Aalto University

Discrete-time optimal control CHEM-E7225 (was E7195), 2022

Francesco Corona (\neg_\neg)

Chemical and Metallurgical Engineering School of Chemical Engineering

Overview

Formulations
Simultaneous

We combine the notions on dynamic systems and simulation with the notions on nonlinear programming, to formulate a general discrete-time optimal control problem

• We understand and treat them as special forms of nonlinear programs

Formulations
Simultaneous
approach

Overview (cont.)

Consider a system f which maps an initial state vector x_k onto a final state vector x_{k+1}

ullet We also consider the presence of a control u_k that modifies the transition

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K - 1)$$

We consider transitions over a time-horizon, from time k = 0 to time k = K

$$0\cdots 1\cdots (k-1)\cdots k\cdots (k+1)\cdots (K-1)\cdots K$$

Over the time-horizon of interest, we thus have the sequences

- \rightarrow States $\{x_k\}_{k=0}^K$, with $x_k \in \mathcal{R}^{N_x}$
- \rightsquigarrow Controls $\{u_k\}_{k=0}^{K-1}$, with $u_k \in \mathcal{R}^{N_u}$

For notational simplicity, we used time-invariant dynamics f

• In general, we have $x_{k+1} = f_k(x_k, u_k | \theta_x)$

 $\begin{array}{c} {\rm CHEM\text{-}E7225} \\ 2022 \end{array}$

Formulations

Sequential approa

Overview (cont.)

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K-1)$$

The dynamics f are often derived from the discretisation of a continuous-time system

• As result of a numerical integration schemes, under piecewise constant controls

Formulation

Simultaneo approach

Sequential appro

Overview (cont.)

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K-1)$$

Given an initial state x_0 and any sequence of controls $\{u_k\}_{k=0}^{K-1}$, we know all the states

The forward simulation function determines the sequence of states $\{x_k\}_{k=0}^K$

$$f_{\text{sim}}: \mathcal{R}^{N_x + (K \times N_u)} \to \mathcal{R}^{(K+1)N_x}$$

: $(x_0, u_0, u_1, \dots, u_{K-1}) \mapsto (x_0, x_1, \dots, x_K)$

For arbitrary systems, the forward simulation map is built recursively

$$x_{0} = x_{0}$$

$$x_{1} = f(x_{0}, u_{0})$$

$$x_{2} = f(x_{1}, u_{1})$$

$$= f(f(x_{0}, u_{0}), u_{1})$$

$$x_{3} = f(x_{2}, u_{2})$$

$$= f(f(f(x_{0}, u_{0}), u_{1}), u_{2})$$

$$\cdots = \cdots$$

Overview (cont.)

Formulations
Simultaneous

$$x_{k+1} = f(x_k, u_k | \theta_x), \quad (k = 0, 1, \dots, K - 1)$$

In optimal control, the dynamics can be used as equality constraints in optimisation

In this case, the initial state vector x_0 is not necessarily known, or fixed

- It can be one of the decision variables to be determined
- Moreover, certain constraints would apply to it

Similarly, also the final state x_K can be treated as decision variable in an optimisation

Formulations Simultaneous

Overview (cont.)

Initial and terminal state constraints

We express the constraints on initial and terminal states in terms of function $r(x_0, x_K)$

$$r: \mathcal{R}^{N_x + N_x} \to \mathcal{R}^{N_r}$$

We express the desire to reach certain initial and terminal states as equality constraints

$$r\left(x_0, x_K\right) = 0$$

For fixed initial state $x_0 = \overline{x}_0$, we have

$$r\left(x_{0},x_{K}\right)=x_{0}-\bar{x}_{0}$$

For fixed terminal state $x_K = \overline{x}_K$, we have

$$r\left(x_0, x_K\right) = x_K - \bar{x}_K$$

For fixed both initial and terminal states, $x_0 = \overline{x}_0$ and $x_K = \overline{x}_K$, we have

$$r\left(x_{0}, x_{K}\right) = \begin{bmatrix} x_{0} - \bar{x}_{0} \\ x_{K} - \bar{x}_{K} \end{bmatrix}$$

Overview (cont.)

Formulations

Simultaneous approach Sequential approach

For fixed both initial and terminal states, $x_0 = \overline{x}_0$ and $x_K = \overline{x}_K$, we have

Formulations Simultaneous approach Sequential appro

Overview (cont.)

Path constraints

We can express certain constraints on arbitrary state and control values, x_k and u_k

- These constraints often represent certain technological restrictions
- They are expressed in terms of inequality constraints
- The main idea is to use them to avoid violations

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K - 1$$

For notational simplicity, we used time-invariant inequality constraint functions \boldsymbol{h}

For upper and lower bounds on the controls, $u_{\min} \leq u_k \leq u_{\max}$, we have

$$h\left(x_{k}, u_{k}\right) = \begin{bmatrix} u_{k} - u_{\max} \\ u_{\min} - u_{k} \end{bmatrix}$$

For upper and lower bounds on the states, $x_{\min} \leq x_k \leq x_{\max}$, we have

$$h\left(x_{k}, u_{k}\right) = \begin{bmatrix} x_{k} - x_{\max} \\ x_{\min} - x_{k} \end{bmatrix}$$

Overview (cont.)

Formulations

approach
Sequential approa

For upper and lower bounds on the controls, $u_{\min} \geq u_k \geq u_{\max}$, we have

Overview (cont.)

Formulations

approach
Sequential approa

For upper and lower bounds on the states, $x_{\min} \geq x_k \geq x_{\max}$, we have

 $\begin{array}{c} \mathrm{CHEM}\text{-}\mathrm{E}7225 \\ 2022 \end{array}$

Formulations

approach Sequential approach

Problem formulations

Discrete-time optimal control

Problem formulations

Formulations

We have the system dynamics and the specifications on the state and control constraints

We use them to formulate the control problem, as constrained nonlinear optimisation

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}} } E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
 subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

2022

Formulations

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The objective function, two terms

$$\sum_{k=0}^{K-1} L(x_k, u_k) + E(x_K)$$

The decision variables, two sets

$$x_0, x_1, \dots, x_{K-1}, x_K$$

 u_0, u_1, \dots, u_{K-1}

The equality constraints, two sets

$$x_{k+1} - f(x_k, u_k | \theta_x) = 0 \quad (k = 0, \dots, K - 1)$$

 $r(x_0, x_K) = 0$

The inequality constraints

$$h(x_k, u_k) \leq 0 \quad (k = 0, 1, \dots, K - 1)$$

Problem formulations (cont.)

Formulations Simultaneous approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The objective function is the sum of all stage costs $L(x_k, u_k)$ and a terminal cost $E(x_k)$

$$\underbrace{\sum_{k=0}^{K-1} L(x_k, u_k) + E(x_K)}_{f(w) \in \mathcal{R}}$$

That is,

$$L(x_0, u_0) + L(x_1, u_1) + \cdots + L(x_{K-1}, u_{K-1}) + E(x_K)$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls

The decision variables, $K \times N_u$ control and $(K+1) \times N_x$ state variables

$$\underbrace{\left(x_0, x_1, \dots, x_{K-1}, x_K\right) \cup \left(u_0, u_1, \dots, u_{K-1}\right)}_{w \in \mathcal{R}^{K \times N_u + (K+1) \times N_x}}$$

Problem formulations (cont.)

Formulations

Simultaneous approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The equality constraints, the K dynamics and the N_r boundary conditions

$$x_{k+1} - f(x_k, u_k | \theta_x) = 0 \quad (k = 0, \dots, K - 1)$$

$$r(x_0, x_K) = 0$$

$$g(w) \in \mathbb{R}^{N_g}$$

The inequality constraints

$$\underbrace{h\left(x_k, u_k\right) \le 0 \quad (k = 0, 1, \dots, K - 1)}_{h(w) \in \mathcal{R}^{N_h}}$$

Problem formulations (cont.)

Formulations

Simultaneous approach Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The discrete-time optimal control problem is a potentially very large nonlinear program

• In principle, its solution can be approached using any generic NLP solver

We discuss the two approaches used to solve discrete-time optimal control problems

- The simultaneous approach
- The sequential approach

 $\begin{array}{c} \text{CHEM-E7225} \\ 2022 \end{array}$

Formulations

Simultaneous approach

The simultaneous approach

Problem formulations

Problem formulations | Simultaneous approach

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The simultaneous approach solves the problem in the space of all the decision vars

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

Thus, there are $(K \times N_u) + ((K+1) \times N_x)$ decision variables

Problem formulations | Simultaneous approach

Formulations
Simultaneous

Sequential approa

The Lagrangian function of the problem,

$$\mathcal{L}(w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$$

The Karush-Kuhn-Tucker conditions,

$$\nabla f(w^*) + \nabla g(w^*)\lambda^* + \nabla h(w^*)\mu^* = 0$$

$$g(w^*) = 0$$

$$h(w^*) \le 0$$

$$\mu^* \ge 0$$

$$\mu_{n_h}^* h_{n_h}(w^*) = 0, \quad n_h = 1, \dots, N_h$$

If point $w^* = (x_0^*, u_0^*, \dots, x_{K-1}^*, u_{K-1}^*, x_K^*)$ is a local minimiser of the nonlinear program and if LICQ holds at w^* , there there exist two vectors, the Lagrange multipliers $\lambda \in \mathcal{R}^{N_g}$ and $\mu \in \mathcal{R}^{N_h}$, such that the Karhush-Kuhn-Tucker conditions are verified

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential appro

Problem formulations | Simultaneous approach (cont.)

Formulations

Simultaneous approach

Sequential approa

Problem formulations | Simultaneous approach (cont.)

Formulation Simultaneous approach

Sequential approx

To understand more closely the structure and sparsity properties, consider an example

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

This optimal control problem in discrete-time has no inequality constraints

• Inequality constraints are omitted for notational simplicity

The objective
$$f(w) = E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
 of the decision variables,

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to $x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$

$$r(x_0, x_K) = 0$$

We define the equality constraint function by concatenation

the equality constraint function by concatenation
$$g\left(w\right) = \begin{bmatrix} g_1\left(w\right) \\ g_2\left(w\right) \\ \vdots \\ g_{N_g}\left(w\right) \end{bmatrix}$$

$$= \begin{bmatrix} x_1 - f\left(x_0, u_0\right) \\ x_2 - f\left(x_1, u_1\right) \\ \vdots \\ x_K - f\left(x_{K-1}, u_{K-1}\right) \end{bmatrix}$$

$$r\left(x_0, x_K\right)$$

Problem formulations | Simultaneous approach (cont.)

Simultaneous approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_K) = 0$$

The Lagrangian function for equality constrained problems,

$$\mathcal{L}(w) = f(w) + \lambda^{T} g(w)$$

$$\mathcal{L}\left(w\right)=f\left(w\right)+\lambda^{T}g\left(w\right)$$
 The equality multipliers,
$$\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{K},\lambda_{N_{r}})$$

The KKT conditions,

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

After expanding the terms in the inner product, we re-write the Lagrangian function

$$\mathcal{L}(w,\lambda) = \underbrace{E(x_{K}) + \sum_{k=0}^{K-1} L(x_{k}, u_{k})}_{f(w)} + \underbrace{\left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T} (f(x_{k}, u_{k}) - x_{k+1}) + \lambda_{N_{r}}^{T} r(x_{0}, x_{K})\right)}_{\lambda^{T} g(w)}$$

Problem formulations | Simultaneous approach (cont.)

Formulation Simultaneous

Consider one of the dynamic constraints,

$$x_{k+1} - f\left(x_k, u_k\right) = 0$$

More explicitly, we have

$$\begin{bmatrix} x_{k+1}^{(1)} - f_1(x_k, u_k) \\ x_{k+1}^{(2)} - f_2(x_k, u_k) \\ \vdots \\ x_{k+1}^{(n_x)} - f_{n_x}(x_k, u_k) \\ \vdots \\ \vdots \\ x_{k+1}^{(N_x)} - f_{N_x}(x_k, u_k) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Problem formulations | Simultaneous approach (cont.)

Formulations Simultaneous

approach
Sequential approac

Consider the corresponding product with the equality multiplier,

$$\underbrace{\lambda_{k+1}^T \underbrace{\left(f\left(x_k, u_k\right) - x_{k+1}\right)}_{N_x \times 1}}_{1 \times 1}$$

More explicitly, we have

$$\underbrace{\begin{bmatrix} \lambda_{k+1}^{(1)} & \lambda_{k+1}^{(2)} & \cdots & \lambda_{k+1}^{(n_x)} & \cdots & \lambda_{k+1}^{(N_x)} \end{bmatrix}}_{1 \times N_x} \underbrace{\begin{bmatrix} x_{k+1}^{(1)} - f_1(x_k, u_k) \\ x_{k+1}^{(2)} - f_2(x_k, u_k) \\ \vdots \\ x_{k+1}^{(n_x)} - f_{n_x}(x_k, u_k) \\ \vdots \\ x_{k+1}^{(N_x)} - f_{N_x}(x_k, u_k) \end{bmatrix}}_{N_x \times 1}$$

Simultaneous approach

Problem formulations | Simultaneous approach (cont.)

Similarly, consider the boundary constraint,

$$r\left(x_0, x_K\right) = 0$$

In more detail, we have,

$$Y(x_0, x_N) = \underbrace{\begin{bmatrix} x_0^{(1)} - \overline{x}_0^{(1)} \\ x_0^{(2)} - \overline{x}_0^{(2)} \\ \vdots \\ x_0^{(N_x)} - \overline{x}_0^{(N_x)} \\ \vdots \\ x_K^{(N_x)} - \overline{x}_K^{(N_x)} \\ \vdots \\ \vdots \\ x_K^{(N_x)} - \overline{x}_K^{(N_x)} \\ \vdots \\ x_K^{(N_x)} - \overline{x}_K^{(N_x)} \end{bmatrix}}_{N_r \times 1}$$

Formulations
Simultaneous

Sequential appro

Problem formulations | Simultaneous approach (cont.)

For the product $\lambda_{N_{r}}^{T} r(x_{0}, x_{K})$ with the equality multiplier, we have

$$\underbrace{\lambda_{N_r}^T}_{1 \times N_r} \underbrace{r(x_0, x_K)}_{N_r \times 1}$$

More explicitly, we have

Simultaneous

Problem formulations | Simultaneous approach (cont.)

For the Lagrangian function for equality constrained problems, we thus have

$$\mathcal{L}(w,\lambda) = \underbrace{f(w)}_{1\times 1} + \underbrace{\begin{bmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_K & \lambda_{N_r} \\ 1\times N_x & 1\times N_x & 1\times N_x & 1\times N_r \end{bmatrix}}_{1\times ((K\times N_x)+N_r)} \underbrace{\begin{bmatrix} \underbrace{x_1 - f(x_0, u_0)}_{N_x \times 1} \\ \underbrace{x_2 - f(x_1, u_1)}_{N_x \times 1} \\ \vdots \\ \underbrace{x_K - f(x_{K-1}, u_{K-1})}_{N_x \times 1} \end{bmatrix}}_{g(w)}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

The second KKT condition,

adition,
$$x_{k+1} - f(x_k, u_k) = 0 \quad (k = 0, ..., K - 1)$$

$$r(x_0, x_K) = 0$$

The first KKT condition regards the derivative of $\mathcal L$ with respect to the primal vars w

$$w = (x_0, u_0, x_1, u_1, \dots, x_{K-1}, u_{K-1}, x_K)$$

The Lagrangian function in structural form,

$$\underbrace{E\left(x_{K}\right) + \sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) + \left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T} \left(f\left(x_{k}, u_{k}\right) - x_{k+1}\right) + \lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\lambda^{T} g(w)}}_{\mathcal{L}(w, \lambda)}$$

Formulations

Simultaneous approach

Sequential appro

Problem formulations | Simultaneous approach (cont.)

$$g(w) = 0$$

For the second KKT condition, we have

$$x_{k+1} - f(x_k, u_k) = 0$$
 $(k = 0, ..., K - 1)$
 $r(x_0, x_K) = 0$

That is,

$$\begin{bmatrix}
\underbrace{x_1 - f(x_0, u_0)}_{N_x \times 1} \\
\underbrace{x_2 - f(x_1, u_1)}_{N_x \times 1} \\
\vdots \\
\underbrace{x_K - f(x_{K-1}, u_{K-1})}_{N_x \times 1}
\end{bmatrix} = \begin{bmatrix}
\underbrace{0}_{N_x \times 1} \\
\vdots \\
\underbrace{0}_{N_x \times 1} \\
\vdots \\
\underbrace{0}_{N_x \times 1}
\end{bmatrix}$$

Formulations Simultaneous

Problem formulations | Simultaneous approach (cont.)

$$\nabla_{w}\mathcal{L}\left(w,\lambda\right)=0$$

Consider the gradient of the Lagrangian function, it is a concatenation of gradients

$$\nabla_{w}\mathcal{L}(w,\lambda) = \begin{bmatrix} \nabla_{x_{0}}\mathcal{L}(w,\lambda) \\ \nabla_{x_{1}}\mathcal{L}(w,\lambda) \\ \vdots \\ \nabla_{x_{K}}\mathcal{L}(w,\lambda) \end{bmatrix}$$
$$\nabla_{w}\mathcal{L}(w,\lambda) = \begin{bmatrix} \nabla_{u_{0}}\mathcal{L}(w,\lambda) \\ \nabla_{u_{1}}\mathcal{L}(w,\lambda) \\ \vdots \\ \nabla_{u_{K-1}}\mathcal{L}(w,\lambda) \end{bmatrix}$$

For the second KKT conditions, it is necessary to determine/evaluate the derivatives

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous approach
Sequential approach
$$\underbrace{E\left(x_{K}\right) + \sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) + \left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T}\left(f\left(x_{k}, u_{k}\right) - x_{k+1}\right) + \lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\mathcal{L}\left(w, \lambda\right)}$$

The derivatives of the Lagrangian function with respect to the state variables x_k

• For k=0, we have

$$\nabla_{x_0} \mathcal{L}\left(w, \lambda\right) = \nabla_{x_0} L\left(x_0, u_0\right) + \frac{\partial f\left(x_0, u_0\right)^T}{\partial x_0} \lambda_1 + \frac{\partial r\left(x_0, x_K\right)^T}{\partial x_0} \lambda_{N_r}$$

• For
$$k = 1, ..., K - 1$$
, we have
$$\nabla_{x_k} \mathcal{L}(w, \lambda) = \nabla_{x_k} L(x_k, u_k) + \frac{\partial f(x_k, u_k)^T}{\partial x_k} \lambda_{k+1} - \lambda_k$$

• For k = K, we have

$$\nabla_{x_K} \mathcal{L}(w, \lambda) = \nabla_{x_K} E(x_N) - \lambda_K + \frac{\partial r(x_0, x_K)^T}{\partial x_K} \lambda_{N_r}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous

Sequential appro-

Consider the generic term $\nabla_{x_k} \mathcal{L}(w, \lambda)$,

$$abla_{x_{k}}\mathcal{L}\left(w,\lambda\right) = \underbrace{\begin{bmatrix} rac{\partial\mathcal{L}\left(w,\lambda
ight)}{\partial x_{k}^{(1)}} \\ rac{\partial\mathcal{L}\left(w,\lambda
ight)}{\partial x_{k}^{(2)}} \\ \vdots \\ rac{\partial\mathcal{L}\left(w,\lambda
ight)}{\partial x_{k}^{(N_{x})}} \end{bmatrix}}_{N_{x} imes 1}$$

Problem formulations | Simultaneous approach (cont.)

Formulation

Simultaneous approach

Sequential appro

Consider the derivative of the dynamics,

$$\frac{\partial f\left(x_k, u_k\right)}{\partial x_k}$$

Remember the dynamics,

$$f(x_k, u_k) = \begin{bmatrix} f_1\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \\ \vdots \\ f_{n_x}\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \\ \vdots \\ f_{N_x}\left(x_k^{(1)}, \dots, x_K^{(N_x)}, u_k\right) \end{bmatrix}$$

Problem formulations | Simultaneous approach (cont.)

Formulation

Simultaneous approach

Sequential appr

For the derivative of the dynamics, we have

$$\frac{\partial f\left(x_{k}^{(1)}, \dots, x_{k}^{(N_{x})}, u_{k}\right)}{\partial x_{k}} = \begin{bmatrix} \frac{\partial f_{1}\left(x_{k}^{(1)}, \dots, x_{k}^{(N_{x})}, u_{k}\right)}{\partial x_{k}} \\ \vdots \\ \frac{\partial f_{n_{x}}\left(x_{k}^{(1)}, \dots, x_{k}^{(N_{x})}, u_{k}\right)}{\partial x_{k}} \\ \vdots \\ \frac{\partial f_{N_{x}}\left(x_{k}^{(1)}, \dots, x_{k}^{(N_{x})}, u_{k}\right)}{\partial x_{k}} \end{bmatrix}$$

Formulations Simultaneous

approach Sequential app

sequentiai app

Problem formulations | Simultaneous approach (cont.)

In more detail, we have

$$\frac{\partial f\left(x_{k},u_{k}\right)}{\partial x_{k}} = \underbrace{\begin{bmatrix} \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{1}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \\ \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{2}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(1)}} & \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(2)}} & \cdots & \frac{\partial f_{N_{x}}\left(x_{k},u_{k}\right)}{\partial x_{k}^{(N_{x})}} \end{bmatrix}}_{N_{x} \times N_{x}}$$

For the product with the equality multiplier, we get

$$\underbrace{\frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial x_{k}}}_{N_{x} \times N_{x}} \underbrace{\lambda_{k+1}}_{N_{x} \times 1}$$

Formulation Simultaneous

Problem formulations | Simultaneous approach (cont.)

Consider the derivatives of the boundary conditions, we have the terms

$$\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{0}}$$

$$\frac{\partial r\left(x_{0}, x_{K}\right)}{\partial x_{K}}$$

Remember the boundary constraints

$$r(x_0, x_K) = \underbrace{\begin{bmatrix} x_0^{(1)} - \overline{x}_0^{(1)} \\ x_0^{(2)} - \overline{x}_0^{(2)} \\ \vdots \\ x_0^{(N_x)} - \overline{x}_0^{(N_x)} \\ x_0^{(1)} - \overline{x}_0^{(1)} \\ \vdots \\ x_0^{(N_x)} - \overline{x}_0^{(N_x)} \\ \vdots \\ x_K^{(2)} - \overline{x}_K^{(2)} \\ \vdots \\ x_K^{(N_x)} - \overline{x}_K^{(N_x)} \end{bmatrix}}_{N_x \times 1}$$

Formulations
Simultaneous
approach
Sequential approacl

Problem formulations | Simultaneous approach (cont.)

For the derivative of the boundary constraints with respect to x_0 , we have

$$\frac{\partial r_1\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_2\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \vdots \\ \frac{\partial r_{N_x}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_{N_x}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_{N_x+1}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \frac{\partial r_{N_x+2}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \vdots \\ \frac{\partial r_{2N_x}\left(x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N_x)}, x_K\right)}{\partial x_0} \\ \end{bmatrix}$$

Problem formulations | Simultaneous approach (cont.)

In more detail, we have

Simultaneous

approach

 $\partial r_1(x_0,x_K)$ $\partial r_1(x_0,x_K)$ $\partial r_{2N_r}\left(x_0,x_K\right)$ $\partial x_0^{(2)}$ $2N_r \times N_r$

For the product with the equality multiplier, we get

$$\underbrace{\frac{\partial r\left(x_{0}, x_{K}\right)^{T}}{\partial x_{0}}}_{N_{x} \times 2N_{r}} \underbrace{\frac{\lambda_{k+1}}{2N_{r} \times 1}}_{N_{r} \times 1}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approac

$$\underbrace{E\left(x_{K}\right) + \sum_{k=0}^{K-1} L\left(x_{k}, u_{k}\right) + \left(\sum_{k=0}^{K-1} \lambda_{k+1}^{T} \left(f\left(x_{k}, u_{k}\right) - x_{k+1}\right) + \lambda_{N_{r}}^{T} r\left(x_{0}, x_{K}\right)\right)}_{\mathcal{L}\left(w, \lambda\right)}$$

The derivatives of the Lagrangian function with respect to the control variables u_k

• For k = 0, ..., K - 1, we have

$$\nabla_{u_{k}} \mathcal{L}\left(w, \lambda\right) = \nabla_{u_{k}} L\left(x_{k}, u_{k}\right) + \frac{\partial f\left(x_{k}, u_{k}\right)^{T}}{\partial u_{k}} \lambda_{k+1}$$

Problem formulations | Simultaneous approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\nabla_{w} \mathcal{L}(w, \lambda) = 0$$
$$g(w) = 0$$

We can collect all the KKT conditions and solve them using a Newton-type method

• The approach solves the problem in the full space of the decision variables

Formulations

approach Sequential appro

Problem formulations | Simultaneous approach (cont.)

The approach can be extended to more general discrete-time optimal control problems

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}} } E(x_K) + \sum_{k=0}^{K-1} L_k(x_k, u_k)$$
 subject to
$$x_{k+1} - f_k(x_k, u_k | \theta_x) = 0, \qquad k = 0, 1, \dots, K-1$$

$$h_k(x_k, u_k) \le 0, \qquad k = 0, 1, \dots, K-1$$

$$R_K(x_K) + \sum_{k=0}^{K-1} r_k(x_k, u_k) = 0$$

$$h_K(x_K) \le 0$$

All problem functions are explicitly time-varying and we have also a terminal inequality

Moreover, the boundary conditions are expressed in general form

By collecting all variables in the vector w, we have the complete Lagrangian function

$$\mathcal{L}(w, \lambda, \mu) = f(w) + \lambda^{T} g(w) + \mu^{T} h(w)$$

Formulations

pproach

Sequential approach

The sequential approach

Problem formulations

Formulations

Sequential approach

Problem formulations | Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_N) = 0$$

The sequential approach solves the same problem in a reduced space of variables

The idea is to eliminate all the state variables x_1, x_2, \ldots, x_K by a forward simulation

$$x_{0} = x_{0}$$

$$x_{1} = f(x_{0}, u_{0})$$

$$x_{2} = f(x_{1}, u_{1})$$

$$= f(f(x_{0}, u_{0}), u_{1})$$

$$x_{3} = f(x_{2}, u_{2})$$

$$= f(f(f(x_{0}, u_{0}), u_{1}), u_{2})$$

$$\cdots = \cdots$$

Formulations Simultaneous approach Sequential approach

Problem formulations | Sequential approach (cont.)

We can express the states as function of the initial condition and previous controls

$$x_{0} = \underbrace{x_{0}}_{\overline{x_{0}}(x_{0})}$$

$$x_{1} = \underbrace{f(x_{0}, u_{0})}_{\overline{x_{1}}(x_{0}, u_{0})}$$

$$x_{2} = f(x_{1}, u_{1})$$

$$= \underbrace{f(f(x_{0}, u_{0}), u_{1})}_{\overline{x_{2}}(x_{0}, u_{0}, u_{1})}$$

$$x_{3} = f(x_{2}, u_{2})$$

$$= \underbrace{f(f(f(x_{0}, u_{0}), u_{1}), u_{2})}_{\overline{x_{3}}(x_{0}, u_{0}, u_{1}), u_{2})}$$

$$\cdots = \cdots$$

More generally, the dependence is on all the control variables and the initial condition

$$\overline{x}_0(x_0, u_0, u_1, \dots, u_{K-1}) = x_0$$

$$\overline{x}_{k+1}(x_0, u_0, u_1, \dots, u_{K-1}) = f(\overline{x}_k(x_0, u_0, u_1, \dots, u_{K-1}), u_k), \quad k = 0, 1, \dots, K-1$$

Problem formulations | Sequential approach

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{x_0, x_1, \dots, x_K \\ u_0, u_1, \dots, u_{K-1}}} E(x_K) + \sum_{k=0}^{K-1} L(x_k, u_k)$$
subject to
$$x_{k+1} - f(x_k, u_k | \theta_x) = 0, \quad k = 0, 1, \dots, K-1$$

$$h(x_k, u_k) \le 0, \quad k = 0, 1, \dots, K-1$$

$$r(x_0, x_N) = 0$$

We can re-write the general discrete-time optimal control problem in reduced form

$$\min_{\substack{u_0, u_1, \dots, u_{K-1} \\ \text{subject to}}} E\left(\overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right)$$

$$\int_{\substack{u_0, u_1, \dots, u_{K-1} \\ \text{subject to}}} h\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \leq 0, k = 0, 1, \dots, K-1$$

$$f\left(x_0, \overline{x}_N\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) = 0$$

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{u_0,u_1,\dots,u_{K-1}\\ \text{subject to}}} E\left(\overline{x}_K\left(x_0,u_0,u_1,\dots,u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0,u_0,u_1,\dots,u_{K-1}\right),u_k\right)$$

$$\text{subject to} \quad h\left(\overline{x}_k\left(x_0,u_0,u_1,\dots,u_{K-1}\right),u_k\right) \leq 0, k = 0,1,\dots,K-1$$

$$r\left(x_0,\overline{x}_N\left(x_0,u_0,u_1,\dots,u_{K-1}\right)\right) = 0$$

The objective function, sum of stage costs $L(\overline{x}_k, u_k)$ and a terminal cost $E(\overline{x}_K)$

$$\underbrace{\sum_{k=0}^{K-1} L(\overline{x}_k, u_k) + E(\overline{x}_K)}_{f(w) \in \mathcal{R}}$$

That is,

$$L(x_0, u_0) + L(\overline{x}_1, u_1) + \cdots + L(\overline{x}_{K-1}, u_{K-1}) + E(\overline{x}_K)$$

Stage cost is a (potentially nonlinear and time-varying) function of state and controls

The decision variables, $K \times N_u$ control and N_x state variables

$$\underbrace{(x_0) \cup (u_0, u_1, \dots, u_{K-1})}_{w \in \mathcal{R}^{K \times N_u + N_x}}$$

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{u_{0}, u_{1}, \dots, u_{K-1} \\ \text{subject to}}} E\left(\overline{x}_{K}\left(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_{k}\left(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}\right), u_{k}\right) \\
\text{subject to} \quad h\left(\overline{x}_{k}\left(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}\right), u_{k}\right) \leq 0, k = 0, 1, \dots, K-1 \\
\quad r\left(x_{0}, \overline{x}_{N}\left(x_{0}, u_{0}, u_{1}, \dots, u_{K-1}\right)\right) = 0$$

The equality constraints, the N_r boundary conditions

$$\underbrace{r(x_0, \overline{x}_K) = 0}_{g(w) \in \mathcal{R}^{N_g}}$$

The inequality constraints

$$\underbrace{h\left(\overline{x}_k, u_k\right) \le 0 \quad (k = 0, 1, \dots, K - 1)}_{h(w) \in \mathcal{R}^{N_h}}$$

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

$$\min_{\substack{u_0, u_1, \dots, u_{K-1} \\ u_0, u_1, \dots, u_{K-1}}} E\left(\overline{x}_K\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) + \sum_{k=0}^{K-1} L\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right)$$
subject to
$$h\left(\overline{x}_k\left(x_0, u_0, u_1, \dots, u_{K-1}\right), u_k\right) \le 0, k = 0, 1, \dots, K-1$$

$$r\left(x_0, \overline{x}_N\left(x_0, u_0, u_1, \dots, u_{K-1}\right)\right) = 0$$

The Lagrangian function of the problem,

$$\mathcal{L}\left(w,\lambda,\mu\right) = f\left(w\right) + \lambda^{T} g\left(w\right) + \mu^{T} h\left(w\right)$$

The Karush-Kuhn-Tucker conditions,

$$\nabla f(w^{*}) - \nabla g(w^{*})\lambda^{*} - \nabla h(w^{*})\mu^{*} = 0$$

$$g(w^{*}) = 0$$

$$h(w^{*}) \ge 0$$

$$\mu^{*} \ge 0$$

$$\mu_{n_{h}}^{*} h_{n_{h}}(w^{*}) = 0, \quad n_{h} = 1, \dots, N_{h}$$

Sequential approach

Problem formulations | Sequential approach (cont.)

Formulations
Simultaneous
approach
Sequential approach

For computational efficiency, it is preferable to use specific structure-exploiting solvers

• Such solvers recognise the sparsity properties of this class of problems