Practical Work 1: Linear Models for Classification

Tudor Berariu

tudor.berariu@gmail.com

October 5, 2016

You are going to solve a handwritten digit classification problem using both a linear and a non-linear classifier. The linear model's parameters will be computed in closed form, and trained using gradient descent.

1 The classification problem

The goal in classification is to build a model that takes an input vector \boldsymbol{x} and assigns it to a class from a discrete finite set of classes $\{C_1, \ldots, C_K\}$.

A data set consists of a set of N input vectors $\boldsymbol{x}^{(n)} \in \mathbb{R}^D$ arranged as a matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$, and a set of N corresponding target vectors $\boldsymbol{t}^{(n)} \in \mathbb{R}^K$ arranged as a matrix $\mathbf{T} \in \mathbb{R}^{N \times K}$. Each $\boldsymbol{t}^{(n)}$ is one-hot coded.

A linear classifier computes K output values y_k , and assigns the input vector to the class corresponding to the largest y_k .

$$y_k(\boldsymbol{x}) = \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} + w_{k0} = \widetilde{\boldsymbol{w}}_k^{\mathrm{T}} \widetilde{\boldsymbol{x}}$$
 (1)

In Formula 1 $\widetilde{\boldsymbol{w}}_k \in \mathbb{R}^D$ represents the parameters of the k^{th} output. The same equation can be written in matrix form as in Formula 2, where $\widetilde{\mathbf{W}}$ is a matrix of size $(D+1) \times K$ having $\widetilde{\boldsymbol{w}}_k$ as columns.

$$\boldsymbol{y}(\boldsymbol{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\boldsymbol{x}} \tag{2}$$

2 The MNIST data set

The data set we are going to use today is MNIST which consists of handwritten digits. First, install the MNIST parser using pip.

\$ pip install python-mnist

Check that everything works as expected.

\$ python mnist_loader.py

You should also see a matrix of 10×10 digits.

3 Solving a linear classifier in closed form

Consider the sum of squares error function in Formula 3.

$$E(\widetilde{\mathbf{W}}) = \sum_{n=1}^{N} \frac{1}{2} \left(\widetilde{\mathbf{W}}^{\mathrm{T}} \boldsymbol{x}^{(n)} - \boldsymbol{t}^{(n)} \right)^{2} = \frac{1}{2} Tr \left[\left(\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T} \right)^{\mathrm{T}} \left(\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T} \right) \right]$$
(3)

In order to minimize $E(\widetilde{\mathbf{W}})$ we compute its gradient and set it to zero. This yields a closed form solution for the optimal parameters (Formula 4).

$$\widetilde{\mathbf{W}} = \left(\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}}\right)^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T}$$
(4)

Use np.linalg.pinv to compute the pseudo-inverse of a matrix.

4 Minimizing error using gradient descent

Consider again the sum of squares error function (Formula 5).

$$E(\widetilde{\mathbf{W}}) = \sum_{n=1}^{N} \frac{1}{2} \left(\widetilde{\mathbf{W}}^{\mathrm{T}} \boldsymbol{x}^{(n)} - \boldsymbol{t}^{(n)} \right)^{2}$$
 (5)

Differentiating $E(\widetilde{\mathbf{W}})$ in Formula 5 with respect to $\widetilde{\mathbf{W}}$.

$$\nabla_{\widetilde{\mathbf{W}}} E = \sum_{n=1}^{N} \left(\widetilde{\mathbf{W}}^{\mathrm{T}} \boldsymbol{x}^{(n)} - \boldsymbol{t}^{(n)} \right) \boldsymbol{x}^{(n)^{\mathrm{T}}} = \left(\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T} \right)^{\mathrm{T}} \widetilde{\mathbf{X}}$$
(6)

Gradient based algorithms are iterative procedures that start with some random parameters $\widetilde{\mathbf{W}}^{(0)}$ and try to search the parameter space by moving in the opposite direction to the gradient of the error.

$$\widetilde{\mathbf{W}}^{(t+1)} = \widetilde{\mathbf{W}}^{(t)} - \eta \nabla_{\widetilde{\mathbf{W}}} E \tag{7}$$

 η is a hyper-parameter called *learning rate*.

5 Adding a sigmoid transfer function

Add a logistic transfer function as in Formula 8.

$$y(x) = \sigma\left(\widetilde{\mathbf{W}}^{\mathrm{T}}\widetilde{x}\right) \tag{8}$$

The gradient of the error w.r.t. the parameters takes the form in Formula 9.

$$\nabla_{\widetilde{\mathbf{W}}} E = ((\mathbf{Y} - \mathbf{T}) \odot \mathbf{Y} \odot (1 - \mathbf{Y}))^{\mathrm{T}} \widetilde{\mathbf{X}}$$
(9)

6 Tasks

- 1. See how the data set is loaded and used in train.py.
 - You should see three confusion matrices.
- 2. Compute the closed form parameters of the linear model in closed_form(self, X, T) in file linear_classifier.py.
- 3. Compute the output for a given set of inputs. Write your code in output(self, X) in file linear_classifier.py.
 - Now you should get an accuracy of 86.01% when running train.py.

\$ python train.py

[C:	losed	d Form]	Acc	uracy	on t	test set: 0.860100				
[[944	0	1	2	2	7	14	2	7	1]
[0	1107	2	2	3	1	5	1	14	0]
[18	54	812	26	15	0	42	22	38	5]
[4	17	23	879	5	17	10	21	22	12]
[0	22	6	1	881	5	10	2	11	44]
[23	18	3	72	24	659	23	14	39	17]
[18	10	9	0	22	17	875	0	7	0]
[5	40	16	6	26	0	1	884	0	50]
[14	46	11	30	27	40	15	12	759	20]
[15	11	2	17	80	1	1	77	4	801]]

4. Compute a step of parameters update using gradient descent in update_params(self, X, T, lr) in linear_classifier.py.

- You should now see the evolution of the accuracy on the test set for the linear model.
- 5. Implement the output method in class SigmoidClassifier.
- 6. Implement the update_params method in class SigmoidClassifier.
 - You should now see a plot similar to this one:

7 Discussion

Provide answers for the following questions.

- 1. During gradient descent training the accuracy on the test set for the linear model was sometimes a bit higher than the analytic solution. How is this possible?
- 2. Why do these models not overfit?
- 3. Why does the nonlinear model outperform the linear one?
- 4. See what happens when you vary the learning rate.

8 Numpy hints

Use:

numpy.linalg.pinv to compute the pseudo-inverse of a function;

numpy.hstack to concatenate arrays horizontally;

numpy.dot to multiply matrices;

numpy.transpose to transpose a matrix;

numpy.exp to compute the exponential element-wise in an array;