Data And Uncertainity Assignment 8 November 2017

Leonardo Ripoli

Ex1.1)

Let $\Omega = \mathbb{N}$, show that \boldsymbol{A} , the set of all cofinite subsets in Ω , forms an algebra.

The proof is done by checking that the 3 properties of an algebra are satisfied: empty set, closeness to complement and closeness to finite unions.

- 1. $\emptyset \in \mathbf{A}$ trivially because it is finite.
- 2. By definition if $A \in \mathbf{A}$ it is cofinite, therefore either it is finite and its complement is infinite, or the other way around: in either case $A \in \mathbf{A} \implies A^{\complement} \in \mathbf{A}$.
- 3. Let $A_1, A_2, A_3... \in \mathbf{A}$, then if all of the A_i are finite, clearly $\bigcup_{k=1}^n A_i$ is finite and therefore $\bigcup_{k=1}^n A_i \in \mathbf{A}$. If at least one of the A_i is infinite, then $\bigcup_{k=1}^n A_i$ is infinite, we have to show that $(\bigcup_{k=1}^n A_i)^{\complement}$ is finite. Let's say at least A_k is infinite (and therefore A_k^{\complement} is finite because A_k is cofinite by hypothesis), we have that $(\bigcup_{k=1}^n A_i)^{\complement} = \bigcap_{k=1}^n A_i^{\complement}$, and since $\bigcap_{k=1}^n A_i^{\complement} \subseteq A_k^{\complement}$ and A_k^{\complement} is finite, it must be that $\bigcap_{k=1}^n A_i^{\complement}$ is finite and therefore we have shown that $\bigcup_{k=1}^n A_i \in \mathbf{A}$.

Ex1.2)

Let A be the algebra of cofinite sets and define the set function $\mu(A) = 1$ if A is finite, and 0 otherwise: show that μ is normalised and additive.

- 1. $\mu(\mathbb{N}) = 1$ since \mathbb{N} is infinite, therefore μ is normalised.
- 2. For additivity we have to show that $\mu(\bigcup_{k=1}^n A_i) = \sum_{k=1}^n \mu(A_i), \forall A_k \in \mathbf{A}$ s.t. $A_i \cap A_j = \emptyset$ $i \neq j$. If all A_k are finite, then $\bigcup_{k=1}^n A_i$ is finite and therefore $\mu(\bigcup_{k=1}^n A_i) = 0 = \sum_{k=1}^n \mu(A_i)$, since $\mu(A_k) = 0 \ \forall k$. To address the case where at least one of the A_k is infinite, firstly we show that the condition $A_1, A_2 \in \mathbf{A}, A_1 \cap A_2 = \emptyset, A_1 \cup A_2$ is infinite means that only one between A_1 and A_2 can be infinite, and not both. In fact, if we assume that A_1 and A_2 are both infinite and that $A_1 \cap A_2 = \emptyset$, we have that A_1^{\complement} and A_2^{\complement} are both finite $(A_1 \text{ and } A_2 \text{ being cofinite sets})$ and therefore we would have: $A_1 \cap A_2 = \emptyset \implies A_1^{\complement} \cup A_2^{\complement} = \mathbb{N}$ and this is an absurd as the union of two finite sets would give the whole set

of natural numbers which is infinite. By applying the previous result to each pair $A_i \cap A_j = \varnothing, i \neq j$, we know that the condition $A_k \in \mathbf{A}$ $\forall k = 1, ..., A_i \cap A_j = \varnothing \ i \neq j, \cup_{k=1}^n A_i$ is infinite, implies that only one of the A_k can be infinite and therefore we have that $\mu(\cup_{k=1}^n A_i) = 1$ since $\bigcup_{k=1}^n A_i$ is infinite, and $\sum_{k=1}^n \mu(A_i) = 1$ because only one of the k terms of the sum will be 1 (the contribution from the only infinite set) and all other contributions will be zero. Therefore we have shown that $\mu(\bigcup_{k=1}^n A_i) = \sum_{k=1}^n \mu(A_i), \forall A_k \in \mathbf{A}$.