

COMPUTATIONAL DOMAINS

Computational Eng.

Solid & Fluid Mechanics,
Electromagnetics,
Thermal, Acoustics,
Optics, Electrical,
Multi-body Dynamics,
Design Materials

Earth Sciences

Climate Modeling,
Weather
Modeling,
Ocean Modeling,
Seismic
Interpretation

Life Sciences

Genomics, Proteomics

Computational Physics

Particle Science, Astrophysics

Computational Chemistry

Quantum Chemistry, Molecular Dynamics

SATURATING PERFORMANCE IN TRADITIONAL HPC

Simulations are getting larger & more complex

Traditional simulation methods are:

- Computationally expensive
- Demand ever-increasing resolution
- Plagued by domain discretization techniques
- Not suitable for data-assimilation or inverse problems

MILLION-X CLIMATE SCIENCE

ACCELERATING EXTREME WEATHER PREDICTION WITH FOURCASTNET

EARTH DIGITAL TWIN IN OMNIVERSE

DATA PROCESSING AI-SIMULATION VISUALIZATION

AI IN COMPUTATIONAL SCIENCES

Primary Driver: Data vs. Physics

NVIDIA Modulus

Solving PDEs with neural networks

https://docs.nvidia.com/deeplearning/modulus/index.html

A **Data Driven Neural Network** requires training data

A Physics Driven Neural Network solver does NOT require training data

Unsupervised Physics Driven Approach

PDE and Boundary
Conditions $0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ $0 = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} - v (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$ $0 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial v}{\partial x^2} + \frac{\partial v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial v}{\partial x^2} + \frac{\partial v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial v}{\partial x^2} + \frac{\partial v}{\partial y^2})$ $1 = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} - v (\frac{\partial v}{\partial x^2} + \frac{\partial v}{\partial y})$

N layers

m*N layers (for mth order PDE)

Single Simulation

AI ENABLING NEXT GENERATION SIMULATION

Physics & Data - No Traditional Solver

Physics - Traditional Solver (Speed is a limitation)

PARAMETERIZED A100 NVSWITCH HEAT SINK

Optimization with 10 Design Parameters

A100 NVSWITCH HEAT SINK

Multi-Physics Application: Fluids + Heat Transfer

https://www.youtube.com/watch?v=Oq2Mpi5pF1w&ab_channel=NVIDIADeveloper

Turbulent Flow (Re=19,000)			
	Temperature		Pressure Drop
SimNet - Fourier Network	43.1°C		4.05
OpenFOAM (method 1)	41.6 °C		3.56
OpenFOAM (method 2)	41.6 °C		4.58
Computational Times (10 parameters, 3 values per parameter)			
	values per	paramet	er)
Modulus ~=18		000 V10	00 GPU hrs.

NVIDIA MODULUS TEAM @ GTC 22

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41823/

NATIONAL ENERGY TECH LAB @ GTC 22

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41325/

PINN for reacting flows

Formulation and PINN vs CFD

- · Aim: Create a digital twin of an industrial scale boiler
- · Simplified methane oxidation
- Implemented reacting flow transport equations for kinetics-controlled combustion
- · No requirement for training data
- ★ Single PINN model for a range of input conditions
- ★ Fidelity and accuracy comparable to CFD
- ★ Trained PINN can provide near-instantaneous inference for any input condition

Figure source: https://commons.wikimedia.org/wiki/File:Steam Generator.png

MAX PLANCK INSTITUTE FOR METEOROLOGY @ GTC 22

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41950/ An Earth Virtualization Engine (EVE) - by Prof. Bjorn Stevens

SIEMENS ENERGY @ GTC 22

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41671/ https://blogs.nvidia.com/blog/2021/11/15/siemens-energy-nvidia-industrial-digital-twin-power-plant-omniverse/

MODULUS

Al-accelerated Physics Simulation Toolkit https://docs.nvidia.com/deeplearning/modulus/index.html

<u>Solve larger</u> <u>problems faster</u> XLA, AMP TF32 Multi-GPU Multi-Node Advanced Model
Multiple Physics
Forward
Inverse
Data Assimilation

Solve multiple scenarios simultaneously <u>APIs</u> for Physics Geometry Domains

<u>User Guide</u> <u>examples</u>

QUANTUM COMPUTING BASICS OPERATIONS

Superposition and Measurement

Measurement: wavefunction collapse - measure only one state

$$P_0 = |a|^2$$

 $P_1 = |b|^2$

$$P_1 = |b|$$

QUANTUM COMPUTING BASICS OPERATIONS

Superposition and Measurement

$$c_{0} = c_{1} = c_{1} = c_{1}$$

$$c_{0} = c_{0} = c_{1} = c_{1} = c_{1}$$

$$c_{0} = c_{0} = c_{1} = c_{1$$

$$\begin{aligned} c_{0} | \, 0 \rangle + c_{1} | \, 1 \rangle &= \begin{bmatrix} c_{0} \\ c_{1} \end{bmatrix} \\ c_{00} | \, 00 \rangle + c_{01} | \, 01 \rangle + c_{10} | \, 10 \rangle + c_{11} | \, 11 \rangle &= \begin{bmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{bmatrix} \end{aligned}$$

$$\begin{array}{c} c_{000} |\hspace{.06cm}000\rangle + c_{001} |\hspace{.06cm}001\rangle + c_{010} |\hspace{.06cm}010\rangle + c_{011} |\hspace{.06cm}011\rangle \\ c_{100} |\hspace{.06cm}100\rangle + c_{101} |\hspace{.06cm}101\rangle + c_{110} |\hspace{.06cm}110\rangle + c_{111} |\hspace{.06cm}111\rangle \end{array}$$

A NEW COMPUTING MODEL - QUANTUM

NEW COMPUTING MODEL

POTENTIAL USE CASES

QUANTUM SYSTEMS SCALING EXPONENTIALLY

CUQUANTUM

Research the Computer of Tomorrow with the Most Powerful Computer Today

Introducing cuQuantum

- cuQuantum is a platform for quantum computing research
 - Accelerate Quantum Circuit Simulators on GPUs
 - Simulate ideal or noisy qubits
 - Enable algorithms research with scale and performance not possible on quantum hardware, or on simulators today
- General Access available now, integrated
 - Google Cirq
 - IBM Qiskit
 - Xanadu PennyLane
- DGX Quantum Appliance now available on NGC

