Universidade de São Paulo Escola Politécnica - Engenharia de Computação e Sistemas Digitais

Machine Learning Basics

Prof. Artur Jordão

The Many Faces of Artificial Intelligence

Definitions

The Many Faces of Artificial Intelligence

- Artificial Intelligence
 - Any technique that enables computers to mimic human behavior
- Machine Learning
 - Ability to learn without explicitly being programmed
- Deep Learning
 - Extract patterns from data using neural networks

Machine Learning and Deep Learning

- Mapping the state of the world (features -m)
 - How can we represent the states (i.e., objects) of the world?
 - Numerical representation (features engineering)

- Assume that we represent (map) n dogs and cats using m features
- Let $X \in \mathbb{R}^{n \times m}$
 - Independent variables
 - Data samples each dog/cat composes a row in X
- Let $Y \in \mathbb{R}^{n \times c}$
 - c stands for the number of categories (i.e., 2)
 - Dependent variable
 - Labels/Classes

- Let $x_i \in \mathbb{R}^{1 \times m}$ be the *ith* sample (example) of X
 - We can express x_i in terms of its features $x_i = x_i^1$, $x_i^2 \dots x_i^m$
- Let $y_i \in \mathbb{R}^{1 \times 1}$ be the *ith* label of Y

	X			Y	
	1.69	10.7		0	
	1.85	14.5		0	
x_i	2.67	20.3		0	y_i
	1.62	6.1		1	
	1.11	4.0		1	

Multiclass Problems

- Problems involving more than two classes
 - In this case, we cannot use 0 and 1
 - For example, dogs, cats and bears
- One-hot encoding
 - Transform the c classes into a zero-one vector
 - The cth entry equal to 1 and the rest 0
- $Y \in \mathbb{R}^{n \times c}$

Feature Space

- Technical details
 - Each feature (m) is an axis
 - Each sample (n) is a point
 - Each category (y) is a color

Problem Statement

- Given X, the problem is to predict Y to new samples
 - Given the features, we want to predict the category to which samples belong
- Assume $\mathcal{F}(\cdot,\cdot)$ a model parameterized by a set of parameters/weights θ that receives x and outputs \bar{y}
 - Formally, $\bar{y} = \mathcal{F}(x, \theta)$ (or $\bar{Y} = \mathcal{F}(X, \theta)$)
- The problem is, therefore, to discover θ

X			
1.33	8.7		
2.78	3.5		
2.29	7.3		
1.62	9.1		
2.15	10.0		

$ar{Y}$ (unseen)		
?		
?		
?		
?		
?		

Problem Statement

- Training (or learning) phase
 - Estimate θ using X and Y (seen)
- Testing phase
 - Employ θ onto X to predict \overline{Y} (unseen)
 - Unseen means new samples

Classification vs. Regression

- Classification
 - The goal is to predict a category between c possible categories
- Regression
 - The goal is to predict a real-valued target
- For both classification and regression, the problem is to discover θ

•
$$\bar{Y} = \mathcal{F}(X, \theta)$$

X (features)	Task	Y (target)	
Weight, Height	Classification	Dogs, Cats, Bears	
(Animal features)	Regression	Lifespan	
Area, location, number of bedrooms	Classification	House Quality (good, bad, mediun	
(House features)	Regression	House Price	

Functions

- A function is a relation that associates each element x to a single element f(x)
- Global minimum
- Local minimum

Convex and Non-Convex Problems

- Convex Problems: only one global minimum (or maximum)
 - It facilitates the optimization process (i.e., discovering θ)
- Non-Convex Problems: multiple local minimum (or maximum)
 - Multiple optimal local solutions
 - Most practical problems belong to this category deep learning problems

Loss Function

Preliminaries

- The function we want to minimize or maximize is called the objective function or criterion
 - When we are minimizing a function, we may also call it the **cost function**, **loss function**, or **error function**

We often denote the value that minimizes (or maximizes) a function with a

superscript *

• $x^* = argmin f(x)$

Loss Function

- Quantify the distance between the real (Y) and predicted values of the target
 - Real values: y or Y
 - Predicted values: $\mathcal{F}(x,\theta) = \hat{y}$ or $\mathcal{F}(X,\theta) = \hat{Y}$
- Loss function properties
 - Monotonicity: The better the model gets, the lower the value of the loss function
 - Differentiability: Differentiable with respect to θ

Short Description
$\frac{1}{2}(\hat{y}-y)^2$
$\frac{1}{n}\sum_{i=0}^{n}(\widehat{y_i}-y_i)^2$
$-\sum_{i=0}^{c} y_i \log(\widehat{y_i})$

The Role of the Derivative

Preliminaries

- Define a function y = f(x) and f'(x) the derivative of f
 - x and y are both real numbers
- The derivative f'(x) gives the slope of f(x) at the point x
 - It specifies how to scale a small change in the input in order to obtain the corresponding

change in the output: $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$

The Role of the Derivative

- The gradient generalizes the notion of derivative to the case where the derivative is with respect to a vector
- The gradient of f is the vector containing all of the partial derivatives $\nabla_x f(x)$
 - Element i of the gradient is the partial derivative of f with respect to x_i

Regression

- Regression refers to a set of methods for modeling the relationship between one or more independent variables and a dependent variable
- Linear regression
 - The simplest and most popular among the standard tools for regression

Assumptions of Linear Regression

- Linearity assumption
 - The relationship between the independent variables x and the dependent variable y is linear
 - y can be expressed as a weighted sum of the elements in x, given some noise on the observations
- Any noise is well-behaved
 - Following a Gaussian distribution

Linear Model

- $\hat{y} = w_1 * x^1 + w_2 * x^2 + \dots + w_m * x^m + \mathbf{b}$
 - $W = w_1, w_2, ..., w_m$
 - We can organize W as column or row matrix
- Dot product form (single sample prediction)
 - $\hat{y} = xW^T + b$
- Matrix vector product form (n samples prediction all at once)
 - $\hat{Y} = XW^T + b$

The Bias Term

- The bias term plays a role in the expressivity of the model
 - It allows the model to fit not only the data points that pass through the origin but also those that do not
 - It enables the model to capture and represent more complex relationships between the features and the target variable

The Bias Term

- Putting the bias into the parameter matrix w_i
 - We can subsume the bias b into the parameter matrix W by appending a column to the design matrix consisting of all **ones**

X			Y (observable)
1.69	10.7	1	0
1.85	14.5	1	0
2.67	20.3	1	0
		:	
1.62	6.1	1	1
1.11	4.0	1	1

	X		\overline{Y} (unseen)
1.33	8.7	1	?
2.78	3.5	1	Ş
2.29	7.3	1	?
1.62	9.1	1	?
2.15	10.0	1	?

Problem Definition

- How can we discover W (and b) that minimizes the total loss across all training
 - Formally: $W^*, b^* = argmin \ \mathcal{L}(W, b) \Rightarrow \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \left(x_i W^T + b y_i \right)^2$ Here $\mathcal{L}(\cdot)$ means a loss function
- **Techniques**
 - Analytic Solution
 - **Gradient-Based Optimization**

Analytic Solution

Linear Regression

- $\mathcal{L}(W) = ||XW^T Y||$
 - The loss across all training samples
- $\nabla_{W} \mathcal{L}(W) = 2X^{T}(XW^{T} Y) = 0$
 - We set the gradient to zero to find the points where the loss function reaches the minimum

$$\bullet \quad W^* = (X^T X)^{-1} X^T Y$$

The **pseudoinverse** of *X*

Analytic Solution

- Problems
 - It does not work for complex (non-convex multiple local optima) problems
- The sample size problem (a.k.a zero determinant or singularity)
 - The number of samples is smaller than the number of features (n < m)

Gradient Descent

- The gradient is useful for minimizing a function
 - It tells us how to change x in order to make a small improvement in y
- We can reduce f(x) by moving x in small steps with opposite sign of the gradient
- The key consists of **iteratively** reducing the error by updating the parameters (weights) in the direction that incrementally lowers the loss function
 - Gradient Descent

Gradient Descent

Linear Regression

- Learning rate (η)
 - Positive scalar determining the size of the step
 - The rate of learning
- Convergence
 - Run for a defined number of iterations (epochs)
 - Stop when the loss does not decrease (early stop)

Gradient Descent Algorithm

 $W \leftarrow \text{Random values}$

While not converged do

for each $w_i \in W$ do

$$\mathbf{w_i} \leftarrow \mathbf{w_i} - \eta \frac{\partial}{\partial \mathbf{w_i}} \mathcal{L}(\mathbf{W})$$

Gradient Descent

- The Gradient Descent takes the derivative of the loss function, which is an average of the losses computed on every single example $(x \in X)$
- In practice, this can be extremely slow and memory costly
 - We must pass over the entire dataset before making a single update
 - The problem is compounded if n is larger than the processor's memory size

Stochastic Gradient Descent (SGD)

Linear Regression

• Stochastic Gradient Descent randomly selects a small number (**batch size** $-\beta$) of training examples at each step t, and updates according to

$$W \leftarrow W - \eta \frac{1}{|\beta|} \sum_{j=\beta_t}^n \frac{\partial}{\partial \mathbf{W}} \mathcal{L}^j(\mathbf{W})$$

Stochastic Gradient Descent Algorithm

 $W \leftarrow \text{Random values}$

While not converged do

for each $w_i \in W$ do

$$w_i \leftarrow w_i - \eta \frac{1}{|\beta|} \sum_{j=\beta_t}^n \frac{\partial}{\partial w_i} \mathcal{L}^j(W)$$

Learning and Testing Phase

Definitions

Learning and Testing Phase

- Define $D = \{(x_i, y_i)\}_{i=1}^n$ a dataset
- Let D_{train} be a subset of D such that $D_{train} \subseteq D$
 - Samples and their (seen) labels
- Let D_{test} be a subset of D such that $D_{test} \subseteq D$
 - In practice, unseen labels
- Important properties
 - $D = D_{train} \cup D_{test}$
 - $D_{train} \cap D_{test} = \emptyset$

Overview

Learning and Testing Phase

Learning Phase

(Here X and Y come from D_{train})

model.fit(X,Y)

 $(X^TX)^{-1}X^TY$

$$w_i \leftarrow w_i - \eta \frac{\partial}{\partial w_i} \mathcal{L}(W)$$

$$\mathbf{w_i} \leftarrow \mathbf{w_i} - \eta \frac{1}{|\beta|} \sum_{i=\beta_t}^n \frac{\partial}{\partial \mathbf{w_i}} \mathcal{L}^j(\mathbf{W})$$

Testing Phase

(Here X comes from D_{test})

y_pred = model.predict(X)

$$\hat{Y} = XW^T + b$$

Quality of the Learning Trajectory

Learning and Testing Phase

- How to measure the quality of the training trajectory?
 - Dynamics of training
- Loss curve
- Loss landscape (Li et al., 2018)

Loss Curve

Learning and Testing Phase

Early stop

Loss Landscape

Learning and Testing Phase

http://www.telesens.co/loss-landscape-viz/viewer.html

Testing Phase

Learning and Testing Phase

- Once the training is done, how can we measure the predictive ability of the model?
- Predictive ability (quantitative) metrics
 - Accuracy
 - Confusion Matrix
 - Loss
 - Peason Correlation
 - Pair-wise
- The metric depends on the application
 - Some benchmarks have their own metrics
 - For example, accuracy on CIFAR-10 and Top-5 accuracy/error on ImageNet

Generalization

- Generalization
 - The quality of the model in predicting new (unseen) data
- Overfitting
 - The model performs well on training but poorly on testing/validation
 - Complex models tend to (we can avoid/handle this) overfit the data
- Underfitting
 - The model fails to find a pattern in the data

The Bias-Variance Tradeoff

- Bias
 - Low bias: the model predicts well the samples of the training data
 - · High bias: the model makes many mistakes in the training data
- Variance
 - Error of the model due to its sensitivity to small fluctuations in the training set
- Bias-variance tradeoff
 - Low-bias hypotheses that fit the training data well
 - Low-variance hypotheses that may generalize better
- U-shaped curve

No Free Lunch Theorem

- The no free lunch theorem states that every learning algorithm is as good as any other when averaged over all possible problems (Wolpert, 1996)
 - There is no universal learning algorithm able to solve all tasks precisely
- Under a uniform distribution over problems (search/learning problems), all algorithms perform equally
 - A particular model or algorithm is better than average on some problems, it must be worse than average on others

Z-Score

- Suppose we are mapping the world using the following features
 - $x^1 \in [0, 100], x^2 \in [0, 1], \dots, x^m \in [-\infty, +\infty]$

$X \in \mathbb{R}^{n \times m}$							

- Z-score normalization
 - $X \leftarrow \frac{X-\mu}{\sigma}$

$\mu \in \mathbb{R}^{1 \times m}$					
$\mu \in \mathbb{R}$					
(average sample)					

$\sigma \in \mathbb{R}^{1 \times m}$						
--------------------------------------	--	--	--	--	--	--

Z-Score

Z-Score

- Dive into Deep Learning
 - Chapter 3
 - 3.1 Linear Regression
 - 3.4 Linear Regression Implementation from Scratch

- The Hundred-page Machine Learning Book
 - Chapter 3 Fundamental Algorithms
 - 3.1 Linear Regression

- Artificial Intelligence A Modern Approach Fourth Edition
 - Chapter 19.6 Linear Regression and Classification
 - 19.6.2 Gradient descent

- Deep Learning
 - Chapter 4 Numerical Computation
 - 4.3 Gradient-Based Optimization

