EVALUATION

0.5

RESEARCH EXPENDITURES :

CALIFORNIA AGRICULTURE ONLY

CIRCULATING COPY

Sea Grant Depository

December 1970

PELL LIBRAN, BUILDING
URI, NARRAGANSETT BAY CAMPUS
NARRAGANSETT, RI 02882

Bv

PHILIP GEOFFREY ALLEN

B.Sc. (University of Nottingham, England) 1967

M.S. (University of California, Davis) 1969

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Economics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

Deposited in the University Library Date Librarian

Abstract

The evaluation of research expenditures in California agriculture presupposes two types of allocation decisions. These are (1) the division of national product among consumption and the major kinds of investment, including agricultural research - usually one of the functions of government, and (2) allocation of the given research budgets among competing projects - the job of the director of research.

This study attempts to suggest answers to both, (1) by computing a return to the agricultural research investment which can be compared with returns from other public investments, and (2) by comparing returns from different kinds of agricultural research. The internal rate of return is used as the main summary statistic, despite its theoretical handicaps. Its calculation requires information on both the value of research, and the distribution of research benefits over time. Total or long run (zero interest rate) returns are also calculated.

The output from research activity is new information. It has value to society when it is disseminated and those able to use it respond by changing technique. The users are not necessarily the beneficiaries. Depending on institutional conditions this technical change may appear as consumer surplus or producer surplus or both. But these distributional aspects which are important policy issues are ignored here. In this study output and input were measured as price weighted indexes, which permitted the calculation of an "unexplained residual" over time. This residual is actual output less expected output using current

input quantities and base-period level technology.

Most of this study centers on the Cobb-Douglas production function, although the constant elasticity of substitution (CES) function is briefly explored. Previous work has sought to estimate technical change as a function of time. This is also done here, and additionally knowing the underlying research expenditures, can be expressed as a return to the research investment.

The major emphasis, though, was to assume that the "unexplained residual" arose as a result of previous research expenditures. Therefore, lagged research expenditures were introduced into the production function as a formerly omitted variable. The forms of lag investigated were the family of first and second order rational distributed lags developed by Jorgenson. Special interest centered on the second order lag models. They are the simplest schemes which have sufficient flexibility to permit the data to specify a lag having the desired theoretical shape, that is, to peak after some unspecified period.

Use of this lag form produced an equation which was non-linear in the parameters and was estimated by a non-linear least squares algorithm. An alternative approach was to impose prior estimates of the labor and capital elasticities on the function, which rendered it capable of estimation by ordinary least squares.

Data for the period 1949-69 were gathered for California agricultural outputs and inputs, and classified into four groups: fruits and nuts, vegetable crops, field crops, and livestock products. Research expenditures for the California Agricultural Experiment Station for the same period were classed into these groups where possible, and the remainder allocated in the manner of overhead costs. Data on private agricultural research were unavailable.

Results indicated that research conducted on the first two groups of commodities yielded low returns. Some of the point estimates implied negative returns to research, which is theoretically unacceptable, but these were generally insignificant. Returns to research on field crops and livestock products were high.

The variability of the results pointed to the dangers of misspecification and suggested that the data available were insufficiently discriminating for a very flexible lag form to be used. Rather, we need prior information or a better developed theory on the form of the lag between research expenditures and their influence on output. At present, this knowledge is not available, and is only likely to become so through closer study of research projects whose impacts are highly visible and quantifiable.

ACKNOWLEDGEMENTS

A dissertation is not the work of a single person; many have helped in this one. My greatest debt is to my committee chairman and friend, Professor Quirino Paris, who has guided my efforts from the start, and provided constant counsel and assistance.

My second member, Professor Gerald W. Dean, read a complete draft of the dissertation at very short notice. The considerable improvement in style and arrangement in the final draft is in large part due to him. Professor Victor P. Goldberg also made many valuable criticisms.

Dorothy TerAvest and Mary Alice Conway provided much cheerful assistance in computer programming, without which the time taken to complete this project would have been even longer. The Department of Agricultural Economics, Davis, and the Giannini Foundation have been generous in providing support and facilities. My wife drew the figures in the text and performed the tedious task of proofreading, the ultimate demonstration of moral support. To the above, and to all the friends I met at Davis, many now far afield, who taught me that extracurricular activities are at least as important as academic efforts, my grateful thanks.

Finally, to my mother, who believed in the value of an education and sacrificed so that I might have one, I shall always appreciate what you did.

TABLE OF CONTENTS

Lis	t of	Tables	vi:
Lis	t of	Figures	1:
I	Int	roduction	
	1.1	The General Problem: How Much Research	1
	1.2	The Setting: The University of California	3
		1.2.1 Early History	4
		1.2.2 Present Situation	5
	1.3	Events Leading to the Problem	7
	1.4	The Problem	8
		1.4.1 What Is To Be Measured In Research Evaluation	9
		1.4.2 University and Industrial Research	10
II	The	Theory of Information Production and Dissemination	
	2.1	Definition of Terms Used	13
	2.2	Information and Its Properties	17
		2.2.1 Information and Joint Products	17
		2.2.2 Classification into Consumer and Investment Goods	17
		2.2.3 Information as a Public Good	19
		2.2.4 The Indestructibility of Information	21
		2.2.5 The Decline in Value of Information	21
	2.3	The Flow of Information	23
	2.4	The Adoption Lag	26
	2.5	A general Theory of Information Production and Dissemination	27
III	Tecl	nnical Change: Sources and Measurement	
	3.1	Introduction	34
		3.1.1 Some Definitions	3 5
		3.1.2 Ideal Production Functions	35

3.2 The Technical Characteristics	3 9	
3.2.1 Introduction	39	
3.2.2 Efficiency of Production	40	
3.2.3 Bias in Technical Change	40	
3.2.4 Elasticity of Substitution	41	
3.2.5 Scale of Operation	43	
3.2.6 Degree of Homotheticity	44	
3.3 Estimation Methods Permitting Biased Technical Change	45	
3.3.1 Quality Change and Embodiment Effect	45	
3.3.2 Factor Augmentation	48	
3.4 Changes in Conventional Inputs Influencing Technical Change	52	
3.4.1 Classification of Changes	52	
3.4.2 The Classification Applied to Individual Inputs	57	
3.5 Errors in Measurement	68	
3.6 Omitted Variables	69	
3.7 Evaluation of Potential Research Projects	70	
3.8 Evaluation of Previous Research Expenditures	73	
3.8.1 Introduction	73	
3.8.2 Productivity Analysis	75	
3.8.3 Choice of Index	86	
3.8.4 Benefit-Cost Analysis	87	
3.8.5 Aggregate Production Functions	90	
3.9 Other Models of Technical Change	92	
Description of Variables Employed		
4.1 Introduction	Ģ5	
4.2 The Conventional Variables	96	

IV

	4.2.1 Output	96
	4.2.2 Labor	96
	4.2.3 Capital	97
	4.3 The Research Variables	99
	4.3.1 Classification of Agricultural Research in the University of California	99
	4.3.2 Direct Research Expenditures	103
	4.3.3 Related Research Expenditures	111
	4.3.4 Capital Expenditures Related to Research	115
	4.3.5 Omitted Research Expenditures	116
V	The Aggregate Production Function	
	5.1 Introduction: The Cobb-Douglas Function	118
	5.2 Estimates of Disembodied Technical Change Using the Covariance Model	122
	5.3 Addition of Research and Extension Variables	128
	5.4 Distributed Lags	132
	5.4.1 Introduction	132
	5.4.2 Extraneous Information	133
	5.4.3 Restrictive Specification: Finite Distributed Lags	135
	5.4.4 Infinite Distributed Lags	136
	5.4.5 Estimation of Distributed Lags	139
	5.4.6 Calculation of Rates of Return in Distributed Lag Models	147
	5.5 The Constant Elasticity of Substitution Function	149
	5.5.1 Disembodied Technical Change Using the CES Function	151
	5.5.2 Introduction of a Research Variable into the CES Function	151
VΙ	Results	
	5.1 Some Preliminary Measures of Productivity	152

6.2 Measurement of Disembodied Technical Change	157
6.2.1 The Covariance Model and Cobb-Douglas Function	157
6.2.2 The CES Function	164
6.3 Estimation of the Coefficient on Research	167
6.3.1 The Cobb-Douglas Function	167
6.3.1.1 Direct Estimation Using Non-Linear Least Squares	167
6.3.1.2 Evidence From Individual Studies	180
6.3.1.3 Conditional Estimates	183
6.3.1.4 Results From Alternative Estimation Methods	199
6.3.2 The CES Function	211
VII Conclusions and Suggestions for Further Research	212
Appendices	
A Index Number Construction	22 7
B The Data	232
C Distributed Lags	256
References	

LIST OF TABLES

4.1	Allocable Direct Research Expenditures, University of Californi	a
	A: Agricultural Production	104
	B: Other groups	105
4.2	Allocable Direct Research Expenditures, University of California With Administration Costs Allocated Proportionally	3,
	A: Agricultural Production	106
	B: Other Groups	107
4.3	Non-Allocable Direct Research Expenditures, University of California	110
4.4	Related Research Expenditures, University of California	112
4.5		114
6.1	Total Factor Productivity by Commodity Group and for All Groups, California	156
6.2	Coefficients of the Derived Production Functions	
6.3	Estimates of Returns to Research Using Model 5.17 and Assuming Various Lengths of Simple Lag for Research	162
6.4	The CES Function With Disembodied Technical Change and Unrestric Returns to Scale	ted 165
6.5	The CES Function With Disembodied Technical Change and Constant Returns to Scale	166
6.6	Estimates of Returns to Research Using the CES Function and Assuming Various Lengths of Simple Lag for Research	168
6.7	Cobb-Douglas Function With Second Order Distributed Lag on Research and Unrestricted Returns to Scale	170
6.8	Cobb-Douglas Function With Second Order Distributed Lag on Research and Constant Returns to Scale	17 1
6.9	Cobb-Douglas Function With First Order Distributed Lag on Research and Unrestricted Returns to Scale	173
6.10	Cobb-Douglas Function With First Order Distributed Lag on Research and Constant Returns to Scale	174

6.11	Cobb-Douglas Function With Most General Second Order Distributed Lag on Research and Unrestricted Returns to Scale	176
6.12	The Impact of Research Expenditures on Output, Returns to Research and Internal Rates of Return for 4 Groups Under 5 Different Mode: Specifications	ch, l 178
6.13	Cobb-Douglas Function With Second Order Distributed Lag on Research and Specified Values of Labor and Capital Coefficients	
	A: Fruits and Nuts	186
	B: Vegetable Crops	187
	C: Field Crops	188
	D: Livestock Products	189
6.14	Cobb-Douglas Function With Various Distributed Lag Specifications on Research. Labor and Capital Coefficients Calculated From Factor Shares	5
	A: Fruits and Nuts	193
	B: Vegetable Crops	194
	C: Field Crops	195
	D: Livestock Products	196
6.15	Production Function With Various Distributed Lag Specifications on Research. Labor and Capital Coefficients Calculated From Factor Shares	
	A: Fruits and Nuts	200
	B: Vegetable Crops	201
	C: Field Crops	202
	D: Livestock Products	203
6.16	Cobb-Douglas Function With Most General Second Order Distributed Lag on Research: Alternative Estimation Methods	
	A: Maximum Likelihood Technique of Steiglitz and McBride	207
	B: Modified Maximum Likelihood Technique of Dhrymes et al	207
6.17	CES Production Function With Most General Second Order Distribute Lag on Research and Constant Returns to Scale in Labor and Capital	ed 209
в.1 •	- B.3 Output and Input Data, by Commodity Group	253a
Б.4	Value of Land and Improvements, 1957-59	236

LIST OF FIGURES

2.1	The Information Transfer System	24
2.2	The Benefit Stream From an Individual Change in Technique	29
2.3	Cost and Benefit Streams for an Individual Change in Technique	32
3.1	Production Isoquants For an Individual Firm	42
3.2	Solow's Geometric Index	80
3.3	Change in Output Mix in a Two-Output Economy	84
3.4	The Effect of Changes in Output Mix on Different Indexes	86
3.5	Impact of the Introduction of Hybrid Corn Assuming (A) Perfectly Elastic Supply Function, and (B) Perfectly Inelastic Supply Function	88
3.6	The Innovation Possibility Curve	93
3.7	A Production Function With Localized Technical Progress	94
4.1	Classification of Agricultural Research in the University of California	100
6.1	Total Factor Productivity for the Pacific Region and for California	154
6.2	Total Factor Productivity by Commodity Group and for All Groups, California	1 55
6.3	Proportion of California Processing Tomato Acreage Harvested by Machine	184
6.4	Lag Weights From Selected Models From Tables 6.14C and 6.15C	205
C.1	Constraints on the Admissible Range of Weights in the Polynomial	263