Inference for Normal data I

Overview

- We are going to look at how to fit models to data, i.e., how to perform inference
- ► There are two main frameworks for inference: frequentist and Bayesian
- We will start with the frequentist framework
- We will start with a simple model: assuming our data following a normal distribution

Normal distribution - review

- Suppose that we observe data $y = y_1, \dots, y_n$ that are independently and identically distributed (i.i.d) from a normal distribution, $y_i \sim \mathcal{N}(\mu, \sigma^2)$, for each i.
- ▶ The pdf for each observation y_i takes the form:

$$f(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{y_i-\mu}{\sigma}\right)^2\right\}$$

▶ Using the data sample y, what can we say about the mean μ and variance σ^2 ?

Example: School data

- We have data for n = 28 high school students that have taken a standardised test.
- Assuming student performance is normally distributed:
 - ▶ What is the mean/average performance for the school?
 - Assuming that a score of 50 is average for the test, is there any evidence to suggest that the school is above or below average?
 - What are reasonable upper and lower bounds to cap for the school's average performance?

```
head(school2)
```

```
## [1] 52.87 50.03 41.51 37.42 64.42 45.44 mean(school2)
```

```
## [1] 46.15071
```

```
sd(school2)
```

```
## [1] 9.052144
```

Example: School data - histogram

Key questions of interest

- ► In the module overview, we said that a typical statistical analysis will be interested in answering these questions:
 - **Point estimation:** What values of μ and σ are most consistent with y?
 - ▶ **Hypothesis testing** Is the estimated value of μ consistent with some pre-specified value μ_0 ?
 - Interval estimation: What range of value(s) of μ are most plausibly consistent with y?
- We will address these questions using frequentist inference, starting with point estimation.
- Note that these questions mainly focus on the mean μ . In a frequentist setting, the variance σ^2 is often treated as a nuisance parameter.
- We need to adjust for σ^2 but we usually aren't principally interested in its estimation.

Point estimation - maximum likelihood

▶ We observe i.i.d. data $y = y_1, ..., y_n, \sim \mathcal{N}(\mu, \sigma^2)$, with individual pdf

$$f(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{y_i-\mu}{\sigma}\right)^2\right\}.$$

► Consider the joint distribution of the data under the model. This is called the **likelihood** function

$$L(y) = f(y_1, \ldots, y_n | \mu, \sigma^2) = \prod_{i=1}^n f(y_i | \mu, \sigma^2).$$

► Then the likelihood takes the form:

$$L(y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{y_i - \mu}{\sigma}\right)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma}\right)^2\right\}.$$

Point estimation - maximum likelihood

We want to identify $\hat{\mu}$ and $\hat{\sigma}$, the model parameters that were most *likely* to generate the data:

$$(\hat{\mu}, \hat{\sigma}) = \arg \max_{\mu, \sigma} \{L(y)\}.$$

- (Note the use of the terms likely and likelihood, rather than probability.)
- ▶ We call $\hat{\mu}$ and $\hat{\sigma}$ the maximum likelihood estimates, or **mle**.
- ▶ To find $\hat{\mu}$ and $\hat{\sigma}$, we construct I(y), the log-likelihood:

$$I(y) = \log L(y) = -n/2 \log(2\pi\sigma^2) - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma}\right)^2.$$

Some intuition - simulated data

- Let's generate data $y \sim \mathcal{N}(\mu_0, 1), n = 20.$
- lackbox Let's look at how the data fits for $\mu=\{-1,0,1\}$
- ▶ Which value of μ fits y best?

Some intuition - simulated data

Getting $\hat{\mu}$

- lacktriangle We can use simple calculus to get the mle $\hat{\mu}$
- ▶ Because log is monotonic, maximising I(y) is equivalent to maximising L(y)
- Formally, to find $\hat{\mu}$:

$$\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} \right),$$

$$\Rightarrow \sum_{i=1}^{n} \left(\frac{y_i - \hat{\mu}}{\sigma} \right) = 0,$$

$$\Rightarrow \hat{\mu} = \sum_{i=1}^{n} \frac{y_i}{n} = \bar{y}.$$

- ▶ That is, $\hat{\mu} = \bar{y}$, i.e., the sample mean.
- ▶ We don't need to know σ to get $\hat{\mu}$.

MLE $\hat{\sigma}$

- lacktriangle We can take a very similar approach to get $\hat{\sigma}$
- In practice it is easier to set $v = \sigma^2$, (i.e., the variance) and find \hat{v} :

$$\frac{\partial I}{\partial v} = -\frac{n}{2v} + \frac{1}{2v^2} \sum_{i=1}^{n} (y_i - \mu)^2;$$

$$\Rightarrow \frac{1}{2\hat{v}^2} \sum_{i=1}^{n} (y_i - \mu)^2 = \frac{n}{2\hat{v}},$$

$$\Rightarrow \hat{v} = \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{n}.$$

- ► So $\hat{v} = \sum_{i=1}^{n} \frac{(y_i \mu)^2}{n} \Rightarrow \hat{\sigma} = \sqrt{\sum_{i=1}^{n} \frac{(y_i \mu)^2}{n}}$.
- ▶ We need to know μ to get $\hat{\sigma}$.
- ▶ In practice we use $\hat{\sigma} = \sqrt{\sum_{i=1}^{n} \frac{(y_i \bar{y})^2}{n-1}}$. We'll discuss why later.

See here for an animation

Likelihood surface - schools data

Point estimation - review

- The general approach we have taken here is:
 - ightharpoonup Observe data y_1, \ldots, y_n .
 - Assume that y are i.i.d with respect to a distribution with pdf f and parameter(s) θ.
 - ► Construct a likelihood function $L(y) = \prod_{i=1}^{n} f(y_i|\theta)$.
 - ▶ Find, by direct calculation or otherwise, $\hat{\theta} = \arg \max_{\theta} \{L(y)\}$.
 - Usually we do this by looking at the log-likelihood I(y).
- For more complex models direct optimization can be difficult/impossible and computational approaches are needed.
- ► For some models (e.g., spatial or time series models) we can't assume that the data are independent. Optimising these models is often more challenging.

Frequentist point estimation - interpretation

- It is important to note the terminology we have been using: as a function of θ , L(y) is **not** a probabilistic statement.
- ▶ For two sets of values θ_1 and θ_2 , the probability of the data y will be higher for θ_1 than θ_2 (or vice-versa). This is **not** the same thing as saying that the probability of θ_1 under the data is higher than for θ_2 , or vice-versa.
- We observe instances of y many times; we never observe θ . We interpret θ as a fixed but unknown quantity.
- ► This is a frequentist interpretation of probability; we can't make probabilistic statements about things that we don't observe.
- ► Hence likelihood, not probability. It can be challenging to interpret frequentist output correctly.

Summary

- We have seen how to estimate the mle $\hat{\mu}$ and $\hat{\sigma}$ for data that are normally distributed.
- ▶ This involves:
 - ▶ Build a likelihood model L(y) using probability rules;
 - ▶ Optimising the log likelihood I(y) using standard calculus.
- Next we will look at hypothesis testing and confidence intervals.