

PROBABILISTIC DATA-GENERATION MODELS

Why

We analyze the performance of inductors in a framework in which we assume the dataset comes as random samples some probability space.

Definition

Let \mathcal{X} be the domain set, or set of inputs and let \mathcal{Y} be the label set, or set of outs. Let $\mathcal{D} = (\mathcal{X}, \mathcal{A}, \mathbf{P})$ be a probability space. Let $f : \mathcal{X} \to \mathcal{Y}$.

Let a $(x_1, y_1), \ldots, (x_n, y_n)$ of size n generated is by sampling x_i from \mathcal{D} and then labeling it with $y_i = f(x_i)$. For this reason we call \mathcal{D} the data-generating distribution or underlying distribution and we call f the correct labeling function.

Measures of success

Let $A \in \mathcal{A}$, then the error of a classifier (or of a prediction rule) $h: \mathcal{X} \to \mathcal{Y}$ is

$$\mathbf{P}(\{x \in \mathcal{X}\}h(X) \neq f(x).$$

In other words, the probability (w.r.t. the underling distribution) that the classifier h mislabels a point. Many authors associate an event $A \in \mathcal{A}$ with a function $\pi : \mathcal{X} \to \{0,1\}$

¹Future editions will be more precise by what we mean by sampling. In other words, future editions will likely treat of these "samples" as random variables.

so that $A = \{x \in \mathcal{X} \mid \pi(x) = 1\}$ and it is common to write $\mathbf{P}[\pi(x)]$ for $\mathbf{P}(A)$.

The error is measured with respect to the distribution \mathcal{D} and correct labeling function f. Other names for the error of a classifier include the *generalization error*, the *risk* or the *true* error or loss of h.

Statistical learning theorem

Many authors refer to a data-generating distribution along with an input set, output set, correct labeling function, and set of predictors as the *statistical learning theory framework*.

