Scalable Algorithms for Association Mining

Ivar Blohm, Erik Ström, Oskar Åsbrink

Lattice Prerequisites — Important Concepts:

- Partial order
- X [Y (x is covered by y)
- Upper/Lower bound
- Top/Bottom elements
- Atoms

Prefix-Based (Equivalence) Classes

- p(X, k) = X[1 : k], the k length prefix of X
- θ_k := equivalence relation defined by the k-length prefix function
- Two itemsets are considered equivalent if they have the same k-length prefix
- An equivalence class is the set of itemsets that are equivalent under θ_k

Prefix-Based (Equivalence) Classes

(a) Equivalence classes induced by θ_1

(b) Equivalence classes induced by θ_2 on [A]

Support Counting

- $\mathcal{L}(X)$ denotes, where X is an atom, the *tid-list* of X.
- We can calculate the support of $(A \cap B)$ by considering $\mathcal{L}(A) \cap \mathcal{L}(B)$

tid-list for atoms A, C, ..., W

Support Counting

$$\sigma(A \cap B) = \frac{|\mathcal{L}(A) \cap \mathcal{L}(B)|}{\text{(total transactions)}}$$

Bottom-up Search

```
Bottom-Up(S):

for all atoms A_i \in S do

T_i = \emptyset;

for all atoms A_j \in S, with j > i do

R = A_i \cup A_j;

\mathcal{L}(R) = \mathcal{L}(A_i) \cap \mathcal{L}(A_j);

if \sigma(R) \geq min\_sup then

T_i = T_i \cup \{R\}; \mathcal{F}_{|R|} = \mathcal{F}_{|R|} \cup \{R\};

end

end

for all T_i \neq \emptyset do Bottom-Up(T_i);
```

ECLAT uses prefixed based equivalence relation θ_1 along with bottom-up search.

The recursive step

Properties of ECLAT

- Horizontal vs vertical tid-list
- Requires only a few database scans
- Recursive step in algorithm decompose the lattice into sublattices

Transaction No Products				
1	beer, wine, cheese			
2	beer, potato chips			
3	eggs, flour, butter, cheese			
4	eggs, flour, butter, beer, potato chips			
5	wine, cheese			
6	potato chips			
7	eggs, flour, butter, wine, cheese			
8	eggs, flour, butter, beer, potato chips			
9	wine, beer			
10	beer, potato chips			
11	butter, eggs			
12	beer, potato chips			
13	flour, eggs			
14	beer, potato chips			
15	eggs, flour, butter, wine, cheese			
16	beer, wine, potato chips, cheese			
17	wine, cheese			
18	beer, potato chips			
19	wine, cheese			
20 beer, potato chips				

Product	Transaction ID set	
Wine	1, 5, 7, 9, 15, 16, 17, 19	
Cheese	1, 3, 5, 7, 15, 16, 17, 19	
Beer	1, 2, 4, 8, 9, 10, 12, 14, 16, 18, 20	
Potato Chips	2, 4, 6, 8, 10, 12, 14, 16, 18, 20	
Eggs	3, 4, 7, 8, 11, 13, 15	
Flour	3, 4, 7, 8, 13, 15	
Butter	3, 4, 7, 8, 11, 15	

(b) Vertical tid-list

(a) Horizontal data structure

Market Basket optimization data

2	burgers, meatballs, eggs					
3	chutney					
4	turkey,avocado					
5	mineral water,milk,energy bar,whole wheat rice,green tea					
6	low fat yogurt					
7	whole wheat pasta, french fries					
8	soup,light cream,shallot					
9	frozen vegetables,spaghetti,green tea					
10	french fries					
11	eggs,pet food					
12	cookies					
13	turkey,burgers,mineral water,eggs,cooking oil					
14	spaghetti,champagne,cookies					
15	mineral water,salmon					
16	mineral water					
17	shrimp,chocolate,chicken,honey,oil,cooking oil,low fat yogurt					
18	turkey,eggs					

Instacart market basket data

	order_id	product_id	add_to_cart_order	reordered
0	1	49302	1	1
1	1	11109	2	1
2	1	10246	3	0
3	1	49683	4	0
4	1	43633	5	1
5	1	13176	6	0
6	1	47209	7	0
7	1	22035	8	1

Algorithm performance across different libraries, 7501 transactions, support=0.05:

- Naïve python eclat (frequent itemsets only): 3.42s
- PyECLAT: Wall time: 16.2 s
- pyfpgrowth: Wall time: 49.5 s
- apyori: <0.0005s

Why?

- → Different levels of optimization
- → Libraries calculate more or less things
- → Python is slow

Results from the article

Execution time - ECLAT implementation

(b) Time of executions given different support

Performance considerations

- If the tid-list is stored in binary format, calculating support amounts to applying a boolean and operation on the respective lists!
- ullet Utilize the fact that eclat can be applied to arbitrary equivalence classes under θ_k
 - We can choose k so that our itemsets fit in memory!
 - We are not restricted in how we compute the initial F_k we use as input!

For example:

- Recursion overhead is too expensive?
 - Precompute F_k for some k
- Converting database from horizontal layout is too expensive?
 - Precompute F_k for some k

Conclusions

- State-of-the-art algorithm and optimized libraries
- Pros and cons with ECLAT
- What could we have done differently?

References

- 1. Scalable Algorithms for Association Mining (-> ECLAT) (https://dl.acm.org/doi/10.1109/69.846291)
- 2. www.kaggle.com/code/annadurbanova/market-basket-optimization-eclat-prac/data
- 3. www.kaggle.com/c/instacart-market-basket-analysis/data
- 4. https://towardsdatascience.com/the-eclat-algorithm-8ae3276d2d17 (examples (a), (b) on slide 8)