Hyslan Silva Cruz Iara Regina Grilo Papais Carolina Cristina Ferreira de Mello Pires

Transformações Lineares e suas aplicações

Link do vídeo

Suzano

Hyslan Silva Cruz Iara Regina Grilo Papais Carolina Cristina Ferreira de Mello Pires

Transformações Lineares e suas aplicações

Monografia de graduação à Universidade Virtual do Estado de São Paulo, como requisito parcial para a obtenção do título de Licenciatura em Matemática.

Orientadora: Lorena Salvi Stringheta

Universidade Virtual do Estado de São Paulo

Orientadora: Lorena Salvi Stringheta

Suzano

2024

Agradecimentos

A conclusão desta monografia representa um marco importante em nossas vidas acadêmica e profissional. Ao longo dessa jornada, tivemos a oportunidade de contar com o apoio e a colaboração de diversas pessoas e instituições, às quais expresso minha mais profunda gratidão.

À minha família e amigos,

minha base sólida e porto seguro em todos os momentos. Agradeço por acreditarem em nosso potencial, por incentivarem nossos sonhos e por celebrarem cada conquista ao nosso lado. A vocês, dedico este trabalho com imenso amor e reconhecimento.

A minha orientadora, Professora Lorena Salvi Stringheta,

reconheço a importância fundamental de sua orientação, sabedoria e paciência ao longo da pesquisa. Sua expertise e dedicação nos inspiraram e guiaram na construção deste trabalho. Agradeço pelas valiosas contribuições, pelo tempo dedicado e pela confiança depositada em nosso grupo.

Aos demais membros da banca examinadora,

Professores(as),

agradeço a oportunidade de apresentar nossa pesquisa e receber seus valiosos feedbacks. Agradeço por terem dedicado seu tempo e conhecimento à avaliação deste trabalho.

À Universidade Virtual do Estado de São Paulo,

minha segunda casa durante os anos de graduação. Agradeço à instituição por nos proporcionar uma formação de qualidade, por nos colocar em contato com professores excepcionais e por nos oferecer os recursos necessários para o desenvolvimento desta pesquisa de forma gratuita.

Aos colegas de curso e amigos da Licenciatura em Matemática,

com quem compartilhamos momentos de aprendizado, desafios e alegrias. Agradeço pelas trocas de conhecimento, pelo apoio mútuo e pela amizade que nos acompanham desde o início da graduação.

Aos projetos integradores e demais serviços de pesquisa além da plataforma acadêmica,

que nos proporcionaram acesso a materiais essenciais para a realização deste trabalho. Agradeço a todos os profissionais que me auxiliaram na busca por informações e na utilização de ferramentas para uma boa pesquisa.

A todos que, direta ou indiretamente, contribuíram para a realização deste trabalho,

nossa sincera gratidão. Cada palavra de incentivo, cada sugestão e cada ajuda foram valiosas para o nosso aprimoramento e para a conquista deste objetivo.

Este trabalho é fruto de um esforço coletivo e representa a soma de conhecimentos, experiências e apoio de muitas pessoas. Agradecemos a todos que fizeram parte dessa jornada e que nos ajudaram a alcançar este importante marco em nossas vidas.

"Hoje, ainda almejamos saber por que estamos aqui e de onde viemos.O desejo profundo da humanidade pelo conhecimento é justificativa suficiente para nossa busca contínua. (Stephen Hawking)

Resumo

Só após ao fim da conclusão.

Palavras-chave: Transformação Linear, Álgebra Linear, Matrizes

Abstract

Same above.

Keywords: Linear Transformation, Linear Algebra. Matrices.

Lista de ilustrações

Figura 1 –	Um vetor no plano	16
Figura 2 –	Exemplo de vetor no espaço	17
Figura 3 –	Combinação linear de Vetores (BOLDRINI et al., 1986), pg. 113	20
Figura 4 –	Combinação de três vetores lineares (BOLDRINI et al., 1986), pg. 113	20
Figura 5 –	Vetores linearmente dependentes (BOLDRINI et al., 1986), pg. 115	22
Figura 6 –	Base de um vetor em \mathbb{R}^3 (CAMARGO; BOULOS, 2005), pg. 52	23
Figura 7 –	Transformação linear dobro de um vetor	26
Figura 8 –	Transformada de rotação de um vetor (NOGUEIRA, 2013)	27
Figura 9 –	Diagrama do núcleo de uma transformação linear (STEINBRUCH; WIN-	
	TERLE, 1987)	28
Figura 10 –	Imagem de um núcleo de transformação linear (BOLDRINI et al., 1986), pg.	
	152	29
Figura 11 –	Diagrama do isomorfismo e sua imagem (ANTON, 2010), pg. 445	30
Figura 12 –	Esquema de articulações (AMORIM, 2017)	32
Figura 13 –	Posição inicial e final (AMORIM, 2017)	33
Figura 14 –	Rotação e translação (AMORIM, 2017)	33
Figura 15 –	Translação e rotação (AMORIM, 2017)	33
Figura 16 –	Transformação do referencial ${\bf A}^0$ para o referencial $\{{\bf A}^2\}$ (AMORIM, 2017).	35
Figura 17 –	Posição inicial do braco robótico $\{A^2\}$ (AMORIM, 2017)	37

Lista de tabelas

Tabela 1	_	Vetores e escalares utilizados na combinação linear	20
Tabela 2	_	Tabela de randomização (SILVA, 2009)	39
Tabela 3	_	Tabela de randomização (SILVA, 2009)	41

Lista de abreviaturas e siglas

AL Álgebra Linear.

EV Espaço Vetorial.

TL Transformação Linear.

LD Linearmente Dependente.

LI Linearmente Independente.

BNCC Base Nacional Comum Curricular.

LGPD Lei Geral de Proteção de Dados Pessoais.

Lista de símbolos

 ${\mathbb R}$ Conjunto dos números reais.

 \exists Existe.

 \forall Para todo.

 \in Pertence.

Tal que.

.:. Portanto.

 \emptyset Conjunto vazio.

 \iff Se, e somente se.

∑ Somatório.

∩ Interseção.

 α Letra grega Alfa.

 β Letra grega Beta.

 θ Ângulo variável.

 ρ Letra grega Rho.

 A^T Matriz transposta.

dim Dimensão.

ker Núcleo.

det Determinante.

 σ Função de ativação.

Sumário

1	INTRODUÇÃO	13
1.1	Justificativa	13
1.1.1	Objetivo Geral	14
1.1.2	Objetivos Específicos	14
2	ESPAÇOS VETORIAIS	15
2.1	Subespaços Vetoriais	17
2.2	Combinação Linear	19
2.3	Dependência e Independência Linear	21
2.4	Base	22
2.5	Dimensão	24
3	TRANSFORMAÇÕES LINEARES	25
3.1	Núcleo de uma Transformação Linear	28
3.2	Isomorfismo	29
4	APLICAÇÕES DE TRANSFORMAÇÕES LINEARES	32
4.1	Posicionamento de Um Braço Robótico	32
4.2	Aplicação das Transformações Lineares na Educação	37
4.3	Aplicação em Criptografia	38
4.4	Classificação de Imagens com Redes Neurais	4 1
5	CONSIDERAÇÕES FINAIS	43
	REFERÊNCIAS	44

1 Introdução

Uma área da Matemática que tem implicações na computação gráfica, genética, criptografia, redes elétricas entre outros é a Álgebra Linear (AL). Com estrutura que permite um tratamento algébrico simples, a AL estuda os aspectos relacionados ao Espaço Vetorial (EV). Um conceito central da AL é a Transformação Linear (TL), que desempenham papel fundamental na análise e compreensão dos sistemas lineares de equações, geometria analítica, física, engenharia e outros campos de estudo (FIGUEREIDO, 2009).

Contextualizando o início dos estudos da AL, que é o estudo dos espaços vetoriais e das TL entre eles e possui variadas aplicações (SILVA; SILVA, 2017), nos meados do século XVIII, Euler e Louis Lagrange publicaram o "Recherche d'Arithmétique", entre 1773 e 1775, no qual estudavam certos conceitos da TL. Posteriormente, Johann Carl Friedrich Gauss, também estudou sobre assuntos que apresentou similaridade com a matriz de transformação linear.

No século XIX e XX, Giuseppe Peano cunha o termo "sistema linear"com a primeira definição de axiomática para espaço vetorial. Atualmente, a apresentação da AL, temas abordados nesse campo da matemática são frequentemente esquecidos. Este estudo busca o entendimento e compreender sobre as transformações lineares em sua totalidade e aplicações no contexto atual contemporâneo.

Passo esse brevíssimo contexto histórico e motivador para a nossa pesquisa e deleite desramo de estudado, iremos nos adiantar a certos conceitos matemáticos elementares já bastantes fundamentados no decorrer dos anos escolares do ensino básico regular. para isto, passaremos a certas definições matemáticas primordiais que serão apresentadas nesta monografia para as discussões advindas a posteriori neste estudo.

Portanto, dividimos esta monografia em 4 capítulos: revisão literária fundamentais, pesquisas de artigos, teses e discussões recentes sobre as transformações lineares em diversas aplicações, seu contexto educacional atual em questão de matéria aplicada e por conseguinte nossa metodologia utilizada, os resultados obtidos dessa pesquisa e, por fim, nossa discussão final, a saber, do uso da transformação linear atualmente.

1.1 Justificativa

As transformações lineares se fazem presentes em diversos campos da matemática, e sua aplicação é fundamental para a solidificar a base teórica de problemas práticos. A partir da compreensão de conceitos e das propriedades das TL, a modelagem e a solução de problemas complexos são facilitadas, como na tecnologia e computação, por exemplo.

Capítulo 1. Introdução

Procura-se contribuir com o raciocínio lógico e a capacidade de abstração, necessários para o desenvolvimento das habilidades matemáticas e analíticas. Essa investigação visa contribuir com o avanço do conhecimento nessa área e fundamentar o desenvolvimento de novos métodos, teorias e aplicações.

1.1.1 Objetivo Geral

Este trabalho objetiva compreender a aplicação da transformação linear.

1.1.2 Objetivos Específicos

Como objetivos específicos, são apresentados:

- Uso da transformação linear na sociedade;
- Aplicação em modelagem matemática e em contexto computacional da transformação linear;
- Contextualização da transformação linear no campo da inteligência artificial.

2 Espaços Vetoriais

Começaremos pela definição de um espaço vetorial utilizando aquelas apresentadas por (BOLDRINI et al., 1986) e (ULHOA; LOURENÇO, 2018), onde, podemos tratar como um vetor ao designar um elemento do espaço vetorial de um número \mathbb{R} definido tal que:

Definição 01: Seja um conjunto V, não vazio, com duas operações: soma, $V \times V \to V$, e multiplicação por escalar, $R \times V \to V$, tais que, para quaisquer $u, v, w \in \mathbb{R}$, satisfaçam as propriedades:

- 1. $(u+v)+w=u+(v+w), \forall u,v,w\in V$ (propriedade associativa.)
- 2. 1u = u.
- 3. $u + v = v + u, \forall u, v \in V$ (propriedade comutativa).
- 4. $\exists 0 \in V \text{ tal que } u + 0 = u.$
- 5. $\exists -u \in V \text{ tal que } u + (-u) = 0.$
- 6. a(u + v) = au + av.
- 7. (a + b)v = av + bv.
- 8. (ab)v = a(bv).
- 9. 1u = u.

Observação: 0 é o vetor nulo.

Observação: Limitaremos nossa discussão, demonstrações e aplicações dentro do conjunto dos números reais apenas.

Exemplo 01: Suponhamos uma matriz $M_{(2,2)}$, onde, é denotado por $M_{(m,n)}$, dado por $M = [a_{ij}]_{m \times n}$ podendo ser interpretada dessa forma, $V = M_{(2,2)}$, onde V, é um conjunto não vazio, seu escalar pertencente ao conjunto dos \mathbb{R} , que satisfazem todas as propriedades de um espaço vetorial.

Figura 1 – Um vetor no plano.

A partir disto, podemos perceber o uso analítico dos espaços vetoriais para resolução de problemas em geral. Vejamos mais alguns exemplos.

Exemplo 02: O exemplo anterior, trata-se de uma matriz de \mathbb{R}^2 pode ser dito como, no plano, agora iremos expandir para \mathbb{R}^3 , seja um vetor A=(x,y,z) ou representado pela forma matricial:

$$A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Assim, por quaisquer números reais, podemos fazer uma projeção ortogonal no espaço, segue um exemplo traçado:

Figura 2 – Exemplo de vetor no espaço.

Exemplo 03: Consideremos n - uplas de números reais.

$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n); x_i \in \mathbb{R}\}$$
e se $u = (x_1, x_2, \dots, x_n), v = (y_1, y_2, \dots, y_n)$ e $a \in \mathbb{R}$,
$$u + v = (x_1 + y_1, x_2, y_2, \dots, x_n, y_n)$$
 e $au = (ax_1, ax_2, \dots, ax_n)$

Por tratarmos de uma quantidade n de números, o campo tridimensional deixa de ser visto, e passamos a ter \mathbb{R}^n dimensões, as propriedades não deixam de valer independente a quantidade de dimensões.

2.1 Subespaços Vetoriais

Nesta seção iremos introduzir conceitos no estudo de espaço vetorial para subespaço vetorial.

Definição 02: Dado um espaço vetorial V, um subconjunto W, não vazio, será um subespaço vetorial de V se:

- 1. Para quaisquer $u, v \in W$ tivermos $u + v \in W$.
- 2. Para quaisquer $a \in R, u \in W$ tivermos $au \in W$.

Teorema 01: Um subconjunto não vazio W de V é um subespaço de V se, e somente se, para cada par de vetores α , β em W e cada escalar c em F, o vetor $c\alpha + \beta$ está em W.

Demonstração: Suponhamos que W seja um subconjunto não vazio de V, tal que, $c\alpha+\beta$ pertença a W para todos os vetores α , β em W e todos escalares c em F. Como W é não vazio, existe um vetor ρ em W, logo $(-1)\rho+\rho=0$ está em W. Então se α é um vetor arbitrário em W e c é um escalar arbitrário, o vetor $c\alpha=c\alpha+0$ está em W. Em particular $(-l)\alpha=-\alpha$ está em W. Finalmente se α e β estão em W, então $\alpha+\beta=1\alpha+\beta$ está em W. Assim, W é um subespaço de V.

Exemplo 04: Considere o espaço vetorial \mathbb{R}^3 . O conjunto de todos os vetores que residem no plano xy, ou seja, $\{(x,y,0) \mid x,y \in \mathbb{R}\}$, forma um subespaço vetorial de \mathbb{R}^3 .

Se o conjunto dado forma um subespaço vetorial de \mathbb{R}^3 , precisamos verificar as três propriedades fundamentais:

- 1. Contém o vetor nulo: O vetor nulo em \mathbb{R}^3 é (0,0,0). Este vetor também está contido no plano xy, pois z=0.
- 2. É fechado sob adição: Se tomarmos dois vetores $(x_1, y_1, 0)$ e $(x_2, y_2, 0)$ no plano xy, a sua soma será $(x_1 + x_2, y_1 + y_2, 0)$, que também reside no plano xy.
- 3. É fechado sob multiplicação por escalar: Para qualquer escalar c e vetor (x, y, 0) no plano xy, $c \cdot (x, y, 0) = (cx, cy, 0)$, que também está no plano xy.

Então, o conjunto de todos os vetores (x,y,0) com $x,y\in\mathbb{R}$ forma um subespaço vetorial de \mathbb{R}^3 .

Exemplo 05: No espaço vetorial das funções reais de uma variável real, $V = \{f(x) \mid f : \mathbb{R} \to \mathbb{R}\}$, considere o conjunto de todas as funções lineares, ou seja, $\{f(x) = mx + b \mid m, b \in \mathbb{R}\}$. Esse conjunto forma um subespaço vetorial de V. Novamente, você pode verificar as propriedades para confirmar.

Se o conjunto dado forma um subespaço vetorial de V, novamente precisamos verificar as três propriedades fundamentais:

- 1. Contém a função nula: A função nula em V é f(x)=0. Esta função é uma função linear, pois pode ser escrita como $f(x)=0\cdot x+0$. Portanto, a função nula está contida no conjunto.
- 2. É fechado sob adição: Se tomarmos duas funções lineares $f_1(x) = m_1 x + b_1$ e $f_2(x) = m_2 x + b_2$, a sua soma será $f_1(x) + f_2(x) = (m_1 + m_2)x + (b_1 + b_2)$, que também é uma função linear. Portanto, o conjunto é fechado sob adição.
- 3. É fechado sob multiplicação por escalar: Para qualquer escalar c e função linear f(x) = mx + b, a multiplicação por escalar cf(x) = c(mx + b) = (cm)x + (cb) também é uma função linear. Assim, o conjunto é fechado sob multiplicação por escalar.

Portanto, o conjunto de todas as funções lineares f(x)=mx+b com $m,b\in\mathbb{R}$ forma um subespaço vetorial de V.

Exemplo 06: No espaço das matrizes reais 2×2 , $M_{(2,2)}$, considere o conjunto de todas as matrizes simétricas, ou seja, aquelas em que $A = A^T$. Esse conjunto forma um subespaço vetorial de $M_{(2,2)}$. Você pode demonstrar isso verificando as propriedades de um subespaço vetorial

Para tal, é imperativo investigar as três propriedades basilares:

- 1. **Presença da Matriz Nula:** A matriz nula em $M_{(2,2)}$ é a matriz $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Nota-se que esta matriz é simétrica, posto que $A = A^T$. Portanto, a matriz nula está asseguradamente contida no conjunto em questão.
- 2. **Fechamento sob Adição:** Considerando duas matrizes simétricas A e B, a sua soma A+B é também simétrica, visto que $(A+B)^T=A^T+B^T=A+B$. Logo, o conjunto demonstra ser fechado sob adição.
- 3. **Fechamento sob Multiplicação por Escalar:** Para qualquer escalar c e matriz simétrica A, a multiplicação por escalar cA é igualmente simétrica, haja vista que $(cA)^T = cA^T = cA$. Deste modo, o conjunto revela-se fechado sob multiplicação por escalar.

Assim sendo, constata-se que o conjunto de todas as matrizes simétricas configura-se como um subespaço vetorial de $M_{(2,2)}$.

2.2 Combinação Linear

Dentro de um espaço vetorial, conforme demonstrado que podemos ter subconjuntos de espaços vetoriais, é possível a obtenção de novos vetores a partir de vetores dados (BOLDRINI et al., 1986).

Definição 03: Sejam V um espaço vetorial \mathbb{R} , $v_1, v_2, \ldots, v_n \in V$ e $a_1, \ldots, a_n \in \mathbb{R}$. Então, o vetor $v = a_1v_1 + a_2v_2 + \ldots + a_nv_n$ é um elemento de V podendo ser chamado combinação linear de v_1, \ldots, v_n .

Se
$$V\subset W$$
, podemos adotar a notação $W=[v_1,\ldots,v_n]$, onde expandindo-o
$$W=[v_1,\ldots,v_n]=\{v\in V; v=a_1v_1+\ldots+a_nv_n, a_i\in\mathbb{R}, 1\leqslant i\leqslant n\}$$

Exemplo 07: Presuma um vetor $V = \mathbb{R}^3, v \in V, v \neq 0$. Se imaginarmos sua reta que contém o vetor v, onde, $[v] = av : a \in \mathbb{R}$

Figura 3 – Combinação linear de Vetores (BOLDRINI et al., 1986), pg. 113.

Exemplo 08: Se obtemos $v_1, v_2 \in \mathbb{R}^3$ e $v_3 \in [v_1, v_2]$, então $[v_1, v_2, v_3] = [v_1, v_2]$, então v_3 é um combinação linear de v_1 e v_2 .

Figura 4 – Combinação de três vetores lineares (BOLDRINI et al., 1986), pg. 113.

Exemplo 09: Consideremos o espaço vetorial \mathbb{R}^3 e os vetores $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ e $\mathbf{w} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$. Sejam também os escalares a=3 e b=-1. Então temos, os seguintes elementos.

Vetor	Componentes	Escalar
\mathbf{v}	2, 3, 1	3
\mathbf{W}	1, -1, 2	-1

Tabela 1 – Vetores e escalares utilizados na combinação linear

Definimos a combinação linear dos vetores v e w como:

$$a\mathbf{v} + b\mathbf{w} = 3 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

Aplicando as operações, obtemos:

$$a\mathbf{v} + b\mathbf{w} = \begin{pmatrix} 6\\9\\3 \end{pmatrix} + \begin{pmatrix} -1\\1\\-2 \end{pmatrix} = \begin{pmatrix} 6-1\\9+1\\3-2 \end{pmatrix} = \begin{pmatrix} 5\\10\\1 \end{pmatrix}.$$

Portanto, a combinação linear dos vetores ${\bf v}$ e ${\bf w}$ com os coeficientes a=3 e b=-1 é o vetor

$$\begin{pmatrix} 5 \\ 10 \\ 1 \end{pmatrix}$$

2.3 Dependência e Independência Linear

Dado a combinação linear, devemos saber, a priori, se algum desses vetores não é combinação linear dos outros e assim por diante. Para isto precisamos saber sua dependência e independência linear.

Definição 03: Sejam V um espaço vetorial e $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{V}$. Dizemos que o conjunto $\mathbf{v}_1, \dots, \mathbf{v}_n$ é linearmente independente (LI), ou que os vetores $\mathbf{v}_1, \dots, \mathbf{v}_n$ são LI, se a equação

$$a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n = 0$$

implica que $a_1 = a_2 = \ldots = a_n = 0$. No caso em que exista algum $a_i \neq 0$ dizemos que v_1, \ldots, v_n é linearmente dependente (**LD**), ou que os vetores $\mathbf{v}_1, \ldots, \mathbf{v}_n$ são **LD**.

Teorema 02: Uma combinação linear é **LD** se, e somente se um destes vetores for uma combinação linear dos outros.

$$\{\mathbf{v}_1,\ldots,\mathbf{v}_n\} = \mathbf{L}\mathbf{D} \iff \exists i \mid \sum_{i\neq j} c_i \mathbf{v}_i$$

Demonstração: Sejam $\mathbf{v}_1, \dots, \mathbf{v}_n$ **LD** e $a_1\mathbf{v}_1 + \dots + a_j\mathbf{v}_j + \dots + a_n\mathbf{v}_n = 0$

Um dos coeficientes deve ser diferente de zero. Suponhamos que seja $a_j \neq 0$. Então

$$\mathbf{v}_j = -\frac{1}{a_j}(a_1\mathbf{v}_1 + \ldots + a_{j-1}\mathbf{v}_{j-1} + +a_{j+1}\mathbf{v}_{j+1} + \ldots + a_n\mathbf{v})_{\mathbf{n}}$$
e portanto $\mathbf{v}_j = -\frac{a_1}{a_j}\mathbf{v}_1 + \ldots - \frac{a_n}{a_j}\mathbf{v}_n$

Logo, v_i é uma combinação linear dos outros vetores.

Exemplo 10: Sejam $V = \mathbb{R}^3$ e $v_1, v_2 \in V$, $\{v_1, v_2\}$ é $LD \iff v_1$ e v_2 estiverem na mesma reta, que passa pela origem. $(v_1 = \lambda v_2)$.

Figura 5 – Vetores linearmente dependentes (BOLDRINI et al., 1986), pg. 115.

2.4 Base

Seja V um espaço vetorial. Uma base para V é um conjunto finito $B = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ de elementos de V, tal que B é Linearmente independente e gera o espaço vetorial V, ou seja, qualquer elemento de V pode ser escrito como combinação linear dos elementos de B. O subespaço gerado por B coincide com um subespaço H de um espaço vetorial V, então

$$\mathbf{H} = Span\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$

A definição de base se aplica ao caso em $\mathbf{H} = \mathbf{V}$, porque todo espaço vetorial é subespaço dele mesmo. Assim, uma base de \mathbf{V} é um conjunto linearmente independente que gera \mathbf{V} (LAY, 1999). Então se tivermos uma tripla ordenada linearmente independente $\mathbf{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ será uma base de \mathbf{V}^3 .

Figura 6 – Base de um vetor em \mathbb{R}^3 (CAMARGO; BOULOS, 2005), pg. 52.

Para analisar as propriedades da base de um espaço vetorial de forma generalizada, consideremos desta forma.

Teorema 3: Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \mid \mathbf{v} \neq 0$, estes que geram um espaço vetorial \mathbf{V} . Então, dentre este vetores podemos extrair uma base de \mathbf{V} .

Se $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são **LI**, então eles cumprem as condições para uma base, e não temos mais nada a fazer. Se $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são **LD**, então existe uma combinação linear deles, com algum coeficiente não zero, obtendo o vetor nulo

$$\mathbf{x}_1\mathbf{v}_1 + \mathbf{x}_2\mathbf{v}_2 + \ldots + \mathbf{x}_n\mathbf{v}_n = 0$$

Se $\mathbf{x}_n \neq 0$. Então é possível escrever

$$\mathbf{v}_n = \frac{-\mathbf{x}_1}{\mathbf{x}_n} \mathbf{v}_1 + \frac{-\mathbf{x}_2}{\mathbf{x}_n} \mathbf{v}_2 + \ldots + \frac{-\mathbf{x}_{n-1}}{\mathbf{x}_n} \mathbf{v}_{n-1}$$

ora, \mathbf{v}_n é uma combinação linear de $\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}$ e, portanto, $\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}$ geram \mathbf{V} . Se $\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}$ for \mathbf{LD} , então existe uma combinação linear deles que dará o vetor nulo e com algum coeficiente $\neq 0$, portanto, é possível extrair o vetor que corresponde a este coeficiente. Se continuarmos, com as iterações, após uma quantidade n de passos, obteremos um subconjunto de $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ formado por $r(r\leqslant n)$ vetores $\mathbf{LI}\ \mathbf{v}_{i1},\mathbf{v}_{i2},\ldots,\mathbf{v}_{ir}$, que ainda geram \mathbf{V} , por fim, formará uma base.

2.5 Dimensão

A dimensão de um espaço vetorial V é o número de elementos de uma base para V, que denotamos por $\dim(V)$. Caso $V = \{e\}$, o conjunto vazio é uma base para V e $\dim(V) = 0$. Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos.

Teorema 4: Seja V um espaço vetorial e $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ um conjunto de elementos que geram V. Então, dentre esses elementos podemos extrair uma base para V.

Teorema 5: Seja V um espaço vetorial gerado por um conjunto finito de n elementos $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. Então, qualquer conjunto linearmente independente em V possui no máximo n elementos.

Teorema 6: Qualquer base de um espaço vetorial tem sempre o mesmo número (finito) de elementos.

Teorema 7 (Completamento): Qualquer conjunto de elementos **LI** de um espaço vetorial **V** de dimensão finita pode ser completado até formar uma base para **V**.

Teorema 8: Seja V um espaço vetorial e U e W subespaços vetoriais de V, então:

$$\dim(\mathbf{U} + \mathbf{W}) = \dim(\mathbf{U} + \dim(\mathbf{W}) - \dim(\mathbf{U} \cap \mathbf{W})$$

Teorema 9: Seja V um espaço vetorial e $\beta = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ uma base ordenada para V, isto é, os elementos estão ordenados na ordem em que aparecem. Então, todo elemento de V pode ser escrito de maneira única como combinação linear de $\mathbf{u}_1, \dots, \mathbf{u}_n$.

3 Transformações Lineares

Neste capítulo, iremos tratar sobre um tipo especial de função ou aplicação, onde, segundo (STEINBRUCH; WINTERLE, 1987), o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto a variável independente como a variável dependente são vetores, razão pela qual essas funções são chamadas vetoriais.

Nosso estudo das funções vetoriais lineares em questão, será focado, nas transformações lineares.

Definição 04: Sejam V e W dois espaços vetoriais. Uma transformação linear (aplicação linear) é uma função de V em W, $F:V \to W$, que satisfaz as seguintes condições:

- 1. Para quaisquer \mathbf{u} e \mathbf{v} em \mathbf{V} , $\mathbf{F}(\mathbf{u} + \mathbf{v}) = \mathbf{F}(u) + \mathbf{F}(v)$. Homogeneidade
- 2. Para quaisquer $k \in \mathbb{R}$ e $\mathbf{v} \in \mathbf{V}$, $F(k\mathbf{v}) = k\mathbf{F}(\mathbf{v})$. Aditividade

No caso especial em que V = W, a transformação linear é denominada **operador linear** do espaço vetorial V (ANTON, 2010).

Válido em:
$$\forall \mathbf{v}, \mathbf{v} \in \mathbf{V}$$
 e $\forall k \in \mathbb{R}$.

Trataremos F como T por convenção daqui em diante. Para se dizer que T é uma transformação linear do espaço vetorial V no espaço vetorial W, será denotado por $T:V\longrightarrow W$, onde T é a função, cada vetor $v\in V$ tem uma só imagem $w\in W$, indicado por w=T(v).

Tomemos por dois conjuntos de vetores, $V = \mathbb{R}^2$ e $W = \mathbb{R}^3$.

Uma transformação de $\mathbf{T}:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ associa vetores $\mathbf{v}=(x,y)\in\mathbb{R}^2$ com vetores $\mathbf{w}=(x,y,z)\in\mathbb{R}^3$

Exemplo 11: Declarado esta transformação linear $\mathbf{T}(x,y)=(x,y,x+y)$. Iremos selecionar alguns vetores em \mathbb{R}^2 e calcular suas imagens sob a transformação \mathbf{T} . Por exemplo, os vetores (1,0) e (0,1). Para (1,0), temos:

$$\mathbf{T}(1,0) = (1,0,1+0) = (1,0,1)$$

e para (0, 1), temos:

$$\mathbf{T}(0,1) = (0,1,0+1) = (0,1,1).$$

Segue a imagem em \mathbb{R}^3 :

Uma função $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ com $T = \{(x, y, x + y)\}$

Exemplo 12: Se tomarmos um vetor arbitrário e fazemos uma transformação linear idêntica, ou seja, $1\alpha = \alpha$, é uma transformação linear de V em V. A transformação é definida por $0\alpha = 0$, é também uma transformação linear de V em V (HOFFMAN; KUNZE, 1979).

De acordo com o exemplo acima, percebe-se, que será uma função onde o gráfico passa a reta pela origem se supormos uma função afim, \mathbb{R}^1 em \mathbb{R}^1 . Uma transformação linear mantém combinações lineares $W = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ são vetores que pertencem a \mathbf{V} e possui seus escalares c_1, \dots, c_n , então:

$$\mathbf{T}(c_1\mathbf{v}_1,\ldots,c_n\mathbf{v}_n) = \mathbf{T}(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1(\mathbf{T}\mathbf{v}_1) + c_2(\mathbf{T}\mathbf{v}_2)$$

Exemplo 13: Tomemos um caso que desejamos dobrar nosso espaço vetorial, dado um vetor $\mathbf{V}=(2,2); \mathbf{V}\in\mathbb{R}^2$, a transformação linear será dada por, $\mathbf{T}(x,y)=(2x,2y)\in\mathbb{R}^2$. Nosso domínio e contradomínio está em \mathbb{R}^2 , portanto o resultado será por $\mathbf{W}=(2\times 2,2\times 2)$ \therefore $\mathbf{W}=(4,4)$

Figura 7 – Transformação linear dobro de um vetor.

Para uma matriz de transformação linear T de V em si mesma, existe uma matriz única A de dimensão $n \times n$ que representa T. Essa matriz é definida pela seguinte propriedade:

$$T(v = Av)$$

para todo vetor v em V. A matriz A é chamada de matriz de transformação de T.

Consideremos agora no segmento da transformação linear e no campo da geometria o uso de operações como rotações, reflexões e projeções. Tomemos o espaço vetorial bidimensional \mathbb{R}^2 com base canônica $\mathbf{e}_1=(1,0)$ e $\mathbf{e}_2=(0,1)$. A rotação de 90 graus no sentido anti-horário pode ser representada pela seguinte matriz de transformação:

$$\mathbf{R} = [[0, 1], [-1, 0]]$$

A matriz R chamada de matriz de rotação, possui algumas propriedades:

1. Ortogonalidade: A matriz $\mathbf R$ é ortogonal, ou seja sua transporta é inversa:

$$\mathbf{R}^T = \mathbf{R}^{-1}$$

2. **Determinante:** O determinante da matriz \mathbf{R} é igual a -1.

$$\det(\mathbf{R}) = -1$$

Ao rotacionar um vetor $\mathbf{v}=(x,y)$ em 90 graus no sentido anti-horário, basta aplicar a matriz de rotação em \mathbf{v} .

$$\mathbf{v}' = \mathbf{R} \times \mathbf{v} = [[-1, 0], [0, -1]] \times [x, y] = [y, -x]$$

No caso em questão, o operador de rotação de um angulo qualquer como θ em torno e origem em \mathbb{R}^2 , tratando-se o operador $\mathbf{R}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, resulta em $\mathbf{R}(u+v) = \mathbf{R}(u) + \mathbf{R}(v)$.

Figura 8 – Transformada de rotação de um vetor (NOGUEIRA, 2013).

3.1 Núcleo de uma Transformação Linear

Em transformações lineares. O núcleo, também chamado de espaço nulo de uma transformação linear \mathbf{T} , denotado por $\mathbf{N}(\mathbf{T})$, é o conjunto de todos os vetores no domínio de \mathbf{T} que são mapeados para o vetor nulo. Portanto, representa o conjunto de soluções para a equação homogênea $\mathbf{T}(x)=0$. O núcleo é definido como:

$$\mathbf{N}(\mathbf{T}) = \{ x \in \mathbf{U} \mid \mathbf{T}(x) = 0 \}$$

onde U representa o domínio de T.

Para $\mathbf{N}(\mathbf{T}) = \{\mathbf{v} \in \frac{\mathbf{V}}{\mathbf{T}(\mathbf{v})} = 0\}$, segue o diagrama:

Figura 9 – Diagrama do núcleo de uma transformação linear (STEINBRUCH; WINTERLE, 1987).

então,
$$N(T) \subset V$$
 e $N(T) \neq \emptyset$, pois $0 \in N(T)$, se $T(0) = 0$.

De acordo com (LANG, 2003), que, enfatizou a importância do núcleo na compreensão da injetividade de uma transformação linear, ou seja, a capacidade de preservar a identidade dos vetores. O núcleo de uma transformação linear possui duas propriedades, que regem:

- 1. O núcleo de uma transformação linear $T: V \longrightarrow W$ é um subespaço vetorial de V.
- 2. Uma transformação linear $\mathbf{T}: \mathbf{V} \longrightarrow \mathbf{W}$ é injetora se, e somente se, $\mathbf{N}(\mathbf{T}) = \{0\}$.

Se $\mathbf{v})_1$ e $\mathbf{v})_2$ pertencem ao núcleo $\mathbf{N}(\mathbf{T})$ e k um número real qualquer. Então, $\mathbf{T}(\mathbf{v}_1)=0$ e $\mathbf{T}(\mathbf{v}_2)=0$. Logo:

$$\mathbf{T}(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{T}(\mathbf{v}_1) + \mathbf{T}(\mathbf{v}_2) = 0 + 0 = 0$$

portanto, $\mathbf{v}_1 + \mathbf{v}_2 \in \mathbf{N}(\mathbf{T})$.

Exemplo 14: Dado $\mathbf{T}: \mathbb{R}^2 \longrightarrow \mathbb{R} \mid (x,y) \to x+y$, o núcleo, que iremos chamar, neste caso, $\ker \mathbf{T} \in \ker \mathbf{T} = \{(x,y) \in \mathbb{R}^2; x+y=0\}$, onde a reta y=-x $\in \ker \mathbf{T} \in \ker \mathbf{T} = \{(x,-x); x \in \mathbb{R}\} = \{x(1,-1); x \in \mathbb{R}\} = [(1,-1)]$. A imagem da transformação, ou seja, $Im\mathbf{T} = \mathbb{R}$, todavia, um vetor $\mathbf{w} \in \mathbb{R}$, $\mathbf{w} = \mathbf{T}(\mathbf{w},0)$.

Figura 10 – Imagem de um núcleo de transformação linear (BOLDRINI et al., 1986), pg. 152.

Percebe-se que a imagem de uma transformação é $\mathbf{T}: \mathbf{V} \longrightarrow \mathbf{W}$ é um subespaço de \mathbf{W} , pois, se tomarmos dois vetores, $\mathbf{w}_1 + \mathbf{w}_2 \in Im\mathbf{T}$ e $\alpha \mathbf{w}_1 \in Im\mathbf{T}$. Existem vetores \mathbf{v} e $\mathbf{u} \in \mathbf{V} \mid \mathbf{T}(\mathbf{v}) = \mathbf{w}_1 + \mathbf{w}_2$ e $\mathbf{T}(\mathbf{u}) = \alpha \mathbf{w}_1$.

Se $\mathbf{w}_1, \mathbf{w}_2 \in Im\mathbf{T}$, existem vetores $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V} \mid \mathbf{T}(\mathbf{v}_1) = \mathbf{w}_1 \in \mathbf{T}(\mathbf{v}_2) = \mathbf{w}_2$. Tendo $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 \in \mathbf{u} = \alpha \mathbf{v}_1$, logo:

$$T(v) = T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2$$

e $\mathbf{T}(\mathbf{u}) = \mathbf{T}(\alpha \mathbf{v}_1) = \alpha \mathbf{T}(\mathbf{v}_1) = \alpha \mathbf{w}_1$, portanto, $Im\mathbf{T}$ é um subespaço vetorial de \mathbf{W} .

3.2 Isomorfismo

Um conceito intrigante surge com o isomorfismo. Uma transformação linear $\mathbf{T}:\mathbf{U}\longrightarrow \mathbf{V}$, entre espaços vetoriais \mathbf{U} e \mathbf{V} , que é bijetora. Um isomorfismo só é válido se atender a duas condições cruciais:

- 1. **Injetividade:** T é injetora, o que significa que mapeia vetores distintos do domínio para vetores distintos no contradomínio. Em outras palavras, T preserva a identidade.
- 2. **Sobrejetividade:** T é sobrejetora, mapeando todo vetor em V a partir de um vetor em U. Isso significa que a imagem de T abrange todo o espaço V.

Figura 11 – Diagrama do isomorfismo e sua imagem (ANTON, 2010), pg. 445.

Se \mathbf{T} satisfaz ambas as condições, podemos afirmar que ela estabelece uma correspondência biunívoca entre \mathbf{U} e \mathbf{V} . Essa relação especial permite que representamos cada vetor em \mathbf{V} por um único vetor em \mathbf{U} , e vice-versa. É notável também ressaltar, que, todo espaço vetorial \mathbf{V} de dimensão n é isomorfo a \mathbb{R}^n , portanto dois espaços vetoriais de dimensão finita são isomorfos se tiverem a mesma dimensão.

O núcleo de uma transformação e seu isomorfismo tem uma conexão que é o Teorema do Núcleo e da Imagem. Este teorema estabelece uma relação crucial entre a dimensão do núcleo, a dimensão da imagem e a dimensão do domínio de uma transformação linear **T**:

$$\dim(\mathbf{N}(\mathbf{T})) + \dim(Im(\mathbf{T})) = \dim(\mathbf{U})$$

onde $Im(\mathbf{T})$ representa a imagem de $Im(\mathbf{T})$, o conjunto de todos os vetores em \mathbf{V} que são alcançados por \mathbf{T} .

O Teorema do Núcleo e da Imagem oferece ferramentas valiosas para determinar se uma transformação linear é um isomorfismo. Se a dimensão do núcleo for zero e a dimensão da imagem for igual à dimensão do domínio, podemos concluir que T é um isomorfismo.

Teorema 10: Sejam E, F espaços vetoriais de dimensão finita. Para toda transformação linear $\mathbf{T}: E \longrightarrow F$ tem-se que $\dim E = \dim \mathbf{N}(\mathbf{T}) + \dim Im(\mathbf{T})$.

Se $\{\mathbf{T}(\mathbf{u}_1), \dots, \mathbf{T}(\mathbf{u}_p)\}$ é uma base de $Im(\mathbf{T})$ e $\{\mathbf{v}_1, \dots, \mathbf{v}_q\}$ é uma base de $\mathbf{N}(\mathbf{T})$ então $\{\mathbf{u}_1, \dots, \mathbf{u}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$ é uma base de E. Logo, se tivemos

$$\alpha_1 \mathbf{u}_1 + \ldots + \alpha_p + \beta \mathbf{v}_1 + \ldots + \beta \mathbf{u}_q = 0,$$

então, com a transformação em ambos os membros da igualdade, obtemos

$$\alpha_1 \mathbf{T}(\mathbf{u}_1) + \ldots + \alpha_p \mathbf{T}(\mathbf{u}_p) = 0.$$

Como $\mathbf{T}(\mathbf{u}_1),\ldots,\mathbf{T}(\mathbf{u}_p)$ são \mathbf{LI} , resultando em $\alpha_1=\ldots=\alpha_p=0$. Portanto se reduz a igualdade

$$\beta_1 \mathbf{v}_1 + \ldots + \beta_q \mathbf{v}_q = 0.$$

Da mesma forma $\mathbf{v}_1, \dots, \mathbf{v}_q$ são **LI**, concluí-se que $\beta_1 = \dots = \beta_q = 0$. Então ambos os vetores \mathbf{u} e \mathbf{v} são **LI**.

Agora, se considerarmos um vetor arbitrário $\mathbf{w} \in E$. Como $\mathbf{T}(\mathbf{w}) \in Im(\mathbf{T})$, definimos

$$\mathbf{T}(\mathbf{w}) = \alpha_1 \mathbf{T}(\mathbf{u}_1) + \ldots + \alpha_p \mathbf{T}(\mathbf{u}_p),$$

pois $\{\mathbf{T}(\mathbf{u}_1), \dots, \mathbf{T}(\mathbf{u}_p)\}$ é uma base da imagem de \mathbf{T} . Manipulando a expressão temos $\mathbf{T}[\mathbf{w} - (\alpha_1 \mathbf{u}_1 + \dots + \alpha_p \mathbf{u}_p)] = 0.$

Dessa forma, o vetor $\mathbf{w} - (\alpha_1 \mathbf{u}_1 + \ldots + \alpha_p \mathbf{u}_p)$ pertence ao núcleo de \mathbf{T} , podendo ser expresso como uma combinação linear dos elementos da base $\{\mathbf{v}_1, \ldots, \mathbf{v}_q\}$. Temos então

$$(\alpha_1 \mathbf{u}_1 + \ldots + \alpha_p \mathbf{u}_p) = \beta_1 \mathbf{v}_1 + \ldots + \beta_q \mathbf{v}_q,$$

ou seja, $\mathbf{w} = \alpha_1 \mathbf{u}_1 + \ldots + \alpha_p \mathbf{u}_p + \beta_1 \mathbf{v}_1 + \ldots + \beta_q \mathbf{v}_q$. O que prova que os vetores $\{\mathbf{u}_1, \ldots, \mathbf{u}_p, \mathbf{v}_1, \ldots, \mathbf{v}_q\}$ geram E e portanto constituem uma base.

4 Aplicações de Transformações Lineares

As TL têm contribuições significativas para o campo da AL. (STRANG, 2010), renomado matemático e professor do MIT - Massachusetts Institute of Technology, aborda, por exemplo, o processamento de sinais e imagens para compressão, filtragem, reconstrução e análise de dados, a análise de redes e sistemas dinâmicos da engenharia elétrica e ciência da computação, a geometria e a computação gráfica para manipular objetos em espaços tridimensionais, videogames e modelagem em três dimensões, além de cripto segurança e, mais recentemente, análise de dados em decisões gerenciais e aprendizagem de máquina.

A seguir, baseando em um estudo desenvolvido na Universidade Federal de Alagoas (AMORIM, 2017), apresentamos algumas aplicações das TL na área de engenharia.

4.1 Posicionamento de Um Braço Robótico

Para executar atividades repetitivas, perigosas e precisas, um braço robótico, composto por elos e juntas conforme figura 12 é dispositivo dotado de articulações e pode ser programado utilizando aplicações de AL, considerando as variações de posição no plano e no espaço.

Figura 12 – Esquema de articulações (AMORIM, 2017).

Para representar a aplicação, considere que a figura 13a contém um braço robótico com

dois graus de liberdade e seus comprimentos são indicados por d_1, d_2ed_3 dos elos, e os ângulos da posição inicial do braço com base no ponto \mathbf{P} , nas coordenadas iniciais (x_0, y_0) . Na figura 13b, está demonstrada como seria o efeito desse movimento, com o ponto \mathbf{P} na coordenada (x_1, y_1) , utilizando as TL.

Figura 13 – Posição inicial e final (AMORIM, 2017).

A Figura 14 apresenta o movimento de rotação e translação, e a figura 15 mostra o movimento de translação e rotação, observando que o resultado é diferente de acordo com a ordem aplicada.

Figura 14 – Rotação e translação (AMORIM, 2017).

Figura 15 – Translação e rotação (AMORIM, 2017).

Utilizando as TL, consideramos que o sistema adotado como global foi o do antebraço. Denominemos este sistema por $\{A^0\}$. Onde e_1 e e_2 são os vetores da base canônica do \mathbb{R}^2 , com

origem no ponto O (Figura 13b) e d_1 o comprimento do braço e de θ_1 o ângulo que o antebraço faz com o eixo determinado por \mathbf{e}_1 . Seja $\mathbf{A}_1 = \{f_1, f_2\}$ o sistema local obtido da rotação do sistema \mathbf{A}_0 pelo ângulo θ_1 seguida da translação na direção de \mathbf{e}_1 por um comprimento d_1 .

A partir da transformação de rotação, a matriz é representada por

$$\mathbf{R}_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

e sua respectiva matriz de translação na direção de d_1 e₁ é dada por

$$\mathbf{T}_1 = \begin{bmatrix} 1 & 0 & d_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Desta forma, a composição de T_1 com R_1 fica

$$\mathbf{T}_{1} \cdot \mathbf{R}_{1} = \begin{bmatrix} 1 & 0 & d_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & d_{1} \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Considerando que d_2 é o comprimento do antebraço e θ_2 o ângulo que não faz com o eixo determinado for f_1 , o sistema local $\mathbf{A}^2 = \{g_1, g_2\}$ é obtido da rotação do sistema \mathbf{A}^1 pelo ângulo θ_2 seguida da translação, na direção de f_1 , por um comprimento d_2 , representado pela matriz de rotação

$$\mathbf{R}_2 = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0\\ \sin \theta_2 & \cos \theta_2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

e pela matriz de translação

$$\mathbf{T}_2 = \begin{bmatrix} 1 & 0 & d_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A composição $T_2 \cdot R_2$ é representada por

$$\mathbf{T}_2 \cdot \mathbf{R}_2 = \begin{bmatrix} 1 & 0 & d_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & 0 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & d_2 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Então houve duas transformações sucessivas partindo do referencial global até o sistema local da mão. Agora partindo uma transformação que leva o referencial \mathbf{A}^0 ao referencial $\{\mathbf{A}^2\}$ como mostra a figura 16 abaixo.

Figura 16 – Transformação do referencial A^0 para o referencial $\{A^2\}$ (AMORIM, 2017).

Para levar A^0 até A^2 é necessário rotacionar (conforme demonstrado nos capítulos anteriores) e depois transladar, nessa ordem, por uma matriz do tipo

$$\mathbf{T} \cdot \mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta & d_1 \\ \sin \theta & \cos \theta & d_2 \\ 0 & 0 & 1 \end{bmatrix}$$

Nessa matriz, o ângulo θ que o referencial ${\bf A}^0$ deve ser rotacionado para ficar paralelo ao referencial ${\bf A}^2$ é $\theta_1+\theta_2$. Além disso, note que as coordenadas do vetor translação $t=(t_1,t_2)$ para a transformação ${\bf T}\cdot{\bf R}$ são

$$t_1 = d_1 + d_2 \cos \theta_1$$
$$t_2 = d_2 \cos \theta_1$$

Então, a matriz de transformação do referencial ${\bf A}^0$ para o referencial ${\bf A}^2$ pode ser reescrita como

$$\mathbf{T} \cdot \mathbf{R} = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) & d_1 + d_2 \cos \theta_1 \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) & d_2 \sin \theta_1 \\ 0 & 0 & 1 \end{bmatrix}$$

fazendo manipulações algébricas e reduzindo a matriz em um produto temos

$$\mathbf{T} \cdot \mathbf{R} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & d_1 \\ \sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & d_2 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbb{T}_1 \cdot \mathbf{R}_1 \bullet \mathbb{T}_2 \cdot \mathbf{R}_2$$

Observe a ordem que este produto deve ser realizado para obtermos a matriz final. Considere agora o referencial local A^3 , obtido ao transladarmos o referencial A^2 para o ponto P sem girá-lo. O ponto P está localizado no sistema local A^2 com coordenadas $(d_3,0)$. É necessário, agora, apenas transladar de A^2 para P por meio da seguinte matriz (o ângulo de rotação é nulo)

$$\mathbf{T}_3 = \begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

então, a matriz de transformação geral, M, é dada por

$$\mathbf{M} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & d_1 \\ \sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & d_2 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Para encontrarmos as coordenadas do ponto P no referencial \mathbf{A}^0 é necessário aplicar a matriz \mathbf{M} ao vetor (0,0,1), origem de \mathbf{A}^0 . Então o ponto em análise pode ser expresso por

$$P = \mathbf{M} \cdot (0, 0, 1)$$

ou seja,

$$P = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & d_1 \\ \sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & d_2 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & d_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

realizando esse produto chegamos a

$$P = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) & d_1 + d_2 \cos \theta_1 + \cos(\theta_1 + \theta_2) d_3 \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) & d_2 \sin \theta_1 + \sin(\theta_1 + \theta_2) d_3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Exemplo 15: Seja a posição inicial do braço robótico dada pela figura 17, onde $d_1 = 20cm$, $d_2 = 30cm$, $d_3 = 14cm$, $\theta_1 = 60^{\circ}$ e $\theta_2 = -90^{\circ}$.

a) Determinar as coordenadas do ponto P para esta configuração em relação ao sistema global e b) para $\theta_1 = 45^{\circ}$ e $\theta_2 = 45^{\circ}$.

Figura 17 – Posição inicial do braço robótico $\{A^2\}$ (AMORIM, 2017).

a) O ponto P é obtido diretamente pela inserção direta dos valores fornecidos

$$P = \begin{bmatrix} \cos(-30) & -\sin(-30) & 20 + 30\cos(60) + \cos(-30)14 \\ \sin(-30) & \cos(-30) & 30\sin(60) + \sin(-30)14 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 47, 12 \\ 19 \\ 1 \end{bmatrix}$$

b) O ponto P é obtido diretamente pela inserção direta dos valores fornecidos

$$P = \begin{bmatrix} \cos(90) & -\sin(90) & 20 + 30\cos(45) + \cos(90)14 \\ \sin(90) & \cos(90) & 30\sin(45) + \sin(90)14 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 41, 2 \\ 3, 2 \\ 1 \end{bmatrix}$$

4.2 Aplicação das Transformações Lineares na Educação

É previsto na Base Nacional Comum Curricular (BRASIL, 2018) que estudantes do Ensino Médio adquiram as competências de:

 Utilizar estratégias, conceitos e procedimentos matemáticos para interpretar situações em diversos contextos, sejam atividades cotidianas, sejam fatos das Ciências da Natureza e Humanas, das questões socioeconômicas ou tecnológicas, divulgados por diferentes meios, de modo a contribuir para uma formação geral.

- Propor ou participar de ações para investigar desafios do mundo contemporâneo e tomar decisões éticas e socialmente responsáveis, com base na análise de problemas sociais, como os voltados a situações de saúde, sustentabilidade, das implicações da tecnologia no mundo do trabalho, entre outros, mobilizando e articulando conceitos, procedimentos e linguagens próprios da Matemática.
- Utilizar estratégias, conceitos, definições e procedimentos matemáticos para interpretar, construir modelos e resolver problemas em diversos contextos, analisando a plausibilidade dos resultados e a adequação das soluções propostas, de modo a construir argumentação consistente.
- Compreender e utilizar, com flexibilidade e precisão, diferentes registros de representação matemáticos (algébrico, geométrico, estatístico, computacional etc.), na busca de solução e comunicação de resultados de problemas.
- Investigar e estabelecer conjecturas a respeito de diferentes conceitos e propriedades matemáticas, empregando estratégias e recursos, como observação de padrões, experimentações e diferentes tecnologias, identificando a necessidade, ou não, de uma demonstração cada vez mais formal na validação das referidas conjecturas.

Em específico, a habilidade (EM13MAT301), que requer que a pessoa estudante possa resolver e elaborar problemas do cotidiano, da Matemática e de outras áreas do conhecimento, que envolvem equações lineares simultâneas, usando técnicas algébricas e gráficas, com ou sem apoio de tecnologias digitais.

A partir das bases de AL formadas no Ensino Médio, é esperado que estudantes da área de exatas desenvolvam pensamento matemático de forma avançada em cursos de Engenharia, Física Aplicada, entre outros. Para que o ensino aprendizagem seja sólido, professores devem oportunizar a reflexão dos objetos da disciplina além de definir e exemplificar os conceitos. (MARINS; SAVIOLI, 2016), não sendo apenas uma questão específica brasileira, e sim mundial (PENA S. DE M.; MOURA, 2016).

Com o auxílio do software GeoGebra, é possível experimentar dinâmicas e visualizações da TL (SILVA, 2015), facilitando a compreensão e aplicação dos conceitos apresentados de forma mais dinâmica e efetiva na construção do conhecimento (SILVA; SILVA, 2017).

4.3 Aplicação em Criptografia

A criptografia, modelo de segurança cibernética, nada mais é que um método de armazenar e transmitir dados de um forma que somente às pessoas autorizadas como, por exemplo, os destinatários, possam ler e processar (SILVA, 2009). Então, é um método extremamente eficaz para proteção de ataques cibernéticos em busca de informações sensíveis, dados de clientes, contas bancárias e entre outros.

Com advento e vigência em 2020 a LGPD (Lei Geral de Proteção de Dados Pessoais), se tornou cada vez mais intrínseco o uso de modelos de segurança para a proteção de dados, uma codificação forte para resolver brechas de segurança. Porém, há duas condições para importantes na criptografia de dados:

- 1. Não existe um método de criptografia que não possa ser quebrado.
- 2. O real objetivo da criptografia é fazer com que conseguir acesso à informação, seja tão trabalhoso e leve ao mesmo tempo, que o atacante sinta-se desestimulado e desista.

Usando um operador linear no \mathbb{R}^2 , imaginemos que a mensagem a seguir tenha grande valor de especulação, e que seu remetente e seu destinatário sejam conhecidos:

O texto puro é: C-O-N-V-E-N-I-O-U-N-I-V-I-M-A-U-F-S-C-M-T-M

A	В	C	D	E	F	G	Н	I	J	K	L	M
6	14	-2	7	-8	-6	13	-7	2	-4	-3	3	10
N	O	P	Q	R	S	T	U	V	W	X	Y	Z

Tabela 2 – Tabela de randomização (SILVA, 2009)

A tabela acima é o que chamamos de randomizar, cada letra está relacionada com um número na linha logo abaixo.

Vamos fazer a primeira cifragem:

O algoritmo que usaremos é o Operador Linear do \mathbb{R}^2

$$T(x,y) = (3x - y, 2x + y)$$

Primeiramente, vamos confirmar que T é um Isomorfismo, através de sua matriz associada na base canônica do \mathbb{R}^2 , é inversível, ou seja, se seu determinante é diferente de zero:

$$[T] = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{e} \det[T] = 3 - (-2) = 5$$

realmente, [T] é inversível, logo, T é um Isomorfismo. Tomando de dois em dois números, e fazendo as contas:

,

$$T(-2, 1) = (3(-2) - 1, 2(-2) + 1) = (-7, -3)$$

$$T(15, 9) = (3(15) - 9, 2(15) + 9) = (36, 39)$$

$$T(-8, 15) = (3(-8) - 15, 2(-8) + 15) = (-39, -1)$$

$$T(2, 1) = (3(2) - 1, 2(2) + 1) = (5, 5)$$

$$T(4, 15) = (3(4) - 15, 2(4) + 15) = (-3, 23)$$

$$T(2, 9) = (3(2) - 9, 2(2) + 9) = (-3, 13)$$

$$T(2, 10) = (3(2) - 10, 2(2) + 10) = (-4, 14)$$

$$T(6, 4) = (3(6) - 4, 2(6) + 4) = (14, 16)$$

$$T(-6, 11) = (3(-6) - 11, 2(-6) + 11) = (-29, -1)$$

$$T(-2, 10) = (3(-2) - 10, 2(-2) + 10) = (-16, 6)$$

$$T(0, 10) = (3(0) - 10, 2(0) + 10) = (-10, 10)$$

Aqui fazemos a segunda cifragem:

Este é o texto recebido pelo destinatário. Cabe ao destinatário decifrar, o texto recebido.

São de domínio comum ao remetente e do destinatário, a tabela de randomização que faz parte do algoritmo criptográfico. Neste caso T(x,y)=(3x-y,2x+y) assim o destinatário deverá encontrar o Isomorfismo Inverso de T, aqui usaremos o processo prático via escalonamento de matrizes, para obtermos a inversa de [T] e assim chegarmos a T^{-1} :

$$\begin{pmatrix} 3 & -1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \sim 1/3L_1 \to L_1 \sim \begin{bmatrix} 1 & 1/3 & 1/3 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \sim 1/2L_2 \to L_2 \sim$$

$$\begin{pmatrix} 1 & -1/3 & 1/3 & 0 \\ 1 & 1/2 & 0 & 1/2 \end{pmatrix} \sim L_2 - L_1 \to \sim \begin{pmatrix} 1 & -1/3 & 1/3 & 0 \\ 0 & 5/6 & -1/3 & 1/2 \end{pmatrix} \sim 6/5L_2 \to L_2 \sim$$

$$\begin{pmatrix} 1 & -1/3 & 1/3 & 0 \\ 0 & 1 & -2/5 & 3/5 \end{pmatrix} \sim L_1 + 1/3L_2 \sim \begin{pmatrix} 1 & 0 & 1/5 & 1/5 \\ 0 & 1 & -2/5 & 3/5 \end{pmatrix}$$
então, $[T^{-1}] = 1/5 \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix}$ e assim, $1/5 \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 1/5 \begin{pmatrix} x+y \\ 3y-2x \end{pmatrix}$

$$Logo, T^{-1}(x,y) = (1/5(x+y), 1/5(3y-2x))$$

$$T^{-1}(-7, -3) = (1/5(-7-3), 1/5(3[-3]-2[-7])) = (-2, 1)$$

$$T^{-1}(36, 39) = (1/5(36+39), 1/5(3[39]-2[36])) = (15, 9)$$

$$T^{-1}(-39, -1) = ((1/5(-39-1), 1/5(3[-1]-2[-39])) = (-8, 15)$$

$$T^{-1}(5, 5) = (1/5(5+5), 1/5(3[5]-2[5])) = (2, 1)$$

$$T^{-1}(-3, 23) = (1/5(-3+23), 1/5(3[23] - 2[-3])) = (4, 15)$$

$$T^{-1}(-3, 13) = (1/5(-3+13), 1/5(3[13] - 2[-3])) = (2, 9)$$

$$T^{-1}(-4, 14) = (1/5(-4+14), 1/5(3[14] - 2[-4])) = (2, 10)$$

$$T^{-1}(14, 16) = (1/5(14+16), 1/5(3[16] - 2[14])) = (6, 4)$$

$$T^{-1}(-29, -1) = ((1/5(-29-1), 1/5(3[-1] - 2[-29])) = (-6, 11)$$

$$T^{-1}(-16, 6) = (1/5(-16+6), 1/5(3[6] - 2[-16])) = (-2, 10)$$

$$T^{-1}(-10, 10) = (1/5(-10+10), 1/5(3[10] - 2[-10])) = (0, 10)$$

Novamente, aplicando a tabela de randomização:

A	В	C	D	E	F	G	Н	I	J	K	L	M
6	14	-2	7	-8	-6	13	-7	2	-4	-3	3	10
N	O	P	Q	R	S	T	U	V	W	X	Y	Z

Tabela 3 – Tabela de randomização (SILVA, 2009)

e finalmente, o texto descriptografado:

CONVENIO UNIVIMA UFSC MTM

A transformação linear aplicada, usada como algoritmo, mistura de duas em duas letras a palavra.

4.4 Classificação de Imagens com Redes Neurais

Considere uma rede neural artificial que é treinada para classificar imagens em categorias diferentes, como gatos e cachorros. A rede neural tem uma camada de entrada que recebe as características das imagens, uma camada oculta que processa essas características e uma camada de saída que produz a classificação final.

A camada oculta é composta por neurônios que realizam transformações lineares seguidas de funções de ativação não-lineares. Por exemplo, um neurônio pode ser representado pela seguinte equação:

$$h = Wx + b \tag{4.1}$$

onde W é a matriz de pesos, x é o vetor de entrada e b é o vetor de bias. Essa equação representa a combinação linear dos pesos W com a entrada x e o bias b.

Para demonstrar que essa transformação é linear, podemos aplicar a lei de composição de funções matemáticas:

$$h = Wx + b = W(x+0) + b = Wx + W(0) + b = Wx + b$$
(4.2)

Essa equação demonstra que a transformação é linear, pois a combinação de W com x e b não altera a estrutura linear da equação.

A aplicação de uma função de ativação não-linear sobre h introduz a não-linearidade necessária para a aprendizagem de padrões complexos. Por exemplo, a função de ativação sigmoide pode ser representada pela seguinte equação:

$$\sigma(h) = \frac{1}{1 + e^{-h}} \tag{4.3}$$

Essa função de ativação não-linear permite que a rede neural aprenda a classificar imagens complexas, como imagens de gatos e cachorros.

De acordo com (LECUN; BENGIO; HINTON, 2015), a utilização de transformações lineares em redes neurais tem se mostrado eficaz na resolução de problemas de classificação e regressão em inteligência artificial.

5 Considerações Finais

That's all folks!

Referências

AMORIM, S. R. de. *Quatro aplicações da álgebra linear na engenharia* — Universidade Federal de Alagoas, Delmiro Gouveia - Alagoas, 2017. Citado 5 vezes nas páginas 8, 32, 33, 35 e 37.

ANTON, H. *Elementary Linear Algebra*. John Wiley & Sons, 2010. ISBN 9780470458211. Disponível em: https://books.google.com.br/books?id=YmcQJoFyZ5gC. Citado 3 vezes nas páginas 8, 25 e 30.

BOLDRINI, J. L. et al. *Algebra Linear*. 3. ed. São Paulo: Harbra, 1986. Citado 6 vezes nas páginas 8, 15, 19, 20, 22 e 29.

BRASIL. *Base Nacional Comum Curricular*. Brasília: MEC: Ministério da Educação, 2018. Citado na página 37.

CAMARGO, I. de; BOULOS, P. *Geometria analítica: um tratamento vetorial*. São Paulo: Prentice Hall, 2005. ISBN 9788587918918. Citado 2 vezes nas páginas 8 e 23.

CARVALHO, J. de. *Introdução à álgebra linear*. Instituto de Matemática Pura e Aplicado, 1971. (Monografías de matemática). Disponível em: https://books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.google.com.br/books.g

FIGUEREIDO, L. M. Álgebra linear I. 3. ed. [S.l.: s.n.], 2009. v. 1. ISBN 8589200442. Citado na página 13.

HOFFMAN, K.; KUNZE, R. *Álgebra Linear*. 2. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1979. Citado na página 26.

LANG, S. *Álgebra Linear*. Rio de Janeiro: Ciência Moderna, 2003. ISBN 9788573932539. Citado na página 28.

LAY, D. C. *Álgebra linear e suas aplicações*. 2. ed. Rio de Janeiro: LTC, 1999. ISBN 8521611560. Citado na página 22.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. *Nature*, v. 521, n. 7553, p. 436–444, May 2015. Citado na página 42.

MARINS, A. S.; SAVIOLI, A. M. P. d. D. Pensamento matemático avançado manifestado em tarefas envolvendo transformações lineares. *Ciência e Educação (Bauru)*, Programa de Pós-Graduação em Educação para a Ciência, Universidade Estadual Paulista (UNESP), Faculdade de Ciências, campus de Bauru., v. 22, n. 2, p. 489–504, Apr 2016. ISSN 1516-7313. Disponível em: https://doi.org/10.1590/1516-731320160020013. Citado na página 38.

NOGUEIRA, L. B. *Transformações lineraes no plano e aplicações*. Dissertação (Mestrado) — Universidade Federal de Goiás, Instituo de Matemática e Estatística, 2013. Citado 2 vezes nas páginas 8 e 27.

PENA S. DE M.; MOURA, G. Transformações lineares: Um texto para licenciatura em matemática. 2016. Citado na página 38.

Referências 45

SILVA, E. de Souza da. *Transformações lineares em um curso de Licenciatura em Matemática: uma estratégia didática com uso de tecnologias digitais*. Tese (Doutorado em Educação) — Pontifícia Universidade Católica de São Paulo, São Paulo, 2015. Citado na página 38.

SILVA, E. S.; SILVA, J. do Socorro Costa da. Transformações lineares: Sequencia didática e o uso do geogebra. In: ULBRA. *VII CONGRESSO INTERNACIONAL DE ENSINO DA MATEMÁTICA*. Canoas - Rio Grande do Sul, 2017. Citado 2 vezes nas páginas 13 e 38.

SILVA, L. H. O. da. *Transformações Lineares e Isomorfismos: Um Exemplo em Criptografia* — Universidade Federal de Santa Catarina, Imperatriz - Maranhão, 2009. Citado 3 vezes nas páginas 9, 39 e 41.

STEINBRUCH, A.; WINTERLE, P. *Álgebra Linear*. Pearson Universidades, 1987. ISBN 9780074504123. Disponível em: https://books.google.com.br/books?id=q36CPgAACAAJ. Citado 3 vezes nas páginas 8, 25 e 28.

STRANG, G. *Álgebra linear e suas aplicações*. Cengage Learning, 2010. ISBN 9788522107445. Disponível em: https://books.google.com.br/books?id=T8QGRAAACAAJ. Citado na página 32.

ULHOA, F. C.; LOURENÇO, M. L. *Um Curso de Álgebra Linear*. 2. ed. São Paulo: EDUSP, 2018. Citado na página 15.