

ζ CD4: ζ	1 <u>QSFGLLDPK</u> 369 --PTWSTPVHADPK	11 15 <u>LCYLLDG--</u> <u>LCYLLDG--</u>
γ CD4: γ	1 <u>LGEPO</u> 369 --PTWSTPVHADPQ	<u>LCYILDA--</u> <u>LCYILDA--</u>

Fig. 1a

Fig. 1b

Fig. 2

Fig. 3

3/28

Fig. 4a

Fig. 4b

4/28

Fig. 4c

Fig. 4d

5/28

Fig. 5a

Fig. 5b

Fig. 5c

7/28

Fig. 6a

Fig. 6b

Fig. 7a

Fig. 7b

F34* Y51*

1 QSFGLLDPKL CYLLDGILFI YGVILTALFL RVKFSRSAEP PAYQQGQNQL
 ↓ ↓
 E60* D66*

51 YNELNLGRRE EYDVLDKRRG RDPEMGGKPR RKNPQEGLYN ELQKDKMAEA
 ↓ ↓

101 YSEIGMKGER RRGKGHDGLY QGLSTATKDT YDALHMQALP PR
 ↓ ↓ ↓ ↓

The sequence diagram shows the amino acid sequence of a protein with various cleavage sites indicated by arrows. The fragments are labeled with their start positions and sequences:

- Fragment 1: 1 QSFGLLDPKL CYLLDGILFI YGVILTALFL RVKFSRSAEP PAYQQGQNQL
- Fragment 2: 51 YNELNLGRRE EYDVLDKRRG RDPEMGGKPR RKNPQEGLYN ELQKDKMAEA
- Fragment 3: 101 YSEIGMKGER RRGKGHDGLY QGLSTATKDT YDALHMQALP PR

Cleavage sites are marked with arrows pointing to specific residues: F34*, Y51*, E60*, D66*, G122*, A133*, L139*, and several other sites indicated by single-headed arrows.

Fig. 8a

Fig. 8b

Fig. 9a

Fig. 9b

Fig. 9c

Fig. 9d

Fig. 10a

Fig. 10b

Fig. 10c

Fig. 10d

Fig. 10e

Fig. 10f

Fig. 11a

Fig. 11b

Fig. 12

17/28

Fig. 13a

Fig. 13b

18/28

Fig. 14a

Fig. 14b

Fig. 15a

Fig. 15b

20/28

Fig. 15c

Fig. 15d

Fig. 15e

(Seq. ID No: 24)

1	MEHSTFLSGL	VLATLLSQVS	PFKIPIEELE	DRVFVNCNTS	ITWVEGTVGT
51	LLSDITRLDL	GKRILDPRGI	YRCNGTDIYK	DKESTVQVHY	RMCQSCVEID
101	PATVAGIIVT	DVIATLLLAL	GVFCFAGHET	GRLSGAADTQ	ALLRNDQVYQ
151	PLRDRDDAQY	SHLGGNWARN	K*		

Fig. 16

(Seq ID NO: 25)

1	MEQGKGLAVL	ILAIIILLQGT	LAQSIKGHNHL	VKVYDYQEDG	SVLLTCDAEA
51	KNITWFKDGY	MIGFLTEDKK	KWNLGSNAKD	PRGMYQCKGS	QNKSPLQVY
101	YRMCQNCIEL	NAATISGFLF	AEIVSIFVLA	VGVYFIAGQD	GVRQSRASDK
151	QTLLPNDQLY	QPLKDREDDQ	YSHLQGNQLR	RN*	

Fig. 17

(Seq ID No: 26)

1	MPGGLLEALRA	LPLLLFLSYA	CLGPGCQALR	VEGGPPSLTV	NLGEEARLTC
51	ENNCRNPNT	WWFSLQSNIT	WPPVPLGPGQ	GTTGQLFFPE	VNKNTGACTG
101	CQVIENNILK	RSCGTYLRRV	NPVPRPFLDM	GEGTKNRIIT	AEGIILLFCA
151	VVPGTLLLFR	KRWQNEKFGV	DMPDDYEDEN	LYEGLNLDDC	SMYEDISRGL
201	QGTYQDVGNL	HIGDAQLEKP	*		

Fig. 18

(Seq ID No: 27)

1	MATLVLSMMP	CHWLLFLLLL	FSGEPVPAMT	SSDLPLNFQG	SPCSQIWQHP
51	RFAAKKRSSM	VKFHCYTNHS	GALTWFRKRG	SQQPQELVSE	EGRIVQTQNG
101	SVYTLTIQNI	QYEDNGIYFC	KQKCDSANHN	VTDSCGTELL	VLGFSTLDQL
151	KRRNTLKDG	ILIQTLLIIL	FIIVPIFLLL	DKDDGKAGME	EDHTYEGLNI
201	DQTATYEDIV	TLRTGEVKWS	VGEHPGQE*		

Fig. 19

BamHI/BstYI BglII/BstYI

G GAT CCC AAG GCC AGG CTA AAG CCG AAG CCG CCG AGG CTA AGG CCG AAG CAG CAG ATC TG
D P K A E A K A E A K A E A D L

Fig. 28

24/28

Fig. 21

Fig. 22

D1 - D4 of CD4

Nucleic Acid Sequence

GCCTGTTGA GAAGCAGCGG GCAAGAAAGA CGCAAGCCCA GAGGCCCTGC 51
 CATTCTGTG GGCTCAGGTC CCTACTGGCT CAGGCCCTG CCTCCCTCGG 101
 CAAGGCCACA ATGAACCGGG GAGTCCCTT TAGGCACTTG CTTCTGGTGC 151
 TGCAACTGGC GCTCCTCCC GCAGCCACTC AGGGAAACAA AGTGGTGCTG 201
 GGCAAAAAAG GGGATACAGT GGAACTGACC TGTACAGCTT CCCAGAAGAA 251
 GAGCATACAA TTCCACTGGA AAAACTCCAA CCAGATAAAAG ATTCTGGGAA 301
 ATCAGGGCTC CTTCTTAAC AAGGTCCAT CCAAGCTGAA TGATCGCGCT 351
 GACTCAAGAA GAAGCCTTG GGACCAAGGA AACTTCCCC TGATCATCAA 401
 GAATCTTAAG ATAGAAGACT CAGATACTTA CATCTGTGAA GTGGAGGACC 451
 AGAAGGAGGA GGTGCAATTG CTAGTGTTCG GATTGACTGC CAACTCTGAC 501
 ACCCACCTGC TTCAGGGCA GAGCCTGACC CTGACCTTGG AGAGCCCCC 551
 TGGTAGTAGC CCCTCAGTGC AATGTAGGAG TCCAAGGGGT AAAAACATA 601
 AGGGGGGGAA GACCCTCTCC GTGTCTCAGC TGGAGCTCCA GGATAGTGGC 651
 ACCTGGACAT GCACTGTCTT GCAGAACAG AAGAAGGTGG AGTTAAAAT 701
 AGACATCGTG GTGCTAGCTT TCCAGAAGGC CTCCAGCATA GTCTATAAGA 751
 AAGAGGGGGAA ACAGGTGGAG TTCTCCTTCC CACTCGCCTT TACAGTTGAA 801
 AAGCTGACGG GCAGTGGCGA GCTGTGGTGG CAGGCGGAGA GGGCTTCCTC 851
 CTCCAAGTCT TGGATCACCT TTGACCTGAA GAACAAGGAA GTGTCTGTAA 901
 AACGGGTTAC CCAGGACCCCT AAGCTCCAGA TGGGCAAGAA GCTCCCGCTC 951
 CACCTCACCC TGCCCCAGGC CTTGCCTCAG TATGCTGGCT CTGGAAACCT 1001
 CACCTGGCC CTTGAAGCGA AAACAGGAAA GTTGCATCAG GAAGTGAACC 1051
 TGGTGGTGAT GAGAGCCACT CAGCTCCAGA AAAATTGAC CTGTGAGGTG 1101
 TGGGGACCCA CCTCCCTAA GCTGATGCTG AGCTTGAAC TGGAGAACAA 1151
 GGAGGCAAAG GTCTCGAAGC GGGAGAAGCC GGTGTGGGTG CTGAACCCCTG 1201
 AGGCGGGGAT GTGGCAGTGT CTGCTGAGTG ACTCGGGACA GGTCCCTGCTG 1251
 GAATCCAACA TCAAGGTTCT GCCCACATGG TCCACCCCGG TGCACGCGGA 1301
 TCCC (SEQ ID NO: 28)

Amino Acid Sequence

MNRGVPFRHL LLVLQLALLP AATQGNKVVL GKKGDTVELT CTASQKKSIQ 51
 FHWKNSNQIK ILGNQGSFLT KGPSKLNDRA DSRRSLWDQG NFPLIINKLK 101
 IEDSDTYICE VEDQKEEVQL LVFGLTANSR THLLQGQSLT LTLESPPGSS 151
 PSVQCRSPRG KNIQGGKTLS VSQLELQDSG TWTCTVLQNZ KKVEFKIDIV 201
 VLAFQKASSI VYKKEGEQVE FSFPLAFTVE KLTGSGELWW QAERASSSKS 251
 WITFDLKNKE VSVKRVTDQPL KLQMGKYLPL HLTLPQALPQ YAGSGNLTLA 301
 LEAKTGKLHQ EVNLVVMRAT QLQKNLTCEV WGPTSPKML SLKLENKEAK 351
 VSKREKPVWV LNPEAGMWQC LLSDSGQVLL ESNIKVLPTW STPVHADP
 (SEQ ID NO: 29)

Fig. 23

D1 - D2 of CD4

Nucleic Acid Sequence

GCCTGTTGA GAAGCAGCGG GCAAGAAAGA CGCAAGCCCA GAGGCCCTGC 51
 CATTCTGTG GGCTCAGGTC CCTACTGGCT CAGGCCCTG CCTCCCTCGG 101
 CAAGGCCACA ATGAACCGGG GAGTCCCCTT TAGGCACTTG CTTCTGGTGC 151
 TGCAACTGGC GCTCCTCCCA GCAGCCACTC AGGGAAACAA AGTGGTGCTG 201
 GGCAAAAAG GGGATACAGT GGAACTGACC TGTACAGCTT CCCAGAAGAA 251
 GAGCATAACAA TTCCACTGGA AAAACTCCAA CCAGATAAAG ATTCTGGGAA 301
 ATCAGGGCTC CTTCTTAAC ACT AAAGGTCCAT CCAAGCTGAA TGATCGCGCT 351
 GACTCAAGAA GAAGCCTTG GGACCAAGGA AACTCCCCC TGATCATCAA 401
 GAATCTTAAG ATAGAACACT CAGATACTTA CATCTGTGAA GTGGAGGACC 451
 AGAAGGAGGA GGTGCAATTG CTAGTGTTCG GATTGACTGC CAACTCTGAC 501
 ACCCACCTGC TTCAGGGCA GAGCCTGACC CTGACCTTGG AGAGCCCCC 551
 TGGTAGTAGC CCCTCAGTGC AATGTAGGAG TCCAAGGGGT AAAAACATAC 601
 AGGGGGGGAA GACCCTCTCC GTGTCTCAGC TGGAGCTCCA GGATAGTGGC 651
 ACCTGGACAT GCACTGTCTT GCAGAACCCAG AAGAAGGTGG AGTTCAAAAT 701
 AGACATCGTG GTGCTAGCT (SEQ ID NO: 30)

Amino Acid Sequence

MNRGVPFRHL LLVLQLALLP AATQGNKVVL GKKGDTVELT CTASQKKSIQ 51
 FHWKNSNQIK ILGNQGSFLT KGPSKLNDRA DSRRSLWDQG NFPLIIKNLK 101
 IEDSDTYICE VEDQKEEVQL LVFGLTANSR THLLQGQSLT LTLESPPGSS 151
 PSVQCRSPRG KNIQGGKTLS VSQLELQDSG TWTCTVLQNQ KKVEFKIDIV 201
 VLA (SEQ ID NO: 31)

Fig. 24

Hinge, CH₂, and CH₃ Domains of Human IgG1

Nucleic Acid Sequence

```

GCTAGCAGAG CCCAAATCTT GTGACAAAAC TCACACATGC CCACCGTGCC 51
CAGCACCTGA ACTCCTGGGG GGACCGTCAG TCTTCCTCTT CCCCCCAAAA 101
CCCAAGGACA CCCTCATGAT CTCCC GGACC CCTGAGGTCA CATGCGTGGT 151
GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTTCAAC TGTTACGTGG 201
ACGGCGTGGA GGTGCATAAT GCCAAGACAA AGCCGCGGGG GGAGCAGTAC 251
AACAGCACGT ACCGGGTGGT CAGCGTCCTC ACCGTCCCTGC ACCAGGACTG 301
GCTGAATGGC AAGGAGTACA AGTGAAGGT CTCCAACAAA GCCCTCCCAG 351
CCCCCATCGA GAAAACCATC TCCAAAGCCA AAGGGCAGCC CCGAGAACCA 401
CAGGTGTACA CCCTGCCCTC ATCCC GGGGAT GAGCTGACCA AGAACCCAGGT 451
CAGCCTGACC TGCCTGGTCA AAGGCTTCTA TCCCAGCGAC ATCGCCGTGG 501
AGTGGGAGAG CAATGGGCAG CCGGAGAACAA ACTACAAGAC CACGCCTCCC 551
GTGCTGGACT CCGACGGCTC CTTCTTCCTC TACAGCAAGC TCACCGTGGA 601
CAAGAGCAGG TGGCAGCAGG GGAACGTCTT CTCATGCTCC GTGATGCATG 651
AGGCTCTGCA CAACC ACTAC ACGCAGAAGA GCCTCTCCCT GTCTCCGGGG 701
CTGCAACTGG ACGAGACCTG TGCTGAGGCC CAGGACGGGG AGCTGGACGG 751
GCTCTGGACG ACGGATCC (SEQ ID NO: 32)

```

Amino Acid Sequence

```

EPKSCDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD 51
VSHEDPEVKF NWYVDGVVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN 101
GKEYKCKVSN KALPAPIEKT ISKAKGQPREGQVYTLPPSR DELTKNQVSL 151
TCLVKGFYPS DIAVEWESNG QPENNYKTPPVLDSDGSFF LYSKLTVDKS 201
RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GLQLDETCAE AQDGELDGLW 251
TTDP (SEQ ID NO: 33)

```

Fig. 25

CD7 Transmembrane Domain

Nucleic Acid Sequence

CCAAGGGCCT CTGCCCTCCC TGCCCCACCG ACAGGGCTCCG CCCTCCCTGA 51
CCCGCAGACA GCCTCTGCCC TCCCTGACCC GCCAGCAGCC TCTGCCCTCC 101
CTGCGGCCCT GGCGGTGATC TCCTTCCTCC TCGGGCTGGG CCTGGGGGTG 151
GCGTGTGTGC TGGCGAGGAC GCGT (SEQ ID NO: 34)

Amino Acid Sequence

PRASALPAPP TGSALPDPPQT ASALPDPPAA SALPAALAVI SFLLGLGLGV 51
ACVLARTR (SEQ.ID NO: 35)

Fig. 26

Zeta Intracellular Domain

Nucleic Acid Sequence

ACCGGTTTCA GCAGGAGCGC AGAGCCCCCC GCGTACCAGC AGGGCCAGAA 51
CCAGCTCTAT AACGAGCTCA ATCTAGGACG AAGAGAGGAG TACGATGTTT 101
TGGACAAGAG ACGTGGCCGG GACCCTGAGA TGGGGGGAAA GCCGAGAAAGG 151
AAGAACCCCTC AGGAAGGCCT GTACAATGAA CTGCAGAAAG ATAAGATGGC 201
GGAGGCCTAC AGTGAGATTG GGATGAAAGG CGAGCGCCGG AGGGGCAAGG 251
GGCACGATGG CCTTTACCAAG GGTCTCAGTA CAGCCACCAA GGACACCTAC 301
GACGCCCTTC ACATGCAGGC CCTGCCCTCG CGCTAAAGCG GCCGC
(SEQ ID NO: 36)

Amino Acid Sequence

TRFSRSAEPP AYQQGQNQLY NELNLGRREE YDVLDKRRGR DPEMGGKP RR 51
KNPQEGLYNE LQKDKMAEAY SEIGMYGERR RGKGHDGLYO GLSTATKDTY 101
DALHMQALPP R (SEQ ID NO: 37)

Fig. 27