МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева»

Институт инженерной экономики Кафедра информационных экономических систем

ОБЛАЧНЫЕ ТЕХНОЛОГИИ В ЭКОНОМИКЕ

Руководитель проекта: студент группы БПЭ 20-02

Булавко В.Р.

Выполнил: студент группы БПЭ20-02

Бут Я.С.

Проверил: преподаватель Баляков Д.Ф.

га												
Подпись и дата												
пись												
Под												
убл.												
Nº Д												
Инв. № дубл.												
Взам. инв. $N_{\underline{0}}$												
зам. 1							<u> </u>		- т			
B												
ı												
и дата												
ись 1												
Подпись и дата	Изм	Лист	№ докум.	Подпись	Дата							
	Pas	раб.								Лит.	Лист	Листов
1нв. № подл.	Пр	OB.									2	9
3. Nº 1	H.1	КОНТ									\odot	
IHB.	17			i	1	1				1	トノ	

1 Введение

- 1.1. Основанием для выпуска является техническое задание.
- 1.2 Надежность сайта эксплуатационное качество сайта, характеризующееся вероятностью безотказной работы сайта в определенный промежуток времени при сохранении параметров, заданных в техническом задании на сайт. Расчёт надежности является одним из основных характеристик качества сайта.

1.3 Основные задачи

Основная задача Расчета надёжности состоит в определении значения показателей надежности объекта по известным значениям ее элементов при заданных условиях эксплуатации.

2 Объект расчёта

2.1 Описание объекта

«Сыт по горло» предназначен для исполнения своих функций в удаленном режиме. Основными функциями приложения являются:

- удаленный список готовой пищевой продукции к продаже;
- удаленный заказ пищевой продукции;
- оплата готовой пищевой продукции;
- 2.2 Основные допущения при расчётах.

Для расчёта использовалась методика, предложенная Н.В. Василенко и В.А. Макаровым. Предлагается определять надежность ПО на основе двух оценок: оценки процесса его разработки и оценки результатов тестирования.

Выделены следующие наиболее существенные факторы, влияющие на надежность ПО в процессе разработки:

- совершенство процесса управления разработкой;
- квалификация участников разработки программного продукта;
- сложность архитектуры системы;
- язык программирования;
- трудоемкость разработки;

нв. № подп. Подпись и дата

Подпись и дата

Инв. № дубл.

Ізм. Лист № докум. Подпись Дата

- опыт в разработке подобных систем;
- взаимодействие в команде;
- полнота и качество документации.

3 Расчётная часть

3.1 Управление

Предлагается оценивать в соответствии с моделью зрелости процесса разработки ПО - СММ (Capability Maturity Model). В модели СММ определено пять уровней зрелости организаций. В результате аттестации компании присваивается определенный уровень, который в дальнейшем может повышаться или (теоретически) понижаться.

Так как наша организация достаточно простая, то наш уровень можно считать начальным. Оценка -4.

3.2 Квалификация

$$Q = 0.4 \cdot 5 \cdot \frac{N_c}{N} + 0.6 \cdot \frac{\sum_{i=1}^{N} V_i \cdot Z_i}{N}$$

где Q — оценка квалификации команды; N — количество человек в команде разработки; N_c — число сертифицированных специалистов в команде; V_i — статусная оценка і-го участника команды (от 1 до 5); Z_i — загрузка і-го участника команды в проекте;

0,4 и 0,6 — весовые коэффициенты, установленные эмпирически;

5 — коэффициент приведения к единой шкале.

$$Q = 0.4 \cdot 5 \cdot \frac{3}{10} + 0.6 \cdot \frac{(5\cdot3) + (4\cdot5) + (4\cdot3) + (4\cdot4) + (3\cdot4) + (2\cdot2) + (3\cdot2) + (2\cdot4) + (1\cdot1) + (1\cdot1)}{13} = 6.48.$$

Оценка – 4.

3.3 Архитектура

Различают следующие основные классы архитектур программных средств: цельная программа, комплекс автономно выполняемых программ, слоистая программная система, коллектив параллельно выполняемых программ.

					ı
					l
Изм.	Лист	№ докум.	Подпись	Дата	

Инв. № подп. Пс

Оценка – 4.

3.4 Язык

Язык программирования формально можно оценить как количество операторов данного языка на один функциональный указатель. К функциональным указателям относят внешний ввод, внешний вывод, внутренний логический файл, внешний интерфейсный файл, внешние запросы.

Так как мы используем готовую конфигурацию, которую нужно доработать, то нашей оценкой языка программирования будет -3.

3.5 Трудоекость

Трудоемкость разработки оценивается по факту после ее окончания.

Оценка – 3.

3.6 Опыт разработки

Опыт в разработке подобных систем оцениваются экспертно.

Оценка – 2.

3.7 Коммандное взаимодействие

Взаимодействие в команде оцениваются экспертно.

Оценка – 3.

3.8 Документация

Полнота и качество документации оцениваются экспертно.

Оценка – 4.

3.9 Подсчёт результатов

Обобщенную оценку надежности как результата организации процесса разработки R_1 определим как взвешенную сумму оценок факторов, влияющих на надежность:

$$R_1 = \frac{\sum_{i=1}^8 V_i \cdot \lambda_i}{8}$$

где V_i — оценка і-го фактора по пятибалльной шкале; λ і — вес і-го фактора по пятибалльной шкале. Теоретически $0 \le R_1 \le 25$.

$$R_1 = \frac{5 \cdot 4 + 5 \cdot 4 + 4 \cdot 4 + 3 \cdot 4 + 3 \cdot 3 + 2 \cdot 2 + 3 \cdot 3 + 3 \cdot 4}{8} = 12.75$$

Изм.	Лист	№ докум.	Подпись	Дата

Перечислим требования, которым должна удовлетворять корректная модель.

- 1. Вся совокупность тестов и возможных комбинаций входных данных (все тесты, принадлежащие программе функциональных испытаний) есть одно испытание на надежность.
- 2. Целесообразно, чтобы модель учитывала процесс доработки сайта по результатам испытаний
- 3. Оценка надежности сайта должна производится тогда, когда после испытания данной версии сайта не было обнаружено ни одной ошибки.
- 4. В модели не должны учитываться временные интервалы между обнаруженными ошибками, так как они отражают в основном очередность отдельных проявляющих ошибки условий или очередность смены наборов входных данных.
- 5. Модель не должна требовать априорных данных или данных предшествующего периода функционирования однотипных программных средств

Для описания процесса проявления и исправления ошибок в сайте можно воспользоваться моделью Пуассона, удовлетворяющей всем пяти условиям.

Пусть $N(t_r)$ — число проявившихся ошибок за время t тестирования версии r сайта есть неоднородный процесс Пуассона с интенсивностью $\lambda(t)$, $t\geq 0$.

Обозначим справедливо

$$P\{N(t_r,t_{r-1})=k\}=\frac{[m(t_r)-m(t_{r-1})]^k}{k!}\cdot e^{-\left(m(t_r)-m(t_{r-1})\right)}, m(t_r)=\int_0^t \lambda(u)du,$$

где k=0,1,2,... — число ошибок; r=0,1,2,... — ряд последовательно испытываемых версий ПО; $m(t_r)$ — среднее число проявлений ошибок за время t в версии r. Отсюда определяется вероятность того, что на интервале (t,t_s) ошибки не проявятся.

№ подп. Подпись и дата Взам. инв. № Инв. № дубл.

Подпись и дата

Изм. Лист № докум. Подпись Дата

В результате мы получим некоторое положительное число ≤ 100 . Полученное значение может трактоваться как вероятность того, что в последней версии в процессе эксплуатации не проявится ошибка. Обозначим эту оценку как R_2 .

$$\begin{split} R_2 &= \frac{[\frac{15}{20000} - \frac{1}{20000}]^{14}}{14!} \cdot e^{-\left(\frac{15}{20000} - \frac{1}{20000}\right)} \cdot 100\% \\ &= \frac{[0,00075 - 0,00005]^{14}}{14!} \cdot e^{-(0,00075 - 0,00005)} \cdot 100\% \\ &= \frac{[0,0007]^{14}}{14!} \cdot e^{-(0,0007)} \cdot 100\% = \frac{7 * 10^{10}}{8 * 10^{10}} \cdot 0,99 \cdot 100\% \\ &= 0,875 \cdot 0,99 \cdot 100\% = 86\% \end{split}$$

Таким образом, мы получили две оценки надежности $\Pi O: R_1$ как результат оценки процесса разработки и R_2 как результат тестирования готового программного продукта.

На основании этих оценок предлагается новая модель оценки надежности ПО.

В рамках этой модели введем два новых понятия: класс надежности и матрица надежности. Под классом надежности будем понимать совокупную оценку надежности программного продукта, которая базируется на оценке процесса разработки и результатов испытания ПО и позволяет сравнивать программные продукты между собой по надежности их функционирования. Таблица иллюстрирует понятие матрицы надежности.

Такблица – 1

Подпись и дата

Инв. № дубл.

Взам. инв. №

					В процентах
R_2	0-50 %	51-75%	76-90%	91-98%	99-100%
R_1					
0-10	Класс М	Класс К	Класс Н	Класс F	_
11-20	Класс L	Класс Ј	Класс G	Класс D	Класс В
21-25	_	Класс I	Класс Е	Класс С	Класс А

Будем откладывать по горизонтали интервалы оценки надежности R_2 , а по вертикали — интервалы оценки надежности R_1 . На пересечении этих интервалов получим класс надежности для данного продукта.

Изм.	Лист	№ докум.	Подпись	Дата
			-	

Два пересечения не определяют класса надежности: когда одна из оценок низшая, а вторая — наивысшая. В таких случаях будем считать, что либо процесс тестирования организован некорректно, либо дана не отражающая реальности оценка процесса разработки. Остальные классы могут быть ранжированы по степени увеличения надежности в соответствии с их положением в матрице надежности. Класс А мы представляем как класс высоконадежного ПО, показавшего максимальную вероятность дальнейшей безотказной работы и процесс разработки которого оценен максимально. Остальные классы представляют ПО меньшей надежности, однако в некоторых случаях этой будет надежности достаточно нормального ДЛЯ функционирования конкретного ПО.

По матрице надежности наш класс - Класс G.

4 Выводы

Определены факторы, влияющие на надежность, по которым возможно производить оценку процесса разработки ПО, сформулированы принципы оценки этих факторов по пятибалльной шкале.

Формализованы требования к модели оценки надежности по результатам его тестирования. Адаптирована модель оценки надежности, основанная на неоднородных Пуассоновских процессах, которая максимально ориентирована на оценку надежность программного средства по результатам его тестирования в производстве.

5 Заключение

Исходя из полученного результата расчета надежности, разрабатываемое ПО имеет средний уровень надежности.

Инв. № подл. Подпись и дата Взам. инв. № Инв. № дубл. Подпись и дата

Изм. Лист № докум. Подпись Дата