More NP-completeness

Sipser 7.5 (pages 283-294)

NP's hardest problems

• Definition 7.34:

A language B is **NP-complete** if

- 1. $B \in NP$
- 2. $A \leq_p B$, for all $A \in NP$

3SAT's main features

· Choice:

Each variable has a choice between two truth values.

Consistency:

Different occurrences of the same variable have the same value.

Constraints:

Variable occurrences are organized into clauses that provide constraints that must be satisfied.

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_2 \lor x_4 \lor x_5)$$

Hamiltonian paths

- $HAMPATH = \{ \langle G, s, t \rangle \mid \exists Hamiltonian \ path \ from \ s \ to \ t \}$
- Theorem 7.46: *HAMPATH* is NP-complete.

Hamiltonian paths

- $HAMPATH = \{ \langle G, s, t \rangle \mid \exists Hamiltonian \ path \ from \ s \ to \ t \}$
- Theorem 7.46: *HAMPATH* is NP-complete.

Remember... *HAMPATH* ∈*NP*

N = "On input < G,s,t>:

- 1. Guess an ordering, $p_1, p_2, ..., p_n$, of the nodes of G
- 2. Check whether $s = p_1$ and $t = p_n$
- 3. For each i=1 to n-1, check whether (p_i, p_{i+1}) is an edge of G. If any are not, reject. Otherwise, accept."

$3SAT \leq_p HAMPATH$

Proof outline

• Given a boolean formula φ , we convert it to a directed graph G such that φ has a valid truth assignment iff G has a Hamiltonian graph

$$\phi = (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4}) \wedge (x_2 \vee x_4 \vee x_5)$$

3SAT's main features

· Choice:

Each variable has a choice between two truth values.

Consistency:

Different occurrences of the same variable have the same value.

Constraints:

Variable occurrences are organized into clauses that provide constraints that must be satisfied.

*We model each of these three features by a different a "gadget" in the graph *G*.

The choice gadget

• Modeling variable x_i

Zig-zagging and zag-zigging

Zig-zag (TRUE)

Zag-zig (FALSE)

The consistency gadget

Clauses

 \cdot Modeling clause c_j

The global structure

CS 311 Mount Holyoke College

The constraint gadget

• Modeling when clause c_j contains x_i

The constraint gadget

- Modeling when clause c_j contains $\overline{x_i}$

A situation that cannot occur

TSP is NP-complete

TSP: Given n cities,
1, 2, ..., n, together
with a nonnegative
distance d_{ij} between
any two cities,
find the shortest tour.

$HAMPATH \leq_p TSP$

SUBSET-SUM is NP-complete

• SUBSET-SUM= $\{ \langle S, t \rangle \mid S = \{x_1, ..., x_k\} \text{ and,}$ for some $\{y_1, ..., y_p\} \subseteq S, \Sigma y_i = t\}$

Why is SUBSET-SUM in NP?

$3SAT \leq_p SUBSET-SUM$