ALEEA BARAJUL DUNĂRII NR. 5, SECTOR 3, BUCUREȘTI

LICEUL TEORETIC "ALEXANDRU IOAN CUZA"

Simularea probei la alegere a profilului de bacalaureat

FIZICA-8.05.2025

Sunt obligatorii toate subiectele din două arii tematice (alese de candidat) dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ.

• Se acordă zece puncte din oficiu. • Timpul de lucru efectiv este de trei ore.

<u>A. MECANIC</u>Ă

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură a mărimii $F \cdot \Delta t^{-1}$ este :
- **a.** N⋅m⁻¹

- **b.** $\text{Kg} \cdot \text{m} \cdot \text{s}^{-3}$
- **c.** N·m⁻² **d.** Kg·m²·s⁻²
- (3p)
- 2. Notațiile fiind cele utilizate în manualele de fizică, relația prin care poate fi definită puterea mecanică instantanee efectuată de către o forță constantă este:
- **a.** $P = Fv \sin \alpha$
- **b.** $P = F\Delta t$
- **d.** P = Fd
- (3p)
- 3. O persoană se cântărește în lift. Cântarul indică o masă mai mare decât în realitate. În aceste condiții, liftul:
- a. urcă cu viteză constantă;
- **b.** coboară cu viteză constantă;
- c. urcă cu acceleratie constantă, orientată în sensul miscării;
- d. coboară cu accelerație constantă, orientată în sensul mișcării.

(3p)

- 4. Un corp de masă m=3 kg este suspendat de un resort vertical de lungime nedeformată l₀ =30 cm, având constanta de elasticitate k=1KN/m. La echilibru, alungirea relativă a resortului are valoarea:
- **a.** 10%
- **b.** 30%
- **c.** 100%
- **d.** 300%

(3p)

(3p)

m

(15 puncte)

- 5. În graficul din figura alăturată este reprezentată variatia coordonatei miscării unui mobil în funcție de timp. Distanța străbătută de mobil în primele 25 secunde ale miscării sale este egală cu:
- **a.** 25*m*
- **b.** 20*m*
- **c.** 112,5*m*
- **d.** 225*m*

II. Rezolvaţi următoarea problemă:

Două corpuri de mase M=4kg și m=1Kg sunt așezate pe o suprafață orizontală, ca în figura alăturată. Sistemul de corpuri se mișcă sub acțiunea unei forte F aplicată sub un unghi $\alpha = 30^{\circ}$ ca în figură cu accelerația

- $a = \sqrt{3}ms^{-2}$. Forțele de frecare sunt neglijabile. Determinați:
- a. valoarea forței f cu care corpul M împinge corpul m;
- **b.** valoarea forței F care actionează asupra sistemului;
- c. valoarea reacțiunii planului asupra corpului de masă M, dacă valoarea forței F este de 10N;
- d. efortul unitar exercitat într-un cablu cu rază 1 mm cu ajutorul căruia ar fi ridicat pe verticală corpul de masă M, cu accelerația $a = 2m \cdot s^{-2}$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O minge cu masa de 500 g este aruncată vertical în sus, de la înălțimea h=1m cu viteza $v = 4m \cdot s^{-1}$, urcă până la înăltimea maximă, apoi coboară si loveste solul. După ciocnirea cu solul, viteza mingii este orientată perfect vertical si modulul ei reprezintă 80% din valoarea vitezei pe care o avea imediat înainte de ciocnirea cu solul. Fortele de rezistentă la înaintare datorate aerului se consideră neglijabile, iar energia potentială gravitatională se consideră nulă la nivelul solului. Determinati:

- a. energia mecanică în stare initială;
- b. înălțimea maximă până la care urcă mingea, față de sol;
- c. lucrul mecanic efectuat de greutate din momentul lansării mingii până când ajunge la sol;
- d. variația impulsului mecanic al mingii în urma ciocnirii cu solul.

LICEUL TEORETIC "ALEXANDRU IOAN CUZA"

Simularea probei la alegere a profilului de bacalaureat

FIZICA-8.05.2025

B. ELEMENTE DE TERMODINAMICĂ

Se cunosc: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$, constanta gazelor ideale $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: pV = vRT

- I. Pentru itemii 1-5 scrieţi pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. În comprimarea adiabatică:
- a. energia internă a gazului crește;
- b. gazul cedează lucru mecanic în exterior;
- c. energia internă a gazului scade;
- d. gazul cedează căldură mediului exterior.

(3p)

- 2. Notațiile fiind cele utilizate în manualele de fizică, unitatea de măsură a raportului dintre energia internă a unui gaz ideal și cantitatea de gaz poate fi scrisă sub forma:
- **a.** $N \cdot m^2 \cdot mol^{-1}$
- **b.** N·m² · K^{-1}
- **c.** N⋅m ⋅ *mol*⁻¹
- d. N·m · mol
- (3p)
- 3. Pentru a obține 1,4kg de apă la temperatura $t = 25^{\circ}C$, se amestecă apă caldă cu temperatura inițială
- $t_1 = 75^{\circ}C$ și apă rece, aflată la temperatura inițială de $t_2 = 5^{\circ}C$. Masa de apă caldă este:
- **a.** 1kg

- **c.** 0,4kg

(3p)

- 4. În graficul din figura alăturată este reprezentat în coordonate (p-V), procesul ciclic ABCA. Valoarea lucrului mecanic schimbat de gaz cu mediul exterior în procesul BC este:
- **a.** L = 7.5 pV
- **b.** L = 4pV
- **c.** L = 16pV
- **d.** L = 9pV

- 5. Pentru a încălzi cu $\Delta t = 100^{0} C$ un corp este necesară aceeași cantitate de căldură cu cea utilizată pentru a mări temperatura unui kg de apă de la $t_1 = 25^{\circ}C$ la $t_2 = 35^{\circ}C$. Căldura specifică a apei fiind egală cu $c = 4200 J \cdot kg^{-1} \cdot K^{-1}$, capacitatea calorică a corpului este:
- **a.** 840J·K⁻¹
- **b.** 210 J·K⁻¹
- **c.** 420 J·K⁻¹
- **d**. $150 \, \text{J} \cdot \text{K}^{-1}$
- (3p)

II. Rezolvaţi următoarea problemă:

Un cilindru orizontal cu lungimea L = 90cm si aria sectiunii $S = 83,1cm^2$, închis la ambele capete, este împărțit în două compartimente cu ajutorul unui piston mobil termoizolant, subțire și etanș, ce se poate mișca fără frecare. În primul compartiment este închisă o masa $m_1 = 0.16$ g de hidrogen $\mu = 2$ g/mol aflat la temperatura $t_1 = 27^0\,\mathrm{C}$, iar în al doilea o masă $m_2 = 1{,}12\mathrm{g}$ de azot $\mu_{\mathrm{N}_2} = 28\,\mathrm{g/mol}$, aflat la aceeași temperatură. Pistonul este liber si se află în echilibru mecanic. Ambele gaze sunt considerate gaze ideale. Determinati:

a.masa unei molecule de hidrogen;

b.lungimea compartimentului care contine azot;

c.presiunea la care se află hidrogenul;

d.temperatura la care trebuie încălzit azotul, astfel încât cele două gaze să ocupe volume egale, dacă temperatura hidrogenului rămâne nemodificată.

III. Rezolvați următoarea problemă:

Un mol de gaz ideal parcurge procesul termodinamic ciclic reprezentat în coordonate p-T în figura alăturată. Temperatura în starea 1 este $T_1 = 300$ K, iar căldura molară izocoră a gazului este $C_V=3R$. Se consideră In 1,5 \cong 0,4 .

- a. Reprezentați procesul ciclic în sistemul de coordonate p-V.
- b. Deteminați variația energiei interne a gazului între stările 4 și 1.
- c. Calculați căldura cedată de gaz mediului exterior în cursul unui ciclu.
- d. Calculați lucrul mecanic total schimbat de gaz cu mediul exterior în cursul unui ciclu.

LICEUL TEORETIC "ALEXANDRU IOAN CUZA"

Simularea probei la alegere a profilului de bacalaureat

FIZICA-8.05.2025

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.
- 1. Unitatea de măsură în S.I a rezistivității electrice a unui conductor poate fi scrisă sub forma:
- **a.** $J \cdot m \cdot A^{-2} \cdot s^{-1}$
- **b.** $J \cdot m^2 \cdot A^{-1} \cdot s$
- c. $J \cdot m \cdot A \cdot s$
- **d.** $J \cdot m^{-2} \cdot A^{-2} \cdot s^{-2}$
- (3p)
- 2. Fie două becuri având rezistențe diferite, R₁ > R₂, conectate în paralel într-un circuit electric. Referitor la cantitățile de căldură Q1 și Q2 degajate în acestea în timpul funcționării este adevărat că:
- a. $Q_1 > Q_2$
- **b.** $Q_1 < Q_2$
- **c.** $Q_1 = Q_2$

d.
$$Q_1 = Q_2 = 0$$
 (3p)

- **3.** O sursă, având fiecare t.e.m. $E = 6,75 \,\mathrm{V}$ și rezistența electrică $r = 0,75 \,\Omega$, alimentează o grupare formată din trei rezistori identici grupați în paralel, având fiecare rezistența $R = 4,5\Omega$. Intensitatea curentului ce străbate un singur rezistor este:
- **a.** 3A
- **b.** 2,25 A
- **c.** 1A
- **d.** 0.25 A
- (3p)
- 4. Dispunem de n rezistoare identice. Rezistenta echivalentă când acestea sunt grupate în serie este de o sută de ori mai mare decât atunci când sunt grupate în paralel. Valoarea lui n este:
- **a.**10

- (3p)
- 5.Un fir conductor omogen, de secțiune constantă și de lungime L, este conectat la bornele unei surse ideale. Firul conductor se taie în două bucăți egale, fiecare de lungime $\frac{L}{2}$. Cele două bucăți se leagă în paralel la bornele aceleiasi surse. Intensitatea curentului care străbate sursa, fată de cea initială devine:
- a. de 2 ori mai mare:
- **b.** de 2 ori mai mică:
- c. de 4 ori mai mare;
- d. de 4 ori mai mică.

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Cei trei rezistori sunt identici, având rezistența electrică $R = 60 \Omega$, iar ampermetrul A este ideal $(R_A \cong 0\Omega)$. Ampermetrul A indică valoarea I=1A când întrerupătorul k este deschis și valoarea I'=1,3A când întrerupătorul k este închis. Determinați:

- închis:
- **b.** valoarea rezistenței interioare r a generatorului;
- c. valoarea tensiunii electromotoare E a generatorului;
- **d.** valoarea tensiunii indicate de un voltmetru ideal $(R_V \to \infty)$ montat în locul întrerupătorului.

III. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Rezistențele electrice ale celor patru rezistori sunt $R_1 = 1\Omega$, $R_2 = 3\Omega$, $R_3 = 2\Omega$, $R_4 = 4\Omega$, iar rezistențele electrice interioare ale celor două generatoare sunt neglijabile. Primul generator are tensiunea electromotoare $E_1 = 12 \text{ V}$. Determinați:

- **a.** puterea dezvoltată de rezistorul având rezistența R_1 când întrerupătorul K este deschis;
- **b.** energia consumată rezistorul având rezistența $R_{_3}$ într-un minut, când întrerupătorul K este deschis;
- **c.** puterea totală dezvoltată de generatorul cu t.e.m. E_1 , când întrerupătorul K este deschis;
- **d.** t.e.m. E_2 , dacă la închiderea întrerupătorului K prin generatorul cu t.e.m. E_2 nu trece curent electric.

ALEEA BARAJUL DUNĂRII NR. 5, SECTOR 3, BUCUREȘTI

LICEUL TEORETIC "ALEXANDRU IOAN CUZA"

Simularea probei la alegere a profilului de bacalaureat FIZICA-8.05.2025

D. OPTICĂ

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Unitatea de măsură în SI a lucrului mecanic de extracție a unui electron prin efect fotoelectric extern este:

a. V

 $\mathbf{h} \mathbf{m}^{-1}$

c. J

 $d s^{-1}$

(3p)

2. Pe un catod cade o radiație electromagnetică având lungimea de undă λ și frecvența ν , care produce efect fotoelectric extern. Energia cinetică maximă a electronilor extrași este E_c. Frecvența minimă a radiației care produce efect fotoelectric extern poate fi calculată folosind relaţia:

a. $v_0 = v + \frac{E_c}{h}$

b. $v_0 = \frac{\lambda}{c} - \frac{E_c}{h}$ **c.** $v_0 = \frac{c}{\lambda} - \frac{E_c}{h}$ **d.** $v_0 = \frac{\lambda}{c} + \frac{E_c}{h}$

(3p)

3. În figura alăturată este reprezentată variatia energiei cinetice maxime a fotoelectronilor emisi prin efect fotoelectric extern, în functie de frecventa radiatiei incidente pe catod. Notatiile fiind cele utilizate în manualele de fizică, semnificatia fizică a pantei dreptei ($tg\alpha$) este:

a. *h*

b. $L_{extractie}$

c. $U_{stonage}$

d. λ

4. Un sistem optic acolat este format din două lentile cu convergențele $C_1 = 4\delta$ și $C_2 = -6\delta$. Coordonata punctului în care se află focarul imagine al lentilei echivalente cu sistemul dat, este:

a. $-0.5 \, \text{m}$

b. $-0.2 \,\mathrm{m}$

c. 0.2 m

d. 0.5 m

(3p)

5. Imaginea unui obiect printr-o lentilă este răsturnată și de trei ori mai mare decât obiectul. Conform convențiilor folosite în manualele de fizică, mărirea liniară transversală are valoarea:

a. $\beta = -3$

b. $\beta = 9$

c. $\beta = -\frac{1}{3}$ **d.** $\beta = \frac{1}{3}$

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Un obiect cu înălțimea $y_1 = 2$ cm este plasat perpendicular pe axa optică principală a unei lentile subțiri L_1 , la 30cm de aceasta. Imaginea obiectului se formează pe un ecran aflat la distanța de 60cm față de lentilă.

- a. Calculati distanta focală a lentilei.
- b. Calculați înălțimea imaginii formate de lentilă.
- **c.** Determinați distanța dintre lentila L_1 și o altă lentilă subțire L_2 de distanță focală $f_2 = -12,5$ cm, astfel încât orice fascicul paralel care intră în sistemul optic centrat format de cele două lentile, să iasă tot paralel din sistem.
- **d.** Se alipesc lentilele L_1 și L_2 folosite la punctul **c**. Determinați convergența sistemului optic astfel format.

III. Rezolvați următoarea problemă:

(15 puncte)

Într-o experiență de interferență cu un dispozitiv Young, sursa de lumină coerentă se află pe axa de simetrie a sistemului la distanța d = 0.35m de planul fantelor. Distanța dintre fante este $2\ell = 0.70$ mm, iar distanța de la planul fantelor la ecranul pe care se observă figura de interferență este D = 2.1 m. Dispozitivul este iluminat cu o radiație monocromatică cu lungimea de undă $\lambda = 720$ nm. Determinați:

- a. valoarea interfraniei:
- b. distanța dintre maximul de ordinul doi aflat de o parte a maximului central și al doilea minim de interferență aflat de cealaltă parte a maximului central;
- c. distanta pe care se deplasează maximul central, dacă sursa se deplasează cu distanta $h = 0.5 \,\mathrm{mm}$ pe o direcție paralelă cu planul fantelor și perpendiculară pe fante.
- **d.** noua valoare a interfranjei dacă dispozitivul este scufundat în apă $(n_{aoa} = 4/3)$