

**Building Blocks for PRU Development: Module 1** 



# **Agenda**

- SoC Architecture
- PRU Submodules
- Example Applications

### **SoC Architecture**

**Building Blocks for PRU Development: PRU Hardware Overview** 

### **ARM SoC Architecture**



- L1 D/I caches: Single-cycle access
- L2 cache: Minimum latency of 8 cycles
- Access to on-chip SRAM: 20 cycles
- Access to shared memory over L3 Interconnect: 40 cycles



### **ARM + PRU SoC Architecture**



## Programmable Real-Time Unit (PRU) Subsystem

- Programmable Real-Time Unit (PRU) is a low-latency microcontroller subsystem.
- Two independent PRU execution units:
  - 32-Bit RISC architecture
  - 200MHz; 5ns per instruction
  - Single cycle execution; No pipeline
  - Dedicated instruction and data
     RAM per core
  - Shared RAM
- Includes Interrupt Controller for system event handling
- Fast I/O interface: Up to 30 inputs and
   32 outputs on external pins per PRU unit





## **PRU Submodules**

**Building Blocks for PRU Development: PRU Hardware Overview** 



### **PRU Functional Block Diagram**



#### **Constant Table**

Saves PRU cycles by providing frequently used peripheral base addresses

#### **Execution Unit**

- Logical, arithmetic, and flow control instructions
- Scalar, no Pipeline, Little Endian
- Single-cycle execution

#### **Instruction RAM**

- Typical size is a multiple of 4KB (or 1K instructions)
- Can be updated with PRU reset

Special Registers (R30 and R31)

• R30

Write: 32 GPO

• R31

Read: 30 GPI + 2 Host Int status

Write: Generate INTC Event



# **Fast I/O Interface**



## **Fast I/O Interface**

- Reduced latency through direct access to pins:
  - Read or toggle I/O within a single PRU cycle.
  - Detect and react to I/O event within two PRU cycles.
- Independent General Purpose Inputs (GPIs) and General Purpose Outputs (GPOs):
  - PRU R31 directly reads from up to 30 PRU GPI pins.
  - PRU R30 directly writes up to 32 PRU GPO pins.
- Configurable I/O modes per PRU core:
  - GP input modes:
    - Direct connect
    - 16-bit parallel capture
    - 28-bit shift
  - GP output modes:
    - Direct connect
    - Shift out





### **GPIO Toggle: Bench Measurements**

#### **ARM GPIO Toggle:**

```
int main(){
   // Configure GPIO module, pinmuxing, etc.
    // Toggle system-level GPIO 3.19 from ARM core
    BitToggle(GPIO_INSTANCE_ADDRESS+GPIO_SETDATAOUT,
             GPIO INSTANCE ADDRESS+GPIO CLEARDATAOUT);
   while();
}
unsigned long BitToggle(unsigned long val1, unsigned long val2){
       " mov r2, #0x00080000" "\n\t"
             r2,[r0]" "\n\t"
                                 // Set GPIO 3.19
               r2,[r1]" "\n\t"
                                 // Clear GPIO 3.19
       "str
    );
    return val1:
             ~200ns
```

#### PRU IO Toggle:

```
.origin 0
.entrypoint PRU_GPIO_TOGGLE

PRU_GPIO_TOGGLE:

   // Set PRU GPO 5
   SET R30, R30, 5

   // Clear PRU GPO 5
   CLR R30, R30, 5

HALT
```





## **Integrated Peripherals**

- Provide reduced PRU read/write access latency compared to external peripherals
- Local peripherals do not need to go through external L3 or L4 interconnects
- Can be used by PRU or by the ARM as additional hardware peripherals on the device
- Integrated peripherals:
  - PRU UART
  - PRU eCAP
  - PRU IEP (Timer & DigIO)





### **PRU Memory Map**

• PRU local memory map

Table 5. Local Data Memory Map

| Start Address | PRU0                          | PRU1                          |  |  |
|---------------|-------------------------------|-------------------------------|--|--|
| 0x0000_0000   | Data 8KB RAM 0 <sup>(1)</sup> | Data 8KB RAM 1 <sup>(1)</sup> |  |  |
| 0x0000_2000   | Data 8KB RAM 1 <sup>(1)</sup> | Data 8KB RAM 0(1)             |  |  |
| 0x0001_0000   | Data 12KB RAM2 (Shared)       | Data 12KB RAM2 (Shared)       |  |  |
| 0x0002_0000   | INTC                          | INTC                          |  |  |
| 0x0002_2000   | PRU0 Control Registers        | PRU0 Control Registers        |  |  |
| 0x0002_2400   | Reserved                      | Reserved                      |  |  |
| 0x0002_4000   | PRU1 Control                  | PRU1 Control                  |  |  |
| 0x0002_4400   | Reserved                      | Reserved                      |  |  |
| 0x0002_6000   | CFG                           | CFG                           |  |  |
| 0x0002_8000   | UART 0                        | UART 0                        |  |  |
| 0x0002_A000   | Reserved                      | Reserved                      |  |  |
| 0x0002_C000   | Reserved                      | Reserved                      |  |  |
| 0x0002_E000   | IEP                           | IEP                           |  |  |
| 0x0003_0000   | eCAP 0                        | eCAP 0                        |  |  |
| 0x0003_2000   | MII_RT_CFG                    | MII_RT_CFG                    |  |  |
| 0x0003_2400   | MII_MDIO                      | MII_MDIO                      |  |  |
| 0x0003_4000   | Reserved                      | Reserved                      |  |  |
| 0x0008_0000   | System OCP_HP0                | System OCP_HP1                |  |  |
|               |                               |                               |  |  |

PRU global memory map

Table 6. Global Memory Map

| Offset Address | PRU-ICSS                 |
|----------------|--------------------------|
| 0x0000_0000    | Data 8KB RAM 0           |
| 0x0000 2000    | Data 8KB RAM 1           |
| 0x0001_0000    | Data 12KB RAM 2 (Shared) |
| 0x0002_0000    | INTC                     |
| 0x0002_2000    | PRU0 Control             |
| 0x0002_2400    | PRU0 Debug               |
| 0x0002_4000    | PRU1 Control             |
| 0x0002_4400    | PRU1 Debug               |
| 0x0002_6000    | CFG                      |
| 0x0002_8000    | UART 0                   |
| 0x0002_A000    | Reserved                 |
| 0x0002_E000    | IEP                      |
| 0x0003_0000    | eCAP 0                   |
| 0x0003_2000    | MII_RT_CFG               |
| 0x0003_2400    | MII_MDIO                 |
| 0x0003_4000    | PRU0 8KB IRAM            |
| 0x0003_8000    | PRU1 8KB IRAM            |
| 0x0004_0000    | Reserved                 |

SoC memory map

Table 2-4. L4 Fast Peripheral Memory Map (continued)

| Device Name | Start_address (hex) | End_address (hex) | Size  | Description                                   |
|-------------|---------------------|-------------------|-------|-----------------------------------------------|
| PRU_ICSS    | 0x4A30_0000         | 0x4A37_FFFF       | 512KB | PRU-ICSS<br>Instruction/Data/Control<br>Space |
|             | 0x4A38_0000         | 0x4A38_0FFF       | 4KB   | Reserved                                      |



### **PRU Read Latencies: Local vs Global Memory Map**

The PRU directly accessing internal MMRs (Local MMR Access) is faster than going through the L3 interconnects (Global MMR Access).

|                 | Local MMR Access    | Global MMR Access   |  |
|-----------------|---------------------|---------------------|--|
|                 | PRU cycles @ 200MHz | PRU cycles @ 200MHz |  |
| PRU R31 (GPI)   | 1                   | N/A                 |  |
| PRU CTRL        | 4                   | 36                  |  |
| PRU CFG         | 3                   | 35                  |  |
| PRU INTC        | 3                   | 35                  |  |
| PRU DRAM        | 3                   | 35                  |  |
| PRU Shared DRAM | 3                   | 35                  |  |
| PRU ECAP        | 4                   | 36                  |  |
| PRU UART        | 14                  | 46                  |  |
| PRU IEP         | 12                  | 44                  |  |

**Note:** Latency values listed are "best-case" values.



### **PRU Memory Access FAQ**

**Q:** Why does my PRU firmware hang when reading or writing to an address external to the PRU Subsystem?

**A:** The **OCP master port** is in standby and **needs to be enabled** in the PRU-ICSS CFG register space, SYSCFG[STANDBY\_INIT].

Table 5. Local Data Memory Map

| Start Address | PRU0                          | PRU1                          |  |
|---------------|-------------------------------|-------------------------------|--|
| 0x0000_0000   | Data 8KB RAM 0 <sup>(1)</sup> | Data 8KB RAM 1 <sup>(1)</sup> |  |
| 0x0000_2000   | Data 8KB RAM 1 <sup>(1)</sup> | Data 8KB RAM 0(1)             |  |
| 0x0001_0000   | Data 12KB RAM2 (Shared)       | Data 12KB RAM2 (Shared)       |  |
| 0x0002_0000   | INTC                          | INTC                          |  |
| 0x0002_2000   | PRU0 Control Registers        | PRU0 Control Registers        |  |
| 0x0002_2400   | Reserved                      | Reserved                      |  |
| 0x0002_4000   | PRU1 Control                  | PRU1 Control                  |  |
| 0x0002_4400   | Reserved                      | Reserved                      |  |
| 0x0002_6000   | CFG                           | CFG                           |  |
| 0x0002_8000   | UART 0                        | UART 0                        |  |
| 0x0002_A000   | Reserved                      | Reserved                      |  |
| 0x0002_C000   | Reserved                      | Reserved                      |  |
| 0x0002_E000   | IEP                           | IEP                           |  |
| 0x0003_0000   | eCAP 0                        | eCAP 0                        |  |
| 0x0003_2000   | MII_RT_CFG                    | MII_RT_CFG                    |  |
| 0x0003_2400   | MII_MDIO                      | MII_MDIO                      |  |
| 0x0003_4000   | Reserved                      | Reserved                      |  |
| 0x0008_0000   | System OCP_HP0                | System OCP_HP1                |  |



## PRU "Interrupts"

- The PRU does not support asynchronous interrupts.
  - However, specialized h/w and instructions facilitate efficient polling of system events.
  - The PRU-ICSS can also generate interrupts for the ARM, other PRU-ICSS, and sync events for EDMA.
- From UofT CSC469 lecture notes, "Polling is like picking up your phone every few seconds to see if you have a call. Interrupts are like waiting for the phone to ring.
  - Interrupts win if processor has other work to do and event response time is not critical
  - Polling can be better if processor has to respond to an event ASAP"
- Asynchronous interrupts can introduce jitter in execution time and generally reduce determinism. The PRU is optimized for highly deterministic operation.



## **PRU Subsystem Feature Comparison**

| Features                                | AM18x/<br>OMAPL138 | AM335x                                              | AM437x                                                                                                |                                                                                                       | AM571x                                                                                                | AM572x<br>(SR1.1 / SR2.0*)                                |
|-----------------------------------------|--------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                         | PRUSS              | PRU-ICSS1                                           | PRU-ICSS1                                                                                             | PRU-ICSS0                                                                                             | 2 x PRU-ICSS                                                                                          | 2 x PRU-ICSS                                              |
| Number of PRU cores                     | 2                  | 2                                                   | 2                                                                                                     | 2                                                                                                     | 2                                                                                                     | 2                                                         |
| Max frequency                           | CPU freq / 2       | 200 MHz                                             | 200 MHz                                                                                               | 200 MHz                                                                                               | 200 MHz                                                                                               | 200 MHz                                                   |
| IRAM size (per PRU core)                | 4 KB               | 8 KB                                                | 12 KB                                                                                                 | 4 KB                                                                                                  | 12 KB                                                                                                 | 12 KB                                                     |
| DRAM size (per PRU core)                | 512 B              | 8 KB                                                | 8 KB                                                                                                  | 4 KB                                                                                                  | 8 KB                                                                                                  | 8 KB                                                      |
| Shared DRAM size                        |                    | 12 KB                                               | 32 KB                                                                                                 |                                                                                                       | 32KB                                                                                                  | 32KB                                                      |
| General purpose input<br>(per PRU core) | Direct             | Direct; or 16-bit parallel capture; or 28-bit shift | Direct; or 16-bit<br>parallel capture; or<br>28-bit shift; or 3ch<br>EnDat 2.2; or 9ch<br>Sigma Delta | Direct; or 16-bit<br>parallel capture; or<br>28-bit shift; or 3ch<br>EnDat 2.2; or 9ch<br>Sigma Delta | Direct; or 16-bit<br>parallel capture; or<br>28-bit shift; or 3ch<br>EnDat 2.2; or 9ch<br>Sigma Delta | Direct; or 16-bit<br>parallel capture; or<br>28-bit shift |
| General purpose output (per PRU core)   | Direct             | Direct; or Shift out                                | Direct; or Shift out                                                                                  | Direct; or Shift out                                                                                  | Direct; or Shift out                                                                                  | Direct; or Shift out                                      |
| GPI Pins (PRU0, PRU1)                   | 30, 30             | 17, 17                                              | 13, 0                                                                                                 | 20, 20                                                                                                | 0 / 21*, 21                                                                                           | 21, 21                                                    |
| GPO Pins (PRU0, PRU1)                   | 32, 32             | 16, 16                                              | 12, 0                                                                                                 | 20, 20                                                                                                | 0 / 21*, 21                                                                                           | 21, 21                                                    |
| MPY/MAC                                 | N                  | Υ                                                   | Υ                                                                                                     | Υ                                                                                                     | Υ                                                                                                     | Υ                                                         |
| Scratchpad                              | N                  | Y (3 banks)                                         | Y (3 banks)                                                                                           | N                                                                                                     | Y (3 banks)                                                                                           | Y (3 banks)                                               |
| CRC16/32                                | 0                  | 0                                                   | 2                                                                                                     | 2                                                                                                     | 2                                                                                                     | 0**/2                                                     |
| INTC                                    | 1                  | 1                                                   | 1                                                                                                     | 1                                                                                                     | 1                                                                                                     | 1                                                         |
| Peripherals                             | n/a                | Υ                                                   | Υ                                                                                                     | Υ                                                                                                     | Υ                                                                                                     | Υ                                                         |
| UART                                    | 0                  | 1                                                   | 1                                                                                                     | 1                                                                                                     | 1                                                                                                     | 1                                                         |
| eCAP                                    | 0                  | 1                                                   | 1                                                                                                     | no connect                                                                                            | 1                                                                                                     | 1                                                         |
| IEP                                     | 0                  | 1                                                   | 1                                                                                                     | no connect                                                                                            | 1                                                                                                     | 1                                                         |
| MII_RT                                  | 0                  | 2                                                   | 2                                                                                                     | no connect                                                                                            | 2                                                                                                     | 2                                                         |
| MDIO                                    | 0                  | 1                                                   | 1                                                                                                     | no connect                                                                                            | 1                                                                                                     | 1                                                         |
| Simultaneous protocols                  | 1                  | 1                                                   | 2*                                                                                                    | **                                                                                                    | 2                                                                                                     | 2                                                         |

 $<sup>^{*}</sup>$  AM571x PRU-ICSS1 does not pin out the PRU0 core GPIs/GPOs.

<sup>\*\*</sup> AM572x SR1.1 does not include CRC16/32.

<sup>\*\*\* 2&</sup>lt;sup>nd</sup> protocol limited to EnDAT/Profibus/BISS/HIperphase DSL or serial-based protocols.

# **Example PRU Applications**

**Building Blocks for PRU Development: PRU Hardware Overview** 



## **Use Case Examples**

Bit banging
 Custom/Complex PWM

Stepper motor control

• ASRC
• 10/100 Switch
• Smart Card
• DSP-like functions
• Filtering
• FSK Modulation
• LCD I/F
• Camera I/F
• RS-485
• UART
• SPI
• Monitor Sensors

Not all use cases are feasible on PRU:

Industrial

**Protocols** 

- Development complexity
- Technical constraints

   (i.e., running Linux on PRU)



**Development Complexity** 



### For More Information

- Visit the PRU-ICSS Wiki: <a href="http://processors.wiki.ti.com/index.php/PRU-ICSS">http://processors.wiki.ti.com/index.php/PRU-ICSS</a>
- Download the PRU tools:
  - PRU Software Package
  - PRU CGT (Code Gen Tools)
  - Linux drivers for interfacing with PRU

http://www.ti.com/tool/pru-swpkg

available through CCSv6 app center

available in Processor SDK

- Order the PRU Cape: <a href="http://www.ti.com/tool/PRUCAPE">http://www.ti.com/tool/PRUCAPE</a>
- For questions regarding topics covered in this training, visit the support forums at the <a href="http://e2e.ti.com">TI E2E Community</a> website: <a href="http://e2e.ti.com">http://e2e.ti.com</a>