Computation Structures 2014

July

S6 I making state machines

a Synchronous Circuits & meta stability

· Statemachines

Sannounce Quiz. Share lecture notes

So — start state - n(s,i) — next state O(s,i) — output

- next state will be the state in the next round

- = if A implements O(s, n) and n(s, n), then statemachine works (under the condition that alynamic discipline satisfied)
- e.g. count the number of times a non-zero occurres
 for simplicity, just 1-bit rount (ran extend).—

 1 if odd, 0 if even.

$$X = Lo, 1, 0, 2, 3, \dots$$
 (for simplicity, 2-bit)
 $Y = Lo, 1, 1, 0, 1, \dots$

$$S_{0}=0$$
 $n(s,i)=\begin{cases} S & \text{if } i\neq 0 \\ \overline{S} & \text{if } i=0 \end{cases}$ $o(s,i)=h(s,i)$

_ X, X	0	Sŧ	SETI	Oŧ
0	0	O	O	0
0	0	(1	1
0	1	0	1	1
0	١	Ţ	0	0
l	0	0	1	\
(0	1	0	0
1	(0	1	١
(Į	1	0	0

St+1 = XIXOS+ + A AIXOSE + XI ROSE + XIXOSE

- accummulator -> vse one adder

· Asynchronous circuits & meta-stability

- there are cases when setup and hold time cannot be satisfied.

when there are two clocks in a circuits when there is externel signal

This problem can be reduced to the following problem A arbiter S (A came first?) it turns out that is a correct answer is impossible an incorrect answer is impossible be cause to out put can stay _ for infinitely long. Unstable
bi-Stable time (unstable) is commonly very small but there is no guarantee of a bound. (the sharper, the less likely long staying vistable) probability Larops exponentialy.

one common solution

bth reg reg reg still undecided? fai

wait 100 ns -> 10° years a failure

Take home message = all circuits can fail, but very unliky