# **Additive Feature Attribution**





## What we Gained, What we Lost

### When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined and transparent feature importance definition
- Sparse and reliable importance scores





# What we Gained, What we Lost

### When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined and transparent feature importance definition
- Sparse and reliable importance scores

#### However, we also lost something:

With Linear Regression, we used to be able to:

- Identify the direction of the correlation (through the coefficient sign)
- ...And explain individual examples, by looking at the difference:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$$





# **Explaining Individual Examples**

#### Let's look again at the last equation:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$$

- lacksquare Assuming P(X) is approximated by using a sample...
- ...Then  $\mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$  is just the average prediction on the data

I.e. it is the prediction we could make without access to any input value

### Therefore, the difference above represents the gap between:

- ...What we can predict given all information on one example
- ...And what we can predict with no such information

It's the collective value of all available information





# **Explaining Individual Examples**

#### Due to linearity, the formula can be rewritten as:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right] = \theta^T (x - \mathbb{E}_{x' \in P(X)} [x'])$$
$$= \sum_{j=1}^n \theta_j (x_j - \mathbb{E}_{x'_j \in P(X_j)} [x'_j])$$

Meaning that we can assign a value to every input attribute:

- If we know the attribute, the model output moves from the trivial prediction
- lacksquare ...And the change is given by  $\phi_j(x) = heta_j(x_j \mathbb{E}_{x_j' \in P(X_j)}[x_j'])$

We call  $\phi_i(x)$  the effect of attribute j for the example x



# **Explaining Individual Examples**

#### Due to linearity, the formula can be rewritten as:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right] = \theta^T (x - \mathbb{E}_{x' \in P(X)} [x'])$$
$$= \sum_{j=1}^n \theta_j (x_j - \mathbb{E}_{x'_j \in P(X_j)} [x'_j])$$

Meaning that we can assign a value to every input attribute:

- If we know the attribute, the model output moves from the trivial prediction
- lacksquare ...And the change is given by  $\phi_j(x) = heta_j(x_j \mathbb{E}_{x_j' \in P(X_j)}[x_j'])$

We call  $\phi_i(x)$  the effect of attribute j for the example x

### Can we generalize this process to non-linear models?





### **Additive Feature Attribution**

#### Given an example x, we can try to build an additive attribution model:

$$g(z, x) = \phi_0 + \sum_{j=1}^{n} \phi_j(x) z_j$$
 with:  $z_j \in \{0, 1\}$ 

- $\blacksquare$  Where  $z_i$  is called a simplified input
- lacktriangleright ...And represents the fact that the j-th attribute is known or unknown

### Intuitively, we build a linear explaination for the model local behavior

- Several ML explainability approaches can be seen as attempts at this
- ...Most notably the original LIME method





# **Shapely Values**

#### How do we build the additive attribution model?

- We've already seen how to do it for linear models
- ...But for non-linear models the input features interact with each other

# A possible solution: marginalizing over all subset of remaining features

Let  $\mathcal{X}$  be the set of all input features; then we have:

$$\phi_j(x) = \sum_{S \subset \mathcal{X} \setminus j} \frac{|S|!(n-|S|-1)!}{n!} (\hat{f}(x_{S \cup j}) - \hat{f}(x_S))$$

- lacksquare The sum is over all subsets that do not contain feature j
- The coefficient ensures normalization



# **Shapely Values**

#### The result of our marginalization:

$$\phi_j(x) = \sum_{S \subset \mathcal{X} \setminus j} \frac{|S|!(n-|S|-1)!}{n!} (\hat{f}(x_{S \cup j}) - \hat{f}(x_S))$$

...Are known as Shapely values

- They originate from game theory
- ...In a setup where we want to assign credit to multiple actors for a result
- The actors correspond to our input features, the result to the model output

Shapely values are the only attribution model with some key properties





#### **SHAP**

### Using Shapely values for explanation become prominent with this paper

The work makes a number of contributions:

- It introduces the general idea of additive feature attribution
- It shows how several previous approaches fall into that category
- It show how Shapely values provide "ideal" attribution scores
- It introduces multiple techniques to approximate the values

### Computing Shapely values can be very expensive, for two reasons:

- There is exponential number of terms in the sum
- Many ML models do not support missing values





#### **Kernel SHAP**

### Those issues can be sidestepped by learning a local linear approximator

Given an example x, we can:

- Sample multiple simplified vectors z' of simplified inputs z from  $\{0,1\}^n$
- For every sampled vector, we construce an example:
  - For all j s.t.  $z'_j = 1$ , we put  $x'_j = x_j$  in the example
  - lacksquare We sample all x' s.t.  $z'_j = 0$  from a background set
- We train a particular type of linear model on the obtained examples
- ...Then we compute the Shapely values using the linear formula

### By sampling from the background we marginalize out "missing" attributes

Typically, we use as a background the training set or a sample of that





#### **Kernel SHAP**

#### The method we have just described is referred to as Kernel-SHAP

It works even if we used kernels computed on the original features

- E.g. we can group multiple features, or apply non-linear transformations
- In that case, the Shapely values will apply to the kernels

### Other approximation/computation methods have been defined

- DeepSHAP for Deep NNs
- TreeSHAP for tree models
- ...

**Note:** beware of TreeShap, it is fast an exact, but it relies on a slighly different semantic! Be sure to understand the method you choose to use





#### **SHAP** in Action

### The authors of the SHAP paper maintain a nice Python package

...Which we are going to use to explain our non-linear model

```
In [2]: f = lambda x: xbm.predict(x)
    explainer = shap.KernelExplainer(f, shap.sample(X_train, 100), link='logit')
    shap_values = explainer(X_test)
    with open(os.path.join('..', 'data', 'shap_values.pickle'), 'wb') as fp:
        pickle.dump(shap_values, fp)
100/100[01:05<00:00, 1.58it/s]
```

- We'll focus on the test data, since we want to find the true correlates
- For classifiers, it easier to explain logits rather than probabilities
- The process can be slow, and using a small backgroud set is recommended
- The result contains the Shapely values, the base values, and the original data





#### **Waterfall Plots**

### The SHAP library allows us to build waterfall plots





The bars represent the Shapely values, the colors their sign

#### **Force Plots**

### Waterfall plots can be "compacted" into force plots

Here we have again a plot for example 0:



...And have a plot for example 99



### **Global Force Plots**

# Force plots can be stacked to inspect many examples at once:







#### **Scatter Plots**

### We can use scatter plots to show the effect of a single feature



■ The gray area is the histogram of the chosen feature





# **Beeswarm (Summary) Plot**

We can stack (and color) multiple scatter plots to obtain a beeswarm plot:



■ By checking the color distribution we can indentify linear and non-linear effects





# Scatter (Dependency) Plots

### We can color scatter plots by using another feature to highlight dependency



■ In this case we are coloring the "u12" values by using "u4"





# **Scatter (Dependency) Plots**

### We can let the library choose the best coloring feature



The chosen coloring feature changes how "u12" impacts the output in a hoticeable way