1.	Prove that $\sum_{k=0}^{n} C_k^n = 2^n$
	From Businial Throngs (244) " = F C xkyn-k K=0
	Let, $x = y = 1$

a) σ				
b) μ				
c) \bar{x}				
d) $z_{\alpha=0.025}$				
By de	finition of se	I unit us	rmal variat	le
	Z= X- /LX			
	Wn			
	l <pre>L<pre>p<u -=""></u></pre></pre>	x - Zy2 T/Vn	Epi & X+	Zy Trn
$-\mathcal{D}$	Y ill let	01. 11	7 (, # × ·
	X will be at	center of c	I (su pu	e-om
			fecture	slides on C

You take a random sample from a population and form a 95% confidence interval for the population mean, μ . What quantity is guaranteed to fall within the confidence interval that you construct? (Circle <u>and</u> write down the letter of your selection. Include brief computations or short writeup (1-2 sentences) on work sheet below to justify your

Let $x_1, x_2,, x_{100}$ be independent random variables that all follow the same probability distribution (that is, same pdf, mean, variance). The population mean, $\mu = E\{x_i\} = 12.5$, and variance $\sigma^2 = Var\{x_i\} = 9$. Find the (approximate) probability that $P(x_1 + x_2 + + x_{100} > 729)$ using the central limit theorem
1229
px y = 1 (x, + x2 + + x 100) = X
.: P(x,+x2++x100 > 729) = P(y > 1229) = P(x > 1729) = P
let I = X-pe
$\frac{12.29}{12.29} = P(Z > \frac{12.29}{10 \times 100}) = 1 - 0.41$
-0.5836

- 4. Consider the experimental arrangement shown in the figure below. Assume that the speaker is driven by random noise and that the sound waves coming from the speaker behave as spherical waves that travel with constant speed, $c=340\ m/sec$ (speed of sound in air)
 - a) Consider the cross-correlation, $R_{xy}(\tau)$. At what values of the lag index, τ will microphone measurements x and y be highly correlated?
 - b) Consider the cross-correlation, $R_{yx}(\tau)$. Again, at what values of the lag index, τ will microphone measurements x and y be highly correlated?
 - c) Comment on the lag index values that you obtain from parts (a) and (b). Do they make physical sense? If you only had the xy microphone data and the crosscorrelation results and did not know the experimental arrangement, could you (approximately) determine the location of the speaker?

NOTE: as implied in the figure, sound waves that are incident to the side reflecting surface at some angle are reflected with the same angle $R_{XY}(\tau)$

Rxy(t) = 1 (t) /(t+t) dt - pince ti 70 indicales - waves
peach x first, then y

Ryx(t) = \(\frac{1}{2} \) \(

Can deduce that waves travel be to lift of X. Hence, speaker must be to lift

The continuous random variable x, has a cumulative distribution function (cdf) modeled as

$$F(x) = \begin{cases} 0 & x \le -4 \\ \frac{x+4}{9} & -4 \le x \le 5 \\ 1 & x \ge 5 \end{cases}$$

- a) Determine the probability density function (pdf), f(x)
- b) Compute the characteristic function $(\phi(k))$ of f(x), defined as $\phi(k) = E\{e^{jkx}\} = \int_{-\infty}^{\infty} e^{jkx} f(x) dx$, where $k \equiv$ wavenumber, rad/m (assumes x has units of meters) and $j = \sqrt{-1}$.

Observe that the characteristic function, $\phi(k)$ is the Fourier Transform of f(x). Apply integral definition above to compute $\phi(k)$. Use Euler's identity: $e^{j\theta} = cos\theta + jsin\theta$ to express the characteristic function in terms of its Real and Imaginary parts

c) From the equation, $\phi(k) = E\{e^{jkx}\}$, derive expressions for both the mean $[\mu_x = E\{x\}]$, and mean square $[\psi_x^2 = E\{x^2\}]$ values in terms of $\phi(k=0)$

a) see above

(b) $\phi(k) = \int e^{jkx} f(x) dx = \int e^{jkx} dx = \int e^{jkx} f(x) dx = \int e^$

Let, n(t) represent a zero-mean, bandlimited, random noise process. Its power spectrum is given by $G_{nn}(f) = Ku(B-f), V^2/Hz$, where, $K \to \text{const}$ and $u(B-f) \to \text{unit}$ step function shown graphically as

Determine the expression for the auto-correlation function, $R_{nn}(\tau)$ for n(t)

By defriction	50 h	ilvi inal -		
By definition Russ	(7) = Sup. (8)	e good do	1	
	- You / 00			
	= 2 Snn	(1) cas 211	jede	
	0 00			
	- 16nm 18	1) am 27/1	11.	
	0	ow zing (
90			P	
= K / U(B	f) Cos 211 ft	11 = K)	Cos 211 8 1 a	1/
		0		
	, ,			
= K pin	2782 / = ,	Sm 271	BI	
27	T	2112		
- VD	T (284)	UD	. (00-)	
= 1/0 /	rin TT (282) TT (282)	= 10	nnc (2BI)	. 4
	11 (200)		L'inarmai	loged
			a inter	= su
	ocrossings at		pric (x)	-/-

For pinc (28t), zero crossings at 28t= n (n=1,2,3,...

$$T = \frac{n}{2B}$$

8.	Suppose that against a certain opponent the number of the suppose that against a certain opponent the number of the suppose that over the suppose the suppose that over the sup	nal distribution with unknown mean, μ er the course of the last 10 games cored the following point totals: 59, 62,
	b) Now suppose that you learn that $\sigma^2 = 36$. Cor	
	How does this compare to the interval in (a)?	M = 10
	X= 65	
	al J = 35.76 , Jx = 5.98	

9.	In the lecture slides, we studied the simple asset price model for modeling stock price
	fluctuations. A similar model is used for simulating commodity prices (com-mod-i-ty – 4
	English syllables). In the marketplace, commodities include things such as oil, metals,
	farm and agricultural products. The model is given by
	$dC = \mu dt + \sigma dX$, $C(0) = C_o$ where, $C(X,t)$ is the commodity price. Similar to the simple asset price model (but not
	exactly the same), the (constant) coefficients, μ and σ are related to drift and diffusion
	price movements. $X(t)$ is a Wiener process.
	a) Apply the Ito Formula to derive the exact solution for this stochastic ODE
	b) Determine expressions for $E\{C\}$ and $Var\{C\}$
	a) From Ito
	dc = \ 2 + 1 2 \ 2 at + 2 \ 2 at + 3 \ dy
(
1.	$D : \frac{2C}{2t} + \frac{1}{2} \frac{\partial^2 C}{\partial X^2} = \mu \qquad (2) \frac{2C}{2} = \sigma - C(X,t) = 0 \times + g(t)$ $(3) \text{ 1C. } C(X(0),0) = \sigma X(0) + g(0) = C_0$
	From (3)
	. from 3) (X,t)= (X+g(t), g(0)= Co (y(0)=Co
	use (4) -7 ()
	$(5) \frac{\partial c}{\partial t} = \frac{dq}{\partial t}, \frac{\partial c}{\partial x} = 0, \frac{\partial c}{\partial x^2} = 0$
	3) It at 2x 2x2
	: Attem -
	(6) dq = \(\mu \in g(t) = \(\mu t + C_0\)
	Combone (4), (6) -7
	$(7) C(x,t) = \mu t + \sigma x + C_0$
-	F) E{c}=E{ut+ox+co}= mt+co
	Harfay 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(see back) - 12/2 1/2 2/2 2/2

(1x, x) = 11t + 6 + 0x Exg = 10t + 6 + 0x - 0- Excy = 10x - 0- Excy = 1 A random sample of size $n_1=16$ is selected from a normal population with a $\mu_1=75$ and $x_1=8$. A second random sample of size $n_2=9$ is taken from another, independent normal population with $\mu_2=70$ and standard deviation $\sigma_2=12$. Let \vec{x}_1 and \vec{x}_2 be the two sample nean values. Compute the (approximate) probabilities in parts (a) and (b). a) The probability that $(\vec{x}_1-\vec{x}_2)>4$ b) The probability that $3.5 \le (\vec{x}_1-\vec{x}_2) \le 5.5$

a) fine $X_1 = normal$, $X_1, X_2 = normal$ In define

(1) $Z_1 = X_1 - \mu_1$ (2) $Z_2 = X_2 - \mu_2$ (3) $X_1 = \mu_1 + Z_1 \times 1$ (4) $X_2 = \mu_2 + Z_2 \cdot \sqrt{2}$ $\overline{Vn_1}$ (7) $\overline{Vn_2}$ $= (75 - 70) + Z_1 \cdot \sqrt{2} - Z_2 \cdot \sqrt{2}$ $= (75 - 70) + Z_1 \cdot \sqrt{2} - Z_2 \cdot \sqrt{2}$

 $let, y = \overline{x}, -\overline{x}_2 = 5 + 2Z_1 - 4Z_2$

Anice y o finear combination of 2, 2, -> NORMAL $Hy = E\{y\} = E\{5+22, -422\} = 5$ $Ty^2 = Var.\{y\} = E\{(y-\mu y)^2\} = E\{42, ^2-162, 2+162, ^2\}$ $Ty^2 = 40, ^2+160, ^2=4.8^2+16.12^2=2560$

 $-\frac{P(X_1-X_2-4)}{P(X_1-X_2-4)} = \frac{P(Y_1-Y_1)}{P(Y_1-Y_2-0.0198)} = \frac{1}{2} = \frac{1}{2$

- M (354x, -x, <5.5) = P1 3.5 4445.5 115 -0.4880 + 0.5040 = 0.01x 2620 0296 = 24 = 0.0099)