

Sampling & Estimation

Nazgul Rakhimzhanova

IITU 2021

COURSE SCHEDULE

week	Mid Term (weeks 01-07)	End Term (weeks 08-14)	week
01	Intro: Data Science Area and open source tools for Data Science		08
02	NumPy package for data science	Correlation and Covariance	09
03	Pandas package for data science	Sampling	10
04	Visualization with matplotlib	Hypothesis testing	11
05	Statistics: Distribution – Normal	Linear Regression	12
06	Exploratory Data Analysis (EDA)	Linear Regression	13
<u>07</u>	Summary for 6 weeks QA session	Summary for 6 weeks QA session	<u>14</u>
15	Course summary		

Outline of lecture

- Sampling
- •Estimation

Sampling & Estimation

•The goal of this **lecture** is to introduce the <u>estimation theory</u>, but we'll talk about sampling theory first because estimation theory doesn't make sense until you understand sampling.

- •In almost every situation of interest, what we have available to us as DS is a sample of data.
- The data set available to us is finite, and incomplete.

- •A sample is a concrete thing. You can open up a data file, and there's the data from your sample.
- •A population, is a more abstract idea.
- <u>Sample mean</u>, <u>sample variance</u>, <u>sample</u> std
- Population mean, population variance, population std

Sampling methods

- Simple random sampling
- Systematic sampling
- Stratified sampling
- Cluster sampling

Simple random sampling

- Population N
- •Sample n, n < N
- Equal possibilities to occur for every object

Simple random sampling

Systematic sampling

- Population N
- Sample n, n < N
- Known probability, every k-th element

Stratified sampling

- Population N{A(60%),B(20%),C(20%)}
- •Sample n, n < N
- The same partition ration of different stratum

Stratified sampling

Cluster sampling

- Population N{A(50%),B(50)}
- •Sample n, n < N
- The same probability for each cluster's objects

Cluster sampling

Simple random sample

Systematic sample

Stratified sample

Cluster sample

Sampling Bias

•If you asking kids how many siblings do they have - your data will never show the families without children.

• The best sampling technique provides more **precise conclusions** during descriptive analytics

• The best sampling techniques increases the **accuracy** of the **model**

Estimation

- Population mean- μ , variance α
- •Sample mean $-\bar{x}$, variance $-S^2$

•Estimation when we assume that

$$\mu = \overline{x}$$
 and $\alpha = S^2$

• Issue?

• The Central Limit Theorem states that the sampling distribution of the sample means approaches a normal distribution as the sample size gets larger — no matter what the shape of the population distribution. This fact holds especially true for sample sizes over 30.

- Average of your sample means will be the population mean. In other words, add up the means from all of your samples, find the average and that average will be your actual population mean.
- Average of all of the standard deviations in your sample, will be the actual standard deviation for your population.

- •Central Limit Theorem (para phrased) regardless, the shape of the population's distribution, the distribution of sample means (N-> ∞) close to the normal distribution with mean μ and variance σ^2/N .
- •Where, Standard error (SE) is a measure of how far we expect the estimate to be off, on average.

SEM =
$$\sigma 2 / \sqrt{N}$$

Summary

•If you are dealing with <u>a sample</u> but want to make inferences about <u>a</u> population - you can **experiment** with sample mean using **CLT**.

Example

Example

KEY TAKEAWAYS

- The central limit theorem (CLT) states that the distribution of sample means approximates a normal distribution as the sample size gets larger.
- Sample sizes equal to or greater than 30 are considered sufficient for the CLT to hold.
- A key aspect of CLT is that the average of the sample means and standard deviations will equal the population mean and standard deviation.
- A sufficiently large sample size can predict the characteristics of a population accurately.

Reading

• https://www.khanacademy.org/math/statistics-probability/designing-statis/sampling-methods-statis/sampling-methods-review