

yathartha.regmi@ttu.edu

(Sign out)

Home My Assignments
Grades Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Chapter 34 (Homework)

™ INSTRUCTOR **Keith West**Texas Tech University

Due Date

THU, AUG 4, 2022

11:59 PM CDT

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

An electric field is restricted to a circular area of diameter d = 10.4 cm as shown in the figure.

At the instant shown, the field direction is out of the page, its magnitude is 300 V/m, and its magnitude is increasing at a rate of $19.6 \text{ V/(m} \cdot \text{s})$.

- (a) What is the direction of the magnetic field at the point P, r = 15.6 cm from the center of the circle?
 - O upwards
 - downwards
- (b) What is the magnitude of the magnetic field (in T) at the point P, r = 15.6 cm from the center of the circle?

Т

(c) **What If?** As before, at the moment shown in the figure, the electric field within the circle has a magnitude of 300 V/m and is increasing at a rate of $19.6 \text{ V/(m} \cdot \text{s})$. In addition, suppose that the radius of the circular area of the electric field increases at a rate of 1.00 cm/s. What would the magnitude of the magnetic field be at point P at this moment (in T)?

Need Help? Read It

4. [-/11 Points]

DETAILS

SERPSE10 33.3.P.010.

MY NOTES

ASK YOUR TEACHER

Perform the following steps to verify by substitution that equations C and D are solutions to Equations A and B, respectively.

$$\frac{\partial^2 E}{\partial x^2} = \varepsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2} \qquad E = E_{\text{max}} \cos(kx - \omega t)$$

Equation A

Equation C

$$\frac{\partial^2 B}{\partial x^2} = \varepsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2} \qquad B = B_{\text{max}} \cos(kx - \omega t)$$

Equation B

Equation D

(a) Calculate the first partial derivatives listed below. (Use the following as necessary: k, ω , x, t, and either E_{\max} or B_{\max} .)

$$\frac{\partial E}{\partial x} =$$

$$\frac{\partial B}{\partial x} =$$

$$\frac{\partial E}{\partial t} =$$

$$\frac{\partial B}{\partial t} =$$

(b) Calculate the second partial derivatives listed below. (Use the following as necessary: k, ω , x, t, and either E_{\max} or B_{\max} .)

$$\frac{\partial^2 E}{\partial x^2} =$$

$$\frac{\partial^2 B}{\partial x^2} =$$

$$\frac{\partial^2 E}{\partial t^2} =$$

$$\frac{\partial^2 B}{\partial t^2} =$$

(c) Given $k^2 / \omega^2 = (1 / f \lambda)^2$, calculate the ratios of the second partial derivatives below. (Use the following as necessary: c.)

=

(d) Express $\varepsilon_0\mu_0.$ (Use the following as necessary: c.)

$\varepsilon_0 \mu_0 =$	
	,

Need Help? Read It

5. [-/6 Points]	DETAILS	SERPSE1	10 33.4.OP.009.
MY NOTES	ASK YOUR TEACHER		PRACTICE ANOTHER

An electromagnetic wave is traveling in a vacuum. At a particular instant for this wave, $\vec{\mathbf{E}} = [(90.0)\hat{\mathbf{i}} + (36.0)\hat{\mathbf{j}} + (-72.0)\hat{\mathbf{k}}] \text{ N/C}$, and $\vec{\mathbf{B}} = [(0.400)\hat{\mathbf{i}} + (0.160)\hat{\mathbf{j}} + (0.580)\hat{\mathbf{k}}] \mu T$.

(a) Calculate the following quantities. (Give your answers, in $\mu T \cdot N/C$, to at least three decimal places.)

Are the two fields mutually perpendicular? How do you know?

- No, because their dot product *is equal to* zero.
- O No, because their dot product is not equal to zero.
- O Yes, because their dot product *is not equal to* zero.
- O Yes, because their dot product *is equal to* zero.
- (b) Determine the component representation of the Poynting vector (in $\mbox{W/m}^2$) for these fields.

Need Help? Read It

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved

TERMS OF USE PRIVACY