Prova d'Esame Metodi e Modelli Matematici per l'IA - 26.02.2025

1. Esercizio 1

Studiare la convergenza della seguente SdF

$$\sum_{n=1}^{+\infty} \left[\sum_{k=1}^{n} k \right]^{-1} \sin(nx) + \sum_{n=1}^{+\infty} \left[1 - \sum_{k=1}^{n} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \right]^{-1} \cos(nx)$$

Se converge, studiare la regolarità della funzione limite

2. Esercizio 2

Usare la definizione di $L^p(E)$ e $\| \bullet \|_{L^p(E)}$ come nelle dispense.

A) Dimostrare che se E è limitata allora vale la seguente inclusione per $p \leq q$:

$$L^p(E)\supset L^q(E)$$

B) Sia E un insieme illimitato. Trovare $1 \leq p < q \leq +\infty$ tali che esistano f,g per cui $f \in L^p(E)$, $f \notin L^q(E)$ e $g \in L^q(E)$, $g \notin L^q(E)$.

X

English Version

1. Exercise 1

Study the convergence of the following Fourier Series:

$$\sum_{n=1}^{+\infty} \left[\sum_{k=1}^{n} k \right]^{-1} \sin(nx) + \sum_{n=1}^{+\infty} \left[1 - \sum_{k=1}^{n} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \right]^{-1} \cos(nx)$$

In the case it converges, determine the regularity of the limit function.

2. Exercise 2

Let $L^p(E)$ denote the space of the absolutely p-integrable functions according to Lebesgue in the L-measurable set $E \subseteq R$, and let $||f||_{L^p(E)}$ be defined as

$$\|f\|_{L^p(E)} := \left(\int_E |f|^p
ight)^{1/p}$$

A) Prove that if E is bounded (e.g. has finite L-measure) then for $1 \le p \le q \le +\infty$ we have the following inclusion:

$$L^p(E)\supset L^q(E)$$

B) Let E be unbounded. Find $1 \le p < q \le +\infty$ where there exists f, g, such that $f \in L^p(E)$, $f \notin L^q(E)$ and $g \in L^q(E)$, $g \notin L^q(E)$.