EECS 127/227AT Discussion 5 Slides

Druv Pai

September 30, 2020

General form of a constrained optimization problem:

$$\begin{aligned}
\min_{x} & f(x) \\
\text{subject to} & g(x) \leq 0 \\
& h(x) = 0
\end{aligned}$$

Definition (Feasible Set)

Set $\mathcal{F} = \{x \mid g(x) \le 0, h(x) = 0\}$ – set of x that fulfills the constraints.

Approach to solving **simple** constrained problems:

- 1. Sketch feasible set.
- 2. If *f* is simple enough, guess optimal value of *x*.
- 3. Check your solution is optimal if *f* is convex:
 - (i) Greedy/exchange argument perturb by small amounts and check that new value is worse (re: CS170)
 - (ii) If \mathcal{F} is convex, first/second order conditions (for all y, $(\nabla_x f(x))^\mathsf{T} (y-x) \ge 0$, and $\nabla_x^2 f(x) \succeq 0$) sufficient for optimality
 - (iii) Ad-hoc methods

Definition (Supremum)

Least upper bound of a set of real numbers – a "generalized maximum." Interpretation: if $d^* = \sup_{x \in \mathcal{X}} f(x)$ then there is a sequence $\{x_n \in \mathcal{X}\} = \{x_1, x_2, \dots\}$ such that $\lim_{n \to \infty} f(x_n) = d^*$. "Points in the set can get arbitrarily close to the supremum."

Example

Some sets have supremums but not maximums. $S = \{0.9, 0.99, 0.999, \dots\}$ does not have a maximum (since $1 \notin S$) but its supremum is 1. More general/complicated examples in \mathbb{R}^n .

Definition (Infimum)

Greatest lower bound of a set of real numbers – "generalized minimum." Interpretation: if $p^* = \inf_{x \in \mathcal{X}} f(x)$, then there is a sequence $\{x_n \in \mathcal{X}\}$ such that $\lim_{n \to \infty} f(x_n) = p^*$.

Definition (Open Set)

Colloquially, "set with an interior". Meaning: if \mathcal{X} is open then every $x \in \mathcal{X}$ has some small region around it contained entirely within \mathcal{X} .

Example

Open ball: set $B_r(x_0) = \{x \mid ||x - x_0|| < r\}.$

Definition (Closed Set)

Colloquially, "set which contains its limits". Meaning: if \mathcal{X} is closed then for any sequence $\{x_n \in \mathcal{X}\}$ which converges to x has $\lim_{n\to\infty} x_n = x \in \mathcal{X}$.

Consequence: if f is continuous and \mathcal{X} is closed then $\sup_{x \in \mathcal{X}} f(x) = \max_{x \in \mathcal{X}} f(x)$, and $\inf_{x \in \mathcal{X}} f(x) = \min_{x \in \mathcal{X}} f(x)$. So no need for special treatment.