PRACTICE FINAL EXAM MA511

EACH QUESTION IS WORTH 10 POINTS. CIRCLE EXACTLY ONE ANSWER CHOICE FOR EACH PROBLEM.

- 1. Which of the following sets of vectors are linearly independent?
 - i) $(0,0,\pi),(0,-1,1),(0,2,3)$
 - ii) (1,2,3), (4,5,6), (7,8,9)
 - iii) (1,0,0), (0,0,0), (0,0,1).

- A. i)
- B. ii)
- C. iii)
- D. i) and iii)
- E. None of these

• 2. Find the inverse of the matrix $L = \begin{pmatrix} 2 & -1 \\ 8 & -5 \end{pmatrix}$.

A.
$$\begin{pmatrix} 5 & -1 \\ 4 & -1 \end{pmatrix}$$

B.
$$\begin{pmatrix} \frac{5}{2} & -\frac{1}{2} \\ 4 & 1 \end{pmatrix}$$

C.
$$\begin{pmatrix} \frac{5}{2} & 1\\ 4 & 2 \end{pmatrix}$$

A.
$$\begin{pmatrix} 5 & -1 \\ 4 & -1 \end{pmatrix}$$
 B. $\begin{pmatrix} \frac{5}{2} & -\frac{1}{2} \\ 4 & 1 \end{pmatrix}$ C. $\begin{pmatrix} \frac{5}{2} & 1 \\ 4 & 2 \end{pmatrix}$ D. $\begin{pmatrix} \frac{5}{2} & -\frac{1}{2} \\ 4 & -1 \end{pmatrix}$ E. L

- 3 . Suppose that the system Bx=b, where B is a $n\times n$ matrix and $b\in\mathbb{R}^n$, has no solution. Which of the following statements are true?
 - i) B does not have 0 as an eigenvalue.
 - ii) The system Bx=0 has infinitely many solutions.
 - iii) The rank of B is less than n.

- A. iii) only
- B. i) and ii)
- C. i) and iii)
- D. ii) and iii)
- E. All of these

• 4. Find the rank of the matrix
$$C = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & -2 & -4 & -6 \\ 0 & \sqrt{2} & 2\sqrt{2} & 3\sqrt{2} \end{pmatrix}$$
.

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

- 5. Let $a \in \mathbb{R}^7$ be a unit vector and let $P = aa^T$ be the projection matrix onto the line

 $l = \{sa, \;\; s \in \mathbb{R}\}.$ Then, the eigenvalues of P are

- $\bullet\,$ A. 1 and 7
- $\bullet\,$ B. 0 and 7
- C. 0 and 1
- D. 0, 1, and 7
- E. 0, 1, and $\sqrt{7}$

- 6. Let D be a 5×5 matrix such that $D^2 = 0$. Then, e^{-Dt} is equal to
- A. $e^{\mathbb{I}t}$
- B. $e^{-\mathbb{I}t}$
- C. $e^{\mathbb{I}+Dt}$
- D. $\mathbb{I} Dt$
- E. $\mathbb{I} + Dt$

• 7. The system $\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

- A. does not have any nonzero solution
- B. has only periodic solutions
- C. has only unbounded solutions
- D. has only solutions that decay to 0 as $t \to \infty$
- E. has some unbounded solutions

• 8. $\lambda = 0$ is an eigenvalue of $E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$. Find a basis for the eigenspace S_0 .

A.
$$\begin{pmatrix} 1\\4\\7 \end{pmatrix}$$
, $\begin{pmatrix} 2\\5\\8 \end{pmatrix}$

A.
$$\begin{pmatrix} 1\\4\\7 \end{pmatrix}$$
, $\begin{pmatrix} 2\\5\\8 \end{pmatrix}$ B. $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 4\\5\\6 \end{pmatrix}$ C. $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ D. $\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$

C.
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

D.
$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

- 9. Let V and W be subspaces of $\mathcal{C}[0,1]$, the space of continuous functions on the interval [0,1]. If dim V=13, dim W=12, and dim $V\cap W=7$, then dim (V+W)
- A. =18
- B. =1
- C. =25
- D. =20
- E. cannot be determined

- 10. Let F be a singular $n \times n$ matrix. Which of the following is <u>not</u> necessarily true for F?
- A. $\det e^F \neq 0$
- B. $det(F + \mathbb{I}) = 1 + det F$
- C. F is unitarily similar to an upper triangular matrix
- D. $\det(Fe^F) = \frac{\det F}{\det(e^{-F})}$
- E. rank $(FF^T) < n$

- 11. Let H be a $n \times n$ (real) symmetric matrix. Which of the following statements is false?
- A. H is unitarily similar to a diagonal matrix
- B. H has an orthonormal set of n eigenvectors
- C. ||Hx|| = ||x|| for all $x \in \mathbb{R}^n$
- D. $\mathcal{N}(H)$ is the orthogonal complement of $\mathcal{C}(H)$
- ullet E. H has only real eigenvalues

• 12. A Jordan canonical form for $K = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
B.
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$
C.
$$\begin{pmatrix}
3 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$
D.
$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$
E.
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

- 13. Let $r \in \mathbb{R}$ satisfy 0 < r < 1. Then, the norm of the matrix $\begin{pmatrix} r & 1 \\ -1 & r \end{pmatrix}$ is A. 1 B. $\frac{1+r}{1-r}$

 - C. $\sqrt{1+r^2}$
 - D. r
 - E. 1 + r

- 14. The matrix $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ is
 - A. indefinite B. positive semidefinite negative definite
- C. positive definite
- D.

E. negative semidefinite

• 15. Determine which of the following functions $T: \mathcal{P}_4 \longrightarrow \mathcal{P}_2$ are linear

a)
$$T(p) = \frac{d^2p}{dt^2}$$

b)
$$T(p) = t \frac{d^3p}{dt^3}$$

transformations:
a)
$$T(p) = \frac{d^2p}{dt^2}$$
b) $T(p) = t \frac{d^3p}{dt^3}$
c) $T(p) = t + \frac{d^3p}{dt^3}$

- A. a) only
- B. a) and b)
- C. a) and c)
- D. All of these
- E. None of these

- 16. Determine which of the following subsets W of $V = \mathcal{C}[-\pi,\pi]$ are subspaces (V is the vector space of continuous functions defined on the interval $[-\pi, \pi]$:

 - a) $W = \{ f \in V : f(0) = 0 \}$ b) $W = \{ f \in V : f(0) = f(1) \}$ c) $W = \{ f \in V : \int_0^1 f(t) dt = 0 \}$

- A. a) only
- B. a) and b)
- C. a) and c)
- D. All of these
- E. None of these

- 17. Let $V = \mathcal{P}_5$ and $W = \{p \in V : p(-1) = 0 \text{ and } p'(2) = 0\}$. Then, the dimension of W is
- A. 2
- B. 3
- C. 4
- D. 5
- E. 6

- 18. Consider the vector space $V = \mathcal{C}[0,1]$ with the inner product $(v,w) = \int_0^1 v(t) \, w(t) \, dt$. If you apply Gram-Schmidt orthonormalization to $v_1(t) = 1$ and $v_2(t) = t^2$, then v_2 is replaced by what function?
- A. t^2
- B. $\frac{3}{2}\sqrt{5}\left(t^2 \frac{1}{3}\right)$
- C. $t^2 \frac{1}{3}$
- D. $t^2 \frac{2}{3}$
- E. $\sqrt{5} \left(t^2 \frac{2}{3} \right)$

• 19. The singular values of $\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ are

- A. 0, i, and -i
- B. 0, -1, and -1
- C. 1 and 6
- D. 1 and $\sqrt{6}$
- \bullet E. 1 and 1

• 20. Find the inverse of the matrix A,

$$A = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & e^{2\pi i/3} & e^{4\pi i/3}\\ 1 & e^{4\pi i/3} & e^{2\pi i/3} \end{pmatrix}.$$

- \bullet A. A is singular
- B. $AA^H A^H A$
- C. A
- $\bullet\,$ D. A^H
- E. None of these