

Nathan Cunningham

September 1, 2016

### Abstract

In this paper I

#### 0.1 Introduction

Bit on cluster analysis, bit on multiple datasets, applications of this to e.g. gene expression data. A little bit on sequential monte carlo methods.

#### 0.2 Literature

In their paper [2], Kirk et al. propose an unsupervised method for the integration of multiple datasets. Their work is applicable to a number of data types: gaussian, gaussian processes, time series data, multinomial data. MDI paper summary [2]

```
SMC paper summary [1]
Maybe bit on Sarah Wade's paper? [3]
```

#### 0.3 Methods

The algorithm presented here is a combination of the work by Griffin and Kirk et al.

#### Algorithm 1 Gibbs sampler

```
    Initialise Γ matrix of prior allocation weights and Φ matrix of dataset concordance values
    for i = 1, ..., number of iterations do
    Conditional on Γ<sub>i-1</sub> and Φ<sub>i-1</sub> update the cluster labels, c<sub>i</sub>, using alg. 2
    Conditional on c<sub>i</sub> update Γ<sub>i</sub> and Φ<sub>i</sub>
    end for
```

#### Algorithm 2 Particle filter to update cluster allocations

```
1: for i = 1, \ldots, n \overline{do}
                                                                                                               ▶ Loop over observations
          for m = 1, ..., M do
                                                                                                                     ▶ Loop over particles
 2:
              for j = 1, ..., d do
 3:
                                                                                                                     ▶ Loop over datasets
                   Sample c_{i,j}^{(m)}
                                                                                                 ▶ Propose a cluster for each datum
 4:
                   q(c_{i,j}^{(m)} = k) \propto k^*(y_{i,j}|c_{i,j}^{(m)} = k)\gamma_{i,k,j}
\xi^{(m)} = \xi^{(m)} \times \gamma_{i,k,j}(1+\phi_i)k^*(y_{i,k}|c_{i,j}^{(m)} = k)
 5:
 6:
              end for
 7:
         end for
 8:
         Resample particles according to \xi^{(m)}
 9:
11: Update cluster labels using allocation in particle with largest \xi^{(m)}
```

Where

$$k^*(y_{i,k}|c_{i,k}^{(m)} = k) = (\mathbf{y_{i,k}} - \mu_{\mathbf{k}})\mathbf{\Sigma}^{-1}(\mathbf{y_{i,k}} - \mu_{\mathbf{k}})^{\top}$$
(1)

 $\Phi$  is a measure of cluster label correspondence across datasets (2)

 $\gamma_{i,k,j}$  is a prior weight for assigning observation i, in dataset k to cluster j (3)

## 0.4 Example application

Comparison of this versus independent clustering of the datasets Use on multinomial data and gaussian data

# 0.5 Conclusions and proposals for future work

Some success. Improvements over independent clustering...?

Future work needed: Updating of concordance values by particle? Outputting of more than one particle?

Parallelisation of the code to speed things up.

Feature selection in cluster analysis

Application to real-life data (genomics England)

# **Bibliography**

- [1] JE Griffin. Sequential monte carlo methods for mixtures with normalized random measures with independent increments priors. *Statistics and Computing*, pages 1–15, 2014.
- [2] Paul Kirk, Jim E Griffin, Richard S Savage, Zoubin Ghahramani, and David L Wild. Bayesian correlated clustering to integrate multiple datasets. *Bioinformatics*, 28(24):3290–3297, 2012.
- [3] Sara Wade and Zoubin Ghahramani. Bayesian cluster analysis: Point estimation and credible balls.  $arXiv\ preprint\ arXiv:1505.03339,\ 2015.$