Natural Language Conversation Engine: Chit-chat, QnA and Dialogue

Ming Zhou Microsoft Research Asia 编程之美2017 @Tsinghua University

Conversation Engine Architecture

DNN4NLP Fundamentals

Deep Neural Network

- Deep Neural Network :
 - Involve multiple level neural networks
 - Non-Linear Learner

$$h^0 = f(w^0 x)$$
 $h^1 = f(w^1 h^0)$

$$h^2 = f(w^2h^1)$$
 $y = f(w^3h^2)$

Active functions: y = f(x)

CNN (1D)

CNN (2D)

RNN(Recurrent Neural Network)

- Inputs: History h_{t-1} at time t-1 and input x_t at time t
- ullet Output: History h_t at time t and probability of next word y_t

RNN(Recurrent Neural Network)

Sentence: The cat sat on the mat

Training of RNN

 $p(\mathsf{the}|x_0) \ p(\mathsf{cat}|x_{0...1}) \ p(\mathsf{sat}|x_{0...2}) \ p(\mathsf{on}|x_{0...3}) \ p(\mathsf{the}|x_{0...4}) \ p(\mathsf{mat}|x_{0...5}) \ p(</s>|x_{0...6})$

 $\begin{array}{l} p(\textit{the cat sat on the mat} </\texttt{S}>) = \\ p(\textit{the}|x_0)^*p(\textit{cat}|x_{0...1})*p(\textit{sat}|x_{0..2})*p(\textit{on}|x_{0..3}) \\ *p(\textit{the}|x_{0..4})*p(\textit{mat}|x_{0..5})*p(</\textit{S}>|x_{0..6}) \end{array}$

 $Loss = -\log(p(the \ cat \ sat \ on \ the \ mat \ </s>))$ $= -\sum_{i} \log(p(x_i|x_{0..i-1}))$

SGD Training

- 1. Sample a sentence S from corpus;
- 2. Build unfolded RNN for S;
- 3. Run forward to compute *Loss*;
- 4. Run backward to compute gradient;
- 5. Update parameters;
- 6. Repeat until perplexity $< \varepsilon$ or epoch > n;

Skip the details of LSTM/GRU here

General Chat Engine

Architecture of Retrieval-based Chatbot (Single-Turn)

Basic Models for Message-Response Matching : Architecture I

Basic Models for Message-Response Matching : Architecture II

Fusing with External Knowledge I

 Topic Aware Attentive Recurrent Neural Network (TAARNN)

Let message/response attend to important parts in external knowledge (topics)

$$\vec{t}_m = \vec{\alpha}_m \cdot T_m \\ \vec{\alpha}_m \propto T_m \cdot A \cdot \vec{m}$$

Joint attention with $\vec{r'} = \vec{\alpha}_r \cdot \vec{r}$ message/response and knowledge (topics) $\alpha_{r,i} \propto \tanh(\sum_j h_{r,i} \cdot A_2 \cdot h_{m,j} + h_{r,i} \cdot A_3 \cdot \vec{t}_m)$

Yu Wu et al., Response Selection with Topic Clues for Retrieval-based Chatbots, In arxiv

Fusing with External Knowledge II

 Knowledge Enhanced Hybrid Neural Network (KEHNN)

Evaluation on the Largest Public Data - Ubuntu Corpus

	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5
Cosine (I)	68.1	38.3	48.2	68.6
MLP (I)	65.1	25.6	38	70.3
CNN (I)	66.5	22.1	36	68.4
CNN+Tensor (I)	74.3	34.9	51.2	79.7
LSTM (I)	72.5	36.1	49.4	80.1
CNN (II)	73.6	38	53.4	77.7
MatchPyramid (II)	74.3	42	55.4	78.6
MV-LSTM (II)	76.7	41.0	56.5	81.0
TAARNN (I)	77.0	40.4	56.0	81.7
KEHNN (II)	78.6	46	59.1	81.9

- Train: Validation: Test = 1M: 0.5M: 0.5M
- Negative examples are randomly sampled
- R_n@k means recall at position k in n candidates
- (I) and (II) mean ``in architecture I or II" respectively

Neural Generation Model

Encoder-Decoder for Sentence Generation

Encoder-Decoder for Sentence Generation

Attention based Encoder-Decoder

Attention based Encoder-Decoder

Topic-aware Neural Response Generation (TA-Seq2Seq)

Evaluation Results

Models	+2	+1	0	Kappa
S2SA	32.3%	36.7%	31.0%	0.8116
S2SA-MMI	33.1%	34.8%	32.1%	0.7848
S2SA-TopicConcat	35.9%	29.3%	34.8%	0.6633
S2SA-TopicAttention	42.3%	27.6%	30.0%	0.8299
TA-Seq2Seq	44.7%	24.9%	30.4%	0.8417

 Data are crawled from Baidu Tieba

Train: Validation:Test = 5M: 10K: 1K

Table 1: Human annotation results

Models	PPL-D	PPL-T	distinct-1	distinct-2
S2SA	147.04	133.11	604/.091	1168/.207
S2SA-MMI	147.04	133.11	603/.151	1073/.378
S2SA-TopicConcat	150.45	132.12	898/.116	2197/.327
S2SA-TopicAttention	133.81	119.55	894/.106	2057/.277
TA-Seq2Seq	134.63	122.82	1355/.161	2970/.401

Table 2: Results on automatic metrics

Examples

		Baseline	Baseline
Message	TA-Seq2Seq	S2SA ^L MMI	SZSA
你也玩摄影	我不玩 摄影 ,只是想拍个 照片 而已	额额额	额
You also like photography	I don't work on photography .	Well well well	Well
	I just want to take a few pictures .		
我的左脸颊上有一些红血丝	我也是 敏感肌	我也是啊	तहेची तहेची तहेची तहेची
There is some redness on my left cheek.	My skin is also very sensitive .	Me too.	Oh my god oh my god
大学生的话可以去实习吗	可以的,如果你着急的话可以先填个 申请表	可以的可以的	可以的
Can a college student	Yes, you can fill an	Yes, you can.	Yes.
apply for an internship	application form first if you are in a hurry.		
我的皮肤好干	那就 补水保湿 吧	我也是啊	तहेची तहेची तहेची
My skin is so dry.	Then hydrate and moisturize your skin.	Me too.	Oh my god oh my god.

^{*} Words in bold are topic words

Multi-Turn Conversation

System Overview

Session-Response Matching : Sequential Matching Network

Evaluation on the Ubuntu Corpus

	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5
Cosine	65.9	41.0	54.5	70.8
CNN	84.8	54.9	68.4	89.6
LSTM	90.1	63.8	78.4	94.9
BiLSTM	89.5	63.0	78.0	94.4
Multi-View	90.8	66.2	80.1	95.1
DL2R	89.9	62.6	78.3	94.4
SMN	92.6	72.6	84.7	96.1

Train: Validation: Test = 1M: 0.5M: 0.5M

Negative examples are randomly sampled

R_n@k means recall at position k in n candidates

Multi-turn Response Generation: Hierarchical Recurrent Attention Network

Chen Xing et al., Hierarchical Recurrent Attention Network for Response Generation, In arxiv

Evaluation Results

Model	Validation Perplexity	Test Perplexity
S2SA	43.679	44.508
HRED	46.279	47.467
VHRED	44.548	45.484
HRAN	40.257	41.138

Table 1: Perplexity results

Models	Win	Loss	Tie	Kappa
HRAN v.s. S2SA	27.3	20.6	52.1	0.37
HRAN v.s. HRED	27.2	21.2	51.6	0.35
HRAN v.s. VHRED	25.2	20.4	54.4	0.34

Table 2: Human annotation results (in %)

 Data are crawled from Douban Group

Train: Validation:Test = 1M: 10K: 1K

 Kappa measures the agreement of human labeling

Case Study

ID	Context	Response
	求唇部死皮怎么去⇒用化妆水一遍遍的擦嘴唇就能擦下来⇒	HRAN: 你用的什么牌子的化妆水
	好的回去试试⇒我是能擦下来	Which brand of lotion
1	How to exfoliate my lips?⇒Wipe your lips with lotion	are you using?
	again and again. \Rightarrow OK, let me try it. \Rightarrow It works for me.	VHRED:嗯我知道了
		OK I see.
	我不能去,你可以找丽丽陪你吃饭⇒她住松江,离市区太远了⇒	HRAN:吃多了上火了
	有好吃的多远都要去啊⇒你为什么不能来呢	Because I've eaten too
2	I can't have dinner with you, but you can ask Lily instead.⇒	much and gotten inflamed.
	She lives in Songjiang, too far away from downtown.⇒I think she'd like to go	VHRED:因为我是男的
	because of the delicious food.⇒ Why can't you come?	Because I'm male.
	征男友,160cm的妹子真的找不到男友吗⇒你找不到一定不是因为160⇒	HRAN:身高不是硬性要求
	我知道脸也是硬伤嘛⇒是你非要175以上	No, I don't care
3	I want a boyfriend. Why can't a 160cm girl find a boyfriend?	much about height.
	\Rightarrow It's definitely not because you are 160cm. \Rightarrow Well I know I'm not good-looking.	VHRED:你是男的还是女的啊
	⇒No, it's because you always hit on someone higher than 175cm.	Are you male or female?
	啦啦啦销售助理在哪里呀在哪里⇒学历不达标⇒	HRAN:那你做过设计么
	对做销售有兴趣么⇒没做过不过我不挑工作	Then have you done
4	I'm looking for a sales assistent.⇒I might not be qualified because	any designing jobs before?
	of my education. \Rightarrow Are you interested in sales? \Rightarrow	VHRED:好吧好吧我也觉得
	I have no experience before but I'm open to any jobs.	OK, I think so.

Visualization

(a) Visualization of case 1

Information and Answer(InfoBot)

InfoBot Overview

Build conversational bots for information queries based on various genre of content and knowledge

Knowledge-based QA (KB-QA)

CCG: Combinatory Categorial Grammar **DCS**: Dependency-based Compositional Semantics

SMT: Statistical Machine Translation

敦煌小冰

Task-Oriented Dialogue System

Dialogue Process

Conclusion and Future Work

CAAP

- Chit-chat: Retrieval-based and generation-based, single turn and multi-turn, fusing with knowledge
- Infobot based on FAQ, Doc-Chat, KB-QA
- Task-Oriented dialogue

Future work

- Better modelling the context and multi-turn
- Fusing user (type) profile into response generation
- Response style transformation