2.2 More about Functions

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM **Updated:** 2019-10-28 3:36 PM

Author: SUKHJIT MANN

Tags: Bijective, Ceiling, Composition, Floor, invertible, Logarithmic

Cornell Notes

Topic:

2.2 More about functions

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: October 28, 2019

Essential Question:

What is function composition, also what does it mean for a function to be bijective(invertible)? Alongside this, what are logarithmic, floor and ceiling functions?

Questions/Cues:

- What is function composition?
- What does it mean when a function is bijective or invertible?
- What is the identity function in terms of function composition?
- What can be said about the graphs of f and its inverse?
- What is logarithmic function and what is its inverse?
- What is the laws of logarithms?
- What is the graph of the logarithmic functions and what are some of it's properties?
- What is the floor function and its respective graph?
- What is the ceiling function and its respective graph?

Notes

• Given 2 functions f and g, $(f \circ g)(x) = f(g(x))$

- Function composition is not commutative! $f \circ g \neq g \circ f$
 - o If we change order of f and g, we get different function
- Bijective or Invertible = if and only if it's both injective and surjective
 - Injective = one-to-one, for every x there is unique image in the co-domain
 - Surjective = onto, unique pre-image for each element in co-domain, and range
 co-domain
- Inverse function = Let $f\colon A\to B$, if f is bijective (invertible), then inverse function f^{-1} exists and defined $f^{-1}\colon B\to A$

•
$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$$

$$f: \mathbb{R} \to R$$
 with $f(x)=2x$

$$f^{-1}: \mathbb{R} \to R$$
 with $f^{-1}(x) = \frac{x}{2}$

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x}{2}) = 2\frac{x}{2} = x$$

$$(f^{-1}of)(x) = f^{-1}(f(x)) = f^{-1}(2x) = \frac{2x}{2} = x$$

The curves of f and f^{-1} are symmetric with respect to the straight line y = x.

• Logarithmic function = with base b, b > 0 and b \neq 1 is defined:

$$log_b x = y$$
 if and only if $x = b^y$

 $log_b x$ is the inverse function of the exponential function b^x

$$\log_b m * n = \log_b m + \log_b n$$

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$

$$\log_b m^n = n\log_b m$$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

Consider $f(x) = \log_2 x$. We will create a table of values for x and f(x) and then sketch a graph of f.

×	1/8	1/4	1/2	1	.2	4	8
f(x)=log ₂ x	-3	-2	-1	0	1	2	3

Log properties:

Graph of log₂ x is symmetric to 2^x with respect to y=x

Domain: (0, co)

Range: (- 00, 00)

x-intercept: (1, 0)

Increasing on: (0, co)

Log Properties:

Graph of log1 x

is symmetric to $\left(\frac{1}{2}\right)^2$ with respect to y=x

Domain: (0, co)

Range: (- 00, 00)

x-intercept: (1, 0)

Decreasing on: (0, co)

$$\ln x = \log_e x$$
 where $e = 2.71828$
 $\ln e = \log_e e = 1$

- Floor function = function $R \to Z$ takes real number x as input, returns largest integer that is less than or equal to x, denoted floor(x) = [x]
 - o Floor of any integer is itself

- Ceiling function = function $R \to Z$ takes real x as input, returns smallest integer that is greater than or equal to x, denoted ceiling(x) = [x]
 - Ceiling of any integer is itself

Let n be an integer and x a real number. Show that:

$$\lfloor x+n \rfloor = \lfloor x \rfloor + n$$

Proof:

- Let m = [x]
- hence, m ≤ x < m+1 (by definition)
- $m+n \le x+n < m+n+1$
- this implies that \[x+n \] = m + n (by definition)
 hence, \[x+n \] = \[x \] + n

Summary

In this week, we learned what function composition is and what is means for a function to be bijective (invertible). Also, we looked at the logarithmic, floor and ceiling functions.