PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-026016

(43) Date of publication of application: 29.01.1999

(51)Int.CL

H01M 10/40

(21)Application number: 09-182118

(71)Applicant: MITSUBISHI CHEM CORP

(22)Date of filing:

08.07.1997

(72)Inventor: YASUKAWA SHIGEKI

OU KENMEI

ISHIGAKI KENICHI KOMINATO ASAO SHIMA KUNIHISA MORI SHOICHIRO

(54) ELECTROLYTE FOR LITHIUM SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrolyte having high lithium cycle efficiency, suppressing the corrosion of a positive electrode current collector, superior in charging discharging characteristics, and improved in safety and reliability by using organic acid lithium salt as a solute, and using an organic ether compound or an organic solvent which is mainly made of it for the solvent.

SOLUTION: An organic acid lithium salt expressed by formula is used for a solute, where (n) and (m) are integers of 1–4 respectively. Chain–like ether such as 1,2–dimethoxyethane and ring–like ether such as tetrahydrofuran are used alone or as a mixture of these organic ether compounds as a solvent. When the organic acid lithium salt is dissolved in the organic solvent of use, the oxidation potential of aluminum becomes higher than the positive electrode potential at the time of a normal electric charging, a positive electrode aluminum current collector is hardly dissolved into an electrolyte, and a good electric charging can be made.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公園番号

特開平11-26016

(43)公開日 平成11年(1999) 1月29日

(51) Int CL*

政別記号

HO1M 10/40

FΙ

H 0 1 M 10/40

Α

答査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出顯番号

特顯平9-182118

(22)山夏日

平成9年(1997)7月8日

(71)出題人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 安川 朱起

茨城県稻敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(72)発明者 王 献明

茨城県稲敷郡阿見町中央八丁日3番1号

三菱化学株式会社贷波研究所内

(72)発明者 石垣 意一

茨城県稲敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(74)代理人 弁理士 長谷川 噴司

最終頁に続く

(54) 【発明の名称】 リチウム二次電池用電解液

(57)【要約】

【課題】 リチウムサイクル効率が高く、かつ、正極アルミニウム集電体に対する腐食を防止した有機酸リチウム塩を用いるリチウム二次電池用電解液の提供。

【解決手段】 溶質として下記(1)式で示される有機 酸リチウム塩

【化1】

$$SO_2 C_n F_{2nt1}$$
LiN
$$SO_2 C_n F_{2nt1}$$

(式中、n及びmは1~4の整数を示す。)を用い、溶 媒として有機エーテル化合物を用いることを特徴とする リチウム二次電池用電解液。

【特許請求の範囲】

【請求項1】 溶質として下記一般式(1)で示される 有機酸リチウム塩

【化1】

$$LiN \left\langle \begin{array}{c} SO_2 C_a F_{2a+1} \\ \\ SO_2 C_a F_{2a+1} \end{array} \right. \tag{1}$$

(式中、n及びmは1~4の整数を示す。)を用い、溶 媒として有機エーテル化合物のみ、または有機エーテル 化合物を主成分とする有機溶媒を用いることを特徴とす るリチウム一次電池用電解液。

【請求項2】 有機エーテル化合物が、1、2-ジメトキシエタン、1、2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、シエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、テトラとドロフラン、2ーメチルテトラヒドロフラン、2・メチルテトラとドロフラン、カーメチルテトラとドロピラン、3ーメチルテトラとドロピラン、3ーメチルテトラとドロピランから選ばれた化合物であることを特徴とする請求項1に記載のリチウム二次電池用電解液。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はリチウム二次電池用の電解液に関するものである。更に詳しくは、導電率及び電気化学的安定性等が改良されたリチウム二次電池用電解液に関するものである。

[0002]

【従来の技術】負極活物質として、リチウムあるいはリチウム合金等、または炭素材等を用い、正極活物質として、リチウム遷移金属複合酸化物(LiCoO2、LiNiO2、LiMn:O4)等を用いた電池は、高エネルギー密度を有するために注目されており、活発な研究が行われている。しかしながら、この種の電池の電圧は4V以上と高く、特に、リチウム金属を負極に用いるリチウム二次電池では充放電の際、リチウム負極に発生する樹枝状のリチウムのデンドライト等により、電解液中の溶質あるいは有機溶媒と反応して電解液が劣化していくため良好な充放電特性を得ることが困難であり、安全性、信頼性に優れた安定な電解液の開発が望まれている。

【0003】近年、溶質としてLiPF。を用いる有機電解液を使用したリチウム二次電池が提案されているが、リチウム金属を負極に用いるリチウム二次電池では、充電時の電析リチウム等との反応性が高いため、リチウム負極の充放電効率が低い問題があった。このため、より高性能な電池の開発を目的として、電気化学的

安定性及び熱的安定性に優れた溶質として $LiN(SO_2CF_3)_2$ を用いる電解液が開発され、提案されている。

[0004]

【発明が解決しようとする課題】しかしながら、溶質としてLiN(SO₂CF₃)2のような有機酸リチウム塩を炭酸エステル単独、あるいは炭酸エステルとエーテルの1:1混合した有機溶媒に溶解した電解液(特開平5-62690号)では正極集電体として用いるアルミニウム又はアルミニウム合金を腐食し、実用可能な電池容量やサイクル特性が得られず信頼性に欠けるという問題があった。

【0005】そこで、本発明者らは、上記のように、溶質の有機酸リチウム塩を有機エーテル化合物のみの溶媒または有機エーテルを主成分(65容量%以上)とした溶媒に溶解した場合に、アルミニウムの酸化電位が向上することを見いだした。本発明はかかる知見に基づきなされたものであって、その日的とするところは、リチウム金属を負極に用いるリチウム二次電池系に最適な電解液として、リチウムサイクル効率が高く、正極集電体の腐食を抑制し、充放電特性に優れ、安全性、信頼性の同上されたリチウム二次電池用電解液を提供することにある。

[0006]

【課題を解決するための手段】本発明は、溶質として下記(1)式で示される有機酸リチウム塩

[0.007]

【化2】

$$\begin{array}{c|c}
SO_2 C_n F_{2n+1} \\
L i N \\
SO_2 C_n F_{2n+1}
\end{array}$$
(1)

【0008】(式中、n及びmは夫々1~4の整数を示す。)を用い、溶媒として有機エーテル化合物のみまたは有機エーテル化合物を主成分とする有機溶媒を用いることを特徴とするリチウム二次電池用電解液を提供するものである。

[0009]

【作用】溶質として、前記一般式(1)で示される有機酸リチウム塩(以下、有機酸リチウム塩と略記する。)をエーテル結合を有する有機溶媒に溶解して用いることによって、アルミニウムの酸化電位が、正常充電時の正極電位よりも高くなり、正極アルミニウム集電体の電解液中への溶解が殆ど起こらないため良好な充電がなされる。特に、負極活物質として、リチウムあるいはリチウム合金等を用い、正極活物質として、リチウム遷移金属複合酸化物(LiCoO1、LiNiO2、LiMn2O4)等を用いた4V以上の電圧を有する電池において、リチウムサイクル効率、充放電特性、安全性、信頼性の高い電解液が実現できる。

[0010]

【発明の実施の形態】

溶質:溶質として、一般式(1)で示される有機酸リチウム塩としては、具体的にはLiN($SO_2C_3F_7$) $_2$ 、LiN($SO_2C_3F_7$) $_2$ 、LiN($SO_2C_3F_7$) $_2$ 、LiN($SO_2C_3F_7$) $_3$ 、LiN($SO_2C_3F_7$) $_4$ 、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、LiN($SO_2C_3F_7$)、SO $_2C_4F_9$)、LiN($SO_2C_3F_7$) ($SO_2C_4F_9$)が例示される。また、この際、無機酸リチウム塩を該有機酸リチウム塩と混合して用いることもできる。この場合の無機酸リチウム塩としては、LiPF6、LiC1O4、LiBF4、LiAsF6、LiSbF6が例示される。

【0011】溶媒:電解液の溶媒としては、導電率の性 能を改善し、アルミニウムの酸化電位が、止常充電時の 正極電位よりも高く、かつ良好なリチウムサイクル効率 を得るために、有機エーテル化合物が選択される。有機 エーテル化合物としては、特に限定されるものではない が、1,2-ジメトキシエタン、1,2-ジエトキシエ タン、ジエチレングリコールジメチルエーテル、トリエ チレングリコールジメチルエーテル、テトラエチレング リコールジメチルエーテル、ジエチレングリコールジエ チルエーテル、トリエチレングリコールジエチルエーテ ル、テトラエチレングリコールジエチルエーテルなどの 鎖状エーテル、テトラヒドロフラン、2-メチルテトラ ヒドロフラン、2,5-ジメチルテトラヒドロフラン、 テトラヒドロピラン、2-メチルテトラヒドロピラン、 3-メチルテトラヒドロピラン、1,3-ジオキソラ ン、4-メチル-1、3-ジオキソランなどの環状エー テルから選ばれた溶媒あるいはこれらの複数の混合溶媒 が好適に使用される。これら有機エーテル化合物の沸点 は60~300℃が好ましい。

【0012】また、この際、本発明の効果を損なわない限りにおいて、従来リチウム二次電池用電解液として提案及び使用されている有機溶媒を該エーテル化合物に混合して溶媒中の35容量%以下、好ましくは3容量%未満用いることもできる。該有機溶媒としては、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの炭酸エステル化合物、酢酸メチル、酢酸エチル、プロピオン酸メチル、アーブチロラクトンなどのカルボン酸エステル化合物などから選ばれた溶媒あるいはこれらの複数の混合溶媒であり、有機溶媒中、35容量%以下、好ましくは10容量%以下、最も好ましくは3容量

%未満の量用いることが可能である。

【0013】本発明の電解液が、前記式(1)で示される溶質の有機酸リチウム塩と溶媒の有機エーテル化合物の組み合わせに限定されるのは、アルミニウムの酸化電位が正常充電時の正極電位よりも高く、かつ良好なリチウムサイクル効率を得るためである。すなわち、後述する実施例にも示すように、有機酸リチウム塩を炭酸エステル溶媒などに溶解した場合は、アルミニウムの酸化電位が不十分となり、正極集電体のアルミニウムの腐食(溶解)等により、実用可能な程度の充放電容量を有する電池が得られなくなる。また、無機酸リチウム塩のみを用いた場合はリチウム金属負極との反応の増加により、リチウム負極のサイクル効率が低下するためである。なお、該有機酸リチウム塩は、電解液中の溶質濃度として0.5~1.5M(モル/リットル)の範囲で好適に使用される。

[0014]

【実施例】以下、実施例により本発明を詳細に説明する。

実施例1

有機酸リチウム塩の溶質としてLiN(SO₂CF₃)₂を用い、テトラヒドロフラン(THF)溶媒に溶解し、溶質濃度が $1 \text{mol}/\text{dm}^3$ の有機電解液を調製した。電解液の薄電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した結果を表1に示す。

【0015】(導電率の測定)有機電解液の導電率の測定をつぎの方法で行った。東亜電波工業(株)製の導電率計CM-30S及び電導度セルCG-511Bを用いて、25℃における導電率を測定した。

【0016】(リチウムサイクル効率の測定)リチウムサイクル効率の測定は乾燥アルゴン雰囲気下のドライボックス内で、有機電解液をコインセル内に設置して、ボテンショスタット/ガルバノスタット(ソーラートロン社製1287)を用いて、作用極に厚さ100μmのリチウム金属箔(有効電極面積:1.23cm²)、対極に厚さ1mmのリチウム金属箔(有効電極面積:1.23cm²)を用いて、定電流密度(電流密度:0.6mA/cm²)による20サイクルの充放電試験(電析電気量:6C/cm²)を行い、作用極に残った電気化学的に活性なリチウム容量を測定し、次式を用いてリチウムサイクル効率を算出した。

[0017]

【数1】リチウムサイクル効率 (%) -100×(1-1/FOM)

(充放電を繰り返した場合の充電容量の総和)

ボックス内で、有機電解液を3極式セル内に設置(電解 流量:15ml)して、ポテンショスタット/ガルバノ スタット (ソーラートロン社製1287) を用いて、作 用極にアルミニウム電極(電極面積:7.0mm²)を使 用し、対極及び参照極にリチウム金属を使用して行っ た。アルミニウムの酸化電位は、50mV/secで電 位を走査した際の酸化反応に相当する反応電流密度が2 OμA/cm²に達した時のリチウム基準の電位とした。 【0019】 (コイン型セルによる充放電容量の測定) 図1は、実施例及び比較例において作製したリチウムニ 次電池 (コイン型;直径20mm、厚さ1.6mm)の **断面図を示す。このコイン型セルは、正極端子を兼わた** ステンレス製ケース1、負極端子を兼ねたステンレス製 封口板2とがポリプロピレン製ガスケット3で絶縁シー ルされている。正極4は正極活物質としてのリチウムコ バルト複合酸化物(I.i CoO2)に、導電剤としての アセチレンブラックと、結着剤としてのフッ素樹脂と を、それぞれ重量比90:5:5の比率で混合し、これ を溶剤(N-メチルピロリドン)に分散させてスラリー とした後、正極集電体としてのアルミニウム箔に途布 し、乾燥した後、直径12.5mmの正極を作製した。 負極5は直径16mm、厚さ0.5mmのリチウム金属。 箔を用い、有機溶媒電解液に浸された多孔性ポリプロピ レンフィルムのセパレータ6とから構成されている。電 沙の容量は4.2Vから2.5Vまでの電圧範囲で0. 54mAhである。

【0020】比較例1

有概溶媒として炭酸エチレンとジメチルカーボネートの 等体積混合溶媒を用いた他は実施例1と同様にして、電 解液の導電率、リチウムサイクル効率、アルミニウムの 酸化電位及びコインセルによる充放電容量を測定した。 得られた結果を第1表に示す。

【0021】比較例2

溶質としてしiPF₆を、有機溶媒として炭酸エチレンとジメトキシエタン (DME) の等体積混合溶媒を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第1表に示す。

【0022】実施例2

有機溶媒として、1,2-ジメトキシエタン(DME)を用いた他は実施例1と同様にして、電解液の薄電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第1表に示す。

【0023】実施例3

有概溶媒として、ジエチレングリコールジメチルエーテール (DGM) を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第1表に示す。

【0024】実施例4

有機溶媒として、トリエチレングリコールジメチルエーテル (TRGM)を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第1表に示す。

【0025】実施例5

有機溶媒として、テトラエチレングリコールジメチルエーテル (TEGM)を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第1表に示す。

【0026】実施例6

有機溶媒として、テトラヒドロピラン (THP) を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第2表に示す。

【0027】実施例7

有機溶媒として、2-メチルテトラヒドロフラン (Me. THF) を用いた他は実施例1と同様にして、電解液の 導電率、リチウムサイクル効率、アルミニウムの酸化電 位及びコインセルによる充放電容量を測定した。得られ た結果を第2表に示す。

【0028】実施例8

有機酸リチウム塩の溶質が $LiN(SO_2CF_3)(SO_2C_4F_9)$ を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第2表に示す。

【0029】実施例9

有機酸リチウム塩の溶質がLiN(SO₂C₂F₅)。を用いた他は実施例1と同様にして、電解液の導電率、リチウムサイクル効率、アルミニウムの酸化電位及びコインセルによる充放電容量を測定した。得られた結果を第2表に示す。

[0030]

【表1】

第 1 表

		溶質	溶媒 (体接比)	專電率 (mS/cm)	LI サイクル効率 (%)	AI 酸化電位 (V)	放電容量 (mAh)
	1	LiTFSI ¹³	THF	11.4	95	4.2	0.51
実	2	LiTFSI	DME	14.4	95	4.2	0.45
施	3	LITESI	DGM	8.4	95	4.9	0.49
91	4	LiTFSI	TRGM	4.7	94	4.8	0.48
	5	LITFSI	TEGM	3.2	94	5.0	0.48
比較	1	LITFSI	EC/DMC (5/5)	9.3	92	3.7	0.03
61	2	LiPF ₆	EC/DME (5/5)	16.8	87	6.3	0.54

注 1) LiTFSI: リチウム ピス (トリフルオロメタンスルホニル) イミド [化学式:LiN(SO₂CF₃)₂]

[0031]

【表2】

第 2 表

		溶質	溶媒 (体積比)	等電率 (mS/cm)	Li サイクル効率 (%)	Al 酸化電位 (V)	放電容量 (mAh)
	6	LITFSI	THP	2.4	95	4.9	0.49
夹	7	LITTESI	MeTHF	2.5	96	5,0	0.48
拖	8	LINC, C417	THF	7.5	95	4.8	0.51
Ħ	9	LiNC ₂ C ₂ ²⁾	THF	9.0	95	4.8	0.51

注1) LINC, C4: リチウム (トリフルオロメタンスルホニル)(ナノフルオロブタンスルホニル)イミド

[化学式:LIN(SO₂CF₃)(SO₂C₄F₉)]

2) LiNC₂ C₂: リチウム ピス (ペンタフルオロエタンスルホニル) イミド

[化学式:LiN(SO₂C₂F₅)₂]

[0032]

【発明の効果】本発明のリチウム二次電池用電解液は、 専電率に優れ、充電時に止極集電体のアルミニウムの協 食(溶解)がなく、高いリチウムサイクル効率が得られ るため、良好な充放電特性が得られるとともに、安全 性、信頼性が高いなど、本発明は優れた特有の効果を奏 -する。

【図面の簡単な説明】

【図1】 コイン型セルの断面図である、

[図1]

フロントページの続き

(72)発明者 小湊 あさを

茨城県稲敷郡阿見町中央八十日3番1号 三菱化学株式会社筑波研究所内 (72) 発明者 島 邦久

茨城県稲敷郡阿見町中央八」目3番1号

三菱化学株式会社筑波研究所内

(72) 発明者 森 彰一郎

茨城県稲敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内