Machine Learning from Data

Lecture 3: Spring 2021

Today's Lecture

- Is Learning Feasible?
- Infer outside the dataset D
- Hoeffding's Inequality

Outside Data

f = ?

Population Mean from the Sample Mean

Probability to the Rescue

Hoeffding's Inequality

Hoeffding's Inequality continued...

Example

Relationship with Learning

Relationship with Learning

Hoeffding's Summarized

$$\mathbb{P}\left[|E_{ ext{in}}(h)-E_{ ext{out}}(h)|>\epsilon
ight]\leq 2e^{-2\epsilon^2N}, \qquad \qquad ext{for any $\epsilon>0$.}$$

$$ig| \mathbb{P}\left[|E_{ ext{in}}(h) - E_{ ext{out}}(h)| \leq \epsilon
ight] \geq 1 - 2e^{-2\epsilon^2 N}, \qquad ext{for any $\epsilon > 0$.}$$

Unknown f and $P(\mathbf{x})$, fixed h

Learning

Function Vs Bin Bin Model

input space \mathcal{X}

 \mathbf{x} for which $h(\mathbf{x}) = f(\mathbf{x})$

 \mathbf{x} for which $h(\mathbf{x}) \neq f(\mathbf{x})$

 $P(\mathbf{x})$

data set \mathcal{D}

Out-of-sample Error: $E_{out}(h) = \mathbb{P}_{\mathbf{x}}[h(\mathbf{x}) \neq f(\mathbf{x})]$

In-sample Error: $E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} [h(\mathbf{x}) \neq f(\mathbf{x})]$

Bin

• green marble

• red marble

randomly picking a marble sample of N marbles

 $\mu = \text{probability of picking a red marble}$

 $\nu = \text{fraction of red marbles in the sample}$

Verification Vs. Real Learning

Pick the hypothesis with minimum E_{in} ; will E_{out} be small?

Finite Learning Model