Coin Change Combination in C++

```
#include <iostream>
#include <vector>
using namespace std;
int main() {
  vector<int> arr = \{2, 3, 5\};
  int amt = 7;
  vector<int> dp(amt + 1, 0);
  dp[0] = 1; // Base case: 1 way to make amount 0
(using no coins)
  for (int i = 0; i < arr.size(); i++) {
    for (int j = arr[i]; j \le amt; j++) {
       dp[j] += dp[j - arr[i]];
  }
  cout << dp[amt] << endl; // Output the number of
combinations for amount 'amt'
  return 0;
```

Initial dp Array

Before processing:

arr=[2, 3, 5]

dp = [1, 0, 0, 0, 0, 0, 0, 0]

(Index represents amount: 0 to 7)

Dry Run with Iteration Table

Processing coin 2

j (amt)	dp[j] = d; dp[j -		Updated dp
2	dp[2] += d 1	lp[0] =	[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3	dp[3] += d		[1, 0, 1, 0, 0, 0, 0, 0]
4	dp[4] += d		[1, 0, 1, 0, 1, 0, 0, 0]
5	dp[5] += d	lp[3] =	[1, 0, 1, 0, 1, 0, 0, 0]
6	dp[6] += d	p[4] =	[1, 0, 1, 0, 1, 0, 1, 0]
7	dp[7] += d	lp[5] =	[1, 0, 1, 0, 1, 0, 1, 0]

Processing coin 3

j (amt)	dp[j] = dp[j		+	Updated dp
3	dp[3] +=	= dp[0]	=	[1, 0, 1, 1, 1, 0, 1, 0]
4	dp[4] +=	= dp[1]	=	[1, 0, 1, 1, 1, 0, 1, 0]
5	dp[5] +=	= dp[2]	=	[1, 0, 1, 1, 1, 1, 1, 0]
6	dp[6] +=	= dp[3]	=	[1, 0, 1, 1, 1, 1, 2, 0]
7	dp[7] += 1	= dp[4]	=	[1, 0, 1, 1, 1, 1, 2, 1]

T)	•	•	
Pro	cessing	coin	5

j (amt)	dp[j] = dp[j dp[j - 5]] +	Updated dp
5	dp[5] += dp[0 1] =	[1, 0, 1, 1, 1, 2, 2, 1]
6	dp[6] += dp[1 0] =	[1, 0, 1, 1, 1, 2, 2, 1]
7	dp[7] += dp[2 1] =	[1, 0, 1, 1, 1, 2, 2, 2]

Final dp Array

After processing all coins:

$$dp = [1, 0, 1, 1, 1, 2, 2, 2]$$

Final Output

2

This means there are 2 ways to form amount 7 using $\{2, 3, 5\}$:

- 1. 2+2+3
- 2. **2** + **5**

Output:-

2