Simulating 6TiSCH Stack for Avionic Wireless Sensor Networks in OMNeT++

OMNeT++ Community Summit 2022

TUHH

Hamburg University of Technology

Institute of Communication Networks

Yevhenii Shudrenko, Koojana Kuladinithi and Andreas Timm-Giel

Agenda:

- 1. Introduction
- 2. Background Challenge
- 3. Implementation
- 4. Demos

Network Bootstrapping Adapting to Traffic Interference Avoidance

5. Conclusion & Outlook

1. Introduction

Wireless Sensor Networks

Figure 1: Wireless Sensor Networks (WSNs) examples.

Wireless Sensor Networks

Figure 1: WSNs examples.

Challenges

- Reliability
- Scalability
- Interoperability
- Energy-efficiency

IEEE 802.15.4

OSI model

Application

. . .

Network

Data Link

PHY

IoT protocol stacks

ZigBee ISA100a Thread 6TiSCH

- - -

IEEE 802.15.4 MAC (CSMA/CA, DSME, TSCH) IEEE 802.15.4 PHY

Figure 2: Protocols based on IEEE 802.15.4 standard for low-rate wireless personal area networks.

2

IEEE 802.15.4

OSI model

Application

. . .

Network

Data Link

PHY

IoT protocol stacks

ZigBee ISA100a Thread 6TiSCH

. . .

IEEE 802.15.4 MAC (CSMA/CA, DSME, TSCH) IEEE 802.15.4 PHY

Figure 2: Protocols based on IEEE 802.15.4 standard for low-rate wireless personal area networks.

03.11.22

Timeslotted Channel Hopping (TSCH)

Sink

Figure 3: TSCH schedule example for a 4-node network.

IPv6 over the TSCH mode of IEEE 802.15.4 (6TiSCH)

Routing, applications

Transport

Network

Medium Access Control (MAC)

Figure 4: IETF 6TiSCH.

4

5

Figure 5: Routing Protocol for Low-Power and Lossy Networks (RPL) Destination-Oriented Directed Acyclic Graph (DODAG)

Minimal Scheduling Function (MSF)

Figure 6: TSCH schedule under MSF.

2. Background

Wireless Avionics Intra-Communication (WAIC)

Figure 7: WAIC use-cases¹

/

Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.

Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.

Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.

8

Solution

Figure 9: 6TiSCH stack with cross-layer information exchange (6TiSCH-CLX)[1].

Results

10

Figure 10: Mean end-to-end delay of a safety-critical application (smoke alarm) under default 6TiSCH stack and cross-layer improvements.

03.11.22

3. Implementation

Implementation Overview

Implementation - RPL

Rpl²

- Joining/leaving DODAGs
- Route discovery (DAOs)
- Loop detection and repair
- DODAG version control (sink)

TrickleTimer³

- Maintaining trickle intervals
- Triggering DIO broadcasts

ObjectiveFunction⁴

- Preferred parent selection from candidate list
- Rank computation using link metrics

Implementation - TSCH

4. Demos

Figure 11: Network bootstrapping

14

Figure 11: Network bootstrapping

Figure 11: Network bootstrapping

03.11.22

Figure 11: Network bootstrapping

14

Figure 11: Network bootstrapping

Figure 11: Network bootstrapping

14

Figure 11: Network bootstrapping

15

Figure 12: MSF adaptating number of scheduled cells to the traffic load (1 pkt/sf).

15

Figure 12: MSF adaptating number of scheduled cells to the traffic load (1 pkt/sf).

15

Figure 12: MSF adaptating number of scheduled cells to the traffic load (1 pkt/sf).

Figure 12: MSF adaptating number of scheduled cells to the traffic load (1 pkt/sf).

15

Figure 12: MSF adaptating number of scheduled cells to the traffic load (1 pkt/sf).

16

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.

16

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.

16

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.

03.11.22

5. Conclusion & Outlook

Conclusion & Outlook

ComNets TUHH

- Modular 6TiSCH-stack implementation with MSF
- Cross-layer communication to achieve QoS
- Highly extensible

7

Conclusion & Outlook

- Modular 6TiSCH-stack implementation with MSF
- Cross-layer communication to achieve QoS
- Highly extensible

Missing:

- Proper integration with ICMPv6
- Upper layers (CoAP)
- Fragmentation layer (6LoWPAN)
- Migration to OMNeT++ 6.X, INET
 4.4
- Testing (unit, end-to-end, ...)

Thank You very much

Hamburg University of Technology (TUHH)
Yevhenii Shudrenko
Institute of Communication Networks
Am Schwarzenberg-Campus 3
21073 Hamburg
+49 40 42878-3330
yevhenii.shudrenko@tuhh.de
www.tuhh.de/comnets

tuhh.de

TUHH Hamburg University of Technológy

References

- [1] Y. Shudrenko, D. Ploeger, K. Kuladinithi, and A. Timm-Giel, "A novel approach to enhance the end-to-end quality of service for avionic wireless sensor networks," *ACM Transactions on Internet Technology (TOIT)*, 2022.
- [2] P. Thubert, An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH), RFC 9030, May 2021. DOI: 10.17487/RFC9030. [Online]. Available: https://www.rfc-editor.org/info/rfc9030.
- [3] ComNets, Wireless Avionics Intra-Communications (WAIC) simulation model for OMNeT++, utilizing IEEE 802.15.4 Time Slotted Channel Hopping (TSCH), 2022. [Online]. Available: https://github.com/ComNetsHH/omnetpp-tsch/tree/6tisch.
- [4] —, Routing Protocol for Low-Power and Lossy Networks OMNeT++ Simulation Model, 2022. [Online]. Available: https://github.com/ComNetsHH/omnetpp-rpl.