UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 10 /.06./2024

Prova: L6 **Período:** 3° **Disciplina:** Estatística e Probabilidades

Professor: Fermín Alfredo Tang **Turno:** Diurno

Nome do Aluno:Matrícula:

Lista de exercícios 6 – Intervalos de Confiança

1. O índice de satisfação de cada empregado pode ser medido em uma escala de 0 a 100 pontos, e seu desvio padrão populacional é de 30 pontos. Foram entrevistados 324 empregados. Obtenha um intervalo de confiança de 98%, admitindo que a média do índice na amostra foi de 72 pontos.

2. O processo de produção das unidades de caixa de controle de um tipo específico de motor foi modificado recentemente. Antes dessa modificação, os dados históricos sugeriam que a os diâmetros do orifício dos mancais nas caixas seguiam uma distribuição normal, com um desvio padrão de 0,100 mm. Acredita-se que a modificação não tenha afetado o formato da distribuição ou o desvio padrão, mas que o valor do diâmetro médio possa ter mudado. Uma amostra de 40 unidades da caixa é selecionada e o diâmetro do orifício é determinado para cada uma, resultando em um diâmetro médio da amostra de 5,426 mm.

Calcular um intervalo de confiança para o diâmetro médio real do orifício usando um nível de confiança de 90%.

Resposta 2.-

O diâmetro médio real do orifício usando um nível de confiança de 90%, implica que $(1-\alpha)=0.90$, sendo assim $\alpha=0.10$. Para calcular o intervalo de confiança de 90%, precisamos calcular o valor crítico $z_{\alpha/2}=z_{0.05}=1.645$. Que corresponde a área acumulada da normal até 0.95.

O intervalo desejado é, então:

$$\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$5,426 - (1,645) \frac{0,1}{\sqrt{40}} \le \mu \le 5,426 + (1,645) \frac{0,1}{\sqrt{40}}$$

$$5,426 - 0,026 \le \mu \le 5,426 + 0,026$$

$$5,400 \le \mu \le 5,452$$

Esse intervalo é bastante restrito, devido ao pequeno valor da variabilidade do diâmetro do orifício $\sigma = 0.10$. O grau de confiança é razoavelmente alto.

3. O monitoramento extensivo de um sistema de computador de compartilhamento de tempo sugeriu que o tempo de resposta a um comando de edição específico é normalmente distribuído com desvio padrão de 25 milissegundos. Um novo sistema operacional foi instalado e desejamos estimar o tempo de resposta médio real μ do novo ambiente. Assumindo que os tempos de resposta ainda sejam normalmente

distribuídos com $\sigma = 25$, que tamanho de amostra é necessário para garantir que o IC de 95% resultante tenha uma amplitude de no máximo 10?

Resposta 3.-

Em virtude de o intervalo de 95% estender-se $z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1,96 \frac{\sigma}{\sqrt{n}}$ a cada lado da \bar{x} , a amplitude do intervalo é $2(1,96) \frac{\sigma}{\sqrt{n}} = 3,92 \frac{\sigma}{\sqrt{n}}$. Com isso:

O tamanho da amostra *n* deve satisfazer:

$$10 = 3,92 \frac{25}{\sqrt{n}}$$

Reajustando, temos:

$$\sqrt{n} = 3,92 \frac{25}{10} = 9,8$$

$$n = (9,8)^2 = 96,04$$

Como n deve ser um número inteiro, é necessário um tamanho de amostra de 97.

4. Como parte de um projeto para estudar o comportamento de painéis de revestimento tencionado, componente estrutural que está sendo usado nos Estados Unidos, observou-se diversas propriedades mecânicas de espécimes de madeira serrada de pinho da Escócia. Considere as seguintes observações sobre o módulo de elasticidade (MPa) obtido 1 minuto depois da aplicação de carga em uma determinada configuração:

Assume-se que a distribuição da população do módulo de elasticidade é aprox.. normal.

Resposta 4.-

O cálculo manual da média amostral e do desvio padrão é simplificado subtraindo 10.000 de cada observação: $y_i = x_i - 10.000$.

Com isso, verifica-se que $\sum y_i = 72.520 \text{ e } \sum y_i^2 = 392.083.800$

Como
$$n = 16$$
, temos que: $\bar{y} = 4532,5$ e $S_v = 2055,67$

Dessa forma, $\bar{x} = 14532,5$ e $S_x = 2055,67$.

Obs. Adicionar ou subtrair a mesma constante de cada observação não afeta a variabilidade.

O tamanho da amostra é 16, de modo que o intervalo de confiança do módulo de elasticidade médio da população se baseia em 15 gl. Um nível de confiança de 95% de um intervalo bicaudal exige o valor crítico t de 2,131.

O intervalo resultante é:

$$\bar{X} - t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$14532,5 - t_{0,025; 15} \frac{2055,67}{\sqrt{16}} \le \mu \le 14532,5 + t_{0,025; 15} \frac{2055,67}{\sqrt{16}}$$

$$14532,5 - (2,131) \frac{2055,67}{\sqrt{16}} \le \mu \le 14532,5 + (2,131) \frac{2055,67}{\sqrt{16}}$$

14532,5
$$-1095,2 \le \mu \le 14532,5 + 1095,2$$

 $13437,3 \le \mu \le 15627,7$

5. Os dados sobre a voltagem de quebra de circuitos carregados eletricamente sugerem que seguem aproximadamente um distribuição de forma normal. Os dados são os seguintes:

Calcular o intervalo de confiança para variância σ^2 da voltagem de quebra dos circuitos, para 95% de confiança.

Resposta 5.-

O valor calculado da variância da amostra é

$$s^2 = \frac{1}{n-1} \{ \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2 / n \} = 137.324,3$$

Que seria a estimativa pontual de σ^2 . Como o tamanho da amostra n=17, o intervalo de confiança requer os valores críticos da distribuição Chi-quadrado com n-1=16 graus de liberdade e 95% de confiança:

$$\chi_a^2 = \chi_{0,975; 16}^2 = 6,908$$

$$\chi_b^2 = \chi_{0,025; 16}^2 = 28,845$$

O intervalo é o seguinte:

$$\frac{(n-1)s^2}{x_b} \le \sigma^2 \le \frac{(n-1)s^2}{x_a}$$
$$\frac{(16)(137.324,3)}{28,845} \le \sigma^2 \le \frac{(16)(137.324,3)}{6,908}$$
$$76.172,3 \le \sigma^2 \le 318.064,4$$

Extraindo a raiz quadrada de cada extremo do intervalo temos o IC de 95% para σ .

$$276,0 \le \sigma \le 564,0$$

Ambos intervalos são bastante amplos, refletindo a variabilidade substancial na voltagem de quebra em combinação com o tamanho pequeno de uma amostra.

6. Em um estudo científico observou-se que em n=48 tentativas em um laboratório específico, 16 resultaram em ignição de um tipo específico de substrato por um cigarro aceso. Seja p a proporção no longo prazo de todas as tentativas que resultariam em ignição. A estimativa pontual de p é $\hat{p} = \frac{16}{48} = 0,333$.

Determine o intervalo de confiança de p com nível de confiança de aproximadamente 95%.

7. Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina.

- a) Construa um intervalo de confiança, a 95%, para a média dessa variável na população de todas as possíveis esferas produzidas pela máquina.
- b) Suponha que, para satisfazer as especificações do consumidor, as peças devem estar compreendidas entre 140 e 160mm. Determine um intervalo de confiança de 98% para a verdadeira proporção de peças fabricadas pela máquina que satisfazem as especificações.

Resposta 7.-

a) Calculando, obtemos $\overline{x} = 151,9 \text{ mm}$ e s = 9,7 mm. Para 1- α = 0,95 e 29 g.l., temos $t_{0.975} = 2,045$.

Daí, d =
$$t_{0.975} \frac{s}{\sqrt{n}} = 2,045 \times \frac{9,7}{\sqrt{30}} = 3,6$$

Portanto, os limites de confiança pedidos em mm são:

$$LI = \overline{x} - d = 151,9 - 3,6 = 148,3$$

 $LS = \overline{x} + d = 151,9 + 3,6 = 155,5$

b) Organizando os dados em ordem crescente, temos:

129	134	137	139	139	140	143	145	149	150
151	151	152	154	154	155	155	155	157	157
158	158	159	159	159	159	160	162	167	169

Há 22 observações entre 140 e 160mm. Logo, a proporção amostral de peças dentro das especificações é 22/30 = 0.73. Para $1-\alpha = 0.98$, temos $z_{0.99} = 2.33$.

Daí, d =
$$z_{0,99}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 = 2,33 $\sqrt{\frac{0,73\times0,27}{30}}$ = 0,08. Assim, os limites de confiança são:
LI = \hat{p} - d = 0,73 - 0,08 = 0,65
LS = \hat{p} + d = 0,73 + 0,08 = 0,81

Com o nível de confiança de 98%, espera-se que a proporção de peças produzidas pela máquina que satisfaçam a especificação desejada esteja entre 65% e 81%.

- 8. Calcule um intervalo de confiança a 95% para a média populacional μ do Índice de Massa Corporal com mulheres acima de 60 anos. Dada uma amostra de tamanho igual a n=45, onde $\bar{x}=24,72$ e S=2,47.
- 9. Uma pesquisa de mercado foi feita por uma operadora de TV a cabo junto a seus assinantes. Foi ouvida uma amostra de 30 assinantes, e com base nos dados levantados, deseja-se construir um intervalo de confiança para a proporção *p* dessas pessoas que estariam dispostas a contratar um upgrade do serviço que lhes é atualmente oferecido, em troca de um certo desconto de preço. Observou-se que 9 entre os 30 correspondentes manifestaram-se propensos a aderir a essa oferta. Determine um intervalo de confiança de 95%.

10. Foi realizada uma pesquisa envolvendo uma amostra de 600 pacientes de um certo hospital. Cada um desses pacientes foi submetido a uma série de exames clínicos e, entre outras coisas, mediu-se o Índice Cardíaco (em litros/min/m2) de todos eles. Os 600 pacientes foram então classificados, de forma aleatória, em 40 grupos de 15 pacientes cada. Para um desses grupos os valores medidos do Índice Cardíaco foram:

- a) Com base nesses valores, construa um intervalo de confiança para o valor médio μ do Índice Cardíaco ao nível de 95%.
- b) Se para cada um desses 40 grupos de 15 pacientes fosse construído um intervalo de confiança para μ ao nível de 95%, quantos desses intervalos se esperaria que não contivessem a verdadeira média populacional no seu interior? Por quê?

Resposta 10.-

a) A média e o desvio padrão amostrais calculados a partir dos dados anteriores são \overline{x} = 312,73 e s = 185,80. Por outro lado, o quantil da t de *Student* com (15 – 1) = 14 graus de liberdade correspondente a $1 - \frac{0.05}{2} = 0.975$ é 2,145. Portanto, os extremos do intervalo de confiança para o Índice Cardíaco médio, a 95% de confiança, são:

$$312,73\pm2,145\times\frac{185,80}{\sqrt{15}}$$
, ou seja, o intervalo é (209,84; 415,63),

sendo esses valores expressos em litros/min/m².

b) Como o valor de α adotado no caso foi 0,05, cerca de 5%, ou seja, 2 dos 40 intervalos de confiança assim obtidos não conteriam em seu interior a verdadeira média populacional.