Teoria de la Computació

Tema 7: Indecidibilitat, no-semi-decidibilitat, no-computabilitat.

Teoria:

• Vídeos 32, 33 i 34.

Exercicis per a l'avaluació contínua:

- Clasifica como decidibles, no decidibles pero semi-decidibles, o no semi-decidibles, los siguientes conjuntos.
 - (a) $\{p|\mathcal{L}_p \text{ es finito}\}.$
 - (b) $\{p|\mathcal{L}_p \text{ es infinito}\}.$
 - (c) $\{p|M_p(p)=p\}.$
 - (d) $\{p|\exists y: M_y(p)=p\}$. DECIDIBLE
 - (e) $\{p \mid |Dom(\varphi_p)| \ge 10\}.$
 - (f) $\{p \mid |\mathsf{Dom}(\varphi_p)| \geq 0\}.$
 - (g) $\{p \mid |\text{Im}(\varphi_p)| \ge 10\}.$
 - (h) $\{p \mid |\text{Im}(\varphi_p)| \ge 0\}.$
 - $(\mathrm{i})\ \{p\mid |\mathrm{Im}(\varphi_p)|<|\mathrm{Dom}(\varphi_p)|<\infty\}.$
 - (j) $\{p \mid |\mathrm{Dom}(\varphi_p)| < |\mathrm{Im}(\varphi_p)| < \infty\}.$
 - (k) $\{p|\varphi_p \text{ es inyectiva y total}\}.$
 - (1) $\{p|\varphi_p \text{ es exhaustiva y total}\}.$
 - (m) $\{p|\varphi_p \text{ es creciente y total}\}.$
 - (n) $\{p|\varphi_p \text{ es total y estrictamente decreciente}\}.$
 - (o) $\{p|\varphi_p \text{ es inyectiva parcial}\}.$
 - (p) $\{p|\varphi_p \text{ es exhaustiva parcial}\}.$
 - (q) $\{p|\varphi_p \text{ es creciente parcial}\}.$
 - (r) $\{p|\varphi_p \text{ es estríctamente decreciente parcial}\}.$
- 2. Clasifica como decidibles, no decidibles pero semi-decidibles, o no semi-decidibles, los siguientes conjuntos.
 - (a) $\{\langle p,q\rangle|\forall z: ((M_p(z)\downarrow \land M_q(z)\uparrow)\lor (M_p(z)\uparrow \land M_q(z)\downarrow))\}.$
 - (b) $\{\langle p, z \rangle | \exists y : M_p(y) = z \}.$
 - (c) $\{\langle p, z \rangle | \exists y : M_p(y) \neq z \}.$
 - (d) $\{p \mid \mathcal{L}_p \text{ es incontextual}\}.$
 - (e) $\{p \mid \mathcal{L}_p \text{ no es incontextual}\}.$
 - (f) $\{p|\mathrm{Dom}(\varphi_p)\in\mathrm{Dec}\}.$

```
(g) \{p|\text{Dom}(\varphi_p) \notin \text{Dec}\}.
```

- (h) $\{p|\text{Dom}(\varphi_p) \not\in \text{semi} \text{Dec}\}.$
- (i) $\{p| \operatorname{Im}(\varphi_p) \in \operatorname{Dec} \}$.
- (j) $\{p|\operatorname{Im}(\varphi_p)\not\in\operatorname{Dec}\}.$
- (k) $\{p | \operatorname{Im}(\varphi_p) \in \operatorname{semi} \operatorname{Dec} \}.$
- (l) $\{p | \operatorname{Im}(\varphi_p) \not\in \operatorname{semi} \operatorname{Dec} \}$.
- (m) $\{p|p \le 100 \land Dom(\varphi_p) \in Dec\}.$
- (n) $\{p|p \ge 100 \land \mathtt{Dom}(\varphi_p) \in \mathtt{semi} \mathtt{Dec}\}.$
- (o) $\{p|\forall y>p:\varphi_y\text{ es biyectiva}\}.$
- (p) $\{p | \forall y$
- (q) $\{p | \exists y > p : \varphi_y \text{ es biyectiva}\}.$
- (r) $\{p | \exists y$
- (s) $\{p|\exists y: \mathrm{Dom}(\varphi_p)\subseteq \mathrm{Dom}(\varphi_y)\}.$
- (t) $\{p|\exists y: \mathrm{Dom}(\varphi_p) \supseteq \mathrm{Dom}(\varphi_u)\}.$
- (u) $\{p|\text{Dom}(\varphi_p)\subseteq\dot{2}\}.$
- (v) $\{p|\text{Dom}(\varphi_p) \supseteq \dot{2}\}.$
- 3. Clasifica como decidibles, no decidibles pero semi-decidibles, o no semi-decidibles, los siguientes conjuntos.
 - (a) $K \times K$.

DEC i SUMi-DEC cerados por n i U

- (b) $\bar{K} \times K$.
- (c) $\bar{K} \times \bar{K}$. DEC (ovados por complementario
- (d) $\overline{\overline{K} \times K}$.

(b)
$$f(x) = \begin{cases} 1 & \text{si } \forall n : M_n(x) \downarrow \\ \uparrow & \text{si } \not \forall n : M_n(x) \downarrow \end{cases}$$

(c) $f(x) = \begin{cases} 1 & \text{si } \exists n : M_x(n) \downarrow \\ \uparrow & \text{si } \not \exists n : M_x(n) \downarrow \end{cases}$
(d) $f(x) = \begin{cases} 1 & \text{si } \forall n : M_x(n) \downarrow \\ \uparrow & \text{si } \not \forall n : M_x(n) \downarrow \end{cases}$

9. La función característica de un conjunto ${\cal C}$ se define como:

$$\chi_C(x) = \begin{cases} 1 & \text{si } x \in C \\ 0 & \text{si } x \notin C \end{cases}$$

Demuestra que C es decidible si y solo si su función característica χ_C es computable.

- 10. Justifica si los siguientes conjuntos de parejas son funciones, y si son funciones computables.
 - (a) φ_3 .
 - (b) $\{\langle x, y \rangle | M_x(x) = y\}.$
 - (c) $\{\langle x, y \rangle | M_x(x) \leq y \}$.
 - (d) $\{\langle x, y \rangle | M_x(x) \ge y\}.$
 - (e) $\{\langle x, y \rangle | M_x(x) = M_y(y) \}.$
 - (f) $\{\langle x, y \rangle | M_x(x) \text{ para en } y \text{ pasos o más} \}$.
 - (g) $\{\langle x,y\rangle|M_x(x) \text{ para en exactamente } y \text{ pasos}\}.$
 - (h) $\{\langle x, 1 \rangle | M_x(x) \downarrow \} \cup \{\langle x, 0 \rangle | M_x(x) \uparrow \}.$
 - (i) $\{\langle x, 1 \rangle | M_x(x) \downarrow \}$.
 - (j) $\{\langle x, 0 \rangle | M_x(x) \uparrow \}$.
 - (k) $\{\langle x, y \rangle | y = |\{z | M_x(z) \downarrow\}|\}.$