006-Sensitivity Analysis of One Paramter

Central Limit Theorem

May 14, 2019

Abstract

Often in statistics, we are required to perform sensitivity analyses to see the effect of parameters on inference. Here I provide a simple illustration of performing such a task in an efficient and reproducible way using the function knitr::knit_expand (Xie, 2015, 2013, 2014). We use the demonstration of the Central Limit Theorem (CLT) in action (Joseph, 2010) as an example.

Contents

1	Lawrence Joseph's Trip to Purvis Hall	2
2	Proof of CLT in Action with R and knitr::knit_expand	3
	2.1 $n = 10 \dots $	4
	$2.2 n = 110 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	$2.3 n = 210 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	6
	$2.4 n = 310 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	$2.5 n = 410 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
	$2.6 n = 510 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
	$2.7 n = 610 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	10
	$2.8 n = 710 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	$2.9 n = 810 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
	$2.10 \ n = 910 \dots \dots$	13
	$2.11 \ n = 1010 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	14
	$2.12 \ n = 1110 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	15
	$2.13 \ n = 1210 \ldots \ldots$	16
	$2.14 \ n = 1310 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	17
	$2.15 \ n = 1410 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	18
	$2.16 \ n = 1510 \dots \dots$	19
	$2.17 \ n = 1610 \dots \dots$	20
	$2.18 \ n = 1710 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	21
	2.10 m = 1810	22

A	ssion Information	26
	$21 n = 2010 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	24
	$20 \ n = 1910 \ \dots $	23

Lawrence Joseph's Trip to Purvis Hall

2 Proof of CLT in Action with R and knitr::knit_expand

2.1 n = 10

Figure 1: CLT in Action with n = 10

2.2 n = 110

Figure 2: CLT in Action with n = 110

2.3 n = 210

Figure 3: CLT in Action with n=210

2.4 n = 310

Figure 4: CLT in Action with n = 310

2.5 n = 410

Figure 5: CLT in Action with n = 410

2.6 n = 510

Figure 6: CLT in Action with n = 510

2.7 n = 610

Figure 7: CLT in Action with n = 610

2.8 n = 710

Figure 8: CLT in Action with n = 710

2.9 n = 810

Figure 9: CLT in Action with n = 810

2.10 n = 910

Figure 10: CLT in Action with n=910

2.11 n = 1010

Figure 11: CLT in Action with n = 1010

2.12 n = 1110

Figure 12: CLT in Action with n = 1110

2.13 n = 1210

Figure 13: CLT in Action with n=1210

2.14 n = 1310

Figure 14: CLT in Action with n = 1310

2.15 n = 1410

Figure 15: CLT in Action with n = 1410

2.16 n = 1510

Figure 16: CLT in Action with n = 1510

2.17 n = 1610

Figure 17: CLT in Action with n = 1610

2.18 n = 1710

Figure 18: CLT in Action with n = 1710

2.19 n = 1810

Figure 19: CLT in Action with n = 1810

$2.20 \quad n = 1910$

Figure 20: CLT in Action with n = 1910

 $2.21 \quad n = 2010$ REFERENCES

2.21 n = 2010

Figure 21: CLT in Action with n = 2010

References

Lawrence Joseph. Principles of Inferential Statistics in Medicine, 2010. URL http://www.medicine.mcgill.ca/epidemiology/Joseph/courses/EPIB-607/notes.pdf. EPIB 607. 1

Yihui Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2013. URL http://yihui.name/knitr/. ISBN 978-1482203530. 1

Yihui Xie. knitr: A comprehensive tool for reproducible research in R. In Victoria Stodden, Friedrich Leisch, and Roger D. Peng, editors, *Implementing Reproducible Computational Research*. Chapman and Hall/CRC, 2014. URL http://www.crcpress.com/product/isbn/9781466561595. ISBN 978-1466561595. 1

REFERENCES

Yihui Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2015. URL http://yihui.name/knitr/. R package version 1.10.5. 1

A Session Information

```
print(sessionInfo(), locale = FALSE)
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Pop!_OS 18.10
##
## Matrix products: default
          /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.8.0
## BLAS:
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.8.0
## attached base packages:
                graphics grDevices utils datasets
## [1] stats
## [6] methods
                base
##
## other attached packages:
  [1] here_0.1
                pacman_0.5.0 knitr_1.22
##
## loaded via a namespace (and not attached):
  [1] compiler_3.6.0 backports_1.1.3 magrittr_1.5
  [4] rprojroot_1.3-2 formatR_1.6 tools_3.6.0
##
  [7] stringi_1.4.3
                      stringr_1.4.0 xfun_0.6
## [10] evaluate_0.13
```