Structure and Insertion

Binary Search Trees 1

Binary Search Trees

- Description
- Search
- Insertion
- Efficiency
- Removal (next presentation)

Binary Tree Implementation

- The binary tree ADT can be implemented using different data structures
 - Reference structures (similar to linked lists)
 - Arrays
- Example implementations
 - Binary search trees (references)
 - Red black trees (references again)
 - Heaps (arrays) not a binary search tree
 - B trees (arrays again) not a binαry search tree

Problem: Accessing Sorted Data

- Consider maintaining data in some order
 - The data is to be frequently searched on the sort key e.g. a dictionary
- Possible solutions might be:
 - A sorted array
 - Access in O(logn) using binary search
 - Insertion and deletion in linear time
 - An ordered linked list
 - Access, insertion and deletion in linear time

Dictionary Operations

- The data structure should be able to perform all these operations efficiently
 - Create an empty dictionary
 - Insert
 - Delete
 - Look up
- The insert, removal and look up operations should be performed in at most O(logn) time

Binary Search Tree Property

- A binary search tree is a binary tree with a special property
 - For all nodes in the tree:
 - All nodes in a left subtree have labels less than the label of the subtree's root
 - All nodes in a right subtree have labels greater than or equal to the label of the subtree's root
- Binary search trees are fully ordered

BST Example

BST InOrder Traversal

Binary Search Tree Search

BST Implementation

- Binary search trees can be implemented using a reference structure
- Tree nodes contain data and two pointers to nodes

BST Search

- To find a value in a BST search from the root node:
 - If the target is less than the value in the node search its left subtree
 - If the target is greater than the value in the node search its right subtree
 - Otherwise return true, (or a pointer to the data, or ...)
- How many comparisons?
 - One for each node on the path
 - Worst case: height of the tree + 1

BST Search Example

BST Search Algorithm

```
bool search(Node* nd, int x){
    if (nd == NULL){
        return false;
    }else if(x == nd->data){
        return true;
    } else if (x < nd->data){
        return search(nd->left, x);
    } else {
        return search(nd->right, x);
    }
}
note the similarity
to binary search
```

called by a helper method like this: search(root, target)

BST Insertion

BST Insertion

- The BST property must hold after insertion
- Therefore, the new node must be inserted in the correct position
 - This position is found by performing a search
 - If the search ends at the NULL left child of a node, make its left child refer to the new node
 - If the search ends at the NULL right child of a node, make its right child refer to the new node
- The cost is about the same as the cost for the search algorithm, O(height)

BST Insertion Example

BST Efficiency

BST Efficiency

- The efficiency of BST operations depends on the height of the tree
 - All three operations (search, insert and removal) are O(height)
- If the tree is complete the height is $\lfloor \log(n) \rfloor$
 - What if it isn't complete?

Height of a BST

- Insert 7
- Insert 4
- Insert 1
- Insert 9
- Insert 5
- It's a complete tree!

Height of a BST

- Insert 9
- Insert 1
- Insert 7
- Insert 4
- Insert 5
- It's a linked list with a lot of extra pointers!

Balanced BSTs

- It would be ideal if a BST was always close to complete
 - i.e. balanced
- How do we guarantee a balanced BST?
 - We have to make the structure and / or the insertion and removal algorithms more complex
 - e.g. red black trees.

Sorting and Binary Search Trees

- It is possible to sort an array using a binary search tree
 - Insert the array items into an empty tree
 - Write the data from the tree back into the array using an InOrder traversal
- Running time = n*(insertion cost) + traversal
 - Insertion cost is O(h)
 - Traversal is O(n)
 - Total = O(n) * O(h) + O(n), i.e. O(n * h)
 - If the tree is balanced = O(n * log(n))