# Chapter 11

I/O Interfacing

- One type of instruction transfers information to an I/O device (OUT).
- Another reads from an I/O device (IN).
- Instructions are also provided to transfer strings of data between memory and I/O.
  - INS and OUTS, found except the 8086/8088

- Instructions that transfer data between an I/O device and the microprocessor's accumulator (AL, AX, or EAX) are called IN and OUT.
- The I/O address is stored in register DX as a 16-bit address or in the byte (p8) immediately following the opcode as an 8-bit address.
  - Intel calls the 8-bit form (p8) a fixed address because it is stored with the instruction,
    in a ROM
- The 16-bit address is called a variable address because it is stored in a DX, and then used to address the I/O device.

Other instructions that use DX to address I/O are the INS and OUTS instructions.

- I/O ports are 8 bits in width.
  - a 16-bit port is actually two consecutive 8-bit ports being addressed
  - a 32-bit I/O port is actually four 8-bit ports

When data are transferred using IN or OUT, the I/O address, (port number or simply port), appears on the address bus.

- External I/O interface decodes the port number in the same manner as a memory address.
  - the 8-bit fixed port number (p8) appears on address bus connections  $A_7 A_0$  with bits  $A_{15} A_8$  equal to  $000000000_2$
  - connections above A<sub>15</sub> are undefined for I/O instruction

- The 16-bit variable port number (DX) appears on address connections  $A_{15}-A_0$ .
- The first 256 I/O port addresses (00H–FFH) are accessed by both fixed and variable I/O instructions.
  - any I/O address from 0100H to FFFFH is only accessed by the variable I/O address

- INS and OUTS instructions address an I/O device using the DX register.
  - but do not transfer data between accumulator and I/O device as do the IN/OUT instructions
  - Instead, they transfer data between memory and the I/O device.

- Two different methods of interfacing I/O: isolated I/O and memory-mapped I/O.
- In isolated I/O, the IN, INS, OUT, and OUTS transfer data between the microprocessor's accumulator or memory and the I/O device.
- In memory-mapped I/O, any instruction that references memory can accomplish the transfer.
- The PC does not use memory-mapped I/O.

#### ISOLATED I/O

- The most common I/O transfer technique used in the Intel-based system is isolated I/O.
  - *isolated* describes how I/O locations are isolated from memory in a separate I/O address space
- Addresses for isolated I/O devices, called ports, are separate from memory.
- Because the ports are separate, the user can expand the memory to its full size without using any of memory space for I/O devices.

- A disadvantage of isolated I/O is that data transferred between I/O and microprocessor must be accessed by the IN, INS, OUT, and OUTS instructions.
- Separate control signals for the I/O space are developed.

#### Memory-Mapped I/O

- Memory-mapped I/O does not use the IN, INS, OUT, or OUTS instructions.
- It uses any instruction that transfers data between the microprocessor and memory.
  - treated as a memory location in memory map
- Advantage is any memory transfer instruction can access the I/O device.
- Disadvantage is a portion of memory system is used as the I/O map.
  - reduces memory available to applications

#### Basic Input and Output Interfaces

- The basic input device is a set of three-state buffers.
- The basic output device is a set of data latches.
- The term IN refers to moving data from the I/O device into the microprocessor and
- The term OUT refers to moving data *out* of the microprocessor *to* the I/O device.



## The Basic Input Interface

- Three-state buffers are used to construct the 8-bit input port.
- External data are connected to the inputs of the buffers, buffer outputs connect to the data bus.

- The circuit of allows the processor to read the contents of the eight switches that connect to any 8-bit section of the data bus when the select signal becomes a logic 0.
- When the IN instruction executes, contents of the switches copy to the AL register.

#### The Basic Output Interface

 Receives data from the processor and usually must hold it for some external device.

• 8 light-emitting diodes (LEDs) connect to the processor through a set of eight data latches.

• The latch stores the number output by the microprocessor from the data bus so that the LEDs can be lit with any 8-bit binary number.



- Latches hold the data because when the processor executes an OUT, data are only present on the data bus for less than 1.0  $\mu$ s.
  - the viewer would never see the LEDs illuminate
- When the OUT executes, data from AL, AX, or EAX transfer to the latch via the data bus.

- Each time the OUT executes, the SEL signal activates, capturing data to the latch.
  - data are held until the next OUT
- When the output instruction is executed, data from the AL register appear on the LEDs.

#### Handshaking

- Many I/O devices accept or release information slower than the microprocessor.
- A method of I/O control called **handshaking** or **polling**, synchronizes the I/O device with the microprocessor.
- An example is a parallel printer that prints a few hundred characters per second (CPS).
- The processor can send data much faster.
  - a way to slow the microprocessor down to match speeds with the printer must be developed
  - the printer receives data, it places logic 1 on the BUSY pin, indicating it is printing data, BUSY indicates the printer is busy

- The software polls or tests the BUSY pin to decide whether the printer is busy.
  - If the printer is busy, the processor waits
  - if not, the next ASCII character goes to the printer
- This process of interrogating the printer, or any asynchronous device like a printer, is called handshaking or polling.

# I/O PORT ADDRESS DECODING

• Very similar to memory address decoding, especially for memory-mapped I/O devices.

• The difference between memory decoding and isolated I/O decoding is the number of address pins connected to the decoder.

#### Decoding 8-Bit I/O Port Addresses

- Fixed I/O instruction uses an 8-bit I/O port address that on  $A_{15}$ – $A_0$  as 0000H–00FFH.
  - we often decode only address connections  $A_7 A_0$  for an 8-bit I/O port address
- The DX register can also address I/O ports 00H–FFH.

• If the address is decoded as an 8-bit address, we can never include I/O devices using a 16-bit address.

## Decoding 16-Bit I/O Port Addresses

• The difference between decoding an 8-bit and a 16-bit I/O address is that eight additional address lines  $(A_{15}-A_8)$  must be decoded

- Data transferred to an 8-bit I/O device exist in one of the I/O banks in a 16-bit processor such as 80386SX.
- The I/O system on such a microprocessor contains two 8-bit memory banks.
- Because two I/O banks exist, any 8-bit I/O write requires a separate write.
- I/O reads don't require separate strobes.
  - as with memory, the processor reads only the byte it expects and ignores the other byte
  - a read can cause problems when an I/O device responds incorrectly to a read operation.

#### THE PROGRAMMABLE PERIPHERAL

- 82C55 programmable peripheral interface (PPI) is a popular, low-cost interface component found in many applications.
- The PPI has 24 pins for I/O, programmable in groups of 12 pins and groups that operate in three distinct modes of operation.
- 82C55 can interface any I/O device to the microprocessor.

#### Description of the 82C55

- The three I/O ports (labeled A, B, and C) are programmed as groups.
  - group A connections consist of port A (PA<sub>7</sub>-PA<sub>0</sub>) and the upper half of port C (PC<sub>7</sub>-PC<sub>4</sub>)
  - group B consists of port B (PB<sub>7</sub>-PB<sub>0</sub>) and the lower half of port C (PC<sub>3</sub>-PC<sub>0</sub>)
- 82C55 is selected by its CS' pin for programming and reading/writing to a port.



