### 1 - Introduzione ai Sistemi Operativi

#### Sommario

#### Cos'è un Sistema Operativo?

- macchina astratta
- gestore di risorse

#### Storia dei S.O.

- generazioni 1-5 dei S.O.
- Storia di Internet e World Wide Web

#### Componenti dei S.O.

architetture Hardware

Tipi di S.O. e scopi dei S.O.

Concetti base dei S.O.

#### Strutture di S.O.

- Monolitica
- a Livelli
- Microkernel
- S.O. di rete e S. O. Distribuiti

S. Balsamo – Università Ca' Foscari Venezia – SO1.0

## Cosa è un Sistema Operativo?

- Sistema operativo prima definizione: il software che controlla l'hardware
- L'evoluzione dei sistemi di elaborazione ha portato a dei cambiamenti radicali che determinano una diversa e più complicata definizione
- Le applicazioni ora sono progettate per essere eseguire concorrentemente
- Un S.O. è un programma che *gestisce e controlla l'esecuzione di un insieme di applicazioni*, agisce come *interfaccia tra le applicazioni* e *l'hardware* del calcolatore e *gestisce le risorse hardware*

S. Balsamo – Università Ca' Foscari Venezia – SO1.2

### Obbiettivi

- · Scopo dell'introduzione: conoscere
  - Cos'è un Sistema Operativo
  - Una breve storia dei S.O.
  - Una breve storia di Internet e del World Wide Web
  - Quali sono le componenti basilari di un S.O.
  - Obbiettivi di un S.O.
  - Architetture di un S.O.



.

## Cosa è un Sistema Operativo?

- Complessità => gestione con astrazione (modello)
- Modalità utente Modalità nucleo (kernel)

Il S.O. è (prevalentemente) eseguito con il processore in modalità *kernel* Le applicazioni sono eseguite principalmente in modalità utente

S. Balsamo – Università Ca' Foscari Venezia – SO1.4

Cosa è un Sistema Operativo?

- · Applicazioni separate dall'hardware utilizzato
  - Livello Software
  - Gestione software e hardware per produrre i risultati desiderati
- · Sistema Operativo innanzi tutto è un gestore di risorse
  - Hardware
    - Processori
    - Memoria
    - · Periferiche Input/output
    - · Periferiche di communicazione
  - Applicazioni Software

S. Balsamo - Università Ca' Foscari Venezia - SO1.5

Cosa è un Sistema Operativo

Banking Airline Application programs system reservation browser Command Compilers Editors interpreter System programs Operating system Machine language Hardware Microarchitecture Physical devices

- · Un sistema di elaborazione è formato da
  - hardware
  - Programmi di sistema (software di base)
  - Programmi applicativi

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1.6

## Cosa è un Sistema Operativo

- È una macchina estesa
  - Nasconde i dettagli ed operazioni complesse che devono essere eseguite MASCHERAMENTO
  - Presenta all'utente il sistema con una macchina virtuale, facile da usare TRASPARENZA
- È un gestore di risorse
  - Ogni programma richiede tempo per usare le risorse
  - Ciascun programma richiede spazio delle risorse

S. Balsamo – Università Ca' Foscari Venezia – SO1.7

7

2

Storia dei Sistemi Operativi

 I generazione 1945 - 1955

- valvole, tavole di commutazione (plug boards)
- linguaggio macchina
- Il generazione 1955 - 1965
  - transistor, sistemi batch
  - linguaggi assembler, primi linguaggi (e.g. Fortran)
  - schede perforate
- III generazione 1965 1980
  - circuiti integrati e multiprogrammazione, time-sharing
- IV generazione 1980 presente
  - personal computers
- V generazione 1990 – presente
  - Computer mobili

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1 8

Storia dei Sistemi Operativi - I generazione 1945-55

1940 - I generazione: non ha S.O.

1944 MARK I

Harvard university, US costruito da IBM

computer digitale elettromeccanico Interruttori, relè lungo 16 m, alto ~2,5 m., peso 4 ton.

memoria per 20 numeri di 10 cifre



S. Balsamo – Università Ca' Foscari Venezia – SO1.10

Storia dei Sistemi Operativi - I generazione

 Macchina analitica del matematico Charles Babbage (1792-1871) - (1837 ca)



Senza S.O.

· Prima programmatrice, matematica Lady Ada Lovelace



## Fasi di evoluzioni dei Sistemi Operativi

- progressi tecnologici hw
- 1940-

I generazione: non ha S.O. programmazione in linguaggio macchina o cablando i circuiti

S. Balsamo – Università Ca' Foscari Venezia – SO1

Storia dei Sistemi Operativi - I generazione 1945-55

1940 - I generazione: non ha S.O.

1949 EDVAC (Electronic Discrete Variable Automatic Computer) Su Transistor

Architettura von Neumann Memorizzazione del programma Sistema binario. 8 ton

- 1946 ENIAC (Electronic Numerical Integrator and Calculator)

general purpose 18.000 valvole termoioniche - riscaldamento spazio180 mg, alto ~3 m., peso 30 ton. Sistema decimale, memoria per 20 numeri di 10 cifre tempo di programmazione, quasti e consumi

> 1948 Primi Transistor Maggior durata, affidabilità, minor costo e ingombro



### Storia dei Sistemi Operativi - I generazione 1945-55

Limiti della I generazione

- affidabilità scarsa
- ruoli non distinti
  - costruzione/progettazione/ programmazione/ manutenzione
- complessità di uso
- lentezza

Senza Sistema operativo

- anni 1940- e 1950-
- · Schede perforate
- · Transistor => maggior affidabilità e minor costo

S. Balsamo – Università Ca' Foscari Venezia – SO1.12

## Storia dei Sistemi Operativi - II generazione 1955-65

 Sistemi di elaborazione batch con flusso singolo (Single-stream batch-processing)

#### Sistemi operativi batch

- I programmi e i dati caricati in sequenza su un nastro
- Spostati sul computer ed eseguiti a lotti (batch)
- Output stampato su nastro
- Altri computer più piccoli per lettura/scrittura da/verso nastro

Esempi: FMS Fortran Monitor System, IBSYS

S. Balsamo – Università Ca' Foscari Venezia – SO1.14

Storia dei Sistemi Operativi - II generazione 1955-65

- 1950-
- Linguaggio ad alto livello: es.: Assembly, Fortran
- Schede perforate
- Esecuzione di un job per volta (monoprogrammazione)
- Job: programma (o insieme di programmi) di un utente da eseguire memorizzati

#### Il generazione: separazione fra

- costruttori
- programmatori (programmi con linguaggi ad alto livello)
- operatori (schede di programma, schede JCL, gestisce I/O)
- Esecuzione differita (off-line) tramite operatore comandi batch
- Uso di tecnologie incluse per semplificare le transizioni di job
- Semplici S.O. (monitor)



19



Storia dei Sistemi Operativi - II generazione 1955-65 S.O. S.O. S.O. (monitor) (monitor) (monitor) Compilatore Programma in esecuzione Memoria (vuota) Memoria Memoria (vuota) (vuota) a) inizio b) Dopo il caricamento c) Dopo la del compilatore compilazione · Organizzazione della memoria durante l'esecuzione di un sistema batch S. Balsamo - Università Ca' Foscari Venezia - SO1.17

## Storia dei Sistemi Operativi - III generazione 1965-80

- 1960-
  - Ancora sistemi di elaborazione batch
  - Elaborazione di più job contemporaneamente

#### **MULTIPROGRAMMAZIONE**

Un job può usare il processore, mentre altri job usano le unità periferiche Partizione della memoria, assegnando le parti a diversi job

- Sviluppo di sistemi operativi avanzati per servire più utenti interattivi
- Sviluppo dei circuiti integrati, riduzione del costo, maggior velocità
- 1964
  - IBM annuncia la famiglia di elaboratori System/360
     Minor ingombro, maggior velocità (2 milioni operazioni/sec)
     Sistema mainframe maggiormente diffuso
  - Serie PDP minicalcolatori

S. Balsamo – Università Ca' Foscari Venezia – SO1.18

18

# Storia dei Sistemi Operativi - Il generazione 1965-80



1964 Sistema IBM/360 Grande sviluppo per mainframe

Grande e complesso Milioni di righe in linguaggio assembly

Progetto: compatibilità del S.O. su diverse macchine

A. Tanenbaum - Modern Operating Systems

22

### Storia dei Sistemi Operativi - III generazione 1965-80



1972 Minicomputer PDP-11 DEC Famiglia di computer (non sempre compatibili) a 16 bit

Costo contenuto

Limiti di prestazioni

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1.20

### Storia dei Sistemi Operativi - III generazione 1965-80

- · III generazione
  - Scompare la figura dell'operatore
  - Linguaggi ad alto livello (es. C)
  - Editor testuali, grafici
  - Accesso da terminale
  - Multiprogrammazione: gestione di un 'pool' di job da eseguire e assegnamento del processore
  - Vantaggio: utilizzo (impiego) del processore e della memoria
  - Protezione
  - CPU scheduling
  - Allocazione delle risorse di I/O
  - SPOOL Simultaneous Peripheral Operation On Line
     Operazioni concorrenti, esecuzione di job parallela ad operazioni I/O
     Trasferimento dati

S. Balsamo – Università Ca' Foscari Venezia – SO1 21

## Storia dei Sistemi Operativi - III generazione 1965-80



- Organizzazione della memoria durante l'esecuzione di un sistema multiprogrammato
  - Tre job in memoria, partizione della memoria
  - Scheduler compontente del S.O. per la gestione dei job

A. Tanenbaum - Modern Operating Systems

S. Balsamo – Università Ca' Foscari Venezia – SO1.22

## Storia dei Sistemi Operativi - III generazione 1965-80

Anni '60

sistemi timesharing

- Variante della multiprogrammazione, sviluppata per supportare molti utenti interattivi simultanei ai terminali
- Tempo di CPU diviso in quanti di tempi
- Al termine del quanto il job viene interrotto e si assegna la CPU al job successivo (prelazione)
- Cambi di contesto frequenti
- Protezione
- Memoria virtuale
- Il tempo di risposta è stato ridotto a minuti o secondi
  - · tempo tra la sottomissione del job e la risposta dei risultati

S. Balsamo – Università Ca' Foscari Venezia – SO1.23

23

21

6

26

### Storia dei Sistemi Operativi - III generazione 1965-80

- · Progettazione dei sistemi timesharing
  - Gestione del processore:
     Scheduling del processore, algoritmi a quanti di tempo e prelazione
  - Gestione della memoria Memoria virtuale
  - Protezione delle risorse (memoria, file system, processi...)

S. Balsamo - Università Ca' Foscari Venezia - SO1.24

## Storia dei Sistemi Operativi - III generazione anni '70

- Principalmente sistemi timesharing multiprogrammati
  - Supporta l'elaborazione di applicazioni batch, timesharing e in tempo reale
  - Esempi:
    - VM-370 (1972, IBM PC)
    - Unix (dal 1969 ad ATT-Bell Labs) derivato da CTSS e MULTICS
      - 1974 Unix licenza commerciale e licenza libera per Unix con codice sorgente disponibile. Molte versioni
      - POSIX standard IEEE per rendere compatibili le diverse versioni interfaccia minima per le chiamate di sistema
  - Sviluppo di primi semplici personal computer
     Favorito dai primi sviluppi della tecnologia a microprocessori
- Sviluppo di Internet Dipartimento della Difesa si sviluppa TCP / IP
  - protocollo di comunicazione standard
  - Ampiamente usato in ambienti militari e universitari
  - problemi di sicurezza

Crescenti volumi di dati trasmessi sule linee di comunicazione vulnerabili

S. Balsamo – Università Ca' Foscari Venezia – SO1.26

Storia dei Sistemi Operativi - III generazione anni '60

- Sistemi time-sharing
  - Miglioramento dei tempi e metodi di sviluppo
    - MIT ha sviluppato il sistema CTSS (Compatible Time Sharing System)
       1962 introduce multiprogrammazione e time-sharing
    - poi evoluto nel MULTICS (Multiplexed Information and Computer Service)
       1965 (MIT, GE, Bell Labs) introduce il processo
  - TSS (Time Sharing System), Multics e CP/CMS (Control Program/Cambridge Monitor System) includono la memoria virtuale
    - Indirizzano un numero di locazioni di memoria superiore a quelle disponibili in realtà
  - Unix(Time Sharing System) 1970, derivato da Multics e CTSS su PDP-7 e PDP-11 (minicomputer) poi riscritto in C per la portabilità
- Sistemi real-time
  - Forniscono una risposta entro un dato periodo di tempo limitato
  - Hard real time e soft real-time

S. Balsamo – Università Ca' Foscari Venezia – SO1.25

27

25

## Storia dei Sistemi Operativi - IV generazione 1980- oggi

- 1980-
  - Decennio di sviluppo dei personal computer e workstation
  - PC per singoli utenti
  - Elaborazione distribuita ai siti in cui è richiesta
  - I personal computer diventano relativamente facili da imparare e da usare
    - Sviluppo di interfacce grafiche per gli utente (GUI)
  - Il trasferimento di informazioni tra computer tramite reti è diventato più pratico ed economico
  - Esempi: CP-M80 Digital, poi MS-DOS
  - LisaOS (1983) primo SO per PC con GUI poi MacOS (1984), MacOSX (1999)
  - Windows (1985), Windows3 (1990) con memoria virtuale. Poi W95 (1995), NT (1990), XP e ME (2001), W7 (2017), W8 (2012) per sistemi touch, W10 (2015). Nati per PC poi anche su workstations
  - Linux, Unix interfaccia Xwindows (basato su X11 del MIT), poi BSD, Xenix. Sun OS. Solaris. FreeBSD -> MacOSX

### Storia dei Sistemi Operativi - IV generazione - anni '80

- Diffusione del modello di elaborazione cliente/servente
  - I clienti richiedono diversi servizi ai serventi
  - I server eseguono le richieste di servizio
- Sviluppo ed evoluzione dell'area dell'ingegneria del software (SE)
  - Notevoli motivazioni dal governo degli US per un controllo rigoroso dei progetti software del Dipartimento della Difesa
    - · Realizzando riusabilità del codice
    - Maggior grado di astrazione nei linguaggi di programmazione
    - · Multithread di istruzioni da poter eseguire in modo indipendente

S. Balsamo – Università Ca' Foscari Venezia – SO1.28

0.0

### Cenni di storia di Internet e World Wide Web

- Advanced Research Projects Agency (ARPA)
  - Dipartimento della Difesa
  - Alla fine degli anni 1960s, crea e implementa ARPAnet
    - · Predecessore di Internet
    - Collegati in rete i principali sistemi delle istituzioni finanziati da ARPA
    - · Capace di comunicazione quasi istantanea tramite e-mail
    - Progettato per operare senza controllo centralizzato

S. Balsamo – Università Ca' Foscari Venezia – SO1.30

## Storia dei Sistemi Operativi - IV generazione - anni '90

- Sviluppo delle applicazioni e delle reti di calcolatori
  - World wide web
  - Microsoft Office
- · Sviluppo di sistemi personali economici e usabili
  - PC
  - Successivamente da dopo il 2000 sviluppo e poi diffusione di smartphone
  - Tablet
  - Sistemi distribuiti e could computing

S. Balsamo - Università Ca' Foscari Venezia - SO1.29

30

### Storia di Internet e World Wide Web

- Transmission Control Protocol/Internet Protocol (TCP/IP)
  - Insieme di regole per comunicare su ARPANet
  - TCP/IP gestisce la comunicazione fra applicazioni
  - Si assicura che i messaggi siano instradati correttamente dal mittente al destinatario
    - · Tecniche di correzione dell'errore
  - Successivamente la rete ha aperto anche all'uso commerciale più generale

S. Balsamo – Università Ca' Foscari Venezia – SO1.31

31

29

### Storia di Internet e World Wide Web

- World Wide Web (WWW)
  - Individuare e visualizzare documenti multimediali su argomenti qualsiasi
  - Primi sviluppo nel 1989 al CERN (Tim Berners-Lee)
  - La tecnologia per la condivisione di informazioni attraverso i documenti di testo con collegamenti ipertestuale
  - HyperText Markup Language (HTML)
    - · Definisce i documenti sul WWW
  - Hypertext Transfer Protocol (HTTP)
    - · Protocollo (regole di comunicazione) per la comunicazione, usato come base per il trasferimento di documenti WWW

S. Balsamo - Università Ca' Foscari Venezia - SO1 32

34

### Sistemi paralleli e sistemi distribuiti

- Sistemi paralleli
  - Un sistema con un insieme (ampio) di unità di elaborazione
  - Accoppiamento stretto comunicazione rapida
  - Risorse condivise (e.g. memoria)
  - Alta affidabilità e prestazioni
- Sistemi distribuiti
  - Sistema costituito da un insieme di unità di elaborazione complete interagenti e cooperanti, collegati da linee di comunicazione
  - Omogenei o eterogenei
  - Architetture
  - Condivisione di risorse, prestazioni, affidabilità, trasparenza

S. Balsamo – Università Ca' Foscari Venezia – SO1.34

## Storia dei Sistemi Operativi - IV generazione anni '90

- · Le prestazioni hardware migliorano esponenzialmente
  - Decrescita del costo della capacità di elaborazione e memoria
    - · Possibile esecuzione di programmi grandi e complessi sul PC
    - Disponibilità di sistemi economici per la memorizzazione di grandi database e l'elaborazione di iob
    - · Mainframe raramente necessari
  - Sviluppo dei metodi e tecniche per l'elaborazione di calcolo SISTEMI DISTRIBUITI distribuito
    - Sviluppo di sistemi di elaborazione indipendenti che cooperano per raggiungere un obbiettivo comune

S. Balsamo - Università Ca' Foscari Venezia - SO1 33

35

## Storia dei Sistemi Operativi - IV generazione anni '90

- Sviluppo di standard di Sistemi Operativi che supportano networking tasks
  - Aumento della produttività e la comunicazione
- · Microsoft Corporation è diventata dominante. I sistemi operativi Windows
  - Adottano molti concetti utilizzati nei sistemi operativi dei primi Macintosh
  - · Permette agli utenti di navigare più applicazioni concorrenti con una certa
- · Sviluppo e diffusione della tecnologia a oggetti in molte aree
  - Molte applicazioni scritte in linguaggi di programmazione orientati agli oggetti
    - Esempi: C ++ o Java
  - sistemi operativi orientati agli oggetti (OOOS)
    - Gli oggetti rappresentano componenti del sistema operativi
  - Concetti come eredità e interfacce
    - · Sfruttati per creare sistemi operativi modulari
    - · Più facile da mantenere ed estendere rispetto ai sistemi costruiti con tecniche precedenti

## Storia dei Sistemi Operativi - IV generazione anni '90

- La maggior parte dei software commerciali venduti sono codice oggetto
  - Il codice sorgente non incluso
  - Consente ai produttori di S.O. di nascondere le tecniche di programmazione e informazione proprietaria
- Software libero e open-source è diventato sempre più diffuso negli anni 1990
  - Il software open source è distribuito con il codice sorgente
  - Consente di esaminare e modificare il software
  - Sistema operativo Linux e Apache Web server sono open-source
- Progetto GNU (R.Stallman)
  - Progetto di software libero
  - Ricreare ed estendere gli strumenti per il sistema operativo UNIX di AT & T
  - Contro il concetto di costo per l'uso del software

S. Balsamo – Università Ca' Foscari Venezia – SO1.36

38

### Storia dei Sistemi Operativi - IV generazione anni '90

- I sistemi operativi diventano sempre più di facile uso (user friendly)
  - Le caratteristiche delle GUI introdotte da Apple sono sempre più diffuse e migliorate
  - Le funzionalità "Plug-and-play" sono integrate nei S.O.
    - Permettono agli utenti di aggiungere e rimuovere dinamicamente componenti hardware
    - · Non occorre riconfigurare manualmente il sistema operativo
- · I sistemi operativi per dispositivi
  - Smartphone, tablet, ...
  - Es.: Android, iOS,...

S. Balsamo – Università Ca' Foscari Venezia – SO1.38

Storia dei Sistemi Operativi - IV generazione anni '90

- Open Source Initiative (OSI)
  - Organizzazione nata per promuovere i benefici della programmazione open-source
  - Facilita il rapido miglioramento dei prodotti software
    - Permette a chiunque di testare, eseguire il debug e migliorare le applicazioni TESTING & DEBUGGING
  - Aumenta la probabilità per riconoscere e risolvere bugs
    - Fondamentale per gli errori relativi alla sicurezza che devono essere rapidamente corretti
  - Gli individui e le aziende possono modificare la sorgente
    - Possono creare software personalizzato per soddisfare le esigenze di dato ambiente
       ADATTABILITÀ

S. Balsamo – Università Ca' Foscari Venezia – SO1.37

39

37

### Storia dei Sistemi Operativi - IV generazione dal 2000-

#### Middleware

- Collega applicazioni separate e diverse
  - · Spesso tramite rete e anche fra macchine eterogenee
- Particolarmente importante per i servizi Web
  - · Semplifica la comunicazione fra diverse architetture

#### · Servizi Web

- Comprendere un insieme di standard correlati
- Componenti software ready-to-use su Internet
- Permette a due qualsiasi applicazioni di comunicare e scambiare dati

40

### Storia dei Sistemi Operativi - V generazione dal 1990- oggi

### Mobilità

- Sviluppo della tecnologia per sistemi mobili
- Dispositivi mobili
  - anni '90 primi smartphone (telefono e PDA integrati, es. Nokia N9000)
  - 1997 coniato il termine 'smartphone'
- Sistemi Operativi per dispositivi mobili
  - es. Android (Google) basato su Linux, iOS (Apple), ...
- Risorse limitate
- Dispositivi di I/O diversi
- Risparmio energetico
- Uso della rete, protocolli e dispositivi

S. Balsamo – Università Ca' Foscari Venezia – SO1.40

Storia dei Sistemi Operativi - V generazione dal 1990- oggi

### Mobilità

- Integrazione in altri oggetti
- Sicurezza
- Prestazioni
- Applicazioni
- Cloud computing

### · Internet of things IoT

- Evoluzione della rete (oggetti statici e mobili)
  - Es. elettrodomestici, abbigliamento, impianti, macchine, attrezzature
- Smart objects
  - · RFID, codici QR
- Ubiquitous computing
- Sicurezza, privacy
- Sistemi Operativi per IoT