Fully-coupled FSI Simulation Of Bioprosthetic Heart Valve Using Smoothed Particle Hydrodynamics

Wenbin Mao¹, Kewei Li², Andres Caballero¹, Wei Sun¹

1. Tissue Mechanics Lab, Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 2. Institute of Biomechanics, Graz University of Technology, Graz, Austria

INTRODUCTION

- Clinically, bioprosthetic heart valves (BHV) are often used to replace the malfunctioning native heart valves.
- Transcatheter aortic valve (TAV) replacement is an alternative therapy to surgical valve replacement for high-risk patients with severe aortic stenosis.
- In recent years, there has been great effort put in understanding the hemodynamics and mechanics of BHVs.
- Fluid-structure interaction (FSI) simulation is the most accurate computer modelling method to capture hemodynamic and structural details through BHVs.

Objective: Develop a novel FSI model that could capture the hemodynamics and structural response of BHVs during the full cardiac cycle.

METHODS

Smoothed Particle Hydrodynamics (SPH)

• SPH is a meshless, Lagrangian particle-based method

Blood properties: $\rho_0 = 1056 \text{ kg/m}^3$, $\mu = 0.0035 \text{ Pa} \cdot \text{s}$

Finite Element (FE) Modeling

- TAV model: 23 mm generic TAV model adopted from Li and
- Leaflets with a thickness of 0.25 mm modeled using largestrain brick (C3D8R) elements in Abaqus/Explicit 6.13
- Constitutive models for bovine pericardium:
- > Isotropic Ogden model: $W = \sum_{i=1}^{N} \frac{2\mu_i}{a_i^2} (\bar{\lambda}_1^{a_i} + \bar{\lambda}_2^{a_i} + \bar{\lambda}_3^{a_i} 3)$
- > Anisotropic MHGO model: $W = C_{10} \{ \exp[C_{01}(\bar{I}_1 3)] 1 \} +$ $\frac{k_1}{2k_2}\sum_{i=1}^{2} \left\{ \exp\left[k_2(\bar{I}_{4i}-1)^2\right] - 1\right\} + \frac{1}{D}(J-1)^2$

MHGO model	C_{10} (kPa)	C_{01}	k_1 (kPa)	k_2	$ heta(^\circ)$	$D (kPa^{-1})$	
	30.03	3.47	74.5	63.19	43.11	1.00e-5	\
Ogden model	μ_1 (kPa)	a_1	μ_2 (kPa)	a_2			
	19.58	67.74	260.56	27.47			

FE-SPH Model for TAV Simulation

- SPH particles initially uniform distributed with a spatial resolution of 0.9 mm, resulting in approximately 370,000 PC3D elements.
- Pressure drop waveforms applied on the two plates

RESULTS AND DISCUSSION

TAV Opening and Closing Kinematics FSI-MHGO FSI-Ogden FE-Ogden FE-MHGO RVOT (ms) 40 57.5±11.1

RVCT (ms)	35	35	8	9	39.5±5
ET (ms)	270	270	240	240	329±63
DV/OT : I		L' DV/CT		1	FT

RVOT: rapid valve opening time; RVCT: rapid valve closing time; ET: ejection time

- FE models exhibit unrealistic fast opening and closing processes.
- Opening configurations from FE models are unrealistic.

Reason: Uniformly distributed pressure load on the leaflets in FE models is not the case in reality, thus overestimated the force in the free edge region.

Structural Stress and Strain Responses

- The high stress region in MHGO models shifted downwards from the commissure region and distributed along the attachment

Hemodynamics

Model	MSPD (mmHg)	PSPD (mmHg)	EOA (cm²)	RV (ml)
FSI-Ogden	4.9	12.0	1.22	3.2
FSI-MGHO	4.9	11.6	1.52	3.1

FSI-MHGO, maximum principal logarithmic strain

MSPD: Mean systolic pressure drop; PSPD: Peak systolic pressure drop; EOA: Effective orifice area; RV: Regurgitant volume

- Hemodynamic parameters are comparable to the normal performance after TAV intervention
- Smaller oscillations in velocity and hydrodynamic force curves during the closing phase are due to the water hammer effect.
- The peak hydrodynamic force on the valve would exceed the hydrostatic pressure force by 24% during the closing.

Conclusions

- The FE-SPH coupled FSI model is capable of modeling the overall structural and hemodynamic characteristics of TAVs during the whole cardiac cycle.
- The FSI model is essential to capture the accurate kinematics of the valve opening and closing.
- Water hammer effect during the closing phase should be considered in the valve durability assessment.