Обмен цифровой информацией

Шины и интерфейсы

Плата WeActTC/MiniSTM32F4x1

- У нас вариант с STM32F411CEU6 на борту
- Плата имеет документацию! https://github.com/WeActTC/ MiniSTM32F4x1

Линейный регулятор на 3.3 вольта

Разъем для программатора (Serial Wire Debug = SWD)

3V3 — питание 3.3B

GND — нулевой провод (земля)

SCK — синхросигнал SWD

DIO — данные SWD

Лампочки и кнопочки

USB OTG Full Speed (2.0) Type-C

Можно брать оттуда питание например

Кварцевые резонаторы

HSE (High Speed External) на 25 МГц LSE (Low Speed External) на 32.768 КГц

Место для флешки

STM32CubeIDE

Создание проекта

Создание проекта

Создание проекта

Обзор проекта

Первичная настройка Cube (.ioc) проекта Настройка частот

Первичная настройка Cube (.ioc) проекта Разрешение программатора

Первичная настройка Cube (.ioc) проекта Настройка GPIO C 13

Push Pull / Open Drain

Обновление генерата

19

Функция main()

Состоит из инициализации железа и бесконечного цикла

```
640 int main(void)
   66 · · /* · USER · CODE · BEGIN · 1 · */
  68 · · /* · USER · CODE · END · 1 · * /
   70 /* MCU Configuration-----*/
   72 /* Reset of all peripherals. Initializes the Flash interface and the Systick. */
   73 ·· HAL Init();
  75 · · /* · USER · CODE · BEGIN · Init · */
  77 · · /* · USER · CODE · END · Init · */
      ··/* Configure the system clock */
  80 SystemClock Config();
  81
      · · /* · USER · CODE · BEGIN · SysInit · */
  84 · · /* · USER · CODE · END · SysInit · */
  86 · · /* Initialize all configured peripherals */
  87 .. MX GPIO Init():
  88 · · /* · USER · CODE · BEGIN · 2 · * /
      · · /* · USER · CODE · END · 2 · */
  92 · · /* · Infinite · loop · */
  93 --/*-USER-CODE-BEGIN-WHILE-*/
  94 · · while · (1)
  96 · · · · /* · USER · CODE · END · WHILE · */
  98 · · · · /* · USER · CODE · BEGIN · 3 · */
 100 - . /* USER CODE END 3 */
101 }
102
```

Функции для работы с GPIO

Вообще, документация для НАL живёт тут, но это большой и сложный документ. Почти все что в нем написано — написано и в исходниках

Что нагенерил cube для инициализации?

Фаил main.h

/* Private defines #define LED Pin GPIO PIN 13 #define LED GPIO Port GPIOC Фаил main.c static void MX GPIO Init(void) GPIO output level High GPIO InitTypeDef GPIO InitStruct = {0}; /* GPIO Ports Clock Enable */ GPIO mode Output Open Drain HAL RCC GPIOC CLK ENABLE(); HAL RCC GPIOA CLK ENABLE(); No pull-up and no pull-down GPIO Pull-up/Pull-down /*Configure GPIO pin Output Level */ HAL GPIO WritePin(LED GPIO Port, LED Pin, GPIO PIN SET); Maximum output speed Low /*Configure GPIO pin : LED Pin */ GPIO InitStruct.Pin = LED Pin: User Label LED GPIO InitStruct.Mode = GPIO MODE OUTPUT OD; GPIO InitStruct.Pull = GPIO NOPULL; GPIO InitStruct.Speed = GPIO SPEED FREQ LOW; HAL GPIO Init(LED GPIO Port, &GPIO InitStruct);

Мигаем лампочкой

Фаил main.c функция main(void)

```
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    // Зажигаем лампочку
    HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
    // Ждем 1000 миллисекунд
    HAL_Delay(1000);
    // Тушим лампочку
    HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
    // Ждем 500 миллисекунд
    HAL_Delay(500);
    /* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
```

Сборка проекта


```
Problems @ Tasks ■ Console 🛭 🗖 Properties 🔚 Build Analyzer 🛓 Static Stack Analyzer
                                                                                                      CDT Build Console [blinky-black-pill]
15:48:33 **** Build of configuration Debug for project blinky-black-pill ****
make -i4 all
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32F4xx hal.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal cortex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM3
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal dma.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDFBUG -DUSE HAL DRIVER -DSTM32F4
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal dma ex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM3
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal flash.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal flash ex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DST
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal flash ramfunc.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal gpio.c" -mcpu=cortex-m4 -std=gnull -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F4x
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal Dwr.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F4
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal pwr ex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM3
arm-none-eabi-acc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal rcc.c" -mcpu=cortex-m4 -std=qnu11 -q3 -DDEBUG -DUSE HAL DRIVER -DSTM32F4
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal rcc ex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM3
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal tim.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F4
arm-none-eabi-gcc "../Drivers/STM32F4xx HAL Driver/Src/stm32f4xx hal tim ex.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM3
arm-none-eabi-gcc -mcpu=cortex-m4 -g3 -DDEBUG -c -x assembler-with-cpp -MMD -MP -MF"Core/Startup/startup stm32f411ceux.d" -MT"Core/Startup/startup/st
arm-none-eabi-gcc "../Core/Src/main.c" -mcpu=cortex-m4 -std=gnull -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -c -I../Core/Inc -I../Drivers/ST
arm-none-eabi-gcc "../Core/Src/stm32f4xx hal msp.c" -mcpu=cortex-m4 -std=gnull -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F4l1xE -c -I../Core/Inc -I
arm-none-eabi-gcc "../Core/Src/stm32f4xx it.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -c -I../Core/Inc -I../Dr
arm-none-eabi-gcc "../Core/Src/syscalls.c" -mcpu=cortex-m4 -std=gnull -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -c -I../Core/Inc -I../Driver
arm-none-eabi-gcc "../Core/Src/sysmem.c" -mcpu=cortex-m4 -std=gnu11 -g3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -c -I../Core/Inc -I../Drivers/
arm-none-eabi-gcc "../Core/Src/system stm32f4xx.c" -mcpu=cortex-m4 -std=qnu11 -q3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -c -I../Core/Inc -I.
arm-none-eabi-gcc -o "blinky-black-pill.elf" @"objects.list" -mcpu=cortex-m4 -T"/home/ crypto/snork/STM32CubeIDE/workspace 1.7.0/blinky-black
Finished building target: blinky-black-pill.elf
arm-none-eabi-size blinky-black-pill.elf
arm-none-eabi-obidump -h -Ś blinky-black-pill.elf > "blinky-black-pill.list"
arm-none-eabi-obicopy -0 binary blinky-black-pill.elf "blinky-black-pill.bin"
                                  hex filename
  text
          data
                   bss
                           dec
  5748
            20
                  1572
                         7340
                                 1cac blinkv-black-pill.elf
Finished building: default.size.stdout
Finished building: blinky-black-pill.bin
```

Результаты сборки

.elf файл — Executable and Linkable Format Формат .exe файла для POSIX платформ. Содержит все необходимое для запуска и отладки проекта

.bin — образ флеш памяти целевого MK

.list — asm листинг получившегося кода

.map — файл-карта. Показывает в какие регионы памяти попали разные функции и переменные

Сборка проекта неудачный билд

```
92 · · /* · Infinite · loop · */
  93 · · /* · USER · CODE · BEGIN · WHILE · */
  94 · · while · (1)
  95 . . {
  96 ....// Зажигаем лампочку
 97 ····la·la·la, error here!
  98 .... HAL GPIO WritePin(GPIOC, GPIO PIN 13, GPIO PIN RESET);
  99 ....// Ждем 1000 миллисекунд
 100 · · · · HAL Delay(1000);
101 - . . . / / Тушим пампочку
🖹 Problems 🔊 Tasks 🖳 Console 🛭 🗉 Properties 🗟 Build Analyzer 🛓 Static Stack Analyzer
CDT Build Console [blinky-black-pill]
15:51:55 **** Incremental Build of configuration Debug for project blinky-black-pill ****
make -j4 all
arm-none-eabi-gcc "../Core/Src/main.c" -mcpu=cortex-m4 -std=qnu11 -q3 -DDEBUG -DUSE HAL DRIVER -DSTM32F411xE -
../Core/Src/main.c: In function 'main':
../Core/Src/main.c:97:5: error: unknown type name 'la'
            la la la, error here!
../Core/Src/main.c:97:11: error: expected '=', ',', ';', 'asm' or ' attribute ' before 'la'
            la la la, error here!
make: *** [Core/Src/subdir.mk:34: Core/Src/main.o] Error 1
"make -j4 all" terminated with exit code 2. Build might be incomplete.
15:51:56 Build Failed. 3 errors, 0 warnings. (took 746ms)
```

Прошивка проекта Создание конфигурации запуска

```
ch Project Run Window Help

The project Run
```

Прошивка проекта Создание конфигурации запуска

28

Прошика проекта Настройка конфигурации запуска

Прошивка проекта Подключение программатора и запуск

Делаем себе консоль

UART

Universal asynchronous receiver-transmitter

Асинхронный интерфейс

Позволяет связать **два** равноправных устройства

Достаточно быстрый

Очень распространённый

UART

UART Baud Rate

Baud Rate это частота изменения сигнала. Показывает сколько «символов» в секунду передается посредством интерфейса. Типовые значения: 110, 300, 600, 1200, 2400, 4800, **9600**, 14400, 19200, 38400, 57600, **115200**, 128000 и 256000

UART Word size

В этом примере передаётся 8 бит за один «фрейм». Некоторые устройства передают большее или меньшее количество бит за фрейм.

UART Parity

Возможно использование специального «бита чётности». Этот бит чётности вставляется между битами данных и стоп битом. Значение этого бита подбирается так, чтобы общее количество единичек в посылке было чётным (или не чётным, как настроить). Приёмник может обнаружить сбои в передаче при нарушении этого правила.

7 bits of data	(count of 1-bits)	8 bits including parity	
		even	odd
0000000	0	0000000 0	00000001
1010001	3	1010001 1	1010001 0
1101001	4	1101001 0	1101001 1
1111111	7	1111111 1	1111111 0

UART Stop Bits

В этом примере используется 1 стоп бит. Некоторые устройства используют несколько стоп битов

В нашем stm32 есть аж 3 U(S)ART модуля периферии

Включаем U(S)ART1

API для работы с U(S)ART

API для работы с U(S)ART

Отправляем hello world

```
/* USER CODE BEGIN 2 */
const char string[] = "Hello world!\n";
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
  // Зажигаем лампочку
  HAL GPIO WritePin(GPIOC, GPIO PIN 13, GPIO PIN RESET);
  // Ждем 1000 миллисекунд
  HAL Delay(1000);
  // Тушим лампочку
  HAL GPIO WritePin(LED GPIO Port, LED Pin, GPIO PIN SET);
  // Ждем 500 миллисекунд
  HAL Delay(500);
  // Отправляем хеллоу ворлд
  HAL UART Transmit(&huart1, string, sizeof(string)-1, HAL MAX DELAY);
  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */
/* USER CODE END 3 */
```

Принимаем сообщение на ПК

RS-232 традиционно использовался на ПК для подключения различной периферии.

Сейчас он присутствует на многих материнских платах, но не выведен на корпус. На корпус он выведен в промышленных ПК (например в кассовых аппаратах)

USB-UART преобразователь

Подключение к STM32

FTDI >> STM32 Gnd >> Gnd Vcc >> 5V Rx >> A9 Tx >> A10

fritzing

Putty / minicom

Использование UART вместе с printf

Пользовательское приложение

Стандартная библиотека Си (newlib)

Cuctemhoe API

Железное «API»

Использование UART вместе с printf

```
workspace 1.7.0 - blinky-black-pill/Core/Src/syscalls.c - STM32CubeIDE
File Edit Source Refactor Navigate Search Project Run Window Help
                                             Q : 😭 蹋 🌣
Project Explorer 
□ □ □ □ syscalls.c 
□ sysmem.c "6
                                                                                                                                                       □ □ E Outline 🛭 💿 Build Targets
  illiblinky-asm
                                                                                                                                                                                                              F14 N № 9 # 8
                                                                        environ : cnar™
▼ plinky-black-pill
                                                                        3 ** Ofile · · · · syscalls.c
                                                                                                                                                                    initialise monitor handles(): void
  ▶ ₩ Binaries
                                                                        4 * · @author · · · · Auto-generated · by · STM32Cub
                                                                                                                                                                    getpid(void): int
                                                                        5 * · @brief · · · · STM32CubeIDE · Minimal · Syste
   ▶ ⋒Includes
                                                                                                                                                                    kill(int, int) : int
                                                                        6 .*

▼ Core

                                                                        7 * · · · · · · · For · more · information · about
                                                                                                                                                                    exit(int) : void
     ▶ □ Inc
                                                                            **····need which of these lowley
                                                                                                                                                                    read(int, char*, int): int
                                                                        9 * · · · · · · · · please consult the Newlib
      ▼ <del>/-</del>Src
                                                                              .***************************
        ▶ 🖟 main.c
                                                                                                                                                                    close(int) : int
                                                                      11 * · @attention
        ▶ lastm32f4xx hal msp.c
                                                                      12 .*
                                                                                                                                                                    fstat(int. struct stat*): int
        ▶ 🗈 stm32f4xx it.c
                                                                      13 * <h2><center>&copy; Copyright (c) 2020
                                                                                                                                                                    isattv(int) : int
                                                                      14 * All rights reserved.</center></h2>
        ▶ ☑ syscalls.c
                                                                                                                                                                    Iseek(int, int, int): int
                                                                      15 .*
        → 🖟 sysmem.c
                                                                      16 * This software component is licensed b
                                                                                                                                                                    open(char*, int, ...): int
       17 * the "License"; You may not use this f
                                                                                                                                                                    wait(int*): int
                                                                      18 * License You may obtain a copy of the
     ▶ Startup
                                                                                                                                                                    unlink(char*): int
                                                                              *····opensource.org
   Drivers
                                                                                                                                                                    times(struct tms*): int
   ▶ Debug
                                                                      21 .********************
                                                                                                                                                                    stat(char*, struct stat*): int

iii blinky-black-pill.ioc

iii blinky-black-p
                                                                      22 .*/
                                                                                                                                                                    link(char*, char*): int
                                                                      23
      liblinky-black-pill Debug.launch
                                                                                                                                                                    fork(void): int
                                                                      24 /* Includes */
     STM32F411CEUX FLASH.ld
                                                                      25 #include <sys/stat.h>
                                                                                                                                                                    execve(char*, char**, char**): int
     STM32F411CEUX RAM.ld
                                                                   🧝 Problems 🧔 Tasks 📮 Console 🛭 🔳 Properties 扇 Build Analyzer 🛓 Static Stack Analyzer
  blinky-c-hal
                                                                                                                                                                              illinky-pure-c
                                                                  CDT Build Console [blinky-black-pill]
                                                                  Finished building: blinky-black-pill.list
                                                  Writable
                                                                                                                                     17...75
                                                                                             Smart Insert
```

```
int write(int file, char *ptr, int len)
    /* ... */
#include <stm32f4xx hal.h>
int write(int file, char *ptr, int len)
    extern UART HandleTypeDef huart1;
    HAL UART Transmit(
            &huart1.
            (uint8 t*)ptr, len,
            HAL MAX DELAY
    return len:
```

Каноничный hello world

```
/* Private includes -----
/* USER CODE BEGIN Includes */
#include <stdio.h>
                                                      /* USER CODE BEGIN WHILE */
/* USER CODE END Includes */
                                                      while (1)
                                                        // Зажигаем лампочку
                                                        HAL GPIO WritePin(GPIOC, GPIO PIN 13, GPIO PIN RESET);
 hello world! time is 6014
  hello world! time is 7518
                                                        // Ждем 1000 миллисекунд
  hello world! time is 9022
                                                        HAL Delay(1000);
  hello world! time is 10526
                                                        // Тушим лампочку
  hello world! time is 12030
 hello world! time is 13534
                                                        HAL_GPIO_WritePin(LED_GPIO_Port, LED Pin, GPIO PIN SET);
  hello world! time is 15038
                                                        // Ждем 500 миллисекунд
  hello world! time is 16542
                                                        HAL Delay(500);
                                                        // Отправляем хеллоу ворлд
                                                        //HAL UART Transmit(&huart1, string, sizeof(string), HAL MAX DELAY);
                                                        int32 t time = HAL GetTick();
                                                        printf("hello world! time is %ld\n", time);
                                                        /* USER CODE END WHILE */
                                                        /* USER CODE BEGIN 3 */
```

/* USER CODE END 3 */

Шина OneWire

Шина 1-Wire

Чумовой туториал на русском

DS18B20

- Measures Temperatures from -55°C to +125°C
- ±0.5°C Accuracy from -10°C to +85°C
- Programmable Resolution from 9 Bits to 12 Bits
- No External Components Required
- Parasitic Power Mode Requires Only 2 Pins for operation (DQ and GND)
- Flexible User-Definable Nonvolatile (NV)
 Alarm Settings with Alarm Search
 Command Identifies Devices with
 Temperatures Outside Programmed Limits

Резистор подтяжки. 0 и 1 на шине

Передача битиков от ведущего

Передача битиков от ведомого

Этапы обмена

1-wire reset

Этап адресации

- У каждого устройства есть вшитый в него на фабрике 64-битный уникальный адрес
- После reset команды наступает этап адресации
- Команды этого этапа:
 - 0xCC skip rom пропуск этапа адресации
 - 0x33 read rom чтение адреса ведомого (если он один)
 - 0x55 match rom выбор ведомого по указанному адресу
 - 0xF0 find rom итеративное обнаружение всех ведомых на шине
 - [0xEC alarm search эксклюзивная команда ds18b20 для поиска ведомых в состоянии «тревоги»]

Scratchpad

SCRATCHPAD (POWER-UP STATE)

^{*}POWER-UP STATE DEPENDS ON VALUE(S) STORED IN EEPROM.

Команды DS18B20

- 0x44 convert T начать замер температуры
- 0xEH write scratchpad принять значения для scratchpad с 1-wire шины
- 0xBE read scratchpad выдать значения из scratchpad на 1-wire шину
- 0x48 copy scratchpad сохранить значения из scratchpad в ПЗУ датчика
- 0x8H recall загрузить настройки в scratchpad из eeprom
- 0xB4 read power supply проверка режима питания

Декомпозиция драйвера

Подключение датчика

