Introdução aos Processos Estocásticos

Luiz Renato Fontes

Propriedades do Processo de Poisson

Teorema 1

Seja $(X_t)_{t\geq 0}$ um processo crescente, cont à dir, tq $X_0=0$. Seja $0<\lambda<\infty$. São equivalentes:

- a) (X_t) é um PP(λ) (i.e., $T_i \sim \text{Exp}(\lambda)$, i=1,2..., indep, $Y_n=n,\ n\geq 0$).
- b) (X_t) tem incrementos indep e, unif/e em t:

$$\mathbb{P}(X_{t+h} - X_t = 0) = 1 - \lambda h + o(h), \tag{1}$$

$$\mathbb{P}(X_{t+h} - X_t = 1) = \lambda h + o(h). \tag{2}$$

c) (X_t) tem incrementos indep e estacionários e $\forall \ t \geq 0$ $X_t \sim \mathsf{Poisson}(\lambda t).$

Dem. Teo 1

$$(a \Rightarrow c)$$
 Já vimos

(c
$$\Rightarrow$$
 b) $X_{t+h} - X_t \sim \mathsf{Poisson}(\lambda h)$, logo
$$\mathbb{P}(X_{t+h} - X_t = 0) = e^{-\lambda h}, \text{ e (1) segue;}$$

$$\mathbb{P}(X_{t+h} - X_t = 1) = \lambda h e^{-\lambda h}, \text{ e (2) segue.}$$

 $(c \Rightarrow a)$ A cond em c) determina as distr fi-di de (X_t) , e daí a distr do processo, em particular da cadeia de saltos e dos tempos de salto. Como o $PP(\lambda)$ satisfaz c), então todo processo satisfazendo c) deve satisfazer a).

(b
$$\Rightarrow$$
 c) Para $x \in \mathbb{N}$, seja $p_x(t) = \mathbb{P}(X_t = x)$. Então $p_y(t+h) = \sum_{x=0}^y \mathbb{P}(X_{t+h} = y | X_t = x) p_x(t)$

$$p_{y}(t+n) = \sum_{x=0} \mathbb{P}(X_{t+h} - y | X_{t} - x) p_{x}(t)$$

$$= \sum_{x=0}^{y} \mathbb{P}(X_{t+h} - X_{t} = y - x) p_{x}(t)$$

Dem. Teo 1 (cont)

Logo,

$$p_y(t+h) - p_y(t) = -\underbrace{(1 - \mathbb{P}(X_{t+h} - X_t = 0))}_{\lambda h + o(h)} p_y(t) + \underbrace{\mathbb{P}(X_{t+h} - X_t = 1)}_{\lambda h + o(h)} p_{y-1}(t) + o(h),$$

e temos

$$(*)\begin{cases} p_y'(t) = -\lambda p_y(t) + \lambda p_{y-1}(t), \ y \ge 1; \\ p_0'(t) = -\lambda p_0(t). \end{cases}$$

SIç (vista há poucas aulas)

$$p_{y}(t) = \mathbb{P}(X_{t} = y) = \frac{(\lambda t)^{y}}{y!} e^{-\lambda t}, y \in \mathbb{N}.$$

◆□ > ◆□ > ◆ 差 > ◆ 差 > ・ 差 ・ 夕 Q (?)

Obs.

(*) são as eqs avançadas para

Teorema 2

Suponha que (X_t) e (Y_t) sejam PPs independentes com taxas λ e μ , resp (no mesmo esp de prob). Então $(Z_t := X_t + Y_t) \sim PP(\lambda + \mu)$.

Dem. 1)
$$\mathbb{P}(Z_{t+h} - Z_t = 0) = \mathbb{P}(X_{t+h} - X_t = 0)\mathbb{P}(Y_{t+h} - Y_t = 0)$$

 $= e^{-\lambda h}e^{-\mu h} = e^{-(\lambda + \mu)h} = 1 - (\lambda + \mu)h + o(h)$
2) $\mathbb{P}(Z_{t+h} - Z_t = 1) = \mathbb{P}(X_{t+h} - X_t = 1)\mathbb{P}(Y_{t+h} - Y_t = 0)$
 $+ \mathbb{P}(X_{t+h} - X_t = 0)\mathbb{P}(Y_{t+h} - Y_t = 1)$
 $= [\lambda h + o(h)][1 - \mu h + o(h)] + [1 - \lambda h + o(h)][\mu h + o(h)]$
 $= (\lambda + \mu)h + o(h)$

Os incrementos de (Z_t) são somas dos incrementos de (X_t) e (Y_t) ; logo, são independentes.

Teorema 3

Suponha $(X_t) \sim \mathsf{PP}(\lambda)$. Fixados t > 0 e $n \in \mathbb{N}$, e dado que $X_t = n$, então os tempos de salto

 $(S_1,\ldots,S_n)\sim (U_1^{(n)},\ldots,U_n^{(n)})$, as estatísticas de ordem das va's iid (U_1,\ldots,U_n) com distr uniforme em (0,t).

Dem. Temos de T_1, T_2, \ldots iid $\sim \mathsf{Exp}(\lambda)$ que

$$f_{T_1,\dots,T_{n+1}}(t_1,\dots,t_{n+1}) = \lambda^{n+1} e^{-\lambda s_{n+1}} \mathbb{1}_{\{0 < s_1 < \dots < s_{n+1} < \infty\}},$$
 (3) onde $s_k = t_1 + \dots + t_k, \ k \ge 1.$

Segue que $f_{S_1,\ldots,S_{n+1}}(s_1,\ldots,s_{n+1})$ thé igual ao l.d. (3).

Dem. Teo 3 (cont)

Logo, dado um Boreliano A de \mathbb{R}^n :

$$\begin{split} & \mathbb{P}((S_1,\ldots,S_n) \in A, X_t = n) = \mathbb{P}((S_1,\ldots,S_n) \in A, S_n < t < S_{n+1}) \\ & = \lambda^n \int_{(s_1,\ldots,s_n) \in A} ds_1 \cdots ds_n \Big(\int_t^\infty ds_{n+1} \lambda e^{-\lambda s_{n+1}} \Big) \mathbb{1}_{\{0 < s_1 < \cdots < s_n < t\}} \\ & = \underbrace{\frac{(\lambda t)^n}{n!}}_{\mathbb{P}(X_t = n)} e^{-\lambda t} \int_{(s_1,\ldots,s_n) \in A} \underbrace{\frac{n!}{t^n}}_{\text{fc densidd de prob das ests ordem de } (U_1,\ldots,U_n)} ds_1 \cdots ds_n \end{split}$$

Teorema 4 (Partição de um processo de Poisson)

Seja (X_t) um processo de Poisson de taxa λ e Y_1, Y_2, \ldots iid, $\mathbb{P}(Y_1=j)=p_j, j\geq 1, \sum_{i\geq 1}p_j=1.$

Vamos fazer $X_t^j = \sum_{r=1}^{X_t} 1\{Y_r = j\}, \ t \ge 0, j \ge 1$

(conv.: $\sum_{h=1}^{0} \cdots = 0$); X_t^j conta os eventos de X_t de *tipo j*.

Então, (X_t^j) , $j \ge 1$, são PP's indep's de taxas λp_j , resp.

Dem. Sejam $0 = t_0 < t_1 < \ldots < t_\ell$ e vamos fixar $n_i^j \ge 0$, $i = 1, \ldots, \ell$; $j = 1, \ldots, k$.

Sejam
$$\mathbf{N}_i = (n_i^1, \dots, n_i^k)$$
 e $\mathbf{X}_t = (X_t^1, \dots, X_t^k)$.

E também $n_i = \sum_{j=1}^k n_i^j, \ N_m = \sum_{i=1}^m n_i, \ N_0 = 0.$

Vamos calcular

$$\mathbb{P}(\mathbf{X}_{t_{1}} = \mathbf{N}_{1}, \mathbf{X}_{t_{2}} - \mathbf{X}_{t_{1}} = \mathbf{N}_{2}, \dots, \mathbf{X}_{t_{\ell}} - \mathbf{X}_{t_{\ell-1}} = \mathbf{N}_{\ell})$$

$$= \mathbb{P}(X_{t_{1}} = n_{1}, X_{t_{2}} - X_{t_{1}} = n_{2}, \dots, X_{t_{\ell}} - X_{t_{\ell-1}} = n_{\ell},$$

$$\mathbf{Y}_{N_{0}}^{n_{1}} = \mathbf{N}_{1}, \mathbf{Y}_{N_{1}}^{n_{2}} = \mathbf{N}_{2}, \dots, \mathbf{Y}_{N_{\ell-1}}^{n_{\ell}} = \mathbf{N}_{\ell}),$$
(4)

onde $\mathbf{Y}_m^n = \sum_{r=m+1}^{m+n} (1\{Y_r=1\}, \dots, 1\{Y_r=k\})$ tem distribuição Multinomial $(n; p_1, \dots, p_k)$.

Os eventos (separados por ",") na última probabilidade são independentes e $\mathbb{P}(X_{t_i} - X_{t_{i-1}} = n_i) \times \mathbb{P}(\mathbf{Y}_{N_{i-1}}^{n_i} = \mathbf{N}_i) =$

$$e^{-\lambda(t_{i}-t_{i-1})} \frac{[\lambda(t_{i}-t_{i-1})]^{n_{i}}}{n_{i}!} \times \frac{n_{i}!}{n_{i}^{1}! \cdots n_{i}^{k}!} p_{1}^{n_{i}^{1}} \cdots p_{k}^{n_{i}^{k}}$$

$$= \prod_{j=1}^{k} e^{-\lambda p_{j}(t_{i}-t_{i-1})} \frac{[\lambda p_{j}(t_{i}-t_{i-1})]^{n_{i}^{j}}}{n_{i}^{j}!}$$

Logo, a probabilidade em (4) vale

$$\prod_{j=1}^{k} \prod_{i=1}^{\ell} e^{-\lambda p_{j}(t_{i}-t_{i-1})} \frac{[\lambda p_{j}(t_{i}-t_{i-1})]^{n_{i}^{\ell}}}{n_{i}^{j}!}
= \prod_{j=1}^{k} P(\tilde{X}_{t_{1}}^{j} = n_{1}^{j}, \dots, \tilde{X}_{t_{\ell}}^{j} - \tilde{X}_{t_{\ell-1}}^{j} = n_{\ell}^{j}), \quad (5)$$

onde (\tilde{X}_t) é um $PP(\lambda p_j)$.

Como a probabilidade em (4) também vale

$$\mathbb{P}(\cap_{j=1}^k \{X_{t_1}^j = n_1^j, \dots, X_{t_\ell}^j - X_{t_{\ell-1}}^j = n_\ell^j\}),$$

temos que, para cada $j=1,\ldots,k$, (X_t^j) é (marginalmente) um $PP(\lambda p_j)$, e a fatoração no lado direito de (5) mostra que $(X_t^1),\ldots,(X_t^k)$ são independentes.