The Open Master Hearing Aid (openMHA)

4.10.0

Documentation of openMHA plugins (openMHA)

© 2005-2019 by HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

LICENSE AGREEMENT

This file is part of the HörTech Open Master Hearing Aid (openMHA) Copyright © 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 HörTech gGmbH. Copyright © 2017 2018 2019 HörTech gGmbH.

openMHA is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, version 3 of the License.

openMHA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License, version 3 for more details.

You should have received a copy of the GNU Affero General Public License, version 3 along with openMHA. If not, see http://www.gnu.org/licenses/>.

Contents

1	Plugi	n category 'beamforming'	1
	1.1		1
2	Dlugi	n category 'compression'	2
_	2.1	3. 7 · · · · · · · · · · · · · · · · · ·	2
	2.2		6
			9
	2.3	softclip	9
3	Plugi	n category 'data-export'	0
	3.1	ac2lsl	0
	3.2	ac2osc	1
	3.3	acmon	2
	3.4	acsave	3
	3.5	wavrec	5
4	Plugi	n category 'data-flow'	6
Т.	4.1	ac2wave	_
	4.2	acConcat wave	_
	4.3	acPooling wave	
	4.4	ac proc	
	4.5	combinechannels	
	4.6	db	
	4.7		
	4.7	delay	
	4.0	fader wave	
	4.10	matrixmixer	_
	4.10		
	4.11		
		- '	
	4.13	-	
	4.14	shadowfilter_begin	
	4.15	shadowfilter_end	Ь
5	Plugi		8
	5.1	acSteer	8
	5.2	addsndfile 3	9
	5.3	osc2ac	3
6	Plugi	n category 'example' 4	5
	6.1	example1 4	.5
	6.2	example2	6
	6.3	example3	_
	6.4	example4	
	6.5	example5	_
	6.6	example6	
_	ъ.		
7	Plug i 7.1	n category 'feedback-suppression' 5 fshift	
	7.1	fshift_hilbert	
	7.2	lpc	
	7.3 7.4	lpc_bl_predictor	
	7.4 7.5	lpc_burg-lattice	
	7.5	ipo_buig-iatiloe	1

	7.6	nlms_wave	
	7.7	prediction_error	ıU
8	_	g,	4
	8.1	ftfilter	
	8.2	irfilter	
	8.3	mconv	
	8.4	steerbf	
	8.5	ransducers 6	9
9	Plugi	category 'filterbank'	'3
	9.1	ftfbpow	'3
	9.2	ftfilterbank	'5
	9.3	gtfb_analyzer	'8
	9.4	multibandcompressor	0
10	Plugi	category 'level'	32
	10.1	evelmeter	12
11	Pluai	category 'level-meter' 8	3
	_	rmslevel	_
12	Plugi	category 'level-modification'	34
'-		gain	
		smoothgains_bridge	
40	Diver	and a name through the	37
13		category 'math' acTransform wave	
14			39
		noise_psd_estimator	
	14.2	smooth_cepstrum	U
15	Plugi		3
	15.1	altplugs	93
	15.2	analysispath	14
	15.3	nhachain	
	15.4	overlapadd	8
	15.5	esampling	1
	15.6	split	13
16	Plugi	category 'signal-generator')4
	16.1	noise)5
	16.2	olingploing)6
	16.3	sine	17
17	Pluai	category 'signal-transformation'	8(
•	17.1	downsample	_
		spec2wave	
	17.3	upsample	
		vave2spec	
10	Dlugi	category 'spatial'	1
10	_	category 'spatial' adm	
	10.1	<u> </u>	

vi CONTENTS

	18.2 coherence 18.3 delaysum_wave 18.4 doasvm_classification 18.5 doasvm_feature_extraction	119 120
19	Plugin category 'test-tool' 19.1 cpuload	124 125
20	All plugins tagged 'adaptive'	128
21	All plugins tagged 'algorithm-communication'	129
22	All plugins tagged 'audio-channels'	129
23	All plugins tagged 'beamformer'	129
24	All plugins tagged 'beamforming'	130
25	All plugins tagged 'binaural'	130
26	All plugins tagged 'calibration'	130
27	All plugins tagged 'classifier'	130
28	All plugins tagged 'compression'	130
29	All plugins tagged 'cross-fade'	130
30	All plugins tagged 'data-export'	131
31	All plugins tagged 'data-flow'	131
32	All plugins tagged 'data-import'	132
33	All plugins tagged 'dereverberation'	132
34	All plugins tagged 'directional'	132
35	All plugins tagged 'disk-files'	132
36	All plugins tagged 'example'	132
37	All plugins tagged 'feature-extraction'	133
38	All plugins tagged 'feedback-suppression'	133
39	All plugins tagged 'filter'	133
40	All plugins tagged 'filterbank'	134
41	All plugins tagged 'frequency-modification'	134
42	All plugins tagged 'lab-streaming-layer'	134

CONTENTS vii

43	3 All plugins tagged 'level'	134
44	4 All plugins tagged 'level-meter'	134
45	5 All plugins tagged 'level-modification'	135
46	6 All plugins tagged 'limiter'	135
47	7 All plugins tagged 'linear-algebra'	135
48	3 All plugins tagged 'math'	135
49	9 All plugins tagged 'multichannel'	135
50	O All plugins tagged 'music'	136
51	1 All plugins tagged 'network-communication'	136
52	2 All plugins tagged 'noise-suppression'	136
53	3 All plugins tagged 'open-sound-control'	136
54	4 All plugins tagged 'overlap-add'	136
55	5 All plugins tagged 'plugin-arrangement'	137
56	6 All plugins tagged 'signal-enhancement'	137
57	7 All plugins tagged 'signal-generator'	137
58	3 All plugins tagged 'signal-transformation'	137
59	9 All plugins tagged 'spatial'	138
60	O All plugins tagged 'test-tool'	138

1 Plugin category 'beamforming'

1.1 delaysum_spec

simple delay and sum with single channel output

1.1.1 Detailed description

This plugin allows to delay and sum multiple input channels using individual delays and weights. After each channel is delayed it is multiplied with the given weight and then added to the single output channel.

1.1.2 Supported domains

The MHA plugin delaysum_spec supports these signal domains:

· spectrum to spectrum

1.1.3 Plugin Tags

beamforming directional multichannel

1.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
groupdelay	vector <float></float>	Group delay in seconds. Positive values represent a delay. One entry for each audio channel	[0 0]
gain	vector <float></float>	weights of channels. Each entry is multiplied to its respective channel. Needs one entry per channel.	[1 1]

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

2 Plugin category 'compression'

2.1 dc

dynamic compression

2.1.1 Detailed description

Figure 1 Input-output function of one channel in the dc dynamic compression algorithm.

The plugin *dc* is a multiband dynamic range compression plugin. One compression function (input-output function) is applied to each audio channel. Frequency-dependent compression can be achieved by using the *fftfilterbank* plugin in conjunction with this plugin, which separates broadband audio channels into multiple frequency bands.

The input-level dependent gain function is configured by a gain table containing the gain values in dB applied in different channels and frequency bands. When a gain table is read by the *dc* plugin the gains contained in the gain table are converted from dB gains to linear factors. Between the mesh points of the gain table, linear interpolation of the linear gain factors is used. For input levels outside of the range covered by the gain table a linear extrapolation of the linear gain factors based on the two nearest points is used.

The linear interpolation of gains originally given in dB can have undesired interpolation effects which should be avoided by choosing a small step size gtstep between the input levels, e.g.

2.1 dc

1 dB. We provide the mfile tool dc_plot_io.m which can be used to plot the resulting input/output characteristic resulting from a dc gain table configuration with Octave/Matlab, refer to the inline help in that mfile.

The following configuration fragment e.g. reproduces the I/O characteristic shown in Fig. 1. To keep the example readable, a gtstep size of 4 dB was used, reducing the amount of numbers to give here and avoiding fractional dB gains. An actual configuration should use a step size of 1 dB and not avoid fractions. The fitting GUI can be used to configure the dc plugins, and it uses a 1 dB step size. Refer to the fitting GUI manual openMHA gui manual.pdf.

```
algos = [fftfilterbank dc combinechannels]
fftfilterbank.ftype = center
fftfilterbank.f = [200 2000]
fftfilterbank.ovltype = rect
dc.gtmin=[16 16]
dc.qtstep=[4 \ 4]
dc.gtdata = [[37 40 39 38 37 36 35 34 33 32 31 30 26 22 18 14 10 6 2 -2 -2];...
             [37 40 39 38 37 36 35 34 33 32 31 30 26 22 18 14 10 6 2 -2 -2];]
dc.tau_attack = [0.005 0.005]
dc.tau_decay = [0.060 0.060]
dc.combinechannels.name = fftfilterbank_channels
```

In this configuration it is assumed that one audio channel is configured. All variables of dc have two entries, one for each frequency band. This configuration applies 40 dB gain at 20 dB SPL input level, and 30 dB at 60 dB input level. Above 60 dB input level, it limits the output level to 90 dB SPL until the output level is softer than the input level. At low input levels below 20 dB SPL, it applies a noise gate. This example configuration is not a fitting recommendation. Established fitting rules should be used to derive individual fittings for test subjects depending on the individual hearing impairment.

dc allows to specify band-specific input level adjustments that are applied to the measured input levels in the respective bands through the configuration variable offset. Using this variable, it is e.g. possible to compute the gain table in LTASS levels rather than physical band levels.

The input level (abscissa of the input-output function, cf. Fig. 1) is determined by an attack- and release-filter of the short time RMS level L_{st} , given in dB (SPL). The attack filter L_a is a first order low pass filter. The release filter L_{in} is a maximum tracker, i.e.

$$L_a = \langle 20 \log_{10}(L_{st}) \rangle_{\tau_{attack}} \tag{1}$$

$$L_{a} = \langle 20 \log_{10}(L_{st}) \rangle_{\tau_{attack}}$$
 (1)

$$L_{in} = \max(L_{a}, \langle L_{a} \rangle_{\tau_{release}})$$
 (2)

The gain table is given as a matrix with $n_f \cdot n_{ch}$ rows, where n_f is the number of frequency bands and n_{ch} is the number of channels. The order of row indices is $0...n_f...n_f \cdot n_{ch}$. The x-values for the n-th column of the gain table are given as $x_n = gtmin + gtstep \cdot n$.

2.1.2 Supported domains

The MHA plugin dc supports these signal domains:

- waveform to waveform
- spectrum to spectrum

CONTENTS 2.1.3 Plugin Tags compression level-modification

2.1 dc 5

2.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
gtmin	vector <float></float>	a vector containing one entry for each channel/band which is the input sound level in dB SPL for which first gain in the corresponding row of gain table gt- data is applied to amplify the signal	
gtstep	vector <float></float>	input sound level difference in dB between table columns in the corresponding row of gain table gtdata. I.e. the first entry in each gtdata row is applied when input level is gtmin dB, the second entry is applied when input level is gtmin+gtstep dB, etc. A small step size (e.g. 1 dB) is recommended to avoid undesired effects of the linear interpolation	
gtdata	matrix <float></float>	gaintable data with gains in dB. Each row in this matrix contains gains for one channel or band. Internally, the dB gains of this table are converted to linear gain factors, and interpolated and extrapolated linearly between mesh points.	(0)
tau_rmslev	vector <float></float>	RMS level averaging time constant in s	[]
tau_attack	vector <float></float>	attack time constant in s	[]
tau_decay	vector <float></float>	decay time constant in s	[]
level_offset	vector <float></float>	level offset for each band in dB. If this vector is non-empty, the computed input level are adjusted by the offset values in this vector before the gains are looked up in the gaintable.	
fb	string	Name of fftfilterbank plugin. Used to extract frequency information.	fftfilterbank
chname	string	name of audio channel number variable (empty: broadband)	
bypass	bool	bypass dynamic compression	no
clientid	string	Client ID of last fit	
gainrule	string	Gain rule of last fit	
preset	string	Preset name of last fit	
modified	int	Flag if configuration has been modified	(monitor)
level_in	vector <float></float>	input level of last block / dB SPL	(monitor)
level_in_filtered	vector <float></float>	input level after time-constant filters / dB SPL	(monitor)
cf	vector <float></float>	nominal center frequencies of filter- bank bands	(monitor)
ef	vector <float></float>	edge frequencies of filterbank bands	(monitor)
band_weights	vector <float></float>	Weights of the individual frequency bands. Computed as (sum of squared fft-bin-weigths) / num_frames.	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

2.2 dc_simple

Simple dynamic compression scheme

2.2.1 Detailed description

The plugin dc_simple is a multiband dynamic compression. One compression function (inputoutput function) is applied to each audio channel; multiple frequency bands can be used via the fftfilterbank plugin. The level dependent gain function is determined by the gains at 50 and 80 dB (G50 and G80). To reduce noise, an expansion is applied below a noise gate level. See also Fig. 2.

If spectral processing is used, the input level (x-axis of the input-output function) is determined by an attack- and release-filter of the short time RMS level L_{st} given in dB (SPL)The attack filter is a first order low pass filter. The release filter is a maximum tracker, i.e.

$$L_a = \langle 20 \log_{10}(L_{st}) \rangle_{\tau} \tag{3}$$

$$L_a = \langle 20 \log_{10}(L_{st}) \rangle_{\tau_{attack}}$$

$$L_{in} = \max(L_a, \langle L_a \rangle_{\tau_{release}})$$
(3)
(4)

The input level is divided into three sections. In each section the input level L_{in} is transformed linearly into a gain G on a log-log scale: $G_{dB} = (m-1)L_{in} + n$, where m is the slope of the input-output function, and n is an offset. Between expansion threshold and limiter threshold, mand n are given by the gain at 50 and 80 dB. In the section below the expansion threshold, mis the expansion slope, and above the limiter threshold, m is zero. n is chosen to result in a continuous input-output function.

All variables are vectors with one entry for each input channel (number of audio channels times number of frequency bands).

An example configuration of a chain with dynamic compression could be:

Figure 2 Input-output function of one channel in the *dc_simple* dynamic compression algorithm.

```
algos = [fftfilterbank dc_simple combinechannels]
fftfilterbank.ftype = center
fftfilterbank.f = [250 1000 4000]
fftfilterbank.ovltype = rect
fftfilterbank.fscale = bark
dc_simple.g50 = [10 25 40 11 31 55]
dc_simple.g80 = [5 15 10 5 21 19]
dc_simple.expansion_threshold = [20 20 20 20 20 20]
dc_simple.expansion_slope = [4 4 4 4 4 4]
dc_simple.limiter_threshold = [120 120 120 120 120 120]
dc_simple.tau_attack = [0.005 0.005 0.005 0.005 0.005]
dc_simple.tau_decay = [0.015 0.015 0.015 0.015 0.015]
combinechannels.name = fftfilterbank_channels
```

In this configuration it is assumed that two audio channels are configured, i.e. all variables of *dc_simple* have three entries for the first audio channel and three for the second audio channel.

2.2.2 Supported domains

The MHA plugin dc_simple supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

2.2.3 Plugin Tags

compression level-modification

2.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
g50	vector <float></float>	Gain in dB at 50 dB input level	[0]
		Range: [-80,80]	
g80	vector <float></float>	Gain in dB at 80 dB input level	[0]
		Range: [-80,80]	
maxgain	vector <float></float>	Maximal amplification in dB	[80]
expansion_threshold	vector <float></float>	expansion threshold in dB	[0]
expansion_slope	vector <float></float>	expansion slope of input-output func-	[1]
		tion in dB/dB	
		Range:]0,10]	
limiter_threshold	vector <float></float>	limiter threshold in dB	[100]
tau_attack	vector <float></float>	attack time constant in s	[0.005]
		Range: [0,]	
tau_decay	vector <float></float>	decay time constant in s	[0.05]
		Range: [0,]	
bypass	bool	bypass dynamic compression	no
clientid	string	Client ID of last fit	
gainrule	string	Gain rule of last fit	
preset	string	Preset name of last fit	
modified	int	Flag if configuration has been modified	(monitor)
level	vector <float></float>	Input level in dB	(monitor)
gain	vector <float></float>	Applied gain in dB	(monitor)
filterbank	string	Name of fftfilterbank plugin. Used to	
		extract frequency information.	
cf	vector <float></float>	center frequencies of the frequency	(monitor)
		bands [Hz]	
ef	vector <float></float>	edge frequencies of the frequency	(monitor)
		bands [Hz]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

2.3 softclip 9

2.3 softclip

The softclipper implements a broad band dynamic compression above a given level (Compression limiting).

2.3.1 Supported domains

The MHA plugin softclip supports these signal domains:

· waveform to waveform

2.3.2 Plugin Tags

compression limiter level-modification

2.3.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
tau_decay	float	time constant of decay filter	0.05
		Range: [0,[
tau_attack	float	time constant of attack filter	0.002
		Range: [0,[
start	float	entry point of time domain soft clipping (dB)	110
slope	float	slope of input-output table above start (dB/dB) Range: [0,]	0.125

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

3 Plugin category 'data-export'

3.1 ac2|s|

Send AC variables as LSL messages.

3.1.1 Detailed description

This plugin provides a mechanism to send ac variables over the network using the lab streaming layer (lsl). If no source id is set, recovery of the stream after changing channel count, data type, or any configuration variable is not possible. Sending data over the network is not real-time safe and processing will be aborted if this plugin is used in a real-time thread without user override. Currently no user-defined types are supported.

3.1.2 Supported domains

The MHA plugin ac21s1 supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

3.1.3 Plugin Tags

data-export network-communication lab-streaming-layer

3.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
vars	vector <string></string>	List of AC variables to be saved, empty	[]
		for all.	
source_id	string	Unique source id for the stream outlet.	
rt_strict	bool	Abort if used in real-time thread?	yes
activate	bool	Send frames to network?	yes
skip	int	Number of frames to skip after sending	0
		Range: [0,]	

Variables of sub-parser mhaconfig_in:

3.2 ac2osc 11

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

3.2 ac2osc

Send AC variables as OSC messages over udp.

3.2.1 Detailed description

Send AC variables as OSCvariables using the UDP transport layer. The variable "vars" can be used to select variables from the AC space for sending. The sending of variables can be verified using the open source tool "dump_osc". When selecting an AC variable, a target path can be specified using the colon delimiter, e.g.:

vars = [level:/mhalevels]

3.2.2 Supported domains

The MHA plugin aclosc supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

3.2.3 Plugin Tags

data-export network-communication open-sound-control

3.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
host	string	OSC server host name	localhost
port	string	OSC server port	7777
ttl	int	Time-to-live of UDP packages (1 =	1
		subnet)	
vars	vector <string></string>	List of AC variables to be saved, empty	[]
		for all. A colon may be used to specify	
		target address.	
mode	keyword_list	record mode	pause
		Range: [rec pause]	
skip	int	number of frames to skip after sending	0
		Range: [0,]	
rt_strict	bool	abort if used in real-time thread?	yes

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

3.3 acmon

This algorithm converts AC variables into parsable monitor variables.

3.3.1 Supported domains

The MHA plugin acmon supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

3.4 acsave 13

3.3.2 Plugin Tags

data-export network-communication

3.3.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
varlist	vector <string></string>	complete list of variables	(monitor)
dimensions	vector <string></string>	variable dimensions in AC space	(monitor)
dispmode	keyword_list	display mode of variables	vector
		Range: [vector matrix]	
recmode	keyword_list	record mode	cont
		Range: [cont snapshot]	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

3.4 acsave

Save chain data to text or Matlab 4 files.

Usage:

- 1. set up file name and type
- 2. set the maximal length. This will start the recording.
- 3. Set "flush" to yes to save recorded frames. This will overwrite previously written data.

File name and type can be changed at any time and has to be valid when sending the flush command. Changing the list of variables also starts the recording with the currently configured recording length (previously recorded data might be overwritten). Issueing the 'flush' command frees allocated memory.

3.4.1 Detailed description

The 'acsave' plugin can save numeric algorithm communication variables (AC variables) into files. The files can have plain text, MATLAB 4.x or MATLAB script format. Each signal frame represents a row. The number of columns is gathered at preparation time. If a variable size is increased after preparation, only the part available at preparation time is stored. If the size is decreased, it is zero-padded to the original size.

To save the data to disk, first set up file name and type. Then setting the maximal length will start the recording. At any time, set 'flush' to yes in order to save the recorded frames. This will overwrite previously written data.

File name and type can be changed at any time and have to be valid when sending the flush command.

3.4.2 Supported domains

The MHA plugin acsave supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

3.4.3 Plugin Tags

data-export disk-files

3.4.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
fileformat	keyword_list	file format of output file	txt
		Range: [txt mat4 m]	
name	string	output file name	
reclen	float	maximal recording length in seconds	10
		Range: [0,]	
flush	bool	flush the buffers to disk	no
vars	vector <string></string>	list of variables to be saved (empty:	[]
		save all)	

Variables of sub-parser mhaconfig_in:

3.5 wavrec 15

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

3.5 wavrec

wav file recorder

3.5.1 Supported domains

The MHA plugin wavrec supports these signal domains:

· waveform to waveform

3.5.2 Plugin Tags

data-export disk-files

3.5.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
fifolen	int	Length of FIFO in samples	262144
		Range: [2,]	
minwrite	int	Minimal write length (must be less then	65536
		fifolen)	
		Range: [1,]	
prefix	string	Path (including path delimiter) and file	
		prefix	
use_date	bool	Use date and time (yes), or only prefix	yes
		(no)	
record	bool	Record session. Each write access	no
		with argument "yes" will start a new file	
		with current time and date as a name.	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4 Plugin category 'data-flow'

4.1 ac2wave

Mix the main input signal with a waveform stored into AC variables. Main and AC signal can be attenuated or delayed by integer fragments.

Spectral input is discarded and replaced by a zero signal.

4.1.1 Supported domains

The MHA plugin ac2wave supports these signal domains:

- · waveform to waveform
- · spectrum to waveform

4.1.2 Plugin Tags

data-flow algorithm-communication

4.1.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
name	string	AC variable name	
gain_in	float	Linear gain for main input signal	0
gain_ac	float	Linear gain for AC input signal	1
delay_in	int	Delay of main input signal in fragments	0
		Range: [0,[
delay_ac	int	Delay of AC input signal in fragments	0
		Range: [0,[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.2 acConcat_wave

Concatenating two or more waveforms into one

4.2.1 Detailed description

This plugin concatenates two or more waveforms in the given order into a new waveform all living in the AC space. The waveforms to be concatenated as well as the concatenated waveforms must have the same number of channels. However the lengths of the waveforms to be concatenated may differ.

The waveforms to be concatenated should have been created in advance by some other plugin. This plugin creates an AC variable for the concatenated waveform and puts it into the AC space.

The configuration variable **num_AC** defines the number of waveforms, which will be concatenated into one waveform. The waveforms to be concatenated obey the same naming convention followed by a numeric suffix defining the order of concatenation. This order begins with 1 and a whole in the numeric order is not allowed. This naming convention is defined by the user by setting the configuration variable **prefix_names_AC**. The lengths of each waveform to be concatenated is defined by the configuration variable **samples_AC**. This vector variable must contain an integer value corresponding to each of the waveforms to be concatenated defining their lengths respectively. The name of the concatenated waveform is defined by the configuration variable **name_con_AC**.

This plugin is typically used together with the plugins <code>doasvm_feature_extraction</code> instantiated several times for computing the cross correlation between all combinations of input channels and with <code>doasvm_classification</code>, which uses the concatenated cross correlation vectors for each channel combination to estimate the arrival direction of audio signals.

As an example, if there are six waveforms, which are supposed to be concatenated into one waveform, this plugin can be configured as shown in the following:

```
acConcat_wave.num_AC = 6
acConcat_wave.samples_AC = [161 17 161 161 17 161]
acConcat_wave.prefix_names_AC = "vGCC"
acConcat_wave.name_con_AC = "vGCCcon"
```

In this case, the six waveforms to be concatenated should be called $vGCC_1$, $vGCC_2$, $vGCC_3$, $vGCC_4$, $vGCC_5$ and $vGCC_6$. Note that in the localization context, for a setup of four microphones, there are six different combinations of two microphones.

4.2.2 Supported domains

The MHA plugin acConcat_wave supports these signal domains:

· waveform to waveform

4.2.3 Plugin Tags

data-flow algorithm-communication

4.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
num_AC	int	Number of waveforms to be concatenated Range: [1,28]	15
prefix_names_AC	string	Prefix of the names of the waveforms to be concatenated	vGCC_ac
samples_AC	vector <int></int>	Lengths of the waveforms to be concatenated	
name_con_AC	string	Name of the concatenated waveform	vGCC_con_AC
numchannels	int	Number of channels in each waveform to be concatenated Range: [1,[1

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.3 acPooling_wave

Pooling of several consecutive time frames

4.3.1 Detailed description

This plugin computes an average over several consecutive frames using several different approaches (max, sum, mean, ...). Subsequently, the maximum of the average frame is delivered as well. The plugin receives the frames through the AC space and deliveres the averaged frame as well as its maximum to the AC space.

This plugin is typically used together with the plugins <code>doasvm_feature_extraction</code> and <code>doasvm_classification</code> for estimating the arrival direction of an audio signal. Within this context, this plugin smooths the vector of estimated arrival directions over time using several estimation vectors. However, it can also used within other contexts for smoothing purposes of e.g. waveforms.

The length of a frame is given by the configuration variable **numsamples**. In the context of localization, for an angular resolution of 5 degrees, a total number of 37 estimation values for the interval of possible arrival directions [-90, 90] would be produced by the doasym_classification plugin.

The frames to be smoothed have to be created by some other plugin in advance, e.g. doasvm_classification plugin for the localization, and should be available in the AC space to be read by this plugin. The name of the corresponding AC variable is defined using the configuration variable **p_name**.

At each iteration, this plugin reads the AC variable corresponding to the frame to be smoothed and smooths it by averaging a number of such frames, which have been read in the past iterations and saved in a pool. The length of this pool in msec is defined using the configuration variable **pooling_wndlen**. Depending on the frame rate used within the current MHA configuration, the exact number of iterations, which fall into this pool is computed during the preparation of this plugin. Note that the length of this pool should be chosen carefully so as to make sure that more than one frame falls in.

This plugin implements several pooling methods for smoothing the frames saved in the pool. The alternatives are **max**, **sum** and **mean**. The pooling method to be used is defined using the configuration variable **pooling_type**. For each value in the frame (e.g. for each possible arrival direction in the context of localization), the **max** pooling takes the maximum between the iterations. The **sum** pooling sums these values up. Finally, the **mean** pooling computes the arithmetic mean of these values. Once the pooling step has been completed, a smoothed vector of frames of the same size with a single frame from each iteration has been constucted. This vector is saved in another AC variable, which is defined by using the configuration variable **pool_name**.

Optionally, after the smoothing step, certain areas within the smoothed frame can be weighted differently. In the localization context, this optional step can correspond to a prior probability to favour certain possible arrival directions more compared to others. For instance, a hearing aid waerer can expect that the person who he / she is talking to is infront of him / her. In that case, the prior probabilities for the frontal directions can be set higher than the other possible arrival directions. This can be defined by setting tha configuration variable prob_bias. The default values of this variable are all set to 1, hence uniform distribution. The size of this variable should be equal to the frame length given in the configuration variable numsamples. The smoothed and weighted frame is saved in yet another AC variable, which is defined by using the configuration variable p_biased_name.

After the smoothed frame has been computed, the maximum value of this frame is found and saved in another AC variable. In the localization context, this maximum corresponds to the arrival direction of an audio signal. The name of this AC variable is defined using the configuration variable max_pool_ind_name.

In the following, an example configuration within a localization context is given. In this configuration, an angular resolution of 5 degrees for the whole circle, namely the interval of [-180, 180] is considered. In that case, there are in total of 73 possible arrival directions.

```
acPooling_wave.p_name = p
acPooling_wave.pool_name = pool
acPooling_wave.max_pool_ind_name = pool_max
acPooling_wave.numsamples = 73
acPooling_wave.pooling_wndlen = 300
acPooling_wave.pooling_type = mean
```

4.3.2 Supported domains

The MHA plugin $acPooling_wave$ supports these signal domains:

· waveform to waveform

4.3.3 Plugin Tags

data-flow feature-extraction algorithm-communication

4.3.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
numsamples	int	This parameter determines the length of the wave to be pooled in samples Range: [0,]	37
pooling_wndlen	int	This parameter determines the length of the pooling window in msec. Range: [0,]	300
pooling_type	keyword_list	This parameter determines the pooling method applied to the pooling window. Range: [max sum mean]	mean
upper_threshold	float	This parameter sets a threshold for finding the maximum probability. If the maximum is above this threshold, it is taken, even if it is not in the neighbourhood of the last estimated direction. Range: [0,1]	0.75
lower_threshold	float	This parameter sets a threshold for finding the minimum probability. If the maximum probability is below this threshold, the estimated direction of the last iteration is taken. Range: [0,1]	0
neighbourhood	int	This parameter defines the neighbourhood of the allowed change of the estimated direction between iterations1 means no neighbourhood. Range: [-1,]	2
alpha	float	This parameter simulates the forgetting effect by weighting the frames within the pooling window, e.g. p(n + 1) = (1 - alpha) * p(n) + alpha * p_new. 0 means no weighting. Range: [0,1]	0.1
p_name	string	The name of the AC variable of the frame, which is going to be pooled.	p
p_biased_name	string	The name of the AC variable of the biased frame, after pooling.	prob_biased
pool_name	string	The name of the AC variable of the averaged (pooled) frame.	pool
max_pool_ind_name	string	The name of the AC variable for the in- dex of the maximum of the averaged frames	pool_max
like_ratio_name	string	The name of the AC variable for the likelihood ratios of the averaged frames	like_ratio
prob_bias	vector <float></float>	A multiplicative probability bias	[1111111111111111111111

Variables of sub-parser mhaconfig_in:

4.4 ac_proc 23

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.4 ac_proc

AC variable processor.

4.4.1 Detailed description

This plugin can use the content of a real-valued AC variable (scalar, vector or matrix) as a time-domain input of a plugin. A sub-graph for this plugin is created. The return value of the plugin is stored as an AC variable.

A typical usage of this plugin is feature analysis and processing, e.g., for level compression.

4.4.2 Supported domains

The MHA plugin ac_proc supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

4.4.3 Plugin Tags

data-flow algorithm-communication feature-extraction

4.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
input	string	Name of AC variable to use as input (must exist during prepare)	
permute	bool	Permute AC variable?	no

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.5 combinechannels

Channel combiner

4.5.1 Detailed description

Several filter channels can be combined into one or more output channels by summing the input channels. This plugin is intended as a filter resynthesis of linear-phase filter banks.

The input signal is expected to have a non-interleaved channel order, i.e., first all bands of first output channel, then all bands of second channel, etc.

4.5.2 Supported domains

The MHA plugin combinechannels supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

4.6 db 25

4.5.3 Plugin Tags

data-flow audio-channels filterbank

4.5.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
outchannels	int	Number of output channels	1
		Range: [1,]	
interleaved	bool	Input signal has interleaved channel order?	no
channel_gain_name	string	Name of channel gain AC variable (looked up during prepare, can be empty)	
element_gain_name	string	Name of element wise gain AC variable (looked up during waveform process, can be empty)	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.6 db

Synchronous double buffer plugin.

Figure 3 Concept of the double buffer plugin. The outer fragments, provided by the framework, are split up into smaller fragments for processing in the kernel. For a continuous output stream, an extra delay is needed, i.e. the first fragment is filled with zeros at the beginning.

4.6.1 Detailed description

The double buffer plugin allows changes of fragment size. It has an outer layer (e.g. framework) and an inner layer (e.g. MHA kernel, plugin). A configurable fragment size is used on the inner side, which is independent from the outer fragment size. The input data is buffered, and the data is processed when enough samples are available.

Please note that double buffering adds an extra delay of the audio stream. If both fragment sizes are identical, the double buffering is bypassed.

4.6.1.1 Warning:

If the inner fragment size is larger than the outer fragment size, the maximal processing time is limited by the shorter fragment size. This results in a maximal processor usage determined by the ratio of outer to inner fragment size. This problem holds not for offline processing. As an alternative, the asynchronous double-buffer plugin <code>dbasync</code> (section ??) can be used, which processes the double-buffered signal in a separate thread. That plugin should be preferred for real-time processing. If the inner thread should only be used for signal analysis, please refer to the plugin <code>analysispath</code> (section 15.2).

4.6.2 Supported domains

The MHA plugin db supports these signal domains:

· waveform to waveform

4.6.3 Plugin Tags

data-flow signal-transformation

4.7 delay 27

4.6.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
fragsize	int	fragment size of client plugin	200
		Range: [0,]	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.7 delay

Delay line

4.7.1 Supported domains

The MHA plugin delay supports these signal domains:

· waveform to waveform

4.7.2 Plugin Tags

data-flow audio-channels signal-transformation

4.7.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
delay	vector <int></int>	delay in samples, one entry for each	[0 0]
		channel	
		Range: [0,[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.8 fader_spec

fader

4.8.1 Supported domains

The MHA plugin $fader_spec$ supports these signal domains:

• spectrum to spectrum

4.8.2 Plugin Tags

data-flow audio-channels cross-fade level-modification

4.8.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
tau	float	fader duration in seconds	1
		Range: [0,[
gains	vector <float></float>		[1 1]

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.9 fader_wave

Apply level

4.9.1 Supported domains

The MHA plugin fader_wave supports these signal domains:

· waveform to waveform

4.9.2 Plugin Tags

data-flow audio-channels cross-fade level-modification

4.9.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser Output configuration		(see below)
gain	vector <float></float>	Gain (linear)	[1]
ramplen	float	Length of hanning ramp at gain changes in seconds Range: [0,]	0

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.10 matrixmixer

Matrix mixer plugin, can mix multiple input channels into any number of output channels with configurable weights.

4.10.1 Detailed description

The matrixmixer plugin can combine the signal from multiple input channels into any number of output channels, with defined mixing weights.

Example: To combine the two channels of a stereo signal into a single (mono) channel, configure the matrixmixer plugin configuration variable m as

$$m = [[1.0 1.0]]$$

which causes the first and the second channel to be multiplied with a weight of 1 before they are mixed (by adding them together) to form a single output channel.

It is also possible to mix the channels with weights different from 1:

```
m = [[1 0.5]]
```

This attenuates the second channel by multiplying all samples in that channel with 0.5 before mixing it with the first channel. The configuration variable m expects a matrix of float values. The examples above showed a matrix with only one row, which resulted in only one output channel being produced by the matrixmixer plugin. To produce more output channels, more rows (separated by semicolons)¹ can be specified for matrix m:

```
m = [[1 \ 0]; [0 \ 1]]
```

This is the identity matrix for two channels. This matrix does not change the signal.

The following setting demonstrates how matrixmixer can be used to change the order of audio channels in a multi-channel signal. This example swaps the first two channels:

```
m = [[0 \ 1]; [1 \ 0]]
```

The next setting creates a 4-channel signal output from a stereo signal, where the first two channels are the original stereo channels, the third is the sum of the two stereo channels, and the fourth output channel is the difference of the two stereo channels²:

```
m = [[0 1]; [1 0]; [1 1]; [1 -1]]
```

The following example duplicates a single input channel to two output channels:

```
m = [[1];[1]]
```

To summarize, you need to configure the variable m with a matrix with float values. The matrix needs to have as many columns as the matrixmixer receives input channels, and as many rows as you want matrixmixer to produce output channels.

Example configurations and example input files are contained in the matrixmixer examples directory. Please refer to the README file in this directory for an explanation of the different examples.

A matlab/octave test exercising the matrixmixer plugin in six different configurations can be found in the mhatest directory in file test_matrixmixer.m. This test file is executed together with the other system-level tests when invoking make test.

4.10.2 Supported domains

The MHA plugin matrixmixer supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

¹In openMHA configuration, a matrix is specified as a vector of vectors, where the subsequent row vectors are separated by semicolons. For details, refer to the subsection on multidimensional variables in the openMHA application manual.

²The combination of the sum and the difference of the two channels of a stereo signal is known as the mid-side signal and used for stereo transmission in FM radio. We combine it here with the original stereo signal for the sole purpose of demonstrating the creation of more output channels than input channels with the matrixmixer plugin.

4.10.3 Plugin Tags

data-flow audio-channels

4.10.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
m	matrix <float></float>	Mixer matrix, one row vector for each output channel. The number of columns must match the number of input channels.	[[1 0];[0 1]]

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.11 route

Signal router plugin.

Arguments are the input signal source names (AC variables) followed by a colon, followed by the channel number, starting at zero. Empty names correspond to the direct input.

An AC variable will be created if the AC output dimension is not zero. Example: out = $[:0:1 \times :0]$ x:1] ac = [:2:3] returns a four channel output signal containing first two direct input channels, and the first two channels of the AC variable "x". An AC variable is created with the third and fourth channel of the direct input.

4.11.1 Supported domains

The MHA plugin route supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

4.11.2 Plugin Tags

data-flow audio-channels algorithm-communication

4.11.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
out	vector <string></string>	direct output	[]
ac	vector <string></string>	AC output	[]

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.12 save_spec

Save signal spectrum to AC variable

4.12.1 Supported domains

The MHA plugin save_spec supports these signal domains:

• spectrum to spectrum

4.12.2 Plugin Tags

data-flow algorithm-communication

4.12.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.13 save_wave

Save signal waveform to AC variable

4.13.1 Supported domains

The MHA plugin save_wave supports these signal domains:

· waveform to waveform

4.13.2 Plugin Tags

data-flow algorithm-communication

4.13.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.14 shadowfilter_begin

Save signal spectrum to AC variable

4.14.1 Detailed description

The plugins 'shadowfilter_begin' and 'shadowfilter_end' (section 4.15) are designed to measure the gains produced by any spectral plugins and apply those gains to audio channels not passed to the algorithm. This method can be used to process a mixed signal, but apply the same gains to the unmixed signal parts seperately. For a stereo mixed signal, this can be done by reading the mixed signal from channels 1 and 2, the desired signal from channels 3 and 4, and the competing signal from channels 5 and 6. The 'shadowfilter_begin' plugin hides channels 3 to 6 from the plugin, and remembers the input spectrae for all channels. The 'shadowfilter_end' plugin compares the processed output signal (channels 1 and 2) with its input spectrum and derives complex gains produced by the algorithm (without any knowledge of the algorithm). The same gains are applied to channels 3 to 6.

4.14.2 Supported domains

The MHA plugin shadowfilter_begin supports these signal domains:

• spectrum to spectrum

4.14.3 Plugin Tags

data-flow feature-extraction filter

4.14.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
nch	int	number of processing channels	1
		Range: [1,[
ntracks	int	number of input sources, each with nch	1
		audio channels	
		Range: [1,[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

4.15 shadowfilter_end

Compute spectral gains seen since shadowfilter_begin, apply gains to other tracks

4.15.1 Detailed description

See section 4.14 for a description of the shadow filter method. The 'shadowfilter_end' plugin creates an AC variable shadowfilter_gains, which contains the complex gains created by the algorithm.

4.15.2 Supported domains

The MHA plugin shadowfilter_end supports these signal domains:

• spectrum to spectrum

4.15.3 Plugin Tags

data-flow feature-extraction filter

4.15.4 Configuration variables

Name	Type	Description				Default
mhaconfig_in	parser	Input configura	ation			(see below)
mhaconfig_out	parser	Output configu	uration			(see below)
basename	string	configuration ter_begin	name	of	shadowfil-	shadowfilter_begin

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

5 Plugin category 'data-import'

5.1 acSteer

Steering Vector Loading Plugin

5.1.1 Detailed description

The acsteer plugin loads a file containing pre-computed steering filters (e.g. MVDR filters) to be used within a beamformer. The steering filters can be monaural (**nrefmic = 1**) or binaural (**nrefmic = 2**). The whole file consists of a column vector of concatenated steering vectors, which are formatted in the order of **angle** and **channel**. This means that the first channel vector of the first angle is followed by the second channel vector of the first angle until the last channel. The channel vectors of the first angle are followed by the channel vectors of the second angle and so an and so forth.

If the steering filters have been computed for two reference microphones, the steering filters of the second reference microphone just follow the ones for the first microphone and have the same format.

This plugin is typically located between a localization plugin (e.g. <code>doasvm_classification</code>) and a beamforming plugin (e.g. <code>steerbf</code>). The localization plugin estimates the source direction and saves it in an AC variable. This plugin reads the saved direction from the corresponding AC variable and saves the corresponding steering vector to the AC space, which is used by the succeeding beamforming plugin for steering the beam towards that particular direction.

The configuration variable **nrefmic** indicates the number of different reference microphone settings, for which the filters were computed. For each reference microphone and each possible DOA angle and each input channel one filter should be provided so that

$$nsteerchan = nrefmix * nchan * nangle$$
 (5)

5.1.2 Supported domains

The MHA plugin acSteer supports these signal domains:

spectrum to spectrum

5.1.3 Plugin Tags

data-import disk-files beamformer binaural adaptive

5.2 addsndfile 39

5.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
steerFile	string	Name of the input file where the steer-	steerfile.bin
		ing vectors are saved	
acSteerName1	string	Name of the AC variable where the	acSteerLeft
		steering vectors of the first (left) refer-	
		ence microphone are saved	
acSteerName2	string	Name of the AC variable where the	acSteerRight
		steering vectors of the second (right)	
		reference microphone are saved	
nsteerchan	int	Number of channels in each steering	4
		vector	
nrefmic	int	Number of reference microphones	1
		Range:]0,2]	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

5.2 addsndfile

Add sound data from a sound file to the MHA audio channels.

The sound file is read into memory and scaled as determined by configuration variables "level" and "levelmode".

Changing any parameter except "mode" will start playing the file from the beginning. addsndfile stores the complete sound file in RAM memory before starting playback, this limits the total duration of sound files that can be read by addsndfile.

5.2.1 Detailed description

The addsndfile plugin modifies the audio signal by either mixing the sound from a sound file to the openMHA audio signal that reaches the addsndfile plugin, or by replacing the openMHA audio signal completely with the sound from a sound file. The addsndfile plugin to does not change the number of openMHA audio channels.

The playback level of the sound inside the openMHA and the meaning of the level variable depend on the settings in the levelmode field:

- levelmode=relative Each sound file channel plays back inside the openMHA at a level of $(\text{level} + L_{fs})$ where level is the value of configuration variable level and L_{fs} is the level of the respective channel in dB re full scale inside the sound file.
- levelmode=peak If peak is selected, the level denotes the peak level of the input file: The sound file will be scaled so that the maximum magnitude sound sample will be mapped to an amplitude $10^{\frac{level}{20}} \cdot 2 \cdot 10^{-5} Pa$, which is the amplitude of a rectangular wave with that level in dB SPL.
- levelmode=rms The sound file will be scaled so that it plays back with the level defined by level (in dB SPL) inside openMHA. openMHA uses the same scaling factor for all audio channels of the sound file based on the RMS level across all channels. Therefore, if different channels inside the sound file have different levels re full scale, then the scaling will result in some channels playing back at a softer level, and some at a higher level than level. The inter-channel level difference in openMHA playback levels will be the same as in the sound file.

The sound file may be stored with a different sampling rate than the the sampling rate of the openMHA at the point where the addsndfile plugin is loaded into the processing chain. The parameter resamplingmode controls how addsndfile behaves when differing sampling rates are detected in the sound file and in openMHA:

- resamplingmode=dont_resample_permissive The sound samples from the sound file are played inside openMHA without resampling. The file will play back at too high or too low pitches if the sampling rates in the file and in openMHA differ.
- resamplingmode=dont_resample_strict The sound from the sound file is only played back inside openMHA if the sampling rates in sound file and openMHA match exactly. If the sampling rates differ, an error is triggered.
- resamplingmode=do_resample The sound from the sound file is resampled to the open-MHA sampling rate if the sampling rates in sound file and openMHA differ.

5.2.2 Supported domains

The MHA plugin addsndfile supports these signal domains:

· waveform to waveform

5.2 addsndfile 41 5.2.3 Plugin Tags

5.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
path	string	The directory containing the sound file	,
•		to read. Should end in the system-	
		specific directory separator, e.g. /, if	
		non-empty. If empty, then the current	
		working directory of the mha process	
		is used, path can be given absolute or	
		relative to the current working directory	
		of the mha process.	
filename	string	File name of the sound file. If empty,	
		addsndfile does not modify the sound.	
loop	bool	Infinitely loop sound file playback	yes
level	float	Level in dB. Exact meaning of this pa-	0
		rameter depends on levelmode.	
levelmode	keyword_list	relative - scaling relative to original	relative
	', '	level peak - scaling to maximum abso-	
		lute magnitude rms - scaling to long-	
		term rms level Refer to the detailed	
		description subsection in the plugins	
		manual for details.	
		Range: [relative peak rms]	
resamplingmode	keyword_list	Resampling mode, for details refer to	do_resample
roodpgodo	noy word_not	the detailed description subsection in	ao_rooampio
		the plugins manual.	
		Range: [dont_resample_permissive	
		dont_resample_strict do_resample]	
channels	vector <int></int>	Indices of MHA channels in which to	[0]
O I CITITIO IS	VCOIOI (IIII)	store each of the sound file chan-	[0]
		nels. Indices start from 0. If the	
		sound file has fewer channels than the	
		"channels" vector has elements, then	
		the channels of the file will be dupli-	
		cated. Note: The addsndfile plugin	
		does not change the number of MHA	
		audio channels. If you specify an MHA	
		channel index >= the number of MHA	
		channels, then that channel from the	
		sound file will not be used.	
mada	Jeography 11-4	Range: [0,]	add
mode	keyword_list	add: combine sounds from file and	add
		MHA input, replace: discard MHA	
		input, play only file, input: leave	
		MHA input unmodified, mute: no	
		sound output. This parameter can be	
		changed during playback without caus-	
		ing rewind	
		Range: [add replace input mute]	
ramplen	float	Length of hanning ramp at level	0
		changes in seconds	
		Range: [0,]	
startpos	int	Starting position in samples, loop will	0
		begin from zero	
		Range: [0,]	
mapping	vector <int></int>	Channel mapping	(monitor)
filechannels	int	Number of channels in current file	(monitor)
mhachannels	int	Number of MHA channels at plugin po-	
		sition © 2005-2019 H	lörTech gGmbH, Oldeni
active	int	indicates if sound currently plays back	(monitor)
search_pattern	string	Search pattern for file list	*.wav
files	vector <string></string>	Available files	(monitor)

5.3 osc2ac 43

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

5.3 osc2ac

Receive OSC messages and convert them to AC variables. Only data type float can be received.

5.3.1 Detailed description

Receive open sound control (OSC) messages and mirror their data in AC variables. This plugin can receive OSC messages provided that they contain only numbers (scalars or vectors).

The configuration variable vars can be used to control which OSC messages to receive, and to define the names of the AC variables in which the received data is mirrored inside the open-MHA, e.g.:

```
# Example 1:
osc2ac.vars = [spatial/source/0/sphericalCoords spatial/setParam/headRadius]
osc2ac.size = [3 1]
```

Example 1 shows an *osc2ac* configuration that receives OSC messages with addresses /spatial/source/0/sphericalCoords and /spatial/setParam/headRadius, the first of which is expected to contain 3 floating point values (a vector), while messages with the latter address are expected to contain only 1 floating point value (a scalar) in each received message. The data received at these addresses will be mirrored in the AC variables spatial/source/0/sphericalCoords and spatial/setParam/headRadius, respectively. Note that the openMHA configuration and the AC variable name do not contain the leading slash /. This leading slash is prepended by the *osc2ac* plugin when constructing the OSC address for which messages are received from the vars entry.

It is also possible to give AC variable name and OSC address separately by separating them with a colon, e.g.: colon delimiter, e.g.:

```
# Example 2:
vars = [level:/mhalevels]
```

In example 2, data received in OSC messages with address /mhalevels is mirrored in the AC variable level. When size is not set in this example, the default value 1 for scalars is used for all AC variables and OSC messages.

5.3.2 Supported domains

The MHA plugin osc2ac supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

5.3.3 Plugin Tags

data-import network-communication open-sound-control

5.3.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
host	string	multicast adress (empty for unicast)	
port	string	server port	7777
vars	vector <string></string>	List of AC variables to provide as receivers of OSC messages. Each AC variable will mirror the latest received OSC message with address /NAME where each NAME is the name of the mirroring AC variable as given here. For more details, please refer to the detailed description subsection in the manual.	
size	vector <int></int>	Number of floats to receive with the AC variables from OSC. Each entry here corresponds to the entry in vars with the same index and determines the length of the float vector that will be allocated to receive the OSC messages with the corresponding address. Range: [1,]	[1]

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6 Plugin category 'example'

6.1 example1

6.1.1 Detailed description

The **simplest** example of an openMHA plugin.

This plugin scales one channel of the input signal, working in the time domain.

6.1.2 Supported domains

The MHA plugin example1 supports these signal domains:

· waveform to waveform

6.1.3 Plugin Tags

example level-modification audio-channels

6.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6.2 example2

This plugin multiplies the sound signal in one audio channel by a factor

6.2.1 Supported domains

The MHA plugin example2 supports these signal domains:

· waveform to waveform

6.2.2 Plugin Tags

example level-modification audio-channels

6.3 example3 47

6.2.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
channel	int	Index of audio channel to scale. Indices start from 0. Range: [0,[0
factor	float	The scaling factor that is applied to the selected channel. Range: [0,[0.1

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6.3 example3

This plugin multiplies the sound signal in one audio channel by a factor

6.3.1 Supported domains

The MHA plugin example3 supports these signal domains:

· waveform to waveform

6.3.2 Plugin Tags

example level-modification audio-channels

6.3.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
channel	int	Index of audio channel to scale. Indices start from 0. Only channels with even indices may be scaled. Range: [0,[0
factor	float	The scaling factor that is applied to the selected channel. Range: [0,[0.1
prepared	int	State of this plugin: 0 = unprepared, 1 = prepared	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6.4 example4

This plugin multiplies the sound signal in one audio channel by a factor. It works in the spectral domain.

6.4.1 Supported domains

The MHA plugin example4 supports these signal domains:

• spectrum to spectrum

6.5 example5 49

6.4.2 Plugin Tags

example level-modification audio-channels

6.4.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
channel	int	Index of audio channel to scale. Indices start from 0. Only channels with even indices may be scaled. Range: [0,[0
factor	float	The scaling factor that is applied to the selected channel. Range: [0,[0.1
prepared	int	State of this plugin: 0 = unprepared, 1 = prepared	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6.5 example5

example plugin configuration structure

6.5.1 Supported domains

The MHA plugin example5 supports these signal domains:

spectrum to spectrum

6.5.2 Plugin Tags

example level-modification audio-channels

6.5.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
channel	int	channel number to be scaled	0
		Range: [0,[
factor	float	scale factor	1
		Range: [0,2]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

6.6 example6

example plugin configuration structure

6.6.1 Supported domains

The MHA plugin example6 supports these signal domains:

· waveform to waveform

6.6.2 Plugin Tags

example feature-extraction algorithm-communication

6.6.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
channel	int	channel in which the RMS level is mea-	0
		sured	
		Range: [0,[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7 Plugin category 'feedback-suppression'

7.1 fshift

7.1.1 Detailed description

Performs a quantized frequency shift on the selected frequency interval. The frequency band between (originally) fmin and fmax (frequencies in Hz) is shifted by df (desired frequency change in Hz). Positive df shifts the selected band to higher frequencies, negative df shifts to lower frequencies.

The shifted and the unshifted parts of the input signal are split at the STFT bin boundaries nearest to the. The frequency shift df is rounded to the nearest bin as well. The parts of the spectrum that would be shifted below 0 Hz or above the Nyquist frequency are discarded.

7.1.2 Supported domains

The MHA plugin fshift supports these signal domains:

· spectrum to spectrum

7.1.3 Plugin Tags

feedback-suppression frequency-modification

7.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
fmin	float	lower boundary for frequency shifter in Hz	4000
		Range: [0,]	
fmax	float	upper boundary for frequency shifter in Hz Range: [0,]	16000
df	float	shift frequency in Hz	40

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7.2 fshift_hilbert

Pitch shifter

7.2.1 Detailed description

Performs a frequency shift on the selected frequency interval. The frequency band between (originally) fmin and fmax (frequencies in Hz) is shifted by df (desired frequency change in Hz). Positive df shifts the selected band to higher frequencies, negative df shifts to lower frequencies.

The frequency shift on the sub-band is performed by splitting the input signal's spectrum into 2 parts: the band to be shifted, and the rest. The band to be shifted is multiplied in the time domain with a complex sinusoid of frequency df Hz (see Wardle(1998)³) before it is recombined in the spectral domain with the unshifted signal part.

By default the shifted and the unshifted parts of the input signal are split at STFT bin boundaries. The resulting rectangular transitions between shifted and unshifted parts can be smoothed if desired by setting phasemode to linear or minimal, and choosing a longer impulse response length than the default of 1 sample. Our experience with hearing aid applications so far suggests that smoothing these boundaries is not necessary.

7.2.2 Supported domains

The MHA plugin fshift_hilbert supports these signal domains:

· spectrum to spectrum

7.2.3 Plugin Tags

feedback-suppression frequency-modification

7.2.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
df	vector <float></float>	frequency to shift the bins / Hz	[40]
fmin	float	lower boundary for frequency shifter	4000
		Range: [0,]	
fmax	float	upper boundary for frequency shifter	16000
		Range: [0,]	
irslen	int	Bandpass: maximum length of cut off	1
		filter response	
		Range: [1,]	
phasemode	keyword_list	Bandpass: mode of gain smoothing	none
		Range: [none linear minimal]	

³ Scott Wardle. A hilbert-transformer frequency shifter Proc. DAFX98 Workshop on Digital Audio Effects, pages 25–29, Barcelona, 1998.

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7.3 lpc

This plugin implements the linear predictive coding analysis (LPC) by using the Levinson-Durbin recursion.

7.3.1 Detailed description

This plugin estimates the autocorrelation of each block. It then produces the inverse filter using the Levinson-Durbin recursion.

7.3.2 Supported domains

The MHA plugin lpc supports these signal domains:

· waveform to waveform

7.3.3 Plugin Tags

feedback-suppression adaptive

7.3.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
lpc_order	int	LPC filter order	20
		Range: [0,500]	
lpc_buffer_size	int	Size of the buffer in samples for which	21
		the autocorrelation matrix will be com-	
		puted	
		Range:]0,501]	
shift	bool	Refill the LPC buffer completely with	yes
		new input signal by ignoring the old	
		samples (no) or shift the old buffer as	
		large as the block size of the input sig-	
		nal and read in the current input signal	
		(yes).	
comp_each_iter	int	Reestimate the LPC coefficients each	1
		<pre><comp_each_iter> iterations, default</comp_each_iter></pre>	
		value is 1	
		Range:]0,]	
norm	bool	Normalize the auto correlation matrix	no
		with the LPC order	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7.4 lpc_bl_predictor

This plugin performs forward and backward linear prediction using the Burg - Lattice algorithm for computing the next value of a given time series.

The estimated forward and backward linear predictionn parameters are saved in th AC space.

7.4.1 Detailed description

This plugin computes the forward and backward LPC estimates using the Burg-Lattice algorithm given the κ (sometimes also called μ) parameter precomputed using the <code>lpc_burg-lattice</code> plugin. The estimation of the forward and backward linear prediction parameters is performed using the following equations: For each forward and backward linear prediction parameter f(m) and b(m), where m in $[2\cdots P]$, P being the lpc order

$$f(m) = f(m-1) + \kappa(m,2) * b(m-1,2)$$
 (6)

$$b(m,1) = b(m-1,2) + \kappa(m,2) * f(m-1)$$
(7)

. In this implementation κ from the previous is used. Note that the second index of κ is 2.

7.4.2 Supported domains

The MHA plugin lpc_bl_predictor supports these signal domains:

· waveform to waveform

7.4.3 Plugin Tags

feedback-suppression adaptive

7.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
lpc_order	int	LPC order defines the number of coffe-	21
		cients to be estimated	
		Range:]0,]	
name_kappa	string	Name of the kappa parameter of the	km
		Burg-Lattice algorithm in the AC do-	
		main to be used for the joint estimation	
		of more than one time series	
name_lpc_f	string	Name of the forward LPC estimate of	name_lpc_f
		the Burg-Lattice algorithm in the AC	
		domain	
name_lpc_b	string	Name of the backward LPC estimate	name_lpc_b
		of the Burg-Lattice algorithm in the AC	
		domain	
name_f	string	Name of the forward linear prediction	
		parameter	
name_b	string	Name of the backward linear prediction	
		parameter	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7.5 lpc_burg-lattice

This plugin estimates the linear predictive coding coefficients for estimating the next sample value of a time series using the Burg-Lattice approach.

The estimated parameters are saved in the AC space.

7.5.1 Detailed description

This plugin estimates the parameters for the forward and backward linear prediction using the Burg - Lattice algorithm. The previous estimate of the κ parameter is saved in the AC space for future use in the <code>lpc_bl_predictor</code> plugin to estimate several time-series sharing the same κ values.

For the estimation of κ the following series of equations are used: For each κ in $[2\cdots P]$, P being the lpc order

$$dm(m-1) = \lambda * dm(m-1) + (1-\lambda) * (f(m-1)^2 + b(m-1,2)^2)$$
 (8)

$$nm(m-1) = \lambda * nm(m-1) + (1-\lambda) * -2 * f(m-1) * b(m-1,2)$$
 (9)

$$km(m,1) = \frac{nm(m-1)}{dm(m-1)}.$$
 (10)

Note that the previous estimate of κ , which is given by $\kappa(m,2)$ is saved in the AC space.

7.5.2 Supported domains

The MHA plugin lpc_burg-lattice supports these signal domains:

· waveform to waveform

7.5.3 Plugin Tags

feedback-suppression adaptive

7.5.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
lpc_order	int	LPC order defines the number of coffe-	21
		cients to be estimated	
		Range:]0,]	
name_kappa	string	Name of the kappa parameter of the	km
		Burg-Lattice algorithm in the AC do-	
		main to be used for the joint estimation	
		of more than one time series	
name_f	string	Name of the forward linear prediction	
		parameter	
name_b	string	Name of the backward linear prediction	
		parameter	
lambda	float	Forgetting factor for the linear predictor	0.99375
		Range: [0,1]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Type	Description	Default
int		(monitor)
string	Signal domain (MHA_WAVEFORM or	(monitor)
	MHA_SPECTRUM)	
int	Fragment size of waveform data	(monitor)
int	Window length of spectral data	(monitor)
int	FFT length of spectral data	(monitor)
float	Sampling rate in Hz	(monitor)
	int string int int int	int Number of audio channels string Signal domain (MHA_WAVEFORM or MHA_SPECTRUM) int Fragment size of waveform data int Window length of spectral data int FFT length of spectral data

7.6 nlms_wave

This plugin adaptively estimates the coefficients of a filter by means of the NLMS algorithm.

The estimated filter is stored into an AC variable named by the algorithm configuration name or by the configuration variable name_f and the input signal is filtered by the current filter and returned as the output signal of the plugin.

7.6.1 Detailed description

This plugin implements the NLMS algorithm for re-estimating the coefficients of an adaptive filter in each iteration. The estimated filter coefficients are saved in an AC variable having the same name as the plugin in the current configuration. The name of this AC variable can also be set differently by setting the configuration variable **name_f**. The input signal is filtered by the filter estimated in the current iteration and returned as the current output of the plugin from within the processing callback. The estimation of the filter coefficients is performed using the update rule given as in the following:

$$e[k] = y[k-1] - f[k-1]u[k-1]$$
(11)

$$f[k] = f[k-1] + rho/(|u|^2 + c)u[k-1]e[k],$$
(12)

where e is the error signal, y is the desired signal and u is the input signal. All three signals are read from the AC space. For this, the configuration variables $\mathbf{name_e}$, $\mathbf{name_d}$ and $\mathbf{name_u}$ should be set. The error signal can also be computed within the plugin given the other two signals, when the corresponding configuration variable is left empty. The plugin can be configured to use also the current sample u[k] of the input signal in the estimation by asigning the configuration variable $\mathbf{estimtype}$ to the value $\mathbf{current}$. However in the default case ($\mathbf{previous}$), the previous values as long as the filter (\mathbf{ntaps}) but the current one are used.

7.6.2 Supported domains

The MHA plugin nlms_wave supports these signal domains:

- · waveform to waveform
- 7.6.3 Plugin Tags

feedback-suppression adaptive

7.6.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
rho	float	convergence coefficient	0.01
		Range:]0,2]	
С	float	stabilization parameter	1e-05
		Range:]0,]	
ntaps	int	number of taps in filter	32
		Range:]0,]	
name_u	string	Name of input signal U	
name_d	string	Name of desired signal D	
normtype	keyword_list	Normalization type	default
		Range: [none default sum]	
estimtype	keyword_list	Estimation type defined whether the	previous
		current value of the input signal u[k] will	
		be incorporated in the estimation of the	
		filter coefficients or not. Default value	
		(previous) does not.	
		Range: [previous current]	
lambda_smoothing_power	float	Recursive smoothing constant for sum	0.9
		normalization	
		Range: [0,1[
name_e	string	Name of error signal E	
name_f	string	Name of the AC variable for saving the	
		adapive filter	
n_no_update	int	Number of iterations without updating	0
		the filter coefficients	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

7.7 prediction_error

Prediction error method for adaptive feedback cancellation

7.7.1 Detailed description

This plugin implements the prediction error method to perform adaptive feedback cancellation. The prediction error method estimates the feedback path by minimizing the error between the desired and the predicted output signals. The algorithm handles each input sample within each input channel separately.

The plugin computes not only the least mean squares (NLMS) estimate of the feedback path but also performs the necessary steps for delaying the input and output signals as well as the prewhitening using the linear predictive coding (LPC) coefficients. The flow graph of the whole processing chain is shown in Figure Fig. 4.

Figure 4 This figure shows the signal flow and the applied operations on the signal to perform adaptive feedback cancellation.

In the forward path, the error signal vE is estimated by subtracting the estimated feedback signal of the output signal vU of the last iteration from the current input signal vY as shown in Equation 13. This error signal is delayed a configurable number of taps, which is set using the configuration variable **pred_err_delay** (dG in the figure). Subsequently a configurable amount of gain is applied to the delayed error signal to compute the output signal. The amount of gain can be set using the configuration variable **gains**.

$$e[k] = y[k] - \mathbf{v}\mathbf{W}\mathbf{full}^{T}[k-1] \cdot \mathbf{u}[k-1], \tag{13}$$

In order to compute the feedback signal (the second term in Equation 13), the output signal is delayed a configurable amount of taps, filtered using the last estimate of the feedback path vWfull. The aforementioned delay is set using the configuration variable **delay_w** (dW in the figure).

In the closed loop identification of the feedback path, the LPC coefficients are used for prewhitening the input signal as well as the output signal. The LPC coefficients are estimated

in the plugin called LPC and saved in the AC space, which the prediction_error plugin reads in each iteration (*vLPC* in the figure). The name of the corresponding AC variable must be set using the configuration variable **name_lpc**. Furthermore, the dimensions of the LPC coefficients must be set using the configuration variable **lpc_order**. Prior to the prewhitening step, the input as well as the output signal are delayed the same amount of taps, which can be set by the configuration variable **delay d** (*dLp* in the figure).

In the following step, the prewhitened error signal is computed as shown in Equation 13. For this, the prewhitened output signal is filtered by the last estimate of the feedback path and subtracted from the prewhitened input signal.

By using the prewhitened output signal and error signal, the NLMS algorithm re-estimates the coefficients of the feedback path in each iteration.

The estimated filter coefficients are saved in an AC variable having the same name as the plugin in the current configuration. The name of this AC variable can also be set differently by setting the configuration variable **name_f** (*vWfull* in the figure).

The estimation of the filter coefficients of the feedback path is performed using the update rule given as in the following:

$$\mathbf{vWfull}[k] = \mathbf{vWfull}[k-1] + \rho \cdot \frac{\mathbf{u}[k-1]}{(|\mathbf{u}^T[k-1] \cdot \mathbf{u}[k-1]| + c)} \cdot e[k], \tag{14}$$

where e is the prewhitened error (*EPrew*) signal, and u (*vUBufPrew*) is the output signal. The step size **rho** (ρ in the equation) and the regularization parameter **c** can be set using the corresponding configuration variables.

The default values of the numeric configuration variables are optimized for a sampling rate of 16KHz. They have to be adjusted for other sampling rates for optimal feedback cancellation performance.

7.7.2 Supported domains

The MHA plugin prediction_error supports these signal domains:

· waveform to waveform

7.7.3 Plugin Tags

feedback-suppression adaptive

7.7.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
rho	float	Step size	0.01
		Range:]0,2]	
С	float	Regularization parameter	1e-05
		Range:]0,]	
ntaps	int	Length of the feedback path filter in	32
		taps	
		Range:]0,]	
gains	vector <float></float>	Gain in dB	[0]
		Range: [-60,60]	
name_e	string	Name of the AC variable for saving the	E
		prediction error	
name_f	string	Name of the AC variable for saving the	F
		adapive filter	
name_lpc	string	Name of the AC variable for the LPC	lpc
		coefficients	
lpc_order	int	Length of the lpc filter in taps	20
		Range:]0,1024]	
pred_err_delay	vector <int></int>	Delay in the forward path in taps	[96]
		Range:]0,[
delay_w	vector <int></int>	Delay in the adaptive filtering path due	[130]
		to the microphone and loudspeaker	
		transducers in taps	
		Range: [0,[
delay_d	vector <int></int>	Delay in the adaptive filtering path for	[161]
		the LPC in taps	
		Range: [0,[
n_no_update	int	Number of iterations without updating	0
		the filter coefficients	
		Range: [0,1024[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

8 Plugin category 'filter'

8.1 fftfilter

FFT based FIR filter

8.1.1 Detailed description

The 'fftfilter' plugin implements a generic FFT-based FIR filter. The overlap-save method is used to apply the impulse response to each block of the signal. The default FFT length used is computed from the fragsize and the inpulse response length and set to the minimum required FFT length to perform the overlap-save operation (see documentation of configuration variable fftlen). If this is not a power of two, the computation may be inefficient, and it should be considered to increase it to the next power of two larger than the required minimum.

8.1.2 Supported domains

The MHA plugin fftfilter supports these signal domains:

· waveform to waveform

8.1.3 Plugin Tags

filter

8.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
irs	matrix <float></float>	Impulse responses, one row for each channel (or single row to use in all channels)	[[1]]
fftlen	int	FFT length used for FIR filter. If zero, the FFT length is fragsize + impulse response length - 1 (assuming that the discrete Dirac delta function has the IRS length 1). Range: [0,]	0
fftlen_final	int	FFT length used by FFT filter (computed during prepare)	(monitor)

Variables of sub-parser mhaconfig_in:

8.2 iirfilter 65

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

8.2 iirfilter

IIR filter

8.2.1 Detailed description

The 'iirfilter' plugin implements a generic IIR filter (direct form II). The coefficients have the same names as in MATLAB. Due to different internal implementations and numeric resolutions, filters may be instable with coefficients which are stable in MATLAB.

8.2.2 Supported domains

The MHA plugin iirfilter supports these signal domains:

· waveform to waveform

8.2.3 Plugin Tags

filter

8.2.4 Configuration variables

Name	Туре	Description	Default
Α	vector <float></float>	recursive filter coefficients	[1]
В	vector <float></float>	non-recursive filter coefficients	[1]

8.3 mconv

FFT based FIR filter using partitioned convolution This plugin filters its input channels using partitioned fast convolution. The variables in this plugin define a sparse matrix of impulse responses. The number of elements in the vectors inch and outch and the number of rows in irs have to be equal.

8.3.1 Detailed description

The plugin *mconv* performs partitioned convolution, using a sparse matrix of impulse responses.

The partition size used for the partitioned convolution is equal to fragsize, the number of samples per channel in one block of audio. The impulse responses are separated into partitions, and each partition is applied with the appropriate delay. Each partition is applied using theoverlap-save method. The FFT length used is 2*fragsize.For efficiency reasons, fragsize should be a power of two.

Partitioned convolution is used to reduce the overall algorithmic delay of the convolution with a long impulse response. The overall computational cost of using partitioned convolution is higher when compared to convolving the complete impulse response in a single overlap-save operation, because longer FFTs are more efficient.

This implementation discards impulse response partitions where the coefficients are all zero.

8.3.2 Supported domains

The MHA plugin mconv supports these signal domains:

· waveform to waveform

8.3.3 Plugin Tags

filter

8.4 steerbf 67

8.3.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
nchannels_out	int	Number of output channels to produce	1
		Range: [0,[
inch	vector <int></int>	Vector of input channel indices. Each	[0]
		element in this vector identifies the in-	
		put channel to which to apply the cor-	
		responding impulse response in irs.	
		Range: [0,[
outch	vector <int></int>	Vector of output channel indices. Each	[0]
		element in this vector identifies the out-	
		put channel to which the result of filter-	
		ing with the corresponding impulse re-	
		sponse in irs is mixed.	
		Range: [0,[
irs	matrix <float></float>	Impulse responses, one per row. For	[[1]]
		each row, the corresponding element	
		of inch identifies the source chan-	
		nel, and the corresponding element of	
		outch identifies the target channel.	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

8.4 steerbf

Steerable Beamformer

8.4.1 Detailed description

Implements frequency-domain beamformer processing (filter and sum) using externally provided filters. A plugin called acSteer can be used to provide the filter coefficients. The filter coefficients to be read are saved as a waveform object in the AC space. Each channel of this object corresponds to a different steering angle. The steering angle is typically determined in real-time by a localization plugin (e.g. doasvm_classification). In this case, the index to the corresponding steering direction is read from the AC space. Note that the number of available filters should be consistent with the number of possible steering directions to be estimated. The configuration variable **angle_src** keeps the name of the AC variable for the estimated steering direction. The steering angle can also be fixed in the configuration time using the configuration variable **angle_ind**.

8.4.2 Supported domains

The MHA plugin steerbf supports these signal domains:

spectrum to spectrum

8.4.3 Plugin Tags

filter spatial audio-channels beamformer binaural

8.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
bf_src	string	Provides the beamforming filters encoded as a block matrix: [chanXnan-gle,nfreq].	
angle_ind	int	Sets the steering angle in filtering. Range: [0,1000]	0
angle_src	string	If initialized, provides an int-AC variable of steering index.	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

8.5 transducers 69

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

8.5 transducers

Signal level calibration plugin.

8.5.1 Detailed description

Some plugins in the MHA expect the input signal to be calibrated to sound pressure level in Pascal. This plugin converts AD and DA converter levels to SPL in Pa and also allows for a FIR filters for mircophone and receiver equalization.

A schematic calibration rule for the MHA

- 1. Measure frequency response of hearing aid microphones and receiver.
- 2. Create FIR filter coefficients for frequency response equalization for microphones and receiver, configure the FIR coefficients of this plugin correspondingly.
- 3. Play an acoustic reference signal of a known SPL level to the microphone, adjust the 'calib_in.peaklevel' variable until the internal level meter (e.g. rmslevel, p. 83) shows the same level.
- 4. Create a test tone in the MHA (e.g. with 'noise', p. 105, or 'sine', p. 107) of a given level, and adjust the variable 'calib_out.peaklevel' until the same acoustic level is measured at the receiver.

Besides the signal calibration, this plugin also contains a soft-limiter in the output path, and a quantization module. The soft-limiter acts as a fast broadband compressor, and can be configured correspondingly. The quantisation module limits the signal to the interval [-1,1] and optionally reduces the resolution, by this quantization rule:

$$y = floor(2^{(N-1)}x)2^{-(N-1)}$$
(15)

N is the number of bits, x the input signal and y the output signal.

8.5.2 Supported domains

The MHA plugin transducers supports these signal domains:

· waveform to waveform

8.5.3 Plugin Tags

filter limiter calibration level-meter

8.5.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
calib_in	parser	calibration module	(see below)
calib_out	parser	calibration module	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser calib_in:

8.5 transducers 71

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
nbits	int	Number of bits to simulate, or zero for	0
		limiting only	
		Range: [0,32]	
fir	matrix <float></float>	FIR filter coefficients, one row for each	[[]]
		channel	
peaklevel	vector <float></float>	Reference peak level in dB (0 dB FS	[]
		corresponds to this SPL level)	
speechnoise	parser		(see below)
tau_level	float	Time constant in seconds for RMS	0.125
		level meter	
		Range:]0,10]	
rmslevel	vector <float></float>	RMS level in dB at input (after calibra-	(monitor)
		tion or addition of noise)	
config	parser		(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser speechnoise:

Name	Туре	Description	Default
mode	keyword_list	Playback mode and level of speech shaped noise Range: [off on olnoise LTASS_combined LTASS_female LTASS_male white pink brown TEN_SPL TEN_SPL_250_8k TEN_SPL_50_16k sin125 sin250 sin500 sin1k sin2k sin4k sin8k]	off
level	float	Test signal level in dB SPL Range: [0,120]	80
channels	vector <int></int>	Channels where to playb speech noise signal Range: [0,]	

Variables of sub-parser config:

Name	Type	Description	Default
srate	float	Actual sampling rate / Hz	(monitor)
fragsize	int	Actual fragment size / samples	(monitor)
channels	int	Actual number of channels	(monitor)

Variables of sub-parser calib_out:

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
speechnoise	parser		(see below)
peaklevel	vector <float></float>	Reference peak level in dB (0 dB FS corresponds to this SPL level)	
fir	matrix <float></float>	FIR filter coefficients, one row for each channel	[[]]
softclip	parser	'Hardware' softclipper	(see below)
nbits	int	Number of bits to simulate, or zero for	0
		limiting only Range: [0,32]	
do_clipping	bool	Will the soft/ hard clipping be executed	no
tau_level	float	Time constant in seconds for RMS level meter Range:]0,10]	0.125
rmslevel	vector <float></float>	RMS level in dB at output (before calibration or addition of noise)	(monitor)
config	parser		(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser speechnoise:

Name	Туре	Description	Default
mode	keyword_list	Playback mode and level of speech	off
		shaped noise	
		Range: [off on olnoise	
		LTASS_combined LTASS_female	
		LTASS_male white pink brown	
		TEN_SPL TEN_SPL_250_8k	
		TEN_SPL_50_16k sin125 sin250	
		sin500 sin1k sin2k sin4k sin8k]	
level	float	Test signal level in dB SPL	80
		Range: [0,120]	
channels	vector <int></int>	Channels where to playb speech noise	[]
		signal	
		Range: [0,]	

Variables of sub-parser softclip:

Name	Type	Description	Default
tau_attack	float	attack filter time constant / s	0.002
		Range: [0,]	
tau_decay	float	decay filter time constant / s	0.005
		Range: [0,]	
threshold	float	start point on linear scale (hard clipping	0.6
		at 1.0)	
		Range: [0,]	
hardlimit	float	hard limit	1
		Range:]0,]	
slope	float	compression factor	0.5
		Range: [0,1]	
linear	bool	input/output function is linear on linear	no
		(yes) or logarithmic (no) scale	
tau_clip	float	clipping meter time constant / s	1
		Range: [0,]	
clipped	float	clipped ratio	(monitor)
max_clipped	float	maximum allowed clipped ratio	1
		Range: [0,1]	

Variables of sub-parser config:

Name	Type	Description	Default
srate	float	Actual sampling rate / Hz	(monitor)
fragsize	int	Actual fragment size / samples	(monitor)
channels	int	Actual number of channels	(monitor)

9 Plugin category 'filterbank'

9.1 fftfbpow

FFT based filterbank analysis with overlapping filters

9.1.1 Detailed description

This plugin implements a filterbank based on FFT spectrum. The power in each filter bank channel is calculated and stored into an AC variable. The input signal is passed through unmodified.

For details on the filter shapes, please see description of plugin fftfilterbank (section 9.2 on page 75).

9.1.2 Supported domains

The MHA plugin fftfbpow supports these signal domains:

· spectrum to spectrum

9.1.3 Plugin Tags

filterbank feature-extraction level-meter

9.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
unit	keyword_list	Frequency unit	Hz
		Range: [Hz kHz Oct Oct/3 Bark Erb	
		ERB_Glasberg1990]	
f	vector <float></float>	Frequencies	[]
f_hz	vector <float></float>	Frequencies in Hz	(monitor)
fscale	keyword_list	frequency scale of filter bank	linear
		Range: [linear bark log erb	
		ERB_Glasberg1990]	
ovltype	keyword_list	filter overlap type	rect
		Range: [rect linear hanning exp gauss]	
plateau	float	relative plateau width	0
		Range: [0,1[
ftype	keyword_list	frequency entry type	center
		Range: [center edge]	
normalize	bool	normalize broadband output amplitude	no
fail_on_nonmonotonic	bool	Fail if frequency entries are non-	yes
		monotonic (otherwise sort)	
fail_on_unique_bins	bool	Fail if center frequencies share the	yes
		same FFT bin.	
cf	vector <float></float>	final center frequencies in Hz	(monitor)
ef	vector <float></float>	final edge frequencies in Hz	(monitor)
cLTASS	vector <float></float>	Bandwidth level correction for LTASS	(monitor)
		noise in dB	
shapes	matrix <float></float>	Frequency band shapes	(monitor)

9.2 fftfilterbank 75

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

9.2 fftfilterbank

FFT based filterbank with overlapping filters

9.2.1 Detailed description

This plugin implements a linear phase filterbank based on FFT spectrum. Each filter bank channel is stored into an own audio channel. The number of output channels of this plugin is the number of frequency bands times the number of input channels.

Please use the iFFT plugin *spec2wave* (p. 110) to get the waveform signal of the filterbank output. The *matrixmixer* (p. 30) plugin or *combinechannels* (p. 24) can be used for resynthesis.

The filters are calculated by applying filter weights to each FFT bin. These weights (filter shapes) depend on the settings of the ftype variable. If center is selected, the frequency interval between the lower neighbour center frequency and the desired center frequency is mapped to the interval [-1,0] and between the desired center frequency and the upper neightbour to the interval [0,1]. These mappings are linear on the given frequency scale so that a value of 0.5 denotes the middle between two neighboured center frequencies on the given frequency scale. The filter weights are calculated with the configured crossing function on this interval, see next figure for details. Please note that the filters are not necessarily symmetric (symmetry is achieved only if the center frequencies are equally spaced on the desired frequency scale). The lowest and highest filter channels include the full range from zero to the center frequency or from the center frequency to the nyquist frequency, respectively.

If edge is selected, then the frequency axis is transformed to be linear on the desired frequency scale. The interval between two edge frequencies is mapped to [-0.5,0.5]. Now, the filter shape function (rectangular, linear/sawtooth, hanning) is applied to the frequency axis. This results in symmetric filters on the desired frequency scale.

Figure 5 Schematic plot of overlapping filters

Figure 6 Example filter shapes with center frequencies configured

Figure 7 Example filter shapes with edge frequencies configured

9.2 fftfilterbank 77

9.2.2 Supported domains

The MHA plugin fftfilterbank supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

9.2.3 Plugin Tags

filterbank

9.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
unit	keyword_list	Frequency unit	Hz
		Range: [Hz kHz Oct Oct/3 Bark Erb	
		ERB_Glasberg1990]	
f	vector <float></float>	Frequencies	[]
f_hz	vector <float></float>	Frequencies in Hz	(monitor)
fscale	keyword_list	frequency scale of filter bank	linear
		Range: [linear bark log erb	
		ERB_Glasberg1990]	
ovltype	keyword_list	filter overlap type	rect
		Range: [rect linear hanning exp gauss]	
plateau	float	relative plateau width	0
		Range: [0,1[
ftype	keyword_list	frequency entry type	center
		Range: [center edge]	
normalize	bool	normalize broadband output amplitude	no
fail_on_nonmonotonic	bool	Fail if frequency entries are non-	yes
		monotonic (otherwise sort)	
fail_on_unique_bins	bool	Fail if center frequencies share the	yes
		same FFT bin.	
cf	vector <float></float>	final center frequencies in Hz	(monitor)
ef	vector <float></float>	final edge frequencies in Hz	(monitor)
cLTASS	vector <float></float>	Bandwidth level correction for LTASS	(monitor)
		noise in dB	
shapes	matrix <float></float>	Frequency band shapes	(monitor)
fftlen	int	FFT length of filterbank (affects time	128
		domain only)	
		Range: [2,]	
phasemodel	keyword_list	Phase model (affects time domain	linear
-		only)	
		Range: [minimal linear]	
irswnd	parser	IRS window function (affects time do-	(see below)
		main only)	
return_imag	bool	Return imaginary part? Re-	no
		sults are stored in AC variable	
		' <plugname>_imag'.</plugname>	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser irswnd:

Name	Туре	Description	Default
type	keyword_list	Window type.	hanning
		Range: [rect hanning hamming black-	
		man bartlett user]	
user	vector <float></float>	User provided window (used if window	[]
		type==user).	

9.3 gtfb_analyzer

Gammatone Filterbank Analyzer

9.3.1 Detailed description

Implements a complex-valued gammatone filterbank using cascaded first-order filters as described in Hohmann(2002)⁴, and Herzke and Hohmann(2007)⁵. Set the parameter order to the desired gammatone filter order. The coeff is a vector of complex filter coefficients, one for each filterbank frequency band. The complex coefficients need to be computed outside of the MHA, e.g. with the help of the matlab implementation of the gammatone filterbank which can be downloaded from https://uol.de/mediphysik/downloads/. Similarly, the combination of normalization factors and phases also have to be computed outside of the MHA, e.g. also with the same matlab implementation of this gammatone filterbank.

⁴ Volker Hohmann, Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica united with Acustica 88(3), pp. 433-442, 2002.

⁵ Tobias Herzke and Volker Hohmann, Improved Numerical Methods for Gammatone Filterbank Analysis and Synthesis. Acta Acustica united with Acustica 93(3), pp. 498-500, 2007.

The output signal produced by this plugin contains the complex output signal produced by the cascaded gammatone filters in each band. Because the MHA time domain signal representation does not support storing of complex values, real and imaginary parts are stored in different output channels.

Example: If the input has 2 channels (ch0, ch1), and gtfb_analyzer splits into 3 bands (b0, b1, b2), then the order of output channels produced by gtfb_analyzer is: ch0_b0_real, ch0_b0_imag, ch0_b1_real, ch0_b1_imag, ch0_b2_real, ch0_b2_imag, ch1_b0_real, ch1_b1_imag, ch1_b1_imag, ch1_b2_imag

9.3.2 Supported domains

The MHA plugin gtfb_analyzer supports these signal domains:

· waveform to waveform

9.3.3 Plugin Tags

filterbank

9.3.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
coeff	vector <complex></complex>	Filter coefficients of gammatone filters	[]
norm_phase	vector <complex></complex>	Normalization & phase correction fac-	[]
		tors	
order	int	Order of gammatone filters	4
		Range: [0,[

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

9.4 multibandcompressor

Multiband compressor framework based on level in overlapping filter bands.

9.4.1 Detailed description

multibandcompressor provides a complete framework for dynamic range compression in multiple frequency bands.

It contains the same filterbank as the fftfilterbank plugin (see there for documentation of the filterbank) and combines the frequency bands again after the compression.

For the actual dynamic range compression, multibandcompressor can load any other plugin using the field plugin_name. Common choices for this plugin would be dc_simple or dc.

Note that the dynamic range compression receives a pseudo time signal where the sampling rate is the rate of the block processing, i.e. in each channel and band, there is exactly 1 signal sample for every block. These samples are a sparse, non-negative representation of the actual signal in the respective frequency band: The magnitude of each sample is chosen by multibandcompressor so that the level computed from this sparse signal is the same as the level computed from the full signal for this frequency band.

The dynamic range compression will then apply gain (or attenuation) to the sparse signal in each frequency band. The gain applied to the sparse signal is measured by multibandcompressor and eventually applied to the respective full signal.

Before the compressor gain is applied to the full signal, it may be modified by the after-burner built into the multibandcompressor plugin (sub-parser 'burn'): The purpose of the after-burner is to enforce a configurable Maximum Power Output (MPO) for each frequency band, and to compensate for drains and confluxes of sound energy through vents and open fittings. Note that compensating for drains in this way can easily lead to feedback howling and should be done with caution. The after-burner can be disabled by setting burn.bypass=yes.

9.4.2 Supported domains

The MHA plugin multibandcompressor supports these signal domains:

spectrum to spectrum

9.4.3 Plugin Tags

filterbank compression feature-extraction level-modification level-meter

9.4.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
unit	keyword_list	Frequency unit	Hz
		Range: [Hz kHz Oct Oct/3 Bark Erb	
		ERB_Glasberg1990]	
f	vector <float></float>	Frequencies	[]
f_hz	vector <float></float>	Frequencies in Hz	(monitor)
fscale	keyword_list	frequency scale of filter bank	linear
		Range: [linear bark log erb	
		ERB_Glasberg1990]	
ovltype	keyword_list	filter overlap type	rect
		Range: [rect linear hanning exp gauss]	
plateau	float	relative plateau width	0
		Range: [0,1[
ftype	keyword_list	frequency entry type	center
		Range: [center edge]	
normalize	bool	normalize broadband output amplitude	no
fail_on_nonmonotonic	bool	Fail if frequency entries are non-	yes
		monotonic (otherwise sort)	
fail_on_unique_bins	bool	Fail if center frequencies share the	yes
		same FFT bin.	
cf	vector <float></float>	final center frequencies in Hz	(monitor)
ef	vector <float></float>	final edge frequencies in Hz	(monitor)
cLTASS	vector <float></float>	Bandwidth level correction for LTASS	(monitor)
		noise in dB	
shapes	matrix <float></float>	Frequency band shapes	(monitor)
plugin_name	string	Plugin name	
burn	parser		(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser burn:

Name	Туре	Description	Default
f	vector <float></float>	Sample frequencies of data / Hz.	[1000]
		Range: [0,]	
drain	vector <float></float>	Drain caused by vent / dB.	[0]
conflux	vector <float></float>	Conflux caused by vent / dB.	[-120]
maxgain	vector <float></float>	Maximum allowed gain / dB.	[80]
mpo	vector <float></float>	Maximum allowed output level / dB	[120]
		SPL (see notes in plugin doc).	
taugain	float	Time constant of afterburn gain modi-	0.2
		fier lowpass / s.	
		Range: [0,]	
commit	keyword_list	Commit changes of configuration vari-	commit
		ables.	
		Range: [commit]	
bypass	bool	Bypass afterburn stage.	no

10 Plugin category 'level'

10.1 levelmeter

Broadband level meter.

10.1.1 Detailed description

This level meter calculates the RMS level of the input signal in the last *tau* seconds.

10.1.2 Supported domains

The MHA plugin levelmeter supports these signal domains:

· waveform to waveform

10.1.3 Plugin Tags

level compression

10.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
tau	float	RMS time constant / s	0.1
		Range: [0,]	
mode	keyword_list	Level scale	Pa
		Range: [Pa FS]	
rms	vector <float></float>	RMS level / dB	(monitor)
peak	vector <float></float>	Peak level / dB	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

11 Plugin category 'level-meter'

11.1 rmslevel

This algorithm displays block based RMS level informations. Results are stored in these AC variables (replace 'rmslevel' by the configured plugin name):

rmslevel_level_db rmslevel_peak_db rmslevel_level rmslevel_peak

11.1.1 Supported domains

The MHA plugin rmslevel supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

11.1.2 Plugin Tags

level-meter feature-extraction

11.1.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

12 Plugin category 'level-modification'

12.1 gain

Gain plugin:

Apply a gain to each channel

12.1.1 Supported domains

The MHA plugin gain supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

12.1.2 Plugin Tags

level-modification

12.1.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
min	float	Minimal gain	-16
		Range: [,0]	
max	float	Maximal gain	16
		Range: [0,]	
bbgain	float	Broadband gain in dB (setting of broad	0
		band gain overrides band gain)	
		Range: [-16,16]	
gains	vector <float></float>	Gain in dB	[0]
		Range: [-16,16]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

12.2 smoothgains_bridge

Gain smoothing for reduction of filter length

12.2.1 Detailed description

The overlap-add framework allows filter lengths of the zero padding length. Longer filters will result in artifacts caused by circular aliasing. Artifacts can be reduced by either applying Hanning ramps to the zero-padded blocks after filtering, or by shortening the impulse response of the filter, and thus implicitely reducing the frequency resolution. This plugin reduces the filter length to match exactly the zero-padding length. It can either keep the phase (mode=linear_phase), and reduce causal and a-causal parts of the impulse response, or apply a minimum phase filter phase, and cut the causal part of the filter. The window position in the overlap-add framework has to be configured appropriately: For linear phase mode, a symmetric window position is required, i.e., wnd.pos=0.5. To allow minimal phase filters, an asymmetric window position (wnd.pos=0) is needed. Using minimal phase filters will destroy the phase, but reduces the algorithmic delay.

12.2.2 Supported domains

The MHA plugin smoothgains_bridge supports these signal domains:

spectrum to spectrum

12.2.3 Plugin Tags

level-modification filter data-flow overlap-add

12.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
mode	keyword_list	Gain smoothing mode Note: Appropriate settings of window position are required (linear_phase: 0.5, minimal_phase: 0) Range: [off linear_phase minimal_phase]	linear_phase
irswnd	parser	Impulse response window function	(see below)
epsilon	float	Epsilon for safe division by zero (avoid inf) Range: [1.1e-19,]	1e-18

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser irswnd:

Name	Type	Description	Default
type	keyword_list	Window type.	hanning
		Range: [rect hanning hamming black-man bartlett user]	
user	vector <float></float>	User provided window (used if window	[]
		type==user).	

13 Plugin category 'math'

13.1 acTransform_wave

Transform Plugin Between Coordinate Systems for Waveforms

13.1.1 Detailed description

This plugin transforms a waveform in the AC space from one coordinate system into another. For this it receives an angle also saved in the AC space. Then, the plugin rotates the axes into the direction of the given angle.

13.1.2 Supported domains

The MHA plugin acTransform_wave supports these signal domains:

· waveform to waveform

13.1.3 Plugin Tags

math linear-algebra

13.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
ang_name	string	This parameter has the name of the AC variable having the rotation angle	head_ang
raw_p_name	string	This parameter has the name of the AC variable having the waveform to be rotated	p
raw_p_max_name	string	This parameter has the name of the AC variable having the maximum of the waveform to be rotated	p_max
rotated_p_name	string	This parameter has the name of the AC variable having the waveform after rotation	rotated_p
rotated_p_max_name	string	This parameter has the name of the AC variable having the maximum of the waveform after rotation	rotated_p_max
numsamples	int	This parameter determines the length of the wave to be pooled in samples. Range:]0,360]	73
to_from	bool	This parameter tells whether the rotation will be performed to the given angle or from it	yes

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

14 Plugin category 'noise-suppression'

14.1 noise_psd_estimator

Noise power estimator after Gerkmann (2012).

14.1.1 Detailed description

Noise power spectral density (PSD) estimator based on a cepstral-domain speech production model using estimated speech presence probability.

The noise PSD estimate is stored into an AC variable with the same name as the plugin configuration name.

Reference:

Timo Gerkmann, Richard C. Hendriks, "Unbiased MMSE-based Noise Power Estimation with Low Complexity and Low Tracking Delay", IEEE Trans. Audio, Speech and Language Processing, Vol. 20, No. 4, pp. 1383 - 1393, May 2012.

Patent:

Timo Gerkmann and Rainer Martin: "Method for Determining Unbiased Signal Amplitude Estimates After Cepstral Variance Modification", United States Patent US8208666B2, granted Jun. 2012.

14.1.2 Supported domains

The MHA plugin noise_psd_estimator supports these signal domains:

· spectrum to spectrum

14.1.3 Plugin Tags

noise-suppression feature-extraction adaptive

14.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
alphaPH1mean	float	low pass filter coefficient for PH1mean	0.9
		Range: [0,1[
alphaPSD	float	low pass filter coefficient for PSD	0.8
		Range: [0,1[
q	float	a priori probability of speech presence	0.5
		Range: [0,1]	
xiOptDb	float	optimal fixed a priori SNR for SPP esti-	15
		mation	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

14.2 smooth_cepstrum

Cepstral smoothing single-channel noise reduction

14.2.1 Detailed description

Single-channel noise reduction applying cepstral smoothing based on noise power spectral density (PSD). The PSD must be provided by another plugin as an AC variable. The PSD computed by the 'noise_psd_estimator' plugin is compatible with this plugin. The name of the AC variable to read the PSD can be changed in the parameter *noisePow_name*.

		-					
\vdash	ים'	0	rΔ	n	ce	c.	,
		C	_		\cdot	თ.	

Colin Breithaupt, Timo Gerkmann, Rainer Martin, "A Novel A Priori SNR Estimation Approach Based on Selective Cepstro-Temporal Smoothing", IEEE Int. Conf. Acoustics, Speech, Signal Processing, Las Vegas, NV, USA, Apr. 2008.

Timo Gerkmann, Rainer Martin, "On the Statistics of Spectral Amplitudes After Variance Reduction by Temporal Cepstrum Smoothing and Cepstral Nulling", IEEE Trans. Signal Processing, Vol. 57, No. 11, pp. 4165-4174, Nov. 2009.

Patent:

Colin Breithaupt, Timo Gerkmann, and Rainer Martin: "Spectral Smoothing Method for Noisy Signals", European Patent EP2158588B1, granted Oct. 2010, Danish Patent DK2158588T3, granted Feb. 2011, US Patent US8892431B2, granted Nov. 2014.

14.2.2 Supported domains

The MHA plugin smooth_cepstrum supports these signal domains:

· spectrum to spectrum

14.2.3 Plugin Tags

noise-suppression signal-enhancement adaptive

14.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
xi_min_db	float	Minimum a priori SNR for a bin in	-27
		dB(power)	
		Range: [-50,50]	
f0_low	float	Lower limit for F0 detection in Hz	70
		Range: [0,400]	
f0_high	float	Upper limit for F0 detection in Hz	300
		Range: [0,400]	
delta_pitch	float	Quefrency half-width of pitch-set in	2
	!	samps	
		Range: [0,20]	
lambda_thresh	float	Pitch detection threshold for smooth	0.2
		cepstrum in magnitude]
		Range: [0,3]	
alpha_pitch	float	Alpha value to set for pitch range	0.15
		Range: [0,4]	
beta_const	float	AR coeff for smoothing of	0.96
		alphas(smoothing-factors)	
kappa_const	float	Exponential bias correction constant	0.2886
	!	for a priori SNR estimate	
	!	Range: [0,1]	
gain_min_db	float	Minimum gain in dB for a frequency bin	-17
		Range: [-30,0]	
win_f0	vector <float></float>	Window coefficients for cepstral	[0.0207 0.0656 0.1664 0.2473 0.24
		smoothing window	
		Range: [0,1]	
alpha_const_vals	vector <float></float>	Piecewise values for steady-state al-	[0.2 0.4 0.92]
	!	phas	
		Range: [0,2]	
alpha_const_limits_hz	vector <float></float>	Limits for steady-state alphas given in	[93.75 625]
		Hz	
	!	Range: [0,10000]	
noisePow_name	string	Name of est. noise spectrum in AC	noise_psd_estimator
		space	
spp	parser	Subparser for exporting SPP	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser spp:

Name	Type	Description	Default
prior_q	float	priorQ for computing GLR and SPP from local SNR Range: [0,2]	0.5
xi_opt_db	float	xiOpt in dB for computing GLR and SPP from local SNR Range: [0,40]	15

15 Plugin category 'plugin-arrangement'

15.1 altplugs

Configure alternative plugins.

15.1.1 Detailed description

The plugin <code>altplugs</code> allows configuration of alternative plugins. The plugin used for processing can be selected via the <code>select</code> variable at any time. Any plugins can be used as alternative plugins, with the only limitations that input and output domain and signal dimension is equal for all alternative plugins. Plugins can be renamed using the ":" operator.

This plugin is automatically located by the graphical user interface t mhacontrol and used for an algorithm selection panel.

15.1.2 Supported domains

The MHA plugin altplugs supports these signal domains:

- · waveform to waveform
- waveform to spectrum
- · spectrum to waveform
- · spectrum to spectrum

15.1.3 Plugin Tags

plugin-arrangement data-flow

15.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
use_own_ac	bool	Use own AC space for each plug (yes),	no
		or share parents space (no). Must be	
		set before plugs.	
plugs	vector <string></string>	List of plugins	[]
add	string	Add a plugin into list	
delete	string	Delete a plugin from list	
ramplen	float	Ramp length in seconds	0
		Range: [0,]	
select	keyword_list	Select a plugin for processing	(none)
		Range: [(none)]	
labels	vector <string></string>	List of plugin labels.	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

15.2 analysispath

Split-up of signal analysis and filtering, with asychronous processing of filter path and threadsafe exchange of filter parameters as AC variables.

15.2.1 Detailed description

In many signal processing scenarios, the signal analysis requires larger block sizes and more processing time than the filtering itself. If the filters do not change rapidly, the filter coefficients can be processed independently from the filter process. This is realized in this plugin: A copy of the input signal is stored in a double buffer, which is then processed asynchronously in a thread with lower priority. At the same time, a snapshot of the AC space (or a subset of it) can be transferred from the analysis thread to the main processing thread.

Figure 8 Schematic signal flow in the analysis path scenario.

Please note that the AC variables which should be copied to the processing thread must exist after the prepare() callback and should not change their size during run-time.

15.2.2 Supported domains

The MHA plugin analysispath supports these signal domains:

· waveform to waveform

15.2.3 Plugin Tags

plugin-arrangement algorithm-communication data-flow

15.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugname	string	inner plugin name, receives adapted fragment size	
fragsize	int	fragment size of inner plugin	200
		Range: [1,]	
fifolen	int	length of double buffer in inner frag-	10
		ment size	
		Range: [1,]	
priority	int	SCHED_FIFO priority (<0 for no real-	-1
		time scheduling)	
acvars	vector <string></string>	Names of AC variables to be copied	[]
		back to processing thread (empty: all)	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

15.3 mhachain

MHA Chain

15.3.1 Detailed description

Load a sequence of plugins. During processing, the signal is passed from plugin to plugin, and may change its domain or dimension.

If profiling is switched on, the cumulative time spent in the processing callback of each plugin is stored in a monitor variable.

Plugins are loaded by assigning a vector of strings to the configuration variable *algos*. Each entry in this vector has the form *plugin:configured name<config file*, where

- plugin is the filename of the plugin without path or file extension,
- :configured_name optionally assigns a different name to this instance of the plugin. This is useful if multiple instances of the same plugin are loaded into different positions of the processing chain. the colon and the configured_name are not specified, then the configured_name defaults to plugin.
- <config_file optionally specifies a configuration file with which the plugin is initially configured. This is only needed when replacing a complete chain while the mha is performing signal processing by reassigning algos.

The plugins loaded by assigning to configuration variable *algos* cause creation of sub-parsers named like the *configured_name* in the mhachain plugin configuration and can be configured through these sub-parsers.

15.3 mhachain 97

15.3.2 Supported domains

The MHA plugin mhachain supports these signal domains:

- · waveform to waveform
- · waveform to spectrum
- · spectrum to waveform
- spectrum to spectrum

15.3.3 Plugin Tags

plugin-arrangement data-flow

15.3.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
use_profiling	bool	Profile the loaded plugins. Needs to be set to true before setting algos.	no
algos	vector <string></string>	List of plugins to load and arrange in a signal processing chain. Entries are separated by spaces and given in the order of the signal processing. Please refer to the detailed description of this plugin in the plugin manual for more details.	()

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

15.4 overlapadd

Waveform to spectrum overlap add and FFT method.

Audio data is collected up to wndlen, then windowed by the given window function, zero padded up to fftlength (symmetric zero padding or asymmetric zero padding possible), and Fast-Fourier-transformed. All parameter changes take effect after the next prepare call.

15.4.1 Detailed description

The plugin 'overlapadd' transforms fragmented waveform audio data into short time Fourier transformed (STFT) audio data. Both the forward and the inverse transform are performed. Another plugin which processes the STFT spectra must be loaded by setting plugin_name.

The overlap-add mechanism is similar to that from Allen (1977): First the waveform signal is windowed by a window function. The default window shape is the Hanning window, but other pre-defined and user-defined window shapes can be selected. In each processing frame, the window is shifted by the fragment size of the input waveform. Missing parts of the signal are taken from the past. The windowed signal is padded with zeros on both sides up to the FFT length to avoid aliasing when filters are applied in the frequency domain. The zero padded signal is then fast Fourier transformed. Parameters are FFT length N, window length M and the fragment size P. Typical values for the window length are M=2P or M=4P. The default Hanning window is $w_1(k)=\frac{1}{2}(1-\cos(2\pi k/M))$, the windowed signal is

$$x_w(m,k) = w_1(k) \cdot x(m \cdot P + k), \tag{16}$$

with k = 0, ..., M - 1 and the fragment index m.

After processing and inverse Fourier transformation, ramps can be applied to the signal to avoid discontinuities in case of temporal aliasing, and thus reducing the artifacts. These ramps are a applied to the zero-padding regions. The shape of the ramps is determined by the window shape zerownd.type. Common choices are Hanning ramps or rectangular ramps (i.e. no ramps, the default). This allows an exact reproduction in those cases where the local impulse response of the filter (represented by all algorithms between FFT and inverse FFT) is shorter than the zero padding length. The windowing in both stages of the overlap-add mechanism is shown in Fig. 9 for M=2P (50% overlap).

The total delay between input and output of a real-time system with fragment size P and an overlap-add based linear-phase filter is the window length plus half the zero-padding length, or M+(N-M)/2, plus an additional delay needed for the signal processing plus a delay generated by the AD/DA converters (e.g., anti-aliasing filter delay). In an offline system, the complete input signal is available in advance, and thus the delay of the overlap-add method is determined only by the relative shift between output and input signal, which is (M+N)/2-P (equal to N/2 in case of 50% overlap, i.e. M=2P). Contrary to a real-time system, the delay of an offline system depends on the amount of overlap.

⁶The impulse response of the applied filter can have the length of the zero padding; if the impulse response is longer, later parts of the impulse response will be mapped to the beginning of the fragment (temporal aliasing). Linear phase filters (real gains in the frequency domain) produce symmetric impulse responses and therefore require symmetric zero padding.

Figure 9 Windowing in the overlap-add method with 50% overlap and zero-padding. In the upper panel, the windowed input signal before applying the FFT is schematically plotted. In the lower panel, the same time interval after inverse FFT is shown. The shaded segment is the fragment which is read from the input stream (upper panel) and written to the output stream (lower panel) in one processing cycle. The delay between input and output signal is the length of leading zeros plus the window length.

Figure 10 Windowing in the overlap-add method, as in Fig. 9, but with post-windowing and without zero-padding. In this setup, W^{α} is applied before FFT and $W^{1-\alpha}$ is used for post-windowing. The delay between input and output signal is the window length.

The spectral signal produced by this plugin is subject to the following scaling: The attenuation effect of applying the analysis window is compensated by dividing by the RMS (root mean square) of the window. To account for the zero-padding, which would reduce the RMS of the signal block⁷, the signal is multiplied with $\sqrt{\rm fftlen/wndlen}$. Finally, the forward FFT operation in the MHA will apply a factor $1/\sqrt{\rm fftlen}$ so that the sum of squared magnitudes of the spectral bins produces the correct level in Pascal.

The purpose of the scaling described in the previous paragraph is to enable spectral algorithms to determine the physical level of the signal in the current STFT block without having to apply correction factors for window shape, zero-padding, overlap, FFT length, etc.

15.4.2 Supported domains

The MHA plugin overlapadd supports these signal domains:

· waveform to waveform

15.4.3 Plugin Tags

plugin-arrangement signal-transformation overlap-add

15.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
fftlen	int	FFT length	512
		Range: [1,]	
wnd	parser	window type	(see below)
zerownd	parser	zero padding post window type	(see below)
prescale	float	scaling factor (pre-scaling)	(monitor)
postscale	float	scaling factor (post-scaling)	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

⁷The same sum of squared samples would be divided by fftlen instead of wndlen to compute the mean after zero-padding

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser wnd:

Name	Туре	Description	Default
type	keyword_list	Window type.	hanning
		Range: [rect hanning hamming black-	
		man bartlett user]	
user	vector <float></float>	User provided window (used if window	[]
		type==user).	
len	int	window length/samples	400
		Range: [1,]	
pos	float	window position (0 = beginning, 0.5 =	0.5
		symmetric zero padding, 1 = end)	
		Range: [0,1]	
exp	float	window exponent to be applied to all	1
		elements of window function	

Variables of sub-parser zerownd:

Name	Туре	Description	Default
type	keyword_list	Window type.	rect
		Range: [rect hanning hamming black-man bartlett user]	
user	vector <float></float>	User provided window (used if window	[]
		type==user).	

15.5 resampling

Synchronous resampling plugin.

15.5.1 Detailed description

A bridge type resampling plugin. The signal is converted to target sampling rate and fragment size. The converted signal is processed by the child plugin. The processed signal is then converted back to the original sampling rate and fragment size. The input data is buffered, and the data is processed when enough samples are available.

Please note that double buffering adds an extra delay of the audio stream. If both fragment sizes are identical, the double buffering is bypassed.

15.5.1.1 Warning:

A synchronous resampling ringbuffer such as this causes varying computational loads in the outer processing buffer. It is therefore not real-time safe.

15.5.2 Supported domains

The MHA plugin resampling supports these signal domains:

· waveform to waveform

15.5.3 Plugin Tags

plugin-arrangement signal-transformation

15.5.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
srate	float	sampling rate of client plugin	44100
		Range:]0,]	
fragsize	int	fragment size of client plugin	200
		Range:]0,]	
nyquist_ratio	float	lowpass filter cutoff frequency / lower	0.85
		nyquist frequency	
		Range:]0,]	
irslen_outer2inner	float	filter lenth 1st resampling / sec	0.0007
		Range:]0,]	
irslen_inner2outer	float	filter lenth 2nd resampling / sec	0.0007
		Range:]0,]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

15.6 split 103

15.6 **split**

Split audio signal into channel groups and have them processed by different plugins in parallel

15.6.1 Detailed description

The plugin 'split' takes a multi-channel input signal and splits it into separate chains of groups of channels. After processing of each chain, the output channels of each chain are collected into a multi-channel output signal.

By default, all parallel chains are processed sequentially in a single thread. It is also possible to process the different chains in different processing threads, to exploit parallel execution on multi-core CPUs: Set thread_platform to win32 on MS Windows systems, or to posix on Linux and macOS.

For real-time processing scenarios, it is important to set up the worker threads' schedulers and priorities to a reasonable value so that they neither starve upstream production or downstream consumption of the processed audio, nor get themselves interrupted by non-audio-related tasks on the same system. A reasonable choice is to use the same scheduler and priority as the framework thread that invokes the processing of this plugin. Unfortunately, this cannot be determined automatically and needs to be set through configuration variables <code>worker_thread_scheduler</code> and <code>worker_thread_priority</code>. The corresponding settings of the framework thread can be compared by checking the values of <code>framework_thread_scheduler</code> and <code>framework_thread_priority</code> during processing.

'split' also supports processing all contained chains in parallel to all other signal processing in the MHA by introducing a delay of one audio fragment: In this case, when the split plugin is asked to process an audio fragment, it immediately returns the processed audio fragment from the previous invocation, and simultaneously begins processing the new audio fragment in the worker threads. This mode is activated by setting delay=yes and does not work for the 'dummy' thread_platform. Priorities of the worker threads should be set to slightly less important than the priority of the framework thread.

Thread priorities and schedulers are operating system dependent settings. Check the documentation of your operating system for details on the schedulers and priorities, and compare the relative priorities of all processes and threads on your system against expectations with a suitable tool while openMHA is running.

Plugins loaded by split cannot access algorithm communication (AC) variables created outside of split, nor pass on algorithm communication variables created inside of split to the outside, nor can parallel plugins access each others AC variables. Each of the parallel plugins loaded by split receives an isolated and initially empty AC variable space to avoid synchronization overhead.

15.6.2 Supported domains

The MHA plugin split supports these signal domains:

- · waveform to waveform
- waveform to spectrum
- spectrum to waveform
- · spectrum to spectrum

15.6.3 Plugin Tags

plugin-arrangement audio-channels data-flow

15.6.4 Configuration variables

Name	Туре	Description	Default
algos	vector <string></string>	List of plugins which process the different groups of audio channels. Exactly one plugin per channel group must be given. (Use e.g. [mhachain:chain0 mhachain:chain1] to have more than one processing plugin per group by combining them into a chain.	
channels	vector <int></int>	Number of channels in the respective channel groups to be processed by the corresponding plugins listed in "algos". Range: [0,[
thread_platform	keyword_list	Thread platform to use. "posix" is the native Linux and macOS thread platform, "win32" is the native thread platform on windows, "dummy" means that all processing is performed in a single thread. Range: [posix win32 dummy]	dummy
worker_thread_scheduler	keyword_list	Scheduler used for worker threads. Only used for posix threads. Suggested setting is: The same as present in framework_thread_scheduler during processing. Range: [SCHED_OTHER SCHED_RR SCHED_FIFO]	SCHED_OTHER
worker_thread_priority	int	Priority assigned to worker threads. Suggested setting is: The same as present in framework_thread_priority during processing. The default thread priority given here is invalid. No attempt will be made to set the priority of the threads if this value remains unchanged.	999999999
framework_thread_scheduler	string	Scheduler used by the framework's processing thread. Only valid after first signal processing callback.	(monitor)
framework_thread_priority	int	Priority of the frameworks processing thread. Only valid after first signal processing callback.	(monitor)
delay	bool	activates processing of contained plu- gins outside of the calling processing thread at the cost of one block addi- tional delay	no

16 Plugin category 'signal-generator'

16.1 noise 105

16.1 noise

white noise generator

Waveform and spectral domain are supported. Please note that only in the waveform domain, real continuous white noise is created. In the spectral domain, some modulation and spectral shaping might occur.

16.1.1 Supported domains

The MHA plugin noise supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

16.1.2 Plugin Tags

signal-generator

16.1.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
lev	float	noise RMS level in dB SPL	0
mode	keyword_list	operation mode	add
		Range: [add replace]	
frozennoise_length	float	Length of frozen noise in s, or 0 for run-	0
		ning noise.	
		Range: [0,]	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

16.2 plingploing

plingploing algorithm.

16.2.1 Detailed description

This plugin creates music (jazz-inspired chord sequence).

16.2.2 Supported domains

The MHA plugin plingploing supports these signal domains:

· waveform to waveform

16.2.3 Plugin Tags

signal-generator music

16.2.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
level	float	Output level in dB SPL	70
pitch	float	Bass pitch in Hz	415
		Range: [1,]	
fun1_key	float	minimum interval of second tone rela-	3
		tive to bass, in semitones	
fun1_range	float	randomized interval of second tone,	2
		added to fun1_key, in semitones	
		Range: [0,]	
fun2_key	float	minimum interval of third tone relative	5
		to bass, in semitones	
fun2_range	float	randomized interval of third tone,	2
		added to fun2_key, in semitones	
		Range: [0,]	
bpm	float	beats per minute	200
		Range: [1,]	
minlen	float	minimum note length / beats	1
		Range: [1,]	
maxlen	float	maximum note length / beats	5
		Range: [1,]	
bassmod	float	bass key modulation depth	5
bassperiod	float	bass key modulation period	28

16.3 sine 107

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

16.3 sine

Sine wave generator.

16.3.1 Supported domains

The MHA plugin sine supports these signal domains:

· waveform to waveform

16.3.2 Plugin Tags

signal-generator

16.3.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
lev	float	sine RMS level in dB SPL FF	0
f	float	Frequency in Hz	0
		Range: [0,[
mode	keyword_list	Replace input signal with tone or mix	replace
		tone into input signal	
		Range: [replace mix]	
channels	vector <int></int>	List of audio channels to feed with tone	[]
		(all other audio channels are not af-	
		fected)	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

17 Plugin category 'signal-transformation'

17.1 downsample

Downsampling by integer fractions

17.1.1 Detailed description

This plugin performs downsampling by an integer factor named ratio. The input fragment size needs to be divisible by ratio.

As result of the downsammpling, the output signal has a lower sampling rate (srate) as well as a smaller fragment size (fragsize) with respect to the input signal of the downsample plugin (both are divided by the downsampling factor ratio).

The signal duration (T_{signal}) of the audio blocks processed in each invocation of the process callbacks of openMHAplugins is

$$T_{signal} = \frac{fragsize}{srate} = \frac{fragsize/ratio}{srate/ratio}$$

and is not changed by the downsample plugin. The total number of invocations of the process method is not modified for downstream plugins by the downsampling.

The downsampling is performed by copying only every n-th audio sample of the low-pass filtered input signal over to the output signal. A low-pass filter is required to reduce aliasing in the output signal and can be configured through the antialias configuration setting.

17.1.2 Supported domains

The MHA plugin downsample supports these signal domains:

· waveform to waveform

17.1.3 Plugin Tags

signal-transformation filter

17.1.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
ratio	int	downsampling ratio	3
		Range: [1,]	
antialias	parser	IIR filter structure	(see below)

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser antialias:

Naı	me	Туре	Description	Default
Α		vector <float></float>	recursive filter coefficients	[1]
В		vector <float></float>	non-recursive filter coefficients	[1]

17.2 spec2wave

spectrum to waveform iFFT plugin Performs inverse FFT, postwindowing, hanning ramps at zero-padding, overlap-add, normalization. Note that normalization only works for mod(wndlen,fragsize)=0. Also note that postwindowing only works for wndpos=0.5. Alway set ramplen=0 here if wndpos!=0 in the corresponding wave2spec.

17.2.1 Detailed description

This plugin calculates the inverse FFT and overlap add resynthesis. The parameters are taken from the framework overlap add parameters. After the inverse Fourier transform, hanning window ramps are applied to the previously zero-padded regions.

17.2.2 Supported domains

The MHA plugin spec2wave supports these signal domains:

· spectrum to waveform

17.2.3 Plugin Tags

signal-transformation overlap-add

17.2.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
ramplen	float	Relative length of post windowing han- ning ramps (for centered analysis win- dow)	1
		Range: [0,1]	
wndtype	keyword_list	window type Range: [rect bartlett hanning hamming blackman user]	rect
wndexp	float	window exponent to be applied to all elements of window function	1
userwnd	vector <float></float>	user provided window	[]

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

17.3 upsample

Upsampling by integer fractions

17.3.1 Detailed description

This plugin performs upsampling by an integer factor named ratio.

As result of the upsampling, the output signal has a higher sampling rate (srate) as well as a larger fragment size (fragsize) with respect to the input signal of the upsample plugin (both are multiplied by the upsampling factor ratio).

The signal duration (T_{signal}) of the audio blocks processed in each invocation of the process callbacks of openMHAplugins

$$T_{signal} = \frac{fragsize}{srate} = \frac{fragsize \cdot ratio}{srate \cdot ratio}$$

is not changed by the <code>upsample</code> plugin so that the total number of invocations of the process method is not modified for downstream plugins by the upsampling.

The upsampling is performed by spreading consecutive input audio samples to only every n-th sample of the output signal while setting the output samples in between consecutive input samples to value 0. A low-pass filter is required to reduce aliasing in the output signal and can be configured through the antialias configuration setting.

17.3.2 Supported domains

The MHA plugin upsample supports these signal domains:

· waveform to waveform

17.3.3 Plugin Tags

signal-transformation filter

17.3.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
ratio	int	upsampling ratio	3
		Range: [1,]	
antialias	parser	IIR filter structure	(see below)

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser antialias:

Name	Type	Description	Default
Α	vector <float></float>	recursive filter coefficients	[1]
В	vector <float></float>	non-recursive filter coefficients	[1]

17.4 wave2spec

Waveform to spectrum overlap add and FFT method.

Audio data is collected up to wndlen, then windowed by the given window function, zero padded up to fftlen (symmetric zero padding or asymmetric zero padding possible), and fast-Fourier-transformed.

17.4.1 Detailed description

The plugin 'wave2spec' transforms time-domain waveform signal to short-time Fourier transform (STFT) signal. It can be used as the analysis part of a complete overlap-add procedure. Audio signal data is collected up to the length of the analysis window. The hop-size is equal to the audio block size that this plugin receives. Window size and FFT length are configurable through the configuration variables.

Several pre-defined window shapes as well as user-defined window shapes are supported. In addition, a configurable exponent can be applied to the window samples.

During processing, the input data samples are multiplied with the samples of the analysis window, zero padded to the FFT length, and Fourier transformed. For this reason, the short time fourier transform does not exactly correspond to the current input waveform block: the analysis window contains samples from the current as well as from previous invocation(s). The absolute window shift is identical to the fragment size, e.g. to achieve a window shift of 50%, configure a fragment size of wndlen/2.

A copy of the output spectrum is stored in the AC space in a variable of same name as the configured plugin name. To access the spectrum in AC space, the function $MHA_AC::get_var_spectrum()$ can be used. See the openMHA developer manual or the header file $mha_algo_comm.h$ for details.

See section 15.4 for a description of the overlap-add method that is also followed by this plugin.

Example configurations for the wave2spec plugin are available in the short-time-fourier-transform examples directory, and in the matlab/octave tests exercising this plugin in the mhatest directory. These test files are executed together with the other system-level tests when invoking make test. Please note that you need to have the signal processing package installed in order to sucessfully execute all tests for this plugin.⁸

The plugin performs the following scaling of the signal: The effect on the level of applying the analysis window to the input signal is compensated by dividing by the RMS (root mean square) of the window. To account for the zero-padding, which would reduce the RMS of the signal block⁹, the signal is multiplied with $\sqrt{\rm fftlen/wndlen}$. Finally, the forward FFT operation in the MHA will apply a factor $1/\sqrt{\rm fftlen}$ so that algorithms that compute signal level do not have to know the fftlen, but can simply sum squared magnitudes of the STFT bins to compute the RMS of the current block in Pascal.

The purpose of the scaling described in the previous paragraph is to enable spectral algorithms to determine the physical level of the signal in the current STFT block without having to apply correction factors for window shape, zero-padding, overlap, FFT length, etc.

17.4.2 Supported domains

The MHA plugin wave2spec supports these signal domains:

- · waveform to waveform
- · waveform to spectrum

 $^{^8}$ In octave, the package can be installed with <code>pkg install -forge control signal from within octave.</code>

⁹The same sum of squared samples would be divided by fftlen instead of wndlen to compute the mean after zero-padding

17.4.3 Plugin Tags

signal-transformation overlap-add

17.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
fftlen	int	FFT lengths	512
		Range: [1,]	
wndlen	int	window length/samples	400
		Range: [1,]	
wndpos	float	window position (0 = beginning, 0.5 =	0.5
		symmetric zero padding, 1 = end)	
		Range: [0,1]	
wndtype	keyword_list	window type	hanning
		Range: [rect bartlett hanning hamming	
		blackman user]	
wndexp	float	window exponent to be applied to all	1
		elements of window function	
userwnd	vector <float></float>	user provided window	[]
return_wave	bool	return input waveform signal, store	no
		spectrum only to AC	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

18 Plugin category 'spatial'

18.1 adm

Adaptive differential microphone

18.1 adm 115

18.1.1 Detailed description

This plugin implements one or more adaptive first-order differential microphones, each based on the output of two omnidirectional microphones, e.g. two hearing-aid microphones (cf. Elko & Nguyen Pong, 1995). This is achieved by first subtracting the outputs of the two omnidirectional microphones with fixed delays to create a forward-facing and a backward-facing cardioid microphone, respectively; then, in a second step, the signal from the backward-facing cardioid is amplified by a variable gain factor and subtracted from the signal from the forward-facing cardioid. Finally, a lowpass filter and a filter compensating for comb-filter effect is applied to the output signal.

The gain factor, beta, is determined adaptively such that the power of the output signal is minimized, under the constraint that the null of the ADM is located in the rear half-plane. The adaptation step size, mu_beta, can be chosen in order to find the optimal combination of adaptation speed and accuracy.

Figure 11 Output signals illustrating convergence of the ADM algorithm for three different values of mu_beta (input signal: white Gaussian noise exactly from behind)

18.1.2 Supported domains

The MHA plugin adm supports these signal domains:

· waveform to waveform

18.1.3 Plugin Tags

spatial signal-enhancement beamformer adaptive

18.1.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
front_channels	vector <int></int>	Channel indices for front microphones Range: [0,[[0 1]
rear_channels	vector <int></int>	Channel indices for rear microphones Range: [0,[[2 3]
distances	vector <float></float>	Distance between front and rear microphones Range: [0.0008,0.08]	[0.0108 0.0108]
lp_order	int	Filter order of FIR lowpass filter Range: [46,128]	46
decomb_order	int	Filter order of FIR comb compensation filter Range: [46,128]	54
bypass	int	If 1, output front microphones directly; if 2, output rear microphones directly Range: [0,2]	0
beta	float	Explicit fixed beta (-1 for adaptive filtering)	-1
mu_beta	vector <float></float>	Adaptation step size for each set of ADMs (e.g. left and right) Range: [0,]	[0.0001 0.0001]
tau_beta	vector <float></float>	time constant / s of low pass filter for averaging power of output signal (used for adaptation) Range: [0,]	[0.05 0.05]
coeff_lp	vector <float></float>	Lowpass coefficients	(monitor)
coeff_decomb	vector <float></float>	Decomb coefficients	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

18.2 coherence

Coherence filter

18.2 coherence 117

18.2.1	Supported domains
The M	HA plugin coherence supports these signal domains:
• s	pectrum to spectrum
18.2.2	Plugin Tags
spatial	signal-enhancement dereverberation adaptive

18.2.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
unit	keyword_list	Frequency unit	Hz
		Range: [Hz kHz Oct Oct/3 Bark Erb	
		ERB_Glasberg1990]	
f	vector <float></float>	Frequencies	[]
f_hz	vector <float></float>	Frequencies in Hz	(monitor)
fscale	keyword_list	frequency scale of filter bank	linear
		Range: [linear bark log erb ERB_Glasberg1990]	
ovltype	keyword_list	filter overlap type	rect
		Range: [rect linear hanning exp gauss]	
plateau	float	relative plateau width	0
		Range: [0,1[
ftype	keyword_list	frequency entry type	center
		Range: [center edge]	
normalize	bool	normalize broadband output amplitude	no
fail_on_nonmonotonic	bool	Fail if frequency entries are non-	yes
		monotonic (otherwise sort)	
fail_on_unique_bins	bool	Fail if center frequencies share the	yes
		same FFT bin.	
cf	vector <float></float>	final center frequencies in Hz	(monitor)
ef	vector <float></float>	final edge frequencies in Hz	(monitor)
cLTASS	vector <float></float>	Bandwidth level correction for LTASS	(monitor)
		noise in dB	
shapes	matrix <float></float>	Frequency band shapes	(monitor)
tau_unit	keyword_list	tau unit	seconds
		Range: [seconds periods]	
tau	vector <float></float>	Averaging time constant Range: [0,]	[0.04]
alpha	vector <float></float>	Gain exponent	[1]
		Range: [0,]	
limit	float	gain limit / dB (zero: no limit)	0
		Range: [,0]	
mapping	vector <float></float>	mapping interval of coherence estima-	[0 1]
		tor to coherence (min max)	
		Range: [0,1]	
average	keyword_list	average mode	ipd
		Range: [ipd spec]	
invert	bool	Invert filter after mapping, before expo-	no
li	I to a set	nent.	
Itgcomp	bool	Long term gain compensation?	no
Itgtau	vector <float></float>	Long term gain estimation time con-	[1]
		stant / s	
atationais	vootor effects	Range: [0,]	[0]
staticgain	vector <float></float>	Static gain in frequency bands / dB	[0]
delay	int	Delay between analysis and filter (de-	0
		lay of gains), in fragments. Range: [0,]	
		nange. [0,]	

 $\label{lem:variables} \textbf{Variables of sub-parser } \texttt{mhaconfig_in:}$

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or MHA_SPECTRUM)	(monitor)
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

18.3 delaysum_wave

delay and sum plugin. Mixes all channels into a single output channel after applying channel-specific weights and delays.

18.3.1 Detailed description

This plugin allows to delay and sum multiple input channels using individual delays and weights. After each channel is delayed it is multiplied with the given weight and then added to the single output channel. This plugin was formerly known as delaysum.

18.3.2 Supported domains

The MHA plugin delaysum_wave supports these signal domains:

· waveform to waveform

18.3.3 Plugin Tags

spatial beamformer

18.3.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
weights	vector <float></float>	weights of channels. Each entry is multiplied to its respective channel. Needs one entry per channel.	[1 1]
delay	vector <int></int>	delay in number of frames. The nth channel is delayed by the number of frames found in the nth entry. Range: [0,]	[0 0]

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

18.4 doasym_classification

Support vector machine (SVM) plugin for computing the direction of arrival (DOA) probabilities

18.4.1 Detailed description

This plugin loads the parameters of a pre-trained SVM and computes the probabilities for given range of directions of arrival (DOA). These probabilities take a value within the interval of [0,1]. Higher probability for a certain DOA indicates higher possibility of a source coming from that particular DOA.

18.4.2 Supported domains

The MHA plugin doasvm_classification supports these signal domains:

· waveform to waveform

18.4.3 Plugin Tags

spatial classifier binaural

18.4.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
angles	vector <float></float>	The angles for which the SVM model	[]
		has been trained	
W	matrix <float></float>	The separation planes of the model.	[[]]
b	vector <float></float>	The model bias.	[]
Х	vector <float></float>	The sigmoid probability mapping pa-	[]
		rameter x.	
у	vector <float></float>	The sigmoid probability mapping pa-	[]
		rameter y.	
p_name	string	The name of the AC variable for the	р
		vector of probabilities of the DOA es-	
		timation.	
max_p_ind_name	string	The name of the AC variable for the in-	p_max
		dex of the maximum probability of the	
		DOA estimation	
vGCC_name	string	The name of the AC variable for the	vGCC_ac
		GCC matrix, which is computed by an-	
		other plugin	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser mhaconfig_out:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

18.5 doasym_feature_extraction

Plugin for computing the generalized cross correlation with phase transform (GCC-PHAT)

18.5.1 Detailed description

This plugin computes the generalized cross correlation with phase transform (GCC-PHAT). The input to this plugin is a stereo time domain signal. The GCC-PHAT matrix is saved into the AC space.

18.5.2 Supported domains

The MHA plugin doasvm_feature_extraction supports these signal domains:

· waveform to waveform

18.5.3 Plugin Tags

spatial feature-extraction binaural

18.5.4 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
fftlen	int	The length of the FFT window	160
		Range: [0,[
max_lag	int	Maximum lag in samples between mi-	20
		crophones (setup-dependent)	
		Range: [0,[
nupsample	int	The amount the GCC-PHAT spectrum	4
		is oversampled	
		Range: [0,[
vGCC_name	string	The name of the AC variable for saving	vGCC_ac
		the GCC matrix in	

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

19 Plugin category 'test-tool'

19.1 cpuload

cpu load generator. CPU load is proportional to number of channels, number of frames, and factor

19.1.1 Supported domains

The MHA plugin cpuload supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

19.1.2 Plugin Tags

test-tool

19.1.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
factor	float	cpu load factor. Values > 1 increase cpu load, values < 1 decrease it Range: [0,]	1
use_sine	bool	Whether to use the sine function. If not, table interpolation will be used	yes

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

19.2 droptect

Plugin detects dropouts in channels that have a constant spectrum

19.2.1 Supported domains

The MHA plugin droptect supports these signal domains:

· spectrum to spectrum

19.2.2 Plugin Tags

test-tool

19.2.3 Configuration variables

Name	Туре	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
dropouts	vector <int></int>	Number of dropouts detected since last reset or start	(monitor)
consecutive_dropouts	vector <int></int>	Number of consecutive dropouts	(monitor)
blocks	int	Number of blocks processed since last reset or start	(monitor)
reset	bool	Setting to yes clears number of dropouts and blocks	no
threshold	float	Threshold level in dB. All blocks below this threshold are considered to be dropouts	50
tau	float	Time constant for filtering power spectra	0.2
filtered_powspec_mon	matrix <float></float>	Floating average of power spectrum	(monitor)
level_mon	float	current level	(monitor)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

19.3 identity 125

19.3 identity

19.3.1 Detailed description

The simplest openMHA plugin.

This plugin does not modify the signal.

19.3.2 Supported domains

The MHA plugin identity supports these signal domains:

- · waveform to waveform
- · spectrum to spectrum

19.3.3 Plugin Tags

test-tool

19.3.4 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)

Variables of sub-parser mhaconfig_in:

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

19.4 testplugin

loads a plugin for testing

19.4.1 Supported domains

The MHA plugin testplugin supports these signal domains:

- · waveform to waveform
- spectrum to spectrum

19.4.2 Plugin Tags

test-tool feature-extraction

19.4.3 Configuration variables

Name	Type	Description	Default
mhaconfig_in	parser	Input configuration	(see below)
mhaconfig_out	parser	Output configuration	(see below)
plugin_name	string	Plugin name	
config_in	parser	signal domain and dimensions	(see below)
config_out	parser	signal domain and dimensions	(see below)
ac	parser	Insert and retrieve AC variables	(see below)
signal	parser	signal input and output	(see below)
prepare	bool	for preparing/releasing the loaded plu-	no
		gin	

Variables of sub-parser mhaconfig_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Name	Type	Description	Default
channels	int	Number of audio channels	(monitor)
domain	string	Signal domain (MHA_WAVEFORM or	(monitor)
		MHA_SPECTRUM)	
fragsize	int	Fragment size of waveform data	(monitor)
wndlen	int	Window length of spectral data	(monitor)
fftlen	int	FFT length of spectral data	(monitor)
srate	float	Sampling rate in Hz	(monitor)

Variables of sub-parser config_in:

Name	Туре	Description	Default
channels	int	Number of audio channels	2
		Range: [0,]	
domain	keyword_list	Signal domain	MHA_WAVEFORM
		Range: [MHA_WAVEFORM	
		MHA_SPECTRUM]	
fragsize	int	Fragment size of waveform data	200
		Range: [0,]	
wndlen	int	Window length of spectral data	400
		Range: [0,]	
fftlen	int	FFT length of spectral data	512
		Range: [0,]	
srate	float	Sampling rate in Hz	44100
		Range:]0,]	

Variables of sub-parser config_out:

Name	Туре	Description	Default
channels	int	Number of audio channels	2
		Range: [0,]	
domain	keyword_list	Signal domain	MHA_WAVEFORM
		Range: [MHA_WAVEFORM	
		MHA_SPECTRUM]	
fragsize	int	Fragment size of waveform data	200
		Range: [0,]	
wndlen	int	Window length of spectral data	400
		Range: [0,]	
fftlen	int	FFT length of spectral data	512
		Range: [0,]	
srate	float	Sampling rate in Hz	44100
		Range:]0,]	

Variables of sub-parser ac:

Name	Type	Description	Default
insert_var	string	Setting this inserts an AC variable into the AC space	
get_var	string	Setting this retrieves an AC variable from the AC space	
data_type	keyword_list	Type of data. No support for MHA_AC_USER and MHA_AC_DOUBLE data access Range: [MHA_AC_CHAR MHA_AC_INT MHA_AC_MHAREAL MHA_AC_FLOAT MHA_AC_DOUBLE MHA_AC_MHACOMPLEX unknown]	unknown
num_entries	int	Number of entries Range: [0,]	1
stride	int	length of one row (C interpretation) or of one column (Fortran interpretation) Range: [0,]	1
char_data	string	data of ac variable if data_type is MHA_AC_CHAR	
int_data	vector <int></int>	data of ac variable if data_type is MHA_AC_INT	[]
float_data	vector <float></float>	data of ac variable if data_type is MHA_AC_FLOAT or MHA_AC_MHAREAL	
complex_data	vector <complex></complex>	data of ac variable if data_type is MHA_AC_MHACOMPLEX	[]

Variables of sub-parser signal:

Name	Туре	Description	Default
input_wave	matrix <float></float>	waveform input signal. Writing data will	[[]]
		cause processing	
input_spec	matrix <complex></complex>	spectrum input signal. Writing data will	[[]]
		cause processing	
output_wave	matrix <float></float>	waveform output signal from last pro-	(monitor)
		cessing	
output_spec	matrix <complex></complex>	spectrum output signal from last pro-	(monitor)
		cessing	

20 All plugins tagged 'adaptive'

• acSteer: Section 5.1 on page 38

adm: Section 18.1 on page 114

• coherence: Section 18.2 on page 116

• Ipc: Section 7.3 on page 54

• Ipc_bl_predictor: Section 7.4 on page 55

• *lpc_burg-lattice*: Section 7.5 on page 57

• nlms_wave: Section 7.6 on page 58

noise_psd_estimator: Section 14.1 on page 89

• prediction_error: Section 7.7 on page 60

• smooth_cepstrum: Section 14.2 on page 90

21 All plugins tagged 'algorithm-communication'

- ac2wave: Section 4.1 on page 16
- acConcat_wave: Section 4.2 on page 17
- acPooling_wave: Section 4.3 on page 19
- ac_proc: Section 4.4 on page 23
- analysispath: Section 15.2 on page 94
- example6: Section 6.6 on page 50
- route: Section 4.11 on page 32
- save_spec: Section 4.12 on page 33
- save_wave: Section 4.13 on page 34

22 All plugins tagged 'audio-channels'

- combinechannels: Section 4.5 on page 24
- delay: Section 4.7 on page 27
- example1: Section 6.1 on page 45
- example2: Section 6.2 on page 46
- example3: Section 6.3 on page 47
- example4: Section 6.4 on page 48
- example5: Section 6.5 on page 49
- fader_spec: Section 4.8 on page 28
- fader_wave: Section 4.9 on page 29
- matrixmixer: Section 4.10 on page 30
- route: Section 4.11 on page 32
- split: Section 15.6 on page 103
- steerbf: Section 8.4 on page 67

23 All plugins tagged 'beamformer'

- acSteer: Section 5.1 on page 38
- adm: Section 18.1 on page 114
- delaysum_wave: Section 18.3 on page 119
- steerbf: Section 8.4 on page 67

24 All plugins tagged 'beamforming'

```
• delaysum_spec: Section 1.1 on page 1
```

25 All plugins tagged 'binaural'

```
• acSteer: Section 5.1 on page 38
```

- doasym_classification: Section 18.4 on page 120
- doasvm_feature_extraction: Section 18.5 on page 121
- steerbf: Section 8.4 on page 67

26 All plugins tagged 'calibration'

• transducers: Section 8.5 on page 69

27 All plugins tagged 'classifier'

doasym classification: Section 18.4 on page 120

28 All plugins tagged 'compression'

```
    dc: Section 2.1 on page 2
```

- dc_simple: Section 2.2 on page 6
- levelmeter: Section 10.1 on page 82
- multibandcompressor: Section 9.4 on page 80
- softclip: Section 2.3 on page 9

29 All plugins tagged 'cross-fade'

- fader_spec: Section 4.8 on page 28
- fader_wave: Section 4.9 on page 29

30 All plugins tagged 'data-export'

```
ac2lsl: Section 3.1 on page 10
ac2osc: Section 3.2 on page 11
acmon: Section 3.3 on page 12
acsave: Section 3.4 on page 13
wavrec: Section 3.5 on page 15
```

31 All plugins tagged 'data-flow'

```
    ac2wave: Section 4.1 on page 16

    acConcat_wave: Section 4.2 on page 17

    acPooling_wave: Section 4.3 on page 19

• ac_proc: Section 4.4 on page 23
• altplugs: Section 15.1 on page 93
• analysispath: Section 15.2 on page 94

    combinechannels: Section 4.5 on page 24

• db: Section 4.6 on page 25

    delay: Section 4.7 on page 27

• fader spec: Section 4.8 on page 28
• fader_wave: Section 4.9 on page 29

    matrixmixer: Section 4.10 on page 30

    mhachain: Section 15.3 on page 96

    route: Section 4.11 on page 32

• save_spec: Section 4.12 on page 33
• save_wave: Section 4.13 on page 34

    shadowfilter_begin: Section 4.14 on page 35

    shadowfilter_end: Section 4.15 on page 36
```

smoothgains_bridge: Section 12.2 on page 85

split: Section 15.6 on page 103

32 All plugins tagged 'data-import'

```
    acSteer: Section 5.1 on page 38
```

addsndfile: Section 5.2 on page 39

• osc2ac: Section 5.3 on page 43

33 All plugins tagged 'dereverberation'

coherence: Section 18.2 on page 116

34 All plugins tagged 'directional'

delaysum_spec: Section 1.1 on page 1

35 All plugins tagged 'disk-files'

```
• acSteer: Section 5.1 on page 38
```

• acsave: Section 3.4 on page 13

• addsndfile: Section 5.2 on page 39

• wavrec: Section 3.5 on page 15

36 All plugins tagged 'example'

```
• example1: Section 6.1 on page 45
```

• example2: Section 6.2 on page 46

• example3: Section 6.3 on page 47

• example4: Section 6.4 on page 48

• example5: Section 6.5 on page 49

• example6: Section 6.6 on page 50

37 All plugins tagged 'feature-extraction'

- acPooling_wave: Section 4.3 on page 19
- ac_proc: Section 4.4 on page 23
- doasvm_feature_extraction: Section 18.5 on page 121
- example6: Section 6.6 on page 50
- fftfbpow: Section 9.1 on page 73
- multibandcompressor: Section 9.4 on page 80
- noise_psd_estimator: Section 14.1 on page 89
- rmslevel: Section 11.1 on page 83
- shadowfilter_begin: Section 4.14 on page 35
- shadowfilter_end: Section 4.15 on page 36
- testplugin: Section 19.4 on page 126

38 All plugins tagged 'feedback-suppression'

- fshift: Section 7.1 on page 51
- fshift_hilbert: Section 7.2 on page 52
- Ipc: Section 7.3 on page 54
- **lpc bl predictor**: Section 7.4 on page 55
- **lpc_burg-lattice**: Section 7.5 on page 57
- nlms_wave: Section 7.6 on page 58
- prediction_error: Section 7.7 on page 60

39 All plugins tagged 'filter'

- downsample: Section 17.1 on page 108
- fftfilter: Section 8.1 on page 64
- iirfilter: Section 8.2 on page 65
- mconv: Section 8.3 on page 66
- shadowfilter_begin: Section 4.14 on page 35
- shadowfilter_end: Section 4.15 on page 36

- smoothgains_bridge: Section 12.2 on page 85
- steerbf: Section 8.4 on page 67
- transducers: Section 8.5 on page 69
- upsample: Section 17.3 on page 111

40 All plugins tagged 'filterbank'

- combinechannels: Section 4.5 on page 24
- fftfbpow: Section 9.1 on page 73
- fftfilterbank: Section 9.2 on page 75
- gtfb_analyzer: Section 9.3 on page 78
- multibandcompressor: Section 9.4 on page 80

41 All plugins tagged 'frequency-modification'

- fshift: Section 7.1 on page 51
- fshift_hilbert: Section 7.2 on page 52

42 All plugins tagged 'lab-streaming-layer'

• ac2lsl: Section 3.1 on page 10

43 All plugins tagged 'level'

• levelmeter: Section 10.1 on page 82

44 All plugins tagged 'level-meter'

- fftfbpow: Section 9.1 on page 73
- multibandcompressor: Section 9.4 on page 80
- rmslevel: Section 11.1 on page 83
- transducers: Section 8.5 on page 69

45 All plugins tagged 'level-modification'

```
    dc: Section 2.1 on page 2
```

- dc_simple: Section 2.2 on page 6
- example1: Section 6.1 on page 45
- example2: Section 6.2 on page 46
- example3: Section 6.3 on page 47
- example4: Section 6.4 on page 48
- example5: Section 6.5 on page 49
- fader_spec: Section 4.8 on page 28
- fader_wave: Section 4.9 on page 29
- gain: Section 12.1 on page 84
- multibandcompressor: Section 9.4 on page 80
- smoothgains_bridge: Section 12.2 on page 85
- softclip: Section 2.3 on page 9

46 All plugins tagged 'limiter'

- softclip: Section 2.3 on page 9
- transducers: Section 8.5 on page 69

47 All plugins tagged 'linear-algebra'

acTransform_wave: Section 13.1 on page 87

48 All plugins tagged 'math'

acTransform_wave: Section 13.1 on page 87

49 All plugins tagged 'multichannel'

delaysum_spec: Section 1.1 on page 1

50 All plugins tagged 'music'

```
• plingploing: Section 16.2 on page 106
```

51 All plugins tagged 'network-communication'

```
    ac2lsl: Section 3.1 on page 10
```

```
• ac2osc: Section 3.2 on page 11
```

- acmon: Section 3.3 on page 12
- osc2ac: Section 5.3 on page 43

52 All plugins tagged 'noise-suppression'

```
    noise_psd_estimator: Section 14.1 on page 89
```

smooth_cepstrum: Section 14.2 on page 90

53 All plugins tagged 'open-sound-control'

```
• ac2osc: Section 3.2 on page 11
```

• osc2ac: Section 5.3 on page 43

54 All plugins tagged 'overlap-add'

```
    overlapadd: Section 15.4 on page 98
```

• smoothgains bridge: Section 12.2 on page 85

• spec2wave: Section 17.2 on page 110

wave2spec: Section 17.4 on page 112

55 All plugins tagged 'plugin-arrangement'

```
• altplugs: Section 15.1 on page 93
```

analysispath: Section 15.2 on page 94

• mhachain: Section 15.3 on page 96

• overlapadd: Section 15.4 on page 98

resampling: Section 15.5 on page 101

• split: Section 15.6 on page 103

56 All plugins tagged 'signal-enhancement'

```
    adm: Section 18.1 on page 114
```

coherence: Section 18.2 on page 116

smooth_cepstrum: Section 14.2 on page 90

57 All plugins tagged 'signal-generator'

```
• addsndfile: Section 5.2 on page 39
```

noise: Section 16.1 on page 105

plingploing: Section 16.2 on page 106

• sine: Section 16.3 on page 107

58 All plugins tagged 'signal-transformation'

```
    db: Section 4.6 on page 25
```

delay: Section 4.7 on page 27

downsample: Section 17.1 on page 108

overlapadd: Section 15.4 on page 98

resampling: Section 15.5 on page 101

• spec2wave: Section 17.2 on page 110

• upsample: Section 17.3 on page 111

wave2spec: Section 17.4 on page 112

138 REFERENCES

59 All plugins tagged 'spatial'

```
• adm: Section 18.1 on page 114
```

• coherence: Section 18.2 on page 116

• delaysum_wave: Section 18.3 on page 119

• doasvm_classification: Section 18.4 on page 120

• doasym_feature_extraction: Section 18.5 on page 121

• steerbf: Section 8.4 on page 67

60 All plugins tagged 'test-tool'

```
• cpuload: Section 19.1 on page 123
```

• droptect: Section 19.2 on page 124

• identity: Section 19.3 on page 125

• testplugin: Section 19.4 on page 126

References

Index

ac2lsl (MHA plugin), 10	steerbf, 67
ac2osc (MHA plugin), 11	haamfarmar (plugin aatagaru)
ac2wave (MHA plugin), 16	beamformer (plugin category)
ac_proc (MHA plugin), 23	acSteer, 38
acConcat_wave (MHA plugin), 17	adm, 114
acmon (MHA plugin), 12	delaysum_wave, 119
acPooling_wave (MHA plugin), 19	steerbf, 67
acsave (MHA plugin), 13	beamforming (plugin category)
acSteer (MHA plugin), 38	delaysum_spec, 1
acTransform_wave (MHA plugin), 87	binaural (plugin category)
adaptive (plugin category)	acSteer, 38
acSteer, 38	doasvm_classification, 120
adm, 114	doasvm_feature_extraction, 121
coherence, 116	steerbf, 67
lpc, 54	
lpc_bl_predictor, 55	calibration (plugin category)
lpc_burg-lattice, 57	transducers, 69
nlms_wave, 58	classifier (plugin category)
noise_psd_estimator, 89	doasvm_classification, 120
prediction error, 60	coherence (MHA plugin), 116
smooth_cepstrum, 90	combinechannels (MHA plugin), 24
addsndfile (MHA plugin), 39	compression (plugin category)
adm (MHA plugin), 114	dc, 2
algorithm-communication (plugin category)	dc_simple, 6
ac2wave, 16	levelmeter, 82
•	multibandcompressor, 80
ac_proc, 23	softclip, 9
acConcat_wave, 17	cpuload (MHA plugin), 123
acPooling_wave, 19	cross-fade (plugin category)
analysispath, 94	fader_spec, 28
example6, 50	fader_wave, 29
route, 32	
save_spec, 33	data-export (plugin category)
save_wave, 34	ac2lsl, 10
altplugs (MHA plugin), 93	ac2osc, 11
analysispath (MHA plugin), 94	acmon, 12
audio-channels (plugin category)	acsave, 13
combinechannels, 24	wavrec, 15
delay, <mark>27</mark>	data-flow (plugin category)
example1, 45	ac2wave, 16
example2, 46	ac_proc, 23
example3, 47	acConcat_wave, 17
example4, 48	acPooling_wave, 19
example5, 49	altplugs, 93
fader_spec, 28	analysispath, 94
fader_wave, 29	combinechannels, 24
matrixmixer, 30	db, 25
route, 32	delay, 27
split, 103	fader_spec, 28

140 INDEX

fader_wave, 29	acPooling_wave, 19
matrixmixer, 30	doasym_feature_extraction, 121
mhachain, 96	example6, 50
route, 32	fftfbpow, 73
save_spec, 33	multibandcompressor, 80
save_wave, 34	noise_psd_estimator, 89
shadowfilter_begin, 35	rmslevel, 83
shadowfilter_end, 36	shadowfilter_begin, 35
smoothgains_bridge, 85	shadowfilter_end, 36
split, 103	testplugin, 126
data-import (plugin category)	feedback-suppression (plugin category)
acSteer, 38	fshift, 51
addsndfile, 39	fshift_hilbert, 52
osc2ac, 43	lpc, 54
db (MHA plugin), 25	lpc_bl_predictor, 55
dc (MHA plugin), 2	lpc_burg-lattice, 57
dc_simple (MHA plugin), 6	nlms_wave, 58
delay (MHA plugin), 27	prediction_error, 60
delaysum_spec (MHA plugin), 1	fftfbpow (MHA plugin), 73
delaysum_wave (MHA plugin), 119	fftfilter (MHA plugin), 64
dereverberation (plugin category)	fftfilterbank (MHA plugin), 75
coherence, 116	filter (plugin category)
directional (plugin category)	downsample, 108
delaysum_spec, 1	fftfilter, 64
disk-files (plugin category)	iirfilter, 65
acsave, 13	mconv, 66
acSteer, 38	shadowfilter_begin, 35
addsndfile, 39	shadowfilter_end, 36
wavrec, 15	smoothgains_bridge, 85
doasvm_classification (MHA plugin), 120	steerbf, 67
doasvm_feature_extraction (MHA plugin), 121	transducers, 69
downsample (MHA plugin), 108	upsample, 111
droptect (MHA plugin), 124	filterbank (plugin category)
	combinechannels, 24
example (plugin category)	fftfbpow, 73
example1, 45	fftfilterbank, 75
example2, 46	gtfb_analyzer, 78
example3, 47	multibandcompressor, 80
example4, 48	frequency-modification (plugin category)
example5, 49	fshift, 51
example6, 50	fshift_hilbert, 52
example1 (MHA plugin), 45	fshift (MHA plugin), 51
example2 (MHA plugin), 46	fshift_hilbert (MHA plugin), 52
example3 (MHA plugin), 47	
example4 (MHA plugin), 48	gain (MHA plugin), 84
example5 (MHA plugin), 49	gtfb_analyzer (MHA plugin), 78
example6 (MHA plugin), 50	
fador spoc (MHA plugip) 29	identity (MHA plugin), 125
fader_spec (MHA plugin), 28	iirfilter (MHA plugin), 65
fader_wave (MHA plugin), 29 feature-extraction (plugin category)	lah-etreaming-lavor (plugip estegory)
ac_proc, 23	lab-streaming-layer (plugin category) ac2lsl, 10
αυ_μισυ, 20	auzioi, iu

INDEX 141

level (plugin category) levelmeter, 82	noise_psd_estimator (MHA plugin), 89
level-meter (plugin category)	open-sound-control (plugin category) ac2osc, 11
fftfbpow, 73	osc2ac, 43
multibandcompressor, 80	osc2ac, 43 osc2ac (MHA plugin), 43
rmslevel, 83	
transducers, 69	overlap-add (plugin category)
level-modification (plugin category)	overlapadd, 98
dc, 2	smoothgains_bridge, 85
dc_simple, 6	spec2wave, 110
example1, 45	wave2spec, 112
example2, 46	overlapadd (MHA plugin), 98
example3, 47	
example4, 48	plingploing (MHA plugin), 106
example5, 49	plugin
fader_spec, 28	ac2lsl, 10
fader_wave, 29	ac2osc, 11
gain, 84	ac2wave, 16
multibandcompressor, 80	ac_proc, 23
smoothgains_bridge, 85	acConcat_wave, 17
softclip, 9	acmon, 12
levelmeter (MHA plugin), 82	acPooling_wave, 19
	acsave, 13
limiter (plugin category)	acSteer, 38
softclip, 9	acTransform_wave, 87
transducers, 69	addsndfile, 39
linear-algebra (plugin category)	adm, 114
acTransform_wave, 87	altplugs, 93
lpc (MHA plugin), 54	analysispath, 94
lpc_bl_predictor (MHA plugin), 55	coherence, 116
lpc_burg-lattice (MHA plugin), 57	combinechannels, 24
	cpuload, 123
math (plugin category)	•
acTransform_wave, 87	db, 25
matrixmixer (MHA plugin), 30	dc, 2
mconv (MHA plugin), 66	dc_simple, 6
mhachain (MHA plugin), 96	delay, 27
multibandcompressor (MHA plugin), 80	delaysum_spec, 1
multichannel (plugin category)	delaysum_wave, 119
delaysum_spec, 1	doasvm_classification, 120
music (plugin category)	doasvm_feature_extraction, 121
plingploing, 106	downsample, 108
	droptect, 124
network-communication (plugin category)	example1, 45
ac2lsl, 10	example2, 46
ac2osc, 11	example3, 47
acmon, 12	example4, 48
osc2ac, 43	example5, 49
nlms_wave (MHA plugin), 58	example6, 50
noise (MHA plugin), 105	fader_spec, 28
noise-suppression (plugin category)	fader_wave, 29
noise_psd_estimator, 89	fftfbpow, 73
smooth_cepstrum, 90	fftfilter, 64
zoonooponom, oo	

142 INDEX

fftfilterbank, 75	route (MHA plugin), 32
fshift, 51	(1414 1 1) 00
fshift_hilbert, 52	save_spec (MHA plugin), 33
gain, 84	save_wave (MHA plugin), 34
gtfb_analyzer, 78	shadowfilter_begin (MHA plugin), 35
identity, 125	shadowfilter_end (MHA plugin), 36
iirfilter, 65	signal-enhancement (plugin category)
levelmeter, 82	adm, 114
lpc, 54	coherence, 116
lpc_bl_predictor, 55	smooth_cepstrum, 90
lpc_birg-lattice, 57	signal-generator (plugin category)
matrixmixer, 30	addsndfile, 39
•	noise, 105
mconv, 66	plingploing, 106
mhachain, 96	sine, 107
multibandcompressor, 80	signal-transformation (plugin category)
nlms_wave, 58	db, 25
noise, 105	•
noise_psd_estimator, 89	delay, 27
osc2ac, 43	downsample, 108
overlapadd, 98	overlapadd, 98
plingploing, 106	resampling, 101
prediction_error, 60	spec2wave, 110
resampling, 101	upsample, 111
rmslevel, 83	wave2spec, 112
route, 32	sine (MHA plugin), 107
save_spec, 33	smooth_cepstrum (MHA plugin), 90
save_wave, 34	smoothgains_bridge (MHA plugin), 85
shadowfilter_begin, 35	softclip (MHA plugin), 9
shadowfilter_end, 36	spatial (plugin category)
sine, 107	adm, 114
smooth cepstrum, 90	coherence, 116
smoothgains_bridge, 85	delaysum_wave, 119
softclip, 9	doasvm_classification, 120
• •	doasvm_feature_extraction, 121
spec2wave, 110	steerbf, 67
split, 103	spec2wave (MHA plugin), 110
steerbf, 67	split (MHA plugin), 103
testplugin, 126	steerbf (MHA plugin), 67
transducers, 69	Steerer (With the plagnity, 67
upsample, 111	test-tool (plugin category)
wave2spec, 112	cpuload, 123
wavrec, 15	droptect, 124
plugin-arrangement (plugin category)	identity, 125
altplugs, 93	testplugin, 126
analysispath, 94	testplugin (MHA plugin), 126
mhachain, 96	transducers (MHA plugin), 69
overlapadd, 98	transducers (wir iz plugiir), 00
resampling, 101	upsample (MHA plugin), 111
split, 103	1 1 (1 - 9 //
prediction_error (MHA plugin), 60	wave2spec (MHA plugin), 112
	wavrec (MHA plugin), 15
resampling (MHA plugin), 101	•
rmslevel (MHA plugin), 83	