Lecture Notes for

Neural Networks and Machine Learning

Deep Transfer Learning and Demo

Logistics and Agenda

- Logistics
 - Welcome back from Snow days... Updated Schedule!
- Agenda
 - Transfer Learning in Deep Learning
 - Transfer Learning Demo
 - Town Hall
- Next Time:
 - Transformers for Text and Vision
- Next Next Time
 - Self-Supervised Learning and Consistency Loss

Last Time, ConceptNet and Transfer Learning

$$X = x_1, x_2, \dots x_N \in \mathcal{X}$$

$$\mathcal{D} = \{\mathcal{X}, p(X)\}$$

Domain

Feature Space

Probability Observation

- Image Pixels
- Sensor Readings
- Natural Language
- Almost anything that we can represent as a feature

$$\mathcal{T} = \{ \mathcal{Y}, p(Y|X) \}$$

Took

Label Space Learned Probability

- Object Classification
- Dolphin/Shark Classification
- Sentiment Analysis
- Any labeled task for which we might be able to build a classifier

Transfer learning be like

How to Make a Racist Al without Really Trying

Robyn Speer, 2017

http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-ai-without-really-trying/

Lab One Town Hall

Ethical Machine Learning Bias Reduction with Neural Networks

SUBSCRIBE

BUSINESS - TECHNOLOGY

TIME

Exclusive: OpenAI Used Kenyan Workers on Less Than \$2 Per Hour to Make ChatGPT Less Toxic

This image was generated by OpenAlis image-generation software, Doll E.2. The prompt was: "A seemingly endiese view of African workers at deaks in front of computer screens in a printmaking style." TIME does not typically use Aligenerated antito illustrate its stories, but chose to in this instance in order to draw.

Transfer Learning with Neural Networks

Found in a recent paper:

6 Unrelated Work

This paper is not related to [8, 23, 48, 13, 35] in any way, but we think everyone should read these papers because: (1) they're real good, (2) my friends also need those citations.

7 Related Work

Deep Transfer Learning

- Almost always Inductive Transfer
 - (new task, same domain, or domain adaptation)
- Almost always Feature Representation Transfer
 - like image pre-training
- All other topics are mostly open research topics that maybe one of you will solve!

(Sun, B., Feng, J., & Saenko, K. (2016). Return of Frustratingly Easy Domain Adaptation)

20

Approaches with Deep Learning

Feature Extraction Transfer

- Most well known: use learned parameters from one task in another task in same domain
- Most useful when labels for target domain are sparse

New domain: Dogs versus Cats

New domain: Gaze Classification

21

Image Net

Defining the Bottleneck

- Frozen training layers before bottleneck:
 - Why waste computations?
 - Computing more than one forward pass on the same data—just save them out
 - Unless using augmentation
- In Keras, build multiple models with different entry points
 - Input toBottleneck
 - Bottleneckto Output
 - Input to Output


```
model_top = Model(bottleneck, outputs)
```

model_total = Model(inputs, outputs)

Freezing and Fine-tuning

- Step 1, Freeze base model:
 - No update during back-propagation
 - Only update layers after the bottleneck
 - Optional: Augment a set of training data
 - Send training dataset through base model
 - Save out bottleneck features
 - Train bottleneck features in new task
 - Typically 5-10 epochs is sufficient, easy to overfit
 - Larger training step size is okay
- Step 2, Fine-tune, unfreeze a few layers in base model:
 - Optional: Setup images to use some type of augmentation
 - Attach newly trained model to pre-trained model
 - Train to your hearts content, use smaller training step size

Bottlenecking on a GPU

Dogs versus Cats

Justin Ledford •

justinledford Justin Ledford

Member of 8000net

Updated for tf==2.9 in the Main Repository:
02 Transfer Learning.ipynb

Original Example: https://github.com/8000net/
Transfer-Learning-Dolphins-and-Sharks

Another Great Example:

https://keras.io/examples/vision/

image_classification_efficientnet_fine_tuning/

Popular Transfer Learning Models

Vision:

- Conv Architectures:
 - VGG, Inception, ResNet, Xception, EfficientNet
 - ViT: Huge ViT

Audio:

- WaveNet, VGGish
- Text:
 - Word Embedding
 - Glove, Word2Vec, ConceptNet
 - Sentence Embedding
 - Universal Sentence Encoders (Google)
 - BERT (Google)
 - GPT-X

From SMU PhD Students in my Research Lab:

- VGG for transferring to gaze classification
- VGG for swapped face detection
- Domain adaptation for speaker authentication
- YOLO/DarkNet for surgical instrument detection
- GLOVE for similar instructions in a maintenance manual
- BERT for student vocabulary acquisition

Lecture Notes for

Neural Networks and Machine Learning

Transfer Learning

Next Time:

Transformers

Reading: None

