Analysis of AIN/AIGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping

Hong-An Shih, Masahiro Kudo, and Toshi-kazu Suzuki^{a)}
Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

(Received 7 June 2012; accepted 5 July 2012; published online 24 July 2012)

AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) structure is analyzed by using capacitance-frequency-temperature (C-f-T) mapping. Applying sputtering-deposited AlN, we attained AlN/AlGaN/GaN MIS heterostructure field-effect transistors with much suppressed gate leakage currents, but exhibiting frequency dispersion in C-V characteristics owing to high-density AlN/AlGaN interface states. In order to investigate the interface states deteriorating the device performance, we measured temperature-dependent frequency dispersion in the C-V characteristics. As a result, we obtained C-f-T mapping, whose analysis gives the activation energies of electron trapping, namely the interface state energy levels, for a wide range of the gate biases. This analysis method is auxiliary to the conventional conductance method, serving as a valuable tool for characterization of wide-bandgap devices with deep interface states. From the analysis, we can directly evaluate the gate-control efficiency of the devices. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737876]

AlGaN/GaN heterojunction field-effect transistors (HFETs)¹ have been extensively developed as promising devices for high-frequency and high-power applications. However, gate leakage current is a limiting factor for practical usage of these devices. In order to solve this problem, AlGaN/GaN metal-insulator-semiconductor (MIS) HFETs, enabling effective reduction of the gate leakage currents, have been developed and studied. In particular, high-dielectricconstant (high-k) oxide materials, such as Al₂O₃ (Ref. 2) or HfO₂ (Refs. 3 and 4), have been investigated as a gate insulator of the MIS-HFETs. On the other hand, AlN is an important high-k non-oxide insulator possessing possible suitability for III–V device processing.^{5,6} In addition to AlNpassivated AlGaN/GaN HFETs exhibiting good heat release properties^{7–12} due to the high thermal conductivity of AlN (~10 times higher than that of Al₂O₃), ¹³ AlN/AlGaN/GaN MIS-HFETs, where the AlN gate insulator was sputteringdeposited, have been investigated, ^{7,14,15} owing to a possible high breakdown field $\gtrsim 10\,\text{MV/cm}$ (Refs. 16 and 17) and a high dielectric constant ~ 10 (Ref. 18) comparable to those of Al₂O₃. In particular, we showed significant suppression of gate leakage current, although frequency dispersion in the C-V characteristics for forward gate biases was observed. 15 This dispersion is attributed to high-density AlN/AlGaN interface mid-gap states leading to a gate-control impediment, which severely depresses the device performances. Such mid-gap states in GaN-based devices have been Terman method, 19-21 conductance investigated by Terman method, 19-21 conductance method, 14,15,22-27 and deep level transient spectroscopy (DLTS).²⁸⁻³¹ In the previous work, we employed the conductance method for analysis of capacitance-voltage-frequency (C-V-f) characteristics to investigate the AlN/AlGaN interface state density and electron trapping time constant at room temperature. 15 In this work, we propose an analysis

method using capacitance-frequency-temperature (C-f-T) mapping obtained from the temperature-dependent C-V-f characteristics. This method gives the activation energies of electron trapping, namely the interface state energy levels, for a much extended range of the gate biases, serving as an auxiliary tool to the conventional conductance method.

FIG. 1. Characteristics of the AlN/AlGaN/GaN MIS-HFET. (a) Output characteristics. (b) Transfer characteristics, where drain current $I_{\rm D}$, gate current $I_{\rm G}$, and transconductance $g_{\rm m}$ were obtained under the gate voltage sweep of $-10~{\rm V} \rightarrow +6~{\rm V} \rightarrow -10~{\rm V}$.

a) Author to whom correspondence should be addressed. Electronic mail: tosikazu@jaist.ac.jp.

FIG. 2. *C-V-f* characteristics of the AlN/AlGaN/GaN MIS structure at 150 K (above) and 393 K (below).

Moreover, from the interface state energy levels corresponding to a wide range of the gate biases, we can directly evaluate the gate-control efficiency of the devices.

We fabricated AlN/AlGaN/GaN MIS-HFETs and MIS structures simultaneously using an Al_{0.29}Ga_{0.71}N (25 nm)/ GaN (3000 nm) heterostructure obtained by metal-organic vapor phase epitaxy on sapphire(0001). Hall measurements of the heterostructure show an as-grown electron mobility of 1200 cm²/V-s and a sheet electron concentration of 1.3×10^{13} cm⁻². On the heterostructure, Ti/Al/Ti/Au Ohmic electrodes were formed and device isolation was achieved by B⁺ implantation. On the AlGaN surface cleaned by organic solvents, deionized water, and oxygen plasma ashing to remove surface organic contaminants, followed by oxide removal using Semicoclean (ammonium-based etchant), an AlN gate insulator of $\sim 19 \, \text{nm}$ thickness was deposited by RF magnetron sputtering at room temperature with an AlN target in Ar-N₂ ambient. The formation of Ni/Au gate electrodes completed the device fabrication. The MIS-HFETs have the gate length of 250 nm, the source-gate spacing of $2 \mu m$, the gate-drain spacing of $3 \mu m$, and the gate width of $50 \,\mu\text{m}$, while the MIS structures have the $100 \,\mu\text{m} \times 100 \,\mu\text{m}$ gate electrode surrounded by the Ohmic electrode.

In Figs. 1(a) and 1(b), we show output and transfer characteristics of the fabricated MIS-HFET, respectively. Owing to good insulating properties of the AIN, gate leakage currents are significantly small, 10⁻⁹ A/mm range or less, for both reverse and forward gate biases. The small gate leakage currents lead to small drain off-currents shown in Fig. 1(b). However, we observe a rapid decrease in the transconductance towards forward gate biases, suggesting high-density AIN/AIGaN interface states.

In order to investigate the AlN/AlGaN interface states, we measured the C-V-f characteristics between the 100 μ m \times $100 \, \mu \text{m}$ gate electrode and the grounded Ohmic electrode surrounding the gate of the MIS structure at temperatures from 150 K to 393 K. Figure 2 shows the C-V-f characteristics at 150 K and 393 K. At 393 K, we observe a significant frequency dispersion for forward gate biases, which is attributed to electron trapping at interface states, while the frequency dispersion disappears at 150 K because of much longer electron trapping time constants. To characterize the interface states quantitatively, we carried out an analysis using the conductance method³² based on the equivalent circuit of the MIS structures depicted in the inset of Fig. 3 (top), with the insulator capacitance C_0 , the semiconductor capacitance C_s , the interface state capacitance C_i , and the interface state conductance G_i . Using the interface state density D_i and the electron trapping time constant τ , we obtain³³

$$C_{\rm i} = \frac{q^2 D_{\rm i} \arctan\left(\omega\tau\right)}{\omega\tau} \tag{1}$$

and

$$\frac{G_{\rm i}}{\omega} = \frac{q^2 D_{\rm i} \ln\left(1 + \omega^2 \tau^2\right)}{2\omega \tau},\tag{2}$$

FIG. 3. Frequency dependence of $G_{\rm i}/\omega$ for temperatures from 393 K to 150 K at gate voltages of 0 V (top), 1.5 V (middle), and 3 V (bottom). Top inset: the equivalent circuit of the MIS structures.

FIG. 4. (a) Interface state density $D_{\rm i}$ and (b) electron trapping time constant τ , obtained from the peak values and positions of the frequency-dependent $G_{\rm i}/\omega$ based on the conductance method. (c) The Arrhenius plot of the temperature-dependent τ . (d) The activation energy $E_{\rm a}$ as a function of gate voltage, obtained from the Arrhenius plot (c).

where q is the electron charge and $\omega = 2\pi f$ is the angular frequency; $G_{\rm i}/\omega$ as a function of frequency exhibits a single-peaked behavior, with the peak frequency $\sim 1/\pi\tau$ and the

FIG. 5. *C-f-T* mappings with contours at gate voltages of 0 V (top), 1.5 V (middle), and 3 V (bottom).

peak value $\sim 0.4q^2D_i$. Assuming the designed value of the insulator capacitance $C_0 = 610 \,\mathrm{nF/cm^2}$, we show frequency dependence of G_i/ω , for several temperatures and gate voltages of 0 V, 1.5 V, and 3 V, in Fig. 3. As the gate voltage decreases, the number of peaks decreases due to longer time constants for deeper interface state energy levels. Thus, only a narrow range of the gate biases gives peaks in the measured frequency and temperature range; most peaks are below

FIG. 6. (a) Gate voltage $V_{\rm G}$ dependence of the activation energy $E_{\rm a}$ extracted from the contours in *C-f-T* mappings. Inset: illustration of the bandbending and $E_{\rm a}$. (b) Lever arm ratio $\eta = {\rm d}V_{\rm AIN}/{\rm d}V_{\rm G}$ $\simeq 1+q^{-1}{\rm d}E_{\rm a}/{\rm d}V_{\rm G}$.

the analysis of deeper interface states.

100 Hz due to significantly long time constants for the wide bandgap of AlGaN/GaN systems. From the few peak positions and values, D_i and τ for temperatures of 340–393 K are obtained as shown in Figs. 4(a) and 4(b), respectively, where $D_i \sim 10^{14}$ cm⁻² eV⁻¹ and $\tau \sim$ ms. From the Arrhenius plot of the temperature dependence of τ shown in Fig. 4(c), given by $\tau = \tau_0 \exp(E_a/k_BT) = \tau_0 \exp(\beta E_a)$, we extracted the activation energy E_a shown in Fig. 4(d) and estimated $\tau_0 \sim 10$ ns. However, we have a problem that the conventional conductance method to investigate interface states is available only for a narrow range of gate biases, prohibiting

In order to solve the problem, we propose an analysis method using *C-f-T* mapping obtained from the temperature-dependent *C-V-f* characteristics. In Fig. 5, we show the *C-f-T* mappings at gate voltages of 0 V, 1.5 V, and 3 V, with contours. The contours exhibit a straight line behavior, which can be explained by the equivalent circuit of the MIS structures with a total admittance

$$Y = \frac{1}{Z} = \left(\frac{1}{jC_0\omega} + \frac{1}{G_i + jC_s\omega + jC_i\omega}\right)^{-1}.$$
 (3)

Since C_i given by Eq. (1) and G_i/ω by Eq. (2) are functions of only $\omega \tau$, the measured capacitance $C = \text{Im} Y/\omega$ is a function of only $\omega \tau$. Therefore, a contour in C- f- T mapping, i.e., $C = \text{constant leading to } \omega \tau = 2\pi f \tau = \text{constant, exhibits a}$ straight line behavior as expressed by $f \propto 1/\tau \propto \exp(-\beta E_a)$, from which the activation energy E_a corresponding to the interface state energy level can be extracted. Figure 6(a) shows the gate voltage V_G dependence of E_a extracted from the contours in the C-f-T mappings, with the inset illustrating the bandbending and E_a . In addition to the fact that the obtained values of E_a for the gate voltage $\geq 2.75 \,\mathrm{V}$ are in good agreement with those obtained by the conductance method, we find that E_a can be obtained for a much extended range of the gate biases. This is due to slow $\omega \tau$ dependence of Eqs. (1) and (2); even though the frequency is far from the peak position $\sim 1/\pi\tau$, change in the C-f-T mapping is detectable. Furthermore, from the interface state energy levels corresponding to a wide range of the gate biases, the gatecontrol efficiency of the devices can be directly evaluated from the derivative dE_a/dV_G . As shown in the inset of Fig. 6(a), the gate voltage change $\Delta V_{\rm G}$ is divided by the AlN gate insulator with ΔV_{AIN} and AlGaN/GaN. Since $\Delta V_{\rm G} \simeq \Delta V_{\rm AlN} - \Delta E_{\rm a}/q$, we obtain a "lever arm ratio" $\eta = dV_{AlN}/dV_G \simeq 1 + q^{-1}dE_a/dV_G$ as shown in Fig. 6(b). We find that small negative values of dE_a/dV_G give large values of η near the unity corresponding to poor gate-control efficiencies. This analysis method is important as an auxiliary tool to the conventional conductance method.

In summary, we analyzed the AlN/AlGaN/GaN MIS-HFETs using *C-f-T* mapping for the investigation of AlN/AlGaN interface states. The analysis method gives the activation energies of electron trapping, namely the interface

state energy levels, for a wide range of the gate biases. This method is auxiliary to the conventional conductance method, serving as a valuable tool for characterization of widebandgap devices with deep interface states. Furthermore, the method also enables a direct evaluation of the gate-control efficiency of the devices.

- ¹M. Khan, A. Bhattarai, J. Kuznia, and D. Olson, Appl. Phys. Lett. **63**, 1214 (1993).
- ²T. Hashizume, S. Ootomo, and H. Hasegawa, Appl. Phys. Lett. **83**, 2952 (2003).
- ³C. Liu, E. F. Chor, and L. S. Tan, Appl. Phys. Lett. **88**, 173504 (2006).
- ⁴A. Kawano, S. Kishimoto, Y. Ohno, K. Maezawa, T. Mizutani, H. Ueno, T. Ueda, and T. Tanaka, Phys. Status Solidi C 4, 2700 (2007).
- ⁵K. Saito, T. Ono, M. Shimada, N. Shigekawa, and T. Enoki, Jpn. J. Appl. Phys. 44, 334 (2005).
- ⁶M. Kudo, H.-A. Shih, M. Akabori, and T. Suzuki, Jpn. J. Appl. Phys. 51, 02BF07 (2012).
- ⁷Y. Liu, J. A. Bardwell, S. P. McAlister, S. Rolfe, H. Tang, and J. B. Webb, Phys. Status Solidi C 0, 69 (2002).
- 8J. Hwang, W. Schaff, B. Green, H. Cha, and L. Eastman, Solid-State Electron, 48, 363 (2004).
- ⁹N. Tanaka, H. Takita, Y. Sumida, and T. Suzuki, Phys. Status Solidi C 5, 2972 (2008).
- ¹⁰N. Tanaka, Y. Sumida, H. Kawai, and T. Suzuki, Jpn. J. Appl. Phys. 48, 04C099 (2009).
- ¹¹N. Tsurumi, H. Ueno, T. Murata, H. Ishida, Y. Uemoto, T. Ueda, K. Inoue, and T. Tanaka, IEEE Trans. Electron Devices 57, 980 (2010).
- ¹²S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. Chen, IEEE Electron Device Lett. 33, 516 (2012).
- ¹³G. Slack, R. Tanzilli, R. Pohl, and J. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).
- ¹⁴R. Stoklas, D. Gregušová, Š. Gaži, J. Novák, and P. Kordoš, J. Vac. Sci. Technol. B 29, 01A809 (2011).
- ¹⁵H.-A. Shih, M. Kudo, M. Akabori, and T. Suzuki, Jpn. J. Appl. Phys. 51, 02BF01 (2012).
- ¹⁶L. Lipkin and J. Palmour, IEEE Trans. Electron Devices **46**, 525 (1999).
- ¹⁷T. Adam, J. Kolodzey, C. Swann, M. Tsao, and J. Rabolt, Appl. Surf. Sci. 175–176, 428 (2001).
- ¹⁸M.-A. Dubois and P. Muralt, Appl. Phys. Lett. **74**, 3032 (1999).
- ¹⁹Y. Chiou, S. Chang, Y. Su, C. Wang, T. Lin, and B.-R. Huang, IEEE Trans. Electron Devices **50**, 1748 (2003).
- ²⁰M. Miczek, C. Mizue, T. Hashizume, and B. Adamowicz, J. Appl. Phys. 103, 104510 (2008).
- ²¹C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, Jpn. J. Appl. Phys. **50**, 021001 (2011).
- ²²E. J. Miller, X. Z. Dang, H. H. Wieder, P. M. Asbeck, E. T. Yu, G. J. Sullivan, and J. M. Redwing, J. Appl. Phys. 87, 8070 (2000).
- ²³R. M. Chu, Y. G. Zhou, K. J. Chen, and K. M. Lau, Phys. Status Solidi C **0**, 2400 (2003).
- ²⁴L. Semra, A. Telia, and A. Soltani, Surf. Interface Anal. 42, 799 (2010).
- ²⁵B. Gaffey, L. Guido, X. Wang, and T. Ma, IEEE Trans. Electron Devices 48, 458 (2001).
- ²⁶R. Stoklas, D. Gregusova, J. Novak, A. Vescan, and P. Kordos, Appl. Phys. Lett. **93**, 124103 (2008).
- ²⁷J. J. Freedsman, T. Kubo, and T. Egawa, Appl. Phys. Lett. **99**, 033504 (2011).
- ²⁸T. Mizutani, H. Makihara, M. Akita, Y. Ohno, S. Kishimoto, and K. Maezawa, Jpn. J. Appl. Phys. 42, 424 (2003).
- ²⁹M. Faqir, G. Verzellesi, F. Fantini, F. Danesin, F. Rampazzo, G. Meneghesso, E. Zanoni, A. Cavallini, A. Castaldini, N. Labat, A. Touboul, and C. Dua, Microelectron. Reliab. 47, 1639 (2007).
- ³⁰Y. Nakano and T. Jimbo, Appl. Phys. Lett. **80**, 4756 (2002).
- ³¹T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, IEEE Electron Device Lett. 25, 523 (2004).
- ³²E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience, Hoboken, New Jersey, 1982).
- ³³K. Lehovec, Appl. Phys. Lett. **8**, 48 (1966).