ANÁLISIS MATEMÁTICO II

Tiempo máximo para la realización de la evaluación: 2hs.

- P1) Calcular la masa del cuerpo definido por $x^2 + y^2 \le 4$, $x 3 \le z \le 2 + x$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje Z.
- P2) Dado el campo $\vec{f}(x,y,z) = (xy,-y^2,z^2)$ calcular la circulación de \vec{f} a lo largo de la curva intersección de las superficies de ecuaciones $z=9-x^2$, z=y, desde $\vec{A}=(3,0,0)$ hasta $\vec{B}=(0,9,9)$ con $x,y,z\in\Re_0^+$
- P3) Calcular el flujo de $\overline{f}(x,y,z) = (x-yz,y+xz,z+2xy)$ a través de la superficie de ecuación $x^2+y^2=2$ tal que $x^2+y^2+z^2 \le 4$. Indicar gráficamente la orientación asignada a la superficie. P4) Sea $\overline{f}(x,y,z) = (x+g'(x),y\cdot g'(x),-2z\cdot g(x))$ con $\overline{f}\in C^1$ y $\overline{f}(0,0,1) = (2,0,0)$. Hallar g(x) de manera que el flujo de \overline{f} a través de la superficie frontera del cuerpo esférico de radio r resulte numéricamente igual al volumen del cuerpo. Indicar gráficamente la orientación asignada a la superficie.
- T1) **Enunciar** el teorema de cambio de variables en integrales dobles.

 Dado el cambio de variables definido por (x, y) = (v 2u, u + v) la región D_{xy} se transforma en la región D_{uv} . **Calcular** el área de D_{uv} sabiendo que el área de D_{xy} es igual a 9

 T2) **Definir** función potencial.

Dado el campo $\vec{f}(x,y) = (2x \cdot y + 2x \cdot g'(x^2), x^2)$ con $\vec{f} \in C^1$, **calcular** la circulación de \vec{f} desde (-2, 4) hasta (2,5).