Power of hypothesis tests

Packages

library(tidyverse)

Errors in testing

What can happen:

	Decision	
Truth	Do not reject	Reject null
Null true	Correct	Type I error
Null false	Type II error	Correct

Tension between truth and decision about truth (imperfect).

... continued

- ▶ Prob. of type I error denoted α . Usually fix α , eg. $\alpha = 0.05$.
- Prob. of type II error denoted β . Determined by the planned experiment. Low β good.
- Prob. of not making type II error called **power** (= 1β). High power good.

Power 1/2

- ▶ Suppose $H_0: \theta = 10$, $H_a: \theta \neq 10$ for some parameter θ .
- ▶ Suppose H_0 wrong. What does that say about θ ?
- Not much. Could have $\theta=11$ or $\theta=8$ or $\theta=496$. In each case, H_0 wrong.

Power 2/2

- ▶ How likely a type II error is depends on what θ is:
 - If $\theta=496$, should reject $H_0:\theta=10$ even for small sample, so β small (power large).
 - If $\theta=11$, hard to reject H_0 even with large sample, so β would be larger (power smaller).
- Power depends on true parameter value, and on sample size.
- So we play "what if": "if θ were 11 (or 8 or 496), what would power be?".

Figuring out power 1/2

- ▶ Time to figure out power is before you collect any data, as part of planning process.
- Need to have idea of what kind of departure from null hypothesis of interest to you, eg. average improvement of 5 points on reading test scores. (Subject-matter decision, not statistical one.)

Figuring out power 2/2

- Then, either:
 - I have this big a sample and this big a departure I want to detect. What is my power for detecting it?"
 - I want to detect this big a departure with this much power. How big a sample size do I need?"

How to understand/estimate power?

- \blacktriangleright Suppose we test $H_0: \mu=10$ against $H_a: \mu \neq 10,$ where μ is population mean.
- Suppose in actual fact, $\mu=8$, so H_0 is wrong. We want to reject it. How likely is that to happen?
- Need population SD (take $\sigma=4$) and sample size (take n=15). In practice, get σ from pilot/previous study, and take the n we plan to use.
- ▶ Idea: draw a random sample from the true distribution, test whether its mean is 10 or not.
- Repeat previous step "many" times: simulation.

Making it go

Random sample of 15 normal observations with mean 8 and SD 4:

```
x <- rnorm(15, 8, 4)
x
```

```
[1] 14.487469 5.014611 6.924277 5.201860 8.852952 10.8 [8] 11.165242 8.016188 12.383518 1.378099 3.172503 13.0 [15] 5.015575
```

► Test whether x from population with mean 10 or not (over):

...continued

```
t.test(x, mu = 10)
```

One Sample t-test

```
data: x
t = -1.8767, df = 14, p-value = 0.08157
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
   5.794735 10.280387
sample estimates:
mean of x
8.037561
```

P-value 0.081, so fail to reject the mean being 10 (a Type II error).

or get just P-value

```
ans <- t.test(x, mu = 10)
ans$p.value</pre>
```

[1] 0.0815652

Run this lots of times via simulation

- draw random samples from the truth
- \blacktriangleright test that $\mu = 10$
- ▶ get P-value
- Count up how many of the P-values are 0.05 or less.

In code

```
tibble(sim = 1:1000) %>%
  rowwise() %>%
  mutate(my_sample = list(rnorm(15, 8, 4))) %>%
  mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
  mutate(p_val = t_test$p.value) %>%
  count(p_val <= 0.05)</pre>
```

We correctly rejected 422 times out of 1000, so the estimated power is 0.422.

Try again with bigger sample

```
tibble(sim = 1:1000) %>%
  rowwise() %>%
  mutate(my_sample = list(rnorm(40, 8, 4))) %>%
  mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
  mutate(p_val = t_test$p.value) %>%
  count(p_val <= 0.05)</pre>
```

Power is (much) larger with a bigger sample.

How accurate is my simulation?

- At our chosen α , each simulated test independently either rejects or not with some probability p that I am trying to estimate (the power)
- Estimating a population probability using the sample proportion (the number of simulated rejections out of the number of simulated tests)
- hence, prop.test.
- inputs: number of rejections, number of simulations.

Sample size 15, rejected 422 times

```
prop.test(422, 1000)
```

1-sample proportions test with continuity correction

```
data: 422 out of 1000, null probability 0.5
X-squared = 24.025, df = 1, p-value = 9.509e-07
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.3912521 0.4533546
sample estimates:
    p
0.422
```

95% CI for power: 0.391 to 0.453

To estimate power more accurately

Run more simulations:

Change 1000 to eg 10,000:

```
tibble(sim = 1:10000) %>%
  rowwise() %>%
  mutate(my_sample = list(rnorm(15, 8, 4))) %>%
  mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
  mutate(p_val = t_test$p.value) %>%
  count(p_val <= 0.05)</pre>
```

Accuracy of power now

```
prop.test(4353, 10000)
```

1-sample proportions test with continuity correction

```
data: 4353 out of 10000, null probability 0.5
X-squared = 167.18, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.4255594 0.4450905
sample estimates:
    p
0.4353</pre>
```

0.426 to 0.445, about factor $\sqrt{10}$ shorter because number of simulations 10 times bigger.

Calculating power 1/2

- Simulation approach very flexible: will work for any test. But answer different each time because of randomness.
- In some cases, for example 1-sample and 2-sample t-tests, power can be calculated.
- power.t.test.

Calculating power 2/2

Input delta is difference between null and true mean:

```
power.t.test(n = 15, delta = 10-8, sd = 4, type = "one.sam]
```

One-sample t test power calculation

```
n = 15
delta = 2
sd = 4
sig.level = 0.05
power = 0.4378466
alternative = two.sided
```

Comparison of results

Power
0.4353
0.4378

- Simulation power is similar to calculated power; to get more accurate value, repeat more times (eg. 100,000 instead of 10,000), which takes longer.
- With this small a sample size, the power is not great. With a bigger sample, the sample mean should be closer to 8 most of the time, so would reject $H_0: \mu=10$ more often.

Calculating required sample size

- ▶ Often, when planning a study, we do not have a particular sample size in mind. Rather, we want to know how big a sample to take. This can be done by asking how big a sample is needed to achieve a certain power.
- ► The simulation approach does not work naturally with this, since you have to supply a sample size.
 - For that, you try different sample sizes until you get power close to what you want.
- ► For the power-calculation method, you supply a value for the power, but leave the sample size missing.

Using power.t.test

- Re-use the same problem: $H_0: \mu=10$ against 2-sided alternative, true $\mu=8$, $\sigma=4$, but now aim for power 0.80.
- ▶ No n=, replaced by a power=:

```
power.t.test(power=0.80, delta=10-8, sd=4, type="one.sample")
```

One-sample t test power calculation

power = 0.8
alternative = two.sided

Sample size must be a whole number, so round up to 34 (to get at least as much power as you want).

Power curves

- ▶ Rather than calculating power for one sample size, or sample size for one power, might want a picture of relationship between sample size and power.
- Or, likewise, picture of relationship between difference between true and null-hypothesis means and power.
- Called power curve.
- Build and plot it yourself.

Building it:

The power curve

g2

Power curves for means

- Can also investigate power as it depends on what the true mean is (the farther from null mean 10, the higher the power will be).
- Investigate for two different sample sizes, 15 and 30.
- First make all combos of mean and sample size:

```
means <- seq(6,10,0.5)
ns <- c(15,30)
combos <- crossing(mean=means, n=ns)</pre>
```

The combos

combos

```
# A tibble: 18 x 2
    mean
             n
   <dbl> <dbl>
     6
            15
     6
            30
    6.5
           15
    6.5
            30
 5
    7
            15
     7
            30
    7.5
            15
 8
    7.5
            30
     8
            15
10
     8
            30
11
     8.5
            15
     8.5
12
            30
13
     9
            15
14
            30
15
   9.5
            15
16
     9.5
            30
17
    10
            15
18
    10
            30
```

Calculate powers:

then make the plot:

```
g <- ggplot(powers, aes(x = mean, y = power, colour = fac
geom_point() + geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") +
geom_vline(xintercept = 10, linetype = "dotted")
```

Need n as categorical so that colour works properly.

The power curves

g

Comments 1/2

- When mean=10, that is, the true mean equals the null mean, H_0 is actually true, and the probability of rejecting it then is $\alpha=0.05$.
- As the null gets more wrong (mean decreases), it becomes easier to correctly reject it.
- The blue power curve is above the red one for any mean < 10, meaning that no matter how wrong H_0 is, you always have a greater chance of correctly rejecting it with a larger sample size.

Comments 2/2

- Previously, we had $H_0: \mu=10$ and a true $\mu=8$, so a mean of 8 produces power 0.42 and 0.80 as shown on the graph.
- With n=30, a true mean that is less than about 7 is almost certain to be correctly rejected. (With n=15, the true mean needs to be less than 6.)

Two-sample power

- ► For kids learning to read, had sample sizes of 22 (approx) in each group
- and these group SDs:

```
kids %>% group_by(group) %>%
summarize(n=n(), s=sd(score))
```

Setting up

- suppose a 5-point improvement in reading score was considered important (on this scale)
- ▶ in a 2-sample test, null (difference of) mean is zero, so delta is true difference in means
- what is power for these sample sizes, and what sample size would be needed to get power up to 0.80?
- ▶ SD in both groups has to be same in power.t.test, so take as 14.

Calculating power for sample size 22 (per group)

Two-sample t test power calculation

n = 22 delta = 5

sd = 14sig.level = 0.05

nover = 0.31591

power = 0.3158199

alternative = one.sided

NOTE: n is number in *each* group

sample size for power 0.8

Two-sample t test power calculation

n = 97.62598
delta = 5
 sd = 14
sig.level = 0.05
 power = 0.8

NOTE: n is number in *each* group

alternative = one.sided

Comments

- ► The power for the sample sizes we have is very small (to detect a 5-point increase).
- ▶ To get power 0.80, we need 98 kids in *each* group!