Contributeurs

MAS-II: Modern Actuarial Statistics II

aut., cre. Alec James van Rassel

Référence (manuels, YouTube, notes de cours) En ordre alphabétique :

Contributeurs

Contents		Decision Trees	14
A Prerequisites	3	Principal Components Analysis (PCA) Clustering	15 16
Distributions Discrete Distributions Severity Distributions Joint Distributions Conditional Distributions Aggregate Distributions Normal, Uniform, Pareto, Exponential, and Gamma	3 3 5 5 5 5 5	Clustering	10
B Introduction to Credibility	7		
Basic Framework of Credibility Full Credibility Claim Frequency Claim Severity Aggregate Loss Partial Credibility	7 7 8 8 8		
Bühlmann Credibility Basic framework Variance components Credibility factors	9 9 9		
Bayesian Credibility Basic framework Premium Conjugate distributions Nonparametric empirical Bayes method	10 10 10 10 10		
C Linear Mixed Models	11		
D Bayesian Analysis and Markov Chain Monte Carlo	12		
E Statistical Learning	13		
K-Nearest Neighbors	13		

\mathbf{A}

Prerequisites

Distributions

Context

We typically use 3 types of random variable to describe losses:

Frequency or number of losses	always discrete
Severity or amount of losses (payment)	usually continuous, can be discrete or mixed too
Aggregate or total loss from summing a number (Frequency) of Severity vari- ables	same as the severity

$\Pr(N = n)$ = $\frac{e^{-\lambda}\lambda^n}{n!}$ E[N] = λ Var(N) = λ

- > If N_1 and N_2 are independent Poisson r.v., then $N_1 + N_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- > The ${\rm e}^{-\lambda}$ term makes the probabilities sum to 1 as the Taylor series for ${\rm e}^{\lambda}$ is

$$e^{\lambda} = 1 + \lambda + \frac{\lambda^2}{2!} + \dots + \frac{\lambda^n}{n!} + \dots$$

Discrete Distributions

Context

Discrete random variables are usually counting (frequency) variables, meaning their possible values are $\{0,1,2,\dots\}$

Probability Mass Function (PMF)

N is a discrete random variable if it has a **probability mass function** p_k such that $p_k = \Pr(N = k)$

Definition	Domain	Condition
$p_k = \Pr(N = k)$	$p_k \in [0,1]$	$\sum_k p_k = 1$

▼ Poisson Distribution

Notation	Parameters	Domain
$N \sim \text{Poisson}(\lambda)$	$\lambda > 0$	$n = 0, 1, 2, \dots$

Binomial Distribution

Context

A binomial r.v. N has m independent trials each having a probability q of a loss where n is the total number of losses.

Notation	Parameters	Domain
$N \sim \operatorname{Bin}(m,q)$	$q \in (0,1); m \in \mathbb{N}$	$n = 0, 1, 2, \dots$

Pr(N = n)	$= \binom{m}{n} q^n (1-q)^{m-n}$
E[N]	= mq
Var(N)	= mq

- > If N_1 and N_2 are independent binomial r.v. with the same q then $N_1 + N_2 \sim \text{Bin}(m_1 + m_2, q)$.
- > The case where m=1 corresponds to a Bernoulli r.v.

✓ Geometric Distribution

Context

A geometric r.v. N with mean β can be obtained by setting n as the number of years **before** the <u>first</u> loss. Given the geometric distribution is memoryless, each year *independently* has a loss with probability

$$\underbrace{\Pr(N=0)}_{\text{probability of a}} = \frac{1}{1+\beta}.$$
loss the first year

Notation	Parameters	Domain
$N \sim \text{Geo}(\beta)$	$\beta > 0$	$n = 0, 1, 2, \dots$

$\Pr(N=n)$	$= \left(\frac{\beta}{1+\beta}\right)^n \frac{1}{1+\beta}$
$\Pr(N \ge n)$	$=\left(rac{eta}{1+eta} ight)^n$
E[N]	$=\beta$
Var(N)	$=\beta(1+\beta)$

> Like the exponential distribution, the geometric distribution is memoryless:

$$Pr(N = d + n | N \ge d) = Pr(N = n)$$

$$E[N - d | N \ge d] = E[N]$$

▼ Negative Binomial Distribution

${\bf Context}$

A negative binomial r.v. N represents the number of years n with no loss before the r^{th} year with a loss. We obtain a negative binomial r.v. $N \sim \text{NBin}(r,\beta)$ by summing r iid geometric r.v., N_1, N_2, \ldots, N_r , all with the same mean β .

$N \sim N \text{Bin}(\beta)$ Parameters Domain n = 0, 1, 2, ...

$\Pr(N=n)$	$= {r+n-1 \choose r-1} \left(\frac{\beta}{1+\beta}\right)^n \left(\frac{1}{1+\beta}\right)^r$	
$\Pr(N \ge n)$	$=\left(rac{eta}{1+eta} ight)^n$	
E[N]	$=r\beta$	
Var(N)	=reta(1+eta)	

 \rightarrow A geometric r.v. is a negative binomial r.v. with r = 1.

Distribution	Mean		Variance
Binomial	mq	>	mq(1-q)
Poisson	λ	=	λ
Geometric	β	<	$\beta(1+\beta)$
Negative Binomial	rβ	<	$r\beta(1+\beta)$

Severity Distributions

Probability Density Function (PDF)

X is a continuous random variable if it has a **probability density function** f(x) such that f(x)

Definition	Domain	Condition
f(x) =	$f(x) \ge 0$	$\int_{\mathbb{R}} f(x) dx = 1$

Joint Distributions

Conditional Distributions

Aggregate Distributions

Normal, Uniform, Pareto, Exponential, and Gamma

✓ Normal Distribution

Contexte

La distribution Pareto est un mélange de deux distributions exponentielles originalement conçue pour étudier des distributions de revenus.

Notation	Parameters	Domain
$X \sim \text{Pareto}(\alpha, \theta)$	$\alpha, \theta > 0$	$x \ge 0$

$$f(x) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}$$

$$= 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$

 $Y = (X - d | X > d) \sim \operatorname{Pareto}(\alpha, \theta)$ alors $Y = (X - d | X > d) \sim \operatorname{Pareto}(\alpha, \theta + d)$

▼ Uniform Distribution

Notation	Parameters	Domain
$X \sim \text{Beta}(a, b, \theta)$	$a, b > 0$ et $\theta \ge 0$	$x \in [0, \theta]$

$$f(x) = \frac{\theta}{\mathrm{B}(a,b)} \left(\frac{x}{\theta}\right)^{a-1} \left(1 - \frac{x}{\theta}\right)^{b-1}$$

 $X \sim \text{Beta}(a = 1, b = 1, \theta) \sim \text{Unif}(0, \theta).$

$$>$$
 Si $X \sim \text{Unif}(a,b)$ alors $\left[(X|X>d) \sim \text{Unif}(d,b) \right]$ et $\left[(X-d|X>d) \sim \text{Unif}(0,b-d) \right]$.

▼ Pareto Distribution

Contexte

La distribution Pareto est un mélange de deux distributions exponentielles originalement conçue pour étudier des distributions de revenus.

Notation	Parameters	Domain
$X \sim \text{Pareto}(\alpha, \theta)$	$\alpha, \theta > 0$	$x \ge 0$

$$f(x) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}$$

$$F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$

> Si
$$X \sim \text{Pareto}(\alpha, \theta)$$
 alors $Y = (X - d | X > d) \sim \text{Pareto}(\alpha, \theta + d)$

Exponential Distribution

✓ Gamma Distribution

Notation	Parameters	Domain
$X \sim \text{Gamma}(\alpha, \theta)$	$\alpha, \theta > 0$	$x \ge 0$

$$f(x) = \frac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^{\alpha}}$$

- \rightarrow On appelle θ la moyenne et $\lambda = \frac{1}{\theta}$ le paramètre de fréquence (" rate").
- > Soit n v.a. indépendantes $X_i \sim \text{Gamma}(\alpha_i, \theta)$ alors $\sum_{i=1}^n X_i \sim \text{Gamma}(\sum_{i=1}^n \alpha_i, \theta)$.
- > Soit n v.a. indépendantes $X_i \sim \operatorname{Exp}(\lambda_i)$ alors $Y = \min(X_1, \dots, X_n) \sim \operatorname{Exp}(\frac{1}{\sum_{i=1}^n \lambda_i)}$.
- \rightarrow Si $X \sim \text{Exp}(\theta)$ alors $(X d|X > d) \sim \text{Exp}(\theta)$.

Statistics

∄ Mode

Context

The mode is the value that occurs the most often. A non-mathematical example of the concept is looking at the most used letter in the English alphabet. The letter E is the most used letter in the dictionary and as such is the mode of the English language.

In mathematical terms, the mode is the point which maximises the PMF/PDF.

Finding the mode of a continuous r.v. can be done by calculating the derivative of the PDF and finding the point where it equals 0. If the distribution is

- > unimodal, i.e. it has a hump, then mode = x s.t. f'(x) = 0
- > strictly increasing or decreasing, the mode will be one of the 2 extremes.
 - For example, the exponential distribution is strictly decreasing and its mode is always 0.

For discrete variables, there are some ways to simplify it's calculation:

- > Using the table function on the calculator and seeing where the probabilities peak.
- > Using the algebraic approach of looking at p_k/p_{k-1} .
 - $-p_k > p_{k-1}$ iff $p_k/p_{k-1} > 1$.
 - The mode is the largest k s.t. $p_k > p_{k-1}$.

Note In the exam, it's best to use the calculator approach.

Introduction to Credibility

Basic Framework of Credibility

Study aid for Modern Actuarial Statistics II (MAS-II)

Context

The *limitation fluctuation credibility* approach, or *classical credibility* approach, calculates an updated prediction (U) of the **loss measure** as a weighted (Z) average of recent claim experience (D) and a rate (M) specified in the manual. Thus, we calculate the *premium* paid by the *risk group* as U = ZD + (1 - Z)M.

Notation

M Predicted loss based on the "manual".

D Observed losses based on the recent experience of the risk group.

Z Weight assigned to the recent experience D called the *credibility factor* with $Z \in [0,1]$.

U Updated prediction of the premium.

Terminology

Risk group block of insurance policies, covered for a period of time upon payment of a *premium*.

Claim frequency The number of claims denoted N.

Claim severity The amount of the i^{th} claim denoted X_i .

Aggregate loss The total loss denoted S where $S = X_1 + X_2 + ... + X_N$.

Pure premium The pure premium denoted P where P = S/E with E denoting the number of exposure units.

Exam tips

Typical questions about this involve being given 3 of M, D, Z, and U then finding the missing one.

C Liste des contributeurs

Context

With $\min\{D, M\} \le U \le \max\{D, M\}$, we can see that the credibility factor determines the relative importance of the claim experience of the risk group D relative to the manual rate M.

If Z=1, we obtain $\overline{Full\ Credibility}$ where the predicted premium depends only on the data $\overline{(U=D)}$. It follows that with Z<1, we obtain $Partial\ Credibility$ as the weighted average of both D and M.

Full Credibility

Contexte

The classical credibility approach determines the $minimum\ data\ size$ required for the experience data (D) to be given $full\ credibility$. The minimum data size, or $standard\ for\ full\ credibility$, depends on the loss measure.

Claim Frequency

The claim frequency random variable N has mean μ_N and variance σ_N^2 . If we assume $N \approx \mathcal{N}(\mu_N, \sigma_N^2)$, then the probability of observing claim frequency

within
$$k$$
 of the mean is $\Pr(\mu_N - k\mu_N \le N \le \mu_N + k\mu_N) = 2\Phi\left(\frac{k\mu_N}{\sigma_N}\right) - 1$.

We often assume that the claim frequency $N \sim \text{Pois}(\lambda_N)$ and then apply the normal approximation to find the standard for full credibility for claim frequency λ_F . First, we impose that the probability of the claim being with k of the mean must

be at least $1 - \alpha$. Then, we rewrite $\frac{k\mu_N}{\sigma_N} = k\sqrt{\lambda_N}$ and set $\lambda_N \ge \left(\frac{z_{1-\alpha/2}}{k}\right)^2$ where

$$\lambda_F = \left(\frac{z_{1-\alpha/2}}{k}\right)^2$$

Claim Severity

We assume that the loss amounts $X_1, X_2, ..., X_N$ are independent and identically distributed random variables with mean μ_X and variance σ_X^2 . Full credibility is

attributed to $D = \bar{X}$ if $2\Phi\left(\frac{k\mu_X}{\sigma_N/\sqrt{N}}\right) - 1 \ge 1 - \alpha$.

Similarly to claim frequency, we apply the normal approximation with

$$\bar{X} \approx \mathcal{N}\left(\mu_X, \sigma_X^2/N\right)$$
. Then, we find $N \geq \left(\frac{z_{1-\alpha/2}}{k}\right)^2 \cdot \left(\frac{\sigma_X}{\mu_X}\right)^2 = \lambda_F C V_X^2$ where the

standard for full credibility for claim severity is $\lambda_F CV_X^2$.

Aggregate Loss

For the aggregate loss $S=X_1+X_2+\ldots+X_N$, we have $\mu_S=\mu_N\mu_X$ and $\sigma_S^2=\mu_N\sigma_X^2+\mu_X^2\sigma_N^2$.

With the same normality assumptions for the Poisson distributed N, we find

$$\lambda_N \geq \left(\frac{z_{1-\alpha/2}}{k}\right)^2 \cdot \left(\frac{\mu_X^2 + \sigma_X^2}{\mu_X^2}\right) = \lambda_F (1 + CV_X^2)$$
 where the **standard for full cred**-

ibility for claim severity is $\lambda_F(1+CV_X^2)$.

Note The conditions are the same for the $Pure\ Premium$ as for the aggregate loss.

Partial Credibility

The $\boldsymbol{credibility\ factor}$ for :

Claim Frequency is $Z = \sqrt{\frac{\lambda_N}{\lambda_F}}$

Claim Severity is $Z = \sqrt{\frac{N}{\lambda_F C V_X^2}}$

Aggregate Loss and Pure Premium is $Z = \sqrt{\frac{\lambda_N}{\lambda_F(1+CV_X^2)}}$

Bühlmann Credibility

Context

Buhlmann's approach, a.k.a. the greatest accuracy approach or the least squares approach, estimates the future loss measure X_n

Basic framework
Variance components
Credibility factors

Bayesian Credibility

Basic framework

Premium

Conjugate distributions

Nonparametric empirical Bayes method

 \mathbf{C}

Linear Mixed Models

 \mathbf{D}

Bayesian Analysis and Markov Chain Monte Carlo

 \mathbf{E}

Statistical Learning

K-Nearest Neighbors

Decision Trees

Principal Components Analysis (PCA)

Clustering