EXAMPLE 1

- (a) Calculate the electric potential at points P and Q as shown in the figure below.
- (b) Suppose the charge +9μC is replaced by -9μC find the electrostatic potentials at points P and Q

Solution

(a) Electric potential at point P is given by

$$V_{p} = \frac{1}{4\pi\varepsilon_{o}} \frac{q}{r_{p}} = \frac{9 \times 10^{9} \times 9 \times 10^{-6}}{10} = 8.1 \times 10^{3} V$$

Electric potential at point Q is given by

$$V_Q = \frac{1}{4\pi\epsilon_o} \frac{q}{r_O} = \frac{9 \times 10^9 \times 9 \times 10^{-6}}{16} = 5.06 \times 10^3 V$$

The potential difference between the points P and Q is given by

$$\Delta V = V_P - V_Q = +3.04 \times 10^3 V$$

(b) Suppose we replace the charge +9 μ C by -9 μ C, then the corresponding potentials at the points P and Q are,

$$V_P = -8 \cdot 1 \times 10^3 \text{ V}$$
, $V_Q = -5.06 \times 10^3 \text{V}$

Note that in this case electric potential at the point Q is higher than at point P.

The potential difference or voltage between the points P and Q is given by

$$\Delta V = V_P - V_Q = -3.04 \times 10^3 V$$

EXAMPLE 2

Consider a point charge +q placed at the origin and another point charge -2q placed at a distance of 9 m from the charge +q. Determine the point between the two charges at which electric potential is zero.

Solution

According to the superposition principle, the total electric potential at a point is equal to the sum of the potentials due to each charge at that point.

Consider the point at which the total potential zero is located at a distance x from the charge +q as shown in the figure.

The total electric potential at P is zero.

$$V_{tot} = \frac{1}{4\pi\varepsilon_{\circ}} \left(\frac{q}{x} - \frac{2q}{(9-x)} \right) = 0$$

which gives
$$\frac{q}{x} = \frac{2q}{(9-x)}$$

or
$$\frac{1}{x} = \frac{2}{(9-x)}$$

Hence, x = 3 m

EXAMPLE 3

Four charges are arranged at the corners of the square PQRS of side a as shown in the figure. Find the work required to assemble these charges in the given configuration.

Solution

The work done to arrange the charges in the corners of the square is independent of the way they are arranged. We can follow any order.

- (i) First, the charge +q is brought to the corner P. This requires no work since no charge is already present, $W_P = 0$
- (ii) Work required to bring the charge -q to the corner Q:

$$W_Q = -q \times \frac{1}{4\pi\varepsilon_o} \frac{q}{a} = -\frac{1}{4\pi\varepsilon_o} \frac{q^2}{a}$$

(iii) Work required to bring the charge +q to the corner R:

$$W_{R} = q \times \frac{1}{4\pi\varepsilon_{\circ}} \left(-\frac{q}{a} + \frac{q}{\sqrt{2}a} \right)$$
$$= \frac{1}{4\pi\varepsilon_{\circ}} \frac{q^{2}}{a} \left(-1 + \frac{1}{\sqrt{2}} \right)$$

(iv)Work required to bring the fourth charge –q at the position S:

$$W_{\scriptscriptstyle S} = -q \times \frac{1}{4\pi\varepsilon_{\scriptscriptstyle o}} \left(\frac{q}{a} + \frac{q}{a} - \frac{q}{\sqrt{2}a} \right)$$

$$W_{\scriptscriptstyle S} = -\frac{1}{4\pi\varepsilon_{\scriptscriptstyle o}} \frac{q}{a} \left(2 - \frac{1}{\sqrt{2}} \right)$$