EPL680: Lecture 5 Addendum CONTEXT for Common Sense

OVERVIEW

Context in Knowledge Representation

Recognizing Context

Context in Cognitive Assistants

Properties of CONTEXT

- Context refers to a situation
- Context generalizes/groups into one a situation
- Often Context is linked to an explanation of the explicit input
- Context is related to action affordances links to actions opportunities afforded (in the situation)
- Context is an assumed entity hence defeasible

Recognizing CONTEXT

- Context is recognized from glues
- Glues are not all equally strong.
- Positive and negative glues Induction and Inhibition
- Recognition through a connectionist/threshold model
- In language Context is indexed by a Bag of Words
 - Not equally important

Example of failed CONTEXT

- (<effect>, (<agent>, <(entity, action/behaviour)>))
 - (<in-hand>, (<robot>, <(saw, grasp>))
 - (<in-hand>, (<human>, <(saw, grasp>))
 - (<in-hand>, (<robot>, <(canister, grasp>))

•

ist(c,φ): The formula "φ"is true in context "c"

Using/Acting on CONTEXT

Complete the situation

Decide on canonical action –action affordances

- Common sense knowledge on actions
 - Typical actions that people do in a situation/context
 - Typical preconditions for actions
 - Typical effects of actions
 - Typical actions that explain observations

- Example Context: "birds, wings and flying" in LPP (LpwNF)
- LPP: Default-Association Rules and Relative Priorities over Rules
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
- What happens if "lightlybrokenwings(t)" holds?
 - r4(X): lightlybrokenwings(X) --> flies(X)
 - BUT is this an argument for flying?
 - $\neg lightly brokewings(X) \rightsquigarrow r2(X) > r1(X)$
 - BUT in the scenario {brokenwings(t)} we will NOT conclude ¬flies(t)
 - Only in the full scenario {brokenwings(t), lightlybrokenwings(t)}
 - WHY? Because the priority is also a default Normally, r2(X) > r1(X).

- Example Context: "birds, wings and flying" in LPP (LpwNF)
- What happens if "lightlybrokenwings(t)" holds?
 - This is an Exception to the Default Priority of rule r2 over r1.
 - A bird with lightly broken wings continues to have the property of flying.
 - One way to encode this in LPwNF is:
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightly brokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- Reflects/Encodes the scenario based inferences:
 - Fly {bird(t)}
 - ¬Fly {bird(t), brokenwings(t)}
 - Fly {bird(t), brokenwings(t), lightlybrokenwings(t)}

- Example Context: "birds, wings and flying" in LPP (LpwNF)
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
 - r4(X): $lightlybrokenwings(X) \rightsquigarrow brokenwings(X)$
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightly brokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- Representing directly the scenarios as rules will not work.
 - Fly {bird(t)}
 - ¬Fly {bird(t), brokenwings(t)}
 - Fly {bird(t), brokenwings(t), lightlybrokenwings(t)}

(Reasoning in a single Context)

Example Context: "birds, wings and flying" in LPP (LPwNF)

- Is this an accurate reflection of the mind?
- Is this an accurate reflection of the brain and its neural circuits?
- Compare with Genetic and Signal Pathways in Molecular Biology

- Example Context: "birds, wings and flying" in LPP (LpwNF)
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
 - r4(X): lightly brokenwings(X) \leadsto brokenwings(X)
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightly brokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- Can we generate this Internal Cognitive Programming code for automatically from the scenarios?
 - Fly {bird(t)}
 - ¬Fly {bird(t), brokenwings(t)}
 - Fly {bird(t), brokenwings(t), lightlybrokenwings(t)}

- Example Context: "birds, wings and flying" in LPP (LpwNF)
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
 - r4(X): lightly $brokenwings(X) \implies brokenwings(X)$
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightly brokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- FURTHER SPECIFICITY: New information: "bird has just been born"
 - The state of the wings does not matter. Have we changed context at some level?
 - r5(X): $newborn(X) \rightsquigarrow \neg flies(X)$
 - R3(X): $true \leadsto r5(X) > r1(X)$
 - Note the high-level of Modularity of this INTERNAL CODE for CP.

- Example Context: "birds, wings and flying" in LPP (LpwNF)
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
 - r4(X): lightly brokenwings(X) \leadsto brokenwings(X)
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightly brokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- EXPLICIT OBSERVATION: Direct information: "bird does not fly"
 - Nothing else matters! Add further strong scenario information in the form:
 - f1(tweety): true → ¬flies(tweety)
 - FP1(tweety): $true \rightsquigarrow f1(tweety) > r1(tweety)$
 - Again Modularity of this INTERNAL CODE for CP.

Argumentation for Human Reasoning (Changing Context)

- Context 1: "wings, flying, ..., BIRDS"
 - r1(X): $bird(X) \rightsquigarrow flies(X)$
 - r2(X): $brokenwings(X) \rightsquigarrow \neg flies(X)$
 - r3(X): $brokenwings(X) \rightsquigarrow bird(X)$ (Why not a plane?)
 - r4(X): lightly brokenwings(X) \longrightarrow brokenwings(X)
 - R1(X): $true \rightsquigarrow r2(X) > r1(X)$
 - R2(X): $lightlybrokenwings(X) \rightsquigarrow r1(X) > r2(X)$
 - C1(X): $true \rightsquigarrow R2(X) > R1(X)$
- Context 2: "wings, flying, ..., PLANES" in LPP (LPwNF)
 - The rule r3(.) above does not apply in Context2
 - Lightly Broken Wings does not form an exception to r2(.)

CAN ANY KNOWLEDGE IN ONE CONTEXT BE REUSED IN ANOTHER?

Comprehension in Application Problems

- Cognitive Web Search Assistant
 - "Fast way from London to Manchester not public transport"
 - "Survey paper on cognition"
 - "A recipe for success at work"
 - "How to be successful at work?"
 - By comprehending the query through common sense knowledge, we can focus the search according to the indention of the user.
 - By posing a new query constructed from the comprehension inferences
 - "London to Manchester by plane or car"
 - "Flights London to Manchester"
 - "Scientific survey paper on cognition
 - With local knowledge:
 - "Arrange dinner with Giuseppe and family"
 - "Giuseppe and family arrive on Thursday. Search for restaurants & music"
 - 'restaurant (Putney OR Hammersmith) "gluten-free" –Italian'
 - '25th July evening "live jazz" inner London'

Comprehension in Application Problems

- Cognitive Home Assistant
 - What is an appropriate corpus of Common sense knowledge?
 - Background general common sense knowledge
 - Opening windows freshens the house
 - Opening all windows causes a draft in the house
 - Opening windows on a windy day dirties house
 - Background specific common sense knowledge
 - Configuration of the specific house rooms and windows
 - Local knowledge of needs and preferences of the user
 - Policy that depends on a good comprehension of the instruction of the user under the current comprehended situation.
- Specify in the form of informal rules, a part of the relevant common sense knowledge for a home assistant

Cognitive Systems – Applications – From lecture1

- Cognitive Home Assistant
 - Behaves similarly to a human assistant a butler!
 - NOT build by detailed programming of actions to be performed under conditions:
 - WHEN Temp < 20 THEN Turn_on_heating
 - WHEN Temp = 23 THEN Turn_off_heating

What happens when temperature is bigger than 23? Or at 20° we say we are cold? What happens when there is a sick child in the house with fever? What happens when we have a party with the house full of people?

- Build by instructing it about our needs/desires and our preferences amongst them:
 - Keep home warm but economize.
 - John has a fever today.
 - We are having a party tonight with 10 people.

using common sense knowledge about home living and personal information of the specific human user (and home).

- Similarly, Trip and Hotel Assistant
 - In terms of purpose of trip (business or pleasure), alone/with family, interests, etc.
- Define a high-level instruction language for these Cognitive Assistants?