FORMULACIÓN Y NOMENCLATURA INORGÂNICA

Conceptos previos

Rodrigo Alcaraz de la Osa

Números de oxidación/de carga

Los **números de oxidación** (números romanos) están relacionados con la **capacidad** de un determinado **elemento** para **ceder** (nº oxidación **positivo**) o **captar electrones** (nº oxidación **negativo**). En el caso de **compuestos iónicos**, podemos también utilizar los **números de carga** (números arábigos seguidos de un signo).

Secuencia de los elementos

Sistemas de nomenclatura IUPAC 2005

Composición

También llamada estequiométrica, los nombres se indican junto con los prefijos que dan la estequiometría completa del compuesto.

NÚMERO PREFIJO DE ÁTOMOS		NÚMERO DE ÁTOMOS	PREFIJO	
1	mono	6	hexa (hexakis)	
2	di (bis)	7	hepta (heptakis)	
3	tri (tris)	8	octa (octakis)	
4	tetra (tetrakis)	9	nona (nonakis)	
5	penta (pentakis)	10	deca (decakis)	

Ejemplos $O_3 \rightarrow$ trioxígeno; NaCl \rightarrow cloruro de sodio; PCl $_3 \rightarrow$ tricloruro de fósforo.

Sustitución

Muy utilizada en **química orgánica**, en inorgánica se emplea para nombrar **derivados** de **hidruros** de algunos **no metales**.

Ejemplos $PH_3 \rightarrow fosfano, PH_2Cl \rightarrow clorofosfano, PHCl₂ \rightarrow diclorofosfano.$

Adición

Utilizada sobretodo para nombrar **complejos** o compuestos de coordinación, también puede emplearse para nombrar **oxácidos**.

Ejemplos PCl₅ → pentaclorurofósforo.

Hidrógeno

Anteponiendo la palabra *bidrogeno*, utilizada por ejemplo para nombrar los **oxácidos** del **Cr** y del **Mn** o **sales ácidas**.

Ejemplos NaHCO $_3$ \rightarrow hidrogenocarbonato de sodio.

Otras nomenclaturas

Números de oxidación y de carga

Utilizando **números de oxidación** en **números romanos** (y sin signo) o **números de carga** (compuestos iónicos) en **números arábigos** seguidos de un signo. Si solo hay uno, se omite.

Ejemplos $PCl_5 \rightarrow cloruro de fósforo(V); MnO₂ <math>\rightarrow$ óxido de manganeso(4+).

Nombres vulgares

Utilizados (y recomendados) por ejemplo para nombrar oxácidos y oxisales.

Ejemplos

- $H_2SO_4 \rightarrow \text{ácido sulfúrico}$.
- $HNO_3 \rightarrow \text{ácido nítrico.}$
- $H_2CO_3 \rightarrow \text{ácido carbónico}$.
- CuBrO₂ \rightarrow bromito de cobre(1+).
- NaClO₄ \rightarrow perclorato de sodio.

FORMULACIÓN Y NOMENCLATURA INORGÂNICA

Recomendaciones de la IUPAC de 2005

Rodrigo Alcaraz de la Osa

XIDO + DE + E	(Nº OXIDACIÓN) (Nº CARGA) (números romanos) (números arábigos)
FÓRMULA	A NOMBRE
H_2O_2	peróxido de hidrógeno (agua oxigenada)
Na_2O_2	peróxido de sodio
MgO_2	peróxido de magnesio
$Fe_2(O_2)_3$	peróxido de hierro(3+)

Oxácidos Haxboc

Compuestos ternarios formados por hidrógeno(1+), un elemento central, X, y oxígeno(2-). X puede ser un no metal o un metal en estado de oxidación alto, como el cromo(VI) o el manganeso(VI) y el manganeso(VII).

Ácidos modelo

FÓRMULA	Nº OXIDACIÓN X	NOMBRE VULGAR	TRANSFORMACIÓN
HClO ₄	VII	ácido perclórico	
$HClO_3$	V	ácido clórico	$C1 \rightarrow D_m I$
$HClO_2$	III	ácido cloroso	$Cl \rightarrow Br, I$
HClO	I	ácido hipocloroso	
H_2SO_4	VI	ácido sulfúrico	C \ Co To
H_2SO_3	IV	ácido sulfuroso	$S \rightarrow Se, Te$
HNO ₃	V	ácido nítrico	
HNO_2	III	ácido nitroso	
H_2CO_3	IV	ácido carbónico	

Ácidos de Cr y Mn

FORMULA	Nº OXIDACIÓN X	NOMBRE (HIDRÓGENO)
H_2CrO_4	VI	dihidrogeno(tetraoxidocromato)
H_2MnO_4	VI	dihidrogeno(tetraoxidomanganato)
$HMnO_4$	VII	hidrogeno(tetraoxidomanganato)

Ácidos meta y orto

ELEMENTO	ÁCIDO META	$\acute{\mathbf{A}}$ CIDO+ 1 \mathbf{H}_{2} O	ÁCIDO ORTO $(+2 H_2 O)$
В	HBO_2	H ₃ BO ₃ (ácido bórico)	_
Si	H_2SiO_3	H ₄ SiO ₄ (ácido silícico)	_
P	HPO_3	H ₃ PO ₄ (ácido fosfórico)	_
I	_	_	H_5IO_6
Te	_	_	H_6 TeO ₆

Ácidos di, tri, etc. n moléculas de ácido pueden condensar perdiendo n-1 de agua. $H_4P_2O_7 \rightarrow$ ác. difosfórico; $H_2Cr_2O_7 \rightarrow$ dihidrogeno(heptaoxidodicromato).

Sales

Sales neutras binarias X_nY_m

Formadas por **dos elementos cualesquiera** (salvo H y O), X e Y, con nº de oxidación m y n, respectivamente. El elemento que está a la derecha se **termina en** *-uro* al nombrarse.

FÓRMULA	NOMBRE COMPOSICIÓN ESTEQUIOMÉTRICO	NOMBRE CON NÚMERO DE OXIDACIÓN/DE CARGA
NaCl	monocloruro de sodio	cloruro de sodio
MgF_2	difluoruro de magnesio	fluoruro de magnesio
FeS	monosulfuro de hierro	sulfuro de hierro(2+)
NBr ₃	tribromuro de nitrógeno	bromuro de nitrógeno(III)

Sales neutras ternarias u oxisales $M_a(X_bO_c)_n$

Compuestos ternarios formados por un **metal**, M, con nº de oxidación n, un **elemento central**, X, y **oxígeno(2-)**. **Derivan de oxácidos** sustituyendo todos los átomos de H por M y cambiando las terminaciones *ico* y *oso* de los ácidos por *ato* e *ito*, respectivamente.

FÓRMULA	ÁCIDO	SAL
NaClO	HClO (ác. hipocloroso)	hipoclorito de sodio
$Fe_2(SO_4)_3$	H ₂ SO ₄ (ác. sulfúrico)	sulfato de hierro(3+)
$Ca_3(PO_4)_2$	H ₃ PO ₄ (ác. fosfórico)	fosfato de calcio
$BaCO_3$	H_2CO_3 (ác. carbónico)	carbonato de bario

Sales ácidas M_a(H_bX_cO_d)_n

Compuestos cuaternarios formados por un **metal**, M, con nº de oxidación n, **hidrógeno(1+)**, un **elemento central**, X, y **oxígeno(2-)**. **Derivan de oxácidos** sustituyendo parte de los átomos de H por M. Se nombran utilizando la **nomenclatura de hidrógeno**, cambiando las terminaciones *ico* y *oso* de los ácidos por *ato* e *ito*, respectivamente.

FÓRMULA	ÁCIDO	SAL
$Fe(HSO_3)_2$	H ₂ SO ₃ (ác. sulfuroso)	hidrogenosulfito de hierro(2+)
$NH_4H_2PO_4$	H ₃ PO ₄ (ác. fosfórico)	dihidrogenofosfato de amonio
$NaHCO_3$	H ₂ CO ₃ (ác. carbónico)	hidrogenocarbonato de sodio
KH_2BO_3	H_3BO_3 (ác. bórico)	dihidrogenoborato de potasio

ones

Cationes

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
	hidrógeno(1+)	Cu ⁺	cobre(1+)	Cu ²⁺	cobre(2+)
Cr ³⁺	cromo(3+)	H_3O^+	oxonio	NH_4^+	amonio

Aniones

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
H ⁻	hidruro	$H_2PO_3^-$	dihidrogenofosfito	S ²⁻	sulfuro
ClO_4^-	perclorato	HCO_3^-	hidrogenocarbonato	NO_3^-	nitrato
O^{2-}	óxido	$H_2BO_3^-$	dihidrogenoborato	SO_3^{2-}	sulfito
CrO_4^{2-}	cromato	$Cr_2O_7^{2-}$	dicromato	MnO_4^-	permanganato