Optimization Methods Date: 6th April 2018

Instructor: Sujit Prakash Gujar Scribes: Roopal Vaid

Rohit Gajawada Saurav Malani

Lecture 21: Constrained optimization

1 Recap

- Conjugate Gradient Method It is a method useful for optimization of both linear and non-linear systems.
- Conjugate Gradient Descent The Conjugate Gradient can be used if and only if the function is a Quadratic and Q is Symmetric Real Positive Definite.
- Quasi Newton Method The quasi-Newton methods use an approximation to H1 in place of the true inverse. So, the update equation becomes $x_{k+1} = x_k \alpha_k B_k^1 \nabla f(x_k)$ where B_k is an n*n positive definite matrix and α_k is a positive search parameter. α_k should satisfy Armijo-Wolfe conditions. Different update rules for B_k are -
 - Rank 1 (B_{k+1} may not be positive definite)
 - Broyden, Fletcher, Goldfarb, and Shanno (BFGS this can be computed efficiently)
- Stochastic Gradient Descent Stochastic Gradient descent runs faster, but may lead to convergence at a suboptimal minima. In this method the gradient is updated at each sample.

2 Equality constraint optimization

- Here we consider the optimization problem of the form $min \quad f(x)$ $subject to \quad h_i(x) = 0, \quad i = 1, ..., m$
- Let us assume functions $f:\mathbb{R}^n \to \mathbb{R}$, $h_i:\mathbb{R}^n \to \mathbb{R}$ are continuous and differentiable.
- ullet For f to be local minimum at x* without any constraints the necessary and sufficient conditions are -
 - f has zero gradient at x*, i.e. $\nabla f(x*) = 0$
 - Hessian of f is positive semi definite at \mathbf{x}^* i.e $d^T \nabla^2 f(\mathbf{x}^*) d \geq 0$
- For example:

$$f(x) = x_1 + x_2;$$
 $h(x) = x_1^2 + x_2^2 - 2 = 0$

$$\nabla f(x) = [1 \quad 1]^T; \nabla h(x) = [2x_1 \quad 2x_2]^T$$

- Suppose we start at (1,1), we move locally tangentially in direction d such that $f(x+d^T\alpha) < f(x)$; $d^T \nabla f(x) < 0$.
- At local optima x^* , $d^T \nabla f(x^*) = 0$. So d is orthogonal to $\nabla f(x)$
- d is orthogonal to h at x^* . $\nabla f(x^*) = \lambda \nabla h(x^*)$, for a scalar λ . So we cannot move from x^* by satisfying the constraint and decreasing the f simultaneously.

2.1 Lagrange Multiplier

- Single constraint
 - min f(x); subject to h(x) = 0
 - Lagrange multiplier for $\mathcal{L}(x,\mu) = f(x) + \mu h(x)$ is μ .
 - At local minima $\mathcal{L}(x^*, \mu^*)$
 - * $\nabla_x \mathcal{L}(x^*, \mu^*) = 0 \implies \nabla_{x^*} f(x^*) = \mu^* \nabla_{x^*} h(x^*)$
 - $* \nabla_{\mu} \mathcal{L}(x^*, \mu^*) = 0 \implies h(x^*) = 0$

- Multiple constraints
 - min f(x); subject to $h_i(x) = 0 \quad \forall \quad i = 1, ...m$
 - The lagrange multiplier for the optimization is $\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$ Here λ_i is lagrange multiplier for each equality constraint $h_i(x) = 0$
 - If (x^*, λ^*) be the local minimum for \mathcal{L}
 - * $\nabla_x \mathcal{L}(x^*, \lambda_i^*) = 0 \implies \nabla_{x^*} f(x^*) = \lambda_i^* \nabla_{x^*} h_i(x^*)$
 - $* \nabla_{\lambda} \mathcal{L}(x^*, \lambda_i^*) = 0 \implies h_i(x^*) = 0$

3 Inequality Constraint Optimization

- We now want to consider a function that we would like to minimize which has both equality and inequality constraints: minf(x) subject to h(x) = 0 and $g(x) \le 0$
- There are two possible scenarios for this situation.

- Let us take an example for the first scenario: $f(x) = x_1^2 + x_2^2$ and $g(x) = x_1^2 + x_1^2 2$. In this case, the unconstrained local minimum lies in the feasible region.
 - If x^* is local minimum for this example and $g(x^*) < 0$, this implies that the constraint g(x) is inactive.
 - for this x^* , the necessary and sufficient conditions for f remain the same:
 - * The function f has zero gradient at x^* i.e $\nabla f(x^*) = 0$.
 - * The hessian of f is positive semi definite at x^* i.e $d^T \nabla^2 f(x^*) d \geq 0$.
 - * Basically, the constraint here is inactive since at any x: g(x) < 0, f has zero gradient at x*. Even at local minimum, the constraints still remains inactive i.e the local minimum can be deduced by the same conditions similar to the unconstrained case.

• For the second scenario:

$$f(x) = (x_1 - 1.1)^2 + (x_2 - 1.1)^2$$
 and $g(x) = x_1^2 + x_1^2 - 1$

- We can clearly observe that the unconstrained local minimum lies outside the feasible region.
- Basically, the constrained local minimum lies on the surface of the constraint surface and effectively we obtain an optimization problem with an equality constraint g(x) = 0.
- We are able to obtain a local minima when $-\nabla f(x)$ and $\nabla g(x)$ are parallel. This means $\nabla f(x) + \mu \nabla g(x) = 0$.
- Also for any z that is orthogonal to $\nabla g(x)$, $z^T \nabla^2 f(x^*) z \geq 0$
- For x^* , $mu^*g(x^*) = 0$. This is the complimentary slackness condition.
- W.k.t $\mathcal{L}(x,\mu) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x)$ where $\mu_i \geq 0$.
- $-\nabla_x \mathcal{L}(x^*, \mu_i^*) = 0 \implies \nabla_{x^*} f(x^*) + \sum_{i=1}^m \mu_i^* \nabla_{x^*} g_i(x^*) = 0$
- So according to complimentary slackness condition, $mu_i^*g_i(x^*) = 0$. Also, $\nabla_{\mu}\mathcal{L}(x^*, \mu_i^*) = 0$. This implies if $\mu_i > 0$, then $g_i(x^*) = 0$. Otherwise, $\mu_i^* = 0$

4 Karush Kuhn Tucker (KKT) conditions

- We can generalize an unconstrained optimization problem with inequalities using certain conditions called KKT conditions:
- Given a constrained optimization problem: minf(x) subject to $h_i(x) = 0$ and $g_j(x) \leq 0$ for i = 1, ...l and j = 1, ...m
- The Lagrangian is $\mathcal{L}(x,\mu,\lambda) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$
- The following conditions are the KKT conditions:

```
 \begin{array}{l} - \text{ First Order Condition:} \\ \nabla_x^* f(x^*) + \sum_{i=1}^m \mu_i^* g_i(x^*) + \sum_{i=1}^m \lambda_i^* h_i(x^*) = 0 \\ - \text{ Feasibility conditions:} \\ h_j(x^*) = 0 \forall j=1,2,...l \\ g_i(x^*) \leq 0 \forall i=1,2,...l \\ - \text{ Complimentary slackness:} \\ \mu_i^* g_i(x^*) for all i=1,2....m \end{array}
```

- $\mu_i^* \ge 0$
- The Lagrangian should be positive definite.

5 Fritz John Conditions

- Fritz John conditions are same as KKT conditions (as mentioned in above) except the First Order Condition: $\mu_0 \nabla_x^* f(x^*) + \sum_{i=1}^m \mu_i^* g_i(x^*) + \sum_{j=1}^l \lambda_j^* h_j(x^*) = 0$
- Here, we have an additional constraint i.e. $\mu_0 >= 0$. This is required when it is impossible to form linearly independent basis. Hence, $\mu_0 > 0$ if ∇g_i and ∇h_j are linearly independent i.e. when KKT conditions holds.
- Consider the following optimization problem:

```
minimize f(x)

subject to: g_i(x) \le 0, i \in \{1, ..., m\}

subject to: h_i(x) = 0, j \in \{1, ..., l\}
```

where f is the function to be minimized, g_i is the inequality constraints, and h_j is the equality constraints.

- Unlike KKT, Fritz John conditions are a necessary condition for a solution in nonlinear programming to be optimal. In general, they are used as lemma in the proof of the Karush Kuhn Tucker conditions.
 - Let us take an example: $minimize \ x$ such that: $x^2 = 0$ so, f(x) = x $h(x) = x^2$
 - FOC: $\nabla f + \lambda^* \nabla h = 0$ => $1 + \lambda^* 2x = 0$
 - Feasibility conditions: $h(x^*) = 0$ => $(x^*)^2 = 0$ => $x^* = 0$

- As in this example both the conditions are not satisfied, yet clearly $x^* = 0$ is optimal. Thus, KKT conditions are not necessary, but are optimal conditions.
- Hence, the crucial difference between KKT and FJ of optimality conditions is that when there is at least one nonlinear constraint, a constraint qualification (CQ) condition must be satisfied for the KKT conditions to be necessary for optimality. The Fritz-John conditions hold at any local minimizer regardless of whether a CQ holds or not.

Channel Bit Rate Problem: Water Filling Algorithm

• Problem:

- To maximize the transmission rate of a communication system, with 'n' communication
- And the transmission rate of the communication system is: $\sum_{i=1}^{n} log(\alpha_i + x_i)$.
- where power of i^{th} channel is x_i and $\alpha'_i s$ are constants.
- Therefore, the Optimization Problem is:

$$\max_{x} \sum_{i=1}^{n} \log(\alpha_i + x_i)$$

s.t.
$$\sum_{i=1}^{n} x_i = 1$$

$$x_i \ge 0 \quad \forall i$$

- Lagrangian for above problem is: $\mathcal{L}(x,\mu,\lambda) = -\sum_{i=1}^n \log(\alpha_i + x_i) + \sum_{i=1}^n \mu_i(-x_i) + \lambda(\sum_{i=1}^n x_i 1)$
- KKT conditions are:
 - First Order Condition:

$$\frac{-1}{\alpha_i + x_i} - \mu_i^* + \lambda^* = 0$$

- Feasibility Conditions:

$$x_i^* \ge 0 \quad \forall i$$

$$\sum_{i=1}^n x_i^* = 1$$

$$\mu_i^* \ge 0 \quad \forall i$$

- Complementary Slackness Conditions:

$$\mu_i^* x_i^* = 0 \quad \forall i$$

• Now, as $\lambda^* = \mu^* + \frac{-1}{\alpha_i + x_i}$ but from feasibility conditions: $\mu_i^* \geq 0 \ \forall i$

$$=>\lambda^* \ge \frac{-1}{\alpha_i + x_i}$$

Now, two possible cases i.e. $\lambda^* < \frac{1}{\alpha_i}$ or $\lambda^* \ge \frac{1}{\alpha_i}$

Case-1: When
$$\lambda^* < \frac{1}{\alpha_i}$$

 $=> x_i = \frac{1}{\lambda^*} - \alpha_i$ (as from above equations $x_i^* > 0\mu_i^* = 0$

Case-2: when
$$\lambda^* \geq \frac{1}{\alpha_i}$$

This case is not possible as, if $x_i^* > 0$

 $=>\mu_i^*>0$ //But, both cannot be greater that zero simultaneously. Hence, this case is not possible.

• Therefore the original problem of maximizing the transmission rate can be simplified to:

$$\begin{aligned} x_i^* &= \frac{1}{\lambda^*} - \alpha_i \text{ when } \lambda^* < \frac{1}{\alpha_i} \\ &= 0 \text{ other wise and } \sum_{i=1}^n x_i^* = 1 \end{aligned}$$

