Лабораторная работа 4.3.1. Изучение дифракции света.

Радькин Кирилл, Б01-005 15.04.22 **В работе используются:** оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

А. Дифракция Френеля

Теоретическая справка:

• Суммарная ширина m зон Френеля z_m определяется соотношением:

$$z_m = \sqrt{am\lambda}$$

Схема установки:

Рис. 1. Схема установки для наблюдения дифракции Френеля

Ход работы:

- 1. Настроим зрительную трубу на бесконечность, соберем установку.
- 2. Определим нуль микрометрического винта щели: 0.053 ± 0.001 мм
- 3. Сфокусируем микроскоп на щель
- 4. Запишем: начальное положение микроскопа $52.8~{\rm cm}$, положение второй диафрагмы $69~{\rm cm}$
- 5. Отодвинем микроскоп до того момента, пока на фоне щели не появится одна темная полоса. Далее, приближая микроскоп к щели, снимем зависимость количества темных полос от координаты микроскопа.

n	1	2	3	4	5
l, cm	50.1	50.8	51.3	51.6	51.8

- 6. Измерим ширину щели с помощью микроскопа: 0.32 ± 0.02 мм. Сравним с показаниями микрометрического винта щели: 0.037 ± 0.01 мм. Сильный расхождений не обнаружено.
- 7. Закрепим микроскоп на оптической скамье и пронаблюдаем, что при уменьшении щели количество полос уменьшается.
- 8. Рассчитаем величину $2z_m$ и построим график $2z_m = f(m)$ и отложим на графике величину D:

Рис. 2. График ширины зон Френеля от m

Б. Дифракция Фраунгофера на щели

Теоретическая справка:

• Расстояние X_m темной полосы от оптической оси объектива O_2 пропорционально фокусному расстоянию f_2 :

$$X_m = f_2 m \frac{\lambda}{D}$$

Схема установки:

Рис. 3. Схема установки для дифракции Фраунгофера

Ход работы:

- 1. Для перехода к дифракции Фраунгофера добавим к установке на рис. 1 линзу O_2
- 2. Настроим установку
- 3. Измерим с помощью винта поперечного перемещения микроскопа координаты X_m нескольких дифракционных минимумов (от -m до +m).

m	-2	-1	0	1	2
X_m , mm	1.46	1.6	1.9	2.16	2.34

Определим ширину D щели S2: $D = 0.39 \pm 0.01$ мм

Запишем фокусное расстояние линзы O_2 : $F_2 = 12.5$ см

- 4. Построим график X_m от m (рис. 4):
- 5. По углу наклона прямой определим среднее расстояние между соседними минимумами: $\Delta X = 0.23 \pm 0.01$
- 6. Рассчитаем ширину щели: $D=0.311\pm0.020$ мм, сравним с измеренным значением: $D_{\text{изм}}=0.385\pm0.10$ мм. Расхождения результатов $\approx 11\%$

В. Дифракция Фраунгофера на двух щелях

Теоретическая справка:

• Линейное расстояние δx между соседними интерференционными полосами в плоскости Π равно:

$$\delta x = f_2 \frac{\lambda}{d}$$

• Число интерференционных полос, укладывающихся в области центрального дифракционного максимума:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta x} = \frac{2d}{D}$$

4

Рис. 4. График X_m от m

• При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении её ширины интерференционная картина периодически пропадает и появляется вновь, но полосы при этом оказываются сильно размытыми и видны плохо. Это явление объясняется наложением интерференционных картин от разных элементов широкой щели S. Первое размытие интерференционных полос возникает при условии:

$$\frac{b}{f_1} = \frac{\lambda}{d}$$

Схема установки:

Рис. 5. Схема установки для наблюдения дифракции Фраунгофера на двух щелях

Ход работы:

- 1. Настроим установку
- 2. Определим с помощью микрометрического винта поперечных салазок микроскопа координаты самых удалённых друг от друга тёмных полос внутри центрального максимума: левая полоса 2.28 мм, правая полоса 2.68 мм. Просчитаем число светлых промежутков между ними: 10. Измерим ширину центрального максимума: 0.4 мм.
- 3. Для исследования влияния простраственной когерентности на видность интерференционной картины. Для этого подберем такую ширину b_0 щели S, при которой наступает первое исчезновение интерференционных полос: $b_0 = 1.9$ мм.
- 4. Запишем фокусные расстояния обеих линз: $F_1 = 9$ см, $F_2 = 12.5$ см.
- 5. Определим расстояние δx между минимумами по результам измерений: $\delta x = 0.04$ мм.
- 6. Рассчитаем величину d: $d=1.8\pm0.1$ мм, сравним с измеренной $d_{\text{изм}}=2.1$ мм. Разница $\approx 16\%$

Г. Влияние дифракции на разрешающую способность оптического инструмента

Теоретическая справка:

• Критерий Рэлея:

$$\frac{\lambda}{D_0} = \frac{d}{f_1}$$

Схема установки:

Рис. 6. Схема установки для исследования разрешающей способности оптического инструмента

Ход работы:

- 1. Соберем схему согласно рис. 6
- 2. Поставим между линзами щель и, уменьшая ее ширину, подберем ее так, чтобы изображения обоих щелей почти сливались, но все-таки были различимы и запишем показания микрометрического винта: 0.94 момента
- 3. Поставим двойную щель перед микроскопом, сделаем чертеж щели и запишем координаы каждой из вертикалей:

Рис. 7. Координаты вертикалей

4. Для проверик справедливости критерия Рэлея, сравним измеренную ширину щели D_0 с расчетом по формуле: $D_0=\frac{\lambda f_1}{d}=0.0288$ мм

7