B. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

1. (Currently Amended) Polyhydroxyalkanoate comprised of A

polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (1)

within the a molecule:

$$\begin{array}{c}
R\\N-H\\ = O\\ (CH_2)m\\ - O & \end{array}$$

$$\begin{array}{c}
CH_2 & \\
Z
\end{array}$$

wherein R represents -A₁-SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0-8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R₁, R_{1a}, A₁, m and Z have the aforementioned meanings independently for each unit.

2. (Currently Amended) Polyhydroxyalkanoate The polyhydroxyalkanoate according to claim 1, comprised of comprising, as the unit

represented by the chemical formula (1), at least a unit represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or (4B), within a molecule:

$$\begin{array}{c} SO_2R_2\\ A_2\\ N-H\\ C=O\\ \\ (CH_2)m\\ C=O \end{array}$$

wherein R_2 represents OH, a halogen atom, ONa, OK or OR_{2a} ; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group; A_2 represents a linear or branched alkylene group with 1 to 8 carbon atoms; m represents an integer selected from 0 - 8; Z_2 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, A_2 , R_2 , R_{2a} , m and Z_2 have the aforementioned meanings independently for each unit;

$$R_{3b}$$
 R_{3c}
 R_{3d}
 R_{3e}
 R_{3e}
 R_{3e}
 $C=O$
 $CH_2)m$
 O
 CH_2
 CH_2

wherein R_{3a}, R_{3b}, R_{3c}, R_{3d} and R_{3e} each independently represents SO₂R_{3f} (R_{3f} representing OH, a halogen atom, ONa, OK or OR_{3fl} (R_{3fl} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{3f}, m represents an integer selected from 0 - 8; Z₃ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{3a}, R_{3b}, R_{3c}, R_{3d}, R_{3e}, R_{3f}, R_{3fl}, R_{3g}, m and Z₃ have the aforementioned meanings independently for each unit;

$$\begin{array}{c|c}
R_{4e} \\
R_{4g} \\
R_{4g} \\
R_{4d} \\
R_{4c} \\
R_{4b} \\
R_{4b} \\
R_{4b} \\
C=O \\
(CH_2)m \\
O \\
Z_{4a} \\
(4A)_{1}$$

wherein R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f} and R_{4g} each independently represents SO₂R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl

group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4o}; m represents an integer selected from 0 - 8; Z_{4a} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4o}, R_{4o1}, R_{4p}, m and Z_{4a} have the aforementioned meanings independently for each unit;

wherein R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4l}, R_{4m} and R_{4n} each independently represents SO₂R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl

group), of which at least one is SO_2R_{40} ; m represents an integer selected from 0 - 8; Z_{4b} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4h} , R_{4i} , R_{4j} , R_{4k} , R_{4l} , R_{4m} , R_{4n} , R_{40} , R_{401} , R_{4p} , m and Z_{4b} have the aforementioned meanings independently for each unit.

3. (Currently Amended) Polyhydroxyalkanoate comprised of A polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (5) within a molecule:

$$\begin{array}{c}
COOR_5\\
(CH_2)m\\
O\\
-CO+|I|\\
Z_5
\end{array}$$
(4)(5).

wherein R_5 represents hydrogen, a group capable of forming a salt or R_{5a} ; R_{5a} represents a linear or branched alkyl group with 1 - 12 carbon atoms, an aralkyl group or a substituent having a sugar; m represents an integer selected from 0 - 8; Z_5 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; however R_5 only represents a substituent having a sugar in case Z_5 is a methyl group and m is 0 - 1; and in case plural units are present, R_5 , R_{5a} , m and Z_5 have the aforementioned meanings independently for each unit.

4. (Currently Amended) Polyhydroxyalkanoate The

polyhydroxyalkanoate according to any one of claims 1 to 3 claim 1, further comprised of comprising a unit represented by a chemical formula (6) within a molecule:

$$+$$
0 $-$ R₆ $)$ (6),

wherein R_6 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.

5. (Currently Amended) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (8), eomprised efof the method comprising a step of executing hydrolysis of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (7) in the presence of an acid or an alkali, or a step of executing hydrogenolysis comprising a catalytic reduction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (7):

wherein R_7 represents a linear or branched alkyl group with 1 - 12 carbon atoms or an

aralkyl group; m represents an integer selected from 0 - 8; Z_7 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_7 is a methyl group; and in case plural units are present, R_7 , m and Z_7 have the aforementioned meanings independently for each unit;

$$\begin{array}{c}
COOR_8\\
(CH_2)m\\
O\\
-CO
\end{array}$$

$$\begin{array}{c}
Z_8
\end{array}$$
(8),

wherein R_8 represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z_8 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_8 is a methyl group; and, in case plural units are present, R_8 , m and Z_8 have the aforementioned meanings independently for each unit.

6. (Currently Amended) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (1), comprised of the method comprising a step of executing a condensation reaction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (9) and an amine compound represented by a chemical formula (10):

$$\begin{array}{c}
COOR_{9} \\
(CH_{2})m \\
O \\
-
\end{array}$$

$$\begin{array}{c}
CO \\
O \\
Z_{9}
\end{array}$$

$$\begin{array}{c}
(9)_{3}
\end{array}$$

wherein R₉ represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z₉ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and, in case plural units are present, m, R₉ and Z₉ have the aforementioned meanings independently for each unit;

$$H_2N - A_3 - SO_2R_{10}$$
 (10),

wherein R_{10} represents OH, a halogen atom, ONa, OK or OR_{10a} ; R_{10a} and A_3 each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and, in case plural units are present, R_{10a} and R_{10a} are presents of R_{10a} and R_{10a}

$$\begin{array}{c}
R\\N-H\\
=0\\
(CH_2)m\\
-\left(-0\right) \\
Z
\end{array}$$
(1),

wherein R represents -A₁-SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a}

and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0-8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R₁, R_{1a}, A₁, m and Z have the aforementioned meanings independently for each unit.

7. (Currently Amended) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (13), comprised of the method comprising:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (12):

$$\begin{array}{c|c} - & & \\ \hline & & \\ Z_{11} & O \end{array}$$
 (11)₃

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

wherein m represents an integer selected from 0 - 8; X represents a halogen atom; and R_{12} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group;

$$COOR_{13}$$
 $(CH_2)m$
 O
 Z_{13}
 (13)

wherein m represents an integer selected from 0 - 8; R_{13} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; Z_{13} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_{13} is a methyl group; and in case plural units are present, R_{13} , m and Z_{13} have the aforementioned meanings independently for each unit.

8. (Currently Amended) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (15), comprised of the method comprising:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (14):

$$\begin{array}{c|c} + \circ & \\ \hline & \\ Z_{11} \circ \\ \end{array}$$
 (11)

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

wherein R_{14} represents $-A_{14}$ -SO₂ R_{14a} ; R_{14a} represents OH, a halogen atom, ONa, OK or OR_{14b}; R_{14b} and A_{14} each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{14} , R_{14a} , R_{14b} , and A_{14} have the aforementioned meanings independently for each unit;

$$R_{15}$$
 $N-H$
 C
 $CH_{2})_{20}$
 Z_{15}
 Z_{15}
 Z_{15}
 Z_{15}

wherein R_{15} represents $-A_{15}$ -SO₂ R_{15a} ; R_{15a} represents OH, a halogen atom, ONa, OK or OR_{15b}; R_{15b} and A_{15} each independently represents a group having a substituted or

unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; Z_{15} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{15} , R_{15a} , R_{15b} , and A_{15} have the aforementioned meanings independently for each unit.

9. (New) The polyhydroxyalkanoate according to claim 2, further comprising a unit represented by a chemical formula (6) within a molecule:

$$+0^{-R_{-6}}$$
 (6)

wherein R_6 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.

10. (New) The polyhydroxyalkanoate according to claim 3, further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R_6 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.