(19)【発行国】日本国特許庁(JP)

(12)【公報種別】公開特許公報(A)

(11) 【公開番号】特開平5-60406

(43) 【公開日】平成5年(1993)3月9日

(54) 【発明の名称】冷凍サイクル

(51) 【国際特許分類第5版】 F25B 1/00 395 Z 8 919-3L C09K 5/00 C 8930-4H

【審査請求】未請求

【請求項の数】2

【全頁数】4

(21) 【出願番号】特願平3-223040

(22) 【出願日】平成3年(1991) 9月3日

(71) 【出願人】

【識別番号】000003078

【氏名又は名称】株式会社東芝

【住所又は居所】神奈川県川崎市幸区堀川町72番地

(72)【発明者】

【氏名】入 野 保 己

【住所又は居所】静岡県富士市蓼原336 株式会社東 芝富士工場内

(74) 【代理人】

【弁理士】

(57)【要約】

【目的】 冷媒R12のような大気中のオゾン層の破壊の原因なる冷媒を使用することなく、かつ、コンプレッサの吐出容積を増加させることなく、冷媒R12と同等の冷凍効果をもつ混合冷媒を冷凍サイクルに用いる。

(19) [Publication Office] Japanese Patent Office (JP)

(12) [Kind of Document] Japan Unexamined Patent Publication (A)

(11) [Publication Number of Unexamined Application] Japan Unexamined Patent Publication Hei 5 - 60406

(43) [Publication Date of Unexamined Application] 1993 (199 3) March 9 day

(54) [Title of Invention] REFRIGERATION CYCLE

(51) [International Patent Classification 5th Edition] F25B 1 /00 395 Z 8919-3L C09K 5/00 C 8930-4H

[Request for Examination] Examination not requested

[Number of Claims] 2

[Number of Pages in Document] 4

(21) [Application Number] Japan Patent Application Hei 3 - 22 3040

(22) [Application Date] 1991 (1991) September 3 days

(71) [Applicant]

[Applicant Code] 000003078

[Name] TOSHIBA CORPORATION (DB 69-054-3517)

[Address] Kanagawa Prefecture Kawasaki City Saiwai-ku Horika wa-cho 72

(72) [Inventor]

[Name] Entrance field preservation me

[Address] Inside of Shizuoka Prefecture Fuji City Tade field 336 Toshiba Corporation (DB 69-054-3517) Fuji factory

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

(57) [Abstract]

[Objective] Without using coolant which becomes cause of dest ruction of theozone layer in atmosphere like coolant R12, at same time, mixed coolant whichhas freezing effect which is equal to coolant R12 discharge volume of the compressor without increasing, is used for refrigeration cycle.

【構成】 冷媒R22の混合割合をモル分率で20%以下とした冷媒R134aと冷媒R22の混合冷媒を封入した冷凍サイクル。

[Constitution] Mixture fraction of coolant R22 refrigeration c ycle which encloses mixed coolant of coolant R134aand coolant R22 which are made 20 % or lower with molar proportion.

【特許請求の範囲】

【請求項1】冷媒R22の混合割合をモル分率で20%以下とした冷媒R134aと冷媒R22の混合冷媒を封入したことを特徴とする冷凍サイクル。

【請求項2】ポリグリコール系冷凍機油またはエステル 系冷凍機油と鉱油を混合した潤滑油を、混合冷媒に混入 したことを特徴とする請求項1に記載の冷凍サイクル。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、冷媒R12と同等の冷 凍効果を有する混合冷媒を封入した冷凍サイクルに関す る。

[0002]

【従来の技術】冷蔵庫などの低温用冷凍機器に用いられる冷凍サイクルにおいては、冷媒として吸い込み体積当りの冷凍能力の大きいR12やR502(R22+R115)が使用されている。

[0003]

【発明が解決しようとする課題】しかし、この種の冷媒R12やR502の使用は、大気中のオゾン層の破壊の原因になるものと考えられ、環境保全の見地から、世界規模で使用が禁止になりつつあり、その代替冷媒の開発が望まれている。冷媒R12の代替冷媒としては成績係

[Claim(s)]

[Claim 1] Mixture fraction of coolant R22 refrigeration cycle which designates that mixed coolant of the coolant R134a and coolant R22 which are made 20 % or lower with molar proportion is enclosed as feature.

[Claim2] Refrigeration cycle which is stated in Claim 1 which designates that lubricating oilwhich mixes polyglycol refrigeration oil or ester type refrigeration oil and mineral oil, is mixed tothe mixed coolant as feature.

[Description of the Invention]

[0001]

[Field of Industrial Application] This invention regards refrigera tion cycle which encloses mixed coolant which possesses the freezing effect which is equal to coolant R12.

[0002]

[Prior Art] Regarding refrigeration cycle which is used for freeze r for refrigerator or other low temperature, itsucks and as coolant R12 and R502(R22 + R115) where cooling and freezing capacity of theper volume is large are used.

[0003]

[Problems to be Solved by the Invention] But, coolant R12 of this kind and use of R502 are thought thingwhich becomes cause of destruction of ozone layer in atmosphere, from the viewpoint of preservation of environment, with world scale use is becoming prohibition, development of replacement

数(COP)が同等である冷媒R134aが選定されるが、冷媒R134aは冷媒R12に比較すると、冷凍能力が8%程度低下しているため、冷媒R134aによって冷媒R12と同等の冷凍能力を得るには、コンプレッサの吐出容積を増加させなければならない。また、プリグリコール系合成油またはエステル系合成油が選定されているが、これらの合成油は圧力粘性係数が鉱油の50%程度であり、潤滑性が劣化するため、これらの合成油に極圧剤等を添加する必要がある。

【0004】本発明は上記した点に鑑みてなされたもので、コンプレッサの吐出容積を増加させることなく、冷媒R12と同等の冷凍効果を有する混合冷媒を封入した冷凍サイクルを提供することを目的とする。

[0005]

【課題を解決するための手段】本発明の冷凍サイクルは、冷凍サイクルに封入される冷媒を冷媒R22の混合割合をモル分率で20%以下とした冷媒R134gと冷媒R22の混合冷媒としたことを特徴とする。また、本発明の冷凍サイクルは、冷媒R134gと冷媒R22の混合冷媒に、ポリグリコール系冷凍機油またはエステル系冷凍機油と鉱油を混合した潤滑油を混入したことを特徴とする。

[0006]

【作用】本発明の冷凍サイクルでは、冷媒R134aの冷凍能力の低下分を冷媒R22冷凍能力の増加分で補完し、大気中のオゾン層の破壊の原因をなくすとともに、冷媒R12と同等の冷凍効果を確保する。また、冷媒R134aと冷媒R22の混合冷媒に、ポリグリコール系冷凍機油またはエステル系冷凍機油と鉱油を混合した潤滑油を混入することで、潤滑性能が向上する。

[0007]

【実施例】以下本発明の一実施例を図面につき説明する。図1は低温用冷凍機器に用いられる冷凍サイクルを示し、この冷凍サイクルは、コンプレッサ1、コンデンサ2、ドライヤ3、冷媒流量制御部4、エバポレータ5を順次配管6で接続して構成されている。そして、この冷凍サイクルを循環するように封入される冷媒として、冷

coolant is desired. coolant R134a where coefficient of performance (COP) is equal as replacement coolant of coolant R12 isselected, but as for coolant R134a when it compares to coolant R12, because the cooling and freezing capacity 8 % it has decreased, to obtain cooling and freezing capacity which isequal to coolant R12 with coolant R134a, discharge volume of compressoryou must increase. In addition, polyglycol synthetic oil or ester type synthetic oil is selected as refrigeration oil which is used for coolant R134a,, but these synthetic oil pressure viscosity coefficient are 50 % of mineral oil, because lubricity deteriorates, it is necessary to addthe extreme-pressure additive etc to these synthetic oil.

[0004] As for this invention considering to point which was ins cribed, beingsomething which you can do, it designates that it offers refrigeration cyclewhich encloses mixed coolant which possesses freezing effect which is equal tothe coolant R12 discharge volume of compressor without increasing, as theobjective.

[0005]

[Means to Solve the Problems] Refrigeration cycle of this invention coolant which is enclosed in refrigeration cycle themixture fraction of coolant R22 designates that it makes mixed coolant of coolant R134a and the coolant R22 which are made 20 % or lower with molar proportion as feature. In addition, refrigeration cycle of this invention in mixed coolant of coolant R134a and the coolant R22, designates that lubricating oil which mixes polyglycol refrigeration oil or the ester type refrigeration oil and mineral oil is mixed as feature.

[0006]

[Work or Operations of the Invention] With refrigeration cycle of this invention, decrease amount of cooling and freezing capacity of coolant R134athe complementary is done with increased fraction of coolant R22 cooling and freezing capacity, cause ofdestruction of ozone layer in atmosphere freezing effect which is equal to the losing and also coolant R12 is guaranteed. In addition, in mixed coolant of coolant R134a and coolant R22, by fact that the lubricating oil which mixes polyglycol refrigeration oil or ester type refrigeration oil and mineral oil ismixed, lubrication performance improves.

[0007]

[Working Example(s)] One Working Example of below this invention is explained concerning drawing. As for Figure 1 refrigeration cycle which is used for freezer for low temperature is shown, this refrigeration cycle is formed, compressor 1, condenser 2, drier 3 and the coolant flow control section 4, connecting evaporator 5 with sequential pipe

JP 93060406A Machine Translation

媒R134aと冷媒R22の混合冷媒が選定される。

6. mixed coolant of coolant R134a and coolant R22 is selected and, in order tocirculate, this refrigeration cycle as coolant which is enclosed.

【0008】上記冷媒R134aと冷媒R22の特性を下表に示す。

[0008] Above-mentioned coolant R134a and characteristic of coolant R22 are shown in the subsurface.

【表 1】

[Table 1]

ASHRAE条件; Tc=54.4、Te=-23.3. Tu=32.2、 Ts=32.2

冷媒	R - 1 2	R - 5 0 2	R - 2 2	R - 134a
化学式	CC12 F2	B22+R115	CHC1F2	CF3 CH2 F
斯熱指数k	1. 1406	1. 1474	1. 1952	(1. 104)
吐出圧力 (Kg/cm2G)	12. 8	22.4	21. 08	13. 95
吸込圧力 (Kg/cm2G)	0. 32	1. 58	1. 17	0. 17
圧 縮 比	10.45	9. 07	10.18	12. 78
C O P	274 (100)	2 6 5 (97)	2 5 6 (93)	278 (101)
コンプ冷凍能力 相対比較	100	171	155	9 2
コンプ吐出温度 (℃)	134	132	169	114

冷媒R134aと冷媒R22の混合割合は下式により決められる。

【0009】まず、冷媒R134aのモル分率をX、冷媒R22のモル分率をYと置き、この混合冷媒の冷凍能力をR12の冷凍能力と等しいとすれば、

 $9.2 X + 1.5.5 Y = 1.0.0 \cdots (1)$

 $X+Y=1\cdots (2)$

上式(1)、(2)より

X = 87.3%

Y=12.7% となる。

【0010】しかし、実際の冷凍サイクルでは、コンプレッサの冷凍能力にバラツキがあるので、冷凍効果の調節量5%を考慮すると、

Mixture fraction of coolant R134a and coolant R22 is decided by formula below.

[0009] That it is equal to cooling and freezing capacity of R12, first, if molar proportion of the coolant R134a molar proportion of X and coolant R22 cooling and freezing capacity of Y andthe putting and this mixed coolant we assume

92X + 155Y = 100....(1)

X + Y = 1....(2)

From above equation (1), (2)

X=87.3 %

It becomes Y=12.7%.

[0010] But, because with actual refrigeration cycle, there is a variation in cooling and freezing capacity of the compressor, when adjustment quantitative 5 % of freezing effect

80% \le X \le 95%、 5% \le Y \le 20%となる。すなわち、混合冷媒として、冷媒R22の混合割合をモル分率で20%以下とした冷媒R134aと冷媒R22の混合冷媒が選定される。

【0011】上記冷媒R134aと冷媒R22の混合冷媒に使用される冷凍機油としては、ポリグリコール系冷凍機油またはエステル系冷凍機油と鉱油を混合した潤滑油が選定される。上記冷媒R134aは、ポリグリコール系冷凍機油またはエステル系冷凍機油との相溶性があるので、冷凍サイクル内の油循環機能を保つことができる。この冷凍機油に混入される鉱油は、圧力粘性係数が合成油に比較して高いため、コンプレッサ摺動部での油膜強度を増加させることができる。

【0012】しかして、冷凍サイクルの冷媒として、冷媒R22の混合割合をモル分率で20%以下とした冷媒R134ョと冷媒R22の混合冷媒を使用した場合には、冷媒R134ョ単独の冷凍効果低下を防止でき、蒸発温度を低く設定できるので、冷媒R134ョ単独よりも深温冷凍サイクルが実現する。また、同一蒸発温度では、混合冷媒の方が低圧圧力が高くなるので、コンプレッサの体積効率が向上する。

[0013]

【発明の効果】以上述べたように本発明によれば、冷凍サイクルに冷媒R22の混合割合をモル分率で20%以下とした冷媒R134aと冷媒R22の混合冷媒を用いるので、冷媒R12のような大気中のオゾン層の破壊の原因なる冷媒を使用することなく、かつ、コンプレッサの吐出容積を増加させることなく、冷媒R12と同等の冷凍効果を奏する。また、ポリグリコール系冷凍機油と鉱油を混合した潤滑油を混合冷媒に混入することで、コンプレッサ摺動部での油膜強度を増加させることができる。

【図面の簡単な説明】

【図1】本発明の混合冷媒を用いた冷凍サイクルを示す 図

【符号の説明】

1 コンプレッサ

isconsidered,

It becomes 80 % X 95 % and 5 % Y 20 %. As namely, mixed coolant, mixed coolant of coolant R134a and coolant R22 which are made the 20 % or lower with molar proportion is selected mixture fraction of coolant R22.

[0011] Lubricating oil which mixes polyglycol refrigeration oil or ester type refrigeration oil and mineral oil asthe above-mentioned coolant R134a and refrigeration oil which is used for mixed coolant ofthe coolant R22, is selected. Because above-mentioned coolant R134a is a polyglycol refrigeration oil or a compatibility of theester type refrigeration oil, it is possible to maintain oil circulator talent inside refrigeration cycle. Because pressure viscosity coefficient it is high by comparison with synthetic oil, oil film intensity with compressor sliding part it can increase mineral oil which is mixed in this refrigeration oil.

[0012] Therefore, as coolant of refrigeration cycle, when mixt ure fraction of coolant R22 themixed coolant of coolant R134a and coolant R22 which are made 20 % or lower with themolar proportion is used, be able to prevent freezing effect decrease of coolant R134a alone, because vaporization temperature can be set low, warm refrigeration cycle actualizes deeply incomparison with coolant R134a alone. In addition, because with same vaporization temperature, mixed coolant low pressure pressurebecomes high, volumetric efficiency of compressor improves.

[0013]

[Effects of the Invention] As above expressed, according to this invention, because mixture fraction of the coolant R22 mixed coolant of coolant R134a and coolant R22 which are made 20 % or lowerwith molar proportion is used for refrigeration cycle, without using coolant which becomes cause of destruction of ozone layer in atmosphere like the coolant R12, at same time, it possesses freezing effect which is equal to the coolant R12 discharge volume of compressor without increasing. In addition, by fact that lubricating oil which mixes polyglycol refrigeration oil or the ester type refrigeration oil and mineral oil is mixed to mixed coolant, oil film intensity with the compressor sliding part it can increase.

[Brief Explanation of the Drawing(s)]

[Figure 1] Refrigeration cycle which uses mixed coolant of this invention is shown figure

[Explanation of Reference Signs in Drawings]

1 compressor

JP 93060406A Machine Translation

- 2 コンデンサ
- 4 冷媒流量制御部
- 5 エバポレータ

【図1】

- 2 capacitor
- 4 coolant flow control section
- 5 evaporator

[Figure 1]