Presented by: Ryan Renken

MATH 6490

Fall 2024

Tennis Definitions

Source: Tennis.com

- Surfaces: Grass, Clay, and Hard
- Return Points
- Double Faults

Player	Surface	ReturnPointsWonPercentage	DoubleFaultPercentage	WinPercentage
Jannik Sinner	Clay	0.4146	0.01801	0.7
Jannik Sinner	Grass	0.39279	0.02715	0.72727
Jannik Sinner	Hard	0.39944	0.023	0.89286
Carlos Alcaraz	Clay	0.45818	0.02736	0.71429
Carlos Alcaraz	Grass	0.4049	0.03491	1
Carlos Alcaraz	Hard	0.4078	0.02657	0.7561
Novak Djokovic	Clay	0.46047	0.02907	0.8125
Novak Djokovic	Grass	0.35488	0.01385	0.85714
Novak Djokovic	Hard	0.39925	0.03264	0.86111
Daniil Medvedev	Clay	0.39024	0.05917	0.6

Source: SCORE Sports Data Repository

0000

Question

Is it possible to model a player's win percentage for a full season using a linear regression model?

Analysis Overview

Surfaces

Surfaces

Pair Plot (GGally Library)


```
call:
lm(formula = winpercent ~ returnpercent, data = tennis)
Residuals:
    Min 1Q Median 3Q Max
-0.42487 -0.09472 0.00203 0.09333 0.42257
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4144 0.0985 -4.207 3.33e-05 ***
returnpercent 2.4863 0.2718 9.148 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1558 on 334 degrees of freedom
Multiple R-squared: 0.2004, Adjusted R-squared: 0.198
F-statistic: 83.68 on 1 and 334 DF, p-value: < 2.2e-16
```


Shapiro-Wilks test: p-value = 0.3915


```
call:
lm(formula = winpercent ~ returnpercent + surface, data = tennis)
Residuals:
    Min
            1Q Median
                          3Q
                                     Max
-0.38066 -0.08483 -0.00131 0.09068 0.41951
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.61858  0.10704 -5.779 1.73e-08 ***
returnpercent 2.92709  0.28128  10.406  < 2e-16 ***
surfaceGrass 0.15152 0.02389 6.342 7.40e-10 ***
surfaceHard 0.03775 0.01939 1.947 0.0524 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1473 on 332 degrees of freedom
Multiple R-squared: 0.2902, Adjusted R-squared: 0.2838
F-statistic: 45.25 on 3 and 332 DF. p-value: < 2.2e-16
```


Shapiro-Wilks test: p-value = 0.1921

Cook's Distance Plot

Key Takeaways

- Double Fault percentage was not included
- No violation of normal assumptions with other variables
- No influential points of concern