

Bayes & Uncertainty III

PROFLIM KWAN HUI

50.021 Artificial Intelligence

The following notes are compiled from various sources such as textbooks, lecture materials, Web resources and are shared for academic purposes only, intended for use by students registered for a specific course. In the interest of brevity, every source is not cited. The compiler of these notes gratefully acknowledges all such sources.

Outline & Objectives

- Recap on statistical concepts such as product rule, chain rule, conditional independence, Bayes rules
- Able to represent a problem in terms of a Bayesian network and its corresponding conditional probability table
- Learn about how Bayes net can be used in various scenarios
- Learn about the Naïve Bayes Classifier and its application to text

Bayes Rule and conditional independence

- P(Cavity | toothache, catch)
 - = α P(toothache, catch | Cavity) P(Cavity)
 - = α P(toothache | Cavity) P(catch | Cavity) P(Cavity)
- This is an example of a naive Bayes model:
 - P(Cause, Effect₁,..., Effect_n) = P(Cause) \prod_i P(Effect_i|Cause)

Total number of parameters is linear in n

Naïve Bayes Classifier

- P(Cavity | toothache, catch)
 - = α P(toothache, catch | Cavity) P(Cavity)
 - = α P(toothache | Cavity) P(catch | Cavity) P(Cavity)
- Similar to finding the most likely class given a set of features, e.g.,
 - P(cavity=true | toothache, catch) or P(cavity=false | toothache, catch)

Bayes for Classification

- o Given the following:
 - An observation o represented by a feature set $X_0 = \{x_1, x_2, ..., x_m\}$
 - A fixed set of classes $Y = \{y_1, y_2, ..., y_n\}$

• We are interested to classify the class Y that observation o belongs to given its feature set X_o

$$y_{MAP} = \operatorname{argmax} P(Y \mid X_o)$$

Bayes for Classification

- We are interested to classify the class Y that observation o belongs to given its feature set X_o .
- O Applying Bayes Theorem, we have:

$$y_{MAP} = \operatorname{argmax} P(Y \mid X_o)$$

$$y_{MAP} = \operatorname{argmax} \frac{P(X_o \mid Y) P(Y)}{P(X_o)}$$

$$y_{MAP} = \operatorname{argmax} P(X_o \mid Y) P(Y)$$

$$y_{MAP} = \operatorname{argmax} P(X_o \mid Y) P(Y)$$

$$y_{MAP} = \operatorname{argmax} P(x_1, x_2, ..., x_m \mid Y) P(Y)$$

Example: Tax Avoidance

 Given an observation o with feature set
 X_o = {Industry=IT, Status=Married, Income=low}, how to estimate class Y?

$$y_{MAP} = \operatorname{argmax} P(Y \mid X_o)$$

- Find probabilities by counting:
 - $P(Y) = N_c/N$
 - E.g., P(AvoidTax=Yes) = 3/10
 - $P(X_i \mid Y_k) = |X_{ik}| / N_c$
 - E.g., P(Industry=Sales | AvoidTax=Yes) = 2/3

ID	Industr y	Marital Status	Income Level	Avoid Tax
1	IT	Single	High	No
2	Sales	Married	Medium	No
3	Sales	Single	Low	No
4	IT	Married	High	No
5	Sales	Divorced	Low	Yes
6	Sales	Married	Low	No
7	IT	Divorced	High	No
8	IT	Married	Medium	Yes
9	Sales	Married	Low	No
10	Sales	Single	Medium	Yes

Example: Tax Avoidance

Given an observation o with feature set X_o = {Industry=IT, Status=Married, Income=low}, how to estimate class Y?

```
    P(Y=Yes | X) = P(X | Y=Yes) P (Y=Yes)
    = P(Industry=IT | Yes) x
    P(Status=Married | Yes) x
    P(Income=Low | Yes) x P(Yes)
    = 1/3 x 1/3 x 1/3 x 3/10
```

```
    P(Y=No | X) = P(X | Y=No) P (Y=No)
    = P(Industry=IT | No) x
    P(Status=Married | No) x
    P(Income=Low | No) x P(No)
    = 3/7 x 4/7 x 3/7 x 7/10
```

ID	Industr y	Marital Status	Income Level	Avoid Tax
1	IT	Single	High	No
2	Sales	Married	Medium	No
3	Sales	Single	Low	No
4	IT	Married	High	No
5	Sales	Divorced	Low	Yes
6	Sales	Married	Low	No
7	IT	Divorced	High	No
8	IT	Married	Medium	Yes
9	Sales	Married	Low	No
10	Sales	Single	Medium	Yes

• Given a document d, we want to find the most likely class c:

$$c_{NB} = \operatorname*{argmax}_{c_i \in C} P(c_i | d)$$

• Given a document d, we want to find the most likely class c:

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(c_{i} | d)$$

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} \frac{P(d | c_{i}) P(c_{i})}{P(d)}$$
Bayes Rule

• Given a document d, we want to find the most likely class c:

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(c_{i} | d)$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} \frac{P(d | c_{i}) P(c_{i})}{P(d)}$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(d | c_{i}) P(c_{i})$$
Normalization

Given a document d, we want to find the most likely class c:

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(c_{i} | d)$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} \frac{P(d | c_{i}) P(c_{i})}{P(d)}$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(d | c_{i}) P(c_{i})$$

$$Document as$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(w_{1}, w_{2}, ..., w_{m} | c_{i}) P(c_{i})$$
words

Given a document d, we want to find the most likely class c:

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(c_{i} | d)$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} \frac{P(d | c_{i}) P(c_{i})}{P(d)}$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(d | c_{i}) P(c_{i})$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(w_{1}, w_{2}, ..., w_{m} | c_{i}) P(c_{i})$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(w_{1}, w_{2}, ..., w_{m} | c_{i}) P(c_{i})$$

$$c_{NB} = \underset{c_{NB}}{\operatorname{argmax}} P(w_{1} | c_{i}) P(w_{2} | c_{i}) ... P(w_{m} | c_{i}) P(c_{i})$$

Given a document d, we want to find the most likely class c:

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(c_{i} | d)$$

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} \frac{P(d | c_{i}) P(c_{i})}{P(d)}$$

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(d | c_{i}) P(c_{i})$$

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(w_{1}, w_{2}, ..., w_{m} | c_{i}) P(c_{i})$$

$$c_{NB} = \underset{c_{i} \in C}{\operatorname{argmax}} P(w_{1} | c_{i}) P(w_{2} | c_{i}) ... P(w_{m} | c_{i}) P(c_{i}) - c_{NB}$$

2024 - Term 6/8

O How do we estimate the different probabilities?

$$c_{NB} = \underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{w_j \in W} P(w_j \mid c_i)$$

For a set of documents D, vocabulary of words W, and classes C,

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$P(w_1 \mid c_i) = \frac{count(w_1, c_i)}{\sum_{w_j \in W} count(w_j, c_i)}$$

O How do we estimate the different probabilities?

$$c_{NB} = \underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{w_j \in W} P(w_j \mid c_i)$$

For a set of documents D, vocabulary of words W, and classes C,

$$P(c_i) = \frac{|c_i|}{|D|}$$
 in the entire dataset
$$P(w_1 \mid c_i) = \frac{count(w_1, c_i)}{\sum_{w_j \in W} count(w_j, c_i)}$$
 # times word w_i is used in all documents of class c_i Total words in all documents of class c_i

• How do we use this to test if an email is a scam or real?

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$P(w_1 \mid c_i)$$

$$= \frac{count(w_1, c_i)}{\sum_{w_i \in W} count(w_j, c_i)}$$

ID	Email Text	Class
1	iphone, free, password	Scam
2	job, easy, password	Scam
3	lunch, restaurant, discount, iphone	Real
4	restaurant, reservation, discount	Real
5	iphone, discount, reservation	?

 $P(Real \mid iphone, discount, reservation)$

- $= P(iphone, discount, reservation \mid Real) P(Real)$
- = P(iphone|Real) P(discount|Real) P(reservation|Real) P(Real)

$$= (1/7) \times (2/7) \times (1/7) \times (2/4) = 0.0029$$

• How do we use this to test if an email is a scam or real?

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$P(w_1 \mid c_i)$$

$$= \frac{count(w_1, c_i)}{\sum_{w_i \in W} count(w_j, c_i)}$$

ID	Email Text	Class
1	iphone, free, password	Scam
2	job, easy, password	Scam
3	lunch, restaurant, discount, iphone	Real
4	restaurant, reservation, discount	Real
5	iphone, discount, reservation	?

 $P(Scam \mid iphone, discount, reservation) = ?$

Which is the most likely class?

• How do we use this to test if an email is a scam or real?

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$P(w_1 \mid c_i)$$

$$= \frac{count(w_1, c_i)}{\sum_{w_i \in W} count(w_j, c_i)}$$

ID	Email Text	Class
1	iphone, free, password	Scam
2	job, easy, password	Scam
3	lunch, restaurant, discount, iphone	Real
4	restaurant, reservation, discount	Real
5	iphone, discount, reservation	?

Which is the most likely class?

P(Real | i, d, r) = 0.0029

 $P(Scam \mid i, d, r) = 0$

 $= P(iphone, discount, reservation \mid Scam) P(Scam)$

= P(iphone|Scam) P(discount|Scam) P(reservation|Scam) P(Scam)

 $= (1/6) \times (0/6) \times (0/6) \times (2/4) = 0$

P(*Scam* | *iphone*, *discount*, *reservation*)

What is the issue here?

Laplace Smoothing

- Problem with new words, or unseen words for a specific class
 - E.g., Consider a new word w_1 , which gives $P(w_1|c) = \frac{\text{count}(w_1,c_i)}{\sum \text{count}(w_i,c_i)} = 0$
 - The probability $P(w_1 \mid c) = 0$ affects the entire equation

$$c_{NB} = \operatorname{argmax} P(c \mid d)$$

$$\vdots$$

$$c_{NB} = \operatorname{argmax} P(w_1 \mid c) P(w_2 \mid c) P(w_3 \mid c) P(w_4 \mid c) P(c)$$

 \circ Laplace Smoothing: Add a constant lpha to our counts

$$P(w_1 \mid c_i) = \frac{count(w_1, c_i) + \alpha}{\sum_{w_j \in W} \left(count(w_j, c_i) + \alpha\right)} = \frac{count(w_1, c_i) + \alpha}{\sum_{w_j \in W} \left(count(w_j, c_i)\right) + \alpha|W|}$$

Usually $\alpha = 1$

• How do we use this to test if an email is a scam or real?

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$Laplace \\ Smoothing \\ P(w_1 \mid c_i)$$

$$= \frac{count(w_1, c_i) + 1}{\sum_{w_j \in W} count(w_j, c_i) + |W|}$$

$$ID Email Text$$

$$1 iphone, free, password$$

$$2 job, easy, password$$

$$3 lunch, restaurant, discount, iphone$$

$$4 restaurant, reservation, discount$$

$$Real$$

$$5 iphone, discount, reservation$$

$$?$$

 $P(Real \mid iphone, discount, reservation) = ?$

• How do we use this to test if an email is a scam or real?

$P(c_i) = \frac{ c_i }{ c_i }$	ID	Email Text	Class
D Laplace	1	iphone, free, password	Scam
Smoothing /	2	job, easy, password	Scam
$P(w_1 \mid c_i)$	3	lunch, restaurant, discount, iphone	Real
$= \frac{count(w_1, c_i) + 1}{}$	4	restaurant, reservation, discount	Real
$\sum_{w_j \in W} count(w_j, c_i) + W $	5	iphone, discount, reservation	?

 $P(Real \mid iphone, discount, reservation)$

- = P(iphone, discount, reservation | Real) P(Real)
- = P(iphone|Real) P(discount|Real) P(reservation|Real) P(Real)
- $= (1+1)/(7+9) \times (2+1)/(7+9) \times (1+1)/(7+9) \times (2/4) \approx 0.0015$

• How do we use this to test if an email is a scam or real?

$$P(c_i) = \frac{|c_i|}{|D|}$$

$$Laplace \\ Smoothing \\ P(w_1 \mid c_i)$$

$$= \frac{count(w_1, c_i) + 1}{\sum_{w_j \in W} count(w_j, c_i) + |W|}$$

$$ID Email Text$$

$$1 iphone, free, password$$

$$2 job, easy, password$$

$$3 lunch, restaurant, discount, iphone$$

$$4 restaurant, reservation, discount$$

$$5 iphone, discount, reservation$$

$$?$$

P(Scam | iphone, discount, reservation)
= ?

• How do we use this to test if an email is a scam or real?

$P(c_i) = \frac{ c_i }{ c_i }$	ID	Email Text	Class
D Laplace	1	iphone, free, password	Scam
Smoothing /	2	job, easy, password	Scam
$P(w_1 \mid c_i)$	3	lunch, restaurant, discount, iphone	Real
$= \frac{count(w_1, c_i) + 1}{}$	4	restaurant, reservation, discount	Real
$\sum_{w_j \in W} count(w_j, c_i) + W $	5	iphone, discount, reservation	?

 $P(Scam \mid iphone, discount, reservation)$

- $= P(iphone, discount, reservation \mid Scam) P(Scam)$
- = P(iphone|Scam) P(discount|Scam) P(reservation|Scam) P(Scam)
- $= (1+1)/(6+9) \times (0+1)/(6+9) \times (0+1)/(6+9) \times (2/4) \approx 0.0003$

- Naïve Bayes is a decent baseline classifier but has its own limitations
- Assumes there is conditional independence (given a class)
 - $P(w_1, w_2, w_3, w_4 | c) = P(w_1 | c) P(w_2 | c) P(w_3 | c) P(w_4 | c)$
 - Is this always true?
- Assumes that order does not matter
 - "I like burger but dislike fruits" and "I like fruits but dislike burgers"
 - Does the NB classifier treat the above two sentences differently?

Summary

- Recap on statistical concepts such as product rule, chain rule, conditional independence, Bayes rules
- Problem representation in terms of a Bayesian network and its corresponding conditional probability table
- Learn about how Bayes net can be used in various scenarios
- Learn about the Naïve Bayes Classifier and its application to text