

Simple Linear Regression Model (Review)

n cases (trials/subjects): Y_i – the value of the response variable in the ith case; X_i – the value of the predictor variable in the ith case.

Model equation:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \qquad i = 1, \dots, n.$$
 (1)

- Model assumptions:
 - ϵ_i s are uncorrelated, zero-mean, equal-variance random variables:

$$E(\epsilon_i) = 0, \ Var(\epsilon_i) = \sigma^2, \ i = 1, \dots, n$$

$$\operatorname{Cov}(\epsilon_i,\epsilon_j)=0, \quad 1\leq i\neq j\leq n.$$

- Unknown parameters:
 - β_0 regression intercept; β_1 regression slope
 - σ^2 : error variance

Given X_i s, the distributions of the responses Y_i s have the following properties: The response Y_i is the sum of two terms: which is

 ϵ_i s are uncorrelated \Longrightarrow

Regression Function

$$y = \beta_0 + \beta_1 x$$
• A
• β_1 is the of the regression line: the change in per unit change of X .
• β_0 is the of the regression line: the value of $E(Y)$ when

We will study how to model and fit the regression function from data.

4 D > 4 B > 4 E > 4 E > 9 Q C

Least Squares Principle

For a given line: $y = b_0 + b_1 x$, the sum of squared vertical deviations of the observations $\{(X_i, Y_i)\}_{i=1}^n$ from the corresponding points on the line is:

- $(X_i, b_0 + b_1 X_i)$ is the point on the line with the *i*th observation point (X_i, Y_i) .
- The least squares (LS) principle is to fit the observed data by the sum of squared vertical deviations.

LS line has the sum of squared vertical deviations among all straight lines.

Least Squares Estimators

LS estimators of β_0 , β_1 are the pair of values b_0 , b_1 that minimize the function $Q(\cdot, \cdot)$:

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin}_{b_0, b_1} Q(b_0, b_1).$$

•
$$\overline{X} = 1/n \sum_{i=1}^{n} X_i$$
, $\overline{Y} = 1/n \sum_{i=1}^{n} Y_i$ are the sample means.

Could you write down the formula for sample correlation r_{XY} and sample standard deviations s_Y , s_X ?

How to derive the LS Estimators?

The values of b_0 , b_1 that minimize the function Q satisfy:

$$\frac{\partial Q(b_0,b_1)}{\partial b_0}=0, \quad \frac{\partial Q(b_0,b_1)}{\partial b_1}=0.$$

This leads to the **normal equations**:

$$nb_0 + b_1 \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y_i$$

$$b_0 \sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i Y_i$$

Can you solve these two equations with respect to b₀, b₁?

Fitted Values

Residuals

Residuals are differences between the observed values Y_i and their respective fitted values \widehat{Y}_i :

The residual e_i is an "estimator" of the respective error term:

- $\epsilon_i = Y_i (\beta_0 + \beta_1 X_i).$
- Properties of residuals:

A Simulation Example

This is a simulated data set with n = 5 cases and

$$Y_i = 2 + X_i + \epsilon_i, \quad i = 1, \cdots, 5,$$

where ϵ_i are generated as i.i.d. N(0,1). What is the true regression function and what is the true error variance σ^2 ?

ca	se i		Х	j	Yi		X _i	- X	Y _i .	- <u>Y</u>	(Xi	$-\overline{X})^2$	2	(X _i –	$\overline{X})(Y$	− <u>Y</u>)	
1			1	.86	3.3	34	-0.	17	-0.9	94	0.0	3		0.16			
2			0	.22	1.7	79	-1.8	31	-2.4	48	3.2	9		4.50			
3			3	.55	5.6	66	1.5	2	1.3	9	2.3	0		2.11			
4			3	.29	5.8	33	1.2	6	1.5	6	1.5	8		1.96			
5			1	.25	4.7	74	-0.	78	0.4	7	0.6	1		0.36			
Co	lumn	Sum	1	0.17	21	.36	0.0	0	0.0	0	7.8	1		3.37			

$$\overline{X} = 10.17/5 = 2.03, \ \overline{Y} = 21.36/5 = 4.27, \ \sum_{i=1}^{5} (X_i - \overline{X})^2 = 7.81, \ \sum_{i=1}^{5} (X_i - \overline{X})(Y_i - \overline{Y}) = 8.37.$$

Estimation of Error Variance by MSE

- Recall $\sigma^2 = \text{Var}(\epsilon_l)$, so it is reasonable to estimate σ^2 by the "variance" of
- Error sum of squares (SSE):

- The degrees of freedom of SSE is
- Two degrees of freedom are lost in estimating β_0, β_1 .

Mean squared error (MSE): of σ^2 . So MSE is an Do you know what does it mean to be an unbiased estiamtor? What are the similarities with and differences from the estimation of the variance of a single population based on an i.i.d. sample?

Simulation Example (Cont'd)

$$SSE = (-0.75)^2 + (-0.54)^2 + (-0.23)^2 + 0.22^2 + 1.31^2 = 2.6715$$
and $n = 5$, so
What would be a reasonable estimator for σ ? Would it be unbiased?

Heights

$$n = 928, \overline{X} = 68.316, \overline{Y} = 68.082, \sum_{i} X_{i}^{2} =$$

4334058,
$$\sum_{i} Y_{i}^{2} = 4307355$$
, $\sum_{i} X_{i} Y_{i} = 4318152$. Thus

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) =$$

$$= 4318152 - 928 \times 68.316 \times 68.082 = 1936.738$$

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 =$$

$$4334058 - 928 \times 68.316^2 = 3038.761.$$

Properties of LS Estimators

Can you write down their respective coefficients?

• Replace σ^2 by MSE:

$$s^{2}\{\hat{\beta}_{0}\} = MSE\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right],$$

$$s^{2}\{\hat{\beta}_{1}\} = \frac{MSE}{\sum_{i=1}^{n}(X_{i} + \overline{X})^{2}}.$$

•
$$s\{\hat{\beta}_0\}$$
 and $s\{\hat{\beta}_1\}$ are SE of $\hat{\beta}_0$ ad $\hat{\beta}_1$, respectively.

• SEs with
$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = (n-1)s_X^2$$
, which in turn with the sample size n and sample variance s_X^2 of X .

., . .

What are the implications?

