$$J_{j} = \begin{pmatrix} \lambda_{j} & 1 & & 0 \\ & \lambda_{j} & 1 & \\ & & \ddots & \ddots \\ & & & \lambda_{j} & 1 \\ 0 & & & \lambda_{j} \end{pmatrix} \in \mathbb{C}^{s_{j} \times s_{j}}.$$

Álgebra Linear II

XLIX Escola de Verão en Matemática da UnB

Aulas do professor Alex Carrazedo Dantas*

Última modificação: 29 de Janeiro de 2021 às 23:41:28.

https://carlosal1015.github.io/Algebra-linear-II/pdf/main.pdf

Sumário

Referências bibliográficas

- I. Teoria
- 1. Corpos e Sistemas Lineares (06/01/2021)
- **2. Sistemas lineares** (07/01/2021)
- 3. Matrizes (08/01/2021)
- 4. Matrizes e sistemas lineares (09/01/2021)
- **5.** Espaços vetoriais (12/01/2021)
- **6.** Espaços vetoriais de dimensão finita (13/01/2021)
- 7. Transformações lineares (14/01/2021)
- **8. Espaço vetorial** L(V, W) (15/01/2021)
- 9. Matriz de uma transformação linear (16/01/2021)
- **10. Funcionais lineares** (18/01/2021)
- **11. Polinômios** (19/01/2021)
- **12. Fatoração única** (20/01/2021)
- **13. Determinantes** (21/01/2021)
- **14. Formas canônicas: operadores diagonalizáveis** (25/01/2021)
- **15. Operadores diagonalizáveis** (26/01/2021)

5

6

7

11

13

16

18

23

26

27

28

29

30

31

32

33

34

UnB

16. Polinômio minimal (27/01/2021)		35
17. Formas de Jordan (28/01/2021)		36
II. Prática		37
18. Exercícios de Fixação (08/01/2021)		38
19. Exercícios de Fixação (15/01/2021)		42
20. Exercícios de Fixação (27/01/2021)		49
21. Exercícios de Fixação (29/01/2021)		53
III. Tutorial		56
A. Overview about Julia		57
B. LinearAlgebra from Julia B.1. Matrix calculus	 	59
Índice		60

Introdução ao curso (04/01/2021)

O professor Alex Carrazedo Dantas é especialista no *Teoria dos grupos*. Em um curso presencial você pode discutir mais, enquanto em um curso remoto, cada aula tem um pdf Moodle MAT e uma gravação da sessão. Se você tiver dúvidas sobre o moodle, peça ajuda a Carol Lafetá¹.

Ementa

- 1. Sistemas lineares e matrizes.
- 2. Espaços vetoriais e transformações lineares.
- 3. Polinômios e determinantes

- 4. Decomposições primárias e formas racionais e de Jordan.
- 5. Produto interno e teorema espectral.
- 6. Formas multilineares.

Critério de avaliação

Menção em disciplina	Equivalência numérica
Superior (SS) Média Superior (MS) Média (MM)	9 - 10
Média Superior (MS)	7 - 8.9
Média (MM)	5 - 6.9

Serão aplicadas 2 provas, de acordo com o cronograma abaixo, as quais serão atribuídas as notas $x \in y$.

$$MF = \frac{x + 3y}{4}.$$

O aluno deverá obter média final igual ou superior a 5 pontos e 75% de frequência para ser aprovado.

Tutores

• Sara Raissa Silva Rodrigues.

• Geraldo Herbert Beltrão de Souza.

• Mattheus Pereira da Silva Aguiar.

Referências bibliográficas

- [1] Flávio Ulhoa Coelho e Mary Lilian Lourenço. *Curso de Álgebra Linear, Um Edusp.* EDUSP, 2005. URL: https://www.edusp.com.br/livros/curso-de-algebra-linear.
- [2] P. R. Halmos. Finite-Dimensional Vector Spaces. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1958. ISBN: 978-0-387-90093-3. DOI: 10.1007/978-1-4612-6387-6. URL: https://www.springer.com/gp/book/9780387900933.
- [3] Kenneth Hoffman e Ray Kunze. Linear algebra. Englewood Cliffs, New Jersey: Prentice Hall, Inc.
- [4] Serge Lang. *Linear Algebra*. 3ª ed. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1987. ISBN: 978-0-387-96412-6. DOI: 10.1007/978-1-4757-1949-9. URL: https://www.springer.com/gp/book/9780387964126.
- [5] Ph D. Seymour Lipschutz e Ph D. Marc Lars Lipson. *Schaum's Outline of Linear Algebra, Sixth Edition*. McGraw-Hill Education, 2018. ISBN: 978-1-260-01144-9. URL: https://www.accessengineeringlibrary.com/content/book/9781260011449.

Parte I.

Teoria

$$J_{j} = \begin{pmatrix} \lambda_{j} & 1 & 0 \\ \lambda_{j} & 1 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \lambda_{j} & 1 \\ 0 & \lambda_{j} \end{pmatrix} \in \mathbb{C}^{s_{j} \times s_{j}}.$$

1. Corpos e Sistemas Lineares (06/01/2021)

Definição 1.1 (Corpo). Um *corpo* é um conjunto não vazio F munido de duas operações: adição mais e multiplicação.

$$+: \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$$
 $: \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$ $(x, y) \longmapsto x + y$ $(x, y) \longmapsto x \cdot y$

e tais que en $(\mathbb{F}, +)$

- (A1) (Asociatividade na adição) $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{F}$;
- (A2) (Existênza de neutro aditivo) $\exists 0 \in \mathbb{F}$ tal que x + 0 = 0 + x = x, $\forall x \in \mathbb{F}$;
- (A3) (Existênza de elemento oposto o inverso aditivo) Dado $x \in \mathbb{F}$, existe $-x \in \mathbb{F}$ tal que x + (-x) = (-x) + x = 0;
- (A4) (Conmutatividade na adição) x + y = y + x, $\forall x, y \in \mathbb{F}$;

$$e\left(\mathbb{F}\setminus\left\{ 0\right\} ,\cdot\right)$$

- (M1) (Associatividade na multiplicação) $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{F};$
- (M2) (Existênza do elemento neutro na multiplicação) $\exists 1 \in \mathbb{F}$ tal que $x \cdot 1 = 1 \cdot x = x$, $\forall x \in \mathbb{F}$;
- (M3) (Existênza inverso multiplicativo) Dado $x \in \mathbb{F} \setminus \{0\}$, existe $x^{-1} \in \mathbb{F}$ tal que $x \cdot x^{-1} = x^{-1} \cdot x = 1$;
- (M4) (Conmutatividade na multiplicação) $x \cdot y = y \cdot x$, $\forall x, y \in \mathbb{F}$;
- (D) (Distributiva) $x \cdot (y + z) = x \cdot y + x \cdot z, \forall x, y, z \in \mathbb{F}$.

Proposição 1.2. $x \cdot 0 = 0$, $\forall x \in \mathbb{F}$.

Demonstração. $x \cdot 0 \stackrel{A2}{=} x \cdot (0+0) \stackrel{D}{=} x \cdot 0 + x \cdot 0$. Assim

$$x \cdot 0 + \underbrace{x \cdot 0 + (-x \cdot 0)}_{=0} = \underbrace{x \cdot 0 + (-x \cdot 0)}_{=0}$$
$$x \cdot 0 + 0 \stackrel{A3}{=} 0$$
$$x \cdot 0 \stackrel{A2}{=} 0.$$

Exemplo 1.3.

a) $(\mathbb{Z}, +, \cdot)$ não é um corpo. De fato não existe o inverso multiplicativo de 2 em \mathbb{Z} , ou seja, a equação $2 \cdot x = 1$ não se resolue em \mathbb{Z} ;

- b) $(\mathbb{Q}, +, \cdot)$ é um corpo, onde $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$ e $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.
- c) $(\mathbb{R}, +, \cdot)$ é um corpo (conjunto dos números reais);
- d) $(\mathbb{C}, +, \cdot)$ é um corpo, onde $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, e i^2 = 1\}$,

$$+: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$((a+bi), (c+di)) \longmapsto (a+c) + (b+d)i \qquad ((a+bi), (c+di)) \longmapsto (ac-bd) + (ad+bc)i$$

$$(a + bi) (c + di) = ac + adi + bci + bdi^{2} =$$

= $ac + (-1)bd + (ad + bc)i =$
= $(ac - bd) + (ad + bc)i$.

 $\mathbb C$ é chamado del conjunto nos números complexos. Tome $a+bi\in\mathbb C\setminus\{0\}$ (0=0+0i). Assim

$$(a+bi)(a-bi) = a^{2} + b^{2} + (ab-ba)i =$$

$$= a^{2} + b^{2} \neq 0$$

$$(a+bi)(a-bi)(a^{2} + b^{2})^{-1} = 1.$$

Logo
$$(a + bi)^{-1} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$
.

e) $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ é um corpo, onde p é primo e $\mathbb{Z}/p\mathbb{Z} = \{\overline{a} \mid a \in \mathbb{Z}\}, \overline{a} = \{a + pn \mid n \in \mathbb{Z}\} \text{ e } 0 \leq a \leq p-1.$

$$+: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z} \qquad :: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z}$$

$$\left(\overline{a}, \overline{b}\right) \longmapsto \overline{a + b} \qquad \left(\overline{a}, \overline{b}\right) \longmapsto \overline{a \cdot b}$$

Tome p = 3. Assim $\mathbb{Z}/3\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}\}$.

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\overline{0}$	1	2
1	1	<u>2</u>	$\overline{0}$
2	2	$\overline{0}$	1

$$\begin{array}{c|cccc} \cdot & \overline{1} & \overline{2} \\ \hline \overline{1} & \overline{1} & \overline{2} \\ \hline \overline{2} & \overline{2} & \overline{1} \\ \end{array}$$

$$\overline{2} + \overline{2} = \overline{2+2} = \overline{4} = \overline{3 \cdot 1 + 1} = \overline{1}.$$

Note que a equação $x^2 + \overline{1} = \overline{0}$ não tem solução em $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$.

Defina: $F = \{ \overline{a} + \overline{b}i \mid \overline{a}, \overline{b} \in \mathbb{Z}/3\mathbb{Z} \text{ e } i^2 = \overline{2} \}.$

$$+: \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$$

$$(\overline{a} + \overline{b}i, \overline{c} + \overline{d}i) \longmapsto (\overline{a} + \overline{c}) + (\overline{b} + \overline{d})i \qquad (\overline{a} + \overline{b}i, \overline{c} + \overline{d}i) \longmapsto (\overline{a} \cdot \overline{c} + 2\overline{b} \cdot \overline{d}) + (\overline{a} \cdot \overline{d} + \overline{b} \cdot \overline{c})i$$

Mostre que $(\mathbb{F}, +, \cdot)$ é um corpo com 9 elementos.

Definição 1.4. A característica de um corpo \mathbb{F} é o menor inteiro positivo n (se existir) tal que $\underbrace{1+\cdots+1}_{n}=0$.

Se tal n não existe, diremos que F tem característica 0.

Proposição 1.5. Seja \mathbb{F} um corpo. Sea característica de F é um inteiro positivo n, então n é primo.

Demonstração. Exercízio.

Exemplo 1.6.

a) Resolva em
$$\mathbb{Q}$$
 o sistema
$$\begin{cases} 2x + 3y = 1 \\ x + 4y = 2 \end{cases}$$

$$\begin{cases} 2x + 3y = 1 \\ x + 4y = 2 \end{cases} \implies \begin{cases} 2x + 3y = 1 \\ -2x - 8y = -4 \end{cases} \implies \begin{cases} 2x + 3y = 1 \\ -5y = -3 \end{cases} \implies y = \frac{3}{5}.$$

$$2x + 3 \cdot \left(\frac{3}{5}\right) = 1$$
$$2x + \frac{9}{5} = 1 \implies 2x = -\frac{4}{5} \implies x = -\frac{2}{5}.$$

Daí
$$\left(-\frac{2}{5}, \frac{3}{5}\right)$$
 é solução para o sistema.

b) Resolva em $\mathbb{Z}/3\mathbb{Z}$ o sistema $\begin{cases} \overline{2}x + \overline{2}y = \overline{1} \\ \overline{2}x + y = \overline{0} \end{cases}$.

$$\begin{cases} \overline{2}x + \overline{2}y = \overline{1} \\ y = \overline{1} \end{cases} \implies \overline{2}x + \overline{2} \cdot \overline{1} = \overline{1} \implies \overline{2}x = \overline{1} - \overline{2} \\ \overline{2}x = -\overline{1} \\ \overline{2}x = \overline{2} \\ x = \overline{1}.$$

Daí $(\overline{1}, \overline{1})$ é solução do sistema.

UnB

2. Sistemas lineares (07/01/2021)

Definição 2.1 (Sistema linear). Um corpo é.

efinição 2.1 (Sistema linear). Um corpo é.
$$\begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = y_2 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = y_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = y_m \end{pmatrix} \begin{pmatrix} a_1 & \cdots & a_1 \\ \vdots & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_n \end{pmatrix}$$

$$c_1(a_nx_2 + \cdots + a_{1n}x_n) + \cdots + c_m(a_mx_2 + \cdots + a_{mn}x_n) = c_1y_2 + \cdots + c_my_m$$

$$(c_2a_{11} + \cdots + c_ma_{m1})x_1 + \cdots + (c_1a_{1n} + \cdots + c_ma_{wn})x_n = c_1y_2 + \cdots + c_my_m$$

$$\begin{cases} 2x + 3y - z + w = 5 \\ x - y + 2z - 2w = 1 \\ 2x + y + z + w = 3 \end{cases}$$

$$\begin{cases} x - y + 2z - 2w = 1 \\ 2x + 3y - z + w = 5 \\ 2x + y + z + w = 3 \end{cases}$$

$$\begin{cases} x - y + 2z - 2w = 1 \\ 5y - 5z + 5w = 3 \\ 3y - 3z + 5w = 1 \end{cases}$$

$$\begin{cases} x - y + 2z - 2w = 1 \\ 5y - 5z + 5w = 3 \\ 3y - 3z + 5w = 1 \end{cases}$$

$$\begin{cases} x - y + 2z - 2w = 1 \\ 5y - 5z + 5w = 3 \\ 3y - 3z + 5w = 1 \end{cases}$$

$$\begin{cases} x + z - w = 8/5 \\ y - z + \omega = 3/5 \end{cases}$$
$$2/3\omega = \frac{1}{3} - \frac{3}{5} = \frac{5 - 9}{15} = -\frac{4}{15}$$
$$\omega = -\frac{12}{30} = -\frac{4}{10} = -\frac{2}{5}$$

$$\{(x, y, z, \omega) \in \mathbb{Q}^4 \mid x = -z + \frac{6}{5}, y = z + 1, z \in \mathbb{Q}, \omega = -\frac{2}{5}\} =$$

$$= \{(-z + \frac{6}{5}, z + 1, z, -\frac{2}{5}) \mid z \in \mathbb{Q}\}$$

$$\begin{cases} x + y = 2 \\ x - y = 0 \end{cases} \begin{cases} x + 2y = 5 \\ x - y = -1 \end{cases}$$

$$f:\{1,\ldots,m\}\times\{1,\ldots,n\}\to F=f(i,j)=a_{ij}.$$

$$\begin{pmatrix} f(1,1) & f(1,2) & \cdots & f(1,n) \\ f(2,1) & f(2,2) & \cdots & f(2,n) \\ \vdots & & \ddots & \vdots \\ f(x,1) & f(w,2) & \cdots & f(w,n) \end{pmatrix} \begin{pmatrix} a_n & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{wn} \end{pmatrix}$$

UnB

3. Matrizes (08/01/2021)

Podemos denotar uma matriz A sobre um corpo \mathbb{F} de ordem $m \times n$ por $A = \left(a_{ij}\right)_{m \times n}$. Sejam $A = \left(a_{ij}\right)_{m \times n}$ e $B = \left(b_{jl}\right)_{n \times p}$ duas matrizes sobre um corpo \mathbb{F} . Definimos o producto de A por B como a matriz $C = (c_{il})_{m \times p}$ dada por

Figura 3.1.: Ilustração.

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mp} \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}_{2 \times 2} \begin{pmatrix} 1 & 0 & 4 \\ 3 & 2 & 5 \end{pmatrix}_{2 \times 3} = \begin{pmatrix} 7 & 4 & 14 \\ -1 & -2 & 3 \end{pmatrix}_{2 \times 3}.$$

Proposição 3.2. Sejam matrices $A = (a_{ij})_{m \times n'} B = (a_{jl})_{n \times p}$ e $C = (a_{lk})_{p \times q}$ matrizes sobre um corpo \mathbb{F} . Então (AB) C = A (BC).

Demonstração. Veja que (AB) $C = (\alpha_{ik})_{m \times q}$, $AB = (d_{il})_{m \times p}$ onde

$$d_{il} = \sum_{l=1}^{n} a_{ij} b_{jl}$$

e

$$\alpha_{ik} = \sum_{l=1}^{p} d_{il} c_{lk} = \sum_{l=1}^{p} \left(\sum_{j=1}^{n} a_{ij} b_{jl} \right) c_{lk} =$$

$$= \sum_{l=1}^{p} \left(\sum_{j=1}^{n} a_{ij} b_{jl} c_{lk} \right) =$$

$$= \sum_{j=1}^{n} a_{ij} \left(\sum_{l=1}^{p} b_{jl} c_{lk} \right) = \beta_{ik}$$

 $com A(BC) = (\beta_{ik})_{m \times q}.$

Chamaremos a matriz quadrada $I_m = \left(\delta_{ij}\right)_{m imes m}$ definida por

$$\delta_{ij} = \begin{cases} 1 & , \text{se } i = j, \\ 0 & , \text{se } i \neq j, \end{cases}$$

de matriz identidade de ordem $m \times m$.

Note que se $A = (a_{jl})_{m \times n'}$ então $I_m A = A$, e se $B = (b_{li})_{n \times m'}$ então $BI_m = B$. $I_m A = (c_{il})_{m \times m}$ é tal que $c_{il} = \sum_{i=1}^m \delta_{ij} a_{jl} = a_{il}$ con $1 \le i \le m$, e $I_m A = A$.

Exemplo 3.3. Se m=3, então

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dizemos que uma matriz quadrada $A = (a_{ij})_{m \times m}$ tem inversa se existe uma matriz $B = (b_{ij})_{m \times m}$ tal que $AB = BA = I_m$. Denotaremos a matriz B por A^{-1} .

Definição 3.4. Seja $c \in \mathbb{F} \setminus \{0\}$. Uma matriz quadrada de ordem $m \times m$ E é dita elementar se E é de uma das formas

1.
$$E_1 = (e_{ij})_{m \times m'}$$
 onde

$$e_{ij} = \begin{cases} \delta_{ij}, & \text{se } i \neq k \\ \delta_{ij}, & \text{se } i = k \end{cases}$$

$$m = 3, k = 2$$

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

con *k* um inteiro fixo entre 1 e *m*;

2.
$$E_2 = (e_{ij})_{m \times m'}$$
 onde

con k < l inteiros fixos entre 1 e m;

3.
$$E_3 = (e_{ij})_{m \times m'}$$
 onde

$$e_{ij} = \begin{cases} \delta_{ij}, & \text{se } i \neq l \text{ e } i \neq k \\ \delta_{lj}, & \text{se } i = k \\ \delta_{kj}, & \text{se } i = l \end{cases}$$

$$m = 3, k = 2, l = 3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$e_{ij} = \begin{cases} \delta_{ij}, & i \neq k \\ \delta_{kj} + c \cdot \delta_{lj}, & i = k \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.5. Calcule

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & -14 & 4 & -1 & 51 & 1 & -1 & 2 \end{pmatrix}$$

Dada uma matriz $A = (a_{ij})_{m \times m}$ o efeito de multiplicar uma matriz elementar E por A pode ser colocado como:

- 1. E_1A : multiplica uma linha k de A por um escalar c;
- 2. E_2A : troca duas linhas l e k de posições (k < l);
- 3. E_3A : soma uma linha k com outra linha l multiplicada por um escalar $c \in \mathbb{F}$.

4. Matrizes e sistemas lineares (09/01/2021)

Definição 4.1 (Matriz reducida por linhas). Uma matriz $A = (a_{ij})_{m \times n}$ sobre \mathbb{F} é deja reduzida por linhas se

- 1. O primeiro elemento não nulo de cada linha não nula é igual 1;
- 2. cada columna que possui o primeiro elemento não nulo de uma linha não possui todos os outros elementos iguais a 0;

Sea além disso, esa matriz A satisfaz

- 3. todas linhas nulas ocorrem abaixo das linhas não nulas;
- 4. Se 1, ..., r ($r \le m$) são as linhas não nulas de A com os primeiros elementos não nunos ocurrendo nas colunas k_1, k_2, k_r , respectivamente, então $k_1 < k_2 < \cdots < k_r$, dizemos que A está na forma escada reduzida.

Dizemos que A está na forma escada reduzida.

Exemplo 4.2. 1. As seguintes matrizes estão na forma reduzida:

a)
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
,

b)
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
,

c)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$d) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

2. As seguientes matrizes estão na forma escada reducida

a)
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
,

$$b) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix},$$

c)
$$\begin{pmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
.

1

¹Aula de reposição.

Observação 4.3. 1. Se $A = (a_{ij})_{m \times n}$ está na forma escada reduzida e tem a última linha não nula, então $A = I_m$;

2. Se AX = 0 e

Definição 4.4. .

5. Espaços vetoriais (12/01/2021)

Definição 5.1. Um conjunto não vazio V é chamado de espaço vetorial sobre um corpo \mathbb{F} se em V estão definidas duas operações

$$+: V \times V \longrightarrow V$$
 $: \mathbb{F} \times V \longrightarrow V$ $(u, v) \longmapsto u + v$ $(c, v) \longmapsto c \cdot v$

(A1)
$$u + (v + w) = (u + v) + w, \forall u, v, \omega \in V$$
.

(A2) Existe um único vetor nulo $O \in V$ tal que $v + 0 = 0 + v = v, \forall v \in V$.

(A3) Dado
$$v \in V$$
, existe um único vetor $-v \in V$ tal que $v + (-v) = (-v) + v = 0$;

(A4)
$$u + v = v + u, \forall u, v \in V$$
.

(E1)
$$1 \cdot v = v, \forall v \in V$$
, onde $1 \in \mathbb{F}$.

(E2)
$$(ck) v = c(kv), \forall v \in V, E \in \forall c, k \in \mathbb{F}.$$

(E3)
$$c(u+v) = cu + cv, \forall u, v \in V, \forall c \in \mathbb{F}$$

(E4)
$$(c + k) v = cv + kv, \forall v \in V \text{ e } c, k \in \mathbb{F}.$$

UnB

Exemplo 5.2.

1. Se \mathbb{F} é um corpo, então

$$\mathbb{F}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{F}, i = 1, \dots, n\},\$$

com n um enteiro positivo, é um espaço vetorial sobre \mathbb{F} , onde as operações são dada por

$$+: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}^n \qquad :: \mathbb{F} \times \mathbb{F}^n \longrightarrow \mathbb{F}^n$$

$$((x_1, \dots, x_n), (y_1, \dots, y_n)) \longmapsto (x_1 + y_1, \dots, x_n + y_n)' \qquad (c, (x_1, \dots, x_n)) \longmapsto (cx_1, \dots, cx_n).$$

2. Se \mathbb{K} é um subcorpo de \mathbb{F} , então \mathbb{F} é um espaço vetorial sobre \mathbb{K} .

3. O conjunto

$$\mathbb{F}^{m\times n} = \mathcal{M}_{m\times n}\left(\mathbb{F}\right) = \left\{A = \left(a_{ij}\right)_{w+1} \mid a_{ij} \in \mathbb{F}\right\},\,$$

onde \mathbb{F} é um corpo, munido das operações

$$+: \mathbb{F}^{m \times n} \times \mathbb{F}^{m \times n} \longrightarrow \mathbb{F}^{m \times n} \qquad :: \mathbb{F} \times \mathbb{F}^{m \times n} \longrightarrow \mathbb{F}^{n}$$

$$(A, B) \longmapsto (a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n} \qquad (c, A) \longmapsto c \cdot (a_{ij})_{m \times n} = (c \cdot a_{ij})_{m \times n}.$$

é um espaço vetorial sobre \mathbb{F} .

Proposição 5.3. Em um espaço vetorial valem

- 1. $0 \cdot v = 0$;
- 2. $c \cdot 0 = 0$;
- 3. -v = (-1)v, para todo vetor v.

Definição 5.4 (Subespaço vetorial). Seja V um espaço vetorial sobre um corpo \mathbb{F} . Um subconjunto não vazio W de V é chamado de subespaço vetorial de V se W munido das operações de V é um espaço vetorial.

- ullet Em outras palavras, W é um subespaço vetorial de V se
 - 1. $0 \in W$;
 - 2. $w_1 + w_2 \in W$, $\forall w_1, w_2 \in W$;
 - 3. $c \cdot w \in W$, $\forall c \in \mathbb{F} e w \in W$.

Mais ainda, W é um subespaço vetorial de V se

- 1. *W* é vazio;
 - 2. $w_1 + cw_2 \in W$, $\forall c \in \mathbb{F} \text{ e } \forall w_1, w_2 \in W$.

Exemplo 5.5.

- 1. $\{0\}$, V são subespaços vetoriais de V;
- 2. Seja $A = (a_{ij})_{m \times n}$ uma matriz sobre um corpo \mathbb{F} . Então o conjunto solução do sistema homogêneo

$$AX_{n\times 1} = 0_{m\times 1}$$

é um subespaço vetorial de \mathbb{F}^n .

Demonstração. Seja W o conjunto solução de AX=0. Note que W é não vazio, pois $(0,\ldots,0)\in W$. Sejam X_0,X_1 duas soluções de AX=0. Assim

$$A(X_0 + cX_1) = AX_0 + cAX_1 = 0 + c \cdot 0 = 0$$

para todo $c \in \mathbb{F}$. Daí $X_0 + cX_1 \in W$ e o resultado segue.

- 3. $W = \{A = (a_{ij})_{3\times 2} \mid a_{11} = 0\}$ é um subespaço vetorial de $\mathbb{F}^{3\times 2} = \mathcal{M}_{3\times 2}(\mathbb{F})$;
- 4. $W = \{f : \mathbb{R} \to \mathbb{R} \mid f(1) = 0\}$ é um subespaço vetorial $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ é função.}\}.$

$$+: (f+g)(x) = f(x) + g(x), \quad : (cf)(x) = cf(x).$$

Proposição 5.6. Sejam V um espaço vetorial e $\{W_i\}_{i\in I}$ uma família de subespaços vetorialis de V, onde I é um conjunto de índices. Então são subespaços de V:

- 1. $\cap_{i \in I} W_i$;
- 2. $\sum_{i \in I} W_i = \{ w_{i_1} + w_{i_2} + \dots + w_{i_n} \mid w_{i_j} \in W_{i_j} \text{ e } n \in \mathbb{Z}_{>1} \}.$

Demonstração.

Note que $\cap_{i \in I} W_i$ é não vazia, pois $0 \in W_i$, $\forall i \in I$. Se $u, v \in \cap_{i \in I} W_i$ e $c \in \mathbb{F}$, então

 $u + cv \in W_i$ para todo $i \in I$

pois W_i é subespaço, daí $u + cv \in \bigcap_{i \in I} W_i$ e o resultado segue.

2. Note que $\sum_{i \in I} W_i$ é não vazia pois $0 \in \sum_{i \in I} W_i$. Tome $u, v \in \sum_{i \in I} W_i$ e $c \in \mathbb{F}$. Assim

$$u + cv = (u_{i_1} + \dots + u_{i_\ell}) + c(v_{j_1} + \dots + v_{j_k}) =$$

= $u_{i_1} + \dots + u_{i_\ell} + cv_{j_1} + \dots + c_{v_k} \in \sum_{i \in I} W_i.$

Observação 5.7. Nem sempre a união de subespaços é um subespaço, mas $\bigcap_{i \in I} W_i \subseteq \bigcup_{i \in I} W_i \subseteq \sum_{i \in I} W_i$.

Definição 5.8. Sejam V um espaço vetorial e v_1, \ldots, v_n vetores de V. Dizemos que um vetor $v \in V$ é uma combinação linear dos vetores v_1, \ldots, v_n se existem escalares $c_1, \ldots, c_n \in \mathbb{F}$ tais que

$$v = c_1 v_1 + \dots + c_n v_n.$$

1. Todo vetor de \mathbb{R}^3 é uma combinação linear dos vetores (1,0,0), (0,1,0), (0,0,1). De fato,

$$(x, y, z) = x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1);$$

2. Todo vetor de \mathbb{C}^3 é uma combinação linear dos vetores (i, 1, 0), (0, 1, 0), (0, i, i). De fato,

$$(x, y, z) = -xi(i, 1, 0) + (y + xi - z)(0, 1, 0) - zi(0, i, i).$$

Proposição 5.10. Se S é um subconjunto não vazio de um espaço vetorial V, então o conjunto

$$W = \{c_1v_1 + \dots + c_nv_n \mid v_i \in S \in c_i \in \mathbb{F}\}\$$

é um subespaço vetorial de V.

Demonstração. Note que W é não vazio, pois $S\subseteq W$. Sejam $u,v\in W$ e $c\in \mathbb{F}$. Então

$$u + cv = (c_1u_1 + \dots + c_nu_n) + c (k_1v_1 + \dots + k_mv_m) =$$

= $c_1u_1 + \dots + c_nu_n + (ck_1)v_1 + \dots + (ck_m)v_m \in W.$

Definição 5.11. Dado *S* um subconjunto de um espaço vetorial *V* , chamaremos ao subespaço

$$\langle S \rangle = \bigcap_{S \subseteq W} W$$
, onde W é subespaço de V

de subespaço de V gerado por S. (Assum $\langle \emptyset \rangle = \{0\}$.)

Proposição 5.12. Se S é um subconjunto não vazio de V, então

$$\langle S \rangle = \{c_1 v_1 + \dots + c_n v_n \mid v_i \in S \text{ e } c_i \in \mathbb{F}\} = W$$

Demonstração. Pela proposição 9, W é um subespaço de V que contém S, logo $\langle S \rangle \subseteq W$ por definição. Tome $w \in W$. Então existem vetores v_1, \ldots, v_n em S e escalares $c_1, \ldots, c_n \in \mathbb{F}$ tais que

$$W = \underbrace{c_1 v_1}_{\in \cap_{S \subseteq U} U} + \dots + \underbrace{c_n v_n}_{\in \cap_{S \subseteq U} U} \in \cap_{S \subseteq U} U,$$

onde a interseção é tomada em todos os subespaços U de V que contém S. Daí $W \subseteq \langle S \rangle$.

Exemplo 5.13.

1. Pelo exemplo 8-b, temos que

$$\mathbb{C}^3 = \langle (i, 1, 0), (0, 1, 0), (0, i, i) \rangle$$
;

2. Considere o sistema linear

$$\begin{cases} x + y + z = 0 \\ 2x + y + 2z = 0 \end{cases} \begin{cases} x + y + z = 0 \\ -y = 0 \end{cases}$$

Daí $W = \{z (-1,0,1) \mid z \in \mathbb{R}\}$ é solução do sistema dado. Note que

$$W = \{ z (-1, 0, 1) \mid z \in \mathbb{R} \}$$
 = $\langle (-1, 0, 1) \rangle$.

$$W = \{(z + y, y, z) \mid z, y \in \mathbb{R}\}\$$

$$= \{y (1, 1, 0) + z (1, 0, 1) \mid y, z \in \mathbb{R}\}\$$

$$= \langle (1, 1, 0), (1, 0, 1) \rangle$$

$$\begin{cases} x+y+z=1\\ 2x+y+2z=2 \end{cases} \implies \begin{cases} x+y+z=1\\ -y=0 \end{cases}$$

$$S = \{(1 - z, 0, z) \mid z \in \mathbb{R}\} = \{(1, 0, 0) + z(-1, 0, 1) \mid z \in \mathbb{R}\}\$$

UnB

6. Espaços vetoriais de dimensão finita (13/01/2021)

Definição 6.1. Seja V um espaço vetorial sobre um corpo \mathbb{F} . Um subconjunto S de V é chamado linearmente dependente (LD) se existem n vetores distintos $v_1, \ldots, v_n \in S$ e escalares $c_1, \ldots, c_n \in \mathbb{F}$, não todos nulos $((c_1, \ldots, c_n) \in \mathbb{F}^n \setminus \{(0, \ldots, 0)\})$, tais que

$$c_1 1 v_1 + \dots + c_n v_n = 0.$$

Caso contrário, S é chamado de linearmente independiente (LI), ou seja, se $v_1, \ldots, v_n \in S$ são vetores distintos de S tais que

$$c_1 1 v_1 + \dots + c_n v_n = 0,$$

então $c_1 = \cdots = c_n = 0$.

Definição 6.2. Dado um espaço vetorial V sobre um corpo \mathbb{F} , dizemos que um subconjunto S é uma base de V se

- 1. $\langle S \rangle = V$;
- 2. *S* é LI.

Exemplo 6.3.

1. Considere o espaço vetorial C^3 sobre C. Note que o conjunto

$$\{(i, 1, 0), (0, 1, 0), (0, i, i), (0, 3, 2)\}$$

é LD, pois

$$(0,0,0) = 0 \cdot (i,1,0) + 1 \cdot (0,1,0) + (-2i) \cdot (0,i,i) + (-1) \cdot (0,3,2)$$

mas

$$\langle (i, 1, 0), (0, 1, 0), (0, i, i), (0, 3, 2) \rangle = \mathbb{C}^3;$$

2. Já $\{(i, 1, 0), (0, 1, 0), (0, i, i)\}$ é uma base de \mathbb{C}^3 , pois

$$x(i,1,0) + y(0,1,0) + z(0,i,i) = (0,0,0) \implies \begin{cases} ix = 0 \\ x + y + iz = 0 \implies x = y = z = 0. \\ iz = 0 \end{cases}$$

3. $e = \left\{ \underbrace{(1,0,\ldots,0)}_{n}, \underbrace{(0,1,\ldots,0)}_{n}, \underbrace{(0,0,\ldots,1)}_{n} \right\}$ é uma base para \mathbb{F}^{n} , chamada canônica.

Teorema 6.4. Seja V um espaço vetorial e v_1, \ldots, v_m vetores de V com mais do que m elementos é LD.

Demonstração. Sejam $u_1, u_2, \dots, u_n \in V$ com n > m. Escreva

$$u_{1} = a_{11}v_{1} + \dots + a_{m1}v_{m}$$

$$u_{2} = a_{12}v_{2} + \dots + a_{m2}v_{m}$$

$$= \vdots$$

$$u_{n} = a_{1n}v_{1} + \dots + a_{mn}v_{m}$$

Afirmação: existem escalares $x_1 \dots, x_n \in \mathbb{F}$, não todos nulos, tais que

$$x_1u_1+\cdots+x_nu_n=0.$$

De fato,

(6.1)

(6.2)

(6.3)

firstequation

secondequation

ontwolines

Para que $x_1u_1 + \cdots + x_nu_n = 0$ basta que o sistema linear homogêneo tenha uma solução nula $((x_1, \dots, x_n) \neq (0, \dots, 0))$. Pela proposição 5 da aula 5, segue que o sistema tem solução não nula. Afirmação segue.

thirdequation

Nas condições do teorema 4, dizemos que o espaço vetorial *V* é finitamente gerado.

Proposição 6.5. Todo espaço vetorial V sobre um corpo \mathbb{F} finitamente gerado possui uma base. Toda base de V tem a mesma quantidade de elementos.

Demonstração. Sejam $v_1, \ldots, v_m \in V$ vetores distintos tais que $\langle v_1, \ldots, v_m \rangle = V$. Escolha $u_1 \in \{v_1, \ldots, v_m\} \setminus \{0\}$. Note que $\{u_1\}$ é LI. Se $\langle u_1 \rangle = V$, acabou, pois $\{u_1\}$ será uma base de V. Se $\langle u_1 \rangle \subseteq V$, existe um $u_1 \in \{v_1, \ldots, v_m\} \setminus \{0\}$ tal que $u_2 \notin \langle u_1 \rangle$. Daí $\{u_1, u_2\}$ é LI. Se $\langle u_1, u_2 \rangle = V$, acabou, pois $\{u_1, u_2\}$ será uma base. Esse processo para em uma quantidade finita de passos, obtendo $\{u_1, \ldots, u_\ell\}$ subconjunto de $\{v_1, \ldots, v_m\}$ que é uma base de V. Sejam $\{u_1, \ldots, u_\ell\}$ e $\{w_1, \ldots, w_k\}$ duas base de V. Como $\langle u_1, \ldots, u_\ell \rangle = V$, pelo teorema $\{u_1, \ldots, u_\ell\}$ un semo raciocínio, chegamos a $\ell \leq k$. Por tanto, $\ell = k$ e o resultado segue. \blacksquare

Definição 6.6. Seja V um espaço vetorial finitamente gerado. Chamaremos de dimensão de V à quantidade de elementos de uma base de V. Notação: $\dim(V)$.

Exemplo 6.7.

• Note que $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ pode ser olhado como um espaço vetorial sobre \mathbb{C} e sobre \mathbb{R} . Sobre \mathbb{C} , \mathbb{C} tem dimensão 1, pois $\{1\}$ é base. Já sobre \mathbb{R} , \mathbb{C} tem dimensão 2, pois $\{1, i\}$ é base.

 $\bullet \ \mathbb{R}$ sobre \mathbb{Q} não tem dimensão finita.

Proposição 6.8. Seja V um espaço vetorial de dimensão n. Então

- 1. Qualquer subconjunto de *V* que contém mais do que *n* elementos é LD;
- 2. Qualquer subconjunto de V com menos do que n elementos não gera V;
- 3. Se W é um subespaço própio de V, então $\dim(W) < \dim(V)$;
- 4. Cada subconjunto LI de V pode ser completado para uma base de *V*;
- 5. Se U e W são subespaços de V, então $\dim U + \dim W = \dim (U \cap W) + \dim (U + W)$.

Demonstração. Exercício!

Proposição 6.9. Se as linhas de uma matriz $A = (a_{ij})_{m \times n}$ formam um subconjunto LI de \mathbb{F}^m , então A é invertível.

Demonstração. Como dim $_{\mathbb{F}}(\mathbb{F}^m)$. Logo existem matrizes elementares E_1, \ldots, E_n tais que

$$\underbrace{E_1\cdots E_n}_{A^{-1}}A=I_m$$

7. Transformações lineares (14/01/2021)

8. Espaço vetorial L(V, W) (15/01/2021)

9. Matriz de uma transformação linear (16/01/2021)

10. Funcionais lineares (18/01/2021)

11. Polinômios (19/01/2021)

12. Fatoração única (20/01/2021)

13. Determinantes (21/01/2021)

14. Formas canônicas: operadores diagonalizáveis (25/01/2021)

15. Operadores diagonalizáveis (26/01/2021)

16. Polinômio minimal (27/01/2021)

17. Formas de Jordan (28/01/2021)

18. Exercícios de Fixação (08/01/2021)

- 1. Seja $\mathbb F$ um corpo. Dizemos que um subconjunto $\mathbb K$ de $\mathbb F$ é um subcorpo de $\mathbb F$ se $\mathbb K$ munido das operações de adição e multiplicação de $\mathbb F$ é um corpo. Mostre que os seguintes subconjuntos são subcorpos de $\mathbb C$.
 - (a) $\mathbb{Q}\left(\sqrt{3}\right) = \left\{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\right\};$
- (b) $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q} \text{ e } i^2 = -1\};$
- (c) $\mathbb{Q}\left(i\sqrt{2}\right) = \left\{a + bi\sqrt{2} \mid a, b \in \mathbb{Q} \text{ e } i^2 = -1\right\}.$

Solução

- (a) .
- (b) .
- (c) .
- 2. Mostre que:
 - (a) Todo subcorpo de $\mathbb C$ tem $\mathbb Q$ como subcorpo;
 - (b) Todo corpo de característica 0 tem uma cópia de \mathbb{Q} ;
 - (c) Se $\mathbb K$ contém propriamente $\mathbb R$ e é um subcorpo de $\mathbb C$, então $\mathbb K=\mathbb C$.

- (a) .
- (b) .
- (c) .
- 3. Considere o corpo finito com 5 elementos $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$
 - (a) Mostre que

$$\mathbb{F} = \left\{ a + bi \mid a, b \in \mathbb{Z} / 5\mathbb{Z} \text{ e } i^2 = \overline{3} \right\}$$

$$\overline{+} \colon \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$$

$$((a+bi),(c+di)) \longmapsto (a+c) + (b+d)i \quad ((a+bi),(c+di)) \longmapsto (ac+\overline{3}bd) + (ad+bc)i$$

é um corpo com 25 elementos;

(b) Mostre que $\mathbb{Z}/5\mathbb{Z}$ é um subcorpo de \mathbb{F} . Qual é a característica de F?

Solução

- (a) .
- (b) .
- 4. Determine o conjunto solução de cada sistema linear dado.

(a)
$$\begin{cases} x - 2y + z + w = 1 \\ 2x + y - z = 3 \text{ em } \mathbb{R}, \\ 2x + y - 5z + w = 4 \end{cases}$$

(b)
$$\begin{cases} (z + \sqrt{3})y + & z + w = 1 + \sqrt{3} \\ (2 + \sqrt{3})x + & y - z = 3 \\ 2x + & y - (1 - \sqrt{3})z + w = 4 \end{cases} \text{ em } \mathbb{Q}(\sqrt{3}),$$

(a)
$$\begin{cases} x - 2y + z + w = 1 \\ 2x + y - z = 3 \text{ em } \mathbb{R}, \\ 2x + y - 5z + w = 4 \end{cases}$$
(c)
$$\begin{cases} (z + i)x + z + w = 0 \text{ em } \mathbb{C}, \\ 2ix + y - 5z + (1 + i)w = 0 \end{cases}$$
(d)
$$\begin{cases} x - \overline{2}y + \overline{2}z - w = \overline{0} \\ \overline{2}x + z + w = \overline{0} \text{ em } \mathbb{Z}/5\mathbb{Z}, \\ \overline{2}x + y - \overline{3}z + w = \overline{0} \end{cases}$$
(e)
$$\begin{cases} (z + i)x + z + w = 0 \text{ em } \mathbb{Z}/5\mathbb{Z}, \\ \overline{2}x + z + w = \overline{0} \text{ em } \mathbb{Z}/5\mathbb{Z}, \\ \overline{2}x + y - \overline{3}z + w = \overline{0} \end{cases}$$
(e)
$$\begin{cases} (z + i)x + z + w = \overline{0} \text{ em } \mathbb{Z}/5\mathbb{Z}, \\ \overline{2}x + y - \overline{3}z + w = \overline{0} \end{cases}$$
(e)
$$\begin{cases} (z + i)x + z + w = \overline{0} \text{ em } \mathbb{F} \text{ de (a) da questão 3.} \\ \overline{2}ix + y - \overline{3}z + (\overline{1} + i)w = \overline{0} \end{cases}$$

- (a) .
- (b) .
- (c).
- (d).
- (e) .

5.	Mostre que se dois sistemas lineares 2×2 possuem o mesmo conjunto solução, então eles são equivalentes	. Determine, se existir,	dois sistemas lineares
	2×3 com mesmo conjunto solução mas não equivalentes.		

6. Considere o sistema linear sobre $\mathbb Q$

$$\begin{cases} x - 2y + z + 2w = 1 \\ x + y - z + w = 2 \\ x + 7y - 5z - w = 3 \end{cases}$$

Mostre que esse sistema não tem solução.

Solução

7. Determine todos $a, b, c, d \in \mathbb{R}$ tais que o sistema linear

$$\begin{bmatrix} 3 & -6 & 2 & 1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

tem solução.

Solução

8. Encontre duas matrizes A e B de ordens iguais a 3×3 tais que AB é uma matriz nula mas BA não é.

Solução

9. Mostre que toda matriz elementar é inversível e calcule a inversa de cada tipo.

10. Determine a matriz inversa da matriz

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

Solução

11. Considere a matriz

$$A = \begin{bmatrix} \overline{1} & \overline{2} & \overline{3} & \overline{4} \\ \overline{0} & \overline{2} & \overline{3} & \overline{4} \\ \overline{0} & \overline{0} & \overline{3} & \overline{4} \\ \overline{0} & \overline{0} & \overline{0} & \overline{4} \end{bmatrix}$$

com entradas no corpo com cinco elementos $\mathbb{Z}/5\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\}$. Calcule sua inversa.

Solução

12. Considere a matriz

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{bmatrix}.$$

Encontre uma matriz na forma e uma matriz invertível P tal que R = PA.

19. Exercícios de Fixação (15/01/2021)

1. Defina sobre \mathbb{R}^2 as seguintes operações:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$
 $((x, y), (a, b)) \longmapsto (x + a, 0)$ $(c, (x, y)) \longmapsto (cx, 0)$

O conjunto \mathbb{R}^2 é um espaço vetorial com essas operações?

Solução

2. Defina sobre $V = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$ as seguintes operações:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$
 $((x, y), (a, b)) \longmapsto (xa, yb)$ $(c, (x, y)) \longmapsto (x^c, y^c)$

Mostre que V é um espaço vetorial com essas operações.

- 3. Resolva:
 - (a) O vetor (3, -1, 0, -1) pertence ao subespaço $W = \langle (2, -1, 3, 2), (-1, 1, 1, 3), (1, 1, 9, -5) \rangle$ de \mathbb{R}^4 ?

 - (b) Determine uma base para o subespaço vertorial de \mathbb{R}^5 das soluções do sistema linear homogêneo $\begin{cases} x-2y+z+w+t=0\\ 3x+y-z&-4t=0\\ 2x+y-3z+w&=0 \end{cases}$ (c) Determine uma base para o subespaço vertorial de $(\mathbb{Z}/5\mathbb{Z})^5$ das soluções do sistema linear homogêneo $\begin{cases} x-\overline{2}y+z+w+t=\overline{0}\\ \overline{2}x+y-z&+t=\overline{0}\\ \overline{3}x+y+\overline{3}z+w&=\overline{0} \end{cases}$

- (a) .
- (b) .
- (c) .
- 4. Sejam V um espaço vetorial sobre um corpo \mathbb{F} e U e W subespaços de V tais que U+W=V e $U\cap W=\{0\}$. Mostre que cada vetor $v\in V$ é escrito de maneira única como v=u+w, onde $u\in U$ e $w\in W$.

Solução

5. Mostre que o conjunto dos polinômios sobre uma variável com coeficientes em \mathbb{R} é um espaço vetorial sobre \mathbb{R} munido das operações usuais de soma e multiplicação por escalar. Determine uma base para esse espaço vetorial.

Solução

6. Seja S um subconjunto de um espaço vetorial V. Mostre que S é LD se, e somente se, existir um vetor $v \in S$ que pode ser escrito como combinação linear dos elementos de $S \setminus \{v\}$.

Solução

7. Considere o seguinte espaço vetorial sobre \mathbb{R} :

$$\mathcal{P}_3(\mathbb{R}) = \left\{ a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R} \right\}.$$

- (a) Mostre que $\alpha = \{1, 2+x, 3x-x^2, x-x^3\}$ é uma base de $\mathcal{P}_3(\mathbb{R})$;
- (b) Escreva as coordenadas de $p(x) = 1 + x + x^2 + x^3$ com relação a base α ;
- (c) Determine as matrizes mudança de base $[I]_{\alpha}^{e}$ e $[I]_{e}^{\alpha}$, onde $e = \{1, x, x^{2}, x^{3}\}$.

- (a) .
- (b) .
- (c).

8. Faça o que se pede:

(a) Considere a função $T: \mathbb{C} \to \mathcal{M}_2(\mathbb{R})$ dada por

$$T(x+yi) = \begin{bmatrix} x+7y & 5y \\ -10y & x-7y \end{bmatrix}.$$

Moste que T é uma transformação linear. Prove que $T(z_1z_2) = T(z_1)T(z_2)$, $\forall z_1, z_2 \in \mathbb{C}$;

- (b) Mostre que a composta de transformações lineares é uma transformação linear;
- (c) Mostre que uma função $T: \mathbb{F}^n \to \mathbb{F}$ é uma transformação linear se, e somente se, existem escalares c_1, \ldots, c_n no corpo \mathbb{F} tais que

$$T(x_1, \ldots, x_n) = c_1 x_1 + \ldots + c_n x_n.$$

Solução

- (a) .
- (b) .
- (c) .

9. Faça o que se pede:

- (a) Considere \mathbb{R}^4 e seus subespaços $W = \langle (1,0,1,1), (0,-1,-1,-1) \rangle$ e $U = \{(x,y,z,w) \in \mathbb{R}^4 \mid x+y=0,z+t=0\}$. Determine uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $\operatorname{Nuc}(T) = U$ e $\operatorname{Im}(T) = W$;
- (b) Considere $(\mathbb{Z}/5\mathbb{Z})^4$ e seus subespaços $W = \langle (\overline{1}, \overline{0}, \overline{1}, \overline{1}), (\overline{0}, \overline{4}, \overline{4}, \overline{4}) \rangle$ e $U = \{(x, y, z, w) \in (\mathbb{Z}/5\mathbb{Z})^4 \mid x + y = \overline{0}, z + t = \overline{0}\}$. Determine uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $\operatorname{Nuc}(T) = V$ e $\operatorname{Im}(T) = W$;
- (c) Determine uma base para o núcleo e uma base para a imagem da transformação linear $T: \mathbb{C}^2 \to \mathbb{R}^2$ dada por T(x+yi,a+bi)=(x+2a,-x+2b).

- (a) .
- (b) .
- (c) .
- 10. Sejam V e W espaços vetoriais sobre um mesmo corpo \mathbb{F} e $T:V\to W$. Mostre que T é injetora se, e somente se, T leva subconjunto LI em subconjunto LI.

Solução

11. Seja $T: \mathbb{C}^3 \to \mathcal{P}_2(\mathbb{C})$ a transformação linear definida por $T(1,0,0) = 1 + ix^2$, $T(0,1,0) = x + x^2$ e T(0,0,1) = i + x. Exiba uma fórmula para T e decida se T é um isomorfismo.

Solução

12. Seja F um corpo e $T: \mathbb{F}^2 \to \mathbb{F}^2$ dada por $T(x, y) = (x + y, x), \forall (x, y) \in \mathbb{F}^2$. Mostre que T é um isomorfismo e exiba uma fómula para T^{-1} .

Solução

13. Considere as bases $\alpha = \{1, 1 + x, 1 + x^2\}$ de $\mathcal{P}_2(\mathbb{R})$ e $\beta = \{(1, 0), (i, 0), (1, 1), (1, i)\}$ de \mathbb{C}^2 como espaços vetoriais sobre \mathbb{R} . Determine as coordenadas da transformação linear $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{C}^2$ dada por $T(a + bx + cx^2) = (a + bi, b + ci)$ com relação à base de $L(\mathcal{P}_2(\mathbb{R}), \mathbb{C}^2)$ construída no Teorema 2-(ii) da Aula 9.

Solução

14. Considere a base $\alpha = \{(1,0,-1),(1,1,1),(2,2,0)\}$ de \mathbb{C}^3 como espaço vetorial sobre \mathbb{C} . Determine a base dual α^* de $(\mathbb{C}^3)^*$.

15. Considere $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x, y) = (2x + 3y, y - x, 3x) e as bases $\alpha = \{(1, 2), (2, -1)\}$ de \mathbb{R}^2 e $\beta = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ de \mathbb{R}^3 . Calcule $[T]^{\alpha}_{\beta}$, $[T]^{e_1}_{\beta}$ e $[T]^{\alpha}_{e_2}$ onde e_1 é a base canônica de \mathbb{R}^2 e e_2 é a base canônica de \mathbb{R}^3 .

Solução

16. Sejam $T: \mathbb{R}^3 \to \mathcal{P}_2(\mathbb{R})$ e $G: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ transformações lineares tais que

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad e \quad [G]^{\beta}_{\alpha} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{bmatrix}$$

onde $\alpha = \{(1,1,0),(0,1,0),(0,0,1)\}$ é base de \mathbb{R}^3 e $\beta = \{1,1+x,1+x^2\}$ é base de $\mathcal{P}_2(\mathbb{R})$. Determine bases para $\operatorname{Nuc}(T),\operatorname{Im}(T),\operatorname{Nuc}(G\circ T)$ e $\operatorname{Im}(G\circ T)$.

Solução

17. Seja $T: \mathcal{M}_{2\times 2}(\mathbb{C}) \to \mathcal{M}_{2\times 2}(\mathbb{C})$ a transformação linear definida por

$$T\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} 0 & x \\ z - w & 0 \end{bmatrix}.$$

- (a) Determine a matriz [T] de T com relação à base canônica e;
- (b) Determine a matriz de *T* com relação à base

$$\alpha = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\};$$

(c) Exiba a matriz M tal que $[T]_{\beta} = M^{-1}[T]M$.

- (a)
- (b)
- (c)

18. Seja $T: \mathcal{M}_{2\times 2}(\mathbb{Z}/7\mathbb{Z}) \to \mathcal{M}_{2\times 2}(\mathbb{Z}/7\mathbb{Z})$ a transformação linear definida por

$$T\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \overline{0} & x \\ z + \overline{6}w & \overline{0} \end{bmatrix}.$$

- (a) Determine a matriz [T] de T com relação à base canônica e;
- (b) Determine a matriz de T com relação à base

$$\alpha = \left\{ \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{1} & \overline{1} \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{1} \\ \overline{0} & \overline{1} \end{bmatrix} \right\}$$

- (c) Exiba a matriz M tal que $[T]_{\beta} = M^{-1}[T]M$.
- 19. Seja $T: \mathcal{M}_{2\times 2}(\mathbb{Z}/7\mathbb{Z}) \to \mathcal{M}_{2\times 2}(\mathbb{Z}/7\mathbb{Z})$ a transformação linear definida por

$$T\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \overline{0} & x \\ z + \overline{6}w & \overline{0} \end{bmatrix}.$$

- (a) Determine a matriz [T] de T com relação à base canônica e;
- (b) Determine a matriz de *T* com relação à base

$$\alpha = \left\{ \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{1} \\ \overline{1} & \overline{0} \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{1} & \overline{1} \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{1} \\ \overline{0} & \overline{1} \end{bmatrix} \right\}$$

(c) Exiba a matriz M tal que $[T]_{\beta} = M^{-1}[T]M$.

- (a)
- (b)
- (c)
- 20. Seja $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ uma transformação linear cuja matriz com relação à base canônica seja

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}.$$

- (a) Determine T(x, y, z);
- (b) Qual é a matriz do operador linear T com relação à base $\alpha = \{(-1, 1, 0), (1, -1, 1), (0, 1, -1)\}$?
- (c) O operador *T* é invertível? Justifique!

- (a)
- (b)
- (c)

UnB

20. Exercícios de Fixação (27/01/2021)

1. Mostre que $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x, y, z) = (x + 2y - z, -2x - 3y + z, 2x + 2y - 2z) é diagonalizável.

Solução

.

2. Em cada um dos casos abaixo, decida se o operador linear $T: \mathbb{F}^n \to \mathbb{F}^n$ dado por sua matriz $[T]_{\beta}$ é diagonalizável. Em caso positivo, determine uma base de autovetores e sua forma diagonal.

(a)

$$\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}, \quad \mathbb{F} = \mathbb{C};$$

(c)

$$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}, \quad \mathbb{F} = \mathbb{R}$$

(e)

$$\begin{bmatrix} \overline{2} & \overline{6} & \overline{3} \\ \overline{10} & \overline{6} & \overline{10} \\ \overline{6} & \overline{12} & \overline{5} \end{bmatrix}, \quad \mathbb{F} = \mathbb{Z}/13\mathbb{Z};$$

(b) (d)

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbb{F} = \mathbb{C};$$

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & 5 & -3 \end{bmatrix}, \quad \mathbb{F} = \mathbb{C};$$

(f) $\begin{bmatrix} -2 & -1 & 2 \\ -3 & 0 & 2 \\ -8 & -4 & 7 \end{bmatrix}, \quad \mathbb{F} = \mathbb{R}.$

Solução

.

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)

- 3. Seja $T: V \to V$ um operador linear com V um espaço vetorial de dimensão finita sobre um corpo \mathbb{F} . Mostre que:
 - (a) Se $p_T(x)$ possui todas as raízes com multiplicidade algébrica igual a 1, então T é diagonalizável;
 - (b) Se dim (Im (T)) = m, então T tem no máximo m + 1 autovalores;
 - (c) Se dim (V) = 2 e $\mathbb{F} = \mathbb{C}$, então a matriz de T é semelhante a uma das matrizes:

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, \quad a, b \in \mathbb{C}; \quad \begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}, \quad a \in \mathbb{C}.$$

- (a)
- (b)
- (c)

4.

Mostre que se $B, M \in \mathcal{M}_{m \times m}(F)$, com M invertível, então $(M^{-1}BM)^n = M^{-1}B^nM$, para todo $n \in \mathbb{N}$;

(a) Calcule A^n , com $n \in \mathbb{N}$, onde

(c) Seja

$$\begin{bmatrix} 2 & 4 \\ 3 & 13 \end{bmatrix};$$

$$A = \begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & 2 \end{bmatrix}, \quad \mathcal{M}_{3\times 2}(\mathbb{C}).$$

Dado $n \in \mathbb{N}$, determine $B \in \mathcal{M}_{3\times 3}(\mathbb{C})$ tal que $B^n = A$.

- (a)
- (b)
- (c)

5. Seja $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ um operador linear que tem como autovetores (3,1) e (-2,1) associados aos autovaloes -2 e 3, respectivamente. Calcule T(x,y).

Solução

.

6. Seja $T: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$ um operador linear cuja matriz em relação à base

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é dada por

$$[T]_{\beta} = \begin{bmatrix} -1 & -4 & -2 & -2 \\ -4 & -1 & -2 & -2 \\ 2 & 2 & 1 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix}.$$

Determine uma matriz $M \in \mathcal{M}_{4\times 4}(\mathbb{R})$ tal que $M^{-1}[T]_{\beta}M$ é diagonal.

Solução

.

7. Considere o \mathbb{R} -espaço vetorial V de todas funções $f:\mathbb{R}\to\mathbb{R}$ infinitamente diferenciáveis. Seja W o subespaço de V gerado pelas funções $f_1:x\mapsto e^{2x}$, $f_2:x\mapsto e^{2x}\operatorname{sen}(x),\ f_3:x\mapsto e^{2x}\operatorname{cos}(x)$. Mostre que W é invariante pelo operador linear $D:V\to V$ definido por D(f)=f', para todo $f\in V$. Mostre que $\beta=\{f_1,f_2,f_3\}$ é uma base de W. Determine a matriz de $D|_W$ em relação a base β . Determine os autovaloes e autovetores de D. D é diagonalizável?

Solução

.

- 8. Seja $T: V \to V$ um operador linear, com V um espaço vetorial de dimensão finita sobre um corpo F. Mostre que:
 - (a) Se $p_T(x) = x^n$, mostre que existe $m \ge 1$ tal que $T^m = 0$;
 - (b) Se $m_T(x) = (x \lambda)$, mostre que T é diagonalizável.

- (a)
- (b)
- 9. Encontre todas as possibilidades para o polinômio minimal de um operador linear $T: \mathbb{R}^5 \to \mathbb{R}^5$ com polinômio característico:
 - (a) $p_T(x) = -(x-3)^3(x-2)^2$;
 - (b) $p_T(x) = -(x-1)(x-2)(x-3)(x-4)(x-5)$;
 - (c) $p_T(x) = -(x-1)^m, m \ge 1.$

- (a)
- (b)
- (c)

UnB

21. Exercícios de Fixação (29/01/2021)

(b)

1. Determine a forma de Jordan de $T: \mathbb{C}^6 \to \mathbb{C}^6$ definida por

$$T(x, y, z, w, t, k) = (2x, x + 2y, -x + 2z, y + 2w, x + y + z + w + 2t, t - k).$$

Solução

.

2. Encontre a forma de Jordan das seguinte matrizes

(a)

$$\begin{bmatrix} 5 & -9 & -4 \\ 6 & -11 & -5 \\ -7 & 13 & 6 \end{bmatrix}$$

(c)

$$egin{pmatrix} 0 & -9 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

(d)

$$\begin{bmatrix} \overline{8} & \overline{12} & \overline{0} & \overline{0} \\ \overline{4} & \overline{12} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{9} & \overline{2} \\ \overline{0} & \overline{0} & \overline{2} & \overline{6} \end{bmatrix}$$

A matriz de (d) está sobre o corpo $\mathbb{Z}/13\mathbb{Z}$.

- (a)
- (b)
- (c)
- (d)
- 3. Mostre que as seguintes matrizes são semelhantes:

$$\begin{bmatrix} -1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 4 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

.

- 4. Seja $T: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ dado por T(p(x)) = p(x+1).
 - (a) Determine a forma de Jordan de *T*;
 - (b) Para n=4, encontre uma base β de $\mathcal{P}_n(\mathbb{R})$ tal que $[T]_{\beta}$ seja a forma de Jordan de T.
 - (a)
 - (b)
- 5. Seja A uma matriz 9×9 cujo polinômio característico é $-(x-3)^5(x-2)^4$ e cujo polinômio minimal é $(x-3)^3(x-2)^2$. Dê as possíveis formas de Jordan de A.

Solução

.

6. Seja $T: \mathcal{M}_{2\times 2}\left(\mathbb{R}\right) \to \mathcal{M}_{2\times 2}\left(\mathbb{R}\right)$ um operador linear cuja matriz em relação à base

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é dada por

$$[T]_{\beta} = \begin{bmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{bmatrix}.$$

Determine uma matriz $M \in \mathcal{M}_{4\times 4}(\mathbb{R})$ tal que $M^{-1}[T]_{\beta}M$ é a forma de Jordan de $[T]_{\beta}$.

Solução

.

7. Determine, a menos de semelhança, todas matrizes 3×3 complexas A tais que $A^3 = I_3$.

.

8. Sejam $n \ge 2$ um inteiro positivo e B uma matriz $n \times n$ sobre um corpo \mathbb{F} . Suponha que $B^n = 0$ e $B^{n-1} \ne 0$. Mostre que não existe uma $n \times n$ matriz A tal que $A^2 = B$.

Solução

.

9. Seja A uma matriz 6×6 sobre $\mathbb R$ tal que $A^4 - 8A^2 + 16I = 0$. Quais são as possíveis formas de Jordan não semelhantes de A?

Solução

.

UnB

A. Overview about Julia

En agosto del 2018 se lanzó la versión definitiva LTS y actualmente estamos en la versión 1.5.6. Para ser eficiente, el desarrollo del lenguaje se planteó como objetivos:

- No interpretable, sino compilable, uso de LLVM como compilador JIT (Just in time). La primera ejecución va lenta porque compila y ejecuta, la segunda va mucho más rápido.
- Tipado de variables recomendado, pero no obligatorio.
- Aversión a las variables globales.
- Paralización. Cualquier bucle será tan rápido como una operación vectorial.
- Desde un principio, se concibió para distribuir cálculos entre distintos procesadores.
- Club del petaflop: Julia, C, C++, Java y Fortran.
- Modular, permite desarrollos independientes.
- Políglota. Se puede invocar funciones de C, Fortran, R, Python, etc.

```
julia> √3
1.7320508075688772

julia> ADD = 0×00AB0
0×00000ab0
```

Julia is a modern, expressive, high-performance programming language designed for scientific computation and data manipulation. Originally developed by a group of computer scientists and mathematicians at MIT led by Alan Edelman, Julia combines three key features for highly intensive computing tasks as perhaps no other contemporary programming language does: it is fast, easy to learn and use, and open source.

Algorithms for Optimization

B. LinearAlgebra from Julia

Não há necessidade de instalar nenhum programa, você só precisa de uma conta do Google e seguir as instruções do repositório¹.

```
f(x) = x.^2 + \pi
const \otimes = kron
const \Sigma = sum \# Although `sum` may be just as good in the code.
\# Calculate \Sigma_{j=1}^5 j^2
\Sigma([j^2 for j \in 1:5])
```

Listing B.1: Programa main.jl.

B.1. Matrix calculus

For a comprensitive tutorial about Julia look OLS regression coefficients=0.711.84

```
julia> using Pkg;Pkg.status()
Status `~/.julia/environments/v1.5/Project.toml`
  [44d3d7a6] Weave v0.10.2
```

¹julia_on_collab.ipynb

Índice

corpo, 7

