Supplementary Material

Table-S1.txt contains our chemical kinetics list for ion-molecule reactions.

Column 1: reaction #

Column 2-11: reaction reactants and products

Column 12: branching ratio

Column 13: rate coefficient (cm³.s⁻¹)

Column 14: temperature at which the rate coefficient was measured

Column 15: reference as listed in I10013-refs-S1.doc

* indicates that the reaction rate coefficient and products have been estimated from thermochemical considerations

Refs-S1.txt contains the reference list for ion-molecule reactions.

Table-S2.txt contains our chemical kinetics list for electron recombination reactions.

Column 1: reaction #

Column 2: reactant

Columns 3-4: rate coefficient $\alpha = a (300/T_e)^b \text{ cm}^3 \text{ s}^{-1}$

(a and b in column 3 and 4, respectively)

Column 5: reference as listed in I10013-refs-S2.doc

Refs-S2.txt contains the reference list for electron recombination reactions.

^{*} indicates that the reaction rate coefficient has been estimated

able-S1.txt

[41] [8] [8] [8] [8] [8] [125] [125] [125] [125] [125] [125] [135] [135] [135] [135] [135]	[135] [125] [86] [86] [86] [135]
80 300 300 300 300 300 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300
1.30E-16 4.15E-09 4.15E-09 5.40E-10 4.90E-09 4.70E-09 4.70E-09 4.70E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09 4.00E-09	4.00E-09 3.70E-09 7.35E-09 7.35E-09 2.00E-09
0.82 0.18 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.5 0.5 0.5 0.5 0.5
	1 1 1 1 1
	+++++
+ + + + + + + + + + + + + + + + + + +	+ H H + H + H + H2 + NH2
= H3+ = CH3+ = CH4+ = C2H2+ = C2H4+ = C2H3+ = C2H3+ = C2H4+ = C2H3+ = C2H4+ = C2H4+ = C2H4+ = C2H4+ = C2H3+ = C2H4+ = C2H3+ = C3H4+ = C4H+	
+ H2 + CH4 + CH4 + C2H2 + C2H4 + C2H4 + C2H6 + C2H6 + C2H6 + C2H6 + C2H6 + C2H6 + C2H6 + C4H2 + CH3C2H + CH3C4H + CH3C4H	
去去去去去去去去去去去去去去去去去去 去去去去去去去去去去去去去去去去 去去去去	
1 2 8 4 4 3 6 7 8 8 7 8 8 7 8 9 8 8 7 8 9 8 8 9 8 9 9 9 9	23 24 25 26 27

[135]	[8]	$[1\overline{25}]$	[125]	[125]	[135]	[135]	[135]	[135]	[135]	[125]	[52]	[8]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[53]	[98]	[8]	[135]	[53]	[53]
ı	300	300	300	300				1	1	300	298	298	298	298	298	298	298	298	298	298	298	298	298	298	298	1	298		298	298
2.00E-09	1.10E-08	1.20E-08	1.20E-08	1.20E-08	7.50E-09	4.00E-09	8.00E-09	4.00E-09	9.00E-09	6.90E-09	6.40E-10	2.00E-09	3.80E-09	3.80E-09	3.80E-09	5.30E-09	5.30E-09	4.90E-09	1.90E-09	2.00E-09	2.70E-09	5.70E-09	7.30E-09							
- 0.5		- 0.7	- 0.05	- 0.25				-			- 1	- 1	- 0.03	- 0.37	9.0 -	- 0.09	- 0.91	- 0.45	- 0.37	- 0.18	90.0 -	- 0.28	- 0.48	H 0.14	- 0.04	-	- 1	- 1	- 1	- 0.47
+	+	+	+	+	+	+	+	, +	+	+	+	+	+	+	H +	+	+	+	H +	+ H2	+	H +	+ H2	+ H2	+ H2	+	+	+	+	+
+ CH2	H +	H +	+ H2	+ HCN	+ H2	H +	+ HC3N	H +	+ HC5N	H +	+ H2	H +	H +	+ H2	+ H2	H +	+ H2	H +	H +	+ H2	+ H2	H +								
= NH2+	= HCN+	= C2H3N+	= HC2NH+	= CH3+	= HC3NH+	= HC3N+	= CH3+	= HC5N+	= CH3+	= H2O+	= H+	= H3+	= CH5+	= CH4+	= CH3+	= C2H3+	= C2H2+	= C2H4+	= C2H3+	= C2H2+	= C2H6+	= C2H5+	= C2H4+	= C2H3+	= C2H2+	= NH+	= N2H+	= HCN+	= NH3+	= H30+
	+ HCN																													+ H2O
H+	$^{+}$ H	$^{+}$ H	H+	H+	H+	H+	$^{+}$ H	H+	H+	H+	H2+																			
28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	27	28

H2+ H3+ H3+	+ H2O + CH4 + C2H2	= H2O+ = CH5+ = C2H3+	+ H2 + H2 + H2	+ + +	1 1 1	0.53	7.30E-09 2.40E-09 3.20E-09	298 296 297	[53] [8]
•		Ш	+ H2	+ H2	,	0.7	2.90E-09	300	2∞
		П	+ H2	+		0.3	2.90E-09	300	[8]
		П	+ H2	+ H2		1	2.90E-09	298	[8]
		П	+ H2	' +	,	0.7	3.00E-09	300	[82]
		II	+ CH4	, +		0.3	3.00E-09	300	[82]
		П	+ CH4	+ H2	,	0.3	3.10E-09	300	[82]
		П	+ H2	+ H2	,	0.7	3.10E-09	300	[82]
		П	, +	+	ı	1	3.00E-09	300	[82]
		П	+ H2	+		1	2.60E-09	300	[29]
		Ш	+ H2	, +		1	2.50E-09		[135]
		П	+ H2	, +		1	2.00E-09		[135]
		Ш	+ H2	, +		1	2.50E-09		[135]
		Ш	+ H2	, +		1	3.30E-09	300	[82]
		П	+ H2	, +	,	0.75	3.90E-09	300	[82]
		Ш	+ H2	+ H2	,	0.2	3.90E-09	300	[82]
		Ш	+ CH4	+ H2	,	0.05	3.90E-09	300	[82]
		П	+ H2	, +		1	2.00E-09		[135]
		Ш	+ H2	, +		1	4.40E-09	300	[8]
		Ш	+ H2	, +	,	0.16	1.00E-09	300	[46]
		Ш	+ H2	H +	,	0.07	1.00E-09	300	[51]
		П	+ H2	+ H2	,	92.0	1.00E-09	300	[126]
		П	+ NH3	+ H2	,	0.01	1.00E-09	300	[25]
		П	+ H2	+	,	6.0	9.10E-09	300	[82]
		II	+ H2	+ C2H2	,	0.1	9.10E-09	300	[82]
		Ш	+ H2	+		1	1.86E-09	300	[8]
		Ш	+ H2	, +		1	5.30E-09	297	[8]
		П	+ H2	, +		1	7.50E-09	300	[8]
		= C2H3NH+	+ H2	+	ı	_	8.90E-09	300	[8]

[138] [8] [135] [135]	[135] [8]	$\overline{\infty}$	∞	[8]	⊙ ∞	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[19]	[19]	[19]	[19]	[19]	[19]	[19]	[19]	[19]	[19]
300 296 -		300																				300	
8.90E-09 9.80E-09 9.00E-09 8.00E-09	9.00E-09 2.80E-09	1.20E-16 1.30E-09	1.30E-09 2.63E-09	1.50E-09	1.50E-09 1.50E-09	1.50E-09	1.50E-09	1.65E-09	1.65E-09	1.65E-09	1.65E-09	1.65E-09	1.65E-09	1.90E-09	1.90E-09	1.90E-09	1.90E-09	1.90E-09	2.00E-09	2.00E-09	2.00E-09	2.00E-09	2.00E-09
		$\frac{1}{0.28}$	0.72	0.08	0.05	0.29	0.42	0.05	0.3	0.07	0.14	0.005	0.43	0.3	0.3	0.2	0.1	0.1	0.3	0.2	0.15	0.15	0.1
1 1 1 1	1 1	1 1	1 1	1		٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	1
+ + + +	ı ı + +	' ' + +	· · + +	+ -	. H + +	, +	+	+	+	+	+	+ H2	H +	+	+	+	+	+	+	+	+	+	+
+ + + H2 + + H2 + H2	+ H2 + H2	+ H + H2	H + +	+ CH	+ C + H2	+ H2	H +	+ CH4	+ CH3	+ CH2	+ CH	+ H2	+ H2	+ H2	+ C	+ CH	+ C2H2	+ CCH	+ CHCH2	+ CH	+ CH3	+ C2H4	- C
= C3H5NH+ = HC3NH+ = C4H3NH+ = HC5NH+	= C6H3NH+ = C2N2H+	= CH+ $= C2H2+$	= C2H3+ = C3H+	= C2H3+	$= C2\Pi4^{+}$ $= C3H^{+}$	= C3H2+	= c-C3H3+	= C2H2+	= C2H3+	= C2H4+	= C2H5+	= C3H2+	= c-C3H3+	= C4H2+	= C3H4+	= c-C3H3+	= C2H2+	= C2H3+	= C2H3+	= C3H5+	= c-C3H3+	= C2H2+	= C3H6+
+ C3H5N + HC3N + C4H3N + HC5N																							+ C3H6
H3+ H3+ H3+ H3+	H3+ H3+	t t	† †	† C	t t	Ċ	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ C	Ċ+	Ċ C	Ċ	Ċ C	Ċ	C+
90 91 93	94 95	96 97	98 99	100	101	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

132 132 132 132 132 132 132 132 132 132	
300 300 300 300 300 300 300 300 300 300	300
	60-60
2.00E-09 1.80E-09 1.80E-09 1.80E-09 1.80E-09 2.90E-09 2.90E-09 3.50E-09 3.50E-09 3.50E-09 3.50E-09 2.40E-09 2.40E-09 2.40E-09 2.40E-09 2.40E-09 2.40E-09 2.30E-09 2.30E-09 2.30E-09 2.30E-09 2.30E-09	3.20F 3.20F 3.20F
0.35 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
	1 1 1
田 田 - 田	1 1 1
++++++++++++++++++++++++++++++++++++++	+ + +
H2 CH3CH2 CH2 CH4 C C CCH H H2 H H2 H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCCH H CH2CCC H H CH2CCC H H CH2CCC H H CH2CC H H CH3CC H H H CH3CC H H CH3CC H H CH3CC H H CH3CC H H CH3CC H H CH3CC H H CCH H CCH CC	
H2 CCH3C CCH4 CCH4 CCH H2 H2 H2 H2 H2 H2 H3 H4 CCHCC CCHC	CH
+++++++++++++++++++++++++++++++++++++++	+ + +
± + .	+ + + + +2+
C4H3+ C2H3+ C2H3+ C3H7+ C3H8+ C4H5+ C4H2+ C4H2+ C4H2+ C4H2+ C4H2+ C6H3+ C6H3+ C7H+ C7H3+ C7H3+ C7H3+ C7H3+ C7H6+ C7H3+ C7H6+ C7H6+ C7H3+ C7H6+ C7H3+ C6H6+ C7H3+ C6H6+ C7H3+ C7H3+ C6H6+ C7H3+ C7H3+ C6H6+ C7H3+ C6H6+ C7H3+ C7H3+ C7H3+ C6H6+ C7H3+ C	HCNH+ CH2NH2+ CH3NH2+
H	H2 = = = H2 = = = H2 = = = H2 = = H2
C3H6 C3H8 C3H8 C3H8 C3H8 C3H8 C3H8 C3H8 C3H8	CH3NH2 CH3NH2 CH3NH2
**************************************	さささ
122 123 124 125 126 127 127 128 138 139 130 130 130 131 134 140 140 140 140 140 140 140 140 140 14	149 150 151

[35]	94,97]	14,97]	94,97]	94,97]		- -	<u> </u>	<u> </u>	[35]	[35]	[35]	[35]	[8	<u>S</u>	<u>S</u>	3,34]	23	22	<u>S</u>	<u>S</u>	[5	33]	22	<u>~</u>	[19]	[19]	[19]	17,118]		[8]
	300 [5																													
5.60E-09	4.10E-09	4.10E-09	4.10E-09	4.10E-09	5.50E-09	5.50E-09	5.50E-09	5.50E-09	7.00E-09	7.00E-09	6.00E-09	5.00E-09	1.90E-09	1.90E-09	2.40E-09	7.50E-10	1.20E-09	1.30E-09	1.30E-09	1.30E-09	2.40E-09	2.60E-09	1.90E-10	1.90E-10	2.70E-09	2.70E-09	2.70E-09	2.90E-09	2.80E-09	2.80E-09
	0.24	0.44	0.29	0.03	0.05	0.7	0.02	0.23	0.29	0.71	_	1	0.11	0.89	0.1	1	1	0.11	0.84	0.05	1			0	89.0	0.17	0.15	0.25	0.75	0.15
ı	1	•	1	1	1	1	1	1	1	•	1	•	•	1	1	ı	ı	ı	1	•	•	ı	ı	ı	ı	ı	ı	ı	•	1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H +	+	+	+	+	+	+	+	+	+	+	+	+
CN +	+ HCN	+ CN	H +	+ hv	+ HCN	+ CN	+ CCH	H +	+ C3N	+ CN	+ CN	+ CN	+ CN	+ CN	C +	+ H2	H +	+ H2	+ H2	H +	H +	+	H +	+ CN	+ H2	+ CH	C +	C +	C +	+ H2
= C2H3+	= C3H2+	= c-C3H3+	= HC4NH+	= C4H3N+	= C3+	= C3H+	= C2N+	= C4N+	= C2H3+	= C4H3+	= C5H+	= C6H3+	= CNC+	= C2N+	= H2O+	= C+	= CH2+	= C2H2+	= C2H3+	= C2H4+	= C3H2+	= products	$=$ CN_+	= H+	= HCNH+	= NH3+	= NH4+	= H30+	= HCNH+	= C2N+
+ CH3CN	+ C3H3N	+ C3H3N	+ C3H3N	+ C3H3N	+ HC3N	+ HC3N	+ HC3N	+ HC3N	+ C4H3N	+ C4H3N	+ HC5N	+ C6H3N	+ C2N2	+ C2N2	+ H2O	H +	+ H2	+ CH4	+ CH4	+ CH4	+ C2H2	+ C2H6	Z +	Z +	+ NH3	+ NH3	+ NH3	+ H2O	+ HCN	+ HCN
+	+	+	+	+	Ċ C	+	+	+	+	CH+	CH+	CH+	CH+	CH+	CH+	CH+	CH+	CH+												
152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182

88 [8] 00 [1,120,121] 00 [1,120,121]																											
2.80E-09 298 2.20E-09 300 2.20E-09 300																											
- 0.1 - 0.5 - 0.1	- 0.4	· ·	- 0.7	. 1	- 1	- 0.5	- 0.5	- 0.33	- 0.67	- 1	- 0.55	- 0.35	- 0.1	- 1	- 1	- 1	- 1	- 1	- 1	- 0.46	- 0.04	- 0.51	- 0.85	60.0 -	90.0 -	- 0.15	9.0 -
+ + +	+	' + -	+ +	ı ı - +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ H2	+	+	+ H2	+	+	' +
+ H + CH2 + CH	C +	H +	7H +	Н - +	+	+ H2	H +	+ CH	H +	H +	+ CH3	+ CH2	+ CH	+	+	+ CH	+ H2	+ H2	+ H2	+ CH4	+ H2	+ H2	+ CH4	+ H2	+ H2	+ C2H4	+ C2H2
+ HCN = HC2N+ + CH3NH2 = CH2NH2+ + CH3NH2 = CH3NH2+	П	II	II I	l II	П	П	П	Ш	П	П	П	П	П	П	П	П	П	П	П	П	П	П	Ш	Ш	П	П	II
183 CH+ 184 CH+ 185 CH+																											

[6/]	[67]	[27]	[29]	[29]	[135]	[135]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[99]	[39]	[9/]	[9/]	[135]	[9/]	[9/]	[9/]	[9/]	[9/]	[9/]	[8]	[8]	[8]
300	300	300	300	300			300	300	300	300	298	300	300	300	300	300	300	300	320	320		320	320	320	320	320	320	300	300	300
1.90E-09	1.90E-09	1.00E-09	1.30E-09	1.30E-09	1.20E-09	1.20E-09	6.70E-11	6.70E-11	1.75E-09	1.75E-09	2.00E-10	3.20E-09	3.20E-09	1.80E-09	1.80E-09	1.80E-09	1.10E-09	2.55E-09	1.50E-09	1.50E-09	2.27E-10	5.40E-09	5.40E-09	5.40E-09	5.40E-09	9.00E-11	9.00E-11	3.50E-11	1.14E-09	2.72E-09
0.15	0.1	_	6.0	0.1	_	_	0.5	0.5	0.15	0.85	_	0.45	0.55	0.37	0.58	0.05		_	0.95	0.05	_	8.0	0.1	0.05	0.05	8.0	0.2			0.53
,	1	•	•	•	,	,	•	•	,	,	•				•	•		•	•	•	•					•	•		•	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ CH4	+ H2	+ CH4	+ C2H2	+ H2	+ H2	+ H2	+ H2	H +	+ CH2	+ H2	+ hv	+ CH4	+ CH3	+ HCN	+ C2H4	+ hv	+ CH2	+	+ HCN	+ hv	+ hv	+ C2H2	+ CH3CN	+ HCN	+ CH2	+ HCN	+ hv	H +	+ CH3	+ CH4
= c-C3H3+	= C4H5+	= C3H7+	= c-C3H3+	= C5H3+	= C7H3+	= C9H3+	= HCN+	= HCNH+	= NH4+	= CH2NH2+	= C2H3NH+	= CH2NH2+	= CH3NH2+	= C2H5+	= HCNH+	= C3H5NH+	= C2H3NH+	= products	= c-C3H3+	= C4H3NH+	= C6H3NH+	= C2H3NH+	= C2H3+	= C3H5+	= C3H3NH+	= HC2NH+	= adduct	= CH5+	= CH5+	= C2H2+
+ CH3C2H	+ CH3C2H																													
CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH3+	CH4+	CH4+	CH4+
214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244

												[21]	[21]																	
8	[8]	8]	8]	8]	54]	8]	8]	8]	8]	8]	8]	1,120,1	1,120,1	18]	40]	8]	8]	37]	8]	8]	[99	37]	127]						130]	
	300																													
2.72E-09	2.72E-09	2.00E-09	2.00E-09	2.00E-09	1.91E-09	3.00E-09	3.00E-09	3.00E-09	2.50E-09	3.30E-09	3.30E-09	2.20E-09	2.20E-09	3.92E-09	2.50E-09	1.50E-10	1.48E-09	1.50E-09	1.35E-09	1.35E-09	2.00E-09	2.00E-09	1.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	2.00E-09	3.00E-09
0.41	90.0	0.85	0.13	0.03	1	0.02	0.45	0.53	_	0.98	0.02	9.0	0.4	_					0.15	0.85			_		_	_	_			_
٠	•	٠	٠	•	٠	٠	٠	•	٠			•	٠	٠			ı	ı	ı				٠	•	٠			ı	٠	1
+	H +	+	+	H +	+ H2	+	+	+	+	+	+	+	H +	+	+	+	+	+	+ H2	+	ı +	+	+	+	+	+	+	+	+	+
+ CH3	+ H2	+ CH4	+ CH3	+ H2	+ CH4	+ NH2	+ CH3	+ CH4	+ CH3	+ CH3	H +	+ CH4	+ CH4	, +	+ CH3	+ H2	+ CH4	+ CH4	+ CH4	+ CH4	ı +	ı +	+ CH4							
= C2H3+	= c-C3H3+	= C2H4+	= C2H5+	= C3H5+	= C2H4+	= CH5+	= NH4+	= NH3+	= H30+	= HCNH+	= C2H3NH+	= CH3NH2+	= CH2NH2+	= products	= HC3NH+	= CH4+	= C2H3+	= C2H5+	= C2H5+	= C2H7+	= products	= products	= C3H9+	= C4H3+	= C5H5+	= C6H3+	= C7H5+	= C8H3+	= CeH7+	= C7H9+
+ C2H2	+ C2H2	+ C2H4	+ C2H4	+ C2H4	+ C2H6	+ NH3	+ NH3	+ NH3	+ H2O	+ HCN	+ HCN	+ CH3NH2	+ CH3NH2	+ CH3CN	+ HC3N	H +	+ C2H2	+ C2H4	+ C2H6	+ C2H6	+ CH3C2H	+ C3H6	+ C3H8	+ C4H2	+ CH3C4H	+ C6H2	+ CH3C6H	+ C8H2	9H9O +	+ C7H8
CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH4+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+
245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	766	267	268	569	270	271	272	273	274	275

																			118]	118]	118]	118]								
[133]	[133]	*	*	*	[18]	*	*	[40]	*	*	*	*	*	*	[17]	[127]	[18]	8	[117,	[117,	[117,	[117,	<u>8</u>	[42]	[42]	[28]	[28]	[28]	[83]	[8]
300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	297	300	300	300	300	300	300	300	300	298	298	300	300	300	300	300
2.30E-09	2.25E-09	3.00E-09	3.00E-09	3.00E-09	4.90E-09	3.00E-09	3.00E-09	4.50E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.70E-09	1.66E-09	4.20E-09	1.24E-09	1.10E-09	1.10E-09	1.10E-09	1.10E-09	1.85E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	4.00E-09	9.50E-11
	1			_	_	_	-	-	-	_	1	1	1	1	_	_	-	_	0.34	0.34	0.12	0.2		0.83	0.17	0.91	0.03	90.0		
•	1	ı	٠	٠	ı	ı	1	ı	ı	ı	•	•	1	1	ı	ı	1	•	•	ı	ı	•	١	•	•	•	٠	١	•	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H +	+	H +	+	+	+
+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	+ CH4	H +	+ CH3	+ H2	H +	+	H +	+ H2	+ H2	+ CH4	+ H2	+ H2	+	+ CN
= NH4+	= CH3NH3+	= CH2NH2+	= N2H4H+	= HCNH+	= C2H3NH+	= C3H3NH+	= C3H5NH+	= HC3NH+	= C4H3NH+	= C4H5NH+	= C5H5NH+	= HC5NH+	= C6H3NH+	= C6H7NH+	= H30+	= CH3OH2+	= H30+	= C2H2+	= C2H2+	= c-C3H3+	= C3H4+	= C3H5+	= C4H2+	= C4H3+	= C4H2+	= c-C3H3+	= C4H4+	= C4H5+	= products	= CH+
+ NH3	+ CH3NH2	+ CH2NH	+ N2H4	+ HCN	+ CH3CN				+ C4H3N							+ CH3OH	+ H2O	+ H2	+ CH4	+ CH4	+ CH4	+ CH4	+ C2H2	+ C2H4	+ C2H4	+ C2H6	+ C2H6	+ C2H6	+ C3H8	Z +
CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	CH5+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+
276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306

								_	_																					
[8]	[8]	[8]	[39]	$[\infty]$	[8]	[8]	[8]	[135	[135	[8]	[8]	[8]	[8]	<u>8</u>	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[12]	[12]	[12]	[79]	[79]	[79]
300	300	300	300	300	300	300	300			300	300	300	298	298	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
2.70E-09	2.70E-09	2.70E-09	3.64E-09	3.80E-09	3.80E-09	3.80E-09	3.80E-09	1.10E-09	1.10E-09	1.00E-11	8.90E-10	8.90E-10	1.40E-09	1.40E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.38E-09	1.50E-09	1.50E-09	1.50E-09	1.30E-09	1.40E-09	1.40E-09
0.2	0.35	0.45		0.2	0.12	0.37	0.31	0.5	0.5	1	0.21	0.79	0.32	89.0	0.3	0.47	0.23	0.18	0.09	90.0	0.01	0.54	0.05	0.09	0.5	0.05	0.45	_	0.15	0.5
ı	ı	ı	ı	,	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
+	+	+	+	+	ı +	ı +	+	+	+	ı +	+	+	+	+	ı +	ı +	+	+	+	+ H2	ı +	' +	H +	+	+	+	+	+	+	+
+ CN	+ C2	H +	, +	+ HCN	+ CN	+ C2	H +	+ C2	+ H2	H +	+ H2	H +	+ H2	H +	+ C2H2	+ CH3	H +	+ C2H4	+ CHCH2	+ CH3	+ CH4	+ CH3	+ H2	H +	+ C2H2	+ C2H	H +	+ C2H2	+ C2H4	+ C2H3
= C2H2+	= HCNH+	= HC3N+	= products	= C4H+	= C4H2+	= HC3NH+	= HC5N+	= NH4+	= HC2NH+	= C2H3+	= C3H4+	= C3H5+	= C4H2+	= C4H3+	= C2H4+	= c-C3H3+	= C4H5+	= C2H4+	= C2H5+	= c-C3H3+	= C3H4+	= C3H5+	= C4H5+	= C4H7+	= C3H4+	= C3H5+	= C5H5+	= C3H6+	= C3H6+	= C3H7+
+ HCN	+ HCN					+ HC3N																								
C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+	C2H2+						
307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337

[79] [79] [79] [135] [135] [135] [107] [8] [8] [8] [8] [70]	[49] [49] [49] [49] [49] [49] [79] [94,97] [39] [112] [8]
	3000
1.40E-09 1.40E-09 1.70E-09 1.50E-09 1.50E-09 1.50E-09 2.50E-10 2.50E-10 2.50E-10 3.10E-09 3.10E-09 3.60E-10	2.70E-09 2.70E-09 3.80E-09 3.80E-09 3.80E-09 3.80E-09 4.30E-09 4.30E-09 4.30E-09 4.30E-09 6.80E-11 1.90E-10
0.3 0.05 0.9 0.1 0.33 0.33 0.33 0.3 0.6 0.6 0.6 0.66	0.48 0.28 0.28 0.28 0.28 0.28 0.23 1 0.15 0.15 0.15
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
+ C2H2 + CH3 + C2H2 + H2 + C2H2 + H + C2H2 + HCN + HCN + HCN + HCN + CCH + CCH + CCH	+ CCH + C2H2 + CHCH2 + CCH + CCH + HCN + HCN + HCN + C2H2N + C2H2N + C2H2N + C2H2 + C2H2 + C2H2 + H2 + H2
= C3H8+ = C4H7+ = C4H2+ = C6H2+ = C6H2+ = C8H2+ = C8H2+ = C8H3+ = C8H3+ = C1+ = C1+ = C1+ = C1+ = C1+ = C2N+ = HC2N+ = HC2N+ = HC2N+ = HC3N+	= CH3NH3+ = CH3NH2+ = CH2NH2+ = C2H3NH+ = C3H4+ = C3H4+ = C4H5N+ = C4H2+ = C4H2+ = C4H2+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+ = C3H3N+
	+ CH3NH2 + CH3NH2 + CH3NH2 + CH3CN + CH3CN + CH3CN + CH3CN + C3H3N + C
C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+ C2H2+	C2H2+ C2H3+ C2H3+
338 339 340 341 342 343 344 344 345 346 347 348 350 351	353 354 355 356 357 358 359 361 362 365 365 366 367

4	· 8	8]	8]	12]	79]	27]	27]	135]	135]	135]	135]	135]	135]	[130]	62]	115]	115]	8]	8]	94,97]	94,97]	39]	8]	8]	8]	· [8	12]	12]	12]	[8]
	388																												298	
8.20E-10	6.20E-10	6.20E-10	6.20E-10	1.50E-09	8.70E-10	1.00E-09	1.00E-09	9.00E-10	9.00E-10	9.00E-10	9.00E-10	9.00E-10	9.00E-10	1.96E-09	1.96E-09	2.20E-11	2.20E-11	2.30E-09	3.80E-09	4.40E-09	4.40E-09	1.15E-09	5.50E-10	3.00E-10	8.40E-10	8.40E-10	7.90E-10	7.90E-10	7.90E-10	5.15E-12
-	0.47	0.4	0.13	_	1	0.95	0.05	0.33	0.33	0.33	0.33	0.33	0.33	0.82	0.18	6.0	0.1	_	_	8.0	0.2				0.77	0.23	90.0	68.0	90.0	0.07
٠	ı	ı	ı	•	ı	ı	ı	1	ı	•	ı	ı	ı	•	•	•	•	•	•	ı	ı	ı	ı	ı	•	ı	•	•	ı	•
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ C2H2	+ C2H4	+ CH4	+ H2	+ C2H2	+ CH4	+ C2H4	+ CH4	+ C2H2	+ H2	H +	+ C2H2	+ H2	H +	+ C2H2	+ H2	+ H2	C +	+ C2H2	+ C2H2	+ C2H2	+ hv	, +	+ C2H2	+ H2	+ CH3	H +	+ CH4	+ CH3	H +	+ CH4
= C2H5+	= C2H5+	= C3H5+	= C4H7+	= C3H5+	= C4H5+	= C3H7+	= C4H7+	= C4H3+	= C6H3+	= C6H4+	= C6H3+	= C8H3+	= C8H4+	= C6H7+	= C8H7+	= HC2N+	= HC2NH+	= HCNH+	= HC3NH+	= C3H3NH+	= C5H5NH+	= products	= C2N2H+	= C2H3+	= c-C3H3+	= C4H5+	= C3H4+	= C3H5+	= C4H7+	= C3H6+
+ C2H4	+ C2H6	+ C2H6	+ C2H6																										+ C2H4	
C2H3+	C2H3+	C2H3+	C2H3+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+																				
369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399

													_	_															
[8]	[12]	[12]	[67]	[6/]	[6/]	[6/]	[135]	[135]	[1115]	[92]	[92]	[38]	[10,77]	[10,77]	[8]	<u>8</u>	[54]	[54]	[8]	[8]	[8]	[67]	[42]	[65]	*	*	*	*	*
300	300	300	300	300	300	300			300	300	300	300	298	298	300	300	298	298	300	300	300	300	300	300	300	300	300	300	300
5.15E-12 1.10E-09	1.10E-09	1.10E-09	1.30E-10	1.30E-10	1.20E-09	1.20E-09	1.00E-09	1.00E-09	3.00E-10	1.70E-09	3.20E-09	1.13E-09	1.50E-09	1.50E-09	1.00E-11	9.00E-14	1.90E-10	1.90E-10	3.55E-10	3.90E-11	3.90E-11	1.40E-09	1.40E-09	6.30E-10	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09
0.93	0.3	0.5	6.0	0.1	0.55	0.45	0.5	0.5	_	0.38	68.0	_	0.85	0.15	_	_	0.36	0.64	_	0.14	98.0	6.0	0.1	_			1	_	1
		•	٠	٠	٠	٠	٠	٠	٠	•		٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠		٠	•	ı	ı
+ +	· · ·	+	, +	+	+	+	+	' +	+	+	+	+	+	ı +	+	+	+	, +	+	+	+	, +	+	+	+	+	+	' +	+
+ CH3 + C2H4	+ CH3	H +	+ C2H4	+ C2H3	+ C2H6	+ C2H5	+ CH3	+ H2	H +	+ C2H3	+ CHCH2	, +	+ CHCH2	H +	+ H2	+ H2	+ CH4	+ H2	+ CH4	+ CH4	+ H2	+ C2H4	+ CH4	+ C2H6	+ C2H4				
= C3H7+		= C5H7+			= C3H6+	II	II	= C6H4+	II	Ш	Ш	II	II	П	II	II	II	П	II	II	II	П	II	II	II	II	Ш	II	= C7H5+
+ C2H6 + CH3C3H	+ CH3C2H	+ CH3C2H	+ C3H6	+ C3H6	+ C3H8	+ C3H8	+ C4H2	+ C4H2	Z +	+ CH3NH2	+ CH3CN	+ C3H5N	+ HC3N	+ HC3N	H +	+ CH4	+ C2H2	+ C2H2	+ C2H4	+ C2H6	+ C2H6	+ CH3C2H	+ CH3C2H	+ C3H8	+ C4H2	+ CH3C4H	+ C6H2	+ C6H6	+ CH3C6H
C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H4+	C2H5+														
400	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430

							28]																							
*	*-	[8]	[133]	[4]	·*-	[89]	[9,73,1]	[8]	4	<u>4</u>	*	*	*	*	* -	*	[8]	[8]	*	[18]	[8]	[8]	[8]	[8]	[54]	[8]	[8]	[47]	[47]	[47]
300	300	300	300	300	300	299	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	788	300	300	788	298	798
3.00E-09	3.00E-09	2.09E-09	1.87E-09	2.70E-09	3.00E-09	2.70E-09	3.80E-09	3.55E-09	4.30E-09	4.10E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	8.00E-11	1.86E-09	3.00E-09	3.37E-09	1.00E-10	1.30E-09	1.30E-09	1.30E-09	1.15E-09	1.90E-11	1.90E-11	2.95E-09	2.23E-09	2.23E-09
1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	_		1	1	0.19	0.7	0.11	1	0.42	0.58	_	0.28	0.72
,	•	ı	ı	ı	ı	•	ı	ı			ı	ı	٠	ı		ı		ı	ı	ı	ı		ı	ı		ı	ı	ı	ı	ı
+	+	+	+	+	, +	, +	+	+	+	, +	+	+	' +	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	ı +
+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ C2H4	+ H2	+ CHCH2	+ CH3	H +	+ C2H6	+ CH4	+ CH3	+ CH3CH2	+ C2H6	+ CH3CH2
= C7H9+	= C8H3+	= NH4+	= CH3NH3+	= CH2NH2+	= N2H4H+	= HCNH+	= C2H3NH+	= HC3NH+	= C3H3NH+	= C3H5NH+	= C4H3NH+	= C4H5NH+	= HC5NH+	= C5H5NH+	= C6H3NH+	= C6H7NH+	= C2N2H+	= H30+	= CH3OH2+	= CH3CHOH+	= C2H5+	= C2H5+	= C3H5+	= C4H7+	= C2H4+	= C3H8+	= C3H9+	= H30+	= NH3+	= NH4+
+ C7H8	+ C8H2	+ NH3	+ CH3NH2	+ CH2NH	+ N2H4	+ HCN	+ CH3CN	+ HC3N	+ C3H3N	+ C3H5N	+ C4H3N	+ C4H5N	+ HC5N	+ C5H5N	+ C6H3N	+ C6H7N	+ C2N2	+ H2O	+ CH3OH	+ CH3CHO	H +	+ C2H2	+ C2H2	+ C2H2	+ C2H4	+ C2H6	+ C2H6	+ H2O	+ NH3	+ NH3
C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H5+	C2H6+									
131	432	133	134	135	136	137	138	439	440	141	445	443	444	445	446	447	448	449	150	151	152	453	154	155	156	157	458	459	160	161

										103	103																			
[4]	4	[43]	[135]	[135]	[8]	[8]	[101]	[101]	[8]	20,22,	20,22,	[42]	[42]	[83]	[2]	[29]	[29]	[29]	[115]	[115]	[4]	[4]	[4]	[4]	[8]	[8]	[8]	[8]	[8]	[8]
_	_	300	_										298																	
1.20E-09	1.20E-09	2.00E-09	2.20E-09	2.20E-09	2.60E-11	2.60E-11	8.70E-10	8.70E-10	8.40E-10	9.50E-10	9.50E-10	1.00E-09	1.00E-09	1.60E-09	1.40E-09	1.20E-09	1.20E-09	1.20E-09	2.70E-10	2.70E-10	1.65E-09	1.65E-09	1.65E-09	1.65E-09	4.00E-11	4.00E-11	3.00E-09	3.00E-09	3.00E-09	3.00E-09
0.95	0.05	6.0	6.0	0.1	0.2	8.0	6.0	0.1	1	0.95	0.05	0.12	0.88	_	_	0.85	0.1	0.05	6.0	0.1	0.2	0.45	0.25	0.1	0.09	0.91	0.2	0.15	0.33	0.3
•	•	•	ı	•	٠	٠	ı	٠	1	٠	•	ı	•	٠	٠	٠	١	•	٠	•	•	١	ı	ı	•	•	•	•	٠	1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +
+ C2H5	H +	+ C2H6	+ C2H6	+ CH4	H +	+ hv	+ C2H2	+ H2	H +	+ C2H2	+ H2	+ C2H3	+ C2H4	+	+ C2H2	+ CCH	+ C2H2	+ CCCH	H +	, +	+ C3H	+ C3	+ C2H2	H +	+ CCC	+ hv	+ HC3N	+ CCC	+ C2H2	' +
= HCNH+	= C3H5NH+	= NH4+	= HCNH+	= C2H3NH+	= C3H2+	= c-C3H3+	= C2H3+	= C4H3+	= C5H2+	= c-C3H3+	= C5H3+	= C4H4+	= C4H3+	= products	= C4H3+	= C5H2+	= C5H+	= C4H2+	= C3N+	= HC3N+	= NH3+	= NH4+	= HCNH+	= C3H3N+	= HCNH+	= HC4NH+	= C2H3+	= C2H3NH+	= HC3NH+	= C5H3NH+
+ HCN	+ HCN	+ NH3	+ HCN	+ HCN	+ H2	+ H2							+ C3H6								+ NH3	+ NH3	+ NH3	+ NH3	+ HCN	+ HCN	+ CH3CN	+ CH3CN	+ CH3CN	+ CH3CN
C2H6+	C2H6+	C2H7+	C2H7+	C2H7+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+	C3H+
462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492

	0,22,103																													
8	[20,22]	[101]	[124]	[101]	[101]	[101]	[5]	[5]	[5]	[5]	[5]	[101]	[101]	[101]	[101]	[101]	[101]	[101]	[101]	[101]	[98]	[98]	[98]	[98]	[101]	[1115]	[1115]	[101]	[101]	[101]
300	296	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	,	,	,		300	300	300	300	300	300
1.25E-09	4.40E-10	5.50E-10	9.00E-10	1.10E-09	1.10E-09	1.10E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.20E-09	1.20E-09	1.20E-09	1.20E-09	1.20E-09	6.00E-10	6.00E-10	6.00E-10	6.00E-10	1.20E-09	4.40E-11	4.40E-11	2.30E-09	2.30E-09	2.30E-09
_	1	1		0.25	9.0	0.25	0.09	0.12	0.41	0.18	0.2	0.15	0.15	0.25	0.45	0.3	0.45	0.1	0.05	0.1	0.5	0.5	0.5	0.5	_	0.85	0.15	0.2	0.05	0.05
•	ı	1	•	ı	ı	ı	1	ı	1	•	•	•	1	•	•	•	•	•	•	1	•	1	٠	•	•	1	•	•	٠	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	+	+	, +	, +	, +	, +	+
+ hv	+ hv	+ CH3	H +	+ C2H3	+ C2H2	H +	+ C2H4	+ CHCH2	+ C2H2	+ CH3	H +	+ C3H5	+ C2H4	+ CH3	H +	+ C3H7	+ C3H3	+ C2H4	+ C2H2	+ CH3	H +	+ H2	H +	+ H2	+ C4H9	+ CN	+ C2	+ C3H	+ C2H2	+ CN
= HC6NH+	= ad					II		II	H = C4H4+	II		II	II	II	II	II			II	II	II	II	II		II	II	Ш	II	= CH2NH+	= C2H5+
+ HC3N	+ C2N2	+ CH4	+ C2H2	+ C2H4	+ C2H4	+ C2H4	+ CH3CCI	+ CH3CCI	+ CH3CCI	+ CH3CCI	+ CH3CCI	+ C3H6	+ C3H6	+ C3H6	+ C3H6	+ C3H8	+ C4H2	+ C4H2	+ C6H2	+ C6H2	+ C6H6	Z +	Z +	+ NH3	+ NH3	+ NH3				
C3H+	C3H+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+							
493	494	495	496	497	498	499	200	501	502	503	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523

[101]	[101]	[9]	[101]	[101]	[101]	[31]	[31]	[74]	[129]	[129]	[8]	[8]	[129]	[129]	[1115]	[74]	[74]	[74]	[74]	[32]	[12]	[62]	[62]	[8]	<u></u>	[8]	[8]	<u></u>	[8]	[8]
300	300	300	300	300	300	300	300	363	298	298	363	363	300	300	300	320	320	320	320	300	300	300	300	300	300	300	300	300	300	300
2.30E-09	2.30E-09	1.60E-10	1.00E-09	1.00E-09	1.00E-09	1.00E-11	1.70E-11	2.10E-10	1.10E-09	1.10E-09	1.40E-09	1.40E-09	1.40E-09	1.40E-09	5.80E-11	3.00E-10	3.00E-10	1.60E-10	9.00E-10	3.00E-11	4.20E-10	8.30E-10	8.30E-10	1.10E-09	1.10E-09	1.10E-09	1.10E-09	1.10E-09	1.10E-09	1.10E-09
9.0	0.1	1	0.05	0.05	6.0	1	_	_	0.5	0.5	0.24	92.0	0.5	0.5	_	9.0	0.4	_	_	_	1	0.11	68.0	0.18	0.02	0.02	0.02	80.0	0.3	0.38
ı	•	ı	ı	ı	ı	ı	•	ı	•	ı	•	ı	•	ı	ı	ı	•	•	•	ı	ı	•	•	•	•	1	•	•	•	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	+	+	+	+	+	+	+	+	' +	+	+	+	H +	, +	+
H +	+ hv	· +	+ C2H3	+ HCN	+ hv	· +	, +	+ C2H2	+ H2	, +	+ C4H2	+ C2H2	+ C2H2	+ H2	+ H2	+ C3H3	+ C2H4	, +	+	+ H2	H +	+ CH3	H +	+ CH2CCH	+ C2H4	+ C2H2	+ CH3	+ H2	H +	H +
= C3H3NH+	= C3H5N+	= products	= HC4NH+	= C5H4+	= adduct	= NoReaction	= products	= c-C3H3+	= C5H5+	= C5H7+	= c-C3H3+	= C5H3+	= C7H7+	= C9H7+	= HC3N+	= NH4+	= HCNH+	= products	= products	= c-C3H3+	= C5H5+	= C4H5+	= C5H7+	= C3H5+	= C4H4+	= C4H6+	= C5H5+	= C6H5+	= C6H7+	= C6H7+
+ NH3	+ NH3				+ C3H3N																									
C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	C3H2+	c-C3H3+	c-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	1-C3H3+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+	C3H4+
524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554

[42] [83] [72] [72] [86] [86] [88] [88] [88] [88] [88] [72] [10,77] [110,77] [72] [73] [74] [74] [74] [74] [74] [74] [74] [74	[35] [85] [10,77] [10,77]
298 300 300 300 300 300 300 300 300 300 30	300 333 298 298
1.00E-09 1.20E-10 1.80E-09 1.80E-09 1.00E-10 1.00E-11 1.00E-11 1.00E-11 1.00E-11 1.70E-10 1.70E-10 1.70E-10 1.70E-10 1.70E-10 1.70E-10 1.70E-10 1.50E-09 1.5E-09 1.15E-09 1.45E-09 1.45E-09	1.25E-10 9.00E-10 5.00E-11 1.00E-09
1 0.07 0.93 1 1 0.14 0.86 0.05 0.05 0.03 0.06 0.11 0.11 0.72 0.15 0.15 0.13	0.12
	1 1 1 1
<pre></pre>	+ + + +
+ C2H4 + + C2H2 + H + H + H2 + CH3C2H + CH3C2H + CH3 + CH4 + CH4 + CH4 + CH4 + CH4 + C2H4 + C2H4 + C2H6 + C2H6 + C2H4 + C3H6	+ H2 + CH3C2H + hv + CH3C2H
= C4H6+ = products = C5H4+ = C7H5+ = C7H5+ = C7H5+ = HC3NH+ = NH4+ = NH4+ = C2H2+ = C2H2+ = C2H3+ = C2H3+ = C2H7+ = C4H7+ = C4H9+	= C3H3N+ = NH4+ = C4H5NH+ = C3H3NH+
+ C3H6 + C3H8 + C4H2 + C4H2 + N + N + NH3 + HC3N + HC3N + HC2H2 + C2H4 + C2H4 + C2H4 + C2H4 + C3H8 + C3H8 + C3H8 + C3H8 + C3H8 + C3H8 + C4H2 + C4H2 + C4H2 + C4H2 + C4H2 + C4H2 + C4H2 + C4H3 +	
C3H4+ C3H4+ C3H4+ C3H4+ C3H4+ C3H4+ C3H4+ C3H4+ C3H4+ C3H5+	C3H5+ C3H5+ C3H5+ C3H5+
555 556 557 558 559 560 561 563 564 565 565 565 567 573 573 574 575 575 577 578 577 578 577 578 577 578 577 578 577 578 577 578 577 578 578	582 583 584 585

[79] [79] [79]	[12] $[10,77]$	[10,77]	[10,77]	[10,77]	[09]	[09]	[09]	[10,77]	[10,77]	[131]	[84]	[11]	[65]	[43]	[133]	[28]	[8]	[8]	[12]	[12]	[12]	[62]	[62]	[111]	[64]	[1115]	[115]
300 300 300	300 298	298	298	298	300	300	300	298	298	300	300	300	300	300	300	300	298	298	300	300	300	300	300	300	300	300	300
3.80E-10 6.70E-10 6.70E-10	1.80E-27 1.40E-09	1.40E-09	1.40E-09	1.40E-09	1.00E-09	1.00E-09	1.00E-09	4.00E-10	4.00E-10	3.70E-11	1.00E-09	4.50E-10	1.20E-10	1.90E-09	1.65E-09	7.00E-11	2.80E-10	2.80E-10	1.50E-09	1.50E-09	1.50E-09	1.30E-09	1.30E-09	1.40E-09	1.46E-09	1.90E-10	1.90E-10
1 0.12 0.88	1 0.15	0.2	0.35	0.3	0.57	0.13	0.3	0.4	9.0	_	_			6.0	_	_	0.05	0.95	0.47	0.05	0.48	0.1	6.0	_		6.0	0.05
1 1 1	1 1	ı	•	•	•	•	ı	٠	1	•	•	•	•	ı	•	•	٠	•	•	•	•	•	ı	٠	•	•	ı
+ + +	 + +	+	, +	, +	, +	, +	' +	+	+	+	, +	, +	, +	+	, +	, +	, +	, +	, +	+	+	, +	+	+	ı +	+	• +
+ CH3C2H + CH3 + H	+ CH3 + C3H5	+ CH3CH2	+ C2H4	+ CH3	+ C2H5	+ C2H4	+ C3H5	+ C2H4	H +	+ H2	+ CH4	+ C2H4	+ C3H8	+ C3H6	, +	+ hv	H +	+ hv	+ C2H2	+ H2	H +	+ C2H2	H +	+ C2H2	, +	+ HCN	H +
= HC3NH+ = C4H5+ = C5H7+	= C4H7+ = C3H7+	= C4H7+	= C4H8+	= C5H9+	= CH2NH2+	= CH3NH2+	= NH4+	= C2H3N+	= C4H5NH+	= C3H6+	= C4H9+	= C4H9+	= C3H7+	= NH4+	= products	= C4H3+	= C6H3+	= C6H4+	= C4H4+	= C6H4+	= C6H5+	= C5H4+	= C7H5+	= C6H2+	= products	= C3H+	= HC4N+
+ HC3N + C2H2 + C2H2	+ C2H4 + C3H6																			+ C2H4	+ C2H4	+ CH3C2H	+ CH3C2H	+ C4H2	9H9O +	Z +	Z +
C3H5+ C3H6+ C3H6+	C3H6+ C3H6+	C3H6+	C3H6+	C3H6+	C3H6+	C3H6+	C3H6+	C3H6+	C3H6+	C3H7+	C3H7+	C3H7+	C3H7+	C3H7+	C3H7+	C4H2+	C4H2+	C4H2+									
586 587 588	589 590	591	592	593	594	595	969	297	869	299	009	601	605	603	604	605	909	209	809	609	610	611	612	613	614	615	616

115]	55,57]	135]	75]	78]	8]	12]	12]	5]	26,64]	85]	75]	135]	135]	135]	[59]	85]	85]	12]	12]	12]	12]	5]	[98	85]	12]	61]	[08	80	132]	[135]
300	305	_																												_
1.90E-10	1.70E-09	1.13E-11	2.00E-10	6.00E-14	2.20E-10	1.20E-10	1.40E-09	7.40E-10	1.30E-09	9.90E-10	1.90E-10	1.00E-10	1.00E-10	7.00E-10	6.60E-10	3.64E-10	3.64E-10	1.60E-10	7.30E-11	2.00E-10	2.00E-10	1.00E-09	1.00E-10	4.70E-10	1.50E-10	5.20E-11	1.60E-09	1.60E-09	1.31E-09	2.00E-10
0.05	-	1		1			_	1	_	_	_	0.88	0.12			0.88	0.12	_	_	0.25	0.75			_			86.0	0.02	1	_
ı	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	٠	•	•	٠	٠	٠	٠	1	•	•	•	1	1	•	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ C3	+ hv	+ hv	, +	+ hv	+ hv	+ H2	+ C2H2	+ C2H2	+ C4H2	+ C4H2	+	H +	+ H2	+ C2H2	, +	+ C4H3	+ C3H3	+ H2	+ H2	+ CH4	+ H2	+ C2H2	H +	+ C4H4	+ H2	+ C4H6	+ C4H8	+ hv	' +	H +
= HCNH+		II	П	Ш	П	П	П	II	П	П	П	II	П	П	П	II	П	П	II	П	= C7H7+	Ш	Ш	Ш	П	П	Ш	II	= products	II
	+ HC3N																													
C4H2+	C4H2+	C4H2+	C4H2+	C4H3+	C4H4+	C4H4+	C4H4+	C4H4+	C4H4+	C4H4+	C4H5+	C4H7+	C4H7+	C4H9+	C4H9+	C4H9+	C5H+													
617	618	619	620	621	622	623	624	625	979	627	879	679	630	631	632	633	634	635	989	637	638	639	640	641	642	643	644	645	949	647

[98]	[98]	[98]	[98]	[135]	[135]	[98]	[135]	[135]	[63]	[135]	[135]	[12]	[87,88]	[87,88]	[87,88]	[31]	[31]	[135]	[88]	[4]	[12]	[132]	[132]	[98]	[98]	[135]	[98]	[63]	[135]	[12]
1	ı							,	300			300	373	373	373	300	300		333	300	300	300	300		,			300		300
1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	8.70E-10	6.00E-10	2.00E-10	2.40E-10	1.00E-10	1.00E-10	1.70E-10	2.20E-10	2.20E-10	2.20E-10	2.00E-10	2.00E-10	1.00E-10	3.50E-11	9.00E-12	7.00E-10	6.50E-10	9.10E-10	1.00E-09	1.00E-09	1.00E-09	8.40E-10	1.26E-09	1.90E-10	2.30E-10
8.0	0.2	0.7	0.3	0.5	0.5	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_			8.0	0.2			-	_	_
•	1	•	•	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	١	•	•	•	•	١	1	•	٠	١	١	•	•	ı
+	, +	+	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	' +	+	+
H +	+ H2	H +	+ H2	H +	+ H2	+ H2	+ C2H	H +	+	H +	H +	+ hv	+ hv	+ C2H2	+ C2	, +	+	+ H2	+ C5H4	+	+ hv	+ C5H10	+ C5H10	H +	+ H2	+ H2	+ H2	' +	+ HCN	+ hv
= C6H5+	= C6H4+	= C7H3+	= C7H2+	= C7H5+	= C7H4+	= C8H4+	= C7H3+	= HC5N+	= products	= HC5NH+	= C5H3N+	= C7H7+	= C9H7+	= C7H5+	= C7H7+	= products	= products	= C5H3N+	= NH4+	= C6H5NH+	= adduct	= NH4+	= CH3NH3+	= C7H5+	= C7H4+	= C8H4+	= C9H4+	= products	= C5H+	= C8H5+
+ CH4	+ CH4					+ CH3C2H													+ NH3	+ HCN	+ CH3C2H	+ NH3	+ CH3NH2	+ CH4	+ CH4	+ C2H4	+ CH3C2H	+ C6H6	Z +	+ C2H2
C5H2+	C5H3+	C5H3+	C5H4+	C5H5+	C5H5+	C5H5+	C5H5+	C5H5+	C5H5+	C5H5+	C5H5+	C5H5+	C5H7+	C5H11+	C5H11+	C6H2+	C6H2+	C6H2+	C6H2+	C6H2+	C6H2+	C6H3+								
648	649	650	651	652	653	654	655	959	657	859	629	099	661	662	663	664	999	999	<i>L</i> 99	899	699	029	671	672	673	674	675	929	<i>L</i> 22	829

[63]	[32]	[12]	[62]	[62]	[78]	[15]	[15]	[15]	[12]	[12]	[15]	[15]	[8]	[8]	[8]	[64]	[1115]	[85]	[85]	[82]	[86]	[23]	[115]	[115]	[12]	[82]	[135]	[135]	[135]	[135]
300	300	300	300	300	300	325	325	325	300	300	325	325	300	300	300	300	300	333	333	333	294	296	300	300	300	333		,	ı	ı
4.20E-10	3.30E-11	2.90E-10	1.41E-10	1.41E-10	6.00E-11	7.50E-11	1.30E-10	1.30E-10	1.70E-10	1.70E-10	1.30E-10	1.30E-10	2.30E-10	2.30E-10	2.30E-10	4.70E-10	3.70E-11	2.08E-10	2.08E-10	2.08E-10	2.50E-10	5.00E-10	1.40E-10	1.40E-10	9.70E-11	2.20E-10	2.00E-10	1.00E-09	1.00E-09	1.00E-09
1		1	6.0	0.1	1	1	9.0	0.4	9.0	0.4	0.03	0.97	0.18	0.78	0.05	1	1	0.36	0.23	0.41	1	_	0.95	0.05	_	1	1	_	0.7	0.3
•	•	1	•	ı	•	•	•	•	•	•	•	•	•	ı	•	ı	•	•	ı	•	•	1	•	•	ı	•	•	ı	•	ı
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+ hv	+ hv	+ hv	+ H2	+ hv	+ H2	H +	+ hv	+ C2H2	+ H2	+ CH4	+ C2H4	+ C2H2	+ H2	H +	, +	+ HCN	+ C6H4	H +	+ hv	+ hv	+ hv	+ HCN	+ C3H3N	+ C2H4	+ C6H6	H +	+ H2	H +	+ H2
= products	= C6H5+	= C8H6+	= adduct	= C12H8+	= C6H7+	= C7H7+	= C8H6+	= C8H7+	= C6H7+	= C8H7+	= C7H7+	= C6H7+	= C7H7+	= C9H7+	= C9H8+	= products	= C5H4+	= NH4+	= C6H7N+	= C6H7NH+	= C6H7+	= adduct	= C5H5+	= c-C3H3+	= C7H7+	= NH4+	= C7N+	= C8H4+	= C9H3+	= C9H2+
9H9D +	H +																												+ C2H2	
C6H3+	C6H4+	C6H4+	C6H4+	C6H4+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H5+	C6H6+	C6H6+	C6H6+	C6H6+	C6H7+	C6H7+	C7H+	C7H2+	C7H2+	C7H2+
629	089	681	682	683	684	685	989	289	889	689	069	691	692	693	694	695	969	<i>L</i> 69	869	669	700	701	702	703	704	705	902	707	708	402

135	[135]	[135]	[135]	[135]	12]	87,88]	[16]	[135]	[8]	[8]	[8]	[8]	[8]	[10,77]	[10,77]	[10,77]	[10,77]	[10,77]	[10,77]	[10,77]	10,77]	[10,77]	[10,77]	[10,77]	[10,77]	[10,77]	[13]	[13]	[13]	[13]
_	,	_	_																										300	
1.00E-09	2.00E-10	2.00E-10	1.00E-10	1.00E-10	2.00E-10	1.00E-09	1.60E-10	1.00E-09	5.00E-10	1.15E-09	1.15E-09	1.15E-09	1.15E-09	1.50E-09	1.50E-09	1.50E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	2.00E-09	2.00E-09	2.00E-09	2.00E-09
_	_	_	_	_	1	1	_	_	_	0.5	0.05	0.36	0.1	0.7	0.15	0.15	0.1	0.25	0.35	0.1	0.15	0.05	0.1	0.55	0.25	0.1	89.0	0.07	0.01	0.07
٠	٠	ı	ı	ı	ı	ı	•	ı	ı	ı	1	•	ı	•	•	•	1	•	ı	ı	ı	1	1	•	•	•	•	•	ı	•
+	+	+	+	+	+	+	+	+	+	+	+	+	H +	+	ı +	ı +	+	+	+	+	+	H +	+	+	+	+	+	+	+	H +
+ H2	H +	H +	H +	+ H2	+ hv	+ hv	9H9O +	+ H2	H +	HN +	Z +	+ H2	+ H2	Z +	+ H2	H +	+ NH2	HN +	Z +	+ CH3	+ CH2	+ H2	HN +	+ NH2	+ NH3	+ CH4	Z +	HN +	+ NH2	+ HCN
= C9H4+	= HC7N+	= HC7NH+	= C7H3N+	= C7H3N+	= adduct	= adduct	= C8H9+	= C9H4+	= NH+	= CH3+	= CH4+	= HCNH+	= HCN+	= C2H2+	= CNC+	= HC2N+	= C2H2+	= C2H3+	= C2H4+	= HCN+	= HCNH+	= HC2N+	= C2H5+	= C2H4+	= C2H3+	= HCNH+	= C6H6+	= C6H5+	= C6H4+	= C5H4+
+ C2H4	Z +																													
C7H2+	C7H2+	C7H3+	C7H4+	C7H5+	C7H7+	C7H7+	C7H7+	C8H2+	$\overset{+}{\mathbf{Z}}$	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{Z}$	± Z	$\overset{+}{\mathbf{Z}}$	$\overset{+}{\mathbf{Z}}$	$\overset{+}{\mathbf{Z}}$	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{\mathbf{Z}}$	$\overset{+}{Z}$	± Z	$\overset{+}{Z}$	$\overset{+}{\mathbf{Z}}$	$\overset{+}{Z}$	$\overset{+}{\mathbf{Z}}$	$\overset{+}{Z}$	+ X	$\overset{+}{Z}$	+ X	$\overset{+}{\mathbf{Z}}$
710	7111	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740

13]	[13]	14]	14]	14]	14]	14]	_[8	· [8	· [8	$5\overline{0}$	50]	50]	50]	50]	8]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	10,77]	75]	75]	10,77]
300		300																												305
2.00E-09	2.00E-09	2.20E-09	2.20E-09	2.20E-09	2.20E-09	2.20E-09	2.35E-09	2.35E-09	2.35E-09	2.56E-09	2.56E-09	2.56E-09	2.56E-09	2.56E-09	2.70E-09	3.70E-09	3.70E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.70E-09	1.70E-09	4.20E-09
0.05	0.12	0.82	0.07	0.05	0.02	0.04	0.2	0.71	0.09	90.0	0.62	0.07	0.18	0.07	1	0.65	0.35	0.5	0.3	0.1	0.1	0.35	0.15	0.13	0.12	0.13	0.12	0.2	8.0	0.38
,	ı	ı	•	•	ı	•	,	,	,	ı	1	1	•	•	ı	ı	•	1	•	•	•	٠	•	٠	•	1	1	٠	•	ı
+	+	+	+	, +	, +	, +	+	, +	, +	, +	H +	+ H2	Z +	Z +	, +	+	, +	, +	+	H +	, +	+	+	+	+	, +	+ CH	, +	, +	+
+ CH2CN	+ CH3CCN	HN +	+ CH2N	+ C2H3N	+ C3H4N	+ C4H5N	HN +	Z +	+ H2	Z +	Z +	Z +	+ H2	+ NH2	Z +	Z +	+ N2	Z +	HN +	+ N2	+ CH2NH	Z +	HN +	+ CH2N2	+ N2	+ CH3CN	+ N2	Z +	+ N2	+ N2
= C4H4+	= c-C3H3+	= C7H7+	= C6H6+	= C5H5+	= C4H4+	= c-C3H3+	= NH2+	= NH3+	= N2H+	= CH3NH2+	= CH2NH2+	= CH2NH+	= HCNH+	= CH3+	= H20+	= HCN+	= CH+	= C2H3N+	= HC2NH+	= C2H2+	= $CN+$	= C3H3N+	= HC3NH+	= HC2N+	= c-C3H3+	= $CN+$	= C2H2+	= C2N2+	= C2N+	= C3H+
	+ C6H6																													
X +	Ż	+ Z	+ Z	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{Z}$	+ Z	+ Z	+ Z	Ż	$\overset{+}{Z}$	$\overset{+}{Z}$	+ Z	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{Z}$	+ Z	$\overset{+}{Z}$	$\overset{+}{Z}$	Ż	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{Z}$	+ Z	$\overset{+}{Z}$	$\overset{+}{Z}$	$\overset{+}{Z}$	+ Z	$\overset{+}{Z}$	+ Z
741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	09/	761	762	763	764	765	992	192	892	692	770	771

[77]					22]	22]	22]	3]	3]	3]	3]	3]	3]	_				_			_	22]	22]	22]	22]	22]	22]	22]	1
[10,77] [8]	8	$[\infty]$	[8]	8	[2,1	[2,1	[2,1	[123	[123	[123	[123	[123	[123	[85]	[85]	[85]	[85]	[85]	[85]	[85]	[85]	[2,1]	[2,1]	[2,1	[2,1	[2,1	[2,1	[2,1	8
305	300	300	300	300	300	300	300	300	300	300	300	300	300	333	333	333	333	333	333	333	333	300	300	300	300	300	300	300	300
4.20E-09 5.60E-10	5.60E-10	5.60E-10	1.23E-09	1.23E-09	9.60E-10	9.60E-10	9.60E-10	1.50E-09	1.50E-09	1.50E-09	1.50E-09	1.50E-09	1.50E-09	9.07E-10	9.07E-10	2.10E-09	2.10E-09	2.10E-09	2.10E-09	2.10E-09	2.40E-09	2.40E-09	6.50E-10						
0.63	0.88	0.11	0.15	0.85	0.1	0.2	0.7	0.1	0.25	0.25	0.2	0.1	0.1	0.12	0.1	0.175	0.175	0.14	0.14	0.07	0.07	0.2	0.05	0.45	0.2	0.2	0.75	0.25	1
1 1	•	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	•	•	ı	ı	ı	ı	ı	ı
+ +	+	+	+	+	+	+	H +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H +	+	+	+	+	+	+	+
N N + +	Z +	C +	Z +	H +	Z +	+ CH3	+ H2	+ NH3	+ NH2	HZ +	+ CH3	+ CH2	+ H2	+ C2H2	+ C2H	+ NH2	+ CH4	HN +	+ CH3	Z +	+ CH2	+ NH3	+ NH3	+ NH2	HZ +	Z +	HZ +	Z +	Z +
= HC3N+ = C+	П	П	II	П	П	П	II	II	II	II	II	II	II	II	П	II	П	II	П	П	II	II	II	II	II	П	II	II	Ш
+ HC3N + CO	+ CO	OO +	+ H2	+ H2	+ CH4	+ CH4	+ CH4			+ C2H4						+ CH3C2H	+ CH3C2H	+ CH3NH2	+ CH3NH2	+ CH3NH2	+ CH3NH2	+ CH3NH2	+ NH3	+ NH3	+ N2				
+ + Z Z	× +	Ż	HH-	NH+	NH+	NH+	+HN	+HN	HH-	$^{+}\mathrm{HN}$	$^{+}\mathrm{HN}$	+HN	+HN	HH-	NH+	+HN	NH+	HH+	NH+	NH+	$^{+}\mathrm{HN}$	$^{+}\mathrm{HN}$	$^{+}\mathrm{HN}$	+HN	$^{+}\mathrm{HN}$	NH+	+HN	HH-	NH+
772 773	774	775	9//	777	778	779	780	781	782	783	784	785	982	787	788	789	790	791	792	793	794	795	962	797	862	799	800	801	802

803	NH+	Z +	= N2+	H +	+	,	1	1.30E-09		[98]
804	HH+	+ HCN	= HCNH+	Z +	+		1	1.80E-09	1	[135]
805	HH'	+ H2O	= H30+	Z +	, +		0.3	3.50E-09	300	[2,122]
908	HH+	+ H2O	= H20+	HN +	, +		0.3	3.50E-09	300	[2,122]
807	NH2+	+ H2	= NH3+	H +	, +	,	1	1.95E-10	300	[8]
808	NH2+	+ CH4	= NH3+	+ CH3	, +	ı	1	9.20E-10	300	[8]
608	NH2+		= C2H4+	+ NH2	, +	ı	0.3	1.50E-09	300	[123]
810	NH2+		= C2H5+	HN +	+		0.2	1.50E-09	300	[123]
811	NH2+		= CH2NH2+	+ CH2	+	,	0.3	1.50E-09	300	[123]
812	NH2+		= C2H5N+	H +	' +	ı	0.2	1.50E-09	300	[123]
813	NH2+		= C3H4+	+ NH2	+	,	0.185	7.80E-10	333	[82]
814	NH2+		= HC2NH+	+ CH4	+		0.185	7.80E-10	333	[85]
815	NH2+		= C3H5+	+ NH	+	ı	0.185	7.80E-10	333	[82]
816	NH2+		= C2H3N+	+ CH2	H +		0.185	7.80E-10	333	[85]
817	NH2+		= C3H3NH+	+ H2	+	ı	0.26	7.80E-10	333	[82]
818	NH2+		= NH4+	+ CH2NH	+	,	80.0	1.90E-09	300	[8]
819	NH2+		= CH2NH2+	+ NH3	+	,	0.2	1.90E-09	300	[8]
820	NH2+		= CH3NH2+	+ NH2	, +		0.53	1.90E-09	300	[8]
821	NH2+		= CH3NH3+	HN +	, +		0.2	1.90E-09	300	[8]
822	NH2+		= NH3+	+ NH2	, +		0.5	2.30E-09	300	[8]
823	NH2+		= NH4+	HN +	, +		0.5	2.30E-09	300	[8]
824	NH2+		= N2H+	H +	ı +		1	9.10E-11		[98]
825	NH2+		= HCNH+	HN +	' +	1	1	1.20E-09		[98]
826	NH2+		= H30+	HN +	' +		0.94	2.90E-09	300	[8]
827	NH3+		= NH4+	H +	, +		1	4.40E-13	300	[8]
828	NH3+		= NH4+	+ CH3	+	,	1	4.80E-10	300	[2,122]
829	NH3+	+ C2H4	= NH4+	+ CHCH2	, +		1	1.40E-09	300	[123]
830	NH3+		= NH4+	+ NH2	+		1	2.10E-09	300	[8]
831	NH3+		= CH3NH2+	+ NH3	+	ı	0.5	1.80E-09	300	[2,122]
832	NH3+		= CH3NH3+	+ NH2	+	ı	0.35	1.80E-09	300	[2,122]
833	NH3+	+ CH3NH2	= NH4+	+ CH2NH2	, +		0.15	1.80E-09	300	[2,122]

N2+ H HZ N2H+ H + - 1 2.00E-09 300 [8] N2+ H CH4 = CH2+ H N2 + H2 - 0.09 1.14E-09 300 [12] N2+ + CH4 = CH2+ + N2 + H2 - 0.99 1.14E-09 300 [12] N2+ + C2H2 = CH2+ + N2 + H - 0.91 1.14E-09 300 [12] N2+ + C2H2 = C2H2+ + N2 + H - 0.66 4.00E-10 288 [10,30] N2+ + C2H4 = C2H3+ + N2 + H - 0.66 1.06E-09 288 [10,30] N2+ + C2H4 = C2H3+ + N2 + H2 - 0.25 1.14E-09 300 [13] N2+ + C2H4 = C2H3+ + N2 + H2 - 0.29 1.14E-09 300 [13] N2+ + C2H6 = C2H3+ + N2 + H2 <td< th=""><th>ZZ</th><th>H4+ 2+</th><th>+ CH3NH2 + H</th><th>= CH3NH3+ = H+</th><th>+ NH3 + N2</th><th>' ' + +</th><th></th><th>1.40E-09 1.00E-11</th><th>300</th><th>[3]</th></td<>	ZZ	H4+ 2+	+ CH3NH2 + H	= CH3NH3+ = H+	+ NH3 + N2	' ' + +		1.40E-09 1.00E-11	300	[3]
+ CH4 = CH2+ + N2 + H2 - 0.09 1.14E-09 300 + CH4 = CH2+ + N2 + H - 0.91 1.14E-09 300 + CCH4 = C2H2+ + N2 + - - 0.94 4.00E-10 298 + C2H2 = C2H3+ + N2 + D - 0.06 4.00E-10 298 + C2H4 = C2H3+ + N2 + H - 0.05 130E-09 298 + C2H4 = N2H+ + C2H3 + C2H3 + D 0.05 130E-09 298 + C2H4 = N2H+ + C2H3 + D 0.15 1.44E-09 298 + C2H6 = C2H2+ + N2 + H 0.15 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.15 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 - 0.15 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 - 0.15 1.44E-09 298 + C	Z	2+	+ H2	= N2H+	H +	+	-	2.00E-09	300	[8]
+ CH4 = CH3+ + N2 + H - 0.91 1.14E-09 300 + C2H2 = C2H2+ + N2 + H - 0.094 4.00E-10 298 + C2H4 = C2H3+ + N2 + H - 0.066 1.30E-09 298 + C2H4 = C2H3+ + N2 + H - 0.066 1.30E-09 298 + C2H4 = C2H3+ + N2 + H2 - 0.059 1.30E-09 298 + C2H4 = C2H5+ + N2 + H2 - 0.059 1.30E-09 298 + C2H6 = C2H5+ + N2 + H2 - 0.05 1.30E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.05 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 + 0.015 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 + 0.015 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 + 0.015 1.44E-09 298 + C6H6 = C3H3+ + N2 + H2 + 0.015 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 + 0.015 1.60E-09 300 + C6H6 = C4H4+ + N2 + CH3 - 0.05 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + CH3 - 0.05 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C7H7+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C3H4+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C3H4+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C3H3+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C3H3+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + C4H5 - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300 + C7H8 = C4H4+ + N2 + CH3CH - 0.05 1.20E-09 300	Z	2+		= CH2+	+ N2	+ H2	- 0.09	1.14E-09	300	12]
+ CZH2 = CZH2+ + N2 + 0.04 4.00E-10 298 + CZH2 = NZH+ + CZH + 0.06 4.00E-10 298 + CZH4 = CZH3+ + NZ + H - 0.06 1.30E-09 298 + CZH4 = CZH3+ + NZ + HZ - 0.05 1.30E-09 298 + CZH6 = CZH3+ + NZ + HZ - 0.05 1.30E-09 298 + CZH6 = CZH4+ + NZ + HZ - 0.05 1.44E-09 298 + CZH6 = CZH4+ + NZ + HZ - 0.15 1.44E-09 298 + CZH6 = CZH4+ + NZ + HZ - 0.15 1.44E-09 298 + CZH6 = CZH2+ + NZ + HZ - 0.12 1.44E-09 298 + CZH6 = CZH2+ + NZ + HZ - 0.12 1.44E-09 298 + CGH6 = CGH5+ + NZ + HZ - 0.12 1.44E-09 298 + CGH6 = CGH4+ <t< td=""><td>Z</td><td>2+</td><td></td><td>= CH3+</td><td>+ N2</td><td>H +</td><td>,</td><td>1.14E-09</td><td>300</td><td>[12]</td></t<>	Z	2+		= CH3+	+ N2	H +	,	1.14E-09	300	[12]
+ C2H2 = N2H+ + C2H + - 0.06 4.00E-10 298 + C2H4 = C2H3+ + N2 + H - 0.66 1.30E-09 298 + C2H4 = C2H3+ + N2 + H - 0.05 1.30E-09 298 + C2H4 = N2H+ + C2H3 + H - 0.15 1.44E-09 298 + C2H6 = C2H5+ + N2 + H - 0.15 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.13 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 H 0.35 1.44E-09 298 + C3H6 = C2H2+ + N2 + H2 H 0.35 1.44E-09 298 + C6H6 = C6H5+ + N2 + H2 0.2 1.44E-09 298 + C6H6 = C6H4+ + N2	Z	2+		= C2H2+	+ N2	+		4.00E-10	298	10,30]
+ C2H4 = C2H3+ + N2 + H - 0.66 130E-09 298 + C2H4 = C2H3+ + N2 + H2 - 0.29 130E-09 298 + C2H4 = C2H3+ + C2H3 + - - 0.05 130E-09 298 + C2H6 = C2H3+ + N2 + H2 - 0.05 14E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.13 14E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.12 14E-09 298 + C3H6 = C2H4+ + N2 + H2 - 0.12 14E-09 298 + C6H6 = C6H5+ + N2 + H2 - 0.12 14E-09 298 + C6H6 = C6H5+ + N2 + H2 - 0.12 160E-09 300 + C6H6 = C6H5+ + N2 + H2 - 0.12 160E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.14 160E-09 300 + C6H6<	Z	2+		= N2H+	+ C2H	+		4.00E-10	298	[10,30]
+ C2H4 = C2H2+ + N2 + H2 - 0.29 1.30E-09 298 + C2H4 = N2H+ + C2H3 + - 0.05 1.30E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.15 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.3 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 + 0.35 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 H 0.35 1.44E-09 298 + C3H6 = CC4H4+ + N2 + H2 H 0.35 1.44E-09 298 + C6H6 = C6H5+ + N2 + H2 H 0.25 1.44E-09 298 + C6H6 = C6H5+ + N2 + H2 H 0.25 1.44E-09 298 + C6H6 = C6H3+ + N2 + H2 H 0.25 1.60E-09 300 + C6H6 = C6H4+ + N2 + C143 - 0.24 1.60E-09 300 + C6H6 <td>Z</td> <td>2+</td> <td></td> <td>= C2H3+</td> <td>+ N2</td> <td>H +</td> <td></td> <td>1.30E-09</td> <td>298</td> <td>10,30]</td>	Z	2+		= C2H3+	+ N2	H +		1.30E-09	298	10,30]
+ C2H4 = N2H+ + C2H3 + - 0.05 1.30E-09 298 + C2H6 = C2H5+ + N2 + H - 0.15 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.3 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 - 0.12 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 0.2 1.44E-09 298 + C2H6 = C2H2+ + N2 + C3 1.44E-09 298 + C6H6 = C6H5+ + N2 + H2 - 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + CH3 - 0.02 1.60E-09 300 + C6H6 = C6H4+ + N2 + C143 - 0.02 1.60E-09 300 + C6H6 = CC4H4+ + N2 + C143 - 0.02 1.90E-09 300 + C7H8 = CC4H4+ + N2	Z	2+		= C2H2+	+ N2	+ H2		1.30E-09	298	10,30]
+ C2H6 = C2H5+ + N2 + H - 0.15 1.44E-09 298 + C2H6 = C2H4+ + N2 + H2 - 0.3 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C2H2+ + N2 + C 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C6H4+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C6H4+ + N2 + C2H2 - 0.04 1.60E-09 300 + C6H6 = C4H4+ + N2 + C3H3 - 0.17 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + CH3 - 0.02 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 <t< td=""><td>Z</td><td>2+</td><td></td><td>= N2H+</td><td>+ C2H3</td><td>+</td><td>1</td><td>1.30E-09</td><td>298</td><td>10,30]</td></t<>	Z	2+		= N2H+	+ C2H3	+	1	1.30E-09	298	10,30]
+ C2H6 = C2H4+ + N2 + H2 - 0.3 1.44E-09 298 + C2H6 = C2H3+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C6H6+ + N2 + - - 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.24 1.60E-09 300 + C6H6 = C6H4+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C6H4+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.04 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + CH3 - 0.02 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.02 1.90E-09 300	Z	2+		= C2H5+	+ N2	H +	ı	1.44E-09	298	100]
+ C2H6 = C2H3+ + N2 + H2 H 0.35 1.44E-09 298 + C2H6 = C2H2+ + N2 + H2 H2 0.2 1.44E-09 298 + C6H6 = C6H6+ + N2 + - - 0.12 1.60E-09 300 + C6H6 = C6H3+ + N2 + H2 - 0.24 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C6H4+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C7H8 = C7H7+ + N2 + CH3 - 0.02 1.90E-09 300 + C7H8 = C4H4+ + N2 + C4H5 - 0.03 1.90E-09 300 <td>Z</td> <td>2+</td> <td></td> <td>= C2H4+</td> <td>+ N2</td> <td>+ H2</td> <td></td> <td>1.44E-09</td> <td>298</td> <td>100]</td>	Z	2+		= C2H4+	+ N2	+ H2		1.44E-09	298	100]
+ C2H6 = C2H2+ + N2 + H2 H2 0.2 1.44E-09 298 + C6H6 = C6H6+ + N2 + - - 0.12 1.60E-09 300 + C6H6 = C6H4+ + N2 + H - 0.24 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.71 1.60E-09 300 + C7H8 = C7H7+ + N2 + C4H3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C4H5 - 0.03 1.90E-09 300 <td>Z</td> <td>2+</td> <td></td> <td>= C2H3+</td> <td>+ N2</td> <td>+ H2</td> <td>Η</td> <td>1.44E-09</td> <td>298</td> <td>[100]</td>	Z	2+		= C2H3+	+ N2	+ H2	Η	1.44E-09	298	[100]
+ C6H6 = C6H6+ + N2 + - 0.12 1.60E-09 300 + C6H6 = C6H5+ + N2 + H - 0.24 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + CH3 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + C2H2 - 0.01 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C2H2 - 0.41 1.60E-09 300 + C7H8 = C7H7+ + N2 + CH3 - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + C4H3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C4H5 - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300	Z	2+		= C2H2+	+ N2	+ H2	H2	1.44E-09	298	[100]
+ C6H6 = C6H5+ + N2 + H - 0.24 1.60E-09 300 + C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + CH3 - 0.02 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C2H2 - 0.41 1.60E-09 300 + C7H8 = C7H7+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.05 1.90E-09 300 + C7H8 = C5H4+ + N2 + C4H5 - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + C4H5 - 0.05 1.90E-09 300 + N N + N2 + C4H5 - 0.05 1.90E-09 300 + NB N + N + N + N + N + N	Z	2+		= C6H6+	+ N2	+	1	1.60E-09	300	[13]
+ C6H6 = C6H4+ + N2 + H2 - 0.04 1.60E-09 300 + C6H6 = C5H3+ + N2 + CH3 - 0.02 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + H - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + C4H5 - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + C4H5 - 0.05 1.90E-09 300 + N = N+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + C4H5 - 0.03 1.90E-09 300 + N + N3 + N2 + C4H5 - 0.03 1.90E-09 300	Z	2+		= C6H5+	+ N2	H +		1.60E-09	300	[13]
+ C6H6 = C5H3+ + N2 + CH3 - 0.02 1.60E-09 300 + C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C6H6 = C-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C7H8 = C7H7+ + N2 + CH3 - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + C2H2 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + C4H3 - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + C4H5 - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + - - 1 1.00E-11 300 + N + N + N + - - 1 1.90E-09 300 + NH3 = N+ + N + - - 1 1.90E-09 300 + HCN = HCN+ + N + - - 1 1.90E-09 300 <	Z	2+		= C6H4+	+ N2	+ H2	,	1.60E-09	300	[13]
+ C6H6 = C4H4+ + N2 + C2H2 - 0.41 1.60E-09 300 + C6H6 = c-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C6H6 = c-C3H3+ + N2 + H - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.05 1.90E-09 300 + C7H8 = C4H4+ + N2 + C4H5 - 0.05 1.90E-09 300 + C7H8 = c-C3H3+ + N2 + C4H5 - 0.05 1.90E-09 300 + N = C7H8 = C4H4+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.05E-09 300 1 + NH3 = N+ + N2 + - - 1 1.95E-09 300 1 + HCN = HCN+ + N2 + - - 0.79 2.40E-09 300 1 + HCN = HCN+ + N2	Z	2+		= C5H3+	+ N2	+ CH3	ı	1.60E-09	300	[13]
+ C6H6 = c-C3H3+ + N2 + C3H3 - 0.17 1.60E-09 300 + C7H8 = C7H7+ + N2 + H - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.02 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3C2H - 0.05 1.90E-09 300 + C7H8 = c-C3H3+ + N2 + C4H5 - 0.05 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = N+ + N2 + - - 1 1.95E-09 300 + H2O = H2O+ + N2 + - - 0.79 2.40E-09 300 + HCN = HCN+ + N2 + - - 0.79 2.40E-09 300 + HCN = HCN+ + N2 + - - 0.05 1.22E-09 300 + CH	Z	2+		= C4H4+	+ N2	+ C2H2		1.60E-09	300	[13]
+ C7H8 = C7H7+ + N2 + H - 0.85 1.90E-09 300 + C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.02 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3C2H - 0.05 1.90E-09 300 + C7H8 = c-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = N+ + N2 + - - 1 1.95E-09 300 + HZO = HZO+ + N2 + - - 1 1.95E-09 300 + HCN = HCN+ + N2 + - - 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + - - 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + - - 0.05 1.22E-09 300	Z	2+		= c-C3H3+	+ N2	+ C3H3	,	1.60E-09	300	[13]
+ C7H8 = C6H5+ + N2 + CH3 - 0.05 1.90E-09 300 + C7H8 = C5H6+ + N2 + C2H2 - 0.02 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3C2H - 0.05 1.90E-09 300 + C7H8 = C-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = NH3+ + N2 + - - 1 1.95E-09 300 + H2O = H2O+ + N2 + - - 0.79 2.40E-09 300 + HCN = HCN+ + N2 + - - 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + - - 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + - - 0.05 1.22E-09 300	Z	2+		= C7H7+	+ N2	H +		1.90E-09	300	14]
+ C7H8 = C5H6+ + N2 + C2H2 - 0.02 1.90E-09 300 + C7H8 = C4H4+ + N2 + CH3C2H - 0.05 1.90E-09 300 + C7H8 = c-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = NH3+ + N2 + - - 1 1.95E-09 300 + H2O = H2O+ + N2 + - - 1 3.90E-10 298 + HCN = HCN+ + N2 + - - 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + - - 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + - - 0.05 1.22E-09 300	Z	2+		= C6H5+	+ N2	+ CH3	ı	1.90E-09	300	14]
+ C7H8 = C4H4+ + N2 + CH3C2H 0.05 1.90E-09 300 + C7H8 = c-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = NH3+ + N2 + - - 1 1.95E-09 300 + H2O = H2O+ + N2 + - - 0.79 2.40E-09 300 + HCN = HCN+ + N2 + - - 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + - - 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + - - 0.67 1.22E-09 300	Z	2+		= C5H6+	+ N2	+ C2H2	ı	1.90E-09	300	14]
+ C7H8 = c-C3H3+ + N2 + C4H5 - 0.03 1.90E-09 300 + N = N+ + N2 + - - 1 1.00E-11 300 + NH3 = NH3+ + N2 + - - 1 1.95E-09 300 + H2O = H2O+ + N2 + - - 0.79 2.40E-09 300 + HCN = HCN+ + N2 + - - 1 3.90E-10 298 + CH3NH2 = CH2NH2+ + N2 + - - 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + - - 0.67 1.22E-09 300	Z	2+		= C4H4+	+ N2	+ CH3C2E		1.90E-09	300	[14]
+ N = N+ + N2 +	Z	2+		= c-C3H3+	+ N2	+ C4H5		1.90E-09	300	[14]
+ NH3 = NH3+ + N2 + 1 1.95E-09 300 + H2O = H2O+ + N2 + 0.79 2.40E-09 300 + HCN = HCN+ + N2 + 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + 0.05 1.22E-09 300	Z	2+		= N+	+ N2	+	1	1.00E-11	300	[36]
+ H2O = H2O+ + N2 + 0.79 2.40E-09 300 + HCN = HCN+ + N2 + 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + 0.057 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + H - 0.67 1.22E-09 300	Z	2+		= NH3+	+ N2	+	- 1	1.95E-09	300	8
+ HCN = HCN+ + N2 + 1 3.90E-10 298 + CH3NH2 = CH3NH2+ + N2 + 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + H - 0.67 1.22E-09 300	Z	2+		= H2O+	+ N2	+	- 0.79	2.40E-09	300	[8]
+ CH3NH2 = CH3NH2+ + N2 + 0.05 1.22E-09 300 + CH3NH2 = CH2NH2+ + N2 + H - 0.67 1.22E-09 300	Z	2+		= HCN+	+ N2	+	- 1	3.90E-10	298	71]
+ CH3NH2 = CH2NH2+ + N2 + H - 0.67 1.22E-09 300	Z	2+	CHE	= CH3NH2+	+ N2	+	- 0.05	1.22E-09	300	[05]
	Z	2+	CHE	= CH2NH2+	+ N2	H +	- 0.67	1.22E-09	300	50]

[50] [50] [137]	[137] [137]	[8] [10,77]	[10,77]	[10,77]	[10, 7]	[75]	[8]	[24]	[82]	[82]	[69]	[69]	[82]	[29]	[82]	[82]	[43]	[8]	[2]	[29]	[8]	[82]	[104]	[112]	[112]
300 300 298	298 298	300 298	298	298	298	295	300	298	300	300	298	298	300	300	300	300	297	300	297	297	300	300	296	300	300
1.22E-09 1.22E-09 2.10E-09	2.10E-09 2.10E-09	3.50E-09 1.00E-09	1.00E-09	1.00E-09	1.00E-09	9.30E-10	5.10E-18	8.90E-10	1.40E-09	1.00E-09	1.30E-09	1.30E-09	1.50E-09	1.10E-09	1.50E-09	1.30E-09	2.30E-09	2.60E-09	3.20E-09	4.10E-09	4.20E-09	1.50E-09	1.20E-09	6.40E-10	1.60E-09
0.21 0.07 0.15	0.65	1 0.1	0.3	0.35	0.0	1	_	1		_	0.87	0.13	_			_	_	_		_	1		_	_	0.5
1 1 1	1 1		•	1		1	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	ı
+ H2 + NH2 + -	+ H + H2	CN + +	+ HCN	+ H	71 - +	+	+	' +	+	+	+ H2	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	N N X	+ N2	+ + S	+ H2C3N	+ N2	+ N2	+ N2	+ N2	+ CN	H +														
= CH2NH+ = CH3+ = C2H3N+	= HC2NH+ = HC2N+	= HC3N+ $= C2H3+$	= C2H2+	$= HC3NH + \frac{1}{1000}$	= N2H +	= C2N2+	= H3+	= CH5+	= C2H3+	= C2H5+	= C2H5+	= C2H7+	= C3H5+	= C4H3+	= C6H7+	= C7H9+	= NH4+	= H30+	= HCNH+	= C2H3NH+	= HC3NH+	= C3H3NH+	= C2N2H+	= H+	= HCN+
+ CH3NH2 + CH3NH2 + CH3CN																									
N N N N N N N N N N N N N N N N N N N	+ + + 5 Z Z 2 Z 2 7	+ + Z Z Z	N2+	N22+	Z + Z N Z + Z	N2+	N2H+	N2H+	N2H+	N2H+	CN^+	CN^+													
865 865 867 867	868	870 871	872	873	875	928	877	878	879	880	881	882	883	884	885	988	887	888	688	890	891	892	893	894	895

														3,114]																
[112]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[72]	[72]	[72]	[29]	[29]	[111,11]	[72]	[8]	[8]	[105]	[105]	[105]	[105]	[8]	[8]	[8]	[8]	[8]	[72]	[72]	[72]	[72]
300	300	300	300	300	300	298	298	298	298	298	298	300	300	300	298	298	298	298	298	298	298	296	296	298	298	298	298	298	298	298
1.60E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.00E-09	1.30E-09	1.30E-09	1.30E-09	1.90E-09	1.90E-09	1.90E-09	9.70E-10	9.70E-10	6.10E-10	3.20E-09	2.70E-09	2.70E-09	3.40E-09	3.40E-09	3.40E-09	3.40E-09	4.60E-09	4.60E-09	1.75E-09	1.75E-09	1.75E-09	2.00E-09	2.00E-09	2.00E-09	2.00E-09
0.5	0.5	0.15	0.15	0.1	0.1	0.7	0.25	0.05	0.15	0.65	0.2	0.75	0.25	1	0.1	0.83	0.17	0.5	0.2	0.2	0.1	0.2	8.0	0.03	0.93	0.05	0.05	9.0	0.2	0.15
٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
+	+	+	+	, +	+	+	+	+	+ H2	H +	+	+	+	+	+	+	+	+	+	+	ı +	+	+	' +	+	+	+	+	, +	' +
H +	+ HCN	+ CN	+ CH3	+ CH2	+ H2	+ CN	+ CHCH2	+ H2	+ HCN	+ HCN	+ HCN	+ CN	H +	C +	+ CN	CN +	H +	+ CN	+ HCN	+ C2N2	+ CN2	+ HCN	CN +	+ CN2	+ CN	+ N2	+ HCN	+ CN	+ NH2	HZ +
= HNC+	= CH3+	= CH4+	= HCN+	= HCNH+	= HC2NH+	= C2H4+	= HCN+	= HC3NH+	= C2H3+	= C2H4+	= C2H5+	= C4H2+	= HC5N+	= N2+	= H20+	= HCN+	= C2N2+	= C2H3N+	= HC2NH+	= CH3+	= C2H3+	= C3N+	= HC3N+	= C2N+	= C2N2+	= C3N+	= NH2+	= NH3+	= HCN+	= HCNH+
+ H2	+ CH4				+ C2H6							+ HCN	+ HCN	+ CH3CN	+ CH3CN	+ CH3CN	+ CH3CN	+ HC3N	+ HC3N	+ C2N2	+ C2N2	+ C2N2	+ NH3	+ NH3	+ NH3	+ NH3				
CN^+	CN^+	CN^+	CN^+	CN_{+}	CN^+	CN^+	CN_{+}	CN^+	CN^+	CN^+	CN_{+}	CN^+	CN^+	CN^+	CN^+	CN_{+}	CN^+	CN_{+}	CN^+	CN^+	CN^+	CN^+	CN^+	CN^{+}	CN_{+}	CN^+	CN^+	CN_{+}	CN_{+}	CN_{+}
968	897	868	668	006	901	902	903	904	905	906	200	806	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	976

							113,114]																							
[98]	[8]	[8]	[8]	[8]	[8]	[8]			[71]	[8]	8	[8]	[75]	[71]	[71]	[66]	[65]	[66]	[95]	[98]	[98]	[96]	*	*	*	*	*	*	[8]	*
	300	300	300	300	300	300	300	298	298	298	305	305	295	298	298	300	300	300	300			300	300	300	300	300	300	300	300	300
3.70E-11	8.80E-10	1.27E-09	1.27E-09	1.35E-09	1.35E-09	1.35E-09	2.20E-10	3.60E-09	3.60E-09	1.45E-09	4.60E-09	4.60E-09	1.10E-09	2.80E-09	2.80E-09	7.00E-10	1.10E-09	1.50E-09	1.50E-09	1.60E-09	1.70E-09	1.80E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	2.30E-09	3.00E-09
	1	0.1	6.0	0.85	0.15	0.1	1	0.5	0.5	-	0.52	0.48	_	0.65	0.35	1	_	0.4	9.0	-	-	-	_	_	1	-	-	-	1	_
٠	1	٠	٠	ı	٠	٠	1	٠	٠	٠	٠	1	٠	٠	٠	1	٠	1	٠	٠	٠	٠	٠	٠	1	٠	٠	٠	٠	1
+	+	+	+	+	+	+	+	' +	' +	, +	+	+	+	' +	, +	, +	+	+	+	, +	, +	+	+	+	+	+	+	+	+	+
+ HCN	H +	+ NH2	+ CH3	+ HCN	+ CN	H +	+ N2	CN +	+ HCN	CN +	+ HCN	CN +	+	+ HCN	+ NH2	H +	+ CH3	+ HCN	H +	CN +	+ HNC	+ HCN								
= H+	П	= C2H3+	П	П	П	П	П	П	Ш	П	Ш	П	II	Ш	П	П	Ш	П	II	П	П	П	П	П	Ш	П	П	П	II	П
H +	+ H2	+ CH4	+ CH4	+ C2H2	+ C2H2	+ C2H2	Z +	+ H2O	+ H2O	+ HCN	+ HC3N	+ HC3N	+ C2N2	+ NH3	+ NH3	+ H2	+ CH4	+ C2H2	+ C2H2	+ HCN	+ NH3	+ C4H2	+ CH3C4E	+ C6H2	+ C6H6	+ CH3C6E	+ C7H8	+ C8H2	+ NH3	+ CH3NH2
																			1	_	+	±	+	±	±	<u>+</u>	<u>+</u>	+	±	±
HCN+	HCN^+	HCN+	HCN+	HCN+	HNC+	HNC+	HNC+	HNC+	HNC-	HNC	HCNI	HCNI	HCN	HCN	HCN	HCNF	HCNH	HCNE	HCNE											

	3,128]	97]									_	ı																	
<u>4</u> *	[9,7	[94,	*	[40]	*	*	*	*	*	*	[134]	*	*	[85]	[58]	[88]	$[\infty]$	$[\infty]$	[58]	[58]	[88]	[88]	[88]	[88]	[88]	[72]	[72]	[72]	[72]
300	300	300	300	300	300	300	300	300	300	300	296	,	,	333	300	300	300	300	300	300	300	300	300	300	300	298	298	298	298
2.70E-09	3.80E-09	4.50E-09	3.00E-09	3.40E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	3.00E-09	8.80E-13	3.00E-09	3.00E-09	1.10E-10	9.00E-10	9.00E-10	4.20E-12	4.20E-12	7.00E-10	7.00E-10	7.00E-10	7.00E-10	7.00E-10	1.60E-09	1.60E-09	1.30E-09	1.30E-09	1.30E-09	1.30E-09
		1	_	1	1	1	1	1	1	1	1	1	1	1	6.0	0.1	0.5	0.5	9.0	0.1	0.3	0.92	80.0	0.92	0.08	0.1	0.5	0.3	0.1
1		•	1	ı	ı	•	•	ı	ı	•	ı	ı	ı	•	٠	•	٠	ı	ı	1	٠	٠	ı	ı	٠	٠	٠	•	ı
+ +	· ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														H															
HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	HCN	+ CH2NH	C		HCN	H2	HCN	C2H2	H2	HCN	C3	HCN	CCC	CCN	C2H2	HCN	H2
+ +	+	+	+	+	+	+	+	+	+	+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CH2NH2+	C2H3NH+	C3H3NH+	C3H5NH+	HC3NH+	C4H3NH+	C4H5NH+	HC5NH+	C5H5NH+	C6H3NH+	C6H7NH+	H3O+	CH3OH2+	СНЗСНОН+	NH4+	HCNH+	HC2NH+	C2H3+	HC3NH+	C2H3+	HCNH+	HC3NH+	C3H+	HCNH+	C3H+	HCNH+	C2H4+	HC2NH+	c-C3H3+	HC4NH+
II I		Ш	II	Ш	Ш	II	II	II	II	II	II	II		Ш	II	II	II	II	Ш	II	Ш	П	II						
· CH2NH	CH3CN	· C3H3N	· C3H5N	· HC3N	· C4H3N	C4H5N	HC5N	- C5H5N	- C6H3N	. C6H7N	· H20	- СН3ОН	- СНЗСНО	· NH3	- H2	- H2	· CH4	- CH4	· CH4	. CH4	· CH4	- C2H2	- C2H2	- C2H2	- C2H2	- C2H4	· C2H4	· C2H4	· C2H4
+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	HCNH+	CH2NH2-	C2N+	C2N+	CNC+	CNC^+	C2N+	C2N+	C2N+	CNC+	CNC^+	C2N+	C2N+	C2N+	C2N+	C2N+	C2N+
958	096	961	962	696	964	965	996	<i>L</i> 96	896	696	970	971	972	973	974	975	926	211	826	626	086	981	985	983	984	985	986	286	886

[72]									[39]																					[111,113,114]
298	298	298	298	298	300	300														300	300	300	300	296	296	296	296	296	300	300
1.20E-09	1.20E-09	1.20E-09	1.20E-09	1.20E-09	1.30E-09	1.30E-09	1.30E-09	4.10E-09	2.05E-09	3.30E-09	1.85E-09	1.85E-09	1.80E-09	9.50E-10	5.70E-10	9.10E-10	9.10E-10	4.45E-12	4.45E-12	8.30E-10	8.30E-10	8.30E-10	8.30E-10	6.40E-10	6.40E-10	6.70E-10	6.70E-10	8.90E-10	2.40E-10	2.40E-10
0.1	0.25	0.3	0.1	0.25	9.0	0.2	0.2	_	_	_	0.95	0.05	_	_		6.0	0.1	0.37	0.63	0.3	0.25	0.35	0.1	8.0	0.2	8.0	0.2		9.0	0.4
٠	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	1
+	+	+ H2	, +	ı +	+	+	+	+	+	+	+	+	+	+	ı +	ı +	+	+	+	ı +	, +	+	+	+	+	+	+	' +	, +	+
+ CH3CN	+ HCCN	+ HCN	+ HCN	+ C2H4	+ HCN	+ CCN	+ C4H2	+ C2N2	+	+ C2N2	+ HCN	+ C2H2	+ HCN	+	H +	H +	+	+ HCN	H +	+ C2H2	+ CN	+ CH3	+ HCN	+ HCN	+ HC3N	+ HC3N	+ CHCH2	+ HC3N	+ HCN	+ N2
= C2H3+	= C2H5+	= c-C3H3+	= C3H5+	= HC2NH+	= C5H+	= C4H2+	= C2N+	= C2H3+	= products	= C3H+	= HCNH+	= N2H+	= HCNH+	= products	= C2H3NH+	= HC3N+	= HC3NH+	= C2H2+	= HC3NH+	= C2H3N+	= C3H5+	= HC3NH+	= C3H4+	= C4H2+	= C2H2+	= C2H4+	= HC3NH+	= C4H2+	= C2N+	= C3H+
+ C2H6	+ C2H6	+ C2H6	+ C2H6	+ C2H6	+ C4H2	+ C4H2	+ C4H2	+ CH3CN	+ C3H5N	+ HC3N	+ NH3	+ NH3	+ NH3	+ C3H5N	+ H2	+ H2	+ H2	+ H2	+ H2	+ CH4	+ CH4	+ CH4	+ CH4	+ C2H2	+ C2H2	+ C2H4	+ C2H4	+ C4H2	Z +	Z +
C2N+	C2N+	C2N+	C2N+	C2N+	C2N+	C2N+	C2N+	C2N+	C2N+	CNC+	CNC+	CNC+	C2N+	HC2NH+	C2H3N+	C3N+	C3N+	HC3N+	HC3N+	HC3N+										
686	066	991	992	993	994	995	966	266	866	666	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019

[94,97]	[94,97] [94 97]	[39]	[7,116]	[7,116]	[7,116]	[94,97]	[38]	[94,97]	[94,97]	[94,97]	[38]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[94,97]	[81]	[94,97]	[94,97]	[38]	[94,97]
300	300	300	300	300	300	300	296	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
1.30E-09	1.30E-09 1.30E-09	3.70E-09	1.30E-09	1.30E-09	1.30E-09	1.70E-09	8.70E-10	6.00E-11	1.60E-09	1.60E-09	1.90E-09	2.00E-09	1.20E-12	2.60E-11	2.60E-11	2.60E-11	9.30E-10	9.30E-10	9.30E-10	9.30E-10	9.30E-10	1.90E-10	1.90E-10	1.90E-10	2.50E-09	1.90E-10	1.90E-10	1.20E-09	1.70E-09
0.3	7.0		6.0	0.05	0.05	1	1	1	8.0	0.2	1	1	1	0.7	0.25	0.05	0.08	_	0.55	0.21	0.16	0.09	0.58	0.33	1	99.0	0.34		
1		•	•	٠	٠	1	1	•	ı	1	1	1	1	ı	ı	•	1	1	ı	•	ı	ı	1	1	1	1	•	ı	•
+ -	 + +	. +	+	, +	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H +	+	H +	+	+	+	+	+	+	+
+ C3N	H +	; ; +	+ HCN	, +	+ hv	+ HC3N	+ hv	+ hv	+ HC3N	+ HCN	, +	+ HC3N	H +	+ C2H4	+ CH3	H +	+ CH2CN	+ HCN	+ C2H3	+ H2	H +	+ H2	, +	+ hv	+ C3H2N	+ C2H3CN	+ C2H2CN	, +	+ C2H3CN
= HCNH+	= C4N2H+ = adduct	= products	= HC5N+	= products	= adduct	= NH3+	= C7H3NH+	= adduct	= C2H3NH+	= C5H3NH+	= products	= NH4+	= C3H3NH+	= C2H3N+	= C3H3NH+	= C4H5NH+	= c-C3H3+	= C4H4+	= HC3NH+	= HC5NH+	= C5H3NH+	= C4N2H+	= products	= adduct	= C3H3NH+	= NH3+	= NH4+	= products	= NH4+
+ HCN	HCN + +	+ C3H5N	+ HC3N	+ HC3N	+ HC3N	+ NH3	+ C4H2	+ HCN	+ CH3CN	+ CH3CN	+ C3H5N	+ NH3	+ H2	+ CH4	+ CH4		+ C2H2		+ C2H2	+ C2H2	+ C2H2	+ HCN	+ HCN	+ HCN	+ C3H3N	+ NH3	+ NH3	+ C3H5N	+ NH3
HC3N+																											_	_	C3H3NH+
1020	1021	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050

[135]	[135]	[135]	[135]	[90,91]	[90,91]	[90,91]	[90,91]	[90,91]	[90,91]	[90,91]	[90,91]	[68]	[68]	[68]	[135]	[10,77]	[10,77]	[10,77]	[59]	[7,116]	[135]	[135]	[112]	[112]	[112]	[10,77]	[10,77]	[10,77]	[59]	[29]
	1	1																		300										
1.00E-09	1.00E-09	1.00E-09	1.50E-09	7.50E-10	7.50E-10	7.50E-10	7.50E-10	7.50E-10	7.50E-10	7.50E-10	7.50E-10	9.40E-10	9.40E-10	9.40E-10	1.00E-09	1.20E-09	1.20E-09	1.20E-09	1.00E-09	5.00E-10	1.50E-09	5.00E-12	6.20E-10	6.20E-10	8.80E-10	2.00E-10	2.00E-10	2.00E-10	1.20E-09	1.20E-09
1	1	_	_	0.04	0.09	0.08	0.37	0.05	0.07	0.23	0.07	0.27	0.57	0.16	_	0.75	0.05	0.2	_	_	_	_	8.0	0.2	_	0.5	0.35	0.15	6.0	0.1
1	1	1	1	1	1	1	1	1	1	1	1	1	ı	1	1	ı	1	1	1	ı	1	ı	ı	ı	1	1	1	1	1	•
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
H +	H +	H +	H +	+ H2	+ C2H2	+ C5H2	+ CH3	+ HCN	+ HC3N	+ HC5N	+ HC4N	CN +	H +	+ hv	H +	+ C2H3	+	+ hv	+ hv	+ hv	H +	H +	+ CN	+ N2	H +	+ C2N2	H +	+ H2	+ C2N2	+ HCN
= HC4NH+	= C4H3N+	= C4H3NH+	= HC5N+	= HC6NH+	= HC4NH+	= HCNH+	= HC5N+	= C5H3+	= c-C3H3+	= CH3+	= C2H3+	= HC5N+	= C6N2+	= HC6N2+	= HC5NH+	= HC5NH+	= products	= adduct	= adduct	= adduct	= HC7N+	= HC7NH+	= HNC+	= C2H+	= C2N2H+	= C2H2+	= C4N2H+	= C4N2+	= C4H2+	= HC5N+
+ H2	+ H2	+ H2	+ H2	+ CH4				+ HCN		+ H2	+ C2H4	+ C2H4	+ C2H4	+ C4H2	+ HC3N	+ H2	+ H2	H +	H +	+ H2	+ C2H2	+ C2H2	+ C2H2	+ C4H2	+ C4H2					
1051 HC4N+																														1081 C2N2+

110013_Supplementary_Material.doc

																	14]	14]											
	[63]			[90	_	_		_				_					,113,1	,113,1											
[66]	[93]	[63]	[93]	[21,1]	[104]	[104]	[135]	[135]	[8]	<u>8</u>	[102]	[102]	[69]	[69]	[69]	[69]	[111],	[111],	[48]	[8]	[71]	[71]	[104]	[82]	[29]	[8]	[8]	<u>8</u>	[82]
300	300	300	300	296	296	296			300	300	300	300	298	298	298	298	300	300	300	300	298	298	296	300	300	300	300	300	300
2.60E-09	2.70E-09	2.70E-09	2.70E-09	1.60E-09	5.60E-10	5.60E-10	2.00E-09	2.00E-09	7.60E-10	1.12E-09	1.90E-09	1.50E-09	1.60E-09	1.60E-09	1.60E-09	1.60E-09	1.40E-10	1.40E-10	1.13E-28	1.85E-09	2.10E-09	2.10E-09	1.00E-09	1.80E-09	1.10E-09	3.80E-09	4.50E-09	3.90E-09	5.10E-09
0.0	0.2	0.75	0.05		0.7	0.3	-	_	_	_			0.83	0.12	0.01	0.04	8.0	0.2	_	_	0.5	0.5	_	_	_	-	1		
٠	•	1	•	٠	1	1	•	•	•	٠	•	٠	٠	٠	٠	٠	•	1	•	٠	•	•	٠	•	٠	•	•	٠	1
, +	+	+	, +	+	, +	, +	+	, +	, +	, +	+	, +	, +	+ H2	H +	, +	+	+	, +	, +	+	+	, +	, +	, +	+	+	+	• +
+ C2N2	+ C2N2	CN +	+ hv	+ C2N2	+ C2N2	, +	+ C2N2	+ C2N2	H +	+ CH3	+ H2O	+ H2O	+ CH3CH2	+ H2O	+ H2O	+ H2O	H +	+ H2	, +	HO +	HO +	+ CN	HO +	+ H2O	+ H2O	+ H2O	+ H2O	+ H2O	+ H20
= H2O+	= HNC+	= C2N2H+	= adduct	= HC3N+	= C2H5+	= adduct	= NH4+	= HCNH+	= H30+	= H30+	= C2H2+	= C2H4+	= H30+	= C2H4+	= C2H5+	= C2H6+	= HNO+	= NO+	= adduct	= H30+	= HCNH+	= H30+	= C2N2H+	= C3H5+	= C4H3+	= HCNH+	= C2H3NH+	= HC3NH+	= C3H3NH+
+ H2O	+ HCN	+ HCN	+ HCN	+ HC3N	+ C2H4	+ C2H4		+ HCN		+ CH4	+ C2H2							Z +			+ HCN	+ HCN	+ C2N2	+ CH3C2H	+ C4H2	+ HCN	+ CH3CN	+ HC3N	+ C3H3N
C2N2+	C2N2+	C2N2+	C2N2+	C2N2+	C2N2H+	C2N2H+	C2N2H+	C2N2H+	H2O+	H3O+	H3O+	H3O+	H3O+	H3O+	H30+														
1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111

Refs-S1.txt

- 1. Adams, N. G., Smith, D. 1978. Reactions of CH_n^+ ions with molecules at 300 K. Chem. Phys. Lett. 54, 530-534.
- 2. Adams, N. G., Smith, D., Paulson, J. F. 1980. An experimental survey of the reactions of NH_n⁺ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K. J. Chem. Phys. 72, 288297.
- 3. Adams, N. G., Babcock, L. M., Moustefaoui, T. M., Kerns, M. S. 2003. Selected ion flow tube study of NH₄⁺ association and of product switching reactions with a series of organic molecules. Int. J. Mass. Spectrom. 223-224, 459-471.
- 4. Anicich, V. G., McEwan, M. J. Unpublished results.
- 5. Anicich, V. G., Blake, G. A., Kim, J. K., McEwan, M. J., Huntress, W. T., Jr. 1984. Ion-molecule reactions in unsaturated hydrocarbons: allene, propyne, diacetylene, and vinylacetylene. J. Chem. Phys. 88, 4608-4617.
- 6. Anicich, V. G., Huntress, W. T., Jr., McEwan, M. J. 1986. Ion-molecule reactions of hydrocarbon ions in C₂H₂ and HCN. J. Phys. Chem. 90, 2446-2449.
- 7. Anicich, V. G., Sen, A. D., Huntress, W. T., Jr., McEwan, M. J. 1991. Lifetime measurement of a collision complex using ion cyclotron double resonance. $H_2C_6N_2^+$. J. Chem. Phys. 94, 4189-4191.
- 8. Anicich, V. G. 1993. Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres/cometary comae/interstellar clouds. J. Phys. Chem. Ref. Data 22, 1469.
- 9. Anicich, V. G., Sen, A. D., McEwan, M. J., Smith, S. C. 1994. A comparison of an experimental unimolecular lifetime distribution with Rice-Ramsperger-Kassel-Marcus theory. J. Chem. Phys. 100, 5696-5705.
- 10. Anicich, V. G., McEwan, M. J. 1997. Ion-molecule chemistry in Titan's ionosphere. Planet. Space Sci. 45, 897-921.
- 11. Anicich, V. G., Wilson, P., McEwan, M. J. 2003. Termolecular ion-molecule reactions in Titan's atmosphere. IV. A search made at up to 1 micron in pure hydrocarbons. J. Am. Soc. Mass Spectrom. 14, 900-915.
- 12. Anicich, V. G., Wilson, P. F., McEwan, M. J. 2006. An ICR study of ion-molecules reactions in Titan's atmosphere: An investigation of binary hydrocarbon mixtures up to 1 micron. J. Am. Soc. Mass Spectrom. 17, 544-561.
- 13. Arnold, S. T., Williams, S., Dotan, I., Midey, A. J., Morris, R. A., Viggiano, A. A. 1999. Flow tube studies of benzene charge transfer reactions from 250 to 1400 K. J. Phys. Chem. A 103, 8421-8432.
- 14. Arnold, S. T., Dotan, I., Willliams, S., Viggiano, A. A., Morris, R. A. 2000. Selected ion flow tube studies of air plasma cations reacting with alkylbenzenes. J. Phys. Chem. A 104, 928-934.
- 15. Ausloos, P., Lias, S. G., Buckley, T. J., Rogers, E. E. 1989. Concerning the formation and the kinetics of phenylium ions. Int. J. Mass Spectrom. Ion Proc. 92, 65-77.
- 16. Bartmess, J. E. 1982. Gas-phase ion chemistry of 5-methylene-1,3-cyclohexadiene (o-isotoluene) and 3-methylene-1,4-cyclohexadiene (p-isotoluene). J. Am. Chem. Soc. 104, 335-337.

- 17. Betowski, D., Payzant, J. D., Mackay, G. I., Bohme, D. K. 1975. Rate coefficients at 297K for proton transfer reactions with H₂O. Comparisons with classical theories and exothermicity. Chem. Phys. Lett. 31, 321.
- 18. Blair, A. S., Harrison, A. G. 1973. Bimolecular reactions of trapped ions. VI. Ion-molecule reactions involving CH₅⁺ and C₂H₅⁺. Can. J. Chem. 51, 1645-1654.
- 19. Bohme, D. K., Raksit, A. B., Schiff, H. I. 1982. Reactions of ¹²C⁺ with hydrocarbons at 296 K: carbon-carbon bond formation. Chem. Phys. Lett. 93, 592-597.
- 20. Bohme, D. K., Raksit, A. B., Fox, A. 1983. Carbene chemistry of cations: the chemistry of:C₃H⁺ in the gas phase. J. Am. Chem. Soc. 105, 5481-5483.
- 21. Bohme, D. K., Raksit, A. B. 1985. New results for ion-molecule reactions of HC₃N in dense interstellar clouds. Mon. Not. R. Astron. Soc. 213, 717-720.
- 22. Bohme, D. K. 1986. Ionic origins of carbenes in space. Nature 319, 473-474.
- 23. Bohme, D. K., Wlodek, S., Zimmerman, J. A., Eyler, J. R. 1991. Formation of $C_{10}H_8^+$ from the benzene radical cation: a case for the growth of polycyclic aromatic hydrocarbon ions by ion/molecule reactions in the gas phase? Int. J. Mass Spectrom. Ion Proc. 109, 31-47.
- 24. Burt, J. A., Dunn, J. L., McEwan, M. J., Sutton, M. M., Roche, A. E., Schiff, H. I. 1970. Some ion-molecule reactions of H₃⁺ and the proton affinity of H₂. J. Chem. Phys. 52, 6062-6075.
- 25. Cheng, T. M. H., Yu, T.-Y., Lampe, F. W. 1973. Ion-molecule reactions in monosilane-methane mixtures. J. Phys. Chem. 77, 2587-2593.
- 26. Deakyne, C. A., Meot-Ner, M., Buckley, T. J., Metz, R. 1987. Proton affinities of diacetylene, cyanoacetylene, and cyanogen. J. Chem. Phys. 86, 2334-2342.
- 27. Derwish, G. A. W., Galli, A., Giardini-Guidoni, A., Volpi, G. G. 1964a. Ion-molecule reactions in methane and in ethane. J. Chem. Phys. 40, 5-12.
- 28. Derwish, G. A. W., Galli, A., Giardini-Guidoni, A., Volpi, G. G. 1964b. Mass-spectrometric study of ion-molecule reactions in propane. J. Chem. Phys. 41, 2998-3005.
- 29. Dheandhanoo, S., Forte, L., Fox, A., Bohme, D. K. 1986. Ion-molecule reactions with carbon chain molecules: reactions with diacetylene and the diacetylene cation. Can. J. Chem. 64, 641-648.
- 30. Dutuit, O., Thissen, R.Unpublished results.
- 31. Eyler, J. R. 1984. Reactivities and structures of some hydrocarbon ions and their relationship to soot formation. ACS Symposium Series 249, 49-67.
- 32. Fairley, D. A., Scott, G. B. I., Freeman, C. G., Maclagan, R. G. A. R., McEwan, M. J. 1996. Ion-molecule association of H₃O⁺ and C₂H₂: interstellar CH₃CHO. Trans. Faraday Soc. 92, 1305-1309.
- 33. Federer, W., Ferguson, E., Tosj, P., Villinger, H., Bassi, D., Howorka, F., Lindinger, W., 1984a. Reactions of ions with atomic hydrogen. Symposium on Atomic and Surface Physics, Innsbruck, Austria, 141-143.
- 34. Federer, W., Villinger, H., Howorka, F., Lindinger, W., Tosi, P., Bassi, D., Ferguson, E. 1984b. Reaction of O⁺, CO⁺, and CH⁺ ions with atomic hydrogen. Phys. Rev. Lett. 52, 2084-2086.
- 35. Federer, W., Villinger, H., Lindinger, W., Ferguson, E. E. 1986. Reactions of some hydrocarbon cations with nitrogen atoms. Chem. Phys. Lett. 123, 12-16.

- 36. Ferguson, E. E. 1968. Thermal energy ion-molecule reactions. Adv. Electron. Electron Phys. 24, 1-50.
- 37. Fiaux, A., Smith, D. L., Futrell, J. H. 1974. Reaction of CH₅⁺ with C₂H₂, C₂H₄, C₃H₆ and c-C₃H₆. Int. J. Mass Spectrom. Ion Proc. 15, 9-21.
- 38. Fox, A., Raksit, A. B., Dheandhanoo, S., Bohme, D. K. 1986. Selected-ion flow tube studies of reactions of the radical cation (HC₃N)⁺ in the interstellar chemical synthesis of cyanoacetylene. Can. J. Chem. 64, 399-403.
- 39. Franklin, J. L., Wada, Y., Natalis, P., Hierl, P. M. 1966. Ion-molecule reactions in acetonitrile and propionitrile. J. Phys. Chem. 70, 2353-2361.
- 40. Freeman, C. G., Harland, P. W., McEwan, M. J. 1979. Laboratory investigation of ion-molecule reactions of HC₃N in dense interstellar clouds. Mon. Not. R. Astron. Soc. 187, 441-444.
- 41. Gerlich, D., Horning, S. 1992. Experimental investigations of radiative association processes as related to interstellar chemistry. Chem. Rev. 92, 1509-1539.
- 42. Harrison, A. G. 1963. Concurrent ion-molecule reactions in ethylene and propylene. Can. J. Chem. 41, 236-242.
- 43. Hemsworth, R. S., Payzant, J. D., Schiff, H. I., Bohme, D. K. 1974. Rate constants at 297°K for proton transfer reactions with NH₃. Comparisons with classical theories and exothermicity. Chem. Phys. Lett. 26, 417-421.
- 44. Herbst, E., Adams, N. G., Smith, D. 1983. Laboratory measurements of ion-molecule reactions pertaining to interstellar hydrocarbon synthesis. Astrophys. J. 269, 329-333.
- 45. Houriet, R., Elwood, T. A., Futrell, J. H. 1978. A tandem ion cyclotron resonance study of the reactions of allyl ions with benzene and substituted benzene. J. Am. Chem. Soc. 100, 2320-2324.
- 46. Huntress, W. T., Jr., Bowers, M. T. 1973. Reactions of excited and ground state H_3^+ ions with methyl substituted hydrides. Int. J. Mass Spectrom. Ion Proc. 12, 1-18
- 47. Huntress, W. T., Jr. 1977. Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition. Astrophys. J. Suppl. Ser. 33, 495-514.
- 48. Ikezoe, Y., Matsuoka, S., Takebe, M., Viggiano, A. 1987. Gas phase ion-molecule reaction rate constants through 1986, Ion Reactions Research Group of The Mass Spectrometry Society of Japan, Tokyo.
- 49. Iraqi, M., Petrank, A., Peres, M., Lifshitz, C. 1990. Proton transfer reactions of $C_2H_2^+$: the bond energy $D_0(C_2H-H)$. Int. J. Mass Spectrom. Ion Proc. 100, 679-691.
- 50. Jackson, D. M., Stibrich, N. J., Adams, N. G., Babcock, L. M. 2005. A selected ion flow tube study of the reactions of a sequence of ions with amines. Int. J. Mass Spectrom. 243, 115-120.
- 51. Johnsen, R., Leu, M. T., Biondi, M. A. 1973. Studies of nonresonant charge transfer between atomic ions and atoms. Phys. Rev. A 8, 1808-1813.
- 52. Karpas, Z., Anicich, V. G., Huntress, W. T., Jr. 1979. An ion cyclotron resonance study of reactions of ions with hydrogen atoms. J. Chem. Phys. 70, 2877-2881.

- 53. Kim, J. K., Huntress, W. T., Jr. 1975. Ion cyclotron resonance studies on the reaction of H_2^+ and D_2^+ ions with various simple molecules and hydrocarbons. J. Chem. Phys. 62, 2820-2825.
- 54. Kim, J. K., Anicich, V. G., Huntress, W. T., Jr. 1977. Product distributions and rate constants for the reactions of CH₃⁺, CH₄⁺, C₂H₂⁺, C₂H₃⁺, C₂H₄⁺, and C₂H₆⁺ ions with CH₄, C₂H₂, C₂H₄, and C₂H₆. J. Phys. Chem. 81, 1798-1805.
- 55. Knight, J. S., Freeman, C. G., McEwan, M. J., Adams, N. G., Smith, D. 1985. Selection-ion flow tube studies of HC₃N. Int. J. Mass Spectrom. Ion Proc. 67, 317-330.
- 56. Knight, J. S., Freeman, C. G., McEwan, M. J. 1986a. Isomers of C₂H₄N⁺ and the proton affinities of CH₃CN and CH₃NC. J. Am. Chem. Soc. 108, 1404-1408.
- 57. Knight, J. S., Freeman, C. G., McEwan, M. J., Smith, S. C., Adams, N. G., Smith, D. 1986b. Production and loss of HC₃N in interstellar clouds: some relevant laboratory measurements. Mon. Not. R. Astron. Soc. 219, 89-94.
- 58. Knight, J. S., Petrie, S. A. H., Freeman, C. G., McEwan, M. J., McLean, A. D., DeFrees, D. J. 1988. Structural isomers of C₂N⁺: a selected-ion flow tube study. J. Am. Chem. Soc. 110, 5286-5290.
- 59. Lias, S. G., Eyler, J. R., Ausloos, P. 1976. Hydride transfer reactions involving saturated hydrocarbons and CCl₃⁺, CCl₂H⁺, CCl₂F⁺, CF₂Cl⁺, CF₂H⁺, CF₃⁺, NO⁺, C₂H₅⁺, sec-C₃H₇⁺ and t-C₄H₉⁺. Int. J. Mass Spectrom. Ion Proc. 19, 219-239.
- 60. Lias, S. G., Buckley, T. J. 1984. Structures and reactions of C₃H₆⁺ ions generated in cyclopropane. Int. J. Mass Spectrom. Ion Proc. 56, 123-137.
- 61. Lias, S. G., Ausloos, P. 1987. Structures and heats of formation of C₄H₇⁺ ions in the gas phase. Int. J. Mass Spectrom. Ion Proc. 81, 165-181.
- 62. Lifshitz, C., Reuben, B. G. 1969. Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene. J. Chem. Phys. 50, 951-960.
- 63. Lifshitz, C., Weiss, M. 1980a. Ion-molecule reactions in alkynes. Trapped-ion mass spectrometry of 1,5-hexadiyne. Int. J. Mass Spectrom. Ion Proc. 35, 73-81.
- 64. Lifshitz, C., Weiss, M. 1980b. Ion-molecule reactions in aromatic systems. II. Trapped ion mass spectrometry of benzene. Int. J. Mass Spectrom. Ion Proc. 34, 311-315.
- 65. Lifshitz, C., Gibson, D., Levsen, K., Dotan, I. 1981a. The gas-phase chemistry of C₄H₄⁺. Int. J. Mass Spectrom. Ion Proc. 40, 157-165.
- 66. Lifshitz, C., Gleitman, Y., Gefen, S., Shainok, U., Dotan, I. 1981b. Ion/molecule reactions in propyne, 1-butyne and allene by photoionization, ion cyclotron resonance and trapped-ion mass spectrometry. Int. J. Mass Spectrom. Ion Proc. 40, 1-16.
- 67. Mackay, G. I., Betowski, D., Payzant, J. D., Schiff, H. I., Bohme, D. K. 1976. Rate constants at 297 K for proton-transfer reactions with HCN and CH₃CN. Comparisons with classical theories and exothermicity. J. Phys. Chem. 80, 2919-2922.
- 68. Mackay, G. I., Vlachos, G. D., Bohme, D. K., Schiff, H. I. 1980. Studies of reactions involving $C_2H_x^+$ ions with HCN using a modified selected ion flow tube. Int. J. Mass Spectrom. Ion Proc. 36, 259-270.

- 69. Mackay, G. I., Schiff, H. I., Bohme, D. K. 1981. A room-temperature study of the kinetics and energetics for the protonation of ethane. Can. J. Chem. 59, 1771-1778.
- 70. McEwan, M. J., Anicich, V. G., Huntress, W. T., Jr. 1980. An ICR study of ion-molecule reactions in the C₂H₂/HCN system. In: Andrew, B.H. (Eds.), Interstellar Molecules, D. Reidel Publishing Company, Boston, pp. 299-303.
- 71. McEwan, M. J., Anicich, V. G., Huntress, W. T., Jr. 1981. An ICR investigation of ion-molecule reactions of HCN. Int. J. Mass Spectrom. Ion Proc. 37, 273-281.
- 72. McEwan, M. J., Anicich, V. G., Huntress, W. T., Jr., Kemper, P. R., Bowers, M. T. 1983. Reactions of CN⁺ and C₂N⁺ ions. Int. J. Mass Spectrom. Ion Proc. 50, 179-187.
- 73. McEwan, M. J., Denison, A. B., Huntress, W. T., Jr., Anicich, V. G., Snodgrass, J., Bowers, M. T. 1989. Association reactions at low pressure. 2. The CH₃+/CH₃CN system. J. Phys. Chem. 93, 4064-4068.
- 74. McEwan, M. J., McConnell, C. L., Freeman, C. G., Anicich, V. G. 1994. Reactions of isomeric C₃H₃⁺ ions: a combined low pressure-high pressure study. J. Phys. Chem. 98, 5068-5073.
- 75. McEwan, M. J., Anicich, V. G. 1995. A low-pressure study of C₂N₂ ion chemistry. J. Phys. Chem. 99, 12204-12208.
- 76. McEwan, M. J., Fairley, D. A., Scott, G. B. I., Anicich, V. G. 1996. Reactions of CH₃⁺ with C₂N₂, CH₂CHCN, and HC₃N: a low-pressure/high-pressure study. J. Phys. Chem. 100, 4032-4037.
- 77. McEwan, M. J., Scott, G. B. I., Anicich, V. G. 1998. Ion-molecule reactions relevant to Titan's ionosphere. Int. J. Mass Spectrom. Ion Proc. 172, 209-219.
- 78. McEwan, M. J., Scott, G. B. I., Adams, N. G., Babcock, L. M., Terzieva, R., Herbst, E. 1999. New H and H₂ reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513, 287-293.
- 79. McEwan, M. J., Anicich, V. G. 2007. Titan's ion chemistry: A laboratory perspective. Mass Spec. Rev. 26, 281-319.
- 80. Meot-Ner, M. 1979. Competitive condensation and proton-transfer reactions. Temperature and pressure effects and the detailed mechanism. J. Am. Chem. Soc. 101, 2389-2395.
- 81. Milligan, D. B., Wilson, P. F., McEwan, M. J., Anicich, V. G. 1999. Ion-molecule association in acrylonitrile. Int. J. Mass. Spectrom. 185/186/187, 663-672.
- 82. Milligan, D. B., Wilson, P. F., Freeman, C. G., Meot-Ner, M., McEwan, M. J. 2002. Dissociative proton transfer reactions of H₃⁺, N₂H⁺, and H₃O⁺ with acyclic, cyclic, and aromatic hydrocarbons and nitrogen compounds, and astrochemical implications. J. Phys. Chem. A 106, 9745-9755.
- 83. Munson, M. S. B., Franklin, J. L., Field, F. H. 1964. High pressure mass spectrometric study of alkanes. J. Phys. Chem. 68, 3098-3107.
- 84. Munson, M. S. B., Field, F. H. 1965. Reactions of gaseous ions. XV. Methane + 1% ethane and methane + 1% propane. J. Am. Chem. Soc. 87, 3294-3299.
- 85. Operti, L., Rabezzana, R., Turco, F., Vaglio, G. A. 2004. Gas-phase ion chemistry of the propyne/ammonia and silane/propyne/ammonia systems. Int. J. Mass Spectrom. 232, 139-146.
- 86. The OSU network 2007. http://www.physics.ohio-state.edu/~eric/research.html.

- 87. Ozturk, F., Baykut, G., Moini, M., Eyler, J. R. 1987. Reactions of C₃H₃⁺ with acetylene and diacetylene in the gas phase. J. Phys. Chem. 91, 4360-4364.
- 88. Ozturk, F., Moini, M., Brill, F. W., Eyler, J. R., Buckley, T. J., Lias, S. G., Ausloos, P. J. 1989. Reactions of C₅H₃⁺ and C₅H₅⁺ ions with acetylene and diacetylene. J. Phys. Chem. 93, 4038-4044.
- 89. Parent, D., McElvany, S. W. 1989. Investigations of small carbon cluster ion structures by reactions with HCN. J. Am. Chem. Soc. 111, 2393-2401.
- 90. Parent, D. C. 1989. Reactions of C_nN⁺ with methane and the implications for interstellar chemistry. Astrophys. J. 347, 1183-1186.
- 91. Parent, D. C. 1990. Reactions of the carbene ions C_nN^+ with labeled methane: mechanistic interpretation. J. Am. Chem. Soc. 112, 5966-5973.
- 92. Petrank, A., Iraqi, M., Dotan, I., Lifshitz, C. 1992. Proton transfer reactions of $C_2H_4^+$: the bond energy $D(C_2H_3-H)$. Int. J. Mass Spectrom. Ion Proc. 117, 223-236.
- 93. Petrie, S., Freeman, C. G., Meot-Ner, M., McEwan, M. J., Ferguson, E. E. 1990. Experimental study of HCN⁺ and HNC⁺ ion chemistry. J. Am. Chem. Soc. 112, 7121-7126.
- 94. Petrie, S., Chirnside, T. J., Freeman, C. G., McEwan, M. J. 1991a. The ion/molecule chemistry of CH₂CHCN. Int. J. Mass Spectrom. Ion Proc. 107, 319-331.
- 95. Petrie, S., Freeman, C. G., McEwan, M. J., Ferguson, E. E. 1991b. The ion chemistry of HNC⁺/HCN⁺ isomers: astrochemical implications. Mon. Not. R. Astron. Soc. 248, 272-275.
- Petrie, S., Knight, J. S., Freeman, C. G., MacLagan, R. G. A. R., McEwan, M. J., Sudkeaw, P. 1991c. The proton affinity and selected ion/molecule reactions of diacetylene. Int. J. Mass Spectrom. Ion Proc. 105, 43-54.
- 97. Petrie, S., Freeman, C. G., McEwan, M. J. 1992a. The ion-molecule chemistry of acrylonitrile: astrochemical implications. Mon. Not. R. Astron. Soc. 257, 438-444
- 98. Petrie, S., Javahery, G., Bohme, D. K. 1992b. Gas-phase reactions of benzenoid hydrocarbon ions with hydrogen atoms and molecules: uncommon constraints to reactivity. J. Am. Chem. Soc. 114, 9205-9206.
- 99. Petrie, S. A. H., Freeman, C. G., McEwan, M. J., Meot-Ner, M. 1989. The proton affinity of cyanogen and ion/molecule reactions of C₂N₂⁺. Int. J. Mass Spectrom. Ion Proc. 90, 241-250.
- 100. Praxmarer, C., Hansel, A., Lindinger, W., Herman, Z. 1998. A selected-ion-flow-drift-tube study of charge transfer processes between atomic, molecular, and dimer ion projectiles and polyatomic molecules ethane, propane, and n-butane. J. Chem. Phys. 109, 4246-4251.
- 101. Prodnuk, S. D., Gronert, S., Bierbaum, V. M., DePuy, C. H. 1992. Gas-phase reactions of C₃H_n⁺ ions. Org. Mass. Spectrom. 27, 416-422.
- 102. Raksit, A. B., Warneck, P. 1980. Reactions of CO_2^+ , $CO_2CO_2^+$ and H_2O^+ ions with various neutral molecules. Trans. Faraday Soc. 76, 1084-1092.
- 103. Raksit, A. B., Bohme, D. K. 1983. Studies of reactions of C_3H^+ ions in the gas phase at 296 ± 2 K. Int. J. Mass Spectrom. Ion Proc. 55, 69-82.

- 104. Raksit, A. B., Bohme, D. K. 1984. Selected-ion flow tube methods applied to the bracketing of proton affinities. PA (C₂H₂) and PA(HC₃N). Int. J. Mass Spectrom. Ion Proc. 57, 211-224.
- 105. Raksit, A. B., Schiff, H. I., Bohme, D. K. 1984. A selected ion flow tube study of the kinetics of CN⁺ reactions at 296 ±2 K. Int. J. Mass Spectrom. Ion Proc. 56, 321-335.
- 106. Raksit, A. B., Bohme, D. K. 1985. Flow-tube studies of reactions of selected ions with cyanoacetylene. Can. J. Chem. 63, 854-861.
- 107. Rudolph, P. S., Melton, C. E. 1960. Ion-molecule charge transfer reactions in the alpha radiolysis of various hydrocarbons in a mass spectrometer. J. Chem. Phys. 32, 586-588.
- 108. Schiff, H. I., Bohme, D. K. 1979. An ion-molecule scheme for the synthesis of hydrocarbon-chain and organonitrogen molecules in dense interstellar clouds. Astrophys. J. 232, 740-746.
- 109. Schiff, H. I., Mackay, G. I., Vlachos, G. D., Bohme, D. K. 1980. Laboratory studies of interstellar carbon/nitrogen ion chemistry. In: Andrew, B.H. (Eds.), Interstellar Molecules, D. Reidel Publishing Company, Boston, pp. 307-310.
- 110. Schwarzer, M., Hansel, A., Freysinger, W., Oberhofer, N., Lindinger, W. 1991. Thermal energy reactions of N_2^+ (ν =1) with SF₆, H₂, D₂, H, and D. J. Chem. Phys. 95, 7344-7347.
- 111. Scott, G. B. I., Fairley, D. A., Freeman, C. G., McEwan, M. J. 1997a. The reaction H₃⁺ + N: a laboratory measurement. Chem. Phys. Lett. 269, 88-92.
- 112. Scott, G. B. I., Fairley, D. A., Freeman, C. G., McEwan, M. J., Spanel, P., Smith, D. 1997b. Gas phase reactions of some positive ions with atomic and molecular hydrogen at 300 K. J. Chem. Phys. 106, 3982-3987.
- 113. Scott, G. B. I., Freeman, C. G., McEwan, M. J. 1997c. The interstellar synthesis of ammonia. Mon. Not. R. Astron. Soc. 290, 636-638.
- 114. Scott, G. B. I., Fairley, D. A., Freeman, C. G., McEwan, M. J., Anicich, V. G. 1998. Gas-phase reactions of some positive ions with atomic and molecular nitrogen. J. Chem. Phys. 109, 9010-9014.
- 115. Scott, G. B. I., Fairley, D. A., Freeman, C. G., McEwan, M. J. 1999. $C_m H_n^+$ reactions with atomic and molecular nitrogen: an experimental study. J. Phys. Chem. A 103, 1073-1077.
- 116. Sen, A. D., Huntress, W. T., Jr., Anicich, V. G., McEwan, M. J., Denison, A. B. 1991. Association reactions at low pressure. IV. The HC₃N⁺/HC₃N system. J. Chem. Phys. 94, 5462-5470.
- 117. Smith, D., Adams, N. G. 1977a. Reaction of simple hydrocarbon ions with molecules at thermal energies. Int. J. Mass Spectrom. Ion Proc. 23, 123-135.
- 118. Smith, D., Adams, N. G. 1977b. Reactions of hydrocarbon ions with hydrogen and methane at 300 K. Chem. Phys. Lett. 47, 383-387.
- 119. Smith, D., Adams, N. G. 1977c. Reactions of $\mathrm{CH_n}^+$ ions with ammonia at 300 K. Chem. Phys. Lett. 47, 145-149.
- 120. Smith, D., Adams, N. G. 1978a. Molecular synthesis in interstellar clouds: radiative association reactions of CH₃⁺ ions. Chem. Phys. Lett. 220, L87-L92.
- 121. Smith, D., Adams, N. G. 1978b. Binary and ternary reacions of CH₃⁺ ions with several molecules at thermal energies. Chem. Phys. Lett. 54, 535-540.

- 122. Smith, D., Adams, N. G., Miller, T. M. 1978. A laboratory study of the reactions of N⁺, N₂⁺, N₃⁺, N₄⁺, O⁺, O₂⁺, and NO⁺ ions with several molecules at 300 K. J. Chem. Phys. 69, 308-318.
- 123. Smith, D., Adams, N. G. 1980. Reactions of NH_n^+ and ND_n^+ (n = 0-4) with C_2H_4 and C_2D_4 and 300 K. Chem. Phys. Lett. 76, 418-423.
- 124. Smith, D., Adams, N. G. 1987. Cyclic and linear isomers of $C_3H_2^+$ and $C_3H_3^+$: the $C_3H^+ + H_2$ reaction. Int. J. Mass Spectrom. Ion Proc. 76, 307-317.
- 125. Smith, D., Spanel, P., Mayhew, C. A. 1992. A selected ion-flow tube study of the reactions of O⁺, H⁺ and HeH⁺ with several molecular gases at 300 K. Int. J. Mass Spectrom. Ion Proc. 117, 457-473.
- 126. Smith, D. L., Futrell, J. H. 1973. Low energy study of symmetric and asymmetric charge-transfer reactions. J. Chem. Phys. 59, 463-469.
- 127. Smith, R. D., Futrell, J. H. 1975. On the structure of CH₅⁺; a study of hydron transfer reactions from CH₄H⁺ and CD₄H⁺ in a tandem-ICR. Chem. Phys. Lett. 36, 545-547.
- 128. Smith, S. C., Wilson, P. F., Sudkeaw, P., Maclagan, R. G. A. R., McEwan, M. J., Anicich, V. G., Huntress, W. T., Jr. 1993. Statistical modeling of capture, association, and exit-channel dynamics in the CH₃⁺/CH₃CN system. J. Chem. Phys. 98, 1944-1956.
- 129. Smyth, K. C., Lias, S. G., Ausloos, P. 1982. The ion-molecule chemistry of C₃H₃⁺ and the implications for soot formation. Combust. Sci. and Technol. 28, 147-154.
- 130. Spanel, P., Smith, D., Henchman, M. 1995. The reactions of some interstellar ions with benzene, cyclopropane and cyclohexane. Int. J. Mass Spectrom. Ion Proc. 141, 117-126.
- 131. Spanel, P., Smith, D. 1996. A selected ion flow tube study of the reactions of NO⁺ and O₂⁺ ions with some organic molecules: the potential for trace gas analysis of air. J. Chem. Phys. 104, 1893-1899.
- 132. Su, T., Bowers, M. T. 1973a. Ion-polar molecule collisions. Proton transfer reactions of C₄H₉⁺ ions with NH₃, CH₃NH₂, (C₂H₅)₂NH, and (CH₃)₃N. J. Am. Chem. Soc. 95, 7611-7613.
- 133. Su, T., Bowers, M. T. 1973b. Ion-polar molecule collisions: the effect of ion size on ion-polar molecule rate constants; the parameterization of the average-dipole-orientation theory. Int. J. Mass Spectrom. Ion Proc. 12, 347-356.
- 134. Tanaka, K., Mackay, G. I., Bohme, D. K. 1978. Rate and equilibrium constant measurements for gas-phase proton-transfer reactions involving H₂O, H₂S, HCN, and H₂CO. Can. J. Chem. 56, 193-204.
- 135. The UMIST database for astrochemistry 2006. http://www.udfa.net.
- 136. Viggiano, A. A., Howorka, F., Albritton, D. L., Fehsenfeld, F. C., Adams, N. G., Smith, D. 1980. Laboratory studies of some ion-atom reactions related to interstellar molecular synthesis. Astrophys. J. 236, 492-497.
- 137. Wincel, H., Wlodek, S., Bohme, D. K. 1988. Acetonitrile in gas-phase ion/molecule chemistry. Int. J. Mass Spectrom. Ion Proc. 84, 69-87.
- 138. Wincel, H., Fokkens, R. H., Nibbering, N. M. M. 1989. On the structure and isomerization/dissociation reactions of $C_3H_6N^+$ generated by methylation of acetonitrile in the gas phase. Int. J. Mass Spectrom. Ion Proc. 91, 339-355.

Table-S2.txt

1	H+	3.50E-12	0.75	[26]
2	H2+	1.60E-08	0.43	[19]
3	H3+	6.70E-08	0.52	[16]
4	C+	4.67E-12	0.6	[20]
5	CH+	1.00E-07	0.37	[3]
6	CH2+	6.40E-07	0.6	[13]
7	CH3+	8.00E-07	0.53	[25]
8	CH4+	7.25E-07	0.53	[25]
9	CH5+	1.10E-06	0.7	[17]
10	C2H+	2.70E-07	0.76	[5]
11	C2H2+	2.70E-07	0.5	[19]
12	C2H3+	5.00E-07	0.84	[12]
13	C2H4+	5.60E-07	0.76	[5]
14	C2H5+	1.20E-06	0.8	[17]
15	C2H6+	7.00E-07	0.7	*
16	C2H7+	7.00E-07	0.7	*
17	C3+	7.00E-07	0.7	*
18	C3H+	7.00E-07	0.7	*
19	C3H2+	7.00E-07	0.7	*
20	c-C3H3+	8.00E-07	1	[18]
21	1-C3H3+	1.15E-07	1	[18]
22	C3H4+	2.95E-06	0.67	[8]
23	C3H5+	7.00E-07	0.7	*
24	C3H6+	7.00E-07	0.7	*
25	C3H7+	1.90E-06	0.67	[4]
26	C3H8+	7.00E-07	0.7	*
27	C3H9+	7.00E-07	0.7	*
28	C4H+	7.00E-07	0.7	*
29	C4H2+	7.00E-07	0.7	*
30	C4H3+	6.20E-07	0.7	[19]
31	C4H4+	7.00E-07	0.7	*
32	C4H5+	8.20E-07	0.7	[21]
33	C4H6+	7.00E-07	0.7	*
34	C4H7+	7.00E-07	0.7	*
35	C4H8+	7.00E-07	0.7	*
36	C4H9+	8.30E-07	0.7	[15]
37	C5H+	7.00E-07	0.7	*
38	C5H2+	7.00E-07	0.7	*
39	C5H3+	9.00E-07	0.7	[1]
40	C5H4+	7.00E-07	0.7	*
41	C5H5+	7.00E-07	0.7	*
42	C5H7+	7.00E-07	0.7	*
43	C5H9+	9.50E-07	0.7	[21]

44	C6H2+	7.00E-07	0.7	*
45	C6H3+	7.00E-07	0.7	*
46	C6H4+	1.10E-06	0.7	[21]
47	C6H5+	1.10E-06	0.7	[21]
48	C6H6+	1.00E-07	0.7	[1]
49	C6H7+	2.40E-06	1.3	[17]
50	C6H11+	7.00E-07	0.7	*
51	C7+	7.00E-07	0.7	*
52	C7H+	7.00E-07	0.7	*
53	C7H2+	7.00E-07	0.7	*
54	C7H3+	7.00E-07	0.7	*
55	C7H4+	7.00E-07	0.7	*
56	C7H5+	7.00E-07	0.7	[1]
57	C7H7+	3.20E-07	0.7	[22]
58	C7H9+	7.00E-07	0.7	*
59	C8H+	7.00E-07	0.7	*
60	C8H2+	7.00E-07	0.7	*
61	C8H3+	7.00E-07	0.7	*
62	C8H4+	7.00E-07	0.7	*
63	C8H5+	7.00E-07	0.7	*
64	C8H6+	7.00E-07	0.7	*
65	C8H7+	1.00E-06	0.7	[21]
66	C8H9+	7.00E-07	0.7	[<u>~</u> ⊥] *
67	C9+	7.00E-07	0.7	*
68	C9H+	7.00E-07	0.7	*
69	C9H2+	7.00E-07	0.7	*
70	C9H3+	7.00E-07 7.00E-07	0.7	*
71	C9H4+	7.00E-07	0.7	*
72	C9H7+	7.00E-07 7.00E-07	0.7	*
73	C9H8+	7.00E-07 7.00E-07	0.7	*
74	N+	4.00E-07	0.58	[20]
75	NH+	4.30E-08	0.5	[19]
76	NH2+	3.00E-07	0.5	[19]
77	NH3+	3.10E-07	0.5	[19]
78	NH4+	1.35E-06	0.6	
78 79	N114+ N2+	2.20E-07	0.39	[2]
80	N2H+	1.00E-07	0.59	[25]
	N2⊓+ CN+	3.40E-07		[9]
81			0.55	[14]
82	HCN+	3.90E-07	0.96	[24]
83	HNC+	1.82E-07	0.96	[24]
84	HCNH+	2.80E-07	0.65	[23]
85	CH2NH+	7.00E-07	0.7	*
86	CH2NH2+	7.00E-07	0.7	
87	CH3NH2+	7.00E-07	0.7	*
88	CH3NH3+	7.00E-07	0.7	*
89	N2H4H+	7.00E-07	0.7	*

90	C2N+	7.00E-07	0.7	*
91	CNC+	7.00E-07	0.7	*
92	HC2N+	7.00E-07	0.7	*
93	HC2NH+	7.00E-07	0.7	*
94	C2H3N+	7.00E-07	0.7	*
95	C2H3NH+	3.30E-07	0.7	[6]
96	C2H5N+	7.00E-07	0.7	*
97	C3N+	7.00E-07	0.7	*
98	HC3N+	1.50E-06	0.6	[7]
99	HC3NH+	1.50E-06	0.58	[7]
100	C3H3N+	7.00E-07	0.7	*
101	C3H3NH+	7.00E-07	0.7	*
102	C3H5N+	7.00E-07	0.7	*
103	C3H5NH+	4.70E-07	0.7	[6]
104	C4N+	7.00E-07	0.7	* []
105	HC4N+	7.00E-07	0.7	*
106	HC4NH+	7.00E-07	0.7	*
107	C4H3N+	7.00E-07	0.7	*
108	C4H3NH+	7.00E-07	0.7	*
109	C4H5N+	7.00E-07	0.7	*
110	C4H5NH+	7.00E-07	0.7	*
111	C5N+	7.00E-07	0.7	*
1112	HC5N+	7.00E-07 7.00E-07	0.7	*
113	HC5NH+	7.00E-07 7.00E-07	0.7	*
113	C5H3N+	7.00E-07 7.00E-07	0.7	*
115	C5H3NH+	7.00E-07 7.00E-07	0.7	*
116	C5H5N+	7.00E-07 7.00E-07	0.7	*
117	C5H5NH+	7.00E-07 7.00E-07	0.7	*
117	HC6NH+	7.00E-07 7.00E-07	0.7	*
119	C6H3NH+	7.00E-07 7.00E-07	0.7	*
120	C6H5NH+	7.00E-07 7.00E-07	0.7	*
120	C6H7N+	7.00E-07 7.00E-07	0.7	*
121	C6H7NH+	7.00E-07 7.00E-07	0.7	*
123	Con/Nn+	7.00E-07 7.00E-07	0.7	*
				*
124	HC7N+	7.00E-07	0.7	*
125	HC7NH+	7.00E-07	0.7	*
126	C7H3N+	7.00E-07	0.7	*
127	C7H3NH+	7.00E-07	0.7	*
128	C2N2+	7.00E-07	0.7	
129	C2N2H+	7.00E-07	0.7	*
130	C4N2+	7.00E-07	0.7	*
131	C4N2H+	7.00E-07	0.7	*
132	C6N2+	7.00E-07	0.7	*
133	C6N2H+	7.00E-07	0.7	*
134	H2O+	2.60E-07	0.7	[10]
135	H3O+	4.32E-07	0.5	[11]

136	CH3OH2+	8.65E-07	0.63	[26]
137	CH3CHOH+	7.00E-07	0.7	*

Refs-S2.txt

- 1. Abouelaziz, H., Gomet, J. C., Pasquerault, D., Rowe, B. R., Mitchell, J. B. A. 1993. Measurements of C₃H₃⁺, C₅H₃⁺, C₆H₆⁺, C₇H₅⁺, and C₁₀H₈⁺ dissociative recombination rate coefficients. J. Chem. Phys. 99, 237-243.
- 2. Alge, E., Adams, N. G., Smith, D. 1983. Measurements of the dissociative recombination coefficients of O₂⁺, NO⁺ and NH₄⁺ in the temperature range 200-600 K. J. Phys. B: At. Mol. Phys. 16, 1433-1444.
- 3. Amitay, Z., 9 colleagues 1996. Dissociative recombination of CH⁺: Cross section and final states. Phys. Rev. A 54, 4032-4050.
- 4. Ehlerding, A., Arnold, S. T., Viggiano, A. A., Kalhori, S., Semaniak, J., Derkatch, A. M., Rosén, S., af Ugglas, M., Larsson, M. 2003. Rates and products of the dissociative recombination of C₃H₇⁺ in low-energy electron collisions. J. Phys. Chem. A 107, 2179-2184.
- 5. Ehlerding, A., Hellberg, F., Thomas, R., Kalhori, S., Viggiano, A. A., Arnold, S. T., Larsson, M., af Ugglas, M. 2004. Dissociative recombination of C₂H⁺ and C₂H₄⁺: Absolute cross sections and product branching ratios. Phys. Chem. Chem. Phys. 6, 949-954.
- 6. Geoghegan, M., Adams, N. G., Smith, D. 1991. Determination of the electron-ion dissociative recombination coefficients for several molecular ions at 300 K. J. Phys. B At. Mol. Opt. Phys. 24, 2589-2599.
- 7. Geppert, W. D., 12 colleagues 2004a. Dissociative recombination of nitrile ions: DCCCN⁺ and DCCCND⁺. Astrophys. J. 613, 1302-1309.
- 8. Geppert, W. D., Thomas, R., Ehlerding, A., Hellberg, F., Österdahl, F., af Ugglas, M., Larsson, M. 2004b. Dissociative recombination of C₃H₄⁺: preferential formation of the C₃H₃ radical. Int. J. Mass Spectrom. 237, 25-32.
- 9. Geppert, W. D., 9 colleagues 2004c. Dissociative recombination of N₂H⁺: Evidence for fracture of the N-N bond. Astrophys. J. 609, 459-464.
- 10. Jensen, M. J., Bilodeau, R. C., Heber, O., Pedersen, H. B., Safvan, C. P., Urbain, X., Zajfman, D., Andersen, L. H. 1999. Dissociative recombination and excitation of H₂O⁺ and HDO⁺. Phys. Rev. A 60, 2970-2976.
- 11. Jensen, M. J., Bilodeau, R. C., Safvan, C. P., Seiersen, K., Andersen, L. H., Pedersen, H. B., Heber, O. 2000. Dissociative recombination and excitation of H₃O⁺, HD₂O⁺, and D₃O⁺. Astrophys. J. 543, 764-774.
- 12. Kalhori, S., Viggiano, A. A., Arnold, S. T., Rosén, S., Semaniak, J., Derkatch, A. M., af Ugglas, M., Larsson, M. 2002. Dissociative recombination of C₂H₃⁺. Astron. Astrophys. 391, 1159-1165.
- 13. Larson, Å., 10 colleagues 1998. Branching fractions in dissociative recombination of CH₂⁺. Astrophys. J. 505, 459-465.
- 14. Le Padellec, A., 9 colleagues 1999. Storage ring measurements of the dissociative recombination and excitation of the cyanogen ion CN^+ ($X^1\Box^+$ and a $^3\Box$, \Box =0). J. Chem. Phys. 110, 890-901.
- 15. Lehfaoui, L., Rebrion-Rowe, C., Laubé, S., Mitchell, J. B. A., Rowe, B. R. 1997. The dissociative recombination of hydrocarbon ions. I. Light alkanes. J. Chem. Phys. 106, 5406-5412.

- 16. McCall, B. J., 2004. Dissociative recombination of rotationally cold H₃⁺. Phys. Rev. A 70, 052716.
- 17. McLain, J. L., Poterya, V., Molek, C. D., Babcock, L. M., Adams, N. G. 2004. Flowing afterglow studies of the temperature dependencies for dissociative recombination of ${\rm O_2}^+$, ${\rm CH_5}^+$, ${\rm C_2H_5}^+$, and ${\rm C_6H_7}^+$ with electrons. J. Phys. Chem. A 108, 6704-6708.
- 18. McLain, J. L., Poterya, V., Molek, C. D., Jackson, D. M., Babcock, L. M., Adams, N. G. 2005. $C_3H_3^+$ isomers: Temperature dependencies of production in the H_3^+ reaction with allene and loss by dissociative recombination with electrons. J. Phys. Chem. A 109, 5119-5123.
- 19. Mitchell, J. B. A. 1990. The dissociative recombination of molecular ions. Phys. Rep. 186, 215-248.
- Nahar, S. N., Pradhan, A. K. 1997. Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and nitrogen. Astrophys. J. Suppl. Ser. 111, 339-355
- 21. Rebrion-Rowe, C., Lehfaoui, L., Rowe, B. R., Mitchell, J. B. A. 1998. The dissociative recombination of hydrocarbon ions. II. Alkene and alkyne derived species. J. Chem. Phys. 108, 7185-7189.
- 22. Rebrion-Rowe, C., Mostefaoui, T., Laubé, S., Mitchell, J. B. A. 2000. The dissociative recombination of hydrocarbon ions. III. Methyl-substituted benzene ring compounds. J. Chem. Phys. 113, 3039-3045.
- 23. Semaniak, J., 10 colleagues 2001. Dissociative recombination of HCNH⁺: Absolute cross-sections and branching ratios. Astrophys. J. Suppl. Ser. 135, 275-283.
- 24. Sheehan, C., Le Padellec, A., Lennard, W. N., Talbi, D., Mitchell, J. B. A. 1999. Merged beam measurement of the dissociative recombination of HCN⁺ and HNC⁺. J. Phys. B At. Mol. Opt. Phys. 32, 3347-3360.
- 25. Sheehan, C. H., St.-Maurice, J.-P. 2004. Dissociative recombination of N₂⁺, O₂⁺, and NO⁺: Rate coefficients for ground state and vibrationally excited ions. J. Geophys. Res. 109, A03302.
- 26. UMIST database for astrochemistry 2006. http://www.udfa.net.