We'll be using processed data from data prep practice assignment for this practice assignment. Our goal here is to build a predictive model for predicting our target Y with given characteristics. I have laid out steps to carry out operations. Few of these questions/steps will also include further details as and when required.

Split The Data: Train & Test

Split the data into two parts so that train contains 75% of the data and test contains rest 25%. Use seed 123.

Note: We are not using validation in this exercise to save some effort. You should ideally use this to build a model which is better at generalising.

```
load("/Users/lalitsachan/Desktop/March onwards/CBAP with R/Data/temp.Rdata")
# Above code is to load data from the previous session. If you already have prepared
# data from data prep session , then you can ignore this safely
set.seed(123)
s=sample(1:nrow(d),0.75*nrow(d))
train=d[s,]
test=d[-s,]
```

Remove Multi-collinearity

Run a simple linear regression model. Pass the model object to function vif [which is found in package car]. Remove variables which have VIF values higher than 10. [Note: DO NOT USE P VALUES FROM THIS TO DROP VARIABLES. WE ARE ONLY CONCERNED WITH VIF VALUES FROM HERE. If in doubt, take to QA forum for further discussion]

Note: You might get error relating to aliased coefficient. This can happen for couple of reasons

- 1. Some variable has a constant value for entire data
- 2. Some categorical variable has been left in the data along with the dummy variables which you created from it. This leads to duplication of data
- 3. One or more variable columns are identical

To check which variables are having these issues, do summary(model_object). Where ever you see NA against a variable name [instead of coefficient values]; those are the variables with issues. Check if you made some mistake in data prep while creating those variables.

```
library(car)
lm_fit=lm(Y~.,data=train)
vif(lm_fit)
```

##	age	fnlwgt	education.num	capital.gain	capital.loss
##	1.631170	1.050816	12.820661	1.346642	24.373268
##	hours.per.week	${\tt race_AIE}$	race_API	$race_Black$	race_White
##	1.213638	2.122246	4.881026	11.534528	15.371270
##	sex_M	rel_h	rel_nif	rel_oc	rel_um
##	1.872061	37.414331	7.734787	5.630224	4.597475
##	rel_w	wc_1	wc_2	wc_3	wc_4
##	8.076045	74.803316	64.117763	331.568042	469.803502

```
wc 5
##
                             edu 1
                                             edu 2
                                                             edu 3
                                                                             edu 4
##
       120.463110
                        22.012516
                                         6.806545
                                                        26.437040
                                                                          4.110625
##
                                              ms 1
                                                              ms 2
            edu 5
                             edu 6
                                                                              oc 1
##
         7.531234
                         2.854063
                                         2.567199
                                                        39.536462
                                                                          1.528858
##
              oc 2
                              oc_3
                                              oc 4
                                                              oc 5
                                                                              nc_1
##
         1.839787
                          1.458810
                                          1.540103
                                                          1.325959
                                                                          1.421027
##
             nc 2
                              nc 3
                                              nc 4
                                                          cg_flag0
                                                                          cl flag0
##
         2.295891
                          2.932768
                                          1.154664
                                                          1.343211
                                                                         24.307575
```

lm_fit=lm(Y~.-wc_5,data=train)
vif(lm_fit)

##	age	fnlwgt	education.num	capital.gain	capital.loss
##	1.631169	1.050800	12.819910	1.346640	24.373267
##	hours.per.week	race_AIE	race_API	$race_Black$	race_White
##	1.213638	2.122241	4.880917	11.534476	15.371253
##	sex_M	rel_h	rel_nif	rel_oc	rel_um
##	1.871843	37.414068	7.734757	5.629942	4.597381
##	rel_w	wc_1	wc_2	wc_3	wc_4
##	8.075388	1.782199	1.555271	4.066737	4.769444
##	edu_1	edu_2	edu_3	edu_4	edu_5
##	22.012312	6.806278	26.436759	4.110568	7.531191
##	edu_6	${\tt ms_1}$	${\tt ms_2}$	oc_1	oc_2
##	2.854061	2.567199	39.536261	1.528752	1.839629
##	oc_3	oc_4	oc_5	nc_1	nc_2
##	1.458732	1.540010	1.325863	1.421024	2.295834
##	nc_3	nc_4	cg_flag0	cl_flag0	
##	2.932721	1.154664	1.343181	24.307568	

lm_fit=lm(Y~.-wc_5-ms_2,data=train)
vif(lm_fit)

```
##
                                                     capital.gain
              age
                           fnlwgt
                                    education.num
                                                                     capital.loss
##
         1.625935
                         1.050778
                                        12.819910
                                                         1.346550
                                                                        24.372159
## hours.per.week
                                                       race_Black
                                                                       race_White
                         race_AIE
                                         race_API
                                                        11.525847
                                                                        15.362434
##
         1.213459
                         2.121943
                                         4.880394
##
            sex M
                            rel_h
                                          rel_nif
                                                           rel_oc
                                                                           rel um
##
         1.871373
                        10.300539
                                         7.259373
                                                         5.435648
                                                                         4.294404
##
            rel w
                             wc_1
                                             wc 2
                                                             wc_3
                                                                             wc_4
##
         2.801046
                         1.782062
                                         1.555246
                                                         4.066725
                                                                         4.769052
##
            edu 1
                            edu_2
                                            edu_3
                                                            edu_4
                                                                            edu_5
##
        22.012275
                         6.805793
                                                         4.110567
                                                                         7.531093
                                        26.436442
##
            edu 6
                                                             oc 2
                             ms 1
                                             oc 1
                                                                             oc 3
##
         2.854055
                         2.464421
                                         1.528716
                                                         1.839626
                                                                         1.458727
##
             oc 4
                             oc_5
                                             nc 1
                                                             nc 2
                                                                             nc_3
##
         1.539936
                                         1.421024
                                                         2.295683
                                                                         2.932670
                         1.325777
##
             nc_4
                         cg_flag0
                                         cl_flag0
##
         1.154644
                         1.342641
                                        24.306409
```

lm_fit=lm(Y~.-wc_5-ms_2-edu_3,data=train)
vif(lm fit)

```
##
                                    education.num
                                                      capital.gain
                                                                      capital.loss
                            fnlwgt
               age
##
         1.603582
                          1.050726
                                          5.220707
                                                          1.336195
                                                                         24.358937
##
   hours.per.week
                          race_AIE
                                          race API
                                                        race_Black
                                                                        race_White
##
         1.208297
                          2.121888
                                          4.880375
                                                         11.524530
                                                                         15.361801
##
             sex M
                             rel_h
                                           rel_nif
                                                            rel_oc
                                                                            rel_um
                                          7.257899
##
         1.869764
                         10.300512
                                                          5.432785
                                                                          4.293858
##
             rel w
                              wc_1
                                              wc 2
                                                              wc_3
                                                                              wc 4
                                          1.554819
                                                          4.066686
                                                                          4.768936
         2.800924
                          1.781412
##
                                             edu_4
##
             edu_1
                             edu_2
                                                             edu_5
                                                                              edu_6
         2.138331
                                          1.069162
                                                                          1.615140
##
                          1.810942
                                                          2.010604
##
             {\tt ms\_1}
                              oc_1
                                              oc_2
                                                              oc_3
                                                                              oc_4
##
         2.463098
                          1.528602
                                          1.788637
                                                          1.455876
                                                                          1.539805
##
              oc_5
                              nc_1
                                              nc_2
                                                              nc_3
                                                                              nc_4
##
                                                          2.930167
                                                                          1.154571
         1.325487
                          1.420765
                                          2.295581
         cg_flag0
##
                          cl_flag0
##
         1.342524
                        24.297817
```

lm_fit=lm(Y~.-wc_5-ms_2-edu_3-capital.loss,data=train)
vif(lm_fit)

##	age	fnlwgt	education.num	canital gain	hours.per.week
	•	•			-
##	1.602096	1.050693	5.214076	1.336090	1.207984
##	${\tt race_AIE}$	race_API	race_Black	race_White	sex_M
##	2.121888	4.880362	11.524445	15.361798	1.869625
##	rel_h	rel_nif	rel_oc	rel_um	rel_w
##	10.300366	7.257878	5.432777	4.292458	2.800913
##	wc_1	wc_2	wc_3	wc_4	edu_1
##	1.780848	1.554666	4.066542	4.768889	2.137347
##	edu_2	edu_4	edu_5	edu_6	ms_1
##	1.809512	1.069056	2.009537	1.614935	2.463069
##	oc_1	oc_2	oc_3	oc_4	oc_5
##	1.528600	1.788593	1.455811	1.539640	1.325479
##	nc_1	nc_2	nc_3	\mathtt{nc}_4	cg_flag0
##	1.420722	2.295574	2.930155	1.154568	1.342446
##	cl_flag0				
##	1.024189				

 $\label{loss-race_White,data=train} $$\lim_{t\to\infty} (Y^-.-wc_5-ms_2-edu_3-capital.loss-race_White,data=train)$$ $$ vif(lm_fit)$$

##	age	fnlwgt	education.num	capital.gain	hours.per.week
##	1.601111	1.050574	5.213932	1.335922	1.207935
##	race_AIE	race_API	race_Black	sex_M	rel_h
##	1.008841	1.258064	1.072587	1.869613	10.296480
##	rel_nif	rel_oc	rel_um	rel_w	wc_1
##	7.255667	5.428844	4.291352	2.799959	1.780809
##	wc_2	wc_3	wc_4	edu_1	edu_2
##	1.554656	4.066387	4.768889	2.137274	1.809415
##	edu_4	edu_5	edu_6	ms_1	oc_1
##	1.069027	2.009529	1.614933	2.462898	1.528282
##	oc_2	oc_3	oc_4	oc_5	nc_1
##	1.788574	1.455734	1.539511	1.325429	1.420012
##	nc_2	nc_3	nc_4	cg_flag0	cl_flag0
##	2.283028	2.877810	1.154012	1.342258	1.024148

```
lm_fit=lm(Y~.-wc_5-ms_2-edu_3-capital.loss-race_White-rel_h,data=train)
vif(lm_fit)
```

##	age	fnlwgt	education.num	capital.gain	hours.per.week
##	1.599440	1.050499	5.208842	1.335896	1.206457
##	${\tt race_AIE}$	race_API	$race_Black$	sex_M	rel_nif
##	1.008554	1.256389	1.071503	1.788981	1.927182
##	rel_oc	rel_um	rel_w	wc_1	wc_2
##	2.283735	1.579760	1.401878	1.780633	1.554602
##	wc_3	wc_4	edu_1	edu_2	edu_4
##	4.066363	4.768854	2.137273	1.809346	1.068916
##	edu_5	edu_6	ms_1	oc_1	oc_2
##	2.009382	1.614852	2.282765	1.527246	1.788108
##	oc_3	oc_4	oc_5	nc_1	nc_2
##	1.455234	1.538519	1.324800	1.418070	2.278466
##	nc_3	nc_4	cg_flag0	cl_flag0	
##	2.862668	1.154008	1.342127	1.023902	

Build a logistic regression model

Once you are done with removing variables based on vif , build a logistic regression model. Pass it through step function to drop variables which do not meaningfully contribute to your model. Post that , save the probability score to train.

plot probability scores with outcome to see if score has been able to bring some differentiation. Your plot would be similar to this.

```
summary(fit)
```

```
##
## Call:
  glm(formula = Y ~ age + fnlwgt + education.num + capital.gain +
      hours.per.week + race_AIE + race_Black + sex_M + rel_nif +
##
##
       rel_oc + rel_um + rel_w + wc_1 + wc_2 + wc_4 + edu_2 + edu_5 +
       ms_1 + oc_1 + oc_2 + oc_3 + oc_4 + oc_5 + nc_1 + nc_2 + nc_3 +
##
##
       cg_flag0 + cl_flag0, family = "binomial", data = train)
##
## Deviance Residuals:
##
      Min
                     Median
                                   3Q
                 1Q
                                           Max
           -0.5240 -0.1890 -0.0317
                                        3.3963
  -6.5194
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -1.036e+01 3.501e-01 -29.595 < 2e-16 ***
## age
                   2.580e-02
                             1.829e-03 14.104 < 2e-16 ***
                  7.422e-07
                             1.963e-07
                                          3.781 0.000156 ***
## fnlwgt
## education.num
                  3.086e-01 1.230e-02 25.077
                                                < 2e-16 ***
## capital.gain
                  7.343e-04 4.084e-05 17.978 < 2e-16 ***
```

```
## hours.per.week 2.886e-02 1.800e-03 16.039 < 2e-16 ***
                -4.223e-01 2.543e-01 -1.660 0.096843 .
## race_AIE
                 -1.750e-01 8.596e-02 -2.036 0.041707 *
## race Black
                 1.064e+00 8.866e-02 12.000 < 2e-16 ***
## sex_M
## rel_nif
                 -1.337e+00 7.381e-02 -18.111 < 2e-16 ***
                 -2.419e+00 1.769e-01 -13.674 < 2e-16 ***
## rel oc
## rel um
                -1.582e+00 1.155e-01 -13.698 < 2e-16 ***
                 1.695e+00 1.153e-01 14.703 < 2e-16 ***
## rel w
## wc 1
                 4.641e-01 1.014e-01
                                       4.575 4.77e-06 ***
## wc_2
                 9.487e-01 1.110e-01
                                        8.543 < 2e-16 ***
## wc_4
                 3.732e-01 4.918e-02 7.590 3.21e-14 ***
                 5.631e-01 3.130e-01
                                        1.799 0.072029 .
## edu_2
## edu_5
                 -1.176e-01 5.785e-02 -2.033 0.042016 *
## ms_1
                -7.591e-01 8.783e-02 -8.642 < 2e-16 ***
## oc_1
                 1.077e+00 6.782e-02 15.887 < 2e-16 ***
## oc_2
                 8.232e-01 7.369e-02 11.171
                                              < 2e-16 ***
                 6.798e-01 6.477e-02 10.496 < 2e-16 ***
## oc_3
## oc 4
                 3.261e-01 6.336e-02 5.147 2.65e-07 ***
                -5.631e-01 1.208e-01 -4.660 3.16e-06 ***
## oc 5
## nc 1
                 8.329e-01 2.384e-01
                                       3.494 0.000476 ***
## nc_2
                 7.829e-01 1.772e-01
                                      4.418 9.96e-06 ***
## nc 3
                 8.493e-01 1.538e-01
                                      5.523 3.33e-08 ***
## cg_flag0
                 2.585e+00 2.200e-01 11.748 < 2e-16 ***
                 -1.114e+00 8.210e-02 -13.567 < 2e-16 ***
## cl_flag0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 27002 on 24419 degrees of freedom
## Residual deviance: 15545 on 24391 degrees of freedom
## AIC: 15603
##
## Number of Fisher Scoring iterations: 8
train$score=predict(fit,train,type="response")
library(ggplot2)
ggplot(train,aes(x=score,y=Y,color=factor(Y)))+geom_point()+geom_jitter()
```


Performance Metrics for A particular Cutoff

A cutoff can be decided with multiple considerations or business requirement. All of these requirements are generally based on confusion matrix. Confusion matrix is nothing but cross table of real 1/0[response] against predicted 1/0 [predicted response].

Consider an arbitrary cutoff 0.3. Get predicted response for this cutoff. Using the predicted response column, calculate Following metrics. [Consider 1= Positive, 0=Negative]

- TP (True Positive), FP (False Positive), TN (True Negative), FN(False Negative)
- Accuracy { Defined as (TP+TN)/(P+N), where P= TP+FN and N=TN+FP}
- S_n (Sensitivity) { Defined as TP/P}
- S_p (Sepecificity) {Defined as TN/N} Dist { Defined as $\sqrt{(1-S_n)^2+(1-S_p)^2}$ } KS { Defined as $\frac{TP}{P}-\frac{FP}{N}$ }
- M { A hypothetical metric defined as $\frac{9*FN+0.6*FP}{1.9*(P+N)}$ }

```
cutoff=0.3
predicted=as.numeric(train$score>cutoff)
TP=sum(train$Y==predicted & predicted==1)
FP=sum(train$Y!=predicted & predicted==1)
TN=sum(train$Y==predicted & predicted==0)
FN=sum(train$Y!=predicted & predicted==0)
P=TP+FN
N=TN+FP
```

```
Sn=TP/P
Sp=TN/N

Dist=sqrt((1-Sn)**2+(1-Sp)**2)
KS=Sn - (FP/N)
M=(9*FN+0.6*FP)/(1.9*(P+N))
```

Getting optimal cutoff for each metric

Consider 1000 cutoffs between 0 to 1 [Equally spaced , not random]. { Hint : Use function seq to generate these}. Using a for loop calculate Dist, Accuracy, KS and M for all these cutoffs. Find cutoffs for which

- Dist is minimum
- Accuracy is maximum
- KS is maximum
- M is minimum

Note: optimal cutoffs for all four condition will not be same [if they are , it will be a coincidence]

Also plot these values in a single plot to show how these metrics vary across cutoff range. Your plot will look like these

```
cutoff_data=data.frame(cutoff=99,Dist=99,Accuracy=99, KS=99,M=99)
cutoffs=seq(0,1,length=1000)
for( cutoff in cutoffs){
predicted=as.numeric(train$score>cutoff)
TP=sum(train$Y==predicted & predicted==1)
FP=sum(train$Y!=predicted & predicted==1)
TN=sum(train$Y==predicted & predicted==0)
FN=sum(train$Y!=predicted & predicted==0)
P=TP+FN
N=TN+FP
Sn=TP/P
Sp=TN/N
Dist=sqrt((1-Sn)**2+(1-Sp)**2)
Accuracy= (TP+TN)/(P+N)
KS=Sn - (FP/N)
M = (9*FN+0.6*FP)/(1.9*(P+N))
cutoff_data=rbind(cutoff_data,c(cutoff,Dist,Accuracy,KS,M))
cutoff_data=cutoff_data[-1,]
library(tidyr)
cutoff_data %>%
  gather(Metric, Value, Dist:M) %>%
  ggplot(aes(x=cutoff,y=Value,color=Metric))+geom_line()
```



```
cutoff_dist=cutoff_data$cutoff[which.min(cutoff_data$Dist)][1]
cutoff_Accuracy=cutoff_data$cutoff[which.max(cutoff_data$Accuracy)][1]
cutoff_KS=cutoff_data$cutoff[which.max(cutoff_data$KS)][1]
cutoff_M=cutoff_data$cutoff[which.min(cutoff_data$M)][1]
```

Performance on Test Data

Get scores for test data also . Apply respective cutoffs and evaluate the related metrics as well for each of those cutoffs.

```
test$score=predict(fit,test,type="response")

# Confusion Matrix for dist cutoff
table(test$Y,as.numeric(test$score>cutoff_dist))

##
## 0 1
## 0 4931 1268
## 1 293 1649

# Confusion Matrix for Accuracy cutoff
table(test$Y,as.numeric(test$score>cutoff_Accuracy))
```

##

```
##
    0 1
##
   0 5797 402
   1 769 1173
# Confusion Matrix for KS cutoff
table(test$Y,as.numeric(test$score>cutoff_KS))
##
##
       0 1
##
    0 4869 1330
##
    1 259 1683
#Confusion Matrix for M cutoff
table(test$Y,as.numeric(test$score>cutoff_M))
##
##
       0 1
##
    0 3539 2660
## 1 64 1878
```