

Today's Outline

7. First Order Circuits

unit step response

sequential switching: general procedure

For each time interval of constant input:

step #1: Find the initial value of the circuit variable of interest, $x(t_0+)$, using circuit analysis and continuity of capacitor voltage or inductor current.

step #2: Find the anticipated final value of the variable of interest, $x(\infty)$, using dc steady state models for the capacitor or inductor.

step #3: Find the Thévenin equivalent resistance R_T as seen from the terminals of the capacitor or inductor. The time constant $\tau = R_T C$ or $\tau = L/R_T$.

step #4: Construct the solution.
$$x(t) = x(\infty) + \left[x(t_0 +) - x(\infty)\right] \exp\left(-\frac{t - t_0}{\tau}\right)$$

There is an alternative approach using the "unit-step" function.

unit step function

The *unit step function* u(t) is defined to be:

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

- -u(t) is discontinuous at t=0
- the value of u(0) will not be important in this class

Oliver Heaviside (1850-1924)

general step function

The unit step function can be used to describe a general step function in voltage or current of amplitude A at a time t_0 .

The unit step function is very useful in expressing piece-wise constant signals. For example:

4

unit step response

The *unit step response* x(t)=F[u(t)] is the circuit variable response to a unit step voltage source or current source. $F[\bullet]$ is the operator mapping the source function to the circuit variable.

- -x(t) can be found by solving the differential equation with a unit step source u(t)
- more sophisticated mathematical methods are required to find explicit expressions for the operator F[•].

unit step response - example

Consider the example of an RC circuit, solved earlier in this section:

Unit step response of resistor voltage:

$$v_{R}(t) = 1 \vee \exp(-t / \tau) \cdot u(t)$$

Unit step response of capacitor voltage:

$$v_c(t) = 1 V \cdot \left[1 - \exp(-t / \tau) \right] \cdot u(t)$$

general step response

The *general* step response is simply expressed in terms of the unit step response for a *linear* and *time invariant* circuit.

Consider again an RC circuit example:

Response of resistor voltage:

$$v_{R}(t) = 6V \cdot \exp(-(t - 4\mu s) / \tau) \cdot u(t - 4\mu s)$$

sequential step response

The response to sequential steps is simply expressed in terms of the unit step response for a *linear* and *time invariant* circuit.

$$A_{1} u(t-t_{1}) + A_{2} u(t-t_{2}) + A_{3} u(t-t_{3}) + ...$$

$$F[\bullet] \qquad A_{1} x(t-t_{1}) + A_{2} x(t-t_{2}) + A_{3} x(t-t_{3}) + ...$$

- linearity ensures that the principle of superposition can be applied
- time invariance ensures the step response has the same form,
 independent of the time at which the step occurs

$$F[A_1 u(t-t_1) + A_2 u(t-t_2)] = A_1 x(t-t_1) + A_2 x(t-t_2)$$

Reconsider finding $v_R(t)$ for sequential switching in an RC circuit.

Step #1: We first resolve the input into a sum of steps using u(t).

$$v_s(t) = 10 \text{V} \cdot u(t) - 10 \text{V} \cdot u(t - 30 \text{ms})$$

$$v_s(t)$$

$$10 \text{V}$$

$$30 \text{ms}$$

Step #2: We find the step response x(t) of the desired variable ($v_R(t)$) to the unit step input u(t).

$$v_R(0+) = 1V$$
 $v_R(\infty) = 0V$ $\tau = 15 \text{ ms}$

$$V_R(\infty) = 0$$

$$\tau$$
 = 15 ms

$$v_{R}(t) = x(t) = 1 \cdot \exp(-t / 15 \text{ms}) \cdot u(t)$$

10 ECSE-200

Step #3: Add the response to each step.

$$v_{R,1}(t) = 10 \text{V} \cdot \exp(-t/15 \text{ms}) \cdot u(t)$$

$$v_{R,2}(t) = -10 \text{V} \cdot \exp(-(t - 30 \text{ms}) / 15 \text{ms}) \cdot u(t - 30 \text{ms})$$

 $v_s(t)$

$$V_R(t) = V_{R,1}(t) + V_{R,2}(t)$$

11

 $50k\Omega$

300nF

example: compare solutions

Consider now $v_c(t)$ for the same RC circuit.

Step #2: We find the step response x(t) of the desired variable ($v_c(t)$) to the unit step input u(t).

$$v_C(0+) = 0V$$
 $v_C(\infty) = 1V$ $\tau = 15 \text{ ms}$

$$v_{c}(\infty) = 1$$

$$\tau$$
 = 15 ms

$$v_c(t) = x(t) = 1 \cdot [1 - \exp(-t / 15 \text{ms})] \cdot u(t)$$

13 ECSE-200

Step #3: Add the response to each step.

$$v_{c,1}(t) = 10 \text{V} \cdot \left[1 - \exp(-t / 15 \text{ms}) \right] \cdot u(t)$$

$$v_{c,1}(t) = 10 \text{V} \cdot \left[1 - \exp(-t/15\text{ms}) \right] \cdot u(t)$$
 $v_{c,2}(t) = -10 \text{V} \cdot \left[1 - \exp(-(t-30\text{ms})/15\text{ms}) \right] \cdot u(t-30\text{ms})$

$$v_{c}(t) = v_{c,1}(t) + v_{c,2}(t)$$

14 ECSE-200

example: compare solutions

$$v_c(t) = 10 \text{V} \cdot \left[1 - \exp(-t / 15 \text{ms}) \right] \cdot u(t)$$
$$-10 \text{V} \cdot \left[1 - \exp(-(t - 30 \text{ms}) / 15 \text{ms}) \right] \cdot u(t - 30 \text{ms})$$

sequential switching: another view

For a piece-wise constant input:

step #1: Resolve the input into a summation of appropriately scaled and delayed unit step functions, $A_1u(t-t_1) + A_2u(t-t_2) + ...$

step #2: Find the unit step response x(t) of the circuit variable to a unit step function input u(t), using the technique for finding the constant input response of an RC or RL circuit.

step #3: Add the response to each step function at the input.

