

TSDuck

MPEG Transport Stream Toolkit User's Guide

Version 3.3 September 2017

License

TSDuck is released under the terms of the license which is commonly referred to as "BSD 2-Clause License" or "Simplified BSD License" or "FreeBSD License". See http://opensource.org/licenses/BSD-2-Clause.

Copyright (c) 2005-2017, Thierry Lelégard

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Third-party libraries

TSDuck includes a few third party libraries, either in source form, binary form or both. For more details about the licenses of these third-party libraries, see the file named LICENSE.txt in the source code repository or in the installed files.

DTAPI: On Linux and Windows, the TSDuck binary distributions contain the DTAPI library. This software is available in binary form only (see [10]). Copyright © 2017 by DekTec Digital Video B.V.

TinyXML-2: The TSDuck source code repository contains a copy of TinyXML-2 (see [12]). TinyXML-2 is released under the ZLib license.

Contents

ΓR	RANSPORT STREAM TOOLKIT OVERVIEW	7
1	Purpose	7
	OPERATING SYSTEM SELECTION GUIDELINES	
3	INSTALLING TSDUCK	8
ΓR	RANSPORT STREAM UTILITIES	9
	TSANALYZE	11
	TSBITRATE	
	TSCMP	
	TSDATE	
	TSDEKTEC	
	TSDUMP	
	TSFIXCC	
	TSFTRUNC	27
	TSLSDVB	
	TSP	29
	TSPACKETIZE	
	TSPSI	
	TSRESYNC	
	TSSCAN	38
	TSSMARTCARD	40
	TSSTUFF	41
	TSTABCOMP	43
	TSTABDUMP	52
	TSTABLES	
	TSTERINFO	5 <i>6</i>
ГС	SP PLUGINS	E
	AES	
	ANALYZE	
	BAT	
	BITRATE_MONITOR	
	BOOSTPID	
	CAT	
	CLEAR	
	CONTINUITY	
	COUNT	
	DATAINJECT	
	DEKTEC (INPUT)	
	DEKTEC (OUTPUT)	
	DESCRAMBLER	
	DROP (OUTPUT)	
	DVB (INPUT)	
	EIT	
	FILE (INPUT)	
	FILE (OUTPUT)	90
	FILE (PACKET PROCESSING)	91
	FILTER	92
	FORK	94
	HISTORY	95
	INJECT	
	IP (INPUT)	98

	99
• MUX	100
• NIT	102
NITSCAN	104
NULL (INPUT)	105
• PAT	106
PATTERN	107
PCRBITRATE	108
PCREXTRACT	109
PCRVERIFY	110
• PES	111
• PLAY (OUTPUT)	113
• PMT	114
• PSI	116
REDUCE	117
REGULATE	118
REMAP	119
RMORPHAN	120
SCRAMBLER	121
• SDT	123
SIFILTER	125
• SKIP	127
	128
STUFFANALYZE	129
SVREMOVE	131
SVRENAME	132
TABLES	133
	134
	135
TSRENAME	136
• UNTIL	137
• ZAP	138
4 USAGE EXAMPLES	139
4.1 TSDUCK UTILITIES	
4.1 TSDUCK UTILITIES	
5 HARDWARE DEVICE SUPPORT	160
5.1 DVB Receiver Devices	160
5.2 DEKTEC DEVICES	
3.2 DEKTEG DEVICES	
List of F	igures
Figure 1: Transport stream processor diagram	
Figure 2: Stuffing bitrate sample diagram	
Figure 3: Conditional Access System sample test bed	158
I ict of T	'ahlac
List of T	anies
Table 1: TS toolkit utilities	
Table 2: tsp plugins	
Table 3: Dektec modulators default modulation types	
Table 4: Command line options for Dektec modulators.	/3

Acronyms and Abbreviations

ASI Asynchronous Serial Interface

ATR Answer To Reset
AVC Advanced Video Coding

BDA Broadcast Device Architecture (Microsoft Windows)

BDT Binary Data Table
CA Conditional Access
CAS Conditional Access System
CAT Conditional Access Table

CMT CA Message Table CP Crypto-Period

CSA Conseil Supérieur de l'Audiovisuel (French national regulator for TV)

CW Control Word

DKMS Dynamic Kernel Module Support (Linux)

DTS Decoding Time Stamp
DTTV Digital Terrestrial Television

DTV Digital Television

DVB Digital Video Broadcasting

DVB-CSA DVB Common Scrambling Algorithm

EIS Event Information Scheduler ECM Entitlement Control Message

ECMG ECM Generator

EMM Entitlement Management Message

EMMG EMM Generator
ES Elementary Stream
IP Internet Protocol

MPEG Moving Picture Experts Group

MUX Multiplexer

NIT Network Information Table

OUI Organizationally Unique Identifier (IEEE assigned)

PAT Program Association Table
PCR Program Clock Reference
PES Packetized Elementary Stream

PID Packet Identifier PMT Program Map Table

PSI Program Specific Information
PTS Presentation Time Stamp
RTP Real-Time Protocol
SCS SimulCrypt Synchronizer
SDT Service Description Table
SI Service Information

STB Set-Top Box

TDT Time and Date Table TID Table Identifier

TNT Télévision Numérique Terrestre (French DTTV network)

TOT Time Offset Table

TPS Transmission Parameter Signalling

TS Transport Stream UDP User Datagram Protocol

Version 3.3 5 / 165

References

- [1] ISO/IEC 13818-1:2000 | ITU-T Recommendation H.262 (2000), Second edition, December 2000: "Generic coding of moving pictures and associated audio information: Systems" (also known as "MPEG-2 System Layer")
- [2] ISO/IEC JTC1/SC29/WG11 N5771, July 2003: "Generic coding of moving pictures audio: systems. Amendment 3: Transport of AVC video data over ITU-T Rec H.222.0 | ISO/IEC 13818-1 streams" (in short: "transport of MPEG-4 AVC video over MPEG-2 TS")
- [3] ETSI, ETR 289, October 1996: "Digital Video Broadcasting (DVB); Support for use of scrambling and Conditional Access (CA) within digital broadcasting systems".
- [4] ETSI TS 103 197, V1.4.1, September 2004: "Digital Video Broadcasting (DVB); Head-end implementation of DVB SimulCrypt".
- [5] ETSI EN 300 468, V1.6.1, June 2004: "Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB systems".
- [6] ETSI TR 101 211 V1.6.1, May 2004: "Digital Video Broadcasting (DVB); Guidelines on implementation and usage of Service Information (SI)".
- [7] ETSI TR 101 162, V1.2.2, May 2003: "Digital Video Broadcasting (DVB); Allocation of Service Information (SI) and data broadcasting codes for DVB systems".
- [8] ETSI TS 102 006, V1.3.1, May 2005: "Digital Video Broadcasting (DVB); Specification for System Software Update in DVB Systems".
- [9] Dektec Digital Video B.V. corporate home page, http://www.dektec.com/
- [10] Dektec drivers and SDK's downloads, http://www.dektec.com/downloads/SDK/
- [11] Linux DKMS for Dektec device drivers, https://github.com/lelegard/dektec-dkms
- [12] TinyXML-2 home page, http://leethomason.github.io/tinyxml2/
- [13] Linux TV Wiki: "How to install DVB device drivers", http://linuxtv.org/wiki/index.php/How_to_install_DVB_device_drivers
- [14] Firmware file revision 1.20 for DiBcom-based DVB receiver devices on Linux, http://www.wi-bw.tfh-wildau.de/~pboettch/home/files/dvb-usb-dib0700-1.20.fw
- [15] Firmware file for Afatech-based DVB receiver devices on Linux, $http://www.otit.fi/\sim crope/v4l-dvb/af9015/af9015_firmware_cutter/firmware_files/4.95.0/dvb-usb-af9015.fw$
- [16] Firmware file for Montage M88DS3103-based DVB receiver devices on Linux. https://github.com/OpenELEC/dvb-firmware/blob/master/firmware/dvb-demod-m88ds3103.fw
- [17] VideoLAN VLC Media Player home page, http://www.videolan.org/vlc/
- [18] TechnoTrend DVB tuners drivers for Windows, http://www.tt-pc.com/2959/PC_Products.html
- [19] TSDuck Web site, https://tsduck.github.io/
- [20] Homebrew tap for TSDuck on macOS, https://github.com/tsduck/homebrew-tsduck

1 Transport Stream Toolkit Overview

1.1 Purpose

The transport stream toolkit contains a set of simple but flexible command-line utilities that run on Linux, Windows and macOS. These commands are described in this document.

Through *tsp*, the *transport stream processor*, many types of analysis and transformation can be applied on live or recorded transport streams. This utility can be extended through *plugins*. Existing plugins can be enhanced and new plugins can be developed using a library of C++ classes.

Structure of this guide:

- The chapter 2 describes all TSDuck utilities.
- The chapter 3 describes all *tsp* plugins.
- The chapter 4 provides some concrete examples of TSDuck usage.
- The chapter 5 describes the level of test and support for some hardware devices, mainly DVB receivers and Dektec devices.

1.2 Operating System Selection Guidelines

Here is a brief summary of pros and cons of using TSDuck on the various operating systems.

- Linux pros:
 - ⇒ Availability of a powerful shell environment. TSDuck is a light-weight *toolkit* with elementary tools and plugins which can be combined in an infinite number of ways. The user can obtain even more flexibility when combining them with the *bash* shell and all standard UNIX utilities (*grep, sed, awk,* etc.) See some complex examples in section 4.2.
- Linux cons:
 - \Rightarrow When used in a mobile environment, a laptop PC with Linux (or Linux/Windows dual boot) is required.
 - ⇒ Some DVB tuners are not supported on Linux. Some supported tuners do not work well on Linux. Make sure to get fully supported DVB hardware.
- Windows pros:
 - ⇒ Available on all "average user" laptop PC. Useful for transport stream capture and analysis in the field.
- Windows cons:
 - \Rightarrow No or limited shell environment.
 - ⇒ Some limitations in the support of DVB receiver devices (see 5.1.2.2, page 161, for more details):
 - o No standard support for DiSEqC with DVB-S/S2 tuners, which makes Windows useless when capturing behind a DiSEqC switch with multiple dishes.
 - o Impossible to retrieve the actual tuning parameters of a transport stream as detected by the tuner device.
- macOS pros:
 - ⇒ Availability of a powerful shell environment, just another UNIX system, just like Linux. Powerful user-friendly system.
- macOS cons:
 - ⇒ Currently no support for hardware DVB tuners and Dektec devices. So, macOS is recommended only when dealing with transport stream files and IP networking, not for any hardware support.

Summary: Use Linux if you can. Use Windows when you do not have Linux (typically a Windows laptop in the field). Use macOS if you have a Mac and do not need DVB or Dektec hardware.

Version 3.3 7 / 165

1.3 Installing TSDuck

Binary installers are provided for Windows and Linux platforms, 32-bit and 64-bit versions. They are available from the "Download" section of the TSDuck Web site (see [19]). On macOS, TSDuck is installed using the Homebrew packaging and delivery system (see [20]).

The basic installation provides all TSDuck tools and plugins. The command-line tools are directly accessible from the command prompt. On Windows, the directory containing the command is automatically added to the Path. On Linux, all tools are in /usr/bin. On macOS, all tools are accessible from /usr/local/bin (standard installation structure for Homebrew).

On Windows, if you plan to use DVB tuners with TSDuck, carefully check the provided drivers and DirectShow filters. Some DVB tuners provide 32-bit filters only. In that case, you must use the 32-bit version of TSDuck. The 64-bit version of TSDuck will not work with 32-bit DirectShow filters.

TSDuck can also be used as a large C++ library for third-party applications, outside the TSDuck tools and plugins. To do that, you must install the "TSDuck development environment". On Windows, this is an option of the TSDuck installer. On Linux, there is a separate package to install. On macOS, the development environment is always installed with TSDuck using Homebrew. See more details on the TSDuck Web site: select "Source code", then "Doxygen documentation" and finally "Using the TSDuck library".

2 Transport Stream Utilities

The transport stream toolkit provides a number of command-line utilities. The main one is *tsp*, the transport stream processor. The other utilities are small tools which work on transport stream files.

With a few exceptions, the transport stream files are continuous streams of 188-byte TS packets. These files can also be pipes. With the help of the *tsp* and its input and output plugins, the TS packets can be piped from and to various devices and protocols (files, DVB-ASI, DVB-S, DVB-C, DVB-T, multicast IP, etc.)

The Table 1 lists all transport stream utilities:

Table 1: TS toolkit utilities

Utility	Description
tsanalyze	Analyze a TS file and display various information about the transport stream and each individual service and PID.
tsbitrate	Evaluate the original bitrate of a TS based on the analysis of the PCR's and the number of packets between them.
tscmp	Compare the binary content of two TS files.
tsdate	Display the date & time information (TDT & TOT) from a TS file.
tsdektec	Control a Dektec device.
tsdump	Dump the content of a TS file.
tsfixcc	Fix continuity counters in a TS file.
tsftrunc	Truncate a TS file, removing extraneous bytes (last incomplete TS packet) or truncating after a specified TS packet.
tslsdvb	List DVB receiver devices.
tsp	General-purpose TS processor: receive a TS from a user-specified input plugin, apply MPEG packet processing through several user-specified packet processor plugins and send the processed stream to a user-specified output plugin.
tspacketize	Packetize PSI/SI tables in a transport stream PID.
tspsi	Display the PSI (PAT, CAT, NIT, PMT, SDT) from a TS file.
tsresync	Resynchronize a captured TS file: locate start of first packet, resynchronize to next packet after holes, convert to 188-byte packets (if captured with 204-byte packets).
tsscan	Scan frequencies in a DVB network.
tssmartcard	List or reset smart-card reader devices.
tsstuff	Add stuffing to a TS file to reach a target bitrate.
tstabcomp	PSI / SI table compiler from / to XML files.
tstabdump	Dump binary tables files, as previously saved by tstables.
tstables	Collect specified PSI/SI tables from a TS file. Either display them or save them in binary files.
tsterinfo	Compute or retrieve various DVB-T (terrestrial) information.

All utilities are simple command-line tools. Their syntax follow the GNU <code>getopt_long(3)</code> conventions. See the corresponding Linux manual page for details. In short, this means that all options have a "long name" preceded by a double dash and optionally a short name (one dash, one letter). Long options can be abbreviated if there is no ambiguity.

Although this syntax is inspired by Linux and the GNU utilities, the same syntax is used on Windows.

As an example, consider a utility which accepts the two options --verbose (short name -v) and --version (no short name). Then, the verbose mode can be equally triggered by -v, --verbose, --verb but not --ver since there an ambiguity with --version.

Version 3.3 9 / 165

All utilities and plugins accept the following common options:

--help

The utility displays its syntax and exits.

--version

The utility displays the TSDuck version and exits.

The rest of this chapter documents all TSDuck utilities, in alphabetical order.

tsanalyze

Transport Stream Analysis

This utility analyzes a transport stream. It reports either a full analysis of the transport stream, services and PID's (either in human readable format or normalized format for automatic analysis) or selected individual information.

The output can include full synthetic analysis (options --*-analysis), full normalized output (option --normalized) or a simple list of values on one line (options --*-list). The second and third type of options are useful to write automated scripts.

If output control options are specified, only the selected outputs are produced. If no such option is given, the default is:

```
--ts-analysis --service-analysis --pid-analysis --table-analysis
```

See also the *analyze* plugin for tsp for the equivalent tool in the context of tsp.

Usage:

```
tsanalyze [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omitted, standard input is used.

General purpose options:

```
-b value
--bitrate value
```

Specifies the bitrate of the transport stream in bits/second (based on 188-byte packets). By default, the bitrate is evaluated using the PCR in the transport stream. If no bitrate can be determined (no user-specified value, no PCR), the analysis will not report the bitrates of the individual services and PID's.

--help

Display this help text.

--version

Display the version number.

Analysis control options:

--suspect-max-consecutive value

Specifies the maximum number of consecutive *suspect* packets. The default value is 1. If set to zero, the suspect packet detection is disabled.

Suspect packets are TS packets which are technically correct but which may be suspected of being incorrect, resulting in analysis errors. Typically, in the middle of a suite of packets with uncorrectable binary errors, one packet may appear to have no such error while it has some errors in fact. To avoid adding this type of packets in the analysis, a packet is declared as *suspect* (and consequently ignored in the analysis) when:

- its PID is unknown (no other packet was found in this PID)
- it immediately follows a certain amount of packet containing errors (see option -- suspect-min-error-count)
- it immediately follows no more than the specified number consecutive suspect packets.

--suspect-min-error-count value

Specifies the minimum number of consecutive packets with errors before starting "suspect" packet detection. See also option --suspect-max-consecutive. The default value is 1. If set to zero, the suspect packet detection is disabled.

Version 3.3 11 / 165

Output control options:

--ts-analysis

Report global transport stream analysis.

--service-analysis

Report analysis for each service.

--pid-analysis

Report analysis for each PID.

--table-analysis

Report analysis for each table.

--error-analysis

Report analysis about detected errors.

--normalized

Complete report about the transport stream, services, PID's and tables in a normalized output format (see details below). This type of output is useful for automatic analysis in scripts.

--service-list

Report the list of all service ids.

--pid-list

Report the list of all PID's.

--global-pid-list

Report the list of all global PID's, that is to say PID's which are not referenced by a specific service but are standard DVB PSI/SI PID's or are referenced by them. This include, for instance, PID's of the PAT, EMM's, EIT's, stuffing, etc.

--unreferenced-pid-list

Report the list of all unreferenced PID's, that is to say PID's which are neither referenced by a service nor known as or referenced by the standard DVB PSI/SI.

--service-pid-list value

Report the list of all PID's which are referenced by the specified service id.

--pes-pid-list

Report the list of all PID's which are declared as carrying PES packets (audio, video, subtitles, etc).

--title string

Display the specified string as title header.

--prefix string

For one-line displays (options --*-list), prepend the specified string to all values. For instance, options --global --prefix -p outputs something like '-p 0 -p 1 -p 16', which is an acceptable option list for the tsp filter plugin.

Normalized output format

In normalized output, each line describes one *object* (service, PID, table, etc). The format of each line is:

```
type:name[=value]:...
```

The *type* identifies the kind of object which is described by the line. The *name* identifies a characteristics for the object with an optional *value*. There is no space characters. All integer values are in decimal format

The normalized syntax can be used to search for specific objects with specific characteristics.

Example: The following sample command extracts the list of EMM PID's for the SafeAccess CAS. The object *type* is pid (at beginning of line) and the two selected characteristics are emm (no value) and cas with SafeAccess DVB-assigned CA_system_id value (0x4ADC, which is 19164 in decimal).

```
tsanalyze --normalize ... | \
grep '^pid:' | grep ':emm:' | grep ':cas=19164:' | \
sed -e 's/.*:pid=//' -e 's/:.*//'
```

Other more complex examples of automated scripts are available in chapter 4.

Normalized object types

The list of *type*, at beginning of lines, is the following:

ts: Global transport stream description. There is always one single ts line.

global: Summary of global PID's, ie. not attached to a specific service. There is always one

single global line.

unreferenced: Summary of unreferenced PID's, ie. neither global nor attached to a specific service.

There is always one single unreferenced line.

service: Description of one service. There is one service line per service.

pid: Description of one PID. There is one pid line per PID.

table: Description of one table on one PID. There is one table line per unique table per

PID.

time: Time description, either from the TDT/TOT tables or from the running system.

Normalized transport stream characteristics

The characteristics in ts: lines are:

:id=int: Optional. Transport stream id, when found.

:clearservices=int: Number of clear (not scrambled) services.

:scrambledservices=int: Number of scrambled services.

:pids=int: Number of PID's.

:clearpids=int: Number of clear (not scrambled) PID's.

:scrambledpids=int: Number of scrambled PID's.
:pcrpids=int: Number of PID's with PCR's.
:unreferencedpids=int: Number of unreferenced PID's.

:invalidsyncs=int: Number of TS packets with invalid synchronization byte. :transporterrors=int Number of TS packets with transport error indicator.

:suspectignored=int Number of suspect TS packets which were ignored in the analysis.

:bitrate=int: Best value for transport stream bitrate in b/s.
:bitrate204=int: Same as previous, based on 204-byte packets.

 $: \verb"userbitrate="int:" User-specified value for transport stream bitrate in b/s. Zero if none.$

When used within *tsp* plugin, the user-specified bitrate comes from

previous plugins in the chain.

:userbitrate204=int: Same as previous, based on 204-byte packets.

:pcrbitrate=int: Estimated transport stream bitrate in b/s, based on PCR analysis.

Zero if unable to analyze PCR (no or not enough PCR, too many

discountinuities, etc.)

:pcrbitrate204=int: Same as previous, based on 204-byte packets.

:duration=int: Duration of transmission in seconds, based on TS bitrate.

Version 3.3 13 / 165

:country=name: Optional. First region name in TOT.

Normalized global and unreferenced PID's summary characteristics

The characteristics in global: and unreferenced: lines are:

:pids=int: Total number of global or unreferenced PID's.

:clearpids=int: Number of clear (not scrambled) global or unreferenced PID's.

:scrambledpids=int: Number of scrambled global or unreferenced PID's.

:packets=int: Total number of TS packets in global or unreferenced PID's.

:bitrate=int: Total bitrate of global or unreferenced PID's.
:bitrate204=int: Same as previous, based on 204-byte packets.

:access=type: Value is scrambled if there is at least one scrambled PID in the

category and clear otherwise.

:pidlist=int, int, ...: List of global or unreferenced PID's.

Normalized service characteristics

The characteristics in service: lines are: :id=int: Service id.

:tsid=int: Transport stream id.
:orignetwid=int: Original network id.

:servtype=int: Service type.

:access=type: Value is scrambled if there is at least one scrambled PID in the service

and clear otherwise.

:pids=int: Number of PID's in the service. Note that ECM PID's are also included.

:clearpids=int: Number of clear (not scrambled) PID's in the service.

:scrambledpids=int: Number of scrambled PID's in the service.
:packets=int: Total number of TS packets in the service.

:bitrate=int: Total bitrate of the service in b/s.

:bitrate204=int: Same as previous, based on 204-byte packets.

:ssu: Optional. Indicate that the service carries a System Software Update PID.

:pmtpid=int: Optional. PID of the service's PMT.

:pcrpid=int: Optional. PCR PID of the service, as declared in the PMT.

:pidlist=int, int, ...: List of PID's in the service.
:provider=name: Service provider name.

: name=name Service name. Note that this is always the last item in the line. The value

is not terminated by a colon (':'). So, if a colon is present, it is part of the

service name.

Normalized PID characteristics

The characteristics in pid: lines are:

:pid=int: PID number.

:pmt: Optional. Indicate that this is a PMT PID.:ecm: Optional. Indicate that this is an ECM PID.:emm: Optional. Indicate that this is an EMM PID.

: cas=int: Optional. Related *CA_system_id* for ECM or EMM PID's.

: operator=int: Optional. Related CA system operator id, when applicable, for ECM or

EMM PID's.

:access=type: Value is scrambled if there is at least one scrambled packet in the

PID and clear otherwise.

:cryptoperiod=int: Optional. Average crypto-period duration in seconds for scrambled

PID's, when it can be evaluated.

:streamid=int: Optional. PES stream_id in PES packet headers when the PID carries

PES packets and all PES packets have the same *stream_id*.

:audio: Optional. Indicate that this is an audio PID.:video: Optional. Indicate that this is a video PID.

:language=name: Optional. Indicate the language for the PID. Can be found on audio or

subtitles PID's.

: servcount=int: Number of services which reference this PID.: unreferenced: Optional. Indicate that this is an unreferenced PID.

:global: Optional. Indicate that this is a global PID.

:servlist=int, int, ...: Optional. List of service_id which reference this PID.

:ssuoui=int,int,...: Optional. List of manufacturers OUI for System Software Update data

PID's.

:bitrate=int: Bitrate for this PID in b/s.

:bitrate204=int: Same as previous, based on 204-byte packets.

:packets=int: Total number of TS packets in this PID.

:clear=int: Number of clear (not scrambled) TS packets in this PID.

:scrambled=int: Number of scrambled TS packets in this PID.

:af=int: Number of TS packets with adaptation field in this PID.

:pcr=int: Number of TS packets with PCR in this PID.

:discontinuities=int: Number of discontinuities in this PID.

:duplicated=int: Number of duplicated TS packets in this PID.

:invalidscrambling=int: Number of TS packets in this PID with invalid scrambling control

value.

:pes=int: Optional. Number of PES packets, for PID's carrying PES.

:invalidpesprefix=int: Optional. Number of invalid PES prefix, for PID's carrying PES.

:unitstart=int: Optional. Number of PUSI (payload unit start indicator), for PID's not

carrying PES.

:description=string Human-readable description of this PID. Note that this is always the

last item in the line. The value is not terminated by a colon (':'). So, if

a colon is present, it is part of the description.

Normalized table and sections characteristics

The characteristics in table: lines are:

:pid=int: PID number on which the table is found.

:tid=int: Table id.

:tidext=int: Optional. Table id extension, for long sections only.

:tables=int: Total number of occurences of the table.
:sections=int: Total number of sections for this table.

:repetitionms=int: Optional. Average repetition rate in milliseconds (can be computed

only if the transport stream bitrate is known).

:minrepetitionms=int: Optional. Minimum repetition rate in milliseconds (can be computed

only if the transport stream bitrate is known).

:maxrepetitionms=int: Optional. Maximum repetition rate in milliseconds (can be computed

only if the transport stream bitrate is known).

Version 3.3 15 / 165

:repetitionpkt=int: Average repetition rate in TS packets interval.
:minrepetitionpkt=int: Minimum repetition rate in TS packets interval.
:maxrepetitionpkt=int: Maximum repetition rate in TS packets interval.

:firstversion=int: Optional. Version number of first occurrence of the table. For long

sections only.

:lastversion=int: Optional. Version number of last occurrence of the table. For long

sections only.

:versions=int,int,...: Optional. List of all version numbers of the table. For long sections

only

Normalized time characteristics

The characteristics in time: lines are:

:utc: Optional. The specified time is UTC.:local: Optional. The specified time is local time.

:tdt: Optional. The specified time is extracted from a TDT.:tot: Optional. The specified time is extracted from a TOT.

:system: Optional. The specified time is an operating system time, not extracted

from the transport stream.

:first: Optional. The specified time is the first one in its category (first TDT or

TOT, system time of first packet).

:last: Optional. The specified time is the last one in its category (last TDT or

TOT, system time of last packet).

:date=dd/mm/yyyy: Date part of the time, example: "24/11/2008".

:time=<u>hhhmmmsss</u>: Hour, minute and second part of time, example: "14h12m45s". :secondsince2000=int: Number of seconds since 1st January 2000. Can be used to compute

duration, to compare time values, etc.

: country=name: Optional. First region name in TOT, if the time comes from a TOT.

tsbitrate

Bitrate Evaluation from PCR

This utility evaluates the original bitrate of a transport stream based on an analysis of the PCR's (Program Clock Reference timestamps) and the interval between them. This is especially useful for captured files where the transmission bitrate information is lost.

Usage:

```
tsbitrate [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omited, standard input is used.

Options:

-a

--all

Analyze all packets in the input file. By default, stop analysis when enough PCR information has been collected.

-d

--dts

Use DTS (Decoding Time Stamps) from video PID's instead of PCR (Program Clock Reference) from the transport layer.

-f

--full

Full analysis. The file is entirely analyzed (as with --all) and the final report includes a complete per PID bitrate analysis.

--help

Display this help text.

```
--min-pcr value
```

Stop analysis when that number of PCR's are read from the required minimum number of PID's (default: stop after 64 PCR's on 1 PID).

--min-pid value

Minimum number of PID to get PCR's from (default: stop after 64 PCR's on 1 PID).

-v

--value-only

Display only the bitrate value, in bits/seconds, based on 188-byte packets. Useful to reuse the value in command lines.

--version

Display the version number.

Version 3.3 17 / 165

tscmp

Transport Stream Files Comparison

This utility compares the binary content of two transport stream files. Selected fields may be omitted in the comparison to allow comparing files which went through different PID remapping or resynchronization process.

Usage:

```
tscmp [options] filename-1 filename-2
```

Input files:

MPEG transport stream files to be compared.

Options:

--buffered-packets value

Specifies the files input buffer size in TS packets. The default is 10,000 TS packets.

-b value

--byte-offset value

Start reading the files at the specified byte offset (default: zero).

--cc-ignore

Ignore continuity counters when comparing packets. Useful if one file has been resynchronized.

-0

--continue

Continue the comparison up to the end of files. By default, stop after the first differing packet.

-d

--dump

Dump the content of all differing packets. Also separately dump the differing area within the packets.

--help

Display this help text.

-n

--normalized

Report in a normalized output format (useful for automatic analysis).

-p value

--packet-offset value

Start reading the files at the specified TS packet (default: zero).

--payload-only

Compare only the payload of the packets, ignore header and adaptation field.

--pcr-ignore

Ignore PCR and OPCR when comparing packets. Useful if one file has been resynchronized.

--pid-ignore

Ignore PID value when comparing packets. Useful if one file has gone through a remapping process.

-q

--quiet

Do not output any message. The process simply terminates with a success status if the files are identical and a failure status if they differ.

-s

--subset

Specifies that the second file is a subset of the first one. This means that the second file is expected to be identical to the first one, except that some packets may be missing. When a difference is found, the first file is read ahead until a matching packet is found. Without this option, missing packets in the second file cause all the rest of the file to be considered as different.

See also -- threshold-diff.

-t value

--threshold-diff value

When used with <code>--subset</code>, this value specifies the maximum number of differing bytes in packets to declare them equal. When two packets have more differing bytes than this threshold, the packets are reported as different and the first file is read ahead. The default is zero, which means that two packets must be strictly identical to declare them equal.

If you find this explanation unclear, try it with a second file which contains both missing and corrupted packets...

 $-\mathbf{v}$

--verbose

Produce verbose output.

--version

Display the version number.

Version 3.3 19 / 165

tsdate

Date and Time Extraction

This utility extracts date and time information from s transport stream, namely the TDT (Time and Data Table) and the TOT (Time Offset Utility).

Usage:

```
tsdate [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omited, standard input is used.

Options:

```
-a
-a11
Report all TDT/TOT tables (default: report only the first table of each type).

-help
Display this help text.

-notdt
Ignore Time & Date Table (TDT).

-notot
Ignore Time Offset Table (TOT).

-v
-verbose
```

Produce verbose output.

--version

Display the version number.

tsdektec

Dektec Device Control

This utility controls Dektec devices, which include input and / or output DVB-ASI devices, QPSK or QAM modulators (see [9]).

Usage:

```
tsdektec [options] [device]
```

Device:

Device index, from 0 to N-1 (with N being the number of Dektec devices in the system). The default is 0. Use option --list-all (or -a) to have a complete list of devices in the system.

Options:

```
-a
--list-all
```

List all Dektec devices available on the system.

-h --help

Display this help text.

-i port-number

--input port-number

Set the specified port in input mode. This applies to bidirectional ports which can be either set in input or output mode. The port number of each channel can be seen using the command "tsdektec -av".

-l state
--led state

Set the state of the LED on the rear panel. Useful to identify a Dektec device when more than one is present. The state is one of "off", "green", "red", "yellow", "hardware". See also option -- wait (the led state is automatically returned to "hardware" after exit).

--normalized

With --all, list the Dektec devices in a normalized output format (useful for automatic analysis).

-o port-number

--output port-number

Set the specified port in output mode. This applies to bidirectional ports which can be either set in input or output mode. The port number of each channel can be seen using the command "tsdektec -av".

-r --reset

Reset the device.

-v

--verbose

Produce verbose output.

--version

Display the version number.

Version 3.3 21 / 165


```
-w seconds
--wait seconds
```

Wait the specified number of seconds before exiting. The default if 5 seconds if option --led is specified and 0 otherwise.

Normalized output format

In normalized output, each line describes one *object* (driver, device, channel, etc). The format of each line is:

```
type:name[=value]:...
```

The *type* identifies the kind of object which is described by the line. The *name* identifies a characteristics for the object with an optional value. There is no space characters. All integer values are in decimal format.

The normalized syntax can be used to search for specific objects with specific characteristics. See also the description of the command tsanalyze for another example of normalized output.

Normalized object types

The list of *type*, at beginning of lines, is the following:

Description of the Dektec runtime library ("DTAPI"). There is always one single dtapi dtapi:

line.

driver: Description of one type of Dektec device driver.

device: Description of one Dektec device.

channel: Description of one channel inside a Dektec device.

Normalized DTAPI characteristics

The characteristics in dtapi: lines are:

:version=string: Version of the DTAPI.

Normalized driver characteristics

The characteristics in driver: lines are:

:pci: This is a PCI driver (Dta1xx) :usb: This is a USB driver (Dtu2xx)

:version=string: Version of the driver.

Normalized device characteristics

The characteristics in device: lines are:

:address=int: USB address. PCI bus number. :bus=int: :device=int: Device index. :device-id=int: Device id

:fw-variant=int: Firmware variant. :fw-version=int: Firmware version. :model=string: Device model name. :nb-input=int: Count of input ports. :nb-output=int: Count of output ports. :nb-port=int: Count of all ports. This is a PCI device.

:pci:

:serial=int: Serial number.

:slot=int: PCI slot number in the PCI bus.

:subsys-id=int: Subsystem id

Version 3.3 22 / 165

:subsys-vendor- Subsystem vendor id

id=int:

:usb: This is a USB device.

:vendor-id=int: Vendorid

:vpd-bo=string: Bitrate offset (from Vital Product Data area)
:vpd-cl=string: Customer id (from Vital Product Data area)

:vpd-ec=string: Engineering change level (from Vital Product Data area)

:vpd-id=string: Device description (from Vital Product Data area)
:vpd-mn=string: Manufacture id (from Vital Product Data area)
:vpd-pd=string: Production date (from Vital Product Data area)
:vpd-pn=string: Part number (from Vital Product Data area)
:vpd-sn=string: Serial number (from Vital Product Data area)
:vpd-xt=string: Crystal stability (from Vital Product Data area)

Normalized channel characteristics

The characteristics in channel: lines are:

:access-downconverted: Access to downconverted signal.

:adjust-level: Adjustable level

:asi: This is a DVB/ASI port.

:asi-raw-10bit: Raw 10-bit ASI mode available.

:atsc: ATSC modulator.

: cmmb: CMMB modulator.

:dedicated-clock-input: Dedicated clock input available.

:dedicated-clock-input- Dedicated clock input available, can be divided by providing a

ratio:

:device=int: Device index of the device containing the channel.

ratio.

:diversity: Diversity mode available.

:double-buffer: This is a double-buffered device.

:dtmb:
:dvb-c:
:dvb-c:
DVB-C modulator.

DVB-C2 modulator.

:dvb-raw-10bit: DVB 10-bit raw mode available.

:dvb-s:DVB-S modulator.:dvb-s2:DVB-S2 modulator.:dvb-t:DVB-T modulator.:dvb-t2:DVB-T2 modulator.:dvb-t2-mi:DVB-T2-MI modulator.

:failsafe: Failsafe
:if-output: IF output
:ip=string: IP address

 $\verb|:io-clock-select|: I/0 clock selection available.$

:io-config: I/O standard and mode configuration available.

Version 3.3 23 / 165

:mac=string:

:io-rate-select: TS rate clock selection available.

:iq-output: Digital IQ output.

:iq-samples: Direct I/Q samples available.

:lband: L-Band

:lock-io-rate: Lock output to input TS rate available.

MAC address

:loop-through:Loop-through available.:lvds1:SPI LVDS1 available.:lvds2:SPI LVDS2 available.:lvtt1:SPI LVTTL available.

:modulator: This is a modulator port.

:port=int: Port number.
:qam: QAM modulator.

:qam-a: QAM-A (DVB-C) modulator.
:qam-b: QAM-B (USA) modulator.
:qam-c: QAM-C (Japan) modulator.
:shared-input: Shared antenna input available.

:sdi: This is an SDI port.

:sdi-time-stamp: SDI frames time-stamping available.

:sdi-time-stamp-64: SDI frames 64-bit time-stamping available.

:snr-setting: SNR setting available.
:spi: This is an SPI port.

:spi-external-clock: SPI external clock available.
:spi-fixed-clock: SPI fixed clock available.
:spi-serial-8-bit: SPI serial 8-bit available.
:spi-serial-10-bit: SPI serial 10-bit available.

:transmit-on-time-stamp: Transmission on time-stamp available.

:uhf: UHF modulator.
:vhf: VHF modulator.

:virtual-stream: Virtual stream channel.

#tsdump

Dump TS Packets

This utility dumps the contents of MPEG transport stream packets.

Usage:

```
tsdump [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omited, standard input is used.

Note that if the option --raw is used, the input can be any type of file, not necessarily a TS file.

Options:

```
-a
--ascii
```

Include ASCII dump in addition to hexadecimal.

-b

--binary

Include binary dump in addition to hexadecimal.

-0

--c-style

Same as --raw-dump (no interpretation of packets) but dump the bytes in C-language style, eg. "0x01, 0x02, "instead of "01 02". Useful to include *tsdump* output as data in a C source file.

-h

--headers-only

Dump packet headers only, not payload.

--help

Display this help text.

-n

--nibble

Same as --binary but add separator between 4-bit nibbles.

-0

--offset

Display offset from start of packet with hexadecimal dump.

-p

--payload

Hexadecimal dump of TS payload only, skip TS header.

-1

--raw-file

Raw dump of file, do not interpret as TS packets. With this option, tsdump simply acts as an hexa / ASCII file dumper.

--version

Display the version number.

Version 3.3 25 / 165

tsfixcc

Fix Continuity Counters

This utility fixes errors in the continuity counters (CC) in a transport stream file. If packets are missing (non continuous CC), the CC in all subsequent packets in the affected PID's are modified to remove the discontinuity.

If the file needs to be repeatedly played, tsfixcc can also add empty packets at the end of the file to fill the discontinuities between the end and the beginning of the file when the playback wraps to the beginning.

Usage:

```
tsfixcc [options] file
```

File:

MPEG transport stream. Must be a binary stream of 188-byte packets. This file must be a regular file (cannot be a pipe). It is open in read/write mode and is directly updated.

Options:

-с

--circular

Enforce continuity when the file is played repeatedly. Add empty packets, if necessary, on each PID so that the continuity is preserved between end and beginning of file.

--help

Display this help text.

-n

--noaction

Display what should be performed but do not modify the file.

-7

--verbose

Produce verbose messages.

--version

Display the version number.

tsftrunc

Transport Stream File Truncation

This utility truncates a captured transport stream file to remove trailing incomplete packets.

See also the utility tsresync for a more powerful way to recover corrupted transport stream files.

Usage:

```
tsftrunc [options] file ...
```

Files:

MPEG transport stream files. Must be binary streams of 188-byte packets. The files must be regular files (cannot be pipes). They are open in read/write mode and are directly updated.

Options:

--help

Display this help text.

-n

--noaction

Do not perform truncation, check mode only.

```
-p value
```

--packet value

Index of first packet to truncate. If unspecified, all complete packets are kept in the file. Extraneous bytes at end of file (after last multiple of 188 bytes) are truncated.

-v

--verbose

Display more info.

--version

Display the version number.

Version 3.3 27 / 165

##tslsdvb

List DVB Receiver Devices

This utility lists the DVB receiver devices (DVB-S, DVB-C, DVB-T) in the system with their characteristics.

Usage:

```
tslsdvb [options]
```

Options:

```
-a N
```

--adapter N

Specify the N^{th} DVB adapter in the system, the first index being zero. This option can be used instead of device name.

On Linux systems, this means /dev/dvb/adapterN.

-d "name"

--device-name "name"

Specify the name of the DVB receiver device to use. The syntax of the device name depends on the operating system. See section 5.1.3, page 162, for more details on DVB receiver devices naming. By default, when no device name or adapter is specified, list all available receiver devices.

--help

Display this help text.

−₹

--verbose

Produce verbose output.

--version

Display the version number.

Windows-specific options:

-e

--enumerate-devices

Enumerate all relevant DirectShow devices and filters for DVB input. Produces a very verbose output, for debug only.

Transport Stream Processor

The transport stream processor is a general-purpose packet processing framework.

It receives an MPEG Transport Stream from a user-specified input plugin, applies MPEG packet processing through several user-specified packet processor plugins and sends the processed stream to a user-specified output plugin.

All input, processors and output plugins are shared libraries (.so files on Linux, .dll files on Windows).

The following figure illustrates the structure of a tsp process using three packet processing plugins.

Figure 1: Transport stream processor diagram

This section describes the general syntax and usage of the tsp command. All plugins are documented in details, in alphabetical order, in chapter 3, page 58. The section 4.2 gives a few examples of tsp commands, either simple and complex examples.

Usage:

The general syntax of the tsp command is the following:

```
tsp [tsp-options] \
    [-I input-name [input-options]] \
    [-P processor-name [processor-options]] ... \
    [-0 output-name [output-options]]
```

All *tsp-options* must be placed on the command line before the input, packet processing and output plugin specifications. There must be at most one input and one output plugin. There may be any number of packet processing plugins. On the command line, the order of the packet processing plugins is significant: the TS packets are passed from one processor to the other in this order.

Global tsp options:

```
-a nullpkt/inpkt
--add-input-stuffing nullpkt/inpkt
```

Specify that nullpkt null TS packets must be automatically inserted after every inpkt input TS packets. Both nullpkt and inpkt must be non-zero integer values. This option is useful to artificially increase the input bitrate by adding stuffing.

Example: the option "-a 14/24" adds 14 null packets every 24 input packets, effectively turning a 24 Mb/s input stream (terrestrial) into a 38 Mb/s stream (satellite).

-b value

--bitrate value

Specify the input bitrate, in bits/seconds. By default, the input bitrate is provided by the input plugin or by analysis of the PCR's at the beginning of the input stream. If no or not enough PCR are found, the DTS from video PID's are used.

Version 3.3 29 / 165

Use option ——bitrate when you know precisely the input bitrate and you do not trust the input device, the PCR's or the DTS.

See also the plugin *pcrbitrate* for permanent recomputation of the bitrate based on PCR's or DTS.

--bitrate-adjust-interval value

Specify the interval in seconds between bitrate adjustments, ie. when the output bitrate is adjusted to the input one. The default is 5 seconds. Some output processors ignore this setting. Typically, ASI or modulator devices use it, while file devices ignore it. This option is ignored if ——bitrate is specified.

--buffer-size-mb value

Specify the buffer size in mega-bytes. This is the size of the buffer between the input and output devices. The default is 16 MB. Increasing the buffer size may improve the performance at the expense of increasing the overall latency (implicit time-shifting).

-d[N]

--debug [=N]

Produce debug output. Specify an optional debug level N. Do not use in normal operation.

Without this option, no debug output is produced. When the option is specified but not the level *N*, the default debug level is 1, that is to say a reasonable amount of information. The higher the debug level is, the more output is produced.

The debug setting is automatically transmitted to all plugins.

--help

Display this help text.

— <u>i</u>

--ignore-joint-termination

Ignore all --joint-termination options in plugins.

Some plugins have termination conditions. For instance, the plugin until passes packets until some specified condition, the plugins mux and inject may terminate tsp after completing the data insertion etc

A plugin can decide to terminate tsp on its own. The termination is unconditional, regardless of the state of the other plugins. Thus, if several plugins have termination conditions, tsp stops when the first plugin decides to terminate. In other words, there is an "or" operator between the various termination conditions.

The idea behind *joint termination* is to terminate tsp when several plugins have jointly terminated their processing. If several plugins have a "*joint termination*" condition (usually using the option --joint-termination), tsp stops when the last plugin triggers the joint termination condition. In other words, there is an "and" operator between the various joint termination conditions.

The tsp-option --ignore-joint-termination disables the termination of tsp when all plugins have reached their joint termination condition. The plugins continue to pass packets as if some additional joint termination condition was still pending.

-1

--list-processors

List all available processors.

--max-flushed-packets value

Specify the maximum number of packets to be processed before flushing them to the next processor or the output. When the processing time is high and some packets are lost, try decreasing this value. The default is 10000 packets.

--max-input-packets value

Specify the maximum number of packets to be received at a time from the input plugin. By default, tsp reads as many packets as it can, depending on the free space in the buffer.

-m

--monitor

Continuously monitor the system resources which are used by tsp. This includes CPU load, virtual memory usage. Useful to verify the stability of the application or benchmarking the packet processing performance.

-t

--timed-log

Each logged message contains a time stamp.

-v

--verbose

Produce verbose output. The verbose setting is automatically transmitted to all plugins.

--version

Display the version number.

Plugin activation options:

```
-I name
```

--input name

Designate the shared library plugin for packet input. By default, read packets from standard input.

-O name

--output name

Designate the shared library plugin for packet output. By default, write packets to standard output.

-P name

--processor name

Designate a shared library plugin for packet processing. Several packet processors are allowed. Each packet is successively processed by each processor, in the order of the command line. By default, there is no processor and the packets are directly passed from the input to the output.

The specified plugin name is used to locate a shared library for the plugin (.so file on Linux, .dll file on Windows). Usually, all plugins files are in the same directory as the tsp executable. But, more generally, a plugin can be designated in a number of ways, in the following order. When a method fails, the next one is attempted.

- If the plugin name is a complete path name, with a directory, this path name is used.
- Without directory in the plugin name, a list of directories is searched:
 - If the environment TSPLUGINS_PATH is defined, a list of directories is parsed. Directories are separated by a semicolon ';' on Windows and a colon ':' on UNIX systems.
 - The same directory as the tsp executable file is used as last choice.
 - In each of these directories, the file named tsplugin_name.so or .dll is searched.
 - If not found, the file name and then name. so or .dll is searched.
- If still not found, the standard algorithm of the operating system is applied to locate the shared library file, using the specified name (on Linux, see the man page of dlopen (3) for more details).

The *input-options, processor-options* and *output-options*, as specified in the general syntax of the tsp command, are specific to their corresponding plugin. All available plugins are documented in chapter 3, page 58.

All plugins accept the following common options:

--help

The plugin displays its syntax and exits.

--version

The plugin displays the TSDuck version and exits.

Version 3.3 31 / 165

This means that the following type of command can be used to display the help text for a specific plugin:

$$tsp {-I|-O|-P}$$
 name --help

tspacketize

Packetize PSI/SI Tables in a Transport Stream PID

This utility packetizes PSI/SI tables in a transport stream PID.

Usage:

```
tspacketize [options] [input-file[=rate] ...]
```

Parameters:

```
input-file[=rate]
```

Binary tables files (standard input if omitted).

If different repetition rates are required for different files, a parameter can be "filename=value" where value is the repetition rate in milliseconds for all sections in that file. For repetition rates to be effective, the bitrate of the target PID must be specified, see option -b or --bitrate.

Options:

```
-b value
```

--bitrate value

Specifies the bitrate (in bits/second) of the target PID. This information is used to schedule sections in the output list of packets when specific bitrates are specified for sections. When no specific bitrate is specified for any input file, this option is ignored.

-c

--continuous

Continuous packetization. By default, generate one cycle of sections.

-f

--force-crc

Force recomputation of CRC32 in long sections. Ignore the CRC32 values in the input files. By default, the CRC32 of every section is verified and sections with wrong CRC32 are rejected.

--help

Display this help text.

-o file-name

--output file-name

Output file name for TS packets. By default, use standard output.

-p value

--pid value

PID of the output TS packets. This is a required parameter, there is no default value.

-s

--stuffing

Insert stuffing at end of each section, up to the next TS packet boundary. By default, sections are packed and start in the middle of a TS packet, after the previous section. Note, however, that section headers are never scattered over a packet boundary.

-v

--verbose

Display verbose information.

--version

Display the version number.

Version 3.3 33 / 165

#tspsi

Dump All PSI Tables

This utility extracts all PSI tables (PAT, CAT, PMT, NIT, BAT, SDT¹) from a transport stream. The output is rather primitive but it exactly exhibits the structure of tables, sections and descriptors.

Usage:

```
tspsi [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omited, standard input is used.

Options:

```
-a
--all-versions
```

Display all versions of PSI tables (need to read the complete transport stream). By default, display only the first version of each PSI table and stop when all expected PSI are extracted.

--cat-only

Display only the CAT, ignore other PSI tables.

-c

--clear

Indicate that this is a clear transport stream, without conditional access information. Useful to avoid further reading the transport stream, waiting for a non-existent CAT.

-d --dump

Dump all PSI sections.

--help

Display this help text.

-o filename

--output-file filename

File name for text output.

-v

--verbose

Produce verbose output.

--version

Display the version number.

Tables and sections formatting options:

```
-c
--c-style
```

Same as --raw-dump (no interpretation of section) but dump the bytes in C-language style, eg. "0x01, 0x02," instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv[=min-size]

With option --tlv, try to interpret the value field of each TLV record as another TLV area. If the *min-size* value is specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the nested TLV is the same as the enclosing TLV.

¹ I know, BAT and SDT are SI, not PSI ☺

-r

--raw-dump

Raw dump of section, no interpretation.

--tlv syntax

For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV records. Several --tlv options are allowed, each one describes a part of the section payload.

Each syntax string has the form "start,size,tagSize,lengthSize,order". The start and size fields define the offset and size of the TLV area in the section payload. If the size field is "auto", the TLV extends up to the end of the section. If the start field is "auto", the longest TLV area in the section payload will be used. The fields tagSize and lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be either "msb" or "lsb" and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are "auto, auto, 1, 1, msb".

Version 3.3 35 / 165

tsresync

Resynchronize Corrupted Transport Stream Files

This utility resynchronizes a corrupted transport stream file.

Usage:

```
tsresync [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of transport stream packets, with various encapsulation or possible corruptions.

If omited, the standard input is used.

Options:

-c

--continue

Continue re-resynchronizing after loss of synchronization. By default, stop after first packet not starting with 0x47.

-h value

--header-size value

When used with --packet-size, specifies the size of extra data preceeding each packet in the input file. The default is zero.

--help

Display this help text.

$-\mathbf{k}$

--keep

Keep TS packet size from input to output file. By default, strip extra data and reduce packets to 188 bytes. See option --packet-size for a description of supported input packet sizes.

-m value

--min-contiguous value

Minimum size containing contiguous valid packets to consider a slice of input file as containing actual packets (default: $512 \, \text{kB}$).

-o filename

--output filename

Output file name (standard output by default).

-p value

--packet-size value

Expected TS packet size in bytes. By default, try:

- 188-byte (standard)
- 204-byte (trailing 16-byte Reed-Solomon outer FEC)
- 192-byte (leading 4-byte timestamp in M2TS/Blu-ray disc files).

If the input file contains any other type of packet encapsulation, use options --packet-size and --header-size.

-s value

--sync-size value

Number of initial bytes to analyze to find start of packet synchronization (default: 1 MB).

-v

--verbose

Display verbose information.

--version

Display the version number.

Version 3.3 37 / 165

DVB Network Scanning

This utility scans frequencies, transport streams and services in a DVB network.

Usage:

tsscan [options]

Tuner device options and tuning parameters:

All options from the *dvb* input plugin are also available to *tsscan*. See page 83 for the list of options.

If no tuner device is specified, the first DVB receiver is used.

If tuning parameters are present (frequency or channel reference), the NIT is read on the specified frequency and a full scan of the corresponding network is performed.

By default, without specific frequency, an UHF-band scanning is performed (see option --uhf-band).

Scanning options:

--best-quality

With UHF-band scanning, for each channel, use the offset with the best signal quality. By default, use the average of lowest and highest offsets with required minimum quality and strength.

--best-strength

With UHF-band scanning, for each channel, use the offset with the best signal strength. By default, use the average of lowest and highest offsets with required minimum quality and strength.

--first-uhf-channel value

For UHF-band scanning, specify the first channel to scan (default: 21).

--first-offset value

For UHF-band scanning, specify the first offset to scan on each channel (default: -2). Note that tsscan may scan lower offsets. As long as some signal is found at a specified offset, tsscan continues to check up to 3 lower offsets below the "first" one. This means that if a signal is found at offset -2, offset -3 will be checked anyway, etc. up to offset -5.

-g

--global-service-list

Same as --service-list but display a global list of services at the end of scanning instead of per transport stream.

--help

Display this help text.

--last-uhf-channel value

For UHF-band scanning, specify the last channel to scan (default: 69).

--last-offset value

For UHF-band scanning, specify the last offset to scan on each channel (default: +2). Note that tsscan may scan higher offsets. As long as some signal is found at a specified offset, tsscan continues to check up to 3 higher offsets above the "last" one. This means that if a signal is found at offset +2, offset +3 will be checked anyway, etc. up to offset +5.

--min-quality value

Minimum signal quality percentage. Frequencies with lower signal quality are ignored (default: 10%).

--min-strength value

Minimum signal strength percentage. Frequencies with lower signal strength are ignored (default: 10%).

-n

--no-offset

For UHF-band scanning, scan only the central frequency of each channel. Do not scan frequencies with offsets. This option is useful to speed up the scanning if the determination of the offsets is not important. In most cases, even if the signal is transmitted with an offset, tuning on the central frequency is sufficient to receive it.

If you are interested in determining the offsets, however, do not specify this option. As an example, if a signal is transmitted at offset +1, the reception may be successful at offsets -1 to +3 (but not -2 and +4). By default, tsscan checks all offsets and reports that the signal is at offset +1 (central point between offsets -1 and +3). With the option --no-offset, tsscan reports that the signal is found at the central frequency of the channel (offset zero).

--psi-timeout milliseconds

Specifies the timeout, in milli-seconds, for PSI/SI table collection. Useful with --service-list. The default is 5 000 milli-seconds.

-1

--service-list

Read SDT of each channel and display the list of services.

--show-modulation

Display modulation parameters.

Windows-specific note: With UHF band scanning, the actual modulation parameters of a transponder may not be available. This depends on the driver of the tuner. Most drivers do not report the correct values.

-u

--uhf-band

Perform DVB-T UHF-band scanning. This is the default scanning method when no tuning parameter is given to read a NIT.

-v

--verbose

Produce verbose output.

--version

Display the version number.

Version 3.3 39 / 165

tssmartcard

Smart-Card Utility

This utility lists or resets the smart-card readers in the system.

Usage:

```
tssmartcard [options] [reader-name]
```

Reader name:

The optional reader-name parameter indicates the smart-card reader device name to list or reset.

By default, without any option or parameter, the command lists all smart-card reader devices in the system.

Options:

-0

--cold-reset

Perfom a cold reset on the smart-card.

-6

--eject

Eject the smart-card (if supported by the reader device).

--help

Display this help text.

-t value

--timeout value

Timeout in milliseconds. The default is 1000 ms (1 second).

-v

--verbose

Produce verbose output. List the state of each reader device and the ATR of the smart-card, if any is present in the reader device. By default, tssmartcard only lists the names of the smart-card readers, without detail.

--version

Display the version number.

-w

--warm-reset

Perform a warm reset on the smart-card.

tsstuff

Add stuffing to a TS file to reach a target bitrate

This utility adds stuffing packets to a TS file to reach a target bitrate. Time stamps (PCR or DTS) are extracted from one *reference PID* in the input file and stuffing packets are added so that the time stamps are approximately synchronized with the TS target bitrate.

Usage:

```
tsstuff [options] [input-file]
```

Input file:

The input file is a TS file, typically with variable bitrate content. By default, the standard input is used.

Options:

-b value

--bitrate value

Target constant bitrate of the output file. This is mandatory parameter, there is no default.

--buffer-size value

Input buffer size, in bytes. Must be large enough to always contain two time stamps in the reference PID. Default: 4,194,304 bytes (4 MB).

-d

--dts-based

Use Decoding Time Stamps (DTS) in the reference PID to evaluate the amount of stuffing to insert. The default is to use Program Clock References (PCR) instead of DTS.

-f value

--final-inter-packet value

Number of stuffing packets to add between input packets after the last time stamp (PCR or DTS). By default, use the same number as in the previous segment, between the last two time stamps.

--help

Display this help text.

-i value

--initial-inter-packet value

Number of stuffing packets to add between input packets before the first time stamp (PCR or DTS). By default, use the same number as in the first segment, between the first two time stamps.

-1 value

--leading-packets value

Number of consecutive stuffing packets to add at the beginning of the output file, before the first input packet. The default is zero.

-o filename

--output filename

Output file name (standard output by default). The output file is a TS file with the same packets as the input file with interspersed stuffing packets and a constant bitrate.

-r value

--reference-pid value

PID in which to collect time stamps (PCR or DTS) to use as reference for the insertion of stuffing packets. By default, use the first PID containing the specified type of time stamps (PCR or DTS).

-t value

--trailing-packets value

Number of consecutive stuffing packets to add at the end of the output file, after the last input packet. The default is zero.

Version 3.3 41 / 165

-v

--verbose

Produce verbose output.

--version

Display the version number.

#tstabcomp

Compile or decompile MPEG tables from XML files

This utility is an MPEG table compiler.

MPEG tables are represented in *source form* as XML files. An XML source file may contain one or more tables. From this source file, *tstabcomp* creates a binary file containing all sections for these tables, in the same binary format as saved by the *tstables* utility. The resulting binary file can be examined using *tstabdump* or injected in a transport stream using the *inject* plugin for *tsp*.

The *tstabcomp* utility is also an MPEG table decompiler. From a binary file containing sections, it recreates an XML file. This XML file can be edited by hand and recompiled for instance.

In the absence of a specialized plugin, this is the most generic way to modify a binary table in a stream:

- Extract selected binary tables from a stream using the *tstables* utility or the *tables* plugin for *tsp*. Use the option --binary-output to save the tables in binary section format.
- Decompile the binary file using tstabcomp.
- Edit the resulting XML file and make all required modifications.
- Recompile the edited XML file.
- Inject the resulting binary file in the stream using the *inject* plugin for *tsp*.

Usage:

```
tstabcomp [options] input-file ...
```

Input files:

XML source files to compile or binary table files to decompile. By default, files ending in .xml are compiled and files ending in .bin are decompiled. For other files, explicitly specify --compile or --decompile.

Options:

-c --compile

Compile all files as XML source files into binary files. This is the default for .xml files.

-d

--decompile

Decompile all files as binary files into XML files. This is the default for .bin files.

--help

Display this help text.

-o filepath

--output filepath

Specify the output file name. By default, the output file has the same name as the input and extension *.bin* (compile) or *.xml* (decompile).

If the specified path is a directory, the output file is built from this directory and default file name. If more than one input file is specified, the output path, if present, must be a directory name.

-v

--verbose

Produce verbose output.

--version

Display the version number.

Version 3.3 43 / 165

-x --xml-model

Display the XML model of the table files. This model is not a full XML-Schema, this is an informal template file which describes the expected syntax of TSDuck XML files. If --output is specified, the model is saved here. Do not specify input files.

XML source files format

An input XML file uses <tsduck> as root node. The root node contains any number of tables. See the next section for a reference list of tables.

The following sample XML file contains the definition for simple (and incomplete) PAT and PMT.

```
<?xml version="1.0" encoding="UTF-8"?>
<t.sduck>
  <PAT version="8" transport stream id="0x0012" network_PID="0x0010">
    <service service id="0x0001" program map PID="0x1234"/>
    <service service id="0x0002" program map PID="0x0678"/>
  </PAT>
  <PMT version="4" service id="0x0456" PCR PID="0x1234">
    <CA descriptor CA system id="0x0777" CA PID="0x0251"/>
    <component elementary PID="0x0567" stream type="0x12">
      <CA descriptor CA system id="0x4444" CA PID="0x0252"/>
      <ISO_639_language_descriptor>
        <language code="fre" audio_type="0x45"/>
<language code="deu" audio_type="0x78"/>
      </ISO 639 language descriptor>
    </component>
  </PMT>
</tsduck>
```

The following two sections describe the reference format for all tables and descriptors. The format which is used here is informal. It shall be considered as a template.

All allowed nodes and attributes are present. The content of attributes in this template is a comment describing the expected content of the corresponding attribute in real XML files.

Notes on types and formats:

- Tags and attributes are not case-sensitive.
- The names of tags and attributes are copied from ISO or DVB standards.
- Integer values can be represented in decimal or hexadecimal (0x prefix).
- Booleans are "true" or "false".
- Some attributes accept symbols in addition to plain numerical values. The names of accepted symbols are listed in the attribute. Example: running status="undefined|not-running|starting|pausing|running|off-air"
- Hexadecimal content is a suite of hexa digits. Spaces are ignored.
- The pseudo-node < DESCRIPTOR LIST> is a place-holder for a sequence a descriptor nodes.
- Unsupported tables and descriptors can still be used. Their payloads must be specified as hexadecimal digits. See tags <generic_short_table>, <generic_long_table> and <generic descriptor>.

Reference XML format for tables

The currently supported tables are described below.


```
<!-- One per transport stream -->
  <transport stream transport stream id="uint16, required"</pre>
                    original network id="uint16, required">
    <DESCRIPTOR LIST>
  </transport_stream>
</BAT>
<!-- Conditional Access Table -->
<CAT version="uint5, default=0" current="bool, default=true">
  <DESCRIPTOR LIST>
</CAT>
<!-- Event Information Table -->
<!-- If type="pf", this is an EITp/f -->
<!-- If type="uint4", this is an EITs with TID 0x50+type (actual) or
     0x60+type (other) -->
<EIT type="pf|uint4, default=pf"
     version="uint5, default=0"
     current="bool, default=true"
     actual="bool, default=true"
     service id="uint16, required"
     transport_stream_id="uint16, required"
     original network id="uint16, required"
     segment_last_section_number="uint8, required"
     last_table_id="uint8, required">
  <!-- One per event -->
  <event event id="uint16, required"</pre>
         start time="YYYY-MM-DD hh:mm:ss, required"
         duration="hh:mm:ss, required"
         running status="undefined|not-running|starting|pausing|running|off-air,
                         default=undefined"
         CA mode="bool, default=false">
    <DESCRIPTOR LIST>
  </event>
</EIT>
<!-- Network Information Table -->
<NIT version="uint5, default=0"
    current="bool, default=true"
     network id="uint16, required"
     actual="bool, default=true">
  <!-- Network-level descriptors -->
  <DESCRIPTOR LIST>
  <!-- One per transport stream -->
  <transport stream transport stream id="uint16, required"</pre>
                    original network id="uint16, required">
    <DESCRIPTOR LIST>
  </transport stream>
</NIT>
<!-- Program Association Table -->
<PAT version="uint5, default=0"
     current="bool, default=true"
     transport stream id="uint16, required"
     network PID="uint13, optional">
  <!-- One per service -->
  <service service id="uint16, required" program map PID="uint13, required"/>
</PAT>
```

Version 3.3 45 / 165


```
<!-- Program Map Table -->
<PMT version="uint5, default=0"
    current="bool, default=true"
     service id="uint16, required"
     PCR PID="uint13, default=0x1FFF">
  <!-- Program-level descriptors -->
  <DESCRIPTOR LIST>
  <!-- One per elementary stream -->
  <component stream_type="uint8, required" elementary_PID="uint13, required">
   <DESCRIPTOR LIST>
  </component>
</PMT>
<!-- Running Status Table -->
<RST>
  <!-- One per event -->
  <event transport_stream_id="uint16, required"</pre>
         original_network_id="uint16, required"
         service id="uint16, required"
         event id="uint16, required"
         running_status="undefined|not-running|starting|pausing|running|off-air,
                         required"/>
</RST>
<!-- Service Description Table -->
<SDT version="uint5, default=0"</pre>
     current="bool, default=true"
     transport_stream_id="uint16, required"
     original_network_id="uint16, required"
     actual="bool, default=true">
  <!-- One per service -->
  <service service_id="uint16, required"</pre>
           EIT_schedule="bool, default=false"
           EIT present following="bool, default=false"
           running_status="undefined|not-running|starting|pausing|running|
                           off-air, default=undefined"
           CA mode="bool, default=false">
    <DESCRIPTOR LIST>
  </service>
</SDT>
<!-- Time and Date Table -->
<TDT UTC time="YYYY-MM-DD hh:mm:ss, required"/>
<!-- Time Offset Table -->
<TOT UTC time="YYYY-MM-DD hh:mm:ss, required">
  <DESCRIPTOR LIST>
</TOT>
<!-- Transport Stream Description Table -->
<TSDT version="uint5, default=0" current="bool, default=true">
  <DESCRIPTOR LIST>
</TSDT>
```

Reference XML format for descriptors

The currently supported descriptors are described below.

```
<AC3_descriptor
   component_type="uint8, optional"
   bsid="uint8, optional"
   mainid="uint8, optional"
   asvc="uint8, optional">
```



```
<additional info>
   Hexadecimal content
  </additional info>
</AC3 descriptor>
<AVC video descriptor
    profile idc="uint8, required"
    constraint set0="bool, required"
    constraint_set1="bool, required"
    constraint_set2="bool, required"
    AVC_compatible_flags="uint5, required"
    level_idc="uint8, required"
    AVC still present="bool, required"
    AVC_24_hour_picture="bool, required"/>
<bouquet name descriptor bouquet name="string, required"/>
<CA descriptor CA system id="uint16, required" CA PID="uint13, required">
  oprivate data>
   Hexadecimal content
  </private data>
</CA descriptor>
<CA identifier descriptor>
  <!-- One per CAS -->
  <CA_system_id value="uint16, required"/>
</CA identifier descriptor>
<content descriptor>
  <!-- One per classification -->
 user byte="uint8, required"/>
</content_descriptor>
<country availability descriptor country availability="bool, required">
 <!-- One per country -->
  <country country code="char3, required"/>
</country_availability_descriptor>
<data_broadcast_descriptor</pre>
   data_broadcast_id="uint16, required"
    component_tag="uint8, required"
    language code="char3, required">
 <selector_bytes>Hexadecimal content</selector_bytes>
  <text>String</text>
</data broadcast descriptor>
<data broadcast id descriptor data broadcast id="uint16, required">
  <selector bytes>Hexadecimal content</selector_bytes>
</data broadcast id descriptor>
<eacem stream identifier descriptor version byte="uint8, required"/>
<enhanced AC3 descriptor
   mixinfoexists="bool, required"
   component type="uint8, optional"
   bsid="uint8, optional"
   mainid="uint8, optional"
   asvc="uint8, optional"
   substream1="uint8, optional"
   substream2="uint8, optional"
    substream3="uint8, optional">
  <additional_info>
   Hexadecimal content
 </additional info>
</enhanced AC3 descriptor>
```

Version 3.3 47 / 165


```
<eutelsat_channel_number_descriptor>
  <!-- One per service -->
  <service original_network_id="uint16, required"</pre>
           transport_stream_id="uint16, required"
           service id="uint16, required"
           eutelsat channel number="uint10, required"/>
</eutelsat channel number descriptor>
<extended_event_descriptor</pre>
    descriptor number="uint8, required"
    last_descriptor_number="uint8, required"
    language code="char3, required">
  <text>String</text>
  <!-- One per item -->
  <item>
    <description>String</description>
    <name>String</name>
  </item>
</extended event descriptor>
<HD_simulcast_logical channel descriptor>
  <!-- One per service -->
  <service service id="uint16, required"</pre>
           logical channel number="uint10, required"
           visible service="bool, default=true"/>
</HD_simulcast_logical_channel_descriptor>
<ISO 639 language descriptor>
  <!-- One per language -->
  <language code="char3, required" audio type="uint8, required"/>
</ISO_639_language_descriptor>
<linkage descriptor</pre>
    transport_stream id="uint16, required"
    original network id="uint16, required"
    service id="uint16, required"
    linkage_type="uint8, required">
  <!-- if linkage type == 0x08 -->
  <mobile_handover_info
      handover type="uint4, required"
      origin_type="NIT|SDT, required"
      network_id="uint16, required if hand-over_type is 0x01, 0x02, 0x03"
      initial_service_id="uint16, required if origin_type is NIT"/>
  <!-- else if linkage_type == 0x0D -->
  <event linkage_info</pre>
      target event id="uint16, required"
      target listed="bool, required"
      event_simulcast="bool, required"/>
  <!-- else if linkage type >= 0x0E && linkage type <= 0x1F -->
  <extended event linkage info>
    <!-- For each event -->
    <event
        target_event_id="uint16, required"
        target_listed="bool, required"
        event simulcast="bool, required"
        link type="uint2, required"
        target id type="uint2, required"
        user_defined_id="uint16, required if target_id_type == 3"
        target_transport_stream_id="uint16, required if target_id_type == 1"
        target original network id="uint16, optional"
        target_service_id="uint16, optional"/>
  </extended event linkage info>
  <private data>
    Hexadecimal content
  </private data>
</linkage descriptor>
<local_time_offset_descriptor>
```



```
<!-- One per region -->
  <region country code="char3, required"
          country region id="uint6, required"
          local_time_offset="int, required"
          time of change="YYYY-MM-DD hh:mm:ss, required"
          next time_offset="int, required"/>
 <!-- local t\bar{l}me offset and next time offset: -780 to +780 minutes (-13 to +13
hours) -->
</local_time_offset_descriptor>
<logical_channel_number_descriptor>
  <!-- One per service -->
  <service service_id="uint16, required"</pre>
           logical_channel_number="uint10, required"
           visible_service="bool, default=true"/>
</le></logical channel number descriptor>
<message_descriptor message id="uint8, required"</pre>
                    language code="char3, required">
  <text>String</text>
</message descriptor>
<network name descriptor network name="string, required"/>
<parental_rating_descriptor>
  <!-- One per country -->
  <country country code="char3, required"</pre>
           rating="uint8, required"/>
</parental_rating_descriptor>
<private_data_specifier_descriptor</pre>
    private data specifier="uint32|eacem|eutelsat, required"/>
<S2 satellite delivery system descriptor
    backwards compatibility="bool, required"
    scrambling sequence index="uint18, optional"
    input stream identifier="uint8, optional"/>
<satellite_delivery_system_descriptor</pre>
    frequency="SatelliteFrequencyHz, required"
    orbital position="SatelliteOrbitalPosition, eg. 19.2, required"
    west_east_flag="east|west, required"
    polarization="horizontal|vertical|left|right, required"
    roll off="0.35|0.25|0.20|reserved, default=0.35"
    modulation system="DVB-S|DVB-S2, default=DVB-S"
    modulation type="auto|QPSK|8PSK|16-QAM, default=QPSK"
    symbol_rate="SatelliteSymbolRate, required"
    FEC inner="undefined|1/2|2/3|3/4|5/6|7/8|8/9|3/5|4/5|9/10|none|, required"/>
<service descriptor</pre>
    service type="uint8, required"
    service provider name="string, required"
    service name="string, required"/>
<service_list_descriptor>
  <!-- One per service -->
  <service service id="uint16, required" service type="uint8, required"/>
</service list descriptor>
<short event descriptor language code="char3, required">
  <event name>String</event name>
  <text>String</text>
</short event descriptor>
<STD descriptor leak valid="bool, required"/>
<stream identifier descriptor component tag="uint8, required"/>
```

Version 3.3 49 / 165


```
<subtitling_descriptor>
  <!-- One per subtitle -->
  <subtitling language code="char3, required"</pre>
              subtitling_type="uint8, required"
              composition page id="uint16, required"
              ancillary page id="uint16, required"/>
</subtitling descriptor>
<supplementary_audio_descriptor</pre>
    mix_type="uint1, required"
    editorial classification="uint5, required"
    language_code="char3, optional">
  oprivate data>
    Hexadecimal content
  </private data>
</supplementary audio descriptor>
<teletext descriptor>
  <!-- One per page -->
  <teletext language_code="char3, required"</pre>
            teletext type="uint5, required"
            page number="uint16, required"/>
</teletext descriptor>
<terrestrial_delivery_system_descriptor</pre>
    centre frequency="TerrestrialFrequencyHz, required"
    bandwidth="8MHz|7MHz|6MHz|5MHz, required"
    priority="HP|LP, required"
    no time slicing="bool, required"
    no MPE FEC="bool, required"
    constellation="QPSK|16-QAM|64-QAM, required"
    hierarchy_information="uint3, required"
    code rate HP stream="1/2|2/3|3/4|5/6|7/8, required"
    code rate LP stream="1/2|2/3|3/4|5/6|7/8, required"
    guard interval="1/32|1/16|1/8|1/4, required"
    transmission mode="2k|8k|4k, required"
    other frequency="bool, required"/>
```

Generic format for unsupported tables and descriptors

Unsupported tables can be represented as follow:

```
<!-- Generic short table -->
<qeneric short table id="uint8, required" private="bool, default=true">
  Generic table with binary payload of one short section, to be used when a
 specific table is not yet implemented. The body of this element shall contain
 an even number of hexadecimal digits, the payload of the short section.
  The private indicator shall be false on MPEG-defined sections and preferably
  true on DVB-defined and user-defined sections.
</generic short table>
<!-- Generic long table -->
<generic long table</pre>
    table id="uint8, required"
    table id ext="uint16, default=0xFFFF"
   version="uint5, default=0"
    current="bool, default=true"
    private="bool, default=true">
  Generic table with binary payload of long sections, to be used when a specific
  table is not yet implemented.
  The private indicator shall be false on MPEG-defined sections and preferably
  true on DVB-defined and user-defined sections.
```



```
<!-- One per section -->
<section>
   The body of the section elements shall contain an even number of hexadecimal digits, the payload of the long section. The CRC32 field is not part of this payload, it will be recomputed.
</section>
</generic_long_table>
```

Unsupported descriptors can be represented as follow:

</generic descriptor>

```
<generic_descriptor tag="uint8, required">
Generic descriptor with binary payload, to be used when a specific descriptor
is not yet implemented. The body of this element shall contain an even number
of hexadecimal digits.
```

Version 3.3 51 / 165

■ tstabdump

Dump MPEG Tables

This utility dumps in human readable format MPEG tables, as saved in binary files by the *tstables* utility.

Usage:

```
tstabdump [options] [input-file ...]
```

Input files:

Binary tables files, as saved by tstables (standard input if omitted).

Options:

--help

Display this help text.

-v

--verbose

Produce verbose output.

--version

Display the version number.

Tables and sections formatting options:

```
-c
--c-style
```

Same as -raw-dump (no interpretation of section) but dump the bytes in C-language style, eg. "0x01, 0x02," instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv[=min-size]

With option --tlv, try to interpret the value field of each TLV record as another TLV area. If the *min-size* value is specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the nested TLV is the same as the enclosing TLV.

-r --raw-dump

Raw dump of section, no interpretation.

--tlv syntax

For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV records. Several --tlv options are allowed, each one describes a part of the section payload.

Each syntax string has the form "start,size,tagSize,lengthSize,order". The start and size fields define the offset and size of the TLV area in the section payload. If the size field is "auto", the TLV extends up to the end of the section. If the start field is "auto", the longest TLV area in the section payload will be used. The fields tagSize and lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be either "msb" or "lsb" and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are "auto, auto, 1, 1, msb".

tstables

Collect MPEG Tables

This utility collects MPEG tables from a transport stream. The tables can be either displayed or saved in a human readable format, saved in binary files or sent over UDP/IP to some collecting server.

Usage:

```
tstables [options] [input-file]
```

Input file:

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of 188-byte packets. If omited, standard input is used.

Tables and sections formatting options:

-a

--all-sections

Display/save all sections, as they appear in the stream. By default, collect complete tables, with all sections of the tables grouped and ordered and collect each version of a table only once.

-b filename

--binary-output filename

Binary output file name where the table sections are saved. By default, the tables are formated and displayed on standard output. See also option -m, --multiple-files.

-d

--diversified-payload

Select only sections with *diversified* payload. This means that section payloads containing the same byte value (all 0×00 or all $0 \times FF$ for instance) are ignored. Typically, such sections are stuffing and can be ignored that way.

-f

--flush

Flush standard output after each display. Useful to monitor the content if the output has been redirected to a disk file.

--help

Display this help text.

-i address:port

--ip-udp address:port

Send binary tables over UDP/IP to the specified destination. The *address* specifies an IP address which can be either unicast or multicast. It can be also a host name that translates to an IP address. The *port* specifies the destination UDP port.

--local-udp address

With <code>--ip-udp</code>, when the destination is a multicast address, specify the IP address of the outgoing local interface. It can be also a host name that translates to a local address.

--log

Short one-line log of each table instead of full table display.

--log-size value

With option --log, specify how many bytes are displayed at the beginning of the table payload (the header is not displayed). The default is 8 bytes.

-x value

--max-tables value

Maximum number of tables to dump. Stop execution when this limit is reached.

Version 3.3 53 / 165

-m

--multiple-files

Create multiple binary output files, one per section. A binary output file name must be specified (option -b or --binary-output). Assuming that the specified file name has the form 'base.ext', each file is created with the name 'base_pXXXX_tXX.ext' for short sections and 'base_pXXXX_tXX_exxx_vXX_sXX.ext' for long sections, where the XX respectively specify the hexadecimal values of the PID, TID (table id), TIDext (table id extension), version and section index.

--negate-pid

Negate the PID filter: specified PID's are excluded.

Warning: this can be a dangerous option on complete transport streams since PID's not containing sections can be accidentally selected.

-n

--negate-tid

Negate the TID filter: specified TID's are excluded.

--negate-tid-ext

Negate the TID extension filter: specified TID extensions are excluded.

--no-duplicate

Do not report consecutive identical tables with a short section in the same PID. This can be useful for ECM's. This is the way to display new ECM's only. By default, tables with long sections are reported only when a new version is detected but tables with a short section are all reported.

--no-encapsulation

With --ip-udp, send the tables as raw binary messages in UDP packets. By default, the tables are formatted into TLV messages.

-o filename

--output-file filename

File name for text output. By default, when neither --binary-output nor --ip-udp are used, the textual formatted tables are displayed on the standard output. This option redirects this output.

--packet-index

Display the index of the first and last TS packet of each displayed section or table.

-p value

--pid value

PID filter: select packets with this PID value. Several -p or --pid options may be specified. By default, without -p or --pid option, all PID's are used. PID's containing PES data are automatically ignored.

--psi-si

Add all PID's containing PSI/SI tables, ie. PAT, CAT, PMT, NIT, SDT and BAT. The PMT PID's are dynamically collected each time a new PAT is encountered.

Note that EIT, TDT and TOT are not included. Use --pid 18 to get EIT and --pid 20 to get TDT and TOT.

-t value

--tid value

TID filter: select sections with this TID (table id) value. Several -t or --tid options may be specified. Without -t or --tid option, all tables are saved.

-e value

--tid-ext value

TID extension filter: select sections with this table id extension value (apply to long sections only). Several -e or --tid-ext options may be specified. Without -e or --tid-ext option, all tables are saved.

--time-stamp

Display a time stamp (current local time) with each table.

--ttl value

With --ip-udp, specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or "Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most systems.

-v --verbose

Produce verbose output.

--version

Display the version number.

Tables and sections formatting options:

```
-c
--c-style
```

Same as -raw-dump (no interpretation of section) but dump the bytes in C-language style, eg. "0x01, 0x02," instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv[=min-size]

With option --tlv, try to interpret the value field of each TLV record as another TLV area. If the *min-size* value is specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the nested TLV is the same as the enclosing TLV.

-raw-dump

Raw dump of section, no interpretation.

--tlv syntax

For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV records. Several --tlv options are allowed, each one describes a part of the section payload.

Each syntax string has the form "start,size,tagSize,lengthSize,order". The start and size fields define the offset and size of the TLV area in the section payload. If the size field is "auto", the TLV extends up to the end of the section. If the start field is "auto", the longest TLV area in the section payload will be used. The fields tagSize and lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be either "msb" or "lsb" and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are "auto, auto, 1, 1, msb".

Version 3.3 55 / 165

tsterinfo

DVB-Terrestrial Information

This utility performs various operations and conversions on DVB-T transmission and modulation parameters:

- Compute the carrier frequency from a UHF or VHF channel number and optional offset count.

 Triggered when option --uhf-channel, --vhf-channel and optionally --offset-count, are specified.
- Retrieve the UHF or VHF channel number and offset count from a carrier frequency. Triggered when option --frequency is specified.
- Compute the nominal transport stream bitrate from OFDM modulation parameters (bandwidth, high-priority stream error correction rate, constellation and guard interval). Supported for non-hierarchical transmission only.
 - Triggered when options --guard-interval and --high-priority-fec, and optionally --bandwidth and --constellation, are specified.
- Given a transport stream bitrate, retrieve the OFDM modulation parameters (bandwidth, high-priority stream error correction rate, constellation and guard interval). Sometimes, several combinations of parameters are possible; they are all reported (see also option <code>--max-guess</code>). This could be useful on Windows systems where the tuners are not able to report their current parameters. In that case, you can use <code>tsanalyze</code>, <code>tsbitrate</code> or <code>tsp-v</code> to evaluate the transport stream bitrate based on PCR analysis. Then, <code>tsterinfo</code> will retrieve the most probable modulation parameters. Note that only the four mentioned parameters can be retrieved. All other DVB-T transmission parameters are independent from the transport stream bitrate.

Triggered when option --bitrate is specified.

See some examples in section 4.1.5.

Usage:

tsterinfo [options]

Options:

-w value

--bandwidth value

Specify the OFMD bandwith, used to compute the resulting bitrate. Must be one of "8-MHz", "7-MHz", "6-MHz", "5-MHz" (default: "8-MHz").

-b value

--bitrate value

Transport stream bitrate in bits/second, based on 188-byte packets. Given this bitrate, tsterinfo will try to guess the OFDM modulation parameters: bandwidth, high-priority stream error correction rate, constellation and guard interval.

-c value

--constellation value

Specify the OFMD constellation, used to compute the resulting bitrate. Must be one of "QPSK", "16-QAM", "64-QAM" (default: "64-QAM").

-f value

--frequency value

Carrier frequency in Hz. UHF or VHF channel and offset will be displayed.

-g value

--guard-interval value

Specify the OFMD guard interval, used to compute the resulting bitrate. Must be one of "1/32", "1/16", "1/8", "1/4" (no default).

--help

Display this help text.

-h value

--high-priority-fec value

Specify the OFMD error correction for high priority streams, used to compute the resulting bitrate. Must be one of "1/2", "2/3", "3/4", "5/6", "7/8" (no default).

-m value

--max-guess value

When used with --bitrate, specify the maximum number of sets of modulation parameters to display. By default, display only one set of parameters, the one giving the closest bitrate. When the given bitrate is not exact and the transmission parameters are uncertain, it may be useful to display more than one possible set of values. The difference between the specified bitrate and nominal bitrate is displayed for each set of parameters. The various sets of parameters are displayed in increasing order of bitrate difference (ie. most probable parameters first).

When more than one set of parameters give the same bitrate, they are all displayed, regardless of --max-quess.

-o value

--offset-count value

Specify the number of offsets from the UHF or VHF channel. The default is zero. See options—uhf-channel and—vhf-channel.

- 5

--simple

Produce simple output: only numbers, no comment, no formatting. Typically useful to write scripts and reuse tsterinfo output.

-u value

--uhf-channel value

Specify the UHF channel number of the carrier. Can be combined with an --offset-count option. The resulting frequency will be displayed.

--version

Display the version number.

-v value

--whf-channel value

Specify the VHF channel number of the carrier. Can be combined with an --offset-count option. The resulting frequency will be displayed.

Version 3.3 57 / 165

3 TSP Plugins

This chapter contains the reference documentation of all plugins for *tsp*, the *transport stream processor*. The Table 2 lists all available plugins.

Table 2: tsp plugins

Plugin	Type	Description
aes	packet	Experimental AES Scrambling
analyze	packet	Analyze the structure of the transport stream
bat	Packet	Perform various transformations on the BAT
bitrate_monitor	Packet	PID's instantaneous bitrate monitoring
boostpid	Packet	Boost the bitrate of a PID, stealing stuffing packets
cat	Packet	Perform various transformations on the CAT
clear	packet	Extract clear (non scrambled) sequences
continuity	packet	Check TS continuity counters
count	packet	Count TS packets per PID
datainject	packet	DVB SimulCrypt-compliant EMM and private data injector.
dektec	input, output	Dektec DTA-1xx DVB-ASI and modulator devices I/O
descrambler	packet	Static DVB descrambler
drop	output	Drop output packets
dvb	input	DVB receiver devices (DVB-S, DVB-C, DVB-T) input
eit	packet	Analyze EIT sections
file	input, output, packet	Transport stream files input / output. As packet processor plugin, save packets to a file and pass to next plugin.
filter	packet	Filter packets in a TS
fork	packet	Redirect packets to a forked process
history	packet	Report a history of major events on the transport stream
inject	packet	Inject a table into a transport stream.
ip	input, output	UDP/IP sockets I/O, including multicast IP.
mux	packet	Inject TS packets from a file into the transport
nit	packet	Perform various transformations on the NIT Actual
nitscan	packet	Scan the NIT for tuning information
null	input	Null packets generator
pat	packet	Perform various transformations on the PAT
pattern	packet	Replace packet payload with a binary pattern
pcrbitrate	packet	Permanently recompute bitrate based on PCR's
pcrextract	packet	Extract PCR's from TS packets
pcrverify	packet	Verify PCR values
pes	packet	Analyze PES packets
play	output	Play output TS on a media player
pmt	packet	Perform various transformations on the PMT
psi	packet	Extract all PSI tables (PAT, CAT, PMT, NIT, BAT, SDT)
reduce	packet	Reduce the bitrate by removing stuffing packets

Plugin	Type	Description
regulate	packet	Regulate TS packets flow according to a bitrate
remap	packet	Generic PID remapper
rmorphan	packet	Remove unreferenced ("orphan") PID's
scrambler	packet	DVB scrambler
sdt	packet	Perform various transformations on the SDT Actual
sifilter	packet	Extract PSI/SI PID's
skip	packet	Skip leading packets in a TS
slice	packet	Pass or drop packets based on packet numbers or relative TS time
stuffanalyze	packet	Analyze the level of stuffing in sections
svremove	packet	Remove a service
svrename	packet	Rename a service (modify service id, name, type, etc.)
tables	packet	Collect MPEG tables
time	packet	Schedule packets pass or drop
timeref	packet	Update TDT and TOT with a new time reference.
tsrename	packet	Rename a transport stream (modify ts id, etc.)
until	packet	Pass TS packets until specified conditions
zap	packet	Zap on one service, create an SPTS

Some plugins are related to the scrambling of TS packets and Conditional Access Systems. Please note the following:

- The DVB-CSA scrambling algorithm is inherently and purposely very slow with a software implementation. A 3.4 MHz Pentium 4 CPU, for instance, cannot (de)scramble more than 20 Mb/s. Be cautious not to ask for impossible tasks, like real time (de)scrambling of a complete TS on a regular PC.
- These *tsp* plugins are implemented for testing Conditional Access Systems, either on the head-end or set-top box side. TSDuck does not provide any support to hack or circumvent Conditional Access Systems and will never do so. The CAS-related plugins require and use external CAS-provided systems (ECMG, EMMG and smartcards). All secrecy and proprietary CAS information remain isolated inside these external systems and TSDuck does not attempt to access this type of secret and private information. TSDuck only interacts with these systems using their external communication protocols.

Version 3.3 59 / 165

Experimental AES Scrambling

This plugin scrambles or descrambles the payload of packets from a specified service using AES and a fixed key. Various chaining modes are allowed. All video, audio and subtitles components of the service are scrambled.

By default, the plugin scrambles the packets. Use option --descramble to descramble the packets.

Usage:

```
tsp -P aes [options] [service]
```

Parameter:

Specifies the service to scramble or descramble. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored.

If the service is unspecified, individual PID's are scrambled (see option --pid).

Options:

--cbc

Use Cipher Block Chaining (CBC) mode without padding. The residue (last part of the packet payload, shorter than 16 bytes) is left clear.

--cts1

Use Cipher Text Stealing (CTS) mode. TS packets with a payload shorter than 17 bytes are left clear.

Several incompatible designs of CTS exist. This one implements the description in:

- 1) Bruce Schneier, Applied Cryptography (2nd, Ed.), pp 191, 195
- 2) RFC 2040, The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms
- 3) "CBC ciphertext stealing" in http://en.wikipedia.org/wiki/Ciphertext_stealing

--cts2

Use Cipher Text Stealing (CTS) mode. TS packets with a payload shorter than 16 bytes are left clear.

Several incompatible designs of CTS exist. This one implements the description in http://csrc.nist.gov/groups/ST/

toolkit/BCM/documents/ciphertext%20stealing%20proposal.pdf

--cts3

Use ECB Cipher Text Stealing (CTS) mode. TS packets with a payload shorter than 17 bytes are left clear.

Several incompatible designs of CTS exist. This one implements the description of "ECB ciphertext stealing" in http://en.wikipedia.org/wiki/Ciphertext_stealing

--cts4

Use ECB Cipher Text Stealing (CTS) mode. TS packets with a payload shorter than 17 bytes are left clear.

Several incompatible designs of CTS exist. This one implements the ECB ciphertext stealing which is used in ST 71xx chips.

-d

--descramble

Descramble instead of scramble.

--dvs042

Use DVS 042 (now ANSI/SCTE 52 2003) cipher block chaining mode.

TS packets with a payload shorter than 16 bytes are left clear. Note that the DVS 042 standard allows the scrambling of short messages (shorter than the cipher block size, ie. 16 bytes with AES) but the two versions of the standard (ANSI/SCTE 52 2003 and ANSI/SCTE 52 2008) have incompatible descriptions of the processing of short messages. To avoid conflicts, this plugin does not scramble these short messages.

--ecb

Use Electronic Code Book (ECB) mode without padding. The residue (last part of the packet payload, shorter than 16 bytes) is left clear. This is the default mode.

--help

Display this help text.

-i value

--iv value

Specifies the initialization vector. Must be a string of 32 hexadecimal digits. Must not be used in ECB mode and the various ECB-CTS modes. The default IV is all zeroes.

-k value

--key value

Specifies a fixed and constant AES key for all TS packets. The value must be a string of 32 or 64 hexadecimal digits. This is a mandatory parameter.

-p value

--pid value

Specifies a PID to scramble. Can be used instead of specifying a service.

Several -p or --pid options may be specified.

--version

Display the version number.

Version 3.3 61 / 165

analyze

Global Transport Stream Analysis

This plugin performs various types of global analysis on the transport stream. It is equivalent to the *tsanalyze* utility. Actually, the following two commands produce the same result:

```
tsanalyze options filename
tsp -I file filename -P analyze options -O drop
```

Usage:

```
tsp -P analyze [options]
```

General purpose options:

--help

Display this help text.

-i seconds

--interval seconds

Produce a new output file at regular intervals. After outputing a file, the analysis context is reset, ie. each output file contains a fully independent analysis.

-m

--multiple-files

When used with --interval and --output-file, create a new file for each analysis instead of rewriting the previous file. Assuming that the specified output file name has the form base.ext, each file is created with a time stamp in its name as base_YYYYMMDD_hhmmss.ext.

-o filename

--output-file filename

Specify the output text file for the analysis result. By default, use the standard output.

Warning: if you do not specify this option, be sure to redirect the output plugin to something different from the default. Otherwise, the text output of the analysis will be mixed with the binary output of the TS packets!

--version

Display the version number.

Analysis and output control options:

The options for controlling the analysis and the output are the same as for the tsanalyze utility.

Perform Various Transformations on the BAT

This plugin performs various transformations on the BAT, either all BAT's of the transport stream or one specific BAT for one specific bouquet.

Usage:

```
tsp -P bat [options]
```

Options:

-b value

--bouquet-id value

Specify the bouquet id of the BAT to modify and leave other BAT's unmodified. By default, all BAT's are modified.

--cleanup-private-descriptors

Remove all private descriptors without preceding *private_data_specifier_descriptor*.

--help

Display this help text.

-j

--increment-version

Increment the version number of the BAT.

-v value

--new-version value

Specify a new value for the version of the BAT.

--pds value

With option --remove-descriptor, specify the private data specifier which applies to the descriptor tag values above 0x80.

--remove-descriptor value

Remove from the BAT all descriptors with the specified tag. Several --remove-descriptor options may be specified to remove several types of descriptors. See also option --pds.

-r value

--remove-service value

Remove the specified service_id from the following descriptors: <code>service_list_descriptor</code>, <code>logical_channel_number_ descriptor</code>. Several <code>--remove-service</code> options may be specified to remove several services.

--remove-ts value

Remove from the BAT all references to the transport stream with the specified *ts_id* value. Several --remove-ts options may be specified to remove several TS.

--version

Display the version number.

Version 3.3 63 / 165

#bitrate_monitor

PID's Instantaneous Bitrate Monitoring

This plugin is used to monitor the bitrate of a given PID. Note that the bitrate is the instantaneous bitrate, meaning that it is computed from the packets received during the last n seconds (n is a plugin parameter, default value = 5).

If the bitrate value is outside of the specified range, an alarm is reported.

An alarm command can be specified to report anomalies in a custom way. If such a command is present, it will be called with the problem description as parameter.

Usage:

```
tsp -P bitrate_monitor [options] pid
```

Pid:

Specifies the PID to monitor.

Options:

```
-a "command"
```

```
--alarm_command "command"
```

Command to be run when an alarm is detected (bitrate out of range).

--min value

Set minimum allowed value for bitrate in bits/s. Default value = 10 bits/s.

--max value

Set maximum allowed value for bitrate bits/s. Default value = 2^{32} bits/s.

```
-t value
```

```
--time_interval value
```

Time interval in seconds used to compute the bitrate. Te default is 5 seconds.

--help

Display this help text.

--version

Display the version number.

Note that default values for min and max bitrate are only useful to detect if packets for the given PID are broadcast or not.

#boostpid

Boost the Bitrate of a PID

This plugin artificially increases the bitrate of a selected PID by adding empty packets (ie. without payload). The plugin does not really insert new packets in the TS, it "steals" stuffing packets.

Usage:

```
tsp -P boostpid [options] pid addpkt inpkt
```

Parameters:

pid

The first parameter specifies the PID to boost.

```
addpkt inpkt
```

The second and third parameters specify that *addpkt* TS packets must be automatically added after every *inpkt* input TS packets in the PID. Both *addpkt* and *inpkt* must be non-zero integer values

As an example, the parameters 3 1 indicate to add 3 new empty packets in the PID for every existing packet. The resulting bitrate of the PID is multiplied by 4.

Take care to limit the added packet ratio to something realistic. The value 1000/1, for instance, is unrealistic since it is impossible in most cases to find 1000 stuffing packets to replace between all existing packets of the PID.

Options:

--help

Display this help text.

--version

Display the version number.

Version 3.3 65 / 165

acat

Perform Various Transformations on the CAT

This plugin performs various transformations on the CAT.

Usage:

```
tsp -P cat [options]
```

Options:

-a casid/pid[/private-data]

--add casid/pid[/private-data]

Add a *CA_descriptor* in the CAT with the specified CA System Id and EMM PID. The optional private data must be a suite of hexadecimal digits. Several --add options may be specified to add several descriptors.

-b value

--bitrate value

Specifies the bitrate in bits / second of the CAT if a new one is created. The default is 3,000 b/s.

--cleanup-private-descriptors

Remove all private descriptors without preceding *private_data_specifier_descriptor*.

--

--create

Create a new empty CAT if none was received after one second. This is equivalent to --create-after 1000.

--create-after milliseconds

Create a new empty CAT if none was received after the specified number of milliseconds. This can be useful to force the creation of a CAT in a TS that has none (the CAT is an optional table). If an actual CAT is received later, it will be used as the base for transformations instead of the empty one.

--help

Display this help text.

-i

--increment-version

Increment the version number of the CAT.

--inter-packet value

When a new CAT is created and --bitrate is not present, this option specifies the packet interval for the CAT PID, that is to say the number of TS packets in the transport between two packets of the CAT PID. Use instead of --bitrate if the global bitrate of the TS cannot be determined.

-v value

--new-version value

Specify a new value for the version of the CAT.

-r value

--remove-casid value

Remove all *CA_descriptors* with the specified CA System Id. Several --remove-casid options may be specified.

--remove-pid value

Remove all *CA_descriptors* with the specified EMM PID value. Several --remove-pid options may be specified.

--version

Display the version number.

Version 3.3 67 / 165

Eclear

Extract Clear (Non Scrambled) Sequences

This plugin extracts clear (non scrambled) sequences of a transport stream.

The extraction is based on one "reference" service (see option -s). When a clear packet is found on any audio or video stream of the reference service, all subsequent packets in the TS are transmitted. When no clear packet has been found in the last second, all subsequent packets in the TS are dropped.

This plugin is typically used after the plugin zap. It let the service pass when it is clear and drops it when it is scrambled.

Usage:

```
tsp -P clear [options]
```

Options:

-a

--audio

Check only audio PIDs for clear packets. By default, audio and video PIDs are checked.

-d value

--drop-after-packets value

Specifies the number of packets after the last clear packet to wait before stopping the packet transmission. By default, stop 1 second after the last clear packet (based on current bitrate).

--help

Display this help text.

```
-s name-or-id
```

```
--service name-or-id
```

Specify the reference service. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. If this option is not specified, the first service in the PAT is used.

--stuffing

Replace excluded packets with stuffing (null packets) instead of removing them. Useful to preserve bitrate.

--version

Display the version number.

-v

--video

Check only video PIDs for clear packets. By default, audio and video PIDs are checked.

=continuity

Check Continuity Counters

This plugin checks the continuity counters on TS packets, PID per PID.

Usage:

```
tsp -P continuity [options]
```

Options:

--help

Display this help text.

```
-t "string"
```

Message tag to be displayed when packets are missing. Useful when the plugin is used several times in the same command line.

--version

Display the version number.

Version 3.3 69 / 165

count

Count TS packets per PID

This plugin counts packets per PID and provides either a summary of packet counts or a detailed list of packet per PID.

Usage:

```
tsp -P count [options]
```

Options:

-a

--all

Report packet index and PID for all packets from the selected PID's. By default, only a final summary is reported.

-b

--brief

Brief display. Report only the numerical values, not comment on their usage. This option is useful for automatic processing of the resulting output.

--help

Display this help text.

-n

--negate

Negate the filter: specified PID's are excluded.

-o filename

--output-file filename

Specify the output file for reporting packet counters. By default, report on standard error using the tsp logging mechanism.

-p value

--pid value

PID filter: select packets with this PID value. Several -p or --pid options may be specified. By default, if --pid is not specified, all PID's are selected.

-s

--summary

Display a final summary of packet counts per PID. This is the default, unless --all or --total is specified, in which case the final summary is reported only if --summary is specified.

-t

--total

Display the total packet counts in all PID's.

--version

Display the version number.

adatainject

DVB SimulCrypt EMM and Private Data Injector

This plugin receives EMM's and/or private data using the DVB SimulCrypt EMMG/PDG <=> MUX protocol and injects them into the transport stream in a specific PID.

This plugin is a TCP server (MUX side of the protocol). It accepts only one EMMG/PDG connection at a time.

If the injected data are EMM's, make sure to update the CAT accordingly (see the plugin *cat*).

Usage:

```
tsp -P datainject [options]
```

Options:

-b value

--bitrate-max value

Specifies the maximum bitrate for the data PID in bits / second. By default, the data PID bitrate is limited by the stuffing bitrate (data insertion is performed by replacing stuffing packets).

-v value

--emmg-mux-version value

Specifies the version of the EMMG/PDG <=> MUX DVB SimulCrypt protocol. Valid values are 2 and 3. The default is 2.

--help

Display this help text.

-p value

--pid value

Specifies the PID for the data insertion. This option is mandatory.

-q value

--queue-size value

Specifies the maximum number of data TS packets in the internal queue, ie. packets which are received from the EMMG/PDG client but not yet inserted into the TS. The default is 100.

-r

--reuse-port

Set the "reuse port" (a.k.a. "reuse address") TCP option on the server.

-s [address:]port

--server [address:]port

Specifies the local TCP port on which the plugin listens for an incoming EMMG/PDG connection. This option is mandatory.

When present, the optional address shall specify a local IP address or host name (by default, the plugin accepts connections on any local IP interface). This plugin behaves as a MUX, ie. a TCP server, and accepts only one EMMG/PDG connection at a time.

--version

Display the version number.

Version 3.3 71 / 165

#dektec (input)

Dektec DTA-1xx and DTU-2xx ASI Devices

This input plugin receives packets from a DVB-ASI Dektec DTA-1xx or DTU-2xx device.

Usage:

```
tsp -I dektec [options]
```

Options:

- -c value
- --channel value

Channel index on the input Dektec device. By default, use the first input channel on the device.

- -d value
- --device value

Device index, from 0 to N-1 (with N being the number of Dektec devices in the system). Use the command "tsdektec -a [-v]" to have a complete list of devices in the system. By default, use the first input Dektec device.

--help

Display this help text.

--version

Display the version number.

#dektec (output)

Dektec DTA-1xx and DTU-2xx ASI and Modulator Devices

This output plugin sends packets to a DVB-ASI Dektec DTA-1xx or DTU-2xx device or a Dektec DTA-1xx modulator.

Usage:

tsp -O dektec [options]

Overview of options:

For multi-standard modulators such as the DTA-115, the type of required modulation must be specified if it is different from the default modulation. See Table 3 for the default modulation type by device model.

Table 3: Dektec modulators default modulation types

Device model	Default modulation
DTA-107	DVB-S (QPSK)
DTA-107.S2	DVB-S2 (QPSK)
DTA-110	DVB-C (64-QAM)
DTA-110T	DVB-T
DTA-115	DVB-T

Depending on the type of output, the combination of required and optional options is different. See Table 4 for the applicability of options by modulation type. The modulation type is specified using option --modulation. Mandatory options are marked using (*).

Table 4: Command line options for Dektec modulators

Modulation	Applicable options
All (common options)	bitratechanneldevicestuffing
DVB-ASI	204
All except DVB-ASI	frequencyinstant-detachinversionlevelmodulationoffset-countuhf-channelvhf-channel
x-QAM	j83qam-b
ADBT-T, DMB-T/H	bandwidthdmb-constellationdmb-fec dmb-frame-numberingdmb-headerdmb-interleaver pilots
ATSC	vsbvsb-taps
СММВ	cmmb-area-idcmmb-bandwidthcmmb-pid(*)cmmb-transmitter-id
DVB-S	convolutional-ratelnbsatellite-frequencysymbol-rate
DVB-S2	convolutional-ratelnbpilotss2-gold-codes2-short-fec-framesatellite-frequencysymbol-rate
DVB-T	bandwidthcell-idconstellationconvolutional-rateguard-intervalindepth-interleavempe-fectime-slicetransmission-mode
DVB-T2	bandwidthbandwidth-extensioncell-id -fef fef-intervalfef-lengthfef-s1fef-s2 fef-signalfef-typefft-modemiso -papr pilot-patternplp0-code-rateplp0-fec-type

Version 3.3 73 / 165

Modulation	Applicable options
	plp0-group-idplp0-high-efficiencyplp0-idplp0-il-lengthplp0-il-typeplp0-in-bandplp0-issyplp0-modulationplp0-null-packet-deletionplp0-rotationplp0-typet2-fpsft2-guard-intervalt2-l1-modulationt2-network-idt2-system-id
ISDB-T	not supported yet

Detailed options:

--204

For DVB-ASI devices only: Send 204-byte packets (188 meaningful bytes plus 16 stuffing bytes for Reed-Solomon coding). By default, send 188-byte packets.

--bandwidth value

DVB-T/H, DVB-T2, ADTB-T and DMB-T/H modulators: indicate bandwidth in MHz. Must be one of "1 \cdot 7", "5", "6", "7", "8" or "10". The default is 8 MHz. The bandwidth values 1.7 and 10 MHz are valid for DVB-T2 only.

--bandwidth-extension

DVB-T2 modulators: indicate that the extended carrier mode is used. By default, use normal carrier mode.

-b value

--bitrate value

Specify output bitrate in bits/second. By default, use the input device bitrate or, if the input device cannot report bitrate, analyze some PCR's at the beginning of the input stream to evaluate the original bitrate of the transport stream.

--cell-id value

DVB-T and DVB-T2 modulators: indicate the cell identifier to set in the transmition parameters signaling (TPS). Disabled by default with DVB-T. Default value is 0 with DVB-T2.

-c value

--channel value

Channel index on the output Dektec device. By default, use the first output channel on the device.

--cmmb-area-id value

CMMB modulators: indicate the area id. The valid range is 0 to 127. The default is zero.

--cmmb-bandwidth value

CMMB modulators: indicate bandwidth in MHz. Must be one of "2" or "8". The default is 8 MHz.

--cmmb-pid value

CMMB modulators: indicate the PID of the CMMB stream in the transport stream. This is a required parameter for CMMB modulation.

--cmmb-transmitter-id value

CMMB modulators: indicate the transmitter id. The valid range is 0 to 127. The default is zero.

--constellation value

DVB-T modulators: indicate the constellation type. Must be one of "QPSK", "16-QAM", "64-QAM". The default is 64-QAM.

-r rate

--convolutional-rate rate

For modulators devices only: specify the convolutional rate. The specified value depends on the modulation type. The default is "3/4".

```
DVB-S: "1/2", "2/3", "3/4", "4/5", "5/6", "6/7", "7/8".
```

DVB-S2: "1/2", "1/3", "1/4", "2/3", "2/5", "3/4", "3/5", "4/5", "5/6", "6/7", "7/8", "8/9", "9/10".

DVB-T: "1/2", "2/3", "3/4", "5/6", "7/8".

-d value

--device value

Device index, from 0 to N-1 (with N being the number of Dektec devices in the system). Use the command "tsdektec -a [-v]" to have a complete list of devices in the system. By default, use the first output Dektec device.

--dmb-constellation value

DMB-T/H, ADTB-T modulators: indicate the constellation type. Must be one of: "4-QAM-NR", "4-QAM", "16-QAM", "32-QAM", "64-QAM". The default is 64-QAM. 4-QAM-NR and 32-QAM can be used only with --dmb-fec 0.8.

--dmb-fec value

DMB-T/H, ADTB-T modulators: indicate the FEC code rate. Must be one of "0.4", "0.6", "0.8". The default is 0.8.

--dmb-frame-numbering

DMB-T/H, ADTB-T modulators: indicate to use frame numbering. The default is to use no frame numbering.

--dmb-header value

DMB-T/H, ADTB-T modulators: indicate the FEC frame header mode. Must be one of "PN420", "PN595" (ADTB-T only) or "PN945". The default is PN945.

--dmb-interleaver value

DMB-T/H, ADTB-T modulators: indicate the interleaver mode. Must be one "1" (B=54, M=240) or "2" (B=54, M=720). The default is 1.

--fef

DVB-T2 modulators: enable insertion of FEF's (Future Extension Frames). Not enabled by default.

--fef-interval value

DVB-T2 modulators: indicate the number of T2 frames between two FEF parts. The valid range is 1 to 255 and --t2-fpsf shall be divisible by --fef-interval. The default is 1.

--fef-length value

DVB-T2 modulators: indicate the length of a FEF-part in number of T-units (= samples). The valid range is 0 to 0x3FFFFF. The default is 1.

--fef-s1 value

DVB-T2 modulators: indicate the S1-field value in the P1 signalling data. Valid values: 2, 3, 4, 5, 6 and 7. The default is 2.

--fef-s2 value

DVB-T2 modulators: indicate the S2-field value in the P1 signalling data. Valid values: 1, 3, 5, 7, 9, 11, 13 and 15. The default is 1.

--fef-signal value

DVB-T2 modulators: indicate the type of signal generated during the FEF period. Must be one of "0" (zero I/Q samples during FEF), "1K" (1K OFDM symbols with 852 active carriers containing BPSK symbols, same PRBS as the T2 dummy cells, not reset between symbols) or "1K-384" (1K OFDM symbols with 384 active carriers containing BPSK symbols). The default is 0.

--fef-type value

DVB-T2 modulators: indicate the FEF type. The valid range is 0 ... 15. The default is 0.

Version 3.3 75 / 165

--fft-mode value

DVB-T2 modulators: indicate the FFT mode. Must be one of "1K", "2K", "4K", "8K", "16K" or "32K". The default is 32K.

-f value

--frequency value

For modulator devices only: specify the frequency, in Hz, of the output carrier. There is no default.

For OFDM modulators, the options --uhf-channel or --vhf-channel and --offset-count (optional) may be used instead.

For DVB-S/S2 modulators, the specified frequency is the *intermediate* frequency. For convenience, the option <code>--satellite-frequency</code> can be used instead of <code>--frequency</code> when the intermediate frequency is unknown.

For DTA-107 (DVB-S) modulators, the valid range is 950 MHz to 2150 MHz.

For DTA-110 (DVB-C) and 110T (DVB-T/H) modulators, the valid range is 400 MHz to 862 MHz.

For DTA-115 (DVB-C/T/H) modulators, the valid range is 47 MHz to 862 MHz.

-g value

-- guard-interval value

DVB-T modulators: indicate the guard interval. Must be one of: "1/32", "1/16", "1/8", "1/4". The default is 1/32.

--help

Display this help text.

--indepth-interleave

DVB-T modulators: use in-depth interleave. The default is native interleave.

-i

--input-modulation

All modulators devices: try to guess default modulation parameters from input stream. All explicitly specified parameters override these defaults.

If the input plugin is dvb, use the modulation parameters of the input signal as default values for their counterparts in the Dektec modulator. On Linux systems, the actual modulation parameters of the input signal are used. On Windows systems, the DirectShow/BDA drivers cannot return the actual modulation parameters and only the user-specified parameters in the input plugin are used (they can be different from the actual parameters of the input signal).

With other input plugins, if the specified output modulation is DVB-T, try to guess the following modulation parameters from the input bitrate: --bandwidth --constellation -- convolutional-rate --guard-interval. When a specific bitrate can be produced by distinct combinations of modulation parameters, a deterministic order is applied to select the prefered combination.

--instant-detach

At end of stream, perform an "instant detach" of the output channel. The default is to wait until all bytes are sent. The default is fine for ASI devices. With modulators, the "wait until sent" mode may hang at end of stream and --instant-detach avoids this.

--inversion

For modulators devices only: enable spectral inversion.

--j83 *value*

QAM modulators: indicate the ITU-T J.83 annex to use. Must be one of "A" (DVB-C), "B" (American QAM) or "C" (Japanese QAM). The default is A.

-1 value

--level *value*

Modulators: indicate the output level in units of 0.1 dBm (e.g. --level -30 means -3 dBm). Not supported by all devices.

For DTA-107 modulators, the valid range is -47.0 to -27.0 dBm.

For DTA-115, QAM, the valid range is -35.0 to 0.0 dBm.

For DTA-115, OFDM, ISDB-T, the valid range is -38.0 to -3.0 dBm.

-- lnb string

DVB-S/S2 modulators: description of the LNB which is used to convert the --satellite-frequency into an *intermediate* frequency. This option is useless when --satellite-frequency is not specified.

The format of the string is "low_freq[, high_freq, switch_freq]" where all frequences are in MHz.

The characterisctics of the default universal LNB are low_freq = 9750 MHz, high_freq = 10600 MHz, switch freq = 11700 MHz.

--miso value

DVB-T2 modulators: indicate the MISO mode. Must be one of "OFF", "1", "2" or "BOTH". The default si OFF. This mode can be used to simulate antenna 1, antenna 2 or the average of antenna 1 and antenna 2 to simulate reception halfway between the antennas.

-m value

--modulation value

For modulators, indicate the modulation type. Must be one of: "4-QAM", "16-QAM", "32-QAM", "64-QAM", "128-QAM", "256-QAM", "ADTB-T", "ATSC-VSB", "CMMB", "DMB-T", "DVB-S", "DVB-S-QPSK" (same as DVB-S), "DVB-S-BPSK", "DVB-S2", "DVB-S2-QPSK" (same as DVB-S2), "DVB-S2-8PSK", "DVB-S2-16APSK", "DVB-S2-32APSK", "DVB-T", "DVB-T2", "ISDB-T". For DVB-H, specify DVB-T. For DMB-H, specify DMB-T.

The supported modulation types depend on the device model. See Table 3 above for the default modulation type by device model.

--mpe-fec

DVB-T/H modulators: indicate that at least one elementary stream uses MPE-FEC (DVB-H signalling).

-o value

--offset-count value

UHF and VHF modulators: specify the number of offsets from the UHF or VHF channel. Can be positive or negative. Most usual values are -1, 1, 2 or 3. The default is zero. See options --uhf-channel and --vhf-channel.

--papr value

DVB-T2 modulators: indicate the Peak to Average Power Reduction method. Must be one of "NONE", "ACE" (Active Constellation Extension), "TR" (power reduction with reserved carriers) or "BOTH" (both ACE and TS). The default is NONE.

--pilots

DVB-S2 and ADTB-T modulators: enable pilots (default: no pilot).

-p value

--pilot-pattern value

DVB-T2 modulators: indicate the pilot pattern to use, a value in the range 1 to 8. The default is 7.

--plp0-code-rate value

DVB-T2 modulators: indicate the convolutional coding rate used by the PLP #0. Must be one of "1/2", "3/5", "2/3", "3/4", "4/5", "5/6". The default is 2/3.

--plp0-fec-type value

DVB-T2 modulators: indicate the FEC type used by the PLP #0. Must be one of "16K", "64K". The default is 64K LPDC.

Version 3.3 77 / 165

--plp0-group-id value

DVB-T2 modulators: indicate the PLP group with which the PLP #0 is associated. The valid range is 0 to 255. The default is 0.

--plp0-high-efficiency

DVB-T2 modulators: indicate that the PLP #0 uses High Efficiency Mode (HEM). Otherwise Normal Mode (NM) is used.

--plp0-id value

DVB-T2 modulators: indicate the unique identification of the PLP #0 within the T2 system. The valid range is 0 to 255. The default is 0.

--plp0-il-length value

DVB-T2 modulators: indicate the time interleaving length for PLP #0. The valid range is 0 to 255. The default is 3.

If --plp0-il-type is set to "ONE-TO-ONE" (the default), this parameter specifies the number of TI-blocks per interleaving frame.

If -plp0-il-type is set to "MULTI", this parameter specifies the number of T2 frames to which each interleaving frame is mapped.

--plp0-il-type value

DVB-T2 modulators: indicate the type of interleaving used by the PLP #0. Must be one of "ONE-TO-ONE" (one interleaving frame corresponds to one T2 frame) or "MULTI" (one interleaving frame is carried in multiple T2 frames). The default is ONE-TO-ONE.

--plp0-in-band

DVB-T2 modulators: indicate that the in-band flag is set and in-band signalling information is inserted in PLP #0.

--plp0-issy value

DVB-T2 modulators: type of ISSY field to compute and inserte in PLP #0. Must be one of "NONE", "SHORT", "LONG". The default is NONE.

--plp0-modulation value

DVB-T2 modulators: indicate the modulation used by PLP #0. Must be one of "BPSK", "QPSK", "16-QAM", "64-QAM", "256-QAM". The default is 256-QAM.

--plp0-null-packet-deletion

DVB-T2 modulators: indicate that null-packet deletion is active in PLP #0. Otherwise it is not active.

--plp0-rotation

DVB-T2 modulators: indicate that constellation rotation is used for PLP #0. Otherwise not.

--plp0-type value

DVB-T2 modulators: indicate the PLP type for PLP #0. Must be one of "COMMON", "1", "2". The default is COMMON.

-q value

--qam-b value

QAM modulators: with --j83 B, indicate the QAM-B interleaver mode. Must be one of: "I128-J1D", "I64-J2", "I32-J4", "I16-J8", "I8-J16", "I128-J1", "I128-J2", "I128-J3", "I128-J4", "I128-J5", "I128-J6", "I128-J7", "I128-J8". The default is I128-J1D.

--s2-gold-code value

DVB-S2 modulators: indicate the physical layer scrambling initialization sequence, aka "gold code".

--s2-short-fec-frame

DVB-S2 modulators: use short FEC frames, 12 000 bits (default: long FEC frames, 64 800 bits).

--satellite-frequency value

DVB-S/S2 modulators: indicate the target satellite frequency, in Hz, of the output carrier. The actual frequency at the output of the modulator is the *intermediate* frequency which is computed based on the characteristics of the LNB (see option <code>--lnb</code>). This option is useful when the satellite frequency is better known than the intermediate frequency.

The options -- frequency and -- satellite-frequency are mutually exclusive.

-s

--stuffing

Automatically generate stuffing packets if tsp fails to provide packets fast enough.

This option applies only to ASI, SDI and hardware-based modulators (DVB-C, DVB-S). This option is ineffective on modulators which are partially software-based (DVB-T on DTA-110T or DTA-115).

--symbol-rate value

DVB-C/S/S2 modulators: Specify the symbol rate in symbols/second.

By default, the symbol rate is implicitly computed from the convolutional rate, the modulation type and the bitrate. But when <code>--symbol-rate</code> is specified, the input bitrate is ignored and the output bitrate is forced to the value resulting from the combination of the specified symbol rate, convolutional rate and modulation type.

The options --symbol-rate and --bitrate are mutually exclusive.

--t2-fpsf value

DVB-T2 modulators: indicate the number of T2 frames per super-frame. Must be in the range 1 to 255. The default is 2.

--t2-guard-interval value

DVB-T2 modulators: indicates the guard interval. Must be one of: "1/128", "1/32", "1/16", "19/256", "1/8", "19/128", "1/4". The default is 1/128.

--t2-l1-modulation value

DVB-T2 modulators: indicate the modulation type used for the L1-post signalling block. Must be one of "BPSK", "QPSK", "16-QAM", "64-QAM". The default is 16-QAM.

--t2-network-id value

DVB-T2 modulators: indicate the DVB-T2 network identification. The default is 0.

--t2-system-id value

DVB-T2 modulators: indicate the DVB-T2 system identification. The default is 0.

--time-slice

DVB-T/H modulators: indicate that at least one elementary stream uses time slicing (DVB-H signalling).

-t value

--transmission-mode value

DVB-T modulators: indicates the transmission mode. Must be one of "2K", "4K" or "8K". The default is 8K.

-u value

--uhf-channel value

UHF modulators: specify the UHF channel number of the output carrier. Can be used in replacement to <code>--frequency</code>. Can be combined with an <code>--offset-count</code> option. Valid UHF channels are usually 21 to 69. The resulting frequency is

306 MHz + (*uhf-channel* * 8 MHz) + (*offset-count* * 166.6 kHz).

--version

Display the version number.

Version 3.3 79 / 165

-v value

--whf-channel value

VHF modulators: specify the VHF channel number of the output carrier. Can be used in replacement to --frequency. Can be combined with an --offset-count option. Valid VHF channels are usually 5 to 12. The resulting frequency is

142.5 MHz + (vhf-channel * 7 MHz) + (offset-count * 166.6 kHz).

--vsb value

ATSC modulators: indicate the VSB constellation. Must be one of "8" (19,392,658 Mb/s) or "16" (38,785,317 Mb/s). The default is 8.

--vsb-taps value

ATSC modulators: indicate the number of taps of each phase of the root-raised cosine filter that is used to shape the spectrum of the output signal. The number of taps can have any value between 2 and 256 (the implementation is optimized for powers of 2). Specifying more taps improves the spectrum, but increases processor overhead. The recommend (and default) number of taps is 64 taps. If insufficient CPU power is available, 32 taps produces acceptable results, too.

descrambler

Static DVB Descrambler

This plugin is a DVB descrambler, using a static control word or a static list of of control words.

Note: The DVB-CSA scrambling algorithm is inherently (and purposely) very slow with a software implementation. A 3.4 MHz Pentium 4 CPU, for instance, cannot descramble more than 20 Mb/s. Be cautious not to ask for impossible tasks, like descrambling on real time a complete TS on a regular PC.

Usage:

```
tsp -P descrambler [options]
```

Options:

```
-c value
```

--cw value

Specifies a fixed and constant control word for all TS packets. The value must be a string of 16 hexadecimal digits.

```
-f name
--cw-file name
```

Specifies a text file containing the list of control words to apply. Each line of the file must contain exactly 16 hexadecimal digits. The next control word is used each time the *scrambling_control* changes in the TS packets header.

--help

Display this help text.

-n

--no-entropy-reduction

Do not perform CW entropy reduction to 48 bits. Keep full 64-bits CW.

```
-p value
--pid value
```

Descramble packets with this PID value. Several -p or --pid options may be specified. By default, all PID's with scrambled packets are descrambled.

--version

Display the version number.

Version 3.3 81 / 165

■drop (output)

Drop Output Packets

This output plugin simply drops all packets. This plugin is useful when the interesting work is done by the various packet processing plugins and the actual output packets are useless.

Usage:

```
tsp -0 drop [options]
```

Options:

--help

Display this help text.

--version

Display the version number.

udvb (input)

DVB-S, DVB-S2, DVB-C, DVB-T Devices Input

This input plugin receives TS packets from a DVB receiver device. These devices include a wide range of DVB-S, DVB-S2, DVB-C and DVB-T adapters. Most of them are simple tuners. See section 5.1 for more details on DVB receiver devices.

Usage:

```
tsp -I dvb [options]
```

General options:

```
-a N
```

--adapter N

Specify the N^{th} DVB adapter in the system, the first index being zero. This option can be used instead of device name.

On Linux systems, this means /dev/dvb/adapterN.

-d "name"

--device-name "name"

Specify the name of the DVB receiver device to use. Use the tslsdvb utility to list all available devices. By default, the first DVB receiver device is used. The syntax of the device name depends on the operating system. See section 5.1.3, page 162, for more details on DVB receiver devices naming.

--help

Display this help text.

--receive-timeout milliseconds

Specify the timeout, <u>in milliseconds</u>, for each receive operation. To disable the timeout and wait indefinitely for packets, specify zero. This is the default.

```
--signal-timeout seconds
```

Specify the timeout, <u>in seconds</u>, for the DVB frontend signal locking. If no signal is detected within this timeout, the command aborts. To disable the timeout and wait indefinitely for the signal, specify zero. The default is 5 seconds.

--version

Display the version number.

Linux-specific options:

```
--demux-buffer-size value
```

Default buffer size, in bytes, of the demux device. The default is 1 MB.

Windows-specific options:

```
--demux-queue-size value
```

Specify the maximum number of media samples in the queue between the DirectShow capture thread and the input plugin thread. The default is 100 media samples.

Tuning:

By default, no tuning is performed on the DVB frontend. The transponder on which the frontend is currently tuned is used.

There are three ways to specify a new transponder:

- Specifying individual tuning options, one for each tuning parameters. Common values are provided as default
- A global tuning information string using the Linux DVB *zap* format. Although this format is primarily used on Linux, it is a simple text string which can be used on any platform.

Version 3.3 83 / 165

• The name of a channel contained in the transponder (with appropriate channels / transponders configuration files).

Tuning method 1: Individual tuning options

--bandwidth value

Used for DVB-T tuners only.

Must be one of "auto", "8-MHz", "7-MHz", "6-MHz", "5-MHz". The default is "8-MHz".

--delivery-system value

Used for DVB-S and DVB-S2 tuners only.

Specify which delivery system to use. Must be one of "DVB-S", "DVB-S2". The default is "DVB-S".

--fec-inner value

Used for DVB-S, DVB-S2 and DVB-C tuners only.

Specify the Inner Forward Error Correction. Must be one of "none", "auto", "1/2", "1/3", "1/4", "2/3", "2/5", "3/4", "3/5", "4/5", "5/6", "5/11", "6/7", "7/8", "8/9", "9/10". The default is "auto".

-f value

--frequency value

Specify the carrier frequency in Hz (all tuners).

For DVB-T tuners, the options --uhf-channel or --vhf-channel (and associated optional --offset-count) can be used instead of --frequency.

-- quard-interval value

Used for DVB-T tuners only.

Must be one of "auto", "1/32", "1/16", "1/8", "1/4". The default is "1/32".

--hierarchy value

Used for DVB-T tuners only.

Must be one of "auto", "none", "1", "2", "4". The default is "none".

--high-priority-fec value

Used for DVB-T tuners only.

Error correction for high priority streams. See option --fec-inner for the list of possible values. The default is "auto".

-- lnb string

Used for DVB-S and DVB-S2 tuners only.

For satellite reception, specifies the description of the LNB, if not a universal LNB. The format of the string is "low_freq[, high_freq, switch_freq]" where all frequences are in MHz.

The characterisctics of the default universal LNB are low_freq = 9750 MHz, high_freq = 10600 MHz, switch_freq = 11700 MHz.

--low-priority-fec value

Used for DVB-T tuners only.

Error correction for low priority streams. See option --fec-inner for the list of possible values. The default is "auto".

-m value

--modulation *value*

Used for DVB-C, DVB-T, DVB-S2 and ATSC tuners.

Modulation type (aka constellation for DVB-T). Must be one of "QPSK", "8-PSK", "QAM" (auto-detected QAM), "16-QAM", "32-QAM", "64-QAM", "128-QAM", "256-QAM", "8-VSB", "16-VSB".

The default is "64-QAM" for DVB-T and DVB-C, "QPSK" for DVB-S2, "8-VSB" for ATSC.

--offset-count value

Used for DVB-T tuners only.

Specify the number of offsets from the UHF or VHF channel. The default is zero. See options — uhf-channel and —-vhf-channel.

--pilots value

Used for DVB-S2 tuners only.

Presence of pilots frames. Must be one of "auto", "on" or "off". The default is "off".

--polarity value

Used for DVB-S and DVB-S2 tuners only.

Must be one of "horizontal" or "vertical" for linear polarization, "left" or "right" for circular polarization. The default is "vertical".

--roll-off value

Used for DVB-S2 tuners only.

Roll-off factor. Must be one of "auto", "0.35", "0.25", "0.20". The default is "0.35" (implied for DVB-S, default for DVB-S2).

--satellite-number value

Used for DVB-S and DVB-S2 tuners only.

Satellite/dish number. Must be 0 to 3 with DiSEqC switches and 0 to 1 for non-DiSEqC switches. The default is zero.

--spectral-inversion value

Spectral inversion. Must be one of "on", "off" or "auto". The default is "auto".

-s value

--symbol-rate value

Used for DVB-S, DVB-S2 and DVB-C tuners only.

Symbol rate in symbols/second. The default is 27.5 mega-sym/s for satellite and 6.9 mega-sym/s for cable.

--transmission-mode value

Used for DVB-T tuners only.

Must be one of "auto", "2K", "4K", "8K". The default is "8K".

--uhf-channel value

Used for DVB-T tuners only.

Specify the UHF channel number of the carrier. Can be used in replacement to --frequency. Can be combined with an --offset-count option. Valid UHF channels are usually 21 to 69. The resulting frequency is

306 MHz + (uhf-channel*8 MHz) + (offset-count*166.6 kHz).

--whf-channel value

Used for DVB-T tuners only.

Specify the VHF channel number of the carrier. Can be used in replacement to --frequency. Can be combined with an --offset-count option. Valid VHF channels are usually 5 to 12. The resulting frequency is

142.5 MHz + (vhf-channel * 7 MHz) + (offset-count * 166.6 kHz).

Tuning method 2: Tuning options using Linux DVB "zap" format:

-t string

--tune string

Specifies all tuning information for the transponder in one string. As such, this option is incompatible with the individual tuning options, except "local" options --lnb and --

Version 3.3 85 / 165

satellite-number (the "local" options describe the local reception equipment like the disk and LNB, the "transponder" options describe the characteristics of the on-air signal).

The format of the parameter string depends on the tuner type. It is the same format as used in the Linux DVB *szap*, *czap* and *tzap* configuration files.

Warning: The units are not all consistent. Some frequencies, for instance, are in MHz while others are in Hz. Symbol rates may be in sym/s or ksym/s. But this format is compliant with the standard *dvb-apps* package.

The various formats are:

```
Satellite (QPSK): freq:pol:satnum:symrate
 freq
           frequency in MHz
 pol
           polarity (either v or h)
 satnum
           satellite number (usually 0)
 symrate symbol rate in ksym/s
Cable (QAM): freq:inv:symrate:conv:mod
 freq
           frequency in Hz
 inv
           inversion (one of INVERSION OFF, INVERSION ON, INVERSION AUTO)
 symrate symbol rate in sym/s
 conv
           convolutional rate (one of FEC NONE, FEC 1 2, FEC 2 3, FEC 3 4, FEC 4 5,
           FEC 5 6, FEC 6 7, FEC 7 8, FEC 8 9, FEC AUTO)
 mod
           modulation (one of QPSK, QAM 16, QAM 32, QAM 64, QAM 128, QAM 256,
           QAM AUTO)
Terrestrial (OFDM): freq:inv:bw:convhp:convlp:modu:mode:guard:hier
 freq
           frequency in Hz
 inv
           inversion (one of INVERSION OFF, INVERSION ON, INVERSION AUTO)
 bw
           bandwidth (one of BANDWIDTH 8 MHZ, BANDWIDTH 7 MHZ, BANDWIDTH 6 MHZ,
           BANDWIDTH AUTO)
           convolutional rate for high priority (see values in cable)
 convhp
 convlp
           convolutional rate for low priority (see values in cable)
 modu
           modulation (see values in cable)
 mode
           transmission mode (one of TRANSMISSION MODE 2K, TRANSMISSION MODE 8K,
           TRANSMISSION MODE AUTO)
           guard interval (one of GUARD INTERVAL 1 32, GUARD INTERVAL 1 16,
 guard
           GUARD INTERVAL 1 8, GUARD INTERVAL 1 4, GUARD INTERVAL AUTO)
```

Tuning method 3: Locating the transponder by channel name

HIERARCHY AUTO).

-c name

hier

--channel-transponder name

Tune to the transponder containing the specified channel. The channel name is not case-sensitive and blanks are ignored. The channel is searched in a *zap configuration file* and the corresponding tuning information in this file is used.

hierarchy (one of HIERARCHY NONE, HIERARCHY 1, HIERARCHY 2, HIERARCHY 4,

-z path

--zap-config-file path

Zap configuration file to use for option -c or --channel-transponder. The format of these text files is specified by the Linux DVB *szap*, *czap* and *tzap* utilities. Zap config files can be created using the *scandvb* tool (*szap*, *czap*, *tzap* and *scandvb* are part of the *dvb-apps* package). This type

of files is usually reserved to Linux but since they are simple text files, they can also be read by the dvb plugin of other platforms.

The location of the default zap configuration file depends on the system.

On Linux, the default file is \$HOME/.Xzap/channels.conf, where X is either 's' (satellite), 'c' (cable) or 't' (terrestrial), depending on the frontend type.

On Windows, the default file is $APPDATA\%\tsduck\Xzap\channels.conf$, where X is either 's', 'c' or 't'.

Version 3.3 87 / 165

Analyze EIT Sections

This plugin analyzes EIT sections and produces a report of *EIT present/following* and *EIT schedule* by transport stream and by service. The EPG depth in days is also reported by service (number of days in advance an event is signaled by an EIT schedule). See 4.2.16 for an example of report.

Usage:

```
tsp -P eit [options]

Options:
    --help
        Display this help text.
    -o filename
        --output-file filename
        Specify the output file for the report (default: standard output).
    --version
```

Display the version number.

file (input)

Transport Stream Files Input

This input module reads transport stream packets from a file. The specified file does not need to be a regular file, it can be a named pipe or anything that can be named and read from.

The default file is the standard input, which can also be a pipe. Since the plugin *file* is the default input plugin (if no option –I is specified), this means that the default tsp input is the standard input.

The input file must contain a flow of contiguous 188-bytes TS packets. If this is not the case, consider using the *tsresync* utility.

Usage:

```
tsp -I file [options] [file-name]
```

Parameter:

Name of the input file. Use standard input by default.

Options:

```
-b value
```

```
--byte-offset value
```

Start reading the file at the specified byte offset (default: 0). This option is allowed only if the input file is a regular file.

--help

Display this help text.

-i

--infinite

Repeat the playout of the file infinitely (default: only once). This option is allowed only if the input file is a regular file.

```
-p value
```

```
--packet-offset value
```

Start reading the file at the specified TS packet (default: 0). This option is allowed only if the input file is a regular file.

```
-r count
```

```
--repeat count
```

Repeat the playout of the file the specified number of times (default: only once). This option is allowed only if the input file is a regular file.

--version

Display the version number.

Version 3.3 89 / 165

file (output)

Transport Stream Files Output

This output plugin writes the TS packets to a file. The output file receives a flow of contiguous 188-bytes TS packets.

The default file is the standard output, which can be a pipe. Since the plugin *file* is the default output plugin (if no option –0 is specified), this means that the default tsp output is the standard output.

Usage:

```
tsp -O file [options] [file-name]
```

Parameter:

Name of the created output file. Use standard output by default.

Options:

-a

--append

If the file already exists, append to the end of the file. By default, existing files are overwritten.

--help

Display this help text.

-k

--keep

Keep existing file (abort if the specified file already exists). By default, existing files are overwritten.

--version

Display the version number.

file (packet processing)

Save Packets to a File and Pass

This plugin writes the TS packets to a file and pass them to the next plugin in the chain. The output file receives a flow of contiguous 188-bytes TS packets.

Usage:

```
tsp -P file [options] file-name
```

Parameter:

Name of the created output file.

Options:

-a

--append

If the file already exists, append to the end of the file. By default, existing files are overwritten.

--help

Display this help text.

-k

--keep

Keep existing file (abort if the specified file already exists). By default, existing files are overwritten.

--version

Display the version number.

Version 3.3 91 / 165

filter

General-Purpose Packet Filter

This plugin filters TS packets according to various conditions. When a packet meets at least one of the specified condition, it is passed to the next packet in the chain. Otherwise, it is dropped.

Note: To filter packets which meets several simultaneous conditions ("and" instead of "or"), simply chain several filter plugins on the command line.

Usage:

```
tsp -P filter [options]
```

Options:

--adaptation-field

Select packets with an adaptation field.

-с

--clear

Select clear (unscrambled) packets. Equivalent to "--scrambling-control 0".

--help

Display this help text.

--max-adaptation-field-size value

Select packets with no adaptation field or with an adaptation field the size (in bytes) of which is not greater than the specified value.

--max-payload-size value

Select packets with no payload or with a payload the size (in bytes) of which is not greater than the specified value.

--min-adaptation-field-size value

Select packets with an adaptation field the size (in bytes) of which is equal to or greater than the specified value.

--min-payload-size value

Select packets with a payload the size (in bytes) of which is equal to or greater than the specified value.

-n

--negate

Negate the filter: specified packets are excluded.

--payload

Select packets with a payload.

--pcr

Select packets with PCR or OPCR.

--pes

Select packets with clear PES headers.

```
-p value
--pid value
```

PID filter: select packets with this PID value. Several -p or --pid options may be specified.

--scrambling-control value

Select packets with the specified scrambling control value. Valid values are 0 (clear), 1 (reserved), 2 (even key), 3 (odd key).

-s

--stuffing

Replace excluded packets with stuffing (null packets) instead of removing them. Useful to preserve bitrate.

--unit-start

Select packets with payload unit start indicator.

-77

--valid

Select valid packets. A valid packet starts with 0×47 and has its *transport_error_indicator* cleared.

--version

Display the version number.

Version 3.3 93 / 165

Redirect Packets to a Forked Process

This plugin forks a process and sends all TS packets to the standard input of this process. The TS packets are also normally passed to the next processor in the chain.

This plugin can be used to duplicate the output stream at any point in the packet processing chain.

Usage:

```
tsp -P fork [options] 'command'
```

Parameter:

The command parameter specifies the shell command to execute in the forked process. The standard input of this process is a pipe receiving the TS packets. If the command contains spaces or shell special sequences, the complete command string must be surrounded by quotes.

Options:

```
-b value
```

--buffered-packets value

Specifies the number of TS packets to buffer before sending them through the pipe to the forked process. By default, the packets are not buffered and sent one by one.

--help

Display this help text.

-i

--ignore-abort

Ignore early termination of child process. By default, if the child process aborts and no longer reads the packets, *tsp* also aborts.

-n

--nowait

Do not wait for child process termination at end of input.

--version

Display the version number.

Hhistory

Report a History of Major Events on the Transport Stream

This plugin reports a history of the major events on the transport stream: new PID's, new tables, clear ⇔ scrambled transitions, suspended and restarted PID's, etc.

By default, the messages are reported, like all other tsp messages, on the standard error file. Each output line is formated as follow:

```
* history: packet-number: MESSAGE
```

Some events are detected only some time after they occurred (determining if a PID is suspended, for instance, is detected long after the last packet on this PID). As a consequence, some messages may be unsorted. To sort messages according to packet numbers, use a command like:

```
tsp -P history ... 2>&1 | grep '* history:' | sort -t : -k 2 -n
```

When an output file is specified using --output-file, the log prefix "* history:" is not present. In this case, the sort command becomes:

```
sort -n output-file-name
```

Usage:

```
tsp -P history [options]
```

Options:

-с

--cas

Report all CAS events (new ECM, crypto-period change). By default, only clear to/from scrambled transitions are reported.

-е

--eit

Report all EIT. By default, EIT are not reported.

--help

Display this help text.

-i

--ignore-stream-id-change

Do not report stream_id modifications in a stream. Some subtitle streams may constantly swap between "private stream" and "padding stream". This option suppresses these annoying messages.

-o filename

--output-file filename

Specify the output file for reporting history lines. By default, report history lines on standard error using the tsp logging mechanism.

-s value

--suspend-packet-threshold value

Number of packets in the TS after which a PID is considered as suspended. By default, if no packet is found in a PID during 60 seconds (according to the TS bitrate), the PID is considered as suspended.

-t

--time-all

Report all TDT and TOT. By default, only report TDT preceeding another event.

--version

Display the version number.

Version 3.3 95 / 165

inject

Inject Tables in a Transport Stream

This plugin injects MPEG tables and sections into a transport stream, replacing a PID or stealing packets from stuffing.

Usage:

```
tsp -P inject [options] input-file[=rate] ...
```

Parameters:

```
input-file[=rate]
```

Binary files containing one or more sections. The files simply contain all sections of the tables, as generated by the *tstables* utility for instance.

If different repetition rates are required for different files, a parameter can be "filename=value" where value is the repetition rate in milliseconds for all sections in that file

Options:

```
-b value
```

--bitrate value

Specifies the bitrate for the new PID, in bits / second.

-e value

--evaluate-interval value

When used with --replace and when specific repetition rates are specified for some input files, the bitrate of the target PID is re-evaluated on a regular basis. The value of this option specifies the number of packet in the target PID before re-evaluating its bitrate. The default is 100 packets.

-f

--force-crc

Force recomputation of CRC32 in long sections. Ignore CRC32 values in input file.

--help

Display this help text.

-i value

```
--inter-packet value
```

Specifies the packet interval for the new PID, that is to say the number of TS packets in the transport between two packets of the new PID. Use instead of --bitrate if the global bitrate of the TS cannot be determined.

-j

--joint-termination

Perform a *joint termination* when section insersion is complete. Meaningful only when -- repeat is specified. See the description of the tsp command for more details on *joint termination*.

-p value

--pid value

PID of the output TS packets. This is a required parameter, there is no default value. To replace the content of an existing PID, use option <code>--replace</code>. To steal stuffing packets and create a new PID, use either option <code>--bitrate</code> or <code>--inter-packet</code>. Exactly one option <code>--replace</code>, <code>--bitrate</code> or <code>--inter-packet</code> must be specified.

--poll-files

Poll the presence and modification date of the input files at regular intervals. When a file is created, modified or deleted, reload all files at the next section boundary and restart the injection

cycles. When a file is deleted, its sections are no longer injected. If the file reappears later, its sections will be injected again.

By default, all input files are loaded once at initialization time and an error is generated if a file is missing.

--repeat count

Repeat the insertion of a complete cycle of sections the specified number of times. By default, the sections are infinitely repeated.

-r

--replace

Replace the content of an existing PID. Do not steal stuffing.

-s

--stuffing

Insert stuffing at end of each section, up to the next TS packet boundary. By default, sections are packed and start in the middle of a TS packet, after the previous section. Note, however, that section headers are never scattered over a packet boundary.

-t

--terminate

Terminate packet processing when section insersion is complete. Meaningful only when --repeat is specified. By default, when section insertion is complete, the transmission continues and the stuffing is no longer modified (if --replace is specified, the PID is then replaced by stuffing).

--version

Display the version number.

Version 3.3 97 / 165

ip (input)

UDP/IP Unicast or Multicast Input

This input plugin receives TS packets from UDP/IP, multicast or unicast.

The received UDP datagrams are analyzed and all TS packets are extracted. Optional extra data at the beginning of the datagram (such as RTP headers) are discarded.

Usage:

```
tsp -I ip [options] [address:]port
```

Parameter:

The parameter [address:]port describes the destination of UDP packets. The port part is mandatory and specifies the UDP port to listen on. The address part is optional. It specifies an IP multicast address to listen on. It can be also a host name that translates to a multicast address. If the address is not specified, the plugin simply listens on the specified local port and receives the packets which are sent to one of the local (unicast) IP addresses of the system.

Options:

```
-b value
```

--buffer-size value

Specify the UDP socket receive buffer size (socket option).

-d value

--display-interval value

Specify the interval in seconds between two displays of the evaluated real-time input bitrate. The default is to never display the bitrate. This option is ignored if --evaluation-interval is not specified.

-e value

--evaluation-interval value

Specify that the real-time input bitrate shall be evaluated on a regular basis. The value specifies the number of seconds between two evaluations. By default, the real-time input bitrate is never evaluated and the input bitrate is evaluated from the PCR in the input packets.

--help

Display this help text.

-1 address

--local-address address

Specify the IP address of the local interface on which to listen. It can be also a host name that translates to a local address. By default, listen on all local interfaces.

-r

--reuse-port

Set the reuse port socket option.

--version

Display the version number.

ip (output)

UDP/IP Unicast or Multicast Output

This output plugin sends TS packets using UDP/IP, multicast or unicast.

Each UDP datagram is filled with one or more TS packets (see option --packet-burst), without any extra information. This plugin does not generate RTP datagrams.

Usage:

```
tsp -O ip [options] address:port
```

Parameter:

The parameter *address:port* describes the destination for UDP packets. The *address* specifies an IP address which can be either unicast or multicast. It can be also a host name that translates to an IP address. The *port* specifies the destination UDP port.

Options:

--help

Display this help text.

-1 address

--local-address address

When the destination is a multicast address, specify the IP address of the outgoing local interface. It can be also a host name that translates to a local address.

```
-p value
```

```
--packet-burst value
```

Specifies how many TS packets should be grouped into each UDP datagram. The default is 7, the maximum is 128.

```
-t value
```

```
--ttl value
```

Specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or "Multicast TTL", depending on the destination address.

Warning: Remember than the default Multicast TTL is 1 on most systems.

--version

Display the version number.

Version 3.3 99 / 165

mux

Inject TS Packets in a Transport Stream

This plugin injects TS packets from a file into a transport stream, replacing packets from stuffing.

Usage:

```
tsp -P mux [options] input-file
```

Parameters:

input-file

Binary file containing 188-byte transport packets.

Options:

```
-b value
```

--bitrate value

Specifies the bitrate for the inserted packets, in bits/second. By default, all stuffing packets are replaced which means that the bitrate is neither constant nor guaranteed.

--byte-offset value

Start reading the file at the specified byte offset (default: 0). This option is allowed only if the input file is a regular file.

--help

Display this help text.

-i value

--inter-packet value

Specifies the packet interval for the inserted packets, that is to say the number of TS packets in the transport between two new packets. Use instead of --bitrate if the global bitrate of the TS cannot be determined.

-j

--joint-termination

Perform a *joint termination* when file insersion is complete. See the description of the tsp command for more details on *joint termination*.

--no-continuity-update

Do not update continuity counters in the inserted packets. By default, the continuity counters are updated in each inserted PID to preserve the continuity.

--no-pid-conflict-check

Do not check PID conflicts between the TS and the new inserted packets. By default, the processing is aborted if packets from the same PID are found both in the TS and the inserted packets.

--packet-offset value

Start reading the file at the specified TS packet (default: 0). This option is allowed only if the input file is a regular file.

-p value

--pid *value*

Force the PID value of all inserted packets.

-r count

--repeat count

Repeat the playout of the file the specified number of times. By default, the file is infinitely repeated. This option is allowed only if the input file is a regular file.

-t

--terminate

Terminate packet processing when file insersion is complete. By default, when packet insertion is complete, the transmission continues and the stuffing is no longer modified.

--version

Display the version number.

Version 3.3 101 / 165

nit

Perform Various Transformations on the NIT Actual

This plugin performs various transformations on the NIT Actual. The NIT Other, if present, are left unchanged.

Usage:

```
tsp -P nit [options]
```

Options:

--cleanup-private-descriptors

Remove all private descriptors without preceding *private_data_specifier_descriptor*.

--help

Display this help text.

-i

--increment-version

Increment the version number of the NIT.

```
-1 value
```

--lcn value

Specify which operation to perform on *logical_channel_number* (LCN) descriptors. The *value* is a positive integer:

- 1 : Remove all LCN descriptors.
- 2 : Remove one entry every two entries in each LCN descriptor.
- 3 : Duplicate one entry every two entries in each LCN descriptor.

--mpe-fec value

Set the MPE-FEC_indicator in all terrestrial_delivery_system_descriptors to the specified value (0 or 1).

-v value

--new-version value

Specify a new value for the version of the NIT.

--pds value

With option --remove-descriptor, specify the private data specifier which applies to the descriptor tag values above 0x80.

```
-p value
```

--pid value

Specify the PID on which the NIT is expected. By default, the PAT is analyzed to get the PID of the NIT. DVB-compliant networks should use PID 16 (0×0010) for the NIT and signal it in the PAT.

--remove-descriptor value

Remove from the NIT all descriptors with the specified tag. Several --remove-descriptor options may be specified to remove several types of descriptors. See also option --pds.

```
-r value
```

--remove-service value

Remove the specified service_id from the following descriptors: <code>service_list_descriptor</code>, <code>logical_channel_number_ descriptor</code>. Several <code>--remove-service</code> options may be specified to remove several services.

--remove-ts value

Remove from the NIT all references to the transport stream with the specified *ts_id* value. Several --remove-ts options may be specified to remove several TS.

- -s value
- --sld value

Specify which operation to perform on *service_list_descriptors*. The *value* is a positive integer:

- 1 : Remove all service_list_descriptors.
- 2 : Remove one entry every two entries in each *service_list_descriptor*.

--time-slicing value

Set the *Time_Slicing_indicator* in all *terrestrial_delivery_system_descriptors* to the specified value (0 or 1).

--version

Display the version number.

Version 3.3 103 / 165

iiinitscan

Scan NIT for Tuning Information

This plugin analyzes the NIT (Network Information Table) of the transport stream and outputs a list of tuning information, one per transport. The format of the tuning information is compatible with the *dvb* input plugin and the standard Linux utilities *szap*, *czap* and *tzap*.

Usage:

```
tsp -P nitscan [options]
```

Options:

-a

--all-nits

Analyze all NIT's ("NIT actual" and "NIT other"). By default, only the "NIT actual" is analyzed.

-c[prefix]

--comment[=prefix]

Add a comment line before each tuning information. The optional prefix designates the comment prefix. If the option --comment is present but the prefix is omitted, the default prefix is "#".

-d

--dvb-options

The characteristics of each transponder are formatted as a list of command-line options for the *dvb* input plugin such as --frequency, --symbol-rate, etc.

By default, the tuning information are formatted as Linux DVB *zap* configuration files as used by the standard utilities *szap*, *czap* and *tzap* and the option —tune of the *dvb* plugin.

--help

Display this help text.

-o filename

```
--output-file filename
```

Specify the output text file for the analysis result. By default, use the standard output.

Warning: if you do not specify this option, be sure to redirect the output plugin to something different from the default. Otherwise, the text output of the analysis will be mixed with the binary output of the TS packets!

```
-p value
--pid value
```

Specify the PID on which the NIT is expected. By default, the PAT is analyzed to get the PID of the NIT. DVB-compliant networks should use PID 16 (0×0010) for the NIT and signal it in the PAT.

-t

--terminate

Stop the packet transmission after the first NIT is analyzed. Should be specified when *tsp* is used only to scan the NIT.

-v[prefix]

--variable[=prefix]

Each tuning information line is output as a shell environment variable definition. The name of each variable is built from a prefix and the TS id. The default prefix is "TS" and can be changed through the optional value of the option --variable.

--version

Display the version number.

■null (input)

Null Input Packets Generator

This input module generates null packets.

Usage:

```
tsp -I null [options] [count]
```

Parameters:

count

Specify the number of null packets to generate. After the last packet, an end-of-file condition is generated. By default, if *count* is not specified, null packets are generated endlessly.

Options:

--help

Display this help text.

-j

--joint-termination

When the number of null packets is specified, perform a *joint termination* when completed instead of unconditional termination. See the description of the tsp command for more details on *joint termination*.

--version

Display the version number.

Version 3.3 105 / 165

#pat

Perform Various Transformations on the PAT

This plugin performs various transformations on the PAT.

Usage:

```
tsp -P pat [options]
```

Options:

-a sid/pid

--add-service sid/pid

Add the specified <code>service_id</code> / <code>PMT-PID</code> in the PAT. Several <code>--add-service</code> options may be specified to add several services.

--help

Display this help text.

-i

--increment-version

Increment the version number of the PAT.

-n pid

--nit pid

Add or modify the NIT PID in the PAT.

-r sid

--remove-service sid

Remove the specified *service_id* from the PAT. Several --remove-service options may be specified to remove several services.

-u

--remove-nit

Remove the NIT PID from the PAT.

-t id

--tsid id

Specify a new value for the transport stream id in the PAT.

-v value

--new-version value

Specify a new value for the version of the PAT.

--version

Display the version number.

pattern

Replace Packet Payload with a Binary Pattern

This plugin replaces the payload of TS packets with a binary pattern on selected PID's. The resulting packets are meaningless on an MPEG standpoint but can be used to trace packets in order to debug transport stream routing problems either inside a transmission system or inside a set-top box.

Usage:

```
tsp -P pattern [options] pattern
```

Parameter:

Specifies the binary pattern to apply on TS packets payload. The value must be a string of hexadecimal digits specifying any number of bytes.

Options:

```
--help
```

Display this help text.

-n

--negate

Negate the PID filter: modify packets on all PID's, expect the specified ones.

-o value

--offset-non-pusi value

Specify starting offset in payload of packets with the PUSI (payload unit start indicator) not set. By default, the pattern replacement starts at the beginning of the packet payload (offset 0).

-u value

--offset-pusi value

Specify starting offset in payload of packets with the PUSI (payload unit start indicator) set. By default, the pattern replacement starts at the beginning of the packet payload (offset 0).

```
-p value
```

--pid value

Select packets with this PID value. Several -p or --pid options may be specified to select multiple PID's. If no such option is specified, packets from all PID's are modified.

--version

Display the version number.

Version 3.3 107 / 165

#pcrbitrate

Permanently Recompute Bitrate Based on PCR's

This plugin permanently recomputes the bitrate based on the analysis of PCR's on the packets. All packets are transparently passed.

Normally, tsp determines the input bitrate at the input plugin: either the input plugin itself can report the actual input bitrate (from a hardware device for instance) or tsp computes the bitrate based on PCR analysis. Then, the bitrate information is automatically propagated from one plugin to another, up to the output plugin. The output plugin may use or ignore this information. Typically, output to a file ignores the bitrate information while output to a hardware device (ASI or modulator) will use it as device parameter.

There may be a problem if some packet processor plugin drops packets from the transport stream. The *zap* plugin, for instance, creates an SPTS containing only one service, dropping all other packets.

Let's take an example: tsp is used to read a full MPTS from a file, extract one channel and send it to a Dektec ASI device. Tsp reads the input bitrate (here, it analyzes the PCR from the input file and finds, say, 38 Mb/s). Then, tsp propagates this bitrate along the plugin chain, up to the output plugin. By default, the output plugin will send the SPTS at 38 Mb/s, the bitrate of the original MPTS, which is a non-sense since the "normal" bitrate of the SPTS is more likely something like 3 or 4 Mb/s. By inserting the *pcrbitrate* plugin between the *zap* plugin and the *dektec* output plugin, the bitrate information will be altered and the output plugin receives a bitrate value which is consistent with the PCR's in the SPTS.

Usage:

```
tsp -P pcrbitrate [options]
```

Options:

-d

--dts

Use DTS (Decoding Time Stamps) from video PID's instead of PCR (Program Clock Reference) from the transport layer.

--help

Display this help text.

```
--min-pcr value
```

Stop analysis when that number of PCR are read from the required minimum number of PID (default: 128).

```
--min-pid value
```

Minimum number of PID to get PCR from (default: 1).

--version

Display the version number.

#pcrextract

Extracts PCR, OPCR, PTS, DTS from TS packets

This plugin extracts PCR, OPCR, PTS, DTS from TS packets. The output is typically suitable for analysis with tools like Microsoft Excel.

Usage:

```
tsp -P pcrextract [options]
```

Options:

-d

--dts

Report Decoding Time Stamps (DTS). By default, if none of --pcr, --pts, --dts is specified, report them all.

-ç

--good-pts-only

Keep only "good" PTS, ie. PTS which have a higher value than the previous good PTS. This eliminates PTS from out-of-sequence B-frames.

--help

Display this help text.

-n

--noheader

Do not output initial header line.

--opcr

Report Original Program Clock References (OPCR). By default, if none of --pcr, --pts, --dts is specified, report them all.

-o filename

--output-file filename

Output file name (standard error by default).

--pcr

Report Program Clock References (PCR). By default, if none of --pcr, --pts, --dts is specified, report them all.

-p

--pts

Report Presentation Time Stamps (PTS). By default, if none of --pcr, --opcr, --pts, --dts is specified, report them all.

-s string

```
--separator string
```

Field separator string in output (default: ';').

--version

Display the version number.

Version 3.3 109 / 165

pcrverify

Verify the PCR's Values

This plugin verifies the values of all PCR's and report invalid values. Each PCR is compared to its expected theoretical value as computed from the previous PCR value and the transport bitrate.

Usage:

```
tsp -P pcrverify [options]
```

Options:

-a

--absolute

Use absolute values in PCR units. By default, use micro-second equivalent values (one micro-second = 27 PCR units).

-b value

--bitrate value

Verify the PCR's according to this transport bitrate. By default, use the input bitrate as reported by the input device.

--help

Display this help text.

-j value

--jitter-max value

Maximum allowed jitter. PCR's with a higher jitter are reported, others are ignored. If --absolute, the specified value is in PCR units, otherwise it is in micro-seconds. The default is 27,000 PCR units or 1,000 micro-seconds. Use --jitter 0 to check that all PCR have their exact expected value.

-p value

--pid value

PID filter: select packets with this PID value. Several -p or --pid options may be specified. Without -p or --pid option, PCR's from all PID's are used.

-t

--time-stamp

Display time of each event.

--version

Display the version number.

#pes

Analyze PES Packets

This plugin detects and analyzes PES packets in all selected PID's (all PID's by default). Note that, without any option, this plugin does not report anything, you need to specify what you want to analyze.

Usage:

```
tsp -P pes [options]
```

Options:

-a

--audio-attributes

Display audio attributes such as audio layer, stereo mode or sampling rate in MPEG-1 audio (ISO/IEC 11172-3), MPEG-2 audio (ISO/IEC 13818-3), AC-3 and Enhanced-AC-3 (ETSI TS 102 366).

--avc-access-unit

Dump all AVC (ISO/IEC 14496-10, ITU H.264) access units (aka "NALunits").

-b

--binary

Include binary dump in addition to hexadecimal.

-h

--header

Dump all PES packets header.

--help

Display this help text.

-x value

--max-dump-count value

Specify the maximum number of times data dump occurs with options --trace-packets, -- header, --payload, --start-code, --avc-access-unit. Default: unlimited.

-m value

--max-dump-size value

Specify the maximum dump size for options --header, --payload, --start-code, --avc-access-unit. By default, the complete data section (payload, access unit, etc.) is displayed.

--max-payload-size value

Display PES packets with no payload or with a payload the size (in bytes) of which is not greater than the specified value.

--min-payload-size value

Display PES packets with a payload the size (in bytes) of which is equal to or greater than the specified value.

--nal-unit-type value

AVC NAL unit filter: with --avc-access-unit, select access units with this type (default: all access units). Several --nal-unit-type options may be specified.

--negate-nal-unit-type

Negate the AVC NAL unit filter: specified access units are excluded.

-n

--negate-pid

Negate the PID filter: specified PID's are excluded.

Version 3.3 111 / 165

--nibble

Same as --binary but add separator between 4-bit nibbles.

-o filename

--output-file filename

Specify the output file for the report (default: standard output).

--packet-index

Display the index of the first and last TS packet of each displayed PES packet.

-p value

--pid value

PID filter: select packets with this PID value (default: all PID's containing PES packets). Several -p or --pid options may be specified.

--payload

Dump all PES packets payload.

- 9

--start-code

Dump all start codes in PES packet payload.

- t

--trace-packets

Trace all PES packets (display a one-line description per packet).

--version

Display the version number.

-v

--video-attributes

Display video attributes such as frame size, frame rate or profile in MPEG-1 video (ISO/IEC 11172-2), MPEG-2 video (ISO/IEC 13818-2) and AVC (ISO/IEC 14496-10, ITU H.264).

#play (output)

Play Output on a Media Player

This output plugin sends TS packets to a supported media player. It is typically used when one service was isolated on the transport stream and the resulting audio/video must be monitored.

The *play* plugin attempts to locate a media player application which can process MPEG-2 transport streams on its standard input. If one is found in the system, the plugin creates a process executing the media player (adding the required options if necessary) and sends the output stream to this process using a pipe.

This plugin is consequently is easier alternative to the *fork* plugin. The same operation could be achieved using the *fork* plugin but it requires to specify the complete media player command line with options.

Usage:

```
tsp -O play [options]
```

Options:

--help

Display this help text.

-m

--mplayer

Linux only: Use *mplayer* for rendering. The default is to look for *vlc*, *mplayer* and *xine*, in this order, and use the first available one.

--version

Display the version number.

-x

--xine

Linux only: Use *xine* for rendering. The default is to look for *vlc*, *mplayer* and *xine*, in this order, and use the first available one.

Supported media players:

- Linux: Look for VL*C*, *mplayer* and *xine*. Use the PATH environment variable to locate the applications.
- Windows: Look for VLC using the Path environment variable and various informations that are normally filled in the registry by the VLC installation procedure. See [17] for downloading and installing VLC Media Player.

To use another media player or with specific options, use the *fork* plugin instead:

```
tsp ... -P fork [options] "media player command line" -O drop
```

Version 3.3 113 / 165

#pmt

Perform Various Transformations on a PMT

This plugin performs various transformations on the PMT.

Usage:

```
tsp -P pmt [options]
```

Options:

--ac3-atsc2dvb

Change the description of AC-3 (a.k.a. DD, Dolby Digital) audio streams from ATSC to DVB method. In details, this means that all components with stream_type 0×81 are modified with stream_type 0×06 (*PES private data*) and an *AC-3_descriptor* is added on this component (if none was already there).

-a pid/type

--add-pid pid/type

Add the specified PID / stream-type component in the PMT. Both PID and type must be integer values, either decimal or hexadecimal. Several --add-pid options may be specified to add several components.

--add-stream-identifier

Add a *stream_identifier_descriptor* on all components. The *component_tag* are uniquely allocated inside the service. Existing *stream_identifier_descriptors* are left unmodified.

--audio-language language-code[:audio-type[:location]]

Specifies the language for an audio stream in the PMT. Several options can be specified to set the languages of several audio streams.

The *language-code* is a 3-character string. The *audio-type* is optional, its default value is zero. The *location* indicates how to locate the audio stream. Its format is either "Pn" or "An". In the first case, "n" designates a PID value and in the second case the audio stream number inside the PMT, starting with 1. The default location is "A1", ie. the first audio stream inside the PMT.

--cleanup-private-descriptors

Remove all private descriptors without preceding *private_data_specifier_descriptor*.

--eac3-atsc2dvb

Change the description of Enhanced-AC-3 (a.k.a. AC-3+, DD+, Dolby Digital+) audio streams from ATSC to DVB method. In details, this means that all components with stream_type 0×87 are modified with stream_type 0×87 (PES private data) and an enhanced_AC-3_descriptor is added on this component (if none was already there).

--help

Display this help text.

--increment-version

Increment the version number of the PMT.

-i value

--new-service-id value

Change the service id in the PMT.

-m old-pid/new-pid

--move-pid old-pid/new-pid

Change the PID value of a component in the PMT. Several --move-pid options may be specified to move several components.

--pds value

With option --remove-descriptor, specify the private data specifier which applies to the descriptor tag values above 0x80.

-p value

--pmt-pid value

Specify the PID carrying the PMT to modify. All PMT's in this PID will be modified. Options --pmt-pid and --service are mutually exclusive. If neither are specified, the first service in the PAT is used.

--pcr-pid value

Change the PCR PID value in the PMT.

--remove-descriptor value

Remove from the PMT all descriptors with the specified tag. Several --remove-descriptor options may be specified to remove several types of descriptors. See also option --pds.

-r value

--remove-pid value

Remove the component with the specified PID from the PMT. Several --remove-pid options may be specified to remove several components.

-s name-or-id

--service name-or-id

Specify the service the PMT of which must be modified. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. Options --pmt-pid and --service are mutually exclusive. If neither are specified, the first service in the PAT is used.

-v value

--new-version value

Specify a new value for the version of the PAT.

--version

Display the version number.

Version 3.3 115 / 165

Collect PSI Structure Information

This plugin extracts all PSI tables (PAT, CAT, PMT, NIT, BAT, SDT) from a transport stream. It is equivalent to the *tspsi* utility. Actually, the following two commands produce the same result:

```
tspsi options filename
tsp -I file filename -P psi options -O drop
```

Usage:

```
tsp -P psi [options]
```

Options:

The plugin accepts exactly the same options as the *tspsi* utility.

#reduce

Reduce the Bitrate by Removing Stuffing Packets

This plugin reduces the bitrate of the transport stream by removing stuffing packets.

Usage:

```
tsp -P reduce [options] rempkt inpkt
```

Parameters:

The parameters specify that *rempkt* TS packets must be automatically removed after every *inpkt* input TS packets in the transport stream. Only stuffing packets can be removed. Both *rempkt* and *inpkt* must be non-zero integer values.

Options:

--help

Display this help text.

--version

Display the version number.

Version 3.3 117 / 165

#regulate

Regulate Packets Flow According to a Bitrate

This plugin regulates the TS packets flow according to a specified bitrate.

It is useful to play a non-regulated input (such as a TS file) to a non-regulated output (such as IP multicast). Without this plugin, in this example, the IP packets will be sent as fast as the TS packets are read from the file, that is to say at a very much higher bitrate than expected. When inserted between the input and the output plugins, the *regulate* plugin regularly suspends the tsp process to slow down the output, based on a target bitrate.

Note that this plugin can only slow down the stream but not accelerate it (if the input is not fast enough, there is nothing that a plugin can do!)

Usage:

```
tsp -P regulate [options]
```

Options:

```
-b value
```

```
--bitrate value
```

Specify the bitrate in b/s. By default, use the input bitrate, typically resulting from the PCR analysis of the input stream. Note that this default is the bitrate which is presented by tsp at the input of the *regulate* plugin. This is not necessarily the bitrate at the input plugin if another plugin (such as *pcrbitrate*) has altered the bitrate between the input plugin and *regulate*.

--help

Display this help text.

```
-p value
```

```
--packet-burst value
```

Number of packets to burst at a time. Does not modify the average output bitrate but influence smoothing and CPU load. The default is 16 packets.

It is inefficient, and most of the time impossible, to suspend a process too often and for a too short time. To regulate a stream at 38 Mb/s, for instance, the process must be suspended 40 micro-seconds between each TS packets. This is not possible in practice on most Linux or Windows kernels with the default configuration. If the packet burst is set to 64, the wait time is 2.5 milli-seconds, which becomes feasible.

--version

Display the version number.

#remap

Generic PID Remapping

This plugin modifies the PID value in selected packets. By default, the PSI are modified accordingly to preserve the consistency of the transport stream.

Usage:

```
tsp -P remap [options] [pid[-pid]=newpid ...]
```

Specifying PID remapping:

Each remapping is specified as "pid=newpid" or "pid1-pid2=newpid". All PID's can be specified as decimal or hexadecimal values. More than one PID remapping can be specified.

In the first form, the PID *pid* is remapped to *newpid*.

In the later form, all PID's within the range *pid1* to *pid2* (inclusive) are respectively remapped to *newpid*, *newpid*+1, etc.

Options:

--help

Display this help text.

-n

--no-psi

Do not modify the PSI.

By default, the PAT, CAT and PMT's are modified so that previous references to the remapped PID's will point to the new PID values.

 $-\mathbf{u}$

--unchecked

Do not perform any consistency checking while remapping PID's:

- Remapping to or from a predefined PID is accepted.
- \circ Remapping two PID's to the same PID or to a PID which is already present in the input is accepted.

Note that this option should be used with care since the resulting stream can be illegal or inconsistent.

--version

Display the version number.

Version 3.3 119 / 165

#rmorphan

Remove Unreferenced PID's

This plugin removes unreferenced (aka "orphan") PID's from the transport stream. The plugin analyses the complete TS structure, starting from the PAT and the CAT. Any packet which neither belongs to a predefined PID's nor to a referenced PID in the TS structure is removed.

Usage:

```
tsp -P rmorphan [options]
```

Options:

--help

Display this help text.

-s

--stuffing

Replace excluded packets with stuffing (null packets) instead of removing them. Useful to preserve bitrate.

--version

Display the version number.

scrambler

DVB Scrambler

This plugin is a DVB scrambler, either using a static control word or using an external ECMG. In the later case, the plugin generates the control words, schedules crypto-periods and inserts ECM.

The control words are generated using the default pseudo-random number generator of the operating system. Although these values are reasonably random, there is no security commitment and this scrambler should be used for test purpose only, not for production.

When inserting ECM's, the plugin uses the *delay_start* parameter, as returned by the ECMG, to synchronize the start of the crypto-period with the first insertion of an ECM. Both positive and negative *delay_start* values are supported.

Note: The DVB-CSA scrambling algorithm is inherently (and purposely) very slow with a software implementation. A 3.4 MHz Pentium 4 CPU, for instance, cannot scramble more than 20 Mb/s. Be cautious not to ask for impossible tasks, like scrambling on real time a complete TS on a regular PC.

Usage:

```
tsp -P scrambler [options] service
```

Parameter:

Specifies the service to scramble. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. If the input TS does not contain an SDT, use service ids only.

Options:

-a value

--access-criteria value

Specifies the access criteria for the service as sent to the ECMG. The value must be a suite of hexadecimal digits.

-b value

--bitrate-ecm value

Specifies the bitrate for ECM PID's in bits / second. The default is 30,000 b/s.

--channel-id value

Specifies the DVB SimulCrypt *ECM_channel_id* for the ECMG (default: 1).

-d seconds

--cp-duration seconds

Specifies the crypto-period duration in seconds (default: 10 seconds).

--component-level

Add *CA_descriptors* at component level in the PMT. By default, one *CA_descriptor* is added at program level.

-c value

--control-word value

Specifies a fixed and constant control word (no crypto-period scheduling, no ECM insertion). The value must be a string of 16 hexadecimal digits. When using this option, no ECMG is required.

-i value

--ecm-id value

Specifies the DVB SimulCrypt *ECM_id* for the ECMG (default: 1).

Version 3.3 121 / 165

-e host:port

--ecmg host:port

Specify an ECM Generator host name (or IP address) and TCP port. Without ECMG, a fixed control word must be specified using --control-word.

-v value

--ecmg-scs-version value

Specifies the version of the ECMG <=> SCS DVB SimulCrypt protocol. Valid values are 2 and 3. The default is 2.

--help

Display this help text.

--ignore-scrambled

Ignore packets which are already scrambled. Since these packets are likely scrambled with a different control word, descrambling will not be possible the usual way.

--no-audio

Do not scramble audio components in the selected service. By default, all audio components are scrambled.

-n

--no-entropy-reduction

Do not perform CW entropy reduction to 48 bits. Keep full 64-bits CW.

--no-video

Do not scramble video components in the selected service. By default, all video components are scrambled.

--partial-scrambling count

Do not scramble all packets, only one packet every *count* packets. The default value is 1, meaning that all packets are scrambled. Specifying higher values is a way to reduce the scrambling CPU load while keeping the service "mostly" scrambled.

--pid-ecm value

Specifies the new ECM PID for the service. By defaut, use the first unused PID immediately following the PMT PID. Using the default, there is a risk to later discover that this PID is already used. In that case, specify --pid-ecm with a notoriously unused PID value.

-p value

--private-data value

Specifies the private data to insert in the *CA_descriptor* in the PMT. The value must be a suite of hexadecimal digits.

--stream-id value

Specifies the DVB SimulCrypt *ECM_stream_id* for the ECMG (default: 1).

--subtitles

Scramble subtitles components in the selected service. By default, the subtitles components are not scrambled.

-s value

--super-cas-id value

Specify the DVB SimulCrypt Super_CAS_Id. This is required when --ecmg is specified.

--synchronous

Specify to synchronously generate the ECM's. By default, continue processing packets while generating ECM's. Use this option with offline packet processing. Use the default (asynchronous) with live packet processing.

--version

Display the version number.

sdt

Perform Various Transformations on the SDT Actual

This plugin performs various transformations on the SDT Actual. The SDT Other, if present, are left unchanged.

Usage:

```
tsp -P sdt [options]
```

Options:

--cleanup-private-descriptors

Remove all private descriptors without preceding *private_data_specifier_descriptor*.

--eit-pf value

Specify a new *EIT_present_following_flag* value (0 or 1) for the added or modified service. For new services, the default is 0.

--eit-schedule value

Specify a new *EIT_schedule_flag* value (0 or 1) for the added or modified service. For new services, the default is 0.

-f value

--free-ca-mode value

Specify a new *free_CA_mode* value (0 or 1) for the added or modified service. For new services, the default is 0.

--help

Display this help text.

-i

--increment-version

Increment the version number of the SDT.

-n value

--name value

Specify a new service name for the added or modified service. For new services, the default is an empty string.

-v value

--new-version value

Specify a new value for the version of the SDT.

-p value

--provider value

Specify a new provider name for the added or modified service. For new services, the default is an empty string.

--remove-service sid

Remove the specified service-id from the SDT. Several --remove-service options may be specified to remove several services.

-r value

--running-status value

Specify a new *running_status* value (0 to 7) for the added or modified service. For new services, the default is 4 ("*running*").

-s value

--service-id value

Add a new service or modify the existing service with the specified service-id.

Version 3.3 123 / 165

-t value

--type value

Specify a new service type for the added or modified service. For new services, the default is 0×01 ("digital television service").

--version

Display the version number.

sifilter

Extract PSI/SI PID's

This plugin filters PID's containing the specified PSI/SI. Other PID's are removed.

Extracting PSI/SI on predefined PID's (such as PAT or SDT) can also be performed using the plugin filter --pid. For these types of PSI/SI, the plugin sifilter is simply more user-friendly (sifilter --sdt instead of filter --pid 0x0011). But the plugin sifilter can also detect PSI/SI on non-predefined PID's (such as PMT, ECM or EMM). It can also filter CA-related SI according to the CA System Id or CA Operator (a vendor-dependent concept).

If you want to extract the PMT or ECM for one particular service, use the plugin zap before sifilter in the plugin chain.

```
Usage:
```

```
tsp -P sifilter [options]
Options:
   --bat
       Extract PID 0x0011 (SDT/BAT). Same as --sdt.
   --cat
       Extract PID 0x0001 (CAT).
   --eit
       Extract PID 0x0012 (EIT).
   --help
       Display this help text.
   --nit
       Extract PID 0x0010 (NIT).
   --pat
       Extract PID 0x0000 (PAT).
   -p
   --pmt
       Extract all PMT PID's.
   --rst
       Extract PID 0x0013 (RST).
   --sdt
       Extract PID 0x0011 (SDT/BAT). Same as --bat.
   --stuffing
       Replace excluded packets with stuffing (null packets) instead of removing them. Useful to
       preserve bitrate.
   --tdt
       Extract PID 0x0014 (TDT/TOT). Same as --tot.
   --tot
       Extract PID 0x0014 (TDT/TOT). Same as --tdt.
   --tsdt
       Extract PID 0x0002 (TSDT).
```

Version 3.3 125 / 165

--version

Display the version number.

CAS selection options:

--cas value

With options --ecm or --emm, select only ECM or EMM for the specified CA system id value. Equivalent to --min-cas value --max-cas value.

--ecm

Extract PID's containing ECM.

--emm

Extract PID's containing EMM.

--max-cas value

With options --ecm or --emm, select only ECM or EMM for the CA system id values in the range --min-cas to --max-cas.

--mediaguard

Equivalent to --min-cas 0x0100 --max-cas 0x01FF.

--min-cas value

With options --ecm or --emm, select only ECM or EMM for the CA system id values in the range --min-cas to --max-cas.

--nagravision

Equivalent to --min-cas 0x1800 --max-cas 0x18FF.

--operator value

With option --cas, select only ECM or EMM for the specified CAS operator. The "CAS operator" is a non-standard vendor-dependent concept and is recognized for some CAS only.

--safeaccess

Equivalent to --cas 0x4ADC.

--viaccess

Equivalent to --min-cas 0x0500 --max-cas 0x05FF.

skip

Skip Leading Packets in a TS

The plugin skips leading TS packets of a stream. The specified number of initial TS packets are dropped and not transmitted to the next plugin in the chain. After that, all packets are transparently passed.

Usage:

```
tsp -P skip [options] count
```

Parameter:

Number of leading TS packets to skip.

Options:

--help

Display this help text.

- 5

--stuffing

Replace excluded leading packets with stuffing (null packets) instead of removing them.

--version

Display the version number.

Version 3.3 127 / 165

slice

Pass or Drop Packets Based on Packet Numbers

This plugin passes or drops packets based on packet numbers or relative transport stream time. It can be used to extract selected portions of a TS and group them into one single output.

Usage:

```
tsp -P slice [options]
```

Options:

-d value

--drop value

All packets are dropped after the specified packet number. Several --drop options may be specified.

--help

Display this help text.

-i

--ignore-pcr

When --seconds or --milli-seconds is used, do not use PCR's to compute time values. Only rely on bitrate as determined by previous plugins in the chain.

-m

--milli-seconds

With options --drop, --null, --pass and --stop, interpret the integer values as milliseconds from the beginning, not as packet numbers. Time is measured based on bitrate and packet count, not on real time.

-n value

--null value

All packets are replaced by null packets after the specified packet number. Several --null options may be specified.

-p value

--pass value

All packets are passed unmodified after the specified packet number. Several --pass options may be specified. This is the default for the initial packets.

--seconds

With options --drop, --null, --pass and --stop, interpret the integer values as seconds from the beginning, not as packet numbers. Time is measured based on bitrate and packet count, not on real time.

-s value

--stop value

Packet transmission stops after the specified packet number and *tsp* terminates.

--version

Display the version number.

stuffanalyze

Analyze the level of stuffing in sections

This plugin analyzes the level of "stuffing" in sections in a list of selected PID's. A section is considered as "stuffing" when its payload is larger than 2 bytes and filled with the same byte value (all 0x00 or all 0xFF for instance).

The PID's to analyze can be selected manually or using CAS criteria.

Usage:

```
tsp -P stuffanalyze [options]
```

Options:

--help

Display this help text.

```
-o filename
```

```
--output-file filename
```

Specify the output text file for the analysis result. By default, use the standard output.

Warning: if you do not specify this option, be sure to redirect the output plugin to something different from the default. Otherwise, the text output of the analysis will be mixed with the binary output of the TS packets!

```
-p value
--pid value
```

Analyze all sections from this PID. Several -p or --pid options may be specified.

--version

Display the version number.

CAS selection options:

--cas value

With options --ecm or --emm, select only ECM or EMM for the specified CA system id value. Equivalent to --min-cas value --max-cas value.

--ecm

Extract PID's containing ECM.

--emm

Extract PID's containing EMM.

--max-cas value

With options --ecm or --emm, select only ECM or EMM for the CA system id values in the range --min-cas to --max-cas.

--mediaguard

Equivalent to --min-cas 0x0100 --max-cas 0x01FF.

--min-cas value

With options --ecm or --emm, select only ECM or EMM for the CA system id values in the range --min-cas to --max-cas.

--nagravision

```
Equivalent to --min-cas 0x1800 --max-cas 0x18FF.
```

--operator value

With option --cas, select only ECM or EMM for the specified CAS operator. The "CAS operator" is a non-standard vendor-dependent concept and is recognized for some CAS only.

Version 3.3 129 / 165

--safeaccess

Equivalent to --cas 0x4ADC.

--viaccess

Equivalent to --min-cas 0x0500 --max-cas 0x05FF.

svremove

Remove a Service

This plugin removes a service from the transport stream. The PAT, SDT Actual, NIT Actual and BAT are modified. The PMT and all components, including ECM streams, of the removed service are either removed or replaced by stuffing.

Usage:

```
tsp -P svremove [options] service
```

Parameter:

Specifies the service to remove. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. If the input TS does not contain an SDT, use a service id.

Options:

--help

Display this help text.

-a

--ignore-absent

Ignore service if not present in the transport stream. By default, *tsp* fails if the service is not found.

-b

--ignore-bat

Do not modify the BAT.

-n

--ignore-nit

Do not modify the NIT.

-s

--stuffing

Replace excluded packets with stuffing (null packets) instead of removing them. Useful to preserve bitrate.

--version

Display the version number.

Version 3.3 131 / 165

svrename

Rename a Service

This plugin renames a service. It assigns a new service name and/or a new service id.

The PAT, PMT of the service, SDT Actual, NIT Actual and BAT are modified.

The service id is modified in the PAT, PMT and SDT Actual. It is modified in the *service_list_descriptor* and *logical_channel_number_descriptor* (EACEM/EICTA private descriptor) of the NIT Actual and the BAT. The service name is modified in the SDT Actual.

Usage:

```
tsp -P svrename [options] service
```

Parameter:

Specifies the service to rename. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. If the input TS does not contain an SDT, use a service id.

Options:

```
-f value
--free-ca-mode value
    Specify a new free_CA_mode to set in the SDT (0 or 1).
--help
    Display this help text.
-i value
--id value
    Specify a new service id value.
--ignore-bat
    Do not modify the BAT.
--ignore-nit
    Do not modify the NIT.
-l value
--lcn value
    Specify a new logical channel number (LCN).
-n name
--name name
    Specify a new service name.
-r value
--running-status value
    Specify a new running_status to set in the SDT (0 to 7).
-t value
--type value
    Specify a new service type.
--version
```

Display the version number.

#tables

Collect MPEG Tables

This plugin collects MPEG tables from a transport stream. The tables can be either displayed or saved in a human readable format, saved in binary files or sent over UDP/IP to some collecting server. It is equivalent to the *tstables* utility. Actually, the following two commands produce the same result:

```
tstables options filename
tsp -I file filename -P tables options -O drop
```

Usage:

```
tsp -P tables [options]
```

Options:

The plugin accepts exactly the same options as the *tstables* utility.

Version 3.3 133 / 165

#time

Schedule Packets Pass or Drop

This plugin schedules in time the processing of packets (drop packets, pass packets or replace them by null packets). This plugin may be used to schedule the recording of a program at a specified time, for instance.

Usage:

```
tsp -P time [options]
```

Options:

```
-d time
```

--drop time

All packets are dropped after the specified time. Several --drop options may be specified.

--help

Display this help text.

```
-n time
```

--null time

All packets are replaced by null packets after the specified time. Several --null options may be specified.

```
-p time
--pass time
```

All packets are passed unmodified after the specified time. Several --pass options may be specified.

-r --relative

All time values are interpreted as a number of seconds relative to the *tsp* start time. By default, all time values are interpreted as an absolute time in the format "*year/month/day:hour:minute:second*". Option --relative is incompatible with --tdt or -- utc.

```
-s time
--stop time
```

Packet transmission stops after the specified time and tsp terminates.

-t --tdt

Use the Time & Date Table (TDT) from the transport stream as time reference instead of the system clock. Since the TDT contains UTC time, all time values in the command line must be UTC also.

```
-u
--utc
```

Specifies that all time values in the command line are in UTC. By default, the time values are interpreted as system local time.

--version

Display the version number.

Specifying time values:

A time value must be in the format "year/month/day:hour:minute:second" (unless --relative is specified, in which case it is a number of seconds). An empty value ("") means "from the beginning", that is to say when tsp starts. By default, packets are passed when tsp starts.

timeref

Update TDT and TOT with a new time reference

This plugin updates all TDT and TOT in the transport stream according to a new time reference. This new reference can be completely new or an offset from the original TS.

Usage:

```
tsp -P timeref [options]
```

Options:

-a seconds

--add seconds

Add the specified number of seconds to all UTC time. Specify a negative value to make the time reference go backward.

--help

Display this help text.

--notdt

Do not update TDT.

--notot

Do not update TOT.

-s time

--start time

Specify a new UTC date & time reference for the first packet in the stream. Then, the time reference is updated according to the number of packets and the bitrate. A time value must be in the format "year/month/day:hour:minute:second".

--version

Display the version number.

Version 3.3 135 / 165

tsrename

Rename a Transport Stream

This plugin renames the transport stream. It assigns a new transport stream id and/or a original network id

The PAT, SDT Actual, NIT Actual and BAT are modified.

Usage:

```
tsp -P tsrename [options]
```

Options:

-a

--add

Equivalent to --add-bat --add-nit.

--add-bat

Add a new entry for the renamed TS in the BAT and keep the previous entry. By default, the TS entry is renamed.

--add-nit

Add a new entry for the renamed TS in the NIT and keep the previous entry. By default, the TS entry is renamed.

--help

Display this help text.

--ignore-bat

Do not modify the BAT.

--ignore-nit

Do not modify the NIT.

-o value

--original-network-id value

Modify the original network id. By default, it is unchanged.

-t value

--ts-id value

Modify the transport stream id. By default, it is unchanged.

--version

Display the version number.

until

Pass Packets Until Specified Condition

This plugin passes all TS packets to the next plugin in the chain, until one of the specified conditions is met. At this point, the plugin simulates an "end of input stream" and all subsequent packets are dropped. The previous plugins in the chain are notified to stop. When the next plugins in the chain finish the processing of the passed packet, tsp terminates.

Usage:

```
tsp -P until [options]
```

Options:

```
-b value
```

--bytes value

Stop after processing the specified number of bytes.

-e

--exclude-last

Exclude the last packet (the one which triggers the final condition).

--help

Display this help text.

<u>-</u> -

--joint-termination

When the final condition is triggered, perform a *joint termination* instead of unconditional termination. See the description of the tsp command for more details on *joint termination*.

```
-m value
```

--milli-seconds value

Stop the specified number of milli-seconds after receiving the first packet.

```
-n value
```

--null-sequence-count value

Stop when the specified number of sequences of consecutive null packets is encountered.

```
-p value
```

--packets value

Stop after the specified number of packets.

```
-s value
```

--seconds value

Stop the specified number of seconds after receiving the first packet.

```
-u value
```

--unit-start-count value

Stop when the specified number of packets containing a payload unit start indicator is encountered.

--version

Display the version number.

Version 3.3 137 / 165

zap

Zap on one Service (Create an SPTS)

This plugin "zaps" on one service: it produces a Single Program Transport Stream (SPTS) containing only the specified service. The PAT and SDT are modified in order to contain only the specified service. Unless specified otherwise (see the relevant options), the PMT and all elementary streams of the service are passed transparently. All other PID's in the transport streams are removed. If some elementary streams (audio, subtitles) must be removed from the service, the PMT is modified accordingly.

Usage:

```
tsp -P zap [options] service
```

Parameter:

Specifies the service to keep. If the argument is an integer value (either decimal or hexadecimal), it is interpreted as a service id. Otherwise, it is interpreted as a service name, as specified in the SDT. The name is not case sensitive and blanks are ignored. If the input TS does not contain an SDT, use a service id.

Options:

```
-a name
```

--audio name

Remove all audio components except the specified one. The name is a three-letters language code. By default, keep all audio components.

-c --cas

Keep Conditional Access System sections (CAT and EMM's). Remove them by default. Note that the ECM's for the specified service are always kept.

--help

Display this help text.

-e

--no-ecm

Remove all ECM PID's. By default, keep all ECM PID's.

-n

--no-subtitles

Remove all subtitles. By default, keep all subtitles.

-p

--pes-only

Keep only the PES elementary streams (audio, video, subtitles). Remove all PSI/SI and CAS information.

-s

--stuffing

Replace excluded packets with stuffing (null packets) instead of removing them. Useful to preserve bitrate.

-t name

--subtitles name

Remove all subtitles except the specified one. The name is a three-letters language code. By default, keep all subtitles.

--version

Display the version number.

4 Usage Examples

4.1 TSDuck Utilities

4.1.1 tsdektec examples

Listing all (-a) Dektec devices:

```
$ tsdektec -a
  0: DTA-110 (DTA-110T Modulator with UHF Upconverter)
  1: DTA-140 (DTA-140 DVB/ASI Input+Output)
Listing all (-a) Dektec devices in verbose format (-v):
  $ tsdektec -av
  DTAPI version: 4.1.1.108
  PCI device driver: 2.2.0.124
  USB device driver: unknown
  * Device 0: DTA-110 (DTA-110T Modulator with UHF Upconverter)
    Physical ports: 1
    Channels: input: 0, output: 1
    Output 0: Port 1, Modulator, Failsafe, ATSC/VSB, DVB-T/DVB-H, DVB-C,
        QAM-B (USA), QAM-C (Japan), UHF
    Subsystem id: 0xD10A (DTA-110)
    Subsystem vendor id: 0x14B4
    Device id: 0x9056
    Vendor id: 0x10B5
    Serial number: 0000000F50268FF
    Firmware version: 4 (0x00000004)
    Firmware variant: 4 (0x00000004)
    PCI bus: 5, slot: 5
    Customer id: 301819
    Engineering change level: Rev 3
    Manufacture id: 03
    Production date: 2002.07
    Part number: DTA-110T
    Serial number: 4110575871
    Crystal stability: RF:1ppm;Sym:25ppm
  * Device 1: DTA-140 (DTA-140 DVB/ASI Input+Output)
    Physical ports: 2
    Channels: input: 1, output: 1
    Input 0: Port 1, top socket, ASI/SDI, ASI
    Output 0: Port 2, ASI/SDI, ASI
    Subsystem id: 0xD128 (DTA-140)
    Subsystem vendor id: 0x14B4
    Device id: 0x9056
    Vendor id: 0x10B5
    Serial number: 00000000F6C458E8
    Firmware version: 2 (0x00000002)
    Firmware variant: 0 (0x0000000)
    PCI bus: 5, slot: 6
    Customer id: 301819
    Engineering change level: Rev 1A
    Manufacture id: 03
    Production date: 2003.05
    Part number: DTA-140
    Serial number: 4140062952
    Crystal stability: 10ppm
```

Version 3.3 139 / 165

4.1.2 tslsdvb examples

Listing all DVB receiver devices on a Linux system with a dual-tuner Hauppauge Nova-T 500. Each tuner of the single PCI board is seen as one DVB receiver device:

```
$ tslsdvb
/dev/dvb/adapter0 (DiBcom 3000MC/P, DVB-T)
/dev/dvb/adapter1 (DiBcom 3000MC/P, DVB-T)
$
```

The DVB receiver device name is /dev/dvb/adapter0 but it can also be specified using the option -- adapter (-a) in all TSDuck commands: the options "--device-name /dev/dvb/adapter1" and "-a 1" are equivalent.

Listing all DVB receiver devices on a Windows system with one USB receiver:

```
C:\> tslsdvb
0: "Nova-T Stick DVB-T Tuner (Dev1 Path0)" (DVB-T)
C:\>
```

The DVB receiver device name is "Nova-T Stick DVB-T Tuner (Dev1 Path0)". This is the name of the DirectShow tuner filter supplied by the hardware vendor.

Listing all DVB receiver devices on a Windows system with two other USB receivers:

```
C:\> tslsdvb
0: "Cinergy T USB XE (MKII) Tuner" (DVB-T)
1: "PCTV DiBcom BDA Digital Tuner (Dev1 Path0)" (DVB-T)
C:\>
```

Listing all DVB receiver devices on a Linux system in verbose (-v) format. Note that the current modulation parameters are usually accessible on Linux systems only. On Windows systems, most tuner drivers do not return them and tslsdvb cannot display the characteristics of the current transponder.

```
$ tslsdvb -v
/dev/dvb/adapter0 (DiBcom 3000MC/P, DVB-T)
 Status: has signal, has carrier, has viterbi, has sync, has lock
 Bit error rate ..... 0 (0%)
 Signal/noise ratio ..... 0 (0%)
 Signal strength ..... 39,586 (60%)
 Uncorrected blocks ...... 0
 Frequencies:
  Current ..... 562,000,000 Hz
  UHF channel ...... 32
  Min ..... 48,000,000 Hz
  Max ..... 860,000,000 Hz
  Step ..... 62,500 Hz
  Tolerance ..... 0 Hz
 Spectral inversion ..... auto
 Bandwidth ..... 8-MHz
 FEC (high priority) ...... 2/3
 FEC (low priority) ...... 1/2
 Constellation ..... 64-QAM
 Transmission mode ..... 8K
 Guard interval ..... 1/32
 Hierarchy ..... none
 Capabilities: inversion auto, FEC 1/2, FEC 2/3, FEC 3/4, FEC 5/6, FEC 7/8,
  FEC auto, QPSK, 16-QAM, 64-QAM, QAM auto, transmission mode auto,
  guard interval auto, hierarchy auto, recover
/dev/dvb/adapter1 (DiBcom 3000MC/P, DVB-T)
 Status: has signal, has carrier, has viterbi, has sync, has lock
```



```
Bit error rate ..... 0 (0%)
Signal/noise ratio ..... 0 (0%)
Signal strength ...... 40,690 (62%)
Uncorrected blocks ..... 0
Frequencies:
 Current ..... 490,000,000 Hz
 UHF channel ..... 23
 Min ...... 48,000,000 Hz
 Max ..... 860,000,000 Hz
 Step ...... 62,500 Hz
 Tolerance ..... 0 Hz
Spectral inversion ..... auto
Bandwidth ..... 8-MHz
FEC (high priority) ...... 2/3
FEC (low priority) ..... 1/2
Constellation ..... 16-QAM
Transmission mode ..... 8K
Guard interval ...... 1/32
Hierarchy ..... none
Capabilities: inversion auto, FEC 1/2, FEC 2/3, FEC 3/4, FEC 5/6, FEC 7/8,
 FEC auto, QPSK, 16-QAM, 64-QAM, QAM auto, transmission mode auto,
 guard interval auto, hierarchy auto, recover
```

4.1.3 tsscan examples

\$

UHF-band scanning, including a global service list at end of network scanning:

```
$ tsscan -g
* UHF channel 21, offset +1 (474.166 MHz), strength: 59%
  Transport stream id: 2, 0x0002
* UHF channel 23, offset +1 (490.166 MHz), strength: 62%
  Transport stream id: 8, 0x0008
* UHF channel 24, offset +1 (498.166 MHz), strength: 62%
  Transport stream id: 4, 0x0004
* UHF channel 27, offset +1 (522.166 MHz), strength: 63%
  Transport stream id: 3, 0x0003
* UHF channel 32, offset +1 (562.166 MHz), strength: 61%
  Transport stream id: 6, 0x0006
* UHF channel 35, offset +1 (586.166 MHz), strength: 63%
  Transport stream id: 1, 0x0001
```

LCN	Name	Provider	ServId	TSId	ONetId	Type	PMTPID
1	TF1	SMR6	0x0601	0x0006	0x20FA	0x01	0x0064
2	France 2	GR1	0x0101	0x0001	0x20FA	0x01	0x006E
3	France 3	GR1	0x0111	0x0001	0x20FA	0x01	0x00D2
4	CANAL+	CNH	0x0301	0x0003	0x20FA	0x01	0x0500
5	France 5	GR1	0x0104	0x0001	0x20FA	0x01	0x0136
6	M6	MULTI4	0x0401	0x0004	0x20FA	0x01	0x006E
7	ARTE	GR1	0x0105	0x0001	0x20FA	0x01	0x01FE
8	Direct 8	NTN	0x0201	0x0002	0x20FA	0x01	0x0500
9	W9	MULTI4	0x0402	0x0004	0x20FA	0x01	0x00D2
10	TMC	SMR6	0x0606	0x0006	0x20FA	0x01	0x0258
11	NT1	MULTI4	0x0403	0x0004	0x20FA	0x01	0x0136
12	NRJ12	SMR6	0x0602	0x0006	0x20FA	0x01	0x00C8
13	LCP	GR1	0x0106	0x0001	0x20FA	0x01	0x0262
14	France 4	NTN	0x0207	0x0002	0x20FA	0x01	0x0506
15	BFM TV	NTN	0x0203	0x0002	0x20FA	0x01	0x0502
16	i>TELE	NTN	0x0204	0x0002	0x20FA	0x01	0x0503
17	Virgin 17	NTN	0x0205	0x0002	0x20FA	0x01	0x0504
18	Gulli	NTN	0x0206	0x0002	0x20FA	0x01	0x0505
20	France Ô	GR1	0x0176	0x0001	0x20FA	0x01	0x02C6
21	Canal 21	Multi-7	0x0802	0x0008	0x20FA	0x01	0x10E1
22	IDF1	Multi-7	0x0803	0x0008	0x20FA	0x01	0x10E2
23	NRJ Paris	Multi-7	0x0804	0x0008	0x20FA	0x01	0x10E3

Version 3.3 141 / 165


```
24 CAP 24
                   Multi-7 0x0805 0x0008 0x20FA 0x01 0x10E4
30 TPS STAR
                            0x0306 0x0003 0x20FA 0x01 0x0505
                   CNH
31 PARIS PREMIERE MULTI4 0x0404 0x0004 0x20FA 0x01 0x019A
32 CANAL+ SPORT CNH 0x0303 0x0003 0x20FA 0x01 0x0502
33 CANAL+ CINEMA CNH 0x0302 0x0003 0x20FA 0x01 0x0501
33 CANAL+ CINEMA
                    CNH
                             0x0302 0x0003 0x20FA 0x01 0x0501
                   MULTI4 0x0406 0x0004 0x20FA 0x01 0x0262
34 AB1
               MULTI4
CNH
35 PLANETE
                            0x0304 0x0003 0x20FA 0x01 0x0503
36 TF6
                   MULTI4 0x0405 0x0004 0x20FA 0x01 0x01FE
             CNH
                            0x0305 0x0003 0x20FA 0x01 0x0504
37 CANAL J
 38 LCI
                    SMR6
                             0x0603 0x0006 0x20FA 0x01 0x012C
                             0x0604 0x0006 0x20FA 0x01 0x0190
39 Eurosport France SMR6
                             0x01FF 0x0001 0x20FA 0x03F2
                             0x02FF 0x0002 0x20FA
                             0x03F0 0x0003 0x20FA 0x0C 0x050A
                     CNH
                     CNH
                              0x03F1 0x0003 0x20FA 0x0C 0x050B
                              0x04FF 0x0004 0x20FA 0x0C 0x03F2
Ś
```

UHF-band scanning, including modulation parameters information (usually unavailable on Windows, depending on the tuner driver):

```
$ tsscan -m
* UHF channel 21, offset +1 (474.166 MHz), strength: 59%
 Transport stream id: 2, 0x0002
 Carrier frequency: 474,166,666 Hz
 Constellation: 64-QAM
 HP streams FEC: 2/3
 LP streams FEC: 1/2
 Guard interval: 1/32
 Transmission mode: 8K
 Hierarchy: none
* UHF channel 23, offset +1 (490.166 MHz), strength: 62%
 Transport stream id: 8, 0x0008
 Carrier frequency: 490,166,666 Hz
 Constellation: 16-QAM
 HP streams FEC: 2/3
 LP streams FEC: 1/2
 Guard interval: 1/32
 Transmission mode: 8K
 Hierarchy: none
* UHF channel 24, offset +1 (498.166 MHz), strength: 62%
 Transport stream id: 4, 0x0004
 Carrier frequency: 498,166,666 Hz
 Constellation: 64-OAM
 HP streams FEC: 2/3
 LP streams FEC: 1/2
 Guard interval: 1/32
 Transmission mode: 8K
 Hierarchy: none
* UHF channel 27, offset +1 (522.166 MHz), strength: 63%
 Transport stream id: 3, 0x0003
 Carrier frequency: 522,166,666 Hz
  Constellation: 64-QAM
 HP streams FEC: 2/3
 LP streams FEC: 1/2
 Guard interval: 1/32
 Transmission mode: 8K
 Hierarchy: none
* UHF channel 32, offset +1 (562.166 MHz), strength: 61%
 Transport stream id: 6, 0x0006
 Carrier frequency: 562,166,666 Hz
 Constellation: 64-QAM
 HP streams FEC: 2/3
 LP streams FEC: 1/2
 Guard interval: 1/32
 Transmission mode: 8K
 Hierarchy: none
* UHF channel 35, offset +1 (586.166 MHz), strength: 63\%
```



```
Transport stream id: 1, 0x0001
Carrier frequency: 586,166,666 Hz
Constellation: 64-QAM
HP streams FEC: 3/4
LP streams FEC: 1/2
Guard interval: 1/8
Transmission mode: 8K
Hierarchy: none
```

4.1.4 tssmartcard examples

Listing all smartcard readers in the system:

```
$ tssmartcard
OmniKey CardMan 3121 00 00
OmniKey CardMan 3121 01 00
OmniKey CardMan 3121 02 00
OmniKey CardMan 3121 03 00
```

Listing all smartcard readers in the system, in verbose (-v) format:

```
$ tssmartcard -v
OmniKey CardMan 3121 00 00: empty
OmniKey CardMan 3121 01 00: smartcard present
   ATR: 3B DE 18 00 40 11 90 28 43 29 4C 6F 67 69 77 61 79 73 AA 55
OmniKey CardMan 3121 02 00: empty
OmniKey CardMan 3121 03 00: smartcard present
   ATR: 3B DE 18 00 40 11 90 28 43 29 4C 6F 67 69 77 61 79 73 AA 55
$
```

Perform a warm (-w) reset on the second smartcard then list all readers in verbose format again: the smartcard now returns its "warm reset" ATR.

```
$ tssmartcard "OmniKey CardMan 3121 01 00" -w
$ tssmartcard -v
OmniKey CardMan 3121 00 00: empty
OmniKey CardMan 3121 01 00: smartcard present
    ATR: 3B D3 18 00 40 11 90 AA 55
OmniKey CardMan 3121 02 00: empty
OmniKey CardMan 3121 03 00: smartcard present
    ATR: 3B DE 18 00 40 11 90 28 43 29 4C 6F 67 69 77 61 79 73 AA 55
```

4.1.5 tsterinfo examples

Converting UHF channels to frequencies:

```
$ tsterinfo -u 21
Carrier Frequency: 474,000,000 Hz
$
$ tsterinfo -u 21 -o 1
Carrier Frequency: 474,166,666 Hz
$
$ tsterinfo -u 21 -o 1 -s
4741666666
```

Converting frequencies to UHF channels:

```
$ tsterinfo -f 474166666
UHF channel: 21, offset: 1
$
$ tsterinfo -f 474166000
UHF channel: 21, offset: 1
Warning: exact frequency for channel 21, offset 1 is 474,166,666 Hz, differ by -
666 Hz
```

Version 3.3 143 / 165

\$

Computing transport stream bitrate from OFDM modulation parameters:

```
$ tsterinfo -h 2/3 -g 1/32
Transport stream bitrate: 24,128,342 b/s
$
$ tsterinfo -h 2/3 -g 1/32 -c QPSK
Transport stream bitrate: 8,042,780 b/s
$
$ tsterinfo -h 2/3 -g 1/32 -c QPSK -s
8042780
$
```

Retrieving OFDM modulation parameters from the transport stream bitrate. Note that the second example gives two possible sets of parameters with the same bitrate difference.

```
$ tsterinfo -b 24128300
 Nominal bitrate ..... 24,128,342 b/s
 Bitrate difference ..... -42 b/s
 Bandwidth ..... 8-MHz
 FEC (high priority) ..... 2/3
 Constellation ..... 64-QAM
 Guard interval ..... 1/32
$ tsterinfo -b 24882000
 Nominal bitrate ..... 24,882,352 b/s
 Bitrate difference ..... -352 b/s
 Bandwidth ..... 8-MHz
 FEC (high priority) ..... 3/4
 Constellation ..... 64-QAM
 Guard interval ..... 1/8
 Nominal bitrate ..... 24,882,352 b/s
 Bitrate difference ..... -352 b/s
 Bandwidth ..... 8-MHz
 FEC (high priority) ..... 5/6
 Constellation ..... 64-QAM
 Guard interval ..... 1/4
```

4.2 TSP Examples

This section demonstrates the usage of the transport stream processor on some typical examples. Refer to the documentation of each specific plugin for more details.

4.2.1 Capturing a TS from an external source

The following example captures 20 seconds of the satellite transponder containing the Canal+ service and saves it into a file. We assume that we have a DVB-S adapter and a dish which is pointed to the Astra satellite.

```
tsp -I dvb --channel canal+ \
   -P until --seconds 20 \
   -O file ts capture.mpg
```

Same example, using specific tuning information for the satellite transponder (carrier 11.858 MHz, vertical polarity, 27.5 mega-symbols / second):

```
tsp -I dvb --tune 11856:v:0:27500 \
    -P until --seconds 20 \
    -O file ts capture.mpg
```

Same example using short names for options:

```
tsp -I dvb -t 11856:v:0:27500 -P until -s 20 -O file ts_capture.mpg
```


4.2.2 Routing a TS between several physical transports

The following example reads the same satellite transponder and redirects its content to the first Dektec DVB-ASI output device. The output bitrate of the ASI stream is locked to the input bitrate (from the satellite transponder).

```
tsp -I dvb -t 11856:v:0:27500 -O dektec
```

4.2.3 Using IP multicast

The following example reads a transport stream from the second Dektec DVB-ASI input device ("device 1"), extracts the service named "Arte", with French audio track only (identified as "fra" in the PMT) and broadcasts the resulting SPTS on the LAN using multicast IP (port 1000 on multicast address 224.10.11.12).

```
tsp -I dektec -d 1 \
    -P zap arte -a fra \
    -O ip 224.10.11.12:1000
```

Then, the service Arte can be received from any workstation on the LAN using, for instance, the free VLC (aka. VideoLAN Client) media player.

As an alternative to VLC, the Linux receivers may use the following example to view the channel using the standard Linux media player:

```
tsp -I ip 224.10.11.12:1000 | mplayer -
```

4.2.4 Regulating the output speed

The following example reads a captured transport stream file, extracts the service Arte and broadcasts it on the LAN.

```
tsp -I file -i ts_capture.mpg \
    -P zap arte \
    -P pcrbitrate \
    -P regulate \
    -0 ip 224.10.11.12:1000
```

Since reading a file can be extremely fast, it is not reasonable to broadcast the TS packets without regulation. If the receivers wish to play the TV program, the TS packets arrive too fast. The *pcrbitrate* plugin re-computes the expected TS bitrate after extraction of the selected service. Then, the *regulate* plugin introduces wait periods to slow down the stream to the previously computed bitrate.

On the contrary, when the input source is a live transponder, this kind of regulation may be useless since the input source is already regulated at the appropriate speed.

Unfortunately, this is not completely true in all cases. The *average* bitrate is regulated by the source (the live transponder) but there is a potential burst problem. If the broadcaster system and all receivers use the same type in connection to the LAN (100 Mb/s for instance) and if the LAN backbone does not slow down the bandwidth, this is fine. However, there is a problem if the broadcaster has a faster connection to the LAN than the receivers (say 100 Mb/s vs. 10 Mb/s). Of course, 10 Mb/s is enough to receive one service which usually needs around 4 Mb/s. However, there is a potential burst problem.

To avoid burst in case of non-homogeneous access speed to the LAN, the broadcaster should smooth the flow at all stages, as illustrated in the following command

```
tsp --max-input-packets 128 \
   -I dvb -c arte \
   -P zap arte \
   -P pcrbitrate --min-pcr 256 \
   -P regulate --packet-burst 128 \
   -0 ip 224.10.11.12:1000 --packet-burst 128
```

Version 3.3 145 / 165

4.2.5 Scheduling the recording of a program

The following example records the contents of the channel named "France 2" between 17:15 and 17:30 the 6th of July 2006.

```
tsp -I dvb -c france2 \
    -P time -d "" -p "2006/07/06:17:15:00" -s "2006/07/06:17:30:00" \
    -P zap france2 \
    -O file program.ts
```

The -I option selects the first DVB input device, tuning on the transponder containing the channel named "France 2".

The first -P option specifies to:

- Initially drop packets (-d "")
- Start passing packets at 17:15 the 6th of July 2006.
- Stop packet processing (and make tsp terminate) at 17:30 the 6th of July 2006.

The second -P option extracts only the service named "France 2" and the -O option finally saves the resulting SPTS in the file program.ts.

4.2.6 Extracting selected packets

The following silly example dumps the content of the 20th TS packet with the *payload unit start indicator* set in PID 0x0208:

```
tsp -I file /data1/mpeg/test/frtv_tnt.mpg \
    -P filter --pid 0x208 \
    -P filter --unit-start \
    -P skip 19 \
    -P until --packets 1 | \
    tsdump
```

Note that the *filter* plugin selects packets matching any of the specified conditions (an "or" selection). Here, to select packets matching two conditions (an "and" selection), we chain two *filter* plugins.

4.2.7 Monitoring selected MPEG tables (here, EMM's)

The following example demonstrates how to monitor the EMM's for a given operator. The first command determines on which PID are sent the EMMs. This command analyzes the satellite transponder which carries the channel Canal+ during 2 seconds. Instead of the full human-readable analysis report, we ask for a "normalized" output format and we filter the conditions we need: a line starting with "pid:" for description of a PID, ":emm:" for a PID carrying EMM's, ":cas=256:" to filter EMM's for CA System Id 256 (0x100, ie. MediaGuard).

```
tsp -I dvb -c canal+ \
    -P until -s 2 \
    -P analyze --normalized \
    -O drop | \
    grep ^pid: | grep :emm: | grep :cas=256:
```

The output of this command is:

```
pid:pid=193:emm:cas=256:access=clear: [...]
pid:pid=196:emm:cas=256:operator=129:access=clear: [...]
```

We now know that PID 193 carries the MediaGuard individual EMM's and PID 196 carries the MediaGuard group EMM's for operator 129 (OPI of Canal+).

The second command, below, filters the contents of those two PID's and formats the contents of the MPEG tables that are carried in those PID's:

```
tsp -I dvb -c canal+ -P filter -p 193 -p 196 | tstables | less
```


Of course, since EMM's are ciphered, their contents are obscure to the average user and the display looks like:

```
* EMM (0x82), TID 130 (0x82), PID 193 (0x00C1)

Version: 0, sections: 1, total size: 117 bytes

- Section 0:

0000: 00 00 09 F3 87 00 00 80 00 B0 10 01 5E E7 07 85 ...ó...°..^ç..

0010: 22 C3 DB 13 75 43 3B 5C 1E 08 DC 4A 05 35 AD 54 "ÃÛ.uC;\.ÜJ.5-T

0020: B5 52 35 B1 61 FB 37 BB EC 6D 55 F5 21 B6 4C 58 µR5±aû7»ìmUõ!¶LX

0030: 80 F4 FA FB D9 C5 D0 A2 C7 22 BA 77 51 B9 C8 96 .ôúûÙÅĐ¢Ç"°wQ¹È.

0040: A3 79 9E 5A 24 74 2A 01 7D 00 62 A3 EC D4 AF DF £y.Z$t*.}.b£îÔ¬B

0050: F2 43 B1 3A 72 B5 B3 E0 C9 22 68 2D 50 F0 FE 82 òC±:rµ³àÉ"h-Pðþ.

0060: 47 1F AC 95 5F D2 59 E6 C8 C6 78 BE F3 C5 A9 CF G.¬._ÒYæÈÆx¾óÅ©Ï

0070: 05 90

* EMM (0x82), TID 130 (0x82), PID 193 (0x00C1)

Version: 0, sections: 1, total size: 105 bytes

- Section 0:

0000: 00 00 F1 F2 F3 F4 00 00 00 B0 10 01 98 3E EF 81 ..ñòóô..°...>í.

0010: 45 E1 A1 D3 76 B9 B0 21 D6 F9 5F AB 4B 07 9D 13 Eá;Óv¹°!Öù_«K...
```

4.2.8 Scanning all services by CAS operator

The following complex example scans a complete satellite network, looking for the list of services which are scrambled for an operator.

We assume that we have a DVB-S adapter and a dish which is pointed to the Astra satellite.

The first command scans the NIT (Network Information Table) of a known transponder. The output is the list of all transponders in the network. This list is sorted and duplicate lines are removed ("sort –u").

Then, each transponder is analyzed during 3 seconds ("-P until -s 3") and the result of the analysis in normalized format is saved in a temporary file. From this analysis file, we extract the PID's carrying ECM's with CA system id 256 (MediaGuard) and MediaGuard OPI 128 (CanalSat). For each ECM PID, we extract the list of services this PID belongs to.

Thus, for each transponder, we get a list of services (actually, a list of *service ids*) which are scrambled for the CanalSat MediaGuard operator. Finally, we use again the transponder analysis in normalized format to get the service name for each of these service id.

```
inittune=11856:v:0:27500  # Initial transponder to scan the NIT
cas=256
                          # MediaGuard CA system id
opi=128
                          # MediaGuard OPI for CanalSat
tsp -I dvb -t $inittune -P nitscan -t -O drop | \
sort -u | \
while read tune; do
    tsp -I dvb -t $tune \
        -P until -s 3 \
        -P analyze --normalized -o tmp.tmp \
        -O drop
    grep "^pid:" tmp.tmp | \
    grep ":ecm:" | \
    grep ":cas=$cas:" | \
    grep ":operator=$opi:" | \
    sed -e 's/^.*:servlist=//' -e 's/:.*$//' -e 's/,/\n/' | \
    while read serv; do
        grep "^service:" tmp.tmp | \
        grep ":id=$serv:" | \
        sed -e "s/^.*:name=/Transponder: $tune Service: /"
    done
   rm -f tmp.tmp
```

The output of this script gives the following output (107 lines):

Version 3.3 147 / 165


```
Transponder: 11739:v:0:27500 Service: MTV F
Transponder: 11739:v:0:27500 Service: MTV HITS.
Transponder: 11739:v:0:27500 Service: MTV Base.
...

Transponder: 12640:v:0:22000 Service: TOON DISNEY
Transponder: 12640:v:0:22000 Service: MOTORS TV
Transponder: 12640:v:0:22000 Service: E! ENTERTAINMENT
```

4.2.9 On-the-fly replacement of an SI table

The following example tests an updated version of a *Bouquet Association Table* (BAT) on a live transport stream.

We assume to have a DVB-T tuner card to capture live streams and a Dektec DTA-110T DVB-T modulator (PCI card) to send the modified stream into a local distribution network (or even to one single directly-connected STB).

We capture one transport stream (the "R4" from the French DTTV network, on UHF channel 24). We remove the BAT of the *Tv Numéric* operator and we replace it with a new one, the table we wish to test. The new table is stored in binary section format into a file named BAT TvNumeric V3.si.

First, we capture all tables from the PID 0×0011 (the one which carries the SDT's and the BAT's).

```
rm -f r4_p0011_*.si    # remove previous files if any tsp -I dvb -u 24 -P until -s 10 -P filter -p 0x011 | tstables -m -b r4.si rm -f r4 p0011 t4A e0086 *.si    # remove current Tv Numeric BAT
```

These commands capture and save all tables (SDT's and BAT's) in binary files named $r4_p0011_*.psi$ during 10 seconds. Each section is stored in a separate file (option -m in tstables). The current TV Numeric BAT is removed. Note the file name $r4_p0011_t4A_e0086_*.si$ which means all sections from PID 0x0011 with TID 0x4A (BAT) and TID extension 0x0086 (bouquet identifier for operator TV Numeric).

The following command now performs the live replacement. The *inject* plugin is used to replace the content of PID 0×0011 with the sections in all the specified files. These files are all the previously captured sections from this PID (minus the previous BAT which was deleted) and the new BAT.

```
tsp -I dvb -u 24 \
    -P inject --replace 0x0011 r4_p0011_*.si BAT_TvNumeric_V3.si \
    -O dektec -u 24 --convolution 2/3 --quard 1/32
```

4.2.10 Performing the global analysis of a transponder

The following command receives a DVB-T transport stream from UHF channel 35 during 100 seconds and produces an analysis report in the text file *R1.analysis*. The first 5000 packets are ignored since the signal may not be quite stable right after the tuning operation.

```
tsp -I dvb -u 35 \
   -P skip 5000 \
   -P until -s 100 \
   -P analyze --title "R1 (Channel 35)" -o R1.analysis \
   -O drop
```

The report file is quite large:


```
| Estimated based on PCR's: ...... 24,882,351 b/s 26,999,998 b/s |
    Broadcast time: ...... 102 sec (1 mn 42 sec)
     First TDT time stamp: ...... 2008/06/11 09:34:25
     TOT country code: ..... FRA
  | Serv.Id Service Name
     0x0101 France 2 ..... C 3,637,078 b/s
     0x0104 France 5 ..... C
0x0105 ARTE ..... C
                                                                   4,567,443 b/s
                                                                  3,688,018 b/s
    0x0106 LCP ..... C 3,554,581 b/s
    0x0111 France 3 ...... C 4,828,238 b/s
    0x0176 .France 0 ...... C 3,286,441 b/s
    0x01FF (System Software Update) ..... C
                                                                      35,015 b/s
    Note 1: C=Clear, S=Scrambled
    Note 2: Unless explicitely specified otherwise, all bitrates are based on
  | 188 bytes per packet.
  ______
  | SERVICES ANALYSIS REPORT
  Global PID's
     TS packets: 87,342, PID's: 7 (clear: 7, scrambled: 0)
     -----
                                                      Access Bitrate
       PID Usage
     Total Global PID's ...... C 1,285,534 b/s
                                                                  15,027 b/s
     0x0000 PAT .... C
                                                                      4,503 b/s
                     ..... c
     0 \times 0.010 DVB-NIT
     0x0011 SDT/BAT
                                                                         750 b/s
     0x0012 EIT ..... C
                                                                     37,075 b/s
    0x0014 TDT/TOT ..... C
                                                                   132 b/s
2,737 b/s

      0x0015
      Network Synchronization
      C
      2,737 b/s

      0x1FFF
      Stuffing
      C
      1,225,306 b/s

     ______|
    Service: 257 (0x0101), TS: 1 (0x0001), Original Netw: 8442 (0x20FA)
     Service name: France 2, provider: GR1
     Service type: 1 (0x01), Digital television service
     TS packets: 247,111, PID's: 4 (clear: 4, scrambled: 0)
     PMT PID: 110 (0x006E), PCR PID: 120 (0x0078)
     ______
                                                      Access Bitrate
       PID Usage
     Total Digital television service ...... C 3,637,078 b/s

        Total
        Digital television service
        0x006E
        0x006E
        0x0078
        0x0078
        0x0078
        0x0078
        0x0078
        0x0082
        0x0082

       (C=Clear, S=Scrambled, +=Shared)
  | Service: 260 (0x0104), TS: 1 (0x0001), Original Netw: 8442 (0x20FA)
... more services skipped ...
    Service: 511 (0x01FF), TS: 1 (0x0001), Original Netw: 8442 (0x20FA)
    Service name: (System Software Update), provider: (unknown)
    Service type: 0 (0x00), Reserved service type 0x00
     TS packets: 2,379, PID's: 2 (clear: 2, scrambled: 0)
     PMT PID: 1010 (0x03F2), PCR PID: None
     -----
```

Version 3.3 149 / 165

(C=Clear, S=Scrambled, +=Shared)

... more PID's skipped ...

4.2.11 Performing the global analysis of a network

This section presents an automated way to analyze a network (here, the French terrestrial network) using a GNU makefile.

Using the simple command "make", each known transport stream (designated by its UHF channel number) is analyzed. For each TS, for instance the one named R1, the following text files are created:

- R1.analysis: Global analysis of the TS in human-readable format, as in 4.2.10.
- R1.anl: Global analysis of the TS in normalized format, for use by other scripts.
- R1.psi: Analysis of the main PSI/SI tables (PAT, CAT, PMT, SDT, NIT, BAT).

Individual targets, such as "make $\,$ R1" can be used to analyze only one TS. Use the make option -B to force the analysis again when the files already exist.

The command "make capture" captures 120 seconds of each TS in files named R1.ts, R2.ts, etc. Similarly, commands like "make R1.ts" capture only one TS.

The content of the makefile follows:

```
# === This is a GNU makefile ===

# List of UHF channels:

ALL_CHAN = R1 R2 R3 R4 R5 R6 L8

R1_CHAN = 35
R2_CHAN = 21
R3_CHAN = 27
R4_CHAN = 24
R5_CHAN = 29
R6_CHAN = 32
L8_CHAN = 23

# Channel full names:

$ (foreach R, $ (ALL CHAN), $ (eval $R NAME=$R (Channel $ ($R CHAN))))
```



```
# Default target is analysis of all TS
all: $(ALL CHAN)
$(ALL CHAN): %: %.analysis %.anl %.psi
%.analysis %.services %.anl %.psi:
    tsp -I dvb $(DEVICE) -u $($(*F)_CHAN) \
       -P skip 5000 \
        -P until -s 100 \
        -P analyze --title "$($(*F)_NAME)" -o $*.analysis \
        -P analyze --title "$($(*F) NAME)" -o $*.anl --normalized \
        -P psi -a -o $*.psi \
        -O drop
# Capture TS content:
capture: $(foreach R,$(ALL CHAN),$R.ts)
%.ts:
    tsp -I dvb $(DEVICE) -u $($(*F) CHAN) \
       -P skip 5000 \
        -P until -s 120 \
        -O file $@
```

4.2.12 Monitoring the stuffing rate of all transponders in a network

The following script monitors the stuffing bitrate of a list of selected transport streams. The output is suitable for importation into Excel so that further analysis can be performed. It can be executed on Linux or Windows (using the Cygwin shell).

In this script, the transport streams are designated by a list of UHF channels, meaning DVB-T only. Here, the UHF channels represent the 5 main MUX of the French DTTV in the Paris area.

```
# List of UHF channels
UHF CHANNELS="35 21 27 24 32"
# Analysis time per TS, in seconds
ANALYSIS TIME=20
# Sample interval, in seconds
SAMPLE INTERVAL=300
# Excel separator character for "csv" files (depends on Excel locale)
EXCEL SEPARATOR=';'
# Main loop
while true; do
    # Current date in seconds since epoch
   curtime=$(date "+%s")
    # Loop on all TS
   outline=
    for uhf in $UHF CHANNELS; do
        stuffing=$(
            tsp -I dvb -u $uhf \
                -P until -s $ANALYSIS TIME \
                -P analyze --normalized \
                -0 drop | \
                grep '^pid:' | \
                grep ':pid=8191:' | \
                sed -e 's/^.*:bitrate=//' -e 's/:.*//')
        outline="${outline}${EXCEL SEPARATOR}${stuffing}"
    done
```

Version 3.3 151 / 165


```
# Current date and stuffing rates in Excel format
echo "$(date -d @$curtime '+%d/%m/%Y %H:%M')${outline}"

# Sleep until next sample time
sleeptime=$(( $curtime + $SAMPLE_INTERVAL - $(date "+%s") ))
[[ $sleeptime -le 0 ]] || sleep $sleeptime
done
```

The script runs infinitely and produces the following output:

```
12/06/2008 14:01;1208706;4501497;3762828;626932;1145037
12/06/2008 14:06;1232543;4505620;3782431;621524;1172479
12/06/2008 14:11;1225293;4505553;3487315;613616;1151119
12/06/2008 14:16;1231288;4505958;3415868;665393;1156933
```

It may be imported into Microsoft Excel to produce the following graph:

Figure 2: Stuffing bitrate sample diagram

4.2.13 Analyzing the bitrate of all services in a network

The following script demonstrates a way to produce a report of the bitrate of all services in a network. First, you need to analyze all TS in the network and get the result in *normalized format* (see 4.2.11 for an example). Then run the following script on all normalized analysis files.

```
echo "MUX Service
                                      Bitrate
                                                Video bitrate Access"
echo "---
for f in $*; do
    tsid=$(grep '^ts:' $f | sed -e 's/.*:id=//' -e 's/:.*//')
    grep '^service:' $f | grep ':servtype=1:' | \
    while read line; do
        name=$(sed <<<"$line" -e 's/.*:name=//')</pre>
        bitrate=$(sed <<<"$line" -e 's/.*:bitrate=//' -e 's/:.*//')
        access=$(sed <<<"$line" -e 's/.*:access=//' -e 's/:.*//')
        pidgrep=$(sed <<<"$line" -e 's/.*:pidlist=//' -e 's/:.*//' \</pre>
                                 -e 's/^/-e :pid=/' \
                                 -e 's/,/: -e :pid=/g' -e 's/$/:/')
        vbitrate=0
        for br in (grep '^pid:' f | grep pidgrep | grep ':video:' | 
                    sed -e 's/.*:bitrate=//' -e 's/:.*//')
            vbitrate=$(( $vbitrate + $br ))
        done
        printf "R%d
                     %-18s %'10d b/s %'10d b/s %s\n" \
            $tsid "$name" $bitrate $vbitrate $access
    done
```


done

When used in conjunction with the makefile from 4.2.11, you get:

```
make -f Makefile.tnt
bitrate-summary *.anl
MUX Service
                            Bitrate Video bitrate Access
     -----
   France 2 HD 7,593,045 b/s 7,080,227 b/s clear M6HD 7,301,165 b/s 6,714,945 b/s clear
R5
R5
                        5,022,465 b/s 3,951,056 b/s clear
6,883,049 b/s 6,026,657 b/s clear
1,379,288 b/s 1,224,422 b/s scrambled
R6
     TF1
R6 NRJ12
R6 LCI
R6 Eurosport
                        3,535,155 b/s 3,380,304 b/s scrambled
    TF6
R6
                        1,701,739 b/s 1,543,181 b/s scrambled
R6
     TMC
                        4,103,693 b/s 3,890,212 b/s clear
```

4.2.14 Analyzing the number of PCR per second

It is sometimes useful to get a complete overview of the number of PCR per second in each service of a network. The following script illustrates this. First, you need to analyze all TS in the network and get the result in *normalized format* (see 4.2.11 for an example). Then run the following script on all normalized analysis files.

Version 3.3 153 / 165


```
done
fi
done | sort
```

When used in conjunction with the makefile from 4.2.11, you get:

```
make -f Makefile.tnt
pcrrate *.anl
 29 PCR/s - France 2 HD
  29 PCR/s - TF1 HD
  30 PCR/s - ARTE
  30 PCR/s - ARTE HD
  30 PCR/s - BFM TV
  30 PCR/s - Canal 21
  30 PCR/s - CAP 24
  30 PCR/s - Direct 8
  30 PCR/s - France 2
  30 PCR/s - France 3
  30 PCR/s - France 4
  30 PCR/s - France 5
  30 PCR/s - .France \hat{O}
  30 PCR/s - Gulli
  30 PCR/s - IDF1
30 PCR/s - i>TELE
  30 PCR/s - LCP
  30 PCR/s - M6
  30 PCR/s - M6HD
  30 PCR/s - NRJ12
30 PCR/s - NRJ Paris
  30 PCR/s - NT1
  30 PCR/s - Virgin 17
  30 PCR/s - W9
  31 PCR/s - CANAL+
  31 PCR/s - TF1
  31 PCR/s - TMC
  50 PCR/s - CANAL+ CINEMA
  50 PCR/s - CANAL J
  50 PCR/s - CANAL+ SPORT
  50 PCR/s - Eurosport
  50 PCR/s - LCI
  50 PCR/s - PARIS PREMIERE
  50 PCR/s - PLANETE
  50 PCR/s - TF6
  50 PCR/s - TPS STAR
```

4.2.15 Injecting a System Software Update (SSU) service into a transport stream

This example illustrates how to inject a new System Software Update (SSU) service into a transport stream as defined in [8]. This type of procedure can be used to test the SSU capabilities of a Set Top Box in real conditions, using a live transport stream.

The test is the following:

- A DVB-T transport stream is received on UHF channel 24.
- This transport stream has at least 56 kb/s of stuffing packets (much more actually). Our *tsp* command steals 56 kb/s of stuffing and replaces them with a new service (16 kb/s for the new service's PMT and 40 kb/s for the SSU data PID).
- The STB software provider delivers three types of SSU tables: a DSI, a DII and a lot of DDB's. The tables are provided as binary files containing the sections. There is one file dsi.bin containing the DSI section, one file dii.bin containing the DII section and one file ddb.bin containing all DDB sections.
- These tables are multiplexed in the same SSU data PID but have different repetition rates constraints. Here, we use 14 seconds for the DSI and 60 seconds for the DII. The DDB use the rest of the available bitrate in the SSU data PID.

- After analysis of the transport stream, the new SSU service will use the service id $0 \times 0.4 F0$ and PID values $0 \times 1 F00$ (SSU data) and $0 \times 1 F01$ (PMT). These values are chosen since they are not used in the original transport stream.
- The resulting transport stream with the added SSU service in sent to an embedded Dektec OFDM modulator on the same frequency as the original service. The output of the modulator can be directly connected to a STB.

The PMT of the service is defined as follow in file pmt.xml:

In this example, the specified OUI value and selector bytes are those which are used by Logiways SSU on Skardin-based STB.

The binary version of the PMT is generated in file pmt.bin by the table compiler:

```
tstabcomp pmt.xml
```

The files pmt.bin, dsi.bin, dii.bin and ddb.bin are injected in the transport stream using the following command:

```
tsp -I dvb -u 24 \
    -P pat -v 31 -a 0x04F0/0x1F01 \
    -P inject -b 16000 -p 0x1F01 -s pmt.bin \
    -P inject -b 40000 -p 0x1F00 -s dsi.bin=14000 dii.bin=60000 ddb.bin \
    -O dektec -u 24 --convolution 2/3 --guard 1/32
```

Notes: We have previously checked in the TS that the PAT version was not 31. By assigning the new version 31 to the PAT, we state that the content of the PAT has changed. Thus, the STB will analyze it again and will discover the new service.

In the case were the transport stream does not initially contain enough stuffing to inject the SSU service, it is possible to remove a service and replace it with stuffing. In the following command, the service named AB1 is first replaced by stuffing, representing a stuffing increase of 4 Mb/s.

```
tsp -I dvb -u 24 \
    -P svremove -s AB1 \
    -P pat -v 31 -a 0x04F0/0x1F01 \
    -P inject -b 16000 -p 0x1F01 -s pmt.bin \
    -P inject -b 40000 -p 0x1F00 -s dsi.bin=14000 dii.bin=60000 ddb.bin \
    -O dektec -u 24 --convolution 2/3 --guard 1/32
```

4.2.16 Analyzing EPG data

This example illustrates how to analyze EIT sections and report which service supports EPG data (EIT schedule) and for how many days. The command analyzes the content of UHF channel 27 (DVB-T) during 30 seconds and reports a summary of EIT analysis.

Version 3.3 155 / 165

EITp/f other: 435 EITs actual: 461 EITs other: 0

TS	Serv	rices Wi	th EITp,	/f With	EITs E	PG day	7S
Actual 8		8	6 6			3	
Othe	r	66	•	56	0		0
A/O	TS Id	Srv Id	Name		EITp/f	EITs	EPG days
 Oth	0x0001	0x0101			Yes	No	0
Oth	0x0001	0x0104			Yes	No	0
Oth	0x0001	0x0105			Yes	No	0
Oth	0x0001	0x0106			Yes	No	0
Oth	0x0001	0x0110			Yes	No	0
Oth	0x0001	0x0111			Yes	No	0
Oth	0x0001	0x0112			Yes	No	0
Oth	0x0001	0x0113			Yes	No	0
Oth	0x0001	0x0114			Yes	No	0
Oth Oth	0x0001 0x0001	0x0115 0x0116			Yes Yes	No No	0
Oth	0x0001	0x0110			Yes	No	0
Oth	0x0001	0x0117			Yes	No	0
Oth	0x0001	0x0119			Yes	No	0
Oth	0x0001	0x011A			Yes	No	0
Oth	0x0001	0x011B			Yes	No	0
Oth	0x0001	0x011C			Yes	No	0
Oth	0x0001	0x011D			Yes	No	0
Oth	0x0001	0x011E			Yes	No	0
Oth	0x0001	0x011F			Yes	No	0
Oth	0x0001	0x0120			Yes	No	0
Oth	0x0001	0x0121			Yes	No	0
Oth Oth	0x0001 0x0001	0x0122 0x0123			Yes	No	0
Oth	0x0001	0x0123			Yes Yes	No No	0
Oth	0x0001	0x0121			Yes	No	0
Oth	0x0001	0x0126			Yes	No	0
Oth	0x0001	0x0127			Yes	No	0
Oth	0x0001	0x0128			Yes	No	0
Oth	0x0001	0x0129			Yes	No	0
Oth	0x0001	0x012A			Yes	No	0
Oth	0x0001	0x012B			Yes	No	0
Oth	0x0001	0x012C			Yes	No	0
Oth	0x0001	0x012D			Yes	No	0
Oth	0x0001	0x012E			Yes	No	0
Oth Oth	0x0001	0x012F 0x0130			Yes	No No	0
Oth Oth	0x0001	0x0130 0x0131			Yes Yes	No No	0
Oth	0x0001	0x0131			Yes	No	0
Oth	0x0001	0x0133			Yes	No	0
Oth	0x0001	0x0134			Yes	No	0
Oth	0x0001	0x0135			Yes	No	0
Oth	0x0001	0x0136			Yes	No	0
Oth	0x0001	0x0137			Yes	No	0
Oth	0x0001	0x0138			Yes	No	0
Oth	0x0001	0x0139			Yes	No	0
Oth	0x0001	0x013A			Yes	No	0
Oth	0x0001	0x013B			Yes	No	0
Oth Oth	0x0001	0x0176			Yes	No	0
Oth Oth	0x0002 0x0002	0x0201 0x0203			Yes	No No	0
Oth	0x0002 0x0002	0x0203 0x0204			Yes Yes	No No	0
Oth	0x0002	0x0204 0x0205			Yes	No	0
Oth	0x0002	0x0205			Yes	No	0
Oth	0x0002	0x0207			Yes	No	0
Act	0x0003	0x0301	CANAL+		Yes	Yes	3
Act	0x0003	0x0302		CINEMA	Yes	Yes	3


```
Act 0x0003 0x0303 CANAL+ SPORT Yes Yes
Act 0x0003 0x0304 PLANETE Yes
                                          Yes
Act 0x0003 0x0305 CANAL J
                                  Yes
Act 0x0003 0x0306 TPS STAR
Act 0x0003 0x03F0
Act 0x0003 0x03F1
                                  Yes
                                                        3
                                           Yes
                                                        0
                                   No
                                           No
                                          No
                                                        0
                                   No
Oth 0x0004 0x0401
                                  Yes
                                          No
Oth 0x0004 0x0402
                                  Yes
Oth 0x0004 0x0403
                                         No
                                                        Ω
                                   Yes
Oth 0x0004 0x0404
Oth 0x0004 0x0405
                                   Yes
                                           No
                                   Yes
                                           No
                                                        0
Oth 0x0004 0x0406
                                  Yes
                                           No
                                                        0
Oth 0x0006 0x0601
                                  Yes
                                          No
Oth 0x0006 0x0602
                                  Yes
                                          No
                                                       0
Oth 0x0006 0x0603
Oth 0x0006 0x0604
                                   Yes
Yes
                                                        Ω
                                           No
                                           No
                                                        Ω
                                   res
Yes
Oth 0x0006 0x0606
                                                        Ω
                                           No
```

4.2.17 Analyzing audio and video attributes

This example illustrates how to display the audio and video attributes from a captured transport stream file.

```
$ tsp -I file cap.ts -P pes -a -v -O drop
 PID 0x0083, stream id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 160 \text{ kb/s}, sampled at 48,000 Hz, stereo
* PID 0x014A, stream id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 192 kb/s, sampled at 48,000 Hz, stereo
* PID 0x0085, stream_id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 64 kb/s, sampled at 48,000 Hz, single channel
* PID 0x0082, stream id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 192 kb/s, sampled at 48,000 Hz, stereo
* PID 0x0276, stream id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 192 kb/s, sampled at 48,000 Hz, stereo
* PID 0x01AE, stream_id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 256 kb/s, sampled at 48,000 Hz, stereo
* PID 0x00E6, stream id 0xC0 (Audio 0), audio attributes:
 Audio layer II, 25\overline{6} kb/s, sampled at 48,000 Hz, stereo
* PID 0x0078, stream id 0xE0 (Video 0), video attributes:
  720 \times 576 i, 25 Hz, 16/9, 4:2:0
 Maximum bitrate: 15,000,000 b/s, VBV buffer size: 1,835,008 bits
* PID 0x01A4, stream id 0xE0 (Video 0), AVC video attributes:
  720x576, AVC main profile (77), level 30
* PID 0x00DC, stream id 0xE0 (Video 0), video attributes:
  720 \times 576 i, 25 Hz, 16/9, 4:2:0
 Maximum bitrate: 15,000,000 b/s, VBV buffer size: 1,835,008 bits
* PID 0x026C, stream id 0xE0 (Video 0), video attributes:
 720 \times 576 i, 24 Hz, 4\overline{/}3, 4:2:0
 Maximum bitrate: 15,000,000 b/s, VBV buffer size: 1,835,008 bits
* PID 0x0140, stream_id 0xE0 (Video 0), AVC video attributes:
  704x576, AVC main profile (77), level 30
```

4.2.18 Conditional Access System scrambling and ECM functional tests

The following command receives a DVB-T live stream on UHF channel 21 and remodulates it on the same frequency using a Dektec modulator. In the middle, the service named BFM TV is scrambled. An external ECMG is used (host name <code>ecmg1</code> on TCP port 10000). The crypto-periods are scheduled using the default duration of 10 seconds. A new control word is generated for each crypto-period. The corresponding ECM's are generated using the specified ECMG ($Super_CAS_Id$ and access criteria specified by options <code>-s</code> and <code>-a</code>) and inserted in the TS. The PMT of the service is modified to include a $CA_descriptor$. The private part of this descriptor is specified using option <code>-p</code>.

```
tsp -I dvb -u 21 \
-P scrambler bfmtv \
```

Version 3.3 157 / 165

4.2.19 Complete Conditional Access System test bed

The following commands implements a complete Conditional Access System test bed in one single *tsp* process. It emulates all functions of a MUX system for testing a CAS.

The command uses the French DVB-T network but it can be easily adapted to any environment.

The command transforms the R2 MUX into a new R9 MUX with new services (actually renamed services from R2) and outputs the resulting TS to a modulator on a different UHF channel. In the meantime, the service named "Gulli Test" is scrambled using an external ECMG and EMM injection is allowed from an external EMMG.

The modulated output stream can be used alone (direct connection to STB) or mixed with the public antenna signals using a UHF coupler.

Figure 3: Conditional Access System sample test bed

For the sake of clarity of this example, all significant parameters are first assigned into environment variables, then the tsp command references these variables.

```
# Transmission parameters:
UHF_INPUT=21
UHF_OUTPUT=60

# EMM parameters
MUX_SERVER_PORT=32000
CAS_ID=0x4ADC
EMM_PID=0x01F0
EMM_MAX_BITRATE=50000
CAT_CADESC_PRIVATE=FF0001

# ECM parameters
ECMG=ecmg1:10000
SUPER_CAS_ID=0x4ADC0001
ECM_PID=0x01F1
ECM_BITRATE=30000
PMT_CADESC_PRIVATE=FE
```


AC=6B0A010100000000000000006B0A01020000000000000006105000005000660400000002

Version 3.3 159 / 165

5 Hardware Device Support

5.1 DVB Receiver Devices

5.1.1 Overview

The DVB receiver devices are specialized hardware devices which receive DVB-T, DVB-S, DVB-C, DVB-H or ATSC signals and transmit the demodulated binary transport stream to the computer system.

The input of a DVB receiver device is the antenna cable. The receiver device has either an F-connector (DVB-S, DVB-C) or a standard TV connector (DVB-T, DVB-C).

Most DVB-T receivers come with a small linear antenna. The usage of such an antenna should be avoided when possible since the reception is usually very poor. Always use the signal coming from a classical roof TV antenna when available (wall TV socket).

The physical output of a DVB receiver is a standard PC bus: PCI, USB, PCMCIA (PC Card) or Express Card. Some PCI devices are actually composed of one or more USB receivers and a USB-to-PCI bridge.

Most DVB receivers simply contain a tuner and a demodulator. They transmit the complete transport stream over the bus (PCI, USB, etc.) The demultiplexing and MPEG audio / video decoding is performed by some software, either in the kernel of the operating system or in a user-space application. Since TSDuck works on transport streams, the embedded hardware demux are never used. So, the simplest and cheapest receivers are usually fine for TSDuck.

Some DVB receivers contain two tuners in order to receive two independent transport streams. They usually appear as two distinct devices in the operating system.

Some recent DVB receivers support multiple protocols, for instance both DVB-T and DVB-C or both DVB-S and DVB-S2. This type of adapters is currently not properly supported by TSDuck.

5.1.2 Operating System Integration

5.1.2.1 Linux Platforms

The DVB receiver devices are managed by Linux under a common DVB framework.

Drivers:

The drivers for the DVB receiver devices come with the Linux kernel.

The drivers for recent devices may not be integrated yet into the mainstream Linux kernel, see [13] for details on how to install the latest Linux drivers for DVB devices.

Firmware:

Some devices need a firmware file in /lib/firmware which is loaded by the driver when the system boots or when the device is plugged-in (USB device for instance).

Some firmware files are packaged with the Linux kernel, but only when no copyright applies. Most firmware files are extracted from the proprietary Windows drivers of the device and are not free. Consequently, they are not included in the kernel distributions. Such proprietary firmware files must be fetched from various sites all over the Web.

Device naming:

The DVB devices are identified as /dev/dvb/adapterN, where N is a number between 0 and the number of DVB adapters in the system.

When several DVB devices are present in the system, the allocation of the adapter numbers depends on the kernel initialization sequence, the PCI slots, the way the USB devices are plugged and unplugged. It is possible to assign a specific adapter number to each device using the <code>adapter_nr</code> parameter in the relevant drivers (kernel modules) configuration.

For instance, let's take the example of a system with a Hauppauge WinTV Nova-T-500 (dual DVB-T tuner) and a Hauppauge WinTV Nova-HD-S2 (DVB-S/S2 tuner). The two tuners in the DVB-T PCI board are actually USB devices with an embedded USB hub and the numbering of the tuners is not deterministic. The adapter number for each tuner may vary after each boot. To always allocate adapter numbers 0 and 1 to the DVB-T dual tuner and adapter number 2 to the DVB-S tuner, add the following lines to a *modprobe* configuration file, for instance /etc/modprobe.d/local.conf:

```
options dvb-usb-dib0700 adapter_nr=0,1
options cx88-dvb adapter nr=2
```

Then, the following allocation is always used:

```
$ tslsdvb
/dev/dvb/adapter0 (DiBcom 3000MC/P, DVB-T)
/dev/dvb/adapter1 (DiBcom 3000MC/P, DVB-T)
/dev/dvb/adapter2 (Conexant CX24116/CX24118, DVB-S)
```

5.1.2.2 Microsoft Windows Platforms

DirectShow framework:

On Windows XP and higher, the DVB devices are managed by "DirectShow", a Microsoft framework for multimedia. The specific subsystem of DirectShow for DVB receiver devices is BDA (Broadcast Device Architecture). Most of the time, the hardware vendors provide BDA drivers for their receivers. Windows does not include any predefined BDA driver.

On Windows Vista, a new "Media Foundation" framework has been introduced by Microsoft. On the long term, Media Foundation is supposed to supersede DirectShow but its current features are reputed to be inferior. DirectShow is still present on Windows Vista and Windows 7 and is supposed to remain on subsequent versions of Windows.

On all Windows platforms, TSDuck uses basic DirectShow features to access the BDA drivers of the receiver devices.

DVB-S2 support:

Microsoft DirectShow implements DVB-S2 on Windows 7 and higher only. It is not possible to use DVB-S2 tuners on Windows XP or Vista.

DiSEqC support:

There is no standard support for DiSEqC with DVB-S/S2 tuners in the BDA architecture, which makes Windows useless when capturing behind a DiSEqC switch with multiple dishes.

Note that almost every driver provides a non-standard, non-documented and vendor-specific API to select a DiSEqC port but this usually works only with vendor-specific software, like TV viewing applications which are provided with the tuner device.

Since TSDuck only uses the standard BDA interfaces on Windows systems, it is not possible to select a DiSEqC port other than zero (option --satellite-number in *tsp* plugin dvb has usually no effect). If the tuner is connected to a DiSEqC switch, capturing on the first DiSEqC port (satellite number zero) usually works.

Retrieving actual modulation parameters:

On Windows, it is not possible to retrieve the actual tuning parameters of a transport stream as detected by the tuner device.

This can be annoying in a DVB-T environment where many transmission parameters may be inaccurate but the tuner device will detect the actual parameters. For instance, you may tune on a transport specifying a FEC 2/3 and a guard interval 1/32. If the actual signal uses a FEC 3/4 and a guard interval 1/8, the tuner device will automatically adjust the parameters. On Linux, the command "tslsdvb -v" displays the actual parameters, as reported by the tuner device. Moreover, the dvb plugin can compute the exact theoretical bitrate of the transport stream based on the actual transmission parameters. On Windows, it is not possible to query the tuner device for the actual parameters. It is not possible to

Version 3.3 161 / 165

display the actual transmission parameters. The dvb plugin must use the analysis of PCR's to evaluate the bitrate.

32 vs. 64 bits:

TSDuck for Windows is available in two versions, 32 and 64 bits. On Windows 64 bits, the two versions can be used. If you use DVB tuners, carefully check the provided drivers and DirectShow filters. Some DVB tuners provide 32-bit filters only. In that case, you must use the 32-bit version of TSDuck. The 64-bit version of TSDuck will not work with 32-bit DirectShow filters.

5.1.2.3 MacOS Platforms

There is no uniform or standard software framework to support DVB tuners on macOS. Some tuners are officially supported on macOS but they are shipped with proprietary drivers and proprietary TV-watching applications. The driver API's are not documented.

As a result, TSDuck provides no support for DVB tuners on macOS.

5.1.3 Device Naming

All TSDuck modules using DVB receivers (tslsdvb, tsscan, dvb plugin) use a "device name" to designate a DVB receiver device. The syntax of the device name depends on the operating system.

On Linux, a receiver device is named as /dev/dvb/adapterA[:F[:M[:V]]] where:

```
A = adapter number

F = frontend number (default: 0).

M = demux number (default: 0).

V = dvr number (default: 0).
```

Only the adapter number is important if there is more than one DVB receiver device in the system. There is usually no good reason to specify non-zero frontend, demux and dvr.

• On Windows, a receiver device name is the name of a DirectShow tuner filter. Since these names are usually complicated, with spaces and mixed cases ("Nova-T Stick DVB-T Tuner (Dev1 Path0)" for instance), the specified name is not case sensitive and spaces are ignored. As an alternative, the name ": N" can be used to designate the Nth receiver device in the system, the first index being zero.

Use the tslsdvb utility to list all available DVB receiver devices. By default, when no device name is specified, the "first" DVB receiver device is used, that is the say the device which appears first when the command "tslsdvb" is invoked.

In all cases (tslsdvb, tsscan, dvb plugin), the option --adapter (or -a) can be used to simply designate the N^{th} receiver device in the system, the first index being zero. When the system has several receivers devices, tslsdvb also displays the corresponding device index.

5.1.4 Tested Devices

On Linux, TSDuck should work indifferently with any supported Linux DVB device. On Windows, TSDuck should work with any DVB receiver coming with a BDA driver but the integration is less straightforward than on Linux and additional testing should be performed.

Currently, the following devices have been tested with TSDuck.

5.1.4.1 **DVBSky**

5.1.4.1.1 DVBSky S960 and S960C

Description: DVB-S and DVB-S2, USB box with external power supply. The S960C has a DVB-CI CAM slot (not CI+).

Linux: Not tested.

Windows: Tested, works OK, both DVB-S and DVB-S2.

5.1.4.2 Hauppauge

5.1.4.2.1 Hauppauge WinTV Nova-T-500

Description: dual DVB-T (two tuners), PCI board, actually two USB tuners and a USB-to-PCI bridge on one single PCI board.

Linux: Tested, works OK. Need the DiBcom firmware file (see [14]).

Windows: Not tested.

5.1.4.2.2 Hauppauge WinTV Nova-TD-500

Description: dual DVB-T (two tuners), PCI board, actually two USB tuners and two USB-to-PCI bridges on one single PCI board. The Nova-TD-500 is similar to the Nova-T-500 but has two aerial inputs instead of one.

Linux: Tested, works OK. Need the DiBcom firmware file (see [14]).

Do not plug antenna cables in both aerial inputs, this leads to garbage reception. Use only the top aerial input and this feeds the two tuners. The bottom aerial input is not used.

Also specify the following options in /etc/modprobe.d/options:

```
options dvb_usb_dib0700 force_lna_activation=1
options dvb usb disable rc polling=1
```

Windows: Not tested.

5.1.4.2.3 Hauppauge WinTV Nova-T-Stick

Description: DVB-T, USB stick. Two different revisions exist: 70001 and 70009 (read the sticker).

Linux: Revision 70001 tested, works OK. Revision 70009 not tested. Need the DiBcom firmware file (see [14]).

Windows: Revision 70001 tested, works OK with the Hauppauge driver CD version 2.5E but does not work with recent drivers versions 3.x and 4.x. Revision 70009 not tested (requires drivers CD version 4.x).

5.1.4.2.4 Hauppauge WinTV Nova-T-Stick SE

Description: DVB-T, USB stick.

Linux: Model 203, revision D1F4 70019 tested, works OK. Need the DiBcom firmware file (see [14]).

Windows: Model 203, revision D1F4 70019 tested, works OK.

5.1.4.2.5 Hauppauge WinTV Nova-S

Description: DVB-S, PCI board

Linux: Tested, worked OK with 2.4 kernels, not tested with recent kernels.

Windows: Not tested.

5.1.4.2.6 Hauppauge WinTV Nova-HD-S2

Description: DVB-S and DVB-S2, PCI board (a "lite" version of the Hauppauge HVR-4000)

Linux: Tested, works OK. Need the dvb-fe-cx24116.fw firmware file.

Known limitation: Some PCI DMA transfers are aborted without known reason, resulting in packet loss. The problem appears only on some hardware systems and may be related to PCI bus configuration. It is currently under inverstigation. The problem is characterized by the following error messages from dmesg:

```
cx88[0]: irq mpeg [0x80000] pci_abort*
cx88[0]/2-mpeg: general errors: 0x00080000
```

Version 3.3 163 / 165

Windows: Tested on Windows XP. Works OK in DVB-S mode. DVB-S2 has not been tested since it requires Windows 7.

5.1.4.3 Pinnacle

5.1.4.3.1 Pinnacle PCTV DVB-T Stick 72e

Description: DVB-T, USB stick.

Linux: Tested, works OK. Need the DiBcom firmware file (see [14]).

Windows: Tested, works OK.

5.1.4.3.2 Pinnacle PCTV DVB-S2 Stick 461e

Description: DVB-S, DVB-S2, USB stick.

Linux: Tested, supposed to work. But the experience demonstrates that it is mostly unreliable. Need a

firmware file from the OpenELEC dvb-firmware package (see [16]).

Windows: Tested, works OK.

5.1.4.4 TechniSat

5.1.4.4.1 TechniSat SkyStar USB HD

Description: DVB-S and DVB-S2, USB box with external power supply.

Linux: Not tested.

Windows: Tested, does not work. The TechniSat drivers for Windows have a proprietary and unusual interface. They cannot be integrated in a DirectShow reception graph and, consequently, cannot be used by TSDuck.

5.1.4.5 TechnoTrend

5.1.4.5.1 TechnoTrend TT-connect S2-3600

Description: DVB-S and DVB-S2, USB box with external power supply.

Linux: Not tested.

Windows: Tested, works OK, both DVB-S and DVB-S2. See [18] for drivers download.

5.1.4.5.2 TechnoTrend TT-connect S2-4600

Description: DVB-S and DVB-S2, USB box with external power supply.

Linux: Not tested.

Windows: Tested, works OK, both DVB-S and DVB-S2.

5.1.4.6 Terratec

5.1.4.6.1 Terratec Cinergy T USB XE Rev 2

Description: DVB-T, USB stick. Two different revisions exist: Rev 1 and Rev 2. They use different chipsets and need different drivers. Only the Rev 2 has been tested with TSDuck.

Linux: Tested, works OK. Need the Afatech firmware file (see [15]).

Windows: Tested, works OK.

5.2 Dektec Devices

5.2.1 Overview

The Dektec devices include a wide range of professional MPEG/DVB devices: ASI input or output, modulators (QPSK, QAM, OFDM, ATSC, DMB, ISDB, etc) and IP multicasting. The PCI devices are named DTA-1xx and the USB devices are named DTU-2xx. The ASI devices can perform either input, output or both. Modulators are output-only, obviously. See [9] for more details.

The tsp plugin named dektec can perform input or output on any Dektec device, provided that the appropriate drivers are installed on the system. Dektec provides drivers and API for their devices on Windows and Linux (see [10]). For each operating system, there are two Dektec drivers: one for all PCI devices and one for all USB devices.

5.2.2 Linux Platforms

The Dektec drivers are provided in source format. They must be compiled for each specific version of the Linux kernel.

For a better integration with the various distros, an independent project has been setup to create DKMS packages for Dektec drivers (see [11]). This project provides a script to build packages for Red Hat, CentOS, Fedora and Ubuntu distros, using the source code from the Dektec site. Pre-built packages are also available from the *releases* section in [11].

5.2.3 Microsoft Windows Platforms

The Dektec drivers are provided in binary format and can be directly installed. An installation guide is included in the zip file of each driver. See [10].

5.2.4 MacOS Platforms

Dektec provides no support for macOS. All Dektec features of TSDuck are disabled on macOS.

5.2.5 Tested Devices

The following Dektec devices have been successfully tested with TSDuck:

- DTA-140 : PCI ASI input and output.
- DTU-245 : USB ASI input and output.
- DTA-107 : PCI DVB-S modulator.
- DTA-107S2 : PCI DVB-S2 modulator.
- DTA-110T : PCI DVB-T modulator.
- DTA-115 : PCI multi-standard modulator (some modulation types are subject to optional licences) with an additional bidirectional ASI port.

Any other Dektec device should work with TSDuck.

Version 3.3 165 / 165