Data Analysis: Machine Learning and Regression

Mark Hendricks

August Review
UChicago Financial Mathematics

Outline

Model selection

Regularized regression

Principal Components

Boosting and Bagging

In-sample

There is a tendency to over-parameterize models to make them fit the sample data too well.

- ► Are we fitting the sample-specific noise?
- Parameterizing in-sample noise leads to bad out-of-sample (OOS) performance.

R-squared will show fit always improves w/ more parameters.

- ► Adj R-squared popular, but not model specific.
- ▶ t-stat dependent on other regressors included.

Bias-variance tradeoff

Most of our machine-learning techniques are dealing with this tradeoff.

$$\underbrace{\operatorname{var}\left[(\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{b})^{2}\right]}_{\text{data variance}} = \sigma_{\epsilon}^{2} + \underbrace{\left(\boldsymbol{X}\left(\mathbb{E}\left[\boldsymbol{b}\right]-\boldsymbol{\beta}\right)\right)^{2}}_{\text{bias squared}} + \underbrace{\mathbb{E}\left[\left(\boldsymbol{X}\left(\boldsymbol{b}-\mathbb{E}\left[\boldsymbol{b}\right]\right)\right)^{2}\right]}_{\text{estimator variance}}$$

Where all moments are conditional on **X**.

Bias-Variance Tradeoff

Squared Error

Model Complexity

Out-of-sample (OOS) fit judges the model by sample points excluded from estimation.

- ► Suppose you have *N* points in your sample.
- ▶ You estimate **b** from the first *n* points.

Define,

$$\mathcal{L}^{IS}(\boldsymbol{b}) = \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i' \boldsymbol{b})^2$$

$$\mathcal{L}^{OOS}(\boldsymbol{b}) = \sum_{i=n+1}^{N} (y_i - \boldsymbol{x}_i' \boldsymbol{b})^2$$

OOS R-squared

The OOS-R-squared, \mathcal{R}_{oos}^2 is the R-squared calculation based on the IS estimation of the model, applied to OOS data.

$$\mathcal{R}_{oos}^2 = 1 - rac{\mathcal{L}^{OOS}\left(oldsymbol{b}
ight)}{\mathcal{L}^{OOS}\left(oldsymbol{b}=0
ight)}$$

where $\mathcal{L}^{\textit{OOS}}\left(\boldsymbol{\textit{b}}=0\right)$ is simply the null model. For instance, our usual \mathbb{R}^2 can be written as¹.

$$\mathcal{R}_{is}^{2} = 1 - rac{\mathcal{L}^{IS}(m{b})}{\mathcal{L}^{IS}(m{b} = 0)} = 1 - rac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

¹This assumes the regression model has an intercept.

Model selection

$$\mathcal{R}_{is}^{2} = 1 - rac{\mathcal{L}^{IS}(\mathbf{b})}{\mathcal{L}^{IS}(\mathbf{b} = 0)} = 1 - rac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$\mathcal{R}_{oos}^2 = 1 - rac{\mathcal{L}^{OOS}\left(oldsymbol{b}
ight)}{\mathcal{L}^{OOS}\left(oldsymbol{b}=0
ight)}$$

Selecting ${m b}$ to maximize ${\cal R}^2_{\it is}$ does not mean it will maximize ${\cal R}^2_{\it oos}$.

Boosting and Bagging

Interpreting \mathcal{R}^2_{oos}

OOS R-squared is much different than the usual in-sample stat.

- $ightharpoonup \mathcal{R}_{ic}^2 \in [0,1]$ for models with an intercept (or de-meaned data.)
- \triangleright \mathcal{R}_{cos}^2 can be (and often is) negative, if the model does worse than no model.
- ► Models with higher \mathcal{R}_{is}^2 often have lower \mathcal{R}_{oos}^2 .

IS estimation by construction improves IS R-squared, but if it is fitting IS noise, then OOS R-squared gets worse.

How do we get the OOS data?

- One can hold out the final portion of the sample, but then results are impacted by specifics of this one period.
- ► A more general approach is to use K-folds, which just means multiple subsamples.

K-Folds

- ► Randomly split the data into *K* subsamples.
- ► For each subsample, estimate the model excluding it and treating it as the OOS data.
- Using completely randomized subsamples can be a problem if the data has serial correlation. In that case, one could use sequential subsamples.

Outline

Regularized regression

Principal Components

OLS

OLS solves

$$\boldsymbol{b} = \arg\min_{\boldsymbol{b}_o} \sum_{i=1}^n (y_i - \boldsymbol{x}_i' \boldsymbol{b}_o)^2$$

- ► This is an unconstrained optimization.
- **b** minimizes the sum of squared errors.

How would you solve a regression model where the vector, \boldsymbol{b} , must satisfy an equality constraint?

- We could add constraints explicitly.
- ▶ Or we could add a penalty to the objective function.

Regularized regression

Suppose we have k regressors,

$$\boldsymbol{b} = \arg\min_{\boldsymbol{b}_o} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i' \boldsymbol{b}_o)^2 + \lambda \sum_{i=1}^{k} c(b_o^i)$$

where

- $lackbox{b}_o^i$ is the *i*-th element of the candidate solution vector, $oldsymbol{b}_o$.
- $ightharpoonup c(\cdot)$ is the regularizing function for non-zero elements of $m{b}$.
- ▶ We assume c is a non-negative function with c(0) = 0.
- \blacktriangleright λ is a data-specific parameter.

Question

ightharpoonup If we believe the data are explained by a linear (in β) model,

$$y = \alpha + \mathbf{x}'\mathbf{\beta} + \epsilon$$

then how do we justify estimating it with the regularized, (constrained,) model?

- Suppose the classic OLS assumptions hold. Is there any justification for using regularized regressions?
- Is the regularized/constrained estimator biased/consistent? Does the regularized/constrained estimator reduce estimator variance?

Regularizing functions

There are several popular regularizing functions.

Stepwise	L ₀	$c(\boldsymbol{b}) = \mathbb{1}_{\boldsymbol{b} \neq 0}$
LASSO	L_1	$c(\boldsymbol{b}) = \boldsymbol{b} $
Ridge	L_2	$c(\boldsymbol{b}) = \boldsymbol{b} ^2$
Elastic Net		$c(\mathbf{b}) = \alpha \mathbf{b} + \frac{1-\alpha}{2} \mathbf{b} ^2$
Log		$c(m{b}) = \log(1+ m{ar{b}})$

Principal Components

0

-20

0

Principal Components

beta beta Figure: Source: Taddy, 2019

20

0.5

-20

0

20

Principal Components

Figure: Source: Taddy, 2019

- ▶ Both Ridge and LASSO are in this family of estimators. What is the difference in their specification?
- ▶ Which estimator leads to sparse models?

Choosing the regularizing function

Choose based on what you want to penalize.

- ► LASSO produces many 0 values.
- ► Ridge allows many non-zero values but severely punishes large estimated effects.
- Elastic net is a mix.
- ► Log penalizes strongly for non-zero elements, but penalizes weakly for large values.

Question

▶ Under what circumstances might Ridge be useful?

Ridge Regression

$$extbf{\emph{b}}^{ ext{ridge}} = \left(extbf{\emph{X}}' extbf{\emph{X}} + \lambda \, \mathcal{I}_{ extbf{\emph{k}}}
ight)^{-1} \left(extbf{\emph{X}}' extbf{\emph{Y}}
ight)$$

- Deals with multicolinearity and ill-conditioning.
- Often is derived from a Bayesian model, related to Black-Litterman.
- ▶ Will not reduce dimensionality—non-zero components will still be non-zero.

Question

▶ Under what circumstances might LASSO be useful?

LASSO Regression

- \triangleright The constraint does not vanish for small components of \boldsymbol{b} , so it forces components to zero.
- Essentially LASSO docks each component of **b** by a fixed amount, so it still allows very large values.
- ► LASSO is the most widespread regularized regression.

Nonlinearity

With regularized regression, we lose linearity.

- Scaling of X now matters, because it can't just be offset by rescaling β !
- Try using standard-deviation deflated X.
- Or change regularization function to $\tilde{c}(b^i) = \sigma^i c(b^i)^2$.

This re-scaling ensures that the regularization applies less to Xdata that varies little, and thus requires larger β .

²Many packages have a setting to do this automatically.

Tuning parameters

The parameter λ is estimated from the data.

- \triangleright Find the minimum λ such that the estimate is regularized to 0: b = 0.
- \blacktriangleright Estimate the model for a sequence of diminishing λ until getting to $\lambda = 0$, which produces the OLS estimates.

To choose among λ , use

- ▶ Information criteria: Akaike (AIC), Bayesian (BIC), etc.
- Cross validation on K-folds.

K-Fold Cross-validation

Use Cross-Validation (CV) on K-folds.

- ▶ Split the data into *K* random subsets.
- ▶ For k = 1...K,
- ▶ Use all data except subsample *k* to estimate the model.
- ► Calculate the OOS errors using subsample *k*.

Regularized regression w/ CV

Use K-fold CV to optimize λ .

- \triangleright Select a sequence of λ_i .
- Divide into K-folds.
- \blacktriangleright For each λ_i , estimate the model using K-fold CV to obtain K sets of OOS loss, (such as sum of squared errors.)
- \triangleright Select the λ_i that minimizes the simple average of the (K sets of) OOS loss values.

Outline

Model selection

Regularized regression

Principal Components

Boosting and Bagging

Dimension reduction

Suppose we have a $k \times 1$ vector of data \mathbf{x}_t , with covariance matrix, Σ . Suppose k is large.

- We may seek a smaller set of variables p << k that explains most of the variation explained by x.
- ► Consider these *p* factors, $z^1, z^2, ..., z^p$.

Maximizing variation explained

Regularized regression

Find the vector, \mathbf{w}^1 that maximizes

$$s.t. \mathbf{w}' \mathbf{w} = 1$$

This says \mathbf{w}^1 is a linear combination of \mathbf{x}_t that maximizes the variation explained, rescaled.

Iterating

The full set of factors, \mathbf{w}^i could then be developed iteratively...

$$rg \max oldsymbol{w}' oldsymbol{\Sigma} oldsymbol{w}$$
 $s.t. ig(oldsymbol{w}^iig)' oldsymbol{w}^j = 0, i
eq j$ $ig(oldsymbol{w}^iig)' oldsymbol{w}^j = 1, i = j$

Factor set

We can iterate to obtain K vectors which will exactly span the space spanned by x_{\perp} .

- Or we can stop at p, obtaining a reduced dimensionality.
- ► This dimensionality will maximally explain the space spanned by **x**..
- ► The new space has an orthogonal basis.

The principal components are the factors constructed,

$$\boldsymbol{z}_{t}^{i}=\left(\boldsymbol{w}^{i}\right)\boldsymbol{x}_{t}$$

Eigenvectors

We do not need to solve the optimization above!

- ightharpoonup One can show that \mathbf{w}^i is the i-th eigenvector of Σ .
- ► The i-th eigenvalue gives the total variation explained by the i-th vector.

Thus, PCA is obtained via eigenvector decomposition!

Question: PCA and R-squared

- ▶ We have one time-series to explain, **Y**.
- ▶ There are 10 explanatory time-series, collected in **X**.
- ▶ We calculate the first three Principal Components, **Z**, using standard methods.

Do these principal components maximize the R-squared relative to any other 3-factors extracted from \boldsymbol{X} ?

► Suppose a bond trader wishes to trade only the 10 most important bonds out of a set of 100 bonds. Will PCA be useful for this selection?

- ▶ PCA reduces the dimensionality—but in a rotated vector space.
- ► In terms of the original space, any one PC is a combination of every original variable.
- Use LASSO or other regularized regressions to get sparsity.
- ► PCA is useful for state-space reduction for statistical and mathematical reasons—not for interpretability.

Outline

Model selection

Regularized regression

Principal Components

Boosting and Bagging

Stepwise regression

When deciding on the number of regressors, it is common to see the following:

- Include all regressors under consideration.
- Check the t-stats (p-values) of each regressor.
- ▶ Re-run the regression on only the statistically significant regressors.

This is known as backward stepwise regression. (BSR).

Model selection

- ► If regressors are strongly correlated, neither may show significance even though one is.
- ► The p-values are being generated on an overfit model and may have substantial small-sample bias.

Boosting and Bagging

Forward Step Regression (FSR) builds up the model instead of cutting it down.

- ► Suppose you have *J* regressors under consideration.
- ightharpoonup Fit a univariate regression on each of the J regressors.
- ▶ Choose the regressor, (call it j,) with the highest in-sample fit (R-squared?).
- ► Estimate all bivariate regressions that include regressor *j*.
- ► Continue until hitting a limit of regressors, a threshold R-squared, or using a selection rule such as AIC/BIC.

Marginal regression

Marginal regression returns a principal factor based on covariation in x, but also impact on y.

► For each component of **x**, (column of **X**,) run a univariate regression, (assume we have de-meaned the data,)

$$y = \phi^j x^j + u$$

- ▶ Stack up these univariate regression coefficients, ϕ^j into a vector, ϕ .
- Calculate the factor,

$$z^1 = x' \phi$$

▶ Use z^1 to analyze/predict y via OLS:

$$y = z^1 \beta^1 + \epsilon$$

Partial Least Squares

Instead of stopping and analyzing y given z^1 , repeat the marginal regression.

- Namely, take the sample residuals e from the regression of y on z^1 . Do a marginal regression on them to obtain z^2 .
- Use z^1 and z^2 to analyze/predict y with OLS.
- ► Keep repeating for more factors.

- ► What would it mean to apply "boosting" to marginal regression?
- ▶ In the bias-variance tradeoff, what is boosting meant to help?

Boosting

Boosting refers to iteratively using a (typically simple model.)

- ► For instance, we can "boost" the marginal regression model by re-running it on the residuals from the final predictions.
- ► Thus, boosting builds new predictions in a sequence from simpler predictions.
- PLS is simply "boosted" MLS.
- Boosting is useful if we have a model with low variance but substantial bias.

Regression trees

Classification and Regression Trees (CART) are a supervised learning tool.

- \triangleright For x and y, the CART groups y according to thresholds of the associated x data.
- ▶ There are an impossible number of potential trees / splits.
- ► CART starts at the top and seeks the component of x, and its threshold value, that minimizes,

$$\sum_{i \in left} \left(y^i - \bar{y}^{left} \right)^2 + \sum_{i \in right} \left(y^i - \bar{y}^{right} \right)^2$$

 CART can model complex relationships but is prone to overfitting.

- ▶ How do we get random forests from regression trees?
- ► Why are random forests useful?
- ▶ Does a forest improve the bias or the variance of an individual tree?

Bagging

Bootstrap aggregating, or "Bagging", is useful when an estimator is unbiased but highly variable.

- ▶ Run the model over many bootstrapped samples.
- ► This yields many observations from the variable, unbiased estimator distribution.
- Take the average, and you have a less variable, unbiased estimator.

Supervised vs unsupervised

- ▶ Regression models are supervised. They model *x* based on feedback from associated *y* data.
- ► PCA, k-means clustering, etc. are unsupervised. They organize *x* without any feedback from *y*.
- ▶ Partial Least Squares (PLS) takes a PCA-type factorization of x based on information in y.