From Career Nightmares to Cinematic Scares: A Data-Driven Horror Movie Strategy

Angelo Filiol de Raimond

2025-05-25

Table of contents

1	Dat	a Preparation and Market Overview
	1.1	Data Import and Cleaning
	1.2	Variable Construction
	1.3	Key Measures and Variable Roles
	1.4	Summary Statistics
	1.5	Distribution Visuals
2	Ana	lysis of Success Factors 5
	2.1	Ratings and Popularity
	2.2	Linear Model
	2.3	Residual Diagnostics
	2.4	Discussion
3	Stra	itegic Recommendation
	3.1	Recap of Key Findings
	3.2	Recommended Strategy
	3.3	Limitations
	3.4	Future Data and Analysis
	3.5	Final Thoughts

This Quarto document supports the academic report From Career Nightmares to Cinematic Scares, providing data exploration, model-based insights, and strategic recommendations for horror movie production.

1 Data Preparation and Market Overview

1.1 Data Import and Cleaning

```
library(tidytuesdayR)
library(stringr)
library(forcats)

tuesdata <- tt_load('2024-10-29')
monster_movies <- tuesdata$monster_movies

horror_data <- monster_movies %>%
   filter(str_detect(genres, "Horror")) %>%
   filter(!is.na(num_votes), !is.na(average_rating), !is.na(runtime_minutes)) %>%
   distinct(primary_title, .keep_all = TRUE)
```

1.2 Variable Construction

```
horror_data <- horror_data %>%
  mutate(
    sub_genre = str_remove(genres, "Horror,?\\s*"),
    sub_genre = ifelse(sub_genre == "", "Horror", sub_genre),
    duration_group = case_when(
        runtime_minutes < 60 ~ "<60",
        runtime_minutes < 90 ~ "60-89",
        runtime_minutes < 120 ~ "90-119",
        TRUE ~ "120+"
    ),
    log_votes = log1p(num_votes)
)</pre>
```

1.3 Key Measures and Variable Roles

- log_votes: proxy for popularity/exposure (performance measure).
- average rating: indicator of perceived quality.
- Strategy variables: sub_genre, duration_group, runtime_minutes.
- Control variable: average_rating.

1.4 Summary Statistics

```
average_rating
                 num_votes
                                runtime_minutes
Min.
      :1.200
               Min. :
                          10.0
                                Min.
                                       : 3.00
1st Qu.:3.750
                          55.5
               1st Qu.:
                                1st Qu.: 73.00
Median :5.200
               Median : 289.0
                                Median : 83.00
Mean
      :5.006
               Mean
                    : 985.0
                                 Mean
                                       : 82.78
3rd Qu.:6.150
               3rd Qu.: 1168.0
                                 3rd Qu.: 91.50
      :9.200
                    :10106.0
                                 Max. :295.00
Max.
               Max.
```

1.5 Distribution Visuals

```
ggplot(horror_data, aes(x = log_votes)) +
  geom_histogram(bins = 30, fill = "gray") +
  labs(title = "Log IMDb Votes", x = "log(1 + votes)", y = "Count")
```

Log IMDb Votes


```
ggplot(horror_data, aes(x = average_rating)) +
  geom_histogram(bins = 30, fill = "steelblue") +
  labs(title = "Distribution of IMDb Ratings", x = "Rating", y = "Count")
```

Distribution of IMDb Ratings


```
top_subs <- horror_data %>%
  count(sub_genre, sort = TRUE) %>%
  slice_head(n = 15) %>%
  pull(sub_genre)

horror_data %>%
  filter(sub_genre %in% top_subs) %>%
  ggplot(aes(x = fct_infreq(sub_genre))) +
  geom_bar() +
  coord_flip() +
  labs(title = "Top 15 Horror Sub-genres", x = "Sub-genre", y = "Count")
```

Top 15 Horror Sub-genres

cor(horror_data\$average_rating, horror_data\$log_votes)

2 Analysis of Success Factors

2.1 Ratings and Popularity

```
ggplot(horror_data, aes(x = average_rating, y = log_votes)) +
   geom_point(alpha = 0.6) +
   geom_smooth(method = "lm", se = FALSE) +
   labs(title = "Do Higher Ratings Bring More Votes?", x = "IMDb Rating", y = "Log Votes")
```

Do Higher Ratings Bring More Votes?

2.2 Linear Model

```
model <- lm(log_votes ~ average_rating + runtime_minutes + sub_genre + duration_group, dat
library(broom)
library(knitr)

tidy(model) %>%
   kable(
   digits = 3,
   caption = "Linear Model Coefficients",
   booktabs = TRUE
)
```

Table 1: Linear Model Coefficients

term	estimate	std.error	statistic	p.value
(Intercept)	4.429	1.423	3.114	0.002
average_rating	-0.024	0.089	-0.265	0.791
$runtime_minutes$	0.017	0.010	1.634	0.105

term	estimate	std.error	statistic	p.value
sub_genreAction,Adventure,	0.666	1.689	0.394	0.694
sub_genreAction,Animation,	-0.622	1.904	-0.326	0.745
sub_genreAction,Comedy,	0.828	1.195	0.693	0.490
sub_genreAction,Mystery	0.823	1.875	0.439	0.661
sub_genreAction,Sci-Fi	2.177	1.393	1.562	0.121
$sub_genreAction, Thriller$	-1.351	1.888	-0.716	0.475
sub_genreAdventure,	0.542	1.879	0.288	0.774
sub_genreAdventure,Comedy,	1.746	1.308	1.335	0.184
sub_genreAdventure,Drama,	0.236	1.864	0.126	0.900
sub_genreAdventure,Mystery	1.368	1.533	0.892	0.374
sub_genreAdventure,Sci-Fi	1.792	1.520	1.179	0.241
sub_genreAnimation,	-1.091	1.984	-0.550	0.583
sub_genreAnimation,Comedy,	-1.423	1.433	-0.993	0.323
sub_genreBiography,	1.900	1.864	1.020	0.310
sub_genreComedy,	-0.840	1.160	-0.724	0.470
sub_genreComedy,Crime,	-2.696	1.908	-1.413	0.160
sub_genreComedy,Drama,	0.289	1.526	0.189	0.850
sub_genreComedy,Family,	2.082	1.536	1.356	0.178
$\operatorname{sub_genreComedy}$, Fantasy,	0.165	1.398	0.118	0.906
$sub_genreComedy, Musical$	1.838	1.528	1.203	0.231
$\operatorname{sub_genreComedy,Mystery}$	1.762	1.872	0.941	0.349
$\operatorname{sub_genreComedy,Romance}$	1.748	1.901	0.919	0.360
$\operatorname{sub_genreComedy,Sci-Fi}$	1.130	1.192	0.948	0.345
$\operatorname{sub_genreCrime}$, $\operatorname{Documentary}$,	1.855	1.865	0.995	0.322
$\operatorname{sub_genreCrime,Drama},$	1.484	1.401	1.059	0.291
$\operatorname{sub_genreCrime,Mystery}$	0.070	1.863	0.038	0.970
$\operatorname{sub_genreCrime,Sci-Fi}$	1.867	1.872	0.997	0.321
$sub_genreDocumentary,$	-1.183	1.268	-0.933	0.353
$sub_genreDocumentary,Drama,$	-0.427	1.859	-0.230	0.819
$\operatorname{sub_genreDocumentary,Short}$	0.447	1.560	0.286	0.775
sub_genreDrama,	2.076	1.895	1.095	0.275
sub_genreDrama,Fantasy,	1.650	1.529	1.079	0.283
$sub_genreDrama,Mystery$	1.834	1.537	1.193	0.235
$\operatorname{sub_genreDrama,Romance}$	1.683	1.407	1.197	0.234
$sub_genreDrama,Sci-Fi$	0.382	1.535	0.249	0.804
$\operatorname{sub_genreDrama,Thriller}$	1.020	1.325	0.770	0.443
$\operatorname{sub_genreDrama}, \operatorname{Western}$	1.243	1.859	0.669	0.505
sub_genreFamily,	-2.310	1.887	-1.225	0.223
sub_genreFantasy,	2.320	1.891	1.227	0.222
$sub_genreFantasy,Sci-Fi$	1.624	1.859	0.874	0.384
sub_genreHorror	-0.437	1.113	-0.393	0.695

term	estimate	std.error	statistic	p.value
sub_genreMusic	1.902	1.860	1.023	0.308
$sub_genreMusic,Short$	-1.747	2.045	-0.854	0.394
sub_genreMystery	0.895	1.555	0.575	0.566
sub_genreMystery,Sci-Fi	1.157	1.519	0.762	0.448
sub_genreMystery,Thriller	0.815	1.427	0.571	0.569
sub_genreSci-Fi	1.726	1.133	1.524	0.130
$sub_genreSci-Fi,Thriller$	1.785	1.318	1.355	0.178
$sub_genreSci-Fi,Western$	0.833	1.869	0.445	0.657
sub_genreShort	-2.022	2.028	-0.997	0.321
sub_genreThriller	-0.029	1.245	-0.023	0.981
duration_group120+	-4.104	1.608	-2.553	0.012
duration_group60-89	-0.235	0.756	-0.312	0.756
duration_group90-119	-1.136	0.915	-1.241	0.217

2.3 Residual Diagnostics

2.4 Discussion

- Model explains part of variance, but residuals show slight skewness.
- IMDb rating is not a strong predictor of exposure.
- Sub-genres and duration windows carry most signal.
- Cannot claim causality due to unmeasured confounders and observational design.

3 Strategic Recommendation

3.1 Recap of Key Findings

Factor	Takeaway
Sub-genre	Comedy/Sci-Fi hybrid horror = more exposure
Duration group	60–89 minutes outperform others
Ratings	Do not drive vote count
Runtime	Mid-length films preferred

3.2 Recommended Strategy

Dimension	Recommendation
Sub-genre	Horror-Comedy or Horror-Sci-Fi
Runtime	75–85 minutes
Format	Designed for streaming (Netflix, etc.)
Budgeting	Micro-budget (<500k) + viral marketing
Story tone	Workplace horror / dark satire

3.3 Limitations

- IMDb votes = exposure proxy, not financial success.
- No data on distribution, marketing, or cast.
- Confounding unobserved variables may affect model.
- No clear time trend or platform-specific insights.

3.4 Future Data and Analysis

To improve predictions and deepen insight, future models should include:

- Budget and revenue breakdowns (to assess ROI)
- Textual sentiment analysis on reviews
- Platform and release date info
- Studio, cast, and marketing spend
- Experimental or longitudinal designs

3.5 Final Thoughts

This analysis offers a data-driven entry point into horror film strategy. While not predictive of box office alone, it highlights patterns of visibility and audience attention worth leveraging for a breakout indie success.