

Home-Made Weather Station

This is a project overview for module S3-EE1953 - Engineering Design Department of Electrical Engineering University of Moratuwa

Table of Contents

	ige No.
Project Description	3
Sensors and Components & their Specifications	5
Software used	7
Block Diagram of Project	8
Circuit Design of the Project	9
Arduino Code	10
Presentation Video	14
VAWT	15
IoT (ThingSpeak) Output Results	17
Sample Testing and results	18
Expected Budget	19
Timeline	20
Group Members	21
Thank you	22

Page 2

Project Description

We introduce a small device using Arduino module to monitor the environmental parameters such as temperature, humidity and air pressure and update the collected data (weather statistics) to the cloud storage.

It can be used

- by farmers for agricultural purposes
- by fishermen for marine fields
- for some utility companies to estimate the demands
- by students for simple practical sessions in school laboratories

Image Reference: https://www.pinterest.com/pin/1151795673420402350/

Project Description (Continued...)

We are planning to implement this system through having the device as a small box. And we can put these boxes in multiple places (each district) and able to monitor the weather all over Sri Lanka.

Image reference: https://tropicalclimate.org/~mahaweli/RiverBasinMahaweli/climate.html

Sensors and Components & their Specifications

Image Reference: https://www.daraz.lk/products/dht11-humidity-and-temperature-sensor-for-arduino-i104749069.html

Image Reference: https://microchip.lk/product/gy-68-bmp180-digital-barometric-pressure-sensor-board-module/

Image Reference: https://www.daraz.lk/products/rain-drop-sensor-module-for-arduino-i104745215.html

Sensor: **Humidity and Temperature Module**Specification Type: DHT11

Sensor : Digital Barometric
Pressure Module

Specification Type: GY 68 - BMP180

Sensor : **Rain Drop Module** Specification Type : YL 83

Sensors and Components & their Specifications (Continued...)

https://nilambaraelectronics.com/product/mq-135-air-quality-detection-gas-sensor-module/

Sensor : Air Quality

Detection module

Specification Type: MQ 135

https://grobotronics.com/esp8266-wifimodule.html?sl=en

Sensor : ESP8266 **Wi-Fi module** Specification Type : Part Number - ESP8266-01

Software

- *Arduino
 - ✓ For handling the sensor data
- Proteus Design Suite
 - ✓ For the automation and simulation of the circuit

Image Reference : https://commons.wikimedia.org/wiki/File: Arduino_Logo.svg

- ❖ThingSpeak IoT
 - ✓ To communicate with internet enabled devices.

Image Reference: https://ww2.mathworks.cn/hardwaresupport/thingspeak.html

Circuit Design of the Project

Note:

The Design at the left is sketched using Proteus 8
Professional Software

Final__ | Arduino 1.8.16

File Edit Sketch Tools Help

00 B B B

Final

```
finclude <SoftwareSerial.h>
finclude <dht.h>
#define RX 2
#define TX 3
dht DHT;
float humidity;
float temp;
#define dht apin A0
String AP = "Yathu Cat";
                               // AP NAME
String PASS = "IamYathu"; // AP PASSWORD
String API = "GVDMM12C55MCQDDG"; // Write API KEY
String HOST = "api.thingspeak.com";
String PORT = "80";
int countTrueCommand;
int countTimeCommand;
boolean found = false;
int valSensor = 1;
const int capteur D = 0;
finclude "TimerOne.h"
unsigned int counter=0;
void docount() // counts from the speed sensor
  counter++; // increase +1 the counter value
int val analogique;
#include <SFE BMP180.h>
finclude <Wire.h>
SFE BMP180 pressure;
#define ALTITUDE 8.0
SoftwareSerial esp8266(RX, TX);
void setup() {
 Serial.begin(9600);
 esp8266.begin (115200);
```

Final__ | Arduino 1.8.16
 File Edit Sketch Tools Help

```
00 600
```

```
sendCommand("AT", 5, "OK");
      sendCommand ("AT+CWMODE=1", 5, "OK");
     sendCommand("AT+CWJAP=\""+ AP +"\",\""+ PASS +"\"",20,"OK");
pressure.begin();
void loop() {
   String getData = "GET /update?api key="+ API +"&field1="+getTemperatureValue() +"&field2="+getRumidityValue() +"&field3="+getGasvalue() +"&field4="+getpressurevalue() +"&field5="+getTemperatureValue() +"&field3="+getGasvalue() +"&field4="+getpressurevalue() +"&field5="+getTemperatureValue() +"&field5="+getFemperatureValue() +"&field5="+getFempe
   sendCommand ("AT+CIPMUX=1", 5, "OK");
   sendCommand ("AT+CIPSTART=0, \"TCP\", \""+ HOST +"\", "+ PORT, 15, "OK");
   sendCommand("AT+CIPSEND=0," +String(getData.length()+4),4,">");
   esp8266.println(getData);delay(1500);countTrueCommand++;
  sendCommand("AT+CIPCLOSE=0",5,"OK");
String getTemperatureValue() {
           DHT.read11(dht apin); //A0,5v,gnd
      float temp=DMT.temperature;
        return String(temp);
String getHumidityValue() {
            DHT.readl1(dht apin); //A0,5v,gnd
     float humidity=DHT.humidity;
          return String(humidity);
```

Final_ | Arduino 1.8.16 File Edit Sketch Tools Help

```
00 B B B
```

```
String getGasvalue() {
 float sensorvalue = analogRead(A3);
 return String (sensorvalue);
String getrainvalue() (
 val_analogique=analogRead(A2);
 return String(val_analogique);
String getpressurevalue() {
 char status;
 double T, P, p0, a;
 Serial.println();
 status = pressure.startPressure(4);
 status = pressure.getPressure(P,T);
 return String (P);
void sendCommand (String command, int maxTime, char readReplay[]) {
 Serial.print(countTrueCommand);
 Serial.print(". at command => ");
 Serial.print(command);
 Serial.print(" ");
 while (countTimeCommand < (maxTime*1))
   esp8266.println(command);//at+cipsend
```

Final__| Arduino 1.8.16
 File Edit Sketch Tools Help

```
rile Edit Sketch Tools Help
```

```
return String (P);
void sendCommand (String command, int maxTime, char readReplay[]) {
 Serial.print(countTrueCommand);
 Serial.print(". at command => ");
 Serial.print(command);
 Serial.print(" ");
 while (countTimeCommand < (maxTime*1))
   esp8266.println(command);//at+cipsend
   if (esp8266.find (readReplay))//ok
     found = true;
     break;
   countTimeCommand++;
 if (found == true)
   Serial.println("Done");
   countTrueCommand++;
   countTimeCommand = 0;
 if (found == false)
   Serial.println("Fail");
   countTrueCommand = 0;
   countTimeCommand = 0;
 found = false;
```


VAWT (Vertical Axis Wind Turbine)

- We planned to prepare a small-scale wind turbine which can rotate in vertical axis, to monitor the speed of wind.
- We had tried several options to measure the rotational speed, but all ended up in vain, leading the project to set aside the VAWT.
 - 1. Using IR sensor
 - 2. Using Voltage sensor
 - 3. Using Ultra sonic sensor

Rough Sketch of Method using IR Sensor

- Unavailability of Anemometer which is of High cost. (So, we are unable to do the mapping of windspeeds with the values of sensor data).
- The materials we used for VAWT are of high mass and the turbine failed to rotate at enough speed. (So, the readings obtained from the voltage sensor seemed to be very low) (0.06 V to 0.2V).
- The system with less-weight materials are not stable.

Rough Sketch of Method using Voltage Sensor

IoT (ThingSpeak) Output Results

The Outputs from each sensor which we obtained in the ThingSpeak platform.

- Date and Time
- Entry ID
- Temperature
- Humidity
- Air Quality
- Pressure
- Rain

Results and Observations

Sensor Name	Measuring Quantity	Results	
		Before Testing	After Testing
Rain Drop Module YL 83	Logic Value of Raining (ON/OFF)	OFF	ON
Air Quality Detection module MQ 135	Prescence of Flammable Gases, CO2, Smoke, NH3, NOx, Alcohol and Benzene in the environment in ppm (Parts Per Million)	Test I - Without Flame: 64 ppm Test 2 - Without Alcohol: 66 ppm	Test 1 - With Flame: 102 ppm Test 2 - With Alcohol: 379 ppm
Humidity and Temperature	Temperature in °C	27°C	With Hot Water : 35 °C With Cold Ice : 26°C
Module DHT II	Humidity in Percentage (%)	87%	With Hot Water : 91% With Cold Ice : 86%
Digital Barometric Pressure Module GY 68 - BMP180	Pressure of the surrounding environment in hPa (Hecto-Pascals/Millibars)	936 hPa (No Proper Methods available to change the pressure)	

Sample Testing Carried out and its results.

Budget

Components	Cost
Temperature & Humidity Sensor	Rs. 350
Barometric Pressure Sensor	Rs. 250
Rain Sensor	Rs. 200
Air quality sensor	Rs. 360
Arduino UNO	Rs. 2000
Wi-Fi Module	Rs. 360
Breadboard	Rs. 250
Jumper Wires	Rs. 350
Courier Services	Rs. 600
Other Expenses	Rs. 680
Total Expense	Rs. 5400

Weeks 4, 5 and 6

Gathering Sensors and Implementation

Week 3

Project Proposal

Week 1 and 2

Project topics Research Week 7, 8 and 9

Vertical Axis Wind Turbine Making

Week 10, 11 and 12

Testing and Rechecking Feedbacks

Week 13 and 14

Final prototype

Group Members

Barathraj M. (190091K)

Nanthaluxsan E. (190411U)

Pragalathanan A. (190468A)

Yathunanthanasarma B. (190722A)

THANK YOU