4. Дифференциальные уравнения

4.1. Общие понятия

1* Постановка задачи

 $Pr.\ 1.$ Скорость распада радия в текущий момент времени t пропорциональна его наличному количеству Q. Требуется найти закон распада радия:

$$Q = Q(t)$$
,

если в начальный момент времени $t_0 = 0$ количество равнялось Q_0

Коэффициент пропорциональности k найден эмпирически.

Решение. Скорость распада.

$$\overline{\frac{dQ(t)}{dt}} = kQ$$
 - ищем $Q(t)$ $dQ(t) = kQdt$ $\underline{\frac{dQ(t)}{Q}}$ = $\underline{\underbrace{kdt}_{\text{содержит только }t}}$ - «разделение переменных»

содержит только Q

Внесем все в дифференциал:

$$d\ln Q = kdt = dkt$$

$$d(\ln Q - kt) = 0$$

Нашли семейство первообразных:

$$\ln Q - kt = \tilde{C}$$

$$\ln Q = \tilde{C} + kt$$

$$Q = e^{\tilde{C} + kt} \stackrel{e^{\tilde{C} = C}}{===} Ce^{kt}$$

По смыслу k < 0, так как Q уменьшается. Обозначим n = -k, n > 0

Тогда
$$Q(t) = Ce^{-nt}$$

Получили вид закона распада. Выбор константы C определен Н.У. (начальными условиями):

$$t_0 = 0$$
 $Q(t_0) = Q_0 = C$
Тогда, закон - $Q^*(t) = Q_0 e^{-nt}$

Nota. Оба закона: общий $Q(t) = Ce^{-nt}$ и частный $Q^*(t) = Q_0e^{-nt}$ - являются решением дифференциального уравнения:

$$Q'(t) = kQ$$
 (явный вид)

$$d \ln Q(t) - k dt = 0$$
 (в дифференциалах)

 $Pr.\ 2$ Тело массой m брошено вверх с начальной скоростью v_0 . Нужно найти закон движения y=y(t). Сопротивлением воздуха пренебречь.

По II закону Ньютона:

$$m\overrightarrow{d}=m\overrightarrow{g}$$
 $\overrightarrow{d}=\overrightarrow{g}$
 $\overrightarrow{d}=\overrightarrow{g}$
 $a=\left[\frac{d^2y}{dt^2}=-g\right]$ - ДУ
 $\underline{\text{Решение.}}$ $y''(t)=-g$
 $(y'(t))'=-g$
 $y'(t)=-\int gdt=-gt+C_1$
 $y(t)=\int (-gt+C_1)dt=\left[-\frac{gt^2}{2}+C_1t+C_2=y(t)\right]$ - общий закон $C_{1,2}$ ищем из Н.У.

В задаче нет условия для $y(t_0)$. Возьмем $y_0 = y(t_0) = 0$

Кроме того $y'(t_0) = v(t_0) = v_0$

Паким образом,
$$\begin{cases} y(t_0) = 0 \\ y'(t_0) = 0 \end{cases}$$
 Найдем C_1 : $y'(t_0) = y(0) = -gt_0 + C_1 = v_0$ $C_1 = v_0$ Найдем C_2 : $y(t_0) = y(0) = -\frac{gt^2}{2} + C_1t + C_2 = C_2 = 0$ Частный закон:
$$y^*(t) = v_0t - \frac{gt^2}{2}$$

2* Основные определения

Def. 1. Уравнение $F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$ - называется обыкновенным ДУ n-ого порядка (*)

Ex.
$$Q' + nQ = 0$$
 $u y'' + g = 0$

Def. 2. Решением ДУ (*) называется функция y(x), которая при подстановке обращает (*) в тождество

Def. 2'. Если y(x) имеет неявное задание $\Phi(x,y(x))=0$, то $\Phi(x,y)$ называется интегралом уравнения (*)

Nota. Разделяют общее решение ДУ - семейство функций, при этом каждое из них - решение; и частное решение - отдельная функция

Def. 3. Кривая с уравнением y = y(x) или $\Phi(x, y(x)) = 0$ называют интегральной кривой

$$\begin{aligned} \mathbf{Def.} \ 4. & \begin{cases} y(x_0) = y_0 \\ \vdots & \text{- система начальных условий (**)} \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases} \end{aligned}$$
 Тогда
$$\begin{cases} (*) \\ (**) \end{cases} \text{- задача Коши (ЗК)}$$

Nota. Задача Коши может не иметь решений или иметь множество решений

Th.
$$y' = f(x,y)$$
 - ДУ $M_0(x_0,y_0) \in D$ - точка, принадлежащая ОДЗ Если $f(x,y)$ и $\frac{\partial f}{\partial y}$ непрерывны в M_0 , то ЗК $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$

имеет единственное решение $\varphi(x,y) = 0$, удовлетворяющее Начальному Условию (без док-ва)

Nota. Преобразуем ДУ:
$$\underline{y'-f(x,y)}_{F(x,y(x),y'(x))} = 0$$

См. определения обыкновенных и особых точек

Def. 5. Точки, в которых нарушаются условия теоремы, называются особыми, а решения, у которых каждая точка особая, называются особыми

Def. 6. Общим решением ДУ (*) называется $y = f(x, C_1, C_2, ..., C_n)$

Nota. $\Phi(x,y(x),C_1,\ldots,C_n)=0$ - общий интеграл

Def. 7. Решением (*) с определенными значениями C_1^*, \dots, C_n^* называется частным

Nota. Форма записи:

Разрешенное относительно производной y' = f(x, y)

Сведем к виду:
$$\frac{dy}{dx} = \frac{P(x,y)}{-Q(x,y)} \Longrightarrow -Q(x,y)dy = P(x,y)dx \Longrightarrow$$

P(x,y)dx + Q(x,y)dy = 0 - форма в дифференциалах