Map Reduce and Streaming Calculations

Giri Iyengar

Cornell University

gi43@cornell.edu

April 16, 2018

Agenda for the week

- Map-Reduce
- Poisson resampling
- Streaming Calculations
 - Reservoir Sampling
 - Storing Items in Sets
 - Counting in single pass
 - Frequent Items in a stream
 - Stimating CDF/PDF in streaming mode
- Background Reading

Overview

Hello World in Map Reduce

Counting words in some text

But I must explain to you how all this mistaken idea of denouncing pleasure and praising pain was born and I will give you a complete account of the system.

- Step 0: Parse text word by word.
- Step 1: Emit one word at a time
- Step 2: Group same words together
- Step 3: Count occurrence of each word

Word Count - Emit

But	1	
I	1	
must	1	
explain	1	
to	1	
you	1	
how	1	
all	1	
this	1	
mistaken	1	_
idea	1	
of	1	
denouncing		1
pleasure	1	

Word Count - Emit

and	1
praising	1
pain	1
was	1
born	1
and	1
I	1
will	1
give	1
you	1
a	1
complete	1
account	1
of	1
the	1
system.	1

Word Count - Sort and Group

But	1
I	1
I	1
a	1
account	1
all	1
and	1
and	1
born	1
complete	1
denouncing	1
explain	1
give	1
how	1
idea	1
mistaken	1

Word Count - Sort and Group

must	1	
of	1	
of	1	
pain	1	
pleasure		1
praising		1
system.	1	
the	1	
this	1	
to	1	
was	1	
will	1	
you	1	
you	1	

Word Count - Aggregate

But	1		
I	2		
a	1		
account		1	
all	1		
and	2		
born	1		
complete		1	
denouncing		1	
explain		1	
give	1		
how	1		
idea	1		
mistaken		1	

Map Reduce

Figure: Source: highlyscalable.com blog

MR Demo

Word Count

- Word Count
- Unique Count

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer
- Click-Through-Rate of Advertising Campaigns

- Word Count
- Unique Count
- Total Sales, Average Sales by Customer
- Click-Through-Rate of Advertising Campaigns
- Little Bag of Bootstraps to Build Models

HDFS: Hadoop Distributed File System

HDFS Architecture

Figure: Source: Apache Foundation

Hadoop Ecosystem

Figure: Source: Apache Foundation

Overview

Poisson Resampling for Efficient Bootstrapping

Bootstrapping Big Data

- Bootstrap is not efficient when dealing with Big Data \approx 63.2% of data gets resampled per bootstrap
- Need several bootstrap samples depending on what you are trying to estimate (e.g. std err or percentiles)
- Little Bag of Bootstraps is one technique (saw last week)
- Poisson Resampling is another technique

Poisson Resampling

Motivation

Let's start with a tiny sample $\{1.5, 2.5, 3.5, 4.5\}$ and do bootstrap

$$\begin{array}{c|cccc} \mathsf{Sample} \ 1 & \{1.5, 1.5, 3.5, 2.5\} \\ \mathsf{Sample} \ 2 & \{2.5, 1.5, 3.5, 2.5\} \\ \mathsf{Sample} \ 3 & \{3.5, 4.5, 4.5, 4.5\} \\ \end{array}$$

We can actually describe this in terms of sample counts

Sample 1	$\{2, 1, 1, 0\}$
Sample 2	$\{1, 2, 1, 0\}$
Sample 3	$\{0,0,1,3\}$

These counts follow a $Multinomial(4, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ distribution. Generally, $Multinomial(n, \frac{1}{n}, \dots, \frac{1}{n})$

Poisson Resampling

Big Data Problem

Not all data resides in the same place. Data is distributed. Also, in streaming cases, we may not even know n in advance

Can we *approximate* bootstrapping without bringing all the data to one place?

Poisson Resampling

Approximation

What if we independently sample each data point using a $Binomial(n,\frac{1}{n})$? All sampling can be done in parallel. For large n, this is close-enough to multinomial sampling that it doesn't matter in practice. But, we still need to know n in advance!

Poisson Distribution

$$\lim_{n \to \infty} Binomial(n, \frac{1}{n}) = Poisson(1)$$

 $Poisson(\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$ doesn't need to know n!

Poisson Resampling in Action

Poisson Resampling in Map-Reduce

- ullet Independently sample in your map task using Poisson(1)
- Emit those *k* samples
- Reducers get independent datasets, run their aggregations, and return back results
 - Aggregations could be statistics, or even entire models!

