

IRGBF20F

INSULATED GATE BIPOLAR TRANSISTOR

Fast Speed IGBT

Features

- Switching-loss rating includes all "tail" losses
- Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve

$$V_{CES} = 900V$$

$$V_{CE(sat)} \le 4.3V$$

$$@V_{GE} = 15V, I_C = 5.3A$$

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	900	V
I _C @ T _C = 25°C	Continuous Collector Current	9.0	
I _C @ T _C = 100°C	Continuous Collector Current	5.3	Α
I _{CM}	Pulsed Collector Current ①	18	
I _{LM}	Clamped Inductive Load Current ②	18	
V_{GE}	Gate-to-Emitter Voltage	±20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	5.0	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	60	W
P _D @ T _C = 100°C	Maximum Power Dissipation	24	
T_{J}	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	_	_	2.1	
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.50	_	°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	80	
Wt	Weight	_	2.0 (0.07)	_	g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	900		_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	20	_	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.85	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0 \text{mA}$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.9	4.3		$I_{\rm C} = 5.3 A$	$V_{GE} = 15V$
		_	3.5	_	V	$I_{C} = 9.0A$	See Fig. 2, 5
		_	3.5	_		$I_C = 5.3A, T_J = 150$ °C	
V _{GE(th)}	Gate Threshold Voltage	3.0		5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-10	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
g _{fe}	Forward Transconductance ⑤	0.9	1.5	_	S	$V_{CE} = 100V, I_{C} = 5.3A$	
I _{CES}	Zero Gate Voltage Collector Current	_		250	μΑ	$V_{GE} = 0V, V_{CE} = 900V$	
		_	_	1000		$V_{GE} = 0V, V_{CE} = 900V,$	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

			•					
	Parameter	Min.	Тур.	Max.	Units	Conditions		
Q_g	Total Gate Charge (turn-on)	_	11	17		I _C = 5.3A		
Q_{ge}	Gate - Emitter Charge (turn-on)	<u> </u>	2.6	3.9	nC	V _{CC} = 400V See Fig. 8		
Q _{gc}	Gate - Collector Charge (turn-on)	_	4.6	6.9		$V_{GE} = 15V$		
t _{d(on)}	Turn-On Delay Time	_	29	_		T _J = 25°C		
t _r	Rise Time	_	12	_	ns	$I_C = 5.3A$, $V_{CC} = 720V$		
t _{d(off)}	Turn-Off Delay Time	_	170	300		$V_{GE} = 15V$, $R_G = 50\Omega$		
t _f	Fall Time	_	120	280		Energy losses include "tail"		
Eon	Turn-On Switching Loss	_	0.25	_				
E _{off}	Turn-Off Switching Loss	_	0.36	_	mJ	See Fig. 9, 10, 11, 14		
E _{ts}	Total Switching Loss	_	0.61	1.10				
t _{d(on)}	Turn-On Delay Time	_	27	_		$T_{J} = 150^{\circ}C,$		
t _r	Rise Time	_	13	_	ns	$I_C = 5.3A$, $V_{CC} = 720V$		
t _{d(off)}	Turn-Off Delay Time	_	270	_		$V_{GE} = 15V$, $R_G = 50\Omega$		
t _f	Fall Time	_	240	_		Energy losses include "tail"		
E _{ts}	Total Switching Loss	_	1.10	_	mJ	See Fig. 10, 14		
LE	Internal Emitter Inductance	_	7.5	_	nΗ	Measured 5mm from package		
Cies	Input Capacitance	_	220	_		V _{GE} = 0V		
Coes	Output Capacitance	_	25	_	pF	V _{CC} = 30V See Fig. 7		
C _{res}	Reverse Transfer Capacitance	_	3.4	_		f = 1.0MHz		

Notes:

- 1 Repetitive rating; V $_{\text{GE}}$ =20V, pulse width limited by max. junction temperature. (See fig. 13b)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- S Pulse width 5.0µs, single shot.

- $@~V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,~R_{G}\!\!=\!50\Omega,~(~See~fig.~13a~)$
- 4 Pulse width \leq 80 μ s; duty factor \leq 0.1%.

Fig. 1 - Typical Load Current vs. Frequency (For square wave, $I=I_{RMS}$ of fundamental; for triangular wave, $I=I_{PK}$)

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs.
Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Case Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Refer to Section D for the following:

Appendix F: Section D - page D-8

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 14a - Switching Loss Test Circuit

Fig. 14b - Switching Loss Waveform

Package Outline 1 - JEDEC Outline TO-220AB Section

Section D - page D-12

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/