=> d his ful

```
(FILE 'REGISTRY' ENTERED AT 11:09:55 ON 01 MAY 2006)
               DEL HIS Y
               E MD-2/CN
L1
             2 SEA ABB=ON PLU=ON ("MD-2 PROTEIN (HUMAN CLONE 1 PRECURSOR)"/C
               N OR "MD-2 PROTEIN (HUMAN CLONE MGC:22424 IMAGE:4767246)"/CN)
     FILE 'CAPLUS' ENTERED AT 11:12:14 ON 01 MAY 2006
L2
             6 SEA ABB=ON PLU=ON L1
               D SCAN TI
           221 SEA ABB=ON PLU=ON (MD2/OBI OR MD 2/OBI) (L) PROTEIN#/OBI
L3
         22197 SEA ABB=ON PLU=ON ENDOTOXIN#/OBI OR ENDO/OBI (L) TOXIN#/OBI
L4
        260218 SEA ABB=ON PLU=ON (GRAM POS?/OBI OR GRAM NEG?/OBI) (2A)
L5
               (BACTERIA/OBI OR COCCI/OBI OR ROD#/OBI) OR NEISSERIA/OBI OR
               ESCHERICHIA/OBI OR PSEUDOMONAS/OBI OR HAEMOPHILUS/OBI OR
               SALMONELLA/OBI OR FRANCISELLA/OBI
        978744 SEA ABB=ON PLU=ON COMPLEX?/OBI OR CONJUGAT?/OBI
        658945 SEA ABB=ON PLU=ON BOUND/OBI OR BIND###/OBI OR ATTACH###/OBI
L7
            23 SEA ABB=ON PLU=ON L3 (L) L4
L9
            11 SEA ABB=ON PLU=ON L8 AND ((L6 OR L7))
            2 SEA ABB=ON PLU=ON L3 (L) L5 (L) (L6 OR L7)
L10
           13 SEA ABB=ON PLU=ON L3 AND L4 AND ((L6 OR L7))
L11
           13 SEA ABB=ON PLU=ON L9 OR L11
L12
           11 SEA ABB=ON PLU=ON L3 AND L5 AND ((L6 OR L7))
L13
           11 SEA ABB=ON PLU=ON L10 OR L13
L14
            8 SEA ABB=ON PLU=ON L14 NOT L11
L15
            7 SEA ABB=ON PLU=ON MYELOID DIFFERENTIATION PROTEIN/OBI (2W)
L16
               2/OBI
            4 SEA ABB=ON PLU=ON L16 AND (L4 OR L5)
L17
            1 SEA ABB=ON PLU=ON L17 AND ((L6 OR L7))
L18
            0 SEA ABB=ON PLU=ON L18 NOT (L15 OR L11)
L19
     FILE 'MEDLINE' ENTERED AT 11:53:22 ON 01 MAY 2006
             O SEA ABB=ON PLU=ON L1
L20
           392 SEA ABB=ON PLU=ON MD2 OR MD 2
L21
               E ENDOTOXIN/CT
               E E4+ALL
L22
         18574 SEA ABB=ON PLU=ON ENDOTOXINS/CT
               E GRAM NEGATIVE BACTERIA/CT
               E E3+ALL
               E E2+ALL
L23
          9444 SEA ABB=ON PLU=ON "GRAM-NEGATIVE BACTERIA"/CT
               E GRAM-POSITIVE BACTERIA/CT
L24
          6212 SEA ABB=ON PLU=ON "GRAM-POSITIVE BACTERIA"/CT
        355252 SEA ABB=ON PLU=ON NEISSERIA OR ESCHERICHIA OR PSEUDOMONAS OR
L25
               HAEMOPHILUS OR HEMOPHILUS OR SALMONELLA OR FRANCISELLA
L26
            22 SEA ABB=ON PLU=ON L21 AND L22
        694546 SEA ABB=ON PLU=ON COMPLEX? OR CONJUGAT?
L27
        960957 SEA ABB=ON PLU=ON BIND? OR BOUND OR ATTACH?
L28
            12 SEA ABB=ON PLU=ON L28 AND L26
L29
            77 SEA ABB=ON PLU=ON L21 AND (L23 OR L24 OR L25)
L30
L31
            28 SEA ABB=ON PLU=ON L30 AND L28
L32
        794489 SEA ABB=ON PLU=ON SEQUENCE?
            3 SEA ABB=ON PLU=ON L31 AND L32
L33
         56265 SEA ABB=ON PLU=ON ENDOTOXINS+NT/CT
L34
          185 SEA ABB=ON PLU=ON L34 AND L21
L35
            94 SEA ABB=ON PLU=ON L35 AND L27
L36
                           23 SEA ABB=ON PLU=ON L21 (S) ENDOTOXIN?
             T.37
            20 SEA ABB=ON PLU=ON L37 AND ((L27 OR L28))
L38
```

```
14 SEA ABB=ON PLU=ON L26 AND L27
L39
           24 SEA ABB=ON PLU=ON L39 OR L38
L40
    FILE 'BIOSIS' ENTERED AT 12:45:25 ON 01 MAY 2006
            O SEA ABB=ON PLU=ON L1
L41
           528 SEA ABB=ON PLU=ON MD2 OR MD 2
L42
         27499 SEA ABB=ON PLU=ON ENDOTOXIN?
L43
           53 SEA ABB=ON PLU=ON L42 (L) L43
L44
        698729 SEA ABB=ON PLU=ON COMPLEX? OR CONJUGAT?
L45
            26 SEA ABB=ON PLU=ON L44 AND L45
L46
        904058 SEA ABB=ON PLU=ON BIND? OR BOUND OR ATTACH?
L47
            20 SEA ABB=ON PLU=ON L42 (L) L47 AND L43
L48
            33 SEA ABB=ON PLU=ON L48 OR L46
L49
    FILE 'WPIDS' ENTERED AT 12:47:49 ON 01 MAY 2006
          139 SEA ABB=ON PLU=ON MD2 OR MD 2
L50
          3135 SEA ABB=ON PLU=ON ENDOTOXIN? OR ENDO (2W) TOXIN#
L51
             4 SEA ABB=ON PLU=ON L50 (S) L51
L52
             5 SEA ABB=ON PLU=ON L50 (L) L51
L53
       1289131 SEA ABB=ON PLU=ON BIND? OR BOUND OR ATTACH?
L54
            14 SEA ABB=ON PLU=ON L50 (S) L54
L55
             3 SEA ABB=ON PLU=ON L55 AND L51
L56
             6 SEA ABB=ON PLU=ON L56 OR L53
L57
    FILE 'BIOSIS' ENTERED AT 12:49:22 ON 01 MAY 2006
            25 SEA ABB=ON PLU=ON L42 (S) (L45 OR L47) AND L43
L58
             8 SEA ABB=ON PLU=ON L49 NOT L58
L59
    FILE 'CAPLUS, MEDLINE, WPIDS, BIOSIS' ENTERED AT 12:50:42 ON 01 MAY 2006
L60
            50 DUP REM L11 L15 L40 L57 L58 (26 DUPLICATES REMOVED)
                    ANSWERS '1-21' FROM FILE CAPLUS
                    ANSWERS '22-38' FROM FILE MEDLINE
                    ANSWERS '39-42' FROM FILE WPIDS
                    ANSWERS '43-50' FROM FILE BIOSIS
```

=> fil caplus medline wpids biosis FILE 'CAPLUS' ENTERED AT 12:53:07 ON 01 MAY 2006 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'MEDLINE' ENTERED AT 12:53:07 ON 01 MAY 2006

FILE 'WPIDS' ENTERED AT 12:53:07 ON 01 MAY 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE 'BIOSIS' ENTERED AT 12:53:07 ON 01 MAY 2006 Copyright (c) 2006 The Thomson Corporation

```
=> d que 160
            221 SEA FILE=CAPLUS ABB=ON PLU=ON
                                               (MD2/OBI OR MD 2/OBI) (L)
L3
                PROTEIN#/OBI
          22197 SEA FILE=CAPLUS ABB=ON PLU=ON ENDOTOXIN#/OBI OR ENDO/OBI (L)
L4
                TOXIN#/OBI
1.5
         260218 SEA FILE=CAPLUS ABB=ON PLU=ON (GRAM POS?/OBI OR GRAM
                NEG?/OBI) (2A) (BACTERIA/OBI OR COCCI/OBI OR ROD#/OBI) OR
                NEISSERIA/OBI OR ESCHERICHIA/OBI OR PSEUDOMONAS/OBI OR
                HAEMOPHILUS/OBI OR SALMONELLA/OBI OR FRANCISELLA/OBI
         978744 SEA FILE=CAPLUS ABB=ON PLU=ON COMPLEX?/OBI OR CONJUGAT?/OBI
L6
         658945 SEA FILE=CAPLUS ABB=ON PLU=ON BOUND/OBI OR BIND###/OBI OR
L7
               ATTACH###/OBI
             2 SEA FILE=CAPLUS ABB=ON PLU=ON L3 (L) L5 (L) (L6 OR L7)
L10
             13 SEA FILE=CAPLUS ABB=ON PLU=ON L3 AND L4 AND ((L6 OR L7))
L11
            11 SEA FILE=CAPLUS ABB=ON PLU=ON L3 AND L5 AND ((L6 OR L7))
L13
            11 SEA FILE=CAPLUS ABB=ON PLU=ON L10 OR L13
L14
             8 SEA FILE=CAPLUS ABB=ON PLU=ON L14 NOT L11
L15
L21
            392 SEA FILE=MEDLINE ABB=ON PLU=ON MD2 OR MD 2
L22
          18574 SEA FILE=MEDLINE ABB=ON PLU=ON
                                               ENDOTOXINS/CT
L26
             22 SEA FILE=MEDLINE ABB=ON PLU=ON
                                                L21 AND L22
L27
         694546 SEA FILE=MEDLINE ABB=ON PLU=ON
                                               COMPLEX? OR CONJUGAT?
L28
         960957 SEA FILE=MEDLINE ABB=ON
                                        PLU=ON
                                               BIND? OR BOUND OR ATTACH?
L37
            23 SEA FILE=MEDLINE ABB=ON PLU=ON
                                                L21 (S) ENDOTOXIN?
                                               L37 AND ((L27 OR L28))
L38
            20 SEA FILE=MEDLINE ABB=ON PLU=ON
L39
            14 SEA FILE=MEDLINE ABB=ON PLU=ON L26 AND L27
            24 SEA FILE=MEDLINE ABB=ON PLU=ON L39 OR L38
L40
            528 SEA FILE=BIOSIS ABB=ON PLU=ON MD2 OR MD 2
L42
         27499 SEA FILE=BIOSIS ABB=ON PLU=ON
L43
                                               ENDOTOXIN?
         698729 SEA FILE=BIOSIS ABB=ON PLU=ON
L45
                                               COMPLEX? OR CONJUGAT?
L47
         904058 SEA FILE=BIOSIS ABB=ON PLU=ON BIND? OR BOUND OR ATTACH?
L50
            139 SEA FILE=WPIDS ABB=ON PLU=ON MD2 OR MD 2
L51
           3135 SEA FILE=WPIDS ABB=ON PLU=ON
                                             ENDOTOXIN? OR ENDO (2W) TOXIN#
                                      PLU=ON L50 (L) L51
L53
             5 SEA FILE=WPIDS ABB=ON
                                      PLU=ON BIND? OR BOUND OR ATTACH?
L54
        1289131 SEA FILE=WPIDS ABB=ON
                                      PLU=ON L50 (S) L54
L55
             14 SEA FILE=WPIDS ABB=ON
L56
             3 SEA FILE=WPIDS ABB=ON
                                      PLU=ON
                                             L55 AND L51
             6 SEA FILE-WPIDS ABB=ON PLU=ON L56 OR L53
L57
L58
            25 SEA FILE=BIOSIS ABB=ON PLU=ON L42 (S) (L45 OR L47) AND L43
L60
            50 DUP REM L11 L15 L40 L57 L58 (26 DUPLICATES REMOVED)
```

=> d .ca 160 1-21;d ibib ab ct 160 22-50

L60 ANSWER 1 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 1 ACCESSION NUMBER: 2006:211512 CAPLUS

DOCUMENT NUMBER: 144:286155

TITLE: Compositions and methods using human MD-

2 mutants and chimeric proteins for

treating bacterial and fungal infections

INVENTOR(S): Kirkland, Theo N., III; Viriyakosol, Sunganya PATENT ASSIGNEE(S): The Regents of the University of California, USA

SOURCE: PCT Int. Appl., 58 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIND		DATE		APPLICATION NO.					DATE				
					-								-					
WO 2	WO 2006025995				A2		20060309		WO 2005-US26771						20050727			
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	ΙL,	IN,	IS,	JP,	KE,	KG,	KM,	KΡ,	KR,	KZ,	
		LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	
		NG,	NI,	NO,	ΝZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	
		SL,	SM,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	ΥU,	
		ZA,	ZM,	ZW														
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	
		IS,	IT,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,	
		CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG,	BW,	GH,	
		GM,	KE,	LS,	MW,	ΜZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	ΒY,	
		KG,	KZ,	MD,	RU,	TJ,	TM											
PRIORITY APPLN. INFO.:									1	US 2004-591805P					20040727			
							7			JS 2005-681097P				1	P 20050513			

ED Entered STN: 09 Mar 2006

The invention provides compns. and methods for the targeted bacteriostatic AB and antibacterial agents and for treatment of sepsis caused by infectious diseases, such as bacterial and fungal diseases. In one aspect, the invention provides methods and compns. for decreasing the levels of LPS in the circulation of an individual, e.g., a human patient with sepsis, e.g., gram neg. septic shock. In one aspect, the invention is directed to chimeric proteins comprising the MD-2 polypeptide and an opsonizing agent, e.g., antibody Fc domains, or equivalent In one aspect, the invention is directed to chimeric proteins comprising fragments or altered form of MD-2 polypeptide and an opsonizing agent, e.g., antibody Fc domains, or equivalent The invention also provides pharmaceutical compns. comprising the chimeric polypeptides of the invention, and methods of making and using them, including methods for ameliorating or preventing sepsis. The invention also provides compns. for transfecting cells with nucleic acid comprising the mutant MD-2 proteins and/or the chimeric polypeptides of the invention.

- CC 1-5 (Pharmacology)
- ST human MD2 protein mutant antibacterial antifungal therapy
- IT Gram-negative bacteria
 - (-induced septic shock; compns. and methods using human MD-
 - 2 mutants and chimeric proteins for treating

bacterial and fungal infections)

IT Collagens, biological studies

Fibrinogens

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (-like domain; compns. and methods using human MD-2
 mutants and chimeric proteins for treating bacterial and
 fungal infections)

```
Proteins
IT
     RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
     (Biological study); USES (Uses)
        (C; compns. and methods using human MD-2 mutants
        and chimeric proteins for treating bacterial and fungal
        infections)
IT
     Protein motifs
        (Carbohydrate-binding domain; compns. and methods using human
        MD-2 mutants and chimeric proteins for
        treating bacterial and fungal infections)
IT
     Proteins
     RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified);
     PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP
     (Preparation); USES (Uses)
        (MD-2; compns. and methods using human MD
        -2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
IT
     Gene, animal
     RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
     (Biological study); USES (Uses)
        (MD2, mutation of; compns. and methods using human MD
        -2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
IT
     Receptors
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (TLR-4 (Toll-like receptor-4); compns. and methods using human
        MD-2 mutants and chimeric proteins for
        treating bacterial and fungal infections)
TT
     Complement
     RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
     (Biological study); USES (Uses)
        (activating agent; compns. and methods using human MD-
        2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
IT
     Asthma
        (acute respiratory; compns. and methods using human MD-
        2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
IT
     Respiratory distress syndrome
        (acute; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
TΤ
     Opsonization
        (agent; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
     Peptides, biological studies
IT
     RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
     (Biological study); USES (Uses)
        (antimicrobial; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
     Infection
        (bacterial; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
    Fungi
     Insecta
        (cell, as host; compns. and methods using human MD-2
```

```
mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
     Infection
        (chronic; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
     Anti-infective agents
TT
     Anti-inflammatory agents
     Antiasthmatics
     Antibiotics
     Antiviral agents
     Autoimmune disease
     Blood
     Blood serum
     Body fluid
     Cerebrospinal fluid
     Eubacteria
     Fungicides
     Genetic vectors
     Granulomatous disease
     Human
     Immunomodulators
     Mycosis
     Plant cell
     Plasmid vectors
       Protein engineering
       Protein sequences
     Shock (circulatory collapse)
     Transplant rejection
        (compns. and methods using human MD-2 mutants and
        chimeric proteins for treating bacterial and fungal
        infections)
     Antibodies and Immunoglobulins
IT
     Immunoglobulin receptors
     RL: ARG (Analytical reagent use); BSU (Biological study, unclassified);
     THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study);
     USES (Uses)
        (compns. and methods using human MD-2 mutants and
        chimeric proteins for treating bacterial and fungal
        infections)
IT
     CD14 (antigen)
     Lipopolysaccharides
     Promoter (genetic element)
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (compns. and methods using human MD-2 mutants and
        chimeric proteins for treating bacterial and fungal
        infections)
     Cytokines
IT
     RL: BSU (Biological study, unclassified); THU (Therapeutic use); BIOL
     (Biological study); USES (Uses)
        (compns. and methods using human MD-2 mutants and
        chimeric proteins for treating bacterial and fungal
        infections)
     Fusion proteins (chimeric proteins)
TТ
     RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified);
     PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP
     (Preparation); USES (Uses)
        (comprising protein MD-2; compns. and
        methods using human MD-2 mutants and chimeric
        proteins for treating bacterial and fungal infections)
```

```
IT
    Toxins
    RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (endotoxins, -induced septic shock; compns. and methods using
        human MD-2 mutants and chimeric proteins
        for treating bacterial and fungal infections)
IT
    Genetic element
    RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (expression cassette, for protein MD-2;
       compns. and methods using human MD-2 mutants and
       chimeric proteins for treating bacterial and fungal
        infections)
IT
    Proteins
    RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (ficolin; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
    Antibodies and Immunoglobulins
    RL: ARG (Analytical reagent use); BSU (Biological study, unclassified);
    THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study);
    USES (Uses)
        (fragments, Fc domain; compns. and methods using human MD-
        2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
    Transplant and Transplantation
IT
        (graft-vs.-host reaction; compns. and methods using human MD-
        2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
ΙT
    Animal cell
        (mammalian; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
    Signal peptides
    RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (of protein MD-2; compns. and methods
        using human MD-2 mutants and chimeric
       proteins for treating bacterial and fungal infections)
TT
    Infection
        (parasitic; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
    Antibacterial agents
        (peptide, protein; compns. and methods using human MD
        -2 mutants and chimeric proteins for treating
        bacterial and fungal infections)
TΤ
    Shock (circulatory collapse)
        (septic, endotoxin-induced; compns. and methods using human
       MD-2 mutants and chimeric proteins for
        treating bacterial and fungal infections)
IT
    Sepsis
        (severe; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
IT
    Shock (circulatory collapse)
        (toxic shock syndrome, endotoxin-induced; compns. and methods
        using human MD-2 mutants and chimeric
        proteins for treating bacterial and fungal infections)
IT
        (trauma; compns. and methods using human MD-2
        mutants and chimeric proteins for treating bacterial and
        fungal infections)
```

IT Inflammation (treatment of; compns. and methods using human MD-2 mutants and chimeric proteins for treating bacterial and fungal infections) IT Infection (viral; compns. and methods using human MD-2 mutants and chimeric proteins for treating bacterial and fungal infections) 878298-23-8P, Protein MD-2 (human precursor) IT 878298-24-9P, Protein MD-2 (human mutant 878298-25-0P, Protein MD-2 (human isoform) 878298-26-1P, Protein MD-2 mutant isoform) (human mutant isoform) RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (amino acid sequence; compns. and methods using human MD-2 mutants and chimeric proteins for treating bacterial and fungal infections) L60 ANSWER 2 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 2 2005:426231 CAPLUS ACCESSION NUMBER: 142:480799 DOCUMENT NUMBER: Preparation of complexes of TITLE: endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin Weiss, Jerrold P.; Gioannini, Theresa L.; Teghanemt, INVENTOR(S): Athamane; Subramanian, Ramaswamy PATENT ASSIGNEE(S): U.S. Pat. Appl. Publ., 34 pp. SOURCE: CODEN: USXXCO DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: PATENT INFORMATION: APPLICATION NO. PATENT NO. KIND DATE DATE ---------_____ US 2003-715876 20050519 20031117 US 2005106179 A1 WO 2004-US38375 WO 2005049067 A1 20050602 20041117 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG PRIORITY APPLN. INFO.: US 2003-715876 A 20031117 Entered STN: 19 May 2005 ED The disclosed invention provides purified water soluble complexes of AB endotoxin and MD-2. The invention also provides a method for making the complexes of the invention and a method for isolating complexes of the invention. Also provided are the method of using the complexes of the invention, e.g. method to increase or inhibit TLR4 receptor-dependent

activation of cells by endotoxin in vitro or in vivo. Methods using

complexes with mutant endotoxin are useful to decrease undesirable

endotoxin-mediated inflammation. Methods using complexes with wild-type endotoxin are of use in promoting innate immunity and as immune adjuvants. The results of one example demonstrate that in primary cultures of human airway epithelia TLR4, but little or no MD-2 is expressed, so the cells are relatively unresponsive to added endotoxin. However, the cell responsiveness to endotoxin is markedly amplified by either the endogenous expression or exogenous addition of MD-2. IC ICM A61K039-02 ICS C07K014-195 INCL 424235100; 530395000 15-10 (Immunochemistry) endotoxin MD2 complex TLR4 receptor cell activation IT CD14 (antigen) RL: BSU (Biological study, unclassified); BIOL (Biological study) (CD14 requirement in preparation of complexes of bacterial endotoxin and MD-2) ITAnimal cell line (Hek 293; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) IT Proteins RL: BPN (Biosynthetic preparation); BUU (Biological use, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses) (MD-2, endotoxin complexes; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) ΙT Receptors RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) ΙT Immunostimulants (adjuvants; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin in) ITGlycolipids RL: BPN (Biosynthetic preparation); BUU (Biological use, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses) (bacterial; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) IT Drug delivery systems (carriers; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) IT Toxins RL: BPN (Biosynthetic preparation); BUU (Biological use, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses) (endotoxins, MD-2 complexes; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin) IT RL: BPN (Biosynthetic preparation); BUU (Biological use, unclassified); BIOL (Biological study); PREP (Preparation); USES (Uses) (endotoxins, acylated; preparation of complexes of bacterial endotoxin and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell activation by endotoxin)

```
ΙT
    Respiratory system
        (epithelium; preparation of complexes of bacterial
        endotoxin and MD-2 and uses thereof to modulate TLR4
        receptor-dependent cell activation by endotoxin in)
IT
     Immunity
        (innate; preparation of complexes of bacterial endotoxin
        and MD-2 and uses thereof to modulate TLR4 receptor-dependent cell
        activation by endotoxin in)
    Cell activation
TΥ
    Escherichia
    Escherichia coli
    Francisella
    Francisella tularensis
    Haemophilus
    Haemophilus influenzae
    Neisseria
    Neisseria meningitidis
    Pseudomonas
    Pseudomonas aeruginosa
    Salmonella
     Salmonella typhimurium
        (preparation of complexes of bacterial endotoxin and
        MD-2 and uses thereof to modulate TLR4 receptor-dependent cell
        activation by endotoxin)
    Anti-inflammatory agents
IT
    Human
        (preparation of complexes of bacterial endotoxin and
        MD-2 and uses thereof to modulate TLR4 receptor-dependent cell
        activation by endotoxin in)
     Epithelium
TT
        (respiratory tract; preparation of complexes of bacterial
        endotoxin and MD-2 and uses thereof to modulate TLR4
        receptor-dependent cell activation by endotoxin in)
                  852009-59-7 852009-60-0
     852008-84-5
                                              852009-61-1
                                                             852009-62-2
TT
     852009-63-3
                   852009-64-4
                                 852009-65-5 852009-66-6
                                                             852009-67-7
                   852009-69-9
                                 852009-70-2
                                              852009-71-3
                                                             852009-72-4
     852009-68-8
     852009-73-5
    RL: PRP (Properties)
        (unclaimed nucleotide sequence; preparation of complexes of
        endotoxin and MD-2 and uses thereof to modulate TLR4
        receptor-dependent cell activation by endotoxin)
L60 ANSWER 3 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 3
ACCESSION NUMBER:
                         2005:1207627 CAPLUS
DOCUMENT NUMBER:
                         143:458453
                         Biochemical and Functional Characterization of
TITLE:
                         Membrane Blebs Purified from Neisseria
                         meningitidis Serogroup B
                         Post, Deborah M. B.; Zhang, DeSheng; Eastvold, Joshua
AUTHOR (S):
                         S.; Teghanemt, Athmane; Gibson, Bradford W.; Weiss,
                         Jerrold P.
CORPORATE SOURCE:
                         Inflammation Program, Department of Internal Medicine
                         and the Department of Microbiology, Roy J. and Lucille
                         A. Carver College of Medicine, University of Iowa,
                         Iowa City, IA, 52242, USA
                         Journal of Biological Chemistry (2005), 280(46),
SOURCE:
                         38383-38394
                         CODEN: JBCHA3; ISSN: 0021-9258
                         American Society for Biochemistry and Molecular
PUBLISHER:
                         Biology
```

DOCUMENT TYPE:

Journal

LANGUAGE:

English

ED Entered STN: 14 Nov 2005

Studies with purified aggregates of endotoxin have revealed the importance AB of lipopolysaccharide-binding protein (LBP)-dependent extraction and transfer of individual endotoxin mols. to CD14 in Toll-like receptor 4 (TLR4)-dependent cell activation. Endotoxin is normally embedded in the outer membrane of intact Gram-neg. bacteria and shed membrane vesicles ("blebs"). However, the ability of LBP and CD14 to efficiently promote TLR4-dependent cell activation by membrane-associated endotoxin has not been studied extensively. In this study, the authors used an acetate auxotroph of Neisseria meningitidis serogroup B to facilitate metabolic labeling of bacterial endotoxin and compared interactions of purified endotoxin aggregates and of membrane-associated endotoxin with LBP, CD14, and endotoxin-responsive cells. The endotoxin, phospholipid, and protein composition of the recovered blebs indicate that the blebs derive from the bacterial outer membrane. Proteomic anal. revealed an unusual enrichment in highly cationic (pI > 9) proteins. Both purified endotoxin aggregates and blebs activate monocytes and endothelial cells in a LBP-, CD14-, and TLR4/MD-2-dependent fashion, but the blebs were 3-10-fold less potent when normalized for the amount of endotoxin added. Differences in potency correlated with differences in efficiency of LBP-dependent delivery to and extraction of endotoxin by CD14. Both membrane phospholipids and endotoxin are extracted by LBP/soluble CD14 (sCD14) treatment, but only endotoxin·sCD14 reacts with MD-2 and activates cells. These findings indicate that the proinflammatory potency of endotoxin may be regulated not only by the intrinsic structural properties of endotoxin but also by its association with

CC 15-10 (Immunochemistry)

Section cross-reference(s): 10

ST membrane bleb **Neisseria** CD14 LBP **protein** monocyte activation; TLR4 receptor **MD2 protein** endothelium activation membrane bleb **Neisseria**

neighboring mols. in the outer membrane.

IT Human

(LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis)

IT CD14 (antigen)

RL: ANT (Analyte); ANST (Analytical study)
(LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis)

IT Proteins

RL: ANT (Analyte); ANST (Analytical study)
(MD-2; LBP/CD14- and TLR4/MD-2

-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis)

IT Proteins

RL: ANT (Analyte); ANST (Analytical study)
 (Op (opacity protein); of membrane blebs of group B Neisseria
 meningitidis)

IT Receptors

RL: ANT (Analyte); ANST (Analytical study)
(TLR-4 (Toll-like receptor-4); LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis)

IT Monocyte

(activation; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis)

IT Proteins RL: ANT (Analyte); ANST (Analytical study) (cationic; of membrane blebs of group B Neisseria meningitidis) IT Blood vessel (endothelium; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) Neisseria meningitidis ΙT (group B; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) Lipopolysaccharides ΙT RL: ANT (Analyte); ANST (Analytical study) (lipooligosaccharides; of membrane blebs of group B Neisseria meningitidis) IT Proteins RL: ANT (Analyte); ANST (Analytical study) (lipopolysaccharide-binding; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) Cell activation IT (monocyte; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) IT Fatty acids, analysis Phospholipids, analysis Porins RL: ANT (Analyte); ANST (Analytical study) (of membrane blebs of group B Neisseria meningitidis) ITEndothelium (vascular; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) IT Organelle (vesicle; LBP/CD14- and TLR4/MD-2-dependent activation of endothelial cells and monocytes by membrane blebs of group B Neisseria meningitidis) THERE ARE 62 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 62 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L60 ANSWER 4 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 7 2005:489362 CAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 143:95745 TITLE: Monomeric endotoxin:protein complexes are essential for TLR4-dependent cell activation Gioannini, T. L.; Teghanemt, A.; Zhang, De S.; Levis, AUTHOR (S): E. N.; Weiss, J. P. Department of Internal Medicine, Roy J. and Lucille A. CORPORATE SOURCE: Carver College of Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, IA, USA Journal of Endotoxin Research (2005), 11(2), 117-123 SOURCE: CODEN: JENREB; ISSN: 0968-0519 Maney Publishing PUBLISHER: Journal DOCUMENT TYPE: LANGUAGE: English ED Entered STN: 09 Jun 2005 Potent TLR4-dependent cell activation by Gram-neg. bacterial endotoxin AB

depends on sequential endotoxin-protein and protein-protein interactions with LBP, CD14, MD-2 and TLR4. LBP and CD14 combine, in an albumin-dependent fashion, to extract single endotoxin mols. from purified endotoxin aggregates (Eagg) or the bacterial outer membrane and form monomeric endotoxin:CD14 complexes that are the preferred presentation of endotoxin for transfer to MD-2. Endotoxin in endotoxin:CD14 is readily transferred to MD-2, again in an albumin-dependent manner, to form monomeric endotoxin:MD-2 complex. This monomeric endotoxin:protein complex (endotoxin:MD-2) activates TLR4 at picomolar concns., independently of albumin, and is, therefore, the apparent ligand in endotoxin-dependent TLR4 activation. Tetra-, penta-, and hexa-acylated forms of meningococcal endotoxin (LOS) react similarly with LBP, CD14, and MD-2 to form endotoxin:MD-2 complexes. However, tetra- and penta-acylated LOS:MD-2 complexes are less potent TLR4 agonists than hexa-acylated LOS:MD-2. This is mirrored in the reduced activity of tetra-, penta- vs. hexa-acylated LOS aggregates (LOSagg) + LBP toward cells containing mCD14, MD-2, and TLR4. Therefore, changes in agonist potency of under-acylated meningococcal LOS are determined by differences in properties of monomeric endotoxin:MD-2. 15-10 (Immunochemistry) endotoxin protein complex TLR4 receptor cell activation Proteins RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2; monomeric endotoxin: protein complexes are essential for TLR4 receptor-dependent cell activation) Receptors RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) Blood vessel (endothelium; monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) Toxins RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study) (endotoxins; monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) Glycolipids RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study) (lipooligosaccharides; monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) Cell activation (monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) CD14 (antigen) RL: BSU (Biological study, unclassified); BIOL (Biological study) (monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation) Albumins, biological studies RL: BSU (Biological study, unclassified); BIOL (Biological study) (serum; monomeric endotoxin:protein complexes are essential for TLR4 receptor-dependent cell activation)

(vascular; monomeric endotoxin: protein complexes

CC

ST

IT

IT

IT

TT

IT

IT

TT

IT

IT

are essential for TLR4 receptor-dependent cell activation)

THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 27

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 5 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 9

2004:292853 CAPLUS ACCESSION NUMBER:

140:401625 DOCUMENT NUMBER:

Isolation of an endotoxin-MD-2 TITLE:

> complex that produces Toll-like receptor 4-dependent cell activation at picomolar

concentrations

Gioannini, Theresa L.; Teghanemt, Athmane; Zhang, AUTHOR (S):

DeSheng; Coussens, Nathan P.; Dockstader, Wendie;

Ramaswamy, S.; Weiss, Jerrold P.
Inflammation Program, Department of Internal Medicine, CORPORATE SOURCE:

and Department of Biochemistry Roy J. and Lucille A.

Carver College of Medicine, University of Iowa,

Veterans Affairs Medical Center, Iowa City, IA, 52242,

SOURCE: Proceedings of the National Academy of Sciences of the

United States of America (2004), 101(12), 4186-4191

CODEN: PNASA6; ISSN: 0027-8424

National Academy of Sciences PUBLISHER:

Journal DOCUMENT TYPE: English LANGUAGE: Entered STN: 09 Apr 2004

ED Host proinflammatory responses to minute amts. of endotoxins derived from AB many Gram-neg. bacteria require the interaction of lipopolysaccharidebinding protein (LBP), CD14, Toll-like receptor 4 (TLR4) and MD-2. Optimal sensitivity to endotoxin requires an ordered series of endotoxin-protein and protein-protein interactions. At substoichiometric concns., LBP facilitates delivery of endotoxin aggregates to soluble CD14 (sCD14) to form monomeric endotoxin-sCD14 complexes. Subsequent interactions of endotoxin-sCD14 with TLR4 and/or MD-2 have not been specifically defined. This study reports the purification of a stable, monomeric, bioactive endotoxin-MD-2 complex generated by treatment of endotoxin-sCD14 with recombinant MD-2. Efficient generation of this complex occurred at picomolar concns. of endotoxin and nanogram per mL doses of MD-2 and required presentation of endotoxin to MD-2 as a monomeric endotoxin-CD14 complex. TLR4-dependent delivery of endotoxin to human embryonic kidney (HEK) cells and cell activation at picomolar concns. of endotoxin occurred with the purified endotoxin-MD-2 complex, but not with purified endotoxin aggregates with or without LBP and/or The presence of excess MD-2 inhibited delivery of endotoxin-MD-2 to HEK/TLR4 cells and cell activation. These findings demonstrate that TLR4-dependent activation of host cells by picomolar concns. of endotoxin occurs by sequential interaction and transfer of endotoxin to LBP, CD14, and MD-2 and simultaneous engagement of endotoxin and TLR4 by MD-2.

CC 4-5 (Toxicology)

endotoxin MD2 complex CD14 TLR4 LBP ST

Animal cell line IT

> (HEK; isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concns. in HEK cells)

ΙT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (LPS-LBP (lipopolysaccharide-containing lipopolysaccharide-binding protein); isolation of an endotoxin-MD-

2 complex that produces Toll-like receptor

4-dependent cell activation at picomolar concns. in HEK cells)

```
IT
     Proteins
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (MD-2, complexes with endotoxin
        ; isolation of an endotoxin-MD-2
        complex that produces Toll-like receptor 4-dependent cell
        activation at picomolar concns. in HEK cells)
IT
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (TLR-4 (Toll-like receptor-4); isolation of an endotoxin-MD-2
        complex that produces Toll-like receptor 4-dependent cell
        activation at picomolar concns. in HEK cells)
     CD14 (antigen)
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (complexes with endotoxin; isolation of an
        endotoxin-MD-2 complex that produces Toll-like
        receptor 4-dependent cell activation at picomolar concns. in HEK cells)
IT
     RL: ADV (Adverse effect, including toxicity); BSU (Biological study,
     unclassified); BIOL (Biological study)
        (endotoxins, complexes with CD14 and MD-2;
        isolation of an endotoxin-MD-2 complex that
       produces Toll-like receptor 4-dependent cell activation at picomolar
       concns. in HEK cells)
TT
    Human
        (isolation of an endotoxin-MD-2 complex that
       produces Toll-like receptor 4-dependent cell activation at picomolar
        concns. in HEK cells)
                               THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                         41
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L60 ANSWER 6 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 10
ACCESSION NUMBER:
                         2004:1021053 CAPLUS
DOCUMENT NUMBER:
                         142:73002
TITLE:
                         Potential Role of Endotoxin as a
                         Proinflammatory Mediator of Atherosclerosis
AUTHOR (S):
                         Stoll, Lynn L.; Denning, Gerene M.; Weintraub, Neal L.
CORPORATE SOURCE:
                         Department of Internal Medicine, Divisions of
                         Cardiovascular Diseases and Infectious Diseases,
                         University of Iowa and The VA Medical Center, Iowa
                         City, IA, USA
SOURCE:
                         Arteriosclerosis, Thrombosis, and Vascular Biology
                         (2004), 24(12), 2227-2236
                         CODEN: ATVBFA; ISSN: 1079-5642
PUBLISHER:
                         Lippincott Williams & Wilkins
DOCUMENT TYPE:
                         Journal; General Review
LANGUAGE:
                         English
ED
    Entered STN: 29 Nov 2004
AB
     A review. Atherosclerosis is increasingly recognized as a chronic
     inflammatory disease. Although a variety of inflammatory markers (ie,
     C-reactive protein) have been associated with atherosclerosis and its
     consequences, it is important to identify principal mediators of the
     inflammatory responses. One potentially important source of vascular
     inflammation in atherosclerosis is bacterial endotoxin. Mutations in
     Toll-like receptor 4 (TLR-4), an integral component of the endotoxin
     signaling complex, are fairly common in the Caucasian population and have
     recently been associated with reduced incidence of atherosclerosis and other
     cardiovascular diseases in some studies. Moreover, epidemiol. studies
     suggest that endotoxemia at levels as low as 50 pg/mL constitutes a strong
```

risk factor for the development of atherosclerosis. Endotoxin concns. in this range may be produced by a variety of common subclin. Gram-neg.

infections. In this article, we outline the main elements of the endotoxin signaling receptor complex that initiates proinflammatory signaling (lipopolysaccharide binding protein [LBP], CD14, TLR-4, and MD-2) and discuss how changes in expression of these mols. may affect proatherogenic responses in the vessel wall. We also describe some of the proinflammatory effects of endotoxin that may be relevant to atherosclerosis, and discuss how serum lipoproteins, especially high-d. lipoprotein, may modulate endotoxin-induced inflammatory responses. Further, we discuss recent findings suggesting that the lipid-lowering statins may have an addnl. protective role in blocking at least some of these proinflammatory signaling pathways. Finally, we discuss species diversity with regard to endotoxin signaling that should be considered when extrapolating exptl. data from animal models to humans.

CC 15-0 (Immunochemistry)

Section cross-reference(s): 14

ST review **endotoxin** atherosclerosis signaling CD14 lipopolysaccharide **binding** protein

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (LPS-LBP (lipopolysaccharide-containing lipopolysaccharide-binding
 protein); endotoxin as a proinflammatory mediator of
 atherosclerosis)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (MD-2; endotoxin as a proinflammatory
 mediator of atherosclerosis)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (TLR-4 (Toll-like receptor-4); endotoxin as a proinflammatory
 mediator of atherosclerosis)

IT Human

Signal transduction, biological

(endotoxin as a proinflammatory mediator of atherosclerosis)

IT CD14 (antigen)

High-density lipoproteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (endotoxin as a proinflammatory mediator of atherosclerosis)

IT Toxins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (endotoxins; endotoxin as a proinflammatory
 mediator of atherosclerosis)

mediator of atheros

REFERENCE COUNT: 175 THERE ARE 175 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L60 ANSWER 7 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 11

ACCESSION NUMBER: 2004:1074780 CAPLUS

DOCUMENT NUMBER: 142:238068

TITLE: Endotoxin recognition and signal transduction by the TLR4/MD2-complex

AUTHOR(S): Fitzgerald, Katherine A.; Rowe, Daniel C.; Golenbock,

Douglas T.

CORPORATE SOURCE: Division of Infectious Diseases and Immunology,

University of Massachusetts Medical School, Worcester,

MA, 01605, USA

SOURCE: Microbes and Infection (2004), 6(15), 1361-1367

CODEN: MCINFS; ISSN: 1286-4579

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

Entered STN: 16 Dec 2004 A review. Bacterial lipopolysaccharides are recognized in mammals by a AB receptor complex composed of CD14, Toll-like receptor (TLR)-4, and MD-2. Transduction of signaling is achieved following the recruitment of a combination of four Toll-interleukin-1 resistance (TIR)-domain-containing adapter mols., which provide a structural platform enabling the recruitment and activation of downstream effectors essential for pathway-specific transcription factor activation and inflammatory gene expression. 15-0 (Immunochemistry) Section cross-reference(s): 14 review endotoxin lipopolysaccharide recognition signaling TLR4 MD2 complex IT Proteins RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2; bacterial lipopolysaccharide/ endotoxin recognition and signal transduction by TLR4/ MD2 complex) IT Receptors RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); bacterial lipopolysaccharide/ endotoxin recognition and signal transduction by TLR4/MD2 complex) IT CD14 (antigen) RL: BSU (Biological study, unclassified); BIOL (Biological study) (bacterial lipopolysaccharide/endotoxin recognition and signal transduction by CD14/TLR4/MD2 complex) IT Inflammation Signal transduction, biological (bacterial lipopolysaccharide/endotoxin recognition and signal transduction by TLR4/MD2 complex) ΙT Lipopolysaccharides RL: BSU (Biological study, unclassified); BIOL (Biological study) (bacterial; bacterial lipopolysaccharide/endotoxin recognition and signal transduction by TLR4/MD2 complex) THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 53 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L60 ANSWER 8 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 14 ACCESSION NUMBER: 2004:70743 CAPLUS DOCUMENT NUMBER: 140:355309 Endotoxin recognition molecules, Toll-like TITLE: receptor 4-MD-2 Miyake, Kensuke AUTHOR (S): CORPORATE SOURCE: The Institute of Medical Science, Department of Microbiology and Immunology, Division of Infectious Genetics, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo, 108-8639, Japan Seminars in Immunology (2004), 16(1), 11-16 SOURCE: CODEN: SEIME2; ISSN: 1044-5323 PUBLISHER: Elsevier Science B.V. DOCUMENT TYPE: Journal; General Review LANGUAGE: English Entered STN: 29 Jan 2004 A review. Toll-like receptors (TLRs) are innate pathogen recognition mols. for microbial products. Lipopolysaccharide (LPS), a membrane constituent of Gram-neg. bacteria, is one of the most potent microbial products. LPS is recognized by TLR4 and MD-2. TLR4 is a transmembrane protein, the extracellular domain of which is composed of a protein motif called leucine-rich repeats (LRR). MD-2 is an extracellular mol. that is

associated with the extracellular LRR of TLR4. MD-2 has a role in cell surface expression of TLR4 and interaction with LPS. TLR4-MD-2 contributes to containment of infections by Gram-neg. bacteria by activating immune responses.

CC 15-0 (Immunochemistry)

ST review endotoxin TLR4 receptor complex MD2 protein

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (MD-2, complexes, with TLR-4; in immune
 recognition of bacterial endotoxin)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (TLR-4 (Toll-like receptor-4), complexes, with MD-2; in
 immune recognition of bacterial endotoxin)

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (bacterial; TLR-4 receptor/MD-2 accessory
 protein in immune recognition of)

IT Toxins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (endotoxins; TLR-4 receptor/MD-2 accessory protein in immune recognition of)

IT Immunity

(innate; TLR-4 receptor/MD-2 accessory

protein in recognition of bacterial endotoxin)

REFERENCE COUNT: 57 THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 9 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 21

ACCESSION NUMBER: 2001:491171 CAPLUS

DOCUMENT NUMBER: 136:149763

TITLE: Molecular genetic analysis of an endotoxin

nonresponder mutant cell line: a point mutation in a

conserved region of MD-2 abolishes endotoxin

-induced signaling

AUTHOR(S): Schromm, Andra B.; Lien, Egil; Henneke, Philipp; Chow,

Jesse C.; Yoshimura, Atsutoshi; Heine, Holger; Latz, Eicke; Monks, Brian G.; Schwartz, David A.; Miyake,

Kensuke; Golenbock, Douglas T.

CORPORATE SOURCE: Evans Biomedical Research Center, Boston University

School of Medicine, Boston, MA, 02118, USA

SOURCE: Journal of Experimental Medicine (2001), 194(1), 79-88

CODEN: JEMEAV; ISSN: 0022-1007

PUBLISHER: Rockefeller University Press

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 08 Jul 2001

AB Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary-K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)- α or interleukin (IL)-1 β . We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface

after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2C95Y, functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4. 15-10 (Immunochemistry) MD2 Toll like receptor endotoxin signaling; lipopolysaccharide signaling MD2 TLR4

ST

Signal transduction, biological TT

(LPS signaling, MD-2 is required component of; point mutation in conserved region of MD-2 abolishes endotoxin-induced signaling)

ΤТ Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (LPS, MD-2 is required component of LPS signaling complex; point mutation in conserved region of MD-2 abolishes endotoxin -induced signaling)

IT Proteins

CC

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(MD-2, TLR4 coreceptor; point mutation in conserved region of MD-2 abolishes endotoxin -induced signaling)

ΙT Receptors

> RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4), MD-2 colocalized with; point mutation in conserved region of MD-2 abolishes endotoxin-induced signaling)

IT Protein motifs

> (conserved region, of MD-2, C95Y substitution in; point mutation in conserved region of MD-2 abolishes endotoxin-induced signaling)

TT Toxins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (endotoxins, LPS; point mutation in conserved region of MD-2 abolishes endotoxin-induced signaling)

IT Gram-negative bacteria

> (point mutation in conserved region of MD-2 abolishes endotoxin -induced signaling)

TΤ Mutation

> (point; point mutation in conserved region of MD-2 abolishes endotoxin-induced signaling)

REFERENCE COUNT:

43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 10 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2006:303353 CAPLUS

DOCUMENT NUMBER: 144:329754

TITLE: R-form LPS, the master key to the activation of

TLR4/MD-2-positive cells

AUTHOR(S): Huber, Michael; Kalis, Christoph; Keck, Simone; Jiang,

Zhengfan; Georgel, Philippe; Du, Xin; Shamel, Louis; Sovath, Sosathya; Mudd, Suzanne; Beutler, Bruce;

Galanos, Chris; Freudenberg, Marina A.

CORPORATE SOURCE: Molecular Immunology, Institute for Biology III,

> Albert-Ludwigs University Freiburg, Freiburg, Germany European Journal of Immunology (2006), 36(3), 701-711

SOURCE:

CODEN: EJIMAF; ISSN: 0014-2980 Wiley-VCH Verlag GmbH & Co. KGaA

DOCUMENT TYPE: Journal LANGUAGE: English Entered STN: 03 Apr 2006

Lipopolysaccharide (endotoxin, LPS) is a major recognition marker for the AB detection of gram-neg. bacteria by the host and a powerful initiator of the inflammatory response to infection. Using S- and R-form LPS from wild-type and R-mutants of Salmonella and E. coli, we show that R-form LPS readily activates mouse cells expressing the signaling receptor Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), while the S-form requires further the help of the LPS-binding proteins CD14 and LBP, which limits its activating capacity. Therefore, the R-form LPS under physiol. conditions recruits a larger spectrum of cells in endotoxic reactions than S-form LPS. We also show that soluble CD14 at high concns. enables CD14-neg. cells to respond to S-form LPS. The presented in vitro data are corroborated by an in vivo study measuring TNF- α levels in response to injection of R- and S-form LPS in mice. Since the R-form LPS constitutes ubiquitously part of the total LPS present in all wild-type bacteria, its contribution to the innate immune response and pathophysiol. of infection is much higher than anticipated during the last half century.

CC 15-10 (Immunochemistry)

TΤ Toxins

PUBLISHER:

RL: BSU (Biological study, unclassified); BIOL (Biological study) (endotoxins; R-form lipopolysaccharide activates TLR4/MD-2-pos. cells)

ΤТ Proteins

> RL: BSU (Biological study, unclassified); BIOL (Biological study) (lipopolysaccharide-binding; R-form lipopolysaccharide activates TLR4/MD-2-pos. cells)

THERE ARE 76 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 76 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 11 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:1016749 CAPLUS

DOCUMENT NUMBER: 143:304609

MD-2 Mediates the Ability of Tetra-Acylated and TITLE: Penta-Acylated Lipopolysaccharides to Antagonize

Escherichia coli Lipopolysaccharide at the

TLR4 Signaling Complex

Coats, Stephen R.; Pham, Thu-Thao T.; Bainbridge, AUTHOR (S): Brian W.; Reife, Robert A.; Darveau, Richard P.

Department of Periodontics, University of Washington CORPORATE SOURCE:

School of Dentistry, Seattle, WA, 98195, USA

SOURCE: Journal of Immunology (2005), 175(7), 4490-4498

CODEN: JOIMA3; ISSN: 0022-1767

PUBLISHER: American Association of Immunologists

DOCUMENT TYPE: Journal LANGUAGE: English Entered STN: 21 Sep 2005

The authors have demonstrated previously that tetra-acylated LPS derived AΒ from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific mol. components that mediate antagonism, the authors developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of

TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Expts. using immunoppts. of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal mol. component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.

CC 15-10 (Immunochemistry)

ST MD2 protein lipopolysaccharide structure TLR4 receptor signaling

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Escherichia coli; MD-2 mediates tetra-acylated and
penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4
signaling response to Escherichia coli lipopolysaccharide)

IT Escherichia coli

Human

Porphyromonas gingivalis

Signal transduction, biological

(MD-2 mediates tetra-acylated and penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4 signaling response to **Escherichia** coli lipopolysaccharide)

IT CD14 (antigen)

RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2 mediates tetra-acylated and penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4 signaling response to Escherichia coli lipopolysaccharide)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2; MD-2 mediates tetra-acylated and penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4 signaling response to Escherichia coli lipopolysaccharide)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); MD-2 mediates tetra-acylated and penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4 signaling response to Escherichia coli lipopolysaccharide)

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (penta-acylated and tetra-acylated; MD-2 mediates tetra-acylated and penta-acylated lipopolysaccharide antagonism of Toll-like receptor-4 signaling response to **Escherichia** coli lipopolysaccharide)

REFERENCE COUNT:

53 THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 12 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2005:862915 CAPLUS

TITLE:

Lipopolysaccharide recognition protein, MD-2, facilitates cellular uptake of E. coli-derived plasmid DNA in synovium

AUTHOR(S):

Kolka, Jacquelyn A.; Vreede, Andrew P.; Roessler,

Blake J.

Division of Rheumatology, Department of Internal CORPORATE SOURCE:

Medicine, University of Michigan Medical School, Ann

Arbor, MI, 48109-0688, USA

Journal of Gene Medicine (2005), 7(7), 956-964 SOURCE:

CODEN: JGMEFG; ISSN: 1099-498X

John Wiley & Sons Ltd. PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 23 Aug 2005

Several cell types are susceptible to transfection in vivo using naked AB plasmid DNA. The mechanisms involved in mediating in vivo transfection are incompletely known, but evidence suggests that receptor-mediated endocytosis is important for specific types of cells. In this study the authors tested the hypothesis that residual Escherichia coli lipopolysaccharide (LPS) forms a non-covalent complex with expression plasmid DNA, and host-cell-derived soluble LPS-binding proteins bind to the DNA-LPS complexes to facilitate receptor-mediated endocytosis. Cells from the murine synovial lining were used as an in vivo model system and in vivo luciferase imaging was used to quantify levels of transgene expression. Using a series of gene-deleted mice, the roles of LPS recognition complex proteins, lipopolysaccharide-binding protein (LBP), CD14 and MD-2, in the process of in vivo transfection were determined Luciferase expression assays revealed that mice lacking LBP or CD14 had increased luciferase expression, while mice deleted of MD-2 had significant redns. in luciferase expression. Gene deletion of hyaluronic acid binding protein CD44 was used as a control and had no statistically significant effect on transgene expression in vivo. In muscle tissue, where neither cell surface nor soluble MD-2 is expressed, no MD-2 dependence of plasmid transfection was identified, suggesting the role of MD-2 is tissue or cell type specific. Addnl., depleting mice of macrophages showed that luciferase expression is occurring within fibroblast-like synoviocytes. The authors' data support a phys. association between LPS and E. coli-derived plasmid DNA, and that in vivo transfection of fibroblast-like synoviocytes is dependent on the soluble form of the LPS-binding protein MD-2.

CC 3-4 (Biochemical Genetics)

Section cross-reference(s): 15

IT Escherichia coli

> Macrophage Plasmids

Synovial membrane

Transformation, genetic

(lipopolysaccharide recognition protein MD-

2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved mechanisms)

TΤ CD14 (antigen)

Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (lipopolysaccharide recognition protein MD-

2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved mechanisms)

TΤ **Proteins**

> RL: BSU (Biological study, unclassified); BIOL (Biological study) (lipopolysaccharide-binding; lipopolysaccharide recognition protein MD-2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved

mechanisms)

TΥ Endocytosis

> (receptor-mediated; lipopolysaccharide recognition protein MD-2 facilitation of cellular uptake of E.

coli-derived plasmid DNA in synovium and involved mechanisms) Muscle (skeletal; lipopolysaccharide recognition protein MD -2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved mechanisms) Synovial membrane IT (synoviocyte; lipopolysaccharide recognition protein MD-2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved mechanisms) Biological transport (uptake; lipopolysaccharide recognition protein MD-2 facilitation of cellular uptake of E. coli-derived plasmid DNA in synovium and involved mechanisms) REFERENCE COUNT: THERE ARE 45 CITED REFERENCES AVAILABLE FOR THIS 45 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L60 ANSWER 13 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN 2004:1089125 CAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 142:175247 TITLE: Protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharidebinding protein and CD14 functions Asai, Yasuyuki; Takaori, Kyoichi; Yamamoto, Tsuyoshi; AUTHOR (S): Ogawa, Tomohiko CORPORATE SOURCE: Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, 501-0296, Japan SOURCE: FEMS Immunology and Medical Microbiology (2005), 43(1), 91-98 CODEN: FIMIEV; ISSN: 0928-8244 PUBLISHER: Elsevier B.V. DOCUMENT TYPE: Journal LANGUAGE: English Entered STN: 20 Dec 2004 ED The protein-bound polysaccharide isolated from basidiomycetes (PSK) is a AΒ biol. response modifier capable of exhibiting various biol. activities, such as antitumor and antimicrobial effects. In the present study, the authors found that PSK suppressed interleukin (IL)-6 production in murine peritoneal macrophages stimulated with endotoxic lipopolysaccharide (LPS) and its synthetic lipid A (compound 506). Nitric oxide production and p38 mitogen-associated protein kinase phosphorylation induced in a murine macrophage cell line, J774-A1, by LPS and compound 506 were also inhibited Further, PSK distinctly suppressed nuclear factor-kB activation in Ba/F3 cells expressing mouse Toll-like receptor 4 and MD-2, following stimulation with LPS and compound 506, however, not with Taxol. These PSK-induced inhibitory activities were caused by inhibition of the phys. assocns. of LPS with LPS-binding protein (LBP) and CD14. PSK also protected mice from LPS-induced lethality, presumably by down-regulating IL-6 and tumor necrosis factor- α concns. in serum. These findings indicate that PSK, which also has an ability to regulate LBP/CD14 functions, may be useful for clin. control of endotoxic sepsis. CC 15-10 (Immunochemistry) ΙT RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2; protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin -induced activation by blocking lipopolysaccharide-binding protein and CD14 functions) Transcription factors RL: BSU (Biological study, unclassified); BIOL (Biological study)

(NF- κ B (nuclear factor of κ light chain gene enhancer in B-cells); protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (lipopolysaccharide-binding; protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin -induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Peritoneum

(macrophage; protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Macrophage

(peritoneal; protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Basidiomycota

(protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT CD14 (antigen)

Interleukin 6

Tumor necrosis factors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT Polysaccharides, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study) (protein-bound; protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

IT 10102-43-9, Nitric oxide, biological studies 165245-96-5, p38 MAP kinase RL: BSU (Biological study, unclassified); BIOL (Biological study) (protein-bound polysaccharide isolated from basidiomycetes inhibits endotoxin-induced activation by blocking lipopolysaccharide-binding protein and CD14 functions)

REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 14 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2005:102155 CAPLUS

DOCUMENT NUMBER: 143:226504

TITLE: Roles of myeloid differentiation protein-2 in

binding of lipopolysaccharide to human

endothelial cells

AUTHOR(S): Xiong, Jianqiong; Zhu, Peifang; Wang, Zhengguo; Jiang,

Jianxin

Maury Audet 10/715,876 CORPORATE SOURCE: Daping Hospital, Third Military Medical University, Chongqing, 400042, Peop. Rep. China SOURCE: Di-San Junyi Daxue Xuebao (2004), 26(24), 2235-2238 CODEN: DYXUE8; ISSN: 1000-5404 PUBLISHER: Di-San Junyi Daxue Xuebao Bianjibu DOCUMENT TYPE: Journal Chinese LANGUAGE: Entered STN: 07 Feb 2005 ED To investigate the expression of myeloid differentiation protein-2 (MD-2) AB in the human endothelial cells and its roles in the binding of lipopolysaccharide (LPS) to endothelial cells, based on cultured human

in the human endothelial cells and its roles in the binding of lipopolysaccharide (LPS) to endothelial cells, based on cultured human umbilical vein endothelial cells (HUVECs), the expression of MD-2 and the effects of LPS on the expression of MD-2 were analyzed by RT-PCR and Western blot. The roles of blood serum, Toll-like receptor 4 (TLR4), and MD-2 in LPS binding to endothelial cells were analyzed by flow cytometry. The results showed that MD-2 was expressed in human endothelial cells and LPS could upregulate the expression of MD-2 in time- and dose-dependent manners. Blood serum could obviously promote LPS binding to endothelial cells. Anti-TLR4 and anti-MD-2 monoclonal antibodies significantly inhibited LPS binding to cells in a dose-dependent manner. MD-2 may play an important role in the binding of LPS to endothelial cells.

CC 13-3 (Mammalian Biochemistry)

ST myeloid differentiation protein 2 endotoxin endothelium

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (MD-2; roles of myeloid differentiation
 protein-2 in binding of lipopolysaccharide to human
 endothelial cells)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); roles of myeloid differentiation protein-2 in **binding** of lipopolysaccharide to human endothelial cells)

IT Human

(roles of myeloid differentiation protein-2 in **binding** of lipopolysaccharide to human endothelial cells)

IT Gene expression

Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (roles of myeloid differentiation protein-2 in **binding** of lipopolysaccharide to human endothelial cells)

IT Endothelium

(umbilical venous; roles of myeloid differentiation protein-2 in **binding** of lipopolysaccharide to human endothelial cells)

IT Vein

(umbilical, endothelium; roles of myeloid differentiation protein-2 in binding of lipopolysaccharide to human endothelial cells)

L60 ANSWER 15 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

2004:501450 CAPLUS

DOCUMENT NUMBER:

141:205606

TITLE:

Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2

and ligand-induced TLR4 oligomerization

AUTHOR (S):

Saitoh, Shin-ichiroh; Akashi, Sachiko; Yamada,

Takenao; Tanimura, Natsuko; Kobayashi, Makiko; Konno, Kazunori; Matsumoto, Fumi; Fukase, Koichi; Kusumoto, Shoichi; Nagai, Yoshinori; Kusumoto, Yutaka; Kosugi,

Atsushi; Miyake, Kensuke

CORPORATE SOURCE:

Division of Infectious Genetics, Institute of Medical

Science, University of Tokyo, Tokyo, Japan

International Immunology (2004), 16(7), 961-969 SOURCE:

CODEN: INIMEN; ISSN: 0953-8178

Oxford University Press PUBLISHER:

Journal DOCUMENT TYPE: LANGUAGE: English Entered STN: 22 Jun 2004 ED

Toll-like receptor 4 (TLR4) and MD-2 recognizes lipid A, the active moiety AΒ of microbial lipopolysaccharide (LPS). Little is known about mechanisms for LPS recognition by TLR4-MD-2. Here the authors show liqand-induced TLR4 oligomerization, homotypic interaction of TLR4, which directly leads to TLR4 signaling. Since TLR4 oligomerization normally occurred in the absence of the cytoplasmic portion of TLR4, TLR4 oligomerization works upstream of TLR4 signaling. Lipid IVa, a lipid A precursor, is agonistic on mouse TLR4-MD-2 but turns antagonistic on chimeric mouse TLR4-human MD-2, demonstrating that the antagonistic activity of lipid IVa is determined by human MD-2. Binding studies with radioactive lipid A and lipid IVa revealed that lipid IVa is similar to lipid A in dose-dependent and saturable binding to mouse TLR4-human MD-2. Lipid IVa, however, did not induce TLR4 oligomerization, and inhibited lipid A-dependent oligomerization of mouse TLR4-human MD-2. Thus, lipid IVa binds mouse TLR4-human MD-2 but does not trigger TLR4 oligomerization. Binding study further revealed that the antagonistic activity of lipid IVa correlates with augmented maximal binding to mouse TLR4-human MD-2, which was .apprx.2-fold higher than lipid A. Taken together, lipid A antagonist lipid IVa is distinct from lipid A in binding to TLR4-MD-2 and in subsequent triggering of TLR4 oligomerization. Given that the antagonistic activity of lipid IVa is determined by MD-2, MD-2 has an important role in a link between ligand interaction and TLR4 oligomerization.

ככ 15-10 (Immunochemistry)

lipopolysaccharide TLR4 receptor oligomerization signaling; lipid A ST antagonist TLR4 receptor MD2 protein signaling

IT Lipopolysaccharides

> RL: BSU (Biological study, unclassified); BIOL (Biological study) (Escherichia coli; structural requirements for ligand-induced oligomerization and signaling by Toll-like receptor-4)

TΤ Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2; is required for ligand-induced oligomerization of Toll-like receptor-4)

TΤ Protein motifs

(glycosylation site; of MD-2 is required for ligand-induced oligomerization of Toll-like receptor-4)

91841-27-9, Lipid IVa TT

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(interaction with TLR-4 receptor-MD-2 complex)

THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 41 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 16 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:683145 CAPLUS

DOCUMENT NUMBER: 142:296120

TITLE: Molecular mechanism of endotoxin (LPS)

recognition

AUTHOR(S): Miyake, Kensuke

CORPORATE SOURCE: Institute of Medical Science, University of Tokyo,

Japan

SOURCE: Endotokishin Kenkyu (2003), 6, 23-30

CODEN: EKNEBO

PUBLISHER: Igaku Tosho Shuppan K.K.

DOCUMENT TYPE: Journal; General Review LANGUAGE: Japanese Entered STN: 23 Aug 2004 ED A review. The topics discussed are (1) processing of lipopolysaccharide (LPS); (2) Toll-like receptor 4 (TLR4) in the recognition of LPS; (3) MD-2 binding to TLR4; (4) MD-2 required for cell surface expression of TLR4; (5) role of MD-2 in TLR4 recognition of LPS; and (6) RP105-MD-1 complex in B cell recognition of LPS. CC 15-0 (Immunochemistry) ST review Toll like receptor TLR4 MD2 endotoxin lipopolysaccharide IT RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2, complexes with TLR4; Toll-like receptor 4-MD-2 complex in recognition of endotoxin) Receptors IT RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4), complexes with MD-2; Toll-like receptor 4-MD-2 complex in recognition of endotoxin) Molecular association IT Molecular recognition (Toll-like receptor 4-MD-2 complex in recognition of endotoxin) IT Lipopolysaccharides RL: BSU (Biological study, unclassified); BIOL (Biological study) (bacterial; Toll-like receptor 4-MD-2 complex in recognition of endotoxin) TT Immunity (innate; Toll-like receptor 4-MD-2 complex in recognition of endotoxin) L60 ANSWER 17 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN 2002:268371 CAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 136:400270 TITLE: Identification of LPS-Binding Peptide Fragment of MD-2, a Toll-Receptor Accessory Protein Mancek, Mateja; Pristovsek, Primoz; Jerala, Roman AUTHOR(S): National Institute of Chemistry, Ljubljana, SI-1000, CORPORATE SOURCE: Slovenia SOURCE: Biochemical and Biophysical Research Communications (2002), 292(4), 880-885 CODEN: BBRCA9; ISSN: 0006-291X PUBLISHER: Elsevier Science DOCUMENT TYPE: Journal LANGUAGE: English Entered STN: 10 Apr 2002 Members of the toll-like receptor family are crucial in recognition of microbial pathogens as part of innate immune response. MD-2, an accessory protein to TLR4, present on the extracellular side of the membrane is needed to initiate the signal transduction. We have identified a 15 amino acid region of human MD-2 that contains several features of other lipopolysaccharide (LPS) binding proteins and peptides. In vitro LPS neutralization by this peptide was observed and confirmed by 2D transferred NOESY NMR expts. NMR expts. have also shown binding of the MD-2 peptide to lipoteichoic acid (LTA) but not to peptidoglycan. Furthermore this peptide inhibited growth of gram-neg. and to a lower extent of some gram-pos. bacteria. Our results indicate that this region of MD-2 might be responsible for binding of LPS and confirms the role of MD-2 as an

```
accessory protein in LPS signaling bestowing the Toll receptors their
     specificity.
CC
     15-5 (Immunochemistry)
     lipopolysaccharide binding peptide MD2 Toll receptor
ST
TΤ
     Proteins
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (MD-2; identification of LPS-binding
        peptide fragment of MD-2, a Toll-receptor accessory
        protein)
     Receptors
IT
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (Toll; identification of LPS-binding peptide fragment of
        MD-2, a Toll-receptor accessory protein)
TΤ
     Lipopolysaccharides
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (bacterial, peptide-binding; identification of LPS-
        binding peptide fragment of MD-2, a
        Toll-receptor accessory protein)
ΤТ
        (identification of LPS-binding peptide fragment of MD
        -2, a Toll-receptor accessory protein)
     Firmicutes
IT
       Gram-negative bacteria
        (identification of LPS-binding peptide fragment of MD
        -2, a Toll-receptor accessory protein, and
        inhibition of)
     428867-19-0P
TΤ
     RL: BSU (Biological study, unclassified); SPN (Synthetic preparation);
     BIOL (Biological study); PREP (Preparation)
        (MD-2; identification of LPS-binding
        peptide fragment of MD-2, a Toll-receptor accessory
        protein)
     9041-38-7D, Teichoic acid, lipo-
IT
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (lipoteichoic acid; identification of LPS-binding peptide
        fragment of MD-2, a Toll-receptor accessory
        protein, and binding to)
                               THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                         36
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L60 ANSWER 18 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER:
                         2002:725654 CAPLUS
DOCUMENT NUMBER:
                         137:230827
                         Interaction of RP 105/MD-1 complex and TLR 4
TITLE:
                         in Gram-negative bacteria
                         recognition of B cell
                         Kikuchi, Takane; Miyake, Kensuke
AUTHOR (S):
CORPORATE SOURCE:
                         The Inst. Med. Sci., The Univ. Tokyo, Japan
                         Ensho to Men'eki (2002), 10(5), 567-573
SOURCE:
                         CODEN: ENMEFA; ISSN: 0918-8371
PUBLISHER:
                         Sentan Igakusha
DOCUMENT TYPE:
                         Journal; General Review
LANGUAGE:
                         Japanese
     Entered STN: 25 Sep 2002
     A review on the discovery of Toll-like receptors (TLR), ligands of TLR
AB
     family, roles of CD14 and TLR4 in the recognition of lipopolysaccharides
     (LPS), LPS recognition by TLR4/MD-2, and possible involvement of
     RP105/MD-1 complex in the regulation of LPS signaling in B cells.
     15-0 (Immunochemistry)
CC
IT
     Proteins
```

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL

(Biological study) (MD-1, MD-2, and RP105; mol. mechanism of lipopolysaccharide recognition by B cell) L60 ANSWER 19 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 2002:588215 CAPLUS DOCUMENT NUMBER: 138:70580 TITLE: TLR4-MD2 signaling pathway induced by endotoxin AUTHOR (S): Li, Yongwang; Ma, Li; Mao, Baoling; Qian, Guisheng Institute of Respiratory Disease, Xinqiao Hospital, CORPORATE SOURCE: the Third Military Medical University, Chungking, 400037, Peop. Rep. China Zhongquo Yaolixue Tongbao (2002), 18(2), 121-125 SOURCE: CODEN: ZYTOE8; ISSN: 1001-1978 Anhui Yike Daxue Linchuan Yaoli Yanjiuso PUBLISHER: DOCUMENT TYPE: Journal; General Review LANGUAGE: Chinese Entered STN: 08 Aug 2002 ED A review with 24 refs. on TLR4-MD2 (TLR4 = toll-like receptor-4) signaling pathway induced by endotoxin with subdivision headings: (1) survey on TLRs; (2) role of TLR4 and its accessory protein MD2 in signaling pathway; (3) basic composition of lipopolysaccharide (LPS) signaling pathway mediated by TLR4-MD2; Biol. significance of TLR4-MD2 signaling pathway deficiency; (5) expression and role of TLR4-MD2 in different tissues; and (6) conclusions. 14-0 (Mammalian Pathological Biochemistry) CC review TLR4 MD2 signaling pathway endotoxin inflammation stTT Proteins RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2, complex with TLR-4; TLR4-MD2 signaling pathway induced by endotoxin) Transcription factors IT RL: BSU (Biological study, unclassified); BIOL (Biological study) (NF- κ B (nuclear factor of κ light chain gene enhancer in B-cells); TLR4- MD2 signaling pathway induced by endotoxin) IT Receptors RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4), complex with MD-2; TLR4- MD2 signaling pathway induced by endotoxin) IT Inflammation Signal transduction, biological (TLR4- MD2 signaling pathway induced by endotoxin) Lipopolysaccharides RL: ADV (Adverse effect, including toxicity); BIOL (Biological study) (TLR4- MD2 signaling pathway induced by endotoxin) CD14 (antigen) RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR4- MD2 signaling pathway induced by endotoxin) IT Toxins RL: ADV (Adverse effect, including toxicity); BIOL (Biological study) (endotoxins; TLR4- MD2 signaling pathway induced by endotoxin) L60 ANSWER 20 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 2001:817878 CAPLUS DOCUMENT NUMBER: 136:117227 TITLE: MD-2 binds to bacterial lipopolysaccharide Viriyakosol, Suganya; Tobias, Peter S.; Kitchens, Richard L.; Kirkland, Theo N. AUTHOR (S):

CORPORATE SOURCE: Veterans Administration San Diego Healthcare System

and Department of Pathology and Medicine, University of California San Diego, San Diego, CA, 92161, USA

SOURCE: Journal of Biological Chemistry (2001), 276(41),

38044-38051

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 11 Nov 2001

The exact roles and abilities of the individual components of the lipopolysaccharide (LPS) receptor complex of proteins remain unclear. MD-2 is a mol. found in association with toll-like receptor 4 (TLR4). The authors produced recombinant human MD-2 to explore its LPS binding ability and role in the LPS receptor complex. MD-2 binds to highly purified rough LPS derived from Salmonella minnesota and Escherichia coli in 5 different assays; one assay yielded an apparent KD of 65 nM. MD-2 binding to LPS did not require LPS-binding proteins LBP and CD14; in fact LBP competed with MD-2 for LPS. MD-2 enhanced the biol. activity of LPS in TLR4-transfected Chinese hamster ovary cells but inhibited LPS activation of U373 astrocytoma cells and of monocytes in human whole blood. These data indicate that MD-2 is a genuine LPS-binding protein and strongly suggest that MD-2 could play a role in regulation of cellular activation by LPS depending on its local availability.

CC 15-8 (Immunochemistry)

ST MD2 binding bacterial lipopolysaccharide infection

IT Escherichia coli

Human

Molecular association

Salmonella minnesota

(MD-2 **binds** directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT CD14 (antigen)

RL: BSU (Biological study, unclassified); BIOL (Biological study) (MD-2 binds directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (MD-2; MD-2 binds

directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (TLR-4 (Toll-like receptor-4); MD-2 binds directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT Infection

(bacterial; MD-2 **binds** directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT Lipopolysaccharides

RL: BSU (Biological study, unclassified); BIOL (Biological study) (bacterial; MD-2 **binds** directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(lipopolysaccharide-binding; MD-2 binds directly to bacterial lipopolysaccharide without assistance from either LBP or CD14 in cell response to microbial invasion)

THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 26 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L60 ANSWER 21 OF 50 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:51060 CAPLUS

DOCUMENT NUMBER: 134:146371

TITLE: Toll-like receptors and associated MD molecules: roles

for pathogen recognition in the immune system

AUTHOR (S):

Miyake, Kensuke; Kimoto, Masao Dep. Immunol., Saga Med. Sch., Japan Saishin Igaku (2001), 56(1), 136-154 CORPORATE SOURCE: SOURCE:

CODEN: SAIGAK; ISSN: 0370-8241

PUBLISHER: Saishin Igakusha

DOCUMENT TYPE: Journal LANGUAGE: Japanese Entered STN: 19 Jan 2001 ED

AB The Toll receptor in Drosophila has been implicated in recognition of fungal infection and activation of defense programs. Humans also have homologs of the Toll receptor, Toll-like receptors (TLR). TLRs have also been implicated in pathogen recognition. TLR2 recognizes Gram-pos. bacteria, mycoplasmas, and mycobacteria, whereas TLR4 recognizes lipopolysaccharide (LPS) from Gram-neq. bacteria. The authors have cloned the MD-2 mol. that is associated with the extracellular domain of TLR4, and shown that the LPS recognition/signaling via TLR4 is dependent on MD-2 association Expression of the TLR4-MD-2 complex on normal mouse macrophages and its LPS signaling were confirmed by the mAb specific for the TLR4/MD-2 complex. The authors also discovered another cell surface complex RP105/MD-1, which is expressed on B cells and delivers an activation signal, leading to potent B cell proliferation and resistance against B cell apoptosis. To understand a role of RP105/MD-1 in the immune system, the authors have made mice lacking RP105. B cells lacking RP105 showed hyporesponsiveness in LPS-induced proliferation and antibody formation. RP105/MD-1 therefore regulates the LPS signaling. In vitro studies suggested that RP105/MD-1 serves as MD-2 in helping TLR4 to recognize and signal LPS. Taken together with results of TLR4 and MD-2, LPS is recognized and signaled by a multi-mol. complex consisting of TLR4, MD-2, RP105, and MD-1. LPS induces a variety of responses in a variety of cells. Configuration of the complex may be different among cell types and might reflect a variety of responses induced by LPS.

CC 15-10 (Immunochemistry)

Section cross-reference(s): 3

Toll like receptor MD protein complex pathogen recognition immune; sequence protein MD2 cDNA human

IT Cell activation

Cell proliferation

(B cell; cDNA sequence of human MD-2

protein and Toll-like receptors association with MD mols. in pathogen recognition in immune system)

IT Proteins, specific or class

> RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)

(MD-1; cDNA sequence of human MD-2 protein

and Toll-like receptors association with MD mols. in pathogen recognition in immune system)

IT Proteins, specific or class

```
RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological
     study, unclassified); PRP (Properties); BIOL (Biological study); OCCU
     (Occurrence); PROC (Process)
        (MD-2; cDNA sequence of human MD-
        2 protein and Toll-like receptors association with MD
        mols. in pathogen recognition in immune system)
     Proteins, specific or class
IT
    RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological
     study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC
     (Process)
        (RP105 protein; cDNA sequence of human MD-2
        protein and Toll-like receptors association with MD mols. in
        pathogen recognition in immune system)
     Receptors
IT
     RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological
     study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC
     (Process)
        (TLR4 (Toll-like receptor 4); cDNA sequence of human MD-
        2 protein and Toll-like receptors association with MD
        mols. in pathogen recognition in immune system)
IT
     Lipopolysaccharides
     RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
     (Biological study); PROC (Process)
        (Toll-like receptor recognition of; cDNA sequence of human MD
        -2 protein and Toll-like receptors association with MD
        mols. in pathogen recognition in immune system)
IT
     B cell (lymphocyte)
        (activation; cDNA sequence of human MD-2
        protein and Toll-like receptors association with MD mols. in
        pathogen recognition in immune system)
IT
     Gram-negative bacteria
        (cDNA sequence of human MD-2 protein and
        Toll-like receptors and associated MD mols. in pathogen recognition in
        immune system)
     B cell (lymphocyte)
IT
     Macrophage
     Molecular association
       Protein sequences
     Signal transduction, biological
     cDNA sequences
        (cDNA sequence of human MD-2 protein and
        Toll-like receptors association with MD mols. in pathogen recognition in
        immune system)
     B cell (lymphocyte)
TΤ
        (proliferation; cDNA sequence of human MD-2
        protein and Toll-like receptors association with MD mols. in
        pathogen recognition in immune system)
     Apoptosis
IT
        (resistance to; cDNA sequence of human MD-2
        protein and Toll-like receptors association with MD mols. in
        pathogen recognition in immune system in relation to)
IT
     223245-59-8, Protein (human uterus clone OHP106)
     RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
     (Biological study)
        (amino acid sequence; cDNA sequence of human MD-2
        protein and Toll-like receptors association with MD mols. in
        pathogen recognition in immune system)
     322482-53-1
IT
     RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
     (Biological study)
```

(nucleotide sequence; cDNA sequence of human MD-2 protein and Toll-like receptors association with MD mols. in pathogen recognition in immune system)

L60 ANSWER 22 OF 50 MEDLINE on STN DUPLICATE 4

ACCESSION NUMBER: 2005593451 MEDLINE DOCUMENT NUMBER: PubMed ID: 16272300

TITLE: Pharmacological inhibition of endotoxin responses

is achieved by targeting the TLR4 coreceptor, MD-

2.

AUTHOR: Visintin Alberto; Halmen Kristen A; Latz Eicke; Monks Brian

G; Golenbock Douglas T

CORPORATE SOURCE: Division of Infectious Diseases and Immunology, University

of Massachusetts Medical School, Worcester, MA 01655, USA..

alberto.visintin@umassmws.edu

CONTRACT NUMBER: AI 52455 (NIAID)

RO1 GM54060 (NIGMS)

RR14466 (NCRR)

SOURCE: Journal of immunology (Baltimore, Md. : 1950), (2005 Nov

15) Vol. 175, No. 10, pp. 6465-72.

Journal code: 2985117R. ISSN: 0022-1767.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

ENTRY MONTH: 200601

ENTRY DATE: Entered STN: 8 Nov 2005

Last Updated on STN: 4 Jan 2006 Entered Medline: 3 Jan 2006

AB The detection of Gram-negative LPS depends upon the proper function of the

TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal

transduction component of the LPS receptor, whereas MD-2

is the endotoxin-binding unit. MD-2 appears to

activate TLR4 when **bound** to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to **bind** LPS and only monomeric

MD-2 interacts with TLR4. Monomeric MD-2

binds TLR4 with an apparent Kd of 12 nM; this binding

avidity was unaltered in the presence of **endotoxin**. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the **binding** of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration

abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be approximately 50 nM. Similarly,

purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects

of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical

target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.

CT Cell Line

Humans Kinetics

Lipid A: AA, analogs & derivatives

Lipid A: PD, pharmacology

Lipopolysaccharides: AI, antagonists & inhibitors

Lipopolysaccharides: ME, metabolism *Lipopolysaccharides: TO, toxicity Lymphocyte Antigen 96: BL, blood Lymphocyte Antigen 96: CH, chemistry *Lymphocyte Antigen 96: ME, metabolism Protein Binding: DE, drug effects Protein Structure, Tertiary Recombinant Fusion Proteins: ME, metabolism Recombinant Fusion Proteins: PD, pharmacology Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Signal Transduction Solubility Toll-Like Receptor 4: CH, chemistry *Toll-Like Receptor 4: ME, metabolism

L60 ANSWER 23 OF 50 MEDLINE on STN DUPLICATE 5

ACCESSION NUMBER: 2005505043 MEDLINE PubMed ID: 16177114 DOCUMENT NUMBER:

Molecular basis of reduced potency of underacylated TITLE:

endotoxins.

Teghanemt Athmane; Zhang DeSheng; Levis Erika N; Weiss AUTHOR:

Jerrold P; Gioannini Theresa L

CORPORATE SOURCE: Inflammation Program, Department of Internal Medicine,

Coralville, IA 52241, USA.

CONTRACT NUMBER: AI59372 (NIAID)

PO144642

Journal of immunology (Baltimore, Md.: 1950), (2005 Oct 1) SOURCE:

Vol. 175, No. 7, pp. 4669-76.

Journal code: 2985117R. ISSN: 0022-1767.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

Abridged Index Medicus Journals; Priority Journals FILE SEGMENT:

ENTRY MONTH: 200511

ENTRY DATE: Entered STN: 23 Sep 2005

Last Updated on STN: 15 Dec 2005 Entered Medline: 28 Nov 2005

Potent TLR4-dependent cell activation by gram-negative bacterial AΒ endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. To facilitate assay of endotoxin:protein and endotoxin:cell interactions, the endotoxins were purified after metabolic labeling with [3H] - or [14C] acetate. All LOS species tested formed monomeric complexes with MD-2 in an LPS-binding protein- and CD14-dependent manner with similar efficiency. However, msbB LOS:

MD-2 and acyloxyacylhydrolase-treated LOS:MD-

2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS: MD-2 and partially

antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased

TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin: MD-2 complexes.

CT Acylation

194

Antigens, CD14: PH, physiology

Cell Line

Comparative Study

*Endotoxins: AI, antagonists & inhibitors

*Endotoxins: ME, metabolism Endotoxins: TO, toxicity

Humans

Lipopolysaccharides: ME, metabolism Neisseria meningitidis: ME, metabolism Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.

L60 ANSWER 24 OF 50 MEDLINE on STN

ACCESSION NUMBER: 2005211589 MEDLINE DOCUMENT NUMBER: PubMed ID: 15845500

TITLE: Differential induction of the toll-like receptor

4-MyD88-dependent and -independent signaling pathways by

DUPLICATE 6

endotoxins.

AUTHOR: Zughaier Susu M; Zimmer Shanta M; Datta Anup; Carlson

Russell W; Stephens David S

CORPORATE SOURCE: Division of Infectious Diseases, Emory University School of

Medicine, VAMC (I-151), 1670 Clairmont Rd, Atlanta, GA

30033, USA.. szughai@emory.edu

CONTRACT NUMBER: R01 AI033517-10 (NIAID)

SOURCE: Infection and immunity, (2005 May) Vol. 73, No. 5, pp.

2940-50.

Journal code: 0246127. ISSN: 0019-9567.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200506

ENTRY DATE: Entered STN: 23 Apr 2005

Last Updated on STN: 8 Jun 2005 Entered Medline: 7 Jun 2005

AB The biological response to **endotoxin** mediated through the

Toll-like receptor 4 (TLR4)-MD-2 receptor

complex is directly related to lipid A structure or configuration. Endotoxin structure may also influence activation of the MyD88-dependent and -independent signaling pathways of TLR4. To address this possibility, human macrophage-like cell lines (THP-1, U937, and MM6) or murine macrophage RAW 264.7 cells were stimulated with picomolar concentrations of highly purified endotoxins. Harvested supernatants from previously stimulated cells were also used to stimulate RAW 264.7 or 23ScCr (TLR4-deficient) macrophages (i.e., indirect induction). Neisseria meningitidis lipooligosaccharide (LOS) was a potent direct inducer of the MyD88-dependent pathway molecules tumor necrosis factor alpha (TNF-alpha), interleukin-lbeta (IL-lbeta), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 3alpha (MIP-3alpha), and the MyD88-independent molecules beta interferon (IFN-beta), nitric oxide, and IFN-gamma-inducible protein 10 (IP-10). Escherichia coli 55:B5 and Vibrio cholerae lipopolysaccharides (LPSs) at the same pmole/ml lipid A

concentrations induced comparable levels of TNF-alpha, IL-1beta, and MIP-3alpha, but significantly less IFN-beta, nitric oxide, and IP-10. contrast, LPS from Salmonella enterica serovars Minnesota and Typhimurium induced amounts of IFN-beta, nitric oxide, and IP-10 similar to meningococcal LOS but much less TNF-alpha and MIP-3alpha in time course and dose-response experiments. No MyD88-dependent or -independent response to endotoxin was seen in TLR4-deficient cell lines (C3H/HeJ and 23ScCr) and response was restored in TLR4-MD-2-transfected human embryonic kidney 293 cells. Blocking the MyD88-dependent pathway by DNMyD88 resulted in significant reduction of TNF-alpha release but did not influence nitric oxide release. IFN-beta polyclonal antibody and IFN-alpha/beta receptor 1 antibody significantly reduced nitric oxide release. N. meningitidis endotoxin was a potent agonist of both the MyD88-dependent and -independent signaling pathways of the TLR4 receptor complex of human macrophages. E. coli 55:B5 and Vibrio cholerae LPS, at the same picomolar lipid A concentrations, selectively induced the MyD88-dependent pathway, while Salmonella LPS activated the MyD88-independent pathway.

CT Adaptor Proteins, Signal Transducing Animals

*Antigens, Differentiation: ME, metabolism Cell Line

Cytokines: ME, metabolism
*Endotoxins: CH, chemistry

*Endotoxins: PH, physiology
Gram-Negative Bacteria: IM, immunology
Gram-Negative Bacteria: ME, metabolism
Gram-Negative Bacteria: PY, pathogenicity

Humans

Lipid A: CH, chemistry Lipid A: PD, pharmacology

Lipopolysaccharides: CH, chemistry
Macrophage Activation: DE, drug effects
*Macrophage Activation: IM, immunology

Macrophages: IM, immunology Macrophages: ME, metabolism

*Membrane Glycoproteins: ME, metabolism Mice

Mice, Inbred C3H

Nitric Oxide: ME, metabolism

*Receptors, Cell Surface: ME, metabolism

*Receptors, Immunologic: ME, metabolism Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S.

*Signal Transduction Toll-Like Receptor 4 Toll-Like Receptors

L60 ANSWER 25 OF 50 MEDLINE on STN DUPLICATE 8

ACCESSION NUMBER: 2005303694 MEDLINE DOCUMENT NUMBER: PubMed ID: 15949133

TITLE: Detoxifying endotoxin: time, place and person.

AUTHOR: Munford Robert S

CORPORATE SOURCE: Molecular Host Defense Laboratory, Departments of Internal Medicine and Microbiology, University of Texas Southwestern

Medical School, Dallas, Texas 75390, USA..

robert.munford@utsouthwestern.edu

CONTRACT NUMBER: AI8188 (NIAID)

SOURCE: Journal of endotoxin research, (2005) Vol. 11, No. 2, pp.

69-84. Ref: 166

Journal code: 9433350. ISSN: 0968-0519.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200508

ENTRY DATE: Entered STN: 14 Jun 2005

Last Updated on STN: 3 Aug 2005 Entered Medline: 2 Aug 2005

Animals that cannot sense endotoxin may die if they are infected by Gram-negative bacteria. Animals that sense endotoxin and respond too vigorously may also die, victims of their own inflammatory reactions. The outcome of Gram-negative bacterial infection is thus determined not only by an individual's ability to sense endotoxin and respond to its presence, but also by numerous phenomena that inactivate endotoxin and/or prevent harmful reactions to it. Endotoxin sensing requires the MD-2/TLR4 recognition complex and occurs principally in local tissues and the liver. This review highlights the known detoxification mechanisms, which include: (i) proteins that facilitate LPS sequestration by plasma lipoproteins, prevent interactions between the biesetive limid A moiety and MD-2/TLR4 or

between the bioactive lipid A moiety and MD-2/TLR4, or promote cellular uptake via non-signaling pathway(s); (ii) enzymes that deacylate or dephosphorylate lipid A; (iii) mechanisms that remove LPS and Gram-negative bacteria from the bloodstream; and (iv) neuroendocrine adaptations that modulate LPS-induced mediator production or neutralize pro-inflammatory molecules in the circulation. In general, the mechanisms for sensing and detoxifying endotoxin seem to be compartmentalized (local versus systemic), dynamic, and variable between individuals. They may have evolved to confine infection and inflammation to extravascular sites of infection while preventing harmful systemic reactions. Integration of endotoxin sensing and detoxification is essential for successful host defense.

CT Animals

Bacterial Infections: ME, metabolism

*Endotoxins: ME, metabolism Endotoxins: TO, toxicity

Humans

Lipid A: ME, metabolism

Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S. Reticuloendothelial System: ME, metabolism

L60 ANSWER 26 OF 50 MEDLINE on STN DUPLICATE 12

ACCESSION NUMBER: 2004000596 MEDLINE DOCUMENT NUMBER: PubMed ID: 14688118

TITLE: Neisseria meningitidis lipooligosaccharide

structure-dependent activation of the macrophage

CD14/Toll-like receptor 4 pathway.

AUTHOR: Zughaier Susu M; Tzeng Yih-Ling; Zimmer Shanta M; Datta

Anup; Carlson Russell W; Stephens David S

CORPORATE SOURCE: Division of Infectious Diseases, Department of Medicine,

Emory University School of Medicine, Atlanta, Georgia, USA.

CONTRACT NUMBER: 2 R01 AI033517-10 (NIAID)

SOURCE: Infection and immunity, (2004 Jan) Vol. 72, No. 1, pp.

371-80.

Journal code: 0246127. ISSN: 0019-9567.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200402

Entered STN: 3 Jan 2004 ENTRY DATE:

> Last Updated on STN: 3 Feb 2004 Entered Medline: 2 Feb 2004

Meningococcal lipopoly(oligo)saccharide (LOS) is a major inflammatory AB mediator of fulminant meningococcal sepsis and meningitis. Highly purified wild-type meningococcal LOS and LOS from genetically defined mutants of Neisseria meningitidis that contained specific mutations in LOS biosynthesis pathways were used to confirm that meningococcal LOS activation of macrophages was CD14/Toll-like receptor 4 (TLR4)-MD-2 dependent and to elucidate the LOS structural requirement for TLR4 activation. Expression of TLR4 but not TLR2 was required, and antibodies to both TLR4 and CD14 blocked meningococcal LOS activation of macrophages. Meningococcal LOS alpha or beta chain oligosaccharide structure did not influence CD14/TLR4-MD-2 activation. However, meningococcal lipid A, expressed by meningococci with defects in 3-deoxy-D-manno-octulosonic acid (KDO) biosynthesis or transfer, resulted in an approximately 10-fold (P < 0.0001) reduction in biologic activity compared to KDO2-containing meningococcal LOS. Removal of KDO2 from LOS by acid hydrolysis also dramatically attenuated cellular responses. Competitive inhibition assays showed similar binding of glycosylated and unglycosylated lipid A to CD14/TLR4-MD-2. A decrease in the number of lipid A phosphate head groups or penta-acylated meningococcal LOS modestly attenuated biologic activity. Meningococcal endotoxin is a potent agonist of the macrophage CD14/TLR4-MD-2 receptor, helping explain the fulminant presentation of meningococcal sepsis and meningitis. KDO2 linked to meningococcal lipid A was structurally required for maximal activation of the human macrophage TLR4 pathway and indicates an important role for KDO-lipid A in endotoxin biologic activity.

CTAnimals

> *Antigens, CD14: ME, metabolism Antigens, Surface: ME, metabolism Cell Line

Humans

Lipid A: CH, chemistry

*Lipopolysaccharides: CH, chemistry

*Lipopolysaccharides: IM, immunology

Lymphocyte Antigen 96

*Macrophage Activation

Macrophages: IM, immunology Macrophages: ME, metabolism

*Membrane Glycoproteins: ME, metabolism Mice

*Neisseria meningitidis: IM, immunology

*Receptors, Cell Surface: ME, metabolism Research Support, U.S. Gov't, P.H.S.

Respiratory Burst

Structure-Activity Relationship

Sugar Acids: CH, chemistry

Toll-Like Receptor 2 Toll-Like Receptor 4

Toll-Like Receptors

U937 Cells

L60 ANSWER 27 OF 50 MEDLINE on STN **DUPLICATE 13**

ACCESSION NUMBER: 2004223026 MEDLINE DOCUMENT NUMBER: PubMed ID: 15119998

TITLE: Molecular mechanisms of endotoxin tolerance.

AUTHOR: Fan Hongkuan; Cook James A

CORPORATE SOURCE: Department of Physiology and Neuroscience, Medical

University of South Carolina, Charleston, South Carolina

29425, USA.

CONTRACT NUMBER: GM27673 (NIGMS)

SOURCE: Journal of endotoxin research, (2004) Vol. 10, No. 2, pp.

71-84. Ref: 128

Journal code: 9433350. ISSN: 0968-0519.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200412

ENTRY DATE: Entered STN: 5 May 2004

Last Updated on STN: 19 Dec 2004

Entered Medline: 8 Dec 2004

AB The phenomenon of endotoxin tolerance has been widely investigated, but to date, the molecular mechanisms of endotoxin tolerance remain to be resolved clearly. The discovery of the Toll-like receptor (TLR) family as the major receptors for lipopolysaccharide (LPS) and other bacterial products has prompted a resurgence of interest in endotoxin tolerance mechanisms. Changes of cell surface molecules, signaling proteins, pro-inflammatory and anti-inflammatory cytokines and other mediators have been examined. During tolerance expression of LPS-binding protein (LBP), CD14, myeloid differentiation protein-2 (MD-2) and TLR2 are unchanged or up-regulated, whereas TLR4 is transiently suppressed or unchanged. Proximal post-receptor signaling proteins that are altered in tolerance include augmented degradation of interleukin-1 receptor-associated kinase (IRAK), and decreased TLR4-myeloid differentiation factor 88 (MyD88) and IRAK-MyD88 association. Tolerance has also been shown to be associated with decreased Gi protein content and activity, decreased protein kinase C (PKC) activity, reduction in mitogen-activated protein kinase (MAP kinase) activity, and reduced activator protein-1 (AP-1) and nuclear factor kappa B (NF-kappaB) induced gene transactivation. However, not all signaling proteins and pathways are suppressed in tolerance and induction of specific anti-inflammatory proteins and signaling pathways may serve important counter inflammatory functions. The latter include induction of IRAK-M and suppressor of cytokine-signaling-1 (SOCS-1), phosphoinositide-3-kinase (PI3K) signaling, and increased or maintained expression of inhibitor-kappaB (IkappaB) isoforms. Also at the nuclear level, increase in the NF-kappaB subunit p50 homodimer expression and increased activation of peroxisomeproliferator-activated receptors-gamma (PPARgamma) have been linked to tolerance phenotype. Although there are species and cellular variations in manifestation of the LPS tolerant phenotype, it is clear that the tolerance phenomena have evolved as a complex orchestrated counter regulatory response to inflammation.

CT Animals

*Drug Tolerance

*Endotoxins: TO, toxicity

Humans

*Lipopolysaccharides: TO, toxicity Research Support, U.S. Gov't, P.H.S.

L60 ANSWER 28 OF 50 MEDLINE on STN DUPLICATE 15

ACCESSION NUMBER: 2003554314 MEDLINE DOCUMENT NUMBER: PubMed ID: 12960171

TITLE: Lysines 128 and 132 enable lipopolysaccharide

binding to MD-2, leading to Toll-like receptor-4

aggregation and signal transduction.

AUTHOR: Visintin Alberto; Latz Eicke; Monks Brian G; Espevik Terje;

Golenbock Douglas T

CORPORATE SOURCE: Division of Infectious Diseases and Immunology, Department

of Medicine, University of Massachusetts Medical School,

Worcester, Massachusetts 01605, USA.

CONTRACT NUMBER: DK50305 (NIDDK)

GM54060 (NIGMS) GM63244 (NIGMS)

SOURCE: The Journal of biological chemistry, (2003 Nov 28) Vol.

278, No. 48, pp. 48313-20. Electronic Publication:

2003-09-05.

Journal code: 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200401

ENTRY DATE: Entered STN: 25 Nov 2003

Last Updated on STN: 13 Jan 2004 Entered Medline: 12 Jan 2004

Three cell-surface proteins have been recognized as components of the AB mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response.

These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for

pharmacological intervention in endotoxin-mediated diseases.

CT Amino Acid Sequence

Antigens, CD14: BI, biosynthesis Antigens, CD14: ME, metabolism *Antigens, Surface: ME, metabolism Biotinylation Blotting, Western

Cell Line

Cell Membrane: ME, metabolism Cell Membrane: UL, ultrastructure

Cysteine: CH, chemistry

Humans

*Lipopolysaccharides: ME, metabolism

Lymphocyte Antigen 96 *Lysine: CH, chemistry

*Membrane Glycoproteins: ME, metabolism

Microscopy, Electron, Scanning

Microscopy, Fluorescence Molecular Sequence Data

Precipitin Tests
Protein Binding

Protein Structure, Tertiary

*Receptors, Cell Surface: ME, metabolism

Maury Audet 10/715,876.

Recombinant Proteins: ME, metabolism Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.

Sequence Homology, Amino Acid

*Signal Transduction Toll-Like Receptor 4 Toll-Like Receptors

Transfection

Tyrosine: CH, chemistry

L60 ANSWER 29 OF 50 MEDLINE on STN **DUPLICATE 16**

ACCESSION NUMBER: 2003468338 MEDLINE DOCUMENT NUMBER: PubMed ID: 14517279

TITLE: Lipopolysaccharide interaction with cell surface Toll-like

receptor 4-MD-2: higher affinity than that with MD-2 or

CD14.

AUTHOR: Akashi Sachiko; Saitoh Shin-ichiroh; Wakabayashi Yasutaka;

Kikuchi Takane; Takamura Noriaki; Nagai Yoshinori; Kusumoto Yutaka; Fukase Koichi; Kusumoto Shoichi; Adachi Yoshiyuki;

Kosugi Atsushi; Miyake Kensuke

CORPORATE SOURCE: Division of Infectious Genetics, The Institute of Medical

Science, The University of Tokyo, 4-6-1 Shirokanedai,

Minatoku, Tokyo 108-8639, Japan.

SOURCE: The Journal of experimental medicine, (2003 Oct 6) Vol.

198, No. 7, pp. 1035-42. Electronic Publication:

2003-09-29.

Journal code: 2985109R. ISSN: 0022-1007.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200311

ENTRY DATE: Entered STN: 8 Oct 2003

> Last Updated on STN: 13 Nov 2003 Entered Medline: 12 Nov 2003

Toll-like receptors (TLRs) are innate recognition molecules for microbial AΒ products, but their direct interactions with corresponding ligands remain unclarified. LPS, a membrane constituent of gram-negative bacteria, is the best-studied TLR ligand and is recognized by TLR4 and MD-2, a molecule associated with the extracellular domain of TLR4. Although TLR4-MD-2 recognizes LPS, little is known about the physical interaction between LPS and TLR4-MD-2. Here, we demonstrate cell surface LPS-TLR4-MD-2 complexes. CD14 greatly enhances the formation of LPS-TLR4-MD-2 complexes, but is not coprecipitated with LPS-TLR4-MD-2 complexes, suggesting a role for CD14 in LPS loading onto TLR4-MD-2 but not in the interaction itself between LPS and TLR4-MD-2. A tentative dissociation constant (Kd) for LPS-TLR4-MD-2 complexes was approximately 3 nM, which is approximately 10-20 times lower than the reported Kd for LPS-MD-2 or LPS-CD14. The presence of detergent disrupts LPS interaction with CD14 but not with TLR4-MD-2. E5531, a lipid A antagonist developed for therapeutic intervention of endotoxin shock, blocks LPS interaction with TLR4-MD-2 at a concentration 100 times lower than that required for blocking LPS interaction with CD14. These results reveal direct LPS interaction with

cell surface TLR4-MD-2 that is distinct from that with MD-2 or CD14.

CTAnimals

Antibodies, Monoclonal: IM, immunology

- *Antigens, CD14: PH, physiology
- *Antigens, Surface: ME, metabolism
- *Lipid A: AA, analogs & derivatives

Lipid A: AI, antagonists & inhibitors

Lipid A: ME, metabolism Lipid A: PD, pharmacology

*Lipopolysaccharides: ME, metabolism

Lymphocyte Antigen 96

*Membrane Glycoproteins: ME, metabolism

Mice

*Receptors, Cell Surface: ME, metabolism

Research Support, Non-U.S. Gov't

Toll-Like Receptor 4 Toll-Like Receptors

L60 ANSWER 30 OF 50 MEDLINE on STN DUPLICATE 17

ACCESSION NUMBER: 2004038098 MEDLINE DOCUMENT NUMBER: PubMed ID: 14733729

TITLE: Regulation of interactions of endotoxin with host cells.

AUTHOR: Gioannini Theresa L; Teghanemt Athmane; Zarember Kol A;

Weiss Jerrold P

CORPORATE SOURCE: Department of Internal Medicine, Division of Infectious

Diseases and The Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200

Hawkins Drive, Iowa City, IA 52242, USA.

CONTRACT NUMBER: DK 05472 (NIDDK)

P01 44642

SOURCE: Journal of endotoxin research, (2003) Vol. 9, No. 6, pp.

401-8.

Journal code: 9433350. ISSN: 0968-0519.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200408

ENTRY DATE: Entered STN: 24 Jan 2004

Last Updated on STN: 17 Aug 2004 Entered Medline: 16 Aug 2004

AB Potent Toll-like receptor 4 (TLR4)-dependent cell activation by endotoxin requires lipopolysaccharide-binding protein (LBP) and CD14-dependent delivery of endotoxin to cells containing MD-2 and TLR4. We have used metabolically labeled [(14)C] meningococcal lipooligosaccharide (LOS), purified recombinant endotoxin-binding proteins, and cultured endothelial cells to better define protein: endotoxin intermediates key in cell activation in the absence of functional membrane (m) CD14. Protein: endotoxin complexes or aggregates (agg) were purified by gel sieving and characterized by immunocapture and bio-assays. Cell activation closely correlated with LBP, albumin and soluble (s) CD14-dependent conversion of endotoxin agg $(M(r) > or = 20 \times 10(6))$ to monomeric (M(r) approximately 55 x 10(3)) endotoxin:sCD14 complexes. Ordered interaction of LBP (+ albumin) and sCD14 with LOSagg was required for the efficient formation of a bioactive endotoxin:sCD14 complex and potent cell activation. Increasing the ratio of LBP/sCD14 or addition of bactericidal/permeability-increasing protein (BPI) reduced accumulation of endotoxin:sCD14 complexes and instead yielded aggregates of endotoxin (M(r) approximately 1-20 x 10(6)) containing LBP or BPI that were taken up by cells in a CD14- and TLR4-independent manner without inducing pro-inflammatory responses. These findings strongly suggest that host machinery linked to TLR4-dependent cellular activation or TLR4-independent cellular clearance of endotoxin selectively recognizes different protein:endotoxin complexes. At the outset of infection, the low concentrations of

LBP present and absence of extracellular BPI favor formation of pro-inflammatory endotoxin:CD14 complexes. The mobilization of LBP and BPI that is triggered by inflammation directs endotoxin for clearance and hence resolution of endotoxin-triggered inflammation.

CT Albumins: PH, physiology

Antibodies, Monoclonal: ME, metabolism

Antigens, CD14: IM, immunology Antigens, CD14: ME, metabolism

Carbon Radioisotopes

Cell Line

Chromatography, Gel

Dose-Response Relationship, Drug *Endothelial Cells: ME, metabolism

*Endotoxins: ME, metabolism

Humans

Membrane Glycoproteins: IM, immunology Membrane Glycoproteins: ME, metabolism

Models, Biological

Mutagenesis, Site-Directed

Neisseria meningitidis: ME, metabolism

Protein Kinases: GE, genetics

Receptors, Cell Surface: IM, immunology Receptors, Cell Surface: ME, metabolism Recombinant Proteins: ME, metabolism Research Support, U.S. Gov't, P.H.S.

Toll-Like Receptor 4
Toll-Like Receptors

Umbilical Veins: CY, cytology

L60 ANSWER 31 OF 50 MEDLINE on STN DUPLICATE 18

ACCESSION NUMBER: 2003173923 MEDLINE DOCUMENT NUMBER: PubMed ID: 12691621

TITLE: Overexpression of CD14, TLR4, and MD-2

in HEK 293T cells does not prevent induction of in vitro

endotoxin tolerance.

AUTHOR: Medvedev Andrei E; Vogel Stefanie N

CORPORATE SOURCE: Department of Microbiology and Immunology, University of

Maryland, Baltimore 21201, USA.

CONTRACT NUMBER: AI-18797 (NIAID) AI-44936 (NIAID)

SOURCE: Journal of endotoxin research, (2003) Vol. 9, No. 1, pp.

60-4.

Journal code: 9433350. ISSN: 0968-0519.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200308

ENTRY DATE: Entered STN: 16 Apr 2003

Last Updated on STN: 22 Aug 2003 Entered Medline: 21 Aug 2003

induced under conditions where expression of TLR4 and MD-

AB TLR4 and MD-2 are necessary for conferring cellular responsiveness to LPS. Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS re-stimulation, known as 'endotoxin tolerance'. While induction of LPS tolerance has been reported to correlate with down-regulation of cell surface expression of TLR4/MD-2, other mechanisms of LPS tolerance have been revealed that target intracellular intermediates downstream of the TLR4/MD-2 complex. In this study, we sought to examine whether endotoxin tolerance could be

2 proteins is not affected by LPS. Human HEK 293T cells are completely unresponsive to LPS, but acquire high LPS sensitivity following transient transfection with CD14, TLR4, and MD-2 (293T/CD14/TLR4/MD-2 cells), as judged by NF-kappaB activation, ERK 1/2 phosphorylation, and TNF-alpha gene expression. Prior exposure of 293T/CD14/TLR4/MD-2 cells to LPS resulted in a significant decrease of LPS-mediated responses, yet failed to affect expression levels of TLR4 and MD-2. Thus, altered expression and/or function of intracellular mediators downstream of the TLR4/MD-2 complex play an important role in mediating LPS tolerance. *Antigens, CD14: ME, metabolism *Antigens, Surface: ME, metabolism Blotting, Western Cell Line: DE, drug effects Cell Line: IM, immunology Cell Line: ME, metabolism Dose-Response Relationship, Drug Down-Regulation: IM, immunology Drug Tolerance Escherichia coli: IM, immunology Gene Expression Humans *Immune Tolerance Immune Tolerance: DE, drug effects Immune Tolerance: IM, immunology Kidney Lipopolysaccharides: PD, pharmacology Lymphocyte Antigen 96 *Membrane Glycoproteins: ME, metabolism Mitogen-Activated Protein Kinase 1: GE, genetics Mitogen-Activated Protein Kinase 1: ME, metabolism Mitogen-Activated Protein Kinase 3 Mitogen-Activated Protein Kinases: GE, genetics Mitogen-Activated Protein Kinases: ME, metabolism NF-kappa B: GE, genetics NF-kappa B: ME, metabolism Phosphorylation RNA, Messenger: ME, metabolism *Receptors, Cell Surface: ME, metabolism Research Support, U.S. Gov't, P.H.S. Reverse Transcriptase Polymerase Chain Reaction Toll-Like Receptor 4 Toll-Like Receptors Transfection Tumor Necrosis Factor-alpha: GE, genetics Tumor Necrosis Factor-alpha: ME, metabolism MEDLINE on STN **DUPLICATE 19** 2002641132 MEDITNE

L60 ANSWER 32 OF 50

ACCESSION NUMBER: DOCUMENT NUMBER: PubMed ID: 12391239

Dysregulation of LPS-induced Toll-like receptor 4-MyD88 TITLE:

> complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells.

Medvedev Andrei E; Lentschat Arnd; Wahl Larry M; Golenbock

Douglas T; Vogel Stefanie N

CORPORATE SOURCE: Department of Microbiology and Immunology, University of

Maryland, Baltimore 21201, USA.

CONTRACT NUMBER: AI18797 (NIAID)

AI44936 (NIAID) AIP0150305 (NIAID)

AUTHOR:

CT

R01GM54060 (NIGMS)

SOURCE: Journal of immunology (Baltimore, Md.: 1950), (2002 Nov 1)

Vol. 169, No. 9, pp. 5209-16.

Journal code: 2985117R. ISSN: 0022-1767.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

English LANGUAGE:

FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals

200212 ENTRY MONTH:

Entered STN: 29 Oct 2002 ENTRY DATE:

> Last Updated on STN: 17 Dec 2002 Entered Medline: 10 Dec 2002

Prior exposure to LPS induces a transient state of cell refractoriness to AB subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-kappaB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-alpha gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD -2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the

LPS-tolerant phenotype.

CTAdaptor Proteins, Signal Transducing

Animals

Antigens, Differentiation: ME, metabolism

CHO Cells Cricetinae

*Down-Regulation: IM, immunology

*Drosophila Proteins

Enzyme Activation: IM, immunology Enzyme Inhibitors: PD, pharmacology

Humans

*Immune Tolerance

Intracellular Fluid: IM, immunology Intracellular Fluid: ME, metabolism *Lipopolysaccharides: PD, pharmacology Macromolecular Substances

*Membrane Glycoproteins: AI, antagonists & inhibitors

Membrane Glycoproteins: BI, biosynthesis Membrane Glycoproteins: ME, metabolism Membrane Glycoproteins: PH, physiology

Monocytes: EN, enzymology Monocytes: IM, immunology

Monocytes: ME, metabolism

Phosphorylation

*Protein Kinase Inhibitors

Protein Kinases: ME, metabolism RNA, Messenger: BI, biosynthesis

*Receptors, Cell Surface: AI, antagonists & inhibitors

Receptors, Cell Surface: BI, biosynthesis Receptors, Cell Surface: ME, metabolism Receptors, Cell Surface: PH, physiology

*Receptors, Immunologic: AI, antagonists & inhibitors

Receptors, Immunologic: ME, metabolism *Receptors, Interleukin-1: ME, metabolism Research Support, U.S. Gov't, P.H.S. Signal Transduction: IM, immunology

Toll-Like Receptor 2 Toll-Like Receptor 4 Toll-Like Receptors

L60 ANSWER 33 OF 50 MEDLINE on STN DUPLICATE 20

ACCESSION NUMBER: 2002387284 MEDLINE DOCUMENT NUMBER: PubMed ID: 12135807

TITLE: Initial responses to endotoxins and Gram-negative bacteria.

AUTHOR: Heumann Didier; Roger Thierry

CORPORATE SOURCE: Department of Internal Medicine, Division of Infectious

Diseases, BH19-111, Centre Hospitalier Universitaire

Vaudois, rue du Bugnon 46, CH-1011, Lausanne, Switzerland...

didier.heumann@bluewin.ch

SOURCE: Clinica chimica acta; international journal of clinical

chemistry, (2002 Sep) Vol. 323, No. 1-2, pp. 59-72. Ref:

92

Journal code: 1302422. ISSN: 0009-8981.

PUB. COUNTRY: Netherlands

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

General Review; (REVIEW)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200210

ENTRY DATE: Entered STN: 24 Jul 2002

Last Updated on STN: 10 Oct 2002 Entered Medline: 8 Oct 2002

AB The innate immune system initiates host defence against invasive microbial pathogens using specific recognition mechanisms. Here we review the current concepts and the molecular basis of innate immune responses to bacterial infections, focusing our attention on the actors involved in the response to Gram-negative bacteria.Lipopolysaccharide (LPS) is the major virulence factor of Gram-negative bacteria. During the past decade, enormous progress has been obtained in the elucidation of LPS recognition and signalling in mammalian phagocytes. According to the current model, recognition of LPS is initialized by the cooperative interplay between the LPS-binding protein (LBP), the membrane-bound or soluble forms of CD14 and the recently identified Toll-like receptor 4 (TLR4)-MD-2 complex. Recognition of LPS leads to the rapid activation of an intracellular signalling pathway, highly homologous to the signalling pathway of interleukin-1, which results in the release of pro-inflammatory mediators. In vivo models in which animals are challenged with LPS or Gram-negative bacteria have highlighted opposite roles for LBP, CD14 and TLRs. Regarding LPS challenge, there is a large body of evidence in favour of a detrimental role played by LBP, CD14 and TLRs. These molecules sensitize the host to a LPS-induced uncontrolled acute inflammatory response that results in animal death. However, when the

host is in the presence of virulent Gram-negative bacteria, the invading pathogens must be held in check by the innate immune system until a specific immune response is mounted. Under these conditions, LBP, CD14 and TLRs are required to trigger a pro-inflammatory response which is crucial for keeping infection under control. Therefore, caution should be the rule about the development of therapeutic approaches aimed at blocking the pro-inflammatory response during Gram-negative infections.

CT *Acute-Phase Proteins

Animals

Antigens, CD14: ME, metabolism Carrier Proteins: ME, metabolism

*Drosophila Proteins

*Endotoxins: IM, immunology

*Gram-Negative Bacteria: IM, immunology

*Gram-Negative Bacterial Infections: IM, immunology

Humans

Immunity, Natural

Lipopolysaccharides: IM, immunology

Macrophages: IM, immunology

Membrane Glycoproteins: ME, metabolism Receptors, Cell Surface: ME, metabolism

Research Support, Non-U.S. Gov't

Toll-Like Receptor 4
Toll-Like Receptors

L60 ANSWER 34 OF 50 MEDLINE on STN ACCESSION NUMBER: 2004342289 MEDLINE DOCUMENT NUMBER: PubMed ID: 15121639

TITLE: Endotoxin responsiveness of human airway

epithelia is limited by low expression of MD-

2.

AUTHOR: Jia Hong Peng; Kline Joel N; Penisten Andrea; Apicella

Michael A; Gioannini Theresa L; Weiss Jerrold; McCray Paul

B Jr

CORPORATE SOURCE: Department of Pediatrics, Carver College of Medicine,

University of Iowa, Iowa City, IA 52242, USA.

CONTRACT NUMBER: AI-24616 (NIAID)

AI-44642 (NIAID) AI-65298 (NIAID) ES-005605 (NIEHS) HL-59324 (NHLBI) HL-62134 (NHLBI) P30 DK-54759 (NIDDK)

SOURCE: American journal of physiology. Lung cellular and molecular

physiology, (2004 Aug) Vol. 287, No. 2, pp. L428-37.

Electronic Publication: 2004-04-30.

Journal code: 100901229. ISSN: 1040-0605.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200408

ENTRY DATE: Entered STN: 13 Jul 2004

Last Updated on STN: 18 Aug 2004 Entered Medline: 17 Aug 2004

AB The expression of inducible antimicrobial peptides, such as human beta-defensin-2 (HBD-2) by epithelia, comprises a component of innate pulmonary defenses. We hypothesized that HBD-2 induction in airway epithelia is linked to pattern recognition receptors such as the Toll-like receptors (TLRs). We found that primary cultures of well-differentiated

human airway epithelia express the mRNA for TLR-4, but little or no MD-2 mRNA, and display little HBD-2 expression in response to treatment with purified endotoxin +/- LPS binding protein (LBP) and soluble CD14. Expression of endogenous MD-2 by transduction of airway epithelial cells with an adenoviral vector encoding MD-2 or extracellular addition of recombinant MD-2 both increased the responses of airway epithelia to endotoxin + LBP and sCD14 by >100-fold, as measured by NF-kappaB-luciferase activity and HBD-2 mRNA expression. MD-2 mRNA could be induced in airway epithelia by exposure of these cells to specific bacterial or host products (e.g., killed Haemophilus influenzae, the P6 outer membrane protein from H. influenzae, or TNF-alpha + IFN-gamma). These findings suggest that MD-2, either coexpressed with TLR-4 or secreted when produced in excess of TLR-4 from neighboring cells, is required for airway epithelia to respond sensitively to endotoxin. The regulation of MD-2 expression in airway epithelia and pulmonary macrophages may serve as a means to modify endotoxin responsiveness in the airway.

CT *Antigens, Surface: GE, genetics

Cells, Cultured

*Endotoxins: PD, pharmacology

Extracellular Space: IM, immunology Gene Expression: DE, drug effects

Humans

Kidney: CY, cytology Lymphocyte Antigen 96

Macrophages, Alveolar: IM, immunology

Pneumonia: IM, immunology
Pneumonia: PP, physiopathology
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Respiratory Mucosa: CY, cytology
*Respiratory Mucosa: DE, drug effects
*Respiratory Mucosa: PH, physiology
Signal Transduction: IM, immunology

L60 ANSWER 35 OF 50 MEDLINE ON STN ACCESSION NUMBER: 2004375473 MEDLINE DOCUMENT NUMBER: PubMed ID: 15276183

TITLE: MD-2: the Toll 'gatekeeper' in

endotoxin signalling.

AUTHOR: Gangloff Monique; Gay Nicholas J

CORPORATE SOURCE: Department of Biochemistry, University of Cambridge, 80

Tennis Court Road, Cambridge CB2 1GA, UK.. mg308@cam.ac.uk

SOURCE: Trends in biochemical sciences, (2004 Jun) Vol. 29, No. 6,

pp. 294-300.

Journal code: 7610674. ISSN: 0968-0004.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200411

ENTRY DATE: Entered STN: 28 Jul 2004

Last Updated on STN: 10 Nov 2004

Entered Medline: 9 Nov 2004

AB Lipopolysaccharide (LPS) from the outer cell wall of Gram-negative bacteria is a potent stimulator of the mammalian innate immune system. The Toll-like receptor 4 (TLR4) pathway triggers the inflammatory responses induced by LPS in a process that requires the interaction of

LPS-bound myeloid differentiation-2 (MD-2) with TLR4. Here we propose two possible mechanisms for LPS recognition and signalling that take into account both the structural information available for TLR4 and MD-2, and the determinants of endotoxicity, namely, the acylation and phosphorylation patterns of LPS. In our first model, LPS induces the association of two TLR4-MD-2 heterodimers by binding to two different molecules of MD-2 through the acyl chains of lipid A. In our second model, the binding of LPS to a single TLR4-MD-2 complex facilitates the recruitment of a second TLR4-MD-2 heterodimer. These models contrast with the activation of Drosophila Toll, where the receptor is crosslinked by a dimeric protein ligand. Animals *Antigens, Surface: ME, metabolism

CT

Carbohydrate Sequence

Drosophila

Drosophila Proteins: ME, metabolism

*Endotoxins: ME, metabolism

Humans

Lipopolysaccharides: ME, metabolism

Lymphocyte Antigen 96

Membrane Glycoproteins: ME, metabolism

Models, Biological Molecular Sequence Data Protein Structure, Tertiary

Receptors, Cell Surface: ME, metabolism

Research Support, Non-U.S. Gov't

Signal Transduction Substrate Specificity Toll-Like Receptor 4 Toll-Like Receptors

L60 ANSWER 36 OF 50 MEDLINE on STN ACCESSION NUMBER: 2003542158 MEDLINE DOCUMENT NUMBER: PubMed ID: 14615419

TITLE: Lipopolysaccharide activates nuclear factor-kappaB through

toll-like receptors and related molecules in cultured

biliary epithelial cells.

AUTHOR: Harada Kenichi; Ohira Shusaku; Isse Kumiko; Ozaki Satoru;

Zen Yoh; Sato Yasunori; Nakanuma Yasuni

Department of Human Pathology, Kanazawa University Graduate CORPORATE SOURCE:

School of Medicine, Kanazawa, Japan.

Laboratory investigation; a journal of technical methods and pathology, (2003 Nov) Vol. 83, No. 11, pp. 1657-67. SOURCE:

Journal code: 0376617. ISSN: 0023-6837.

PUB. COUNTRY:

United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200312

Entered STN: 19 Nov 2003 ENTRY DATE:

Last Updated on STN: 19 Dec 2003

Entered Medline: 2 Dec 2003

To clarify the innate immunity of the intrahepatic biliary tree, we AΒ examined expression of Toll-like receptors and intracellular signalings in biliary epithelial cells in response to bacterial components by using cultured biliary epithelial cells (murine biliary cells and human cholangiocarcinoma cell lines). The expression of Toll-like receptors in cultured cells was examined by reverse transcription and PCR and

immunohistochemistry. Intracellular signalings after Toll-like receptors activation by lipopolysaccharide was examined by analysis of nuclear factor (NF)-kappaB activation and inhibition studies using inhibitors for NF-kappaB and mitogen-activated protein kinase and blocking antibody. mRNAs of Toll-like receptors 2, 3, 4, and 5, and related molecules (MD-2, MyD88, and CD14) were detected, and their proteins were expressed in cultured cells. Lipopolysaccharide was shown to bind to the cell surface of cultured cells. Lipopolysaccharide treatment induced the production of TNF-alpha, and nuclear translocation of NF-kappaB and increased NF-kappaB-DNA binding in cultured cells. This induction of TNF-alpha was partially inhibited by anti-Toll-like receptor 4 antibody. The nuclear translocation and increased binding of NF-kappaB by lipopolysaccharide were blocked by addition of MG132, an inhibitor of NF-kappaB. In conclusion, lipopolysaccharide appears to form a receptor complex of CD14, Toll-like receptor 4, MD-2, and MyD88 in cultured biliary epithelial cells and seems to regulate activation of NF-kappaB and synthesis of TNF-alpha. The recognition of pathogen-associated molecular patterns using Toll-like receptors and related molecules in biliary epithelial cells, which is demonstrated in this in vitro study, may participate in an immunopathology of the intrahepatic biliary tree in vivo. Check Tags: Female; Male Adult Aged Animals Bile: CH, chemistry Bile Duct Neoplasms: ME, metabolism Bile Duct Neoplasms: PA, pathology *Bile Ducts, Intrahepatic: DE, drug effects Bile Ducts, Intrahepatic: ME, metabolism Bile Ducts, Intrahepatic: PA, pathology Cell Line, Tumor Cell Nucleus: DE, drug effects Cell Nucleus: ME, metabolism Cholangiocarcinoma: ME, metabolism Cholangiocarcinoma: PA, pathology DNA: CH, chemistry DNA: ME, metabolism DNA Primers: CH, chemistry Endotoxins: AN, analysis *Endotoxins: PD, pharmacology *Epithelium: DE, drug effects Epithelium: ME, metabolism *Escherichia coli Humans Leupeptins: PD, pharmacology *Lipopolysaccharides: PD, pharmacology Membrane Glycoproteins: GE, genetics *Membrane Glycoproteins: ME, metabolism Mice Mice, Inbred BALB C Middle Aged NF-kappa B: AI, antagonists & inhibitors *NF-kappa B: BI, biosynthesis RNA, Messenger: ME, metabolism Receptors, Cell Surface: GE, genetics *Receptors, Cell Surface: ME, metabolism Toll-Like Receptor 4 Toll-Like Receptors

Tumor Necrosis Factor-alpha: ME, metabolism

CT

L60 ANSWER 37 OF 50 MEDLINE on STN 2003354141 ACCESSION NUMBER: MEDLINE PubMed ID: 12869026

DOCUMENT NUMBER:

Evidence of expression of endotoxin receptors TITLE:

CD14, toll-like receptors TLR4 and TLR2 and associated

molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells.

AUTHOR: Vives-Pi M; Somoza N; Fernandez-Alvarez J; Vargas F; Caro

P; Alba A; Gomis R; Labeta M O; Pujol-Borrell R

CORPORATE SOURCE: Laboratory of Immunobiology for Research and Diagnostic

Applications, Transfusion Center and Tissue Bank Germans

Trias i Pujol University Hospital, Badalona, Spain..

vivespi@ns.hugtip.scs.es

Clinical and experimental immunology, (2003 Aug) Vol. 133, SOURCE:

No. 2, pp. 208-18.

Journal code: 0057202. ISSN: 0009-9104.

PUB. COUNTRY: England: United Kingdom

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200309

ENTRY DATE: Entered STN: 31 Jul 2003

> Last Updated on STN: 17 Sep 2003 Entered Medline: 16 Sep 2003

AΒ CD14, a GPI-linked membrane protein, is a component of the lipopolysaccharide (LPS) receptor complex, one of the pattern-recognizing receptors (PRR) expressed by myeloid lineage cells. Here we report that CD14, the functionally linked toll-like receptor molecules, TLR2 and TLR4, and the associated molecule MD-2 are expressed in endocrine cells of the human pancreatic islets. CD14 expression in human pancreatic islets was determined by immunofluorescence staining of tissue sections and primary cultures, and confirmed by flow cytometry of dispersed normal islets and SV40-transformed islet cells (HP62). latter cells synthesized and secreted CD14 in response to lipopolysaccharide (LPS) in a time- and dose-dependent manner. Reverse transcription polymerase chain reaction (RT-PCR)-Southern was positive for CD14, TLR2, TLR4 and MD-2 in human pancreas, purified islets and HP62 cells. In vitro experiments using rat islets (also positive for CD14 by RT-PCR) and HP62 cells showed that LPS regulates glucose-dependent insulin secretion and induces inflammatory cytokines [interleukin (IL)-lalpha, IL-6 and tumour necrosis factor (TNF)-alpha]. The functional expression of CD14 and associated molecules in islet beta cells adds a new pathway that islet cells may follow to adjust their function to endotoxaemia situations and become vulnerable to the inflammatory events that occur during diabetogenic insulitis.

CTCheck Tags: Female; Male

Adolescent

Adult

Antigens, CD14: GE, genetics *Antigens, CD14: ME, metabolism Antigens, Surface: ME, metabolism

Cells, Cultured

Dose-Response Relationship, Drug Glucose: AI, antagonists & inhibitors

Glucose: PD, pharmacology

Humans

Insulin: SE, secretion

Islets of Langerhans: DE, drug effects *Islets of Langerhans: ME, metabolism

Lipopolysaccharides: PD, pharmacology

Lymphocyte Antigen 96

*Membrane Glycoproteins: ME, metabolism

Middle Aged

*Receptors, Cell Surface: ME, metabolism

Research Support, Non-U.S. Gov't

Reverse Transcriptase Polymerase Chain Reaction

Species Specificity Toll-Like Receptor 2 Toll-Like Receptor 4 Toll-Like Receptors Tumor Cells, Cultured

L60 ANSWER 38 OF 50 MEDLINE on STN ACCESSION NUMBER: 2001534223 MEDLINE DOCUMENT NUMBER: PubMed ID: 11581570

TITLE: Bacterial lipopolysaccharides and innate immunity.

AUTHOR: Alexander C; Rietschel E T

CORPORATE SOURCE: Department of Immunochemistry and Biochemical Microbiology,

Centre of Medicine and Bio-Sciences, Borstel, Germany.

SOURCE: Journal of endotoxin research, (2001) Vol. 7, No. 3, pp.

167-202. Ref: 478

Journal code: 9433350. ISSN: 0968-0519.

PUB. COUNTRY: England: United Kingdom

Journal; Article; (JOURNAL ARTICLE) DOCUMENT TYPE:

General Review; (REVIEW)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200201

Entered STN: 3 Oct 2001 ENTRY DATE:

> Last Updated on STN: 31 Jan 2002 Entered Medline: 30 Jan 2002

Bacterial lipopolysaccharides (LPS) are the major outer surface membrane AB components present in almost all Gram-negative bacteria and act as extremely strong stimulators of innate or natural immunity in diverse eukaryotic species ranging from insects to humans. LPS consist of a polyor oligosaccharide region that is anchored in the outer bacterial membrane by a specific carbohydrate lipid moiety termed lipid A. The lipid A component is the primary immunostimulatory centre of LPS. With respect to immunoactivation in mammalian systems, the classical group of strongly agonistic (highly endotoxic) forms of LPS has been shown to be comprised of a rather similar set of lipid A types. In addition, several natural or derivatised lipid A structures have been identified that display comparatively low or even no immunostimulation for a given mammalian species. Some members of the latter more heterogeneous group are capable of antagonizing the effects of strongly stimulatory LPS/lipid A forms. Agonistic forms of LPS or lipid A trigger numerous physiological immunostimulatory effects in mammalian organisms, but -- in higher doses--can also lead to pathological reactions such as the induction of septic shock. Cells of the myeloid lineage have been shown to be the primary cellular sensors for LPS in the mammalian immune system. During the past decade, enormous progress has been obtained in the elucidation of the central LPS/lipid A recognition and signaling system in mammalian phagocytes. According to the current model, the specific cellular recognition of agonistic LPS/lipid A is initialized by the combined extracellular actions of LPS binding protein (LBP), the membrane-bound or soluble forms of CD14 and the newly identified Toll-like receptor 4 (TLR4) *MD-2 complex, leading to the rapid activation of an intracellular signaling network that is highly homologous

structure-activity correlations in LPS and lipid A has not only contributed to a molecular understanding of both immunostimulatory and toxic septic processes, but has also re-animated the development of new pharmacological and immunostimulatory strategies for the prevention and therapy of infectious and malignant diseases.

CTAnimals

> Carbohydrate Conformation Carbohydrate Sequence

Endotoxins

Humans

Immunity, Natural: IM, immunology Lipopolysaccharides: CH, chemistry *Lipopolysaccharides: IM, immunology

Mammals

Molecular Sequence Data Phagocytes: IM, immunology Research Support, Non-U.S. Gov't

Signal Transduction: IM, immunology

L60 ANSWER 39 OF 50 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN

ACCESSION NUMBER:

2006-253953 [26] WPIDS

DOC. NO. CPI:

C2006-082768

TITLE:

New soluble Toll-like receptor 4 protein, useful as a

therapeutic agent for treating endotoxin-induced

inflammation.

DERWENT CLASS:

B04 D16

INVENTOR(S):

HYAKUSHIMA, N; KUROKI, Y; MITSUZAWA, H PATENT ASSIGNEE(S): (NISC-N) JAPAN SCI & TECHNOLOGY AGENCY

COUNTRY COUNT: 112

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG

WO 2006033481 A1 20060330 (200626)* JA 78

RW: AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IS IT KE LS LT LU LV MC MW MZ NA NL OA PL PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE ______ WO 2006033481 A1 WO 2005-JP18207 20050922

PRIORITY APPLN. INFO: JP 2004-277421 20040924

WO2006033481 A UPAB: 20060421

NOVELTY - A soluble Toll-like receptor 4 protein (I) (TLR4), comprising an amino acid sequence having a fully defined 608 amino acid (SEQ ID No: 1) sequence, given in the specification, or an amino acid sequence that is substantially the same as SEQ ID Number 1, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) DNA (II) encoding (I);
- (2) recombinant vector (III) comprising (II);

- (3) non-human host cell (IV) transformed with (III);
- (4) preparing (I); and
- (5) therapeutic agent (A1) comprising (I).

ACTIVITY - Antiinflammatory. In vivo analysis of soluble Toll-like receptor 4 protein (sTLR4) and MD-2 in suppressing inflammation induced by endotoxin was carried out as follows. A female BALB/C mouse was anesthetized by ketamine HCl and xylazine hydrochloride. The mice injected with sTLR4 and MD-2 protein were taken as a test group, and mice injected with sTLR2 was taken as control group. Lipopolysaccharide (LPS) (1 mu g) was dripped in trachea. After 16 hours, 1 ml of Hank's solution was used to wash bronchus alveolus. The concentration of tumor necrosis factor alpha in bronchus alveolus was measured. Results showed that inflammation induced by endotoxin was significantly reduced in test group.

MECHANISM OF ACTION - None given.

USE - (I) Or (A1) is useful for treating **endotoxin** induced inflammation (claimed), inflammation induced by nuclear factor kappa B activation, and interleukin-8 secretion.

DESCRIPTION OF DRAWING(S) - The figure is a graph representing the inflammatory cytokine of lung decreased by administration of soluble Toll-like receptor 4 protein and MD-2. Dwq.9/9

L60 ANSWER 40 OF 50 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN

ACCESSION NUMBER: 2005-372350 [38] WPIDS

DOC. NO. NON-CPI: N2005-301093 DOC. NO. CPI: C2005-115401

TITLE: New anti-TLR4-MD-2 monoclonal

antibody not exerting effect of B-cell proliferation inhibition and TNF production inhibition in macrophages, through in vitro lipopolysaccharide stimulation, for

treating endotoxin shock.

DERWENT CLASS: B04 D16 S03

INVENTOR(S): MIYAKE, K; TAKAMURA, S

PATENT ASSIGNEE(S): (NISC-N) JAPAN SCI & TECHNOLOGY AGENCY

COUNTRY COUNT: 108

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG

WO 2005047330 A1 20050526 (200538)* JA 30

RW: AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NA NL OA PL PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

APPLICATION DETAILS:

PRIORITY APPLN. INFO: JP 2003-387173 20031117

AB WO2005047330 A UPAB: 20050616

NOVELTY - A monoclonal antibody (I) capable of specifically recognizing a TLR4-MD-2 composite and not exerting effect of B-cell

proliferation inhibition and TNF production inhibition in macrophages, through in vitro lipopolysaccharide (LPS) stimulation, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) an anti-mouse TLR4-MD-2 monoclonal antibody Sa 15-21 capable recognizing an antigenic determinant of mouse TLR4 in a mouse TLR4-MD-2 composite, in the N-terminal end;
- (2) an anti-human TLR4 monoclonal antibody TF904 capable of specifically recognizing the antigenic determinant of human TLR4, in the N-terminal end;
- (3) a hybridoma capable of producing an anti-human TLR4 monoclonal antibody TF904 which specifically recognizes an antigenic determinant of human TLR4 (FER ABP-10118), in the N-terminal end;
- (4) a therapeutic agent (A1) of **endotoxin** shock comprising (I); and
- (5) screening an agent capable of promoting endotoxin shock inhibitory effect or substance inhibiting endotoxin shock, comprising administering anti-TLR4-MD-2 mouse monoclonal antibody Sa 15-21 capable of recognizing TLR4-MD-2 composite and a test substance, and evaluating the grade of endotoxin shock in a mouse, before and after the endotoxin shock.

ACTIVITY - Antibacterial; Immunosuppressive. No supporting data is given.

MECHANISM OF ACTION - TRL4-MD-2 composite antagonist.

 \mbox{USE} - (I) Is useful for treating or preventing $\mbox{\bf endotoxin}$ shock (claimed).

ADVANTAGE - (I) Effectively treats endotoxin shock. Dwg.0/8

L60 ANSWER 41 OF 50 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN

ACCESSION NUMBER: 2004-143114 [14] WPIDS

DOC. NO. NON-CPI: N2004-114058 DOC. NO. CPI: C2004-057716

TITLE: Extracorporeal adsorption agent for removing harmful

substances that induce sepsis, by treating blood obtained from mammal by passing blood through adsorption column assembly at flow rate that fluidized bed of particles is

formed.

DERWENT CLASS: B04 S03

INVENTOR(S): HEEGAARD, P M H; LIHME, A O F

PATENT ASSIGNEE(S): (UPFR-N) UPFRONT CHROMATOGRAPHY AS

COUNTRY COUNT: 105

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG

WO 2004008138 A2 20040122 (200414) * EN 56

RW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NL OA PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AU 2003242509 A1 20040202 (200450)

EP 1521624 A2 20050413 (200525) EN

R: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LT LU LV MC MK NL PT RO SE SI SK TR

JP 2005532130 W 20051027 (200571) 48 US 2005249724 A1 20051110 (200574)

APPLICATION DETAILS:

PATENT NO	KIND	APP	PLICATION	DATE
WO 2004008138	A2	WO 2	2003-DK483	20030709
AU 2003242509	A1	AU 2	2003-242509	20030709
EP 1521624	A2	EP 2	2003-763618	20030709
		WO 2	2003-DK483	20030709
JP 2005532130	W	WO 2	2003-DK483	20030709
		JP 2	2004-520339	20030709
US 2005249724	A1	WO 2	2003-DK483	20030709
		US 2	2005-520685	20050527

FILING DETAILS:

PATENT NO	KIND	PATENT NO	
AU 2003242509	Al Based on	WO 2004008138	
EP 1521624	A2 Based on	WO 2004008138	
JP 2005532130	W Based on	WO 2004008138	

PRIORITY APPLN. INFO: DK 2002-1091 20020711 AB W02004008138 A UPAB: 20040226

NOVELTY - Extracorporeal adsorption agent (M1), for removing harmful substances responsible of inducing sepsis caused by gram-negative or gram positive bacteria in a mammal, involves treating blood obtained from the mammal by passing the blood through the adsorption column assembly at such a flow rate that a fluidized bed of the particles is formed.

DETAILED DESCRIPTION - Extracorporeal adsorption (M1), for removing harmful substances responsible of inducing sepsis caused by gram-negative or gram positive bacteria in a mammal, the extracorporeal adsorption being effected by an adsorption column assembly, where the adsorption column assembly comprising a column and an adsorption medium in the form of particles, the sedimented volume of the particles being at the most 80% of the volume of the column, the particles being characterized by carrying an affinity specific molecule with a specific affinity for the LPS portion of the gram-negative bacteria, gram-positive bacteria or harmful substances derived from the gram-positive bacteria, involves treating blood obtained from the mammal by passing the blood through the adsorption column assembly at such a flow rate that a fluidized bed of the particles is formed.

ACTIVITY - Antibacterial; Immunosuppressive.

MECHANISM OF ACTION - Removing harmful substances responsible of inducing sepsis.

The use of extracorporeal adsorption for the treatment of endotoxin-challenged cows was as follows. The cows weighing 500-800 kg were challenged by intravenous injection of 1000 ng lipopolysaccharide (LPS)/kg body weight. After the injection of LPS, the cow was connected to a venous-venous extracorporeal adsorption circuit, comprising a stabilized fluidized bed of polymyxin B-coated particles connected through a switch, the switch being activated by a continuous monitoring device, detecting changes in the serum concentration of haptoglobin in the blood. Clinical parameters, including rectal temperature, heat rate, respiratory frequency, and acute phase protein responses was measured up to one week after the challenge and compared between cows treated by the described extracorporeal method and in treated cows. Results showed that LPS-challenged cows treated by stand-by

extracorporeal adsorption of the animal's blood in a continuous process through a stabilized fluidized bed of polymyxin B-coated particles present with significantly less, significantly less severe and significantly more short-lived clinical signs than comparable, non-treated cows.

USE - (M1) is useful for treating (M2) sepsis caused by gram-negative or gram-positive bacteria in mammal e.g., human being, which involves obtaining blood from the mammal, treating the obtained blood by passing the blood through the adsorption column assembly at such as flow rate that a fluidized bed of the particles is formed, and reinfusing the treated blood into the same mammal. The flow rate of the blood through the column assembly is such that expansion ratio of the fluidized bed is at least 1.3, such as at least 1.5. (M2) further involves injecting the substance into the blood stream of the mammal (claimed).

DESCRIPTION OF DRAWING(S) - The figure shows the principle of continuous extracorporeal adsorption. Dwg.3/7

L60 ANSWER 42 OF 50 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN

ACCESSION NUMBER: 2004-027278 [03] WPIDS DOC. NO. NON-CPI: N2004-021623

DOC. NO. CPI: C2004-009400

TITLE: Transgenic non human animal with no response property to

Gram negative bacterial membrane component e.g., lipopolysaccharide, comprises MD-2 gene deficient

chromosome which encodes toll-like receptor.

B04 D16 P14 S03 DERWENT CLASS:

PATENT ASSIGNEE(S): (KAGA-N) KAGAKU GIJUTSU SHINKO JIGYODAN

COUNTRY COUNT: 1

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG ______ JP 2003319734 A 20031111 (200403)* 13

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
JP 2003319734	А	JP 2002-130964	20020502

PRIORITY APPLN. INFO: JP 2002-130964 20020502

JP2003319734 A UPAB: 20040112

NOVELTY - Transgenic non-human animal (I) with no response property to Gram negative bacterial membrane component e.g., lipopolysaccharide (LPS), comprises MD-2 gene deficient chromosome which encodes toll-like receptor 4 (TLR4).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- (1) screening (M1) a of Gram-negative-bacterial membrane component responsive substance, involves introducing a test substance into (I), or introducing a test substance into (I) having MD-2 gene of different animal; and
- (2) diagnosing (M2) the response of different MD-2 gene in non-human animal, involves transducing MD-2 gene into (I) and inducing an endotoxin shock into (I).
- USE (I) is useful for screening of Gram-negative-bacterial membrane component responsive substance, or for diagnosing the response of different MD-2 genes in non-human animal (claimed).
- (I) is useful for developing a medical agent which is used for further

drug development.

ADVANTAGE - (I) enables to screen Gram-negative-bacterial membrane component responsive substance, or to diagnose the response of different MD-2 gene in non-human animal.

DESCRIPTION OF DRAWING(S) - The figure shows the lipopolysaccharide expression of the macrophage or dendritic cells derived from the $\mbox{MD-2}$ genetically engineered mouse. (Drawing includes non-English language text).

Dwg.3/5

L60 ANSWER 43 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on

STN

ACCESSION NUMBER: 2005:232309 BIOSIS DOCUMENT NUMBER: PREV200510021832

TITLE: Crystal structure of CD14 and its implications for

lipopolysaccharide signaling.

AUTHOR(S): Kim, Jung- In; Lee, Chang Jun; Jin, Mi Sun; Lee, Cherl- Ho;

Paik, Sang- Gi; Lee, Hayyoung [Reprint Author]; Lee, Jie-

Oh

CORPORATE SOURCE: Chungnam Natl Univ, Inst Biotechnol, Taejon 305701, South

Korea

hlee@cnu.ac.kr; jieoh.lee@kaist.ac.kr

SOURCE: Journal of Biological Chemistry, (MAR 25 2005) Vol. 280,

No. 12, pp. 11347-11351.

CODEN: JBCHA3. ISSN: 0021-9258.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 23 Jun 2005

Last Updated on STN: 23 Jun 2005

AB Lipopolysaccharide, the **endotoxin** of Gram-negative bacteria, induces extensive immune responses that can lead to fatal septic shock syndrome. The core receptors recognizing lipopolysaccharide are CD14, TLR4, and MD-2. CD14 **binds** to lipopolysaccharide and presents it to the TLR4/MD-2 complex, which initiates intracellular signaling. In addition to lipopolysaccharide, CD14 is

capable of recognizing a few other microbial and cellular products. Here, we present the first crystal structure of CD14 to 2.5 angstrom resolution. A large hydrophobic pocket was found on the NH2-terminal side of the horseshoe-like structure. Previously identified regions involved in lipopolysaccharide binding map to the rim and bottom of the pocket indicating that the pocket is the main component of the lipopolysaccharide-binding site. Mutations that interfere with lipopolysaccharide signaling but not with lipopolysaccharide binding are also clustered in a separate area near the pocket. Ligand diversity of CD14 could be explained by the generous size of the pocket, the considerable flexibility of the rim of the pocket, and the multiplicity of grooves available for ligand binding.

IT Major Concepts

Toxicology; Biochemistry and Molecular Biophysics

IT Diseases

septic shock: bacterial disease

Shock, Septic (MeSH)

IT Chemicals & Biochemicals

CD14; TLR4; MD-2; lipopolysaccharide: toxin

L60 ANSWER 44 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on

STN

ACCESSION NUMBER: 2005:530487 BIOSIS DOCUMENT NUMBER: PREV200510324002

TITLE: Upregulation of plasma endothelin-1 (ET-1) levels and CD14

expression on peripheral blood monocytes in healthy

children chronically exposed to urban air pollution.

Calderon-Garciduenas, Lilian [Reprint Author]; Romer, Lina; AUTHOR (S):

Barragan, Gerardo; Reed, William

CORPORATE SOURCE: Univ Montana, Missoula, MT 59812 USA

SOURCE: FASEB Journal, (MAR 4 2005) Vol. 19, No. 4, Suppl. S, Part

1, pp. A489.

Meeting Info.: Experimental Biology 2005 Meeting/35th International Congress of Physiological Sciences. San Diego, CA, USA. March 31 -April 06, 2005. Amer Assoc Anatomists; Amer Assoc Immunologists; Amer Physiol Soc; Amer Soc Biochem & Mol Biol; Amer Soc Investigat Pathol; Amer Soc Nutr Sci; Amer Soc Pharmacol & Expt Therapeut; Int

Union Physiol Sci.

CODEN: FAJOEC. ISSN: 0892-6638.

DOCUMENT TYPE:

Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE:

English

ENTRY DATE:

Entered STN: 1 Dec 2005

Last Updated on STN: 1 Dec 2005

Air pollution produces adverse health effects including systemic inflammation. Mexico City (MC) children are chronically exposed to high levels of ozone (03) and particulate matter (PM). Endotoxins are a significant constituent of MC PM 10 (59EU/mg) and PM2.5 (12 EU/mg). CD14 is a leucine-rich glycoprotein thatfunctions together with lipopolysaccharide-binding protein, MD2 and toll-likereceptor 4 to initiate inflammatory responses to endotoxin. ET-1 is a vaso- and bronchoconstrictor rapidly produced by the lung following inhalation of 03 and PM. The objectives of this study were to determine whether MC children exhibit systemic responses to pollutant exposure by enhanced expression of CD 14 on circulating monocytes and upregulation of the ET-1. CD14 expression was assessed on peripheral blood monocytes by flow cytometry, and ET-I by ELISA, in acohort of 82 clinically healthy children aged 9 2 years (MC 59, Controls 23). Controls were age/gender matched children from Polotitlan, a town with low levels of air pollution. All children had unremarkable clinical histories. MC children exhibited a significant upregulation of CD14 (78.5 + / - 8.9 v 57.9 + / - 3.3, p=0.0012), and ET-1 (69.8 + / - 2.7 v)39.8 + / - 1.9 pg/ml p = < 0.0001) compared to children from Polotitlan. This finding suggests that monitoring CD14 and ET-1 in children could be used to follow environmental exposures to air pollution. Funded by KO1

Major Concepts TΤ

NS046410-01A1.

Immune System (Chemical Coordination and Homeostasis); Blood and Lymphatics (Transport and Circulation); Biochemistry and Molecular Biophysics

Parts, Structures, & Systems of Organisms IT

> plasma: blood and lymphatics; lung: respiratory system; peripheral blood monocyte: immune system, blood and lymphatics; monocyte: immune system, blood and lymphatics, circulating

TT Chemicals & Biochemicals

> particulate matter; ozone; toll-like receptor 4; MD2; endothelin-1: regulation; CD14: expression, regulation

L60 ANSWER 45 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN

ACCESSION NUMBER: 2005:561525 BIOSIS

DOCUMENT NUMBER: PREV200510341097

TITLE: Conserved mechanisms of signal transduction by Toll and

Toll-like receptors.

AUTHOR(S): Gangloff, Monique; Weber, Alexander N. R.; Gay, Nicholas J.

[Reprint Author]

CORPORATE SOURCE: Univ Cambridge, Dept Biochem, 80 Tennis Court Rd, Cambridge

CB2 1GA, UK

njg11@mole.bio.cam.ac.uk

SOURCE: Journal of Endotoxin Research, (2005) Vol. 11, No. 5, pp.

294-298.

ISSN: 0968-0519.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 7 Dec 2005

Last Updated on STN: 7 Dec 2005

In recent years, considerable progress has been made towards understanding the mechanism by which endotoxin is detected by the cells of the immune system. Lipopolysaccharides are extracted in a soluble form by the serum LPS binding protein and then transferred sequentially to the extrinsic membrane protein CD14 and the co-receptor complex TLR4/MD-2. Our modelling studies suggest that acyl chains of lipid A are buried within the hydrophobic core of MD-2 and this induces cross-linking of the two TLR4/MD-2 complexes, an event that is required to trigger signal transduction. We also propose that, by analogy with the Drosophila Toll

transduction. We also propose that, by analogy with the Drosophila Toll receptor, the mechanism of signal transduction is likely to be complex and to involve concerted protein conformational changes. In particular, we propose that receptor-receptor interactions mediated by juxtamembrane sequences play a critical role.

IT Major Concepts

Biochemistry and Molecular Biophysics; Immune System (Chemical Coordination and Homeostasis)

IT Parts, Structures, & Systems of Organisms

serum: blood and lymphatics; immune system: immune system

IT Chemicals & Biochemicals

lipopolysaccharide; endotoxin; toll-like receptor-4; CD14; lipid A; lipopolysaccharide binding protein; Toll receptor; MD-2: hydrophobic core; toll-like receptor-4/MD-2 complex

L60 ANSWER 46 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on

STN

ACCESSION NUMBER: 2005:90089 BIOSIS DOCUMENT NUMBER: PREV200500087944

TITLE: Interaction of soluble form of recombinant extracellular

TLR4 domain with MD-2 enables

lipopolysaccharide binding and attenuates

TLR4-mediated signaling.

AUTHOR(S): Hyakushima, Naoki; Mitsuzawa, Hiroaki; Nishitani, Chiaki;

Sano, Hitomi; Kuronuma, Koji; Konishi, Masanori; Himi, Tetsuo; Miyake, Kensuke; Kuroki, Yoshio [Reprint Author]

CORPORATE SOURCE: Sch MedDept BiochemChuo Ku, Sapporo Med Univ, South 1, West

17, Sapporo, Hokkaido, 0608556, Japan

kurokiy@sapmed.ac.jp

SOURCE: Journal of Immunology, (December 1 2004) Vol. 173, No. 11,

pp. 6949-6954. print.

ISSN: 0022-1767 (ISSN print).

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 2 Mar 2005

Last Updated on STN: 2 Mar 2005

AB TLRs have been implicated in recognition of pathogen-associated molecular patterns. TLR4 is a signaling receptor for LPS, but requires MD-2 to

respond efficiently to LPS. The purposes of this study were to examine the interactions of the extracellular TLR4 domain with MD-2 and LPS. generated soluble forms of rTLR4 (sTLR4) and TLR2 (sTLR2) lacking the putative intracellular and transmembrane domains. sTLR4 consisted of Glu24-Lys631. MD-2 bound to sTLR4, but not to sTLR2 or soluble CD14. BIAcore analysis demonstrated the direct binding of sTLR4 to MD-2 with a dissociation constant of $KD = 6.29 \times 10-8 \text{ m}$. LPS-conjugated beads precipitated MD-2, but not sTLR4. However, LPS beads coprecipitated sTLR4 and MD-2 when both proteins were coincubated. addition of sTLR4 to the medium containing the MD-2 protein significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild-type TLR4-expressing cells. These results indicate that the extracellular TLR4 domain-MD-2 complex is capable of binding LPS, and that the extracellular TLR4 domain consisting of Glu24-Lys631 enables MD-2 binding and LPS recognition to TLR4. In addition, the use of sTLR4 may lead to a new therapeutic strategy for dampening endotoxin-induced inflammation. Major Concepts Biochemistry and Molecular Biophysics; Immune System (Chemical Coordination and Homeostasis); Membranes (Cell Biology) inflammatory disease: immune system disease, chemically-induced Chemicals & Biochemicals MD-2 protein; endotoxin; lipopolysaccharide: binding; nuclear factor kappa-B; toll-like receptor [TLR]; toll-like receptor-2 [TLR2]; toll-like receptor-4 [TLR4]: mediated signaling L60 ANSWER 47 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on ACCESSION NUMBER: 2004:462976 BIOSIS PREV200400465298 DOCUMENT NUMBER: TITLE: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Palsson-McDermott, Eva M. [Reprint Author]; O'Neill, Luke AUTHOR (S): CORPORATE SOURCE: Dept Biochem, Univ Dublin Trinity Coll, Dublin, 2, Ireland palssone@tcd.ie Immunology, (October 2004) Vol. 113, No. 2, pp. 153-162. SOURCE: print. CODEN: IMMUAM. ISSN: 0019-2805. DOCUMENT TYPE: Article General Review; (Literature Review) LANGUAGE: English ENTRY DATE: Entered STN: 1 Dec 2004 Last Updated on STN: 1 Dec 2004 An understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS - Toll-like receptor 4 (TLR4) but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is

dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-kappaB (NF-kappaB). A later response to LPS makes use

AB

IT

IT

IT

of TIR-domain-containing adapter-inducing interferon-beta (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-kappaB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS.

IT Major Concepts

Biochemistry and Molecular Biophysics; Cell Biology; Immune System (Chemical Coordination and Homeostasis); Infection

IT Diseases

septic shock: bacterial disease
Shock, Septic (MeSH)

IT Chemicals & Biochemicals

CD14; MD-2; MyD88; MyD88-like adapter; TIR-domain-containing adapter-inducing interferon-beta; TRIF-related adapter molecule; Toll-like receptor-4; chemokine; cytokine; lipopolysaccharide: endotoxin; nuclear factor-kappa-B; transcription factor

L60 ANSWER 48 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN

ACCESSION NUMBER: 2002:599180 BIOSIS DOCUMENT NUMBER: PREV200200599180

TITLE: Response to Neisseria gonorrhoeae by cervicovaginal

epithelial cells occurs in the absence of toll-like

receptor 4-mediated signaling.

AUTHOR(S): Fichorova, Raina N.; Cronin, Amanda O.; Lien, Egil;

Anderson, Deborah J.; Ingalls, Robin R. [Reprint author]

CORPORATE SOURCE: Department of Infectious Diseases, Boston Medical Center,

Boston University School of Medicine, 650 Albany Street,

Boston, MA, 02118, USA

ringalls@bu.edu

SOURCE: Journal of Immunology, (March 1, 2002) Vol. 168, No. 5, pp.

2424-2432. print.

CODEN: JOIMA3. ISSN: 0022-1767.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 20 Nov 2002

Last Updated on STN: 20 Nov 2002

Toll-like receptors (TLRs) have recently been identified as fundamental components of the innate immune response to bacterial pathogens. We investigated the role of TLR signaling in immune defense of the mucosal epithelial cells of the lower female genital tract. This site provides first line defense against microbial pathogens while remaining tolerant to a complex biosystem of resident microbiota. Epithelial cells derived from normal human vagina, ectocervix, and endocervix expressed mRNA for TLR1, -2, -3, -5, and -6. However, they failed to express TLR4 as well as MD2, two essential components of the receptor complex for LPS in phagocytes and endothelial cells. Consistent with this, endocervical epithelial cells were unresponsive to protein-free preparations of lipooligosaccharide from Neisseria gonorrhoeae and LPS from Escherichia coli. However, they were capable of responding to whole Gram-negative bacteria and bacterial lysates, as demonstrated by NF-kappaB activation and proinflammatory cytokine production. The presence of soluble CD14, a high-affinity receptor for LPS and other bacterial ligands, enhanced the sensitivity of genital tract epithelial cells to both low and high concentrations of bacteria, suggesting that soluble CD14 can act as a coreceptor for non-TLR4 ligands. These data demonstrate that the response to N. gonorrhoeae and other Gram-negative bacteria at the

mucosal surface of the female genital tract occurs in the absence of endotoxin recognition and TLR4-mediated signaling.

IT Major Concepts

Immune System (Chemical Coordination and Homeostasis); Infection; Reproductive System (Reproduction)

IT Parts, Structures, & Systems of Organisms

cervicovaginal epithelial cells: reproductive system; ectocervix: reproductive system; endocervix: reproductive system; female genital tract: reproductive system; vagina: reproductive system

IT Diseases

Neisseria gonorrhoeae infection: bacterial disease, reproductive system disease/female

Neisseriaceae Infections (MeSH)

IT Chemicals & Biochemicals

CD14; LPS [lipopolysaccharide]; MD2; NF-kappa-B [nuclear factor-kappa-B]; Toll-like receptor 1 mRNA [Toll-like receptor 1 messenger RNA]; Toll-like receptor 2 mRNA [Toll-like receptor 2 messenger RNA]; Toll-like receptor 3 mRNA [Toll-like receptor 3 messenger RNA]; Toll-like receptor 4; Toll-like receptor 5 mRNA [Toll-like receptor 5 mRNA [Toll-like receptor 6 messenger RNA]; Toll-like receptor 6 mRNA [Toll-like receptor 6 messenger RNA]; lipooligosaccharide; proinflammatory cytokines

L60 ANSWER 49 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN

ACCESSION NUMBER:

2003:28030 BIOSIS

DOCUMENT NUMBER:

PREV200300028030

TITLE:

Lipopolysaccharide modulation of normal enterocyte turnover by toll-like receptors is mediated by endogenously produced

tumour necrosis factor alpha.

AUTHOR (S):

Ruemmele, F. M. [Reprint Author]; Beaulieu, J. F.; Dionne, S.; Levy, E.; Seidman, E. G.; Cerf-Bensussan, N.; Lentze, M. J.

CORPORATE SOURCE:

Paediatric Gastroenterology, Hopital Necker-Enfants

Malades, INSERM EMI 0212, University Paris V, 149, Rue de

Sevres, F-75743, Paris Cedex 15, France

ruemmele@necker.fr

SOURCE:

Gut, (December 2002) Vol. 51, No. 6, pp. 842-848. print.

ISSN: 0017-5749 (ISSN print).

DOCUMENT TYPE:

Article

LANGUAGE:

English

ENTRY DATE:

Entered STN: 1 Jan 2003

Last Updated on STN: 1 Jan 2003

Background: Circulating levels of endotoxin (or AB lipopolysaccharide (LPS)) and anti-endotoxin antibodies are increased in patients with inflammatory bowel disease, supporting the hypothesis of a role for endogenous bacterial products in the pathogenesis of these disorders. Aim: The aim of this study was to analyse the direct effects of LPS on intestinal epithelial cell turnover. Methods and Results: LPS significantly inhibited growth of the human non-transformed immature crypt cell line (HIEC), whereas IEC-6 cell proliferation was stimulated by LPS. As LPS is a physiological inducer of tumour necrosis factor alpha (TNFalpha) in various cell systems and this cytokine exerted similar anti-proliferative (HIEC) or growth stimulatory (IEC-6 cells) effects, the study thus tested the hypothesis that endogenously produced TNFalpha in response to LPS mediates this growth modulatory effect in an autoparacrine/paracrine way. Therefore, during LPS stimulation, the biological activity of TNFalpha was blocked using neutralising anti-TNFalpha antibodies, as well as inhibitory, antagonistic antibodies directed against the p55 TNF receptor, signalling the antimitotic TNFalpha

effect in HIEC. Both experimental approaches completely abolished the growth modulatory effects of LPS in HIEC/IEC-6 cells. Production and secretion of TNFalpha by HIEC/IEC-6 cells in response to LPS was confirmed on mRNA and protein level by reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay. LPS signalling was independent of CD14 in HIEC, as these cells lack this receptor. However, HIEC expressed TLR4 and MD2 resulting in a fully functional signalling complex as demonstrated by RT-PCR, western blot, and immunofluorescence analyses. Conclusion: These results support the hypothesis that LPS induced changes of intestinal epithelial cell turnover may directly contribute to the pathogenesis of inflammatory epithelial cell lesions by endogenous TNFalpha production by enterocytes. Major Concepts

Digestive System (Ingestion and Assimilation); Immune System (Chemical Coordination and Homeostasis)

IT Parts, Structures, & Systems of Organisms

enterocyte: digestive system, modulation, turnover; intestinal
epithelial cells: digestive system

IT Chemicals & Biochemicals

IT

CD14; MD2: expression; lipopolysaccharide [LPS]: signaling; p55 tumor necrosis factor receptor; toll-like receptor 4 [TLR4]: expression; tumor necrosis factor-alpha [TNF-alpha]: production, secretion

L60 ANSWER 50 OF 50 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN

ACCESSION NUMBER: 2001:527328 BIOSIS DOCUMENT NUMBER: PREV200100527328

TITLE: Secreted MD-2 is a large polymeric protein that efficiently

confers lipopolysaccharide sensitivity to Toll-like

receptor 4.

AUTHOR(S): Visintin, Alberto; Mazzoni, Alessandra; Spitzer, Jessica

A.; Segal, David M. [Reprint author]

CORPORATE SOURCE: Experimental Immunology Branch, National Cancer Institute,

National Institutes of Health, Bethesda, MD, 20892-1360,

USA

dave segal@nih.gov

SOURCE: Proceedings of the National Academy of Sciences of the

United States of America, (October 9, 2001) Vol. 98, No.

21, pp. 12156-12161. print. CODEN: PNASA6. ISSN: 0027-8424.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 14 Nov 2001

Last Updated on STN: 23 Feb 2002

Toll-like receptor 4 (TLR4), the principal signaling receptor for lipopolysaccharide (LPS) in mammals, requires the binding of MD-2 to its extracellular domain for maximal responsiveness. MD-2 contains a leader sequence but lacks a transmembrane domain, and we asked whether it is secreted into the medium as an active protein. As a source of secreted MD-2 (sMD-2), we used culture supernatants from cells stably transduced with epitope-tagged human MD-2. We show that sMD-2 exists as a heterogeneous collection of large disulfide-linked oligomers formed from stable dimeric subunits and that concentrations of sMD-2 as low as 50 pM enhance the responsiveness of TLR4 reporter cells to LPS. An MD-2-like activity is also released by monocyte-derived dendritic cells from normal donors. When coexpressed, TLR4 indiscriminately associates in the endoplasmic reticulum/cis Golgi with different-sized oligomers of MD-2, and excess MD-2 is secreted into the medium. We conclude that normal and transfected cells secrete a soluble form of MD-2 that binds with high

affinity to TLR4 and that could play a role in regulating responses to LPS and other pathogen-derived substances in vivo.

IT Major Concepts

Immune System (Chemical Coordination and Homeostasis); Infection

IT Parts, Structures, & Systems of Organisms

dendritic cell: immune system

IT Chemicals & Biochemicals

MD-2 protein: epitope-tagged, extracellular domain, leader sequence, polymeric, secretion; Toll-like receptor 4: signaling receptor; lipopolysaccharide: bacterial endotoxin; pathogen-derived substances

=>

This Page Blank (uspto)