> Thomas Honold

Phase Space

Math 286 Introduction to Differential Equations

Thomas Honold

ZJU-UIUC Institute

Fall Semester 2021

> Thomas Honold

Phase Space

Outline

1 Phase Space

> Thomas Honold

Phase Space

Today's Lecture:

> Thomas Honold

Phase Space

Phase Space

We consider an $n \times n$ ODE system

$$\mathbf{y}' = f(\mathbf{y})$$
 with $f \colon D \to \mathbb{R}^n$, $D \subseteq \mathbb{R}^n$ open. (A)

Such a system is said to be autonomous, because f doesn't depend on t.

Observations

- Solutions of (A) are parametric curves $\mathbf{y}(t) = (y_1(t), \dots, y_n(t)), t \in I$, contained in D. (More precisely, the range (or trace) of the associated non-parametric curve is contained in D.)
- 2 $\mathbf{y}(t)$, $t \in I$ is a solution iff $t \mapsto \mathbf{y}(t t_0)$, $t \in I + t_0$ is a solution, where $I + t_0 = \{t + t_0; t \in I\}$. This holds for all $t_0 \in \mathbb{R}$.
- 3 If f is continuous and satisfies on D locally a Lipschitz condition, then for any point $\mathbf{y}^{(0)} \in \mathbb{R}^n$ there exists precisely one maximal solution of the IVP $\mathbf{y}' = f(\mathbf{y}) \wedge \mathbf{y}(0) = \mathbf{y}^{(0)}$, and this solution is defined on a certain open interval I containing t = 0 as an inner point (by the Existence and Uniqueness Theorem).

> Thomas Honold

Phase Space

Definition

- 1 The ambient space \mathbb{R}^n containing D and the solution curves $\mathbf{y}(t)$ is called *phase space* of the autonomous system $\mathbf{y}' = f(\mathbf{y})$.
- 2 The non-parametric maximal solution curves $\{y(t), t \in I\}$ (ranges/traces of $t \mapsto y(t)$) are called *trajectories* or *orbits* of y' = f(y).

Corollary

Suppose f is continuous and satisfies on D locally a Lipschitz condition. Then every point of D is contained in a unique orbit of $\mathbf{y}' = f(\mathbf{y})$. In other words, the orbits form a partition of D.

Proof.

Let $\mathbf{y}^{(0)} \in D$. As already observed, $\mathbf{y}^{(0)} \in D$ is contained in an orbit of a maximal solution curve $\mathbf{y}(t)$, $t \in I$ that is defined at t = 0. Now suppose $\mathbf{z}(t)$, $t \in J$ is another maximal solution satisfying $\mathbf{z}(t_0) = \mathbf{y}^{(0)}$. Replacing $\mathbf{z}(t)$ by $t \mapsto \mathbf{z}(t+t_0)$, $t \in J-t_0$, which is a maximal solution as well and has the same orbit as $\mathbf{z}(t)$, we may assume $0 \in J$ and $\mathbf{z}(0) = \mathbf{y}^{(0)}$. But then the Uniqueness Theorem gives $\mathbf{y}(t) = \mathbf{z}(t)$ for $t \in I \cap J$, and maximality forces I = J (because the two curves have a common extension to $I \cup J$). Thus the parametric curves and in particular their orbits are equal.

> Thomas Honold

Phase Space

Note

Actually the proof shows more: Suppose we know a family of (parametric) maximal solutions whose associated orbits partition D. Then every further maximal solution has the form $t \mapsto \mathbf{y}(t-t_0)$ for some solution $\mathbf{y}(t)$ in the known family and some $t_0 \in \mathbb{R}$.

The Case n=1

In this case y' = f(y) for some one-variable function f. It is convenient to graph y' versus y, i.e., the function f.

The phase line is the y-axis (horizontal axis). The blue arrows indicate whether y(t) is increasing/decreasing in the respective interval. Caution: This property depends on y(t) rather than t!

> Thomas Honold

Phase Space

Theorem

Suppose f is analytic on D, i.e., f(y) is a polynomial $(D = \mathbb{R})$ or a power series in $y - y_0$ $(D = (y_0 - R, y_0 + R)$ for some $y_0 \in \mathbb{R}$ and $0 < R \le \infty$), and $Z \subset D$ denotes the (discrete) set of zeros of f.

- 1 The orbits of y' = f(y) are the singleton sets $\{z\}$ for $z \in Z$ and the connected components of $D \setminus Z$, which in the polynomial case are the open intervals determined by adjacent zeros and intervals of the form $(-\infty, z)$, $(z, +\infty)$).
- **2** For $z \in Z$, y' = f(y) has the equilibrium solution $y(t) \equiv z$.
- 3 If f'(z) < 0 then $y(t) \equiv z$ is asymptotically stable. More generally, if f has a zero of odd multiplicity m = 2k + 1 at z and $f^{(2k+1)}(z) < 0$ then $y(t) \equiv z$ is asymptotically stable.
- 4 If f'(z) > 0 then $y(t) \equiv z$ is unstable. More generally, if f has a zero of odd multiplicity m = 2k + 1 at z and $f^{(2k+1)}(z) > 0$ then $y(t) \equiv z$ is unstable.
- **(5)** If f has a zero of even multiplicity m = 2k at z then $y(t) \equiv z$ is semistable (asymptotically stable from below if $f^{(2k)}(z) > 0$, respectively, from above if $f^{(2k)}(z) < 0$).

Math 286

Sketch of proof. (2) is by now well-known and implies that for $z \in Z$ the set $\{z\}$

forms an orbit (arising from $y(t) \equiv z$). Regarding (1), we prove only that if $z_1 < z_2$ are adjacent zeros of f and f(y) > 0 for $z_1 < y < z_2$ then (z_1, z_2) forms an orbit of y' = f(y). (The other cases are similar.)

If suffices to show that a maximal solution y(t) of y' = f(y) with $y(0) = y_0 \in (z_1, z_2)$ exists for all $t \in \mathbb{R}$, is strictly increasing, and satisfies

$$\lim_{t\to-\infty}y(t)=z_1,\quad \lim_{t\to+\infty}y(t)=z_2,$$

because then clearly $y(\mathbb{R}) = (z_1, z_2)$.

First we show that $y(t) \in (z_1, z_2)$ for all $t \in I$. This is true for t = 0 and can fail for some t only if there exists t_0 This, however, would contradict the Uniqueness Theorem, because we also have the constant solutions $y(t_0) \equiv z_1$ and $y(t_0) \equiv z_2$.

 \implies y(t) is strictly increasing on I and bounded from above by z_2 .

 $\implies y_2 := \lim_{t \uparrow b} y(t)$ exists and satisfies $y_0 < y_2 \le z_2$.

Let I be the (open) interval on which y(t) is defined. We can write I=(a,b), where $a=-\infty$ and/or $b=+\infty$ is possible. such that $y(t_0) = z_1$ or $y(t_0) = z_2$ (by the Intermediate Value Theorem).

> Thomas Honold

Phase Space

Proof cont'd.

Now we distinguish two cases:

Case 1: $b \in \mathbb{R}$

In this case y(t) can be extended to (a, b] by setting $y(b) = y_2$, and one verifies easily that the extension solves y' = f(y) also in t = b. This contradicts the maximality of y(t).

Case 2: $b = +\infty$

Here we use that the limit

$$\lim_{t\to+\infty}y'(t)=\lim_{t\to+\infty}f\big(y(t)\big)=f(y_2)$$

exists. Since $\lim_{t\to+\infty} (y(t+1)-y(t))=y_2-y_2=0$, for sufficiently large t the quantity

$$0 < y(t+1) - y(t) = y'(\tau), \quad \tau \in (t, t+1),$$

is smaller than any given $\epsilon>0$. Together with the existence of $\lim_{t\to+\infty}y'(t)$ this implies $\lim_{t\to+\infty}y'(t)=0$, i.e., $f(y_2)=0$ and hence $y_2=\lim_{t\to+\infty}y(t)=z_2$.

In the same way one proves $a = -\infty$ and $\lim_{t \to -\infty} y(t) = z_1$.

> Thomas Honold

Phase Space

Proof cont'd.

(3), (4), (5) follow from (2) and the known characterization of sign changes/non-changes at zeros of f in terms of the first non-vanishing derivative.

Example $(y' = 4y - y^3)$

The preceding theorem gives immediately that the equilibrium solutions $y(t) \equiv \pm 2$ are asymptotically stable and $y(t) \equiv 0$ is unstable; cf. picture.

Example $(y' = y^3 - 2y^2 + y)$ $y(t) \equiv 0$ is unstable and $y(t) \equiv 1$ is semistable (more precisely,

asymptotically stable from below and unstable from above); cf. picture.

Example $(y' = y - y^2)$

This is the logistic equation with a = b = 1. The graph of $f(y) = y - y^2 = -(y - 1/2)^2 + 1/4$ is the standard parabola upside down. It has zeros 0 and 1.

 \implies $y(t) \equiv 0$ (corresponding to the left zero) is unstable, and $y(t) \equiv 1$ (corresponding to the right zero) is asymptotically stable.

> Thomas Honold

Phase Space

Remark

Solutions of scalar autonomous ODE's are best viewed as functions t(y).

$$y' = f(y)$$

$$dy/f(y) = dt$$

$$\int \frac{dy}{f(y)} = t = t(y).$$

 \Rightarrow y' = f(y) can be solved by a single integration (just like y' = f(t), only the roles of t and y are interchanged. For example, in the case of $y' = y - y^2$ we obtain

$$t(y) = \int \frac{\mathrm{d}y}{v - v^2} = \int \left(\frac{1}{v} + \frac{1}{1 - v}\right) \mathrm{d}y = \ln \left|\frac{y}{1 - v}\right| + C.$$

The plot on the next slide shows 5 particular representative solutions for the 5 orbits of $y' = y - y^2$. The 3 branches of $y \mapsto \ln \left| \frac{y}{1-y} \right|$ represent the non-constant solutions. They can be independently shifted vertically to produce the remaining solutions.

> Thomas Honold

Phase Space

Figure:
$$t(y) = \ln \left| \frac{y}{1-y} \right|$$

> Thomas Honold

Phase Space

Exercise

In the proof of the theorem we have seen that maximal solutions representing orbits of y'=f(y) of the form (z_1,z_2) have domain $\mathbb R$. How can we determine from properties of f the domain of solutions representing orbits of the form $(-\infty,z)$ or $(z,+\infty)$? In particular, answer this question for the case of a polynomial f(y).

Exercise (cf. [BDM17], Sect. 2.5, p. 61)

The phase line can also be used to determine the curvature (i.e., whether it is convex or concave) of solutions of y'=f(y). Show that solutions y(t) are strictly convex (concave) in regions of the (t,y)-plane where f(y)f'(y)>0 (respectively, f(y)f'(y)<0). In particular, the inflection points of solutions (if any) are located on lines $y=y_0$ with $f(y_0)\neq 0 \land f'(y_0)=0$ (e.g., for $y'=y-y^2$ on the line y=1/2). What can be said about the number of inflection points of a non-constant solution with domain of the form $(-\infty,a)$, (a,b), or (b,∞) with $a,b\in\mathbb{R}$?

Thomas Honold

Phase Space

The Case n=2

Phase planes and planar trajectories/orbits are associated to 2 \times 2 autonomous ODE systems

$$y'_1 = f_1(y_1, y_2),$$

 $y'_2 = f_2(y_1, y_2).$

Every maximal solution $\mathbf{y}(t) = (y_1(t), y_2(t)), t \in I$ of such a system is a parametric plane curve. The orbit of y(t), viz. $\{(y_1(t), y_2(t)); t \in I\}$, is the corresponding non-parametric curve. Here we consider only one important example.

Example (Phase portrait of y'' + y = 0)

Order reduction $y_1 = y$, $y_2 = y'$ transforms this 2nd-order ODE into

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$$

The orbit of a nonzero solution

The orbit of a nonzero solution
$$\begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} A\cos t + B\sin t \\ -A\sin t + B\cos t \end{pmatrix} = \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
 is a circle of radius $\sqrt{A^2 + B^2}$ with center $(0,0)$.

Differential Equations Thomas Honold

Math 286 Introduction to

Phase Space

Geometrically this says, that the solution with initial values y(0) = A, y'(0) = B has the property that all "state vectors"

Example (cont'd)

phase portrait.

(y(t), y'(t)), describing the displacement from the equilibrium position y = 0 and its velocity of change at an arbitrary time t, are located on the circle $X^2 + Y^2 = A^2 + B^2$. (Recall that when we first determined the solutions of y'' + y = 0 we used this property, viz. $y(t)^2 + y'(t)^2 = A^2 + B^2 = y(0)^2 + y'(0)^2$, as a key fact.)

As predicted by the corollary, the orbits partition the plane if we also include $\{(0,0)\}$, the orbit of the constant solution $y(t) \equiv 0$. We have also seen that solutions y(t), z(t) with the same orbit, i.e., the same $\sqrt{A^2 + B^2}$, differ only by a time shift (phase shift) $z(t) = y(t - t_0), t_0 \in \mathbb{R}$. This is visible in the alternative

representation

 $y(t) = A\cos t + B\sin t = \text{Re}\left[(A + Bi)e^{-it}\right] = \sqrt{A^2 + B^2}\sin(t + \phi),$ in which ϕ is determined from $\sin \phi = \frac{A}{\sqrt{A^2 + B^2}}$, $\cos \phi = \frac{B}{\sqrt{A^2 + B^2}}$.

The collection of all orbits (or a good representative selection of orbits) of a given autonomous ODE system is referred to as a