

Track-based Alignment of the Muon Chambers: Status and Schedule

Jim Pivarski

Texas A&M University

5 December, 2006


```
Track-based alignment: vary chamber positions to minimize
    \sum |\text{residual}|^2 (that is, \sum |\text{track} - \text{hit position}|^2)
```

► requires a large dataset (≫ 2007 run, ~a day full luminosity)

Hardware alignment: physical sensors on the chambers

sensitive to short timescales


```
Track-based alignment: vary chamber positions to minimize
    \sum |\text{residual}|^2 (that is, \sum |\text{track} - \text{hit position}|^2)
```

- requires a large dataset ($\gg 2007$ run, \sim a day full luminosity)
- insensitive to translations along line of sight from IP

Hardware alignment: physical sensors on the chambers

- sensitive to short timescales
- geometry is not radial: compliments track-based

Track-based alignment: vary chamber positions to minimize $\sum |\text{residual}|^2$ (that is, $\sum |\text{track} - \text{hit position}|^2$)

- requires a large dataset ($\gg 2007$ run, \sim a day full luminosity)
- insensitive to translations along line of sight from IP
- cannot recover trigger inefficiency due to misalignment

Hardware alignment: physical sensors on the chambers

- sensitive to short timescales
- geometry is not radial: compliments track-based
- can correct misalignments before data-taking

Track-based alignment: vary chamber positions to minimize $\sum |\text{residual}|^2$ (that is, $\sum |\text{track} - \text{hit position}|^2$)

- requires a large dataset ($\gg 2007$ run, \sim a day full luminosity)
- insensitive to translations along line of sight from IP
- cannot recover trigger inefficiency due to misalignment
- the final alignment

Hardware alignment: physical sensors on the chambers

- sensitive to short timescales
- geometry is not radial: compliments track-based
- can correct misalignments before data-taking

HIP: a Simple Alignment Algorithm

Advantage: easy to see what's happening (diagnostic plots)

 $r_x = \text{track-hit residual in local coordinate } x$

 ϕ_{x} : r_{v} linear in y

 $(slope = 1 - cos \phi_x)$

z: inaccessible

 ϕ_z : r_x linear in yand r_v linear in x $(slope = sin \phi_z)$

 $\phi_{\mathbf{v}}$: $r_{\mathbf{x}}$ linear in \mathbf{x}

 $(slope = 1 - cos \phi_v)$

misaligned

History of Our Involvement

3 October: Announced our involvement at Purdue EMU meeting

20 October: Could arbitrarily move detector elements in CMSSW

22 October: Could calculate residuals

26 October: Proposed MuonAlignmentAnalyzer to AlCaReco

They convinced us to extend CommonAlignment

13 November: Presented at PRS/mu

CommonAlignment

- ▶ Three alignment algorithms are sub-modules of CommonAlignment, including HIP (called CSA06Alignment)
- Designed for tracker and muon chambers, but only implemented for tracker

Current Status

- ► Can edit and update muon geometry (works in local area)
- Can calculate trajectory of tracker-fitted tracks at muon hits and put this into the Event in a standard way
- Need to modify CommonAlignment to get this object and use it to calculate residuals

Schedule through next year

Deadline	lask
1 Jan, 2007	Finish integrating muon chambers into alignment framework
1 Mar, 2008	Transition CSA06Alignment to HIPAlignment and develop low-level diagnostics suite
1 Apr	Prototype and study realistic alignment procedure, assuming a source of muons
1 May	Evaluate possible sources ($W \to \mu \nu$, $Z \to \mu \mu$, cosmics, or good muon) and finalize routine
1 Jun	Document everything

- ▶ Start with CMS NOTE 2006/016 toy MC ("for illustrative purposes only!")
- ▶ Distinguish between barrel and endcap: intrinsic resolutions, overlapping geometry, η distribution of $W \to \mu \nu$ and $Z \to \mu \mu$
- \triangleright Simulate multiple scattering, non-uniform \vec{B} , propagated from tracker (30% effect)

2 days of $10^{30}/\text{cm}^2/\text{s}$ at 0.9 TeV:

4-6 mm resolution in barrel, 3-4 mm in endcap

 $10^{33}/\text{cm}^2/\text{s}$ at 14 TeV:

17 hours for 200-300 μ m in barrel (410,000 muons), 10 hours for 100-150 μ m in endcap (220,000 muons)

Summary

- We are implementing a simple, robust alignment algorithm that provides opportunities for diagnostics
- Software development is progressing smoothly (well-designed infrastructure)
- Conservative schedule has an alignment routine ready on time
- Track-based alignment cannot be precise with 2 days of low-energy, low-luminosity data
- ► At full energy and luminosity, track-based can be sensitive to timescales as short as a day

MB1 alignment resolution per track (scales with $1/\sqrt{N_{\text{track}}}$)

global translations:

rphi	R	Z
8 mm	80 mm	8 mm

local rotations:

ϕ_{x}	$\phi_{m{y}}$	$\phi_{\it z}$
70 mrad	50 mrad	10 mrad

^{*}direct effect on tracking

for all barrel chambers (independent of chamber lengths)

Intrinsic resolutions of
$$\frac{\text{endcap}}{\text{barrel}} = \frac{50 \ \mu\text{m}}{170 \ \mu\text{m}}$$
 (E. Torassa, Review of the CMS Muon Detector System)

5-6 mm for all endcap chambers

Toy MC was for innermost muon chamber: what about resolution loss in outer chambers? Full simulation:

Multiple scattering, non-uniform \vec{B} , propagated from tracker \Rightarrow 30% widening of distribution

To get 200-300 μ m in barrel and 100-150 μ m in endcap,

$$\left(1.3 \, \frac{20 \, \text{mm}}{300 \, \mu \text{m}}\right)^2 = 6800 \, \frac{\text{muons}}{\text{DT}} \qquad \left(1.3 \, \frac{6 \, \text{mm}}{150 \, \mu \text{m}}\right)^2 = 2700 \, \frac{\text{muons}}{\text{CSC}}$$

 \times 60 non-overlapping = 410,000 barrel \times 80 = 220,000 endcap

At 0.9 TeV:

$$2 \times \sigma(Z) \times \mathcal{B}(\mu\mu) \times \epsilon(\eta) = 0.14 \text{ nb (barrel)}, 0.060 \text{ nb (endcap)}$$

 $\sigma(W) \times \mathcal{B}(\mu\nu) \times \epsilon(\eta) = 0.67 \text{ nb (barrel)}, 0.29 \text{ nb (endcap)}$

At 14 TeV:

$$2 \times \sigma(Z) \times \mathcal{B}(\mu\mu) \times \epsilon(\eta) = 1.2 \text{ nb (barrel)}, 1.2 \text{ nb (endcap)}$$

 $\sigma(W) \times \mathcal{B}(\mu\nu) \times \epsilon(\eta) = 5.4 \text{ nb (barrel)}, 5.4 \text{ nb (endcap)}$