FUNCTION LOOK AHEAD CARRY GENERATOR

- HIGH SPEED
 - $t_{PD} = 14 \text{ ns} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION

 I_{CC} = 4 μA (MAX.) at T_A = 25 °C
- HIGH NOISE IMMUNITY V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS182

DESCRIPTION

The M54/74HC182 is a high speed CMOS FUNC-TION LOOK AHEAD CARRY GENERATOR fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. These circuit are capable of anticipating a carry across four binary adders or group of adders. They are cascadable to perform full look-ahead across nadders. Carry, generate-carry, propagate-carry functions are provided as shown in the pin connection table. When used in conjunction with the HC181 arithmetic logic unit, these generators provide high-speed carry look-ahead capability for any word length. Each HC182 generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry lookahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. The method of cascading circuits to perform multi-level look-ahead is illustrated under typical application data.

Carry input and output of the ALUs are in their true form, and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretation of carry functions as explained on the HC181 data sheet are also applicable to and compatible with the look-ahead generator. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

March 1993 1/12

FUNCTION TABLES

FOR G OUTPUT

INPUTS										
G3	$\overline{G3}$ $\overline{G2}$ $\overline{G1}$ $\overline{G0}$ $\overline{P3}$ $\overline{P2}$ $\overline{P1}$									
L	Х	X	X	Х	X	X	L			
X	L	X	Х	L	X	X	L			
X	Х	L	X	L	L	X	L			
X	X X X L L L L									
	ALL OTHER COMBINATIONS									

FOR POUTPUT

	OUTPUT							
P3	P3 P2 P1 P0							
L	L L L L							
	ALL OTHER COMBINATIONS							

FOR Cn+x OUTPUT

	INPUTS						
G0	<u>G0</u> <u>P0</u> Cn						
L	X	Х	Н				
Х	X L H						
	ALL OTHER COMBINATIONS	3	L				

FOR Cn+y OUTPUT

	OUTPUT								
G1	G1 G0 P1 P0 Cn								
L	X	X	Х	X	Н				
X	L	L	X	X	Н				
Х	X X L L H								
	ALL OTHER COMBINATIONS								

FOR Cn+z OUTPUT

INPUTS										
G2	$\overline{G2}$ $\overline{G1}$ $\overline{G0}$ $\overline{P2}$ $\overline{P1}$ $\overline{P0}$ \overline{Cn}									
L	X	Х	Х	Х	Х	Χ	Н			
Χ	L	Х	L	Х	Х	Χ	Н			
Х	Х	L	L	L	Х	Х	Н			
X X X L L L H										
	ALL OTHER COMBINATIONS									

Cn+x = G0 + P0Cn

Cn+y = G1 + P1G0 + P1P0Cn

 $Cn+z = \frac{G2 + P2G1 + P2P1G0 + P2P1P0Cn}{G = \frac{G3 + G3 + P3G2 + P3P2G1 + P3P2P1G0}{G}$

= P3P2P1P0

 $\frac{P}{Or} = \frac{P}{Cn+x} = \frac{PO + (XO + Cn)}{PO + (XO + Cn)} = \frac{PO$

LOGIC DIAGRAM

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
3, 1, 14, 5	G0 to G3	Carry Generate Inputs (Active LOW)
4, 2, 15, 6	P0 to P3	Carry Propagate Inputs (Active LOW)
7	Р	Carry Propagate Output (Active LOW)
9	Cn+z	Function Output
10	G	Carry Generate Output (Active LOW)
11	Cn+y	Function Output
12	Cn+x	Function Output
13	Cn	
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage	2 to 6	V	
V_{I}	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		T	est Co	nditions				Value				
Symbol	Parameter	V _{CC}			T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
		()			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
	6.0			4.2			4.2		4.2			
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5	_				1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	V _{IH}	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9 5.9	V			
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
Vol	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 6.0 mA		0.17	0.26		0.37		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.37		0.40	
Iı	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
loz	3 State Output Off State Current	6.0		V _{IH} or V _{IL} V _{CC} or GND			±0.5		±5.0		±10	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Condition	ons			Value				
Symbol	Parameter	V _{CC} (V)		A = 25 C C and 7			85 °C HC	-55 to 125 °C 54HC		Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0		30	75		95		110	
t_{THL}	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH}	Propagation	2.0		62	135		170		205	
t _{PHL}	Delay Time	4.5		17	27		34		41	ns
(Gn, Pn - Cn+xyz)	6.0		13	23		29		35		
t _{PLH}	Propagation	2.0		72	150		190		225	ns
t _{PHL}	Delay Time	4.5		19	30		38		45	
	(Gn, Pn - G)	6.0		14	26		32		38	
t _{PLH}	Propagation	2.0		62	135		170		205	
t _{PHL}	Delay_Time	4.5		17	27		34		41	ns
	(Pn - P)	6.0		13	23		29		35	
t _{PLH}	Propagation	2.0		62	135		170		205	
t _{PHL}	Delay Time	4.5		17	27		34		41	ns
(Cn - Cn+xyz)	6.0		13	23		29		35		
C _{IN}	Input Capacitance			5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance			61						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. Icc(opr) = C_{PD} •V_{CC} •f_{IN} + I_{CC}/2 (per FLIP/FLOP)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

TYPICAL APPLICATION

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.	mm			inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1	45° (typ.)							
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S	8° (max.)							

PLCC20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

