

# Hexagon Application Kit

For XMC4000 Family

CPU\_45B-V1
CPU Board XMC4500 SDRAM

## **Board User's Manual**

Revision 1.0, 2013-02-20

# Microcontroller

Edition 2013-02-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



| <b>Revision Histor</b>                                        | у |  |  |
|---------------------------------------------------------------|---|--|--|
| Page or Item Subjects (major changes since previous revision) |   |  |  |
| Revision 1.0<br>2013-02-20                                    |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |
|                                                               |   |  |  |

#### Trademarks of Infineon Technologies AG

AURIX $^{\text{TM}}$ , C166 $^{\text{TM}}$ , Canpak $^{\text{TM}}$ , CIPOS $^{\text{TM}}$ , CIPURSE $^{\text{TM}}$ , EconoPack $^{\text{TM}}$ , CoolMos $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , Crossave $^{\text{TM}}$ , Dave $^{\text{TM}}$ , EasyPIM $^{\text{TM}}$ , EconoBridge $^{\text{TM}}$ , EconoDual $^{\text{TM}}$ , EconoPiM $^{\text{TM}}$ , EiceDriver $^{\text{TM}}$ , eupec $^{\text{TM}}$ , FCOs $^{\text{TM}}$ , Hitfet $^{\text{TM}}$ , HybridPack $^{\text{TM}}$ , IsoFace $^{\text{TM}}$ , IsoPack $^{\text{TM}}$ , Mipaq $^{\text{TM}}$ , ModStack $^{\text{TM}}$ , my-d $^{\text{TM}}$ , NovalithIC $^{\text{TM}}$ , OptiMos $^{\text{TM}}$ , Origa $^{\text{TM}}$ , PrimePack $^{\text{TM}}$ , PrimeStack $^{\text{TM}}$ , Pro-Sil $^{\text{TM}}$ , Profet $^{\text{TM}}$ , Rasic $^{\text{TM}}$ , Reversave $^{\text{TM}}$ , Satric $^{\text{TM}}$ , Sieget $^{\text{TM}}$ , Sindrion $^{\text{TM}}$ , SipMos $^{\text{TM}}$ , SmartLewIs $^{\text{TM}}$ , Solid Flash $^{\text{TM}}$ , Tempfet $^{\text{TM}}$ , thinQ! $^{\text{TM}}$ , Trenchstop $^{\text{TM}}$ , TriCore $^{\text{TM}}$ .

#### Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24





### Table of Contents

## **Table of Contents**

| Introduc            | ction                               | 7  |
|---------------------|-------------------------------------|----|
| 1                   | Overview                            | 7  |
| 1.1                 | Key Features                        |    |
| 1.2                 | Block Diagram                       |    |
| 2                   | Hardware Description                |    |
| <del>-</del><br>2.1 | Power Supply                        |    |
| 2.2                 | Reset                               |    |
| 2.3                 | Clock Generation                    |    |
| 2.4                 | Boot Option                         |    |
| 2.5                 | Debug Interface                     |    |
| 2.5.1               | On-board USB Debugger               |    |
| 2.5.2               | Cortex Debug Connector (10-pin)     |    |
| 2.5.3               | Cortex Debug+ETM Connector (20-pin) |    |
| 2.6                 | Serial Flash Memory                 |    |
| 2.7                 | SDRAM                               |    |
| 2.8                 | USB                                 |    |
| 2.9                 | RTC                                 | 22 |
| 2.10                | User LEDs and User Button           | 23 |
| 2.11                | Potentiometer                       | 23 |
| 2.12                | Satellite Connectors                | 24 |
| 2.12.1              | COM Connector                       | 25 |
| 2.12.2              | HMI Connector                       | 26 |
| 2.12.3              | ACT Satellite Connector             | 27 |
| 3                   | Production Data                     | 27 |
| 3.1                 | Schematics                          |    |
| 3.2                 | Component Placement and Geometry    |    |
| 3.3                 | Bill of Material (BOM)              |    |
|                     |                                     |    |





### List of Figures

## **List of Figures**

| Figure 1  | CPU_45B-V1 Board Block Diagram             | 8   |
|-----------|--------------------------------------------|-----|
| igure 2   | CPU Board XMC4500 SDRAM (CPU_45B-V1)       | 9   |
| igure 3   | Powering option                            | .10 |
| igure 4   | Block Diagram Of Power Supply              | .10 |
| igure 5   | Reset Circuit                              | .12 |
| igure 6   | Reset LED and Reset Button                 | .12 |
| igure 7   | Clock Generation Circuit                   | .13 |
| igure 8   | Boot Options Switch                        |     |
| igure 9   | Installation of Serial Port Driver         |     |
| Figure 10 | On-Board USB Debugger                      |     |
| Figure 11 | Cortex Debug Connector (10-pin)            | .16 |
| Figure 12 | Cortex Debug Connector (10-pin) Layout     | .17 |
| Figure 13 | Cortex Debug+ETM Connector (20-pin)        | .17 |
| Figure 14 | Cortex Debug+ETM Connector (20-pin) Layout | .18 |
| Figure 15 | Quad SPI Flash Interface                   |     |
| Figure 16 | SDRAM Interface                            |     |
| igure 17  | USB Connector                              |     |
| Figure 18 | USB power generation - Host/OTG mode       |     |
| Figure 19 | Battery Holder for Coin Cells              |     |
| igure 20  | XMC4500 Power Domains and Real Time Clock  |     |
| igure 21  | User LEDs and User Buttons                 | .23 |
| igure 22  | Satellite Connectors                       |     |
| Figure 23 | Satellite Connector Type COM               |     |
| Figure 24 | Satellite Connector Type HMI               |     |
| Figure 25 | Satellite Connector Type ACT               |     |
| igure 26  | Satellite Connectors, USB-OTG              |     |
| igure 27  | XMC4500                                    |     |
| Figure 28 | Power, Debug Connector, Reset, SDRAM       |     |
| igure 29  | On-board Debugger                          |     |
| Figure 30 | Component Placement and Geometry           | .32 |
|           |                                            |     |



# CPU\_45B-V1 CPU Board XMC4500 SDRAM

### List of Figures

### **List of Tables**

| Table 1  | Power status LEDs                   | 10 |
|----------|-------------------------------------|----|
| Table 2  | Power Measurement                   |    |
| Table 3  | Boot Options Settings               | 13 |
| Table 4  | Cortex Debug Connector (10 Pin)     |    |
| Table 5  | Cortex Debug+ETM Connector (20 Pin) | 18 |
| Table 6  | Quad SPI Signals                    | 19 |
| Table 7  | USB micro AB connector Pinout       |    |
| Table 8  | User LEDs                           |    |
| Table 9  | User Buttons                        |    |
| Table 10 | Potentiometer                       | 23 |
| Table 11 | BOM of CPU_45B-V1 Board             | 33 |
|          |                                     |    |



Overview

### Introduction

This document describes the features and hardware details of the CPU board "CPU Board XMC4500 SDRAM" (CPU\_45B-V1) designed to work with Infineon's XMC4500 Microcontroller. This board is part of Infineon's Hexagon Application Kits. Please visit <a href="https://www.infineon.com/xmc-dev">www.infineon.com/xmc-dev</a> for more information about the Hexagon Application Kit family.

### 1 Overview

The CPU board CPU\_45B-V1 houses the XMC4500 Microcontroller and three satellite connectors (HMI, COM, ACT) for application expansion. The board along with satellite cards (e.g. HMI\_OLED-V1, COM\_ETH-V1, AUT\_ISO-V1 boards) demonstrates the capabilities of XMC4500.

The main use case of this board is to demonstrate the external bus unit (EBU) of the XMC4500 device including the tool chain. For this purpose a 64 Mbit SDRAM is connected to the XMC4500 and for external bus extension an asynchronous 16-bit wide bus interface is available at the COM satellite connector.

Attention: This board (CPU\_45B) has not been designed to work with the "General Purpose Motor Drive Card" (MOT\_GPDLV). For this purpose please use the CPU boards CPU\_45A, CPU\_44A or CPU\_42A.

The focus is safe operation under evaluation conditions. The board is neither cost nor size optimized and does not serve as a reference design.

### 1.1 Key Features

The CPU\_45B-V1 board is equipped with the following features

- XMC4500 (ARM<sup>®</sup> Cortex™-M4-based) Microcontroller, 1 MByte Flash, 160 kByte SRAM, LFBGA-144
- 8 MByte On-board SDRAM, 1 Mbit x 16 bits x 4 banks
- Connection to satellite cards via satellite connectors COM, HMI and ACT
- USB OTG Host/Device support via micro USB connector
- Debug options
  - On-board Debugger via the Debug USB connector
  - Cortex Debug connector 10-pin (0.05")
  - Cortex Debug+ETM connector 20-pin (0.05")
- Reset push button
- 32 MBit quad SPI flash memory
- Boot option switch
- PowerScale Connector: Ready for power consumption analysis
- Two User Buttons connected to P5.10 and P0.10
- 7 LED's
  - 3 Power indicating LED's
  - 2 User LEDs (P5.2 and P1.1)
  - 1 RESET LED
  - 1 Debug LED
- Potentiometer, connected to analog input P14.1
- Power supply
  - Via Debug USB connector
  - Via Micro-USB connector in USB device mode
  - Via satellite connector pins (COM/ACT satellites cards can supply power to CPU board)
  - RTC backup battery



Overview

### 1.2 Block Diagram

Figure 1 shows the functional block diagram of the CPU\_45B-V1 board. For more information about the power supply please refer to chapter 2.1.

The CPU board has got the following building blocks:

- 3 Satellite Connectors (COM, HMI ACT)
- 2 User LEDs connected to GPIOs P5.2 and P1.1
- 2 User Buttons connected to GPIOs P5.10 and P0.10.
- Quad SPI flash memory (32 Mbit)
- Synchronous Dynamic RAM (SDRAM, 64Mbit)
- 2 Cortex Debug Connectors
- Variable resistor (POTI) connected to GPIO P14.1
- USB On-The-Go Connector (Micro-USB)
- On-board Debugger via USB connector (Micro-USB)



Figure 1 CPU\_45B-V1 Board Block Diagram



### 2 Hardware Description

The following sections give a detailed description of the hardware and how it can be used.



Figure 2 CPU Board XMC4500 SDRAM (CPU 45B-V1)

### 2.1 Power Supply

The CPU\_45B-V1 board can be powered via either of the USB plugs (5 V); however, there is a current limit that can be drawn from the host PC through USB. If the CPU\_45B-V1 board is used to drive other satellite cards (e.g. AUT\_ISO-V1 or MOT\_GPDLV-V2) and the total current required exceeds 500 mA, then the board needs to be powered by a satellite card, which supports external power supply like e.g. AUT\_ISO-V1, MOT\_GPDLV-V2, COM\_ETH-V1.

The typical current drawn by the CPU board without any satellite cards connected is about 220 mA (@5V).

For powering the board through an USB interface, connect the USB cable provided with the kit to either of the Micro-USB connector on board as shown in Figure 3.





Figure 3 Powering option

To indicate the power status of CPU\_45B-V1 board three power indicating LED's are provided on board (see Figure 3). The LED will be "ON" when the corresponding power rail is powered.

Table 1 Power status LEDs

| LED Reference | Power Rail | Voltage | Note                                                                      |
|---------------|------------|---------|---------------------------------------------------------------------------|
| V401          | VDD5       | 5 V     | Must always be "ON"                                                       |
| V402          | VDD5USB    | 5 V     | "ON" if powered by USB OTG connector X203 "OFF" in all other supply cases |
| V403          | VDD3.3     | 3.3 V   | Must always be "ON"                                                       |



10

Figure 4 Block Diagram Of Power Supply



# CPU\_45B-V1 CPU Board XMC4500 SDRAM

**Hardware Description** 

Hitex PowerScale probe is provided on the CPU\_45B-V1 board to measure the power consumption of the XMC4500 device.

Table 2 Power Measurement

| Jumper | Function   | Description                                                                                                                                                                                                                                                 |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JP300  | PowerScale | A Hitex PowerScale probe can be connected for current sensing the VDD3.3 (CPU power source). Default: pos. 1-2 (closed)  Note: On the PCB there is a shorting trace between pin 1-2. This trace has to be cut first, before using PowerScale. Pin 3 is GND. |



### 2.2 Reset

A reset signal connected to the low-active PORST# pin of the target CPU (U300) can be issued by

- an on-board Reset Button (SW400, RESET)
- an on-board debug device (U500)
- an external debugger connected to either Cortex Debug connector X400 or X401

The RESET signal is routed to all satellite connectors. The reset circuit includes a red LED (V407) to indicate the reset status: The Reset LED (V407) will be "ON" during active reset state and will be "OFF" if reset is not active.

Be aware that PORST# is a bidirectional reset pin of the XMC4000 family which can also be pulled low by the XMC4000 device itself.



Figure 5 Reset Circuit



Figure 6 Reset LED and Reset Button



### 2.3 Clock Generation

An external 12 MHz crystal provides the clock signal to the XMC4500 microcontroller. The drive strength of the oscillator is set to maximum by software, in order to ensure a safe start-up of the oscillator even under worst case conditions. A serial 510 Ohm resistor will attenuate the oscillations during operations.

For the RTC clock a separate external 32.768 kHz crystal is used on board.



Figure 7 Clock Generation Circuit

### 2.4 Boot Option

During power-on-reset the XMC4500 latches the dip switch SW300 settings via the TCK and the TMS pin. Based on the values latched different boot options are possible.

Table 3 Boot Options Settings

| BSL (TMS) | CAN/UART (TCK) | Boot Option                      |
|-----------|----------------|----------------------------------|
| OFF (1)   | UART (0)       | Normal Mode (Boot from flash)    |
| ON (0)    | UART (0)       | ASC BSL Enabled (Boot from UART) |
| OFF (1)   | CAN (1)        | BMI Customized Boot Enabled      |
| ON (0)    | CAN (1)        | CAN BSL Enabled (Boot from CAN)  |



Figure 8 Boot Options Switch



# CPU\_45B-V1 CPU Board XMC4500 SDRAM

**Hardware Description** 

### 2.5 Debug Interface

The CPU\_45B-V1 board supports debugging via 3 different channels:

- On-board Debugger
- Cortex Debug Connector (10-pin)
- Cortex Debug+ETM Connector (20-pin)

The Hexagon Application Boards are designed to use "Serial Wire Debug" as debug interface. JTAG debug is not supported by default because the GPIO P0.7, where the required TDI function is mapped to also, is used by the on-board SDRAM device and various Actuator boards connected to the ACT satellite connector.

Attention: It is strongly recommended not to use JTAG debug mode, especially if satellites boards are connected, which uses the GPIO 0.7. For the same reason also do not use the on-board debugger in JTAG mode.

If you want to use the JTAG debug mode through the cortex debug connectors (X400, X401) anyway, enable the JTAG interface of the XMC device by assembling the pull-up resistor R427 (4k7 Ohm) and the resistor R410 (0 - 33 Ohm).



### 2.5.1 On-board USB Debugger

The on-board debugger [1] supports

- Serial Wire Debug
- Serial Wire Viewer [2]
- Full Duplex UART communication via a USB Virtual COM
- [1] Newer firmware versions of the on-board debugger require the latest J-Link driver (V4.62 or higher) and a Serial Port Driver (CDC driver) installed on your computer. Please check "Install J-Link Serial Port Driver" when installing the latest J-Link driver (see Figure 9)
- [2] Serial Wire Viewer operation does not work during use of the on-board SDRAM.



Figure 9 Installation of Serial Port Driver

The on-board debugger can be accessed through the Debug USB connector shown in Figure 10. The Debug LED V502 shows the status during debugging.



Figure 10 On-Board USB Debugger

When using an external debugger connected to the 10pin/20pin Cortex Debug Connector, the on-board debugger is switched off.

When using the USB virtual COM port function of the on-board debugger (connected to P1.4 and P1.5 of the XMC4500) the UART interface to the COM satellite is disabled through the switches U301 and U306.



### 2.5.2 Cortex Debug Connector (10-pin)

The CPU\_45B-V1 board supports Serial Wire Debug operation through the 10-pin Cortex Debug Connector.

By default the board does not support Serial Wire Viewer operation through the 10-pin Cortex Debug Connector, because the required SWO pin mapped to P2.1 is used for the connection to the on-board SDRAM. If Serial Wire Viewer operation is required anyway the resistor R404 needs to be assembled.

JTAG operation additionally would require the TDI (P0.7) signal. By default the TDI signal is disconnected from the Cortex Debug Connectors by a not assembled resistor R410, because the pin P0.7 can be used by the onboard SDRAM, by Actuator boards connected to the ACT satellite connector and by boards connected to the COM satellite connector.



Figure 11 Cortex Debug Connector (10-pin)

Table 4 Cortex Debug Connector (10 Pin)

| Pin No. | Signal Name  | Serial Wire Debug    | JTAG Debug         |
|---------|--------------|----------------------|--------------------|
| 1       | VCC          | +3.3 V               | +3.3 V             |
| 2       | SWDIO / TMS  | Serial Wire Data I/O | Test Mode Select   |
| 3       | GND          | Ground               | Ground             |
| 4       | SWDCLK / TCK | Serial Wire Clock    | Test Clock         |
| 5       | GND          | Ground               | Ground             |
| 6       | SWO / TDO    | Trace Data OUT       | Test Data OUT      |
| 7       | KEY          | KEY                  | KEY                |
| 8       | NC / TDI     | Not connected        | Test Data IN       |
| 9       | GNDDetect    | Ground Detect        | Ground Detect      |
| 10      | nRESET       | Reset (Active Low)   | Reset (Active Low) |





Figure 12 Cortex Debug Connector (10-pin) Layout

### 2.5.3 Cortex Debug+ETM Connector (20-pin)

The CPU\_45B-V1 board supports Serial Wire Debug operation and Instruction Trace operation through the 20-pin Cortex Debug+ETM Connector.

The board does not support Serial Wire Viewer operation through the Cortex Debug Connectors by default, because the required SWO pin mapped to P2.1 is used for the connection to the on-board SDRAM. If Serial Wire Viewer operation is required anyway the resistor R404 needs to be assembled.

JTAG operation additionally would require the TDI (P0.7) signal. By default the TDI signal is disconnected from the Cortex Debug Connectors by a not assembled resistor R410, because the pin P0.7 can be used by the onboard SDRAM, by Actuator boards connected to the ACT satellite connector and by boards connected to the COM satellite connector.

| Cortex Debug+ETM Connector (20-pin) |      |  |    |                                  |
|-------------------------------------|------|--|----|----------------------------------|
| vcc                                 | 1 [  |  | 2  | SWDIO / TMS                      |
| GND                                 | 3 [  |  | 4  | SWDCLK / TCK                     |
| GND                                 | 5    |  | 6  | SWO / TDO / EXTa / TRACECTL (NC) |
| KEY                                 | 7 [  |  | 8  | NC/EXTb/TDI (NC)                 |
| GNDDetect                           | 9    |  | 10 | nRESET                           |
| GND/TgtPwr+Cap                      | 11   |  | 12 | TRACECLK                         |
| GND/TgtPwr+Cap                      | 13 [ |  | 14 | TRACEDATA[0]                     |
| GND                                 | 15   |  | 16 | TRACEDATA[1]                     |
| GND                                 | 17 [ |  | 18 | TRACEDATA[2]                     |
| GND                                 | 19 [ |  | 20 | TRACEDATA[3]                     |
|                                     |      |  |    | cortex-20pin.emf                 |

Figure 13 Cortex Debug+ETM Connector (20-pin)



Table 5 Cortex Debug+ETM Connector (20 Pin)

| Pin No. | Signal Name    | Serial Wire Debug    | JTAG Debug         |
|---------|----------------|----------------------|--------------------|
| 1       | VCC            | +3.3 V               | +3.3 V             |
| 2       | SWDIO / TMS    | Serial Wire Data I/O | Test Mode Select   |
| 3       | GND            | Ground               | Ground             |
| 4       | SWDCLK / TCK   | Serial Wire Clock    | Test Clock         |
| 5       | GND            | Ground               | Ground             |
| 6       | SWO/TDO        | Trace Data OUT       | Test Data OUT      |
| 7       | KEY            | KEY                  | KEY                |
| 8       | NC / TDI       | Not connected        | Test Data IN       |
| 9       | GNDDetect      | Ground Detect        | Ground Detect      |
| 10      | nRESET         | Reset (Active Low)   | Reset (Active Low) |
| 11      | GND/TgtPwr+Cap | Ground               | Ground             |
| 12      | TRACECLK       | Trace Clock          | Trace Clock        |
| 13      | GND/TgtPwr+Cap | Ground               | Ground             |
| 14      | TRACEDATA[0]   | Trace Data 0         | Trace Data 0       |
| 15      | GND            | Ground               | Ground             |
| 16      | TRACEDATA[1]   | Trace Data 1         | Trace Data 1       |
| 17      | GND            | Ground               | Ground             |
| 18      | TRACEDATA[2]   | Trace Data 2         | Trace Data 2       |
| 19      | GND            | Ground               | Ground             |
| 20      | TRACEDATA[3]   | Trace Data 3         | Trace Data 3       |



Figure 14 Cortex Debug+ETM Connector (20-pin) Layout



### 2.6 Serial Flash Memory

The CPU\_45B-V1 board has 32Mbit serial flash memory interfaced to XMC4500 through a SPI interface. The SPI interface can be configured as single, dual or quad SPI.

Table 6 Quad SPI Signals

| Pin No. | Signal Name | Signal Description          |
|---------|-------------|-----------------------------|
| P0.13   | CLK         | Clock                       |
| P3.3    | CS#         | Active Low Chip Select      |
| P3.15   | DI          | Data Input of Flash (MTSR)  |
| P3.14   | DO          | Data Output of Flash (MRST) |
| P0.14   | Data I/O    | Data Input/Output           |
| P0.15   | Data I/O    | Data Input/Output           |



Figure 15 Quad SPI Flash Interface



### 2.7 SDRAM

The CPU\_45B-V1 board has a 64 Mbit SDRAM interfaced to the XMC4500. The SDRAM interface is shown in Figure 16.



Figure 16 SDRAM Interface

### 2.8 USB

The XMC4500 supports USB interface in host only mode, device only mode or as an OTG Dual Role Device (DRD). In USB device mode, power is expected through VBUS (pin 1 of X203) from an external host (e.g. PC).

When the current consumption of the application running on the Hexagon Application system is higher than 500 mA, power from an external source through satellite cards shall be used.

Note: Some PCs, notebooks or hubs have a weak USB supply which is not sufficient for proper supply. In this case use an external 5 Volt power supply or a powered USB hub.



Figure 17 USB Connector

The USB ID pin of the USB connector is connected to the port pin P15.2 of the XMC4500. This pin must be polled by software, because this pin does not support USB\_ID detection.

An OTG device will detect whether a USB 3.0 Micro-A or Micro-B plug is inserted by checking the ID pin. When the ID = FALSE, Micro-A connector is plugged and when ID = TRUE a Micro-B connector is plugged in. When ID is true the XMC4500 acts as USB host else as USB device.



Table 7 USB micro AB connector Pinout

| Pin No. | Pin Name | Pin Description |
|---------|----------|-----------------|
| 1       | VBUS     | 5 V             |
| 2       | D-       | Data Minus      |
| 3       | D+       | Data Plus       |
| 4       | ID       | Identification  |
| 5       | GND      | Ground          |



Figure 18 USB power generation - Host/OTG mode

In the host only mode and OTG mode the CPU\_45B-V1 board is capable of supplying power to the connected device (e.g. USB mouse). The board has a power-switch which is controlled by the USB.BUSDRIVE signal of XMC4500. USB.BUSDRIVE is mapped to Port P0.1 (active high).

In the Host/OTG mode a low active FAULT signal indicates to XMC4500 via HIB\_IO\_0 signal, if more than 500 mA current is drawn by the external device. HIB\_IO\_0 signal is used as general purpose input pin for this implementation.

Diode V200 will allow powering the board through USB in all USB modes via e.g. a PC.



### 2.9 RTC

The XMC4500 CPU has two power domains, the Core Domain and Hibernate Domain.

The Core Domain (VDDP pins) is connected to the VDD3.3 rail. An on-board LDO voltage regulator generates VDD3.3 (3.3 V) from VDD5 (5 V).

The Hibernate Domain is powered via the auxiliary supply pin VBAT, which is supplied by either a 3 V coin cell (size 1216, 1220, 1225) plugged into the battery holder or 3.3 V (VDD3.3) generated by the on-board voltage regulator.



Figure 19 Battery Holder for Coin Cells

The Real Time Clock (RTC) is located in the hibernate domain. The XMC4500 uses the HIB\_IO\_1 signal (active low) to shutdown the external LDO voltage regulator which generates VDD3.3 (core domain). Even if the Core Domain is not powered the Hibernate Domain will operate if VBAT is available. The RTC keeps running as long as the Hibernate Domain is powered via the auxiliary supply VBAT. The RTC is capable to wake-up the whole system from Hibernate mode by setting HIB\_IO\_1 to high.



Figure 20 XMC4500 Power Domains and Real Time Clock



### 2.10 User LEDs and User Button

The port pins P5.2 and P1.1 of XMC4500 on the CPU\_45B-V1 board are connected to the LEDs V300 and V301 respectively. More User LED's are available through the I2C GPIO expander on most of the satellite cards.

Table 8 User LEDs

| LED         | Connected to Port Pin |
|-------------|-----------------------|
| LED1 / V300 | GPIO P5.2             |
| LED2 / V301 | GPIO P1.1             |

Two User Buttons, SW401 and SW402 are connected to P5.10 and P0.10 of XMC4500

Table 9 User Buttons

| Button          | Connected to Port Pin |
|-----------------|-----------------------|
| Button1 / SW401 | GPIO P5.10            |
| Button2 / SW402 | GPIO P0.10            |



Figure 21 User LEDs and User Buttons

#### 2.11 Potentiometer

The CPU\_45B-V1 board provides a potentiometer for ease of use and testing of the on-chip analog to digital converter. The potentiometer is connected to the analog input G0\_CH1 (P14.1). The analog output of the potentiometer ranges from 0 V to 3.3 V.

Table 10 Potentiometer

| Potentiometer | Connected to Port Pin              |
|---------------|------------------------------------|
| R300          | P14.1/ G0_CH1 (Group 0, channel 1) |



### 2.12 Satellite Connectors

The CPU\_45B-V1 board provides three satellite connectors for application expansion by satellite cards:

- COM satellite connector (Communication)
- HMI satellite connector (Human Machine Interface)
- ACT satellite connector (Actuator)

Note: Satellite cards shall be connected to their matching connectors only. (For e.g. COM satellite cards shall be connected to COM satellite connector only)



Figure 22 Satellite Connectors



### 2.12.1 COM Connector

The COM satellite connector on the CPU\_45B-V1 board allows interface expansion through COM satellite cards (e.g. COM\_ETH-V1)

|                       | XMC Pin      |     | NSS | P3.15        | P3.14      | P0.15      | P0.14      | nc   | P2.13      | P2.12      | P15.9        | P15.8          | VSS  | nc       | P2.7       | P2.6        | nc       | nc       | nc       | P3.13           | P6.3      | PORST     |      |            | P0.2     | P0.3           | P0.4    | P0.5     | P3.5     | P3.6    | P0.7     | P0.8    | P4.0    | P4.1    | P1.6     | P1.7     | P1.8     | P1.9     | P1.2     | P1.3     | NSS |
|-----------------------|--------------|-----|-----|--------------|------------|------------|------------|------|------------|------------|--------------|----------------|------|----------|------------|-------------|----------|----------|----------|-----------------|-----------|-----------|------|------------|----------|----------------|---------|----------|----------|---------|----------|---------|---------|---------|----------|----------|----------|----------|----------|----------|-----|
| CPU_45B-V1<br>(SDRAM) | XMC Function |     | GND | U1C1_DOUT0   | U1C1_DOUT1 | U1C1_DOUT2 | U1C1_DOUT3 | nc   | ETHO_TXD1  | ETHO_TXD0  | ETHO_CRS_DVC | ETHO CLK RMIIC | DND  | nc<br>Cu | CAN_N1_TXD | CAN_N1_RXDA | nc       | nc       |          | U2C1_SCLKOUT    | P6.3      | RESET#    |      |            | EBU_AD0  |                | EBU_AD2 | EBU_AD3  | EBU_AD4  | EBU_AD5 | EBU_AD6  | EBU_AD7 | EBU_AD8 | EBU_AD9 | EBU_AD10 | EBU_AD11 | EBU_AD12 | EBU_AD13 | EBU_AD14 | EBU_AD15 | GND |
|                       | Function     |     | GND | dSPI_D0      | qSPI_D1    | qSPI_D2    | qSPI_D3    | RSVD | ETH_RMII   | ETH_RMII   | ETH_RMII     | ETH RMII       | GND  | RSVD     | CAN_TXD    | CAN_RXD     | SPI_MTSR | SPI_MRST | SPI_SCLK | 12C_SCL         | GPIO      | RESET     | VDDS | VDD5       | EBU_AD   | EBU_AD         | EBU_AD  | EBU_AD   | EBU_AD   | EBU_AD  | EBU_AD   | EBU_AD  | EBU_AD  | EBU_AD  | EBU_AD   | EBU_AD   | EBU_AD   | EBU_AD   | EBU_AD   | EBU_AD   | GND |
| Satellite             | Pin          | сом | 2   | 4            | 6          | 8          | 10         | 12   | 14         | 16         | 18 2         | 0 22           | 2 24 | 1 26     | 28         | 30          | 32       | 34       | 36       | 38              | 40 4      | 42        | 44   | ₩ 4<br>9 4 | 5 48     | 50             | 52      | 54       | 56       | 58      | 60       | 62      | 64      | 66      | 68       | 70       | 72       | 74       | 76 7     | 78 8     | 30  |
| Connector             | - E          | 8   | 1   | 3            | 5          | 7          | 9          | 11   | 13         | 15         | 17 1         | 9 2:           | 1 23 | 3 25     | 27         | 29          | 31       | 33       | 35       | 37              | 39        | 41        | 43   | 8 4        | 5 47     | 49             | 51      | 53       | 55       | 57      | 59       | 61      | 63      | 65      | 67       | 69       | 71       | 73       | 75 7     | 77       | 79  |
|                       | Function     |     | GND | qSPI_SCLK    | qSPI_CS    | qSPI_CS    | RSVD       | RSVD | ETH_RMII   | ETH_RMII   | ETH_RMII     | ETH RMII       | RSVD | ASC DIR  | ASC_RXD    | ASC_TXD     | SPI_CSC0 | SPI_CSC1 | SPI_CSC2 | I2C_SDA         | COM_GPI01 | COM_GPI00 | VDD5 | VDDS       | EBU_ADV  | EBU_WR         | EBU_RD  | EBU_BC   | EBU_BC   | EBU_CS  | EBU_CS   | GND     | EBU_A   | EBU_A   | EBU_A    | EBU_A    | EBU_A    | EBU_A    | EBU_A    | EBU_A    | GND |
| CPU_45B-V1<br>(SDRAM) | XMC Function |     | GND | U1C1_SCLKOUT | U1C1_SELO0 | U1C1_SELO1 | nc         | nc   | ETHO_RXD1D | ETHO_RXD0D | ETHO_MDO     | ETHO TX FN     | nc   | nc       | UOCO_DX0B  | посо_роито  | nc       | nc       |          | U2C1_DOUT0/DX0D | P14.13    | P0.0      |      |            | EBU.nADV | EBU_RD/EBU_nWR | EBU_RD  | EBU_nBC1 | EBU_nBC0 | nc      | EBU_nCS1 | GND     | nc      | nc      | nc       | nc       | EBU_A19  | EBU_A18  | EBU_A17  | EBU_A16  | GND |
|                       | XMCPin       |     | NSS | P0.13        | P0.12      | P3.3 *     | nc         | nc   | P5.1       | P5.0       | P1.11        | P5.9           | 2    | ou.      | P1.4 **    | P1.5 **     | nc       | nc       | nc       | P3.11/P3.12     | P14.13    | P0.0      |      |            | P0.6     | P3.1           | P3.0    | P2.15    | P2.14    | nc      | P0.9     | NSS     | nc      | nc      | nc       | nc       | P6.4     | P6.2     | P6.1     | P6.0     | VSS |

Figure 23 Satellite Connector Type COM

Attention: \* This pin is used as chip select signal for the on-board EEPROM and therefore disconnected by solder jumper SJ1

Attention: \*\* This pin is connected with the satellite connector via an analog switch



### 2.12.2 HMI Connector

The HMI satellite connector on the CPU\_45B-V1 board allows interface expansion through HMI satellite cards.

|                       | XMC Pin      |     | NSS | nc       | nc        | nc        | nc        | nc        | nc         | nc        | nc       | nc   | nc       | P5.11    | P3.15      | P3.14        | P3.8       | P3.7       | P3.9         | P3.13           | P6.3        | POSRT     |          |      | VAREF | P14.8      | P14.4       | P14.3      | P15.3      | ou c       | ) L  | 2 24 | nc   | NSS |
|-----------------------|--------------|-----|-----|----------|-----------|-----------|-----------|-----------|------------|-----------|----------|------|----------|----------|------------|--------------|------------|------------|--------------|-----------------|-------------|-----------|----------|------|-------|------------|-------------|------------|------------|------------|------|------|------|------|------|------|------|------|------|-----|
| CPU_45B-V1<br>(SDRAM) | XMCFunction  |     | GND | nc       | nc        | nc        | nc        | nc        | nc         | nc        | nc       | nc   | nc       | P5.11    | U1C1.DOUTO | U1C1.SCIKOUT | U2C0.DOUT0 | U2C0.DX0C  | U2C0.SCLKOUT | U2C1.SCLKOUT    | P6.3        | RESET#    |          |      | VAREF | VADC_G1CH0 | VADC_G0CH4  | VADC_G0CH3 | VADC_G2CH3 | DU C       | = =  | n on | nc   | GND |
|                       | Function     |     | GND | MMC_nRST | MMC_DATA0 | MMC_DATA2 | MMC_DATA4 | MMC_DATA6 | MMC_CMD    | MMC_LED   | MMC_SDWC | RSVD | RSVD     | OLED_CMD | IZS_MISK   | 125 SCLK     | SPI MTSR   | SPI_MRST   | SPI_SCLK     | 12C_SCL         | GPIO        | RESET     | VDDS     | VDDS | AREF  | DAC1/ADC0  | ADC2/DACREF | ADC14      | ADC16      | ADC18      | RSVD | TP7  | TP6  | TP5  | TP4  | ТРЗ  | TP2  | TP1  | TPO  | GND |
| Satellite             | Pin          | IΜH | 2   | 4        | 6         | 8         | 10        | 12        | 14         | 16        | 18       | 20   | 22 2     | 24 2     | 26 2       | 8 30         | 32         | 34         | 36           | 38              | 40          | 42        | 44<br>43 | 46   | 48    | 50         | 52          | 54         | 56 5       | 8 6        | 0 6  | 2 64 | 66   | 68   | 70   | 72   | 74   | 76   | 78   | 80  |
| Connector             |              | Ī   | 1   | 3        | 5         | 7         | 9         | 11        | 13         | 15        | 17       | 19   | 21 2     | 23 2     | 25 2       | 7 29         | 31         | . 33       | 35           | 37              | 39          | 41        | 43       | 45   | 47    | 49         | 51          | 53         | 55 5       | 57 5       | 9 6  | 1 63 | 65   | 67   | 69   | 71   | 73   | 75   | 77   | 79  |
|                       | Function     |     | GND | MMC_CLK  | MMC_DATA1 | MMC_DATA3 | MMC_DATA5 | MMC_DATA7 | MMC_BUSPOW | MMC_nSDCD | RSVD     | RSVD | RSVD     | AudioKSI | 125_WA     | 125 SYNCLK   | SPI CSH0   | SPI_CSH1   | SPI_CSH2     | I2C_SDA         | HMI_GPI01   | HMI_GPIO0 | VDDS     | VDD5 | AGND  | DAC0/ADC1  | ADC3/ORC0   | ADC15      | ADC17      | ADCIB      | RSVD | RSVD | TPx1 | TPx0 | COL3 | COL2 | COL1 | COLO | COLA | GND |
| CPU_45B-V1<br>(SDRAM) | XMC Function |     | GND | nc       | nc        | nc        | nc        | nc        | nc         | nc        | nc       | nc   | nc       |          | U1C1.SELO2 | nc<br>nc     | U2C0.SELO0 | U2C0.SELO3 | nc           | U2C1_DOUT0/DX0D | P15.5 Input | P5.7      |          |      | AGND  | DAC.OUT1   | nc          | VADC_G1CH4 | VADC_G3CH5 | VADC_G3CH4 | ) IC | nc   | GND |
|                       | XMC Pin      |     | NSS | nc       | nc        | nc        | nc        | nc        | nc         | nc        | nc       | nc   | о .<br>С | P4.2     | P3.4       | 2 2          | P3.10      | P5.6       | nc           | P3.11/P3.12     | P15.5       | P5.7      |          |      | VAGND | P14.9      | nc          | P14.12     | P15.13     | P15.12     | 2 2  | 2    | υC   | nc   | nc   | nc   | nc   | nc   | nc   | VSS |

Figure 24 Satellite Connector Type HMI



### 2.12.3 ACT Satellite Connector

The ACT satellite connector on the CPU\_45B-V1 board allows interface expansion through ACT satellite cards.



Figure 25 Satellite Connector Type ACT

- (1) P0.7 can also be used for JTAG Debugging (TDI)
- (2) P0.8 is used as TRST in order to enable JTAG Debug
- (3) This pin is connected with the satellite connector via an analog switch
- (4) This ADC input does not support "Out of Range Detection"
- (5) This pin is disconnected by a solder jumper
- (6) Support High Resolution PWM

### 3 Production Data

### 3.1 Schematics

This chapter contains the schematics for the CPU board:

- Satellite Connectors, USB-OTG
- XMC4500
- Power, Debug Connector, Reset
- On-board Debugger

The board has been designed with Eagle. The full PCB design data of this board can also be downloaded from <a href="https://www.infineon.com/xmc-dev">www.infineon.com/xmc-dev</a>.





Figure 26 Satellite Connectors, USB-OTG





Figure 27 XMC4500





Figure 28 Power, Debug Connector, Reset, SDRAM





Figure 29 On-board Debugger

### 3.2 Component Placement and Geometry



Figure 30 Component Placement and Geometry

# CPU\_45B-V1 CPU Board XMC4500 SDRAM

**Production Data** 

### 3.3 Bill of Material (BOM)

Table 11 BOM of CPU\_45B-V1 Board

| Pos<br>No. | Qty | Value           | Device                        | Reference Des.                                                                                                                                                                                                                                 |
|------------|-----|-----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | 1   | 0R/0603         | Resistor                      | R416                                                                                                                                                                                                                                           |
| 2          | 2   | 1M/0402         | Resistor                      | R200, R505                                                                                                                                                                                                                                     |
| 3          | 2   | 1k5/0603        | Resistor                      | R405, R406                                                                                                                                                                                                                                     |
| 4          | 3   | 2k2/0603        | Resistor                      | R306, R307, R420                                                                                                                                                                                                                               |
| 5          | 3   | 4k7/0402        | Resistor                      | R302, R304, R506                                                                                                                                                                                                                               |
| 6          | 1   | 4u7F/0805       | Capacitor, ceramic            | C212                                                                                                                                                                                                                                           |
| 7          | 17  | 10k/0402        | Resistor                      | R204, R206, R207, R303, R309, R310, R400, R401, R408, R414, R419, R422, R429, R430, R431, R503, R507                                                                                                                                           |
| 8          | 2   | 10nF/0402       | Capacitor                     | C406, C415                                                                                                                                                                                                                                     |
| 9          | 8   | 10uF/10V/0805   | Capacitor, ceramic            | C308, C323, C324, C325, C405, C407, C506, C510                                                                                                                                                                                                 |
| 10         | 2   | 12MHZ/S/3.2X2.5 | Crystal, NX3225GD, NDK        | Q302, Q500                                                                                                                                                                                                                                     |
| 11         | 6   | 15pF/0402       | Capacitor                     | C312, C315, C316, C317,C500, C501                                                                                                                                                                                                              |
| 12         | 1   | 22R/0402        | Resistor                      | R432                                                                                                                                                                                                                                           |
| 13         | 1   | 32.768KHZ       | Crystal, NX3215SA, NDK        | Q301                                                                                                                                                                                                                                           |
| 14         | 11  | 33R/0402        | Resistor                      | R202, R203, R402, R403, R421, R423, R424, R425, R426, R501, R502                                                                                                                                                                               |
| 15         | 4   | 74LVC1G66DCK    | IC, Single Analog Switch      | U301, U303, U304, U306                                                                                                                                                                                                                         |
| 16         | 40  | 100nF/0402      | Capacitor                     | C200, C202, C204, C205, C208, C210, C211, C300, C301, C302, C305, C306, C307, C309, C310, C311, C318, C319, C321, C322, C413, C416, C417, C430, C431, C432, C433, C434, C435, C436, C400, C401, C502, C504, C505, C507, C508, C509, C511, C512 |
| 17         | 2   | 100uF/T/10V/C   | Capacitor, bipolar            | C213, C414                                                                                                                                                                                                                                     |
| 18         | 1   | 219-02          | Dual DIP-Switch, 0.1" SMD     | SW300                                                                                                                                                                                                                                          |
| 19         | 1   | 270k/0402       | Resistor                      | R415                                                                                                                                                                                                                                           |
| 20         | 2   | 510R/0603       | Resistor                      | R313, R500                                                                                                                                                                                                                                     |
| 21         | 4   | 680R/0603       | Resistor                      | R301, R305, R407, R504                                                                                                                                                                                                                         |
| 22         | 3   | BAS3010A-03W    | Diode, SOD323, Infineon       | V200, V408, V501                                                                                                                                                                                                                               |
| 23         | 2   | BAT54-02V       | Diode, SC79, Infineon         | V404, V405                                                                                                                                                                                                                                     |
| 24         | 1   | BAV70           | Diode, SOT23-3, Infineon      | V406                                                                                                                                                                                                                                           |
| 25         | 1   | BC858C          | Transistor, SOT23-3, Infineon | Q404                                                                                                                                                                                                                                           |
| _          |     |                 |                               |                                                                                                                                                                                                                                                |



# CPU\_45B-V1 CPU Board XMC4500 SDRAM

| 26 | 1 | BK-885            | Battery Holder, 12mm Coin<br>Cell                                                    | X402                       |
|----|---|-------------------|--------------------------------------------------------------------------------------|----------------------------|
| 27 | 4 | BLM18PG600        | Ferrite Bead, 0603, Murata                                                           | L201, L300, L301, L500     |
| 28 | 2 | ESD8V0L2B-03L     | Diode, TSLP-3-1, Infineon                                                            | V201, V500                 |
| 29 | 3 | HSEC8_MATING-CARD | Connector, Edgecard, Samtec                                                          | X200, X201, X202           |
| 30 | 1 | IFX1763_PADNOP    | Voltage Regulator, 3.3V LDO, Infineon                                                | U401                       |
| 31 | 2 | LED-GE/D/0603     | LED, yellow                                                                          | V300, V301                 |
| 32 | 4 | LED-GN/D/0603     | LED, green                                                                           | V401, V402, V403, V502     |
| 33 | 1 | LED-RT/D/0603     | LED, red                                                                             | V407                       |
| 34 | 1 | IS42S16400F-7BL   | Synchronous Dynamic RAM, ISSI                                                        | U430                       |
| 35 | 1 | NC7WZ07P6X        | IC, Dual Buffer OD, SC70-6                                                           | U501                       |
| 36 | 1 | POTI/10K/VERT     | Potentiometer, K09K1130A8G, ALPS                                                     | R300                       |
| 37 | 1 | S2*10/1.27SO      | Connector, FTSH-110-01-L-<br>DV-K-P, Samtec                                          | X400                       |
| 38 | 1 | S25FL032P0XMFI01  | IC, qSPI Flash Memory,<br>SPANSION                                                   | U302                       |
| 39 | 3 | TMPS2-SMD         | Switch, tactile                                                                      | SW400, SW401, SW402        |
| 40 | 1 | TPS2051BDBV       | IC, Power Switch, SOT23-5                                                            | U200                       |
| 41 | 1 | XE3K_DM2+CTX      | Connector, FTSH-105-01-LM-DV-K, w/o pin 7, Samtec Connector, FLE-103-01-G-DV, Samtec | X401                       |
| 42 | 1 | XMC4200_QFN48     | IC, XMC4200, QFN48,<br>Infineon                                                      | U500                       |
| 43 | 1 | XMC4500_LFBGA144  | IC, XMC4500, LFBGA144,<br>Infineon                                                   | U300                       |
| 44 | 2 | ZX62-AB-5PA       | Connector, Micro-USB, Hirose                                                         | X203, X500                 |
| 45 | 1 | no ass.           | Pinheader, 4-pin, 0.1" TH                                                            | X501                       |
| 46 | 4 | no ass.           | Pinheader, 1-pin, 0.1" TH                                                            | TP404, TP405, TP406, TP407 |
| 47 | 1 | no ass./0R/0603   | Resistor                                                                             | R417                       |
| 48 | 1 | no ass./4k7/0402  | Resistor                                                                             | R427                       |
| 49 | 2 | no ass./10k/0402  | Resistor                                                                             | R205, R413                 |
| 50 | 1 | no ass./10nF/0402 | Capacitor                                                                            | C503                       |
| 51 | 2 | no ass./33R/0402  | Resistor                                                                             | R404, R410                 |
| 52 | 1 | no ass.           | Pinheader, 3-pin, 0.1" TH,<br>Hitex PowerScale                                       | JP300                      |
| 53 | 3 | no ass.           | Solder Bridge (open)                                                                 | SJ1, SJ2, SJ3              |
| 54 | 2 | 0R/0402           | Solder Bridge (closed by resistor)                                                   | SJ4, SJ5                   |

www.infineon.com