Nome .	
Cognome .	
8	
Matricola _	

Architettura degli Elaboratori Corso di Laurea in Informatica Prova Intermedia / Prima Parte Prova Finale - 25 Novembre 2013

	<u>TTENZIONE</u> : scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di latrici e cellulari sono motivo di esclusione dalla prova.							
1.	(4 punti) Codificare i numeri interi (a) -18 (b) 39 nelle notazioni in modulo e segno e complemento a 2 a 8 bit							
	modulo e segno a 8 bit (a) (b) (b)							
	complemento a 2 a 8 bit (a) (b)							
2.	2. (3 punti) Si converta il seguente numero reale da rappresentazione decimale a rappresentazione IEEE-754 singola precisione. Si forniscano i valori di mantissa, segno e caratteristica e si specifichi, per ciascun campo, il corrispondente numero di bit.							
	$\rightarrow 113.125$							
	 segno (bit): caratteristica (bit): mantissa (bit): 							
3.	(1.5 punti) Convertire da base 8 a base 16 il seguente numero							
	608							
4.	(1.5 punti) Convertire da base 4 a base 16 il seguente numero 3112_4							
5.	(6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:							
	$x_1 \mid x_2 \mid x_3 \mid x_4 \mid f(x_1, x_2, x_3, x_4)$							

x_1	x_2	x_3	x_4	$J(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	0
0	1	0	1	0
0	1	1	0	-
0	-1	1	-1	

U	U	U	U	-
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	0
0	1	0	1	0
0	1	1	0	-
0	1	1	1	-
1	0	0	0	-
1	0	0	1	1
1	0	1	0	1
1	0	1	1	-
1	1	0	0	0
1	1	0	1	0
1	1	1	0	-
1	1	1	1	1

SOP

6.	(7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x)
	e singola uscita (z) tale che $z_j = 1$ se e solo se x_{j-3} x_{j-2} x_{j-1} x_j corrisponde alla codifica in modulo
	e segno a 4 bit dei numeri 2 oppure -2

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

s_1 :	r_1 :
<i>s</i> ₂ :	r_2 :
~ •	

Disegno della rete :