Vertical Decomposition for Point Location

Algorithmic Problem: Point location

Algorithmic Technique: Randomized Incremental Construction

Data Structure: Vertical Decomposition

Where is Peru?

Where is Peru? correct!

Where is Thailand?

Where is Thailand? correct!

Where is Gabon?

Where is Gabon? no, this is Ghana

Where is Gabon? no, this is Uganda

Where is Gabon? correct!

How can we efficiently compute which country was clicked on?

Given a position $p=(p_x,p_y)$ on a map determine which country p lies in.

Given a position $p=(p_x,p_y)$ on a map determine which country p lies in.

→ Point location problem

Given a position $p=(p_x,p_y)$ on a map determine which country p lies in.

→ Point location problem

additional motivation:

- subroutine for other geometric problems, e.g., motion planning (Ch. 13)
- randomized incremental construction

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Planar subdivision: Partition of the plane by a set of non-crossing line segments into vertices, edges, and faces

non-crossing: disjoint, or at most a shared endpoint

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Data structuring question, so interest in

- query time,
- storage requirements, and
- preprocessing time

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Ideas?

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Ideas?

- What is the corresponding 1D problem?
- How to solve 1D problem?

Quiz

How efficiently can we solve the 'point location' problem in 1D?

A: in $O(\log n)$ time using a data structure of size $\Theta(n)$

B: in $O(\log n)$ time using a data structure of size $\Theta(n^2)$

C: in the worst-case point location will take $\Theta(n)$ time, independent of the data structure

Quiz

How efficiently can we solve the 'point location' problem in 1D?

A: in $O(\log n)$ time using a data structure of size $\Theta(n)$

using a balanced binary search tree

B: in $O(\log n)$ time using a data structure of size $\Theta(n^2)$

C: in the worst-case point location will take $\Theta(n)$ time, independent of the data structure

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Ideas?

- What is the corresponding 1D problem?
- How to solve 1D problem?
- Can we reduce the problem to the 1D, e.g., first x, then y?
- query time, . . .?

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Ideas?

- What is the corresponding 1D problem?
- How to solve 1D problem?
- Can we reduce the problem to the 1D, e.g., first x, then y?
- query time, . . .?

next: slab decomposition for point location

Vertical Decomposition for Point Location

Slab decomposition

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Idea:

- reduce problem to 1D
- solve 1D problems using balanced binary search trees

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given efficiently

Idea:

- reduce problem to 1D
- solve 1D problems using balanced binary search trees

- not the data structure we will finally use
- 'first step' towards vertical decomposition

In one strip

Inside a single strip, there is a well-defined bottom-to-top order on the line segments

In one strip

Inside a single strip, there is a well-defined bottom-to-top order on the line segments

Use this for a balanced binary search tree that is valid if the query point is in this strip

In one strip

Inside a single strip, there is a well-defined bottom-to-top order on the line segments

Use this for a balanced binary search tree that is valid if the query point is in this strip

If we know between which edges the point is, we found the face of the subdivision containing the point

Slab Decomposition

Slab Decomposition

Data Structure question:

- query time?
- space requirements?

Quiz: Slab Decomposition

What is the running time of a query if the subdivision has n edges? How much space to we need to store the slab decomposition?

A: queries $O(\log n)$, space $\Theta(n)$

B: queries $O(\log n)$, space $\Theta(n^2)$

C: queries $O(\log^2 n)$, space $\Theta(n)$

Quiz: Slab Decomposition

What is the running time of a query if the subdivision has n edges? How much space to we need to store the slab decomposition?

A: queries $O(\log n)$, space $\Theta(n)$

B: queries $O(\log n)$, space $\Theta(n^2)$

C: queries $O(\log^2 n)$, space $\Theta(n)$

• query time good, storage of ${\cal O}(n^2)$ too much

- query time good, storage of ${\cal O}(n^2)$ too much
- $O(n^2)$, because every vertical line intersects O(n) cells

- query time good, storage of ${\cal O}(n^2)$ too much
- $O(n^2)$, because every vertical line intersects O(n) cells
- O(n) storage? Fewer intersections?

- query time good, storage of ${\cal O}(n^2)$ too much
- $O(n^2)$, because every vertical line intersects O(n) cells
- O(n) storage? Fewer intersections?
- interrupt vertical line, when it would intersect an edge

- query time good, storage of ${\cal O}(n^2)$ too much
- $O(n^2)$, because every vertical line intersects O(n) cells
- O(n) storage? Fewer intersections?
- interrupt vertical line, when it would intersect an edge

Vertical Decomposition for Point Location

Vertical decomposition: concept

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

This is called the vertical decomposition or trapezoidal decomposition

• Assume we have a bounding box ${\cal R}$ that encloses all line segments that define the subdivision

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

- Assume we have a bounding box ${\cal R}$ that encloses all line segments that define the subdivision
- Assume the input line segments are not vertical

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

- Assume we have a bounding box ${\cal R}$ that encloses all line segments that define the subdivision
- Assume the input line segments are not vertical

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

- Assume we have a bounding box ${\cal R}$ that encloses all line segments that define the subdivision
- Assume the input line segments are not vertical
- Assume every vertex has a distinct x-coordinate

Suppose we draw vertical extensions from every vertex up and down, but only until the next line segment

- Assume we have a bounding box ${\cal R}$ that encloses all line segments that define the subdivision
- Assume the input line segments are not vertical
- Assume every vertex has a distinct x-coordinate

The vertical decomposition has triangular and trapezoidal faces

Every face has a vertical left and/or right side that is a vertical extension, and is bounded from above and below by some line segment of the input

The left and right sides are defined by some endpoint of a line segment

Every face is defined by no more than four line segments

Every face is defined by no more than four line segments

For any face, we ignore vertical extensions that end on $\mathrm{top}(\Delta)$ and $\mathrm{bottom}(\Delta)$

Two trapezoids (including triangles) are neighbors if they share a vertical side

Each trapezoid has 1, 2, 3, or 4 neighbors

A trapezoid could have many neighbors if vertices had the same x-coordinate

A trapezoid could have many neighbors if vertices had the same x-coordinate

next: data structure and complexity

Vertical Decomposition for Point Location

Vertical decomposition: data structure and complexity

We could use a DCEL to represent a vertical decomposition, but we use a more direct & convenient structure

We could use a DCEL to represent a vertical decomposition, but we use a more direct & convenient structure

• Every face Δ is an object; it has fields for top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ) (two line segments and two vertices)

We could use a DCEL to represent a vertical decomposition, but we use a more direct & convenient structure

- Every face Δ is an object; it has fields for top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ) (two line segments and two vertices)
- Every face has fields to access its up to four neighbors

Representation

We could use a DCEL to represent a vertical decomposition, but we use a more direct & convenient structure

- Every face Δ is an object; it has fields for top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ) (two line segments and two vertices)
- Every face has fields to access its up to four neighbors
- Every line segment is an object and has fields for its endpoints (vertices) and the name of the face in the original subdivision directly above it
- Each vertex stores its coordinates

Given a trapezoid Δ , how do we find the face of the DCEL containing it?

A: We store the face as attribute of Δ

B: We store this information in a hash table

Given a trapezoid Δ , how do we find the face of the DCEL containing it?

A: We store the face as attribute of Δ

B: We store this information in a hash table

Given a trapezoid Δ , how do we find the face of the DCEL containing it?

A: We store the face as attribute of Δ

B: We store this information in a hash table

Given a trapezoid Δ , how do we find the face of the DCEL containing it?

A: We store the face as attribute of Δ

B: We store this information in a hash table

A vertical decomposition of n non-crossing line segments inside a bounding box R, seen as a proper planar subdivision, has

- at most vertices and
- at most trapezoids

A vertical decomposition of n non-crossing line segments inside a bounding box R, seen as a proper planar subdivision, has

• at most 6n + 4 vertices and

at most trapezoids

A vertical decomposition of n non-crossing line segments inside a bounding box R, seen as a proper planar subdivision, has

- at most 6n + 4 vertices and
- at most trapezoids

A vertical decomposition of n non-crossing line segments inside a bounding box R, seen as a proper planar subdivision, has

- at most 6n + 4 vertices and
- at most 3n+1 trapezoids

The input to point location is a planar subdivision, for example in DCEL format

The input to point location is a planar subdivision, for example in DCEL format

First, store with each edge the name of the face above it

The input to point location is a planar subdivision, for example in DCEL format

First, store with each edge the name of the face above it

Then, extract the edges to define a set S of non-crossing line segments

The input to point location is a planar subdivision, for example in DCEL format

First, store with each edge the name of the face above it

Then, extract the edges to define a set S of non-crossing line segments

... ignore the DCEL otherwise

... ignore the DCEL otherwise

next: finally, building the point location data structure

... ignore the DCEL otherwise

Vertical Decomposition for Point Location

Randomized Incremental Construction

We will use randomized incremental construction to build, for a set S of non-crossing line segments,

a vertical decomposition T of S and R

We will use randomized incremental construction to build, for a set S of non-crossing line segments,

a vertical decomposition T of S and R

a search structure ${\cal D}$ whose leaves correspond to the trapezoids of ${\cal T}$

We will use randomized incremental construction to build, for a set S of non-crossing line segments,

a vertical decomposition T of S and R

a search structure ${\cal D}$ whose leaves correspond to the trapezoids of ${\cal T}$

The simple idea:

- Start with R, then
- add the line segments in random order and maintain ${\cal T}$ and ${\cal D}$

Let s_1, \ldots, s_n be the n line segments in random order

Let T_i be the vertical decomposition of R and s_1, \ldots, s_i , and let D_i be the search structure obtained by inserting s_1, \ldots, s_i in this order

Let s_1, \ldots, s_n be the n line segments in random order

Let T_i be the vertical decomposition of R and s_1, \ldots, s_i , and let D_i be the search structure obtained by inserting s_1, \ldots, s_i in this order

The search structure D has x-nodes, which store an endpoint, and y-nodes, which store a line segment s_j

The search structure D has x-nodes, which store an endpoint, and y-nodes, which store a line segment s_j

For any query point t, we only test at an x-node: Is t left or right of the vertical line through the stored point?

For any query point t, we only test at an y-node: Is t below or above the stored line segment?

For any query point t, we only test at an y-node: Is t below or above the stored line segment?

We will guarantee that the question at a y-node is only asked if the query point t is between the vertical lines through p_j and q_j , if line segment $s_j = \overline{p_j q_j}$ is stored

Which node will be the left child of the s_1 node?

A: p_2

 $B: s_2$

 $\mathsf{C}:\Delta_6$

Which node will be the left child of the s_1 node?

A: p_2

 $B: s_2$

 $\mathsf{C}:\Delta_6$

We want only one leaf in D per trapezoid; therefore, we get a search graph instead of a search tree

graph instead of a search tree

It is a directed acyclic graph, or DAG, hence the name ${\cal D}$

- follow path in search structure ${\cal D}$ to leaf
- follow pointer to trapezoid ${\cal T}$
- $access\ bottom(..)\ of\ T$, and report name of face

Point location solution

- follow path in search structure ${\cal D}$ to leaf
- follow pointer to trapezoid ${\cal T}$
- $access\ bottom(..)\ of\ T$, and report name of face

Point location solution

- follow path in search structure ${\cal D}$ to leaf
- follow pointer to trapezoid ${\cal T}$
- $access\ bottom(..)\ of\ T$, and report name of face

Incremental step

Suppose we have D_{i-1} and T_{i-1} , how do we add s_i ?

Incremental step

Suppose we have D_{i-1} and $\overline{T_{i-1}}$, how do we add s_i ? Because D_{i-1} is a valid point location structure for s_1, \ldots, s_{i-1} , we can use it to find the trapezoid of T_{i-1} that contains p_i , the left endpoint of s_i .

Incremental step

Suppose we have D_{i-1} and T_{i-1} , how do we add s_i ? Because D_{i-1} is a valid point location structure for s_1, \ldots, s_{i-1} , we can use it to find the trapezoid of T_{i-1} that contains p_i , the left endpoint of s_i .

Then we use T_{i-1} to find all other trapezoids that intersect s_i .

After locating the trapezoid that contains p_i , we can determine all k trapezoids that intersect s_i in O(k) time by traversing T_{i-1}

After locating the trapezoid that contains p_i , we can determine all k trapezoids that intersect s_i in O(k) time by traversing T_{i-1}

next:
updating the
search structure

After locating the trapezoid that contains p_i , we can determine all k trapezoids that intersect s_i in O(k) time by traversing T_{i-1}

We can update the vertical decomposition in ${\cal O}(k)$ time as well

Vertical Decomposition for Point Location

Randomized Incremental Construction: Updating the Search Structure

The search structure has k leaves that are no longer valid as leaves; we find these using the pointers from T_{i-1} to D_{i-1} and they become internal nodes

From the update of the vertical decomposition T_{i-1} into T_i we know what new leaves we must make for D_i

All new nodes besides the leaves are x-nodes with p_i and q_i and y-nodes with s_i

All new nodes besides the leaves are x-nodes with p_i and q_i and y-nodes with s_i

Observations

For a single update step, adding s_i and updating T_{i-1} and D_{i-1} , we observe:

- If s_i intersects k_i trapezoids of T_{i-1} , then we will create $O(k_i)$ new trapezoids in T_i
- We find the k_i trapezoids in time linear in the search path of p_i in D_{i-1} , plus $O(k_i)$ time
- We update by replacing k_i leaves by $O(k_i)$ new internal nodes and $O(k_i)$ new leaves
- The maximum depth increase is three nodes

Quiz

In what case does the length of a path increase by three nodes?

A: always

B: only if the new segment lies completely in one trapezoid

C: only in degenerate cases

Quiz

In what case does the length of a path increase by three nodes?

A: always

B: only if the new segment lies completely in one trapezoid

C: only in degenerate cases

A common but special update

If p_i was already an existing vertex, we search in D_{i-1} with a point a fraction to the right of p_i on s_i

Randomized incremental construction, where does it matter?

Randomized incremental construction, where does it matter?

• The vertical decomposition T_i is independent of the insertion order among s_1,\ldots,s_i

Randomized incremental construction, where does it matter?

- The vertical decomposition T_i is independent of the insertion order among s_1,\ldots,s_i
- The search structure D_i can be different for many orders of s_1, \ldots, s_i

Randomized incremental construction, where does it matter?

- The vertical decomposition T_i is independent of the insertion order among s_1,\ldots,s_i
- The search structure D_i can be different for many orders of s_1, \ldots, s_i
 - The depth of search paths in D_i depends on the order
 - The number of nodes in D_i depends on the order

Randomized incremental construction, where does it matter?

- The vertical decomposition T_i is independent of the insertion order among s_1,\ldots,s_i
- The search structure D_i can be different for many orders of s_1, \ldots, s_i
 - The depth of search paths in D_i depends on the order
 - The number of nodes in D_i depends on the order

Examples?

- set of line segments + order with long search path?
- set of line segments + order with many nodes?

Depth of Search Paths

Depth of Search Paths

Number of Nodes

Number of Nodes

next: expected number of nodes and expected depth of search paths

Vertical Decomposition for Point Location

Randomized Incremental Construction: Analysis

The vertical decomposition structure T always uses linear storage

The search structure ${\cal D}$ can use anything between linear and quadratic storage

The vertical decomposition structure T always uses linear storage

The search structure D can use anything between linear and quadratic storage

We analyze the expected number of new nodes when adding s_i , using backwards analysis

The vertical decomposition structure T always uses linear storage

The search structure ${\cal D}$ can use anything between linear and quadratic storage

We analyze the expected number of new nodes when adding s_i , using backwards analysis

The number of created trapezoids is linear in the number of deleted trapezoids (leaves of D_{i-1}), or intersected trapezoids by s_i in T_{i-1} ; this is linear in k_i

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added

The average is the expected number of created trapezoids

Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i . All line segments (existing in T_i) had the same probability of having been the last one added

We will analyze

 $K_i = \sum_{j=1}^r [ext{no. of trapezoids created if } s_j ext{ were last}]$

Consider K_i from the "trapezoid perspective": For any trapezoid Δ , there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ))

 $K_i = \sum_{j=1}^{s} [\text{no. of trapezoids created if } s_j \text{ were last}]$

Consider K_i from the "trapezoid perspective": For any trapezoid Δ , there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ))

 $K_i = \sum_{j=1}^r [ext{no. of trapezoids created if } s_j ext{ were last}]$

Consider K_i from the "trapezoid perspective": For any trapezoid Δ , there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ))

 $K_i = \sum_{j=1}^{r} [ext{no. of trapezoids created if } s_j ext{ were last}]$

Consider K_i from the "trapezoid perspective": For any trapezoid Δ , there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ))

Hence,

$$K_i = \sum_{j=1}^i [ext{no. of trapezoids created if } s_j ext{ were last}]$$

Consider K_i from the "trapezoid perspective": For any trapezoid Δ , there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ))

Hence,

$$K_i = \sum_{j=1}^i [ext{no. of trapezoids created if } s_j ext{ were last}]$$
 $= \sum_{\Delta \in T_i} [ext{no. of segments that would create } \Delta]$ $\leq \sum_{i=1}^{t} 4 = 12i + 4$

since there are at most 3i+1 trapezoids in a vertical decomposition of i line segments in ${\cal R}$

$$K_i \le (12i + 4)$$

$$K_i \le (12i+4)$$

Since K_i is defined as a sum over i line segments, the average number of trapezoids in T_i created by s_i is at most $(12i+4)/i \le 13$

Since the expected number of new nodes is at most 13 in every step, the expected size of the structure after adding n line segments is O(n)

Fix any point q in the plane as a query point, we will analyze the probability that inserting s_i makes the search path to q longer

Backwards analysis: Take the situation after s_i has been added, and ask the question: How many of the i line segments made the search path to q longer?

Backwards analysis: Take the situation after s_i has been added, and ask the question: How many of the i line segments made the search path to q longer?

Backwards analysis: Take the situation after s_i has been added, and ask the question: How many of the i line segments made the search path to q longer?

The search path to q only became longer if q is in a trapezoid that was just created by the latest insertion!

At most four line segments define the trapezoid that contains q, so the probability is 4/i

We analyze

$$\sum_{i=1}^{n} Pr[$$
search path became longer due to i -th addition $]$

We analyze

 $\sum_{i=1}^{n} Pr[\text{search path became longer due to } i\text{-th addition}]$

$$\leq \sum_{i=1}^{n} 4/i = 4 \cdot \sum_{i=1}^{n} 1/i \leq 4(1 + \log_e n)$$

We analyze

 $\sum_{i=1}^{n} Pr[$ search path became longer due to i-th addition]

$$\leq \sum_{i=1}^{n} 4/i = 4 \cdot \sum_{i=1}^{n} 1/i \leq 4(1 + \log_e n)$$

So the expected query time is $O(\log n)$

Result, so far

Theorem: Given a planar subdivision defined by a set of n non-crossing line segments (where any two distinct segment endpoints have different x-coordinates) in the plane, we can preprocess it for planar point location queries in $O(n \log n)$ expected time, the structure uses O(n) expected storage, and the expected query time is $O(\log n)$.

Vertical Decomposition for Point Location

Wrapping up

Assumption, so far

- unique x-coordinates
- left/right queries are answered correctly

Assumption, so far

- unique x-coordinates
- left/right queries are answered correctly

Solution: symbolic shearing transform

$$\varphi \colon (x,y) \mapsto (x + \varepsilon y, y)$$

pick $\varepsilon > 0$ small, such that x-order < of points does not change.

Assumption, so far

- unique x-coordinates
- left/right queries are answered correctly

Solution: symbolic shearing transform

$$\varphi \colon (x,y) \mapsto (x + \varepsilon y, y)$$

pick $\varepsilon > 0$ small, such that x-order < of points does not change.

Symbolic: Don't actually apply φ , but execute algorithm as if it was

Effect of shear transform φ :

Effect 1: lexicographical order

Effect 2: point-line incidences are

maintained since φ is affine

Effect of shear transform φ :

Effect 1: lexicographical order

Effect 2: point-line incidences are

maintained since φ is affine

Algorithm uses two elementary operations/tests:

Test 1: Is q left or right of vertical line through p?

Test 2: Is q above or below segment s?

Effect of shear transform φ :

Effect 1: lexicographical order

Effect 2: point-line incidences are

maintained since φ is affine

Algorithm uses two elementary operations/tests:

Test 1: Is q left or right of vertical line through p?

Test 2: Is q above or below segment s?

Effect 1 \Rightarrow Use lexicographical order on S to get Test 1 correct for sheared set

Effect of shear transform φ :

Effect 1: lexicographical order

Effect 2: point-line incidences are

maintained since φ is affine

Algorithm uses two elementary operations/tests:

Test 1: Is q left or right of vertical line through p?

Test 2: Is q above or below segment s?

Effect 1 \Rightarrow Use lexicographical order on S to get Test 1 correct for sheared set

Effect 2 \Rightarrow Test 2 is equivalent on original and sheared segments

Result

Theorem: Given a planar subdivision defined by a set of n non-crossing line segments in the plane, we can preprocess it for planar point location queries in $O(n \log n)$ expected time, the structure uses O(n) expected storage, and the expected query time is $O(\log n)$.

Result

Theorem: Given a planar subdivision defined by a set of n non-crossing line segments in the plane, we can preprocess it for planar point location queries in $O(n \log n)$ expected time, the structure uses O(n) expected storage, and the expected query time is $O(\log n)$.

What have we seen?

Algorithmic Problem: Point location

Data Structure: Vertical Decomposition with

Search Graph

Technique: Randomized Incremental Construction

Analysis: Backwards Analysis