

Comunicações por Computador Cap 5 - Protocolos TCP/IP

Universidade do Minho
Grupo de Comunicações por Computador
Departamento de Informática

- Nenhuma das tecnologias existentes de rede local (LAN) é adequada para satisfazer todos os requisitos de comunicações das aplicações.
- Nenhuma dessas tecnologias é totalmente escalável:
 - Os endereços não têm estrutura, resultando em:
 - dificuldade de administração e encaminhamento
 - Não há mecanismos de encaminhamento nos protocolos
 - Os PDU têm comprimentos limitados;
 - Os métodos de acesso não suportam grandes distâncias

Questões:

Será que para existir um serviço de rede único e global (universal) é necessário adoptar a mesma tecnologia de rede em todos os locais?

Ou será possível oferecer serviços de conectividade universal mesmo adoptando diferentes tecnologias locais?

-->É possível a conectividade global entre redes com diferentes tecnologias locais introduzindo uma camada protocolar superior independente daqueles:

A camada protocolar de rede, também chamada de interligação de redes ou de internetworking

O *internetworking* baseia-se na utilização de funcionalidades específicas de rede (realizadas tanto em *hardware* como em *software*) que proporcionam um serviço global de interligação de redes locais (LAN) heterogéneas:

- Software: protocolos de rede -internetworking
- Hardware: encaminhadores routers

Funções principais de um router

- 1 Escolha do melhor caminho (*routing*)
 - Consiste na construção da sua própria tabela de encaminhamento (routing table) que traduz o próximo salto do melhor caminho de um PDU para o seu destino
 - A tabela pode ser populada estática ou dinamicamente através de protocolos de encaminhamento executados entre routers

2 Entrega (*forwarding*)

 Consiste na consulta da tabela de encaminhamento para decidir para onde enviar os PDU recebidos, i.e., o próximo salto: endereço de entrega/interface de saída

Características de um *router*

- Opera ao nível da camada protocolar de rede
- Dispõe de múltiplos interfaces de rede
 - ex: interliga diferentes redes IP e assegura a sua interconectividade
 - cada interface tem uma identificação (endereço) de rede distinta

Internetworking

Introdução

Características:

- Protocolos/tecnologias suportadas
- Capacidade de processamento
- Memória, buffers internos
- Técnicas de gestão dos buffers
- etc ...

Internetworking

Introdução

• Exemplo simplificado (router) com múltiplas filas de espera por interface:

Router

- Decidir como os pacotes são tratados internamente no equipamento
- Garantir que se processa x pacotes/tempo numa dada fila de espera
- etc

Universidade do Minho Escola de Engenharia Departamento de Informática

Introdução

- As WAN s\u00e3o redes ponto-a-ponto, store-and-forward
 - o número de circuitos, **c**, necessários para a interligação total de N estações, seria:

$$\mathbf{c} = \frac{\mathsf{N}(\mathsf{N}\text{-}1)}{2}$$

- para reduzir as interligações utilizam-se comutadores de tráfego interligados por um (menor) número de circuitos ponto-a-ponto de alta capacidade multiplexando tráfego
- os circuitos de acesso à WAN são ponto-a-ponto e podem usar diferentes protocolos de acesso

Universidade do Minho Escola de Engenharia Departamento de Informática

Introdução

rede de comutação de pacotes (store-and-forward packet switching network)

- **Estações**
- **Comutadores de pacotes**
- Circuitos do core da rede
- Circuitos de acesso
- Pacotes de A para G
- Pacotes de B para P

- Como são descobertas as rotas ?
- Tipo de encaminhamento de tráfego?
- •Qualidade do serviço prestado?
 - perdas
 - ordenação
 - atrasos
 - recuperação de erros

Introdução

- Rede store-and-forward de datagramas:
 - datagramas da mesma associação seguem rotas independentes (são comutados independentemente)
 - datagramas podem chegar fora da ordem de partida
 - Exemplo: associação entre estações A e G ordem de chegada dos datagramas: 1,2,3,5,4,6
- Rede store-and-forward de circuitos virtuais:
 - datagramas seguem a mesma rota
 - datagramas chegam sempre pela ordem de partida
 - Exemplo: associação entre estações B e P por circuito virtual

Universidade do Minho
Escola de Engenharia

to de Informática

Introdução

Ex. Redes

Ex. Redes MPLS,ATM

Função	Redes de Datagramas	Redes de Circuitos Virtuais (VC)
Estabelecimento prévio da conexão (ou circuito)	Não é necessário	É necessário
Endereçamento	Endereço de origem e destino em cada PDU	PDUs contêm o identificador do circuito
Routing / Forwardin g	PDUs são encaminhados de forma independente entre si	A rota é estabelecida inicialmente e todos os PDUs utilizam essa rota
Informação de estado	não é necessária (para best-effort)	necessária por VC
Falha de um elemento de rede	não é normalmente problemática	todos os VC são terminados
Controlo de tráfego e Controlo de congestão	difícil	fácil, se os recursos atribuídos são suficientes

Internetworking

Introdução

- O protocolo de internetworking mais utilizado é o Internet Protocol (IP), da pilha protocolar TCP/IP
- No IP o datagrama é o termo normalmente utilizado para designar a unidade de dados da rede:

Datagrama: unidade de dados que é encaminhada independentemente (de outras que a precedam ou sucedam) pela rede, sem garantia de entrega [usualmente designado por pacote]

 processo de entrega dos datagramas IP é normalmente baseado no endereço destino do datagrama e nas tabelas de routing presentes nos diversos routers e hosts

TCP/IP arquitectura

Características

- Aberta
 - especificações publicadas e bem conhecidas
 - abertura completa ao desenvolvimento de código
- Portável
 - independência do sistema operativo e plataforma
 - quaisquer sistemas podem comunicar
- Estável e Robusta
 - normas testadas ao longo de quatro décadas e fixas
 - mas ainda em desenvolvimento e aperfeiçoamento
- Suporte global
 - incluida na globalidade dos sistemas de computação

O modelo e os protocolos: camadas

Universidade do Minho Escola de Engenharia Departamento de Informática

Encapsulamento protocolar

A hierarquia protocolar por camadas traduz-se no encapsulamento dos PDU:

- Na origem, o PDU da camada N+1 é inserido no campo de dados do PDU da camada N
- No destino, o PDU da camada N é recuperado do campo de dados do PDU da camada N-1

Estação origem

 $\mathbf{C}\mathbf{x} = \text{cabeçalho de } \mathbf{x}$

Source

----- MAC HEADER -----

Frame size is 67 (0x0043) bytes

Destination = station 0050FC5CE9AB, pc4

= station 0050FC5CE9B0, pc2

Encapsulamento protocolar

Exemplo: aplicação FTP

```
Ethertype = 0800 (IPv4)
----- IP HEADER -----
Version = 4, Header length = 20 bytes
Diff Serv Field = 0xC0 (DSCP 0x30: Class Selector 6; ECN: 0x00)
 1 1 0 0 0 0 . . = DSCP: Class Selector 6 (0x30)
 . . . . . 0 . = ECN-Capable Transport (ECT): 0
 . . . . . . . 0 = ECN-CE: 0
Total length = 53 bytes
Identification = 5974
Flags = 0x4
  . 1 . . . . . = don't fragment
  . . 0 . . . . = last fragment
Fragment offset = 0 bytes
Time to live = 60
Protocol = 6 (TCP)
Header checksum = AFAO (correct)
Source address = [192.168.89.12], pc2.labcom.uminho.pt
Destination address = [192.168.89.14], pc4.labcom.uminho.pt
No options
```

```
---- TCP HEADER -----
Source port = 1062
Destination port = 21 (FTP)
Sequence number = 532928015
Acknowledgment number = 549440112
Data offset = 20 bytes
Flags = 0x18
 . . 0 . . . . = (No urgent pointer)
 . . . 1 . . . . = Acknowledgment
 . . . . 1 . . . = Push
 . . . . . 0 . . = (No reset)
 . . . . . . 0 . = (No SYN)
 . . . . . . . 0 = (No FIN)
Window = 33580
Checksum = CE68 (correct)
No TCP options
[13 byte(s) of data]
 ----- FTP data -----
PASS Visita<0D0A>
```

IP - Internet Protocol

- É um protocolo de interligação de redes
 - paradigma protocolar do melhor esforço (best effort):
 --> o protocolo esforça-se por entregar os datagramas ao destino mas não o garante (datagramas podem perder-se)
- Versões: IPv4 (em uso generalizado), IPv6
- Principais funções:
 - Endereçamento e encaminhamento
 - incorpora um esquema de endereçamento universal
 - fornece a unidade elementar de transferência de dados:
 - o PDU do IP é um datagrama IP
 - inclui mecanismos para o seu encaminhamento
 - fragmentação de datagramas: transito em qualquer LAN

18

IP - Internet Protocol Formato do datagrama IPvartamento de Informática

IP - Internet Protocol

Tópicos gerais sobre IPv6 Escola de Engenharia

- IPv6 define novo formato de pacotes com introdução de novas funcionalidades na camada IP
 - novos formatos de endereços (128-bit)
 - diminuição do overhead de processamento
 - melhor desempenho dos elementos de rede
 - introdução de novas *options IP*
 - introdução de mecanismos de segurança a nível da camada de rede
 - outras...

LCC

Universidade do Minho

IP - Internet Protocol

Formato do datagrama IPv6 Escola de Engenharia IPv6 epartamento de Informática

Campos do datagrama IPv6:

Alteração do formato e composição do pacote IPv4

IP - Internet Protocol

Universidade do Minho Escola de Engenharia Departamento de Informática

Fragmentação

Fragmentação

- Um datagrama cujo comprimento exceda o MTU definido para a LAN, é dividido em datagramas mais curtos, chamados fragmentos, que serão reagrupados no destino de modo a reconstituirem o datagrama original
 - Os fragmentos são datagramas IP e são encaminhados como tal como qualquer outro datagrama IP
- MTU (*Maximum Transfer Unit*): número máximo de bytes aceites no campo de dados da trama da LAN
- A fragmentação não depende dos routers, mas sim das caracterísicas das LAN ligadas aos seus interfaces

IP - Internet Protocol

Fragmentação

Vantagens/Desvantagens?

Campos manipulados na frágmentação:

LCC

Universidade do Minho Escola de Engenharia Departamento de Informática

IP - Internet Protocol

Fragmentação

- Campos manipulados na fragmentação:
 - *identification* identifica fragmentos pertencentes ao mesmo datagrama original
 - more fragments flag que determina se o fragmento é o último
 - may fragment identificação da possibilidade ou não do datagrama ser fragmentado pela rede
 - *fragment offset -* offset dos dados do fragmento relativamente ao datagrama original

IP - Internet Protocol

Fragmentação

Exemplo de Fragmentação

IP - Internet Protocol

Endereçamento

VERS	HLEN	Diff Serv	Total Length			
	Identification Flags Fragment Offset					
Time to	Time to Live Protocol Header Checksum					
	Source IP address					
Destination IP address						
IP Options (may be null) Padding						
IP Datagram Data (up to 65,535 bytes)						

IP - Internet Protocol

Universidade do Minho Escola de Engenharia Departamento de Informática

Endereçamento

- Endereçamento por classes (ou Classful)
 - esquema original, baseado na RFC 791
 - usa os primeiros bits como identificadores de classe
- Endereçamento sem classes (ou Classless)
 - não considera os bits de classe, utilizando uma máscara de 32 bits para determinar o endereço de rede
 - permite routing mais eficiente por agregação de rotas, designado
 CIDR (Classless Internet Domain Routing)
 - tabelas de encaminhamento mais pequenas
 - as rotas são agregadas por grupos de endereços adjacentes
 - usado pelas tabelas de routing de ISPs

Endereçamento

O endereço IP é um endereço da camada de rede

• IPv4: 32 bits

- uma parte identifica a rede (ou subrede) e a outra identifica o interface da estação (host) nessa rede
- na internet, cada endereço de rede tem de ser único
- distribuídos por 5 classes (A a E)
- atribuídos pela IANA (Internet Assigned Number Authority)

IP - Internet Protocol Endereçamento por classe Departamento de Informática

lo	dentificador Parte da classe		Parte do Endereço de Rede		Parte do Endereço de Estação			
Class	Classe A							
0	-	7 bits d	le enc	l. de rede		24 bits de endereço de estação		
Class	se l	В						
10	0	14	bits c	le endere	ço de rede	16 bits de endereço de estação		
Class	Classe C							
11	10		2	21 bits de	endereço de rede		8 bits end. de estação	
Class	Classe D							
1	111	10	Endereços Multicast no intervalo 224.0.0.0 - 239.255.255.255					
Classe E								
1	111	10			Classe E – Reservado para utilização futura			
-								

IP - Internet Protocol

Universidade do Minho Escola de Engenharia Departamento de Informática

Endereçamento

Endereços IPv4 por classes

Classe	А	В	С	D
(1° byte) redes	(1-126) * 126	(128-191) 16.382	(192 -223) 2.097.150	
hosts/rede	(2 ²⁴ -2) 16.777.214	(2 ¹⁶ -2) 65.534	(2 ⁸ -2) 254	Grupo multicast (224.0.0.0 - 239.255.255.255)
reservado	host a 0s ou 1s	host a 0s ou 1s	host a 0s o u 1s	

^{* 127. -} loopback

Ex: Classe A - 120.10.10.1 (rede 120.0.0.0; host 10.10.1)

Classe B - 130.100.80.1 (rede 130.100.0.0; host 80.1)

Classe C - 192.136.9.1 (rede 192.136.9.0; host 1)

Universidade do Minho Escola de Engenharia

IP - Internet Protocol Endereçamento: restrições

Restrições a Endereços IP

- Endereços reservados:
 - os primeiros 4 bits não podem ser 1
 - 127.x.x.x é o endereço reservado para *loopback*
 - bits de host a 0s ou 1s são reservados (a rede ou broadcast)
 - bits de subnet a 0s ou 1s reservados (regra obsoleta)
- Endereços privados: atribuídos para internets privadas (sem conectividade global, não devem ser visíveis nem são encaminhados na internet exterior), RFC1918:
 - bloco 192.168.0.0 192.168.255.255
 - bloco 172.16.0.0 172.31.255.255
 - bloco 10.0.0.0 10.255.255.255

IP - Internet Protocol Endereçamento: restrições Departamento de Informática

- Endereços para configuração dinâmica do Link-Local:
 - Está reservado o bloco 169.254 /16 para comunicação entre estações ligadas ao mesmo meio físico nas seguintes condições:
 - Quando um interface não foi configurado com um endereço IP, nem manualmente nem por uma fonte na rede (ex: DHCP) a estação pode configurar automaticamente o interface com um endereço IPv4 de prefixo 169.254 /16
 - Algoritmo:
 - 1. Gera um endereço aleatório uniformemente distribuído no intervalo [169.254.1.0 , 169.254.254.255]
 - 2. Envia ARP-request com endereço de destino igual ao gerado (probe)
 - 3. Se houver ARP-reply então repete 1. porque há colisão de endereço
 - 4. Senão anuncia endereço gerado através de um ARP-announcement

IP - Internet Protocol

Universidade do Minho Escola de Engenharia Departamento de Informática

Endereçamento

Máscara de endereço

Máscara: padrão que conjugado com o endereço IP, devolve a parte do endereço de rede (ou sub-rede)

 No endereçamento por classes as máscaras são (default mask):

notação decimal: 255.0.0.0 notação CIDR: /8

notação decimal: 255.255.0.0 notação CIDR: /16

• Classe C: 11111111111111111111111111100000000

notação decimal: 255.255.255.0 notação CIDR: /24

 No endereçamento sem classes as máscaras têm qualquer outro valor permitindo a criação de subnets (subredes) da classe original ou supernets.

IP - Internet Protocol

Endereçamento

Endereçamento sem classes - subnetting

- Considere-se o endereço IP 130.1.5.1
 - é o endereço da estação 5.1 da rede 130.1.0.0 (classe B) considerando mascara por defeito (default mask): 255.255.0.0 ou /16
- Considere-se o endereço IP 130.1.5.1/24
 - é o endereço da estação 1 da sub-rede 130.1.5.0

(máscara com múltiplo de 8 bits)

8 bits para subnetting: N° subredes – 28 (-2) N° hosts - 28-2

Rede	Estação	Máscara de subrede	Rede	Subrede	Esta
130.1	5.1	255.255.255.0	130.1	5	1

interpretação original por classe

interpretação sem classe (CIDR)

IP - Internet Protocol

Endereçamento

- Considere-se o endereço IP 130.1.9.1/21
 - é o endereço da estação 257 da sub-rede 130.1.8.0

10 0 0 0 0 1 0	0000001	Subrede 0 0 0 0 1 0 0 1	Estação 0 0 0 0 0 0 1
130	1	9	1

O endereço Lógico

é:

Rede: 130.1.0.0

Subnet: 8

Host: 257

(máscara com 21 bits)

11111111.111111111.11111000.00000000

Máscara de Subnet 255.255.248.0

5 bits para subnetting:

 N^{o} subredes -2^{5} (-2)

No hosts - 211-2

Universidade do Minho Escola de Engenharia Departamento de Informática

IP - Internet Protocol

Endereçamento

Endereço de subnet classe B - 150.5.129.1 / 23 ID de Rede: 150.5.0.0; subnet 128 **Subnet:7 bits** 10000001 0000001 10100000 00000101 ID da Rede 150.5 ID da Subnet 128 ID da estação 257 Endereço 1010000 0000001 00000101 10000001 Máscara 0000000 11111111 11111111 10100000 00000101 10000000 0000000 Máscara: 255.255.254.0

Endereçamento

Exemplo de máscaras de rede + subrede em endereços de Classe B

11111111 11111111

255 255

IP - Internet Protocol

Universidade do Minho Escola de Engenharia Departamento de Informática

Endereçamento

Sub-redes (Subnetting)

- permite melhor aproveitamento, organização e gestão do espaço de endereços
- introduz outro nível hierárquico para routing

Desv: vários endereços não utilizáveis

130.1.1.0 internet local
130.1.2.0 130.1.3.0
exterior

130.1.4.0

Universidade do Minho

IP - Internet Protocol

Exemplo

Universidade do Minho Escola de Engenharia Departamento de Informática

IP - Internet Protocol

Endereçamento

Exercício:

 Definir um esquema de subnetting a partir do endereço privado de Classe C 192.168.1.x para permitir a existência de 3 subredes IP (com número mínimo de bits para a subnet mask). Indicar endereços de rede, subrede, hosts, máscaras de rede, subrede

Supernetting (após slide 49)

Tabela de encaminhamento de RTR1 - sem Supernetting

Destino	Próxim	o Nó		Máscara	Interface	Apenas interfaces d	
192.2.2.0	192.2.	2.1		255.255.255.0	Eth1		
192.1.1.0	192.1.	1.1		255.255.255.0	Eth0	RTR1	
192.200.4 (0000 0100).0	192.1.	1.2		255.255.255.0	Eth0 Com Super-		
192.200.5 (0000 0101).0	192.1.	1.2		255.255.255.0	Eth0	netting	
192.200.6 (0000 0110).0	192.1.1.2 192.1.1.2			255.255.255.0	Eth0		
192.200.7 (0000 0111).0			255.255.255.0	Eth0			
Default	192.2.2.254			0.0.0.0	Eth1	Máscara	
102 200 4/0000 0100\ 0		102 1 1 2	25	E 2EE 2E2 /11111:	100\0	default	

192.200.4(0000 0100).0

192.1.1.2

255.255.252 (11111100).0

Eth0

IP - Internet Protocol

Endereçamento

Múltiplas (sub)redes no mesmo interface

IP - Internet Protocol

Encaminhamento

- Tanto os routers como as estações, possuem uma tabela de encaminhamento
- As entradas na tabela são (pelo menos):
 - 1ª coluna: Endereço da Rede de destino (mais máscara)
 - 2ª coluna: Endereço IP da interface de entrega (next hop)
 - N coluna: Identificador da interface de saída da máquina local
 - colunas opcionais: flags, tráfego no interface, etc
- A entrega (forwarding), ou salto (hop) seguinte dum datagrama IP é decidida em função do endereço IP de destino do datagrama

LCC Universidade do Minho 43

IP - Internet Protocol

Encaminhamento

Exemplo: tabela de encaminhamento da estação 192.110.1.240

> netstat -nr				
destination	next hop	flags mascara	use	interface
192.110.1.0	192.110.1.240	UH 255.255.255.0	234576	/tu0\
192.168.1.0	192.110.1.253	UG 255.255.255.0	124586	tu0
default	192.110.1.254	UG 0.0.0.0	102410	\tu0 /

Leitura (e.g.):

Um datagrama destinado à rede 192.168.1.0 será entregue na interface de endereço 192.110.1.253 saindo pela interface local tu0

Esquema?

IP - Internet Protocol

Encaminhamento Departamento de Informática

Entrega (forwarding)

- É facilitada pelo endereçamento hierárquico
- O endereço IP é: a.b.c.d/m = X.Y (rede.estação)
 - 1) <u>usar</u> **máscara** para extrair o endereço de rede **X**
 - procurar entrada que melhor se ajuste a X
 se X é local, entregar no interface X.Y (entrega directa)
 senão usar X para determinar o próximo salto (next hop);
 - 3) A entrada **0.0.0.0/0** ajusta-se a todos os **X**

IP - Internet Protocol

Encaminhamento Departamento de Informática

Encaminhamento (routing):

- a) Estático baseado em rotas pré-definidas
 - as rotas permanecem fixas
 - reduz o tráfego na rede
 - esquema simples mas pouco flexível
- b) Dinâmico rotas actualizadas ao longo do tempo
 - os routers trocam informação de routing entre si
 - esta actualização dinâmica de rotas é obtida através de protocolos específicos de encaminhamento (routing):
 - RIP, OSPF, BGP, etc
 - grande flexibilidade e adaptação (automática) a falhas ou mudaças na configuração de rede
 - o tráfego de actualização pode causar sobrecarga na rede

IP - Internet Protocol

Encaminhamento Departamento de Informática

- Computação dinâmica das rotas:
 - centralizada cada router, conhecendo a topologia da área, determina o melhor caminho para os possiveis destinos dessa área
 - distribuída cada router envia informação de encaminhamento que conhece aos routers seus vizinhos (redes a que dá acesso)
- Princípio utilizado
 - Vector Distância (Vector Distance)
 - Estado das ligações (Link State)
 - Outros

Encaminhamento

- caminho de defeito é a rota a seguir caso não exista uma entrada específica na tabela para a rede de destino
 - é um caso particular de encaminhamento estático
 - a rota por defeito tem prioridade inferior à das outras rotas
 - é identificado pelo termo **default** ou pela rede **0.0.0.0**
 - permite reduzir a tabela de encaminhamento
- Os protocolos de encaminhamento modelam a rede como um grafo e calculam o melhor caminho para um dado destino

ICMP - Internet Control Message Protocol

Funções do Internet Control Message Protocol

- reporta situações anómalas ocorridas no tratamento de datagramas IP
- usa encapsulamento IP
- em datagramas fragmentados, reage apenas ao primeiro fragmento
- não torna o IP fiável, apenas assinala erros
- o IP usa obrigatoriamente o ICMP

ICMP - Internet Control Message Protocol

Mensagens ICMP

- echo request, echo reply
- destination unreachable (estação, rede, porta,...)
- redirect (redireccionamento por um melhor caminho)
- TTL exceeded of datagram lifetime (TTL atingiu 0)
- timestamp and reply (responde c/ estampilha temporal)
- parameter unintelligible
- address mask request and reply
- router advertisement and solicitation
- information request and reply

•

ICMP - Internet Control Message Protocol

PDU

 DA
 SA
 TF
 IP Header
 Mensagem ICMP
 CRC

ICMP - Internet Control Message Protocol

