

Chapter 3. Arithmetic for Computers

Binary Addition

Adding 6₁₀ and 7₁₀

- Overflow in addition
 - Not possible when signs are different
 - Magnitude of result must be smaller than operands

Binary Subtraction

Subtracting 6 from 7: 7 - 6 = 7 + (-6)

... 0000 0000 0000 0111

+ ... 1111 1111 1111 1010

... 0000 0000 0000 0001

2's complement representation of -6

- No overflow if signs of both operands are the same
- Overflow possible if operands have different signs

Overflow Detection

- Detecting overflow for 2's complement numbers
 - ex) In addition, it is the overflow if sign bit becomes 1

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

- Overflow of Unsigned Integers
 - Addition overflows if the sum is less than either of the addends
 - Overflow if A+B=S and S < A or S < B
 - Subtraction overflows if the difference is greater than the minuend
 - Overflow if A-B=S and S > A
- How to handle overflow differs from language to language
 - C, Java: ignore integer overflow
 - Ada, Fortran: overflow must be notified to program

Steps of multiplication

 1000_{ten} multiplicand \times 1001_{ten} multiplier 1000 0000 0000 1000 10010000+ product

Max Length of product = length of multiplicand + length of multiplier

Multiplication Hardware

- First version
- Sequential processing

 $\begin{array}{ccc} \text{multiplicand} & 1010 \\ \text{multiplier} & \times & 1101 \end{array}$

K∏∐ 경북대학교 |T대학 컴퓨터학부

Multiplication

multiplicand 1010 multiplier \times 1101

 $\frac{\text{multiplicand}}{\text{multiplier}} \times 1101$

 $\begin{array}{ccc} \text{multiplicand} & 1010 \\ \text{multiplier} & \times & 1101 \end{array}$

 $\begin{array}{ll} \text{multiplicand} & 1010 \\ \text{multiplier} & \times & 1101 \end{array}$

- Multiplicand register, ALU, Multiplier register are 64 bits
- Product register is 129 bits
- Multiplier placed in the right half of product register
- Addition and shifts occur in parallel

multiplicand 1010 multiplier \times 1101

1010

multiplicand 1010 multiplier \times 1101

1010

 $\begin{array}{ll} \text{multiplicand} & 1010 \\ \text{multiplier} & \times & 1101 \end{array}$

Iteration 1: Control signal setup

0000 1010 1010

multiplicand 1010 multiplier \times 1101 1010

Iteration 1: Clock firing

multiplicand 1010 multiplier \times 1101

Iteration 1: Multiplicand added

 $\begin{array}{ll} \text{multiplicand} & 1010 \\ \text{multiplier} & \times & 1101 \end{array}$

Iteration 1: Product register shifted

0000 1010 1010

Faster Multiplication

Use multiple adders since multiplier is known at the beginning

0101110100000000

0110011001110010

Multiply high signed unsigned: mulhsu mulhsu rdh, rs1, rs2 signed

Division

Divisor	1001	Quotient
)1001010	Dividend
<u>-</u>	- <u>1000</u>	
	10	
	101	
	1010	
	<u>-1000</u>	
	10	Remainder

Dividend=Quotient x Divisor + Remainder

Algorithm

- Subtract Divisor from Dividend (=remainder)
 - Result goes into remainder register
- If remainder>=0, write 1 to quotient
- If remainder<0, restore by adding divisor to remainder. Write 0 to quotient.
- Shift divisor right by 1 bit position
- Repeat this 33 times.

1001

Quotient

LUNVERSITY

Division Example 7÷2 (0111÷0010)

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	①111 0111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	<u>0</u> 000 0001
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Improved Division Hardware

Iteration 0

Setting up registers

Iteration 1

Iteration 1

Iteration 1

Restore by adding the divisor back to the remainder

Iteration 1

GPCOC NILL 성국내악파 II 내약 삼큐더익두

Improved Division Hardware

Iteration 2

Iteration 2

Iteration 2

Restore by adding the divisor back to the remainder

Iteration 2

Iteration 3

Iteration 3

Iteration 3

Restore by adding the divisor back to the remainder

Iteration 3

SPOOK SPAN UNIVERSITY

Improved Division Hardware

Iteration 4

Iteration 4

Iteration 4

Iteration 5

Iteration 5

Iteration 5

Last Adjustment

Shift right the left-half of the remainder

Improved Division HW

Iteration	Step	Divisor	Remainder (Quotient will place in right half)
0	Initial Values	0010	0000:0111
1	1: Rem = Rem - Div	0010	1 110:0111
	2: Rem $< 0 \rightarrow$ + Div, sll Q, Q0=0	0010	0000 : 1110 restore
2	1: Rem = Rem - Div	0010	1 110 : 1110
	2: Rem $< 0 \rightarrow$ + Div, sll Q, Q0=0	0010	0001 : 1100 restore
3	1: Rem = Rem - Div	0010	1 111 : 1100
	2: Rem $< 0 \rightarrow$ + Div, sll Q, Q0=0	0010	0011 : 1000 restore
4	1: Rem = Rem - Div	0010	0 001 : 1000
	2: Rem >= $0 \rightarrow sll Q$, Q0=1	0010	0011 : 0001
5	1: Rem = Rem - Div	0010	0 001 : 0001
	2: Rem >= $0 \rightarrow sll Q$, Q0=1	0010	0010:0011
6	Shift right the left half of remainder	0010	0001:0011

