14 線形写像と行列

K を実数全体 $\mathbb R$ または複素数全体 $\mathbb C$ とする.

例題. 次で定義される写像 $f: K^2 \to K^3$ が線形写像であるかどうかを判定せよ (判定理由も添えて). また, 線形写像になるものについてはそれを表示する行列も求めよ.

$$(1) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + 2x_2 \end{pmatrix} \qquad (2) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 + x_2 \\ 3x_1 - x_2 + 1 \\ x_2 \end{pmatrix}$$

演習 14.1 次で定義される写像 $f: K^2 \to K^2$ が線形写像であるかどうかを判定せよ (判定理由も添えて). また、線形写像になるものについてはそれを表示する行列も求めよ.

$$(1) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1^2 \\ x_1 + x_2 \end{pmatrix} \qquad (2) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -x_1 + x_2 \\ 0 \end{pmatrix}$$

$$(3) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 + 3x_2 \\ x_1 \end{pmatrix} \qquad (4) f: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} -x_1 + x_2 \\ x_1x_2 \end{pmatrix}$$

演習 14.2 写像 $f:K^m\to K^l$ と写像 $g:K^n\to K^m$ がともに線形写像であるとき、合成写像 $f\circ g:K^n\to K^l$ も線形写像であることを示せ、また、f,g が行列 A,B を用いて $f({m v})=A{m v}\;({m v}\in K^m),\,g({m u})=B{m u}\;({m u}\in K^n)$ と表せるとき、 $f\circ g$ を表示する行列を求めよ、

演習 14.3 $f:K^n\to K^n$ を線形写像とし、正方行列 A を用いて f(v)=Av $(v\in K^n)$ と表されているとする、このとき、

を示せ.

[ヒント] (\Rightarrow) もし f が全単射ならば逆写像 $f^{-1}:K^n\to K^n$ が存在する $(f\circ f^{-1}=f^{-1}\circ f=\mathrm{id}$ (恒等写像)). まず, f^{-1} も線形写像になることを示せ.

 (\Leftarrow) A が正則行列ならば逆行列 A^{-1} が存在する.