

Kulcsok(Keys)

Timothy, az építész új szabadulós játékot tervez. A játékban n szoba van, 0-tól n-1-ig számozva. Kezdetben minden szobában egyetlen kulcs van. Minden kulcs valamilyen típusba tartozik, 0 és n-1 értékek közt, a határokat is beleértve. Az i. szoba ($0 \le i \le n-1$) kulcsának típusa r[i]. Több szobában is lehet ugyanolyan típusú kulcs, azaz az r[i] értékek nem feltétlenül különbözők.

Van még m **kétirányú** ajtó a játékban, 0-tól m-1-ig számozva. A j. ajtó ($0 \le j \le m-1$) az egymástól különböző u[j] és v[j] szobákat köti össze és c[j] típusú kulccsal használható. Bármely szobapár között több ajtó is lehet.

Az egyszemélyes játékban a játékos gyűjti a kulcsokat és a szobák közt az ajtókon keresztül közlekedik. A játékos a j. ajtón át **közlekedik**, ha az u[j] szobából a v[j] szobába megy, vagy visszamegy rajta. A játékos csak akkor használhatja a j. ajtót, ha már előzőleg összegyűjtött egy c[j] típusú kulcsot.

A játék bármely pontján a játékos valamely x szobában tartózkodik és kétféle műveletet hajthat végre:

- összegyűjtheti az x szobában levő r[x] típusú kulcsot (függetlenül attól, hogy már egyszer ilyent összegyűjtött vagy sem),
- közlekedhet a j. ajtón át, amire u[j]=x vagy v[j]=x, ha már előzőleg gyűjtött c[j] típusú kulcsot. A játékos **soha** nem dob el egy, már összegyűjtött kulcsot.

A játékos valamely s szobából **indul**, és kezdetben nincs nála kulcs. A t. szoba **elérhető** az s. szobából, ha a játékos az s szobából indulva a fenti műveleteket használva el tud jutni a t szobába.

Minden egyes i-re ($0 \le i \le n-1$), az i. szobából elérhető szobák számát jelöljük p[i]-vel. Timothy szeretné tudni azon i sorszámokat, melyekre a p[i] értéke minimális ($0 \le i \le n-1$).

Megvalósítás

A következő függvényt kell elkészítened:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: egy n elemű tömb. Minden i-re ($0 \leq i \leq n-1$), az i. szobában levő kulcs típusa r[i].
- u,v: két, m elemű tömb. Minden j-re ($0 \le j \le m-1$), a j. ajtó az u[j]. és a v[j]. szobát köti össze.
- c: egy m elemű tömb. Minden j-re ($0 \le j \le m-1$), a j. ajtó kulcsának típusa c[j].
- A függvény visszatérési értéke az n elemű a tömb. Minden i-re $0 \le i \le n-1$, az a[i] legyen 1, ha minden j-re $p[i] \le p[j]$ ($0 \le j \le n-1$). Egyébként az a[i] legyen 0.

Példák

1. példa

Tekintsük a következő hívást:

```
find_reachable([0, 1, 1, 2],
[0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Ha a játékos a 0. szobából indul, a következő műveletek sorozatát hajthatja végre:

Aktuális szoba	Művelet
0	Összegyűjti a 0. típusú kulcsot
0	A 0 . ajtón keresztül az 1 . szobába megy
1	Összegyűjti az 1. típusú kulcsot
1	A 2. ajtón keresztül a 2. szobába megy
2	A 2. ajtón keresztül az 1. szobába megy
1	A 3. ajtón keresztül a 3. szobába megy

Így 3. szoba elérhető a 0. szobából. Hasonlóan készíthetünk útvonalat, ami megmutatja, hogy a 0. szobából minden más szoba elérhető, így p[0]=4. Az alábbi táblázat tartalmazza az egyes kezdőszobákból elérhető szobákat:

Az $\it i$ szobából indulva	Elérhető szobák	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

A p[i] legkisebb értéke az összes szobát tekintve $\,2$, és ezt az $\,i=1$ illetve az $\,i=2$ helyen veszi fel. Így a függvény visszatérési értéke $\,[0,1,1,0]$.

2. példa

Az alábbi táblázat tartalmazza az egyes kezdőszobákból elérhető szobákat:

Az i szobából indulva	Elérhető szobák	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4,6]	2

A p[i] legkisebb értéke az összes szobát tekintve 2, és ezt az $i \in \{1, 2, 4, 6\}$ helyeken veszi fel. Így a függvény visszatérési értéke [0, 1, 1, 0, 1, 0, 1].

3. példa

Az alábbi táblázat tartalmazza az elérhető szobákat:

Az $\it i$ szobából indulva	Elérhető szobák	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

A p[i] legkisebb értéke az összes szobát tekintve $\,1$, és ezt az $\,i=2\,$ helyen veszi fel. Így a függvény visszatérési értéke $\,[0,0,1].$

Korlátok

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$
- $0 \le r[i] \le n-1 \ (0 \le i \le n-1)$
- $0 \leq u[j], v[j] \leq n-1$ és $u[j] \neq v[j]$ ($0 \leq j \leq m-1$)
- $0 \leq c[j] \leq n-1$ ($0 \leq j \leq m-1$)

Részfeladatok

- 1. (9 pont) $\,c[j]=0$ ($0\leq j\leq m-1$ és $\,n,m\leq 200$)
- 2. (11 pont) $n, m \leq 200$

- 3. (17 pont) $n,m \leq 2000$
- 4. (30 pont) $\,c[j] \leq 29$ ($0 \leq j \leq m-1$) és $\,r[i] \leq 29$ ($0 \leq i \leq n-1$)
- 5. (33 pont) Nincs további megkötés.

Mintaértékelő

A mintaértékelő az alábbi formában olvassa a bemenetet:

- Az 1. sor: n m
- A $2. \, \mathrm{sor}$: $r[0] \, r[1] \, \ldots \, r[n-1]$
- ullet A 3+j sor ($0\leq j\leq m-1$): u[j] v[j] c[j]

A mintaértékelő a következő formában írja ki a find_reachable visszatérési értékeit:

• $1. \operatorname{sor}: \ s[0] \ s[1] \ \dots \ s[n-1]$