Assignment 2: Data Storage

Batch Analytics Pipeline on HDFS & Hive

1. Introduction

MediaCo collects large daily logs of user activity from a streaming platform. The objective of this project is to design a batch analytics pipeline using HDFS for data storage and Hive for querying. The pipeline performs data ingestion, transformation, and analysis to extract meaningful insights.

2. Data Description

The dataset includes:

- User Logs: Contains user interactions such as plays, pauses, and skips.
 - Format: CSV or JSON
 - o Columns: user_id, content_id, action, timestamp, device, region, session_id
 - Stored in /raw/logs/YYYY/MM/DD/
- **Content Metadata:** Static reference data about content.
 - o Columns: content id, title, category, length, artist
 - Stored in /raw/metadata/

3. Data Ingestion

The ingestion process involves:

- 1. Running generate data.py to generate synthetic logs and metadata.
- 2. Executing ingest logs.sh to move data to HDFS.
- 3. Using move_metadata.sh to relocate metadata files.

Shell Script: ingest_logs.sh

This script:

- Accepts a date parameter.
- Parses year, month, and day.
- Moves logs to /raw/logs/YYYY/MM/DD/ in HDFS.
- Moves metadata to /raw/metadata/.

./ingest_logs.sh YYYY-MM-DD

4. Hive Schema

Raw Tables

```
user_id INT,
content_id INT,
action STRING,
timestamp STRING,
device STRING,
region STRING,
session_id STRING
) PARTITIONED BY (year INT, month INT, day INT)
STORED AS TEXTFILE LOCATION '/raw/logs';
```

Star Schema

- Fact Table: fact_user_actions (stores user interactions, partitioned by date).
- **Dimension Table:** dim_content (stores content metadata).

```
CREATE TABLE fact_user_actions (
    user_id INT,
    content_id INT,
    action STRING,
    timestamp TIMESTAMP,
    device STRING,
    region STRING,
    session_id STRING
) PARTITIONED BY (year INT, month INT, day INT)
STORED AS PARQUET;
```

5. Data Transformation

Data is moved from raw tables to the star schema using Hive SQL:

INSERT OVERWRITE TABLE fact user actions PARTITION (year, month, day)

SELECT user id, content id, action,

CAST(timestamp AS TIMESTAMP), device, region, session id,

year(timestamp), month(timestamp), day(timestamp)

FROM raw logs;

6. Analytical Queries

Query 1: Monthly Active Users by Region

SELECT year, month, region, COUNT(DISTINCT user_id) AS active_users

FROM fact user actions

GROUP BY year, month, region

Query 2: Top Content Categories by Play Count

SELECT c.category, COUNT(*) AS play_count

FROM fact user actions f

JOIN dim content c ON f.content id = c.content id

WHERE action = 'play'

GROUP BY c.category

ORDER BY play_count DESC;

```
Select hanzi@DESKTOP-FCO2M5Q: ~/hive/conf
OUP BY C.CATEGORY

Query ID = hanzi_20269306173625_e41bd462-e51b-457c-8fe6-ec7eaafe18f4

Total jobs = 3

Launching Job 1 out of 3

Launching Job 2 out of 3

Launching Job 2 out of 3

Launching Job 3

Launching Job 3

Launching Job 3

Launching Job 4

Launching Job 5

Launching Job 5

Launching Job 2 out of 3

Launching Job 3

Launching Job 3

Launching Job 3

Launching Job 4

Launching Job 5

Launching Job 6

Launching Job 7

Launching Launching Launching Launching Launching Launching Launching Launching Launchi
                                               Query ID = hanzi_20250306173625_e41bd462-e51b-457c-8fe6-ec7eaafe18f4
                                         taken: 93.847 seconds, Fetched: 3 row(s)
```

Query 3: Average Session Length per Week

SELECT year, weekofyear(timestamp) AS week, AVG(length) AS avg session length

FROM fact_user_actions

JOIN dim_content ON fact_user_actions.content_id = dim_content.content_id

GROUP BY year, weekofyear(timestamp);

```
| Section | Sect
```

7. Performance Considerations

- Partitioning: Data is partitioned by year, month, and day for efficient querying.
- Columnar Storage: Using Parquet reduces storage and improves query performance.
- **Optimized Queries:** Queries are structured to minimize data scans.

8. Execution Times

- Pipeline Execution Time: ~1 minute
- Query Execution Times:
 - Monthly Active Users: ~57 seconds
 - Top Content Categories: ~93 seconds

Average Session Length: ~97 seconds

9. Conclusion

This project successfully implements a batch analytics pipeline, enabling MediaCo to analyze user interactions efficiently. The design choices optimize performance through proper partitioning, columnar storage, and structured queries.

10. References

- Apache Hive Documentation
- HDFS Architecture