http://www.csc.liv.ac.uk/~mjw/pubs/imas/ **CHAPTER 13: FORMING COALITIONS** Multiagent Systems

Coalitional Games

- Coalitional games model scenarios where agents can benefit by cooperating
- Issues in coalitional games (Sandholm et al, 1999): Coalition structure generation.
- Teamwork
- Dividing the benefits of cooperation.

Coalition Structure Generation

- Deciding in principle who will work together.
- The basic question:

Which coalition should I join?

The result: partitions agents into disjoint coalitions. The overall partition is a coalition structure.

Solving the optimization problem of each coalition

- Deciding how to work together.
- Solving the "joint problem" of a coalition
- itself. Finding how to maximise the utility of the coalition
- Typically involves joint planning etc.

Dividing the Benefits

- Deciding "who gets what" in the payoff
- Coalition members cannot ignore each other's to give me a bad payoff, I can always walk away. preferences, because members can defect: if you try
- We might want to consider issues such as fairness of the distribution.

Formalising Cooperative Scenarios

A coalitional game:

$$\langle Ag,
u
angle$$

where:

- $Ag = \{1, \ldots, n\}$ is a set of *agents*;
- $\nu:2^{AS} \to \mathbb{R}$ is the *characteristic function* of the game.

may then be distributed amongst team members. cooperate in such a way they will obtain utility k, which Usual interpretation: if $\nu(C) = k$, then coalition C can

Which Coalition Should I Join?

Most important question in coalitional games:

is a coalition stable?

that is,

the coalition, or could they benefit by defecting from it? is it rational for all members of coalition to stay with

- (There is no point in me trying to join a coalition with versa.) you unless you want to form one with me, and vice
- Stability is a *necessary* but not *sufficient* condition for coalitions to form.

The Core

- The core of a coalitional game is the set of feasible no sub-coalition can reasonably object to distributions of payoff to members of a coalition that
- of Ag An *outcome* for a coalition C in game $\langle Ag, \nu \rangle$ is a represents a feasible distribution of payott to members vector of payoffs to members of C, $\langle x_1, \ldots, x_k \rangle$ which

"Feasible" means:

$$\nu(C) \ge \sum_{i \in C} x_i$$

- Example: if $\nu(\{1,2\})=20$, then possible outcomes are $\langle 20,0\rangle$, $\langle 19,1\rangle$, $\langle 18,2\rangle$, ..., $\langle 0,20\rangle$.
- (Actually there will be infinitely many!)

Objections

- Intuitively, a coalition C objects to an outcome if there strictly better off. is some outcome for them that makes all of them
- Formally, $C \subseteq Ag$ objects to an outcome $\langle x_1, \ldots, x_n \rangle$ for the grand coalition if there is some outcome $\langle x_1', \dots, x_k' \rangle$ for C such that

$$x_i' > x_i$$
 for all $i \in C$

somebody objects to it! The idea is that an outcome is not going to happen if

The Core

- The core is the set of outcomes for the grand coalition to which no coalition objects.
- If the core is non-empty then the grand coalition is stable, since nobody can benefit from defection.
- Thus, asking

is the grand coalition stable?

is the same as asking:

is the core non-empty?

Problems with the Core

- Sometimes, the core is empty; what happens then?
- Sometimes it is non-empty but isn't "fair"

Suppose
$$Ag=\{1,2\}$$
, $\nu(\{1\})=5$, $\nu(\{2\})=5$, $\nu(\{1,2\})=20$.

can work on his own and do better.) *not* in the core, since the coalition $\{2\}$ can object. (He Then outcome $\langle 20, 0 \rangle$ (i.e., agent 1 gets everything) is

objection. this seems unfair to agent 2, this agent has no However, outcome $\langle 15, 5 \rangle$ is in the core: even though

Why unfair? Because the agents are identical!

How To Share Benefits of Cooperation?

- The Shapley value is best known attempt to define contributes It does this by taking into account how much an agent how to divide benefits of cooperation fairly.
- The Shapley value of agent i is the average amount that i is expected to contribute to a coalition.
- Axiomatically: a value which satisfies axioms: symmetry, dummy player, and additivity

Shapley Defined

Let $\delta_i(S)$ be the amount that i adds by joining $S \subseteq Ag$:

$$\delta_i(S) = \nu(S \cup \{i\}) - \nu(S)$$

... the marginal contribution of i to S.

Then the Shapley value for i, denoted φ_i , is:

$$\varphi_i = \frac{\sum_{r \in R} \delta_i(S_i(r))}{|Ag|!}$$

set of agents preceding i in ordering r. where R is the set of all orderings of Ag and $S_i(r)$ is the

Representing Coalitional Games

- It is important for an agent to know (eg) whether the so, how hard is it to decide this? core of a coalition is non-empty ...
- Problem: naive, obvious representation of coalitional game is *exponential* in the size of Ag!
- Now such a representation is:
- utterly infeasible in practice; and

so large that it renders comparisons to this input size meaningless: stating that we have an algorithm the size of Ag!that runs in (say) time *linear* in the size of such a representation means it runs in time exponential in

How to Represent Characteristic Functions?

Two approaches to this problem:

- try to find a *complete* representation that is succinct in "most" cases
- try to find a representation that is not complete but is always succinct
- A common approach:
- interpret characteristic function over combinatorial structure.

Representation 1: Induced Subgraph

- Represent ν as an undirected graph on Ag, with integer weights $w_{i,j}$ between nodes $i, j \in Ag$.
- Value of coalition C then:

$$u(C) = \sum_{\{i,j\} \subseteq Ag} w_{i,j}$$

subgraph induced by C. i.e., the value of a coalition $C \subseteq Ag$ is the weight of the

the original graph defining v

 ω

В

subgraph induced by $\{A,B,C\}$ giving $v(\{A,B,C\}) = 3 + 2 = 5$

Representation 1: Induced Subgraph

(Deng & Papadimitriou, 94)

- Computing Shapley: in polynomial time.
- Determining emptiness of the core:
 NP-complete
- Checking whether a specific distribution is in the core co-NP-complete

But this representation is not complete.

Representation 2: Weighted Voting Games

For each agent $i \in Ag$, assign a weight w_i , and define an overall *quota*, *q*.

$$u(C) = \left\{ egin{array}{ll} 1 & ext{if } \sum_{i \in C} w_i \geq q \\ 0 & ext{otherwise.} \end{array}
ight.$$

Shapley value:

#P-complete, and "hard to approximate" (Deng & Papadimitriou, 94).

Core non-emptiness:

in polynomial time.

Not a complete representation.

Representation 3: Marginal Contribution Nets

(leong & Shoham, 2005)

Characteristic function represented as rules:

pattern — value.

Pattern is conjunction of agents, a rule applies to a group of agents C if C is a superset of the agents in the pattern.

the rules that apply to the coalition. Value of a coalition is then sum over the values of all

Example:

$$\begin{array}{c} a \wedge b \longrightarrow 5 \\ b \longrightarrow 2 \end{array}$$

We have: $\nu(\{a\}) = 0$, $\nu(\{b\}) = 2$, and $\nu(\{a,b\}) = 7$.

We can also allow negations in rules (agent not present).

Representation 3: Marginal Contribution Nets

- Shapley value: in polynomial time
- Checking whether distribution is in the core: co-NP-complete
- Checking whether the core is non-empty: co-NP-hard.

A complete representation, but not necessarily succinct.

Qualitative Coalitional Games

- Often not interested in utilities, but in goals either the goal is satisfied or not
- QCGs are a type of coalitional game in which each achieved (doesn't care which) agent has a set of goals, and wants one of them to be

Agents cooperate in QCGs to achieve mutually satisfying sets of goals.

Each choice is a set of goals, different ways they could cooperate Coalitions have sets of choices representing the

QCGs

A Qualitative Coalitional Game (QCG) is a structure:

$$\Gamma = \langle G, Ag, G_1, \ldots, G_n, V \rangle$$

where

- $G = \{g_1, \dots, g_m\}$ is a set of *possible goals*;
- $Ag = \{1, \ldots, n\}$ is a set of *agents*;
- $G_i \subseteq G$ is a set of goals for each agent $i \in Ag$, the satisfy i; intended interpretation being that any of G_i would

 $V:2^{Ag} \rightarrow 2^{2^G}$ is a *characteristic function*, which for simultaneously. coalition C is to bring about all the goals in G' $G' \in V(C)$, then one of the choices available to choices, the intended interpretation being that if every coalition $C \subseteq Ag$ determines a set V(C) of

Feasible/Satisfying Goal Sets

Goal set $G' \subseteq G$ satisfies an agent i if $G_i \cap G' \neq \emptyset$. Goal set $G'\subseteq G$ satisfies a coalition $C\subseteq Ag$ if

$$\forall i \in C, G_i \cap G'
eq \emptyset$$

A goal set G' is *feasible* for C if $G' \in V(C)$.

Representing QCGs

- So, how do we represent the function $V: 2^{A8} \rightarrow 2^{2^G}$?
- ullet We use a formula Ψ_V of propositional logic over propositional variables Ag, G, such that:

$$\Psi[C,G']=\top$$
 if and only if $G'\in V(C)$

- "Often" permits succinct representations of V.
- Note that given Ψ_V , C, G', determining whether $G' \in V(C)$ can be done in time polynomial in size of

Fourteen QCG Decision Problems (AIJ, Sep 2004)

Problem	Description	Complexity	q^{mono}
SC	SUCCESSFUL COALITION	NP-complete	NP-complete
SSC	SELFISH SUCCESSFUL COALITION	NP-complete	NP-complete
UGS	UNATTAINABLE GOAL SET	NP-complete	NP-complete
MC	MINIMAL COALITION	co-NP-complete co-NP-complete	co-NP-complete
CM	CORE MEMBERSHIP	co-NP-complete co-NP-complete	co-NP-complete
CNE	CORE NON-EMPTINESS	D ^p -complete	D^p -complete
VP	VETO PLAYER	co-NP-complete	•
MD	MUTUAL DEPENDENCE	co-NP-complete	•
GR	GOAL REALISABILITY	NP-complete	P
NG	NECESSARY GOAL	co-NP-complete	•
EG	EMPTY GAME	co-NP-complete co-NP-complete	co-NP-complete
TG	TRIVIAL GAME	Π^p_2 -complete	Π^p_2 -complete
GU	GLOBAL UNATTAINABILITY	Σ_2^p -complete	NP
IG	INCOMPLETE GAME	D_2^p -complete	1

Coalitional Resource Games (CRGs)

Problem:

where does characteristic function come from?

- One answer provided by Coalitional Resource Games (CRGs)
- Key ideas:
- achieving a goal requires expenditure of resources;
- each agent endowed with a profile of resources;
- coalitions form to pool resource so as to achieve mutually satisfactory set of goals.

CRGs

A coalitional resource game Γ is an (n+5)-tuple:

$$\Gamma = \langle Ag, G, R, G_1, \ldots, G_n, \mathbf{en}, \mathbf{req} \rangle$$

where:

- $Ag = \{a_1, \dots, a_n\}$ is a set of *agents*;
- $G = \{g_1, \dots, g_m\}$ is a set of possible goals;
- $R = \{r_1, \dots, r_t\}$ is a set of *resources*;
- for each $i \in Ag$, $G_i \subseteq G$ is a set of goals, as in QCGs;
- $\mathbf{en}:Ag imes R o\mathbb{N}$ is an endowment function.
- $\operatorname{req}: G \times R \to \mathbb{N}$ is a requirement function.

Nine Decision Problems for CRGs

SUCCESSFUL COALITION

Problem

MAXIMAL COALITION

NECESSARY RESOURCE

STRICTLY NECESSARY RESOURCE

 (C,G^{\prime},r) -OPTIMAL

R-PARETO OPTIMALITY

SUCCESSFUL COALITION WITH RESOURCE BOUNDS NP-complete

CONFLICTING COALITIONS

ACHIEVABLE GOAL SET

Complexity

NP-complete

co-NP-complete

co-NP-complete

D^p-complete

NP-complete

co-NP-complete

co-NP-complete

in P

QCG and CRG Equivalence

We can define a notion of "equivalence" (\equiv) between QCGs and CRGs:

 $\Gamma_1 \equiv \Gamma_2$ means that QCG Γ_1 and CRG Γ_2 agree on the goal sets that are feasible for coalitions

Given a QCG Γ_1 and CRG Γ_2 , the problem of determining whether $\Gamma_1 \equiv \Gamma_2$ is co-NP-complete.

Can we translate between QCGs and CRGs?

Four questions suggest themselves:

- 1. Given a crg, Γ , is there always a QCG, Q_{Γ} such that $Q_{\Gamma} \equiv \Gamma$?
- 2. Given a qcg, Q, is there always a CRG, Γ_Q such that $\Gamma_{Q} \equiv Q$?
- 3. How "efficiently" can a given CRG be expressed as an equivalent QCG in those cases where such an equivalent structure exists?
- 4. How "efficiently" can a given QCG be expressed as equivalent structure exists? an equivalent CRG in those cases where such an

Translating CRGs → QCGs

- QCG. We can always translate a CRG into an equivalent
- More interestingly, we can do this efficiently:

for every CRG Γ_1 there exists an equivalent QCG Γ_2 such that $|\Gamma_2| \leq |\Gamma_1|^2$.

Translating QCGs to CRGs

- We cannot always translate QCGs to equivalent CRGs.
- Moreover, even when we can translate, we can't always do it efficiently:

there exist QCGs \Gamma for which equivalent CRGs equivalent CRG is at least $2^{|\Gamma|}$ exist but for which the size of the smallest