

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/13, 15/10, 15/62, 15/70, 1/21,

A1

(11) International Publication Number:

WO 97/08320

2, 15//0, 1/21,

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

C07K 1/04, G01N 33/53

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95) EP

(34) Countries for which the regional or international application was filed:

DE et al.

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK .	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

_¥

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: V_K1 , V_K2 , V_K3 , V_K4 , $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, C_K , $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3κ2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

<u>Unique cleavage sites:</u>

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

PCT/EP96/03647

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene $V\kappa 1$ was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains $C\kappa$ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7 A/B: Sequences of the synthetic genes encoding the constant domains Cκ(A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector pIG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from pIG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage 11 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102. Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against ß-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-ß, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ß-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving $4 V\kappa$, $3 V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- VK, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: $S_{65}T$ VK1: $N_{34}A$,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_A , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

<u>HuCAL gene</u>	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH <u>6-35-1</u>	VH6-35-1
HuCAL-Vκ1	Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vκ2-6	Vĸ2-6
HuCAL-Vĸ3	Vĸ3-1,-4	Vĸ3-4
HuCAL-Vĸ4	Vκ4-1	Vĸ4-1
HuCAL-V).1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vk or Vi. genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄₂G

VK3: E,D, IseV

Vκ4: Κ₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vκ2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3k2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI)10 (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) trinucleotide are mixtures encoding amino phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 10⁷ and 3.4 x 10¹⁰ for 10-mer and 15-mer library. respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 μ l for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3x2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3k2 encoding the H-CDR3 was replaced by the chloramphenical acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium. shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture.

In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \, \mu \text{g/ml}$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μl of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ I FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at $OD_{600nm} = 0.4$ and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to ß-estradiol, testosterone, LeY, LT-ß, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-ß-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, ß-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA \rightarrow GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BglII), and the wild type ColE1 origin by module M14-Ext2 (via BglII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-V_K2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et *al.*, 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal β-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type β-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa 1\&V\kappa 3$, $V\kappa 2$ and $V\kappa 4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E.~coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 15 buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = $40 \mu g/ml$).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10^8 for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
 - Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
 - Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
 - Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
 - Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
 - Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
 - Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
 - Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research <u>22</u>, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
Vk1-1	9 .	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	-11	3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	. 2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	· 1	7	·
DPL21	1	8	VL8.1
HUMLV801	5	. 8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

₹8 SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	1-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	· 2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2 ·	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3 -	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1, DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	. 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

		•		
Used Name'	Reference	Fai	mily³	Germline genes
VH3-13-24	14		3	V3-21; DP77
VH3-13-25	14		3	V3-20; DP32
VH3-13-26	14		3	V3-9; DP31
VH3-14-1	3		3	12-2; DP29; 3-72; DA-3
VH3-14-4	7		3	YAC-9; 3-73; MTGL
VH3-14-2	4		3	VHD26
VH3-14-3	19		3 .	DP30
VH3-1X-1	1		3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	•	3	LSG11.1; HUM4IGVH
VH3-1X-3	3		3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1		3	LSG4.1
VH3-1X-5	1		3	LSG2.1
VH3-1X-6	1		3	LSG6.1; HUM10IGVH
VH3-1X-7	18		3	3-15; V3-15
VH3-1X-8	1		3	LSG12.1; HUM5IGVH
VH3-1X-9	14		3	V3-49
VH4-11-1	22		4	Tou-VH4.21
VH4-11-2	17		4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23		4	4.44
VH4-11-4	23		4	4.44.3
VH4-11-5	23		4	4.36
VH4-11-6	23		4	4.37
VH4-11-7	18		4	IV-4; 4.35; V4-4
VH4-11-8	17		4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20		4	H7
VH4-11-10	20		4	H8
VH4-11-11	20		4	H9
VH4-11-12	17		4	VH4.16
VH4-11-13	. 23		4	4.38
VH4-11-14	17	1	4	VH4.15
VH4-11-15	11	•	4	58
VH4-11-16	10		4	71-4; V4-59
VH4-21-1	11		4	11
VH4-21-2	17		4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17		4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4 .	H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	.116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	80	9	9,7%	8
MAL-NaCl	108	1	80	13	13,7%	102
STRAb SA-1A	108	₁₁ 1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10.	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	.1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1 ,	L12(1)	0	0,0%	9
H20C3K	108	· 1	L12(2)	3	3,2%	125
CHEB	108	İ	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	· · · 70
RF-KL1	97 ·	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7 .	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU į	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	32
LUNm01	108	1	L12(2)	10	10,5%	6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1	02	2	2,2%	8
			54			

Table 2A:

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	- 1	02	. 0.	0.0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 ′	L12(2)	20	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	. 1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0.0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0.0%	91
HAH 14.1	109	3	A27	1 .	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	- 1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2 ~	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	3	A27	3	3,1%	33
Ti	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH'	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

SUBSTITUTE SHEET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	. 3	A27	-9	9,4%.	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	. 1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0.0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6 .	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	· 108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	. 2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 -	3,2%	121
H-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	¹ L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L 6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to germline ^s	% diff. to germline ⁶	Reference?
		family ³	gene⁴	3	J	
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	- L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
sikv3	86	3	L2/L16	7	8,1%	13
slkv7	99	. 1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	L6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9.0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A2•7	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1 .	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	. 3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54.
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
В6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	80	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	80	14	14,7%	50
BI	108	1	80	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108	1	80	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	· 1 ·	08	21	24,1%	1 .
NI	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	114	2	A3	1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	A 3	. 2	2,0%	118
TR1.6	109	2	A 3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A 3	6 .	6,0%	92
NIM	113	2 .	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3 '	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Tayky306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0,0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20.2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	. 3	A27	21	22,3%	8
HIV-LC13	107	3	A27	. 21	22,3%	8
			61			

•

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
		ramny	gene	J		
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 .	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24.5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC2Ġ	-107	, 3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
TT125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	. 1	02.	20	21,1%	. 7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17 .	5	5.0%	45
FK-001	113	4	B3	0	0.0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	4	В3	1	1,0%	27
			62			

SUBSTITUTE SHEET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	. 2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC ·	113	4	В3	. 3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	. 4	В3	4	4,0%	74
CD5+.27	101	4	В3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	. 4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	. 4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	B3 ·	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	B3	0	0,0%	54
MD4.4	92	4	В3	0	0,0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	.4	В3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4 .	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	- 1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111.	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1,	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	Ο%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	. 1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9.%	78
IGLV1.1	98	1	DPL4	0	Ο%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	. 50
H210	111	. 2	DPL10	4	4%	45
NOV	- 110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8 .	8%	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28
			4			

SUBSTITUTE SHEET (RULE 26)

Table 2B: (continued)

Name ¹	aa² ′	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
wh.	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	. 112	2	DPL11	9	9% -	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	. 2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	30/0	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2 ·	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7 %	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
ВО	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	. 1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	. 3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

SUBSTITUTE SHEET (RULE 26)

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT .	106	.3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE	94	3	DPL23	17	17%	19
VL8	. 98	8	DPL21	. 0	0%	81
MOT	110	3	Humlv318	23	22 %	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8 .	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	40/0	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	. 8	HUMLV801	20	19%	44
K5G5	112	8 .	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	43
SHO	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
СОТ	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	· 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR .	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	5 5
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	7 7
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	. 5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	. 125	1	VH.1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125		VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND .	127	1	VH1-12-1	0	0.0%	55
L7	127	1	VH1-12-1	0	0.0%	54
L22	124	1	VH1-12-1	0	0,0%	54
L24	127	1	VH1-12-1	0	0.0%	54

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41 :	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0 -	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	1	1.0%	54
TNF-E7	116	1 1	VH1-12-1	2	2,0%	42
mAb111	122	1	VH1-12-1	· 7 ·	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	1	VH1-12-2	19	19,4%	76 ·
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	. 76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	.102	. 1 .	VH1-13-15	3	3,1%	26 .
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	- 118	1.1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1 .	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0.0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124	, 1	VH1-12-7	20	20,4%	73
			71			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9.0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2 .	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	. 5	5,1%	35
ZM 1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100	3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13	6	6,1%	5
			72			

メ2_

Table 2C:

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
ВО	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-		÷	•			
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
Π117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	. 3	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0.0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	. 3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0,0%	. 46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8 .	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	- 88
18/2	125	3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31.
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	. 2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0.0%	104
AL3.5	90	3	VH3-13-10	2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2.0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	.12	12,2%	71
33.F12	,116	3	VH3-13-2	4	4,1%	129
4B4	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	. 3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0.0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0.0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114	3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80
			3/		••	

76

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	- 105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
. 19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	. 3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18.0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18.0%	60

Table 2C: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	. 0	0,0%	3
HY18	121	. 4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52 -
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11 - 2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	. 6
58P2	118	4	VH4-11-8	. 0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4	VH4-31-13	3	3,0%	75

₹8

PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
В3	123	4	VH4-21-3	8	8,2%	.53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	·4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	. 0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0.0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0,0%	17

Žς

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
CD+1	98	5 .	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	9 8	5	VH5-12-1	0	0,0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	. 2	2,0%	17
CD-2	98	5	VH5-12-1	. 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17
PBL13	98	.5	VH5-12-1	3	3,1%	17.
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	.4	4,1%	17
					•	

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	, 5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
TuO	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
1-185-37	125	5 .	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
Pi-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	. 123	5	VH5-12-1	. 5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 ·	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0 .	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0.0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C:

(continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference'
		family ³	gene⁴	germline ⁵	germline ⁶	
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	. 0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1.0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3 :	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	4	4,0%	122
VH6.A7	123	. 6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6 .	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5 ,9 %	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VkI-I	28	
I	Vk1-2	0	
1	Vk1-3	i	
1	Vk1-4	0	
1	Vk1-5	7	
l	Vk1-6	0	
j	Vk1-7	0	
I	Vk1-8	2	
+	Vk1-9	9 -	
1	Vk1-10	0	
1	Vk1-11	1	
1	Vk I-12	7	
1	Vk1-13	1.5	
I	Vk1-14	7	
1	Vk I-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
1	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	1	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-I	0	
2	Vk2-2	1	9
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	ı	
	•		

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	
6	Vk6-2	. 0	0 entries
7	Vk7-1	0	0 entries

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	0	•
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	-
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	: 0	0 entries

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	. 1	•
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	
2	VH2-31-2	· . 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
. 2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	
			0.0

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 .	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3 .	VH3-1X-1	0	
3	VH3-1X-2	0	•
3	VH3-1X-3	_. 6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11-15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4 ·	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4 [.]	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0 ·	
4 ·	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

•	Γ											Fran	newo	rk I		
amino acid¹	-	2	က	4	2	9	7	c	6	10	Ξ	12	13	4	15	91
Α		1							1				102		1	
В			1			1									<u>.</u>	
С														1		
D	64															
E	8		14												1	
F									1	6				1		
G																105
Н											•••••					
I		65													4	
К			1													
L		6		21							96		1			
М	1			6 6												
N																
Р								103		1		2			1	
Q			62			8 8					1					
R																
S							89		102	80		103		103		
T		1			88					18						
V		1	9								8		2		98	
W							•									,
X	1															
Y																
-											<u>.</u>					
unknown (?)					••••											
not sequenced	31	31	18	18	17	16	16	2	1							
sum of seq²	74	74	87	87	88	89	89	103	104	105	105	105	105	105	105	105
oomcaa ³	64	65	62	66	88	88	89	103	102	80	96	103	102	103	98	105
mcaa'	D	l	Q	М	T	Q	S	Р	S	S	L	S	Α	S	V	G
rel. oomcaas	96%	88%	71%	992	100%	%66	100%	100%	%86	26%	91%	%86	97%	%86	93%	100%
pos occupied	4	5	5	2	1	2	1	1	3	4	3	2	3	:		

 9^2 SUBSTITUTE SHEET (RULE 26)

Table 4A: Analysis of V kappa subgroup 1

•								•							
amino acid'	17	18	19	20	21	22	23	24	25	56	27	⋖	ω	ں -	Δ.
А			1	1		1			103						
В											1				
. C							105								
D	101														
E	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
K								2			1				
<u>L</u>								1							
М															
N										1					
Р												·			
Q								20			100				
R		94						81							
S		5		1						102					
Т		6		99		103			1	1					
V			98		2										
W										••••••					
X	1			,											
Y	1														
_												105	105	105	105
unknown (?)															
not sequenced	3														
sum of seq²	105	105	105	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		:	:		:	:		
oomcaa,	101	94	98	99	101	1.03	105	81	103		100	105	105	105	105
mcaa*	D	R	V	T	1	T	С	R	Α	S	Q	-	-	-	-
rel. oomcaa ^s	%96	%06	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	100%
pos occupied						:	:	5	:			1	1	1	1

Table 4A: Analysis of V kappa subgroup 1

	CDRI														
amino acid'	ш	ᄠ	28	29.	98	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						•••••
В												1	1		••••••
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	1	4			1						
К						7								95	•••••
L					2	1		101							·····
М										-	~				•••••
N			6		16	42			50						
Р															10
Q												98	103	2	
R					16	3	2							3	
S			41	2	57	32	3	1	1						
T			7			4			4					1	
V			1	4	1			1							
W							21			104					•••••
Χ									1						
Y					1		60				98				
_	105	105													
unknown (?)														3	
not sequenced						1	1	1	1	1	1	1	1	1	
sum of seq ²	105	105	105	105	105	104	104	104	104	104	104	104	104	104	10
oomcaa ³	105	105	41	98	57	42	60	101	50	104	98	98	103	95	10
mcaa ⁴	-	-	S	l	S	·N	Υ	L	N	W	Υ	Q	О	K	Р
rel. oomcaas	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	7000
pos occupied ^s	1	1				:	:	i	:	:			:	:	

Table 4A: Analysis of V kappa subgroup 1

,	Fram	iewor	k II									C	DR II		
amino acid¹	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55
Α			94							50	95				·····
В															
. C															
D										21	1	1	1		•••••
E	1	3			1	1				1		1			33
F						1			3			1			
G	100		1							9	2				
Н									2						
ı		1				1		100					1		
К		95			86					16			2		
L		1				89	103							101	
M								2							
N					10					2		1	25		
Р				104						1					
Q		1			1										6
R					3	3							1	1	
S					1				5	1	1	99	41	2	
Τ		3			1					1	4	1	31		
V			9			9					1		1		
W															
X					1								1		
Y						÷			92	1					
_															
unknown (?)	3												•••••		······
not sequenced															_
sum of seq²	104	104	104	104	104	104	103	102	102	103	104	104	104	104	10
oomcaa³	100	95	94	104	86	89	103	100	92	50	95	99	41	101	6
mcaa*	G	Κ	Α	Р	K	L	L	1	Υ	Α	Α	S	S	L	C
rel. oomcaa³	%96	91%	%06	100%	83%	%98	100%	%86	%06	49%	91%	95%	39%	97%	i i
pos occupied		6	:	1	.8	6	1	2	4	10	6	. 6	9	3	

amino acid'	99	22	58	59	09	61	29	63	64	65	99	29	89	69	70
А	3										2	1	1	1	
В				1											
C			*****								ļ	<u></u>			
D	1												<u></u>		67
E												<u></u>	1		30
F			1	•••••			103					3			
G	2	105							105	4	101	<u> </u>	102		
Н			•••••	••••	•••••							ļ			3
1	3		4		•••••		1	3				<u></u>			<u></u>
K	1					1			••••						1
L						•••••		1					: : :		
M				••••••	•••••									1	
N	6				•••••										
Р	1			101	2	*******				•••••				•••••	•••••
Q										1					
R	1				••••••	103		1		1	1			2	
S	68			2	103	•••••	•••••	98		96		100			
T	19			1		1		2		3	••••••			101	
V			99			······································	1								1
W						•••••		•••••			•••••	•••••••		·	•••••
X			1					•••••			1		1		2
ΥΥ												1			1
-											••••••				
unknown (?)														·····	· · · · · · · · · · · · · · · · · · ·
not sequenced					·										
sum of seq ²	:	105							•••••		***************************************	••••••••		•••••••	105
oomcaa,		105	•••••••••••••••••••••••••••••••••••••••	•••••	***********	•••••	••••••	•••••	105		************	100	************	••••••	67
mcaa*	S	G	V	Р	S	R	F	S	G	. S	G	S	G	T	D
rel. oomcaa ^s	65%	100%	94%	%96	98%	0/86	%86	93%	100%	91%	%96	92%	97%	%96	64%
pos occupied ⁶	10	1	4	4	2	3	3			:			4	4	

Table 4A: Analysis of V kappa subgroup 1

	Fı	ramev	vork	111											
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
Α		3				1				2				1 01	1
В					1				3		2				
. С															
D						1					16	101		, ,	
E											83				
F	102	1	21										73		
G							4				1			2	
Н							-		,						
ı					99	5					ı		17		
К															
L			81					103	1				1		
М															1
N						7	4								1
Р										97					1
Q									97						
R						2	1		2						
S		2		1		86	94			4			1		
Т .		98		102		2	1								97
V	1		2		4			1					11		1
W															
X				1							1	2			
Y	1														-
-															
unknown (?)	-														
not sequenced	1	1	1	1	1	1	1	1	2	2	. 2	2	2	2	3
sum of seq²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	102
oomcaa³	102	98	81	102	99	86	94	103	97	97	83	101	73	101	97
mcaa*	F	T	L	Ţ	l	S	S	L	Q	Р	E	D	F	Α	T
rel. oomcaa ^s	98%	94%	78%	%86	95%	83%	%06	%66	94%	94%	81%	%86	71%	980%	95%
pos occupied ⁵	3	•	:	:		7	:	:	4	3		:		2	6

Table 4A: Analysis of V kappa subgroup 1

4A. Allaiysis Ol V									(CDR I	11					
amino acid'	98	87	88	83	90	91	92	93	94	95	∢	۵	ں	۵	ш	<u> </u>
Α					1	7	1		5	1						
В				2	3								<u></u>			
. C			102													
D							23	5	1					<u></u>		
E							1	1		1	1					
F		7				3			13							
G						1		1	2	1		1	<u></u>			
Н		1		4	6	7	3	1								
<u> </u>							4	1	2	1						
K	1				7		1									
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р									1	82	6					
0				90	86	1	2									
R						1		2	2							
S	1					27	3	58	5	10						
Т						3	1	15	25							
V									5					•••••		
W				1					1							
Χ																
Υ	101	93				42	32	1	23							
-										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa*	Υ	Υ.	С	Q	Q	Υ	Υ	S	T	Р	-	-	-	-	-	-
rel. oomcaas	98%	91%	100%	87%	83%	40%	31%	26%	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied	3	3	1	4	5			10	14		3	2	1	1	1	1

Table 4A: Analysis of V kappa subgroup 1

,			<u> </u>				Fra	mev	vork	IV					•
amino acid'	96	97	86	66	100	101	102	103	104	105	106	٧	107	108	sum
A	1														627
В			·····		1					1					19
·C															209
D	1									15					459
E				,	2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1										,			40
ı	5								1		72				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
М		1									5				77
N	1										1		2		232
Р	6				7									1	620
Q	1				48					1					865
R	6			•••••				6					2	70	413
S	2	2													1636
T	2	82					87	3					2		1021
V	2							1	63		3				440
W	15												•••••		141
X				,									·····		14
Υ	16														564
-	4	1			<u></u>							85		1	1250
unknown (?)					······										7
not sequenced	,===		-	_	$\overline{}$	-								:	589
sum of seq²			÷	:	÷	87	:	:	:					·····	
oomcaa,	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa ⁴	L	T	F	G	G	G	T	K	٧	Ε	1	-	K	R	
rel. oomcaas	20%	92%	%66	100%	55%	100%	100%	9%68	73%	76%	85%	100%	93%	95%	
pos occupied ⁶	17	7	2	1	5	1	1	4	3	5	6	1	4	4	

Table 4B: Analysis of V kappa subgroup 2

								,			Frar	new	ork	1							
amino acid'	_	2	3	4	2	9		8	6	10	=	12	13	14	15	16	17	18	19	20	21
Α																			22		
В						·															
С																					
D	14																				
E	3																15				
F									1	1											
G																22					
Н																					
l		8																			22
Κ																					
L		3		1					17		18				6						
М				15																	
N																					
Р								18				18			15			2 2			
Q						18											7				
R																					
S							18			17										22	
Т					17									21							
V		6	17	1									18		<u> </u>					<u> </u>	
W																					
X																					
Y																					
-																					
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa ³	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	1	٧	М	Ţ	Q	S	Ρ	L	S	L	Р	٧	Τ	Р	G	Ε	Р	Α	S	1
rel. oomcaa'	82%	47%	100%	98%	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	%89	100%	100%	100%	100%
pos occupied ^r	2	3	1	3	1	1	1	1	2	2	1	1	1	1	2	1	2	1	1	1	1

Table 4B: Analysis of V kappa subgroup 2

											CDF	₹1									
amino acid'	22	23	24	25	56	27	۷	8	ပ	۵	ш	ш	28	29	30	31	32	33	34	35	36
Α																					
В		<u> </u>		<u></u>			<u></u>	<u> </u>						<u></u>							
С	.	22	<u>.</u>	<u></u>				<u>.</u>											<u>.</u>		<u>.</u>
D			<u></u>		<u></u>			<u></u>		1			9		1	1		<u></u>	11		<u></u>
E																					
F .															2						
G											1			22			-				
Н										16							1		1		
1																					
Κ			1													1					
L						1		22	13									22			
M									1												
N													10		7	12			9		
Р																					
Ω	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												
W										1										22	••••
Х											**********		1		1		••••••		1		••••
Y										4			1		11		21				1
-												22									
unknown (?)																					
not sequenced																					
sum of seq ⁷	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa¹	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa*	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	Ν	Υ	L	D	W	Υ
rel. oomcaas	95%	100%	95%	100%	100%	35%.	000%	100%	29%	73%	96%	0001	15%	%OO1	20%	35%)5%	%00 1	20%	%001	680%
pos occupied ⁶							:	:						:						1	

Table 4B: Analysis of V kappa subgroup 2

					Fran	new	ork	11								(CDR	. 11			
amino acid¹	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57
Α																			14		<u> </u>
В	ļ				<u> </u>			<u> </u>					<u> </u>	<u>.</u>			<u></u>				<u>.</u>
· C	ļ	<u> </u>	<u></u>		<u>.</u>			<u></u>					<u> </u>			<u>.</u>					<u> </u>
D		ļ			<u></u>		<u></u>			<u></u>	<u>.</u>				<u></u>	<u>.</u>		<u> </u>	7		
Е		<u>.</u>				<u></u>	ļ	<u>.</u>	1	<u></u>			<u></u>	ļ	<u></u>	<u>.</u>					
F .		<u></u>						<u> </u>				<u> </u>	<u>.</u>	<u> </u>		<u> </u>					
G		<u></u>			22	<u></u>				<u></u>		<u></u>	<u> </u>		12			<u></u>	1		22
Н							<u> </u>	<u></u>						<u></u>		<u>.</u>					,
l										1		22									
K			15											5							,
Ĺ	16							,		14	21			14	1						
М																					
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R			7						8	7				1				22			
<u>S</u>							21								2	22	2			22	
T																	1				
V											1				6						•••••
W																					
Х																					
Y													21				1	ر ا			
-																					
unknown (?)																					
not sequenced							1	1	1				1	1	1						
sum of seq ²	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa'	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	22
mcaa¹	L	Q	Κ	Р	G	Q	S	Р	Q	L	L	ı	Υ	L	G	S	N	R	Α	S	G
rel. oomcaa ^s	73%	100%	9/089	100%	100%	100%	100%	100%	. %25	64%	95%	100%	100%	67%	57%	100%	32%	100%	54%	100%	100%
pos occupied"		•			•								•			1			3		

Table 4B: Analysis of V kappa subgroup 2

														Fra	me	wor	k III				
amino acid'	28	29	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	9/	77	78
Α																					
В																					
. С																					
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21										
Н																					
l																	1	21			
Κ																	19				
L																21	1				
М					*******																
N											•••••						*********				••••
Р		22																			••••
Q						******															
R				20	******			1												20	
S				1		22	·····	21		22	*******								20	1	
Т				1	•••••							22		•••••	21	••••			1		
· V	22				1																2
W											********										
Χ																•••••					
Υ																					
-		-																			
unknown (?)		•••													1						
not sequenced								•								1	1	1	1	1	
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	2
oomcaa,	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	2
mcaa'	٧	Р	Ď	R	F	S	G	S	G	S	G	T	D	F	T	L	Κ	1	S	R	١
rel. oomcaas	%00 	%00 l	100%	31%	95%	%00)5%)5%	%00 ₋	%00	95%	%00 00%	%00	%00 00%	92%	%00	%O ₄	100%	95%	95%	7000
pos occupied ⁶								:			:		:					:	: :		

Table 4B: Analysis of V kappa subgroup 2

																	(CDR	Ш		
amino acid'	79	8	81	82	83	84	85	98	87	88	83	90	91	92	93	94	95	٧	82	ပ	۵
Α		20											14			1					
В												1			1						
· C	<u> </u>	<u> </u>			<u>.</u>			<u> </u>		21											
D			1	21	<u>.</u>	<u>.</u>		<u>.</u>		<u></u>			<u>.</u>								
E	19		20		<u>.</u>		<u>.</u>	ļ								<u> </u>		<u></u>	<u></u>		
F	ļ			<u></u>	<u> </u>		<u></u>	<u> </u>		<u> </u>		<u></u>							<u> </u>		
G	1	<u></u>		<u></u>	ļ	21		<u></u>		<u></u>			6			1		2	<u></u>		
Н	ļ	ļ		ļ			<u></u>	<u>.</u>					1		7				ļ		••••••
l l		<u>.</u>			<u></u>		1		<u>.</u>							1					
K		<u></u>																			
L	ļ				ļ		1	ļ						12			2		,		•••••
M	ļ				<u>.</u>						21										
N	ļ				ļ			ļ													•••••
Р		1														2	16	1			······
<u>Q</u>	1											20			13						•••••
R			•••••											1							-
S																3	2				•••••
T														8		7					
V			•••••		21		19														
W			••••													6					
X					,																
Y	_							21	21					_							
-																		14	17	17	17
unknown (?)																					
not sequenced		1																	5		5
	: :	21		;										••••••	•••••••	•••••••	•••••••	••••••	••••••	······	
oomcaa,	19	20	:	:					21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa¹	Ε	Α	Ε	D	٧	••••	••••••	•••••	••••••	•••••	••••••	۵			Q	T	Р	-	-	-	-
rel. oomcaa ^r	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	80%	82%	100%	100%	100%
pos occupied ^a	3	2	2	1					:	:	:	:	:				:	:	1	1	1

Table 4B: Analysis of V kappa subgroup 2

										mev							
amino acid'	ш	щ	96	97	86	66	001	101	102	103	104	105	106	Ø	107	108	sum
Α						-1114											7
В							•					1					:
С)	43
D																	112
E												13					7
. F			1		17												72
G						17	2	16				1					233
Н																	26
l			3										14				94
K										12					13		66
L			2								11						219
M																	37
N																	5€
Р			1														159
Q			1				14										159
R										4						12	126
S																	325
Ţ				17					16								140
V										•	5						146
W			2														3.
X																	:
Y			7														123
-	17	17												13			134
unknown (?)						••••											2
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	21
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa ⁴	-	-	Υ	Τ	F	G	Q	G	T	K	L	Ε	1	-	Κ	R	
rel. oomcaas	100%	100%	41%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied"	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105
SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

											Fra	mew	ork l		•	
amino acid'	-	2	က	4	2	9	7	8	6	10	=	12	13	14	15	16
А		5					2		27						1	
В	1	<u>.</u>		<u> </u>												
. c		<u> </u>	<u>.</u>	<u>.</u>								2		<u> </u>		
D	2	<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>		14					<u> </u>	<u></u>	
E	76		27	<u> </u>		ļ				<u> </u>		<u> </u>			<u> </u>	
F.		1	<u> </u>	<u> </u>	<u></u>	<u> </u>				<u> </u>	<u></u>			1	<u> </u>	
G	1		<u></u>	<u>.</u>	<u>.</u>	<u></u>	<u></u>	<u> </u>	82	<u></u>			<u> </u>	<u>.</u>	1	152
Н			<u> </u>	<u></u>			<u>.</u>			1						
1		75		ļ			<u> </u>		<u> </u>		<u> </u>		<u> </u>			
К	3		<u> </u>	<u> </u>		<u></u>	<u> </u>	<u>.</u>			<u></u>		<u>.</u>			
L		4	1	104			1				150		129		1	
·M	5			13			<u>:</u>	<u> </u>								
N							<u>.</u>							5		
Р				: : : :				124							147	
Q						123										
R					1									•		
S							119		3	1		150	1	141		
T		2			117					147				5	1	
V		1	89	1			1				1		22		1	
W																
Χ		•••••				•										
Υ																
-																
unknown (?)																
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa¹	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa'	Ε	1	٧	L	T	Q	S	Р	G	T	L	S	L	S	Р	G
rel. oomcaas	86%	85%	76%	88%	%66	100%	97%	100%	65%	%66	%66	%66	85%	93%	97%	100%
pos occupied"	6	6					4	:				:	:	:		

Table 4C: Analysis of V kappa subgroup 3

amino acid'								1								CDR
	11	18	19	20	21	22	23	24	25	26	27	٧	В	J	0	. ш
А			178	2					166	1						
В																
. С							181			1						
D	6															
E	146	1									1					
F					7	1										
G	1	1	<u></u>	<u>.</u>					7	1		1				
Н											17					
1		1		5	2											
K		1				•		5								
L					173						1	1				
M														,		
N												9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
T		1		174					7	2		1				
V		1	4	1					1			1				
W								1								
Χ																
Y						1					1					
_												72	182	182	182	182
unknown (?)											1					
not sequenced																
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa'	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	97%	98%	%96	95%	%66	100%	97%	91%	97%	9/088	48%	100%	100%	100%	100%
pos occupied ⁶	3	7	2	4	:		1			6				1	1	1

Table 4C: Analysis of V kappa subgroup 3

						.=			<u> </u>						Fran	nev
amino acid'	и.	28	29	30	.31	32	33	34	35	36	37	38	39	40	41	42
Α				1	1			181								
В																
. C																
D		<u> </u>	1	1	2	1						į				
E	ļ	<u> </u>	<u></u>	<u> </u>		1							1			
F		1	<u> </u>			7	<u> </u>	<u></u>	<u> </u>	1	<u> </u>					
G		<u>.</u>	2	7	3	1		2		<u> </u>	<u>.</u>			1	184	
Н			1		<u>.</u>	2		<u>.</u>		1		12	1	1		
1		24	4	1	1		<u> </u>			<u> </u>	<u></u>	<u> </u>	<u> </u>			··········
K			<u>.</u>	1	1			<u>.</u>		<u> </u>	<u></u>	<u>.</u>	153			
L		8	1			1	176					3				
M							<u>.</u>					<u> </u>	<u>.</u>			··········
N			3	12	25	32						<u></u>				•••••
Р					1				· • • • • • • • • • • • • • • • • • • •					170		•••••
Q					1	1					183	167	1			181
R			10	3	18	16		1			1		27	5		•••••
S		72	86	151	118	4		•••••						5		
T		1			8	1							1			
V		76	68		1		7					3		2		•••••
W			5						185							••••••
Χ																
Υ				1	1	115				183					-	
	182															••••
unknown (?)											1					•••••
ot sequenced							-									
													•		184	•••••
	182						176					167	153	170	184	181
mcaa¹	-	V	S	S	S	Υ	L	Α	W	Y	Q	Q	K	Р	G	Q
rel. oomcaa ^s	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	99%	%06	83%	92%.	100%	%86
pos occupied"	1	6	11	10	13	12	2		1				:		1	3

Table 4C: Analysis of V kappa subgroup 3

4C. Alialysis of	rk II	<u> </u>	- 3													
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	26	57	58
А	176							4	147				176	1		
В																
. C									1							
D								43					2		4	
E																
F				1		1	4									
G					, i			125					2	10	179	
Н							9		1							
1						178								1		168
К			1								7	1				
L		1		179	174	1										
М						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
Q							1									
R			182					1			4	180				
S						ŕ	3	6	4	179	74	1		5		
T	3								11	2	44			164		2
V				3	9			3	19		·		3			15
W							1					1				
X																
Υ							165								2	
-																
unknown (?)			1			·····										
not sequenced																
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa'	Α	Р	R	L	L	١	Υ	G	Α	S	S	R	Α	T.	G	١
rel. oomcaa'	96%	990%	98%	98%	95%	97%	%06	68%	80%	98%	40%	%86	95%	%68	97%	910/0
pos occupied ^a	3	2	3	3	:				:							

Table 4C: Analysis of V kappa subgroup 3

													f	rame	work	: III
amino acid'	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74
А		68	}					3	3	Ĺ	5 3	3 1		3	3	
В		<u>.</u>														
. C																
D		112				1				Ī		152		<u> </u>		<u> </u>
E								1		1		30)			
F		<u> </u>		183									183	3	2	
G	<u> </u>	<u> </u>	<u>.</u>	<u> </u>		184	3	178	_	177				<u> </u>		
Н		1	<u>.</u>	<u>.</u>	<u> </u>								Ī			
1		<u> </u>	<u>.</u>	1	<u> </u>	<u>.</u>		<u>.</u>	<u> </u>					1		3
K		<u> </u>	1	<u>.</u>	<u>.</u>	<u>.</u>		<u> </u>		<u> </u>						
L		<u></u>		1	<u> </u>		<u>.</u>								182	
M	ļ	ļ	<u></u>	<u>.</u>	<u> </u>		<u> </u>	1		<u> </u>	<u></u>					
N		1		<u> </u>					<u> </u>	<u>.</u>	<u> </u>			1	·	
Р	177						•		<u></u>							
Q	ļ						<u>.</u>		<u> </u>			1				
R	ļ		182		2		1				2					
<u>S</u> .	7				180		179	١	185		3			7		2
<u> </u>	1		2		3		2				177			172		179
V		3				·		1		1						
W										1						
X																
Y													1			
-																
unknown (?)								1					•••••			
not sequenced																
	: :		:	:		:		•					**********	184	•••••••	
	: :	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa'	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	T
rel. oomcaas	%96	61%	%86	98%	97%	%66	92%	%96	100%	%96	%96	83%	%66	93%	%66	92%
pos occupied [«]	3	5	3	3	3	•	4	5	1	5				····· ·	······	3

Table 4C: Analysis of V kappa subgroup 3

							•									-
amino acid'	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	68	90
А							3		<u> </u>	174						
В			<u> </u>		1			 		 		••••••••••••••••••••••••••••••••••••••				
· C									2				1	182		
D			1				3	182								
E					149		175									2
F		1							178		2	1	4			
G			3			-	-	1		2				-		
Н											1				1	7
1	178							1	1		9					
K							1									
L				178		1			1		7		1			1
M										1	5					
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
X																
Y	1										1	183	176		1	2
-																
unknown (?)																
not sequenced		-														
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa ₃	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa*	1	S	R	L	Ε	Р	Ε	D	F	Α	V	Υ	Υ	С	Q	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	86%	%66	96%	%66	%66	85%
pos occupied ⁶	4	5	5	:									:		:	8

Table 4C: Analysis of V kappa subgroup 3

				oup		CDR	111							Τ		
amino acid'	91	92	93	94	95	A	В	ن	0	ш	ш.	96	97	86	99	100
А		1	1 8	3 3	3	3								Ī		1
В																
· C	2			1			Ī					2	2			
D		8	5								Ī		1			
E		2										1				
F.	5		2									7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
1			1			1						4				
K			2			1						1		-		1
L				2	7	5						42				
·M		1			1	2		<u>.</u>						••••••••••••••••••••••••••••••••••••••	•	
N		28	71									1				
Р				1	139	24					<u></u>	7	2			9
Q	1		1		3	1						3				114
R	34	2	3		2	2					<u> </u>	19				
S	2	33	58	102	15	2						1	8		Ÿ	
Т		2	13	1	1	-2						1	154			
V					3	· 1						2				
W				69								24				
X													•••••			
Υ	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)															<u>.</u>	
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa,	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa•	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	T	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	99%	100%	100%	100%	100%	25%	93%	%66	%66	%89
pos occupied ^r	8	11	13	········· <u>·</u>	11	12			1	1	1	18		··········· <u>·</u>		6

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

		F	rame	work	(IV	-				7
amino acid'	101	102	103	104	105	106	∢	107	108	sum
А										1345
В										2
С							·			375
D				<u> </u>	23			<u> </u>	•	564
E			3	•	141			<u> </u>		759
F						6				765
G	166					<u> </u>			1	1804
Н					1	 !	<u> </u>			64
I		Ī				143				803
K			152	Ī				157		489
L				54		1	 		2	1596
M						3			(36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		_ 4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				646
W										287
X										
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)		•								4
not sequenced	16	16	15	16	16	16	17	17	. 45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
wcaa,	G	T	Κ	٧	Ε	1	-	K	R	
rel. oomcaa'	%66	97%	%06	0/099	84%	%98	100%	95%	97%	•
pos occupied ^a	2	5	7	•••••	5 (-3	7	1	5	4	

1/3

Table 4D: Analysis of V kappa subgroup 4

C TO. Allalysis of V											Fra	mew	ork	ı				
amino acid'	-	2	က	4	ß	9	7	8	6	10	11	12	13	14	15	16	17	18
А												24					1	
В																		
· C										1						1		
D	25	<u> </u>							26									
E			<u>.</u>														25	
F		<u> </u>																
G		<u></u>			<u>.</u>		<u></u>	<u>.</u>				1				24		
Н																		
1		26																
K						1												
L				1							26				26			
M				24														
N	1																	
Р								26				1						
Q			1			25												
R																		26
S							26			25				26		1		
Т					26													
V			25	1									26					
W																		
X				•••••														
Y																		
_																		
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq?	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa ¹	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D	1	٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	0001	%001	%001	92%	%96	%001
pos occupied ⁶		1			•••••••••••••••••••••••••••••••••••••••	:	1		:		1		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	· -	:	:	1

Table 4D: Analysis of V kappa subgroup 4

						<u> </u>								CDR	1			
amino acid'	19	20	21	22	23	24	25	26	27	⋖	മ	J	۵	w	ட	28	29	30
Α	26						1				1							
В																		
. С					33													
D											1		1			1		
E																		
F ·																		
G				ı			,		·									
Н																		
l			26								1							
K						33										2		3(
L ·											2	31						******
M																		•••••
N				26												30	31	
Р							1								1			
Q									32									
R .									1								1	
S .			Ī				31	33		33				32	32		1	
T		26												1				•••••
V											28	2						••••
W																		•••••
Χ																		
Y													32					
-																		
unknown (?)			·															
not sequenced	7	7	7	7														
sum of seq ²	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa³	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa'	Α	T	١	Ν	С	Κ	S	S	Q	5	٧	L	Υ	S	S	N	N	K
rel. oomcaa ^s	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	92%	97%	97%	91%	94%	0.10%
pos occupied ⁶	1	1	1			1	_											

Table 4D: Analysis of V kappa subgroup 4

											Frar	new	ork i	11				
amino acid'	31	32	33	34	35	36	37	38	39	40	4	42	43	44	45	46	47	70
А				32						2								
В						<u></u>	<u>.</u>										<u></u>	<u> </u>
C																		
D		<u></u>																
Е											1							
F ·																		
G											32							
H						2												
1																		3
K									33						32			
L			33													29	33	
· M																		
N	33																	
Р										31			31	33				
Q			,				32	33				32						•••••
R							1					1			1			•••••
S												,	2					••••
T				1														•••••
V					÷											4		
W					33													•••••
Χ																		••••
Υ		33				31												•••••
-																		
unknown (?)														********		••••••		•••••
not sequenced																		
sum of seq?	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa ³	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	3
mcaa⁴	N	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	:	L	L	ا
rel. oomcaa ^s	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	92%	97%	94%	100%	97%	88%	100%	, %02.0
pos occupied ⁶	1	1	1		1			•••••••		2	:		:	•••••••		:	1	<u>C</u>

Table 4D: Analysis of V kappa subgroup 4

	карі				CDR	11			Γ									
amino acid'	49	20	51	52	53	54	55	26	57	58	59	09	61	62	63	64	65	99
А			30															
В																		
· c						•								1				
D				•								33		Ī		<u> </u>		<u> </u>
E				••••••			32					··········		 			}	 !
F										•••••				33		-	*	
G					-			·	33						1	33	-	33
Н										,								
ı					1													***********
. K																		
L																		
М								•		•••••				•				*********
N					2													
Р				1				•••••			33		1					
Q									••••••									
R						33							32					,
S			1	31	1			33							32		33	
Т			2	1	29													
V							1			33								
W		33																
Х																		
Y	33																	
-																		
unknown (?)																		
not sequenced																		
sum of seq²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaaı	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	33
mcaa*	Υ	W	Α	S	T	R	Ε	S	G	٧	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	88%	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	100%
pos occupied ⁶	: :	1	:	:	:	1				1	1		<u></u>	•••••••••••••••••••••••••••••••••••••••				1

Table 4D: Analysis of V kappa subgroup 4

			·		Fr	ame	wor	k III										. ;
amino acid'	67	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	70
Α														33				3
В																		
С				<u> </u>										-				
D				32										<u> </u>		33		
<u>E</u>	_				<u></u>										33			
F .					32													
G		33		1														
Н				<u></u>														
				<u></u>					33						••••			
K																		•••••
L		•••••					33					32						••••••
· M												1						
N										2	1							•••••
Р																		••••••
Q													32					•••••
R													1					•••••
S	33									30	32							•••••
Ţ			33			33		33		1						•••••		******
<u>V</u>					1	.]											33	•••••
W						į												•••••
Χ																••••		•••••
Υ																		
_																		
unknown (?)														********				
not sequenced																•••••		••••••
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	•			32	;	;	:	:	:	:		:	•	33	·····÷	•••••••••••••••••••••••••••••••••••••••	•••••••	• • • • • • • •
mcaa*	S	G	T	D	F	T	L	Т	1	S	_ [Ε	D	:	Α
rel. oomcaas	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	·····	92%	Ī	100%	0001	•••••••••••••••••••••••••••••••••••••••	100%	92%
pos occupied ^a	1	1	1	2	2	1		1				2		•••••		1	1	<u>ි</u>

Table 4D: Analysis of V kappa subgroup 4

											(DR	!!!					
amino acid'	82	98	87	88	83	90	91	92	93	94	95	∢	8	J	٥	u.	u_	96
A										1					·			
В																		
. С				33														
D								1	1									
E																		
F			1					1										••••
G									2	<u> </u>	÷							·····
. н			1		3													
<u> </u>										2								
K																		
L						1		2		1	3							
M																	<u></u>	
N									4	4								
Р										1	29	1						
Q					30	32					1							
R									1			1					Ĺ	
S							2		23	2								
T .									2	22								••••
V	33																	
W																		
X											,							
Υ		33	31				31	29										
-												13	15	15	15	15	15	
unknown (?)																		
not sequenced												18	18	18	18	18	18	1
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	1
oomcaa3	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	
mcaa¹	٧	Υ	Υ	С	Q	Q	Υ	Υ	S	Τ	Р	-	-	-	-	-	-	F
rel. oomcaa⁵	100%	100%	94%	100%	91%	92%	94%	988%	%0Z	9//	88%	87%	100%	100%	100%	100%	100%	707.0
pos occupied"	1	1	3								3		:	1	1	1	1	

Table 4D: Analysis of V kappa subgroup 4

		<u> </u>				Fr	ame	worl	k IV				
amino acid'	97	98	66	100	101	102	103	104	105	106	⋖	107	108
Α													
В													
С													
D													
E									14				
. F		15											
G			15	4	15								
Н													
<u> </u>										14			
K	ļ						14					13	
L								4					
M	1												
N												1	
Р						1					•••••		
Q				11				1					
R							1		1			1	11
S	2									1			
<u>T</u> .	12					14							
V								9					
W							-	1					
X													
Υ													
-											15		
unknown (?)													
	18	18	18	18	18	18	18	18	18	18	18	18	22
sum of seq ²	15	15	15	15	15	15	15	15	15	15	15	15	11
oomcaa,	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa*	T	F	G	Q	G	Ţ	Κ	٧	Ε	1	-	Κ	R
rel. oomcaaʻ	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%
os occupied ^a	3	1	1	2	1	2		4	2	2	1	3	1

Table 5A: Analysis of V lambda subgroup 1

									<u>. </u>		Frar	new	ork	<u> </u>					
amino acidi	_	2	٣	4	2	9	7	, co	6	10	Ξ	12	13	14	15	16	17	18	19
А											19		18	20		 _			
В																			
· C												•••••							
D															••••				
E				}								•••••			*********			1	
F .																	**********		
G						,	••••						22			42			•••••
Н	2							********						····		•••••			
ı			1								1								•••••
K								•						·····				14	
L			1	41				*********			1							• • • • • • • • • • • • • • • • • • • •	
М																			•••••
N			•					•											
Р				•	•••		41	41						1	41				•••••
Q	22		1			41		••••••	•								42		•••••
R								•••••						·····	•••••			25	•••••
S		39							41			41		·····	1	••••••		1	•••••
T					41									19		••••••		1	
V		1	38					•••••			20		1	•••••	•••••				42
W				•••••					•							•••••		•••••	•••••
Χ								••••											•••••
Y																			•••••
Z	16						••••••	••••		•••••									•••••
-										41									
unknown (?)												İ		······ <u>†</u>					•••••
not sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	4
oomcaa'			••••••				••••••••	•••••	•••••		20	••••••••••	•••••••••••••••••••••••••••••••••••••••		••••••••••••	•••••••	•••••••••••	••••••	•••••
mcaa'						•••••		••••••			٧	······	••••••	******	•••••••••••••••••••••••••••••••••••••••			R	• • • • • • •
rel. oomcaas	:							•••••			49%	••••••	•••••••	•••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	%09	100%
pos occupied ⁶													:	•••••	••••••	••••••		<u>ت</u> 5	•••••

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

											CD	RI							L
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	3	⋖	32	33	34	35
А	2			,				1				2	2			1			
В																			
С				42								į							
D										3			3	1		3		1	
E													1						•••••
F					1				1						1	1			
G						42	3	1			2	39	4	2					
Н			·											2		2		2	
l	1	41			į		<u></u>			1	37	<u> </u>						1	
K										1			1						
L		1									1								
М			,								1								••••
N								2	1	37			13	31	2		1	9	
Ρ																1			
Q												į				1			
R							1	1					5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	2			1		1		7		2	
V				•••••							1					2	40		
W																			4
X				*********															
Υ								•••••						4	1	20		7	<u></u>
Z																			_
-															36				
unknown (?)														•••••					
not sequenced															1	1	1	1	_
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	4
oomcaa,	38	41	42	42	38	42	34	34	38	37	37	39	13	31	36	20	40	19	4
mcaa ⁴	T	1	S	С	S	G	S	S	S	N	ı	G	N	N	-	Υ	٧	5	١
rel. oomcaas	%06	%86	100%	100%	30%	100%	81%	81%	%06	88%	38%	93%	31%	74%	%88	49%	98%	46%	
pos occupied ⁶	:	:	İ		3	:	:	:		:			8	:	:	10	:	:	:

122

Table 5A: Analysis of V lambda subgroup 1

						Fran	newo	rk II											
amino acid'	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	23	54
Α							4	40									1		
В																			
C																			
D						1									13	10	8		
Е										2					5			1	
F ·	1			4										1					
G						- 39							į		1		•		
Н	1	1	6	1								<u> </u>		1				1	•••••
1												<u> </u>	40		1				
К							1			35		<u>[</u>			1	1		18	
L			1	31							41	40						1	
М							1						1					1	
N										1					3	28	30	2	
Р					42	1			42					<u> </u>					
Q		39	34									<u> </u>						15	
R		2		1		1				4					7			2	4(
5								1							9	2	3	1	
T							36	1							1				
V			1	5							1	2	1						
W																			
Χ																			
Y	40													40	1	1			
Z																			
-																			
unknown (?)																			
not sequenced																			
sum of seq ²				• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •					•••••		**********					1	
oomcaa,	40	39	34	• • • • • • • • • • • • • • • • • • • •	42	39	36	40	42	35	41	40	40	40	13	28	30	18	4
mcaa'	Υ	Q	Q	l	Р	G	Ţ		Р	<u> </u>	L	L		Υ	D	N	Ν	K	R
rel. oomcaa ^s	95%	93%	81%	74%	100%	93%	%98	95%	100%	83%	%86	95%	95%	95%	31%	67%	71%	43%	70.0
pos occupied"		3	•		·····		:			•	i	: :			10	•	÷	:	

Table 5A: Analysis of V lambda subgroup 1

	CD	RII																	
amino acid'	55	26	A	8	ပ	٥	, w	57	58	59	9	61	62	63	64	65	99	٧	æ
А	1														5				
В				<u> </u>															
· C																			
D											38								
E																			
F.													38						
G						 !		41			2				36				
Н					<u> </u>	<u> </u>					1				<u></u>				
ı			<u> </u>			<u></u>			17				3	•••••••		<u> </u>			
К		•••••				 !											38		
Ĺ		1								1				••••					•
М		•••••													•••••				
N		••••	···········																
Р	38	•			•		,			38									
Q		********					•••••						••••••						
R		•••••			••••••		••••					42					4		
S	2	40			•••••		•••••			2			•••••	42		42	•••••••••••••••••••••••••••••••••••••••		
Т									**********						1			••••••	
V		•••••							24				1						
w																		•••••	
X									•••••				••••••						
Υ			··········						••••••										
Z		•••••																	
_			41	41	41	41	42				_	-	_			-	-	42	42
unknown (?)		•••••																42	42
not sequenced	1	1						1	1	1	1	<u>:</u>							
	41			41	41	41	42					42	42	42	42	42	42	42	42
oomcaa,							:	:	••••••		38				•••••	•••••		• • • • • • • • • • • • • • • • • • •	•••••
mcaa'	Р	S	-	_		-		G	ν V	P	D	R	F	5	•••••••••••••••••••••••••••••••••••••••	42 S	36 K	42	42
			Q	,o	,o	,o	۰,	•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		••••••	•••••••••••••••••••••••••••••••••••••••	••••••				-	
rel. oomcaa ^s	93%	98%	100%	100%	100%	100%	100%	100%	59%	93%	93%	100%	%06	100%	%98	100%	%06	100%	100%
pos occupied ⁶	3	2	1	1	1	1	1				3			1		•••••••	·····	1	1

Table 5A: Analysis of V lambda subgroup 1

				Fra	me	work	: III.												
amino acid'	29	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84	85
А		1	3		41			24						2				38	1
В																			••••
· c																			
D		1													1	41			37
E													1		24		42		1
F																			
G		40						17		1	42				15				
Н													1						2
· I									41										1
К																			
L							42					41							
М																			
N																1			
Р														2					
Ω		•		•									31						
R		***********						***********					8						
. S	42		1	42		24				20	•••••			20				1	
Т			38			18				21	***************************************			17				3	
V					1			1	1			1		1					
W													1		2				
X																			
Y																			
·Z																			
-														000					
unknown (?)																			
not sequenced																			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa,	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa'	S	G	Τ	S	Α	S	Ļ	Α	١	Ţ	G	L	Q	S	Ε	D	Ε	Α	D
rel. oomcaas	100%	92%	%O6	100%	%86	57%	100%	27%	%86	20%	100%	98%	74%	48%	57%	%86	100%	%06	88%
pos occupied ⁶					:					•	•	•			:			3	

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

										CDI	RIII								
amino acid'	98	87	88	83	90	91	92	93	94	92	۷	8	ں ا	۵	ш	L.	96	97	86
А				22	15			1				16					4	1	
В					<u></u>														
С			42		<u> </u>					į									•••••
D							39	17			7								•••••
E												1					1		
F		2					<u> </u>			1									3
G				14				1				17	1				5	1	
Н		1											1	<u> </u>					
1											1							1	
K											1								
L				1						37			1					1	
M	,				<u>.</u>													1	
N							2	2			9	1							
Р					<u></u>					1							6		
Q				3	į														····
R					į				5	1	2			<u> </u>			2		
S					4		<u></u>	17	35	<u> </u>	18		1				1		
Ţ					22			1	1		1								
<u>V</u>				1				1		1		2					9	34	
W						38		•••••									7		
X								•••••											
Υ	42	39				3		1									3	••••••	
Z																			
											2	4	35	39	38	38	1		
unknown (?)																			
not sequenced				1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	_
sum of seq ²	42	42	42	41	41	41	41	41	41	41	41	4.1	39	39	38	38	39	39	
oomcaa ³	42	39	42	22	22	38	39	17	35	37	18	17	35	39	38	38	9	34	
mcaa'	Υ	Υ	С	Α	T	W	D	D	S	L	S	G	-	-	-	-	٧	٧	
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	35%	%06	44%	41%	%06	100%	100%	100%	23%	87%	
pos occupied	1	:····	:	•	:	*********		:	:	5						:	10	:	:

Table 5A: Analysis of V lambda subgroup 1

•			f	ram	ewo	rk I\	/					
amino acid'	66	100	101	102	103	104	105	106	A	107	108	sum
А												285
В							<u>-</u>	<u>-</u>		Ī		
С								•				84
D										<u>î</u>		224
E		1	•									8
F												8
G	36	31	36							26		559
Н												2
												188
К					30							14
L						25			34			344
М												!
N					1							176
Р											1	29
Q					3				1	<u></u>	18	25
R					1		<u></u>	<u></u>		2		156
S		1						<u> </u>		2		720
T		3		36	1		36					359
V						11		36	1			28
W										1		9
Χ												
Υ												20
Z												1
_						<u>.</u>						52
unknown (?)						<u> </u>						
not sequenced	4	6	6	6	6	6	6	_6	6	10	22	14
sum of seq'	36	36		:		•	36	••••••				
oowcaa,	36	31	36	36	30	25	36	36	34			
mcaa'	G	G	G	······	K	L	T	٧	L	G	Q	
rel. oomcaas	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	4	1	1	5	2	1	1	3	4	2	

127

Table 5B: Analysis of V lambda subgroup 2

											Fra	mew	ork	l					
amino acid'	_	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	19
А			35					30			6		1	1					
В						Ī									<u> </u>	··········			
· c						Ī					Ī								
D				<u> </u>		Ī			••••••		Ī		<u></u>		-	1			
E						-			•••••					<u></u>	<u> </u>				
F .						Ī			********					•••••	<u> </u>				••••
G				,					••••••		}		42			42			
Н	2					<u> </u>								•••••			1		
l			1						••••				•	•					28
К				••••••••••••••••••••••••••••••••••••••															
L				40					*******					•	3				1
М									•••••				•••••						
N				••••••					•••••••										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Р				•			42	6	•••••						40				,
Q	22		4			41											42		
R								6	1				•						***************************************
S		41							40	•••••		42	********	42				43	
T					42				1			<u> </u>	********			······	******	*******	
V		1	2						••••		36		*******						14
W		••••		•			·						•••••					•••••	
Χ									•••••										
Υ									*****			Ī							
Z	16											1							
-										42				·			-		
unknown (?)						1						i					•••••		
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1		Ī			•••••		******
sum of seq?	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa ¹	22	41		:	:	:		30		•••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••••••••••••••••••••••••••••••••••	····÷	••••••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••	••••••
mcaa⁴	Q	S	Α	L	T	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaa ^s	55%	%86	83%	100%	100%	98%	100%	71%	95%	100%	86%	100%	%86	%86	93%	98%	%86	100%	65%
pos occupied ⁶		2		1	1	••••••	1	•••••		1	•		······································	2		2	2		3

Table 5B: Analysis of V lambda subgroup 2

											CD	RI	_						-
amino acid¹	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	⋖	32	33	34	35
Α					3		1						1			1			
В												<u> </u>							
· C				42					1			<u> </u>		1					
D										39		1	4		5				
Е															1				
F.		1											1			4	,		
G						43		1				39	26						
Н								1				į			1	1			
1		41			1						6								
К															4			, <u>.</u>	
L		1														4			
М																			
N								1	3	4		1	4	3	28				
Р								. 1									,		
Q																			
R'									1			<u></u>	2						
S			42		3		3	35	38				5	1	2	4	1	42	
Т	43				36		39	3				1		1					
V											37						41		
W																			43
X																			
Y								1				1		37		29			
Z																			
-															1				
unknown (?)															1				••••
not sequenced			1	1												·	1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	43
oomcaa	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
mcaa'	Ţ	1	S	С	Ţ	G	T	S	S	D	٧	G	G	Υ	Ν	Υ	V	S	W
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	988%	91%	%98	91%	%09	96%	65%	67%	%86	100%	100%
pos occupied	1	1 _		1	1	1			:		;	: :		:	:	:	:	1	٠ 1

Table 5B: Analysis of V lambda subgroup 2

						Fran	new	ork I									·		
amino acid'	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
А					1	4		40											
В			<u> </u>								<u> </u>								
С																			
D	1			1		2									20	1	2	1	
E															20			2	
F .	2													7		1			
G						36									2	2		1	
Н			2	34														1	
1							1				1	9	43				1		
K							40			41							1	21	
L			1	1							38	6							
М												26	- -	-			1		
N				2											1		8	12	
Р					41				43										•••••
Q		41	39							2									·
R		1					1										2		, 43
S					1									2			21	3	
Т							1										7		
V						1		3			4	2				39			
W					<u></u>		·												
X																	Ì		
Υ	41			5										34				2	
Z																			
-					į														
unknown (?)		1	1		<u></u>														
not sequenced																			
sum of seq'	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa'	Υ	Q	Q	Н	Р	G	Κ	Α	Р	Κ	L	М	ı	Υ	D	٧	S	Κ	R
rel. oomcaa³	95%	95%	91%	79%	95%	84%	93%	93%	100%	95%	88%	%09	100%	29%	47%	31%	49%	49%	%001
pos occupied"	:			•	:	:	:	:	1									••••••	

Table 5B: Analysis of V lambda subgroup 2

	CD	R II																	
amino acid'	22	26	⋖	മ	J	۵	ш	57	28	29	09	61	62	63	64	65	99	⋖	ω
А															2				
В																			
. C												<u> </u>				1			
D					<u> </u>						17								
E																			
F												į	42						
G								43	1						41				
Н											2								
1					<u></u>				3										
K			<u> </u>														42		
L											1		1						
M																			
N											19								
Р	43									15									
Q																			
R												43					1		
S		43								28	2			43		42			
T																			
V									39			<u> </u>							
W																			
X																			
Y											2								
Z																			
-	ļ		43	43	43	43	43											43	43
unknown (?)	ļ					••••													
not sequenced																			
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa'	43	43	43	43	43	43	43	43	39	28	19	43	42			•••••		43	43
mcaa'	Р	S		-	-	-	-	······	•			R	F	S	G	S	K	-	-
rel. oomcaa'	100%	100%	100%	100%	100%	100%	100%	100%	91%	9059	44%	100%	%86	100%	95%	%86	98%	100%	100%
pos occupied ^a	1	1	1	1	1			1	:	:	į				1		:		1

Table 5B: Analysis of V lambda subgroup 2

				Fr	ame	worl	c III												
amino acid¹	29	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84	85
Α		3		1	43									36				43	
В																			
· C																			
D		1	2												3	42			39
E											1				38		43		
F .															·				
G		39									42				1				
Н																			2
1									35										
K			1																
L							43					43							
M																			
N			38												1	1			1
Р														2					
Q													41						
R													2						
S	42			1		43				42				Ī					
T			1	41				43		1				2					
V									8					3				·	
W																			
X																			
Y																			
Z																			
-											,								
unknown (?)			1		<u> </u>														1
not sequenced	1																		
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	·43	43	43	43	43	43	43
oomcaa ¹	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	T	Α	S	L	T	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	91%	988%	95%	100%	100%	100%	100%	31%	98%	98%	%001	35%	84%	38%	%86	%00I	%00	91%
pos occupied ⁶	1	3	•		:		:	:	•			:		4	:	•••••••••••••••••••••••••••••••••••••••	····· ·		3

Table 5B: Analysis of V lambda subgroup 2

										CD	R III							Γ	
amino acid'	98	87	88	83	90	91	92	93	94	95	4	ω	U	Ω	ш	u	96	97	86
Α				2	1		21		1								1	1	
В															<u> </u>				
· C			43	11		•	•				••••			••••••					
D					·			3	1	2							1		••••
E							1	1			•••••								
F .		3				3				1		1					5		42
G							1	21	3	4	••••				•••••		1		•••••
Н						1													••••
ı							1	1		1	2						1	7	
К										. 3									
L												1	1				6	5	
М																	1	1	
N									5	7	5		*********	•••••••			1		
Р								1				4		••••••					
Q										1	2								
R							2		3		•••••	1					5		
S		1		30	41			12	23	14	9						1		
Т							16	4	4	3	21								
V							1			Ī	•	Ī		······································			11	28	
W																	5		
X																			
Υ	43	39				39			1	6							4		
Z																			
_										1	3	36	42	43	43	43			
unknown (?)					<u> </u>				2										
not sequenced					1						1							1	1
sum of seq ²	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	42
oomcaa ³	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	42
mcaa*	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	-	-	-	-	٧	٧	F
rel. oomcaas	100%	91%	100%	70%	%86	91%	49%	49%	53%	33%	20%	84%	%86	100%	100%	100%	26%	67%	100%
pos occupied ⁶	1		1		:				;	:						1			

Table 5B: Analysis of V lambda subgroup 2

				Frai	mew	ork	IV					7
amino acid'	99	100	101	102	103	104	105	106	٧	107	108	sum
Α		1			T							280
В									1			
С		<u> </u>								<u> </u>	 -	99
D				<u> </u>								188
E												107
F												113
G	42	33	42				_			19		567
Н												48
1							1					184
К					36							189
<u>L</u>						28			40	:		264
М												29
N					1							146
Р												238
0					1						14	250
R		1			2					4		121
S							1			2		831
Ţ		7		41			40					398
V						14		42	1			327
W												48
X				•••••						-		
Υ .					1			·				285
Z												16
-												555
unknown (?)	·		<u></u>							Ī		8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
sum of seq ²	42	42	42	41	41	42	42	42	41	25	14	
oomcaa ³	42	33	42	41	36	28	40	42	40	19	14	
mcaa*	G	G	G	T	Κ	L	T	٧	L	G	Q	
rel. oomcaas	100%	79%	100%	100%	988%	67%	95%	100%	98%	76%	%001	
pos occupied ⁿ	1	4	1	1	5	2	3	1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

											Frai	new	ork l						
amino acid'		2	က	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
А					1		1	2	7					20	1				27
В																			
· C																			
D			5				10												
E			20										1			1			
F ·	1	1										1			1				
G		-	. 1			×					-					37			
Н																			
l																			
. к									•••••					<u> </u>			2		
L				37					***************************************		4		1	<u> </u>	9				
М														•					
N									•••••					Ī		••••••	······	-	
Р							26	35	1						27			•••••	1
Q	4		4			38											36		
R									•••••		**********					•••••			
S	13	14			1		1		28			37		18					
Т					36			1								İ		38	
V			8	1					2		34		36						10
w				********					*******					·····				•••••	
X											•••••			<u> </u>				•	
Y		23		••••					••••••									••••	
Z											-							•••••	
-	20									38									
unknown (?)				٠															
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa³					•••••				***********				36	•			·····		
mcaa⁴	-	Υ	Ε	L	T	Q	Ρ	Р	S	-	٧	S	٧	Α	Р	G	Q	T	Α
rel. oomcaas	53%	61%	53%	92%	95%	100%	9/089	92%	74%	%001	%68	97%	95%	53%	71%	97%	95%	100%	71%
pos occupied ⁶		:	:	:	:					1			3						3

Table 5C: Analysis of V lambda subgroup 3

											С	DRI						<u> </u>	
amino acid'	20	21	22	23	24	25	26	27	0	'n	28	29	30	31	A	32	33	34	35
А			1					5					. 1	1			21	3	
В	<u> </u>	<u></u>		<u> </u>	<u> </u>														
С		<u> </u>		38														5	
D		<u> </u>					30	1					10			3		1	
E							2	2				1	3	6					
F			<u> </u>											1		2			
G		<u></u>	<u> </u>		9	38		1				23	4						
Н	.	<u></u>	<u>.</u>				1									2		9	••••
1		38	<u> </u>			·					9			1					••••
K								7					2	13					
L											28				<u>.</u>				
M	1													1					
N			2				4	9	·····		1		2			1		2	
Р			1									3							
Q					10				•					4					
R	25							2	•••••			10	1				1		
S	9		1		19			10					11	2		8		14	
Т	3		33					1				1	4	•••••					
V																1	15		
W														••••••					38
X																			
Υ							1			,				8		20	1	4	
Z						_													
-									38	38					37				
unknown (?)																			<u></u>
not sequenced						i									1	1			
sum of seq'	•			:		:				•					•••••••		**********	*** * * * * * * * * * *	*******
oomcaa¹	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R	. 1	Ţ	С	S	G	D	S	-	-	L	G	S	K	-	Υ	Α	S	W
rel. oomcaa ^s	%99	100%	87%	100%	20%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ⁶	4	1	5	1	3	1	5	9	1	····· ·	•••••••	5	9		•		-		1

Table 5C: Analysis of V lambda subgroup 3

					F	ram	ewo	rk II											
amino acid'	36	37	38	33	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
Α								23								1		1	•••••
В		<u> </u>	<u></u>		<u> </u>		<u> </u>			<u></u>									
С		<u></u>	<u></u>		<u></u>		<u> </u>												
D							<u> </u>							<u></u>	9	22	2	8	
E			1												5	3		3	
F	3													2			1		
G						36						<u></u>			9	2			
Н							1							1	3			1	
l					<u> </u>		<u></u>			1			28				1		
K				32	<u> </u>		<u></u>			<u></u>					2	6	1	13	
L			2		İ		<u> </u>			6	33	1							
М										<u></u>	1	<u> </u>	1						···•
N.					į											1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	.
R		1		4		2									1	1		1	3
S				1	2		<u></u>	14									10	1	••••
T							<u></u>									2	4		
V			<u> </u>					1		31	4	37	9						
W							<u> </u>												
Х																			ļ
Y	35							.,,,,,,,,						35					
Z			·																_
_																	<u></u>		ļ
unknown (?)																	<u> </u>	<u></u>	
not sequenced																	<u> </u>		<u>_</u>
sum of seq ⁷		•• •• •••••	38							•	•	:			:	:	•	•	
oomcaa¹	35	37	35	32	36	36	36	23	38	31	33	37	28	35	9	÷	•	:	
mcaa'	Υ	Q	Q	K	Р	G	Q	Α	Р	٧	L	٧	١	Υ	D	D	N	K	ļ
rel. oomcaas	92%	97%	92%	34%	95%	95%	95%	61%	100%	32%	37%	97%	74%	92%	24%	58%	50%	34%	
pos occupied		:	•	:	•	:	÷		:	<u> </u>	1	•	•	:·········	<u> </u>	<u> </u>	-	1	1

Table 5C: Analysis of V lambda subgroup 3

	CE	DR II									· · · · · ·						,		
amino acid'	55	26	٨	8	ပ	۵	ш	57	58	59	99	61	62	63	64	65	99	∢	8
Α		1																	
В																			
С			<u>.</u>			<u> </u>													
D		<u>.</u>	<u>.</u>								9								
E		<u>.</u>	<u>.</u>	<u>.</u>							27								
F		<u>.</u>	<u>.</u>		<u></u>								38						
G								38							38				
н								-											
l I		<u></u>	<u> </u>	<u> </u>					37										
K		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>												
L				<u></u>															
М		<u>.</u>																	
N																	21		
Р	37	1								36									
Q																	•		
R												38							
S	1	36								1				38		38	12		
T																	5		
V																			
W																			
X																			
Y																			
Z				-															
-			38	38	38	38	38					İ						38	38
unknown (?)										<u></u>	1								
not sequenced									_1	1	_1								
sum of seq?	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	38
oomcaa ³	37							38											
mcaa¹	Р		-	-	-	-	-	G	1	:	Ε	R	F	S	G	•••••••••••••••••••••••••••••••••••••••	N	-	-
rel. oomcaa ^s	97%	95%	100%	100%	100%	100%	100%	100%	100%	:	73%	100%	100%	100%	%001	0001	55%	0001	0001
pos occupied ⁶	2	•	1	1	1	1	1	1	•		:	:	1	1	1	••••••	•••••	··· ··	1

Table 5C: Analysis of V lambda subgroup 3

				Fra	amev	vork	: 111	-											
amino acid'	67	89	69					74	75	92	77	78	79	80	-81	82	83	84	.85
Α				1	36	1		1				11	1	34				38	
В							•••••								••••				
· C	·							·											
D																38			37
E							•						10		14		38		1
F .							•												
G		37									28				10				
H.			1							••••••									
1						1	•	1	37	1					1				
К			1		···········				••••••		•••••								
L							38		•••••						2				
М															10				
N			28		Ī					1									
Р					•									Ī					
Ω		1	***********		i							•	25	•					
R										1	10		1						
S	37		2		Ī	11			••••••	23		Ī		1					
Т	1		6	37	Ī	25		36		12		13		2					
V					2				1			14	1	1	1		•		
W																			
X																			
Y														İ					
Z																			
-																			
unknown (?)				·															
not sequenced																			
sum of seq?	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa•	S	G	N	T	Α	Ţ	L	Ţ	1	S	G	٧	Q	Α	Ε	D	Е	Α	D
rel. oomcaas	97%	97%	74%	97%	95%	0/099	100%	95%	97%	61%	74%	37%	%99	%68	37%	100%	100%	100%	97%
pos occupied ⁶												;			;		1		

Table 5C: Analysis of V lambda subgroup 3

										CD	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	⋖	8	J	۵	ш	ш	96	97	86
А					13	3	2			1	2						4		
В															-				
. C			38												<u> </u>				
D	.						32	1	1		6						<u> </u>		
E				1							••••••	2			•		2		
F .		2						2					<u> </u>		1				35
G									3	14	3		1	1			3	1	• • • • • • • • • • • • • • • • • • • •
Н									••••			12	1						
ı						•••••••			••••••			••••						4	
K								•			1	••••••			-				•••••
L				1				1		1	**********	1	1		<u> </u>		4	2	••••••
М		:							1			*********	•••••		<u> </u>		1	1	••••••
N				10			2	1	2		10	1							••••••
Р						•••••			1			•	3				1		•••••
Q				25						1	1			•					••••••
R						10		1	2			2	•	•					•••••
S				1	14	1		28	26	13		1		•		1			••••••
Т					Ī	1		3		7	2								••••••
V					11	••••••	<u> </u>			•••••							18	28	••••••
·W					Ī	23											1		
Χ																*******			•••••
Υ	38	36					1		1		1	3	1				3		•••••
Z																			•••••
-											10	15	31	36	37	36		1	
unknown (?)											******		•••••						•••••
not sequenced				·	<u> </u>		1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaa,			:	:	14	:	:	:		•					• • • • • • • • • • • • • • • • • • • •	** *******		· · · • • • • • • • • • • • • • • • • •	********
mcaa¹					S		:					-	-	-	-	-	••••••	۷.	
rel. oomcaa ^s	_				37%		•				••••••	11%	14%	.7%	%00	2%	•••••••••••••••••••••••••••••••••••••••		%001
pos occupied ⁶			····· ·		3								•	•				•••••••••••••••••••••••••••••••••••••••	1

140

Table 5C: Analysis of V lambda subgroup 3

•			F	ram	ewo	rk IV	<u>, </u>					
amino acid'	66	100	101	102	.103	104	105	106	ď	107	108	sum
А												265
В								•				
С			·····				Ī			1		82
D			Ī					:				225
E			•		2							145
F												90
G	35	31	35							24		461
Н												32
l			į									160
К					30							110
L						28			33			233
М									-			17
N												126
Р									1			249
Q											7	275
R					2	·				<u> </u>		154
S										2		501
Т		4		35			35			<u></u>		347
V						7		35				308
W						7.						62
X												
Υ												211
Z												
_												603
unknown (?)	·					<u> </u>] 1
not sequenced	3	3	3	3	4	3	3	3	4	11	28	89
sum of seq²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa ³	35	31	35	35	30	28	35	35	33	24	7	
mcaa*	G	G	G	T	K	L	T	٧	L	G	Q	
rel. oomcaa'	100%	%68	100%	100%	9%88	%08	100%	100%	97%	89%	100%	
pos occupied ⁶	1	2	1	1	3	Ţ	·······	1	2	•	•	

Table 6A: Analysis of V heavy chain subgroup 1A

														Fr	rame	woi	rk I			
amino acid'	-	2	က	4	က်	9	7	œ	6	10	=	12	13	14	15	16	17	18	19	20
А					1	14			60							24	1			
В		<u> </u>	<u> </u>	<u> </u>			<u></u>	<u></u>										<u> </u>	<u></u>	<u> </u>
· C		<u> </u>		<u> </u>	<u></u>		<u> </u>	<u></u>										<u> </u>		<u> </u>
D			<u> </u>		<u></u>												<u>.</u>	<u> </u>		
E	1			<u></u>	2	1		2		64								<u></u>		
F		<u>.</u>		ļ																
G		<u></u>		<u></u>				58	1	•••••					64					
Н		<u></u>	2	<u>.</u>																
I		2																		
K		2				••••						57	64						60	
L			2	59							3									
М		1																		
N												6								
Р														63						
Q	53		56		2	45														
R						•••••						1							3	
S	ļ						60		3					1		40	63			
Т																			1	
V	2	55		1	55						61							64		64
W																				
X																				•••••
Υ																,				
Z	3																			
-						•••••														
unknown (?)																				••••
not sequenced													-							6
sum of seq ²	:									····· ·	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••••••••••••••••••••••••••••••••••	••••••		•••••••		•••••••	
oomcaa³	:			59	55				······		*******	•••••••••••	••••••	63			••••••	64	60	64
mcaa•	Q	V	Q	L	V	Q	. S	G	Α	E	٧	K	K	Р	G	S	S	٧	K	٧
rel. oomcaas	200 %	92%	93%	980%	92%	75%	100%	97%	94%	100%	95%	89%	100%	98%	100%	63%	98%	100%	94%	100%
pos occupied ⁶	4	4	3	2	4				:	:		:					·····		3	

Table 6A: Analysis of V heavy chain subgroup 1A

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	A	8	32	33	34	35	36	37	38
А				62				1							41					
В																				
· C		63	<u></u>								<u></u>									
D							1								<i>,</i>					
E																				
F.									69					3		3				
G				1		69	41		1		_				23					
Н										1				1			1			
ı			<u></u>					1								61	1		1	
К			63						<u> </u>	1	1									
L			<u></u>												1	2				
М																4				
N								,		2	5						4			
Р															1					
Q																				•••••
R		1	1							1	1									70
S	63				68		1			40	60			2			60			
T	1			2				68		25	3				3		4			
VV															1				69	
W							•											70		
X						•••••														
ΥΥ							27							64						·····
Z																				
-												70	70							
unknown (?)																				
not sequenced	6	6	6	5	2	1														
sum of seq ²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa3	···	.	÷ ·····		·····	·····	••••••	••••••		********	÷	70	•••••	*******	•••••	• • • • • • • • • • • • • • • • • • • •	······			:
mcaa ⁴	S	С	K	Α	S	G	G	T	F	S	S	-	-	Y	Α	1	S	W	V	R
rel. oomcaas	%86	%86	%86	95%	100%	100%	29%	97%	%66	57%	%98	100%	100%	91%	59%	87%	%98	100%	%66	100%
pos occupied ⁶	2	<u> </u>	1	:		:			:	:	:	:		•	:	:	:	:	2	1

Table 6A: Analysis of V heavy chain subgroup 1A

				Fr	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	4	80	ပ	53	54	55
A		70									1				5					
В																				
C																				
D								1								<u></u>	Ī			
Ε								69												
F .													2					3	39	
G			1	68		69			1		69	39			1					68
Н			1										: :							
1							••••••						65	38				34		•
K																				•
L				1			68			1		1						2	4	•••••
М							•••••			67				2				4		
N					•••••					,				4		••••		3	22	•••••
Р			68				1						••••••		44					•••••
Q	69				69							•••••			••••			1	1	1
R	1			1		1	•••••					4	••••••		••••	•		1		******
S					1				1	1				22					1	1
T												••••	1	2	4			1	3	••••••
V										1			2	2	16			1		••••••
W							1		67			26		•						••••••
Χ											••••••									••••••
Υ									1									20		••••••
Z																				•••••
_																70	70			
unknown (?)																				••••••
not sequenced																				••••••
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa¹			68	:	:		:		:	2		•••••••			•••••••		·····			•••••
mcaa'			Р	•••••••••••••••••••••••••••••••••••••••	•••••	••••••	••••••		••••••	••••••			********		Р		•••••••	ı	•••••••••	•••••
rel. oomcaas	%6£	100%	97%	37%	99%	99%)//	%6€	%9(%96	%6(9/95	3%	,4%	3%	%00	%00	49%	%9	97%
pos occupied ^a			:	;	:	:	2	:		•	•						•••••	******		

144

•	С	DR	11																	
amino acidi	26	. 27	28	23	09	61	62	63	64	65	99	67	89	69	2	71	72	73	74	7.5
Α	1	34			69											43				
В																				
· C																				
D	15		1							2							70			
E									1									33		·····
F .				1				48				3		4						·····
G	1						3			67										
Н			1																	
l	4								<u></u>	<u></u>			1	44				1		
K	1		2	1			47		1		1							8		
L	1	1		<u></u>				22				2		1		3				
М														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S		1	2		1										5				70	
T	34	26	4						3				66		65	24		27		67
V					•••••					1		65	3							3
W					•••••												<u> </u>			
X																	ļ			
Υ		<u></u>	1	68			ļ										<u></u>	ļ	ļ	
Z																	2242	<u> </u>	_	
-																	<u></u>	<u></u>		
unknown (?)		<u> </u>	<u>.</u>						<u>:</u>								<u> </u>	<u> </u>	<u> </u>	ļ
not sequenced	<u></u>	<u> </u>	<u>.</u>															<u> </u>		
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	34	34	59	68	69	70	47	48	64	67	69	65	66	44	65	43	70	•	·	•
mcaa¹	T	Α	N	Υ	Α	Q	K	F	Q	G	R	٧	T	1	T	Α	D	E	S	T
rel. oomcaas	%61	0/061	84%	37%	%6€	%001	37%	39%	31%	36%	99%	93%	94%	63%	93%	51%	100%	47%	100%	960%
pos occupied		:	:	•	:	:	:	;	•	:	:	:		:	:	:		:	:	

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ram	ewo	ork I	11												
amino acid¹	9/	77	78	79	80	81	82	A	8	ပ	83	84	85	98	87	88	89	90	91	92
Α			64			1						3			1	70				
В																				
· C																				70
D						2							26	70						
E						64							44							
F .																	1	1	2	
G									1			_								
Н				1				1												
l l		1					3	1	1								2			
К											3									
L					3		63			70							2			
М					67										1		1			
N	4							1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
Т	1	69	2					3	2		4				67					
V			3				4				1						64			
W																				
X												,								
Y				68														69	68	
Z	1																			
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa³	62	69	64	68	67	64	63	41	49	70	62	67	44	70	67	70	64	69	68	70
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	Ε	D	Τ	Α	٧	Υ	Υ	С
rel. oomcaa ^s	9/068	%66	91%	%26	%96	91%	%06	29%	0,00	100%	%68	%96	63%	100%	%96	100%	31%	%6€	97%	100%
pos occupied ^a										•					:	:		2	:	

148

Table 6A: Analysis of V heavy chain subgroup 1A

										CDI	R III									
amino acid'	93	94	95	96	97	86	66	100	٧	8	ပ	۵	ш	ᄔ	9	I	_	_	×	101
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. С					1	1	16	2	į	1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1						
1				2	5	2	2		2	2	1	1			1					
K		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
Р				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16				<u></u>		
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1	<u> </u>	2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa ³	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa*	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa⁵	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶		<u> </u>	<u> </u>	:	:	········	:	<u> </u>	:	<u> </u>		:	:	:				:		į

14 % SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

		•			Fra	me	work	(IV					
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
Α .													670
В													
С				••••									165
D		1	1										308
E	1	1		•••••									297
F	2			•••••	•	••••			•••••	•	••••		226
G			58	•••••	59	1	1		•	•••••	•••••		928
Н				1	••••					•	••••		14
1	3			•••••	••••••				4		••••••		286
К				3		1							325
L	3			1			40	1					386
М	1						3			•••••			189
N				1		,							176
Р	5											1	238
Q				52									494
R				1									351
S											53	51	972
Т						54	11	1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
Х													
Y	34		1							·			542
Z													3
-	1												578
unknown (?)													8
not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	
oomcaa ³	34	59	58	52	59	54	40	54	51	54	.53	51	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ⁵	,2%	97%	95%	17%	100%	%96	71%	%96	93%	%00	%86	%96	
pos occupied ⁶													

148

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	kΙ			
amino acid'		7	က	4	2	9	7	ω	6	0	=	12	13	14	15	16	11	18	19	20
А									32							34				
В																				
С																				
D																				
E		1			5	1				35										.
F .																				
G								27		-					35					
Н			1											1						
l																				1
К		3	1									34	33						33	
L			3	26	1															
M				1	1															
N																				
Р									1					33			1			
Q	21		20			26														
R	1											1	2							
S							27									1	34			
Ţ									1			<u> </u>		1					2	
V	3	21			20						35							35		34
W							٠													
Χ																				
Υ																				
Z																				
-																				
unknown (?)	ļ																			
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	5
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oomcaa,			÷	• • • • • • • • • • • • • • • • • • • •	·····	·····	·	27	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		*******	********	********		:	· · · · · · · · ·	÷ • • • • • • • • • •		
mcaa*	0	٧	Q	L	٧	Q	S	G	Α	E	٧	K	K	Р	G	Α	S	٧	K	V
rel. oomcaa ^s	84%	84%	%08	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	97%
pos occupied ⁶		:	:	:	:	:		:	:			:			i .	:	:	:	:	:

Table 6B: Analysis of V heavy chain subgroup 1B

	_													CI	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	Α	8	32	33	34	35	36	37	38
А				30							2				6					
В																				
. C		35																		
D											1				5		1			1
E			3								1					<u></u>				
F							2		39					2	2					
G				1		40				1	14				1			·		1
Н														3	1		34			
l								1		1						9				
К			28																	
L									1		1					5			2	
M.																23				
N							1			1	3					1	3			••••
Р															-1					
Q			2								1				1		1			1
R			2					2						1						37
S	35				40			5		2	15			2	1					
Ţ				3				32		34					1					
V				1			1			1	1				2	2			38	•••••
W																		40		********
Х													•							
Y							36				1			32	19		1			
Z																				
-												40	٠40							
unknown (?)																				•••••
not sequenced	5	5	5	5													••••••			
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	35			:	:	:	:	;	:	:			:						•••••••	•••••
mcaa*	S			Α	• • • • • • • • • • • • • • • • • • • •		••••••	T	F	••••••	S	••••••	••••••			М	••••••		·····	••••••
rel. oomcaas	100%	100%	%08	96%	100%	100%	%O6	30%	98%	35%	38%	%00I	%00 ₁	%0 <u>%</u>	%81	%89	35%	100%	92%	93%
pos occupied ^a													•				•			

WO 97/08320 PCT/EP96/03647

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	me	worl	k []													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	4	æ	U	53	54	55
Α		39				1					1				7			1		
В																				
. С													·							
D													ì	1					1	
E				1				39										1	1	
F .							. 2						1					1		
G				39		28					39	1			1			9	1	39
Н																		2		
ı										3			34							
К					1														1	
L			1				37						1							
M										37		2	4							
N														35				20	12	1
Р		1	34				1								31					
Q	39				39			1												
R	1					10					×	4						3	1	
S			1			1								2				1	20	
Ţ			4											1					3	
V														1	1					
W									40			33								
X																				
Y																		2		
Z																				
_																40	40			
unknown (?)																				٠
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa³	39	39	34	39	39	28	37	39	40	37	39	33	34	35	31	40	40	20	20	39
mcaa*	Q	Α	Р	G	Q	G	L	Ε	W	М	G	W	l	N	Ρ	-	-	Ν	S	G
rel. oomcaas	%86	%86	85%	98%	%86	70%	93%	986%	100%	93%	%86	83%	85%	88%	78%	100%	100%	50%	50%	%86
pos occupied	:	: · · · · · · · ·		:	:	:	·····										:			:

WO 97/08320 PCT/EP96/03647

Table 6B: Analysis of V heavy chain subgroup 1B

		CDR	11									T								
amino acid'	99	57	58	59	9	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75
А	1	2			27	2				1		1				2				12
В	<u> </u>	<u> </u>	<u> </u>	<u> </u>																
С		<u> </u>	<u>.</u>	<u> </u>	<u> </u>															
D	1		<u> </u>							4							35			
E	2	<u> </u>	2		<u> </u>	1				1						1				
F .		ļ		4	<u></u>			39	ļ					3						
G	15	<u></u>	6		1					34										
Н		<u></u>	1	1													1			
1		1	1									1	1	13						22
. К	2	2	8				36		1							1				
L						1		1						1						
М														23				1		1
N	17		18				1										4			
Р																			3	
Q						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X																				
Υ				33												·				
Z															-					
_																				
unknown (?)								<u></u>									Ī			
not sequenced																				
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	1
rel. oomcaas	43%	988%	45%	83%	68%	%06	%06	0/086	93%	85%	93%	95%	98%	58%	100%	85%	%88	95%	93%	55%
pos occupied ⁶	•	•				4			:	4		:		4			3	:	:	••••••

Table 6B: Analysis of V heavy chain subgroup 1B

						_	_													
				F	ram	ewo	rk II	ı												
amino acid'	9/	11	78	79	80	81	83	ď	8	ں	83	84	85	98	87	88	83	90	91	92
A			35									1	2			40				
В																				
· C																				37
D	1					4							19	40			1			
Е						35							19							
F			1									2							2	
G						1		1	2											
Н																				
l		1															1			
K											1									
L					2		39		<u></u>	39							2			
М					37		1						-	-			2			
N	7					1		1	2											
Р												1							1	
Q																				
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
T	1	39						1			1				40					
٧			4		1					1							33			
W							٠									······				
Χ																				
Υ				39														38	35	
Z																				
_																				
unknown (?)																				
not sequenced						•											1	1	1	
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	3
oomcaa ³	27	39	35	39	37	35	39	35	20	39	37	36	19	40	40	40	33	38	35	3
mcaa*	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Υ	C
rel. oomcaas	968	%8%	9/088	%86	93%	38%	98%	38%	20%	%86)3%	%06	%81	%00 l	00001	100%	35%	97%	%06	920%
	<u>ب ب</u>	ن	ي.	ي	.يىئ	سي	<u></u>	ي			٠		7				عر.	÷	÷	÷≃

Table 6B: Analysis of V heavy chain subgroup 1B

						-				CD	R III									
amino acid¹	93	94	92	96	97	86	66	100	∢	8	U	۵	ш	щ	9	I	_		×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В																				
. С		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
Ε			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5				:	3									i
Н			1				2			1	1									
I		1		1	1	3	1	1	1	1	1	1							1	
К		1			1				1	1		1		1			1			*******
L			2	4	4	4	3		•••••	1	2	1	1	2	••••••	1			2	••••••
M				2		1	1		,					••••	1				4	*******
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
Т		2	1	1	2	2	1	5	1	1	1		1	•••••		1		1		•••••
V	1		7	1	1		1	3	1	2		1		******	1	2	1			1
W			1		1		2	2		1	1				********	1		4		
X																				
Y				5	5	4	2	3	·	4	3	3	2	1	2	· 5	6	2		
Z																				
-				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)				٠				_											3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ¹	•	i			5			•••••			14						••••••	••••••	••••••	
mcaa'	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa⁵	95%	79%	%6	%6	4%	40%	40%	2%	%8	10%	%6	%99	,4%	%6	%6	%6	4%	% 0	2%	5%
pos occupied"		•		:		:	:	;	12	:	14	:	:					:	••••••	••••••

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	: IV					
amino acid¹	102	103	104	105	106	107-	108	109	110	111	112	113	sum
А													340
В													
С													79
D	2												179
E				1									159
F	1												130
G			27		26					1			450
Н	1												51
ı	7								3				113
κ.				2									194
L .							12			1			204
M							2						144
N	1												138
Р	1			1									128
Q				23									253
R							1	<u> </u>					247
S	3								1		18	18	432
T						21	6	<u> </u>	16		1		390
V	6							21		18			342
W		29											158
Χ													
Υ	11												294
Z			-										
-	3										•••••		394
unknown (?)													3
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	458
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa ³	·			23	•••••	21		•	• • • • • • • • • • • • • • • • • • • •	18	18	18	
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%	
pos occupied ⁶	10	1	1	4	1	15	•••••	1	3	3	2	1	

Table 6C: Analysis of V heavy chain subgroup 2

E BC. Allalysis of														Fr	ame	wor	kΙ			
amino acid'	-	2	က	4	2	9	7	8	6	01	=	12	13	14	15	16	17	18	19	20
А										3										
В																				
· C																				
D																				
E	1					6										2				
F																				
G								6												
Н																				
1		1																		
K					3								6		1					
L				6						<u> </u>	6							6		6
М																				
N							1													
Р							1		6					6			1			
Q	2															4				
R					2															
S							4			<u></u>										
Т			6		1					2					5		5		6	
V		5								1		6								
W																		,		
Х																				
Y									,											
Z	3																			
-																				
unknown (?)					•••••															
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	3	5	6	6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa'	Z	٧	T	L	K	E	S	G	Р	Α	L	٧	Κ	Р	T	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	90/9	100%	100%	20%	100%	100%	100%	100%	83%	9029	83%	100%	100%	100%
pos occupied ⁶	:					:		:									:	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

				ē										CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	ω	32	33	34	35	36	37	38
Α								1				1			1					
В											<u></u>									
· C		7							į						2					
D												1								
E																				
F				3			6		1											
G						7					-		4		3		3			••••
Н																				••••
1 .				٠,						<u></u>			1						7	
K				,																
L				2			1		6											
M														5					_	
N											2									
Р																				
Q																				
R						•••••							2		1					
S			1	i.	6			6		6	2	4					4			
T	6		6	\$						1	3	1								
٧				2										2		7				
W																		7		
Χ																				
Υ					1															
Z																				
-																		<u></u>		
unknown (?)																	<u> </u>	<u></u>	<u> </u>	<u> </u>
not sequenced	1																			<u> </u>
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	<u>.</u>
oomcaa ³	6	7	6	3	6	7	6	6	6	6	3	4	4	5	3	7	4	7	7	
mcaa*	T	С	T	F	S	G	F	S	L	S	T	S	G	М	G	V	S	W	1	F
rel. oomcaas	100%	100%	%98	43%	%98	100%	%98	96%	%98	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	300
pos occupied		:	•	:	:	:	2	:	2	:	•	.	:	:	ì	÷	:	:	, 1	

PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

				Fr	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	۷	8	J	53	54	52
Α						6					7									
В			<u> </u>	<u> </u>																
· C																				
D														2					3	6
E								7												
F							•••••							2						
G		1		7		1														
Н												2								1
1												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6							
К					6															
L							7			7		2	1	1				,		
M																·				
N																			3	
Р		5	7																	
Ω	6																			
R	1				1					į		2								
S		1																2		
Ţ																				
V										İ										
W									7			1						4		
X														1				1	1	
Υ														1	1					
Z																				
-															6	7	7			
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa¹	6	-5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	١	D	-	-	-	W	D	D
rel. oomcaa ⁵	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	%98
pos occúpied ⁶				•		:	:	:	:		:	:	:				·····		••••••	

Table 6C: Analysis of V heavy chain subgroup 2

	(CDR	11																	
amino acid'	26	23	28	29	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α																				
В												<u> </u>								
. C																	<u> </u>			
D	5												••••				6	1		
E	1								1											
F		1		1																
G							į.			1										
Н				1																
1														6						
K	1	6							4							6				6
L								7				7								
Μ.																				
N																	1			
. Р						2												•		*******
Q																				
R			2			1			2		7					1				1
S			2		6		7			4		·	1		5				7	
T						4				3			6		2			6		
V														1						
W				1			٠													
X					1															
Υ			. 3	4																
Z																		Ì		
-																				
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa3	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa'	D	K	Υ	Υ	S	T	S	L	K	S	R	L	T	ı	S	K	D	T	S	K
rel. oomcaa ^s	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	96%
pos occupied ^a	3	2	3	4	2	3	1	150		2	1	1	2	2	2	2	2		•	2

Table 6C: Analysis of V heavy chain subgroup 2

				1	ran	iew	ork l	11												
amino acid¹	9/	77	.78	79	80	81	82	٨	8	ပ	83	84	85	98	87	88	83	90	91	92
А													1			5				
В		<u> </u>	<u>.</u>	<u>.</u>								<u> </u>	<u></u>	<u></u>		<u> </u>		<u>.</u>		
. С		<u> </u>	<u> </u>															<u> </u>		7
D											6		<u>.</u>	7						
E													: : : : :							
F					1															
G																2				
Н																				
1						2		1												
К																				•••••
L					6															
M							7			5										
N	5								6.		1									
Р												7								
Q		7																		
R																				·
S	2																			••••
Ţ						5		5						•••••	7		7			•••••
V			7	7	-					1			6	•		***************************************				******
w							•••••			·····				•••••				·····		••••
Х														•••••	*********					•
Υ										•••••			••••••					7	7	
Z																•••••				
-						75		1	1	1										
unknown (?)					••••	•••••						••••	*****	•••••						
not sequenced														•••••	*******					
sum of seq?	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa,	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa*	Ν	Ω	٧	٧	L	T	М	T	N	М	D	Р	٧	D	T	Α	T	Υ	Υ	С
rel. oomcaa ^s	71%	100%	100%	100%	%98	71%	000%	71%	%98	71%	%98	100%	96%	100%	100%	71%	100%	100%	100%	100%
pos occupied ⁶				1	2	:		:	:	:	:	:	2			••••••		•••••	1	
170							•••••••••••••••••••••••••••••••••••••••		6	i.	<u></u>									

Table 6C: Analysis of V heavy chain subgroup 2

										CDI	R III									
amino acid'	93	94	95	96	97	86	66	100	۷.	ω	ပ	Q	ш	ш	ပ	I	_	_	×	101
Α	5							1	2	1										
В																				
. C																				
D																				6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1		y				
Н		1		1																
1			3			2														
κ							1										<u></u>			
L								1	<u></u>	1									1	
M.								1											2	
N				1	2												1			
Р				1	1		1		1						,					
Q			1																	
R		6	1			1			1											
S				1		1	1			į										
T				1			1		1	<u></u>										
V	2	<u></u>	1	1	1		1	1		į	1									
W						1									1			1		
X																				
Υ					2						1	2	1	1	1	,		2		
Z																				
-										2	2	3	4	4	4	6	5	3		
unknown (?)																				
not sequenced			1	1	1	1	_1	1	1	1	1	1	1	1	1	1	1	1	1	_1
sum of seq ²	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa³	5	••••••	3		2	2			2	2	2	3	4	4	4	6	5	3	······	•••••••
mcaa*	Α	R	ı	Н	N	ı	G	E	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	9/0/9	67%	67%	100%	83%	20%	20%	100%
pos occupied ⁶								:	5							1	2	3	3	1

Table 6C: Analysis of V heavy chain subgroup 2

					Fra	mev	vori	١V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	Sui
Α									. 1				3
В													
С													1
D												, i	4
E													2
F													1
G			6	-	6								5
Н													
l											,		2
K				1			1						4
L	1			·			3						7
М													2
N													2
Р	1						1						4
Q				3									2
R				2									4
S											6	3	8
T						6	1		5		·		10
V	3							6		6			6
W		6											2
Χ													
Y	1												3
Z													
-													5
unknown (?)							<u></u>	<u></u>					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	4	5
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	3	
oomcaa ³	3		6	3	6	6	3	6	5	6	6	3	
mcaa*	٧	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	20%	100%	100%	20%	100%	100%	50%	100%	83%	100%	100%	100%	
pos occupied ⁶	4	1	1	3	1	1	4			1	1	1	

Table 6D: Analysis of V heavy chain subgroup 3

														F	rame
amino acid'		2	က	4	2	9	7	œ	თ	10	=	12	13	14	15
Α					1		1			12		1		3	1
В			1			1							1		
· C															
D	1					1				16					
E	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
1												9			
K		5	3										26		
L		1	5	176	43						140			1	
M		12		1											
N										1					
Р													1	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1					r			
V	5	147		1	118						62	195			
W		,													1
X															
Y															
Z	8														
_															
unknown (?)															
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	6
sum of seq²	165	165	167	179	180	180	180	181	202	205	206	206	206	206	206
oomcaaa	110		138	176		:	:	;	·····	;	••••••			***************************************	
mcaa'	Ε	٧	Q	L	٧	E	S	G	G	G	L	V	Q	Р	G
rel. oomcaa ^s	9/2/9	%68	83%	%86	%99	92%	%66	100%	%96	85%	989%	95%	79%	94%	%86
pos occupied	:	:	:			:		:				4	7	4	4

Table 6D: Analysis of V heavy chain subgroup 3

	work	ı													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Α								183	192		1				
В							<u>.</u>							: : : : :	
· C						1	209								
D															7
E	8							8			3		1		
F .		1	1			1						201		201	
G	134								2		207				3
Н															1
1								2				3	17	1	
κ				15											4
L			205		201							6		3	
M			1										1		
N													10		10
P								1					2		
Q			1							•••••					
R	62			191											11
S		206				207		4	2	209			15		174
T	4	1		2				4	4			1	163		
V					8			7	9				1	6	
W															
X												,			
Y															
Z															
-															
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	2
sum of seq ²	208	208	208	208	209	209	209	209	209	209	211	211	210	211	210
oomcaa,	134	206	205	191	201	207	209	183	192	209	207	201	163	201	174
mcaa*	G	S	L	R	L	S	С	Α	Α	S	G	F	T	F	S
rel. oomcaas	64%	%66	%66	92%	% 96	%66	100%	988%	92%	100%	%86	95%	78%	95%	83%
pos occupied ⁶	4						1			1			8		

Table 6D: Analysis of V heavy chain subgroup 3

1				CD	RI									F	rame
amino acid'	31	۷	8	32	33	34	35	36	37	38	39	40	41	42	43
Α	- 1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F				5			,	·							*****
G	13				31		1					2		209	
Н				4			88								
l	1			1		15			12						•••••
К	7										1				202
L	3					3			2	3	1	2	1		
M						193									
N	35			8	3		34								
Р				1			1					4	191		•••••
Q											209		1		1
R	7			·						207		7			8
S	103			17	8		72					3	14		•••••
Т	9				15		10					4	5		
V	2				7	1			197			2			
W					30			212							
X	1														
Y	1			154	19		3			*******	****				
Z															
-		210	210												
unknown (?)	,														*
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa	103	210	210	154	80	193	88	212	197	207	209	187	191	209	202
mcaa*	S	-	-	Y	Α	М	Н	W	V	R	Q	Α	Р	G	K
rel. oomcaa ^s	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	%66	95%
pos occupied ⁶	14	1	1	9			•••••••	1	:	:	:		:	:	

Table 6D: Analysis of V heavy chain subgroup 3

	work	11													
amino acid¹	44	45	46	47	48	49	20	51	52	∢	8	U	53	54	55
А	. 1					77	42		1	2		14		7	
В			3							1					
· C									·				1		
D			1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
ı					3		3	191		1					1
K								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	1
Р		1								1			1		
Q			7				7			10					
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
Т							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6			
W				210			1		8	6	••••••				
X													4		3
Y				1			22		5	58	•••••••••			•	8
Z															
_			· ·							14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa3			************		***************************************	•••••••••	***************************************		••••••	•••••••••••••••••••••••••••••••••••••••	•••••	178	************		••••••
mcaa'	G	L	E	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	7.7%	40%
pos occupied ^a			***************************************				15		11					9	

Table 6D: Analysis of V heavy chain subgroup 3

•	(DR II													
amino acid'	99	52	28	59	9	61	62	63	64	65	99	67	89	69	70
А	9	1	2		174	33							1		
В	1	2													••••
· C				·											
D	11		17			160									
Ε	8	3	2			1			2						
F .	1		3	2								207			
G .	5	1	5	·	4	5				212	1				
Н	1	·	4	,											
ı	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			. 2						
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5	,			6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2												
Х	4		1			1									
Υ	9		151	210			1					1	1		
Z															
-															
unknown (?)													`		
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	T	Y	Υ	Α	D	S	٧	K	G	R	F	T	1	S
rel. oomcaa ^s	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	%86	89%	%86	100%
pos occupied ^a		12	:	:		:	:	:			:	:	:		

Table 6D: Analysis of V heavy chain subgroup 3

										Fran	newo	rk III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	⋖	8	U
Α				57			1	8						1	
В											2				
· C															
D		199	38		2	2			1				10		
Е		6			4				,		5				
F									13						
G													1	4	
Н						1			1		2		2		
ı			1				2	2				3	1	1	
К					186	6							3		
L							****	188		209		3	1		212
M	1				2		10	3	••••	2	`	205		••••	
N		5	170		2	188	•		•••••		3		181	10	•
Р							1		•••		•••••				
Ω					7						199		••••••		••••••
R	211			.,	1	1							2	8	•••••
S				153	8	10	56		3				6	186	••••••
Т					,		142				1		4	2	
V				1				11		1		1			•
w											••••••	•••••			•••••
X		2	2			4					••••		1		
Y									194		***************************************	***********	*********	***************************************	•
Z															
-															
unknown (?)									•••••			***************************************	••••••	•••••	•••••
not sequenced			1	1											
sum of seq ²	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa¹	R	D	N	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	988%	89%	67%	9/068	95%	%66	94%	92%	85%	98%	%001
pos occupied ⁶	2						•								•••••

Table 6D: Analysis of V heavy chain subgroup 3

													· 		
amino acid'	83	84	82	98	87	88	89	90	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В															
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	11
l		8					2						4	15	10
Κ .	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1			•					5	3	9	2
R	177									,		103	9	30	19
S		1			1							3	9	8	11
T	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
Χ				1											
Υ								211	194				12	9	8
Z															
-													1	3	4
unknown (?)															
not sequenced					1	1	1	1	. 1	1	1	1	7	12	13
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	199
oomcaa,	177	149	190	209	207	207	187	211	194	210	173	103	54	30	35
mcaa'	R	Α	Ε	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomçaa ^s	83%	. %02	%06	%66	%86	98%	9/068	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	5				:			. 1							

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

		· · · · · ·			CDI	R III	_								
amino acid'	86	66	100	⋖	œ	U	Q	w	Ľ.	9	Ξ	_		×	101
А	7	13	7	9	6	2	3	5	5		9		13		2
В															
С	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
Е	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
ı	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1							¥.		
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	1					1			
R	4	10	9	, 7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
_	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq'	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa,	34		35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-	<u>-</u>	-	-	-	-	-	-	D
rel. oomcaa ^s	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20		20				12	12				

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork l	v					
amino acid'	102	103	104	105	106	107	108	109	110	11	112	113	sur
Α	1		1			2							176
В		•	<u> </u>	1				Ī	Ī		·		1
С			•	<u> </u>	······································	:				i			47
D	2	•		:			:						112
E		•			1								83
·F	2				Ī								80
G		Ì	140		130		1						274
Н	4							•					17
ı	15				İ				1	1			6
К				13									93
L .	10			1			91					2	188
. M							6						49
N [']	1	Ī				1							84
Р	17					1	1						56
Q				111									94
R				8									14
S	7	1						<u></u>		<u> </u>	118	110	300
T				<u> </u>	<u></u>	123	27	<u></u>	122			1	142
V	34		1			1		125		119			18
W		158											6
Χ													:
Y	82												15
Z													
_	9	2	2	2	2	2	2	2	2	2	1	1	20
unknown (?)													
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	16
sum of seq ²	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa,	82	158	140	111	130	123	91	125	122		-		
mcaa*	Υ	W	G	Ω	G	T	L	٧	T	V	S	S	
rel. oomcaas	45%	%86	97%	82%	%86	95%	71%	%86	%86	%86	%66	%96	
pos occupied ⁶	12	3	:	6	.	:	:	2	3	3	2	:	

Table 6E: Analysis of V heavy chain subgroup 4

														F	ram	ewo	rk I			
amino acid'	-	2	က	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20
Α						Ī			19					1			1		1	
В																	-	<u></u>		
С											<u> </u>					<u></u>		Ī		
D																······································	-			
E						32										44	-			
F																				
G								54	1	53		_				2		•		
Н			4		2												<u></u>			
ı																				
К						······································						1	54						1	
L		7		54							53	19		1				53		50
М								_												••••
N										•								,		
Р									33					51	1	•••				2
Q	52		50		51	20										7				••••
R	1																			••••••
S							33								52				52	
ī									1		·						52			
V		47				1						34								1
W							20	·							•••••	*********				•
Χ																				
Υ													••••••							
Z	1														_					
-																				
unknown (?)																				•
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa¹	52	47	50	54	51	32	33	54	33	53	53	34	54	51	52	44	52	53	52	50
mcaa*	Q	٧	Q	L	Q	Ε	S	G	Р	G	L	٧	Κ	Р	S	Ε	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	98%	100%	%96	94%
pos occupied ^a	3	2		1		3		:	:	:	:	•••••••				:	2	••••••	:	3

172

Table 6E: Analysis of V heavy chain subgroup 4

								- -						CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	4	മ.	32	33	34	35	36	37	38
Α			22											1				_		
В																				<u> </u>
. С		53													1					<u> </u>
D			1								4	1	1	1			1			
Е																				
F					1				22					1	1				1	
G						53	5 3				21	3	4				8			
Н							1							2						<u></u>
			1	-10				1	32										51	
K									<u></u>											
L																			1	
M																				
N										1	1		2	2			1			
Р								3	,											
Q											1									
R						1			<u></u>	3	2		1							5
S				7				51	1	52	25	5	9	1			44		1	ļ
Ţ	53		29	g,							2	1					3			
V				55		1			1										3	ļ
W .							•					1			2	56		57		
Χ																				
Υ					19		1							48	52					
Z																				
···												45	39							
unknown (?)																				<u> </u>
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1				<u> </u>
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa,	· · · · · · · · · · · · · · · · · · ·	-	÷			·	·					45	• • • • • • • • • • • • • • • • • • • •	•••••••			·····	• • • • • • • • • • • • • • • • • • • •	÷ • • • • • • • • • • • • • • • • • • •	5
mcaa'	T	С	T	V	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W	1	F
rel. oomcaas	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	%08	%07	%98	93%	100%	77%	100%	%68	ò
pos occupied ⁶			:	:	:			:	:		•	6				:		1	<u>:</u>	Ť

Table 6E: Analysis of V heavy chain subgroup 4

				Fr	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	∢	8	ပ	53	54	52
А			8	1							1									
В .																				
· C																				
D														1				1		
E				1				56				22	••••••	······································						
F .												1		1						
. G				55		55					56	1		••••••	•••••		,	1		57
Н		2			•	••••							••••••	••••••				24		
ı						••••••	•			54		1	54							
К					54				•	••••	•••••			•••••						
L		1					55			2			••••	••••••	•••••					••••••
. М					••••		••••							•••••		••				
N														21		•••••				
Р		50	49				2													
Q	56							1				1	•••••	******	********	•••••				
R					3	2						9	•••••	1	••••••	•				
S		3									•••••	7	••••••	1	•••••	•			52	********
T	1	1				•••••												8	5	•••••
V										1			3	•••••						******
W									56							•				
Х							•••••													•••••
Y					•		••••••	•••••	1			15		32	•••••			23		,
Z																				
-															57	57	57			
unknown (?)															•••••	•••••				********
not sequenced													******		*********		İ			•••••
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
				55			••••••	•••••	······		••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	***********	•••••	***********	*********	********	•••••••	•••••
mcaa¹				G					W		G		١	Υ	-	-	-	Н	S	
rel. oomcaa ^s	%86	988%	%98	%96	95%	%96	%96	%86	98%	95%	98%	39%	35%	26%	100%	100%	%00 I	42%	91%	100%
pos occupied ^a							:		:	:	:	:		••••••						

Table 6E: Analysis of V heavy chain subgroup 4

	C	DR	11																-	
amino acid'	99	22	28	59	09	61	62	63	64	65	99	29	89	69	20	7.1	72	73	74	75
Α		1									1		1			1				
В																				
C																				
D			2									1					55			•••••
E																	1			
F .				3														1		•••••
G	1									1										
Н			2								į									
l .	1	1							<u></u>	<u></u>	<u></u>	1	1	48		3				
К					1				53		<u></u>							1		5
L						1		55				1				3				
M												-		7				2		
N	2		40		53								2							
Р						54		1												
Q																	1			
R	2								3		56									
S	49		1		2		56			56			1		5 6			1	57	
T	1	54	1			1			1				51		1			52		
. V	1	1										53		2		50				
W																				
Χ																				
Y			11	54																
Z																				
_																				
unknown (?)																				
not sequenced					1	1	1	1				1	1							
sum of seq'	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	5
oomcaa³	49	54	40	54	53	54	56	55	53	56	56	53	51	48	56	50	55	52	57	5
mcaa'	S	T	N	Υ	N	Р	S	L	K	S	R	٧	T	ı	S	٧	D	T	S	k
rel. oomcaa ^s	%98) 5%	70%	35%	35%	%96	%001	98%	33%	98%	%86) 5%	31%	34%	98%	38%	%9€	31%	100%	-/000
pos occupied ⁶	•	•	:	1	<u>;</u>	:	:	:	ì	:	:	:		:	:	:	:	:		

Table 6E: Analysis of V heavy chain subgroup 4

				1	Fram		rk I	11												
	<u> </u>												<u> </u>	·^				_		~
amino acid'] 7E	77	78	75	8	8	82	∀	<u>8</u>	ပ —	83	84	85	98	84	88	 	6	91	95
Α			<u></u>									55	57			57		<u>.</u>		
В			<u> </u>	ļ. 	<u></u>											<u> </u>	<u> </u>			
C				<u></u>	<u></u>									<u></u>						57
D					1						·			57						•••••
E						1														
F			54						1											
G								1												
Н																				
I			1					1			3									
K	3					46		2												
Ĺ		3	1		5 5		53			2							1			
M _.						1	1			1							1			
N	54					3		3	1											
Р																				•
Q		54			1	1														
R						2		2				1								•••••
S			1	57		2	1	44	55		1				2				1	
T						1		4			53				55					
V							2			54		1					55			
w																				
X																				•••••
Y																		57	56	••••
Z																				
-																			_	
unknown (?)																				•••••
not sequenced																				
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa ¹	;				55	:									••••••	******		• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	••••••
mcaa'	N	Q	F	5	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	95%	95%	95%	100%	%96	81%	93%	77%	%9£	95%	93%	%9E	100%	100%	%9€	%00 I	%96	%00I	%86	%001
pos occupied ^a			4	••••		8	:				•							1		

Table 6E: Analysis of V heavy chain subgroup 4

										CDI	R III									
amino acid'	93	94	92	96	97	86	66	90	۷	ထ	ပ	۵	ш	ц.	g	I	_		×	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
С					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			6	1	1	2	1			1	3	1	2	1						
F.				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1			<u></u>			1			1				2
1				1		2	4	1	3	2	3		1						1	
К			2	1						2	2			1				<u> </u>		
L			2	6	7	3	5	3	2	4	1	5	3	3		1		<u></u>		
M				1	4		3	1		2	1		-	-					9	
N				3					2	1	1	5	1	1			2			
Р			-	4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
w			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
_						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa¹	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	9/0/9	89%
pos occupied ⁶	2	4	12	16	16	16	16	16	16	18	18	13	15	13	10	9	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	mev	work	(IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sur
А						1			1				33
В							•••••	•					
С					••••		••••			•••••	•	••••	11
D				••••				••••		•••••		ď	21
E										••••	•••••••		17
F				••••				••••			••••••		13
G		•••	41	•••••	40	1				•••••	•••••		67
Н	1		•••••						1	••••			4
1	9					1				•••••	•••••		28
K				3									27
Ĺ	4					***************************************	19						54
М							9						4
N						1							20
Р	3			2								2	28
Q				29	••••								33
R	1			4			1						25
S	1			1							36	33	98
T				1		33	8		34				53
V	12							36		36			48
W		46											26
Χ													
Y	16												45
Z													
-													46
unknown (?)													
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	42
sum of seq ²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa¹	16	46	41	29	40	33	19	36	34	36	36	33	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	39%	51%	100%	94%	100%	100%	94%	
pos occupied ⁶	8						4				1		

Table 6F: Analysis of V heavy chain subgroup 5

														Fr	ame	wor	k l			
amino acid'	-	2	က	4	5	9	7	80	တ	10	=	12	13	14	15	16	17	18	19	20
. A					1			1	89		, 1			1						
В																				
· C							1													
D										2										
Е	88	1			2				4	93						92				
F																	1			
G	1							92							94					
Н																				
1																				9
K												94	94						77	
L		1		91		2												95		
М											3								1	
N																				
Р				1					1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
S							92										94			
Ţ																				
V		90			89				1		91									
W																				
Χ																				
Υ																				
Z																				
-																				
unknown (?)																				ļ
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq ²	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa,	88	90	92	91	89	90	92	92	89	• • • • • • • • • • • • • • • • • • • •	······	94	94	94	94	•	94	95	÷	9
mcaa'	E	V	Q	L	٧	Q	S	G	Α	E	٧	K	K	Р	G	Ε	S	L	K	
rel. oomcaas	%96	%8€	00001	%66	%9£	37%	%66	%66	34%	%86	%96	%66	%66	%66	%66	970%	%66	100%	80%	7000
pos occupied ⁶	:	:	:	:	:	:	:	:	:		•		2		•	i	:	:	4	:

Table 6F: Analysis of V heavy chain subgroup 5

														С	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	മ	32	33	34	35	36	37	38
А				3	2					4			Ī				8		1	
В																				
· C		96		<u> </u>				1		-	1							<u></u>	<u> </u>	
D				<u> </u>	<u> </u>	<u> </u>		2		<u> </u>	2						1	<u> </u>	-	
E			Ī	<u> </u>		2					1							<u> </u>	<u> </u>	
F .					3		6		97					2						
G			-	92	••••••••••••••••••••••••••••••••••••••	93	<u> </u>			*	1						72			
H										 !	1			4		·				
ı			<u> </u>						 !	4						93				
K			89					1		<u></u>	<u></u>	<u> </u>						<u></u>		
L						•••••									1				2	
М			1			••••							-			1			1	
N			1			••••	*********	2		4	14		<u> </u>	2						
Р					1	••••••	••••													
Q.		,	4		••••••	•••••														·
R			1			1	•••••	2							1		•••••	••••••		9
S	94			1	90		••••	84		10	61			2	2		15	•••••		
T	2				******		••••	5			16					2		••••		••••
V				•••••	******		••••									1			93	*****
W						•••••						•••••	••••••	••••	93		•••••	97	····÷	•••••
X				•••••								•••••		••••						
Υ				******			90						••••	87	••••••					•••••
Z													••••		•••••					•••••
-												97	97							
unknown (?)			1				•••••						•••••	••••••						
not sequenced	1	1	1	1	_ 1	_ 1	1			<u>i</u>										
sum of seq'	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
	•			:	;	:	:	:		•			•••••	••••••		**********	*******	******	93	•••••
mcaa'	S	:		G	S	G	Υ	S	F	T	S	-	-	••••••		1	••••••••	····÷	••••••••	R
rel. oomcaaʻ	%86	100%	93%	%96	94%	97%	94%	37%	100%	7.7%	33%	%00 l	%00	0%0(%96	%96	74%			. %86
pos occupied ^c	1	1	5	•	:	•	- :	:	:		•	:	•••••••••••••••••••••••••••••••••••••••	••••••		ტ 4	·········	•••••	6 4	•••••

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	me	worl	(II													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	25	4	8	U	53	54	55
Α			1			1									1			2	1	
В								<u></u>												
· C										<u> </u>				1				1		
D											•			14				8	93	•••••
E					3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1					
1										1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1							
N																				
Р			96				2							1	93					
Q	97						1													
R		1									1	14						1		
S												1			1			16		9
Ţ		1										3	1		1					
V		2								5	1	1	2							
W									94											
Χ																····				
Y									3					76						
Z																				_
-			ļ													97	97			
unknown (?)	ļ	<u> </u>	<u></u>																	
not sequenced																				_
sum of seq?	······	÷·····	÷	-	<u> </u>	····	·····	•	•	:		······		• • • • • • • • • • • • • • • • • • • •		:	97	:	-	:
oomcaa,	·	÷	÷	÷	÷	· · · · · · · · · · · · · · · · · · ·	÷	·••••••••	······	÷	÷ · · · · · · · ·	·····	·····	•••••	••••••	97	97	.	÷	÷
mcaa'		÷	-	G	ļ		ļ	ļ	W	·····	<u> </u>		1		Р	-	-	 		
rel. oomcaas	100%	95%	%66	100%	97%	99%	97%	100%	97%	92%	%86	77%	95%	78%	96%	100%	100%	7 1%	%96	600
pos occupied ⁶		5	•	:		•	1	i	_			1	_			•			:	

Table 6F: Analysis of V heavy chain subgroup 5

		DR	îI.								·									
amino acid'	26	22	28	29	09	19	62	63	64	65	99	29	89	69	20	7	72	73	74	75
А		6					1									88				
В																				
C		·			1					1										
D	77									2							97			
E	3								2									2		
F.				2	,			91				1		3						
G	1									94								,		
Н											15									
l		4	1					1				3		88						91
К			2															93	·	
L						1		4							2					
M														3						1
N	2	·	14	2									•••••							
Р						95	1		1										1	
Q									91		81							1		
R			78						3		1			1				1		
S	2	2			95	1	95	1					1		95				96	1
Т		85	2		1								96							4
V				1								93		2		9				
W																				
Х																		•••••		
Υ	12			92																
Z																				
-																				
unknown (?)															-					
not sequenced																	Ī			
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa ³	77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	91
mcaa'	D	Ţ	R	Υ	S	Ρ	S	F	Q	G	Ω	٧	T	ı	S	Α	D	Κ	S	1
rel. oomcaas	79%	88%	%08	95%	%86	%86	%86	94%	94%	92%	84%	%96	%66	91%	%86	91%	100%	%96	%66	94%
pos occupied ⁶	:		:								:	:	:		:	2	•••••	:	1	

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk II	ı												
amino acid'	9/	77	78	79	80	81	82	A	ω	.ن	83	84	82	98	87	88	83	90	91	92
Α		1	91								1	96				93				
В																				
. С							1													9
D				1							<u></u>			96						
E						1					1									
F.				1											,			2	6	
G								3	1							4				•••••
Н						3														
l															2		9			
K									<u> </u>		91						1			
L					96					97							2			
M																	84			
N	7							2	2						2					
Р			1																	
Q						93														
R	1						1	1	3		3									
S	87	2	1	1				90	91				96		5					
T	2	94	2					1			1	1	1		88		1			
V			2		1									1						
W	ļ						95													
X	<u> </u>							· · · · · · · · · · · · · · · · · · ·												
Y	ļ	······		94														94	89	
<u>Z</u>	_								Ú											_
	ļ	<u></u>	<u></u>			ļ														
unknown (?)		<u></u>	<u> </u>																	
not sequenced	===		<u> </u>			<u> </u>													2	-
sum of seq ⁷	••••••	÷	÷·····	÷·····	·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	:	:		:	97			•••••		:	 	:	
oomcaa³	······	÷	÷	÷	·····	• • • • • • • • • • • • • • • • • • • •	•••••••••	••••••			-	96 ^	••••••					÷	÷	•••••
mcaa'	S	<u> </u>	Α	ļ	L		W	S	S	<u>:</u>	K		S	. D	I	А	IVI	1	Υ	
rel. oomcaas	%06	97%	94%	97%	%66	%96	98%	93%	94%	100%	94%	%66	%66	%66	91%	% 96	87%	%86	94%	7000
pos occupied			:	•		:	:	:	:	:	:	:	:			2	5	2	2	

Table 6F: Analysis of V heavy chain subgroup 5

		_					·			CD	R III									
amino acid'	93	94	95	96	97	86	66	100	V	8	ပ	0	ш	ıL	9	I	_	_	×	101
А	92		1	1	2		3	4	3	2		1			1			4		2
В																				
· C						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	2			1	1				1			1			
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3.	.10	2	1				5		
Н			10	1		2			1	1		1								
ı				3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1					
M					2	1	1		1	1	1	1							10	
. N				1		2		1	1	2			1					2		
Р			5	1	4	3	1	2				1	1	1	1					
Q		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1						
· V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X																				
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z																				
_						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)													1			1	1	1		
not sequenced	_2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa,	92			• • • • • • • • • •	•••••		********	********		• • • • • • • • • •	16	23	30	30	31	32	30	22	26	37
mcaa'	Α	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	97%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	67%	%29	%69	71%	9/2	49%	29%	82%
pos occupied ⁶	:					:			;	:	:									5

Table 6F: Analysis of V heavy chain subgroup 5

					Fra	mev	vork	: IV					
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
А										,		1	61
В													
С													205
D	1											******	458
E				1									404
F	2					•			******				256
G			41		41		••••••						1065
Н						•••••							44
1	9								2				588
К				3									650
L	2						25	1					549
M							8						303
N						•••••							64
Р	2					1					1		414
Q		••••••		34		•••••••••••••••••••••••••••••••••••••••							612
R		•••••		3									351
S	2										40	39	1545
T	1					40	8		39				604
٧	11							40		41			594
W		43		٠									432
X													
Y	13												738
Z													!
-	2												635
unknown (?)													4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq?	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa ³	13	43	41	34	41	40	25	40	39	41	40	39	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	29%	100%	100%	83%	100%	%86	61%	%86	92%	100%	%86	%86	
pos occupied ⁶	10	1	1	4	1	2	3	2	2	1	2	2	

185

Table 6G: Analysis of V heavy chain subgroup 6

														Fr	ame	wor	k l			
amino acid'	_	2	3	.4	2	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20
А												1								
В																				<u></u>
- C																				
D																				
E												-								
F																				
G								52		67										
Н																				
1																••••				
K													68							
L				52							68	1						67	1	68
М																				
N																				
Р					•				68				•••••	67					- 1	•••
Q	52		52		51	52							•••••	••••••		68				••••
R					1	•				1			•••••							••••••
S					••••••	•	52						•	1	68				66	••••
Т							•••••										68			
V		52			•							66	•••••					1		
W					•••••								••••							••••
Χ																				
Y					••••••		•••••									••••				•••••
Z					•••••								******							•••••
-																				
unknown (?)					•••••															•••••
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq²	-					_										_		68	68	68
oomcaa ³														••••••	***********	•••••		67		
mcaa*	Q	٧	Q	L	Q	Q	S	G	Ρ	••••••	L	٧	K	Р	S	Q	T	L	S	L
rel. oomcaas	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	97%	100%	%66	100%	100%	100%	%66	9,70%	100%
pos occupied ⁶	1	1	1	1		:	: :		: :				:					2		

Table 6G: Analysis of V heavy chain subgroup 6

														CD	RI					
amino acid'	21	.22	23	24	25	76	27	28	29	30	31	4	ω	32	33	34	35	36	37	38
Α	1		67											66	67					
В																				
С		68																		
D							68				1						1			
E																				
F.										2				1	1				1	
G			1			69							3	1	2					
Н																	1			-
ı				64								2					1		70	
К												3								
L																				
М																				
N							1		•	•	2	66					70			
Р									••••••											
Q						•••••														
R						•••••					2	1								7
S	1			1	69	••••		69		68	66		67		3		1			
T	67										2	1	4		1					
V			1	4		•••••			70	<u>-</u>				6					2	
W		1				•••••	٠									74		74		
Χ					•••	•••••														
Y						•••••						1							1	
Z																				
_																				
unknown (?)					•••••	••••••					1									
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa ³	·····	:	:		•••••		68			•••••				•••••	•••••		7	•	<u>:</u>	
mcaa'	T	÷	Α	١	S	G	D	S	•••••	S	S	N	•••••			W		W	- ······	·····
rel. oomcaa ^s	92%	%6(92%	93%	100%	100%	%66	%00.	%00)/%	%68	39%	91%	39%	31%	%00	95%	%00 l	95%	
pos occupied ⁶	:	:	:	:	<u>:</u>		† <u>.</u>	•		•	•	•	:		•	:	-	<u> </u>	:	:

Table 6G: Analysis of V heavy chain subgroup 6

				Fr	ame	wor	k II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	٧	&	ں	53	54	7
А				1									1					1		
В																	<u></u>			<u></u>
. C		<u> </u>	<u></u>																	
D				<u>:</u>												<u></u>				
E								74												
F .														2	1			1		
G						74					74	1		•••••					1	
Н															1					
 																				
K	1				1		7.4			7.4						1			6 6	
L M	1						74			74										••••
N							••••								••••				1	
P			73																1	••••
Q	72	• • • • • • • • • • • • • • • • • • • •				•••••														••••
R					73							73				72			1	••••
S		74	1	73												1		72	·····	••••
Ţ						•••••							73						5	
V						•••••								•••••						
W									74						•••••					7
Χ														•••••						••••
Υ														72	72					••••
Z																				
-																	74			
unknown (?)																				
ot sequenced																				
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa,			• • • • • • • • • • • • • • • • • • • •	73	•••••	••••••	•••••		·····	• • • • • • • • • • • • • • • • • • • •	••••••									••••
mcaa'	•••••••		····•	S	•••••	•••••			····	·····-	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••					····	K	V
rel. oomcaa ^s	97%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	97%	97%	97%	100%	. %26	9/068	7000
pos occupied ["]	:		:	:		:			:			:	:	:						

Table 6G: Analysis of V heavy chain subgroup 6

		DR	11																	
amino acid'	26	22	28	29	99	61	62	63	64	65	99	67	89	69	.70	7	72	73	74	75
А					73	1							2			6		1		
В										<u></u>										
. С				1																
D			68			1									2		73			
E	1		3			7			1											
F .	7																			
G			1				1			8				7						
Н	1																1			
1						1						65	2	71				1		
K		1							67	·····					1					7
L	1					5	***************************************	2				4						1		
М							•••••					1					·····			•••••
N	2	65	1						1						69					•••••
P					1	1							******			66	1			•••••
Q									2		1		******	•••••				•••••		
R		1							3		73		••••••							•••••
S	2	2	1	1	•••••	•••••	73			66			1	******	2	1			73	
Ţ		4								•••••			69	1			İ	71	1	
V						58		72		••••••		4		2		1				•••••
W																	····			
Χ							•••••													
Υ	60	1	•	72		•••••	•••••													••••
Z						••••	•••••	_	•••••											
-																				
unknown (?)		•••••				••••		••••••												
not sequenced							••••								•••••					
sum of seq ²	?=	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa,			<u> </u>									65								
mcaa'	·	:	÷		·····		·····	.	.	••••••	R		T		N		D		S	:····
rel. oomcaas	11%	%8	12%	17%	%6(,8%	%6(17%	11%	39%	9%6	%88	3%	%9 €	13%	%6	%6€	%9(99%	7000
pos occupied ⁶	:	:	:	:	:	:	:	:	:	:		•			:	:	:		:	:

Table 6G: Analysis of V heavy chain subgroup 6

					Fran	1ew	ork l													
amino acid'	9/	77	28	79	80	81	82	٨	8	ပ	83	84	85	98	87	88	89	90	91	92
Α													1			74				
В		<u> </u>	<u> </u>																	
· C																				73
D								3						73						
E													73							
F			71						1										3	
G			<u></u>											1						
Н			<u></u>			2		1												
1			1														2			
K								4												
L		1			74		72													
М							1			1							. 2			
N	74		<u></u>					63											1	
P												70								
Q		72				71														
R		1				1		1												1
S				74				1	73		1	3							<u> </u>	
Т								1			73				74			1		
V			2				1			73							70		<u></u>	
W																			<u> </u>	
X																				
Y																		73	70	
Z																				
-																				
unknown (?)																				
not sequenced												1								
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa,			:	:					***************************************	••••••		70	73	73	74	74	70	73	70	73
mcaa⁴	N	Q	F	S	L	Q	L	N	S	٧	Τ	Р	Ε	D	T	Α	٧	Υ	Υ	С
rel. oomcaa ^s	100%	97%	%96	100%	100%	%96	92%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66
pos occupied ⁶	1	3	3	:		•••••••••••••••••••••••••••••••••••••••	:	:					••••••	**********	••••••	*******				

Table 6G: Analysis of V heavy chain subgroup 6

										CD	R III									
amino acid	93	94	95	96	97	86	66	100	∢	8	U	۵	ш	u.	ŋ	I	_		×	101
Α	6 9		11	1	3	12	4	3	2	5		8						10	1	
В																				
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2							1			
F	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
l				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	- 2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1			-						1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
Т			1	1	4	3	4	4	6	3	1			1						
. V	3	1	4	5	1	9			4		9	5	1	1				į	2	
W			1	6	8		3	2	4								4	4		
X																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
_				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)											<u></u>			6	1	5				
not sequenced				1	2	2	1	_1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq'	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa ³	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	86%
pos occupied							•								••••					

Table 6G: Analysis of V heavy chain subgroup 6

		Framework IV												
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum	
Α							2						494	
В														
С													147	
D								1					403	
E					-	-							186	
F	2										2		150	
G			49		50							•	571	
Н	2												18	
1	9					3		1					304	
K				1			1						293	
L	5						26						632	
М							8					Ţ	31	
N													436	
Р	4			6		,						1	387	
Q		<u></u>		40									539	
R				2									495	
S	4		1			1					43	46	1271	
T						45	4		45				640	
V	21						2	46		48			647	
W		65					5						398	
X														
Y	19									•••••			518	
Z														
· _	2												585	
unknown (?)													13	
not sequenced	5	8	23	24	23	24	25	25	28	25	28	26	580	
sum of seq ²	68	65	50	49	50	49	48	48	45	48	45	47		
oomcaa,			49	40	50	45	26	46	45	48	43	46		
mcaa⁴	٧	W	G	Q	G	T	L	٧	T	٧	S	S		
rel. oomcaa ^s	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	%86		
pos occupied ⁶	9	1	2	4		į		3			2	2		

12

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. &t Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405–1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., ladarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249-5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- 55 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.immunol., 131, 1322-1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. &t Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.lmmunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. &t Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. &t Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 &t Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795-2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc.Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685–691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692–698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand. J. Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149–155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901–906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915–920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.

. 7 .5

- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 29 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- 39 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020;
 Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006–9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718–1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543–1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979) J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- 68 Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)
 J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913–5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3–24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)

 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin. Exp. Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 86 Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992)

 J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041–2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526-1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. &t Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. &t Carson, D.A. (1989) Arthritis &t Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631–1643.
- Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp. Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.lmmunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur. J. Immunol. 22, 1023.
- 5 Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25. 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur J. Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601–607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- 2 Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986) J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter, G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- 22 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.lmmunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193–203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- **40**. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and
 deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42**. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48 The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- 50. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Database of human

Ş
ະ
5
⊇
Sec
5 5
_
nsc
Se
E O
ຽ
g
ď
Š.
_
>
ä
2
5
26
ĭĔ

										fr	'an	Je.	framework	지										<u> -</u>			CDR	R			
-	l	5	7 3 7	7		9 9	L	8	6	01	11	15	13	τl	SI	91	21	81	6l	50	17	77	53	77	52	97	77	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B	J	١ _
VK1 D		-	O	Q M T		O	S	٩	S	S	–	S	A	S	>	9		R	>					C R	~	2	0	-	'		
VK2			>	∑ >	-	Q.	S	Д		S		Δ.	>		<u>م</u>	9	ш	۵	A	<i>J</i>	-	S		C R	S	ν ₀	0	5 7			
VK3		_	>	_	—	O	S	Р	A	 		S		Σ	Δ.	9	ш	<u>ح</u>	∀		_	2		C R	~ ~	S	O	5		1	
VK4		-	>	Σ	\vdash	Q	S	٩		S		A	>	S		9 .	ш	~	∀			Z		C R	~ S	S	O	2	<u>></u>] ,	
																							•								
					ت	CDRI										-	framework	ne	02	1 1	2					-		CDR	=		
	D]	28	58	30	31	32	33	34	35	36	37	38	38	04	17	42	£†	44	St	97	74	87	67	09	19	25	23	24	1
Vk1	ı	ı	1	9	_	S	S	>		A	M	→	O	0	∠ .	۵.	9	X	(A		Р	X		_	>	A	A	S	2.5		<u> </u>
VK2	工	S	1	Z	G	>	Z	>		Ω.	S	>		0	~ ×	<u>م</u>	9	0		S	<u>ا</u>	0			>			5	Z	- R	
Vk3		1	ł	>	S	S	S	>		⋖ .	>	≻ >	O	0	× ~		Б	0		A	4	- X			>	9	A	S		. S	
VK4	>	2	S	z	z	~	Z	<u>></u>	_	A	X	>	0	0 (×	<u>م</u>	9	_ [0	4	4	X I			\	>	> >	<i>(</i>)		₩ ₩	

ces
ence
sedu
Sus s
consen
kappa
7
2A:
oure
Fio

	CDRI	R													framework	ne	N0	논	3		1									
_	99	99	Z S	88	69	09	19	79	٤9	79	99	99	۷9	89	69	04	۱L	7.5	23	77	97	94	LL	87	64	08	18	85	83	184
VK1	0	S	9	>	مـ	S	8	11	S	9	S	9	S	9	-	D	ш.	-	۲	—	_	S	S		a	مـ	ш		ш.	A
VK2	X	2	9	>	٥	\odot	\aleph	ш_	2	G	2	9	S	9	—		ட	\vdash	_	\checkmark	_	S	\propto	>	ш	\forall	ш		>	9
VK3	A	—	Ð	>	Ф	A	ج	ட	2	9	S	G	S	9			ட	—	_	 		S	S	_	ш	۵.	ш		ட	A
VK4	ш	S	9	>	Д	Q	\propto	ц	S	9	S	9	S	9			ட	-		-		S	S	_	O	⋖	ш		>	A
fr	framework 3	ew	5	3				CDRI	\mathbb{E}	_							fr	framework	e K	or	4									
	98	98	۷8	88	68	06	16	76	63	7 6	96	96	۷6	86	66	100	101	105	103	10¢	901	901	۷01	108	60 l					
VK1		>	>	C	O	a	主	>	-	—	ط	۵.	-	ட	9	a	9	-	\prec	>	ш	—	\times	8	-					
Vk2	>	>	>	\mathcal{O}	O	O H	エ	>	—	\vdash	۵	٥	-	ட	9	O	G	\vdash	\checkmark	>	ш	_	\checkmark	\propto	—					
Vk3	>	>	>	\mathcal{O}	O	0 H	工	>		⊢	Δ_	٩	—	ш.	9	O	G	\vdash	\checkmark	>	ш	_	\checkmark	\propto	—				•	
VK4	>	>	>	<u>ں</u>	a	a	エ	>		⊢	ا ت	ما	-	ഥ	9	a	9	⊢	\prec	>	ш	_	\prec	~	—				•	

Figure 2B: VL lambda consensus sequences

<u></u>	1			 .	ר		1			
	28	-	>		,		Z S	9	G	9
	3	Z		1			99	S	S	S
=	а	S	S	1			99	ط	۵	۵
CDRI	72	S	Ś	Ø		=	75	8	\propto	\propto
	97	S	⊢			CDR	23	a	Z	
	52	9	G	G		ပ	25	Z	S	S
	77	S	 	S			19	Z	>	
	23	C	ر ا	C			09		0	
	77	S	S	2			67	>	\succ	>
	12	-	_				· 84	—	_	-
	50	├	—	\propto		,	L t		Σ	>
	61	>	_	A			97		_	一
	81	8	2	 			94	\checkmark	\checkmark	>
	11	a	O	O		7	77	Д	Д	م ا
	91	9	9	G		framework 2	43	⋖	A	∢
	91	مـ	ط	٩		e N	77	—	\checkmark	a
<u>-</u>	τl	⋖	S	⋖		an l	.17	G	G	9
framework 1	13	9	9	>		fr	07	٥	۵	م ا
ew	15	S	2	2			38	_	エ	\prec
am	11	>	>	>	, .		38	O	O	0
fr	01	ı	ı	ı			37	O	O	a
	6	S	S	2	<u>.</u> !		36	>	>	>-
	8	مـ	A	Ь			35	≥	≥	3
	L	۵	Д	T Q P			34	S	S	8
	9	O	T O P	O			33	>	>	4
	S	-				=	32	>	>	>-
	7					CDRI	A	I	Z	١.
	3	>	A	ш			31	Z	>-	\times
	2 9 5 7 8 7 1	5	Q S A L	>			33 33 30 30 30 30 30 30 30 30 30 30 30 3	5	GGYNYVS	
	1	0	a	S	}		58	9	9	9
		MIQSVLTQP	W2	M3 5 Y				MIGSN-YVS	W2	VA3 G D K - Y A

Figure 2B: VL lambda consensus sequences

	[
	8	>	>	>-						
9	8	>	>	>-						
9	8									
1	8	\forall	\forall	A						
3	8	ш	ш	للا						
7	8									
L	8	ш	ш	ш						
0	8	S	\forall	\forall						
6	1	O	O	O						
8	7	_		—			101	9	9	9
	7	<u>G</u>	Ð	9		-	\forall			
i	7	—	S	S			901	>	>	>
	7	_		_		_	SOL	 -	—	—
	1	\triangleleft	—	⊢		۲ 4	104	ب		_
3	2	_	_			<u></u>	103	\vee	\checkmark	¥
	Z	S	S	—		framework	105	⊢	—	<u>-</u>
	7	\triangleleft	⋖	A		rar	lOl	ဗ	G	9
	Z	S	-	<u> </u>		ا 🗝	100	ပ	Ö	9
	9	—	z	Z			66	ပ	9	9
	9	9	G	9		Ì	86	ய	ய	u_
	9	S	S	S		İ	۷6	>	>	>
1	9	\checkmark	\checkmark	Z			96	مـ	۵	۵
	9	S	S	S			96	ط	۵	ط
•	9	G	G	G			⊅ 6	 	├	-
1	9	S	S	S		CDRIII	63	 -	—	-
	:9	ш	ட	LL		9	76	>	>	>-
	9	~	\propto	\propto			16	エ	I	0 H
)9		Z	ш			06	a	O	O
	39	Ъ	S	۵			68	a	O	O
	35	>	>				88	<u>ں</u>	ر ا	C
ē		\ \ \	W2	M3				3	W2	% 3

S
نة
ت
=
ď
sedne
р
په
S
2
=
2
-
ಜ
=
ō
consensus
.=
G
_
chain
_
heav
á
تة
ڪ
_
>
<i>:</i> :
2C:
7
ىە
Ξ
gur
Ō
• —

											49	A	—	\overline{Y}	—	-	-	Z
											99	-	9		S	S		>
	30	S	—	S	S	S	<u>—</u>	S			99	9	9		9	9	S	\geq
	67	ш	ய		ட	_	ட	>			75	ய	S		9	S		\checkmark
	87	<u> </u>	—	S	—	S	S	S		=	23	_	Z	≥	S	>	9	S
	72	9	>	ш.	ட	9	>	D		CDR	3	,	1	1	1	1	1	1
	97	9	9	9	9	G	9	9			8	1	ı	ı	ı	ı	1	\propto
	52	S	S	S	S	S	S	S			A	م	م	1	9	1	م	>
	77	A	X	ட	A	>	9	_			25		Z		S	>	>	>
	23	\sim	\checkmark	—	Ø	—	\checkmark	A			ιs	<u> </u>	_		—			-
	77	ł	ں	ں	\mathcal{O}	C	ں	ں			09	9	≥		\forall	>		<u>ح</u>
	17	i	S		S		S	<u>-</u>			67	9	9	\forall	S	0	9	9
	50	>	>								84	≥	≥		>		\geq	_
	61	\prec	\checkmark	—	\propto	S	\checkmark	S			LΦ	≥	≥	≥	≥	≥	\geq	≥
	81	>	>	ت				_		2	97	ய	ш	ш	ய	ш	ليا	ш
X	21	S	S	—	S	—	S	—		1	97			_	_	_		_
framework	9١	S	A	O	9	س	ш	Q		mework	77	9	9	\forall	9	9	9	9
nev	Sl	9	9	-	9	S	9	S		ne	43	Ø	O	\checkmark	\checkmark	\checkmark	\checkmark	20.
ran	τl	مـ	؎	Ξ	٥	ط	٩	ط		frar	77	9	9	9	9	9	9	9
14	13	~	\checkmark	\checkmark	0	\checkmark	\checkmark	\checkmark		+	lt	مـ	ط	۵	۵.	Д	٥	م ا
	71	$ \mathbf{x} $	\checkmark	>	>	>	\checkmark	> .			07	A	\forall	م	\forall	٥	≥	S
	11	>	>			_	>				38	O	_	-	0			0
	01	ш	ш	A	9	9	ш	9			38	8	\propto	8	\propto	\propto	\propto	8
	6	K	\forall	ط	9	مـ	A	٩			32	1	>					
	8	9	9	9	9	9	9	G			36	≥	≥					3
	L	2	S	S	S	S	S	S			35	S	エ		S _	_		Z
	9	0	O	ш	ш	ш	O	O			34	-	Σ		Σ	_	_	3
	9	>	>	\prec	>	O	>	O		CDRI	33	A	>	9	A	>	3	4
	Þ	-	_				_			2	32	>	>	>	>	>-	>-	A
	3	Q	0	O	O	O	O	O		}	8	'	1	9	1			S
	7	>	>	-	>	>	>	>			A						. 1	Z
	l	0		0	لى	0	ш	0			31	5	S	<u> </u>	<u></u>	<u> </u>	S	01
ı		VH1A	VH1B	VH2	VH3	VH4	/H5	9H,				/H1A	VH1B	/H2	VH3	/H4	/H5	9H/
		>	>	>	>	>	_) BSTI	TUTE 6	SHE 5 / 20	ET (F.) 14	ULE 2		>	>	>	<i>></i>	

saduences
consense
heavy chain
Figure 2C: V h

] 58	ш	ш	>	ш	A	S	ш		<u> </u>	113	S	S	S	S	S	S	S
	178	2	S	مـ	\forall	\forall	\forall	م		4	115	2	S	S	S	S	S	S
	83	R	\propto		\propto	\vdash	\checkmark	⊢		rk 4	111	>	>	>	>	>	>	>
!	Э.			≥	_	>	_	>		WOI	011	—	—	—	<u> </u>	\vdash	-	—
	8	S	S	Z	S	S	S	S		mev	60 L	>	>	>	>	>	>	>
	A	S	S	<u></u>	Z	S	S	Z		fran	108	_		_			_	لـــ
	85		_	≥	Σ		≶			+	۷0 L	—	\vdash		-	-	\vdash	\vdash
	18	ш	ш		0	\checkmark	O	O			901	9	9	9	9	9	9	9
(2)	08	≥	Σ		_		_				901	a	O	Q	Q	O	O	Q
ork	64	>	>	>	>	S	>-	2			104	9		9	_	_	_	9
	87	K	V	>		Щ	A	ட			103	3	≥	≥	≥	≥	≥	3
fram	LL	-	—	O	—	O	<u> </u>	0			105	>	>	>	>	>	>	>
17	94			Z							101							
	SZ			\prec						≣	Э	i		Σ				
	t/L	l .		S						CDR	8	X	A	\forall	X	⋖	\forall	4
	73	Ш	—	 	Z		\prec	—			A	>	-	>				>
	72										100	١.		ш				4
	1L	1		×							66	9	9	<u>G</u>	_	_	_	
	70	-		S	S	S	S	2			86			0				
	69	-	≥		_	_					<u>ک</u> 6	9	G	9 0	_	9 6		9
	89		1 /		1 :	1 /	_ /	_			96	S	V G			V G	_	N G
	29	>	<i>></i>	~		<i>></i>	<i>></i>	~			96		_	R ≷	_	_	_	- 1
	99	1		T R							76	1		A				
	59	0		\succeq		∀		∀		3	26.	1		\ \ \				
=	t9	T T	ш	<u>*</u>	\ <u>\</u>			>		ork	76 16	>	→	<u>→</u>	→	→	→	<u></u>
CORI	£9	7		S	S			-		framework	06	_	>	>	<u></u>	>	>	_
ال	79	0	C	<i>→</i>	٠. ۵		۵.			am	68	>	>	—	· >	>	Σ	>
	09			S						fr	88	A	4	A	V	-		A
	69	>	` ≻	>-	` ≻	→	>	>-	İ			 	—	—	—	⊢	—	 -
;	89	z	z	· >-	>	z	~				98			۵				
, L ;	רט ר	A	 						J			A	8					
		VH1	VH11	VH2	VH3	VH4	/H5	9H				H	/H1	VH2	VH3	VH4	VH5	9Н/
		>	>	>	>	>	>5	SUBS:	ritu	TE SH	IEET (RL)4	JLE 2	(8)	>	>	>	>	>
									7	7 / 20)4							

gene sequence T Q S P S S L S A S V G D Banll	TGACCCAGAG CCCGTCTAGC CTGAGCGCGA GCGTGGGTGA ACTGGGTCTC GGGCAGATCG GACTCGCGCT CGCACCCACT	I T C R A S Q G I S S Y L PstI	ATTACCTGCA. GAGCGAGCCA GGGCATTAGC AGCTATCTGG TAATGGACGT CTCGCTCGGT CCCGTAATCG TCGATAGACC	Q K P G K A P K L L I Y A SexAI	AAAGCAC CGAAACT TTTCGTG GCTTTGA	QSGVPSRFSGSGS SanDI	TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC
ppa 1 (Vk1) gen Q M	•	H		O ^l	_	S	
Figure 3A: V kappa 1 (Vk1) . D I Q M ECORV	~~~~~~ GATATCCAGA CTATAGGTCT	R	TCGTGTGACC	A W Y KpnI	CGTGGTACCA	A S	GCCAGCAGCT

	CGAGACCTAG
	ACGITICGCC CCAGGGCAGG GCAAAAICGC CGAGACCIAG
ed)	ACGITICGCC CCAGGGCAGG
gene sequence (continu	ACGTTTCGCC
Figure 3A: V kappa 1 (Vĸ1) g	CGGTCGTCGA

r D			
CTAC	Ĺτι		
3AC	U H	2	IS
CGAGACCTAG	P E Eco57I	<pre></pre>	BbsI
CGC	P C C	?	
AAT	Ø		
GCAAAATCGC	ISSLOPE		
99	S		
GCA	S		
CCAGGGCAGG	Н		
ບ ບ			
CGC	F T L. T		
TTT	⊱		
ACGTTTCGCC	ĮΞι		
CGA	Ω		
CGT	H		H
CGGTCGTCGA	Ŋ		BamH

CTTCTGAAAC GAAGACTTTG G ſΞ GGACGTTGGA CCTGCAACCT \vdash Д Д \vdash CCATTAGCAG GGTAATCGTC \vdash \succ 二 CGGCACTGAT TTTACCCTGA AAATGGGACT \circ Ø \mathcal{O} GCCGTGACTA \vdash Ø

~ ~ ~ ~ ~ ~

CTTTGGCCAG GAAACCGGTC CCCCGCCGAC GGGCGGCTG CATTATACCA GTAATATGGT GCTGGATAAT AACGGTCGTC TTGCCAGCAG CGACCTATTA

MscI

G T K V E I K R T BsiwI GGTACGAAAG TTGAAATTAA ACGTACG CCATGCTTTC AACTTTAATT TGCATGC

ĮΤι

K

Д

U

S

ď

 \bowtie

 \mathbf{z}

S

 \mathcal{Q}

ᆸ

×

Ц

AseI

SanDi

CGGATCGTTT

AGTGGGGTCC TCACCCCAGG

CAACCGTGCC

ATCTGGGCAG TAGACCCGTC

CTATTAATTT GATAATTAAA

GCCTAGCAAA

Figure 3B: V kappa 2 (VK2) gene sequence

D						
TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACCTGGTCTC GGGTGACTCG GACGGTCACTGAGC TATAGGTGA GAAGCAGCCA AAGCCTGACTGACTGA GAAGCTGCAGTGA GAAGCTGCAG TACCTTCAAA AACCAGGTCAAAAAGTTT TTGGTCCAGT	时	CGA	b	ACG PGC	Q	CAG
TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACCTGGTCTC GGGTGACTCG GACGGTCACTGAGC TATAGGTGA GAAGCAGCCA AAGCCTGACTGACTGA GAAGCTGCAGTGA GAAGCTGCAG TACCTTCAAA AACCAGGTCAAAAAGTTT TTGGTCCAGT	Ŋ	999	4	CAA	Д)))))
TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACCTGGTCTC GGGTGACTCG GACGGTCACTGAGC TATAGGTGA GAAGCAGCCA AAGCCTGACTGACTGA GAAGCTGCAGTGA GAAGCTGCAG TACCTTCAAA AACCAGGTCAAAAAGTTT TTGGTCCAGT	ъ	0 0 0 0 0	W	rag atc	ß	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FK AF FA		CT(GA(工	CA	· .	AA
FK AF FA	H	GA	ت	TG AC	Q	CA GT
FK AF FA	>	GTC		igc.	G Z Z	GGT
FK AF FA	വ	CCA	H	CCT GGA	Р ех <i>?</i> ~~,	CAC
FK AF FA	니	TG	W	AAG FTC	Ω 5	AAC ITG
FK AF FA			Ø	A A T	×	-
FK AF FA	W	BAG	0.1	30C	Q	CAA
FK AF FA	IJ	CTC		CA(ъ,	TT(
FK AF FA	<u>а</u> н	CCA	Ŋ	AAG TTC	> H ²	ACC TGG
FK AF FA	ını	ÖÖ	<u>د</u>) d [:	udy	
FK AF FA	D B	GAG	C st]	GC2	≥	TGC
FK AF FA	Q	CCA	נט בי	≈ 3CT 3GA	Ω	GAT
FK AF FA	H	ACC		TA(H	TG BAC
D I V I ECORV CONTACTOR CATATCGTGA CTATAGCACT CGGACGCTCG CGGACGCTCG CGGACGCTCG CGGACGCTCG CGGACGCTCG CGGACGCTCG		TG		A7 T7		
D I V ECORV CATATCGT CTATAGCA CGGACGC CGGACGC CGGACGC CGGACGC CGGACGC CGGACGC CGGACGC CGGACGC CGGACGC		GA CT	S	AGC PCG	≯	CTA
ECOR CATAT CTATA CTATA CGGAC CGGAC CGGAC	_	~ CGJ GC2	A	10 G2	Z	AA(TT(
G G G G G G G G G G G G G G G G G G G	I	~~~ rat ata		CTG		TAT ATP
	ОЩ	oz. GA′ CT/		Ü Ü Ü	Ŋ	90

Figure 3B: V kappa 2 (Vx2) gene sequence (continued)

TCGGCACACC AGCCGTGTGG ĸ ഗ CCTGAAAATT GGACTTTTAA Н × Ц GGCTAAAATG CCGATTTTAC Н ഥ Д \vdash GGATCCGGCA CCTAGGCCGT C BamHI S TAGCGGCTCT ATCGCCGAGA S G ഗ

TACCACCCCG Д \vdash E \succ 二 Ø Ø TATTATTGCC Ö CGTGGGCGTG \gt G \gt BbsI 1 2 2 2 2 Eco57I 口 Ø 闰

ATGGTGGGC BsiWI ~ ~ ~ ~ ~ ~ ~ ~ ~ TCGTCGTAAT AGCAGCATTA . K 又 \vdash ATAATAACGG 闰 > X GCACCCGCAC Е Ċ Ø ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ MscI \mathcal{O} AAGCTGAAGA TTCGACTTCT ہتا Е Д

GC ATTAAACGTA TAATTTGCAT GAAAGTTGAA CTTTCAACTT GCCAGGGTAC CGGTCCCATG CCGACCTTTG GGCTGGAAAC

<u>ட</u> ங	CTCCGGGCGA GAGGCCCGCT	7	AGCAGCTATC TCGTCGATAG	> H	ATTAATTTAT TAATTAAATA	S G BamHI	GCGGCTCTGG
Дı	CTCCG	S	AGCAG TCGTC	L I AseI ~~~~~~	ATTA? TAATI	Ö	9929
S I S	CTGAGCCTGT GACTCGGACA	S >	GAGCGTGAGC	P R L	CACCGCGTCT GTGGCGCAGA	A R F S	GCGCGTTTTA
PAT L	GGCGACC	A S Q		P G Q A SexAI	CCAGGTCAAG CP GGTCCAGTTC GI	G V P <i>F</i> SanDI	TGGGGTCCCG GC
Figure 3C: V kappa 3 (Vk3) gene sequence D I V L T Q S ECORV	GATATCGTGC TGACCCAGAG CCC CTATAGCACG ACTGGGTCTC GGG	R A T L S C R PstI	ACGTGCGACC CTGAGCTGCA GAGCGAGCCA TGCACGCTGG GACTCGACGT CTCGCTCGGT	L A W Y Q Q K E KpnI	CCAGCAGAAA GGTCGTCTTT	G A S S R A T	GGCGCGAGCA GCCGTGCAAC TO
u.	, 00		rade L.	. 7			_

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGCCGAGACC	P E D Eco57I	~ ~ ~ ~ ~ ~ ~	BbsI	? ? ? ? ?	CCTGAAGACT GGACTTCTGA	T F G MscI	GACCTTTGGC CTGGAAACCG
CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC	DFTLTISSLE				GATTTTACCC TGACCATTAG CAGCCTGGAA CTAAAATGGG ACTGGTAATC GTCGGACCTT	Y C Q Q H Y T T P.P	TTATTGCCAG CAGCATTATA CCACCCGGCC GACCTTTGGC AATAACGGTC GTCGTAATAT GGTGGGGCGG CTGGAAACCG
CCGCCCTCGT CGGCACGTTG	SGTDFTL		BamHI		ATCCGGCACG GATTTTACCC TAGGCCGTGC CTAAAATGGG	F A V Y Y C Q	TTGCGGTGTA TTATTGCCAG AACGCCACAT AATAACGGTC

CAGGGTACGA AAGTTGAAAT GTCCCATGCT TTCAACTTTA E . G MscI

TAAACGTACG ATTTGCATGC

BsiWI

 α

 \searrow

ഠ

>

×

Figure 3D: V kappa 4 (Vĸ4) gene sequence

闰	A L		A L	Д	D D	r K	0 0 0 0
r U	GCCTGGGCGA CGGACCCGCT	W	TATAGCAGCA ATATCGTCGT		TCAGCCGCCG AGTCGGCGGC	Ω	~~~~ TCCCGGATCG AGGGCCTAGC
ᆸ	TGG ACC	Ŋ	AGC	Д	1900 1000		, ~ , C G , C G
	1000 1000 1000	≻	TAT ATA	Q	~ TCA AGT	DI	
. W		2		D H	}	G V SanDI	GAAAGCGGGG CTTTCGCCCC
\triangleright	GTG CAC	н	19C1	P G SexAI	CAC GTC	O T	GAAAGCGGGG CTTTCGCCCC
L A V	3CG CGC	S	CGT GCA	저 Se P	AAC TTG	W	AGC
H	CTGGCGGTGA GACCGCCACT	Ω.	GAGCGTGCTG CTCGCACGAC		AGAAACCAGG TCTTTGGTCC	ഥ	GAA
7.0		Q		o o i		r K	GT CA
S	TAG	Ω O	~ GAAGCAGCCA CTTCGTCGGT	Ø J	~~~~~~ TGGTACCAGC ACCATGGTCG	E	ATCCACCCGT TAGGTGGGCA
Ω	GGA	Ø.	GC?	Y KpnI	~~~~~~ GGTACC CCATGG	ഗ	CCA
A H H H I	555 000			Z X	TGG	01	AT(TA(
S BanI	GACCCAGAG CCCGGATAGC CTGGGTCTC GGGCCTATCG	R tI	CTGCA SACGT	Ø	00 00	Ø	900 300
Q	CAGA GTC	CPstI	~~~ CTG GAC	니	TGG ACC	Y W A	TGG
E) 1990	N	ATTAACTGCA TAATTGACGT	Y L A	CTATCTGGCG GATAGACCGC	>-	TTTATTGGGC AAATAACCCG
	TGA	H	ATI TAI	γ.	CTZ GA'	H	TT AA
Σ		H	ပ (၁ (၁ (၁	Z	AAA	L I AseI	~~~~~~~ ATTAA T TAATT A
> /	GATATCGTGA CTATAGCACT		ACGTGCGACC TGCACGCTGG	×	ACAACAAAAA TGTTGTTTTT	L As	AAACTATTAA TTTGATAATT
D I EcoRV	~~~~~~ GATATC CTATAG	R A	STG	z	AAC TTG		ACT TGÀ
, Од	GA7 CT7		AC(TG(Z	AC	×	AA TT

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

T L T I S S	TACCCTGACC ATTTCGTCCC ATGGGACTGG TAAAGCAGGG	V Y Y С Q Q Н Y Т Т		GCCAGCAGCA TTATACCACC CGGTCGTCGT AATATGGTGG	I K R T BsiwI	GAAATTAAAC GTACG CTTTAATTTG CATGC
Η	TACC	C)		GCCA	田	GAAA
Ĺτ	TT	0		TT	>	TT
T D F	GAT	≯		TTTA AAT	×	AAG
H	GCACTGATTT CGTGACTAAA	<i>≯</i>		GТGТАТТАТТ САСАТААТАА	Ħ	TACGAAAGTT ATGCTTTCAA
Q					Ŋ	
G S BamHI	TCTGGATCCG AGACCTAGGC	D V A		AGACGTGGCG TCTGCACCGC	G Q G fscI	TTGGCCAGGG AACCGGTCCC
G S BamH	GGA	>		~ CGT GCA	G MscI	~~~~~~ TGGCCA ACCGGT
ώ	TCT AGA	Н	 T S:0	SA AGAC ST TCTG	24	TTG AAC
Ŋ	00 00 00 00	A E Eco57	da Bb	JGA CT	ĺτ,	CT
ഗ	\GCG	A E	}	AGCT AGO:	E-1	GAC
Ĺτ ⁴	TTTTAGCGGC	o J		TGCAAGCTGA ACGTTCGACT	ਰ	CCGCCGACCT

P G Q R SexAI	C CAGGTCAGCG G GTCCAGTCGC	S N	AGCAACTATG TCGTTGATAC	LIT	GCTGATTTAT CGACTAAATA	S G S K BamHI	\ \ \ \ \
S G A P	AGTGGCGCAC TCACCGCGTG	D H	CAACATTGGC GTTGTAACCG	A P K L Bbei	GC CCCGAAACT CC CCGCCTTTGA	D R F	
P S V	GCCTTCAGTG CGGAAGTCAC Eco57I	ω ω	GCAGCAGCAG CGTCGTCGTC	P G T Z XmaI B	CCCGGGACGG	G V P	\ \ \ \
Jure 4A: V lambda 1 (VA.1) gene sequence $\mathbb{Q} = \mathbb{Q} = \mathbb{Q} = \mathbb{Q}$	CAGAGCGTGC TGACCCAGCC (GTCTCGCACG ACTGGGTCGG	V T I S C S G BssSI	TGTGACCATC TCGTGTAGCG ACACTGGTAG AGCACATCGC	V S W Y Q Q L KpnI	TGAGCTGGTA CCAGCAGTTG ACTCGACCAT GGTCGTCAAC	D N Q R P S Bsu36I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

CTAGCAAAAT CGCCTAGGTT	G L Q S E D BbsI	AGC	T P P V F G CCACCCGCC TGTGTTTGGC GGTGGGGGG		
TCCGCACGGC CTAGCAAAAT CGCCTAGGTT	A I T	TTGCGATTAC GGGCCTGCAA AACGCTAATG CCCGGACGTT	Q H Y T T P P CAGCACTATATA CCACCCCGCC	G MscI ~~~	000
TCCG				니	TCT AGA
TCGCAGGGAG	S A S L	GCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	L T V HpaI	AGTTAACCGT TCAATTGGCA
CTATTGTTGG TCGCAGGGAG	S S	AAGCGGCACC AGCGCGAGCC TTCGCCGTGG TCGCGCTCGG	E A D Y AAGCGGATTA T TTCGCCTAAT A	G G T	GGCGGCACGA AGTTAACCGT

ഗ	AG TC		CT	H	TT AA	RH	~~ TC AG
Q	~~~~~ CAGGTCAGAG GTCCAGTCTC	Z	GGCTATAACT CCGATATTGA	Z	ACTGATGATT TGACTACTAA	G BamH	TTAGCGGATC AATCGCCTAG
Ö	č GT(CA(\Rightarrow	TA.		GA:	S	, GC(
PSexAI	~~~~ CAGG GTCC	ტ	0 0 0 0 0	ī	ACT TGA		TTA AAT
о С О	}	- 15		X		ኪ	
S	TCA AGT	Ŋ	999 CCC	Дı	CGA GCT	α	CGT
Ŋ	000 0000		rgT ACA	e H	~~~~~~ 0000000	Z	AAC TTG
W	AGCGGCTCAC TCGCCGAGTG	Ω	CGATGTGGGC GCTACACCCG		AGGCGCCGAA TCCGCGGCTT	Ŋ	AGCAACCGTT TCGTTGGCAA
>	TG AC	Ŋ		X		>	
ഗ	AGCTTCAGTG TCGAAGTCAC Eco57I	W	GTACTAGCAG CATGATCGTC	P G XmaI	CATCCCGGGA GTAGGGCCCT	U	~~~~~~ CTCAGGCGTG GAGTCCGCAC
Ø	CTT GAA ECC	E4 .	ACT TGA		TCC AGG		creage care
	AG	Ŋ	GT	H	CA	P S Bsu36I	~~~ CT GA
Д	က် (၁) (၁)		0 0 0 0	Ø	AG	д М	,
کار	CAG	. [-	TAC ATG	Q	AGC TCG	ĸ	CGI
Sedne	TGACCCAGCC ACTGGGTCGG	S C BssSI	~~~~~ TCGTGTACGG AGCACATGCC	γ nI	~~~~~ GTACCAGCAG CATGGTCGTC	z	~ GCAACCGTCC CGTTGGCAGG
) gene	TG.			Y KpnI		W	GC.
2 (VA2) . L	AC TG	Н	.TC AG	M	~~ TG AC		GA
mbda 2 A	0 0 0 0 0	₽	CCA	W	AGC ICG	>	rgt ACA
S: V lac	TCC		TA(\triangleright	TG.	D	GAC
Figure 4B: V lambda 2 (Vλ2) gene sequence Q S A L T (CAGAGCGCAC GTCTCGCGTG	Н	~ CATTACCATC GTAATGGTAG	> +	~ ATGTGAGCTG TACACTCGAC	≻	TATGATGTGA ATACTACACT

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

E BbsI	~~~~ GAAG CTTC	Ĺή	TTT	
Д	~ 2005	>	STG	
NTASLTISGLQAE Bb	CAAGCGGAAG GTTCGCCTTC	ууус оону ттр ру	GCCTGTGTTT CGGACACAAA	
il i	TG	വ	700 100 100	
Ŋ	3600	E	CACC	
W	GCCTGACCAT TAGCGGCCTG CGGACTGGTA ATCGCCGGAC	[-	ATACCACCCC TATGGTGGGG	
H	T. A.	X		th (1)
E	AACACCGCGA GCCTGACCAT TTGTGGCGCT CGGACTGGTA	田	CAGCAGCATT GTCGTCGTAA	K L T V L G HpaI MscI
그	TGA ACI	Q	CAG	⊢
	992 200	04	CAG	>
S	A L			₽.,
Ø	999 GGG	O	TTG	L Dal
H	ACC. FGG	≯	rta aat	× H
Z	AACACCGCGA TTGTGGCGCT	\Rightarrow	TTATTATTGC AATAATAACG	
		Д		E .
Ŋ	, , , , , ,	 	300 300	Ŋ
K S G mHI	AGC	A	AGC	Ŋ
K BamHI	~ CAAAAGCGGC GTTTTCGCCG	D E BbsI ~~	ACGAAGCGGA TGCTTCGCCT	<u>ი</u>
Bâ	~ ZZ 55	Q Q ~~	A(J

SUBSTITUTE SHEET (RULE 26)

CGAAGTTAAC GCTTCAATTG

GGCGGCGGCA

Figure 4C: V lambda 3 (Vλ3) gene sequence

E	AC		CT	Ω	AT
S V A P G Q T SexAI	AGCGTTGCAC CAGGTCAGAC TCGCAACGTG GTCCAGTCTG	DALGDKYAS	TACGCGAGCT ATGCGCTCGA	Q A P V L V I Y D D BbeI	TTATGATGAT AATACTACTA
ტ	GGA	Ø	555 505	5 ⊣	ATG FAC
P G SexAI	CAC	≯	TA(AT(•	TT. AA
S. S.	AC	×	AA	H	SAT
A;	AGCGTTGCAC TCGCAACGTG	Д	GGGCGATAAA CCCGCTATTT	> .	TTCTGGTGAT AAGACCACTA
>	CGT	C)	909	H	CTG
W	AG		G G	5	TT AA
>	STG CAC	니	GA	0.	CAG
ഗ	CTTCAG GAAGTC ECO57I	K	19CC	A P BbeI	3666
T Q P S V	GCCTTCAGTG CGGAAGTCAC Eco57I	Д	GCGATGCGCT CGCTACGCGA	B	CAGGCGCCAG GTCCGCGGTC
		O	_		
Д	D D D D D D D D D D D D D D D D D D D	ω Ω	355 355	P G XmaI	000 000
Ø	CCAC		STA	K P G XmaI	3GG
E	TGACCCAGCC ACTGGGTCGG	S C BssSI	TCGTGTAGCG AGCACATCGC	×	GAAACCCGGG CTTTGGGCCC
. П	T AC	B A		\sim	
凹	AAC	н '	ATC	O.	GCA
> 1 .	ATG TAC	A R	CGT	O	CCA
ſΩ	AGCTATGAAC TCGATACTTG	Æ	CGCGCGTATC GCGCGCATAG	W Y KpnI ~~~~~~	GGTACCAGCA CCATGGTCGT
, - ,	ÄÄ		ŪΘ	M ~	ŪŪ

GCGGACACAA

MscI

Ċ

Ы

>

Ц

又

H

TAATAATAAC

HpaI

GGCAAGAACC

CCGTTCTTGG

ACGAAGTTAA TGCTTCAATT

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

ACCGCCGCCG GACGAAGCGG CTGCTTCGCC TGGCGGCGCC \mathcal{O} CCAACAGCGG GGTTGTCGCC Ø S G 闰 Z Ċ Ω BbsI BamHI S TTTAGCGGAT AAATCGCCTA TCAGGCGGAA AGTCCGCCTT CGCCTGTGTT 闰 O > Ø S Д Ø 凵 Д AATCGCCGTG TTAGCGGCAC ATATGGTGGG GGGCCTTGCG CCCGGAACGC TATACCACCC \vdash 召 E O [1] H ഗ Д Н ACCCTGACCA CCTCAGGCAT GGAGTCCGTA TGGGACTGGT Q Q H CCAGCAGCAT GGTCGTCGTA \vdash \vdash Ç 22222 Bsu36I 口 Ŋ \vdash Д ATTATTAG AGACTGGCAG CAACACCGCG GTTGTGGCGC TCTGACCGTC Ø 区 × \vdash О Z ഗ

				4 -		rvrh	~ th ti	•
	Ω.	CGGGCAGCAG GCCCGTCGTC	Æ	AGCTATGCGA TCGATACGCT	Ŋ	GATGGGCGGC CTACCCGCCG	Q G R TTCAGGGCCG AAGTCCCGGC	П
	W	AG TC		TG AC	ტ	3 3 3 3 3 3 3	0 0 0 0 0 0 0 0	Ŀĭ
	Ü	390	×	CT? GAI	Ξ	TGC	Q CAG GTC	
		900	ഗ	AG		GA	F TT AA	Σ
	Д	AC	Ω.	9 0 0	ß	TG AC	GT	×
	×	AA		TA	E H C	SAG	K SAA(A
	×	AAA TTT	ĹΉ	TTT AAA	L E XhoI	TCC	CA GTC	
	>	GTGAAAAAAC CACTTTTTTG	H	CACTTTTAGC GTGAAAATCG	````≀	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT CGCGTCTTCA	H
			O		CD			S
	田	TGGCGCGGAA ACCGCGCCTT		CCTCCGGAGG GGAGGCCTCC	Q	CCTGGGCAGG GGACCCGTCC	A N Y GGCGAACTAC CCGCTTGATG	E
	Ø	999	S G BspEI	000 000	ڻ <u>۲</u>	000	N AAC TTG	
	Ŋ	3GC	യ എ ⁵	CTC	<u>~</u> ~	CTG	A GCG	ഗ
			Ø		IX:		-	闰
JCe	W	TGGTTCAGTC ACCAAGTCAG	×.	AGCTGCAAAG TCGACGTTTC	Q A P G BstXI	GCGCCAAGCC	I F G T TTTTGGCAC AAAAACCGTG	Д
1A) gene sequence	Q	CAC	C K	CAZ	Q }	AA(TT	م م م م م م م	A
gene	>	STT	O	CTG	≅	000	F TTT AA?	
/H1A)	?	TG(AC(Ω.	AG		000	I TT AA	H
1 1A (Q L MfeI	AT I'A	>		>	GT	GA	H
, chair	Ø¥ .	CA		AAG	3	rgg Acc	P PCCG AGGC	· [
Figure 5A: V heavy chain 1A (VH	>	CAGGTGCAAT TGGTTCAGTC GTCCACGTTA ACCAAGTCAG	×	CGTGAAAGTG GCACTTTCAC	W	TTAGCTGGGT GCGCCAAGCC	I I P I F G T ATTATTCCGA TTTTTGGCAC TAATAAGGCT AAAAACCGTG	V T
: 5A: V	Q	AG TC	>	CGT	Н	TTA AAT	I ATT PAA	α .> τ
Figure						- 1	, -	•

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

GGTGACCATT ACCGCGGATG AAAGCACCAG CACCGCGTAT ATGGAACTGA CCACTGGTAA TGGCGCCTAC TTTCGTGGTC GTGGCGCATA TACCTTGACT	L R S E D T A V Y Y C A R W G EagI BSSHII	GCAGCCTGCG TAGCGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC CGTCGGACGC ATCGCTTCTA TGCCGGCACA TAATAACGCG CGCAACCCCG	DGFYAMDYWGQGTLVT	GGCGATGGCT TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC CCGCTACCGA AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG	S S BlpI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CCATT	L	CTGCG	Ö	ATGGCT PACCGA	S S BlpI	
GGTGA	ഗ	GCAGC	O O	GGCGA	Λ	

Figure 5B: V.heavy chain 1B (VH1B) gene sequence

ß	AG TC		TA AT	M	0 C C	CG R
g B	CGGGCGCGAG	×	AGCTATTATA TCGATAATAT		GATGGGCTGG CTACCCGACC	Q G R TTCAGGGCCG AAGTCCCGGC
O	3600	X X	TA	IJ ∑	16G(o SAG
) 	ß	AGC	2;	GAI	
<u>С</u> ч		드	D (5	M	IG AC	G T E
V K K P	AAZ	T F T	TA(田口	AG.	K 3AA(
×	AAA TTT	Щ	CTT GAA	L E XhoI	TCGAGAGCTC	Q CAG GTC
>	GTGAAAAAAC CACTTTTTTG	H	TACCTTTACC ATGGAAATGG		GTCTCGAGTG CAGAGCTCAC	A Q K F GCGCAGAAGT CGCGTCTTCA
	•	×	- •	U		
G A E	GGA	G E E I	GAT	9 0	CAG	Y CTA GAT
A	,	S G BSPEI	10 C		366	SAA
ტ	CGGCGCGGAA GCCGCGCCTT	02 111	CCTCCGGATA GGAGGCCTAT	ДH	CCTGGGCAGG	T N Y CACGAACTAC GTGCTTGATG
ß		A		A BstXI	}	
O N	AGA ICI	C K	AAA TTT	A Bs	AGC TCG	G G G G
	AAG	U	rgc.	O ₁	CCA GGT	2 6 6 6 6 6
Į		ഗ	AGCTGCAAAG TCGACGTTTC	ĸ	CCGCCAAGCC	N S G G ATAGCGGCGG TATCGCCGCC
e L	l			>		N A
O MfeI	CAAT	>	AGT TCA	M	000	CCC GGC
>	TG(V K	SAA	H	ACT IGA	N AAC ITG
Q	CAGGTGCAAT	>	CGTGAAAGTG GCACTTTCAC		TGCACTGGGT ACGTGACCCA	I N P N S G G ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC
	טט		0 0	Σ	L 4	7 [

1B (VH1B) gene sequence (continued)	
sednence	
1B) gene :	
heavy chain	
Figure 5B: V	

	ц			TGA	ACT		ტ		
	田			AAC	TTG		R W G		
	TRDTSISTAYMEL			ATGGAACTGA	TACCTTGACT		ద		1
	×			'AT			A	BSSHII	2 2 2 2 2 2
	A			CGI	GCA		ပ	BS	{
	T			CACCGCGTAT	GTGGCGCATA		×		
							T A V Y Y C A		
	ഗ			CCAGCATTAG	GGTCGTAATC	i			
	Н			ATJ	TAZ			Н	ł
Q	ഗ			AGC	rcg		A	EagI	2 2 2 2 2
ontinue	c			CC	GG		H		į
)) Juce (C				ATA	'AT		Ω		
sedne	Ц			ACCCGTGATA	TGGGCACTAT		S 田 口		
3) gene	K			CCG	BGC		ຜ		
(VH16	Η			AC	TG(
ain 18	Σ			TG	AC		L R		
eavy ch	EH	н	ł	GGTGACCATG	CCACTGGTAC		H		
8: V h	>	BStEII	11111	TGA	ACT		ഗ		
Figure 5B: V heavy chain 1B (VH1B) gene sequence (continued)	•	Bs	1	GG	S		ഗ		
_									

CGCAACCCCG GCGTTGGGGC TAATAACGCG ATTATTGCGC ACGGCCGTGT TGCCGGCACA GCAGCCTGCG TAGCGAAGAT ATCGCTTCTA CGTCGGACGC

Н \vdash G Styl Ø G 3 Ω \mathbf{z} Ø ഥ G G

H

CCCTGGTGAC GGGACCACTG GGCCAAGGCA CCGGTTCCGT GGATTATTGG CCTAATAACC TTTATGCGAT AAATACGCTA GGCGATGGCT CCGCTACCGA

BlpI ഗ \gt

QGGTTAGCTCA CCAATCGAGT

⊱ GCTGGGTTTG TAGCCTGTCC ACGTCTGGCG CGACCCAAAC TGCAGACCGC П C O 3 ഗ E. 口 XhoI H Д GACCACTTTG AAAGGCCTAA ATCGGACAGG CTGGTGAAAC S \simeq ď Ц \gt 又 ഗ 口 G 9900999009 TTTCCGGATT 2255222552 ഥ K BSPEI Д BstXI G Д Д S G O ഥ CAGGTGCAAT TGAAAGAAAG ACTTTCTTTC ACCTGTACCT TGGACATGGA ഗ Figure 5C: V heavy chain 2 (VH2) gene sequence 召 Е 口 C 3 Н Ц MfeI GTCCACGTTA CCTGACCCTG GGACTGGGAC G Ы Ø > Н G П >

MluI CTGGATTCGC CAGCCGCCTG GGAAAGCCCT CGAGTGGCTG GICGGCGGAC CCTTTCGGGA GCTCACCGAC GCCTGAAAAC × Н ഗ TATAGCACCA E ഗ \succ TGATAAGTAT \succ 公 GACCTAAGCG ATTGGGATGA 3 AACCGCACCC TTGGCGTGGG GCTCTGATTG Н Ø

CGGACTTTTG

ATATCGTGGT

ACTATTCATA

TAACCCTACT

CGAGACTAAC

Figure 5C: V heavy chain 2 (VH2) gene sequence (continued)	I S K D T S K N Q V L T NspV	ATTAGCAAAG ATACTTCGAA AAATCAGGTG GTGCTGACTA TAATCGTTTC TATGAAGCTT TTTAGTCCAC CACGACTGAT	DPVDTATYYCARW Bsshii	GGACCCGGTG GATACGGCCA CCTATTATTG CGCGCGTTGG CCTGGGCCAC CTATGCCGGT GGATAATAAC GCGCGCAACC	F Y A M D Y W G Q G T L V Styl	GCTTTTATGC GATGGATTAT TGGGGCCAAG GCACCCTGGT CGAAAATACG CTACCTAATA ACCCCGGTTC CGTGGGACCA	S I Q
2 (VH2) gene sequen	I S K	ATTAGCAAA TAATCGTTT	Д	GGACCCGGT	×	GCTTTTATG CGAAAATAC	BlpI
Figure 5C: V heavy chain	R L T MluI	GCGTCTGACC CGCAGACTGG	M T M	TGACCAACAT GGACCCGGTG ACTGGTTGTA CCTGGGCCAC	O O O	GGCGGCGATG	T V S B

Figure 5D: V heavy chain 3 (VH3) gene sequence

ß	AG
Ü	999
VESGGLVQPGS	CGGGCGGCAG
D	·
O'	CTGGTGCAAC GACCACGTTG
>	SGTC
H	
Ŋ	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Ŋ	0000
Ŋ	ອວວອວວອວວອ ວອອວອອວອອວ
W	AAG
曰	GAA CTT
	TGGTGGAAAG ACCACCTTTC
L feI	√~~ \T PA
QM	CZZ SCAA SGTT
>	GAAGTGCAAT CTTCACGTTA
ম	GAA

Ø

S

S

ш

Н

Γų

G

S

Ø

K

C

S

Н

K

Н

BSPEI

CGA	A
ATG	ß
AGCTATGCGA TCGATACGCT	>
ည္သ	Z
TTA AAT	ΈŢ
TACCTTTAGC ATGGAAATCG	R Q A P G K G L E W V S A
	ტ
GAT	×
36C	Ŋ
CCTCCGGATT GGAGGCCTAA	Д
GCTGCGCGG CGACGCGCC	Ø
၁၅၁ ၅၁၅	Q
AGCTGCGCGG TCGACGCGCC	ፈ
TG	>
GTC CAG	M
CTGCGTCTC	ഗ
CC GG	Σ

GGTGAGCGCG CCACTCGCGC GTCTCGAGTG CAGAGCTCAC CCTGGGAAGG GGACCCTTCC GCGCCAAGCC CGCGGTTCGG TGAGCTGGGT ACTCGACCCA

Xhol

BstXI

TGAAAGGCCG ACTTTCCGGC α G CGCCTATCGC A D S GGGATAGCG GTGGATAATA CACCTATTAT × H CGCCGCCGTC GCGCCGCAG ഗ TAATCGCCAT ATTAGCGGTA ტ ഗ

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

F T I S R D N S K N T L Y L Q M Pmll NSPV TTTTACCATT TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA AAAATGGTAA AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT N S L R A E D T A V Y C A R W G Eagl Eagl ACAGCCTGCG TGCGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGTCGGACGC ACGCCTTCTA TGCCGCCACCCG G D G F Y A M D Y W G Q G T L V T Styll GGCGATGCCT GGCGATGCCT GGCCTACCGA AAATACGCTA CCTAATAATGC GCCCACCGG CCCCCTACCGA AAATACGCTA CCTAATAACC CCGCTACCGA GCCCTACTG GGACCACGC	S S S
---	-------

Figure 5E: V heavy chain 4 (VH4) gene sequence

E CGAGCGAAAC GCTCGCTTTG 团 ഗ Д GACCACTTTG CTGGTGAAAC 又 > Д. ACCAGGCCCG TGGTCCGGGC G щ C ACGTTCTTTC TGCAAGAAAG S 团 Q Ц MfeI CAGGTGCAAT GTCCACGTTA Q \triangleright Ø

 \succ S S Н S C BSPEI C S > Н \mathbf{c} \vdash 口 വ Н

AGCTATTATT TCGATAATAA CAGCATTAGC GTCGTAATCG TTTCCGGAGG AAAGGCCTCC ACCTGCACCG TGGACGTGGC CCTGAGCCTG GGACTCGGAC

Н ⋈ 11111 团 XhoI Н G × C Д BstXI Д Ø K Н 3 ഗ

G

GATTGGCTAT CTAACCGATA GTCTCGAGTG CAGAGCTCAC CCTGGGAAGG GGACCCTTCC TCGCCAGCCG AGCGGTCGGC GGAGCTGGAT CCTCGACCTA

 \gt BStEII 以 വ × Н ഗ Д Z \succ Z \vdash ഗ G ഗ \succ \succ

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGCCAGCAC CGCCGTCGTG ATTTATTA TAAATAATAT

SUBSTITUTE SHEET (RULE 26)

 \geq

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

K L S	AAACTGAGCA TTTGACTCGT	D B M	TTGGGGCGGC	V T V	TGGTGACGGT ACCACTGCCA	
		ц		ij		
S	GCCT	C A BssHII	909090 0909090	E	CACC	
Įتı	GTTTAGCCTG CAAATCGGAC		ATTGCGCGCG TAACGCGCGC	Q G StyI	c caaggcaccc g grrccgrggg	
Q	CCA GGT	X X	ATT TAA	ڻ ·	500 000	
N M ·	CGAAAAACCA GCTTTTTGGT	\triangleright	GCCGTGTATT	M	TTATTGGGGC AATAACCCCG	
S NSPV	CGA	T A EagI		X	TTA! AAT!	
	GTTGATACTT CAACTATGAA	田 日 1	GGCGGATACG CCGCCTATGC	Ω	GGA	
Ω .	GATA	Ω	SGAT	A M	ATGCGATGGA TACGCTACCT	
>	GTT	A .	355	<u> </u>	ATG TAC	
ω	AGC	A -	500	Fr	TTT AAA	
EH	GACCATTAGC CTGGTAATCG	T	GCGTGACGGC CGCACTGCCG	Ŋ	GATGGCTTTT CTACCGAAAA	S S BlpI ~~~~~ TAGCTCAG ATCGAGTC
T BstEI ~~~~	GAC	w	GCG		GAT	S TAG(

CGGGCGAAAG S 团 G Д GTGAAAAAAC 又 \mathbb{Y} > CGGCGCGGAA 屲 Þ G TGGTTCAGAG Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø MfeI 口 GAAGTGCAAT Ø

GCCCGCTTTC \geq CACTTTTTG GCCGCGCCTT ACCAAGTCTC CTTCACGTTA

ഗ \vdash L ഗ \succ BSPEI G ഗ \mathfrak{O} X \mathcal{O} S × 口

TCGATAACCT AGCTATTGGA TTCCTTTACG CAAGGCCTAT AAGGAAATGC GTTCCGGATA AGCTGCAAAG TCGACGTTTC CCTGAAAATT GGACTTTTAA

G Σ Z 囗 XhoI G 又 G Д BstXI Σ O 召 \gt 3 G

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG CGCGGTCTAC GGACCCTTCC GCGCCAGATG CCTGGGAAGG AACCGACCCA TTGGCTGGGT

TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT ഗ Д ഗ ATGGGCAATA TACCCGTTAT ĸ ATTTATCCGG GCGATAGCGA CGCTATCGCT ഗ Ω G TAAATAGGCC Ы

لتا

Н

Figure 5F: V heavy chain 5 (VH5) gene sequence (continued)

C _ S ഗ × Ø S \vdash BStEII

3

Ø

П

CTTCAATGGA GAAGTTACCT GTGGCGCATA CACCGCGTAT TTTCGTAATC AAAGCATTAG TCGCGCCTAT AGCGCGGATA CCACTGGTAA GGTGACCATT

G 3 α BSSHI Ø Σ Ø ⊱⊣ ഗ K \times 戸

ഗ

S

TAATAACGCG CGCAACCCCG GCGTTGGGGC ATTATTGCGC TGCCGGTACA ACGGCCATGT CGTCGGACTT TCGCTCGCTA AGCGAGCGAT GCAGCCTGAA

<u>-</u> Ц \vdash G Styl Ø U \geq Σ K 屲 G

?

CCCTGGTGAC CCGGTTCCGT GGGACCACTG GGCCAAGGCA CCTAATAACC GGATTATTGG CCGCTACCGA AAATACGCTA TTTATGCGAT GGCGATGGCT

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

~~~~~

G

Figure 5G: V heavy chain 6 (VH6) gene sequence

⊣ Ø ഗ Д X > 口 G Д G S Ø Ø  $\vdash$ MfeI Ø  $\gt$ Ø

GCTCGGTTTG CGAGCCAAAC CTGGTGAAAC GACCACTTTG ACCAGGCCCG TGGTCCGGGC ACGTTGTCAG TGCAACAGTC CAGGTGCAAT GTCCACGTTA

ഗ  $\mathbf{z}$ S S >S BSPEI G ഗ Н Ø  $\mathcal{O}_{\underline{0}}$ . [<del>\_</del> Ц ഗ Н

AGCAACAGCG TCGTTGTCGC ATCGCACTCG TAGCGTGAGC AAAGGCCTCT TTTCCGGAGA TGGACACGCT ACCTGTGCGA GGACTCGGAC CCTGAGCCTG

3 屲 XhoI ᆸ G  $\alpha$ G <u>С</u> BstXI ഗ Ø 召 Н 3  $\mathbf{z}$ 3 Ø Ø

口

~~~~~~

CGAGTGGCTG GCTCACCGAC CCGCACCGGA CAGTCTCCTG GGCGTGGCCT GTCAGAGGAC CTGGATTCGC GACCTAAGCG CGGCGTGGAA GCCGCACCTT

GCCACTCGCA CGGTGAGCGT ഗ Ø AACGATTATG TTGCTAATAC Ω CAAATGGTAT GTTTACCATA \geq 又 GGCCGTACCT ATTATCGTAG TAATAGCATC ഗ .**L** \succ \succ CCGGCATGGA Е 凶

S S BlpI

GTTAGCTCAG

CCTGGTGACG GGACCACTGC

	S K N O F S		TTCGAAAAAC CAGTTTAGCC AAGCTTTTTG GTCAAATCGG	S V T P E D T A V Y Y C A EagI BSSHII	CGGCCGTGTA TTATTGCGCG GCCGGCACAT AATAACGCGC	3 DGFYAMDYWGQGT Styl	GATTATTGGG GCCAAGGCAC CTAATAACCC CGGTTCCGTG
		>dsN >~~~~		D T A EagI		Ω	
(continued)	L L		ACCCGGATAC TGGGCCTATG	ᅜ	CCGGAAGATA GGCCTTCTAT	Y	TTATGCGATG AATACGCTAC
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued)	K S R I T I N P D T	BsaBI	GAAAAGCCGG ATTACCATCA CTTTTCGGCC TAATGGTAGT	T O I N S V T	TGCAACTGAA CAGCGTGACC CCGGAAGATA ACGTTGACTT GTCGCACTGG GGCCTTCTAT	R W G G D G F BSSHII	CGTTGGGGCG GCGATGGCTT GCAACCCCGC CGCTACCGAA

Figure 6: oligonucleotides for gene synthesis

. . .

- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
 - **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
 - **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **01K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **02K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- O4K1 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- O1L3 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGCGAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **02H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCGCCT-GGTGCAACCGGGCGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACACACC
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GCCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **04H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGGGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC 3 '
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5 '- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGCCTGCTG -3'
- OCLK4 5 '- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3 '
- OCLK5 5 '- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG - 3 '
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5 '- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTTCCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

AAACATAAAG TTTGTATTTC

GGATTATGAA CCTAATACTT

TGAGCAAAGC

ഗ

Н

H

Н

ACTCGTTTCG

TGGGACTGGG

ACCCTGACCC

TCTGAGCAGC

ഗ

Ω

Figure 7A: sequence of the synthetic Ck gene segment

Q GCGATGAACA AACTTTTATC TTGAAAATAG CGCTACTTGT CGTTTCGCCG GCAAAGCGGC GCACCTATTC CGTGGATAAG 口 Z വ വ TGGAAAGTAG ACAACGCGCT ACCTTTCATC TGTTGCGCGA TTTCCGCCGA AAAGGCGGCT GGACGACTTG AGCAAAGATA TCGTTTCTAT CCTGCTGAAC Д Ø X Д z 띡 CGCACCACAC GCGTGGTGTG GCACAAATAA CGTGTTTATT E Q D CGAACAGGAT GCTTGTCCTA H> F > Z ഗ CCGTGCCGCT GGCACGGCGA AACAGCCAGG AAAGCGTGAC GACGAGGCTC TTTCGCACTG CTGCTCCGAG GAAAGTTCAG CTTTCAAGTC S Ŏ Ø > Д \vdash വ K X 田 Ø GCGCACTTCG GCATGCCACC CGCGTGAAGC TTGTCGGTCC CGTACGGTGG ACTGAAAAGC TGACTTTTCG Ø > 团 × BsiWI 1111 ഗ

Figure 7A: sequence of the synthetic Ck gene segment (continued)

×	'AAA	TTT
Н	ACT	TGA
V T X	GGTGACTAAA	CCACTGATTT
Д	C_{i}	999
ഗ	AGC	TCG
က	TGAGCAGCCC	ACTCGTCGGG
Н		
ტ	CATCAAGGTC	GTAGTTCCAG
Q	CAA	GTI
H	CAT	GTA
E-1	ACC	TTCACTGG
>	GTG	CAC
E	CGAAGTGACC	GCTT
Ö	TG	AC
A	GCG	CGC
×	GTATGCGTC	ACATACGCAC
>	TG	AC

Stul Sphi

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC

Figure 7B: sequence of the synthetic CH1 gene segment

ഗ ഗ Д Ø Ч Д لتا \gt ഗ Д G 又 ഗ Ø

BlpI Sali

AAGGCGACCG AGGCTCGTCG TCCGAGCAGC TTCCGCTGGC GGTTCGCACA CCAAGCGTGT CGAGTCGCAG CTGGTTTCCA GCTCAGCGTC GACCAAAGGT

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTICTAAT 又 ပ TITICGIGGI CGCCGCCGIG CCGACGGGAC GGCTGCCCTG Ø GCGGCGGCAC G Ŋ ഗ AAAAGCACCA

CTGACCAGCG GACTGGTCGC CAGCGGGGCG GICGCCCGC Ø U ഗ GGTCAGTGGC ACTCGACCTT TGAGCTGGAA Z Z ഗ CCAGTCACCG ⊣ > TTTCCCGGAA AAAGGGCCTT വ

GTGCTGCAAA GCAGCGGCCT GTATAGCCTG CGTCGCCGGA CATATCGGAC SGL ഗ CACGACGTTT V L Q CTTTCCGGCG CGCACGTATG GAAAGGCCGC Д GCGTGCATAC 工

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø G GAGCAGCAGC CTCGTCGTCG ഗ TCGTCGCAAC ACTGGCACGG AGCAGCGTTG TGACCGTGCC > ഗ

Figure 7B: sequence of the synthetic CH1 gene segment (continued)

AAAAAGTGG CAAAGTGGAT GTTTCACCTA GCTCGTTGTG AACCATAAAC CGAGCAACAC Z . W Д TTGGTATTTG 工 AACGTTGCAC TTGCAACGTG Z Ö

P K S E F * EcoRI HindIII

口

~ ~ ~ ~ ~

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)

47 / 204

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

PACCA CCCCGCCTGT	Dralli AGCCG AAAGCCGCAC	TGCA GGCGAACAAA	GGAG CCGTGACAGT	AGTG GAGACCACCA
CATTATACCA GTAATATGGT	MscI ~~~~~~ TGGCCAGCCG ACCGGTCGGC	AAGAATTGCA TTCTTAACGT	TATCCGGGAG ATAGGCCCTC	GGCGGGAGTG
TTGCCAGCAG	Hpal ~~~~~~ T TAACCGTTCT A ATTGGCAAGA	CCGAGCAGCG	TAGCGACTTT ATCGCTGAAA	GCCCCGTCAA CGGGGCAGTT
CGGATTATTA GCCTAATAAT	HpaI ~~~~~~ GGCACGAAGT TAACCGTTCT CCGTGCTTCA ATTGGCAAGA	GCTGTTTCCG CGACAAAGGC	TGTGCCTGAT ACACGGACTA	GCAGATAGCA CGTCTATCGT
BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	GTTTGGCGGC	DrallI ~~~~~~ CGAGTGTGAC GCTCACACTG	GCGACCCTGG CGCTGGGACC	GGCCTGGAAG
H	51	101	151	201

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CTATCTGAGC GATAGACTCG CGGCCAGCAG TGTTTCGTTG TTGTTCATGC GCCGGTCGTC CACCCTCCAA ACAAAGCAAC AACAAGTACG GTGGGAGGTT 251

RleAI

GCCAGGTCAC CTGACGCCTG AGCAGTGGAA GTCCCACAGA AGCTACAGCT

301

CGGTCCAGTG GACTGCGGAC TCGTCACCTT CAGGGTGTCT TCGATGTCGA

StuI

CTCCGGACTA GAGGCCTGAT GCATGAGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT TCGTGGCACC TTTTTGGCA ACGCGGCTGA CGTACTCCCC

SphI

AAGCATGC TTCGTACG

401

SUBSTITUTE SHEET (RULE 26) 49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-

ССАСВАВЕПААССВПС

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

, GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

H Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 SapI Н Н Д Н Н Ø Н Ø HS Q X Σ

AGAAGTGGGG TCTTCACCCC AATGGCAACG TTACCGTTGC TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC ATGAAACAAA TACTTTGTTT

G S 回 Н MfeI O! \gt 闰 Д X \succ Ω K 区 \vdash

>

GAAAGCGGCG CTTTCGCCGC CGTTAACCAC GCAATTGGTG TTCTACTTCA AAGATGAAGT GCCGACTACA CGGCTGATGT ACAATGGTTT TGTTACCAAA

GCGCCGGAGG CGCGGCCICC BSPEI Ø K CAGACTCGAC GTCTGAGCTG C ഗ Н 民 GGCAGCCTGC CCGTCGGACG Н വ G GCAACCGGGC CGTTGGCCCG G Ы Ø GCGCCTGGT CGCCGGACCA \gt Н C

ഗ

Д BstXI Ø O α > Z വ \mathbf{Z} Ø \succ ഗ വ ഥ Н Γı BspEI C

G

TGGGTGCGCC AAGCCCCTGG TGCGATGAGC TTAGCAGCTA GGATTTACCT

ACCCACGCGG TTCGGGGACC CCTAAATGGA AATCGTCGAT ACGCTACTCG

SUBSTITUTE SHEET (RULE 26)

G

PCT/EP96/03647

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) ഗ U C S G S Н K ഗ > 3 XhoI C

CCGTCGTGGA GGCAGCACCT CGCGCTAATC GCCATCGCCG CGGTAGCGGC GCGCGATTAG CTCACCCACT GAGTGGGTGA GAAGGGTCTC CTTCCCAGAG

NspV S Z Д Pml I K ഗ HH ഥ α C × > S A

 \succ

TGATAATTCG ACTATTAAGC Н GGTAAAGTGC CCATTTCACG Н GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT ATTATGCGGA TAATACGCCT

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC AATGAACAGC TTACTTGTCG TGTATCTGCA ACATAGACGT TTTTTGTGGG AAAAACACCC NspV

EagI

Д

冝

K

召

S

Z

Σ

Ø

Н

 \bowtie

Н

H

Z

×

Ω Σ K G G G 3 α Ø × EagI >

BSSHI

GCGATGGATT TGGCTTTTAT GGGCGGCGA TGCGCGCGTT CGTGTATTAT

PCT/EP96/03647

WO 97/08320

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) GGCGAGCCTG CCGCTCGGAC CAACGGCTAT GTTGCCGATA ACCGCCAAGA GTTCCGATAT CAAGGCTATA TGGCGGTTCT ECORV CCCCGCCGCT ACCGAAAATA CGCTACCTAA ഗ Д G C 团 S U Z G C CGAGTCGCCC GCTCAGCGGG GGCGGTGGTG AGTGACTCCG TGCTGCATAG φ CCGCCACCAC TCACTGAGGC വ ACGACGTATC Д U ď Ή Н r BlpI ഗ Н > C Н S AGCCAAAGCC TGAGCCTGCC ACTCGGACGG TCGGTTTCGG CACTGCCAAT CGGTGGTTCT GCCACCAAGA GTGACGGTTA Д ഗ ഗ Н G O O S C വ Н CAGAGCCCAC CTGCAGAAGC GGAGCGGTGG GTCTCGGGTG GCACATAATA ACGCGCGCAA ATTGGGGCCA AGGCACCCTG TAACCCCGGT TCCGTGGGAC CCTCGCCACC GACGTCTTCG C S Д BanII Ç α ഗ PstI S Ö G O Styl C GCACTACTGG GGCGGCGGTG CCGCCGCCAC CGTGATGACC CGAGCATTAG GCTCGTAATC S \vdash C Н Σ G ECORV ഗ > C Ø

3: sequence and res	itriction map of the synthe	ion map of the synthetic gene encoding the consensus single-chain fragment	Isensus single-chain tragm	Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued)
1	T .	1 1 1	ב כ כ	ם יי
	KpnI	SexAI	Ιγ	AseI
	1 1 1 1 1	111111	* * * * * * * * * * * * * * * * * * * *	1 1
AACTATCTGG	ATTGGTACCT	TCAAAAACCA GGTCAAAGCC	GGTCAAAGCC	CGCAGCTATT
	TAACCATGGA	TAACCATGGA AGTTTTGGT CCAGTTTCGG GCGTCGATAA	CCAGTTTCGG	GCGTCGATAA

GCGTCGATAA	Я Н С	CGTTTTAGCG
TTGATAGACC TAACCATGGA AGITIIGGI CCAGITICGG GCGICGATAA	GSNRASGVPDRFS ECOO1091	CGGAT
AGITITI GGI	A S G	GTGCCAGTGG
TAACCATGGA	K K K	GGCAGCAACC
TTGATAGACC	ល	AATTTATCTG

	-									}	1 1	1			
											mHI.	Ва			
G T D F T L K I S R V E A	ĸ	ß	Н	×	IJ	Н	币	Ω	H	ტ	ഗ	ტ	ß	ტ	
GCAAAATCGC		GG	CCAGGGCCTA	5)	CACGGTCAC	GGI	CAĊ	TGG	CGI	CCGTCGTTGG	AC	TTAAATAGA	AAA	TT.	
CGTTTTAGCG		SCG	GGTCCCGGAT	רח	GTGCCAGTGG	CCA	GTG	ACC	GCA	GGCAGCAACC	ΤG	AATTTATCT(TTI	AA	

TGTGGAAGCT ACACCTTCGA AAATTAGCCG TTTAATCGGC TTTACCCTGA AAATGGGACT GCTCTGGATC CGGCACCGAT GCCGTGGCTA CGAGACCTAG

Д Н E \succ 二 Ø Ö \mathbf{C} > G 1 1 1 1 1 E D BbsI

 \vdash

GGGCGGCTG CCCCGCCGAC CATTATACCA GTAATATGGT TTGCCAGCAG AACGGTCGTC GCGTGTATTA CGCACATAAT GAAGACGTGG CTTCTGCACC

thetic gene encoding the consensus single-chain fragment VH3-Vk2 (contour E I K R T E F E F BSİWI ECORI THGAAATTAA ACGTACGGAA TTC	G T K GGTACGAAAG	Figure 8: sequence and rest FGQ MSCI —————— CTTTGGCCAG	Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued)	G Q G T K V E I K R T E	BsiwI		GGTACGAAAG TTGAAATTAA ACGTACGGAA	TAK HECOTH BEKKEEDS AK THEETON THOSE THE
--	------------------	--	---	-------------------------	-------	--	----------------------------------	--

SUBSTITUTE SHEET (RULE 26)
56 / 204

E01	<u>></u>	<u>≥</u>	≥	≥	≥	≷	≷	≥	≥	≥	≥	≥	≷
201	>	>	>-	>	>	>	>	>	>	>	>	>	>
101													
100E	_. Σ	1	1	1	1	ı	1	ı	i	1	t		ı
100D	1	ı	1	ı	ı	1	ı	t	i	ì	.1	ı	l
200 L	t	t	ı	ı	ı	ı	t	1	ı		ı	1	1
1008	⋖	1	ı	ŧ	ı	1	ı	ı	ı	ı	ı	t	ı
A001	>	1	1	1	1	1	t	ı	ł	ı	ı	ı	ı
001	ш	>	I	I	\propto	>	٥	ı	S	\leq	⋖		Σ
66	9	Z	≥	>	⋖	9	0	\propto	Z	S	4	>	≥
86		Σ	ш		\leq	H	Ø	H	\propto		ட	0	ш
26	9	\checkmark	\vdash	ш		—	ш	_	Z	G	\vdash	٥	S
96	9	Ŋ	\propto	\propto	ட	Z	Z	⋖	>-	>	\checkmark	⋖	0
<i>S6</i>	\geq	ட	エ	>	\checkmark	≥	_	—	≥	S	Ś	>	Σ
7 6	\simeq	\propto	~	\propto	\propto	\propto	\propto	\propto	\simeq	\propto	\simeq	\propto	\propto
86	<u> </u>	4	A	⋖	A	4	⋖	⋖	4	۷	⋖	⋖	⋖
<i>Z</i> 6	O	S	ပ	ပ	S	S	S	O	S	C	C	C	C
⋖		മ											

Figure 10: Sequence analysis of initial libraries

 \mathcal{O}

```
3333333333
\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma
> - ス > σ - エ ト > - σ
\Sigma \succ K \times \Sigma S \cup D \cup \Gamma D
F \times A Q + S \times D F \times Q
\succ 0 \square 0 \square \square \square \square \square \square \square \square \square
」SFENE>NLYF
IXZLXQ \geqslant ZUZH
> 100 \times 000 \times 000
\bot \forall Z Q \Box Q Z Y Q \exists \forall
\succ \Sigma \times \vdash \succ * \times \Sigma \times \circ \succ
4444444444
000000000000
```

Figure 11: Expression analysis of initial library

Figure 12: Increase of specificity during the panning rounds

Figure 13: Phage ELISA of clones after the 3rd round of panning

Figure 14: Competition ELISA

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

101 000000000000000 2001 L R I R Z D A > Y D Z G X Y A Q $A001 \sigma \times 1 - 8 N \times N \times K \times A \times \sigma N +$ 001 Z K I K K F L L \times S K \cap L \cap F K \times 86 Z Q R R - > Z I Z N R R I - R R 96 ~ N Z Y ~ - Y Y Y Y Z O Z Y \ \ $26 \times \text{cc} \times \text{lcc}$

Figure 16: Purification of fluorescein binding scFv fragments

Figure 17: Enrichment factors after three rounds of panning

Figure 18: ELISA of anti-ESL-1 and anti-eta-estradiol antibodies

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies

103 33333333333 105 101 100F $\ \ \, \top \ \, \overline{ } \ \,$ 1000 $0 \times \alpha \pi \pm \Sigma \cdot \alpha > \pi \pi \Delta$ J001 100B RSEGR $\vdash Z - O \ge I$ A001 100 $Q \pi \geqslant K Q T T T \geqslant \sum \neg \sum$ 66 86 46 $x Q x v r Q \sum x x x \sum \sum$ 96 $\vdash Z \lor \succ \gt Z - \varpropto \gt Z Z Z$ 96 *t*6 4444444444 63 65

Frequency	4	က	2			-
103	3	3	3	3	≥	≥
Z01	>	>	<u>,</u> >	>	>-	>
101						
100E	ட	ட	ш.	ட	ட	ய
⊒00 ι	A	O	O.	≥	≥	O
J001	_	Σ	Σ	—	\checkmark	≥
1008	\checkmark	\leq	<u>-</u>	\checkmark	≥	O
A001	\simeq	O	Z	Σ	_	8
001	\checkmark	≥	\propto	≥	≃.	S
66	A	A	4	Ø	\propto	Ø
86	O	エ	>	9		\propto
Z 6	\checkmark	\propto	\checkmark	\propto	٥	\checkmark
96	-	z	>	\checkmark	×	œ
<i>96</i>	>	>	>-	>	<u>.</u> œ	>
7 6	\propto	\propto	\propto	\propto	\propto	œ
83	⋖	Ø	4	A	Ø	⋖
<i>7</i> 6	ر ا	U	ပ	ں	ں	ن

```
33333333333
         105
                              100E
                                  \  \  \, \vdash \sqcap \; \geq \; \geq \; \geq \; \square \; \sqcap \; \geq \; \square \; 
                                  · K O - O O X X K II
   J001
100Ca
                                                        \begin{smallmatrix} & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & 
    J001
                                         x x x x x - x x > x
    1008
                                        > \sim - \sigma - > \sim \sim \times
                                  · T X 4 $ $ $ + I v
    A001
         001
                              日ろららりRKVVKFK
                              66
                              86
                              ら D k D F E S K T R - E
               46
              96
                              9 d - 4 Z 4 G G X K D G
               96
                               xxxxxxxxxxxxx
               t6
                               4444444444
                63
```

Figure 24: Sequence analysis of BSA binders

Frequency	5	,			· (
103	<u> </u>	≥	≥	3	3	<u> </u>
105	>-	>	>	>-	>-	>_
101						
100E	Σ	ட	≥	≥	≥	ட
J001	>	\propto	\propto	O	>-	ட
J001	>	ட	>	S	≥	I
100B		>	>	≥	Z	—
A001	_	Z	ш	S	۵.	_
001	Ø	>	≥		⋖	م
66	>	Σ	O	œ	≥	\checkmark
86	ய	>	ш.	>	\propto	ட
۷6	9	—	ட	ш	S	O
96	O	ய	LL	\checkmark	۵	0
96		>	>	ш	>	0
7 6	α	œ	\propto	8	8	8
83	A	A	Ø	⋖	. «	A
76	ی	C	ن	ں	ں	C

ColEI Ext2 origin

Bglll lox site JmpA Xbal Solution site p15A module -Aatll Jac p/o cat phoA pCAL system Nhel fl ori lox' site Fsel BsrGII gIII ss Pacl. Ipp-Terminator (His, myc) Hind / tails/ domains module assoc. IMP-Figure 25: modular pCAL vector system effector functions (IL2) lacI long 1 SUBSTITUTE SHEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatll	/
AfIII	Bfrl, BspTl, Bst98l
Ascl	
Asel	Vspl, Asnl, PshBi
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAI, Bpil
Bglll	/
Blpl	Bpu1102l,Celll, Blpl
BsaBI	Maml, Bsh1365l, BsrBRl
BsiWl	Pfl2311, Spl1, Sunl
BspEl	AccIII, BseAI, BsiMI, Kpn2I, Mrol
BsrGl	Bsp1407l, SspBl
BssHII	Paul
BstEII	BstPl, Eco91l, Eco0651
BstXI	1
Bsu36l	Aocl, Cvnl, Eco81l
Dralll	1
DsmAl	
Eagl	BstZI, EclXI, Eco52I, XmallI
Eco57I	<u></u>
Eco01091	Drall
EcoRI	
EcoRV	Eco32I
Fsel	
HindIII	
Hpal	
Kpnl	Acc651, Asp7181
Mlul	. /
Mscl	Ball, MluNl

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Munl	Mfel
Nhel	1
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp119I, BstBl, Csp45I, Lspl, Sful
Pacl	
Pmel	/
PmII	BbrPI, Eco72I, PmaCI
Psp5II	PpuMI
Pstl	<i></i>
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	1
SexAl	1
Spel	1
Sfil	
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

Figure 26: list of pCAL vector modules

WO 97/08320				
reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287–2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
template	vector pASK30	(synthetic)	(synthetic)	vector plG10
sites to be inserted	Aatll	lox, BgIII	lox', Sphl	none
sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHI
functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glllp of filamentous phage with N- terminal myctail/amber codon
module/flan-king func sites	Aatll-lacp/o- Xbal	BgIII-lox- Aatii	Xbal-lox'- Sphl	EcoRI- gIlllong- HindIII
oN N	M .	M2	M3	M7-1

Figure 26: list of pCAL vector modules

EcoRI-gIIIss- HindIII	L	truncated glllp of filamentous phage with N-terminal Gly- Ser linker	Sphl		vector plG10	see M7-I
M7-III EcoRI-gIIIss-	-5	truncated gillp of filamentous phage with N-terminal myctail/amber codon	Sphl, Bbsl		vector plG10	see M7-1
Sphl-lox- HindIII		Cre/lox recombination site	none	lox	(synthetic)	see M3
HindIII-Ipp- Pacl	-d	lpp-terminator	none	Pacl, Fsel	(synthetic)	see M1
Pacl/Fsel-bla- BsrGl	bla-	beta-lactamase/bla (ampR)	Vspl, Eco57I, BssSI	Pacl, Fsel, BsrGl	pASK30	see M1
M11- BsrGl-f1 ori-	ri-	origin of single- stranded replication	Dralll (Banll not removed)	BsrGl, Nhel	pASK30	see M1
BsrGI-f1 ori- Nhel	ori-	origin of single- stranded replication	DrallI, BanlI	BsrGI, Nhel	pASK30	see M1

Figure 26: list of pCAL vector modules

WO 97/0832					PCT/EP90
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz,S. (1992) J. Appl. Bacteriol.72, 289- 293	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761
pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, lox, Xmnl	BgIII, Nhel			
BssSI, VspI, NspV	none	Eco57l (BssSl not removed)	BspEl, Mscl, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- Bglll	BgIII-lox- BgIII	BgIII-ColEI- Nhel	Aatll-cat- BgIII	Xbal-phoA- EcoRI	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

Figure 26: list of pCAL vector modules

WO 97/0832	0	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
(synthetic)	BstXI, MluI,BbsI, BanII, BstEII, HpaI, BbeI, VspI	(synthetic)
heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Xbal-stil- Sapi	AfIII-laci- Nhei	EcoRI-Histail- HindIII
M21	M41	M42

SUBSTITUTE SHEET (RULE 26) 80 / 204

Figure 27	Figure 27: functional map and sequence of Mics module (continued)	ence of ivics module (cont	inuea)	
	HindII	II:	PacI	BsrGI
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ .	<pre> ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?</pre>	2 2 2 2 2 2
Н	ACATGTAAGC TGTACATTCG	TTCCCCCCCC AAGGGGGGGG	TTCCCCCCCC CCTTAATTAA AAGGGGGGG GGAATTAATT	CCCCCCCCC TGTACACCCC GGGGGGGG ACATGTGGGGG
			•	
	NheI		BglII	Aatli Xbal
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 2 3	? ? ? ?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
51	CCCCCGCTA	222222225	GCCCCCCCC CCAGATCTCC	CCCCCCCGA CGTCCCCCT
	GGGGGGCGAT	555555555	GGTCTAGAGG	GGGGGGGT GCAGGGGGGA
	XbaI	SphI		EcoRI AatII
	? ? ? ?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
101	CTAGACCCCC	CCCCCGCATG	CCCCCCATG CCCCCCCCC	CGAATTCGAC GTC
	GATCTGGGGG	GGGGCGTAC	GGGGGGGTAC GGGGGGGGG	GCTTAAGCTG CAG

Figure 28: functional map and sequence of pMCS cloning vector

Figure 28: functional map and sequence of pMCS cloning vector (continued)

	CAGGTGGCAC	TTTCGGGGA	AATGTGCGCG TTACACGCGC	GAACCCCTAT TTGTTTATTT CTTGGGGATA AACAAATAAA	TTGTTTATTT AACAAATAAA
TTCT.	TTCTAAA'I'AC	A'I''I'CAAA'I'A'I'		A'I'GAGACAA'I' AACCC'I'GA'I'A	AACCCTGATA
AAGAT	AAGA'I"I"I'A'I'G	TAAGI"I"IATA	TAAGITITATA CATAGGCGAG	TACTOTOTTA TTGGGACTAT	T.I.GGGAC'I'A'I'

•	CAACATTTCC	GTTGTAAAGG
	TATGAGTATT	ATACTCATAA
	TAATATTGAA AAAGGAAGAG	TTTCCTTCTC
	TAATATTGAA	ATTATAACTT
	AATGCTTCAA	TTACGAAGTT
	101	

TGTTTTTGCT	ACAAAAACGA
TTTGCCTTCC	AAACGGAAGG
TTTGCGGCAT	AAACGCCGTA
TATTCCCTTT	ATAAGGGAAA
GTGTCGCCCT	CACAGCGGGA
151	

Eco57I

BssSI					
TCAACCCACG	CGACTTCTAG	TCATTTTCTA	GCGACCACTT	GTGGGTCTTT	
AGTTGGGTGC	GCTGAAGATC	AGTAAAAGAT	CGCTGGTGAA	CACCCAGAAA	201
	?				

ATCCTTGAGA	TAGGAACTCT	
A CAGCGGTAAG ATCCTTGAGA	3 ACCTAGAGTT GTCGCCATTC TAGGAACTCT	
TGGATCTCA	ACCTAGAGTT	
TACATCGAAC	ATGTAGCTTG	
ACGAGTGGGT	TGCTCACCCA	BssSI
251		

Figure 28: functional map and sequence of pMCS cloning vector (continued)

Xmn I

CGTTGCGCAA	ATGGCAACAA	GCCTGTAGCA	ACACCACGAT	GACGAGCGTG	651
CATACCAAAC GTATGGTTTG	TGAATGAAGC ACTTACTTCG	GAACCGGAGC CTTGGCCTCG	TGATCGTTGG	TAACTCGCCT ATTGAGCGGA	601
GGGGATCATG	GCACAACATG	CCGCTTTTTT	AAGGAGCTAA	CGGAGGACCG	551
CCCCTAGTAC	CGTGTTGTAC	GGCGAAAAA	TTCCTCGATT	GCCTCCTGGC	
TGACAACGAT	AACTTACTTC	CACTGCGGCC	TGAGTGATAA	GCCATAACCA	501
ACTGTTGCTA	TTGAATGAAG	GTGACGCCGG	ACTCACTATT	CGGTATTGGT	
ATGCAGTGCT	TAAGAGAATT	GGCATGACAG	TCTTACGGAT	CAGAAAAGCA	451
TACGTCACGA	ATTCTCTTAA	CCGTACTGTC	AGAATGCCTA	GTCTTTTCGT	
TCACCAGTCA AGTGGTCAGT	GGTTGAGTAC CCAACTCATG	AGAATGACTT TCTTACTGAA	CACTATTCTC GTGATAAGAG	TCGCCGCATA	401
AGCAACTCGG	GCCGGGCAAG	CCGTATTGAC	CGGTATTATC	CTATGTGGCG	351
TCGTTGAGCC	CGGCCCGTTC	GGCATAACTG	GCCATAATAG	GATACACCGC	
TAAAGTTCTG	TGAGCACTTT	TTTCCAATGA	CGAAGAACGT	GTTTTCGCCC	301
ATTTCAAGAC	ACTCGTGAAA	AAAGGTTACT	GCTTCTTGCA	CAAAAGCGGG	

Figure 28: functional map and sequence of pMCS cloning vector (continued)

		CTGCTCGCAC	TGTGGTGCTA	CGGACATCGT	ТАСССТТСТТ	GCAACGCGTT
						AseI
	701	ACTATTAACT TGATAATTGA	GGCGAACTAC CCGCTTGATG	TTACTCTAGC AATGAGATCG	TTCCCGGCAA AAGGGCCGTT	CAATTAATAG GTTAATTATC
	751	ACTGGATGGA TGACCTACCT	GGCGGATAAA CCGCCTATTT	GTTGCAGGAC CAACGTCCTG	CACTTCTGCG GTGAAGACGC	CTCGGCCCTT GAGCCGGGAA
·UDOT:TUTE	801	CCGGCTGGCT GGCCGACCGA	GGTTTATTGC CCAAATAACG	TGATAAATCT ACTATTTAGA	GGAGCCGGTG CCTCGGCCAC	AGCGTGGGTC TCGCACCCAG
OUDET /010	851	TCGCGGTATC AGCGCCATAG	ATTGCAGCAC TAACGTCGTG	TGGGGCCAGA ACCCCGGTCT	TGGTAAGCCC ACCATTCGGG	TCCCGTATCG AGGGCATAGC
E 93\	901	TAGTTATCTA ATCAATAGAT	CACGACGGGG	AGTCAGGCAA TCAGTCCGTT	CTATGGATGA GATACCTACT	ACGAAATAGA TGCTTTATCT
	951	CAGATCGCTG GTCTAGCGAC	AGATAGGTGC TCTATCCACG	CTCACTGATT GAGTGACTAA	AAGCATTGGT TTCGTAACCA	AACTGTCAGA TTGACAGTCT
	1001	CCAAGTTTAC GGTTCAAATG	TCATATATAC AGTATATATG	TTTAGATTGA AAATCTAACT	TTTAAAACTT AAATTTTGAA	САТТТТТААТ GТАААААТТА

Figure 28: functional map and sequence of pMCS cloning vector (continued)

1051 7	1101	1151 (1201	0.1254 (2011 £ 36)	1301	1351 (
TTAAAAGGAT AATTTTCCTA	CCTTAACGTG GGAATTGCAC	CAAAGGATCT GTTTCCTAGA	AAACAAAAAA TTTGTTTTTT	CTACCAACTC GATGGTTGAG -	AAATACTGTC TTTATGACAG	CTGTAGCACC
CTAGGTGAAG GATCCACTTC	AGTTTTCGTT TCAAAAGCAA	TCTTGAGATC AGAACTCTAG	ACCACCGCTA TGGTGGCGAT	TTTTTCCGAA AAAAAGGCTT	CTTCTAGTGT GAAGATCACA	GCCTACATAC
ATCCTTTTTG TAGGAAAAAC	CCACTGAGCG GGTGACTCGC	CTTTTTTTCT GAAAAAAAGA	CCAGCGGTGG GGTCGCCACC	GGTAACTGGC CCATTGACCG Ec	AGCCGTAGTT TCGGCATCAA	CTCGCTCTGC
ATAATCTCAT TATTAGAGTA	TCAGACCCCG	GCGCGTAATC CGCGCATTAG	TTTGTTTGCC AAACAAACGG	C TTCAGCAGAG G AAGTCGTCTC Eco57I	AGGCCACCAC TCCGGTGGTG	TAATCCTGTT
GACCAAAATC CTGGTTTTAG	TAGAAAAGAT ATCTTTTCTA	TGCTGCTTGC ACGACGAACG	GGATCAAGAG CCTAGTTCTC	CGCAGATACC GCGTCTATGG	TTCAAGAACT AAGTTCTTGA	ACCAGTGGCT

ued)
ontinue
(con
5
vect
ng
Z
퓻
S
f pMCS o
o Į
al map and sequence of pMCS cloning vector (cor
and
map
nal
tiona
ันทด
28: 1
gure 28: 1

	1401	1401 GCTGCCAGTG	GCGATAAGTC	GTGTCTTACC	GGGTTGGACT	CAAGACGATA
	1771	中々ささしてるようと		ひ出しせどせし止せせ		
	ተ ጉ ተ	CAATGGCCTA	TTCCGCGTCG	CCAGCCCGAC	TTGCCCCCCA	AGCACGTGTG
	1501	AGCCCAGCTT TCGGGTCGAA	GGAGCGAACG CCTCGCTTGC	ACCTACACCG TGGATGTGGC	ААСТGАGАТА ТТGАСТСТАТ	CCTACAGCGT GGATGTCGCA
CHECKET	1551	GAGCTATGAG CTCGATACTC	AAAGCGCCAC TTTCGCGGTG	GCTTCCCGAA CGAAGGGCTT	GGGAGAAAGG CCCTCTTTCC	CGGACAGGTA GCCTGTCCAT
TE OUTET (DITE OF	1601	TCCGGTAAGC AGGCCATTCG	GGCAGGGTCG CCGTCCCAGC	GAACAGGAGA CTTGTCCTCT	GCGCACGAGG CGCGTGCTCC BSSSI	GAGCTTCCAG CTCGAAGGTC
	1651	GGGGAAACGC CCCCTTTGCG	CTGGTATCTT GACCATAGAA	TATAGTCCTG ATATCAGGAC	TCGGGTTTCG AGCCCAAAGC	CCACCTCTGA GGTGGAGACT
	1701	CTTGAGCGTC GAACTCGCAG	GATTTTTGTG CTAAAAACAC	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA CGGATACCTT
	1751	AAACGCCAGC	AACGCGGCCT	TTTACGGTT	CCTGGCCTTT TGCTGGCCTT	

Figure 28: functional map and sequence of pMCS cloning vector (continued)

ACGACCGGAA	BsrGI	CCCCCCTGTA GGGGGGACAT	Aatır	CCCCGACGTC GGGGCTGCAG	{I} ~~~~	TTCACGT AAGTGCA
TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA	PacI		BglII		ECORI	CCCCCCGAA TTCACGT GGGGGGCTT AAGTGCA
AAAATGCCAA		CCCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG		CCCCCCCAG ATCTCCCCCC GGGGGGGTC TAGAGGGGGG	Sphi	CGCATGCCCC GCGTACGGGG
TTGCGCCGGA	Hindili	GTAAGCTTCC CATTCGAAGG	NheI	CCGCTAGCCC GGCGATCGGG		ACCCCCCCC CGCATGCCCC TGGGGGGGG GCGTACGGGG
TTTGCGGTCG		TTGCTCACAT	BsrGI	CACCCCCCC GTGGGGGGGG	XbaI	CCCCCTCTAG
		1801		1851	٠	1901
				SUBSTITUT	F SHEFT	RULE 26

CCGAAATGTG

			AGGCACCCCA	TCCGTGGGGT
			GACGTCTTAA TGTGAGTTAG CTCACTCATT AGGCACCCCA	CTGCAGAATT ACACTCAATC GAGTGAGTAA TCCGTGGGGT
טו אכטר ויוסממול ואו ו			TGTGAGTTAG	ACACTCAATC
ער בשל ועורנוטוושו ווושף שווט אלעירוולה טו מלאר וווטעשול ואו ו	Aatii	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GACGTCTTAA	CTGCAGAATT
r 23: iui			\leftarrow	
ב				

GATAACAATT CTATTGTTAA TAACACTCGC ATTGTGAGCG GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

	}	GA	Ę
XbaI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CGAATTTCTA	TACA A PECO
		ACCATGATTA	上でで 上して 上じじ上
		TCACACAGGA AACAGCTATG	してしていしていたかしない
		TCACACAGGA	ACTUTUTUTE A
		101	

Figure 30: functional map and sequence of pCAL module M7-II (continued)

ECORI

Н	GAATTCGAGC CTTAAGCTCG	AGAAGCTGAT TCTTCGACTA	CTCTGAGGAG GAGACTCCTC	GATCTGTAGG	GTGGTGGCTC
51	TGGTTCCGGT	GATTTTGATT CTAAAACTAA	АТGААААGАТ ТАСТТТТСТА	GGCAAACGCT CCGTTTGCGA	AATAAGGGGG TTATTCCCCC
101	CTATGACCGA	AAATGCCGAT	GAAAACGCGC	TACAGTCTGA	CGCTAAAGGC
	GATACTGGCT	TTTACGGCTA	CTTTTGCGCG	ATGTCAGACT	GCGATTTCCG
151	AAACTTGATT	CTGTCGCTAC	TGATTACGGT	GCTGCTATCG	ATGGTTTCAT
	TTTGAACTAA	GACAGCGATG	ACTAATGCCA	CGACGATAGC	TACCAAAGTA
201	TGGTGACGTT	TCCGGCCTTG	CTAATGGTAA	TGGTGCTACT	GGTGATTTTG
	ACCACTGCAA	AGGCCGGAAC	GATTACCATT	ACCACGATGA	CCACTAAAAC
251	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTCACCT
	GACCGAGATT	AAGGGTTTAC	CGAGTTCAGC	CACTGCCACT	ATTAAGTGGA
	XmnI) } H }			
301	TTAATGAATA ATTTCCGTCA	ATTTCCGTCA	ATATTTACCT	TCCCTCCCTC	AATCGGTTGA
	AATTACTTAT TAAAGGCAGT	TAAAGGCAGT	TATAAATGGA	AGGGAGGGAG	TTAGCCAACT

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

TTTTCTATTG AAAAGATAAC	TCTTTTATAT AGAAAATATA	GCGTAA CGCATT
TTTT AAAA(TCTT	TACT
	TCTTTGCGTT TCTTTTATAT AGAAACGCAA AGAAAATATA	TTTGCTAACA TACTGCGTAA AAACGATTGT ATGACGCATT
TTTGTCTTTG GCGCTGGTAA ACCATATGAA AAACAGAAAC CGCGACCATT TGGTATACTT	AATAAACTTA TTCCGTGGTG TTATTTGAAT AAGGCACCAC	ATTTTCTACG TAAAAGATGC
TTTGTCTTTG AAACAGAAAC	AATAAACTTA TTATTTGAAT	TTATGTATGT AATACATACA
ATGTCGCCCT TACAGCGGGA		GTTGCCACCT CAACGGTGGA
351	401	451

HindIII

501 TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

_	
Ψ	
드	
Z	

⊣	GCTAGCACGC	GCCCTGTAGC CGGGACATCG	GGCGCATTAA CCGCGTAATT) 	TGTGGTGGTT ACACCACCAA
51	ACGCGCAGCG	TGACCGCTAC	ACTTGCCAGC	GCCCTAGCGC	CCGCTCCTTT
	TGCGCGTCGC	ACTGGCGATG	TGAACGGTCG	CGGGATCGCG	GGCGAGGAAA
101	CGCTTTCTTC	CCTTCCTTTC	TCGCCACGTT	CGCCGGCTTT	CCCCGTCAAG
	GCGAAAGAAG	GGAAGGAAAG	AGCGGTGCAA	GCGGCCGAAA	GGGGCAGTTC
151	CTCTAAATCG	GGGCATCCCT	TTAGGGTTCC	GATTTAGTGC	TTTACGGCAC
	GAGATTTAGC	CCCGTAGGGA	AATCCCAAGG	CTAAATCACG	AAATGCCGTG
201	CTCGACCCCA	AAAAACTTGA	TTAGGGTGAT	GGTTCTCGTA	GTGGGCCATC
	GAGCTGGGGT	TTTTTGAACT	AATCCCACTA	CCAAGAGCAT	CACCCGGTAG
251	GCCCTGATAG	ACGGTTTTTC	GCCCTTTGAC	GTTGGAGTCC	ACGTTCTTTA
	CGGGACTATC	TGCCAAAAAG	CGGGAAACTG	CAACCTCAGG	TGCAAGAAAT
301	ATAGTGGACT	CTTGTTCCAA	ACTGGAACAA	CACTCAACCC	TATCTCGGTC
	TATCACCTGA	GAACAAGGTT	TGACCTTGTT	GTGAGTTGGG	ATAGAGCCAG
351	TATTCTTTTG	ATTTATAAGG	GATTTTGCCG	ATTTCGGCCT	ATTGGTTAAA

Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

C TGTGAAGTGA AAAATGGCGC AGATTGTGCG	TTCGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC
AAAATGGCGC	TTTTACCGCG
TGTGAAGTGA	ACACTTCACT
AAGCTTGACC	TTCGAACTGG
9999999999	CCCCCCCCC
\vdash	

rser	· · · · · · · · · · · · · · · · · · ·	TGTCTGCCGT TTAATTAAAG GGGGGGGGG GCCGGCCTGG	ACAGACGGCA AATTAATTTC CCCCCCCCC CGGCCGGACC
	< <u>}</u>	9999999999	مدمدمدددد
1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TTAATTAAAG	AATTAATTTC
		TGTCTGCCGT	ACAGACGGCA
		ACATTTTTT	TGTAAAAAAA
		51	

BSrGI
~~~~~~~
101 GGGGGGTGT ACAGGGGGG GGG
CCCCCCACA TGTCCCCCCC CCC

| (continued)                                |
|--------------------------------------------|
| M11-III                                    |
| L module                                   |
| of pCAL                                    |
| tional map and sequence of pCAL module M11 |
| map and                                    |
| Juc                                        |
| ure 32: ft                                 |
| Fig                                        |

|                                                        | •                                          |                                             |
|--------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| TAACCAATTT                                             | AAAATATTAA                                 | TTTATAATT                                   |
| 'AAA'I'A'I"I'CC C'I'AAAACGGC 'I'AAAGCCGGA 'I'AACCAATTT | ITTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA | TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT |
| CTAAAACGGC                                             | AATTTAACGC                                 | TTAAATTGCG                                  |
| 'I'AAA'I'A'I''I'CC                                     | ATTTAACAAA                                 | TAAATTGTTT                                  |
| ATAGAAAAC                                              | AAATGAGCTG                                 | TTTACTCGAC                                  |
|                                                        | 101                                        |                                             |

BsrGI

451

TTCATGTACA AAGTACATGT CGTTTACAAT GCAAATGTTA





TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG

351

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

| 2     |
|-------|
|       |
| BglII |
|       |

|              | $\vdash$ | AGATCTGACC<br>TCTAGACTGG | AAAATCCCTT<br>TTTTAGGGAA | AACGTGAGTT<br>TTGCACTCAA | TTCGTTCCAC               | TGAGCGTCAG<br>ACTCGCAGTC |
|--------------|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|              | 51       | ACCCCGTAGA<br>TGGGGCATCT | AAAGATCAAA<br>TTTCTAGTTT | GGATCTTCTT<br>CCTAGAAGAA | GAGATCCTTT<br>CTCTAGGAAA | TTTTCTGCGC<br>AAAAGACGCG |
| <del>с</del> | 101      | GTAATCTGCT<br>CATTAGACGA | GCTTGCAAAC               | AAAAAAACCA<br>TTTTTTGGT  | CCGCTACCAG               | CGGTGGTTTG<br>GCCACCAAAC |
| ·            | 151      | TTTGCCGGAT<br>AAACGGCCTA | CAAGAGCTAC<br>GTTCTCGATG | CAACTCTTTT<br>GTTGAGAAAA | TCCGAAGGTA<br>AGGCTTCCAT | ACTGGCTACA<br>TGACCGATGT |
| ~            | 201      | GCAGAGCGCA<br>CGTCTCGCGT | GATACCAAAT<br>CTATGGTTTA | ACTGTTCTTC<br>TGACAAGAAG | TAGTGTAGCC<br>ATCACATCGG | GTAGTTAGGC               |
| . ~          | 251      | CACCACTTCA<br>GTGGTGAAGT | AGAACTCTGT<br>TCTTGAGACA | AGCACCGCCT<br>TCGTGGCGGA | ACATACCTCG<br>TGTATGGAGC | CTCTGCTAAT<br>GAGACGATTA |
| M            | 301      | CCTGTTACCA<br>GGACAATGGT | GTGGCTGCTG<br>CACCGACGAC | CCAGTGGCGA<br>GGTCACCGCT | TAAGTCGTGT<br>ATTCAGCACA | CTTACCGGGT<br>GAATGGCCCA |

| Ext2 (continued)                                                      |  |
|-----------------------------------------------------------------------|--|
| Figure 33: functional map and sequence of pCAL module M14-Ext2 (conti |  |
| . module !                                                            |  |
| e of pCAL                                                             |  |
| d sequenc                                                             |  |
| ne dem la                                                             |  |
| functions                                                             |  |
| Figure 33:                                                            |  |

|     | ACCTGAGTTC                        | TGCTATCAAT               | GGCCTATTCC                | GCGTCGCCAG               | CCCGACTTGC                        |
|-----|-----------------------------------|--------------------------|---------------------------|--------------------------|-----------------------------------|
| 401 | GGGGGTTCGT<br>CCCCCAAGCA          | GCACACAGCC<br>CGTGTGTCGG | CAGCTTGGAG<br>GTCGAACCTC  | CGAACGACCT<br>GCTTGCTGGA | ACACCGAACT<br>TGTGGCTTGA          |
| 451 | GAGATACCTA<br>CTCTATGGAT          | CAGCGTGAGC<br>GTCGCACTCG | TATGAGAAAG<br>ATACTCTTTC  | CGCCACGCTT<br>GCGGTGCGAA | CCCGAAGGGA<br>GGGCTTCCCT          |
| 501 | GAAAGGCGGA<br>CTTTCCGCCT          | CAGGTATCCG<br>GTCCATAGGC | GTAAGCGGCA<br>CATTCGCCGT  | GGGTCGGAAC               | AGGAGAGCGC<br>TCCTCTCGCG<br>BssSI |
| 551 | ACGAGGGAGC<br>TGCTCCCTCG<br>BSSSI | TTCCAGGGGG               | AAACGCCTGG<br>TTTGCGGGACC | TATCTTTATA<br>ATAGAAATAT | GTCCTGTCGG<br>CAGGACAGCC          |
| 601 | GTTTCGCCAC<br>CAAAGCGGTG          | CTCTGACTTG<br>GAGACTGAAC | AGCGTCGATT<br>TCGCAGCTAA  | TTTGTGATGC<br>AAACACTACG | TCGTCAGGGG<br>AGCAGTCCCC          |
| 651 | GGCGGAGCCT                        | ATGGAAAAAC<br>TACCTTTTTG | GCCAGCAACG                | CGGCCTTTTT<br>GCCGGAAAAA | ACGGTTCCTG<br>TGCCAAGGAC          |

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701



SUBSTITUTE SHEET (RULE 26)
103 / 204

GTTTTCCATG AGCAAACTGA

ATATGGGATA GTGTTCACCC TTGTTACACC

351

Figure 34: functional map and sequence of pCAL module M17 (continued)

| <u>-</u> | 4 |
|----------|---|
| ۲        | 1 |
| 1        | J |
| π        | 3 |
| Ø        | 4 |
|          |   |

| Н   | GGGACGTCGG               | GTGAGGTTCC<br>CACTCCAAGG | AACTTTCACC<br>TTGAAAGTGG | ATAATGAAAT<br>TATTACTTTA | AAGATCACTA<br>TTCTAGTGAT |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51  | CCGGGCGTAT               | TTTTTGAGTT               | ATCGAGATTT               | TCAGGAGCTA               | AGGAAGCTAA               |
|     | GGCCCGCATA               | AAAAACTCAA               | TAGCTCTAAA               | AGTCCTCGAT               | TCCTTCGATT               |
| 101 | AATGGAGAAA<br>TTACCTCTTT | AAAATCACTG<br>TTTTAGTGAC | GATATACCAC<br>CTATATGGTG | CGTTGATATA<br>GCAACTATAT | TCCCAATGGC               |
| 151 | ATCGTAAAGA               | ACATTTTGAG               | GCATTTCAGT               | CAGTTGCTCA               | ATGTACCTAT               |
|     | TAGCATTTCT               | TGTAAAACTC               | CGTAAAGTCA               | GTCAACGAGT               | TACATGGATA               |
| 201 | AACCAGACCG               | TTCAGCTGGA               | TATTACGGCC               | TTTTTAAAGA               | CCGTAAAGAA               |
|     | TTGGTCTGGC               | AAGTCGACCT               | ATAATGCCGG               | AAAATTTCT                | GGCATTTCTT               |
| 251 | AAATAAGCAC               | AAGTTTTATC               | CGGCCTTTAT               | TCACATTCTT               | GCCCGCCTGA               |
|     | TTTATTCGTG               | TTCAAAATAG               | GCCGGAAATA               | AGTGTAAGAA               | CGGGCGGACT               |
| 301 | TGAATGCTCA               | CCCGGAGTTC<br>GGGCCTCAAG | CGTATGGCAA<br>GCATACCGTT | TGAAAGACGG<br>ACTTTCTGCC | TGAGCTGGTG<br>ACTCGACCAC |

| 117 (continued)                    |
|------------------------------------|
| 7                                  |
| Ξ                                  |
| 2                                  |
| <u>ء</u>                           |
| $\supset$                          |
| B                                  |
| $\equiv$                           |
| <u></u>                            |
| =                                  |
| $\ddot{c}$                         |
| ă                                  |
| il map and sequence of pCAL module |
| 0                                  |
| map and sequence o                 |
| Ξ                                  |
| بة                                 |
| 5                                  |
| <u> </u>                           |
| ~                                  |
| 5                                  |
| ÷.                                 |
| a                                  |
| 2                                  |
| =                                  |
| =                                  |
| unctiona                           |
| .⊆                                 |
| Ψ,                                 |
| Ĕ                                  |
| $\Box$                             |
| 4: functional                      |
| re 34                              |
| Figure 34                          |
| ೭                                  |
| $\supset$                          |
| .₫                                 |
| 4                                  |

| AAACGCCTGG               | GGGTGCCCTT               | GGCAGTTATT               | ATTTTTTAA                | GCGGGCGTA                | 751 |  |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|--|
| GAGTGGCAGG<br>CTCACCGTCC | GTACTGCGAT<br>CATGACGCTA | AATTACAACA<br>TTAATGTTGT | ATGCTTAATG<br>TACGAATTAC | TGTCGGCAGA<br>ACAGCCGTCT | 701 |  |
| ATGGCTTCCA<br>TACCGAAGGT | GCCGTTTGTG               | GGTTCATCAT<br>CCAAGTAGTA | TGGCGATTCA<br>ACCGCTAAGT | CTGATGCCGC<br>GACTACGGCG | 651 |  |
| CGACAAGGTG<br>GCTGTTCCAC | ATACGCAAGG<br>TATGCGTTCC | GGCAAATATT<br>CCGTTTATAA | TTTCACTATG<br>AAAGTGATAC | TCGCCCCCGT<br>AGCGGGGGCA | 601 |  |
| GACAACTTCT<br>CTGTTGAAGA | AGCCAATATG<br>TCGGTTATAC | ATTTAAACGT<br>TAAATTTGCA | ACCAGTTTTG<br>TGGTCAAAAC | GGTGAGTTTC               | 551 |  |
| CCAATCCCTG<br>GGTTAGGGAC | TTCGTCTCAG               | GAATATGTTT<br>CTTATACAAA | GGTTTATTGA<br>CCAAATAACT | TTCCCTAAAG<br>AAGGGATTTC | 501 |  |
| CCTGGCCTAT<br>GGACCGGATA | ACGGTGAAAA<br>TGCCACTTTT | GTGGCGTGTT<br>CACCGCACAA | TTCGCAAGAT<br>AAGCGTTCTA | TACACATATA<br>ATGTGTATAT | 451 |  |
| CGGCAGTTTC<br>GCCGTCAAAG | CGACGATTTC<br>GCTGCTAAAG | GTGAATACCA<br>CACTTATGGT | TCGCTCTGGA<br>AGCGAGACCT | AACGTTTTCA               | 401 |  |
| TCGTTTGACT               | CAAAAGGTAC               | AACAATGTGG               | CACAAGTGGG               | TATACCCTAT               | 1   |  |

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

TGCTAGATCT 801

TCC AGG ACGATCTAGA

functional ssori Hind 111 (515) Bsr61 (612) Fse! (599) glll supershort Pac1 (579) Gen11-Nick **Kmn1 (310)** Ban [ [919] Nhe! (1076) replication start ECORI (1) 2755 bp pCAL4 Sph1 (2749) BssS1 (1254) Colel Ext2 origin **Kbal** (2739) lac p/o Hatii (2608) BgIII (1803) cat

Figure 35: functional map and sequence of modular vector pCAL4

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

|       |                                       | TGGTGGCTCT                                  | CTTCGACTAG AGACTCCTCC TAGACATCCC ACCACCGAGA |
|-------|---------------------------------------|---------------------------------------------|---------------------------------------------|
|       |                                       | SAAGCTGATC TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT | TAGACATCCC                                  |
|       |                                       | TCTGAGGAGG                                  | AGACTCCTCC                                  |
|       |                                       | GAAGCTGATC                                  | CTTCGACTAG                                  |
| EcoRI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | AATTCGAGCA                                  | TTAAGCTCGT                                  |
|       |                                       | <del></del> 1                               |                                             |

|            |                                             |            |            |            | 1  |
|------------|---------------------------------------------|------------|------------|------------|----|
| TATTCCCCCG | ACTITITICIAC CGITITGCGAI TATICCCCCG         | ACTTTTCTAC | TAAAACTAAT | CCAAGGCCAC |    |
| ATAAGGGGGC | ATTTTGATTA TGAAAAGATG GCAAACGCTA ATAAGGGGGC | TGAAAAGATG | ATTTGATTA  | GGTTCCGGTG | 51 |

| AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA<br>TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT | TGTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT ACAGCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ACAGTCTC                                                                                   | CTGCTATC                                                                                |
| TGTCAGAC                                                                                   | GACGATAC                                                                                |
| AAAACGCGCT                                                                                 | TGTCGCTACT GATTACGGTG                                                                   |
| TTTTGCGCGA                                                                                 | ACAGCGATGA CTAATGCCAC                                                                   |
| AATGCCGATG                                                                                 | TGTCGCTACT                                                                              |
| TTACGGCTAC                                                                                 | ACAGCGATGA                                                                              |
| TATGACCGAA                                                                                 | AACTTGATTC                                                                              |
| ATACTGGCTT                                                                                 | TTGAACTAAG                                                                              |
| 101                                                                                        | 151                                                                                     |

| CCGGCCTTGC TAATGGTAAT GGTGCTACTG GTGATTTGC | GGCCGGAACG ATTACCATTA CCACGATGAC CACTAAAACG |
|--------------------------------------------|---------------------------------------------|
| GGTGCTACTG                                 | CCACGATGAC                                  |
| TAATGGTAAT                                 | ATTACCATTA                                  |
| CCGGCCTTGC                                 | GGCCGGAACG                                  |
| GGTGACGTTT                                 | CCACTGCAAA                                  |
| 201                                        | ULE 2                                       |

| TGG CTCAAGTCGG TGACGGTGAT AATTCACCTT | A TTAAGTGGAA                       |
|--------------------------------------|------------------------------------|
| TCCCAAATGG CTCAAGTCGG TGACGGTGAT AA  | AGGGTTTACC GAGTTCAGCC ACTGCCACTA I |
| CTCAAGTCGG                           | GAGTTCAGCC                         |
| TCCCAAATGG                           | AGGGTTTACC                         |
| TGGCTCTAAT                           | ACCGAGATTA                         |
| 251                                  |                                    |

## XmnI

ATCGGTTGAA TAGCCAACTT CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT ATTACTTATT TAATGAATAA 301

| (continued)                           |
|---------------------------------------|
| 4                                     |
| Ş                                     |
| <u> </u>                              |
| al map and sequence of modular vector |
| ≖                                     |
| ∺                                     |
| ಕ                                     |
| 2                                     |
| ⊏                                     |
| JC.                                   |
| •                                     |
| ence                                  |
| 5                                     |
| <u> </u>                              |
| 6                                     |
| sedne                                 |
| Þ                                     |
| æ                                     |
| <u>_</u>                              |
| 23                                    |
| _                                     |
| 듄                                     |
| 듬                                     |
| :=                                    |
| 2                                     |
| 5                                     |
| 5: f                                  |
| 35                                    |
| نه`                                   |
| Ξ                                     |
| 5                                     |
| :                                     |

|   | 351 | TGTCGCCCTT<br>ACAGCGGGAA | TTGTCTTTGG<br>AACAGAAACC                     | CGCTGGTAAA<br>GCGACCATTT                    | CCATATGAAT<br>GGTATACTTA | TTTCTATTGA<br>AAAGATAACT |
|---|-----|--------------------------|----------------------------------------------|---------------------------------------------|--------------------------|--------------------------|
|   | 401 | TTGTGACAAA<br>AACACTGTTT | ATAAACTTAT<br>TATTTGAATA                     | TCCGTGGTGT                                  | CTTTGCGTTT<br>GAAACGCAAA | CTTTTATATG<br>GAAAATATAC |
| _ | 451 | TTGCCACCTT<br>AACGGTGGAA | TATGTATGTA<br>ATACATACAT                     | TTTTCTACGT<br>AAAAGATGCA                    | TTGCTAACAT<br>AACGATTGTA | ACTGCGTAAT<br>TGACGCATTA |
|   | 501 | AAGGAGTCTT<br>TTCCTCAGAA | HindIII<br>~~~~~<br>GATAAGCTTG<br>CTATTCGAAC | ACCTGTGAAG<br>TGGACACTTC                    | TGAAAAATGG<br>ACTTTTTACC | CGCAGATTGT<br>GCGTCTAACA |
|   | 551 | GCGACATTTT<br>CGCTGTAAAA | TTTTGTCTGC<br>AAAACAGACG                     | PacI<br>~~~~~~~<br>CGTTTAATTA<br>GCAAATTAAT | AAGGGGGGGG               | Fsel                     |
|   | 601 | TGGGGGGGG                | BsrGI<br>~~~~~~<br>TGTACATGAA<br>ACATGTACTT  | ATTGTAAACG<br>TAACATTTGC                    | ТТААТАТТТ<br>ААТТАТАААА  | GTTAAAATTC<br>CAATTTTAAG |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| AGGCCGAAAT<br>TCCGGCTTTA | GGGTTGAGTG<br>CCCAACTCAC | GGACTCCAAC<br>CCTGAGGTTG | TACGAGAACC<br>ATGCTCTTGG  | GCACTAAATC<br>CGTGATTTAG |       | AAAGCCGGCG<br>TTTCGGCCGC | GCGCTAGGGC<br>CGCGATCCCG |
|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|-------|--------------------------|--------------------------|
| TTTAACCAAT<br>AAATTGGTTA | GACCGAGATA<br>CTGGCTCTAT | TAAAGAACGT<br>ATTTCTTGCA | GATGGCCCCAC<br>CTACCGGGTG | GTGCCGTAAA<br>CACGGCATTT |       | CTTGACGGGG<br>GAACTGCCCC | AAAGGAGCGG               |
| CAGCTCATTT<br>GTCGAGTAAA | CAAAAGAATA<br>GTTTTCTTAT | AGTCCACTAT<br>TCAGGTGATA | CTATCAGGGC<br>GATAGTCCCG  | TGGGGTCGAG<br>ACCCCAGCTC |       | CGATTTAGAG<br>GCTAAATCTC | GAAGAAAGCG<br>CTTCTTTCGC |
| ТТТСТТАААТ<br>АААСААТТТА | CCTTATAAAT<br>GGAATATTTA | TTGGAACAAG               | GAAAAACCGT<br>CTTTTTGGCA  | TCAAGTTTTT<br>AGTTCAAAAA | BanII | AGGGAGCCCC<br>TCCCTCGGGG | GAAAGGAAGG               |
| GCGTTAAATT<br>CGCAATTTAA | CGGCAAAATC               | TTGTTCCAGT<br>AACAAGGTCA | GTCAAAGGGC<br>CAGTTTCCCG  | ATCACCCTAA<br>TAGTGGGATT |       | GGAACCCTAA<br>CCTTGGGATT | AACGTGGCGA<br>TTGCACCGCT |
| 651                      | 701                      | 751                      | 801                       | 851                      |       | 901                      | 951                      |

CACGCTGTAG GTGCGACATC

CGTGGCGCTT TCTCATAGCT

CTTCGGGAAG GAAGCCCTTC

GCCTTTCTCC CGGAAAGAGG

1301

AGAGTATCGA

GCACCGCGAA

|                                        | ೧೮೧೮೧೧೮೧೮                                   | 9090990999                                  |
|----------------------------------------|---------------------------------------------|---------------------------------------------|
|                                        | GTAGCGGTCA CGCTGCGCGT AACCACCACA CCCGCCGCGC | CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG |
| .4 (continued)                         | CGCTGCGCGT                                  | GCGACGCGCA                                  |
| ce of modular vector pCAL4 (continued) | GTAGCGGTCA                                  | CATCGCCAGT                                  |
| Figure 35: functional map and sequence | GCTGGCAAGT                                  | CGACCGTTCA                                  |
| Figure 35: fu                          | 1001                                        |                                             |

|      | AAAGGCCAGC<br>TTTCCGGTCG       | TTTCCATAGG<br>AAAGGTATCC       | GTCAGAGGTG<br>CAGTCTCCAC       | CCTGGAAGCT<br>GGACCTTCGA       |       | ATACCTGTCC<br>TATGGACAGG |
|------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|--------------------------|
|      | CATGTGAGCA AA<br>GTACACTCGT TT | TGCTGGCGTT TI<br>ACGACCGCAA AA | CGACGCTCAA G1<br>GCTGCGAGTT C1 | GGCGTTTCCC C(<br>CCGCAAAGGG G( |       | CGCTTACCGG ATGCGCC TA    |
| NheI | GCGTGCTAGC                     | AAGGCCGCGT<br>TTCCGGCGCA       | TCACAAAAAT<br>AGTGTTTTTA       | AAAGATACCA<br>TTTCTATGGT       | ٠     | CCGACCCTGC<br>GGCTGGGACG |
|      | GCTACAGGGC<br>CGATGTCCCG       | GAACCGTAAA<br>CTTGGCATTT       | CTGACGAGCA                     | ACAGGACTAT<br>TGTCCTGATA       |       | CTCTCCTGTT<br>GAGAGGACAA |
|      | TTAATGCGCC                     | AAAAGGCCAG<br>TTTTCCGGTC       | CTCCGCCCCC                     | GCGAAACCCG<br>CGCTTTGGGC       | BssSI | CCCTCGTGCG               |
|      | 1051                           | 1101                           | 1151                           | 1201                           |       | 1251                     |
|      |                                | CHRC                           | דודוודה פטס                    | ET (RIII E OF                  | 3)    |                          |

SUBSTITUTE SHEET (RULE 26)

111 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| TGTGTGCACG                 | CTATCGTCTT  | CAGCCACTGG               | GAGTTCTTGA               | TGGTATCTGC               | GCTCTTGATC                | TGCAAGCAGC               | GATCTTTTCT               |
|----------------------------|-------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
| ACACGTGC                   | GATAGCAGAA  | GTCGGTGACC               | CTCAAGAACT               | ACCATAGACG               | CGAGAACTAG                |                          | CTAGAAAAGA               |
| CAAGCTGGGC '<br>GTTCGACCCG | TATCCGGTAA  | CCACTGGCAG               | CGGTGCTACA<br>GCCACGATGT | GAACAGTATT<br>CTTGTCATAA | AGAGTTGGTA<br>TCTCAACCAT  | TTTTTTTGTT<br>AAAAAAACAA | AAGATCCTTT<br>TTCTAGGAAA |
| TCGTTCGCTC<br>AGCAAGCGAG   | CGCTGCGCCT  | CGACTTATCG<br>GCTGAATAGC | GGTATGTAGG               | TACACTAGAA<br>ATGTGATCTT | CTTCGGAAAA<br>GAAGCCTTTT. | GTAGCGGTGG               | GGATCTCAAG<br>CCTAGAGTTC |
| TCGGTGTAGG                 | TCAGCCCGAC  | CGGTAAGACA               | AGCAGAGCGA               | TAACTACGGC               | AGCCAGTTAC                | ACCACCGCTG               | CAGAAAAAAA               |
| AGCCACATCC                 | AGTCGGGCTG  | GCCATTCTGT               | TCGTCTCGCT               | ATTGATGCCG               | TCGGTCAATG                | TGGTGGCGAC               | GTCTTTTTTT               |
| GTATCTCAGT                 | AACCCCCCGT  | GAGTCCAACC               | TAACAGGATT               | AGTGGTGGCC               | GCTCTGCTGT                | CGGCAAACAA               | AGATTACGCG               |
| CATAGAGTCA                 | TTGGGGGGGCA | CTCAGGTTGG               | ATTGTCCTAA               | TCACCACCGG               | CGAGACGACA                | GCCGTTTGTT               | TCTAATGCGC               |
| 1351                       | 1401        | 1451                     | 1501                     | 1551<br>1551             | 1601                      | 1651                     | 1701                     |

112 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT               | ТТАААААААТ                                  | CATTAAGCAT               | TGAATCGCCA  | CATAGTGAAA               | CAAAACTGGT               | TCAATAAACC               |
|--------------------------|---------------------------------------------|--------------------------|-------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA               | ААТТТТТТА                                   | GTAATTCGTA               | ACTTAGCGGT  | GTATCACTTT               | GTTTTGACCA               | AGTTATTTGG               |
| TCACGTTAAG               | AATAACTGCC                                  | TGTTGTAATT               | ATGATGAACC  | AATATTTGCC               | ACGTTTAAAT               | AAACATATTC               |
| AGTGCAATTC               | TTATTGACGG                                  | ACAACATTAA               | TACTACTTGG  | TTATAAACGG               | TGCAAATTTA               | TTTGTATAAG               |
| GAACGAAAAC               | TAAGGGCACC                                  | ATCGCAGTAC               | CACAAACGGC  | CCTTGCGTAT               | CATATTGGCT               | CTGAGACGAA               |
| CTTGCTTTTG               | ATTCCCGTGG                                  | TAGCGTCATG               | GTGTTTGCCG  | GGAACGCATA               | GTATAACCGA               | GACTCTGCTT               |
| ACGCTCAGTG               | ACCAGGCGTT                                  | CCTGCCACTC               | TGGAAGCCAT  | CACCTTGTCG               | AGAAGTTGTC               | CAGGGATTGG               |
| TGCGAGTCAC               | TGGTCCGCAA                                  | GGACGGTGAG               |             | GTGGAACAGC               | TCTTCAACAG               | GTCCCTAACC               |
| ACGGGGTCTG<br>TGCCCCAGAC | BglII<br>~~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC<br>ATGCGGGGCG | TCTGCCGACA  | GCGGCATCAG<br>CGCCGTAGTC | ACGGGGGCGA<br>TGCCCCCGCT | GAAACTCACC<br>CTTTGAGTGG |
| 1751                     | 1801                                        | 1851                     | 1901        | 1951                     | 2001                     | 2051                     |
|                          |                                             | SUBSTIT                  | JTE SHEET ( | RULE 26)                 | •                        |                          |

| AC ATCTTGCGAA                                                                   | TAC TCCAGAGCGA           | CAA GGGTGAACAC           | ACG GAACTCCGGG<br>IGC CTTGAGGCCC | CCG GATAAAACTT<br>3GC CTATTTTGAA | ATA TCCAGCTGAA<br>IAT AGGTCGACTT | rgc ctcaaaatgt<br>acg gagttttaca | ATC CAGTGATTTT<br>TAG GTCACTAAAA |
|---------------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| AACACGCCAC<br>TTGTGCGGTG                                                        | TGGTATTCAC<br>ACCATAAGTG | GGTGTAACAA<br>CCACATTGTT | TTGCCATACG<br>AACGGTATGC         | ATAAAGGCCG<br>TATTTCCGGC         | GGCCGTAATA                       | ACTGAAATGC<br>TGACTTTACG         | GTGGTATATC<br>CACCATATAG         |
| 4 (continued)<br>TTTTCACCGT<br>AAAAGTGGCA                                       | GAAATCGTCG<br>CTTTAGCAGC | CATGGAAAAC<br>GTACCTTTTG | CCGTCTTTCA<br>GGCAGAAAGT         | AAGAATGTGA<br>TTCTTACACT         | TCTTTAAAAA<br>AGAAATTTTT         | TGAGCAACTG<br>ACTCGTTGAC         | TATATCAACG<br>ATATAGTTGC         |
| e of modular vector pCAL4 (continued)<br>ATAGGCCAGG TTTTTC?<br>TATCCGGTCC AAAAG | GAAACTGCCG<br>CTTTGACGGC | TCAGTTTGCT<br>AGTCAAACGA | CACCAGCTCA<br>GTGGTCGAGT         | TCAGGCGGGC                       | TTCTTTACGG<br>AAGAAATGCC         | ATAGGTACAT<br>TATCCATGTA         | GCCATTGGGA<br>CGGTAACCCT         |
| Figure 35: functional map and sequence 2101 CTTTAGGGAA AGAATCCCTT               | TATATGTGTA<br>ATATACACAT | TGAAAACGTT<br>ACTTTTGCAA | TATCCCATAT<br>ATAGGGTATA         | TGAGCATTCA                       | GTGCTTATTT<br>CACGAATAAA         | CGGTCTGGTT                       | TCTTTACGAT<br>AGAAATGCTA         |
| Figure 35: fu<br>2 1 0 1                                                        | 2151                     | 2201                     | 2251                             | 2301                             | 2351                             | 2401                             | 2451                             |

| ned)                                  |
|---------------------------------------|
| 4 (contir                             |
| tor pCAL                              |
| nal map and sequence of modular vecto |
| se of mo                              |
| l sequenc                             |
| map and                               |
| nctional                              |
| re 35: fu                             |
| Figure                                |

| CTCAAAAA                                    | GAGTTTTT                                    | AACCTCAC<br>TTGGAGTG                                                                       |
|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|
| TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAA | AATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGAGTTTTT | TAGTGATCTT ATTTCATTAT GGTGAAAGTT GGAACCTCAC<br>ATCACTAGAA TAAAGTAATA CCACTTTCAA CCTTGGAGTG |
| TAGCTCCTGA A                                | ATCGAGGACT T                                | ATTTCATTAT G<br>TAAAGTAATA C                                                               |
| TTAGCTTCCT                                  | AATCGAAGGA                                  | TAGTGATCTT<br>ATCACTAGAA                                                                   |
| TTTCTCCATT                                  | AAAGAGGTAA                                  | ATACGCCCGG<br>TATGCGGGCC                                                                   |
| 2501                                        |                                             | 2551                                                                                       |

AatII

AGGCTTTACA TCCGAAATGT TAGGCACCCC ATCCGTGGGG GCTCACTCAT CGAGTGAGTA ATGTGAGTTA TACACTCAAT GGCTGCAGAT CCGACGTCTA ~~~~ 2601

AATTGTGAGC TGTTGTGG CCGGCTCGTA CTTTATGCTT

XbaI SphI

CCTATTGTTA

TTAACACTCG

ACACACACC

GGCCGAGCAT

GAAATACGAA

GGATAACAAT

AGAGCATGCG TCTCGTACGC ACGAATTTCT TGCTTAAAGA GACCATGATT CTGGTACTAA AAACAGCTAT TTTGTCGATA TTCACACAGG AAGTGTGTCC 2701

Ecori

2751 GGGGG

CCCCC

SUBSTITUTE SHEET (RULE 26)

115 / 204

2651



SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

~ Σ AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT AAATACGAAG TTTATGCTTC 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

ACG AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26)

101

117 / 204





AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

BglII

ACTGCAG TGACGTC ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 7-I (long):

|             |               | ROORT                    |                          |                          |                          |                          |
|-------------|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | <del></del> 1 | GAATTCGGTG               | GTGGTGGATC               | TGCGTGCGCT<br>ACGCACGCGA | GAAACGGTTG<br>CTTTGCCAAC | AAAGTTGTTT<br>TTTCAACAAA |
|             | 51            | AGCAAAATCC<br>TCGTTTTAGG | CATACAGAAA<br>GTATGTCTTT | ATTCATTTAC<br>TAAGTAAATG | TAACGTCTGG<br>ATTGCAGACC | AAAGACGACA<br>TTTCTGCTGT |
| 010077717   | 101           | AAACTTTAGA<br>TTTGAAATCT | TCGTTACGCT<br>AGCAATGCGA | AACTATGAGG<br>TTGATACTCC | GCTGTCTGTG<br>CGACAGACAC | GAATGCTACA<br>CTTACGATGT |
| F 611557 (0 | 151           | GGCGTTGTAG               | TTTGTACTGG<br>AAACATGACC | TGACGAAACT<br>ACTGCTTTGA | CAGTGTTACG<br>GTCACAATGC | GTACATGGGT<br>CATGTACCCA |
| = 0.0       | 201           | TCCTATTGGG<br>AGGATAACCC | CTTGCTATCC<br>GAACGATAGG | CTGAAAATGA<br>GACTTTTACT | GGGTGGTGGC<br>CCCACCACCG | TCTGAGGGTG<br>AGACTCCCAC |
|             | 251           | GCGGTTCTGA<br>CGCCAAGACT | GGGTGGCGGT               | TCTGAGGGTG<br>AGACTCCCAC | GCGGTACTAA<br>CGCCATGATT | ACCTCCTGAG<br>TGGAGGACTC |
|             | 301           | TACGGTGATA               | CACCTATTCC<br>GTGGATAAGG | GGGCTATACT<br>CCCGATATGA | TATATCAACC<br>ATATAGTTGG | CTCTCGACGG               |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AATCCTTCTC<br>TTAGGAAGAG | TAATAGGTTC<br>ATTATCCAAG | TTACTCAAGG               | TCATCAAAAG<br>AGTAGTTTTC | CGCTTTCCAT               | GCCAATCGTC               | GGTGGTGGTT               | TTCTGAGGGT               |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CGCTAATCCT<br>GCGATTAGGA | TGTTTCAGAA<br>ACAAAGTCTT | ACGGGCACTG<br>TGCCCGTGAC | CACTCCTGTA               | TCAGAGACTG<br>AGTCTCTGAC | GAATATCAAG<br>CTTATAGTTC | CGGCGGCTCT               | AGGGTGGCGG<br>TCCCACCGCC |
| AGCAAAACCC<br>TCGTTTTGGG | AATACTTTCA<br>TTATGAAAGT | AACTGTTTAT<br>TTGACAAATA | ATTACCAGTA<br>TAATGGTCAT | AACGGTAAAT<br>TTGCCATTTA | ATTTGTTTGT<br>TAAACAAACA | TCAATGCTGG<br>AGTTACGACC | GGTGGCTCTG               |
| CCTGGTACTG<br>GGACCATGAC | TCAGCCTCTT<br>AGTCGGAGAA | AGGGGGCATT<br>TCCCCCGTAA | GTTAAAACTT<br>CAATTTTGAA | CGCTTACTGG<br>GCGAATGACC | ATGAGGATTT<br>TACTCCTAAA | CAACCTCCTG<br>GTTGGAGGAC | CTCTGAGGGT<br>GAGACTCCCA |
| CACTTATCCG<br>GTGAATAGGC | TTGAGGAGTC               | CGAAATAGGC               | CACTGACCCC<br>GTGACTGGGG | CCATGTATGA<br>GGTACATACT | TCTGGCTTTA<br>AGACCGAAAT | TGACCTGCCT<br>ACTGGACGGA | CTGGTGGCGG               |
| 351                      | 401                      | 451                      | 501                      | 551                      | 601                      | 651                      | 701                      |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                          |                          | •                        |                          |                                               |                          |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------------|--------------------------|
| CCGGTGATTT<br>GGCCACTAAA | ACCGAAAATG<br>TGGCTTTTAC | TGATTCTGTC<br>ACTAAGACAG | ACGTTTCCGG<br>TGCAAAGGCC | TCTAATTCCC<br>AGATTAAGGG | XmnI<br>~~~~~~~~~<br>GAATAATTTC<br>CTTATTAAAG | GCCCTTTTGT<br>CGGGAAAACA |
| GGCTCTGGTT               | GGGGGCTATG               | AAGGCAAACT               | TTCATTGGTG               | TTTTGCTGGC               | CACCTTTAAT                                    | GTTGAATGTC               |
| CCGAGACCAA               | CCCCCGATAC               | TTCCGTTTGA               | AAGTAACCAC               |                          | GTGGAAATTA                                    | CAACTTACAG               |
| TTCCGGTGGT               | ACGCTAATAA               | TCTGACGCTA               | TATCGATGGT               | CTACTGGTGA               | GGTGATAATT                                    | CCCTCAATCG               |
|                          | TGCGATTATT               | AGACTGCGAT               | ATAGCTACCA               | GATGACCACT               | CCACTATTAA                                    | GGGAGTTAGC               |
| AGGGAGGCGG               | AAGATGGCAA               | CGCGCTACAG               | ACGGTGCTGC               | GGTAATGGTG               | AGTCGGTGAA                                    | TACCTTCCAT               |
| TCCCTCCGCC               | TTCTACCGTT               | GCGCGATGTC               | TGCCACGACG               | CCATTACCAC               | TCAGCCACTT                                    | ATGGAAGGTA               |
| GGCGGCTCTG               | TGATTATGAA               | CCGATGAAAA               | GCTACTGATT               | CCTTGCTAAT               | AAATGGCTCA                                    | CGTCAATATT               |
| CCGCCGAGAC               | ACTAATACTT               | GGCTACTTTT               | CGATGACTAA               | GGAACGATTA               |                                               | GCAGTTATAA               |
| 751                      | 801                      | 851                      | 901                      | 951                      | 1001                                          | 1051                     |
|                          |                          |                          | SUBSTITUT                | E SHEET (R!              | JLE 26)                                       |                          |

SUBSTITUTE SHEET (RULE 26 123 / 204

| ਰ         |
|-----------|
| ٩         |
| .Ē        |
| Ξ         |
| 8         |
| <u> </u>  |
| 0         |
| ij        |
| Š.        |
| بَـ       |
| 8         |
| ā         |
| Ď.        |
| ā         |
| S         |
| 3         |
| 0         |
| Ε         |
| č         |
| ecto      |
| Š         |
| Ļ         |
| ర్        |
| <u>a</u>  |
| <u>न</u>  |
| ŏ         |
| Ξ         |
| b         |
| e a       |
| 0         |
| Ş         |
| 2         |
| ь         |
| ģ         |
| Ň         |
| 5         |
| a         |
| ğ         |
| ۳         |
| =         |
| Ĕ         |
| Ę;        |
| 2         |
| .∋        |
| <u>::</u> |
| 53        |
| ς.        |
| Ę         |
| ್ತಕ್ಷ     |
|           |

| GACAAAATAA<br>CTGTTTTATT                       | CACCTTTATG<br>GTGGAAATAC | HindIII<br>AGTCTTGATA<br>TCAGAACTAT |                                 |
|------------------------------------------------|--------------------------|-------------------------------------|---------------------------------|
| TATTGATTGT GACAAAATAA<br>ATAACTAACA CTGTTTTATT | TATATGTTGC<br>ATATACAACG | CGTAATAAGG<br>GCATTATTCC            | ÷                               |
| ATGAATTTTC<br>TACTTAAAAG                       | GCGTTTCTTT<br>CGCAAAGAAA | TAACATACTG                          |                                 |
| GGTAAACCCT<br>CCATTTGGGA                       | TGGTGTCTTT<br>ACCACAGAAA | CTACGTTTGC<br>GATGCAAACG            |                                 |
| CTTTGGCGCT<br>GAAACCGCGA                       | ACTTATTCCG<br>TGAATAAGGC | TATGTATTTT                          | HindI<br>~~~~<br>AGCTT<br>TCGAA |
| 1101                                           | 1151                     | 1201                                | 1251                            |
| n.                                             |                          | SU                                  | JBSTITUTE SHEET (RULE 26)       |
|                                                |                          |                                     |                                 |



SUBSTITUTE SHEET (RULE 26) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 7-II (SS-TAG)

ECORI

GTGATTTGA CACTAAAACT TCTGGTTCCG AGACCAAGGC CGGTGGTGGC GCCACCACCG GAGGCGGTTC CTCCGCCAAG CGGGAATTCG GCCCTTAAGC

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC CTAATAAGGG GATTATTCCC ATGGCAAACG TACCGTTTGC AATACTTTTC TTATGAAAAG 51

TICIGICGCI AAGACAGCGA GCAAACTTGA CGTTTGAACT GACGCTAAAG CTGCGATTTC CGATGTCAGA GCTACAGICI TACTTTTGCG ATGAAAACGC 101

TAACCACTGC ATTGGTGACG GCTACCAAAG CGATGGTTTC CACGACGATA GTGCTGCTAT TGACTAATGC ACTGATTACG

AAAGGCCGGA

TTTCCGGCCT

TTAAGGGTTT AATTCCCAAA ACGACCGAGA TGCTGGCTCT GACCACTAAA CTGGTGATTT TTACCACGAT AATGGTGCTA TGCTAATGGT ACGATTACCA 201

XmnI

TAATTTCCGT ATTAAAGGCA CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26)

51

|                                                    | ֡֝֝֞֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֜֜֜֡֓֓֓֜֜֜֡֓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | CODE THE THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE |
| GG                                                 | È                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ıtinu                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) (CO                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ctor                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AL ve                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| od p                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| es an                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Inpou                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II pCAL vector modules and pCAL vectors (continued |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vec                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| inctional maps and sequences of additional pCAL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ional                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| addit                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| s of                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uence                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J seq                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| s an(                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| тар                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ional                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| unct                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }5a: {                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ure                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fig                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| CTTTTGTCTT<br>GAAAACAGAA       | AAAATAAACT<br>TTTTATTTGA | CTTTATGTAT<br>GAAATACATA | HindIII<br>~~~~<br>CTTGATAAGC<br>GAACTATTCG |                |
|--------------------------------|--------------------------|--------------------------|---------------------------------------------|----------------|
| GAATGTCGCC                     | TGATTGTGAC               | ATGTTGCCAC               | AATAAGGAGT                                  |                |
| CTTACAGCGG                     | ACTAACACTG               | TACAACGGTG               | TTATTCCTCA                                  |                |
| TCAATCGGTT                     | AATTTTCTAT               | ТТТСТТТТАТ               | CATACTGCGT                                  |                |
| AGTTAGCCAA                     | TTAAAAGATA               | АААGААААТА               | GTATGACGCA                                  |                |
| recceecc                       | AAACCATATG               | TGTCTTTGCG               | CGTTTGCTAA                                  |                |
| Agggaggg                       | TTTGGTATAC               | ACAGAAACGC               | GCAAACGATT                                  |                |
| SOI CAATATTAC CI GTTATAAATG GA | TGGCGCTGGT               | TATTCCGTGG               | GTATTTTCTA                                  | Hi.            |
|                                | ACCGCGACCA               | ATAAGGCACC               | CATAAAAGAT                                  | TT             |
| 301<br>301                     | 351                      | 401                      | 451                                         | 501            |
| ٠<br>ع                         |                          |                          | SUBSTITUTE SI                               | HEET (RULE 26) |





HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ထ Σ

SphI

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA



SUBSTITUTE SHEET (RULE 26)
130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 10-II

BSrGI

| r GTATCCGCTC ATGAGACAAT AACCCTGATA | TAAGTTTATA CATAGGCGAG TACTCTGTTA TTGGGACTAT |
|------------------------------------|---------------------------------------------|
| ATGAGACAAT                         | TACTCTGTTA                                  |
| GTATCCGCTC                         | CATAGGCGAG                                  |
| ATTCAAATAT                         | TAAGTTTATA                                  |
| GGGGGTGTAC                         | CCCCCACATG                                  |
| Н                                  |                                             |

| CAACATTTCC | GTTGTAAAGG |
|------------|------------|
| TATGAGTATT | ATACTCATAA |
| AAAGGAAGAG | TTTCCTTCTC |
| TAATATTGAA | ATTATAACTT |
| AATGCTTCAA |            |
| 51         |            |

| TGTTTTGCT  | ACAAAAACGA |
|------------|------------|
| TTTGCCTTCC | AAACGGAAGG |
| TTTGCGGCAT | AAACGCCGTA |
| TATTCCCTTT | ATAAGGGAAA |
| GTGTCGCCCT | CACAGCGGGA |
| 101        |            |

| AGTTGGGTGC        | TCATTTTCTA CGACTCCTAG TCAACCCACG |
|-------------------|----------------------------------|
| AAAGAT GCTGAGGATC | CGACTCCTAG                       |
| A AGTAAAAGAT      | TCATTTTCTA                       |
| CGCTGGTGAA AC     | GCGACCACTT                       |
| CACCCAGAAA        | GTGGGTCTTT                       |
| 151               |                                  |
| EFT               | (SUL                             |

TGAGCACTTT TAAAGTTCTG ACTCGTGAAA ATTTCAAGAC CGAAGAACGT TTTCCAATGA GCTTCTTGCA AAAGGTTACT CAAAAGCGGG GTTTTCGCCC 251

XmnI

SUBSTITUTE SHEET (RULE 26)

131 / 204

| vectors (continued)     |  |
|-------------------------|--|
| <del>,</del>            |  |
| ž.                      |  |
| ₹                       |  |
| Ö                       |  |
| ٥                       |  |
| Š                       |  |
| ฮ                       |  |
| > -                     |  |
| ٩L                      |  |
| ပ္ထ                     |  |
| <del>-</del>            |  |
| эÙ                      |  |
| S                       |  |
| ₹                       |  |
| В                       |  |
| Ε                       |  |
| ō                       |  |
| rect                    |  |
| >                       |  |
| pCAI                    |  |
| ā                       |  |
| 13                      |  |
| ö                       |  |
| ij                      |  |
| additi                  |  |
| -                       |  |
| \$ 0                    |  |
| ۳.                      |  |
| nd sequenc              |  |
| Ę,                      |  |
| S                       |  |
| nd                      |  |
| nal maps and            |  |
| dе                      |  |
| Ε                       |  |
| 2                       |  |
| 0                       |  |
| $\overline{\mathbf{c}}$ |  |
| جري                     |  |
| <u></u>                 |  |
| 53                      |  |
| ر<br>ع                  |  |
| Figure                  |  |
| ē                       |  |
|                         |  |

|        | 301 | 301 CTATGTGGCG<br>GATACACCGC | CGGTATTATC<br>GCCATAATAG | CCGTATTGAC<br>GGCATAACTG | GCCGGGCAAG<br>CGGCCCGTTC | AGCAACTCGG<br>TCGTTGAGCC |
|--------|-----|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|        | 351 | TCGCCGCATA                   | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
|        | 401 | CAGAAAAGCA<br>GTCTTTTCGT     | TCTTACGGAT<br>AGAATGCCTA | GGCATGACAG<br>CCGTACTGTC | TAAGAGAATT<br>ATTCTCTTAA | ATGCAGTGCT               |
| רמתנום | 451 | GCCATAACCA                   | TGAGTGATAA<br>ACTCACTATT | CACTGCGGCC<br>GTGACGCCGG | AACTTACTTC<br>TTGAATGAAG | TGACAACGAT<br>ACTGTTGCTA |
|        | 501 | CGGAGGACCG<br>GCCTCCTGGC     | AAGGAGCTAA<br>TTCCTCGATT | CCGCTTTTTT<br>GGCGAAAAAA | GCACAACATG<br>CGTGTTGTAC | GGGGATCATG<br>CCCCTAGTAC |
|        | 551 | TAACTCGCCT<br>ATTGAGCGGA     | TGATCGTTGG<br>ACTAGCAACC | GAACCGGAGC               | TGAATGAAGC<br>ACTTACTTCG | CATACCAAAC<br>GTATGGTTTG |
|        | 601 | GACGAGCGTG<br>CTGCTCGCAC     | ACACCACGAT<br>TGTGGTGCTA | GCCTGTAGCA               | ATGGCAACAA<br>TACCGTTGTT | CGTTGCGCAA<br>GCAACGCGTT |
|        | 651 | ACTATTAACT<br>TGATAATTGA     | GGCGAACTAC<br>CCGCTTGATG | TTACTCTAGC<br>AATGAGATCG | TTCCCGGCAA<br>AAGGGCCGTT | CAGTTAATAG<br>GTCAATTATC |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 701        | 751        | 801        | 851<br>851 | TITUTE SHE | 62 1<br>1 (RULE 26 | 1001       | 1051       |
|------------|------------|------------|------------|------------|--------------------|------------|------------|
| ACTGGATGGA | CCGGCTGGCT | TCGCGGTATC | TAGTTATCTA | CAGATCGCTG | ACCAAGTTTA         | TTTAAAAGGA | CCCTTAACGT |
| TGACCTACCT | GGCCGACCGA | AGCGCCATAG | ATCAATAGAT | GTCTAGCGAC | TGGTTCAAAT         | AAATTTTCCT | GGGAATTGCA |
| GGCGGATAAA | GGTTTATTGC | ATTGCAGCAC | CACGACGGGG | AGATAGGTGC | CTCATATATA         | TCTAGGTGAA | GAGTTTTCGT |
| CCGCCTATTT | CCAAATAACG | TAACGTCGTG | GTGCTGCCCC | TCTATCCACG | GAGTATATAT         | AGATCCACTT | CTCAAAAGCA |
| GTTGCAGGAC | TGATAAATCT | TGGGGCCAGA | AGTCAGGCAA | CTCACTGATT | CTTTAGATTG         | GATCCTTTTT | TCCACTGAGC |
| CAACGTCCTG | ACTATTTAGA | ACCCCGGTCT | TCAGTCCGTT | GAGTGACTAA | GAAATCTAAC         | CTAGGAAAAA | AGGTGACTCG |
| CACTTCTGCG | GGAGCCGGTG | TGGTAAGCCC | CTATGGATGA | AAGCATTGGG | ATTTAAAACT         | GATAATCTCA | GTCAGACCCC |
| GTGAAGACGC | CCTCGGCCAC | ACCATTCGGG | GATACCTACT | TTCGTAACCC | TAAATTTTGA         | CTATTAGAGT | CAGTCTGGGG |
| CTCGGCCCTT | AGCGTGGGTC | TCCCGTATCG | ACGAAATAGA | TAACTGTCAG | TCATTTTTAA         | TGACCAAAAT | GTAGAAAAGA |
| GAGCCGGGAA | TCGCACCCAG | AGGGCATAGC | TGCTTTATCT | ATTGACAGTC | AGTAAAAATT         | ACTGGTTTTA | CATCTTTTCT |

133 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

FseI

PacI

AATGGCCGGC CCTTTTTGAT GGAAAAACTA

TTCTTGAGAT AAGAACTCTA

AGTTTCCTAG

TCAAAGGATC

1101

AATTAAGGGG TTAATTCCCC

1151

SUBSTITUTE SHEET (RULE 26)

134 / 204

11111 PacI

TTACCGGCCG

CCCCCCCCTT



SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## 111-II:

| Н |  |
|---|--|
| ΰ |  |
| 卫 |  |
| Z |  |

|    | GCTAGCACGC<br>CGATCGTGCG | GCCCTGTAGC<br>CGGGACATCG | GGCGCATTAA GCGCGGCGGG TGTGGTGGTT<br>CCGCGTAATT CGCGCCGCCC ACACCACCAA | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | TGTGGTGGTT               |
|----|--------------------------|--------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| 51 | ACGCGCAGCG<br>TGCGCGTCGC | TGACCGCTAC<br>ACTGGCGATG | ACTTGCCAGC GCCCTAGCGC<br>TGAACGGTCG CGGGATCGCG                       | GCCCTAGCGC                                                                                  | CCGCTCCTTT<br>GGCGAGGAAA |

| CCCCGTCAAG                                     |  |
|------------------------------------------------|--|
| CGCCGGCTTT<br>GCGGCCGAAA                       |  |
| TCGCCACGTT CGCCGGCTTT<br>AGCGGTGCAA GCGGCCGAAA |  |
| CCTTCCTTTC<br>GGAAGGAAAG                       |  |
| CGCTTTCTTC<br>GCGAAAGAAG                       |  |
| 101                                            |  |

| Н |  |
|---|--|
| Н |  |
| П |  |
| ಥ |  |
| Д |  |
|   |  |
|   |  |
|   |  |

| TTTACGGCAC<br>AAATGCCGTG | GTGGGCCATC               |
|--------------------------|--------------------------|
| GATTTAGTGC               | GTA                      |
| TTAGGGTTCC<br>AATCCCAAGG | TTAGGGTGAT<br>AATCCCACTA |
| GGGGCTCCCT<br>CCCCGAGGGA | AAAAACTTGA<br>TTTTTGAACT |
| CTCTAAATCG<br>GAGATTTAGC | CTCGACCCCA<br>GAGCTGGGGT |
| 151                      | 201                      |
| UI E 26)                 |                          |

|   | ACGTTCTTTA   | TGGAACAAT             |
|---|--------------|-----------------------|
|   | GTTGGAGTCC   | CAACCTCAGG TGCAACAAAT |
|   | C GCCCTTTGAC | CGGGAAACTG            |
|   | ACGGTTTTTC   | TGCCAAAAAG            |
| • | GCCCTGATAG   | CGGGACTATC            |
|   | 51           |                       |

| _             |
|---------------|
| D             |
| ร             |
| Ĕ             |
| Ξ.            |
| Ĕ             |
| $\mathcal{E}$ |
| ت             |
| Š             |
| 2             |
| Ų             |
| Š             |
|               |
| ⋖             |
| Ŏ             |
|               |
| פַ            |
| an            |
| s a           |
| <u>نة</u>     |
| 3             |
| g             |
| Ĕ             |
| -             |
| ō             |
| ecto          |
| بة            |
| -             |
| =             |
| $\circ$       |
| ď             |
| <u>—</u>      |
| Ë             |
| .0            |
| ت:            |
| P             |
| ä             |
| <u> </u>      |
| 0             |
| ces           |
| ຽ             |
| 5             |
| 3             |
| Ö             |
| S             |
| s and         |
| Ξ             |
|               |
| ğ             |
| ā             |
| Ε             |
| =             |
| na            |
| <u>.</u>      |
| ctio          |
| ĕ             |
| ਼ਤੋਂ          |
| ш.            |
| e.            |
| 35            |
| ( )           |
| 5             |
| ᆽ             |
| Fig.          |
| _             |

|            |                                             |            | BsrGI<br>~~~~~<br>TTCATGTACA<br>AAGTACATGT | CGTTTACAAT<br>GCAAATGTTA | 451 |
|------------|---------------------------------------------|------------|--------------------------------------------|--------------------------|-----|
| AAAATATTAA | ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA | AATTTAACGC | ATTTAACAAA                                 | AAATGAGCTG               | 401 |
| TTTTATAATT | TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT | TTAAATTGCG | TAAATTGTTT                                 | TTTACTCGAC               |     |
| ATTGGTTAAA | ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA | GATTTTGCCG | ATTTATAAGG                                 | TATTCTTTTG               | 351 |
| TAACCAATTT | TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT | CTAAAACGGC | TAAATATTCC                                 | ATAAGAAAAC               |     |
| TATCTCGGTC | CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC | ACTGGAACAA | CTTGTTCCAA                                 | ATAGTGGACT               | 301 |
| ATAGAGCCAG | GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG | TGACCTTGTT | GAACAAGGTT                                 | TATCACCTGA               |     |



SUBSTITUTE SHEET (RULE 26)

pCAL vectors (continued)

| ď                                                                                 |
|-----------------------------------------------------------------------------------|
| g                                                                                 |
| <u>~</u>                                                                          |
| S                                                                                 |
| 3                                                                                 |
| ŏ                                                                                 |
| Ε                                                                                 |
| ō                                                                                 |
| さ                                                                                 |
| >                                                                                 |
| 7                                                                                 |
| Ğ                                                                                 |
| <u>a</u>                                                                          |
| ы                                                                                 |
| <u>.</u> <u>ō</u>                                                                 |
| ≓                                                                                 |
| 절                                                                                 |
| <u>π</u> .                                                                        |
| 0                                                                                 |
| Š                                                                                 |
| Ĕ                                                                                 |
| ä                                                                                 |
| ęd                                                                                |
| Š                                                                                 |
| u                                                                                 |
| S S                                                                               |
| ğ                                                                                 |
| Ĕ                                                                                 |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and p |
| ũ                                                                                 |
| .9                                                                                |
| ۲                                                                                 |
| .5                                                                                |
| <u></u>                                                                           |
| 53                                                                                |
| m                                                                                 |
| ĭ                                                                                 |
| ್ರಕ್ಷ                                                                             |
| ίΞ                                                                                |

Σ

| CGCGTAATCT               | TTCGTAGGTT               | GAGGAGCGCA | CATGACTTCA               | GTGGTGCTTT               | GATAAGGCGC               | CTTGGAGCGA |
|--------------------------|--------------------------|------------|--------------------------|--------------------------|--------------------------|------------|
| GCGCATTAGA               | AAGCATCCAA               | CTCCTCGCGT | GTACTGAAGT               | CACCACGAAA               | CTATTCCGCG               | GAACCTCGCT |
| TTTTGGTCTG               | AGGGCGGTTT               | AACTGGCTTG | TTAACCGGCG               | GCTGCTGCCA               | ATAGTTACCG               | TACAGTCCAG |
| AAAACCAGAC               | TCCCGCCAAA               | TTGACCGAAC | AATTGGCCGC               |                          | TATCAATGGC               | ATGTCAGGTC |
| CTTGAGATCG               | ACCGCCTTGC               | GAACCGAGGT | CAGTTTAGCC               | ATTACCAGTG               | ACTCAAGACG               | GGTTCGTGCA |
| GAACTCTAGC               | TGGCGGAACG               | CTTGGCTCCA | GTCAAATCGG               | TAATGGTCAC               | TGAGTTCTGC               | CCAAGCACGT |
| AGATGATCTT               | AAACGAAAAA               | CCAACTCTTT | CTTGTCCTTT               | CTCTAAATCA               | TCCGGGTTGG               | CTGAACGGGG |
| TCTACTAGAA               | TTTGCTTTTT               | GGTTGAGAAA | GAACAGGAAA               | GAGATTTAGT               | AGGCCCAACC               | GACTTGCCCC |
| AGATCTAATA<br>TCTAGATTAT | CTTGCTCTĞA<br>GAACGAGACT | CTCTGAGCTA | GTCACTAAAA<br>CAGTGATTTT | AGACTAACTC<br>TCTGATTGAG | TGCATGTCTT<br>ACGTACAGAA | AGCGGTCGGA |
| $\leftarrow$             | 51                       | 101        | 151                      | 201                      | 251                      | 301        |
|                          |                          | SUBSTIT    | TUTE SHEET               | (RULE 26)                |                          |            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GGAATGAGAC AAACGCGGCC<br>CCTTACTCTG TTTGCGCCGG |      | AGGCAGGAAC AGGAGAGCGC<br>TCCGTCCTTG TCCTCTCGGG | TATCTTTATA GTCCTGTCGG<br>ATAGAAATAT CAGGACAGCC | TTCGTGATGC TTGTCAGGGG<br>AAGCACTACG AACAGTCCCC | CGGCCCTCTC ACTTCCCTGT<br>GCCGGGAGAG TGAAGGGACA | CTCCGCCCCG TTCGTAAGCC<br>GAGGCGGGC AAGCATTCGG | ************************************** |
|------------------------------------------------|------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|
| TGTCAGGCGT GC<br>ACAGTCCGCA CC                 | }    | GTAAACCGAA AC<br>CATTTGGCTT TC                 | AAACGCCTGG TA<br>TTTGCGGACC AT                 | AGCGTCAGAT TO                                  | GGCTTTGCCG CC                                  | TCCAGGAAAT CT<br>AGGTCCTTTA G                 | AACGACCGAG CC                          |
| CGGAACTGAG GCCTTGACTC                          | AgeI |                                                | CGCCAGGGGG                                     | CACTGATTTG                                     | ATGGAAAAAC<br>TACCTTTTTG                       | CCTGGCATCT                                    | GCCGCAGTCG                             |
| ACTGCCTACC<br>TGACGGATGG                       |      | ATAACAGCGG<br>ŢĄTTGTCGCC                       | AGGAGGGAGC<br>TCCTCCCTCG                       | GTTTCGCCAC<br>CAAAGCGGTG                       | GGCGGAGCCT<br>CCGCCTCGGA                       | TAAGTATCTT<br>ATTCATAGAA                      | ATTTCCGCTC                             |
| 351                                            |      | 401                                            | 451                                            | 501                                            | 551                                            | 601                                           | 651                                    |

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|     |                          |                                                |                                                |                                                | AgeI                     |
|-----|--------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------|
| 701 | GGAAGCGGAA<br>CCTTCGCCTT | TATATCCTGT ATCACATATT<br>ATATAGGACA TAGTGTATAA | TATATCCTGT ATCACATATT<br>ATATAGGACA TAGTGTATAA | CTGCTGACGC ACCGGTGCAG<br>GACGACTGCG TGGCCACGTC | ACCGGTGCAG<br>TGGCCACGTC |
|     |                          |                                                | XmnI                                           |                                                |                          |
| 751 | CCTTTTTTCT<br>GGAAAAAAGA | CCTGCCACAT<br>GGACGGTGTA                       | GAAGCACTTC<br>CTTCGTGAAG                       | ACTGACACCC TCATCAGTGC<br>TGACTGTGGG AGTAGTCACG | TCATCAGTGC<br>AGTAGTCACG |
|     |                          |                                                | NheI                                           |                                                |                          |
|     |                          |                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ?                                              |                          |
| 801 | CAACATAGTA               | AGCCAGTATA                                     | AGCCAGTATA CACTCCGCTA GC                       | 00                                             |                          |
|     | GTTGTATCAT               | TCGGTCATAT                                     | TCGGTCATAT GTGAGGCGAT CG                       | SO                                             |                          |



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

BglII

AGATCTCATA

TCTAGAGTAT

SUBSTITUTE SHEET (RULE 26)

143 / 204

ACTTCGTATA

TGAAGCATAT

ATGTATGCTA TACATACGAT

ATGCTTCAAT

AAGTCTAGA

TTCAGATCT

BglII

TACGAAGTTA

XmnI





CTATTGCACT GATAACGTGA

AAACAAAGCA TTTGTTTCGT

TTTATTTAC

CGCATCCTCT

AGATCTCGTA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19

XbaI SphI

 ECORI Sapi

CTTAAG GAATTC ATGGTTTCGG TACCAAAGCC TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA 51





Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

ADAL OPHIL

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

SapI

d d

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA GGCACTCTTA CCGTGAGAAT

51

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

11111

AAGAAGAACG TTCTTCCTTGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTC GAGGTGATTT CTCCACTAAA TCTAGAGGTT AGATCTCCAA

NsiI

ECORI

~ ~ ~ ~ ~ ~ -----

CTTAAG GAATTC

TTGCTACAAA TGCATACGCT AACGATGTTT ACGTATGCGA GTTTTTTCTA CAAAAAAGAT TAGATACAAG ATCTATGTTC

51

SUBSTITUTE SHEET (PULE 26)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 41:

| н   | GCTAGCATCG | AATGGCGCAA<br>TTACCGCGTT | AACCTTTCGC<br>TTGGAAAGCG | GGTATGGCAT<br>CCATACCGTA | GATAGCGCCC<br>CTATCGCGGG |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51  | GGAAGAGAGT | CAATTCAGGG               | TGGTGAATGT               | GAAACCAGTA               | ACGTTATACG               |
|     | CCTTCTCTCA | GTTAAGTCCC               | ACCACTTACA               | CTTTGGTCAT               | TGCAATATGC               |
| 101 | ATGTCGCAGA | GTATGCCGGT               | GTCTCTTATC               | AGACCGTTTC               | CCGCGTGGTG               |
|     | TACAGCGTCT | CATACGGCCA               | CAGAGAATAG               | TCTGGCAAAG               | GGCGCACCAC               |
| 151 | AACCAGGCCA | GCCACGTTTC               | TGCGAAAACG               | CGGGAAAAAG               | TGGAAGCGGC               |
|     | TTGGTCCGGT | CGGTGCAAAG               | ACGCTTTTGC               | GCCCTTTTTC               | ACCTTCGCCG               |
| 201 | GATGGCGGAG | CTGAATTACA<br>GACTTAATGT | TTCCTAACCG<br>AAGGATTGGC | CGTGGCACAA<br>GCACCGTGTT | CAACTGGCGG<br>GTTGACCGCC |
| 251 | GCAAACAGTC | GTTGCTGATT               | GGCGTTGCCA               | CCTCCAGTCT               | GGCCCTGCAC               |
|     | CGTTTGTCAG | CAACGACTAA               | CCGCAACGGT               | GGAGGTCAGA               | CCGGGACGTG               |
| 301 | GCGCCGTCGC | AAATTGTCGC<br>TTTAACAGCG | GGCGATTAAA<br>CCGCTAATTT | TCTCGCGCCG               | ATCAÄCTGGG<br>TAGTTGACCC |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAAGCCTGTA<br>CTTCGGACAT     | GCTGATTATT<br>CGACTAATAA     | CTGCCTGCAC               | CCCATCAACA<br>GGGTAGTTGT     | GGAGCATCTG<br>CCTCGTAGAC     | CATTAAGTTC<br>GTAATTCAAG     | TCACTCGCA                | TGCCATGTCC<br>ACGGTACAGG     |
|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|--------------------------|------------------------------|
| AAGCGGCGTC G<br>TTCGCCGCAG C | GTGTCAGTGG G<br>CACAGTCACC C | GCTGTGGAAG C             | TGACCAGACA C<br>ACTGGTCTGT G | GACTGGGCGT G<br>CTGACCCGCA C | TTAGCTGGCC C<br>AATCGACCGG G | GCATAAATAT C             | GCGACTGGAG T<br>CGCTGACCTC A |
| TGGTAGAACG<br>ACCATCTTGC     | CTCGCGCAAC<br>GAGCGCGTTG     | GGATGCTATT<br>CCTACGATAA | TTGATGTCTC                   | GACGGTACGC<br>CTGCCATGCG     |                              | TGGCTGGCTG               | GAACGGGAAG<br>CTTGCCCTTC     |
| GTCGTGTCGA                   | GCACAATCTT<br>CGTGTTAGAA     | TGGATGACCA               | GCGTTATTTC<br>CGCAATAAAG     | CTCCCATGAG                   | GCCACCAGCA<br>CGGTGGTCGT     | CGTCTGCGTC<br>GCAGACGCAG | GCCGATAGCG<br>CGGCTATCGC     |
| TGCCAGCGTG<br>ACGGTCGCAC     | AAGCGGCGGT<br>TTCGCCGCCA     | AACTATCCGC<br>TTGATAGGCG | TAATGTTCCG<br>ATTACAAGGC     | GTATTATTT<br>CATAATAAAA      | GTCGCATTGG<br>CAGCGTAACC     | TGTCTCGGCG<br>ACAGAGCCGC | ATCAAATTCA<br>TAGTTTAAGT     |
| 351                          | 401                          | 451                      | 501                          | 551                          | 601                          | 651                      | 701                          |
|                              |                              |                          | SUBSTITUT                    | TE SHEET (F                  | ULE 26)                      | •                        |                              |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|             | 751  | GGTTTTCAAC<br>CCAAAAGTTG | AAACCATGCA<br>TTTGGTACGT | AATGCTGAAT<br>TTACGACTTA | GAGGGCATCG<br>CTCCCGTAGC | TTCCCACTGC<br>AAGGGTGACG  |
|-------------|------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
|             | 801  | GATGCTGGTT<br>CTACGACCAA | GCCAACGATC<br>CGGTTGCTAG | AGATGGCGCT<br>TCTACCGCGA | GGGCGCAATG<br>CCCGCGTTAC | CGTGCCATTA<br>GCACGGTAAT  |
|             | 851  | CCGAGTCCGG<br>GGCTCAGGCC | GCTGCGCGTT<br>CGACGCGCAA | GGTGCGGACA               | TCTCGGTAGT<br>AGAGCCATCA | GGGATACGAC<br>CCCTATGCTG  |
| SUESTITU    | 901  | GATACCGAGG<br>CTATGGCTCC | ACAGCTCATG<br>TGTCGAGTAC | TTATATCCCG<br>AATATAGGGC | CCGCTGACCA<br>GGCGACTGGT | CCATCAAACA<br>GGTAGTTTGT  |
| TE SHEET (F | 951  | GGATTTTCGC<br>CCTAAAAGCG | CTGCTGGGGC<br>GACGACCCCG | AAACCAGCGT<br>TTTGGTCGCA | GGACCGCTTG<br>CCTGGCGAAC | CTGCAACTCT<br>GACGTTGAGA  |
| ULE 26)     | 1001 | CTCAGGGCCA               | GGCGGTGAAG<br>CCGCCACTTC | GGCAATCAGC<br>CCGTTAGTCG | TGTTGCCCGT<br>ACAACGGGCA | CTCACTGGTG<br>GAGTGACCAC  |
|             | 1051 | AAAAGAAAAA<br>TTTTCTTTTT | CCACCCTGGC<br>GGTGGGACCG | TCCCAATACG               | CAAACCGCCT<br>GTTTGGCGGA | CTCCCCGCGC<br>GAGGGGGCGCG |
|             | 1101 | GTTGGCCGAT<br>CAACCGGCTA | TCACTGATGC<br>AGTGACTACG | AGCTGGCACG<br>TCGACCGTGC | ACAGGTTTCC<br>TGTCCAAAGG | CGACTGGAAA<br>GCTGACCTTT  |

SUESTITUTE SHEET (RULE 26 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CTTCCTGACA GGAGGCCGTT CCTCCGGCAA TATTTTCGCC GAAGGACTGT ATAAAAGCGG GCGGCAGTG AGGCTACCCG CGCCCGTCAC TCCGATGGGC 1151

Aflii

~ ~ ~ ~ ~ ~ ~

GCCCACTTAA TTGTTTTGCA 1201

CGGGTGAATT'C AACAAAACGT



SUBSTITUTE SHEET (RULE 26) 155 / 204

CTTGCGAATA GAACGCTTAT

CACGCCACAT GTGCGGTGTA

TTCACCGTAA AAGTGGCATT

AGGCCAGGTT

TTAGGGAAAT AATCCCTTTA

301

TCCGGTCCAA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| •     |  |  |
|-------|--|--|
| 7 ( 7 |  |  |

BglII

| CAA TAACTGCCTT AAAAAAATTA<br>GTT ATTGACGGAA TTTTTTTAAT | CTG TTGTAATTCA TTAAGCATTC<br>GAC AACATTAAGT AATTCGTAAG | CAT GATGAACCTG AATCGCCAGC<br>GTA CTACTTGGAC TTAGCGGTCG | TAA TATTTGCCCA TAGTGAAAAC<br>ATT ATAAACGGGT ATCACTTTTG | TAC GTTTAAATCA AAACTGGTGA<br>ATG CAAATTTAGT TTTGACCACT | AAA ACATATTCTC AATAAACCCT |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------|
| AGGGCACCAA<br>TCCCGTGGTT                               | CGCAGTACTG<br>GCGTCATGAC                               | CAAACGGCAT<br>GTTTGCCGTA                               | TTGCGTATAA<br>AACGCATATT                               | TATTGGCTAC                                             | GAGACGAAAA                |
| CAGGCGTTTA<br>GTCCGCAAAT                               | TGCCACTCAT<br>ACGGTGAGTA                               | GAAGCCATCA<br>CTTCGGTAGT                               | CCTTGTCGCC<br>GGAACAGCGG                               | AAGTTGTCCA<br>TTCAACAGGT                               | GGGATTGGCT                |
| GATCTAGCAC<br>CTAGATCGTG                               | 555555555555555555555555555555555555555                | TGCCGACATG<br>ACGGCTGTAC                               | GGCATCAGCA<br>CCGTAGTCGT                               | GGGGGCGAAG                                             | AACTCACCCA                |
| Н                                                      | 51                                                     | 101                                                    | 151                                                    | 201                                                    | 251.                      |
|                                                        |                                                        | SUBSTITE                                               | JTE SHEET (                                            | RULE 26)                                               |                           |

| $\overline{}$ |
|---------------|
| 9             |
| ≥             |
| :=            |
| Ξ             |
| ဥ             |
| ت             |
| ξ             |
| 2             |
| ره            |
| >             |
| 7             |
| Ö             |
| ď             |
| Ď             |
| ar            |
| Ŋ             |
| =             |
| þ             |
| ŏ             |
| Ξ             |
| ≿             |
| ¥             |
| ٥             |
| >.            |
| A             |
| ت             |
| <u> </u>      |
| <u> </u>      |
| 5             |
| :Ĕ            |
| ē             |
| Ď             |
| f addi        |
| 0             |
| S             |
| ۲             |
| Þ             |
| 글             |
| Sec           |
| S             |
| ű             |
| æ             |
| bs            |
| g             |
| Ξ             |
| F             |
| H             |
| ∺             |
| 2             |
| 'n            |
| ш.            |
| a.            |
| 35            |
| (,)           |
| ¥             |
| g             |
| نت            |
|               |

| 351     | TATGTGTAGA<br>ATACACATCT<br>AAAACGTTTC |                            | AACTGCCGGA<br>TTGACGGCCT<br>AGTTTGCTCA | CCGGA AATCGTCGTG GGCCT TTAGCAGCAC GCTCA TGGAAAACGG |
|---------|----------------------------------------|----------------------------|----------------------------------------|----------------------------------------------------|
| 451     | TCCCATATCA<br>AGGGTATAGT               |                            |                                        |                                                    |
| SUBSTII | AGCATTCATC<br>TCGTAAGTAG               | AGGCGGGCAA<br>TCCGCCCGTT   |                                        | GAATGTGAAT<br>CTTACACTTA                           |
| 551     | GCTTATTTTT<br>CGAATAAAAA               | CTTTACGGTC<br>A GAAATGCCAG | [ ~                                    | TTTAAAAAGG<br>AAATTTTTCC                           |
| 601     | GTCTGGTTAT<br>CAGACCAATA               | AGGTACATTG A TCCATGTAAC    | A<br>T                                 | AGCAACTGAC<br>TCGTTGACTG                           |
| 651     | TTTACGATGC<br>AAATGCTACG               | CATTGGGATA<br>GTAACCCTAT   | HA                                     | TATCAACGGT                                         |
| 701     | TCTCCATTTT<br>AGAGGTAAAA               | A TCGAAGGAAT               | 8 8                                    | GCTCCTGAAA<br>CGAGGACTTT                           |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTGGAGTGGG AACCTCACCC TGAAAGTTGG ACTTTCAACC AAGTAATACC TTCATTATGG CACTAGAATA GTGATCTTAT TGCGGGCCAT ACGCCCGGTA 751

AatII

GCTTTACACT CGAAATGTGA CCGTGGGGTC GGCACCCCAG AGTGAGTAAT TCACTCATTA CACTCAATCG GTGAGTTAGC CTGCAGATTA GACGTCTAAT 801

TATTGTTAAA ATAACAATTT TTGTGAGCGG AACACTCGCC CCGAGCATAC AACACCCTT TTGTGTGGAA GGCTCGTATG AATACGAAGG TTATGCTTCC

851

Xbal

ACCCCCCCCC TGGGGGGGGG GAATTTCTAG CTTAAAGATC GGTACTAATG CCATGATTAC ACAGCTATGA TGTCGATACT CACACAGGAA GTGTGTCCTT

HindIII

AATGTACGCT AACTTCGTAT CGCATGCCAT ~~~~~ 51

SphI

TATTCGAACT ATAAGCTTGA TATGCTTCAA ATACGAAGTT TTACATGCGA TTGAAGCATA GCGTACGGTA σ

AAACAGACGG TTTGTCTGCC CGACATTTTT GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG CCTGTGAAGT GGACACTTCA 1001

SUBSTITUTE SHEET (RULE 23)

901

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| SG TGCCGTAAAG                 |
|-------------------------------|
| 1351 GGGGTCGAGG<br>CCCCAGCTCC |
|                               |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG<br>TTTCCTTCCC | TAGCGGTCAC<br>ATCGCCAGTG | CTACAGGGCG<br>GATGTCCCGC | GATGAGGGTG                                 | H     | CCGGTGCGTC<br>GGCCACGCAG                                                                    | CACTGACTCG<br>GTGACTGAGC | ACGAACGGGG |
|--------------------------|--------------------------|--------------------------|--------------------------------------------|-------|---------------------------------------------------------------------------------------------|--------------------------|------------|
| AAA(<br>TTT(             | TAG(<br>ATC(             | CTA(<br>GAT(             | GAT(<br>CTA)                               | AgeI  | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | CAC                      | ACG        |
| ACGTGGCGAG<br>TGCACCGCTC | CTGGCAAGTG<br>GACCGTTCAC | TAATGCGCCG<br>ATTACGCGGC | TGTTGGCACT                                 |       | AAAGGCTGCA<br>TTTCCGACGT                                                                    | CTTCCTCGCT<br>GAAGGAGCGA | GAAATGGCTT |
| AAGCCGGCGA<br>TTCGGCCGCT | CGCTAGGGCG<br>GCGATCCCGC | CCGCCGCGCT               | TGGCTTACTA                                 |       | GCAGGAGAAA<br>CGTCCTCTTT                                                                    | ATATATTCCG<br>TATATAAGGC | GCGGCGAGCG |
| TTGACGGGGA               | AAGGAGCGGG<br>TTCCTCGCCC | ACCACCACAC<br>TGGTGGTGTG | GAGTGTATAC<br>CTCACATATG                   | H     | GCTTCATGTG<br>GGAAGTACAC                                                                    | GTGATACAGG<br>CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC<br>CTAAATCTCG | AAGAAAGCGA<br>TTCTTTCGCT | GCTGCGCGTA<br>CGACGCGCAT | NheI<br>~~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | IrmX  | <br>TCAGTGAAGT<br>AGTCACTTCA                                                                | AGCAGAATAT<br>TCGTCTTATA | CTACGCTCGG |
| 1401                     | 1451                     | 1501                     | 1551                                       |       | 1601                                                                                        | 1651                     | 1701       |
|                          |                          | Ş                        | SUBSTITUTE SHEET                           | (RULE | 26)                                                                                         | •                        |            |

|                                                                                   | 上げつけ上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ntinued) _                                                                        | なないしてを出出して                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ules and pCAL vectors (co                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mans and sequences of additional pCAL vector modules and pCAL vectors (continued) | FINANCE AND CARREST COURT COURT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRAC |
| eigning 259: Functional maps and                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| TGCTTGCCCC                                                                                                      | GAAGTGAGAG<br>CTTCACTCTC     | GACAAGCATC<br>CTGTTCGTAG | AGGACTATAA<br>TCCTGATATT | CTCCTGTTCC<br>GAGGACAAGG | CGTTTGTCTC<br>GCAAACAGAG                   | CCAAGCTGGA<br>GGTTCGACCT | TTATCCGGTA<br>AATAGGCCAT |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|--------------------------|
| TACCGAA                                                                                                         | ACTTAACAGG G<br>TGAATTGTCC C | CCGCCCCCT C              | GAAACCCGAC /             | CTCCTGCGCT (             | GTTATGGCCG                                 | GCAGTTCGCT<br>CGTCAAGCGA | CCGCTGCGCC<br>GGCGACGCGG |
| CGCCGCTCGC (Com                                                                                                 | CCAGGAAGAT GGTCCTTCTA        | TCCATAGGCT<br>AGGTATCCGA | CAGTGGTGGC               | TGGCGGCTCC               | TCATTCCGCT                                 | TTCCGGGTAG               | TTCAGTCCGA<br>AAGTCAGGCT |
| itional pCAL vector modu<br>AGCAAGCTGA                                                                          | CTGGAAGATG                   | AAGCCGTTTT<br>TTCGCCAAAA | ACGCTCAAAT<br>TGCGAGTTTA | CGTTTCCCCC<br>GCAAAGGGGG | AgeI<br>~~~~~~<br>TTTACCGGTG<br>AAATGGCCAC | TGACACTCAG<br>ACTGTGAGTC | GAACCCCCCG               |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (COLLECTOR) Figure | CGGAGATTTC<br>GCCTCTAAAG     | GGCCGCGGCA               | ACGAAATCTG<br>TGCTTTAGAC | AGATACCAGG<br>TCTATGGTCC | TGCCTTTCGG                                 | ATTCCACGCC<br>TAAGGTGCGG | CTGTATGCAC<br>GACATACGTG |
| ia: Functional                                                                                                  | 1751                         | 1801                     | 1851                     | 1901                     | 1951                                       | 2001                     | 2051                     |
| igure 35                                                                                                        |                              |                          | SU                       | BSTITUTE SH              | •                                          |                          |                          |
| u.                                                                                                              |                              |                          |                          | 101/2                    | LUT                                        |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ACCACTGGCA<br>TGGTGACCGT     | TCATGCGCCG<br>AGTACGCGGC           | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG     | ACGCGCAGAC<br>TGCGCGTCTG     |        | . •                                            |
|------------------------------|------------------------------------|--------------------------|------------------------------|------------------------------|--------|------------------------------------------------|
| ATGCAAAAGC A<br>TACGTTTTCG T | AGTCTTGAAG TOTCAGAG TOTCAGAACTTC A | GTGACTGCGC T             | CAGAGAACCT A<br>GTCTCTTGGA T | GCAAGAGATT A<br>CGTTCTCTAA T |        |                                                |
| CCGGAAAGAC Z                 | TAGAGGAGTT                         | ACAAGTTTTA<br>TGTTCAAAAT | GTTGGTAGCT                   | CGTTTTCAGA<br>GCAAAAGTCT     | BglII  | CATCTTATTA<br>GTAGAATAAT                       |
| TGAGTCCAAC<br>ACTCAGGTTG     | GTAATTGATT<br>CATTAACTAA           | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT     | GCGGTTTTTT<br>CGCCAAAAAA     |        | TCAAGAAGAT CATCTTATTA<br>AGTTCTTCTA GTAGAATAAT |
| ACTATCGTCT<br>TGATAGCAGA     | GCAGCCACTG<br>CGTCGGTGAC           | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC                   | GCCCTGCAAG<br>CGGGACGTTC     |        | CAAAACGATC<br>GTTTTGCTAG                       |
| 2101                         | 2151                               | 2201                     | 2251                         | 2301                         |        | 2351                                           |
|                              |                                    | S                        | SUBSTITUTE<br>162            | SHEET (RUI<br>1/204          | LE 26) |                                                |



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

BsrGI

| CGTTAAATTT     | GCAATTTAAA |
|----------------|------------|
| TTAAAATTCG     | AATTTTAAGC |
| TAATATTTTG TTA | ATTATAAAAC |
| TTGTAAACGT     | AACATTTGCA |
| GTACATGAAA     | CATGTACTTT |
| ⊣              |            |

| GGCAAAATCC                       | CCGTTTTAGG |
|----------------------------------|------------|
| GGCCGAAATC                       | CCGGCTTTAG |
| AGCTCATTTT TTAACCAATA GGCCGAAATC | AATTGGTTAT |
| AGCTCATTTT                       | TCGAGTAAAA |
| TTGTTAAATC                       | AACAATTTAG |
| 51                               |            |

| TGTTCCAGTT | ACAAGGTCAA  |
|------------|-------------|
| GGTTGAGTGT | CCAACTCACA  |
| ACCGAGATAG | TGGCTCTATC  |
| AAAAGAATAG | TTTTCITTATC |
|            | GAATATTTAG  |
| 101        |             |
| SHP        | 371711      |

| TCAAAGGGCG                     | AGTTTCCCGC     |
|--------------------------------|----------------|
| AGAACGTG GACTCCAACG TCAAAGGGCG | AGGTTGC        |
| $\supset$                      | TTTCTTGCAC CTG |
| GTCCACTATT A                   | CAGGTGATAA     |
| TGGAACAAGA                     | ACCTTGTTCT     |
| 151                            |                |

BanlI

2~~~~~

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

|                                                                                                          | TGCACCGC                                             |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTCGGCCGCT TGCACCGC |
| Figur                                                                                                    | 'n                                                   |

| sa: runctior | Tre 35a: Functional Intabs and Sequences of access  CCCTCGGGGGG | CTAAATCTCG                                 | AACTGCCCCT               | Trceccect                | TGCACCGCTC               |
|--------------|-----------------------------------------------------------------|--------------------------------------------|--------------------------|--------------------------|--------------------------|
| 351          | AAAGGAAGGG<br>TTTCCTTCCC                                        | AAGAAAGCGA<br>TTCTTTCGCT                   | AAGGAGCGGG<br>TTCCTCGCCC | CGCTAGGGCG               | CTGGCAAGTG               |
| 401          | TAGCGGTCAC                                                      | GCTGCGCGTA<br>CGACGCGCAT                   | ACCACCACAC<br>TGGTGGTGTG | CCGCCGCGCT               | TAATGCGCCG<br>ATTACGCGGC |
| 451          | CTACAGGGCG                                                      | NheI<br>~~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | GAGTGTATAC<br>CTCACATATG | TGGCTTACTA               | TGTTGGCACT               |
|              |                                                                 | IumX                                       | H.                       |                          | Agel                     |
| 501          | GATGAGGGTG                                                      | TCAGTGAAGT<br>AGTCACTTCA                   | GCTTCATGTG               | GCAGGAGAAA<br>CGTCCTCTTT | AAAGGCTGCA<br>TTTCCGACGT |
| 551          | AgeI<br>~~~~~<br>CCGGTGCGTC<br>GGCCACGCAG                       | AGCAGAATAT                                 | GTGATACAGG               | ATATATTCCG               | CTTCCTCGCT               |
| 601          | CACTGACTCG                                                      | CTACGCTCGG                                 | TCGTTCGACT               | GCGGCGAGCG               | GAAATGGCTT               |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|     | GTGACTGAGC               | GATGCGAGCC               | AGCAAGCTGA               | CGCCGCTCGC               | CTTTACCGAA               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | ACGAACGGGG<br>TGCTTGCCCC | CGGAGATTTC<br>GCCTCTAAAG | CTGGAAGATG               | CCAGGAAGAT<br>GGTCCTTCTA | ACTTAACAGG<br>TGAATTGTCC |
| 701 | GAAGTGAGAG<br>CTTCACTCTC | GGCCGCGGCA               | AAGCCGTTTT<br>TTCGGCAAAA | TCCATAGGCT<br>AGGTATCCGA | CCGCCCCCCT               |
| 751 | GACAAGCATC               | ACGAAATCTG<br>TGCTTTAGAC | ACGCTCAAAT<br>TGCGAGTTTA | CAGTGGTGGC<br>GTCACCACCG | GAAACCCGAC<br>CTTTGGGCTG |
| 801 | AGGACTATAA<br>TCCTGATATT | AGATACCAGG<br>TCTATGGTCC | CGTTTCCCCC               | TGGCGGCTCC               | CTCCTGCGCT<br>GAGGACGCGA |
|     |                          |                          | AgeI                     |                          |                          |
| 851 | CTCCTGTTCC<br>GAGGACAAGG | TGCCTTTCGG<br>ACGGAAAGCC | TTTACCGGTG<br>AAATGGCCAC | TCATTCCGCT<br>AGTAAGGCGA | GTTATGGCCG<br>CAATACCGGC |
| 901 | CGTTTGTCTC<br>GCAAACAGAG | ATTCCACGCC<br>TAAGGTGCGG | TGACACTCAG<br>ACTGTGAGTC | TTCCGGGTAG<br>AAGGCCCATC | GCAGTTCGCT<br>CGTCAAGCGA |
| 951 | CCAAGCTGGA<br>GGTTCGACCT | CTGTATGCAC<br>GACATACGTG | GAACCCCCCG               | TTCAGTCCGA               | CCGCTGCGCC               |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ರ ರ                      | ט ט                      | υo                       | ΗA                       | EA                       |        | U O                               | ن َ <del>ر</del>         |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|-----------------------------------|--------------------------|
| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT<br>CGTTCTCTAA | Н      | ~~~~~<br>GATCTAGCAC<br>CTAGATCGTG | CGCCCCGCGG               |
| ATGC!<br>TACG!           | AGTC:<br>TCAG            | GTGA(<br>CACT(           | CAGA(<br>GTCT(           | GCAA(<br>CGTT            | BgllI  | GATC                              | 0000<br>0000             |
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĠGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT |        | CATCTTATTA<br>GTAGAATAAT          | AAAAAAATTA<br>TTTTTTTAAT |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA |        | TCAAGAAGAT<br>AGTTCTTCTA          | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC |        | CAAAACGATC<br>GTTTTGCTAG          | AGGGCACCAA               |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG               | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG |        | ACGCGCAGAC<br>TGCGCGTCTG          | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     |        | 1251                              | 1301                     |
|                          |                          |                          | SUBSTITUTE               | SHEET (RUL               | .E 26) |                                   |                          |
|                          |                          |                          | 407                      | 1004                     |        |                                   |                          |

| $\overline{\Xi}$ |
|------------------|
| ž                |
| .≦               |
| ī                |
| ္ပင္             |
| ) s              |
| ĕ                |
| S                |
| >                |
| ₹                |
| g                |
| Þ                |
| æ                |
| S                |
| ⋽                |
| 8                |
| Ε                |
| Ď                |
| FG.              |
| >                |
| Ζ                |
| g                |
| ਜ                |
| ö                |
| ≔                |
| 믕                |
| Ę                |
| 0                |
| بۆ               |
| ŭ                |
| ž                |
| Š                |
| Ö                |
| au               |
| bs               |
| g                |
|                  |
| na               |
| Ę.               |
| nc.              |
| Ξ                |
| <br>-:-          |
| 35.              |
| به               |
| Figur            |
| Fig.             |
| _                |

| ָר<br>י           | 1351<br>1351<br>1401 | 1351 TGCCACTCAT COAGES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF STATES OF | CGCAGTACTG<br>GCGTCATGAC<br>CAAACGGCAT<br>GTTTGCCGTA | TTGTAATTCA<br>AACATTAAGT<br>GATGAACCTG<br>CTACTTGGAC | TTAAGCATTC<br>AATTCGTAAG<br>AATCGCCAGC<br>TTAGCGGTCG | TGCCGACATG<br>ACGGCTGTAC<br>GGCATCAGCA<br>CCGTAGTCGT |
|-------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                   | 1451                 | CCTTGTCGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTGCGTATAA<br>AACGCATATT                             | TATTTGCCCA<br>ATAAACGGGT                             | TAGTGAAAAC<br>ATCACTTTTG                             | GGGGCGAAG                                            |
| SUBSTIT           | 1501                 | AAGTTGTCCA<br>TTCAACAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TATTGGCTAC                                           | GTTTAAATCA<br>CAAATTTAGT                             | AAACTGGTGA<br>TTTGACCACT                             | AACTCACCCA<br>TTGAGTGGGT                             |
| UTE SHEET         | 1551                 | GGGATTGGCT<br>CCCTAACCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GAGACGAAAA<br>CTCTGCTTTT                             | ACATATTCTC<br>TGTATAAGAG                             | AATAAACCCT<br>TTATTTGGGA                             | TTAGGGAAAT<br>AATCCCTTTA                             |
| (RULE 26 <b>)</b> | 1601                 | AGGCCAGGTT<br>TCCGGTCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TTCACCGTAA<br>AAGTGGCATT                             | CACGCCACAT                                           | CTTGCGAATA<br>GAACGCTTAT                             | TATGTGTAGA<br>ATACACATCT                             |
|                   | 1651                 | AACTGCCGGA<br>TTGACGGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AATCGTCGTG<br>TTAGCAGCAC                             | GTATTCACTC<br>CATAAGTGAG                             | CAGAGCGATG<br>GTCTCGCTAC                             | AAAACGTTTC<br>TTTTGCAAAG                             |
|                   | 1701                 | AGTTTGCTCA<br>TCAAACGAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TGGAAAACGG<br>ACCTTTTGCC                             | TGTAACAAGG<br>ACATTGTTCC                             | GTGAACACTA<br>CACTTGTGAT                             | TCCCATATCA<br>AGGGTATAGT                             |

| _                        |
|--------------------------|
| 6                        |
| ت<br>ت                   |
| ⋾                        |
| $\equiv$                 |
| -                        |
| 7                        |
| ≂                        |
| $\sim$                   |
| _                        |
| S                        |
|                          |
| 9                        |
| 7                        |
| ~                        |
| ¥                        |
|                          |
| ب                        |
| ⋖                        |
| C                        |
| р                        |
| _                        |
| $\simeq$                 |
| =                        |
| s a                      |
| S                        |
| odules                   |
| =                        |
| =                        |
| $\simeq$                 |
| $\stackrel{\circ}{\sim}$ |
| =                        |
| . vector mo              |
| ≒                        |
| $\simeq$                 |
| $\overline{c}$           |
| 7                        |
| 5                        |
| ٠.                       |
| _                        |
| ٩,                       |
| $\mathcal{Q}$            |
| Q                        |
|                          |
| G                        |
| _                        |
| 0                        |
| ÷                        |
|                          |
| Þ                        |
| Ъ                        |
| B                        |
| 4                        |
| 0                        |
|                          |
| 83                       |
| $\sim$                   |
| =                        |
| uences                   |
| =                        |
| ≠                        |
| $\sim$                   |
| $\kappa$                 |
|                          |
| $\boldsymbol{\sigma}$    |
| =                        |
| æ                        |
| Ś                        |
| o.                       |
| ਛ                        |
| ~~                       |
| =                        |
| _                        |
| <u> </u>                 |
|                          |
| ್ಲಂ                      |
| ≔                        |
| U                        |
| Ē                        |
| 3                        |
| ű.                       |
|                          |
|                          |
| ä                        |
| 5a:                      |
| 35a:                     |
| 35a: Ft                  |
| e 35a:                   |
| ıre 35a:                 |
| Jure 35a:                |
| igure 35a:               |

|                                                                                                          | ATC<br>TAG               | TTT<br>AAA               | TAT<br>ATA               | TGC<br>ACG               | TTT<br>AAA               | GTA<br>CAT               | AAT<br>TTA                                  | TCC                   |
|----------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|-----------------------|
|                                                                                                          | AGCATTCATC<br>TCGTAAGTAG | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC            |
|                                                                                                          | AG                       | 000                      | GT                       | TT<br>AA                 | TCAG                     | AC                       | CT CT                                       |                       |
| ntinued)                                                                                                 | ACTCCGGGTG<br>TGAGGCCCAC | TAAAACTTGT<br>ATTTTGAACA | CAGCTGAACG<br>GTCGACTTGC | CAAAATGTTC<br>GTTTTACAAG | GTGATTTTTT<br>CACTAAAAAA | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC<br>TTGGAGTGGG                    | GCTTTACACT            |
| ules and pCAL vectors (co                                                                                | GCCATACGGA<br>CGGTATGCCT | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG<br>ACTTTCAACC                    | GGCACCCCAG GCTTTACACT |
| ditional pCAL vector mod                                                                                 | GTCTTTCATT<br>CAGAAAGTAA | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG                                  | TCACTCATTA            |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | CCAGCTCACC<br>GGTCGAGTGG | AGGCGGGCAA<br>TCCGCCCGTT | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG<br>TCCATGTAAC | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT                                  | GTGAGTTAGC            |
| 5a: Functional                                                                                           | 1751                     | 1801                     | 1851                     | 1901                     | 1951                     | 2001                     | 2051                                        | 2101                  |
| gure 3!                                                                                                  |                          |                          |                          | SUBSTITU                 | JTE SHEET (              | RULE 26)                 |                                             |                       |
| ű.                                                                                                       |                          |                          |                          |                          | 169 / 204                |                          |                                             |                       |

|                                                                                   | A.                                            |
|-----------------------------------------------------------------------------------|-----------------------------------------------|
| iaps and sequences of additional pCAL vector modules and pCAL vectors (continued) | CGAAATGTGA                                    |
|                                                                                   | CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA A |
| dditional pCAL vector mod                                                         | AGTGAGTAAT                                    |
| I maps and sequences of ac                                                        | CACTCAATCG                                    |
| Figure 35a: Functional                                                            |                                               |

| AATACGAAGG | CACACAGGAA<br>GTGTGTCCTT   | Sphi | CGCATGCCAT<br>GCGTACGGTA |         | CCTGTGAAGT<br>GGACACTTCA | PacI | GTTTAATTAA |             |     | TCCTTTGATC AGGAAACTAG                   |
|------------|----------------------------|------|--------------------------|---------|--------------------------|------|------------|-------------|-----|-----------------------------------------|
| CGAAATGTGA | ATAACAATTT<br>TATTGTTAAA   |      | ACCCCCCCCC<br>TGGGGGGGGG | HindIII | ATAAGCTTGA<br>TATTCGAACT |      | TTTGTCTGCC | DD CHOHOLOG |     | CTCAAGAAGA<br>GAGTTCTTCT                |
| CCGTGGGGTC | TTGTGAGCGG                 | XbaI | GAATTTCTAG<br>CTTAAAGATC | ·       | ATACGAAGTT<br>TATGCTTCAA |      | CGACATTTTT |             |     | CAAAAAGGAT<br>GTTTTTCCTA                |
| AGTGAGTAAT | TTGTGTGGAA<br>AACACACCTT   |      | CCATGATTAC<br>GGTACTAATG | ·       | AATGTACGCT<br>TTACATGCGA |      | GCAGATTGTG |             |     | CGGCCATTAT<br>GCCGGTAATA                |
| CACTCAATCG | GGCTCGTATG<br>CCGAGCATAC   |      | ACAGCTATGA<br>TGTCGATACT |         | AACTTCGTAT<br>TTGAAGCATA |      | GAAAAATGGC |             | FSE | 0 0000000000000000000000000000000000000 |
|            | 2151                       |      | 2201                     |         | 2251                     |      | 2301       |             |     | 2351                                    |
|            | SUBSTITUTE SHEET (RULE 26) |      |                          |         |                          |      |            |             |     |                                         |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT                 | CTTTTAAATT | AACTTGGTCT | GCGATCTGTC | GATAACTACG | TACCGCGAGA  | CCAGCCGGAA | CATCCAGTCT |
|----------------------------|------------|------------|------------|------------|-------------|------------|------------|
| CAATTCCCTA                 | GAAAATTTAA | TTGAACCAGA | CGCTAGACAG | CTATTGATGC | ATGGCGCTCT  | GGTCGGCCTT | GTAGGTCAGA |
|                            |            | ·          |            | •          |             |            |            |
| GAAAACTCAC                 | CACCTAGATC | TATATGAGTA | ACCTATCTCA | CCGTCGTGTA | GCTGCAATGA  | AATAAACCAG | TATCCGCCTC |
| CTTTTGAGTG                 |            | ATATACTCAT | TGGATAGAGT | GGCAGCACAT | CGACGTTACT  | TTATTTGGTC | ATAGGCGGAG |
| TCAGTGGAAC                 | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC | GCCTGACTCC | TGGCCCCCAGT | ATTTATCAGC | CCTGCAACTT |
| AGTCACCTTG                 | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG | CGGACTGAGG | ACCGGGGGTCA | TAAATAGTCG | GGACGTTGAA |
| GGTCTGACGC                 | AGATTATCAA | TTTTAAATCA | CAATGCTTAA | ATCCATAGTT | GCTTACCATC  | CCGGCTCCAG | CAGAAGTGGT |
| CCAGACTGCG                 | TCTAATAGTT | AAAATTTAGT | GTTACGAATT | TAGGTATCAA | CGAATGGTAG  | GGCCGAGGTC | GTCTTCACCA |
| TTTTCTACGG                 | TTTGGTCATG | AAAAATGAAG | GACAGTTACC | TATTTCGTTC | ATACGGGAGG  | CCCACGCTCA | GGGCCGAGCG |
| AAAAGATGCC                 | AAACCAGTAC | TTTTTACTTC | CTGTCAATGG | ATAAAGCAAG | TATGCCCTCC  | GGGTGCGAGT |            |
| 2401                       | 2451       | 2501       | 2551       | 2601       | 2651        | 2701       | 2751       |
| SUBSTITUTE SHEET (RULE 26) |            |            |            |            |             |            |            |
| 171 / 204                  |            |            |            |            |             |            |            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|             | 2801 | ATTAACTGTT<br>TAATTGACAA | GCCGGGAAGC<br>CGGCCCTTCG | TAGAGTAAGT<br>ATCTCATTCA | AGTTCGCCAG<br>TCAAGCGGTC | TTAATAGTTT<br>AATTATCAAA |
|-------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | 2851 | GCGCAACGTT<br>CGCGTTGCAA | GTTGCCATTG<br>CAACGGTAAC | CTACAGGCAT<br>GATGTCCGTA | CGTGGTGTCA<br>GCACCACAGT | CGCTCGTCGT<br>GCGAGCAGCA |
| SI          | 2901 | TTGGTATGGC<br>AACCATACCG | TTCATTCAGC<br>AAGTAAGTCG | TCCGGTTCCC<br>AGGCCAAGGG | AACGATCAAG<br>TTGCTAGTTC | GCGAGTTACA<br>CGCTCAATGT |
| JBSTITUTE S | 2951 | TGATCCCCCA<br>ACTAGGGGGT | TGTTGTGCAA<br>ACAACACGTT | AAAAGCGGTT<br>TTTTCGCCAA | AGCTCCTTCG<br>TCGAGGAAGC | GTCCTCCGAT               |
| SHEET (RULT | 3001 | CGTTGTCAGA<br>GCAACAGTCT | AGTAAGTTGG<br>TCATTCAACC | CCGCAGTGTT<br>GGCGTCACAA | ATCACTCATG<br>TAGTGAGTAC | GTTATGGCAG<br>CAATACCGTC |
| E 20)       | 3051 | CACTGCATAA<br>GTGACGTATT | TTCTCTTACT<br>AAGAGAATGA | GTCATGCCAT               | CCGTAAGATG<br>GGCATTCTAC | CTTTTCTGTG<br>GAAAAGACAC |
|             | 3101 | ACTGGTGAGT<br>TGACCACTCA | ACTCAACCAA<br>TGAGTTGGTT | GTCATTCTGA<br>CAGTAAGACT | GAATAGTGTA<br>CTTATCACAT | TGCGGCGACC<br>ACGCCGCTGG |
|             | 3151 | GAGTTGCTCT               | TGCCCGGCGT. ACGGGCCCA    | CAATACGGGA<br>GTTATGCCCT | TAATACCGCG<br>ATTATGGCGC | CCACATAGCA<br>GGTGTATCGT |

SUBSTITUTE SHEET (RULE 20)
172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# XmnI

| CTTTAAA AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC | AGGATCT TACCGCTGTT GAGATCCAGT TCGATGTAAC CCACTCGCGC | CCAACTGA TCCTCAGCAT CTTTTACTTT CACCAGCGTT TCTGGGTGAGGGTTGACT AGGAGTCGTA GAAAATGAAA GTGGTCGCAA AGACCCACTC | AAAACAGG AAGGCAAAAT GCCGCAAAAA AGGGAATAAG GGCGACACGG<br>FTTTGTCC TTCCGTTTTA CGGCGTTTTT TCCCTTATTC CCGCTGTGCC | ATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA<br>FACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT | BsrGI |
|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|
| GAACTTTAAA AGTG<br>CTTGAAATTT TCAC                  | TCAAGGATCT TACC<br>AGTTCCTAGA ATGG                  | ACCCAACTGA TCCT<br>TGGGTTGACT AGGA                                                                       | CAAAAACAGG AAGG<br>GTTTTTGTCC TTCC                                                                           | AAATGTTGAA TACT<br>TTTACAACTT ATGA                                                                           |       |
| 3201                                                | 3251                                                | 3301                                                                                                     | 3351                                                                                                         | 3401                                                                                                         |       |
|                                                     |                                                     |                                                                                                          | JTE SHEET (<br>173 / 204                                                                                     | RULE 26)                                                                                                     |       |

ATTTGAAT TAAACTTA GCGGATACAT CGCCTATGTA TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT

3451



SUBSTITUTE SHEET (RULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AatII<br>~~~~~~   | TGCTTCAATA | CGAAATGTGA   | ATAACAATTT CA<br>TATTGTTAAA GT | Sphi | ACCCCCCCC CGCATGCCAT<br>TGGGGGGGG GCGTACGGTA | HindIII | ATAAGCTTGA CCTGTGAAGT<br>TATTCGAACT GGACACTTCA |
|-------------------|------------|--------------|--------------------------------|------|----------------------------------------------|---------|------------------------------------------------|
|                   | ACATACGATA | CCGTGGGGTC   | TTGTGAGCGG<br>AACACTCGCC       | XbaI | GAATTTCTAG<br>CTTAAAGATC                     |         | ATACGAAGTT<br>TATGCTTCAA                       |
| K E K E C C E E C | GAAGCATATT | AGTGAGTAAT   | TTGTGTGGAA                     | ,    | CCATGATTAC<br>GGTACTAATG                     |         | AATGTACGCT<br>TTACATGCGA                       |
| pCALO-3:          | CTAGAGTATT | CACTCAATCG   | GGCTCGTATG                     |      | ACAGCTATGA<br>TGTCGATACT                     |         | AACTTCGTAT<br>TTGAAGCATA                       |
| pCAL              | - L        | <del>1</del> | 101                            |      | 151                                          |         | 201                                            |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA<br>CAAATTAATT |     | TCCTTTGATC<br>AGGAAACTAG               | GTTAAGGGAT<br>CAATTCCCTA | CTTTTAAATT<br>GAAAATTTAA | AACTTGGTCT<br>TTGAACCAGA | GCGATCTGTC<br>CGCTAGACAG | GATAACTACG<br>CTATTGATGC |
|--------------------------|-----|----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTTGTCTGCC<br>AAACAGACGG |     | CTCAAGAAGA<br>GAGTTCTTCT               | GAAAACTCAC<br>CTTTTGAGTG | CACCTAGATC<br>GTGGATCTAG | TATATGAGTA<br>ATATACTCAT | ACCTATCTCA<br>TGGATAGAGT | CCGTCGTGTA               |
| CGACATTTTT<br>GCTGTAAAAA |     | CAAAAAGGAT<br>GTTTTTCCTA               | TCAGTGGAAC<br>AGTCACCTTG | AAAGGATCTT<br>TTTCCTAGAA | ATCTAAAGTA<br>TAGATTTCAT | TCAGTGAGGC               | GCCTGACTCC<br>CGGACTGAGG |
| GCAGATTGTG<br>CGTCTAACAC | e H | CGGCCATTAT                             | GGTCTGACGC<br>CCAGACTGCG | AGATTATCAA<br>TCTAATAGTT | TTTTAAATCA<br>AAAATTTAGT | CAATGCTTAA<br>GTTACGAATT | ATCCATAGTT<br>TAGGTATCAA |
| GAAAAATGGC<br>CTTTTTACCG | ក   | 0 000000000000000000000000000000000000 | TTTTCTACGG<br>AAAAGATGCC | TTTGGTCATG<br>AAACCAGTAC | AAAAATGAAG<br>TTTTTACTTC | GACAGTTACC<br>CTGTCAATGG | TATTTCGTTC<br>ATAAAGCAAG |
| 251                      |     | 301                                    | 351                      | 401                      | 451                      | 501                      | 551                      |
|                          |     |                                        | SUBSTIT                  | UTE SHEET                | (RULE 26)                |                          |                          |
|                          |     |                                        |                          |                          |                          |                          |                          |

176 / 204

| ະ                           |
|-----------------------------|
| _                           |
| .⊑                          |
| =                           |
| 5                           |
| ctors (co                   |
|                             |
| 2                           |
| 2                           |
| こ                           |
| ۸                           |
| -                           |
| 7                           |
| క                           |
| PS<br>F                     |
| 73                          |
| Ξ                           |
| B                           |
| ules ai                     |
| <u>≅</u>                    |
| ₽                           |
| 2                           |
| ĭ                           |
| -                           |
| 5                           |
| Ξ.                          |
| 2                           |
| >                           |
| ب                           |
| ⋖                           |
| ပ္                          |
| С                           |
| ਜ਼                          |
| Ē                           |
| .⊵                          |
| ≝                           |
| addi                        |
| æ                           |
| <u></u>                     |
| ences of addition           |
| Š                           |
| رج                          |
| Ĕ                           |
| به                          |
| 2                           |
| 2                           |
| Š                           |
| $\overline{c}$              |
| $\Box$                      |
| ဇ                           |
| 2                           |
| æ                           |
| Ē                           |
| <u></u>                     |
| <del>-</del>                |
| tional maps and sequences o |
| .≌                          |
| Œ                           |
| Ē                           |
| .⊃                          |
| ш.                          |
| e 35a: Fu                   |
| Š                           |
| $\sim$                      |
| به                          |
| Ξ.                          |
| ಕ                           |
| Figure 3                    |
|                             |

| r 504       | 601. | 601 ATACGGGAGG GCTTACCA' TATGCCCTCC CGAATGGT | GCTTACCATC               | TGGCCCCAGT               | GCTGCAATGA<br>CGACGTTACT | TACCGCGAGA               |
|-------------|------|----------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | 651  | CCCACGCTCA<br>GGGTGCGAGT                     | CCGGCTCCAG<br>GGCCGAGGTC | ATTTATCAGC<br>TAAATAGTCG | AATAAACCAG<br>TTATTTGGTC | CCAGCCGGAA<br>GGTCGGCCTT |
|             | 701  | GGGCCGAGCG                                   | CAGAAGTGGT<br>GTCTTCACCA | CCTGCAACTT               | TATCCGCCTC<br>ATAGGCGGAG | CATCCAGTCT<br>GTAGGTCAGA |
| SUBSTITU    | 7,51 | ATTAACTGTT<br>TAATTGACAA                     | GCCGGGAAGC<br>CGGCCCTTCG | TAGAGTAAGT<br>ATCTCATTCA | AGTTCGCCAG               | TTAATAGTTT<br>AATTATCAAA |
| TE SHEET (F | 801  | GCGCAACGTT<br>CGCGTTGCAA                     | GTTGCCATTG<br>CAACGGTAAC | CTACAGGCAT<br>GATGTCCGTA | CGTGGTGTCA               | CGCTCGTCGT<br>GCGAGCAGCA |
| PULE 26)    | 851  | TTGGTATGGC<br>AACCATACCG                     | TTCATTCAGC<br>AAGTAAGTCG | TCCGGTTCCC               | AACGATCAAG<br>TTGCTAGTTC | GCGAGTTACA<br>CGCTCAATGT |
|             | 901  | TGATCCCCCA                                   | TGTTGTGCAA<br>ACAACACGTT | AAAAGCGGTT<br>TTTTCGCCAA | AGCTCCTTCG<br>TCGAGGAAGC | GTCCTCCGAT               |
|             | 951  | CGTTGTCAGA                                   | AGTAAGTTGG<br>TCATTCAACC | CCGCAGTGTT<br>GGCGTCACAA | ATCACTCATG<br>TAGTGAGTAC | GTTATGGCAG               |

| Ŧ          |
|------------|
| ت          |
| Ē          |
| ·Ξ         |
| _          |
| 9          |
| ۳          |
| ctors (    |
| Ō          |
| ፘ          |
| م          |
| -          |
| ₹          |
| <u>ی</u>   |
| ф          |
| p          |
| E .        |
|            |
| modules    |
| 3          |
| Ď          |
| 2          |
| _          |
| 7          |
| <b>∓</b> . |
| ä          |
| >          |
| یـ         |
| 8          |
| Z          |
| _          |
| 22         |
| 5          |
| ==         |
| ë          |
| Ď          |
|            |
| 5          |
| Š          |
| بع         |
| Ξ          |
| 5          |
| 글          |
| پة         |
| 2          |
| 2          |
| ₹          |
| S          |
| ъ          |
| Ĕ          |
| _          |
| 2          |
| 5          |
| ∵≍         |
| $\sim$     |
| 5          |
| 屲          |
| 5a:        |
| S          |
| 3          |
| ىە         |
| = =        |
| ಕ          |
| ίΞ         |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT

BsrGI

ACATGAAATT TGTACTTTAA ATTTGAATGT GCGGATACAT

> TGTCTCATGA ACAGAGTACT

TCAGGGTTAT AGTCCCAATA

1401

TAAACTTACA CGCCTATGTA

GTTAAATCAG CAATTTAGTC AATTTAAAAA TTAAATTTTT ATATTTTGTT AAAATTCGCG

TATAAAACAA

CATTTGCAAT

GTAAACGTTA

1451

AACCAATAGG

GAGTAAAAA

CTCATTTTT

1501

TATAAATCAA ATATTTAGTT CAAAATCCCT TTTTAAGCGC

GTTTTAGGGA

GGCTTTAGCC CCGAAATCGG

TTGAGTGTTG TTGGTTATCC

GAACAAGAGT CTTGTTCTCA

TTCCAGTTTG AAGGTCAAAC

AACTCACAAC CGAGATAGGG

GCTCTATCCC TTCTTATCTG AAGAATAGAC

GAGGTTGCAG CTCCAACGTC TCTTGCACCT AGAACGTGGA CCACTATTAA

1601

GGTGATAATT

GAGAACCATC GGCCCACTAC TCAGGGCGAT

1651

ACCCTAATCA TGGGATTAGT CTCTTGGTAG CCGGGTGATG AGTCCCGCTA BanII

AGTTTTTGG

TCAAAAAACC

TTTGGCAGAT

AAACCGTCTA

AAAGGGCGAA TTTCCCGCTT

SUBSTITUTE SHEET (RULE 26) 179 / 204

1551

CTGACTCGCT

TCCTCGCTCA AGGAGCGAGT

ATATTCCGCT TATAAGGCGA

GATACAGGAT CTATGTCCTA

CAGAATATGT

2001

GTCTTATACA

TCACTTCACG

AGTGAAGTGC

1951

GACTGAGCGA

GGTGCGTCAG CCACGCAGTC

AGGCTGCACC TCCGACGTGG

AGGAGAAAAA TCCTCTTTTT

TTCATGTGGC AAGTACACCG

|                                                                                                          | GAGCCCCCGA<br>CTCGGGGGGCT                      | AGGAAGGGAA<br>TCCTTCCCTT | GCGGTCACGC<br>CGCCAGTGCG       | ACAGGGCGCG<br>TGTCCCGCGC                       | TGAGGGTGTC                                 |      | }                                       |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|--------------------------------------------|------|-----------------------------------------|
| nued)                                                                                                    | CTAAAGG                                        | GTGGCGAGAA AG            | GGCAAGTGTA GC<br>CCGTTCACAT CG |                                                | TTGGCACTGA TG<br>AACCGTGACT AC             | AgeI | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | CTAAATCGGA ACCCTAAAGG<br>GATTTAGCCT TGGGATTTCC | GCCGGCGAAC C             | CTAGGGCGCT C                   | GCCGCGCTTA ATGCGCCGCT<br>CGGCGCGAAT TACGCGGCGA | GCTTACTATG<br>CGAATGATAC                   |      |                                         |
| ditional pCAL vector modu                                                                                | CCGTAAAGCA<br>GGCATTTCGT                       | GACGGGGAAA<br>CTGCCCCTTT | GGAGCGGGCG<br>CCTCGCCCGC       | CACCACACCC<br>GTGGTGTGGG                       | GTGTATACTG                                 |      | ? ? ?                                   |
| maps and sequences of ad                                                                                 | GGTCGAGGTG<br>CCAGCTCCAC                       | TTTAGAGCTT<br>AAATCTCGAA | GAAAGCGAAA<br>CTTTCGCTTT       | TGCGCGTAAC<br>ACGCGCATTG                       | NheI<br>~~~~~~<br>TGCTAGCGGA<br>ACGATCGCCT | XmnI | ~ ~ ~ ~ ~ ~ ~                           |
| 5a: Functional                                                                                           | 1701                                           | 1751                     | 1801                           | 1851                                           | 1901                                       |      |                                         |
| Figure 35                                                                                                |                                                |                          |                                | SUBSTITU                                       | JTE SHEET (RULE 26)<br>180 / 204           |      |                                         |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 2051    | ACGCTCGGTC               | GTTCGACTGC<br>CAAGCTGACG  | GGCGAGCGGA<br>CCGCTCGCCT  | AATGGCTTAC<br>TTACCGAATG | GAACGGGGGG<br>CTTGCCCCGC |
|---------|--------------------------|---------------------------|---------------------------|--------------------------|--------------------------|
| 2101    | GAGATTTCCT<br>CTCTAAAGGA | GGAAGATGCC<br>CCTTCTACGG  | AGGAAGATAC<br>TCCTTCTATG  | TTAACAGGGA<br>AATTGTCCCT | AGTGAGAGGG<br>TCACTCTCCC |
| 2151    | CCGCGGCAAA<br>GGCGCCGTTT | GCCGTTTTTTC<br>CGGCAAAAAG | CATAGGCTCC<br>GTATCCGAGG  | GCCCCCCTGA<br>CGGGGGGACT | CAAGCATCAC<br>GTTCGTAGTG |
| 2201    | GAAATCTGAC<br>CTTTAGACTG | GCTCAAATCA<br>CGAGTTTAGT  | GTGGTGGCGA<br>CACCACCGCT  | AACCCGACAG<br>TTGGGCTGTC | GACTATAAAG<br>CTGATATTTC |
| 2251    | ATACCAGGCG<br>TATGGTCCGC | TTTCCCCCTG                | GCGGCTCCCT<br>CGCCGAGGGA  | CCTGCGCTCT<br>GGACGCGAGA | CCTGTTCCTG<br>GGACAAGGAC |
| <b></b> |                          | AgeI                      |                           |                          |                          |
| 2301    | CCTTTCGGTT<br>GGAAAGCCAA |                           | ATTCCGCTGT.<br>TAAGGCGACA | TATGGCCGCG<br>ATACCGGCGC | TTTGTCTCAT<br>AAACAGAGTA |
| 2351    | TCCACGCCTG               | ACACTCAGTT<br>TGTGAGTCAA  | CCGGGTAGGC<br>GGCCCATCCG  | AGTTCGCTCC<br>TCAAGCGAGG | AAGCTGGACT<br>TTCGACCTGA |

SUBSTITUTE SHEET (RULE 26) 181 / 204

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

| =                                 |
|-----------------------------------|
| ĕ                                 |
| ₹                                 |
| Ξ                                 |
| į,                                |
| ۳                                 |
| 5.                                |
| ਲ                                 |
| Š                                 |
| ب                                 |
| Š                                 |
| 0                                 |
| Б                                 |
| 9                                 |
| dules                             |
| 7                                 |
| ŏ                                 |
| or modules                        |
| õ                                 |
| ม                                 |
| ×                                 |
| H                                 |
| ပ္                                |
| s and sequences of additional pCA |
| Ë                                 |
| :2                                |
| additi                            |
| f addition                        |
| of                                |
| S                                 |
| ຮ                                 |
| يو                                |
| 글                                 |
| Se                                |
| þ                                 |
| æ                                 |
| bs                                |
| Jaj                               |
| _                                 |
| Па                                |
| .0                                |
| $\vec{z}$                         |
| ٦                                 |
| <u></u>                           |
| 5a                                |
| က                                 |
| Ę                                 |
| 9                                 |
| Fig                               |

| GCTGCGCCTT ATCCGGTAAC<br>CGACGCGGAA TAGGCCATTG | GCAAAAGCAC CACTGGCAGC<br>CGTTTTCGTG GTGACCGTCG | TCTTGAAGTC ATGCGCCGGT<br>AGAACTTCAG TACGCGGCCA | GACTGCGCTC CTCCAAGCCA<br>CTGACGCGAG GAGGTTCGGT | GAGAACCTAC GAAAAACCGC<br>CTCTTGGATG CTTTTTGGCG | AAGAGATTAC GCGCAGACCA<br>TTCTCTAATG CGCGTCTGGT |       |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------|
| CAGTCCGACC                                     | GGAAAGACAT<br>CCTTTCTGTA                       | GAGGAGTTAG<br>CTCCTCAATC                       | AAGTTTTAGT<br>TTCAAAATCA                       | TGGTAGCTCA                                     | TTTTCAGAGC<br>AAAAGTCTCG                       | BglII |
| A ACCCCCCGTT<br>T TGGGGGGCAA                   | 3 AGTCCAACCC<br>C TCAGGTTGGG                   | I AATTGATTTA<br>A TTAACTAAAT                   | A CTGAAAGGAC<br>T GACTTTCCTG                   | G TTCAAAGAGT<br>C AAGTTTCTCA                   | C GGTTTTTTCG<br>G CCAAAAAAGC                   |       |
| GTATGCACGA<br>CATACGTGCT                       | TATCGTCTTG<br>ATAGCAGAAC                       | AGCCACTGGT<br>TCGGTGACCA                       | TAAGGCTAAA<br>ATTCCGATTT                       | GTTACCTCGG<br>CAATGGAGCC                       | CCTGCAAGGC                                     |       |
| rigure 33a. runcuon                            | 2451                                           | 2501                                           |                                                | TE SHEET (182 / 204                            | 2651<br>2651                                   |       |

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

**AAACGGTTGAAAGTTG** 

gllINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG
SUBSTITUTE SHEET (AULE 25)

183 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

Iox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

# M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

## M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

ПСА

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 26)

185 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

#### M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module



SUBSTITUTE SMEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

|     |                          |                          |                                  | StyI                           |                           |
|-----|--------------------------|--------------------------|----------------------------------|--------------------------------|---------------------------|
|     |                          |                          |                                  | Psp5II                         |                           |
|     |                          | 36I                      |                                  |                                |                           |
|     | HpaI                     | }<br>}<br>}              | MSC                              | ?<br>?<br>?<br>?<br>?          | BsiWI NspV                |
| 126 | CGCGTTAACC               | TCAGGTGACC               | AAGCCCCTGG CCA<br>TTCGGGGACC GGT | AGGTCC                         | C GTACGTTCGA C CATGCAAGCT |
|     |                          | PmlI                     |                                  |                                |                           |
|     |                          |                          | KpnI                             | FseI                           |                           |
| 176 | AGATTACCAT               | CACGTGGATC GTGCACCTAG    | ~~~~~~~<br>CGGTACCA<br>GCCATGGT  | GG CCGGCCATTA<br>CC GGCCGGTAAT | TCAAAAAGGA<br>AGTTTTTCCT  |
| 226 | TCTCAAGAAG<br>AGAGTTÖTTC | ATCCTTTGAT<br>TAGGAAACTA | CTTTTCTACG<br>GAAAAGATGC         | GGGTCTGACG<br>CCCAGACTGC       | CTCAGTGGAA<br>GAGTCACCTT  |
| 276 | CGAAAACTCA<br>GCTTTTGAGT | CGTTAAGGGA<br>GCAATTCCCT | TTTTGGTCAT<br>AAAACCAGTA         | GAGATTATCA<br>CTCTAATAGT       | AAAAGGATCT<br>TTTTCCTAGA  |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| AGTGGATCTA GGAAAATTTA ATTTTTACTT CAAAATTTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAACTTGGTC TGACAGTTAC CAATGCTTAA<br>TTTGAACCAG ACTGTCAATG GTTACGAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 426 ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC TGGATAGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CGGACTGAGG                                                                                                                                                                                                                                           | 376<br>426<br>476<br>526<br>526<br>626 | AGTGGATCTA ATATATGAGT TATATACTCA TGGATAGAGT CCGTCGTGTA GCCAGCACAT GCAGCACAT GCAGCACAT AATAAACCAG TTATTTGGTC ATAGGCGGAG TATCCGCCTC ATAGGCGGAG TCAAGCGGAG | GGAAAATTTA AAACTTGGTC TTTGAACTGTC CGCTAGACAG GATAACTACG CTATTGATGC TACCGCGAGA ATGGCGCTCT CCAGCCGCTCT CATCCAGTCT CATCCAGTCT CATCCAGTCT CATCCAGTCT GTAGGTCAGA | ATTTTTACTT TGACAGTTAC ACTGTCAATG ATAAAGCAAG TATGCCCTCC CCCACGCTCC GGGCCGAGC GGGCCGAGCG TATTAACTGACAA GGGCCGAGCG CCCGGCTCGCC GCCCGAGCG CCCGGCTCGCC ATTAACTGACAA GCGCCAACGTT TAATTGACAA | CAATGCTTAA<br>GTTACGAATT<br>ATCCATAGTT<br>TAGGTATCAA<br>GCTTACCATC<br>CGAATGGTAG<br>CGGCCCAGG<br>GGCCGAGGTC<br>CAGAAGTGGT<br>GTCTTCACCA<br>GTCTTCACCA<br>GTCTTCACCA | TCAGTGAGGC AGTCACTCCG GCCTGACTCCG CGGACTGAGG ACCGGGGTCA ACCGGGGTCA ACCGGGGTCA ATTTATCAGC TAAATAGTCG CCTGCAACTT GGACGTTGAA CCTGCAACTT GGACGTTGAA CTACAGGCATCA CTACAGGCAT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TATATATACTCA TTTGAACCAG ACTGTCAATG GTTACGAATT ACCTATCTCTC TATTTCGTTC ATCCATAGTT TGGATAGTT CGATCTAGACAG ATAAAGCAAG TAGGTATCAA                                                                                                                                                                                                                                                                                                                   | ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 | 476                                    | CCGTCGTGTA<br>GGCAGCACAT                                                                                                                                | GATAACTACG<br>CTATTGATGC                                                                                                                                    | ATACGGGAGG<br>TATGCCCTCC                                                                                                                                                              | GCTTACCATC<br>CGAATGGTAG                                                                                                                                            | TGGCCCCAGT<br>ACCGGGGGTCA                                                                                                                                               |
| ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAAA TATATACTCA TTTGAACCAG ACTGTCAATG GTTACGAATT ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG                                                                                                                                                                                                                   | ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GCCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG                                                                                                                                                                                                                                                                                                                                             | CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC<br>GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG                                                                                                                                                                                                                                                                      | 526                                    | GCTGCAATGA<br>CGACGTTACT                                                                                                                                | TACCGCGAGA<br>ATGGCGCTCT                                                                                                                                    | CCCACGCTCA<br>GGGTGCGAGT                                                                                                                                                              | CCGGCTCCAG<br>GGCCGAGGTC                                                                                                                                            | ATTTATCAGC<br>TAAATAGTCG                                                                                                                                                |
| ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TATATACTCA TTTGAACCAG ACTGTCAATG GTTACGAATT ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GCCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGCCTCCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC                                                                                                                            | ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGCCTCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC                                                                                                                                                                                                                                                     | CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC                                                                                                                                                                                 | 576                                    | AATAAACCAG<br>TTATTTGGTC                                                                                                                                | CCAGCCGGAA<br>GGTCGGCCTT                                                                                                                                    | GGGCCGAGCG<br>CCCGGCTCGC                                                                                                                                                              | CAGAAGTGGT<br>GTCTTCACCA                                                                                                                                            | CCTGCAACTT<br>GGACGTTGAA                                                                                                                                                |
| ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TATATATCTCA TTTGAACCAG ACTGTCAATG GTTACGAATT ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GCCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCTGCAGTT AATAAACCAG CCAGCCGGAA GGGCCGAGGT TTATTTGGTC GGTCGGCTT CCCGGCTCCA                                                          | ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT OF TGGATAGTT CGGATGGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA CTATTGATGC TATGCCCTCC CGAATGGTAG CCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG CCACGTTACT ATGGCGTCT GGGTGCGAGT GGCCGAGGTC ATAAACCAG CCAGCCGGAA GGGCCGAGGT CCGGCTTCACCA CCGGCTCGC CAGAAGTGGT TTATTTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA                                                                                                                                                                                | CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACATCGTAG TATGCCCTCC CGAATGGTAG CCTGCAATGGTAG CCTGCAATGGTAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT TTATTTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA                                                                                                               | 626                                    | TATCCGCCTC<br>ATAGGCGGAG                                                                                                                                | CATCCAGTCT<br>GTAGGTCAGA                                                                                                                                    | ATTAACTGTT<br>TAATTGACAA                                                                                                                                                              | GCCGGGAAGC<br>CGGCCCTTCG                                                                                                                                            | TAGAGTAAGT<br>ATCTCATTCA                                                                                                                                                |
| ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TATATATGAGT TTTGAACCAG ACTGTCAATG GTTACGAATT ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT TGGATAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC TTATTTGGTC GGTCGGCCTT CCCGGCTCGC TTATCCGCCTC CATCCAGTCT ATTAACTGTT GCCGGGAAGC ATAGGCGGAG GTAGGTCAGA TAATTGACAA CGGCCCTTCG | ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT OF GCATAGATGCAG TAGGTATCAA OF GCAGCACA TAAAGCAAG TAGGTATCAA OF GCCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG CGACGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG CGACGTTACT ATGCCGCTCT GGGTGCGAGT GGCCGAGGTC ATTAAACCAG CAGAAGTGGT GGCCGAGGTC GGTCGCCTT CCCGGCTCGC GTCTTCACCA TATTTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA ATAAGGCGGAAGC TATTAACTGTT GCCGGGAAGC ATAAGGCGGAAGC ATAAGGCGGAAGC TATTAACTGTT GCCGGGAAGC ATAAGGCGGAAGC TAATTGACAA CGGCCCTTCG ATAAGGCGGAAGC TAATTGACAA CGGCCCTTCG | CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC GGCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG CGACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC TATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT TTATTTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA TATCCGCCTC CATCCAGTCT ATTAACTGTT GCCGGGAAGC ATAGGCGGAG GTAGGTCAGA TAATTGACAA CGGCCCTTCG | 919                                    | AGTTCGCCAG<br>TCAAGCGGTC                                                                                                                                | TTAATAGTTT<br>AATTATCAAA                                                                                                                                    | GCGCAACGTT<br>CGCGTTGCAA                                                                                                                                                              | GTTGCCATTG<br>CAACGGTAAC                                                                                                                                            | CTACAGGCAT<br>GATGTCCGTA                                                                                                                                                |

SUBSTITUTE SHEET (RULE 26)
190 / 204

Figure 36: functional map and sequence of  $\ensuremath{\beta}$ -lactamase-MCS module (continued)

| 726  | CGTGGTGTCA               | CGCTCGTCGT               | TTGGTATGGC               | TTCATTCAGC               | TCCGGTTCCC               |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|      | GCACCACAGT               | GCGAGCAGCA               | AACCATACCG               | AAGTAAGTCG               | AGGCCAAGGG               |
| 176  | AACGATCAAG               | GCGAGTTACA               | TGATCCCCCA               | TGTTGTGCAA               | AAAAGCGGTT               |
|      | TTGCTAGTTC               | CGCTCAATGT               | ACTAGGGGGT               | ACAACACGTT               | TTTTCGCCAA               |
| 826  | AGCTCCTTCG<br>TCGAGGAAGC | GTCCTCCGAT               | CGTTGTCAGA<br>GCAACAGTCT | AGTAAGTTGG<br>TCATTCAACC | CCGCAGTGTT<br>GGCGTCACAA |
| 876  | ATCACTCATG               | GTTATGGCAG               | CACTGCATAA               | TTCTCTTACT               | GTCATGCCAT               |
|      | TAGTGAGTAC               | CAATACCGTC               | GTGACGTATT               | AAGAGAATGA               | CAGTACGGTA               |
| 926  | CCGTAAGATG               | CTTTTCTGTG               | ACTGGTGAGT               | ACTCAACCAA               | GTCATTCTGA               |
|      | GGCATTCTAC               | GAAAAGACAC               | TGACCACTCA               | TGAGTTGGTT               | CAGTAAGACT               |
| 916  | GAATAGTGTA<br>CTTATCACAT | TGCGGCGACC<br>ACGCCGCTGG | GAGTTGCTCT<br>CTCAACGAGA | TGCCCGGCGT               | CAATACGGGA<br>GTTATGCCCT |
| 1026 | TAATACCGCG               | CCACATAGCA               | GAACTTTAAA               | AGTGCTCATC               | ATTGGAAAAC               |
|      | ATTATGGCGC               | GGTGTATCGT               | CTTGAAATTT               | TCACGAGTAG               | TAACCTTTTG               |
| 9201 | GTTCTTCGGG               | GCGAAAACTC               | TCAAGGATCT               | TACCGCTGTT               | GAGATCCAGT               |
|      | CAAGAAGCCC               | CGCTTTTGAG               | AGTTCCTAGA               | ATGGCGACAA               | CTCTAGGTCA               |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

| T CTTTTACTTT                       | AT GCCGCAAAAA            | T CTTCCTTTTT<br>3A GAAGGAAAAA | SA GCGGATACAT            | XhoI     | BssHI   | TTA ATGGCTCGAG           |             |
|------------------------------------|--------------------------|-------------------------------|--------------------------|----------|---------|--------------------------|-------------|
| TCTTCAGCAT<br>AGAAGTCGTA<br>Eco57I | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT<br>ATGAGTATGA      | TGTCTCATGA<br>ACAGAGTACT | ?        | Bbel As | GGCGCCATTA               | )<br>H      |
| ACCCAACTGA<br>TGGGTTGACT           | CAAAAACAGG<br>GTTTTTGTCC | AAATGTTGAA<br>TTTACAACTT      | TCAGGGTTAT<br>AGTCCCAATA | PstI     | BssSI   | ACGAGCTGCA<br>TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC<br>GGTGAGCACG<br>BssSI  | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC      | GAAGCATTTA<br>CTTCGTAAAT |          |         | ACTCGGCCGC               |             |
| TCGATGTAAC<br>AGCTACATTG           | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC      | CAATATTATT<br>GTTATAATAA |          |         | ATTTGAATGT<br>TAAACTTACA | BssHII      |
| 1126                               | 1176                     | 1226                          | 1276                     |          |         | 1326                     |             |
|                                    |                          | SUBSTITE                      | JTE SHEET (<br>192 / 204 | (RULE 26 | 5)      |                          |             |

CATGAAATT GCGAAACAGA AGGCCTACAT TCCGGATGTA Figure 36: functional map and sequence of B-lactamase-MCS module (continued) CGCGCTTCAG GCGCGAAGTC Eco57I 1376

> SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

O\_K3L\_5 5'- G C C C T G C A A G C G G A A G A C

| Bbsl | E D |
| Vk1 & Vk3 5'- G C C C T G C A A G C G G A A G A C |
| Vk2 5'- G C C C T G C A A G C G G A A G A C |
| Vk4 5'- G C C C T G C A A G C G G A A G A C |
| Vk4 5'- G C C C T G C A A G C G G A A G A C |

Figure 37: Oligo and primer design for Vk CDR3 libraries

30 20 -3' Α TATTATTG C CATGCGACT T Y G TATTGC GGGCGTGTA CAG Α CAGGCGGTGTATTATTG G Α C D E G Н 1 K M N P CAG Q R S

SUBSTITUTE SHEET (RULE 26)

T V W

80% Q

G

Figure 37: Oligo and primer design for  $V\kappa$  CDR3 libraries

9 3'- G G A ACCT G G - T A C C T

|     |   |           |            | <b>,,</b> |            |            |        |         |           |         |             |           |       |   |   |   |
|-----|---|-----------|------------|-----------|------------|------------|--------|---------|-----------|---------|-------------|-----------|-------|---|---|---|
| G C | Τ |           |            |           |            |            |        | G       | С         | Τ       |             | ********  |       | G | С | Τ |
|     |   |           |            |           |            |            |        |         |           |         |             |           |       |   |   |   |
| GA  | Τ | G         | Α          | Τ         | G          | Α          | Τ      | G       | Α         | T       |             |           |       | G | Α | Τ |
| G A | G |           | *********  | *****     | ********** |            |        | G       | Α         | G       |             |           |       | G | Α | G |
| TT  | Τ | ********* | •••••••    |           | *********  | ••••••     |        | T       | T         | Τ       | **********  | ********* |       | T | T | Τ |
| GG  | T | G         | G          | T         | G          | G          | T      | G       | G         | Τ       | •••••••     |           |       | G | G | T |
| СА  | Τ | ••••••    | *********  |           |            | ••••••     |        | С       | Α         | Τ       | **********  |           |       | С | Α | T |
| AT  | T | •••••     | *********  |           |            |            |        | Α       | T         | Τ       | .,,,,,,,,,, | ********* |       | Α | T | T |
| AA  | G | •••••     | ••••••     |           | *********  |            |        | Α       | Α         | G       | **********  | ••••••    |       | Α | Α | G |
| СТ  | T | •••••     | ********** |           | •••••      | •••••      |        | С       | T         | Τ       |             |           |       | С | T | T |
| AT  | G |           |            | •••••     | •••••      |            |        | Α       | T         | G       | •••••••     | ********* |       | Α | T | G |
| AA  | Ť | Α         | Α          | Τ         | Α          | Α          | Τ      | Α       | Α         | Τ       | ••••••••    | ********  |       | Α | Α | Τ |
|     |   |           |            | ••••••    | •••••      | ********** |        |         |           |         | С           | С         | T     | С | С | T |
| CA  | G |           | ••••••     | •••••     |            | ••••••     | •••••  | С       | Α         | G       |             | •••••••   |       | С | Α | G |
| CG  |   |           | •          |           |            |            |        |         |           |         |             |           |       | С |   | T |
| TC  | T | T         | C          | T         | Τ          | С          | T      | Τ       | С         | T       | T           | С         | T     | Τ | C | Τ |
| A C | T |           |            |           |            | ••••••     |        | Α       |           | T       | •••         | ••••••    | ••••• | Α | С | Τ |
| GT  | T |           | •••••      | •••••     |            | ••••••     | •••••• | G       | T         | T       |             |           |       | G | T | T |
| TG  | G |           |            | •••••     |            |            | •••••• | T       | G         | G       |             | •••••     |       | Ţ | G | G |
| ΤA  | T | Τ         | Α          | T         |            | ••••••     |        | T       | Α         | T       |             |           | ••••• | T | Α | T |
| 50% |   |           |            | ••••      | .:         |            |        | ••••••• | ********* | ••••••• | 80          | )%        | P     |   |   |   |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

E D E A D

5'- C C T G C A A G C G G A A G A G C G G A T T −

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries



SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

| 09                            | 70       | 80      |
|-------------------------------|----------|---------|
|                               | •        | K L     |
|                               | G        | BAAGIIA |
| gap gap                       |          |         |
| - G C T G C T G C T G C T     |          |         |
| GATGATGATGAT                  |          |         |
| G A G G A G G A G G A G       |          |         |
| TTTTTTTTTTT                   |          |         |
| GGTGGTGGT                     |          |         |
| CATCATCATCAT                  |          |         |
| ATTATTATTATT                  |          |         |
| AAGAAGAAGAAG                  |          |         |
| CTTCTTCTTCTT                  |          |         |
| ATGATGATGATG                  |          |         |
| AATAATAATAAT                  |          |         |
| CCTCCTCCTCCT                  |          |         |
| CAGCAGCAGCAG                  |          |         |
| CGTCGTCGTCGT                  |          |         |
| TCTTCTTCTTCT                  |          |         |
| ACTACTACTACT                  |          |         |
| G T T G T T G T T G T T G T T |          |         |
| TATTATTATTAT                  |          |         |
| 18 19                         | 3.32E+05 |         |
| 18 18 19                      | 5.98E+06 |         |
| 18 18 18 19                   | 1.08E+08 |         |
| 10 10 10                      |          |         |

SUBSTITUTE SHEET (RULE 26)

200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries



SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Total amount     | •        |      | C    |            |      | 6    | (         |
|------------------|----------|------|------|------------|------|------|-----------|
| compared to H3K2 | <u>~</u> | Ž    | Z    | <b>К</b> 4 | -    | 7    | <u>بر</u> |
| H1A              | 289%     | 94%  | 166% | 272%       | 20%  | 150% |           |
| H18              | 219%     | 122% | 89%  | 139%       | 117% | 158% | •         |
| H2               | 186%     | 223% | 208% | 182%       | 126% | %09  | 97%       |
| H3               | 20%      |      | 71%  | 54%        | 59%  | 130% |           |
| H4               | 37%      | 55%  | %09  | 77%        | 195% | 107% |           |
| H5               | 986      | 201% | 167% | 83%        | 93%  | 128% |           |
| 9H               | 0/659    | 117% | 89%  | 109%       | 299% | 215% | -         |

#### INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/13 C12N15/10 C12N15/70 C12N1/21 C12N15/62 C07K1/04 G01N33/53 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ' Citation of document, with indication, where appropriate, of the relevant passages 1-55 A EP 0 368 684 A (MEDICAL RES COUNCIL) 16 May 1990 cited in the application see the whole document EUROPEAN J. IMMUNOLOGY, 1-55 Α vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. \* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1 02 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount   | 70,      | ,    | ر~.  | , , , , , , , , , , , , , , , , , , , | 7    | 7,7  | 7.2   |
|------------------|----------|------|------|---------------------------------------|------|------|-------|
| compared to H3K2 | <b>Z</b> | Z    | 2    | ላ<br>ት                                | ₹    | 7    | 5     |
| H1A              | 191%     | 880% | 121% | 122%                                  | 26%  | 211% | 76%   |
| H1B              | 124%     | 95%  | 83%  | 107%                                  | 79%  | 142% | 59%   |
| H2               | 126%     | 204% | 139% | 130%                                  | 999  | 20%  | 0/00/ |
| H3               | 63%      | ı    | 81%  | 49%                                   | %69  | 143% | 61%   |
| H4               | . 40%    | 47%  | 49%  | 54%                                   | 95%  | 25%  | 125%  |
| H5               | %69      | 158% | 116% | 80%                                   | 72%  | 84%  | 84%   |
| H6               | 85%      | 122% | 87%  | 77%                                   | 162% | 162% | 212%  |
|                  | McPC     |      |      |                                       |      |      |       |
| soluble          | 38%      |      |      |                                       |      |      |       |
| %H3k2 total      | 117%     |      |      |                                       |      |      |       |
| %H3k2 soluble    | %69      |      |      |                                       |      |      |       |

## INTERNATIONAL SEARCH REPORT

information on patent family members

Int onal Application No PCT/EP 96/03647

| Patent document cited in search report | Publication date |       | t family<br>aber(s) | Publication<br>date |
|----------------------------------------|------------------|-------|---------------------|---------------------|
| EP-A-0368684                           | 16-05-90         | AU-B- | 634186              | 18-02-93            |
|                                        |                  | AU-A- | 4520189             | 28-05-90            |
|                                        |                  | CA-A- | 2002868             | 11-05-90            |
|                                        |                  | DE-D- | 68913658            | 14-04-94            |
|                                        |                  | DE-T- | 68913658            | 08-09-94            |
|                                        |                  | ES-T- | 2052027             | 01-07-94            |
| •                                      |                  | WÓ-Á- | 9005144             | 17-05-90            |
|                                        |                  | JP-T- | 3502801             | 27-06-91            |
| WO-A-9511998                           | 04-05-95         | AU-A- | 8091694             | 22-05-95            |
|                                        |                  | EP-A- | 0725838             | 14-08-96            |

THIS PAGE BLANK (USPTO)

H. Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Car

fr itional Application No PCT/EP 96/03647

|             | <u> </u>                                                                                                                                                                                                                                     | PCT/EP 96/03647       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C.(Continua |                                                                                                                                                                                                                                              |                       |
| Category *  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                           | Relevant to claim No. |
| A           | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a                                                         | 1-55                  |
|             | <pre>chemical`solution to the diversity problem" cited in the application see the whole document</pre>                                                                                                                                       |                       |
| A           | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document   | 1-55                  |
| Ą           | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992,                                                                                                                                                       | 1-55                  |
|             | pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document                                                               |                       |
| A           | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF                                                                                                                           | 1-55                  |
|             | RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document                                                                                                                                            |                       |
| <b>A</b> .  | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document                                             | 1-55                  |
| <b>A</b>    | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55                  |
| •           | -/                                                                                                                                                                                                                                           |                       |

#### INTERNATIONAL SEARCH REPORT

| Int - Weapp | liemon No |  |
|-------------|-----------|--|
| Pi Po       | 17        |  |
| <br>        |           |  |

|            |                                                                                                                                                                                                                                                                                                                                                                       | Pl ooc | 37                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                            | ť      | <del></del>           |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                    |        | Relevant to claim No. |
| A          | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document                                                                                                                                |        | 1-55                  |
| Α ΄        | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document                                                                                                                                                                                                                                                                                               | ·      | 1-55                  |
| A          | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4                                                                                               |        | 1-55                  |
|            | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994, |        | 1-55                  |
|            |                                                                                                                                                                                                                                                                                                                                                                       |        |                       |

Form PCT/ISA:210 (continuation of second sheet) (July 1992)