

Homework 4

Oliver Kis

15576333

09 February 2024

The University of British Columbia Electrical and Computer Engineering Math 220 - Mathematical Proofs Instructor: Bennett Michael

Solutions

For Homework 4, Problem 1, 2, parts of 4, and parts of 5 are worth marks.

Problem 1. (2 *Points*) Prove, for $x, y \in \mathbb{Z}$, that

$$(xy \text{ even and } x + y \text{ even}) \Longrightarrow (x \text{ even and } y \text{ even})$$

Proof: Let $x, y \in \mathbb{Z}$. We proved this by Contrapositive and several cases. The contrapositive turns out to be $(x \text{ odd or } y \text{ odd}) \Longrightarrow (xy \text{ odd or } x + y \text{ odd})$

1) Case one

$$x$$
 is odd and y is odd x : $x = 2k + 1$ and $y = 2l + 1$ where $k, l \in \mathbb{Z}$. $xy = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1$

2) Case two

$$x$$
 is odd and y is even $\therefore x=2k+1$ and $y=2l$ where $k,l\in\mathbb{Z}$.
$$x+y=2k+1+2l=2(k+l)+1$$

3) Case three

Identical to case two, but x and y are "flipped" x is even and y is odd.

Hence, all three cases prove the contrapositive, which proves the original statement, as required. //

Problem 2. (2 *Points*) For $a \in \mathbb{R}$, we define the set $S_a = x \in \mathbb{R} : (x \ge 0 \land x < a - 2)$. Show that

$$S_a = \emptyset$$
 if and only is $a \in]-\infty, 2]$

Proof: Let $a, x \in \mathbb{R}$. To prove this, we use the biconditional technique.

 \implies If our set is null, we know $x \ge 0$ isn't satisfied and/or x < a - 2 isn't satisfied. Using the bounds, when a = 2, we know x < 0, which doesn't hold with the statement $x \ge 0$ \iff With $a \in]-\infty, 2]$, we know $-\infty < a - 2 \le 0$. Using the maximum, this won't satisfy both $x \ge 0$ and x < a - 2

Problem 4. (12 *Points*) For each of the following statements:

- Negate the statement.
- Decide if the original statement is true or false and justify your answer.
- 1. $(2 \ Points) \ \forall \ a \in \mathbb{Z}, ((6 \mid a \text{ and } 8 \mid a \implies 48 \mid a).$
 - $\exists a \in \mathbb{Z}$, $((6|a \text{ and } 8|a \Longrightarrow 48 \nmid a)$.
 - False → Finding gcd(6, 8) is 24, next multiple is 48. These work with the implications, however the next multiple of 72 does not.
- 2. (2 Points) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (xy \ge 0 \Longrightarrow x + y \ge 0)$.
 - $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ s.t. } (xy \ge 0 \Longrightarrow x + y < 0).$
 - False $\longrightarrow \forall (-x)$ and $\forall (-y)$ satisfy $xy \ge 0$, but does not satisfy $(x + y \ge 0)$.
- 3. $(2 \ Points) \ \forall \ a, b \in \mathbb{Z}, \forall n \in \mathbb{N}, (6a \equiv 6b \mod 6n \Longrightarrow a \equiv b \mod n).$
 - $\exists a, b \in \mathbb{Z}, \exists n \in \mathbb{N}, (6a \equiv 6b \mod 6n \Longrightarrow a \not\equiv b \mod n).$
 - False $\longrightarrow 6a \equiv 6b \mod 6n$ is equivalent to 6a = 6nk + 6b, where $k \in \mathbb{Z}$, divide both sides by 6, a = nk + b which is equivalent to $a = b \mod n$. But, with $\forall a, b$, when a is divided by nk, there is a time when b is just zero, not all values.
- 4. (2 *Points*) $\forall a, b \in \mathbb{Z}, (4a \equiv 4b \mod 24 \Longrightarrow a \equiv b \mod 24)$.
 - $\exists a, b \in \mathbb{Z}, (4a \equiv 4b \mod 24 \Longrightarrow a \not\equiv b \mod 24).$
 - False \longrightarrow As shown before this, when 4a is divided to have a remainder of zero, there should be no other value of b than zero.
- 5. $(2 \ Points) \exists x \in \mathbb{Z} \text{ such that } ((x > 84) and (x \equiv 75 \mod 84)).$
 - $\forall x \in \mathbb{Z}$ such that $((x \le 84 \text{ or } x \not\equiv 75 \text{ mod } 84)).$
 - True \longrightarrow When x is above 84, specifically when x is 159, the statement holds.
- 6. (2 Points) $\exists x, y \in \mathbb{R}$ such that $(x^2 \ge y^2 \text{ and } x \le y)$.
 - $\forall x, y \in \mathbb{R}$ such that $(x^2 < y^2 \text{ or } x > y)$.
 - True \longrightarrow Take [-1, 1] and the original statement works

Problem 5. (4 *Points*) Let $(u_0, u_1, u_2, u_3, ...)$ be a sequence of real numbers. We write this as $(u_n)_{n\in\mathbb{N}}$. We say that it is:

- bounded above when: $\exists A \in \mathbb{R} \ s.t. (\forall n \in \mathbb{N}, u_n \leq A).$
- bounded below wheb: $\exists B \in \mathbb{R} \ s.t. (\forall n \in \mathbb{N}, u_n \geq B).$

We say that it converges towards $+\infty$ when

$$\forall A > 0, \exists m \in \mathbb{N} \ s.t. \forall n \in \mathbb{N}, (n \ge m \Longrightarrow u_n > A).$$

and that it converges towards $-\infty$ when

$$\forall B < 0, \exists m \in \mathbb{N} \ s.t. \forall n \in \mathbb{N}, (n \ge m \Longrightarrow u_n < B).$$

1. (1 *Points*) Write in quantifiers the statement:

 $(u_n)_{n\in\mathbb{N}}$ is not bounded below.

- 2. (1 *Points*) Give an example of sequence of real numbers $(u_n)_{n\in\mathbb{N}}$ which is bounded above but not bounded below.
- 3. (2 *Points*) Write in quantifiers the statement:

 $(u_n)_{n\in\mathbb{N}}$ does not converge towards $+\infty$.