Convolutions

$$X \cdot W = \sum_{i=1}^{n} x_i \times w_i = W^{\mathsf{T}} X$$


```
Out = 0
for index in number_of_inputs:
   Out = Out + (input[index] x weight[index])
```


What is convolution? Detecting slash or backslash...

Convolutional Kernel

Image Classifier

What

Feature Map

Source: Vincent Dumoulin, https://github.com/vdumoulin/conv_arithmetic

What is convolution? Image Feature

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 × 5 (approximation)	$ \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} $	

Watch the video: http://setosa.io/ev/image-kernels/

Gabor Filter

Source: http://www.sciencedirect.com/science/article/pii/S0031320315001570

"Take the top right corner of the image?"

Convolution creates FEATURE DETECTORS.

Convolutional Networks

YOLO

SegNet

University of Cambridge, https://www.youtube.com/watch?v=CxanE_W46ts

ImageNet

Source: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks