Introduction to Electrical & Electronics Circuits

Course Code: EE

101

Department: Electrical Engineering

Instructor Name: B.G. Fernandes

E-mail id: bgf @ee.iitb.ac.in

Sub Topics:

- Norton's theorem
- Source conversion
- Superposition theorem
- Time domain response of RL and RC circuit
 - Step response
 - Pulse response

Review

Mesh current method

$$[R][I] = [V]$$

R – Known, V- Forcing functionknown

I – to be determinedNodal Voltage method

$$[G][V] = [I]$$

G – Known, I- Forcing function-known

V- to be determined → Having determined [V], branch

Currents Canunation Gettle to decented to the Electronics Circuits

Lecture 4

Thevenin's Theorem

$$V_{TH} = 'V' \text{ across } \left(\frac{V}{R_1 + R_2} \right) R_2$$

$$R_{TH} = R_3 + \frac{R_1 R_2}{R_1 + R_2}$$
 $i_L = \frac{V_{TH}}{R_{TH} + R}$

Norton's Theorem:

 $I_N \rightarrow Current through the short circuit ap the terminals <math>R_1 \rightarrow R_3 \rightarrow R_4$

$$R_N = R_{TH}$$

$$I_{N} = \frac{V}{\left(R_{1} + \frac{R_{2}R_{3}}{R_{3} + R_{2}}\right)} \frac{R_{2}}{R_{3} + R_{2}}$$

Electronics Circuits

Lecture

Source Conversion: RTH

Short circuit the terminals AB Using Thevenin's theorem, $\frac{V_{TH}}{R_{TH}}$

From Norton's theorem $I_{AB} = I_{N}$

$$\Rightarrow \frac{V_{TH}}{R_{TH}} = I_N \qquad \therefore V_{TH} = I_N R_{TH}$$

$$\therefore V_{TH} = I_N R_{TH}$$

$$R_{TH} = 4.5\Omega$$

$$V_{TH} = (\frac{6}{6} \times 3) + 6$$
$$= 9V$$

$$I_{SC} = I_N = 2A$$

Circuit used for nodal analysis

$$\begin{pmatrix}
(G_{1} + G_{5}) & -G_{1} & -G_{5} \\
-G_{1} & (G_{2} + G_{3} + G_{1}) & -G_{3} & \vdots \\
-G_{5} & -G_{3} & (G_{3} + G_{4} + G_{5}) \\
\end{pmatrix} \begin{pmatrix}
v_{a} \\
v_{b} \vdots \\
v_{c} \vdots \\
v_{c} \vdots \\
\end{pmatrix} = \begin{pmatrix}
I + \frac{v_{2}}{R_{5}} \vdots \\
R_{5} \vdots \\
V_{c} \vdots \\
-\frac{V_{2}}{R_{5}} \vdots \\
-\frac{V_{2}}{R_{5}} \vdots \\
\end{bmatrix}$$

Equivalent circuit of a transistor amplifier:

Determine
$$V_2$$
 (V_{TH}) and R_{TH} $\stackrel{\mathbf{2K}}{\longleftrightarrow}$

$$V_2 = -20 \times 10^3 \times 50i_1$$

$$2 \times 10^{-3} = 2 \times 10^{3} i_{1} + \frac{V_{2}}{5000}$$

$$:: i_1 = 1.11 \times 10^{-6} \text{ A}$$

&
$$V_2 = -1.11 \text{ V}$$

$$R_{TH} = \frac{V_{TH}}{i_{sc}}, i_{sc}|_{V_2=0} = -50i_1$$

$$2 \times 10^{-3} = 2 \times 10^{3} \left(\frac{-i_{sc}}{50} \right)$$

$$i_{sc} = -50 \times 10^{-6}, :: R_{TH} = 22.2k\Omega$$

Superposition Theorem:

response in any element of linear network having or more sources is the sum of responses obtained ch source acting separately, with all other sources s ual to zero.

If
$$x_1 \rightarrow y_1$$

& $x_2 \rightarrow y_2$

For a linear system, if $(x \rightarrow x_2)$ $(y_1 + y_2)$

Determine (Assume diode is ideal) Circuit is non-

<u>linear</u>

'V' across
$$1\Omega = (2+i_D)$$

=
$$V_{AB}$$

:. 'i supplied by = $\frac{(2+i_D)}{4} + i_D = \frac{5i_D + 2}{4}$
battery

$$10 = \frac{5i_D + 2}{4} * 4 + (2 + i_D)$$

$$i_D = 1A$$

Time domain response of RC and RL circ

- No transients in purely resistive circuit
- I cannot change instantaneously in an inductor
- V across a capacitor cannot change instantaned

Step response: DC voltage or cauddenly applied to the circuit

RC circuit:
$$V_c = V_f + (V_{ci} - V_f)e^{-\frac{t}{\tau}}$$

where, $\tau = \text{Time constant}$ Circuit is assumed to attain steady state at t = 5 $V_{ci} = \text{capacitor voltage at } t = 0$, V_f is the final v_{al}

Step response of R-C circuit

Case i)

$$v_{c} = 0$$
 at $t = 0$

$$v_{c} = 0$$
 at $t = 0^{+}$

$$V_R = V \& i = \frac{V}{R}$$

At steady state $v_c = V$, $I = 0 :: V_R = 0$

Steady state is attained at t ≈!

At
$$t = T^+$$

$$v_{R} = -v_{c} \& i = -\frac{v_{c}}{R} = \frac{-v_{R}}{R}$$

At steady state, v_c and i = 0.

Observation: 'i' through 'C' change instantaneously

Case 2τ ? T

Vc increases gradually $_{V}$ So, $|v_{c}|$ is a small fractio V at t = T. Initial portion of v_{c} is $line v_{c} \Rightarrow integral of <math>V$

⇒ Integrator

Step response of R-L circuit

'S' at 1:

$$V = iR + L\frac{di}{dt}$$

$$i_{L} = \frac{V}{R} \left(1 - e^{\frac{-t}{\tau}} \right)$$

'S' at 2!i' will decay

$$i_L = \frac{V}{R} e^{\frac{-t}{\tau}}$$

Step response of R-L circuit

$$T ? \tau$$
 $i = 0$ a $t = 0$
 $i = 0$ bt $t = 0^+$

At steady state $\downarrow 0$

Steady state is attained at t ≈

At t =
$$T^+V_1 = 0$$
, $i = I$, $v_L = -IR$

⇒ Differentiator

Observation: 'V' across 'L' c 'change instantaneously

Problem:

a) 'S' is kept open for long time. 'S' is then closed at an instant of time considered to be t = 0 msec. Determine $V_c \& V_o$ at t = 0+ if

Eq circuit when S is open:

I_s charges 'C'

$$\therefore \text{ As } v_c \uparrow, i_R \uparrow \& \quad \therefore i_c \downarrow \qquad Q i_s = i_c + i_R$$

 \Rightarrow At Steady state when $i_c = 0 \& i_R = 5 \text{mA}$

$$\therefore v_c$$
 when $i_c = 0$ is $5 \times 4 = 20V$

$$\therefore v_{c_{(t=0^-)}} = 20V \&$$

$$v_{o(t=0^-)} = 20 - 2 \times 5 = 10V$$

OR

Steady state $V_c = V = i_s R$ and $\tau = RC$

$$V_{o}$$
 at $t = 0$, $t = 0$,

$$v_{c(0^-)} = v_{c(0^+)} = 20V$$

$$\therefore V_{o_{(0^+)}} = 20 - \frac{(20 - 10) \times 2}{3} = 13.33V$$

b) For $t \ge 0$, find the expressions for $V_0(t)$ and $V_c(t)$

V_c attains a new value governed by circuit parameters.

At steady state $i_c = 0$

$$v_0 = 10+5 \times 1 = 15$$
V&

$$v_c = 10 + 5 \times 3 = 25V$$

$$\tau = 3m \sec$$

Equivalent circuit at steady s

$$v_c = v_f + (v_{in} - v_f)e^{\overline{\tau}}$$

$$v_f = 25V, v_{in} = 20$$

$$\therefore v_c = 25 - 5e^{\tau}$$

$$V_o = v_c - \frac{(v_c - 10) \times 2}{3} = 15 - \frac{5}{3}e^{\frac{-t}{\tau}}$$

c) 'S' is again opened at t=3msec sketch V_o for $0 \le t \le 10$ msec

At t = 3msec, $V_o = 14.4$ V. When S is opened equivacircuit is

 $V_o \rightarrow 10$ with $\tau = 4msec$

Electronics Circuits

Lecture