ДЗ #7. Киселев Павел

Задача 1.

Докажите, что если q(x) положительно определенная квадратичная форма, то формула

$$(x,y)=rac{q(x)+q(y)-q(x-y)}{2}$$

задает скалярное произведение.

Решение:

Формула из условия задачи определяет положительно определенную билинейную симметрическую форму $\alpha(x,y)$:

$$q(x-y)=lpha(x-y,x-y)=q(x)+q(y)-2lpha(x,y), \ lpha(x,y)=rac{q(x)+q(y)-q(x-y)}{2}.$$

Данная билинейная форма удовлетворяет свойствам скалярного проивзедения

$$\alpha(x,y) = \alpha(y,x),\tag{1}$$

$$\alpha(x + \lambda x', y) = \alpha(x, y) + \lambda \alpha(x', y), \tag{2}$$

$$\alpha(x,x) > 0 \ \forall x \neq 0, \tag{3}$$

1

$$\alpha(x,x) = 0 \Leftrightarrow x = 0. \tag{4}$$

Следовательно, формула

$$\frac{q(x)+q(y)-q(x-y)}{2}=\alpha(x,y)$$

действительно задает скалярное произведение.

Задача 2.

а) Докажите тождество параллелограмма

$$\frac{|x+y|^2+|x-y|^2}{2}=|x|^2+|y|^2.$$

ДЗ #7. Киселев Павел

Решение:

а) Произвольная норма может не удовлетворять тождеству параллелограмма. Если имелась в виду норма, порожденная скалярным произведением, то $\|x\|^2=lpha(x,x)=q(x)$ и

$$q(x + y) = q(x) + q(y) + 2\alpha(x, y), \ q(x - y) = q(x) + q(y) - 2\alpha(x, y).$$

Тогда

$$rac{q(x+y)+q(x-y)}{2} = q(x)+q(y) \Leftrightarrow rac{\|x+y\|^2+\|x-y\|^2}{2} = \|x\|^2+\|y\|^2$$

Задача 3.

- а) Докажите, что на пространстве матриц $\mathrm{Mat}_{n \times n}$ будет положительно определена квадратичная форма $q(A) = \mathrm{tr}(A^{ op}A)$.
- б) Какой симметрической билинейной форме соответствует эта квадратичная форма?
- в) Найдите какой-нибудь ортогональный базис для этой квадратичной формы.

Решение:

а) Пусть a_i — вектор-столбцы матрицы A, тогда

$$A = egin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}, \quad A^ op = egin{pmatrix} a_1^ op \ a_2^ op \ dots \ a_n^ op \end{pmatrix}.$$

В данных определениях

$$egin{aligned} q(A) &= ext{tr}(A^ op A) = a_1^ op a_1 + a_2^ op a_2 + \dots + a_n^ op a_n = \ &= \sum_{i=1}^n a_{1i}^2 + \sum_{i=1}^n a_{2i}^2 + \dots + \sum_{i=1}^n a_{ni}^2 = \ &= \sum_{i,j} a_{ij}^2 \geq 0. \end{aligned}$$

Следовательно, квадратичная форма q(A) положительно определена.

б) Эта квадратичная форма соответствует симметрической билинейной форме

$$lpha(A,B) = \sum_{i,j} a_{ij} b_{ij}.$$

в) Ортогональным базисом для lpha будет стандартный для матриц базис $\{E_{ij}\}.$

Задача 4.

Докажите, что условие $\alpha(v,v')=\varphi(v)(v')$ определяет взаимно однозначное соответствие между билинейными формами $\alpha:V\times V\to R$ и линейными отображениями $\varphi:V\to V^*$. Найдите связь между матрицей α в произвольном базисе пространства V и матрицей соответствующего ей φ относительно этого же базиса V и двойственного ему базиса V^* .

Решение:

Пусть $\{e_1,...,e_n\}$ — произвольный базис V, $\{\varepsilon_1,...,\varepsilon_n\}$ — сопряженный базис V^* . Учитывая, что V и V^* конечномерны, и их размерности равны, то они изоморфны, и $\varphi:V\to V^*$ — изоморфизм. Поставим отображению φ во взаимооднозначное соответствие его матрицу Φ . Тогда формулу α можно переписать в матричных обозначениях

$$lpha(v,v') = arphi(v)(v') = (ar{v}')^ op \Phi ar{v},$$

где \bar{v}', \bar{v} — вектор-столбцы координат векторов v', v. Следовательно, $\alpha(v, v')$ также находится во взаимооднозначном соответствии с Φ .

И, следовательно, условие $\alpha(v,v')=\varphi(v)(v')$ определяет взаимооднозначное соответствие между билинейными формами $\alpha:V\times V\to R$ и линейными отображениями $\varphi:V\to V^*$.

Найдем связь с матрицей lpha. Билинейная форма однозначно определяется своей матрицей $A=(a_{ij})$, где $a_{ij}=lpha(e_i,e_j)$. Формула билинейной формы может быть переписана в матричных обозначениях:

$$\alpha(v,v') = \bar{v}^T A \bar{v}'.$$

Следовательно, матрицы Φ и A связаны отношением

$$(ar{v}')^ op \Phi ar{v} = ar{v}^T A ar{v}'.$$

Задача 5.

ДЗ #7. Киселев Павел

Докажите, что в евклидовом пространстве $(U^\perp)^\perp = U$ для любого подпространства U .

Решение:

Пусть $V=\langle e_1,...,e_n \rangle$ — евклидово пространство, $U=\langle e_1,...,e_k \rangle$ — подпространство в нем $(k\leq n)$. Тогда, по определению,

$$egin{aligned} U^{ot} &= \{y \in V : lpha(x,y) = 0 \;\; orall x \in U\} = \ &= \{y \in V : lpha(e_i,y) = 0, \;\; i = 1,...,k\}. \end{aligned}$$

Записав уравнения в координатной форме, получим систему линейных уравнений,

$$Ay=0$$
,

Тогда, учитывая что α в евклидовом пространстве положительно определена,

$$\sum_{i=1}^k \lambda_i lpha(e_i,v) = lpha\Bigl(\sum_{i=1}^k \lambda_i e_i,v\Bigr)
eq 0$$

для ненулевых λ_i,v . Следовательно, $\operatorname{rk} A=\dim U=k$, и пространство решений имеет размерность n-k , что означает $\dim U^\perp=\dim V-\dim U=n-k$. Далее, по определению,

$$(U^\perp)^\perp = \{z \in V : lpha(y,z) = 0 \ \ orall y \in U^\perp\}.$$

Заметим, что $(U^\perp)^\perp\supset U$. Действительно,

$$orall y \in U^{\perp}, orall z \in (U^{\perp})^{\perp}: lpha(y,z) = 0 \Rightarrow z \in U.$$

По той же формуле

$$\dim(U^\perp)^\perp = \dim V - \dim U^\perp = n - (n-k) = k.$$

4

Следовательно, $(U^\perp)^\perp = U$.

ДЗ #7. Киселев Павел