工业中的多尺度力学方法

2020/01/11 - 01/15

主办单位:国家自然科学基金委员会

承办单位:清华大学应用力学教育部重点实验室

清华大学高性能计算平台

课程安排

- □ 1/1 徐志平:多尺度力学方法介绍
- □ 1/2 刘 哲:金属合金中的多尺度力学方法
- □ 1/3 曹 鹏:高分子复合材料中的多尺度力学方法
- □ 1/4 林 皎:高性能计算技术
- □ 2/1 洪家旺:第一性原理
- □ 2/2 李晓雁:分子动力学
- □ 3/1 崔一南:位错动力学
- □ 3/2 张 旭:晶体塑性
- □ 4/1 王 涵:机器学习
- □ 4/2 施兴华:时空多尺度
- □ 5/1 倪 勇:相场
- □ 5/2 刘益伦:复合材料跨尺度模拟

多尺度力学方法介绍

- 1. 先进合金、复合材料中的多尺度问题
- 2. 物质科学中的基本概念 原子结构,能量,平衡与涨落,非平衡过程
- 3. 多尺度力学中的基本概念 熵,自由能,相互作用
- 4. 多尺度方法原理 空间多尺度、时间多尺度
- 5. 多尺度方法在先进合金、复合材料中的应用

合金材料

Qiu et al., Mater Sci Engr A, 2013; Li et al., Int J Fatigue 2016

合金材料

density functional theory 化学成分,原子作用

crystal plasticity 晶体塑性

molecular dynamics 晶体结构,位错、缺陷

finite element analysis 结构、界面尺度应力分析

dislocation dynamics 位错动力学

industrial design 工业设计

复合材料

M. Alvarez E. FFA TN 1998-24, Tech Rep 1998

contact cohesive zone model

shear-lag model

复合材料

density functional theory 原子作用,光电性质

phase-field modeling 介观尺度结构、相变、残余应力

full-atom molecular dynamics 纳米尺度结构、力学、传热

finite element analysis 结构、界面尺度应力分析

coarse-grained molecular models 微纳米尺度结构、力学

industrial design 工业设计

时空尺度与工程问题的复杂度

A multiscale and multiphysical simulation paradigm expanding across both the spatial and temporal scales

微结构复杂度及其演化规律

统计模型、特征参数及其演化规律

多尺度力学方法介绍

- 1. 先进合金、复合材料中的多尺度问题
- 2. 物质科学中的基本概念 原子结构,能量,平衡与涨落,非平衡过程
- 3. 多尺度力学中的基本概念 熵,自由能,相互作用
- 4. 多尺度方法原理 空间多尺度、时间多尺度
- 5. 多尺度方法在先进合金、复合材料中的应用

原子结构及其表征 – 粒子

$$g(r) = \frac{1}{\langle n \rangle} \left\langle \sum_{i} \delta(r - r_i) \right\rangle$$

crystalline lattice

lattice defects (dislocations)

radial distribution function

discrete translational/rotational symmetries

continuous rotational symmetry

原子结构及其表征 - 连续

 $\rho(\mathbf{r})$: **density** in continuum theories

fields of displacement, strain, stress, crystal orientation, dislocation density, temperature, ...

能量与运动方程

Schrödinger equation for quantum particles (e.g. electrons)

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = \mathbf{H}\psi(\mathbf{r},t)$$

H: Hamiltonian

Newtonian equation for quantum particles (e.g. nuclei)

$$m_i \frac{\partial^2 \mathbf{r}_i}{\partial t^2} = \mathbf{f}_i(t) = -\frac{\partial E(\mathbf{r}, t)}{\partial \mathbf{r}_i}$$

E: total (potential) energy

$$1k_{\rm B}T \approx 0.025 \,\mathrm{eV}, \qquad \frac{1}{2}Y\epsilon^2a^3 \ll 1 \,\mathrm{eV}$$

平衡与涨落 - 热力学

Maxwell-Boltzmann velocity distribution

$$f(v) = \left(\frac{m}{2\pi k_{\rm B}T}\right)^{3/2} e^{-\frac{mv^2}{2k_{\rm B}T}}$$

kinetic definition of temperature

$$E_{\rm k} = \frac{1}{2} m v_{\rm rms}^2 = \frac{3}{2} k_{\rm B} T$$

model reduction

$$\{\mathbf{r}_i, \mathbf{v}_i\} \rightarrow E, T, S, p, V, \mu, N, \cdots$$

phase space of particles → thermodynamic variables

the 1st law of thermodynamics

$$dE = dQ + dW$$

the **2nd law** of thermodynamics

$$\Delta S_{\rm sys} \geq 0$$

fluctuation!

 $dS = \frac{dQ}{T}$: change in Clausius entropy

非平衡过程 - 输运

Brownian motion

$$\langle r^2(t)\rangle = \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle = 6Dt$$

Einstein 1905; Smoluchowski 1906

Stokes-Einstein equation

$$D = \frac{k_{\rm B}T}{6\pi\eta r}$$

fluctuation-dissipation relations for

$$D = \frac{1}{6t} \langle r^2(t) \rangle = \frac{1}{6t} \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle$$

$$D = \frac{1}{3} \int_0^t \langle \mathbf{v}(0) \cdot \mathbf{v}(\tau) \rangle d\tau$$

shear viscous flow

$$\mu = \frac{1}{2Vk_{\rm B}Tt} \left\langle \sum_{i=1,N} \sum_{j=1,N} p_{xi}(t) p_{xj}(0) [z_i(t) - z_j(0)]^2 \right\rangle$$

$$= \frac{1}{2Vk_{\rm B}Tt} \left\langle \sum_{i=1,N} [z_i(t) p_{xi}(t) - z_i(0) p_{xi}(t)]^2 \right\rangle$$

$$\mu = \frac{1}{Vk_{\rm B}T} \int_0^\infty \mathrm{d}t \langle J(0)J(t)\rangle$$

$$J = \sum_{i=1}^N \left(\frac{p_{xi}p_{yi}}{m} + z_i F_{ix}\right) = m \sum_{i=1}^N \dot{x}_i \dot{z}_j + \frac{1}{2} \sum_{i\neq i} z_{ij} F_{ij}^x$$

thermal transfer

$$\kappa = \frac{1}{2Vk_{\rm B}T^2t} \left\langle \sum_{i=1,N} \left[r_i(t) \tilde{E}_i(t) - r_i(0) \tilde{E}_i(0) \right]^2 \right\rangle$$

$$\kappa = \frac{1}{V k_{\rm B} T^2} \int_0^\infty \langle \mathbf{S}(t) \cdot \mathbf{S}(0) \rangle d\tau, \ \mathbf{S}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i=1,N} \mathbf{r}_i \tilde{E}_i$$

非平衡过程 – 动力学

Far from equilibrium

https://blog.eyewire.org/the-nervous-system-action-potential-crash-course-2/

Active systems

多尺度力学方法介绍

- 1. 先进合金、复合材料中的多尺度问题
- 2. 物质科学中的基本概念 原子结构,能量,平衡与涨落,非平衡过程
- 3. 多尺度力学中的基本概念 熵,自由能,相互作用
- 4. 多尺度方法原理 空间多尺度、时间多尺度
- 5. 多尺度方法在先进合金、复合材料中的应用

Boltzmann's statistical definition entropy

$$S = k_{\rm B} {\rm ln} W$$

configurational entropy

F = E - TS raising T promotes formation of the defects

vibrational entropy

$$S = k_{\rm B} \ln \frac{A}{A_0}$$

the area explored in the phase space of (r, p)

low S

entropic forces

$$f = dF/dR = -TdS/dR$$

Bustamante et al., Science 1994

能量

Time's arrow

 $\boldsymbol{\mathit{E}}_{\mathsf{pot}}$

potential energy

$$F = E - TS$$

$$E = E_{\text{pot}} + E_{\text{pot}}$$

Helmholtz free energy

constant N, V, T; w/ heat exchange

$$G = E - TS + pV$$

Gibbs free energy

constant N, V, T; w/ heat exchange

Jarzynsky equality (1996)

$$e^{-\Delta F/k_{\rm B}T} = \langle e^{-W/k_{\rm B}T} \rangle$$

相互作用 - 物理图像

hydrogen bonding

electrostatic + Van der Waals

metallic bonds

screened ion-ion, ion-electron

covalent bonds

electron-pair sharing

相互作用 - 经验描述

$$V = \sum_{i} E_{i}$$

total potential energy decomposed into terms associated with atoms

$$V = \frac{1}{2} \sum_{ij} \phi(r_{ij}) \quad \text{two-body}$$
$$+ \frac{1}{3} \sum_{ijk} g(r_{ij}) g(r_{ij}) \left(\cos \theta_{ijk} + \frac{1}{3} \right)^2$$

three-body

embedding

two-body

$$E_i = E_i(\bar{\rho}_i) + \frac{1}{2} \sum_{ij} V(r_{ij}) \qquad \bar{\rho}_i = \sum_{ij} \rho_i(r_{ij})$$

相互作用 - 连续模型

strain energy density

$$W(\{\mathbf{e}_i\}) = \frac{E_{tot}(\{\mathbf{e}_i\}) - E_{tot}(\{\mathbf{E}_i\})}{\Omega}$$

deformation gradient

$$\mathbf{e}_i = \mathbf{F}\mathbf{E}_i$$

entropic elasticity

$$W = Nk_{\rm B}T\sqrt{n}\left[\beta\lambda_{\rm chain} - \sqrt{n}\ln\left(\frac{\sinh\beta}{\beta}\right)\right]$$
$$\lambda_{\rm chain} = \sqrt{\frac{I_1}{3}}, \ \beta = L^{-1}\left(\frac{\lambda_{\rm chain}}{\sqrt{n}}\right)$$

extension to non-locality, viscous damping, ...

$$E = E(\rho, \nabla \rho, \cdots)$$

多尺度力学方法介绍

- 1. 先进合金、复合材料中的多尺度问题
- 2. 物质科学中的基本概念 原子结构,能量,平衡与涨落,非平衡过程
- 3. 多尺度力学中的基本概念 熵,自由能,相互作用
- 4. 多尺度方法原理 空间多尺度、时间多尺度
- 5. 多尺度方法在先进合金、复合材料中的应用

空间多尺度

PO4

C1A

C2A

СЗА

C1B

C2A

GL2

C1A

C2A

C1B

concurrent multiscale methods

shape/topology-based coarse-graining

C2B

D3B

C4B

空间多尺度

microscopic dynamics

Hamiltonian description $\{\mathbf{p}_i, \mathbf{q}_i\}$ of particles, time.

model reduction

entropy?

thermodynamics

thermodynamic averages

Curtarolo and Ceder PRL 2002

multiscale (coarse-grained) models

map discrete microscale dynamics to thermodynamics there are interfaces!

时间多尺度

transition state theory

© Encyclopædia Britannica, Inc.

Arrhenius rate

characteristic timescale

$$k \sim v_0 \exp(-E_a/k_B T)$$
 $\tau \sim \frac{1}{v_0} \exp(E_a/k_B T)$

$$\nu_0 \sim 10^{-13} \text{ s}$$
 $E_a \sim 0.75 \text{ eV}, T \sim 300 \text{ K}$
 $\tau \sim 1 \text{ s} (10^{15} \text{ MD steps!})$

时间多尺度

数据与机器学习

Schleder et al. J Phys Mater 2019

多尺度力学方法介绍

- 1. 先进合金、复合材料中的多尺度问题
- 2. 物质科学中的基本概念 原子结构,能量,平衡与涨落,非平衡过程
- 3. 多尺度力学中的基本概念 熵,自由能,相互作用
- 4. 多尺度方法原理 空间多尺度、时间多尺度
- 5. 多尺度方法在先进合金、复合材料中的应用

多尺度方法在先进合金中的应用

Multiscale Modeling of Materials in the Max-Planck Society

http://www.dierk-raabe.com/multiscale-modeling

多尺度方法在先进合金中的应用

Multiscale Modeling of Materials in the Max-Planck Society

http://www.dierk-raabe.com/multiscale-modeling

多尺度方法在先进合金中的应用

Multiscale Modeling of Materials in the Max-Planck Society

http://www.dierk-raabe.com/multiscale-modeling

多尺度方法在先进复合材料中的应用

Pasquali group @ Rice

https://www.nasa.gov/directorates/spacetech/strg/stri/us_comp/

多尺度方法在先进复合材料中的应用

http://us-comp.com/

https://www.nasa.gov/directorates/spacetech/strg/stri/us_comp/

多尺度方法在先进复合材料中的应用

1997, Ministry of International Trade and Industry of Japan 1998-2002, entrusted to NEDO (New Energy and Industrial Technology Development Organization) and conducted at Nagoya University with 11 industries.

小 结

· 复杂度,模型约化,信息传递

电子波函数/密度,原子/粒子位置、动量,位错,位移/温度/相场

- · 微观结构 (模型),能量与运动方程 (物理),数值求解 (方法) 合金,复合材料
- 微观粒子描述,连续场描述

平衡热力学, 熵与涨落

· 多尺度实验方法

结构表征、过程与性能测试

Thanks for your attention.

Email: xuzp@tsinghua.edu.cn

Web: http://xuzhiping.gitlab.io