

Slojevi kod računarskih mreža međumrežni sloj

Математички факултет vladaf@matf.bg.ac.rs 3/22

Protokoli i slojevi

Međumrežni sloj

Međumrežni sloj (internet layer) - bavi se povezivanjem više računara u mrežu

- O Osnovni zadatak u okviru ovog sloja je rutiranje (routing), tj. odredivanja putanja paketa koji putuju kroz mrežu kako bi se odredio efikasan način da stignu na svoje odredište
 - Kako bi se odredila putanja, neophodno je uvodenje sistema adresiranja
- O Ukoliko se povezuju heterogene mreže (sa različitim shemama adresiranja), na ovom sloju se vrši prevođenje adresa
 - Na primer, na nižim slojevima se obično koriste fizičke MAC adrese, a na višim IP adrese
- Svaki čvor u mreži uključen u komunikaciju mora da implementira mrežni protokol, da razume odredišnu adresu i da na osnovu ovoga odluči kome će da prosledi primljenu poruku
 - Najpoznatiji protokol ovog sloja je koji se koristi u okviru Interneta je Internet Protocol (IP)

IP protokol međumrežnog sloja

- Internet protokol (Internet Protocol IP) je protokol koji se koristi za komunikaciju u okviru mrežnog sloja Interneta
- Dve osnovne verzije ovog protokola su IPv4 i IPv6
- O Iz istorijskih razloga i veće preglednosti u nastavku će detaljnije biti opisana IPv4 verzija IP protokola
- O Osnovni zadatak ovog protokola je da pokuša da dopremi (tj. rutira) paket od izvora do odredišta u okviru mreže sa paketnim komutiranjem, isključivo na osnovu navedene adrese, bez obzira da li su izvor i odredište u okviru iste mreže ili između njih postoji jedna ili više drugih mreža
- O Protokol ne daje nikakve garancije da će paketi zaista i biti dopremljeni, ne daje garancije o ispravnosti dopremljenih paketa, ne garantuje da će paketi biti dopremljeni u istom redosledu u kojem su poslati i slično
 - Garancije ovog tipa obezbeduju se na višim slojevima komunikacije

IP protokol međumrežnog sloja (2)

- O Pri prosleđ**ž**vanju paketa sa transportnog sloja na ovaj sloj dodaju se:
 - adresa pošiljaoca,
 - adresa primaoca, ...
- O IP datagram ide od pošiljaoca do primaoca, preko serije rutera

Математички факултет

Hijerarhijska struktura IP adresa

- O IP adrese su strukturirane hijerarhijski: adresa se deli na bitove koji adresiraju mrežu (vodeći) i bitove koji adresiraju uređ**ž**j u okviru mreže
- O Paket se dostavlja:
 - korišćenjem lokalnog mrežnog saobraćaja
 - šalje se van mreže "u svet" preko određenog rutera koji se naziva izlazna kapija (gateway)
- O Svi uređ**ž**ji iz iste mreže dele zajednički početak IP adrese
 - Primer: od 147.91.67.0 do 147.91.67.255 ista prva 24 bita, razlikuju se poslednjih 8

Hijerarhijska struktura IP adresa (2)

- Ranije su IP adrese bile deljene na klase (A, B, C, D, E) i svaka klasa je definisala broj bita za prvi i broj bita za drugi deo deo IP adrese.
 - Adrese klase A (prvi bit u zapisu je 0 izmeđž 0.0.0.0 i 27.255.255.255) su bile dodeljivane jako velikim mrežama (8+24 bita 128 mreža sa mogućih preko 16.7 miliona korisnika)
 - Adrese klase B (počinje sa 10 između 128.0.0.0 i 191.255.255.255) su bile dodeljivane srednjim mrežama (16+16 bita - preko 16 hiljada mreža sa mogućih 65536 korisnika)
 - Adrese klase C (poćinje sa 110 izmeđž 192.0.0.0 i 223.255.255.255) su bile dodeljivane malim mrežama (24+8 bita preko dva miliona mreža sa mogućih 256 korisnika).
- O Vremenom se pokazalo da ovakva organizacija nije skalabilna
 - Obično su mreže kompanija imale potrebu za više od 256 uredaja, tako su uzimale adrese klase B, pa je veliki broj adresa ostajao nedodeljen

Математички факултет vladaf@matf.bg.ac.rs ^{9/22}

Hijerarhijska struktura IP adresa (3)

- Dva načina zapisa skalabilnog zapisa IP adresa:
 - CIDR notacija adresa 147.91.67.138/24
 - Maska podmreže (subnet mask) uz adresu 147.91.67.138 navodi se maska podmreže 255.255.255.0 (24 jedinice i 8 nula)

Математички факултет vladaf@matf.bg.ac.rs 10/22

Povezivanje uređaja u lokalnoj mreži

- U okviru svake mreže postoje dve adrese sa specijalnom namenom:
 - prva adresa (250.150.100.0) smatra se adresom mreže
 - poslednja adresa (250.150.100.255) adresa za javno emitovanje (broadcast address) - svaka poruka poslata na tu adresu dostavlja se svim uređajima u mreži

Povezivanje uređaja u lokalnoj mreži (2)

Elementi mrežnog hardvera koji se koriste:

- O Ruter (router) kompleksniji uređ**ž**j namenjen povezivanju raznorodnih mreža i povezivanju mreža sa Internetom
 - Obično ima javnu IP adresu koju deli cela mreža
 - Koristi IP adrese za prosleđivanje paketa, što dopušta mrežnu komunikaciju po različitim protokolima
 - Prosleđuje pakete na osnovu softvera, dok svič radi hardverski

11/22

Povezivanje uređaja u lokalnoj mreži (3)

Elementi mrežnog hardvera koji se koriste:

- O Svič (switch) povezuje dve ili više nezavisnih mreža
 - Postavljanjem sviča između povezanih uređaja poruka se prosleđije samo uređaju kome je namenjena (efikasnija komunikacija)
 - Svič čuva tabelu koja preslikava MAC adrese priključenih uređaja na redne brojeve priključaka
 - Tabela se gradi i održava automatski tokom komunikacije
 - Podržava veći broj ulaznih i izlaznih portova
 - Vrši kontrolu greške pre prosleđivanja paketa
 - U zavisnosti od tipa, realizuju prosleđivanje na nivou "host-premamreži" (zasnovano na MAC adresama) i na međumrežnom nivou (zasnovano na IP adresama)
 - Pakete prosleđuje samo mreži u kojoj se nalazi primalac
 - Kod velikih mreža se svičevi koriste umesto habova za povezivanje računara u podmrežama

Povezivanje uređaja u lokalnoj mreži (4)

Elementi mrežnog hardvera koji se koriste:

- O Hab (hub) dobijene poruke prosleđuje svim priključenim uređajima
 - Postavljanje haba između povezanih uređaja primljeni paketi se prosleđuju svim uređajima povezanim na njega (jednostavno, ali je verovatnoća sudara velika)
 - Ne može kontrolisati propuštanje paketa koje šalje povezanim uređajima
 - Ne može odrediti najbolji put za slanje paketa
 - Nisu efikasni
 - Koriste se u malim mrežama, sa niskim nivoom komunikacije
 - 🕨 Radi na nivou sloja "host-prema-mreži"– nisko, najbliže fizičkom sloju

Povezivanje uređaja u lokalnoj mreži (5)

Elementi mrežnog hardvera koji se koriste:

- Most (bridge) povezuje lokalnu mrežu sa drugom lokalnim mrežom koja koristi isti protokol
 - Ima jedinstveni ulazni i jedinstveni izlazni port
 - Kontroliše propuštanje paketa na mreži na osnovu MAC adrese odredišta – ne šalje sve pakete bez kontrole
 - Pakete prosleđije samo mreži u kojoj se nalazi primalac
 - Radi na nivou sloja "host-prema-mreži"

Povezivanje uređaja u lokalnoj mreži (6)

- O Kako uređ**ž**j koji zna IP adresu primaoca određ**ž**je MAC adresu na koju prosleđuje IP datagram?
 - na osnovu mrežne maske utvrđuje da li je primalac u istoj mreži; ako jeste šalje njemu, ako nije šalje izlaznoj kapiji
 - u oba slučaja zna IP adresu uređžja u lokalnoj mreži
 - za dobijanje adrese koristi se protokol razrešavanja adresa (address resolution protocol, ARP)
 - javno se emituje ARP zahtev sa IP adresom
 - uređžij sa tom IP adresom šalje ARP odgovor sa svojom MAC adresom

Математички факултет vladaf@matf.bg.ac.rs 16/22

IP adrese i DHCP

- Dinamičke IP adrese se dodeljuju korišćenjem specijalizovanog protokola za dinamičku konfiguraciju (Dynamic Host Configuration Protocol - DHCP)
- Specijalizovani server (tzv. DHCP server) je zadužen za skup IP adresa koje odreduje administrator mreže i na zahtev uredaja koji se priključuje na mrežu dodeljuje mu neku u tom trenutku slobodnu adresu
- O Server se može konfigurisati tako da dodeljuje bilo koju slobodnu IP adresu, ili uvek istu adresu koja se odreduje na osnovu MAC adrese uredaja koji zahteva IP adresu, i slično

Математички факултет vladaf@matf.bg.ac.rs 17/22

Javne i privatne IP adrese

- O Da ne bi došlo do nestašice IPv4 adresa uvode se privatne adrese:
 - 10.0.0.0/8 (od 10.0.0.0 do 10.255.255.255) 16.7 miliona adresa
 - 172.16.0.0/12 (od 172.16.0.0 do 172.31.255.255) milion adresa
 - 192.168.0.0/16 (od 192.168.0.0 do 192.168.255.255) 65536 adresa
- Privatne adrese se koriste samo za lokalnu mrežnu komunikaciju
- Prilikom pristupa Internetu:
 - ruter (izlazna kapija) menja lokalnu adresu svojom (javnom) adresom
 - primalac odgovor šalje nazad ruteru, a on menja adresu privatnom adresom uređaja koji je poslao zahtev i prosleđije odgovor

Математички факултет vladaf@matf.bg.ac.rs 18/22

Javne i privatne IP adrese (2)

- Ovaj proces se naziva preslikavanja mrežnih adresa (network address translation - NAT)
- Korišćenje NAT-a prilikom slanja paketa:
 - U slučaju da ruter detektuje odredišnu adresu iz opsega adresa privatne mreže sa kojom je povezan, jasno je da je paket namenjen za lokalnu komunikaciju i šalje se jedinstvenom uredaju sa navedenom lokalnom adresom
 - Ako je odredišna adresa javna, ruter adresu pošiljaoca zamenjuje svojom adresom (globalno jedinstvenom) i paket prosleduje na odredište.

Javne i privatne IP adrese (3)

- O Korišćenje NAT-a prilikom prijema paketa:
 - U slučaju dolaznog paketa, nije odmah jasno na koju privatnu adresu je potrebno poslati paket koji je pristigao
 - Kako bi se ovo razrešilo, lokalna adresa se pakuje i postaje sastavni deo paketa koji se šalje
 - Ruter, pre prosledivanja dolaznog paketa, vrši njegovo raspakivanje i određivanje lokalne adrese
- Sve ovo narušava osnovne principe i koncepte IP protokola, pa se zato NAT smatra prelaznim rešenjem problema nestašice IP adresa, dok ne zaživi IPv6

Rutiranje

- U većim mrežama postoji veliki broj povezanih rutera
- Uloga rutera: na osnovu IP adrese primaoca i na osnovu tabela koje su zapisane u njihovoj memoriji (tabela rutiranja) odrediti kome od povezanih čvorova treba proslediti paket da bi efikasno stigao do cilja
- Tabele rutiranja sadrže spisak mrežnih adresa različitog nivoa hijerarhije i za svaku od njih kom uređaju treba dostaviti paket
- Primer: Neka je u tabeli rutiranja rutera

```
0.0.0.0/0 via 200.170.10.10
200.0.0.0/8 via 200.100.5.20
200.160.0.0/16 is directly connected, Serial0/1
```

- Ako ruter primi paket namenjen adresi 200.150.100.23, on se dostavlja preko rutera 200.100.5.20
- Šablonom 0.0.0.0/0 zadaje se gde proslediti paket ako adresa nije prepoznata na neki drugi način
- Traži se najpreciznije poklapanje sa šablonom poklapanje sa najvećim brojem bitova

Математички факултет vladaf@matf.bg.ac.rs ^{21/22}

Rutiranje (2)

- O Kvalitet rutiranja zavisi od tabela rutiranja
- O Tabele rutiranja se mogu graditi statički ili dinamički

Zahvalnica

Delovi materijala ove prezentacije su preuzeti iz:

- Skripte iz predmeta Uvod u veb i internet tehnologije, na Matematičkom fakultetu Univeziteta u Beogradu, autor prof. dr Filip Marić
- Prezentacija iz predmeta Uvod u veb i internet tehnologije, na Matematičkom fakultetu Univeziteta u Beogradu, autor dr Vesna Marinković
- Skripte iz predmeta Informatika na Univerzitetu Milano Bicocca, autor dr Dario Pescini