THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS COMP30026 Models of Computation

Assignment 2, 2018

Samuel Xu Student No. 835273

Challenge 5 Answer

Let $DFA(Q, \Sigma, \delta, q_0, F)$ and $PDA(Q', \Sigma', \Gamma, \delta', q'_0, F')$

The goal is to translate our DFA to a 3-state PDA. This can be accomplished by creating a PDA similar to that of a naive search or graph traversal.

This process is possible as there are only two cases to account for:

- a. The current state is not an accept state
- b. The current state is an accept state

This results in a translation from any DFA to a 3-state PDA; the first state of the PDA being the *initialisation state* (q_I) , followed by the searching state (q_R) and the accept state (q_A) .

First we start by defining our variables:

DFA:

Let Q be a set of DFA states.

Let Σ be a valid alphabet for our DFA.

Let δ be a valid set of transition functions for moving between states with a given input.

Let q_0 be the initial state of our DFA.

Let F be a set of valid accept states for our DFA.

PDA:

Let $Q' = \{q_I, q_R, q_A\}$ Let $\Sigma' = \Sigma_{\epsilon}$

Let Γ be a stack alphabet where $\Gamma = Q$

Let δ' be the three transition functions between q_I , q_R , and q_A

(following the form described in lecture 18 $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$;

 $\delta: \{(q_I, \epsilon, \epsilon, \rightarrow q_R, q_0), (q_R, a, b, \rightarrow q_R, \delta(b, a)), (q_R, \epsilon, f \rightarrow q_A, \epsilon)\}$

Let q'_0 be the starting state $\{q_I\}$

Let F' be the accept state $\{q_A\}$

Let a be a string input where $a \in \Sigma$

Let b be a state where $b \in Q$

Let f be an accept state where $f \in F$

Now we may draw a PDA:

