Formulario Sistemas Operativos Práctico

Juan Rodríguez

17/11/2024

Todo se expresa en potencias de dos

1 Memoria Cache - Correspondencia Directa

Tamaño del bloque (2^w) = Tamaño de la linea $(2^l) \rightarrow l = w$

Número de bloques $(2^s) = \frac{\text{Tamaño Memoria Principal }(2^p)}{\text{Tamaño bloque }(2^w)}$

Se reservan w bits para la palabra

Número de lineas $(2^r) = \frac{\text{Tamaño Memoria Cache}\;(2^c)}{\text{Tamaño linea}\;(2^l)}$

Se reservan r bits para la linea

Número de etiquetas $(2^e) = \frac{\text{Número de bloques } (2^s)}{\text{Número de lineas } (2^r)}$

Se reservan e bits para la etiqueta

2 Memoria Cache - Correspondencia Asociativa

Tamaño del bloque $(2^w)=$ Tamaño de la linea $(2^l)\to l=w$

Se reservan w bits para la palabra

Número de bloques $(2^s) = \frac{\text{Tamaño Memoria Principal } (2^p)}{\text{Tamaño bloque } (2^w)}$

Se reservan s bits para la etiqueta

3 Memoria Cache - Correspondencia Asociativa por Conjuntos

Tamaño del bloque (2^w) = Tamaño de la linea $(2^l) \rightarrow l = w$

Número de bloques (2^s) = $\frac{\text{Tamaño Memoria Principal }(2^p)}{\text{Tamaño bloque }(2^w)}$

Se reservan \boldsymbol{w} bits para la palabra

Tamaño del conjunto $(2^j)=$ Tamaño linea $(2^l)\cdot$ Número de lineas por conjunto (2^k)

Se reservan k bits para la etiqueta

Tamaño del conjunto es el mismo tanto en la principal como en la cache (2^j)

Número de conjuntos Memoria Principal $(2^t) = \frac{\text{Tamaño Memoria Principal }(2^p)}{\text{Tamaño conjunto }(2^j)}$

Se reservan t bits para el conjunto

Número de conjuntos Memoria Cache (2^q) = $\frac{\text{Tamaño Memoria Cache }(2^c)}{\text{Tamaño conjunto }(2^j)}$

El conjunto se instancia en el conjunto mód 2^q