

An Introduction to Scalable Multivariate & Megavariate Models

Alencar Xavier
Breeding Analyst at Corteva
Adjunct professor at Purdue
https://alenxav.github.io/

Outline

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
- 5. Megavariate
- 6. Conclusion

1. Introduction

- Rationale and statistical model
- 2. Coefficients
- 3. Variances
- 4. Simulations
- 5. Megavariate
- 6. Conclusion

Are these new methods any good?

https://doi.org/10.1093/genetics/iyae195

What is genomic prediction?

DATASET	GENOTYPES	PHENOTYPES
TRAINING POPULATION	YES	YES
PREDICTION TARGET	YES	NO

Purpose of GS:

- Improve selection accuracy
- Prediction of new populations
- Select non-phenotyped material
- Resource optimization

Rationale

• Single-trait models for genomic prediction in plant breeding are already well-stablished (e.g. GBLUP and BayesB)

 Phenotypes come from multiple locations, years, and quantitative traits; and most traits have genetically correlated breeding values

Rationale

Complex GxE patterns / multi-trait = higher accuracy

Assess new phenomic traits (e.g. canopy coverage in soy)

Computationally PROHIBITIVE*

^{*} Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-wide association studies. *Nature methods*, 11(4), 407-409.

Practical example

Fit a model using phenotypes (Y) and genotypes (X)

```
> require(bWGR)
> fit = mrr(Y,X)
> round(fit$h2,2)
[1] 0.38 0.48 0.71 0.63 0.60
> round(fit$GC,2)
        [,1] [,2] [,3] [,4] [,5]
[1,] 1.00 0.76 0.70 0.64 0.62
[2,] 0.76 1.00 0.56 0.65 0.39
[3,] 0.70 0.56 1.00 0.71 0.23
[4,] 0.64 0.65 0.71 1.00 0.24
[5,] 0.62 0.39 0.23 0.24 1.00
Genomic heritability

Genetic correlations
```

- + Genomic breeding values to make selections
- + Marker effects to predict new individuals
- + Variance components to create selection indices

Multivariate models enable analysis of

Multiple traits

Graph derived from the genetic correlation among soybean traits https://rd.springer.com/article/10.1007/s10681-017-1975-4

Multiple environments

Example of environmental clustering

Why would multivariate be any better?

Simple (bivariate) model:

INFORMATION GAIN

What is a megavariate model?

Model:

$$Y = G + E$$

$$= XB + E$$

$$B \sim N(0, \Sigma_G)$$

- Large number of environments
- High-throughput phenotyping

Y matrix (500 Gen. x 500 Env., 64% missing)

Environments

Simulated example of sparse multi-environmental trials

Runcie et al. (2021) Mega-scale linear mixed models for genomic predictions with thousands of traits. https://doi.org/10.1186/s13059-021-02416-w

Senotypes

Scale of Σ_{β}

Multivariate computational complexity is exponential k^7 (Zhou and Stephens 2014)

Multivariate Statistical Model

$$y = \mu + \mathbf{Z}\beta + e \tag{1}$$

• Where
$$y=\{y_1,y_2,...,y_K\},\ \mu=\{\mu_1,\mu_2,...,\mu_K\},\ \beta=\{\beta_1,\beta_2,...,\beta_K\},$$

$$e=\{e_1,e_2,...,e_K\},\ Z=BlockDiag\{\boldsymbol{Z}_1,\boldsymbol{Z}_2,...,\boldsymbol{Z}_K\}$$

Variances:

$$\Sigma_{\beta} = \begin{bmatrix} \sigma_{\beta(1)}^2 & ... & \sigma_{\beta(1,K)} \\ \vdots & \ddots & \vdots \\ \sigma_{\beta(K,1)} & ... & \sigma_{\beta(K)}^2 \end{bmatrix} \quad \text{and} \quad \Sigma_{e} = \begin{bmatrix} \sigma_{e(1)}^2 & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \sigma_{e(K)}^2 \end{bmatrix}$$

Corresponding mixed model equation

Under the traditional framework, the mixed-model equations required to solve the multivariate ridge regression (eq. 1) can be written as follows:

$$\begin{bmatrix} \mathbf{1}_{1}^{\prime}\mathbf{1}_{1}\sigma_{e_{1}}^{-2} & \dots & \mathbf{0} & \mathbf{1}_{1}^{\prime}\mathbf{Z}_{1}\sigma_{e_{1}}^{-2} & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \mathbf{1}_{K}^{\prime}\mathbf{1}_{K}\sigma_{e_{K}}^{-2} & \mathbf{0} & \dots & \mathbf{1}_{K}^{\prime}\mathbf{Z}_{K}\sigma_{e_{K}}^{-2} \\ \mathbf{Z}_{1}^{\prime}\mathbf{1}_{1}^{\prime}\sigma_{e_{1}}^{-2} & \dots & \mathbf{0} & \mathbf{Z}_{1}^{\prime}\mathbf{Z}_{1}\sigma_{e_{1}}^{-2} + \mathbf{I}_{m}\sigma_{\beta}^{11} & \dots & \mathbf{I}_{m}\sigma_{\beta}^{1K} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \dots \\ \mathbf{0} & \dots & \mathbf{Z}_{K}^{\prime}\mathbf{1}_{K}^{\prime}\sigma_{e_{K}}^{-2} & \mathbf{I}_{m}\sigma_{\beta}^{K1} & \vdots & \mathbf{Z}_{K}^{\prime}\mathbf{Z}_{K}\sigma_{e_{K}}^{-2} + \mathbf{I}_{m}\sigma_{\beta}^{KK} \end{bmatrix} \begin{bmatrix} \hat{\mu}_{1} \\ \vdots \\ \hat{\mu}_{k} \\ \hat{\beta}_{1} \\ \vdots \\ \hat{\beta}_{K} \end{bmatrix} = \begin{bmatrix} \sigma_{e_{1}}^{-2}\mathbf{1}_{1}^{\prime}y_{1} \\ \vdots \\ \sigma_{e_{K}}^{-2}\mathbf{1}_{k}^{\prime}y_{K} \\ \sigma_{e_{1}}^{-2}\mathbf{Z}_{1}^{\prime}y_{1} \\ \vdots \\ \sigma_{e_{K}}^{-2}\mathbf{Z}_{1}^{\prime}y_{1} \end{bmatrix} (2)$$

where σ_{β}^{ij} is the element at position ij of Σ_{β}^{-1} . This setup involves storing K times the cross-product or marker scores $(\mathbf{Z}_k'\mathbf{Z}_k)$, each with dimension $m \times m$.

Moreover, this <u>huge</u> matrix must be <u>inverted</u> for the estimation of covariance components: $\hat{\Sigma}_{\beta(i,j)} = m^{-1}[\hat{\beta}'_i\hat{\beta}_j + tr(\mathbf{C}^{ij})]$

Computing very large multivariate models is impossible

unless...

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
- Megavariate
- 6. Conclusion

Efficient coefficient estimation

The Gauss-Seidel method avoids building the systems of equations by one marker at the time

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
- 5. Megavariate
- 6. Conclusion

An intuitive derivation for Schaeffer's PE method

The genetic covariance is simply estimated as the <u>cross-prediction between traits A and B</u>

$$\widehat{\sigma}_{\beta(A,B)} = \frac{(\mathbf{y}_A - \mu_A)'(\mathbf{Z}_A \boldsymbol{\beta}_B) + (\mathbf{y}_B - \mu_B)'(\mathbf{Z}_B \boldsymbol{\beta}_A)}{\text{Tr}(\widetilde{\mathbf{Z}}_A \boldsymbol{\dot{Z}}_A) + \text{Tr}(\widetilde{\mathbf{Z}}_B \boldsymbol{\dot{Z}}_B)}$$

No V, No C, No LHS,
No determinants,
No dense inversions

and residual variance $\widehat{\sigma}_{e(A,B)} = \frac{\mathbf{y}_A' \mathbf{e}_A}{n_4 - 1}$

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
 - Elapsed times
 - Benchmarks
- Megavariate
- 6. Conclusion

Proposed Efficient Solutions

PEGS = **P**seudo **E**xpectation (variances) + **G**auss **S**eidel (coefficients)

Metrics

- 1. <u>Computation efficiency</u>:
 - Elapsed time to fit the model
- 2. Breeding values:

Accuracy = cor(GEBV, TBV)

3. Heritability (h^2) and genetic correlations (ρ) :

$$Bias = E(\hat{\theta} - \theta)$$

 $Precision = SD(\hat{\theta} - \theta)$

Picture source

Datasets

Small Large Balanced Unbalanced

	Scenario 1	Scenario 2
Number of environments (traits)	10	10
Number of environments per line	10	1
Number of lines per environment	599	514
% of lines per environment	100%	10%
Number of phenotypic records	5990	51,420
Number of markers	1279	4311
Species	Wheat	Soy

Unbalancedness

 REML implementations (ASREML, REMLF90, AIREMLF90) were not suitable to estimate covariance components without overlapping individuals

 Thus, REML was not used in the unbalanced scenario

Figure 1: Scatter plot between true and estimated genetic correlations using the soybean dataset with varying number of overlapping individuals across environments.

Elapsed time in small balanced dataset

Method	Time (seconds)
ASREML 4.2	272.6
AIREMLF90	109.8
GIBB3F90	559.8
PEGS, THGS	0.27
Univariate THGS	0.23

Wheat dataset: 10 traits, 599 individuals, 1299 markers (data available in the BGLR package)

Elapsed time in large unbalanced dataset

Elapsed time to fit multivariate PEGS, THGS

# Traits	Time (minutes)
10	0.2
50	3.5
200	80.5

Soybean dataset: 4628 Individuals (data available in the SoyNAM package)

More data = less bias = more precision

Table 5 Accuracy of GEBV, regression of TBV on GEBV (Slope), and bias and standard error (SE) of estimates of heritabilities (\hat{h}^2) and genetic correlations (GC) with increasing numbers of observations per environment (Obs/Env) in scenario 3, based on 100 replicates of the simulation

Method	Obs/Env	Accuracy	Slope	Bias of \hat{h}^2	SE of \hat{h}^2	Bias of GC	SE of GC
THGS	250	0.82 (0.03)	0.98 (0.04)	0.00 (0.03)	0.07 (0.01)	- 0.02 (0.06)	0.17 (0.02)
THGS	3000	0.96 (0.03)	1.00 (0.03)	-0.01 (0.03)	0.04 (0.01)	0.00 (0.06)	0.13 (0.02)
UV-THGS	250	0.79 (0.03)	1.04 (0.03)	-0.01(0.03)	0.07 (0.01)	_	-
UV-THGS	3000	0.95 (0.03)	1.00 (0.04)	-0.01 (0.03)	0.04 (0.01)	-	-

Standard errors of statistics are in parenthesis

PEGS pseudo expectation Gauss-Seidel, THGS tilde-hat Gauss-Seidel, UV-THGS univariate-tilde-hat Gauss-Seidel

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
- 5. Megavariate
 - Framework
 - Benchmarks
- 6. Conclusion

Megavariate solvers

Key elements

- Scalable for number of response variables
- Covariance components not estimated explicitly

Statistical framework

- Latent spaces for managing dimensionality
- Tricks: Structural Equations (SEM), Factor analytics (XFA)

Models: MegaLMM (2021), MegaSEM (2024), Canonical Transformation (1980's)

MegaSEM

Fit each trait as a function of SNPs (genomic info)

Compute principal components*

Fit each trait as a function of PCs (genomic+GxE info)

*SVD a complete GEBV matrix with genotypes as rows and locations as columns

MegaSEM

Step 1: univariate by trait

Step 2: fit and decompose GEBV matrix (single-value decomposition)

Step 3: refit each using latent spaces

Bonus step: recover multivariate marker effects

$$\begin{aligned} y_k &= \mu_k + \boldsymbol{Z}_k \boldsymbol{\beta}_k^{UV} + e_k \\ \boldsymbol{\widehat{G}}^{UV} &= \boldsymbol{Z} \boldsymbol{\widehat{B}}^{UV} \\ \boldsymbol{\widehat{G}}^{UV} &= \boldsymbol{U} \boldsymbol{D} \boldsymbol{V}' \\ &= \boldsymbol{F} \boldsymbol{V}' \\ y_k &= \mu_k + \boldsymbol{F}_k \boldsymbol{\widehat{\lambda}}_k + e_k \\ \boldsymbol{\widehat{R}}^{SEM} &= \boldsymbol{\widehat{R}}^{UV} \boldsymbol{V} \boldsymbol{\widehat{\Lambda}} \end{aligned}$$

Runtime benchmark

Table 1 Average runtime in minutes (s.e.) for the balanced experimental design based on 10 simulated replicates. Six scenarios vary in terms of the number of environments and individuals (No. environments / No. individuals). Models are ordered based on computational performance. Standard error shown in parenthesis.

Model	Solver	10 / 500	10 / 2,000	50 / 2,000	200 / 2,000	2,000 / 2,000	200 / 20,000
GREML	REML	46.75 (0.37)	172.61 (17.93)	-	-	-	
MegaSEM	PEGS	<0.01 (<0.01)	0.01 (<0.01)	0.04 (<0.01)	0.14 (<0.01)	2.92 (0.02)	5.26 (0.07)
MV (PEGS)	PEGS	<0.01 (<0.01)	<0.1 (<0.01)	0.02 (<0.01)	9.12 (1.62)	97.14 (1.29)	82.22 (5.71)
UV	PEGS	<0.01 (<0.01)	0.01 (<0.01)	0.04 (<0.01)	0.14 (<0.01)	1.44 (0.01)	5.20 (0.06)

Accuracy benchmark

Table 2 Within environment accuracy for the balanced experimental design based on 10 simulated replicates. Six scenarios vary in terms of the number of environments and individuals (No. environments / No. individuals). Models are ordered based on computational performance. Standard error shown in parenthesis.

Model	Solver	10 / 500	10 / 2,000	50 / 2,000	200 / 2,000	2,000 / 2,000	200 / 20,000
GREML MegaSEM	REML PEGS	0.81 (0.03) 0.79 (0.04)	0.89 (<0.01) 0.88 (<0.01)	0.89 (<0.01)	- 0.89 (<0.01)	0.89 (<0.01)	0.96 (<0.01)
MV	PEGS	0.81 (0.03)	0.89 (<0.01)	0.89 (<0.01)	0.90 (<0.01)	0.88 (<0.01)	0.96 (<0.01)
UV	PEGS	0.78 (0.04)	0.87 (<0.01)	0.87 (<0.01)	0.87 (<0.01)	0.87 (<0.01)	0.95 (<0.01)

2022 Genomes-to-Fields dataset

Table 3 Predictive ability from the 2022 G2F GxE prediction competition. Corn grain yield observed in 4,836 hybrids across 217 locations (2014-2021) predicting 548 hybrids observed across 21 environments (2022). Models are ordered based on the pairwise metric. Standard error shown in parenthesis.

Model	Pairwise	Region	Overall	•			
UVW	0.08 (0.03)	0.22 (0.14)	0.27 (0.11)				
MV	0.12 (0.05)	0.27 (0.12)	0.30 (0.11)	←		Model that	at won the
MegaSEM	0.13 (0.05)	0.25 (0.15)	0.27 (0.11)			2022 co	mpetition
MegaLMM	0.18 (0.06)	0.24 (0.19)	0.27 (0.10)		Rank	Participant team_	Mean RMSE(↓)
					1	CLAC	2.328863
					2	<u>igorkf</u>	2.345147
					3	phenomaize	2.374471
					4	UCD_MegaLMM	2.387404
					5	CGM	2.390754
					6	breedingteam	2.39849
					7	Purdue	2.4018
					8	SmAL	2.424722
					9	ML_APT	2.471617
					10	MPB_Group	2.543666

2024 Genomes-to-Fields dataset

<u>Rank</u>	<u>Participant team</u>	<u>Mean r</u>	
Baseline	Model 2022 (not competing)	0.437658	
1	PARaBra	0.437097	MegaSEM
2	transform(Base)	0.426054	
3	The Cornquerors	0.425742	
4	GxE4GoodY	0.414302	
5	LisbonBio	0.414063	
6	fortunehy	0.412884	
7	G2Amours(G_et_E)	0.405235	
8	UFEED	0.403289	
9	Demeter	0.393626	
10	ihaveadream(not competing)	0.385322	

- 1. Introduction
- 2. Coefficients
- 3. Variances
- 4. Simulations
- 5. Conclusion

General recommendation

- REML for balanced sets, small datasets with few traits, or pairwise covariance estimations
- Bayesian Gibbs Sampling when REML is not stable enough (5-20 traits)

• Efficient multivariate solver (PEGS, THGS) for up to 100 traits, mid-to-large datasets

Megavariate methods (MegaLMM, MegaSEM) for 100+ traits

Thank you for your attention!

Final remarks:

- 1) Traditional multivariate models are more accurate, but computationally unfeasible
- 2) Efficient estimation of coefficients and variances enable large multivariate models
- 3) Specialized parametrizations enable even larger dimensionalities (*mega*variate)

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

