MA311 (Scientific computing)-IITG

ASSIGNMENT-2

Due on: 9-08-2018, 6:00 PM

- 1. Represent the following numbers in the word form in both 32 and 64 bit binary IEEE standard floating point system.
 - (a) $(12.345)_{10}$
 - (b) $(35.12365)_6$
 - (c) $(\frac{1}{10})_{10}$
- 2. Are these machine numbers in the 32- bit IEEE standard floating point system?
 - 10^{40}
 - $2^{-1} + 2^{-26}$
 - \bullet $\frac{1}{5}$
 - \bullet $\frac{1}{3}$
 - $\frac{1}{256}$
- 3. Plot all available machine number in a floating point system represented by $(\beta, t, L, U) = (2, 3, -2, 3)$. Determine the roundoff unit and machine epsilon for this floating point system (with usual roundoff procedure).
- 4. Machine epsilon ϵ is the smallest number of the form 2^{-n} such that $1 + \epsilon \neq 1$. By writing a code, compute the approximate value of the machine epsilon of your assigned machine or your PC.
- 5. Write a code for the following:
 - (a) Sums up 1/n for $n = 1, 2, \dots, 10000$;
 - (b) Rounds each number 1/n to 5 decimal digits and then sums them up in 5-digit decimal arithmetic for $n = 1, 2, \dots, 10,000$;
 - (c) Sums up the same rounded numbers (in 5-digit decimal arithmetic) in reverse order, i.e., for $n=10000,\cdots,2,1$.

Compare the three results and explain your observations. For generating numbers with the requested precision, you may need to write a code.

- 6. Explain in detail how to avoid overflow when computing the ℓ_2 norm of a (possibly large in size) vector.
- 7. For small values of x, how good is the approximation $cos x \approx 1$? How small must x be to have $\frac{1}{2} \times 10^{-18}$ accuracy?
- 8. Prove that if x and y are machine numbers in 32 bit IEEE standard floating point system, and if $|y| \le |x|2^{-25}$, then fl(x+y) = x.
- 9. Suppose that x is a machine number in the range $-\infty < x < 0$. In IEEE standard arithmetic, what values are returned by the computer for the computations $-\infty + x, \infty * x, x/-\infty$, and $-\infty/x$.
- 10. Give examples of real numbers x and y for which $fl(x \odot y) \neq fl(fl(x) \odot fl(y))$. Illustrate all four arithmetic operations, using a machine with five decimal digits.
- 11. Let $x = 2^{12} + 2^{-12}$.
 - (a) Find the machine numbers x_{-} and x_{+} in 32-bit IEEE standard floating point system, that are just to the left and right of x, respectively.
 - (b) For this number show that the relative error between x and fl(x) is no greater than the corresponding unit roundoff error.
- 12. Let $f \in C[a, b]$ be a function whose derivative exists on (a, b). Suppose f is to be evaluated at x_0 in (a, b), but instead of computing the actual value $f(x_0)$, the approximate value $\tilde{f}(x_0)$, is computed, where $\tilde{f}(x_0) = f(x_0 + \epsilon)$.
 - (a) Use the Mean value theorem to estimate the absolute error $|f(x_0) \tilde{f}(x_0)|$ and the relative error $|f(x_0) \tilde{f}(x_0)|/|f(x_0)|$, assuming $f(x_0) \neq 0$.
 - (b) if $\epsilon = 5 \times 10^{-6}$ and $x_0 = 1$, find bounds for the absolute and relative errors for (a) $f(x) = e^x$ (b) $f(x) = \sin x$.