

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

October/November 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 A list of gases is shown.

ammonia
carbon dioxide
carbon monoxide
ethene
fluorine
oxygen
sulfur dioxide
xenon

Answer the following questions using only the gases from the list. Each gas may be used once, more than once or not at all.

Give the name of the gas that:

(a)	causes acid rain	
		[1]
(b)	forms an alkaline solution when dissolved in water	
		[1]
(c)	is inert	
		[1]
(d)	is a product of photosynthesis	
		[1]
(e)	can form a polymer	
		[1]
(f)	is produced in the test for nitrate ions.	
		[1]

[Total: 6]

- **2** Boron and aluminium are Group III elements.
 - (a) Boron has only two naturally occurring isotopes, ¹⁰B and ¹¹B.

Complete Table 2.1 to show the numbers of protons, neutrons and electrons in an atom of ¹¹B.

Table 2.1

number of protons	number of neutrons	number of electrons

[2]

- **(b)** The relative atomic mass of boron to one decimal place is 10.8.
 - (i) Determine the relative abundance of ¹⁰B present in boron. Give your answer as a percentage.

..... % [1]

(ii) Use the relative atomic mass of boron to calculate the number of atoms in 0.540g of boron. Give your answer in standard form.

number of atoms = [2]

(c) Aluminium is extracted from its purified ore as shown in Fig. 2.1.

Fig. 2.1

	(i)	Name the ore of aluminium.	
	(ii)	The electrolyte contains aluminium oxide and one other substance.	[1]
		Name the other substance and explain why it is used.	
		name	
		explanation	
			[2]
((iii)	Write the ionic half-equation for the reaction at the cathode.	
			[2]
(iv)	Explain why the anodes need frequent replacement.	
			[2]
(d)		te two physical properties of aluminium that make it suitable for use in overhead electr lles.	ical
	1		
	2		
			[2]

(e)	Exp	plain the apparent unreactivity of aluminium.
		[2]
(f)	Alu	minium reacts with fluorine to form aluminium fluoride, AlF_3 , an ionic compound.
	(i)	Write the symbol equation for this reaction.
		[2]
	(ii)	Complete Fig. 2.2 to show the electronic configuration of one aluminium ion and one fluoride ion. Show the charges on the ions.

Fig. 2.2

[3]

[Total: 21]

- **3** Order of reactivity can be determined by displacement reactions.
 - (a) A student investigates the reactivities of four metals by carrying out a series of experiments.

Each of the metals lead, manganese, silver and zinc are added separately to aqueous metal nitrates of the other metals.

(i) Table 3.1 shows some of the results.

Table 3.1

aqueous solution	lead Pb	manganese Mn	silver Ag	zinc Zn
lead(II) nitrate		✓		
manganese(II) nitrate				
silver nitrate	✓	✓		✓
zinc nitrate	x	x		

k	е	٧	1

√ = displacement reaction occurs

x = displacement reaction does not occur

Complete Table 3.1 and place the four metals in their order of reactivity with the most reactive first.

	1 most reactive	
	2	
	3	
	4	[3]
(ii)	Suggest why the metal nitrates and not the metal sulfates of these four metals are us as the aqueous solutions.	ed
		[1]
(iii)	Write the symbol equation for the reaction between zinc and silver nitrate.	
		[2]

(b)	The	The reactivity of Group VII elements can be investigated experimentally.						
	A st	A student bubbles chlorine gas into a test-tube containing aqueous potassium bromide.						
	(i)	Describe the colour change seen in the test-tube.						
		from to	2]					
	(ii)	Complete the ionic equation for this reaction.						
		Include state symbols.						
		+Br⁻(aq) → + [3]					
((iii)	The reactivity trend seen in Cl , Br and I applies to all the elements in Group VII.						
		Use the Periodic Table to identify the Group VII element which cannot displace any oth Group VII elements.	er					
		[1]					
		[Total: 1	2]					

4 Aqueous hydrogen peroxide, H_2O_2 , slowly forms water and oxygen at room temperature and pressure, r.t.p. This reaction is catalysed by manganese(IV) oxide.

The equation is shown.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

(a) State the test for oxygen gas.

testobservations[1]

(b) A student investigates the rate of formation of oxygen gas when manganese(IV) oxide is added to aqueous hydrogen peroxide.

The volume of oxygen gas formed is measured at regular time intervals at r.t.p. The results are plotted onto the graph in Fig. 4.1.

Fig. 4.1

(i) State how the graph in Fig. 4.1 shows the rate of reaction at time t_2 , is lower than at time t_1 .

......[1]

(ii) Explain, using collision theory, why the rate of reaction at time t_2 is lower than at time t_1 .

.....

.....[2]

(iii) On Fig. 4.1, sketch the graph obtained when the experiment is repeated using aqueous hydrogen peroxide at a higher temperature. All other conditions remain the same. [2]

(c)	Manganese(IV) oxide is added to 20 cm³ of aqueous hydrogen peroxide. The total volume	of
	oxygen gas produced is 72 cm³ at r.t.p.	

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

Calculate the concentration of the aqueous hydrogen peroxide in g/dm³ using the following steps.

•	Calculate t	the number	of moles	of oxygen	gas produced
---	-------------	------------	----------	-----------	--------------

•	Determine the number of moles of hydrogen peroxide which reacts.
	mo

• Calculate the concentration of aqueous hydrogen peroxide in mol/dm³.

mol/dn

• Calculate the concentration of aqueous hydrogen peroxide in g/dm³.

 	g/dm³
	[5]

(d) Suggest the identity of one other metal oxide which also catalyses this reaction.

.....[1]

[Total: 12]

5 Methane reacts with steam to produce hyd	lrogen	gas.
--	--------	------

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
 $\Delta H = +200 \text{ kJ/mol}$

The reaction takes place at 1000 °C and 100 kPa pressure.

(a)	The	e reaction is reversible and reaches an equilibrium in a closed system.	
	Sta	te two features of an equilibrium.	
	1		
	2		 [2]
(b)	Sta whe	te and explain, in terms of equilibrium, what happens to the concentration of hydrogen:	jen
	(i)	the pressure is increased	
	(ii)	the temperature is increased	
(iii)	a catalyst is used.	
(c)	Met	thane is a greenhouse gas which contributes to global warming.	
	(i)	Name a greenhouse gas found in clean, dry air.	
			[1]
	(ii)	Explain, in terms of thermal energy, how greenhouse gases cause global warming.	
			[3]

6

Ethano	I is manufactured by two methods:
method	1 1 fermentation of aqueous glucose
method	2 catalytic addition of steam to an alkene.
(a) Me	thod 1 takes place at room temperature and pressure.
Sta	ate two other conditions needed in method 1.
1	
2	
	[2]
(b) (i)	State the typical temperature and pressure used in method 2.
	temperature°C
	pressure kPa
(11)	
(ii)	Name the alkene used in method 2.
	[1]
(iii)	State why the reaction in method 2 is referred to as an addition reaction.
	[1]
	e catalyst in method 2 is phosphoric acid, H_3PO_4 . Dilute phosphoric acid is a weak acid ich contains phosphate ions, PO_4^{3-} .
(i)	State what is meant by the term acid.
	[1]
(ii)	State the meaning of weak in the term weak acid.
	[1]
(iii)	Determine the oxidation number of phosphorus in the PO ₄ ³⁻ ion.
, ,	Show your working.
	,
	oxidation number = [2]

(d)	Giv	e one advantage of each method of production of ethanol.	
	met	thod 1	
	met	thod 2	
			[2]
(e)	Eth	anol can be converted to ethanoic acid by reacting it with an acidified oxidising agent.	
	(i)	Name the acidified oxidising agent.	
			[1]
	(ii)	State, in terms of redox, what type of reagent ethanol is in this reaction.	
			[1]
(f)	Eth	anoic acid reacts with calcium to form a salt and one other product.	
	(i)	Name the salt.	
			[1]
	(ii)	Write the formula of the salt.	
			[1]
	(iii)	Identify the other product.	
	-		[1]
		[Total:	
		[Total.	1/]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	III	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon	118	o O	oganesson -
	\blacksquare			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	¥	astatine -	117	<u>R</u>	tennessine -
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	F1	flerovium -
	≡			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204	113	R	nihonium –
										30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium -
										59	J.	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group	-									28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ڻ				1						27	ပိ	cobalt 59	45	格	rhodium 103	77	ı	iridium 192	109	Ĭ	meitnerium -
		- I	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
							1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
				_	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105		
					atc	<u>a</u>				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	88	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium
	_			8	=	lithium 7	7	Na	sodium 23	19	×	potassium 39	37	В	rubidium 85	55	CS	caesium 133	87	ᅩ	francium

71	Γn	Iutetium	175	103	۲	lawrencium	ı
	ХÞ					_	
69	H	thulium	169	101	Md	mendelevium	ı
89	ш	erbinm	167	100	Fm	ferminm	1
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర్	californium	ı
65	q	terbium	159	97	BK	berkelium	1
64	G d	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	d N	neptunium	ı
09	pN	neodymium	144	92	\supset	uranium	238
69	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ļ	thorium	232
22	Га	lanthanum	139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).