S11-L2

Wireshark e TCPdump

Emanuele Benedetti | 18 febbraio 2025

Consegna

Utilizzo di wireshark per osservare il TCP three way handshake

Il laboratorio è diviso in tre fasi:

- Preparazione degli host per catturare il traffico
- Analisi dei pacchetti utilizzando Wireshark
- Visualizzazione dei pacchetti utilizzando tcpdump

Il laboratorio è basato sulla traccia seguente:

https://itexamanswers.net/9-2-6-lab-using-wireshark-to-observe-the-tcp-3-way-han_dshake-answers.html

Bonus

Utilizzo di Wireshark per esaminare le catture TCP e UDP

Il laboratorio è incentrato sul raggiungimento di questi obiettivi:

- Identificare i campi dell'intestazione TCP e il funzionamento utilizzando una cattura di sessione FTP in Wireshark.
- Identificare i campi dell'intestazione UDP e il funzionamento utilizzando una cattura di sessione TFTP in Wireshark.

Il laboratorio segue la seguente traccia:

https://itexamanswers.net/10-4-3-lab-using-wireshark-to-examine-tcp-and-udp-capt ures-answers.html

Svolgimento

Preparazione della macchina

Il laboratorio è stato eseguito sulla macchina virtuale *CyberOps VM*.

Ho eseguito il comando sudo *lab.support.files/scripts/cyberops_topo.py* per avviare *Mininet*, una piattaforma open-source che simula reti software-defined (SDN), creando una rete virtuale che include switch e host virtuali.

Ho avviato l'host H1 e H4 con xterm H1 e xterm H4 ed avviato il web server su H4 con /home/analyst/lab.support.files/scripts/reg_server_start.sh.

Poiché per ragioni di sicurezza non possiamo eseguire *firefox* come root, sull'host *H1* cambiamo utente come *analyst* con *su analyst* ed avviamo il browser con *firefox* &.

Attendiamo l'apertura della finestra e avviamo una sessione *tcpdump* su *H1*, salvando l'output sul file *capture.pcap* con il comando *sudo tcpdump -i H1-eth0 -v -c* 50 -w /home/analyst/capture.pcap.

Navighiamo con firefox all'indirizzo 172.16.0.40

Analisi del traffico con Wireshark

Avviamo *wireshark* per analizzare la cattura effettuata tramite *tcpdump*. Andiamo su *File > Open* e scegliamo il file da analizzare.

Applichiamo il filtro *tcp*. I pacchetti 36, 37 e 38 sono quelli di nostro interesse, in cui viene eseguito il *three way handshake* del protocollo TCP.

Il frame 36 avvia la procedura di handshake tra il PC *H1* ed il server *H4*. Possiamo vedere le informazioni del pacchetto tramite il pannello *Packet List* in basso che mostra tutte le informazioni.

Nella finestra in basso vengono mostrate tutte le informazioni come indirizzo IP sorgente e destinazione, numeri di porta, indirizzi MAC ecc.

Espandendo le informazioni relative al protocollo TCP ci viene mostrato che il flag *SYN* è settato ad *1*.

Il pacchetto 37 mostra invece la risposta del server verso il client *H1*. In questo caso notiamo che nella sezione TCP, sono impostati ad *1* i flag *SYN* e *ACK*.

Il terzo pacchetto, che chiude l'handshake, ha come da aspettative il flag *ACK* impostato.

É interessante notare i valori di sequence number e acknowledgment number: nel primo pacchetto il sequence number è pari a 0, il server risponde con un sequence number uguale a 0 e acknowledgment number uguale a 1 (sequence number ricevuto + 1). Infine il client termina l'handshake con sequence number 1 e acknowledge number 1 (sequence number ricevuto + 1).

Visualizzazione dei pacchetti con tcpdump

Possiamo aprire ed analizzare il traffico catturato anche tramite tcpdump. Eseguiamo il comando *tcpdump -r /home/analyst/capture.pcap tcp -c 3* per aprire la precedente cattura.

[analyst@secOps "]\$ tcpdump -r /home/analyst/capture.pcap tcp -c 3
reading from file /home/analyst/capture.pcap. link-type EMLOMB (Ethernet)
08:31:28.584490 IP secOps.46838 > 172.16.0.40, http: Flags [5], seq 1889512870, win 29200, options [mss 1460,sackOK,TS val 2791191893 ecr 0,nop.wscale 9], length 0
08:31:28.584541 IP 172.16.0.40, http > secOps.46838: Flags [6], seq 1303723797, ack 1889512871, win 28960, options [mss 1460,sackOK,TS val 1408201530 ecr 2791191893,nop.wscale 9], length 0
08:31:28.584551 IP secOps.46838 > 172.16.0.40, http: Flags [.], ack 1, win 58, options [nop.nop.TS val 2791191893 ecr 1408201530], length 0

Bonus

Identificazione header TCP con Wireshark

Avviamo *wireshark* per catturare il traffico di rete sull'interfaccia *enp0s3*. Apriamo una finestra del terminale ed eseguiamo il comando *ftp ftp.cdc.gov* per eseguire una connessione al server *ftp*, autenticandoci con l'utente *anonymous*.

```
[analyst@secOps ~]$ ftp ftp.cdc.gov
Connected to ftp.cdc.gov.
220 Microsoft FTP Service
Name (ftp.cdc.gov:analyst): anonymous
331 Valid hostname is expected.
Password:
503 Login with USER first.
ftp: Login failed.
Remote system type is Windows_NT.
ftp> ls
421 Service not available, remote server has closed connection
ftp: No control connection for command
```

Purtroppo il server è down ma possiamo comunque proseguire il resto dell'esercizio con quanto catturato fin'ora.

Applichiamo il filtro tcp and ip.addr == 198.246.121.209 alla cattura effettuata per filtrare il traffico tcp da e verso il server tcp.

Lo screenshot mostra il risultato della cattura del traffico, con i filtri applicati.

I primi 3 pacchetti catturati, come nel caso precedente, sono relativi all'handshake a tre vie del protocollo TCP.

Tramite il pannello in basso è possibile analizzare tutte le informazioni contenute nell'header dei pacchetti relativi all'handshake.

Le tabelle che seguono mostrano le informazioni dell'header TCP relativo al primo ed al secondo pacchetto catturato

Description	Wireshark results
Indirizzo IP sorgente	10.0.2.15
Indirizzo IP destinazione	198.246.121.209
Numero porta sorgente	48814
Numero porta destinazione	21
Sequence number	0
Acknowledgment number	-
Header length	40
Windows size	29200

Description	Wireshark results
Indirizzo IP sorgente	198.246.121.209
Indirizzo IP destinazione	10.0.2.15
Numero porta sorgente	21
Numero porta destinazione	48814
Sequence number	0
Acknowledgment number	1
Header length	24
Windows size	65535

Lo screenshot che segue mostra il traffico ftp generato durante la cattura:

Al termine del traffico *ftp* in questo caso la sessione viene terminata con un pacchetto *RST*, *ACK* anziché con un pacchetto *FIN*, *ACK*.

Identificazione header UDP con Wireshark

Eseguiamo il comando *sudo lab.support.files/scripts/cyberops_topo.py* in una nuova finestra di terminale ed avviamo *H1* e *H2* con *xterm H1 H2*.

In *H1* avviamo il server *tftpd* con /home/analyst/lab.support.files/scripts/start_tftpd.sh e creiamo un file di testo con *echo* "Il file contiene dati tftp" > /srv/tftp/my_tftp_data.

Apriamo wireshark ed abilitiamo Validate the UDP checksum if possible in Edit > Preferences > Protocols > UDP. Avviamo la cattura dei pacchetti di wireshark sull'interfaccia eth0 di H1 ed eseguiamo tftp 10.0.0.11 -c get my_tftp_data su H2 per scaricare il file di testo creato.

Interrompiamo la cattura del traffico e filtriamo i risultati con *tftp*.

Anche in questo caso possiamo analizzare tutti i campi dell'header tramite il pannello in basso in wireshark.

Description	Wireshark results
Indirizzo IP sorgente	10.0.0.12
Indirizzo IP destinazione	10.0.0.11
Numero porta sorgente	47208
Numero porta destinazione	69
Lunghezza messaggio UDP	32
UDP checksum	0x22a5

Description	Wireshark results
Indirizzo IP sorgente	10.0.0.11
Indirizzo IP destinazione	10.0.0.12
Numero porta sorgente	34233
Numero porta destinazione	47208
Lunghezza messaggio UDP	40
UDP checksum	0xea79