MICCAI Journal Club

QIU Liangdong 邱梁东

CUHK(SZ) SRIBD

December 12, 2019

Fully Convolutional Boundary Regression for Retina OCT Segmentation

Yufan He, Aaron Carass, Yihao Liu, et al.

Outline

Introduction

Related work

Current problem

Proposed Method

Evaluation

Summary

Introduction

Paper link

- ▶ Optical Coherence Tomography images
- ▶ Making use of interference of light to generate tomogram

Figure 1: Spectral-Domain(A) and Time-Domain(B) OCT image

Introduction

Expected output

► Continuous layer **surfaces**, with correct hierarchy (topology)

Figure 2: Retina Layers

Related work

Fully Convolutional Boundary Regression

Related work of Retina segmentation

- ▶ Pixel-wise labeling: Deep networks
- ▶ Surface estimation: Level set and graph methods

Figure 3: Sobel filter and shortest path

Current problem

- ► Layer topology not guaranteed: Pixel-wise labeling, methods separating each layer
- ► Hard to be integrated into deep networks: Current graph methods

Proposed Method

- ► Model the pixel-wise segmentation and topology-correct surfaces
- ► End-to-end training

Figure 4: Proposed method

Network structure

- \triangleright conv-1: Segmentation of layers and lesion $L_{Dice+CE}$
- \triangleright conv-2: Surface boundaries maps L_{CE}

Figure 5: Network structure

Surface Modeling

For a M * N image, consider the form of a surface boundary, The ground truth is an list of N row indexes $(x_1^g, ..., x_N^g)$ They want to model the surface position distribution

$$p=p\left(x_{1},\cdots,x_{N},I\right)$$

by approximating it with

$$q = \prod_{i=1}^{N} q_i(x_i|I;\boldsymbol{\theta}) p(I)$$

Then, they update the network parameters by minimizing the K-L divergence, which is similar to Variational Bayesian methods.

Surface Modeling

$$\underset{\theta}{\operatorname{argmin}} KL(p||q) = \underset{\theta}{\operatorname{argmin}} \iint_{\theta} p(x_1, \dots, x_N, I) \log \frac{p(x_1, \dots, x_N, I)}{\prod_{i=1}^{N} q_i(x_i|I; \theta) p(I)}$$

$$= -\underset{\theta}{\operatorname{argmin}} \iint_{\vec{x}, I} p(x_1, \dots, x_N, I) \sum_{i=1}^{N} \log q_i(x_i|I; \theta)$$

$$= -\underset{\theta}{\operatorname{argmin}} \underset{\vec{x}, I \sim p}{\mathbb{E}} \left(\sum_{i=1}^{N} \log q_i(x_i|I, \theta) \right)$$

Replace the expectation by a training sample (I, x_i^g, \dots, x_N^g) , the probability q_i is considered only if the index equals ground truth x_i^g , so they take it as cross-entropy loss function

$$\mathcal{L}_{ ext{CE}} = -\sum_{i=1}^{N} \sum_{i=1}^{M} \mathbb{1}\left(x_{i}^{g} = j\right) \log q_{i}\left(x_{i}^{g} | I, oldsymbol{ heta}
ight)$$

Soft-argmax

The predicted surface position can be denoted as

$$x_i = \sum_{m=1}^{M} m \times q_i(m|I, \boldsymbol{\theta})$$

Since the boundary between 2 surfaces is unique, they regularize q_i by L1 loss,

$$\mathcal{L}_{L1} = \sum_{i=1}^{N} 0.5 d_i^2 \mathbb{1} (|d_i| < 1) + (|d_i| - 0.5) \mathbb{1} (|d_i| \ge 1), \quad d_i = \hat{x}_i - x_i^g$$

Topology Guarantee Module

Denote L as the number of surfaces, x_i^j as the position of the j^{th} surface at the i^{th} column, consistency of topology requires

$$x_i^1 \le x_i^2 \dots \le x_i^L, i = 1, \dots, N.$$

They update the surfaces by

$$\hat{x}_{i}^{j} = x_{i}^{j-1} + \text{ReLU}\left(x_{i}^{j} - x^{j-1}i\right)$$

which is the output layer of Topology Guarantee Module.

Evaluation

- ▶ Healthy Controls (HC) and Multiple Sclerosis (MS) Dataset
- \triangleright 35 cases, each contains 49 scans of size 496×1024
- ► Mean Absolution distance(MAD)

Boundary	MAD (Std. Dev.)								
	AURA	R-Net	ReLayNet	SP	Our's				
ILM	2.37 (0.36)	2.38 (0.36)	3.17 (0.61)	2.70 (0.39)	2.41 (0.40)				
RNFL-GCL	3.09 (0.64)	3.10 (0.55)	3.75 (0.84)	3.38 (0.68)	2.96 (0.71)				
IPL-INL	3.43 (0.53)	2.89 (0.42)	3.42 (0.45)	3.11 (0.34)	2.87 (0.46)				
INL-OPL	3.25 (0.48)	3.15 (0.56)	3.65 (0.34)	3.58 (0.32)	3.19 (0.53)				
OPL-ONL	2.96 (0.55)	2.76 (0.59)	3.28 (0.63)	3.07 (0.53)	2.72 (0.61)				
ELM	2.69 (0.44)	2.65 (0.66)	3.04 (0.43)	2.86 (0.41)	2.65 (0.73)				
IS-OS	2.07 (0.81)	2.10 (0.75)	2.73 (0.45)	2.45 (0.31)	2.01 (0.57)				
OS-RPE	3.77 (0.94)	3.81 (1.17)	4.22 (1.48)	4.10 (1.42)	3.55 (1.02)				
$_{\mathrm{BM}}$	2.89 (2.18)	3.71 (2.27)	3.09 (1.35)	3.23 (1.36)	3.10 (2.02)				
Overall	2.95 (1.04)	2.95 (1.10)	3.37 (0.92)	3.16 (0.88)	2.83 (0.99)				

Figure 6: Evaluation on HC and MS Dataset

Evaluation

- ▶ Diabetic Macular Edema Dataset
- ▶ From 10 patients, each with 11 B-scans (contain Lesion)

	Mean	#1	#2	#3	#4	#5	#6	#7	#8
Chiu	7.82	6.59	8.38	9.04	11.02	11.01	4.84	5.74	5.91
Karri	9.54	4.47	11.77	11.12	17.54	16.74	4.99	5.35	4.30
Rathke	7.71	4.66	6.78	8.87	11.02	13.60	4.61	7.06	5.11
Ours	6.70	4.51	6.71	8.29	10.71	9.88	4.41	4.52	4.61

Figure 7: Evaluation on DME dataset

Summary

Fully Convolutional Boundary Regression

Starting point

► Topology correct

Solution

- ► Surface position modeling
- ► Fully differentiable soft-argmax operation
- ? Smooth and continuous surface guarantees