Des systèmes naturels aux systèmes urbains: génération de réseaux de transport optimaux par modèle *slime-mould*

J. Raimbault^{1,2}

¹ UPS CNRS 3611 ISC-PIF et ² UMR CNRS 8504 Géographie-cités

Introduction

- Méthodes classiques de conception et d'évaluation des infrastructures de transport basée sur scenarios exogènes [Wegener and Fürst, 2004]; optimisation et/ou analyse de données.
- Ingénierie morphogénétique à la croisée des systèmes autoorganisés et architecturés [Doursat et al., 2012]: application démontrée à la conception d'infrastructures de transports [Bebber et al., 2007].
- Application d'un modèle de croissance de *slime-mould* à la conception multi-objectifs d'un réseau de transport.

Modèle

Modèle de croissance d'un *slime-mould* [Tero et al., 2010] : principe *d'exploration puis renforcement*.

Etude de l'aspect renforcement : réseau initial homogène de tubes ij, longueur L_{ij} , diamètre variable D_{ij} , traversés par un flux de fluide Q_{ij} . Sommets i à la pression p_i . Un nombre de noeuds N sont à desservir, parmi eux aléatoirement à chaque étape l'un est source $p_{i_+} = l_0$ et l'autre puits $p_{i_-} = -l_0$

Itération du modèle :

1. Détermination des flux par lois de Kirchoff (analogie électrostatique, résolution d'un système fermé) : loi d'Ohm

$$Q_{ij} = \frac{D_{ij}}{L_{ij}} \cdot (p_i - p_j) \tag{1}$$

et conservation des flux

$$\sum_{j \to i} Q_{ij} = 0, \sum_{j \to i_{\pm}} Q_{i_{\pm}j} = \pm I_0$$
 (2)

2. Evolution du diamètres de tubes (γ paramètre de renforcement)

$$\frac{dD_{ij}}{dt} = \frac{|Q_{ij}|^{\gamma}}{1 + |Q_{ii}|^{\gamma}} - D_{ij}$$
(3)

Extraction du réseau final après convergence selon un paramètre de seuil de diamètre ou un nombre maximal d'itérations.

Indicateurs

Comportement du modèle évalué au travers d'indicateurs contradictoires de performance pour le réseau généré :

- ▶ Coût de construction $c = \sum_{ij \in E_f} D_{ij}(t_f)$
- ▶ Performance moyenne [Banos and Genre-Grandpierre, 2012]

$$v = \frac{1}{|V_f|^2} \sum_{i,j \in V_f} \frac{d_{i \to j}}{||\vec{i} - \vec{j}||}$$

► Robustesse (indice *Network Trip Robustness*, impact de la suppression des liens [Sullivan et al., 2010])

Exploration du modèle

Application: desserte optimale

Problème type voyageur de commerce, mais multi-objectif (coût, vitesse, robustesse) : itinéraire de desserte pour une navette intra-urbaine.

Convergence progressive du réseau vers le réseau optimal desservant les points fixés (en rouge), en partant d'un réseau initial à diamètres égaux (réseau de rues).

Application : réseaux métropolitains

Dans le cadre d'une configuration métropolitaine polycentrique stylisée [Le Néchet and Raimbault, 2015], comment élaborer automatiquement différents scénarios pour un nouveau réseau de transport ?

Réseaux stylisés obtenus pour des valeurs décroissantes de γ , pour une même configuration de desserte des centres.

Optimisation de Pareto : projection des configurations explorées dans l'espace des indicateurs, obtention du front de Pareto ; configurations correspondant à trois points optimaux.

References

- Banos, A. and Genre-Grandpierre, C. (2012). Towards new metrics for urban road networks: Some preliminary evidence from agent-based simulations. In Agent-based models of geographical systems, pages 627–641. Springer.
- Bebber, D. P., Hynes, J., Darrah, P. R., Boddy, L., and Fricker, M. D. (2007).
- Biological solutions to transport network design.

 Proceedings of the Royal Society B: Biological Sciences,
- Doursat, R., Sayama, H., and Michel, O. (2012).

 Morphogenetic engineering: toward programmable complex systems.
- Le Néchet, F. and Raimbault, J. (2015).

274(1623):2307–2315.

Springer.

- Modeling the emergence of metropolitan transport autorithy in a polycentric urban region.
- polycentric urban region. In European Colloqueum on Theoretical and Quantitative Geography.
- Sullivan, J., Novak, D., Aultman-Hall, L., and Scott, D. M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach.

Transportation Research Part A: Policy and Practice, 44(5):323-336.

- Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi, R., and Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. *Science*, 327(5964):439–442.
- Wegener, M. and Fürst, F. (2004).

 Land-use transport interaction: state of the art.

 Available at SSRN 1434678.