# Discrete Mathematics

## David Wiedemann

# Table des matières

| 1 | Cou   | ınting                                  | 2 |
|---|-------|-----------------------------------------|---|
|   | 1.1   | Finite sets                             | 2 |
|   | 1.2   | Bijections                              | 2 |
|   | 1.3   | Operations with finite sets             | 2 |
| L | ist ( | of Theorems                             |   |
|   | 1     | Definition (First Numbers)              | 2 |
|   | 1     | Theorème                                | 2 |
|   | 2     | Definition (Cartesion product)          | 2 |
|   | 2     | Theorème                                | 2 |
|   | 3     | Definition (Disjoint union)             | 2 |
|   | 3     | Theorème                                | 2 |
|   | 4     | Definition (Exponential object )        | 2 |
|   | 4     | Theorème                                | 3 |
|   | 5     | Definition (Binomial coefficient)       | 3 |
|   | 5     | Proposition                             | 3 |
|   | 6     | Proposition                             | 3 |
|   | 7     | Proposition                             | 3 |
|   | 8     | Proposition                             | 3 |
|   | 9     | Theorème                                | 4 |
|   | 10    | Proposition                             | 4 |
|   | 11    | Theorème (Stirling's formula)           | 5 |
|   | 12    | Theorème (Inclusion-Exclusion Formula)  | 5 |
|   | 14    | Theorème (Multinomial theorem)          | 6 |
|   | 6     | Definition (Generating series)          | 6 |
|   | 7     | Definition (Formal power series)        | 6 |
|   | 15    | Proposition                             | 7 |
|   | 16    | Theorème (Generalized binomial theorem) | 7 |

#### Lecture 1: Introduction

Mon 22 Feb

## 1 Counting

#### 1.1 Finite sets

Let A be a finite set. We denote by |A| the cardinality of A.

## Definition 1 (First Numbers)

We denote by [n] the set of n first natural numbers.

## 1.2 Bijections

#### Theorème 1

If there exists a bijection between finite sets A and B then |A| = |B|.

## 1.3 Operations with finite sets

- union
- intersection
- product
- exponentiation
- quotient

## Definition 2 (Cartesion product)

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Theorème 2

$$|A \times B| = |A||B|$$

#### Definition 3 (Disjoint union)

Define

$$A \sqcup B = A \times \{0\} \cup B \times \{1\}$$

Theorème 3

$$|A \sqcup B| = |A| + |B|$$

Definition 4 (Exponential object)

$$A^B = \{f | f \text{ is a function from } A \text{ to } B \}$$

#### Theorème 4

$$|A^B| = |A|^{|B|}$$

#### Definition 5 (Binomial coefficient)

A binomial coefficient  $\binom{n}{k}$  is the number of ways in which one can choose k objects out of n distinct objects assuming order doesn't matter.

## Proposition 5

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

#### Proposition 6

The following identities hold:

1.

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

2.  $\binom{n}{k}$  is the k-th element in the n-th line of Pascal's triangle.

#### Preuve

Each subset of [n+1] either contains n+1 or not.

Number of (k+1)-element subsets containing n+1 is  $\binom{n}{k}$ 

Number of (k+1)-element subsets not containing n+1 is  $\binom{n}{k+1}$ 

#### Proposition 7

The number of subsets of an n-element set is  $2^n$ , since we have

$$2^n = \sum \binom{n}{i}$$

#### **Proposition 8**

The number of subsets of even cardinality is the same as even cardinality:  $2^{n-1}$ 

#### Preuve

Consider

$$\phi: 2^{[n]} \to 2^{[n]}$$

defined by

$$\phi(A) = A\Delta \{1\} = \begin{cases} A \setminus \{1\}, & \text{if } 1 \in A \\ A \cup \{1\}, & \text{otherwise} \end{cases}$$

The cardinality of subsets A and  $\phi(A)$  always have different parity. Since  $\phi \circ \phi = \operatorname{Id}$  we deduce that  $\phi$  is a bijection between the set of odd and even subsets is the same.

#### Theorème 9

$$(1+x)^n = \sum \binom{n}{i} x^i$$

#### Preuve

In lecture notes.

#### Proposition 10

Assume we have k identical objects and n different persons. Then ne number of ways in which one can distribute this k objects among the n persons equals

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

Equivalently, it is the number of solutions of the equation  $x_1 + ... + x_n = k$ 

#### Preuve

Let A be the set of all solutions of the equation. Let B be the set of all subsets of cardinality n-1 in k+n-1.

we construct a bijection  $\psi: \mathcal{A} \to \mathcal{B}$  in the following way

$$A = (x_1, \dots, x_n) \mapsto B = \{x_1 + 1, x_1 + x_2 + 2 \dots\}$$

It suffices to show that  $\psi$  is invertible. Let  $B \in \mathcal{B}$ . Suppose that  $b_1 \dots, b_{n-1}$  are the elements of B, ordered. Then the preimage is an n-tuple of integers  $(x_1, \dots)$  defined by

$$x_1 = b_1 - 1$$
  
 $x_i = b_i - b_{i-1}$   
 $x_n = k + n - 1 - b_{n-1}$ 

It is easy to see from these equations that the  $x_i$  are non-negative and their sums yield k.

## Lecture 2: factorials and birthday paradox

Sat 27 Feb

Theorème 11 (Stirling's formula)

$$n! \sqrt{2\pi n} n^n e^{-n}$$

meaning the ration goes to 1.

#### Preuve

Euler's integral for n! gives

$$n! = \int_0^\infty x^n e^{-x} dx$$

This is proven by induction on n.

The base case n = 0 simply gives 1.

For the integration step, we integrate by parts, giving

$$\int_0^\infty x^n e^{-x} = \int_0^\infty e^{-x} \frac{d}{dx} x^n dx$$

To prove Stirlings formula, we take

$$xt^n e^{-x} = \exp(n\log x - x)$$

We now taylor expand around the maximum, this yields

$$n\log x - x = n\log n - n - \frac{1}{2n}(x-n)^2 + \dots$$

integrating this gives the desired formula.

#### Lecture 3: Inclusion-Exclusion Induction

Sat 06 Mar

Let A, B be two sets, we want to compute  $|A \cup B| = |A| + |B| - |A \cap B|$ . What happens if we have n sets  $A_1, \ldots, A_n$ .

#### Theorème 12 (Inclusion-Exclusion Formula)

Let  $A_1, \ldots, A_n$  be finite sets, then

$$|\bigcup A_i| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots$$

Let  $B_1, \ldots, B_m$  and  $w_1, \ldots, w_m$ , then

$$\sum_{i} w_{i} |B_{i}| = \sum_{i} \sum_{b \in B_{i}} w_{i} = \sum_{b \in B \ indices \ i \ such \ that \ b \in B_{i}} w_{i}$$

where  $B = \bigcup B_i$ 

## Lecture 4: Combinatorial applications of polynomials and generating series

Sun 14 Mar

We note that arithmetic operations with finite sets have similarities.

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

$$(A \cup B) \cap C = A \cap C \cup B \cap C$$

#### Exemple

Prove the identity

$$\sum \binom{n}{i}^2 = \binom{2}{n}n$$

Consider

$$(1+x)^n \cdot (1+x)^n = (1+x)^{2n}$$

By computing the coefficients of  $x^n$ , we find the desired equality.

#### Theorème 14 (Multinomial theorem)

$$(x_1 + \ldots + x_n)^k = \sum_{i_1, \ldots, \ge 0, i_1 + i_2 + \ldots = k} \frac{k!}{i_1! \ldots i_n!} x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n}$$

#### Preuve

Note that

$$\frac{k!}{i_1! \dots i_n!}$$

is the number of sequences of length k from the letters " $x_1, x_2, \ldots$ " such that  $x_j$  is used  $i_j$  times.

#### Definition 6 (Generating series)

Let  $a_n$  be a sequence of complex numbers, then the generating series of this sequence is

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

#### Definition 7 (Formal power series)

A formal power series is an infinite sum

$$a(x) = \sum a_n x^n$$

where  $a_n$  is a sequence of complex numbers and x is a formal variable.

#### Proposition 15

Let  $a(x) = \sum a_n x^n$  be a formal power series. Suppose that there exists a positive real number K such that  $|a_n| < K^n$  for all n. Then the series converges absolutely for all  $x \in ]-\frac{1}{k},\frac{1}{k}[$ .

Moreover, the function a(x) as derivatives of all orders at 0.

We can add and multiply formal power series.

However, in general, substitution is not well defined

$$a(b(x)) = \sum_{n=0}^{\infty} a_n b(x)^n = \sum_{n=0}^{\infty} a_n (\sum_{m=0}^{\infty} b_m x^m)^n$$

It is only well defined if  $b_0 = 0$ .

We can also differentiate, resp. integrate formal power series.

#### Theorème 16 (Generalized binomial theorem)

For every  $r \in \mathbb{R}$ , we have

$$(1+x)^r = \binom{r}{0} + \binom{r}{1}x \dots$$

where

$$\binom{r}{k} = \frac{r(r-1)\dots(r-k+1)}{k!}$$