Strukturált programok – A C programnyelv elemei A programozás alapjai I.

Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

2019. szeptember 16.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

1 / 45

Strukturált C-Strukturált Egyéb elemek

Tartalom

- 1 Strukturált programozás
 - Bevezetés
 - Definíció
 - Strukturált programok elemei
 - Strukturált programozás tétele
 - A struktogram
- 2 Strukturált programozás C-ben

- Szekvencia
- Választás
- Elöltesztelő ciklus
- Alkalmazás

3 Egyéb strukturált elemek

- Elöltesztelő másként.
- Hátultesztelő ciklus
- Egész értéken alapuló választás

Adminisztrációs feladatok

Aki még nem tette meg...

- BME címtáras azonosító lekérése, jelszó beállítása
 - Szükség van rá a laborgépek használatához
 - https://login.bme.hu/admin
- Moodle bejelentkezés és kipróbálás
 - A tárggyal kapcsolatos adatok (jelenlét, pontok) itt találhatók
 - Felhasználónév a neptun kód
 - Először az elfelejtett jelszó linket használjuk
 - https://moodle.hit.bme.hu
 - Próbáljuk ki a feladatleadást a laborkurzus Próbafeladat feladatán
- Regisztráció további szolgáltatásokra (opcionális)
 - https://accadmin.hszk.bme.hu

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

2 / 45

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

1. fejezet

Strukturált programozás

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

3 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

Algoritmusok

BME

Ismétlés gyakorlatról:

Keressük az f(x) monoton növekvő függvény zérushelyét n és p között ϵ pontossággal.


```
1  p-n < eps?
2  HA IGAZ, UGORJ 10-re
3  k ← (n+p) / 2
4  f(k) < 0?
5  HA IGAZ, UGORJ 8-ra
6  p ← k;
7  UGORJ 1-re
8  n ← k;
9  UGORJ 1-re
10  A zérushely: n</pre>
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

5 / 45

Algoritmusok

Ismétlés gyakorlatról:

Keressük az f(x) monoton növekvő függvény zérushelyét n és p között ϵ pontossággal.

 $\begin{array}{l} \texttt{AM\'IG p-n} > \texttt{eps, ISM\'ETELD} \\ \texttt{k} \leftarrow (\texttt{n+p}) \ / \ 2 \\ \texttt{HA f(k)} > \texttt{0} \\ \texttt{p} \leftarrow \texttt{k}; \\ \texttt{EGY\'EBK\'ENT} \\ \texttt{n} \leftarrow \texttt{k}; \\ \texttt{A z\'erushely: n} \end{array}$

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált – C alapok

2019. szeptember 16.

6 / 45

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

Strukturált vs strukturálatlan

1 p-n < eps?
2 HA IGAZ, UGORJ 10-re
3 k ← (n+p) / 2
4 f(k) < 0?
5 HA IGAZ, UGORJ 8-ra
6 p ← k;
7 UGORJ 1-re
8 n ← k;
9 UGORJ 1-re
10 A zérushely: n</pre>

- Strukturált program
 - könnyen karbantartható
 - komplex vezérlés
 - magas szintű

- Strukturálatlan program
 - spagettikód
 - egyszerű vezérlés
 - "hardverszint"

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

Strukturált programok elemei

■ Minden strukturált program az alábbi egyszerű sémát követi:

- A program struktúráját Tevékenység belső szerkezete határozza meg.
- Tevékenység lehet
 - Elemi tevékenység
 - Szekvencia
 - Ciklus
 - Választás

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált programok elemei

Strukturált programok elemei

Elemi tevékenység

ami nem szorul további kifejtésre

Elemi tev.

Az üres tevékenység (Ne csinálj semmit) is elemi tevékenység

Strukturált - C alapok

2019. szeptember 16.

9 / 45

Szekvencia

Két tevékenység egymás utáni végrehajtása adott sorrendben

- 1. Tev.
- 2. Tev.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

10 / 45

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

Strukturált programok elemei

A szekvencia minden eleme maga is tevékenység, így természetesen kifejthető szekvenciaként

 A kifejtést folytatva a szekvencia gyakorlatilag tetszőleges hosszú (véges) tevékenységsorozatot jelenthet

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

Strukturált programok elemei

Igazságértéken alapuló választás

Két tevékenység alternatív végrehajtása egy feltétel igazságértékének megfelelően

HA Feltétel Tev. ha igaz EGYÉBKÉNT Tev. ha hamis

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

2019. szeptember 16.

11 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

Strukturált programok elemei

■ Gyakran az egyik ág üres

HA Feltétel Tev. ha igaz

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

13 / 45

Strukturált programok elemei

Elöltesztelő ciklus

Tevékenység ismétlése mindaddig, míg egy feltétel teljesül

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

14 / 45

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

Strukturált programok elemei

Strukturált programozás tétele

- Elemi tevékenység,
- szekvencia.
- választás és
- ciklus

alkalmazásával MINDEN algoritmus megfogalmazható.

Strukturált C-Strukturált Egyéb elemek


```
állapot \leftarrow 0
AMÍG állapot nem 3, ISMÉTELD
  HA állapot = 0
     Tev. 1
     Tev. 2
     \'allapot \leftarrow 1
  HA állapot = 1
     HA Felt. 1
        állapot \leftarrow 0
     EGYÉBKÉNT
        állapot \leftarrow 2
  HA állapot = 2
     HA Felt. 2
        Tev. 2
        \'allapot \leftarrow 1
     EGYÉBKÉNT
        állapot \leftarrow 3
```

Strukturált programozás tétele – bizonyítás

Most, hogy tudjuk, hogy mindig lehet, gondolkodhatunk egyszerűbb strukturált megfelelőn is:

Bevezetés Definíció Elemek Tétel Struktogram

```
Tev. 1
Tev. 2
AMÍG (Felt. 1 VAGY Felt. 2.), ISM.
HA Felt. 1
Tev. 1
Tev. 2
```

Mi a továbbiakban eleve strukturált szerkezetben fogalmazzuk meg algoritmusainkat

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

17 / 45

A struktogram

- A folyamatábra
 - a strukturáltalan programok leírási eszköze
 - azonnal kódolható belőle strukturálatlan program (HA IGAZ, UGORJ)
 - a strukturált elemek (főleg a ciklusok) sokszor nehezen ismerhetőek fel benne
- A struktogram
 - a strukturált programok ábrázolási eszköze
 - csak strukturált program írható le vele
 - könnyen kódolható belőle strukturált program

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

A struktogram

- A program egy téglalap
 - Tevékenység
- további téglalapokra bontható az alábbi szerkezeti elemekkel
- Szekvencia

Tev. 1

■ Elöltesztelő ciklus

Választás

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált – C alapok

2019. szeptember 16.

18 / 45

Strukturált C-Strukturált Egyéb elemek

Bevezetés Definíció Elemek Tétel Struktogram

A struktogram

 Gyökhelykeresés folyamatábrával, struktogrammal és strukturált pszeudokóddal

 $\begin{array}{lll} \texttt{AMÍG p-n} &> \texttt{eps, ISMÉTELD} \\ \texttt{k} &\leftarrow (\texttt{n+p}) \; / \; 2 \\ \texttt{HAf(k)} &> \texttt{0} \\ \texttt{p} &\leftarrow \texttt{k}; \\ \texttt{EGYÉBKÉNT} \\ \texttt{n} &\leftarrow \texttt{k}; \end{array}$

Szekvencia C-ben

2. fejezet

Szekv. Vál. Elölteszt. Alkalm

Strukturált programozás C-ben

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Strukturált – C alapok 2019. szeptember 16. 21 / 45

Strukturált C-Strukturált Egyéb elemek Szekv. Vál. Elölteszt. Alkalm.

Választás C-ben – az if utasítás

Írjunk programot, mely a bekért egész számról eldönti, hogy az kicsi (<10) vagy nagy $(\ge10)!$

```
#include <stdio.h>
       KI: infó
                     2 int main()
       BE: x
                    3 {
                         int x;
       x < 10
                         printf("Adjon meg egy számot: ");
                         scanf("%d", &x);
          KI: nagy
   KI: kicsi
                         if (x < 10)
                                             /* feltétel */
                           printf("kicsi"); /*igaz ág*/
Legyen x egész
KI: infó
                            printf("nagy"); /*hamis ág*/
BE: x
                         return 0:
HA x < 10
                    12 }
 KI: kicsi
EGYÉBKÉNT
                        Adjon meg egy számot: 5
  KI: nagy
                        kicsi
```

Szekvencia megfogalmazása egymás után kiadott utasításokkal

```
/* football.c -- szurkolóprogram */
#include <stdio.h>
int main()
{
   printf("Szódásüveget"); /* nincs újsor */
   printf(" a bírónak,\n"); /* itt van */
   printf("hajrá, Fradi!");
   return 0;
}
```

```
Szódásüveget a bírónak,
hajrá, Fradi!
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Strukturált – C alapok 2019. szeptember 16. 22 / 45

Strukturált C-Strukturált Egyéb elemek Szekv. Vál. Elölteszt. Alkalm.

Választás – az if utasítás

Az if utasítás szintaxisa

```
if (<feltétel kifejezés>) <utasítás ha igaz>
[ else <utasítás ha hamis> ] opt
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

23 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált – C alapok

Elöltesztelő ciklus C-ben – a while utasítás

Írjuk ki 1-től 10-ig az egész számok négyzeteit!

```
# #include <stdio.h>
        n \leftarrow 1
                        2 int main()
        n < 10
                             int n:
          KI: n \cdot n
                             n = 1; /* inicializálás */
                             while (n <= 10) /* feltétel */
         n \leftarrow n + 1
                               printf("%d ", n*n);/* Kiírás */
                                                /* növelés */
                               n = n+1;
Legyen n egész
n \leftarrow 1
                             return 0;
                       11
AMÍG n <= 10
                       12 }
  KI: n*n
  n \leftarrow n+1
                           1 4 9 16 25 36 49 64 81 100
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019, szeptember 16.

25 / 45

Strukturált C-Strukturált Egyéb elemek

Szekv. Vál. Elölteszt. Alkalm.

Szekv. Vál. Elölteszt. Alkalm.

Komplex alkalmazás

- Szekvenciával, ciklussal és választással minden megfogalmazható!
- Most már mindent tudunk, megírhatjuk a gyökhelykeresés programját C-ben!
- Új elem: a valós számok tárolására alkalmas double típus (később részletezzük)

```
1 double a;
                   /* a valós szám */
                   /* értékadás */
a = 2.0;
g printf("%f", a); /* kiírás */
```

Elöltesztelő ciklus – a while utasítás

A while utasítás szintaxisa

```
while (<feltétel kifejezés>) <utasítás>
1 while (n <= 10)
    printf("%d ", n*n);
    n = n+1;
5 }
```

■ C-ben utasítás mindig helyettesíthető blokkal.

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

26 / 45

Strukturált C-Strukturált Egyéb elemek

Szekv. Vál. Elölteszt. Alkalm.

Zérushely keresése

```
Keressük az
f(x) = x^2 - 2
függvény gyökhelyét
n = 0 és p = 2 között
\epsilon = 0.001
pontossággal!
```

```
n \leftarrow 0
      p \leftarrow 2
   p - n > \epsilon
        k \leftarrow \frac{n+p}{2}
      k^2 - 2 > 0
p \leftarrow k
                    n \leftarrow k
       KI: n
```

```
# #include <stdio.h>
3 int main()
     double n = 0.0, p = 2.0;
     while (p-n > 0.001)
       double k = (n+p)/2.0;
       if (k*k-2.0 > 0.0)
         p = k;
       else
11
         n = k:
13
     printf("A gyökhely: %f", n);
15
16
     return 0;
17 }
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

27 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

Elöltesztelő ciklus C-ben – a for utasítás

Írjuk ki 1-től 10-ig az egész számok négyzeteit!

3. fejezet

Egyéb strukturált elemek

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

29 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Legyen n egész

AMÍG n <= 10 KI: n*n $n \leftarrow n+1$

 $n \leftarrow 1$

 $n \leftarrow 1$

n < 10

 $KI: n \cdot n$

 $n \leftarrow n + 1$

Strukturált - C alapok

2019. szeptember 16.

30 / 45

Strukturált C-Strukturált Egyéb elemek

Elöltesztelő Hátultesztelő Választás

Előltesztelő Hátultesztelő Választás

Elöltesztelő ciklus C-ben – a for utasítás

Írjuk ki 1-től 10-ig az egész számok négyzeteit!

```
n \leftarrow 1
n < 10
  KI: n \cdot n
n \leftarrow n + 1
```

```
Legyen n egész
  n=1-től, AMÍG n<=10, egyesével
    KI: n*n
#include <stdio.h>
2 int main()
3 {
    int n;
    for (n = 1; n \le 10; n = n+1)
      printf("%d ", n*n);
    return 0;
8 }
```

1 4 9 16 25 36 49 64 81 100

Αz

- Inicializálás
- Amíg Feltétel IGAZ
 - Tevékenység
 - Léptetés

struktúra annyira gyakori a programozásban, hogy külön utasítással egyszerűsítjük alkalmazását.

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Elöltesztelő ciklus – a for utasítás

A for utasítás szintaxisa

```
for (<inic kif>; <felt kif>; <utótev kif>) <utasítás>
1 for (n = 1; n \le 10; n = n+1)
    printf("%d ", n*n);
```

Utótevékenység az utasítás végrehajtása után történik meg.

```
n: 11
1 4 9 16 25 36 49 64 81 100
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

31 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

Szorzótábla

Írjuk ki a 10 · 10-es szorzótáblát!

- 10 sort kell kiírnunk (row = 1, 2, 3, ...10)
- Minden sorban
 - 10 oszlopba írunk (col = 1, 2, 3, ...10)
 - Minden oszlopban
 - Kiírjuk row*col értékét
 - Majd új sort kell kezdenünk

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019, szeptember 16.

33 / 45

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Strukturált programok elemei

Hátultesztelő ciklus

Tevékenység ismétlése mindaddig, míg egy feltétel teljesül

ISMÉTELD Ciklusmag AMÍG Feltétel

> Ciklusmag Feltétel

Szorzótábla

■ Ne sajnáljunk blokkba zárni akár egyetlen utasítást is, ha ez követhetőbbé teszi a kódot!

```
int row;
for (row = 1; row <= 10; row=row+1)

{
  int col;    /* blokk elején deklaráció */
  for (col = 1; col <= 10; col=col+1)
  {
    printf("%4d", row*col); /* kiírás 4 szélesen */
  }
  printf("\n");
}</pre>
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált – C alapok

2019. szeptember 16.

34 / 45

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Strukturált programok elemei

■ Visszavezethető szekvenciára és elöltesztelő ciklusra

Hátultesztelő ciklus – a do utasítás

Olvassunk be pozitív egész számokat! Akkor hagyjuk abba, ha az összeg meghaladta a 10-et!

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Strukturált programok elemei

Egész értéken alapuló választás

Tevékenységek alternatív végrehajtása egy egész kifejezés értéke alapján

Hátultesztelő ciklus – a do utasítás

A do utasítás szintaxisa

```
do <utasítás> while (<feltétel kifejezés>);
    printf("A következő szám: ");
    scanf("%d", &n);
    sum = sum + n;
7 while (sum <= 10);</pre>
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

38 / 45

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Strukturált programok elemei

■ Megvalósítható egymásba ágyazott választásokkal

Egész értéken alapuló választás – a switch utasítás

■ Rendeljünk szöveges értékelést számmal kifejezett jegyekhez!

KI: infó					
BE: n					
n =?					
1	2	3	4	5	más
KI: elégtelen	KI: elégséges	KI: közepes	KI: jó	KI: jeles	KI: baj van

© Farkas B., Fiala P., Vitéz A., Zsóka Z. 41 / 45 Strukturált - C alapok 2019. szeptember 16.

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Előltesztelő Hátultesztelő Választás

Egész értéken alapuló választás – a switch utasítás

A switch utasítás szintaxisa

```
switch(<egész kifejezés>) {
    case <konstans kif1>: <utasítás 1>
    [case <konstans kif2>: <utasítás 2> ...] opt
    [default: <default utasítás>] opt
  }
1 switch (n)
    case 1: printf("elégtelen"); break;
    case 2: printf("elégséges"); break;
    case 3: printf("közepes"); break;
    case 4: printf("jo"); break;
    case 5: printf("jeles"); break;
    default: printf("baj van");
9 }
```

Egész értéken alapuló választás – a switch utasítás

■ Rendeljünk szöveges értékelést számmal kifejezett jegyekhez!

```
#include <stdio.h>
   int main() {
     int n;
     printf("Adja meg a jegyet: ");
     scanf("%d", &n);
     switch (n)
       case 1: printf("elégtelen"); break;
       case 2: printf("elégséges"); break;
       case 3: printf("közepes"); break;
       case 4: printf("jo"); break;
       case 5: printf("jeles"); break;
       default: printf("baj van");
     return 0;
15
16 }
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16.

42 / 45

Strukturált C-Strukturált Egyéb elemek

Előltesztelő Hátultesztelő Választás

Egész értéken alapuló választás – a switch utasítás

 A break utasítások nem részei a szintaxisnak. Ha lehagyjuk őket, a switch akkor is értelmes, de nem a korábban specifikált eredményt adja:

```
switch (n)
  case 1: printf("elégtelen");
  case 2: printf("elégséges");
  case 3: printf("közepes");
  case 4: printf("jo");
  case 5: printf("jeles");
  default: printf("baj van");
```

```
Adja meg a jegyet: 2
elégségesközepesjójelesbaj van
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16

43 / 45

© Farkas B., Fiala P., Vitéz A., Zsóka Z.

Strukturált - C alapok

2019. szeptember 16

Egész értéken alapuló választás – a switch utasítás

■ A konstans kifejezések csak belépési pontok, ahonnan minden utasítást végrehajtunk az első break-ig vagy a blokk végéig:

```
switch (n)
{
    case 1: printf("megbukott"); break;
    case 2:
    case 3:
    case 4:
    case 5: printf("átment"); break;
    default: printf("baj van");
}

Adja meg a jegyet: 2
átment
```

© Farkas B., Fiala P., Vitéz A., Zsóka Z. Strukturált – C alapok 2019. szeptember 16. 45 / 45

