Feuille 2 : Base de l'estimation paramétrique

Exercice 1 Soit X la variable aléatoire réelle égale au nombre de pannes que subit un certain type d'appareil électroménager. On suppose que X suit la loi de Poisson de paramètre λ . Donc

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k \in \mathbb{N}.$$

Soient $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, $\lambda > 0$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) . On pose $S_n = \sum_{i=1}^n X_i$ et $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Déterminer la loi de S_n . Montrer que \overline{X}_n est un estimateur sans biais de λ . Étudier sa convergence presque sure.
- 2. Dorénavant, on cherche à estimer la probabilité qu'il n'y ait aucune panne. Cette probabilité est notée θ .
 - (a) Exprimer θ en fonction de λ .
 - (b) On pose $T_n = e^{-\overline{X}_n}$. Calculer $\mathbb{E}(T_n)$ et montrer que T_n n'est pas un estimateur sans biais de θ . Est-il asymptotiquement sans biais?
 - (c) On pose $\widehat{\theta}_n = \left(1 \frac{1}{n}\right)^{S_n}$. Montrer que $\widehat{\theta}_n$ est un estimateur sans biais de θ .
 - (d) Calculer la variance de $\widehat{\theta}_n$. Est-ce que $\widehat{\theta}_n$ est un estimateur convergent?
- 3. Application. Un expérimentateur a relevé le nombre de pannes que subissent 10000 appareils de ce type. Les mesures obtenues, notées x_1, \ldots, x_{10000} , donnent $\sum_{i=1}^{10000} x_i = 20000$. Donner une estimation ponctuelle de la probabilité qu'il n'y ait aucune panne.

Exercice 2 On désire estimer la proportion p inconnue de brochets dans un grand lac. Pour ce faire, on pêche des poissons jusqu'à ce qu'on obtienne n brochets. Soit X la variable aléatoire réelle égale au nombre de poissons qu'il a fallu pêcher. On admet que la proportion p ne varie pas au cours de la pêche. La loi de X est

$$\mathbb{P}(X=k) = \binom{k-1}{n-1} p^n (1-p)^{k-n}, \qquad k \in \mathbb{N} - \{0, \dots, n-1\}.$$

- 1. Montrer que, pour tout $k \in \mathbb{N} \{0, \dots, n-1\}$, $\frac{n-1}{k-1} \times \binom{k-1}{n-1} = \binom{k-2}{n-2}$.
- 2. Montrer que $\widehat{p} = \frac{n-1}{X-1}$ est un estimateur sans biais de p. On rappelle la formule du binôme négatif : pour tout $x \in]-1,1[$ et tout $m \in \mathbb{N}$, on a $\sum_{k=m}^{\infty} \binom{k}{m} x^{k-m} = \frac{1}{(1-x)^{m+1}}$.

Exercice 3 On considère *n*-échantillon (X_1, \ldots, X_n) suivant la loi uniforme sur $[\theta, 2\theta]$ où $\theta > 0$. On note $m_n = \min\{X_1, \ldots, X_n\}$ et $M_n = \max\{X_1, \ldots, X_n\}$.

- 1. Déterminer la densité de probabilité de m_n et M_n .
- 2. En déduire $\mathbb{E}(m_n)$ et $\mathbb{E}(M_n)$. On admet dans la suite que

$$\mathbb{V}(m_n) = \mathbb{V}(M_n) = \frac{n\theta^2}{(n+2)(n+1)^2}.$$

- 3. Afin d'estimer θ , on propose comme estimateur $\hat{\theta} = M_n/2$. Etudier son biais, son erreur quadratique moyenne et sa convergence dans L^2 .
- 4. Construire à partir de m_n un autre estimateur de θ . Est-il sans biais? Si non, le modifier afin qu'il devienne sans biais.
- 5. Comparer l'erreur quadratique moyenne de $\hat{\theta}_n$ et de l'estimateur sans biais construit ci-dessus.

Exercice 4 Soient X une variable aléatoire réelle de densité

$$f(x) = \begin{cases} \frac{1}{2a} & \text{si } x \in [0, a], \\ \frac{1}{2(1-a)} & \text{si } x \in [a, 1], \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$, et (X_1, \dots, X_n) un n-échantillon de X. Ici, $a \in]0,1[$ est un réel inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) . On pose $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Calculer $\mathbb{E}(X)$. Montrer que $\mathbb{V}(X) = \frac{4 + (2a 1)^2}{48}$.
- 2. Calculer $\mathbb{E}(\overline{X}_n)$ et $\mathbb{V}(\overline{X}_n)$. En déduire un estimateur T_n sans biais de a et étudier sa convergence.
- 3. Étudier la convergence en loi de la suite $\left(\frac{T_n a}{\sqrt{\mathbb{V}(T_n)}}\right)_{n \in \mathbb{N}^*}$.