Research Log - Week 11

JeffGWood@mavs.uta.edu

August 5, 2016

July 25, 2016 Started woring on implmentation of disparity estimation using dynamic programming in MatLab. So far I have completed the dynamic programming aspect only. I need to work on:

- Seperation of image into seperate scanlines, where number is based on window size.
- Conversion of window values to values used in the dynamic programming.

The generic method (summary below) seems to be a little different than method described in [Karathanasis1996] [1].

SUMMARY: A left image L and right image R each contain many scanlines, each at the same vertical position. Though each image's scanline is 1-dimensional, each point in the scanline is a $k \times k$ square matrix of normalized pixel values (commonly referred to as a Window). The window centered at pixel i in L is denoted by vector $\mathbf{L}(i,k)$, and similarly the window centered at pixel i in R is denoted by vector $\mathbf{R}(i,k)$.

A feature at i in L is closely matched to the feature at j in R if the sum of square differences $SSD(i,j,k) = ||\mathbf{L}(i,k) - \mathbf{R}(j,k)||_2$ is minimal (ideally 0). The dynamic programming approach to disparity estimation attempts to minimize the sum of SSD(i,j,k) over all possible i and j, by including a constant occlusion cost (OC) for instances when a window centered at i in L does not have a matching feature at j in R, and similarly a window centered at j in R does not have a matching feature at i in L. The matching cost (MC(i,j,m)) at for the windows centered at i in L and j in R is then assigned to be the minimum of:

- MC(i-1, j-1, m) + SSD(i, j, k)
- MC(i-1, j, m) + OC
- MC(i, j 1, m) + OC

to a $(m+1) \times (n+1)$ table (where m is the number of window values (image width less (k-1)) in L, and n is the number of window values in R. In addition to the above assignments, we let

- MC(0,0,m) = 0 for the initial cost.
- $MC(s \cdot OC, 0, m)$ (for all $s \leq m$) to denote first s windows in L are occluded from R.
- $MC(0, t \cdot OC, m)$ (for all $t \leq n$) to denote first t windows in R are occluded from L.

July 27, 2016 Continued reading [Karathanasis1996] [1]

Made additional changes to python Demo using OpenCV and OpenGL. Still a long way from finished.

July 28, 2016 Resumed work on disparity estimaion using dynamic programming in MatLab. Completed seperating images into seperate scanlines, as well as windows into dynamic programming values. Calculated disparities based on this technique and included output in relative statusreport_week11 folder.

References

[1] J. Karathanasis, D. Kalivas, and J. Vlontzos. Disparity estimation using block matching and dynamic programming. In *Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings of the Third IEEE International Conference on*, volume 2, pages 728–731 vol.2, Oct 1996.