Grupo ARCOS

uc3m | Universidad Carlos III de Madrid

Tema 1: Introducción a los computadores Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- ▶ Tipos de computadores
- Evolución histórica

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

¿Qué es un computador?

- Computador: máquina destinada a procesar datos.
 - Sobre ellos se aplican unas instrucciones obteniendo después unos resultados (datos/información)

¿Qué es un computador?

- Computador: máquina destinada a procesar datos.
 - Computador digital: datos e instrucciones en formato binario.

Distintos tipo de computadores

Industria de los semiconductores

2019F Semiconductor Unit Shipments (1,142.68)

Procesadores:3% de la industria

Source: IC Insights

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- ▶ Tipos de computadores
- Evolución histórica

Sistema digital basado en: 0 y 1

Sistema binario

Binario

Valor =
$$d_{31} \times 2^{31} + d_{30} \times 2^{30} + ... + d_{1} \times 2^{1} + d_{0} \times 2^{0}$$

Sistema binario

Binario

$$X = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ ... & 2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix}$$
 Peso p_i

Valor =
$$d_{31} \times 2^{31} + d_{30} \times 2^{30} + ... + d_{1} \times 2^{1} + d_{0} \times 2^{0}$$

- ¿Cuántos valores se pueden representar con n bits?
- ▶ ¿Cuántos bits se necesitan para representar m 'valores'?
- Con n bits, si los valores a representar son números y comienzo en el 0, ¿Cuál es el máximo valor representable?

Sistema binario

Binario

$$X = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ ... & 2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix}$$
 Peso p_i

Valor =
$$d_{31} \times 2^{31} + d_{30} \times 2^{30} + ... + d_{1} \times 2^{1} + d_{0} \times 2^{0}$$

- ¿Cuántos valores se pueden representar con n bits?
- ¿Cuántos bits se necesitan para representar m 'valores'?
- Con n bits, si los valores a representar son números y comienzo en el 0, ¿Cuál es el máximo valor representable?

Log₂(m) por exceso

2n-1

2n

Elementos constructivos electrónicos...

Transistor

P-MOS

Е	Funcionamiento
1	Conecta A con B (circuito abierto)
0	No conecta A con B (circuito cerrado)

Е	Funcionamiento
0	Conecta A con B (circuito abierto)
1	No conecta A con B (circuito cerrado)

- Un transistor actúa como un interruptor
- Los transistores tipo p y n son transistores de tipo MOSFET (Metal-Oxide-Semiconductor-Field-Effect Transistor)
- La combinación de transistores tipo p y n dan lugar a la familia CMOS

Elementos constructivos electrónicos...

Puertas lógicas

Elementos constructivos electrónicos...

Circuitos combinacionales y secuenciales

Circuitos combinacionales:

- La salida depende solo de los valores de entrada
- Ejemplos:
 - Decodificadores, Multiplexores, Operadores aritméticos y lógicos, ...

Circuitos secuenciales:

- La salida depende de los valores de entrada Y del estado actual (almacenan estado)
- Ejemplos:
 - Biestables, Registros, ...

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- ▶ Tipos de computadores
- Evolución histórica

▶ Tecnología:

Cómo se construyen los componentes

Estructura:

Componentes y su organización

- ▶ Tecnología:
 - Cómo se construyen los componentes

▶ Arquitectura:

Atributos visibles para un programador

Estructura:

Componentes y su organización

▶ Tecnología:

Cómo se construyen los componentes

Arquitectura de un computador: Atributos visibles para un programador

- Tipo y formato de datos que es capaz de utilizar el computador
- Juego de instrucciones que ofrece el computador (ISA, Instruction Set Architecture)
- Número y tamaño de los registros
- ▶ Técnicas de direccionamiento y acceso a la memoria
- ▶ Técnicas y mecanismos de Entrada/Salida (E/S)

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- ▶ Tipos de computadores
- Evolución histórica

▶ Arquitectura:

Atributos visibles para un programador

Estructura:

Componentes y su organización

▶ Tecnología:

Cómo se construyen los componentes

Computador Von Neumann

Máquina capaz de ejecutar una serie de instrucciones elementales (instrucciones máquina) que están almacenadas en memoria (son leídas y ejecutadas)

Arquitectura Von Neumann

Arquitectura Von Neumann (1/4)

Arquitectura Von Neumann (1/4)

Ejemplo de módulos + periféricos comunicación

Arquitectura Von Neumann (2/4)

Ejemplo de memoria principal

http://www.videojug.com/film/what-components-are-inside-my-computer

Elementos de la memoria principal

Elementos de la memoria principal

Arquitectura Von Neumann (3/4)

Ejemplo de buses

http://www.videojug.com/film/what-components-are-inside-my-computer

Buses

40

- Un bus es un camino de comunicación entre dos o más elementos (procesador, memoria, ...) para la transmisión de información entre ellos.
- Un bus suele formarse por varias líneas de comunicación, cada una transmite un bit.
 - El ancho del bus representa el tamaño con el que trabaja el computador (ejemplo: bus de 32 bits)
- ▶ Tres tipos principales: datos, direcciones y control.

Esquema de interconexión de bus

- Bus de control: señales de control y temporización
- Bus de direcciones: designa la fuente o destino de un dato
 - Su anchura determina la máxima capacidad de memoria del sistema
- **Bus de datos:** movimiento de datos entre componentes

Arquitectura Von Neumann (4/4)

Ejemplo de CPU

Arquitectura Von Neumann (4/4)

Procesador: registros

Procesador: Unidad aritmético lógica ALU

Procesador: Unidad de control, UC

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

Programa

Secuencia consecutiva de instrucciones máquina

Programa

- Secuencia consecutiva de instrucciones máquina
- Instrucción máquina: operación elemental que puede ejecutar directamente un procesador
 - Codificación en binario

El registro PC (contador de programa) contiene <u>la dirección</u> de <u>la siguiente</u> instrucción a ejecutar. Memoria principal El registro IR (registro de instrucción) almacena la instrucción que se está 000010011100011010101111101011000 011010011010 ejecutando 101011111010110000000100111000110 110001101010111110101100000001001 01011000000010011100011010101111 dirección de inicio Disco **Procesador** Fichero ejecutable 00001001110001101010111101011000 10101111010110000000100111000110 11000110101011110101100000001001 PC 1010011010 010110000000100111000110101011111 IR

El registro PC (contador de programa) contiene <u>la dirección</u> de <u>la siguiente</u> instrucción a ejecutar.

El registro IR (registro de instrucción) almacena la instrucción que se está ejecutando

Formato de una instrucción máquina

Generación y carga de un programa

i=0; s = 0; while (i < 4) { s = s + 1; i = i + 1; }</pre>


```
li R0, 0
li R1, 4
li R2, 1
li R3, 0
lazo: beq R0, R1, fin
add R3, R3, R2
add R0, R0, R2
b lazo
fin: sw R3, 100000
```

000100	0010000000000000
000101	0010100000000100
000110	0011000000000001
000111	0011100000000000
001000	1010001000001100
001001	0001111100000000
001010	000000100000000
001011	100000000001000
001100	0111100000100000

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

Fases de ejecución de una instrucción

Fases de ejecución: Lectura de la instrucción

- Leer de memoria principal la instrucción apuntada por el PC
 - El PC contiene la dirección de memoria donde se almacena la instrucción a ejecutar
 - La instrucción leída de M.P. se almacena en IR
- Incrementar PC
 - Incrementar la dirección almacenada en el PC para que apunte a la siguiente instrucción
- Decodificar instrucción
- Ejecutar la instrucción

Fases de ejecución: Decodificación

El registro PC (contador de programa) contiene <u>la dirección</u> de <u>la siguiente</u> instrucción a ejecutar.

El registro IR (registro de instrucción) almacena la instrucción que se está ejecutando

- Leer de memoria principal la instrucción apuntada por el PC
 - El PC contiene la dirección de memoria donde se almacena la instrucción a ejecutar
 - La instrucción leída de M.P. se almacena en IR
- Incrementar PC
 - Incrementar la dirección almacenada en el PC para que apunte a la siguiente instrucción
- Decodificar instrucción
- Ejecutar la instrucción

Fases de ejecución: Ejecución

- Leer de memoria principal la instrucción apuntada por el PC
 - El PC contiene la dirección de memoria donde se almacena la instrucción a ejecutar
 - La instrucción leída de M.P. se almacena en IR
- Incrementar PC
 - Incrementar la dirección almacenada en el PC para que apunte a la siguiente instrucción
- Decodificar instrucción
- Ejecutar la instrucción

Procesador

PC	000100
RI	3.
00	?
01	3.
10	3.
11	3.

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido	
000100	0010000000000000	
000101	0010100000000100	
000110	0011000000000001	
000111	0011100000000000	
001000	1010001000001100	
001001	0001111100000000	
001010	000000100000000	
001011	100000000001000	
001100	0111100000100000	

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido
000100	0010000000000000
000101	0010100000000100
000110	0011000000000001
000111	0011100000000000
001000	1010001000001100
001001	0001111100000000
001010	000000100000000
001011	100000000001000
001100	0111100000100000

Procesador

PC	000101
ΒI	00100000000000000
IXI	
00	?
01	?
10	?
11	?

- Lectura de la instrucción
- Apuntar a la siguiente instrucción

- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Contenido	
0010000000000000	
0010100000000100	
0011000000000001	
0011100000000000	
1010001000001100	
0001111100000000	
000000100000000	
100000000001000	
0111100000100000	
	00100000000000000000000000000000000000

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido
000100	0010000000000000
000101	0010100000000100
000110	0011000000000001
000111	0011100000000000
001000	1010001000001100
001001	0001111100000000
001010	000000100000000
001011	100000000001000
001100	0111100000100000

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Contenido	
0010000000000000	
0010100000000100	
0011000000000001	
0011100000000000	
1010001000001100	
0001111100000000	
0000000100000000	
100000000001000	
0111100000100000	
	00100000000000000000000000000000000000

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido	
000100	0010000000000000	
000101	0010100000000100	
000110	0011000000000001	
000111	0011100000000000	
001000	1010001000001100	
001001	0001111100000000	
001010	000000100000000	
001011	100000000001000	
001100	0111100000100000	

Procesador

PC	000110
RI	0010100000000100
00	0000000000
01	?
10	?
11	?

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
 - PC ← PC + I
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido	
000100	0010000000000000	
000101	0010100000000100	
000110	0011000000000001	
000111	0011100000000000	
001000	1010001000001100	
001001	0001111100000000	
001010	000000100000000	
001011	100000000001000	
001100	0111100000100000	

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Dirección	Contenido
000100	0010000000000000
000101	0010100000000100
000110	0011000000000001
000111	0011100000000000
001000	1010001000001100
001001	0001111100000000
001010	000000100000000
001011	100000000001000
001100	0111100000100000

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Ejemplo de ejecución de un programa

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

Ejemplo de ejecución de un programa

Procesador

- Lectura de la instrucción
- Apuntar a la siguiente instrucción
- Decodificación de la instrucción
- Ejecución de la instrucción
- Volver a fetch

74

Memoria principal

Dirección	Contenido	
000100	0010000000000000	
000101	0010100000000100	
000110	0011000000000001	
000111	0011100000000000	
001000	1010001000001100	
001001	0001111100000000	
001010	000000100000000	
001011	100000000001000	
001100	0111100000100000	

Ejemplo de ejecución de un programa

Procesador

Continúa la ejecución

Memoria principal

Contenido	
0010000000000000	
0010100000000100	
0011000000000001	
0011100000000000	
1010001000001100	
0001111100000000	
000000100000000	
100000000001000	
0111100000100000	
	00100000000000000000000000000000000000

Contenidos

Introducción:

- ¿Qué es un computador?
- ▶ Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

Parámetros característicos de un computador

- Respecto a su arquitectura
 - Ancho de palabra
- Almacenamiento
 - ▶ Tamaño
 - Unidades de almacenamiento
- Comunicaciones
 - Ancho de banda
 - Latencia
- Potencia del computador
 - MIPS
 - MFLOPS

Ancho de Palabra

- Número de bits manejados en paralelo en el interior del computador.
 - Influye en el tamaño de los registros (BR)
 - Por tanto, también en la ALU
 - No es lo mismo dos sumas de 32 bits que una sola de 64
 - Por tanto, también en el ancho de los buses
 - Un bus de direcciones de 32 bits 'solo' direcciona 4 GB
- Un computador con un ancho de palabra de n bits:
 - Direcciones de memoria de n bits
 - Los registros almacenan n bits
 - Números enteros de n bits
- ► Tamaños típicos → 32 bits, 64 bits

Ejercicio

- Considere un hipotético computador con un ancho de palabra de 20 bits con 60 registros que direcciona la memoria por bytes. Responda a las siguientes preguntas:
 - a) ¿Cuántos bits se emplean para las direcciones de memoria?
 - b) ¿Cuál es el tamaño de los registros?
 - c) ¿Cuántos bits se almacenan en cada posición de memoria?
 - d) ¿Cuántas posiciones de memoria se pueden direccionar? Exprese el resultado en KB.
 - e) ¿Cuántos bits se necesitan para identificar a los registros?

Tamaños privilegiados

Palabra

- Información manejada en paralelo en el interior del procesador
- Típicamente 32/64 bits
- Media palabra
- Doble palabra
- Octeto, carácter o byte
 - Representación de un carácter
 - Típicamente 8 bits

Unidades para tamaño

Normalmente se expresa en octetos o bytes:

Nombre	Prefijo binario	Prefijo SI
Kilo	$2^{10} = 1,024$	$10^3 = 1,000$
Mega	$2^{20} = 1,048,576$	$10^6 = 1,000,000$
Giga	$2^{30} = 1,073,741,824$	$10^9 = 1,000,000,000$
Tera	2 ⁴⁰ = 1,099,511,627,776	$10^{12} = 1,000,000,000,000$
Peta	$2^{50} = 1,125,899,906,842,624$	$10^{15} = 1,000,000,000,000$
Exa	$2^{60} = 1,152,921,504,606,846,976$	$10^{18} = 1,000,000,000,000,000$
Zetta	$2^{70} = 1,180,591,620,717,411,303,424$	$10^{21} = 1,000,000,000,000,000,000$
Yotta	280 = 1,208,925,819,614,629,174,706,176	$10^{24} = 1,000,000,000,000,000,000,000$

Nombre	Prefijo binario	Prefijo SI
Kilo	kibibyte (KiB)	kilobyte (kB)
Mega	mebibyte (MiB)	megabyte (MB)
Giga	gibibyte (GiB)	gigabyte (GB)
Tera	tebibyte (TiB)	terabyte (TB)
Peta	pebibyte (PiB)	perabyte (PB)
Exa	exbibyte (EiB)	exabyte (EB)
Zetta	zebibyte (ZiB)	zettabyte (ZB)
Yotta	yobibyte (YiB)	yottabyte (YB)

Unidades para tamaño

En almacenamiento algunos fabricantes no utilizan potencias de dos, sino potencias de 10:

```
    kilobyte | KB = 1.000 bytes | 10³ bytes
    megabyte | MB = 1.000 KB | 10⁶ bytes
    gigabyte | GB = 1.000 MB | 10⁶ bytes
    terabyte | TB = 1.000 GB | 10¹² bytes
    ...
```

▶ En comunicación se utilizan potencias de 10 y bits:

```
    | Kb = 1000 bits = 125 bytes
    | KB = 1000 bytes
```

Ejercicio

¿Cuántos bytes tiene un disco duro de 200 GB?

¿Cuántos bytes por segundo transmite mi ADSL de 20 Mb?

Ejercicio (solución)

- ¿Cuántos bytes tiene un disco duro de 200 GB?
 - \triangleright 200 GB = 200 * 10^9 bytes = 186.26 Gigabytes
- ¿Cuántos bytes por segundo transmite mi ADSL de 20 Mb?
 - \blacktriangleright B \rightarrow Byte
 - \rightarrow b \rightarrow bit.
 - ▶ 20 Mb = 20 * 10⁶bits = 20 * 10⁶ / 8 bytes = 2.38 Megabytes por segundo

Ancho de banda

Varias interpretaciones:

- Caudal de información que transmite un bus.
- Caudal de información que transmite una unidad de E/S.
- Caudal de información que puede procesar una unidad.
- Número de bits transferidos por unidad de tiempo.

Unidades:

- ▶ Kb/s (Kilobits por segundo, no confundir con KB/s)
- Mb/s (Megabits por segundo, no megabytes por segundo)

Latencia

Varias interpretaciones:

- Tiempo transcurrido en la emisión de una petición en un sistema de mensajería fiable.
- Tiempo transcurrido entre la emisión de una petición y la realización de la acción asociada.
- Tiempo transcurrido entre la emisión de una petición y la recepción de la respuesta.

Unidades:

s (segundos)

Potencia de cómputo

- Medición de la potencia de cómputo.
- ▶ Factores que intervienen:
 - Juego de instrucciones
 - Reloj de la CPU (I GHz vs 2 GHz vs 4 GHz...)
 - Número de 'cores' (quadcore vs dualcore vs...)
 - Ancho de palabra (32 bits vs 64 bits vs...)
- Formas típicas de expresar potencia de cómputo:
 - MIPS
 - MFLOPS
 - ...

MIPS

- Millones de Instrucciones Por Segundo.
- Rango típico: 10-100 MIPS
- No todas las instrucciones tardan lo mismo en ejecutar
 - → Depende de qué instrucciones se ejecutan.
- No es fiable 100% como medida de rendimiento.

MFLOPS

- Millones de Operaciones en coma Flotante por Segundo.
- Potencia de cálculo científico.
- MFLOPS < MIPS (operación flotante más compleja que operación normal).
- Computadores vectoriales: MFLOPS > MIPS
- ▶ Ejemplo: Itanium 2 → 3,5 GFLOPS

Vectores por segundo

- Potencia de cálculo en la generación de gráficos.
- Aplicable a procesadores gráficos.
- Se pueden medir en:
 - Vectores 2D.
 - Vectores 3D.
- ▶ Ejemplo: ATI Radeon 8500 → 3 Millones.

Tests sintéticos

- MIPS y MFLOPS no válidos para comparar distintas máquinas.
- Tests basados en ejecutar un mismo programa en distintas máquinas para compararlas.
- Miden efectividad Compilador + CPU
- Los test sintéticos estandarizados ("oficiales") buscan comparar la potencia de dos computadores.
- Es posible usar test sintéticos "no oficiales" para hacerse a la idea de la mejora con la carga de trabajo diaria

Tests sintéticos "oficiales"

Tests más usados:

- Linpack.
- SPEC.

SPEC CPU2000 Performance - SPECint2000

Itanium™ Processor delivers best of class floating point performance and competitive integer performance

Tests sintéticos "no oficiales"

Tests sintéticos "no oficiales"

Tests sintéticos "no oficiales"

Task Manager CPU Graph		improvement 2 to 4 cores
	The Elder Scrolls IV: Oblivion	none
	Rainbow 6: Vegas	none
	Supreme Commander	none
	Valve Source engine particle simulation	1.8 ×
	Valve VRAD map compilation	1.9×
Many	3DMark06: Return to Proxycon	none

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

Tipos de computadores

Nombre	Objetivos	Ejemplo	Aspectos de diseño
Desktop	Diseñados para ofrecer un buen rendimiento a los usuarios	Actualmente, la mayor parte son portátiles	Relación precio-rendimientoEnergíaRendimiento de los gráficos
Dispositivos móviles personales	Dispositivos sin cables con interfaz de usuario multimedia	Móviles, tablets,	PrecioEnergíaRendimientoTiempo de respuesta
Servidores	Usados para ejecutar aplicaciones de alto rendimiento o escala	Dan servicio a múltiples usuarios de forma simultánea	 Throughput (Tasa de procesamiento) Disponibilidad Fiabilidad Energía Escalabilidad
Clusters	Conjunto de computadores conectados mediante una red que actúa como un único computador de más prestaciones	Utilizando en supercomputadores y grandes centros de datos	 Precio-rendimiento Throughput (Tasa de procesamiento) Disponibilidad Fiabilidad Energía Escalabilidad
Empotrados	Computador que se encuentra dentro de otro sistema para controlar su funcionamiento	Lavadoras, TV, MP3, consolas de videojuegos, etc.	PrecioEnergíaRendimiento de la aplicación específica

Contenidos

Introducción:

- ¿Qué es un computador?
- Elementos constructivos de un computador
- Concepto de estructura y arquitectura

Computador Von Neumann:

- Modelo Von Newmann
- Instrucciones máquina y programación
- Fases de ejecución de una instrucción

Características de un computador y tipos:

- Parámetros característicos de un computador
- Tipos de computadores
- Evolución histórica

Principales generaciones tecnológicas

[from Kurzweil]

Microprocesador

 Incorpora las funciones de la CPU de un computador en un único circuito integrado

Ley de Moore

Ley de Moore

- Doblar la densidad implica reducir las dimensiones de sus elementos en un 30%
- ► En 1971 el Intel 4004 tenía 2.300 transistores con tamaños de 10 micrómetros
- Hoy en día se consiguen chips con distancias de 5 nanómetros
- Para cumplir la ley de Moore se necesita tecnología cuyo precio se dobla cada 4,4 años

Mejoras en la tecnología

Memoria

Capacidad de DRAM: 2x / 2 años (desde 1996);
 64x en la última década.

Procesador

Velocidad: 2x / 1.5 años (desde 1985);
 100X en la última década.

Discos

Capacidad: 2x / I año (desde 1997)
 250X en la última década.

Evolución histórica: bibliografía

- http://history.sandiego.edu/GEN/recording/computer I .html
- http://www.computerhope.com/history/
- http://www.computerhistory.org/
- http://www.computersciencelab.com/ComputerHistory/History.htm
- Museos de informática
- Buscar en Google: "Computer history"

Grupo ARCOS

uc3m | Universidad Carlos III de Madrid

Tema 1: Introducción a los computadores Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

