Mixture of Bayesian SVM Experts

Presentation for EE491A

Archit Sharma*, Dr. Piyush Rai#

^{*} Department of Electrical Engineering, IIT Kanpur

[#]Department of Computer Science and Engineering, IIT Kanpur

Table of Contents

- 1. Introduction
- 2. Mixture of Bayesian SVMs
- 3. Results

Introduction

- Support Vector Machines (SVM) [1] are extremely popular algorithms for binary classification
- Can be extended to regression, multi-class classification and non-linear learning.
- Hyperparamaters difficult to tune when using Kernels.
- · Prone to overfitting.

The SVM objective can be written as

$$\mathcal{L}(w,R) = \sum_{i=1}^{N} \max(1 - y_i x_i^T w, 0) + R(w)$$

which needs to be minimized for estimating w.

Bayesian SVM

Bayesian SVM was formulated by Polson et al. [4]. They showed that

$$\exp(-2\max(1-y_ix_i^Tw,0)) = \int_0^\infty \frac{1}{\sqrt{2\pi\gamma_i}} \exp(-\frac{1}{2}\frac{(1+\gamma_i-y_ix_i^Tw)^2}{\gamma_i})d\gamma_i$$

This inspired that data augmentation scheme, which allows casts SVM objective into a posterior maximization/estimation problem, something which is well studied by the Bayesians.

3

Mixture of Experts

Mixture of Experts [2] is powerful framework, which essentially pools the effort of relatively simple experts to model a harder problem. There are two components for a mixture of experts framework:

- Experts: Local learner, usually simple, models a subset of input data.
- · Gating Network: Maps the input to the expert.

These models are trained using Expectation Maximization (EM), as the input-expert assignment is not known.

Mixture of Bayesian SVMs

Mixture of Bayesian SVMs

Bayesian SVMs are proposed as local learners in a Mixture of Experts model in this work. Three gating network architectures are experimented with:

- Softmax Gating Network
- · Generative Gating Network
- Polya-Gamma augmented Softmax Gating Network

The proposed model is trained using Expectation Maximization (EM). MCMC routines are easy to derive. Assume $W = \{w_i\}_{i=1}^K$, as the K Bayesian SVM experts.

Softmax Gating Network

The most naive architecture for Softmax Gating Network, as proposed in [2]. Assume $V = \{v_i\}_{i=1}^K$ softmax gating vectors. The probability of input x_i being assigned to expert j is given by

$$\pi_j(x_i) = \frac{\exp(v_j^T x_i)}{\sum_{l=1}^K \exp(v_l^T x_i)}$$

Major Drawback: No closed form updates for the gating vector.

Softmax Gating Network

EM Algorithm

E Step:

$$\begin{split} & \eta_{ij} \leftarrow \exp(x_i^T v_j - 2 \max(0, 1 - y_i x_i^T w_j)) \\ & \eta_{ij} \leftarrow \frac{\eta_{ij}}{\sum_{l=1}^K \eta_{il}} \\ & \tau_{ij} \leftarrow |1 - y_i x_i^T w_j|^{-1} \end{split}$$

M Step:

$$A_{j} \leftarrow diag(\frac{\eta_{1j}}{\tau_{1j}} \dots \frac{\eta_{Nj}}{\tau_{Nj}})$$

$$w_{j} \leftarrow (X^{T}A_{j}X + \lambda I)^{-1}(\sum_{i=1}^{N} \eta_{ij} \frac{\tau_{ij} + 1}{\tau_{ij}} y_{i}x_{i})$$

$$Iterate : v_{j} \leftarrow v_{j} - \alpha(\sum_{i=1}^{N} \left[\eta_{ij} - \frac{\exp(v_{j}^{T}x_{i})}{\sum_{l=1}^{K} \exp(v_{l}^{T}x_{i})}\right] x_{i} - \beta v_{j})$$

Generative Gating Network

Generative gating network makes two major changes:

- Gating network: Each gate models the input (much like Gaussian Mixture Models). The gating parameters are $\{\alpha_k, \mu_k, \Sigma_k\}_{k=1}^K$ and $\pi_j(x_i) \propto \alpha_j \mathcal{N}(x_i|\mu_j, \Sigma_j)$.
- Changed Objective: The model now maximizes $\mathbb{E}[\log p(y,X,\gamma,z|\Theta)]$ instead of $\mathbb{E}[\log p(y,\gamma,z|X,\Theta)]$. Here, γ,z are latent variables corresponding to Bayesian SVM and input-expert assignment.

Drawbacks: The number of parameters has increased significantly. The objective proposed be solved is harder, and indirect to what we are interested in.

Generative Gating Network

EM Algorithm

E Step:

$$\begin{split} & \eta_{ij} \leftarrow \exp(-2\max(0, 1 - y_i x_i^T w_j)) \mathcal{N}(x_i | \mu_j, \Sigma_j) \alpha_j \\ & \eta_{ij} \leftarrow \frac{\eta_{ij}}{\sum_{l=1}^K \eta_{il}} \\ & \tau_{ij} \leftarrow |1 - y_i x_i^T w_j|^{-1} \end{split}$$

M Step:

$$A_{j} \leftarrow diag(\frac{\eta_{1j}}{\tau_{1j}} \dots \frac{\eta_{Nj}}{\tau_{Nj}})$$

$$w_{j} \leftarrow (X^{T}A_{j}X + \lambda I)^{-1}(\sum_{i=1}^{N} \eta_{ij} \frac{\tau_{ij} + 1}{\tau_{ij}} y_{i}x_{i})$$

$$\alpha_{j} \leftarrow \frac{\sum_{i=1}^{N} \eta_{ij}}{N}, \ \mu_{j} \leftarrow \frac{\sum_{i=1}^{N} \eta_{ij}x_{i}}{\sum_{i=1}^{N} \eta_{ij}}, \ \Sigma_{j} \leftarrow \frac{\sum_{i=1}^{N} \eta_{ij}(x_{i} - \mu_{j})(x_{i} - \mu_{j})^{T}}{\sum_{i=1}^{N} \eta_{ij}}$$

Polya-Gamma Augmentation

Polya-Gamma augmentation [3, 5] augments latent variables β to give a Bayesian treatment to logistic regression. In particular, [3] shows that

$$\frac{(e^{\psi})^a}{(1+e^{\psi})^b} = 2^{-b}e^{(a-b/2)\psi} \int_0^{\infty} e^{-\beta\psi^2/2}p(\beta)d\beta$$

This augmentation can be extended to multinomial regression. We can get closed for updates for softmax gating networks using this. Drawbacks: Multiple augmentation, potentially unstable and more initialization dependent.

PG Augmented Softmax Gating Network

EM Algorithm

E Step:

$$\begin{split} \eta_{ij} \leftarrow \exp(\mathbf{x}_i^T \mathbf{v}_j - 2 \max(0, 1 - y_i \mathbf{x}_i^T \mathbf{w}_j)) \\ \psi_{ij} \leftarrow \mathbf{x}_i^T \mathbf{v}_j - \log \sum_{l=1, l \neq j}^K \exp(\mathbf{x}_i^T \mathbf{v}_l) \\ \eta_{ij} \leftarrow \frac{\eta_{ij}}{\sum_{l=1}^K \eta_{il}}, \ \tau_{ij} \leftarrow |1 - y_i \mathbf{x}_i^T \mathbf{w}_j|^{-1}, \ \beta_{ij} \leftarrow \frac{1}{2\psi_{ij}} \tanh(\psi_{ij}) \end{split}$$

M Step:

$$\begin{aligned} A_{j} \leftarrow diag(\frac{\eta_{nj}}{\tau_{nj}})_{n=1}^{N}, \ \Omega_{j} \leftarrow diag(\beta_{nj}\eta_{nj})_{n=1}^{N} \\ \kappa_{j}^{\mathsf{T}} \leftarrow [\eta_{nj}(\frac{1}{2} + \beta_{nj}\log\sum_{l=1,l\neq j}^{N}\exp(x_{n}^{\mathsf{T}}\hat{v}_{l}))]_{n=1}^{N} \\ w_{j} \leftarrow (X^{\mathsf{T}}A_{j}X + \lambda I)^{-1}(\sum_{l=1}^{N}\eta_{ij}\frac{\tau_{ij}+1}{\tau_{ij}}y_{i}x_{i}), \ v_{j} \leftarrow (X^{\mathsf{T}}\Omega_{j}X)^{-1}X^{\mathsf{T}}\kappa_{j} \end{aligned}$$

Results

Some Results

Table 1: LR: Logistic Regression, SVM: Support Vector Machine with RBF Kernel, SS- ζ (T=5): SS-softplus regression with $K_{max}=20$ and T=5 [6], M-GG: Mixture of Bayesian SVM Experts with Generative Gating, M-PG: Mixture of Bayesian SVM experts with Polya-Gamma augmented Softmax gating Networks.

Dataset	LR	SVM	SS- ζ	M-GG	M-PG
banana(3)	43.38	10.28	11.28	9.43	17.72
breast cancer(10)	24.37	23.92	25.43	18.19	19.49
titanic(4)	21.69	21.7	21.49	20.73	21.31
waveform(22)	12.74	9.87	11.0	12.92	8.14
german(21)	21.93	20.79	21.77	19	18.33
image(19)	16.48	2.32	2.2	3.87	9.41

Discussion

- Results strongly support this formulation
- · More analysis for PG and GG gating networks required.
- Explore different extensions: Regression, Multiclass Classification, Kernel learning

Questions?

References i

C. Cortes and V. Vapnik.

Support-vector networks.

Mach. Learn., 20(3):273–297, Sept. 1995.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.

Adaptive mixtures of local experts.

Neural computation, 3(1):79–87, 1991.

N. G. Polson, J. G. Scott, and J. Windle. Bayesian inference for logistic models using pólya-gamma latent variables.

Journal of the American statistical Association, 108(504):1339–1349, 2013.

References ii

J. G. Scott and L. Sun.

Expectation-maximization for logistic regression.

arXiv preprint arXiv:1306.0040, 2013.

M. Zhou.

Softplus regressions and convex polytopes.

arXiv preprint arXiv:1608.06383, 2016.