# Bike Rental Prediction

Submitted by: Aditya Kapoor

# Introduction

### **Problem Statement**

The objective of this Case is to Predication of bike rental count on daily based on the environmental and seasonal settings.

### Data

### The details of data attributes in the dataset are as follows

- 1. nstant: Record index
- 2. dteday: Date
- 3. season: Season (1:springer, 2:summer, 3:fall, 4:winter)
- 4. yr: Year (0: 2011, 1:2012)
- 5. mnth: Month (1 to 12)
- 6. hr: Hour (0 to 23)
- 7. holiday: weather day is holiday or not (extracted fromHoliday Schedule)
- 8. weekday: Day of the week
- 9. workingday: If day is neither weekend nor holiday is 1, otherwise is 0.
- 10. weathersit: (extracted fromFreemeteo) 1: Clear, Few clouds, Partly cloudy, Partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- 11. temp: Normalized temperature in Celsius. The values are derived via (t-t\_min)/(t\_max-t\_min),t\_min=-8, t\_max=+39 (only in hourly scale)
- 12. atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t\_min)/(t\_maxt\_min), t\_min=-16, t\_max=+50 (only in hourly scale)
- 13. hum: Normalized humidity. The values are divided to 100 (max)
- 14. windspeed: Normalized wind speed. The values are divided to 67 (max)
- 15. casual: count of casual users
- 16. registered: count of registered users
- 17. cnt: count of total rental bikes including both casual and registered

# **Insights**

# **Data Exploration**

```
dteday season yr mnth holiday weekday workingday \
  instant
  6
                    1 0 1
1 0 1
1 0 1
                                           0
      3 2011-01-03
4 2011-01-04
5 2011 01 01
                                          1
                                   0
                                                     1
2
                                           2
3
                                    0
                                                     1
      5 2011-01-05
                              hum windspeed casual registered
  weathersit
              temp
                     atemp
   2 0.344167 0.363625 0.805833 0.160446 331 654
0
        2 0.363478 0.353739 0.696087 0.248539
                                             131
                                                       670
1
         1 0.196364 0.189405 0.437273 0.248309
                                                      1229
                                                      1454
3
        1 0.200000 0.212122 0.590435 0.160296 108
        1 0.226957 0.229270 0.436957 0.186900
                                             82
                                                      1518
  cnt
  985
0
  801
2 1349
3 1562
4 1600
```

We see that the dataset is already pretty good and doesn't require a lot of pre-processing. In addition to the existing columns, we would be needing columns like month end. We will then try to find useful insights by these columns to see if they have an impact.

# Feature Engineering

We extract features like 'day' and 'Month\_End' to derive meaningful insights from the data.

|   | instant  |     | dteday    | season | yr  | mnth   | holiday  | weekday   | work  | ringday \ |    |  |
|---|----------|-----|-----------|--------|-----|--------|----------|-----------|-------|-----------|----|--|
| 0 | 1        | 20: | 11-01-01  | 1      | 0   | 1      | 0        | 6         |       | 0         |    |  |
| 1 | 2        | 20: | 11-01-02  | 1      | 0   | 1      | 0        | 0         |       | 0         |    |  |
| 2 | 3        | 20: | 11-01-03  | 1      | 0   | 1      | 0        | 1         |       | 1         |    |  |
| 3 | 4        | 20: | 11-01-04  | 1      | 0   | 1      | 0        | 2         |       | 1         |    |  |
| 4 | 5        | 20  | 11-01-05  | 1      | 0   | 1      | 0        | 3         |       | 1         |    |  |
|   | weathers | sit | temp      | at     | emp | ì      | num wind | ispeed ca | asual | register  | ed |  |
| 0 |          | 2   | 0.344167  | 0.363  | 625 | 0.8058 | 333 0.1  | .60446    | 331   | 6         | 54 |  |
| 1 |          | 2   | 0.363478  | 0.353  | 739 | 0.6960 | 0.2      | 48539     | 131   | 6         | 70 |  |
| 2 |          | 1   | 0.196364  | 0.189  | 405 | 0.4372 | 273 0.2  | 48309     | 120   | 12        | 29 |  |
| 3 |          | 1   | 0.200000  | 0.212  | 122 | 0.5904 | 135 0.1  | 60296     | 108   | 14        | 54 |  |
| 4 |          | 1   | 0.226957  | 0.229  | 270 | 0.4369 | 957 0.1  | .86900    | 82    | 15        | 18 |  |
|   | cnt Da   | аy  | Month End | i      |     |        |          |           |       |           |    |  |
| 0 | 985      | 1   | _0.0      | )      |     |        |          |           |       |           |    |  |
| 1 | 801      | 2   | 0.0       | )      |     |        |          |           |       |           |    |  |
| 2 | 1349     | 3   | 0.0       | )      |     |        |          |           |       |           |    |  |
| 3 | 1562     | 4   | 0.0       | )      |     |        |          |           |       |           |    |  |
| 4 | 1600     | 5   | 0.0       | )      |     |        |          |           |       |           |    |  |

# Insights

We would like to look at the summary of the data grouped at the following levels.

1. Year Level:

Total Rentals Average Rentals per Day Median Rentals per Day

| yr   |         |             |      |
|------|---------|-------------|------|
| 2011 | 1243103 | 3405.761644 | 3740 |
| 2012 | 2049576 | 5599.934426 | 5927 |

Clearly, 2012 has more rentals than 2011.

2. By now, it is clear that year is an important parameter to consider with other parameters. First, we look at data at Year, Season level



Metrics by year and working day.
 Please note that in the figure, 0 represents a non-working day while 1 represents a working day.

| workingday | 0           | 1        |
|------------|-------------|----------|
| yr         |             |          |
| 2011       | 3363.817391 | 3425.056 |
| 2012       | 5288.189655 | 5744.584 |



### 4. Metrics by Year and Weather Situation

weathersit Clear, Few Clouds Light Rain, Snow, Thunderstorm, Clouds Mist, Cloudy, less clouds

| yr   |             |             |             |
|------|-------------|-------------|-------------|
| 2011 | 3694.986726 | 1674.133333 | 3088.096774 |
| 2012 | 6003.734177 | 2126.166667 | 4991.333333 |



### 5. Metrics by temperature

| temp_bucket | High        | Low         | Pleasent    |  |  |
|-------------|-------------|-------------|-------------|--|--|
| yr          |             |             |             |  |  |
| 2011        | 4281.137931 | 2426.913514 | 4436.894040 |  |  |
| 2012        | 6430.906250 | 4350.068571 | 6808.333333 |  |  |



### 6. Metrics by humidity

| hum_bucket | High        | Low         | Pleasent    |  |  |  |
|------------|-------------|-------------|-------------|--|--|--|
| yr         |             |             |             |  |  |  |
| 2011       | 3016.870588 | 2781.583333 | 3557.052239 |  |  |  |
| 2012       | 4576 523810 | 5448 352941 | 5834 381119 |  |  |  |



### 7. Metrics by wind speed

| windspeed_bucket | High        | Low         | Pleasent    |  |  |
|------------------|-------------|-------------|-------------|--|--|
| yr               |             |             |             |  |  |
| 2011             | 2966.669565 | 3668.833333 | 3603.004310 |  |  |
| 2012             | 5193.471154 | 6045.000000 | 5746.465863 |  |  |



# Summary

- 1. We see that 2012 has a higher count of rentals in all seasons.
- 2. Among seasons, highest count of rentals is in Fall, while the lowest is in Spring (Season 1)
- 3. We do not see a major difference between rentals on Working Days/Holidays. However, rentals on Working Days are slightly higher.
- 4. As per expectations, average count of bike rental is highest when the weather is clear and lowest during rains and thunderstorms.
- 5. We see that more people prefer to rent a bike when the temperature is high than when it is low.
- 6. There are more number of rentals when humidity is moderate/low than when it is high
- 7. Count of Rentals is highest when the wind speed is low

# **Feature Selection**

We start with correlation analysis. Look at the following table.

|            | season    | yr        | mnth      | holiday   | weekday   | workingday | weathersit | temp      | atemp     | hum       | windspeed | cnt       | Month_End |
|------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| season     | 1.000000  | -0.001844 | 0.831440  | -0.010537 | -0.003080 | 0.012485   | 0.019211   | 0.334315  | 0.342876  | 0.205445  | -0.229046 | 0.406100  | 0.006121  |
| yr         | -0.001844 | 1.000000  | -0.001792 | 0.007954  | -0.005461 | -0.002013  | -0.048727  | 0.047604  | 0.046106  | -0.110651 | -0.011817 | 0.566710  | 0.002637  |
| mnth       | 0.831440  | -0.001792 | 1.000000  | 0.019191  | 0.009509  | -0.005901  | 0.043528   | 0.220205  | 0.227459  | 0.222204  | -0.207502 | 0.279977  | 0.011085  |
| holiday    | -0.010537 | 0.007954  | 0.019191  | 1.000000  | -0.101960 | -0.253023  | -0.034627  | -0.028556 | -0.032507 | -0.015937 | 0.006292  | -0.068348 | -0.009072 |
| weekday    | -0.003080 | -0.005461 | 0.009509  | -0.101960 | 1.000000  | 0.035790   | 0.031087   | -0.000170 | -0.007537 | -0.052232 | 0.014282  | 0.067443  | -0.004303 |
| rorkingday | 0.012485  | -0.002013 | -0.005901 | -0.253023 | 0.035790  | 1.000000   | 0.061200   | 0.052660  | 0.052182  | 0.024327  | -0.018796 | 0.061156  | 0.007061  |
| weathersit | 0.019211  | -0.048727 | 0.043528  | -0.034627 | 0.031087  | 0.061200   | 1.000000   | -0.120602 | -0.121583 | 0.591045  | 0.039511  | -0.297391 | -0.026300 |
| temp       | 0.334315  | 0.047604  | 0.220205  | -0.028556 | -0.000170 | 0.052660   | -0.120602  | 1.000000  | 0.991702  | 0.126963  | -0.157944 | 0.627494  | 0.019858  |
| atemp      | 0.342876  | 0.046106  | 0.227459  | -0.032507 | -0.007537 | 0.052182   | -0.121583  | 0.991702  | 1.000000  | 0.139988  | -0.183643 | 0.631066  | 0.013039  |
| hum        | 0.205445  | -0.110651 | 0.222204  | -0.015937 | -0.052232 | 0.024327   | 0.591045   | 0.126963  | 0.139988  | 1.000000  | -0.248489 | -0.100659 | -0.005944 |
| vindspeed  | -0.229046 | -0.011817 | -0.207502 | 0.006292  | 0.014282  | -0.018796  | 0.039511   | -0.157944 | -0.183643 | -0.248489 | 1.000000  | -0.234545 | 0.041908  |
| cnt        | 0.406100  | 0.566710  | 0.279977  | -0.068348 | 0.067443  | 0.061156   | -0.297391  | 0.627494  | 0.631066  | -0.100659 | -0.234545 | 1.000000  | -0.033359 |
| /lonth_End | 0.006121  | 0.002637  | 0.011085  | -0.009072 | -0.004303 | 0.007061   | -0.026300  | 0.019858  | 0.013039  | -0.005944 | 0.041908  | -0.033359 | 1.000000  |

### We see that:

- 1. Season is highly correlated with month
- 2. Year is highly correlated with instant
- 3. Temp is highly correlated with atemp

Also, columns like day, dteday and holiday are adding little value to our dataset. Hence, we drop them. Registered and Casual imply the target variable. Hence, we remove them also.

Now that our dataset has been prepared, we will split it into train and test in the ratio of 4:1 rows. After splitting the data, we proceed for model building.

# **Model Building**

We use GridSearchCV for developing and tuning hyper parameters of 4 algorithms provided by Scikit Learn library.

- 1. LinearRegression()
- 2. Ridge()
- DecisionTreeClassifier()
- 4. RandomForestClassifier()

The idea is to test these models with different hyper parameters using GridSearchCV with CV=5 and selecting the one which gives the least mean RMSE.

After running training all the algorithms, we exported the results. You may find the results as part of the same zipped folder. Here is a snippet of the same.

```
mean_fit_time std_fit_time mean_score_time std_score_time
       0.984304 0.115948 0.037500 0.012497
0.328141 0.009883 0.012501 0.006250
13
                                                  0.006250
12
       0.821917 0.096631
                                   0.034375
                                                  0.006251
16
                                          params split0 test score
16 {'min_samples_leaf': 2, 'min_samples_split': 1...
                                                       -748.578988
   split1 test score split2 test score split3 test score
13
         -654.617544 -712.972370 -638.728783
12
        -655.700387
                         -727.597464
                                           -640.086592
16
        -659.992062
                         -740.930721
                                          -644.203005
  split4_test_score mean_test_score std_test_score rank_test_score \
   -706.369143 -688.653362 35.535672 1
-709.148507 -693.278993 38.257454 2
-731.233537 -704.987663 43.818562 3
13
12
16
  param alpha param min samples leaf param min samples split
13
12
         NaN
                                 2
                                                       2
                                 2
16
         NaN
                                                      10
  param_n_estimators
13
12
                100
16
               250
```

# Summary

- 1. We have trained LinearRegression, Ridge, Decision Tree Regressor and Random Forest Regressor algorithm with different combinations of hyper parameters.
- 2. We have used RMSE (Root Mean Squared Error) because we want to penalise high deviations more.
- 3. The Random Forest Classifier with 2 min\_samples\_leaf, 2 min\_samples\_split and 250 estimators has the best performance. However, we see that the Classifier with the same min\_samples\_leaf and min\_samples\_split but less estimators performs just as good. Hence, in order to avert avoidable computational cost, we will go with the model with less trees

# **Model Building**

Now that we know the best model and corresponding hyperparameters, we train the model using them and find RMSE, MAE and MAPE on test set. Note that we used RMSE as a metric for comparing models because RMSE score penalises bigger deviations more, and since this is a regression problem with number of rental prediction, we are better to do with an algorithm that makes many small mistakes rather than some bigger ones. Hence, it is useful to choose a metric that penalises big deviations more. This is the rationale behind using RMSE for comparing models. However, after model development we would like to understand more about the nature of these deviations, which is why we have used MAPE and MAE.

## Conclusion

We have trained and built a Random Forest Model and evaluated its performance on testing set. The RMSE score of this model is 636, MAE Score is 438 and MAPE is approximately 14%.

The hyper parameters used for the regressor are:

min\_sample\_leaf: 2

min\_sample\_split: 2

n\_estimators: 100

random state: 1024

The notebook containing the code to do all of the above may be found in the same compressed folder along with R Script, README file and hyper parameter tuning report.