

planetmath.org

Math for the people, by the people.

bounded lattice

Canonical name BoundedLattice
Date of creation 2013-03-22 15:02:28
Last modified on 2013-03-22 15:02:28

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771)
Entry type Definition
Classification msc 06B05
Classification msc 06A06

Defines top
Defines bottom

Defines bounded poset

A lattice L is said to be if there is an element $0 \in L$ such that $0 \le x$ for all $x \in L$. Dually, L is if there exists an element $1 \in L$ such that $x \le 1$ for all $x \in L$. A bounded lattice is one that is both from above and below.

For example, any finite lattice L is bounded, as $\bigvee L$ and $\bigwedge L$, being join and meet of finitely many elements, exist. $\bigvee L = 1$ and $\bigwedge L = 0$.

Remarks. Let L be a bounded lattice with 0 and 1 as described above.

- $0 \land x = 0$ and $0 \lor x = x$ for all $x \in L$.
- $1 \wedge x = x$ and $1 \vee x = 1$ for all $x \in L$.
- As a result, 0 and 1, if they exist, are necessarily unique. For if there is another such a pair 0' and 1', then $0 = 0 \land 0' = 0' \land 0 = 0'$. Similarly 1 = 1'.
- 0 is called the *bottom* of L and 1 is called the *top* of L.
- L is a lattice interval and can be written as [0,1].

Remark. More generally, a poset P is said to be *bounded* if it has both a greatest element 1 and a least element 0.