HW 12 - Graph Theory

Ethan Beaird

March 12, 2023

1.

3.

Base Case: k=1. $A^1 = A$, and the (i, j)th entry of A is the number of directed edges from v_i to v_j . This holds.

Inductive Step: Assume that the (i, j)th entry of A^k is the number of directed walks of length k from v_i to v_j , for some k > 1. We now show that the (i, j)th entry of A^{k+1} is the number of directed walks of length k+1 from v_i to v_j . We use the definition of matrix multiplication. Specifically, the (i, j)th entry of A^{k+1} is equal to the dot product of the i-th row of A^k and the j-th column of A. Since the (i, j)th entry of A^k is the number of directed walks of length k from v_i to v_j , and the j-th column of A is the vector of the number of directed edges from each vertex to v_j , it follows that the (i, j)th entry of A^{k+1} is the number of directed walks of length k+1 from v_i to v_j .

4.

The red edges indicated in our first network clearly satisfy the conditions to be a cut and are minimal since no other combination of edges to produce a cut in N have a smaller capacity. By the Maximum Flow - Minimum Cut Theorem, the first digraph has a maximum flow of 2.

In the second network, vertex a has all inbound edges. To have a flow, rate in must equal rate out for all intermediate vertices, so these edges are 0 in any flow. Similarly, vertex b has all outbound edges, so these edges are 0 in any flow. Therefore valf = 0 for any flow and the maximum flow is 0.