Chapter 2 :: Combinational Logic Design (조합 논리 설계)

Digital Design and Computer Architecture

David Money Harris and Sarah L. Harris

Lectured by Jeong-Gun Lee @ Hallym

Chapter 2 :: Topics

- Introduction (소개)
- Boolean Equations (부울 식, 이진논리식)
- Boolean Algebra (부울대수)
- From Logic to Gates (논리에서 회로로...)
- Multilevel Combinational Logic (다층 조합회로)
- X's and Z's, Oh My (X와 Z?)
- Karnaugh Maps (카르노 맵)
- Combinational Building Blocks (조합회로 블록)
- Timing (타이밍)

Introduction

A logic circuit is composed of:

(논리 회로는 다음 등으로 이루어진다)

- Inputs (입력)
- Outputs (출력)
- Functional specification (기능)
- Timing specification (타이밍)

Circuits (회로)

- Nodes (\(\subset \subset \)
 - Inputs: *A*, *B*, *C*
 - Outputs: *Y*, *Z*
 - Internal: n1
- Circuit elements (회로 구성요소)
 - E1, E2, E3
 - Each a circuit

Types of Logic Circuits

- Combinational Logic (조합회로)
 - Memoryless (메모리 없음)
 - Outputs determined by current values of inputs
 (출력이 현재의 입력 값에 의해 결정됨)
- Sequential Logic (조합회로)
 - Has memory (메모리 가짐)
 - Outputs determined by previous and current values of inputs
 (출력이 현재와 이전 입력에 의존하여 결정됨)

Rules of Combinational Composition

- Every circuit element is itself combinational
- Every node of the circuit is either designated as an input to the circuit or connects to exactly one output terminal of a circuit element
- The circuit contains *no cyclic paths*: every path through the circuit visits each circuit node at most once
- Example:

Boolean Equations (부울식)

- Functional specification of outputs in terms of inputs
- Example:

$$S = \mathbf{F}(A, B, C_{\text{in}})$$
 $C_{\text{out}} = \mathbf{F}(A, B, C_{\text{in}})$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Sum-of-Products (SOP) Form

- All Boolean equations can be written in SOP form
- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- The function is formed by *ORing the minterms* for which the output is **TRUE**
- Thus, a sum (OR) of products (AND terms)

A	В	Y	minterm
0	0	0	$\overline{A} \ \overline{B}$
0	1	1	$\overline{A} \; B)$
1	0	0	\overline{AB}
1	1	1	AΒ

$$Y = F(A, B, C) = \overline{AB} + AB$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row in a truth table has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- The function is formed by *ANDing the maxterms* for which the output is **FALSE**
- Thus, a product (AND) of sums (OR terms)

_ <u>A</u>	В	Y	maxterm			
0	0	0	A + B)			
0	1	1	$A + \overline{B}$			
1	0	0	A + B			
1	1	1	$\overline{A} + \overline{B}$			

$$Y = F(A, B, C) = (A + B)(\overline{A} + B)$$

SOP = POS ?

$$Y = F(A, B, C) = \overline{AB} + AB$$

$$= (\overline{A} + A)B = 1B = B$$

$$= (1 + A + \overline{A})B = B + AB + \overline{AB}$$

$$Y = F(A, B, C) = (A + B)(\overline{A} + B)$$

$$= A\overline{A} + AB + \overline{A}B + BB$$

$$= AB + \overline{A}B + B$$

$$= (A + \overline{A} + 1)B = B$$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• SOP – sum-of-products

_	0	С	E	minterm
	0	0	0	$\overline{A} \overline{B}$
	0	1	0	$\overline{\mathtt{A}}$ B
	1	0	1	$\overline{A} \overline{B}$
	1	1	0	АВ

$$Y = A\overline{B}$$

• POS – product-of-sums

0	С	Ε	maxterm			
0	0	0	A + B)			
0	1	0	$A + \overline{B}$			
1	0	1	A + B			
1	1	0	$\overline{A} + \overline{B}$			

$$Y = (A + B)(A + \overline{B})(\overline{A} + \overline{B})$$

Boolean Algebra

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (1 or 0)
- Axioms and theorems obey the principles of duality:
 - ANDs and ORs interchanged, 0's and 1's interchanged

Boolean Axioms and Theorems

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2'	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

- $B \bullet 1 = B$
- $\bullet \quad \mathbf{B} + \mathbf{0} = \mathbf{B}$

$$B - = B$$

$$B \rightarrow B$$

T2: Null Element Theorem

- $\mathbf{B} \bullet 0 = 0$
- B + 1 = 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Idempotency Theorem

- $B \bullet B = B$
- B + B = B

$$B - B - B - B$$

$$B \rightarrow B \rightarrow B$$

T4: Identity Theorem

•
$$\overline{B} = B$$

$$B - \bigcirc \bigcirc \bigcirc \bigcirc = B - \bigcirc \bigcirc$$

T5: Complement Theorem

•
$$B \bullet \overline{B} = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 = 0 ----

$$\frac{B}{B}$$
 \rightarrow 1

Boolean Theorems of Several Variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7'	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Simplifying Boolean Expressions: Example 1

•
$$Y = \overline{AB} + AB$$

 $= B(\overline{A} + A)$ T8
 $= B(1)$ T5'
 $= B$ T1

Simplifying Boolean Expressions: Example 2

•
$$Y = B(AB + ABC)$$

 $= A(AB(1 + C))$ T8
 $= A(AB(1))$ T2'
 $= A(AB)$ T1
 $= (AA)B$ T7
 $= AB$ T3

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \bullet \overline{B}$$

Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

• Pushing bubbles on *all* gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Bubble Pushing

• What is the Boolean expression for this circuit?

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at the output of the circuit and work toward the inputs.
- Push any bubbles on the final output back toward the inputs.
- Working backward, draw each gate in a form so that bubbles cancel.

Bubble Pushing Rules

From Logic to Gates

- Two-level logic: ANDs followed by Ors
- Example: $Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C$

Circuit Schematic Rules (회로 그림 규칙)

- Inputs are on the left (or top) side of a schematic 입력은 왼쪽 또는 위쪽에...
- Outputs are on the right (or bottom) side of a schematic 출력은 오른쪽 또는 아래쪽에...
- Whenever possible, gates should flow from left to right 가능한 회로는 왼쪽에서 오른쪽으로 데이터가 흐르게...
- Straight wires are better to use than wires with multiple corners
 - 가능하면 선은 일직선으로...

Circuit Schematic Rules (cont.)

- Wires always connect (연결) at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect wires connect without a dot do at a T junction at a dot not connect

Multiple Output Circuits

A_3	A_2	A_1	A_o	Y ₃	Y_2	Y_1	Y_o
0	0	0	0	0	0	0	0 1 0 0 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0 0 0 0 0 0	1	0 0 1 1 0 0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0 0 0 0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	01010101010	0 1 1 1 1 1	0		0
1	1	0	0	1	0	0 0 0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	$egin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	0 0 1 1 0 0 1 1 0 0 1 1	0	1	000011110000000		0
1	1	1	1	1	0	0	0

Priority Encoder Hardware

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y_1	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	00000001111111	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01010101010101	1	0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_1	A_o	Y ₃	Y_2	Y_1	Y _o 0 1 0 0 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

A_3	A_2	A_1	A_o	Y ₃ 0 0 0 1	Y_2	Y ₁	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	X	1	0	0	0

Contention: X

• Contention: circuit tries to drive the output to 1 and 0

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

Floating: Z

- Floating, high impedance, open, high Z
- Output is not connected to the input

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

•
$$PA + PA = P$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABŌ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

K-map

- Circle 1's in adjacent squares
- In the Boolean expression, include only the literals whose true and complement form are *not* in the circle

$$Y = \overline{A}\overline{B}$$

K-map Example

Truth Table

	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

K-Map

$$Y = \overline{A}B + A\overline{B}C$$

3-input K-map

Truth Table

_ A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + B\overline{C}$$

K-map Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$
- Implicant: product of literals $AB\overline{C}$, $\overline{A}C$, BC
- Prime implicant: implicant corresponding to the largest circle in a K-map

K-map Rules

- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges of the K-map
- A one in a K-map may be circled multiple times
- A "don't care" (X) is circled only if it helps minimize the equation

4-input K-map

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Maps with Don't Cares

$$Y = A + \overline{B}\overline{D} + C$$

Combinational Building Blocks

- Multiplexers (멀티플렉서)
- Decoders (디코더)

Multiplexer (Mux:먹스)

- Selects between **one of** *N* **inputs** to connect to the output.
- $\log_2 N$ -bit select input control input
- Example:

2:1 Mux

S	D_1	D_0	Y	S	Y
0	0	0	0	0	$D_{\rm c}$
0	0	1	1	1	$D_1^{"}$
0	1	0	0	·	•
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

Logic using Multiplexers

• Using the mux as a lookup table – AND-gate

(먹스를 참조테이블로 사용하여 논리게이트 만들기)

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = AB$$

Logic using Multiplexers

• Reducing the size of the mux (먹스의 사이즈 줄이기)

Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once 출력 신호들 중 단 하나의 값만 '1'을 갖는다.

	A_1	A_0	Y_3	Y_2	Y ₁	Y_0
•	0	0	0	0		1
	0	1	0	0	1	0
	1	0	0	1	0	0
	1	1	1	0	0	0

Logic using Decoders (디코더를 이용한 회로)

• OR minterms

Timing (타이밍)

- Delay between input change and output changing
- One of the biggest challenges in circuit design: making the circuit fast

Propagation & Contamination Delay (전파 및 혼합 지연)

- Propagation delay: $t_{pd} = \max$ delay from input to output
- Contamination delay: $t_{cd} = \min$ delay from input to output

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why *tpd* and *tcd* may be different:
 - Different rising and falling delays
 상승지연과 하강지연이 다르다.
 - Multiple inputs and outputs, some of which are faster than others
 입력이나 출력이 여러 개 있을 경우, 서로간의 속도 차가 있다.
 - Circuits slow down when hot and speed up when cold
 회로는 뜨거울 때 속도가 느리고, 차가울 때 속도가 빨라진다.

Critical and Short Paths (임계 경로 및 짧은 경로)

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$ Short Path: $t_{cd} = t_{cd_AND}$

Glitches (글리치)

• A glitch occurs when a single input change causes multiple output changes

(단일 입력의 변화가 다수의 출력의 유도할때)

• Glitches don't cause problems because of synchronous design conventions (which we'll talk about in Chapter 3)

(동기식 회로에서는 문제를 야기하지 않음)

• But it's important to recognize a glitch when you see one in simulations or on an oscilloscope (하지만 존재에 대해서 이해하고 해석할 능력은 필요함)

Glitch Example

 $Y = \overline{A}\overline{B} + BC$

Glitch Example (cont.)

Glitch Example (cont.)

Why Understand Glitches?

- Recognize them when look at timing diagrams in (simulations or on an oscilloscope)
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches