#ret #hw

1 | Proof Prez

The problem:

Suppose $U_1,...,U_m$ are finite-dimensional subspaces of V. Prove that $U_1+...+U_m$ is finite-dimensional

$$\dim(U_1 + \dots + U_m) \le \dim U_1 + \dots + \dim U_m$$

- 1.39:
 - sum of subspaces is the smallest containing subspace.
 - * Suppose $U_1, ..., U_m$ are subspaces of V. Then $U_1 + ... + U_m$ is the smallest subspace of V containing $U_1, ..., U_m$.
- 2.26
 - Finite-dimensional subspaces
 - * every subspace of a finite-dimensional vector space is finite-dimensional
- 2.43
 - dimension of a sum
 - * if U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

- 1.8
 - definiton list, length
 - supposed n is a non-negative integer
- 2.36
 - dimension
 - * dimension of a finite dimensional vector space is the lenght of any basis of the vector space
- 1. proving finite dimensional By 1.39, we know that the sum of subspaces in V is a subspace in V. By 2.26, we know that every subspace of a finite dimensional vector space is finite-dimensional V is finite dimensional

therefore, sum of subspaces in V is finite-dimensional

2. proving dim by 2.36, we know that the dimension is the length of the basis by 1.8, we know that a length cannot be negative **thus**, **dim** U_1 + **dim** U_2 - **dim** (U_1 **intsct** U_2) will always be <= **dim** U_1 + **dim** U_2 - can't subtract and a positive number and get a larger number.

by 2.43, we know that $\dim(U_1+U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \text{ intsct } U_2)$ therefore, $\dim(U_1+U_2)$ will always be $\leq \dim U_1 + \dim U_2$

generalize to list: by 1.39, we know that the sum of subspaces in V is a subspace of V so, let $U_1 = u_1$, and $U_2 = u_2 + ... + u_m$ thus, $dim(U_1 + U_2) = dim(u_1 - ... + u_m)$

therefore, $dim(u_1 \dots u_m) \le dim u_1 \dots u_m$

1.1 | Formalizing