

Theory of Computation Week 1 Supplementary slides for self study and week 1 video

Much of the material on this slides comes from the recommended textbook by Elaine Rich

Detailed content

Weekly program

Week 01

Set Theory

- □ Sets
- Functions
- □ Relations
- □ Closure

Sets

- ☐ A **set** is simply a collection of objects.
- ☐ We call the objects *elements* or *members* of the set
- May contain any type of object: numbers, symbols, other sets,...
 - Set membership: ∈
 - Non-membership: ∉
 - Subset: ⊆
 - Proper subset
 - Empty set: ∅
 - Infinite set contains infinitely many elements
 - E.g., set of integers {...-2, -1, 0, 1, 2,...}

Defining a Set

- \square By *enumerating* the elements of S.
- ☐ By using the *characteristic function* of *S*.
 - Often when S is defined as a subset of other set.
- ☐ If we use a program to define a set, it can
 - return an enumeration of all elements of S
 - *True* if run on some element that is in *S*, and *False* if run on an element that is not in *S*.

Sets example

- $S_1 = \{13, 11, 8, 23\}.$
- $S_2 = \{8, 23, 11, 13\}.$
- $S_3 = \{8, 8, 23, 23, 11, 11, 13, 13\}.$
- $S_4 = \{apple, pear, banana, grape\}.$
- $S_5 = \{\text{January, February, March, April, May, June, July, August, September, October, November, December}\}.$
- $S_6 = \{x : x \in S_5 \text{ and } x \text{ has 31 days} \}.$
- S₇ = {January, March, May, July, August, October, December}.

Set Cardinality

- ☐ How many elements does S contain?
- \square If $S=\{2,7,11\}$ then $|S|=|\{2,7,11\}|=3$.
- We can have three different kinds of answers
 - ☐ If S is finite then a natural number
 - ☐ If S has the same number of elements as there are integers then it is 'countably infinite'
 - ☐ If S has more elements than there are integers then 'uncountably infinite' or 'uncountable'

Set Cardinality

☐ The Infinite Hotel Paradox - Jeff Dekofsky

https://www.youtube.com/watch?v=Uj3_KqkI9Zo

Sets - What you need to know

- □ Be able to determine the union (\cup), intersection (\cap), difference (-), complement (overbar), and power set $|P(X)| = 2^X$ of any given set.
- ☐ Proving **equality of sets** X and Y by:
 - Showing every element of X is an element of Y and vice versa (i.e., show that X ⊆ Y and Y ⊆ X to show X = Y.)
 - Mathematical induction
 - Case enumeration

Set Operations: relating sets to each other

Sets of Sets

 \Box The *power set* of A is the set of all subsets of A.

Let
$$A = \{1, 2, 3\}$$
. Then:

$$\mathcal{G}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

- $\square \Pi \subseteq \mathcal{G}(A)$ is a *partition* of a set A iff:
 - no element of Π is empty,
 - lacktriangle all pairs of elements of Π are disjoint, and
 - the union of all the elements of Π equals A.

Partitions of A:

$$\{\{1\}, \{2, 3\}\}\$$
 or $\{\{1, 3\}, \{2\}\}\$ or $\{\{1, 2, 3\}\}.$

Sets of Sets

☐ If S is a set where |S| = n, then the number of elements in the power set of S, $\mathcal{G}(S)$ is 2^n

Relations

- ☐ An *ordered pair* is a sequence of two objects, written: (*x*, *y*)
- □ The *Cartesian product* of two sets A and B is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$. We write it as: $A \times B$
- \square A *binary relation* over two sets A and B is a subset of $A \times B$.
- \square An *n-ary relation* over sets $A_1, A_2, ..., A_n$ is a subset of $A_1 \times A_2 \times ... \times A_n$

Relations: Examples

Let A be: {Dave, Sara, Billy}

Let *B* be: {cake, pie, ice cream}

Cartesian Product

```
A × B = {(Dave, cake), (Dave, pie), (Dave, ice cream), (Sara, cake), (Sara, pie), (Sara, ice cream), (Billy, cake), (Billy, pie), (Billy, ice cream)}.
```

A Binary Relation

```
Dessert= {(Dave, cake), (Dave, ice cream), (Sara, pie), (Sara, ice cream)}
```


Relations: Examples

Let A be: {Dave, Sara, Billy, Beth, Mark, Cathy, Pete}

A Ternary Relation

Child-of= {(Sara, Dave, Billy), (Beth, Mark, Cathy), (Cathy, Billy, Pete)}

Let \mathbb{Z}^+ = set of positive integers

A Ternary Relation

Reminder-of = $\{(3,2,1), (5,3,2), (7,4,3) \dots\}$

Properties of Relations

 $R \subseteq A \times A$ is **reflexive** iff, $\forall x \in A \ ((x, x) \in R)$.

- Address defined as "lives at same address as".
- \leq defined on the integers. For every integer x, $x \leq x$.

1		
	1	
		1

Properties of Relations

 $R \subseteq A \times A$ is **symmetric** iff $\forall x, y ((x, y) \in R \rightarrow (y, x) \in R)$.

- Address is symmetric.
- ≤ is not symmetric.

	*	*				
1				1		
1						
	*					
(b)						

Properties of Relations

 $R \subseteq A \times A$ is *transitive* iff:

$$\forall x, y, z (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R).$$

- <
- Address
- Mother-of
- Ancestor-of

Equivalence Relations

A relation $R \subseteq A \times A$ is an **equivalence relation** iff it is:

- reflexive,
- symmetric, and
- transitive.

- Equality
- Lives-at-Same-Address-As
- Same-Length-As

{{1,2}, {2,3}}

 $\{\{1,2\}, \{2,3\}, \{1,1\}, \{2,2\}, \{3,3\}, \{4,4\}, \{5,5\}\}$

 $\{\{1,2\}, \{2,3\}, \{1,1\}, \{2,2\}, \{3,3\}, \{4,4\}, \{5,5\}, \{2,1\}, \{3,2\}, \{1,3\}, \{3,1\}\}$

Equivalence Classes

• An equivalence relation *R* on a set *S* carves *S* up into a set of clusters or islands, which we'll call *equivalence classes*. This set of equivalence classes has the following key property:

$$\forall s, t \in S ((s \in class_i \land (s, t) \in R) \rightarrow t \in class_i).$$

- If R is an equivalence relation on a nonempty set A, then the set of equivalence classes of R is a partition Π of A. Because Π is a partition:
 - (a) no element of Π is empty;
 - (b) all members of Π are disjoint; and
 - (c) the union of all the elements of Π equals A.

Closure

□ A binary relation *R* on a set *A* is *closed under* property *P* if and only if *R possesses P*.

Examples

< on the integers, P = transitivity

 \leq on the integers, P = reflexive

☐ The *closure* of *R* under *P* is a smallest set that includes *R* and that is closed under *P*.

Closure

- \Box Let $R = \{(1, 2), (2, 3), (3, 4)\}$ defined on a set $A = \{1, 2, 3, 4\}$.
- \Box The reflexive closure of R is:

 \Box The transitive closure of R is:

Closure

 \Box Let $R = \{(1, 2), (2, 3), (3, 4)\}$ defined on a set $A = \{1, 2, 3, 4\}$.

 \Box The reflexive closure of R is:

$$\{(1, 2), (2, 3), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4)\}$$

 \Box The transitive closure of R is:

$$\{(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)\}$$

Functions

□ A function f from a set A to a set B is a mapping of elements of A to elements of B such that <u>each element</u> of A maps to <u>exactly one element</u> of B.

$$\forall x \in A ((((x, y) \in f \land (x, z) \in f) \rightarrow y = z) \land \exists y \in B ((x, y) \in f))$$

Let A be: {Dave, Sara, Billy}

Let *B* be: {cake, pie, ice cream}

- □ Dessert = {(Dave, cake), (Dave, ice cream), (Sara, pie), (Sara, ice cream)} is not a function.
- \square succ(n) = n + 1 is a function.

Types of Functions

 f: A → B is a unary function that maps from a single elements to another single element.

Ex:
$$succ(n) = n+1$$

f: A X B → C is a binary function that maps from an ordered pair to a value.

$$Ex: +(2,3) = 5$$

• $f: A_1XA_2X...XA_n \rightarrow B$ is a **n-ary function** that maps from a n-tuple to another single element.

Ex:
$$volume(h,l,w) = h*l*w$$

Properties of Functions

- f: A → B is a total function on A iff it is a function that is defined on all elements of A.
- f: A → B is a partial function on A iff f is a subset of A
 × B and f is defined on zero or more elements of A.
- f: A → B is one-to-one iff no two elements of A map to the same element of B.
- f: A → B is onto iff every element of B is the value of some element of A.

Properties of Functions

1 2 3 4 5 6 $A \times X \qquad A \times X \qquad$

Properties of Functions on Sets

 \square Commutativity: $A \cup B = B \cup A$, $A \cap B = B \cap A$

 \square Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

 \square Idempotency: $A \cup A = A$, $A \cap A = A$

 \square Distributivity: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $(A \cup B) \cap A = A$, $(A \cap B) \cup A = A$

□ Identity: $A \cup \emptyset = A$

 \square Zero: $A \cap \emptyset = \emptyset$

□ Self Inverse: $\neg \neg A = A$

□ De Morgan's: $\neg (A \cup B) = \neg A \cap \neg B$ and

 $\neg (A \cap B) = \neg A \cup \neg B$

☐ Absorption: