RPiS - Kolokwium

Zestaw NC

20 kwietnia 2017

$\boxed{1}$	2	3	4	KR1	KR2
Imię i					
nazwisko					

- Proszę podpisać wszystkie kartki.
- 1 zadanie \equiv 1 kartka.
- Rozwiązujemy 4 zadania z 6.

1. **15p.** Niezależne zmienne X_1, \dots, X_n mają ten sam rozkład o wartościach dodatnich. Obliczyć

$$E\left(\sum_{i=1}^{k} X_i / \sum_{m=1}^{n} X_m\right)$$
, dla $k \le n$.

2. **15p.** Zmienna losowa (X,Y) podlega rozkładowi o gęstości określonej wzorem:

$$f(x,y) = \frac{3}{2} \exp(-(x+y)), \text{ gdzie } 0 < x < 2y < \infty.$$

Obliczyć gęstość zmiennej
$$(Z, W)$$
, gdzie $Z = \frac{X + Y}{2}$, $W = \frac{X - Y}{2}$.

3. **15p.** Niezależne zmienne losowe X_1,X_2,\ldots,X_N mają rozkład $N(\mu,\sigma^2)$. Wiadomo, że $M_{X_k}(t)=\mathrm{e}^{\mu t+\sigma^2t^2/2}$. Jaki rozkład ma zmienna Z?

$$Z = \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}\right).$$

- 4. **15p.** Zmienna losowa X ma rozkład wykładniczy, tzn. $f(x) = \lambda \exp(-\lambda x)$, dla $x \in (0, \infty)$.
 - (a) Wyznaczyć postać funkcji tworzącej momenty $M_X(t)$.
 - (b) Obliczyć $\mathcal{E}(X)$ i $\mathcal{V}(X)$.
- 5. **Zadanie KR1 8p.** (X,Y) jest dyskretną zmienną losową o prawdopodobieństwach p_{ij} $(i=1,\ldots,I;\ j=1,\ldots,J)$. Podać szkic dowodu twierdzenia: $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$.

6. **Zadanie KR2** – 8p. Wykazać, że wariancja sumy dwóch niezależnych zmiennych losowych X,Y jest równa sumie wariancji tych zmiennych, a więc

$$V(X + Y) = V(X) + V(Y).$$

Czemu jest równa wariancja różnicy dwóch takich zmiennych?

Witold Karczewski