Tutorial 9

Exercise 5

- 32. (All vectors in this question are written as column vectors.) Let A be an orthogonal matrix of order n and let u, v be any two vectors in \mathbb{R}^n . Show that
 - (a) ||u|| = ||Au||;
 - (b) d(u, v) = d(Au, Av); and
 - (c) the angle between u and v is equal to the angle between Au and Av.
- 33. (All vectors in this question are written as column vectors.) Let A be an orthogonal matrix of order n and let $S = \{u_1, u_2, \ldots, u_n\}$ be a basis for \mathbb{R}^n .
 - (a) Show that $T = \{Au_1, Au_2, \dots, Au_n\}$ is a basis for \mathbb{R}^n .
 - (b) If S is orthogonal, show that T is orthogonal.
 - (c) If S is orthonormal, is T orthonormal?

Exercise 6

For each of the following, (i) find the characteristic equation of A; (ii) find all the
eigenvalues of A; and (iii) find a basis for the eigenspace associated with each eigenvalue of A.

(h)
$$A = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$
,

$$(\mathbf{j}) \quad A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- 4. Let A be a square matrix such that $A^2 = A$.
 - (a) Show that if λ is an eigenvalue of A, then $\lambda = 0$ or 1.
 - (b) Find all 2×2 matrices \boldsymbol{A} such that $\boldsymbol{A}^2 = \boldsymbol{A}$ and \boldsymbol{A} has eigenvalues 0 and 1.
- 8. Let $\{u_1, u_2, \ldots, u_n\}$ be a basis for \mathbb{R}^n and let A be an $n \times n$ matrix such that $Au_i = u_{i+1}$ for $i = 1, 2, \ldots, n-1$ and $Au_n = 0$. Show that the only eigenvalue of A is 0 and find all the eigenvectors of A.