

## SEARCH REQUEST FORM

58344

Requestor's Name: Natalie Davis Serial Number: 09/674436  
 Date: 1-14-02 Phone: 308-6410 Art Unit: 1642  
Mailbox 8E12 MED

## Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

Please search SEQ ID NO: 1 and for  
 the gene "Any-RF" which may be derived  
 from *Anthonrea yamamai* OR a  
 dormancy-control substance, which  
 prevents insects from going into  
 dormancy in the fall.

SEQ ID NO: = Asp-Ile-Leu-Arg-Gly

BEST AVAILABLE COPY

part 1

## STAFF USE ONLY

|                                   |                                                   |                                                           |
|-----------------------------------|---------------------------------------------------|-----------------------------------------------------------|
| Date completed: <u>1/23</u>       | Search Site                                       | Vendors                                                   |
| Searcher: <u>056-602-303-4292</u> | <input type="checkbox"/> STIC                     | <input checked="" type="checkbox"/> IG Suite              |
| Terminal time: <u>21</u>          | <input checked="" type="checkbox"/> CM-1          | <input checked="" type="checkbox"/> STN 5245              |
| Elapsed time: <u>11</u>           | <input type="checkbox"/> Pre-S                    | <input type="checkbox"/> Dialog                           |
| CPU-time:                         | <input type="checkbox"/> N.A. Sequence            | <input type="checkbox"/> APS                              |
| Total time:                       | <input checked="" type="checkbox"/> A.A. Sequence | <input type="checkbox"/> Geninfo                          |
| Number of Searches:               | <input type="checkbox"/> Structure                | <input type="checkbox"/> SDC                              |
| Number of Databases: <u>7</u>     | <input type="checkbox"/> Bibliographic            | <input checked="" type="checkbox"/> DARC/Questel          |
|                                   |                                                   | <input checked="" type="checkbox"/> Other <u>Computer</u> |



=> fil hcplus  
FILE 'HCAPLUS' ENTERED AT 15:48:09 ON 23 JAN 2002  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1907 - 23 Jan 2002 VCL 136 ISS 4  
FILE LAST UPDATED: 21 Jan 2002 (20020121/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

HCplus now provides online access to patents and literature covered in CA from 1907 to the present. Bibliographic information and abstracts were added in 2001 for over 3.8 million records from 1907-1996.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles Thesaurus (/KL field) in this file.

= d q.e 17

L1 21 SEA FILE=REGISTRY.DILRG/SQSP  
L2 153 SEA FILE=HCAPLUS L1  
L3 300 SEA FILE=HCAPLUS ANTHEREA OR ANTHERAEA  
L4 111 SEA FILE=HCAPLUS YAMAMAI  
L5 9212 SEA FILE=HCAPLUS DORMANT OR DORMANCY  
L6 47404 SEA FILE=HCAPLUS LAFVA?  
L7 2 SEA FILE=HCAPLUS L2 AND ((L3 OR L4 OR L5 OR L6))

= d bip abs 17 1-2

L ANTHONY T OF 2 HCAPLUS COPYRIGHT 2002 ACS  
A1 20020121/ED HCAPLUS  
D1 1.3:131471  
T1 Silkworm diapause regulatory gene Aky-FF and method of isolation of its protein product  
IN Kotaki, Toyomi; Tsukada, Masuniro; Suzuki, Keiichi; Yang, Ping  
PA Nenrin Seisansho Sanshi Konchu Nesyo Gijutsu Kenkyusho, Japan  
SO Jpn. Tokkyo Koho, 12 pp.  
CREFID: 177841  
PT Parent  
LA Japanese  
HAN. 'NT' A

| PATENT NO.     | KIND | DATE       | APPLICATION NO. | DATE       |
|----------------|------|------------|-----------------|------------|
| JP 2002-131471 | A1   | 2002-01-12 | 2001-09-13      | 2002-01-12 |
| JP 2002-131474 | A1   | 2002-01-12 |                 |            |



WO 2000073441 A1 20001207 WO 2000-JP3388 20000526  
W: CA, US  
RW: DE, FR, GB  
EP 1101519 A1 20010513 EP 2000-931578 20000526  
R: DE, FR, GB, SI, LT, LV, RO  
PRAI JP 1999-152273 A 19990511  
JP 2000-81312 A 20000312  
WO 2000-JP3388 W 20000516  
AB Silkworm **Any-SF** gene involved in diapause regulation, and method of isolation of its protein product, are disclosed. A protein isolated from silkworm **Antheraea yamamai** using RP-HPLC and ion exchange HPLC and its C-terminally amidated peptide fragment demonstrated diapause regulatory activity.

LT AMERICAN POURNAL OF SCIENCE AND TECHNOLOGY  
AN ISSN: 1062-1024  
LN 10(1), 1-11  
TI A nuclear juvenile hormone-binding protein from **larvae** of *Manduca sexta*: a putative receptor for the metamorphic action of juvenile hormone  
AU Palai, Subba R.; Touhara, Kizushige; Charles, Jean-Philippe; Bonning, Bryony C.; Atkinson, Jeffrey K.; Trowell, Stephen C.; Hiruma, Kiyoshi; Goodman, Walter G.; Kyriakides, Themis; et al.  
CS Dep. Ecology, Univ. Washington, Seattle, WA, 98195, USA  
SO Proc. Natl. Acad. Sci. U. S. A. (1994), 91(15), 6191-5  
CODEEN: PNAA6; ISSN: 0027-8424  
DT Journal  
LA English  
AB A 1.1-kb nuclear juvenile hormone (JH)-binding protein from the epidermis of *Manduca sexta* **larvae** was purified by using the photo-affinity analog for JH II (18<sup>i</sup>H-epoxyhomofarnesyl diazoacetate) and partially sequenced. A 1.1-kb cDNA was isolated by using degenerate oligonucleotide primers for PCR based on these sequences. This cDNA encoded a 262-amino acid protein that showed no similarity with other known proteins, except for short stretches of the interphotoreceptor retinoid-binding protein, rhodopsin, and human nuclear protein p68. Recombinant baculovirus contg. this cDNA made a 29-kDa protein that was covalently modified by [<sup>3</sup>H] epoxyhomofarnesyl diazoacetate and specifically bound the natural enantiomer of JH I ( $K_i = 10.7 \text{ nM}$ ). This binding was inhibited by the natural JHs but not by methoprene. Immunocytochem. anal. showed localization of this 29-kDa protein to epidermal nuclei. Both mRNA and protein are present during the intermolt periods; during the **larval** molt, the mRNA disappears but the protein persists. Later when cells become pupally committed, both the mRNA and protein disappear with a transient peak around near pupal ecdysis. The properties of this protein are consistent with its being the receptor necessary for the first metamorphic effect of JH.

= fil 23m  
FILE 'HOME' ENTERED AT 15:18:59 ON 23 JAN 2002



Davis, N.  
C91674434

09/674436

L1 FILE 'REGISTRY' ENTERED AT 10:59:43 ON 23 JAN 2002  
210 S DILRG/SQSP

L2 FILE 'CAPLUS' ENTERED AT 11:00:05 ON 23 JAN 2002  
155 S L1

L4 3 S L2 AND RF  
L5 2 S L2 AND DIAPAUSE  
L6 4 S L4 OR L5

L6 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2002 ACS  
ACCESSION NUMBER: 2001:364016 CAPLUS  
DOCUMENT NUMBER: 135:1093  
TITLE: The malaria genome sequencing project: Complete sequence of Plasmodium falciparum chromosome 2  
AUTHOR(S): Gardner, M. J.; Tettelin, H.; Carucci, D. J.; Cummings, L. M.; Smith, H. O.; Fraser, C. M.; Venter, J. C.; Hoffman, S. L.  
CORPORATE SOURCE: The Institute for Genomic Research, Rockville, MD, 20850, USA  
SOURCE: Parassitologia (Roma, Italy) (1999), 41(1-3), 69-75  
CODEN: PSSGAR; ISSN: 0048-2951  
PUBLISHER: Lambardo Editore  
DOCUMENT TYPE: Journal  
LANGUAGE: English

AB An international consortium has been formed to sequence the entire genome of the human malaria parasite Plasmodium falciparum. Chromosome 2 of clone 3D7 was sequenced using a shotgun sequencing strategy. Chromosome 2 is 947 kb in length, has a base compn. of 80.2% A+T, and contains 210 predicted genes. In comparison to the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene d., a greater proportion of genes contg. introns, and nearly twice as many proteins contg. predicted non-globular domains. A group of putative surface proteins was identified, rifins, which are encoded by a gene family comprising up to 7% of the protein-encoding genes in the genome. The rifins exhibit considerable sequence diversity and may play an important role in antigenic variation. Sixteen genes encoded on chromosome 2 showed signs of a plastid or mitochondrial origin, including several genes involved in fatty acid biosynthesis. Completion of the chromosome 2 sequence demonstrated that the A+T-rich genome of P. falciparum can be sequenced by the shotgun approach. Within 2-3 yr, the sequence of almost all P. falciparum genes will have been detd., paving the way for genetic, biochem. and immunol. research aimed at developing new drugs and vaccines against malaria.

IT 257896-56-3

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)  
(amino acid sequence; complete sequence of Plasmodium falciparum chromosome 2)  
REFERENCE COUNT: 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2002 ACS  
ACCESSION NUMBER: 2000:772766 CAPLUS  
DOCUMENT NUMBER: 133:330556



09/674436

TITLE: Genome sequence and polypeptides of *Pyrococcus abyssi* and their uses  
INVENTOR(S): Forterre, Patrick; Thierry, Jean-Claude; Prieur, Daniel; Dietrich, Jacques; Lecompte, Odile; Querellou, Joel; Weissenbach, Jean; Saurin, William; Heilig, Roland; Flament, Didier; Raffin, Jean-Paul; Henneke, Ghislaine; Gueguen, Yannick; Rolland, Jean-Luc  
PATENT ASSIGNEE(S): Centre National de la Recherche Scientifique (CNRS), Fr.; Institut Francais de Recherche pour l'Exploitation de la Mer - IFREMER  
SOURCE: PCT Int. Appl., 1403 pp.  
CODEN: PIXXD2  
DOCUMENT TYPE: Patent  
LANGUAGE: French  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2000065062                                                                                                                                                                                                                                                                                                                                                             | A2   | 20001102 | WO 2000-FR1065  | 20000421 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |          |
| RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                        |      |          |                 |          |
| FR 2792651                                                                                                                                                                                                                                                                                                                                                                | A1   | 20001027 | FR 1999-5034    | 19990421 |

PRIORITY APPLN. INFO.: FR 1999-5034 A 19990421

AB The invention relates to the genome sequence of *Pyrococcus abyssi* strain Orsay, the 807 open reading frame nucleotide sequences coding for polypeptides of *P. abyssi* such as polypeptides involved in metab. or in the replication process, in addn. to vectors including said sequences and cells transformed by said vectors. Replication factor C (large and small forms resulting from intein splicing), PCNA (proliferating cell nuclear antigen), DNA polymerase II large and small subunits, replication factor A, and DNA polymerase I were isolated and characterized by recombinant cloning in *Escherichia coli*. The invention also relates to methods using said nucleic acids or polypeptides, esp. biosynthesis methods or biodegrdn. methods for mols. of interest and to kits comprising said polypeptides.

IT 302870-69-5

RL: BOC (Biological occurrence); BUU (Biological use, unclassified); PRP (Properties); BIOL (Biological study); OCCU (Occurrence); USES (Uses)  
(amino acid sequence; genome sequence and polypeptides of *Pyrococcus abyssi* and their uses)

L6 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2000:522576 CAPLUS

DOCUMENT NUMBER: 133:131471

TITLE: Silkworm **diapause** regulatory gene Any-  
**RF** and method of isolation of its protein product



09/674436

INVENTOR(S): Kotaki, Toyomi; Tsukada, Masuhiro; Suzuki, Koichi; Yang, Ping  
PATENT ASSIGNEE(S): Norin Suisansho Sanshi Konchu Nogyo Gijutsu Kenkyusho, Japan  
SOURCE: Jpn. Tokyo Koho, 12 pp.  
DOCUMENT TYPE: Patent  
LANGUAGE: Japanese  
FAMILY ACC. NUM. COUNT: 2  
PATENT INFORMATION:

| PATENT NO.                                | KIND | DATE     | APPLICATION NO. | DATE       |
|-------------------------------------------|------|----------|-----------------|------------|
| JP 3023790                                | B1   | 20000321 | JP 1999-152273  | 19990531   |
| JP 2000342254                             | A2   | 20001212 |                 |            |
| WO 2000073441                             | A1   | 20001207 | WO 2000-JP3388  | 20000526   |
| W: CA, US<br>RW: DE, FR, GB<br>EP 1101819 | A1   | 20010523 | EP 2000-931578  | 20000526   |
| R: DE, FR, GB, SI, LT, LV, RO             |      |          |                 |            |
| PRIORITY APPLN. INFO.:                    |      |          | JP 1999-152273  | A 19990531 |
|                                           |      |          | JP 2000-81012   | A 20000322 |
|                                           |      |          | WO 2000-JP3388  | W 20000526 |

AB Silkworm Any-RF gene involved in **diapause** regulation, and method of isolation of its protein product, are disclosed. A protein isolated from silkworm Antheraea yamamai using RP-HPLC and ion exchange HPLC and its C-terminally amidated peptide fragment demonstrated **diapause** regulatory activity.  
IT 286408-63-7  
RL: BOC (Biological occurrence); BPR (Biological process); PRP (Properties); BIOL (Biological study); OCCU (Occurrence); PROC (Process)  
(amino acid sequence; silkworm **diapause** regulatory gene Any-RF and method of isolation of protein product)

L6 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2002 ACS  
ACCESSION NUMBER: 1998:505667 CAPLUS  
DOCUMENT NUMBER: 129:229492  
TITLE: Cloning of leukemia inhibitory factor (LIF) and its expression in the uterus during embryonic **diapause** and implantation in the mink (*Mustela vison*)  
AUTHOR(S): Song, Jian H.; Houde, Alain; Murphy, Bruce D.  
CORPORATE SOURCE: Cent. Recherche Reproduction Animale, Fac. Med. Veterinaire, Univ. Montreal, St-Hyacinthe, PQ, J2S 7C6, Can.  
SOURCE: Mol. Reprod. Dev. (1998), 51(1), 13-21  
CODEN: MREDEE; ISSN: 1040-452X  
PUBLISHER: Wiley-Liss, Inc.  
DOCUMENT TYPE: Journal  
LANGUAGE: English

AB Leukemia inhibitory factor (LIF) is essential for embryo implantation in mice. Whether LIF plays a role in termination of embryonic **diapause** and initiation of implantation in carnivores, esp. in species with obligate delayed implantation such as the mink, is not known. The objectives of this study were to clone the LIF coding sequence in the mink and det. its mRNA abundance in the uterus through embryonic **diapause**,



09/674436

implantation, and early postimplantation. The authors show that the mink LIF cDNA contains 609 nt encoding a deduced protein of 203 amino acids. The homologies are 80.6, 90, 88.2, 87.6, and 86.8% in coding sequence and 79.2, 90.1, 91, 90.1 and 85.4% in amino acid sequence with mouse, human, pig, cow, and sheep resp. Glycosylation sites and disulfide bonds present in other species are generally conserved in the mink LIF sequence. Quantitation by polymerase chain reaction amplification indicates that LIF mRNA is expressed in mink uterus just prior to implantation and during the first two days after implantation, but not during **diapause** or later after implantation pregnancy. The abundance of LIF mRNA was significantly higher in the uterus at the embryo expansion stage than at days 1-2 of postimplantation. By immunohistochem. localization it was shown that LIF is expressed in the uterine epithelial glands at time of embryonic expansion and in early postimplantation. The coincidence of LIF expression with implantation in this species suggests that LIF is involved in the implantation process, and may be a maternal signal which terminates obligate embryonic **diapause**.

IT 212846-19-0

RL: PRP (Properties)

(amino acid sequence; cloning of leukemia inhibitory factor (LIF) and expression in uterus during embryonic **diapause** and implantation in mink (*Mustela vison*))

E1 THROUGH E4 ASSIGNED

~~FILE~~ 'REGISTRY' ENTERED AT 11:03:47 ON 23 JAN 2002

L7 4 SEA FILE=REGISTRY ABB=ON PLU=ON (212846-19-0/BI OR  
257896-56-3/BI OR 286408-63-7/BI OR 302870-69-5/BI)

=> s 17 and 11

L8 4 L7 AND L1

L8 ANSWER 1 OF 4 REGISTRY COPYRIGHT 2002 ACS

RN 302870-69-5 REGISTRY

CN Protein ORF 756 (*Pyrococcus abyssi* strain Orsay) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 457: PN: WO0065062 SEQID: 756 claimed protein

CI MAN

SQL 310

SEQ 1 MVVSMREGEI ISLFMKHFER HSLGDDAGFI KLNNSWLLVT SDMLVWKTDV  
51 PDFMTPEDAG RKVVVTMVSD IAAMGGRPMA FFFSLAVPGD VSEDILRGIA  
=====

101 RGINEGSKVY KLKIVSGDTN EADDIIDGG SLGIGKRLLL RSNAKPGDLV  
151 CVTGDGRPL TALLLWMRGE KIPREIEEKA RNPRARVEEG VKLSSLANSA  
201 IDISDGGLSKE LWEIANASNV RIIIEERLP ISDSVKEIVS DPVKVALASG  
251 EEFELLFTIP REKVEELDID FKIIGRVEGG NGVYIKRGRK IEELEVLGWE  
301 HLAGGIDVEL

HITS AT: 94-98

REFERENCE 1: 133:330556

I.8 ANSWER 2 OF 4 REGISTRY COPYRIGHT 2002 ACS

RN 286408-63-7 REGISTRY

CN Glycine, L-.alpha.-aspartyl-L-isoleucyl-L-leucyl-L-arginyl- (9CI)  
(CA INDEX NAME)



09/674436

OTHER NAMES:

CN 1: PN: JP3023790 PAGE: 9 claimed sequence  
CN Protein gene Any-RF (Antheraea yamamai fragment)  
SQL 5

SEQ 1 DILRG  
=====

HITS AT: 1-5

REFERENCE 1: 133:131471

L8 ANSWER 3 OF 4 REGISTRY COPYRIGHT 2002 ACS

RN 257896-56-3 REGISTRY

CN Phosphatase (acid phosphatase family) (Plasmodium falciparum gene PFB0380c) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 5: PN: WO0025728 SEQID: 75 claimed protein  
CN GenBank AE001391-derived protein GI 3845169  
CN Phosphatase, acid (Plasmodium falciparum clone 3D7 gene PFB0380c)  
CN Protein (Plasmodium falciparum clone p3D7 chromosome 2 gene PFB0380)  
CI MAN  
SQL 2010

SEQ 1 MLIKQEPKEV EKKEEKEKKG AKDKGKDLS LNKKRERKKK ESQKIDRYLI  
51 NSCDSNKSNSY SCCYLNNNECF VKNISICKKC MFSYFEFKNV TKVIYMRHGA  
101 RTPKKKIKNI WPFKEKGDL TFLGFQQSIK VGEYLRKYYY TFNKLNKKYN  
151 KRERGLRINN KEKGYIKKKN CDVKKCKTLY KNKYNNNNNN NNNNNYVINEK  
201 YNGSNKNDYV KNNTYDNKGY SYLYDLSTSF NELENRKRKL HKFPYLRDFI  
251 YYEKYFLKIN KRSNKHQRKV FIKIKRRRRN NILKWIHQH LINKMKKIKN  
301 KNMNNYNKCY IKFSSIRKRG YHKMENIECN NKNNDNNND DNNNNNNNDN  
351 NNNNNDDNNN DDNNNDNNNN NDDNNNNNNND DDNNYYYYNY NNDETPFNNK  
401 SFNYADMKY TKYYYKNILK DKKNIYTNNK KKELFFPLME HLYMYKKLL  
451 INKMKEKNIK KKKKKYDKII KLINKYLCIK TTNSERCKLT AYGIICGILG  
501 ISEYIYFFF ILFFKSNSYDK TNDNNIDTYT KRKEKKKCLN KRSKCFQNW  
551 LNRDITSGQY NCIDKNTAPV KNYIIGENLC GENCGKNGC GDILRGDILC  
=====

601 GDILRGDNNS IPLFRSNRIF CKQSKITFC D ELYIYFNKIL KRLQSLDDMY  
=====

651 KINHEVKMFG NDKDVLNNSY KKCYDKNDYG SYPSPNKYSN DYKSHYVIKK  
701 MKNVKSVQCS NESIILKERQ ENEKKKKKKK KKMENTFTNN NNIMYNINV  
751 FDLIINERGN FQFFYNNNIKK KRQKNEKGLE EWNVYNIFQL YMKYILNEFS  
801 KFFKLFKFLN KNVENIDNTF NSITNIYNKY YINMMVHRKD CFEKKQIHSK  
851 EHMMKKIHLR DKFIEYEKEN EIIDNCNIN MDNKKKEINN NYNNMIDNNN  
901 IEIDMSNNFI FTYYYIFYLL NYMDTYIQFL FYYLKNTYIL FSVVKAERN  
951 SLMLKTLTK NHYIKKLRNH IIHNSDVYKI LNYYKDEIF IVYDITKWTE  
1001 NCMNTTDILY NDVKNTKID DLENIDIPPI TNDKEEYHVN NSIISVLKKH  
1051 NSSVYKLKKK LKNSIILKDL KKLNCNFINK NYIHTNYDK HNKIYQDKIK  
1101 NWTYHPFHNK KKNVKKIJKF ISAYDAYIYH GVNLNLNFNR AYEKLSQHPP  
1151 SSIDLKKEY GQNNYIINGE IKKYEEQNNF IIKRPNINIS GKNLSCHNKT  
1201 NSSNTLQGND FEANILADE RTRLKRNKNI QNRAKVNQGM TINNNNSKKYR  
1251 NNQTEYYKKK EKKKKYDQKN DQTNEQKCAQ KNDQTNEQKN DQTNDQTNDQ  
1301 TNDQTNDQTN DQTNDKIKRF YKNIYTCYKL MCKNEYSNKY LSWLCGMSL  
1351 IDVVVINFIIN VFLYEKYNKE NKTTKCFIPR IILYLTHQSS ILSFQSCVGI  
1401 RKKDMKIPPF ASFISLEIH IKKKKIKNLS NKLCNVSNNE KSYCYSNKYN  
1451 IMKGEKKKHA SSRSVHVNPQT DRTDVLSFIY HNNNTANIFCC KDDCVWKVRE  
1501 TENEKKFEKC EKNKKFMNNE NENVIKDDEK NIYNILKRNI NENIDKKKS  
1551 NINTCIYNDI PTNVNNKKYE SYLPKCLNKI HDFKNLFYLL CYKNNNIQDL  
1601 IQLYDICLNN NYTHIKKNMQ LKEGKKHGKR NFYGYFVKFT FNNSVPLKLK



09/674436

1651 KNKLIKYYNM GNKKDKEEDN NYHNDKNNSY DNIFYDNHDT NNNNNNNNNN  
1701 NNNSNNNNNN NICLKNNKNN IMHEDINANK RESLKKKKKK KKKNCIQKNN  
1751 NICERKKNSI HNNSSKYIFN TVRFFKMKDI AKINTNKKCD ENSISCINNM  
1801 REKRNI FKNL NRNI LNFNNS NNDKYMNYIY NSTNVTYGKN YKRINKKD  
1851 INNILLHTYK QHKKKKSTII SSDNNNNNNN NAEDDISSRK LKFKDIKGNT  
1901 KQKYINDHNN INSYDNNINN GLINEHKNVL HNECKNKNQ IIGYSIKYDK  
1951 NVVSENSCSD VITSLKDKKI KKRKKKLQKK NYENENIVCL DCLISYLKKM  
2001 LRIYGNPEIL

HITS AT: 592-596, 602-606

REFERENCE 1: 135:1093

REFERENCE 2: 132:330627

REFERENCE 3: 132:147372

L8 ANSWER 4 OF 4 REGISTRY COPYRIGHT 2002 ACS

RN 212846-19-0 REGISTRY

CN Leukemia inhibitory factor (Mustela vison gene LIF) (9CI) (CA INDEX  
NAME)

OTHER NAMES:

CN GenBank AF048827-derived protein GI 2959710

CI MAN

SQL 202

SEQ 1 MKVLAAGVVP LLLVLHWKHG AGTPLPITPV NATCATRHPC HSNLMNQIRN  
51 QLAHVNGSAN ALFILYYTAQ GEPFPNNLDK LCGPNVTDFP PFHRNGTEKT  
101 RLVELYRIIA YLGASLGNIT RDQKVLPNA LSLHSKLKAT ADILRGLLSN  
=====

151 VLCRLCNKYH VAHV DVAYGP DTSGKDVFQK KKLGCQLLGK YKQVIAVVAQ  
201 AF

HITS AT: 142-146

REFERENCE 1: 129:229492

FILE 'HOME' ENTERED AT 11:04:12 ON 23 JAN 2002





卷之三

1. *W. E. H. LEWIS*, *1920-1921*  
2. *W. E. H. LEWIS*, *1921-1922*

THE INVENTION AND USE OF  
THE NUMBER LINE, NUMBER  
SQUARE, AND NUMBER  
CIRCLE.

RECEIVED  
APRIL 14 1941  
U. S. GOVERNMENT PRINTING OFFICE  
1941 14-1000-1

THE JOURNAL OF CLIMATE

卷之三

卷之三

1. *W. L. BURKE*, *1864-1941*  
2. *W. L. BURKE*, *1864-1941*

THE NATION AND THE NUMBER

THE BOSTONIAN, A MONTHLY MAGAZINE OF LITERATURE, SCIENCE, AND POLITICS.







Wed Jan 23 07:27:23 2002

us-09-674-436-1.rapm



RECEIVED  
FEDERAL BUREAU OF INVESTIGATION  
U.S. DEPARTMENT OF JUSTICE  
WASH. D.C.  
SEARCHED INDEXED SERIALIZED FILED  
FEB 26 2002











the  $\text{K}^+$  concentration in the medium ( $[K]$ ) is increased from  $10^{-4}$  to  $10^{-3}$  M, the rate of  $\text{O}_2$  uptake increases by a factor of 2.5.

卷之三

卷之三

卷之三

the first time in the history of the world, the people of the United States have been compelled to go to war to defend their country.

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties.

and the author's name, and the date of publication.













PE  
 XX  
 PE o-<sup>3</sup>-Fib 1994  
 PA  
 XX  
 (AMEA) AMEA + Bp L11.  
 PA  
 XX  
 Growth NM. Taff. as Bp. Monocult. No.  
 PR WH1; 1994 Z/368/9/34.  
 XX  
 PR New receptor binding determinants from  
 P1 factor - useful for designing viral genes  
 XX  
 PS -resistance; p19; 59P; Erst ist.  
 XX  
 CC The sequences of mouse, rabbit, swine, human  
 CC L1F proteins and of human CSP (FAV) are  
 CC receptor-binding determinants are based  
 CC on sequence.

$$\begin{aligned} \text{N}(\tilde{\alpha}) &= \lambda^{n+1} \cdot \text{N}(\alpha) \cdot \text{K}^{-1}(M), \\ \text{N}(\tilde{\beta}) &= \lambda^{n+1} \cdot \text{N}(\beta) \cdot \text{K}^{-1}(M), \\ \text{N}(\tilde{\gamma}) &= \lambda^{n+1} \cdot \text{N}(\gamma) \cdot \text{K}^{-1}(M). \end{aligned}$$

19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1

**Table 2.** *Effect of Dose on Activity of Amphotericin B against *Candida albicans* and *Cryptococcus neoformans* and of Dose and Time of Administration on the Proportion of Cells with the Maximum Number of Pseudohyphae after 48 h of Treatment.*

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties, each of which has a distinct and well-defined platform, and each of which has a definite and well-defined object in view. The people of the United States have been compelled to make a choice between two political parties, each of which has a distinct and well-defined platform, and each of which has a definite and well-defined object in view.

|         |                                           |         |              |           |
|---------|-------------------------------------------|---------|--------------|-----------|
| IP      | 0-3-FEB                                   | 19:41:  | 34W          | AU0000041 |
| XX      |                                           |         |              |           |
| PR      |                                           |         |              |           |
| 0-3-FEB | 19:41:                                    |         | 34W          | AU0000041 |
| XX      |                                           |         |              |           |
| PA      |                                           |         |              |           |
| (AMPA)  | AMPA!                                     | 0-3-FEB | 19:41:       | 34W       |
| XX      |                                           |         |              |           |
| P-1     | Growth RM.                                | 19:41:  | 34W          | AU0000041 |
| XX      |                                           |         |              |           |
| DR      | WPI:                                      | 19:41:  | 27:368#/#34. |           |
| XX      |                                           |         |              |           |
| P-1     | New receptor binding structures           |         |              |           |
| PR      | labeled - testable for desaminase         |         |              |           |
| XX      |                                           |         |              |           |
| P-1     | 4-18:10:00: 19:41: 27:364#/#34            |         |              |           |
| PS      |                                           |         |              |           |
| XX      |                                           |         |              |           |
| CC      | The sequence contains no mouse amino acid |         |              |           |
| CC      | 1-18 proteins, start of human amino       |         |              |           |
| CC      | receptor-binding determining              |         |              |           |
| CC      | sequence.                                 |         |              |           |
| XX      |                                           |         |              |           |
| SU      | Sequence                                  | 1st AA: |              |           |

1944-1945  
1945-1946

RESULTS FROM THE  
INITIAL STAGES  
TEST.

McGraw-Hill, New York, 1960.

19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1

Model Number: 4-1  
Model Number: 4-2  
Model Number: 4-3

the first time that the results of the treatment were published. No other author has reported such a large number of cases as Aebischer and his colleagues did in their comprehensive study. The results of the treatment were evaluated according to the following criteria: improvement, no improvement, deterioration, and death. The most important finding was that the improvement rate was 60% in the patients who had been treated with the new therapy. This figure is significantly higher than the improvement rate of 40% in the patients who had been treated with the conventional therapy. The new therapy was also more effective than the conventional therapy in the treatment of the patients with chronic diseases. The new therapy was more effective than the conventional therapy in the treatment of the patients with chronic diseases. The new therapy was more effective than the conventional therapy in the treatment of the patients with chronic diseases.

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties, each of which has a distinct and well-defined platform, and each of which has a definite and well-defined object in view. The people of the United States have been compelled to make a choice between two political parties, each of which has a distinct and well-defined platform, and each of which has a definite and well-defined object in view.



RESULTS  
XX  
S<sub>2</sub> Sequence 14 AA:  
AAK<sup>34</sup>S<sup>35</sup>, standard; treated, 194 AA.  
XX  
AA<sup>75</sup>S<sup>76</sup>  
XX  
14-Phe<sup>34</sup>S<sup>35</sup> (first edit)  
XX  
Hybrid human cytokine LIF-E.  
XX  
Hybrid cytokines: standard PEG-LIF-E, 194 AA;  
XX  
synthetic,  
XX  
P1  
Key differences between standard and treated:  
Miscellaneous  
PN  
W<sup>95</sup>I<sup>99</sup>A,  
XX  
P1  
in MAY 1995,  
XX  
P1  
67-NV 1994;  
XX  
18-NV 1994;  
XX  
HUFC-HUTCHINS CANCERS CENTER, India  
XX  
P1  
Lentiviral vector, 194 AA;  
XX  
WP<sup>1</sup> 1995 194 AA, /25,  
DR  
10K  
N PEG; AAK<sup>34</sup>S<sup>35</sup>,  
XX  
New hybrid cytokines with alpha<sup>2</sup> helical vector, obtained from different  
P1  
sources - also DNA encoding them, vector, etc.; first edit;  
P1  
used for treating cancer, terminal disease, etc.  
XX  
claim 14: Date: 33 34: 5249; Finalish.  
XX  
The cytokine containing genes for leukemia inhibitory factor (LIF),  
granulocyte-macrophage stimulating factor (GM-CSF) and cytokine (C),  
luteinizing-hormone (LH), only partially overlapping, is treated by the alpha<sup>2</sup> helical  
conformation (C) have been claimed and given a 194 AA sequence. In  
the G, L, E, C and D each comprise four amino acid residues. In  
each cytokine, the first four amino acids are the same as those in the  
alpha helical linker sequence of the other cytokines. The GM-CSF  
provides a group of therapeutic hybrid cytokines having a size ranging  
from about 10 to about 194 kDa. Each hybrid cytokine contains three  
four alpha-helical sequences of linking sequences, a portion of which are  
5-40 AA's in length. In the nomenclature of the hybrid cytokines, the  
upper case letters designating the alpha helical linking sequences, lower case  
letters (whether Arabic numerals or Latin letters) indicate the  
a specific linking sequence. The first four alpha helical  
sequences of LIF were derived from LIF, at positions 1-4, and the  
alpha sequence was derived from LIF, at positions 5-40.

Wed Jan 23 07:27:22 2002

us-09-674-436-1.rag

Page 12









RECEIVED: APRIL 10, 1964  
ATTORNEY FOR DEFENDANT:  
INFORMATION FOR STG NO. 133,  
SEQUENCE CHARACTERISTICS:  
LENGTH: 142  
TYPE: ANALOGUE  
DATE REC'D.: APR 10, 1964  
PCN: 11594-1287-19

REVIEW ARTICLE  
APPLIED SYSTEMS MODELING FOR  
SEQUENCE CHARACTERISTICS:  
LENGTH, TYPE, AND  
DETECTION. BY J. H. SAWYER

AMERISOURCE, CIVIL Therapeutics, Inc.  
STREET: 200 ELLIOTT Avenue West, Suite 400  
CITY: Seattle  
STATE: Washington  
COUNTY: U.S.A.  
ZIP: 98109

COMPUTER READABLE FORM:

METHOD TYPE: 3<sup>rd</sup> Molar, 144RE, 44411, 44412, 44413, 44414  
SUBTYPE: ASI 100, Separable,  
OPPONENT SYSTEM: MS-100 WORKSTATION  
SUSPENDED: Workstation UNKNOWN

CURRENT APPLICATION DATA:

APPLICANT'S NAME: AMERISOURCE, INC.  
FILING DATE: 10/23/1995  
CLASSIFICATION: 510(1)(A)  
PRIOR APPLICATION DATA:  
APPLICATION NUMBER: 10849002, 1992  
FILING DATE: 12/7/91, 1993  
ATTORNEY'S NAME: AMERISOURCE, INC.  
NAME: COSTELLO, JEFFREY B. AND PARTRIDGE, ROBERT L.  
REGISTRATION NUMBER: 42,581, 431,615, 431,616, 431,617  
RELATIONSHIP: PATENT ATTORNEY, ORICNA  
TELEPHONE: (206) 822-7100  
TELEFAX: (206) 824-6200

INFORMATION FOR THE TRADE NAME:

SEQUENCE: CHARGE OF BUSINESS:  
NUMBER: 194  
TYPE: animal, actid  
PROPRIETY: Linear  
MOLECULAR TYPE: Peptide  
HYDROLYZED: no  
ANTI-SENSE: no  
FRAGILE: no  
ORIGINAL SOURCE: no  
ORGANISM: bovine sapien  
DS: 08-149 (10A 13)

卷之三

卷之三

卷之三

THE JOURNAL OF INVESTIGATION

He is a lost soul, I think, and he's got to get out of here.

MICHIGAN NATURE AND LIFE

W. W. WARD, PUBLISHER  
THEATRE ARTS MAGAZINE  
AUGUST, 1919, \$1.00

THE AMERICAN  
PHOTOGRAPHIC  
EXHIBITION OF  
ART AND INDUSTRY

ALIMENTATION / ACTION / INFORMATION  
N° 100 - DÉCEMBRE 1990

卷之三

THE CANADIAN

11. *Leucosia* *leucostoma* *lutea* *luteola*

卷之三

卷之三

• Wed Jan 23 07:27:22 2002

us-09-674-436-1.rai



• M protein = protein in sequence, using 82 model  
 • PEST motif = glutamate, leucine, proline, and tyrosine residues  
 • Sequence = sequence of protein  
 • Selected feature = BLASTM2  
 • Searched = 219241 seqs  
 • Total number of hits satisfying PEST motif parameter = 219241  
 • Maximum DBS seq length = 9  
 • Post-processing: Maximum Match 0.8  
 • List first 45 summaries  
 • Database : PDB\_68\_PEST  
 • 1: first; \*  
 • 2: pfirst; \*  
 • 3: pfirst; \*  
 • 4: pfirst; \*

PEST motif is the number of resulting PEST motif containing proteins found in the sequence shorter than or equal to the size of the result, sorted by size, and is derived by analysis of the total size distribution.

### 8

| Result No. | Score | Query | Match Length | DBS |
|------------|-------|-------|--------------|-----|
| 1          | 25    | 100.0 | 116          | 2   |
| 2          | 25    | 100.0 | 148          | 2   |
| 3          | 25    | 100.0 | 156          | 2   |
| 4          | 25    | 100.0 | 165          | 2   |
| 5          | 25    | 100.0 | 172          | 2   |
| 6          | 25    | 100.0 | 186          | 2   |
| 7          | 25    | 100.0 | 186          | 2   |
| 8          | 25    | 100.0 | 193          | 2   |
| 9          | 25    | 100.0 | 197          | 2   |
| 10         | 25    | 100.0 | 202          | 1   |
| 11         | 25    | 100.0 | 203          | 2   |
| 12         | 25    | 100.0 | 209          | 2   |
| 13         | 25    | 100.0 | 244          | 2   |
| 14         | 25    | 100.0 | 249          | 2   |
| 15         | 25    | 100.0 | 252          | 2   |
| 16         | 25    | 100.0 | 273          | 2   |
| 17         | 25    | 100.0 | 292          | 2   |
| 18         | 25    | 100.0 | 410          | 2   |
| 19         | 25    | 100.0 | 438          | 2   |
| 20         | 25    | 100.0 | 446          | 2   |
| 21         | 25    | 100.0 | 447          | 2   |
| 22         | 25    | 100.0 | 494          | 2   |
| 23         | 25    | 100.0 | 531          | 2   |
| 24         | 25    | 100.0 | 596          | 2   |
| 25         | 25    | 100.0 | 416          | 3   |
| 26         | 25    | 100.0 | 435          | 3   |
| 27         | 25    | 100.0 | 436          | 2   |
| 28         | 25    | 100.0 | 436          | 2   |
| 29         | 25    | 100.0 | 446          | 2   |

Scanned: 219241 seqs  
 Total number of hits satisfying PEST motif parameter = 219241

Maximum DBS seq length = 9  
 Post-processing: Maximum Match 0.8  
 List first 45 summaries

Database : PDB\_68\_PEST

1: first; \*  
 2: pfirst; \*  
 3: pfirst; \*  
 4: pfirst; \*

### SUMMARY

PEST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

24

卷之三

W. H. DODGE, JR., *Editor*  
J. W. BROWN, *Associate Editor*  
C. E. COOPER, *Associate Editor*

1. *Introducing the new system*. A new system is introduced, and its features are explained.

1940-1941  
1941-1942  
1942-1943  
1943-1944  
1944-1945  
1945-1946  
1946-1947  
1947-1948  
1948-1949  
1949-1950  
1950-1951  
1951-1952  
1952-1953  
1953-1954  
1954-1955  
1955-1956  
1956-1957  
1957-1958  
1958-1959  
1959-1960  
1960-1961  
1961-1962  
1962-1963  
1963-1964  
1964-1965  
1965-1966  
1966-1967  
1967-1968  
1968-1969  
1969-1970  
1970-1971  
1971-1972  
1972-1973  
1973-1974  
1974-1975  
1975-1976  
1976-1977  
1977-1978  
1978-1979  
1979-1980  
1980-1981  
1981-1982  
1982-1983  
1983-1984  
1984-1985  
1985-1986  
1986-1987  
1987-1988  
1988-1989  
1989-1990  
1990-1991  
1991-1992  
1992-1993  
1993-1994  
1994-1995  
1995-1996  
1996-1997  
1997-1998  
1998-1999  
1999-2000  
2000-2001  
2001-2002  
2002-2003  
2003-2004  
2004-2005  
2005-2006  
2006-2007  
2007-2008  
2008-2009  
2009-2010  
2010-2011  
2011-2012  
2012-2013  
2013-2014  
2014-2015  
2015-2016  
2016-2017  
2017-2018  
2018-2019  
2019-2020  
2020-2021  
2021-2022  
2022-2023  
2023-2024  
2024-2025  
2025-2026  
2026-2027  
2027-2028  
2028-2029  
2029-2030  
2030-2031  
2031-2032  
2032-2033  
2033-2034  
2034-2035  
2035-2036  
2036-2037  
2037-2038  
2038-2039  
2039-2040  
2040-2041  
2041-2042  
2042-2043  
2043-2044  
2044-2045  
2045-2046  
2046-2047  
2047-2048  
2048-2049  
2049-2050  
2050-2051  
2051-2052  
2052-2053  
2053-2054  
2054-2055  
2055-2056  
2056-2057  
2057-2058  
2058-2059  
2059-2060  
2060-2061  
2061-2062  
2062-2063  
2063-2064  
2064-2065  
2065-2066  
2066-2067  
2067-2068  
2068-2069  
2069-2070  
2070-2071  
2071-2072  
2072-2073  
2073-2074  
2074-2075  
2075-2076  
2076-2077  
2077-2078  
2078-2079  
2079-2080  
2080-2081  
2081-2082  
2082-2083  
2083-2084  
2084-2085  
2085-2086  
2086-2087  
2087-2088  
2088-2089  
2089-2090  
2090-2091  
2091-2092  
2092-2093  
2093-2094  
2094-2095  
2095-2096  
2096-2097  
2097-2098  
2098-2099  
2099-20100

19. *Leucosia* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma*

◆ 中国古典文学名著集成 (卷之三)











1  
key 14

1  
key 15

1  
key 16

1  
key 17

1  
key 18

1  
key 19

1  
key 20

1  
key 21

1  
key 22

1  
key 23

1  
key 24

1  
key 25

1  
key 26

1  
key 27

1  
key 28

1  
key 29

1  
key 30

1  
key 31

1  
key 32

1  
key 33

1  
key 34

1  
key 35

1  
key 36

1  
key 37

1  
key 38

1  
key 39

1  
key 40

1  
key 41

1  
key 42

1  
key 43

1  
key 44

1  
key 45

1  
key 46

1  
key 47

1  
key 48

1  
key 49

1  
key 50

1  
key 51

1  
key 52

1  
key 53

1  
key 54

1  
key 55

1  
key 56

1  
key 57

1  
key 58

1  
key 59

1  
key 60

1  
key 61

1  
key 62

1  
key 63

1  
key 64

1  
key 65

1  
key 66

1  
key 67

1  
key 68

1  
key 69

1  
key 70

1  
key 71

1  
key 72

1  
key 73

1  
key 74

1  
key 75

1  
key 76

1  
key 77

1  
key 78

1  
key 79

1  
key 80

1  
key 81

1  
key 82

1  
key 83

1  
key 84

1  
key 85

1  
key 86

1  
key 87

1  
key 88

1  
key 89

1  
key 90

1  
key 91

1  
key 92

1  
key 93

1  
key 94

1  
key 95

1  
key 96

1  
key 97

1  
key 98

1  
key 99

1  
key 100

1  
key 101

1  
key 102

1  
key 103

1  
key 104

1  
key 105

1  
key 106

1  
key 107

1  
key 108

1  
key 109

1  
key 110

1  
key 111

1  
key 112

1  
key 113

1  
key 114

1  
key 115

1  
key 116

1  
key 117

1  
key 118

1  
key 119

1  
key 120

1  
key 121

1  
key 122

1  
key 123

1  
key 124

1  
key 125

1  
key 126

1  
key 127

1  
key 128

1  
key 129

1  
key 130

1  
key 131

1  
key 132

1  
key 133

1  
key 134

1  
key 135

1  
key 136

1  
key 137

1  
key 138

1  
key 139

1  
key 140

1  
key 141

1  
key 142

1  
key 143

1  
key 144

1  
key 145

1  
key 146

1  
key 147

1  
key 148

1  
key 149

1  
key 150

1  
key 151

1  
key 152

1  
key 153

1  
key 154

1  
key 155

1  
key 156

1  
key 157

1  
key 158

1  
key 159

1  
key 160

1  
key 161

1  
key 162

1  
key 163

1  
key 164

1  
key 165

1  
key 166

1  
key 167

1  
key 168

1  
key 169

1  
key 170

1  
key 171

1  
key 172

1  
key 173

1  
key 174

1  
key 175

1  
key 176

1  
key 177

1  
key 178

1  
key 179

1  
key 180

1  
key 181

1  
key 182

1  
key 183

1  
key 184

1  
key 185

1  
key 186

1  
key 187

1  
key 188

1  
key 189

1  
key 190

1  
key 191

1  
key 192

1  
key 193

1  
key 194

1  
key 195

1  
key 196

1  
key 197

1  
key 198

1  
key 199

1  
key 200

1  
key 201

1  
key 202

1  
key 203

1  
key 204

1  
key 205

1  
key 206

1  
key 207

1  
key 208

1  
key 209

1  
key 210

1  
key 211

1  
key 212

1  
key 213

1  
key 214

1  
key 215

1  
key 216

1  
key 217

1  
key 218

1  
key 219

1  
key 220

1  
key 221

1  
key 222

1  
key 223

1  
key 224

1  
key 225

1  
key 226

1  
key 227

1  
key 228

1  
key 229

1  
key 230

1  
key 231

1  
key 232

1  
key 233

1  
key 234

1  
key 235

1  
key 236

1  
key 237

1  
key 238

1  
key 239

1  
key 240

1  
key 241

1  
key 242

1  
key 243

1  
key 244

1  
key 245

1  
key 246

1  
key 247

1  
key 248

1  
key 249

1  
key 250

1  
key 251

1  
key 252

1  
key 253

1  
key 254

1  
key 255

1  
key 256

1  
key 257

1  
key 258

1  
key 259

1  
key 260

1  
key 261

1  
key 262

1  
key 263

1  
key 264

1  
key 265

1  
key 266

1  
key 267

1  
key 268

1  
key 269

1  
key 270

1  
key 271

1  
key 272

1  
key 273

1  
key 274

1  
key 275

1  
key 276

1  
key 277

1  
key 278

1  
key 279

1  
key 280

1  
key 281

1  
key 282

1  
key 283

1  
key 284

1  
key 285



information on further  
development of the  
situation.

**REVIEW OF INFORMATION**

The information available  
on the situation in  
Kosovo is as follows:

**ARMED GROUPS**

There are two main  
armed groups operating  
in Kosovo: the  
Kosovo Liberation Army  
(KLA) and the  
Army of the  
Vojvodina Serbs (AVS).

**KOSOVO LIBERATION ARMY (KLA)**

The KLA is an  
Armenian-dominated  
group that has been  
operating in Kosovo  
since 1991. It is  
estimated that the  
KLA has between  
10,000 and 15,000  
members, mostly  
from the Albanian  
population.

**ARMY OF THE VOJVODINA SERBS (AVS)**

The AVS is a  
Serbian-dominated  
group that has been  
operating in Kosovo  
since 1991. It is  
estimated that the  
AVS has between  
5,000 and 10,000  
members, mostly  
from the Serbian  
population.

**REFUGEE SITUATION**

There are approximately  
1.5 million refugees  
in Kosovo, mostly  
from the Albanian  
population. The  
refugee situation  
is particularly  
acute in the  
northern part of  
the country, where  
many people have  
been displaced  
from their homes  
by the conflict.

**ECONOMIC SITUATION**

The economy in  
Kosovo is still  
recovering from  
the conflict. The  
country is heavily  
dependent on  
international  
aid and has a  
high rate of  
unemployment.

**GOVERNMENT AND POLITICAL PARTIES**

The government  
of Kosovo is  
still in the  
process of  
being formed.  
The main political  
parties are the  
Democratic  
Party of Kosovo  
(DKP), the  
Socialist Party  
(SP), and the  
Independent  
Democratic  
Party (IDP).

**RELATIONS WITH NEIGHBORING COUNTRIES**

Relations with  
neighboring  
countries are  
generally  
good, although  
there are some  
disputes over  
border issues.

**ENVIRONMENTAL SITUATION**

The environment  
in Kosovo is  
under  
considerable  
stress due to  
industrial  
activity and  
deforestation.

**EDUCATION AND HEALTH CARE**

Education and  
health care  
systems are  
under  
strain due to  
the conflict.

**ARTICLE 19 REPORT**

Article 19 is a  
non-governmental  
organization that  
works to  
protect  
human rights  
and freedom  
of expression.  
It has  
published  
several  
reports  
on the  
situation  
in Kosovo.

**REFUGEE SITUATION**

The refugee  
situation  
is a  
major  
concern  
in Kosovo.  
The  
government  
is trying  
to  
find  
ways  
to  
improve  
the  
situation  
for  
refugees.

**ECONOMIC SITUATION**

The economy  
in Kosovo  
is still  
recovering  
from  
the  
conflict.  
The  
country  
is  
heavily  
dependent  
on  
international  
aid and  
has  
a  
high  
rate  
of  
unemployment.

**GOVERNMENT AND POLITICAL PARTIES**

The government  
of Kosovo  
is still  
in  
the  
process  
of  
being  
formed.  
The  
main  
political  
parties  
are  
the  
Democratic  
Party  
of  
Kosovo  
(DKP),  
the  
Socialist  
Party  
(SP),  
and  
the  
Independent  
Democratic  
Party  
(IDP).

**RELATIONS WITH NEIGHBORING COUNTRIES**

Relations  
with  
neighboring  
countries  
are  
generally  
good,  
although  
there  
are  
some  
disputes  
over  
border  
issues.

**ENVIRONMENTAL SITUATION**

The  
environment  
in  
Kosovo  
is  
under  
considerable  
stress  
due  
to  
industrial  
activity  
and  
deforestation.

**EDUCATION AND HEALTH CARE**

Education  
and  
health  
care  
systems  
are  
under  
strain  
due  
to  
the  
conflict.

**ARTICLE 19 REPORT**

Article 19  
is a  
non-  
governmental  
organization  
that  
works  
to  
protect  
human  
rights  
and  
freedom  
of  
expression.  
It  
has  
published  
several  
reports  
on  
the  
situation  
in  
Kosovo.



and the first in the HE. The second was a standard monolithic microstrip antenna, and the third was a modified version of the MILAN-3B. All three were mounted on a printed circuit board and connected to a 50 ohm coaxial cable. The cables were terminated with SMA connectors. The cables were terminated with SMA connectors.

The WLLS system consists of a base station, a repeater, and two mobile stations. The base station is located at the top of a hill, and the repeater is located in the middle of a valley. The two mobile stations are located in the bottom of the valley. The base station transmits a signal to the repeater, which then transmits it to the two mobile stations. The mobile stations receive the signal from the repeater and then transmit it back to the base station. The base station also receives signals from the two mobile stations.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

The WLLS system has a range of approximately 10 km. The base station has a power output of 100 mW, and the repeater has a power output of 50 mW. The two mobile stations have a power output of 10 mW each. The base station has a transmission frequency of 900 MHz, and the repeater has a transmission frequency of 850 MHz. The two mobile stations have a transmission frequency of 850 MHz.

OR SMART: SMD0248 ANK\_1

OR PROSHIE: PSYCHOB: ANK\_REPEAT: 5

OR PROSHIE: PSYCHOB: ANK\_REPEAT: 5

OR PROSHIE: PSYCHOB: ANK\_REPEAT: 5

KW Nuclear protein, Transcription regulator, ANK domain, Phosphotyrosine

FT DOMAIN\_1 112 PRO\_RCHL

FT REPEAT 124 ANK\_1

FT REPEAT 163 ANK\_2

FT REPEAT 166 ANK\_3

FT REPEAT 237 ANK\_4

FT REPEAT 239 ANK\_5

FT REPEAT 262 ANK\_6

FT REPEAT 301 ANK\_7

FT REPEAT 323 ANK\_8

FT REPEAT 350 ANK\_9

FT REPEAT 376 ANK\_10

FT REPEAT 405 ANK\_11

FT REPEAT 432 ANK\_12

FT REPEAT 459 ANK\_13

FT REPEAT 486 ANK\_14

FT REPEAT 513 ANK\_15

FT REPEAT 540 ANK\_16

FT REPEAT 567 ANK\_17

FT REPEAT 594 ANK\_18

FT REPEAT 621 ANK\_19

FT REPEAT 648 ANK\_20

FT REPEAT 675 ANK\_21

FT REPEAT 702 ANK\_22

FT REPEAT 729 ANK\_23

FT REPEAT 756 ANK\_24

FT REPEAT 783 ANK\_25

FT REPEAT 810 ANK\_26

FT REPEAT 837 ANK\_27

FT REPEAT 864 ANK\_28

FT REPEAT 891 ANK\_29

FT REPEAT 918 ANK\_30

FT REPEAT 945 ANK\_31

FT REPEAT 972 ANK\_32

FT REPEAT 1000 ANK\_33

FT REPEAT 1027 ANK\_34

FT REPEAT 1054 ANK\_35

FT REPEAT 1081 ANK\_36

FT REPEAT 1108 ANK\_37

FT REPEAT 1135 ANK\_38

FT REPEAT 1162 ANK\_39

FT REPEAT 1189 ANK\_40

FT REPEAT 1216 ANK\_41

FT REPEAT 1243 ANK\_42

FT REPEAT 1270 ANK\_43

FT REPEAT 1297 ANK\_44

FT REPEAT 1324 ANK\_45

FT REPEAT 1351 ANK\_46

FT REPEAT 1378 ANK\_47

FT REPEAT 1405 ANK\_48

FT REPEAT 1432 ANK\_49

FT REPEAT 1459 ANK\_50

FT REPEAT 1486 ANK\_51

FT REPEAT 1513 ANK\_52

FT REPEAT 1540 ANK\_53

FT REPEAT 1567 ANK\_54

FT REPEAT 1594 ANK\_55

FT REPEAT 1621 ANK\_56

FT REPEAT 1648 ANK\_57

FT REPEAT 1675 ANK\_58

FT REPEAT 1702 ANK\_59

FT REPEAT 1729 ANK\_60

FT REPEAT 1756 ANK\_61

FT REPEAT 1783 ANK\_62

FT REPEAT 1810 ANK\_63

FT REPEAT 1837 ANK\_64

FT REPEAT 1864 ANK\_65

FT REPEAT 1891 ANK\_66

FT REPEAT 1918 ANK\_67

FT REPEAT 1945 ANK\_68

FT REPEAT 1972 ANK\_69

FT REPEAT 2000 ANK\_70

FT REPEAT 2027 ANK\_71

FT REPEAT 2054 ANK\_72

FT REPEAT 2081 ANK\_73

FT REPEAT 2108 ANK\_74

FT REPEAT 2135 ANK\_75

FT REPEAT 2162 ANK\_76

FT REPEAT 2189 ANK\_77

FT REPEAT 2216 ANK\_78

FT REPEAT 2243 ANK\_79

FT REPEAT 2270 ANK\_80

FT REPEAT 2297 ANK\_81

FT REPEAT 2324 ANK\_82

FT REPEAT 2351 ANK\_83

FT REPEAT 2378 ANK\_84

FT REPEAT 2405 ANK\_85

FT REPEAT 2432 ANK\_86

FT REPEAT 2459 ANK\_87

FT REPEAT 2486 ANK\_88

FT REPEAT 2513 ANK\_89

FT REPEAT 2540 ANK\_90

FT REPEAT 2567 ANK\_91

FT REPEAT 2594 ANK\_92

FT REPEAT 2621 ANK\_93

FT REPEAT 2648 ANK\_94

FT REPEAT 2675 ANK\_95

FT REPEAT 2702 ANK\_96

FT REPEAT 2729 ANK\_97

FT REPEAT 2756 ANK\_98

FT REPEAT 2783 ANK\_99

FT REPEAT 2810 ANK\_100

FT REPEAT 2837 ANK\_101

FT REPEAT 2864 ANK\_102

FT REPEAT 2891 ANK\_103

FT REPEAT 2918 ANK\_104

FT REPEAT 2945 ANK\_105

FT REPEAT 2972 ANK\_106

FT REPEAT 3000 ANK\_107

FT REPEAT 3027 ANK\_108

FT REPEAT 3054 ANK\_109

FT REPEAT 3081 ANK\_110

FT REPEAT 3108 ANK\_111

FT REPEAT 3135 ANK\_112

FT REPEAT 3162 ANK\_113

FT REPEAT 3189 ANK\_114

FT REPEAT 3216 ANK\_115

FT REPEAT 3243 ANK\_116

FT REPEAT 3270 ANK\_117

FT REPEAT 3297 ANK\_118

FT REPEAT 3324 ANK\_119

FT REPEAT 3351 ANK\_120

FT REPEAT 3378 ANK\_121

FT REPEAT 3405 ANK\_122

FT REPEAT 3432 ANK\_123

FT REPEAT 3459 ANK\_124

FT REPEAT 3486 ANK\_125

FT REPEAT 3513 ANK\_126

FT REPEAT 3540 ANK\_127

FT REPEAT 3567 ANK\_128

FT REPEAT 3594 ANK\_129

FT REPEAT 3621 ANK\_130

FT REPEAT 3648 ANK\_131

FT REPEAT 3675 ANK\_132

FT REPEAT 3702 ANK\_133

FT REPEAT 3729 ANK\_134

FT REPEAT 3756 ANK\_135

FT REPEAT 3783 ANK\_136

FT REPEAT 3810 ANK\_137

FT REPEAT 3837 ANK\_138

FT REPEAT 3864 ANK\_139

FT REPEAT 3891 ANK\_140

FT REPEAT 3918 ANK\_141

FT REPEAT 3945 ANK\_142

FT REPEAT 3972 ANK\_143

FT REPEAT 4000 ANK\_144

FT REPEAT 4027 ANK\_145

FT REPEAT 4054 ANK\_146

FT REPEAT 4081 ANK\_147

FT REPEAT 4108 ANK\_148

FT REPEAT 4135 ANK\_149

FT REPEAT 4162 ANK\_150

FT REPEAT 4189 ANK\_151

FT REPEAT 4216 ANK\_152

FT REPEAT 4243 ANK\_153

FT REPEAT 4270 ANK\_154

FT REPEAT 4297 ANK\_155

FT REPEAT 4324 ANK\_156

FT REPEAT 4351 ANK\_157

FT REPEAT 4378 ANK\_158

FT REPEAT 4405 ANK\_159

FT REPEAT 4432 ANK\_160

FT REPEAT 4459 ANK\_161

FT REPEAT 4486 ANK\_162

FT REPEAT 4513 ANK\_163

FT REPEAT 4540 ANK\_164

FT REPEAT 4567 ANK\_165

FT REPEAT 4594 ANK\_166

FT REPEAT 4621 ANK\_167

FT REPEAT 4648 ANK\_168

FT REPEAT 4675 ANK\_169

FT REPEAT 4702 ANK\_170

FT REPEAT 4729 ANK\_171

FT REPEAT 4756 ANK\_172

FT REPEAT 4783 ANK\_173

FT REPEAT 4810 ANK\_174

FT REPEAT 4837 ANK\_175

FT REPEAT 4864 ANK\_176

FT REPEAT 4891 ANK\_177

FT REPEAT 4918 ANK\_178

FT REPEAT 4945 ANK\_179

FT REPEAT 4972 ANK\_180

FT REPEAT 5000 ANK\_181

FT REPEAT 5027 ANK\_182

FT REPEAT 5054 ANK\_183

FT REPEAT 5081 ANK\_184

FT REPEAT 5108 ANK\_185

FT REPEAT 5135 ANK\_186

FT REPEAT 5162 ANK\_187

FT REPEAT 5189 ANK\_188

FT REPEAT 5216 ANK\_189

FT REPEAT 5243 ANK\_190

FT REPEAT 5270 ANK\_191

FT REPEAT 5297 ANK\_192

FT REPEAT 5324 ANK\_193

FT REPEAT 5351 ANK\_194

FT REPEAT 5378 ANK\_195

FT REPEAT 5405 ANK\_196

FT REPEAT 5432 ANK\_197

FT REPEAT 5459 ANK\_198

FT REPEAT 5486 ANK\_199

FT REPEAT 5513 ANK\_200

FT REPEAT 5540 ANK\_201

FT REPEAT 5567 ANK\_202

FT REPEAT 5594 ANK\_203

FT REPEAT 5621 ANK\_204

FT REPEAT 5648 ANK\_205

FT REPEAT 5675 ANK\_206

FT REPEAT 5702 ANK\_207

FT REPEAT 5729 ANK\_208

FT REPEAT 5756 ANK\_209

FT REPEAT 5783 ANK\_210

FT REPEAT 5810 ANK\_211

FT REPEAT 5837 ANK\_212

FT REPEAT 5864 ANK\_213

FT REPEAT 5891 ANK\_214

FT REPEAT 5918 ANK\_215

FT REPEAT 5945 ANK\_216

FT REPEAT 5972 ANK\_217

FT REPEAT 6000 ANK\_218

FT REPEAT 6027 ANK\_219

FT REPEAT 6054 ANK\_220

FT REPEAT 6081 ANK\_221

FT REPEAT 6108 ANK\_222

FT REPEAT 6135 ANK\_223

FT REPEAT 6162 ANK\_224

FT REPEAT 6189 ANK\_225

FT REPEAT 6216 ANK\_226

FT REPEAT 6243 ANK\_227

FT REPEAT 6270 ANK\_228

FT REPEAT 6297 ANK\_229

FT REPEAT 6324 ANK\_230

FT REPEAT 6351 ANK\_231

FT REPEAT 6378 ANK\_232

FT REPEAT 6405 ANK\_233

FT REPEAT 6432 ANK\_234

FT REPEAT 6459 ANK\_235

FT REPEAT 6486 ANK\_236

FT REPEAT 6513 ANK\_237

FT REPEAT 6540 ANK\_238

FT REPEAT 6567 ANK\_239

FT REPEAT 6594 ANK\_240

FT REPEAT 6621 ANK\_241

FT REPEAT 6648 ANK\_242

FT REPEAT 6675 ANK\_243

FT REPEAT 6702 ANK\_244

FT REPEAT 6729 ANK\_245

FT REPEAT 6756 ANK\_246

FT REPEAT 6783 ANK\_247

FT REPEAT 6810 ANK\_248

FT REPEAT 6837 ANK\_249

FT REPEAT 6864 ANK\_250

FT REPEAT 6891 ANK\_251

FT REPEAT 6918 ANK\_252

FT REPEAT 6945 ANK\_253

FT REPEAT 6972 ANK\_254

FT REPEAT 7000 ANK\_255

FT REPEAT 7027 ANK\_256

FT REPEAT 7054 ANK\_257

FT REPEAT 7081 ANK\_258

FT REPEAT 7108 ANK\_259

FT REPEAT 7135 ANK\_260

FT REPEAT 7162 ANK\_261

FT REPEAT 7189 ANK\_262

FT REPEAT 7216 ANK\_263

FT REPEAT 7243 ANK\_264

FT REPEAT 7270 ANK\_265

FT REPEAT 7297 ANK\_266

FT REPEAT 7324 ANK\_267

FT REPEAT 7351 ANK\_268

FT REPEAT 7378 ANK\_269

FT REPEAT 7405 ANK\_270

FT REPEAT 7432 ANK\_271

FT REPEAT 7459 ANK\_272

FT REPEAT 7486 ANK\_273

FT REPEAT 7513 ANK\_274

FT REPEAT 7540 ANK\_275

FT REPEAT 7567 ANK\_276

FT REPEAT 7594 ANK\_277

FT REPEAT 7621 ANK\_278

FT REPEAT 7648 ANK\_279

FT REPEAT 7675 ANK\_280

FT REPEAT 7702 ANK\_281

FT REPEAT 7729 ANK\_282

FT REPEAT 7756 ANK\_283

FT REPEAT 7783 ANK\_284

FT REPEAT 7810 ANK\_285

FT REPEAT 7837 ANK\_286

FT REPEAT 7864 ANK\_287

FT REPEAT 7891 ANK\_288

FT REPEAT 7918 ANK\_289

FT REPEAT 7945 ANK\_290

FT REPEAT 7972 ANK\_291

FT REPEAT 8000 ANK\_292

FT REPEAT 8027 ANK\_293

FT REPEAT 8054 ANK\_294

FT REPEAT 8081 ANK\_295

FT REPEAT 8108 ANK\_296

FT REPEAT 8135 ANK\_297

FT REPEAT 8162 ANK\_298

FT REPEAT 8189 ANK\_299

FT REPEAT 8216 ANK\_300

FT REPEAT 8243 ANK\_301

FT REPEAT 8270 ANK\_302

FT REPEAT 8297 ANK\_303

FT REPEAT 8324 ANK\_304

FT REPEAT 8351 ANK\_305

FT REPEAT 8378 ANK\_306

FT REPEAT 8405 ANK\_307

FT REPEAT 8432 ANK\_308

FT REPEAT 8459 ANK\_309

FT REPEAT 8486 ANK\_310

FT REPEAT 8513 ANK\_311

FT REPEAT 8540 ANK\_312

FT REPEAT 8567 ANK\_313

FT REPEAT 8594 ANK\_314

FT REPEAT 8621 ANK\_315

FT REPEAT 8648 ANK\_316

FT REPEAT 8675 ANK\_317

FT REPEAT 8702 ANK\_318

FT REPEAT 8729 ANK\_319

FT REPEAT 8756 ANK\_320

FT REPEAT 8783 ANK\_321

FT REPEAT 8810 ANK\_322

FT REPEAT 8837 ANK\_323

FT REPEAT 8864 ANK\_324

FT REPEAT 8891 ANK\_325

FT REPEAT 8918 ANK\_326

FT REPEAT 8945 ANK\_327

FT REPEAT 8972 ANK\_328

FT REPEAT 9000 ANK\_329

FT REPEAT 9027 ANK\_330

FT REPEAT 9054 ANK\_331

FT REPEAT 9081 ANK\_332

FT REPEAT 9108 ANK\_333

FT REPEAT 9135 ANK\_334

FT REPEAT 9162 ANK\_335

FT REPEAT 9189 ANK\_336

FT REPEAT 9216 ANK\_337

FT REPEAT 9243 ANK\_338

FT REPEAT 9270 ANK\_339

FT REPEAT 9297 ANK\_340

FT REPEAT 9324 ANK\_341

FT REPEAT 9351 ANK\_342

FT REPEAT 9378 ANK\_343

FT REPEAT 9405 ANK\_344

FT REPEAT 9432 ANK\_345

FT REPEAT 9459 ANK\_346

FT REPEAT 9486 ANK\_347

FT REPEAT 9513 ANK\_348

FT REPEAT 9540 ANK\_349

FT REPEAT 9567 ANK\_350

FT REPEAT 9594 ANK\_351

FT REPEAT 9621 ANK\_352

FT REPEAT 9648 ANK\_353

FT REPEAT 9675 ANK\_354

FT REPEAT 9702 ANK\_355

FT REPEAT 9729 ANK\_356

FT REPEAT 9756 ANK\_357

FT REPEAT 9783 ANK\_358

FT REPEAT 9810 ANK\_359

FT REPEAT 9837 ANK\_360

FT REPEAT 9864 ANK\_361

FT REPEAT 9891 ANK\_362

FT REPEAT 9918 ANK\_363

FT REPEAT 9945 ANK\_364

FT REPEAT 9972 ANK\_365

FT REPEAT 10000 ANK\_366

FT REPEAT 10027 ANK\_367

FT REPEAT 10054 ANK\_368

FT REPEAT 10081 ANK\_369

FT REPEAT 10108 ANK\_370

FT REPEAT 10135 ANK\_371

FT REPEAT 10162 ANK\_372

FT REPEAT 10189 ANK\_373

FT REPEAT 10216 ANK\_374

FT REPEAT 10243 ANK\_375

FT REPEAT 10270 ANK\_376

FT REPEAT 10297 ANK\_377

FT REPEAT 10324 ANK\_378

FT REPEAT 10351 ANK\_379

FT REPEAT 10378 ANK\_380

FT REPEAT 10405 ANK\_381

FT REPEAT 10432 ANK\_382

FT REPEAT 10459 ANK\_383

FT REPEAT 10486 ANK\_384

FT REPEAT 10513 ANK\_385

FT REPEAT 10540 ANK\_386

FT REPEAT 10567 ANK\_387

FT REPEAT 10594 ANK\_388

FT REPEAT 10621 ANK\_389

FT REPEAT 10648 ANK\_390

FT REPEAT 10675 ANK\_391

FT REPEAT 10702 ANK\_392

FT REPEAT 10729 ANK\_393

FT REPEAT 10756 ANK\_394

FT REPEAT 10783 ANK\_395

FT REPEAT 10810 ANK\_396

FT REPEAT 10837 ANK\_397

FT REPEAT 10864 ANK\_398

FT REPEAT 10891 ANK\_399

FT REPEAT 10918 ANK\_400

FT REPEAT 10945 ANK\_401

FT REPEAT 10972 ANK\_402

FT REPEAT 11000 ANK\_403

FT REPEAT 11027 ANK\_404

FT REPEAT 11054 ANK\_405

FT REPEAT 11081 ANK\_406

FT REPEAT 11108 ANK\_407

FT REPEAT 11135 ANK\_408

FT REPEAT 11162 ANK\_409

FT REPEAT 11189 ANK\_410

FT REPEAT 11216 ANK\_411

FT REPEAT 11243 ANK\_412

FT REPEAT 11270 ANK\_413

FT REPEAT 11297 ANK\_414

FT REPEAT 11324 ANK\_415

FT REPEAT 11351 ANK\_416

FT REPEAT 11378 ANK\_417

FT REPEAT 11405 ANK\_418

FT REPEAT 11432 ANK\_419

FT REPEAT 11459 ANK\_420

FT REPEAT 11486 ANK\_421

FT REPEAT 11513 ANK\_422

FT REPEAT 11540 ANK\_423

FT REPEAT 11567 ANK\_424

FT REPEAT 11594 ANK\_425

FT REPEAT 11621 ANK\_426

FT REPEAT 11648 ANK\_427

FT REPEAT 11675 ANK\_428

FT REPEAT 11702 ANK\_429

FT REPEAT 11729 ANK\_430

FT REPEAT 11756 ANK\_431

FT REPEAT 11783 ANK\_432

FT REPEAT 11810 ANK\_433

FT REPEAT 11837 ANK\_434

FT REPEAT 11864 ANK\_435

FT REPEAT 11891 ANK\_436

FT REPEAT 11918 ANK\_437

FT REPEAT 11945 ANK\_438

FT REPEAT 11972 ANK\_439

FT REPEAT 12000 ANK\_440

FT REPEAT 12027 ANK\_441

FT REPEAT 12054 ANK\_442

FT REPEAT 12081 ANK\_443

FT REPEAT 12108 ANK\_444

FT REPEAT 12135 ANK\_445

FT REPEAT 12162 ANK\_446

FT REPEAT 12189 ANK\_447

FT REPEAT 12216 ANK\_448

FT REPEAT 12243 ANK\_449

FT REPEAT 12270 ANK\_450

FT REPEAT 12297 ANK\_451

FT REPEAT 12324 ANK\_452

FT REPEAT 12351 ANK\_453

FT REPEAT 12378 ANK\_454

FT REPEAT 12405 ANK\_455

FT REPEAT 12432 ANK\_456

FT REPEAT 12459 ANK\_457

FT REPEAT 12486 ANK\_458

FT REPEAT 12513 ANK\_459

FT REPEAT 12540 ANK\_460

FT REPEAT 12567 ANK\_461

FT REPEAT 12594 ANK\_462

FT REPEAT 12621 ANK\_463

FT REPEAT 12648 ANK\_464

FT REPEAT 12675 ANK\_465

FT REPEAT 12702 ANK\_466

FT REPEAT 12729 ANK\_467

FT REPEAT 12756 ANK\_468

FT REPEAT 12783 ANK\_469

FT REPEAT 12810 ANK\_470

FT REPEAT 12837 ANK\_471

FT REPEAT 12864 ANK\_472

FT REPEAT 12891 ANK\_473

FT REPEAT 12918 ANK\_474

FT REPEAT 12945 ANK\_475

FT REPEAT 12972 ANK\_476

FT REPEAT 13000 ANK\_477

FT REPEAT 13027 ANK\_478

FT REPEAT 13054 ANK\_479

FT REPEAT 13081 ANK\_480

FT REPEAT 13108 ANK\_481

FT REPEAT 13135 ANK\_482

FT REPEAT 13162 ANK\_483

FT REPEAT 13189 ANK\_484

FT REPEAT 13216 ANK\_485

FT REPEAT 13243 ANK\_486

FT REPEAT 13270 ANK\_487

FT REPEAT 13297 ANK\_488

FT REPEAT 13324 ANK\_489

FT REPEAT 13351 ANK\_490

FT REPEAT 13378 ANK\_491

FT REPEAT 13405 ANK\_492

FT REPEAT 13432 ANK\_493

FT REPEAT 13459 ANK\_494

FT REPEAT 13486 ANK\_495

FT REPEAT 13513 ANK\_496

FT REPEAT 13540 ANK\_497

FT REPEAT 13567 ANK\_498

FT REPEAT 13594 ANK\_499

FT REPEAT 13621 ANK\_500

FT REPEAT 13648 ANK\_501

FT REPEAT 13675 ANK\_502

FT REPEAT 13702 ANK\_503

FT REPEAT 13729 ANK\_504

FT REPEAT 13756 ANK\_505

FT REPEAT 13783 ANK\_506

FT REPEAT 13810 ANK\_507

FT REPEAT 13837 ANK\_508

FT REPEAT 13864 ANK\_509

FT REPEAT 13891 ANK\_510

FT REPEAT 13918 ANK\_511

FT REPEAT 13945 ANK\_512

FT REPEAT 13972 ANK\_513

FT REPEAT 14000 ANK\_514

FT REPEAT 14027 ANK\_515

FT REPEAT 14054 ANK\_516

FT REPEAT 14081 ANK\_517

FT REPEAT 14108 ANK\_518

FT REPEAT 14135 ANK\_519

FT REPEAT 14162 ANK\_520

FT REPEAT 14189 ANK\_521

FT REPEAT 14216 ANK\_522

FT REPEAT 14243 ANK\_523

FT REPEAT 14270 ANK\_524

FT REPEAT 14297 ANK\_525

FT REPEAT 14324 ANK\_526

FT REPEAT 14351 ANK\_527

FT REPEAT 14378 ANK\_528

FT REPEAT 14405 ANK\_529

FT REPEAT 14432 ANK\_530

FT REPEAT 14459 ANK\_531

FT REPEAT 14486 ANK\_532

FT REPEAT 14513 ANK\_533

FT REPEAT 14540 ANK\_534

FT REPEAT 14567 ANK\_535

FT REPEAT 14594 ANK\_536

FT REPEAT 14621 ANK\_537

FT REPEAT 14648 ANK\_538

FT REPEAT 14675 ANK\_539

FT REPEAT 14702 ANK\_540

FT REPEAT 14729 ANK\_541

FT REPEAT 14756 ANK\_542

FT REPEAT 14783 ANK\_543

FT REPEAT 14810 ANK\_544

FT REPEAT 14837 ANK\_545

FT REPEAT 14864 ANK\_546

FT REPEAT 14891 ANK\_547

FT REPEAT 14918 ANK\_548

FT REPEAT 14945 ANK\_549

FT REPEAT 14972 ANK\_550

FT REPEAT 15000 ANK\_551

FT REPEAT 15027 ANK\_552

FT REPEAT 15054 ANK\_553

FT REPEAT 15081 ANK\_554

FT REPEAT 15108 ANK\_555

FT REPEAT 15135 ANK\_556

FT REPEAT 15162 ANK\_557

FT REPEAT 15189 ANK\_558

FT REPEAT 15216 ANK\_559

FT REPEAT 15243 ANK\_560

FT REPEAT 15270 ANK\_561

FT REPEAT 15297 ANK\_562

FT REPEAT 15324 ANK\_563

FT REPEAT 15351 ANK\_564

FT REPEAT 15378 ANK\_565

FT REPEAT 15405 ANK\_566

FT REPEAT 15432 ANK\_567

FT REPEAT 15459 ANK\_568

FT REPEAT 15486 ANK\_569

FT REPEAT 15513 ANK\_570

FT REPEAT 15540 ANK\_571

FT REPEAT 15567 ANK\_572

FT REPEAT 15594 ANK\_573

FT REPEAT 15621 ANK\_574

FT REPEAT 15648 ANK\_575

FT REPEAT 15675 ANK\_576

FT REPEAT 15702 ANK\_577

FT REPEAT 15729 ANK\_578

FT REPEAT 15756 ANK\_579

FT REPEAT 15783 ANK\_580

FT REPEAT 15810 ANK\_581

FT REPEAT 15837 ANK\_582

FT REPEAT 15864 ANK\_583

FT REPEAT 15891 ANK\_584

FT REPEAT 15918 ANK\_585

FT REPEAT 15945 ANK\_586

FT REPEAT 15972 ANK\_587

FT REPEAT 16000 ANK\_588

FT REPEAT 16027 ANK\_589

FT REPEAT 16054 ANK\_590

FT REPEAT 16081 ANK\_591

FT REPEAT 16108 ANK\_592

FT REPEAT 16135 ANK\_593

FT REPEAT 16162 ANK\_594

FT REPEAT 16189 ANK\_595

FT REPEAT 16216 ANK\_596

FT REPEAT 16243 ANK\_597

FT REPEAT 16270 ANK\_598

FT REPEAT 16297 ANK\_599

FT REPEAT 16324 ANK\_600

FT REPEAT 16351 ANK\_601

FT REPEAT 16378 ANK\_602

FT REPEAT 16405 ANK\_603

FT REPEAT 16432 ANK\_604

FT REPEAT 16459 ANK\_605

FT REPEAT 16486 ANK\_606

FT REPEAT 16513 ANK\_607

FT REPEAT 16540 ANK\_608

FT REPEAT 16567 ANK\_609

FT REPEAT 16594 ANK\_610

FT REPEAT 16621 ANK\_611

FT REPEAT 16648 ANK\_612

FT REPEAT 16675 ANK\_613

FT REPEAT 16702 ANK\_614

FT REPEAT 16729 ANK\_615

FT REPEAT 16756 ANK\_616

FT REPEAT 16783 ANK\_617

FT REPEAT 16810 ANK\_618

FT REPEAT 16837 ANK\_619

FT REPEAT 16864 ANK\_620

FT REPEAT 16891 ANK\_621

FT REPEAT 16918 ANK\_622

FT REPEAT 16945 ANK\_623

FT REPEAT 16972 ANK\_624

FT REPEAT 17000 ANK\_625

FT REPEAT 17027 ANK\_626

FT REPEAT 17054 ANK\_627

FT REPEAT 17081 ANK\_628

FT REPEAT 17108 ANK\_629

FT REPEAT 17135 ANK\_630

FT REPEAT 17162 ANK\_631

FT REPEAT 17189 ANK\_632

FT REPEAT 17216 ANK\_633

FT REPEAT 17243 ANK\_634

FT REPEAT 17270 ANK\_635

FT REPEAT 17297 ANK\_636

FT REPEAT 17324 ANK\_637

McGraw-Hill, New York, 1962. A. L. Lewis, *Principles of Economics*, McGraw-Hill, New York, 1962.

Yes, said John, I am a good boy.

Copyright (c) 1993 CambridgeSoft. All rights reserved.

4 protein  
protein search, using SW model  
run on:

the:  
correct score: 0.5-0.674-4.395  
sequence: 101HIG6  
scoring table: Blosum62  
database: Gapped 10.0 + Gapwidth 0.5  
matched: 47335 30436 14627 2229 13851  
actual number of hits satisfying chosen parameters:  
minimum DB seq length: 10  
maximum DB seq length: 2030000000

POST-PROCESSING: Minimum Match: 0.8  
Maximum Match: 1.004  
List first 45 summaries

1: SP\_RBMEL\_17; \*  
2: SP\_barberry13; \*  
3: SP\_tunagi; \*  
4: SP\_humuli; \*  
5: SP\_invertibrata; \*  
6: SP\_mammal; \*  
7: SP\_bifer; \*  
8: SP\_cannabis; \*  
9: SP\_diphysa; \*  
10: SP\_plant; \*  
11: SP\_teplant; \*  
12: SP\_gibbons; \*  
13: SP\_wrebeliae; \*  
14: SP\_merriamii; \*

Pred. No. is the number of results per database entry, i.e. the number of results for a given query sequence greater than or equal to the score. The result is sorted by pred. no. and is derived by analogy of the test database. The following table summarizes the results.

| Query           | Match | length | DB     | pred. no. |
|-----------------|-------|--------|--------|-----------|
| SP_barberry13   | 116   | 2      | Q92AF5 | 1         |
| SP_tunagi       | 140   | 2      | Q92AF6 | 2         |
| SP_humuli       | 141   | 1      | Q92AF7 | 3         |
| SP_invertibrata | 141   | 1      | Q92AF8 | 4         |
| SP_mammal       | 141   | 1      | Q92AF9 | 5         |
| SP_bifer        | 148   | 2      | Q92AFK | 6         |
| SP_cannabis     | 153   | 3      | Q92AFR | 7         |
| SP_diphysa      | 160   | 2      | Q92AFS | 8         |
| SP_plant        | 169   | 10     | Q92AFM | 9         |
| SP_teplant      | 169   | 10     | Q92AFN | 10        |
| SP_gibbons      | 172   | 2      | Q92AFP | 11        |
| SP_wrebeliae    | 183   | 3      | Q92AFQ | 12        |
| SP_merriamii    | 186   | 2      | Q92AFR | 13        |
| SP_barberry13   | 186   | 2      | Q92AFS | 14        |
| SP_tunagi       | 203   | 2      | Q92AFW | 15        |
| SP_invertibrata | 248   | 2      | Q92AX0 | 16        |
| SP_mammal       | 249   | 5      | Q92AX1 | 17        |
| SP_bifer        | 256   | 2      | Q92AX2 | 18        |
| SP_cannabis     | 259   | 1      | Q92AX4 | 19        |

POST-PROCESSING: Maximum material thickness 1000 mm. Maximum weight 1000 kg. List items 45. Standard sizes 1000 x 2000 mm.

**COST PROCESSING:** Minimum weight 100g  
Maximum Mass of 1000g  
Listing this 45 summaries

AN INSTITUTE OF LEARNING AND DEVELOPMENT

MANN



| Query Match                                                                               |                                                                                                                                                                                                                   | Score                                  |                  | Match    |                  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|----------|------------------|
| Best                                                                                      | Local Similarity                                                                                                                                                                                                  | Best                                   | Local Similarity | Best     | Local Similarity |
| <b>Matches</b> : 5; Conservative: 0; Mismatches: 0; Insertions: 0; Deletions: 0; Gaps: 0; |                                                                                                                                                                                                                   |                                        |                  |          |                  |
| QF                                                                                        | 1.000000                                                                                                                                                                                                          | 1.000000                               | 1.000000         | 1.000000 | 1.000000         |
| 1b                                                                                        | 103                                                                                                                                                                                                               | 107                                    | 103              | 107      | 103              |
| <b>Result</b> : 6                                                                         |                                                                                                                                                                                                                   |                                        |                  |          |                  |
| QF-FR2                                                                                    | Preliminary:                                                                                                                                                                                                      | •                                      | Best:            | 1.000000 |                  |
| 1b                                                                                        | QF-FR2                                                                                                                                                                                                            |                                        |                  |          |                  |
| AC                                                                                        | QF-FR2;                                                                                                                                                                                                           |                                        |                  |          |                  |
| DT                                                                                        | 01-01-2000                                                                                                                                                                                                        | (Tremblay, L., Last sequence created)  |                  |          |                  |
| DI                                                                                        | 01-01-2000                                                                                                                                                                                                        | (Tremblay, L., Last distinct sequence) |                  |          |                  |
| HE                                                                                        | KIBOMAL_Protein                                                                                                                                                                                                   | L33.                                   |                  |          |                  |
| IN                                                                                        | REF ID: CR_00577.                                                                                                                                                                                                 |                                        |                  |          |                  |
| IS                                                                                        | treponema pallidum (Treponema pallidum subsp. pallidum) M11442                                                                                                                                                    |                                        |                  |          |                  |
| OC                                                                                        | Bacterium, Firmicutes, Spirochaetes, Treponematales                                                                                                                                                               |                                        |                  |          |                  |
| OG                                                                                        | Mycoplasma, eukaryotes                                                                                                                                                                                            |                                        |                  |          |                  |
| OX                                                                                        | Mycoplasma genitalium                                                                                                                                                                                             |                                        |                  |          |                  |
| KN                                                                                        | NC_001482;                                                                                                                                                                                                        |                                        |                  |          |                  |
| 1b                                                                                        | NC_001482;                                                                                                                                                                                                        |                                        |                  |          |                  |
| RP                                                                                        | SKELETON, N. A.                                                                                                                                                                                                   |                                        |                  |          |                  |
| RC                                                                                        | SKELETON, SKELETON                                                                                                                                                                                                |                                        |                  |          |                  |
| RX                                                                                        | MBLNEP_20506219; PubMed_1163974;                                                                                                                                                                                  |                                        |                  |          |                  |
| RA                                                                                        | Glass, J. L., Kowalewski, E. J., Gross, L.S., et al. (1997). <i>J. Clin. Microbiol.</i> , 35, 104-107.                                                                                                            |                                        |                  |          |                  |
| RA                                                                                        | Cassidy, D. H., et al. (1997). <i>J. Clin. Microbiol.</i> , 35, 104-107.                                                                                                                                          |                                        |                  |          |                  |
| RT                                                                                        | *the complete sequence of the mycoplasma genome of <i>Treponema pallidum</i> subsp. <i>pallidum</i> (Treponema pallidum) is available at: <a href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</a> . |                                        |                  |          |                  |
| RI                                                                                        | http://www.ncbi.nlm.nih.gov                                                                                                                                                                                       |                                        |                  |          |                  |
| <b>Query Match</b>                                                                        |                                                                                                                                                                                                                   |                                        |                  |          |                  |
| Best                                                                                      | Local Similarity                                                                                                                                                                                                  | Score                                  | Match            | Best     | Local Similarity |
| <b>Matches</b> : 6; Conservative: 0; Mismatches: 0; Insertions: 0; Deletions: 0; Gaps: 0; |                                                                                                                                                                                                                   |                                        |                  |          |                  |
| QF                                                                                        | 1.000000                                                                                                                                                                                                          | 1.000000                               | 1.000000         | 1.000000 | 1.000000         |
| 1b                                                                                        | 103                                                                                                                                                                                                               | 107                                    | 103              | 107      | 103              |
| <b>Result</b> : 8                                                                         |                                                                                                                                                                                                                   |                                        |                  |          |                  |
| QF-FR2                                                                                    | Preliminary:                                                                                                                                                                                                      | •                                      | Best:            | 1.000000 |                  |
| 1b                                                                                        | QF-FR2;                                                                                                                                                                                                           |                                        |                  |          |                  |
| AC                                                                                        | QF-FR2;                                                                                                                                                                                                           |                                        |                  |          |                  |
| DT                                                                                        | 01-01-2000                                                                                                                                                                                                        | (Tremblay, L., Last sequence created)  |                  |          |                  |
| DI                                                                                        | 01-01-2000                                                                                                                                                                                                        | (Tremblay, L., Last distinct sequence) |                  |          |                  |
| HE                                                                                        | KIBOMAL_Protein                                                                                                                                                                                                   | L33.                                   |                  |          |                  |
| IN                                                                                        | REF ID: CR_00577.                                                                                                                                                                                                 |                                        |                  |          |                  |
| IS                                                                                        | treponema pallidum (Treponema pallidum subsp. pallidum) M11442                                                                                                                                                    |                                        |                  |          |                  |
| OC                                                                                        | Bacterium, Firmicutes, Spirochaetes, Treponematales                                                                                                                                                               |                                        |                  |          |                  |
| OG                                                                                        | Mycoplasma, eukaryotes                                                                                                                                                                                            |                                        |                  |          |                  |
| OX                                                                                        | Mycoplasma genitalium                                                                                                                                                                                             |                                        |                  |          |                  |
| KN                                                                                        | NC_001482;                                                                                                                                                                                                        |                                        |                  |          |                  |
| 1b                                                                                        | NC_001482;                                                                                                                                                                                                        |                                        |                  |          |                  |
| RP                                                                                        | SKELETON, N. A.                                                                                                                                                                                                   |                                        |                  |          |                  |
| RC                                                                                        | SKELETON, SKELETON                                                                                                                                                                                                |                                        |                  |          |                  |
| RX                                                                                        | SPINNIE, P. M., KOWALEWSKI, E. J., GROSS, L. S., et al. (1997). <i>J. Clin. Microbiol.</i> , 35, 104-107.                                                                                                         |                                        |                  |          |                  |
| RA                                                                                        | CASSIDY, D. H., et al. (1997). <i>J. Clin. Microbiol.</i> , 35, 104-107.                                                                                                                                          |                                        |                  |          |                  |
| RA                                                                                        | *the complete sequence of the mycoplasma genome of <i>Treponema pallidum</i> subsp. <i>pallidum</i> (Treponema pallidum) is available at: <a href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</a> . |                                        |                  |          |                  |
| RI                                                                                        | http://www.ncbi.nlm.nih.gov                                                                                                                                                                                       |                                        |                  |          |                  |





| 1   |
|-----|
| 1   |
| 2   |
| 3   |
| 4   |
| 5   |
| 6   |
| 7   |
| 8   |
| 9   |
| 10  |
| 11  |
| 12  |
| 13  |
| 14  |
| 15  |
| 16  |
| 17  |
| 18  |
| 19  |
| 20  |
| 21  |
| 22  |
| 23  |
| 24  |
| 25  |
| 26  |
| 27  |
| 28  |
| 29  |
| 30  |
| 31  |
| 32  |
| 33  |
| 34  |
| 35  |
| 36  |
| 37  |
| 38  |
| 39  |
| 40  |
| 41  |
| 42  |
| 43  |
| 44  |
| 45  |
| 46  |
| 47  |
| 48  |
| 49  |
| 50  |
| 51  |
| 52  |
| 53  |
| 54  |
| 55  |
| 56  |
| 57  |
| 58  |
| 59  |
| 60  |
| 61  |
| 62  |
| 63  |
| 64  |
| 65  |
| 66  |
| 67  |
| 68  |
| 69  |
| 70  |
| 71  |
| 72  |
| 73  |
| 74  |
| 75  |
| 76  |
| 77  |
| 78  |
| 79  |
| 80  |
| 81  |
| 82  |
| 83  |
| 84  |
| 85  |
| 86  |
| 87  |
| 88  |
| 89  |
| 90  |
| 91  |
| 92  |
| 93  |
| 94  |
| 95  |
| 96  |
| 97  |
| 98  |
| 99  |
| 100 |