

# Database Management System Lab (Week2\_Spring 2023)

### **Department of Computer Science**

### **Learning Objectives:**

- Learning Data Definition Language
- · Implementing DDL commands on our database

# 1. Introduction:

In the last lab, we learned how to install **SQL Server** and created our first database. Today, we are going to learn about SQL Server and how to use it.

### But what is SQL?

Structured Query Language (SQL) is a standard language for accessing and manipulating databases.

While *Query* is a request to databases to fetch (or retrieve) the information. It can also be called as those commands which we provide to access or modify the database.

# 2. SQL Server Components

| Server<br>components          | Description                                                                                                                                                                                                                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SQL Server<br>Database Engine | SQL Server Database Engine includes the Database Engine, the core service <b>for storing, processing, and securing data</b> , Replication, full-text search, and tools for managing relational and XML data.                                                |
| Analysis<br>Services          | Analysis Services includes the tools for <b>creating and managing online analytical processing</b> (OLAP) and data mining applications.                                                                                                                     |
| Reporting<br>Services         | Reporting Services includes <b>server and client components</b> for creating, managing, and deploying tabular, matrix, graphical, and free-form reports. Reporting Services is also an extensible platform that you can use to develop report applications. |
| Integration<br>Services       | Integration Services is a set of graphical tools and programmable objects for <b>moving, copying, and transforming</b> data.                                                                                                                                |

| Management tools                       | Description                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SQL Server<br>Management<br>Studio     | SQL Server Management Studio is an integrated environment to access, configure, manage, administer, and develop components of SQL Server. Management Studio lets developers and administrators of all skill levels use SQL Server. Internet Explorer 6 SP1 or a later version is required for Management Studio installation. |
| SQL Server<br>Configuration<br>Manager | SQL Server Configuration Manager provides basic configuration management for SQL Server services, server protocols, client protocols, and client aliases.                                                                                                                                                                     |
| SQL Server<br>Installation<br>Centre   | SQL Server Installation Centre is used for the installation of new Instances, Up gradating and updating the SQL Server.                                                                                                                                                                                                       |

We are familiar with this interface. Let us look into more details of it.



On clicking the highlighted button "New Query", a screen will appear on the server. It is the query editor.

On the left side you will see databases named Master. You can see all the databases by opening the dropdown menu.

On clicking any of the database, you'll see default tables in that database.

But you have to create your own database with your own registration number.

### DDL commands:

The queries to manage the database, tables and views come under the umbrella of **Data Definition Language**.

#### 1- Create:

Write the following in query editor.

#### CREATE DATABASE TestDB 2021 SE X

-- Creates a database with your registration number

Run the query by pressing F5 key or using *Execute* button:



Remember...!! SQL is not case sensitive.

Are you able to see the database created...???

If no, then right click on Databases and Refresh the services again

We just created our first database. If we expand the database, we can see multiple options like, Database Diagrams, Tables, Views, etc.



By expanding the Tables, you can see there is currently no table in our database, so we have to create one in order to put our data into it.

For this task, write the following into the Query editor.

Remember: Once a query is executed, you should remove or hide it to avoid re-execution.

To comment the previous queries, use the button



and to uncomment use this



```
CREATE table TableName

(
ID int,
FirstName varchar(255),
LastName varchar(255),
Age int,
Gender varchar(255),
)
```

By executing the above query, you can now see a table in your database with the given table name. Right click on the table name and click "Select Top 1000 Rows".



It will show the columns of your table.

Before moving further, let us look into Data Types of SQL server.

### **SQL** Server Data Types

### **String types:**

| Data type  | Description                     |  |  |
|------------|---------------------------------|--|--|
| char(n)    | Fixed width character string    |  |  |
| varchar(n) | Variable width character string |  |  |

| varchar(max)   | Variable width character string |  |  |
|----------------|---------------------------------|--|--|
| text           | Variable width character string |  |  |
| nchar          | Fixed width Unicode string      |  |  |
| nvarchar       | Variable width Unicode string   |  |  |
| nvarchar(max)  | Variable width Unicode string   |  |  |
| ntext          | Variable width Unicode string   |  |  |
| binary(n)      | Fixed width binary string       |  |  |
| varbinary      | Variable width binary string    |  |  |
| varbinary(max) | Variable width binary string    |  |  |
| image          | Variable width binary string    |  |  |

## **Numeric Data Types**

| Data type    | Description                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| bit          | Integer that can be 0, 1, or NULL                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| tinyint      | Allows whole numbers from 0 to 255                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| smallint     | Allows whole numbers between -32,768 and 32,767                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| int          | Allows whole numbers between -2,147,483,648 and 2,147,483,647                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| bigint       | Allows whole numbers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| decimal(p,s) | Fixed precision and scale numbers. Allows numbers from -10^38 +1 to 10^38 -1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 |  |  |  |  |  |
| numeric(p,s) | Fixed precision and scale numbers. Allows numbers from -10^38 +1 to 10^38 -1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 |  |  |  |  |  |
| smallmoney   | Monetary data from -214,748.3648 to 214,748.3647                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

| money    | Monetary data from -922,337,203,685,477.5808 to 922,337,203,685,477.5807                                                                                                                                                             |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| float(n) | Floating precision number data from -1.79E + 308 to 1.79E + 308. The n parameter indicates whether the field should hold 4 or 8 bytes. float(24) holds a 4-byte field and float(53) holds an 8-byte field. Default value of n is 53. |
| real     | Floating precision number data from -3.40E + 38 to 3.40E + 38                                                                                                                                                                        |

### **Date and Time Data Types**

| Data type      | Description                                                                                                                                                                                                                    |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| datetime       | From January 1, 1753 to December 31, 9999 with an accuracy of 3.33 milliseconds                                                                                                                                                |  |  |  |  |  |
| datetime2      | From January 1, 0001 to December 31, 9999 with an accuracy of 100 nanoseconds                                                                                                                                                  |  |  |  |  |  |
| smalldatetime  | From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute                                                                                                                                                              |  |  |  |  |  |
| date           | Store a date only. From January 1, 0001 to December 31, 9999                                                                                                                                                                   |  |  |  |  |  |
| time           | Store a time only to an accuracy of 100 nanoseconds                                                                                                                                                                            |  |  |  |  |  |
| datetimeoffset | The same as datetime2 with the addition of a time zone offset                                                                                                                                                                  |  |  |  |  |  |
| timestamp      | Stores a unique number that gets updated every time a row gets created or modified. The timestamp value is based upon an internal clock and does not correspond to real time. Each table may have only one timestamp variable. |  |  |  |  |  |

### Other Data Types

| Data type        | Description                                                                               |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| sql_variant      | Stores up to 8,000 bytes of data of various data types, except text, ntext, and timestamp |  |  |  |  |
| uniqueidentifier | Stores a globally unique identifier (GUID)                                                |  |  |  |  |
| xml              | Stores XML formatted data. Maximum 2GB                                                    |  |  |  |  |
| cursor           | Stores a reference to a cursor used for database operations                               |  |  |  |  |
| table            | Stores a result-set for later processing                                                  |  |  |  |  |

## 2- Drop:

This query is used to remove a table from the database.

### **Syntax:**

| DRO        | ЭР Т.        | ARI         | E tal | hleN | Jame  |
|------------|--------------|-------------|-------|------|-------|
| $\nu \sim$ | <i>J</i> 1 1 | $\Delta DL$ | ıı ıa |      | (anno |

-- Deletes the table from database

This query is also used to delete an entire database

### **Syntax:**

| DD   | $\cap \mathbf{D}$ | ГΛТ  | י א ס אי | CE dot | ahaseName  |
|------|-------------------|------|----------|--------|------------|
| 1175 | UP                | IJAI | ADA      | COLUMN | anasemanie |

-- Deletes the database

### 3- Alter:

For any change in the tables, we use Alter command.

| Description                     | Query Syntax                                           | Example                                   |  |
|---------------------------------|--------------------------------------------------------|-------------------------------------------|--|
| Add a column in table           | ALTER Table tableName ADD columnName datatype          | ALTER Table Student ADD GPA varchar(255)  |  |
| Change datatype of column       | ALTER Table tableName ALTER column columnName datatype | ALTER Table Students ALTER column GPA int |  |
| Remove column(s) from the table | ALTER Table tableName DROP column columnName           | ALTER Table Students DROP column GPA      |  |

### 4- Truncate:

To remove the data from the tables we use *Truncate* command.

#### **Syntax:**

| TK | RIIN | VCA | TE | Table | tableNo | ame |
|----|------|-----|----|-------|---------|-----|
|    |      |     |    |       |         |     |

--All the entries from your table will be removed

### 5- Rename

To change the name of a table we use  $sp\_rename$  command, which is a **Stored Procedure**. Stored procedures are the functions of SQL server. And to execute the stored procedures we use exec before the command.

#### **Syntax:**

| exec sp_re | ename tabi | leName, | new_tab | oleName |
|------------|------------|---------|---------|---------|
|------------|------------|---------|---------|---------|

-- Table will be renamed to the new name

# 3. Lab Tasks

1. Create database of a **company** having following tables.









- 2. Add a Column *DependentName* into Dependent table.
- 3. Change the datatype of *Supervisor* from int to varchar in the employee table.
- 4. Add a Table *Stakeholders* (Name, Id, ContractType) in the database.
- 5. Modify the *location* length in project table as 70.
- 6. Rename the table employee as *emp*.
- 7. Delete entries from the table *Stakeholders* and then delete the whole table.

# 4. Home Assignment:

Create a database of a management system (e.g., Learning Management System, Hospital Management System etc.) considering all the possible tables in it.