Devoir surveillé 3

Calculatrice autorisée Vendredi 20 octobre 2023

EXERCICE 1 (6 POINTS)

- **1. a.** Soit $n \in \mathbb{N}$. Simplifier $2^{n+1} 2^n$.
 - **b.** Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$:

$$2^n - 2^{n-1} - \dots - 2 = 0$$
.

- **2.** Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = \frac{1}{3}u_n + n 2$. On admet que $u_5 = \frac{553}{243}$.
 - **a.** Montrer par récurrence que, pour tout entier $n \ge 5$, $u_n \ge n-3$.
 - **b.** En déduire la limite de (u_n) quand n tend vers $+\infty$.

CORRECTION

1. a. Soit $n \in \mathbb{N}$.

$$2^{n+1} - 2^n = 2 \times 2^n - 2^n$$
$$= 2^n (2 - 1)$$
$$= 2^n$$

b. Montrons par récurrence sur $n \in \mathbb{N}^*$, la propriété P(n): " $2^n - 2^{n-1} - \dots - 2 = 0$ ".

Initialisation : Montrons que P(1) est vraie. Si $n = 1, 2^n - 2^{n-1} - \dots - 2 = 2^1 - 2 = 0$.

Hérédité : Supposons P(n) vraie pour un rang n fixé et montrons P(n+1).

$$2^{n+1} - 2^n - 2^{n-1} - \dots - 2 = 2^n - 2^{n-1} - \dots - 2$$
$$= 0$$

par la question 1.a. par hypothèse de récurrence

P(n+1) est vraie!

Nous avons bien démontré par récurrence que pour tout $n \in \mathbb{N}^*$: $2^n - 2^{n-1} - \dots - 2 = 0$.

2. a. Montrons par récurrence sur $n \ge 5$, la propriété P(n): " $u_n \ge n-3$ ".

Initialisation : P(5) est vraie. En effet, on sait d'après l'énoncé que $u_5 = \frac{553}{243}$ donc $u_5 \geqslant \frac{486}{243} = 2 = 5 - 3$.

Hérédité : Supposons P(n) vraie pour un rang n fixé et montrons P(n+1).

$$u_{n+1} = \frac{1}{3}u_n + n - 2$$
 par relation de récurrence
 $\geqslant \frac{1}{3} \times (n-3) + n - 2$ par hypothèse de récurrence
 $\geqslant \frac{n}{3} + n - 3$ car $n \geqslant 5$
 $\geqslant 1 + n - 3$
 $\geqslant (n+1) - 3$

P(n+1) est vraie!

Nous avons bien démontré par récurrence que pour tout $n \ge 5$: $u_n \ge n-3$.

EXERCICE 2 (14 POINTS)

Soit (u_n) définie pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \frac{n^2}{2^n}.$$

- **1.** Pour tout entier $n \in \mathbb{N}^*$, on pose $v_n = \frac{u_{n+1}}{u_n}$.
 - **a.** Montrer que, pour tout $n \in \mathbb{N}^*$:

$$v_n = \frac{1}{2} \left(\frac{n+1}{n} \right)^2.$$

- **b.** Montrer que $\lim_{n\to+\infty} v_n = \frac{1}{2}$.
- **c.** Montrer que, pour tout entier $n \in \mathbb{N}^*$, $\nu_n > \frac{1}{2}$.
- **d.** Déterminer le plus petit entier n_0 tel que, pour tout $n \ge n_0$, $v_n \le \frac{3}{4}$.
- **e.** En déduire que, pour tout $n \ge n_0$, $u_{n+1} \le \frac{3}{4}u_n$.
- **2.** Pour tout entier $n \ge 5$, on pose :

$$S_n = \sum_{k=5}^n u_k = u_5 + u_6 + \dots + u_n.$$

a. Montrer par récurrence que, pour tout $n \ge 5$:

$$u_n \leqslant \left(\frac{3}{4}\right)^{n-5} u_5.$$

b. Montrer que, pour tout entier $n \ge 5$:

$$S_n \leqslant \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^{n-5}\right] u_5.$$

- **c.** En déduire que, pour tout entier $n \ge 5$, $S_n \le 4u_5$.
- **3.** Montrer que (S_n) est croissante et en déduire qu'elle converge.

CORRECTION

1. a. Soit $n \in \mathbb{N}^*$.

$$v_n = \frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \frac{(n+1)^2}{2^{n+1}} \times \frac{2^n}{n^2} = \frac{(n+1)^2}{2n^2} = \frac{1}{2} \left(\frac{n+1}{n}\right)^2$$

- **b.** Soit $n \in \mathbb{N}^*$. $v_n = \frac{1}{2} \left(\frac{n+1}{n} \right)^2 = \frac{1}{2} \left(1 + \frac{1}{n} \right)^2$. Comme $\lim_{n \to +\infty} 1 + \frac{1}{n} = 0$ alors $\lim_{n \to +\infty} v_n = \frac{1}{2} \times 1^2 = \frac{1}{2}$.
- **c.** Soit $n \in \mathbb{N}^*$.

$$n+1 \ge n$$

$$\Leftrightarrow \frac{n+1}{n} \ge 1$$

$$\Leftrightarrow \left(\frac{n+1}{n}\right)^2 \ge 1^2$$

$$\Leftrightarrow \frac{1}{2} \left(\frac{n+1}{n}\right)^2 \ge \frac{1}{2}$$

$$\Leftrightarrow v_n \ge \frac{1}{2}$$

d. Soit $n \in \mathbb{N}^*$.

$$v_n \leqslant \frac{3}{4}$$

$$\Leftrightarrow \frac{1}{2} \left(\frac{n+1}{n}\right)^2 \leqslant \frac{3}{4}$$

$$\Leftrightarrow \left(\frac{n+1}{n}\right)^2 \leqslant \frac{3}{2}$$

$$\Leftrightarrow \frac{n+1}{n} \leqslant \sqrt{\frac{3}{2}}$$

$$\Leftrightarrow n+1 \leqslant \sqrt{\frac{3}{2}}n$$

$$\Leftrightarrow n\left(1-\sqrt{\frac{3}{2}}\right) \leqslant -1$$

$$\Leftrightarrow n \geqslant \frac{-1}{1-\sqrt{\frac{3}{2}}}$$

$$\operatorname{car} 1 - \sqrt{\frac{3}{2}} < 0$$

Enfin, $\frac{-1}{1-\sqrt{\frac{3}{2}}} \approx 4.5$ donc $n_0 = 5$ est le plus petit entier tel que, pour tout $n \geqslant n_0$, $v_n \leqslant \frac{3}{4}$.

- **e.** Soit $n \geqslant n_0$. Par définition de v_n , $u_{n+1} = v_n u_n \leqslant \frac{3}{4} u_n$ en utilisant la question précédente.
- **2. a.** Montrons, par récurrence sur $n \ge 5$, la propriété P(n): " $u_n \le \left(\frac{3}{4}\right)^{n-5} u_5$ "

Initialisation: P(5) est vraie. En effet, $u_5 = 1 \times u_5 = \left(\frac{3}{4}\right)^{5-5} u_5$.

Hérédité : Supposons P(n) pour n fixé et montrons P(n+1).

$$u_{n+1}\leqslant rac{3}{4}u_n$$
 par 1.e.
$$\leqslant rac{3}{4} imes \Big(rac{3}{4}\Big)^{n-5}u_5$$
 par hypothèse de récurrence
$$\leqslant \Big(rac{3}{4}\Big)^{(n+1)-5}u_5$$

Nous avons prouvé que P(n+1) est vraie.

Finalement, par récurrence, nous avons montré que, pour tout $n \ge 5$: $u_n \le \left(\frac{3}{4}\right)^{n-5} u_5$.

b. Soit $n \geqslant 5$.

$$S_n = u_5 + u_6 + \dots + u_n \leqslant \left(\frac{3}{4}\right)^{5-5} u_5 + \left(\frac{3}{4}\right)^{6-5} u_5 + \dots + \left(\frac{3}{4}\right)^{n-5} u_5$$

$$\leqslant 1 \times u_5 + \frac{3}{4} \times u_5 + \dots + \left(\frac{3}{4}\right)^{n-5} u_5$$

$$\leqslant \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^{n-5}\right] u_5$$
en factorisant par u_5

c. $1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^{n-5}$ est la somme des n-6 premiers termes de la suite géométrique de premier terme 1 et de raison $\frac{3}{4}$.

$$1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^{n-5} = 1 \times \frac{1 - q^{n-4}}{1 - q}$$
$$= \frac{1 - \left(\frac{3}{4}\right)^{n-4}}{1 - \frac{3}{4}}$$
$$\leqslant \frac{1}{1 - \frac{3}{4}} = 4$$

Donc $\forall n \geqslant 5, S_n \leqslant 4u_5$.

3. (S_n) est majorée par $4u_5$ à partir de n=5, elle convergera si elle est croissante également à partir de n=5 et c'est le cas puisque pour $n \geqslant 5$, $S_{n+1} - S_n = u_{n+1} = \frac{(n+1)^2}{2^{n+1}} > 0$ comme quotient de quantités strictement positives.