CEFET-MG - INTELIGÊNCIA ARTIFICIAL

Aluno: Vinícius França Lima Vilaça

Configuração da rede neural

Pesos iniciais nulos

Bias inicial com valor de 0,1 para todos os elementos

Learning Rate de 0,1

Todos os dados foram utilizados para treinar a rede

Um dado de entrada previamente conhecido é inserido para avaliação da rede treinada.

Utilizando a função de ativação Degrau (step)

\$python neural_network.py

Insira os valores para a avaliação: num -> [PRESS ENTER]

num 1: 6.7

num 2: 3.0

num 3: 5.2

num 4: 2.3

Insira o máximo de iterações: dica(200): 200

Escolha a função de ativação: sigmoid(1) - step(2): 2

Treinando...

Erro final da rede: 10.0

Pesos Finais

[[-6.74 -5.59 9.99 9.85]

[5.09 -5.22 -2.73 -5.43]

[0.11 0.36 -0.52 -0.22]]

Acurácia da Rede: 0.5066666666666667

Avaliação da entrada

[[11.175]

[-10.642]

[-1.193]]

Resultado da Avaliação

[[1. 0. 0.]] = Iris-virginica

Utilizando a função de ativação sigmóide (sigmoidal)

\$python neural_network.py

Insira os valores para a avaliação: num -> [PRESS ENTER]

num 1: 6.7 num 2: 3.0 num 3: 5.2 num 4: 2.3

Insira o máximo de iterações: dica(200): 200

Escolha a função de ativação: sigmoid(1) - step(2): 1 Treinando...

Erro final da rede: 10.0

Pesos Finais [[-8.13 -7.8 13.04 10.75] [4.61 1.6 -4.74 -7.07] [3.52 6.2 -8.3 -3.68]]

Acurácia da Rede: 0.89333333333333333

Avaliação da entrada [[12.862] [-5.222]

[-7.34]]

Resultado da Avaliação

 $[[1. \ 0. \ 0.]] = Iris-virginica$

Considerações finais

Ao aumentar a quantidade de iterações que a rede pode realizar durante o treino é perceptível que quando utilizado a função Sigmoid, a rede tem um aumento positivo da taxa de acurácia enquanto que utilizando a função Step, em determinado ponto a rede para de apresentar uma melhora da acurácia e inicia uma piora, isso pode ser causado pelo fato de a rede estar sendo treinada em um conjunto de dados cujos rótulos possuem mais de duas possibilidades, ou seja, mais de duas classes.