

WHAT IS CLAIMED IS:

1. A compound of formula

5 or a pharmaceutically acceptable salt thereof, wherein

m is 1 or 2; and n is 0, 1 or 2;

R¹ is (1) an alkyl, alkenyl, alkynyl, cycloalkyl or heterocyclyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or
 10 (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, amino, alkanoylamino, alkylsulfonylamino, alkoxy carbonylamino, alkoxy carbonyl, cyano, halo, azido, alkyl or haloalkyl; provided that
 15
 20
 25

the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R¹ is 0-3;

- wherein each R³ is independently an alkyl, haloalkyl,
 5 aryl, heteroaryl, aryl-alkyl or heteroaryl-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, alkoxy, alkylthiol, amino, alkanoylamino, alkylsulfonylamino, alkylsulfinyl, alkylsulfonyl,
 10 alkoxycarbonylamino, alkoxycarbonyl, cyano, halo, azido, alkyl, haloalkyl or haloalkoxy; and each R⁴ is independently a hydrogen or alkyl radical;

R¹¹ is a -C(O)-R³¹, -C(O)-OR³⁰, -C(O)-NR³²R³¹, -S(O)₂-R³⁰ or
 15 -S(O)₂-NR³²R³¹ radical;

R⁵ and R⁶ are each independently a hydrogen or alkyl radical; or CR⁵-CR⁶ is C=C;

- 20 wherein R⁹ and R¹⁰ are each independently -B-A, provided that the combined total number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R⁹, R¹⁰ and R¹¹ is 0-3;
 25 wherein each B is independently a
 (1) bond;
 (2) alkyl, alkenyl or alkynyl radical optionally substituted by (a) 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino,
 30 alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano or halo, and/or (b) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy,

alkoxy, alkylthio, cyano, halo, alkyl, haloalkyl or haloalkoxy;

- (3) heterocyclyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino,
- 5 alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano, alkyl, haloalkyl or haloalkoxy; or
- (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino,
- 10 alkanoylamino, alkoxycarbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, cyano, halo, alkyl, haloalkyl or haloalkoxy;

each A is independently a

- 15 (1) hydrogen radical;
- (2) halo, cyano or nitro radical;
- (3) $-C(O)-R^{30}$, $-C(O)-OR^{31}$, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$ radical;
- (4) $-OR^{31}$, $-O-C(O)-R^{31}$, $-O-C(O)-NR^{32}R^{31}$ or $-O-C(O)-NR^{33}-$
- 20 $S(O)_2-R^{30}$ radical;
- (5) $-SR^{31}$, $-S(O)-R^{30}$, $-S(O)_2-R^{30}$, $-S(O)_2-NR^{32}R^{31}$, $-S(O)_2-$
 $NR^{33}-C(O)-R^{31}$, $-S(O)_2-NR^{33}-C(O)-OR^{30}$ or $-S(O)_2-NR^{33}-C(O)-$
 $NR^{32}R^{31}$ radical; or
- (6) $-NR^{32}R^{31}$, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-$
- 25 $NR^{32}R^{31}$, $-NR^{33}-C(NR^{32})-NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-$
 $S(O)_2-NR^{32}R^{31}$ radical;

wherein each R^{30} is independently

- (1) alkyl, alkenyl or alkynyl radical optionally substituted by 1-3 radicals of $-CO_2R^{34}$, amino,
- 30 alkylamino, dialkylamino, alkanoylamino, alkoxycarbonylamino, N-(alkoxycarbonyl)-N-(alkyl)amino, aminocarbonylamino, alkylsulfonylamino, hydroxy, alkoxy,

alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo or aralkoxy, arylalkylthio, arylalkylsulfonyl, cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals
 5 are optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, alkanoyl, alkoxy carbonyl, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl,
 10 haloalkyl or haloalkoxy;
 (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, alkoxy carbonyl, hydroxy, alkoxy, alkylthio, cyano,
 15 alkyl, haloalkyl or haloalkoxy; or
 (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, alkoxy carbonyl, hydroxy, alkoxy, alkylthio, cyano, halo,
 20 azido, alkyl, haloalkyl or haloalkoxy;

each R³¹ is independently hydrogen radical or R³⁰;

wherein each R³² is independently
 25 (1) hydrogen radical;
 (2) alkyl, alkenyl or alkynyl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, hydroxy, alkoxy, alkylthio, cyano or halo; or
 30 (3) aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl or cycloalkylalkyl radicals optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, hydroxy, alkoxy, alkylthio, cyano, alkyl, haloalkyl or
 35 haloalkoxy; and

each R³³ is independently

- (1) hydrogen radical;
- (2) alkyl radical optionally substituted by a radical of heterocyclyl, aryl or heteroaryl which is optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy; or
- 10 (3) heterocyclyl, aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy; and
- 15

each R³⁴ is independently hydrogen, alkyl, aryl, heteroaryl, arylalkyl or heteroarylalkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, alkylamino, dialkylamino, alkanoylamino, alkoxy carbonylamino, alkylsulfonylamino, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, halo, alkyl, haloalkyl or haloalkoxy.

25

2. The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

- 30 R¹ is (1) an C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, cycloalkyl or heterocyclyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic
- 35

heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or
 5 (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is
 10 optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)R^3$,
 $-S(O)_2R^3$, $-C(O)R^3$, $-NR^3R^4$, amino, C₁-C₈ alkanoylamino, C₁-C₈ alkylsulfonylamino, C₁-C₈ alkoxy carbonylamino, C₁-C₈ alkoxy carbonyl, cyano, halo, azido, C₁-C₈ alkyl or C₁-C₈
 15 haloalkyl of 1-3 halo radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R¹ is 0-3;

wherein each R³ is independently a C₁-C₈ alkyl, C₁-C₈
 20 haloalkyl of 1-3 halo radicals, aryl, heteroaryl, aryl-C₁-C₄-alkyl or heteroaryl-C₁-C₄-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthiol, amino, C₁-C₈ alkanoylamino, C₁-C₈
 25 alkylsulfonylamino, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₈ alkoxy carbonylamino, C₁-C₈ alkoxy carbonyl, cyano, halo, azido, C₁-C₈ alkyl, C₁-C₈ haloalkyl of 1-3 halo radicals or C₁-C₈ haloalkoxy of 1-3 halo radicals; and each R⁴ is independently a hydrogen
 30 or C₁-C₈ alkyl radical;

R¹¹ is a $-C(O)-R^{31}$, $-C(O)-OR^{30}$, $-C(O)-NR^{32}R^{31}$, $-S(O)_2-R^{30}$ or
 $-S(O)_2-NR^{32}R^{31}$ radical;

R^5 and R^6 are each independently a hydrogen or C_1-C_4 alkyl radical; or $CR^5- CR^6$ is $C=C$;

- 5 wherein R^9 and R^{10} are each independently $-B-A$, provided that the combined total number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^9 , R^{10} and R^{11} is 0-3;
- 10 wherein each B is independently a
 - (1) bond;
 - (2) C_1-C_8 alkyl, C_2-C_8 alkenyl or C_2-C_8 alkynyl radical optionally substituted by (a) 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5
- 15 alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_4 alkylsulfonylamino, hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, cyano or halo, and/or (b) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5 alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_4 alkylsulfonylamino, hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, cyano, halo, C_1-C_4 alkyl, C_1-C_4 haloalkyl of 1-3 halo radicals or C_1-C_4 haloalkoxy of 1-3 halo radicals;
- 20 (3) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5 alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_4 alkylsulfonylamino, hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, cyano, C_1-C_4 alkyl, C_1-C_4 haloalkyl of 1-3 halo radicals or C_1-C_4 haloalkoxy of 1-3 halo radicals;
- 25 (4) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5 alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_4 alkylsulfonylamino, hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, cyano, C_1-C_4 alkyl, C_1-C_4 haloalkyl of 1-3 halo radicals or C_1-C_4 haloalkoxy of 1-3 halo radicals; or
- 30 (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5 alkanoylamino, (C_1-C_4

alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₈ haloalkyl of 1-3 halo radicals or C₁-C₈ haloalkoxy of 1-3 halo radicals;

5

each A is independently a

(1) hydrogen radical;

(2) halo, cyano or nitro radical;

(3) -C(O)-R³⁰, -C(O)-OR³¹, -C(O)-NR³²R³¹ or -C(NR³²)-NR³²R³¹

10 radical;

(4) -OR³¹, -O-C(O)-R³¹, -O-C(O)-NR³²R³¹ or -O-C(O)-NR³³-

S(O)₂-R³⁰ radical;

(5) -SR³¹, -S(O)-R³⁰, -S(O)₂-R³⁰, -S(O)₂-NR³²R³¹, -S(O)₂-

NR³³-C(O)-R³¹, -S(O)₂-NR³³-C(O)-OR³⁰ or -S(O)₂-NR³³-C(O)-

15 NR³²R³¹ radical; or

(6) -NR³²R³¹, -NR³³-C(O)-R³¹, -NR³³-C(O)-OR³⁰, -NR³³-C(O)-

NR³²R³¹, -NR³³-C(NR³²)-NR³²R³¹, -NR³³-S(O)₂-R³⁰ or -NR³³-

S(O)₂-NR³²R³¹ radical;

20 wherein each R³⁰ is independently

(1) C₁-C₈ alkyl, C₂-C₈ alkenyl or C₂-C₈ alkynyl radical

optionally substituted by 1-3 radicals of -CO₂R³⁴, amino,

C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅

alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, N-((C₁-C₄

25 alkoxy)carbonyl)-N-(C₁-C₄ alkyl)amino,

aminocarbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy,

C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄

alkylsulfonyl, cyano, halo, aryl-C₁-C₄-alkoxy, aryl-C₁-

C₄-alkylthio, aryl-C₁-C₄-alkylsulfonyl, C₃-C₈ cycloalkyl,

30 heterocyclyl, aryl or heteroaryl radicals, wherein the

cycloalkyl, heterocyclyl, aryl and heteroaryl radicals

are optionally substituted by 1-3 radicals of amino, C₁-

- C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio,
- 5 C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;
- (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or
- 10 (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;
- 15 (2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or
- 20 (3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

each R³¹ is independently hydrogen radical or R³⁰;

- 25 wherein each R³² is independently
- (1) hydrogen radical;
- (2) C₁-C₈ alkyl, C₂-C₈ alkenyl or C₂-C₈ alkynyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄-alkyl)amino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano or halo; or
- (3) aryl, heteroaryl, aryl-C₁-C₄-alkyl, heteroaryl-C₁-C₄-alkyl, heterocyclyl, heterocyclyl-C₁-C₄-alkyl, C₃-C₈ cycloalkyl or C₃-C₈-cycloalkyl-C₁-C₄-alkyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄

alkylamino, di-(C₁-C₄-alkyl)amino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; and

5

each R³³ is independently

(1) hydrogen radical;

(2) C₁-C₄ alkyl radical optionally substituted by a radical of heterocyclyl, aryl or heteroaryl which is

10 optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄

alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄

15 alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or

(3) heterocyclyl, aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄

20 alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; and

25

each R³⁴ is independently hydrogen or C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₁-C₄-alkyl or heteroaryl-C₁-C₄-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C₁-C₄

30 alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄

alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; and

wherein cycloalkyl is a monocyclic, bicyclic or
5 tricyclic carbocyclic alkyl radical of 3-10 ring
members, which is optionally partially unsaturated or
benzo-fused; heterocyclyl is a radical of a monocyclic
or bicyclic saturated heterocyclic ring system having 5-
8 ring members per ring, wherein 1-3 ring members are
10 oxygen, sulfur or nitrogen heteroatoms, which is
optionally partially unsaturated or benzo-fused and
optionally substituted by 1-2 oxo or thioxo radicals;
aryl is a phenyl, biphenyl or naphthyl radical; and
heteroaryl is a radical of a monocyclic or bicyclic
15 aromatic heterocyclic ring system having 5-6 ring
members per ring, wherein 1-3 ring members are oxygen,
sulfur or nitrogen heteroatoms, which is optionally
benzo-fused or saturated C₃-C₄-carbocyclic-fused.

20

3. The compound of Claim 2 or a pharmaceutically
acceptable salt thereof, wherein

R¹ is (1) a C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl,
25 cycloalkyl or heterocyclyl radical optionally
substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³,
-S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl
or heterocyclyl; or (2) an aryl radical optionally
substituted by an optionally substituted monocyclic
30 heteroaryl or heterocyclyl radical of 5-6 ring members
which is optionally substituted by a phenyl radical or
monocyclic heteroaryl radical of 5-6 ring members; or
(3) a heteroaryl radical optionally substituted by an
optionally substituted phenyl or a monocyclic heteroaryl
35 or heterocyclyl radical of 5-6 ring members which is
optionally substituted by a phenyl radical or monocyclic

- heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)R^3$,
- 5 $-S(O)_2R^3$, $-C(O)R^3$, $-NR^3R^4$, amino, C_1-C_4 alkanoylamino, C_1-C_4 alkylsulfonylamino, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxycarbonyl, cyano, halo, azido, C_1-C_6 alkyl or C_1-C_4 haloalkyl of 1-3 halo radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and
- 10 heterocyclyl radicals in R^1 is 0-3;
- wherein each R^3 is independently a C_1-C_4 alkyl, C_1-C_4 haloalkyl of 1-3 halo radicals, aryl, heteroaryl, aryl- C_1-C_4 -alkyl or heteroaryl- C_1-C_4 -alkyl radical, wherein
- 15 the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthiol, amino, C_1-C_4 alkanoylamino, C_1-C_4 alkylsulfonylamino, C_1-C_4 alkylsulfinyl, C_1-C_4 alkylsulfonyl, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxycarbonyl, cyano, halo, azido, C_1-C_4 alkyl, C_1-C_4 haloalkyl of 1-3 halo radicals or C_1-C_4 haloalkoxy of 1-3 halo radicals; and each R^4 is independently a hydrogen or C_1-C_4 alkyl radical;
- 25 wherein each B is independently a
 (1) bond;
 (2) C_1-C_8 alkyl radical optionally substituted by (a) a radical of amino, C_1-C_4 alkylamino, di-(C_1-C_4 alkyl)amino, C_1-C_5 alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_4 alkylsulfonylamino, hydroxy, C_1-C_4 alkoxy, C_1-C_4 alkylthio, cyano, and/or (b) 1-3 halo radicals, and/or (c) 1-2 radicals of heterocyclyl, aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C_1-C_4 alkylamino, di-(C_1-C_4

alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

(3) heterocyclyl radical; or

(4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

15 wherein each R³⁰ is independently

(1) C₁-C₆ alkyl radical optionally substituted by 1-3 radicals of -CO₂R³⁴, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, N-((C₁-C₄ alkoxy)carbonyl)-N-(C₁-C₄ alkyl)amino, aminocarbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, aryl-C₁-C₄-alkoxy, aryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylsulfonyl, C₃-C₈ cycloalkyl,

20 heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

(2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals; or

(3) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, azido, C₁-C₄ alkyl, C₁-C₄ haloalkyl of 1-3 halo radicals or C₁-C₄ haloalkoxy of 1-3 halo radicals;

each R³¹ is independently hydrogen radical or R³⁰;

wherein each R³² is independently hydrogen or C₁-C₄ alkyl radical;

each R³³ is independently hydrogen or C₁-C₄ alkyl radical; and

each R³⁴ is independently hydrogen or C₁-C₄ alkyl radical.

4. The compound of Claim 3 or a pharmaceutically acceptable salt thereof, wherein

R¹ is (1) a C₁-C₁₂ alkyl radical optionally substituted by 1-3 radicals of -OH, -OR³, -SR³, -S(O)R³, -S(O)₂R³, -C(O)R³, -NR³R⁴, aryl, heteroaryl, cycloalkyl or

heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or

5 monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic

10 heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)R^3$, $-S(O)_2R^3$, $-C(O)R^3$, $-NR^3R^4$, amino, acetylamino,

15 methylsulfonylamino, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxy carbonyl, cyano, halo, C_1-C_6 alkyl or $-CF_3$ radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^1 is 0-3;

20 wherein each R^3 is independently an C_1-C_4 alkyl, $-CF_3$, aryl, heteroaryl, aryl- C_1-C_4 -alkyl or heteroaryl- C_1-C_4 -alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of hydroxy,

25 C_1-C_4 alkoxy, C_1-C_4 alkylthiol, amino, acetylamino, methylsulfonylamino, C_1-C_4 alkylsulfonyl, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxy carbonyl, cyano, halo, C_1-C_4 alkyl, $-CF_3$ or $-OCF_3$; and each R^4 is independently a hydrogen or methyl radical;

30 wherein each B is independently a (1) bond; (2) C_1-C_8 alkyl radical optionally substituted by (a) a radical of amino, C_1-C_4 alkylamino, di-(C_1-C_4

alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, and/or (b) 1-3 halo radicals, and/or (c) 1-2 radicals of heterocyclyl,
 5 aryl or heteroaryl optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl,
 10 -CF₃ or -OCF₃ radicals;
 (3) heterocyclyl radical; or
 (4) aryl or heteroaryl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl,
 15 -CF₃ or -OCF₃ radicals;

each A is independently a
 20 (1) hydrogen radical;
 (2) halo, cyano or nitro radical;
 (3) -C(O)-R³⁰, -C(O)-OR³¹, -C(O)-NR³²R³¹ or -C(NR³²)-NR³²R³¹
 radical;
 (4) -OR³¹, -O-C(O)-R³¹ or -O-C(O)-NR³²R³¹ radical;
 25 (5) -SR³¹, -S(O)-R³⁰, -S(O)₂-R³⁰ or -S(O)₂-NR³²R³¹ radical;
 or
 (6) -NR³²R³¹, -NR³³-C(O)-R³¹, -NR³³-C(O)-OR³⁰, -NR³³-C(O)-
 NR³²R³¹, -NR³³-C(NR³²)-NR³²R³¹, -NR³³-S(O)₂-R³⁰ or -NR³³-
 S(O)₂-NR³²R³¹ radical;

30 wherein each R³⁰ is independently
 (1) C₁-C₆ alkyl radical optionally substituted by 1-3 radicals of -CO₂R³⁴, amino, C₁-C₄ alkylamino, di-(C₁-C₄

alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, N-((C₁-C₄ alkoxy)carbonyl)-N-(C₁-C₄ alkyl)amino, aminocarbonylamino, C₁-C₄ alkylsulfonylamino, hydroxy, C₁-C₄ alkoxy, C₁-C₄

5 alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, aryl-C₁-C₄-alkoxy, aryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylsulfonyl, C₃-C₈ cycloalkyl, heterocyclyl, aryl or heteroaryl radicals, wherein the cycloalkyl, heterocyclyl, aryl and heteroaryl radicals

10 are optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio,

15 C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

(2) heterocyclyl radical optionally substituted by 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl of 1-3 halo radicals or -OCF₃; or

(3) aryl or heteroaryl radical optionally substituted by

20 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

25 1-3 radicals of amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, C₁-C₅ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₄ alkylsulfonylamino, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;

30

each R³¹ is independently hydrogen radical or R³⁰; and

each R³³ is independently a hydrogen or methyl radical.

5. The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein R^{11} is a $-C(O)-R^{31}$ or $-S(O)_2-R^{30}$ radical; provided that the combined total
5 number of aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^9 , R^{10} and R^{11} is 0-2.

6. The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein
10

R^1 is (1) an C_1-C_{12} alkyl radical optionally substituted by 1-3 radicals of $-OH$, $-OR^3$, $-SR^3$, $-S(O)_2R^3$, $-NR^3R^4$,
15 aryl, heteroaryl, cycloalkyl or heterocyclyl; or (2) an aryl radical optionally substituted by an optionally substituted monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical
20 optionally substituted by an optionally substituted phenyl or a monocyclic heteroaryl or heterocyclyl radical of 5-6 ring members which is optionally substituted by a phenyl radical or monocyclic heteroaryl radical of 5-6 ring members; wherein the phenyl, aryl,
25 heteroaryl, cycloalkyl and heterocyclyl radicals of (1), (2) and (3) are optionally substituted by 1-3 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)_2R^3$, $-NR^3R^4$, amino, acetylamino, methylsulfonylamino, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxy carbonyl, cyano, halo,
30 C_1-C_6 alkyl or $-CF_3$ radicals; provided that the total number of phenyl, aryl, heteroaryl, cycloalkyl and heterocyclyl radicals in R^1 is 0-2;

- wherein each R³ is independently a C₁-C₄ alkyl, -CF₃, aryl, heteroaryl, aryl-C₁-C₂-alkyl or heteroaryl-C₁-C₂-alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-2 radicals of hydroxy,
- 5 C₁-C₄ alkoxy, C₁-C₄ alkylthiol, amino, acetylamino, methylsulfonylamino, C₁-C₄ alkylsulfonyl, C₁-C₄ alkoxy carbonylamino, C₁-C₄ alkoxy carbonyl, cyano, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃;
- 10 wherein each B is independently a
(1) bond;
(2) C₁-C₄ alkyl radical optionally substituted by (a) a radical of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ 15 alkoxy)carbonylamino, hydroxy, C₁-C₂ alkoxy, and/or (b) 1-2 halo radicals, and/or (c) a radical of heterocyclyl, aryl or heteroaryl optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ 20 alkoxy)carbonylamino, C₁-C₂ alkylsulfonylamino, hydroxy, C₁-C₂ alkoxy, C₁-C₂ alkylthio, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;
(3) heterocyclyl radical; or
(4) aryl or heteroaryl radical optionally substituted by 25 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₂ alkylsulfonylamino, hydroxy, C₁-C₂ alkoxy, C₁-C₂ alkylthio, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;
- 30 each A is independently a
(1) hydrogen radical;
(2) halo radical;

- (3) $-C(O)-R^{30}$, $-C(O)-OR^{31}$, $-C(O)-NR^{32}R^{31}$ or $-C(NR^{32})-NR^{32}R^{31}$
radical;
- (4) $-OR^{31}$ radical;
- (5) $-SR^{31}$, $-S(O)_2-R^{30}$ or $-S(O)_2-NR^{32}R^{31}$ radical; or
- 5 (6) $-NR^{32}R^{31}$, $-NR^{33}-C(O)-R^{31}$, $-NR^{33}-C(O)-OR^{30}$, $-NR^{33}-C(O)-$
 $NR^{32}R^{31}$, $-NR^{33}-S(O)_2-R^{30}$ or $-NR^{33}-S(O)_2-NR^{32}R^{31}$ radical;

wherein each R^{30} is independently

- (1) $-CF_3$ or C_1-C_4 alkyl radical optionally substituted
10 by 1-2 radicals of $-CO_2R^4$, amino, C_1-C_2 alkylamino, di-
(C_1-C_2 alkyl)amino, C_1-C_2 alkanoylamino, (C_1-C_4
alkoxy)carbonylamino, $N-((C_1-C_4$ alkoxy)carbonyl)- $N-(C_1-$
 C_4 alkyl)amino, hydroxy, C_1-C_4 alkoxy, or aryl- C_1-C_2 -
alkoxy, heterocyclyl, aryl or heteroaryl radicals,
15 wherein the heterocyclyl, aryl and heteroaryl radicals
are optionally substituted by 1-3 radicals of amino, C_1-
 C_2 alkylamino, di-(C_1-C_2 alkyl)amino, C_1-C_2
alkanoylamino, (C_1-C_4 alkoxy)carbonylamino, C_1-C_5
alkanoyl, (C_1-C_4 alkoxy)carbonyl, hydroxy, C_1-C_4 alkoxy,
20 halo, C_1-C_4 alkyl, $-CF_3$ or $-OCF_3$ radicals;
(2) heterocyclyl radical optionally substituted by 1-2
radicals of (C_1-C_4 alkoxy)carbonyl, hydroxy or C_1-C_4
alkyl; or
(3) aryl or heteroaryl radicals optionally substituted
25 by 1-2 radicals of amino, C_1-C_2 alkylamino, di-(C_1-C_2
alkyl)amino, C_1-C_2 alkanoylamino, hydroxy, C_1-C_2 alkoxy,
halo, C_1-C_4 alkyl, $-CF_3$ or $-OCF_3$ radicals;

each R^{31} is independently hydrogen radical or R^{30} ; and

- 30 wherein cycloalkyl is a monocyclic carbocyclic alkyl
radical of 3-6 ring members, which is optionally
partially unsaturated or benzo-fused; and heterocyclyl

is a radical of a monocyclic saturated heterocyclic ring system having 5-8 ring members per ring, wherein 1-3 ring members are oxygen, sulfur or nitrogen heteroatoms, which is optionally partially unsaturated or benzo-fused and optionally substituted by 1-2 oxo or thioxo radicals.

7. The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

R^1 is (1) an C_1-C_4 alkyl radical substituted by 1-2 radicals of $-OH$, $-OR^3$, $-NR^3R^4$, aryl or heteroaryl; or (2) an aryl radical optionally substituted by a monocyclic heteroaryl radical of 5-6 ring members; or (3) a heteroaryl radical optionally substituted by a phenyl radical; wherein the phenyl, aryl and heteroaryl radicals of (1), (2) and (3) are optionally substituted by 1-2 radicals of hydroxy, $-OR^3$, $-SR^3$, $-S(O)_2R^3$, $-NR^3R^4$, amino, acetylamino, methylsulfonylamino, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxy carbonyl, halo, C_1-C_6 alkyl or $-CF_3$ radicals; provided that the total number of phenyl, aryl and heteroaryl radicals in R^1 is 0-2;

25 wherein each R^3 is independently a C_1-C_4 alkyl, $-CF_3$, aryl, heteroaryl, aryl- C_1-C_2 -alkyl or heteroaryl- C_1-C_2 -alkyl radical, wherein the aryl and heteroaryl radicals are optionally substituted by 1-2 radicals of hydroxy, C_1-C_2 alkoxy, C_1-C_2 alkylthiol, amino, acetylamino, 30 methylsulfonylamino, C_1-C_2 alkylsulfonyl, C_1-C_4 alkoxy carbonylamino, C_1-C_4 alkoxy carbonyl, halo, C_1-C_2 alkyl, $-CF_3$ or $-OCF_3$;

wherein each B is independently a

- (1) bond;
- (2) C₁-C₄ alkyl radical; or
- (3) aryl or heteroaryl radical optionally substituted by a radical of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄ alkoxy)carbonylamino, C₁-C₂ alkylsulfonylamino, hydroxy, C₁-C₂ alkoxy, C₁-C₂ alkylthio, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals;
- 10 each A is independently a
- (1) hydrogen radical;
- (2) halo radical;
- (3) -C(O)-R³⁰, -C(O)-NR³²R³¹ or -C(NR³²)-NR³²R³¹ radical;
- (4) -OR³¹ radical;
- 15 (5) -SR³¹, -S(O)₂-R³⁰ or -S(O)₂-NR³²R³¹ radical; or
- (6) -NR³²R³¹, -NR³³-C(O)-R³¹ or -NR³³-S(O)₂-R³⁰ radical;
- wherein each R³⁰ is independently
- (1) heterocyclyl radical optionally substituted by 1-2 radicals of (C₁-C₄ alkoxy)carbonyl, hydroxy or C₁-C₄ alkyl; or
- (2) heteroaryl radicals optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, hydroxy, C₁-C₂ alkoxy, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals; and
- each R³¹ is independently hydrogen radical or
- (1) -CF₃ or C₁-C₄ alkyl radical optionally substituted by 1-2 radicals of hydroxy, C₁-C₂ alkoxy or aryl-C₁-C₂-alkoxy, aryl or heteroaryl radicals, wherein the aryl and heteroaryl radicals are optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, (C₁-C₄

alkoxy)carbonylamino, C₁-C₅ alkanoyl, (C₁-C₄ alkoxy)carbonyl, hydroxy, C₁-C₄ alkoxy, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals; or
5 (2) aryl or heteroaryl radical optionally substituted by 1-2 radicals of amino, C₁-C₂ alkylamino, di-(C₁-C₂ alkyl)amino, C₁-C₂ alkanoylamino, hydroxy, C₁-C₂ alkoxy, halo, C₁-C₄ alkyl, -CF₃ or -OCF₃ radicals.

10 8. The compound of Claim 7 or a pharmaceutically acceptable salt thereof, wherein

R¹ is aryl or heteroaryl radicals optionally substituted by 1-2 radicals of hydroxy, -OR³, -SR³, -S(O)₂R³, -NR³R⁴,
15 amino, acetylamino, methylsulfonylamino, C₁-C₄ alkoxy carbonylamino, C₁-C₄ alkoxy carbonyl, halo, C₁-C₆ alkyl or -CF₃ radicals; provided that the total number of aryl and heteroaryl radicals in R¹ is 1-2;
20 wherein each R³ is independently a C₁-C₄ alkyl, -CF₃, aryl, heteroaryl, arylmethyl or heteroarylmethyl radical;

wherein each B is independently a
25 (1) bond;
(2) C₁-C₄ alkyl radical; or
(3) aryl or heteroaryl radical;

each A is independently a
30 (1) hydrogen radical;
(2) halo radical; or
(3) -C(O)-R³⁰ or -C(O)-NR³²R³¹ radical;

wherein each R³⁰ is independently a heterocyclyl radical optionally substituted by C₁-C₄ alkyl;

- each R³¹ is independently hydrogen radical or
- 5 (1) -CF₃ or C₁-C₄ alkyl radical optionally substituted by 1-2 radicals of aryl or heteroaryl radicals; or
 (2) aryl or heteroaryl radical; and

wherein each R³² is independently a hydrogen or methyl radical.

9. The compound of Claim 8 or a pharmaceutically acceptable salt thereof, wherein

- 15 R¹ is an aryl radical optionally substituted by 1-2 radicals of hydroxy, -OR³, -S(O)₂R³, -NR³R⁴, amino, acetylamino, methylsulfonylamino, halo, C₁-C₄ alkyl or -CF₃ radicals; provided that the total number of aryl and heteroaryl radicals in R¹ is 1-2;

20 R⁵, R⁶, R⁹ and R¹⁰ are each a hydrogen radical; or CR⁵-CR⁶ is C=C; and

- 25 wherein heterocyclyl is a radical of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, 4-benzyl-piperazin-1-yl, pyrimidinyl, tetrahydrofuryl, pyrazolidonyl, pyrazolinyl, pyridazinonyl, pyrrolidonyl, tetrahydrothienyl or its sulfoxide or sulfone derivative, 2,3-dihydroindolyl, tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, 1,2,3,4-tetrahydro-1-oxo-isoquinolinyl, 2,3-dihydrobenzofuryl, benzopyranyl, methylenedioxophenyl or ethylenedioxophenyl; aryl is a phenyl, biphenyl or naphthyl radical; and heteroaryl is

a radical of imidazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrazinyl, triazolyl, furyl, thienyl, oxazolyl, thiazolyl, indolyl, quinolinyl, isoquinolinyl, 5,6,7,8-tetrahydroquinolyl, 5,6,7,8-tetrahydroisoquinolinyl, 5 quinoxalinyl, benzothiazolyl, β -carbolinyl, benzofuryl, benzimidazolyl or benzoxazolyl.

10. The compound of Claim 9 or a pharmaceutically acceptable salt thereof, wherein

R^1 is a phenyl or biphenyl radical optionally substituted by 1-2 radicals of hydroxy, $-OR^3$, $-S(O)_2R^3$, $-NR^3R^4$, amino, acetylamino, methylsulfonylamino, halo, 15 C_1-C_4 alkyl or $-CF_3$ radicals; provided that the total number of aryl and heteroaryl radicals in R^1 is 1-2;

wherein each R^3 is independently an C_1-C_4 alkyl, $-CF_3$, phenyl, heteroaryl, phenylmethyl or heteroarylmethyl 20 radical; and

wherein heterocyclyl is a radical of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, 4-benzyl-piperazin-1-yl or pyrimidinyl; and heteroaryl 25 is a radical of imidazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzofuryl, benzimidazolyl or benzoxazolyl.

30

11. The compound of Claim 10 or a pharmaceutically acceptable salt thereof, wherein

¹ R is a phenyl or biphenyl radical optionally substituted by 1-2 radicals of hydroxy, -OR³, halo, methyl or -CF₃ radicals; provided that the total number of aryl and heteroaryl radicals in R¹ is 1-2; and

5

wherein each R³ is independently an methyl, -CF₃, phenyl, heteroaryl, phenylmethyl or heteroarylmethyl radical.

10

12. The compound of Claim 1 or a pharmaceutically acceptable salt thereof, which is

1-(4-Methoxy-benzenesulfonyl)-3-(2-amino-phenylmethane sulfonylamino)-1H-azepane-2-carboxylic acid;

15 1-(4-Methoxy-benzenesulfonyl)-3-(phenylmethanesulfonyl amino)-1H-azepane-2-carboxylic acid;

1-(4-Chlorophenyl-phenylsulfonyl)-3-(phenylmethane sulfonylamino)-2,3,4,7-tetrahydro-1H-azepine-2-carboxylic acid;

20 1-(4-Methoxy-benzenesulfonyl)-3-(2-nitrophenyl-methanesulfonylamino)-2,3,4,7-tetrahydro-1H-azepine-2-carboxylic acid;

1-(4-Methoxy-benzenesulfonyl)-3-(phenylacroylsulfonyl amino)-2,3,4,7-tetrahydro-1H-azepine-2-carboxylic acid;

25 3-(4-Chlorobenzylloxycarbonylamino)-1-(4-methoxy-benzenesulfonyl)-2,3,4,7-tetrahydro-1H-azepine-2-carboxylic acid; or

3-(3,5-Dichlorobenzylloxycarbonylamino)-1-(4-methoxy-benzenesulfonyl)-2,3,4,7-tetrahydro-1H-azepine-2-

30 carboxylic acid.

13. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.

35 14. A method for prophylaxis or treatment of inflammation comprising administering an effective amount of a compound of Claim 1.

15. A method for prophylaxis or treatment of inflammation comprising administering an effective amount of a composition of Claim 13.

5

16. A method for prophylaxis or treatment of connective tissue degradation comprising administering an effective amount of a compound of Claim 1.

10 17. A method for prophylaxis or treatment of connective tissue degradation comprising administering an effective amount of a composition of Claim 13.

15 18. A method of treating neuroinflammatory disorders or angiogenesis dependent diseases comprising administering an effective amount of a compound of Claim 1.

20 19. A method of treating neuroinflammatory disorders or angiogenesis dependent diseases comprising administering an effective amount of a composition of Claim 13.

25 20. A method of treating rheumatoid arthritis, osteoarthritis, osteopenias, periodontitis, gingivitis, corneal ulceration, epidermal ulceration, gastric ulceration, tumour metastasis, tumour invasion, tumour growth, myelin degradation, cancer, psoriasis, proliferative retinopathies, neovascular glaucoma, 30 ocular tumours, angiofibromas, hemangiomas, nephritis, pulmonary inflammation or restenosis comprising administering an effective amount of a compound of Claim 1.

35 21. A method of treating rheumatoid arthritis, osteoarthritis, osteopenias, periodontitis, gingivitis, corneal ulceration, epidermal ulceration, gastric

- ulceration, tumour metastasis, tumour invasion, tumour growth, myelin degradation, cancer, psoriasis, proliferative retinopathies, neovascular glaucoma, ocular tumours, angiofibromas, hemangiomas, nephritis,
- 5 pulmonary inflammation or restenosis comprising administering an effective amount of a composition of Claim 13.