Al and Deep Learning

Artificial Intelligence and Brain

Jeju National University Yung-Cheol Byun Materials are here:

https://github.com/yungbyun/uae git clone *link*

Agenda

- Artificial Intelligence
- Brain and Neuron
- Synapse: the connection between neurons
- Learning and Synapse

Intelligence

- One's capability for logic, understanding, self-awareness, learning, planning, creativity, and problem solving
- The ability to perceive information, and to retain it as knowledge to be applied towards adaptive behaviors within an environment
- Human Intelligence = Natural Intelligence

Aritificial Intelligence

- Intelligence exhibited by machines
- A computerized version of the human intelligence
- Theory and development of computer systems able to perform tasks such as <u>visual perception</u>, <u>voice recognition</u>, decision-making, and translation between languages

How can machines get Al?

What happens inside the human brain?

Neuroanatomist

Cerebellum(소뇌) : controls muscles

Neurons in a bird's brain

Ramón y Cajal's drawing of the neurons in a bird's cerebellum – a part of the brain.

Brain of Human

100 billion neurons more than the number of stars in the universe

So, what happens inside?

From a DVD that comes with the illustrated medical atlas, The Human Brain, DK Publishing UK.

Connection between neurons

Neurotransmitter in synapse

Various amount of neurotransmitter in each synapse

Connection between neurons

No neurotransmitter and no signal to the nucleus

Small amount and week signal to the nucleus

Strong connection and strong signal to the nucleus

Our memory, thinking, moving, emotion, and everything

Alzheimer's, Paralysis

Simulation (signaling)

A neuron has a so simple function,

ON or OFF

(two states)

but huge amounts of neurons & connections among them,

High-level functions from the connection

Everything we do is enabled by electrical signals running through our neural networks.

Is just the connection enough?

Huge amounts of neurons & the initialized connections among them

Updating connections while experiencing

Old connection (yesterday)

New connection (today)

Happiness

Stress

Learning

Adjusting the amount of neurotransmitter

S/W implementation Artificial Intelligence

The connections

A Neuron with 1 Input

Action of a neuron

$$h = wx$$

Strength of a connection (w)

Amount of neurotransmitter & the strength of a signal

if w is large, if small, if not exist,

Application: Wage Calculator

- . Knowledge: 1 hour working $(x) \rightarrow 1$ USD(y) pay
- . How much you get if work 4 hours? (prediction)

x (hour)	W	output of a neuron	y (wage)	error	Reaction
1	4(random)	4	1	4-1	scolding seriously
1	2	2	1	2-1	ordinarily
1	1.5	1.5	1	1.5-1	not bed
1	1.3	1.3	1	1.3-1	good but not enough
1	1.1	1.1	1	1.1-1	acceptable

Scolding a dog/dolphin/child automatically updates the connection strength(w)

to make the error smaller in the next step.

Learning

is to find the optimal value of parameter (w) to predict correctly.

the amount of

neurotransmitter

Drawing a neuron

Representing the below equation:

$$h = 1x$$

Matrix notation

$$(x)(1) \rightarrow (h)$$

Simplified version

Where is the synapse/connection?

Neuron with many inputs

Weighted Sum

$$h = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + w4 \cdot x4$$

if the inputs are (1,1,1,1), then h is ..

Real operation of a neuron

- ullet signal ON if the weighted sum is greater than T
- otherwise signal OFF

Thresholding

Weighted sum and thresholding

$$h = \begin{cases} 1 & if \ x_1 + 2x_2 + x_3 + 3x_4 > T \\ 0 & otherwise \end{cases}$$

What is learning?

How does it learn automatically?