

Filip Zieliński

2025

Spis Treści

- 1. Działania
- 2. Grupy
- 3. Pierścienie
- 4. Ciała
- 5. Funkcje
- 6. Iloczyn Kartezjański i Suma Prosta

Działanie Wewnętrzne Działania

Definicja

Niech X będzie ustalonym niepustym zbiorem.

Dwuargumentowym **działaniem wewnętrznym** na zbiorze X nazywamy dowolne odwzorowanie $h: X \times X \to X$. Dla elementów $x,y \in X$ wartość h(x,y) nazywamy wynikiem działania h na argumentach x,y.

Działanie Wewnętrzne

Definicja

Niech X będzie ustalonym niepustym zbiorem.

Dwuargumentowym **działaniem wewnętrznym** na zbiorze X nazywamy dowolne odwzorowanie $h: X \times X \to X$. Dla elementów $x,y \in X$ wartość h(x,y) nazywamy wynikiem działania h na argumentach x,y.

Przykład

Działaniami wewnętrznymi są np.

•
$$h(x,y) = \frac{x+y}{2}$$
, dla $X = \mathbb{Q}$

•
$$h(x,y) = 2^{xy}$$
, dla $X = \mathbb{N}$

•
$$h(f,g) = f \circ g$$
, dla $X = \mathcal{F}(\mathbb{R}, \mathbb{R})$

Działaniem wewnętrznym nie jest np.

•
$$h(x,y) = x + y$$
, dla $X = \{a \in \mathbb{N} : 2 \mid a \vee 3 \mid a\}$

Działanie Zewnętrzne Działania

Definicja

Dwuargumentowym **działaniem zewnętrznym** w niepustym zbiorze X nad niepustym zbiorem F nazywamy odwzorowanie $g: F \times X \to X$.

Działanie Zewnętrzne Działania

Definicja

Dwuargumentowym **działaniem zewnętrznym** w niepustym zbiorze X nad niepustym zbiorem F nazywamy odwzorowanie $g: F \times X \to X$.

Przykład

Działaniami zewnętrznymi są np.

•
$$g(\alpha, [x, y]) = [\alpha \dot{x}, \alpha \dot{y}], dla F = \mathbb{R}, X = \mathbb{R}^2$$

•
$$g(a,x) = nx$$
, dla $F = \mathbb{Z}, X = \mathbb{R}$

•
$$g(a,b) = ab$$
, dla $F = \mathbb{Z}, X = \{b \in \mathbb{Z} : 3 \mid b\}$

Działaniem zewnętrznym nie jest np.

•
$$g(a,b) = a + b$$
, dla $F = \mathbb{R}, X = \mathbb{Q}$

Konwencja

Zwyczajowo działania oznaczamy symbolami :

$$+,\star,\cdot,\circ,\oplus,\otimes$$

Natomiast wynik działania oznaczamy odpowiednio przez:

$$X + y, X \star y, X \cdot y, X \circ y, X \oplus y, X \otimes y$$

Definicja

Niepusty zbiór G z działaniem wewnętrznym \oplus nazywamy **Półgrupą** jeżeli spełnione są następujące warunki

1.
$$\forall x, y, z \in G \quad (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

Definicia

Niepusty zbiór *G* z działaniem wewnętrznym ⊕ nazywamy Monoidem jeżeli spełnione są następujące warunki

1.
$$\forall x, y, z \in G \quad (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

2.
$$\exists e \in G : \forall x \in G \quad x \oplus e = e \oplus x = x$$

3.
$$\forall x \in G \exists x' \in G \quad x \oplus x' = x' \oplus x = e$$

3.
$$\forall x \in G \exists x' \in G \quad x \oplus x' = x' \oplus x = \epsilon$$

Definicja

Niepusty zbiór G z działaniem wewnętrznym \oplus nazywamy **Grupą** jeżeli spełnione są następujące warunki

1.
$$\forall x, y, z \in G \quad (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

2.
$$\exists e \in G : \forall x \in G \quad x \oplus e = e \oplus x = x$$

3.
$$\forall x \in G \exists x' \in G \quad x \oplus x' = x' \oplus x = e$$

(przemienność)

Definicja

Niepusty zbiór G z działaniem wewnętrznym \oplus nazywamy **Grupą abelową** jeżeli spełnione są następujące warunki

1.
$$\forall x, y, z \in G \quad (x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 (łączność)

2.
$$\exists e \in G : \forall x \in G \quad x \oplus e = e \oplus x = x$$
 (el. neutralny)

3.
$$\forall x \in G \ \exists x' \in G \quad x \oplus x' = x' \oplus x = e$$
 (el. odwrotne)

4.
$$\forall x, y \in G \quad x \oplus y = y \oplus x$$
 (przemienność)

Definicja

Niepusty zbiór G z działaniem wewnętrznym \oplus nazywamy **Grupą abelową** jeżeli spełnione są następujące warunki

1.
$$\forall x, y, z \in G \quad (x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 (łączność)

2.
$$\exists e \in G : \forall x \in G \quad x \oplus e = e \oplus x = x$$
 (el. neutralny)

3.
$$\forall x \in G \ \exists x' \in G \quad x \oplus x' = x' \oplus x = e$$
 (el. odwrotne)

4.
$$\forall x, y \in G$$
 $x \oplus y = y \oplus x$ (przemienność)

Konwencja addytywna

Element neutralny grupy G oznaczamy często jako $\mathbf{0}$. W szczególności jeśli mowa o "dodawaniu", oznaczanym przez $+, \oplus$ Elementy symetryczne nazywamy "przeciwnymi" i oznaczamy -a. Zapis a-b należy rozumieć jako a+(-b)

Przykład

Półgrupą jest np.

•
$$(\mathbb{N} \setminus \{0\}, +)$$

Monoidem jest np.

$$\bullet$$
 (\mathbb{Z},\cdot)

Grupą jest np.

•
$$(\mathcal{F}(\mathbb{R},\mathbb{R}),\circ)$$

Grupą Abelową jest np.

•
$$(\mathbb{Z},+)$$

Przykład

Półgrupą jest np.

•
$$(\mathbb{N} \setminus \{0\}, +)$$

Monoidem jest np.

•
$$(\mathbb{Z},\cdot)$$

Grupą jest np.

•
$$(\mathcal{F}(\mathbb{R},\mathbb{R}),\circ)$$

Grupą Abelową jest np.

$$\bullet$$
 $(\mathbb{Z},+)$

Konwencja

Jeżeli działanie w grupie wynika z kontekstu, możemy je pomijać w zapisie i utożsamiać grupę ze zbiorem.

Podgrupa

Grupy

Definicja

Niech (G,\oplus) będzie grupą. Niepusty podzbiór $H\subseteq G$ nazywamy podgrupą grupy G jeżeli zachodzą warunki

$$\forall x \in H \quad -x \in H$$
$$\forall x, y \in H \quad x \oplus y \in H$$

Podgrupa

Definicja

Niech (G,\oplus) będzie grupą. Niepusty podzbiór $H\subseteq G$ nazywamy podgrupą grupy G jeżeli zachodzą warunki

$$\forall x \in H \quad -x \in H$$
$$\forall x, y \in H \quad x \oplus y \in H$$

Przykład

Podgrupami $(\mathbb{Z}, +)$ są np.

$$2\mathbb{Z} = \{a \in \mathbb{Z} : 2 \mid a\}, \quad \{\mathbf{0}\}$$

Podgrupami (\mathbb{R},\cdot) są np.

$$\mathbb{Q}$$
, \mathbb{R}

Grupy

Definicja

Niech (G,\oplus) będzie grupą. Niepusty podzbiór $H\subseteq G$ nazywamy podgrupą grupy G jeżeli zachodzą warunki

$$\forall x \in H - x \in H$$
$$\forall x, y \in H \quad x \oplus y \in H$$

Przykład

Podgrupami $(\mathbb{Z},+)$ są np.

$$2\mathbb{Z} = \{a \in \mathbb{Z} : 2 \mid a\}, \quad \{\mathbf{0}\}$$

Podgrupami (\mathbb{R},\cdot) są np.

 \mathbb{Q} , \mathbb{R}

Konwencja

oznaczenie H < G należy rozumieć jako "H jest pogrupą G".

Homomorfizmy Grup

Definicja

Homomorfizmem między grupą (G, \oplus) oraz grupą (H, \otimes) nazywamy dowolne odwzorowanie $h: G \to H$, spełniające warunek

$$\forall x, y \in G \quad h(x \oplus y) = h(x) \otimes h(y)$$

Homomorfizmy Grup

Definicja

Homomorfizmem między grupą (G,\oplus) oraz grupą (H,\otimes) nazywamy dowolne odwzorowanie $h:G\to H$, spełniające warunek

$$\forall x,y \in G \quad h(x \oplus y) = h(x) \otimes h(y)$$

Przykład

Homomorfizmem grup $(\mathbb{Z},+),(\mathbb{R},\cdot)$ jest np.

•
$$h(x) = e^x$$

Homomorfizmem grup $(\mathbb{Z},+),(\mathbb{Z},+)$ jest np.

•
$$h(x) = 2x$$

Definicja

Zbiór R z dwoma działaniami \oplus, \otimes nazywamy **Pierścieniem** , jeżeli zachodzą następujące warunki

- 1. (R,⊕) jest grupą abelową
- **2.** (R, \otimes) jest półgrupą
- **3.** $\forall x, y, z \in R$ $x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z \wedge (x \oplus y) \otimes z = x \otimes z \oplus y \otimes z$ (rozdzielność mn. wzg. dod.)

Definicja

Zbiór R z dwoma działaniami \oplus , \otimes nazywamy **Pierścieniem z** jedynką, jeżeli zachodzą następujące warunki

- 1. (R,⊕) jest grupą abelową
- **2.** (R, \otimes) jest monoidem
- 3. $\forall x, y, z \in R$ $x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z \land (x \oplus y) \otimes z = x \otimes z \oplus y \otimes z$ (rozdzielność mn. wzg. dod.)

Definicja

Zbiór R z dwoma działaniami \oplus , \otimes nazywamy **Pierścieniem przemiennym z jedynką**, jeżeli zachodzą następujące warunki

- 1. (R,⊕) jest grupą abelową
- **2.** (R, \otimes) jest monoidem przemiennym
- 3. $\forall x, y, z \in R$ $x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z \land (x \oplus y) \otimes z = x \otimes z \oplus y \otimes z$ (rozdzielność mn. wzg. dod.)

Pierścienie

Przykład

Pierścieniem jest np.

•
$$(5\mathbb{Z}, +, \cdot)$$

Pierścieniem z jedynką jest np.

•
$$(\mathcal{M}_2(\mathbb{R},+,\cdot))$$

Pierścieniami przemiennymi z jedynką są np.

- $(\mathbb{Z},+,\cdot)$
- $(\mathbb{R}[x],+,\cdot)$
- $(\mathbb{Z}_n,+,\cdot)$
- $(\mathbb{R}[x_1,\ldots,x_n],+,\cdot)$

Pierścienie

Obserwacja

Dla dowolnego pierścienia (R, \oplus, \otimes) zachodzi:

$$\forall x \in R \quad x \otimes \mathbf{0} = \mathbf{0} \otimes x = \mathbf{0}$$

Obserwacja

Dla dowolnego pierścienia (R, \oplus, \otimes) zachodzi:

$$\forall x \in R \quad x \otimes \mathbf{0} = \mathbf{0} \otimes x = \mathbf{0}$$

Dowód.

Przeprowadzimy dowód, że $x \otimes \mathbf{0} = 0$. Załóżmy nie wprost, że istnieje $x \in R$ takie, że $x \otimes \mathbf{0} = y, y \neq \mathbf{0}$. Możemy zapisać $y = x \otimes \mathbf{0} = x \otimes (\mathbf{0} \oplus \mathbf{0}) = x \otimes \mathbf{0} \oplus x \otimes \mathbf{0} = y \oplus y$. Dostaliśmy zatem $y = y \oplus y$ co po obustronnym dodaniu -y prowadzi do $y = \mathbf{0}$ co jest sprzeczne z założeniem. Dowód faktu, że $\mathbf{0} \otimes x = \mathbf{0}$ można przeprowadzić analogicznie.

Pierścienie

Konwencja

Jeżeli (R, \oplus, \otimes) jest pierścieniem, to zwyczajowo działanie \oplus nazywamy dodawaniem, a \otimes mnożeniem. Dodatkowo, jeżeli (R, \otimes) jest monoidem, to jego element neutralny nazywamy "jedynką" i oznaczamy **1**.

Podpierścienie

Definicja

Niepusty podzbiór S pierścienia (R,\oplus,\ominus) nazywamy podpierścieniem R, jeżeli (S,\oplus) jest podgrupą (addytywną) (R,\oplus) oraz zbiór S jest zamknięty ze względu na mnożenie. Dodatkowo, jeżeli, R jest pierścieniem z jedynką dodaje się warunek $\mathbf{1} \in S$.

Przykład

Podpierścieniem pierścienia \mathbb{R} są np.

- Q
- Z

Pierścienie z Dzielnikami Zera

Definicja

Niech (R, \oplus, \otimes) będzie pierścieniem. Wtedy $a, b \in R, a, b \neq 0$ są **dzielnikami zera** wtedy i tylko wtedy gdy $a \otimes b = 0$.

Definicja

Pierścień, w którym nie występują dzielniki zera, nazywamy **Pierścieniem całkowitym**.

Przykład

- 1. W pierścieniu \mathbb{Z}_6 elementy 2,3 są dzielnikami zera, ponieważ 2,3 \neq **0** \wedge 2 \cdot 3 = 6 = **0**.
- 2. Pierścień Z jest pierścieniem całkowitym.

Homomorfizmy Pierścienie

Definicja

Niech $(R,+,\cdot)$ oraz (S,\oplus,\otimes) będą dowolnymi pierścieniami. Homomorfizmem pierścieni R,S nazywamy dowolne odwzorowanie $h:R\to S$ takie, że:

$$\forall a, b \in R$$
 $h(a+b) = h(a) \oplus h(b)$
 $\forall a, b \in R$ $h(a \cdot b) = h(a) \otimes h(b)$

Homomorfizmy Pierścienie

Definicja

Niech $(R,+,\cdot)$ oraz (S,\oplus,\otimes) będą dowolnymi pierścieniami. Homomorfizmem pierścieni R,S nazywamy dowolne odwzorowanie $h:R\to S$ takie, że:

$$\forall a, b \in R$$
 $h(a+b) = h(a) \oplus h(b)$
 $\forall a, b \in R$ $h(a \cdot b) = h(a) \otimes h(b)$

Dodatkowo, jeśli, R,S są pierścieniami z jedynką, musi zachodzić

$$h(\mathbf{1}_R) = \mathbf{1}_S$$

Homomorfizmy Pierścienie

Przykład

Homomorfizmami pierścieni \mathbb{Z} , $\mathbb{Z}[x]$ są np.

- h(a) = a
- $h(a) = a(x^2 + 2x + 7)$

Homomorfizmem pierścieni \mathbb{Z} , \mathbb{Z}_n jest np.

•
$$h(a) = a \pmod{n}$$

Definicja

Pierścień z jednością (K, \oplus, \otimes) nazywamy ciałem, jeżeli $(K \setminus \{\mathbf{0}\}, \otimes)$ jest grupą abelową.

Przykład

Ciałami są np.

- \mathbb{R}
- 0
- (
- Z_p, dla p będącego liczbą pierwszą

Konwencja

Elementy symetryczne w działaniu "mnożenia" nazywamy elementami odwrotnymi i oznaczamy a^{-1}

Ciała

Obserwacja

Dowolne ciało (K, \oplus, \otimes) jest pierścieniem całkowitym.

Ciała

Obserwacja

Dowolne ciało (K, \oplus, \otimes) jest pierścieniem całkowitym.

Dowód.

Załóżmy nie wprost, że istnieją $a,b\in K, a,b\neq \mathbf{0}$ takie, że $a\otimes b=\mathbf{0}$. z tego wynika, że $a^{-1}\otimes a\otimes b=a^{-1}\otimes \mathbf{0}$ z czego wynika $\mathbf{1}\otimes b=\mathbf{0}$ co jest równoważne z $b=\mathbf{0}$, co jest sprzecze z założeniem.

Ciała

Definicja

Niech K będzie ciałem. Niepusty podzbiór L zbioru K nazywamy podciałem, gdy L jest podpierścieniem K oraz zachodzi

$$\forall a \in L \setminus \mathbf{0} \quad a^{-1} \in L$$

Przykład

Podciałem $\mathbb C$ są np.

- R
- 0
- $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$

Homomorfizmy Ciał

Definicja

Niech $(R,+,\cdot)$ oraz (S,\oplus,\otimes) będą dowolnymi ciałami. Homomorfizem ciał R i S nazywamy dowolne odwzorowanie $h:R\to S$ spełniające

$$\forall a, b \in R \quad h(a+b) = h(a) \oplus h(b)$$

 $\forall a, b \in R \quad h(a \cdot b) = h(a) \otimes h(b)$

Szczególne homomorfizmy Funkcje

Definicja

Homomorfizm (grup, pierścieni, ciał) nazwiemy

- monomorfizmem, gdy jest iniektywny
- · epimorfizmem, gdy jest surjektywny
- izomorfizmem, gdy jest bijektywny
- endomorfizmem, gdy dziedzina jest równa przeciwdziedzinie
- automorifzmem, gdy jest to endomorfizm bijektywny

Obraz i Przeciwobraz zbioru

Niech $f: X \to Y$ będzie dowolnym odwzorowaniem z X do Y.

Definicja

Obrazem zbioru $A \subseteq X$ przez odwzorowanie f nazywamy zbiór $\{y \in Y \mid \exists x \in A : f(x) = y\}$ i oznaczamy przez f(A).

Definicja

Przeciwobrazem zbioru $B \subseteq Y$ przez odwzorowanie f nazywamy zbiór $\{x \in X \mid f(x) \in B\}$ i oznaczamy przez $f^{-1}(B)$.

Obraz i Jądro odwzorowania

Niech $f: X \to Y$ będzie dowolnym odwzorowaniem z X do Y.

Definicja

Obrazem odwzorowania f nazywamy zbiór f(X) i oznaczamy przez Im_f .

W przypadku gdy przeciwdziedzina dziedziny tworzy strukturę z elementem neutralnym oznaczanym przez **0** definiujemy dodatkowo *jądro odwzorowania*

Definicja

Jądrem odwzorowania f nazywamy zbiór $f^{-1}(\mathbf{0})$ i oznaczamy przez Ker_f .

Obraz i Jądro odwzorowania Funkcje

Przykład

Niech $f : \mathbb{Z} \to \mathbb{Z}_7$ będzie zadane wzorem $f(a) = a \pmod{7}$. Wtedy

- $f(\{1,9,15\}) = \{1,2\}$
- $f^{-1}(1) = \{7k + 1 \mid k \in \mathbb{Z}\}$
- $Im_f = f(\mathbb{Z}) = \mathbb{Z}_7$
- $Ker_f = f^{-1}(0) = \{7k \mid k \in \mathbb{Z}\}$

Iloczyn Kartezjański

lloczyn Kartezjański i Suma Prosta

Niech *A*, *B* będą dowolnymi niepustymi zbiorami.

Definicja

Iloczynem Kartezjańskim A, B nazywamy zbiór $\{(a,b) \mid a \in A \land b \in B\}$ i oznaczamy przez $A \times B$.

Definicja

n-krotny iloczyn kartezjański zbioru A z samym sobą rozumiemy jako $\underbrace{A \times A \times \ldots \times A}_{n} = \{(a_{1}, \ldots, a_{n}) \mid a_{1}, \ldots, a_{n} \in A\}$ i oznaczamy przez A^{n} .

Suma Algebraiczna, Prosta Iloczyn Kartezjański i Suma Prosta

Niech (G, +) będzie grupą oraz niech A, B będą dowolnymi niepustymi podzbiorami G.

Definicja

Sumą Algebraiczną zbiorów A, B nazywamy zbiór $\{a + b \mid a \in A \land b \in B\}$ i oznaczamy przez A + B.

Jeżeli zachodzi własność, że dla każdego $c \in A + B$ istnieje dokładnie jedna para a,b taka, że $a \in A, b \in B$ oraz c = a + b, to mówimy o **Sumie Prostej** zbiorów A,B. Zwyczajowo, sumę prostą zbiorów A,B oznaczamy przez $A \oplus B$.

Suma Algebraiczna, Prosta Iloczyn Kartezjański i Suma Prosta

Niech (G, +) będzie grupą oraz niech A, B będą dowolnymi niepustymi podzbiorami G.

Definicja

Sumą Algebraiczną zbiorów A, B nazywamy zbiór $\{a+b \mid a \in A \land b \in B\}$ i oznaczamy przez A+B.

Jeżeli zachodzi własność, że dla każdego $c \in A+B$ istnieje dokładnie jedna para a,b taka, że $a \in A,b \in B$ oraz c=a+b, to mówimy o **Sumie Prostej** zbiorów A,B. Zwyczajowo, sumę prostą zbiorów A,B oznaczamy przez $A \oplus B$. Zauważmy, że istnieje naturalny izomorfizm $\phi:A\times B\to A\oplus B$ zadany przez $\phi(a,b)=a+b$. Z tego powodu, często w literaturze suma prosta (wewnętrzna) jest nierozróżnialna z iloczynem kartezjańskim.

Pytania, wątpliwości, uwagi?