

COMP 2211 Exploring Artificial Intelligence
Practice Problems: Naive Bayes, KNN, K-Means, Perceptron, and MLP
Dr. Desmond Tsoi

Department of Computer Science & Engineering HKUST, Hong Kong SAR, China

- Given the following:
  - A doctor knows cold causes fever 50% of the time.
  - The probability of any patient having a cold is 1/50000.
  - The probability of any patient having a fever is 1/20.

If a patient has a fever, what is the probability he/she has a cold?

• Given the following dataset:

| Animal        | Give Birth | Can Fly | Live in Water | Have Legs | Class       |  |
|---------------|------------|---------|---------------|-----------|-------------|--|
| Human         | Yes        | No      | No            | Yes       | Mammals     |  |
| Python        | No         | No      | No            | No        | Non-mammals |  |
| Salmon        | No         | No      | Yes           | No        | Non-mammals |  |
| Whale         | Yes        | No      | Yes           | No        | Mammals     |  |
| Frog          | No         | No      | Sometimes     | Yes       | Non-mammals |  |
| Komodo        | No         | No      | No            | Yes       | Non-mammals |  |
| Bat           | Yes        | Yes     | No            | Yes       | Mammals     |  |
| Pigeon        | No         | Yes     | No            | Yes       | Non-mammals |  |
| Cat           | Yes        | No      | No            | Yes       | Mammals     |  |
| Leopard Shark | Yes        | No      | Yes           | No        | Non-mammals |  |
| Turtle        | No         | No      | Sometimes     | Yes       | Non-mammals |  |
| Penguin       | No         | No      | Sometimes     | Yes       | Non-mammals |  |
| Porcupine     | Yes        | No      | No            | Yes       | Mammals     |  |
| Eel           | No         | No      | Yes           | No        | Non-mammals |  |
| Salamander    | No         | No      | Sometimes     | Yes       | Non-mammals |  |
| Gila Monster  | No         | No      | No            | Yes       | Non-mammals |  |
| Platypus      | No         | No      | No            | Yes       | Mammals     |  |
| Owl           | No         | Yes     | No            | Yes       | Non-mammals |  |
| Dolphin       | Yes        | No      | Yes           | No        | Mammals     |  |
| Eagle         | No         | Yes     | No            | Yes       | Non-mammals |  |

• Is the animal with the attribute values (Give Birth = Yes, Can Fly = No, Live in Water = Yes, Have Legs = No) a mammal?

## K-Nearest Neighbors

• Given a dataset of the speed and agility ratings for 20 athletes and whether they were drafted by a professional team.

| ID | Speed | Agility | Draft |
|----|-------|---------|-------|
| 1  | 2.50  | 6.00    | No    |
| 2  | 3.75  | 8.00    | No    |
| 3  | 2.25  | 5.50    | No    |
| 4  | 3.25  | 8.25    | No    |
| 5  | 2.75  | 7.50    | No    |
| 6  | 4.50  | 5.00    | No    |
| 7  | 3.50  | 5.25    | No    |
| 8  | 3.00  | 3.25    | No    |
| 9  | 4.00  | 4.00    | No    |
| 10 | 4.25  | 3.75    | No    |

| ID | Speed | Agility | Draft |
|----|-------|---------|-------|
| 11 | 2.00  | 2.00    | No    |
| 12 | 5.00  | 2.50    | No    |
| 13 | 8.25  | 8.50    | No    |
| 14 | 5.75  | 8.75    | Yes   |
| 15 | 4.75  | 6.25    | Yes   |
| 16 | 5.50  | 6.75    | Yes   |
| 17 | 5.25  | 9.50    | Yes   |
| 18 | 7.00  | 4.25    | Yes   |
| 19 | 7.50  | 8.00    | Yes   |
| 20 | 7.25  | 5.75    | Yes   |

• Suppose an athlete with speed = 6.75 and agility = 3.00, classify him into one of the two classes (Draft = Yes, Draft = No) using KNN with Euclidean distance metric and K = 3.

## K-Means Clustering

• Consider 4 data points A, B, C and D as follows:

|   | $x_1$ | <i>x</i> <sub>2</sub> |
|---|-------|-----------------------|
| Α | 2     | 3                     |
| В | 6     | 1                     |
| С | 1     | 2                     |
| D | 3     | 0                     |

- Form two clusters for the above datapoints by picking two initial centroids,  $c_1 = (4,2)$  and  $c_2 = (2,1)$ .
- Assume Euclidean distance is used as the metric. Show all the calculation steps and the final cluster assignments for the 4 data points.

#### Perceptron

- Suppose we have the following data points:
  - $\mathbf{x} = (1, -2), T = 1$
  - $\mathbf{x} = (0, -1), T = 0$
- Train a perceptron with the initial weights ( $w_1 = 0$ ,  $w_2 = -2$ ), zero bias, learning rate  $\eta = 0.5$ , and a unit-step activation function:

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

until it converges.

• Show all the steps, i.e. the change of weights and bias in each iteration.

### Multilayer Perceptrion

- Given a multilayer perceptron with two inputs  $x_1$ ,  $x_2$ , one hidden unit and one output unit. Both the hidden unit and output use sigmoid activation function. Altogether, the network has 3 weights,  $w_1$ ,  $w_2$ ,  $w_3$ , and 2 biases,  $\theta_1$ ,  $\theta_2$ .
- All weights are initialized with 0.1, and all the biases are initialized with -0.1.
- Use sigmoid as the activation function for all units, i.e.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• Let the training set be as follows:

| ×1 | x2 | Т |
|----|----|---|
| 1  | 0  | 1 |
| 0  | 1  | 0 |

Determine the weights after the first epoch two iterations of the backpropagation algorithm, given a learning rate of  $\eta = 0.3$ .

# Suggested Solutions



- Let C be the a patient having a cold, F be a patient having a fever
- According to the question, we have:
  - P(F|C) = 0.5
  - P(C) = 1/50000
  - P(F) = 1/20
- Calculation:

$$P(C|F) = \frac{P(F|C)P(C)}{P(F)}$$
$$= \frac{0.5 \times (1/50000)}{1/20}$$
$$= 0.0002$$

- Let GB be "Give Birth", CF be "Can Fly", LIW be "Live in Water", HL be "Have Legs", M be "Mammals", NM be "Non-mammals".
- Apply Naïve Bayes, we have:

$$P(GB = Yes, CF = No, LIW = Yes, HL = No|M)P(M)$$

$$=P(GB = Yes|M)P(CF = No|M)P(LIW = Yes|M)P(HL = No|M)P(M)$$

$$= \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{7}{20} = 0.021$$

$$P(GB = Yes, CF = No, LIW = Yes, HL = No|N)P(N)$$

$$=P(GB = Yes|N)P(CF = No|N)P(LIW = Yes|N)P(HL = No|N)P(N)$$

$$= \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} \times \frac{13}{20} = 0.0027$$

• As P(GB = Yes, CF = No, LIW = Yes, HL = No|M)P(M) > P(GB = Yes, CF = No, LIW = Yes, HL = No|N)P(N), it is mammals.

#### K-Nearest Neighbors

• Compute the Euclidean distance between each training data point and the test point, and find the 3-nearest neighbors.

| ID | Speed | Agility | Draft | Speed (Test) | Agility (Test) | Distance |
|----|-------|---------|-------|--------------|----------------|----------|
| 1  | 2.5   | 6       | No    | 6.75         | 3              | 5.202163 |
| 2  | 3.75  | 8       | No    | 6.75         | 3              | 5.830952 |
| 3  | 2.25  | 5.5     | No    | 6.75         | 3              | 5.147815 |
| 4  | 3.25  | 8.25    | No    | 6.75         | 3              | 6.309715 |
| 5  | 2.75  | 7.5     | No    | 6.75         | 3              | 6.020797 |
| 6  | 4.5   | 5       | No    | 6.75         | 3              | 3.010399 |
| 7  | 3.5   | 5.25    | No    | 6.75         | 3              | 3.952847 |
| 8  | 3     | 3.25    | No    | 6.75         | 3              | 3.758324 |
| 9  | 4     | 4       | No    | 6.75         | 3              | 2.926175 |
| 10 | 4.25  | 3.75    | No    | 6.75         | 3              | 2.610077 |
| 11 | 2     | 2       | No    | 6.75         | 3              | 4.854122 |
| 12 | 5     | 2.5     | No    | 6.75         | 3              | 1.820027 |
| 13 | 8.25  | 8.5     | No    | 6.75         | 3              | 5.700877 |
| 14 | 5.75  | 8.75    | Yes   | 6.75         | 3              | 5.836309 |
| 15 | 4.75  | 6.25    | Yes   | 6.75         | 3              | 3.816084 |
| 16 | 5.5   | 6.75    | Yes   | 6.75         | 3              | 3.952847 |
| 17 | 5.25  | 9.5     | Yes   | 6.75         | 3              | 6.670832 |
| 18 | 7     | 4.25    | Yes   | 6.75         | 3              | 1.274755 |
| 19 | 7.5   | 8       | Yes   | 6.75         | 3              | 5.055937 |
| 20 | 7.25  | 5.75    | Yes   | 6.75         | 3              | 2.795085 |

• Among the 3-nearest neighbors, 2 of them with "Draft = No" and 1 with "Draft = Yes". So, based on majority voting, we classify the test point as "Draft = No".

#### K-Means Clustering

• Find the distances between each data point with the 2 centroids  $c_1 = (4, 2)$  and  $c_2 = (2, 1)$ :

| Data Point | А        | В        | С        | D        |
|------------|----------|----------|----------|----------|
| x1         | 2        | 6        | 1        | 3        |
| x2         | 3        | 1        | 2        | 0        |
| DC1        | 2.236068 | 2.236068 | 3        | 2.236068 |
| DC2        | 2        | 4        | 1.414214 | 1.414214 |
| Cluster    | 2        | 1        | 2        | 2        |

- Re-compute the centroids using the current cluster memberships
  - New 1st centroid:

$$x_1 = 6$$

$$x_2 = 1$$

• New 2nd centroid:

$$x_1 = (2+1+3)/3 = 2$$
  
 $x_2 = (3+2+0)/3 = 1.66667$ 

#### K-Means Clustering

• Find the distances between each data point with the 2 centroids  $c_1 = (6,1)$  and  $c_2 = (2,1.666667)$ :

| Data Point | А        | В        | С        | D        |
|------------|----------|----------|----------|----------|
| x1         | 2        | 6        | 1        | 3        |
| x2         | 3        | 1        | 2        | 0        |
| DC1        | 4.472136 | 0        | 5.09902  | 3.162278 |
| DC2        | 1.333333 | 4.055175 | 1.054092 | 1.943651 |
| Cluster    | 2        | 1        | 2        | 2        |

- As the cluster memberships remain the same, the cluster centers also remain the same.
  - New 1st centroid:

$$x_1 = 6$$
  
 $x_2 = 1$ 

New 2nd centroid:

$$x_1 = 2$$
  
 $x_2 = 1.66667$ 

Also, the algorithm converges.

# Perceptron

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | T | 0 | $\Delta w_1$ | $w_1$ | $\Delta w_2$ | <i>W</i> <sub>2</sub> | $\Delta \theta$ | $\theta$ |
|-----------------------|-----------------------|---|---|--------------|-------|--------------|-----------------------|-----------------|----------|
| -                     | -                     | - | - | -            | 0     | -            | -2                    | -               | 0        |
| 1                     | -2                    | 1 | 1 | 0            | 0     | 0            | -2                    | 0               | 0        |
| 0                     | -1                    | 0 | 1 | 0            | 0     | 0.5          | -1.5                  | -0.5            | -0.5     |
| 1                     | -2                    | 1 | 1 | 0            | 0     | 0            | -1.5                  | 0               | -0.5     |
| 0                     | -1                    | 0 | 1 | 0            | 0     | 0.5          | -1                    | -0.5            | -1       |
| 1                     | -2                    | 1 | 1 | 0            | 0     | 0            | -1                    | 0               | -1       |
| 0                     | -1                    | 0 | 0 | 0            | 0     | 0            | -1                    | 0               | -1       |

# Multilayer Perceptron - Round 1 - Step 1, Forward Propagation

- Inputs:  $x_1 = 1, x_2 = 0$
- Actual Output: T=1
- Weights:  $w_1 = 0.1$ ,  $w_2 = 0.1$ ,  $w_3 = 0.1$
- Biases:  $\theta_1 = -0.1$ ,  $\theta_2 = -0.1$ .
- Calculations:
  - $\sum_1 = x_1 \cdot w_1 + x_2 \cdot w_2 = 1 \cdot (0.1) + 0 \cdot (0.1) = 0.1$ Output  $(O_j)$ :  $f(\sum_1 + \theta_1) = f(0.1 - 0.1) = 0.5$
  - $\sum_2 = O_j \cdot w_3 = 0.5 \cdot (0.1) = 0.05$ Output  $(O_k)$ :  $f(\sum_2 + \theta_2) = f(0.05 - 0.1) = 0.487503$

## Multilayer Perceptron - Round 1 - Step 1, Backward Propagation

#### Calculations:

- Output  $(O_i)$ :  $f(\sum_1 + \theta_1) = f(0.1 0.1) = 0.5$
- Output  $(O_k)$ :  $f(\sum_2 + \theta_2) = f(0.05 0.1) = 0.487503$
- $\delta_k = (O_k T_k)O_k(1 O_k) = (0.487503 1)(0.487503)(1 0.487503) = -0.128044$
- New  $w_3 = \text{Old } w_3 \eta \delta_k O_j = 0.1 0.3(-0.128044)(0.5) = 0.119207$
- New  $\theta_2 = \text{Old } \theta_2 \eta \delta_k = -0.1 (0.3)(-0.128044) = -0.061587$
- $\delta_j = O_j(1 O_j)\delta_k w_{jk} = 0.5(1 0.5)(-0.128044)(0.1) = -0.003201$
- New  $w_1 = \text{Old } w_1 \eta \delta_i x_1 = 0.1 (0.3)(-0.003201)(1) = 0.100960$
- New  $w_2 = \text{Old } w_2 \eta \delta_j x_2 = 0.1 (0.3)(-0.003201)(0) = 0.1$
- New  $\theta_1 = \text{Old } \theta_1 \eta \delta_j = -0.1 (0.3)(-0.003201) = -0.099040$

# Multilayer Perceptron - Round 1 - Step 2, Forward Propagation

- Inputs:  $x_1 = 0, x_2 = 1$
- Actual Output: T = 0
- Weights:  $w_1 = 0.100960$ ,  $w_2 = 0.1$ ,  $w_3 = 0.119207$
- Biases:  $\theta_1 = -0.099040$ ,  $\theta_2 = -0.061587$ .
- Calculations:
  - $\sum_1 = x_1 \cdot w_1 + x_2 \cdot w_2 = 0 \cdot (0.100960) + 1 \cdot (0.1) = 0.1$ Output  $(O_j)$ :  $f(\sum_1 + \theta_1) = f(0.1 - 0.099040) = 0.50024$
  - $\sum_2 = O_j \cdot w_3 = 0.50024 \cdot (0.119207) = 0.059632$ Output  $(O_k)$ :  $f(\sum_2 + \theta_2) = f(0.059632 - 0.061587) = 0.499511$

## Multilayer Perceptron - Round 1 - Step 2, Backward Propagation

#### Calculations:

- Output  $(O_i)$ :  $f(\sum_1 + \theta_1) = f(0.1 0.099040) = 0.50024$
- Output  $(O_k)$ :  $f(\sum_{k=0}^{\infty} f(0.059632 0.061587) = 0.499511$
- $\delta_k = (O_k T_k)O_k(1 O_k) = (0.499511 0)(0.499511)(1 0.499511) = 0.124878$
- New  $w_3 = \text{Old } w_3 \eta \delta_k O_i = 0.119207 0.3(0.124878)(0.50024) = 0.100466$
- New  $\theta_2 = \text{Old } \theta_2 \eta \delta_k = -0.061587 (0.3)(0.124878) = -0.09905$
- $\delta_i = O_i(1 O_i)\delta_k w_{ik} = 0.50024(1 0.50024)(0.124878)(0.119207) = 0.003722$
- New  $w_1 = \text{Old } w_1 \eta \delta_i x_1 = 0.100960 (0.3)(0.003722)(0) = 0.100960$
- New  $w_2 = \text{Old } w_2 \eta \delta_i x_2 = 0.1 (0.3)(0.003722)(1) = 0.098883$
- New  $\theta_1 = \text{Old } \theta_1 \eta \delta_j = -0.099040 (0.3)(0.003722) = -0.100157$