In the Claims

Claims 1-22 (cancelled)

Claim 23 (new)

23. A compound of the formula (I) or a salt thereof

in which

 $R^1 \\$ is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three lastmentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, unsubstituted and substituted phenyl, unsubstituted and substituted heterocyclyl, unsubstituted and substituted (C3-C6)cycloalkyl, (C1-C4)alkoxy, (C_1-C_4) alkylthio, $[(C_1-C_4)$ alkoxy]carbonyl and $[(C_1-C_4)$ haloalkoxy]carbonyl, or is unsubstituted or substituted (C₃-C₆)cycloalkyl, substituted or unsubstituted (C₃-C₆)cycloalkenyl, unsubstituted or substituted phenyl, unsubstituted or substituted heterocyclyl having 3 to 6 ring atoms, where substituted phenyl, substituted heterocyclyl, substituted cycloalkyl or substituted cycloalkenyl carry, as substituents, one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkyl, di $[(C_1-C_4)$ alkoxy] (C_1-C_4) alkyl, (C_1-C_4) haloalkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) haloalkylsulfinyl, (C_1-C_4) alkylsulfonyl, (C_1-C_4) haloalkylsulfonyl, NR^8R^9 , $[(C_1-C_4)$ alkoxy]carbonyl, [(C₁-C₄)haloalkoxy]carbonyl, [(C₁-C₄)alkyl]carbonyl, OH, phenyl, CN and NO₂ and R² is a group of the formula R⁰-Q⁰-, in which R^0 is a hydrogen atom, (C_1-C_{12}) alkyl, (C_2-C_{12}) alkenyl or (C_2-C_{12}) alkynyl, where

00266812

each the three last-mentioned radicals is unsubstituted or substituted by one or more

radicals selected from the group consisting of halogen, (C₁-C₆)alkoxy,

 (C_1-C_6) haloalkoxy, (C_1-C_6) alkylthio, (C_1-C_6) haloalkylthio, (C_1-C_6) alkylsulfinyl, (C_1-C_6) haloalkylsulfinyl, (C_1-C_6) haloalkylsulfonyl, (C_1-C_6) haloalkoxylcarbonyl, (C_1-C_6) haloalkoxylcarbonyl,

(C₃-C₆)cycloalkyl, NR⁸R⁹, unsubstituted or substituted phenyl, unsubstituted or substituted heterocyclyl, or

is (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkenyl, phenyl or heterocyclyl, where the four last-mentioned radicals may be unsubstituted or substituted, and in which Q^0 is a direct bond or a divalent group of the formula -O— or $-N(R^\#)$ where $R^\#$ is a hydrogen atom, an acyl radical or (C_1-C_{12}) alkyl.

(C₂-C₁₂)alkenyl or (C₂-C₁₂)alkynyl, where each of the 3 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, (C₁-C₆)alkylthio, (C₁-C₆)haloalkylthio, CN. OH, (C₃-C₆)cycloalkyl, unsubstituted or substituted phenyl, unsubstituted or substituted heterocyclyl,

or is unsubstituted or substituted (C_3 - C_6)cycloalkyl, unsubstituted or substituted (C_3 - C_6)cycloalkenyl or unsubstituted or substituted phenyl, and R^0 and $R^\#$ together with the nitrogen atom of the NR $^\#$ R 0 group may form a heterocyclyl radical, having 3 to 6 ring atoms, which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, [(C_1 - C_6)alkoxy]carbonyl, (C_1 - C_6)haloalkyl and oxo,

is a hydrogen atom, (C₁-C₁₂)alkyl; (C₂-C₁₂)alkenyl or (C₂-C₁₂)alkynyl, where each of the 3 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, (C₁-C₆)alkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylsulfinyl, (C₁-C₆)haloalkylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C₆)haloalkoxy]carbonyl, CONR⁶R⁷, SO₂NR⁶R⁷, CN, OH, (C₃-C₆)cycloalkyl, NR⁸R⁹, unsubstituted or substituted phenyl, unsubstituted or substituted heterocyclyl, or is unsubstituted or substituted (C₃-C₆)cycloalkyl.

unsubstituted or substituted (C₃-C₆)cycloalkenyl, unsubstituted or substituted heterocyclyl, or unsubstituted or substituted phenyl, and

- R² and R³ together with the nitrogen atom of the NR²R³ group (N¹) .may form a . heterocyclyl radical, having 3 to 6 carbon ring atoms, which is unsubstituted or substituted and which one of the carbon atoms is optionally replaced by one heteroatom selected from the group consisting of N, O, and S, by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, [(C₁-C₆)alkoxy]carbonyl, (C₁-C₆)haloalkyl and oxo, where the oxo radical is not adjacent to the nitrogen atom (N¹), and
- independently of one another are halogen NH₂, NO₂, NHOH, NO, NH-NH₂, N₃, CN, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, where each of the 6 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, (C₁-C₆)alkylthio, (C₁-C₆)haloalkylthio, (C₁-C₆)alkylsulfinyl, (C₁-C₆)alkylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C₆)haloalkoxy]carbonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C₆)alkoxy]carbonyl, (C₁-C₆)haloalkylsulfonyl, (C₁-C₆)alkoxy]carbonyl, NR⁸R⁹, unsubstituted or substituted phenyl or unsubstituted or substituted heterocyclyl,

ог

is unsubstituted or substituted (C_3 - C_6)cycloalkyl, unsubstituted or substituted (C_3 - C_6)cycloalkenyl, unsubstituted or substituted heterocyclyl, unsubstituted or substituted phenyl, [(C_1 - C_4)alkyl]carbonyl or [(C_1 - C_4)alkoxy]carbonyl, where each of the two last-mentioned radicals is unsubstituted or substituted in the alkyl moiety by one or more halogen atoms, or is a radical of the formula C(O)-NR'-R'', C(S)-NR'-R'', CR'=N- Q^1 -R'', $S(O)_m$ - Q^1 -R''', $P(O)_n$ - Q^1 -R'''- Q^2 -R''- Q^2 -R''- Q^2 -R''- Q^2 - Q^2

or 3, and n = 0, 1 or 2, and R' together with R", R⁺ together with R', R⁺ together with R" or R⁺ together with R"" may in each case form a heterocyclyl radical having 3 to 6 carbon ring atoms which is unsubstituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, $[(C_1-C_6)$ alkoxy]carbonyl, (C_1-C_6) haloalkyl and oxo,

- 1 is 0, 1 or 2;
- R⁵ is H or (C₁-C₄)alkyl which is unsubstituted or substituted,
- R⁶ and R⁷ independently of one another are H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, unsubstituted or substituted phenyl or unsubstituted or substituted heterocyclyl or
- R⁶ and R⁷ together with the nitrogen atom of the NR⁶R⁷ group may form a heterocyclyl radical having 5 or 6 carbon atoms which may optionally be replaced by one heteroatom selected from the group consisting of N, O and S and which is unsubstituted or mono- or polysubstituted by radicals selected from the group consisting of (C₁-C₄)alkyl and oxo, and
- R⁸ and R⁹ independently of one another are (C₁-C₄)alkylcarbonyl, (C₁-C₄)haloalkylcarbonyl, (C₁-C₄)alkoxycarbonyl or (C₁-C₄)alkylsulfonyl or together with the nitrogen atom, of the NR⁸R⁹ group may form a heterocyclyl radical having 5 or 6 carbon ring atoms which may be optionally replaced by one additional heteroatom selected from the group consisting of N, O and S and which is unsubstituted or mono- or polysubstituted by radicals selected from the group consisting of (C₁-C₄)alkyl and oxo, and
- Q is O, S or NR*,
- R* is (C₁-C₄)alkyl, (C₃-C₄)alkenyl or (C₃-C₄)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy and (C₁-C₄)alkylthio, and
- R* and R¹ together with the nitrogen atom of the NR*R¹ group may form a heterocyclyl radical which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C6)alkyl, (C1-C6)alkoxy, [(C1-C6)alkoxy]carbonyl,

- (C_1-C_6) haloalkyl and oxo,
- W is an oxygen atom or a sulfur atom,
- X, Y independently of one another are H, halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy,
 - (C₁-C₄)alkylthio, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals from the group consisting of halogen, (C₁-C₄)alkoxy and (C₁-C₄)alkylthio, are mono- or di[(C₁-C₄)alkyl]amino, (C₃-C₅)alkenyl, (C₃-C₅)alkenyloxy, (C₃-C₅)alkynyl or (C₃-C₅)alkynyloxy, and where the radicals R¹, R², R³, and R⁴, including substituents, have up to 20 carbon atoms, and wherein, if not otherwise specified:
- heterocyclyl is a saturated or unsaturated ring having 3 to 7 ring atom or a heteroaromatic ring having 5 or 6 ring atoms, and wherein one of the ring atoms is a heteroatom selected from the group consisting of N, O, or S and the remaining ring atoms are carbon atoms or is a radical selected from the group consisting of pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, thiazolyl, oxazolyl, pyrazolyl, and imidazolyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, or morpholinyl;
- substituents for the (C₃-C₆)cycloalkyl, (C₃-C₆) cycloalkenyl, phenyl, or heterocyclic rings or the (C₁-C₁₀)hydrocarbon radical, unless otherwise specified are 1, 2, or 3 radicals selected from the group consisting of halogen, alkoxy, haloalkoxy, alkylthio, hydroxyl, amino, nitro, carboxyl, cyano, azido, alkoxycarbonyl, alkylcarbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, acylamino, NR⁸R⁹, mono-, and dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, alkyl and haloalkyl alkenyl, alkynyl, alkenyloxy, alkynyloxy, and phenyl which is optionally substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄) alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C₁-C₄)alkylsulfinyl, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, [(C₁-C₄)alkyl]carbonyl, NR⁸R⁹, phenyl, CN and NO₂.

Claim 24 (new)

- 24. The compound of the formula (I) or salt thereof according to claim 23, in which
- R¹ is (C_1-C_6) alkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C_1-C_4) alkoxy, or is 3-oxetanyl,

 (C_3-C_4) alkenyl or (C_3-C_4) alkynyl,

- R^2 is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfonyl, $[(C_1-C_4)$ alkoxy]carbonyl, (C3-C6)cycloalkyl, CN and OH, or
 - is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is (C₃-C₆)cycloalkenyl, (C₁-C₄)alkoxy, (C_1-C_4) alkenyloxy, (C_1-C_4) alkylamino or di $[(C_1-C_4)$ alkyl]amino and
- R^3 is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfonyl, $[(C_1-C_4)$ alkoxy]carbonyl;

(C₃-C₆)cycloalkyl, CN and OH, or

- is (C3-C6)cycloalkyl which is unsubstituted or-substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is (C3-C6)cycloalkenyl or
- R² and R³ together with the nitrogen atom (N¹) may form a heterocyclyl of 3 to 6 carbon ring and which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, [(C₁-C₃)alkoxy]carbonyl and oxo, where the oxo radical is not adjacent to the nitrogen atom (N1), and
- are (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy or halogen, NH₂, NO₂, NHOH, NO, R⁴ NH-NH2 or NH2
- 1 is 0 or 1.
- R⁵ is H or C₁-C₄ alkyl,
- is O or NR Q
- R° is H or (C_1-C_4) alkyl, (C_3-C_4) alkenyl, or (C_3-C_4) alkynyl
- X and Y independently of one another are (C₁-C₄)alkyl, (C₁-C₄)alkoxy, where each of the two last-mentioned radicals is unsubstituted or substituted by one or

more halogen atoms, or are (C_1-C_4) alkylthio, halogen or mono- or $di[(C_1-C_2)$ alkyl] amino, and

W is an oxygen atom or a sulfur atom.

(C₃-C₆)cycloalkenyl or

Claim 25 (new)

- 25. A compound or salt thereof according to claim 23 wherein
- R¹ is (C₁-C₆)alkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C₁-C₄)alkoxy, or is 3-oxetanyl, (C₃-C₄)alkenyl or (C₃-C₄)alkynyl,
- is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, (C₃-C₆)cycloalkyl, CN and OH, or is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is (C₃-C₆)cydoalkenyl, (C₁-C₄)alkoxy, (C₁-C₄)alkylamino or di[(C₁-C₄)alkyl]amino and
- is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, (C₃-C₆)cycloalkyl, CN and OH, or is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is
- R^2 and R^3 together with the nitrogen atom (N^1) may form heterocyclic ring of the formulae:

unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_3) alkoxy, $[(C_1-C_3)$ alkoxy] carbonyl and oxo, and

- R⁴ are (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy or halogen,
- l is 0 or 1,
- R⁵ is H or methyl,
- Q is O,
- X and Y independently of one another are (C₁-C₄)alkyl, (C₁-C₄)alkoxy, where each of the two last-mentioned radicals is unsubstituted or substituted by one or more halogen atoms, or are (C₁-C₄)alkylthio, halogen or mono- or di[(C₁-C₂)alkyl]amino, and
- W is an oxygen atom.

Claim 26 (new)

- 26. A compound of the formula (I) or a salt thereof as claimed in claim 23 in which
- is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl, where each of the three lastmentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, phenyl, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₃-C₆)cycloalkyl or heterocyclyl having 3 to 6 ring atoms and [(C₁-C₄)alkoxy]carbonyl, or is (C₃-C₆)cycloalkyl, heterocyclyl having 3 to 6 ring atoms, where each of the two last-

mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl and (C_1-C_4) alkoxy,

R² is a group of the formula R⁰-Q⁰- in which

R⁰ is a hydrogen atom, (C₁-C₈)alkyl, (C₃-C₈)alkenyl or (C₃-C₈)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C_1-C_4) alkylthio, (C_1-C_4) haloalkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) haloalkylsulfinyl, (C_1-C_4) alkylsulfonyl, (C_1-C_4) haloalkylsulfonyl, $((C_1-C_6)$ alkoxylcarbonyl, CONR⁶R⁷. SO₂NR⁶R⁷, CN, OH, (C₃-C₆)cycloalkyl, NR⁸R⁹ and phenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) alkylsulfonyl, NR^8R^9 , $[(C_1-C_4)$ alkoxy]carbonyl, $[(C_1-C_4)$ alkyl]carbonyl, phenyl [(C₁-C₄)alkyl]carbonyl, CN and NO₂, or is heterocyclyl having 3 to 6 ring atoms which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfinyl, (C₁-C₄)alkylsulfonyl, NR⁸R⁹, [(C₁-C₄)alkoxylcarbonyl, [(C₁-C₄)alkyl]carbonyl, phenyl, CN and NO₂, or is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1- C_4)alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkoxy)carbonyl, CN, OH and phenyl, or is (C₃-C₆)cycloalkenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C4)alkyl, (C1-C4)haloalkyl, (C_1-C_4) alkoxy and $[(C_1-C_4)$ alkoxy]carbonyl, or is phenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) alkylsulfonyl, NR^8R^9 , $[(C_1-C_4)$ alkoxy]carbonyl, [(C₁-C₄)alkyl]carbonyl, phenyl, CN and NO₂, and Q⁰ is a direct bond or a divalent group of the formula -O- or -NR*, in which R* is a

hydrogen atom or unsubstituted or substituted (C1-C4)alkyl,

- \mathbb{R}^3 is a hydrogen atom, (C_1-C_8) alkyl, (C_3-C_8) alkenyl or (C_3-C_8) akynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C₁- C_4)alkylthio, (C_1-C_4) haloalkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) haloalkylsulfinyl, (C_1-C_4) C_4)alkylsulfonyl, (C_1-C_4) haloalkylsulfonyl, $[(C_1-C_6)$ alkoxy]carbonyl, $CONR^6R^7$, SO₂NR⁶R⁷, CN, OH, (C₃-C₆)cycloalkyl, NR⁸R⁹ and phenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁- C_4)alkyl, (C_1 - C_4)haloalkyl, (C_1 - C_4)alkoxy, (C_1 - C_4)haloalkoxy, (C_1 - C_4)alkylthio, (C_1 - C_4)alkylsulfinyl, (C_1 - C_4)alkylsufonyl, NR^8R^9 , [(C_1 - C_4)alkoxy|carbonyl, [(C_1 -C₄)alkyl]carbonyl, phenyl, [(C₁-C₄)alkyl]carbonyl, CN and NO₂, or is heterocyclyl having 3 to 6 ring atoms which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁- C_4)alkoxy, (C_1-C_4) haloalkoxy, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) C₄)alkylsulfonyl, NR⁸R⁹, [(C₁-C₄)alkoxy]carbonyl, [(C₁-C₄)alkyl]carbonyl, phenyl, CN and NO2, or is (C3-C6)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_1-C_4) alkoxy, (C_1-C_4) haloalkoxy, $[(C_1-C_4)$ alkoxy]carbonyl, CN, OH and phenyl, or is (C₃-C₆)cycloalkenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, and [(C₁-C₄)alkoxy]carbonyl, or is phenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C1-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C₁-C₄)alkylthio, (C₁- C_4)alkylsulfinyl, (C_1-C_4) alkylsulfonyl, NR^8R^9 , $[(C_1-C_4)alkoxy]$ carbonyl, $[(C_1-C_4)alkylsulfinyl, (C_1-C_4)alkylsulfinyl, (C_1-C_4)alk$ C₄)alkyl]carbonyl, phenyl, CN and NO₂, and R4 are halogen, CN, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, where each of the 6 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkoxy, (C₁-
 - C_6)alkoxy]carbonyl, [(C_1 - C_6)haloalkoxy]carbonyl, $CONR^6R^7$, $SO_2NR^6R^7$, CN, OH, (C_3 -

 C_6)haloalkoxy, (C_1-C_6) alkylthio, (C_1-C_6) haloalkylthio, (C_1-C_6) alkylsulfinyl, (C_1-C_6) alkylthio, (C_1-C_6) alkylt

 \cdot C₆)haloalkylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)haloalkylsulfonyl, [(C₁-

C₆)cycloalkyl, NR⁸R⁹, unsubstituted or substituted phenyl, unsubstituted or substituted heterocyclyl or are unsubstituted or substituted (C₃-C₆)cycloalkyl, unsubstituted or substituted (C₃-C₆)cycloalkyl, unsubstituted or substituted heterocyclyl having 3 to 6 ring atoms, unsubstituted or substituted phenyl or [(C₁-C₄)alkyl]carbonyl or [(C₁-C₄)alkoxy]carbonyl, where each of the two last-mentioned radicals is unsubstituted or substituted in the alkyl moiety by one or more halogen atoms or are radicals of the formula C(O)- NR'-R", C(S)- NR'-R", CR'=N-Q¹-R", NR'-Q¹-R" or NR"'-N=CR'-R" where R', R" and R"' independently of one another are a hydrogen atom, an acyl radical or an unsubstituted or substituted (C₁-C₁₀)hydrocarbon radical, and Q¹ and Q² independently of one another are a direct bond or a divalent group of the formula -O- or -N(R⁺)-, where R⁺ is a hydrogen atom, an acyl radical or an unsubstituted or substituted (C₁-C₄)alkyl radical and R' together with R" or R⁺ together with R' or R⁺ together with R' may in each case form a heterocyclyl radical having 3 to 6 ring atoms which is unsubstituted or substituted,

- 1 is 0 or 1,
- R⁶ and R⁷ independently of one another are H, (C₁-C₄)alkyl, (C₃-C₄)alkenyl, (C₃-C₄)alkynyl or phenyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, CN and NO₂, or
- R⁶ and R⁷ together with the nitrogen atom of the NR⁶R⁷group may form a heterocyclyl radical having 5 to 6 ring members which may be replaced by one heteroatom selected from the group consisting of N, O, and S and which is unsubstituted or mono- or polysubstituted by radicals selected from the group consisting of (C₁-C₄)alkyl and oxo,
- R⁸ and R⁹ are (C₁-C₄)alkylcarbonyl, (C₁-C₄)haloalkylcarbonyl, (C₁-C₄)alkoxycarbonyl or (C₁-C₄)alkylsulfonyl, or together with the nitrogen atom of the NR⁸R⁹ group may form a heterocyclyl radical having 5 to 6 ring members which may contain one heteroatom selected from the group consisting of N, O, and S and which is unsubstituted or mono- or polysubstituted by radicals selected from the group consisting of (C₁-C₄)alkyl and oxo.

Claim 27 (new)

- 27. A compound of the formula (I) or a salt thereof as claimed in claim 23 in which
- R¹ is (C₁-C₆)alkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen and (C₁-C₄)alkoxy, or is 3-oxetanyl, (C₃-C₄)alkenyl or (C₃-C₄)alkynyl,
- is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, (C₃-C₆)cycloalkyl, CN and OH, or is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is (C₃-C₆)cycloalkenyl, (C₁-C₄)alkoxy, (C₁-C₄)alkenyloxy, (C₁-C₄)alkylamino or di[(C₁-C₄)alkyl]amino and
- is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, where each of the three last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, (C₁-C₄)alkylsulfonyl, [(C₁-C₄)alkoxy]carbonyl, (C₃-C₆)cycloalkyl, CN and OH, or is (C₃-C₆)cycloalkyl which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, [(C₁-C₄)alkoxy]carbonyl, CN and OH, or is (C₃-C₆)cycloalkenyl or
- R² and R³ together with the nitrogen atom (N¹) may form a heterocyclyl of 3 to 6 carbon ring atoms which contain one heteroatom selected from the group consisting of N, O, and S and which is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkyl, (C₁-C₃)alkoxy, [(C₁-C₃)alkoxy]carbonyl and oxo,
- R⁴ are (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy or halogen,
- l is 0 or 1.

- R⁵ is H or methyl,
- Q is O or NR,
- R^* is H or (C_1-C_4) alkyl,
- X and Y independently of one another are (C₁-C₄)alkyl, (C₁-C₄)alkoxy, where each of the two last-mentioned radicals is unsubstituted or substituted by one or more halogen atoms, or are (C₁-C₄)alkylthio, halogen or mono- or di[(C₁-C₂)alkyl]amino, and
- W is an oxygen atom.

Claim 28 (new)

- 28. A compound of the formula (I) or a salt thereof as claimed in claim 23 in which
- R^1 is (C_1-C_3) alkyl, allyl, or propargyl,
- R² is H, (C₁-C₄)alkyl, (C₃-C₅)alkenyl, (C₃-C₅)alkynyl, (C₃-C₆)cycloalkyl or (C₃-C₆)cycloalkenyl, or
- R³ is H, (C₁-C₄)alkyl, (C₃-C₅)alkenyl, (C₃-C₅)alkynyl, (C₃-C₆)cycloalkyl or (C₃-C₆)cycloalkenyl, or
- R² and R³ together with the nitrogen atom (N¹) may form a heterocyclyl of 3 to 6 ring carbon atoms in which one of the carbon atoms is optionally replaced by one heteroatom selected from the group consisting of N, O, and S and which is unsubstituted or substituted by one or more (C₁-C₆)alkyl radicals,
- R⁴ are (C₁-C₃)alkyl or halogen,
- 1 is 0 or 1,
- Q is O or NR,
- R^* is (C_1-C_3) alkyl,
- x is (C_1-C_2) alkyl, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, (C_1-C_2) haloalkyl or (C_1-C_2) haloalkoxy,
- Y is (C₁-C₂)alkyl, (C₁-C₂)alkoxy, halogen, NHCH₃ or N(CH₃)₂.

Claim 29 (new)

- 29. A process for preparing compounds of the formula (I) or salts thereof as defined in claim 23 which comprises
 - a) reacting a compound of the formula (II)

$$R^2$$
 R^3
 $COQR^1$
 $(R^4)_1$
 O
 NH_2
(II)

with a heterocyclic carbamate of the formula (III),

$$R \stackrel{\circ}{\longrightarrow} \bigvee_{N \atop R^5} \bigvee_{N} \bigvee_{Y}$$
(III)

in which R^{**} is a substituted or unsubstituted C₁-C₂₀-hydrocarbon radical, or reacting a sulfonylcarbamate of the formula (IV),

$$R^2$$
 R^3
 $COQR^1$
 $(R^4)_1$
 R^{-1}
 (IV)

in which R^{***} is a substituted or unsubstituted C_1 - C_{20} -hydrocarbon radical with an amino heterocycle of the formula (V)

$$\begin{array}{c|c}
 & X \\
 & N \\$$

Ō٢

c) reacting a sulfonyl isocyanate of the formula (VI)

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{C}
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^3
 $\mathbb{R$

with an amino heterocycle of the formula (V) or

d) reacting a sulfonamide of the formula (II) with a (thio)isocyanate of the formula (VII)

in the presence of a base or

- d) reacting an amino heterocycle of the formula (V) initially under base catalysis with a carbonic ester and reacting the resulting intermediate in a one-pot reaction with a sulfonamide of the formula (II) (see variant a), or
- f) reacting a phenylsulfonyl urea of the formula (VIII)

$$(\mathbb{R}^4)_1$$
 (\mathbb{R}^5) (\mathbb{R}^5) (\mathbb{R}^5)

by the reduction of the nitro group and, if appropriate, further conversion of the hydroxylamine or amine function that is released to give the sulfonyl urea of the formula (I),

wherein the formulae (II) to (VIII) the radicals, groups and indices R¹, R⁵, Q, V, W, X, Y, Z, and l are as defined in formula (I) of the claim 23.

Claim 30 (new)

30. A herbicidal plant-growth regulating composition comprising a) one or more compounds of the formula I or a salt thereof as claimed in claim 23, and b) formulation auxiliaries which are customary in crop protection.

Claim 31 (new)

31. A method for controlling harmful plants or for regulating the growth of plants, which comprises applying an effective amount of one or more compounds of the formula (I) or a salt thereof as claimed in claim 23 to the harmful plants or plants, to their plant seeds or to the area on which they grow.

Claim 32 (new)

- 32. The compound of claim 23, wherein:
 - R¹ is H, methyl, ethyl, i-propyl, allyl, or 3-oxetanyl;
 - R⁴ is methyl, fluoro, chloro, methoxy, or NO₂;
 - is 0 or 1;
 - R⁵ is H or methyl;
 - Q is oxygen;
 - W is oxygen; and
 - X, Y independently of one another are methyl, CF₃, methoxy, ethoxy, -NHMe, -N(Me)₂, or -OCH₂CF₃,

Claim 33 (new)

- 33. The compound of claim 32, wherein
 - R² is a group of the formula R⁰-Q⁰, in which R⁰ is a hydrogen atom and Q⁰ is a direct bond; and
 - R^3 is a hydrogen atom or (C_1-C_{12}) alkyl.