QUIZ-1 ELEMENTARY STOCHASTIC PROCESS (MTH-212M/412A)

Name (Roll Number):

No extra sheet will be provided or collected, Time 30 mins., Max. Marks:20.

1. Let $\{X_n; n \geq 1\}$ be a sequence of independent and identically distributed random variables with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$. Let us define $Y_n = X_1 \times \ldots \times X_n$, for $n \geq 1$. (a) Find the distribution of Y_n , (b) Show that $\{Y_n\}$ is a Markov Chain, (c) Find the \mathbf{P} , the transition probability matrix of $\{Y_n\}$. (d) Find \mathbf{P}^n . [3+3+3+1=10]

Solution: By induction it easily follows that Y_n has the same distribution as X_1 . Note that $Y_{n+1} = Y_n \times X_{n+1}$. In this case the state space is $\{-1, 1\}$. Hence,

$$\mathbf{P} = \left[egin{array}{ccc} rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \end{array}
ight] \quad ext{ and } \quad \mathbf{P}^n = \mathbf{P}$$

2. Suppose $\Omega = \{1, 2, 3\}$, and $\mathcal{F} =$ the class of all subsets of Ω . Suppose X and Y are real valued functions on Ω as follows: X(1) = 1, X(2) = 2, X(3) = 3 and Y(1) = Y(2) = 1 and Y(3) = 10. Suppose $P(\{1\}) = 0.4$, $P(\{2\}) = 0.5$, $P(\{3\}) = 0.1$, for other sets it has been defined in such a manner so that it is probability function. (i) Find $Prob(X + Y \leq x) - Prob(X + Y \leq x)$ for all X. (ii) Find $Prob(XY \leq y) - Prob(XY \leq y)$ for all Y. (5+5=10)

Solution:

Note that (X+Y)(1)=2, (X+Y)(2)=3, (X+Y)(3)=13, (XY)(1)=1, (XY)(2)=2 and (XY)(3)=30. Since, $\text{Prob}(X+Y\leq x)$ - Prob(X+Y< x)=Prob(X+Y=x), therefore,

$$Prob(X + Y = x) = \begin{cases} 0.4 & \text{if} & x = 2\\ 0.5 & \text{if} & x = 3\\ 0.1 & \text{if} & x = 13\\ 0.0 & \text{if} & x \neq 2, 3, 13. \end{cases}$$

Further, $Prob(XY \le x) - Prob(XY < x) = Prob(XY = x)$, and

$$Prob(XY = x) = \begin{cases} 0.4 & \text{if} & x = 1\\ 0.5 & \text{if} & x = 2\\ 0.1 & \text{if} & x = 30\\ 0.0 & \text{if} & x \neq 1, 2, 30. \end{cases}$$