Source:

1 | Definitions

1.1 | Linear Map

A linear map is a function/map from one vector space to another such that it satisfies the properties of additivity and homogeneity. Notationally, a linear map $T \in \mathcal{L}(V,W)$ satisfies $T(a)+T(b)=T(a+b): a,b \in V$ and $\lambda Ta=T(\lambda a): \lambda \in \mathbb{F}, a \in V$

1.2 | Null Space

The null space of a linear map is the space of vectors that are sent to 0 by T, aka $\{v:v\in V\land Tv=0\}$

1.3 | Column Space

The column space of a linear map is the subspace of the codomain that is an output to the map, aka $\{w: Tv=w, v\in V, w\in W\}$

1.4 | Homogeneous system of equations

A system of equations where all the right hand sides are 0.

1.5 | Injective

When each element in the column space of a map is mapped to by exactly one element in the domain, aka when $Tu = Tv \implies u = v$.

1.6 | Surjective

When every element in the codomain is mapped to, aka the column space is the codomain, aka $W = \{Tv : v \in V\}$.

Exr0n · 2020-2021 Page 1