d) Definieren Sie, wann eine Sprache L rekursiv aufzählbar ist.

1

(1 Punkt)

Vorname	Name		Matrikelnummer
e) Was ist die Mächtigkeit (K (1) Menge aller Sprachen	,		(1 Punkt)
(2) Menge aller Turingma	schinen? Begri	inden Sie ihre Antwort.	(2 Punkte)
f) Was besagt der Satz von R	ice?		(2 Punkte)
g) Welche der folgenden Spra mehrere Kreuze pro Zeile e (Richtige Antwort: 1 Punkt	rforderlich)	,	(4 Punkte)
D	□ rekursiv	□ rekursiv aufzählbar	□ weder noch
$ar{D}$	\Box rekursiv	□ rekursiv aufzählbar	\square weder noch
KP-E	\square rekursiv	□ rekursiv aufzählbar	\square weder noch
$H_{ m all}$	□ rekursiv	□ rekursiv aufzählbar	\square we der noch

h) Zeigen oder widerlegen Sie: Die Sprache $L = \{\langle M \rangle \mid M$ akzeptiert alle Gödelnummern von Turingmaschinen, die auf allen Eingaben halten, und verwirft alle anderen $\}$ ist rekursiv.

2

(4 Punkte)

Vorname	Name	Matrikelnummer

Aufgabe 2 (15 Punkte)

Geben Sie ein LOOP-Programm an, welches die Funktion $f(x_0, x_1) = x_0^{x_1}$ berechnet. Skizzieren Sie dabei zunächst Ihre Idee und schreiben Sie das Programm anschließend formal korrekt auf. Benutzen Sie dabei ausschließlich Operatoren, die in der Vorlesung vorgestellt wurden. Welche Laufzeit besitzt Ihr Programm?

Vorname	Name	Matrikelnummer

Aufgabe 3 (11 Punkte)

Sei
$$A_{\text{comp}} = \{ \langle M_1 \rangle \ \langle M_2 \rangle \ | \ L(M_1) = \overline{L(M_2)} \}$$

Zeigen Sie mithilfe der Reduktionstechnik, dass $H \leq A_{\rm comp}$ gilt.

Vorname	Name	Matrikelnummer

Aufgabe 4 (11 Punkte)

Zeigen Sie mithilfe der Unterprogrammtechnik, dass die Menge $L_{x^y}=\{\langle M\rangle\#x\#y\mid M$ berechnet $x^y\}$ unentscheidbar ist.

Vorname	Name	Matrikelnummer

Aufgabe 5 (8 Punkte)

a) Sei PKP' die Variante des PKPs, die als Eingabe zusätzlich eine Zahl $l \in \mathbb{N}$ erhält. Die Frage lautet nun: Gibt es eine Lösung der Länge $\leq l$.

(a) Geben Sie eine genaue formale Formulierung des PKPs und der Variante PKP' an. (2 Punkte)

(b) Zeigen Sie, dass das PKP' entscheidbar ist.

(6 Punkt)

6

Vorname	Name	Matrikelnummer

Aufgabe 6	(20 Punkte)
(a) Definieren Sie die Klasse PSPACE.	(1 Punkt)
(b) In welcher Beziehung stehen NP und PSPACE zueinander und ware	
	(1. D L.)
(c) Definieren Sie die Klasse EXPTIME.	(1 Punkt)
(d) In welcher Beziehung stehen EXPTIME und PSPACE zueinander u	(2 Punkte)
(e) Welche der folgenden Aussagen sind richtig? (Richtige Antwort: 1 Punkt, falsche Antwort: -1 Punkt, insgesamt n	(5 Punkte) nind. 0 Punkte)
Es ist bekannt, dass $P \subsetneq PSPACE$	tig \square falsch
Es ist bekannt, dass NP \subsetneq EXPTIME \square rich	tig □ falsch
Es ist bekannt, dass $P \subsetneq EXPTIME$	tig □ falsch
Unter der Annahme, dass $P \neq NP$, gilt $P \cap NPC = \emptyset$. \square rich	tig □ falsch
Unter der Annahme, dass $P = NP$, gilt $P \cap NPC = \emptyset$. \square rich	tig \square falsch

Vorname	Name	Matrik	elnummer	
				8
,	$P \neq NP$, welche der folgenden Probleme, falsche Antwort: -1 Punkt, insgesamt)
Sortieren		$\exists \in P$	$\Box \notin P$	
$\operatorname{DNF-SAT}$		$\exists \in P$	$\Box \notin P$	

 $\Box \ \in P$

 $\Box \ \in P$

 $\Box \ \in P$

 $\Box \ \notin P$

 $\Box \notin P$

 $\Box \notin P$

(g) Zeigen Sie, dass die Klasse NP unter den Operationen Vereinigung und Konkatenation abgeschlossen ist, d.h. dass für alle $L, L' \in \text{NP}$ auch $L \cup L' \in \text{NP}$ und $L \cdot L' \in \text{NP}$ gilt. (4 Punkte)

KP-E, wobei die Gewichte gleich den Profiten sind.

KNF-SAT

 C_{LIQUE}

Vorname	Name	Matrikelnummer

Aufgabe 7 (6 Punkte)

Das Entscheidungsproblem DoubleSAT sei wie folgt definiert:

Eingabe: Eine KNF-Formel φ

Ausgabe: Ja, gdw. φ mindestens zwei erfüllende Belegungen besitzt.

Beschreiben Sie eine polynomielle Reduktion SAT \leq_p DOUBLESAT und beweisen Sie ihre Korrektheit.

Vorname	Name	Matrikelnummer

Aufgabe 8		(15 Punkte)
a) Definieren Sie das Problem	PARTITION.	(2 Punkt)
Eingabe:		
Ausgabe:		
b) Definieren Sie die Entscheie	dungsvariante des Bin-Packing-Problem	as (BPP-E). (2 Punkt)
Eingabe:		
Ausgabe:		

c) Beschreiben Sie eine polynomielle Reduktion Partition \leq_p BPP-E und beweisen Sie deren Korrektheit. (11 Punkte)

Aufgabe 9 (15 Punkte)

a) Geben Sie die im Beweis des Satzes von Cook und Levin verwendeten Variablentypen an und beschreiben Sie kurz deren Bedeutung. (4 Punkte)

b) Beschreiben Sie eine KNF-Formel, die den Umstand beschreibt, dass sich der Kopf der NTM zu jedem Zeitpunkt nur an genau einer Position befinden kann. (5 Punkte)

c) Beschreiben Sie eine Formel (nicht notwendigerweise in KNF), die den Umstand beschreibt, dass für jeden Zustand an der aktuellen Kopfposition der korrekte Transitionsübergang realisiert wird.

(6 Punkte)