THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

by

Richard Lai

La Trobe University Melbourne, Australia

Ajin Jirachiefpattana

Prince of Songkla University Songkhla, Thailand

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-7537-1 ISBN 978-1-4615-5549-0 (eBook) DOI 10.1007/978-1-4615-5549-0

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 1998 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers 1998 Softcover reprint of the hardcover 1st edition 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC

Printed on acid-free paper.

This book is dedicated by Richard Lai to his wife, Freda, and three daughters: Debbie, Jasmine and Amelia;

and by Ajin Jirachiefpattana to his wife, Waraporn, and his daughter, Nidjaree.

Contents

L	List of Figures		xi	
L	List of Tables			xv
F	Prefac	e		xi
A	ckno	wledgme	ents	xxi
Pa	rt l	Protoc	ol Specification	
1.	СО	MMUNI	ICATION PROTOCOL	5
	1.1	Introd	luction	5
	1.2	Techn	ical Issues	6
	1.3	Comm	nunication Protocols	6
	1.4	The N	leed for Architecture	7
	1.5	The C	OSI Reference Model	7
	1.6	Conce	ept of a Layered Architecture	8
		1.6.1	The Need for Layering	8
		1.6.2	Layering	9
		1.6.3	Layer Operation	10
		1.6.4	Introduction to the Specific Layer	11
	1.7	Proble	ems of Communication Protocols	13
	1.8	ISO L	ayer Specification	14
		1.8.1	Service Specification	14
		1.8.2	Protocol Specification	16
		1.8.3	The Procedure for Protocol Specification	17
	1.9	The S	Sliding Window Protocol	17
		1.9.1	Sequence Numbering	18
		1.9.2	Timeout and Retransmission	18
		1.9.3	Transmitter Behaviour	19

		1.9.4	Receiver Behaviour	19
	1 10			
	1.10		ation Control Service Element Association Establishment	20
			Normal Release of an Association	21 22
			Abnormal Release of an Association	22
	C.I			
	Chap	ter Ref	erences	23
2.	FOR	MAL D	ESCRIPTION TECHNIQUES	27
	2.1	Introdu	uction	27
	2.2	Formal	Description Techniques	28
		2.2.1	FDT Objectives	29
		2.2.2	Tools for FDTs	30
	2.3	Protoc	col Engineering	30
	2.4	Protoc	col Development Methodology	33
	2.5	FDT T	Types	33
		2.5.1	Finite State Machine Model	33
		2.5.2	Extended Finite State Machine Model	3!
		2.5.3	Other models	30
	Chap	ter Ref	erences	37
3.	EST	ELLE		39
	3.1	Introdu	uction	39
	3.2		stelle Model	41
	3.3	Module		4:
		3.3.1	Interaction Points	4:
		3.3.2	Channels	44
	3.4	Module	e Communications	44
		3.4.1	Message Exchange	44
		3.4.2	Restricted Sharing of Variables	4!
	3.5	Module	e Nesting and Attributes	4!
	3.6	Behavi	iour of an ESTELLE Specification	4
	3.7	Specifi	cation Syntax	4:
		3.7.1	Communication Channels	4:
		3.7.2	Module Header Definition	49
		3.7.3	Module Body Definition	50
	3.8	.8 Internal Behaviour of a Module		55
	3.9	Estelle	Statements	54
		3.9.1	Init Statement	54
		3.9.2	Connect and Attach Statements	54
		3.9.3	Disconnect Statement	5
		3.9.4	Detach Statement	58
		3.9.5	Release and Terminate Statements	5

Contents	

		3.9.6	Output Statement	59
		3.9.7	All, Forone and Exist Expressions	59
	3.10	Protoc	ol Specification Using Estelle	60
			The Sliding Window Protocol	60
		3.10.2	The ACSE Protocol	65
	Chap	ter Ref	erences	80
4.	LOT	os		81
	4.1	Introdu	uction	81
	4.2	Proces	82	
	4.3	Behavi	our Expressions in Basic LOTOS	83
		4.3.1	Process Termination	84
		4.3.2	Two Basic Operators	85
		4.3.3	Processes as Trees	85
			Recursion	86
			Nondeterminism and Internal Action	86
			Sequential Composition	86
			Parallelism	87
			Disruption	89
			Hiding	89
		4.3.10	Restriction	89
	4.4		S Data Types	90
			Basic Concepts	90
			Signature	90
			Terms and Equations	91
			Extensions and Combinations	91
			Parameterization	93
			Renaming	93
	4.5	Struct	ure of a LOTOS Specification	94
	4.6	Full LC	OTOS	95
		4.6.1	Structured Actions	95
		4.6.2	Behaviour Expressions in Full LOTOS	97
	4.7	Specifi	cation Styles	99
	4.8	Protoc	col Specification Using LOTOS	101
		4.8.1	The Sliding Window Protocol	101
		4.8.2	The ACSE Protocol	105
	Chap	oter Ref	erences	108
5.	SDL			111
	5.1	Introd	uction	111
	5.2	Overvi	ew of the Language	112
	5.3		Concepts	115
		5.3.1	System Specification	115

		5.3.2 Block Specifications	117
		5.3.3 Process Specifications	119
	5.4	Structural Concepts	122
		5.4.1 Partitioning	123
		5.4.2 Refinement	123
	5.5	Additional Concepts	123
		5.5.1 Macros	123
		5.5.2 Generic Systems	123
	5.6	Data Concepts	125
		5.6.1 Sorts	125
		5.6.2 Operators, Literals and Terms	126
		5.6.3 Equations	126
		5.6.4 Generators	128
		5.6.5 Inheritance	128
		5.6.6 Constants and Sort Renaming 5.6.7 Records and Fields	130
		5.6.8 Predefined Sorts	130 131
	r 7		
	5.7	Protocol Specification Using SDL 5.7.1 The Sliding Window Protocol	131
		5.7.2 The ACSE Protocol	131 132
	Cha	pter References	137
Pa	rt II	Protocol Verification	
6.	PRO	OTOCOL VERIFICATION	143
	6.1	Introduction	143
	6.2	Protocol Verification	144
	6.3	Research on Protocol Verification	144
	6.4	Verification Methodology	145
	6.5	Protocol Properties	146
	6.6	Petri Nets	
	0.0	6.6.1 Elements of Petri Nets	147
		6.6.2 Reachability Graph	148 149
		6.6.3 Some definitions	152
		6.6.4 Limitations of Petri Nets	153
	6.7	Reachability Analysis	153
	0.7	6.7.1 Other Forms of RA	154
	6.8	The State Space Explosion Problem	154
	0.0	6.8.1 Techniques for Relieving the Problem	155
	6.9	Other Verification Techniques	
		·	157
	Cna	pter References	159

Cor		

7.	A R	EVIEW	ON ESTELLE VERIFICATION	165
	7.1	Introdu	iction	165
	7.2	Princip	les of Estelle Verification	166
	7.3	Existing	g Methods	169
			Thalmann's Method	169
		7.3.2	PRANAS-2	170
		7.3.3	ESTIM	171
		7.3.4	XESAR	173
		7.3.5	VEDA	174
		7.3.6	VESAR	175
		7.3.7		177
			Wu & Chanson's Method	178
		7.3.9		179
			Bojanova's Method	180
		7.3.11		181
			Dimitrov & Petkov's Method	182
		7.3.13		185
	Cha	pter Ref	erences	187
8.	NPN	IS MOD	DELLING ESTELLE	193
	8.1	Introdu	uction	193
	8.2	Numer	ical Petri Nets (NPNs)	194
		8.2.1	Extensions	194
			Enabling and transition firing	195
		8.2.3	An NPN specification language	195
	8.3 Advantages of Employing NPNs to Model Estelle		197	
	8.4	4 A NPN-Based Model for Estelle		197
		8.4.1	Tokens	197
		8.4.2	NPN Notation for Estelle	204
	8.5	Transla	ation from Estelle into NPN	206
		8.5.1	Translation of a module	206
		8.5.2	Translation of the initialization part of a module	207
		8.5.3	Translation of the transition part of a module	209
		8.5.4	Translation of some Pascal statements in Estelle	210
		8.5.5	Translation of Pascal data types and variables	211
		8.5.6	Translation of Estelle specific statements	212
		8.5.7	Transition enabling and firing	217
		8.5.8	Net composition	218
		8.5.9	Modelling dynamic operations of Estelle	219
	8.6 An Example		225	
	8.7	-	is of Generated NPNs	228
	8.8 Merits and Limitations		229	
	Chapter References		230	

9.	EVE	N - A SOFTWARE ENVIRONMENT FOR ESTELLE VERIFICATION	235	
	9.1	Introduction	235	
	9.2	Overall Structure of EVEN	236	
	9.3	The Portable Estelle Translator (PET)	237	
	9.4	The NPN Generator	238	
		9.4.1 Design Issues	239	
		9.4.2 Class Design	239	
		9.4.3 Program Design	241	
		9.4.4 Files generated by the NPN generator	242	
		9.4.5 Invoking the NPN Generator	246	
	9.5	The NPN Verifier	246	
		9.5.1 An Overview of Prolog and MU-Prolog	246	
		9.5.2 Overall Structure of the NPN Verifier	247	
		9.5.3 PROTEAN-to-Prolog Translator (net2pl)9.5.4 Reachability Graph Generator and Analysis Program	248 253	
		9.5.5 Invoking the NPN verifier	253 254	
	9.6	A Protocol Development Environment	254	
		eter References	255	
10.	АМ	ETHOD TO ADDRESS THE STATE SPACE EXPLOSION PROBLEM	259	
	10.1	Introduction	259	
	10.2	State Space Caching	260	
		Sleep Sets	263	
		Dependency Relations	265	
	10.5	Reducing interleavings caused by extra transitions	268	
		A Small Experiment	271	
		oter References	272	
11	. APP	LICATIONS OF EVEN	275	
	11.1	Introduction	275	
	11.2	Verification Methodology	276	
	11.3	Sliding Window Protocol	277	
		11.3.1 NPNs for Estelle Specification of the Sliding Window Protocol	277	
		11.3.2 Verification of the Sliding Window Protocol Using EVEN	278	
		11.3.3 Performance Results	279	
	11.4	ACSE (Association Control Service Element)	281	
		11.4.1 NPNs for Estelle Specification of the ACSE Protocol	283	
		11.4.2 Verification of ACSE Using EVEN	287	
		11.4.3 Verification Results	287	
		11.4.4 Performance Results	292	
		Summary of the Verification Results	295 295	
	Chapter References			

Index

List of Figures

1.1	The OSI Reference Model	8
1.2	Layer concept of the OSI reference model	9
1.3	Service Primitives	10
1.4	Relationship between data units	11
1.5	A procedure for protocol specification	15
1.6	Data Structure for the Transmitter Window	18
1.7	Data Structure for the Receiver Window	20
1.8	A time-sequence diagram for the ACSE and Presentation Ser-	
	vice Primitives	24
2.1	A Protocol Development Methodology	32
2.2	Finite State Machine	34
3.1	Hierarchical Representation of the Estelle Model	40
3.2	Embedded Representation of the Estelle Model	41
3.3	Graphical Representation of a Module	43
3.4	Module Attributes	46
3.5	Attach Operation	55
3.6	Connect Operation	56
3.7	End-Point to End-Point Communication	57
3.8	Architecture of the Sliding Window Protocol for Estelle Spec-	
	ification	61
3.9	Specification model for ACSE	65
4.1	Two interacting processes: P1 with gates a,b,c, and P2 with	
	gates c, d	83
4.2	Two different processes with their behaviour represented in	
	tree structure	85
4.3	An example of the use of parameterized data type construct	94
4.4	An action in full LOTOS	96

The Architecture of the Sliding Window Protocol for LOTOS Specification	101
<u> </u>	102
The Architecture for the ACSE Protocol LOTOS Specification	105
The overall structure of the ACSE Protocol LOTOS Specifi-	
cation	106
The structure of an SDL specification	113
Summary of SDL Graphical Symbols	114
An example of a system specification (a) in SDL/GR and (b)	
in SDL/PR	116
An example of a block specification (a) in SDL/GR and (b)	
in SDL/PR	118
•	120
	124
	125
	129
- · · · · · · · · · · · · · · · · · · ·	132
	133
	134
	135
- · · · · · · · · · · · · · · · · · · ·	136
- · · · · · · · · · · · · · · · · · · ·	137
=	149
· · · · · · · · · · · · · · · · · · ·	151
	152
-	166
mann	169
Functional architecture of the PRANAS-2 verification subsystem	170
The Estelle* verification toolset	172
Structure of XESAR	173
Overall structure of VEDA	175
Architecture of VESAR	176
Configuration of Estelle Compiler (EC) and Estelle Simula-	
tor/Debugger (EDB)	177
The components of the verification system of EDS	179
	Specification The overall structure of the Sliding Window Protocol LOTOS Specification The Architecture for the ACSE Protocol LOTOS Specification The overall structure of the ACSE Protocol LOTOS Specification The overall structure of the ACSE Protocol LOTOS Specification The structure of an SDL specification Summary of SDL Graphical Symbols An example of a system specification (a) in SDL/GR and (b) in SDL/PR An example of a block specification (a) in SDL/GR and (b) in SDL/PR An example of a process specification (a) in SDL/GR and (b) in SDL/PR An example of a macro definition and a macro call (a) in SDL/GR and (b) in SDL/GR An example of the use of system parameters An example of the use of System parameters An example of the use of GENERATOR construct SWP System in SDL/GR (a) sender_entity block, (b) receiver_entity block and (c) medium in SDL/GR ACPM System in SDL/GR (a) Initiator_ACPM block, (b) Responder_ACPM block and (c) PS in SDL/GR IAEST process behaviour in SDL/GR RAEST process behaviour in SDL/GR RAEST process behaviour in SDL/GR A Simple Petri Net Reachability Set Reachability Graph Principles of Estelle Verification Analysis system for Estelle specifications proposed by U. Thalmann Functional architecture of the PRANAS-2 verification subsystem The Estelle* verification toolset Structure of XESAR Overall structure of VEDA Architecture of VESAR Configuration of Estelle Compiler (EC) and Estelle Simulator/Debugger (EDB)

LIST OF FIGURES

7.10	An approach to Estelle verification proposed by I. Bojanova	180
7.11	Architecture of EVA	182
7.12	An example of transforming Estelle to Petri nets	183
7.13	Main schema of the approach proposed by Dimitrov and Petkov	184
7.14	An example of expressing a module header in PIPN	186
7.15	An example of expressing a transition in PIPN	186
7.16	Overall structure of the PIPN tool	187
8.1	Elements of a generic Numerical Petri Net	194
8.2	BNF syntax of the NPN specification language PROTEAN	196
8.3	Mapping of Estelle components to NPNs	198
8.4	An example of six token types on an NPN graph	199
8.5	BNF syntax of each type of token used in this model	201
8.6	A simple NPN graph for an Estelle transition	206
8.7	An NPN graph for an Estelle module	208
8.8	NPN modelling all-statement	214
8.9	NPN modelling forone-statement	215
8.10	NPN modelling exist-expression	216
8.11	An NPN graph for an Estelle transition	218
8.12	Integrating two NPN nets using input arcs and output arcs	219
8.13	An NPN model for module instance creation	220
8.14	NPNs modelling (a) a connection link and (b) an attachment	
	link between two modules	221
8.15	An NPN model for the disconnect operation	223
8.16	An NPN model for module instance release	224
8.17	An Estelle specification of a simple data transfer protocol	226
8.18	An NPN model for the Estelle specification of a simple data	
	transfer protocol	228
9.1	EVEN	237
9.2	The class structure used in the NPN generator	240
9.3	Class relationship diagram of Place, Trans, Arc and Token	
	classes	240
9.4	Hierarchical structure of five main functions used in the NPN	
	generator	241
9.5	Structure of the NPN verifier	248
9.6	Structure of a Rapid and Reliable Protocol Development En-	
	vironment	257
10.1	Classical Exhaustive Depth-First Search vs. Stack Search	260
10.2	The reachability graph for the NPN shown in Figure 8.18	261
10.3	State space caching and sleep sets	264
10.4	An example of the dependence of three Estelle transitions in	
	the same module	267

10.5	An example of firing an extra transition immediately	268
10.6	State space caching and sleep sets with immediate extra tran-	
	sition firing	269
10.7	The reachability graph generated by Algorithm 4	270
11.1	An Estelle verification procedure	276
11.2	An NPN model for the Sliding Window protocol Estelle Spec-	
	ification	278
11.3	Performances of Algorithm 1 and Algorithm 4 for various state	s 281
11.4	The reachability graph for the Sliding Window Protocol with	
	window size of 2	282
11.5	An NPN graph for the ACSE association establishment	284
11.6	An NPN graph for the ACSE normal release	285
11.7	An NPN graph for the ACSE abnormal release	286
11.8	A sequence of service primitives causing Deadlock 1	289
11.9	A sequence of service primitives causing Deadlock 2	290
11.10	A sequence of service primitives causing Deadlock 3	291
11.11	A sequence of service primitives causing Deadlock 4	292
11.12	Performances of Algorithm 1 and Algorithm 4 for various vis-	
	ited states for the ACSE protocol	294
11.13	The reachability graph and sleep sets for the abnormal release	
	service with collision	296

List of Tables

1.1	ACSE APDUs and mapping between application and presen-	
	tation primitives	21
1.2	AARQ APDU fields and AARE APDU fields	22
1.3	RLRQ APDU fields, RLRE APDU fields and ABRT APDU	
	fields	23
3.1	Module types and their interaction points in the SWPM Es-	
	telle specification	62
3.2	Module types and their interaction points in the ACSE Estelle	
	specification	66
4.1	A list of basic LOTOS behaviour expressions	84
4.2	Types of interaction	97
6.1	Reachability Graph in Tabular Form	150
6.2	Details of the Markings for the Petri Net	150
6.3	Power of Protocol Verification Techniques	160
7.1	Methods for Verification and Validation of Estelle specification	s 167
7.2	Protocols with their applied Estelle validation and verification	
	methods	168
8.1	Mapping of Estelle components to NPNs	200
8.2	Estelle and NPN Data Types	211
8.3	A summary of the translation from Estelle to NPN	232
8.4	A summary of the translation from Estelle to NPN (cont.)	233
8.5	Input/Output Places, Input/Output Tokens and Transition	
	Conditions of Figure 8.18	234
10.1	Initial marking for the NPN shown in Figure 8.18	262
10.2	A comparison between the performances of Algorithm 1, 2, 3	
	and 4	272
11.1	Initial marking of the NPN shown in Figure 11.2	279

11.2	A comparison between the performances of Algorithm 1 and Algorithm 4 for the Sliding Window Protocol with six different	
	window sizes	280
11.3	Sleep sets associated with each of the markings shown in Figure 11.4	283
11.4	A comparison between the performances of Algorithm 1 and	
	Algorithm 4 for the seven cases of the ACSE protocol	293

Preface

Communication protocols are rules whereby meaningful communication can be exchanged between different communicating entities. In general, they are complex and difficult to design and implement. Specifications of communication protocols written in a natural language (e.g. English) can be unclear or ambiguous, and may be subject to different interpretations. As a result, independent implementations of the same protocol may be incompatible. There is, therefore, a need for precise and unambiguous specification using some formal languages. In addition, the complexity of protocols makes it very hard to analyse in an informal way.

Many protocol implementations used in the field have almost suffered from failures, such as deadlocks. When the conditions in which the protocols work correctly have been changed, there has been no general method available for determining how they will work under the new conditions. It is necessary for protocol designers to have techniques and tools to detect errors in the early phase of design, because the later in the process that a fault is discovered, the greater is the cost of rectifying it.

Protocol verification is a process of checking whether the interactions of protocol entities, according to the protocol specification, do indeed satisfy certain properties or conditions which may be either general (e.g., absence of deadlock) or specific to the particular protocol system directly derived from the specification.

In the 80's, an ISO (International Organisation for Standardisation) working group began a programme of work to develop from languages which were suitable for Open Systems Interconnection (OSI). This group called such languages Formal Description Techniques (FDTs). Some of the objectives of ISO in developing FDTs were: enabling unambiguous, clear and precise descriptions of OSI protocol standards to be written, and allowing such specifications to be

verified for correctness. There are two FDTs standardised by ISO - LOTOS and Estelle.

This book is written to address the two issues discussed above: the needs to specify a protocol using an FDT and to verify its correctness in order to uncover specification errors in the early stage of a protocol development process. The readership primarily consists of advanced undergraduate students, postgraduate students, communication software developers, telecommunication engineers, EDP managers, researchers and software engineerers. It is intended as an advanced undergraduate or postgraduate text book, and a reference for communication protocol professionals.

Contents

Part I: Protocol Specification

Chapter 1 gives an introduction to communication protocols, the ISO reference model, layering concepts, and protocol specification. Then the specification of the Sliding Window and the ISO ACSE protocols are described.

Chapter 2 describes the need for formally specifying communication protocols, gives an introduction to Formal Description Techniques and outlines the different types of FDTs.

Chapter 3 gives a detailed description of Estelle and the uses of Estelle in specifying the Sliding Window and the ACSE protocols.

Chapter 4 presents LOTOS and the uses of LOTOS in specifying the Sliding Window and the ACSE protocols.

Chapter 5 describes SDL and the uses of SDL in specifying the Sliding Window and the ACSE protocols.

Part II: Protocol Verification

Chapter 6 gives an introduction to protocol verification, the most commonly used techniques and the major difficulty - the state space explosion problem.

Chapter 7 presents the principles of Estelle verification. This is followed by a survey of some of the Estelle verification methods.

Chapter 8 describes an approach based on Numerical Petri Nets (NPNs) for modelling Estelle.

Chapter 9 describes a software environment, EVEN (Estelle Verification Environment using NPNs), which facilitates the automatic verification of communication protocols specified in Estelle.

Chapter 10 presents a method to address the well-known state space explosion problem and its algorithm which is implemented in EVEN.

PREFACE

Chapter 11 describes the results of using EVEN for the verifications of the Estelle specifications of the Sliding Window and the ISO ACSE protocols.

RICHARD LAI

AJIN JIRACHIEFPATTANA

Acknowledgments

We would like to thank NIST of the US Department of Commerce for making Pet and Dingo and Telecom Australia for making PROTEAN available to us for the work on protocol verification, and the Australian Research Council for the financial support under the grant A49601203 for a part of the work on specification and implementation described in this book.