### MONADIC GENERALIZED SPECTRA

by Ronald Fagin in Yorktown Heights, New York (U.S.A.)1)

#### 1. Introduction

Let  $\mathscr{A}$  be the class of finite models of a second-order existential sentence  $\exists P_1 \dots \exists P_m \sigma$ , where  $\sigma$  is an arbitrary first-order sentence (with equality). Thus,  $\mathscr{A}$  is a PC class in the sense of Tarki [8], where we restrict our attention to the class of finite structures. If  $P_1, \dots, P_m$  are the only nonlogical symbols appearing in  $\sigma$ , then  $\mathscr{A}$  can be identified with the set of cardinalities of finite models of  $\sigma$ . H. Scholz [7] called this set the spectrum of  $\sigma$ . Hence, in the general case, we call  $\mathscr{A}$  a generalized spectrum. If  $P_1, \dots, P_m$  are each unary predicate symbols, then we call  $\mathscr{A}$  a monadic generalized spectrum. In this paper, we show, by using Fraïssé-type games, that the class of monadic generalized spectra is not closed under complement.

If  $\mathcal{S}$  is a similarity type, that is, a finite set of predicate and constant symbols, then by an  $\mathcal{S}$ -structure, we mean a relational structure appropriate for  $\mathcal{S}$ . We will show that the class of non-connected, finite  $\{P\}$ -structures (where P is a binary predicate symbol) is a monadic generalized spectrum, but that the class of connected, finite  $\{P\}$ -structures is not (although the latter class is a generalized spectrum with just one existentialized binary predicate symbol, as we will see).

Assume throughout this paper that P is a binary predicate symbol and that  $U_1, U_2, \ldots$  are unary predicate symbols. Define a cycle (of length n) to be a  $\{P\}$ -structure  $\mathfrak{U} = \langle A; Q \rangle$ , where for some n distinct elements  $a_1, \ldots, a_n$ ,

$$A = \{a_1, \ldots, a_n\}, \quad Q = \{\langle a_i, a_{i+1} \rangle : 1 \leq i < n\} \cup \{\langle a_n, a_1 \rangle\}.$$

Write  $\operatorname{card}(\mathfrak{A}) = n$ . If  $\mathfrak{A} = \langle A; Q \rangle$  and  $\mathfrak{B} = \langle B; R \rangle$  are cycles, and  $A \cap B = \emptyset$ , then by the *cardinal sum*  $\mathfrak{A} \oplus \mathfrak{B}$ , we mean the  $\{P\}$ -structure  $\langle A \cup B; Q \cup R \rangle$ .

We will show that if  $\tau$  is  $\exists U_1 \ldots \exists U_d \sigma$ , where  $\sigma$  is a first-order  $\{P, U_1, \ldots, U_d\}$ sentence (that is, its nonlogical symbols are a subset of  $\{P, U_1, \ldots, U_d\}$ ), then there is
a constant N such that for each cycle  $\mathfrak A$  with  $\mathfrak A \models \tau$  and  $\operatorname{card}(\mathfrak A) \geqq N$ , there is a cycle  $\mathfrak B$ such that  $\mathfrak A \oplus \mathfrak B \models \tau$ . It easily follows that the class of connected, finite  $\{P\}$ -structures
is not a monadic generalized spectrum. This result is related to monadic second-order
decidability results in BÜCHI [2] and RABIN [6], but it does not seem to be directly
derivable from them. In any case, this result can be derived very directly by the use
of Fraïssé-type games [5], which is the approach we will use.

G. ASSER [1] posed the question of whether the complement of every spectrum is a spectrum. We remark that the author showed in [3] and [4] that there is a particular monadic generalized spectrum  $\mathscr{A}$  (namely, the class of all finite models of  $\exists U \ \forall \ x \exists ! \ y (Pxy \land Uy)$ , where U is unary, P is binary, and  $\exists ! \ y$  is read "There is exactly

<sup>1)</sup> This paper is based on a part of the author's doctoral dissertation [3] in the Department of Mathematics at the University of California, Berkeley. Part of this work was carried out while the author was a National Science Foundation Graduate Fellow; also, part of this work was supported by NSF Grant No. GP-24532.

The author is grateful to Robert Vaught and William Craig for useful suggestions which improved readability.

90 RONALD FAGIN

one y") such that the complement of every generalized spectrum is a generalized spectrum (and thus the complement of every spectrum is a spectrum) iff the complement  $\tilde{\mathscr{A}}$  of  $\mathscr{A}$  is a generalized spectrum.

#### 2. Definitions

Denote the set of natural numbers  $\{0, 1, 2, \ldots\}$  by N.

If  $\mathscr{S}$  is a similarity type and  $\mathfrak{A}$  is an  $\mathscr{S}$ -structure (both defined earlier), then we denote the universe of  $\mathfrak{A}$  by  $|\mathfrak{A}|$ , and the interpretation (in  $\mathfrak{A}$ ) of S in  $\mathscr{S}$  by  $S^{\mathfrak{A}}$ .

If  $\mathfrak A$  and  $\mathfrak B$  are isomorphic  $\mathscr S$ -structures via the isomorphism g, then we write  $g:\mathfrak A\cong\mathfrak B$ .

Assume that  $\mathscr{S}$  and  $\mathscr{T}$  are disjoint similarity types, that  $\mathfrak{A}$  is an  $\mathscr{S} \cup \mathscr{T}$ -structure, and that  $\mathfrak{B}$  is an  $\mathscr{S}$ -structure. Then  $\mathfrak{A}$  is an expansion of  $\mathfrak{B}$  (to  $\mathscr{S} \cup \mathscr{T}$ ), written  $\mathfrak{B} = \mathfrak{A} \upharpoonright \mathscr{S}$ , if  $|\mathfrak{A}| = |\mathfrak{B}|$ , and  $S^{\mathfrak{A}} = S^{\mathfrak{B}}$  for each S in  $\mathscr{S}$ .

Assume that  $\mathfrak{A}$  is an  $\mathscr{S}$ -structure, and that  $a \in |\mathfrak{A}|$ . We denote by  $(\mathfrak{A}, a)$  the  $\mathscr{S} \cup \{c\}$ -structure  $\mathfrak{B}$ , such that  $\mathfrak{B} \upharpoonright \mathscr{S} = \mathfrak{A}$  and  $c^{\mathfrak{B}} = a$ , where c is a new constant symbol, chosen by some fixed rule.

If  $\mathfrak A$  is an  $\mathscr S$ -structure and  $B\subseteq |\mathfrak A|$ , then by  $\mathfrak A\mid B$  we mean the substructure of  $\mathfrak A$  with universe B.

If  $\varphi$  is a formula with distinct free individual variables  $x_1, \ldots, x_k$ , and if  $a_1, \ldots, a_k \in |\mathfrak{A}|$ , then by  $\mathfrak{A} \models \varphi[x_1 \ldots x_k \atop a_1 \ldots a_k]$ , we mean that  $\varphi$  is satisfied in  $\mathfrak{A}$  when  $x_i$  is interpreted by  $a_i$   $(1 \leq i \leq k)$ .

An atomic  $\mathscr{G}$ -formula is a formula  $t_1 = t_2$  or  $St_1 \dots t_k$ , where each  $t_i$  is a constant symbol in  $\mathscr{G}$  or an individual variable, and where S is a k-ary predicate symbol in  $\mathscr{G}$ . A negation-atomic  $\mathscr{G}$ -formula is the negation of an atomic  $\mathscr{G}$ -formula.

A first-order formula  $\varphi$  is in *prenex normal form* if it is of the form  $Q_1x_1 \ldots Q_mx_m\psi$ , where each  $Q_i$  is  $\forall$  or  $\exists$ , each  $x_i$  is an individual variable, and  $\psi$  is quantifier-free. We say that  $\varphi$  starts with m quantifiers.

If  $\varphi$  is a first-order formula, then by  $\exists \mathscr{S} \varphi$ , we mean the (existential second-order) formula  $\exists S_1 \ldots \exists S_m \varphi$ , where  $\mathscr{S} = \{S_1, \ldots, S_m\}$ ; similarly for  $\forall \mathscr{S} \varphi$ . If  $\Gamma$  is a set of formulas, then by  $\bigwedge \{\varphi : \varphi \in \Gamma\}$ , we mean the conjunction of the formulas in  $\Gamma$ ; similarly for  $\bigvee \{\varphi : \varphi \in \Gamma\}$ .

## 3. Fraïssé games

In this section, we will describe some games, of the type first introduced by R. Fraissé. Let  $\mathscr S$  be a similarity type, let  $\mathfrak A$  and  $\mathfrak B$  be  $\mathscr S$ -structures with  $|\mathfrak A| \cap |\mathfrak B| = \emptyset$ , and let r be a natural number. Then we can informally describe a game as follows: Player I moves first, and picks a point in either  $|\mathfrak A|$  or  $|\mathfrak B|$ . Then player II picks a point in (the universe of) the opposite structure. Let  $a_1$  be the point picked in  $|\mathfrak A|$ , and  $b_1$  the point picked in  $|\mathfrak A|$ . On player I's second move, he again picks a point in either  $|\mathfrak A|$  or  $|\mathfrak B|$ , and player II then picks a point in the opposite structure. Let  $a_2$  be the point picked in  $|\mathfrak A|$  on either player I's or player II's second move, and  $b_2$  the point picked in  $|\mathfrak A|$ . Continue until player I and player II have each taken r moves (i.e., until r rounds of the game have been played). Let  $\{c_i \colon 1 \le i \le k\}$  be the set of constant symbols in  $\mathscr S$  (k = 0 is possible). Let  $a_{r+i}(b_{r+i})$  be  $c_i^{\mathfrak A}(c_i^{\mathfrak B})$ ,  $1 \le i \le k$ . Then player II wins iff the following two conditions hold:

1.  $\{(a_i, b_i): 1 \le i \le r + k\}$  is a one-one function, say g. That is,  $a_i = a_j$  iff  $b_i = b_j$   $(1 \le i \le r + k, 1 \le j \le r + k)$ .

2. 
$$g: \mathfrak{A} | \{a_1, \ldots, a_{r+k}\} \cong \mathfrak{B} | \{b_1, \ldots, b_{r+k}\}.$$

We will now inductively define a notion  $\mathfrak{A} \sim_r \mathfrak{B}$ , which corresponds to the intuitive notion of player II having a winning strategy in the game just informally described. We say  $\mathfrak{A} \sim_0 \mathfrak{B}$  if for every quantifier-free  $\mathscr{S}$ -sentence  $\sigma$ , we have  $\mathfrak{A} \models \sigma$  iff  $\mathfrak{B} \models \sigma$ . (If  $\mathscr{S}$  contains no constant symbols, then there are no quantifier-free  $\mathscr{S}$ -sentences.) For each natural number r, we say  $\mathfrak{A} \sim_{r+1} \mathfrak{B}$  if

- 1. For each a in  $|\mathfrak{A}|$  there is b in  $|\mathfrak{B}|$  such that  $(\mathfrak{A}, a) \sim_{r} (\mathfrak{B}, b)$ .
- 2. For each b in  $|\mathfrak{B}|$  there is a in  $|\mathfrak{A}|$  such that  $(\mathfrak{A}, a) \sim_{r} (\mathfrak{B}, b)$ .

It is clear that  $\sim_r$  is an equivalence relation, for each r.

In our proofs, we may talk of players I and II, of player I's first move, and so on. It will be clear how to make the arguments formal.

We will now consider another game. Let  $\mathcal{S}$  be as before, and let  $\mathcal{T}$  be a finite set of predicate symbols with  $\mathcal{S} \cap \mathcal{T} = \emptyset$ . Let  $\mathfrak{A}$  and  $\mathfrak{B}$  be  $\mathcal{S}$ -structures, and let r be a natural number. On player I's first move, he selects an  $\mathcal{S} \cup \mathcal{T}$ -structure  $\mathfrak{A}'$  such that  $\mathfrak{A}' \upharpoonright \mathcal{S} = \mathfrak{A}$ . Then player II selects an  $\mathcal{S} \cup \mathcal{T}$ -structure  $\mathfrak{B}'$  such that  $\mathfrak{B}' \upharpoonright \mathcal{S} = \mathfrak{B}$ . Player II wins iff  $\mathfrak{A}' \sim_r \mathfrak{B}'$ . Formally, we say  $\mathfrak{A} \to_r^{\mathcal{T}} \mathfrak{B}$  if for each expansion  $\mathfrak{A}'$  of  $\mathfrak{A}$  to  $\mathcal{S} \cup \mathcal{T}$ , there is an expansion  $\mathfrak{B}'$  of  $\mathfrak{B}$  to  $\mathcal{S} \cup \mathcal{T}$  such that  $\mathfrak{A}' \sim_r \mathfrak{B}'$ . If  $\mathcal{T}$  is a set of d distinct unary predicate symbols, then write  $\mathfrak{A} \to_r^d \mathfrak{B}$  for  $\mathfrak{A} \to_r^{\mathcal{T}} \mathfrak{B}$ .

It is easy to see that  $\to_r^{\mathcal{F}}$  is transitive and reflexive, but as we shall see, it is not necessarily symmetric. The corresponding symmetric notion would be  $\mathfrak{A} \leftrightarrow_r^{\mathcal{F}} \mathfrak{B}$ , which holds if  $\mathfrak{A} \to_r^{\mathcal{F}} \mathfrak{B}$  and  $\mathfrak{B} \to_r^{\mathcal{F}} \mathfrak{A}$ .

We will prove the next theorem (which is essentially due to Fraïssé [5]) in more generality than we will need.

If  $\mathcal{T}$  is a finite set of unary predicate symbols, then call  $\mathcal{T}$  monadic. Let  $\mathcal{K}$  be a class of  $\mathcal{S}$ -structures. Following Tarski [8], we say that a class  $\mathcal{A}$  of  $\mathcal{S}$ -structures is in  $PC(\mathcal{K})$   $(PC_1(\mathcal{K}))$  if  $\mathcal{A} = \{\mathfrak{A} \in \mathcal{K} : \mathfrak{A} \models \exists \mathcal{T}\sigma\}$  for some (monadic)  $\mathcal{T}$  and some first-order  $\mathcal{S} \cup \mathcal{T}$ -sentence  $\sigma$ . We are interested in the case when  $\mathcal{K}$  is the class of finite  $\{P\}$ -structures and  $\mathcal{T}$  is monadic.

Theorem 1. Assume  $\mathscr{A} \subseteq \mathscr{K}$ . Then  $\mathscr{A} \in PC(\mathscr{K})$   $(PC_1(\mathscr{K}))$  iff there is some (monadic)  $\mathscr{F}$  and some natural number r such that whenever  $\mathfrak{A} \in \mathscr{A}$ ,  $\mathfrak{B} \in \mathscr{K}$ , and  $\mathfrak{A} \to_r^{\mathscr{F}} \mathfrak{B}$ , then  $\mathfrak{B} \in \mathscr{A}$ .

Proof " $\Rightarrow$ ". Let  $\mathscr{A} = \{ \mathfrak{A} \in \mathscr{K} : \mathfrak{A} \models \exists \mathscr{T}\sigma \}$ . We can assume without loss of generality that  $\mathscr{T}$  contains only predicate symbols and that  $\sigma$  is in prenex normal form. Say  $\sigma$  starts with r quantifiers. Assume that  $\mathfrak{A} \in \mathscr{A}$ , that  $\mathfrak{B} \in \mathscr{K}$ , and that  $\mathfrak{A} \to_r^{\mathscr{T}} \mathfrak{B}$ . We will show that  $\mathfrak{B} \in \mathscr{A}$ . We will prove this in the special case when  $\sigma$  is  $\forall x \exists y M$ , where M is quantifier-free. The general case is very similar.

Assume that  $\mathfrak{B} \notin \mathscr{A}$ . Then  $\mathfrak{B} \models \forall \mathscr{T} \exists x \ \forall y \sim M$ . Find an  $\mathscr{S} \cup \mathscr{T}$ -structure  $\mathfrak{A}'$  such that  $\mathfrak{A}' \upharpoonright \mathscr{S} = \mathfrak{A}$  and  $\mathfrak{A}' \models \forall x \exists y M$ . Let  $\mathfrak{B}'$  be an arbitrary  $\mathscr{S} \cup \mathscr{T}$ -structure with  $\mathfrak{B}' \upharpoonright \mathscr{S} = \mathfrak{B}$ . We will show that not  $\mathfrak{A}' \sim_2 \mathfrak{B}'$ . On player I's first move, he picks  $b_1$  in  $\mathfrak{B}' \upharpoonright$  such that  $\mathfrak{B}' \models \forall y \sim M \begin{bmatrix} x \\ b_1 \end{bmatrix}$ . Let  $a_1$  in  $|\mathfrak{A}'|$  be player II's response. Then  $\mathfrak{A}' \models \exists y M \begin{bmatrix} x \\ a_1 \end{bmatrix}$ . Do player I's next move, he picks  $a_2$  in  $|\mathfrak{A}'|$  such that  $\mathfrak{A}' \models M \begin{bmatrix} x & y \\ a_1 & a_2 \end{bmatrix}$ . Let  $b_2$  in  $|\mathfrak{B}'|$  be the player II's response. Then  $\mathfrak{B}' \models \sim M \begin{bmatrix} x & y \\ b_1 & b_2 \end{bmatrix}$ . So player II has clearly lost.

"\( = \)". For each finite set  $\mathcal{S}'$  of predicate symbols, we will define the notion of an m-type<sub>r</sub>( $\mathcal{S}'$ ), for  $0 \le m \le r$ , by backwards induction (from m = r to m = 0.) An r-type<sub>r</sub>( $\mathcal{S}'$ ) is any formula

such that  $\mathfrak A$  is an  $\mathscr S'$ -structure and  $a_1, \ldots, a_r \in |\mathfrak A|$ . For each set A of (m+1)-types<sub>r</sub>( $\mathscr S'$ ), the following is an m-type<sub>r</sub>( $\mathscr S'$ ):

It is easily proved by induction that for any  $\mathscr{S}'$ -structure  $\mathfrak{A}$  and any  $a_1, \ldots, a_m$  in  $|\mathfrak{A}|$ , we have  $\mathfrak{A} \models \varphi \begin{bmatrix} v_1 \ldots v_m \\ a_1 \ldots a_m \end{bmatrix}$  for exactly one m-type<sub>r</sub>( $\mathscr{S}'$ )  $\varphi$ . For each m ( $0 \leq m \leq r$ ), there is only a finite number of distinct m-types<sub>r</sub>( $\mathscr{S}'$ ), and each has free variables  $v_1, \ldots, v_m$ .

For each  $\mathscr{S}'$ -structure  $\mathfrak{A}$ , and each natural number r, denote  $\sigma$ , the 0-type,  $(\mathscr{S}')$  such that  $\mathfrak{A} \models \sigma$ , by  $\sigma(\mathfrak{A}, r)$ . It is easy to see that if  $\mathfrak{A}$  and  $\mathfrak{B}$  are  $\mathscr{S}'$ -structures, then  $\mathfrak{A} \sim_r \mathfrak{B}$  iff  $\mathfrak{B} \models \sigma(\mathfrak{A}, r)$ : player II's strategy is to make sure that after the mth move, if  $a_1, \ldots, a_m (b_1, \ldots, b_m)$  are the points that have been picked in  $|\mathfrak{A}|$  ( $|\mathfrak{B}|$ ), then  $\mathfrak{A} \models \varphi \begin{bmatrix} v_1 \ldots v_m \\ a_1 \ldots a_m \end{bmatrix}$  and  $\mathfrak{B} \models \varphi \begin{bmatrix} v_1 \ldots v_m \\ b_1 \ldots b_m \end{bmatrix}$  for the same m-type,  $(\mathscr{S}') \varphi$ .

If  $\mathfrak A$  is an  $\mathscr S$ -structure, then let  $\tau(\mathfrak A, \mathscr F, r)$  be the (finite) conjunction  $\wedge \{\exists \mathscr F \sigma(\mathfrak A', r) : \mathfrak A' \text{ is an } \mathscr S \cup \mathscr F\text{-structure with } \mathfrak A' \upharpoonright \mathscr S = \mathfrak A \}$ . It is easy to see that if  $\mathfrak B$  is an  $\mathscr S$ -structure, then  $\mathfrak A \to \mathscr F \mathfrak B$  iff  $\mathfrak B \models \tau(\mathfrak A, \mathscr F, r)$ .

Let  $\mathscr{A} \subseteq \mathscr{K}$  have the property that whenever  $\mathfrak{A} \in \mathscr{A}$ ,  $\mathfrak{B} \in \mathscr{K}$ , and  $\mathfrak{A} \to_r^{\mathscr{F}} \mathfrak{B}$ , then  $\mathfrak{B} \in \mathscr{A}$ . Then

$$\mathscr{A} = \{ \mathfrak{B} \in \mathscr{K} : \mathfrak{B} \models \bigvee \{ \tau(\mathfrak{A}, \mathscr{F}, r) : \mathfrak{A} \in \mathscr{A} \} \}.$$

So  $\mathscr{A} \in PC(\mathscr{K})$ , because a finite conjunction or disjunction of existential second-order sentences is an existential second-order sentence. Likewise, if  $\mathscr{T}$  is monadic, then  $\mathscr{A} \in PC_1(\mathscr{K})$ .

# 4. Nonclosure under complement

In this section, we will show that for each pair d, r of natural numbers, there are structures  $\mathfrak A$  and  $\mathfrak B$  such that  $\mathfrak A$  is a cycle,  $\mathfrak B$  is the cardinal sum of two cycles, and  $\mathfrak A \to_r^d \mathfrak B$ . (In fact,  $\mathfrak B = \mathfrak A \oplus \mathfrak C$  for some cycle  $\mathfrak C$ .) It then follows easily from Theorem 1, that the class of connected, finite  $\{P\}$ -structures is not a monadic  $\{P\}$ -spectrum (a  $\{P\}$ -structure  $\mathfrak A$  is connected if for each a, b in  $|\mathfrak A|$  there is a finite sequence  $a_1, \ldots, a_n$  of points in  $|\mathfrak A|$  such that  $a_1 = a$ ,  $a_n = b$ , and either  $P^{\mathfrak A}a_ia_{i+1}$  or  $P^{\mathfrak A}a_{i+1}a_i$ , for  $1 \leq i < n$ ). However, as we will see, the class of nonconnected, finite  $\{P\}$ -structures is a monadic  $\{P\}$ -spectrum.

Let  $\mathscr{S} = \{P, U_1, \ldots, U_d\}$  as before. Let  $\mathfrak{A}'$  be an  $\mathscr{S}$ -structure, with  $\mathfrak{A}' \upharpoonright \{P\}$  the cardinal sum of cycles. If  $a \in |\mathfrak{A}'|$ , then define the *weak marking* m on a to be the subset  $m \subseteq \{U_1, \ldots, U_d\}$ , where  $U_i \in m$  iff  $U_i^{\mathfrak{A}'}a$ . Assume that

- 1.  $a_1, \ldots, a_t \in |\mathfrak{A}'|$ .
- 2.  $m_i$  is the weak marking on  $a_i$   $(1 \le i \le t)$ .
- 3.  $P^{\mathfrak{A}'}a_ia_{i+1} \ (1 \leq i < t)$ .

Then  $\langle m_1, \ldots, m_t \rangle$  is a weak sequence (of length t) in  $\mathfrak{A}'$ . A weak sequence  $\langle m_1, \ldots, m_t \rangle$  occurs at least n times in  $\mathfrak{A}'$  if there are at least n different t-tuples  $\langle a_1, \ldots, a_t \rangle$  such that the three conditions above hold.

Define  $v: \mathbb{N} \to \mathbb{N}$  by

$$v(0) = 1$$
,  $v(r + 1) = 2v(r) + 1$ .

Let n(r) = rv(r) for each r.

The next lemma is the main tool in proving our result.

Lemma 2. Let r be a natural number, and let  $\mathfrak A$  and  $\mathfrak C$  be  $\mathscr S$ -structures, with  $\mathscr S$  as above, such that  $\mathfrak A \upharpoonright \{P\}$  and  $\mathfrak C \upharpoonright \{P\}$  are each cycles of length at least v(r+1). Assume that every weak sequence of length v(r) in  $\mathfrak C$  occurs at least n(r) times in  $\mathfrak A$ . Then  $\mathfrak A \sim_r \mathfrak A \oplus \mathfrak C$ .

Proof. Let  $\mathfrak{B} = \mathfrak{A} \oplus \mathfrak{C}$ , where  $f: \mathfrak{A} \cong \mathfrak{A}$ . We write f(a) as  $\bar{a}$ , for each a in  $|\mathfrak{A}|$ . We assume that  $|\mathfrak{A}| \cap |\mathfrak{B}| = \emptyset$ .

Assume that each player has made k selections of points. Then the strong marking m = m(k, a) on a point a in  $|\mathfrak{D}|$ , where  $\mathfrak{D}$  is  $\mathfrak{A}$  or  $\mathfrak{B}$ , is the subset m of  $\{U_1, \ldots, U_d\} \cup \{1, \ldots, k\}$ , where  $U_i \in m$  iff  $U_i^{\mathfrak{D}}a$ , and  $i \in m$  iff the point a was selected by either player in the ith round. For each natural number n, denote by S(a, n) (S'(a, n)) the (2n + 1)-tuple

$$\langle m_{-n}, m_{-n+1}, \ldots, m_0, \ldots, m_n \rangle$$

where for some (2n+1)-tuple  $\langle a_{-n}, \ldots, a_n \rangle$  of members of  $|\mathfrak{D}|$ , we have  $P^{\mathfrak{D}}a_ia_{i+1}$  for  $-n \leq i < n$ , with  $a_0 = a$ , and where  $m_i$  is the weak (strong) marking on  $a_i$ . Call S'(a, n) clean if S'(a, n) = S(a, n). Let  $C(a, n) = \{a_{-n}, \ldots, a_n\}$ .

We will show that player II has a strategy such that if there are p moves remaining for each player (that is, r-p rounds have been played), and if the point picked in  $|\mathfrak{A}|$  ( $|\mathfrak{B}|$ ) on the 'th round was  $a_i$  ( $b_i$ ), for  $1 \le i \le r-p$ , then

- 1.  $\{(a_i, b_i): 1 \leq i \leq r p\}$  is a one-one function, say g.
- 2.  $g: \mathfrak{A} \mid \{a_1, \ldots, a_{r-p}\} \cong \mathfrak{B} \mid \{b_1, \ldots, b_{r-p}\}.$
- 3.  $S'(a_i, v(p)) = S'(b_i, v(p)), 1 \le i \le r p.$
- 4. If  $b_i \neq \overline{a_i}$ , then  $S(a_i, v(p))$  occurs at least n(r) times in  $\mathfrak{A}$ .

When p = r, these are trivially true. Assume that these are true for p = s + 1; we will show that player II can play so that they are true when p = s.

On his (r-s)th move, player I can pick a point in either  $|\mathfrak{A}|$  or  $|\mathfrak{B}|$ . Assume first that he picks  $a=a_{r-s}$  in  $|\mathfrak{A}|$ . There are now three cases.

Case 1. S'(a, v(s)) is not clean. Intuitively speaking, player I has selected a point a which is near another point a' that has already been selected. If b' is the point in  $|\mathfrak{B}|$  which was selected in the same round as a', then player II's strategy is to pick a point b in  $|\mathfrak{B}|$  such that b relates to b' (with respect to distance and direction) as a relates to a'.

Formally, we know that  $a_i \in C(a, v(s))$ , for some i with  $1 \le i \le r - s - 1$ . By assumption,  $S'(a_i, v(s+1)) = S'(b_i, v(s+1))$ . For some  $j \le v(s)$ , there are  $x_1, \ldots, x_j$  in  $|\mathfrak{A}|$ , with  $P^{\mathfrak{A}}x_kx_{k+1}$ , for  $1 \le k < j$ , such that either  $x_1 = a$  and  $x_j = a_i$ , or  $x_1 = a_i$  and  $x_j = a$ . If the former is true, then find  $y_1, \ldots, y_j$  in  $|\mathfrak{B}|$ , with  $P^{\mathfrak{B}}y_ky_{k+1}$ , for  $1 \le k < j$ , and with  $y_j = b_i$ . Set  $b_{r-s} = y_1$ . The latter case is similar, with  $y_1 = b_i$  and  $y_j = b_{r-s}$ .

Now  $C(a, v(s)) \subseteq C(a_i, v(s+1))$ , and so it is easy to check that the four conditions hold with p = s. For example,  $S'(a_{r-s}, v(s)) = S'(b_{r-s}, v(s))$  since  $S'(a_i, v(s+1)) = S'(b_i, v(s+1))$ .

Case 2. S'(a, v(s)) is clean and  $S'(\bar{a}, v(s))$  is clean. Player I has selected a point a which is not near any point that has been selected before; also,  $\bar{a}$  is not near any point which has been selected before. Let  $b_{r-s} = \bar{a}$ : that is, player II selects  $\bar{a}$ . The four conditions hold for p = s.

Case 3. S'(a, v(r)) is clean and  $S'(\bar{a}, v(s))$  is not clean. Player I has selected a point a which is not near any point that has been selected before, but  $\bar{a}$  is near a point that has been selected before. So player II cannot pick  $\bar{a}$ ; he must instead pick a point in  $|\mathbb{C}|$  whose immediate neighborhood looks like the immediate neighborhood of a.

We know that  $b_i \in C(\bar{a}, v(s))$  for some i with  $1 \le i \le r - s - 1$ . Then  $b_i \ne \overline{a_i}$ , because if  $b_i = \overline{a_i}$ , then  $a_i \in C(a, v(s))$ , and so S'(a, v(s)) would not be clean. By conditions 3 and 4, we therefore know that  $S(a_i, v(s+1)) = S(b_i, v(s+1))$  occurs at least n(r) times in  $\mathfrak{A}$ . Now  $C(\bar{a}, v(s)) \subseteq C(b_i, v(s+1))$ , and so  $S(a, v(s)) = S(\bar{a}, v(s))$  occurs at least n(r) times in  $\mathfrak{A}$  (and  $\overline{\mathfrak{A}}$ ). Now  $\bigcup_{k=1}^{r-s-1} C(b_k, v(s))$  contains at most  $(r-s-1)v(s+1) \le (r-1)v(r) < n(r)$  points. So we can find d in  $|\overline{\mathfrak{A}}|$  such that S(d, v(s)) = S(a, v(s)), and with d not in  $\bigcup_{k=1}^{r-s-1} C(b_k, v(s))$ . Hence S'(d, v(s)) is clean. Let  $b_{r-s} = d$ . The four conditions now hold for p = s.

Now say player I picks  $b = b_{r-s}$  in  $|\mathfrak{B}|$ . There are two cases:  $b \in |\mathfrak{A}|$  or  $b \in |\mathfrak{C}|$ .

Case 1'.  $b \in |\mathfrak{A}|$ . For some a, we have  $b = \bar{a}$ . There are three subcases.

Case 1'a.  $S'(\bar{a}, v(s))$  is not clean. This is dealt with exactly like Case 1.

Case I'b.  $S'(\bar{a}, v(s))$  and S'(a, v(s)) are both clean. Let  $a_{r-s} = a$ .

Case 1'c.  $S'(\bar{a}, v(s))$  is clean, and S'(a, v(s)) is not clean. Then as in Case 3, we can find d in  $|\mathfrak{A}|$  such that  $S(d, v(s)) = S(\bar{a}, v(s))$ , such that S'(d, v(s)) is clean, and such that S(d, v(s)) occurs at least n(r) times in  $\mathfrak{A}$ . Let  $a_{r-s} = d$ .

Case 2'.  $b \in |\mathfrak{C}|$ . There are two subcases.

Case 2'a. S'(b, v(s)) is not clean. This is dealt with like Case 1 (and Case 1'a).

Case 2'b. S'(b, v(s)) is clean. Now each weak sequence of length v(s) in  $\mathfrak{C}$  occurs at least n(r) times in  $\mathfrak{A}$ . As in Case 3, we can find d in  $|\mathfrak{A}|$  such that S(d, v(s)) = S(b, v(s)), with S(d, v(s)) clean. Of course, S(d, v(s)) occurs at least n(r) times in  $\mathfrak{A}$ . Let  $a_{r-s} = d$ .

The induction is complete. When p=0, we see from conditions 1 and 2 that player II wins.

Let  $p = \langle p_1, \ldots, p_m \rangle$  and  $q = \langle q_1, \ldots, q_n \rangle$  be sequences. Then by  $p \cap q$ , we mean the concatenated sequence  $\langle p_1, \ldots, p_m, q_1, \ldots, q_n \rangle$ . We call p a consecutive subsequence of q if for some j,  $0 \leq j \leq n - m$ , we have  $p_i = q_{i+j}$ ,  $1 \leq i \leq m$ . The length of the sequence  $p = \langle p_1, \ldots, p_m \rangle$  is m.

Define  $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$  by  $f(d, r) = e^{v(r)}e^{e^{v(r)}}n(r)$ , where  $e = 2^d$ .

Theorem 3. Let d and r be natural numbers, and let  $\mathfrak{A}$  be a cycle of length at least f(d, r). Then there is a positive integer a such that for each positive integer k and each cycle  $\mathbb{C}$  of length ka,  $\mathfrak{A} \to_{r}^{d} \mathfrak{A} \oplus \mathbb{C}$ .

Proof. Let  $\mathscr{S} = \{P, U_1, \ldots, U_d\}$ . Assume that  $\mathfrak{A}$  is a cycle of length at least  $f(d, r)_{\mathfrak{A}}$  and that  $\mathfrak{A}'$  is an  $\mathscr{S}$ -structure, with  $\mathfrak{A}' \upharpoonright \{P\} = \mathfrak{A}$ . We will find some weak sequence

 $s = s(\mathfrak{A}')$  of length at least v(r), with the property that if s' is any consecutive subsequence of length v(r) of  $s \cap s$ , then s' occurs at least n(r) times in  $\mathfrak{A}'$ . Then we will show that this is sufficient to prove the theorem.

Let  $e = 2^d$ . We will first construct a certain weak sequence  $u = \langle u_1, \ldots, u_{e^{v(r)}+v(r)} \rangle$  of length  $e^{v(r)} + v(r)$ . The number of possible weak sequences of length v(r) is  $e^{v(r)}$ . Since  $f(d, r) = e^{v(r)}e^{e^{v(r)}}n(r)$ , some weak sequence  $t = \langle t_1, \ldots, t_{v(r)} \rangle$  of length v(r) occurs at least  $e^{e^{v(r)}}n(r)$  times in  $\mathfrak{A}'$ . Let  $u_i = t_i$ ,  $1 \leq i \leq v(r)$ . Let t' be the weak sequence  $\langle t_2, \ldots, t_{v(r)} \rangle$  of length v(r) - 1. Since t' occurs at least  $e^{e^{v(r)}}n(r)$  times in  $\mathfrak{A}'$ , we know that for some weak marking b, the weak sequence  $t' \cap \langle b \rangle$  occurs at least  $e^{e^{v(r)}-1}n(r)$  times in  $\mathfrak{A}'$ . Let  $u_{v(r)+1} = b$ . Now we can find c such that  $\langle u_3, u_4, \ldots, u_{v(r)+1} \rangle \cap \langle c \rangle$  occurs at least  $e^{e^{v(r)}-2}n(r)$  times in  $\mathfrak{A}'$ . Let  $u_{v(r)+2} = c$ . Continue this process  $e^{v(r)}$  times. Then each consecutive subsequence of length v(r) of u occurs at least n(r) times in  $\mathfrak{A}'$ .

For each i,  $1 \le i \le e^{v(r)} + 1$ , let  $q_i = \langle u_i, \ldots, u_{i+v(r)-1} \rangle$ . There are only  $e^{v(r)}$  possible different  $q_i$ 's, and so  $q_i = q_j$  for some i < j. There are now two cases.

Case 1. i + v(r) - 1 < j. Let  $s = \langle u_i, \ldots, u_{j-1} \rangle$ . If s' is any consecutive subsequence of length v(r) of  $s \cap s$ , then s' is a consecutive subsequence of length v(r) of u; hence, s' occurs at least n(r) times in  $\mathfrak{A}'$  by construction.

Case 2.  $i + v(r) - 1 \ge j$ . Let  $t = \langle u_i, \ldots, u_{j-1} \rangle$ , and let  $s = t^{r} t^{r} \ldots t^{r}$ , with the concatenation taken just enough times that the length of s is at least v(r). Once again, each consecutive subsequence s' of length v(r) of  $s^{r}$ s is a consecutive subsequence of length v(r) of u, and so it occurs at least v(r) times in v(r).

So given  $\mathfrak{A}'$ , we have found  $s = s(\mathfrak{A}')$  with the desired property.

Let  $s = \langle m_1, \ldots, m_b \rangle$  be an arbitrary sequence of subsets of  $\{U_1, \ldots, U_d\}$ , and let k be a positive integer. We will now define an  $\mathscr{S}$ -structure  $\mathfrak{C}' = \mathfrak{C}'(s, k)$  which corresponds to the intuitive picture of Figure 1, where s is written down k times.



Figure 1

Let  $|\mathfrak{C}'| = \{1, 2, ..., kb\}$ . Let  $P^{\mathfrak{C}'} = \{\langle i, i+1 \rangle : 1 \leq i < kb\} \cup \{\langle kb, 1 \rangle\}$ . Let  $U_i^{\mathfrak{C}'}j$  hold iff  $U_i \in m_e$ , where  $e \equiv j \mod b$  and  $1 \leq e \leq b$ . By Lemma 2, for each expansion  $\mathfrak{A}'$  of  $\mathfrak{A}$  to  $\mathscr{S}$ , we have  $\mathfrak{A}' \sim_r \mathfrak{A}' \oplus \mathfrak{C}'(s(\mathfrak{A}'), k)$ .

Let a be the least common multiple of the cardinality of each  $s(\mathfrak{A}')$ , over all expansions  $\mathfrak{A}'$  of  $\mathfrak{A}$  to  $\mathscr{S}$ . Then a is the number called for in the statement of the theorem. For, let  $\mathfrak{C}$  be a cycle of length ka for some positive integer k. We will show that  $\mathfrak{A} \to_r^d \mathfrak{A} \oplus \mathfrak{C}$ . Let  $\mathfrak{A}'$  be any expansion of  $\mathfrak{A}$  to  $\mathscr{S}$ . If b is the length of  $s(\mathfrak{A}')$ , let f = a/b. Then  $\mathfrak{A}' \sim_r \mathfrak{A}' \oplus \mathfrak{C}'(s(\mathfrak{A}'), kf)$ .

Corollary 4. Let d and r be natural numbers. Then there are structures  $\mathfrak A$  and  $\mathfrak B$  such that  $\mathfrak A$  is a cycle,  $\mathfrak B$  is the cardinal sum of two cycles, and  $\mathfrak A \to_{\mathfrak a}^d \mathfrak B$ .

Proof. Immediate from Theorem 3.

Theorem 5. Let  $\mathscr{A}$  be the class of nonconnected, finite  $\{P\}$ -structures. Then  $\mathscr{A}$  is a monadic generalized spectrum, but  $\widetilde{\mathscr{A}}$  is not. Hence, the class of monadic generalized spectra is not closed under complement.

Proof. A is a monadic generalized spectrum, via

$$\exists U (\exists x Ux \land \exists x \sim Ux \land \forall x \forall y (Pxy \rightarrow (Ux \leftrightarrow Uy))).$$

Assume that  $\mathscr A$  is a monadic generalized spectrum. From Theorem 1, we can find natural numbers d and r such that if  $\mathfrak A \in \widetilde{\mathscr A}$ ,  $\mathfrak B$  is a finite  $\{P\}$ -structure, and  $\mathfrak A \to r^d \mathfrak B$ , then  $\mathfrak B \in \widetilde{\mathscr A}$ . But this contradicts Corollary 4.

We close by noting that  $\widetilde{\mathscr{A}}$  is a generalized spectrum with one existentialized binary predicate symbol <. Let  $\sigma$  be the first-order sentence "< is a strict partial order (transitive and irreflexive) with a largest element, and if y is an immediate successor of x, then  $Pxy \vee Pyx$ ." Then  $\widetilde{\mathscr{A}}$  is the class of finite models of  $\exists < \sigma$ : Clearly if  $\mathfrak{A}$  is finite and  $\mathfrak{A} \models \exists < \sigma$ , then  $\mathfrak{A}$  is connected. Conversely, assume that  $\mathfrak{A}$  is finite and connected. Select any a in  $|\mathfrak{A}|$ ; this will be the largest element in the partial order. We will define various "levels" which partition  $|\mathfrak{A}|$ . The first, or top, level contains only a. The second level contains every point in  $|\mathfrak{A}|$  (except a) which connects to a (b connects to a if  $P^{\mathfrak{A}}ab$  or  $P^{\mathfrak{A}}ba$ ). The third level contains every point not in the first or second level which connects to a point in the second level, and so on. Define  $<_1$  on  $|\mathfrak{A}|$  by saying that  $x <_1 y$  if x and y connect and if x is one level below y. Let  $<_2$  be the transitive closure of  $<_1$ ; then  $<_2$  is the desired strict partial order.

## **Bibliography**

- [1] ASSER, G., Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität. This Zeitschr. 1 (1955), 252-263.
- [2] BÜCHI, J. R., Weak second-order arithmetic and finite automata. This Zeitschr. 6 (1960), 66-92.
- [3] FAGIN, R., Contributions to the model theory of finite structures. Doctoral dissertation, Univ. of Calif., Berkeley, 1973.
- [4] FAGIN, R., Generalized first-order spectra and polynomial-time recognizable sets. In: Complexity of Computation (ed. R. KARP), SIAM-AMS Proc. 7 (1974), 43-73.
- [5] Fraïssé, R., Sur les classifications des systems de relations. Publications Sc. d l'Université D'Alger 1, No. I (1954).
- [6] RABIN, M. O., Decidability of second-order theories and automata on finite trees. IBM research report RC-2012 (1968).
- [7] SCHOLZ, H., Problems. J. of Symb. Log. 17 (1952), 160.
- [8] TARSKI, A., Contributions to the theory of models I, II. Indag. Math. 16 (1954), 572-588.

(Eingegangen am 6. Dezember 1973)