

Overview

- Reliability pillars
- OpenXAI
- □ Is OpenXAI all you need?
- New directions

flute: 0.9973

er et al. 2014

ngenberg et al. 2015

vorks. *Sundararajan*ion. *Zhou et al. 2016*of any classifier. *Ribe*

Smootl

Natural images Fong et al. 2017

l Perturbation. Fong et al. 2017

MRI brain scans

Agarwal et al. 2021

SHAP: A Unified Approach to Interpreting Model Predictions. Lundberg et al. 2017

PDA: Visualizing deep neural network decisions: Prediction difference analysis. Zintgraf et al. 2017

From: johnchad@triton.unm.edu (jchadwic)

Subject: Another request for Darwin Fish

Organization: University of New Mexico, Albuquerque

Lines: 11

NNTP-Posting-Host: triton.unm.edu

FIDO: Explaini **Text** Ribeiro et al. 2016 ual generation. Chang et al.

Expected Gracierios. Learning Explanation Priors. Erion

FG-Vis: Interpretable and Fine-Grained Visual Explanations for Cc 2019

Understanding Deep Networks via Extrer

t features via a generative mc Srinivasan et a

VideosSrinivasan et al. 2017

Rajpurkar et al. 2017

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

nput Chest X-Ray Image

CheXNet 21-layer CNN

Dutput Pneumonia Positive (85%)

(ichadwic)

t al. 2014

hberg et al. 2015

ks. Sundararajan et al. 2018

Zhou et al. 2016

any classifier. *Ribe<mark>iro et al. 2016*</mark>

2017

Fong et al. 2017 MRI brain scans

Agarwal et al. 2021

Lundberg et al. 2017

rsis. Zi<u>ntøraf et al. 2017</u>

4

From: johnchad@triton.unm.edu Subject: Another request for Dary Organization: University of New Lines: 11

NNTP-Posting-Host: triton.unm.e

FIDO: Explaini **Text** Ribeiro et al. 201

Expected Gracieries. Learning Explanable .

FG-Vis: Interpretable and Fine-Graine 2019

Understanding Deep Networks via Ex

MP-G: Removing input features via a generat

Video From 'wave'

Detecting biases Lapuschkin et al. 2016

How do we evaluate the **reliability** of

state-of-the-art explanation methods?

Reliability Pillars

C. Agarwal, M. Zitnik, H. Lakkaraju, Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods, AISTAT

Pillar 1: Faithfulness

Pillar 2: Stability

C. Agarwal et al., Rethinking Stability for Attribution-based Explanations, Oral presentation @ ICLR 2022

Pillar 3: Counterfactual Fairness

How do we **pick** an explanation

method from the XAI landscape?

OpenXAI

- OpenXAI provides an automated end-to-end pipeline that simplifies and standardizes the evaluation of post hoc explanation methods
- OpenXAI promotes transparency and reproducibility in benchmarking explanation methods

OpenXAI's Key Components

- ☐ A flexible synthetic data generator and a collection of diverse 7 real-world datasets, 16 pre-trained models, and 6 state-of-the-art explanation methods
- Open-source implementations of 22 quantitative metrics for evaluating faithfulness, stability (robustness), and fairness of explanation methods
- First-ever public XAI leaderboards to benchmark explanation methods

XAI ready Dataloaders and Models

```
from openxai import Dataloader
loader_train, loader_test = Dataloader.return_loaders(data_name='german',
download=True)
inputs, labels = iter(loader_test).next()
```

XAI ready Dataloaders and Models

```
from openxai import Dataloader
loader_train, loader_test = Dataloader.return_loaders(data_name='german',
download=True)
inputs, labels = iter(loader_test).next()
```

OpenXAI provides pre-trained models for readily benchmarking explanation methods.

```
from openxai import LoadModel
model = LoadModel(data_name='german', ml_model='ann')
```

OpenXAI Explainers

 OpenXAI provides ready-to-use implementations of six state-ofthe-art feature attribution methods

```
from openxai import Explainer
exp_method = Explainer(method='LIME')
explanations = exp_method.get_explanations(model, X=inputs, y=labels)
```

OpenXAI Explainers

```
@abstractmethod
def get_explanations(self,
                               model,
                                        X:
torch.Tensor, y: torch.Tensor):
  Generate explanations for given input/s.
  Parameters
  model: pre-trained ML model
  X: torch.tensor
     Input in two-dimensional shape (m, n).
  y: torch.tensor
    Labels
  Returns
  torch.Tensor
     Explanation vector/matrix.
  11 11 11
  pass
```

OpenXAI's Evaluation

OpenXAI provides implementations and ready-to-use APIs for a set of 22 quantitative metrics proposed by prior research to evaluate the faithfulness, stability, and fairness of explanation methods

```
from openxai import Evaluator
metric_evaluator = Evaluator(inputs, labels, model, explanations)
score = metric_evaluator.eval(metric='RIS')
```

OpenXAI's Leaderboard

Explore Leaderboards

German Credit								
Faithfulness								
Method	FA 🛧	RA	SA	SRA	RC	PRA	PGI	PGU
Vanilla Gradient	0.950	0.950	0.846	0.846	1.000	1.000	0.149	0.174
SmoothGrad	0.950	0.950	0.606	0.606	1.000	1.000	0.202	0.124
Integrated Gradient	0.950	0.950	0.846	0.846	1.000	1.000	0.148	0.173
LIME	0.938	0.810	0.938	0.814	0.998	0.989	0.156	0.169
Gradient x Input	0.785	0.161	0.382	0.071	0.890	0.875	0.171	0.161
SHAP	0.130	0.007	0.112	0.006	-0.053	0.488	0.135	0.180

Exploring the landscape using OpenXAI

- □ LIME produces more faithful (+24.9%) explanations
- Across all real-world datasets, SmoothGrad achieves 63.2% higher RRS values

Is OpenXAI all you need?

- How to benchmark different non-perturbation-based explanation methods?
- Benchmarking explanations on other modalities
 - □ Vision (Quantus)
 - □ NLP (e-ViL)
 - □ Graphs (GraphXAI)

New directions

- Training models using Explanation Feedbacks
- Differentiable Explainable Curricula for RL Agents
- Learning Hierarchical and Multi-modal Explanations

Thank you!

Email: <u>chiragagarwall12@gmail.com</u>

□ Website: http://chirag126.github.io/

y @_cagarwal

Questions?

