In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

data=pd.read_csv(r"C://Users//Jamboree_Admission.csv")

In [3]:

data.head(10)

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
5	6	330	115	5	4.5	3.0	9.34	1	0.90
6	7	321	109	3	3.0	4.0	8.20	1	0.75
7	8	308	101	2	3.0	4.0	7.90	0	0.68
8	9	302	102	1	2.0	1.5	8.00	0	0.50
9	10	323	108	3	3.5	3.0	8.60	0	0.45
4									•

In [4]:

data.describe()

Out[4]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	L(
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.484
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.925
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.500
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.000
max	500.000000	340.000000	120.000000	5.000000	5.000000	5.000
1						•

In [5]:

data.isnull().sum()

Out[5]:

Serial No.	0
GRE Score	0
TOEFL Score	0
University Rating	0
SOP	0
LOR	0
CGPA	0
Research	0
Chance of Admit	0
dtvpe: int64	

In [6]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	University Rating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 35.3 KB

In [7]:

```
data["University Rating"].astype("category")
```

Out[7]:

497 5

498 4

499 4

Name: University Rating, Length: 500, dtype: category

Categories (5, int64): [1, 2, 3, 4, 5]

```
In [8]:
```

```
data["University Rating"].value_counts()
Out[8]:
3
     162
2
     126
4
     105
5
      73
      34
1
Name: University Rating, dtype: int64
In [9]:
data["Research"].astype("category")
Out[9]:
0
       1
1
       1
2
       1
3
       1
4
       0
495
       1
496
       1
497
       1
498
       0
499
Name: Research, Length: 500, dtype: category
Categories (2, int64): [0, 1]
In [10]:
data=data.drop("Serial No.",axis=1)
```

In [11]:

data.describe()

Out[11]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CG
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.0000
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.5764
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.6048
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.8000
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.1275
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.5600
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.0400
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.9200
1						•

In [12]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	GRE Score	500 non-null	int64
1	TOEFL Score	500 non-null	int64
2	University Rating	500 non-null	int64
3	SOP	500 non-null	float64
4	LOR	500 non-null	float64
5	CGPA	500 non-null	float64
6	Research	500 non-null	int64
7	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(4)

memory usage: 31.4 KB

In [13]:

data

Out[13]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65
495	332	108	5	4.5	4.0	9.02	1	0.87
496	337	117	5	5.0	5.0	9.87	1	0.96
497	330	120	5	4.5	5.0	9.56	1	0.93
498	312	103	4	4.0	5.0	8.43	0	0.73
499	327	113	4	4.5	4.5	9.04	0	0.84

500 rows × 8 columns

In [14]:

```
data["University Rating"].value_counts().sort_values()
```

Out[14]:

- 1 34
- 5 73
- 4 105
- 2 126
- 3 162

Name: University Rating, dtype: int64

```
In [15]:
```

```
data["Research"].value_counts()
Out[15]:
```

1 280 0 220

Name: Research, dtype: int64

In [16]:

```
pd.qcut(data["TOEFL Score"],q=5).value_counts()
```

Out[16]:

```
(91.999, 102.0]
                    122
(109.0, 113.0]
                    111
(105.0, 109.0]
                     94
(102.0, 105.0]
                     91
(113.0, 120.0]
                     82
```

Name: TOEFL Score, dtype: int64

In [17]:

```
data["University Rating"].value_counts().sort_values()
```

Out[17]:

```
1
       34
5
       73
4
      105
2
      126
3
      162
```

Name: University Rating, dtype: int64

In [18]:

```
pd.crosstab(index=data["University Rating"],columns=data["SOP"])
```

Out[18]:

SOP 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

University Rating

1	5	11	9	3	4	2	0	0	0
2	1	12	19	42	28	11	10	3	0
3	0	0	14	16	34	61	30	5	2
4	0	2	1	3	12	11	31	32	13
5	0	0	0	0	2	3	18	23	27

- 1. we see that univerty rating low, then sop of 4.5, 5 are 0
- 2. we see that univeristy rating high and sop of 1-3 are low

In [19]:

```
data["Chances"]=pd.qcut(data["Chance of Admit "],[0, .25, .5, .75, 1.],lab
```

In [20]:

```
data["Chances"].value_counts()
```

Out[20]:

Low 127 Medium 125 High 124 Very high 124

Name: Chances, dtype: int64

In [21]:

data

Out[21]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	Cha
0	337	118	4	4.5	4.5	9.65	1	0.92	Very
1	324	107	4	4.0	4.5	8.87	1	0.76	
2	316	104	3	3.0	3.5	8.00	1	0.72	Ме
3	322	110	3	3.5	2.5	8.67	1	0.80	
4	314	103	2	2.0	3.0	8.21	0	0.65	Ме
495	332	108	5	4.5	4.0	9.02	1	0.87	Very
496	337	117	5	5.0	5.0	9.87	1	0.96	Very
497	330	120	5	4.5	5.0	9.56	1	0.93	Very
498	312	103	4	4.0	5.0	8.43	0	0.73	
499	327	113	4	4.5	4.5	9.04	0	0.84	Very

500 rows × 9 columns

In []:

In []:

#UNIVARIATE ANALSYIS

In [22]:

sns.countplot(x=data["Research"])

Out[22]:

<AxesSubplot:xlabel='Research', ylabel='count'>

In [23]:

sns.countplot(x=data["University Rating"])

Out[23]:

<AxesSubplot:xlabel='University Rating', ylabel='count'>

In [24]:

```
sns.boxplot(x=data["Chance of Admit "])
```

Out[24]:

<AxesSubplot:xlabel='Chance of Admit '>

#OUTLIER TREATMENT

```
In [25]:
```

```
a=data["Chance of Admit "].quantile(0.25)
b=data["Chance of Admit "].quantile(0.75)
a,b
```

Out[25]:

(0.63, 0.82)

In [26]:

```
1.5*(b-a)
```

Out[26]:

0.284999999999999

```
In [27]:
```

```
iqr_lower_limit=0.63-1.5*(b-a)
iqr_lower_limit
```

Out[27]:

0.34500000000000001

In [28]:

```
len(data[data["Chance of Admit "]<0.3450000000000001])</pre>
```

Out[28]:

2

In [29]:

```
data["Chance of Admit "]=np.where(data["Chance of Admit "]<iqr_lower_limit</pre>
```

In [30]:

```
len(data[data["Chance of Admit "]<iqr_lower_limit])</pre>
```

Out[30]:

0

In [31]:

```
sns.boxplot(x=data["Chance of Admit "])
```

Out[31]:

<AxesSubplot:xlabel='Chance of Admit '>

In [32]:

sns.kdeplot(data["Chance of Admit "])

Out[32]:

<AxesSubplot:xlabel='Chance of Admit ', ylabel='Density'>

In [33]:

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x28fd1cd7880>

In [34]:

sns.boxplot(x=data["GRE Score"])

Out[34]:

<AxesSubplot:xlabel='GRE Score'>

In [35]:

sns.kdeplot(data["TOEFL Score"])

Out[35]:

<AxesSubplot:xlabel='TOEFL Score', ylabel='Density'>

In [36]:

Out[36]:

<AxesSubplot:xlabel='TOEFL Score'>

In [37]:

sns.histplot(data["CGPA"],kde=True)

Out[37]:

<AxesSubplot:xlabel='CGPA', ylabel='Count'>

In [38]:

sns.countplot(x=data["LOR "],order = data["LOR "].value_counts().index)

Out[38]:

<AxesSubplot:xlabel='LOR ', ylabel='count'>

In [39]:

sns.countplot(x=data["SOP"],order = data["SOP"].value_counts().index)

Out[39]:

<AxesSubplot:xlabel='SOP', ylabel='count'>

BIVARIATE ANALYSIS

In [40]:

```
sns.boxplot(x=data["Research"],y=data["Chance of Admit "])
```

Out[40]:

<AxesSubplot:xlabel='Research', ylabel='Chance of Admit '>

We can see that the average chances of admission are considerably high in case the students have some research experience

In [41]:

sns.scatterplot(x=data["GRE Score"],y=data["Chance of Admit "],data=data)

Out[41]:

<AxesSubplot:xlabel='GRE Score', ylabel='Chance of Admit '>

We can see that as GRE score increases so does the Chances of Admit

In [42]:

sns.scatterplot(x=data["GRE Score"],y=data["TOEFL Score"],data=data)

Out[42]:

<AxesSubplot:xlabel='GRE Score', ylabel='TOEFL Score'>

In [43]:

sns.boxplot(x=data["University Rating"],y=data["GRE Score"])

Out[43]:

<AxesSubplot:xlabel='University Rating', ylabel='GRE Score'>

Interesting Observation

1. In univesity ranking with 4 and 5. there are some outliers wher e in GRE Score is low as opposite to the trend

In [44]:

Out[44]:

<AxesSubplot:xlabel='Research', ylabel='CGPA'>

In [45]:

sns.violinplot(x=data["Research"],y=data["GRE Score"])

Out[45]:

<AxesSubplot:xlabel='Research', ylabel='GRE Score'>

In [46]:

sns.boxplot(x=data["Research"],y=data["GRE Score"])

Out[46]:

<AxesSubplot:xlabel='Research', ylabel='GRE Score'>

- 1. Students with Research Experience have more Median GRE Scores
- 2.Also as vsisible from the violinplot :-
- * For Students with **Research Experience** :- GRE marks distirbution is more centered at 325
- * For Students with No **Research Experience** :- GRE marks di stribution revolve around at 315

In [47]:

sns.boxplot(x=data["LOR "],y=data["GRE Score"])

Out[47]:

<AxesSubplot:xlabel='LOR ', ylabel='GRE Score'>

In [48]:

Out[48]:

<AxesSubplot:xlabel='SOP', ylabel='GRE Score'>

In [49]:

sns.scatterplot(x=data["CGPA"],y=data["GRE Score"])

Out[49]:

<AxesSubplot:xlabel='CGPA', ylabel='GRE Score'>

In [50]:

sns.boxplot(x=data["Research"],y=data["TOEFL Score"])

Out[50]:

<AxesSubplot:xlabel='Research', ylabel='TOEFL Score'>

In [51]:

sns.boxplot(x=data["University Rating"],y=data["TOEFL Score"])

Out[51]:

<AxesSubplot:xlabel='University Rating', ylabel='TOEFL Scor
e'>

In [52]:

```
sns.scatterplot(x=data["CGPA"],y=data["TOEFL Score"])
```

Out[52]:

<AxesSubplot:xlabel='CGPA', ylabel='TOEFL Score'>

In [53]:

sns.scatterplot(y=data["Chance of Admit "],x=data["TOEFL Score"])

Out[53]:

<AxesSubplot:xlabel='TOEFL Score', ylabel='Chance of Admit
'>

In [54]:

sns.boxplot(x=data["SOP"],y=data["TOEFL Score"])

Out[54]:

<AxesSubplot:xlabel='SOP', ylabel='TOEFL Score'>

In [55]:

sns.boxplot(x=data["LOR "],y=data["TOEFL Score"])

Out[55]:

<AxesSubplot:xlabel='LOR ', ylabel='TOEFL Score'>

In [56]:

```
sns.boxplot(x=data["Research"],y=data["University Rating"])
```

Out[56]:

<AxesSubplot:xlabel='Research', ylabel='University Rating'>

We can see that student with research experience have overall better University Ratings

In [57]:

sns.countplot(hue=data["Research"],x=data["University Rating"])

Out[57]:

<AxesSubplot:xlabel='University Rating', ylabel='count'>

STUDENTS WITH RESEARCH BACKGROUND **V/S** STUDENTS WITHOUT RESEARCH BACKGROUND

- 1. No. of Students **With** Research Experience are more when university Ratings Improve in comparison to students without research experience
- 2. No. of Students **Without** Research Experience are more when University Ratings are B/W 1-2 as compared to students with research experience.

In [58]:

sns.boxplot(x=data["University Rating"],y=data["LOR "])

Out[58]:

<AxesSubplot:xlabel='University Rating', ylabel='LOR '>

In [59]:

sns.boxplot(x=data["University Rating"],y=data["SOP"])

Out[59]:

<AxesSubplot:xlabel='University Rating', ylabel='SOP'>

In [60]:

```
sns.scatterplot(x=data["LOR "],y=data["SOP"],size=data["CGPA"])
```

Out[60]:

<AxesSubplot:xlabel='LOR ', ylabel='SOP'>

MULTIYARIATE ANALYSIS

In [61]:

sns.scatterplot(x=data["CGPA"],y=data["Chance of Admit "], hue=data["Research of Admit "], hue=data["], hue

Out[61]:

<AxesSubplot:xlabel='CGPA', ylabel='Chance of Admit '>

In [62]:

sns.barplot(hue=data["Research"],y=data["Chance of Admit "],x=data["Univer

Out[62]:

<AxesSubplot:xlabel='University Rating', ylabel='Chance of A
dmit '>

In [63]:

sns.scatterplot(size=data["TOEFL Score"],x=data["GRE Score"],y=data["Chance

Out[63]:

<AxesSubplot:xlabel='GRE Score', ylabel='Chance of Admit '>

In [64]:

sns.lineplot(hue=data["Research"],y=data["CGPA"],x=data["University Rating

Out[64]:

<AxesSubplot:xlabel='University Rating', ylabel='CGPA'>

In [65]:

Out[65]:

<AxesSubplot:xlabel='SOP', ylabel='CGPA'>

In [66]:

sns.pairplot(data=data,hue="Research")

Out[66]:

<seaborn.axisgrid.PairGrid at 0x28fd546abb0>

In [67]:

sns.pairplot(data=data,hue="University Rating")

Out[67]:

<seaborn.axisgrid.PairGrid at 0x28fd7d228e0>

CHECKING

In [68]:

sns.heatmap(data.corr(),annot=True)

Out[68]:

<AxesSubplot:>

We can see that **Chances of Admit** have high correlation with **CGPA** followed by **GRE Score**, **Toefl Score**, **Univrsity Rating**, **SOP**, **LOR** & **Research**

So we need to train a Multivariate Linear Regression Model which can predict the Chances of Admit taking taking into account all of the factors .

TRAINING MULTIVARIATE LINEAR REGRESSION MODEL

In [69]:

X=data.drop(columns=["Chance of Admit ","Chances"])

In [70]:

Χ

Out[70]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	337	118	4	4.5	4.5	9.65	1
1	324	107	4	4.0	4.5	8.87	1
2	316	104	3	3.0	3.5	8.00	1
3	322	110	3	3.5	2.5	8.67	1
4	314	103	2	2.0	3.0	8.21	0
495	332	108	5	4.5	4.0	9.02	1
496	337	117	5	5.0	5.0	9.87	1
497	330	120	5	4.5	5.0	9.56	1
498	312	103	4	4.0	5.0	8.43	0
499	327	113	4	4.5	4.5	9.04	0

500 rows × 7 columns

In [71]:

Y=data["Chance of Admit "]

In [72]:

```
Υ
```

Out[72]:

```
0.92
0
1
        0.76
        0.72
2
3
       0.80
        0.65
495
       0.87
       0.96
496
497
       0.93
       0.73
498
499
        0.84
```

Name: Chance of Admit , Length: 500, dtype: float64

MODEL PREPROCESSING

In [73]:

```
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, Lasso
from sklearn.metrics import mean_squared_error, mean_absolute_error
```

In [74]:

```
x\_train, x\_test, y\_train, y\_test=train\_test\_split(X,Y,test\_size=0.2,random\_statest)
```

In [75]:

```
from sklearn.preprocessing import StandardScaler
```

In [76]:

```
x_train_columns=x_train.columns
std_scaler=StandardScaler()
```

USING LINEAR REGRESSION

In [77]:

```
def adj_r2(X, y, r2_score):
    return 1 - ((1-r2_score)*(len(y)-1))/(len(y)-X.shape[1]-1)
```

In [78]:

```
std_scaler_model=make_pipeline(std_scaler,LinearRegression())
std_scaler_model.fit(x_train,y_train)
a=pd.DataFrame([std_scaler_model.score(x_train,y_train),std_scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.predict(x_a["RMSE"]=[np.sqrt(mean_squared_error(y_train,std_scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(scaler_model.score(sca
```

Out[78]:

	R2_SCORE	RMSE	Adj_R2	MAE
TRAIN_SET	0.821592	0.059750	0.818406	0.042929
TEST_SET	0.821689	0.058622	0.808122	0.040149

In [79]:

```
np.sqrt(mean_squared_error(y_test,std_scaler_model.predict(x_test)))
```

Out[79]:

0.058621972796798844

In [80]:

```
np.sqrt(mean_squared_error(y_train,std_scaler_model.predict(x_train)))
```

Out[80]:

0.05974961869476739

In [81]:

```
model=std_scaler_model.steps[-1][1]
```

```
In [82]:
```

```
model.intercept_
```

Out[82]:

0.7209375000000001

In [83]:

```
pd.DataFrame(model.coef_,index=X.columns)
```

0

Out[83]:

GRE Score 0.020912

TOEFL Score 0.019643

University Rating 0.007022

SOP 0.003066

LOR 0.013512

CGPA 0.070673

Research 0.009887

In [84]:

```
train_scores = []
test_scores = []
rate_list = [0.01, 0.1, 1,5, 10]
for rate in rate_list:
    std_scaler_model = make_pipeline(std_scaler, Ridge(alpha=rate))
    std_scaler_model.fit(x_train, y_train)
    train_score = adj_r2(x_train, y_train, std_scaler_model.score(x_train, test_score= adj_r2(x_test, y_test, std_scaler_model.score(x_test,y_test_train_scores.append(train_score)
    test_scores.append(test_score)
```

In []:

In [85]:

```
plt.figure()
plt.plot(rate_list, train_scores, label="train")
plt.plot(rate_list, test_scores, label="val")
plt.legend(loc='lower right')
plt.xlabel("lambda")
plt.ylabel("adj. R-score")
plt.grid()
plt.show()
```


In [162]:

```
sns.regplot(x=y_test,y=std_scaler_model.predict(x_test))
plt.xlabel("ground_truth_for_test_data")
plt.ylabel("pred_value_for_test_data")
plt.show()
```


1. WE CAN SEE THat the regplot for PREDICTED and GROUND TRUTH FRO TEST DATA IS MAJORLY EQUAL AND IS A CLOSE TO 45 DEGREE LINE

USING POLYNOMIAL REGRESSION

In [87]:

from sklearn.preprocessing import PolynomialFeatures

In [88]:

```
std_scaler_model=make_pipeline(PolynomialFeatures(2),std_scaler,LinearRegrestd_scaler_model.fit(x_train,y_train)
d=pd.DataFrame([std_scaler_model.score(x_train,y_train),std_scaler_model.scd.rename(columns = {0:"R2_SCORE"},inplace=True)
d["RMSE"]= [np.sqrt(mean_squared_error(y_train,std_scaler_model.predict(x_d["Adj_R2"]=[adj_r2(x_train,y_train,std_scaler_model.score(x_train,y_train)d["MAE"]=[mean_absolute_error(y_train,std_scaler_model.predict(x_train)),mdd
```

Out[88]:

	R2_SCORE	RMSE	Adj_R2	MAE
TRAIN_SET	0.837354	0.057049	0.834450	0.040574
TEST_SET	0.824500	0.058158	0.811147	0.039546

1. This is a interesting feature, we can see that there might be some non-linearity present in the data and increasing the complexity, or adding some feature will definitely increase the model performance.

USING LASSO L1 REGRESSION

In [89]:

```
std_scaler_model=make_pipeline(std_scaler,Lasso(alpha=0.1))
std_scaler_model.fit(x_train,y_train)
b=pd.DataFrame([std_scaler_model.score(x_train,y_train),std_scaler_model.score(action))
b.rename(columns = {0:"R2_SCORE"},inplace=True)
b["RMSE"]= [np.sqrt(mean_squared_error(y_train,std_scaler_model.predict(x_b["Adj_R2"]=[adj_r2(x_train,y_train,std_scaler_model.score(x_train,y_train))
b["MAE"]=[mean_absolute_error(y_train,std_scaler_model.predict(x_train)),maked_scaler_model.predict(x_train))
```

Out[89]:

	R2_SCORE	RMSE	Adj_R2	MAE
TRAIN_SET	0.279254	0.120093	0.266383	0.096795
TEST_SET	0.279989	0.117799	0.225206	0.095813

```
In [90]:
```

```
model=std_scaler_model.steps[-1][1]
```

In [91]:

```
model.intercept_
```

Out[91]:

0.7209375

In [92]:

```
pd.DataFrame(model.coef_,index=X.columns)
```

Out[92]:

```
GRE Score 0.0000000
TOEFL Score 0.0000000
University Rating 0.0000000
SOP 0.0000000
LOR 0.0000000
CGPA 0.024852
Research 0.000000
```

In [93]:

```
train_scores = []
test_scores = []
rate_list = [0.01, 0.1, 1,5, 10]
for rate in rate_list:
    std_scaler_model = make_pipeline(std_scaler, Lasso(alpha=rate))
    std_scaler_model.fit(x_train, y_train)
    train_score = adj_r2(x_train, y_train, std_scaler_model.score(x_train, test_score= adj_r2(x_test, y_test, std_scaler_model.score(x_test,y_test) train_scores.append(train_score)
    test_scores.append(test_score)
```

In [94]:

```
plt.figure()
plt.plot(rate_list, train_scores, label="train")
plt.plot(rate_list, test_scores, label="test")
plt.legend(loc='lower right')
plt.xlabel("lambda")
plt.ylabel("adj. R-score")
plt.grid()
plt.show()
```


USING RIDGE-L2 REGRESSION

In [95]:

```
std_scaler_model=make_pipeline(std_scaler, Ridge(alpha=1.0))
std_scaler_model.fit(x_train,y_train)
b=pd.DataFrame([std_scaler_model.score(x_train,y_train),std_scaler_model.score(alpha=1.0))
b.rename(columns = {0:"R2_SCORE"},inplace=True)
b["RMSE"]= [np.sqrt(mean_squared_error(y_train,std_scaler_model.predict(x_b["Adj_R2"]=[adj_r2(x_train,y_train,std_scaler_model.score(x_train,y_train))
b["MAE"]=[mean_absolute_error(y_train,std_scaler_model.predict(x_train)),maked_scaler_model.predict(x_train))
```

Out[95]:

	R2_SCORE	RMSE	Adj_R2	MAE
TRAIN_SET	0.821588	0.059750	0.818402	0.042917
TEST_SET	0.821584	0.058639	0.808009	0.040178

In [96]:

```
model=std_scaler_model.steps[-1][1]
```

In [97]:

```
model.intercept
```

Out[97]:

0.7209375000000001

In [98]:

```
model.coef_
```

Out[98]:

```
array([0.02111161, 0.01976244, 0.00710444, 0.003217 , 0.013 55454, 0.07003263, 0.00990384])
```

In [99]:

```
pd.DataFrame(model.coef_,index=X.columns)
```

Out[99]:

GRE Score 0.021112
TOEFL Score 0.019762
University Rating 0.007104
SOP 0.003217
LOR 0.013555
CGPA 0.070033
Research 0.009904

In [100]:

```
train_scores = []
test_scores = []
rate_list = [0.01, 0.1, 1,5, 10]
for rate in rate_list:
    std_scaler_model = make_pipeline(std_scaler, Ridge(alpha=rate))
    std_scaler_model.fit(x_train, y_train)
    train_score = adj_r2(x_train, y_train, std_scaler_model.score(x_train, test_score= adj_r2(x_test, y_test, std_scaler_model.score(x_test,y_test)
    train_scores.append(train_score)
    test_scores.append(test_score)
```

In [101]:

```
plt.figure()
plt.plot(rate_list, train_scores, label="train")
plt.plot(rate_list, test_scores, label="test")
plt.legend(loc='lower right')
plt.xlabel("lambda")
plt.ylabel("adj. R-score")
plt.grid()
plt.show()
```


OBSERVATIONS

- ALTHOUGH OUR LINEAR REGRESSION MODEL PERFORMED GOOD, BUT ADDDING SOME COMPLEXITY WILL INCREASE THE PERFORMANCE FURTHER.
- 2. THE MODEL WAS NOT OVERFITTING ,BUT WE CAN SEE IN LASSO ,I IT PENALIZED THE MODEL AND IT STARTED PERFORMING WORSE, THUS UNDERFITTING.
- 3. RIDGE WITH REGULARISATION RATE=0.1 HAS ALMOST SAME PERFORMANCE AS LINEAR REGRESSION MODEL .
- 4. AS WE CAN THE VARIOUS STATISTICS ALSO REVEAL HOW THE MODELS PERFORMED.

Testing the assumptions of the linear regression model

1. CHECKING LINEARITY

In [102]:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
X = X
Y = Y
X_1 = np.array(X)
Y_1 = np.array(Y)
model.fit(X_1, Y_1)
Y_hat = model.predict(X_1)
```

In [103]:

```
model.score(X_1,Y_1)
```

Out[103]:

0.8221241806410019

2.. CHECKING IF ERRORS ARE NORMALLY DISTRIBUTED

```
In [104]:
```

```
errors = Y - Y_hat
```

In [105]:

pd.DataFrame(errors).describe()

Out[105]:

Chance of	of	Ad	mit
-----------	----	----	-----

count	5.000000e+02
mean	-2.687850e-16
std	5.950371e-02
min	-2.666883e-01
25%	-2.340110e-02
50%	9.201410e-03
75%	3.368162e-02
max	1.567263e-01

In [106]:

sns.histplot(x=errors,kde=True)

Out[106]:

<AxesSubplot:xlabel='Chance of Admit ', ylabel='Count'>

In [107]:

from statsmodels.graphics.gofplots import qqplot

In [108]:

```
qqplot(errors, line="r")
plt.show()
```


1. Errors are not normally distributed, it means we need to some seperate analysis on the outliers.

3. CHECKING HETEROSKADASTICITY

In [110]:

```
import matplotlib.pyplot as plt
plt.scatter(Y, errors)
plt.show()
```


4. CHECKING AUTOCORRELATION

In [112]:

from statsmodels.stats.stattools import durbin_watson
durbin_watson(errors)

Out[112]:

0.7957978111842413

NOTE:- As the value is close to 0 it indicates there is positive autocorrelation in errors

5. CHECKING MUTLICOLLINEARITY

In [113]:

```
import statsmodels.api as sm
X_sm = sm.add_constant(X)
```

In [114]:

sm_model = sm.OLS(Y, X_sm).fit()

```
In [115]:
```

print(sm_model.summary())

OLS Regression Results

=======================================		========	-=======	======
Dep. Variable: 0.822	Chance o	f Admit	R-squared:	
Model: 0.820		OLS	Adj. R-squar	ed:
Method: 324.9	Least	Squares	F-statistic:	
Date: 6.03e-180	Tue, 04	Jul 2023	Prob (F-stat	istic):
Time: 701.89		22:12:15	Log-Likeliho	od:
No. Observations:		500	AIC:	
Df Residuals: -1354.		492	BIC:	
Df Model: Covariance Type:	n	7 onrobust		
=======================================		=======		======
[0.025	coef	std err	t	P> t
const	-1.2747	0.104	-12.234	0.00
0 -1.479 GRE Score	-1.070 0.0019	0.001	3.700	0.00
0 0.001 TOEFL Score	0.0028	0.001	3.182	0.00
2 0.001 University Rating	0.004 0.0059	0.004	1.562	0.11
9 -0.002 SOP	0.013 0.0016	0.005	0.360	0.71
9 -0.007 LOR	0.011 0.0168	0.004	4.073	0.00
0 0.009 CGPA	0.025 0.1184	0.010	12.210	0.00
0 0.099 Research 0 0.011	0.137 0.0243	0.007	3.681	0.00
0 0.011	0.037 	=======		======
 Omnibus:		112.106	Durbin-Watso	n:
<pre>0.796 Prob(Omnibus): 259.157</pre>		0.000	Jarque-Bera	(JB):
Skew: 5.31e-57		-1.155	Prob(JB):	
Kurtosis:		5.665	Cond. No.	

1.30e+04

===========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.3e+04. This might indic ate that there are

strong multicollinearity or other numerical problems.

In [116]:

 $\textbf{from} \ \ \textbf{stats}. \textbf{outliers_influence} \ \ \textbf{import} \ \ \textbf{variance_inflation_factor}$

In [117]:

```
vif = pd.DataFrame()
X_t = X
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_t.values, i) for i in range(X_t.vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[117]:

	Features	VIF
0	GRE Score	1308.06
1	TOEFL Score	1215.95
5	CGPA	950.82
3	SOP	35.27
4	LOR	30.91
2	University Rating	20.93
6	Research	2.87

In [118]:

```
X_new = X.drop(columns=['GRE Score'])
```

In [119]:

```
X2_sm = sm.add_constant(X_new)
sm_model = sm.OLS(Y, X2_sm).fit()
```

In [120]:

print(sm_model.summary())

OLS Regression Results

=======================================	=======	=======		======
=======================================				
Dep. Variable: 0.817	Chance o	f Admit	R-squared:	
Model:		OLS	Adj. R-squar	ed:
0.815 Method:	Least	Squares	F-statistic:	
367.3				
Date: 2.55e-178	Tue, 04	Jul 2023	Prob (F-stat	istic):
Time:		22:12:17	Log-Likeliho	od:
695.03 No. Observations:		500	AIC:	
-1376. Df Residuals:		493	DTC.	
-1347.		493	DIC.	
Df Model:		6		
Covariance Type:		onrobust		
			========	======
		std err	t	P> t
[0.025		sta en	· ·	7/10
const	-0.9692	0.064	-15.058	0.00
0 -1.096	-0.843			
TOEFL Score	0.0043	0.001	5.429	0.00
0 0.003	0.006			
University Rating	0.0066	0.004	1.723	0.08
5 -0.001	0.014			
SOP	0.0011	0.005	0.237	0.81
3 -0.008	0.010			
LOR	0.0160	0.004	3.829	0.00
0 0.008	0.024			
CGPA	0.1326	0.009	14.706	0.00
0 0.115	0.150			
Research	0.0313	0.006	4.883	0.00
0 0.019	0.044			
=======================================	=======	=======	========	======
		100 570	Dundain Hataa	
Omnibus:		100.578	Durbin-Watso	n:
0.809		0.000	Janesus Dans	(JD).
Prob(Omnibus):		0.000	Jarque-Bera	(JR):
205.277		1 004	Deah (3.D.) .	
Skew:		-1.094	Prob(JB):	
2.66e-45 Kurtosis:		5.251	Cond. No.	
2.56e+03		J. 23I	COHO. NO.	
=======================================	=======	=======		======

=============

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.56e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [121]:

```
vif = pd.DataFrame()
X_t = X_new
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new.values, i) for i in range(X_vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[121]:

	Features	VIF
4	CGPA	728.78
0	TOEFL Score	639.74
2	SOP	33.73
3	LOR	30.63
1	University Rating	19.88
5	Research	2.86

In [122]:

```
X_new1 = X_new.drop(columns=['CGPA'])
```

In [123]:

X_new1

Out[123]:

	TOEFL Score	University Rating	SOP	LOR	Research
0	118	4	4.5	4.5	1
1	107	4	4.0	4.5	1
2	104	3	3.0	3.5	1
3	110	3	3.5	2.5	1
4	103	2	2.0	3.0	0
495	108	5	4.5	4.0	1
496	117	5	5.0	5.0	1
497	120	5	4.5	5.0	1
498	103	4	4.0	5.0	0
499	113	4	4.5	4.5	0

500 rows × 5 columns

In [124]:

```
X2_sm = sm.add_constant(X_new1)
sm_model2 = sm.OLS(Y, X2_sm).fit()
```

In [125]:

print(sm_model2.summary())

OLS Regression Results

============		:======		======	
=======================================					
Dep. Variable: 0.737	Chance of	Admit	R-squared:		
Model:		OLS	Adj. R-squa	red:	
0.734					
Method:	Least	Squares	F-statistic	•	
276.8 Date:	Tue, 04 J	ul 2023	Prob (F-stat	tistic):	
1.03e-140	,		`	,	
Time:	2	22:12:20	Log-Likelih	ood:	
604.09 No. Observations:		500	AIC:		
-1196.		300	,,,		
Df Residuals:		494	BIC:		
-1171. Df Model:		5			
Covariance Type:	nc	nrobust			
=======================================	========	:======	========	======	
===========		-4-1	ı.	p. l.	
[0.025		std err	t	P> t	
const 0 -0.804	-0.6603	0.073	-9.058	0.00	
TOEFL Score	0.0108	0.001	14.000	0.00	
0 0.009	0.012				
University Rating		0.005	3.665	0.00	
0 0.008 SOP	0.026 0.0136	0.005	2.504	0.01	
3 0.003	0.0130	0.003	2.504	0.01	
LOR	0.0286	0.005	5.824	0.00	
0 0.019	0.038	0.000	- 0-7	0.00	
Research 0 0.031	0.0460 0.061	0.008	6.067	0.00	
=======================================		:======	========	======	
===========					
Omnibus:		69.468	Durbin-Watso	on:	
<pre>0.865 Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JR).	
104.049		0.000	Jai que-bei a	(36).	
Skew:		-0.916	Prob(JB):		
2.55e-23					
Kurtosis: 2.41e+03		4.279	Cond. No.		
2.41ETU3		.======			
===========					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.41e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

there is a considerbale drop

In [126]:

X_new2=X_new

In [127]:

X new2

Out[127]:

	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	118	4	4.5	4.5	9.65	1
1	107	4	4.0	4.5	8.87	1
2	104	3	3.0	3.5	8.00	1
3	110	3	3.5	2.5	8.67	1
4	103	2	2.0	3.0	8.21	0
495	108	5	4.5	4.0	9.02	1
496	117	5	5.0	5.0	9.87	1
497	120	5	4.5	5.0	9.56	1
498	103	4	4.0	5.0	8.43	0
499	113	4	4.5	4.5	9.04	0

500 rows × 6 columns

In [128]:

```
vif = pd.DataFrame()
X_t = X_new2
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new2.values, i) for i in range(X)
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[128]:

	Features	VIF
4	CGPA	728.78
0	TOEFL Score	639.74
2	SOP	33.73
3	LOR	30.63
1	University Rating	19.88
5	Research	2.86

In [129]:

```
X_new3 = X_new2.drop(columns=['TOEFL Score'])
```

In [130]:

X_new3

Out[130]:

	University Rating	SOP	LOR	CGPA	Research
0	4	4.5	4.5	9.65	1
1	4	4.0	4.5	8.87	1
2	3	3.0	3.5	8.00	1
3	3	3.5	2.5	8.67	1
4	2	2.0	3.0	8.21	0
495	5	4.5	4.0	9.02	1
496	5	5.0	5.0	9.87	1
497	5	4.5	5.0	9.56	1
498	4	4.0	5.0	8.43	0
499	4	4.5	4.5	9.04	0

500 rows × 5 columns

In [131]:

```
X2_sm = sm.add_constant(X_new3)
sm_model3 = sm.OLS(Y, X2_sm).fit()
```

In [132]:

print(sm_model3.summary())

OLS Regression Results

Dep. \	======== Variable:		Chance of Admit		R-squared:	
0.806 Model	•		OLS	Adj. R-squar	red:	
0.804	T.	1 1	6			
Method	d:	Least	Least Squares		F-statistic:	
Date:	472	Tue, 04 J	Jul 2023	Prob (F-stat	tistic):	
1.91e Time:	-1/3	22:12:26		Log-Likelihood:		
680.53			F00	ATC.		
-1349	bservations:		500	AIC:		
	siduals:		494	BIC:		
-1324 Df Mod			5			
Covar	iance Type:	nc	onrobust			
	======================================		:======:	========	======	
ı	FO 025		std err	t	P> t	
 	[0.025 	0.9/5]				
				44.004		
const 0	-0.873	-0.7670 -0.661	0.054	-14.206	0.00	
Unive	rsity Rating	0.0092	0.004	2.350	0.01	
9 SOP	0.002	0.017 0.0034	0.005	0.718	0.47	
3	-0.006	0.013	0.003	0.710	0.47	
LOR 0	0.007	0.0153 0.024	0.004	3.557	0.00	
CGPA	0.007	0.024	0.008	21.040	0.00	
0	0.145	0.175	0 007	F 202	0.00	
Reseai 0	rcn 0.022	0.0347 0.048	0.007	5.293	0.00	
=====	========		:======:	========	======	
===== Omnib	======== us:	:	85.826	Durbin-Watso	on:	
0.855			03.020	Jan Jan Macs		
Prob(0 164.19	Omnibus):		0.000	Jarque-Bera	(JB):	
Skew:) <u> </u>		-0.971	Prob(JB):		
2.22e			E 020	Cond No		
Kurtos 205.	212:		5.028	Cond. No.		
=====	=======	========	:======:	========	======	
=====	========	:				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [133]:

```
vif = pd.DataFrame()
X_t = X_new3
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new3.values, i) for i in range(X_vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[133]:

	Features	VIF
1	SOP	33.63
2	LOR	30.36
3	CGPA	25.10
0	University Rating	19.78
4	Research	2.84

In [134]:

```
X_new4=X_new3.drop(columns=['SOP'])
```

In [135]:

X_new4

Out[135]:

	University Rating	LOR	CGPA	Research
0	4	4.5	9.65	1
1	4	4.5	8.87	1
2	3	3.5	8.00	1
3	3	2.5	8.67	1
4	2	3.0	8.21	0
495	5	4.0	9.02	1
496	5	5.0	9.87	1
497	5	5.0	9.56	1
498	4	5.0	8.43	0
499	4	4.5	9.04	0

500 rows × 4 columns

In [136]:

```
X2_sm = sm.add_constant(X_new4)
sm_model4 = sm.OLS(Y, X2_sm).fit()
```

In [137]:

print(sm_model4.summary())

OLS Regression Results

=======================================	======================================	:======:	========	======
Dep. Variable:		Admit	R-squared:	
0.806 Model:		OLS	Adj. R-squa	red:
0.804 Method:	Least	Squares	F-statistic	:
514.3		•		
Date: 1.02e-174	Tue, 04 J	Jul 2023	Prob (F-sta	tistic):
Time:	2	22:12:29	Log-Likelih	ood:
680.25 No. Observations:		500	AIC:	
-1350. Df Residuals:		495	BIC:	
-1329.				
Df Model: Covariance Type:	no	4 onrobust		
=======================================			========	======
=======================================		std err	t	P> t
[0.025				,
const 0 -0.879	-0.7758	0.053	-14.755	0.00
University Rating		0.004	2.843	0.00
5 0.003 LOR	0.017 0.0162	0.004	3.954	0.00
0.008	0.0102			
CGPA 0.148	0.1620 0.176	0.007	22.204	0.00
Research	0.0348	0.007	5.311	0.00
0 0.022	0.048 =======	:======	========	
	=	02 510	Dunkin Usta	
Omnibus: 0.863		83.510	Durbin-Wats	on:
Prob(Omnibus):		0.000	Jarque-Bera	(JB):
156.914 Skew:		-0.954	Prob(JB):	
8.44e-35 Kurtosis:		4.972	Cond. No.	
188.		4.7/2	COHA. NO.	
=======================================	======================================		========	======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [138]:

```
vif = pd.DataFrame()
X_t = X_new4
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new4.values, i) for i in range(X_vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[138]:

	Features	VIF
1	LOR	26.92
2	CGPA	22.37
0	University Rating	15.14
3	Research	2.82

In [139]:

```
X_new5=X_new4.drop(columns=['LOR '])
```

In [140]:

X_new5

Out[140]:

	University Rating	CGPA	Research
0	4	9.65	1
1	4	8.87	1
2	3	8.00	1
3	3	8.67	1
4	2	8.21	0
495	5	9.02	1
496	5	9.87	1
497	5	9.56	1
498	4	8.43	0
499	4	9.04	0

500 rows × 3 columns

In [141]:

```
X2_sm = sm.add_constant(X_new5)
sm_model5 = sm.OLS(Y, X2_sm).fit()
```

In [142]:

print(sm_model5.summary())

OLS Regression Results

============	========	=======			
===========	:				
Dep. Variable:	Chance of	Admit	R-squared:		
0.800		OL C	Adi P caus	and.	
Model: 0.799		0LS	Adj. R-squar	reu:	
Method:	Least	Squares	F-statistic:	:	
661.0		ı			
Date:	Tue, 04 J	ul 2023	Prob (F-stat	tistic):	
8.01e-173					
Time:	2	2:12:32	Log-Likeliho	ood:	
672.48 No. Observations:		500	AIC:		
-1337.		300	AIC.		
Df Residuals:		496	BIC:		
-1320.					
Df Model:		3			
Covariance Type:		nrobust			
		:======:	========	======	
		std err	t	P> t	
[0.025		5 CG C1 1		. , , ,	
	-0.8174	0.052	-15.638	0.00	
0 -0.920		0 004	4 000	0 00	
University Rating 0 0.007		0.004	4.080	0.00	
CGPA	0.1719	0.007	24.710	0.00	
0 0.158	0.186				
Research	0.0360	0.007	5.423	0.00	
0 0.023	0.049				
=======================================	========	:======	========	======	
Omnibus:		85.826	Durbin-Watso	.n.	
0.899		03.020	Dui Din-watst	, 110	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	
157.567				(/-	
Skew:		-0.989	Prob(JB):		
6.09e-35					
Kurtosis:		4.910	Cond. No.		
172.					
		:======:		======	
==========	i e e e e e e e e e e e e e e e e e e e				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [143]:

```
vif = pd.DataFrame()
X_t = X_new5
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new5.values, i) for i in range(X_vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[143]:

	Features	VIF
0	University Rating	12.50
1	CGPA	11.04
2	Research	2.78

In [144]:

```
X_new6=X_new5.drop(columns=['University Rating'])
```

In [145]:

```
X2_sm = sm.add_constant(X_new6)
sm_model6 = sm.OLS(Y, X2_sm).fit()
```

In [146]:

print(sm_model6.summary())

OLS Regression Results

===========	=======	====	====	=====	=====	======	======
=======================================	==						
Dep. Variable: 0.793	Char	ice o	f Ad	mit	R-sq	uared:	
Model:				OLS	Adj.	R-squa	red:
0.792							
Method:	L	.east	Squ	ares	F-sta	atistic	:
953.1 Date:	Tue.	94	Jul	2023	Prob	(F-sta	tistic):
8.21e-171		. .	- U	_0_3		(. 500	
Time:			22:1	2:36	Log-I	Likelih	ood:
664.22							
No. Observations	:			500	AIC:		
-1322. Df Residuals:				497	BIC:		
-1310.				137	DIC.		
Df Model:				2			
Covariance Type:		n	onro	bust			
=============	=======	:====:	====	=====	=====	=====	======
=============						ъ.	ابا
[0.025 0.97	coef 5] 	sτα (err 		τ	P>	T
const -0		0.0	045	-20	. 383	0.	000
-1.017 -0.83 CGPA 0	.1897	9 (005	3/1	.497	a	000
0.179 0.20		0.	003	54	• 477	0.	000
	.0392	0.0	0 07	5	.863	0.	000
0.026 0.05	2						
		:====:	====	=====	=====	=====	======
Omnibus:			77	.758	Durb	in-Wats	on:
0.896							
Prob(Omnibus):			0	.000	Jarqı	ue-Bera	(JB):
138.462							
Skew:			-0	.918	Prob	(JB):	
8.58e-31 Kurtosis:			1	.809	Cond	No	
139.			4	.003	Cond	. 140.	
	=======	:====:		=====	=====	=====	=======
===========	==						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [147]:

```
vif = pd.DataFrame()
X_t = X_new6
vif['Features'] = X_t.columns
vif['VIF'] = [variance_inflation_factor(X_new6.values, i) for i in range(X_vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[147]:

	VIF	
0	CGPA	2.46
1	Research	2.46

- 1. SO NOW WE HAVE A SIMPLE MODEL WHICH CAN PERFORM WITH ADJUSTED R 2 OF 0.79 I.E CAN PREDICT
 - 79% TIMES THE RIGHT VALUE
 - AND WHICH HAS NO MULTICOLLINEARITY
- 2. NOW ASSUMING TO GO FOR A SIMPLE MODEL:-
 - TWO FEATURES CGPA AND RESEARCH CAN PREDICT 79% TIMES THE RIGHT VALUES

NOW RE-TRAINING THE MODEL JUST WITH THESE TWO FEATURES:-

In [148]:

```
X_new6=X_t
```

In [149]:

X_new6

Out[149]:

	CGPA	Research
0	9.65	1
1	8.87	1
2	8.00	1
3	8.67	1
4	8.21	0
495	9.02	1
496	9.87	1
497	9.56	1
498	8.43	0
499	9.04	0

500 rows × 2 columns

now again train the model with these only two features

In [158]:

```
X =X_new6
sc = StandardScaler()
x_train, x_test, y_train, y_test = train_test_split(X_new6,Y, test_size=0.
```

In [159]:

```
std_scaler_model=make_pipeline(std_scaler,LinearRegression())
std_scaler_model.fit(x_train,y_train)
a=pd.DataFrame([std_scaler_model.score(x_train,y_train),std_scaler_model.score(a.rename(columns = {0:"R2_SCORE"},inplace=True)
a["RMSE"]= [np.sqrt(mean_squared_error(y_train,std_scaler_model.predict(x_a["Adj_R2"]=[adj_r2(x_train,y_train,std_scaler_model.score(x_train,y_train)a["MAE"]=[mean_absolute_error(y_train,std_scaler_model.predict(x_train)),mage.
```

Out[159]:

	R2_SCORE	RMSE	Adj_R2	MAE
TRAIN_SET	0.783648	0.063695	0.782402	0.046782
TEST_SET	0.808849	0.065392	0.806248	0.045254

- 1. WE CAN SEE TAHT TESTING PERFORMANCE IS ALMOST SAEME AS BEFORE AND IT TELLS US THAT THE MODEL CAN PERFORM EQUALLY WELL WITH JUST TWO FEATURES
- 2. WELL SINCE TRAINING PERFORMANCE IS LESS THAN TESTING
 PERFORMANCE, IT PROBABLY MEANS THAT THE DATA IS BIAS, AND WE NEED
 TO DO K CROSS VALIDATION

INSIGHTS

- 1. THE BASELINE MODEL WHICH WE TRAINED WAS NOT OVERFITTING AND WAS INDEED HAVING GOOD PERFORMANCE.
- 2. THERE IS MULTICOLLINEARITY PRESENT IN THE DATA
- 3. ERRORS ARE NOT NORMALLY DISTRIBUTED
- 4. THERE IS HOMOSKADASTICITY, I.E NO POSITIVE CORRELATION BW Y AND ERRORS.
- 5. DATA IS A GOOD LINEAR MODE AS EXPLAINED BY R2 SCORE.
- 6. ALTHOUGH OUR PERFORMNACE IMPROVED WHEN TRAINING WITH POLYNOMIAL FEATURES, I.E THERE IS SCOPE FOR IMPROVEMENT BY BRINGING BETTER FEATURES.
- 7. ALTHOUGH THERE IUS TRONG CORRELATION BW SOME FEATURES WITH TARGET VARIABLE, BUT WE CAN THAT ONLY TWO FEATURES ARE ENOUGH TO PREDICT THE VALUE 80% OF TIMES
- 8. ALSO WE CAN SEE BY L1 REGULARIZATION ,THAT WEIGHTS WERE ASSIGNED ONLY TO CGPA.

- 9. OUR EDA MADE IT CLEAR THAT CGPA IS THE MOST IMPORTANT FACTOR
- 10. RESEARCH PLAYS A VITAL ROLE

RECOMMENDATIONS

- 1. WE CAN IMPROVE THE MODEL BY INCORPORATING SOME COMPLEX FEATURES WHICH CAN BE A MERGER OF SOME FEATURES.
- 2. ALSO IN REAL WORLD, IF DATA COMES TO US WE CAN PERFORM BETTER WITH MORE DATAPOINTS.
- 3. SOME ERRORS WHICH WERE OULTIERS SHOULD BE STUDIED IN DEPTH./.
- 4. IN BUSINESS TERMS, IF OUR MODEL IMPROVES, WE CAN ACQUIRE AND RETAIN MANY STUDENTS AND THER WILL BE EXPONENTIAL GROWTH...
- 5. ALSO SINCE IT IS A VERY FAST GROWING MARKET IS **35\$ BILLION INDUSTRY** IN INDIA .
- 6. JAMBOREE IS ALREADY A WELL KNOWN COMPANY, BY IMPROVING MODEL PERFORMANCE, BRAND VALUE WILL INCREASE.
- 7. WE COULD ADD INTERNSHIPS DONE AS A FETAURE, ALSO NGO EXPERIENCE AND ANY CONTRIBTUION TO SOCIAL CAUSES, ENVIRONMENTAL, AS IT SHOWS HOW RESPONSIBLE A CITIZEN IS AND WHAT IMPACT WILL IT CREATE, WHICH MIGHT BE A BETTER INDICATOR THAN SOP AS ACTION IS BETTER THAN INTENTION.

In []:			