

Applications linéaires continues, normes matricielles

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

Exercice 1 *

On munit $E = \mathbb{R}[X]$ de la norme $\| \|_{\infty}$ définie par : $\forall P \in E, \|P\|_{\infty} = \sup \left\{ \left| \frac{P^{(n)}(0)}{n!} \right|, n \in \mathbb{N} \right\}.$

- 1. Vérifier brièvement que $\| \|_{\infty}$ est une norme sur E.
- 2. Soit f l'endomorphisme de E défini par $\forall P \in E$, f(P) = XP. Démontrer que l'application f est continue sur $(E, || \cdot ||_{\infty})$ et déterminer |||f|||.

Correction ▼ [005854]

Exercice 2 **

On munit $E = \ell^{\infty}(\mathbb{C})$ le \mathbb{C} -espace vectoriel des suites bornées de la norme $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$.

On considère les endomorphismes Δ et C de $\ell^{\infty}(\mathbb{C})$ définis par :

$$\forall u \in E, \Delta(u) = v \text{ où } \forall n \in \mathbb{N}, v_n = u_{n+1} - u_n \text{ et } \forall u \in E, C(u) = w \text{ où } \forall n \in \mathbb{N}, w_n = \frac{1}{n+1} \sum_{k=0}^n u_k.$$

Montrer que Δ et C sont continus sur $(E, \| \|_{\infty})$ et calculer leur norme.

Correction ▼ [005855]

Exercice 3 *** I

On munit $E = C^0([0,1],\mathbb{R})$ de la norme 1 définie par $\forall f \in E$, $||f||_1 = \int_0^1 |f(t)| dt$.

On pose $T: E \rightarrow E$ et on admet que T est un endomorphisme de E.

$$\begin{array}{cccc}
f & \mapsto & Tf : & [0,1] & \to & \mathbb{R} \\
& x & \mapsto & \int_0^x f(t) dt
\end{array}$$

- 1. Démontrer que T est continu sur $(E, || \cdot ||_1)$ et déterminer |||T|||.
- 2. Vérifier que la borne supérieure n'est pas atteinte.

Correction ▼ [005856]

Exercice 4 **

On munit $E = \mathcal{M}_n(\mathbb{R})$ de la norme N définie par $\forall A \in E, N(A) = \sup_{1 \le i \le n} \left\{ \sum_{j=1}^n |a_{i,j}| \right\}$ (on admet que N est une norme sur E).

Soit f l'application de E dans \mathbb{R} définie par $\forall A \in E$, f(A) = Tr(A). Démontrer que l'application f est continue sur (E, N) et déterminer |||f|||.

Correction ▼ [005857]

Exercice 5 ***

Déterminer $s = \operatorname{Sup}\left\{\frac{\|AB\|}{\|A\|\|B\|}, (A, B) \in (\mathcal{M}_n(\mathbb{C}) \setminus \{0\})^2\right\}$ quand $\| \|$ est

- 1. $\| \|_1$,
- $2. \| \|_2$

3. $\| \|_{\infty}$.

Correction ▼ [005858]

Exercice 6 *

Une norme sur $\mathcal{M}_n(\mathbb{R})$ $(n \ge 2)$, est-elle nécessairement une « norme trois barres »?

Correction ▼ [005859]

Exercice 7 **

Soit *N* une norme sur $\mathcal{M}_n(\mathbb{R})$.

Montrer qu'il existe k > 0 tel que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, N(AB) \leq k(A)N(B)$.

Correction ▼ [005860]

Exercice 8 **

Existe-t-il une norme N sur $\mathcal{M}_n(\mathbb{R})$ $(n \ge 2)$ telle que $\forall (A,B) \in (\mathcal{M}_n(\mathbb{R}))^2$, N(AB) = N(A)N(B).

Correction ▼ [005861]

Exercice 9 ***

On pose $\forall X = (x_i)_{1 \le i \le n} \mathcal{M}_{n,1}(\mathbb{R}), \|X\|_1 = \sum_{i=1}^n |x_i| \text{ et } \|X\|_{\infty} = \max_{1 \le i \le n} |x_i|.$

Déterminer les normes sur $\mathcal{M}_n(\mathbb{R})$ respectivement associées aux normes $\| \|_1$ et $\| \|_{\infty}$ de $\mathcal{M}_{n,1}(\mathbb{R})$. On notera $\| \| \|_1$ et $\| \| \|_{\infty}$ ces normes.

Correction ▼ [005862]

Exercice 10 **I

Pour $X = (x_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R})$, on pose $||X||_2 = \sqrt{\sum_{i=1}^n x_i^2}$. Pour $A \in \mathcal{S}_n(\mathbb{R})$, on note $\rho(A)$ le rayon spectral de A c'est-à-dire $\rho(A) = \operatorname{Max}\{|\lambda|, \ \lambda \in \operatorname{Sp}(A)\}$.

Montrer que $\forall A \in \mathscr{S}_n(\mathbb{R}), |||A|||_2 = \rho(A)$ où $|||A|||_2 = \sup\left\{\frac{\|AX\|_2}{\|X\|_2}, X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}\right\}.$

Correction ▼ [005863]

Correction de l'exercice 1

- 1. Soit $P \in E$. Si on pose $P = \sum_{k=0}^{+\infty} a_k X^k$, il existe $n \in \mathbb{N}$ tel que $\forall k > n$, $a_k = 0$. Donc $||P||_{\infty} = \sup \left\{ \left| \frac{P^{(k)}(0)}{k!} \right|, k \in \mathbb{N} \right\} = 0$ $\max\{|a_k|, 0 \le k \le n\}$ existe dans \mathbb{R} .
 - $\forall P \in E$, $||P||_{\infty} \geqslant 0$.
 - Soit $P \in E$. $||P||_{\infty} = 0 \Rightarrow \forall k \in \mathbb{N}, |a_k| \leq 0 \Rightarrow \forall k \in \mathbb{N}, a_k = 0 \Rightarrow P = 0$.
 - Soient $P \in E$ et $\lambda \in \mathbb{R}$. $\|\lambda P\|_{\infty} = \text{Max}\{|\lambda a_k|, 0 \leqslant k \leqslant n\} = |\lambda| \text{Max}\{|a_k|, 0 \leqslant k \leqslant n\} = |\lambda| \|P\|_{\infty}$.
 - Soient $P = \sum_{k \geqslant 0} a_k X^k$ et $Q = \sum_{k \geqslant 0} b_k X^k$ deux polynômes. Pour $k \in \mathbb{N}$, $|a_k + b_k| \leqslant |a_k| + |b_k| \leqslant |P||_{\infty} + |B||_{\infty} + |B||_{\infty$ $||Q||_{\infty}$ et donc $||P+Q||_{\infty} \leq ||P||_{\infty} + ||Q||_{\infty}$.

$\| \|_{\infty}$ est une norme sur E.

2. $\forall P \in E$, $||f(P)||_{\infty} = ||P||_{\infty}$ et donc $\forall P \in E \setminus \{0\}$, $\frac{||f(P)||_{\infty}}{||P||_{\infty}} = 1$. On en déduit que $\sup \left\{ \frac{||f(P)||_{\infty}}{||P||_{\infty}}, P \in E \setminus \{0\} \right\} = 1$ 1. Ceci montre tout à la fois que f est continue sur $(E, || \cdot ||_{\infty})$ et |||f||| = 1.

$$f$$
 est continue sur $(E, || \parallel_{\infty})$ et $|||f||| = 1$.

Correction de l'exercice 2

(La linéarité de Δ est claire et de plus Δ est un endomorphisme de E car si u est une suite bornée, $\Delta(u)$ l'est encore. Plus précisément,)

$$\forall u \in E, \forall n \in \mathbb{N}, |\Delta(u)_n| \leq |u_n| + |u_{n+1}| \leq 2||u||_{\infty} \text{ et donc } \forall u \in E, ||\Delta(u)||_{\infty} \leq 2||u||_{\infty}.$$

Ceci montre que Δ est continu sur E et $|||\Delta||| \le 2$. Ensuite, si u est la suite définie par $\forall n \in \mathbb{N}$, $u_n = (-1)^n$ alors u est un élément non nul de E tel que $||u||_{\infty} = 1$ et $||\Delta(u)||_{\infty} = 2$. En résumé,

- $\forall u \in E \setminus \{0\}$, $\frac{\|\Delta(u)\|_{\infty}}{\|u\|_{\infty}} \leq 2$, $\exists u \in E \setminus \{0\}$, $\frac{\|\Delta(u)\|_{\infty}}{\|u\|_{\infty}} = 2$. On en déduit que

$$\Delta$$
 est continu sur $(E, || ||_{\infty})$ et $|||\Delta||| = 2$.

(La linéarité de C est claire et C est un endomorphisme de E car si u est bornée, C(u) l'est encore. Plus précisément,)

$$\forall u \in E, \forall n \in \mathbb{N}, |(C(u))_n| \leq \frac{1}{n+1} \sum_{k=0}^n ||u||_{\infty} = ||u||_{\infty} \text{ et donc } \forall u \in E, ||C(u)||_{\infty} \leq ||u||_{\infty}.$$

Par suite T est continue sur E et $|||T||| \le 1$. Ensuite, si u est la suite définie par $\forall n \in \mathbb{N}$, $u_n = 1$ alors u est un élément non nul de E tel que $||u||_{\infty} = 1$ et $||C(u)||_{\infty} = 1$. En résumé,

- $\forall u \in E \setminus \{0\}$, $\frac{\|C(u)\|_{\infty}}{\|u\|_{\infty}} \leqslant 1$, $\exists u \in E \setminus \{0\}$, $\frac{\|C(u)\|_{\infty}}{\|u\|_{\infty}} = 1$.

On en déduit que

$$C$$
 est continu sur $(E, || \cdot ||_{\infty})$ et $|||C||| = 1$.

Correction de l'exercice 3

1. Soit $f \in E$.

$$||Tf||_1 = \int_0^1 |Tf(x)| \, dx = \int_0^1 \left| \int_0^x f(t) \, dt \right| dx$$

$$\leq \int_0^1 \left(\int_0^x |f(t)| \, dt \right) dx$$

$$\leq \int_0^1 \left(\int_0^1 |f(t)| \, dt \right) dx = \int_0^1 ||f||_1 \, dx = ||f||_1.$$

Ceci montre que $\forall f \in E \setminus \{0\}$, $\frac{\|Tf\|_1}{\|f\|_1} \leq 1$. Ceci montre que T est continu sur $(E, \|\|_1)$ et que $\|T\| \leq 1$. Pour $n \in \mathbb{N}$ et $x \in [0, 1]$, posons $f_n(x) = (1 - x)^n$. Pour $n \in \mathbb{N}$,

$$||f_n||_1 = \int_0^1 (1-x)^n dx = \left[-\frac{(1-x)^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1},$$

puis pour $x \in [0,1]$, $T f_n(x) = \int_0^x (1-t)^n dt = \frac{1}{n+1} (1-(1-x)^{n+1})$ et donc

$$||Tf_n||_1 = \int_0^1 |Tf_n(x)| dx = \frac{1}{n+1} \int_0^1 (1 - (1-x)^{n+1}) dx = \frac{1}{n+1} \left(1 - \frac{1}{n+2}\right) = \frac{1}{n+2}.$$

On en déduit que $\forall n \in \mathbb{N}$, $|||T||| \geqslant \frac{\|Tf_n\|_1}{\|f_n\|_1} = \frac{n+1}{n+2}$.

En résumé, $\forall n \in \mathbb{N}, \, \frac{n+1}{n+2} \leqslant |||T||| \leqslant 1$ et donc |||T||| = 1.

T est continu sur
$$(E, || \cdot ||_1)$$
 et $|||T||| = 1$.

2. Supposons qu'il existe $f \in E \setminus \{0\}$ tel que $||Tf||_1 = ||f||_1$. On en déduit que chaque inégalité écrite au début de la question 1) est une égalité et en particulier $\int_0^1 \left(\int_0^x |f(t)| \, dt\right) dx = \int_0^1 \left(\int_0^1 |f(t)| \, dt\right) dx$ ou encore $\int_0^1 \left(\int_0^1 |f(t)| \, dt - \int_0^x |f(t)| \, dt\right) dx = 0$. Par suite, $\forall x \in [0,1], \int_0^1 |f(t)| \, dt - \int_0^x |f(t)| \, dt = 0$ (fonction continue, positive, d'intégrale nulle) puis en dérivant la dernière inégalité, $\forall x \in [0,1], |f(x)| = 0$ et finalement f = 0. Ceci est une contradiction et donc |||T||| n'est pas atteinte.

Correction de l'exercice 4 A

L'application f est linéaire de (E,N) dans $(\mathbb{R},|\cdot|)$. Soit $A=(a_{i,j})_{1\leq i,j\leq n}\in E$.

$$|f(A)| = |\text{Tr}(A)| \le \sum_{i=1}^{n} |a_{i,i}|$$

 $\le \sum_{i=1}^{n} \left(\sum_{i=1}^{n} |a_{i,j}|\right) \le \sum_{i=1}^{n} N(A) = nN(A).$

Ceci montre déjà que f est continue sur (E,N) et que $|||f|||\leqslant n$. De plus, si $A=I_n\neq 0, \frac{|f(A)|}{N(A)}=\frac{n}{1}=n$. Donc

$$f$$
 est continue sur (E,N) et $|||f||| = n$.

Correction de l'exercice 5

• $\forall A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R}), \ \|A\|_{\infty} = \operatorname{Max}\{|a_{i,j}|, \ 1 \leqslant i,j \leqslant n\}.$ Soient $A = (a_{i,j})_{1 \leqslant i,j \leqslant n}$ et $B = (b_{i,j})_{1 \leqslant i,j \leqslant n}$. Posons $AB = (c_{i,j})_{1 \leqslant i,j \leqslant n}$ où $\forall (i,j) \in [\![1,n]\!]^2, \ c_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}.$ Pour $(i,j) \in [\![1,n]\!]^2$,

$$|c_{i,j}| \leq \sum_{k=1}^n |a_{i,k}| |b_{k,j}| \leq \sum_{k=1}^n ||A||_{\infty} ||B||_{\infty} = n ||A||_{\infty} ||B||_{\infty},$$

et donc, $||AB||_{\infty} \leqslant n||A||_{\infty}||B||_{\infty}$. Ainsi, $\forall (A,B) \in (\mathscr{M}_n(\mathbb{C}) \setminus \{0\})^2$, $\frac{||AB||_{\infty}}{||A||_{\infty}||B||_{\infty}} \leqslant n$.

De plus, pour $A_0 = B_0 = (1)_{1 \le i, j \le n} \ne 0$, $||A_0||_{\infty} = ||B_0||_{\infty} = 1$ puis $||A_0B_0||_{\infty} = ||nA_0||_{\infty} = n$ et donc $\frac{||A_0B_0||_{\infty}}{||A_0||_{\infty}||B_0||_{\infty}} = n$. Ceci montre que

$$\sup\left\{\frac{\|AB\|_{\infty}}{\|A\|_{\infty}\|B\|_{\infty}},\ (A,B)\in (\mathscr{M}_n(\mathbb{C})\setminus\{0\})^2\right\}=n.$$

En particulier, $\| \|_{\infty}$ n'est pas une norme sous-multiplicative.

• $\forall A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R}), \|A\|_1 = \sum_{1 \leq i,j \leq n} |a_{i,j}|$. Avec les notations précédentes,

$$||AB||_{1} = \sum_{1 \leq i,j \leq n} |c_{i,j}| = \sum_{1 \leq i,j \leq n} \left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right|$$

$$\leq \sum_{1 \leq i,j \leq n} \left(\sum_{k=1}^{n} |a_{i,k}| |b_{k,j}| \right) = \sum_{1 \leq i,j,k \leq n} |a_{i,k}| |b_{k,j}|$$

$$\sum_{1 \leq i,j,k,l \leq n} |a_{i,j}| |b_{k,l}| = ||A||_{1} ||B||_{1}.$$

Donc $\forall (A,B) \in (\mathcal{M}_n(\mathbb{R}) \setminus \{0\})^2, \frac{\|AB\|_1}{\|A\|_1 \|B\|_1} \leq 1.$

De plus, pour $A_0 = B_0 = E_{1,1}$, on a $A_0 B_{=} E_{1,1}$ et donc $\frac{\|A_0 B_0\|_1}{\|A_0\|_1 \|B_0\|_1} = 1$. Ceci montre que

$$\sup \left\{ \frac{\|AB\|_1}{\|A\|_1 \|B\|_1}, \ (A,B) \in (\mathscr{M}_n(\mathbb{C}) \setminus \{0\})^2 \right\} = 1.$$

En particulier, $\| \|_1$ est une norme sous-multiplicative.

• $\forall A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathscr{M}_n(\mathbb{R}), \|A\|_2 = \sqrt{\sum_{1 \leqslant i,j \leqslant n} a_{i,j}^2}$. Avec les notations précédentes,

$$\begin{split} \|AB\|_{2}^{2} &= \sum_{1 \leqslant i,j \leqslant n} c_{i,j}^{2} = \sum_{1 \leqslant i,j \leqslant n} \left(\sum_{k=1}^{n} a_{i,k} b_{k,j} \right)^{2} \\ &\leqslant \sum_{1 \leqslant i,j \leqslant n} \left(\sum_{k=1}^{n} a_{i,k}^{2} \right) \left(\sum_{k=1}^{n} b_{k,j}^{2} \right) \text{ (inégalité de CAUCHY-SCHWARZ)} \\ &= \sum_{1 \leqslant i,j \leqslant n} \left(\sum_{k=1}^{n} a_{i,k}^{2} \right) \left(\sum_{l=1}^{n} b_{l,j}^{2} \right) = \sum_{1 \leqslant i,j,k,l \leqslant n} a_{i,k}^{2} b_{l,j}^{2} = \left(\sum_{1 \leqslant i,k \leqslant n} a_{i,k}^{2} \right) \left(\sum_{1 \leqslant j,l \leqslant n} b_{l,j}^{2} \right) = \|A\|_{2} \|B\|_{2} \end{split}$$

Donc $\forall (A,B) \in (\mathcal{M}_n(\mathbb{R}) \setminus \{0\})^2, \frac{\|AB\|_2}{\|A\|_2 \|B\|_2} \leq 1.$

De plus, pour $A_0 = B_0 = E_{1,1}$, on a $A_0 B_= E_{1,1}$ et donc $\frac{\|A_0 B_0\|_2}{\|A_0\|_2 \|B_0\|_2} = 1$. Ceci montre que

$$\sup \left\{ \frac{\|AB\|_2}{\|A\|_2 \|B\|_2}, \ (A, B) \in (\mathcal{M}_n(\mathbb{C}) \setminus \{0\})^2 \right\} = 1$$

En particulier, $\| \|_2$ est une norme sous-multiplicative.

Correction de l'exercice 6 ▲

Une « norme trois barres » sur $\mathcal{M}_n(\mathbb{R})$ est nécessairement sous-multiplicative. L'exercice précédent montre qu'il existe des normes sur $\mathcal{M}_n(\mathbb{R})$ qui ne sont pas sous-multiplicatives (par exemple $\|\cdot\|_{\infty}$). Donc une norme sur $\mathcal{M}_n(\mathbb{R})$ n'est pas nécessairement une « norme trois barres ».

Correction de l'exercice 7

Soit N une norme sur $\mathcal{M}_n(\mathbb{R})$. D'après l'exercice 5, $\| \cdot \|_1$ est une norme sous-multiplicative.

Puisque $\mathcal{M}_n(\mathbb{R})$ est un espace vectoriel de dimension finie sur \mathbb{R} , N et $\|\cdot\|_1$ sont des normes équivalentes. Par suite, il existe deux réels strictement positifs α et β tels que $\alpha \| \|_1 \le N \le \beta \| \|_1$. Pour $(A,B) \in (\mathscr{M}_n(\mathbb{R}))^2$,

$$N(AB) \leq \beta \|AB\|_{1} \leq \beta \|A\|_{1} \|B\|_{1} \leq \frac{\beta}{\alpha^{2}} N(A) N(B)$$

et le réel $k = \frac{\beta}{\alpha^2}$ est un réel strictement positif tel que $\forall (A,B) \in (\mathcal{M}_n(\mathbb{R}))^2, N(AB) \leqslant kN(A)N(B)$. **Remarque.** Le résultat précédent signifie que $N' = \frac{1}{K}N$ est une norme sous-multiplicative car pour $(A,B) \in$ $(\mathscr{M}_n(\mathbb{R}))^2$,

$$N'(AB) = \frac{1}{k^2}N(AB) \leqslant \frac{1}{k^2}N(A)N(B) = \frac{1}{k}N(A)\frac{1}{k}N(B) = N'(A)N'(B).$$

Correction de l'exercice 8 A

Non, car si $A = E_{1,1} \neq 0$ et $B = E_{2,2} \neq 0$ alors AB = 0 puis N(AB) < N(A)N(B).

Correction de l'exercice 9 A

• Pour $\| \|_1$. Soient $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathscr{M}_n(\mathbb{R})$ puis $X = (x_i)_{1 \leqslant i \leqslant n} \mathscr{M}_{n,1}(\mathbb{R})$.

$$||AX||_{1} = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{i,j} x_{j} \right|$$

$$\leqslant \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{i,j}| |x_{j}| \right) = \sum_{j=1}^{n} |x_{j}| \left(\sum_{i=1}^{n} |a_{i,j}| \right)$$

$$\leqslant \left(\sum_{j=1}^{n} |x_{j}| \right) \operatorname{Max} \left\{ \sum_{i=1}^{n} |a_{i,j}|, \ 1 \leqslant j \leqslant n \right\} = \operatorname{Max} \{ ||C_{j}||_{1}, \ 1 \leqslant j \leqslant n \} \times ||X||_{1},$$

en notant C_1, \ldots, C_n les colonnes de la matrice A. Donc, $\forall A \in \mathscr{M}_n(\mathbb{R}), ||A||_1 \leq \operatorname{Max}\{||C_i||_1, 1 \leq j \leq n\}$. Soit alors $j_0 \in [1, n]$ tel que $||C_{j_0}||_1 = \text{Max}\{||C_j||_1, 1 \le j \le n\}$. On note X_0 le vecteur colonne dont toutes les composantes sont nulles sauf la j_0 -ème qui est égale à 1. X_0 est un vecteur non nul tel que

$$||AX_0||_1 = \sum_{i=1}^n |a_{i,j_0}| = \text{Max} \{||C_i||_1, 1 \le j \le n\} \times ||X_0||_1.$$

En résumé,

(1)
$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|AX\|_1}{\|X\|_1} \leqslant \operatorname{Max} \{\|C_j\|_1, 1 \leqslant j \leqslant n\},$$

(2) $\exists X_0 \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|AX_0\|_1}{\|X_0\|_1} = \operatorname{Max} \{\|C_j\|_1, 1 \leqslant j \leqslant n\}.$

On en déduit que $\forall A \in \mathcal{M}_n(\mathbb{R})$, $|||A|||_1 = \text{Max}\{||C_j||_1, 1 \leq j \leq n\}$.

• Pour $\| \|_{\infty}$. Soient $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ puis $X = (x_i)_{1 \le i \le n} \mathcal{M}_{n,1}(\mathbb{R})$. Pour $i \in [1,n]$,

$$\begin{split} |(AX)_i| &= \left|\sum_{j=1}^n a_{i,j} x_j\right| \leqslant \sum_{j=1}^n |a_{i,j}| |x_j| \leqslant \left(\sum_{j=1}^n |a_{i,j}|\right) \|X\|_{\infty} \\ &\leqslant \operatorname{Max} \left\{\sum_{j=1}^n |a_{i,j}|, \ 1 \leqslant i \leqslant n\right\} \|X\|_{\infty} = \operatorname{Max}\{\|L_k\|_1, \ 1 \leqslant k \leqslant n\} \times \|X\|_{\infty}, \end{split}$$

en notant L_1, \ldots, L_n les lignes de la matrice A. Donc, $\forall A \in \mathscr{M}_n(\mathbb{R}), |||A|||_{\infty} \leq \operatorname{Max}\{||L_i||_1, 1 \leq i \leq n\}.$ Soit alors $i_0 \in [\![1,n]\!]$ tel que $|\![L_{i_0}|\!]_1 = \operatorname{Max}\{|\![L_i|\!]_1, \ 1 \leqslant i \leqslant n\}$. On pose $X_0 = (\varepsilon_i)_{1 \leqslant i \leqslant n}$ où $\forall j \in [\![1,n]\!]$, ε_j est un élément de $\{-1,1\}$ tel que $a_{i_0,j} = \varepsilon_j |a_{i_0,j}|$ (par exemple, $\varepsilon_j = \frac{a_{i_0,j}}{|a_{i_0,j}|}$ si $a_{i_0,j} \neq 0$ et $\varepsilon_j = 1$ si $a_{i_0,j} = 1$).

$$||AX_{0}||_{\infty} = \operatorname{Max} \left\{ \left| \sum_{j=1}^{n} a_{i,j} \varepsilon_{j} \right|, \ 1 \leqslant i \leqslant n \right\}$$

$$\geqslant \left| \sum_{j=1}^{n} a_{i_{0},j} \varepsilon_{j} \right| = \sum_{j=1}^{n} |a_{i_{0},j}| = ||L_{i_{0}}||_{1} = \operatorname{Max} \{||L_{i}||_{1}, \ 1 \leqslant i \leqslant n\} \times ||X_{0}||_{\infty}.$$

En résumé,

$$(1) \ \forall X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ \frac{\|AX\|_{\infty}}{\|Y\|} \leqslant \operatorname{Max} \{\|L_i\|_1, \ 1 \leqslant i \leqslant n\},\$$

$$(1) \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|AX\|_{\infty}}{\|X\|_{\infty}} \leqslant \operatorname{Max} \{\|L_i\|_1, 1 \leqslant i \leqslant n\},$$

$$(2) \exists X_0 \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|AX_0\|_{\infty}}{\|X_0\|_{\infty}} \geqslant \operatorname{Max} \{\|L_i\|_1, 1 \leqslant i \leqslant n\}.$$

On en déduit que $\forall A \in \mathscr{M}_n(\mathbb{R}), ||A|||_{\infty} = \operatorname{Max} \{||L_i||_1, 1 \leq j \leq n\}.$

Ainsi, en notant C_1, \ldots, C_n et L_1, \ldots, L_n respectivement les colonnes et les lignes d'une matrice A,

$$\forall A \in \mathcal{M}_n(\mathbb{R}), |||A|||_1 = \text{Max}\{||C_j||_1, 1 \leqslant j \leqslant n\} \text{ et } |||A|||_{\infty} = \text{Max}\{||L_i||_1, 1 \leqslant i \leqslant n\}.$$

Correction de l'exercice 10 ▲

Soit $D = \operatorname{diag}(\lambda_i)_{1 \leqslant i \leqslant n} \in \mathscr{D}_n(\mathbb{R})$. Pour $X = (x_i)_{1 \leqslant i \leqslant n} \in \mathscr{M}_{n,1}(\mathbb{R})$,

$$||DX||_2 = \sqrt{\sum_{i=1}^n \lambda_i^2 x_i^2} \leqslant \sqrt{(\rho(D))^2 \sum_{i=1}^n x_i^2} = \rho(D) ||X||_2,$$

De plus, si λ est une valeur propre de D telle que $|\lambda| = \rho(D)$ et X_0 est un vecteur propre associé, alors

$$||DX_0||_2 = ||\lambda X_0||_2 = |\lambda| ||X_0||_2 = \rho(D) ||X_0||_2.$$

En résumé

$$(1) \forall X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \, \frac{\|DX\|_2}{\|X\|_2} \leqslant \rho(D),$$

(1)
$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|DX\|_2}{\|X\|_2} \leq \rho(D),$$

(2) $\exists X_0 \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \frac{\|DX_0\|_2}{\|X_0\|_2} = \rho(D).$
On en déduit que $\forall D \in \mathcal{D}_n(\mathbb{R}), |||D|||_2 = \rho(D).$

Soit alors $A \in \mathscr{S}_n(\mathbb{R})$. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_i)_{1 \le i \le n} \in \mathscr{D}_n(\mathbb{R})$ tel que $A = PD^t P$. De plus $\rho(A) = \rho(D)$. Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$||AX||_2 = ||PD^tPX||_2$$

= $||D(^tPX)||_2$ (car $P \in O_n(\mathbb{R}) \Rightarrow \forall Y \in \mathcal{M}_{n,1}(\mathbb{R}), ||PY||_2 = ||Y||_2$)
= $||DX'||_2$ où on a posé $X' = {}^tPX$.

Maintenant l'application $X \mapsto {}^t PX = X'$ est une permutation de $\mathcal{M}_{n,1}(\mathbb{R})$ car la matrice ${}^t P$ est inversible et donc X décrit $\mathcal{M}_{n,1}(\mathbb{R})$ si et seulement si X' décrit $\mathcal{M}_{n,1}(\mathbb{R})$. De plus, pour tout vecteur colonne X, $\|X'\|_2 = \|PX\|_2 = \|X\|_2$. On en déduit que $\left\{\frac{\|AX\|_2}{\|X\|_2}, X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}\right\} = \left\{\frac{\|DX'\|_2}{\|X'\|_2}, X' \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}\right\}$ et en particulier,

$$|||A|||_2 = |||D|||_2 = \rho(D) = \rho(A).$$

$$orall A \in \mathscr{S}_n(\mathbb{R}), |||A|||_2 = \operatorname{Sup}\left\{ rac{\|AX\|_2}{\|X\|_2}, \, X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}
ight\} = oldsymbol{
ho}(A).$$

Remarque. L'application $A \mapsto \rho(A)$ est donc une norme sur $\mathscr{S}_n(\mathbb{R})$ et de plus cette norme est sous-multiplicative.