

Funções reais de n variáveis reais: diferenciabilidade

- 1. Usando a definição de derivada parcial num ponto, determine:
 - (a) $f_x(0,0)$ e $f_y(-1,1)$ para $f(x,y) = 2x^2y$;
 - (b) $f_y(0,0)$, $f_y(0,1)$ e $f_x(1,1)$ para $f(x,y) = \begin{cases} 2y & \text{se } x < y, \\ -x & \text{se } x > u. \end{cases}$
- 2. Determine as derivadas parciais de primeira ordem das funções definidas por

(a)
$$f(x,y) = 5x^3 + 2xy - y^2$$

(a)
$$f(x,y) = 5x^3 + 2xy - y^2$$
 (g) $f(x,y,z) = y^2 + x^2 \cos(zy)$

(b)
$$f(x,y) = xe^y + y \sin(xy^2)$$
 (h) $f(x,y,z) = \sin(xe^{yz})$

(h)
$$f(x,y,z) = \operatorname{sen}(x e^{yz})$$

(c)
$$f(x,y) = \log(x^2 + y^2)$$

(i)
$$f(x, y, z) = \cos y + \log x + e^{yz}$$

(d)
$$f(x,y) = y^3 + x^2 e^x$$

(j)
$$f(x, y, z) = (y^2 + z^3)^x$$

(e)
$$f(x,y) = \operatorname{sen}(xy)$$

(k)
$$f(x, y, z) = \sqrt{x^2 y z^3}$$

(f)
$$f(x,y) = \arctan\left(\frac{y}{x}\right)$$

(1)
$$f(x, y, z) = y^2 \log(1 + x^2)e^z$$
.

3. Calcule as derivadas parciais de primeira ordem das funções definidas por

(a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(b)
$$f(x,y) = \frac{2xy^2}{x^2 + y^4}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(c)
$$f(x,y) = \frac{xy}{x+y}$$
 se $x + y \neq 0$ e $f(x,y) = x$ se $x + y = 0$;

(d)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(e)
$$f(x,y) = \frac{y}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$.

4. Calcule as derivadas parciais de segunda ordem das funções definidas por

(a)
$$f(x,y) = e^{x^2 - y^2}$$
;

(b)
$$f(x,y) = \log(1 + x^2 + y^2);$$

(c)
$$f(x, y, z) = \cos(xyz)$$
;

(d)
$$f(x, y, z) = y^2 \log x + xe^{xz}$$

5. Mostre que as funções definidas a seguir verificam as condições indicadas:

(a)
$$f(x,y) = \cos\left(\frac{y}{x}\right) + \operatorname{tg}\left(\frac{y}{x}\right)$$
, $x^2 f_{x^2} + 2xy f_{xy} + y^2 f_{y^2} = 0$;

(b)
$$g(x,y) = x e^{-y/x}$$
, $2y(g_x + g_y) = x^2 g_{x^2} + y^2 g_{y^2}$;

(c)
$$h(x,y) = e^{-4x} \operatorname{sen}(\sqrt{2}y), \quad h_x - 2h_{y^2} = 0;$$

(d)
$$p(x,y) = \cos(x-y) + \log(x+y)$$
, $p_{x^2} - p_{y^2} = 0$;

(e)
$$u(x, y, z) = x + \frac{x - y}{y - z}$$
, $u_x + u_y + u_z = 1$.

6. Mostre que a função $g(x,t)=2+e^{-t}{\rm sen}x,$ satisfaz a equação do calor

$$\frac{\partial g}{\partial t} = \frac{\partial^2 g}{\partial x^2}.$$

7. Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cujas derivadas parciais de primeira ordem sejam:

(a)
$$f_x(x,y) = 2x^3$$
, $f_y(x,y) = yx^2 + x$;

(b)
$$f_x(x,y) = x \operatorname{sen} y$$
, $f_y(x,y) = y \operatorname{sen} x$.

- 8. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$
 - (a) Determine f_x e f_y .
 - (b) Calcule $f_{xy}(0,0)$ e $f_{yx}(0,0)$.
 - (c) Explique porque não há contradição com o teorema de Schwarz.
- 9. Considere a função definida por $f(x,y)=\left\{ egin{array}{ll} \dfrac{xy^2}{x+y} & \mbox{se } x \neq -y, \\ 0 & \mbox{se } x=-y. \end{array} \right.$
 - (a) Calcule $f_y(x,0)$ e $f_x(0,y)$.
 - (b) Verifique que $f_{xy}(0,0) \neq f_{yx}(0,0)$.
- 10. Usando a definição, calcule a derivada direccional $\frac{\partial f}{\partial v}(a)$ da função f no ponto a segundo o vector v, para:

(a)
$$f(x,y) = xy$$
, $v = (1,1)$, $a = (1,0)$;

(b)
$$f(x,y) = x^2 + y^2$$
, $v = (-1,1)$, $a = (1,1)$;

(c)
$$f(x,y) = sen(xy)$$
, $v = (1,1)$, $a = (0,0)$;

- (d) $f(x,y) = e^{x^2+y^2}$, v = (3,4), a = (1,1);
- (e) $f(x,y) = \begin{cases} x+y & \text{se } x < y, \\ \frac{1}{2}y & \text{se } x \ge y, \end{cases}$ v = (-1,2), a = (0,0);
- (f) $f(x,y,z) = x^2 + xy + z^2$, v = (1,2,1), a = (1,2,-1);
- (g) $f(x, y, z) = xyz^2$, v = (1, 1), a = (1, 0, 1).
- 11. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x, y, z) = \begin{cases} \frac{|xy| z}{x^2 + y^2 + z^2} & \text{se } (x, y, z) \neq (0, 0, 0), \\ 0 & \text{se } (x, y, z) = (0, 0, 0). \end{cases}$
 - (a) Calcule $\frac{\partial f}{\partial v}(0,0,0)$ para qualquer $v \in \mathbb{R}^3$.
 - (b) Usando o resultado da alínea anterior, calcule $f_x(0,0,0)$, $f_y(0,0,0)$ e $f_z(0,0,0)$.
- 12. Calcule $\frac{\partial f}{\partial v}(0,0)$ para qualquer $v \in \mathbb{R}^2$, onde:

(a)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(b)
$$f(x,y) = \frac{xy^3}{x^2 + y^6}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(c)
$$f(x,y) = \frac{xy}{x+y}$$
 se $x \neq -y$ e $f(x,y) = 0$ se $x = -y$;

(d)
$$f(x,y) = 0$$
 se $x = 0 \lor y \neq x^2$ e $f(x,y) = 1$ se $x \neq 0 \land y = x^2$.

13. Seja $f(x,y) = x^3 + 3x^2 + 4xy + y^2$.

Mostre que $\frac{\partial f}{\partial v}\left(\frac{2}{3}, -\frac{4}{3}\right) = 0$ para todo $v \in \mathbb{R}^2$.

14. Em cada alínea, use a definição para estudar a diferenciabilidade em (0,0) da função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida como se indica:

(a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
; (b) $f(x,y) = \sqrt{|xy|}$;

(c)
$$f(x,y) = |xy|$$
; (d) $f(x,y) = \max\{|x|,|y|\}$;

(e)
$$f(x,y) = |x| + |y|$$
; (f) $f(x,y) = x^2 + xy - y^2$.

15. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função definida por $f(x,y) = \left\{ \begin{array}{cc} x+y & \text{se } xy=0; \\ & 1 & \text{se } xy \neq 0. \end{array} \right.$

Estude a continuidade e a diferenciabilidade de f em (0,0).

- 16. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} xy & \text{se } x \ge 0, \\ -x^2 & \text{se } x < 0. \end{cases}$
 - (a) Mostre que f é diferenciável em (0,0).
 - (b) Verifique que não existe $\frac{\partial f}{\partial x}(0, b)$, sempre que $b \neq 0$.
- 17. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{xy}{x+y} & \text{se } x+y \neq 0, \\ 0 & \text{se } x+y = 0. \end{cases}$ Estude a diferenciabilidade de f.
- 18. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função definida por $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$
 - (a) Mostre que f possui derivadas parciais de 1^a ordem em todos os pontos.
 - (b) Averigue a existência de derivadas direccionais de f na origem.
 - (c) Estude a continuidade de f.
 - (d) Diga se f é diferenciável na origem.
- 19. Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2} & \text{se } (x,y) \neq (0,0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$.
 - (a) Mostre que existe $\frac{\partial f}{\partial v}(0,0)$ segundo qualquer vector $v\!\in\!\mathbb{R}^2.$
 - (b) Verifique que f não é contínua em (0,0).
 - (c) Diga se f é diferenciável em (0,0).
- 20. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

4

- (a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ e verifique que não são contínuas em (0,0).
- (c) Verifique que f é diferenciável em (0,0).