

MPLS

Multiprotocol Label Switching

Ruteo IP

- Protocolos de ruteo distribuyen información de ruteo
- La conmutación se basa en
 - Cabecera del paquete
 - Tabla de ruteo local
- Búsqueda independiente realizada en cada salto

MPLS

- Mecanismo de conmutación basado en etiquetas (labels)
- Diseñado para transportar múltiples protocolos de capa 3
- Las etiquetas MPLS identifican las redes destino

Beneficios

- Ruteo de IP unicast y multicast
- VPN
- QoS
- MPLS reduce la tarea de conmutación en el "core"
- Puede transportar otros protocolos, no solo IP

Arquitectura: Plano de Control

Arquitectura: Plano de Datos

Dispositivos: LSRs

LSR: Label Switching Router

Fundamentos del MPLS

Etiquetas MPLS

- Identificador de 4 bytes
- Define el destino y el servicio de un paquete
- Identifica un FEC (Forwarding Equivalent Class)
- Tiene significado local
 - Cada LSR mapea una etiqueta a una FEC
 - Esta asociación es intercambiada entre LSRs.

Forwarding Equivalent Class

- Una FEC es un grupo de paquetes tratados:
 - De la misma manera
 - Sobre un mismo camino
- La conmutación de paquetes MPLS consiste en:
 - Asignar un paquete a una FEC determinada
 - Determinar el próximo salto para cada FEC
- MPLS es orientado a la conexión

Formato de la etiqueta

- Label (20 bits)
- Experimental (3 bits)
- Indicador de última etiqueta (1 bit)
- Time-to-Live (8 bits)

MPLS Labels

Operación de MPLS

Etiquetado

Operación del TTL

- Al ingreso, el TTL se copia de la cabecera IP a la etiqueta
- Al egreso, el TTL se copia de la etiqueta a la cabecera IP Deshabilitar la propagación del TTL "esconde" a los routers intermedios

Arquitectura MPLS VPN

- PE Router = Edge LSR
- P Router = LSR

Arquitectura del PE router

Propagación de rutas

- Provider router no debe conocer las rutas de clientes
- Clientes pueden utilizar redes superpuestas (RFC1918)

Route Distinguishers

- Un RD de 64 bits se antepone a la dirección IPv4 para hacerla única
- El resultado es una dirección VPNv4
- Las direcciones VPNv4 se intercambian entre PE routers usando BGP
- El mismo proceso se usa en IPv6:
 - Se agregan 64bits a la dirección IPv6 de 16bytes
 - El resultado es una dirección de 24 bytes VPNv6

Route distinguishers

Route distinguishers

Ruteo en MPLS VPN

 El CE router corre un protocolo de ruteo estándar, e intercambia rutas con el PE router

Ruteo en MPLS VPN

- Los P routers no participan del ruteo MPLS VPN, no conocen las rutas de VPN
- Los P routers corren un IGP con los PE routers para intercambiar información interna del backbone

Ruteo en MPLS VPN

Los PE routers:

- Intercambian rutas VPN con CE routers
- Intercambian las rutas de "core" con los P routers via IGP
- Intercambian rutas VPNv4 con otros PE via MP-BGP

Flujo de ruteo

Los PE routers reciben la actualización de ruteo IPv4 desde el CE router y lo instala en la VRF correspondiente

Flujo de ruteo

El PE router exporta la ruta VPN de la tabla VRF hacia MP-BGP y la propaga como ruta VPNv4 hacia los otros PE routers

Flujo de ruteo

- El PE receptor importa la ruta VPNv4 entrante en la VRF correspondiente
- La ruta ingresada en la tabla VRF se propaga hacia el CE router vecino