Graph Homomorphisms

Kirill Rodriguez

Graph

- Nodes and edges
- Complete graphs (K_n)
- Cycles (C_n)
- Paths (P_n)
- V(G) means vertices
- E(G) means edges

Coloring

- Vertex coloring
- Can't color adjacent nodes with same color
- Chromatic number: smallest number of colors

P_4

$$\chi(P_4)=2$$

Graph homomorphism

- $\bullet \quad G \to H \Leftrightarrow \ \exists \, \phi \colon\! G \mapsto H \colon\! \forall \, (a,b) \in V(G) \colon\! (a,b) \in E(G) \Rightarrow (\phi(a),\phi(b)) \in E(H)$
- Maps edges to edges

Coloring left graph with right graph

Edge in H means two colors can be adjacent

Like coloring, with rules set by H

G is n-colorable $\iff G o K_n$

This is a valid homomorphism

Color bigger graph with smaller graph

Pick a vertex and some color

Map edges to edges

Can use the same color for many nodes

This is a valid homomorphism

Issues

- Comes down to brute-forcing
- NP-complete
- Even "harder" than coloring and isomorphism
- So we will look at the bigger picture

Homomorphic equivalence

- G -> H and H -> G
- Not necessarily the same as isomorphism
- Means G and H have a similar subgraph they are both homomorphic to

Homomorphism core

- Smallest equivalent subgraph
- Unique up to isomorphism
- Smallest graph in a class

Diagram:

- Grey: path
- Yellow: cycle
- Green: complete
- Blue: 6 vertices
- Pink: 7 vertices
- Black arrows are one-way
- Pink arrows are bidirectional

Examples

- Complete graphs
- Odd cycles
- Kneser graphs
- 5-cycle derivatives (pictures)

Preorder on graphs (\leq)

- Reflexive
- Transitive
- Core is the smallest in its class
- Poset on cores

Diagram:

- Grey: path
- Yellow: cycle
- Green: complete
- Blue: 6 vertices
- Pink: 7 vertices
- Black arrows are one-way
- Pink arrows are bidirectional

Lattice on cores

- Poset
- Unique common join/meet
- Dense

Diagram:

- Yellow: cycle
- Green: complete
- Blue: 6 vertices
- Pink: 7 vertices
- Teal: 8 vertices

Demonstration

Observation and conjecture

- On n vertices:
 - \circ Exactly 1 core between K_{n-3} and K_{n-2}
 - \circ Exactly 8 cores between K_{n-4} and K_{n-3} (including one of size n 1)

Thank you for your attention

Q&A