CS 395 Homework 10

Colby Blair
Due May 7th, 2012

Crado	
Grade:	

PROBLEMS

1. 7.1-1

Consider the array $A = \{13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11\}$. The PARTITION(A) algorithm operations are as follows:

a).

$_{\mathrm{p,j}}$											r
13	19	9	5	12	8	7	4	21	2	6	11

b).

p,i	_	l									r
13	19	9	5	12	8	7	4	21	2	6	11

c).

p,i		j									r
13	19	9	5	12	8	7	4	21	2	6	11

d).

i	p		j								r	
9	19	13	5	12	8	7	4	21	2	6	11	

e).

	i	p	j								r
9	5	13	19	12	8	7	4	21	2	6	11

f).

p	i	p			j						r
9	5	13	19	12	8	7	4	21	2	6	11

g).

p		i				j					r
9	5	8	19	12	13	7	4	21	2	6	11

h).

p			i				j				r	
9	5	8	7	12	13	19	4	21	2	6	11	

i).

p				i			j				\mathbf{r}
9	5	8	7	4	13	19	12	21	2	6	11

j).

p				i				j			r
9	5	8	7	4	13	19	12	21	2	6	11

k).

p					i				j		r
9	5	8	7	4	2	19	12	21	13	6	11

1).

p						i				j	\mathbf{r}
9	5	8	7	4	2	6	12	21	13	19	11

m).

p						i				j	r
9	5	8	7	4	2	6	11	21	13	19	12

2. 7.2-2

In Quicksort, if every element is the same, then the call to PARTITION(A) in Quicksort always returns r - 1. This leads to the worst case partitions, and Quicksort runtime = $T(n) = \Theta(n^2)$ (worst case runtime).

3. 7.3-1

The randomization won't improve the worst case, it just makes the chances of hitting the worst case small. So we don't consider it.

4. 7.4-1

Considering the equation $T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$, we will show that the running time $T(n) = \Omega(n^2)$.

Inductive Hypothesis

Given $T(n) = \Omega(n^2)$, we assume:

$$T(n) \ge cn^2 \tag{1}$$

Where c is a constant.

Further:

$$T(n) \ge \max_{0 \le q \le n-1} (q^2 + c(n-q-1)^2) + \Theta(n)$$
 (2)

$$= (c) \max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) + \Theta(n)$$
(3)

(4)

The minimum for $q^2 + (n - q - 1)^2$ can be found in the range $0 \le q \le n - 1$. We can then say:

$$\max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) \le (n-1)^2 = n^2 - 2n + 1$$
 (5)

(6)

Furthermore:

$$T(n) \ge cn^2 - c(2n-1)\Theta(n) \tag{7}$$

$$\geq cn^2$$
 (8)

Therefore, runtime $T(n) = \Omega(n^2)$.