Detecção de anomalias: fraudes em transações com cartão de crédito

Autor: <u>Paulo Pinheiro</u> Data: 18/03/2020

Photo by <u>Ales Nesetril</u> & <u>Fábio Lucas</u> on <u>Unsplash</u> (Edited)

Introdução

Hoje em dia, o cartão de crédito se tornou o principal meio de pagamento pelos consumidores de todo o mundo. A facilidade com que uma compra em uma loja física ou online é efetuada e a segurança de não levar dinheiro físico na carteira é uma das principais vantagens.

Com o número crescente de pagamentos via cartão de crédito, aumenta o interesse de bandidos em querer fraudar o sistema e obter vantagens ilegais. As fraudes vão de uma simples troca de máquina em uma loja a sistemas robustos nas transações online.

É preciso um sistema de segurança rígido e detecção rápida que consiga minimizar ou mitigar essas operações fraudulentas.

Vamos construir um modelo de Machine Learning que nos possibilitará prever o quão assertivo o modelo é na detecção de transações com o cartão de crédito. Tais transações podem ou não ser fraudulentas.

Com o exemplo dos dados mostrados abaixo, podemos notar que as variáveis estão anonimizadas (por questões de segurança) e em, em sua maioria, na mesma escala de grandeza. Isso significa que não sabemos o que realmente significam. Mas isso não é impeditivo para a modelagem.

•••	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
	-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
	-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
	0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0

Tabela 1. Exemplo do conjunto de dados.

Objetivo

- Explorar alguns aspectos dos dados disponibilizados;
- Balancear os dados para termos a mesma quantidade de output na variável `[Class]` que nos diz se a transação é fraudulenta (1) ou não (0);
- Criar modelos de machine learning para classificar futuras transações;
- Comparar os modelos e escolher o melhor classificador para este conjunto de dados.

Observações iniciais sobre o conjunto de dados

- Foi observado que existem 1081 linhas duplicadas (informação redundante). Tais linhas foram removidas;
- Temos 31 variáveis e 283726 linhas após a remoção das linhas duplicadas; e
- Não existem valores faltantes;

Análise Exploratória dos Dados

1. Variável Amount

- a. A variável encontra-se distorcida (skewed);
 - i. Existem muitas transações com valores muito além do normal (podemos enxergar isso nos pontos fora da escala no *Gráfico 2*); e
 - ii. Temos um possível indicativo de operações fraudulentas (mas não é a única razão temos que analisar as demais variáveis).
- b. A maior transação foi de \$25.691,00; e
- c. A média é de \$88,47 em transações.

Gráfico 1. Distribuição dos valores transacionados.

Gráfico 2. Presença de possíveis transações fraudulentas (pontos escuros)

Stats	Values			
mean	88.472687			
std	250.399437			
min	0.000000			
75%	77.510000			
max	25691.160000			

Tabela 2. Estatística básica da variável Amount

2. Variável Class

- a. Variável alvo indicando se uma operação é fraudulenta (1) ou não (0);
- b. Temos dados muito desbalanceados *(Gráfico 3)* onde 99,8% correspondem a transações normais e 0,17% a fraudulentas (o que é algo comum no dia a dia); e
- c. Para uma boa modelagem, precisamos que os dados estejam balanceados (*Gráfico 4*). Dessa forma diminuiremos o viés de respostas falsas negativas.

Gráfico 3. Distribuição do número de fraudes e não fraudes.

Gráfico 4. Distribuição balanceada do número de fraudes e não fraudes

3. Matriz de Correlação

Queremos saber se as variáveis têm uma forte influência em transações fraudulentas ou não. De uma amostra dos dados, temos a seguinte correlação com a variável alvo *[Class]* como exemplos:

- Temos V10, V12 e V14 com correlações negativas (quanto menor é o valor, maior a probabilidade do resultado ser uma operação fraudulenta);
- Temos V2, V4 e V11 com correlações positivas (quanto maior é o valor, maior é a probabilidade do resultado ser uma operação fraudulenta).
- Nas correlações positivas, a média das transações fraudulentas são maiores que as não fraudulentas; nas negativas, o inverso.

Gráfico 5. Matriz de correlação (notadamente com a variável Class)

Gráfico 6. Plotagem estatística dos exemplos de correlação

4. Modelagem de Machine Learning

- a. Utilizamos três modelos de machine learning: Logistic Regression, Decision Tree e Random Forest;
- De acordo com o resultado das métricas, e com a proposta do problema de negócio, Random Forest possui a melhor performance na detecção de anomalias (fraudes) em cartões de crédito para este conjunto de dados.

	Model	AUC	Accuracy	Precision	Recall	F1_Score
0	Log_Regression	0.958	0.973	0.050	0.943	0.096
1	Decision_Tree	0.861	0.997	0.303	0.724	0.427
2	Random_Forest	0.902	0.999	0.843	0.805	0.824

Tabela 3. Métricas de avaliação dos modelos

Gráfico 7. Desempenhos do modelo na assertividade.

Referências

Sigmoidal. Como lidar com dados desbalanceados.

NARKHEDE, Sarang. <u>Understanding Confusion Matrix</u>.

Sklearn. Documentação.