DHANAMANJURI UNIVERSITY JUNE - 2023

B.Sc. Mathematics (Honours)

Core-IX (Theory)

CMA-209

Name of Programme

Semester Paper Type

Paper Code

Paper Title Ring Theory and Linear Algebra I **Full Mark** 50 Pass Mark 20 **Duration** 2 Hours The figures in the margin indicate full marks for the questions. Answer only 5 (five) from the following questions: 1. Define Rank and Nullity of a linear transformation T. Also state and prove Rank-Nullity theorem. 2+8=10 2. Define ordered basis of a finite dimensional vector space. 1 Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by T(x,y,z)=(x+y,2z-x). i) If β and β' are standard ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively, find $[T]_{\beta,\beta'}$. 4 ii) If $\beta = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $\beta' = \{(0,1),(1,0)\}$ are ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively, find $[T]_{\beta,\beta'}$. 3. If M and N are two ideals of a ring R, then prove that $\frac{M+N}{M} \cong \frac{N}{M \cap N}$. Also find all the six ring homomorphisms from $\mathbb{Z}_{12} \to \mathbb{Z}_{30}$. 4. Prove that a basis of a vector space is the maximal linearly independent set, and conversely. 10 i) Let W be a subspace of a finite dimensional vector space V. Then prove that $\dim V = \dim W +$ $\dim V/W$. ii) Show that the vectors $\{(1,1,2),(1,2,5),(5,3,4)\}$ are linearly dependent in \mathbb{R}^3 . 3 6. Define subspace of a vector space. Let V be the vector space of all functions from $\mathbb{R} \to \mathbb{R}$. Let $V_e = \{f \in \mathbb{R} : f \in \mathbb{R} \}$ V|f is even} and $V_o = \{f \in V|f \text{ is odd}\}$. Then prove that V_e and V_o are subspaces of V, and $V = V_e \oplus V_o$. 7. Define prime ideal of a ring. Also prove that an ideal P of a commutative ring R is a prime ideal of R iff $\frac{R}{P}$ is an integral domain. i) If A and B are two ideals of a ring R, then prove that A+B is an ideal containing both A and B. Also show that $A + B = \langle A \cup B \rangle$. 5 5 ii) If A is an ideal of a ring R with unity such that $1 \in A$. Then show that A = R. 5 i) Prove that a finite commutative ring without zero divisors is a field. ii) Prove that every ideal is a subring. Is the converse true? Justify. 5 i) Let S be a subset of a vector space V. Prove that the linear span L(S) of S is the smallest subspace of 10. V containing S. ii) Is the transformation $T: \mathbb{R} \to \mathbb{R}^3$ defined by $T(x) = (x, x^2, x^3)$ linear. 2 iii) Show that in a vector space V(F): i. $\alpha v_1 = \alpha v_2 \implies v_1 = v_2 \ (\alpha \neq 0)$. 2 ii. $\alpha v = 0, \alpha \neq 0 \implies v = 0$.