)	Т	${ m T}$	598	91	187	40
Н	given-h(32)	${ m T}$	415	230	57	42	9
D	pair(32)	3,215	3,277	551	109	51	83
D	4-pair(32)	956	1,068	126	38	56	58
D	2-pair(32)	88	130	66	39	109	25
Н	2d-diverse-h(32)	88	147	84	75	41	25

Average CPU times (im sec)

T = time out after 3600 sec

EQPO.9d on HP B2000/16

Peers-mcd.d on N HP B2000

oz C360 with 16 oz 512M

Right Moufang identity

Mode	Search plan	EQP0.9d	1-Peer	2-Peers	4-Peers	6-Peers	8-Peers
Н	given- $h(32)$	T	437	268	162	100	28
D	pair(32)	Т	${ m T}$	865	356	161	105
Н	4d-diverse-h(32)	1,558	1,638	75	32	27	47

Super-linear speed-up for all mumbers of processes

Best result: 4 processes

speed-up: 48.68

efficiency: 12.17

Middle Moufang identity

EQPO.9d

"given-clause" algozithm: T "paiz" algozithm: 572

Peers-med.d

"given-clause" algozithm:

1-Peez

2-Peers

5 4-Peezs

Discussion of experiments

Puze multi-seazch: no speed-up. Heuristic functions improved 1-Peer, Speed-up due to distributed search.

Hybrid mode better than pure distributed mode:
heuristic functions helped reduce overlap of processes.

Super-Pinear speed-up:
much fewer equations generated

(e.g., Right Identity, 4d-diverse-th(32)

EQPO.9d 482,677

2-Peers 122,608)

effective subdivision of space.

Discussion and future work

Study parallelism to provide new forms of search for reasoning.

High-performance deduction meeds many tools: parallel search by distributed processes is one.

Design / implementation:

FOL + =

tools for proof comparison,

more experiments.

Theory:

Semantically-guided distributed deduction.