Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет ПИиКТ

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №5 Асинхронный обмен данными с ВУ

Вариант 7587

Выполнил: Михайлов Петр Сергеевич

Группа: Р3111

Преподаватель: Остапенко Ольга Денисовна

Содержание

Задание	3
Определение функции, вычисляемой программой	
1. Текст исходный программы	4
2. Описание программы	6
3. Расположение в БЭВМ программы, исходных данных и результатов Err not defined.	or! Bookmark
4. Область представления	7
5. Область допустимых значений	7
Грассировка программы	8
Заключение	10

Задание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный вывод данных с ВУ-3
- 2. Программа начинается с адреса $0BE_{16}$. Размещаемая строка находится по адресу $5E6_{16}$.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР0: ДЛИНА АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ..., где ДЛИНА 16 разрядное слово, где значащими являются 8 младших бит.
- 5. Вывод строки начинается со вывода количества символов (1 байт), и должен быть завершен по выводу их необходимого количества.

Определение функции, вычисляемой программой

1. Текст исходный программы

Адрес	Код команды	Мнемоника	Комментарии					
0BE	05E6	_	Res - Ссылка на ячейку данных					
0BF	00XX	-	Count - Оставшееся количество символов					
0C0	0200	CLA	Очистить аккумулятор: $0 \Rightarrow AC$					
0C1	AEFD	LD (IP-3)	Загружаем ячейку count					
0C2	1207	IN 7	Ожидание действия					
0C3	2F40	AND #040						
0C4	F0FD	BEQ (IP-3)						
0C5	1306	OUT 6	Вывод длины слов на ВУ-3					
0C6	1207	IN 7	Ожидание действия					
0C7	2F40	AND #040	Проверка сигнала готовности					
0C8	F0FD	BEQ (IP-3)	Если нет сигнала, то спин-луп					
0C9	AEF7	LD (IP-9)	Загружаем младшие 8 бит первого слова					
0CA	1306	OUT 6	Выводим их на ВУ-3					
0CB	AEF6	LD (IP-10)	Загружаем переменную count из аккумулятора					
0CC	0740	DEC	Уменьшаем count на 1					
0CD	EEF4	ST (IP-12)	Сохраняем переменную count					
0CE	7F00	CMP #0	Сравниваем count с нулем					
0CF	F00C	BEQ (IP+12)	Если count = 0, переходим к остановке					

0D0	1207	IN 7	Ожидание действия					
0D1	2F40	AND #040	Проверка сигнала готовности					
0D2	F0FD	BEQ (IP-3)	Если нет сигнала, то спин-луп					
0D3	AAED	LD (IP-19)+	Загружаем вторые 8 бит слова и делаем инкремент в следующую ячейку					
0D4	0680	SWAB	Обмен байтов слова					
0D5	1306	OUT 6	Выводим на ВУ-3					
0D6	AEEA	LD (IP-22)	Выгружаем значение count					
0D7	0740	DEC	Уменьшаем count на 1					
0D8	EEE8	ST (IP-24)	Сохраняем значение count					
0D9	7F00	CMP #0	Сравниваем count с нулем					
0DA	F00C	BEQ (IP+1)	Если count = 0, переходим к остановке					
0DB	CEEA	JUMP (IP-22)	Возвращаемся к чтению младшего байта слова					
0DC	AEE1	LD (IP-31)	Выгружаем адрес					
0DD	6F02	SUB #02	Сдвигаем адрес в исходное положение					
0DE	EEDF	ST (IP-33)	Сохраняем изначальное значение адреса					
0DF	AEDF	LD (IP-33)	Выгружаем значение count					
0E0	4F04	ADD #04	Возвращаем count в исходное состояние					
0E1	EEDD	ST (IP-35)	Сохраняем count					
0E2	0100	HLT	Останов					

5E6	CAE8	_	Ячейка данных
5E7	D4C0	_	Ячейка данных

2. Код программы на Ассемблере

```
0x0BE
ADDR: WORD $STRING; Ссылка на ячейку данных
count: WORD 4 ; Оставшееся количество символов
START:
CLA
IN 7
                      ; Ожидание действия
AND #0x40
BEQ START
LD count
OUT 6
                      ; Вывод длины слов на ВУ-3
S1: IN 7
                      ; Ожидание действия
  AND #0x40
                       ; Проверка сигнала готовности
  BEQ S1
                      ; Если нет сигнала, то спин-луп
  OUT 6
                    ; Выводим их на ВУ-3
  LD count
                       ; Загружаем переменную count из аккумулятора
  DEC
                       ; Уменьшаем count на 1
  ST count
                       ; Сохраняем переменную count
  CMP #0
                      ; Сравниваем count с нулем
  BEQ STOP POINT ; Если count = 0, переходим к остановке
S2: IN 7
                       ; Ожидание действия
  AND #0x40
BEQ S2
                       ; Проверка сигнала готовности
                      ; Если нет сигнала, то спин-луп
  LD (ADDR)+
                      ; Косвенная адресация, загружаем вторые 8 бит слова и
делаем инкремент в следующую ячейку
                          ; Обмен байтов слова
  SWAB
  OUT 6
                      ; Выводим на ВУ-3
  LD count
                      ; Выгружаем значение count
  DEC
                      ; Уменьшаем count на 1
  ST count
                      ; Сохраняем значение count
                  ; Сравниваем count с нулем
  CMP #0
  BEQ STOP_POINT ; Если count = 0, переходим к остановке
                   ; Возвращаемся к чтению младшего байта слова
 JUMP S1
STOP POINT:
LD ADDR
                             ; Выгружаем адрес
SUB #2
                     ; Сдвигаем адрес в исходное положение
ST ADDR
                            ; Сохраняем изначальное значение адреса
LD count
                      ; Выгружаем значение count
ADD #4
                      ; Возвращаем count в исходное состояние
ST count
                       ; Сохраняем count
HLT
                            ; Останов
ORG 0x5E6
STRING:
WORD 0xCAE8
              ; Слово ШКАФ в ISO-8859-5: E8 CA CO D4
WORD 0xD4C0
```

3. Описание программы

Слово ШКАФ в ISO-8859-5: E8 CA C0 D4

Слово ШКАФ в UTF-8: D0 A8 D0 9A D0 90 D0 AF Слово ШКАФ в UTF-16: A8 04 9A 04 90 04 AF 04

Программа осуществляет посимвольный асинхронный вывод данных из памяти на ВУ-3. Программа будет считывать символы из памяти до тех пор, пока не будет достигнута общая длина строк, которую мы указываем заранее. Тогда программа прекратит свое выполнение.

4. Область представления

res — 11-разрядная ячейка со ссылкой на результат. count — 16-разрядная ячейка, у которой значащие младшие 8 бит. 5Еб - ? — 16-разрядные ячейки, хранящие в себе по два символа в кодировке ISO-8859-5.

5. Область допустимых значений

res \in [0x5E6; 0x7FF] -2¹⁵ $< count < 2^{15} - 1$

Хранимый в памяти символ: [00; FF]

Адрес первого элемента массива равен 0x5E6 по условию. Т.к. 2047 - 1510 = 537 -количество ячеек, которые могут использоваться для хранения результата => 537*2 = 1047 -максимально возможное количество хранимых символов (т.к. в данной кодировке символ занимает 1 байт) => Кол-во хранимых символов $\in [1;1047]$.

6. Расположение в памяти данных

0C0 – 0D9 – команды 5E6 - ? – исходные данные

Трассировка программы

	пняемая ианда	Содержимое регистров процессора после выполнения команды							Ячейка, содержимое которой изменилось после выполнения команды			
Адрес	Код команд ы	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Новый код
0C0	0200	0C0	0000	000	0000	000	0000	0000	000	0100		
0C1	1207	0C2	1207	0C1	1207	000	00C1	0000	000	0100		
0C2	2F40	0C3	2F40	0C2	0040	000	0040	0000	000	0100		
0C3	F0FC	0C0	F0FC	0C3	F0FC	000	FFFC	0000	000	0100		
0C4	AEFA	0C5	AEFA	0BF	0004	000	FFFA	0004	000	0000		
0C5	1306	0C6	1306	0C5	1306	000	00C5	0004	000	0000		
0C6	1207	0C7	1207	0C6	1207	000	00C6	0000	000	0000		
0C7	2F40	0C8	2F40	0C7	0040	000	0040	0000	000	0100		
0C8	F0FD	0C6	F0FD	0C8	F0FD	000	FFFD	0000	000	0100		
0C9	A8F4	0CA	A8F4	5E6	D0CA	000	FFF4	D0CA	000	1000		
0CA	1306	0CB	1306	0CA	1306	000	00CA	D0CA	000	1000		
0CB	AEF3	0CC	AEF3	0BF	0004	000	FFF3	0004	000	0000		
0CC	0740	0CD	0740	0CC	0740	000	00CC	0003	000	0001		
0CD	EEF1	0CE	EEF1	0BF	0003	000	FFF1	0003	000	0001	0BF	0003
0CE	7F00	0CF	7F00	0CE	0000	000	0000	0003	000	0001		
0CF	F00C	0D0	F00C	0CF	F00C	000	00CF	0003	000	0001		
0D0	1207	0D1	1207	0D0	1207	000	00D0	0040	000	0001		
0D1	2F40	0D2	2F40	0D1	0040	000	0040	0040	000	0001		
0D2	F0FD	0D3	F0FD	0D2	F0FD	000	00D2	0040	000	0001		
0D3	AAEA	0D4	AAEA	5E6	D0CA	000	FFEA	D0CA	000	1001	0BE	05E7
0D4	0680	0D5	0680	0D4	0680	000	00D4	CAD0	000	1001		
0D5	1306	0D6	1306	0D5	1306	000	00D5	CAD0	000	1001		
0D6	AEE8	0D7	AEE8	0BF	0003	000	FFE8	0003	000	0001		
0D7	0740	0D8	0740	0D7	0740	000	00D7	0002	000	0001		
0D8	EEE6	0D9	EEE6	0BF	0002	000	FFE6	0002	000	0001	0BF	0002
0D9	7F00	0DA	7F00	0D9	0000	000	0000	0002	000	0001		
0DA	F001	0DB	F001	0DA	F001	000	00DA	0002	000	0001		
0DB	CEEA	0C6	CEEA	0DB	00C6	000	FFEA	0002	000	0001		
0C6	1207	0C7	1207	0C6	1207	000	00C6	0040	000	0001		
0C7	2F40	0C8	2F40	0C7	0040	000	0040	0040	000	0001		
0C8	F0FD	0C9	F0FD	0C8	F0FD	000	00C8	0040	000	0001		
0C9	A8F4	0CA	A8F4	5E7	C9C0	000	FFF4	C9C0	000	1001		
0CA	1306	0CB	1306	0CA	1306	000	00CA	C9C0	000	1001		
0CB	AEF3	0CC	AEF3	0BF	0002	000	FFF3	0002	000	0001		
0CC	0740	0CD	0740	0CC	0740	000	00CC	0001	000	0001		
0CD	EEF1	0CE	EEF1	0BF	0001	000	FFF1	0001	000	0001	0BF	0001
0CE	7F00	0CF	7F00	0CE	0000	000	0000	0001	000	0001		
0CF	F00C	0D0	F00C	0CF	F00C	000	00CF	0001	000	0001		

0D0	1207	0D1	1207	0D0	1207	000	00D0	0040	000	0001		
0D1	2F40	0D2	2F40	0D1	0040	000	0040	0040	000	0001		
0D2	F0FD	0D3	F0FD	0D2	F0FD	000	00D2	0040	000	0001		
0D3	AAEA	0D4	AAEA	5E7	C9C0	000	FFEA	C9C0	000	1001	0BE	05E8
0D4	0680	0D5	0680	0D4	0680	000	00D4	C0C9	000	1001		
0D5	1306	0D6	1306	0D5	1306	000	00D5	C0C9	000	1001		
0D6	AEE8	0D7	AEE8	0BF	0001	000	FFE8	0001	000	0001		
0D7	0740	0D8	0740	0D7	0740	000	00D7	0000	000	0101		
0D8	EEE6	0D9	EEE6	0BF	0000	000	FFE6	0000	000	0101	0BF	0000
0D9	7F00	0DA	7F00	0D9	0000	000	0000	0000	000	0101		
0DA	F001	0DC	F001	0DA	F001	000	0001	0000	000	0101		
0DC	0100	0DD	0100	0DC	0100	000	00DC	0000	000	0101		

Заключение

В ходе выполнения данной лабораторной работы я познакомился с асинхронным обменом данных с ВУ и ассемблером БЭВМ.