Sequences & Series: Answer to Exercise 1

Definition 1. A field is a set F endowed with two operations: one is called addition + and one is called multiplication \cdot (also denoted as \times), which satisfy the following axioms:

- Axioms for addition:
 - For any $x, y \in F$, $x + y \in F$.
 - Commutative: x + y = y + x.
 - Associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
 - F contains an element, called 0, such that 0 + x = x for all $x \in F$.
 - For each $x \in F$, there is an element $-x \in F$ such that x + (-x) = 0.
- Axioms for multiplication:
 - For any $x, y \in F$, $x \cdot y \in F$. (When there is no confusion, we write $x \cdot y$ as xy).
 - Commutative: $x \cdot y = y \cdot x$ for all $x, y \in F$.
 - Associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in F$.
 - F contains an element, called $1 \neq 0$, such that $1 \cdot x = x$ for all $x \in F$.
 - If $x \in F$ and $x \neq 0$, then there is an element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$.
- Distributive law: $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in F$.

Exercise 1. Use **Definition 1** to prove the following theorem:

Theorem 1. The axioms of addition imply the following for $x, y, z \in F$ where F is a field:

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0. (So 0 is unique in F.)
- (c) If x + y = 0, then y = -x. (So -x is unique in F corresponding to x.)
- (d) -(-x) = x.

Proof. (a) Given x + y = x + z, we can add -x to both sides of the equation.

$$(-x) + (x + y) = (-x) + (x + z)$$

 $((-x) + x) + y = ((-x) + x) + z$
 $0 + y = 0 + z$
 $y = z$

(b) If x + y = x, then add -x to both sides:

$$(-x) + (x + y) = (-x) + x$$
$$((-x) + x) + y = 0$$
$$0 + y = 0$$
$$y = 0$$

This shows that 0 is unique.

(c) If x + y = 0, then add -x to both sides:

$$(-x) + (x + y) = (-x) + 0$$
$$((-x) + x) + y = -x$$
$$0 + y = -x$$
$$y = -x$$

This shows that -x is unique.

(d) Since x + (-x) = 0, we know that -x is the additive inverse of x. Also, (-x) + (-(-x)) = 0, which implies that -(-x) is the additive inverse of -x. Since the additive inverse of an element is unique, we have -(-x) = x

Exercise 2. Use **Definition 1** to prove the following theorem:

Theorem 2. The axioms of multiplication imply the following for $x, y, z \in F$ where F is a field:

- (a) If $x \neq 0$ and $x \cdot y = x \cdot z$, then y = z.
- (b) If $x \neq 0$ and $x \cdot y = x$, then y = 1. (So 1 is unique in F.)
- (c) If $x \neq 0$ and $x \cdot y = 1$, then y = 1/x. (So 1/x is unique in F corresponding to $x \neq 0$.)
- (d) If $x \neq 0$, then $\frac{1}{1/x} = x$.

Proof. (a) Given $x \neq 0$ and $x \cdot y = x \cdot z$, we can multiply both sides by $\frac{1}{x}$

$$\frac{1}{x}(x \cdot y) = \frac{1}{x}(x \cdot z)$$
$$\left(\frac{1}{x} \cdot x\right) y = \left(\frac{1}{x} \cdot x\right) z$$
$$1 \cdot y = 1 \cdot z$$
$$y = z$$

(b) If $x \neq 0$ and $x \cdot y = x$, then multiply both sides by $\frac{1}{x}$

$$\frac{1}{x}(x \cdot y) = \frac{1}{x} \cdot x$$
$$\left(\frac{1}{x} \cdot x\right) y = 1$$
$$1 \cdot y = 1$$
$$y = 1$$

This shows that 1 is unique.

(c) If $x \neq 0$ and $x \cdot y = 1$, then $y = \frac{1}{x}$ by the definition of the multiplicative inverse. To show uniqueness, assume there is another element z such that $x \cdot z = 1$. Then $x \cdot y = x \cdot z$, and by part (a), y = z

(d) If $x \neq 0$, we know that $x \cdot \frac{1}{x} = 1$. Let $y = \frac{1}{x}$, then $y \neq 0$ and $y \cdot \frac{1}{y} = 1$. Since $x \cdot y = 1$, we have $\frac{1}{y} = x$, that is $\frac{1}{1/x} = x$

Exercise 3. Use **Definition 1** to prove the following theorem:

Theorem 3. The axioms of a field imply the following for $x, y, z \in F$ where F is a field:

- (a) 0x = 0.
- (b) If $x \neq 0$, $y \neq 0$, then $xy \neq 0$.
- (c) (-x)y = -(xy) = x(-y).
- (d) (-x)(-y) = xy.

Proof. (a) 0x = (0+0)x = 0x + 0x. Adding -0x to both sides gives 0x - 0x = (0x + 0x) - 0x, which implies 0 = 0x

(b) Suppose $x \neq 0$ and $y \neq 0$. If xy = 0, then multiply both sides by $\frac{1}{x}$ (since $x \neq 0$): $\frac{1}{x}(xy) = \frac{1}{x} \cdot 0$, which implies $(\frac{1}{x} \cdot x) y = 0$, or y = 0, which is a contradiction. So $xy \neq 0$

(c)
$$(-x)y + xy = (-x + x)y = 0y = 0$$
, so $(-x)y = -(xy)$

Also,
$$x(-y) + xy = x(-y + y) = x \cdot 0 = 0$$
, so $x(-y) = -(xy)$

(d)
$$(-x)(-y) = -(x(-y)) = -(-(xy)) = xy$$