Partie C

Exercice 1: Compléter les suites logiques

Rang	0	1	2	3	4	5	6	7	8
Suite 1:	1	3	5	7	9				
Suite 2:	81	27	9	3	1				
Suite 3:	15	10	5	0	-5				
Suite 4:	8	-4	2	-1	$\frac{1}{2}$				
Suite 5 :	1	5	13	29	61				

Définition

Une suite (u_n) est dite **arithmétique** s'il existe un réel r tel que pour tout entier n on a $u_{n+1} = u_n + r$.

Cette expression est appelée formule de récurrence.

Le nombre r est appelé **raison** de la suite (u_n) .

Définition

Une suite (u_n) est dite **géométrique** s'il existe un réel q tel que pour tout entier n on a $u_{n+1} = q \times u_n$.

Cette expression est appelée formule de récurrence.

Le nombre q est appelé **raison** de la suite (u_n) .

Exercice 2: Compléter lorsque la suite est soit arithmétique, soit géométrique

	Relation de récur- rence de la suite	Nature	u_0	u_1	u_{10}
Suite 1					
Suite 2					
Suite 3					
Suite 4					
Suite 5					

Exercice 3

1. Le programme suivant est en lien avec l'une des suites de la page 1. Laquelle?

Python

```
u = 8
for i in range(n):
    u = u * (-0.5)
print(u)
```

Quelle est la valeur finale de u si n vaut 10?

Tutoriel vidéo:

https://www.numworks.com/ fr/professeurs/tutoriels/ python/ **2.** Compléter le programme ci-dessous pour qu'il puisse afficher le terme de rang n de la suite 3.

Python

3. Écrire un programme qui détermine le rang à partir duquel les termes de la suite 2 sont inférieurs à 0,0001.

