

Vorlesung "Logik"

10-201-2108-1

6. Prädikatenlogik 1. Stufe – Syntax und Semantik

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

22. Mai 2025 Leipzig

In der letzten Vorlesung

Resolution Kompaktheitssatz Interpolationstheorem Abschluß AL

Fahrplan für diese Vorlesung

Terme Formeln Strukturen Semantik

Prädikatenlogik (1. Stufe)

- Gottlob Frege (1879, Begriffsschrift), Alfred Tarski (1933, Wahrheitsbegriff in den formalisierten Sprachen)
- FOL erfasst die innere Struktur von Aussagen, z.B.
 "Alle Menschen sind sterblich."

AL:
$$A_1$$
 FOL: $\forall x (Mensch(x) \rightarrow Sterblich(x))$

• neben den bekannten Junktoren haben wir zusätzlich:

Prädikatensymbole (für Relationen)

Funktions- und Konstantensymbole

Variablen für Individuen

Quantorensymbole

Wahrheit oder Falschheit ergibt sich erst durch:

Festlegen eines Grundbereichs (Diskursuniversum) Interpretation der Prädikaten- und Funktionssymbole

$$\exists x (x < 0) \quad \exists y \, \forall x (y + x = y) \quad \forall x \, \forall y (P(x, y) \rightarrow P(y, x))$$

Syntax

• Individuenvariablen
$$V = \{x_1, x_2, x_3, ...\}$$
 $(x, y, z, ...)$

• Prädikatensymbole
$$\mathcal{P} = \{P_1, P_2, P_3, \ldots\}$$
 (P, Q, R, \ldots)

• Funktionssymbole
$$\mathcal{F} = \{f_1, f_2, f_3, \ldots\}$$
 (f, g, h, \ldots)

Prädikaten- und Funktionssymbole besitzen eine Stelligkeit, die Arität $ar: \mathcal{P} \cup \mathcal{F} \rightarrow \mathbb{N}$

•
$$P$$
 heißt n -stellig, falls $ar(P) = n$ (kurz P^n)

•
$$f$$
 heißt n -stellig, falls $ar(f) = n$ (kurz f^n)

• Konstantensymbole
$$C = \{ f \in \mathcal{F} \mid ar(f) = 0 \}$$
 $(a, b, c, ...)$

Definition

Die Menge der Terme \mathcal{T} ist induktiv definiert durch:

② Falls
$$f^n \in \mathcal{F}$$
 mit $n \ge 1$, $t_1, \ldots, t_n \in \mathcal{T}$, dann $f^n(t_1, \ldots, t_n) \in \mathcal{T}$

Syntax

• Individuenvariablen
$$V = \{x_1, x_2, x_3, ...\}$$
 $(x, y, z, ...)$

• Prädikatensymbole
$$\mathcal{P} = \{P_1, P_2, P_3, \ldots\}$$
 (P, Q, R, \ldots)

• Funktionssymbole
$$\mathcal{F} = \{f_1, f_2, f_3, \ldots\}$$
 $(f, g, h \ldots)$

$$\tau = (P_1, P_2, P_3, ..., f_1, f_2, f_3, ...)$$
 heißt auch Signatur

Prädikaten- und Funktionssymbole besitzen eine Stelligkeit, die Arität $ar: \mathcal{P} \cup \mathcal{F} \rightarrow \mathbb{N}$

•
$$P$$
 heißt n -stellig, falls $ar(P) = n$ (kurz P^n)

•
$$f$$
 heißt n -stellig, falls $ar(f) = n$ (kurz f^n)

• Konstantensymbole
$$C = \{ f \in \mathcal{F} \mid ar(f) = 0 \}$$
 $(a, b, c, ...)$

Definition

Die Menge der Terme \mathcal{T} ist induktiv definiert durch:

② Falls
$$f^n \in \mathcal{F}$$
 mit $n \ge 1$, $t_1, \ldots, t_n \in \mathcal{T}$, dann $f^n(t_1, \ldots, t_n) \in \mathcal{T}$

Terme

Definition

Die Menge der Terme \mathcal{T} ist induktiv definiert durch:

- **2** Falls $f^n \in \mathcal{F}$ mit $n \ge 1$, $t_1, \ldots, t_n \in \mathcal{T}$, dann $f^n(t_1, \ldots, t_n) \in \mathcal{T}$
 - in bestimmten Fällen Infixnotation statt Präfixnotation, z.B:

$$x + y$$
 statt $+(x, y)$
 $(x \cdot y) + z$ statt $+(\cdot(x, y), z)$

- Induktion über den Termaufbau
- (Induktionsprinzip)
 (Rekursionssprinzip)
- Rekursion über den Termaufbau $var : \mathcal{T} \to 2^{\mathcal{V}}$ mit $t \mapsto var(t)$

 $\cup var(y) = \emptyset \cup \{x\} \cup \{y\} = \{x, y\}$

(Variablen in t)

$$var(x) = \{x\}$$
 für $x \in \mathcal{V}$
 $var(c) = \emptyset$ für $c \in \mathcal{C}$
 $var(f(t_1, ..., t_n)) = var(t_1) \cup ... \cup var(t_n)$ für $f^n \in \mathcal{F}$
 $var(g(g(c, x), y)) = var(g(c, x)) \cup var(y) = var(c) \cup var(x)$

Formeln

Definition

Die Menge der prädikatenlogischen Formeln \mathcal{F}_{PL} ist induktiv definiert durch:

- Falls $P^n \in \mathcal{P}$ und $t_1, \dots, t_n \in \mathcal{T}$, dann $P^n(t_1, \dots, t_n) \in \mathcal{F}_{PL}$ (Atomare Formeln)
- **2** Sofern $\phi \in \mathcal{F}_{PL}$, dann auch $\neg \phi \in \mathcal{F}_{PL}$
- Sofern $\phi, \psi \in \mathcal{F}_{PL}$, dann auch $(\phi \lor \psi)$, $(\phi \land \psi) \in \mathcal{F}_{PL}$
- Falls $x \in \mathcal{V}$ und $\phi \in \mathcal{F}_{PL}$, dann $\exists x \phi, \forall x \phi \in \mathcal{F}_{PL}$
 - ∃ heißt Existenzquantor, ∀ heißt Allquantor
 - Konventionen:
 - ¬,∃,∀ binden stärker als ∧,∨
 - \rightarrow , \leftrightarrow weiterhin Makros

binäre Relation "=" ist immer in \mathcal{P} (PL mit Gleichheit)

• Bsp.: $P(x, f(c)) \quad \forall x (x = c) \quad \forall x (\exists y P(x, f(y) \land \neg Q(y)))$

Teilformeln

Definition

Die Menge der prädikatenlogischen Formeln \mathcal{F}_{PL} ist induktiv definiert durch:

- Falls $P^n \in \mathcal{P}$ und $t_1, \ldots, t_n \in \mathcal{T}$, dann $P^n(t_1, \ldots, t_n) \in \mathcal{F}_{PL}$
- Sofern $\phi \in \mathcal{F}_{PL}$, dann auch $\neg \phi \in \mathcal{F}_{PL}$
- Sofern $\phi, \psi \in \mathcal{F}_{PL}$, dann auch $(\phi \lor \psi)$, $(\phi \land \psi) \in \mathcal{F}_{PL}$
- Falls $x \in \mathcal{V}$ und $\phi \in \mathcal{F}_{PL}$, dann $\exists x \phi, \forall x \phi \in \mathcal{F}_{PL}$
 - Induktion/Rekursion über den Formelaufbau

$$t: \mathcal{F}_{PL} \to 2^{\mathcal{F}_{PL}} \quad \text{mit} \quad \phi \mapsto t(\phi) \qquad \qquad \text{(TeilformeIn von } \phi)$$

$$t(P^n(t_1, \dots, t_n)) = \{P^n(t_1, \dots, t_n)\} \qquad \text{(atomar!)}$$

$$t(\neg \phi) = t(\phi) \cup \{\neg \phi\}$$

$$t((\phi \circ \psi)) = t(\phi) \cup t(\psi) \cup \{\phi \circ \psi\} \quad \text{mit } \circ \in \{\lor, \land\}$$

$$t(Qx \phi) = t(\phi) \cup \{Qx \phi\} \quad \text{mit } Q \in \{\exists, \forall\}$$

 ϕ heißt Wirkungsbereich des Quantors $Qxt(\forall x (\exists y P(x, f(y)) \land \neg Q(y)))$

Freie und Gebundene Variablen

Definition

Die Menge der prädikatenlogischen Formeln \mathcal{F}_{PL} ist induktiv definiert durch:

- Falls $P^n \in \mathcal{P}$ und $t_1, \ldots, t_n \in \mathcal{T}$, dann $P^n(t_1, \ldots, t_n) \in \mathcal{F}_{PL}$
- Sofern $\phi \in \mathcal{F}_{PL}$, dann auch $\neg \phi \in \mathcal{F}_{PL}$
- Sofern $\phi, \psi \in \mathcal{F}_{PL}$, dann auch $(\phi \lor \psi)$, $(\phi \land \psi) \in \mathcal{F}_{PL}$
- **4** Falls $x \in \mathcal{V}$ und $\phi \in \mathcal{F}_{PL}$, dann $\exists x \phi, \forall x \phi \in \mathcal{F}_{PL}$

$$\begin{split} \textit{geb} \colon \mathcal{F}_{\textit{PL}} \to 2^{\mathcal{V}} \; & \text{mit} \; \phi \mapsto \textit{geb}(\phi) \qquad \qquad \text{(Gebundene Variablen)} \\ & \textit{geb}(P^n(t_1, \dots, t_n)) = \varnothing \\ & \textit{geb}(\neg \phi) = \textit{geb}(\phi) \\ & \textit{geb}((\phi \circ \psi)) = \textit{geb}(\phi) \cup \textit{geb}(\psi) \quad \text{mit} \; \circ \in \{\lor, \land\} \\ & \textit{geb}(Qx \; \phi) = \textit{geb}(\phi) \cup \{x\} \quad \text{mit} \; Q \in \{\exists, \forall\} \\ & \textit{geb}(\forall x \; P(x) \land P(x, y)) = \{x\} \end{split}$$

Freie und Gebundene Variablen

Definition

Die Menge der prädikatenlogischen Formeln \mathcal{F}_{PL} ist induktiv definiert durch:

- Falls $P^n \in \mathcal{P}$ und $t_1, \ldots, t_n \in \mathcal{T}$, dann $P^n(t_1, \ldots, t_n) \in \mathcal{F}_{PL}$
- **2** Sofern $\phi \in \mathcal{F}_{PL}$, dann auch $\neg \phi \in \mathcal{F}_{PL}$
- Sofern $\phi, \psi \in \mathcal{F}_{PL}$, dann auch $(\phi \lor \psi)$, $(\phi \land \psi) \in \mathcal{F}_{PL}$
- **⑤** Falls $x \in \mathcal{V}$ und $\phi \in \mathcal{F}_{PL}$, dann $\exists x \phi, \forall x \phi \in \mathcal{F}_{PL}$

$$frei: \mathcal{F}_{PL} \rightarrow 2^{\mathcal{V}} \text{ mit } \phi \mapsto frei(\phi) \qquad \qquad \text{(Freie Variablen)}$$

$$frei(P^n(t_1, \ldots, t_n)) = var(t_1) \cup \ldots \cup var(t_n)$$

$$frei(\neg \phi) = frei(\phi)$$

$$frei((\phi \circ \psi)) = frei(\phi) \cup frei(\psi) \quad \text{mit } \circ \in \{\lor, \land\}$$

$$frei(Qx \phi) = frei(\phi) \setminus \{x\} \quad \text{mit } Q \in \{\exists, \forall\}$$

$$frei(\forall x P(x) \land P(x, y)) = \{x, y\}$$

Freie und Gebundene Variablen

Definition

Die Menge der prädikatenlogischen Formeln \mathcal{F}_{PL} ist induktiv definiert durch:

- Falls $P^n \in \mathcal{P}$ und $t_1, \ldots, t_n \in \mathcal{T}$, dann $P^n(t_1, \ldots, t_n) \in \mathcal{F}_{PL}$
- Sofern $\phi \in \mathcal{F}_{PL}$, dann auch $\neg \phi \in \mathcal{F}_{PL}$
- **3** Sofern $\phi, \psi \in \mathcal{F}_{PL}$, dann auch $(\phi \lor \psi)$, $(\phi \land \psi) \in \mathcal{F}_{PL}$
- Falls $x \in \mathcal{V}$ und $\phi \in \mathcal{F}_{PL}$, dann $\exists x \phi, \forall x \phi \in \mathcal{F}_{PL}$

$$frei: \mathcal{F}_{PL} \to 2^{\mathcal{V}} \text{ mit } \phi \mapsto frei(\phi) \qquad \qquad \text{(Freie Variablen)}$$

$$frei(P^n(t_1, \dots, t_n)) = var(t_1) \cup \dots \cup var(t_n)$$

$$frei(\neg \phi) = frei(\phi)$$

$$frei((\phi \circ \psi)) = frei(\phi) \cup frei(\psi) \quad \text{mit } \circ \in \{\lor, \land\}$$

$$frei(Qx \phi) = frei(\phi) \setminus \{x\} \quad \text{mit } Q \in \{\exists, \forall\}$$

Eine Formel ohne freie Variablen heißt Satz (auch Aussage oder geschlossene Formel).

Auswertung von Formeln

Ist
$$\forall x (P(x,c) \land \exists y f(y) = x)$$
 wahr?

Um dies zu beurteilen, müssen wir wissen:

- Über welchen Grundbereich U betrachten wir die Formel? Menschen, Studierende, \mathbb{N} , \mathbb{R} , Getränke, . . .
- Was ist die Konstante c in U?
 Prof. Obergfell, Tino Farne, 4, π, Vita Cola
- Was ist die 2-stellige Relation P über U?
 Liebesrelation, Kennt-Relation, Größergleich-Relation,
 Abstand-kleiner-1-Relation, Vom-selben-Hersteller-Relation
- Was ist die 1-stellige Funktion f in U?
 f(u) ist: regierender US-Präsident zur Geburt von u,
 Lieblingskommilitone von u, direkter Nachfolger von u,
 Sinus von u, koffeinfreies Pendant zu u

Auswertung von Formeln

Ist
$$\forall x (P(x, c) \land \exists y f(y) = x)$$
 wahr?

Um dies zu beurteilen, müssen wir wissen:

- Über welchen Grundbereich U betrachten wir die Formel? Menschen, Studierende, \mathbb{N} , \mathbb{R} , Getränke, . . .
- Was ist die Konstante c in U?
 Prof. Obergfell, Tino Farne, 4, π, Vita Cola
- Was ist die 2-stellige Relation P über U?
 Liebesrelation, Kennt-Relation, Größergleich-Relation,
 Abstand-kleiner-1-Relation, Vom-selben-Hersteller-Relation
- Was ist die 1-stellige Funktion f in U?
 f(u) ist: regierender US-Präsident zur Geburt von u,
 Lieblingskommilitone von u, direkter Nachfolger von u,
 Sinus von u, koffeinfreies Pendant zu u

τ -Strukturen

Definition

Sei $\tau = (\mathcal{P}, \mathcal{F})$ eine Signatur. Eine τ -Struktur $\mathfrak{A} = (U, I)$ besteht aus:

- einer nichtleeren Menge *U*, (Grundbereich/Universum)
- einer Interpretationsfunktion I, sodaß:
 - **1** für jedes $P^n ∈ \mathcal{P}$ ist $I(P^n) ⊆ U^n$ (n-stell. Relation über U)
 - ② für jedes $f^n \in \mathcal{F}$ ist $I(f^n) : U^n \to U$ (n-stell. Funktion auf U)

Bemerkungen:

- Struktur
 Ω interpretiert Prädikaten- und Funktionssymbole
- wir schreiben auch: $P^{\mathfrak{A}}$ für I(P) bzw. $f^{\mathfrak{A}}$ für I(f)
- jedes $f^{\mathfrak{A}}$ ist totale Funktion
- keine Restriktionen für Relationen P^{21}
- ähnlich nutzen wir $U^{\mathfrak{A}}$ und $I^{\mathfrak{A}}$ für das Universum bzw. für die Interpretationsfunktion von \mathfrak{A}

τ -Strukturen

Definition

Sei $\tau = (\mathcal{P}, \mathcal{F})$ eine Signatur. Eine τ -Struktur $\mathfrak{A} = (U, I)$ besteht aus:

- einer nichtleeren Menge *U*, (Grundbereich/Universum)
- einer Interpretationsfunktion I, sodaß:
 - **1** für jedes $P^n \in \mathcal{P}$ ist $I(P^n) \subseteq U^n$ (n-stell. Relation über U)
 - ② für jedes $f^n \in \mathcal{F}$ ist $I(f^n) : U^n \to U$ (n-stell. Funktion auf U)

Beispiel: Sei $\tau = (P^2, f^1, c^0)$. Wir definieren eine τ -Struktur $\mathfrak A$ mit $(\forall x (P(x, c) \land \exists y f(y) = x))$

- $U^{\mathfrak{A}} = \mathbb{N}$
- $P^{\mathfrak{A}} = \geq_{\mathbb{N}} = \{(0,0),(1,0),\ldots,(1,1),(2,1),\ldots\} \subseteq \mathbb{N} \times \mathbb{N} = \mathbb{N}^2$
- $f^{\mathfrak{A}}: \mathbb{N}^1 \to \mathbb{N} \text{ mit } n \mapsto f^{\mathfrak{A}}(n) = n+1$
- $c^{\mathfrak{A}}: \mathbb{N}^0 \to \mathbb{N}$ mit $() \mapsto c^{\mathfrak{A}}(()) = 4$

Belegung und Interpretation

Definition

Sei $\mathfrak A$ eine τ -Struktur. Eine Belegung in $\mathfrak A$ ist eine Abbildung $\beta: \mathcal V \to \mathcal U^{\mathfrak A}$. Wir erweitern rekursiv zu $\beta': \mathcal T \to \mathcal U^{\mathfrak A}$ mit:

- $\beta'(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\beta'(t_1),\ldots,\beta'(t_n)) \text{ für } f \in \mathcal{F},$ $ar(f) = n \geq 1 \text{ und } t_1,\ldots,t_n \in \mathcal{T}$

Ein Paar (\mathfrak{A}, β) heißt Interpretation.

Bemerkungen:

- β' bildet Terme auf Objekte im Universum ab
- wie üblich identifizieren wir die Erweiterung β' mit β
- ähnlich wie im aussagenlogischen Fall setzen wir:

$$\beta_{[x\mapsto a]}(y) = \begin{cases} a & , x = y \\ \beta(y) & , \text{ sonst} \end{cases}$$

Belegung und Interpretation

Definition

Sei $\mathfrak A$ eine τ -Struktur. Eine Belegung in $\mathfrak A$ ist eine Abbildung $\beta: \mathcal V \to \mathcal U^{\mathfrak A}$. Wir erweitern rekursiv zu $\beta': \mathcal T \to \mathcal U^{\mathfrak A}$ mit:

- $\beta'(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\beta'(t_1),\ldots,\beta'(t_n)) \text{ für } f \in \mathcal{F},$ $ar(f) = n \geq 1 \text{ und } t_1,\ldots,t_n \in \mathcal{T}$

Ein Paar (\mathfrak{A}, β) heißt Interpretation.

Beispiel: Gegeben (\mathfrak{A}, β) mit

- $U^{\mathfrak{A}} = \mathbb{N}$
- $f^{\mathfrak{A}}: \mathbb{N}^1 \to \mathbb{N}$ mit $n \mapsto f^{\mathfrak{A}}(n) = n+1$
- $c^{\mathfrak{A}}: \mathbb{N}^0 \to \mathbb{N}$ mit $() \mapsto c^{\mathfrak{A}}(()) = 4$

leere Tupel

Was ist $\beta(f(f(f(c))))$ und $\beta(f(f(x)))$?

Belegung und Interpretation

Definition

Sei $\mathfrak A$ eine τ -Struktur. Eine Belegung in $\mathfrak A$ ist eine Abbildung $\beta: \mathcal V \to \mathcal U^{\mathfrak A}$. Wir erweitern rekursiv zu $\beta': \mathcal T \to \mathcal U^{\mathfrak A}$ mit:

- $\beta'(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\beta'(t_1),\ldots,\beta'(t_n)) \text{ für } f \in \mathcal{F},$ $ar(f) = n \geq 1 \text{ und } t_1,\ldots,t_n \in \mathcal{T}$

Ein Paar (\mathfrak{A}, β) heißt Interpretation.

Beispiel: Gegeben (\mathfrak{A}, β) mit

•
$$U^{\mathfrak{A}} = \mathbb{Z}$$

•
$$g^{\mathfrak{A}}: \mathbb{Z}^2 \to \mathbb{Z}$$
 mit $(n, m) \mapsto g^{\mathfrak{A}}(n, m) = n - m$

•
$$c^{\mathfrak{A}}: \mathbb{Z}^0 \to \mathbb{Z} \text{ mit } () \mapsto c^{\mathfrak{A}}(()) = -2$$

leere Tupel

Was ist $\beta(g(x,g(x,c))$?

Semantik (rekursiv)

Gegeben eine Interpretation (\mathfrak{A}, β) . Wir definieren:

•
$$(\mathfrak{A},\beta)(P(t_1,\ldots,t_n))=1$$
 gdw. $(\beta(t_1),\ldots,\beta(t_n))\in P^{\mathfrak{A}}$

•
$$(\mathfrak{A}, \beta)(t_1 = t_2) = 1$$
 gdw. $\beta(t_1) = \beta(t_2)$

•
$$(\mathfrak{A},\beta)(\neg\phi)=1$$
 gdw. $(\mathfrak{A},\beta)(\phi)=0$

•
$$(\mathfrak{A},\beta)(\phi \wedge \psi) = 1$$
 gdw. $(\mathfrak{A},\beta)(\phi) = 1$ und $(\mathfrak{A},\beta)(\psi) = 1$

•
$$(\mathfrak{A},\beta)(\phi\vee\psi)=1$$
 gdw. $(\mathfrak{A},\beta)(\phi)=1$ oder $(\mathfrak{A},\beta)(\psi)=1$

•
$$(\mathfrak{A},\beta)(\exists x\phi)=1$$
 gdw. existiert $a\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{\lceil x\mapsto a\rceil})(\phi)=1$

•
$$(\mathfrak{A},\beta)(\forall x\phi)=1$$
 gdw. für alle $a\in U^{\mathfrak{A}}$ gilt: $(\mathfrak{A},\beta_{\lceil x\mapsto a\rceil})(\phi)=1$

Auswertung der Atomaren Formeln.

Achtung! Gleichheitssymbol hat eine feste Interpretation.

Analog zur Aussagenlogik. Quantorenfälle. Interpretation (\mathfrak{A}, β) heißt Modell von ϕ , falls $(\mathfrak{A}, \beta)(\phi) = 1$

Semantik (rekursiv)

Gegeben eine Interpretation (\mathfrak{A}, β) . Wir definieren:

•
$$(\mathfrak{A},\beta)(P(t_1,\ldots,t_n))=1$$
 gdw. $(\beta(t_1),\ldots,\beta(t_n))\in P^{\mathfrak{A}}$

•
$$(\mathfrak{A},\beta)(\phi \wedge \psi) = 1$$
 gdw. $(\mathfrak{A},\beta)(\phi) = 1$ und $(\mathfrak{A},\beta)(\psi) = 1$

•
$$(\mathfrak{A},\beta)(\exists x\phi)=1$$
 gdw. existiert $a\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x\mapsto a]})(\phi)=1$

•
$$(\mathfrak{A},\beta)(\forall x\phi) = 1$$
 gdw. für alle $a \in U^{\mathfrak{A}}$ gilt: $(\mathfrak{A},\beta_{[x\mapsto a]})(\phi) = 1$

Bsp.: Ist (\mathfrak{A}, β) Modell von $\phi = \forall x (P(x, c) \land \exists y f(y) = x)$ wobei $U^{\mathfrak{A}} = \mathbb{N}, P^{\mathfrak{A}} = \geq_{\mathbb{N}}, f^{\mathfrak{A}}(n) = n + 1, c^{\mathfrak{A}} = 4$? Es gilt:

$$(\mathfrak{A},\beta)(\phi)=1$$
 gdw. $(\mathfrak{A},\beta)(\forall x(P(x,c)\wedge\exists y\,f(y)=x))=1$ gdw.

für alle
$$a \in \mathbb{N} : (\mathfrak{A}, \beta_{\lceil x \mapsto a \rceil})(P(x, c) \land \exists y \, f(y) = x) = 1$$
 gdw.

für alle
$$a \in \mathbb{N} : (\mathfrak{A}, \beta_{[x \mapsto a]})(P(x, c)) = 1$$
 und $(\mathfrak{A}, \beta_{[x \mapsto a]})(\exists y \, f(y) = x) = 1$

Für
$$a = 2$$
. $(\mathfrak{A}, \beta_{[x \mapsto 2]})(P(x, c)) = 1$ gdw. $(\beta_{[x \mapsto 2]}(x), \beta_{[x \mapsto 2]}(c)) \in P^{\mathfrak{A}}$ gdw. $(2, 4) \in \mathbb{N}$

Da 2
$$\not\geq$$
 4 folgt (\mathfrak{A}, β) $(\phi) = 0$.

Semantik (rekursiv)

Gegeben eine Interpretation (\mathfrak{A}, β) . Wir definieren:

•
$$(\mathfrak{A},\beta)(P(t_1,\ldots,t_n))=1$$
 gdw. $(\beta(t_1),\ldots,\beta(t_n))\in P^{\mathfrak{A}}$

•
$$(\mathfrak{A},\beta)(\phi \wedge \psi) = 1$$
 gdw. $(\mathfrak{A},\beta)(\phi) = 1$ und $(\mathfrak{A},\beta)(\psi) = 1$

•
$$(\mathfrak{A},\beta)(\exists x\phi)=1$$
 gdw. existiert $a\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x\mapsto a]})(\phi)=1$

•
$$(\mathfrak{A},\beta)(\forall x\phi) = 1$$
 gdw. für alle $a \in U^{\mathfrak{A}}$ gilt: $(\mathfrak{A},\beta_{[x\mapsto a]})(\phi) = 1$

Bsp.: Ist (\mathfrak{A}, β) Modell von $\phi = \forall x \exists y P(y, x)$ wobei $U^{\mathfrak{A}} = \mathbb{N}$ und $P^{\mathfrak{A}} = \mathbb{N}$? Es gilt:

$$(\mathfrak{A},\beta)$$
 (ϕ) = 1 gdw. (\mathfrak{A},β) $(\forall x \exists y P(y,x))$ = 1 gdw.

für alle $a \in \mathbb{N} : (\mathfrak{A}, \beta_{\lceil x \mapsto a \rceil})(\exists y P(y, x)) = 1 \text{ gdw.}$

für alle $a \in \mathbb{N}$, existiert ein $b \in \mathbb{N} : (\mathfrak{A}, (\beta_{[x \mapsto a]})_{[y \mapsto b]}) P(y, x) = 1$ gdw.

für alle $a \in \mathbb{N}$, existiert ein $b \in \mathbb{N}$:

$$((\beta_{[x\mapsto a]})_{[y\mapsto b]}(y), (\beta_{[x\mapsto a]})_{[y\mapsto b]}(x)) \in P^{\mathfrak{A}}$$
 gdw.

für alle $a \in \mathbb{N}$, existiert ein $b \in \mathbb{N} : (b, a) \in \mathbb{N}$. Ja, setze b = a + 1.

Somit
$$(\mathfrak{A},\beta)(\phi) = 1$$

Vorlesung "Logik"

10-201-2108-1

6. Prädikatenlogik 1. Stufe – Syntax und Semantik

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

22. Mai 2025 Leipzig

