CAPM ir akcijų portfelio konstravimas

Monika Šeštokaitė ir Simona Plonytė

Kursinio darbo vadovas prof. Remigijus Leipus

Vilniaus Universitetas

Matematikos ir informatikos fakultetas

Ekonometrinės analizės katedra

2011 gruodžio 8 d.

Kursinio darbo tikslas

- Naudojant kapitalo aktyvų įvertinimo modelį (CAPM), rasti aktyvų rizikos premijų priklausomybę nuo rinkos rizikos premijos.
- Rasti optimalius portfelius, sudarytus iš pasirinktų aktyvų, ištirti jų priklausomybę nuo rinkos pokyčių.

CAPM

- Kapitalo aktyvų įvertinimo modelis (CAPM) įvertina aktyvo investicinės grąžos ir rizikos sąryšį, tiriant vertybinių popierių rinkoje esančių akcijų pajamingumą.
- Kintamieji:

```
r_a – a aktyvo pelningumas/grąža;

r_m – rinkos akcijų pelningumas;

r_f – nerizikingo aktyvo (JAV iždo vekselio) grąža;

r_a – r_f – a aktyvo rizikos premija;

r_m – r_f – rinkos rizikos premija.
```

Duomenys

- Aktyvai: Auksas, Microsoft Corp. akcijos, Apple Inc. akcijos, S&P 500 indeksas, JAV 30-ies dienų iždo vekseliai;
- 2001 m. rugpjūčio 1 d. 2011 m. liepos 29 d.;
- Dieniniai duomenys.

Regresinis modelis

$$r_a - r_f = \alpha + \beta \times (r_m - r_f)$$

- Koeficientai:
 - α parodo aktyvo vertę,
 - β aktyvo pelningumo priklausomybę nuo bendro rinkos pelningumo.

- ullet Kuo didesnis eta, tuo labiau aktyvas priklauso nuo rinkos pokyčių.
 - Ekonomikos augimo laikotarpiu pelningesnės įmonės, kurių $\beta>1$.
 - Nuosmukio laikotarpiu įmonės, kurių $\beta < 1$, yra stabilesnės.

Pavyzdys

Aukso kainos nepriklauso nuo indekso S&P 500 kainų

Dienines S&P 500 indekso kainos

Aukso β turėtų būti < 1

Aktyvų rizikos premijos priklausomybė nuo rinkos rizikos premijos

• Modelis: $r_a - r_f = \alpha + \beta \times (r_m - r_f)$

Aktyvas	α	β	grąža	rizika
Microsoft Corp. akcijos	0.0001	1.0039*	0.00019	0.0189
Apple Inc. akcijos	0.0017*	1.0270*	0.0018	0.02524
Auksas	-0.0011*	-0.023	0.0007	0.0117

Portfelis iš dviejų aktyvų

- a^* optimalus x aktyvo kiekis portfelyje
- $r_p = a^* r_x + (1 a^*) r_y$
- Formulė : $a^* = \frac{\sigma_y^2 r_{xy}\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 2r_{xy}\sigma_x\sigma_y}$

Portfelio nr.	1	2	3
I aktyvas; %	Auksas; 81,17 %	Microsoft Corp. akcijos; 74,92 %	Auksas; 71,12 %
II aktyvas; %	Apple Inc. akcijos; 18,83 %	Apple Inc. akcijos; 25,08 %	Microsoft Corp. akcijos; 28,88 %
Rizika	0.0104	0.0180	0.0096
Grąža	0.00099	0.00060	0.00062
α	-0.0005	0.0004*	-0.0007*
β	0.16243*	1.0111*	0.26268*

Portfelis iš trijų aktyvų

Portfelio iš trijų aktyvų rizikos ir grąžos kombinacijos

- 7.765 % Apple Inc. akcijų, 23.195 % Microsoft Corp. akcijų ir 69.04 % aukso;
- Portfelio $\alpha = -0.0006^*$, $\beta = 0.2967^*$, grąža = 0.000733, rizika = 0.00942.

Išvados

- Auksas tarp tirtų aktyvų mažiausios rizikos ir santykinai didelio pelningumo investicija;
- Geriausi portfeliai:
 - portfelis iš aukso ir Apple Inc. akcijų (geriausias esant nestabiliai rinkai);
 - portfelis iš Microsoft Corp. ir Apple Inc. kompanijų akcijų (geriausias pakilimo laikotarpiu).