Module: 3 Correlation and Regression

• Correlation and Regression - Rank Correlation- Partial and Multiple correlation- Multiple regression.

Correlation:

Correlation is a statistical technique to study the relation between two or more variables. It is denoted by 'r'. It always lies between -1 to +1.

Types of Correlation

- 1. Positive Correlation
- 2. Negative Correlation
- 3. No Correlation

Positive Correlation:

If the value of one variable increases then the value of another variable increases automatically then there is positive correlation between that two variable. (or) If the value of two variable changes in the same direction then there is positive correlation between two variable and in this case $r \ge 0$.

Negative Correlation:

If the value of one variable increases then the value of another variable decreases automatically then there is negative correlation between two variables. (or) If the value two variable changes but in opposite direction then there is negative correlation between two variable and in this case $r \leq 0$.

No Correlation:

If the presence of one variable does not affect on the presence or absence of another variable then there is no correlation between two variables. In this case r = 0.

Methods to Study The Correlation:

- 1. Scatter Diagram
- 2. Karl Pearson's Correlation Coefficient (r)
- 3. Spearman Rank Correlation Coefficient (R)

1. Scatter Diagram

Karl Pearson Coefficient of Correlation:

Correlation coefficient between two random variables X and Y, usually denoted by r(X,Y) or simply r_{XY} . is a numerical measure of linear relationship between them and is defined as

$$r(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} \text{ where}$$

$$r(X,Y) = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{\sum (Y - \overline{Y})^2}}$$

$$r(X,Y) = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{\sum (Y - \overline{Y})^2}}$$

$$r(X,Y) = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{\sum (Y - \overline{Y})^2}}$$

$$r(X,Y) = \frac{N\sum XY - \sum X\sum Y}{\sqrt{N\sum XY - \sum X\sum Y}}$$

$$r(X,Y) = \frac{N\sum XY - \sum X\sum Y}{\sqrt{N\sum XY - \sum X\sum Y}}$$

$$\sigma_X = \sqrt{\frac{1}{N} \sum_i (x_i - \overline{x})^2}$$

$$\sigma_Y = \sqrt{\frac{1}{N} \sum_i (y_i - \overline{y})^2}$$

Properties of Karl Pearson's Correlation Coefficient (r):

- 1. It always lies between -1 to +1.
- 2. It is denoted by "r".
- 3. It is independent of change of origin and scale.
- 4. If r = +1 then there is perfect positive correlation coefficient between two variable.
- 5. If r = -1 then there is perfect negative correlation coefficient between two variable.
- 6. If r = 0 then there is no correlation coefficient between two variable.
- 7. If r > 0 then there is positive correlation coefficient between two variable.
- 8. If r < 0 then there is negative correlation coefficient between two variable.

Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y):

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

Solution:

X	Y	X^2	Y^2	XY
65	67	4225	4489	4355
66	68	4356	4624	4488
67	65	4489	4225	4355
67	68	4489	4624	4556
68	72	4624	5184	4896
69	72	4761	5184	4968
70	69	4900	4761	4830
72	71	5184	5041	5112
544	552	37028	38132	37560

$$r(X,Y) = \frac{N\sum XY - \sum X\sum Y}{\sqrt{N\sum X^2 - (\sum X)^2} \sqrt{N\sum Y^2 - (\sum Y)^2}}$$

$$= \frac{8 \times 37560 - 544 \times 552}{\sqrt{8 \times 37028 - 544^2} \sqrt{8 \times 38132 - 552^2}}$$

$$= \frac{192}{16.9705 \times 18.7616}$$

$$= 0.6030$$

Compute the product moment coefficient of correlation for the following data: $N = 100, \bar{x} = 62, \ \bar{y} = 53, \sigma_x = 10, \sigma_y = 12, \sum (x - \bar{x})(y - \bar{y}) = 8000.$ Solution:

$$r(X,Y) = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^{2}} \sqrt{\sum (Y - \overline{Y})^{2}}}$$

$$\frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^{2}} \sqrt{\frac{\sum (Y - \overline{Y})^{2}}{N}}}$$

$$r(X,Y) = \frac{N}{\sqrt{\sum (X - \overline{X})^{2}} \sqrt{\frac{\sum (Y - \overline{Y})^{2}}{N}}}$$

$$r(X,Y) = \frac{N}{\sigma_{X}\sigma_{Y}}$$

$$r = \frac{8000/100}{10/12}$$
$$r = 80/120$$
$$r = 0.6667$$

Spearman Rank Correlation Coefficient (R):

The Psychologist Spearman suggested formula to calculate correlation for qualitative data by considering the ranks,

$$R = 1 - \frac{6D^2}{N(N^2 - 1)}$$

where

$$D = R_X - R_Y$$

Calculate Spearman Rank correlation coefficient for the following information:

Marks in Mathematics	67	57	60	76	79	64	73
Marks in Accountancy	78	75	66	70	74	72	69

X	Y	R ₁	R_2	$D=R_1-R_2$	D^2
67	78	4	1	3	9
57	75	7	2	5	25
60	66	6	7	-1	1
76	70	2	5	-3	9
79	74	1	3	-2	4
64	72	5	4	1	1
73	69	3	6	-3	9
					$\sum D^2 = 57$

Here N=7

$$R = 1 - \frac{6 \sum D^2}{N(N^2 - 1)}$$

$$R = 1 - \frac{6 X57}{7(7^2 - 1)}$$

$$R = 1 - \frac{342}{7(49 - 1)}$$

$$R = 1 - \frac{342}{7(48)}$$

$$R = 1 - \frac{342}{336}$$

$$R = 1 - 1.017857$$

$$R = -0.017855$$

Comment: There is negative correlation between marks getting in the subject Mathematics &

Accountancy