中国科学技术大学

2018—2019学年第一学期期末试卷

	考试科目	时间序列分析	得分	
	所在系	姓名	学号	
	考试时间	司: 2019年1月3日上午9:45 -	-11:45; 使用简单计算器	
(26分)	填空题(每题2	分,答案请写在答题纸」	2):	
1 称	时间序列 x_t 是另	B 一个时间序列 y_t 的 $Graph$		
— 为]	 N, 那么待估计	 的参数个数是	,向量自回归模型VAR(p), 	变量个数
2 设.	ARMA(1, 2): 2	$X_t = 0.1 X_{t-1} + \epsilon_t - 0.5$ 条件时,模型	$\epsilon_{t-1} + a \; \epsilon_{t-2}, $	
3 设.	AR(p)模型			
-	(1)	$X_t = \phi_0 + \phi_1 X_{t-1}$	$+\cdots+\phi_pX_{t-p}+\epsilon_t$	
的	传递形式为 X_t	$=\mu+\sum_{k=0}^{\infty}\psi_{k}\epsilon_{t-k}$,则∑	$\sum_{k=0}^{\infty} \psi_k(\frac{1}{2})^k = \underline{\qquad}$	
4 设	$\{X_t, t=0,\pm 1, \pm 1$	±2,}是满足MA(q)棹	型	
			$+ \theta_q \epsilon_{t-q}, \epsilon_t \sim WN(0, \sigma^2)$	
的			佳线性预测 $\hat{X}(t+l)(l \geq 1)$ 的均	方误差是
		$・ = \epsilon_t - \theta \epsilon_{t-1} - \Theta \epsilon_{t-1} - \Theta \epsilon_{t-1}$ _的乘法季节模型, 记分	$ heta_{12} + heta\Theta \epsilon_{t-13}$,该模型为一个 $S_{}$	季节周期
		,	即好消息和坏消息对波动有不 和模型.	同影响.
	间序列 $\{X_t\}$, $满$ 其为平稳过程.	₅ 足下列三个条件		时
8 Y _t	$= \phi_1 Y_{t-1} + \phi$	$_{2}Y_{t-2} + \epsilon_{t}$,己知 $\rho_{1} =$	$0.4, \ \rho_2 = 0.2, \ \mathbb{M}\phi_1 = \underline{\hspace{1cm}}$	$_{}, \phi_2 =$
			σ^2 ,且二阶矩存在. 令 $X_t = U$ 相关函数 $\rho(s,t) =$	
		题8分 答案请写在答题		

1 对ARIMA(p, d, q)模型, 确定p, d, q, 并求出 $E\Delta Y_t$ 和 $Var(\Delta Y_t)$.

$$Y_t = 10 + 1.5Y_{t-1} - 0.5Y_{t-2} + \epsilon_t - 0.5\epsilon_{t-1}, \quad \epsilon_t \sim WN(0, 1).$$

- **2** 对ARMA(1,1)序列 $X_t = 0.5X_{t-1} + \epsilon_t 0.25\epsilon_{t-1}, \epsilon_t \sim WN(0, \sigma^2)$, 求解它的自相关系数 $\rho_k, k \geq 2$ 的递推式.
- 3 对任意一个MA(1)序列,

$$X_t = \epsilon_t + \theta \epsilon_{t-1}, \quad \epsilon_t \sim WN(0, \sigma^2),$$

求证它的1阶自相关系数满足 $-1/2 \le \rho_1 \le 1/2$

- 三. (50分) 计算题(每题答案请写在答题纸上):
 - 1. 考虑如下的时间序列模型ARMA(2,1)

$$(1 - B + 0.5B^2)X_t = (1 + 0.4B)\epsilon_t, \ \epsilon_t \sim WN(0, \sigma^2),$$

- (1) 判断ARMA(2,1)模型的平稳性和可逆性.
- (2) 如果是平稳的, 计算线性过程 $X_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}$ 的系数 ψ_1, ψ_2, ψ_3 .
- (3) 如果是可逆的, 请写出该过程的逆转形式.
- 2. 考虑-GARCH(1,1)模型,

$$y_t = \sqrt{h_t} \epsilon_t, \epsilon_t \sim IID \ N(0, 1),$$

 $h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 h_{t-1}, \quad \alpha_0, \alpha_1, \beta_1 \ge 0, \alpha_1 + \beta_1 < 1.$

(1) 验证y_t 为ARMA(1,1)模型,

$$y_t^2 = \alpha_0 + (\alpha_1 + \beta_1)y_{t-1}^2 + u_t - \beta_1 u_{t-1}, \quad u_t = y_t^2 - h_t.$$

- (2) 计算 y_t^2 的均值和自协方差函数 γ_k .
- 3. 设 X_t 为一ARMA(1,1)序列

$$X_t = \phi_1 X_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1}, \quad \epsilon_t \sim WN(0, \sigma^2).$$

 $\diamondsuit Y_t = \frac{1}{2}(X_t + X_{t-1}),$

- (1) 基于 X_{t-1} , X_t 对 Y_{t+1} 做最佳线性预测, 给出表达式, 并计算均方误差.
- (2) 求Y₄的谱密度.