PQ selon orfo 2015

Planificatrice-électricienne CFC

Planificateur-électricien CFC

Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

	90	Minutes	20	Exercices	18	Pages	55	Points
--	----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

Barème

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
55,0-52,5	52,0-47,0	46,5-41,5	41,0-36,0	35,5-30,5	30,0-25,0	24,5-19,5	19,0-14,0	13,5-8,5	8,0-3,0	2,5-0,0

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2023.

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession de planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur:

CSFO, département procédures de qualification, Berne

3

1

0,5

1. Système électrochimique N° d'objectif d'évaluation 5.3.7b

A une source de tension, on mesure une tension $U_1 = 3.5$ V pour un courant $I_1 = 10$ A et une tension $U_2 = 1.5$ V pour un courant $I_2 = 30$ A.

a) Dessiner la droite de charge.

b) Quels sont les valeurs de la tension à vide et du courant de court-circuit ?

 $U_0 = 4,5 \text{ V (Valeur du tableau)}$

Icc = 45 A (Valeur du tableau) 0,5

c) Calculer la résistance interne.

 $\mathbf{R_i} = \frac{\mathbf{U_0}}{\mathbf{I_{cc}}} = \frac{\mathbf{4,5 V}}{\mathbf{45 A}} = \underline{\mathbf{0,1 \Omega}}$

4

1

2. Technique d'éclairage N° d'objectif d'évaluation 3.5.8b

Les sources lumineuses sont remplacées dans une chambre.

Données des lampes existantes :

Lampes halogène basse tension à réflecteur

36°, U = 12 V, P = 35 W, température de couleur 2900 K, flux lumineux 580 lm

Données des lampes de remplacement :

Lampes LED à réflecteur

36°, U = 12 V, P = 8 W, température de couleur 2700 K, flux lumineux 600 lm

a) Calculer l'efficacité lumineuse de ces 2 sources lumineuses.

Solution:

$$K_{\text{Halogene}} = \frac{\Phi_{\text{N Hal}}}{P_{\text{Hal}}} = \frac{580 \text{ lm}}{35 \text{ W}} = \underline{16, 6 \frac{\text{lm}}{\text{W}}}$$

$$K_{LED} = \frac{\Phi_{N LED}}{P_{LED}} = \frac{600 \text{ lm}}{8 \text{ W}} = \underline{\frac{75 \text{ lm}}{W}}$$

b) Quelle est, en pourcent, l'économie d'énergie réalisée grâce au remplacement des lampes ?

Solution:

$$LED = \frac{100 \% \cdot P_{LED}}{P_{Hal}} = \frac{100 \% \cdot 8 W}{35 W} = 22,86 \%$$

- ⇒ Halogène = 100 %
- ⇒ Economie d'énergie 100% 22,86% = 77,14%
- c) De quel pourcentage l'éclairement augmente-t-il avec les nouvelles lampes ?

Solution:

$$E_{Halogene} = \frac{\Phi_{N \; Hal} \quad \cdot n \, \cdot \, \eta}{A}$$

$$E_{LED} = \frac{\Phi_{N \ LED} - \cdot n + \eta}{A}$$

Nouvel éclairement:

$$\frac{100\,\%\cdot\Phi_{N\,LED}\cdot\mathbf{n}\cdot\mathbf{n}\cdot\mathbf{A}}{\Phi_{N\,LED}\cdot\mathbf{n}\cdot\mathbf{n}\cdot\mathbf{A}} = \frac{100\,\%\cdot600\,\mathrm{lm}\cdot\mathbf{n}\cdot\mathbf{n}\cdot\mathbf{A}}{580\,\mathrm{lm}\cdot\mathbf{n}\cdot\mathbf{n}\cdot\mathbf{A}} = 103,45~\%$$

L'éclairement est de 3.45 % plus grand.

0,5

0,5

0,5 Points par page:

0,5

0,5

0,5

0,5

2

3. Transformateur N° d'objectif d'évaluation 5.1.6b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux
L'huile dans les transformateurs triphasés est utilisée pour la lubrification des pièces mécaniques.		
Le noyau des transformateurs est composé de feuilles individuelles, car cela est moins cher à fabriquer.		\boxtimes
Un transformateur produit des pertes fer et des pertes cuivre (enroulements).	\boxtimes	
Le rapport de transformation d'un transformateur dépend du nombre de spires des enroulements primaire et secondaire.		

4. Transformateur N° d'objectif d'évaluation 5.1.6b

La tension de court-circuit d'un transformateur monophasé est de 4,2 % ($\epsilon_{cc)}$. Le courant nominal est de 600 A.

Calculer le courant de court-circuit (à la tension nominale).

$$I_{cc} = \frac{I_N \cdot 100 \%}{u_{cc}} = \frac{600 \text{ A} \cdot 100 \%}{4,2 \%} = \underline{\underline{14285 \text{ A}}} = \underline{\underline{14,3 \text{ kA}}}$$

Points

par page:

5. Loi d'Ohm N° d'objectif d'évaluation 3.2.3b

Calculer la résistance du corps humain, ainsi que le courant qui le traverse, s'il est soumis à une tension de contact de 230 V, et que le courant passe de la main (A) aux 2 jambes (BC).

a) Résistance du corps humain (A – BC).

$$\begin{split} R_{\acute{e}qu} &= R_1 + \frac{1}{\frac{1}{R_2 + R_3 + R_6} + \frac{1}{R_5}} + R_8 + \frac{1}{\frac{1}{R_9} + \frac{1}{R_{10}}} = \\ 480 \ \Omega + \frac{1}{\frac{1}{35 \ \Omega + 35 \ \Omega + 120 \ \Omega} + \frac{1}{120 \ \Omega}} + 20 \ \Omega + \frac{1}{\frac{1}{800 \ \Omega} + \frac{1}{850 \ \Omega}} = 480 \ \Omega + 73,55 \ \Omega + 20 \ \Omega + 412,1 \ \Omega \\ &= \underline{987,65 \ \Omega} \end{split}$$

b) Courant de contact qui traverse cette personne.

$$I_{contact} = \frac{U}{R_{\acute{e}au}} = \frac{230 \text{ V}}{987,65 \Omega} = \underbrace{\frac{0,233 \text{ A}}{2000 \text{ A}}}_{\text{A}}$$

Points par page:

1

2

1

Module 3: Onduleur

PE_Pos_5_Techn_système_élec_incl_bases_techn_exp_PQ22

Points

2

0,5

0,5

0,5

0,5

2

6. Loi d'Ohm N° d'objectif d'évaluation 3.2.3b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux	
Si la résistance reste la même et que la puissance quadruple, la tension doit donc avoir doublée.			
Si la tension et la résistance ont diminué de moitié, alors le courant diminue de moitié.		\boxtimes	
A une première résistance, on raccorde en parallèle une deuxième résistance identique à la première. La puissance devient donc 4 fois plus grande. (U reste constante)		\boxtimes	
Le raccordement d'un circuit en parallèle avec un autre permet de réduire la tension de moitié. Cela réduit également de moitié la puissance.		\boxtimes	

7. Alimentation de secours N° d'objectif d'évaluation 5.2.7

Selon les indications figurant sur le schéma de l'onduleur ci-dessous, nommer les modules 1 à 4.

Module 1: Filtre 0,5

Module 2: Redresseur 0,5

0,5

Module 4: Stockage d'énergie ou accumulateurs 0,5

8. Champ magnétique N° d'objectif d'évaluation 3.2.5b

L'illustration montre un aimant permanent et une bobine en coupe.

a) Dessiner les lignes de champ magnétique résultantes et leur direction dans la bobine.

Bobine:

b) Indiquer les pôles magnétiques de la bobine.

1 0,5

2

Aimant permanent:

N S

Points : Lignes de champ tracées correctement 0,5 Direction des lignes de champ correcte 0,5 Pôles 0,5

c) Qu'arrive-t-il à l'aimant permanent mobile si celui-ci se trouve à une courte distance de la bobine ?

0,5

2

0,5

0,5

0,5

0,5

Solution:

L'aimant permanent est attiré par la bobine.

9. Champ électrique N° d'objectif d'évaluation 3.2.5b

Cocher juste ou faux pour chacune des affirmations ci-dessous.

	Juste	Faux
Les lignes de champ électrique sortent du pôle Nord et entrent dans le pôle Sud.		
Les lignes de champ électrique sortent du pôle positif et entrent dans le pôle négatif.		
Deux charges électriques positives exercent une force d'attraction l'une sur l'autre.		
La tension est la cause d'un champ électrique.	\boxtimes	

Points par

page:

3

0,5

10. Puissances et facteur de puissance N° d'objectif d'évaluation 5.3.2b

a) Calculer la puissance réactive du moteur.

Solution:

$$S = U \cdot I = 230 V \cdot 4, 5 A = 1035 VA$$

$$Q = \sqrt{S^2 - P^2} = \sqrt{(1035 \text{ VA})^2 - (639, 2 \text{ W})^2} = \underline{814 \text{ var}}$$

b) Calculer le $\cos \varphi$ du moteur.

Solution:

$$\cos \varphi = \frac{P}{S} = \frac{639,2 \text{ W}}{1035 \text{ VA}} = \frac{0,618}{1035 \text{ VA}}$$

c) Le facteur de puissance doit être amélioré à 0,94 avec un système de compensation parallèle. Quelle sera alors l'intensité du courant dans la ligne d'alimentation ?

Solution:

$$S_2 = \frac{P}{\cos \rho_2} = \frac{639.2 \text{ W}}{0.94} = \underline{680 \text{ VA}}$$

$$I_2 = \frac{S_2}{U} = \frac{680 \text{ VA}}{230 \text{ V}} = \underline{2,96A}$$

2

11. Réfrigérateur N° d'objectif d'évaluation 5.2.4b

Le graphique suivant représente le circuit frigorifique d'un réfrigérateur à compresseur. Désignez dans les cases vides, les quatre principaux composants du circuit frigorifique.

0,5/ juste

Note pour les experts :

1 mot par champ suffit.

Au lieu d'un détendeur, une section d'étranglement, un dispositif d'étranglement, un tube capillaire ... peuvent également être utilisés.

3

1

0,5

1

0,5

12. Puissance active, apparente et réactive N° d'objectif d'évaluation 5.3.2b

Un courant de 8,7 A est mesuré dans la ligne d'alimentation dont la tension est de 230 V.

L'écran d'un appareil de mesure affiche les courbes suivantes :

a) Calculer la puissance active à l'aide des résultats de mesure et du graphique.

$$P = U \cdot I \cdot cos\phi = 230 V \cdot 8,7 A \cdot 0,5 = 1000,5 W = 1 kW$$

b) Calculer la puissance réactive.

$$S = U \cdot I = 230 V \cdot 8,7 A = 2001 VA = 2k VA$$

$$Q = \sqrt{S^2 - P^2} = \sqrt{(2 \text{ kVA})^2 - (1 \text{ kW})^2} = 1732,05 \text{ } var = 1,732 \text{ } kvar$$

c) La charge connectée est-elle inductive ou capacitive ?

1,5

1,5

13. Résistance en AC N° d'objectif d'évaluation 3.2.7b

Le testeur d'installation affiche les valeurs suivantes :

Valeurs affichées:

 $\begin{array}{lll} I_{\textrm{K}} : & 1647 \; \textrm{A} \\ Z_{\textrm{s}} : & 0,140 \; \Omega \\ R_{\textrm{s}} : & 0,125 \; \Omega \\ L_{\textrm{s}} : & 0,2 \; \textrm{mH} \end{array}$

a) A partir de ces valeurs, calculer la réactance X_L de la ligne. (Fréquence du réseau européen = 50 Hz)

$$X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{ Hz } \cdot 0,0002 \text{ H} = \underline{0,063 \Omega = 63 \text{ m}\Omega}$$

ou

$$X_L = \sqrt{({Z_S}^2 - {R_S}^2)} = \sqrt{(0.14 \Omega)^2 - (0.125 \Omega)^2} = \underline{0.063 \Omega = 63 m\Omega}$$

b) Dessiner le triangle des résistances (sans être à l'échelle).
 Indiquer sur chacun des côtés du triangle : le nom et le symbole de sa grandeur, sa valeur et son unité.

Réactance $X_L = 0,062$ Ohm

1

14. Chute de tension N° d'objectif d'évaluation 3.2.4b

a) Calculer le courant efficace dans le récepteur.

$$R_L = \frac{\rho \cdot l_L \cdot 2}{A} = \frac{0.0175 \ \Omega m m^2 \cdot 75 \ m \cdot 2}{m \cdot 1.5 \ m m^2} = \underline{1.75 \ \Omega}$$

$$R_{foehn} = \frac{U_N}{I_N} = \frac{230 \, V}{10 \, A} = \frac{23 \, \Omega}{0.5}$$

$$I = \frac{U_N}{R_{foehnt} + R_L} = \frac{230 \, V}{23 \, \Omega + 1,75 \, \Omega} = 9,293 \, A = \underbrace{9,29 \, A}_{1}$$

b) Quelle est la tension aux bornes du foehn?

$$U_{foehn} = R_{Lfoehn} \cdot I = 23 \Omega \cdot 9{,}29A = \underline{214 V}$$

Note pour les experts: D'autres solutions sont possibles

15. Automatisation du bâtiment N° d'objectif d'évaluation 5.5.1

Folities

Adressage

1/0/0	Canal A	E/A
1/0/1	Canal A	DIM
1/0/6	Canal B	E/A
1/0/7	Canal B	DIM

TXA111

1.1.1

1/0/0 E/A 1/0/1 DIM

1/0/6 E/A 1/0/7 DIM

1/0/6 E/A 1/0/7 DIM 1/4/0 Auf 1/4/1 AB

1.1.2

a) Noter toutes les adresses physiques utilisées dans ce système KNX.

1,5

1.1.1 / 1.1.2 / 1.1.3

b) Noter toutes les adresses de groupe utilisées dans ce système KNX.

1,5

1/0/0 1/0/1 1/0/6 1/0/7 1/4/0 1/4/1

c) Pourquoi l'alimentation du bus (TXA111) n'a pas besoin d'une adresse de groupe ?

1

TXA111 n'est ni un actionneur, ni un capteur. Elle n'est pas raccordée au bus.

2

0,5

0,5

0,5

0,5

2

1

1

16. Système numérique N° d'objectif d'évaluation 3.1.1b

Compléter la table de vérité du circuit logique ci-dessous.

Table de vérité:

Circuit logique:

l ₁	l ₂	l ₃	I 4	Q
1	1	0	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1

17. Moteur N° d'objectif d'évaluation 5.2.5b

a) Quel type de moteur électrique est représenté sur l'illustration ci-dessous ?

b) Le sens de rotation indiqué ci-dessus est-il correct ? Justifier votre réponse.

Oui, la rotation du moteur est donnée par la position des bagues (du pôle principal vers le pôle bagué)

Points par page:

Page 14 de 18

18. Système triphasé N° d'objectif d'évaluation 5.3.4b

Un réseau triphasé à 4 conducteurs (3 x 400 V / 230 V) est chargé de manière asymétrique.

$$P_{1ut} = 1.1 \text{ kW}$$

 $\eta_1 = 0.92$
 $\cos \phi_1 = 0.84$

$$I_2 = 2.5 \text{ A}$$

 $\cos \varphi_2 = 0.81$

$$P_3 = 1800 \text{ W}$$

a) Calculer les courants de phase I₁, I₂ et I₃.

$$I_1 = \frac{P_{1ut}}{U_{1N} \, \cdot \, \cos \phi_1 \, \cdot \eta_1} = \frac{1100 \, \textit{W}}{230 \, \textit{V} \, \cdot \, \textit{0}, 84 \cdot \, \textit{0}, 92} = \underline{\underline{6, 19 \, A}}$$

 $(\phi_1 = 32,86^\circ)$

$$I_2 = \underline{\underline{2,5 A}}$$

$$(\phi_2 = 35,9^\circ)$$

$$I_3 = \frac{P_3}{U_{3N}} = \frac{1800 W}{230 V} = \frac{7,83 A}{230 V}$$

0,5

1

0,5

b) Déterminer graphiquement le courant dans le conducteur de neutre. (Echelle 1 A \triangleq 1 cm)

 $I_N = 3,38 A$

Note pour les experts: 1 Pt I_1 , 1 Pt I_2 , 0,5 Pt I_3 , 0,5 Pt I_N

Précision + / - 0,2 A

La solution n'est pas à l'échelle

3

1

1

19. Moteur triphasé N° d'objectif d'évaluation 5.3.4a

Une pompe à eau potable fournit 50 litres d'eau par seconde à un réservoir situé 60 m plus haut.

a) Calculer la puissance absorbée par le moteur.

$$P_{utile\ P} = \frac{m \cdot g \cdot h}{t} = \frac{50 \ kg \cdot 9,8 \ 1\frac{N}{kg} \cdot 60m}{1 \ s} = \underline{29430 \ W} = \underline{29,43 \ kW}$$

$$P_{Abs\,M} = \frac{P_{abP}}{\eta_{RL} \cdot \eta_P \cdot \eta_M} = \frac{29.43 \, kW}{0.9 \cdot 0.8 \cdot 0.9} = \underline{45.42 \, kW} = \underline{45.4 \, kW}$$

b) Calculer le courant absorbé par le moteur triphasé (Réseau 3 x 400 V).

$$I = \frac{P_{Abs\,M}}{\sqrt{3} \cdot U \cdot cos\varphi} = \frac{45,42\,kW}{\sqrt{3} \cdot 400\,V \cdot 0,82} = \frac{79,9\,A}{1}$$

2

20. Procédés thermiques N° d'objectif d'évaluation 3.3.4b

Quelle est l'énergie calorifique nécessaire, en kilojoules [kJ], pour élever la température de de 8°C à 68°C de 27 litres d'eau contenus dans un chauffe-eau instantané ?

$$\left(c = 4,187 \; \frac{kJ}{kg \cdot K}\right)$$

Solution:

$$V = 27 l = 27 dm^3 => m = 27 kg$$

$$\Delta \vartheta = \vartheta_2 - \vartheta_1 = 68 \, ^{\circ}\text{C} - 8 \, ^{\circ}\text{C} = \underline{60 \, ^{\circ}\text{C}} \triangleq \underline{60 \, \text{K}}$$

$$Q = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \vartheta = 27 \text{ kg} \cdot 4,187 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \cdot 60 \text{ K} = \underbrace{\underline{6'783 \text{ kJ}}}_{}$$

1,5

0,5