Multi Armed Bandits for Many Task Optimization

Le Tien Thanh - Ta Bao Thang Supervisor: Professor Huynh Thi Thanh Binh

January 9, 2021

- Introduction
- Related works
- Proposed method
- Experimental results

- Introduction
- 2 Related works
- 3 Proposed method
- 4 Experimental results

Many task optimization - MaTSOO benchmark

- Introduction
- 2 Related works
- Proposed method
- 4 Experimental results

MFEA

MFEA

A. Gupta, Y.-S. Ong, and L. Feng, "Multifactorial evolution: Toward evolutionary multitasking," *IEEE Transactions on Evolutionary Computation*, vol. 20, no. 3, pp. 343–357, 2015

Problem

• Do not group ideal assist tasks

MaTGA

MaTGA

Y. Chen, J. Zhong, L. Feng, et al., "An adaptive archive-based evolutionary framework for many-task optimization," *IEEE Transactions on Emerging Topics in Computational Intelligence*, 2019

Problem

- Store past solutions
- Measure KLD between past solutions
- Complex, many parameters

- Introduction
- 2 Related works
- Proposed method
- 4 Experimental results

Task selection as a MAB problem

Reward

UCB

Algorithm

Linear decay of rmp

- Introduction
- 2 Related works
- 3 Proposed method
- 4 Experimental results

Benchmark

Task	Function	Ideal Assisted Task	
T_1	Sphere1	None	
T_2	Sphere2	None	
T_3	Sphere3	None	
T_4	Weierstrass25D	None	
T_5	Rosenbrock	T_1	
T_6	Ackley	T_2	
T_7	Weierstrass50D	T_3, T_4	
<i>T</i> ₈	Schwefel	None	
T_9	Griewank	<i>T</i> ₄	
T_1 0	Rastrigin	None	

Parameter setting

MFEA

Population size: 30

• rmp: 0.3

• sbxdi: 2

pmdi: 5

MAB-MFEA

• *rmp_{min}*: 0.1

• *rmp_{max}*: 0.9

ullet α : 0.01 - discounted coefficient

• c: 0.5 - UCB explore/exploit trade-off coefficient

MaTGA

- NP:
- λ : 0.8 reward shrink rate
- ρ : 0.8 attenuation coefficient
- ullet α : 0.1 knowledge transfer rate
- UR: 0.2 archive update rate
- AcS: 300 archive size

Table

	MFEA	MaTGA	MAB-MFEA
T_1	1.32E+00	2.45E-04	2.85E-03
T_2	1.27E+00	4.75E-04	1.15E-12
T_3	1.17E+00	0	6.30E-09
T_4	3.37E+00	1.00E-06	5.37E-04
T_5	8.15E+02	2.16E-02	1.01E+01
T_6	1.99E+01	3.61E-03	1.05E-07
T_7	1.05E+01	5.57E-04	1.52E-03
T_8	2.34E+03	3.40E-02	9.21E+02
T_9	4.11E-02	4.52E-03	4.50E-03
T_10	1.55E+01	1.57E+01	7.77E+00

Table 1: The performance of 3 algorithms for 30 independent runs

Analysis

Figure 1: The average times of choosing knowledge transfer target, the assisted task is highlighted in red

Analysis

Figure 2: The UCB function value for choosing knowledge transfer target, the assisted task is highlighted in red

Conclusion

Contribution

- Trade of between explore and exploit task relationship.
- Better than MFEA, less complex but performs equally well to MaTGA.
- The best on 5/10 tasks.
- Analyse on 10 task benchmark shows MAB-MFEA correctly identify ideal assist task.

Future task to complete the study

- Adjust rmp_min and rmp_max paramter.
- Finish experiment on CEC Complex 50 tasks benchmark.

Thank you for your attention!