Sistema Embarcado

Professor – Ramon Trigo

Bases Tecnológicas

- 1.Introdução aos microcontroladores.
- 2. Princípios de elétrica e eletrônica.
- 3. Descrição da plataforma de desenvolvimento.
- 4. Escrita de programa para microcontroladores.
- 5. Conceitos de entrada e saída digital.
- 6. Utilização de controle de tempo.
- 7. Entrada e saída analógica.
- 8. Manipulação de memória física e lógica.
- 9. Controle de fluxo de programa.
- 10. Laços de repetição.
- 11. Programação modular.
- 12. Funções predefinidas.
- 13. Sensores, sons, interrupções e comunicação serial.

Área Profissional

Web Mobile Full Stack Embarcado

Embarcado (IOT)

A programação embarcada refere-se ao estudo de programação em microcontroladores e microprocessadores seus periféricos e manipular circuitos externos.

Raspberry PI

O que é Arduino

Arduino é uma plataforma formada por um equipamento eletrônico e um ambiente de programação integrado (IDE) para prototipagem eletrônica e de software.

O equipamento eletrônico da plataforma Arduino consistem em uma placa de circuitos integrados, devidamente equipada com seus componentes eletrônicos e cujo componente central é um microprocessador do tipo AVR da Atmel

Placa Arduino

Kit's

Alguns dos componentes do Kit Arduino Básico (Automação – Domotica)

Alguns dos componentes do Kit Arduino Básico (Robotica)

Ambiente de Desenvolvimento

O ambiente de Desenvolvimento Integrado (IDE) é, como veremos com mais detalhes adiante, um software desenvolvido para ser multiplataforma. Ele é escrito na linguagem Java, e automatiza tarefas como depuração, compilação e envio do binário compilado para o microcontrolador na placa eletrônica Arduino. A linguagem de programação utilizada para a programação para o Arduino e uma variação da Linguagem C.

Ambiente de Desenvolvimento

Microcontroladores

Muito associado a processadores o microcontrolador é mais do que somente uma unidade central de processamento (CPU, do inglês *Central Processing Unit*), ele possuí periféricos que o tornam capaz de exercer muitas funções sem depender de muitos outros componentes a ele conectados. Pode se dizer que um microcontrolador é uma espécie de computador, constituído de um processador(CPU), memória de armazenamento de programa, memória para armazenamento de variáveis, além de alguns possuírem periféricos para comunicação, conversão analógico/digital etc, e como um computador é programado por meio das chamadas linguagens de programação, como a linguagem C.

Microcontroladores

Realizando uma comparação aos computadores pessoais os microcontroladores possuem recursos limitados que trazem algumas limitações se comparados a computadores, como frequência de *clock*, tamanho de memória de programa e memória RAM etc, mas trazem como grande vantagem o baixo custo, baixo consumo energético e pequenas dimensões, tendo assim inúmeras aplicações..

O microcontrolador é o principal componente presente nas placas de desenvolvimento compatíveis <u>Arduino</u>, muito popular entre estudantes por conta da vasta documentação e principalmente pela grande comunidade de usuários, além de ser uma plataforma bastante amigável para iniciantes.

Tipos de Arduinos

Atualmente existem 12 versões da placa eletrônica Arduino. Também existem dezenas de kit's e módulos, chamados Shields, que podem ser interligados com as placas Arduino de forma a lhe conferir habilidades e funcionalidades.

Todas as variações de Arduino possuem, basicamente, o mesmo esquema de funcionamento, mas com variações nas interfaces velocidade de processamento, capacidade de memória armazenamento interno e algumas funcionalidades especificas como interface de rede com ou sem fio, bluetooth etc.

Onde utilizar o Arduino

Ele vem de encontro com <mark>as filosofias Maker</mark>, em resumo significam fazer sistemas físicos interativos pelo uso de software e hardware que possam "sentir" e "responder" ao ambiente onde estão inseridos seja pela construção de um carrinho de controle remoto que pode ser guiado pelo uso do aparelho celular, matrizes de LED.....

Também é possível pensar em Arduino pela ótica da (Internet das Coisas IOT) que visa criar equipamentos com capacidade e objetivo de transmitir dados e interagir diretamente com a internet sem a efetiva intervenção humana.

Exemplos para esse uso são vastos e passam por estações Meteorológicas automáticas, sensores de presença e liberação de acesso até rastreadores veiculares.

Exemplos

Jogos

✓ Jogos interativos que usam o corpo ou o movimento do usuário como controle, como máquina de danças, jogos de tiro em arcada etc.

Casas

- ✓ Controle automático da iluminação e temperatura interna de acordo com o clima e hábitos dos moradores;
- ✓ Geladeiras que" sabem" quando um produto entra ou sai;
- √ Vasos que regam plantas automaticamente e alimentadores automáticos de animais.
- ✓ Controle por voz de eletrodomésticos
- ✓ Regadores automáticos de plantas

Exemplos

Comércio

- ✓ Gondolas de supermercados inteligentes que percebem a retiradas ou colocação de produtos
- ✓ Contagem de clientes
- ✓ Exibição de peças publicitárias apenas com a aproximação de pessoas.
- ✓ Alimentador automático de animais de criação

Indústria

- ✓ Máquinas para inspeção de peças
- ✓ Sensores para inspeção de máquinas
- ✓ Controle automático de temperatura, umidade e iluminação.
- ✓ Controle de voz de máquinas

Exemplos

Tráfego

- ✓ Semáforos que alteram a duração do sinal de acordo com a quantidade e fluxo de veículos.
- ✓ Contagem de veículos em estradas, ruas e avenidas e apresentação automática da orientação do motorista de rotas alternativas.

Acesso ao simulador

Acessar a plataforma

https://www.tinkercad.com/

Iniciar edição

Como você usará o Tinkercad?

Na escola?

Os educadores começam aqui

Alunos, entrem em uma turma

Por conta própria

Criar uma conta pessoal

Como Acessar a Plataforma

https://youtu.be/wZ3n13fQU UA