机械设计基础第二章作业

班级	学号	姓名
	平面四杆机构的类型有哪些?	
2-2,	简述曲柄摇杆机构的急回特性。	
2-3、	简要分析曲柄摇杆机构的死点位置存在的。	条件。

3_1	通常采用什么方	注体 具	一・お仕う间	保持拉納?
J-1\	地市不用日ムカ	石 汉 口 北 一 ツ	しめけてい	1个1寸1女用的

3-2、凸轮机构中的从动件运动规律分为哪几类?各有什么运动特点?

3-3、设计一直动滚子从动件盘形凸轮。已知凸轮顺时针匀速回转,从动件的运动规律为: 当凸轮转过 120° 时,从动件以等加速等减速运动规律上升 20mm;当凸轮继续回转 60° 时,从动件在最高位置停留不动;当凸轮再转 90° 时,从动件以等加速等减速运动规律下降到初始位置;当凸轮再转其余 90° 时,从动件停留不动。今取凸轮 基圆半径 l_{OBI} =50mm,滚子半径 r=10mm,并要求滚子中心沿着通过凸轮回转中心的直线运动。试绘出此凸轮的轮廓。

