Amplitudes of the f(t) functions, at selected center-of-mass energies, is shown on Figure ??. Greatest modulations of $t\bar{t}$ cross sections are expected in the benchmark scenarios $c_{XY} = c_{YX}$ and $c_{XX} = -c_{YY}$. The sensitivity is higher when probing components in the ecliptic plane.

At Tevatron, $t\bar{t}$ production was initiated mainly by $q\bar{q}$ annihilation while at the LHC, gg fusion is dominant. We compare the f(t) amplitude, between samples generated at the same center-of-mass energy $\sqrt{s}=1.96$ TeV for DØ and CMS. We find similar amplitudes between DØ and CMS at $\sqrt{s}=1.96$ TeV for the benchmarks $c_{XX}=-c_{YY}\neq 0$ and $c_{XY}=c_{YX}\neq 0$. However, at the same energy and production mechanism, the LHC position induces worst expected sensitivity to $c_{XZ}=c_{ZX}\neq 0$ and $c_{YZ}=c_{ZY}\neq 0$ benchmarks. We scanned the latitude and azimuth of poential experiments on earth and found that both ATLAS or CMS sit in a dip for the projected sensitivity on those SME coefficients.

We compute the projected precision on the SME coefficients with HISTFACTORY [?], using the Asimov dataset, for the above mentioned collider and SME coefficient benchmarks. Histograms for LIV signal, SM $t\bar{t}$ production and single top background are provided, with bins of one sidereal hour. Systematic uncertainties are rounded from [?]: 2% is attributed to the luminosity, 4% on the inclusive measurement of $t\bar{t}$ production, and 2% on single top production. These projections are shown on Table 1.

TABLE 1 – Comparison of expected precisions in $t\bar{t}$ signature for D \emptyset , LHC (Run II), HL-LHC, HE-LHC, FCC experiment.

,	$\mathrm{D}\emptyset$	LHC (Run II)	HL-LHC	HE-LHC	FCC
$\frac{\Delta c_{LXX}, \Delta c_{LXY}}{\Delta c_{LXZ}, \Delta c_{LYZ}}$	$1 \times 10^{-1} \\ 8 \times 10^{-2}$	2×10^{-4} 5×10^{-4}		$4 \times 10^{-6} \\ 2 \times 10^{-5}$	$1 \times 10^{-6} \\ 4 \times 10^{-6}$
$\frac{\Delta c_{RXX}, \Delta c_{RXY}}{\Delta c_{RXZ}, \Delta c_{RYZ}}$	9×10^{-2} 7×10^{-2}	4×10^{-4} 2×10^{-3}		2×10^{-5} 6×10^{-5}	5×10^{-6} 2×10^{-5}
$ \Delta c_{XX}, \Delta c_{XY} \Delta c_{XZ}, \Delta c_{YZ} $	7×10^{-1} 6×10^{-1}	2×10^{-4} 6×10^{-4}		$6 \times 10^{-6} \\ 2 \times 10^{-5}$	
$\frac{\Delta d_{XX}, \Delta d_{XY}}{\Delta d_{XZ}, \Delta d_{YZ}}$	$1 \times 10^{-1} \\ 7 \times 10^{-2}$	$ \begin{array}{c} 1 \times 10^{-4} \\ 4 \times 10^{-4} \end{array} $		3×10^{-6} 1×10^{-5}	8×10^{-7} 3×10^{-6}

