Definition 1. Let $T:V\to V$ be a linear transformation. a subspace $W\subseteq V$ is T-invariant if $T(W)\subseteq W$.

- 1. Let F be a field, let V be an F-vector space, let $T:V\to V$ be a linear transformation and let $\lambda\in F$. Prove that $W:=\{v\in V|T(v)=\lambda(v)\}$ is an invariant T-subspace.
- 2. Let V be an n-dimensional vector space and let $T: V \to V$ be a linear transformation. Let 0 < k < n.
 - (a) Prove that there is a k-dimensional T-invariant subspace if and only if there is some basis \mathcal{E} of V and matrices $A \in M_{k \times k}(F), B \in M_{(n-k)\times(n-k)}(F), C \in M_{k \times (n-k)(F)}$ such that $[T]_{\mathcal{E}} = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.
 - (b) Prove that there is are T-invariant subspaces W_1, W_2 such that $V = W_1 + W_2$, $W_1 \cap W_2 = \{0\}$, and $\dim(W_1) = k$ if and only if there is some basis \mathcal{E} of V and matrices $A \in M_{k \times k}(F), B \in M_{(n-k) \times (n-k)}(F)$ such that $[T]_{\mathcal{E}} = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

Definition 2.

(i) A matrix $A \in M_n(F)$ is upper triangular if $[A]_{i,j} = 0$ for all i < j, i.e.

$$A = \begin{pmatrix} * & * & \dots & * \\ 0 & * & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

- (ii) A field F is matrix-triangulable if for all $n \in \mathbb{N}$, for all $A \in M_n(F)$ there is some invertible matrix $P \in M_n(F)$ and upper triangular $B \in M_n(F)$ such that $A = PBP^{-1}$.
- (iii) A field F is algebraically closed if for every non-constant polynomial $p(x) \in F[x]$, there is some $a \in F$ such that p(a) = 0.
 - 3. Prove that \mathbb{R} is not upper triangular.

Theorem 1 (The Fundamental Theorem of Algebra). \mathbb{C} is algebraically closed.

- 4. Prove that \mathbb{C} is matrix-triangulable.
- 5. Prove that a field F is matrix-triangulable if and only if F is algebraically closed. **hint:** use Question 9 from problem sheet 1 (term 2).