ENVIRONMENTAL SCIENCES

Accelerated modern human-induced species losses: Entering the sixth mass extinction

Gerardo Ceballos,¹* Paul R. Ehrlich,² Anthony D. Barnosky,³ Andrés García,⁴ Robert M. Pringle,⁵ Todd M. Palmer⁶

2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1400253

Manutenção dos serviços ecossistêmicos

Conjunto de variedades, números e características dos organismos em uma comunidade

Como quantificamos?

Conjunto de variedades, números e características dos organismos em uma comunidade

Como quantificamos?

Conjunto de variedades, números e características dos organismos em uma comunidade

Como quantificamos?

Múltiplos índices

Número de entidades únicas na assembleia

Conjunto de variedades, números e características dos organismos em uma comunidade

Taxonômica

Funcional

Filogenética

$$\alpha = 3$$

$$\alpha = 4$$

$$\alpha = 3$$

$$\alpha = 7$$

Quantifica o número de diferentes comunidades na região (Whittaker, 1960; Jost, 2007)

Quantifica o número de diferentes comunidades na região (Whittaker, 1960; Jost, 2007)

Quantifica o número de diferentes comunidades na região (Whittaker, 1960; Jost, 2007)

Quantifica o número de diferentes comunidades na região (Whittaker, 1960; Jost, 2007)

$$\beta = 10 / 4,25$$

Quantifica o número de diferentes comunidades na região (Whittaker, 1960; Jost, 2007)

$$\beta = 10 / 4,25$$

 $\beta = 2,35$

$$\beta = 2,35$$

<u>Índices de diversidae</u>

Riqueza por unidade amostral

3 4

_

Riqueza por unidade amostral

Riqueza acumulada

Curva do coletor (acumulação de espécies)

Curva do coletor (acumulação de espécies)

Esforço de amostragem

Além da riqueza, podemos também incorporar os valores de abundância relativa das espécies para calcular medidas de diversidade

Equitabilidade

Índice de Shannon

$$H_{\rm Sh} = -\sum_{i=1}^{S} p_i \log p_i$$

- S = número de espécies na assembleia
- p_i = abundância relativa de cada espécie, calculada pela proporção dos indivíduos de uma espécie pelo número total dos indivíduos na assembleia
- log = logaritmo natural
- Quantifica a incerteza na identidade da espécie de um indivíduo amostrado ao acaso

Índice de Shannon

$$R = 5$$

 $H_{SH} = 1,57$

$$R = 5$$

 $H_{SH} = 1,1$

Índice de Gini-Simpson

$$H_{\rm GS} = 1 - \sum_{i=1}^{S} p_i^2$$

- S = número de espécies na assembleia
- p_i = abundância relativa de cada espécie, calculada pela proporção dos indivíduos de uma espécie pelo número total dos indivíduos na assembleia
- log = logaritmo natural
- Indica a probabilidade de dois indivíduos escolhidos ao acaso pertençam a duas espécies diferentes

Índice de Gini-Simpson

$$R = 5$$

 $H_{GS} = 0.79$

$$R = 5$$

 $H_{GS} = 0.53$

• Combinações de riqueza e equitabilidade podem gerar um mesmo valor de diversidade

 Combinações de riqueza e equitabilidade podem gerar um mesmo valor de diversidade

Local A: 1, 2, 1, 2, 1, 2, 1

 $H_{SH} = 1,89$

Local B: 1, 2, 1, 2, 2, 1, 3, 10, 12, 3

 $H_{SH} = 1,89$

Local C: 2, 4, 2, 3, 3, 3, 5

 $H_{SH} = 1,89$

Local D: 4, 5, 12, 21, 33, 12, 20, 11

 $H_{SH} = 1,89$

- Combinações de riqueza e equitabilidade podem gerar um mesmo valor de diversidade
- Relações não lineares com a riqueza

Princípio da replicação

Se N assembleias igualmente diversas e que não compartilham nenhuma espécie forem unidas em proporções iguais, a diversidade das assembleias juntas deve ser N vezes a diversidade de cada assembleia individualmente (Hill, 1973)

Princípio da replicação

Se N assembleias igualmente diversas e que não compartilham nenhuma espécie forem unidas em proporções iguais, a diversidade das assembleias juntas deve ser N vezes a diversidade de cada assembleia individualmente (Hill, 1973)

$$N + N = 2N$$

Adequação dos índices

• Transformações em valores correspondentes ao número efetivo de espécies (Hill, 1973)

Números de Hill: ^q**D** definidos pela ordem q, que controla a sensitividade da medida da diversidade à abundância relativa das espécies

$$D = \left(\sum_{i=1}^{S} p_i^{\mathbf{q}}\right)^{1/(1-\mathbf{q})}$$

$$q = 0$$

Abundâncias são desconsideradas e o valor equivale à riqueza

Adequação dos índices

• Transformações em valores correspondentes ao número efetivo de espécies (Hill, 1973)

Números de Hill: ^q**D** definidos pela ordem q, que controla a sensitividade da medida da diversidade à abundância relativa das espécies

$$D = \left(\sum_{i=1}^{S} p_i^{\mathbf{q}}\right)^{1/(1-\mathbf{q})}$$

$$q = 1$$

Valor equivale ao exponencial do índice de Shannon, sendo interpretado como o número equivalente de espécies abundantes

Adequação dos índices

• Transformações em valores correspondentes ao número efetivo de espécies (Hill, 1973)

Números de Hill: ^q**D** definidos pela ordem q, que controla a sensitividade da medida da diversidade à abundância relativa das espécies

$$D = \left(\sum_{i=1}^{S} p_i^{\mathbf{q}}\right)^{1/(1-\mathbf{q})}$$

$$q = 2$$

Valor equivale à diversidade de Simpson, sendo interpretado como o número equivalente de espécies muito abundantes

Números de Hill

$$^{0}D = 5$$
 $^{1}D = 4,82$
 $^{2}D = 4,67$

$$^{0}D = 5$$
 $^{1}D = 3$
 $^{2}D = 2,11$

Carvalho-Rocha et al. (2022)

Chao et al. (2020)

Chao et al. (2014)

Dependente de escala

Jarzyna & Jetz (2018)

Curvas de rarefação e extrapolação

• Comparar diversidade entre assembleias padronizando o esforço:

Número de amostras (sampled-based)

Curvas de rarefação e extrapolação

Comparar diversidade entre assembleias padronizando o esforço:

Número de amostras (sampled-based)

Número de indivíduos (individual-based)

Gotelli et al. (2023)

Curvas de rarefação e extrapolação

Comparar diversidade entre assembleias padronizando o esforço:

Número de amostras (sampled-based)

Número de indivíduos (individual-based)

Valor de cobertura/totalidade da amostra (completeness)

