

MTH101 (Symmetry)

Tutorial Sheet 03 / January 25, 2022

Spring 2022

1. Consider the following 3×3 matrices

$$S_{2,3} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_2(\lambda) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad L_{1,2}(\lambda) := \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A := \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

- (a) Compute $S_{2,3}A$, $M_2(\lambda)A$ and $L_{1,2}(\lambda)A$.
- (b) Compute $AS_{2,3}$, $AM_2(\lambda)$ and $AL_{1,2}(\lambda)$.
- (c) Matrix $S_{2,3}$ is a **swapper**, $M_2(\lambda)$ is a **multiplier** and $L_{1,2}(\lambda)$ is a **product adder**. Why do you think we should call them by these names?
- 2. Find all angles θ for which $R_{x,\theta}R_{y,\theta} = R_{y,\theta}R_{x,\theta}$, where $R_{x,\theta}$ and $R_{y,\theta}$ are rotation matrices by θ about x and y axes, respectively.
- 3. Take three 2×2 matrices A, B, C of your choice and show that A(BC) = (AB)C. Do you think that for every choice of 2×2 matrices this equality will hold? What about 3×3 matrices?
- 4. Consider the following system of linear equations:

$$x + y - z = 4$$
$$3x - 2z = 6$$
$$x + 2y - z = 7$$

and express it in the matrix form. Now, compute

$$\begin{pmatrix} -4 & 1 & 2 \\ -1 & 0 & 1 \\ -6 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 3 & 0 & -2 \\ 1 & 2 & -1 \end{pmatrix}.$$

Can you use this computation to obtain values of x, y, z that satisfy the above system of equations?

- 5. Resultant of multiplying a matrix A with itself is called the **square** of A. It is written as A^2 . So $A^2 := AA$.
 - (a) Can you find a 2×2 matrix A such that none of the entries of A is zero, but $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$?
 - (b) Can you find a 2×2 matrix A such that $A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$?