Page 1 Code fore regression and resulting model

```
library(glmnet)
library(MASS)
library(ISLR)
summary(Boston)
fit1=lm(medv~.,Boston)
summary(fit1)
par(mfrow=c(2,2))
plot(fit1, id.n = 10) # which gives 365, 369, 372, 373
# Calculate hat values
hv = hatvalues(fit1)
hv_max_index = which(hv==max(hv)) # which gives 381
# Calcualte standardized residuals
sr = rstandard(fit1)
sr_max_index = which(sr==max(sr)) # which gives 369
# Calculate cooks distance
ck = cooks.distance(fit1)
ck_max_index = which(ck==max(ck)) # which gives 369
```

Page 2 A screenshot of your diagnostic plot and a few sentences of your explanation

The regression model has been created for the house prices against all other features in the given data. The diagnostic plot is obtained:

As seen from the bottom right Residuals vs Leverage plot, there are several points 372, 373, 369, having large residual values which are almost 6 deviations away from the mean; Similarly, the point 370, 371, 366, 365, 413 has large residual values of 4 deviations away from the mean. These points are identified as outliers. There are several other points on the right of the same plot have high leverage, without having a large residual value. These values may or may not present problems, thus are not identified as outliers.

Page 3 A screenshot of your new diagnostic plot

After removing the 8 outliers identified in Problem 1, the new regression is computed and the new diagnostic plot is drawn:

Page 4 A screenshot of your code for subproblem 2.

```
# Problem 2
# Remove the 3 outliers 365, 370, 373, 369 observed from the plot
Boston1 <- Boston[-c(365, 369, 370, 371, 372,373, 366, 413), ]
fit2=lm(medv~.,Boston1)
summary(fit2)
par(mfrow=c(2,2))
plot(fit2)
plot(fitted(fit2), residuals(fit2));
title("Residual vs Fit. value with outliers removed");
```

Page 5 A screenshot of Box-Cox transformation plot and the best value you chose

After applying the box-cox transformation to the model with outliers removed, the log plot is obtained:

As seem from the plot and sorted in R, the lambda value with the highest log-likelihood is 0.3.

Page 6Using the lambda 0.3 value to transform the dependent values, the new linear regression model is obtained, and the standardized residual vs Fitted values plot is shown:

Compare to the previous one without box-cox transformation applied:

The "banana" shape has gone. Thus this suggests the transformation is helpful. The fitted house price against the true house price plot is shown:

Page 7 Code for subproblems 3 and 4

```
# Problem 3
# boxcox
bc <- boxcox(fit2)</pre>
lambda <- bc$x
lik <- bc$y
combined <- cbind(lambda, lik)</pre>
combined[order(-lik), ]
#lambda is 0.30303030
# regression with transformation
fit3=lm((medv^{1/3}) - 1)/0.3\sim.,Boston1)
summary(fit3)
plot(fit3)
plot(fitted(fit3), residuals(fit3));
title("Residual vs Fit. value with boxcox transformation")
# Plot predicted against true values
plot(Boston1$medv, (predict(fit3) * 0.3 + 1)\(^3\), xlab="actual",ylab="predicted")
abline(a=0,b=1)
title("Predicted vs True values")
```