Ejemplo comparación de resultados predictores in sillico

Cambio de estudio OXCT1 c.1248+5G>A (chr5: 41794100 G/A, rs1561081472 o NM_000436_ c.1248+5G>A)

Exón 12 y 13 e intrones adyacentes:

Se ha descrito que este cambio causa el *skipping* del exón 12 y 13. La mutación lleva a "parálisis del *splicing*" y la eliminación de todo el fragmento de 11 nucleótidos del intrón 13, incluidos los exones 12 y 13¹.

El cambio se encuentra en la quinta posición justo después del exón 13 (la **g** en color naranja).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

```
The sequence: mut has the following composition:
The sequence: wt has the following composition:
                                                                           Length: 1347 nucleotides.
Length: 1347 nucleotides.
                                                                           30.7% A, 17.6% C, 20.3% G, 31.4% T, 0.0% X, 37.9% G+C
30.6% A, 17.6% C, 20.4% G, 31.4% T, 0.0% X, 38.0% G+C
                                                                           Donor splice sites, direct strand
Donor splice sites, direct strand
                                                                                           pos 5'->3' phase strand confidence 5'
                                                                                                                                           exon intron
              pos 5'->3' phase strand confidence 5'
                                                          exon intron
                                                                                               374
                                                                                                         2
                                                                                                                         0.44
                                                                                                                                    TGATTAGAGG^GTATGTAATA
                           2
                                                    TGATTAGAGG^GTATGTAATA
                 1048
                                         0.81
                                                    GATGATACCT^GTAAGTAGAC
                                                                                              1256
                                                                                                                         0.00
                                                                                                                                    AGTAGGCAAG^GTCAGAGCCG
                 1256
                                         0.00
                                                    AGTAGGCAAG^GTCAGAGCCG
                                                                           Donor splice sites, complement strand
Donor splice sites, complement strand
                                                                               pos 3'->5' pos 5'->3' phase strand confidence 5'
                                                                                                                                           exon intron
                                                                                                                                                          3'
  pos 3'->5' pos 5'->3' phase strand confidence 5'
                                                          exon intron
                                                                                                                         0.37
                                                                                                                                    GACATAGCAG^GTGGGGGGAC
      167
                1181
                           1 -
                                         0.37
                                                    GACATAGCAG^GTGGGGGGAC
                                                                           Acceptor splice sites, direct strand
Acceptor splice sites, direct strand
                                                                                                                      confidence 5'
                                                                                                                                                          31
                                                                                           pos 5'->3'
                                                                                                       phase strand
                                                                                                                                         intron exon
              pos 5'->3' phase strand confidence 5'
                                                        intron exon
                                                                                                         1
                                                                                                                         0.43
                                                                                                                                    ATTCTTCCAG^GAGCCTCTTT
                  327
                           1
                                         0.43
                                                    ATTCTTCCAG^GAGCCTCTTT
                                                                                                                         0.36
                                                                                               823
                                                                                                          2
                                                                                                                                    TCTCTGTCAG^CATGGAGCTG
                  823
                           2
                                         0.36
                                                    TCTCTGTCAG^CATGGAGCTG
                                         0.53
                                                    TCTTTCTCAG^TGGACACGTC
                                                                                               971
                                                                                                                         0.50
                                                                                                                                    TCTTTCTCAG^TGGACACGTC
Acceptor splice sites, complement strand
                                                                           Acceptor splice sites, complement strand
  pos 3'->5' pos 5'->3' phase strand confidence 5'
                                                        intron exon
                                                                              pos 3'->5'
                                                                                           pos 5'->3'
                                                                                                                                                          3'
                                                                                                       phase strand confidence 5
                                                                                                                                         intron exon
                                         0.38
                                                    CTACTTACAG^GTATCATCCA
                                                                                  1046
                                                                                               302
                                                                                                          2
                                                                                                                         0.48
                                                                                                                                    CTATTTACAG^GTATCATCCA
```

Al comparar las predicciones para ambas secuencias, se observa que se pierde un sitio *donor* en la secuencia mutante (marcado en rojo). Ese coincide con el sitio *donor* del exón 13, por lo que, al no poder utilizarlo, se producirá *skipping* de dicho exón.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.81.70.14888.0:

Exon Intron	Score	End	Start
gtctgag gt accaaa	0.44	25	11
cattttg gt aaaggg	0.53	196	182
ttagagg gt atgtaa	0.99	381	367
tttggtg gt atgaag	0.61	891	877
gatacct gt aagtag	0.95	1055	1041

0.82

1185 1199

1249 1263

Donor site predictions for 85.53.81.70.14875.0:

Exon Intron	Score	End	Start
gtctgag gt accaaa	0.44	25	11
cattttg gt aaaggg	0.53	196	182
ttagagg gt atgtaa	0.99	381	367
tttggtg gt atgaag	0.61	891	877
taattaa gt aagcac	0.90	1199	1185
aggcaag gt cagagc	0.82	1263	1249

Acceptor site predictions for 85.53.81.70.14888.0:

aggcaag**gt**cagagc

Acceptor site predictions for 85.53.81.70.14875.0:

		_		_	Start	End	Score	Intron	Exon
Start	End	Score	Intron	Exon	307	347	0.46		tcttcc ag gagcctcttttttctccagc
307	347	0.46	aaacagttactattctto	caggagcctcttttttctccagc	307	347	0.40	aaacagitactat	tettee ag gageetetttttteteeage
326	366	0.90		c ag cgatgaatcatttgcaatga	326	366	0.90	aggagcctctttt	ttctcc ag cgatgaatcatttgcaatga
320	300	0.90	aggagccccctttttccc	.c ag cgatgaatcatttgcaatga					
658	698	0.81	caaactgtgttcactttc	t ag ctagtgtttgtgttcaagta	658	698	0.81	caaactgtgttca	ctttct ag ctagtgtttgtgttcaagta
				•	772	772	0.54	cctatatacacct	gttcat ag tttgttattgaaacaatgta
732	772	0.54	cctgtgtacacctgttca	t ag tttgttattgaaacaatgta	152	112	0.54		
951	991	0.97	ttcttcctctttcttct	c ag tggacacgtcgatctgacaa	951	991	0.97	ttcttcctctttc	tttctc ag tggacacgtcgatctgacaa
1154	1194	0.85	ttaatatatattcttac	t ag aatcaaattttaattaagta	1154	1194	0.85	ttaatatatatt	cttact ag aatcaaattttaattaagta

Se pierde un sitio *donor* al analizar la secuencia mutada que coincide con el sitio *donor* del exón 13, por lo que está afectando al *splicing*, produciendo muy probablemente el *skipping* del exón 13.

$\operatorname{GENSCAN} \rightarrow$ no da resultados para este cambio

```
Predicted genes/exons:

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

NO EXONS/GENES PREDICTED IN SEQUENCE

Predicted genes/exons:

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

NO EXONS/GENES PREDICTED IN SEQUENCE
```

MaxEntScan (solo se estudia 5' por la proximidad con el cambio)

```
>sec
TGATACCTgtaagtagacat MAXENT: -40.57 MDD: -21.91 MM: -25.99 WMM: -23.44
```

La posición no es muy susceptible a cambios, dado que no se encuentra en un sitio débil de splicing (valores muy negativos para los diferentes indicadores).

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
tgtaa(g/a)tagac	taagta	taaata	30390	76%

En el análisis de la región adyacente al cambio, se obtiene una puntuación elevada (76%) para el cambio G>A, por lo que puede estar afectando al splicing.

CRYP-SKIP

Exon length (bp)	73	EXSK		CR-E
PESS (<=-2.62) density	4.11	L. ION	0.5	J., L
NN 5'ss score density	0.00	_		
SF2/ASF score density	2.82	×//	X	
FAS-ESS (hex2) density	2.74	- //		
EIE score density	327.08	4/))	
Probability of cryptic splice site activation (PcR-E)	0.07	0		- 1
>sec				1.0
		T		1.0
	······			0.5
ttgtgtgtgtgtgtttagGCAAGGAAACAGTTACTATT(TTCCACCACCCTCT	TTTTTCTCCACC	OTCOOTCOTTTC	0.0
CAATGATTAGAGGgtatgta	TICCHOOHGCCICI	TTTTTTTCTCCHGCG	iniunnichiilu	

Human Splicing Finder

Type ↑↓	Inter	pretation		$\uparrow \downarrow$
Broken WT Donor Site	Alterati	ion of the WT Donor sit	e, most probably affecting spi	icing
Algorithm/Matix		position	sequences	variation
HSF Donor site (matrix GT)		chr5:41794005	- REF : CCTGTAAGT - ALT : CCTGTAAAT	83.32 > 73.75 => -11.49%
MaxEnt Donor site		chr5:41794005	- REF : CCTGTAAGT - ALT : CCTGTAAAT	7.52 > -0.64 => -108.51%

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

SVM-BPfinder

seq id	agez	ss dis	t hn sea hn scr	y_cont ppt_off ppt_len ppt_scr svm_	scr			seq id	agez	ss dist	t hn sea hn scr	y cont ppt off ppt le	nnt scr	svm scr			
wt	13	486	tagtgatta	-0.825866110956 0.47817047817 1	13	26	0.41176096	mut	13	486	tagtgatta	-0.825866110956 0.4781			13	26	0.41176096
wt	13	483	tgattattt	-2.92603331295 0.476987447699 1	10	22	-0.44819921	mut	13	483	tgattattt	-2.92603331295 0.4769				22	-0.44819921
wt	13	472	ctgtcagca	-1.4589611324 0.468950749465 52	6	13	-3.1884237	mut	13	472	ctgtcagca		0749465			13	-3.1884237
wt	13	460	agctgatct	1.34433483292 0.472527472527 40	6	13	-1.3300658	mut	13	460	agctgatct		27472527			13	-1.3300658
wt	13	453	ctattagga	-4.0854488258 0.46875 33 6	13	-3.014		mut	13	453	ctattagga	-4.0854488258 0.4687			-	-3.0142	
wt	13	445	aaatcagtt	-2.65403802592 0.472727272727 25	6	13	-1.9460784	mut	13	445	aaatcagtt	-2.65403802592 0.4727				13	-1.9460784
wt	13	405	gtatgaagt	-1.67761648512 0.4825 3 7	15	-0.149		mut	13	405	gtatgaagt	-1.67761648512 0.4825			-	-0.1494	
wt	13	400	aagttattc	-3.23910098873 0.483544303797 48	28	65	-3.1431021	mut	13	400	aagttattc	-3.23910098873 0.4835				65	-3.1431021
wt	13	394	ttctaattg	1.59743849057 0.480719794344 42	28	65	-0.87049065	mut	13	394	ttctaattg		19794344			65	-0.87049065
wt	13	379	agttcaagc	-1.61999791089 0.478609625668 27	28	65	-1.1814757	mut	13	379	agttcaagc	-1.61999791089 0.4786				65	-1.1814757
wt	13	358	agcttatga	-1.49364139848 0.492917847025 6	28	65	0.20188468	mut	13	358	agcttatga	-1.49364139848 0.4929				65	0.20188468
wt	13	355	ttatgaggt	-2.17505223734 0.494285714286 3	28	65	0.12541689	mut	13	355	ttatgaggt	-2.17505223734 0.4942				65	0.12541689
wt	13	349	ggttcactt	-0.0296954416326		24	59 1.0360948	mut	13	349	ggttcactt	-0.0296954416326	0.4941866			24	59 1.0360948
wt	13	344	actttattc	-4.35180452645 0.489675516224 1	19	50	-0.7415146	mut	13	344	actttattc	-4.35180452645 0.4896				50	-0.7415146
wt	13	324	ttctcagtg	0.588237616788 0.460815047022 87	13	27	-4.4744957	mut	13	324	ttctcagtg	0.588237616788 0.4608				27	-4.4744957
wt	13	306	atctgacaa	1.52420752116 0.461794019934 69	13	27	-2.9683333	mut	13	306	atctgacaa		94019934			27	-2.9683333
wt	13	269	tggtgacct	2.63890969484 0.469696969697 32	13	27	-0.18728442	mut	13	269	tggtgacct		96969697			27	-0.18728442
wt	13	260	ggctaactg	3.0387153898 0.46666666667 23	13	27	0.53796464	mut	13	260	ggctaactg		56666667			27	0.53796464
wt	13	252	ggatgatac	-0.548226770123 0.46963562753 15	13	27	-0.35914728	mut	13	252	ggatgatac	-0.548226770123 0.4696				27	-0.35914728
wt	13	243	ctgtaagta	-0.856731725038 0.466386554622 6	13	27	0.088693989	mut	13	243	ctgtaaata	-0.789789895063 0.4663				27	0.11490487
wt	13	229	tttttattc	-3.75051124112 0.459821428571 31	6	13	-2.7593576	mut	13	229	tttttattc	-3.75051124112 0.4598				13	-2.7593576
wt	13	223	ttctgaatt	0.584236905393 0.454128440367 25	6	13	-0.68414763	mut	13	223	ttctgaatt	0.584236905393 0.4541				13	-0.68414763
wt	13	219	gaattatgt	-1.21990482251 0.453271028037 21	6	13	-1.137638	mut	13	219	gaattatgt	-1.21990482251 0.4532				13	-1.137638
wt	13	208	ggatcagaa	-3.92207229714 0.448275862069 10	6	13	-1.5009961	mut	13	208	ggatcagaa	-3.92207229714 0.4482			-	13	-1.5009961
wt	13	202	gaataatta	-0.763296081587 0.456852791878 4	6	13	0.11837415	mut	13	202	gaataatta	-0.763296081587 0.4568				13	0.11837415
wt	13	199	taattatat	-2.22373023541 0.453608247423 1	6	13	-0.26460782	mut	13	199	taattatat	-2.22373023541 0.4536		1		13	-0.26460782
wt	13	192	attttaaat	-4.84966382696 0.44385026738 32	6	17	-3.220921	mut	13	192	attttaaat	-4.84966382696 0.4438		32		17	-3.220921
wt	13	191	ttttaaata	-1.80412339012 0.44623655914 31	6	17	-1.964379	mut	13	191	ttttaaata	-1.80412339012 0.4462				17	-1.964379
wt	13	184	tactaagaa	-0.37090280647 0.446927374302 24	6	17	-0.95989401	mut	13	184	tactaagaa	-0.37090280647 0.4469	27374302	24	6	17	-0.95989401
wt	13	169	ccatgagat	-1.50297489779 0.469512195122 9	6	17	-0.44638467	mut	13	169	ccatgagat	-1.50297489779 0.4695			6	17	-0.44638467
wt	13	164	agatcacga	-1.86844269119 0.471698113208 4	6	17	-0.27228499	mut	13	164	agatcacga	-1.86844269119 0.4716			6	17	-0.27228499
wt	13	154	tctttaaaa	-4.81345218081 0.456375838926 10	6	13	-1.8473974	mut	13	154	tctttaaaa	-4.81345218081 0.4563			6	13	-1.8473974
wt	13	153	ctttaaaaa	-1.80921970188 0.459459459459 9	6	13	-0.60680412	mut	13	153	ctttaaaaa	-1.80921970188 0.4594	59459459	9 (6	13	-0.60680412
wt	13	147	aaatgaaat	-1.44061386659 0.471830985915 3	6	13	-0.078691939	mut	13	147	aaatgaaat	-1.44061386659 0.4718	30985915	3 (6	13	-0.078691939
wt	13	138	attttaata	-5.1666216293 0.466165413534 6	11	21	-1.6547981	mut	13	138	attttaata	-5.1666216293 0.4661	55413534 6	5 :	11	21	-1.6547981
wt	13	137	ttttaatat	-0.636668955298 0.469696969697 5	11	21	0.18333137	mut	13	137	ttttaatat	-0.636668955298 0.4696	96969697	5 :	11	21	0.18333137
wt	13	124	ttcttacta	-0.180744604499 0.445378151261 99	10	21	-5.5960491	mut	13	124	ttcttacta	-0.180744604499 0.4453	78151261 9	99 :	10	21	-5.5960491
wt	13	115	gaatcaaat	-2.45300024531 0.445454545455 90	10	21	-5.9160351	mut	13	115	gaatcaaat	-2.45300024531 0.4454	4545455 9	90 :	10	21	-5.9160351
wt	13	108	attttaatt	-4.8626284941 0.436893203883 83	10	21	-6.4191952	mut	13	108	attttaatt	-4.8626284941 0.4368	93203883 8	33 :	10	21	-6.4191952
wt	13	107	ttttaatta	-1.2990955485 0.441176470588 82	10	21	-4.9592219	mut	13	107	ttttaatta	-1.2990955485 0.4411	76470588 8	32	10	21	-4.9592219
wt	13	104	taattaagt	-2.56602645133 0.434343434343 79	10	21	-5.2675972	mut	13	104	taattaagt	-2.56602645133 0.4343	13434343	79 :	10	21	-5.2675972
wt	13	103	aattaagta	-1.64706671047 0.438775510204 78	10	21	-4.8430513	mut	13	103	aattaagta	-1.64706671047 0.4387	75510204	78	10	21	-4.8430513
wt	13	99	aagtaagca	-0.75750347952 0.446808510638 74	10	21	-4.2389575	mut	13	99	aagtaagca	-0.75750347952 0.4468	98510638	74	10	21	-4.2389575
wt	13	92	cactgagaa	0.0494099468397 0.448275862069 67	10	21	-3.4794506	mut	13	92	cactgagaa	0.0494099468397 0.4482	75862069 6	57	10	21	-3.4794506
wt	13	82	tattcagct	-0.427825035865 0.454545454545 57	10	21	-3.0313026	mut	13	82	tattcagct	-0.427825035865 0.4545	15454545	57	10	21	-3.0313026
wt	13	68	aatttactg	-1.67657882597 0.412698412698 43	10	21	-2.6475876	mut	13	68	aatttactg	-1.67657882597 0.4126	98412698 4	43 :	10	21	-2.6475876
wt	13	50	gactaaaag	0.665771398687 0.37777777778 25	10	21	-0.60235528	mut	13	50	gactaaaag	0.665771398687 0.3777			10	21	-0.60235528
wt	13	35	aggtcagag	-2.6774474921 0.433333333333 10	10	21	-0.94396589	mut	13	35	aggtcagag	-2.6774474921 0.4333	3333333 1	10	10	21	-0.94396589
wt	13	15	tgcttagaa	-2.25910295864 0.2 10 0	0	-1.051	1568	mut	13	15	tgcttagaa	-2.25910295864 0.2	10	9 (9	-1.0511	568

IntSplice

SNV at chr5:41794100 can't be predicted by IntSplice.

Prediction shows either Abnormal or Normal.

Prediction Genomic Mutation Ensembl 64 Transcript ID and Exon No.

Variant Effect Predictor tool

Category	Count
Variants processed	1
Variants filtered out	0
Novel / existing variants	0 (0.0) / 1 (100.0)
Overlapped genes	1
Overlapped transcripts	7
Overlapped regulatory features	1

Se trata de una variante que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal. Además, es una *non coding transcript exon variant*, es decir, una variante que se encuentra en un transcrito que no se suele transcribir porque no es el mayoritario. El método de NMD se encarga de degradar estos transcritos², dado que aparece un codón de parada.

Uploaded variant	Location	Allele	Consequence	Symbol	Gene	Feature type
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	Т	splice_region_variant, intron_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	T	splice_region_variant, intron_variant, non_coding_transcript_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	Т	splice_region_variant, intron_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	T	splice_region_variant, intron_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	T	splice_region_variant, intron_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	<u>5:41793998-</u> <u>41793998</u>	T	splice_region_variant, intron_variant, non_coding_transcript_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	5:41793998- 41793998	Т	intron_variant, non_coding_transcript_variant	OXCT1	ENSG00000083720	Transcript
ENST00000196371.5:c.1248+5G>A	<u>5:41793998-</u> <u>41793998</u>	T	regulatory_region_variant	-	-	RegulatoryFeature

ESEfinder

1033 (-315) AACTGGATGATACCTgtaagtagacatttt	7.04910	1033 AACTGGATGATACCTgtaagtag	acatttt -29.50650	1033 AACTGGATGATACCTgtaagtagacatttt	6.86130	1033 AACTGGATGATACCTgtaagtagacatttt -28.47620
1034 (-314) ACTGGATGATACCTgtaagtagacattttt	-30.05710	1034 (-314) ACTGGATGATACCTgtaagtaga	cattttt -15.00510	1034 (-314) ACTGGATGATACCTgtaagtagacattttt	-27.48490	1034 ACTGGATGATACCTgtaagtagacattttt -16.18560
1035 (-313) CTGGATGATACCTgtaagtagacatttttt	-29.72170	1035 (-313) CTGGATGATACCTgtaagtagac	atttttt -30.98720	1035 (-313) CTGGATGATACCTgtaagtagacatttttt	-27.00970	1035 (-313) CTGGATGATACCTgtaagtagacatttttt -29.71210
1036 (-312) TGGATGATACCTgtaagtagacatttttta	-28.53440	1036 (-312) TGGATGATACCTgtaagtagaca	tttttta -34.44910	1036 (-312) TGGATGATACCTgtaagtagacattttta	-27.25970	1036 (-312) TGGATGATACCTgtaagtagacatttttta -39.20510
1037 (-311) GGATGATACCTgtaagtagacattttttat	0.00370	1037 (-311) GGATGATACCTgtaagtagacat	ttttat -13.90430	1037 (-311) GGATGATACCTgtaagtagacattttttat	-0.54990	1037 (-311) GGATGATACCTgtaagtagacattttttat -17.25030

La posición de interés no aparece como el mejor resultado del buscador, pero, cuando se buscan todas las secuencias, se obtiene una puntuación positiva para las matrices de 5'SS en dos resultados (1033 y 1037, aunque de este solo en una de las dos matrices y con un valor muy bajo) por lo que esta deberá ser la región que produzca este sitio de *splicing*. Si se hace la búsqueda para la secuencia mutada, el resultado equivalente aparece con valores más bajos (3.61380 y 3.19890 en cada matriz). Por lo tanto, se está perdiendo el sitio *donor*, afectando el *splicing*.

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	3	1	0	16	316.1988	14	-18.4369	2	7	20	233.6784	20	26.7130	34	49	0.69
mut	3	1	0	16	316.1988	14	-18.4369	2	7	20	233.6784	20	26.7130	34	49	0.69

Both alleles have a comparable chance of exon skipping.

HOT-SKIP

>wt

cataaaaccggtctgaggtaccaaaaaggggactgctgctgtagagaatttccaaacaataagaaaactaaaagtggtct gcttttcattatcatcatgcaaaggcaagagcaatgtcagtgacaaaatgctttccaccacaaaaggttcctactgtgtc ccccacctgctatgtcactgcattttggtaaagggagcttaagttcttttgggaaatggagaagatgtggacctctgttc CTTCCAGGAGCCTCTTTTTTCTCCAGCGATGAATCATTTGCAATGATTAGAGGGtatgtaataacagagcccctcatgtt aaactatcaggagtttgttcggctgcagggtgtgaaattattcacatcgaatgttgggcattgaatatccagcccactgt taggaaaagaacccccaaaatggaatccatgcctttgtgccaaccatactgaaataaacatttctaaggtgctttctgag tttagtgattatttctctgtcagcatggagctgatctattaggaaatcagttgtggtggtggggaagcaagtatattttg gtggtatgaagttattctaattgctggcaagttcaagcaaaggggacaaaagcttatgaggttcactttattcttcctct ttctttctcagTGGACACGTCGATCTGACAATGCTAGGAGCGATGCAGGTTTCCAAATATGGTGACCTGGCTAACTGGAT GATACCTgtaagtagacattttttattctgaattatgtttggatcagaataattatattttaaatactaagaaaaagggc gagaagtattcagctttgccaatttactgtgcatttgggactaaaagtaggcaaggtcagagccgaaacctcttgcttag aagaaaccaagttagagaagacttaaaaaacagaaaaagggctaattatactctgaaaataagaaat

No da resultados para mutaciones intrónicas.