数据挖掘 第5章 关联分析

教师: 王东京

学院: 计算机学院

邮箱: dongjing.wang@hdu.edu.cn

关联规则挖掘 Association Rule Mining

给定一组交易(transactions),请根据交易中其他项目(item)的发生情况找到可以预测某个项目发生的规则

购物篮交易事务 (transactions)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rules示例

```
{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},
```

关联规则挖掘 Association Rule Mining

问题1: 关联规则挖掘的成本

问题2: 关联规则的准确性

购物篮交易事务 (transactions)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rules示例

```
{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},
```

暗示 (Implication) 意味着共现 (cooccurrence), 而不是因果关系 (causality)!

定义: 频繁项集 Frequent Itemset

项集 Itemset

- 一个或多个项 (item) 的集合
 - ◆ 示例: {Milk, Bread, Diaper}
- K项集 k-itemset
 - ◆ 包含k个项的项集

支持度计数 Support count (σ)

- 项集在事务出现的频率
- 例如 σ({Milk, Bread, Diaper}) = ?
- 2

支持度 Support (s)

- 包含项集的交易/事务 (transaction) 比例
- 例如 s({Milk, Bread, Diaper}) = ?
- 2/5

频繁项集 Frequent Itemset

- 支持度大于等于最小阈值 (minsup threshold) 的项集

购物篮交易事务 (transactions)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

定义: 关联规则 Association Rule

关联规则 Association Rule

- 形如X → Y的蕴含 (implication) 表 达式其中 X 和 Y 都是项集 (不相交)
- 例如:{Milk, Diaper} → {Beer}

规则评估指标 Rule Evaluation Metrics

- 支持度 Support (s)
 - ◆ 同时包含X和Y的交易/事务比例
- 置信度 Confidence (c)
 - ◆ 衡量Y中的项目在包含X的交易/事务中 出现的频率

$$s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$$
$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

示例:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

关联与因果

关联规则中的蕴含 (Implication) 意味着共现 (co-occurrence), 而不是因果关系 (causality)!

2021年

规则{Diaper} => {Beer} 的支持度s和置信度c 分别为?

$$s=0.4, c=1$$

$$s=0.6, c=0.75$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

关联规则挖掘任务

给定一组交易T,关联规则挖掘的目标是找到所有 具有以下特征的规则:

- Support支持度 ≥ minsup 阈值
- Confidence置信度 ≥ minconf 阈值
- 如何寻找?

原始/蛮力方法 Brute-force approach:

- 列出所有可能的关联规则
- 计算每个规则的支持度和置信度
- 修剪不满足minsup和minconf阈值的规则
- ⇒理论可行,实际计算不可行 (Computationally prohibitive)!

计算复杂度 Computational Complexity

给定d个项 (item):

- 项集总数=?
 - **◆**2^d
- 可能的关联规则总数:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

关联规则挖掘 Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

规则示例:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67) 
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0) 
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67) 
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67) 
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5) 
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

观察结果 Observations:

- •上面所有规则都是相同项集的二元划分(binary partition): {Milk, Diaper, Beer}
- •源自同一项集的规则具有相同的支持度,但可以具有不同的置信度
- •因此,我们可能会拆分(decouple)对支持度和置信度的要求

2021年

关联规则挖掘 Mining Association Rules

方法分为两步:

- 1. 频繁项集产生Frequent Itemset Generation
 - 生成所有支持度support ≥ minsup的项集(频繁项集)
- 2. 规则的产生Rule Generation
 - 从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则(strong rule)。

生成频繁项集在计算上的代价仍然非常大

频繁项集生成 Frequent Itemset Generation

频繁项集生成 Frequent Itemset Generation

原始方法 Brute-force approach:

- 每个格 (lattice) 对应的项集都是一个候选的频繁项集
- 通过扫描数据库计算每个候选项集的支持度

13

- 将每个事务与每个候选集进行比较
- 复杂度 ~ O(NMw) => Expensive since M = 2^d !!!
- 如何降低复杂度?

频繁项集生成策略 (提高效率)

减少候选数目(M)

- 完全搜索 Complete search: M=2d
- 利用剪枝技术(而非支持度)减少M

减少事务/交易(transactions)数目(N)

- 随着项集的大小增加,减少N的大小
- Used by DHP and vertical-based mining algorithms

减少需要比较的次数(NM)

- 使用高效的数据结构存储候选项集或者事务
- 没有必要比较每一个候选项集和事务

减少候选数目 Reducing Number of Candidates

先验原则 Apriori principle:

如果一个项集是频繁的,那么它的所有子集也一定是频 繁的

减少候选数目 Reducing Number of Candidates

先验原则 Apriori principle:

如果一个项集是频繁的,那么它的所有子集也一定是频 繁的

由于支持度措施 (support measure) 的以下特性成立, 因此Apriori principle原理成立:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- 项集的支持度永远不会超出其子集的支持度
- 这就是所谓的支持度的**反单调性 (anti-monotone)**

先验原理阐述 Illustrating Apriori Principle

关于"如何提高频繁项集生成的效率"的策略说法 错误的是?

- A 利用剪枝计数减少候选项集数目
- 通过扫描事务数据库,将每个事务与每个 候选集进行比较
- 🕝 减少事务 (transaction) 数目
- D 减少比较候选项集和事务的次数

Apriori 算法

候选产生: 蛮力方法 Candidate Generation: Brute-force method

候选产生:蛮力方法 Candidate Generation: Brute-force method

TID {面包,牛奶} {面包,尿布,啤酒,鸡蛋}

购物篮事务的例子

{牛奶,尿布,啤酒,可乐} {面包, 牛奶, 尿布, 啤酒} {面包,牛奶,尿布,可乐}

表 6-1

通过计算产生的候选项集数目,可以看出先验剪枝策略的有效性。枚举所有项集(到 3-项集) 6+1=13个候选。甚至在这个简单的例子中,候选项集的数目也降低了68%。

Apriori 算法

- F_k: 频繁k-项集的集合 frequent k-itemsets
- C_k: 候选k-项集的集合 candidate k-itemsets

算法过程

- Let k=1
- Generate F₁ = {frequent 1-itemsets} #频繁1项集
- Repeat until F_k is empty
 - ◆ Candidate Generation: Generate C_{k+1} from F_k
 - ◆ Candidate Pruning: Prune candidate itemsets in C_{k+1} containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in C_{k+1} by scanning the DB
 - ◆ Candidate Elimination: Eliminate candidates in C_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Apriori 算法伪代码

算法 6.1 Apriori 算法的频繁项集产生

```
1:
      k = 1
                                                     {发现所有的频繁 1-项集}
      F_k = \{i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup\}
 3:
      repeat
 4:
         k = k + 1
                                       {产生候选项集}
         C_k = \operatorname{apriori-gen}(F_{k-1})
         for 每个事务 t∈ T do
 6:
                                     \{ 识别属于 t 的所有候选 \}
            C_t = \operatorname{subset}(C_k, t)
 7:
            for 每个候选项集 c \in C_t do
 8:
               \sigma(c) = \sigma(c) + 1 {支持度计数增值}
 9:
10:
          end for
11:
       end for
       F_k = \{c \mid c \in C_k \land \sigma(c) \ge N \times minsup\}
                                                   {提取频繁 k-项集}
12:
    until F_k = \emptyset
14: Result = \bigcup F_k
```

候选剪枝 Candidate Pruning

```
算法 6.1 Apriori 算法的频繁项集产生
       1:
            k = 1
                                                       {发现所有的频繁 1-项集}
           F_k = \{i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup\}
       3:
            repeat
       4:
               k = k + 1
                                           {产生候选项集}
              C_k = \operatorname{apriori-gen}(F_{k-1})
       5:
               for 每个事务 t \in T do
       6:
                                        {识别属于 t 的所有候选}
                 C_t = \operatorname{subset}(C_k, t)
       7:
                 for 每个候选项集 c \in C_t do
       8:
                    \sigma(c) = \sigma(c) + 1 {支持度计数增值}
       9:
      10:
                end for
      11: end for
                                                      {提取频繁 k-项集}
          F_k = \{c \mid c \in C_k \land \sigma(c) \ge N \times minsup\}
      12:
      13: until F_k = \emptyset
      14: Result = \bigcup F_k
```

候选剪枝 Candidate Pruning

F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} 是频 繁3-项集的集合

 C_4 = {ABCD,ABCE,ABDE} 是生成的频繁4-项集的集合 (from previous slide)

候选剪枝 Candidate pruning

- Prune ABCE because ACE and BCE are infrequent
- Prune ABDE because ADE is infrequent

候选剪枝后: C₄ = {ABCD}

候选项集产生过程/方法

要求:

- 避免产生太多不必要的候选
- 确保候选项集的集合是完全的
- 不产生重复候选项集

方法:

- 蛮力方法 (复杂度高)
- − F_{k-1} x F_{k-1} 方法(自行了解)
 - ◆用其他频繁项来扩展每个频繁(k-1)项集:例如用频繁1-项集 扩展频繁2-项集产生频繁3-项集

支持度计数: Support Counting of Candidate Itemsets

扫描交易事务(transaction)数据库以确定每个候选项集的支持度

必须将每个候选项目集与每个交易事务匹配,这是一项高成本的操作

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

```
Itemset
{ Beer, Diaper, Milk}
{ Beer, Bread, Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}
```

支持度计数: Support Counting of Candidate Itemsets

- 为了,将候选项目集存储在哈希结构(hash structure)中 ,以减少比较次数
 - 与其将每个交易事务与每个候选者进行匹配,不如将其与哈希存储桶 (hashed buckets) 中包含的候选者进行匹配。

Support Counting: An Example

假设有15个长度为3的候选项集:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

支持事务t= (1,2,3,5,6) 的项集有哪些?

1 2 3 5 6 Level 1 2 3 5 6 2 3 5 6 5 6 Level 2 **12** 3 5 6 **13** 5 6 **23** 5 6 **15** 6 **25** 6 **35** 6 123 135 235 156 256 356 125 236 136 126 Level 3 Subsets of 3 items

Transaction, t

Support Counting: An Example

假设有15个长度为3的候选项集:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

使用Hash树进行支持度计数 Support Counting Using a Hash Tree

假设有15个长度为3的候选项集:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 需要:

・ 哈希函数 Hash function

· 最大叶大小 (Max leaf size) : 单个叶节点中存储的最大项集数量 (如果候选项集的数量超过 最大叶子大小,需划分节点)

图 6-10 使用 Hash 树结构的项集支持度计数

35

2021年 数据挖掘 数据挖掘

Support Counting Using a Hash Tree

2021年

规则生成 Rule Generation

给定频繁项集 L,找到所有非空子集 f ⊂ L, 其中f → L – f 满足最小置信度的要求

- 如果 {A,B,C,D} 是一个频繁项集, 候选规则如下:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

如果 |L| = k, 那么共有 $2^k - 2$ 条候选规则 (忽略 $L \rightarrow \emptyset$ 和 $\emptyset \rightarrow L$)

规则生成 Rule Generation

通常,置信度不具有反单调性 (anti-monotone) 的属性

c(ABC →D) 可以大于或者小于 c(AB →D)

但是从同一项目集生成的规则的置信度具有反单调 属性

E.g., 假设 {A,B,C,D} 是一个频繁4-项集:
 c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)

置信度是反单调的(关于规则的RHS上的项目数)

定理 6.2 如果规则 $X \to Y - X$ 不满足置信度阈值,则形如 $X' \to Y - X'$ 的规则一定也不满足置信度阈值,其中 X' 是 X 的子集。

为了证明该定理,考虑如下两个规则: $X' \to Y - X'$ 和 $X \to Y - X$,其中 $X' \subset X$ 。这两个规则的置信度分别为 $\sigma(Y) / \sigma(X')$ 和 $\sigma(Y) / \sigma(X)$ 。由于 X'是 X 的子集,所以 $\sigma(X') \ge \sigma(X)$ 。因此,前一个规则的置信度不可能大于后一个规则。

Rule Generation for Apriori Algorithm

2021年

频繁项集的紧凑表示

Compact Representation of Frequent Itemsets

一些项集是多余的,因为它们与它们的超集具有相同的支持度

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

频繁项集数

$$=3\times\sum_{k=1}^{10}\binom{10}{k}$$

需要一个紧凑表示 (compact representation)

极大频繁项集 Maximal Frequent Itemset

如果某项集很频繁且其直接超集 (immediate supersets) 都不频繁,则它是极大频繁的

闭合项集 Closed Itemset

如果项集X的所有直接超集(immediate supersets)的支持度计数(support count)与项集X均不相同,则X是闭合的(closed)

如果X的直接超集中,至少有一个与X的支持度计数相同,则X不是闭合的.

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

极大/闭合项集 Maximal vs Closed Itemsets

极大/闭合项集 Maximal vs Closed Itemsets

极大/闭合项集 Maximal vs Closed Itemsets

模式评估 Pattern Evaluation

关联规则算法可以产生大量规则

可以使用兴趣度(Interestingness)度量来对模式 (pattern) 进行修剪或

- 客观兴趣度
 - ◆在最初的公式中,支持度 (support) 和置信度 (confidence) 是唯一采用的措施
- 主观兴趣度

计算客观兴趣度指标 Computing Interestingness Measure

给定 $X \rightarrow Y$ 或者 {X,Y},可从相依表 (contingency table) 中获得计算兴趣度所需的信息

Contingency table

	Υ	Y	
Χ	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

用于定义各种度量指标

support, confidence, Gini, entropy, etc.

置信度的局限性 Drawback of Confidence

Custo mers	Tea	Coffee	•••
C1	0	1	
C2	1	0	
C3	1	1	•••
C4	1	0	

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

关联规则: Tea → Coffee

Confidence \cong P(Coffee|Tea) = 15/20 = 0.75

Confidence > 50%, 意味着喝茶的人喝咖啡的可能性更大(相比于不喝咖啡)

所以规则似乎是合理的

置信度的局限性 Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

关联规则: Tea → Coffee

Confidence = P(Coffee|Tea) = 15/20 = 0.75

但是 P(Coffee) = 0.9, 这意味着知道一个人喝茶会降低该人喝咖啡的可能性!

⇒ 注意P(Coffee|Tea) = 75/80 = 0.9375

关联规则的度量 Measure for Association Rules

那么,我们真正想要什么样的规则?

- Confidence(X → Y) 应该足够大
 - ◆确保购买X的人比不购买X的人更有可能购买Y
- Confidence($X \rightarrow Y$) > support(Y)
 - ◆否则,规则将具有误导性,因为拥有X项实际上减少了在同一笔 交易事务中拥有Y项的机会
 - ◆是否有任何措施可以捕获此约束?
 - 答: 是的。有很多。

示例: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

关联规则: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

但是 P(Coffee) = 0.9

⇒ Lift = 0.75/0.9= 0.8333 (< 1, 因此是负关联)

Lift or Interest

	Y	\overline{Y}	
X	10	0	10
X	0	90	90
	10	90	100

	Υ	Ÿ	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

统计独立 Statistical independence:

已有文献	献中提出了许
多措施	(自学)

#	# Measure	Formula
1	1 φ-coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)/(A-P(B))/(A-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(A,B)}{P(A,\overline{B})P(\overline{A},B)}$
4	4 Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	5 Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}$
7	7 Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i) P(B_j)}{P(A_i) P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
8	3 J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
g	Gini index (G)	$\Big \max \Big(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \Big \Big $
		$-P(B)^2-P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	0 Support (s)	P(A,B)
1:	1 Confidence (c)	$\max(P(B A), P(A B))$
1:	2 Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	3 Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
1	4 Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
1	5 cosine (IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
10	6 Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
1	7 Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
1	8 Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	9 Collective strength (S)	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
26	0 Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
2	1 Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

比较不同的度量 Comparing Different Measures

列联表 (contingency tables) 的10个示例:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀	
E1	8123	83	424	1370	
E2	8330	2	622	1046	
E3	9481	94	127	298	
E4	3954	3080	5	2961	
E5	2886	1363	1320	4431	
E6	1500	2000	500	6000	
E7	4000	2000	1000	3000	
E8	4000	2000	2000	2000	
E9	1720	7121	5	1154	
E10	61	2483	4	7452	

使用各种方法对列联表排序:

#	φ	λ	α	Q	Y	κ	М	J	G	8	с	L	V	Ī	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

辛普森悖论 Simpson's Paradox

Buy	Buy Exe		
HDTV	Yes	No	
Yes	99	81	180
No	54	66	120
	153	147	300

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 99/180 = 55\%$$

 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 54/120 = 45\%$

=>购买HDTV的客户更有可能购买健身器材?

辛普森悖论 Simpson's Paradox

Customer	Buy	Buy Ex	Total	
Group	HDTV	Yes	No	
College Students	Yes	1	9	10
	No	4	30	34
Working Adult	Yes	98	72	170
	No	50	36	86

大学生:

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 1/10 = 10\%$$

 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 4/34 = 11.8\%$

上班族:

$$c(\{\text{HDTV} = \text{Yes}\} \rightarrow \{\text{Exercise Machine} = \text{Yes}\}) = 98/170 = 57.7\%$$

 $c(\{\text{HDTV} = \text{No}\} \rightarrow \{\text{Exercise Machine} = \text{Yes}\}) = 50/86 = 58.1\%$

辛普森悖论 Simpson's Paradox

观察到的数据关系可能会受到其他混杂因素(隐藏变量)的影响

- 隐藏的变量可能导致观察到的关系消失或反转其方向!

需要进行适当的分层(stratification)以避免产生 伪模式(spurious patterns)

总结

有效地挖掘关联规则

- 质量
- 支持度、置信度......
- 先得到频繁项集,再根据频繁项集得到关联规则

高效地挖掘关联规则

- 效率
- 提高获得频繁项集的效率
 - ◆支持度计算
- 提高关联规则挖掘的效率
 - ◆置信度计算

谢谢!

数据挖掘

教师: 王东京

学院: 计算机学院

邮箱: dongjing.wang@hdu.edu.cn