13-Randomized Block Designs

ENSY SILVER¹

Saturday 12th September, 2020

¹Thanks to my family, my friend and freedom.

1 The F test for a randomized block design

For randomized block data Y_{ij} , where i represents the ith block and j respresents the jth treatment, the model equation is

$$Y_{ij} = \mu_j + \beta_i + \epsilon_{ij}$$

On the basis of SSTR and SSE, we define the block sum of squares (SSB) by

$$SSB = \sum_{i=1}^{b} \sum_{j=1}^{k} (\bar{Y}_{i.} - \bar{Y}_{..})^{2}$$

Since the variables belong to the same block are dependent, the formula of SSE is defined by

$$SSE = \sum_{i=1}^{b} \sum_{j=1}^{k} (Y_{ij} - \bar{Y}_{.j} - \bar{Y}_{i.} + \bar{Y}_{..})^{2}$$

The next theorem describes the relation among SSTOT, SSTR, SSE, and SSB.

Theorem 1.1. Suppose that k treatment levels are measured over a set of b blocks. Then

- 1. SSTOT = SSTR + SSB + SSE.
- 2. SSTR, SSB, and SSE are independent random variables.

Theorem 1.2. Suppose that k treatment levels, with means μ_1, \dots, μ_k , are measured over a set of b blocks, where the block effects are $\beta_1, \beta_2, \dots, \beta_b$. Then

- 1. When $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ is trus, $SSTR/\sigma^2$ has a χ^2 distribution with k-1 degrees of freedom.
- 2. When $H_0: \beta_1 = \beta_2 = \cdots = \beta_k$ is trus, SSB/σ^2 has a χ^2 distribution with b-1 degrees of freedom.
- 3. Regardless of whether the μ_j 's or the β_i 's are equal, SSE/σ^2 has a χ^2 distribution with (b-1)(k-1) degrees of freedom.

Of course, we can also test the hypothesis $\mu_1 = \cdots = \mu_k$ and $\beta_1 = \cdots = \beta_b$ by F test.

2 Tukey comparisons for randomized block data

Theorem 2.1. Let $\bar{Y}_{.j}$, $j=1,2,\cdots,k$, be the sample means in a $b \times k$ randomized block design. Let μ_j be the true treatment means, $j=1,2,\cdots,k$. The probability is $1-\alpha$ that all $\binom{k}{2}$ pairwise subhypothesis $H_0: \mu_s = \mu_t$ will simultaneously satisfy the inequalities

$$\bar{Y}_{.s} - \bar{Y}_{.t} - D\sqrt{MSE} < \mu_s - \mu_t < \bar{Y}_{.s} - \bar{Y}_{.t} + D\sqrt{MSE}$$

13-RandomizedKBNocKODHSignIsONS FOR RANDOMIZED BLOCK DATA

where $D = Q_{\alpha,k,(b-1)(k-1)}/\sqrt{b}$. If, for a given s and t, zero is not contained in the preceding inequality, $H_0: \mu_s = \mu_t$ can be rejected in favor of $H_1: \mu_s \neq \mu_t$ at the α level of significance.

In the case that k=2, we can use the method similar to two-sample inferences

Finally, the paired t test and the randomized block test are equal when k=2.