CS 243 Lecture 12 Introduction to Parallelization & Locality Optimization

- Understanding Parallelism and Locality
- 2. Iteration Space
- 3. Code Generation: Fourier Motzkin Elimination
- 4. Access Functions
- 5. Data Dependence: Linear Integer Programming

Readings: Chapter 11.1 - 11.7

Advanced Compilers M. Lam

Multi-cores are here! What's the right question?

- Q1. How to parallelize a code automatically?
 - Most programs, as coded, are sequential
 - No silver bullet: Tried functional programming, data flow, automatic parallelization
 - Computation-intensive codes have parallelism, but:
 - Coverage: Amdahl's Law
 - Communication makes naively parallelized code runs slower
- Q2. How to generate efficient parallel code automatically?
 - KEY: Locality
 - Place instructions using the same data on the same processor
- Q3. How to optimize locality in sequential code automatically?
 - Place instructions using the same data close together in time
- Q4. How to write efficient parallel code?
 - Place related operations close in time and in space.

Demonstrate use of another mathematic concept: linear algebra

1. Shared Memory Machines

Performance on Shared Address Space Multiprocessors: Parallelism & Locality

Advanced Compilers L12. Parallelization

(A) What is Affine Partitioning? An Contrived but Illustrative Example

FOR i = 1 TO n
FOR j = 1 TO n

$$A[i,j] = A[i,j]+B[i-1,j];$$
 (S₁)
 $B[i,j] = A[i,j-1]*B[i,j];$ (S₂)

Best Parallelization Scheme

Algorithm finds affine partition mappings for each instruction:

- S1: Execute iteration (i, j) on processor i-j.
- S2: Execute iteration (i, j) on processor i-j+1.

SPMD code: Let p be the processor's ID number

Advanced Compilers L12. Parallelization

Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$

Find C₁, c₁, C₂, c₂:
$$\forall \ i_1, i_2 \quad F_1 \ i_1 + f_1 = F_2 \ i_2 + f_2 \rightarrow C_1 i_1 + c_1 = C_2 i_2 + c_2$$
 with the objective of maximizing the rank of C₁, C₂

Rank of Partitioning = Degree of Parallelism

Advanced Compilers L12. Parallelization

(B) What is blocking? Example: Matrix Multiplication

Experimental Results

Advanced Compilers L12. Parallelization

Code Transform

Before

```
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++) {
   for (k = 0; k < n; k++) {
      Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
   }
}}</pre>
```

After

```
for (ii = 0; ii < n; ii = ii+B) {
  for (jj = 0; jj < n; jj = jj+B) {
    for (kk = 0; kk < n; kk = kk+B) {
    for (i = 0; i < n; i++) {
      for (j = 0; j < n; j++) {
        for (k = 0; k < n; k++) {
            Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
      }}}}</pre>
```

Optimizing Arbitrary Loop Nesting Using Affine Partitions (chotst, NAS)

```
DO 1 J = 0, N
    DO 1 O - J, N

10 = MAX (-M, -J)

DO 2 I = IO, -1

DO 3 JJ = IO - I, -1

DO 3 L = 0, NNAT

A(L,I,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)
                                                                                                                   Α
       В
        DO 1 \mathbf{L} = 0, NMAT A(\mathbf{L}, 0, J) = 1. / SQRT ( ABS (EPSS(\mathbf{L}) + A(\mathbf{L}, 0, J)) )
    DO 6 I = 0, NRHS

DO 7 K = 0, N

DO 8 L = 0, NMAT

B(I,L,K) = B(I,L,K) * A(L,0,K)

DO 7 JJ = 1, MIN (M, N-K)

DO 7 L = 0, NMAT
                                                                                              8
                                                                                                                 EPSS
                                                                                                 L
                   B(I, \mathbf{L}, K+JJ) = B(I, \mathbf{L}, K+JJ) - A(\mathbf{L}, -JJ, K+JJ) * B(I, \mathbf{L}, K)
       Advanced Compilers
                                                                                                                      L12. Parallelization
```

Chotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)

Summary

- Affine transforms
 - Find maximum degree of coarse-grain parallelism
 - Linear algebra
 - Relationship between access pattern & linear algebra concepts
 - How to generate transformed code?
 - Where are the data dependences?
 - How to come up with the affine mapping?
- Blocking
 - Parallelism in 2D+ loops → opportunity for blocking

Advanced Compilers L12. Parallelization

How to Use Linear Algebra

- Loops (iteration space): n-dimensional polytopes
 - How to generate code: Fourier-Motzkin Elimination
- Access function:
 - Rank of access functions
 - Reuse concept
 - Data dependence

- Affine partitioning transform
 - (next class)

2. Iteration Space

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order

Advanced Compilers

L12. Parallelization

3. Code Generation Example: Loop Interchange (Loop Permutation)

Advanced Compilers

L12. Parallelization

Transforming the code

Step 1: substitute old indices with new.

 $y \le 10$

FOR y =

Advanced Compilers

L12. Parallelization

Geometric Projection

For index i from inner to outer Express bounds as exp. of outer indices Eliminate index i from polytope

FOR y = 0 TO 10
FOR x=max(0,10-y) TO min(20, y+10)

$$a[x,y] = ...$$

Bounds of x:

$$0 \le x$$

$$x \le 20$$

$$10 - y \le x$$

$$x \le y + 10$$

Bounds of y:

$$0 \le y$$
$$y \le 10$$

 $0 \le x$ $x \le 20$ $10 - x \le y$ $x - 10 \le y$ $y \le 10$ Project onto y axis $0 \le x$ $x \le 20$ Project onto x axis $0 \le x$ $x \le 20$

Advanced Compilers

L12. Parallelization

Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_1
 - Rewrite all expressions in terms of lower or upper bounds of x_1
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_1 :

$$L_{1}(x_{2}, ..., x_{n}) \leq x_{1} \leq U_{1}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq x_{1} \leq U_{2}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq U_{2}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq U_{1}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq U_{2}(x_{2}, ..., x_{n})$$

$$L_{2}(x_{2}, ..., x_{n}) \leq U_{2}(x_{2}, ..., x_{n})$$

Advanced Compilers L12. Parallelization

4. Affine Accesses: Iteration space → Array space

FOR
$$i = 1$$
 to n
FOR $j = 1$ to n

Access	Affine Exp	Rank	Nullity	Basis of Null Space
X[i-1]	$\begin{bmatrix} 1 & 0 \\ \mathbf{j} \end{bmatrix} + \begin{bmatrix} -1 \end{bmatrix}$	1	1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Y[i,j]	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2	0	
Y[j,j+1]	$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Y[1,2]	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	0	2	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Z[1,i,2*i+j]	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	2	0	

Informal Interpretation for Access Function Fi + f

d: loop depth; n: # of iterations in each loop; a: dimensions of the array

- F is an a x d matrix; the loop has n^d iterations It can access at most n^{min(d,a)} memory locations
- Rank: # locations accessed? # iterations accessing the same data? If r is the rank of F, then O(nr) locations accessed. r ≤ min(d, a) O(n^{d-r}) iterations access the same location.
- Nullspace: Which iterations refer to the same location?
 d-r is the nullity of F, dimension of the null space
 nullity(F) + rank(F) = d
 Let b₁, ..., b_{d-r} be the basis vectors of the null space
 then iteration i accesses the same memory location as iterations i+ b₁, i + b₂, i + any linear combination of b's.

Advanced Compilers L12. Parallelization

Rank: Definition

- rank of matrix F
 - the largest number of columns (or equivalently, rows) that are linearly independent.
- A set of vectors is linearly independent if
 - none of the vectors can be written as
 a linear combination of finitely many other vectors in the set.

Null Space of a Matrix

- The set of all solutions to the equations Fv = 0 is the **null space** of F.
 - v = 0 vector is trivially in F's null space.
- Let i, i' be two iterations. If Fi = Fi' then F(i-i') = 0
 - Two iterations i, i' refer to the same array element if their difference i-i' belongs to the null space of matrix F.
- nullity = dimension of the null space
 - nullity(F) + rank(F) = d
 - If rank(F) = d, then its null space consists of only the null vector.
- The null space can be represented by its basis vectors.
 - Any linear combination of the basis vectors belongs to the null space.

Advanced Compilers L12. Parallelization

5. Data Dependence Analysis

```
FOR i = 1 TO 100
   A[i] = B[i] + C[i]

FOR i = 1 TO 100
   FOR j = 1 TO 100
    A[i,j] = B[i,j] + C[i,j]

FOR i = 11 TO 20
   A[i] = A[i-1] + 3
FOR i = 11 TO 20
   A[i] = A[i-20] + 3
```

- A data dependence between two array accesses exists if some instance of one access may refer to the same location as an instance of the second.
- No data dependences → all iterations can execute in parallel

Data Dependences in a Loop

FOR
$$i = 2$$
 TO 5 $A[i-2] = A[i] + 1;$

- Between A[i-2] and A[i]
 - There is a dependence if there exist two iterations i_w , i_r within the loop bounds such that iterations i_w , i_r write and read the same array element, respectively
 - \exists integers i_w , i_r $2 \le i_w$, $i_r \le 5$, $i_w 2 = i_r$
- Between A[i-2] and A[i-2]
 - There is a dependence if there exist two iterations i_{w} , i_{v} within the loop bounds such that two distinct iterations i_{w} , i_{v} ($i_{w} \neq i_{v}$) write the same array element
 - \exists integers i_w , i_v , $2 \le i_w$, $i_v \le 5$, $i_w 2 = i_v 2$, $i_w \ne i_v$

Advanced Compilers L12. Parallelizati

Definition of Data Dependence

For every pair of accesses not necessarily distinct (F_1 , f_1) and (F_2 , f_2) one must be a write operation Let $B_1i_1+b_1\geq 0$, $B_2i_2+b_2\geq 0$ be the corresponding loop bound constraints, \exists integers i_1 , i_2 $B_1i_1+b_1\geq 0$, $B_2i_2+b_2\geq 0$ $F_1i_1+f_1=F_2i_2+f_2$

If the accesses are not distinct, then add the constraint $i_1 \neq i_2$

Complexity: integer linear programming, NP-complete

Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests
- Apply a series of relatively simple tests
 - GCD: 2*i, 2*i+1; GCD for simultaneous equations
 - Test if the ranges overlap
- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - Add heuristics to encourage finding an integer solution.
 - Create 2 subproblems if a real, but not integer, solution is found.
 - For example, if x = .5 is a solution, create two problems,
 by adding x ≤ 0 and x ≥ 1 respectively to original constraint.

Advanced Compilers L12. Parallelization

Conclusions

- Parallelism is plentiful in numeric code, but locality is important
- Two kinds of transforms
 - Affine partitioning maximizes the degree of parallelism without communication
 - Operations using same data are mapped to the same processor
 - Blocking: Exploit locality across multiple dimensions
- Linear algebra used in 2 ways
 - Loop iterations: polytope
 - Fourier-Motzkin Elimination to generate loop bounds
 - Projects polytope onto a lower-dimensional subspace
 - Affine functions
 - Rank size of arrays accessed
 - Null space
 iterations using the same data
 - Data dependence analysis: integer linear programming
 - Solved because they are usually simple problems