Origins and losses of parasitism an analysis of the phylogenetic tree of life with a parsimony-like algorithm

Abstract

Anmerkung: Alle Figures richtig beschriften. Generell: Alle Figure captions sollten selbsterklärend sein. Sprich, ich sollte nur die Caption (normalerweise auch unter dem Bild) lesen und nicht den Rest das Papers und dann trotzdem verstehen können, was eigentlich passiert ist und - hilfreich - auch warum das relevant ist. (Bernhard)

Contents

1	Intr	oduct	ion	5	
2	Met	thods		8	
	2.1	Get da	ta - Properties of real Data	9	
		2.1.1	OTL	10	
		2.1.2	GloBI	11	
		2.1.3	Countings	12	
	2.2 Metadata analysis				
		2.2.1	Transition probabilities	14	
		2.2.2	Multifurcation	15	
	2.3	Simula	tion	19	
		2.3.1	random binary tree	20	
		2.3.2	tag tree	20	
		2.3.3	multifurcate tree	22	
		2.3.4	maximum parsimony algorithms	24	
	2.4 real data analysis				
	2.5	Implen	nentation	27	
3	Results				
	3.1	Influen	ce of different parameters	28	
4	Disc	cussion	n	30	
Bi	iblios	graphy	7	31	

5	Appendices			
	5.1	Distribution of data in the taxa	32	
	5.2	Taxa table	33	

1 Introduction

This paper is about the further development of parsimony algorithms for non-binary trees, applied to the currently largest phylogeny synthesis tree of Open Tree Of Life, with the application to the ancestral state reconstruction of parasitism.

Anmerkung: Der erste Satz muss nochmal überarbeitet werden. Das Ziel / Ergebnis der Arbeit hat sich i

Anmerkung: Wir haben mehr einen Algorithmus getestet und an unserem spezifischen Problem angewendet, als viel selbst zu entwickeln. Allerdings haben wir den Fitch Algorithmus von binär auf multinär umgeschrieben.

Anmerkung: Mein Vorschlag einer Gliederung (jeweils ca. ein Absatz) (Bernhard)

- i) Motivation:
 - Was ist das große Ziel?
 Das Ziel dieser Arbeit ist die Anwendung von maximum parsiomony algorithmen auf nicht binäre Bäume und auf sehr große Datensätze. Insbesondere auf das Beispiel 'Entstehung des Parasitismus' im ganzen Eukaryotischen Tree of Life.
 - Was soll erreicht werden?
 Wir wollen vorhandene Algorithm (Sankoff/castor) auf diese Aufgabenstellung hin testen und ihre Vorhersagekraft abschätzen. Außerdem wollen wir den Fitch algorithmus für binäre Bäume auf unser Problem erweitern und mit dem Sankoff Algorithmus vergleichen.
 - Warum ist das relevant? Was könnte man dann tun?
- ii) Hintergrund:

 Was gab es in dieser Richtung bereits als ganze Ansätze oder wenn nicht, warum nicht? Woran ist es bisher gescheitert?
 Bisher wurden vorallem Algorithmen für das binäre Problem entwickelt, da man wesentlich kleinere Teilbäume betrachtet hat, von welchen man auch alle Aufspaltungen kennt. Durch die Entwicklung von OTL, eines gesamten Baum des

Lebens, ergibt sich das Problem, dass dieser bei weitem nicht binär ist.

Researchers of the phylogenies have been dealt with the ancenstral state reconstruction in the 60s. The first methods were only brute force TODO: Quelle, siehe Fitch: Camin and Sokal 1965. Next came a set of parsimony algorithms such as: Fitch-parsimony [Fit71], Wagner-parsimony [SM87]... TODO: weitere?

With more and more data, there is now the possibility to use more information to calculate the probabilities of the ancestral states. In addition to the states of the leafs, algorithms could also use branch lengths. The likelihood based algorithms came more in interest.

Our focus came with another 'data extension'. We wanted to work with the biggest phylogenetic tree that exists at this moment, which goes over all observed species. For most TODO: most? species there is no phylogeny, but only a taxonomic classification.

- Welche Grundlagen sind notwendig:
 - open tree of life: Was ist das, warum relevant und überlegen als reine Ansätze?

TODO: !!!

So the biggest 'phylogenetic tree' is a synthesis of phylogenetic trees filled with a taxonomic tree given by Open Tree of Life [HSA+15]. This tree is not binary and therefore the developed algorithms are not directly applicable.

 Algorithmen: Was gibt es? Ruhig ausführlicher als hier bereits und vor allem auch nach einer Darstellung am Ende ableiten, was für uns relevant ist. Also beschreiben, wie Methode a, b, c funktionieren und dann abwägen, was daher für Dich am relevantesten ist.

TODO: !!!

Anmerkung: GloBI und OTL in der Einleitung vorstellen. (Emanuel)

iii) Outlook/Structure of this work

In this work, we have looked at the algorithms that are generally suited to our data, to develop them further for the not binary case, and finally to compare their usability with our sythesis tree.

We have decided to consider only parsimony algorithms since we have no information on branch lengths and no other additional information like different transition probabilities of our states.

2 Methods

As initiated, we would like to apply a maximum parsimony algorithm to the entire tree of life to obtain an ancestral state reconstruction of free-living versus parasite states.

So far, these reconstructions have been made mainly on binary trees with better data availability. Therefore, we decided to use a simulation to decide how to evaluate the existing algorithms and possibly adapt them to our given problem.

Accordingly, in addition to the necessary data sets (GloBI, OTL), the chosen algorithm and the evaluation of its results, this chapter also deals with the previously performed simulation and the evaluation of the various algorithms and their parameters.

Figure 2.1 briefly outlines these relationships.

Figure 2.1: Workflow

The coming sections are thus subdivided into the following topics:

TODO: or: The resulting procedure is as follows:

- (1) Get the real tree and real data for the leaf nodes \rightarrow OTL, GloBI databases. (2) Get metadata of these for a realisite the simulation. (3) Build and run the simulation.
- (4) Evaluation of parameters for the simulation and the real problem. (5) Run the resulted algorithm on the original data. (6) Evalute and interprete results. \rightarrow Origins etc...

Figure 2.2: Workflow

2.1 Get data - Properties of real Data

For our research we need two types of data: a tree and information about the states. For the tree we decided to use Open Tree of Life (OTL), because it's the biggest available

synthesis tree.

TODO: hier referenzen zu nem paper das das bestätigt o.ä.

For the state information, we decided to use the Global biotic interaction database (GloBI). Also in this case, this is one of the largest databases and both OTL and GloBI support the OTT identification. OTT (open tree taxonomy) is a taxonomy that assigns to each species a unique id, both ancestor and now living species (internal and leaf nodes).

2.1.1 OTL

TODO: Open Tree of Life

Distribution of Taxa

- In our tree we can distinguish 28 different Taxa with the OTL taxonomic tree.
- The most of them are hardly represented. The major taxonomic groups are: ...
- Here you can see some characteristics of the Multifurcation of the tree.
 In a phylogeny, the taxonomic division of the tree is far too coarse, meaning that there

Figure 2.3: Distribution of Nodes in Rank-Cathegories

should be more subtaxa or 'unranked' nodes. But the closer we get to the root, the more the pure taxonomic tree is reflected. If the tree were binary, the taxa would have to double.

But the multipliers for some are much bigger and for others much smaller, which you can see in in figure 2.3.

Please see the appendix on page 33 for a complete table 5.2 of these data.

TODO: Was hierzu ist richtig und wichtig?

Distribution of data in the taxa

Mithilfe des taxonomischen Baums von OTL haben wir die Knoten ihren Kingdoms, Phyla und Classes zugeteilt.

Please see the appendix on page 32 for a complete table 5.1 of these data.

TODO: gibt es einen Zusammenhang zwischen Anzahl

TODO: max max height zu anzahl nodes in phylum plotten? oder mean max height oder ... (mean, min

TODO: depth...

2.1.2 GloBI

For tagging our leave nodes, we use the GloBI (Global Biotic Interactions) database. This database consists of entries of the form: species A (source) interacts with B (target). We appointed some interactions, where we know from the biological perspective that the species source or target has to be a parasite or a free-living species. These are the follow-

ing:

- free-living source: preysOn, eats, flowersVisitedBy, hasPathogen, pollinatedBy, hasParasite, hostOf
- free-living target: preyedUponBy, parasiteOf, visitsFlowersOf, pathogenOf, hasHost
- parasite source: parasiteOf, pathogenOf
- parasite target: hasParasite, hasPathogen

TODO: Interactions nochmal prüfen! Darauf basieren unsere Ergebnisse!

We build two lists: parasites and free-livings, and add the source or targets of an interaction to these.

TODO: klar? Oder Beispiel bringen? (Katze isst Maus → Katze ist Freilebend)

TODO: einige spezies nicht mit einbezogen, da sie keine OTT id haben, hier könnte man noch verbessern

TODO: You can find all interaction types here: https://github.com/jhpoelen/eol-globi-data/blob/master

With this we got ~ 51000 (distinct) freeliving species and ~ 47000 (distinct) parasite species (see section countings) TODO: ref einfügen . But we found also ~ 57000 (not distinct) source species and ~ 810000 (not distinct) target species without OTT ids. Since we currently use only OTT ids, we could not use this information.

TODO: mehr dazu in section: unknown nodes...

2.1.3 Countings

Name	Number of		
Eukaryota	241 974 internal nodes,		
	2 293 463 leaf nodes		
interactions	5 346 414		
freeliving species	51 337 (distinct)		
parasite species	47 332 (distinct)		
ightarrow unknown nodes	???		
unused possible species	57 352 (source),		
	809 993 (target)		
$Nr \ of \ Children == 1$	55 700		
	51 744 (height = 2)		
	3 956 (height > 2)		

TODO: tree, subtrees? figure dazu?

```
\frac{100}{2293463*(51337+47332)} \approx 4.3 \rightarrow only 4.3% of leaf nodes are filled with information
```

#interactions zu #Parasiten und #Freilebend \rightarrow Wieviel gibt GloBI her? (dazu noch #unused possible species, wieviele Parasiten ohne ott haben wir gefunden?) #Parasiten und #Freilebend und #Blattknoten \rightarrow Wieviele unbekannte Knoten haben wir? #Interne Knoten und #Blattknoten \rightarrow Wie stark ist die Multifurkation?

Data artifacts

Zu der Frage, warum gibt es nrChildren == 1. Es gibt tatsächlich 55700 Knoten mit nur einem Kind. Davon ist der großteil direkt vor einem Blatt (51744), aber 3956 (height > 2) sind irgendwo im Baum. Ein paar Beispiele:

Nephroselmidophyceae: (class)

https://tree.opentreeoflife.org/opentree/argus/ottol@1038762

Phrynocrinidae: (family)

https://tree.opentreeoflife.org/opentree/argus/ottol@3647979

Elaeocarpus sylvestris:

https://tree.opentreeoflife.org/opentree/argus/opentree9.1@ott166969

Was bedeutet das für unsere Analyse? Ignorieren wir die \sim 4000 internen und Zählen sie zu den Blättern, oder zählen wir alle zu den Internen oder puzzlen wir sie einzeln raus. D.h. nur die mit der Zusatzeigenschaft (height == 2) sind auch Blätter.

Es könnte aber auch Fälle geben wie: ...-O-O-O-O, dann könnte man auch einen Knoten mit höherer Höhe als Blatt zählen. Das müsste dann gelten minheight = maxheight.

```
leaf.taxa <- all.taxa[all.taxa$nr_children==0, ]
extendedLeaf.taxa <- all.taxa[all.taxa$nr_children<2 & min.height==max.
inner.taxa <- all.taxa[all.taxa$nr_children>1 | (all.taxa$nr_children==
```

TODO: macht extendedLeaf wirklich einen Sinn?

2.2 Metadata analysis

Um eine möglichst realistische Simulation zu erzeugen haben wir auf der einen Seite einige Daten gesammelt (vorheriges Kaptiel), und außerdem beeinflussende Parameter untersucht. Wir haben zwei große Arten von Parametern:

- i) Biological parameters (A result of the evolutionary process.):
 - transition probabilities
- ii) Distribution of the loss of information:
 - Loss of topology (→ mutlifurcations).
 - Unknown information about the states of some leaf nodes.

We tested the influence of these parameters on our result using our simulation.

TODO: ref zu section simulation

2.2.1 Transition probabilities

Anmerkung: Wir hätten aber maximal 2 beta-Verteilungen mit jeweils 2 Parametern und je einem eigenen Schwellenwert bei dem in die andere Verteilung gewechselt wird. Also 6 Parameter. Ich finde den Parameterraum den du bisher betrachtest zum einen nicht systematisch erfasst, zum anderen wahrscheinlich auch zu klein. Du kannst -Parameter sparenindem zu z.B die beiden Verteilungen und cut-offs symmetrisch (gespiegelt an 0.5) machst. Solltest aber meines Erachtens die Schwellenwerte freier variieren. Das können wir bis zu unserem nächsten Treffen zurückstellen und dann gemeinsam diskutieren. (Emanuel)

Das mit dem symmetrisch spiegeln geht halt nur bei maximal 40-60 Verteilungen richtig gut, danach haben brauchen eventuell eine lange Austestphase, bis ein Baum dieser Verteilung entspricht. Wenn wir allerdings dafür zwei verschiedene Schwellenwerte einführen könnte das dieses Problem eventuell ausgleichen. Das müsste ich austesten.

TODO: Kapitel tag tree hier einbinden

2.2.2 Multifurcation

Ein von den Daten beeinflusster Parameter ist die Multifurkation des Baumes, d.h. wie weit sind wir von einem binären Baum entfehrnt, was hängt mit der stärke der Multifurkation zusammen und welche Auswirkung hat sie auf unsere Fragestellung.

In Figure 2.4 haben wir die Multifurkation über den gesamten Baum abgebildet, dazu haben wir für jeden Knoten die Anzahl seiner Kinder gezählt und dies als Histogram geplottet. Subfigure 2.4b beschränkt sich hierbei nur auf die inner nodes während Subfigure 2.4a alle Knoten abbildet.

TODO: Welchen der beiden Plots wollen wir nehmen, einer genügt eigentlich:

Figure 2.4: plots of children of nodes

Wir haben verschiedene Eigenschaften der Multifurkation untersucht:

- stärke der Multifurcation in verschiedenen Subbäumen
- zusammenhang zur tiefe im Baum
- zusammenhang zu höhe im baum (max, min, mean)
- einfluss auf die vorhersage des Castor und Fitch Algorithmus (Simulation)

Poisson regression

```
glm(formula = multifurc ~ 1, family = "poisson", data = inner.taxa)
```

The intercept is $2.821>0\Rightarrow$ there is a multifunction. (Intercept: Stärke der Multifurcation) Comparing the different kingdoms, we find that multifunctionality is greater in Fungi than in Chloroplastida than in Metazoa:

```
4.0999(FungiIntercept) > -0.9132(ChloroplastidaIntercept) > -1.4320(MetazoaIntercept)
```

Wir haben außerdem drei komplexitätsstärken von Modellen verglichen bezüglich der höhe und tiefe des Baums mit dem folgenden Deviance Table:

Model	Residuals Dev	Deviance Pr
multifurc \sim kingdom	7774454	
multifurc \sim phylum	7435700	338754
multifurc \sim class	7337241	98459
multifurc \sim order	7076068	261172
multifurc \sim phylum $+$ depth	7431609	
multifurc \sim phylum $+$ max.height	7375889	55721
multifurc \sim phylum $+$ min.height	7233486	142403
$multifurc \sim phylum + mean.height$	7128318	105167
multifurc phylum * depth	7335396	
multifurc phylum * max.height	7311241	24155
multifurc phylum * min.height	7177002	134238
multifurc phylum * mean.height	7020258	156745
multifurc phylum	7435700	
multifurc phylum + mean.height	7128318	307381
multifurc phylum * mean.height	7020258	108061
multifurc \sim class $+$ depth	7334754	
multifurc \sim class $+$ max.height	7275856	58898
multifurc \sim class $+$ min.height	7144686	131170
$multifurc \sim class + mean.height$	7055313	89374

multifurc class * depth	7250759	
multifurc class * max.height	7187504	63256
multifurc class * min.height	7094933	92570
multifurc class * mean.height	6965794	129139
multifurc class	7337241	
multifurc class + mean.height	7055313	281928
multifurc class * mean.height	6965794	89518
multifurc \sim order $+$ depth	7027578	
multifurc \sim order $+$ max.height	7005424	22154
multifurc \sim order $+$ min.height	6890703	114721
multifurc \sim order $+$ mean.height	6815271	75432

```
class * depth / min/max/mean.height: Warning message: glm.fit: fitted n
order * depth / min/max/mean.height: Error: cannot allocate vector of s
```

TODO: Nur ein Ausschnitt hier und dann... You can find the whole Deviance Table in the Appendix...

Interpretation: Die Multifurkation ist sehr ungleich verteilt. Daher ist die vorhersage umso genauer umso kleinere Subtrees wir betrachten. ...

```
Model 1: multifurc ~ kingdom
Model 2: multifurc ~ phylum
Model 3: multifurc ~ class
Model 4: multifurc ~ order
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1  167222  7774454
2  167173  7435700  49  338754 < 2.2e-16 ***</pre>
```

^{*} Residuals: Fehler - wieviele Werte sind nicht gut modelliert. (umso kleiner umso besser - grün)

^{*} Deviance - Abweichung

```
3 167039 7337241 134 98459 < 2.2e-16 ***
4 166352 7076068 687 261172 < 2.2e-16 ***
```

Anmerkung: different parameters for different taxa? (Emanuel)

TODO: old Stuff:

One property of the tree is its ridge of multifurcation. For this we collected for every node its number of children (degree -1), and plottet this in an histogram, how much nodes we have for every degree. Then we tried to find a function which best discribes this behavior. In figure 2.5 is this plot shown with three functions, which came closest to this goal: $\frac{1000000000000000}{x^4}$ (magenta), $\frac{3000000000000}{x^3}$ (red) and $\frac{80000000}{x^2}$ (black).

From the biology we know, that this multifurcation is very clouded. Some parts of the tree

Figure 2.5: Histogram of multifurcations and fitting functions

are well known and others have not been very interesting for the research so far. So we also wanted to know how the multifurcations behave in some interesting subtrees.

Anmerkung: do we? Is that really universal knowledge or could it be supported by data or a citation? (Bo

2.3 Simulation

Anmerkung: Motivate the goal of the simulation (Bernhard)

- build random binary trees, tag these (parameters: parasites vs free-living, beta-distribution)
- run fitch-parsimony, wagner-parsimony, our parsimony like algorithm
- build not binary tree (poisson distribution?)
- run new algorithms
- compare trees (distances)
- i) build random binary trees
- ii) tag tree
- iii) multifurcate tree
- iv) run maximum parsimony algorithms
 - Fitch
 - Sankoff (Castor package)
 - my algorithm
- v) Evaluation

2.3.1 random binary tree

Anmerkung: Again, motivate first, why this is required and why you choose this solution (Bernhard)

To get a random binary tree, I used the Phylo package from biopython. They offer a randomized function which returns a BaseTree ¹:

```
from Bio import Phylo
  Phylo.BaseTree.Tree.randomized(number_leaf nodes)
From
                                        BaseTree
                    the
                                                                class:
 Anmerkung: trivial, does not give real info (Emanuel)
  def randomized(cls, taxa, branch_length=1.0,
        branch_stdev=None):
  """Create a randomized bifurcating tree given a list
         of taxa.
    :param taxa: Either an integer specifying the number
         of taxa to create (automatically named taxon#),
         or an iterable of taxon names, as strings.
    returns: a tree of the same type as this class.
  11 11 11
```

TODO: Zitat von BaseTree und buildTree.py

2.3.2 tag tree

Anmerkung: instead of 'tag tee' simulating stages and transitions between them (Emanuel)

At this point we want one fully tagged tree, and one less tagged tree which looks like our real data.

Let's say the first specie (the root node) was free-living (start with a parasite without a host makes no sence). For every transition from a node to his child, we take a random

¹https://github.com/biopython/biopython/blob/master/Bio/Phylo/BaseTree.py

Figure 2.6: 60% Free-living - 40% Parasites red: parasites, blue: free-living

number from the father distribution. We decided that from the biological perspective a beta distribution reflects our transition probabilities best (see Figure 2.1 TODO: ref einfügen).

Anmerkung: why is that the case and why is that from a biological perspective? (Bernhard)

Anmerkung: I'd rather say that to ensure that the parameter of the binomial distribution is restricted to the [0,1] interval, we model it... (Bernhard)

For example when our father node was free-living, then we take from the free-living beta distribution. Is the number under the threshold for beeing parasite, we get a change and tag the current node as parasite. Otherwise we tag it as free-living.

With this procedure we traverse through the tree from the root to every leaf node. A part of this code you see here:

TODO: Bessere Beschriftung, Plot neu erstellen! U.a. mit threshold

We save each tag with the associated node ID in a nodelist.

Anmerkung: simulationg loss of information (1) states (2) topology/multifurcation (Emanuel)

The real tree has much less information, we have only information from some current species (leaf nodes) and TODO: and probably negligible internal nodes.

To simulate our real tree we save for every node an empty placeholde except for some leaf nodes. There we save the tags again. The amount of these unknown information is one parameter, which we got from our real tree. Or which we can change to TODO: ...

TODO: Was hiervon gehört ind Methoden, was schon in Implementierung oder ganz woanders hin?

2.3.3 multifurcate tree

Anmerkung: simulating loss of information (Emanuel)

Another parameter is the nature and strength of the multifunction of the tree, since we do not have a binary tree in the real case. After several measurements and analyzes, which we explain in TODO: section/chapter x, Anmerkung: fit, justification (Emanuel) we decided to use a $\frac{1}{x}$ distribution, where x is the depth of a node. This means, how deaper we are, how less information we have.

We traverse through the tree and pick a random number between 0 and 1. If random number is smaller as our limit $(\frac{1}{x})$, than we forget the node and hang every child to the father node of the current node.

Anmerkung: poisson process \rightarrow fit that distribution, include depth as a predictor, see if significant (Emar

```
from numpy import random
from utilities import Helpers

def get_non_binary_tree(subtree, nodelist):
    i = 0
    while i != len(subtree.clades):
        if subtree.clades[i].is_terminal():
# is leaf node?
```

```
i += 1
      else:
        element = Helpers.find_element_in_nodelist(subtree.clades[i].name
        limit = get_limit(element[1])
        new_random = random.uniform()
# choose if we want to delete ourselve
        if new random < limit:</pre>
\# or new_random < 0.9:
          subtree.clades += subtree.clades[i].clades
# add children
          del subtree.clades[i]
# delete internal node
        else:
# if we don't deleted ourselve go on with children
          get_non_binary_tree(subtree.clades[i], nodelist)
# otherwise the children are in the current clade array
          i += 1
    return
    def get_limit(depth):
      limit = 1 - 1 / ((depth + 3) / 4)
      if limit < 0.1:
        limit = 0.1
      return limit
```

Wir lassen das Limit nicht beliebig klein werden, sondern beschränken es auf 0.1.

Figure 2.7: bla

2.3.4 maximum parsimony algorithms

Fitch maximum parsimony

Described from [COO98] + others ... - implemented for multifurcating trees

Fitch algorithm for binary trees:

Der Baum hat die folgende Struktur: Alle inneren Knoten sind leer. In den Blattknoten befindet sich entweder das Tag FL oder P, oder deren Vereinigung, wenn es sich um einen unknown node handelt.

Der Fitch Algorithmus ist aufgeteilt in drei Schritte, in welchen man jeweils durch den Baum traversiert. Schritt 1 beginnt von de Blättern aus, da sich dort zu Beginn die einzige Information befindet. Für jeden Knoten gilt, wenn seine Kinder schon Information enthalten, dann bilde die Schnittmenge der Tags und schreibe diese als Information in den aktuellen Knoten. Ist die Schnittmenge leer, dann schreibe die Vereinigung aller möglichen Tags in den Knoten. Für alle Kinder, die noch keine Information haben, führe diesen Schritt erst für diese aus. Schritt zwei geht von den Kindern der Wurzel bis zu den Vätern der Blätter. Jeder

Knoten bekommt einen zweiten Tag, der sich aus der Vereinigung des Tags des Vaterknoten und der Geschwisterknoten zusammensetzt. Ist diese leer, bekommt der Knoten wieder die Vereinigung aller Tags, also $\{FL, P\}$ als Tag.

Hier gibt es einige Möglichkeiten, wie dieser Schritt genau aussieht. 1. Version: Es wird nur der erste Tag vom Vaterknoten genutzt. Außerdem wird von den Geschwisterknoten zuerst der Schnitt gebildet, und danach vom Ergebnis nochmal mit dem Vaterknoten zusammen. (Immer wenn der Schnitt leer ist, ist das Ergebnis die Vereinigung aller Tags, also $\{FL,P\}$. Auch im folgenden...) 2. Version: Es wird nur der erste Tag vom Vaterknoten genutzt. Er wird zusammen mit den Geschwistertags genommen und direkt ein Schnitt aller Mengen gebildet. 3. Version: Es werden alle vorherigen Tags vom Vater genutzt und von diesen ein Schnitt gebildet. Das selbe gilt für die Geschwistertags. Und dann wird ein dritter Schnitt zwischend en Ergebnissen gebildet. 4. Version: Es werden alle Tags genutzt und direkt in einem Schnitt zusammengenommen.

Der Finale Schritt traversiert nochmal über den Baum und Bildet aus den zwei Tags pro Knoten einen finalen Tag, indem wieder der Schnitt der beiden Tags das Ergebnis ist.

Ich habe diese Versionen mit 100 Bäumen mit 10000 Blattknoten und der Verteilung 60% FL zu 40% P simuliert. Bei 90 % unbekannten Knoten lag Version 1 zu 89.67 %, Version 2 zu 89.67 %, Version 3 zu 90.72 % und Version 4 zu 90.74 % richtig.

How to extend Fitch for multifunction?:

Sankoff

Maximum parsimony algorithm from Sankoff implemented in the R package castor.

Figure 2.9: bla

my Algorithm

2.4 real data analysis

- Import tree
- Import interactions
- $\bullet\,$ run castor algorithm / and others?
- interprete results (leave one out)

2.5 Implementation

3 Results

3.1 Influence of different parameters

4 Discussion

Wie gut ist der randomisiert erstellte Baum?

Wie gut kommt unsere Simulation an die echte Datenlage heran.

Fehlerqoute der Daten an sich?

Wie gut ist unsere Datenlage? 3 mio knoten, 1.8 named species (leaf nodes), 200.000 leaf nodes mit Information.

Simulation von subtrees

Welche Teile des Baumes sind gut, an welchen muss noch viel geforscht werden.

Wieviele Origins haben wir gefunden, was bedeutet diese Zahl?

Parameter der Simulation:

- Wie ist die Verteilung der vergessenen internen Knoten? Zum Wurzelknoten hin mehr vergessen?
- Wie sehen die übergangswahrscheinlichkeiten aus von P→FL und andersherum?
- Verteilung Parasiten zu Freilebend zu keine Information

Selecting of the 'right' / best Distribution

Bibliography

- [Fit71] FITCH, Walter M.: Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. In: Systematic Biology 20 (1971), Nr. 4, 406-416. http://dx.doi.org/10.1093/sysbio/20.4.406. - DOI 10.1093/sysbio/20.4.406
- [HSA+15] HINCHLIFF, Cody E.; SMITH, Stephen A.; ALLMAN, James F.; BURLEIGH, J. G.; CHAUDHARY, Ruchi; COGHILL, Lyndon M.; CRANDALL, Keith A.; DENG, Jiabin; DREW, Bryan T.; GAZIS, Romina; GUDE, Karl; HIBBETT, David S.; KATZ, Laura A.; LAUGHINGHOUSE, H. D.; McTAVISH, Emily J.; MIDFORD, Peter E.; OWEN, Christopher L.; REE, Richard H.; REES, Jonathan A.; SOLTIS, Douglas E.; WILLIAMS, Tiffani; CRANSTON, Karen A.: Synthesis of phylogeny and taxonomy into a comprehensive tree of life. In: *Proceedings of the National Academy of Sciences* 112 (2015), Nr. 41, 12764-12769. http://dx.doi.org/10.1073/pnas.1423041112. DOI 10.1073/pnas.1423041112
 - [SM87] SWOFFORD, David L.; MADDISON, Wayne P.: Reconstructing ancestral character states under Wagner parsimony. In: Mathematical Biosciences 87 (1987), Nr. 2, 199 229. http://dx.doi.org/https://doi.org/10.1016/0025-5564(87)90074-5. DOI https://doi.org/10.1016/0025-5564(87)90074-5. ISSN 0025-5564

5 Appendices

5.1 Distribution of data in the taxa

Kingdom (3)	Number of Nodes	Phylum (25)	Number of Nodes	max max height
Metazoa	1 465 207	Arthropoda	1 170 539	54
		Chordata	106 650	74
		Mollusca	80 022	22
		Platyhelminthes	27 141	9
		Nematoda	24 564	23
		Cnidaria	14 878	36
		Porifera	11 737	26
		Echinodermata	10 654	14
		Bryozoa	8 631	11
		Rotifera	3 093	7
		Nemertea	1 793	7
		Tardigrada	1 654	7
		Acanthocephala	1 596	6
		Brachiopoda	1 055	9
		Nematomorpha	633	7
		Chaetognatha	360	7
		Hemichordata	196	5
		Cycliophora	11	5
Fungi	254 871	Ascomycota	157 045	19
		Basidiomycota	92 931	18
		Microsporidia	1 949	6
		Glomeromycota	1 490	6
		Chytridiomycota	1 456	6
Chloroplastida	121 239	Streptophyta	120 731	49
		Chlorophyta	508	6

5.2 Taxa table

Таха	Number of Nodes	Internal Nodes	Leaf Nodes	Terminal Leaf Nodes
domain	1	1		
kingdom	3	3		
subkingdom	2	2		
infrakingdom	5	5		
superphylum	2	2		
phylum	57	54	3	
subphylum	22	20	2	
infraphylum	2	2		
superclass	8	8		
class	209	175	34	
subclass	120	106	14	
infraclass	14	11	3	
superorder	40	37	3	
order	1014	772	242	
suborder	285	222	63	
infraorder	95	78	17	
parvorder	14	12	2	
superfamily	829	626	203	
family	8449	6143	2306	
subfamily	3090	2250	840	
supertribe	1	0	1	
tribe	1764	1285	479	
subtribe	435	359	77	
genus	164656	105452	59204	
subgenus	1266	869	397	
section	3	2	1	
subsection	1	1	0	
species group	365	288	77	
species subgroup	123	100	23	
species	2247251	7423	2239828	2228993
subspecies	22437	75	22362	22239
variety	1755	7	1748	1726
varietas	5970	19	5951	5909
forma	1181		1181	1181
no rank	954	34 719	235	7
no rank - terminal	37452	J-T	37452	37452
(no entry)	40099	40099		

extended leaf nodes (real leaf nodes)