RAPPELS

Proposition

Un homéomorphisme est une application ouverte, càd que f(U) est un ouvert si U est ouvert.

Définition

Soit X un espace topologique et \sim une relation d'équivalence sur X quelconque. La famille $\mathfrak{T}_{X/\sim}$ définie par

$$\mathfrak{T}_{X/\sim}\ni U\quad\Longleftrightarrow\quad\pi^{-1}(U)\in\mathfrak{T}_X$$

s'appelle *la topologie quotient* sur X/\sim .

Lemme

Soit $\pi: (X, T_X) \to (X/\sim, T^{quot}) = (Y, T^{quot})$ la projection et $f: Y \to (Z, T_Z)$. Alors f est (T^{quot}, T_Z) -continue ssi $f \circ \pi: X \to Z$ est (T_X, T_Z) -continue.

1/21

RAPPELS II

Lemme

Soit donnée une opération d'un groupe G sur X. La relation sur X définie par

$$x \sim x'$$
 \iff $\exists g \in G \quad tq \quad x' = g \cdot x$

est une relation d'équivalence.

Dans ce cas, la classe d'équivalence $[x] = O_X$ d'un $x \in X$ s'appelle *l'orbite* de x. On désigne $X/\sim=X/G$.

Proposition

Si G opère continûment sur X, L_q est un homéomorphisme pour tout $g \in G$.

Exemple

Considérons l'opération de \mathbb{Z} sur $\mathbb{R}: (n,x) \longmapsto x+n$. On a $\mathbb{R}/\mathbb{Z} \cong [0,1]/\sim \cong S^1$.

En utilisant le lemme sur la relation entre $f: X/G \to \mathbb{R}$ et $f \circ \pi: X \to \mathbb{R}$, on peut identifier $C^0(X/G)$ et

$$C_G^0(X) := \{ f \in C^0(X) \mid f(gx) = f(x) \}.$$

En particulière,

 $\{ \text{ les fonctions sur } \mathbb{R} \text{ continues périodiques } \} \equiv C^0(S^1),$

Exercice

Considérons l'opération de \mathbb{Z}^2 sur \mathbb{R}^2 :

$$((n,m),(x,y)) \longmapsto (x+n, y+m).$$

Montrer que $\mathbb{R}^2/\mathbb{Z}^2 \cong T$, où T est le tore.

Donc,

 $\{ \text{ les fonctions sur } \mathbb{R}^2 \text{ continues bipériodiques } \} \equiv C^0(\mathbb{T}).$

3/21

L'ESPACE PROJECTIF

Définition

L'ensemble des droites vectorielles dans \mathbb{R}^{n+1} s'appelle l'espace projectif réel. On désigne cette espace par \mathbb{RP}^n .

Nous démontrons plus tard que \mathbb{RP}^n est un espace topologique. A ce moment-là, nous avons défini \mathbb{RP}^n seulement comme un ensemble.

On peut comprendre \mathbb{RP}^n comme un ensemble paramétrisant l'ensemble des droites vectorielles dans \mathbb{R}^{n+1} , càd que chaque point de \mathbb{RP}^n correspond à une droite vectorielle dans \mathbb{R}^{n+1} .

Exemple

Il y a une correspondance bijective (en fait, un homéomorphisme) entre \mathbb{RP}^1 et le cercle S^1

Rappelons qu'une droite vectorielle est un ensemble $\ell_V := \{x \in \mathbb{R}^{n+1} \mid x = \lambda v\}$ où $v \in \mathbb{R}^{n+1} \setminus \{0\}$. Ainsi, on peut définir \mathbb{RP}^n comme un ensemble quotient :

$$\mathbb{RP}^n := (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$$
, où $v \sim w \iff \exists \lambda \in \mathbb{R} \setminus \{0\} \text{ tq } w = \lambda v$.

De façon équivalente, puisque chaque droite intersecte la sphère en exactement deux points, qui sont antipodaux, nous avons également

$$\mathbb{RP}^n := S^n / \sim$$
, où $v \sim w \iff w = \pm v$.

Ainsi, on a la projection canonique $\pi: S^n \to \mathbb{RP}^n$. On <u>définit</u> une topologie sur \mathbb{RP}^n comme la topologie induite de S^n , càd que

$$\mathbb{RP}^n \supset V$$
 est ouvert \iff $S^n \supset \pi^{-1}(V)$ est ouvert.

5/21

Le plan projectif \mathbb{RP}^2

Exercice

1. Montrer que l'hémisphère

$$S_{+}^{2} := \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1, z \geq 0\}$$

contient au moins un représentant de toute classe d'équivalence.

- 2. Montrer que l'hémisphère et le disque $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ sont homéomorphes;
- 3. Montrer que le disque D et le rectangle R sont homéomorphes. Alors, S_+^2 et R sont homéomorphes aussi.

LE PLAN PROJECTIF (SUITE)

Comme dans le cas de la bouteille de Klein, on peut démontrer que le plan projectif ne peut pas se plonger dans \mathbb{R}^3 .

7/21

Le plan projectif est un ruban de Moebius auquel on a collé un disque

Construction de la surface de Boy : https://www.youtube.com/watch?v=uiq-EcQz_uU.

Explorez le plan projectif vous-même : https://sketchfab.com/3d-models/boys-surface-bryant-kusner-d49b2e593962495b9deffb4206175dee.

ESPACES DE HAUSDORF / ESPACES SÉPARÉS

Rappelons que dans un espace métrique la limite d'une suite est unique si elle existe.

Démonstration. Supposons que m_n est une suite dans un espace métrique (M, d) qui converge vers m et m'.

$$m = \lim m_n \implies \forall \varepsilon > 0 \quad \exists N \quad \text{tq} \quad m_n \in B_{\varepsilon}(m) \quad \text{si } n \geq N;$$

 $m' = \lim m_n \implies \forall \varepsilon > 0 \quad \exists N' \quad \text{tq} \quad m_n \in B_{\varepsilon}(m') \quad \text{si } n \geq N'.$

Notons que si $m \neq m'$ et r := d(m, m')/2 > 0 on a $B_r(m) \cap B_r(m') = \emptyset$ parce que

$$\hat{m} \in B_{\varepsilon}(m) \cap B_{\varepsilon}(m) \Longrightarrow d(m,m') \le d(m,\hat{m}) + d(\hat{m},m') < r + r = d(m,m').$$

Alors, si $m \neq m'$, pour $\varepsilon = r = d(m, m')/2$ et tout $n \ge \max\{N, N'\}$ on a $m_n \in B_{\varepsilon}(m) \cap B_{\varepsilon}(m')$. Il s'agit donc d'une contradiction qui montre que m = m'.

9/21

Le point clé de l'argument ci-dessus est le suivant : dans un espace métrique, si $m \neq m'$ il existe un voisinage U_X de X et un voisinage U_Y de Y tq $U_X \cap U_Y = \emptyset$.

Attention

Dans un espace topolgique quelconque il n'est pas nécessaire que les voisinages U_X et U_Y tq $U_X \cap U_Y = \emptyset$ existent. Par exemple, dans $\mathbb R$ muni de la topologie cofinie, l'intersection de deux ensembles ouverts quelconques est non vide.

Définition

Un espace topologique X est dit de Hausdorff si pour tout couple x, $y \in X$ de points $\underline{distincts}$ il existe des ouverts U_X , V_Y tq

$$x \in U_X$$
, $y \in U_V$ et $U_X \cap U_V = \emptyset$.

On abrège "un espace topologique de Hausdorff" à un espace Hausdorff.

Remarque

La terminologie française pour "espace de Hausdorff" est celle *d'espace séparé*.

Lemme

Une suite convergente dans un espace Hausdorff a une seule limite

Démonstration.

Supposons que x_n est une suite dans un espace Hausdorff X qui converge vers x et x'. Puisque X est Hausdorff, $\exists U \ni x$ et $\exists U' \ni x$ ouverts tq $U \cap U' = \emptyset$.

$$x = \lim x_n \implies \exists N > 0 \text{ tq } x_n \in U \text{ si } n \ge N;$$

 $x' = \lim x_n \implies \exists N' > 0 \text{ tq } x_n \in U' \text{ si } n \ge N'.$

Alors, pour tout $n \ge \max\{N, N'\}$ on a $x_n \in U \cap U'$, une contradiction. \square

11/21

Propriétés des espaces de Hausdorff

Proposition

Soit (X, T) un espace de Hausdorff et $x \in X$. Le singleton $\{x\}$ est une partie fermée de X.

Démonstration.

Choisissons $y \in X \setminus \{x\}$. Puisque X est Hausdorff, il existe deux voisinages U_X et U_Y disjoints tels que $X \in U_X$ et $Y \in V_Y$. En particulier, $U_Y \subset X \setminus \{x\}$. Alors

$$X\backslash\{x\}=\bigcup_{y\in X\smallsetminus\{x\}}U_y$$

est ouvert en tant que la réunion des ouverts. Ainsi, $\{x\}$ est fermé.

Remarque

Dans l'espace topologique $X = \{a, b\}$ muni de la topologie

$$\mathfrak{T} := \{ \varnothing, X, \{a\} \}$$

le singleton $\{a\}$ n'est pas fermé. Par contre, $\{b\}$ est fermé.

Proposition

- 1. Soient X un esp. Hausdorff et $A \subset X$ un sous-espace. Alors A est Hausdorff.
- 2. Soient X, Y deux espaces Hausdorff. Alors X × Y est Hausdorff pour la topologie produit.
- 3. Si X est Hausdorff et si X et Y sont homéomorphes alors Y est Hausdorff. En d'autres termes, être un espace Hausdorff est une propriété topologique.

A titre d'exemple, nous prouvons 1. : Soient $a, b \in A$, $a \neq b$. En considérant a et b comme des points de X, qui est Hausdorff, on trouve $U_a, U_b \in \mathcal{T}_X$ tq

$$a \in U_a$$
, $b \in U_b$ et $U_a \cap U_b = \emptyset$.

On dénote
$$V_a := U_a \cap A$$
 et $V_b := U_b \cap A$. Alors, $a \in V_a$, $b \in V_b$ et $V_a \cap V_b \subset U_a \cap U_b = \emptyset$.

13/21

Proposition

Soient (X, T_X) et (Y, T_Y) des espaces topologiques et $f, g: X \to Y$ des fonctions continues. Si (Y, T_Y) est Hausdorff, l'ensemble

$$E := \left\{ x \in X \mid f(x) = g(x) \right\}$$

est un fermé de X.

Démonstration.

Soit $x \in X \setminus E$, alors $f(x) \neq g(x)$. Comme Y est Hausdorff, $\exists U, V \in \mathcal{T}_Y$ tq

$$f(x) \in U$$
, $g(x) \in V$ et $U \cap V = \emptyset$.

Puisque f et g sont continues, $f^{-1}(U)$ et $g^{-1}(V)$ sont des voisinages de x. Alors, $f^{-1}(U) \cap g^{-1}(V) =: W$ est un voisinage de x aussi. Puisque

$$f(W) \subset f(f^{-1}(U)) \subset U$$
 et $g(W) \subset g(g^{-1}(V)) \subset V$,

on a que $f(W) \cap g(W) = \emptyset$. Alors, $X \setminus E$ est ouvert.

14/21

Corollaire

Soit X un espace topologique, A un sous-ensemble dans X tq $\overline{A} = X$ et Y un espace Hausdorff. Pour une application $f: A \to Y$, il existe au plus une fonction $F: X \to Y$ continue tq $F|_A = f$.

Démonstration.

Supposons qu'il existe deux prolongements $F, G: X \rightarrow Y$. Alors,

$$A \subset E = \left\{ x \in X \mid F(x) = G(x) \right\} \subset X \qquad \Longrightarrow \qquad X = \bar{A} \subset \bar{E} = E \qquad \Longrightarrow \qquad E = X \qquad \Longrightarrow \qquad F = G.$$

15/21

Remarque

- Si le prolongement de f existe et est continu, f:A → Y est continue (par rapport à la topologie induite).
- · Le prolongement peut exister ou non. Par exemple,

$$\operatorname{sign} x = \begin{cases} +1, & \operatorname{si} x > 0, \\ -1, & \operatorname{si} x < 0 \end{cases}$$

est continue sur $A := \mathbb{R} \setminus \{0\}$ mais ne permet pas un prolongement continu défini sur \mathbb{R} .

Exercice (*)

Trouver un exemple de l'application continue $f: A \to Y$ qui permet deux prolongements continus $\bar{A} \to Y$ (ainsi, Y ne peut pas être Hausdorff).

LES SOUS-ENSEMBLES DENSE

Définition

Soit (X, \mathcal{T}) un espace topologique. Un sous-ensemble $A \subset X$ est dite *dense*, si $\bar{A} = X$. Autrement dite, A est dense, si chaque ouvert de X contient au moins un point de A.

Exemple

- 1. (0, 1) est dense dans [0, 1].
- 2. \mathbb{Q} est dense dans \mathbb{R} .
- 3. $\mathbb{R} \setminus \mathbb{Q}$ est aussi dense dans \mathbb{R} .
- 4. Pour (X, \mathcal{T}^{discr}) , seulement X est dense.
- 5. \mathbb{Z} est dense dans $(\mathbb{R}, \mathfrak{T}^{cofin})$. En fait, tout sous-ensemble infini est dense dans $(\mathbb{R}, \mathfrak{T}^{cofin})$.

17/21

On peut reformuler le corollaire précédent comme suit.

Corollaire

Soit X un espace topologique, A un sous-ensemble dense dans X et Y un espace Hausdorff. Pour une application $f: A \to Y$, il existe au plus une fonction $F: \bar{A} \to Y$ continue $tq F|_A = f$.

Pour voir une application, dénotons par $M_n(\mathbb{R})$ l'espace de toutes les matrices de taille $n \times n$ à coefficients réels. $M_n(\mathbb{R})$ est un espace vectoriel de dimension n^2 . Un isomorphisme $M_n(\mathbb{R}) \to \mathbb{R}^{n^2}$ est donné par

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \longmapsto (a_{11}, a_{12}, \dots, a_{1n}, \dots, a_{n1}, a_{n2}, \dots, a_{nn}).$$

En particulier, $M_n(\mathbb{R})$ est un espace métrique (alors, topologique).

 $d_2(A,B) := \left(\sum_{i,j=1}^n (a_{ij} - b_{ij})^2\right)^{1/2}.$

Lemme

Le sous-ensemble

$$GL_n(\mathbb{R}) := \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \} \subset M_n(\mathbb{R})$$

est dense.

Démonstration.

Soit $A \in M_n(\mathbb{R}) \setminus GL_n(\mathbb{R}) \iff \det A = 0$. Pour trouver une $B \in GL_n(\mathbb{R})$ proche de A considérons le polynôme caractéristique de A

$$\chi_A(\lambda) := \det(\lambda id - A) = \lambda^n + a_1\lambda^{n-1} + \cdots + a_n,$$

où $a_j = a_j(A) \in \mathbb{R}$. Puisque $\chi_A \not\equiv 0$, il a au plus n racines (et $\lambda = 0$ est une racine). Alors, $\exists \lambda_0 > 0$ tq la seule racine de χ_A dans $(-\lambda_0, \lambda_0)$ est 0. Si $\lambda_k \to 0$ et $\lambda_k \not\equiv 0$ on a que $(A - \lambda_k id) \in GL_n(\mathbb{R})$ converge vers A et

$$\det(A - \lambda_k id) = (-1)^n \chi_A(\lambda_k) \neq 0.$$

Donc,
$$A \in \overline{GL_n(\mathbb{R})}$$
 et ainsi, $\overline{GL_n(\mathbb{R})} = M_n(\mathbb{R})$.

19/21

Revenons au polynôme caractéristique

$$\chi_A(\lambda) := \det(\lambda id - A) = \lambda^n + a_1\lambda^{n-1} + \cdots + a_n.$$

Évidemment, $a_n = \chi_A(0) = (-1)^n \det A$ et $a_1(A) = -\text{Tr} A$. C'est un peu plus compliqué pour les autres coefficients.

Même si l'on ne peut pas exprimer facilement a_j par les coefficients de A, on peut en établir certaines propriétés comme suit. Si $P \in GL_n(\mathbb{R})$,

$$\det (P^{-1}AP) = \det A \implies \chi_{P^{-1}AP} = \chi_A \implies \chi_{QP} = \chi_{PQ}, \quad (*)$$
où $Q = P^{-1}A \iff A = PQ$.

Théorème

(*) s'applique à toutes $P, Q \in M_n(\mathbb{R})$. En d'autres termes, $a_j(PQ) = a_j(QP)$.

Remarque

Bien sûr, pour j = n et j = n - 1 on a les identités bien connues :

$$det(PQ) = det(QP)$$
 et $Tr(PQ) = Tr(QP)$.

Démonstration.

Notons que nous avons montré que $\chi_{QP} = \chi_{PQ}$ pour toutes $Q \in M_n(\mathbb{R})$ et toutes $P \in GL_n(\mathbb{R})$. Ainsi, pour Q fixée, considérons

$$f: M_n(\mathbb{R}) \to \mathcal{P}_n, \qquad f(P) = \chi_{PO} - \chi_{OP},$$

où \mathcal{P}_n est l'ensemble de tous les polynômes de degré au plus n. Comme pour M_n , on peut identifier \mathcal{P}_n avec \mathbb{R}^{n+1} :

$$b_0\lambda^n + b_1\lambda^{n-1} + \cdots + b_n \longmapsto (b_0, b_1, \ldots, b_n).$$

En particulier, \mathcal{P}_n peut être muni de la topologie Hausdorff.

L'application $M_n(\mathbb{R}) \to \mathcal{P}_n$, $A \mapsto \chi_A$ est continue puisque tout a_j est un polynôme de coefficients de A.

L'application $M_n(\mathbb{R}) \to M_n(\mathbb{R})$, $P \mapsto PQ$ est continue puisqu'elle est linéaire. Alors, $M_n(\mathbb{R}) \to \mathcal{P}_n$, $P \mapsto \chi_{PQ}$ est continue comme composition. Ainsi, f est continue et $f \equiv 0$ sur $GL_n(\mathbb{R})$. Alors, f = 0 partout puisque $GL_n(\mathbb{R})$ est dense.