SFWR ENG 4003

Kemal Ahmed Dr. Deza Fall 2015

Contents

_i	near	1
	Converting constraints to equalities	1
	e.g.)	2
	Graphical Method	
	Simplex Method: Maximization	2
	Simplex: Minimization	2
	e.g.)	2
	Phase Simplex	
	Phase I	
	Phase II	3
	Bland's Rule	3

Linear

Linear Program: an optimization problem in which the objective function is linear and each constraint is a linear inequality or equality

Decision variables: describe our choices that are under our control

Objective function: describes a criterion that we wish to max/minimize; doesn't have an in/equality e.g. max 40x + 30y

Constraints: describe the limitations that restrict our choices for our decision variables, always *inequalities*.

Basic variable: the variables corresponding to the identity matrix, usually have to be set to 0 **Non-basic variable**: ...not basic variables

Converting constraints to equalities

Slack variable: basic variable greater than constraint, added to turn inequalities into equalities **Surplus variable**: equation variable less than constraint, subtracted

Hyperplane: a hyperplane in R^x is a shape in R^{x-1} , e.g. line in R^2

Optimal Solution: either a maximum or minimum of the objective function based on constraints

Basic Solution: a solution which has as many slack variables as basic variables

Basic Feasible Solution: all variables are non-negative

- Unique
- obtained by setting the non-basic variables to 0

Standard form: when you take inequalities and use slack variables to turn them into equalities.

- Note: all variables need to be ≥ 0.
- All remaining constraints are expressed as equality constraints.

e.g.)

```
2x_1 + 4x_2 - x_3 - x_4 \ge 1

2x_1 + 4x_2 - x_3 - x_4 + s = 1
```

Graphical Method

- 1. Sketch the region corresponding to the system of constraints. The points inside or on the boundary of the region are the *feasible solutions*.
- 2. Find the vertices of the region.
- 3. Test the objective function at each of the vertices and select the values of the variables that optimize the objective function. For a bounded region, both a minimum and maximum value will exist. For an unbounded region, if an optimal solution exists, then it will occur at a vertex.

Simplex Method: Maximization

Simplex Method: useful for solving linear optimization problems cheaply

- Cannot be done with **strict inequalities**, i.e. when there is no possibility of being equal
- Can only work if your objective function is in standard form

Simplex Tableau: visual representation of stuff

- 1. The *basic variables* can be identified if they have a column with one row of 1 and the rest of the rows are 0's. The value of the variable is at the row with the 1.
- 2. The bottom row is going to identify the constants for the new equation. You should see 0's in the columns that are non-basic

Process:

- 1. You'll have as many slack variables as you have constraint equations.
- 2. Find the column with the "lowest z value". That column is called the **pivot column** or **entering column**.
- 3. **Minimum test**: find the row with the smallest RHS/ x_{pivot} . That row is called the **pivot row** or **departing column**. x_{pivot} must be ≥ 0
- 4. The intersection of the pivot row & column is called the **pivot point**.
- 5. If your pivot point ≠ 1, divide your row out by the value of your point
- 6. Use row operations

Simplex: Minimization

To minimize a function, we just oppositize the problem so we can use the maximization technique on it. You'll see. Just remember that we minimize [w] & maximize [z] AND minimize is (vars \geq 0), while maximize is (vars \leq 0). I'll explain using an example:

e.g.)

```
w = 0.12x_1 + 0.15x_2
60x_1 + 60x_2 \ge 300
12x_1 + 6x_2 \ge 36
10x_1 + 30x_2 \ge 90
```

1. Ignore slack variables for now. Make a matrix with just the variables you have

60	60	300
12	6	36
10	30	90
-0.12	-0.15	0

2. Find the transpose of this matrix

60	12	10	-0.12
60	6	30	-0.15
300	36	90	0

This gives us:

 $z = 300y_1 + 36y_2 + 90y_3$ $60y_1 + 12y_2 + 10y_3 \le 0.12$ $60y_1 + 6y_2 + 30y_3 \le 0.15$

 $300y_1 + 36y_2 + 90y_3 \le 0$

Notice how the x's are now y's? Yeah I know you did. Well now, since you turned this into a maximization problem, what are you waiting for? Go to the maximization section!

Phase Simplex

This is useful for when you have a mix of constraints that are maximum and minimum constraints.

Artificial Variable: since you can't have negative variables $(x_1, x_2 \ge 0)$, you can't just use a regular slack variable

Phase I

Hi

Phase II

Oh no!

Bland's Rule

Bland's Rule: a way of guaranteeing that you don't repeat going over the same variables (a cycle) by picking the smallest (or most negative) number