FÁCEIS

- **01.** Crie uma função que receba a quantidade n de termos e imprima os n termos da sequência de fibonacci.
- **02.** A Busca Linear é um processo de busca de um elemento x em um vetor L que testa sequencialmente cada elemento de L e encerra quando x é encontrado (busca com sucesso) ou quando o final de L é extrapolado(busca sem sucesso). Dados como entrada um vetor de números L e um número x, determinar utilizando busca linear se x está ou não presente em L.
- **03.** Faça uma função que receba um vetor de 20 posições já populado e calcule e retorne a quantidade de valores pares e a quantidade de valores ímpares do vetor. Para devolver os dois valores, receba dois parâmetros por referência
- **04.** Faça um programa que leia 15 números inteiros e os armazene em um vetor A. Determine então qual o maior e o menor destes números e quantas vezes este maior e este menor ocorrem no vetor. No final, apresente esses valores.
- **05.** Faça um programa que receba um vetor A de 10 elementos e construa um vetor B que possui os mesmos números de A, sendo que na ordem invertida.
- **06.** Escreva um programa que determine os 30 primeiros números primos e armazeneos em um vetor chamado PRIMOS. No final, apresente o conteúdo do vetor.
- **07.** Faça um programa que leia dois vetores A e B de 6 elementos. A só deverá aceitar valores pares enquanto que B só receberá valores ímpares. O programa deve alertar caso valores errados sejam passados e pedir pro usuário informar um valor correto. Apresentar um vetor C formado pela união dos elementos de A e B (C deverá ter 12 elementos).
- **08.** Faça um programa que preencha um vetor com quinze elementos inteiros e verifique a existência de elementos iguais a 30, mostrando as posições em que apareceram.
- **09.** Faça um programa que receba um vetor de 10 elementos positivos e que o usuário possa pesquisar se um determinado elemento existe no vetor. Caso exista o programa exibirá o índice no qual o valor está posicionado; caso contrário, mostrar que o elemento não existe no vetor. O programa deve possibilitar que o usuário faça quantas pesquisas ele quiser, só encerrando quando o usuário informar um número negativo.
- **10.** Faça um programa que receba 20 números do usuário e armazene-os em um vetor. O programa não pode aceitar valores repetidos, pedindo para o usuário informar outro número até que este apresente um número não repetido.

MÉDIAS

- 11. Faça um programa que preencha um vetor de dez números inteiros e um segundo vetor com cinco números inteiros, calcule e mostre dois vetores resultantes. O primeiro vetor resultante será composto pela soma dos números pares do primeiro vetor somado a cada elemento do segundo vetor. O segundo vetor resultante será composto pela soma de números impares do primeiro vetor somado com cada elemento do segundo vetor.
- **12.** Faça um programa que leia um conjunto de quinze valores e armazene-os em um vetor. A seguir, separe-os em dois outros vetores (P e I) com cinco posições cada. O vetor P armazena números pares e o vetor I, números ímpares. Como o tamanho dos vetores pode não ser suficiente para armazenar todos os números, deve-se sempre verificar se já estão cheios. Caso P ou I estejam cheios, deve-se mostrá-los e recomeçar o preenchimento da primeira posição.

Terminado o processamento, mostre o conteúdo restante dentro dos vetores P e I.

- 13. Dado um vetor de números inteiros, determinar,
- (a) A soma dos elementos.
- (b) A média dos elementos.
- (c) A soma dos elementos pares subtraída da soma dos elementos ímpares.
- (d) Os valores máximo e mínimo entre seus elementos.
- (e) Os dois elementos de maior valor presentes.
- 14. Rotacionar à direita um vetor significa colocar seus elementos uma posição adiante com exceção do último elemento que é transferido para a primeira posição. Rotacionar à esquerda um vetor significa colocar seus elementos uma posição para trás com exceção do primeiro elemento que é transferido para a última posição. Construir separadamente as rotações à direita e à esquerda para um vetor de inteiros dado como entrada.
- **15.** Faça um programa que preencha dois vetores, X e Y com dez números inteiros cada. Calcule e mostre os seguintes vetores resultantes:
- a) A união de X com Y(todos os elementos de X e de Y sem repetições);
- b) A diferença entre X e Y (todos os elementos de X que não existam em Y, sem repetições);

- c) A soma entre X e Y (soma de cada elemento de X com o elemento de mesma posição de em Y);
- d) O produto entre X e Y (Multiplicação de cada elemento de X com o elemento de mesma posição em Y);
- e) Interseção entre X e Y (Apenas os elementos que aparecem nos dois vetores, sem repetições);
- **16.** Escreva um programa que leia um vetor A de 10 elementos ponto flutuante e construa um vetor B formado da seguinte maneira:

Regras								
Se índice i ímpar	B[i] = A[i] / 2							
Se índice i par	B[i] = A[i] * 3							

Exemplo	Exemplo										
A[4]	23	8	0.4	7							
B[4]	69	4	1.2								

- **17.** Escreva um programa para receber 10 números reais e armazená-los em um vetor. Depois disso, mostre o somatório dos números, através do uso da função somatório, que não recebe parâmetro nenhum, acessa o vetor definido globalmente e retorna o somatório dos elementos do vetor.
- **18.** Faça uma função que receba como parâmetro um vetor A de dez elementos inteiros já populado como parâmetro. Ao final dessa função, deverá ter sido gerado um vetor B contendo o fatorial de cada elementos de A. O vetor B deverá ser mostrado no main.
- **19.** Faça um programa que apresente a interseção entre dois vetores de elementos inteiros. (Os valores não se repetem no mesmo vetor).

Exemplo											
A[5] 10 -5 -20 67 4											
B[7]	-5	4	30	8	90	33	67				

20. Faça um programa que receba dois vetores de inteiros ordenados e imprima os valores dos vetores de maneira que eles continuem ordenados.

Exemplo													
A[6]	3	6	9	10	20	50							
B[5]	5	10	21	30	60								
Saída	3, 5,	3, 5, 6, 9, 10, 10, 20, 21, 30, 50, 60											

21. Dado dois vetores A e B de elementos inteiros. Faça um programa que crie um vetor C que possui a quantidade de ocorrências dos elementos de B em A.

	Exemplo														
A[15]	10	5	20	9	4	12	10	20	4	5	1	3	10	12	3
B[8]	10	5	20	9	4	12	1	3							
C[8]	3	2	2	1	2	2	1	2							

- **22.** A ordenação crescente por seleção é um algoritmo utilizado para classificar os elementos de um vetor. Ela consiste em visitar sequencialmente as n-1 primeiras posições de um vetor de comprimento n e em cada visita buscar pelo menor elemento no sub-vetor formado entre a posição visitada e a última posição do vetor e então trocá-lo com o elemento da posição visitada. Utilizando este algoritmo classificar um vetor de inteiros dado como entrada.
- **23.** A mediana de um conjunto finito de números é um elemento deste conjunto cuja quantidade de elementos menores ou iguais a ele é no máximo uma unidade a menos que os elementos maiores que ele. Dado um conjunto de entrada Q em forma de vetor, determinar sua mediana.
- **24.** Dado um vetor de números naturais, reorganizar seus elementos de forma que dois números pares não fiquem vizinhos. Informar quando não for possível.
- **25.** O embaralhamento de vetor, ou shuffle, consiste em redispor seus elementos em ordem aleatória. Dado um vetor de inteiros de entrada, embaralhar seus elementos.
- **26.** Dado um vetor de m inteiros distintos, selecionar aleatoriamente entre eles n inteiros ($n \le m$) também distintos.
- **27.** Uma representação dígito-vetorial de um número natural n é um vetor contendo os dígitos de n justificados à direita e complementados com zeros à esquerda quando necessário. Por exemplo, a representação dígito vetorial de 15867 pode ser o vetor,

0	0	1	5	8	6	7

Dado um número natural como entrada construir sua representação dígito-vetorial.

DIFÍCEIS

28. Faça um programa que leia um vetor A de 20 elementos inteiros e calcule o valor de S.

Série
$$S = (A[0] - A[19])^2 + (A[1] - A[18])^2 + ... + (A[9] - A[10])^2$$

29. Dado um vetor **A** composto por números quaisquer,um vetor **IND** composto por índices do vetor A exceto o 0, e um vetor **OP** composto por símbolos que representam uma operação aritmética (+, -, *, /). Faça um programa que calcule, começando do valor contido no índice 0 do vetor A, a operação contida em OP, com o valor existente em A no índice contido em IND.

Exemplo													
A[10]	10	-5	-20	9	4	12	-8	30	40	-2			
IND[9]	3	7	1	9	4	8	5	2	6				
OP[9]	+	-	*	/	*	+	-	+	*				
Saída	(10) +	(10) + (9) - (30) * (-5) / (-2) * 4 + 40 - 12 + (-20) * (-8) = 2256.0											

- **30.** Um número é dito pandigital se seus dígitos são todos distintos entre si. Construir função que determine se um número passado como argumento é ou não pandigital.
- **31.** Determinar o maior número natural primo pandigital que existe.
- **32.** Um polinômio P (x) é definido como a somatória,

$$P(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + \dots + a_n \cdot x^n$$
$$= \sum_{k=0}^{n} a_k \cdot x^k$$

onde $\{a0, a1, a3, \cdots, an\}$ são denominados coeficientes do polinômio, no grau do polinômio e x a variável independente. Avaliar um polinômio P no número x0 significa calcular P (x0). Dados o grau n de um polinômio P, seus respectivos coeficientes em forma de um vetor C e um númerox0, avaliar P em x0.

33. O desvio padrão amostral σ de um conjunto de números $X = \{x1, x2, x3, x4, \cdots, xn\}$ é dado pela expressão,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n-1}}$$

onde xi é uma referência ao i-ésimo elemento de X e x a média dos elementos de X. Determine o desvio padrão amostral dos elementos de um vetor de números reais dado como entrada.

34. No Brasil um número de CPF (Cadastro de Pessoa Física) possui nove dígitos (d1, d2, \cdots , d9) e mais dois para verificação de validade do documento (d10 e d11). A verificação de d10 segue as etapas,i. Multiplica-se os nove primeiros dígitos pelos pesos 10, 9, 8, \cdots , 2como na ilustração,

ii. Em seguida determina-se a somatória S1 dos elementos obtidos na multiplicação anterior,

$$S_1 = \sum_{i=1}^9 a_i$$

iii. Aplica-se S1 na seguinte expressão de validação,

$$d_{10} = 11 - S_1 \mod 11$$

Se o valor de d10calculado é igual ao fornecido na entrada então aprimeira parte da verificação se encerra com sucesso. A verificação ded11 ocorre de forma similar, mas leva em conta d10 conforme etapas,iv. Multiplica-se os dez primeiros dígitos pelos mesos11, 10, 9, 8, · · · , 2 como na ilustração,

v. Em seguida determina-se a somatória S2 dos elementos obtidos na multiplicação

$$S_2 = \sum_{i=1}^{10} b_i$$

anterior,

vi. Aplica-se S2 na seguinte expressão de validação,

$$d_{12} = 11 - S_2 \mod 11$$

Verificado com sucesso d11 o documento fica validado. Dado os dígitos de entrada de um documento CPF determine sua validade.

- **35.** Busca Binária é um processo de busca em vetores ordenados que tira proveito desta ordenação para ser substancialmente mais rápida que a busca linear (problema-
- 2). A busca binária por um elemento x em um vetor M ordenado segue as etapas,
- i. Definir os contadores i e j e iniciá-los respectivamente com as posições inicial e final de M.
- ii. Se i for menor que j a busca se encerra sem sucesso.
- iii. Determinar a posição k média entre as posições i e j .
- iv. Se o elemento Mk for igual a x a busca termina com sucesso.
- v. Se Mk for maior que x então j recebe k 1 e volta-se a etapa-ii.
- vi. Se Mk for menor que x então i recebe k + 1 e volta-se a etapa-ii.

Dados como entrada um vetor V ordenado de inteiros e um inteiro x,determinar por busca binária se x pertence ou não a V .

- **36.** Para multiplicar um número M em representação dígito-vetorial por um escalar x utiliza-se a ideia descrita a seguir,
- a. Constrói-se um vetor de saída S com espaço suficiente para pora resposta.
- b. Define-se um acumulador ac e atribui-se zero a ele.
- c. Faz-se simultaneamente dois contadores i e j variarem respectivamente entre a última e a primeira posição dos vetores M e S.

Em cada etapa desse processo deve-se,

- i. Calcular $r = M_i \cdot x + ac$.
- ii. Colocar o último dígito de r em S_j .
- iii. Colocar r sem o último dígito em ac
- d. Se i atingir a posição inicial de M antes de ac zerar então osdígitos de ac deverão ser distribuídos pelas células de S antes do último valor de j encontrado.

Dados um número em representação dígito-vetorial M e um escalar x, determinar a multiplicação entre eles.

- **37.** O fatorial de números naturais acima de 50 não pode em geral ser representado por um tipo inteiro primitivo. Uma saída é a utilização da representação dígito-vetorial. A ideia para determinar o fatorial de n é a seguinte,
- (a) Determinar o comprimento m de n!. Isso pode ser computado pela expressão,

$$m = 1 + \lfloor \log_{10} n! \rfloor$$
$$= 1 + \left\lfloor \sum_{k=1}^{n} \log_{10} k \right\rfloor$$

onde a primeira equação não é computável diretamente, mas a segunda sim.

- (b) Construir um vetor S de comprimento m e utilizá-lo para armazenar a representação dígito-vetorial no número 1 (todos os dígitos iguais a zero exceto o último que recebe 1).
- (c) Utilizando a multiplicação de um escalar por um número em representação dígitovetorial (problema-19), multiplicar S pelos números 2, 3, 4, · · · , n.

Determinar a soma dos dígitos de 100!