HAVERFORD COLLEGE

Department of Physics Physics 309b

Assignment #4

Reading: Griffiths, Chapter 4, pages 167 to 196

- 1. Suppose two point dipoles are separated by a distance, r, as shown in the figure below, i.e. \vec{p}_1 is in the \vec{k} direction and \vec{p}_2 is in the \vec{k} direction.
 - (a) Calculate the energy of the system.
 - (b) What is the torque on 2 due to 1?
 - (c) What is the force on 2 due to 1?

- 3. A linear dielectric sphere of radius R with uniform dielectric constant, ε_r , is polarized so that $\vec{P} = (K/r)\vec{A}$, where K is a constant.
 - (a) Calculate the volume and the surface density of bound charge.
 - (b) Calculate the volume density of free charge in terms of the dielectric constant.
 - (c) Calculate the potential inside and outside the sphere.
 - (d) Sketch a curve of potential versus distance for $0 \lesssim r < \infty$.
- 4. The permittivity of the dielectric between the plates of a parallel plate capacitor varies linearly from one plate to the other. If ε_1 and ε_2 are the values at the two plates, where $\varepsilon_2 > \varepsilon_1$ and if the plate separation is s, show that the capacitance per unit area is

$$C = \frac{\varepsilon_2 - \varepsilon_1}{s \ln(\varepsilon_2/\varepsilon_1)}.$$

- 5. If the space between two long, charged coaxial cylindrical conductors were filled with a dielectric, how would the permittivity have to depend on the distance, s, from the axis in order that the electric field intensity be independent of s?
- 6. (double credit) A long cylindrical dielectric rod of radius R is placed perpendicular to an externally applied, constant electric field, E_0 £. Solve for the potential, both inside and outside the rod. Choose the potential at the center of the cylinder to be 0. (See assignment #3, problem 5.)