Recitation 3/31

Sungwoo Jeong Tuesday 10AM, 11AM

March 31, 2020

Σ as coordinate transformation

- Lecture slide 23 page 3, Summary on page $6\,$
- A be m-by-n matrix, $u \in \operatorname{col}(A) = \operatorname{col}(U_1) \subset \mathbb{R}^m$, $v \in \operatorname{row}(A) = \operatorname{col}(V_1) \subset \mathbb{R}^n$

Since u is a vector in column space and v is a vector in row space, we have coordinates b, c (coefficients of linear combination), so that

$$u = U_1 b, \quad v = V_1 c, \quad b, c \in \mathbb{R}^r$$

If u = Av, we can say $b = \Sigma_r c$

Orthogonal Subspaces

If V and W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if

$$\forall v \in V, \forall w \in W \text{ we have } \langle v, w \rangle = 0 \text{ (or } v \perp w \text{ or } v^T w = 0)$$

In other words, every vectors from V and W are perpendicular to each other. Denote $V \perp W$

Orthogonal Complement

Given vector subspace $V \subset \mathbb{R}^n$, the **Orthogonal complement** of V is denoted by V^{\perp} , and defined as the set of all $w \in \mathbb{R}^n$ such that w is perpendicular to all vectors in V.

It can be thought as the largest subspace orthogonal to V.

Problems

1.(a) Find any 3 orthogonal subspaces of
$$V \in \mathbb{R}^5$$
, where $V = \text{span}\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

(b) What is the orthogonal complement of V?

2. Full SVD of $A \in \mathbb{R}^{4 \times 5}$ is given as,

$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & & & \\ & 2 & & \\ & & 1 & \\ & & & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 & 0\\ 1/\sqrt{2} & 0 & -1\sqrt{2} & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(a) What is the rank? What are U_1, V_1 ?

(b)
$$u = \begin{pmatrix} 7/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 3 \end{pmatrix}$$
, $v = \begin{pmatrix} 5/\sqrt{2} \\ 1 \\ -1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix}$ satisfies $u = Av$. Find $b, c \in \mathbb{R}^3$ such that $u = U_1b$ and $v = V_1c$.

(c) Find simple relationship between b and c.

(d) Let
$$x$$
 be $\begin{pmatrix} \sqrt{2} \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Compute $y = Ax$ without hard computation.

3. Why are col(A) and $null(A^T)$ orthogonal complements to each other? What about row(A) and $null(A^T)$? Explain in terms of SVD.

ANSWERS

$$1.(a) \ \operatorname{span}(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}), \operatorname{span}(\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}), \operatorname{span}(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}), \cdots$$

(b) Any vectors that are perpendicular to all vectors of $\begin{pmatrix} x \\ 0 \\ 0 \\ y \\ 0 \end{pmatrix}$ has nonzero elements on 2, 3, 5th entries.

So the orthogonal complement of V is,

$$\operatorname{span}\begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix})$$

2.(a) Rank is number of nonzers on the diagonal, 3. U_1 and V_1 are,

$$U_1 = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix}, V_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 & 0\\ 1/\sqrt{2} & 0 & -1\sqrt{2} & 0 & 0 \end{pmatrix}^T$$

(b) You can either utilize the formula, $b = U_1^T u$ or set up a equation

$$x \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = u$$

where $b = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. You can solve it with Gaussian elimination or etc... Also same for v. The answer is,

$$b = \begin{pmatrix} 3\\4\\3 \end{pmatrix}, c = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

- (c) We can see that $b = \Sigma_r c$
- 3. It is because the matrix U_1 and U_2 have orthogonal column spaces. In other words, all the vectors in basis of U_1 and all the vectors in basis of U_2 are perpendicular to each other, because they together form a orthogonal matrix. So $\operatorname{col}(U_1) \perp \operatorname{col}(U_2)$ which means $\operatorname{col}(A) \perp \operatorname{null}(A^T)$. Also if there is any vector v outside $\operatorname{null}(A^T)$ that is perpendicular to $\operatorname{col}(A)$, Q of QR factorization of $\begin{pmatrix} U_1 & U_2 & v \end{pmatrix}$ becomes a n by (n+1) orthogonal matrix, which cannot exist.

3