

Left luggage detection June 13th, 2014

Course of Multimedia Databases – a.a. 2013-14

Andrea Rizzo, Matteo Bruni

Contents

- Introduction
- Approach
 - Intensity processing
 - Depth processing
 - Combination of proposals
- Technologies
- Development
- Test
- Performance

Left luggage detection

- Detection of abandoned items in public places:
 - Airports
 - Train station
- Issues:
 - Shadows
 - Occlusions
 - Illumination changes
 - Clutter

Pipeline

■ It is based on Reliable Left Luggage Detection Using Stereo Depth and Intensity Cues – C. Beleznai, P. Gemeiner and C. Zinner^[1] of Austrian Institute of Technology

Intensity background modelling

- The background model is computed using the **Zivkovic** method [2]:
 - Gaussian Mixture Model (GMM)
 - Select dynamically the number of components
- Left luggages are detected over time with the dual foregrounds model [3]:
 - Two background models are computed:
 - B_L : long-term background $\rightarrow F_L$
 - B_s : short-term background $\rightarrow F_s$
 - \bullet $\alpha_L < \alpha_S$
 - e.g.: $\alpha_L = 0.001$ and $\alpha_S = 0.01$

Dual foreground

• Using F_L and F_S we have four cases for each pixel:

$\overline{F_L(x,y)}$	$F_{\mathcal{S}}(x,y)$	
0	0	Background
0	1	Background pixel that was occluded
1	0	Static object
1	1	Foreground

- lacktriangle We aggregate the detection into an image E(x,y)
 - It aims to remove noise in the detection;
 - If $E(x,y) \ge max_e$, the pixel is marked as abandoned item.

Aggregator update rule

■ The aggregator update rule is the following:

Update rule $E(x, y)$	Condition
E(x,y)+1	$F_L(x,y) = 1 \wedge F_S(x,y) = 0$
E(x,y) - PENALTY	$F_L(x,y) \neq 1 \lor F_S(x,y) \neq 0$
max_e	$E(x,y) > max_e$
0	E(x,y)<0

A set of bounding box of intensity-based proposals is obtained.

Depth processing

Background model is built over time using the accumulate running average method:

$$B_t = (1 - \alpha) \cdot B_{t-1} + \alpha \cdot I_t$$

- The spatial changes are accumulated in an aggregator.
- The accumulator entry that have a number of observations above a threshold is marked as abandoned item.
- A set of bounding box of depth-based proposals is obtained.

ORIGINAL FRAME

$$\alpha = 0.1$$

$$\alpha = 0.01$$

Combination of proposals

The two sets of proposals generated by intensity and depth-based detection are merged using:

$$R = \frac{\#pixel(P_d \cap P_i)}{\#pixel(P_d \cup P_i)}$$

- **u** where P_d and P_i are two overlapping bounding boxes in depth and intensity.
- \blacksquare If $R \ge 0.50$ an abandoned item is detected.

Technologies

- Video capture with Kinect device
 - RGB camera:
 - resolution 640×480
 - 8 bit quantization
 - Depth sensor:
 - resolution 640 × 480
 - 11 bit quantization
 - USB 2.0 interface
- OpenKinect
 - Open source library
 - Multiplatform
- OpenCV

Intensity processing

- We implement an intensity processing module.
- The RGB processing routine can be summed as following:

```
# get next video frame
rgb.current_frame = cam.get_image()
# get rgb dual foreground (long and short term)
rgb.compute_foreground_masks(rgb.current_frame)
# update rgb aggregator
rgb.update_detection_aggregator()
# extract bounding box proposals
rgb_proposal_bbox = rgb.extract_proposal_bbox()
```

- **a** A bounding box contains a set of connected pixel in which the aggregator value is max_e .
- The bounding boxes with area less than 50 pixel are filtered:
 - So small objects are discarded.

Depth processing

The depth processing routine can be summed as following:

■ Is it that simple? Would be nice!!!

Depth challenge

- The depth video stream is **noisy**:
 - We apply the opening morphological operator.
- The depth video stream is **not** defined everywhere:
 - it's available for the image regions that are close enough to the device;
 - for black objects the sensor can't measure the depth value;
 - A proper management of N/D pixel has been implemented.

Depth-based proposals

- The spatial changes over time are accumulated in an image aggregator:
 - If the aggregator exceeds a threshold is segmented^[4] with a bounding box;
 - The spatial region is marked as left item proposal.
- We provide 3 methods to accumulate the depth changes:
 - IMAGE ACCUMULATOR
 - BOUNDING BOX ACCUMULATOR
 - BEST BOUNDING BOX ACCUMULATOR

Combination of proposals

■ The intensity and depth-based proposals sets are merged by using:

$$R = \frac{\#pixel(P_d \cap P_i)}{\#pixel(P_d \cup P_i)}$$

- If $R \ge 0.50$ an abandoned item is detected:
 - The bounding box is saved in the set $Result_t$

Combination of proposals - improvements

- Since in the RGB foreground model the left luggage eventually become background in the long run the intensity-based proposals are discarded:
 - The last frame $frame_{t-1}$ is saved;
 - The last set of bounding boxes of proposals $Result_{t-1}$ is saved;
 - If the ratio R between a bounding box $bb_t \in Result_t$ and a bounding box $bb_{t-1} \in Result_{t-1}$ is over 0.50 then the two bounding box are considered the same;
 - Else if R < 50% we compute the **Normalized Cross-Correlation** C_N between the region of $frame_t$ bounded by the bounding box bb_{t-1} and the same region of $frame_{t-1}$
 - If $C_N > 0.90$ means that the regions is the same then we keep it;
 - Else we discard the bb_{t-1}
- The final proposals are segmented by using watershed algorithm instead region growing algorithm.

Test

- We have tested the application using more than 20 videos;
- The videos of interest are available for download through this link;
 - Video04: no clutter, no occlusions, one person, one left luggage;
 - Video05: no clutter, two luggages, occlusions, standing people;
 - Video12: no clutter, three luggages, illumination; ✓ ✓ ×
 - Video13: clutter, two luggages, occlusions, illumination;
 - Video16: clutter, two luggages, occlusions, illumination;

Performance

The approach used in this application is demanding in term of performance. The proposed framework runs at 5 fps on a modern notebook, just like the one proposed in the paper from which the authors were inspired.

References

- [1] C. Beleznai, P. Gemeiner and C. Zinner, Reliable Left Luggage Detection Using Stereo Depth and Intensity Cues
- [2] Z. Zivkovic and F. Heijden, Efficient adaptive density estimation per image pixel for the task of background subtraction
- [3] F. Porikli, Y. Ivanov and T. Haga, Robust abandoned object detection using dual foregrounds
- [4] Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985).

Left luggage detection June 13th, 2014

Course of Multimedia Databases – a.a. 2013-14

Andrea Rizzo, Matteo Bruni