Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 13 - Jueves 16 de junio del 2022

Problema 1. Consideremos la sucesión (s_n) definida por la recurrencia

$$s_1 = \sqrt{2}$$
 y $s_{n+1} = \sqrt{2 + s_n}$.

- a) Demuestre que s_n es acotada.
- b) Demuestre que s_n es creciente.
- c) Demuestre que s_n converge y halle su límite.

Problema 2. Calcule los siguientes límites

a)
$$\lim_{x\to\infty} \sqrt{x^2 - x} - x$$

c)
$$\lim_{n\to\infty} \frac{1+\frac{1}{n}}{n+\frac{1}{n}}$$

b)
$$\lim_{x \to +\infty} \frac{\sqrt{x-1}}{\sqrt[4]{x^2+1}}$$

d)
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n})\sqrt{n+2}$$
.

Problema 3. Considere la sucesión $\{a_n\}$ definida mediante la recurrencia

$$a_0 > 0; \quad \forall n \in \mathbb{N} : a_{n+1} = \frac{a_n}{1 + na_n^2}$$

- a) Demuestre que la sucesión es decreciente.
- b) Concluya que la sucesión es convergente y calcule su límite.

Problema 4. Usando el Teorema del Sándwich, calcule el límite

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$

Problema 5. Usando el Teorema del Sandwich, calcule el límite de la sucesión $\frac{n!}{n^n}$.

Problema 6. Calcule el límite

$$\lim_{n \to \infty} \sqrt[n]{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0}$$

para $a_0, a_1, \ldots, a_k > 1$.