## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification <sup>6</sup>: H01S 3/065, H04B 10/17, H04J 14/02

A1 (

(11) International Publication Number:

WO 99/66610

٠ | ،

(43) International Publication Date:

23 December 1999 (23.12.99)

(21) International Application Number:

PCT/US99/13812

(22) International Filing Date:

18 June 1999 (18.06.99)

(30) Priority Data:

60/089,967

19 June 1998 (19.06.98)

US

(71) Applicant (for all designated States except US): LUCENT TECHNOLOGIES INC. [US/US]; 600 Mountain Avenue, Murray Hill, NJ 07974-0636 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SRIVASTAVA, Atul, Kumar [-/US]; 111B White Street, Eatontown, NJ 07724 (US). SULHOF, James, William [US/US]; 1147 Deal Road, Ocean, NJ 07712 (US). SUN, Yan [-/US]; 908 Knollwood Drive, Middletown, NJ 07748 (US). WOLF, Charles, L. [-/US]; P.O. Box 101, Ocean, NJ 07757 (US). ZHOU, Jianhui [-/US]; 119 Kentucky Way, Freehold, NJ 07728 (US). ZYSKIND, John, Lehrer [-/US]; 670 Pheasant Run Road, Hummelstown, PA 17036 (US).
- (74) Agent: BROSEMER, Jeffery, J.; Lucent Technologies Inc., P.O. Box 679, Holmdel, NJ 07733-3030 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: GAIN TILT CONTROL WITH MID-STAGE ATTENUATORS IN ERBIUM-DOPED FIBER AMPLIFIERS



### (57) Abstract

Gain tilt control in erbium-doped fiber amplifiers is realized by adjusting the attenuation of mid-stage variable attenuators situated between multiple stages of the erbium-doped fiber amplifier. Positive power tilt in input signals is compensated by increasing attenuator loss while negative power tilt is compensated by decreasing the attenuator loss.