有限集合の定義と選択公理*

@hyutw[†]

2021年12月11日

以下,ことわりがない限り選択公理を仮定せず,公理系 ZF で考えているものとする. 自然数 n とは,n 未満の自然数全体の集合のことであるとする:

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0,1\}$,... $n+1 = n \cup \{n\}$,...

自然数全体の集合を $\mathbf N$ と書く. 集合 X から集合 Y への写像全体を Y^X と書く. ここでは自然数 $n \in \mathbf N$ と集合 X に対して, X^n は n から X への写像全体を表している. |X| で集合 X の濃度を表す.集合の濃度を基数という.

定義. *X*, *Y* を集合とする.

- (2) $|X| = |Y| : \iff$ 全単射 $X \to Y$ が存在する.
- (3) $|X| < |Y| :\Longleftrightarrow |X| \le |Y|$ かつ $|X| \ne |Y|$.
- (4) $|X| \leq^* |Y| :\iff X = \emptyset$ または全射 $Y \to X$ が存在する.
- (5) $|X| <^* |Y| :\iff |X| <^* |Y| かつ |X| \neq |Y|$.

定義. κ , λ を基数とし、 $\kappa=|X|$, $\lambda=|Y|$, $X\cap Y=\emptyset$ をみたす集合 X,Y を取る.

- (1) $\kappa + \lambda := |X \cup Y|$.
- (2) $\kappa \cdot \lambda := |X \times Y|$.
- (3) $\kappa^{\lambda} := |X^Y|$.

命題 1. 2 元集合 $\{0,1\}$ の濃度を 2 と表す. 任意の基数 κ に対して $2 \cdot \kappa = \kappa + \kappa$, $\kappa^2 = \kappa \cdot \kappa$ である.

^{*} 本稿は Math Advent Calendar 2021 (https://adventar.org/calendars/6146) の 11 日目の記事です

[†] Twitter: https://twitter.com/hyutw.

定義. 集合 X が整列可能であるとき,|X| を整列可能基数という.自然数全体の集合 N は整列可能であり,この集合の濃度を \aleph_0 で表す.

以下の基数に関するいくつかの命題の証明は [1,6] を参照のこと.

命題 2. 整列可能無限基数 \aleph に対して $\aleph^2 = \aleph$.

命題 3. \aleph , \aleph' が 0 でない整列可能基数で、少なくとも一方が無限基数であるとき、

$$\aleph + \aleph' = \aleph \cdot \aleph' = \max \{ \aleph, \aleph' \}.$$

命題 4. 基数 κ , λ , μ と整列可能基数 \aleph が $\kappa \cdot \aleph \leq \lambda + \mu$ をみたすとき, $\kappa \leq \lambda$ または $\aleph \leq \mu$ となる.

命題 5. 以下は同値である.

- (1) 選択公理.
- (2) 無限基数 κ , λ に対して $\kappa + \lambda = \kappa$ または $\kappa + \lambda = \lambda$.

命題 6. 任意の集合 X に対して、 $|\alpha| \not\leq |X|$ をみたす順序数 α が存在する.

集合 X に対して、 $|\alpha| \nleq |X|$ をみたす最小の順序数を $\Gamma(X)$ とおく.この Γ を Hartogs 関数という.明らかに $|\Gamma(X)| \nleq |X|$ である. $\kappa = |X|$ のとき, $\kappa^* = |\Gamma(X)|$ と書く. κ^* は整列可能基数である.

定義. *X* を集合とする.

- (1) X が有限集合: \iff ある自然数 $n \in \mathbb{N}$ と全単射 $X \to n$ が存在する.
- (2) X が無限集合: \iff X が有限集合でない.

定義. *X* を集合とする.

- (1) X が Dedekind 無限 : \iff |Y| = |X| となる真部分集合 $Y \subseteq X$ が存在する.
- (2) X が Dedekind 有限 : \iff X が Dedekind 無限でない.

定義. X を集合とする.

- (1) X が I-finite : \iff 任意の空でない部分集合 $\mathcal{F} \subset \mathcal{P}(X)$ が極大元をもつ.
- (2) X が II-finite : 任意の空でない全順序部分集合 $\mathcal{C} \subseteq \mathcal{P}(X)$ が最大元をもつ.
- (3) X が III-finite : $\iff \mathcal{P}(X)$ が Dedekind 有限.
- (4) X が IV-finite : $\iff X$ が Dedekind 有限.

- (5) X が V-finite : $\iff |X| = 0$ または $2 \cdot |X| > |X|$.
- (6) X が VI-finite : \iff |X| = 0 または |X| = 1 または $|X|^2 > |X|$.
- (7) X が VII-finite : $\iff X$ は整列可能でないまたは $\aleph_0 \not \leq |X|$.

命題 7. 集合 X に対し、以下は同値である.

- (1) X は Dedekind 無限である (X は IV-finite でない).
- (2) 全射でない単射 $X \to X$ が存在する.
- (3) $\aleph_0 \le |X|$.
- (4) 単射 $\mathbf{N} \to X$ が存在する.
- (5) X は可算部分集合をもつ.
- (6) $|X| = |X| + \aleph_0$.
- (7) |X| = |X| + 1.
- (8) 集合 Y に対して $|Y| \le \aleph_0$ ならば |X| + |Y| = |X|.

証明. $1 \iff 2, 3 \iff 4, 4 \iff 5$ は明らか.

 $(2 \implies 4) \ f \colon X \to X$ を全射でない単射とする. 全射でないから $x \in X \setminus f(X)$ が取れる. $g \colon \mathbb{N} \to X$ を

$$g(n) = \begin{cases} x & n = 0\\ f(g(n-1)) & n \neq 0 \end{cases}$$

により定めると、これは単射である.

::) g が単射でないとする. このとき集合

$$A = \{ n \in \mathbf{N} \mid \exists m \in \mathbf{N} (q(n) = q(m) \land n \neq m) \}$$

は空でない. $n_0 = \min A$ とおく. g の定義より $n_0 \neq 0$ である. ある $m \in \mathbb{N}$ が存在して

$$g(n_0) = g(m), \quad n_0 \neq m$$

をみたす. q の定義と f が単射であることから

$$g(n_0 - 1) = g(m - 1)$$

が従うが、これは n_0 の最小性に反する.

 $(5 \implies 6)$ $Y \subseteq X$ を可算部分集合とする. $|Y| = |Y| + \aleph_0$ であるから

$$|X| = |(X \setminus Y) \cup Y| = |X \setminus Y| + |Y| = |X \setminus Y| + |Y| + \aleph_0 = |X| + \aleph_0$$

が従う.

 $(6 \implies 7) \aleph_0 = \aleph_0 + 1$ であるから

$$|X| = |X| + \aleph_0 = |X| + \aleph_0 + 1 = |X| + 1$$

が従う.

 $(7 \implies 1)$ X に属さない要素 p を一つ取る.仮定より全単射 $f: X \cup \{p\} \to X$ が存在する.このとき $f(X) \subseteq X$ かつ |f(X)| = |X| である.

 $(6 \implies 8) Y & |Y| \leq \aleph_0$ なる集合とする. 仮定より

$$|X| \le |X| + |Y| \le |X| + \aleph_0 = |X|$$

となり、|X| + |Y| = |X|が従う.

$$(8 \Longrightarrow 6)$$
 明らか.

命題 8. *X* を集合とする. 以下は同値である.

- (1) $\aleph_0 <^* |X|$.
- (2) $\mathcal{P}(X)$ は Dedekind 無限である (X は III-finite でない).

証明. $(1 \implies 2)$ $f: X \to \mathbf{N}$ を全射とする. 写像 $g: \mathbf{N} \to \mathcal{P}(X)$ を $g(n) = f^{-1}(\{n\})$ によって定めると、これは単射である.

 $(2 \implies 1)$ $f: \mathbb{N} \to \mathcal{P}(X)$ を単射とする. X の分割であるような可算集合を構成し、X からその集合への全射が存在することを示す. そのための準備として、 $\mathcal{P}(X)$ の可算部分集合からなる列 $(A_n)_{n\in\mathbb{N}}$ と、X の部分集合列 $(S_n)_{n\in\mathbb{N}}$ を構成する. $A_0 = f(\mathbb{N})$ 、 $S_0 = \emptyset$ とおく. 明らかに A_0 は可算集合である.

※ この証明の中で, $\mathcal{P}(X)$ の可算部分集合 A を全単射 $\mathbf{N} \to \mathcal{A}$ から誘導される順序により整列集合とみなす.この順序は $\mathcal{P}(X)$ の包含関係による順序と一致するとは限らないことに注意する.

 A_n を $\mathcal{P}(X)$ の可算部分集合とする. \mathcal{B}_n を A_n の要素の有限個の共通部分全体の集合とする. これは可算集合である.

※ 全単射 $\mathbf{N} \to \mathcal{B}_n$ は、 \mathbf{N} の整列性と全単射 $\mathbf{N} \to \mathcal{A}_n$ から選択公理を使わずに構成できる.

 \mathcal{B}_n において $\forall i \in \mathbf{N}$ $(B_i \supseteq B_{i+1})$ なる集合列 $(B_i)_{i \in \mathbf{N}}$ が存在するとき, $\mathcal{A}_{n+1} = \mathcal{A}_n$, $S_{n+1} = S_n$ とおく.次に, \mathcal{B}_n においてそのような集合列が存在しないときについて考える.このとき,

$$B \neq \emptyset$$
, $\forall A \in \mathcal{A}_n (B \subseteq A \vee B \cap A = \emptyset)$

なる $B \in \mathcal{B}_n$ が存在する.

$$\forall B \in \mathcal{B}_n (B \neq \emptyset \implies \exists A \in \mathcal{A}_n (B \not\subset A \land B \cap A \neq \emptyset))$$

と仮定する. 集合 $\{B \in \mathcal{B}_n \mid B \neq \emptyset\}$ は \mathcal{B}_n の空でない部分集合であり、この集合の最小元を B_0 とおく. 明らかに $\emptyset \neq B_0 \in \mathcal{B}_n$ である. $\emptyset \neq B_i \in \mathcal{B}_n$ が定義されているとき、 B_{i+1} を次のように定義する. 仮定より、 \mathcal{A}_n の部分集合

$$\{ A \in \mathcal{A}_n \mid B_i \not\subseteq A \land B_i \cap A \neq \emptyset \}$$

は空でなく、この集合の最小元を A_i とする。 $B_{i+1} = B_i \cap A_i$ とおくと、 $\emptyset \neq B_{i+1} \in \mathcal{B}_n$ である。 $B_i \nsubseteq A_i$ であるから $B_i \supsetneq B_{i+1}$ となる。 $(B_i)_{i \in \mathbb{N}}$ は \mathcal{B}_n の集合列で $\forall i \in \mathbb{N} \ (B_i \supsetneq B_{i+1})$ をみたす。これは \mathcal{B}_n においてこのような集合列が存在しないことに反する。

集合

$$\{ B \in \mathcal{B}_n \mid B \neq \emptyset \land \forall A \in \mathcal{A} (B \subseteq A \lor B \cap A = \emptyset) \}$$

は \mathcal{B}_n の空でない部分集合であり、この集合の最小元を S_{n+1} とおき、

$$\mathcal{A}_{n+1} = \{ A \setminus S_{n+1} \mid A \in \mathcal{A}_n \}$$

とおく. S_{n+1} は A_n の要素の有限個の共通部分で空でなく,任意の $A' \in A_{n+1}$ に対して $S_{n+1} \cap A' = \emptyset$ であるから $A_n \neq A_{n+1}$ をみたす. A_{n+1} は可算集合である.

 (\cdot,\cdot) 写像 $g_n: A_n \to A_{n+1}$ を $A \mapsto A \setminus S_{n+1}$ により定める. A_{n+1} の定義から g_n は全射であり、 S_{n+1} の取り方から、任意の $A' \in A_{n+1}$ に対して

$$g_n^{-1}(\{A'\}) = A_n \cap \{A', A' \cup S_{n+1}\}$$

である.もし A_{n+1} が有限集合なら, $A_n = \bigcup_{A' \in A_{n+1}} g_n^{-1}(\{A'\})$ が有限集合となり 矛盾する.したがって A_{n+1} は無限集合である.写像

$$h_n: \mathcal{A}_{n+1} \to \mathcal{A}_n, \quad A' \mapsto \begin{cases} A' & A' \in \mathcal{A}_n \\ A' \cup S_{n+1} & A' \notin \mathcal{A}_n \end{cases}$$

が単射であるから A_{n+1} は可算集合である.

以上により、 $\mathcal{P}(X)$ の可算部分集合からなる列 $(\mathcal{A}_n)_{n\in\mathbb{N}}$ と、X の部分集合列 $(S_n)_{n\in\mathbb{N}}$ を構成できた.

 $\mathcal{A}_n = \mathcal{A}_{n+1}$ をみたす $n \in \mathbb{N}$ が存在する場合を考える.このとき, \mathcal{A}_n の要素の有限 個の共通部分全体の集合 \mathcal{B}_n において $\forall i \in \mathbb{N}$ $(B_i \supseteq B_{i+1})$ なる集合列 $(B_i)_{i \in \mathbb{N}}$ が存在する.X の部分集合列 $(C_i)_{i \in \mathbb{N}}$ を

$$C_0 = X \setminus B_1$$
, $C_{i+1} = B_{i+1} \setminus B_{i+2}$

により定める. 集合 $\mathcal{C} = \{C_i \mid i \in \mathbf{N}\}$ は $\mathcal{P}(X)$ の可算部分集合であり,X の分割である. $x \in X$ に対し, $x \in C$ なる $C \in \mathcal{C}$ を [x] と書く. 写像 $X \to \mathcal{C}$ を $x \mapsto [x]$ により定めると,これは全射である. 次に,任意の $n \in \mathbf{N}$ に対して $\mathcal{A}_n \neq \mathcal{A}_{n+1}$ となる場合について考える.このとき,集合

$$S = \{ S_{i+2} \mid i \in \mathbf{N} \} \cup \left\{ X \setminus \bigcup_{i \in \mathbf{N}} S_{i+2} \right\}$$

は $\mathcal{P}(X)$ の可算部分集合であり、X の分割である. $x \in X$ に対し、 $x \in S$ なる $S \in \mathcal{S}$ を [x] と書く. 写像 $X \to \mathcal{S}$ を $x \mapsto [x]$ により定めると、これは全射である.

命題 9. *X* を集合とする. 以下は同値である.

- (1) 任意の空でない全順序部分集合 $\mathcal{C} \subseteq \mathcal{P}(X)$ は最小元をもつ.
- (2) 任意の空でない全順序部分集合 $\mathcal{C} \subseteq \mathcal{P}(X)$ は最大元をもつ $(X \text{ id II-finite } \mathbb{C} \times \mathbb{C})$.
- (3) $\mathcal{P}(X)$ は全順序無限部分集合をもたない.

証明. $(1\iff 2)$ $\emptyset \neq \mathcal{C} \subseteq \mathcal{P}(X)$ に対して $\mathcal{C}^c = \{ C \in \mathcal{P}(X) \mid X \setminus C \in \mathcal{C} \}$ とおく.

$$C$$
 が C の最大元 $\iff X \setminus C$ が C^c の最小元

であることから従う.

 $(2 \implies 3)$ X が II-finite であるとし, $\mathcal{C} \subseteq \mathcal{P}(X)$ を全順序無限部分集合とする.X の部分集合列 $(C_n)_{n \in \mathbb{N}}$ を

$$C_0 = \max \mathcal{C}, \quad C_{n+1} = \max(\mathcal{C} \setminus \{ C_i \mid i \in n+1 \})$$

により定めたとき、集合 $\{X \setminus C_n \mid n \in \mathbb{N}\}$ は $\mathcal{P}(X)$ の全順序部分集合だが最大元をもたない. これは X が II-finite であることに反している.

$$(3 \implies 1)$$
 全順序有限集合は最小元をもつことからわかる.

命題 10. *X* を集合とする. 以下は同値である.

- (1) X は有限集合である.
- (2) 任意の空でない部分集合 $\mathcal{F} \subseteq \mathcal{P}(X)$ は極小元をもつ.
- (3) 任意の空でない部分集合 $\mathcal{F} \subseteq \mathcal{P}(X)$ は極大元をもつ (X は I-finite である).
- (4) 部分集合族 $\mathcal{F} \subseteq \mathcal{P}(X)$ が 2 条件
 - (i) $\emptyset \in \mathcal{F}$,
 - (ii) $A \in \mathcal{F} \land x \in X \implies A \cup \{x\} \in \mathcal{F}$ をみたすとき、 $X \in \mathcal{F}$ である.

証明. $(1 \implies 2)$ $\emptyset \neq \mathcal{F} \subseteq \mathcal{P}(X)$ とする. X は有限集合故,その任意の部分集合は有限集合である. $\mathcal{F} \neq \emptyset$ であるから集合

$$M := \{ n \in \mathbb{N} \mid \exists A \in \mathcal{F} (|A| = |n|) \}$$

は空でない. $n_0=\min M$ とおき, $|A|=|n_0|$ となる $A\in\mathcal{F}$ を取る. A は \mathcal{F} の極小元である.

- $(2 \iff 3)$ 明らか.
- $(3 \implies 4) \mathcal{F} \subset \mathcal{P}(X) \mathcal{E}$

$$\emptyset \in \mathcal{F}, \quad A \in \mathcal{F} \land x \in X \implies A \cup \{x\} \in \mathcal{F}$$

をみたす部分集合族とする. $F \neq \emptyset$ 故,仮定より F は極大元 $A_0 \in F$ をもつ. $x \in X$ とすると,F の性質より $A_0 \cup \{x\} \in F$ であり, A_0 の極大性より $A_0 \cup \{x\} = A_0$ が従い, $x \in A_0$ となる.故に $A_0 = X$ となる.

 $(4 \implies 1) X$ の有限部分集合全体の集合 $\mathcal{P}_{fin}(X)$ について考える. これは

$$\emptyset \in \mathcal{P}_{\text{fin}}(X), \quad A \in \mathcal{P}_{\text{fin}}(X) \land x \in X \implies A \cup \{x\} \in \mathcal{P}_{\text{fin}}(X)$$

をみたす部分集合族であるから $X \in \mathcal{P}_{fin}(X)$ となる.

命題 11. Dedekind 無限集合を部分集合としてもつ集合は Dedekind 無限である. (言い換えると、Dedekind 有限集合の部分集合は Dedekind 有限である.)

証明. X を集合, Y を X の Dedekind 無限部分集合とする. Y は Dedekind 無限であるから, Y の真部分集合 W であって |Y| = |W| となるものが存在する. $W \subsetneq Y$ であるから $x_0 \in Y \setminus W$ が取れる. $x_0 \notin (X \setminus Y) \cup W$ であるから $(X \setminus Y) \cup W$ は X の真部分集合である. f を全単射 $W \to Y$ とする. 写像 $g: (X \setminus Y) \cup W \to X$ を

$$g(x) = \begin{cases} x & x \in X \setminus Y \\ f(x) & x \in W \end{cases}$$

により定めるとこれは全単射である.したがって X は Dedekind 無限である. \Box

命題 12. Dedekind 無限集合は無限集合である.

証明. X を Dedekind 無限集合とすると、単射 $f: \mathbb{N} \to X$ が存在する. このとき、集合

$$\mathcal{A} = \{ \{ f(m) \mid m \ge n \} \mid n \in \mathbf{N} \}$$

は $\emptyset \neq A \subset \mathcal{P}(X)$ をみたすが、極小元をもたない.故に X は無限集合である.

命題 13. 整列可能な無限集合は Dedekind 無限である.

証明. X を整列可能な無限集合とする.写像 $f: \mathbb{N} \to X$ を

$$f(0) = \min X, \quad f(n+1) = \min(X \setminus \{f(i) \mid i \in n+1\})$$

により定めると、これは単射である.

系 14. 選択公理 ⇒ 「無限集合は Dedekind 無限である」. □

以下のようにすれば可算選択公理でよいことがわかる.

命題 15. 可算選択公理 \Longrightarrow 「無限集合は Dedekind 無限である」.

証明. X を無限集合とする. $n \in \mathbb{N}$ に対して $X_n = \{f \in X^{n+1} \mid f$ は単射 $\}$ とおく. X は無限集合だから $X_n \neq \emptyset$ である. 可算選択公理により選択関数 $\phi \colon \mathbb{N} \to \bigcup_{n \in \mathbb{N}} X_n$ を得る. $n \in \mathbb{N}, k \in n+1$ に対して $x_{n,k} = (\phi(n))(k)$ とおく. 集合

$$Y = \{ x_{n,k} \mid n \in \mathbb{N}, k \in n+1 \}$$

は無限集合である.

Y が有限集合であると仮定すると、ある $n \in \mathbb{N}$ と全単射 $f\colon Y \to n$ が存在する. Y の定義より、写像 $\phi(n)\colon n+1\to X$ の終域を Y に制限することができる. 合成 $f\circ\phi(n)\colon n+1\to n$ は単射であるが、これは単射 $n+1\to n$ が存在しないことに反する.

写像 $s, t: Y \to \mathbf{N}$ を次のように定める: $x \in Y$ に対して

$$s(x) = \min \{ n \in \mathbb{N} \mid \exists k \in n + 1 (x = x_{n,k}) \}, \quad x = x_{s(x),t(x)}.$$

このとき写像

$$h: Y \to \mathbf{N} \times \mathbf{N}, \quad x \mapsto \langle s(x), t(x) \rangle$$

は単射であるから Y は可算集合である.

命題 16. *X* を集合とする. 以下は同値である.

- (1) X は有限集合である.
- (2) $\mathcal{P}(\mathcal{P}(X))$ は Dedekind 有限である.

証明. $(1 \implies 2)$ X を有限集合とすると, $\mathcal{P}(\mathcal{P}(X))$ は有限集合である.命題 12 より $\mathcal{P}(\mathcal{P}(X))$ は Dedekind 有限である.

 $(2 \implies 1) X$ を無限集合とする. 写像 $f: \mathbb{N} \to \mathcal{P}(\mathcal{P}(X))$ を

$$f(n) = \{ A \in \mathcal{P}(X) \mid |A| = |n| \}$$

により定めると、これは単射である.

定義. 命題「任意の集合 X に対して, X が J-finite ならば X は K-finite」を P(J,K) と書く.

命題 17. $J \leq K$ ならば P(J,K) である.

証明. (I-finite \Longrightarrow II-finite) 明らか.

(II-finite \Longrightarrow III-finite) X が III-finite でないとする. 命題 8 より全射 $f\colon X\to \mathbf{N}$ が 存在する. 自然数 $n\in \mathbf{N}$ に対して X の部分集合 A_n を $A_n=\bigcup_{i\in n+1}f^{-1}(\{i\})$ と定める と,集合 $\{A_n\mid n\in \mathbf{N}\}$ は $\mathcal{P}(X)$ の全順序部分集合で最大元をもたない. したがって X は II-finite でない.

(III-finite \implies IV-finite) X が IV-finite でないとすると、単射 $f: \mathbf{N} \to X$ が存在す

る. 写像 $g: X \to \mathcal{P}(X)$ を $x \mapsto \{x\}$ により定めるとこれは単射である. したがって単射 $g \circ f: \mathbf{N} \to \mathcal{P}(X)$ が存在する. 故に X は III-finite でない.

(IV-finite \implies V-finite) X が V-finite でないとする. $|X| \neq 0$ かつ $2 \cdot |X| = |X|$ 故 X は Dedekind 無限である. すなわち、X は IV-finite でない.

(V-finite \Longrightarrow VI-finite) X を V-finite とし、 $|X| \neq 0$, $|X| \neq 1$ とする. このとき $|X| < 2 \cdot |X| \leq |X|^2$ であるから X は VI-finite である.

(VI-finite) \Longrightarrow VII-finite) X を VII-finite でない集合とすると,X は整列可能かつ $\aleph_0 \leq |X|$ である.明らかに $|X| \neq 0$ かつ $|X| \neq 1$ である.X は整列可能な無限集合であるから命題 2 より $|X|^2 = |X|$ となる.故に X は VI-finite でない.

系 18.
$$J_1 \leq J_0$$
 かつ $K_0 \leq K_1$ ならば「 $P(J_0, K_0) \implies P(J_1, K_1)$ 」である.

定理 19. 選択公理
$$\Longrightarrow$$
 $P(VII,I)$.

したがって、選択公理を仮定したとき I-finite から VII-finite までの定義は同値である.

定理 20. 以下は同値である.

- (1) 選択公理.
- (2) P(VII, VI): $|X|^2 = |X|$ ならば X は整列可能である.

証明. $(1 \implies 2)$ 明らか.

 $(2 \implies 1) X$ を無限集合とする. $|X^{\mathbf{N}}| > 1$ かつ $|X^{\mathbf{N}}|^2 = |X^{\mathbf{N}}|$ である.

 $(X^{\mathbf{N}})$ > 1 であることは明らか. 写像 $f: \mathbf{N} \to X$ に対して写像 f_0, f_1 を

$$f_0: \mathbf{N} \to X, \quad n \mapsto f(2n),$$

 $f_1: \mathbf{N} \to X, \quad n \mapsto f(2n+1)$

により定めると、写像

$$g: X^{\mathbf{N}} \to X^{\mathbf{N}} \times X^{\mathbf{N}}, \quad f \mapsto \langle f_0, f_1 \rangle$$

は全単射である.

故に $X^{\mathbf{N}}$ は VI-finite でない. 仮定より $X^{\mathbf{N}}$ は VII-finite でないから $X^{\mathbf{N}}$ は整列可能かつ $\aleph_0 \leq |X^{\mathbf{N}}|$ である. 写像 g を

$$g: X \to X^{\mathbf{N}}, \quad x \mapsto (\mathbf{N} \to X; n \mapsto x)$$

により定めるとこれは単射であるから X は整列可能である.

系 21. 以下は同値である.

- (1) 選択公理
- (2) P(VII, I): 無限集合は整列可能である.
- (3) P(VII,II): 集合 X に対して P(X) が最大元をもたない空でない全順序部分集合をもつならば X は整列可能である.

- (4) P(VII, III): $\mathcal{P}(X)$ が Dedekind 無限ならば X は整列可能である.
- (5) P(VII, IV): Dedekind 無限集合は整列可能である.
- (6) P(VII, V): $2 \cdot |X| = |X|$ ならば X は整列可能である.

定理 22. 以下は同値である.

- (1) 選択公理.
- (2) P(VI, V): 無限集合 X に対して、 $2 \cdot |X| = |X|$ ならば $|X|^2 = |X|$.

証明. $(1 \implies 2)$ 明らか.

 $(2 \implies 1) \kappa$ を無限基数, $\lambda = \kappa \cdot \aleph_0 + (\kappa \cdot \aleph_0)^*$ とおく、 \aleph_0 と $(\kappa \cdot \aleph_0)^*$ は整列可能無限基数であるから

$$2 \cdot (\kappa \cdot \aleph_0) = \kappa \cdot \aleph_0, \quad 2 \cdot (\kappa \cdot \aleph_0)^* = (\kappa \cdot \aleph_0)^*$$

であり、 $2 \cdot \lambda = \lambda$ となる. 故に仮定より $\lambda^2 = \lambda$ となる. したがって、

$$\kappa \cdot \aleph_0 + (\kappa \cdot \aleph_0)^* = (\kappa \cdot \aleph_0 + (\kappa \cdot \aleph_0)^*)^2$$
$$= (\kappa \cdot \aleph_0)^2 + 2 \cdot (\kappa \cdot \aleph_0) \cdot (\kappa \cdot \aleph_0)^* + ((\kappa \cdot \aleph)^*)^2$$
$$\geq (\kappa \cdot \aleph_0) \cdot (\kappa \cdot \aleph_0)^*.$$

故に命題 4 より $\kappa \cdot \aleph_0 \le (\kappa \cdot \aleph_0)^*$ または $(\kappa \cdot \aleph_0)^* \le \kappa \cdot \aleph_0$ となる. $(\kappa \cdot \aleph_0)^* \nleq \kappa \cdot \aleph_0$ 故 $\kappa \cdot \aleph_0 \le (\kappa \cdot \aleph_0)^*$ が従い, $\kappa \le \kappa \cdot \aleph_0$ 故 $\kappa \le (\kappa \cdot \aleph_0)^*$ が従う.故に κ は整列可能基数である.

系 23. 以下は同値である.

- (1) 選択公理.
- (2) P(VI, I): 無限集合 X に対して $|X|^2 = |X|$.
- (3) P(VI,II): 集合 X に対して $\mathcal{P}(X)$ が最大元をもたない空でない全順序部分集合をもつならば $|X|^2=|X|$.

- (4) P(VI, III): $\mathcal{P}(X)$ が Dedekind 無限ならば $|X|^2 = |X|$.
- (5) P(VI, IV): X が Dedekind 無限ならば $|X|^2 = |X|$.

定義. *X* を集合とする.

- (1) X が Ia-finite : $\iff X$ は 2 つの無限集合の非交和でない.
- (2) X が D-finite : $\iff |X| \le 1$ または、ある A, B が存在して |A| < |X| かつ |B| < |X| かつ $X = A \cup B$.

命題 24. P(I, Ia): 2つの無限集合の非交和は無限集合である.

証明. 明らか.

命題 25. P(Ia,II):集合Xに対して $\mathcal{P}(X)$ が最大元をもたない空でない全順序部分集合をもつならば、Xは2つの無限集合の非交和である.

証明. X を II-finite でない集合とすると, $\mathcal{P}(X)$ は最大元をもたない空でない全順序部分集合 \mathcal{C} をもつ.まず,無限集合 $Y \in \mathcal{C}$ が存在する場合について考える.このとき,集合 $A = (\bigcup \mathcal{C}) \setminus Y$ は無限集合である.

::) A が有限集合であると仮定する. $A=\emptyset$ の場合,Y が C の最大元となり,C が最大元をもたないことに反する. $A\neq\emptyset$ の場合について考える. $x\in A$ に対して,集合 $A_x=\{C\in C\mid x\in C\}$ は空でないから選択関数 $f\colon A\to\bigcup_{x\in A}A_x$ が存在する. 集合 $B=\{f(x)\mid x\in A\}$ は P(X) の空でない全順序有限部分集合であるから,これは最大元 B をもつ.ある $x_0\in A$ が存在して $x_0\in f(x_0)=B$ であり,A の定義から $x_0\notin Y$ となる.故に $B\nsubseteq Y$ であり,C が全順序であることから $Y\subseteq B$ が従う.また,B の最大性から $A\subseteq B$ である.

$$B \subseteq \bigcup \mathcal{C} = Y \cup A \subseteq B$$

故 $B = \bigcup \mathcal{C}$ が従い,B が \mathcal{C} の最大元となるが,これは \mathcal{C} が最大元をもたないことに反する.

 $A \subseteq X \setminus Y$ であるから $X \setminus Y$ は無限集合である. $X = (X \setminus Y) \cup Y$ だから X は Ia-finite でない. 次に,任意の $Y \in \mathcal{C}$ が有限集合の場合について考える. $n \in \mathbb{N}$ に対して集合 $\mathcal{A}_n = \{C \in \mathcal{C} \mid |n| = |C|\}$ は空集合または一点集合である.

 $(A_n \neq \emptyset)$ とする. $A, B \in A_n$ を取る. これらは有限集合であるから Dedekind 有限である. C は全順序であるから $A \subseteq B$ または $B \subseteq A$ である. $A \subseteq B$ の場合について考える. $A \subseteq B$ と仮定すると,A は B の真部分集合で |A| = |B| をみたす.故に B は Dedekind 無限集合となるが,これは B が Dedekind 有限であることに反する.したがって A = B となる.同様にして $B \subseteq A$ ならば A = B が従う.

写像 $\mathcal{C} \to \mathbf{N}$ を $C \mapsto |C|$ により定めると、これは単射である.今、任意の $A, B \in \mathcal{C}$ に対して

$$A \subseteq B \iff |A| \le |B|$$

であるから $\mathcal C$ は包含関係による順序で整列集合となる. X の部分集合列 $(C_i)_{i\in \mathbf N}$ を

$$C_0 = \min \mathcal{C}, \quad C_{i+1} = \min(\mathcal{C} \setminus \{ C_j \mid j \in i+1 \})$$

により定めると、これは $\forall i \in \mathbf{N} (C_i \subsetneq C_{i+1})$ をみたす. X の部分集合列 $(D_i)_{i \in \mathbf{N}}$ を

$$D_0 = C_0, \quad D_{i+1} = C_{i+1} \setminus C_i$$

により定め、集合 E, F を

$$E = \left(X \setminus \bigcup_{i \in \mathbf{N}} D_i\right) \cup \bigcup_{i \in \mathbf{N}} D_{2i}, \quad F = \bigcup_{i \in \mathbf{N}} D_{2i+1}$$

により定めると,E, F は $E \cap F = \emptyset$ なる無限集合であり, $X = E \cup F$ である.故に X は Ia-finite でない.

系 26. 以下は同値である.

- (1) 選択公理.
- (2) P(VII, Ia): 2 つの無限集合の非交和は整列可能である.
- (3) P(VI, Ia): X が 2 つの無限集合の非交和ならば $|X|^2 = |X|$.

命題 27. P(IV, D): |X| > 1 なる Dedekind 有限集合 X に対して,

$$X = A \cup B$$
, $|A| < |X|$, $|B| < |X|$

をみたす集合 A, B が存在する.

証明. X を |X| > 1 なる Dedekind 有限集合とする. $x \in X$ を一つ取る. X は Dedekind 有限であるから $|X \setminus \{x\}| < |X|$ である. 故に

$$X = (X \setminus \{x\}) \cup \{x\}, \quad |X \setminus \{x\}| < |X|, \quad |\{x\}| = 1 < |X|$$

と書けるから、X は D-finite である.

命題 28. P(D, VII): $\aleph_0 \leq |X|$ をみたす整列可能な集合 X に対して, $X = A \cup B$ ならば |A| = |X| または |B| = |X|.

証明. X を VII-finite でない集合とすると,X は整列可能かつ $\aleph_0 \leq |X|$ である.明らかに $|X| \nleq 1$ である.A, B を集合とし, $X = A \cup B$ をみたしているとする.X が整列可能であるから A, B も整列可能である.A, B の少なくとも一方が空集合なら,|A| = |X| または |B| = |X| である.A, B がともに空でないとする.A, B がともに有限集合なら $X = A \cup B$ も有限集合であり $\aleph_0 \leq |X|$ に反するから,A, B の少なくとも一方は無限集合である.|A| < |B| とする.命題 3 より

$$|X| = |A \cup B| \le |A| + |B| = \max\{|A|, |B|\} = |B| \le |X|$$

であるから |B| = |X| が従う.同様にして $|B| \le |A|$ ならば |A| = |X| が従う.故に X は D-finite でない.

定理 29. 以下は同値である.

- (1) 選択公理.
- (2) P(D, I): 無限集合 X に対して, $X = A \cup B$ ならば |X| = |A| または |X| = |B|.

証明. $(1 \implies 2)$ 系 21, 命題 28.

 $(2 \Longrightarrow 1)$ 無限基数 κ , λ に対して $\kappa + \lambda = \kappa$ または $\kappa + \lambda = \lambda$ が成り立つことを示す (命題 5). $\kappa = |X|$, $\lambda = |Y|$, $X \cap Y = \emptyset$ をみたす無限集合 X, Y に対し $X \cup Y$ は無限集合であるから仮定より $|X \cup Y| = |X|$ または $|X \cup Y| = |Y|$ が従う.

命題 30. $P(V, IV) \implies P(IV, I)$

証明. X を無限集合とする. $|X| + \aleph_0 \ge \aleph_0$ であるから仮定より

$$|X| + \aleph_0 = 2 \cdot (|X| + \aleph_0) = (|X| + \aleph_0) + (|X| + \aleph_0) = 2 \cdot |X| + \aleph_0$$

となる. f を全単射

$$(X \times 1) \cup (\mathbf{N} \times \{1\}) \rightarrow (X \times 2) \cup (\mathbf{N} \times \{2\})$$

とし,

$$A_0 = f(X \times 1) \cap (X \times \{ 0 \}),$$
 $A_1 = f(X \times 1) \cap (X \times \{ 1 \}),$ $B_0 = f(\mathbf{N} \times \{ 1 \}) \cap (X \times \{ 1 \}),$ $B_1 = f(\mathbf{N} \times \{ 1 \}) \cap (X \times \{ 1 \})$

とおく. B_0 が無限集合なら、これは可算集合 $f(\mathbf{N} \times \{1\})$ の無限部分集合であるから $|B_0| = \aleph_0$ となり、 $|X| \ge \aleph_0$ が従う. B_1 が無限集合の場合も同様にして $|X| \ge \aleph_0$ が従う. B_0 と B_1 が共に有限集合であるとする. $|A_0| + |B_0| = |X|$ であるから A_0 は無限集合であり、同様にして A_1 が無限集合であることがわかる.

$$|X| + 1 = (|A_0| + |B_0|) + 1 \le |A_0| + |A_1| \le |X| \le |X| + 1$$

であるから |X| + 1 = |X| が従う.

命題 31. 以下は同値である.

- (1) P(V, I): 無限集合 X に対して $2 \cdot |X| = |X|$.
- (2) P(V, Ia): X が 2 つの無限集合の非交和ならば $2 \cdot |X| = |X|$.
- (3) P(V, II): 集合 X に対して $\mathcal{P}(X)$ が最大元をもたない空でない全順序部分集合をもつならば $2 \cdot |X| = |X|$.
- (4) P(V, III): $\mathcal{P}(X)$ が Dedekind 無限ならば $2 \cdot |X| = |X|$.
- (5) P(V, IV): X が Dedekind 無限ならば $2 \cdot |X| = |X|$.
- (6) 無限集合 X に対して $\aleph_0 \cdot |X| = |X|$.
- (7) 無限集合 X に対してある集合 Y が存在して $\aleph_0 \cdot |Y| = |X|$.
- (8) 無限集合 X と集合 Y に対して |Y| < |X| ならば |X| + |Y| = |X|.

証明. $1 \implies 2, 2 \implies 3, 3 \implies 4, 4 \implies 5$ は明らか.

 $(5 \implies 1)$ 命題 30.

 $(1 \implies 6) \ X$ を無限集合とする. 仮定より $2 \cdot |X| = |X|$ であるから単射 $f, g: X \to X$ で

$$f(X) \cup g(X) = X, \quad f(X) \cap g(X) = \emptyset$$

をみたすものが存在する. $n \in \mathbb{N}$ に対して写像 $f^{(n)}: X \to X$ を

$$f^{(0)} = \mathrm{id}_X, \quad f^{(n+1)} = f \circ f^{(n)}$$

により定め、写像 $h: \mathbf{N} \times X \to X$ を $\langle n, x \rangle \mapsto f^{(n)}(g(x))$ により定めると、h は単射である.

 $f^{(n)}(g(x)) = f^{(n')}(g(x'))$ とする。n < n' ならば、f が単射であることから $g(x) = f^{(n'-n)}(g(x'))$ が従うが、これは $f(X) \cap g(X) = \emptyset$ に反する。n' < n の場合 も同様に矛盾する。したがって n = n' となる。f, g は単射であるから x = x' が従う。

故に $\aleph_0 \cdot |X| \leq |X|$ となる. $|X| \leq \aleph_0 \cdot |X|$ であるから $\aleph_0 \cdot |X| = |X|$ が従う.

 $(6 \Longrightarrow 7)$ 明らか.

 $(7\implies 1)$ X を無限集合, Y を集合, f を全単射 $\mathbf{N}\times Y\to X$ とする. 写像 $g\colon \mathbf{N}\times Y\to 2\times X$ を

$$g(\langle 2n, y \rangle) = \langle 0, f(\langle n, y \rangle) \rangle, \quad g(\langle 2n+1, y \rangle) = \langle 1, f(\langle n, y \rangle) \rangle$$

により定めるとこれは全単射であるから $|X| = \aleph_0 \cdot |Y| = 2 \cdot |X|$ が従う.

 $(1 \implies 8)$ X を無限集合, Y を集合, $|Y| \le |X|$ とする. 仮定より

$$|X| \le |X| + |Y| \le |X| + |X| = 2 \cdot |X| = |X|$$

となり、|X| + |Y| = |X|が従う.

$$(8 \Longrightarrow 1)$$
 明らか.

命題 32. 以下は同値である.

- (1) P(IV, I): Dedekind 有限集合は有限集合である.
- (2) P(IV, Ia): Dedekind 有限集合は 2 つの無限集合の非交和でない.
- (3) P(IV, II): Dedekind 有限集合 X について、任意の全順序部分 $\emptyset \neq \mathcal{C} \subseteq \mathcal{P}(X)$ は最大元をもつ.
- (4) P(IV, III): Dedekind 有限集合の冪集合は Dedekind 有限集合である.
- (5) Dedekind 有限集合からなる Dedekind 有限集合 X の和集合 $\bigcup X$ は Dedekind 有限集合である.
- (6) Dedekind 有限集合の像は Dedekind 有限である.
- (7) 任意の集合 X に対して、 $\aleph_0 \leq^* |X|$ ならば $\aleph_0 \leq |X|$.
- (8) Dedekind 無限集合 X の和集合 [] X は Dedekind 無限である.
- (9) 非可算集合 X と可算集合 Y に対して $|X \cup Y| = |X|$.
- (10) 非可算集合 X と可算集合 Y に対して $|X \setminus Y| = |X|$.
- (11) $|X| > \aleph_0$ かつ $|Y| = \aleph_0$ ならば $|X \setminus Y| > \aleph_0$.
- (12) 任意の集合 X に対して $\aleph_0 \leq |X|$ または $|X| \leq \aleph_0$ である.
- (13) Dedekind 有限集合 X と Dedekind 無限集合 Y に対して $|X| \leq |Y|$.
- (14) 任意の無限集合 X に対して,選択関数 $\mathcal{P}(Y)\setminus\{\emptyset\}\to Y$ が存在するような無限部分集合 $Y\subset X$ が存在する.
- (15) 無限集合は可算部分集合をもつ.

証明. $1 \implies 2, 2 \implies 3, 3 \implies 4$ は明らか.

 $(4 \implies 1)$ X を Dedekind 有限集合とする. 仮定より $\mathcal{P}(X)$ は Dedekind 有限であり, 再び仮定より $\mathcal{P}(\mathcal{P}(X))$ は Dedekind 有限である. 命題 16 より X は有限集合である.

 $(1 \Longrightarrow 5)$ 明らか.

 $(5 \implies 4)$ X を Dedekind 有限集合とし, $\mathcal{P}(X)$ が Dedekind 無限であるとする.単射 $f: \mathbf{N} \to \mathcal{P}(X)$ で,任意の $m, n \in \mathbf{N}$ に対して「 $m \neq n$ ならば $f(m) \cap f(n) = \emptyset$ 」を みたすものが存在する.

 $\mathcal{P}(X)$ が Dedekind 無限であるから命題 8 より全射 $g:X \to \mathbf{N}$ が存在する. 写像

$$h \colon \mathbf{N} \to \mathcal{P}(X), \quad n \mapsto g^{-1}(\{n\})$$

は任意の $m, n \in \mathbb{N}$ に対して $\lceil m \neq n$ ならば $h(m) \cap h(n) = \emptyset$ 」をみたす単射である.

集合

$$W = \{ \{ \{ n \}, \{ n, x \} \} \mid n \in \mathbb{N} \land x \in f(n) \}$$

について考える. 集合 $\{n\}$, $\{n,x\}$, $\{\{n\},\{n,x\}\}$ は有限集合であるから Dedekind 有限である. 写像

$$p: W \to X, \quad \{ \{ n \}, \{ n, x \} \} \mapsto x$$

は単射であり、X が Dedekind 有限であるから W は Dedekind 有限である. 仮定より $\bigcup W$ は Dedekind 有限であり、再び仮定より $\bigcup (\bigcup W)$ は Dedekind 有限である. しかし W の定義より $\mathbf{N} \subseteq \bigcup (\bigcup W)$ であるから $\bigcup (\bigcup W)$ は Dedekind 無限となり矛盾する.

 $(4 \implies 6) X$ を Dedekind 有限集合, $f: X \rightarrow Y$ を全射とする. 写像

$$g: Y \to \mathcal{P}(X), \quad y \mapsto f^{-1}(\{y\})$$

は単射である. 仮定より $\mathcal{P}(X)$ は Dedekind 有限であるから Y は Dedekind 有限である.

 $(6 \implies 7)$ $f: X \to \mathbf{N}$ を全射とする. \mathbf{N} は Dedekind 無限集合であるから X は Dedekind 無限であり、単射 $\mathbf{N} \to X$ が存在する.

 $(7 \implies 4) \mathcal{P}(X)$ が Dedekind 無限であるとする.命題 8 より $\aleph_0 \leq^* |X|$ が従い,仮定より $\aleph_0 \leq |X|$ となる.故に X は Dedekind 無限である.

 $(1 \Longrightarrow 8)$ 明らか.

 $(8 \implies 7) X$ を集合, $f: X \to \mathbf{N}$ を全射とする. 写像

$$g \colon \mathbf{N} \to \mathcal{P}(X), \quad n \mapsto f^{-1}(\{n\})$$

は単射で、 ${\bf N}$ が Dedekind 無限であるから $g({\bf N})$ は Dedekind 無限である. 仮定より $X=\bigcup g({\bf N})$ は Dedekind 無限である. したがって単射 ${\bf N}\to X$ が存在する.

 $(1 \implies 9)$ X を非可算集合、Y を可算集合とする. 仮定より X は Dedekind 無限集合である. $|Y\setminus X|<\aleph_0$ であるから

$$|X \cup Y| = |X| + |Y \setminus X| = |X|$$

が従う.

 $(9 \implies 10) X$ を非可算集合、Y を可算集合とする、 $X \setminus Y$ は非可算集合であるから

$$|X| = |X \cup Y| = |(X \setminus Y) \cup Y| = |X \setminus Y|$$

が従う.

 $(10 \implies 11)$ 明らか.

 $(11 \implies 1)$ X を無限集合とする. X が可算集合なら、これは Dedekind 無限である. X を非可算集合とする. このとき $|(X \times 1) \cup (\mathbf{N} \times \{1\})| > \aleph_0$ であるから仮定より

$$|X| = |((X \times 1) \cup (\mathbf{N} \times \{1\}) \setminus (\mathbf{N} \times \{1\}))| > \aleph_0$$

となり、X が Dedekind 無限であることがわかる.

 $(1 \iff 12)$ 明らか.

 $(1 \Longrightarrow 13)$ 明らか.

 $(13 \implies 1)$ X を Dedekind 有限集合とする. **N** は Dedekind 無限集合であるから,仮定より $|X| \le \aleph_0$ となる. したがって,X が無限集合であると仮定すると X は可算集合,すなわち Dedekind 無限となり矛盾する.

 $(1 \implies 14)$ X を無限集合とする. 仮定より X は Dedekind 無限であるから可算部分集合 Y をもつ. Y は選択関数 $\mathcal{P}(Y)\setminus\{\emptyset\}\to Y$ をもつ.

 $(14 \implies 1) X$ を無限集合とし、Y を X の無限部分集合で選択関数 $f: \mathcal{P}(Y) \setminus \{\emptyset\} \to Y$ をもつものとする. 写像 $g: \mathbb{N} \to Y$ を

$$g(n) = \begin{cases} f(Y) & n = 0 \\ f(Y \setminus \{ g(i) \mid i \in n \}) & n \neq 0 \end{cases}$$

によって定めると、これは単射である.

命題 33. 以下は同値である.

- (1) P(III, I): 無限集合 X に対して P(X) は Dedekind 無限である.
- (2) P(III, Ia): X が 2 つの無限集合の非交和ならば P(X) は Dedekind 無限である.

(3) 無限集合 X に対して $\aleph_0 \leq^* |X|$.

証明. $(1 \implies 2)$ 明らか.

 $(2 \implies 1)$ X を無限集合とする. 仮定より $\mathcal{P}((X \times 1) \cup (X \times \{1\}))$ は Dedekind 無限であり、単射 $f: \mathbb{N} \to \mathcal{P}((X \times 1) \cup (X \times \{1\}))$ が存在する.

$$A_0 = \{ (X \times 1) \cap A \mid A \in f(\mathbf{N}) \}, \quad A_1 = \{ (X \times \{1\}) \cap A \mid A \in f(\mathbf{N}) \}$$

とおく. A_0 , A_1 の少なくとも一方は無限集合である.

 (\cdot,\cdot) A_0, A_1 がともに有限集合であると仮定する.このとき

$$\mathcal{A} = \{ A_0 \cup A_1 \mid A_0 \in \mathcal{A}_0 \land A_1 \in \mathcal{A}_1 \}$$

は有限集合であり、 $f(\mathbf{N}) \subseteq \mathcal{A}$ 故 $f(\mathbf{N})$ が有限集合となるが、これは $f(\mathbf{N})$ が可算集合であることに反する.

 A_0 が無限集合であるとする. 写像

$$g_0: A_0 \to \mathbf{N}, \quad A \mapsto \min \{ n \in \mathbf{N} \mid A = f(n) \cap (X \times 1) \}$$

は単射であるから A_0 は可算集合である. したがって $\mathcal{P}(X)$ は Dedekind 無限である.

$$(1 \iff 3)$$
 命題 8.

命題 34. 以下は同値である.

- (1) P(II,I): 無限集合 X に対して $\mathcal{P}(X)$ は最大元をもたない空でない全順序部分集合をもつ.
- (2) P(II, Ia): X が 2 つの無限集合の非交和ならば $\mathcal{P}(X)$ は最大元をもたない空でない全順序部分集合をもつ.

証明. $(1 \implies 2)$ 明らか.

 $(2 \implies 1)$ X を無限集合とする. $\mathcal{P}(X)$ が全順序無限部分集合をもつことを示す (命題 9). 仮定より, $\mathcal{P}((X \times 1) \cup (X \times \{1\}))$ は全順序無限部分集合 \mathcal{C} をもつ.

$$C_0 = \{ (X \times 1) \cap C \mid C \in \mathcal{C} \}, \quad C_1 = \{ (X \times \{1\}) \cap C \mid C \in \mathcal{C} \}$$

とおく. C_0 , C_1 は全順序である.

::) C_0 が全順序であることを示す. C_0 , $C_0' \in C_0$ とする. ある C_1 , $C_1' \in C_1$ が存在し, $C_0 \cup C_1$, $C_0' \cup C_1' \in C$ をみたす. C は全順序であるから $C_0 \cup C_1 \subseteq C_0' \cup C_1'$ または $C_0' \cup C_1' \subseteq C_0 \cup C_1$ である. $C_0 \cup C_1 \subseteq C_0' \cup C_1'$ の場合, $C_0 \nsubseteq C_0'$ と仮定すると $(X \times 1) \cap (X \times \{1\}) = \emptyset$ に反するから $C_0 \subseteq C_0'$ である. 同様にして $C_0' \cup C_1' \subseteq C_0 \cup C_1$ ならば $C_0' \subseteq C_0$ が従う. 故に C_0 は全順序であることもわかる.

 $\mathcal{C}_0, \mathcal{C}_1$ の少なくとも一方は無限集合である. 故に $\mathcal{P}(X)$ は全順序無限部分集合をもつ. \square

参考文献

- [1] 田中 尚夫,『公理的集合論』,培風館,1982.
- [2] Horst Herrlich, Axiom of Choice, Springer, 2006.
- [3] Paul Howard and Jean E. Rubin, Consequences of the Axiom of Choice, American Mathematical Society, 1998.
- [4] J. D. Halpern and Paul E. Howard, Cardinals m such that 2m = m, Proc. Amer. Math. Soc. 26 (1970), 487–490.
- [5] Paul E. Howard and Mary F. Yorke, *Definitions of Finite*, Fundamenta Mathematicae 133 (1989), 169–177.
- [6] alg-d, 壱大整域, URL:http://alg-d.com/math/.
- [7] Andrés E. Caicedo (https://math.stackexchange.com/users/462/andr%c3% a9s-e-caicedo), Given an injection $\mathbb{N} \to \mathcal{P}(X)$, how can we construct a surjection $X \to \mathbb{N}$?, Mathematics Stack Exchange, URL:https://math.stackexchange.com/q/139713 (version: 2012-05-02).