MDL Assignments

Roll: 2021101006

2 Griven grid world	144-0	Reward: 1	Penalty:-1
G181d =	W. (1)	3 941 1-	40.0-
[[0,01,-1], =	4 5 0	wall	
[6; wall', 0],	Start	1	

Iteration-0: Initial utility values of all states are is zero except reward and penalty.

Assumption: utility value of "wall" is zero

	+ 22				
0,	0	1-9 HO	-1		
1	0	10	0		
2	Po	0.	0		
3	0	0	0		
7	0	1	2 0		

> values in cells

represents utility of

corresponding cell

where, I is current cell, I is next state,

A is action performed Given, discount factor = $\gamma = 0.95$

*Given, propobability of going in

the direction of an action = 0.7

direction perpendicular to action = 0.15

Here 0.7 + 0.15 + 0.15 = 1

```
Iteration-1 - Over A+ IX
  From O,
   = max (-0.04 + 0.95[0.7x0+0.15x1+0.15x0]
  V1(0,0)
            -0.04+0.95[0.7x1+0.15x0+0.15x0]
            -0.04+0.95[0.7x0+0.15x0+0.15x1]
            -0-04+0.95[0.7x0+0.15x0+0.15x0]
           (.0.1025
    = max 2 0.625
                     =0.625 => U1(0,0) =0.625
               From question
    U1 (0,2) = -1
     b From a,
               -0.04+0.95[0.7×0+0.15×0+0.15×0]
     V1 (1,0)
               -0.04+0.95.[0.7X0+0.15X0+0.15X0]
       = max
         -0.04+0.95[0.7x0f0.15x0+0.15x0]
           -0.04+6.95[0.7x0+0.15x0+0.15x0]
               -0.04
        = max
                     =-0.04 = 01(1,0) = 0.04
                -0.04
                -0.04 COMMENCES +0.0-
685
```

$$V_{1}(1_{1}) = \max \begin{cases} -0.04 + 0.95[0.7 \times 1 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.95[0.7 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.04 + 0.04 + 0.05 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0.04 + 0.04 + 0.04 + 0.05 \times 0 + 0.15 \times 0 + 0.15 \times 0] \\ -0.04 + 0$$

$$||(2,2)| = ||mox|| -0.04 + 0.95[0.7x0 + 0.15x0 + 0.15x0] |
= ||max|| -0.04 + 0.95[0.7x0 + 0.15x0 + 0.15x0] |
-0.04 + 0.95[0.7x0 +$$

each cell after first iteration is:

d.	1-0-1-0XE	1104000	1 3	70+ 400
	0.625	1	-1	40.04
1	-0.04	0.625	-0.04	40.0-
10	-0.04	0	-0-04	一旦
Y	-0.04	-0.04	-0.04	7 40.0-
1	o+ oxt	+ XD+ 0	0124	0++00

Iteration-2:

From @ 5

U2(0,0)

 $= \max \begin{cases} -0.04 + 0.95 [0.7 \times 0.625 + 0.15 \times 1 + 0.15 \times 0.625] \\ -0.04 + 0.95 [0.7 \times 1 + 0.15 \times (-0.04) + 0.15 \times 0.625] \\ -0.04 + 0.95 [0.7 \times (-0.04) + 0.15 \times 0.625 + 0.15 \times 1] \\ -0.04 + 0.95 [0.7 \times 0.625 + 0.15 \times 0.625 + 0.15 \times 1] \end{cases}$

 $= \max \begin{cases} 0.6071875 \\ 0.7683625 \\ 0.2181625 = 0.7083625 \\ 0.4589875 \end{cases}$

xalo (0,0) = 0.7083625

From question,

U2(0,1)=1

V2(0,2) = -1

```
From (a)
                  -0.04+0.95[0.7×(-0.04)+0.15×(-0.04)+0.15×0.625]
-0.04+0.95[0.7×(-0.04)+0.15×0.625+0.15×(-0.04)]
    = \begin{cases} 0.4589875 \\ 0.4589875 \\ 0.0167625 \\ 0.4589875 \\ 0.0167625 \\ 0.4589875 \\ 0.0167625 \\ 0.4589875 \\ 0.0167625 \\ 0.4589875 \\ 0.0167625 \\ 0.4589875 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 0.0167625 \\ 
      = \gamma n \alpha \times \begin{cases} -0.04 + 0.95[0.7 \times 1 + 0.15 \times (-0.04) + 0.15 \times (-0.04)] \\ -0.04 + 0.95[0.7 (-0.04) + 0.15 \times 0.625 + 0.15 \times 1] \\ -0.04 + 0.95[0.7 \times 0.625 + 0.15 (-0.04) + 0.15 (-0.04)] \end{cases}
      V2(1,1) =
                            (-0.04+0.95[0.7(-0.04)+0.15x1+0.15x0.625])
       = \begin{cases} 0.6136 \\ 0.1649625 \\ 0.364225 \\ 0.1649625 \end{cases} = 0.6136 \Rightarrow 0_2 (1,1) = 0.6136
            V2(1,2)
         = max \[ -0.04 + 0.95 [0.7x(-1)+0.15(-0.04) + 0.15x0.625] \]
= max \[ -0.04 + 0.95 [0.7x(-1)+0.15(-0.04) + 0.15(-1)] \]
                                                 [-0.04+0.95[0.7×(-0.04)+0.15×0.625+0.15(-0.04)]
-0.04+0.95[0.7×0.625+0.15(-1)+0.15(-0.04)]
             = \max \begin{cases} -0.6216375 \\ -0.2148 \\ 0.0167625 \\ 0.227425 \end{cases} = 0.227425
                                                                     =) V2 (1,2) = 0.227425
```

```
U2(2,6)
       -0.04+0.95[0.7(-0.04)+0.15(-0.04)+0.15(-0.04)]
-0.04+0.95[0.7(-0.04)+0.15(-0.04)+0.15(-0.04)
             to.95[0.7(-0.04) +0.15(-0.04)+0.15(-0.04)]
                 =-0.078 =702(2,0) = -0.078
        question and assumption, U2(2,1)=0
From (a)
    (-0.04+0.95[0.7(-0.04)+0.15(-0.04)+0.15(-0.04)
= max of -0.04) +0.95[0.7(-0.04) +0.15(-0.04) +0.15(-0.04)
               -+0.95[0.7(-0.04)+0.15(-0.04)+0.15(-0.04)
          -0-04 +0.95[0.7(-0.04) to 15(-0.04) to 15(-0.04)]
                   =-0.078 = 02(2,2)=-0.078
 V2 (3,0)
           -0.04 + 0.95[0.7(-0.04) +0.15(-0.04) +0.15(-0.04)]
             1-04 +0.95 [0.7 (-0.04) +0.15 (-0.04) +0.15 (-0.04)]
           0.04 +0.95[6.7 (-0.04) +0.15 (-0.04) +0.15 (-0.04)]
                     .-0.078 =>U2(3,0) =-0.078
                     2642660= (E1) =0
```

$$U_{2}(3,1)$$

$$= max \begin{cases} -0.04 + 0.95 [0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \\ -0.04 + 0.95 [0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \\ -0.04 + 0.95 [0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \\ -0.04 + 0.95 [0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \end{cases}$$

$$= max \begin{cases} -0.078 \end{cases}$$

$$= \max \begin{cases} -0.078 \\ -0.078 \\ -0.078 \end{cases} = -0.078 = 7 U_2(3,1) = 0.0078$$

 $= max \begin{cases} -0.04 + 0.95[0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04) \\ -0.04 + 0.95[0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \\ -0.04 + 0.95[0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \\ -0.04 + 0.95[0.7(-0.04) + 0.15(-0.04) + 0.15(-0.04)] \end{cases}$

$$= \max \begin{cases} -0.078 \\ -0.078 \\ -0.078 \end{cases} = -0.078 \Rightarrow 0_2(3,2) = -0.078$$

eachcell after second iteration is:

	A-		7
0.7083625	a 1	-1	
0.4589875	0.6136	6.227425	6
-0.078	0	-0.078	- I
-0.078	-0.078	-0.678	
(分,)		4	

Grids obtained after first and second iterations motches with the corresponding output from my cale.