CS202Basic Computer Architecture

- Computers consist of:
 - Datapath
 - ► Control unit
- It is designed to implement a particular instruction set.
- The individual instructions are the engineering equivalent of the mathematician's

OPCODE DESTINATION OPERANDS

CS2022pcode – Destination - Operands

- ▶OPCODE
 - ▶ Selects the function
- **▶**DESTINATION
 - ▶Is nearly always a datapath register
- **▶**OPERANDS
 - Usually come from datapath register

CS2022 Instruction Format Examples

15		9	8 6	5 3	2 0
	Opcode		Destination register (DR)	Source reg- ister A (SA)	Source reg- ister B (SB)
			(a) Register		
15		9	8 6	5 3	2 0
	Opcode		Destination register (DR)	Source reg- ister A (SA)	Operand (OP)
		(1	b) Immediate		
15		9	8 6	5 3	2 0
	Opcode		Address (AD) (Left)	Source reg- ister A (SA)	Address (AD) (Right)
	ILV WAS AllPer		Jump and Branch	I Lie Willia All Pro-	

CS2022 Data and Instructions in Memory

Decimal address	Memory contents	Decimal opcode	Other specified fields	Operation
25	0000101 001 010 011	5 (Subtract)	DR:1, SA:2 SB:3	R1 ← R2 – R3
35	0100000 000 100 101	32 (Store)	SA:4 SB:5	M [R4] ←R5
45	1000010 010 111 011	66 (Add Immedi- ate)	DR:2 SA:7 OP:3	R2 ← R7 + 3
55	1100011 101 110 100	96 (Branch on zero)	AD: 44 SA:6	If R6 = 0, PC ← PC - 20
70	0000000 011 000 000	Data = 192. After e	xecution of instruction in	35, Data = 80.

CS2022 A Single-cycle Hardwired Control Unit

- ► We briefly consider a system with the simplest possible control unit.
- ► The control unit:
 - ▶ Maps each OPCODE to a single datapath operation.
- Instructions are fetched from an instruction memory
- ► This is what all present systems with separate instruction and data code do.

Single-Cycle Computer IR(8:6) || IR(2:0) Extend RW-Branch PC Register Control Address Constant Instruction memory MUX B ◀─ MB Instruction Address out Bus A Bus B Data out Zero fill. MW IR(2:0) Instruction decoder Address Data in Data Function memory unit Data out FS M Data in CONTROL Bus D DATAPATH CS2022, 14th Lecture, Dr. M. Manzke, Page: 8

CS2022 Memory Module [entity]

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
entity memory is -- use unsigned for memory address
Port ( address : in unsigned std_logic_vector(31 downto 0);
    write_data : in std_logic_vector(31 downto 0);
    MemWrite, MemRead : in std_logic;
    read_data : out std_logic_vector(31 downto 0));
end memory;
```

CS2022 Memory Module [architecture]

```
architecture Behavioral of memory is
type mem_array is array(0 to 7) of std_logic_vector(31 downto 0);
-- define type, for memory arrays
begin
mem process: process (address, write data)
-- initialize data memory, X denotes hexadecimal number
variable data mem : mem array := (
X"00000000", X"00000000", X"00000000", X"00000000",
X"00000000", X"00000000", X"00000000", X"00000000");
variable addr:integer
begin -- the following type conversion function is in std_logic_arith
addr:=conv integer(address(2 downto 0));
if MemWrite ='1' then
data mem(addr):= write data;
elsif MemRead='1' then
read data <= data mem(addr) after 10 ns;
end if.
end process;
end Behavioral;
```


CS2022 Truth Table BIT15 - BIT13

► The following operations classification helps with the implementation of the instruction decoder

	Ins	Control Word Bits							
Instruction Function Type	Bit 15	Bit 14	Bit 13	МВ	MD	RW	MW	PL	JB
ALU function using registers	0	0	0	0	0	1	0	0	X
Shifter function using registers	0	0	1	O	0	1	0	0	X
Memory write using register data	0	1	0	O	X	0	1	0	X
Memory read using register data	0	1	1	0	1	1	0	0	X
ALU operation using a constant	1	0	0	1	0	1	0	0	X
Shifter function using a constant	1	0	1	1	0	1	0	0	X
Conditional Branch	1	1	0	X	X	0	O	1	0
Unconditional Jump	1	1	1	X	X	0	0	1	1

CS2022 Single-Cycle Computer Instruction Example

Operation code	Symbolic name	Format	Description	Function	МВ	MD	RW	мw	PL	JB
1000010	ADI	Immediate	Add immediate operand	$R[DR] \leftarrow R[SA] + zf I(2:0)$	1	0	1	0	0	0
0110000	LD	Register	Load memory content into register	$R[DR] \leftarrow M[R[SA]]$	0	1	1	0	0	1
0100000	ST	Register	Store register content in memory	$M[R[SA]] \leftarrow R[SB]$	0	1	0	1	0	0
0011000	SL	Register	Shift left	$R[DR] \leftarrow slR[SB]$	0	0	1	0	0	1
0001110	NOT	Register	Complement register	$R[DR] \leftarrow \overline{R[SA]}$	0	0	1	0	0	0
1100000	BRZ	Jump/Branch	If $R[SA] = 0$, branch	If $R[SA] =$	1	0	0	0	1	0
			to $PC + se AD$	$0, PC \leftarrow PC + \text{se}AD$,						
				If $R[SA] \neq 0, PC \leftarrow PC + 1$						
	CPU	± ₩	EEROM 9	CPU +V EEROM Q EEROM	₩ 1			ED 880M		

► A single-cycle control unit has long worst case delay path.

Multiple-Cycle Microprogrammed Computer PC 9 x 16 Register 3 MS 16 file Opcode |DR|SA|SB Zero fill 1 0 MUX B 14.7456MD CAR Bus B 0 Bus A Data Address out Control memory Data in Address 256 x 28 Function Memory unit Data out ASCLILIDABBSDWMW Data in Datapath control control 0 MUX D Bus D re, Dr. M. Manzke, Page: 18 MICROPROGRAMMED CONTROL DATAPATH

CS2022 Control Word Information for Datapath

TD	TA	ТВ	MB		FS	0 A17 0 A12 0: 0 A19	MD	RW	MM	MW	
Select	Select	Select	Select	Code	Function	Code	Select	Function	Select	Function	Code
R[DR]	R[SA]	R[SB]	Register	0	F = A	00000	FnUt	No write (NW)	Address	No write (NW)	0
R8	R 8	R8	Constant	1	$F = A + 1$ $F = A + B$ $F = A + B + 1$ $F = A + B + 1$ $F = A + B + 1$ $F = A - 1$ $F = A$ $F = A \wedge B$ $F = A \vee B$ $F = A \oplus B$ $F = A \oplus B$ $F = B$	00001 00010 00011 00100 00101 00110 01110 01100 01110 10000 10100 11100	Data In	Write (WR)	PC	Write (WR)	1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 3 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	# A12 P # A7 W. # A6 # A5 # A4 A		CP MC681 - A3 - A4 - A5 - A6 - A7 - A8	A2	5V +V 12 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	57 HOUST 12 PM 25 7 7 P.C. 25 A 25 7 4 A 11 2 2 A 10 5 7 7 1 C 1	A A A A A A A A A A A A A A A A A A A	