0930 T5 논문발표

+논문 (Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer)

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

https://arxiv.org/abs/1910.10683

0. Abstract

unsupervised learning을 통해 pretrain을 하고(upstream task), 그 다음 supervised learning을 통해 finetuning 하는 (downstream task) 전이학습의(transfer learning) 방식이 제일 좋은 성능을 보였음 T5방식으로 모든 언어문제의 접근방식을 달리함.

1. Introduction

text를 input으로 받아 text를 output으로 받는 것이 본 논문의 핵심 generation task(번역, 요약 등)뿐만 아니라 classification, regression 문제도 text-to-text로 접근 → 모든 task를 하나의 방식으로 풀게 되면, 다양한 downstream task에 동일한 model, loss function, hyperparameters 적용 가능

2. Setup_배경지식

2.1 model

RNN을 활용한 전이학습에서 Transformer을 활용한 전이학습이 더 일반적이게 변함.

Transformer의 주요 구성 요소는 self-attention(시퀀스를 처리할 때 나머지 요소들의 가중 평균으로 각 요소를 대체하는 방식)

Encoder만 있는 BERT, Decoder만 있는 GPT와는 다르게 T5는 Encoder와 Decoder가 함께 있음

• 변경점

- Transformer의 Layer Normalization에 사용되는 bias를 제거하고 rescale만 수행하는 simplified layer normalization 사용
- 。 이후로는 residual skip connection이 적용되어 block의 input을 output에 더해줌
- o feed-forward network, skip connection, attention weight, input, output에 dropout이 적용됨
- o Absolute positional embedding 대신 Relative positional embedding 사용
- (위치정보) model layer 전체에서 positional embedding parameter sharing

2.2 The Colossal Clean Crawled Corpus

모델을 훈련하기 위해 사용된 대규모의 데이터 세트로 다음과 같은 전처리 과정을 시행함

- ..?.! 등과 같이 종결형 문장 부호로 끝나는 문장들만 남긴 후 나머지 문장 삭제
- 5 문장 미만으로 구성된 page는 폐기하고, 최소 3 단어 이상으로 구성된 문장만 남김
- "List of Dirty, Naughty, Obscene or Otherwise Bad Words" 등 비속어 및 은어와 같은 단어 삭제
- Javascript 단어가 있는 문장 삭제
- "lorem ipsum" 구문이 보이는 페이지 삭제
- {} 중괄호를 포함하고 있는 페이지 삭제
- 3 문장 이상으로 구성된 span이 2번 이상 반복되면 해당 페이지 삭제

2.3 Downstream Tasks

모델의 성능을 실험하기 위한 downstream task에 대한 설명

2.4 Input and Output Format

T5는 모든 task를 text-to-text format으로 다룸.

pre-training 과 fine-tuning에서 일관된 training objective를 제공한다는 장점 task에 관련없이 maximum likelihood objective로 학습됨(가장 가능성이 높은 출력을 생성함)

[Denoising Corrupted Span]

pre-training objective : SpanBERT논문에서 제안된 기법 사용

각 token을 마스킹하는 것이 아니라 Span을 하나의 token으로 마스킹함(→ 성능 향상+계산효율 향상)

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling	80.69	18.94	77.99	65.27	26.86	39.73	27.49
BERT-style (Devlin et al., 2018)	82.96	19.17	80.65	69.85	26.78	40.03	27.41
Deshuffling	73.17	18.59	67.61	58.47	26.11	39.30	25.62

masked language modeling 방식을 사용한 BERT-style방식이 가장 좋은 성능을 나타냄

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style (Devlin et al., 2018)	82.96	19.17	80.65	69.85	26.78	40.03	27.41
MASS-style (Song et al., 2019)	82.32	19.16	80.10	69.28	26.79	39.89	27.55
★ Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	$\bf 80.52$	68.67	27.07	39.76	27.82

BERT-style: 15%의 token 마스킹

MASS-style: span 내 token들을 마스킹하고 해당 token들을 예측

Replace corrupted spans : T5에서 사용한 일정 span을 하나의 masking token으로 대체하는 방식(→최고)

Drop corrupted tokens: input sequence의 tokens를 제거하고 다시 복원하는 방식

[C4 Dataset]

Colossal Clean Crawled Corpus로, gpt3에 사용되었던 데이터에 일부 클리닝 작업한 데이터

- .,?,! 등과 같이 종결형 문장 부호로 끝나는 문장들만 남긴 후 나머지 문장 삭제
- 5 문장 미만으로 구성된 page는 폐기하고, 최소 3 단어 이상으로 구성된 문장만 남김
- "List of Dirty, Naughty, Obscene or Otherwise Bad Words" 등 비속어 및 은어와 같은 단어 삭제
- Javascript 단어가 있는 문장 삭제
- "lorem ipsum" 구문이 보이는 페이지 삭제
- {} 중괄호를 포함하고 있는 페이지 삭제
- 3 문장 이상으로 구성된 span이 2번 이상 반복되면 해당 페이지 삭제

Data set	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57

C4 데이터셋의 성능이 뛰어나지 않은 이유는, 다른 데이터셋들이 더 도메인에 국한되어 있기 때문

[Multi-task pre-training]

여러 종류의 task에 대해서 한번에 training을 진행

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline (pre-train/fine-tune)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13
Temperature-scaled, $T=2$	81.90	19.28	79.42	69.92	25.42	36.72	27.20
Temperature-scaled, $T=4$	80.56	19.22	77.99	69.54	25.04	35.82	27.45
Temperature-scaled, $T=8$	77.21	19.10	77.14	66.07	24.55	35.35	27.17
Training strategy	GLU	E CNNDM	I SQuAD	SGLUE	EnDe	EnFr	EnRe
Unsupervised pre-training + fine-tuning 83.28		8 19.24	80.88	71.36	26.98	39.82	27.6
Multi-task training 81.		2 19.24	79.78	67.30	25.21	36.30	27.7
Multi-task pre-training + fine-tuning		1 19.12	80.26	71.03	27.08	39.80	28.0
T							

multi-task pre-training + fine_tuning이 기존의 unsupervised pre-training + fine-tuning과 비슷한 성능

19.05

18.96

79.97

77.38

81.98

79.93

26.93

26.81

71.68

65.36

39.79

40.13

27.87

28.04

[Scaling Model Size]

Leave-one-out multi-task training

Supervised multi-task pre-training

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4\times$ ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

당연하게도, 모델의 크기가 증가하고 학습의 시간이 더 길수록 성능이 좋아짐.

^{!! 24}개의 task중 18개의 task에서 SOTA달성

- Text-to-text
 - ∘ text-to text framework 사용하여 하나의 모델로 다양한 태스크 학습 가능
- Architectures
 - Encoder-Decoder 구조 사용
- · Unsupervised objectives
 - 。 Denoising objectives 사용
- Data sets
 - 。 Colossal Clean Crawled Corpus (C4) 데이터셋
- Scalling
 - 모델의 크기를 키울 때 어떻게 해야 효과적인지 실험함.
- · Pushing the limits
 - 。 위의 방법 모두 사용, 11B 파라미터의 큰 모델을 학습시켜 다양한 task에서 SOTA 달성.

+논문리뷰 참고

https://sunho99.tistory.com/entry/exploring-the-limits-of-transfer-learning-with-a-unified-text-to-text-transformer-논문-리뷰-분석

https://gbdai.tistory.com/62