## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(II)特許出願公開番号 特開2000-293972 (P2000-293972A)

(43)公開日 平成12年10月20日(2000.10.20)

| (51) Int.Cl. <sup>7</sup> |       | 識別記号 | FΙ      | -     | テーマコード(参考) |
|---------------------------|-------|------|---------|-------|------------|
| G11B                      | 27/00 |      | G11B    | 27/00 | D          |
|                           | 20/12 |      |         | 20/12 | •          |
| H 0 4 N                   | 5/76  |      | H 0 4 N | 5/76  | В          |
|                           | 5/928 |      |         | 5/92  | E          |
|                           | •     |      |         |       |            |

審査請求 有 請求項の数4 OL (全 19 頁)

(21)出願番号

特願2000-59720(P2000-59720)

(62)分割の表示

特願平9-219418の分割

(22)出願日

平成9年8月14日(1997.8.14)

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 石井 英宏

埼玉県所沢市花園4丁目2610番地 パイオ

二ア株式会社所沢工場内

(72)発明者 江間 祥三

埼玉県所沢市花園 4 丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 澤辺 孝夫

東京都目黒区目黒1丁目4番1号 パイオ

ニア株式会社内

最終頁に続く

## (54) 【発明の名称】 情報記録媒体

#### (57)【要約】

【課題】 オーディオ属性の異なる複数の楽曲が記録されている場合に、異なるオーディオ属性の楽曲を連続して再生する際に、各々の属性に合わせて正しくかつ円滑に再生を行うことができるような記録態様で該音楽情報が記録された情報記録媒体を提供する

【解決手段】 情報記録媒体には、相互に独立して再生されるべき複数の単位オーディオ情報と、各々が1以上の前記単位オーディオ情報と前記単位オーディオ情報の属性情報及び前記単位オーディオ情報の再生を制御するための情報からなるコントロールデータとから構成される集合オーディオ情報と、前記集合オーディオ情報に含まれる前記単位オーディオ情報の属性情報、スタートアドレス及びエンドアドレスを少なくとも記録したオーディオ集中情報と、が記録される。



【請求項1】 相互に独立して再生されるべき複数の単位オーディオ情報と、

各々が1以上の前記単位オーディオ情報と、前記単位オーディオ情報の属性情報及び前記単位オーディオ情報の 再生を制御するための情報からなるコントロールデータ とから構成される集合オーディオ情報と、

前記集合オーディオ情報に含まれる前記単位オーディオ 情報の属性情報、スタートアドレス及びエンドアドレス を少なくとも記録したオーディオ集中情報と、を記録し た情報記録媒体。

【請求項2】 前配情報配録媒体には、複数の集合オー ディオ情報が配録されており、

前記オーディオ集中情報には、それぞれの集中オーディオ情報に含まれる単位オーディオ情報の属性情報と、スタートアドレス及びエンドアドレスとが記録されていることを特徴とする請求項1記載の情報記録媒体。

【請求項3】 前記オーディオ集中情報は、前記情報記録媒体において最初に読み取られる位置に配置されることを特徴とする請求項1又は2に記載の情報記録媒体。

【請求項4】 前記単位オーディオ情報は複数のセルから構成されており、前記コントロールデータは前記セルの再生順序及び記録媒体上の記録位置に関する情報が含まれていることを特徴とする請求項1、2又は3に記載の情報記録媒体。

### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DVDに代表される映像、音声等の情報を高密度に記録可能な高密度光ディスク等の情報記録媒体の技術分野に属する。

[0002]

【従来の技術】従来は、映像、音声等の情報が配録された光ディスクとしては、いわゆるLD(Laser Disk)、CD(Compact Disk)等が広く一般化している。

【〇〇〇3】これらのLD等においては、映像情報や音声情報が、各LD等が有する再生開始位置を基準とした夫々の情報を再生すべき時刻を示す時間情報と共に記録されている。このため、記録されている情報を記録されている順序で再生する一般的な通常再生の他、例えば、CDにおいては、記録されている複数の曲のうち、聞きたい曲のみを抽出して聞いたり、再生順序をランダムに変えて聞く等の再生が可能である。

【0004】しかし、上記しり等においては、表示される映像や再生される音声について視聴者が選択技をもち、当該視聴者がそれらを選択して視聴する等のいわゆるインタラクティブな変化に富んだ再生はできないという問題点があった。

【0005】すなわち、例えば、LDに記録されている 外国映画を視聴する場合に、画面に表示されている字幕 で用いられている言語を選択して(例えば、日本語の字 (2) 特開2000-293972 (P2000-293972A)

幕と原語の字幕を選択して)表示させたり、又はCDに 記録されている音楽を聴取する場合に、その音楽の音声 を選択する(例えば、英語の歌詞で聞くか或は日本語の 歌詞で聞くかを選択する)ことができないのである。

【0006】一方、現在、上記従来のCDに対して、光ディスク自体の大きさを変えずに記憶容量を約10倍に向上させた光ディスクであるDVDについての提案や開発が盛んであるが、このDVDに対して、上記複数の字幕や複数の書語で音声等を記録しておけば、視聴者がそれを選択することにより上記インタラクティブな変化に富んだ再生を楽しむことも可能となる。

[0007]

【発明が解決しようとする課題】上記DVDにおいては、複数の音楽情報を記録する際、その音楽情報の符号化方式、サンプリング周波数、量子化ビット数、チャンネル数、エンファシスの有無、などの属性(以下、「オーディオ属性」と呼ぶ。)の異なる情報を1枚のディスク上に混在させて記録することができる。

【0008】しかし、これらオーディオ属性が異なる音 楽情報を再生する際には、再生装置がそれら異なるオー ディオ属性に対応して再生動作を行う必要がある。例え ば、音楽情報をスピーカにより出力する場合、DVD上 に記録されたオーディオ情報をデジタル/アナログ変換 し、アナログ信号としてアンプ、さらにスピーカへと供 給する必要がある。この場合、連続して再生しようとす る楽曲のサンプリング周波数が異なる場合 (例えば、1 曲目が48kHz、2曲目が96kHzなど)、再生装置は、 1曲目の再生後、2曲目のデータを受け取って始めてサ ンプリング周波数の変化に気づき、D/A変換器のクロ・ ック周波数を96kHzに変更する処理を開始すること になる。しかし、変更後の周波数に回路 (PLL回路) がロックするにはある程度の時間を要するため、周波数 の変更が2曲目の開始に間に合わず、先頭部分が正しく 再生できなくなるなどの不具合が生じうる。このような 問題は、サンプリング周波数の変更に限らず、量子化ビ ット数、エンファシスの有無の変更など、様々のオーデ ィオ属性の変更に伴って生じうる。

【0009】本発明は、以上の点に鑑みてなされたもので、その課題は、オーディオ属性の異なる複数の楽曲が記録されている場合に、異なるオーディオ属性の楽曲を連続して再生する際に、各々の属性に合わせて正しくかつ円滑に再生を行うことができるような記録態様で該音楽情報が記録された情報記録媒体を提供することにある。

[0010]

30

【課題を解決するための手段】上記の課題を解決するために、請求項1に記載の発明は、相互に独立して再生されるべき複数の単位オーディオ情報と、各々が1以上の前記単位オーディオ情報と、前記単位オーディオ情報の 50 属性情報及び前記単位オーディオ情報の再生を制御する

ための情報からなるコントロールデータとから構成され る集合オーディオ情報と、前配集合オーディオ情報に含 まれる前記単位オーディオ情報の属性情報、スタートア ドレス及びエンドアドレスを少なくとも記録したオーデ ィオ集中情報と、を有するように構成する。

【0011】上記のように構成された情報記録媒体によ れば、複数の単位オーディオ情報と、これら単位オーデ ィオ情報の属性情報及び単位オーディオ情報の再生を制 御するための情報からなるコントロールデータとから構 成される集合オーディオ情報と、この集合オーディオ情 報に含まれる単位オーディオ情報の属性情報、スタート アドレス及びエンドアドレスを少なくとも記録したオー ディオ集中情報と、が記録される。よって、オーディオ 集中情報を参照することにより、全ての単位オーディオ 情報の属性を容易且つ迅速に得ることができる。

【〇〇12】請求項2記載の発明は、請求項1記載の情 報記録媒体において、当該情報記録媒体には、複数の集 合オーディオ情報が記録されており、前記オーディオ集 中情報には、それぞれの集合オーディオ情報に含まれる 単位オーディオ情報の属性情報と、スタートアドレス及 びエンドアドレスとが記録されるように構成される。従 って、情報記録媒体を再生装置に装着すると、先ず前記 \* オーディオ集中情報が読み取られ、当該情報に基づいた 再生制御が可能となる。

【0013】請求項3記載の発明は、請求項1又は2に 記載の情報記録媒体において、前記オーディオ集中情報 は、前記情報記録媒体において最初に読み取られる位置 に配置される。従って、再生装置はこの情報を容易に取 得することができ、迅速な再生が可能となる。

【0014】請求項4記載の発明は、請求項1、2又は 3に記載の情報記録媒体であって、前記単位オーディオ 10 情報は複数のセルから構成されており、前記コントロー ルデータは前記セルの再生順序及び記録媒体上の記録位 置に関する情報が含まれるように構成される。

[0015]

【発明の実施の形態】以下に、本発明に好適な実施の形 態について説明する。なお、以下に説明する実施の形態 は、上記DVDに対して本発明を適用した実施の形態に ついて説明するものである。

【0016】なお、以下の実施の形態においては、下記 リストの左側に示した特許請求の範囲における各構成要 20 素の一例が、下記リストの右側に示した要素から失々権 成されている。

[0017]

単位オーディオ情報:トラック (PGCに対応)

集合オーディオ情報:グループ(VTSに対応)

単位属性情報

: 各VTS内のオーディオ属性情報

集合属性情報

: オーディオ集中情報中のオーディオ属性情報

## 【0018】(1)情報記録媒体の実施の形態 DVDの物理及び論理フォーマット

始めに、本発明に係る情報記録媒体の実施形態であるD VDの物理的及び論理的な構成並びにその動作につい て、図1乃至図6を用いて説明する。

【〇〇19】始めに、映像情報及び音声情報(音楽情報 も含む。以下、同じ)のDVD上における記録フォーマ ット(物理的記録フォーマット)について図1を用いて 説明する。

【0020】先ず、図1に示すように、実施形態のDV D1は、その最内周部にリードインエリアLIを有する と共にその最外周部にリードアウトエリアLOを有して おり、その間に、映像情報及び音声情報が、夫々にID (識別) 番号を有する複数のVTS (Video Title Set )3 (VTS#1乃至VTS#n)に分割されて記録 されている。ここで、VTSとは、関連する(それに含 まれる音声情報及び副映像情報の数や、仕様、対応書語 等の属性が同じ)タイトル(映画等の、製作者が視聴者 に提示しようとする一つの作品) を一まとめにしたセッ ト(まとまり)であり、より具体的には、例えば、一本 の同じ映画について、異なる言語の台詞等を有する複数 の映画が夫々にタイトルとして記録されたり、又は、同 じ映画であっても劇場版と特別版とが夫々別のタイトル として記録されたりするものである。また、VTS3が

記録されている領域の先頭には、ビデオマネージャ2が 記録される。このビデオマネージャ2として記録される 情報は、例えば、各タイトルの名前を示すメニューや、

違法コピー防止のための情報、又は夫々のタイトルにア クセスするためのアクセステーブル等、当該DVD1に 記録される映像情報及び音声情報の全体に係わる情報が 紀録されている。

【0021】-のVTS3は、コントロールデータ11 を先頭として、夫々に I D番号を有する複数の V O B 1 Oに分割されて記録されている。ここで、複数のVOB 10により構成されている部分をVOBセット (VOB S)という。このVOBセットは、VTS3を構成する 他のデータであるコントロールデータ11と、映像情報 40 及び音声情報の実体である複数のVOB10の部分とを 区別するために当該実体部分についてVOBセットとし たものである。

【OO22】VTS3の先頭に記録されるコントロール データ11には、複数のセル(セルについては後述す る。)を組合わせた論理的区分であるプログラムチェイ ンに関する種々の情報であるPGCI(Program Chain Information ) 等の情報が記録される。また、各VOB 10には、制御情報の他に映像情報及び音声情報の実体 部分(制御情報以外の映像又は音声そのもの)が記録さ

50 れる。

(4) 特開2000-293972 (P2000-293972A)

6

【0.023】更に、一のVOB10は、夫々にID番号を有する複数のセル20により構成されている。ここで、一のVOB10は、複数のセル20により完結するように構成されており、一のセル20が二つのVOB10に跨がることはない。

【0024】一のセル20は、夫々にID番号を有する 複数のVOBユニット(VOBU)30により構成され ている。ここで、VOBユニット30とは、映像情報、 音声情報及び副映像情報(映画における字幕等の副映像 の情報をいう。)のいずれか又は後述のナビパックのみ による構成される一つの単位である。

【0025】そして、一のVOBユニット30は、VOBユニット30に含まれている映像情報等を制御対象とする制御情報が格納されているナビパック41と、映像情報としてのビデオデータを含むビデオパック42と、音声情報としてのオーディオデータを含むオーディオパック43と、副映像情報としてのサブピクチャデータを含むサブピクチャパック44とにより構成されている。ここで、ビデオデータとしては映像データのみが記録され、オーディオデータとしては音声データのみが記録される。また、サブピクチャデータとしては副映像としての文字や図形等のグラフィックデータのみが記録される。なお、DVD1に記録可能な音声は8種類であり、記録可能な副映像の種類は32種類であることが規格上定められている。

【0026】また、一のVOBユニット30に対応する 再生時間(一のナビパック41と当該一のナビパック4 1に隣接するナビパック41との間に配録されているデ ・ 一夕に対応する再生時間)は、0.4秒以上の長さを有 するように配録される。

【0027】更に、一のVOBユニット30において、ナビパック41は必ずその先頭に存在するが、ビデオパック42、オーディオパック43及びサブピクチャパック44の夫々は、必ずしもVOBユニット30中に存在する必要はなく、また、存在する場合にもその数や順序は任意に設定することができる。

【0028】ここで、図1に示すビデオパック42、オーディオパック43及びサブピクチャパック44の夫々の区分を一般にパックPという。すなわち、一のVOBユニット30においては、ビデオデータ、オーディオデータ及びサブピクチャデータが、夫々パックPに分割されて記録されている。これらのパックPは、本実施の形態のDVD1上に記録情報を記録する際に用いられているMPEG2方式におけるパック処理に対応して設定される記録単位である。

【0029】更に、各パックPの先頭に配録されるパックへッダには、夫々のパックPに含まれているデータを後述の再生装置におけるトラックパッファから読み出して夫々のパッファへの入力を開始すべき再生時間軸上の読み出し開始時刻を示すSCR(System Clock Referen

ce)と呼ばれる読み出し開始時刻情報や、パックPの開始であることを示すスタートコード等が記録される。また、上記各パックPについては、通常、当該バックPを更に細分化した記録単位であるパケット毎にビデオデータ、オーディオデータ及びサブピクチャデータが記録されるが、本実施の形態におけるDVD1では、一般に一のパックPが一のパケットにより構成されている。

【0030】最後に、ナビパック41は、再生表示させたい映像又は音声等を検索するための検索情報(具体的には、当該再生表示させたい映像又は音声等が記録されているDVD1上のアドレス等)であるDSI(DataSearch Information)データ51と、DSIデータ51に基づいて検索された映像又は音声を再生表示する際の再生表示制御に関する情報であるPCI(Presentation Control Information)データ50とにより構成される。このとき、DSIデータ51及びPCIデータ50は、パケットPTとして夫々DSIパケット及びPCIパケットを構成して記録されている。

【0031】更に、一のVOBユニット30に含まれて 20 いる全てのビデオパック42は、一又は複数のGOP (Group Of Picture)により構成されている。上記GOPは、本実施の形態におけるDVD1に映像情報を記録する際に採用されている画像圧縮方式であるMPEG2 (Moving Picture Experts Group 2)方式の規格において定められている単独で再生可能な最小の画像単位である。

【0032】以上説明した図1に示す階層構造の記録フォーマットにおいて、夫々の区分は、DVD1内に記録でせる記録情報の製作者(以下、単に製作者という。) 30 がその意図に応じて自在に区分設定をして記録させるものである。これらの区分毎に後述の論理構造に基づいて再生することにより、変化に富んだ種々の再生が可能と

なるのである。

【0033】次に、図1に示す物理的な区分により記録された情報を組合わせた論理的フォーマット(論理構造)について図2を用いて説明する。なお、図2に示す論理構造は、その構造で実際にDVD1上に情報が記録されているのではなく、図2に示す論理構造で図1に示す各データ(特にセル20)を組合わせて再生するための情報(アクセス情報又は時間情報等)がDVD1上の、特にコントロールデータ11の中に記録されているものである。

【0034】説明の明確化のために、図2の下位の階層から説明していくと、上記図1において説明した物理構造のうち、複数のセル20を選択して組合わせることにより、一のプログラム60が製作者の意図に基づいて論理上構成される。このプログラム60は、後述の再生装置におけるシステムコントローラが区分を識別してコマンドによってアクセスできる最小の論理的単位でもあ

50 る。なお、このプログラム60を一又は複数個纏めたも

(5) 特開2000-293972 (P2000-293972A)

のを視聴者が自由に選択して視聴することができる最小 単位として製作者が定義することもでき、この単位をP TT (Part Of Title) という。

【0035】また、一のプログラム60が複数のセル20を選択して論理的に構成されることから、複数のプログラム60で一のセル20を用いる、すなわち、一のセル20を異なった複数のプログラム60において再生させる、いわゆるセル20の使い回しを製作者が行うことも可能となっている。

【0036】ここで、一のセル20の番号については、 当該セル20を図1に示す物理フォーマットにおいて取 り扱う際にはセルID番号として取り扱われ(図1中、 セルID#と示す。)、図2に示す論理フォーマットに おいて取り扱う際には後述のPGCI中の記述順にセル 番号として取り扱われる。

【0037】次に、複数のプログラム60を組合わせて ーのPGC (Program Chain) 61が製作者の意図に基 づいて論理上構成される。このPGC61の単位で、前 述したPGCIが定義され、当該PGCIには、夫々の プログラム60を再生する際の各プログラム60毎のセ ル20の再生順序(この再生順序により、プログラム6 0毎に固有のプログラム番号が割当てられる。)、夫々 のセル20のDVD1上の記録位置であるアドレス、-のプログラム60における再生すべき先頭セル20の番 号、各プログラム60の再生方式及び各種コマンド (P GC61又はセル20毎に製作者が指定可能なコマン ド) が含まれている。なお、PGCIのDVD1上の配 録位置は、上述の通りコントロールデータ11(図1参 照)内であるが、当該PGCIがビデオマネージャ2内。 のメニューに関するPGCIである場合には、当該PG CIの配録位置は、ビデオマネージャ2に含まれるコン トロールデータ (図4参照) 内である。

【0038】また、一のPGC61には、上記PGCIの他に、実体的な映像及び音声等のデータがプログラム60の組合わせとして(換言すれば、セル20の組合わせとして)含まれることとなる。

【0039】更に、一のPGC61においては、上記のプログラム60における説明において示したセル20の使い回し(すなわち、異なるPGC61により、同一のセル20を用いること。)も可能である。また、使用するセル20については、DVD1に記憶されている順番にセル20を再生する方法(連続配置セルの再生)の他に、DVD1に記憶されている順序に関係なく再生する(例えば、後に記録されているセル20を先に再生する等)方法(非連続配置セルの再生)を製作者が選択することができる。

【0040】次に、一又は複数のPGC61により、一のタイトル62が論理上構成される。このタイトル62は、例えば、映像情報で言えば映画一本、音楽情報で言えばアルパム1枚に相当する単位であり、製作者がDV

D1の視聴者に対して提供したい完結した情報である。 【OO41】そして、一又は複数のタイトル62により、一のVTS63が論理上構成される。このVTS63に含まれるタイトル62は、夫々に共通の属性を有するものであり、例えば、一本の同じ映画に対する違う言語の映画、1人の音楽アーチストによる複数のアルバムがなどが夫々のタイトル62に相当することとなる。

【0042】また、図2に示す一のVTS63に相当する情報は、図1に示す一のVTS3に含まれている情報 10 に対応している。すなわち、DVD1には、図2に示す VTS63内に論理上含まれる全ての情報が一のVTS 3として魏めて記録されていることとなる。

【0043】以上説明した論理フォーマットに基づいて、物理構造において区分された情報を製作者が指定することにより、視聴者が見るべき映像又は音楽が形成されるのである。

【0044】以上説明したような種々の階層の情報を記録する必要があるため、上述の記録フォーマットを有する記録情報は、上記DVD1のように、一本の映画を記録する他に、当該映画に対応する音声又は字幕等について、複数種類の言語の音声又は字幕をも同一の光ディスクに記録することが可能な大きな記憶容量を有する情報記録媒体に特に適している。

## 【0045】<u>オーディオ</u>DVDの内容

上述のようにDVD上には、ビデオ情報、文字情報、オ ーディオ情報などを混在させて記録することができる。 DVDに映画などを記録する場合には、映画のビデオ情 報と、これに対応するオーディオ情報が対になって記録 され、さらに必要に応じて字幕などがサブビクチャ情報 30 として記録される。これに対し、DVD上にCDのよう にオーディオ情報のみを記録する場合があり、その場合 DVD上には基本的にビデオ情報は記録されない (以 下、このようなDVDを「オーディオDVD」と呼 ぶ。)。この場合、より具体的には、図1に示すVOB ユニット30は、ナビパック41と、複数のオーディオ パック43から構成され、ビデオパック、サブピクチャ パックは基本的に含まれない(但し、選曲や曲紹介のた めの文字情報や宣伝などのための若干のビデオ情報が含 まれることはありうる)。本発明は特にオーディオ情報 40 に関連するため、以下の実施形態ではDVDにはオーデ ィオ情報のみが記録されているものとする。

【0046】実施態様の詳細を説明する前に、オーディオDVD上のオーディオ情報の記録態様について大まかに説明しておく。オーディオDVDはCDに比べて記録容量がかなり大きく、1枚のDVD内に複数のCDに相当する音楽情報を記録することができる。オーディオDVD上で、1枚のCDに相当するようなオーディオ情報のまとまりを「グループ」と呼ぶことにする。例えば、ビートルズの複数のオリジナルアルバムを集めたオーディオDVDがあるとする。この場合、当該オーディオD

(6)

VD中には、"レット・イット・ビー"、"アビーロー ド"などの複数(例えば4枚)のアルバムが含まれてい る。この個々のアルバムに対応するオーディオ情報が個 々のタイトルセット (VTS3、図1参照) として記録 される。例えば、"レット・イット・ビー"がVTS# 1に記録され、"アビーロード"がVTS#2に記録さ れるという具合である。従って、この場合、各アルパム に対応するオーディオ情報のまとまりそれぞれが「グル ープ」に対応する。

【0047】上記の例では1枚のアルバムが1つのグル 一プに対応しているが、この他にあるテーマに基づいて 集められたオーディオ情報のまとまりによりグループを 構成することができる。例えば、上記のDVD上に複数 のオリジナルアルバムの他に、ジョンレノンがリードボ 一カルをとる曲を集めた「ジョンレノン・ボーカル集」 (例えばVTS#5とする)、或いは「ポールマッカー トニー・ボーカル集」(例えばVTS#6とする)とい うような曲集が記録されるとすると、この各々も「グル ープ」を構成し、それぞれ1つのVTSに対応する。但 し、この場合、実際の曲は上記複数のオリジナルアルバ ムに属する曲が再生されるだけであり、DVD上のオー ディオ情報としては上記複数のオリジナルアルバム中の 曲がVTS#5、#6内に重複して記録されるわけでは ない。従って、VTS#5、#6内の情報としては、V TS#1、#2などに記録されたオーディオ情報のアド レスや属性などの再生制御情報のみが記録され、曲の再 生は当該制御情報を参照してVTS#1、#2に属する 実体的なオーディオ情報により行うことになる。なお、 上記のようにあるテーマなどに基づいて作成されたオー ディオ情報の集まり(OO集など)を「コレクション」 とも呼ぶ。よって、「コレクション」とは、自身とは異 なるグループ(VTS)に記録された実体的情報を含む グループであるということもできる。

【0048】また、「グループ」は、ユーザが認識する 曲のまとまりに対応すると考えることができる。前述の 例では、1枚のDVDに4枚のオリジナルアルバムと、 2つのコレクションが記録されている。この場合、当該 DVDに添付される内容リストとしては、合計6枚の異 なるアルバムが含まれていることになる。実際には、2 つのコレクションの実体的情報は4枚のオリジナルアル バムに含まれる曲により構成され、実体的オーディオ情 報が里複して記録されているわけではないが、ユーザは そのような事情は認識せず、6枚の異なるアルバムが1 枚のDVDに記録されていると認識する。従って、DV D上の実体的オーディオ情報の記録状態に拘わらず、グ ループをユーザが認識する曲のまとまりと考えることが できる。

## 【〇〇49】 オーディオ属性情報

次に、DVD上の記録情報のうち、特に本発明に関係す るオーディオ属性情報について説明する。オーディオ属

性情報とは、DVD上に記録されるオーディオ情報の属 性、具体的には、符号化方式、サンプリング周波数、量 子化ビット数、チャンネル数、エンファシスの有無など をいう。本発明においては、オーディオ属性情報は、図 1に示す下位階層の階層から順に、オーディオパック4 3内、各VTS3中のコントロールデータ11内、及 び、ビデオマネージャ2中のコントロールデータ内にそ れぞれ記録される。以下、これらについて詳細に説明す

【0050】前述のように、オーディオ情報はオーディ オパック43内に記憶されるが、オーディオ属性情報 は、先ずオーディオパック43内に記録される。図3に オーディオパック内の情報の構成を示す。オーディオ情 報のタイプとしては、圧縮されたオーディオデータが記 録される場合と、圧縮されていないオーディオデータが 記録される場合があるが、ここでは非圧縮のオーディオ データ(リニアPCM方式)の場合を例示する。即ち、 図3は、オーディオデータのタイプ (符号化方式) がり ニアPCMである場合のオーディオパック43の内容を 20 示す。

【0051】図示のように、オーディオパック43は、 パックヘッダ64とオーディオパケットAPTにより構 成される。パックヘッダ64には各パックP内のデータ の再生時の制御情報である読み出し開始時刻情報や、パ ックPの開始であることを示すスタートコードなどが配 録される。また、オーディオパケットAPTは、当該オ ーディオパック43に含まれるデータがオーディオデー タであることを示す情報等を含むパケットヘッダ65 と、当該オーディオパック43に含まれるオーディオデ ータが圧縮されているオーディオデータであるか、又は 本リニアPCM方式の如く圧縮されていないオーディオ データであるか等を示す情報を含むサブストリームID 情報66と、オーディオフレーム数情報等が記述されて いるオーディオフレーム情報67と、を有する。 【0052】さらに、オーディオパック43は、当該オ

ーディオパック43に含まれているオーディオデータの 属性に関する情報であるオーディオ属性情報 6 8 を有す る。このオーディオ属性情報68は、リニアPCM方式 オーディオデータの場合、サンプリング周波数及び量子 40 化ビット数、オーディオデータとして含まれているチャ ンネル数(一のスピーカから出力されるオーディオデー タにより一のチャンネルが構成されており、例えば、左 と右のスピーカから出力されるべきオーディオデータを 含む場合には、チャンネル数は「2」となる。)、当該 オーディオデータのエンファシスの有無等の情報であ る。オーディオパック43は、さらに音声情報としての **実体部分であって複数のオーディオフレームAFにより** 構成されているオーディオデータ 43 a を有する。上記 の構成において、オーディオパック43のうち、上記パ

50 ックヘッダ64以外の部分がオーディオパケットAPT

を構成する。

【0053】また、オーディオ属性情報は、各VTS内 のコントロールデータ11内にも配録される。図4に、 コントロールデータ11内のオーディオ属性情報12を 示す。このように、全てのVTSについて、そのコント ロールデータ11内に当該VTS内に含まれるオーディ オ情報の属性情報が記録される。このオーディオ属性情 報12の例を図5に示す。オーディオ属性情報として は、図5に示すように、オーディオ情報の符号化方式1 5h、マルチチャンネル情報15i、オーディオタイプ 15j、アプリケーションタイプ15k、量子化ビット 数15m、サンプリング固波数15n、チャンネル数1 5 o、エンファシスの有無 1 5 p などが含まれる。符号 化方式15hは、ドルビー(登録商標)AC3、リニア PCMなどの符号化方式を規定し、オーディオタイプ1 5 j はそのオーディオ情報に言語(歌詞など)が含まれ ているか否かを規定する。アプリケーションタイプ15 kは、その音声情報がマルチチャンネルである場合のそ れらの用途を示し、カラオケ、サラウンドなどを含む。 また、量子化ビット数15m、サンプリング周波数15 nは、それぞれ当該オーディオ情報の符号化における量 子化ビット数、サンプリング周波数を示す。また、チャ ンネル数150は、そのオーディオ情報のチャンネル数 を示し、エンファシスの有無15pはそのオーディオ情 報においてエンファシスがオンされているか否かを示 す。

【0054】さらに、オーディオ属性情報は、ビデオマ ネージャ2中のコントロールデータ内に、オーディオ集 中情報の一部として記録される。図6に、オーディオ集・ 中情報の例を示す。図6から分かるように、ビデオマネ ージャ2中のコントロールデータ11内のオーディオ集 中情報13は、各VTS内のコントロールデータ11内 に記述されるオーディオ管理情報の集合であるというこ とができる。図6の例では、このDVDは3つのグルー プを有し、この各グループがそれぞれVTSに対応す る。前述のようにグループはCDなどのアルバム1枚に 相当し、ユーザからは3枚の異なるアルバムが1枚のD VDに記録されていると認識される。また、トラックは 曲に対応する。なお、図6のグループ3は、上述のコレ クションに相当するグループである。つまり、見かけ上 グループ1、2とは異なるアルバムとしてユーザに認識 されるが、実体的にはグループ1、2に含まれる実体的 オーディオ情報の集合により構成されている。

【0055】オーディオ集中情報13の内容には、さら に各トラックのスタートアドレス及びエンドアドレスが 含まれる。これらはDVD上の絶対アドレスである。さ らに、オーディオ属性情報として、前述の各VTS内の コントロールデータ11に配録されるオーディオ属性情 報12のうち、少なくともサンプリング周波数、量子化 ビット数、チャンネル数、エンファシスの有無など、当

該オーディオ情報の再生に必要不可欠な属性情報が含め られる。オーディオ集中情報には、さらに再生時間管理 などのための、各トラックの再生時間及び各グループ毎 の再生時間が記録される。

【0056】前述のように各グループ(VTS)毎に、 オーディオ属性情報12がコントロールデータ11内に 記録されており、これを参照することにより各グループ 内の曲の再生を行うことができるのであるが、これらオ ーディオ属性情報12を取得するためには、各VTS3 10 内のコントロールデータ11にアクセスし、その内容を 読み出さなければならない。ここで、DVDではグルー プ(VTS)毎に異なる属性のオーディオ情報を記録す ることができるので、異なるグループに属し、それゆえ 属性の異なる複数の曲が連続して再生されることがあ る。このような状況は、先ず、ユーザが手動の選択によ り、異なるグループ内の曲を選択した場合に生じる。ま た、図6のグループ3の如きコレクションと呼ばれるグ ループの再生時にも起こる。コレクションでは、各トラ ックの実体的オーディオ情報は複数のグループに属し、 20 オーディオ属性の異なるトラックが混在しているのが一

般的だからである。

【0057】従って、このような場合、サンプリング周 波数、量子化ビット数などのオーディオ属性が変化する ため、再生装置がこれに対応するための時間が必要とな る。オーディオ集中情報13がビデオマネージャ2内に 用意されていないとすると、ある曲の再生後に続けて異 なるオーディオ属性のトラックを再生する場合、そのト ラックが含まれるグループに対応するVTS内のオーデ ィオ属性情報をサーチし、次の曲に対応する曲の属性を 30 取得するまで、再生装置には属性が変化することはわか らない。従って、次の曲へのサーチ及びトラックジャン プ(即ち、ピックアップの移動)が比較的短時間で終了 する場合には、再生装置が属性の変化を認識し、D/A 変換器の周波数の変更などの処理を完了する前に次の曲 の再生が開始し、曲の先頭が正しく再生できないという 不具合が生じうる。通常、再生装置側は周波数の変更な ど設定変更の完了をDVDの読取を制御するコントロー ラに報告する構成にはなっていないため、このような問 題が生じる可能性は高い。

【0058】そこで、上述のように、本発明ではさらに 各VTSのコントロールデータ11内のオーディオ管理 情報を集め、これをオーディオ集中情報13に含めてビ デオマネージャ2内に記述しておく。そして、DVDが 再生装置にセットされた段階でビデオマネージャ2内の オーディオ集中情報13を読み取り、システムコントロ 一ラ中のメモリなどに配憶しておく。これにより、コレ クション再生の場合など、異なるオーディオ属性のトラ ックが連続的に再生される時には、オーディオ集中情報 中のオーディオ属性情報を参照すれば、次に再生すべき 50 曲のオーディオ属性を事前に知ることができる。これに

特開2000-293972 (P2000-293972A) (8)

14

より、上記のような問題を回避することができる。な お、再生装置の実際の処理については、後述する。

#### (II) 記録装置の実施の形態

次に、上述のオーディオ属性情報を含むオーディオ集中 情報をDVD1に記録するための記録装置の実施の形態 について、図フを用いて説明する。始めに、本実施形態 の記録装置の構成について説明する。

【0059】図7に示すように、実施の形態に係る記録 装置S1 は、オーディオソース70と、メモリ71と、 信号処理部72と、ハードディスク装置73及び74 と、コントローラフ5と、多重器76と、変調器77 と、記録手段としてのマスタリング装置78とにより構 成されている。

【〇〇6〇】次に、動作を説明する。

【0061】オーディオソース70には、DVD1に記 録すべきオーディオ情報の索材である記録情報Rが夫々 の情報毎に一時的に配録されている。そして、オーディ オソース70に一時的に記録された記録情報Rは、信号 処理部72からの要求により信号処理部72に出力され

【0062】信号処理部72は、オーディオソース70 から出力された記録情報RをA/D変換し、更に必要に 応じて圧縮処理を施し、オーディオ信号Srとして出力 する。出力されたオーディオ信号Srはハードディスク 装置73に一時的に配憶される。

【0063】これらと並行して、メモリフ1は、上記記 録情報Rの再生を制御するための制御情報(図1におけ る、ビデオマネージャ2、コントロールデータ11及び ナビパック41並びに夫々のオーディオパック43を構 成するためのパックヘッダ等の各制御情報等)が記載さ れたキューシートSTに基づき予め入力された当該制御 情報を一時的に配憶し、信号処理部フ2からの要求に基 づいて制御情報信号Siとして出力する。

【0064】信号処理部72は、オーディオソース70 から出力された上記タイムコードTt及びメモリフ1か ら出力される制御情報信号Siに基づき、タイムコード Ttを参照して上記オーディオ信号Srに対応するアク セス情報信号Sacを生成して出力し、当該アクセス情報 Sacがハードディスク装置フ4に一時的に配憶される。 以上の処理が記録情報R全体について行われる。

【0065】記録情報Rの全てについて上記の処理が終 了すると、コントローラフ5は、ハードディスク装置フ 3からオーディオ信号 Sr を読み出すとともにハードデ ィスク装置フ4からアクセス情報信号Sacを読み出し、 これらに基づいて付加情報Daを生成し、付加情報信号 Sa としてハードディスク装置74に記憶する。本実施 形態におけるオーディオ集中情報13の具体的な内容 は、各グループ (VTS) 毎にDVDの製作者により予 め決定され、ハードディスク74に記憶されている。そ して、信号処理部フ2の制御により、オーディオ集中情

報13及びオーディオ属性情報12は付加情報Daに含 められる。即ち、オーディオ情報68(図3参照)は各 オーディオパック内に記録される情報として付加情報D aに含められ、オーディオ属性情報12(図4参照)は 各VTS3内のコントロールデータ11に記録される情 報として付加情報Da内に含められる。さらに、オーデ イオ集中情報13(図6参照)は、ビデオマネージャ2 内に記録される情報として付加情報Da内に含められ る。

【0066】一方、コントローラ75は、上記信号処理 10 部72、ハードディスク装置73及び74の夫々の動作 の時間管理を行い、ハードディスク装置フ4から読み出 した付加情報Daに対応する付加情報信号Sa出力すると 共に、オーディオ信号Srと付加情報信号Saとを時間軸 多重するための情報選択信号Sccを生成して出力する。 【0067】その後、オーディオ信号Srと付加情報信 号Saはハードディスク装置73又は74から読み出さ れ、コントローラ75からの情報選択信号Sccに基づ き、多重器76により時間軸多重されて情報付加多重信 20 号Sapとして出力される。この情報付加多重信号Sapの 段階では、記録すべき情報は、コントローラフ5の情報 選択信号Sccを用いた切り換え動作によって制御情報と オーディオ情報とが合成され、図1及び図4に示す物理 構造(物理フォーマット)となっている。また、各オー ディオパック43は、図3に示す構造となっている。 【〇〇68】その後、変調器ファは、出力された情報付 加多重処理信号Sapに対してリードソロモン符号等のエ

ラー訂正コード(ECC)の付加及び8-16変調等の 変調を施してディスク記録信号Smを生成し、マスタリ 30 ング装置78に出力する。

【0069】最後に、マスタリング装置78は、当該デ ィスク記録信号Sm を光ディスクを製造する際のマスタ (抜き型)となるスタンパディスクに対して記録する。 そして、このスタンパディスクを用いて図示しないレプ リケーション装置により、一般に市販されるレプリカデ ィスクとしての光ディスクが製造される。

【0070】以上のようにして、オーディオ属性情報6 8がオーディオパック43内に含められ、オーディオ属 性情報12が各VTS内のコントロールデータ11に含 40 められ、さらに、オーディオ集中情報 1 3 がビデオマネ ージャ2内に含められたDVDが作成される。

### (III) 再生装置の実施の形態

次に、上記の記録装置S1によりDVD1に記録された 情報を再生するための再生装置の実施の形態を、図8及 び図9を用いて説明する。

【0071】図8に示すように、実施の形態に係る再生 装置S2は、ピックアップ80と、復調訂正部81と、 ストリームスイッチ82及び84と、トラックパッファ 83と、システムバッファ85と、デマルチプレクサ8

50 6と、VBV (Video BufferVerifier ) バッファ87

16

のである。

【0077】連続的に復調信号Schが入力されるストリームスイッチ84は、デマルチプレクサ86における分離処理において、後段の各種バッファがオーバーフローしたり、逆に空になってデコード処理が中断することがないように、システムコントローラ100からのスイッチ信号Ssw2により開閉が制御される。

【0078】一方、トラックパッファ83と並行して復調信号Schnが入力されるシステムパッファ85は、DV D1をローディングしたときに最初に検出され、DVD1に記録されている情報全体に関する管理情報(ビデオマネージャ2等)又はVTS3毎のコントロールデータ11を蓄積して制御情報Scとしてシステムコントローラ100に出力すると共に、再生中にナビパック41毎のDSIデータ51を一時的に蓄積し、システムコントローラ100に制御情報Scとして出力する。

【0079】ストリームスイッチ84を介して復調信号 Schnが連続的に入力されたデマルチプレクサ86においては、当該復調信号Schnから各パック毎にビデオデー 20 タ、オーディオデータ43a、サブピクチャデータ及びナビパック毎のPCIデータを抽出し、ビデオ信号SV、副映像信号Ssp、オーディオ信号Sad並びにPCI信号Spcとして、夫々VBVパッファ87、サブピクチャパッファ89、オーディオパッファ92及びPCIパッファ94に出力する。

【0080】このとき、デマルチプレクサ86は、各パック(オーディオパック43を含む。)及びパケット(オーディオパケットAPTを含む。)からパックヘッダ64及びパケットヘッダ65等を抽出し、夫々に含ま 30 れる情報をヘッダ信号Shdとしてシステムコントローラ100に出力する。このヘッダ信号Shdには、デマルチプレクサ86において分離されたオーディオパック43のパックヘッダ64、パケットヘッダ65、サブストリームID情報66、オーディオフレーム情報67、オーディオデータ情報68等が含まれている。

【0081】また、オーディオ信号Sadには、図3に示す形態のオーディオパック43に分割されたオーディオデータ43aが含まれており、各オーディオパック43には、図3に示すようなオーディオフレームAFが複数40 個含まれている。

【〇〇82】ビデオ信号Sマが入力されるVBVパッファ87は、FIFOメモリ等により構成され、ビデオ信号Sマを一時的に蓄積し、ビデオデコーダ88に出力する。VBVパッファ87は、MPEG2方式により圧縮されているビデオ信号Sマにおける各ピクチャ(図2参照)毎のデータ量のばらつきを補償するためのものである。そして、データ量のばらつきが補償されたビデオ信号Sマがビデオデコーダ88に入力され、MPEG2方式により復調が行われて復調ビデオ信号Sマdとして混合

50 器 9 1 に出力される。

と、ビデオデコーダ88と、サブピクチャバッファ89と、サブピクチャデコーダ90と、混合器91と、オーディオバッファ92と、オーディオデコーダ93と、PCIパッファ94と、PCIデコーダ95と、ハイライトバッファ96と、ハイライトデコーダ97と、入力部98と、ディスプレイ99と、システムコントローラ100と、ドライブコントローラ101と、スピンドルータ102と、スライダモータ103とにより構成されている。なお、図8に示す構成は、再生装置S2の構成のうち、映像及び音声の再生に関する部分のみを記載したものであり、ピックアップ80及びスピンドルモータ102並びにスライダモータ103等をサーボ制御するためのサーボ回路等は従来技術と同様であるので、記載及び細部説明を省略する。

【〇〇72】次に、動作を説明する。

【〇〇73】ピックアップ80は、図示しないレーザダイオード、ビームスプリッタ、対物レンズ、光検出器等を含み、DVD1に対して再生光としての光ビームBを照射すると共に、当該光ビームBのDVD1からの反射光を受光し、DVD1上に形成されている情報ピットに対応する検出信号Spを出力する。このとき、光ビームBがDVD1上の情報トラックに対して正確に照射されると共に、DVD1上の情報記録面で正確に焦点を結ぶように、図示しない対物レンズに対して従来技術と同様の方法によりトラッキングサーボ制御及びフォーカスサーボ制御が施されている。

【0074】ピックアップ80から出力された検出信号 Spは、復調訂正部81に入力され、復調処理及び誤り 「新正処理が行われて復調信号Schが生成され、ストリー 「おここと ムスイッチ82及びシステムパッファ85に出力される。

【0075】復期信号Schが入力されたストリームスイッチ82は、ドライブコントローラ101からのスイッチ信号Ssw1によりその開閉が制御され、閉のときには、入力された復調信号Schmをそのままスルーしてトラックバッファ83に出力する。一方、ストリームスイッチ82が開のときには、復調信号Schmは出力されず、不要な情報(信号)がトラックバッファ83に入力されることがない。

【〇〇76】復調信号S伽が入力されるトラックバッファ83は、FIF〇(First In First Out)メモリ等により構成され、入力された復調信号S伽を一時的に記憶すると共に、ストリームスイッチ84が閉とされているときには、記憶した復調信号S伽を連続的に出力する。トラックバッファ83は、MPEG2方式における各GOP毎のデータ量の差を補償すると共に、インターリーブドユニットIUに分割されたデータの読み取りの際等に、上記のシームレス再生におけるトラックジャンプに起因して不連続に入力される復調信号S伽を連続的に出力し、当該不連続による再生の中断を解消するためのも

(10) 特開2000-293972 (P2000-293972A)

18

【0083】一方、副映像信号Sspが入力されるサブピクチャパッファ89は、入力された副映像信号Sspを一時的に蓄積し、サブピクチャデコーダ90に出力する。サブピクチャバッファ89は、副映像信号Sspに含まれるサブピクチャデータ44を、当該サブピクチャデータ44に対応するビデオデータ42と同期して出力するためのものである。そして、ビデオデータ42との同期が取られた副映像信号Sspがサブピクチャデコーダ90に入力され、復調が行われて復調副映像信号Sspdとして混合器91に出力される。

【0084】ビデオデコーダ88から出力された復調ビデオ信号Svd及びサブピクチャデコーダ90から出力された復調副映像信号Sspd(対応する復調ビデオ信号Svdとの同期が取れている。)は、混合器91により混合され、最終的な表示すべき映像信号Svpとして図示しないCRT(Cathod Ray Tube )等の表示部に出力される

【OO85】オーディオ信号Sadが入力されるオーディ オパッファ92は、FIFOメモリ等により構成され、 入力されたオーディオ信号Sadを一時的に蓄積し、オー ディオデコーダ93に出力する。オーディオバッファ9 2は、システムコントローラ100から出力されるヘッ ダ制御信号Shcに基づいて、オーディオ信号Sadを対応 する映像情報を含むビデオ信号Sv 又は副映像信号Ssp に同期して出力させるためのものであり、対応する映像 情報の出力状況に応じてオーディオ信号Sadを遅延させ る。そして、対応する映像情報と同期するように時間調 整されたオーディオ信号 Sadは、オーディオデコーダ 9 3に出力され、システムコンドローラ!30から出力さ れるヘッダ制御信号Shcに基づいて、リニアPCM方式 における再生処理が施されて復調オーディオ信号Sadd として図示しないスピーカ等に出力される。なお、音楽 情報のみを含むオーディオDVDにおいては、映像情報 との同期処理は不要である。オーディオデコーダ93に おける処理については、後程詳述する。

【0086】所望の情報へのアクセス直後の再生等において一時的に音声を中断する(ポーズする)必要があることが検出された場合には、システムコントローラ100からポーズ信号Scaがオーディオデコーダ93に出力され、当該オーディオデコーダ93において一時的に復調オーディオ信号Saddの出力を停止する。

【0087】PCI信号Spcが入力されるPCIバッファ94は、FIFOメモリ等により構成され、入力されたPCI信号Spcを一時的に蓄積し、PCIデコーダ95に出力する。PCIバッファ94は、PCI信号Spcに含まれるPCIデータと当該PCIデータが対応するビデオデータ、オーディオデータ43又はサブピクチャデータ等とを同期させ、当該ビデオデータ、オーディオデータ43又はサブピクチャデータ等にPCIデータを適用させるためのものである。そして、PCIバッファ

94により対応するビデオデータ、オーディオデータ4 3又はサブピクチャデータ等と同期したPCI信号Spc は、PCIデコーダ95によりPCIデータに含まれる ハイライト情報が分離され、ハイライト信号Shiとして ハイライトパッファ96に出力されると共に、PCIデ ータのハイライト情報以外の部分がPCI情報信号Spc iとしてシステムコントローラ100に出力される。 【0088】ハイライト信号Shiが入力されるハイライ トパッファ96は、FIFOメモリ等により構成され、 10 入力されたハイライト信号 Shi を一時的に蓄積し、ハイ ライトデコーダ97に出力する。ハイライトバッファ9 6は、当該ハイライト情報のための映像情報が含まれて いる副映像信号Sspに対応して、ハイライト情報に対応 する選択項目(選択ボタン)の表示状態の変更が正確に 行われるための時間軸補償を行うためのバッファであ る。そして、時間軸補償が行われたハイライト信号Shi

は、ハイライトデコーダ97においてデコードされ、当該ハイライト信号Shiに含まれる情報が復調ハイライト信号Shid としてシステムコントローラ100に出力される。この復調ハイライト信号Shid の中に上記システムコントローラ100内のレジスタを設定するための情報が含まれている。

【0089】ここで、システムコントローラ100は、 当該復調ハイライト信号Shid に基づき、ハイライト情報による表示状態の変更を行うべく、上記のハイライト制御信号Schを出力することとなる。このとき、システムコントローラ100は、復調ハイライト信号Shid に含まれるハイライト情報の有効期間を示す有効期間情報に基づいて当該ハイライド情報に基づくメニュー画面等を用いた選択動作を有効とすべく、入力部98からの入力信号Sinによる選択動作を受け付けると共に、上記ハイライト制御信号Schを出力することとなる。

【0090】更に、システムコントローラ100は、システムパッファ85から入力される制御情報Sc、デマルチプレクサ86から入力されるへッダ信号Shd、システムPCIデコーダ95から入力されるPCI情報信号Spci及びリモコン等の入力部98から入力される入力信号Sinに基づき、それらの信号に対応した正しい再生を行うために上記のスイッチ信号Ssw2、ストリーム選40 択信号Slc、ヘッダ制御信号Shc、ポーズ信号Sca、ハイライト制御信号Schを出力すると共に、再生装置S2の動作状況等を表示するために表示信号Scbを液晶表示装置等のディスプレイ99に出力する。

【0091】更にまた、システムコントローラ100は、上記DSI情報信号Sdsi等により、シームレス再生のためにサーチ等のトラックジャンプの処理が必要であることを検出したときには、ドライブコントローラ101に対して、当該トラックジャンプの処理に対応するシームレス制御信号Scslを出力する。

50 【0092】そして、シームレス制御信号Scsl が入力

20

されたドライブコントローラ101は、スピンドルモータ102又はスライダモータ103に対して駆動信号Sd を出力する。この駆動信号Sdにより、スピンドルモータ102又はスライダモータ103は、光ビームBが再生すべきDVD1上の記録位置に照射されるようにピックアップ2を移動させる(図8破線矢印参照)と共に、DVD1の回転数をCLV(Constant Linear Velocity:線速度一定)制御する。これと並行して、ドライブコントローラ101は、ピックアップ2が移動中であり復調訂正部81から復調信号Scmが出力されないときには、シームレス制御信号Scmが出力されないときには、シームレス制御信号Scmが出力されかときまスイッチ82を開とすると共に、復調信号Scmが出力され始めると、ストリームスイッチ82を開成して復調信号Scmをトラックバッファ83に出力する。

【0093】次に、本発明に特に関連するオーディオデコーダ93の構成及び動作について説明する。図9にオーディオデコーダ93の構成を示す。図示のように、オーディオデコーダ93は、デジタルフィルタなどを含む 信号処理部120と、D/Aコンパータ121と、アンプなどを含むアナログ出力回路122と、ディジタル出力回路123と、RAM124aを含むシステムマイコン124と、クロック回路125と、を備える。

【0094】システムマイコン124は、システムコントローラ100との間で制御信号Scaを交換し、クロック回路125、信号処理部120、D/Aコンバータ121、アナログ出力回路122の動作制御を行う。システムマイコン124は、内部にRAM124aを有する。RAMで24aは、システムコントローラ100から制御信号Scaとして供給されるオーディオ属性情報を一時的に記憶する。

【0095】システムマイコン124は、RAM124 a内に記憶されたオーディオ属性情報を参照し、その内 容をクロック回路125及び信号処理部120へ供給す る。具体的には、システムマイコン124は、オーディ オ属性情報中のサンプリング周波数情報をクロック回路 125へ供給する。クロック回路125は発振器を有 し、指示されたサンプリング周波数に対応するクロック 信号 fsを信号処理部120へ供給する。また、システ ムマイコン124は、オーディオ属性情報中のサンプリ ング周波数、量子化ビット数、チャンネル数、エンファ シスの有無の情報を信号処理部120へ供給し、D/A コンパータ121ヘチャンネル数情報を提供する。さら に、システムマイコンは124はアナログ出力回路12 2へ、各チャンネルの信号の増幅度などの情報を供給す る。各チャンネル毎の増幅度の情報は、オーディオ属性 情報に含めて、システムコントローラ100から供給す ることができる。

【0096】信号処理部120は、クロック回路125からのクロック信号fsを使用し、システムマイコン1

24から得た符号化方式(リニアPCM又はドルビーA C3など)、サンプリング周波数、量子化ビット数など の情報に従って、オーディオパッファ92から供給されるオーディオ信号の復号化、帯域制限などの処理を行い、更に、エンファシスの有無の情報に従ってディエンファシス処理を行い、D/Aコンパータ121へ出力する。D/Aコンパータ121は、システムマイコン124から得たチャンネル情報に従って、入力された信号をチャンネル毎に分割し、さらに各チャンネル毎のアナログ信号としてアナログ出力回路122へ出力する。アナログ出力回路122へ出力する。アナログ出力回路122は、各チャンネルの信号毎に適正な 増幅処理を施し、アナログオーディオ信号として図示しないスピーカなどへ出力する。

【0097】また、信号処理部120は、ディジタル出力回路123を介してディジタルオーディオ信号Saddを外部へ出力する。

【0098】次に、オーディオデコーダ93の再生時の 動作について説明する。次に再生すべきトラック(曲) が指定されると、再生装置S2は、ビデオマネージャ2 20 内のオーディオ集中情報13中のオーディオ属性情報を 参照し、指定されたトラックのオーディオ属性情報に従 ってオーディオデコーダ93内の動作制御を行う。ビデ オマネージャ2内のオーディオ集中情報13中には図6 に示すように各トラックの記録されているDVD上のア ドレス情報も配録されている。従って、システムコント ローラ100は、このアドレス情報(スタートアドレ ス) に基づいて、ドライブコントローラ101へ制御信 号Scslを送り、ピックアップ80を上記スタートアド \*\*\*\* ロスへ移動させる。この処理は、ユーザーによる当該ト \*\*\* 30 ラックの再生指示後直ちに開始する。即ち、上記のオー ディオデコーダ93内の制御と時間的に並行して行う。 【0099】ピックアップ80を指示されたトラックの

スタートアドレスに移動させた後、システムコントロー ラ100は、ピックアップ80を一時的に待機状態とす る。即ち、直ちに読取は開始しない。これは、上述のオ ーディオデコーダ93内のオーディオ属性の設定が終了 してから読取(トラックの再生)が行われることを確実 にするためである。システムコントローラ100及びオ ーディオデコーダ93内のシステムマイコン124がオ 40 ーディオデコーダ93内のオーディオ属性の設定を完了 するのに要する時間は、同一の再生装置ではほぼ一定で あるが、ディジタル出力回路123から出力されたディ ジタル出力信号に図示しない外部ディジタルアンプ、D Aコンパータがロックする時間は機器により変わり通常 1-2秒であり、5秒を超えることは殆ど無い。また、 ピックアップ80を指示されたトラックへ移動させるの に要する時間は、移動先トラックのDVD上の位置(移 動距離)に応じて変動する。従って、DVD上の比較的 近いアドレスヘピックアップを移動させる場合には、移

50 動が短時間で終了する。その場合、ビックアップの移動

終了後直ちに読取(再生)を開始すると、オーディオデコーダ93内のオーディオ属性の設定が完了しておらず、正しくオーディオ信号を再生することができない、若しくは先述した外部ディジタルアンプ、DAコンバータがロックしていない場合が生じうる。この理由から、システムコントローラ100は、ピックアップ80を対応するスタートアドレスに移動させた後、所定の時間Xの間待機させ、その後に読取を開始させる。オーディオデコーダ93内のオーディオ属性の設定に要する時間は、通常1秒、外部ディジタルアンプ、DAコンバータがロックする時間は1-2秒程度であり、5秒を超える

ことは殆どありえないので、ピックアップ80の待機時

間は、O. 5秒乃至5秒の間でシステムの処理速度に応

じ、DVDの機能としてユーザーが決定することができ

る。もちろんデフォルトの設定も可能である。

【0100】次に、複数のトラック(曲)の連続再生制御について、図10のフローチャートを参照して説明する。なお、図10のフローチャートの開始時には、同一のDVD上に記録されたある曲の再生が既に行われているものとする。また、図6に示すオーディオ集中情報13は、予めDVDのビデオマネージャ2から読み取られ、システムコントローラ内のメモリ100a内に記憶されている。なお、図10の動作は、主としてシステムコントローラ100及びオーディオデコーダ93内のシステムマイコン124により実行される。

【0101】先ず、システムコントローラ100が、曲の変更指示を受け取る(ステップS1)。曲の変更指示を受け取る場合は、種々の態様がある。例えば、ユーザがDVD上に記録された複数のグループのうちの一つを選択し、これを再生する場合である。例えば、図6のオーディオ集中情報を参照し、ユーザがグループ1を選択した場合、システムコントローラ100は、グループ1のトラック1からトラック6までを順に再生する。この際、トラック1からトラック2、トラック3、と順に曲の変更指示がされることになり、各トラックの再生終了時に曲変更指示がシステムコントローラ100へ与えられる。

【 O 1 O 2 】曲の変更指示がなされると、次に、システムマイコン1 2 4 は信号処理部 1 2 O に制御信号を送り、内部のディジタルフィルタによりディジタルの " O" データを D / A コンパータ 1 2 1 へ出力する (ステップ S 3)。これにより、D / A コンパータの出力アナログ信号が零レベルとなり、その結果オーディオ出力がミュートされる。

【0103】次に、システムコントローラ100は、メモリ100a内のオーディオ集中情報13を参照し、次に再生すべきトラックのオーディオ属性を取得する(ステップS5)。この場合に取得されるオーディオ属性情報は、少なくともサンプリング周波数、量子化ビット数、チャンネル数及びエンファシスの有無を含む。ま

た、システムコントローラ100は同時に次の曲のスタートアドレス及びエンドアドレスをオーディオ集中情報 13から取得する。

【0104】次に、システムコントローラ100は取得したオーディオ属性情報をオーディオデコーダ93内のシステムマイコン124へ送る。システムマイコン124は、受け取ったオーディオ属性情報を、その時点で内部のRAM124aに配憶されている、現在まで再生していたトラックのオーディオ属性情報と比較する(ステップS7)。両者が一致している場合、オーディオデコーダ93内のオーディオ属性設定の変更は不要であるので、ステップS15以下の再生処理へ移行する。

【0105】一方、両者が一致しない場合はオーディオデコーダ93内のオーディオ属性の設定変更が必要となる。よって、先ず、システムマイコン124はクロック回路125を制御してサンプリングクロックの周波数 f sの変更を指示し(ステップS9)、さらに、信号処理部120を制御して変更後のサンプリング周波数及び量子化ビット数のディジタル"0"データをD/Aコンパ20 ータ121へ出力させる指示を行う(ステップS1

1)。これにより、D/Aコンパータ121は、内部のPLL回路などによりD/A変換のためのサンプリング周波数を変更することになる。さらに、システムマイコン124は、信号処理部120を制御してエンファシスの有無の切り換え及びチャンネル数の切り換えの指示を行う(ステップS13)。これらステップS9乃至S13の処理により、オーディオデコーダ93内のオーディオ属性の変更指示が完了する。なお、オーディオデコーダ93内での実際の設定変更処理は、通常、前述のように1秒程度を要するが、機器固有の値で変化は少ない。しかし、ディジタル出力が接続される外部ディジタルアンプやDAコンパータは個々にロック時間が異なる。この時間を考慮して前記待機時間×が予め決定されている。なお、この待機時間×をユーザーがプレーヤの機能として設定することもできる。

【0106】次に、システムコントローラ100はステップS5で取得したスタートアドレスヘピックアップ80を移動させるサーチ指示をドライブコントローラ101へ発し(ステップS15)、その指示を発してからの40経過時間(サーチ時間)Tの計測を開始する(ステップS17)。次に、ピックアップの移動が完了したか否かが判断され(ステップS19)、完了すると経過上述した所定のサーチ時間Tの計測を終了する(ステップS2<sub>1</sub>

【0107】次に、システムコントローラ100は、計測されたサーチ時間Tを上述した所定の待機時間Xと比較する。サーチ時間Tが待機時間Xより大きい場合には (ステップS23:NO)、オーディオデコーダ93内のオーディオ属性変更や、外部ディジタルアンブ、DA コンパータのロックが既に完了していると見做し、当該

(13) 特開2000-293972 (P2000-293972A)

24

トラックの再生指示を発し、オーディオ出力のミュートを解除する(ステップS27)。これにより、当該トラックの再生が開始される。一方、サーチ時間Tが待機時間 X より小さい場合(ステップS23:YES)、システムコントローラ100は両者の差(X ー T)の時間だけ待機した後、当該トラックの再生指示を発する(ステップS27)。以上のようにして、曲の連続再生が実行される。

【0108】曲の連続再生において、オーディオ属性が変化する場合と変化しない場合の例を述べる。図6のオーディオ集中情報を有するDVDの再生において、ユーザがグループ1のトラック1から6を順に再生するように指示したとすると、各トラックの再生終了時にシステムコントローラ100へ次のトラックへの変更指示が与えられる。しかし、この場合、次のトラックは同一のオーディオ属性であるので、ステップS7はYESとはなり、同一のオーディオ属性で次のトラックの再生が継続する。

【0109】一方、ユーザがグループ3のトラック1から5を順に再生するように指示したとする。グループ3はコレクションのグループであるので、その中に含まれるトラックのオーディオ属性が異なる場合がある。例えば、グループ3のトラック1からトラック2へ、トラック4からトラック5へ再生が移行する時には、オーディオ属性が変化するので、ステップS7はNOとなり、オーディオデコーダ93内で新たなオーディオ属性への設定変更がなされ、その後に再生が開始される。

【0110】この場合、もしDVDのビデオマネージャ 2内にオーディオ集中情報が記録されていないとする と、ステップS5で次のトラックの属性情報を取得する 際、システムコントローラ100は内部メモリ100a 内に記憶された複数のVTS毎のコントロールデータ11の中から対応する曲が含まれるVTSのオーディオ属性情報12(図4参照)を検索し、これを参照して同様のオーディオ属性情報を取得する必要が生じる。従って、曲の変更指示を受けてからオーディオデコーダ93 内のオーディオ属性の変更が完了するまでの時間が長くなる。よって、オーディオ属性の変更完了を待たずに次の曲の再生を開始すれば曲の先頭が正しく再生できなくなる。また、オーディオ属性の変更完了を待って再生開始するとするしても、次の曲の再生開始まで相当な時間待たされることになるという問題がある。

【0111】この点、本発明によれば、オーディオ属性情報がビデオマネージャ2内にオーディオ集中情報の一部として記録されているので、これを参照することにより直ちに次の曲のオーディオ属性を取得することができ、上記のような問題を生ずることなく迅速な再生が可能となる。また、曲の変更指示があってから所定の待機時間×の間は、再生を開始しないように構成されているので、次のトラックへのビックアップの移動(サーチ)

に要する時間に拘わらずオーディオデコーダ93内のオーディオ属性の変更のための時間や、外部ディジタルアンプ、DAコンバータがロックするための時間が確保されるので、正しい再生が保証される。

<u>ビデオマネージャ内にオーディオ集中情報を有しないD</u> VDの再生

上記の説明は、ビデオマネージャ内にオーディオ集中情報が記録されているDVDの再生について説明した。しかし、オーディオ集中情報がビデオマネージャ内に記録されていない場合でも、以下の代替的方法により上記の問題を生ずることなく、迅速な再生を行うことができる。

【0112】通常、オーディオDVDが再生装置にセットされた時点でビデオマネージャ2及び各VTS内のコントロールデータ11内の情報はシステムコントローラ100内のメモリ100aに記憶される。よって、この時点で各VTS内のオーディオ属性情報12などを利用して図6に示すようなオーディオ集中情報テーブルを作成し、再生装置内のメモリに記憶しておく。具体的に

20 は、システムコントローラ100は、先ず、ビデオマネージャ2内のVTS情報を参照して各VTSの記録アドレスを取得し、そのアドレスに移動して当該VTS内のコントロールデータ11に含まれるオーディオ属性情報を取得する。そして、その内容を読み出して内部メモリ100a内に形成する。次に、当該VTS内に記録されているPTTサーチポインタから対応するPTTを構成するPGCI及びPGCを特定し、当該PTTに対応するオーディオ情報(トラック)のDVD上の記録アドレスを検出して上紀メモリ100a内に記憶する。以上の30 動作を全てのVTSに対して行うことにより、システムコントローラ100はメモリ100a内に、図6に示すような集中情報テーブルを形成する。

【0113】そして、再生の際には、曲の変更指示を受けると、各VTS内のオーディオ属性情報12ではなく、予め作成されメモリ100aに配憶されたオーディオ集中情報テーブルの内容を参照して同様の再生を行う。これにより、ビデオマネージャ内にオーディオ集中情報が記録されていないタイプのDVDを再生する場合でも、同等の効果を得ることができる。

10 【0114】なお、上記の説明において、オーディオ属性が変化する際の例として、コレクションであるグループ内のトラックの再生を例に採ったが、本発明の適用はこれには限られない。例えば、ユーザが再生する曲を1曲毎に指定する場合などにおいて、図6のグループ1内のあるトラックの再生中に、ユーザが次の曲としてグループ2内のあるトラックを指定したような場合にも、連続して再生するトラックのオーディオ属性が異なることが生じる。本発明は、このように複数のトラック(曲)が連続して再生されるあらゆる場合に適用可能である。

50 また、同一属性の曲をランダムにつないで再生、配録す

(14)特開2000-293972 (P2000-293972A)

26

る応用において、その曲間を一定にできる機能を実現し ている。

#### [0115]

【発明の効果】以上説明したように、本願発明によれ ば、複数の単位オーディオ情報と、これら単位オーディ オ情報の属性情報及び単位オーディオ情報の再生を制御 するための情報からなるコントロールデータとから構成 される集合オーディオ情報と、この集合オーディオ情報 に含まれる単位オーディオ情報の属性情報、スタートア ドレス及びエンドアドレスを少なくとも記録したオーデ ィオ集中情報と、が記録される。よって、オーディオ集 中情報を参照することにより、全ての単位オーディオ情 報の属性を容易且つ迅速に得ることができる。

#### 【図面の簡単な説明】

【図1】記録情報の物理的構造(物理フォーマット)を 示す図である。

【図2】記録情報の論理的構造(論理フォーマット)を 示す図である。

【図3】オーディオパックの構造の例を示す図である。

【図4】オーディオ属性情報及びオーディオ集中情報の 記録位置を示す図である。

【図5】VTS内のオーディオ属性情報の内容を示す図 である。

【図6】オーディオ集中情報の内容例を示す図である。

【図7】DVD記録装置の概要構成を示すブロック図で ある。

【図8】DVD再生装置の概要構成を示すブロック図で ある。

【図9】オーディオデコーダの概要構成を示すブロック 図である。

【図10】曲の連続再生時の制御を示すフローチャート である。

### 【符号の説明】

1 ... D V D

2…ビデオマネージャ

3,63...VTS

10...VOB

11…コントロールデータ

12…オーディオ属性情報

13…オーディオ集中情報

20…セル

10 30…VOBユニット

41…ナビパック

60…プログラム

61, 61A, 61B ... PGC

62…タイトル

70…オーディオソース

71…メモリ

72…信号処理部

73、74…ハードディスク装置

75…コントローラ

20 78…マスタリング装置

80…ピックアップ

83…トラックパッファ

85…システムバッファ

92…オーディオバッファ

93…オーディオデコーダ

98…入力部

99…ディスプレイ

100…システムコントローラ

101…ドライブコントローラ

B···・光ビーム

S1 …記録装置

S2 …再生装置

【図3】

【図4】



#### 【図2】



## 記録情報の論理的構造(論理フォーマット)



[図5]

12



| 符号化方式                  | 量子化ビット数      |
|------------------------|--------------|
| 000 IFINE-ACS          | 00 116ピット    |
| 010 MPEGIXIMPEGZ       | 0) 1 20E 4F  |
| 011 : MPEG2            | 10 1 24291   |
| 100 : UE PPCM          |              |
|                        | 器本化配油数       |
| マルチチャンネル情報             | 00 : 48kHz   |
| O:マルチチャンネル             | Ol 196kHz    |
| 題性情報なし                 | . 01 1 20412 |
| 1:マルチチャンネル             |              |
| 裏性情報あり                 | チャンネル数       |
|                        | 000 1 lch    |
| •                      | 001 i 2ch    |
|                        | 010 : 3ch    |
| オーディオタイプ               | 011 : 4ch    |
| 00 : 無指定               | 100 : 5ch    |
| 01 : 東語含む              | 101 : 6ch    |
|                        | f 10 : 7ch   |
| アプリケーションタイプ            | 111 : 8ch    |
| 00: 無限定                |              |
| 01:カラオケ                | エンファシスの有限    |
| 10 : <del>サラウ</del> ンド | 00:30        |
|                        | 01:有         |
|                        |              |

[図6]

13

|     | グループ | トラック | スタート<br>アドレス | エンド<br>アドレス |       | *            | ーディオ    | <b>#</b> 19 |       | 89   | 130    |
|-----|------|------|--------------|-------------|-------|--------------|---------|-------------|-------|------|--------|
| ſ   | 1_1_ |      |              |             | · _   |              | -       |             |       | 1-91 | レ再生時度  |
| 2   | 1    | 1    |              | 60000       | LPCM  | 48k,         | 16bit.  | 2ch.        | E-ON  | トラック | 7 再生時間 |
| 3   | 1    | 2    | 60001        | 70000       | LPCM  | 48k,         | 16bis.  | 2ch.        | ио-а  | トラック | 7 再史時間 |
| 4   | 1    | 8    | 70001        | 80000       | LPCM, | 48k          | _18bis. | 2ch,        | B-ON  | トラック | 7 再生時間 |
| 5   | 1    | 4    | 80001        | 90000       | LPCM  | 48k.         | 16bit   | 2ct,        | B-ON  | トラック | 7 再生時顧 |
| 6   | 1    | 5    | 90001        | 100000      | LPCM  | 48k,         | 16bit   | 2러,         | B-0N  | トラック | 7 再生時間 |
| 7   | 1    | 66   | 100001       | 110000      | LPCM. | 48k,         | 16bit   | 2ch,        | E-ON  | トラック | 7萬生時間  |
| 8   | 2    |      |              |             |       |              |         |             |       | トータル | ル再生時間  |
| 9   | 2    | 1    | 1000000      | 1010000     | LPCM, | 96k.         | 24hit,  | 3ch,        | E-OFF | トラック | 7 再生時間 |
| 10  | 2    | 2    | 1010001      | 1020000     | LPCM. | 96k          | 24bit,  | 3ch         | E-OFF | トラック | 7 再生時間 |
| 11  | 2    | 8    | 1020001      | 1030000     | LPCM, | 96k,         | 24hit.  | дсb.        | E-OFF | トラッ  | ク再生時間  |
| 12  | 2    | 4    | 1030001      | 1040000     | LPCM  | 96k          | 24hit   | 3ch,        | E-OFF |      |        |
| 13  | 3    |      |              |             | Ĭ     |              |         |             |       | トータル | レ戸生時間  |
| 14  | 3    | 1    | 60001        | 70000       | LPCM. | 480 <u>k</u> | LBbit,  | 2cb.        | B-ON  | トラック | ク再生時間  |
| 15  | 3    | 2    | 1020001      | 0000001     | LPCM. | 96k,         | 24hit,  | Sch.        | B-QYF | トラック | ク再生物質  |
| _10 | 3    | 8    | 1010001      | 1020000     | LPCM  | 96k.         | 24bit   | 8ch,        | E-OFF | トラック | ク再生時間  |
| 1.7 | 3    | 4    | 1030001      | 1040000     | LPCM. | 96k.         | 24bit   | 3ch,        | E-OFF | トラック | ク再生時間  |
| 18  | 3    | 5    | 90001        | 100000      | LPCM. | 48k.         | 16bit   | 2rh,        | E-ON  | トラッ  | ク昇生時間  |

【図9】



Da: fthuith

[図7]

# 記録装置の概要構成を示すブロック図



S

[図8]

# 再生装置の概要構成を示すブロック図



## 【図10】



## フロントページの続き

## (72)発明者 長谷川 義謹

埼玉県所沢市花園 4 丁目2610番地 パイオニア株式会社所沢工場内

(72)発明者 山本 薫

埼玉県鶴ヶ島市富士見6丁目1番1号 パイオニア株式会社総合研究所内

(72)発明者 高橋 外喜博

埼玉県川越市大字山田字西町25番地1 パイオニア株式会社川越工場内