1. Introduction to Dynamic Structural Econometrics

Robert A. Miller

DSE at UCL

June 2025

Miller (DSE at UCL) Introduction June 2025 1 / 36

Some Context

Why structural econometrics?

- Internal consistency . . .
 - rational individuals facing constraints
 - uncertainty is treated as a probability distribution
 - equilibrium (competitive, Nash refinement, optimal contract)
 - data generating process (as if sample comes from model population)
 - estimation (founded on LLN and CLT)
- Elegance and transparency . . .
 - steps can be independently verified
 - less discretion (but what is numerical zero?)
- Causality . . .
 - a model based concept
 - economic framework based on explicit assumptions
 - causal econometrics: open ended question about valid instruments
- Counterfactual predictions . . .
 - derived from the model
 - strictly applies only to the model

Some Context

Heterogeneity . . .

- Heterogeneity inspires, enriches and complicates theory . . .
 - specialization and trade
 - social interactions within a homogeneous population seem limited
- Heterogeneity in **dynamic** environments . . .
 - physical investment . . . and consumption/saving decision
 - investment in human capital
 - atrophy and death
 - sequential revelation of information
- Inference with heterogeneous populations . . .
 - complicates interpretation of aggregated data
 - aids identification if observed
 - complicates estimation if unobserved

- How can we conduct policy evaluation without a model?
 - (I don't know.)
- Should the model's parameters be determined by the population under consideration?
 - (At least wouldn't that be the ideal?)
- Can a model be useful without being realistic?
 - (Are lab rats and mice really human?)
- What is realism accepting received orthodoxy?
 - (Who decides what is realistic?)
- What is research . . **challenging** orthodoxy?
 - (in order to create value . . perhaps?)

- The data typically comprise a sample of individuals for which there are records on some of their:
 - background characteristics
 - choices
 - outcomes from those choices.
- What are the challenges to making predictions and testing hypotheses when we take this approach?
 - The choices and outcomes of economic models are typically nonlinear in the underlying parameters of the model we wish to estimate.
 - The data variables on background, choices and outcomes might be an incomplete description about what is relevant to the model.

- Each period $t \in \{1, 2, ..., T\}$ for $T \leq \infty$, an individual chooses among J mutually exclusive actions.
- Let d_{jt} equal one if action $j \in \{1, ..., J\}$ is taken at time t and zero otherwise:

$$d_{jt} \in \{0,1\}$$

$$\sum_{j=1}^J d_{jt} = 1$$

 At an abstract level assuming that choices are mutually exclusive is innocuous, because two combinations of choices sharing some features but not others can be interpreted as two different choices.

- Suppose that actions taken at time t can potentially depend on the state $z_t \in Z$.
- For Z finite denote by $f_{jt}(z_{t+1}|z_t)$, the probability of z_{t+1} occurring in period t+1 when action j is taken at time t.
- ullet For example in the example above, suppose $z_t=(w_t,k_t)$ where:
 - $k_t \in \{0, 1, ...\}$ are the number of births before t
 - $w_t \equiv d_{1,t-1} + d_{2,t-1}$, so $w_t = 1$ if the female worked in period t-1, and $w_t = 0$ otherwise.
- With up to 5 offspring, 3 levels of experience, the number of states including age (say 50 years) is 750. Add in 4 levels of education (less than high school, high school, some college and college graduate) and 3 racial categories, increases this number to 9000.

Miller (DSE at UCL) Introduction June 2025 7 / 36

Large but sparse matrices

- When Z is finite there is a $Z \times Z$ transition matrix for each (j, t).
- In the example above they have $9,000^2 = 81$ million cells.
- In many applications the matrices are sparse.
- Suppose households can only increase the number of kids one at time.
- They can only change their work experience by one unit at most.
- Hence there are at most six cells they can move from (w_t, k_t) :

$$\left\{ \begin{array}{l} \left(w_{t}, k_{t}\right), \left(w_{t}, k_{t}+1\right), \left(w_{t}+1, k_{t}\right), \\ \left(w_{t}+1, k_{t}+1\right), \left(w_{t}-1, k_{t}\right), \left(w_{t}-1, k_{t}+1\right) \end{array} \right\}$$

- Therefore a transition matrix has at most 54,000 nonzero elements, and all the nonzero elements are one.
- Modeling the state space is an art . . . or a task for machine learning?

Miller (DSE at UCL) Introduction June 2025 8 / 36

Prototype Model

Preferences and expected utility

- The individual's current period payoff from choosing j at time t is determined by z_t , which is revealed to the individual at the beginning of the period t.
- The current period payoff at time t from taking action j is $u_{jt}(z_t)$.
- Given choices (d_{1t}, \ldots, d_{Jt}) in each period $t \in \{1, 2, \ldots, T\}$ and each state $z_t \in Z$ the individual's expected utility is:

$$E\left\{\sum_{t=1}^{T}\sum_{j=1}^{J}\beta^{t-1}d_{jt}u_{jt}(\boldsymbol{z}_{t})\left|\boldsymbol{z}_{1}\right.\right\}$$

where $\beta \in (0,1)$ is the subjective discount factor, and at each period t the expectation is taken over z_2, \ldots, z_T .

- Formally β is redundant if u is subscripted by t.
- We typically include a geometric discount factor to bound infinite sums of utility so that the optimization problem is well posed.

Value Function

- Write the optimal decision at period t as a decision rule denoted by $\frac{d_t^o}{d_t^o}(z_t)$ formed from its elements $d_{it}^o(z_t)$.
- Let $V_t(z_t)$ denote the value function in period t, conditional on behaving according to the optimal decision rule:

$$V_t(z_t) \equiv E\left[\sum_{\tau=t}^{T} \sum_{j=1}^{J} \beta^{\tau-t} d_{j\tau}^{o}(z_{\tau}) u_{j\tau}(z_{\tau}) | z_t\right]$$

• In terms of period t+1:

$$\beta V_{t+1}(z_{t+1}) \equiv \beta E \left\{ \sum_{\tau=t+1}^{T} \sum_{j=1}^{J} \beta^{\tau-t-1} d_{j\tau}^{o}\left(z_{\tau}\right) u_{j\tau}(z_{\tau}) \left| z_{t+1} \right. \right\}$$

◆ロ > ◆個 > ◆注 > ◆注 > ・注 ・ りへ ○

• Appealing to Bellman's (1958) principle we obtain, when Z is finite:

$$V_{t}(z_{t}) = \sum_{j=1}^{J} d_{jt}^{o} u_{jt}(z_{t})$$

$$+ \sum_{j=1}^{J} d_{jt}^{o} \sum_{z \in Z} E \left[\sum_{\tau=t+1}^{T} \sum_{j=1}^{J} \beta^{\tau-t} d_{j\tau}^{o}(z_{\tau}) u_{j\tau}(z_{\tau}) | z \right] f_{jt}(z|z_{t})$$

$$= \sum_{j=1}^{J} d_{jt}^{o} \left[u_{jt}(z_{t}) + \beta \sum_{z \in Z} V_{t+1}(z) f_{jt}(z|z_{t}) \right]$$

11 / 36

Miller (DSE at UCL) Introduction June 2025

Optimization

- To compute the optimum for T finite, we first solve a static problem in the last period to obtain $d_T^o(z_T)$ for all $z_T \in Z$.
- Applying backwards induction $i \in \{1, ..., J\}$ is chosen to maximize:

$$u_{it}(z_t) + E\left\{\sum_{\tau=t+1}^{T}\sum_{j=1}^{J}\beta^{\tau-t-1}d_{j\tau}^{o}(z_{\tau}) u_{j\tau}(z_{\tau}) | z_t, d_{it} = 1\right\}$$

- In the stationary infinite horizon case we might assume $u_{jt}(z) \equiv u_j(z)$ and that $u_j(z) < \infty$ for all (j, z).
- Consequently expected utility each period is bounded and the contraction mapping theorem applies, proving $d_t^o(z) \to d^o(z)$ for large T.

Estimating a model when all heterogeneity is observed

• Let $v_{jt}(z_t)$ denote the flow payoff of any action $j \in \{1, ..., J\}$ plus the expected future utility of behaving optimally from period t+1 on:

$$v_{jt}(z_t) \equiv u_{jt}(z_t) + \beta \sum_{z \in Z} V_{t+1}(z) f_{jt}(z|z_t)$$

By definition:

$$d_{jt}^{o}\left(z_{t}\right) \equiv I\left\{v_{jt}(z_{t}) \geq v_{kt}(z_{t}) \forall k\right\}$$

- Suppose we observe the states z_{nt} and decisions $d_{nt} \equiv (d_{n1t}, \ldots, d_{nJt})$ of individuals $n \in \{1, \ldots, N\}$ over time periods $t \in \{1, \ldots, T\}$.
- Could we use such data to infer the primitives of the model:
 - ① A consistent estimator of $f_{jt}(z_{t+1}|z_t)$ can be obtained from the proportion of observations in the (t, j, z_t) cell transitioning to z_{t+1} .
 - There are $(J-1)\sum_{n=1}^{N}I\left\{z_{nt}=z_{t}\right\}$ inequalities relating the pairs of mappings $v_{jt}(z_{t})$ and $v_{kt}(z_{t})$ for each observation on d_{nt} at (t,z_{t}) .
 - 3 Can we recursively derive the values of $u_{jt}(z_t)$ from the $v_{jt}(z_t)$ values?

Why unobserved heterogeneity is introduced into data analysis

- Note that if two people in the data set with the same (t, z_t) made different decisions, say j and k, then $v_{jt}(z_t) = v_{kt}(z_t)$. This raises two potential problems for modeling data this way:
 - ① In a large data set it is easy to imagine that for every choice $j \in \{1,\ldots,J\}$ and every (t,z_t) at least one sampled person n sets $d_{njt}=1$. If so, we would conclude that the population was indifferent between all the choices, and hence the model would have no empirical content because no behavior could be ruled out.
 - This approach does not make use of the information that some choices are more likely than others; that is the proportions of the sample taking different choices at (t, z_t) might vary, some choices being observed often, others perhaps very infrequently.
- For these two reasons, treating all heterogeneity as observed, and trying to predict the decisions of individuals, is not a very promising approach to analyzing data.

Unobserved heterogeneity

- A more modest objective is to predict the probability distribution of choices margined over factors that individuals observe, but data analysts do not.
- Predicting the behavior of a population (rather than individuals), essentially obliterates the difference between macroeconomics and microeconomics.
- We now assume the states can be partitioned into those which are observed, x_t , and those that are not, ϵ_t .
- Thus $z_t \equiv (x_t, \epsilon_t)$.
- Suppose the data consist of N independent and identically distributed draws from the string of random variables $(X_1, D_1, \ldots, X_T, D_T)$.
- The n^{th} observation is given by $\left\{x_1^{(n)}, d_1^{(n)}, \dots, x_T^{(n)}, d_T^{(n)}\right\}$ for $n \in \{1, \dots, N\}$.

Miller (DSE at UCL) Introduction June 2025 15 / 36

Data generating process

• Denote the mixed probability (density) of the pair $(x_{t+1}, \epsilon_{t+1})$, conditional on (x_t, ϵ_t) and the optimal action is j, as:

$$H_{jt}\left(x_{t+1},\epsilon_{t+1}\left|x_{t},\epsilon_{t}\right.\right)\equiv d_{jt}^{o}\left(x_{t},\epsilon_{t}\right)f_{jt}\left(x_{t+1},\epsilon_{t+1}\left|x_{t},\epsilon_{t}\right.\right)$$

• The probability of $\{d_1, x_2, \dots, d_{T-1}, x_T, d_T\}$ given x_1 is:

$$\Pr \left\{ d_{1}, x_{2}, \dots, d_{T-1}, x_{T}, d_{T} \mid x_{1} \right\} =$$

$$\int \dots \int \left[\begin{array}{c} g\left(\varepsilon_{1} \mid x_{1}\right) \sum d_{jT} d_{jT} \left(x_{T}, \varepsilon_{T}\right) \times \\ \prod \sum t=1}^{T-1} \int d_{jt} H_{jt} \left(x_{t+1}, \varepsilon_{t+1} \mid x_{t}, \varepsilon_{t}\right) \end{array} \right] d\varepsilon_{1} \dots d\varepsilon_{T}$$

where $g(\epsilon_1|x_1)$ is the density of ϵ_1 conditional on x_1 .

Maximum Likelihood Estimation

- Let $\theta \in \Theta$ uniquely index a specification of $u_{jt}(z_t)$, $f_{jt}(z_{t+1}|z_t)$ and β under consideration.
- Conditional on $x_1^{(n)}$ suppose $\left\{d_1^{(n)}, x_2^{(n)}, \ldots, d_T^{(n)}\right\}_{n=1}^N$ was generated by $\theta_0 \in \Theta$.
- The maximum likelihood (ML) estimator, θ_{ML} , selects $\theta \in \Theta$ to maximize the joint probability of observed occurrences conditional on the initial conditions:

$$\theta_{ML} \equiv \operatorname*{arg\,max}_{\theta \in \Theta} \left\{ N^{-1} \sum_{n=1}^{N} \log \left(\Pr\left\{ d_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{T}^{(n)}, d_{T}^{(n)} \left| x_{1}^{(n)}; \theta \right. \right\} \right) \right\}$$

- The first applications followed this route:
 - Robert Miller (JPE 1984) on job turnover . . . updating beliefs about nonpecuniary benefits of job match
 - **Kenneth Wolpin** (JPE 1984) on fertility . . . different unobserved types of females

Integration or simulation

- Ariel Pakes (Econometrica 1986) introduced simulation to substitute for numerical integration in his work on patent renewal.
- There has been considerable amount of work devoted to handling multiple integration, some of which I will discuss tomorrow.
- Victor Aguirregaberia's lecture on fixed effects tomorrow is a new approach to this challenge.

A Framework with Conditional Independence

Conditional Independence Assumption

- John Rust (Econometrica 1987) dispensed with the integration altogether by introducing the conditional independence assumption in Harold Zurcher paper.
- The joint mixed density function for the state in period t+1 conditional on (x_t, ε_t) , denoted by $g_{t,x,\varepsilon}(x_{t+1}, \varepsilon_{t+1} | x_t, \varepsilon_t)$, satisfies the conditional independence assumption:

$$g_{t,j,x,\epsilon}(x_{t+1},\epsilon_{t+1}|x_t,\epsilon_t) = g_{t+1}(\epsilon_{t+1}|x_{t+1}) f_{jt}(x_{t+1}|x_t)$$

where:

- $g_t\left(\epsilon_t|x_t\right)$ is a conditional density for the disturbances
- $f_{jt}(x_{t+1}|x)$ is a transition probability for x conditional on (j,t).
- This assumption is widely used in the estimation of dynamic discrete choice models.

A Framework with Conditional Independence

Bounded additively separable preferences

- Denote the discount factor by $\beta \in (0,1)$ and the current payoff from taking action j at t given (x_t, ε_t) by $u_{jt}(x_t) + \varepsilon_{jt}$.
- To ensure a transversality condition is satisfied, assume $\{u_{jt}(x)\}_{t=1}^T$ is a bounded sequence for each $(j,x)\in\{1,\ldots,J\}\times\{1,\ldots,X\}$, and so is:

$$\left\{ \int \max\left\{ \left| \epsilon_{1t} \right|, \ldots, \left| \epsilon_{Jt} \right| \right\} g_t \left(\epsilon_t | x_t \right) d\epsilon_t \right\}_{t=1}^T$$

• At the beginning of each period t the agent observes the realization (x_t, ϵ_t) chooses d_t to sequentially maximize:

$$\mathbf{E}\left\{\sum_{\tau=t}^{T}\sum_{j=1}^{J}\beta^{\tau-1}d_{j\tau}\left[u_{j\tau}(x_{\tau})+\epsilon_{j\tau}\right]|x_{t},\epsilon_{t}\right\}$$
(1)

where the expectation is taken over future realized values x_{t+1}, \ldots, x_T and $\varepsilon_{t+1}, \ldots, \varepsilon_T$ conditional on (x_t, ε_t) .

Miller (DSE at UCL) Introduction June 2025 20 / 36

A Framework with Conditional Independence

Optimization

• Denote the optimal decision rule at t as $d_t^o(x_t, \epsilon_t)$, with j^{th} element $d_{jt}^o(x_t, \epsilon_t)$, and define the social surplus function as:

$$V_{t}(x_{t}) \equiv E \left\{ \sum_{\tau=t}^{T} \sum_{j=1}^{J} \beta^{\tau-t-1} d_{j\tau}^{o} \left(x_{\tau}, \epsilon_{\tau} \right) \left(u_{j\tau}(x_{\tau}) + \epsilon_{j\tau} \right) \right\}$$

• The conditional value function, $v_{jt}(x_t)$, is defined as:

$$v_{jt}(x_t) \equiv \underbrace{u_{jt}(x_t)} + \beta \sum_{x=1}^{X} V_{t+1}(x) f_{jt}(x|x_t)$$

• Integrating $d_{jt}^o(x_t, \epsilon)$ over $\epsilon \equiv (\epsilon_1, \dots, \epsilon_J)$ define the conditional choice probabilities CCPs by:

$$p_{jt}(x_t) \equiv E\left[d_{jt}^o\left(x_t, \epsilon\right) \middle| x_t\right] = \int d_{jt}^o\left(x_t, \epsilon\right) g_t\left(\epsilon \middle| x_t\right) \frac{d\epsilon}{d\epsilon}$$

Miller (DSE at UCL) Introduction June 2025 21 / 36

Players, choices and state variables

- Consider a dynamic game for I countable players:
 - $oldsymbol{0} d_t^{(i)} \equiv \left(d_{t1}^{(i)}, \ldots, d_{tJ}^{(i)}
 ight)$ choice of player i in period t.
 - $d_t \equiv \left(d_t^{(1)}, \dots, d_t^{(I)}\right)$ choices of all the players in period t.

 - \bullet x_t value of state variables of the game in period t.
 - **5** $F(x_{t+1}|x_t, d_t)$ transition probability for x_{t+1} given (x_t, d_t) .
 - **6** $F_j\left(x_{t+1} \middle| x_t, d_t^{(-i)}\right) \equiv F\left(x_{t+1} \middle| x_t, d_t^{(-i)}, d_{jt}^{(i)} = 1\right)$ transition probability for x_{t+1} given x_t , i choosing j, and everyone else $d_t^{(-i)}$.

Extension to Dynamic Markov Games

Payoffs, information and CCPs

• The summed discounted payoff to *i* from playing the game is:

$$\sum\nolimits_{t = 1}^T {\sum\nolimits_{j = 1}^J {{\beta ^{t - 1}}{d_{jt}^{\left(i \right)}}\left[{{U_j^{\left(i \right)}\left({{x_t},d_t^{\left({ - i} \right)}} \right) + \varepsilon _{jt}^{\left(i \right)}} \right]} }$$

where:

- lacksquare $U_{j}^{(i)}\left(x_{t},d_{t}^{(-i)}
 ight)$ depends on the choices of all the players.
- **1** neither $d_t^{(-i)}$ nor $\epsilon_t^{(-i)}$ are observed by i.
- Analogous to the single agent setup define:

 - $P\left(d_{t}^{(-i)}|x_{t}\right) = \prod_{i'=1, i'\neq i}^{I} \left(\sum_{j=1}^{J} d_{jt}^{(i')} p_{j}^{(i')}(x_{t})\right) \text{ as the CCP for all the other players choosing } d_{t}^{(-i)} \text{ in period } t.$

Extension to Dynamic Markov Games

Equilibrium defined

• Then $\left(p_1^{(i)}(x_t), \ldots, p_J^{(i)}(x_t)\right)$ is an equilibrium if $d_j^{(i)}\left(x_t, \varepsilon_t^{(i)}\right)$ solves the individual optimization problem (1) for each $\left(i, x_t, \varepsilon_t^{(i)}\right)$ when:

$$u_{j}^{(i)}(x_{t}) = \sum_{d_{t}^{(-i)}} P\left(d_{t}^{(-i)} | x_{t}\right) U_{j}^{(i)}(x_{t}, d_{t}^{(-i)})$$
(2)

and:

$$f_{j}^{(i)}\left(x_{t+1} \left| x_{t}^{(i)} \right.\right) = \sum_{d_{t}^{(-i)}} P\left(d_{t}^{(-i)} \left| x_{t}^{(i)} \right.\right) F_{j}\left(x_{t+1} \left| x_{t}, d_{t}^{(-i)} \right.\right)$$
(3)

- To analyze dynamic games taking this form:
 - **1** interpret $u_j^{(i)}(x_t)$ with (2) and $f_j^{(i)}(x_{t+1}|x_t^{(i)})$ with (3)
 - in estimation treat the best reply function as the solution to a dynamic discrete choice optimization problem within the equilibrium played out by the data generating process DGP.

How should we solve and estimate dynamic models?

- Nesting the equilibrium solution within the estimation algorithm:
 - integrate the model solution into the estimation routine with a nested fixed point algorithm, for example NFXP
 - yields the maximum likelihood estimator.
 - is a way to achieve asymptotic efficiency.
 - and the fixed point algorithm doubles as the solution to counterfactuals.
- Bertel Schjerning and later Fedor Iskhakov will lecture on this approach later today.

Miller (DSE at UCL) Introduction June 2025 25 / 36

How should we solve and estimate dynamic models?

- Separating inference from the model solution:
 - exploit model data generating process (without solving it) to determine identification and obtain estimates
 - gives the identification conditions.
 - yields less efficient but much faster estimates.
 - requires the model solution to compute counterfactuals.
- I take this approach in the next lecture.

How should we solve and estimate dynamic models?

Calibration methods:

- typically disconnects sample variation from population probabilities.
- can dispense with the estimation step altogether.
- use numerical values drawn from published empirical work to quantify model solution, sometimes called calibration.
- do not typically gives estimates of precision.
- focuses on key restrictions and model moments.

How should we solve and estimate dynamic models?

- Academics squabble . . .
- Relevant factors for this debate might be:
 - the kind of data including how much
 - the complexity of the model
 - the sensitivity of the estimates to the underlying assumptions
 - is sample variation an important factor in assessing precision
 - what is the specific policy question
- Let's postpone that discussion until we see more clearly what each approach entails.

Mr Zurcher maximizes the expected discounted sum of payoffs:

$$E\left\{\sum_{t=1}^{\infty}\beta^{t-1}\left[d_{t2}(\theta_{1}x_{t}+\theta_{2}s+\epsilon_{t2})+d_{t1}\epsilon_{t1}\right]\right\}$$

where:

- ullet $d_{t1}=1$ and $x_{t+1}=1$ if Zurcher replaces the engine
- $d_{t2}=1$ and bus mileage advances to $x_{t+1}=x_t+1$ if he keeps the engine
- buses are also differentiated by a fixed characteristic $s \in \{0, 1\}$.
- the choice-specific shocks ϵ_{tj} are iid Type 1 extreme value (T1EV).
- Define the conditional value function for each choice as:

$$v_j(x,s) = \left\{ egin{array}{ll} eta V(1,s) & ext{if } j=1 \ heta_1 x + heta_2 s + eta V(x+1,s) & ext{if } j=2 \end{array}
ight.$$

where V(x, s) denotes the social surplus function.

Bus Engines

The DGP and the CCPs

- We suppose the data comprises a cross section of N observations of buses $n \in \{1, ..., N\}$ reporting their:
 - fixed characteristics s_n ,
 - engine miles x_n ,
 - and maintenance decision (d_{n1}, d_{n2}) .
- Let $p_1(x, s)$ denote the conditional choice probability (CCP) of replacing the engine given x and s.
- Stationarity and T1EV imply that for all t:

$$\begin{array}{ll} p_{1}\left(x,s\right) & \equiv & \int_{\epsilon_{t}} d_{1}^{o}\left(x,s,\epsilon_{t}\right) g\left(\epsilon_{t}\right) d\epsilon_{t} \\ \\ & = & \int_{\epsilon_{t}} \underbrace{\left\{ c_{t}^{o} - \epsilon_{t1} \leq v_{1}(x,s) - v_{2}(x,s) \right\}}_{t} g\left(\epsilon_{t} \mid x_{t}\right) d\epsilon_{t} \\ \\ & = & \left\{ 1 + \exp\left[v_{2}(x,s) - v_{1}(x,s)\right] \right\}^{-1} \end{array}$$

• An ML estimator could be formed off this equation following the steps described above.

Bus Engines

Exploiting the renewal property

• The previous lecture implies that if ϵ_{jt} is T1EV, then for all (x, s, j):

$$V(x, s) = v_j(x, s) - \ln [p_j(x, s)] + 0.57...$$

Therefore the conditional value function of not replacing is:

$$v_2(x,s) = \theta_1 x + \theta_2 s + \beta V(x,s+1)$$

= $\theta_1 x + \theta_2 s + \beta \{v_1(x+1,s) - \ln [p_1(x+1,s)] + 0.57...\}$

Similarly:

$$v_1(x,s) = \beta V(1,s) = \beta \{v_1(1,s) - \ln [p_1(1,s)] + 0.57\}...$$

• Because bus engine miles is the only factor affecting bus value given s:

$$v_1(x+1,s) = v_1(1,s)$$

Miller (DSE at UCL) Introduction June 2025 31 / 36

Using CCPs to represent differences in continuation values

• Hence:

$$v_2(x,s) - v_1(x,s) = \theta_1 x + \theta_2 s + \beta \ln [p_1(1,s)] - \beta \ln [p_1(x+1,s)]$$

Therefore:

$$\begin{array}{lcl} p_{1}(x,s) & = & \dfrac{1}{1+\exp\left[v_{2}(x,s)-v_{1}(x,s)\right]} \\ & = & \dfrac{1}{1+\exp\left\{\theta_{1}x+\theta_{2}s+\beta\ln\left[\dfrac{p_{1}(1,s)}{p_{1}(x+1,s)}\right]\right\}} \end{array}$$

- Intuitively the CCP for current replacement is the CCP for a static model with an offset term.
- The offset term accounts for differences in continuation values using future CCPs that characterize optimal future replacements.

ABBABB PAR

Bus Engines

CCP estimation

- Consider the following CCP estimator:
 - **1** Form a first stage estimator for $p_1(x, s)$ from the relative frequencies:

$$\hat{p}_{1}(x,s) \equiv \frac{\sum_{n=1}^{N} d_{n1} I(x_{n} = x) I(s_{n} = s)}{\sum_{n=1}^{N} I(x_{n} = x) I(s_{n} = s)}$$

2 Substitute $\hat{p}_1(x, s)$ into the likelihood as incidental parameters to estimate $(\theta_1, \theta_2, \beta)$ with a logit:

$$\frac{d_{n1}+d_{n2}\exp(\theta_1x_n+\theta_2s_n+\beta\ln\left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]}{1+\exp(\theta_1x_n+\theta_2s_n+\beta\ln\left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]}$$

- **②** Correct the standard errors for $(\theta_1, \theta_2, \beta)$ induced by the first stage estimates of $p_1(x, s)$.
- Note that in the second stage $\ln \left[\frac{\hat{p}_1(1,s_n)}{\hat{p}_1(x_n+1,s_n)}\right]$ enters the logit as an individual specific component of the data, the β coefficient entering in the same way as θ_1 and θ_2 .

Monte Carlo Study (Arcidiacono and Miller, 2011)

Modifying the bus engine problem

- Suppose bus type $s \in \{0, 1\}$ is equally weighted.
- Two state variables affect wear and tear on the engine:
 - 1 total accumulated mileage:

$$x_{1,t+1} = \left\{ egin{array}{l} \Delta_t ext{ if } d_{1t} = 1 \ x_{1t} + \Delta_t ext{ if } d_{2t} = 1 \end{array}
ight.$$

- 2 a permanent route characteristic for the bus, x_2 , that systematically affects miles added each period.
- More specifically we assume:
 - $\Delta_t \in \{0, 0.125, \dots, 24.875, 25\}$ is drawn from a discretized truncated exponential distribution, with:

$$f(\Delta_t|x_2) = \exp[-x_2(\Delta_t - 25)] - \exp[-x_2(\Delta_t - 24.875)]$$

• x_2 is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25 and 1.25.

- Let θ_{0t} denote other bus maintenance costs tied to its vintage.
- This modification renders the optimization problem nonstationary.
- The payoff difference from retaining versus replacing the engine is:

$$u_{t2}(x_{t1},s) - u_{t1}(x_{t1},s) \equiv \theta_{0t} + \theta_1 \min\{x_{t1},25\} + \theta_2 s$$

• Denoting $x_t \equiv (x_{1t}, x_2)$, this implies:

$$\begin{aligned} v_{t2}(x_t, s) - v_{t1}(x_t, s) &= \theta_{0t} + \theta_1 \min\{x_{t1}, 25\} + \theta_2 s \\ &+ \beta \sum_{\Delta_t \in \Lambda} \left\{ \ln\left[\frac{p_{1t}(\Delta_t, s)}{p_{1t}(x_{1t} + \Delta_t, s)}\right] \right\} f(\Delta_t | x_2) \end{aligned}$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ (*)

35 / 36

Monte Carlo Study

Extract from Table 1 of Arcidiacono and Miller (2011)

	DGP (1)	FIML (2)	CCP (3)
$\overline{\theta_0 \text{ (intercept)}}$. 2	2.0100 (0.0405)	1.9911 (0.0399)
θ_1 (mileage)	-0.15	-0.1488 (0.0074)	-0.1441 (0.0098)
θ_2 (unobs. state)	1	0.9945 (0.0611)	0.9726 (0.0668)
β (discount factor)	0.9	0.9102 (0.0411)	0.9099 (0.0554)
Time (minutes)		130.29 (19.73)	0.078 (0.0041)