CS 224S / LINGUIST 281 Speech Recognition and Synthesis

Dan Jurafsky

Lecture 2: Acoustic Phonetics

Outline for today

- Acoustic Phonetics
 - Waves, sound waves, and spectra
 - (Informally! We'll see it with more math when we do feature extraction)
 - Speech waveforms
 - F0, pitch, intensity
 - Spectra
 - Spectrograms
 - Formants
 - Reading spectrograms
 - Deriving schwa: why are formants where they are
 - PRAAT
 - Resources: dictionaries and phonetically-labeled corpora

Acoustic Phonetics

- Sound Waves
 - http://www.kettering.edu/~drussell/Demos/ waves-intro/waves-intro.html

Simple Period Waves (sine waves)

- Characterized by:
 - period: T
 - amplitude A
 - phase φ
- Fundamental frequency in cycles per second, or Hz
 - $\bullet F_0 = 1/T$

1 cycle

Simple periodic waves

- Computing the frequency of a wave:
 - 5 cycles in .5 seconds = 10 cycles/second = 10 Hz
- Amplitude:
 - **•** 1
- Equation:
 - $Y = A \sin(2\pi ft)$

Speech sound waves

- A little piece from the waveform of the vowel [iy]
- Y axis:
 - Amplitude = amount of air pressure at that time point
 - Positive is compression
 - Zero is normal air pressure,
 - negative is rarefaction
- X axis: time.

Digitizing Speech

Thanks to Bryan Pellom for this slide!

Digitizing Speech

- Analog-to-digital conversion
- Or A-D conversion.
- Two steps
 - Sampling
 - Quantization

Sampling

- Measuring amplitude of a signal at time t
- The sample rate needs to have at least two samples for each cycle
 - One for the positiive, and one for the negative half of each cycle
 - More than two samples per cycle is ok
 - Less than two samples will cause frequencies to be missed
- So the maximum frequency that can be measured is one that is half the sampling rate.
- The maximum frequency for a given sampling rate called Nyquist frequency

Sampling

Original signal in red:

If measure at green dots, will see a lower frequency wave and miss the correct higher frequency one!

Sampling

- In practice we use the following sample rates
 - 16,000 Hz (samples/sec), for microphones, "wideband"
 - 8,000 Hz (samples/sec) Telephone
- Why?
 - Need at least 2 samples per cycle
 - Max measurable frequency is half the sampling rate
 - Human speech < 10KHz, so need max 20K
 - Telephone is filtered at 4K, so 8K is enough.

Quantization

- Quantization
 - Representing real value of each amplitude as integer
 - 8-bit (-128 to 127) or 16-bit (-32768 to 32767)
- Formats:
 - 16 bit PCM
 - 8 bit mu-law; log compression
- Byte order
 - LSB (Intel) vs. MSB (Sun, Apple)
- Headers:
 - Raw (no header)
 - Microsoft wav
 - Sun .au

WAV format

Fundamental frequency

Waveform of the vowel [iy]

- Above vowel has 10 reps in .03875 secs
- So freq is 10/.03875 = 258 Hz
- This is speed that vocal folds move, hence voicing
- Each peak corresponds to an opening of the vocal folds
- The frequency of the complex wave is called the fundamental frequency of the wave or F0

Pitch track

Amplitude

- We need a way to talk about the amplitude of a region of a signal over tune
- We can't just average all the values.
- Why not?
- So we often talk about RMS amplitude

$$A_{RMS} = \sqrt{\sum_{i=1}^{N} \frac{x[i]^2}{N}}$$

Power and Intensity

Power: related to square of amplitude

$$Power = \frac{1}{N} \sum_{i=1}^{N} x[i]^2$$

• Intensity in air: power normalized to auditory threshold, given in dB. P0 is auditory threshold pressure = $2x10^{-5}$ pa

Intensity =
$$10\log_{10} \frac{1}{NP_0} \sum_{i=1}^{N} x[i]^2$$

Plot of Intensity

Pitch and Loudness

- Pitch is the mental sensation or perceptual correlated of F0
- Relationship between pitch and F0 is not linear;
 - human pitch perception is most accurate between 100Hz and 1000Hz.
 - Linear in this range
 - Logarithmic above 1000Hz
- Mel scale is one model of this F0-pitch mapping
 - A mel is a unit of pitch defined so that pairs of sounds which are perceptually equidistant in pitch are separated by an equal number of mels
 - Frequency in mels = 1127 ln (1 + f/700)

She just had a baby

- Note that vowels all have regular amplitude peaks
- Stop consonant
 - Closure followed by release
 - Notice the silence followed by slight bursts of emphasis: very clear for [b] of "baby"
- Fricative: noisy. [sh] of "she" at beginning

Fricative

1/5/07

Waves have different frequencies

100 Hz

1000 Hz

Complex waves: Adding a 100 Hz and 1000 Hz wave together

Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Spectra continued

 Fourier analysis: any wave can be represented as the (infinite) sum of sine waves of different frequencies (amplitude, phase)

Spectrum of one instant in an actual soundwave: many components across frequency range

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to spectrum

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Seeing formants: the spectrogram

Formants

- Vowels largely distinguished by 2 characteristic pitches.
- One of them (the higher of the two) goes downward throughout the series iy ih eh ae aa ao ou u
- The other goes up for the first four vowels and then down for the next four.
- These are called "formants" of the vowels, lower is 1st formant, higher is 2nd formant.

Spectrogram: spectrum + time dimension

0 1.059

Different vowels have different formants

- Vocal tract as "amplifier"; amplifies different frequencies
- Formants are result of different shapes of vocal tract.
- Any body of air will vibrate in a way that depends on its size and shape.
- Air in vocal tract is set in vibration by action of vocal cords.
- Every time the vocal cords open and close, pulse of air from the lungs, acting like sharp taps on air in vocal tract,
- Setting resonating cavities into vibration so produce a number of different frequencies.

Again: why is a speech sound wave composed of these peaks?

- Articulatory facts:
 - The vocal cord vibrations create harmonics
 - The mouth is an amplifier
 - Depending on shape of mouth, some harmonics are amplified more than others

How formants are produced

- Q: Why do different vowels have different pitches if the vocal cords are vibrating at the same rate?
- A: This is a confusion of frequencies of SOURCE and frequencies of FILTER!

Source-filter model of speech production

Source and filter are independent, so:

Different vowels can have same pitch

The same vowel can have different pitch

Deriving schwa: how shape of mouth (filter function) creates peaks!

- Reminder of basic facts about sound waves
- $f = c/\lambda$
- c = speed of sound (approx 35,000 cm/ sec)
- A sound with λ =10 meters has low frequency f = 35 Hz (35,000/1000)
- A sound with λ =2 centimeters has high frequency f = 17,500 Hz (35,000/2)

Resonances of the vocal tract

Resonances of the vocal tract

The human vocal tract as an open tube

Closed end Open end

Length 17.5 cm.

 Air in a tube of a given length will tend to vibrate at resonance frequency of tube.

Resonances of the vocal tract

- If vocal tract is cylindrical tube open at one end
- Standing waves form in tubes
- Waves will resonate if their wavelength corresponds to dimensions of tube
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.
- Next slide shows what kind of length of waves can fit into a tube with this contraint

Computing the 3 formants of schwa

- Let the length of the tube be L
- $F_1 = c/\lambda_1 = c/(4L) = 35,000/4*17.5 = 500Hz$
- $F_2 = c/\lambda_2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5$ = 1500Hz
- $F_1 = c/\lambda_2 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5$ = 2500Hz
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

Vowel [i] sung at successively higher pitch.

How to read spectrograms

- bab: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- dad: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

She came back and started again

- 1. lots of high-freq energy
- 3. closure for k
- 4. burst of aspiration for k
- 5. ey vowel; faint 1100 Hz formant is nasalization
- 6. bilabial nasal
- 7. short b closure, voicing barely visible.
- 8. ae; note upward transitions after bilabial stop at beginning
- 9. note F2 and F3 coming together for "k"

Homework 1

- http://www.stanford.edu/class/cs224s/ hw1.html
- You'll need to download PRAAT; details are in the homework.

Phonetic Resources

- Phonetic dictionaries
 - CMU dict
 - CELEX
- Phonetically transcribed corpora
 - TIMIT
 - Switchboard

TIMIT

Read speech corpus, time aligned

she		your		suit	
sh iy	hv ae dcl	jh axr	del d aa r kel	s ux q	e

	in	greasy	wash	water
k q	en	gcl g r iy s ix	w aa sh	q w aa dx axr q

Switchboard

- Spontaneous speech corpus
- Telephone conversations between strangers
- "They're kind of in between right now"

0.470	0.640	0.720	0.900	0.953	
dh er	k aa	n ax	v ih m	b ix	

3	1.279	1.410	1.630
	t w iy n	r ay	n aw

1/5/07

Summary

- Acoustic Phonetics
 - Waves, sound waves, and spectra
 - Speech waveforms
 - F0, pitch, intensity
 - Spectra
 - Spectrograms
 - Formants
 - Reading spectrograms
 - Deriving schwa: why are formants where they are
 - PRAAT
 - Resources: dictionaries and phonetically-labeled corpora.

Examples from Ladefoged

pad

bad

spat