CS321: Computer Networks

Network Layer: Switching and IP addressing

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Introduction

Network Layer is responsible for the host-to-host delivery of packets.

Services

- 1. Packetizing
- Routing & Forwarding

Packet Switching

- Advantages of Packet Switching over Circuit Switching
 - Higher line efficiency, because a single node-to-node link can be dynamically shared by many packets over time
 - Two end stations of different data rates can exchange packets
 - Under heavy traffic condition, circuit switching refuses connection, but packet allows with higher delay
 - Priorities can be applied

Switching Technique

- Datagram Approach
 - each packet is treated independently, with no reference to packets that have gone before
 - Connectionless
- Virtual Circuit Approach
 - a pre-planned route is established before any packets are sent. Once the route is established, all the packets between a pair of communicating parties follow this same route through the network
 - Connection-oriented

Virtual Circuit & Datagram Approaches

Comparison

Comparison

Circuit Switching	Datagram Packet Switching	Virtual Circuit Packet Switching
Dedicated transmission path	No dedicated path	No dedicated path
Continuous transmission of data	Transmission of packets	Transmission of packets
Fast enough for interactive	Fast enough for interactive	Fast enough for interactive
Messages are not stored	Packets may be stored until delivered	Packets stored until delivered
The path is established for entire conversation	Route established for each packet	Route established for entire conversation
Call setup delay; negligible transmission delay	Packet transmission delay	Call setup delay; packet transmission delay
Busy signal if called party busy	Sender may be notified if packet not delivered	Sender notified of connection denial
Overload may block call setup; no delay for established calls	Overload increases packet delay	Overload may block call setup; increases packet delay
Electromechanical or computerized switching nodes	Small switching nodes	Small switching nodes
User responsible for message loss protection	Network may be responsible for individual packets	Network may be responsible for packet sequences
Usually no speed or code conversion	Speed and code conversion	Speed and code conversion
Fixed bandwidth	Dynamic use of bandwidth	Dynamic use of bandwidth
No overhead bits after call setup	Overhead bits in each packet	Overhead bits in each packet

Which one is better?

Ans.: None for all condition.

- For short message
 - Circuit switching might be faster
- For long message
 - Virtual Circuit switching might be faster
- w.r.t. average delay, flexibility, reliability
 - Datagram approach is better

Router Architecture

- SDN: Software Defined Networking
 - Decouples the Data plane and Control plane

TCP/IP Protocol Suite

- IP Addressing
- IP Packet format
- Routing Protocol

IP Addressing

- IP Address: 32 bits used to represent IPv4
 - E.g., 192.19.241.18 in dotted decimal notation
- Total address space: 2ⁿ for n bit address
 - Last address: 255.255.255.255 if n=32

Classful Addressing

Problem and Solution

Problem in Classful Addressing: Address Depletion

Solution:

- Subnetting: a larger block of address is divided into several subnets
- Supernetting: several smaller blocks of addresses are combined to make a larger block

Better Solution:

 Classless addressing: variable length blocks that belong to no classes; uses slash notation to identify prefix length

Examples: 12.24.76.8/8 23.14.67.92/12 220.8.24.255/25

Extract block from an Address

Given address: 167.199.170.82/27 ...01010010

Number of Address: $2^{(32-27)} = 32$

First Address: 167.199.170.64/27 ...01000000

Last Address: 167.199.170.95/27 ...01011111

Address Mask

It is a 32-bit number in which the n leftmost bits are set to 1s and the rest of the bits (32 - n) are set to 0s.

It can be used by a computer program to extract the information in a block, using the three bit-wise operations NOT, AND, and OR.

Given address: 167.199.170.82/27 ...01010010

Mask: 255.255.255.224 ...11100000

Number of address in the block: NOT (mask) + 1 = 31+1 = 32

First Address: (address) AND (mask) 167.199.170.64 (01000000)

Last Address: (address) OR (NOT (mask)) 167.199.170.95 (01011111)

Network Address

Network address: first address of the block

Block Allocation

- Internet Corporation for Assigned Names and Numbers (ICANN) is the global authority.
- ICANN assigns a large block of address to ISP
- ISP assigns individual IP to stations/ small block to an organization

Rules:

- 1. The number of requested addresses, N, needs to be a power of 2. (as, $N=2^{32-n} => n = 32 \log_2 N$)
- 2. The allocated first address needs to be divisible by the number of addresses in the block. (for contiguous address)

Designing Subnets

 More levels of hierarchy can be created using subnetting.

Rules:

- 1. The number of addresses in each subnetwork should be a power of 2.
- 2. The prefix length for each subnetwork should be found using the following formula:

$$n_{sub} = 32 - log_2 N_{sub}$$

3. The starting address in each subnetwork should be divisible by the number of addresses in that subnetwork.

Example

- An organization is granted a block of addresses with the beginning address 14.24.74.0/24. The organization needs to have 3 sub-blocks of addresses to use in its three subnets: one sub-block of 10 addresses, one sub-block of 60 addresses, and one sub-block of 120 addresses. Design the sub-blocks.
- Solution: Allocated no. of address: $2^{32-24} = 256$

First address: 14.24.74.0/24; Last address: 14.24.74.255/24

We should start with largest sub-blocks.

 $N_1=120 \Rightarrow N_1=128 \Rightarrow n_1=32-\log_2 128 = 25$

First address: 14.24.74.0/25

Last address: 14.24.74.127/25

 $N_2=60 \Rightarrow N_2=64 \Rightarrow N_2=32-\log_264 = 26$

First address: 14.24.74.128/26

Last address: 14.24.74.191/26

 $N_3=10 \Rightarrow N_3=16 \Rightarrow N_3=32-\log_2 16 = 28$

First address: 14.24.74.192/28

Last address: 14.24.74.207/28

Cont...

- Example: destination IP of a packet 14.24.74.195
- Network Address: (14.24.74.195) AND (255.255.255.0) = 14.24.74.0
- Subnet 1: (14.24.74.195) AND (255.255.255.128) = . . . (1100 0011 AND 1000 0000)
 = 12.24.74.128 => Not correct
- Subnet 3: (14.24.74.195) AND (255.255.255.240) = . . . (1100 0011 AND 1111 0000) = 12.24.74.192 => Correct

Address Aggregation

Special Addresses

- This-host Address: 0.0.0.0/32
 - It is used whenever a host needs to send an IP datagram but it does not know its own address to use as the source address.
- *Limited-broadcast Address:* 255.255.255.255/32
 - It is used whenever a router or a host needs to send a datagram to all devices in a network.
- Loopback Address: 127.0.0.0/8
 - Any address in the block is used to test a piece of software in the machine.
- Private Addresses: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, and 169.254.0.0/16
 - Used in NAT
- Multicast Addresses: 224.0.0.0/4
 - Reserved for multicast

Thanks!