Let us write $G(p,n) = \{\text{p-dimensional (vector) subspaces of } \mathbb{R}^{n \times p} \}$. A hyperplane $V \subseteq \mathbb{R}^{n \times p}$ is specified by $n \times p$ matrix $A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_p] \in Mat_{n \times p}$ where $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_p\}$ is a basis for V. I.e., given $A \in Mat_{n \times p}$, $\mathrm{rk}A = p$, we get a p-hyperplane $V \subseteq \mathbb{R}^{n \times p}$ by $V = \mathrm{span} \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_p\}$. Conversely, given any p-dim subspace $V \subseteq \mathbb{R}^{n \times p}$, there is a $n \times p$ matrix A with $\mathrm{rk}(A) = p$, from which V is obtained in the above way. Two matrices, A and B, determine the same subspace $V \iff \exists g \in GL(p)$, such that B = Ag. GL(p) stands for general linear group of degree p over real field.

We thus have the following setup. Let the set of all 2-frames be

$$F(p,n) = \{A \mid rkA = p\} \subseteq Mat_{n \times p}(\mathbb{R}) \simeq \mathbb{R}^{n \times p}$$

and consider on it the equivalence relation

$$B \sim A \text{ if } \exists q \in GL(p), \text{ s.t. } B = Aq$$

We have described a bijection of sets

$$F(p,n)/\sim \simeq G(p,n).$$

We will show that G(p, n) is a manifold equipped with a natural smooth structure. To achieve that we need to prove that:

- G(p,n) has a countable base
- G(p, n) is Hausdorff
- G(p, n) is locally euclidean

Proposition 0.0.1. F(p,n) is an open subset of $\mathbb{R}^{p\times n}$

Lemma 0.0.1. The rank of an $m \times n$ matrix is $r \iff some \ r \times r$ minor does not vanish, and every $(r+1) \times (r+1)$ minor vanishes.

Since we know that for $M \in F(p,n)^{\complement}$, $\operatorname{rk} M < p$ lemma ?? tells us all $p \times p$ minors of an arbitary element $A \in F(p,n)^{\complement}$ vanish. Let's denote the determinant of each minor of A with $S_i, i \in (1,2,\ldots,\binom{n}{p})$ Then consider a continuous map $\psi: Mat_{n\times p} \to \mathbb{R}^{\binom{n}{p}}, \ \psi(M) \to (S_1,S_2,\ldots,S_{\binom{n}{p}})$. We can express $F(p,n)^{\complement} = \psi^{-1}(\vec{0})$ because all minors vanish (det=0). A point $\vec{0} \in \mathbb{R}^{\binom{n}{p}}$ is a closed set, and because continuity preserves the closedness, $F(p,n)^{\complement}$ is closed in $Mat_{n\times p}$, an since its complement is closed, F(p,n) is an open subset of $Mat_{n\times p}(\mathbb{R})$

Proposition 0.0.2. \sim is an open equivalence relation on F(p,n)

In other words we need to show that the map $\pi: F(p,n) \to F(p,n)/\sim$ is an open map. Then π is a quotient map and is equipped with $F(p,m)/\sim$ is equipped with quotient topology.

Lemma 0.0.2. A subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

Let U be an open in F(p,n). Then for every $g \in GL(p)$ the set $Ug = \{xg | x \in U\}$ is an open subset of F(p,n). Therefore $\pi^{-1}\pi(U) = \bigcup_{g \in G} Ug$ is an open in F(p,n) because the union of open sets is open. And by $\ref{eq:property}$ $\pi(U) = [U]$ is open in G(p,n). π is a canonical quotient map, and $F(p,n)/\sim$ is open in $\mathbb{R}^{n \times p}$.

Lemma 0.0.3. if $\beta = \{\beta_{\alpha}\}_{\alpha}$ is a base for a topology \mathcal{T} on a topological space S, and if $f: S \to X$ is an open map, then the collection $\{f(\beta_{\alpha})\}_{\alpha}$ is a base for the topology on X.

Proof: Let V be an open in X and $y \in V$. Choose $x \in f^{-1}(y)$. Since $f^{-1}(V)$ is open there is a basis element $U \in \beta$ s.t. $x \in U \subset f^{-1}(V)$ which implies that $y \in f(U) \subset V$. Since y is arbitary, and $f(U) \subset f(\beta)$ the collection $\{f(\beta_{\alpha})\}_{\alpha}$ is a base for the topology on X.

We have that F(p, n) has a second countable base since it is a subspace of $\mathbb{R}^{n \times p}$. Thus by lemma ??, we have that the base of G(p, n) is second countable.

Proposition 0.0.3. The graph of the equivalence relation on F(p,n) is a closed subset of $F(p,n) \times F(p,n)$. i.e. $R = \{(A,B) \in F(p,n) \times F(p,n) \mid A = Bg\}$ is closed.

We can consider R as a set of matrices $[AB] = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_p, \vec{b}_1, \vec{b}_2, \dots, \vec{b}_p]$ of rank p. Lemma ?? tells us that every $(p+1) \times (p+1)$ minor of an element in R must vanish. Consider the map that assigns to (A, B) the values of all $(p+1) \times (p+1)$ minors

$$\psi: F(p,n) \times F(p,n) \to \mathbb{R}^{\binom{n}{3}(p+2)}$$

Since ϕ is continuous (as all of its components are polynomials) and $R = \psi^{-1}(0)$, then R is closed.

Example 0.0.1. For example take G(2,4), then $\phi: Mat_{4\times 2} \to \mathbb{R}^{16}$

Proposition 0.0.4. G(p,n) is Hausdorff.

That is because R is closed in $F(p,n) \times F(p,n)$, $(F(p,n) \times F(p,n)) \setminus R = R^{\complement}$ is open. $\Longrightarrow \forall (x,y) \in R^{\complement}$ there is a basic open set $u \times v$ containing (x,y) s.t. $(u \times v) \cap R = \emptyset \Longrightarrow \forall x,y$ s.t. $(x,y) \notin R, \exists$ u around x and v around y s.t. $u \cap v = \emptyset$ Thus for any two points $[x] \neq [y] \in F(p,n)/\sim$ there exist disjoint neighborhood of x and y and $F(2,4)/\sim$ which is exactly the definition of Hausdorff property.

Proposition 0.0.5. G(p,n) is locally euclidean.

Now that we have Hausdorff property and secound countable basis, we need to prove that every point lying on a manifold has a neighbourhood that is homeomorphic to an open in \mathbb{R}^n . Then we can claim that G(p,n) is a manifold.

First we define charts. Take $A \in Mat_{n \times p}$ denote by A_k , $(k \in all possible picks of p from the set <math>[1, \ldots, n]$) the $p \times p$ minor, formed by the k_1 th ... k_p th rows of A. The set

$$U_k = \{A \mid \det(A_k) \neq 0\} \subset F(p, n)$$

is open, because its complement is closed. We also have that $\forall g \in GL(p)$ if $A \in U_k$ then $Ag \in U_k$. Indeed, because $\det(Ag) = \det(A)\det(g)$, $\det((Ag)_{i,j}) \neq 0$ which means Ag will belong to a set U_k Next, define

$$V_k = U_k/\sim = \pi(U_k) \subset G(p,k)$$

The set V_k is open since the equivalence relation is open. i.e. π is an open map. U_k has a canonical representative $A \sim \widehat{AA_k^{-1}}$. $\widehat{\cdot}$ discards all the rows whose index is in k. Similarly V_k has a canonical representative: $[A] \sim \widehat{[AA_k^{-1}]}$

Example 0.0.2. Following the previous example consider $[A] \in G(2,4)$. If a minor $A_{2,4}$ is

invertible we have that
$$[A] \sim \widehat{[AA_{2,4}^{-1}]} = \begin{bmatrix} * & * \\ 1 & 0 \\ * & * \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$
. Since charts $\bigcup U_k$ cover $F(p,n)$,

charts V_k cover G(p, n) (because π is open).

Now we define homeomorphisms between charts V_k and opens in $R^{p\times (n-p)}$ as follows:

$$\phi_k: V_k \subset G(p,n) \to Mat_{(n-p)\times p}(\mathbb{R}) \simeq \mathbb{R}^{(n-p)\times p}, \quad \phi_k([A]) = \widehat{AA_k^{-1}}$$

We can show that ϕ is well defined.

Let $A, A' \in [A]$ we will show that ϕ is well defined. Equivalently $\phi_k(A) = \phi_k(A')$ Since A and A' are in the same class, we have that A' = Ag, $g \in GL(p)$, $\phi_k(A) = AA_k^{-1}$.

$$\phi_k(A') = \phi_k(Ag) = Ag((Ag)_k)^{-1} = Ag(A_kg)^{-1} = Agg^{-1}A_k^{-1} = AIA_k^{-1} = AA_k^{-1} = \phi_k(A)$$

 ϕ is continuous because matrix multiplication is continuous. Next, we can see that ϕ is surjective and ϕ^{-1} is continuous by explicitly defining inverse.

$$\phi_k^{-1}\begin{pmatrix} -\alpha_1 - \\ \vdots \\ -\alpha_{n-p} - \end{pmatrix}) = \begin{pmatrix} 1_1 \\ \vdots \\ 1_p \\ \alpha_1 \\ \vdots \\ \alpha_{n-p} \end{pmatrix}$$

Finally, to show that ϕ is a homeomorphism, we have left to shot that ϕ is injective.

Assume that there ϕ_k is not injective then there are $A \in [A]$ and $B \in [B]$ such that there is **no** $g \in GL(p)$ for which Ag = B. i.e. $AA_k^{-1} = BB_k^{-1} \iff AA_k^{-1}B_k = B$ but $A_k^{-1}B_k \in GL(p)$ thus we reach contradiction. Therefore ϕ_k is homeomorphism

Example 0.0.3. Let
$$A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \\ 2 & 1 \\ 4 & 3 \end{bmatrix}$$
, $[A] \in V_{3,4}$

$$AA_{3,4}^{-1} = \begin{pmatrix} 2 & 6 \\ 1 & 3 \\ 2 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -9 & 5 \\ -\frac{9}{2} & \frac{5}{2} \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

the above multiplication is continuous by ?? and we can exclude rows 3 and 4 so that we get result in \mathbb{R}^4 . Then the restriction to \mathbb{R}^4 is also continuous.

$$\phi_{3,4}([A]) = \begin{pmatrix} -9 & 5\\ -\frac{9}{2} & \frac{5}{2} \end{pmatrix}$$

Next the inverse map $\phi_{3,4}(\beta)^{-1} \ \beta \in Mat_{2\times 2} = \phi_{3,4}(A_{1,2}A_{3,4}^{-1}g) = [A]$ for some matrix A,

such that $A_{1,2} = \beta$. But if we pick $g = A_{3,4}$ then $\phi_{3,4}(\beta) = \begin{bmatrix} \beta_{1,1} & \beta_{1,2} \\ \beta_{2,1} & \beta_{2,2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ More generally

$$\phi_{i,j}^{-1}: \mathbb{R}^4 \to v_{i,j} \subset G(2,4) \quad \phi_{i,j}^{-1}(\beta) \to \begin{bmatrix} \beta \\ I_{2\times 2} \end{bmatrix} = [\alpha]$$

Such that $\alpha[i:]=\beta[1:],\,\alpha[j:]=\beta[2:]$, $\alpha[(I\setminus\{i,j\})[1]]=I[1:]$ and $\alpha[(I\setminus\{i,j\})[2]]=I[2:]$

Example 0.0.4. $\phi_{3,4}^{-1}(\alpha) = [A]$ as defined in ??

$$\phi_{3,4}^{-1} \begin{pmatrix} -9 & 5 \\ -\frac{9}{2} & \frac{5}{2} \end{pmatrix} = \begin{bmatrix} -9 & 5 \\ -\frac{9}{2} & \frac{5}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can confirm that
$$\alpha = \begin{bmatrix} -9 & 5 \\ -\frac{9}{2} & \frac{5}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \\ 2 & 1 \\ 4 & 3 \end{bmatrix}$ span the same subspace. Because if we

take
$$g = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$
 then $\alpha g = A$

Since $\bigcup U_{i,j}$ covers F(2,4), $\cup v_{i,j}$ covers G(2,4) Finally, we check transition maps.

$$\phi_{1,2}([A])^{-1} = A_{3,4}A_{1,2}^{-1}, \quad \phi_{1,2}^{-1}(u) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{pmatrix}$$

$$\phi_{2,4}([A]) = A_{1,3}A_{2,4}^{-1}, \quad \phi_{2,4}^{-1}(v) = \begin{pmatrix} v_{1,1} & v_{1,2} \\ 1 & 0 \\ v_{2,1} & v_{2,2} \\ 0 & 1 \end{pmatrix}$$

$$\phi_{2,4} \circ \phi_{1,2}^{-1}(v) = \begin{pmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v_{1,1} & v_{1,2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ v_{2,1} & v_{2,2} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ v_{1,1} & v_{1,2} \end{pmatrix} \begin{pmatrix} v_{2,2} & -1 \\ -v_{2,1} & 0 \end{pmatrix} \frac{1}{-v_{2,1}} = \begin{pmatrix} 1 & 0 \\ v_{1,1} & v_{1,2} \end{pmatrix} \begin{pmatrix} v_{2,2} & -1 \\ v_{1,1}v_{2,2} - v_{1,2}v_{2,1} - v_{2,4} \end{pmatrix}$$

Now let's check the transition map $\phi_{3,4} \circ \phi_{2,3}^{-1}$

$$\phi_{3,4} \circ \phi_{2,3}^{-1}(v) = \begin{pmatrix} v_{1,1} & v_{1,2} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ v_{2,1} & v_{2,2} \end{pmatrix} = -\frac{1}{v_{2,1}} \begin{pmatrix} v_{1,1}v_{2,2} + v_{1,2}v_{2,1} & -v_{1,1} \\ v_{2,2} & -1 \end{pmatrix}$$

Hence G(2,4) can be equipped with the structure of a 4 dimensional smooth manifold. However, we can also consider G(2,4) as a quotient of Stiefel Manifold. We will define a Stiefel manifold as a set of orthonormal k frames.

$$V(n,k) \subseteq F(n,k); \quad V(n,k) = \{A \mid rkA = 2, A^TA = I\}$$

$$V(2,4) \longleftrightarrow F(2,4)$$

$$\downarrow^p \qquad \downarrow^\pi$$

$$G(2,4)$$

Map p is surjective because every subspace has an orthonormal basis. I.e. starting with any basis we can construct an orthonormal one via Gram-Schmidt algorithm. Now, if we redefine the map p such that $p: F(2,4)/_{O(2)} \to G(2,4)$, where O(2) is the orthogonal group of 2-frames, we will have a bijection. Therefore there are two ways we can consider G(2,4)

$$G(2,4) = F(2,4)/_{Gl_2(\mathbb{R})}$$
 $G(2,4) = V(2,4)/_{O(2)}$

Tangent Spaces

Let's define tangent spaces on G(2,4). First consider the equivalence relation defined as:

$$(p, (U, \phi), v) \sim (p, (V, \psi), w) \text{ if } w = J(\psi \circ \phi^{-1})_{\phi(p)} v$$

Consider tanget space on G(2,4) at X, it's given by

$$T_pX = \{(p,(U,\phi),v) \mid (U,\phi) \text{ is a chart around } p,v \in \mathbb{R}^n\}/\sim$$

Hence a tangent vector to G(2,4) at $p \in G(2,4)$ is an equivalence class $[(p;(U;\phi);v)]$ Whenever we have fixed the chart $(U;\phi)$, the class is represented just by a vector $v \in \mathbb{R}^n$. To represent the same equivalence class in another chart, we multiply $v \in \mathbb{R}^n$ by the respective Jacobi matrix. Jacobi matrix of transition map $\phi_{3,4} \circ \phi_{2,3}^{-1}$ is given by:

$$J(\phi_{3,4} \circ \phi_{2,3}^{-1}) = \begin{pmatrix} -v_{2,2} & 1 & 0 & -v_{1,1} \\ \frac{1}{v_{2,1}} & 0 & -\frac{v_{1,1}}{v_{2,1}^2} & 0 \\ 0 & 0 & \frac{v_{2,2}}{v_{2,1}^2} & -\frac{1}{v_{2,1}} \\ 0 & 0 & -\frac{1}{v_{2,1}^2} & 0 \end{pmatrix}$$

Example 1.0.1. Consider the matrix a from the example ??. We have that $\phi_{3,4}([A]) = \begin{pmatrix} -9 & 5 \\ -\frac{9}{2} & \frac{5}{2} \end{pmatrix}$ and $\phi_{2,3} = \begin{pmatrix} 2 & 0 \\ 0.4 & 1.8 \end{pmatrix}$

$$J(\phi_{3,4} \circ \phi_{2,3}^{-1}) = \begin{pmatrix} -1.8 & 1 & 0 & 0\\ 2.5 & 0 & -12.5 & 0\\ 0 & 0 & 11.25 & -2.5\\ 0 & 0 & -6.25 & 0 \end{pmatrix}$$

Then

$$(p, (U, \phi_{2,3}), v) \sim (p, (V, \phi_{3,4}), w) \text{ if } w = J(\phi_{3,4} \circ \phi_{2,3}^{-1})_{\phi_{2,3}(p)} v$$

How to project on such tangent spaces?

Gr(2,4) is compact

We'll endow $\mathbb{R}^{n \times k}$ with the norm induced by the Frobenius inner product:

$$||A|| = \sqrt{tr(A^TA)} = \sqrt{\sum_{i,j} a_{i,j}^2}$$

$$< A, B> = \sqrt{tr(A^TB)}$$

We define the compact Stiefel manifold as

$$St(2,4) = \{ A \in F(2,4), \quad A^T A = I_k \}$$

It's closed because under the continuous map $A \to A^T A$ it maps to I_k , and it's bounded by \sqrt{k} because each column of A has norm 1, so $||A|| = \sqrt{k}$.

Optimization on Grassmanian as quotient mfld

Def If the manifold $X \in \mathbb{R}^N$ happens to be the level set $X = f^{-1}(c)$ of a smooth function $f: U \to \mathbb{R}^k$ over a regular value $c \in \mathbb{R}^k$, then

$$T_p X = \ker df_p$$

We show that defining function is $h: \mathbb{R}^{n \times p} \to Sym(p): X \to h(X) = X^TX - I_p$ and regular value 0. Thus tangent spaces are defined as:

$$T_xSt(n,p) = kerDh(X) = \{V \in \mathbb{R}^n \times p : X^TV + V^TX = 0\}$$

Also, more explicitly we can arrive to:

$$T_x St(n,p) = \{X\Omega + XB_{\perp} : \Omega \in Skew(p), \ B \in \mathbb{R}^{(n-p) \times p}\}$$

$$R_X(V) = (X+V)(I_p + V^T V)^{-\frac{1}{2}}$$

$$Proj_x(U) = (I - XX^T)U + X\frac{X^T U - U^T X}{2}$$

$$grad f(X) = Proj_X(grad \bar{f}(X)) = grad \bar{f}(X) - Xsym(X^T grad \bar{f}(X))$$

Wher $sym(M) = \frac{M+M^T}{2}$

Gradient Descent

$$x_{k+1} = R_{x_k}(-\alpha_k \operatorname{grad} f(x_k))$$

where $alpha_k$ is the step size, and x_1 is some random point.

Next Steps

Next, we need to generalize the statements above, so that we get that the dimension of grass-mannian is $G(k,n)=nk-k^2$. We have as many charts as $k\times k$ minors. Every $n\times k$ matrix has $\binom{n}{p}$ $k\times k$ minors.

Rayleigh Quotient Newton's Method

Consider a Rayleigh quotient function $\bar{f} = \frac{x^T M x}{x^T x}$, if we restrict the points to lie on the sphere the function comes down to $\bar{f} = x^T M x$. Also we can easily calculate that the $\operatorname{grad} \bar{f} = 2Mx$ Since the gradient on the manifold is given as $\operatorname{grad} f = \operatorname{Pgrad} \bar{f}$ we can caculate that $\operatorname{grad} f = (I - xx^T)2Mx = 2Mx - (x^T M x)x$, Next we find the differential of that gradient: $D(\operatorname{grad} f) = 2M - 2x^T M x + 4Mxx^T$. We take the canonical dot product defined as $g_c(\Delta, \Delta) = \operatorname{tr} \Delta^T (I - \frac{1}{2}YY^T)\Delta$. Therefore $g_c(D(\operatorname{grad} f), \eta) = 2M\eta - 2x^T M x \eta + 2Mxx^T \eta$. Next to get the hessian:

$$Hess(f) = Pg_c(D(gradf, \eta)) = 2(PM\eta - Px^TMx\eta + PMxx^T\eta)$$

. $P = (I - xx^T)$ is a projection operator, and notice that we can write

$$PMP\eta = PM(I - xx^T)\eta = PM\eta - PMxx^T\eta$$

Also in the term $-Px^TMx\eta$ we can remove P and put η in front becayse x^TMx is a scalar. Therefore we get

$$Hess f = PMP\eta - \eta x^T M x$$

Finally we go to the newton iteration

$$Hess(f)\eta = -grad(f)$$

and replace and get:

$$PMP\eta - \eta x^T M x = -PMx \tag{5.1}$$

Therefore our Newton iteration is:

- 1. Solve ??
- 2. Set $x_{new} = R(x_k)(\eta_k)$