Progressive Graph Matching: Making a Move of Graphs via Probabilistic Voting

Minsu Cho Kyoung Mu Lee

Proc. Computer Vision and Pattern Recognition (CVPR) 2012

Graph Matching

Given two attributed graphs $\bar{G}^P=(\bar{V}^P,\bar{E}^P,\bar{A}^P)$ and $\bar{G}^Q=(\bar{V}^Q,\bar{E}^Q,\bar{A}^Q)$ with n^P and n^Q nodes respectively.

A result of graph matching is a subset of possible correspondences between those graphs, which can be represented in form of assignment matrix $X \in \{0,1\}^{n^P \times n^Q}$:

$$X_{ia} = egin{cases} 1 & \mathsf{node} \ v_i \in ar{V}^P \mathsf{matches} \ v_a \in ar{V}^Q \ 0 & \mathsf{otherwise} \end{cases}$$

General formulation:

$$x^* = rg \max S(x)$$

$$s.t. \begin{cases} x \in 0, 1^{n^P n^Q} \\ \sum_{i=1}^{n^P} x_{ia} \leq 1 \\ \sum_{a=1}^{n^Q} x_{ia} \leq 1 \end{cases}$$

The objective function S(x) measures the similarity between the graph attributes.

Integer Quadratic Programming

Consider two types of similarity: node and edge similarity. Those can be combined in an affinity matrix W, where non-diagonal elements $W_{ia,jb}$ represent edge similarity of the edges $e_{ij} \in \bar{E}^P$ and $e_{ab} \in \bar{E}^Q$ and diagonal elements $W_{ia,ia}$ represent similarity between nodes $v_i \in \bar{V}^P$ and $v_a \in \bar{V}^Q$.

That leads to the integer quadratic optimization problem:

$$x^* = \arg\max x^T Wx$$

$$\text{s.t.} \begin{cases} x \in 0, 1^{n^P n^Q} \\ \sum_{i=1}^{n^P} x_{ia} \le 1 \\ \sum_{a=1}^{n^Q} x_{ia} \le 1 \end{cases}$$

Issues

- Quadratic assignemnt problem is NP-complete
- ullet Computation of W for a large graph is almost infeasible
- Reduction of the complexity often leads to worse matching results

Progressive Graph Matching

Refer to the initial graphs \bar{G}^P and \bar{G}^Q as maximal graphs. For each maximal graph a subgraph induced by a reduced set of nodes is called active graph (G^P and G^Q respectively).

Idea: match maximal graphs by iteratively matching their active graphs ($t=0,1,\ldots$)

- Graph Matching match current active graphs $G_t^P = (V_t^P, E_t^P, A_t^P)$ and $G_t^Q = (V_t^Q, E_t^Q, A_t^Q), \ G_t^P \subset \overline{G}^P, G_t^Q \subset \overline{G}^Q.$
- Graph Progression
 update active graphs to improve matching score on the next
 matching step

Graph Matching

To reduce the complexity of graph matching consider a given set of candidate matches $C_t \subset V^P \times V^Q$.

The corresponding active graphs are defined by the nodes appeared in C_t .

This method reduces the size of active graphs and makes a affinity matrix more sparse.

Graph Progression I

Let $M_t = \{m_1, \ldots, m_{|M_t|}\} \subset C_t$ with $m_i = (v_{p_i}^P, v_{q_i}^Q)$ be a result of graph matching of two active graphs and s_t it's score. Consider conditional joint probability $p(V^P, V^Q | M_t)$:

$$p(V^{P}, V^{Q}|M_{t}) = \sum_{m_{i} \in M_{t}} p(V^{P}, V^{Q}, M = m_{i}|M_{t})$$

$$= \sum_{m_{i} \in M_{t}} p(V^{Q}|V^{P}, M = m_{i}, M_{t})$$

$$p(V^{P}|M = m_{i}, M_{t})p(M = m_{i}|M_{t})$$

Graph Progression II

 $p(v_i^P, v_a^Q | M_t)$ conditional probability of match (v_i^P, v_a^Q) between two maximal graphs.

Base on the probability distribution $p(V^P, V^Q|M_t)$ new candidate set C_{t+1} consists of N_c best matches.

Given new candidate set C_{t+1} we obtain new active graphs G_{t+1}^P and G_{t+1}^P .

The condition $M_t \subset C_{t+1}$ ensures that $s_{t+1} \geq s_t$, if M_t is an optimal matching.

Algorithm

18: return M_t

Algorithmus 1 progressiveGraphMatching(\bar{G}^P , \bar{G}^Q , N_c) [1]

```
1: C_0 = Find_Initial_Candidates(\bar{G}^P, \bar{G}^Q, N_c)
 2: t = 0, s_0 = 0
 3: while score increases do
        (M_t, s_t) = Graph\_Matching(C_t)
        p(v_n^P, v_n^Q | M_t) = 0 \quad \forall v_n^P \in \bar{V}^P, v_n^Q \in \bar{V}^Q
 5:
        for each m_i = (v_n^P, v_n^Q) \in M_t do
 6:
            N_A = \{ v^P \in \bar{V}^Q | p(v^P | m_i, M_t) > \epsilon \}
 7:
 8:
            for each v_i^P \in N_A do
                N_B = \{ v^Q \in \bar{V}^Q | p(v^Q | v_i^P, m_i, M_t) > \epsilon \}
 9:
10:
                for each v_b^Q \in N_b do
                    p(v_n^P, v_a^Q|M_t)
                                                                            p(v_n^P, v_a^Q|M_t)
11:
                   p(v_b^Q|v_i^P, m_i, M_t)p(v_i^P|m_i, M_t)p(m_i|M_t)
12:
13:
14:
                end for
             end for
       end for
      C_{t+1} = N_c best matches based on p(V^P, V^Q | M_t), which contains M_t
15:
16:
         t = t + 1
17: end while
```

Matching of images I

Given two images.

- Detected features of the images represent nodes of the maximal graphs (and their geometric relations as edges)
- Node similarity = similarity of feature descriptors of two graphs
- Edge similarity = Symmetric Transfer Error (STE) (see [3])

Derive affine homography transformation $\tau_{ia}(\cdot)$ between two features

The transfer error of (j, b) with respect to (i, a)

$$d_{jb|ia} = \|x_b^Q - \tau_{ia}(x_j^P)\|$$

Edge similarity

$$W_{ia,jb} = \max(0, \alpha - \frac{d_{jb|ia} + d_{bj|ai} + d_{ia|jb} + d_{ai|jb}}{4})$$

Matching of images II

$$p(\boldsymbol{V}^P,\boldsymbol{V}^Q|\boldsymbol{M}_t) = \sum_{m_i \in \boldsymbol{M}_t} p(\boldsymbol{V}^Q|\boldsymbol{V}^P,\boldsymbol{M} = m_i,\boldsymbol{M}_t) p(\boldsymbol{V}^P|\boldsymbol{M} = m_i,\boldsymbol{M}_t) p(\boldsymbol{M} = m_i|\boldsymbol{M}_t)$$

- Assuming $m_i = (v_{p_i}^P, v_{q_i}^Q)$ and use function $kNN(\cdot, k)$ to find k-nearest neighbors of a node

$$\mathbf{p}(\mathbf{V^P} = \mathbf{v_j^P} | \mathbf{M} = \mathbf{m_i}, \mathbf{M_t}) = \begin{cases} 1/k_1 & \text{, if } \mathbf{v_j^P} \in \textit{kNN}(\mathbf{v_{p_i}^P}, k_1) \\ 0 & \text{, otherwise} \end{cases}$$

Let $NN(\cdot)$ define a nearest neighbor of a node

$$p(V^{Q} = v_{b}^{Q}|V^{P} = v_{j}^{P}, M = m_{i}, M_{t}) =$$
(1)
$$F(V^{Q} = v_{b}^{Q}|V^{P} = v_{j}^{P}, M = m_{i}, M_{t}) = 0$$

$$\begin{cases} 1 &, \text{ if } v_b^Q = \mathit{NN}(\tau_{m_i}(p_j^P)) \text{ and } (v_j^P, v_b^Q) \in \mathit{M}_t \\ \exp(-d_{jb \mid mi})/Z &, \text{ if } v_b^Q \in \mathit{kNN}(\tau_{m_i}(p_j^P), \mathit{k}_2) \text{ and } (v_j^P, \mathit{NN}(\tau_{m_i}(p_j^P))) \not \in \mathit{M}_t \\ 0 &, \text{ otherwise} \end{cases}$$

$$Z = \sum_{v_b^Q \in kNN(au_{m_i}(p_i^P), k_2)} \exp(-d_{jb|mi})$$
 is a normalization constant

Evaluation

- Parameters of the affinity matrix W: $\alpha = 50$, $k_1 = 25$, $k_2 = 5$
- Used Descriptors: **MSER** [4] and Harris-affine and Hessian-affine features [5]
- used graph mathing methonds:
 Graduate Assignment Algorithm (SM) [8]
 Spectral Matching with Affine Constraint (SMAC) [9]
 Probabilistic Graph Matching (PM) [7]
 Reweighted Random Walk Method (RRWM)[3]
 Integer Projected Fixed Point Method (IPFP) [6]
- Datasets: VOC 2010, Caltech-101, MSRC, ETHZ toys dataset

Evaluation: Progressive Graph Matching ($N_c = 1000$)

Evaluation: Progressive Graph Matching ($N_c = 3000$)

Evaluation: Progressive Graph Matching ($N_c = 3000$)

Evaluation: Progressive Graph Matching ($N_c = 3000$)

Evaluation: Robustness to initial active graph ($N_c = 3000$)

Evaluation: Robustness to initial active graph ($N_c = 3000$)

000

Evaluation: Different matching algorithms

	Graph Matching Module				
One-Shot	SM	SMAC	PM	RRWM	IPFP
Accuracy (%)	62.6	57.6	63.7	73.6	71.9
Progressive	SM	SMAC	PM	RRWM	IPFP
Accuracy (%)	68.2	63.6	66.7	81.2	78.2
Prog. vs. One-Shot	SM	SMAC	PM	RRWM	IPFP
Score Growth (%)	+65.0	+38.7	+92.1	+65.7	+63.8
Inlier Growth (%)	+59.6	+17.0	+85.1	+65.6	+69.7

Figure: Dataset of 30 image pairs. Accuracy boost $3\%\sim8\%$

Conclusions

- graph progression significantly increases one-step graph matching
- algorithm is suitable for large graphs

- (?) convergense of the algorithm
- (?) selection of the candidate matches
- (?) number of the candidate matches
- (?) running time
- (?) geometric graphs

The End

Thank you for your attention!

References I

- [1] Minsu Cho and Kyoung Mu Lee. Progressive graph matching: Making a move of graphs via probabilistic voting. *Proc. Computer Vision and Pattern Recognition (CVPR)*, 2012.
- [2] Minsu Cho and Kyoung Mu Lee. Progressive graph matching: Making a move of graphs via probabilistic voting. supplementary material. *Proc. Computer Vision and Pattern Recognition (CVPR)*, 2012.
- [3] Minsu Cho, Kyoung Mu Lee, and Jungmin Lee. Reweighted random walks for graph matching. *European Conference on Computer Vision (ECCV)*, 2010.
- [4] Matas. J, Chum. O, Urban. M, and Pajdla. T. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002.

References II

- [5] Mikolajczyk. K and Schmid. C. Scale and affine invariant interest point detectors. *IJCV*, 2004.
- [6] Leordeanu. M and Herbert. M. An integer projected fixed point method for graph matching and map interface. *NIPS*, 2009.
- [7] Zass. R and Shashua. A. Probabilistic graph and hypergraph matching. *CVRP*, 2008.
- [8] Gold. S and Rangarajan. A. A graduate assignment algorithm for graph matching. *TPAMI*, 1996.
- [9] Cour. T, Srinivasan. P, and Shi. J. Balanced graph matching. *NIPS*, 2007.