NCTU Introduction to Machine Learning, Final

109550018 郭昀

GitHub Link

https://github.com/Mars3397/2022 Machine Learning/tree/main/Final Project

Reference

https://www.kaggle.com/code/ambrosm/tpsaug22-eda-which-makes-sense

- → GroupKFold
- → Feature engineering of measurement 3 & measurement 5
- → Clipping of measurement 2

Brief Introduction

本次作業之 task 為根據產品之各項測量結果,預測此產品之 failure。我選擇 logistic regression 當作我的 model,然後另外做了 feature engineering, measurements standardization 以及 fill in missing values 等 data pre-processing, training 的過程則是使用 GroupKFold 來切分 train set 跟 validation set, train 完後將 model 以 pickle 的方式存起來, infernece 的時候即可 load 來使用。

Methodology

Data Pre-Process

- LabelEncoder: 因為 product_code, attribute_0 以及 attribute_1 為 string 型態的資料, 所以需要將其轉換為數字型態才可以套入 model 中, 因此我使用
 sklearn.preprocessing 中的 LabelEncoder 來做轉換。
- Standardization: 這部分是我在嘗試提高 performance 的過程中產生的想法,我將 dataset 中的 measurement_3 ~ measurement_17 都做 standardization, 而結果也有 如預期提高, 因此我就保留下來了。
- Measurement_2 clipping: 這部分是在 reference 的討論文章中有提到,
 measurement_2 的數值在大於 11 之後,就會與 failure 成正相關,因此將
 measurement 2 小於 11 的數值都改為 11。

Feature Engineering

- Measurement missing: 這部分是參考上方 reference 連結以及此篇討論之文章,他們都有提出 missing values 也可能造成產品 failure 這個想法,而根據實驗及統計結果,measurement_3 跟 measurement_5 的 missing value count 的 z-score 是所有features 中的極值,因此我在 training set 和 testing set 都多加入了measurement 3 missing 和 measurement 5 missing 這兩個 feature。
- Average: 這部分則是參考此篇文章, 作者提到可以嘗試將 features aggregate 起來 得到有用的 feature, 因此我將 measurement_3 ~ measurement_16 全部相加取平 均, 並存成 feature "avg"。
- Area: 這個 feature 也是此篇作者的觀察結果,作者表示 attribute_2 和 attribute_3
 看起來像是產品的長跟寬,因此我將他們相乘並存成 feature "area"

Fill in missing value

KNNImputer: 因為 training data 跟 testing data 都含有 Nan, 因此需要將 missing value 補上才能傳入 model 中。我使用的方法是 KNNImputer(n_neighbors=3) 他會取前後三個值的平均來補 missing value。

Model Architecture

Logistic Regression: model 的部分我是選用 LogisticRegression(penalty='l1', C=0.01, solver='liblinear', random_state=1), 會選用他的原因是我覺得這次的 task 最能提升 performance 的最主要差異會是資料的處理而不是 model 的選擇, 所以就採用比較簡單而且討論區很多人推薦的 LogisticRegression。

Feature Selection

除了於 feature engineering 所述新增加的 feature 外, 我的 feature 還選了 loading, measurement_17, measurement_0, measurement_1, measurement_2, attribute_0, 這部分則是我的實驗結果. 嘗試多種組合後得出的最好組合。

Summary

總結來說,我覺得對於這次的 task 來說,資料的處理非常重要,像是 data pre-processing, feature engineering, fill in missing value 都對於 performance 有顯著的提升。

Result

Submissions

You selected 0 of 2 submissions to be evaluated for your final leaderboard score. Since you selected less than 2 submission, Kaggle auto-selected up to 2 submissions from among your public best-scoring unselected submissions for evaluation. The evaluated submission with the best Private Score is used for your final score.

0/2

Submissions evaluated for final score

All Successful Selected Errors		R	ecent 🕶	
Submis	sion and Description	Private Score (i)	Public Score (i)	Selected
©	109550018.csv Complete (after deadline) - now	0.59046	0.58503	
©	submission.csv Complete (after deadline) · 1h ago	0.59046	0.58503	
Ø.	submission.csv	0.59046	0.58503	