EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS Blatt 2

Jendrik Stelzner

16. April 2014

Aufgabe 1 (Konjugierte Nullstellen)

Bekanntermaßen handelt es sich bei der Konjugation um einen \mathbb{R} -Algebraautomorphismus von \mathbb{C} (dem einzigen neben der Identität $\mathrm{id}_{\mathbb{C}}$). Inbesondere ist $\bar{x}=x$ für alle $x\in\mathbb{R}$. Es ist daher für alle $\rho\in\mathbb{C}$

$$\overline{P(\rho)} = \sum_{k=0}^{n} a_k \rho^k = \sum_{k=0}^{n} a_k \bar{\rho}^k = P(\bar{\rho}).$$

Also ist für alle $\rho \in \mathbb{C}$

$$0 = P(\rho) \Leftrightarrow 0 = \overline{P(\rho)} \Leftrightarrow 0 = P(\overline{\rho}).$$

Aufgabe 3 (Real- und Imaginärteil quadratischer Funktionen)

Wir behaupten, dass $p(x,y)=ax^2+bxy+cy^2$ mit $a,b,c\in\mathbb{R}$ genau dann Realteil des komplexen Polynoms $P(z)=Az^2+Bz+C$ ist, wenn c=-a.

Ist c=-a, so ist für beliebiges $b \in \mathbb{R}$

$$p(x,y) = ax^{2} + bxy - ay^{2} = \Re\left(\left(a - \frac{1}{2}bi\right)(x + iy)^{2}\right).$$

Sei andererseits $p = \Re(P)$. Da

$$\Re(C) = \Re(P(0)) = p(0,0) = 0$$

ist $p=\Re(Az^2+Bz)$, wir können also o.B.d.A. davon ausgehen, dass C=0. Da für alle $z=x+iy\in\mathbb{C}$

$$0 = p(x, y) - p(-x, -y) = \Re(P(z)) - \Re(P(-z))$$

= $\Re(P(z) - P(-z)) = \Re(Bz - B(-z)) = \Re(2Bz) = 2\Re(Bz)$

ist $\Re(Bz)=0$ für alle $z\in\mathbb{C}$. Da $0=\Re(B\bar{B})=\Re(|B|^2)=|B|^2$ folgt daraus, dass B=0. Also ist $P(z)=Az^2$ für $A=x_A+iy_A\in\mathbb{C}$. Es ist daher

$$p(x,y) = \Re(Az^2) = \Re((x_A + iy_A)(x + iy)^2) = x_A x^2 - 2y_A xy - x_A y^2$$

was die Behauptung zeigt.

Man bemerke noch, dass p genau dann Imaginärteil eines komplexen Polynoms vom Grad n ist, wenn p Realteil eines komplexen Polynoms vom Grad n ist, denn $p=\Im(P)\Leftrightarrow p=\Re(-iP)$, bzw. $p=\Re(P)\Leftrightarrow p=\Im(iP)$ für jedes komplexe Polynom P. Also ist p genau dann Imaginärteil eines Polynoms $P(z)=Az^2+Bz+C$, wenn a=-c.

Aufgabe 4 Betrag der Exponentialabbildung

Für alle $z\in\mathbb{C}$ ist

$$|e^z| = \left| e^{\Re(z) + i\Im(z)} \right| = \left| e^{\Re(z)} e^{i\Im(z)} \right| = \left| e^{\Re(z)} \right| \left| e^{i\Im(z)} \right| = e^{\Re(z)}.$$