Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID45373
Project Name	Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	To [22] Associated the classification request of the most procedurates abundantina request of the most procedurates abundantina request (2,144 x, 2,444 x, 244). The control of the contr		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilcome signed work test (b) (d) which or signed work and a state of the control		

1. METRICS: CLASSIFICATION REPORT:

In [52]: #computing the classification report of the model
 print(metrics.classification_report(y_test, y_test_gbc))

	precision	recall	f1-score	support
-1	0.99	0.96	0.97	976
1	0.97	0.99	0.98	1235
accuracy			0.97	2211
macro avg	0.98	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision	
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986	
	1	CatBoost Classifier	0.972	0.975	0.994	0.989	
	2	Random Forest	0.969	0.972	0.992	0.991	
	3	Support Vector Machine	0.964	0.968	0.980	0.965	
	4	Decision Tree	0.958	0.962	0.991	0.993	
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989	
	6	Logistic Regression	0.934	0.941	0.943	0.927	
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997	
	8	XGBoost Classifier	0.548	0.548	0.993	0.984	
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983	

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
from scipy.stats import wilcoxon
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score, KFold

# Load the dataset
X = load_iris().data
y = load_iris().target

# Prepare models and select your CV method
model1 = GradientBoostingClassifier(n_estimators=100)
model2 = XGBClassifier(n_estimators=100)
kf = KFold(n_splits=20, random_state=None)
# Extract results for each model on the same folds
results_model1 = cross_val_score(model1, X, y, cv=kf)
results_model2 = cross_val_score(model2, X, y, cv=kf)
stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
stat

Out[78]: 95.0
```

5x2CV combined F test