# Yuhao Huang

 $\blacksquare$  Email: u1430219@utah.edu / m15298359912@gmail.com

☐ LinkedIn Profile



I am a Ph.D. student in Machine Learning @University of Utah. My research focuses on **generative models**, **graph learning**, **and large language models**, with publications in top-tier conferences including **ICLR**, **ICML and CVPR**. I also have research and industry experience in AI and quantitative analysis for finance.

#### Education

## University of Utah, UT, USA

 $Aug\ 2022-Present$ 

Ph.D. in Applied Mathematics (with a specialization in Machine Learning & Data Science)

GPA: 3.93/4.00

### Northwestern University, IL, USA

Sep 2019 – Jan 2021

Master in Applied Mathematics (Machine Learning & Data Science Track)

GPA: 3.78/4.00

### 

Sep 2015 – Jun 2019

Bachelor in Computing Science

GPA: 87/100

#### Research Interest

(The red square indicates one of my referenced publications or preprints.)



# Deep Generative Model

- Improving diffusion (score-based) and flow-based models, with a focus on □ theoretical analysis [1] from differential equations point of view, □ model- and algorithm-level efficiency optimization [4, 7] and □ applications to image [4, 5], spatiotemporal data and video [1], and scientific data [7] sampling.

#### Numerical and Stochastic Method with Applications to Deep Generative Models

- Improving stochastic algorithms for □ nonconvex optimization [2] □ more efficient training for diffusion (score-based) models [4], image restoration tasks incorporating flow/diffusion models [5].



# **Graph Learning**

# & Large Language Model

- Geometric learning integrated with LLM / State Space Model (Mamba)[3, 6].

## Selected Research Projects



#### Efficient Diffusion/Flow Matching with Guidance

## for Spatiotemperal Data (e.g. Video, Dynamical System) Generation

- Developed on-step sampling diffusion or flow model for sampling the spatiotemperal Data, e.g. video, dynamical system data with previous states or specified information as guidance. Significantly reduced the time comlexity from  $\mathcal{O}(LN)$  to  $\mathcal{O}(L)$ .
- Designed a U-ViT-based architecture to parameterize trajectory integration over vector fields, tailored for spatiotemporal data such as videos and latent variables applications. Designed a deep equilibrium-based model for mean vector field regressor, significantly enhancing memory efficiency.
- Developed an auto-regressive sampling method that uses the previous state as guidance for simulating dynamical system data, enhancing memory efficiency.
- Developed Jacobian regularization framework for robustness and training acceleration.



- Developed GNN-based local geometric learning models and applied a protein fragment algorithm to tokenize protein sequences into a hidden sequential tensor representation.
- Applied hidden sequential tensor representations derived from GNN-based tokenization to fine-tune large-scale protein language models such as ESM-2 or Mamba for protein classification and property prediction.

## **Industry Experience**



Argonne National Laboratory, Chicago Area, IL

May 2024 - Aug 2024

Research Intern,

Worked on flow matching/normalizing generative models in scientific applications.

Snips Media, Chicago, IL

Jun 2020 – Aug 2020

Machine Learning Engineer Intern,

Worked on GANs for data augmentation and YOLO for object detection.



# Quantitative Research for the Financial Industrial

AQUMON Digital Wealth Management, Hong Kong SAR

Nov 2021 - Jul 2022

Quantitative Researcher Intern,

Developed ML models (ARIMA, LSTM, CNN, Attention, Transformer) for time series forecasting.

SGD Asset Management, Shenzhen, China

Feb 2021 - Jul 2021

Quantitative Researcher Intern,

Developed ETF arbitrage models integrated with machine learning techniques for tik-level time series data forecasting.

# Publications and Preprints



(\*: equal contribution)

- 1. ICML2025 Yuhao Huang, Taos Transue, Shih-Hsin Wang, William M Feldman, Hong Zhang, Bao Wang. "Improving Flow Matching by Aligning Flow Divergence". Proceedings of the 42nd International Conference on Machine Learning, 2025.
- 2. CVPR2025 Tao Sun, Yuhao Huang, Li Shen, Kele Xu, Bao Wang. "Investigating the Role of Weight Decay in Enhancing Nonconvex SGD". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025.
- 3. ICLR2025, Oral 1.8% Yuhao Huang\*, Shih-Hsin Wang\*, Justin M. Baker, Yuan-En Sun, Qi Tang, and Bao Wang. "A Theoretically-Principled Sparse, Connected, and Rigid Graph Representation of Molecules". The 13th International Conference on Learning Representations, 2025.
- 4. ICLR2024 Yuhao Huang, Qingsong Wang, Akwum Onwunta, Bao Wang. "Efficient Score Matching with Deep Equilibrium Layers". The 12th International Conference on Learning Representations, 2024.
- 5. Under review Fan Jia, Yuhao Huang, Shih-Hsin Wang, Bao Wang. "Plug-and-Play Image Restoration with Flow Matching: A Continuous Viewpoint". Under review at NeurIPS, 2025
- 6. <u>Under review</u> Shih-Hsin Wang, **Yuhao Huang**, Taos Transue, Justin M. Baker, Jonathan Forstater, Thomas Strohmer, Bao Wang. "Towards Multiscale Graph-based Protein Learning with Geometric Secondary Structural Motifs". Under review at NeurIPS, 2025.
- 7. Under review Yuhao Huang, Justin Baker, Shih-Hsin Wang, Massimiliano Lupo Pasini, Andrea L. Bertozzi, Bao Wang. "A Regularized Training of E(n)-Equivariant Graph Neural Network-assisted Generative Models".
- 8. Preprint Yuhao Huang, David Chopp. "Fast Iterative Algorithm for Eikonal Equation and Applications". arxiv.2106.15869

#### Skills

• Programming Languages: Python, C, CUDA Programming, Linux

• Scientific Computing Tools: Matlab, PETSc

• Frameworks: PyTorch, Jax, Tensorflow

• Libraries: Pytorch-diffeq, Pytorch-geometric, Matplotlib, Pandas, Numpy

## Teaching & Service Experience

• Reviewer: ICLR 2025, ICML 2025

• Volunteer: ICLR 2025

• Teaching: MATH 2210, University of Utah

#### Invited Conference & Presentation

- ICLR 2025 Oral Presentaion: "A Theoretically-Principled Sparse, Connected, and Rigid Graph Representation of Molecules".
- Inaugural CAMDA (Center for Approximation and Mathematical Data Analytics at Texas A&M University) Conference 2023.

