Rodzaj komunikacji

I²C (Inter-Integrated Circuit):

Jest to komunikacja przewodowa używana głównie do komunikacji między urządzeniami na tej samej płytce PCB (lub w krótkich odległościach między układami scalonymi).

Jest to protokół magistrali szeregowej typu Master-Slave.

Bluetooth:

Komunikacja bezprzewodowa służąca do wymiany danych pomiędzy urządzeniami w odległościach od kilku metrów do kilkudziesięciu metrów. Bluetooth może pracować w różnych trybach, takich jak Punkt-punkt (Point-to-Point), Broadcast oraz Mesh (w sieciach złożonych).

Liczba urządzeń

I²C:

Maksymalnie może obsługiwać do 127 urządzeń Slave przy użyciu 7-bitowych adresów Wymaga jednego urządzenia Master, które inicjuje komunikację. Urządzenia Slave mogą odpowiadać, ale nie inicjować transmisji.

Bluetooth:

W standardzie Bluetooth klasycznym można połączyć do 7 urządzeń (Slave) z jednym Master w sieci piconet. Bluetooth 5.0 oraz Bluetooth Mesh umożliwia połączenia w bardziej złożonych topologiach, obsługując setki urządzeń, gdzie nie ma sztywnego podziału na Master-Slave.

Sposób połączenia

I²C:

Komunikacja odbywa się za pomocą dwóch przewodów:

SDA (Serial Data) - przesyła dane,

SCL (Serial Clock) – przesyła sygnał zegarowy.

Urządzenia są połączone szeregowo na jednej magistrali. Komunikacja wymaga fizycznego połączenia między układami i działa najlepiej na małe odległości (kilka centymetrów do metra).

Bluetooth:

Jest to komunikacja bezprzewodowa oparta na radiowej technologii 2,4 GHz.

Połączenie może być realizowane w trybie punkt-punkt lub w bardziej złożonych topologiach, takich jak sieci Mesh.

Urządzenia Bluetooth parują się poprzez wymianę kluczy kryptograficznych, zapewniając bezpieczeństwo transmisji.

Prędkość transmisji i tryb transmisji.

I²C:

- -Standardowa prędkość wynosi 100 kbps,
- -Tryb Fast osiąga prędkość 400 kbps,
- -Tryb Fast-Plus wynosi 1 Mbps,
- -Tryb High-Speed pozwala na prędkość do 3,4 Mbps.

Prędkość ograniczona jest przez właściwości elektryczne przewodów i urządzeń oraz długość magistrali. Tryb transmisji half-duplex – nie może odbierać i wysyłać jednocześnie.

Bluetooth:

Bluetooth 4.0 (BLE) osiąga prędkości do 1 Mbps, natomiast klasyczny Bluetooth (2.0, 3.0) może osiągać prędkości do 3 Mbps.

Bluetooth 5.0 umożliwia transmisję danych z prędkością do 2 Mbps w BLE.

Bluetooth 5.2 z Enhanced Attribute Protocol (EATT) oraz inne usprawnienia w Mesh mogą obsługiwać różne scenariusze transmisji danych.

Tryb transmisji full-duplex – może odbierać i wysyłać jednocześnie.

Zasięg

I²C:

Bardzo ograniczony zasięg – przystosowany do komunikacji na małych odległościach, zazwyczaj do 1 metra.

Bluetooth:

Standardowy zasięg wynosi od 10 metrów do 100 metrów (w zależności od klasy urządzenia).

Bluetooth 5.0 zwiększa zasięg nawet do 400 metrów w trybie niskiej prędkości.

Złożoność implementacji

I²C:

Protokół jest stosunkowo prosty do implementacji na poziomie sprzętowym i programowym. Jednakże wymaga precyzyjnego zarządzania napięciami oraz synchronizacji zegara (SCL).

Złożoność rośnie wraz z liczbą urządzeń na magistrali.

Bluetooth:

Wymaga bardziej zaawansowanego sprzętu i oprogramowania, w tym stosów Bluetooth (stos protokołów). Komunikacja odbywa się za pośrednictwem zestawu profili i protokołów, co zwiększa złożoność.

Parowanie i zarządzanie sesjami może być bardziej skomplikowane niż w I²C.

Koszt energii

I²C:

Jest stosunkowo energooszczędny, ponieważ operuje na krótkich odległościach i wymaga małej mocy.

Zużycie energii zależy głównie od częstotliwości zegara i liczby operacji I/O.

Bluetooth:

Bluetooth Low Energy (BLE) został zaprojektowany z myślą o energooszczędności, co czyni go odpowiednim do urządzeń zasilanych bateriami, takich jak smartwatche, czujniki i inne urządzenia IoT.

Klasyczny Bluetooth zużywa więcej energii niż BLE, ale nadal mniej niż inne technologie bezprzewodowe, jak Wi-Fi.

Cecha	I²C	Bluetooth
Prędkość transmisji	Wolniejsza niż inne interfejsy (np. SPI)	Niska przepustowość (zwłaszcza BLE)
Zasięg	Bardzo ograniczony (kilka metrów)	Ograniczony zasięg, zakłócenia w paśmie 2,4 GHz
Zakłócenia	Wrażliwy na zakłócenia elektromagnetyczne	Zakłócenia od innych urządzeń na paśmie 2,4 GHz
Złożoność	Prosty, ale ograniczony protokół	Wysoka złożoność stosów i konfiguracji
Pobór mocy	Niski pobór mocy	Bluetooth klasyczny zużywa dużo energii
Parowanie i połączenia	Nie dotyczy	Opóźnienia w nawiązywaniu połączeń
Konflikty/arbitraż	Problemy w konfiguracji wielo- masterowej	Potencjalne problemy z kompatybilnością

Źródła:

https://www.prodigytechno.com/i2c-protocol

https://botland.com.pl/blog/bluetooth-jak-to-dziala/

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/

https://www.i2c-bus.org/voltage-level/