

Contents			

Definition 0.1. We say a k-cochain $c \in C^k(M; \mathbb{Z})$ is Λ -periodic if for all $z \in Z_k(M; \mathbb{Z})$,

$$\langle c, z \rangle \in \Lambda$$

holds.

Let $\Omega_0^*(M)$ denote the set of Λ -periodic closed differential forms on M.

Definition 0.2 ([CS]). We denote the degree k differential character on M by

$$\hat{H}^k(M; \mathbb{R}/\Lambda) = \{ f \in \operatorname{Hom}_{\mathbb{Z}}(Z_k(M; \mathbb{Z}), \mathbb{Z}/\Lambda) \}$$

And we set $\hat{H}^{-1}(M; \mathbb{R}/\Lambda) \coloneqq \Lambda$ and

$$\hat{H}^*(M; \mathbb{R}/\Lambda) = \bigoplus_k \hat{H}^k(M; \mathbb{R}/\Lambda).$$

We can easily check that $\hat{H}^*(-; \mathbb{R}/\Lambda)$ is a contravariant functor assigning a topological space X a graded abelian group $\hat{H}^*(X; \mathbb{R}/\mathbb{Z})$. In fact, it assingns a topological space a graded ring.

Let $f \in \hat{H}^k(M; \mathbb{R}/\Lambda)$, since $Z_k(M; \mathbb{Z})$ is a free abelian group, then there exists a lift $\tilde{f}: Z_k(M; \mathbb{Z}) \to \mathbb{R}$, such that the diagram

$$\mathbb{R} \xrightarrow{\tilde{f}} \mathbb{R}/\Lambda$$

commutes. Then we precompose the diagram with $\partial_k:C_{k+1}(M;\mathbb{Z})\to Z_k(M;\mathbb{Z})$ to get the following commutative diagram

$$C_{k+1}(M; \mathbb{Z}) \xrightarrow{\tilde{f}} Z_k(M; \mathbb{Z})$$

$$\mathbb{R} \xrightarrow{\tilde{f}} \mathbb{R}/\Lambda$$

which reads

$$\tilde{f}\circ\partial\mod\Lambda=f\circ\partial.$$

By definition, since $f \in \hat{H}^k(M; \mathbb{R}/\Lambda)$, there is a differential form $\omega \in \Omega^{k+1}(M)$ such that

$$\omega = f \circ \partial = \tilde{f} \circ \partial \mod \Lambda$$
,

which is an equation in $C^{k+1}(M;\mathbb{R})$. Then we can tell that the diffrence of ω and $\tilde{f} \circ \partial$ is in $C^{k+1}(M;\Lambda)$, which we denote by

$$c = \omega - \tilde{f} \circ \partial \in C^{k+1}(M; \Lambda). \tag{0.1}$$

We can precompose the above equation by ∂ again, and get

$$0 = \tilde{f} \circ \partial \circ \partial = \omega \circ \partial - c \circ \partial = d\omega - \delta c,$$

since d and δ are duals of ∂ in complexes $\Omega^*(M)$ and $C^*(M;\Lambda)$. The following observation is fundamental in the theory of differential cohomology:

Claim 0.1. A non-vanishing differential form never takes values lying only in a proper subring $\Lambda \subset \mathbb{R}$.

Using the above claim we conclude that ω is closed and has Λ -periods. Since we have $d\omega = \delta c \in C^{k+2}(M;\Lambda)$, for any $\sigma \in C_{k+2}(M;\Lambda)$

$$\int_{\sigma} d\omega = \langle \delta c, \sigma \rangle = \langle c, \partial \sigma \rangle \in \Lambda,$$

which contradicts the claim. Thus $d\omega = \delta c = 0$. Take any $z \in Z_{k+1}(M; \mathbb{Z})$ and pair it with both sides of Equation 0.1, we have

$$\int_{z} \omega = \langle c, z \rangle \in \Lambda$$

showing ω is Λ -periodic.

We will now show that ω and [c] is independent on the choice of \tilde{f} . Say if $\tilde{f}' \in \operatorname{Hom}_{\mathbb{Z}}(Z_k(M;\mathbb{Z}),\mathbb{R})$ is another lift of f, we have $\tilde{f} = f + g$ for some $g \in \operatorname{Hom}_{\mathbb{Z}}(Z_k(M;\mathbb{Z}),\Lambda)$. By precomposing ∂ , we have

$$\omega' - \omega = \tilde{f}' \circ \partial - \tilde{f} \circ \partial + c' - c = g \circ \partial + c' - c \in C^{k+1}(M; \Lambda).$$

Evaluating the last equation on $C_{k+1}(M; \mathbb{Z})$, we get a contradiction to Claim 0.1 and thus $\omega' = \omega, c' = c + \delta g$, which means that ω and [c] is independent on the choice of the lift of $f \in \hat{H}^k(M; \mathbb{R}/\Lambda)$. To sum up, we actually have two well-defined morphisms:

$$\operatorname{curv}: \hat{H}^k(M; \mathbb{R}/\Lambda) \to \Omega_0^{k+1}(M)$$
$$f \mapsto \omega,$$

and

$$\mathrm{ch}: \hat{H}^k(M;\mathbb{R}/\Lambda) \to H^{k+1}(M;\Lambda)$$

$$f \mapsto [c].$$

Moreover, if we restrict $\tilde{f} \circ \partial = \omega - c$ on $B_{k+1}(M; \mathbb{Z})$, we have $\omega|_{B_{k+1}} = c|_{B_{k+1}}$, which implies ω and c determine the same cohomology class in $H^{k+1}(M; \mathbb{R})$. That is, we have

$$[\omega] = r([c]),$$

or

$$[\operatorname{curv}(-)] = r(\operatorname{ch}(-)).$$

To measure the size of $\hat{H}^k(M; \mathbb{R}/\mathbb{Z})$, we need to fit it in some exact sequences.

Theorem 0.2 ([CS]). There are natural exact sequences

$$0 \longrightarrow H^k(M;\mathbb{R}/\Lambda) \longrightarrow \hat{H}^k(M;\mathbb{R}/\Lambda) \xrightarrow{\operatorname{curv}} \Omega^{k+1}_0(M) \longrightarrow 0$$

$$0 \, \longrightarrow \, \Omega^k(M)/\Omega^k_0(M) \, \longrightarrow \, \hat{H}^k(M;\mathbb{R}/\Lambda) \, \stackrel{\mathrm{ch}}{\longrightarrow} \, H^{k+1}(M;\Lambda) \, \longrightarrow \, 0$$

Proof. First, we need to show that the morphisms curv, ch are surjective. To show that, we introduce another observation. By definition, $\Omega_0^*(M)$ is the set closed Λ -periodic differen-

tial forms on M, and in fact it is the following pullback

$$\Omega_0^*(M) \longrightarrow \Omega_{\text{cl}}^*(M)
\downarrow \qquad \qquad \downarrow
H^*(M; \Lambda) \xrightarrow{r} H^*(M; \mathbb{R}).$$
(0.2)

Thus for any $\omega \in \Omega_0^{k+1}(M)$ we can find a class $u \in H^{k+1}(M;\Lambda)$ such that $r(u) = [\omega]$ and for any given class $u \in H^{k+1}(M;\Lambda)$ there is a differential form $\omega \in \Omega_0^{k+1}(M)$ satisfying the same relation, vise versa. Take a representative c of u, and find that $\omega - c$ is identically 0 when restricted to $Z_{k+1}(M;\mathbb{Z})$, thus $\omega - c$ is a coboundary in $C_{k+1}(M;\mathbb{R})$ and there is some $\tilde{f} \in C^k(M;\mathbb{R})$ such that $\tilde{f} \circ \partial = \omega - c$. Let $f \coloneqq \tilde{f} \mod \Lambda$, we have found $f \in \hat{H}^k(M;\mathbb{R}/\Lambda) \operatorname{curv}(f) = \omega$ and $\operatorname{ch}(f) = [c] = u$ hold.

Next, if $f \in \ker$ curv, then pick any lift \tilde{f} of f we have $\tilde{f} \circ \partial = -c$. Since $c \in C^{k+1}(M;\Lambda)$, take both sides modulo Λ we have $\delta f = 0 \in \mathbb{R}/\Lambda$, which says f is closed in $C^k(M;\mathbb{R}/\Lambda)$, thus f defines a cohomology class in $H^k(M;\mathbb{R}/\Lambda)$. Conversely, given a cohomology class $[s] \in H^k(M;\mathbb{R}/\Lambda)$, $s \circ \partial$ is identically zero on $Z_k(M;\mathbb{Z})$ and thus $\operatorname{curv}(s) = 0$.

Finally, if $\operatorname{ch}(f)=0$ we have $\delta e=c$ for some $e\in C^k(M;\Lambda)$. We thus have $\omega=\tilde{f}\circ\partial+\delta e=\delta(\tilde{f}+e)\in C^{k+1}(M;\mathbb{R})$. The left hand side is a closed Λ -periodic differential form and the right hand side is a real k+1-cochain. By the de Rham theorem, there is $\theta\in\Omega^k(M)$ such that $d\theta=\omega$. Then $\delta(\tilde{f}+e-\theta)=0$ so that $\tilde{f}+e-\theta=z$ for some $z\in Z^k(M;\mathbb{R})$. Again, by the de Rham theorem there is a $\phi\in\Omega^k_{\mathrm{cl}}(M)$ such that $\phi=z$ and $\tilde{f}=\phi+\theta-e$. We get the map $\Omega^k(M)\to\hat{H}^k(M;\mathbb{R}/\mathbb{Z})$ by modoloing Λ and the kernel of this map is $\Omega^k_0(M)$.

Using the two exact obtained above, we have the following commutative diagram with exact rows and columns

Denote $R^*(M;\Lambda)$ as the following pullback

$$R^*(M;\Lambda) \longrightarrow \Omega_0^*(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^*(M;\Lambda) \xrightarrow{r} H^*(M;\mathbb{R}).$$

By the diagram (0.3) we have

Claim 0.3. There is an exact sequence

$$0 \longrightarrow \frac{H^k(M;\mathbb{R})}{r(H^k(M;\Lambda))} \longrightarrow \hat{H}^k(M;\mathbb{R}/\Lambda) \xrightarrow{\operatorname{curv} \times \operatorname{ch}} R^*(M;\Lambda) \longrightarrow 0$$
 (0.4)

By the Borel theorem (??), we have

$$H^3(BG;\mathbb{R})=0$$

for any compact Lie group G. Taking $\Lambda = \mathbb{Z}$, the short exact sequence (0.4) in this case can be written as

$$0 \longrightarrow \hat{H}^3(BG; \mathbb{R}/\mathbb{Z}) \longrightarrow R^3(BG; \mathbb{Z}) \longrightarrow 0,$$

which implies that the differential character in $\hat{H}^3(BG; \mathbb{R}/\mathbb{Z})$ can be uniquely determined by a differential form and a characteristic class.

We can define the action of the Chern-Simons theory as

$$S = \langle \alpha_A, [M] \rangle$$

where $\alpha_A = \gamma^* \alpha$, and $\alpha \in \hat{H}^3(BG; \mathbb{R}/\mathbb{Z})$ is uniquely determined by the element $(\Omega(F_u), \omega) \in R^3(BG)$.

Definition 0.3. Let M be a smooth manifold. For Λ a subring of \mathbb{R} and for $p \geq 0$, the **smooth Deligne complex** $\Lambda(p)_D^{\infty}$ is the complex of sheaves:

$$\Lambda(p)_{M} \xrightarrow{i} \Omega^{0}_{M,\mathbb{C}}(-) \xrightarrow{d} \Omega^{1}_{M,\mathbb{C}}(-) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{p-1}_{M,\mathbb{C}}(-), \tag{0.5}$$

The hypercohomology groups $H^q(M;\Lambda(p)_D^\infty)$ are called the **smooth Deligne cohomology groups** of M, and are sometimes denoted by $H^p_D(M,\Lambda(p)^\infty)$.

There is a natural homomorphism $\kappa: H^q(M;\Lambda(p)_D^\infty) \to H^q(M;\Lambda(p))$, where the left side is the ordinary singular (Čech) cohomology of M with coefficients group $\Lambda(p)$, since the complex $\Lambda(p)_D^\infty$ projects to the constant sheaf $\Lambda(p)_M$. We can identify the sheaf cohomology $H^p(M;\Lambda(p))$ of the constant sheaf $\Lambda(p)_M$ with the singular cohomology $H^p(M;\Lambda(p))$ because of the following theorem [Bre, Chapter III, Theorem 1.1]

Theorem 0.4. There exist the natural multiplicative transformations of functors (naturality for X as well as A)

$$H_{\Phi}^{\bullet}(X; \mathcal{A}) \xrightarrow{\theta} {_{S}H_{\Phi}^{\bullet}(X; \mathcal{A})} \xleftarrow{\mu^{*}} {_{\Delta}H_{\Phi}^{*}(X; \mathcal{A})}$$

in which the groups $_{\Delta}H_{\Phi}^{\bullet}(X;\mathcal{A})$, and hence μ^* are defined only for locally constant \mathcal{A} and are the classical singular cohomology groups when Φ is paracompactifying. The map μ^* is an isomorphism when X when \mathcal{A} has finitely generated stalks. Both θ and μ^* are isomorphisms when X is locally compact Hausdorff and Φ is paracompactifying. Both natural transformations extend to closed pairs of spaces with the same conclusions.

Note that we have an exact sequence of complexes (definition of exact sequence of complexes of sheaves)

$$0 \longrightarrow \sigma_{\leq p-1}(\Omega_{M,\mathbb{C}}^{\bullet}(-)) \longrightarrow \Lambda(p)_{D}^{\infty} \longrightarrow \Lambda(p) \longrightarrow 0$$

where $\sigma_{\leq p-1}(\Omega^{ullet}_{M,\mathbb{C}}(-))$ denotes the complex $\Omega^0_{M,\mathbb{C}}(-) \to \cdots \to \Omega^{p-1}_{M,\mathbb{C}}(-)$ obtained by chopping the part of the complex of sheaves $\Omega^{ullet}_{M,\mathbb{C}}(-)$ in degrees $\geq p$. If M is paracompact, we know the sheaves $\Omega^p_{M,\mathbb{C}}(-)$ are soft (Proof of the claim.) Then the hypercohomology of the complex of sheaves are simply

$$H^{q}(M; \sigma_{\leq p-1}\Omega_{M,\mathbb{C}}^{p}(-)) = \begin{cases} H_{\mathrm{dR}}^{q}(M) \times \mathbb{C}, & q \leq p-2, \\ \Omega_{\mathbb{C}}^{p-1}(M)/d(\Omega_{\mathbb{C}}^{p-2}(M)), & q = p-1 \\ 0, & q \geq p. \end{cases}$$
(0.6)

Theorem 0.5. Let M be a smooth paracompact manifold such that the sheaves $\Omega_M^p(-)$ are soft. The smooth Deligne cohomology groups $H^{\bullet}(M; \Lambda(p)_{D}^{\infty})$ are as follows:

1. For $q \leq p-1$, the group $H^p(M;\Lambda(p)_D^\infty)$ fits in the exact sequence

$$0 \longrightarrow H^{q-1}(M;\Lambda(p)) \longrightarrow H^{q-1}(M;\mathbb{C}) \longrightarrow H^q(M;\Lambda(p)_D^\infty) \stackrel{\kappa}{\longrightarrow} \operatorname{Tor} H^q(M;\Lambda(p)) \longrightarrow 0$$

2. The group $H^p(M; \Lambda(p)_D^{\infty})$ fits in the exact sequence

$$0 \longrightarrow \Omega^{p-1}_{\mathbb{C}}(M)/\Omega^{p-1}_{\mathbb{C},0}(M) \longrightarrow H^p(M;\Lambda(p)_D^{\infty}) \stackrel{\kappa}{\longrightarrow} H^p(M;\Lambda(p)) \longrightarrow 0.$$

$$(0.8)$$

3. For $q \ge p + 1$, we have

$$H^q(M; \Lambda(p)_D^\infty) \cong H^q(M; \Lambda(p)).$$
 (0.9)

References

- [Bre] Glen E Bredon. Sheaf Theory, volume 170. Springer Science & Business Media.
- [CS] Jeff Cheeger and James Simons. *Differential Characters and Geometric Invariants*, volume 1167 of *Lecture Notes in Mathematics*, pages 50–80. Springer Berlin Heidelberg.