Philip Pincencia

La Jolla, CA (619) 806-7630 ppincencia@ucsd.edu linkedin.com/in/1618lip 1618lip.github.io/

Education

University of California San Diego

September 2022 - June 2026

BS in Computer Engineering, Minor in Mathematics - 3.82/4.00 GPA

La Jolla, CA

• Relevant Coursework: Operating Systems, Graduate Digital Signal Processing, Graduate Linear Algebra, Graduate Convex Optimization, Stochastic Processes, Abstract Algebra, Computer Architecture, Data Structures and Algorithms, Deep Learning, Networking, AI.

Experience

DSP Systems Engineer Intern

June 2025 - Present

huMannity Medtec

Qualcomm Institute

Valencia, CA

La Jolla, CA

• Working on building prediction algorithms and ETL pipeline for low-level biomarkers.

Software Engineer Intern

October 2024 – March 2025

• Built real-time audio controls (speed/pitch) using PVOC in JavaScript with WaveSurfer API.

- Translated Figma designs into a dynamic web interface using Next.js, Tailwind CSS, and React.
- Implemented music library management in Python and handled metadata via JSON; collaborated using GitLab.

Undergraduate Researcher

June - August 2024

Jacobs School of Engineering

La Jolla, CA

- Built a Variable Order Markov Model using a Multiway Trie in Object-Oriented Python to model melodic dynamics in jazz solos.
- Parsed raw chord changes from the WJazz Database with C++ and Regex for efficient data processing.
- Benchmarked 3 analysis methods and identified the best approach via Machine Learning models.

Leadership

Signal Processing Chair

August 2024 - May 2025

IEEE@UCSD

La Jolla, CA

- Led team to work on DeepFake Detection using Kubernetes and Docker to set up storage and dependencies.
- Implemented and evaluated different architectures including CNN, Xception, and Wavelet-Clip and achieved 96% accuracy on the validation set with over 10,000 images.

Projects

Stochastic Deep Learning for Optimal Trading Strategies | Python, PyTorch, Finance, Jupyter Notebook

- Implemented stochastic trading models visualizing price impact distributions and achieving a 2.7% improvement in Sharpe ratio using nonlinear feedback strategies.
- Developed a neural network-based trading strategy that reduced computation time by 60% compared to numerical solvers, with training achieving 98% accuracy in approximating optimal feedback controls.

Demand Paging and Page Replacement in Linux VM | Java, Linux, Git, OS Kernel, Virtual Memory, Synchronization

- Implemented demand paging to load virtual pages on fault, cutting memory allocation overhead by 40%.
- Built a clock-based replacement policy, reducing page fault latency by 35%.
- Added global swap file and page pinning logic, achieving 95% page fault resolution.

Autoregressive Forecasting with Differencing | C++, Python, CMake, Time Series

- Built a synthetic stock forecasting pipeline using first differencing and AR modeling on GBM data.
- Implemented the **Levinson-Durbin algorithm** in C++ with automated AR order selection via MSE and MAPE.
- Visualized predictions in Python, achieving up to 98% accuracy in trend reconstruction.

Technical Skills

Languages: Python, MATLAB, C/C++, Java, JavaScript, ARM Assembly, LaTeX, SystemVerilog Tools/Libraries: WireShark, JUnit, gdb, Vim, Git, Regex, React, PyTorch, Docker, Kubernetes, NoSQL, Restful APIs

Achievement