

CZ2003 Computer Graphics and Visualisation

Experiment 4: Implicit Solids

Name: Ngo Jun Hao Jason

Matriculation Number: XXXXXXXX

Lab Group: XXX

Exercise 1

Exercise 2

- plane halfspace
 - o line > 0
- ellipsoid

o 1 -
$$(x/a)^2$$
 - $(y/b)^2$ - $(z/c)^2$ > 0

cylinder

o 1 -
$$(x/a)^2$$
 - $(y/b)^2 > 0$

cone

o
$$(z/c)^2 - (x/a)^2 - (y/b)^2 > 0$$

- start with infinite cylinder with radius 1 going through x-z plane:
 - 0 1 $(x/1)^2$ $(z/1)^2$ > 0
 - o infCylinder = $1 (x/1)^2 (z/1)^2$
- plane halfspace used to cut bottom of infinite cylinder:
 - o y > 1
 - y 1 > 0
 - o bottomPlane = y 1
- half-infinite cylinder:

- o min(infCylinder, bottomPlane) > 0
- plane halfspace used to cut top of half-infinite cylinder:
 - o y < 2
 - 2 y > 0
 - o topPlane = 2 y
- finite cylinder:
 - o min(min(infCylinder, bottomPlane), topPlane) > 0
 - o cylinder = min(min(infCylinder, bottomPlane), topPlane)
- infinite cone with height of 2, radius of 1, going through x-z plane:
 - o $(y/2)^2 (x/1)^2 (z/1)^2 > 0$
 - o infCone = $(y/2)^2 (x/1)^2 (z/1)^2$
- plane halfspace used to cut bottom of infinite cone:
 - o y > 0
 - o bottomPlane = y
- half-infinite cone:
 - o min(infCone, bottomPlane) > 0
- plane halfspace used to cut top of half-infinite cone:
 - o y < 1
 - 1 y > 0
 - o topPlane = 1 y
- finite cone:
 - o min(min(infCone, bottomPlane), topPlane) > 0
 - o cone = min(min(infCone, bottomPlane), topPlane)
- pencil:
 - o max(cylinder, cone) > 0
 - o pencil = max(cylinder, cone)
- ellipsoid with radius of 1.5 in x- and z-direction, radius of 1 in y-direction, and offset of 0.5 in negative y-direction :
 - o $1 (x/1.5)^2 ((y+0.5)/1)^2 (z/1.5)^2 > 0$
 - o ellipsoid = $1 (x/1.5)^2 ((y+0.5)/1)^2 (z/1.5)^2$
- plane halfspace used to cut bottom of ellipsoid:
 - o y > -0.5
 - y + 0.5 > 0
 - o bottomPlane = y + 0.5
- half-ellipsoid:
 - o min(ellipsoid, bottomPlane) > 0
 - o pencilStand = min(ellipsoid, bottomPlane)
- pencilOnStand (final shape):

- o max(pencil, pencilStand) > 0
- o pencilOnStand = max(pencil, pencilStand)

Exercise 3

bounding box centre: 0 5 0bounding box size: 3 12 3resolution: [150 150 150]

Exercise 4

- r = (u + w)/2
- g = w
- $b = \sin(2\pi^*v)$

Exercise 5

• refer to the folder "Created_Shapes"

Exercise 6

refer to this report

Additional Shape

- ship's steering wheel (under the folder "Created_Shapes)
 - o I have trouble rendering the slanted rods, so I left them out
 - it was possible to render 1 of them at a time, but not as a whole
 - o code for one slant rod:
 - slant slice = min(x+0.3-y,y-x+0.3);
 - depth slice = min(z+0.3,0.3-z);
 - intermediate slice = min(depth slice, slant slice);
 - end_slice = min(y+x-1,8-x-y);
 - north_east_rod = min(intermediate_slice, end_slice));