

TEST REPORT

CE WLAN Test for SFM20R1

APPLICANT SJI Co.,Ltd

REPORT NO. HCT-RF-2208-CE003

DATE OF ISSUE August 9, 2022

> **Tested by** Hyeong Hoon Lee

Technical Manager Jong Seok Lee Mas

Sign

HCT CO., LTD.
Bongsai Huh / CEO

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT

CE WLAN (2 400 MHz ~ 2 483.5 MHz) Test for SFM20R1 REPORT NO.

HCT-RF-2208-CE003

DATE OF ISSUE August 09, 2022

Additional Model

-

Applicant	SJI Co.,Ltd 54-33, Dongtanhana 1-gil, Gyeonggi-do Hwaseong-si South Korea
Eut Type Model Name	Sigfox Quad-mode module SFM20R1
Date of Test	July 27, 2022 ~ August 09, 2022
Test Standard Used	ETSI EN 300 328 V2.2.2 (2019-07)
Test Results	Approval for CE Temperature : (24.5 \pm 3.0) °C, Relative Humidity : (55.9 \pm 3.0) % R.H. Results, Measurement uncertainty : Refer to the attachment
Manufacturer Operating frequency range	SJI Co.,Ltd 2 400 MHz ~2 483.5 MHz
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev. 04) Page 2 of 23

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No. Date of Issue		Description	
0	August 09, 2022	Initial Release	

Test Report Statement:

The above Test Report is not related to the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme) / A2LA(American Association for Laboratory Accreditation)(4114.01), which signed the ILAC-MRA.

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

F-TP22-03 (Rev. 04) Page 3 of 23

객

CONTENTS

1. CLIENT INFORMATION	5
2. EQUIPMENT UNDER TEST (EUT)	5
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	6
3.1 Manufacturers declarations	6
3.2 Channel List	7
3.3 Operating frequency range during under the test	7
3.4 Data rate of the worst	8
4. TEST SUMMARY	9
5. TEST EQUIPMENT	10
6. TRANSMITTER MEASUREMENTS – RESULTS	12
6.1 Power Spectral Density	12
6.1.1 Test Setup	12
6.1.2 Test Procedure	12
6.1.3 Limit	14
6.1.4 Test Result	15
7. RECEIVER MEASUREMENTS – RESULTS	16
7.1 Receiver Blocking	16
7.1.1 Test Setup	16
7.1.2 Test Procedure	17
7.1.3 Limit	19
7.1.4 Test Result	21
8. GEO-LOCATION CAPABILITY	23
8.1 Definition	23
8.2 Requirements	23
8.3 Declaration by the Manufacturer	23

F-TP22-03 (Rev. 04) Page 4 of 23

1. CLIENT INFORMATION

The EUT has been tested by request of

Company	SJI Co.,Ltd 54-33, Dongtanhana 1-gil, Gyeonggi-do Hwaseong-si South Korea
---------	---

2. EQUIPMENT UNDER TEST (EUT)

Equipment	Sigfox Quad-mode module
Model	SFM20R1
Additional Model	-
Serial number	-
Manufacturer	SJI Co.,Ltd
Rating	DC 3.30 V

F-TP22-03 (Rev. 04) Page 5 of 23

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

3.1 Manufacturers declarations

No. of units:	One (Transceiver)		
No. of deviating variants:	None		
Application:	Sigfox Quad-mode module		
Equipment category:	Short Range Device		
Model No.:	SFM20R1		
Serial No.:	-		
Type of modulation:	DSSS (802.11b) &OFDM (802.11g, 8	302.11n(HT20))	
Specification(s):	ETSI EN 300 328 V2.2.2 (2019-07)		
Receiver Category:	1		
Type of unit:	Stand-alone equipment		
	☑ Adaptive Equipment without th	e possibility to switch to a non-adaptive	
Type of Equipment	mode		
Type of Equipment	□ Non-adaptive Equipment		
	☐ Adaptive Equipment which can also operate in a non-adaptive mode		
Operating frequency range:	2 400 MHz ~2 483.5 MHz		
Frequency alignment range:	2 412 MHz ~ 2 472 MHz		
Beam forming	Not applicable		
Channels:	13		
Version:	Hardware: 1.0		
version.	Software: SFM20R_V204		
	Normal voltage :	DC 3.30 V	
Power source:	Extreme lower voltage :	DC 3.20 V	
	Extreme upper voltage :	DC 5.00 V	
	Normal Temperature :	+24.5°C	
Temperature range:	Extreme lower Temperature :	-30.0°C	
	Extreme upper Temperature :	+85.0°C	
Antenna type:	Dipole Antenna		
Max. antenna gain:	4.44 dBi		

Note:

1. At the request of the customer, all test requirements were performed ETSI EN 300 328 V2.2.2 (2019-07)

F-TP22-03 (Rev. 04) Page 6 of 23

3.2 Channel List

802.11b/g/n(20MHz) Working Frequency of Each Channel			
Channel	Frequency(MHz)		
01	2 412		
02	2 417		
03	2 422		
04	2 427		
05	2 432		
06	2 437		
07	2 442		
08	2 447		
09	2 452		
10	2 457		
11	2 462		
12	2 467		
13	2 472		

3.3 Operating frequency range during under the test

Operating frequency	Frequency(MHz)
Bottom	2 412
Middle	2 442
Тор	2 472

F-TP22-03 (Rev. 04) Page 7 of 23

3.4 Data rate of the worst

All tests conducted in this report were made at the worst case data rate of each modulation. For each modulation data rate of the worst, please refer to the table below.

Modulation	Data Rate (Mbps)
802.11b	11
802.11g	12
802.11n(HT20)	MCS0

Parameter	Modulation	Data Rate (Mbps)	
Receiver Blocking	802.11b	1	

F-TP22-03 (Rev. 04) Page 8 of 23

4. TEST SUMMARY

Clause	Parameter	Test method	Result
4.3.2.2	RF Output Power	Conducted	(See note4)
4.3.2.3	Power Spectral Density	Conducted	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	N/A	(See note1)
4.3.2.5	Medium Utilisation	N/A	(See note1)
4.3.2.6	Adaptivity	Conducted	(See note4)
4.3.2.7	Occupied Channel Bandwidth	Conducted	(See note4)
4.3.2.8	Transmitter unwanted emissions in the OOB domain	Conducted	(See note4)
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Radiated	(See note4)
4.3.2.10	Receiver Spurious emissions	Radiated	(See note4)
4.3.2.11	Receiver Blocking	Conducted	Pass
4.3.2.12	Geo-location capability	N/A	(See note2)

Note:

- 1. These requirements does not apply to Adaptive Equipment without the possibility to switch to a non-adaptive mode.
- 2. Geo-location capability is implemented in this product and can't be accessible to the user.
- 3. At the request of the customer, all test requirements were performed EN 300 328 V2.2.2 (2019-07).
- 4. Standard update: ETSI EN 300 328 V2.1.1 \rightarrow ETSI EN 300 328 V2.2.2

We tested only some items (PSD, Receiver blocking) due to RED update.

For the other test items, refer to the previous report results.

(Previously report no.: HCT-RF-1907-CE013)

F-TP22-03 (Rev. 04) Page 9 of 23

5. TEST EQUIPMENT

	TEST EQUIT MENT				
No.	Instrument	Model No.	Manufacture	Serial No.	Due to Calibration
\boxtimes	Signal Analyzer (20 Hz ~ 40.0 GHz)	FSV40-N	ROHDE & SCHWARZ	101068-SZ	2022-09-15
\boxtimes	Signal Analyzer (20 Hz ~ 26.5 GHz)	N9020A	AGILENT	MY50510027	2022-08-18
×	SIGNAL GENERATOR (100kHz~40GHz)	SMB100A	Rohde&Schwarz	177633	2023-07-05
	SIGNAL GENERATOR (9kHz~6GHz)	SMBV100A	Rohde&Schwarz	255727	2022-09-06
\boxtimes	Communication Tester	CMW500	Rohde&Schwarz	127521	2023-05-03
\boxtimes	Power Measurement Set	OSP 120(See note3)	Rohde&Schwarz	101231	2023-06-14
\boxtimes	High Pass Filter	WHKX10-2700-3000- 18000-40SS	WAINWRIGHT INSTRUMET	3	2023-01-06
	Band reject filter (2 400 MHz ~ 2 483.5 MHz/DC ~ 4 GHz)	WRCJV2400/2483.5- 2370/2520-60/12SS	WAINWRIGHT INSTRUMET	2	2023-01-06
\boxtimes	Band rejection filter (5 100 MHz ~ 5 800 MHz)	WRCJV5100/5850- 40/50-8EEK	WAINWRIGHT INSTRUMET	1	2023-02-07
\boxtimes	BI-LOG Antenna (25 MHz ~ 1 GHz)	VULB9160	Schwarzbeck	3150	2023-03-03
\boxtimes	Full anechoic chamber	10m×5m×5m	EMERSON&CUMING	-	-
	STEP ATTENUATOR (1 W, DC ~ 18 GHz)	AF9003-69-31	WEINSCHEL	5701	2022-10-13
\boxtimes	Fixed Attenuator (10 dB, DC ~ 26.5 GHz)	56-10	WEINSCHEL	72324	2022-09-15
\boxtimes	Turn Table	DE 3260	INNCO GmbH	7860504	-
\boxtimes	DC power supply	E3632A	НР	KR94907553	2023-06-08
×	Temp & Humidity Chamber	SU-642	ESPEC	93008124	2023-03-04
×	POWER SPLITTER (Dc to 26.5 GHz)	11667B	НР	11275	2023-03-11
\boxtimes	Power Divider-2way (DC ~ 26.5 GHz)	11636B	НР	51942	2023-02-07
\boxtimes	POWER DIVIDER-4WAY (0.5 ~ 18 GHz)	Narda 4426-4	Narda	11927	2023-01-18
\boxtimes	POWER AMP (0.1 GHz ~ 18 GHz)	CBLU1183540B-01	CERNEX	25539	2023-01-06
\boxtimes	Horn Antenna (1 GHz ~ 18 GHz)'	BBHA9120D	Schwarzbeck	9120D-1298	2023-09-15
\boxtimes	Companion device (Access Point)	WEA412i	SAMSUNG	-	-

F-TP22-03 (Rev. 04) Page 10 of 23

Note:

- 1. All equipment is calibrated with traceable calibrations.
- 2. Each calibration is traceable to the national or international standards.
- 3. OSP120 spec:
- RMS integration over a significant portion of signal
- Fast response time for accurate burst detection
- Sampling rate 1 MS/s
- Storage of max. 32 Million samples in total
- Synchronous measurement channels for 4 antenna port
- Maximum DUT output power 12 dBm linear without attenuator, with included attenuators 22 dBm linear (and 32 dBm linear optional)
- Measurement tolerances better than ETSI requirements

F-TP22-03 (Rev. 04) Page 11 of 23

6. TRANSMITTER MEASUREMENTS - RESULTS

6.1 Power Spectral Density

6.1.1 Test Setup

6.1.2 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.3.2

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

• Start Frequency: 2 400 MHz

• Stop Frequency: 2 483,5 MHz

• Resolution BW: 10 kHz

• Video BW: 30 kHz

• Sweep Points: > 8 350; for spectrum analysers not supporting this number of sweep points, the frequency band may be segmented

• Detector: RMS

• Trace Mode: Max Hold

• Sweep time: 2 × Channel Occupancy Time × number of sweep points

For non-continuous signals, wait for the trace to stabilize.

Save the data (trace data) set to a file.

Step 2:

For conducted measurements on smart antenna systems using either operating mode 2 or operating mode 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each sampling point (frequency domain), add up the coincident power values (in mW) for the different transmit chains and use this as the new data set.

F-TP22-03 (Rev. 04) Page 12 of 23

Step 3:

Add up the values for power for all the samples in the file using the formula below.

$$P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$$

with k being the total number of samples and n the actual sample number

Step 4:

Normalize the individual values for power (in dBm) so that the sum is equal to the RF Output Power (e.i.r.p.) measured in clause 5.4.2 and save the corrected data. The following formulas can be used: with 'n' being the actual sample number

$$C_{Corr} = P_{Sum} - P_{e.i.r.p.}$$

$$P_{Samplecorr}(n) = P_{Sample}(n) - C_{Corr}$$

Step 5:

Starting from the first sample *PSamplecorr(n)* (lowest frequency), add up the power (in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to sample #100).

This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

Step 6:

Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to sample #101).

Step 7:

Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.

From all the recorded results, the highest value is the maximum Power Spectral Density (PSD) for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.

F-TP22-03 (Rev. 04) Page 13 of 23

Report No. HCT-RF-2208-CE003

6.1.3 Limit

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10dBm per MHz.

F-TP22-03 (Rev. 04) Page 14 of 23

6.1.4 Test Result

TEST CONDITIONS:		Power Spectral Density (dBm/MHz)			
		2 412 MHz	2 442 MHz	2 472 MHz	
T nom	V nom	8.15	7.99	8.02	

Measurement Uncertainty: 1.03 dB (Confidence level about 95 %, k=2)

Note:

1. Modulation type: 802.11b

TEST CONDITIONS:		Power Spectral Density (dBm/MHz)			
		2 412 MHz	2 442 MHz	2 472 MHz	
T nom	T nom V nom		5.99	6.06	

Measurement Uncertainty : 1.03 dB (Confidence level about 95 %, k=2)

Note:

1. Modulation type: 802.11g

TEST CONDITIONS:		Power Spectral Density (dBm/MHz)			
		2 412 MHz	2 442 MHz	2 472 MHz	
Tnom	V nom	5.23	5.14	5.23	

Measurement Uncertainty: 1.03 dB (Confidence level about 95 %, k=2)

Note:

1. Modulation type: 802.11n(HT20)

F-TP22-03 (Rev. 04) Page 15 of 23

7. RECEIVER MEASUREMENTS - RESULTS

7.1 Receiver Blocking

7.1.1 Test Setup

F-TP22-03 (Rev. 04) Page 16 of 23

7.1.2 Test Procedure

Step 1:

• For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6.
- Unless the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. The test procedure defined in clause 5.4.2, and more in particular clause 5.4.2.2.1.2, can be used to measure the (conducted) level of the wanted signal however no correction shall be made for antenna gain of the companion device (step 6 in clause 5.4.2.2.1.2 shall be ignored). This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.
- When the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin. This signal level (Pmin) is increased by the value provided in note 2 of the applicable table corresponding to the receiver category and type of equipment.

Step 4:

- The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 are met then proceed to step 6.

Step 5:

• If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4

F-TP22-03 (Rev. 04) Page 17 of 23

shall be repeated after that the frequency of the blocking signal set in step 2 has been increased with a value equal to the Occupied Channel Bandwidth except:

- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been decreased with a value equal to the Occupied Channel Bandwidth except:
- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, the UUT fails to comply with the Receiver Blocking requirement and step 6 and step 7 are no longer required.
- It shall be recorded in the test report whether the shift of blocking frequencies as described in the present step was used.

Step 6:

• Repeat step 4 and step 5 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 7:

• For non-FHSS equipment, repeat step 2 to step 6 with the UUT operating at the highest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

Step 8:

• It shall be assessed and recorded in the test report whether the UUT complies with the Receiver Blocking requirement.

F-TP22-03 (Rev. 04) Page 18 of 23

7.1.3 Limit

For equipment that supports a PER or FER test to be performed, the minimum performance criterion shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

• Receiver Category 1

Wanted signal mean newer from companies	Blocking signal	Blocking	Type of
Wanted signal mean power from companion device (dBm)	frequency	signal power	blocking
device (dbiii)	(MHz)	(dBm)	signal
(-133 dBm + 10 × log10(OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBm + 10 × log10(OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584	-34	CW
	2 674		

F-TP22-03 (Rev. 04) Page 19 of 23

• Receiver Category 2

Wanted signal mean	Blocking signal	Blocking	Type of
power from companion	frequency signal power		blocking
device (dBm)	(MHz)	(dBm)	signal
/ 120 dD: + 10 10/OCDW/ + 10 dD/	2 380		
(-139 dBm + 10 × log10(OCBW) + 10 dB)	2 504	24	CM
or (-74 dBm + 10 dB) whichever is less	2 300	-34	CW
(see note 2)	2 584		

• Receiver Category 3

Wanted signal mean	Blocking signal	Blocking	Type of
power from companion	frequency	signal power	blocking
device (dBm)	(MHz)	(dBm)	signal
(120 dBm + 10 x log10(OCDW) + 20 dB)	2 380		CW
(-139 dBm + 10 × log10(OCBW) + 20 dB)	2 504	-34	
or (-74 dBm + 20 dB) whichever is less	2 300	-34	CW
(see note 2)	2 584		

F-TP22-03 (Rev. 04) Page 20 of 23

7.1.4 Test Result

Wanted signal mean	Blocking signal	Blocking	Type of	Verification of	
power from companion	frequency	signal power	blocking	performance criterion	
device (dBm)	(MHz)	(dBm)	signal	(%)	
(-133 dBm + 10 × log10(OCBW)) or -68 dBm	2 380			0.00	
whichever is less	2 504	-34		0.00	
	2 300			0.00	
/ In	2 330		CW	0.00	
(-139 dBm + 10 × log10(OCBW)) or -74 dBm	2 360				0.00
whichever is less	2 524				0.00
	2 584				0.00
	2 674			0.33	

Note:

1. Receiver Category: 1

2. Wanted signal mean power from companion device = -68.00 dBm and -74.00 dBm

3. Minimum performance criterion : PER less than or equal to 10 %.

4. Test Frequency: 2 412 MHz 5. Modulation type: 802.11b

6. Data Rate: 1Mbps

7. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11.1)

F-TP22-03 (Rev. 04) Page 21 of 23

Report No. HCT-RF-2208-CE003

Wanted signal mean	Blocking signal	Blocking	Type of	Verification of
power from companion	frequency	signal power	blocking	performance criterion
device (dBm)	(MHz)	(dBm)	signal	(%)
(-133 dBm + 10 × log10(OCBW)) or -68 dBm	2 380			0.00
whichever is less	2 504			3.67
	2 300			0.00
	2 330	-34	CW	0.00
(-139 dBm + 10 × log10(OCBW)) or -74 dBm	2 360			0.33
whichever is less	2 524			
willenevel is less	2 584			0.00
	2 674			0.00

Note:

1. Receiver Category: 1

2. Wanted signal mean power from companion device = -68.00 dBm and -74.00 dBm

3. Minimum performance criterion : PER less than or equal to 10 %.

4. Test Frequency: 2 472 MHz5. Modulation type: 802.11b

6. Data Rate: 1Mbps

7. The smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth.(Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11.1)

F-TP22-03 (Rev. 04) Page 22 of 23

8. GEO-LOCATION CAPABILITY

8.1 Definition

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

8.2 Requirements

The geographical location determined by the equipment as defined in clause 8.1 shall not be accessible to the user.

8.3 Declaration by the Manufacturer

Geo-location capability is implemented in this product and can't be accessible to the user.

F-TP22-03 (Rev. 04) Page 23 of 23