Package 'NonCompart'

July 20, 2017

version 0.3.2
Date 2017-07-20 KST
Title Noncompartmental Analysis for Pharmacokinetic Data
 Description Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software for pharmacokinetic analysis, i.e. 'Phoenix(R) WinNonlin(R)' https://www.certara.com/software/pkpd-modeling-and-simulation/phoenix-winnonlin/some-features-are 1) Use of CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Depends R (>= $2.0.0$)
Author Kyun-Seop Bae [aut]
Maintainer Kyun-Seop Bae <k@acr.kr></k@acr.kr>
Copyright 2016-2017, Kyun-Seop Bae
License GPL-3
NeedsCompilation no
LazyLoad yes
Repository CRAN
<pre>URL https://cran.r-project.org/package=NonCompart</pre>
R topics documented:
NonCompart-package
AUC
BestSlope
Interpol
LinAUC
LogAUC
Slope
sNCA
taunca

2 NonCompart-package

Index 15

NonCompart-package

Noncompartmental Analysis for Pharmacokinetic Data

Description

It conducts a noncompartmental analysis(NCA) as closely as possible to the most widely used commercial pharmacokinetic analysis software.

Details

The main functions are

```
tabNCA to perform NCA for many subjects.

sNCA to perform NCA for one subject.
```

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

AUC 3

AUC

Calculate Area Under the Curve (AUC) and Area Under the first Moment Curve (AUMC) in a table format

Description

Calculate Area Under the Curve(AUC) and the first Moment Curve(AUMC) in two ways; 'linear trapezoidal method' or 'linear-up and log-down' method. Return a table of cumulative values.

Usage

```
AUC(x, y, down = "Linear")
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

down either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC

Details

down="Linear" means linear trapezoidal rule with linear interpolation. down="Log" means linear-up and log-down method.

Value

Table with two columns, AUC and AUMC; the first column values are cumulative AUCs and the second column values cumulative AUMCs.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics - Concepts and Applications. 4th ed. pp687-689. 2011.

See Also

```
LinAUC, LogAUC
```

```
 AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) \\ AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

BestSlope

BestSlope	Choose best fit slope for the $log(y)$ and x regression by the criteria of adjusted R -square

Description

It sequentially fits $(\log(y) \sim x)$ from the last point of x to the previous points with at least 3 points. It chooses a slope the highest adjusted R-square. If the difference is less then 1e-4, it chooses longer slope.

Usage

```
BestSlope(x, y, adm = "Extravascular")
```

Arguments

X	vector values of x-axis, usually time
у	vector values of y-axis, usually concentration
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

Details

Choosing the best terminal slope (y in log scale) in pharmacokinetic analysis is somewhat challenging, and it could vary by analysis performer. Currently this function uses ordinary least square method (OLS) only.

Value

R2	R-squared
R2ADJ	adjusted R-squared
LAMZNPT	number of points used for slope
LAMZ	negative of slope, lambda_z
b0	intercept of regression line
CORRXY	correlation of log(y) and x
LAMZLL	earliest x for lambda_z
LAMZUL	last x for lambda_z
CLSTP	predicted y value at last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

IntAUC 5

Examples

IntAUC

Calculate interval AUC

Description

It calculates interval AUC

Usage

```
IntAUC(x, y, t1, t2, Res, down = "Linear")
```

Arguments

X	vector values of independent variable, usually time
у	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC
Res	result from IndiNCA function
down	either of "Linear" or "Log" to indicate the way to calculate AUC

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates according to the down option.

Value

return interval AUC value (scalar)

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

AUC, Interpol

6 Interpol

Examples

Interpol

Interpolate y value

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
Interpol(x, y, xnew, Slope, b0, down = "Linear")
```

Arguments

x	vector values of x-axis, usually time
у	vector values of y-axis, usually concentration
xnew	new x point to be interpolated, usually new time point
Slope	slope of regression $log(y) \sim x$
b0	y value of just left point of xnew
down	either of "Linear" or "Log" to indicate the way to interpolate

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in x vector, it just returns the given x and y vector. This function usually is called by IntAUC function Returned vector is sorted in the order of increasing x values.

Value

new x and y vector containing xnew and ynew point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

IntAUC

```
x = 10:1 + 0.1
y = -2*x + 40.2
Interpol(x, y, 1.5)
Interpol(x, y, 1.5, down="Log")
```

LinAUC 7

LinAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear trapezoidal method

Description

It calculates AUC and AUMC using linear trapezoidal method

Usage

```
LinAUC(x, y)
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

Details

This function returns AUC and AUMC by linear trapezoidal method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LogAUC, AUC
```

```
LinAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) # compare the last line
```

8 LogAUC

LogAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear-up log-down method

Description

It calculates AUC and AUMC using linear-up log-down method

Usage

```
LogAUC(x, y)
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

Details

This function returns AUC and AUMC by linear-up log-down method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LinAUC,AUC
```

```
LogAUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
# Compare the last line with the above
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

Slope 9

Slope Get the Slope of regression $log(y) \sim x$	Slope	Get the Slope of regression $log(y) \sim x$	
---	-------	---	--

Description

It calculates the slope with linear regression of $log(y) \sim x$

Usage

```
Slope(x, y)
```

Arguments

x vector values of independent variable, usually timey vector values of dependent variable, usually concentration

Details

With time-concentration curve, you frequently need to estimate slope in $log(concentration) \sim time$. This function is usually called by BestSlope function and you seldom need to call this function directly.

Value

R2	R-squared
----	-----------

R2ADJ adjusted R-squared

LAMZNPT number of points used for slope
LAMZ negative of slope, lambda_z
b0 intercept of regression line
CORRXY correlation of log(y) and x
LAMZLL earliest x for lambda_z
LAMZUL last x for lambda_z

CLSTP predicted y value at last point, predicted concentration for the last time point

Author(s)

```
Kyun-Seop Bae <k@acr.kr>
```

See Also

```
BestSlope
```

```
Slope(Indometh[Indometh$Subject==1, "time"], Indometh[Indometh$Subject==1, "conc"])
```

10 sNCA

Description

This is the work-horse function for NCA.

Usage

Arguments

rg	guments		
	x	usually time	
	у	usually concentration	
	dose	given amount	
	adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode $$	
	dur	duration of infusion	
	doseUnit	unit of dose	
	timeUnit	unit of time	
	concUnit	unit of concentration	
	iAUC	interval AUCs to calculate	
	down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC	
	MW	molecular weight of the drug	
	returnNA	if returnNA is TRUE, it returns NA values also.	

Details

This will replace IndiNCA.

Value

CMAX	maximum concentration, Cmax
CMAXD	dose normalized Cmax, CMAX / Dose, Cmax / Dose
TMAX	time of maximum concentration, Tmax
TLAG	time to observe the first non-zero concentration, for extravascular administration only
CLST	last positive concentration observed, Clast
CLSTP	last positive concentration predicted, Clast_pred
TLST	time of last positive concentration, Tlast
LAMZHL	half-life by lambda z, ln(2)/LAMZ
LAMZ	lambda_z negative of best fit terminal slope
LAMZLL	earliest time for LAMZ

sNCA 11

LAMZUL last time for LAMZ

LAMZNPT number of points for LAMZ

CORRXY correlation of log(concentration) and time

R2 R-squared

R2ADJ R-squared adjusted

C0 back extrapolated concentration at time 0, for bolus intravascular administration

only

AUCLST AUC from 0 to TLST

AUCALL AUC using all the given points, including trailing zero concentrations

AUCIFO AUC infinity observed

AUCIFOD AUCIFO / Dose

AUCIFP AUC infinity predicted using CLSTP instead of CLST

AUCIFPD AUCIFP / Dose

AUCPEO AUC % extrapolation observed AUCPEP AUC % extrapolated for AUCIFP

AUC % back extrapolation observed, for bolus IV administration only

AUCPBEP AUC % back extrapolation predicted with AUCIFP, for bolus IV administration

only

AUMCLST AUMC to the TLST

AUMCIFO AUMC infinity observed using CLST

AUMCIFP AUMC infinity determined by CLSTP

AUMCPEO AUMC % extrapolated observed

AUMCPEP AUMC % extrapolated predicted

MRTIVLST mean residence time (MRT) to TLST, for intravascular administration

MRTIVIFO mean residence time (MRT) infinity using CLST, for intravascular administra-

tion

MRTIVIFP mean residence time (MRT) infinity using CLSTP, for intravascular administra-

tion

MRTEVLST mean residence time (MRT) to TLST, for extravascular administration

MRTEVIFO mean residence time (MRT) infinity using CLST, for extravascular administra-

tion

MRTEVIFP mean residence time (MRT) infinity using CLSTP, for extravascular administra-

tion

VZO volume of distribution determined by LAMZ and AUCIFO, for intravascular

administration

VZP volume of distribution determined by LAMZ and AUCIFP, for intravascular ad-

ministration

VZFO VZO for extravascular administration, VZO/F, F is bioavailability
VZFP VZP for extravascular administration, VZP/F, F is bioavailability

CLO clearance using AUCIFO, for intravascular administration
CLP clearance using AUCIFP, for intravascular administration

CLFO CLO for extravascular administration, CLO/F, F is bioavailability

12 sNCA

CLFP	CLP for extravascular administration, CLP/F, F is bioavailability
VSS0	volume of distribution at steady state using CLST, for intravascular administration only
VSSP	volume of distribution at stead state using CLSTP, for intravascular administration only

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

See Also

help, tabNCA

```
# For one subject
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x,\ y,\ dose=320,\ doseUnit="mg",\ concUnit="mg/L",\ timeUnit="h")
sNCA(x, y, dose=320, concUnit="mg/L", returnNA=FALSE)
iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24))
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
MW = 180.164 # Molecular weight of theophylline
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h")
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y, dose=320/MW, doseUnit="mmol", concUnit="mg/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW, doseUnit="mmol", timeUnit="h", timeUnit="h
            returnNA=FALSE)
sNCA(x, y/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW, returnNA=FALSE)
sNCA(x, y/MW, dose=as.numeric(NA), doseUnit="mmol", concUnit="mmol/L", timeUnit="h",
            MW=MW, returnNA=FALSE)
sNCA(x, y, dose=320, concUnit="mg/L", timeUnit="hr")
sNCA(x*60, y, dose=320, concUnit="mg/L", timeUnit="min")
# For all subjects
IDs = sort(unique(Theoph[,"Subject"]))
nID = length(IDs)
Res = vector()
for (i in 1:nID) {
    x = Theoph[Theoph[, "Subject"]==IDs[i], "Time"]
    y = Theoph[Theoph[,"Subject"]==IDs[i],"conc"]
     tRes = sNCA(x, y, dose=320, concUnit="mg/L", returnNA=FALSE)
     tRes = c(ID = IDs[i], tRes)
```

tabNCA 13

```
Res = rbind(Res, tRes)
}
Res
```

tabNCA

Table output NCA

Description

This output NCA result to table form.

Usage

```
tabNCA(concData, colSubj = "Subject", colTime = "Time", colConc = "conc", dose = 0,
    adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", down = "Linear", MW = 0, returnNA = FALSE)
```

Arguments

concData concentration data table
colSubj column name for subject ID
colTime column name for time

colConc column name for concentration

dose administered dose

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

duration of infusion

doseUnit unit of dose
timeUnit unit of time

concUnit unit of concentration

down method to calculate AUC, "Linear" or "Log"

MW molecular weight of drug

returnNA if returnNA is TRUE, it returns NA values also.

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
help, sNCA
```

```
tabNCA(Theoph, dose=320, concUnit="mg/L")
tabNCA(Indometh, colSubj="Subject", colTime="time", colConc="conc", dose=25,
    adm="Infusion", dur=0.5, concUnit="mg/L")
```

14 Unit

Unit

Disply CDISC standard units and multiplied factor of NCA results

Description

It displays CDISC PP output units and multiplication factor for them.

Usage

```
Unit(code = "", timeUnit = "h", concUnit = "ng/mL", doseUnit = "mg", MW = 0)
```

Arguments

code vector of PPTESTCD
timeUnit unit of time
concUnit unit of concentration

doseUnit unit of dose

MW molecular weight of drug

Value

row names PPTESTCD Unit unit

Factor internal mulitpilcation factor

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
Unit(concUnit="ug/L", doseUnit="mg")
Unit(concUnit="ng/L", doseUnit="mg")
Unit(concUnit="umol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="mmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/mL", doseUnit="mmol", MW=500)
Unit(concUnit="umol/mL", doseUnit="mmol", MW=500)
Unit(concUnit="umol/L", doseUnit="mmol", MW=500)
Unit(concUnit="nmol/L", doseUnit="mmol", MW=500)
Unit(concUnit="nmol/L", doseUnit="mmol", MW=500)
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
```

Index

```
*Topic AUC
    AUC, 3
    IntAUC, 5
    LinAUC, 7
    LogAUC, 8
*Topic NCA
    NonCompart-package, 2
*Topic Output Form
    sNCA, 10
    tabNCA, 13
*Topic Slope
    BestSlope, 4
*Topic interpolation
    Interpol, 6
*Topic interval AUC
    IntAUC, 5
    Interpol, 6
*Topic package
    NonCompart-package, 2
*Topic partial AUC
    IntAUC, 5
    {\tt Interpol}, \color{red} 6
*Topic slope
    Slope, 9
AUC, 3, 5, 7, 8
BestSlope, 4, 9
help, 12, 13
IntAUC, 5, 6
Interpol, 5, 6
LinAUC, 3, 7, 8
LogAUC, 3, 7, 8
NonCompart (NonCompart-package), 2
NonCompart-package, 2
Slope, 4, 9
sNCA, 10, 13
tabNCA, 12, 13
Unit, 14
```