제 5 장 분할표 데이터 분석

목차

- ❖ 범주형자료 분석의 개념
- ❖ 분할표의 통계분석
 - 분할표의 확률구조
 - 비교 측도
 - 카이제곱 근사 검정
 - Fisher의 정확 검정
 - Simpson의 역설
 - McNemar의 짝지어진 표본 검정
- ❖ 로지스틱 회귀분석
- ❖ 로그 선형 모형

범주형 자료 (Categorical Data) 분석의 개념

- ❖ 범주형 변수(categorical variable) 범주(category)를 값으로 갖는 변수
 - 명목형 변수(nominal variable) 순서 없는 범주를 가지는 변수 (예: 종교 불교, 기독교, 천주교 등)
 - 순서형 변수(ordinal variable) 순서가 있는 범주를 가지는 변수 (예: 자동차의 크기- 소형, 중형, 대형)
- ❖ 연속형 변수를 몇 개의 그룹으로 만들어 범주형 변수로 만들기도 한다 (예: 연속형인 시험 점수(0~100점)를 몇 개의 등급으로 나눈 학점(A, B, C, D, F)으로 변환하여 범주형 변수로 만든 경우)
- ❖ 범주형 자료 분석이라 함은 흔히 반응(종속) 변수가 범주형이고 설명 (독립) 변수는 범주형일 수도 있고 아닐 수도 있는 데이터를 분석하는 것을 의미 한다.

분할표의 기본 분석

분할표(Contingency Table)

- ❖ 분할표(contingency table) 아래표와 같이 범주형 데이터가 각 변수의 값에 따라 통계표 형태로 정리되어 있을 때 그러한 통계표를 흔히 분할표라고 한다.
- ❖ 차원(dimensionality) 분할표의 구성에 관계된 변수의 수
- ❖ 수준(level) 범주형 변수가 가지는 범주의 수
- ❖ 분할표의 예 2x2분할표

			Υ	
		1	2	
X	1	n ₁₁	n ₁₂	n ₁₊
	2	n ₂₁	n ₂₂	n ₂₊
	-	n ₊₁	n ₊₂	n

			Υ		
		1	2		
X	1	π ₁₁	π ₁₂	π ₁₊	
	2	π ₂₁	π ₂₂	π ₂₊	
	-	π ₊₁	π ₊₂	1	

분할표(Contingency Table)

❖ IxJ 분할표에서 i번째 행, j번째 열의 칸(cell)에 빈도와 확률을 각각 n_{ii} 와 π_{ii} 라고 하자. 그리고 각 행의 합, 열의 합, 그리고 전체 합과 확률은 다음과 같다.

$$\begin{split} n_{i+} &= \, \Sigma_{j} \, n_{ij}, & n_{+j} &= \, \Sigma_{i} \, n_{ij} & \pi_{i+} &= \, \Sigma_{j} \pi_{ij}, & \pi_{+j} &= \, \Sigma_{i} \pi_{ij}, \\ \Sigma_{i} \, n_{i+} &= \, \Sigma_{i} \, \Sigma_{i} \, n_{ij} &= \, n & \Sigma_{i} \, \pi_{i+} &= \, \Sigma_{i} \, \pi_{+j} &= \, \Sigma_{i} \, \Sigma_{j} \, \pi_{ij} &= \, 1 \end{split}$$

	1	2	•••	J	
1	n ₁₁	n ₁₂	•••	n _{1J}	n ₁₊
2	n ₂₁	n ₂₂	•••	n _{2J}	n ₂₊
ı	n _{I1}	n _{I2}	•••	n _{IJ}	n _{I+}
	n ₊₁	n ₊₂	•••	n _{+J}	n

$$\pi_{i+} = \Sigma_{j} \pi_{ij}, \qquad \pi_{+j} = \Sigma_{i} \pi_{ij},
\Sigma_{i} \pi_{i+} = \Sigma_{i} \pi_{+i} = \Sigma_{i} \Sigma_{i} \pi_{ii} = 1$$

	1	2	•••	J	
1	π ₁₁	π ₁₂	•••	π_{1J}	π ₁₊
2	π ₂₁	π ₂₂	•••	π_{2J}	π ₂₊
I	π _{I1}	π ₁₂	•••	πι	π_{l+}
	π ₊₁	π ₊₂	•••	π ₊ ,	1

분할표의 확률구조

연구대상이 되는 모집단으로부터 임의로 추출된 어떤 개체가 두 범주형 변수인 X와 Y값에 따라 분류된다고 하자.

- 결합확률(Joint probability)와 결합확률분포(Joint probability distribution)
 - \blacktriangleright 확률변수를 여러 개 함께 고려하는 확률 분포. 두 범주형 변수인 X와 Y에 대해 결합 확률은 $\pi_{ij}=\Pr(X=i,y=j)$. 표본에 의한 추정은 $p_{ij}=n_{ij}/n$.
- 주변확률(Marginal probability)와 주변확률분포(Marginal probability distribution)
 - ▶ 특정한 하나의 확률변수를 고려하는 확률 분포. 두 범주형 변수 인 X와 Y에 대해 주변확률 확률은 $\pi_{i+}=\Pr(X=i)$ 와 $\pi_{+j}=\Pr(Y=j)$. 표본에 의한 추정은 $p_{i+}=n_{i+}/n$ 와 $p_{+j}=n_{+j}/n$.

분할표의 확률구조

- 조건부확률(Conditional probability)와 조건부확률분포(Conditional probability distribution)
 - \blacktriangleright 한 변수의 각 수준에서 다른 변수에 관해 개별적인 확률분포. 범 주형 변수인 X가 주어졌을 때 Y의 조건부 확률은 $\pi_{j|i}=\Pr(y=j|X=i)$. 표본에 의한 추정은 $p_{j|i}=n_{ij}/n_{i+}$.
- 독립성 (Independence)
 - 한 변수의 각 수준에서 다른 변수의 조건부분포가 동일할 때 두 변수는 통계적으로 독립이라 한다. 두 변수 X와 Y가 독립이면 임 의의 어떤 열(행)의 어떤 수준에 대한 확률은 각 행(열)에서 동일 하다.

2차원 분할표의 독립성 또는 동질성 검정

- ❖ 독립성 (independence) 가설
 - H_0 : $\pi_{ij} = \pi_{i+} \pi_{+j}$ for all j and j
- ❖ 동질성 (homogeneity) 가설
 - H_0 : $\pi_{1|i} = \pi_{2|i} = \cdots = \pi_{|i|}$ for all j

	1	2	•••	J	
1	π ₁₁	π ₁₂	•••	π ₁	π ₁₊
2	π ₂₁	π ₂₂	•••	π_{2J}	π ₂₊
I	π _{I1}	π ₁₂	•••	π_{IJ}	π_{l+}
	π ₊₁	π ₊₂	•••	π ₊ ,	1

❖ 독립성가설과 동질성가설의 카이제곱(Chi-square)에 의한 검정 방법은 동일

2차원 분할표의 독립성 또는 동질성 검정

❖ 피어슨 카이제곱(Pearson's Chi-square) 검정

$$X^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \widehat{\mu_{ij}})^2}{\widehat{\mu_{ij}}} \sim \chi^2_{((I-1)(J-1))}$$

• 귀무 가설 하에서 추정기대빈도는

$$\widehat{\mu_{ij}} = n\widehat{\pi_{ij}} = n\widehat{\pi_{i}} + \widehat{\pi_{i+j}} = n_{i+1} + n_{i+j} / n$$

- 유의수준 α 가 주어졌을 때, $X^2 > \chi^2_{((l-1)(J-1))}(\alpha)$ 라면 귀무 가설을 기각한다. 즉, p-값이 α 보다 작으면 귀무 가설을 기각한다.
- 귀무 가설을 기각하는 것은 행 변수와 열 변수가 독립이 아니다 또는 행(열) 변수의 각 수준의 확률이 동일하지 않다라는 것을 의미한다.

2차원 분할표의 독립성 또는 동질성 검정

❖ 우도비 카이제곱(Likelihood Ratio Chi-square) 검정

$$G^2 = 2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log (n_{ij} / \widehat{\mu_{ij}}) \sim \chi^2_{((I-1)(J-1))}$$

• 귀무가설 하에서 추정기대빈도는

$$\widehat{\mu_{ij}} = n\widehat{\pi_{ij}} = n\widehat{\pi_{i}} + \widehat{\pi_{+j}} = n_{i+1} + n_{i+j} / n$$

- 유의수준 α 가 주어졌을 때, $X^2 > \chi^2_{((l-1)(J-1))}(\alpha)$ 라면 귀무 가설을 기각한다. 즉, p-값이 α 보다 작으면 귀무 가설을 기각한다.
- 귀무 가설을 기각하는 것은 행 변수와 열 변수가 독립이 아니다 또는 행(열) 변수의 각 수준의 확률이 동일하지 않다라는 것을 의미한다.

그룹 비교를 위한 측도

- ❖ 비율의 차이(Difference of Proportions):
 - $D = p_{1|1} p_{1|2} = n_{11}/n_{1+} n_{21}/n_{2+}$
 - 범위: -1 ~ 1
 - 동질 또는 독립: D = 0
- ❖ 상대적 위험도(Relative Risk):
 - RR = $p_{1|1}/p_{1|2} = (n_{11}/n_{1+})/(n_{21}/n_{2+})$
 - 범위: 0 ~ ∞
 - 동질 또는 독립: RR = 1
- ❖ 오즈비(Odds Ratio)
 - OR = $(p_{11}/p_{12})/(p_{21}/p_{22})$ = $(n_{11}n_{22})/(n_{12}n_{21})$
 - 범위: () ~ ∞
 - 동질 또는 독립: OR = 1

		1	2	
Х	1	n ₁₁	n ₁₂	n ₁₊
	2	n ₂₁	n ₂₂	n ₂₊
		n ₊₁	n ₊₂	n

예제 1: 내세의 믿음과 성별의 연관성 (확률구조)

				1
성별	내세의 믿음	성별		
02	예	아니오	합	0 E
여성	435	147	582	여성
남성	375	134	509	남성
합	810	281	1091	합

주변확률

- ✓ 성별을 설명변수로 내세의 믿음에 대한 조건부분포
- ✓ 여성 중 "예"라고 반응한 비율: 435 / 582 = 0.747
- ✓ 여성의 경우 조건부분포 (0.747, 0.253)
- ✓ 남성의 경우 조건부분포 (0.737, 0.263)

예제 2: 아스피린과 심근경색의 연관성 (비교측도)

❖ 아스피린 복용이 심근경색 예방에 효과가 있는지 연구

	심	근경색	خ د
	Yes	No	합
위약(placebo)	189	10,845	11,034
아스피린(aspirin)	104	10,933	11,037
합	293	21,778	22,071

예제 2: 아스피린과 심근경색의 연관성 (계속)

drug * heart 교차표

			he	art	
			no	yes	전체
drug	aspirin	빈도	10933	104	11037
		기대빈도	10890.5	146.5	11037.0
		drug 중 %	99.1%	0.9%	100.0%
	placebo	빈도	10845	189	11034
		기대빈도	10887.5	146.5	11034.0
		drug 중 %	98.3%	1.7%	100.0%
전체		빈도	21778	293	22071
		기대빈도	21778.0	293.0	22071.0
		drug 중 %	98.7%	1.3%	100.0%

OR=(10933x189)/(104x10845) = 1.832

Col1: RR = 0.990577/0.982871 = 1.008

Col2: RR = 0.009423/0.017129 = 0.550

위험도 추정값

		95% 신	뢰구간
	값	하한	상한
drug (aspirin / placebo)에 대한 승산비	1.832	1.440	2.331
코호트 heart = no	1.008	1.005	1.011
코호트 heart = yes	.550	.434	.698
유효 케이스 수	22071		

카이제곱 검정

	값	자유도	점근 유의확률 (양측검정)	정확한 유의확 률 (양측검정)	정확한 유의확 률 (단측검정)
Pearson 카이제곱	25, 014 ^b	1	,000		
연속수정리	24,429	1	,000		
우도비	25,372	1	.000		
Fisher의 정확한 검정				.000	.000
유효 케이스 수	22071				

- a. 2x2 표에 대해서만 계산됨
- b. 0 셀 (,0%)은(는) 5보다 작은 기대 빈도를 가지는 셀입니다. 최소 기대빈도는 146,48입니다.

예제 2: 아스피린과 심근경색의 연관성 (in R)

- > aspirin<-matrix(c(189,104,10845,10933),ncol=2,nrow=2)
- > chisq.test(aspirin,correct=FALSE)#연속수정 안 한 경우 Pearson's Chi-squared test

data: aspirin

X-squared = 25.014, df = 1, p-value = 5.692e-07

> chisq.test(aspirin) # 연속수정 한 경우

Pearson's Chi-squared test with Yates' continuity correction

data: aspirin

X-squared = 24.429, df = 1, p-value = 7.71e-07

예제 2: 아스피린과 심근경색의 연관성 (in R)

```
aspirin.test<- chisq.test(aspirin,correct=FALSE)
> aspirin.test$observed #관측빈도
     [,1] [,2]
[1,] 189 10845
[2,] 104 10933
> aspirin.test$expected # 기대빈도
        [,1] [,2]
[1,] 146.4801 10887.52
[2,1 146.5199 10890.48
> aspirin.test$p.value # p-value
[1] 5.691897e-07
```

소표본일 때 Fisher 정확 검정

- ❖ 표본의 수가 작을 때 근사적 방법인 피어슨 카이제곱 검정과 우도비 카이제곱 검정은 타당하지 않을 수 있다. 이 때 정확한 분포를 이용한 검정방법이 선호된다.
- ❖ 표본 수 판정기준: 칸의 기대 빈도가 5이하인 셀이 20% 이상일때
- ❖ Fisher의 정확(Fisher's Exact) 검정
 - 초기하분포(Hypergeometric Distribution):

$\Pr(n_{11} = t)$	_	$\frac{\binom{n_{1+}}{t}\binom{n_{2+}}{n_{+1}-t}}{}$
$\Gamma \Gamma (I \iota_{11} - \iota)$	_	$\binom{n}{n+1}$

		Υ		
		1	2	
X	1	n ₁₁	n ₁₂	n ₁₊
	2	n ₂₁	n ₂₂	n ₂₊
		n ₊₁	n ₊₂	n

- n₁₁의 범위는 m₋ ≤ n₁₁ ≤ m₊
- $m_{-} = max(0, n_{1+} + n_{+1} n), m_{+} = min(n_{1+}, n_{+1})$

소표본일 때 Fisher 정확 검정

- 독립성검정에 대한 P-값은 관측도수 이상으로 대립가설을 선호하게 되는 초기하확률의 합이다.
- 주변합계가 주어질 때 n_{11} 이 클 수록 표본오즈비 $\hat{\theta} = n_{11}n_{22}/n_{12}n_{21}$ 가 커지게 되고 대립가설을 더욱 선호하게 되는 뚜렷한 증거를 나타낸다.
- 따라서, P-값은 초기하분포에서 n₁₁이 관측값보다 크거나 같게 우측 꼬리확률이 된다.
- 이 검정은 2x2표의 경우 영국 통계학자 피셔(Fisher, Ronald A., 1890-1962)에 의해 1934년에 제안되었으며 Fisher의 정확검정(exact test)이라 부른다.
- 독립성의 귀무가설에 대해 대립가설

예제 3: 간염 치료의 효과 (소표본)

❖ 간염 치료제가 효과가 있는지 연구

	호전됨	호전 안됨	합
치료군(Test)	10	2	12
대조군(Control)	2	4	6
합	12	6	18

❖ 표본의 수가 작으므로 피어슨 카이제곱 검정(P-값=0.0339)이나 우도 비 카이제곱 검정 (P-값=0.0346)은 타당하지 않을 수 있다.

(75%이상의 칸의 기대 빈도가 5이하)

❖ 기대빈도 - (1,1): 12x12/18=8, (1,2): 6x12/18=4

(2,1): 12x6/18=4, (2,2): 6x6/18=2

예제 3: 간염 치료의 효과 (계속)

❖ 초기하분포에 의한 확률

(1,1)	(1,2)	(2,1)	(2,2)	확률
12	0	0	6	0.0001
11	1	1	5	0.0039
10	2	2	4	0.0533
9	3	3	3	0.2370
8	4	4	2	0.4000
7	5	5	1	0.2560
6	6	6	0	0.0498

- ❖ Ex) 위의 0.0533의 값을 초기하분포를 이용하여 R에서 계산하시오.
- > choose(12,10)*choose(6,2)/choose(18,12)

[1] 0.05332902

예제 3: 간염 치료의 효과 (계속)

- 단측검정 H₀: 독립, H₁: 양의 연관성 있음 P-값 = Pr(n₁₁≥10) = Pr(n₁₁=10) + Pr(n₁₁=11) + Pr(n₁₁=12) = 0.0533 + 0.0039 + 0.0001 = 0.0573
- 단측검정 H₀: 독립, H₁: 음의 연관성 있음
 P-값 = Pr(n₁₁≤10) = Pr(n₁₁=6) + ··· + Pr(n₁₁=10)
 = 0.0498 + ··· + 0.0533 = 0.9961
- 양측검정 H₀: 독립, H₁: 연관성 있음
 P-값 = Pr(n₁₁ ≥ 10) + Pr(n₁₁=6)
 = 0.0533 + 0.0039 + 0.0001 + 0.0498 = 0.1071
- ❖ 피어슨 또는 우도비 카이제곱 (양측) 검정과 다른 결론
 - 피어슨 카이제곱 검정: P-값=0.0339
 - 우도비 카이제곱 검정: P-값=0.0346

예제 3: 간염 치료의 효과 (in R)

```
단측검정 - H<sub>0</sub>: 독립, H<sub>1</sub>: 양의 연관성 있음
P-값 = Pr(n<sub>11</sub>≥10) = Pr(n<sub>11</sub>=10) + Pr(n<sub>11</sub>=11) + Pr(n<sub>11</sub>=12)
= 0.0533 + 0.0039 + 0.0001 = 0.0573
```

```
> liver.data<- matrix(c(10,2,2,4),nrow=2) # 데이터 입력
> fisher.test(liver.data,alternative="greater")
        Fisher's Exact Test for Count Data
data: liver.data
p-value = 0.05726
alternative hypothesis: true odds ratio is greater than
95 percent confidence interval:
 0.9374086
           Inf
sample estimates:
odds ratio
  8.457238
```

예제 3: 간염 치료의 효과 (in R)

```
단측검정 - H0: 독립, H1: 음의 연관성 있음
P-값 = Pr(n11≤10) = Pr(n11=6) + ··· + Pr(n11=10)
= 0.0498 + ··· + 0.0533 = 0.9961
```

```
> fisher.test(liver.data,alternative="less")
        Fisher's Exact Test for Count Data
data: liver.data
p-value = 0.9961
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
   0.0000 108.2447
sample estimates:
odds ratio
  8.457238
```

예제 3: 간염 치료의 효과 (in R)

8.457238

```
양측검정 - H0: 독립, H1: 연관성 있음
P-값 = Pr(n11 ≥ 10) + Pr(n11=6)
= 0.0533 + 0.0039 + 0.0001 + 0.0498 = 0.1071
```

> fisher.test(liver.data)

Fisher's Exact Test for Count Data

data: liver.data
p-value = 0.107
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.6896384 166.4344614
sample estimates:
odds ratio

예제 4: 차 (소표본)

❖ 런던의 로담스테드 실험연구소에서 근무했던 Fisher의 한 동료는 차를 마실 때 연유와 차 중에서 어느 것을 먼저 컵에 넣었는지를 구분할 수 있다고 주장했다. 그러한 주장을 검정하기 위해 여덟 컵의 차를 맛보도 록 하는 시험을 고안했다. 컵은 랜덤 한 순서로 제시되었다.

1차 첨가	연유	차	합
연유	3	1	4
차	1	3	4
ंठें	4	4	8

 $H_{\circ}: \theta=1$ 맛 감정가의 추측과 컵에 무엇을 먼저 넣는가의 순서는 무관하다.

VS

 $H_1: \theta > 1$ 순서와 추측간에 양적 연관성이 있다는 감정가의 주장을 반영.

Simpson의 역설(Paradox)

- ❖ 주변연관성(marginal association)이 조건부연관성 (conditional association)과 다른 방향을 가질 수 있다는 결과를 Simpson의 역설이라고 한다.
- ❖ 두 변수가 사실 음의 상관이 있는데 lurking confounder 때문 에 양의 상관이 있는 것처럼 나타날 때 발생한다.
- ❖ 1951년 Edward H. Simpson에 의해 처음 Journal of the Royal Statistical Society (Series B) 학술지 논문에서 이 현상이 설명되었다. 이후에 여러 통계학자에 의해 언급되었고, 1972년 Colin R. Blyth에 의해 Simpson's paradox로 이름 불리게 되었다.

예제 5: UC-Berkeley의 입학허가 (Simpson의 역설)

- ❖ 1973년 미국의 University of California Berkeley의 대학원 입학 허가에 관한 데이터
- ❖ 입학허가에 남녀 차별이 있었는가를 조사

성별	불합격자	합격자	지원자
남자	1291(48.0%)	1400(52.0%)	2691
여자	1063(58.9%)	772(42.1%)	1835

예제 5: UC-Berkeley의 입학허가 (Simpson의 역설)

분야 * 합격여부 * 성별 교차표

				합격	여부				
			하	격	불합	합격	전	체	
성별			빈도	분야의 %	빈도	분야의 %	빈도	분야의 %	
남학생	분야	Α	512	62.1%	313	37.9%	825	100.0%	l
		В	353	63.0%	207	37.0%	560	100.0%	l
		С	120	36.9%	205	63.1%	325	100.0%	l
		D	138	33.1%	279	66.9%	417	100.0%	
		Е	53	27.7%	138	72.3%	191	100.0%	
		F	224	60.1%	149	39.9%	373	100.0%	
	전 체		1400	52.0%	1291	48.0%	2691	100.0%	Г
여학생	문야	А	89	82.4%	19	17.6%	108	100.0%	
		В	17	68.0%	8	32.0%	25	100.0%	l
		С	202	34.1%	391	65.9%	593	100.0%	l
		D	131	34.9%	244	65.1%	375	100.0%	l
		Е	94	23.9%	299	76.1%	393	100.0%	
		F	239	70.1%	102	29.9%	341	100.0%	
	전체		772	42.1%	1063	57.9%	1835	100.0%	

예제 5: UC-Berkeley의 입학허가 (Simpson의 역설)

- 대학원 입학에서 남학생의 합격률(52%)가 여학생의 합 격률(42%)보다 높음
- 분야별로 세분화 하였을 때 여학생의 합격률이 더 높음 (A,B,D,F)
- 남학생들은 주로 A,B 분야에 많은 수를 지원함 (여학생은 적게 지원함)
- A, B, F 부분에서 합격률이 비교적 높음
- 2원 분할표의 경우 전공선택에서의 남녀별 성향차이가 반영되지 않아 이를 반영한 3원 분할표와 상반된 결과가 제시됨
- 이러한 현상을 Simpson의 역설이라고 함

짝지어진 표본(Matched sample)일 때 분할표 분석 (Paired T-test 와 비슷한 테스트. 자료가 binary인 경우)

	Test 2		
Test 1	Positive	Negative	합
Positive	a	b	a+b
Negative	С	d	c+d
합	a+c	b+d	n

$$H_0$$
: $\pi_b = \pi_c$ VS H_a : $\pi_b \neq \pi_c$ (또는, H_0 : $\pi_a + \pi_b = \pi_a + \pi_c$ VS H_a : $Not H_0$) (또는, H_0 : $\pi_c + \pi_d = \pi_b + \pi_d$ VS H_a : $Not H_0$)

짝지어진 표본(Matched sample)일 때 분할표 분석

❖맥니머 검정 통계량 (McNemar's Test Statistics)

$$\chi^2 = \frac{(b-c)^2}{b+c} \sim \chi^2_{(df=1)}$$

	Tes		
Test 1	Positive Negative		합
Positive	а	b	a+b
Negative	С	d	c+d
합	a+c	b+d	n

❖맥니머 검정 통계량 (McNemar's Test Statistics)-연속수정

$$\chi^2 = \frac{(|b - c| - 1)^2}{b + c} \sim \chi^2_{(df=1)}$$

P-value 가 달라짐.

짝지어진 표본(Matched sample)일 때 분할표 분석

❖ 세금인상과 복지확대에 관련한 의견에 대해 "예"라고 응답할 확률비교

예제 6: 세금인상과 복지확대에 관련 의견 (McNemar 검정)

	복지확대		
세금 인상	찬성	반대	합
찬성	227	132	359
반대	107	678	785
합	334	810	1144

- 귀무가설은 H_0 : $\pi_{1+} = \pi_{+1}$ 또는 H_0 : $\pi_{12} = \pi_{21}$
- 동일한 사람에게 두 가지 이슈에 대한 의견을 물어 보았기 때문에 표본은 독립적이 아님.
- 대응쌍(matched pair)을 이루는 이항반응에 대한 주변동질성(marginal homogeneity) 검정

예제 6: 세금인상과 복지확대에 관련 의견 (in R)

```
> McNemar.data<-
matrix(c(227,107,132,678),nrow=2,
dimnames=list("Tax"=c("Yes","No"),"Welfare"=c
("Yes","No")))</pre>
```

> McNemar.data
Welfare

Tax Yes No

Yes 227 132

No 107 678

예제 6: 세금인상과 복지확대에 관련 의견 (in R)

> mcnemar.test(McNemar.data,correct=FALSE) #연속수정 안함

McNemar's Chi-squared test

data: McNemar.data

McNemar's chi-squared = 2.6151, df = 1, p-value = 0.1059

- > MC.test<-(132-107)^2/(132+107) # 검정통계량 계산
- > MC.test # McNemar's chi-squared 위의 결과. [1] 2.615063
- > 1-pchisq(MC.test,df=1) # P-value 구하기 [1] 0.1058533

예제 6: 세금인상과 복지확대에 관련 의견 (in R)

> mcnemar.test(McNemar.data,correct=TRUE) #연속수정 함

McNemar's Chi-squared test

data: McNemar.data

McNemar's chi-squared = 2.41, df = 1, p-value = 0.1206

- > MC.test.c<-(abs(132-107)-1)^2/(132+107) # 검정통계량 계산
- > MC.test.c # McNemar's chi-squared 위의 결과.
- [1] 2.410042
- > 1-pchisq(MC.test.c,df=1) # P-value 구하기
- [1] 0.1205591

일반화 선형모형 (Generalized Linear Model; GLM)

일반화선형모형(Generalized Linear Model; GLM)

- 선형모형(linear model)에서 반응은 설명변량들의 선형결합에 정규분 포를 따르는 오차가 붙여지는 것으로 가정된다.
- 따라서 반응변수(종속변수)는 연속형이어야 한다.
- 그런데 실제로는 드물지 않게 종속변수가 이산형인 경우가 있고 연속 형이지만 비음(非陰, nonnegative)인 경우가 있다.
- 이런 경우들에서는 선형모형이 적절하지 않으므로 대안 모형이 필요한데, 일차적으로 고려할 수 있는 것이 일반화선형모형(generalized linear model)이다.

GLM의 성분

- ❖ 모든 GLM(Generalizes Linear Model)에 공통된 세 가지 요소
 - 랜덤성분(Random component)
 - : 반응변수 Y의 확률분포를 규정함.
 - 체계적성분(Systematic component)
 - : 모형의 예측변수로 사용되는 설명변수들을 규정함.
 - 연결함수(Link function)
 - : 체계적성분과 랜덤성분의 기대값과의 함수관계를 나타냄.
- ❖ GLM은 선형 예측방정식을 통해 반응 평균의 어떤 함수와 설명변수간의 관계를 나타냄.

GLM의 성분

❖ 랜덤성분

GLM의 랜덤성분은 표본크기가 N일 때 독립적인 반응변수 Y에 대해 Y_1, \cdots, Y_N 의 확률분포를 가정

관측값이 이항반응인 경우 → 이항분포 음이 아닌 빈도 수를 나타내는 경우 → 포아송분포 연속형 반응인 경우 → 정규분포 가정함.

❖ 체계적성분

Y의 평균을 $\mu=E(Y)$ 라 할 때, μ 의 값은 설명변수의 수준에 따라 변함 GLM의 체계적 성분은 설명변수 x_{j} 의 선형식

$$\alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

을 써서 모형의 우변에 표현하고, 이와 같은 일차결합을 선형예측이라 함

GLM의 성분

❖ 연결

```
선형예측식과 \mu = E(Y) 의 관계를 규정 Y 가 정규분포→ 항등연결 g(\mu) = \mu 포아송분포 → \log항등연결 g(\mu) = \log(\mu) 이항분포→ \logt연결 g(\mu) = \log[\mu/(1-\mu)]
```

❖ 랜덤성분의 확률분포는 평균의 특별한 함수인 자연모수를 갖게 되는데, 정규분포의 경우 자연모수는 평균 자신이 되고 포아송분포의 경우에는 평균의 로그가 된다 또한, 이항분포의 경우에는 성공 확률의 로짓이 자연모수가 된다 연결함수 q(μ) 로 자연모수를 사용할 때 정준연결이라 부른다.

로지스틱 회귀모형

- ❖ 2개의 범주를 취하는 반응변수 Y를 공변량(covariate) X로 설명하기 위한 대표적인 모형
- ❖ 반응변수는 2개의 범주를 취하는 범주형 변수이고, 설명변수는 범주형 변수 또는 연속형 변수.
- ❖ 반응변수가 2개의 범주를 취하는데 일반적인 회귀모형을 적용할 경우 발생하는 문제점:
 - 일반적인 회귀모형: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$
 - 관측치 Y_i 는 0 또는 1이지만, 예측치 Ŷ_i는 -∞에서 +∞까지의 연 속형 값.
- ❖ 로짓변환을 취한 후 회귀모형 적용해 문제 해결. 그래서 로짓(logit) 회귀 모형이라고도 함.

로지스틱 회귀모형

- ❖ 반응변수의 2개의 범주를 0과 1로 표시
- ❖ Pr(Y=1 | X=x): X가 x로 주어졌을 때 Y가 1일 확률
- ❖ 로지스틱 회귀 모형의 정의:

$$\log \frac{\Pr(Y=1|X=x)}{\Pr(Y=0|X=x)} = \beta_0 + \beta_1 x$$

또는

$$\Pr(Y=1|X=x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

- ❖ 해석:
 - β₁이 양수이면 X가 증가함에 따라 성공확률도 증가
 - β_1 이 음수이면 X가 증가함에 따라 성공확률은 감소

로지스틱 곡선

❖ β의 크기는 곡선이 얼마나 빨리 증가 또는 감소하는지를 결정하며 |β|가 증가함에 따라 곡선은 더욱 가파른 변화를 보이며, 특히, β = 0 일 때 곡선은 x 축에 평행인 직선이 된다.

로지스틱 회귀모형의 해석

- ❖ 이항반응 Y와 양적 설명변수 X에 대해 $\pi(x)$ 를 X=x 일 때 "성공"확률 이라 할 경우, 확률 $\pi(x)$ 는 이항 분포의 모수.
- ❖ 로지스틱회귀모형은 $\pi(x)$ 의 로짓(logit)에 대해 선형식

$$\log it[\pi(x)] = \log \left(\frac{\pi(x)}{1 - \pi(x)}\right) = \alpha + \beta x$$

❖ 로지스틱회귀 공식을 변형하여 다른 형태의 공식에 의해 성공 확률을 직접 나타낼 수도 있음.

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

로지스틱 회귀모형의 해석

❖ 곡선의 기울기가 가장 가파른 점은 $\pi(x) = 0.5$ 가 되는 $x = -\alpha/\beta$ 일 때임.

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

* x값에 $-\alpha/\beta$ 를 대입하여 $\pi(x)=0.5$ 를 확인하거나 아래의 식에 $\pi(x)=0.5$ 를 대입한 후 이 식을 x 에 관해 풀면 됨.

$$\log it[\pi(x)] = \log \left(\frac{\pi(x)}{1 - \pi(x)}\right) = \alpha + \beta x$$

이 값을 중위수효과수준(Median Effective Level)이라 함.

즉, $x=EL_{50}$ 은 가능한 두 가지 반응의 확률이 각각 50%가 되는 수준을 말함.

로지스틱 회귀모형의 해석

- ❖ 오즈비의 해석
 - 반응 1(즉, '성공')의 오즈는 $\log t[\pi(x)] = \log \left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x$

$$\implies \frac{\pi(x)}{1 - \pi(x)} = \exp(\alpha + \beta x) = e^{\alpha} (e^{\beta})^x$$

- x가 1단위 증가함에 따라 오즈는 e^{eta} 배만큼씩 곱해져서 증가함을 알 수 있음.
- 즉, x 에서의 오즈에 e^{β} 를 곱하여 x+1의 오즈를 구함.
- eta=0 일 때는 $e^eta=1$ 로 일정하므로 x의 변화와 관계가 없음.

적합도와 유의성

- ❖ 모형 적합도(goodness-of-fit):우도비검정(likelihood ratio test)
 - H_0 : $\beta_1 = \beta_2 = \dots = \beta_k = 0$ vs H_1 : not H_0
 - $-2\log(우도비) = -2[\log L_0 \log L_1] \sim \chi^2_{(df)}$
 - Lo와 Lo는 각각 Ho와 Ho의 가정 하에서 계산한 최대 우도
 - 자유도 df=k
 - P-값이 유의 수준 α 보다 작으면 H_0 기각. 즉, 현재 고려한 모형 이 적절함.
- ❖ 모수의 유의성: Wald 검정
 - H_0 : $\beta_i = 0$ vs H_1 : $\beta_i \neq 0$
 - $(\hat{\beta}_{j}/SE(\hat{\beta}_{j}))^{2} \sim \chi^{2}_{(1)}$
 - $\mathfrak{L} = \beta_i / SE(\beta_i) \sim N(0,1)$
 - P-값이 유의 수준 α 보다 작으면 H_0 기각. 즉, j번째 모수의 추정치는 유의함.

예제 1: 광고 효과 데이터

❖ 광고 노출 수가 구매 여부에 영향을 주는지 연구 (데이터 AD.txt)

광고노출 수	구매자 수	비구매자 수	합
0	3	7	10
1	5	5	10
2	4	6	10
3	7	3	10
4	8	2	10

- 반응 변수 Y는 2개의 범주(구매 또는 비구매)만 가지는 범주형
- 구매를 1, 비구매를 0로 표시
- 설명 변수 X는 광고 노출 수로 연속형

예제 1: 광고 효과 데이터

```
> AD.data<- read.table("AD.txt",header=T)
> attach(AD.data) # 데이터 변수 사용가능.
```

```
> AD.data[1:10,]
```

```
ху
```

- 1 0 1
- 2 0 1
- 3 0 1
- 4 0 0
- 5 0 0
- 6 0 0
- 7 0 0
- 8 0 0
- 9 0 0
- 10 0 0
- > dim(AD.data)
- [1] 50 2

- 1. 설명 변수 x는 광고 노출 수.(0~4) 연속형
- 2. 종속 변수 y는 구매는 1, 비구매는 0.

```
▷ model.glm<-glm(y~x,family="binomial")# GLM 모형 적합하기.
> summary(model.glm) # 모형의 전체적인 요약.
Call: qlm(formula = y \sim x, family = "binomial")
Deviance Residuals:
         1Q Median 3Q Max
  Min
-1.7196 -1.0378 0.7194 0.8977 1.5560
Coefficients:
          Estimate Std.Error z value Pr(>|z|)
(Intercept) -0.8568 0.5249 -1.632 0.1026
           X
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 68.994 on 49 degrees of freedom
Residual deviance: 62.989 on 48 degrees of freedom
AIC: 66.989
Number of Fisher Scoring iterations: 4
```

```
Null deviance: 68.994 on 49 degrees of freedom
```

Residual deviance: 62.989 on 48 degrees of freedom

AIC: 66.989

위의 결과 값을 이용해서 모델의 적합도를 테스트 한다. 테스트하기 위한 통계량은

-2log(우도비) = -2[log L₀-log L₁] ~ χ²(df)

```
> chisq.value<- (model.glm$null.deviance-model.glm$deviance)
# 위의 값이 -2log(우도비) = -2[log L<sub>0</sub>-log L<sub>1</sub>] 을 계산
```

> 1-pchisq(chisq.value,df=49-48) # p-value #모델이 유용함. [1] 0.01426615

```
> model.glm$coefficients # 회귀계수
(Intercept)
 -0.8568081 0.5191543
> model.glm$fitted[1:5] # Y의 적합값. (Fitted probability)
1
0.2980067 0.2980067 0.2980067 0.2980067 0.2980067
> model.glm$fitted[45:50]
                                     48
                                               49
                 46
                           47
                                                          50
       45
0.7720299 0.7720299 0.7720299 0.7720299 0.7720299 0.7720299
> length (model.glm$fitted)
[1] 50
```

$$Y$$
의 적합값: $E(Y) = P(Y|X=x)$

$$=\widehat{\pi}(x)=\frac{exp(\widehat{\alpha}+\widehat{\beta}x)}{1+exp(\widehat{\alpha}+\widehat{\beta}x)}$$

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}$$

```
> length(which(round(model.glm$fitted)-y==0))/length(y)
[1] 0.62
```

Y의 적합값과 실제값의 비교: $\Re(x)$ 을 0과 1로 변환(0.5 기준) 62% 정도의 일치율을 보임.

```
> table(y)
У
    1
23 27
> y.hat<-round(model.glm$fitted)</pre>
> table(y.hat)
y.hat
20 30
> table(y.hat,y)
                       Confusion Matrix 가 자주 이용됨.
y.hat
    0 12
    1 11 19
```

로지스틱 회귀모형에 관한 추론

- ❖ 효과에 대한 신뢰구간
 - 로지스틱회귀모형 $\log it[\pi(x)] =$ 에 # 에 대한 β 표본 신뢰구간은 $\hat{\beta}\pm z_{\alpha/2}(ASE)$
 - 구간 양 끝점을 지수 변환하면 오즈의 증가배율인 ρ 신뢰구간을 얻게 됨.

```
> summary(model.glm)$coef # 모형요약 중 회귀계수 부분만 추출.
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8568081 0.5249445 -1.632188 0.10263987
x 0.5191543 0.2236932 2.320832 0.02029593
```

```
> summary(model.glm)$coef[2,1]-1.96*summary(model.glm)$coef[2,2]
[1] 0.08071559
> summary(model.glm)$coef[2,1]+1.96*summary(model.glm)$coef[2,2]
[1] 0.957593
```

 β 의 근사적인 95% 신뢰구간 = (0.0807, 0.9756)

로지스틱 회귀모형에 관한 추론

x가 1단위 증가함에 따라 오즈는 e^{β} 배만큼씩 곱해져서 증가함을 알 수 있음.

Odds =
$$\frac{\pi(x)}{1-\pi(x)}$$
 = $\exp(\alpha + \beta x) = e^{\alpha}(e^{\beta})^x$

- 또한, 광고노출이 1회 증가할 때 구매하게 될 오즈에 대한 95% 신뢰구간은 (e^{0.0807}, e^{0.9756}) =(1.084, 2.653) 이 됨.
- 광고노출이 1회 증가할 때 구매하게 될 오즈는 최소 8.1%에서 최대 약 2.65배까지 증가한다고 추론할 수 있음.

다중 로지스틱 회귀모형

❖ 설명변수가 2개 이상일 때 다중 로지스틱 회귀 모형:

$$\Pr\left(Y = 1 | X_1 = x_1, ..., X_k = x_k\right) = \frac{\exp\left(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k\right)}{1 + \exp\left(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k\right)}$$

또는

$$\log \frac{\Pr\left(Y = 1 | X_1 = x_1, ..., X_k = x_k\right)}{\Pr\left(Y = 0 | X_1 = x_1, ..., X_k = x_k\right)} = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$

- ❖ 변수선택 방법은 일반적인 회귀분석 때와 동일
 - 전진 선택법 (Forward Selection)
 - 후진 소거법 (Backward Elimination)
 - 단계 선택법 (Stepwise Selection)

예제 2: 잡지 구독 데이터

- ❖ 새 잡지의 구독 성향 조사(파일 Readers.txt 참조)
 - 40명의 응답자로부터 성별(Gender: 0=Male, 1=Female), 나이(Age), 사회적 친화력(Socio), 정치적 성향(Polit), 새 잡지의 구독(Subs: 1=구 독함, 0=구독하지 않음)를 측정
 - 변수 Socio와 Polit는 10점 만점 척도로 측정 연속형으로 고려
 - 반응변수가 구독의사(subs)일 때 나머지 변수들을 설명변수로 하는 로지스틱 회귀모형을 고려하여 여러 설명변수들이 구독의사에 미 치는 영향력을 비교 분석

예제 2: 잡지 구독 데이터

Number of Fisher Scoring iterations: 5

```
> readers.data<- read.table("Readers.txt",header=T)
> attach(readers.data)
> model.glm2<- glm(subs~gender+age+socio+polit,family="binomial")</pre>
> summary(model.glm2)
Call:
glm(formula = subs ~ gender + age + socio + polit, family = "binomial")
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.02063 2.70336 -0.747 0.4548
gender여성 -1.46206 0.84778 -1.725 0.0846 .
age 0.13820 0.05922 2.334 0.0196 *
polit 0.07509 0.15926 0.471 0.6373
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 55.452 on 39 degrees of freedom
Residual deviance: 39.880 on 35 degrees of freedom
AIC: 49.88
```

예측력(Predictive Power)의 요약

❖ 유의한 k개의 설명변수로 적합된 로지스틱 회귀 모형을 이용하여 i 번째 객체가 1을 취할 예측 확률:

$$\widehat{\pi_{i}} = \widehat{\Pr}\left(Y_{i} = 1 | X_{1i} = x_{1i}, ..., X_{ki} = x_{ki}\right) = \frac{\exp\left(\widehat{\beta_{0}} + \widehat{\beta_{1}} x_{1i} + ... + \widehat{\beta_{k}} x_{ki}\right)}{1 + \exp\left(\widehat{\beta_{0}} + \widehat{\beta_{1}} x_{1i} + ... + \widehat{\beta_{k}} x_{ki}\right)}$$

- $\hat{\pi}_i > \pi_0$ 라면 $\hat{\Upsilon}_i = 1$
- $\hat{\pi}_i \leq \pi_0$ 라면 $\hat{\Upsilon}_i = 0$
- π₀ 는 흔히 0.5
- 민감도(Sensitivity) = Pr(Ŷ; =1 | Y; =1)
- 특이도(Specificity) = $Pr(\hat{Y}_i = 0 | Y_i = 0)$
- ❖ 분류표(Classification Table):

		Ŷ	
		1	0
Y	1		
	0		

예측력(Predictive Power)의 요약

- ❖ ROC(Receiver Operating Characteristic) 곡선:
 - 모든 가능한 π₀에 대해 민감도와 (1-특이도)의 그림
 - 곡선 아래 면적(AUC; Area Under the Curve)이 클수록 더 좋은 예측력 가짐
 - 랜덤하게 예측한다면 45도 각도의 대각선

예제 1: 광고 효과 데이터

- > library(pROC)
- > roc(y.hat,y,plot=TRUE) # 적합값과 관측값으로 ROC 그리기

Call:

roc.default(response = y.hat, predictor = y, plot = TRUE)

Data: y in 20 controls (y.hat 0) < 30 cases (y.hat 1).

Area under the curve: 0.6167 #AUC

로그-선형 모형 (Log-linear Model)

로그-선형 모형

- ❖다차원 분할표(multi-dimensional contingency table)는 여러 복잡한 구조를 가질 수 있기 때문에 구조적 특성의 탐색을 위해서는 카이제곱 이상의 체계적인 통계적 방법 이 필요하다.
- ❖로그-선형 모형이 바로 그런 통계적 분석을 위한 모형이 다.
- ❖범주형 변수들 사이의 연관성이나 교호작용을 기술하고 분석하기 위한 모형이다.
- ❖로그-선형 모형에서는 모든 변수가 반응변수로 취급한다.

2차원 분할표 분석을 위한 로그-선형 모형

❖ 두 범주형 변수 x와 y간에 서로 독립일 때 각 칸의 기대빈 도 μ;;는 다음과 같이 표현될 수 있다.

$$\mu_{ij} = n \pi_{i+} \pi_{+j}$$

❖ 독립모형 (Independence Model):

$$\log(\mu_{ij}) = \log n + \log \pi_{i+} + \log \pi_{+j}$$
$$= \lambda + \lambda_i^{X} + \lambda_j^{Y}$$

- •λ;^X: 변수 X의 i번째 수준 효과
- $\bullet \lambda_i^{Y}$: 변수 Y의 j번째 수준 효과

❖ 독립모형의 해석 (Ix2분할표의 경우):

- = log[Pr(Y=1|X=i)/Pr(Y=2|X=i)]
- = $\log(\mu_{i1}/\mu_{i2}) = \log(\mu_{i1}) \log(\mu_{i2})$

$$= (\lambda + \lambda_i^{X} + \lambda_1^{Y}) - (\lambda + \lambda_i^{X} + \lambda_2^{Y})$$

$$= \lambda_1^{Y} - \lambda_2^{Y} = \beta_0$$

로그-선형 모형의 모수 추정 (2 x 2 분할표 경우)

❖ 모형의 가정(다항분포)

$$P(Y) = \frac{n!}{y_{11}! y_{12}! y_{21}! y_{22}!} \pi_{11}^{y_{11}} \pi_{12}^{y_{12}} \pi_{21}^{y_{21}} \pi_{22}^{y_{22}}$$

모수의 추정: 우도 (또는 가능도)를 최대화 하는 추정법 (최대우도법, Maximum Likelihood Estimation)

-로그우도 함수를 최대화하는 모수의 값을 찾는다. (라그랑지 승수법을 이용하여 우도를 각각의 모수에 대해 편미분하여 o으로 놓고 식을 푼다.)

로그-선형 모형의 모수 추정 (2 x 2 분할표 경우)

❖ 로그 우도 함수: (우도함수는 모수에 대한 함수)

$$\log L = \log \prod_{i=1}^{2} \prod_{j=1}^{2} P(y_{ij})$$

$$= \log \frac{n!}{y_{11}! y_{12}! y_{21}! y_{22}!} \pi_{11}^{y_{11}} \pi_{12}^{y_{12}} \pi_{21}^{y_{21}} \pi_{22}^{y_{22}}$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{2} y_{ij} \log \pi_{ij} + c + \lambda (1 - \pi_{11} - \pi_{12} - \pi_{21} - \pi_{22})$$

❖ 로그 우도 함수를 최대로 하는 값을 찾으면

$$\widehat{\pi}_{ij} = \frac{y_{ij}}{n}$$

3차원 분할표 분석을 위한 로그-선형 모형

- ❖범주형 변수 X,Y,Z에 대한 로그-선형 모형은 변수들간의 연관 성과 독립성에 기초하여 여러 모형을 정의할 수 있다.
 - 독립모형: (X,Y,Z)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z}$$

• 주변독립모형: (XY,Z)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY}$$

• 조건부독립모형: (XY,XZ)

$$log(\mu_{ijk}) = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ}$$

상호결합적 모형: (XY,XZ,YZ)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^{X} + \lambda_i^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{ik}^{YZ}$$

• 포화모형: (XYZ)

$$\log(\mu_{ijk}) = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ} + \lambda_{ijk}^{XYZ}$$

❖여러 모형을 비교하여 가장 적합한 모형을 선택 후, 연관성 해석

모형 선택

- ❖ 모형의 적합도 (Goodness-of-fit) 검정
 - H₀: 현재적합모형 vs H₁: 포화모형
 - Pearson카이제곱 X² ~ χ² (df) 또는 우도비 카이제곱 G² ~ χ² (df)
 - 자유도 df는 관측치의 수-현재적합모형의 모수 수
 - p-값이 유의 수준 α 보다 작으면 현재 적합 모형이 좋지 않음

❖ 모형 M₀와 M₁비교 (M₁모형이 M₀포함할 경우)

- H₀: M₀모형 vs H₁: M₁모형
- $G^2(M_0|M_1) = G^2(M_0) G^2(M_1) \sim \chi^2(df)$
- 자유도 df 는 두 모형의 모수 수 차이
- p-값이 유의 수준 α 보다 작으면 M₁모형이 더 좋음
- ❖ Akaike Information Criterion (AIC)을 최소화하는 모형 선택
 - AIC = -2(최대 로그 우도- 모수의 수)
 - 유사하게, G²-2(자유도)를 최소화하는 모형 선택

❖ 미국 고교생 (2276명)의 술(Alcohol), 담배(Cigarette), 마리화나(Marijuana) 사용간의 연관성 연구 (파일 Cigar.txt 참조)

술 (Alcohol)	담배 (Cigarette)	<u>마리화나(Marijuana)</u> Yes No		
Yes	Yes	911	538	
Yes	No	44	456	
No	Yes	3	43	
No	No	2	279	

> cigar.data<- read.table("Cigar.txt",header=TRUE)</pre>

> attach(cigar.data)

아래의 명령어로 원래 데이터를 분석에 적합한 형태로 변환시켜준다.

```
> cigar.data #변환 전
 Alco Ciga Mari Count
1
   1
       1
           1
              911
2
           1
       1
3
   1
           2 538
   2
       1 2 43
4
       2
5
   1
           1 44
   2
       2 1
7
   1
       2
           2 456
   2
       2
           2
8
              279
```

```
> cigar.data2 #변환 후
, , Ciga = yes
    Mari
Alco yes no
 yes 911 538
       3 43
 no
, , Ciga = no
    Mari
Alco
     yes
          no
 yes 44 456
       2 279
  no
```

데이터의 탐색적 분석 1. (Exploratory Data Analysis)

```
> addmargins(cigar.data2)
, , Ciga = yes
    Mari
Alco yes no Sum
 yes 911 538 1449
       3 43 46
 no
  Sum 914 581 1495
, , Ciga = no
    Mari
Alco yes no Sum
 yes 44 456 500
    2 279 281
 no
  Sum 46 735 781
, , Ciga = Sum
    Mari
Alco yes no
               Sum
 yes 955 994 1949
       5 322 327
 no
  Sum 960 1316 2276
```

데이터의 탐색적 분석 2. (Exploratory Data Analysis)

```
> prop.table(cigar.data2)
, , Ciga = yes
     Mari
Alco
              yes
                           no
  yes 0.400263620 0.23637961
      0.001318102 0.01889279
  no
, , Ciga = no
     Mari
Alco
               yes
                           no
  yes 0.0193321617 0.2003515
      0.0008787346 0.1225835
```

로그 선형 모형을 적합하기 위한 R function

- 1. loglin
- 2.glm

loglin 을 이용하여 여러 모형들의 적합을 시도

```
> loglin(cigar.data2, margin=list(1,2,3)) # 1. 독립모형
2 iterations: deviation 0
\$1rt # 우도비 카이제곱 G^2
[1] 1286.02
$pearson # Pearson 카이제곱 X<sup>2</sup>
[1] 1411.386
$df # 적합한 모형의 자유도 (관측치 수준의 개수 - 모수의 수 = 8-4)
[1]
$margin # 적합한 모형의 구체적인 부분.여기서는 독립모형임.
$margin[[1]]
[1] "Alco"
$margin[[2]]
[1] "Mari"
$margin[[3]]
[1] "Ciga"
```

loglin 을 이용하여 여러 모형들의 적합을 시도

```
# 독립모형
> model1<-loglin(cigar.data2,margin=list(1,2,3))</pre>
# 주변독립모형, 3개
> model2<-loglin(cigar.data2,margin=list(1,c(2,3)))</pre>
> model3<-loglin(cigar.data2,margin=list(2,c(1,3)))</pre>
> model4<-loglin(cigar.data2,margin=list(3,c(1,2)))</pre>
# 조건부독립모형, 3개
> model5<-loglin(cigar.data2,margin=list(c(1,2),c(1,3)))</pre>
> model6<-loglin(cigar.data2,margin=list(c(2,3),c(1,2)))</pre>
> model7<-loglin(cigar.data2,margin=list(c(1,3),c(2,3)))</pre>
# 상호결합적모형
>model8<-loglin(cigar.data2, margin=list(c(1,2),c(1,3),c(2,3)))
# 포화모형
> model9<-loglin(cigar.data2,margin=list(c(1,2,3)))</pre>
```

위의 9가지 모형을 비교하여 가장 적절한 모형을 찾아냄.

시도된 모형들이 적합한가 검정(Testing)

```
# 조건부독립모형이 적절한가에 대한 검정의 예.
# 1. Pearson 카이제곱 검정
> model5$pearson # Pearson 카이제곱 값
[1] 497.3693
> model5$df # 조건부 독립모형의 자유도.
[1] 2
> 1-pchisq(model5$pearson,df=model5$df) # 귀무가설 하에서 p-value
[1] 0
# 2. 우도비 카이제곱 검정
> 1-pchisq(model5$lrt,df=model5$df) # 귀무가설 하에서 p-value
[1] 0
```

모형의 적합도 (Goodness-of-fit) 검정

 H_0 : 현재적합모형 vs H_1 : 포화모형

Pearson카이제곱 $X^2 \sim \chi^2(df)$ 또는 우도비 카이제곱 $G^2 \sim \chi^2(df)$

자유도 df는 관측치의 수-현재적합모형의 모수 수

 \mathbf{p} -값이 유의 수준 α 보다 작으면 현재 적합 모형이 좋지 않음

모형	Pearson X ²	우도비 G²	자유도	G ² 의 P-value	G²-2(자유도)
M1 (A, C, M)	1411.4	1286.0	4	<0.001	1278.0
M2 (A, CM)	505.6	534.2	3	<0.001	528.2
M3 (M, AC)	704.9	843.8	3	<0.001	837.8
M4 (C, AM)	824.2	939.6	3	<0.001	933.6
M5 (AC, AM)	443.8	497.4	2	<0.001	493.4
M6 (AM, CM)	177.6	187.8	2	<0.001	183.8
M7 (AC, CM)	80.8	92.0	2	<0.001	88.0
M8(AC, AM, CM)	0.374	0.401	1	0.541	-1.6
M9 (ACM)	0.0	0.0	0	-	-

• (AC, AM, CM) 모형이 p-값이 0.05보다 크므로 가장 적합하다고 결론

> 1-pchisq(model8\$1rt,df=model8\$df) # 귀무가설 하에서 p-value [1] 0.5408395

> 1-pchisq(model8\$pearson,df=model8\$df)

^{[1] 0.5265517}

두 모형의 비교.(한 모형이 다른 모형을 포함할때)

모형	Pearson X ²	우도비 G²	자유도	G²의 P-값	G²-2(자유도)
M6 (AM, CM)	177.6	187.8	2	<0.001	183.8
M8(AC, AM, CM)	0.4	0.4	1	0.54	-1.6

- ❖ 모형 M_0 와 M_1 비교 $(M_1$ 모형이 M_0 포함할 경우)
 - H₀: M₀ 모형 vs H₁: M₁ 모형
 - $G^2(M_0|M_1) = G^2(M_0) G^2(M_1) \sim \chi^2(df)$
 - 자유도 df 는 두 모형의 모수 수 차이
 - p-값이 유의 수준 α 보다 작으면 M_1 모형이 더 좋음

> 1-pchisq(model6\$1rt-model8\$1rt, df=model6\$df-model8\$df)
[1] 0

(AM,CM)와 (AC,AM,CM)비교:

 $G^2[(AM,CM)|(AC,AM,CM)] = G^2[(AM,CM)]-G^2[(AC,AM,CM)]$

= 187.8-0.4 = 187.4, 자유도 df = 2-1, p-값 < 0.001

그러므로 (AC,AM,CM)모형이 (AM,CM)모형보다 더 좋음

❖ 로그-선형 모형 적합 후의 오즈비

모형	조건부 연관성			
	AC	AM	CM	
(A,C,M)	1.0	1.0	1.0	
(AM,CM)	1.0	61.9	25.1	
(AC,AM,CM)	7.8	19.8	17.3	
(ACM) 수준1	13.8	24.3	17.5	
(ACM) 수준2	7.7	13.5	9.7	

- 오즈비 계산 예: 7.8 = (910.4x1.4)/(44.6x3.6) : M=Yes = (538.6x279.6)/(455.4x42.4) : M=No
- 모형 선택에 따라 연관성의 해석이 달라짐. 예를 들어, 현재 데이터에 가장 적합한 모형인 (AC, AM, CM)으로는 AC의 오즈비는 7.8로 연관성이 높지만, (AM, CM)모형으로는 1.0으로 독립.
- 그래서 모형 선택이 중요함.