

HolA: <u>Hol</u>istic and Autonomous <u>A</u>ttestation for IoT Networks

Alessandro Visintin¹, Flavio Toffalini^{2,3}, Eleonora Losiouk¹ Mauro Conti¹, Jianying Zhou²

University of Padua, Padua IT
 SUTD, Singapore SG
 EPFL, Lausanne CH

Attestation.

The activity of making a claim about properties of a <u>prover</u> by supplying evidence to a verifier.

Remote attestation.

The activity of making a claim about properties of a <u>prover</u> by supplying evidence to a REMOTE verifier.

Collective Remote attestation (CRA).

SANA - Ambrosin, et al. (2016) Sana: Secure and scalable aggregate network attestation

SCAPI - Kohnhauser, et al. (2017) Scapi: A scalable attestation protocol to detect software and physical attacks

<u>PASTA</u> - Kohnhauser, et al. (2019) A practical attestation protocol for autonomous embedded systems

CRA operates on mesh networks.

Mesh-like networks enables only physical neighbours to communicate with each other.

Mesh-like networks do not consider intermediate machinery (e.g., switches, routers)

Current CRA do not consider Internet-like networks.

wireless embedded Internet

<u>6LoWPAN</u> - Shelby, et al. (2011) 6LoWPAN: The

Thread - Group, T.: Thread, https://www.threadgroup.org/ Introducing HolA

Neighbourhood attestation - how do you define logical neighbours?

physical attackers?

Network obfuscation - how do you hide the

<u>Absence detection</u> - how do you detect

<u>Network obfuscation</u> - how do you hide the topology and operations of the network?

Chord protocol

peer-to-peer lookup protocol for internet applications

Stoica, et al (2003) Chord: a scalable

Zave, P. (2012). Using lightweight modeling to understand Chord

Chord protocol

Table 1: Main components of the HolA devices.

Data Structure	Short Description
successors list	list of the direct successors of a device
finger table	list of intermediate devices in the network
nodeId	a progressive unique number that identifies a device in the network
<pre>pubKey/privKey</pre>	keys used for issuing secure communication channels.
cert	a certificate representing the device identity
pubCAKey	the CA pubKey used for certificate validation
Status List (SL)	a structure containing the status of each device in the network
verifySF()	function to ascertain the healthy status of a device
role	the privilege of a device

Fig. 1: Lifecycle of a network node deployed in the HolA CRA scheme.

Experimental setup

<u>Raspberry Pi 0</u> - estimate the cost of cryptographic operations.

Raspberry Pi 3 - feasibility assessment with a

Network simulation - evaluate the

performances in large networks.

network of 5 devices.

June, 23th 2022 - Rome

- Rome AloTS Workshop @ ACNS 2022

Security properties

<u>Theorem 1</u> - Neighbourhood attestation guarantees continuous check of nodes.

<u>Theorem 2</u> - Absence detection guarantees the detection of offline nodes.

<u>Theorem 3</u> - Status list propagation reaches all online devices.

Finger table size

Communicating nodes

Node memory usage

successor list - (132 x SLEN) B finger table - (132 x log₂(N)) B Status list - (10 x N) B cache (opt.) - (130 x log₂(N)) B

Comparing against PASTA (10k nodes), HolA is seven times lighter (105kB vs 700kB).

June, 23th 2022 - Rome

2 - Rome AloTS Workshop @ ACNS 2022

Communication overhead

operational messages - 264×(SLEN +1)) B
In a network of 10k nodes, HolA operational messages are 3960 B. This is the same order

of magnitude of PASTA and SCAPI (1341 B).

Resiliency

Time Delay for Neighbourhood Attestation

Status list propagation

Status list propagation

Discussion

<u>Certificate revocation/expiration</u> - trade-off between precise and probabilistic solutions

<u>False positive</u> - management through Admin

<u>Devices loosely synchronized</u> - common problem to distributed schemes. Further research needed.

nodes.

HolA: <u>Hol</u>istic and Autonomous <u>A</u>ttestation for IoT Networks

Alessandro Visintin¹, Flavio Toffalini^{2,3}, Eleonora Losiouk¹ Mauro Conti¹, Jianying Zhou²

¹ University of Padua, Padua IT
 ² SUTD, Singapore SG
 ³ EPFL, Lausanne CH