1. (a) $L = \{M : M \text{ has an useless state } q \}$

Language L is undecidable. Suppose L was decidable then we can use that as a subroutine to solve \overline{HP} as follows:

Author: Karthik Abinav - CS10B057

- Consider a new machine \hat{M} which has two states start and accept state. It writes its input y on a seperate tape.
- It then runs M on input x. If M halts on x it accepts its input y.

The machine \dot{M} can be described as :

$$\dot{M} = \left\{ \begin{array}{ll} \dot{M} \ has \ no \ useless \ state \\ \dot{M} \ has \ an \ useless \ accept \ state \end{array} \right. \quad \text{if} \ M \ \text{halts on} \ x \\ \quad \text{if} \ M \ \text{does not halt on} \ x \end{array}$$

Since our assumption is that L is decidable implies there exists a total turing machine K which accepts L. Giving \dot{M} as input to K, we can totally compute if M halts on x. But we know there is no such total turing machine. Hence, language L is not decidable.

- (b)
- (c) $L = \{(M1, M2): L(M1) = \overline{L(M2)}\}$

L is undecidable. If L was decidable we can use the total turing machine K accepting L as a sub routine to solve HP as follows:

Consider two machines M1 and M2 which does the following:

ullet Both machines simulate M on x. If M halts on x then machine M1 accepts its input y, while machine M2 rejects input y.

So the language of machine M1 can be described as:

$$L(M1) = \begin{cases} \Sigma^* & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

Similarly the language accreted by machine M2 can be described as:

$$L(M2) = \begin{cases} \varnothing & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

Giving machines (M1, M2) as input to machine K can help in totally computing if machine M halts on input x. Since, there is no such total turing machine, hence no such total turing machine K exists.

(d) $L = \{M : \exists x \in \Sigma^* \text{ s.t. } M \text{ runs forever on input } x\}$

This language is undecidable . If this language was decidable by a total turing machine K, then we can use it as a sub routine to solve \overline{HP} as follows:

Consider machine \hat{M} which does the following:

- \hat{M} writes its input y on a seperate track.
- It runs machine M on input x. If M halts on x, then it accepts its input y.

The machine \dot{M} can be described as follows:

$$\grave{M} = \left\{ \begin{array}{ll} \textit{For all inputs } \grave{M} \; \textit{doesnt run for ever} & \text{if M halts on x} \\ \textit{There exists an input for which } \grave{M} \; \textit{runs for ever} & \text{if M does not halt on x} \end{array} \right.$$

Giving M as input to machine K can help in totally computing if machine M halts on input x. Since, there is no such total machine, hence no such total turing machine K exists.

(e) $L = \{M \colon M \text{ accepts at$ $least one plaindromic string} \}$

L is undecidable. If L was decidable we can use the total turing machine K accepting L as a sub routine to solve HP as follows:

Consider machine \dot{M} which does the following:

- Machine \dot{M} simulates M on input x.
- If M halts on x, then \dot{M} accepts its input y

So the language of machine M can be described as :

$$L(M) = \begin{cases} \Sigma^* & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

Since, Σ^* contains at least one palindromic string, Giving machine M as input to machine K can help in totally computing if machine M halts on input x. Since, there is no such total turing machine, hence no such total turing machine K exists.

(f) $L = \{M: M \text{ accepts only plaindromic strings}\}$

L is undecidable. If L was decidable we can use the total turing machine K accepting L as a sub routine to solve HP as follows:

Consider machine \hat{M} which does the following:

- Machine \dot{M} simulates M on input x.
- If M halts on x, then \hat{M} checks if its input y is a plaindrome. If yes, it accepts y, else rejects y.

So the language of machine M can be described as :

$$L(M) = \begin{cases} P & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

Where P is the set of all palindromes.

Giving machine M as input to machine K can help in totally computing if machine M halts on input x. Since, there is no such total turing machine, hence no such total turing machine K exists.

(g) $L = \{ (M1, M2) : L(M1) \cap L(M2) \neq \emptyset \}$

L is undecidable. If L was decidable we can use the total turing machine K accepting L as a sub routine to solve HP as follows:

Consider two machines M1 and M2 which does the following:

• Both machines simulate M on x. If M halts on x then both machines M1 and M2 accepts their inputs y1,y2 respectively.

So the language of machine M1 can be described as:

$$L(M1) = \begin{cases} \Sigma^* & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

Similarly the language accepted by machine M2 can be described as:

$$L(M2) = \begin{cases} \Sigma^* & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{cases}$$

And the Language $L(M1) \cap L(M2)$ can be described as :

$$L(M1) \bigcap L(M2) = \left\{ \begin{array}{ll} \Sigma^* & \text{if } M \text{ halts on } x \\ \varnothing & \text{if } M \text{ does not halt on } x \end{array} \right.$$

Giving machines (M1, M2) as input to machine K can help in totally computing if machine M halts on input x. Since, there is no such total turing machine, hence no such total turing machine K exists.

2.

- 3. (a) $L = \{a^p : p \text{ is a prime number}\}$ This language is not regular but is decidable.
 - (b) For a given turing machine M, $L = \{1^n : M \text{ halts on input } 1^n\}$ Since, its a fixed machine M, the transitions of M can be hardwired in the transitions of the machine K simulating it. And hence the set of tape alphabets is singleton.
 - (c) $FIN = \{M : L(M) \text{ is finite}\},$ Generally, we represent the encoding of M using the bits 0's and 1's. However, this can be viewed as the nth lexicographic permutation of 0's and 1's. Hence, encoding M as a^n , where n represents the nth lexicographic permutation of 0's and 1's. Hence every machine can be encoded over a singleton alphabet.
- 4. (a) \leq_m is reflexive and transitive, but not symmetric. <u>Reflexive</u>: A \leq_m A via the identity function $\sigma(x) = x$ <u>Transitive</u>: If A \leq_m B via a map σ and B \leq_m C via the map τ , then A \leq_m C via the map $\tau \circ \sigma$

Symmetric: \leq_m is not symmetric because the function σ is not invertible.

 \leq_T is reflexive and transitive, but not symmetric.

<u>Reflexive</u>: A \leq_T A .Given a A as an oracle, the OTM just has to return the value

of its query to the oracle to accept/reject A.

<u>Transitive</u>: If $A \leq_T B$, then given B as an oracle, A is totally computable. Similarly $B \leq_T C$ implies given C as an oracle, B is totally computable. Now, an OTM with C as an oracle, can compute A totally as follows. Using C as the oracle, compute and store intermidiate value of B. Now this value can serve as an answer from an oracle and hence A can be calculated. Calculation of B doesnt cause looping ($B \leq_T C$). Hence, calculation of A doesnt cause looping. Hence $A \leq_T C$.

Symmetric: \leq_T is not symmetric. Example: $FIN \leq_T REG$, but $REG \nleq_T FIN$.

(b) L is decidable $=> L \leq_m 1^*0^*$

To show this we have to find a $\sigma: \Sigma^* \to \Sigma^*$:

- σ is totally computable
- $\forall x, x \in L \leq \sigma(x) \in 1^*0^*$

Since, L is decidable , there exists a total turing machine K such that, L(K) = L . Let σ be defined as follows :

$$\sigma(x) = \begin{cases} 10 & \text{if } K \text{ accepts } x \\ 01 & \text{if } K \text{ rejects } x \end{cases}$$

 σ is totally computable since K is total. $x \in L \iff K \ accepts \ x \iff (\sigma(x) = 10 \in 1^*0^*)$

Therefore, L $\leq_m 1^*0^*$

L is decidable \leq L $\leq_m 1^*0^*$

RHS implies there exists a totally computable σ such that $\forall x, x \in L <=> \sigma(x) \in 1^*0^*$.

For any input x, calculating $\sigma(x) \in 1^*0^*$, can be done by a total turing machine. (Keep 4 states. when on state 1 implies seeing 1's. First time a 0 is seen, move to state 2. Or if end of input is seen, move to state 3 and accept. In state 2, if end of input is reached go to state 3 and accept. If a 1 is seen, move to state 4 and reject). Hence, $x \in L$ can be totally computed. Therefore, L is decidable.

5.