Semi-normed Rings and Modules

Definition 1. Let M be an abelian group. A *semi-norm* on M is a function $\|\cdot\|: M \to \mathbb{R}_+$ such that

- ||0|| = 0;
- $\forall x, y \in M, ||x + y|| \le ||x|| + ||y||$.

If we further have $||x|| = 0 \iff x = 0$, then we say $||\cdot||$ is a norm. A semi-normed abelian group (resp. normed abelian group) is an abelian group equipped with a semi-norm (resp. norm).

Definition 2. A semi-norm (resp. norm) on an abelian group M induces a pseudo-metric (resp. metric) d(x,y) = ||x-y|| on M. A semi-normed (resp. normed) abelian group M is called *complete* if it is complete as a pseudo-metric (resp. metric) space.

Definition 3. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two semi-norms on an abelian group M. We say $\|\cdot\|_1$ is bounded by $\|\cdot\|_2$ if there exists a constant C>0 such that $\forall x\in M, \|x\|_1\leq C\|x\|_2$.

Remark 4. If two semi-norms (resp. norms) on an abelian group M are bounded by each other, then they induce the same topology on M.

Yang: To be continued...

Appendix

