SIMULATION MATLAB CODE for PMI-Based Codebook Enhancement

PMI-Based Codebook Enhancement for Efficient Reference Signaling

VERSION 1.1

2024-07-15

Ph.D. Sangchun Park

Sogang University, Republic of Seoul

Required Applications

Main Application

- Application Name: MATLAB
- Version: R2023a (Other versions are also highly likely to be compatible.)
- Description: A high-level language and interactive environment for numerical computation, visualization, and programming, widely used for data analysis, algorithm development, and modeling.
- Download Link: https://mathworks.com/products/matlab.html

Required MATLAB Toolbox

- Toolbox Name: Statistics and Machine Learning Toolbox
- Description: Provides functions and tools for data analysis, statistical modeling, machine learning, and predictive analytics. (In this simulator, the function "ksdensity" is used for kernel density estimation.)
- Download Link: https://mathworks.com/products/statistics.html

Update History

[2024-07-12] Version 1.0

- Initial version code.

[2024-07-15] Version 1.1

- Update the code for plotting figure 6 &~7

Contents

- Folders/files
- Structures Diagram
- Code Explanation [Demo.m, Figure_3.m]

Folders and files

Folder

File

PMI-based Codebook Enhancement Github Code

 ${\it generate Channel.m-Generate\ channels\ based\ on\ Saleh-Valenzuela}$ ${\it channel\ model}$

enhanceCodebook.m – Generate enhanced codebook using the proposed codebook enhancement method generateDFT.m – Generate DFT codebooks generateVQ.m – Generate perfect location information-based codebooks

 $Sum_rate.m - Evaluate \ sum-rate \ performance \ using \ codebooks$ $rank_adaptive_sum_rate.p - Evaluate \ sum-rate \ using \ the \ rank \ adaptive \ scheme$

KDE_setup.m – Set up for kernel density estimation (KDE)

Plot1.m

Plot2.m Plot3.m

Plot the process of proposed codebook enhancement

location_xs.mat – UE locations generated by SUMO

Demo.m – Demo code for explanation this simulator.

Figure 3.m – Draw figure 3 in the paper

function

- The files in function folder are used in simulations
- File list

ARV_UPA.p

sph2xyz.p

Codebook_DFT.p

SV_channel.p

Codebook_VQ.

xyz2sph.p

inverse_rotation.p

kmeans_plus_clustering.p

laprnd.p

PMI2sph.p

rotation.p

channel

- This folder is generated and populated by generateChannel.m file.

codebook

- This folder is generated and populated by enhanceCodebook.m, generateDFT.m, and generateVQ.m files.

sum_rate

- This folder is generated and populated by $\operatorname{Sum_rate.m}$ file.

Structure Diagram

Code Explanation [Demo.m]

- Execute all parts of the structure diagram to plot the sum-rate results.
- Output figure:

Code Explanation [Figure_3.m]

[CPU: i5-11400F, RAM: 32GB]

Required time: 1870 sec

Required memory: 3GB

- Plot the figure 3 in the paper
- Output figure:

Code Explanation [Figure_6and7.m]

[CPU: i5-11400F, RAM: 32GB]

Required time: 680 sec

Required memory: 3GB

- Plot the figure 6 and figure 7 in the paper
- Output figure:

