$$\int \frac{\sqrt{49x^2 - 25}}{x} \, dx$$

Solution 1

$$\int \frac{\sqrt{49x^2 - 25}}{x} \, dx = \int \frac{\sqrt{(7x)^2 - 25}}{x} \, dx$$

If u = 7x, then du = 7 dx so the integral becomes

$$\frac{1}{7} \int \frac{\sqrt{u^2 - 25}}{x} \, du$$

Let $u = 5 \sec \theta$ with θ in quadrants I or III. So, $du = 5 \sec \theta \tan \theta d\theta$ and we use $\sec \theta = \frac{u}{5}$ to draw a right triangle with u as the hypotenuse side and 5 as the adjacent side. The side opposite to θ is $\sqrt{u^2 - 25}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{u^2 - 25}}{5}$. Based on this equation, we will use $5 \tan \theta = \sqrt{u^2 - 25}$ if it is helpful. Since $\cos \theta = \frac{5}{u}$, we will use $u = \frac{5}{\cos \theta} = 5 \sec \theta$ if it is helpful.

So

$$\frac{1}{7} \int \frac{\sqrt{u^2 - 25}}{u} du = \frac{1}{7} \int \frac{5 \tan \theta}{5 \sec \theta} 5 \sec \theta \tan \theta d\theta$$

$$= \frac{5}{7} \int \tan^2 \theta d\theta$$

$$= \frac{5}{7} \int (\sec^2 \theta - 1) d\theta$$

$$= \frac{5}{7} [\tan \theta - \theta] + C$$

$$= \frac{5}{7} \left[\frac{\sqrt{u^2 - 25}}{5} - \sec^{-1} \frac{u}{5} \right] + C$$

$$= \frac{5}{7} \left[\frac{\sqrt{(7x)^2 - 25}}{5} - \sec^{-1} \frac{7x}{5} \right] + C$$

Solution 2

$$\int \frac{\sqrt{49x^2 - 25}}{x} \, dx = \int \frac{\sqrt{49(x^2 - \frac{25}{49})}}{x} \, dx = 7 \int \frac{\sqrt{x^2 - \frac{25}{49}}}{x} \, dx$$

Let $x = \frac{5}{7} \sec \theta$ with θ in quadrants I or III. So, $dx = \frac{5}{7} \sec \theta \tan \theta d\theta$ and we use $\sec \theta = \frac{x}{\frac{5}{7}}$ to draw a right triangle with x as the hypotenuse side and $\frac{5}{7}$ as the adjacent side. The side opposite to θ is $\sqrt{x^2 - \frac{25}{49}}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{x^2 - \frac{25}{49}}}{\frac{5}{7}}$. Based on this equation, we will use $\frac{5}{7} \tan \theta = \sqrt{x^2 - \frac{25}{49}}$ if it is helpful. Since $\cos \theta = \frac{\frac{5}{7}}{x}$, we will use $x = \frac{\frac{5}{7}}{\cos \theta} = \frac{5}{7} \sec \theta$ if it is helpful.

So

$$7 \int \frac{\sqrt{x^2 - \frac{25}{49}}}{x} dx = 5 \int \frac{\frac{5}{7} \tan \theta}{\frac{5}{7} \sec \theta} \cdot \frac{5}{7} \sec \theta \tan \theta d\theta$$
$$= 5^2 \int \tan^2 \theta d\theta$$
$$= 5^2 \int (\sec^2 \theta - 1) d\theta$$
$$= 5^2 \left[\tan \theta - \theta \right] + C$$
$$= 5^2 \left[\frac{7}{5} \sqrt{x^2 - 1} - \sec^{-1} \frac{7x}{5} \right] + C$$