3.5 Derivación implícita

La mayor parte de las funciones que hemos visto hasta ahora pueden describirse expresando una variable explícitamente en términos de otra variable; por ejemplo,

$$y = \sqrt{x^3 + 1}$$
 o bien $y = x \operatorname{sen} x$

o, en general, y = f(x). Sin embargo, algunas funciones se definen implícitamente por medio de una relación entre x y y como

$$x^2 + y^2 = 25$$

o bien

$$x^3 + y^3 = 6xy$$

En algunos casos, es posible resolver una ecuación de ese tipo para y como una función explícita (o varias funciones) de x. Por ejemplo, si resolvemos la ecuación 1 para y, obtenemos $y=\pm\sqrt{25-x^2}$, de modo que dos de las funciones determinadas por la ecuación implícita 1 son $f(x)=\sqrt{25-x^2}$ y $g(x)=-\sqrt{25-x^2}$. Las gráficas de f y g son las semicircunferencias superior e inferior de la circunferencia $x^2+y^2=25$. (Véase la figura 1.)

FIGURA 1

No es fácil resolver explícitamente la ecuación 2 para y como función x. (Con un sistema algebraico para computadora no hay dificultad, pero las expresiones que se obtienen son muy complicadas). Sin embargo, $\boxed{2}$ es la ecuación de una curva llamada **folium de Descartes**, ilustrada en la figura 2 y, que de manera implícita define a y como varias funciones de x. En la figura 3 se muestran las gráficas de esas tres funciones. Cuando se dice que f es una función definida implícitamente por la ecuación 2, se da a entender que la ecuación

$$x^3 + [f(x)]^3 = 6xf(x)$$

es verdadera para todos los valores de x en el dominio de f.

FIGURA 2 Folium de Descartes

FIGURA 3 Gráficas de tres funciones definidas por el folium de Descartes

V EJEMPLO 1

- a) Si $x^2 + y^2 = 25$, encuentre $\frac{dy}{dx}$.
- b) Encuentre la ecuación de la recta tangente a la circunferencia $x^2 + y^2 = 25$, en el punto (3, 4).

SOLUCIÓN 1

a) Derive ambos miembros de la ecuación $x^2 + y^2 = 25$:

$$\frac{d}{dx}\left(x^2+y^2\right) = \frac{d}{dx}\left(25\right)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

Recuerde que y es una función de x, así que hay que utilizar la regla de la cadena para obtener

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$

Por tanto.

$$2x + 2y \frac{dy}{dx} = 0$$

Ahora resolvemos esta ecuación para dy/dx:

$$\frac{dy}{dx} = -\frac{x}{y}$$

b) En el punto (3, 4) se tiene que x = 3 y y = 4, de modo que

$$\frac{dy}{dx} = -\frac{3}{4}$$

Por tanto, la ecuación de la tangente a la circunferencia, en (3, 4), es

$$y - 4 = -\frac{3}{4}(x - 3)$$
 o bien $3x + 4y = 25$

SOLUCIÓN 2

b) Al resolver $x^2 + y^2 = 25$, obtenemos $y = \pm \sqrt{25 - x^2}$. El punto (3, 4) se encuentra en la semicircunferencia superior $y = \sqrt{25 - x^2}$ y, por consiguiente, considere la función $f(x) = \sqrt{25 - x^2}$. Al aplicar la regla de la cadena a la función f, se tiene

$$f'(x) = \frac{1}{2}(25 - x^2)^{-1/2} \frac{d}{dx} (25 - x^2)$$

$$= \frac{1}{2}(25 - x^2)^{-1/2}(-2x) = -\frac{x}{\sqrt{25 - x^2}}$$

De modo que

$$f'(3) = -\frac{3}{\sqrt{25 - 3^2}} = -\frac{3}{4}$$

y, como en la solución 1, la ecuación de la recta tangente es 3x + 4y = 25.

NOTA 1 La expresión dy/dx = -x/y en la solución 1 da la derivada en términos tanto de x como de y. Esto es correcto sin importar cuál función y queda determinada por la ecuación dada. Por ejemplo, para $y = f(x) = \sqrt{25 - x^2}$ tenemos

$$\frac{dy}{dx} = -\frac{x}{y} = -\frac{x}{\sqrt{25 - x^2}}$$

en tanto que para $y = g(x) = -\sqrt{25 - x^2}$ tenemos

$$\frac{dy}{dx} = -\frac{x}{y} = -\frac{x}{-\sqrt{25 - x^2}} = \frac{x}{\sqrt{25 - x^2}}$$

V EJEMPLO 2

- a) Encuentre y' si $x^3 + y^3 = 6xy$.
- b) Halle la recta tangente al folium de Descartes $x^3 + y^3 = 6xy$, en el punto (3, 3).
- c) ¿En cuál punto en el primer cuadrante es horizontal la recta tangente?

SOLUCIÓN

a) Si se derivan ambos miembros de $x^3 + y^3 = 6xy$ respecto a x, considerando a y como función de x, y usando la regla de la cadena en el término y^3 , y la regla del producto en el término 6xy, obtenemos

$$3x^2 + 3y^2y' = 6xy' + 6y$$

o bien

$$x^2 + y^2y' = 2xy' + 2y$$

Ahora resolvemos para v':

$$y^2y' - 2xy' = 2y - x^2$$

$$(y^2 - 2x)y' = 2y - x^2$$

$$y' = \frac{2y - x^2}{y^2 - 2x}$$

b) Cuando x = y = 3,

$$y' = \frac{2 \cdot 3 - 3^2}{3^2 - 2 \cdot 3} = -1$$

un vistazo a la figura 4 confirma que éste es un valor razonable para la pendiente en (3, 3). De este modo, la ecuación de la recta tangente al folium en (3, 3) es

$$y - 3 = -1(x - 3)$$
 o bien $x + y = 6$

c) La recta tangente es horizontal si y' = 0. Si utilizamos la expresión para y' del inciso a), vemos que y' = 0 cuando $2y - x^2 = 0$ (siempre que $y^2 - 2x \ne 0$). Al sustituir $y = \frac{1}{2}x^2$ en la ecuación de la curva, obtenemos

$$x^3 + (\frac{1}{2}x^2)^3 = 6x(\frac{1}{2}x^2)$$

lo cual se simplifica para quedar $x^6 = 16x^3$. Ya que $x \ne 0$ en el primer cuadrante, tenemos $x^3 = 16$. Si $x = 16^{1/3} = 2^{4/3}$, entonces $y = \frac{1}{2}(2^{8/3}) = 2^{5/3}$. Por tanto, la recta tangente es horizontal en $(2^{4/3}, 2^{5/3})$ lo cual es aproximadamente (2.5198, 3.1748). Al estudiar la figura 5, es claro que la respuesta es razonable.

FIGURA 4

FIGURA 5

NOTA 2 Existe una fórmula para obtener las tres raíces de una ecuación cúbica, que es semejante a la fórmula cuadrática, pero mucho más complicada. Si utilizamos esta fórmula (o un sistema algebraico computarizado) para resolver la ecuación $x^3 + y^3 = 6xy$ para y en términos de x, obtenemos tres funciones determinadas por la ecuación:

$$y = f(x) = \sqrt[3]{-\frac{1}{2}x^3 + \sqrt{\frac{1}{4}x^6 - 8x^3}} + \sqrt[3]{-\frac{1}{2}x^3 - \sqrt{\frac{1}{4}x^6 - 8x^3}}$$

у

$$y = \frac{1}{2} \left[-f(x) \pm \sqrt{-3} \left(\sqrt[3]{-\frac{1}{2}x^3 + \sqrt{\frac{1}{4}x^6 - 8x^3}} - \sqrt[3]{-\frac{1}{2}x^3 - \sqrt{\frac{1}{4}x^6 - 8x^3}} \right) \right]$$

(Éstas son las tres funciones cuyas gráficas se muestran en la figura 3.) Usted puede ver que el método de la derivación implícita ahorra una cantidad enorme de trabajo en casos como éste. Más aún, la derivación implícita funciona con igual facilidad para funciones como

$$y^5 + 3x^2y^2 + 5x^4 = 12$$

en las cuales es *imposible* resolver para y en términos de x.

EJEMPLO 3 Encuentre y' si sen $(x + y) = y^2 \cos x$.

SOLUCIÓN Si derivamos implícitamente respecto a x y consideramos que y es una función de x, obtenemos

$$cos(x + y) \cdot (1 + y') = y^2(-sen x) + (cos x)(2yy')$$

(Note que en el lado izquierdo hemos aplicado la regla de la cadena y, en el derecho, la regla de la cadena y la regla del producto). Si agrupamos los términos que contienen a v', obtenemos

$$\cos(x + y) + y^2 \sin x = (2y \cos x)y' - \cos(x + y) \cdot y'$$

Por lo que

$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

En la figura 6, trazada con el comando de construcción de gráficas en forma implícita de un sistema algebraico computarizado, se muestra parte de la curva $sen(x + y) = y^2 cos x$. Como comprobación de nuestro cálculo, observe que y' = -1, cuando x = y = 0 y, al parecer de la gráfica, la pendiente es aproximadamente -1 en el origen.

Las figuras 7, 8 y 9 muestran tres curvas más, producidas por computadora. En los ejercicios 41-42 tendrá usted oportunidad de crear y analizar curvas atípicas de esta naturaleza.

FIGURA 6

Abel y Galois

mayor que 4.

En 1824, el matemático noruego Niels Abel demostró que no puede darse una fórmula

general para la obtención de las raíces de una

ecuación de quinto grado. Tiempo después, el

matemático francés Evariste Galois demostró que es imposible hallar una fórmula general

para las raíces de una ecuación de n-ésimo grado (en términos de operaciones algebraicas

sobre los coeficientes), si n es cualquier entero

FIGURA 7 $(y^2 - 1)(y^2 - 4) = x^2(x^2 - 4)$

FIGURA 8 $(y^2 - 1) \operatorname{sen}(xy) = x^2 - 4$

FIGURA 9 y sen $3x = x \cos 3y$

EJEMPLO 4 Hallar $y'' \text{ si } x^4 + y^4 = 16.$

SOLUCIÓN Derivando la ecuación de manera implícita respecto a x, obtenemos

$$4x^3 + 4y^3y' = 0$$

Resolviendo para y'

 $y' = -\frac{x^3}{y^3}$

Para hallar y'' derivamos esta expresión para y' aplicando la regla del cociente, considerando que y es una función de x:

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \left(\frac{d}{dx} \right) (x^3) - x^3 \left(\frac{d}{dx} \right) (y^3)}{(y^3)^2}$$
$$= -\frac{y^3 \cdot 3x^2 - x^3 (3y^2 y')}{y^6}$$

Si ahora sustituimos la ecuación 3 en esta expresión, obtenemos

$$y'' = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3}\right)}{y^6}$$
$$= -\frac{3(x^2y^4 + x^6)}{y^7} = -\frac{3x^2(y^4 + x^4)}{y^7}$$

Pero los valores de x y y deben satisfacer la ecuación original $x^4 + y^4 = 16$, por lo que la respuesta se simplifica a

$$y'' = -\frac{3x^2(16)}{y^7} = -48\frac{x^2}{y^7}$$

La figura 10 muestra la gráfica de la curva $x^4 + y^4 = 16$ del ejemplo 4. Observe que es una versión extendida y achatada de la circunferencia $x^2 + y^2 = 4$, por esta razón algunas veces se le llama *circunferencia gruesa*. Empieza muy escarpada a la izquierda, pero rápidamente se hace muy plana. Esto puede verse en la expresión

$$y' = -\frac{x^3}{y^3} = -\left(\frac{x}{y}\right)^3$$

FIGURA 10

Derivadas de las funciones trigonométricas inversas

Las funciones trigonométricas inversas se repasan en la sección 1.6. En la sección 2.5 analizamos su continuidad, y en la sección 2.6, sus asíntotas. Aquí usamos la derivación implícita para hallar las derivadas de las funciones trigonométricas inversas, suponiendo que estas funciones son derivables. [En efecto, si f es una función uno a uno derivable, puede demostrarse que su función inversa f también es derivable, excepto donde sus rectas tangentes son verticales. Esto es posible porque la gráfica de una función derivable no tiene vértices ni bucles y, por esta razón, si la reflejamos respecto a y = x, la gráfica de su función inversa tampoco tiene vértices ni bucles.]

Recuerde la definición de la función arco seno:

$$y = \text{sen}^{-1}x$$
 significa sen $y = x$ y $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Al derivar implícitamente sen y = x respecto a x, obtenemos

$$\cos y \frac{dy}{dx} = 1$$
 o bien $\frac{dy}{dx} = \frac{1}{\cos y}$

 $\sec^2 y \frac{dy}{dx} = 1$

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$

El mismo método puede utilizarse para hallar una De manera que fórmula para la derivada de cualquier función inversa. Véase el ejercicio 77.

respecto a x, tenemos

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}\left(\operatorname{sen}^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

La fórmula para la derivada de la función arco tangente se obtiene de manera semejan-

 $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$

te. Si $y = \tan^{-1} x$, entonces $\tan y = x$. Si derivamos esta última ecuación implícitamente

En la figura 11 se muestra la gráfica de $f(x) = \tan^{-1}x$ y su derivada $f'(x) = 1/(1 + x^2)$. Observe que f es creciente y f'(x) es siempre positiva. El hecho de que $an^{-1}x \to \pm \pi/2$ conforme $x \to \pm \infty$ se refleja en el hecho de que $f'(x) \rightarrow 0$ a medida que $x \rightarrow \pm \infty$.

Recuerde que arctan x es una notación alternativa para tan-1x.

-1.5FIGURA 11

EJEMPLO 5 Derive a)
$$y = \frac{1}{\text{sen}^{-1}x}$$
 y b) $f(x) = x \arctan \sqrt{x}$.

 $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$

SOLUCIÓN

a)
$$\frac{dy}{dx} = \frac{d}{dx} (\operatorname{sen}^{-1} x)^{-1} = -(\operatorname{sen}^{-1} x)^{-2} \frac{d}{dx} (\operatorname{sen}^{-1} x)$$
$$= -\frac{1}{(\operatorname{sen}^{-1} x)^{2} \sqrt{1 - x^{2}}}$$

b)
$$f'(x) = x \frac{1}{1 + (\sqrt{x})^2} \left(\frac{1}{2} x^{-1/2}\right) + \arctan \sqrt{x}$$
$$= \frac{\sqrt{x}}{2(1+x)} + \arctan \sqrt{x}$$

Las funciones trigonométricas inversas que se presentan con mayor frecuencia son las que acabamos de analizar. Las derivadas de las cuatro restantes se presentan en la tabla siguiente. Las demostraciones de las fórmulas se dejan como ejercicios.

Derivadas de las funciones trigonométricas inversas

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1 + x^2}$$

Las fórmulas para las derivadas de csc⁻¹x y $\sec^{-1}x$ dependen de las definiciones que se apliquen para estas funciones. Véase el ejercicio 64.

La fórmula 3.4.5 establece que

 $\frac{d}{dx}(a^x) = a^x \ln a$

3.6 Derivadas de funciones logarítmicas

En esta sección utilizaremos la derivación implícita para hallar las derivadas de las funciones logarítmicas $y = \log_a x$ y, en particular, de la función logaritmo natural $y = \ln x$. [A partir de sus gráficas, es posible probar que las funciones logarítmicas son derivables (véase la figura 12 de la sección 1.6).]

1

$$\frac{d}{dx}\left(\log_a x\right) = \frac{1}{x \ln a}$$

DEMOSTRACIÓN Sea $y = \log_a x$. Entonces

$$a^{y} = x$$

Si mediante la fórmula (3.4.5) derivamos esta ecuación de manera implícita respecto a *x*, obtenemos

$$a^{y}(\ln a) \frac{dy}{dx} = 1$$

y, por consiguiente,

$$\frac{dy}{dx} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a}$$

Si en la fórmula 1 ponemos a=e, entonces el factor $\ln a$ en el lado derecho se convierte en $\ln e=1$ y se obtiene la fórmula para la derivada de la función logarítmica natural $\log_e x = \ln x$:

2

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

Si se comparan las fórmulas 1 y 2, se evidencia una de las razones principales por la que se usan los logaritmos naturales (logaritmos con base e) en el Cálculo. La fórmula de derivación es más sencilla cuando a=e, porque ln e=1.

V EJEMPLO 1 Derive $y = \ln(x^3 + 1)$.

SOLUCIÓN Para utilizar la regla de la cadena, hacemos $u = x^3 + 1$. Entonces $y = \ln u$, de modo que

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{1}{u} \frac{du}{dx}$$
$$= \frac{1}{x^3 + 1} (3x^2) = \frac{3x^2}{x^3 + 1}$$

En general, si combinamos la fórmula 2 con la regla de la cadena como en el ejemplo 1, obtenemos

 $\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx} \qquad \text{o bien} \qquad \frac{d}{dx}[\ln g(x)] = \frac{g'(x)}{g(x)}$

EJEMPLO 2 Encuentre $\frac{d}{dx} \ln(\text{sen } x)$.

SOLUCIÓN Utilizando 3, se tiene que

$$\frac{d}{dx}\ln(\operatorname{sen} x) = \frac{1}{\operatorname{sen} x}\frac{d}{dx}(\operatorname{sen} x) = \frac{1}{\operatorname{sen} x}\cos x = \cot x$$

EJEMPLO 3 Derive $f(x) = \sqrt{\ln x}$.

SOLUCIÓN En esta ocasión el logaritmo es la función interior, de modo que la regla de la cadena da

$$f'(x) = \frac{1}{2} (\ln x)^{-1/2} \frac{d}{dx} (\ln x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{1}{2x\sqrt{\ln x}}$$

EJEMPLO 4 Derive $f(x) = \log_{10}(2 + \operatorname{sen} x)$.

SOLUCIÓN Si usamos la fórmula 1 con a = 10, obtenemos

$$f'(x) = \frac{d}{dx} \log_{10}(2 + \sin x)$$

$$= \frac{1}{(2 + \sin x) \ln 10} \frac{d}{dx} (2 + \sin x)$$

$$= \frac{\cos x}{(2 + \sin x) \ln 10}$$

EJEMPLO 5 Encuentre $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}}$.

SOLUCIÓN 1

$$\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{1}{\frac{x+1}{\sqrt{x-2}}} \frac{d}{dx} \frac{x+1}{\sqrt{x-2}}$$

$$= \frac{\sqrt{x-2}}{x+1} \frac{\sqrt{x-2} \cdot 1 - (x+1)(\frac{1}{2})(x-2)^{-1/2}}{x-2}$$

$$= \frac{x-2 - \frac{1}{2}(x+1)}{(x+1)(x-2)}$$

$$= \frac{x-5}{2(x+1)(x-2)}$$

En la figura 1 se muestra la gráfica de la función f del ejemplo 5, junto con la gráfica de su derivada. Proporciona una comprobación visual de nuestro cálculo. Note que f'(x) es grande negativa cuando f está decreciendo con rapidez.

SOLUCIÓN 2 Si primero simplificamos la función dada aplicando las leyes de los logaritmos, entonces la derivación se vuelve más fácil:

$$\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{d}{dx} \left[\ln(x+1) - \frac{1}{2} \ln(x-2) \right]$$
$$= \frac{1}{x+1} - \frac{1}{2} \left(\frac{1}{x-2} \right)$$

(Esta respuesta puede dejarse como está, pero si usara un denominador común, vería que da la misma respuesta en la solución 1).

FIGURA 1

En la figura 2 se muestra la gráfica de la función $f(x) = \ln |x|$ del ejemplo 6 y la de su derivada f'(x) = 1/x. Note que cuando x es pequeño, la gráfica de $y = \ln |x|$ está inclinada y, por consiguiente, f'(x) es grande (positiva o negativa).

FIGURA 2

V EJEMPLO 6 Encuentre f'(x) si $f(x) = \ln |x|$:

SOLUCIÓN Puesto que

$$f(x) = \begin{cases} \ln x & \text{si } x > 0\\ \ln(-x) & \text{si } x < 0 \end{cases}$$

se sigue que

$$f'(x) = \begin{cases} \frac{1}{x} & \text{si } x > 0\\ \frac{1}{-x} (-1) = \frac{1}{x} & \text{si } x < 0 \end{cases}$$

Así, f'(x) = 1/x para todo $x \neq 0$.

Vale la pena recordar el resultado del ejemplo 6:

Derivación logarítmica

Con frecuencia, el cálculo de derivadas de funciones complicadas que comprenden productos, cocientes o potencias puede simplificarse tomando logaritmos. El método que se aplica en el ejemplo siguiente se llama **derivación logarítmica**.

EJEMPLO 7 Derive $y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$.

SOLUCIÓN Tome logaritmos de ambos miembros de la ecuación y aplique las leyes de los logaritmos, para simplificar:

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2)$$

Al derivar implícitamente respecto a x, resulta que

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Al resolver para dy/dx, obtenemos

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Puesto que tenemos una expresión explícita para y, podemos sustituir y escribir

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5} \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Si no hubiéramos utilizado la derivación logarítmica en el ejemplo 7, habríamos tenido que aplicar tanto la regla del cociente como la regla del producto. El proceso de cálculo habría sido horrendo.

Pasos en la derivación logarítmica

- 1. Tomar logaritmos naturales de ambos lados de una ecuación y = f(x) y utilizar las leyes de los logaritmos para simplificar.
- 2. Derivar implícitamente respecto a x.
- 3. Resolver la ecuación resultante para y'.

Si f(x) < 0 para algunos valores de x, entonces $\ln f(x)$ no está definida, pero podemos escribir |y| = |f(x)| y utilizar la ecuación 4. Este procedimiento se ilustra demostrando la versión general de la regla de la potencia, como se prometió en la sección 3.1.

Regla de la potencia Si *n* es cualquier número real y $f(x) = x^n$, entonces

$$f'(x) = nx^{n-1}$$

DEMOSTRACIÓN Sea $y = x^n$. Utilizando la derivación logarítmica:

Si x = 0, podemos demostrar directamente que f'(0) = 0 para n > 1 a partir de la definición de derivada.

$$\ln|y| = \ln|x|^n = n \ln|x| \qquad x \neq 0$$

Por tanto,

$$\frac{y'}{y} = \frac{n}{x}$$

así que,

$$y' = n \frac{y}{x} = n \frac{x^n}{x} = nx^{n-1}$$

En general, se tienen cuatro casos para exponentes y bases:

- 1. $\frac{d}{dx}(a^b) = 0$ (a y b son constantes)
- **2.** $\frac{d}{dx}[f(x)]^b = b[f(x)]^{b-1}f'(x)$
- 3. $\frac{d}{dx} \left[a^{g(x)} \right] = a^{g(x)} (\ln a) g'(x)$
- **4.** Para hallar $(d/dx)[f(x)]^{g(x)}$, podemos aplicar la derivación logarítmica, como en el ejemplo que sigue.

V EJEMPLO 8 Derive $y = x^{\sqrt{x}}$.

SOLUCIÓN 1 Dado que la base y el exponente son variables, utilizamos la derivación logarítmica:

$$\ln y = \ln x^{\sqrt{x}} = \sqrt{x} \ln x$$

$$\frac{y'}{y} = \sqrt{x} \cdot \frac{1}{x} + (\ln x) \frac{1}{2\sqrt{x}}$$

$$y' = y \left(\frac{1}{\sqrt{x}} + \frac{\ln x}{2\sqrt{x}}\right) = x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}}\right)$$

Base constante, exponente constante 1

Base variable, exponente constante 2

Base constante, exponente variable 3

Base variable, exponente variable 4

La figura 3 ilustra el ejemplo 8 mostrando las gráficas de $f(x) = x^{\sqrt{x}}$ y su derivada.

FIGURA 3

as SOLUCIÓN 2 Otro método es escribir $x^{\sqrt{x}} = (e^{\ln x})^{\sqrt{x}}$:

$$\frac{d}{dx}(x^{\sqrt{x}}) = \frac{d}{dx}(e^{\sqrt{x}\ln x}) = e^{\sqrt{x}\ln x}\frac{d}{dx}(\sqrt{x}\ln x)$$

$$= x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}} \right)$$
 (como en la solución 1)

El número e como un límite

Hemos demostrado que si $f(x) = \ln x$, entonces f'(x) = 1/x. Debido a esto, f'(1) = 1. Utilizaremos este hecho para expresar el número e como un límite.

A partir de la definición de derivada como un límite, tenemos que

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$

Ya que f'(1) = 1, tenemos

$$\lim_{x \to 0} \ln(1 + x)^{1/x} = 1$$

Luego, por el teorema 2.5.8 y la continuidad de la función exponencial, tenemos que

$$e = e^1 = e^{\lim_{x \to 0} \ln(1+x)^{1/x}} = \lim_{x \to 0} e^{\ln(1+x)^{1/x}} = \lim_{x \to 0} (1+x)^{1/x}$$

En la figura 4 se ilustra la fórmula 5 mediante la gráfica de la función $y = (1 + x)^{1/x}$ y una tabla para valores pequeños de x. Con esto se ilustra una aproximación correcta hasta siete dígitos decimales

$$e \approx 2.7182818$$

Si hacemos n=1/x en la fórmula 5, entonces $n\to\infty$ cuando $x\to 0^+$ y, por consiguiente, una expresión alternativa para e es

FIGURA 4

x	$(1+x)^{1/x}$
0.1	2.59374246
0.01	2.70481383
0.001	2.71692393
0.0001	2.71814593
0.00001	2.71826824
0.000001	2.71828047
0.0000001	2.71828169
0.00000001	2.71828181

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Aproximaciones lineales y diferenciales

FIGURA 1

Hemos visto que una curva se encuentra muy cerca de su recta tangente cerca del punto de tangencia. De hecho, al realizar un acercamiento hacia el punto en la gráfica de una función derivable, observamos que la gráfica se parece cada vez más a su recta tangente. (Véase la figura 2 en la sección 2.7.) Esta observación es la base de un método para hallar valores aproximados de funciones.

La idea es que puede resultar fácil calcular un valor f(a) de una función, pero difícil (si no es que imposible) calcular valores cercanos de f. Por tanto, recurrimos a los valores calculados fácilmente de la función lineal L cuya gráfica es la recta tangente de f en (a, f(a)). (Véase la figura 1.)

En otras palabras, utilizamos la recta tangente en (a, f(a)) como una aproximación a la curva y = f(x) cuando x está cerca de a. Una ecuación para la recta tangente es

$$y = f(a) + f'(a)(x - a)$$

y la aproximación

$$f(x) \approx f(a) + f'(a)(x - a)$$

se conoce con el nombre de aproximación lineal o aproximación de la recta tangente de f en a. A la función lineal cuya gráfica es esta recta tangente, es decir,

$$L(x) = f(a) + f'(a)(x - a)$$

se le llama **linealización** de f en a.

V EJEMPLO 1 Encuentre la linealización de la función $f(x) = \sqrt{x+3}$ en a=1 y úsela para obtener una aproximación de los números $\sqrt{3.98}$ y $\sqrt{4.05}$. ¿Estas aproximaciones son sobreestimaciones o subestimaciones?

SOLUCIÓN La derivada de $f(x) = (x + 3)^{1/2}$ es

$$f'(x) = \frac{1}{2}(x+3)^{-1/2} = \frac{1}{2\sqrt{x+3}}$$

y tenemos que f(1) = 2 y $f'(1) = \frac{1}{4}$. Si ponemos estos valores en la ecuación 2, la linealización es

$$L(x) = f(1) + f'(1)(x - 1) = 2 + \frac{1}{4}(x - 1) = \frac{7}{4} + \frac{x}{4}$$

La aproximación lineal correspondiente 1 es

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$
 (cuando x está cerca de 1)

En particular, tenemos que

$$\sqrt{3.98} \approx \frac{7}{4} + \frac{0.98}{4} = 1.995$$
 y $\sqrt{4.05} \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$

En la figura 2 se ilustra la aproximación lineal. En efecto, la recta tangente es una buena aproximación a la función dada cuando x esta cerca de 1. También vemos que las aproximaciones son sobreestimaciones porque la recta tangente se encuentra por arriba

Por supuesto, una calculadora podría dar aproximaciones para $\sqrt{3.98}$ y $\sqrt{4.05}$, pero la aproximación lineal da una aproximación sobre todo un intervalo.

En la tabla siguiente se comparan las estimaciones de la aproximación lineal del ejemplo 1 con los valores reales. Observe en esta tabla, y también en la figura 2, que la aproximación con la recta tangente da buenas estimaciones cuando x está cerca de 1, pero la precisión de la aproximación disminuye cuando x está más lejos de 1.

	x	De $L(x)$	Valor real
$\sqrt{3.9}$	0.9	1.975	1.97484176
$\sqrt{3.98}$	0.98	1.995	1.99499373
$\sqrt{4}$	1	2	2.00000000
$\sqrt{4.05}$	1.05	2.0125	2.01246117
$\sqrt{4.1}$	1.1	2.025	2.02484567
$\sqrt{5}$	2	2.25	2.23606797
$\sqrt{6}$	3	2.5	2.44948974

FIGURA 2

EJEMPLO 2 ¿Para cuáles valores de x la aproximación lineal

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

es exacta con una diferencia menor que 0.5? ¿Qué puede decir de una exactitud con una diferencia menor que 0.1?

SOLUCIÓN Una exactitud con una diferencia menor que 0.5 significa que las funciones deben diferir en menos de 0.5:

$$\left| \sqrt{x+3} - \left(\frac{7}{4} + \frac{x}{4} \right) \right| < 0.5$$

De modo equivalente, podríamos escribir

$$\sqrt{x+3} - 0.5 < \frac{7}{4} + \frac{x}{4} < \sqrt{x+3} + 0.5$$

Esto expresa que la aproximación lineal debe encontrarse entre las curvas que se obtienen al desplazar la curva $y = \sqrt{x+3}$ hacia arriba y hacia abajo en una cantidad de 0.5. En la figura 3 se muestra la recta tangente y = (7 + x)/4 que interseca la curva superior $y = \sqrt{x+3} + 0.5$ en P y en Q. Al hacer un acercamiento y usar el cursor, en la computadora estimamos que la coordenada x de P se aproxima a -2.66, y la coordenada x de Q es más o menos 8.66. Así, con base en la gráfica, la aproximación

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

es exacta con una diferencia menor que 0.5 cuando -2.6 < x < 8.6. (Se ha redondeado para quedar dentro del margen de seguridad).

De manera análoga, en la figura 4 vemos que la aproximación es exacta con una diferencia menor que 0.1 cuando -1.1 < x < 3.9.

FIGURA 3

252

FIGURA 4

Aplicaciones en la física

Las aproximaciones lineales se usan con frecuencia en la física. Al analizar las consecuencias de una ecuación, a veces un físico necesita simplificar una función sustituyéndola con una aproximación lineal. Por ejemplo, al derivar una fórmula para el periodo de un péndulo, los libros de texto de física obtienen la expresión $a_T = -g$ sen θ para la aceleración tangencial, y luego sustituyen sen θ por θ haciendo la observación de que sen θ está muy cerca de θ si éste no es demasiado grande. [Véase, por ejemplo, *Physics: Calculus*, 2a. edición, por Eugene Hecht (Pacific Grove, CA: Brooks/Cole, 2000), p. 431.] Podemos comprobar que la linealización de la función f(x) = sen x en a = 0 es L(x) = x, de manera que la aproximación lineal en 0 es

$$sen x \approx x$$

(véase el ejercicio 42). Así que, en efecto, la derivación de la fórmula para el periodo de un péndulo utiliza la aproximación a la recta tangente para la función seno.

Otro ejemplo se presenta en la teoría de la óptica, donde los rayos de luz que llegan con ángulos bajos en relación con el eje óptico se llaman *rayos paraxiales*. En la óptica paraxial (o gaussiana) tanto sen θ como cos θ se sustituyen con sus linealizaciones. En otras palabras, las aproximaciones lineales

$$sen \theta \approx \theta$$
 $v cos \theta \approx 1$

En la sección 11.11 aparecen varias aplicaciones de la idea de aproximación lineal a la física.

Diferenciales

Las ideas detrás de las aproximaciones lineales se formulan en ocasiones en la terminología y la notación de *diferenciales*. Si y = f(x), donde f es una función derivable, entonces la **diferencial** dx es una variable independiente; esto es, dx es cualquier número real. La **diferencial** dy es entonces definida en términos de dx mediante la ecuación

$$dy = f'(x)dx$$

Así que dy es una variable dependiente: depende de los valores de x y dx. Si a dx se le da un valor específico, y x se considera como algún número específico en el dominio de f, entonces se determina el valor numérico de dy.

En la figura 5 se muestra el significado geométrico de los diferenciales. Sean P(x, f(x)) y $Q(x + \Delta x, f(x + \Delta x))$ puntos sobre la gráfica de f, y sea $dx = \Delta x$. El cambio correspondiente en y es

$$\Delta y = f(x + \Delta x) - f(x)$$

La pendiente de la recta tangente PR es la derivada f'(x). Por consiguiente, la distancia dirigida de S a R es f'(x)dx = dy. Por tanto, dy representa la cantidad que la recta tangente se levanta o cae (el cambio en la linealización), mientras que Δy representa la cantidad que la curva y = f(x) se levanta o cae cuando x cambia en una cantidad dx.

EJEMPLO 3 Compare los valores de Δy y dy si $y = f(x) = x^3 + x^2 - 2x + 1$ y x cambia a) de 2 a 2.05 y b) de 2 a 2.01.

SOLUCIÓN

a) Tenemos que

$$f(2) = 2^{3} + 2^{2} - 2(2) + 1 = 9$$

$$f(2.05) = (2.05)^{3} + (2.05)^{2} - 2(2.05) + 1 = 9.717625$$

$$\Delta y = f(2.05) - f(2) = 0.717625$$

En general, $dy = f'(x) dx = (3x^2 + 2x - 2) dx$

Cuando x = 2 y $dx = \Delta x = 0.05$, esto se transforma en

$$dy = [3(2)^2 + 2(2) - 2]0.05 = 0.7$$

b)
$$f(2.01) = (2.01)^3 + (2.01)^2 - 2(2.01) + 1 = 9.140701$$

$$\Delta y = f(2.01) - f(2) = 0.140701$$

Cuando $dx = \Delta x = 0.01$,

$$dy = [3(2)^2 + 2(2) - 2] \ 0.01 = 0.14$$

Si $dx \neq 0$, podemos dividir ambos lados de la ecuación 3 entre dx para obtener

$$\frac{dy}{dx} = f'(x)$$

Antes hemos visto ecuaciones similares, pero ahora el lado izquierdo puede interpretarse en forma genuina como una razón de diferenciales.

FIGURA 5

La figura 6 muestra la función del ejemplo 3 y una comparación de dy y Δy cuando a=2. El rectángulo de vista es [1.8, 2.5] por [6, 18].

FIGURA 6

Observe que, en el ejemplo 3, la aproximación $\Delta y \approx dy$ mejora a medida que Δx se hace más pequeña. Observe también que es más fácil calcular dy que Δy . En el caso de funciones más complicadas, sería imposible calcular exactamente Δy . En estos casos, la aproximación mediante diferenciales es especialmente útil.

En la notación de diferenciales, la aproximación lineal 1 puede escribirse como

$$f(a + dx) \approx f(a) + dy$$

Por ejemplo, para la función $f(x) = \sqrt{x+3}$ del ejemplo 1, tenemos que

$$dy = f'(x) dx = \frac{dx}{2\sqrt{x+3}}$$

Si a = 1 y $dx = \Delta x = 0.05$, entonces

$$dy = \frac{0.05}{2\sqrt{1+3}} = 0.0125$$

y
$$\sqrt{4.05} = f(1.05) \approx f(1) + dy = 2.0125$$

igual a lo que halló en el ejemplo 1.

Nuestro ejemplo final ilustra el uso de diferenciales al estimar los errores que ocurren debido a mediciones aproximadas.

V EJEMPLO 4 Se midió el radio de una esfera y se encontró que es 21 cm con un posible error en la medición de cuanto mucho 0.05 cm. ¿Cuál es el error máximo al usar este valor del radio para calcular el volumen de la esfera?

SOLUCIÓN Si el radio de la esfera es r, entonces el volumen es $V = \frac{4}{3}\pi r^3$. Si el error en el valor medido de r se denota por medio de $dr = \Delta r$, entonces el error correspondiente en el valor calculado de V es ΔV , el cual puede aproximarse mediante el diferencial

$$dV = 4\pi r^2 dr$$

Cuando r = 21 y dr = 0.05, esto se convierte en

$$dV = 4\pi(21)^2 \ 0.05 \approx 277$$

El error máximo en el volumen calculado es de alrededor de 277 cm³.

NOTA Si bien el posible error en el ejemplo 4 puede parecer bastante grande, el **error relativo** ofrece un mejor panorama del error; se calcula dividiendo el error entre el volumen total:

$$\frac{\Delta V}{V} \approx \frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^3} = 3\frac{dr}{r}$$

Por esto, el error relativo en el volumen es aproximadamente tres veces el error relativo en el radio. En el ejemplo 4, el error relativo en el radio es $dr/r = 0.05/21 \approx 0.0024$ y produce un error relativo de alrededor de 0.007 en el volumen. Los errores pueden expresarse asimismo como **errores de porcentaje** de 0.24% en el radio y 0.7% en el volumen.

Formas indeterminadas y regla de l'Hospital

Supongamos que estamos tratando de analizar el comportamiento de la función

$$F(x) = \frac{\ln x}{x - 1}$$

Aunque F no está definida cuando x=1, necesitamos saber cómo se comporta cerca de 1. En particular, nos gustaría saber el valor del límite

$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

Para el cálculo de este límite no podemos aplicar la ley 5 de los límites (el límite de un cociente es el cociente de los límites, consulte la sección 2.3) porque el límite del denominador es 0. De hecho, aunque en la expresión $\boxed{1}$ existe el límite, su valor no es evidente porque el numerador y denominador tienden a 0 y $\frac{0}{0}$ no está definido.

En general, si tenemos un límite de la forma

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

donde ambos $f(x) \to 0$ y $g(x) \to 0$ conforme $x \to a$, entonces este límite puede o no puede existir y se llama **forma indeterminada del tipo** $\frac{0}{0}$. Nos encontramos algunos límites de este tipo en el capítulo 2. Para funciones racionales, podemos cancelar factores comunes:

$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2}$$

Utilizamos un argumento geométrico para demostrar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Pero estos métodos no funcionan para límites como los de 1, por lo que en esta sección presentamos un método sistemático, conocido como regla de l'Hospital, para la evaluación de formas indeterminadas.

Otra situación en la que no es evidente un límite ocurre cuando buscamos una asíntota horizontal de F y necesitamos evaluar el límite

$$\lim_{x \to \infty} \frac{\ln x}{x - 1}$$

No es obvio cómo evaluar este límite porque tanto el numerador como el denominador son muy grandes conforme $x \to \infty$. Hay una lucha entre numerador y denominador. Si gana el numerador, el límite será ∞; si gana el denominador, la respuesta será 0. O puede haber algún comportamiento intermedio, en cuyo caso la respuesta será algún número finito positivo.

En general, si tenemos un límite de la forma

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

donde ambos $f(x) \to \infty$ (o $-\infty$) y $g(x) \to \infty$ (o $-\infty$), entonces el límite puede o no puede existir y se llama forma indeterminada de tipo ∞/∞. Vimos en la sección 2.6 que este tipo de límite puede ser evaluado para ciertas funciones, incluyendo funciones racionales, dividiendo numerador y denominador por la mayor potencia de x en el denominador. Por ejemplo,

$$\lim_{x \to \infty} \frac{x^2 - 1}{2x^2 + 1} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{2 + \frac{1}{x^2}} = \frac{1 - 0}{2 + 0} = \frac{1}{2}$$

Este método no funciona para límites como 2, pero la regla de l'Hospital también se aplica a este tipo de forma indeterminada.

FIGURA 1

La figura 1 sugiere visualmente por qué regla de l'Hospital puede ser cierta. La primera gráfica muestra dos funciones derivables f y g, donde ambas se acercan a 0 conforme $x \rightarrow a$. Si pudiéramos acercarnos hacia el punto (a, 0), las gráficas empezarían a parecerse a una recta. Pero si realmente las funciones fueran lineales, como en la segunda gráfica, entonces su razón sería

$$\frac{m_1(x-a)}{m_2(x-a)} = \frac{m_1}{m_2}$$

que es la razón de sus derivadas. Esto sugiere que

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Regla de l'Hospital Suponga que f y g son derivables y $g'(x) \neq 0$ sobre un intervalo abierto I que contiene a (excepto posiblemente en a). Suponga que

$$\lim_{x \to a} f(x) = 0 \qquad \qquad y \qquad \qquad \lim_{x \to a} g(x) = 0$$

o que

(En otras palabras, tenemos una forma indeterminada de tipo $\frac{0}{0}$ o ∞/∞ .) Entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

si existe el límite del lado derecho (o es ∞ o $-\infty$).

NOTA 1 La regla de l'Hospital señala que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas, siempre que se cumplan con las condiciones dadas. Es especialmente importante verificar las condiciones impuestas a los límites de f y g antes de utilizar la regla de l'Hospital.

L'Hospital

La Regla de l'Hospital proviene de un noble francés, el margués de l'Hospital (1661-1704), pero fue descubierto por un matemático suizo, John Bernoulli (1667-1748). A veces se puede ver l'Hospital escrito como l'HÔpital, pero él mismo escribe su nombre así, l'Hospital, como era común en el siglo xvII. Vea en el ejercicio 81 el ejemplo que el marqués utiliza para ilustrar su regla. Consulte el proyecto en la página 310 para más detalles históricos.

NOTA 2 La regla de l'Hospital también es válida para límites unilaterales y límites al infinito o al infinito negativo; es decir, " $x \rightarrow a$ " puede ser sustituido por cualquiera de los símbolos $x \to a^+, x \to a^-, x \to \infty$ o $x \to -\infty$.

NOTA 3 Para el caso especial en que f(a) = q(a) = 0, f' y g' son continuas $y g'(a) \neq 0$, es fácil ver por qué la regla de l'Hospital es cierta. De hecho, utilizando la forma alternativa de la definición de una derivada, tenemos

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Es más difícil demostrar la versión general de la regla de l'Hospital. Véase el apéndice F.

EJEMPLO 1 Encuentre $\lim_{x \to 1} \frac{\ln x}{x}$.

SOLUCIÓN Dado que

$$\lim_{x \to 1} \ln x = \ln 1 = 0 \qquad \text{y} \qquad \lim_{x \to 1} (x - 1) = 0$$

podemos aplicar la regla de l'Hospital:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (x - 1)} = \lim_{x \to 1} \frac{1/x}{1}$$
$$= \lim_{x \to 1} \frac{1}{x} = 1$$

Observe que cuando se utiliza la regla de l'Hospital derivamos el numerador y el denominador por separado. No utilizamos la regla del cociente.

V EJEMPLO 2 Obtenga $\lim_{x \to \infty} \frac{e^x}{x^2}$.

SOLUCIÓN Tenemos $\lim_{x\to\infty} e^x = \infty$ y $\lim_{x\to\infty} x^2 = \infty$, así que la regla de l'Hospital da

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx} (e^x)}{\frac{d}{dx} (x^2)} = \lim_{x \to \infty} \frac{e^x}{2x}$$

Ya que $e^x \to \infty$ y $2x \to \infty$ conforme $x \to \infty$, el límite del lado derecho también está indeterminado, pero aplicando nuevamente la regla de l'Hospital obtenemos

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty$$

En la figura 2 se muestra la gráfica de la función del ejemplo 2. Hemos discutido previamente que las funciones exponenciales crecen más rápido que las funciones potencia, por lo que el resultado del ejemplo 2 no es inesperado. Véase el ejercicio 71.

FIGURA 2

En la figura 3, se muestra la gráfica de la función del ejemplo 3. Ya hemos discutido previamente que las funciones logarítmicas crecen muy lentamente, así que no es sorprendente que la razón se aproxime a 0 conforme $x \to \infty$. Véase el ejercicio 72.

FIGURA 3

La gráfica en la figura 4 da una confirmación visual del resultado de ejemplo 4. Sin embargo, si tuviéramos que extendernos demasiado, obtendríamos una gráfica muy inexacta porque tan x está cerca de x cuando ésta es pequeña. Véase el ejercicio 44d) de la sección 2.2.

FIGURA 4

V EJEMPLO 3 Obtenga
$$\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$$
.

SOLUCIÓN Dado que $x \to \infty$ y $\sqrt[3]{x} \to \infty$ conforme $x \to \infty$, utilizamos la regla de l'Hospital:

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{1/x}{\frac{1}{3}x^{-2/3}}$$

Note que ahora el límite del lado derecho es una indeterminación del tipo $\frac{0}{0}$. Pero en lugar de aplicar la regla de l'Hospital una segunda vez, como lo hicimos en el ejemplo 2, primero simplificamos la expresión y vemos que la segunda aplicación no es necesaria:

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{1/x}{\frac{1}{3}x^{-2/3}} = \lim_{x \to \infty} \frac{3}{\sqrt[3]{x}} = 0$$

EJEMPLO 4 Encuentre $\lim_{x\to 0} \frac{\tan x - x}{x^3}$. (Véase el ejercicio 44 de la sección 2.2.)

SOLUCIÓN Observamos que $x-x \rightarrow 0$ y $x^3 \rightarrow 0$ a medida que $x \rightarrow 0$, así que aplicamos la regla de l'Hospital:

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2}$$

Ya que el límite del lado derecho es aún una indeterminación del tipo $\frac{0}{0}$, volvemos a aplicar la regla de l'Hospital:

$$\lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2 \sec^2 x \tan x}{6x}$$

Puesto que $\lim_{x\to 0} \sec^2 x = 1$, simplificamos el cálculo escribiendo

$$\lim_{x \to 0} \frac{2 \sec^2 x \tan x}{6x} = \frac{1}{3} \lim_{x \to 0} \sec^2 x \cdot \lim_{x \to 0} \frac{\tan x}{x} = \frac{1}{3} \lim_{x \to 0} \frac{\tan x}{x}$$

Podemos evaluar este último límite utilizando la regla de l'Hospital por tercera vez o expresando la tan x como (sen x)/(cos x) y recurriendo a nuestro conocimiento de límites trigonométricos. Haciendo todos estos pasos, obtenemos

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2 \sec^2 x \tan x}{6x}$$
$$= \frac{1}{3} \lim_{x \to 0} \frac{\tan x}{x} = \frac{1}{3} \lim_{x \to 0} \frac{\sec^2 x}{1} = \frac{1}{3}$$

V EJEMPLO 5 Encuentre
$$\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$$
.

SOLUCIÓN Si intentamos ciegamente utilizar la regla de l'Hospital, obtendríamos

$$\lim_{x \to \pi^{-}} \frac{\operatorname{sen} x}{1 - \cos x} = \lim_{x \to \pi^{-}} \frac{\cos x}{\operatorname{sen} x} = -\infty$$

¡Esto es erróneo! Aunque el numerador $x \to 0$ conforme $x \to \pi^-$, note que el denominador $(1 - \cos x)$ no tiende a 0, así que aquí no es posible aplicar la regla de l'Hospital.

El límite requerido es, de hecho, fácil de encontrar porque la función es continua en π y el denominador es distinto de cero:

$$\lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x} = \frac{\sin \pi}{1 - \cos \pi} = \frac{0}{1 - (-1)} = 0$$

El ejemplo 5 muestra lo que puede salir mal si se utiliza la regla de l'Hospital sin pensar. Hay otros límites que *pueden* encontrarse mediante la regla de l'Hospital, pero se encuentran más fácilmente por otros métodos (Véanse los ejemplos de 3 y 5 en la sección 2.3, ejemplo 3 en la sección 2.6 y la discusión al principio de esta sección), por lo que al evaluar cualquier límite debe tener en cuenta otros métodos antes de utilizar la regla de l'Hospital.

Productos indeterminados

Si $\lim_{x\to a} f(x) = 0$ y $\lim_{x\to a} g(x) = \infty$ (o $-\infty$), entonces no es claro cuál es el valor de $\lim_{x\to a} [f(x)g(x)]$, si existe. Hay una lucha entre f y g. Si gana f, la respuesta será 0; si gana g, la respuesta será ∞ (o $-\infty$). O puede haber un comportamiento intermedio donde la respuesta es un número finito distinto de cero. Este tipo de límite se llama **forma indeterminada de tipo 0** · ∞ , y lo podemos abordar expresando el producto fg como un cociente:

$$fg = \frac{f}{1/g}$$
 o $fg = \frac{g}{1/f}$

Esto convierte el límite dado en una forma indeterminada de tipo $\frac{0}{0}$ o ∞/∞ , por lo que podemos utilizar la regla de l'Hospital.

V EJEMPLO 6 Evalúe $\lim_{x\to 0^+} x \ln x$.

SOLUCIÓN El límite dado está indeterminado porque, conforme $x \to 0^+$, el primer factor (x) tiende a 0, mientras que el segundo factor $(\ln x)$ tiende a $-\infty$. Escribiendo x = 1/(1/x), tenemos $1/x \to \infty$ a medida que $x \to 0^+$, por lo que la regla de l'Hospital da

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

NOTA Tenga en cuenta que al resolver el ejemplo 6 otra opción posible habría sido escribir

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{x}{1/\ln x}$$

Esto da una forma indeterminada del tipo 0/0, pero si aplicamos la regla de l'Hospital, obtenemos una expresión más complicada que con la que empezamos. En general, cuando rescribimos un producto indeterminado, intentamos elegir la opción que conduce hasta el límite más simple.

La figura 5 muestra la gráfica de la función del ejemplo 6. Observe que la función está indefinida en x=0; la gráfica se aproxima al origen, pero nunca lo alcanza.

FIGURA 5

Diferencias indeterminadas

Si $\lim_{x\to a} f(x) = \infty$ y $\lim_{x\to a} g(x) = \infty$, entonces el límite

$$\lim_{x \to a} [f(x) - g(x)]$$

se llama **forma indeterminada de tipo** $\infty - \infty$. Una vez más hay un contienda entre f y g. ¿La respuesta será ∞ (gana f) o será $-\infty$ (gana g) o habrá un término intermedio en un

número finito? Para encontrarlo, intentamos convertir la diferencia en un cociente (p. ej., utilizando un común denominador, racionalizando o factorizando un factor común), de manera que tenemos una forma indeterminada del tipo $\frac{0}{0}$ o ∞/∞ .

EJEMPLO 7 Obtenga
$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x)$$

SOLUCIÓN Primero observe que $x \to \infty$ y $x \to \infty$ conforme $x \to (\pi/2)^-$, por lo que el límite está indeterminado. Aquí usamos un común denominador:

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$
$$= \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0$$

Observe que el uso de la regla de l'Hospital está justificada porque $1 - \sin x \rightarrow 0$ y cos $x \to 0$ a medida que $x \to (\pi/2)^-$.

Potencias indeterminadas

Hay varias formas indeterminadas que surgen del límite

$$\lim_{x \to a} [f(x)]^{g(x)}$$

1.
$$\lim_{x \to a} f(x) = 0$$
 y $\lim_{x \to a} g(x) = 0$ tipo 0^{0}

2.
$$\lim_{x \to a} f(x) = \infty$$
 y $\lim_{x \to a} g(x) = 0$ tipo ∞^0

1.
$$\lim_{x \to a} f(x) = 0$$
 y $\lim_{x \to a} g(x) = 0$ tipo 0^0
2. $\lim_{x \to a} f(x) = \infty$ y $\lim_{x \to a} g(x) = 0$ tipo ∞^0
3. $\lim_{x \to a} f(x) = 1$ y $\lim_{x \to a} g(x) = \pm \infty$ tipo 1^∞

Cada uno de estos tres casos puede ser tratado ya sea tomando el logaritmo natural:

sea
$$y = [f(x)]^{g(x)}$$
, entonces $\ln y = g(x) \ln f(x)$

o expresando la función como una exponencial:

$$[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$$

(Recuerde que ambos métodos fueron utilizados en la derivada de estas funciones.) Cualquiera de los métodos nos lleva al producto indeterminado q(x) ln f(x), que es del tipo $0 \cdot \infty$.

EJEMPLO 8 Obtenga
$$\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x}$$
.

SOLUCIÓN Primero observe que cuando $x \to 0^+$, tenemos $1 + \sin 4x \to 1$ y cot $x \to \infty$, por lo que el límite dado está indeterminado. Sea

$$y = (1 + \sin 4x)^{\cot x}$$

Entonces
$$\ln y = \ln \left[(1 + \sin 4x)^{\cot x} \right] = \cot x \ln(1 + \sin 4x)$$

Así que la regla de l'Hospital da

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln (1 + \sin 4x)}{\tan x} = \lim_{x \to 0^+} \frac{\frac{4 \cos 4x}{1 + \sin 4x}}{\sec^2 x} = 4$$

Aunque las formas de los tipos 0°, ∞° y 1° están indeterminadas, la forma 0[∞] no está indeterminada. (Véase el ejercicio 84.)

Hasta ahora hemos calculado el límite de ln y, pero lo que queremos es el límite de y. Para encontrar este límite, utilizamos el hecho de que $y = e^{\ln y}$:

$$\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = \lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^4$$

En la figura 6 se muestra la gráfica de la función $y=x^*, x>0$. Observe que, aunque 0° no está definido, los valores de la función tienden a 1 conforme $x\to 0^+$. Esto confirma el resultado del ejemplo 9.

FIGURA 6

V EJEMPLO 9 Encuentre $\lim_{x\to 0^+} x^x$.

SOLUCIÓN Note que este límite está indeterminado ya que $0^x = 0$ para cualquier x > 0, pero $x^0 = 1$ para cualquier $x \ne 0$. Podríamos proceder como en el ejemplo 8 o expresando la función como una exponencial:

$$x^x = (e^{\ln x})^x = e^{x \ln x}$$

En el ejemplo 6 usamos la regla de l'Hospital para demostrar que

$$\lim_{x \to 0^+} x \ln x = 0$$

Por tanto,

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1$$