Лекція 13. Підгрупи та циклічні підгрупи.

Визначення та приклади підгруп

Непорожня підмножина H групи G називається підгрупою, якщо вона є групою відносно визначеної в групі G операції.

Зауважимо, що не всяка підмножина A групи G є підгрупою. Розглянемо, наприклад, підмножину $A = \{1, i\}$ групи $\mathbf{C}_4 = \{1, -1, i, -i\}$ з операцією множення комплексних чисел. Маємо $i \cdot i = -1$. Як бачимо добуток двох елементів множини A не належить до цієї множини. Інакше кажучи, множина A не замкнена відносно визначеної в групі G операції. Якщо тепер розглядати множину A у відриві від групи, але з операцією, яка була визначена в групі, то не для всіх пар елементів цієї множини їх добуток належить до цієї множини.

Розглянемо ще нескінченну підмножину $B = \{1, 2, ..., 2^n, ...\}$ групи \mathbf{Q}^* ненульових раціональних чисел відносно операції множення. Тут при виконанні операції групи на будь-якими двома елементами вказаної множини результат не виходить за межі множини B. Проте всі елементи множини B, крім елемента 1, не мають обернених у цій множині.

Наведені зауваження показують, що справедливим ϵ такий критерій:

підмножина H групи G ϵ підгрупою, тоді і лише тоді, коли:

- а) для всіх h_I , $h_2 \in H$: $h_I \cdot h_2 \in H$;
- б) для всіх $h \in H: h^{-1} \in H$.

Дійсно, умова а) дозволяє ввести на множині H ту саму операцію, яка була в групі. Зрозуміло, що ця операція є асоціативною. Умова б) гарантує існування обернених елементів в H. Нарешті, з умов а) і б) випливає, що нейтральний елемент групи належить до H: якщо $h \in H$, то $h^{-1} \in H$ і тоді $h \cdot h^{-1} = e \in H$.

Далі наведено приклади підгруп:

- 1) кожна група G має дві так звані тривіальні підгрупи: підгрупа $\{e\}$ лише з одного нейтрального елемента та підгрупу, яка співпадає з усією групою G;
- 2) в ланцюгу $\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$ кожна попередня група (відносно додавання чисел) є підгрупою наступної групи;
- 3) група \mathbf{C}_n комплексних коренів n-го степеня з одиниці є підгрупою групи \mathbf{C}^* всіх ненульових комплексних чисел відносно множення. Цей приклад показує, що нескінченна група може мати скінченні підгрупи. У даному

випадку нескінченна група має навіть нескінченну кількість скінченних підгруп;

- 4) множина всіх матриць, визначник яких рівний ± 1 , є підгрупою групи $GL_n(\mathbf{C})$ невироджених (тобто з відмінним від нуля визначником) комплексних матриць розміру $n \times n$ відносно множення матриць;
- 5) множина всіх парних підстановок n елементів є підгрупою групи S_n . У той же час множина всіх непарних підстановок не утворює підгрупу.

Циклічна група

Елемент g групи G називається елементом скінченого порядку, якщо існує таке натуральне число n, що $g^n = e$. Найменше натуральне число з такою властивістю називається порядком елемента g і позначається через ord (g).

Наприклад, у групі \mathbb{C}^* ненульових комплексних чисел відносно множення маємо, що ord (i) = 4, ord $(cos(2\pi/5) + i sin(2\pi/5)) = 5$. Разом з тим, елемент 2 цієї групи має нескінченний порядок.

Розглянемо всі цілі (нульовий, додатні та від'ємні) степені фіксованого елемента g групи G: $g^0 = e$, $g^1 = g$, $g^2 = g \cdot g$, ..., g^{-1} , $g^{-2} = (g^{-1})^2$, Зрозуміло, що ця множина є підгрупою групи G. Вона називається циклічною підгрупою, а елемент g — її твірним елементом. Якщо циклічна підгрупа є скінченною, то кількість елементів у ній дорівнює порядку її твірного елемента.

Варто зауважити, що вище розглянуто групу, задану в мультиплікативній формі. Тоді циклічна підгрупа складається зі степенів твірного елемента. Якщо ж маємо групу в адитивній формі, то слід говорити про кратні mg, ($m \in \mathbb{Z}$) твірного елемента замість його степенів.

Далі наведено приклади циклічних підгруп:

- 1) множина $\mathbf{C}_4 = \{i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i\}$ циклічна підгрупа групи \mathbf{C}^* (всіх ненульових комплексних чисел відносно множення) з твірним елементом i. Зауважимо, що $i^4 = 1$, тобто ord (i)=4;
- 2) нехай $a \in S_3$ є підстановкою a = (1, 2). Тоді $a^2 = e$ і $a^{-1} = a$. Отже, множина $\{e, a\}$ є циклічною підгрупою групи S_3 , породженою елементом a;
- 3) матриця $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ породжує циклічну підгрупу групи $GL_2(\mathbf{C})$. Легко перевірити, що $A^m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$, $m \in \mathbf{Z}$. Маємо приклад нескінченної циклічної підгрупи.

Група G називається циклічною, якщо знайдеться такий елемент $g \in G$, що породжена ним циклічна підгрупа співпадає з G. Зрозуміло, що будь-яка циклічна група є абелевою.

Прикладами скінченних циклічних груп ϵ групи \mathbf{C}_n і \mathbf{Z}_n . Група \mathbf{Z} відносно додавання ϵ нескінченною циклічною групою з твірним елементом 1 (степенем елемента тут ϵ його кратне).

Таким чином, будь-яка циклічна група має скінченну кількість елементів або ϵ нескінченною. Нескінченна циклічна група задається на зчисленній множині (бо множина цілих чисел, які беремо як степені твірного елемента, ϵ зчисленною). З цього виплива ϵ , що група \mathbf{R} всіх дійсних чисел відносно додавання або група \mathbf{C}^* всіх ненульових комплексних чисел відносно множення не ϵ циклічними.