Health Insurance Cross Sell

```
getwd();
## [1] "/Users/jeanbai/Desktop/ML_YorkU/groupC #1"

data=read.csv("train.csv", header = TRUE, na.strings = c("NA","","#NA"))
```

Data preparation for prediction models

Remove "id" feature.

```
data$id = NULL
```

###Encoding categorical data ####Convert Gender, Vehicle_Age, Vehicle_Damage from categorical variables to factors

A categorical variable can be divided into nominal categorical variable and ordinal categorical variable. Continuous class variables are the default value in R. They are stored as numeric or integer.

Driving_License and Previously_Insured are nominal cateforical variables but labeled as intergers. We need to convert them into factors.

```
data$Driving_License = as.factor(data$Driving_License)
data$Previously_Insured = as.factor(data$Previously_Insured)
```

Convert numeric variables to levels of factors

"Region_code's variables and Policy_Sales_Channel's variables are in the format of numeric. However those numbers are characters. Region_Code are the unique code for the region of the customer; PolicySalesChannel are the anonymized Code for the channel of outreaching to the customer ie. Different Agents, Over Mail, Over Phone, In Person, etc. So we need to convert those numerics to characters and then group them by the frequency.

```
data$Region_Code = as.factor(data$Region_Code)
data$Policy_Sales_Channel = as.factor(data$Policy_Sales_Channel)
```

Check how many levels of Region_Code

```
levels(data$Region_Code)

## [1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" 
## [16] "15" "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" 
## [31] "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44" 
## [46] "45" "46" "47" "48" "49" "50" "51" "52"
```

There are 53 levels(0 - 52) in Region_Code. We need check the order of the frequency and group them into less levels to avoid overfitting issues when we do the modeling.

```
library(ggplot2)
```

```
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
```

Check the frequency of each level in Region_Code

```
g1 = ggplot(data, aes(x=character(1), fill=Region_Code))+
    geom_bar(width=1, colour="black")+
    coord_polar(theta="y")+
    theme_void()
print(g1)
```


sort(table(data\$Region_Code), decreasing = TRUE)

28	8	46	41	15	30	29	50	3	11	36
106415	33877	19749	18263	13308	12191	11065	10243	9251	9232	8797
33	47	35	6	45	37	18	48	14	39	10
7654	7436	6942	6280	5605	5501	5153	4681	4678	4644	4374
21	2	13	7	12	9	27	32	43	17	26
4266	4038	4036	3279	3198	3101	2823	2787	2639	2617	2587
25	24	38	0	16	23	31	20	49	4	34
2503	2415	2026	2021	2007	1960	1960	1935	1832	1801	1664
19	22	40	5	1	44	42	52	51		
1535	1309	1295	1279	1008	808	591	267	183		
	106415 33 7654 21 4266 25 2503	106415 33877 33 47 7654 7436 21 2 4266 4038 25 24 2503 2415 19 22	106415 33877 19749 33 47 35 7654 7436 6942 21 2 13 4266 4038 4036 25 24 38 2503 2415 2026 19 22 40	106415 33877 19749 18263 33 47 35 6 7654 7436 6942 6280 21 2 13 7 4266 4038 4036 3279 25 24 38 0 2503 2415 2026 2021 19 22 40 5	106415 33877 19749 18263 13308 33 47 35 6 45 7654 7436 6942 6280 5605 21 2 13 7 12 4266 4038 4036 3279 3198 25 24 38 0 16 2503 2415 2026 2021 2007 19 22 40 5 1	106415 33877 19749 18263 13308 12191 33 47 35 6 45 37 7654 7436 6942 6280 5605 5501 21 2 13 7 12 9 4266 4038 4036 3279 3198 3101 25 24 38 0 16 23 2503 2415 2026 2021 2007 1960 19 22 40 5 1 44	106415 33877 19749 18263 13308 12191 11065 33 47 35 6 45 37 18 7654 7436 6942 6280 5605 5501 5153 21 2 13 7 12 9 27 4266 4038 4036 3279 3198 3101 2823 25 24 38 0 16 23 31 2503 2415 2026 2021 2007 1960 1960 19 22 40 5 1 44 42	106415 33877 19749 18263 13308 12191 11065 10243 33 47 35 6 45 37 18 48 7654 7436 6942 6280 5605 5501 5153 4681 21 2 13 7 12 9 27 32 4266 4038 4036 3279 3198 3101 2823 2787 25 24 38 0 16 23 31 20 2503 2415 2026 2021 2007 1960 1960 1935 19 22 40 5 1 44 42 52	106415 33877 19749 18263 13308 12191 11065 10243 9251 33 47 35 6 45 37 18 48 14 7654 7436 6942 6280 5605 5501 5153 4681 4678 21 2 13 7 12 9 27 32 43 4266 4038 4036 3279 3198 3101 2823 2787 2639 25 24 38 0 16 23 31 20 49 2503 2415 2026 2021 2007 1960 1960 1935 1832 19 22 40 5 1 44 42 52 51	106415 33877 19749 18263 13308 12191 11065 10243 9251 9232 33 47 35 6 45 37 18 48 14 39 7654 7436 6942 6280 5605 5501 5153 4681 4678 4644 21 2 13 7 12 9 27 32 43 17 4266 4038 4036 3279 3198 3101 2823 2787 2639 2617 25 24 38 0 16 23 31 20 49 4 2503 2415 2026 2021 2007 1960 1960 1935 1832 1801 19 22 40 5 1 44 42 52 51

The top 8 frequency Region_Code are "28", "8", "46", "41", "15", "30", "29", "50". Base on above plot and sort table we can group the Region_Code by the frequency into 9 groups including "other' group.

library(forcats)

library(dplyr)

```
data$Region_Code =forcats::fct_lump_n(data$Region_Code,8, other_level = "Other")
```

levels(data\$Region_Code)

```
## [1] "8" "15" "28" "29" "30" "41" "46" "50" "Other"
```

We get 9 levels of Region_Code.

```
g1 = ggplot(data, aes(x=factor(1), fill=Region_Code))+
   geom_bar(width=1, colour="black")+
   coord_polar(theta="y")+
   theme_void()
print(g1)
```


Relabel the factor levers of Region_Code

levels(data\$Region_Code)

```
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9"
```

Using for cats method check the order of frequency in Policy_Sales_Channel

```
g2 = ggplot(data, aes(x=character(1), fill=Policy_Sales_Channel))+
    geom_bar(width=1, colour="black")+
    coord_polar(theta="y")+
    theme_void()
print(g2)
```


Base on above plot, that we can group the Policy_Sales_Channel by the frequency into 6 groups including one "Other" group.

data\$Policy_Sales_Channel =forcats::fct_lump_n(data\$Policy_Sales_Channel,5, other_level = "Other")

```
g2 = ggplot(data, aes(x=factor(1), fill=Policy_Sales_Channel))+
  geom_bar(width=1, colour="black")+
  coord_polar(theta="y")+
  theme_void()
print(g2)
```


Relabel the levels of Policy_Sales_Channel

```
levels(data$Policy_Sales_Channel)
```

```
## [1] "1" "2" "3" "4" "5" "6"
```

Using Capping method to treat the Annual_Premium outliers issue.

```
pcap <- function(x){
  for (i in which(sapply(x, is.numeric))) {
    quantiles <- quantile( x[,i], c(.05, .95 ), na.rm =TRUE)
    x[,i] = ifelse(x[,i] < quantiles[1] , quantiles[1], x[,i])
    x[,i] = ifelse(x[,i] > quantiles[2] , quantiles[2], x[,i])}
  x}
```

```
data = pcap(data)
summary(data$Annual_Premium)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2630 24405 31669 29898 39400 55176
```

(There is an article in a website "If you choose too large of a training set you run the risk of overfitting your model. Overfitting is a classic mistake people make when first entering the field of machine learning.")

We have 381,109.00 observations we will going to only use 10% of the raw data as a model data and split the 10% into train/test datasets.

```
library(caret)
```

```
## Loading required package: lattice
```

```
library(caTools)
```

Using the Partition method to get a new dataset and use the new data as a sample data to do the medolling. We will use the 1% observations to do the data modeling

```
set.seed(198)
sample_split = createDataPartition(data$Response, p = 0.1, list=FALSE)
sampleData = data[sample_split,]
remainData = data[-sample_split,]
dim(sampleData)
```

```
## [1] 38111 11
```

```
dim(remainData)
```

```
## [1] 342998 11
```

```
library(data.table)
library(dplyr)
```

convert all sampleDate factor levels to numeric so that we can scale the data to do the modelling.

```
indx <- sapply(sampleData[], is.factor)
sampleData[indx] <- lapply(sampleData[indx], function(x) as.numeric(as.factor(x)))</pre>
```

```
str(sampleData)
```

```
## 'data.frame':
                   38111 obs. of 11 variables:
## $ Gender
                         : num 2 2 2 2 1 2 2 1 1 2 ...
## $ Age
                         : num 32 21 25 62 39 27 39 69 50 21 ...
                               2 2 2 2 2 2 2 2 2 2 . . .
## $ Driving License
                         : num
                         : num 9 2 2 2 1 9 8 2 2 9 ...
## $ Region_Code
## $ Previously_Insured : num
                               2 2 2 1 1 2 2 1 1 1 ...
## $ Vehicle_Age
                               3 3 3 1 2 3 2 2 2 3 ...
                         : num
## $ Vehicle_Damage
                               2 2 2 1 1 2 2 1 1 1 ...
                         : num
## $ Annual_Premium
                               28771 55176 55176 33830 37849 ...
                         : num
  $ Policy_Sales_Channel: num
                               2 2 2 5 1 2 2 6 6 2 ...
##
   $ Vintage
                               80 72 107 130 24 111 131 158 285 79 ...
                         : num
   $ Response
                         : int 0000000000...
```

convert Response to factor variables.

```
sampleData$Response = as.factor(sampleData$Response)
is.factor(sampleData$Response)
## [1] TRUE
Split the sampleDate to generate train and test dataset. We only use 20% of the sampleData as the training
set.seed(198)
split = sample.split(sampleData$Response, SplitRatio = 0.2)
train = subset(sampleData, split == TRUE)
test = subset(sampleData, split == FALSE)
dim(train)
## [1] 7622
              11
dim(test)
## [1] 30489
                 11
Comparing the train dataset and original dataset
table(data$Response)
##
##
        0
               1
## 334399 46710
prop.table(table(data$Response))
##
##
           0
## 0.8774366 0.1225634
table(train$Response)
##
##
      0
           1
## 6701 921
prop.table(table(train$Response))
##
##
## 0.8791656 0.1208344
```

The Percentage of customer who have positive response"1" are simily, which is 12%. So that the small sample of train set can represent the original data. We will use the train dataset to do our model.

Features scaling

```
train[,c(2,8,10)] = scale(train[, c(2,8,10)])
str(train)
## 'data.frame':
                   7622 obs. of 11 variables:
## $ Gender
                         : num 1 1 1 1 2 1 1 1 1 1 ...
## $ Age
                                0.0325 0.7735 -1.18 0.5041 0.4367 ...
                         : num
## $ Driving License
                                2 2 2 2 2 2 2 2 2 2 . . .
                         : num
## $ Region_Code
                         : num 1 4 9 2 2 9 2 2 2 1 ...
## $ Previously_Insured : num
                                1 1 2 1 1 1 1 1 2 2 ...
## $ Vehicle_Age
                                2 2 3 2 2 2 2 2 3 ...
                         : num
                         : num 1 1 2 1 1 2 1 1 2 2 ...
## $ Vehicle_Damage
## $ Annual Premium
                        : num 0.518 0.281 -0.112 1.663 -0.292 ...
## $ Policy_Sales_Channel: num 1 5 4 5 5 6 1 1 1 6 ...
                         : num -1.554 0.919 -0.903 -0.3 -0.819 ...
## $ Vintage
## $ Response
                         : Factor w/ 2 levels "0", "1": 1 2 1 2 1 1 1 2 1 1 ...
test[,c(2,8,10)] = scale(test[, c(2,8,10)])
str(test)
## 'data.frame':
                   30489 obs. of 11 variables:
## $ Gender
                         : num 2 2 2 2 2 2 1 1 2 1 ...
## $ Age
                         : num -0.446 -1.179 -0.912 1.552 -0.779 ...
## $ Driving_License
                         : num
                                2 2 2 2 2 2 2 2 2 2 ...
                         : num 9 2 2 2 9 8 2 2 9 9 ...
## $ Region_Code
## $ Previously_Insured : num
                                2 2 2 1 2 2 1 1 1 2 ...
## $ Vehicle_Age
                                3 3 3 1 3 2 2 2 3 3 ...
                         : num
## $ Vehicle Damage
                         : num
                                2 2 2 1 2 2 1 1 1 2 ...
## $ Annual Premium
                         : num -0.0774 1.6802 1.6802 0.2594 0.3713 ...
## $ Policy_Sales_Channel: num 2 2 2 5 2 2 6 6 2 2 ...
                         : num -0.894 -0.991 -0.566 -0.286 -0.517 ...
## $ Vintage
## $ Response
                         : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
Create Models
Logistic regression classifier model
glmModel = glm(Response ~., train, family = binomial)
summary(glmModel)
##
## Call:
## glm(formula = Response ~ ., family = binomial, data = train)
## Deviance Residuals:
```

```
Median
                 1Q
                                   3Q
## -1.1878 -0.6613 -0.0483 -0.0357
                                        3.7690
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        -17.965674 469.686804 -0.038
                                                        0.9695
## Gender
                         -0.124185
                                     0.079017 - 1.572
                                                        0.1160
## Age
                         -0.283487
                                     0.057069 -4.967 6.78e-07 ***
## Driving_License
                         12.298205 234.843223
                                               0.052
                                                        0.9582
## Region_Code
                         -0.056904
                                     0.012874 -4.420 9.86e-06 ***
## Previously_Insured
                         -3.793828
                                     0.526371 -7.208 5.70e-13 ***
## Vehicle_Age
                         -0.752726
                                     0.096435
                                              -7.806 5.93e-15 ***
## Vehicle_Damage
                         -1.924101
                                     0.243165 -7.913 2.52e-15 ***
                                               -0.352
## Annual_Premium
                         -0.013471
                                     0.038248
                                                        0.7247
                                                        0.0675 .
## Policy_Sales_Channel
                         0.036249
                                     0.019827
                                                1.828
## Vintage
                          0.001889
                                     0.038468
                                                0.049
                                                        0.9608
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 5618.7 on 7621 degrees of freedom
## Residual deviance: 4190.6 on 7611 degrees of freedom
## AIC: 4212.6
##
## Number of Fisher Scoring iterations: 13
```

Features selection

[1] 30489

Gender, Driving_License, Annual_Premium, Policy_Sales_Channel and Vintage have P_valua are much more than 0.05. We remove these four features from both the train dataset and test dataset.

```
train$Gender = NULL
train$Driving_License = NULL
train$Annual_Premium = NULL
train$Policy_Sales_Channel = NULL
train$Vintage = NULL

test$Gender = NULL
test$Driving_License = NULL
test$Annual_Premium = NULL
test$Policy_Sales_Channel = NULL
test$Vintage = NULL

dim(train)

## [1] 7622 6
```

New GLM model

library(caret)

```
glmNew = glm(Response ~., train, family = binomial)
Use the new glm model to do the probability prediction.
prob_pred = predict(glmNew, type = 'response', test[-6])
Change prob_pred percentage of probability to "1", "0" binimial number.
y_pred = ifelse(prob_pred >0.5, 1, 0)
is.vector(y_pred)
## [1] TRUE
is.atomic(test$Response)
## [1] TRUE
Convert "y_pred" list vector to atomic vector matching with the test$Response for comparison
y_pred = as.character(as.numeric(as.integer(y_pred)))
is.atomic(y_pred)
## [1] TRUE
cm = table(test[,6], y_pred)
\mathtt{cm}
##
      y_pred
##
                  1
##
     0 26780
                 24
     1 3669
                 16
The model predict customer responce "0", which is not interested. There is an imbalanced classification we
need to adjuster the imbalance
levels(as.factor(y_pred))
## [1] "0" "1"
```

```
confusionMatrix(as.factor(y_pred), test$Response, positive = "1")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                         1
##
            0 26780
                     3669
##
            1
                 24
                       16
##
##
                  Accuracy : 0.8789
##
                    95% CI: (0.8752, 0.8825)
       No Information Rate: 0.8791
##
##
       P-Value [Acc > NIR] : 0.5602
##
##
                     Kappa : 0.006
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.0043419
##
               Specificity: 0.9991046
            Pos Pred Value : 0.4000000
##
##
            Neg Pred Value: 0.8795034
##
                Prevalence: 0.1208633
##
            Detection Rate: 0.0005248
      Detection Prevalence: 0.0013119
##
##
         Balanced Accuracy: 0.5017233
##
##
          'Positive' Class: 1
##
```

Althogh we got 0.8789 accuracy , however the Sensitivity is only 0.004. That means the model detect customer did not respons very well, however did not detect those customers who are interested in the cross sell. There is strong imbalance clissification issues .

Solve the imbalance classification

```
library(ROSE)
```

Generate new balanced data by ROSE. Use Over sampling for better sensitivity

```
table(train$Response)

##
## 0 1
## 6701 921
6701*2
```

[1] 13402

```
over = ovun.sample(Response~., data=train, method = "over", N=13402)$data
table(over$Response)
##
##
     0
## 6701 6701
summary(over)
                    Region_Code
                                    Previously_Insured Vehicle_Age
##
        Age
## Min.
          :-1.1800 Min. :1.000 Min.
                                          :1.000
                                                      Min.
                                                            :1.000
## 1st Qu.:-0.7758
                   1st Qu.:2.000
                                   1st Qu.:1.000
                                                      1st Qu.:2.000
## Median : 0.1673
                    Median :6.000
                                   Median :1.000
                                                      Median :2.000
## Mean : 0.1343
                    Mean
                          :5.585
                                   Mean :1.263
                                                      Mean :2.249
## 3rd Qu.: 0.7735
                    3rd Qu.:9.000
                                                      3rd Qu.:3.000
                                    3rd Qu.:2.000
## Max. : 2.0534
                    Max.
                           :9.000
                                   Max. :2.000
                                                            :3.000
                                                      Max.
## Vehicle_Damage Response
## Min.
          :1.000
                  0:6701
## 1st Qu.:1.000 1:6701
## Median :1.000
## Mean :1.287
## 3rd Qu.:2.000
## Max. :2.000
glm_over = glm(Response~., over, family = binomial)
dim(test)
## [1] 30489
over_pred = predict(glm_over, type = 'response', test[-6])
y_over_pred = ifelse(over_pred >0.5, 1, 0)
y_over_pred = as.factor(y_over_pred)
levels(y_over_pred)
## [1] "0" "1"
levels(test$Response)
## [1] "0" "1"
cm = table(test[,6], y_over_pred)
```

```
##
      y_over_pred
##
           0
##
     0 15820 10984
##
          80
             3605
library(caret)
confusionMatrix(as.factor(y_over_pred), test$Response, positive = "1")
## Confusion Matrix and Statistics
##
##
             Reference
                  0
## Prediction
                        1
            0 15820
                       80
            1 10984
                     3605
##
##
##
                  Accuracy : 0.6371
##
                    95% CI: (0.6317, 0.6425)
       No Information Rate: 0.8791
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.2498
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9783
##
               Specificity: 0.5902
##
            Pos Pred Value: 0.2471
##
            Neg Pred Value: 0.9950
##
                Prevalence: 0.1209
##
            Detection Rate: 0.1182
##
      Detection Prevalence: 0.4785
##
         Balanced Accuracy: 0.7843
##
##
          'Positive' Class : 1
##
```

0.97 Sensitivity rate. That means this model can predict 97% of those customer who are intersted the cross sell. So far we got a good model. Let try other models to see which one is fit the data most. We will focus on the model Sensitivity value, which indicate how much the percentage accuracy the model catched for those customer who is interested in the cross sell.

Apply the treated training set to other models

Random Forest Prediction

```
library(randomForest)

set.seed(123)
Rfmodel <- randomForest(Response ~ ., method= "anova",data=over, importance= TRUE, ntree = 100)

Predict using the test set

plot(Rfmodel, ylim=c(0,0.36))
legend('topright', colnames(Rfmodel$err.rate), col=1:3, fill=1:3)</pre>
```

Rfmodel

The black line shows the overall error rate which falls around 20%%. The red and green lines show the error rate for 'not responce' and 'repsonce' respectively. Less error in prediction the "Responce" rate.

```
set.seed(123)
confusionMatrix(predict(Rfmodel, test), test$Response, positive = "1")
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
##
            0 17640
                      281
            1 9164 3404
##
##
                  Accuracy : 0.6902
##
```

```
95% CI: (0.685, 0.6954)
##
       No Information Rate: 0.8791
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.2853
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9237
##
               Specificity: 0.6581
##
            Pos Pred Value: 0.2708
            Neg Pred Value: 0.9843
##
##
                Prevalence: 0.1209
##
            Detection Rate: 0.1116
##
      Detection Prevalence : 0.4122
##
         Balanced Accuracy: 0.7909
##
##
          'Positive' Class: 1
##
```

Sensitivity is 0.9237.

Get features importance

```
varImpPlot(Rfmodel, main="")
```


The left figure above, is the important features order of Random Forest. Previously_Insured and Vehicle_Damage would be categorized as the most important features when predicting response. Age, Vehicle_Age and Region_code would fall under moderate importance. The right figure is the important features order of the model of logistic regression which using the Gini importance method while the Vehicle_Damage is the most importanct features.

Support Vector Classification (SVM_Classification)

```
library(e1071)
set.seed(123)
svm_model = svm(Response ~ ., data=over, type = 'C-classification', kernel = 'radial')
predSVM <- predict(svm_model, test[-6])</pre>
set.seed(123)
confusionMatrix(as.factor(predSVM), test$Response, positive = "1")
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                         1
##
            0 17342
                       230
##
            1 9462
                     3455
##
##
                  Accuracy : 0.6821
                    95% CI : (0.6769, 0.6873)
##
##
       No Information Rate: 0.8791
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.281
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9376
##
               Specificity: 0.6470
##
            Pos Pred Value: 0.2675
##
            Neg Pred Value: 0.9869
##
##
                Prevalence: 0.1209
##
            Detection Rate: 0.1133
##
      Detection Prevalence: 0.4237
##
         Balanced Accuracy: 0.7923
##
##
          'Positive' Class: 1
##
```

Sensitivity is 0.93, close to the one of Random Forest.

```
library(pROC)
```

```
roc.curve(test$Response, predSVM,plotit= TRUE, add.roc = FALSE)
```

ROC curve

Area under the curve (AUC): 0.792

Naive Bayes Model

```
library(e1071)

set.seed(123)
naive_model=naiveBayes(Response~.,
    data=over)

pred_nb = predict(naive_model, test[-6])

confusionMatrix(pred_nb, test$Response, positive = "1")

## Confusion Matrix and Statistics
##
## Reference
```

```
## Prediction
            0 15812
##
            1 10992 3609
##
##
##
                  Accuracy: 0.637
##
                    95% CI : (0.6316, 0.6424)
##
       No Information Rate: 0.8791
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.25
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9794
               Specificity: 0.5899
##
##
            Pos Pred Value : 0.2472
##
            Neg Pred Value: 0.9952
                Prevalence: 0.1209
##
##
            Detection Rate: 0.1184
      Detection Prevalence: 0.4789
##
##
         Balanced Accuracy: 0.7846
##
##
          'Positive' Class : 1
##
```

Sensitivity score is 0.9794.

Decision Tree

```
library(rpart)

set.seed(123)
treeModel = rpart(Response~., over )

predTree = predict(treeModel, test[-6])

y_predTree = ifelse(over_pred >0.5, 1, 0)

library(rpart.plot)

rpart.plot(treeModel)
```


Decision Tree Model Evaluation Making the Confusion Matrix

```
set.seed(123)
confusionMatrix(as.factor(y_predTree), test$Response, positive = "1")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                        1
                       80
##
            0 15820
##
            1 10984
                     3605
##
                  Accuracy : 0.6371
##
                    95% CI: (0.6317, 0.6425)
##
##
       No Information Rate: 0.8791
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.2498
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9783
##
               Specificity: 0.5902
##
            Pos Pred Value: 0.2471
##
```

```
## Neg Pred Value : 0.9950
## Prevalence : 0.1209
## Detection Rate : 0.1182
## Detection Prevalence : 0.4785
## Balanced Accuracy : 0.7843
##
## 'Positive' Class : 1
```

Sensitivity is 0.978.

```
accuracy.meas(test$Response, y_predTree)
```

```
##
## Call:
## accuracy.meas(response = test$Response, predicted = y_predTree)
##
## Examples are labelled as positive when predicted is greater than 0.5
##
## precision: 0.247
## recall: 0.978
## F: 0.197
```

These metrics provide an interesting interpretation. With threshold value as 0.5, Precision = 0.247 says there are no false positives. Recall = 0.978 is very much high and indicates that we have lower number of false negatives as well. Threshold values can be altered also. F = 0.197 means we have very accuracy of this model.

Recall in this context is also referred to as the true positive rate or sensitivity, and precision is also referred to as positive predictive value (PPV); other related measures used in classification include true negative rate and accuracy. True negative rate is also called specificity.

```
roc.curve(test$Response, y_predTree)
```

ROC curve

Area under the curve (AUC): 0.784

```
library(class)
```

Knn model

```
cm = table(test[, 6], knn_pred)
cm
```

```
## knn_pred
## 0 18305 8499
## 1 611 3074
```

```
confusionMatrix(knn_pred,test$Response)
```

Confusion Matrix and Statistics

```
##
##
             Reference
##
  Prediction
                  0
            0 18305
                      611
##
               8499
##
                     3074
##
##
                  Accuracy: 0.7012
                    95% CI: (0.696, 0.7063)
##
##
       No Information Rate: 0.8791
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.2689
##
    Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.6829
##
               Specificity: 0.8342
##
            Pos Pred Value: 0.9677
##
            Neg Pred Value: 0.2656
##
                Prevalence: 0.8791
##
            Detection Rate: 0.6004
##
      Detection Prevalence: 0.6204
##
         Balanced Accuracy: 0.7586
##
##
          'Positive' Class: 0
##
```

Conclusion

I have done the data exploration and visulization to have a basic statistic backgroud information of the data. Then did some data preparation for modeling, including check missing data, convert data variables for modeling, treat outliers issues. When do the first model, logistic regression, I found out that the model had overfitting issues and imbalanced classification. After solving these two big issues, would be able to generate several applicable models which all have more the 93% Sensitivity rate(recall rate, true positive). Decision tree, Naive bayes and logistic Regresion have the highest True Positive Rate (Sensitivity rate). I recommend the Insurance company use the logistic regression model due to the other two models may cost more on the daily usage in the field of business management and technical maintaining.