$$\frac{d}{dx}a^x$$
?

We now want to learn to differentiate any exponential a^x . There are two roughly equivalent methods we can use:

Method 1: Convert a^x to something with base e and use the chain rule.

Because $\ln x$ is the inverse function to e^x we can rewrite a as $e^{\ln(a)}$. Thus:

$$a^x = \left(e^{\ln(a)}\right)^x = e^{x\ln(a)}$$

That looks like it might be tricky to differentiate. Let's work up to it:

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx}e^{3x} = 3e^{3x} \text{ (by the chain rule)}$$

$$\frac{d}{dx}e^{x} = \frac{d}{dx}e^{x} \text{ (} t = 3x)$$

$$= \frac{d}{dx}e^{x} \cdot \frac{d}{dx} t$$

Remember, ln(a) is just a constant like 3, not a variable. Therefore:

a constant like 3, not a variable. Therefore:
$$= e^{t} \cdot 3$$

$$\frac{d}{dx}e^{(\ln a)x} = (\ln a)e^{(\ln a)x}$$

$$= 3e^{t} = 3e^{3n}$$
 or

$$\frac{d}{dx}a^x = (\ln a)a^x$$

This is a common type of calculation; you should practice it until you are comfortable with it. You may either memorize formulas for $\frac{d}{dx}e^{kx}$ and $\frac{d}{dx}a^x$ or re-derive them every time you need them.

Recall that $\frac{d}{dx}a^x = M(a) \cdot a^x$. So finally we know the value of M(a):

$$M(a) = \ln(a)$$

MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.