

Energy Informatics Seminar WS16/17 Schedule and Requirements

Thomas Kriechbaumer, Victor del Razo,

Matthias Kahl, Anwar Ul Haq

TUM Department of Computer Science

Chair of Application and Middleware Systems

(I13, Prof. Dr. Hans-Arno Jacobsen)

Contact: thomas.kriechbaumer@in.tum.de

Schedule

- Topic presentation and allocation (the first week of the semester)
 - One session at the end of the previous semester for topic presentation
 - One session at the beginning of the semester for topic presentation
 - Final topic allocation via Moodle in the first week of the semester
- Final submission deadline for research proposal (~4 weeks into the semester, early submission possible)
 - Related work, research approach
 - Receipt of comprehensive feedback via email and possibility of personal tutoring
- Final presentations (starting 3-N weeks before the end of the semester, depending on participation)
 - Results, demonstration, conclusions
- Submission of final report and software (end of the semester)

Workload

- Seminar has 4 ECTS points → 120 h (officially)
- Higher if this is the first time doing academic research
- Lower if you have already done so in the past

Requirements

- Fit of student and advisor interest
- Scientific research method
- Publicity of data and analytical code
- Communication with advisor
- Deliverables
- Citation and anti-plagiarism rules
- Language
- Group work

Fit of Student and Advisor Interest

- Enables effective support of student research
- Motivates both sides

Scientific Research Method

- Contribute to answering an innovative research question
 - Cite related research
 - Justify research gap
- Research results based on actual data
 - Documentation of data origin
 - Documentation of data transformations
- Description of method
- Implications and limitations of results

Research Methods

- Prototyping
 - Provide solution for a relevant research problem
 - Runnable code (Java, Python, etc.)
- Empirical/Statistical
 - Collect/consolidate data
 - Conduct statistical analysis
- Literature research
 - Analyze state-of-the-art of research in a particular field
 - Requires clear description of data collection and review method (Which databases? Which key words? Etc.)
 - Summarize and compare paper topics, methods, results

Publicity of Data and Method

- Data and code provided together with final documents
- Use of open-source tools (Octave, R, gnuplot, Java, LaTeX, etc.)

Communication with Advisor

- Proactive, continuous communication
- Response to emails within 2 work days (both sides)
- Presence at all scheduled seminar meetings required (forms part of the grade)

Deliverables & Deadlines

- Research proposal
 - ~ 1 page (use of LaTeX and ACM proceedings style mandatory!)
 - Upload pdf on Moodle
 - Deadline: 2016-11-16, check Moodle for updates!
- Presentation
 - Strict time limit: 15 minutes per student (practice!)
 - MS Powerpoint or LaTeX (use of new TUM template mandatory!)
 - Exact time announced via Moodle
 - Upload on Moodle 24h before the talk
- Final Report
 - ~ 10 pages (use of LaTeX and ACM proceedings style mandatory!)
 - Upload pdf via Moodle, for other deliveries follow your tutor's advice
 - Deadline: 2017-03-05 23:55, check Moodle for updates!
- https://www.acm.org/publications/proceedings-template
- https://portal.mytum.de/corporatedesign/index_html/vorlagen/index_praesentationen

Grading

- Proposal: 20%
 - ideas, motivation, clarity of description, formal requirements
- Presentations: 20%
 - style, slide structure, comprehensibility, formal requirements
- Report: 60%
 - scientific quality and contribution, formal requirements

All deliverables are mandatory to pass the course! Presence on presentation sessions mandatory!

Research Proposal

- 1. Introduction to research topic
- 2. Statement of concise research question
- Preliminary literature review
- 4. Description of data source or collection method
- Description of statistical method to be applied
- Results outlook
- 7. Timeline

Citation and Language

- Base your contribution on scientific literature only
 - Learn to use scientific search engines, e.g., Science Direct,
 IEEE Explorer, Google Scholar, etc.
 - May require campus access or VPN for authentication
 - eaccess.ub.tum.de
- Respect common citation rules
- Plagiarism won't be tolerated

Group Work

- Working on one topic in a group is preferred
- Final grade will be the same for all group members
- Time and page limit will be multiplied by group size
- No support for group management!
- We are not your nanny!

Topic Allocation

- Follow instructions for group and topic assignment in Moodle
- Google Forms for group registration
- Will be announced via Moodle later this week

Energy data compression (high frequency)

- Type of Research: Prototype Research
- Research Problem:
 - Aim: Detect appliance signatures
 - General characteristics (periodic, 50 Hz)
 - Processing requirements (time, complexity)
 - Benefits
 - Reduced transmission time? Increased reliability?
 - Reduced storage requirement?

- Review relevant literature on compression (esp. energy related)
- Music compression techniques
- Lossless compression techniques comparison

Building to Building (B2B) Communication

- Type of Research: Literature Research
- Research Problem:
 - Making building independent (in terms of energy)
 - Role of buildings as aggregator
 - Benefits
 - Energy optimization? DSM? Voltage regulation?
 - Efficient utilization of local renewables? Storage?

- Review relevant literature on
 - Micro grid
 - Smart grid standards
 - Communication technique (wired, wireless, power-line)

Net-Zero Energy Buildings (NZEB)

- Type of Research: Literature Research
- Research Problem:
 - Self generation through renewables
 - Power available at outlet (AC)
 - Most appliances work on DC internally
 - Benefits
 - Conversion losses? Renewable resources & Storage (DC)?
 - Use case: Datacenter? Office Buildings?

- Review relevant literature on
 - Annual energy balance for NZEB
 - Reducing conversion losses through DC-Powered buildings

Feature extraction from existing datasets using openSMILE © openSMILE:) by audeeringTM

Type of Research: Prototype Research

- **Research Problem:**
 - Detect appliance signatures from existing energy dataset
 - openSMILE- a modular and flexible feature extractor
 - Supported formats (PCM WAVE, CSV, ARFF, HTK)
 - Benefits
 - FFT to extract appliance features?
 - Build appliance feature database?

- Review relevant literature on openSMILE
- Check if usable with energy signals

Interactive Front-End for EV Traffic Simulation in Highways

- Type of research: prototyping
- Research question
 - How does a graphic interface for showing the progress of the simulation should look like?
 - What tools, paradigms, etc. should be used?
 - What are the existing standards for integration to vehicle bus?

- Define and understand requirements
- Analyze functionality architecture and data-structures of the simulation tool
- Plan, design, implement. (Simulation tool is Python-based)

Refactoring EV Highway Traffic Simulation for Efficient Parallel Computation

- Type of research: prototyping
- Research question
 - What is the potential improvement?
 - Which parts can be refactored?
 - What method, paradigms, strategies should be used?

- Define and understand requirements
- Understand advantages and limitations on parallel computing and Python
- Analyze functionality architecture and data-structures of the simulation tool
- Plan, design, implement

Wireless EV Charging in Roads

- Type of research: literature research
- Research question
 - What are the main characteristics, parameters and limitations of wirelessly charging EVs while moving
 - Which technologies are available, what are their constraints?
 - List existing, planned pilot projects

- Deep literature research on different scientific and engineering sources
- Research on commercial/scientific pilots
- Classify technologies, tools, and pilot projects
- Generate a sustained statement on the status, drawback, advantages and opportunities of on-movement EV wireless charging

Python Interface and integration of GridLAB-D to a Python-based controller

- Type of research: prototyping
- Research question
 - Can we integrate GridLAB-D to an existing Python-based framework?
 - What are the limitations regarding this integration?
 - Can the integration be implemented such that the choice of the simulator (GLD or Power Factory) is transparent to the user?
- Method
 - Research and understanding on GLD functionality and integration alternatives
 - Analyzing and understanding existing Python-based framework
 - Define a strategy, design, architecture and implement it

Adaptation of EV Highway Simulation for Heavy Vehicles (LKW)

- Type of research: prototyping with a bit of lit. review
- Research question
 - Can we use existing simulation tool to simulate LKW traffic and rest-stops?
 - What are the location and capacities of these stops?
 - What are the resting requirements according to German/European law for truck drivers?

- Identify potential sources of information for the last two questions
- Literature research on the work on this area (resting stations, trucks, highway)
- Analyze functionality architecture and data-structures of the simulation tool
- Plan, design, implement

Occupancy Detection with Electrical Signals

- Type of Research: Literature Research
- Research Questions:
 - Which a appliances correlate to user behaviour?
 - What are significant usage patterns?
 - What other side-channel information can be used?
 - Light? Room temperature? WiFi devices?

- Review relevant literature on occupancy detection
- Derive a common set of available characteristics

Electric Mains: High Frequency Measurements

- Type of Research: Literature Research
- Research Questions:
 - Compare energy measurement systems
 - Frequency, Resolution, Accuracy?
 - Data acquisition, storage, and processing?

- Research of data acquisition systems
- Compare against low-frequency systems
- Define comparable metrics: voltage & current

Matthias Kahl <matthias.kahl@tum.de>

On/Off-switch detection of electrical appliances

Type of research: literature review and prototyping

Research Questions:

- What is the state of the art in applianc switch detection?
- ► How to distinguish between appliance state and switch?

- ► Show the state of the art in appliance switch detection.
- Show problems in case of multi state appliance.
- ► Implement an own switch detection approach.

Matthias Kahl <matthias.kahl@tum.de>

A household and industrial appliance taxonomy for NILM purposes

- **Type of research:** literature review /data analysis
- Research Questions:
 - ► Which appliance taxonomies exist?
 - Based on which perspective were these taxonomies composed?
 - Which taxonomy best fits to household and industrial appliances for NILM purposes?

- ► Show existing relevant taxonomies
- Compose a taxonomy based on NILM needs
- Run a Cluster analysis on a bunch of appliances
- State out the best taxonomy for NILM

Home Automation – past, present & future

- Type of Research: Literature Research
- Research Questions:
 - Overview about recent Home automation systems
 - Currently used in private and industrial purposes?
 - Future scenarios in terms of automation?

CONTROL YOUR HOME FROM ANY SMARTPHONE OR TABLET

- Review relevant literature on home automation
- Show vivid examples, technical issues
- Show safety dis/advantages

Smart Buildings, a solution for nursing homes and patient care?

- Type of Research: Literature research
- Research Questions:
 - Overview about problems in nursing homes and patient care?
 - How can smart systems help in those cases
 - What are useful future scenarios?

- Show vivid examples
- Show technical issues
- Show dis/advantages

Safety in Buildings with smart components

- Type of Research: Literature Research
- Research Questions:
 - Overview about safety issues in homes or industry buildings
 - Show components that ensure privacy, prevents force of nature, fire, burglary aso.
 - What can be future scenarios?

- Show vivid examples
- Show technical issues
- Dis/Advantages

http://www.shop-alarm.de/