QM Leitme 10

DIRAC S-FUNCTION

$$f(x) = \frac{\sin(\lambda x)}{\pi x}$$
NORM
$$\int f(x) dx = 1$$

WIDTH ~ TOIN

 $\bigvee_{k} f(o) = \frac{\lambda}{\pi}$

$$\rightarrow \sim$$

LIMIT = INF TALL & NARROW

$$S(x) := \lim_{\lambda \to \infty} \frac{\sin \lambda x}{\pi}$$

$$= \int \int \int \int dk e^{ikx}$$

POSITION & MOMENTUM EJGENSTATES

$$\hat{x}|x\rangle = x(x)$$
 $\hat{p}|p\rangle = p|p\rangle$

$$\langle x | x' \rangle = S(x'-x)$$
 $\langle p' | p \rangle = S(p'-p)$

TRANSLATIONS IN SPACE

$$\hat{\tau}(a)|x\rangle = |x+a\rangle$$

TRANSCATE 14)

$$|\Upsilon'\rangle = \hat{T}(a)|\Upsilon\rangle = \hat{T}(a)\int_{dx'} |x'\rangle \langle x'|\Upsilon\rangle$$

$$= \int_{dx'} \hat{T}(a)|x'\rangle \langle x'|\Upsilon\rangle = \int_{dx'} |x'+a\rangle \langle x'|\Upsilon\rangle$$

HOW TO HANDLE? (su APP C)

(1)
$$S(\alpha x) = \frac{1}{(\alpha 1)} S(x)$$

(2)
$$g(f(x)) = \frac{g(x-x_0)}{|g(x-x_0)|}$$
 WHERE $f(x_0) = 0$

SD
$$S[x-(x'+a)]=S[-x'+(x-a)]$$
 VAN. @ $x'=x-a$ => $< x(4') = < x-a|4 >$ as " $|4 > @ x'' = " |4 > @ x-a"$

(prev result somewhat comtentative, indenstand by introduction of Junetion)

4(x):= <x |4> Language: "position-space wavefunction", or just "wavefunction"

(4> => Y(x)

MATCH MODERN PHYSICS:

$$\langle x \rangle = \langle 4|\hat{x}|4 \rangle = \langle 4|\hat{x}| dx' |x' \rangle \langle x' | 4 \rangle$$

$$= \int_{-\infty}^{\infty} dx' \langle 4|x' |x' \rangle \langle x' | 4 \rangle = \int_{-\infty}^{\infty} dx' \langle x' | 4 \rangle \langle x' | 4 \rangle$$

$$= \int_{-\infty}^{\infty} dx' \langle x' | 4 \rangle \langle x' | 4 \rangle = \int_{-\infty}^{\infty} dx' \langle x' | 4 \rangle \langle x' | 4 \rangle$$

$$= \int_{-\infty}^{\infty} dx' \langle x' | 4 \rangle \langle x' | 4 \rangle$$

PREU RESULT (x/4) = (x-a/4) => 4'(x)=4(x-a)

 $\Upsilon'(x)$

GEN OF TRANSLATIONS

$$\frac{1}{T}(S_{x}) = 1 - \frac{1}{T} \hat{A} S_{x} \qquad \text{if } \hat{T}(S_{x})|_{x} = |_{x} + S_{x} \rangle$$
Thanks

ANALOGY:
$$\hat{R}(d\phi\hat{k}) = 1 - \frac{i}{\pi} \hat{J}_{z} d\phi$$
 $\hat{U}(dt) = 1 - \frac{i}{\pi} \hat{H} dt$

$$\frac{\sqrt{2}}{\sqrt{1}} = \frac{1}{\sqrt{1}} \implies A^{\dagger} = A$$

2)
$$\hat{T}(a) = \lim_{N \to \infty} \left[1 - \frac{i}{\hbar} \hat{A} \left(\frac{a}{N} \right) \right]^N = e^{-i\hat{A}a/\hbar}$$

$$\hat{x}\hat{T}(S_X)-\hat{T}(S_X)\hat{x}=\frac{-iS_X}{k}\left[\hat{x},\hat{A}\right]+O(S_X^2)$$

$$\left(\hat{x} \hat{\tau}(s_x) - \hat{\tau}(s_x) \hat{x}\right) \psi \rangle = "\int dx' |\dot{x}\rangle \langle x'| \psi \rangle$$

$$\Rightarrow$$
 $\begin{bmatrix} \hat{x}, \hat{A} \end{bmatrix} = i\hbar$