Exercise 6.2

1. Zero of the polynomial p(x) = (cx + d) is

$$(a) - d$$

$$(b) - c$$

(c)
$$\frac{d}{c}$$

 $(d) - \frac{d}{c}$ $[CBSE\ 2010]$

2. If x = 2 is a zero of the polynomial $2x^2 + 3x - p$, then the value of p is (d) 14 (a) - 4(c) 6 (b) 0

3. (i) Zero of the polynomial $p(x) = a^2x$, $a \ne 0$ is

$$a^2x$$
, $a \neq 0$ is

[CBSE 2010]

[CBSE 2010]

(b) 1 (ii) Zero of the polynomial p(x), where p(x) = ax + 1, $a \neq 0$, is

(a) 1 (b)
$$-a$$

$$(d) -\frac{1}{a}$$

4. If one zero of the polynomial $3x^2 - 10x + p$ is $\frac{1}{3}$, then the value of p and other zero respectively is

other zero respectively is
(a)
$$3, \frac{1}{2}$$
 (b) $3, 3$

(b) 3, 3 (c)
$$-\frac{1}{3}, \frac{-1}{3}$$
 (d) $-3, -3$

(d) a

5. If $x = \frac{-1}{3}$ is a zero of the polynomial $p(x) = 27x^3 - ax^2 - x + 3$, then find the $[CBSE\ 2010,\ 2011]$ value of a. 6. Find the zeros of the p(x) = (x-3)(x+2).

7. Show that $x^2 + 6x + 10$ has no zero. **8.** Check whether 1 is a zero of the polynomial $p(x) = x^6 - x^5 - x^4 - x^3 - x^2 - x + 1$

9. Verify whether
$$-1$$
 and $\frac{3}{2}$ are zeros of the polynomial $p(x) = 2x^3 - 9x^2 + x + 12$.

value of a. If 1 and -3 are zeroes of the polynomial $p(x) = x^3 - ax^2 - 13x + b$, find the values of a and b.

Answers

Teach san ban

1.
$$-\frac{d}{c}$$
 2. $p = 14$ **3.** $(i) x = 0$ $(ii) -\frac{1}{a}$

8. 1 is not zero of
$$p(x)$$
. **9.** -1 and $\frac{3}{2}$ are zeroes of $p(x)$.

6. 3 and -2

10.
$$k = \frac{7}{6}$$
 11. $a = -7$ **12.** $a = 3$ and $b = 15$

5. a = 21

4. 3, 3