

Explore GPTs

Today

MPC Controller Cost Function •••

Yesterday

Minimize Loss with Adam

Minimize Loss with Adam

Minimize Loss with Adam

Previous 7 Days

Control Protocols Overview

Industry Sensors Overview

Previous 30 Days

Network MST Algorithms Compa

Calculate Venturi Meter Diamete

MPC Algorithm for Overleaf

June

Entity Save Error Troubleshoot

Load Active Org Items

Step-by-Step Formulation

1. Define the System Dynamics

Assuming a simple kinematic model for a differential drive robot:

$$egin{cases} x(k+1) = x(k) + v(k)\cos(heta(k))\Delta t \ y(k+1) = y(k) + v(k)\sin(heta(k))\Delta t \ heta(k+1) = heta(k) + \omega(k)\Delta t \end{cases}$$

where:

- x(k) and y(k) are the coordinates.
- $\theta(k)$ is the orientation.
- v(k) is the linear velocity.
- $\omega(k)$ is the angular velocity.
- Δt is the sampling time.

2. Define the Cost Function

The cost function J over the prediction horizon N is:

$$J = \sum_{k=0}^{N-1} \left((x(k) - x_{ ext{ref}}(k))^2 + (y(k) - y_{ ext{ref}}(k))^2 + (heta(k) - heta_{ ext{ref}}(k))^2
ight)$$

3. Formulate the Optimization Problem

The optimization problem can be written as:

$$\min_{oldsymbol{\downarrow},\omega}$$

cubiact to the cyctam dynamics and any constraints on 11 and 1.1

