Multiple Linear Regression Introduction – Part II

Content

- Global Testing ANOVA
- 2. Individual Testing t Test
- 3. Measure of Goodness of Fit R Squared
- 4. Fitted values and Residuals
- 5. Predictions for New Dataset
- 6. Standardizing Coefficients

Partitioning Total Variance

- Total Variation in dependent variables Y can be split into two: Explained and Unexplained.
- Explained variation is the summation of squared difference between estimated values of Y and the mean value of Y. Whereas, sum of squared difference between the actual values of Y and estimated values is considered to be unexplained.

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Explained Variation

$$\sum_{i=1}^{\infty} (\widehat{Y}_i - \overline{Y})^2$$

Unexplained Variation

$$\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)$$

Global Testing – Using F Test

Testing whether at least one variable is significant

Objective

To test the null hypothesis that all the parameters are simultaneously equal to zero

Null Hypothesis (
$$H_0$$
): $b_1 = b_2 = ... = b_p = 0$
Alternate Hypothesis (H_1): At least one coefficient is not zero

Test Statistic	$F = \frac{\text{Mean Square of Regression}}{\text{Mean Square of Error}}$
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Global Testing – Using F Test

ANOVA Table

Source	DF (Degrees of Freedom)	SS (Sum of Squares)	MSS =SS/DF (Mean Sum of Squares)	F Value	Pr > F
Regression(Explained)	p=4	2510.007	627.5017	49.8129	<0.0001
Error(Unexplained)	n-p-1=28	352.7208	12.5972		
Total	n-1=32	2862.728			

Reject the null hypothesis since p-value < 0.05

At least one variable has significant impact on performance index

Note: This slide is in continuation of the previous slide. So the data considered is the same, "Performance Index" data.

Individual Testing – Using t Test

Testing which variable is significant

Objective	To test the null hypothesis that parameters of individual variables
⊎ of the state of	

Null Hypothesis (H_0) : $b_i = 0$ Alternate Hypothesis (H_1) : $b_i \neq 0$ where i = 1, 2, ..., p

Test Statistic	$t = \frac{Estimatedb_i}{Standard Error of Estimated b_i}$
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Individual Testing – Using t Test

Parameters	Coefficients	Standard Error	t statistic	p-value
Intercept	-54.2822	7.3945	-7.3409	0.0000
aptitude	0.3236	0.0678	4.7737	0.0001
tol	0.0334	0.0712	0.4684	0.6431
technical	1.0955	0.1814	6.0395	0.0000
general	0.5368	0.1584	3.3890	0.0021

p-values for aptitude, technical and general are < 0.05 p-value for test of language (tol) is > 0.05

Therefore, tol is the only insignificant variable

Measure of Goodness of Fit – R Squared

R² is the proportion of variation in the dependent variable which is explained by the independent variables. Note that R² always increases if variable is added in the model

$$R^{2} = \frac{\text{Explained Variation}}{\text{Total Variation}} = \frac{\sum_{i=1}^{n} (\widehat{\mathbf{Y}}_{i} - \overline{\mathbf{Y}})^{2}}{\sum_{i=1}^{n} (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{2}}$$

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the modelling.

$$R_a^2 = 1 - \frac{n-1}{n-p-1} (1 - R^2)$$

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model.

Normally, R² greater than 0.7 is considered as a benchmark for accepting goodness of fit of a model.

Understanding Summary Output

#Model Summary

summary(jpimodel) summary() generates a detailed description of the model.

Interpretation:

- □ Reject null hypothesis that no variables are significant as p-value is<0.05
- □ aptitude, technical, general are significant variables (p-values<0.05)
- □ tol is not significant (p-value>0.05)

Summary of Findings

Significant variables

Aptitude
Technical knowledge
General information

Out of four dependent variables, three affect

job performance index positively

 $R^2 \longrightarrow 0.88$

88% of the variation in job performance index is explained by the model & 12% is unexplained variation

Fitted values (also called 'Predicted Values') are calculated using estimated model
parameters and by substituting values of independent variables. The model now will
include only the significant variables.

Estimated Model:

E(jpi)= -54.40644 + 0.33335*aptitude + 1.11663*technical + 0.54316*general

Values of Independent Variables for First Employee					
aptitude	43.83				
tol	55.92				
technical	51.82				
general	43.58				

Values of Independent Variables for First Employee					
aptitude	43.83				
technical	51.82				
general	43.58				

aptitude

technical

general

jpi= **-54.40644** + **0.33335***43.83 + **1.11663***51.82 + **0.54316***43.58

Predicted jpi= 41.73850

Residual= Observed jpi – Predicted jpi = 45.52 - 41.73850 = 3.781497

#Model Fitting after eliminating the insignificant variable

```
jpimodel_new<-lm(jpi~aptitude+technical+general,data=perindex)
jpimodel_new</pre>
```

The insignificant variable tol is not included in the new model

#Output

```
Coefficients:
(Intercept) aptitude technical general
-54.4064 0.3333 1.1166 0.5432
```

Estimated values of the model parameters using the new model

#Adding Fitted Values and Residuals to the Original Dataset

```
perindex$pred<-fitted(jpimodel_new)

perindex$resi<-residuals(jpimodel_new)

fitted() and residuals() fetch

fitted values and residuals

respectively.</pre>
```

#Output

	empid	jpi	aptitude	tol	technical	general	pred	resi
1	1	45.52	43.83	55.92	51.82	43.58	41.73850	3.781497
2	2	40.10	32.71	32.56	51.49	51.03	41.70973	-1.609731
3	3	50.61	56.64	54.84	52.29	52.47	51.36215	-0.752151
4	4	38.97	51.53	59.69	47.48	47.69	41.69149	-2.721486
5	5	41.87	51.35	51.50	47.59	45.77	40.71145	1.158549
6	6	38.71	39.60	43.63	48.34	42.06	35.61699	3.093010

Interpretation:

- pred values are calculated based on the values of the model parameters
- resi is the difference between the actual jpi values and the pred values.
- Lower the residuals, lesser is the difference between fitted and observed and better is the model.

Predictions for New Dataset

- New data set should have all the independent variables used in the model
- Column names of all common variables in the new and old datasets should be identical
- Note that missing values will be taken as 0 (which can be incorrect)

#Importing New Dataset

```
perindex_new<-read.csv("Performance Index new.csv", header=TRUE)

perindex_new$pred<-predict(jpimodel_new,perindex_new)</pre>
```

predict() returns predicted values. Fitted model is the first argument and new dataset object is the second argument. This ensures R uses parameters from the fitted model for predictions on new data.

head(perindex_new)

```
empid
       jpi
             tol technical general aptitude
                                                pred
   34 66.35 59.20
                     57.18
                             54.98
                                      66.74 61.55258
   35 56.10 64.92
                     52.51
                           55.78
                                      55.45 53.00898
                                      51.73 55.62154
   36 48.95 63.59
                     57.76
                           52.08
   37 43.25 64.90
                     50.13 42.75
                                      45.09 39.82060
   38 41.20 51.50
                     47.89 45.77 50.85 40.87977
   39 50.24 55.77
                     51.13
                             47.98
                                      53.86 46.70139
```

Predictions with Confidence Interval

#Predictions with Confidence Interval

```
predict(jpimodel_new, perindex_new, interval="confidence")
```

interval = "confidence" generates 95% confidence intervals by default

#Output

```
fit 1wr upr
1 61.55258 59.00956 64.09559
2 53.00898 50.67792 55.34004
3 55.62154 53.65401 57.58906
4 39.82060 37.73390 41.90730
5 40.87977 39.23364 42.52590
6 46.70139 45.41627 47.98650
```

Q. Why are confidence intervals needed for predictions?

A. The point estimate is the best guess of the true value of the parameter, while the interval estimate gives a measure of accuracy of that point estimate by providing an interval that contains plausible values.

Standardized Coefficients

How to determine relative importance of predictors?

One possible answer is standardized regression coefficient

Predictors can have very different types of units, which make comparing the regression coefficients meaningless. One solution is to standardize all variables before performing regression analysis.

standardization refers to the process of subtracting the mean (μ) from each value and dividing by the standard deviation (σ).

$$Z = \frac{x - \mu}{\sigma}$$

	X1	X2	Standardized X1	Standardized X2
	32	1052	-0.20	-1.74
	37	1237	0.46	-1.06
	25	1672	-1.12	0.54
	39	1724	0.72	0.74
	23	1555	-1.38	0.11
	41	1423	0.99	-0.37
	43	1870	1.25	1.27
	28	1661	-0.72	0.50
Mean	33.5	1524.25		17
SD	7.60	271.69		/

Standardized Coefficient - R code

Generation of standardized parameter estimate

#Install and load package lm.beta

```
install.packages("lm.beta")
library(lm.beta)

lm.beta(jpimodel_new)

#Output

Standardized Coefficients::
(Intercept) aptitude technical general
0.0000000 0.3543742 0.5880966 0.3236793
```

Interpretation:

technical has highest impact on job performance index followed by aptitude

Quick Recap

Check Variable Significance

Undertake global and individual testing

Measure Goodness of Fit

- Check R-squared, Adjusted R-squared to see how much variation is explained by the model
- Generally, R-squared greater than 0.6 is considered to be a good indicator

Summary Output

• Summary of **Im()** output is exhaustive and gives t statistics, p-value, R² to draw fundamental conclusions about the model

Quick Recap

Fitted Values and Errors

• fitted() and residuals() are used to fetch fitted values and residuals respectively

Predictions

- predict() function predicts values for new data
- Predictions can be obtained as either point estimates or as confidence intervals

Standardizing Coefficients

- Im.beta() function in package Im.beta gives the standardized coefficients.
- It is used to compare the relative importance of independent variables when the variables are in different metric units