1. In the following circuit assume that all transistors are operating in the saturation region. Also, assume that $\lambda=\gamma=0$, $V_{DD}=3V$, $V_{bias3}=1.9V$, $V_{TH(NMOS)}=0.5V$, $V_{TH(PMOS)}=-0.6V$, $\mu_nC_{ox}=200~\mu\text{A/V}^2$, $(W/L)_1=40$, $\mu_pC_{ox}=100~\mu\text{A/V}^2$, $(W/L)_2=40$, $(W/L)_3=40$, and $R_S=50\Omega$.

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^{2}$$

- a) Find V_{bias1} such that the bias current of M_1 is $I_1=1$ mA.
- b) Calculate the small-signal voltage gain A_{V1}=V_{out1}/V_{in}.
- c) Calculate the small-signal voltage gain A_{V2}=V_{out2}/V_{in}.
- d) Calculate the small-signal output impedance seen at the output nodeVout1.
- e) Calculate the small-signal output impedance seen at the output nodeV_{out2}.

a)
$$ImA = \frac{1}{2} \cdot (200 \times 10^{-6}) \cdot 40 \cdot V_{eff}^{2} :: V_{eff} = 0.5V$$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{bias} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{eff} = 0.5 + 0.5 = 1V$
 $V_{th} = V_{th} + V_{th} +$

$$V_{GS3} = 0$$

$$0 + V_{GS2} = V_{O1}$$

$$V_{IN} - V_{GS1} = V_{O2}$$

$$0 = 9 m_2 V_{GS2} + 9 m_3 V_{GS3} + 9 m_1 V_{GS1}$$

$$9 m_1 V_{GS1} = V_{O2}$$
RS

$$\frac{Vo_2}{Vin} = \frac{gm_i}{\left(\frac{1}{Rc} + gm_i\right)} = 0.167 \text{V}_V$$

- 2. Design a common-source amplifier with a current source load based on the topology shown below with the following design specifications:
 - V_{DD}=3 V
 - Total power consumption of 1.5 mW
 - Peak to peak output signal swing of 2.5 V
 - Absolute value of gain of 40
 - $L = 0.4 \mu m$ for all the devices

Use the following assumptions for your design

The nominal dc level of the output node is 1.5 V

The technology parameters are:

$$\lambda_{(NMOS)} = 0.1 \text{ V}^{-1}, \ \lambda_{(PMOS)} = 0.1 \text{ V}^{-1}, \ \gamma = 0, \ V_{TH(NMOS)} = 0.5 \text{V} \text{ and } V_{TH(PMOS)} = -0.5 \text{V}, \ \mu_n C_{ox} = 0.2 \text{ mA/V}^2, \ \mu_p C_{ox} = 0.1 \text{ mA/V}^2.$$

Note: Use the parameter λ only for calculating the small-signal output resistance (r_0) of the transistors. Do not use λ in any other calculation including the bias current calculations.

Find V_{bias} , DC level of the input, the transistor widths (i.e., W_1 and W_2), and the gain of the circuit.

$$V_{\text{OMAX}} \longrightarrow V_{\text{DG}_2} \angle |V_{\text{th}}|$$
 $V_{\text{DGMAX}} = |V_{\text{th}}|$

$$V_{\text{bias}} = 2.75V - 0.5V = 2.25V$$

$$\frac{1}{2} \cdot (0.2 \times 10^{-3}) \cdot \left(\frac{W}{L}\right) \cdot (0.75 - 0.5)^{2} = \frac{1}{2} \cdot (0.1 \times 10^{-3}) \cdot \left(\frac{W}{L}\right) \cdot (3 - 2.25 - 0.5)^{2}$$

$$\frac{V_0}{V_{in}} = -gm_i \left(|| f_{01} || f_{02} \right)$$

$$= -gm_i \left(\frac{1}{\lambda I_{D1}} || \frac{1}{\lambda I_{D2}} \right)$$

$$= -gm_i \left(\frac{1}{\lambda I_{D1}} || \frac{1}{\lambda I_{D2}} \right)$$

- 3. It is possible to use the <u>bulk terminal</u> of a transistor as an input of an amplifier. Consider the single-stage NMOS amplifier shown below. For $V_{bias}=1.5V$:
- a) What is the region of operation of the transistor?
- b) Calculate the small-signal gain $(A_v=V_{out}/V_{in})$ of the amplifier. Recall that $g_{mb}=\eta g_m$.

Assume, $\lambda = 0$, $\eta = 0.2$, $V_{TH(NMOS)} = 0.5V$, $\mu_n C_{ox} = 100 \mu A/V^2$, $R_D = 1k\Omega$, $(W/L)_{NMOS} = 20$, and $V_{DD} = 3V$.

Small Signal Model:

Vert =
$$VGS - |V_{th}| = 1.5 - 0 - 0.5 = 1V$$

gmb = $ngm = h NnCox $\frac{1}{L} \cdot Vert$
= $(0.2)(100N)(20)(1) = 0.0004$$

$$I_0 = \frac{1}{2} (100 \mu) (20) (1)^2 = 1 m A$$

$$V_D = V_{DD} - I_0 R_0 = 3 - 1 = 2V$$
 $V_{DS} = 2 - 0 = 2V$
 $V_{CS} - V_{CS} - V_{CS} - V_{CS}$
 $V_{CS} - V_{CS} - V_{CS} - V_{CS} - V_{CS}$

kcl:
$$0 = gmbVBS + \frac{Vo}{RD}$$
 $0 = (0.0004)(Vin) + \frac{Vo}{RD}$
 $-\frac{Vo}{RD} = (0.0004)Vin$
 $\frac{Vo}{Vin} = -(0.0004)RD$

$$A_{V} = -0.4 \frac{V}{V}$$

SATURATION

4. Note: In this problem you do not need to use any numerical value for the process parameters. If needed express your answers in terms of RD, RF and/or transistor small-signal parameters gm and

In the following circuit, assuming the MOSFET is in active region:

- a) Calculate the small-signal voltage gain (assume $\lambda \neq 0$).
- b) Find the value of R_F for which the gain of the circuit is +1.
- c) Find the value of R_F for which the gain of the circuit is -1.
- d) State any condition that may be required so that the R_F calculated in part c is realizable.

$$\frac{Vin - V_o}{R_F} = gmVGS + \frac{V_o}{I_o} + \frac{V_o}{R_0}$$

$$\frac{V_0}{r_0} + \frac{V_0}{R_0} + \frac{V_0}{R_F} = \frac{V_{in}}{R_F} - gmV_{in}$$

$$V_0 \left(\frac{1}{r_0} + \frac{1}{R_0} + \frac{1}{R_F}\right) = V_{in} \left(\frac{1}{R_F} - gm\right)$$

$$\frac{\sqrt{V_0}}{V_{in}} = \frac{\left(\frac{1}{R_F} - g_m\right)}{\left(\frac{1}{I_0} + \frac{1}{R_0} + \frac{1}{R_F}\right)} = \frac{R_D \Gamma_0 - R_D R_F \Gamma_0 g_m}{R_F \Gamma_0 + R_D R_F + R_D \Gamma_0}$$

$$\frac{Vin-V_o}{RF} = gmVGS + \frac{V_o}{I_o} + \frac{V_o}{Ro} \qquad C) R_F = \frac{2R_0 r_o}{Ro r_o gm - R_0 - r_o}$$

$$gm > \frac{Ro + r_0}{Ro r_0}$$