University of Southern California

Viterbi School of Engineering

MOS Logic Design Basics

Combinational Logic

- A combinational logic cell, logic circuit or gate is generally a multiple input, single output system that performs a Boolean function
- In the positive logic convention, logic 1 is shown by high voltage V_{DD} and logic 0 by low voltage of zero

- Transistors can be thought as a switch controlled by its gate signal
- · NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

· PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

Threshold Drops

- NMOS: A device which is good in shorting its drain to the ground
- PMOS: A device which is good in shorting its drain to V_{DD}

- NMOS passes a strong zero and a weak one
- PMOS passes a strong one and a weak zero
- Note: NMOS gate = 0, PMOS gate = 1 are in high Impedance

CMOS Transmission Gates (Pass Gates)

- The CMOS transmission gate (TG) consists of one NMOS and one PMOS transistor, connected in parallel
- The CMOS TG operates as a bidirectional switch between nodes A and B, which is controlled by signal C

Four different representations of the CMOS transmission gate

CMOS Transmission Gates – Examples

Two-Input Multiplexer

Complementary MOS (CMOS)

PUN and PDN are dual Logic Networks

Pull-up and Pull-down Networks

- For the gate to output a '1'
 - Some path of PMOS transistors from V_{DD} to output will be on
 - We call the PMOS transistors the Pull-Up Network (PUN)
- For the gate to output a '0'
 - Some path of NMOS transistors from GND to output will be on
 - We call the NMOS transistors the Pull-Down Network (PDN)

Example Gate: NOR

	A	В	Out
	0	0	1
	0	1	0
	1	0	0
	1	1	0
T			

Truth Table of a 2 input NOR gate

Example Gate: NAND

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table of a 2 input NAND gate

PDN:
$$G = A B \Rightarrow Conduction to GND$$

PUN:
$$F = A + B = AB \Rightarrow Conduction to V_{DD}$$

$$G(In_1,In_2,In_3,\ldots) \equiv F(\overline{In_1},\overline{In_2},\overline{In_3},\ldots)$$

Sizing Background – Inverter

Sizing – PMOS is Slower than NMOS!

$$I_{DS-pMOS} = \frac{\mu_p C_{ox}}{2} \frac{W_p}{L} \Big[2(V_{GS} - V_{T0p}) V_{DS} - V_{DS}^2 \Big]$$

$$I_{DS-nMOS} = \frac{\mu_n C_{ox}}{2} \frac{W_n}{L} \left[2(V_{GS} - V_{T0n}) V_{DS} - V_{DS}^2 \right]$$

Notes:

- $\frac{1}{R} \propto \frac{\mu W}{L}$
- $\mu_p \approx \frac{\mu_n}{2.5}$
- Sizing required to balance fall and rise time delays
- For all transistors channel is minsized to L

Switch Delay Model

- W_p can be considered 2 to 3 times as big as W_n
- For example for inverter and assuming

$$\frac{1}{R} \propto \frac{\mu W}{L} \Rightarrow \frac{R_p}{R_n} \propto \frac{\mu_n W_n}{\mu_n W_n} = \frac{2W_n}{W_n} \Rightarrow W_p = 2W_n$$

 $\mu_p \approx \frac{\mu_n}{2}$

Input Pattern Effect on Delay

- Delay is dependent on the pattern of inputs
 - Low to high transition
 - both inputs go low
 - delay is R_p/2 C_L
 - one input goes low
 delay is R_p C_L
 - \Rightarrow Worst case: $R_p C_L$
 - High to Low transition
 - both inputs go high
 - delay is 2R_n C_L

$$R_p = 2R_n \rightarrow W_p = W_n$$

Sizing – Simple CMOS Gates

- Sizing of complex cells to have the same output current (hence same delay) of an inverter with a certain size:
- The ratio of the $\{W/L\}_{PUN}/\{W/L\}_{PDN}$ should be two (or higher) to make up for slow PMOS

Sizing – Complex CMOS Gates

Stage Sizing

- To drive a capacitive load logical effort (covered later in the course) can be used to calculate the best stage sizing for the gates in each stage
- Number of stages also important (Logic effort can be used to determine the optimal number)

XOR Design

CMOS Full-Adder Circuit

· The sum and carry_out signals of the full adder are defined as:

Note that we use the carry_out signal to generate the sum output:

$$sum = ABC + (A + B + C)c_{out}$$
$$\overline{c_{out}} = \overline{AB} + \overline{AC} + \overline{BC}$$

CMOS Full-Adder Circuit (Cont.)

$$sum = A \oplus B \oplus C = ABC + A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}B\overline{C}$$

$$c_{out} = AB + AC + BC$$

sum and carry_out circuit for a one bit full-adder:

© Shahin Nazarian, All rights reserved

Ripple Carry Adder (RCA)

- The simplest full-adder circuit can be constructed by a cascade-connection of full adders, where each adder stage performs a two-bit addition, produces the corresponding sum bit, and passes the carry output on to the next state
- The overall speed of RCA is limited by the delay of the carry bits rippling thru the carry chain
- The path from carry_in (C_0) to S_7 is the critical path. The second slowest path is the one from C_0 to the last carry_out (C_8)

Block diagram of an 8-bit RCA chain consisting of full adders

Logic Design Basics: DeMorgan's Theorem

- Inverting output of an AND gate = inverting inputs of an OR gate
- Inverting output of an OR gate = inverting inputs of an AND gate
- A function's inverse is equivalent to inverting all the inputs and changing AND to OR and vice versa

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A} + \overline{\mathbf{B}}}$$

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

$$\overline{A+B}$$
 \longrightarrow $\overline{A} \cdot \overline{B}$

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem (Cont.)

 DeMorgan is useful to write the dual of the function (useful to design PUN from PDN, because PUN is the dual of PDN)

$$F = (\overline{X} + Y) + \overline{Z} \cdot (Y + W)$$

$$\overline{F} = (\overline{X} + Y) + \overline{Z} \cdot (Y + W)$$

$$\overline{F} = (\overline{X} + Y) \cdot (\overline{Z} \cdot (Y + W))$$

$$\overline{F} = (\overline{X} \cdot \overline{Y}) \cdot (\overline{Z} + (\overline{Y} + W))$$

$$\overline{F} = (X \cdot \overline{Y}) \cdot (Z + (\overline{Y} \cdot \overline{W}))$$