

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutores @163.com

QQ: 749389476

https://tutores.com

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola

T3/2022

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

程序代写代做 CS编程辅导

- → Sets
- → Type Definitions
- → Inductive Definition

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Inductive Definitions

Assignment Project Exam Help

How They Work 163.com

QQ: 749389476

The Nat Example

程序代写代做 CS编程辅导

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of na \mathbb{N} ers \mathbb{N}
- igoplus But why not the lacksquare sumbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the smallest set that is consistent with the rules.

 WeChat: cstutores

Why the smallest set? Assignment Project Exam Help

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof putrople (Pulle3 relation)

QQ: 749389476

Formally

程序代写代做 CS编程辅导

Rules
$$\underbrace{a_1 \in \lambda}_{\bullet \bullet} \underbrace{a_n \in X}_{\bullet \bullet}$$
 with $a_1, \dots, a_n, a \in A$

Formally: set of rules $R \subseteq A$: set $X \cap C$ (R, X possibly infinite)

Applying rules R to Assign ment Project Exam Help

$$\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$$
Email: tutorcs@163.com

Example:

$$\begin{array}{ll} R & \underset{\hat{R} \ \{3,6,10\}}{\overline{\lim}} & \underset{=}{\overline{\lim}} : \{(\{1,0\},0\}) \cup \{(\{n\},n+1). \ n \in \mathbb{R}\} \\ (0,4,7,11\} & = \end{array}$$

The Set

程序代写代做 CS编程辅导

Definition: Closed iff \hat{R} $B \subseteq B$

Definition: least *R*-closed subset of *A*

WeChat: cstutorcs

This does always exist: Assignment Project Exam Help

Fact: $X = \bigcap \{B \in A_a B : R_{\overline{a}} = Closed \}$ 63.com

QQ: 749389476

Generation from Above

程序代写代做 CS编程辅导

Rule Induction

程序代写代做 CS编程辅导

$$\frac{n\in N}{n+1\in N}$$

nduces induction principle

$$[P \ 0; \ \land n. \ P \ n \Longrightarrow P \ (n+1)] \longrightarrow \forall x \in N. \ P \ x$$
Assignment Project Exam Help

In general:

Email: tutorcs@163.com

$$\frac{\forall (\{a_1,\dots a_n\}) \not\in A \not\in 3 \not\in A \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
https://tutorcs.com

Why does this work?

程序代写代做 CS编程辅导

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}$$

$$\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a$$

$$\text{WeChat: cstystorcs}$$

$$\text{Assignment Project Exam Help}$$

$$\text{but: Email: tittorcs} \text{ before: } X\subseteq \{x,P,x\}$$

$$\text{which means: } 74\%389476P\ x$$

$$\text{https://tutorcs.com} \text{qed}$$

Rules with side conditions

程序代写代做 CS编程辅导

$$(\forall (\{a_1,\ldots a_n\}), \exists \bigcap_{n \in \mathbb{N}} \mathbb{R} : \mathsf{Rutpres} \ldots \land P \ a_n \land \bigcap_{n \in \mathbb{N}} \cap$$

Assignment Project Exam Help
$$P = \{a_1, \dots, a_n\} \subseteq X \stackrel{\longleftarrow}{\Longrightarrow} P = a\}$$

Email: tutores@163.com

QQ: 749389476 ×

X as Fixpoint

程序代写代做 CS编程辅导

How to compute $X = \bigcap \{B \subseteq A. \ B \ R \}$ hard to work with.

Instead: view X as \hat{R} X = X.

Fixpoints can be approximated by iteration: We hat: estutores

 $X_0 = \hat{R}_A^0$ | = {} $X_1 = \hat{R}^1$ {} = rules without hypotheses : Email: tutorcs@163.com

 $X_n = \hat{R}_0^n \{ \} 749389476$

 $X_{\omega} = \bigcup_{n \in \mathbb{N}}^{\text{https:}} (R^{\text{tutorcs.com}}) = X^{\text{tutorcs.com}}$

Generation from Below

程序代写代做 CS编程辅导

Does this always work?

程序代写代做 CS编程辅导

Knaster-Tarski Fixpaint Theorem:

Let (A, \leq) be a com te, and $f :: A \Rightarrow A$ a monotone

function.

Then the fixpoints of fixed orm a complete lattice.

Lattice: WeChat: cstutorcs

Finite subsets have a greatest lower bound (meet) and least upper

bound (join). Assignment Project Exam Help

Complete Lattice: Email: tutorcs@163.com

All subsets have a greatest lower bound and least upper bound.

QQ: 749389476

Implications:

→ least and greatest fixpoints exist (complete lattice always non-empty).

→ can be reached by (possibly infinite) iteration. (Why?)

Exercise

程序代写代做 CS编程辅导

Formalize this lecture in leabelle:

- \rightarrow Define **closed** $f \nearrow \Rightarrow \alpha$ set \Rightarrow bool
- $B \Longrightarrow \mathsf{closed}\ f\ (A \cap B)\ \mathsf{if}\ f\ \mathsf{is}\ \mathsf{monotone}$ → Show closed f A (mono is predefir
- \rightarrow Define **Ifpt** f as the intersection of all f-closed sets
- → Show that Ifpt f is a fixed in Corulor of the show that Ifpt f is a fixed in Corulor of the Ifpt f is a fixed in Corulor of the Ifpt f is a fixed in Corulor
- Show that Ifpt f is the least fixpoint of f. Assignment Project Exam Help

 Declare a constant R: $(\alpha \text{ set} \times \alpha)$ set
- \rightarrow Define $\hat{R} :: \alpha$ set \rightarrow noaset fint terms of β com
- \rightarrow Show soundness of rule induction using R and Ifpt \hat{R} OO: 749389476

We have learned today ...

程序代写代做 CS编程辅导

- → Formal backgrour
- → Definition by inte
- → Computation by i
- → Formalisation in Isabelle

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476