CS-583: Deep Learning AutoEncoder

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

November 21, 2023

Motivation:

- Deep neural networks require lot of data
- Sometimes not very much labeled data, but plenty of unlabeled data (text, images, videos)
- Humans rarely get direct supervision; can learn from raw sensory information?

Analogy:

 $A A A A B B B B B \Rightarrow 4 A's$, $5 B's \Rightarrow A A A A B B B B B$

Key idea: If we can compress a data point and still reconstruct it, then we have learned something generally useful

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

- An autoencoder is a neural net taking an input x and reconstruct x
- For dim reduction, we need a bottleneck layer whose output shape is much smaller than the input
- Loss function: $\sum_{j=1}^{x} |x_j \tilde{x_j}|_2^2$

Autoencoder projects data onto nonlinear manifold

PCA projects data onto a subspace

Convolutional Autoencoder

Convolutional Autoencoder

Convolutional Autoencoder

Denoising Autoencoder

Used as targets

Used as inputs

Denoising Autoencoder

Instead of a single vector output by the encoder, VAE outputs a distribution

Sample a code vector from the distribution and reconstruct the original

Code vectors

• Get a set of code vectors from the grid:

$$z_1,z_2,z_3,z_4,z_5,\cdots$$

For every code vector z_i , map it to an image using the decoder:

$$image_i = decoder(z_i)$$

Code vector

Images

- Function f is continuous if a small change in z (input) results in a small change in f(z) function value)
- The decoder network is trained to be (almost) continuous
- If the code vectors z and z' are similar, then the images

Decoder(z) and Decoder(z')

are similar as well

Summary

- Autoencoder: generalizations of (linear) PCA
- Autoencoder = Encoder + Decoder
- Original/noisy images → original images
- Application: Dimensionality reduction or Denoising
- VAE = AE + probability tricks
- The decoder network behaves like a continuous function
- Application: Edit images (average faces/add smile etc.)

References

Stuart Russell and Xiaodong Song (2021)

CS 188 — Introduction to Artificial Intelligence

University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End