```
import numpy as np
import pandas as pd
from typing import Dict, Tuple
from scipy import stats
from IPython.display import Image
from IPython.display import Image
from sklearn.feature extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.datasets import load iris, load boston
from sklearn.model_selection import cross_val_score
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.model selection import GridSearchCV, RandomizedSearchCV
from sklearn.metrics import accuracy_score, balanced_accuracy_score
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
from sklearn.metrics import confusion matrix
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export graphviz
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import mean absolute error, mean squared error, mean squared log error,
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances, manhattan_distan
from collections import defaultdict
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib venn import venn2
%matplotlib inline
sns.set(style="ticks")
```

Чтение и обработка данных

```
data = pd.read_csv('winemag-data_first150k.csv')
data.head()
```

	Unnamed: 0	country	description	designation	points	price	province	region_1	reg
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	
			Ripe aromas	Carodorum					
- ◀ -									•

```
data.shape
     (150930, 11)
description data = data[data['description'].notnull()]
description data.shape
     (150930, 11)
title = description_data['designation'].values
title[0:5]
     array(["Martha's Vineyard", 'Carodorum Selección Especial Reserva',
            'Special Selected Late Harvest', 'Reserve', 'La Brûlade'],
           dtype=object)
descriptions = description data['description'].values
descriptions[0:5]
     array(['This tremendous 100% varietal wine hails from Oakville and was aged over three y
            'Ripe aromas of fig, blackberry and cassis are softened and sweetened by a slathe
            'Mac Watson honors the memory of a wine once made by his mother in this tremendo.
            "This spent 20 months in 30% new French oak, and incorporates fruit from Ponzi's
            'This is the top wine from La Bégude, named after the highest point in the vineya
           dtype=object)
    4
description data.keys()
     Index(['Unnamed: 0', 'country', 'description', 'designation', 'points',
            'price', 'province', 'region_1', 'region_2', 'variety', 'winery'],
           dtype='object')
wine ids = description data['Unnamed: 0'].values
wine_ids
                                 2, ..., 150927, 150928, 150929])
    array([ 0,
                        1,
%%time
tfidf = TfidfVectorizer()
description matrix = tfidf.fit transform(descriptions)
description matrix
    CPU times: user 4.41 s, sys: 30.3 ms, total: 4.44 s
    Wall time: 4.45 s
description matrix
```

Фильтрация на основе содержания. Метод k-ближайших соседей

```
class SimplerKnnRecomender:
 def __init__(self, X_matrix, X_ids, X_title, X_overview):
        Входные параметры:
       X matrix - обучающая выборка (матрица объект-признак)
       X_ids - массив идентификаторов объектов
       X description - массив описаний объектов
       X overview - массив описаний объектов
        .....
        #Сохраняем параметры в переменных объекта
        self. X matrix = X matrix
        self.df = pd.DataFrame(
            {'id': pd.Series(X_ids, dtype='int'),
            'description': pd.Series(X title, dtype='str'),
            'overview': pd.Series(X overview, dtype='str'),
            'dist': pd.Series([], dtype='float')})
 def recommend_for_single_object(self, K: int, \
                X_matrix_object, cos_flag = True, manh_flag = False):
       Метод формирования рекомендаций для одного объекта.
        Входные параметры:
        К - количество рекомендуемых соседей
        X matrix object - строка матрицы объект-признак, соответствующая объекту
        cos flag - флаг вычисления косинусного расстояния
       manh flag - флаг вычисления манхэттэнского расстояния
        Возвращаемое значение: К найденных соседей
        .....
        scale = 1000000
        # Вычисляем косинусную близость
        if cos flag:
            dist = cosine_similarity(self._X_matrix, X_matrix_object)
            self.df['dist'] = dist * scale
            res = self.df.sort_values(by='dist', ascending=False)
            # Не учитываем рекомендации с единичным расстоянием,
            # так как это искомый объект
            res = res[res['dist'] < scale]
        else:
            if manh flag:
                dist = manhattan distances(self. X matrix, X matrix object)
```

```
else:
                dist = euclidean distances(self. X matrix, X matrix object)
            self.df['dist'] = dist * scale
            res = self.df.sort_values(by='dist', ascending=True)
            # Не учитываем рекомендации с единичным расстоянием,
            # так как это искомый объект
            res = res[res['dist'] > 0.0]
       # Оставляем К первых рекомендаций
       res = res.head(K)
        return res
test id = 11
print(title[test id])
print(descriptions[test_id])
     Estate Vineyard Wadensvil Block
     From 18-year-old vines, this supple well-balanced effort blends flavors of mocha, cherry
test matrix = description matrix[test id]
test_matrix
     <1x30748 sparse matrix of type '<class 'numpy.float64'>'
             with 38 stored elements in Compressed Sparse Row format>
skr1 = SimplerKnnRecomender(description_matrix, wine_ids, title, descriptions)
# 15 вин, наиболее похожих на Estate Vineyard Wadensvil Block
# в порядке убывания схожести на основе косинусного сходства
rec1 = skr1.recommend_for_single_object(15, test_matrix)
rec1
```

	id	description	overview	dist
314	314	Durant Vineyard Bishop Block	This gorgeous wine deftly integrates a lively	240817.816706
98668	98668	Bucher Vineyard	Forward and delicious, a vibrant wine that's f	239677.127659
122788	122788	Bucher Vineyard	Forward and delicious, a vibrant wine that's f	239677.127659
66340	66340	NaN	A soft, herbaceous wine that's destined	235219.103194

При поиске с помощью Евклидова расстояния получаем такой же результат rec2 = skr1.recommend_for_single_object(15, test_matrix, cos_flag = False) rec2

	id	description	overview	dist
314	314	Durant Vineyard Bishop Block	This gorgeous wine deftly integrates a lively	1.232219e+06
98668	98668	Bucher Vineyard	Forward and delicious, a vibrant wine that's f	1.233145e+06
122788	122788	Bucher Vineyard	Forward and delicious, a vibrant wine that's f	1.233145e+06
149980	149980	NaN	A soft, herbaceous wine that's destined for ea	1.236755e+06
66340	66340	NaN	A soft, herbaceous wine that's destined for ea	1.236755e+06
137724	137724	Viña Pedro Gonzalez	Ripe and smooth, with hints of molasses, toast	1.249305e+06
115644	115644	Viña Pedro Gonzalez	Ripe and smooth, with hints of molasses, toast	1.249305e+06
112936	112936	Halkidiki Vineyards	This simple, supple, modern Merlot blends blac	1.251913e+06
15136	15136	Halkidiki Vineyards	This simple, supple, modern Merlot blends blac	1.251913e+06
6417	6417	NaN	Old vines help give smoothness and concentrati	1.253660e+06

[#] Манхэттэнское расстояние дает абсолютно иные результаты поиска rec3 = skr1.recommend_for_single_object(15, test_matrix, cos_flag = False, manh_flag = True)

	id	description	overview	dist
128156	128156	NaN	Sweet and fruity.	7.097305e+06
116396	116396	NaN	Sweet and fruity.	7.097305e+06
144597	144597	NaN	Sulfury, soft and sweet.	7.111033e+06
144862	144862	Picnic Hill Vineyard Old Vines	Hot, sweet and Porty.	7.264079e+06
144858	144858	NaN	Sweet, overripe and rough.	7.284878e+06
103568	103568	NaN	Thin, green and tannic.	7.338500e+06
36008	36008	NaN	Thin, green and tannic.	7.338500e+06
63757	63757	NaN	Unripe, with feline aromas and flavors.	7.355518e+06
130747	130747	NaN	Unripe, with feline aromas and flavors.	7.355518e+06
107797	107797	NaN	Unripe, with feline aromas and flavors.	7.355518e+06
128458	128458	NaN	Very tannic, rough.	7.392086e+06
116483	116483	NaN	Very tannic, rough.	7.392086e+06

Коллаборативная фильтрация. Метод на основе сингулярного разложения

data.head()

	Unnamed:	country	description	designation	points	price	province	region_1	reg
0	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	
			Ripe aromas	Carodorum					
4									•

data3 = data[30000:55000]

[#] Количество уникальных виноделен len(data3['winery'].unique())

```
# Количество уникальных вин
len(data3['designation'].unique())
     11196
# Сформируем матрицу взаимодействий на основе рейтингов
# Используется идея из статьи - https://towardsdatascience.com/beginners-guide-to-creating-an
def create utility matrix(data):
   itemField = 'designation'
   userField = 'winery'
   valueField = 'points'
   userList = data[userField].tolist()
   itemList = data[itemField].tolist()
   valueList = data[valueField].tolist()
   users = list(set(userList))
   items = list(set(itemList))
   users index = {users[i]: i for i in range(len(users))}
   pd_dict = {item: [0.0 for i in range(len(users))] for item in items}
   for i in range(0,data.shape[0]):
       item = itemList[i]
       user = userList[i]
       value = valueList[i]
       pd_dict[item][users_index[user]] = value
   X = pd.DataFrame(pd dict)
   X.index = users
   itemcols = list(X.columns)
   items_index = {itemcols[i]: i for i in range(len(itemcols))}
   return X, users_index, items_index
%%time
user_item_matrix, users_index, items_index = create_utility_matrix(data3)
     CPU times: user 11.9 s, sys: 1.16 s, total: 13.1 s
     Wall time: 12.6 s
user_item_matrix
```

	NaN	Yarrabank Cuvée	Le Franette	Vigne Vecchie della Cappelletta	Avila Beach Sunset Dry Rosé of	Jules Réserve	Second Generation	Satrape
Château La Croix- Davids	90.0	0.0	0.0	0.0	0.0	0.0	0.0	C
Quadrant	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C
Château Salitis	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C
Dark Horse	85.0	0.0	0.0	0.0	0.0	0.0	0.0	C
San Giuseppe	85.0	0.0	0.0	0.0	0.0	0.0	0.0	C
•••		•••						
Comtesse Thérèse	87.0	0.0	0.0	0.0	0.0	0.0	0.0	C
Freeman	88.0	0.0	0.0	0.0	0.0	0.0	0.0	(

Выделение тестовой строки
user_item_matrix__test = user_item_matrix.loc[['San Giuseppe']]
user_item_matrix__test

	NaN	Yarrabank Cuvée	Le Franette	Vigne Vecchie della Cappelletta		Jules Réserve	Second Generation	Satrapezo
San Giuseppe	85.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4								>

Оставшаяся часть матрицы для обучения
user_item_matrix__train = user_item_matrix.loc[taster_names]
user_item_matrix__train

	NaN	Yarrabank Cuvée	Le Franette	Vigne Vecchie della Cappelletta	Avila Beach Sunset Dry Rosé of	Jules Réserve	Second Generation	Satrapez
Louis Max	86.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Luigi Pira	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mauro Veglio	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Mounts	88.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Oddero	90.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
•••	•••				•••	•••		
Château Clos Haut- Peyraguey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Ronco delle Betulle	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rendition	90.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Keermont	9N N	0.0	0.0	n n	nη	N N	n n	∩

%%time

U, S, VT = np.linalg.svd(user_item_matrix__train.T)
V = VT.T

CPU times: user 9min 35s, sys: 12.6 s, total: 9min 48s

Wall time: 5min 1s

Матрица соотношения между дегустаторами и латентными факторами U.shape

(11196, 11196)

Матрица соотношения между объектами и латентными факторами $V. {\sf shape}$

(7405, 7405)

S.shape

(7405,)

```
Sigma = np.diag(S)
Sigma.shape
    (7405, 7405)
# Диагональная матрица сингулярных значений
Sigma
    array([[5.33232100e+03, 0.00000000e+00, 0.00000000e+00, ...,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [0.00000000e+00, 1.25945475e+03, 0.00000000e+00, ...,
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [0.00000000e+00, 0.00000000e+00, 1.18046642e+03, ...,
             0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
            [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
            1.58212049e-14, 0.00000000e+00, 0.00000000e+00],
            [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
             0.00000000e+00, 1.03628788e-14, 0.00000000e+00],
            [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
             0.00000000e+00, 0.00000000e+00, 8.51763513e-15]])
# Используем 3 первых сингулярных значения
r=3
Ur = U[:, :r]
Sr = Sigma[:r, :r]
Vr = V[:, :r]
# Матрица соотношения между виноделом и латентными факторами
test winery = np.mat(user item matrix test.values)
test winery.shape, test winery
     ((1, 11196), matrix([[85., 0., 0., ..., 0., 0., 0.]]))
tmp = test winery * Ur * np.linalg.inv(Sr)
tmp
    matrix([[-0.01590941, -0.00227796, 0.00225625]])
test_winery_result = np.array([tmp[0,0], tmp[0,1], tmp[0,2]])
test_winery_result
    array([-0.01590941, -0.00227796, 0.00225625])
# Вычисляем косинусную близость между текущим виноделом
# и остальными виноделами
cos sim = cosine similarity(Vr, test winery result.reshape(1, -1))
cos sim[:10]
```

```
array([[ 9.99564026e-01],
            [-2.79442277e-16],
            [ 3.10425969e-17],
            [ 9.96784967e-01],
            [ 9.99999535e-01],
            [ 1.00000000e+00],
            [ 9.99928466e-01],
            [-4.33543932e-02],
            [ 9.99997669e-01],
            [ 4.28218464e-01]])
# Преобразуем размерность массива
cos sim list = cos sim.reshape(-1, cos sim.shape[0])[0]
cos sim list[:10]
     array( 9.99564026e-01, -2.79442277e-16, 3.10425969e-17, 9.96784967e-01,
             9.99999535e-01, 1.00000000e+00, 9.99928466e-01, -4.33543932e-02,
             9.99997669e-01, 4.28218464e-01])
# Находим наиболее близкого винодела
recommended_winery_id = np.argsort(-cos_sim_list)[0]
recommended winery id
     3171
test winery
     matrix([[85., 0., 0., ..., 0., 0., 0.]])
# Получение названия вина
wine list = list(user item matrix.columns)
def film name by movieid(ind):
   try:
       wine = wine list[ind]
       #print(wineId)
        #flt links = data3[data['movieId'] == wineId]
       #tmdbId = int(flt_links['tmdbId'].values[0])
        #md_links = df_md[df_md['id'] == tmdbId]
        #res = md links['title'].values[0]
       return wine
   except:
       return ''
# Вина, текущей винодельни:
i=1
for idx, item in enumerate(np.ndarray.flatten(np.array(test_winery))):
   if item > 0:
       wine title = film name by movieid(idx)
        print('{} - {} - {}'.format(idx, wine_title, item))
```

```
if i = 20:
            break
        else:
            i+=1
     0 - nan - 85.0
# Вина, наиболее схожие с винодельней:
i=1
recommended_user_item_matrix = user_item_matrix.loc[['Oddero']]
for idx, item in enumerate(np.ndarray.flatten(np.array(recommended_user_item_matrix))):
    if item > 0:
        wine_title = film_name_by_movieid(idx)
        print('{} - {} - {}'.format(idx, wine_title, item))
        if i==20:
            break
        else:
            i+=1
     0 - nan - 90.0
     5224 - Vinchio - 88.0
```

Как видно, фильтрация на основе содержания и коллаборативная фильтрация показывают различные результаты работы в рамках рекомендательных систем

×