(NATURAL SCIENCE)

Vol. 63 No. 11 JUCHE106(2017).

주체106(2017)년 제63권 제11호

평균소득을 최대화하는 대중봉사계의 조종에서 편위최량방략

전용철, 강은하

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《인민경제 모든 부문의 생산기술공정과 생산방법, 경영활동을 새로운 과학적토대우에 올려세우기 위한 연구사업도 강화하여야 합니다.》(《김정일선집》 중보판 제11권 138폐지)

선행연구[1]에서는 대중봉사계 M/M/1에서 요청들의 입장과 봉사속도의 조종문제에 대하여 론의하였으며 선행연구[2]에서는 대중봉사계 M/M/1/K에서 계의 상태에 따라 요청들의 입장을 조종할 때의 작업주기에 대하여 연구하였다.

론문에서는 평균소득을 최대화하는 도착속도를 가지는 대중봉사계의 봉사속도조종에 서 편위최량방략의 성질에 대하여 론의한다.

다음과 같은 구조를 가지는 대중봉사계를 생각한다.

요청들의 도착흐름은 도착속도가 λ 인 뽜쏭흐름이며 요청들에 대한 봉사시간은 파라메터가 μ 인 지수분포에 따른다. 봉사계에 있는 요청수에 따라 도착속도와 봉사속도를 조종할수 있다고 가정한다. 요청수를 i 라고 할 때 도착속도는 $\lambda + a_1(i)$ 이고 봉사속도는 $\mu + a_2(i)$ 이다. $a(i) = (a_1(i), a_2(i))$ 로 놓고 도착속도와 봉사속도가 각각 $a_1(i)$, $a_2(i)$ 만큼 증가할 때 드는 비용은 c(i, a(i))이다. 봉사계에 있는 요청수가 i일 때 단위시간당 봉사계의 비용은 p_0i 이다. $p_0>0$ 은 고정된 비용파라메터이다. $a_1(i)$, $a_2(i)$ 들은 모든 i에 대하여 각각 $a_1(i)$, $a_1(i)$, $a_2(i)$ 에 속하며 $a_1(i)$ 이다. 용사계인 이고 모든 $a_1(i)$ 이다. 봉사계는 평균소득을 최대로 하려고 한다.

체계를 다음과 같은 마르꼬브결정과정으로 서술한다.

체계의 요청수 i는 계의 상태, $S = \{0, 1, 2, \cdots\}$ 은 상태공간이고 $a(i) = (a_1(i), a_2(i))$ 는 작용이며 $A(i) = [a_1^0, a_1^1] \times [a_2^0, a_2^1]$ 은 작용공간이다.

이행속도 q(j|i, a(i))는 다음과 같다.

$$j \geq 2 \text{ 이 코} \quad i \geq 1 \text{ 콰} \quad a(i) \in A(i) \text{ 에 대하여 } q(j \mid i, \ a(i)) = \begin{cases} \mu + a_2(i), & j = i - 1 \\ -(\lambda + \mu) - a_1(i) - a_2(i), & j = i \\ \lambda + a_1(i), & j = i + 1 \end{cases}$$

 $K = \{(i, a(i)): i \in S, a(i) \in A(i)\}$ 라고 할 때 소득함수는 K에서 정의되는 함수 $r(i, a(i)) = -p_0 i - c(i, a(i))$

이다. 매 $i \in S$ 에 대하여 $q_i(a) = -q(i|i, a)$ 라고 할 때 $q^*(i) = \sup_{a \in A(i)} q_i(a) < \infty$ 를 만족시킨다.

 $\{S, A(i), q(j|i, a(i)), r(i, a(i))\}$ 가 주어졌을 때 시간 t에 따르는 상태 i의 변화를 나타내는 과정 x(t)는 마르꼬브결정과정이다.

초기상태가 $i \in S$ 일 때 방략 $\pi = (\pi_i) \in \Pi$ 의 기대평균소득은 다음과 같이 정의된다.

$$V(i, \pi) = \lim_{T \to \infty} \frac{1}{T} E \begin{bmatrix} \int_{0}^{T} r(x(t), \pi_{t}) dt \end{bmatrix}$$

평균소득최량화문제에서 최량값함수는 모든 $i \in S$ 에 대하여 $V^*(i) = \sup_{\tau \in S} V(i, \pi)$ 이다.

확정정상방략들의 모임을 F, 평균소득최량확정정상방략모임을 F_A 로 표시한다. 확정정상방략 $f \in F$ 가 주어졌을 때 소득과 편위는 각각 다음과 같다.

$$g(f) = \lim_{T \to \infty} \frac{1}{T} V_T(i, f), h_f(i) = \int_0^{\infty} [Er(x(t), f) - g(f)] dt, i \in S$$

 $\hat{h}(i) = \sup_{f \in F_A} h_f(i)$ 를 최량편위함수, $h_f = \hat{h}$ 일 때 $f \in F_A$ 를 편위최량방략이라고 부른다.

다음의 조건들이 성립될 때 편위최량정상방략이 존재한다.

- ① $\mu + a_2^0 \lambda a_1^1 > 0$
- ② $i \ge 1$ 에 대하여 $\lambda + a_1(i) > 0$, $\mu + a_2(i) > 0$ 이 π $a_1(0) \ge 0$, $a_2(0) = 0$ 이다.
- ③ 적당한 상수 M>0이 있어서 모든 i에 대하여 $\sup_{a\in A}|c(i, a(i))|< M(i+1)$ 이 성립된다.

정리 1 조건 ①-③이 성립될 때 다음의 사실들은 동등하다.

- i) $f \in F$ 는 편위최량방략이다.
- ii) $f \in F$ 는 약점근최량방략이다.
- iii) $f \in F$ 는 평균소득최량방략이며 $\mu_f(\hat{h}) = 0$ 이다.

S 우의 임의의 가측함수 $w \ge 1$ 에 대하여 S 우의 실가측함수 u의 무게붙은 상한노름 $\|u\|_{w} = \sup_{x \in \mathbb{R}} \{w(x)^{-1} | u(x)|\}$ 를 생각한다. 그리고 공간 $B_{w}(S) = \{u : \|u\|_{w} < \infty\}$ 를 리용한다.

기호 $\zeta(i, u(i), a(i)) = u(i-1)(\mu + a_2(i)) + u(i+1)(\lambda + a_1(i))$ 를 리용한다.

 $(g, u, v) \in \mathbf{R} \times B_w(S) \times B_w(S)$ 에 대하여

$$g = \max_{a \in A(i)} \{ r(i, a) + \varsigma(i, u(i), a(i)) \}, i \in S,$$
(1)

$$u(i) = \max_{a \in A_0(i)} \{ \zeta(i, \ v(i), \ a(i)) \}, \ i \in S$$
 (2)

가 성립되면 이 방정식을 편위최량성방정식이라고 부른다. 여기서 $A_0(i)$ 는 식 (1)에 최대 값을 주는 작용 $a \in A(i)$ 들의 모임이다.

정리 2 조건 ①-③이 성립될 때 편위최량성방정식 (1), (2)의 풀이가 존재한다.

증명 (g^*, \overline{u}) 가 평균소득최량성방정식 $g^* = \max_{a \in A(i)} \{r(i, a) + \varsigma(i, \overline{u}(i), a(i))\}$, $i \in S$ 의 풀이라고 하고 $f \in F$ 가 평균소득최량정준방략이라고 하면 다음의 식이 성립된다.

$$r(i, f) + \varsigma(i, \overline{u}(i), f(i)) = g^* = g(f) = r(i, f) + \varsigma(i, h_f(i), f(i))$$

따라서 $\overline{u}-h_f$ 는 일정하며 $h_f=\overline{u}-\mu_f(\overline{u})$ 이다. 여기서 μ_f 는 방략 f 밑에서의 불변확률측도이다.

그러므로 $f \in F_A$ 에 관한 상한을 취하면 다음의 식이 성립된다.

$$\hat{h} = \overline{u} + \sup_{f \in F_A} \mu_f(-\overline{u}) \tag{3}$$

이로부터 정준방략모임안에서 h_f 를 최대화하는것은 $\{S,\ A_0(i),\ q(j|i,\ a(i)),\ -\overline{u}(i)\}$ 와 같이 주어지는 평균소득최량화문제를 푸는것과 동등하다는것을 알수 있다.

이 문제에 대하여 조건 $(\hat{0}-3)$ 이 성립되며 따라서 (g^*, \hat{h}) 이 최량성방정식 (1)을 만족시킨다는것을 알수 있다.

최량성방정식 (1)의 고정된 풀이 (g^*, \overline{u}) 에 대하여 식 (3)으로부터 $\hat{g}=\sup_{f\in F_A}\mu_f(-\overline{u})$ 로 놓을 때 $\hat{g}=\hat{h}(i)-\overline{u}(i)$ 가 성립된다.

 $\hat{g}=\sup_{f\in F_A}\mu_f(-\overline{u})$ 에 대응되는 평균소득최량성방정식은 어떤 $v\in B_w(S)$ 에 대하여

$$\hat{g} = \max_{a \in A_0(i)} \{ -\overline{u}(i) + \varsigma(i, \ v(i), \ a(i)) \}, \ i \in S$$
(4)

이다. 이것은 (\hat{g}, v) 가 최량성방정식 (2)를 만족시킨다는것을 보여준다.(증명끝)

정리 3 조건 ①-③이 성립되면 다음의 사실들이 성립된다.

- ① (g, u, v)가 편위최량성방정식의 풀이이면 $g = g^*$ 이고 $u = \hat{h}$ 이다.
- ② 방략 $f \in F$ 가 편위최량이기 위하여서는 f(i) 가 모든 $i \in S$ 에 대하여 편위최량성 방정식에 최대값을 주는것이 필요충분하다.

증명 ① (g, u, v)가 편위최량성방정식의 풀이이면 $g = g^*$ 이다. 그리고 식 (4)의 풀이 \hat{g} 은 유일하며 $u = \hat{g} + \overline{u} = \hat{h}$ 이다.

② 필요성은 분명하므로 충분성만을 증명하자.

 $f(i) \in A(i)$ 가 모든 $i \in S$ 에 대하여 편위최량성방정식에 최대값을 주면 f 는 정준방략이며 $\hat{h}(i) = \varsigma(i,\ v(i),\ a(i))$, $i \in S$ 를 만족시킨다. 그러므로 $\mu_f(\hat{h}) = 0$ 이다.

 $f \in F$ 가 평균소득최량방략이면 다음의 식이 성립된다.

$$r(i, f) + \zeta(i, \overline{u}(i), f(i)) = g^* = g(f) = r(i, f) + \zeta(i, h_f(i), f(i))$$

이것은 $\bar{u}-h_f$ 가 일정하다는것을 의미하므로 $\bar{u}-\hat{h}$ 은 일정하며 h_f 와 \hat{h} 은 상수차이를 가진다. 그런데 $\mu_f(\hat{h})=0$, $\mu_f(h_f)=0$ 이므로 $\hat{h}=h_f$ 이고 f는 편위최량방략이다.(증명끝)

참 고 문 헌

- [1] K. M. Adusumilli et al.; Queueing Systems, 66, 2, 131, 2010.
- [2] A. A. Hanbal et al.; Operations Research Letters, 38, 1, 2010.

주체106(2017)년 7월 5일 원고접수

Bias Optimal Policies in Control of a Queue to Maximize Average Reward

Jon Yong Chol, Kang Un Ha

We considered a joint arrival and service rate control problem for the M/M/l queue to maximize average reward. When arrival and service rates took the continuous values, we established the properties of bias optimal policy.

Key words: queue, control