Lab Assignment 5: Web Scraping

DS 6001: Practice and Application of Data Science

Instructions

Please answer the following questions as completely as possible using text, code, and the results of code as needed. Format your answers in a Jupyter notebook. To receive full credit, make sure you address every part of the problem, and make sure your document is formatted in a clean and professional way.

For the following problems, you will be scraping http://books.toscrape.com/. This website is a fake book retailer, designed to mimic the design of many retail websites. It exists solely to help students practice web-scraping, so there aren't going to be any ethical concerns with this particular exercise, and there shouldn't be any issues with rate limits or other gates that could prevent web-scraping. Take a moment and look at this website, so that you know what you will be working with.

Your goal is to generate a dataframe with four columns: one for the title, one for the price, one for the star-rating, and one or the book cover JPEG's URL. The dataframe will also 1000 rows, one for each of the 1000 books listed on the 50 pages of this website.

Problem 0

Import the following libraries:

```
import numpy as np
import pandas as pd
import requests
from bs4 import BeautifulSoup as bs
import sys
import json
sys.tracebacklimit = 0 # turn off the error tracebacks
```

Problem 1

Pull the HTML code from http://books.toscrape.com/. Make sure you provide a user agent string. Then parse this HTML code and save the parsed code as a separate Python variable. [3 points]

```
In [26]: url = "http://books.toscrape.com/"
    r = requests.get(url, headers=headers)
    r

Out[26]: <Response [200]>
In [152... books = bs(r.text)
```

Problem 2

7/13/23, 1:08 PM

Extract all 20 of the book titles and save them in a list. [2 points]

```
btitle = books.find_all("article", "product_pod")
In [127...
           # btitle[0].find("h3").find("a", title=True)["title"]
           b20 = [x.find("h3").find("a", title=True)["title"] for x in btitle]
           b20
          ['A Light in the Attic',
Out[127]:
            'Tipping the Velvet',
            'Soumission',
            'Sharp Objects',
            'Sapiens: A Brief History of Humankind',
            'The Requiem Red',
            'The Dirty Little Secrets of Getting Your Dream Job',
            'The Coming Woman: A Novel Based on the Life of the Infamous Feminist, Victoria Wood
            'The Boys in the Boat: Nine Americans and Their Epic Quest for Gold at the 1936 Berl
          in Olympics',
            'The Black Maria',
            'Starving Hearts (Triangular Trade Trilogy, #1)',
            "Shakespeare's Sonnets",
            'Set Me Free',
           "Scott Pilgrim's Precious Little Life (Scott Pilgrim #1)",
            'Rip it Up and Start Again',
            'Our Band Could Be Your Life: Scenes from the American Indie Underground, 1981-199
          1',
            'Olio',
            'Mesaerion: The Best Science Fiction Stories 1800-1849',
            'Libertarianism for Beginners',
            "It's Only the Himalayas"]
```

Problem 3

Extract the price of each of the 20 books and save these prices in a list. (The prices are listed in British pounds, and include the £ symbol. Remove the £ symbols: if you've saved the prices in a list named prices, then the following code should work: prices = [s.replace('Âf', '')] for s in prices].) [2 points]

```
In [80]: bprice = books.find_all("p", "price_color")
    p20 = [x.text.strip() for x in bprice]
    prices = [x.replace('Âf', '') for x in p20]
    prices
```

```
['51.77',
Out[80]:
            '53.74',
            '50.10',
            '47.82',
            '54.23',
            '22.65',
            '33.34',
            '17.93',
            '22.60',
            '52.15',
            '13.99',
            '20.66',
            '17.46',
            '52.29',
            '35.02',
            '57.25',
            '23.88',
            '37.59',
            '51.33',
            '45.17']
```

Problem 4

Extract the star level ratings for the 20 books. [Hint: for tags such as in which the class has a space, the class is actually a list in which the first item in the list is "star-rating" and the second item in the list is "one". It's possible to search on either item in this list.] [3 points]

```
brate = books.find all("article")
In [153...
           brating = [x.find_all("p", "star-rating")[0]['class'][1] for x in brate]
           brating
           ['Three',
Out[153]:
             'One',
             'One',
             'Four',
             'Five',
             'One',
             'Four',
             'Three',
             'Four',
             'One',
             'Two',
             'Four',
             'Five',
             'Five',
             'Five',
             'Three',
             'One',
             'One',
             'Two',
             'Two']
```

Problem 5

Extract the URLs for the JPEG thumbnail images that show the covers of the 20 books. (Maybe we want to mine the images to build models that predict the star level, literally judging books by their covers.) [2 points]

```
bimg = books.find all("article", "product pod")
In [121...
           img = [x.find("img", src=True)["src"] for x in bimg]
           img
           ['media/cache/2c/da/2cdad67c44b002e7ead0cc35693c0e8b.jpg',
Out[121]:
            'media/cache/26/0c/260c6ae16bce31c8f8c95daddd9f4a1c.jpg',
            'media/cache/3e/ef/3eef99c9d9adef34639f510662022830.jpg',
            'media/cache/32/51/3251cf3a3412f53f339e42cac2134093.jpg'
            'media/cache/be/a5/bea5697f2534a2f86a3ef27b5a8c12a6.jpg',
            'media/cache/68/33/68339b4c9bc034267e1da611ab3b34f8.jpg',
            'media/cache/92/27/92274a95b7c251fea59a2b8a78275ab4.jpg'
            'media/cache/3d/54/3d54940e57e662c4dd1f3ff00c78cc64.jpg',
            'media/cache/66/88/66883b91f6804b2323c8369331cb7dd1.jpg',
            'media/cache/58/46/5846057e28022268153beff6d352b06c.jpg',
            'media/cache/be/f4/bef44da28c98f905a3ebec0b87be8530.jpg',
            'media/cache/10/48/1048f63d3b5061cd2f424d20b3f9b666.jpg',
            'media/cache/5b/88/5b88c52633f53cacf162c15f4f823153.jpg',
            'media/cache/94/b1/94b1b8b244bce9677c2f29ccc890d4d2.jpg',
            'media/cache/81/c4/81c4a973364e17d01f217e1188253d5e.jpg',
            'media/cache/54/60/54607fe8945897cdcced0044103b10b6.jpg',
            'media/cache/55/33/553310a7162dfbc2c6d19a84da0df9e1.jpg',
            'media/cache/09/a3/09a3aef48557576e1a85ba7efea8ecb7.jpg',
            'media/cache/0b/bc/0bbcd0a6f4bcd81ccb1049a52736406e.jpg',
            'media/cache/27/a5/27a53d0bb95bdd88288eaf66c9230d7e.jpg']
```

Problem 6

Create a dataframe with one row for each of the 20 books, and the book titles, prices, star ratings, and cover JPEG URLs as the four columns. [2 points]

```
In [156...
data = {"title": b20, "price": prices, "rating": brating , "cover": img}
df6 = pd.DataFrame(data)
df6
```

Out[156]: title price rating cover

	title	price	rating	cover
0	A Light in the Attic	51.77	Three	media/cache/2c/da/2cdad67c44b002e7ead0cc35693c
1	Tipping the Velvet	53.74	One	media/cache/26/0c/260c6ae16bce31c8f8c95daddd9f
2	Soumission	50.10	One	media/cache/3e/ef/3eef99c9d9adef34639f51066202
3	Sharp Objects	47.82	Four	media/cache/32/51/3251cf3a3412f53f339e42cac213
4	Sapiens: A Brief History of Humankind	54.23	Five	media/cache/be/a5/bea5697f2534a2f86a3ef27b5a8c
5	The Requiem Red	22.65	One	media/cache/68/33/68339b4c9bc034267e1da611ab3b
6	The Dirty Little Secrets of Getting Your Dream	33.34	Four	media/cache/92/27/92274a95b7c251fea59a2b8a7827
7	The Coming Woman: A Novel Based on the Life of	17.93	Three	media/cache/3d/54/3d54940e57e662c4dd1f3ff00c78
8	The Boys in the Boat: Nine Americans and Their	22.60	Four	media/cache/66/88/66883b91f6804b2323c8369331cb
9	The Black Maria	52.15	One	media/cache/58/46/5846057e28022268153beff6d352
10	Starving Hearts (Triangular Trade Trilogy, #1)	13.99	Two	media/cache/be/f4/bef44da28c98f905a3ebec0b87be
11	Shakespeare's Sonnets	20.66	Four	media/cache/10/48/1048f63d3b5061cd2f424d20b3f9
12	Set Me Free	17.46	Five	media/cache/5b/88/5b88c52633f53cacf162c15f4f82
13	Scott Pilgrim's Precious Little Life (Scott Pi	52.29	Five	media/cache/94/b1/94b1b8b244bce9677c2f29ccc890
14	Rip it Up and Start Again	35.02	Five	media/cache/81/c4/81c4a973364e17d01f217e118825
15	Our Band Could Be Your Life: Scenes from the A	57.25	Three	media/cache/54/60/54607fe8945897cdcced0044103b
16	Olio	23.88	One	media/cache/55/33/553310a7162dfbc2c6d19a84da0d
17	Mesaerion: The Best Science Fiction Stories 18	37.59	One	media/cache/09/a3/09a3aef48557576e1a85ba7efea8
18	Libertarianism for Beginners	51.33	Two	media/cache/0b/bc/0bbcd0a6f4bcd81ccb1049a52736
19	It's Only the Himalayas	45.17	Two	media/cache/27/a5/27a53d0bb95bdd88288eaf66c923

Problem 7

Create a function that takes the URL of the webpage to scrape as an input, applies the code you wrote for questions 1 through 6, and generates the dataframe from question 6 as the output. [3 points]

```
In [157...

def get_books(url):
    r = requests.get(url)
    books = bs(r.text)
    btitle = books.find_all("article", "product_pod")
    bprice = books.find_all("p", "price_color")
```

In [167...

```
df2 = get_books("http://books.toscrape.com/catalogue/page-2.html")
pd.concat([pd.DataFrame(), df2], ignore_index=True)
```

	pu.	concat([pd.DataFrame(), df	2], 18	gnore_1	ndex=irue)
t[167]:		title	price	rating	cover
	0	In Her Wake	12.84	One	/media/cache/5d/72/5d72709c6a7a9584a4d1cf076
	1	How Music Works	37.32	Two	/media/cache/5c/c8/5cc8e107246cb478960d4f0ab
	2	Foolproof Preserving: A Guide to Small Batch J	30.52	Three	/media/cache/9f/59/9f59f01fa916a7bb8f0b28a40
	3	Chase Me (Paris Nights #2)	25.27	Five	/media/cache/9c/2e/9c2e0eb8866b8e3f3b768994f
	4	Black Dust	34.53	Five	/media/cache/44/cc/44ccc99c8f82c33d4f9d2afa4
	5	Birdsong: A Story in Pictures	54.64	Three	/media/cache/af/6e/af6e796160fe63e0cf19d4439
	6	America's Cradle of Quarterbacks: Western Penn	22.50	Three	/media/cache/ef/0b/ef0bed08de4e083dba5e20fdb
	7	Aladdin and His Wonderful Lamp	53.13	Three	/media/cache/d6/da/d6da0371958068bbaf39ea9c1
	8	Worlds Elsewhere: Journeys Around Shakespeareâ	40.30	Five	/media/cache/2e/98/2e98c332bf8563b5847849715
	9	Wall and Piece	44.18	Four	/media/cache/a5/41/a5416b9646aaa7287baa287ec
	10	The Four Agreements: A Practical Guide to Pers	I/ bb Five /media/cache/Uf/	/media/cache/0f/7e/0f7ee69495c0df1d35723f012	
	11	The Five Love Languages: How to Express Heartf	31.05	Three	/media/cache/38/c5/38c56fba316c07305643a8065
	12	The Elephant Tree	23.82	Five	/media/cache/5d/7e/5d7ecde8e81513eba8a64c9fe
	13	The Bear and the Piano	36.89	One	/media/cache/cf/bb/cfbb5e62715c6d888fd07794c
	14	Sophie's World	15.94	Five	/media/cache/65/71/6571919836ec51ed54f0050c3
	15	Penny Maybe	33.29	Three	/media/cache/12/53/1253c21c5ef3c6d075c5fa3f5
	16	Maude (1883-1993):She Grew Up with the country	18.02	Two	/media/cache/f5/88/f5889d038f5d8e949b494d147
	17	In a Dark, Dark Wood	19.63	One	/media/cache/23/85/238570a1c284e730dbc737a7e
	18	Behind Closed Doors	52.22	Four	/media/cache/e1/5c/e15c289ba58cea38519e1281e
	19	You can't bury them all: Poems	33.63	Two	/media/cache/e9/20/e9203b733126c4a0832a1c788

Problem 8

Notice that there are many pages to http://books.toscrape.com/. When you click on "Next" in the bottom-right corner of the screen, it takes you to

http://books.toscrape.com/catalogue/page-2.html. The front page is the same as http://books.toscrape.com/catalogue/page-1.html, and there are 50 total pages.

Write a loop that uses the function you wrote in question 7 to scrape each of the 50 pages, and append each of these data frames together. If you write this loop correctly, your dataframe will have 1000 rows (20 books on each of the 50 pages).

Some hints:

- Typing new_df = pd.DataFrame() with nothing in the parentheses will create an empty data frame on which new data can be appended.
- There are many loops you can use, but the most straightforward one is a for-values loop that counts from 1 to 50. In Python, you can initialize such a loop with for i in range(1, 51):, and indenting every line below it that belongs inside the loop. Inside the loop, the letter i is now a stand-in for the number currently being considered.
- You will need to figure out how to replace the number in URLs like
 http://books.toscrape.com/catalogue/page-2.html with the number currently under
 consideration in the loop. You might need the str() function, which turns numeric values
 into strings.

[3 points]

```
In [170...

df = pd.DataFrame()
    for i in range(1,51):
        url = f'http://books.toscrape.com/catalogue/page-{i}.html'
        cdf = get_books(url)
        df = pd.concat([df, cdf], ignore_index=True)

df
```

Out[170]:

	title	price	rating	cover
0	A Light in the Attic	51.77	Three	/media/cache/2c/da/2cdad67c44b002e7ead0cc356
1	Tipping the Velvet	53.74	One	/media/cache/26/0c/260c6ae16bce31c8f8c95dadd
2	Soumission	50.10	One	/media/cache/3e/ef/3eef99c9d9adef34639f51066
3	Sharp Objects	47.82	Four	/media/cache/32/51/3251cf3a3412f53f339e42cac
4	Sapiens: A Brief History of Humankind	54.23	Five	/media/cache/be/a5/bea5697f2534a2f86a3ef27b5
•••				
995	Alice in Wonderland (Alice's Adventures in Won	55.53	One	/media/cache/96/ee/96ee77d71a31b7694dac6855f
996	Ajin: Demi-Human, Volume 1 (Ajin: Demi-Human #1)	57.06	Four	/media/cache/09/7c/097cb5ecc6fb3fbe1690cf0cb
997	A Spy's Devotion (The Regency Spies of London #1)	16.97	Five	/media/cache/1b/5f/1b5ff86f3c75e51e24c573d3f
998	1st to Die (Women's Murder Club #1)	53.98	One	/media/cache/2b/41/2b4161c5b72a4ae386b644682
999	1,000 Places to See Before You Die	26.08	Five	/media/cache/d7/0f/d70f7edd92705c45a82118c3f

1000 rows × 4 columns

Tn Γ 1·