CMP 3020: Digital and Logic Design Automation (aka VLSI Design)

Amr Wassal

Computer Engineering Cairo University

Fall 2021

Adapted from

- 1.Digital Integrated Circuits, Second Edition, ©2003,
- J. Rabaey, A. Chandrakasan, B. Nikolic
- 2. Mary Jane Irwin, Vijay Narayanan's slides
- 3.Synopsys University Courseware, Copyright © 2010 Synopsys, Inc. Developed By:Vazgen Melikyan

Credits & Acknowledgments

Slides are adapted from:

- 1. Digital Integrated Circuits, Second Edition, © J. Rabaey, A. Chandrakasan, B. Nikolic
- 2. Mary Jane Irwin, Vijay Narayanan's slides
- 3. Synopsys University Courseware, Copyright © Synopsys, Inc. Developed By: Vazgen Melikyan

Learning Outcomes

- 1. Develop an understanding of the VLSI-related industries and their dynamics and economics.
- Learn about the different technologies for digital design.
- 3. Acquire the design skills and learn the flow for digital VLSI design.
- 4. Understand the design metrics and the interplay among design trade-offs, and technology issues.
- 5. Get introduced to the concept of IP reuse and using it as a means to close the productivity gap.

Suggested References

No Specific Textbook

References

 "Modern VLSI Design: IP-Based Design," Wayne Wolf, Prentice Hall, 4th Edition, 2008.

- "Digital Integrated Circuits," J. Rabaey, A. Chandrakasan and B. Nikolic, Prentice Hall, 3rd Edition, 2008.
- 3. "Application-Specific Integrated Circuits," M. Smith, Addison-Wesley Professional, 2008.

Course Requirements & Grading

Subject to change:

Tutorials: 5 % - individual effort

Midterm: 10 % - individual effort

• Final: 60 % - individual effort

Project: 20 % - group effort

Lab: 5 % - individual effort

Office hours:

by email appointment wassal at eng.cu.eu.eg Email subject must start with [CMP3020]

TAs:

Eng. Sandra Waheed

Course Outline

- Semiconductor Industry and Technology Overview
- MOS Transistor, IC Design Flows
- Logic Families, Standard Cells
- Timing in Digital Systems
- Front-end Design Flow
- Back-end Design Flow
- Design-for-Testability (DFT)
- Packaging, Interconnection and Signal Integrity
- Low-Power Design

Industry & Technology Overview

- Introduction to the semiconductor industry
- Functional Structure of a Fabless Company
- Manufacturing Process
- Design Rules

Industry & Technology Overview

- Introduction to the semiconductor industry
- Functional Structure of a Fabless Company
- Manufacturing Process
- Design Rules

What does the Electronics industry produce?

- System Designs
- IC Designs
- Physical Products
 - Integrated Circuits (IC) aka Chips
 - Printed Circuit Boards (PCB)
 - Systems

What does the Electronics industry produce?

Silicon Wafers

Product/System definition and design

Electronics TAM (Y2010)

- Per annum size of Electronics Goods market is US\$1000B and Semiconductor market is US\$300B in Y2010
- Drives the whole world economy
 - Correlation between WW GDP and WW electronics market became very strong starting Y2000
- The locomotive that powered the economy of many tigers

Electronics Industry Segments: By End-User Market

- Industrial/Process Control/Measurement and more...
- Total available market of ~\$352 Billions in 2016

Semiconductors Industry Segments: By Business Model

Integrated Device Manufacturer (IDM)

- Samsung Semiconductor, IBM, MagnaChip, Intel, TI, Infineon, Toshiba, NEC, Mitsubishi, Motorola,... etc.
- Has in-house manufacturing using its own Fabs besides its own design capabilities (vertical integration).

Fabless

- Qualcomm, Broadcom, ON Semiconductor, nVidia, MediaTek, Cirrus Logic,... etc.
- Outsources manufacturing to (usually) a foundry.
- Focuses on products, IP, patents and licensing.

Merchant Foundry

- TSMC, Global Foundries, UMC, SMIC, PowerChip, TowerJazz, Dongbu HiTek, X-Fab,... etc.
- Finds work from the pool of fabless companies.
- Requires careful scheduling, pricing and contracting to remain at full utilization.

Amr Wassal

17

VLSI Design, Fall 2021

Semiconductors Industry Segments: 1Q14 Top Performers (Sales)

1Q14 Top 20 Semiconductor Sales Leaders

(\$M, Including Foundries)

1Q14	1Q13	Company	Headquarters	1Q13	1Q14	1Q14/1Q13	1Q14/1Q13
Rank	Rank			Tot Semi	Tot Semi	% Change	Ranking Change
1	1	Intel	U.S.	11,555	11,666	1%	0
2	2	Samsung	South Korea	7,946	8,797	11%	0
3	3	TSMC*	Taiwan	4,470	4,852	9%	0
4	4	Qualcomm**	U.S.	3,916	4,243	8%	0
5	5	Micron + Elpida	U.S.	3,300	4,175	27%	0
6	8	SK Hynix	South Korea	2,577	3,507	36%	2
7	6	Toshiba	Japan	2,939	2,793	-5%	-1
8	7	TI	U.S.	2,717	2,792	3%	-1
9	10	Broadcom**	U.S.	1,962	1,984	1%	1
10	11	Renesas	Japan	1,886	1,865	-1%	1
11	9	ST	Europe	1,994	1,801	-10%	-2
12	16	MediaTek + MStar**	Taiwan	1,083	1,608	48%	4
13	12	Infineon	Europe	1,208	1,440	19%	-1
14	14	AMD**	U.S.	1,088	1,397	28%	0
15	13	Avago + LSI**	Singapore	1,136	1,305	15%	-2
16	15	NXP	Europe	1,085	1,246	15%	-1
17	19	Nvidia**	U.S.	940	1,072	14%	2
18	20	Freescale	U.S.	931	1,071	15%	2
19	18	GlobalFoundries*	U.S.	946	1,010	7%	-1
20	21	UMC*	Taiwan	899	1,006	12%	1
— Top 20 Total				54,578	59,630	9%	

*Foundry

**Fabless

Source: Company reports, IC Insights' Strategic Reviews database