WHAT IS CLAIMED IS:

1	1. A beverage container, comprising:				
2	a vessel having an interior that is adapted to hold a beverage, wherein the				
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a				
4	cavity that is fluidly sealed from the interior of the vessel;				
5	a cooling element that is configured to be coupled to the vessel and to fit				
6	within the cavity; and				
7	a base comprising a bottom member and a stem extending vertically upward				
8	from the bottom member, wherein the base includes a connector that is configured to be				
9	coupled to the cooling element.				
1	2. A container as in claim 1, wherein the connector comprises a threaded				
1	end on the stem, wherein the cooling element includes a threaded section, and wherein the				
2					
3	threaded end on the stem is configured to be screwed into the threaded section of the cooling				
4	element.				
1	3. A container as in claim 2, wherein the threaded section of the cooling				
2	element has threads, and wherein an angle defined by the threads is about 65 degrees to about				
3	75 degrees.				
1	4. A container as in claim 2, wherein the cooling element also includes a				
2	threaded section, wherein the vessel includes a threaded section at the bottom end, and				
3	wherein the threaded section of the cooling element is configured to be screwed into the				
4	threaded section of the vessel.				
•	amounds provided of the vosses.				
1	5. A container as in claim 4, wherein the threaded section of the cooling				
2	element has threads, and wherein an angle defined by the threads is about 45 degrees to about				
3	90 degrees.				
1	6. A container as in claim 4, wherein the base and the vessel are				
2	constructed of glass, and wherein the cooling element is constructed of a material that is				
3	different from glass.				
1	7. A container as in claim 6, wherein the cooling element is constructed				
2	of an acrylic.				

1		8.	A container as in claim 7, wherein the acrylic has a durometer of about		
2	30 to about 40).			
1		9.	A container as in claim 1, wherein the base and the vessel are		
2	constructed of	f a mate	rial selected from a group consisting of glass, plastics and acrylics.		
1		10.	A container as in claim 1, wherein the vessel has a shape selected from		
2	a group consis	sting of	a mug, a regular wine glass, a red wine glass, a white wine glass, a		
3	martini glass, a tumbler, a stein glass, a margarita glass, a brandy snifter, a water glass, a beer				
4	glass and a champagne glass.				
1		11.	A container as in claim 2, wherein the cooling element has a bottom		
2	end and a top end, and wherein the bottom end tapers inward and mates with a mating taper				
3	on the base.				
1		12.	A container as in claim 11, wherein the top end of the cooling element		
2	is generally hemispherical in geometry.				
-	10 8011014117 11		· · · · · · · · · · · · · · · · · · ·		
1		13.	A container as in claim 12, wherein the bottom end of the vessel		
2	includes a generally hemispherical surface that partially defines the interior of the vessel.				
1		14.	A beverage container kit comprising:		
2	a vessel having an interior that is adapted to hold a beverage, wherein the				
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a				
4	cavity that is fluidly sealed from the interior of the vessel;				
5	a cooling element that is configured to be coupled to the vessel and to fit				
6	within the cavity;				
7	a base comprising a bottom member and a stem extending vertically upward				
8	from the bottom member, wherein the base includes a connector that is configured to be				
9	coupled to the cooling element; and				
10	a tray having a plurality of holding regions for holding cooling elements,				
11	whereby the tray may be placed in a freezer to cool the cooling elements.				
1		15.	A kit as in claim 14, wherein the tray includes a plurality of recesses		

integrally formed in the tray to define the holding regions.

2

A kit as in claim 15, wherein the recesses are in a shape selected from 16. 1 a group consisting of semi-cylindrical, ice cube shaped, pyramidal and semi-spherical. 2 A kit as in claim 14, wherein the base further comprises a bottom 17. 1 member and a stem extending vertically upward from the bottom member. 2 A kit as in claim 17, wherein the connector comprises a threaded end 18. 1 on the stem, wherein the cooling element includes a threaded section, and wherein the 2 threaded end on the stem is configured to be screwed into the threaded section of the cooling 3 4 element. A kit as in claim 18, wherein the cooling element also includes a 19. 1 threaded section, wherein the vessel includes a threaded section at the bottom end, and 2 wherein the threaded section of the cooling element is configured to be screwed into the 3 threaded section of the vessel. 4 20. A beverage container, comprising: 1 a vessel having an interior that is adapted to hold a beverage, wherein the 2 -vessel has a closed bottom end and an open top end, and wherein the bottom end defines a 3 cavity that is fluidly sealed from the interior of the vessel; 4 a cooling element that is configured to fit within the cavity; 5 a base comprising a bottom member and a stem extending vertically upward 6 from the bottom member, wherein the base includes a connector that is configured to be 7 coupled to the bottom end of the vessel and to enclose the cooling element within the cavity. 8. A container as in claim 20, wherein the connector comprises a threaded 21. 1 end on the stem, wherein the cavity includes a threaded section, and wherein the threaded end 2 is configured to be screwed up into the cavity using the threaded section. 3 1

22. A container as in claim 20, wherein the cavity is generally cylindrical in geometry and extends vertically upward into the interior of the vessel, and wherein the cooling element comprises a cylinder that is filled with a cooling substance.

2

3

1 23. A beverage container as in claim 21, wherein the connector and the 2 vessel are constructed of a material selected from a group consisting of glass, hard plastic, 3 and glass coated with hard plastic.

1	24. A container as in claim 20, wherein the vessel has a shape selected			
2	from a group consisting of a mug, a regular wine glass, a red wine glass, a white wine glass, a			
3	martini glass, a tumbler, a stein glass, a margarita glass, a brandy snifter and a champagne			
4	glass.			
1	25. A beverage container comprising:			
2	a vessel having an interior that is adapted to hold a beverage, wherein the			
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a			
	generally hemispherical cavity that is fluidly sealed from the interior of the vessel;			
4				
5	a generally hemispherical cooling element that is configured to fit within the			
6	cavity;			
7	a base having a connector that is configured to be coupled to the bottom end of			
8	the vessel and to enclose the cooling element within the cavity.			
1	26. A beverage container as in claim 25, wherein the bottom end includes			
2	a generally hemispherical surface that partially defines the interior of the vessel.			
1	27. A beverage container as in claim 26, wherein the connector comprises			
2	threads on the base, and wherein the bottom end of the vessel includes threads to permit the			
3	base to be screwed into the vessel.			
1	28. A beverage container kit comprising:			
2	a vessel having an interior that is adapted to hold a beverage, wherein the			
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a			
4	cavity that is fluidly sealed from the interior of the vessel;			
5	a cooling element that is configured to fit within the cavity;			
6	a base comprising a connector that is configured to be coupled to the bottom			
7	end of the vessel and to enclose the cooling element within the cavity;			
8	a tray having a plurality of holding regions for holding cooling elements,			
9	whereby the tray may be placed in a freezer to cool the cooling elements.			
1	29. A kit as in claim 28, wherein the tray includes a plurality of recesses			
2	integrally formed in the tray to define the holding regions.			

30. A kit as in claim 29, wherein the recesses are in a shape selected from a group consisting of semi-cylindrical and semi-spherical.

- 1 31. A kit as in claim 28, wherein the base further comprises a bottom
 2 member and a stem extending vertically upward from the bottom member.
- 32. A kit as in claim 31, wherein the connector comprises a threaded end on the stem, wherein the cavity includes a threaded section, and wherein the threaded end is configured to be screwed up into the cavity using the threaded section.