In [135]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action="ignore")
```

In [2]:

```
df = pd.read_csv("datasets_435_896_sales_data_sample.csv", encoding='Latin-1')
```

In [3]:

df.head()

Out[3]:

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERD
0	10107	30	95.70	2	2871.00	2/24/2
1	10121	34	81.35	5	2765.90	5/7/2003
2	10134	41	94.74	2	3884.34	7/1/2003
3	10145	45	83.26	6	3746.70	8/25/2
4	10159	49	100.00	14	5205.27	10/10/2

5 rows × 25 columns

In [4]:

```
print("No. of Rows in DataFrame : ", df.shape[0])
print("No. of Columns in DataFrame : ", df.shape[1])
```

No. of Rows in DataFrame : 2823 No. of Columns in DataFrame : 25

In [7]:

```
# Columns in DataFrame
list(data.columns)
Out[7]:
['ORDERNUMBER',
 'QUANTITYORDERED',
 'PRICEEACH',
 'ORDERLINENUMBER',
 'SALES',
 'ORDERDATE',
 'STATUS',
 'QTR ID'
 'MONTH ID',
 'YEAR ID',
 'PRODUCTLINE',
 'MSRP',
 'PRODUCTCODE'
 'CUSTOMERNAME',
 'PHONE',
 'ADDRESSLINE1',
 'ADDRESSLINE2',
 'CITY',
 'STATE'
 'POSTALCODE',
 'COUNTRY',
 'TERRITORY'
 'CONTACTLASTNAME'
 'CONTACTFIRSTNAME',
 'DEALSIZE']
In [6]:
# Checking for Duplicate Rows in the training set
duplicate rows = df[df.duplicated()]
print("Duplicate Rows :", duplicate_rows)
Duplicate Rows : Empty DataFrame
Columns: [ORDERNUMBER, QUANTITYORDERED, PRICEEACH, ORDERLINENUMBER, SA
LES, ORDERDATE, STATUS, QTR ID, MONTH_ID, YEAR_ID, PRODUCTLINE, MSRP,
PRODUCTCODE, CUSTOMERNAME, PHONE, ADDRESSLINE1, ADDRESSLINE2, CITY, ST
ATE, POSTALCODE, COUNTRY, TERRITORY, CONTACTLASTNAME, CONTACTFIRSTNAM
E, DEALSIZE]
Index: []
[0 rows x 25 columns]
```

Observation: No Duplicate Row in Dataframe.

In [7]:

```
# Checking for duplicate columns
def getDuplicateColumns(df):
   Utility Function to get a list of duplicate columns.
   duplicateColumnNames = set()
    # Iterate over all the columns in dataframe
    for x in range(df.shape[1]):
        # Select column at xth index.
        col = df.iloc[:, x]
        # Iterate over all the columns in DataFrame from (x+1)th index till end
        for y in range(x + 1, df.shape[1]):
            # Select column at yth index.
            otherCol = df.iloc[:, y]
            # Check if two columns at x 7 y index are equal
            if col.equals(otherCol):
                duplicateColumnNames.add(df.columns.values[y])
    return list(duplicateColumnNames)
duplicate columns = getDuplicateColumns(df)
print(duplicate columns)
```

[]

Observation: No Duplicate Columns in Dataframe.

In [81:

```
# Checking for Missing Values in the Dataframe

def missing_info(column, df):

    na = df[column].isna()
    count = na.sum()
    total_count = df.shape[0]
    miss_prcnt = np.round((count/total_count)*100,3)

    return (count, miss_prcnt)
```

In [9]:

```
def missing_train_info(df):
    columns_missing_info = []
    for column in df:
        count, miss_prcnt = missing_info(column, df);
        if(count):
            columns_missing_info.append([column, count, miss_prcnt])
        column_names = ['Feature_Name', 'Missing_Count', 'Missing_Percentage']
    missing_info_df = pd.DataFrame(data = columns_missing_info, columns = column_na
    return missing_info_df
```

In [10]:

```
missing_train_df = missing_train_info(df)
```

In [11]:

```
# Modifying the display setting of the pandas so as to view all the rows in a dataf
pd.set_option("display.max_rows", None, "display.max_columns", None)
# pd.reset_option("display.max_rows", "display.max_columns")
```

In [12]:

```
missing_train_df.head(df.shape[1])
```

Out[12]:

	Feature_Name	Missing_Count	Missing_Percentage
0	ADDRESSLINE2	2521	89.302
1	STATE	1486	52.639
2	POSTALCODE	76	2.692
3	TERRITORY	1074	38.045

Observation:

 ADDRESSLINE2 Feature has the most number of missing values, followed by STATE, TERRITORY and POSTALCODE.

Performing EDA on each Column

Univariate Analysis

DEALSIZE

In [75]:

```
df[['DEALSIZE']].describe()
```

Out[75]:

count 2823

unique 3

freq 1384

Medium

In [76]:

top

df[["DEALSIZE"]].value_counts()

Out[76]:

DEALSIZE

Medium 1384 Small 1282 Large 157

dtype: int64

In [78]:

Distribution of Class Labels

Observation:

- This feature seems to be the predictor or the class label having 3 classes namely SMALL, MEDIUM, LARGE.
- This prblem can be considered as a MultiClass Classification Problem where given a data point we need to classify it having DEALSIZE as SMALL, MEDIUM or LARGE.

ORDERNUMBER

In [44]:

df[['ORDERNUMBER']].describe()

Out[44]:

ORDERNUMBER

count	2823.000000
mean	10258.725115
std	92.085478
min	10100.000000
25%	10180.000000
50%	10262.000000
75%	10333.500000
max	10425.000000

In [67]:

df[['ORDERNUMBER']].nunique()

Out[67]:

ORDERNUMBER 307

dtype: int64

Observation:

• We have a total of 2823 rows but we only have 307 unique order numbers which means we have repeated Order Numbers in Dataframe.

QUANTITYORDERED

In [48]:

df[['QUANTITYORDERED']].describe()

Out[48]:

QUANTITYORDERED

count	2823.000000
mean	35.092809
std	9.741443
min	6.000000
25%	27.000000
50%	35.000000
75%	43.000000
max	97.000000

In [66]:

```
df[['QUANTITYORDERED']].nunique()
```

Out[66]:

QUANTITYORDERED 58

dtype: int64

In [59]:

```
plt.figure(figsize=(15,6))
sns.countplot(x="QUANTITYORDERED",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

Count per QUANTITYORDERED majorly lies between 20 and 50.

PRICEEACH

In [51]:

df[['PRICEEACH']].describe()

Out[51]:

	PRICEEACH
count	2823.000000
mean	83.658544
std	20.174277
min	26.880000
25%	68.860000
50%	95.700000
75 %	100.000000
max	100.000000

In [65]:

```
df[['PRICEEACH']].nunique()
```

Out[65]:

PRICEEACH 1016

dtype: int64

In [53]:

```
sns.histplot(x='PRICEEACH',hue='DEALSIZE', data=df, kde=True)
plt.show()
```


Observation:

- Small Sized Deals have been distributed almost evenly on the PRICE.
- · Medium Sized Deals majorly have high Price
- Large Deals also have somewhat high price but not as much as Medium Sized Deals.

ORDERLINENUMBER

In [62]:

df[['ORDERLINENUMBER']].describe()

Out[62]:

ORDERLINENUMBER

count	2823.000000
mean	6.466171
std	4.225841
min	1.000000
25%	3.000000
50%	6.000000
75%	9.000000
max	18.000000

In [64]:

df[['ORDERLINENUMBER']].nunique()

Out[64]:

ORDERLINENUMBER 18

dtype: int64

In [68]:

```
sns.countplot(x="ORDERLINENUMBER",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Majority of the Orders are proceeded using the initial Order Line Numbers.

SALES

In [70]:

df[['SALES']].describe()

Out[70]:

SALES

count	2823.000000
mean	3553.889072
std	1841.865106
min	482.130000
25%	2203.430000
50%	3184.800000
75%	4508.000000
max	14082.800000

In [72]:

```
df[['SALES']].nunique()
```

Out[72]:

SALES 2763 dtype: int64

In [74]:

```
sns.histplot(x='SALES',hue='DEALSIZE', data=df, kde=True)
plt.show()
```


Observation:

- SALES feature seem to be very good in predicting the DEALSIZE since from the above graph we can see a particular range of SALES in which each DEALSIZE lies.
- We can simply construct a simple If-Else based system to classify the DEALSIZE based on the SALES,

A data point having SALES between,

```
<3000 - SMALL
3000-7000 - MEDIUM
>7000 - LARGE
```

This system will make some errors too but the errors will be very low in number.

ORDERDATE

In [81]:

```
df[['ORDERDATE']].describe()
```

Out[81]:

ORDERDATE

count	2823
unique	252
top	11/14/2003 0:00
freq	38

In [88]:

```
plt.figure(figsize=(50,6))
sns.countplot(x="ORDERDATE", hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


STATUS

In [79]:

```
df[['STATUS']].describe()
```

Out[79]:

STATUS

count	2823
unique	6
top	Shipped
frea	2617

In [80]:

```
sns.countplot(x="STATUS",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Majority of the Orders have Shipped Status.

QTR_ID

In [96]:

df[['QTR_ID']].describe()

Out[96]:

	QTR_ID
count	2823.000000
mean	2.717676
std	1.203878
min	1.000000
25%	2.000000
50%	3.000000
75%	4.000000
max	4.000000

In [98]:

```
df[['QTR_ID']].nunique()
```

Out[98]:

QTR_ID 4 dtype: int64

In [99]:

```
sns.countplot(x="QTR_ID",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Sales in the last Quarter is comparatively higher than the sales in other quarter.

MONTH_ID

In [100]:

```
df[['MONTH_ID']].describe()
```

Out[100]:

MONTH_ID count 2823.000000 7.092455 mean std 3.656633 1.000000 min 25% 4.000000 **50**% 8.000000 75% 11.000000 12.000000 max

In [101]:

```
df[['MONTH_ID']].nunique()
```

Out[101]:

MONTH_ID 12 dtype: int64

In [103]:

```
sns.countplot(x="MONTH_ID",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Much higher sale happened in the Month with MONT_ID 11 (possibly November).

YEAR_ID

In [104]:

```
df[['YEAR_ID']].describe()
```

Out[104]:

YEAR_ID 2823.00000 count 2003.81509 mean std 0.69967 min 2003.00000 25% 2003.00000 50% 2004.00000 2004.00000 **75**% 2005.00000 max

In [106]:

```
df[['YEAR_ID']].nunique()
```

Out[106]:

YEAR_ID 3 dtype: int64

In [107]:

```
sns.countplot(x="YEAR_ID", hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Sales in the YEAR 2004 was highest followed by the Sales in YEAR 2003 followed by YEAR 2005.

PRODUCTLINE

In [108]:

df[['PRODUCTLINE']].describe()

Out[108]:

PRODUCTLINE

count	2823
unique	7
top	Classic Cars
freq	967

In [114]:

```
plt.figure(figsize=(12,5))
sns.countplot(x="PRODUCTLINE", hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• Sales for the Cars was highest and lowest for Trains.

MSRP

In [115]:

```
df[['MSRP']].describe()
```

Out[115]:

	MSRP
count	2823.000000
mean	100.715551
std	40.187912
min	33.000000
25%	68.000000
50%	99.000000
75 %	124.000000
max	214.000000

In [116]:

```
df[['MSRP']].nunique()
```

Out[116]:

MSRP 80 dtype: int64

In [120]:

```
plt.figure(figsize=(30,6))
sns.countplot(x="MSRP",hue='DEALSIZE', data=df)
plt.show()
```


Observation:

• MSRP also seems to be quite an important feature in classifying the DEALSIZE since majority of SMALL sized delas have a low MSRP whereas LARGE deals have mostly high MSRP.

PRODUCTCODE

In [121]:

df[['PRODUCTCODE']].describe()

Out[121]:

count 2823 unique 109 top S18_3232 freq 52

In [126]:

```
plt.figure(figsize=(35, 6))
sns.countplot(x="PRODUCTCODE", hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


CUSTOMERNAME

In [127]:

df[['CUSTOMERNAME']].describe()

Out[127]:

CUSTOMERNAME

count	2823
unique	92
top	Euro Shopping Channel
freq	259

In [129]:

```
plt.figure(figsize=(20, 6))
sns.countplot(x="CUSTOMERNAME",hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


Observation:

• Most number of Purchase is made by Euro Shopping Channel and Mini Gifts Distribution Ltd.

PHONE

In [130]:

```
df[['PHONE']].describe()
```

Out[130]:

	PHONE
count	2823
unique	91
top	(91) 555 94 44
freq	259

In [131]:

```
plt.figure(figsize=(25, 6))
sns.countplot(x="PHONE", hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


ADDRESSLINE1

In [132]:

df[['ADDRESSLINE1']].describe()

Out[132]:

ADDRESSLINE1

count	2823
unique	92
top	C/ Moralzarzal, 86
freq	259

In [136]:

```
plt.figure(figsize=(25, 6))
sns.countplot(x="ADDRESSLINE1",hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


ADDRESSLINE2

In [137]:

df[['ADDRESSLINE2']].describe()

Out[137]:

ADDRESSLINE2

count	302
unique	9
top	Level 3
freq	55

In [138]:

```
sns.countplot(x="ADDRESSLINE2",hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


Observation:

 We have very few values for ADDRESSLINE2 as compared to ADDRESSLINE1 since the majority of the values in ADDRESSLINE2 are missing.

CITY

In [139]:

df[['CITY']].describe()

Out[139]:

	CITY
count	2823
unique	73
top	Madrid
freq	304

In [140]:

```
plt.figure(figsize=(20, 6))
sns.countplot(x="CITY",hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


STATE

In [143]:

df[['STATE']].describe()

Out[143]:

	STATE
count	1337
unique	16
top	CA
freq	416

In [144]:

```
plt.figure(figsize=(10, 6))
sns.countplot(x="STATE", hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


Observatin:

• Majority of the sales corresponds to NY, CA and MA.

POSTALCODE

In [145]:

```
df[['POSTALCODE']].describe()
```

Out[145]:

	POSTALCODE
count	2747
unique	73
top	28034
frea	259

In [146]:

```
plt.figure(figsize=(25, 6))
sns.countplot(x="POSTALCODE",hue='DEALSIZE', data=df)
plt.xticks(rotation=90)
plt.show()
```


Bivariate Analysis

PairPlots

In [148]:

```
sns.pairplot(data=df, hue='DEALSIZE', corner=True)
plt.show()
```


Observation:

• SALES seems to be the most critical feature in deciding the DEALSIZE.