MATH 311

Chapter 6

SECTION 6.3: LINEAR INDEPENDENCE AND DIMENSION

Contents

Linear	Independence											2
Basis												6
	Subspaces of \mathbb{R}^m		•	•	•				•			S
	Subspaces of Mat	rices					•					11

Created by: Pierre-Olivier Parisé Spring 2024

LINEAR INDEPENDENCE

EXAMPLE 1. Let
$$\mathbf{v} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$
. Let $\mathbf{u_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u_3} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$

- a) Consider the vectors. Can you write \mathbf{v} as a unique linear combination of the vectors $\mathbf{u_1}$, $\mathbf{u_2}$, and $\mathbf{u_3}$?
- b) Consider the vectors. Can you write the vector \mathbf{v} as a unique linear combination of the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$?

SOLUTION.

(a) Let
$$\vec{v} = a_1\vec{u}_1 + a_2\vec{u}_2 + a_3\vec{u}_3$$
. The solution
15 $a_1 = 2 - t$, $a_2 = -1 - t$ and $a_3 = t$.
 $t = 0 - 0$ $\vec{v} = 2\vec{u}_1 + (-1)\vec{u}_2 + 0\vec{u}_3$ not $t = 1 - 0$ $\vec{v} = 1\vec{u}_1 + (-2)\vec{u}_2 + 1\vec{u}_3$ unique.
(b) Let $\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3$. The solution $a_1 = 3$, $a_2 = 2$, $a_3 = -3$.
 -0 $\vec{v} = 3\vec{v}_1 + 2\vec{v}_2 + (-3)\vec{v}_3$ Unique!

DEFINITION 1. A set of vectors $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ in a vector space V is called **linearly independent** (or simply **independent**) if

$$s_1\mathbf{v_1} + s_2\mathbf{v_2} + \dots + s_n\mathbf{v_n} = \mathbf{0} \quad \Rightarrow \quad s_1 = s_2 = \dots = s_n = 0.$$

A set of vectors that is not independent is said to be **linearly dependent** (or simply **dependent**).

Note:

• The trivial linear combination of the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ is the one with every coefficient zero:

$$0\mathbf{v_1} + 0\mathbf{v_2} + \dots + 0\mathbf{v_n}.$$

• So the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ are linearly independent if and only if the only way to write $\mathbf{0}$ is using the trivial linear combination.

EXAMPLE 2. Show that the set

$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

is independent. In M_{22} .

$$\vec{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

SOLUTION.

Write

$$S_1 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + S_2 \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + S_3 \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} + S_4 \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

P.-O. Parisé

$$\Rightarrow \begin{bmatrix} S_1 + S_2 & S_1 + S_4 \\ S_2 + S_3 & -S_3 + S_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} S_1 + S_2 = 0 \\ S_1 + S_2 = 0 \end{cases} S_1 + S_4 = 0$$

$$\begin{cases} S_2 + S_3 = 0 \\ S_2 + S_3 = 0 \end{cases} S_1 + S_4 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

=> matrius are linearly independent.

EXAMPLE 3. Let $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$ be an independent set in a vector space V. Which of the following set is independent?

a)
$$\{\mathbf{x} \stackrel{\mathbf{V}}{-} \mathbf{y}, \mathbf{y} \stackrel{\mathbf{V}}{-} \mathbf{z}, \mathbf{z} \stackrel{\mathbf{V}}{-} \mathbf{x}\}.$$

b)
$$\{\mathbf{x} - \mathbf{y}, \mathbf{y} - \mathbf{z}, \mathbf{z} - \mathbf{w}, \mathbf{w} - \mathbf{x}\}.$$

SOLUTION.

a) Write
$$s_1(\overline{z}-\overline{y}) + s_2(\overline{y}-\overline{z}) + s_3(\overline{z}-\overline{z}) = \overline{o}$$

$$\Rightarrow (5_1 - 5_3) \vec{2} + (-5_1 + 5_2) \vec{y} + (-5_2 + 5_3) \vec{z} = \vec{0}$$

$$+ \vec{0} \vec{\omega}$$

lin.ind.

$$\Rightarrow S_{1}-S_{3}=0, -S_{1}+S_{2}=0, -S_{2}+S_{3}=0$$

$$\Rightarrow \begin{bmatrix} 10 & -1 & 0 \\ -11 & 0 & 0 \\ 0 & -11 & 0 \end{bmatrix} \xrightarrow{\dots} \begin{bmatrix} 10 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} s_1 = t \\ s_2 = t \\ s_3 = t \end{cases}$$

$$L_D \lim_{n \to \infty} dep.$$

b) Write

$$51=54$$
, $5z=54$, $53=54$, $53=54$

Basis

DEFINITION 2. A set $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ of vectors in a vector space V is called a basis of V if it satisfies the following two conditions:

- $\textcircled{1} \{e_1, e_2, \dots, e_n\}$ is linearly independent.
- 2 $V = \operatorname{span}\{e_1, e_2, \dots, e_n\}$. $\rightarrow \vec{c} = \vec{s}_1 \vec{e}_1 + \dots + \vec{s}_n \vec{e}_n$.

EXAMPLE 4. Let $V = \mathbb{R}^3$. Verify the following.

- a) If $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$ are the columns of I_3 , then $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a basis for \mathbb{R}^3 .
- basis for \mathbb{R}^3 . b) $\{[1 \ -1 \ 0]^{\top}, [3 \ 2 \ -1]^{\top}, [3 \ 5 \ -2]^{\top}\}$ is a basis for \mathbb{R}^3 .
- a) (1) Lin. ind.

$$S_{1}\overrightarrow{e_{1}} + S_{2}\overrightarrow{e_{2}} + S_{3}\overrightarrow{e_{3}} = \overrightarrow{o}$$

$$\Rightarrow S_{1}\begin{bmatrix} 0 \\ 0 \end{bmatrix} + S_{2}\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + S_{3}\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} S_1 \\ S_2 \\ S_3 \end{vmatrix} = \begin{vmatrix} O \\ O \end{vmatrix} \Rightarrow S_1 = O S_2 = O S_3 = O$$

2 V= Spanjei, ez, ez}.

$$\vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

So, V = span { = ? , = ? , = }

Thuefne, ¿èi, èz, ès} is a basis of 123.

$$\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$
, above ER. So

=> Thue is a solution for every cribic ER.

Conclusia: D&@ one satisfied es basis.

Observations:

• Invariance Theorem (p.347): If $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for a vector space V and if $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m\}$ is a basis for a vector space V, then m = n.

DEFINITION 3. If $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ is a basis of a nonzero vector space V, the number n of vectors in the basis is called the **dimension**, and we write

$$\dim V = n$$
.

In the case of the zero vector space, we define $\dim\{\mathbf{0}\}=0$.

Note:

- ① We have dim $\mathbb{R}^m = m$ because the columns of the identity matrix I_m is a basis.
- ② We have dim $\mathbf{M_{mn}} = mn$. Let E_{ij} be the matrix with a 1 in the (i, j)-entry and 0 elsewhere. A basis for $\mathbf{M_{mn}}$ is

$$B = \{M_{ij} : 1 \le i \le m, 1 \le j \le n\}.$$

This is called the **canonical basis** or **standard basis** of $\mathbf{M_{mn}}$. For instance, if m = n = 2, then a basis for $\mathbf{M_{22}}$ is

$$B = \{M_{11}, M_{12}, M_{21}, M_{22}\}$$

$$= \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

3 We have $\dim \mathbf{P_n} = h+1$. A basis is

$$B = \{1, x, x^2, \dots, x^n\}$$

$$q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n .$$

4 Any subspace U of a vector space V is a vector space. Therefore, we can find the dimension of U.

Subspaces of \mathbb{R}^m

For subspaces of \mathbb{R}^m , there is a really nice way to determine a basis and the dimension of a spanning set. Let

$$U = \operatorname{span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}.$$

Let

- $A = [\mathbf{v_1} \ \mathbf{v_2} \ \cdots \ \mathbf{v_n}].$
- R be the RREF of A.

Then

- $\dim U = \text{number of pivots in } R$.
- A basis for U is given by the vector in the same column as the pivots.

EXAMPLE 5. Find a basis and calculate the dimension for the following subspace of \mathbb{R}^4 :

$$U = \text{span}\{(1, -1, 2, 0), (2, 3, 0, 3), (1, 9, -6, 6)\}.$$
SOLUTION.

We have
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 9 \\ 2 & 0 & -6 \\ 0 & 3 & 6 \end{bmatrix}$$

The RRIEF is
$$R = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Henre,

Note: This trick also works for subspaces of the space of polynomials $\mathbf{P_n}$.

P.-O. Parisé

Subspaces of Matrices

EXAMPLE 6. Define the subspace of $\mathbf{M_{22}}$ as

$$U = \left\{ X \in \mathbf{M_{22}} \ : \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} X = X \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Find a basis of U and its dimension.

Nrite
$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. $X \in U$ iff
$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a & b \\ a & b \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ c+d & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c+d & 0 \\ c & d \end{bmatrix}$$

$$= \begin{bmatrix} c & 0 \\ c & 0 \end{bmatrix} + \begin{bmatrix} d & 0 \\ 0 & d \end{bmatrix}$$

$$= c \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$S_6$$
,
$$U = Span \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

$$S_{1}\begin{bmatrix}1&0\\1&0\end{bmatrix}+S_{2}\begin{bmatrix}1&0\\0&1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$

$$= S_1 + S_2 = 0 \qquad 0 = 0$$

$$\left| S_1 = 0 \right|$$

Conclusion: