Computação Gráfica **Fase 1**

Licenciatura em Ciências da Computação

Breno Fernando Guerra Marrão A97768 Tales André Rovaris Machado A96314

 $\begin{array}{c} {\rm Tiago~Passos~Rodrigues} \\ {\rm A}96414 \end{array}$

9 de março de 2023

Conteúdo

1	Introdução														2									
2		Soluções 2.1 Modelos																3						
	2.1	Mode	los																					3
		2.1.1	Plano																					3
		2.1.2	Cubo																					4
		2.1.3	Esfera																					4
		2.1.4	Cone .																					4
	2.2	Fotos	dos test	file	es																			6
3	Con	clusão)																					8

Capítulo 1

Introdução

Este relatório da primeira fase do trabalho prático de CG, teve como o objetivo a criação de um generator para 4 formas geométricas diferentes Plano, Esfera, Cone, Cubo em um arquivo .3D e uma engine que lê um arquivo xml e faz a representação gráfica das formas.

Capítulo 2

Soluções

2.1 Modelos

2.1.1 Plano

Para a construção do plano recebemos o comprimento da aresta e as fatias em que queremos dividir o próprio.

Dividimos o comprimento recebido por 2 de maneira a centrar o plano na origem. Iteramos com dois ciclo for de maneira a obter as arestas dos triângulos onde temos inicialmente um valor fixo que percorrer os outros.

Figura 2.1: Renders dos planos

2.1.2 Cubo

A partir do plano feito previamente atualizamos os valores dos vértices para as faces de cima, baixo, no eixo do X positivo, negativo e no eixo do Z positivo e negativo.

Figura 2.2: Renders dos cubos

2.1.3 Esfera

Para gerar a esfera primeiro tivemos de definir dois ciclos, um para representar os slices e o outro para os stacks. Para fazer o ciclo dos stacks temos que considerar o ângulo pi porque vamos de uma ponta do eixo z a outra e não a totalidade da rotação. Então calculamos os pontos e por fim desenhamos a esfera.

2.1.4 Cone

Para a construção do cone recebemos o raio da base, a altura do cone, a quantidade de fatias que vamos dividir para a construção da base e os stacks (quantidade de cortes feitos até chegarmos à altura correta).

A maneira que fazemos para construir o cone é percorrer um ciclo for pelo número de fatias onde definimos dois pontos por fatia ,p1 e p2, que estão a uma distancia de $2\pi \div fatias$ graus ao longo da base um do outro ,com esses pontos e o ponto central desenhamos um triângulo.

Fazemos um outro ciclo for dentro do ciclo anterior, tomamos esta decisão para tirarmos proveito que já temos definidos dois pontos, p1 e p2, dos 4 que precisaremos para a construção dos stacks. Neste novo ciclo definimos dois

(a) ./generator esfera 1 10 10 esfera.3d (b) ./generator esfera 1 70 70 esfera.3d

Figura 2.3: Renders das esferas

pontos, p3 e p4 estes dois pontos são definidos da seguinte maneira: dividimos o círculo da base em círculos menores para formar a face cada um com uma diferenca no raio de $raiodabase \div numerodeslices$, assim esses pontos estão num círculo menor em relação ao da base com a mesma diferença de ângulo $2\pi \div fatias$ ao longo deste círculo como também aumentamos a altura destes pontos em relação à dos pontos p1 e p2 em altura do $cone \div slices$ de maneira a obter-mos um losângulo com os pontos p1,p2,p3,p4 e desenhamos os dois triângulos.

Figura 2.4: Renders dos cones

2.2 Fotos dos test files

Capítulo 3

Conclusão

Nesta primeira fase aplicamos vários dos conceitos que aprendemos das aulas teóricas/práticas de como criar formas geométricas através de triângulos e o controlo da câmara. Porém, encontramos algumas dificuldados na implementação do parser XML visto que tivemos um período de adaptação. Contudo, sentimos que conseguimos responder eficazmente para os desafios propostos.