DRE GRAND LOME	COMPOSITION REGIONALE DU 3è TRIMESTRE	CLASSE: 3ème	
AS: 2023 - 2024	MATHEMATIQUES	Durée : 2H00	Coef: 3

EXERCICE1 (8 points)

Après une récolte, deux agriculteurs Messan et Yovo du village de KPEDOME ont produit ensemble 12 tonnes de Soja. Si on ajoute 3 tonnes de Soja à la production de Messan, on obtient le double de la production de Yovo. Au Togo, une tonne de Soja est vendue à 700 000F. Les deux producteurs désirent connaître le montant qui revient à chacun d'eux mais éprouvent des difficultés et se confient à leurs enfants élèves en classe de 3ème. En désignant par x la part de Messan et y celle de Yovo :

1/Vérifie que les productions des deux agriculteurs se traduisent par les expressions :

$$x + y = 12$$
 et $x - 2y = -3$.

2/ Calcule le gain de chaque agriculteur après la vente de la récolte.

Grille de notation

Pertinence	Correction	Cohérence	Perfectionnement	
2,5 points	2,5 points	2 points	1 point	

EXERCICE 2 (6 points)

A/Réponds par vrai ou faux $(0.5 \text{ pt} \times 3)$

- 1. Si A est l'image de B par la translation de vecteur \overrightarrow{EF} , alors $\overrightarrow{AB} = \overrightarrow{EF}$
- 2. Le mode d'une série statistique est l'effectif le plus élevé.
- 3. Les vecteurs $\overrightarrow{AB}(-3;2)$ et $\overrightarrow{CD}(1;\frac{-2}{3})$ sont colinéaires. B/Choisie la bonne réponse (0,5 pt × 2)

1. Soit ABC un triangle équilatéral de côté a et de hauteur H. la valeur de H est :

a)
$$\frac{a\sqrt{3}}{2}$$
 b) $a\sqrt{3}$ c) $\frac{a\sqrt{2}}{3}$ 2/ La valeur exacte de $\left|-3+\sqrt{7}\right|$ est : a) $-3+\sqrt{7}$ b) $3+\sqrt{7}$ c) $3-\sqrt{7}$

C/ Complète pour que les affirmations soient vraies. $(0.5 \text{ pt} \times 4)$

- 1) Si f est une application affine et que f(4) = 6 puis f(-3) = 7 alors f est une application
- 2) Si (D): 4x 6y + 5 = 0 alors le coefficient directeur de cette droite est
- 3) Si *BEP* est un triangle rectangle en P et H le pied de la hauteur issue de P alors $PH^2 = \dots$
- 4) $\overrightarrow{AB} \overrightarrow{CD} + \overrightarrow{BE} \overrightarrow{DE} \overrightarrow{AC} = \dots$

C/ Réarrange les pour obtenir une phrase correcte. (0,75 pt)

deux arcs/ alors ils ont /la même mesure/ inscrits interceptent/ de même longueur/ si deux angles

D/Relie par une flèche les expressions de A à la réponse juste du tableau B. $(0,25 \text{ pt} \times 3)$

	$(2-\sqrt{5})^2+4\sqrt{5}$
Α	$8x + (2x - 1)^2 - (2x + 1)^2$
	$(Cosx - Sinx)^2 + 2CosSinx$

EXERCICE 3 (6points)

L'unité de longueur est le centimètre. Le plan est rapporté à un repère orthonormé (0; I; J). On donne les points A(2;1), B(-2;-2) et C(0;-3).

1) Place les points *A*, *B* et *C* dans un repère. (1pt)

2) Calcule les distances AB, AC et BC. $(0.5pt \times 3)$

3) Démontre que ABC est un triangle rectangle. (0,5pt)

4) Écrire une équation de la droite (*AB*). (0,5pt)

5) Soit la fonction linéaire définie par $f(x) = \alpha x$, où a est un nombre réel. On note (D) la droite qui représente cette fonction linéaire.

a) Détermine a pour que (*D*) soit parallèle à la droite (Δ) d'équation $y = \frac{3}{4}x - \frac{1}{2}$. (0,5pt)

b) Détermine a pour que (D) soit perpendiculaire à la droite (Δ) . (0,5pt)

6) Soit *I* le milieu de [*AB*].

a) Calcule les coordonnées de I. (0,5pt)

b) Construis le cercle circonscrit au triangle ABC. (0,5pt)

c) On donne mes $\widehat{BAC} = 30^{\circ}$ (0,5pt)

Donne une mesure de l'angle au centre associé à l'angle \widehat{BAC}