the phan Heidinger \odot \odot Find any errors? Please send them back, I want to keep them!

1 Preliminaries

Definition

Some things probably important:

Transformational Systems

Transform set of input data into output data: $S_i \to S_k$. E.g. Compilers, database processing. Correctness criteria: Termination, Correctness of $S_i \to S_k$

Reactive Systems

Ongoing interaction with environment, driven by events/stimuli. E.g. Operating Systems, Control Systems.

Correctness: non-termination, correctness of stimuli-response pair.

Embedded Systems

Usually reactive systems, tightly connected to the hardware they control.

Cyber-Physical systems

Integration of computation and physical processes, often networked, e.g. sensor-/actuator systems, automotive control systems.

Real-Time Systems

Correctness depends on time bounds:

soft: violating soft time bounds will decrease quality of system.

hard: violating hard time bounds will make the system fail.

Hybrid systems

Systems characterized by discrete and continuous variables. E.g. thermostat, ...

Fault

Mistake made by a human during software development/production.

Failure

Behaviour of a system deviating from its specified behaviour. This is most often the result of a fault being executed.

Safety-Critical Systems

When a safety-critical system fails, people, the environment or damage to property or assets may occur.

1.1 System Correctness

When is a system correct?

- 1. It does what we expect it to do. ⇒functional model checking
- 2. It does so in a timely manner. ⇒real time or probabilistic model checking.
- 3. It does so with a certain probability over a certain period of time. ⇒probabilistic model checking.

- Given a model and a specification: Does $M \models S$?
- When every behaviour of M is also behaviour of S this is the case. \Rightarrow Model does not reveal properties violating the specification.
- Model of course has to represent the behaviour of the system.

2 CTL and CTL Model Checking

State

Characterizes the salient features of a system at a given point of observation. \Rightarrow A state can be observed as long as the features of interest don't change.

2.1 State-Based Modelling

State Transition in Discrete Systems

Instantaneous change of observed features of systems. Represents computation step.

real-time models

time passes in a state & state must be left when time-bound is reached

stochastic systems

state transitions are labeled with probabilities

hybrid systems

- \bullet continuous state variables change in a state
- discrete state variables change during state transition

State transitions:

- In a given state a certain number of events are possible (Leading to several different successor states).
- Represent valid sequence of computations.
- They encode history information (a state can only be reached trough a series of transitions).

Guidelines:

Abstraction: Focus only on important facts, disregard the rest.

Simplicity: Find simplest abstraction that still reveals phenomena of interest.

Characterization of reactive systems:

- State of the system.
- State transitions (caused by events/stimuli).
- Reactions triggered by transitions

2.2 Transition Systems

Transition System

A Transition System TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where:

 $\begin{array}{ll} S & \text{set of states} \\ Act & \text{set of actions} \\ \rightarrow \subseteq S \times Act \times S & \text{transition relation} \\ I \subseteq S & \text{set of initial states} \\ AP & \text{atomic propositions} \\ L: S \rightarrow 2^{AP} & \text{labeling function} \end{array}$

• $(s, \alpha.s')$ can be written as $s \to^{\alpha} s'$ or $s \xrightarrow{\alpha} s'$.

Atomic Propositions:

- \bullet logical representation of facts that may hold in a given state.
- AP set of all atomic propositions used in the system model.

Labeling functions:

• which atomic propositions actually hold in a given state.

Predecessors and Successors

$$\begin{aligned} Post(s,\alpha) &= \left\{ s' \in S \middle| s \xrightarrow{\alpha} s' \right\} & Post(s) &= \bigcup_{\alpha \in Act} Post(s\alpha) \\ Pre(s,\alpha) &= \left\{ s' \in S \middle| s' \xrightarrow{\alpha} s \right\} & Pre(s) &= \bigcup_{\alpha \in Act} Pre(s\alpha) \\ Post(C,\alpha) &= \bigcup_{s \in C} Post(s,\alpha) & Post(C) &= \bigcup_{s \in C} Post(s) \text{ for } C \subseteq S \\ Pre(C,\alpha) &= \bigcup_{s \in C} Pre(s,\alpha) & Pre(C) &= \bigcup_{s \in C} Pre(s) \text{ for } C \subseteq S \end{aligned}$$

Terminal/Final State

a state for which $Post(s) = \emptyset$

Action-Determinism

A TS is **action-deterministic**, iff for all s, α

- $|I| \leq 1$
- $|Post(s, \alpha)| \leq 1$

otherwise it is **action-nondeterministic**. In other words: For every state s and every action α there is at most one outgoing transition labeled with α .

AP-Determinism

A TS is AP-deterministic, iff for all $s, A \in 2^{AP}$

- $|I| \le 1$
- $|Post(s) \cap \{s' \in S | L(s') = A\}| \le 1$

where $|Post(s) \cap \{s' \in S | L(s') = A\}$ denotes the set of all equally labeled successors of s. In other words: For every state s, every successor state has a unique AP labeling.

Nondeterminism can be used to implement abstraction and concurrency.

2.3 System Executions

Finite Execution Fragment

A finite execution fragment ϱ of TS is an alternating sequence of states and executions ending with a state:

$$\varrho = s_0 \alpha_1 s_2 \alpha_2 \dots \alpha_n s_n$$
 such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$

infinite execution fragment

An **infinite execution fragment** ϱ of TS is an alternating sequence of states and executions ending with a state:

$$\varrho = s_0 \alpha_1 s_2 \alpha_2 \dots$$
 such that $s_i \stackrel{\alpha_{i+1}}{\longrightarrow} s_{i+1}$ for all $0 \le i$

maximal execution fragment

An execution fragment, that is

either finite and ending in terminal state

or infinite.

initial execution fragment

An execution fragment is initial, iff $s_0 \in I$.

Execution

A initial, maximal execution fragment.

Reachability

State $s \in S$ is called **reachable** in a TS, if there exists an initial, finite execution fragment $s_0\alpha_1s_1\alpha_2\ldots\alpha_ns_n$ such that $s_n=s$. Reach(TS) denotes the set of all reachable states in TS.

State Graph

The **State Graph** of TS, G(TS), is the directed Graph (V, E) with vertices V = S and edges $E = \{s, s'\} \in S \times S | s' \in Post(s) \}$.

Transitive Post Hull

$$Post^*(s) \text{ is the set of states reachable from } s \qquad Post^*(C) = \bigcup_{s \in C} Post^*(s), \text{ for } C \subseteq S$$

$$Pre^*(s) \text{ is the set of states from which } s \text{ is reachable} \qquad Pre^*(C) = \bigcup_{s \in C} Pre^*(s), \text{ for } C \subseteq S$$

$$Reach(TS) = Post^*(I)$$

Path fragments

A path fragment is an exeuction fragment without actions.

Finite Path fragments

A Finite path fragment $\hat{\pi}$ of TS is a state sequence:

$$\hat{\pi} = s_0 s_1 \dots s_n$$
 such that $s_{i+1} \in Post(s_i)$ for all $0 \le i \le n$ where $n \ge 0$

Infinite Path fragments

An **Infinite path fragment** $\hat{\pi}$ of TS is a infite state sequence:

$$\hat{\pi} = s_0 s_1 \dots$$
 such that $s_{i+1} \in Post(s_i)$ for all $i \ge 0$

Path

A Path is a maximal, initial path fragment

Trace

When only registering the atomic propositions along execution, this is called a **trace**.

$$\hat{\pi} = s_0 s_1 \dots, s_n \qquad trace(\hat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$$

$$Traces(s) = trace(Paths(s)) \qquad Traces(TS) = \bigcup_{s \in I} Traces(s)$$

$$Traces_{fin} = trace(Paths_{fin}(s)) \qquad Traces_{fin}(s)(TS) = \bigcup_{s \in I} Traces_{fin}(s)$$

2.4 Structural Operational Semsantics

Semantics of a program in terms of computation steps defined by transition system:

$$\frac{premise}{conclusion}$$

If the premise holds, the conclusion holds (and can be used to trigger a new inference rule). Can be recursively applied \Rightarrow structural inductive creation.

Interleaving

$$TS_1|||TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \longrightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \longrightarrow is defined by:

$$\frac{s_1 \stackrel{\alpha}{\longrightarrow}_1 s_1'}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1', s_2 \rangle} \text{ and } \frac{s_2 \stackrel{\alpha}{\longrightarrow}_2 s_2'}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, s_2' \rangle}$$

A Computation tree is obtained from transition system by unfolding operation:

• s_k is a successor node of s_i in the computation tree, iff there is a transition from s_i to s_k in the transition system.

2.5 Property Specification

based on modal logic:

Lp it is **necessary** that p

Mp it is **possible** that p

 $\neg Lp$ it is **not necessary** that p

 $\neg Mp$ it is **not possible** that p

Kripke-Structure

Let

- $\bullet \ M=W,V,A$ be a Kripke-Structure:
- Π a set of atomic propositions and $p \in \Pi$
- $w, v \in W$
- Φ, ρ formulae

then we define the relation \models (satisfaction relation) for M:

Further syntactic definitions:

$$\begin{array}{cccc} \Phi \vee \rho & \cong & \neg (\neg \Phi \wedge \neg \rho) \\ \Phi \supset \rho & \cong & \neg \Phi \vee \rho & \text{implies} \\ \Phi \equiv \rho & \cong & (\Phi \supset \rho) \wedge (\rho \supset \Phi) \\ M\Phi & \cong & \neg L \neg \Phi & \end{array}$$

In temporal logic:

- Mp corresponds to $\Box p$
- Lp corresponds to $\diamond p$

Computation Tree Logic Syntax (CTL Syntax)

 $a \in AP$

CTL state formula Φ :

$$true$$
 $\neg \Phi$ $\exists \varphi$ $\forall \varphi$

CTL path formula

$$\circ \Phi$$
 $\Phi_1 \mathcal{U} \Phi_2$

To be syntactically correct, temporal operators and path quantifiers alternate. Derived Operators:

$$\begin{array}{ll} potentially \ \Phi: & \exists \diamond \Phi = \exists (true \ \mathcal{U} \ \Phi) \\ inevitably \ \Phi: & \forall \diamond \Phi = \forall (true \ \mathcal{U} \ \Phi) \\ potentially \ always \Phi: & \exists \Box \Phi = \neg \forall \diamond \neg \Phi \\ invariantly \ \Phi: & \forall \Box \Phi = \neg \exists \diamond \neg \Phi \end{array}$$

weak until
$$\Phi$$
:
$$\exists (\Phi \mathcal{W} \Psi) = \neg \forall ((\Phi \wedge \neg \Psi) \mathcal{U} (\neg \Phi \wedge \neg \Psi))$$
$$\forall (\Phi \mathcal{W} \Psi) = \neg \exists ((\Phi \wedge \neg \Psi) \mathcal{U} (\neg \Phi \wedge \neg \Psi))$$

Computation Tree Logic Semantic (CTL Semantic)

CTL state formulae:

$$\begin{array}{llll} s \models a & \iff & a \in L(s) \\ s \models \neg \Phi & \iff & \neg (s \models \Phi) \\ s \models \Phi \land \Psi & \iff & (s \models \Phi) \land (s \models \Psi) \\ s \models \exists \varphi & \iff & \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s \\ s \models \forall \varphi & \iff & \pi \models \varphi \text{ for all path } \pi \text{ that starts in } s \end{array}$$

Satisfaction Set

The satisfaction set $Sat(\Phi)$ for a CTL formula is defined by:

$$Sat(\Phi) = \{ s \in S | s \models \Phi \}$$

A TS satisfies a CTL formula Φ if Φ holds in all initial states:

$$TS \models \Phi \iff \forall s_0 \in I : s_0 \models \Phi$$

CTL Equivalence

CTL formulas Φ and Ψ are **equivalent**, $\Phi \equiv \Psi$ iff $Sat(\Phi) = Sat(\Psi)$.

$$\Phi \equiv \Psi \iff (TS \models \Phi \iff TS \models \Psi)$$

Equivalence-based Rewrite Rules

Duality Laws:

$$\begin{split} \forall \circ \Phi &\equiv \neg \exists \circ \neg \Phi \\ \exists \circ \Phi &\equiv \neg \forall \circ \neg \Phi \\ \forall \diamond \Phi &\equiv \neg \exists \Box \neg \Phi \\ \exists \diamond \Phi &\equiv \neg \forall \Box \neg \Phi \\ \forall (\Phi \mathcal{U} \Psi) &\equiv \neg \exists ((\Phi \land \neg \Psi) \, \mathcal{W} \, (\neg \Phi \land \neg \Psi)) \end{split}$$

Expansion Laws:

$$\begin{split} \forall (\Phi \, \mathcal{U} \, \Psi) &\equiv \Psi \vee (\Phi \wedge \forall \circ \forall (\Phi \, \mathcal{U} \, \Psi)) \\ \forall \diamond \, \Phi &\equiv \Phi \vee \forall \circ \forall \diamond \, \Phi \\ \forall \Box \Phi &\equiv \Phi \wedge \forall \circ \forall \Box \Phi \\ \exists (\Phi \, \mathcal{U} \, \Psi) &\equiv \Psi \vee (\Phi \wedge \exists \circ \exists (\Phi \, \mathcal{U} \, \Psi)) \\ \exists \diamond \, \Phi &\equiv \Phi \vee \exists \circ \exists \diamond \, \Phi \\ \exists \Box \Phi &\equiv \Phi \wedge \exists \circ \exists \Box \Phi \end{split}$$

Distributive Laws:

$$\forall \Box (\Phi \wedge \Psi) \equiv \forall \Box \Phi \wedge \forall \Box \Psi$$
$$\exists \diamond (\Phi \wedge \Psi) \equiv \exists \diamond \Phi \wedge \exists \diamond \Psi$$

But:

$$\exists \Box (\Phi \land \Psi) \not\equiv \exists \Box \Phi \land \exists \Box \Psi$$
$$\forall \diamond (\Phi \land \Psi) \not\equiv \forall \diamond \Phi \land \forall \diamond \Psi$$

2.5.1 LTL

Missing Content

Definition and Explanation of LTL, see Model Checking aggregation.

CTL and LTL equivalence

CTL formula Φ and LTL formula ψ are equivalent, $\Phi \equiv \psi$, iff for any transition system TS over AP

$$TS \models \Phi \iff TS \models \psi$$

There can only be equivalent Φ and ψ if by omitting all path quantifiers from Φ yields

$$\Phi \equiv \psi$$

otherwise there does not exist an equivalent LTL formula. \Rightarrow LTL and CTL have incomparable expressiveness.

2.5.2 CTL*

\mathbf{CTL}^*

State formula: $\Phi := true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \exists \varphi$ path formula: $\varphi := \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \circ \varphi \mid \varphi_1 \mathcal{U} \varphi_2$

CTL* Semantics

$$\begin{array}{llll} s \vDash a & \iff & a \in L(s) \\ s \vDash \neg \Phi & \iff & not \, s \vDash \Phi \\ s \vDash \Phi \land \Psi & \iff & (s \vDash \Phi) \text{ and } (s \vDash \Psi) \\ s \vDash \exists \varphi & \iff & \pi \vDash \varphi \text{ for some } \pi \in Paths(s) \\ \pi \vDash \Phi & \iff & \pi[0] \vDash \Phi \\ \pi \vDash \varphi_1 \land \varphi_2 & \iff & \pi \vDash \varphi_1 \text{ and } \pi \vDash \varphi_2 \\ \pi \vDash \neg \varphi & \iff & \pi \not\vDash \varphi \\ \pi \vDash \circ \varphi & \iff & \pi[1..] \vDash \varphi \\ \pi \vDash \varphi_1 \mathcal{U} \varphi_2 & \iff & \exists j \geq 0. (\pi[j..] \vDash \varphi_2 \land (\forall 0 \leq k < j.\pi[k..] \vDash \varphi_1)) \end{array}$$

Satisfaction set and TS satisfaction is same as for CTL.

2.5.3 CTL Model Checking Procedure

- 1. convert CTL formula Φ' into an equivalent CTL formula Φ in **Existential Normal Form (ENF)**
- 2. recursively compute the set $Sat(\Phi) = \{s \in S | s \models \Phi\}$
- 3. $TS \models \Phi$ iff each initial sate of TS belongs to $Sat(\Phi)$

ENF Conversion

ENF Subset of CTL:

$$\Phi := true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \exists \circ \Phi \mid \exists (\Phi_1 \mathcal{U} \Phi_2 \mid \exists \Box \Phi)$$

Conversion Rules:

$$\begin{array}{lll} \forall \circ \Phi & \equiv & \neg \exists \circ \neg \Phi \\ \forall (\Phi \, \mathcal{U} \, \Psi) & \equiv & \neg \exists (\neg \Psi \, \mathcal{U} \, (\neg \Phi \wedge \neg \Psi)) \wedge \neg \exists \Box \neg \Psi \end{array}$$

Computation of $Sat(\Phi)$

- 1. create parse tree from formula
- 2. compute $Sat(a_i)$ for leaf nodes
- 3. move up in the parse tree by level, computing Sat(.) from child nodes
- 4. when all root tree is computed, check if $I \in Sat(\Phi)$

Computation of $Sat(a_i)$

$$Sat(true) = S$$

$$Sat(a) = \{s \in S | a \in L(s)\} \text{ for any } a \in AP$$

$$Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$$

$$Sat(\neg \Phi) = S \setminus Sat(\Phi)$$

$$Sat(\exists \circ \Phi) = \{s \in S | Post(s) \cap Sat(\Phi) \neq \emptyset\}$$

$$Sat(\exists (\Phi \mathcal{U} \Psi)) \text{ is the smallest subset } T \text{ of } S, \text{ such that }$$

$$Sat(\Psi) \subseteq T \text{ and }$$

$$(s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset) \Rightarrow s \in T$$

$$Sat(\exists \Box \Phi) \text{ is the largest subset } T \text{ of } S, \text{ such that }$$

$$T \subseteq Sat(\Phi) \text{ and }$$

$$s \in T \longrightarrow Post(s) \cap T \neq \emptyset$$

smallest Fixpoint calculation: $\exists (\Phi_1 \mathcal{U} \Phi_2)$

$$\begin{split} T &:= Sat(\Phi_2); \\ \mathbf{while} \ \{s \in Sat(\Phi_1) \setminus T | Post(s) \cap T \neq \varnothing\} \neq \varnothing \ \mathbf{do} \\ & | \ \{s \in Sat(\Phi_1) \setminus T | Post(s) \cap T \neq \varnothing\} \neq \varnothing \\ & | \ T := T \cup \{s\} \end{split}$$
 end

greatest Fixpoint calculation: $\exists \Box \Phi$

```
T := Sat(\Phi)
    while \{s \in T | Post(s) \cap T = \emptyset\} \neq \emptyset do
        let \{s \in T | Post(s) \cap T = \emptyset\}
        T := T \setminus \{s\};
    end
Compute Sat(\exists(\Phi \mathcal{U} \Psi)) by Enumerative Backward Search
    T := Sat(\Psi);
    E := T
    while E \neq \emptyset do
        s' \in E;
        E := E \setminus \{s'\};
        for all s \in Pre(s') do
            if s \in Sat(\Phi) \setminus T then
               E := E \cup \{s\};
               T := T \cup \{s\};
            end
        end
    end
    return T
Compute Sat(\exists \Box \Phi) by Enumerative Backwards Search
    E := S \setminus Sat(\Phi);
                                                  /* E contains any unvisited s' with s' \not\models \exists \Box \Phi */
    T := Sat(\Phi);
                                  /* T contains any s for which s \models \exists \Box \Phi is not disproven */
    for all s \in Sat(\Phi) do
    |c[s]| := |Post(s)|;
    end
    while E \neq \emptyset do
        s' \in E;
        E:=E\setminus \{s'\};\ ;
                                                                              /* s' has been considered */
        for all s \in Pre(s') do
            if s \in T then
                                               /* update counter c[s] for predecessor s of s' */
                c[s] := c[s] - 1;;
                if c[s] = 0 then
                    T := T \setminus \{s\};
                    E := E \cup \{s\}
                end
            \mathbf{end}
        end
    \mathbf{end}
    return T
Alternative Algorithm for Sat(\exists \Box \Phi):
   1. Consider state s only if s \models \Phi, otherwise eliminate s
          • change TS into TS[\Phi] = (S', Act, \rightarrow', I', AP, L') with S' = Sat(\Phi)
          • \rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S', L'(s) = L(s) for s \in S'
         \Rightarrow all removed states do not satisfy \exists \Box \Phi and can therefore be removed
   2. Dtermine all non-trivial strongly connected components in TS[\Phi]
          • non-trivial SCC ⇒maximal, connected subgraph with at least one transition
         \Rightarrow any state in such SCC satisfies \exists \Box \Phi
   3. s \models \exists \Box \Phi is equivalent to "some SCC is reachable from s"
          • simple reachability search (backward manner)
```

2.5.4 Time Complexity

The CTL Model Checking Problem $TS \models \Phi$ can be determined in $\mathcal{O}(|\Phi| \cdot (N+M))$, where N is the number of states and M the number of transitions, N+M is the size of the transition system, which can be exponentially large.

LTL Model Checking can be done in $\mathcal{O}((N+M)\cdot 2^{|\Phi|})$. But LTL formulae can be exponentially shorter.

2.5.5 Counterexamples

Missing Content

Counterexamples in LTL, see Model Checking aggregation.

Counterexample and Witnesses

- counterexample: path fragment $s \to s'$ such that
 - $-s \in I \text{ and } s' \in Post(s) \text{ with } s' \not\models \Phi$
- witness: a path fragment $s \to s'$ such that
 - $-s \in I \text{ and } s' \in Post(s) \text{ with } s' \models \Phi$
- algorithmic computation: Inspection of direct successors of initial states.

Witness for $\Phi \mathcal{U} \Psi$

backwards search starting in $Sat(\Psi)$

Counterexample for $\Phi \mathcal{U} \Psi$

has one of the forms:

- $s_0 \dots s_{n-1} \underbrace{s_n s'_1 \dots s'_r}_{cycle}$ with $s_n = s'_r$ (would work for \mathcal{W} , but not \mathcal{U}) $\underbrace{\qquad \qquad \qquad }_{satisfy} \underbrace{\sigma \wedge \neg \Psi}$
- $s_0 \dots s_{n-1} s_n$ where $s_n \models \neg \Phi \wedge \neg \Psi$

Computing Counterexample:

- let G = (S, E) a directed graph, where S is the set of states of the TS and $E = \{(s, s') \in S \times S | s' \in Post(s) \land s \models \Phi \land \neg \Psi\}$
- Each path in G starting in an $s_0 \in I$ leading to an trivial or non-trivial SCC yields a counterexample.
- ⇒ counterexample generation requires SCC computation (e.g. Tarjans Algorithm)

3 CTL* Model Checking

CTL* Model Checking

Follow same recursive pattern using parse tree as for CTL model checking.

- replace maximal proper state formula by new proposition a_{Ψ}
- Ψ is a maximal proper state subformula of Φ whenever Ψ is a subformula of Φ that differs from Φ and that is not contained in any other proper state formula of Φ .

- adjust labeling of TS such that $a_{\Psi} \in L(s)$ iff $s \in Sat(\Psi)$
- \Rightarrow LTL formula

$$s \models \exists \varphi \iff s \not\models_{CTL^*} \forall \neg \varphi \iff s \not\models_{LTL} \neg \varphi$$

Algorithm

```
for all i \leq |\Phi| do
    for all \Psi \in Sub(\Phi) with |\Psi| = i do
         switch \Psi do
                                                                    Sat(\Psi) := S
                                     true:
                                                                    Sat(\Psi) := \{ s \in S | a \in L(s) \};
                                         a:
                                                                    Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
                                 a_1 \wedge a_2:
                                       \neg a:
                                                                    Sat(\Psi) := S \setminus Sat(a);
                                                               determine Sat_{LTL}(\neg \varphi);
                                       \exists \varphi:
                                                                    Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)
                                      \Box \varphi:
         endsw
         AP := AP \cup \{a_{\Psi}\};;
                                                              /* introduce fresh atomic proposition */
         replace \Psi with a_{\Psi}; for all s \in Sat(\Psi) do
          L(s) \cup \{a_{\Psi}\};
         end
    \mathbf{end}
end
return I \subseteq Sat(\Phi)
```

3.1 Time Complexity

For transition systems with N states and M transitions the CTL* model checking problem $TS \models \Phi$ can be determined in $\mathcal{O}(N+M) \cdot 2^{|\Phi|}$

3.2 Fairness

Fairness

Fairness Constraints ⇒rule out unrealistic executions by putting constraints on actions that occur along infinite executions

 $unconditional \Rightarrow strong \Rightarrow$

weak rules out the least executions

Fairness Assumptions ⇒distinct constraints on distinct action sets

Fairness Constraints

unconditional LTL fairness constraint: $u_{fair} = \Box \diamond \Psi$ strong LTL fairness constraint: $s_{fair} = \Box \diamond \Phi \longrightarrow \Box \diamond \Psi$ weak LTL fairness constraint: $w_{fair} = \diamond \Box \Phi \longrightarrow \Box \diamond \Psi$

$$fair = u_{fair} \wedge s_{fair} \wedge w_{fair}$$

- strong and unconditional fairness ⇒solve contentions
- weak fairness ⇒resolve nondeterminism

weak

$$FairPaths_{fair}(s) = \{\pi \in Paths(s) | \pi \models fair\}$$

$$FairTraces_{fair}(s) = \{trace(\pi) | \pi \in FairPaths_{fair}(s)\}$$

$$s \models_{fair} \varphi \text{ iff } \forall \pi \in FairPaths_{fair}(s).\pi \models \varphi$$

$$TS \models_{fair} \varphi \text{ iff } \forall s_0 \in I.s_0 \models_{fair} \varphi$$

For TS and LTL formula φ and LTL fairness assumption fair:

$$TS \models_{fair} \varphi \text{ iff } TS \models (fair \rightarrow \varphi)$$

Fairness in CTL

⇒ignore unfair paths

unconditional $u_{fair} = \bigwedge_{0 < i < k} \Box \diamond \Psi$

strong: $s_{fair} = \bigwedge_{0 < i \le k} (\Box \diamond \Phi_i \to \Box \diamond \Psi_i)$

weak $w_{fair} = \bigwedge_{0 < i < k} (\Diamond \Box \Phi_i \to \Box \Diamond \Psi_i)$

A CTL fairness constraint is an LTL formula over CTL formulas

$$Sat_{fair}(\Phi) = \{ s \in S | s \models_{fair} \Phi \}$$

For transition system TS without terminal states, a CTL formula Φ in ENF and CTL fairness assumption fair:

- 1. establish whether $TS \models_{air} \Phi$
- 2. use bottom-up CTL procedure to determine $Sat_{fair}(\Phi)$
 - (a) replace CTL-state formulas in s_{fair} by atomic propositions

$$s_{fair} := \bigwedge_{0 < i \le k} (\Box \diamond a_i \to \Box \diamond b_i)$$

Fair CTL Model Checking

 $s \models_{fair} \exists \circ a \text{ iff } \exists s' \in Post(s) \text{ with } s' \models a \text{ and } \underbrace{FairPaths(s') \neq \varnothing}$

$$s' \models_{fair} \exists \Box true$$

 $s \models fair \exists (a \cup a') \text{ iff there exists a finite path fragment } s_0 s_1 \dots s_{n-1} s_n \in Paths_{fin}(s) \text{ with } n \geq 0$ such that $s_i \models a$ for $0 \leq i < n, s_n \models a'$ and $Fair Paths(s') \neq \emptyset$

$$s' \models_{fair} \exists \Box true$$

Model Checking with fairness can be reduced to:

- Model Checking CTL
- computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$

```
Algorithm:
compute Sat_{fair}(\exists \Box true) = \{s \in S | FairPaths(s) \neq \varnothing\} for all s \in Sat_{fair}(\exists \Box true) do
                                                                                                /* compute Sat_{fair}(\Phi) */
     L(s) := L(s) \cup \{a_{fair}\} ;
end
for all 0 < i \le |\Phi| do
     for all \Psi \in Sub(\Phi) with |\Psi| = i do
          switch \Psi do
                                                                  Sat_{fair}(\Psi) := S;
                                  true
                                                                  Sat_{fair}(\Psi) := \{ s \in S | a \in L(s) \};
                                                                  Sat_{fair}(\Psi) := S \setminus Sat_{fair}(a);
                                    \neg a
                                                                  Sat_{fair}(\Psi) := Sat_{fair}(a) \cap Sat_{fair}(a');
                                a \wedge a'
                                                                  Sat_{fair}(\Psi) := Sat(\exists \circ (a \land a_{fair}));
                                  \exists \circ a
                                                                  Sat_{fair}(\Psi) := Sat(\exists (a \, \mathcal{U} \, (a' \wedge a_{fair})));
                            \exists (a \, \mathcal{U} \, a')
                                                                   Sat_{fair}(\Psi) := compute Sat_{fair}(\exists \Box a);
                                  \exists \Box a
          replace all occurrences of \Psi (in \Phi) b< the fresh atomic proposition a_{\Psi} for all
          s \in Sat_{fair}(\Psi) \ \mathbf{do}
           L(s) := L(s) \cup \{a_{\Psi}\}
          end
     end
end
return I \subseteq Sat_{fair}(\Phi)
Computation of Sat_{fair}(\exists \Box a):
```

- Consider state s only if $s \models a$, otherwise eliminate s
- $s \models_{fair} \exists \Box a$ iff there is a non-trivial SCC D in TS[a] reachable from s:

$$D \cap Sat(a_i) = \emptyset$$
 or $D \cap Sat(b_i) \neq \emptyset$ for $0 < i \le k$

• $Sat_{sfair}(\exists \Box a) = \{s \in S | Reach_{TS[a]}(s) \cap T \neq \emptyset\}$ where T is the union of all non-trivial SSCs C that contain D satisfying above equation.

Time Complexity

TS with N states and M transitions, CTL formula Φ , CTL fairness constraint fair with k conjuncts: CTL model checking in $\mathcal{O}(|\Phi| \cdot (N+M) \cdot k)$

4 Real-Time Model Checking

soft real-time systems

Violating soft real-time bounds does **not** lead to invalidation of system. ⇒"quality of service" requirements. Usually with probabilities attached (reach state X with probability of Y in Z time).

hard real-time systems

Correctness of system depends on satisfying real-time constraints.

discrete time domain

• time advances in discrete steps

• actions only happen at natural time values ⇒time domain N

advantages • conceptually simple

- \bullet no need to change TS
- take LTL or CTL
- use traditional model checking algorithms

disadvantages • fixed minimal delay granularity, between two points not observable

- not invariant to changes in time scale
- for asynchronous systems determination of mimimal delay hard
- time domain is dense
- infinite branching of computation tree

Clocks

- value increases while in a state
- may only be reset to zero
- can be referenced in constraints
- clocks increase at same pace (with rate 1)
- \Rightarrow guards on edges
- \Rightarrow invariants on locations

Clock Constraints (CC)

 $c \in \mathbb{N}, x \in C, C \text{ set of clocks}$

$$g := x < c|x \le c|x > c|x \ge c|g \land g$$

Clock constraints without any conjunctions are atomic: ACC(C) \Rightarrow rational valued constraints can be translated into naturals by proper scaling.

Timed Automata

 $TA = (Loc, Act, C, \hookrightarrow, Loc_0, Inv, AP, L)$, where:

Loc is a finite set of locations Loc_0 is a set of initial locations C is a finite set of clocks

 $\hookrightarrow \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$ is a transition relation $Inv: Loc \to CC(C) \text{ is an invariant-assignement function}$ $L: Loc \to 2^{AP} \text{ is a labeling function}$

Edge $\ell \stackrel{g:\alpha,C}{\longrightarrow} \ell'$ means intuitively:

- action α is enabled once guard g holds
- when moving from ℓ to ℓ'

- perform action α
- reset any clock in C to zero
- all clocks not in C keep their value
- Nondeterminism if multiple transitions are enabled
- $Inv(\ell)$ constraints amount of time that may be spent in location ℓ
 - once it becomes invalid, ℓ must be left
 - if leaving is not possible, deadlock

Composition

 $TA_i = (Loc_i, Act_i, C_i, \hookrightarrow_i, Loc_{0,i}, Inv_i, AP_i, L_i)$ and handshake action set H:

$$TA_1|_HTA_2 = (Loc, Act_1 \cup Act_2, C, \hookrightarrow, Loc_0, Inv, AP, L)$$

where

$$Loc = Loc_1 \times Loc_2$$

$$Loc_0 = Loc_{0,1} \times Loc_{0,2}$$

$$C = C_1 \cup C_2$$

$$Inv(\langle \ell_1, \ell_2 \rangle) = Inv_1(\ell_1) \wedge Inv_2(\ell_2)$$

$$L(\langle \ell_1, \ell_2 \rangle)) = L_1(\ell_1) \cup L_2(\ell_2)$$

 \hookrightarrow is defined by

$$\alpha \in H : \xrightarrow{\ell_1 \overset{g_1:\alpha,D_1}{\underbrace{}} 1\ell_1' \wedge \ell_2 \overset{g_2:\alpha,D_2}{\underbrace{}} 2\ell_2'} \ell_1,\ell_2 \rangle$$

$$\alpha \not\in H \text{: } \underbrace{\begin{array}{c} \ell_1 \overset{g_1:\alpha,D_1}{\Longrightarrow} {}_1\ell_1' \\ \langle \ell_1,\ell_2 \rangle \overset{g_1:\alpha,D_1}{\Longrightarrow} \langle \ell_1,\ell_2 \rangle \end{array}}_{} \text{and } \underbrace{\begin{array}{c} \ell_2 \overset{g_2:\alpha,D_2}{\Longrightarrow} {}_2\ell_2' \\ \langle \ell_1,\ell_2 \rangle \overset{g_2:\alpha,D_2}{\Longrightarrow} \langle \ell_1,\ell_2 \rangle \end{array}}_{} \mathcal{A}(\ell_1,\ell_2)$$

Clock Valuations

- clock valuation η for set C of clocks is a function $\eta: C \to \mathbb{R}_{\geq 0}$ assigning each clock $x \in C$ its current value $\eta(x)$
- $\eta + d$ for $d \in \mathbb{R}_{\geq 0}$ is defined by: $(\eta + d(x) = \eta(x) + d$ for all clocks $x \in C$
- reset x in η for clock x is defined by:

$$(reset x in \eta)(x) = \begin{cases} \eta(y) & if y \neq x \\ 0 & if y = x \end{cases}$$

Satisfaction of Clock Constraints

 $\models \subseteq Eval(C) \times CC(C)$ is defined by:

$$\eta \models true
\eta \models x < ciff \eta(x) < c
\eta \models x \le ciff \eta(x) \le c
\eta \models x > ciff \eta(x) > c
\eta \models x \ge ciff \eta(x) \ge c
\eta \models g \land g'iff \eta \models g \land \eta \models g'$$

Transition System from Timed Automata

For the timed automaton $TA = (Loc, Act, C, \hookrightarrow, Loc_0, Inv, AP, L)$ the transition system is: $TS(TA) = (S, Act', \rightarrow, I, AP', L')$

$$S = Loc \times Eval(C), \text{ so states are of the form } s = \langle \ell, \eta \rangle$$

$$Act' = Act \cup \mathbb{R}_{\geq 0}, \text{ (discrete) actions and time passage actions}$$

$$I = \{ \langle \ell_0, \eta_0 \rangle | \ell_0 \in Loc_0 \wedge \eta_0(x) = 0 \text{ for all } x \in C \}$$

$$AP' = AP \cup ACC(C)$$

$$L'(\langle \ell, \eta \rangle) = L(\ell) \cup \{ g \in ACC(C) | \eta g \}$$

$$\rightarrow \text{is the transition relation defined below}$$

Discrete Transition: $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \eta' \rangle$ if there is a transition labeled $(g : \alpha, D)$ from location ℓ to ℓ' such that:

- g is satisfied by η , i.e. $\eta \models g$
- $\eta' = \eta$ with all clocks in D resets to 0, i.e. $\eta' = reset D in \eta$
- η' fulfills the invariant of location ℓ' , i.e. $\eta' \models Inv(\ell')$

Delay Transition $\langle \ell, \eta \rangle \xrightarrow{d} \langle \ell, \eta + d \rangle$ for $d \in \mathbb{R}_{>0}$ if $\eta + d \models Inv(\ell)$

 \Rightarrow uncountably many states of the form $\langle \ell, \eta + t \rangle$ possible

Timed Paths through TS(TA)

Model possible behaviour of TA. Not every Path is realistic:

time convergence: time converges to a specific value

Time convergence is unrealistic and needs to be ignored (similar to unfair paths) \Rightarrow only use time-divergent paths.

timelock: passage of time stops

TA is **timelock-free** if no state in Reach(TS(TA)) contains a timelock timelocks are modelling flaws \Rightarrow need mechanisms to check for them

zenoness: infinitely many actions take place in finite time.

Zenoness

- A TA that performs infinitely many actions in finite time is **zeno**.
- Path π in TS(TA) is **zeno**, if it is time-convergent and infinitely many actions $\alpha \in Act$ are executed along π
- TA is **non-zeno** if there does not exist a zeno path in TS(TA)
 - any π in TS(TA) is time-divergent
 - any time-convergent path has at least one delay transition.
- Sufficient Condition for **Non-Zenoness** (static analysis): Let TA with set C of clocks such that for every (control) cycle:

$$\ell_0 \stackrel{g_1:\alpha_1,C_1}{\Longrightarrow} \ell_1 \stackrel{g_2:\alpha_2,C_2}{\Longrightarrow} \dots \stackrel{g_n:\alpha_n,C_n}{\Longrightarrow} \ell_n = \ell_0$$

there exists a clock $x \in C$ such that:

- 1. $x \in C$, for some $0 < i \le n$, and
- 2. for all clock evaluations η there exists $c \in \mathbb{N}_{>0}$ such that

$$\eta(x) < c \text{ implies } (\exists 0 < j \le n.n \not\models g_j \text{ or } \eta \not\models Inv(\ell_j))$$

Adequate Modelling

A timed automaton is adequately modeling a time-critical system whenever it is **non-zeno** and **timelock-free**.

4.1 Timed CTL

Syntax of Timed CTL (TCTL)

TCTL formula over AP and set C:

$$\Phi := true|a|g|\Phi \wedge \Phi|\neg \Phi|\exists \varphi|\forall \varphi$$

where $a \in AP, g \in ACC(C)$ and φ is a path formula defined by $\varphi := \diamond^J \Phi$ where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are natural: J : [n, m], (n, m], [n, m), (n, m) for $n, m \in \mathbb{N}$ and $n \leq m, m = \infty$ allowed for right-open intervalls.

$$\begin{split} & \exists \Box^J \Phi = \neg \forall \diamond^J \neg \Phi \\ & \forall \Box^J \Phi = \neg \exists \diamond^J \neg \Phi \\ & \diamond \Phi = \diamond^{[0,\infty)} \Phi \\ & \Box \Phi = \Box^{[0,\infty)} \Phi \end{split}$$

Semantics of TCTL

$$\begin{array}{llll} s\models true \\ s\models a & iff & a\in L(\ell) \\ s\models g & iff & \eta\models g \\ s\models \neg\Phi & iff & \neg s\models \Phi \\ s\models \Phi \land \Psi & iff & (s\models \Phi) \text{ and } (s\models \Psi) \\ s\models \exists \varphi & iff & \pi\models \varphi \text{ for some } \pi\in Pahts_{div}(s) \\ s\models \forall \varphi & iff & \pi\models \varphi \text{ for all } \pi\in Pahts_{div}(s) \end{array}$$

Delay Equivalence Relation \Longrightarrow

For infinite path fragments in TS(TA) performing ∞ many actions, let

$$s_0 \stackrel{d_0}{\Longrightarrow} s_1 \stackrel{d_1}{\Longrightarrow} s_2 \stackrel{d_2}{\Longrightarrow} \dots$$
 with $d_0, d_1, d_2 \dots \geq 0$

denote the equivalence class such that the same time passes during the path. $ExecTime(\pi) = \sum_{i>0} d_i$

Satisfaction Set

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) | s \models_{TCTL} \Phi \}$$
$$TA \models \Phi \text{ iff } \forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \Phi$$

where $\eta_0(x) = 0$ for all $x \in C$

TCTL and CTL

TCTL only uses time-divergent paths, therefore:

$$\underbrace{TS(TA) \models_{TCTL} \forall \varphi}_{\text{TCTL semantics}} \text{ but } \underbrace{TS(TA) \not\models_{CTL} \forall \varphi}_{\text{CTL semantics}}$$

Timelock

A state is **timelock-free** iff $\exists \Box true$. I.e., there is a time-divergent path starting in this state. TA is timelock-free, iff $\forall s \in Reach(TS(TA)) : s \models \exists \Box true$ \Rightarrow Timelock-checking with a timed CTL formula.

TCTL Model Checking

$$\underbrace{TA}_{\text{timed automaton}} \models \Phi \iff \underbrace{TS(TA)}_{\text{infinite transition system}} \models \Phi$$

consider finite quotient of $TS(TA) \Rightarrow$ Region Transition System RTS(TA) transform TCTL formula Φ into "equivalent" CTL formula $\hat{\Phi}$

$$TA \models_{TCTL} \Phi \iff \underbrace{RTS(TA)}_{finite transition system} \models_{CTL} \hat{\Phi}$$

1. elimintation of timing parameters

- eliminate all intervalls $J \neq [0\infty)$ from TCTL formulas
- introduce fresh clock z not formerly in TA
- $s \models \exists \diamond^J \Phi \text{ iff } reset z \in s \models z \in J \land \Phi$
- process $\exists \Box^J \Phi, \forall \diamond^J \Phi, \forall \Box^J \Phi$ similarly

Formally: for any state s of TS(TA) it holds:

$$s \models \exists \diamond^J \Phi \iff \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists \diamond ((z \in J) \land \Phi)$$

where $TA \oplus z$ it TA over C extended with $z \notin C$ For any state s of TS(TA)itholds.that:

(a)
$$s \models \exists (\Phi \mathcal{U}^J \Psi) \text{ iff } \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \exists ((\Phi \lor \Psi) \mathcal{U} ((z \in J) \land \Psi))$$

(b) $s \models \forall (\Phi \mathcal{U}^J \Psi) \text{ iff } \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \forall ((\Phi \lor \Psi) \mathcal{U} ((z \in J) \land \Psi))$

(b)
$$s \models \forall (\Phi \mathcal{U}^J \Psi) \text{ iff } \underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models \forall ((\Phi \vee \Psi) \mathcal{U}((z \in J) \wedge \Psi))$$

- 2. Clock Equivalence \cong is an equivalence realtion on clock valuations:
 - Equivalent clock valuations satisfy the same clock constraint g:

$$\eta \cong \eta' \Rightarrow (\eta \models g \iff \eta' \models g)$$

- Time-divergent paths of equivalent paths are "equivalent" \Rightarrow equivalent paths satisfy the same path formulas.
- The number of equivalence classes under \cong is finite.
- (a) and (b) are ensured, if equivalent states:
 - agree on the integer part of all clock values
 - agree on the ordering of the fractional parts of all clocks.

if clocks exceed the maximal constant with which they are compared, their precise value is not of interest.

- 3. Construct Region Transition System TS = RTA(TA)
- 4. apply CTL model-checking algorithm to check $TS \models \Phi$

Clock Equivalence

 η and η' are equivalent, $\eta \cong \eta'$ if:

 c_x is the largest constant which x is compared to

- for any $x \in C$: $\eta(x) > c_x \iff \eta'(x) > c_x$
- for any $x \in C$: if $\eta(x), \eta' \leq c_x$ then: $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $frac(\eta(x)) = 0 \iff frac(\eta'(x)) = 0$
- for any $x, y \in C$: if $\eta(x), \eta'(x) \le c_x$ and $\eta(y), \eta'(y) \le c_y$, then: $frac(\eta(x)) \le frac(\eta(y)) \iff frac(\eta'(x)) \le frac(\eta'(y))$

furthermore: $s \cong s'$ iff $\ell = \ell'$ and $\eta \cong \eta'$

Regions

clock region: $[\eta] = \{ \eta' \in Eval(C) | \eta \cong \eta' \}$

state region: $[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle | \eta' \in [\eta] \}$ e

Bounds on number of regions

$$|C|! \cdot \prod_{x \in C} c_x \le |\underbrace{Eval(C) \setminus \cong}| \le |C|! \cdot 2^{|C|-1} \cdot \prod_{x \in C} (2c_x + 2)$$

number of regions

The number of state regions is |Loc| times larger.

Exponential in number of Clocks.

Preservation of Atomic Properties

1. For $\eta, \eta' \in Eval(C)$ such that $\eta \cong \eta'$:

$$(\eta \models g \text{ if and only if } \eta' \models g) \text{ for any } g \in ACC(TA \cup \Phi)$$

2. For $s, s' \in TS(TA)$ such that $s \cong s'$:

 $s \models a$ if and only iff $s' \models a$ for any $a \in AP'$

4.2 Region Automaton

Unbounded Regions

Clock reagion is **unbounded**: $r_{\infty} = \{ \eta \in Eval(C) | \forall x \in C. \eta(x) > c_x \}$

Successor Regions

r' is the **successor** (clock) region of r, r' = succ(r) if either:

- 1. $r = r_{\infty}$ and r = r'
- 2. $r \neq r_{\infty}, r \neq r'$ and $\forall \eta \in r$:

$$\exists d \in \mathbb{R}_{>0}. (\eta + d \in r' \text{ and } \forall 0 \leq d' \leq d.\eta + d' \in r \cup r)$$

The successor region: $succ(\langle \ell, r \rangle) = \langle \ell, succ(r) \rangle$

Time Convergence

Time convergent paths that only perform **delay transitions**. For non-zeno TA and $\pi = s_0 s_1 s_2 \dots$ a path in TS(TA):

1. π is **time convergent** $\Rightarrow \exists$ state region $\langle \ell, r \rangle$ such that for some j:

$$s_i \in \langle \ell, r \rangle$$
 for all $i \geq j$

2. If \exists state region with $r \neq r_{\infty}$ and an index j such that:

$$s_i \in \langle \ell, r \rangle$$
 for all $i \geq j$

then π is **time-convergent**.

Region Automaton

For non-zero TS with $TS(TA) = (S, Act, \rightarrow, I, AP, L)$ let:

$$RTS(TA, \Phi) = (S', Act \cup \{\tau\}, \rightarrow', I', AP', L')$$
 with

$$S' = S \setminus \cong = \{[s] | s \in S\}$$
 the state regions
$$I' = \{[s] | s \in I\}$$
 the initial states
$$L'(\langle \ell, r \rangle) = L(\ell) \cup \{g \in AP' \setminus AP | r \models g\}$$

$$\rightarrow' : \frac{\ell \xrightarrow{g:\alpha,D} \ell' r \models g \ reset \ D \ in \ r \models Inv(\ell')}{\langle \ell, r \rangle \xrightarrow{\sigma'} \langle \ell', reset \ D \ in \ r \rangle}$$
 and
$$\underbrace{r \models Inv(\ell) \quad succ(r) \models Inv(\ell)}_{\zeta(\ell, r) \xrightarrow{\tau'} \langle \ell, succ(r) \rangle}$$

Correctness

For non-Zeno timed automaton TA and $TCTL_{\diamond}$ formula Φ :

$$\underbrace{TA \models \Phi}_{\text{TCTL semantics}} \quad \text{iff} \underbrace{RTS(TA, \Phi) \models \Phi}_{\text{CTL semantics}}$$

Timelock Freedom

Non-zeno TA is **timelock-free** iff no reachable state in RTS(TA) is terminal. \Rightarrow timelock freedom checking can be reduced to reachability analysis on RTS(TA)

TCTL Model Checking Algorithm 4.3

TCTL Model Checking Algorithm

```
/* with state space S_{rts} and labelling Lrts */
R:=RTS(TA \oplus z, \Phi);;
for all i \leq |\Phi| do
     for all \Psi \in Sub(\Phi) with |\Psi| = i do
          switch \Psi do
                                  true : Sat_R(\Psi) := S_{rts};
                                              : Sat_R(\Psi) := \{ s \in S_{rts} | a \in L_{rts}(s) \};
                            \Psi_1 \wedge \Psi_2 \qquad : \qquad Sat_R(\Psi) := \{ s \in S_{rts} | \{ a_{\Psi_1}, a_{\Psi_2} \} \subseteq L_{rts}(s) \};
                               \neg \Psi' : Sat_R(\Psi) := \{ s \in S_{rts} | a_{\Psi'} \notin L_{rts}(s) \};
                      \exists (\Psi_1 \, \mathcal{U}^J \Psi_2) \qquad : \qquad Sat_R(\Psi) := Sat_{CTL} \, (\exists ((a_{\Psi_1} \vee a_{\Psi_2}) \, \mathcal{U} \, (z \in J) \wedge a_{\Psi_2})) \, ;
                      \forall (\Psi_1 \mathcal{U}^J \Psi_2) : Sat_R(\Psi) := Sat_{CTL} (\forall ((a_{\Psi_1} \vee a_{\Psi_2}) \mathcal{U}(z \in J) \wedge a_{\Psi_2}));
          endsw
          for all s \in S_{rts} with s\{z := 0\} \in Sat_R(\Psi) do
               L_{rts}(s) := L_{rts}(s) \cup \{a_{\Psi}\}; /* add a_{\Psi} to labelling of state regions where
               \Psi holds */
          end
     end
end
return I_{rts} \subseteq Sat_R(\Phi)
```

Time Complexity

timed automaton TA, TCTL Φ , N is number of states, K is number of transitions in $RTS(TA, \Phi)$:

$$TA \models \Phi : \quad \mathcal{O}((N+K) \cdot |\Phi|)$$

4.4 Clock Zones

Number of clock regions too large, need coarser abstraction: clock zones, efficient representation in difference bound matrices

Forward Analysis

- start from initial configuration
- determine configurations that are reachable within $1, 2, \ldots, n$ steps
- termination: goal configuration reached or no new successors (⇒fixpoint)

Backward Analysis

- start from goal configuration
- determine configurations that can reach the goal within $1, 2, \ldots, n$ steps

• termination: initial configuration reached or no new predecessors (\Rightarrow fixpoint)

Clock Zones

Symbolic representation of timed automata configurations.

For set z of clock valuations and edge $e = \ell \stackrel{g:\alpha,D}{\longrightarrow} \ell'$ let:

$$\begin{split} &Pre_e(z) = \{ \eta \in \mathbb{R}^n_{\geq 0} | \exists \eta' \in z, d \in \mathbb{R}_{\geq 0}. (\eta + d \models g) \wedge \eta' = reset \, D \, in \, (\eta + d) \} \\ &Post_e(z) = \{ \eta' \in \mathbb{R}^n_{\geq 0} | \exists \eta \in z, d \in \mathbb{R}_{\geq 0}. (\eta + d \models g) \wedge \eta' = reset \, D \, in \, (\eta + d) \} \end{split}$$

Intuition:

- $\eta \in Pre_e(z)$ if for some $\eta' \in z$ and delay d holds: $(\ell, \eta) \stackrel{d}{\Longrightarrow} \dots \stackrel{e}{\longleftrightarrow} (\ell', \eta')$
- $\eta' \in Post_e(z)$ if for some $\eta \in z$ and delay d holds: $(\ell, \eta) \stackrel{d}{\Longrightarrow} \dots \stackrel{e}{\longleftrightarrow} (\ell', \eta')$

Zones

Clock Constraints are conjunctions of constraints of the form

• $x \prec c$ and $x - y \prec c$ for $\prec \in \{<, \leq, =, \geq, >\}$ and $c \in \mathbb{Z}$

A Zone is a (maximal) set of clock valuations satisfying a clock constraint.

Clock zone of $g : \llbracket g \rrbracket = \{ \eta \in Eval(C) | \eta \models g \}$

A state zone of $s = \langle \ell, \eta \rangle$ is $\langle \ell, z \rangle$ with $\eta \in z$

For zone z and edge e, $Post_e(z)$ and $Pre_e(z)$ are zones.

Operations on Zones

Future of z: $\overrightarrow{z} = \{ \eta + d | \eta \in z \land d \in \mathbb{R}_{\geq 0} \}$ Past of z: $\overleftarrow{z} = \{ \eta - d | \eta \in z \land d \in \mathbb{R}_{\geq 0} \}$ Intersection of two zones: $z \cap z' = \{ \eta | \eta \in z \land \eta \in z' \}$ Clock Poset in a general point $z = \{ \text{poset } D \text{ in } z = \{ \text{poset }$

Clock Reset in a zone: reset D in $z=\{$ reset D in $\eta|\eta\in z\}$ Inverse Clock Reset of a zone: reset D in $z=\{\eta|$ reset D in $\eta\in z\}$

zones are closed under these operations

Clock Zones Examples

Future of z:

Past of z:

Intersection of two zones: $z' = 1 \le y \le 3$

Clock reset in a zone:

Inverse Clock reset:

Symbolic Representation of Successor and Predecessors

For edge $e = \ell \stackrel{g:\alpha,D}{---} \ell'$ we have:

$$\begin{split} &Pre_e(z) = \{ \eta \in \mathbb{R}^n_{\geq 0} | \exists \eta' \in z, d \in \mathbb{R}_{\geq 0}. (\eta + d \models g) \wedge \eta' = reset \, D \, in \, (\eta + d) \} \\ &Post_e(z) = \{ \eta' \in \mathbb{R}^n_{\geq 0} | \exists \eta \in z, d \in \mathbb{R}_{\geq 0}. (\eta + d \models g) \wedge \eta' = reset \, D \, in \, (\eta + d) \} \end{split}$$

Express this symbolically with operations on zones:

$$\begin{aligned} & Pre_e(z) = \overleftarrow{reset^{-1} \, D \, in \, (z \cap \llbracket D = 0 \rrbracket) \cap \llbracket g \rrbracket} \\ & Post_e(z) = reset \, D \, in \, (\overrightarrow{z} \cap \llbracket g \rrbracket) \end{aligned}$$

Successor (Forward Analysis)

advance time: \overrightarrow{Z}

satisfy guard: $\overrightarrow{Z} \cap g$

reset clock: $[y \leftarrow 0](\overrightarrow{Z} \cap g)$

Predecessor (Backward Analysis)

consider guard: $([C \leftarrow]^{-1}(Z \cap (C = 0))) \cap g$

go back in time:
$$([C \leftarrow]^{-1}(Z \cap (C = 0))) \cap g$$

Backward Symbolic Reachability Analysis

Backward Symbolic Transition System of TA is inductively defined by:

$$\underbrace{e = \ell \overset{g:\alpha,D}{\longrightarrow} \ell', \, z = Pre(z')}_{(\ell',z') \Leftarrow (\ell,z)}$$

Computation Schema:

$$\begin{array}{lll} T_0 & = & \{(\ell,\mathbb{R}^n_{\geq 0})|\ell \text{ is a goal location}\} \\ T_1 & = & T0 \cup \{(\ell,z)|\exists (\ell',z') \in , T_0.(\ell',z') \leftarrow (\ell,z) \text{ and } \ell' = \ell \text{ implies } z \not\subseteq z'\} \\ \dots & \dots \\ T_{k+1} & = & T0 \cup \{(\ell,z)|\exists (\ell',z') \in , T_0.(\ell',z') \leftarrow (\ell,z) \text{ and } \ell' = \ell \text{ implies } z \not\subseteq z'\} \\ \dots & \dots \end{array}$$

until

- computation stabilizes (fixpoint)
- initial configuration reached (property violated)

Forward Symbolic Reachability Analysis

Forward Symbolic Transition System of TA is inductively defined by:

$$e = \ell \xrightarrow{g:\alpha,D} \ell', \ z' = Post(z)$$
$$(\ell,z) \Rightarrow (\ell',z')$$

Computation Schema:

$$T_0 = \{(\ell_0, z_0) | \forall x \in C. z_o(x) = 0\}$$

$$T_1 = T_0 \cup \{(\ell', z') | \exists (\ell, z) \in T_0. (\ell, z) \to (\ell', z') \text{ and } \ell = \ell' \text{ implies } z \not\subseteq z'\}$$

$$\dots$$

$$T_{k+1} = T_0 \cup \{(\ell', z') | \exists (\ell, z) \in T_k. (\ell, z) \to (\ell', z') \text{ and } \ell = \ell' \text{ implies } z \not\subseteq z'\}$$

until

- computation stabilizes (fixpoint)
- goal configuration reached (property violated)

Forward Symbolic Reachability Analysis is correct but may not terminate.

Abstract Forward Reachabilty (only proposed)

Let γ associate sets of valuations to sets of valuations.

Forward Symbolic Transition System of TA is inductively defined by:

$$\frac{e = \ell \stackrel{g:\alpha,D}{>} \ell', \ z' = \gamma(z)}{(\ell,z) \Rightarrow \gamma(\ell',\gamma(z'))}$$

Computation Schema:

$$T_{0} = \{(\ell_{0}, \gamma(z_{0}) | \forall x \in C.z_{o}(x) = 0\}$$

$$T_{1} = T_{0} \cup \{(\ell', z') | \exists (\ell, z) \in T_{0}.(\ell, z) \rightarrow \gamma(\ell', z')\}$$

$$\dots$$

$$T_{k+1} = T_{0} \cup \{(\ell', z') | \exists (\ell, z) \in T_{k}.(\ell, z) \rightarrow \gamma(\ell', z')\}$$

inclusion check and termination as before.

• Soundness: (anything found in abstract system is also in actual system)

$$\underbrace{\langle \ell_0, \eta_0 \rangle \to^* \langle \ell, \eta \rangle}_{\text{reachability in } TS(TA)} \implies \exists \underbrace{\langle \ell_0, \eta_0 \rangle \to^* \langle \ell, \eta \rangle}_{\text{reachability in } TS(TA)} \text{ with } \eta \in z$$

• Completeness: (anything from the actual system can also be found in abstract system)

$$\underbrace{\langle 0, \eta_0 \to^* \langle \ell, \eta \rangle}_{\text{reachability in } TS(TA)} \implies \underbrace{\exists \langle \ell_0, \gamma(\{\eta_0\}) \rangle \implies {}^*_{\gamma} \langle \ell, z \rangle}_{\text{abstract symbolic reachability}} \text{ for some } z \text{ with } \eta \in z$$

for any γ soundness and completeness are desirable

 \bullet Finiteness: $\{\gamma(z)|\gamma$ defined on $z\}$ is finite

• Correctness: γ is sound wrt. reachability

• Completeness: γ is complete wrt. reachability

• Effectiveness: γ is defined on zones and $\gamma(z)$ is a zone

k-Normalization

A k bounded zone is described by a k-bounded clock constraint (consisting of k atomic clock constraints). The $norm_k(Z)$ is the smallest k-bounded zone containing zone z

• Finiteness: $norm_k(\bullet)$ is a finite abstraction operator

• Correctness: $norm_k(\bullet)$ is sound wrt. reachability (provided k is the maximal constant appearing in the constraints of TS)

• Completeness: $norm_k(\bullet)$ is complete wrt. reachability, since $z \subseteq norm_k(\bullet)$ so $norm_k(\bullet)$ is an over-approximation

• Effectiveness $norm_k(\bullet)$ is a zone

4.5 Difference Bound Matrices

Difference Bound Matrices

Zone z over C is represented by DBM Z of cardinality $|C+1| \cdot |C+1|$. For $C = \{x_1, \dots, x_n\}$, let $C_0 = \{x_0\} \cup C$ with $x_0 = 0$ and:

$$Z(i,j) = (c, \prec) \iff x_i - x_j \prec c$$

Further:

 $Z(i,j) := (c, \prec)$ for each bound $x_i - x_j \prec c$ in z

 $Z(i,j) := \infty$ (no bound) if clock difference $x_i - x_j$ is unbounded in z

 $Z(0,j):=(0,\leq)\,0-x\leq0$ all clocks are positive

 $Z(i,i) := (0, \leq)$ each clock is at most itself

rows are for lower bounds, columns for higher bounds, always: $x_0 = 0$

Canonical Form

A zone z is in **canonical form** iff no constraint can be strengthened without reducing $[\![z]\!] = |\{\eta | \eta \in z\}|$ the size of the zone.

For each zone z there eixts a **unique** zone z' such that $[\![z]\!] = [\![z']\!]$ and z' is in canonical form. Zone z is in its **canonical form** iff DBM Z satisfies:

$$Z(i,j) \leq Z(i,k) + Z(k,j)$$
 for any $x_i, x_j, x_k \in C_0$

Operations on DBM entries

Let $\preceq \in \{<, \leq\}$

- Comparison of DBM entries: $(c, \preceq) < (c', \preceq')$ if c < c'
- Addition of DBM entries:

$$c + \infty = \infty$$

$$(c, \leq) + (c', \leq) = (c + c', \leq)$$

$$(c, <) + (c', \leq) = (c + c', <)$$

Transform DBM into its canonical form

Deriving the **tightest constraint** on a pair of clocks in a zone is equivalent to finding the shortest weighted path between their vertices.

For Example Floyd-Warshall's All-Pairs Shortest-Path Algorithm

$$\begin{array}{c|c} \mathbf{for} \ \mathbf{all} \ k := 1 \ to \ n \ \mathbf{do} \\ \hline \mathbf{for} \ i := 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \hline & \mathbf{for} \ j := 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \hline & \underbrace{path[i][j]}_{i \ \mathbf{to} \ j} = min(\underbrace{path[i][j]}_{curMin}, \underbrace{path[i][k] + path[k][j]}_{candidateMin}); \\ \\ \mathbf{end} \\ \hline & \mathbf{end} \\ \end{array}$$

 \mathbf{end}

Worst Case time complexity in $\mathcal{O}(|C_0|^3)$

A canonical zone may contain redundant constraints: $x_i \stackrel{(n, \preceq)}{\longrightarrow} x_j$ is **redundant** if a path if a path from x_i to x_j has weight of at most (n, \preceq)

DBM Operations for Property Checking

- Nonemptiness: $[Z] \neq \emptyset$?
 - $-Z = \emptyset$ if $x_i x_j \leq c$ and $x_j x_i \leq' c'$ and $(c, \leq) < (c', \leq')$
 - \Rightarrow search for negative cycles in the graph representation
 - mark Z when upper bound is set to value < its corresponding lower bound
- Inclusion test: is $[\![Z]\!] \subseteq [\![Z']\!]$? for DBMs in canonical form, test whether $Z(i,j) \leq Z'(i,j)$ for all $i,j \in C_0$

might be |Z(...)| if canonicalization does not remove negative values.

• Satisfaction: does $Z \models g$? check whether $[\![Z \land g]\!] = \emptyset$ (if yes, it does not)

DBM Operations Delays

- Future: determine \overrightarrow{Z}
 - remove upper bounds on any clock:

$$\overrightarrow{Z}(i,0) = \infty$$
 and $\overrightarrow{Z}(i,j) = Z(i,j)$ for $j \neq 0$

- Z is canonical $\implies \overrightarrow{Z}$ is canonical
- Past: determine \overleftarrow{Z}
 - set the lower bounds on all individual clocks to $(0, \preceq)$:

$$\overleftarrow{Z}(i,0) = \infty$$
 and $\overleftarrow{Z}(i,j) = Z(i,j)$ for $j \neq 0$

- Conjunction: $[\![Z]\!] \wedge (x_i x_j \leq n)$
 - if $(n, \preceq) < Z(i, j)$ then $Z(i, j) := (n, \preceq)$ else do nothing
 - put Z into canonical form (in time $\mathcal{O}(|C_0|^2)$ using that only Z(i,j) changed.
- Clock Reset: $x_j := d$ in Z

$$Z(i,j) := (d, \leq) + Z(0,j)$$
 and $Z(j,i) := Z(j,0) + (-d, \leq)$

- k-Normalization: $norm_k(Z)$
 - remove all bounds $x-y \leq m$ for which $(m, \leq) > (k, \leq) \to \infty$
 - set all bounds $x y \leq m$ with $(m, \leq) < (-k, <)$ to (-k, <)
 - put the DBM back into canonical form (Floyd-Warshall)

5 Probabilistic Model Checking

- Functional Requirements
 - Functions or Services that the system has to provide.
- Nonfunctional Requirements
 - properties not directly related to functional correctness (often quantitative)
 - response time, reliability, dependability, performance, quality of service

System Correctness

A system is correct if it is capable of doing what it is expected to do over a certain period of time with a certain probability.

Probabilistic Approaches:

- Termination of probabilistic programs does a probabilistic program terminate with probability one?
- Markov decision processes stochastic and nondeterministic behaviour, does a certain (linear) temporal logic formula hold with probability p?

this formula may be wrong in the slides: slide 3-164

- Discrete-time Markov Chains
 can we reach a goal state via a given trajectory with probability p?
- Discrete Markov Decision Process
 What is maximal (or minimal) probability of doing something?
- Continuous-time Markov Chains
 Can we do so within a given time interval I?

Probabilistic Model Checking

not probabilistic approaches to model checking like Monte-Carlo Model Checking or Random Walks, which perform incomplete sampling of state

Checking of Reachability and Probabilistic temporal logic formulae

- time-bounded reachability
- long-run averages, steady state

Measurable Space

- A sample space Ω of a chance experiment is a set of values representing the possible outcomes of the experiment.
- A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:
 - 1. $\Omega \in \mathcal{F}$ (äll events are possible")
 - 2. $A \in \mathcal{F} \implies (\Omega A) \in \mathcal{F}$ (A is a set of events, so the complement of events is also possible)
 - 3. $(\forall i \geq 0. A_i \in \mathcal{F}) \implies (\bigcup_{i \geq 0} A_i) \in \mathcal{F}$ (the countable union of all sets of possible events are also possible)
- \bullet elements of \mathcal{F} are called **events**
- the pair (Ω, \mathcal{F}) is called a **measurable space**

Probability Space

A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- $(\Omega, \mathcal{F} \text{ is a } \sigma\text{-algebra})$
- $Pr: \{ \rightarrow [0,1] \text{ is a probability measure, i.e. } \}$
 - 1. $Pr(\Omega) = 1$, i.e. Ω is the certain event
 - 2. $Pr\left(\bigcup_{i\in I} A_i\right) = \sum_{i\in I} Pr(A_i)$ for any $A_i \in \mathcal{F}$ with $\underbrace{A_i \cap A_j = \varnothing}_{\text{independent events}}$ for $i \neq j$ where $\{A_i\}_{i\in I}$

is finite or countably infinite

The elements in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called **measurable events**.

- No possible outcome of chance experiments is missed when considering Ω .
- Probabilities for different A_i s add up if the A_i s are pairwise disjoint.

Properties of Probabilities

For measurable events A, B and A_i and probability measure Pr:

$$Pr(A) = 1 - Pr(\Omega - A)$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \cap B) = \underbrace{Pr(A|B)}_{A \text{ happens if } B \text{ happens}} \cdot Pr(B)$$

$$A \subseteq B \implies Pr(A) \le Pr(B)$$

$$Pr(\bigcup_{n \ge 1} A_n) = \sum_{n \ge 1} Pr(A_n)$$

provided A_n are pairwise disjoint

Discrete Probability Space

Pr is a **discrete probability** measure on (Ω, \mathcal{F}) if

• there is a countable set $A \in \Omega$ such that for $a \in A$:

$$\{a\} \in \mathcal{F} \text{ and } \sum_{a \in A} Pr(\{a\}) = 1$$

 $(\Omega \mathcal{F}, Pr)$ is then called a **discrete probability space**, otherwise it is a **continuous probability space**.

Measurable Function

Let $(\omega, \mathcal{F} \text{ and } (\Omega', \mathcal{F}' \text{ be measurable spaces. Function } f : \Omega \to \Omega' \text{ is a measurable function if}$

$$f^{-1}(A) = \{a | f(a) \in A\} \in \mathcal{F} \text{ for all } A \in \mathcal{F}''$$

Random Variable

Measurable function $X:\Omega\to\mathbb{R}.$ \mathbb{R} is a random variable.

The **probability distribution** of X is $Pr_X = Pr \circ X^{-1}$ where Pr is a probability measure on (Ω, \mathcal{F}) .

Distribution Function

The **Distribution Function** F_X of random variable X is defined by:

$$F_X(d) = \Pr_X((-\infty, d]) = \Pr(\underbrace{\{a \in \Omega | X(a) \le d\}}_{\{X \le d\}}) \text{ for real } d$$

properties:

- F_X is monotonic and right-continuous (increases with greater d)
- $0 \le F_X(d) \le 1$

- $\lim_{d\to-\infty} F_X(d) = 0$
- $\lim_{d\to\infty} F_X(d) = 1$

Distribution Function for Continuous Random Variable

The distribution function F_X of random variable X is defined for $d \in \mathbb{R}$ by:

$$F_X(d) = \Pr_X(X \in (-\infty, d]) = \Pr(\{a \in \Omega | X(a) \le d\})$$

In the continuous case, F_X is called the **cumulative density function**.

Distribution Function as Sums/Integrals

• For discrete random variable X, F_X can be written as

$$F_X(d) = \sum_{d_i < d} \Pr_X(X = d_i)$$

• For continuous random variable X, F_X can be written as:

$$F_X(d) = \int_{-\infty}^d f_X(i) du$$
 with f the density function

Discrete-Time Markov Chains

State-transition systems augmented with probabilities:

States: set of states representing possible configurations of the system being modeled.

Transitions: transitions between states model evolution of systems states; occur in discrete timesteps

Probabilities: probabilities of making transitions between states are given by discrete probability distributions

A **DTMC** \mathcal{M} is a tuple $(S, P, \iota_{init}, AP, L)$ with

- S is a countable nonempty set of states (preferably finite)
- $P: S \times S \to [0,1]$ transition probability function, s.t. $\sum_{s'} P(s,s') = 1$ P(s,s') is the probability to jump from s to s' in one step
- $\iota_{init}: S \to [0,1]$ the initial distribution with $\sum_{s \in S} \iota_{init}(s) = 1$
 - $-\iota_{init}(s)$ is the probability that system starts in state s
 - state s for which $\iota_{init}(s) > 0$ is an initial state
- $L: S \to 2^{AP}$, the labeling function

next state is always chosen probabilistically, no non-determinism to model concurrency \Rightarrow Markov Decision Processes (MDPs)

Properties in DTMC

• State graph of DTMC \mathcal{M} is a digraph G = (V, E) with

- vertices V are states of \mathcal{M} and $(s, s') \in E \iff P(s, s') > 0$
- Paths in \mathcal{M} are maximal (i.e. infinite) paths in its state graph
- Notations: $Paths(\mathcal{M})$ and $Paths_{fin}(\mathcal{M})$ denote the set of finite paths in \mathcal{M}
- Direct successors and predecessors
 - $Post(s) = \{s' \in S | P(s, s') > 0\} \text{ and } Pre(s) = \{s' \in S | P(s', s) > 0\}$
 - $Post^*(s)$ and $Pre^*(s)$ are reflexive and transitive closures
- Absorbing States:
 - state of MC \mathcal{M} is called absorbing iff $Post^*(s) = \{s\}$ (state cannot be left)
 - then P(s,s) = 1 and $\forall t \neq s : P(s,t) = 0$

Example for Discrete-Time Markov Chain

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{10} & \frac{9}{10} \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad \iota_{init} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

probability to be in states after one step: $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

Paths and Probabilites

need to define probability space over paths

- sample space Path(s) = set of all infinite paths from a state s.
- \bullet events: sets of inifinite paths from s
- basic events: **cylinder sets**
- cylinder set $Cyl(\omega)$ for finite path ω = set of infinite paths with the common finite prefix ω

reasoning about quantitative properties of DTMCs (e.g. probabilistic reachability) means reasoning about cylinder sets, i.e., set of paths

sound stochastic basis \Rightarrow relate them to measurable spaces and σ -algebras

σ -Algebra

Let Ω be an arbitrary non-empty set (Ω, \mathcal{F}) with $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra on Ω if:

- $\bullet \varnothing \in \mathcal{F}$
- $\bullet \ E \in \mathcal{F} \implies \Omega \setminus E \in \mathcal{F}$
- $(\forall i \in \mathbb{N}. E_i \in \mathcal{F} \implies \bigcup_{i \in \mathbb{N}} E_i \in \mathcal{F}$

Elements of \mathcal{F} are called **measurable sets** or **events**. For any family \mathcal{F} of subsets of Ω :

• there exists a unique smallest σ -algebra on Ω containing $\mathcal F$

Probability Space

A **probability space** is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- σ -algebra (Ω, \mathcal{F})
- $Pr: \mathcal{F} \to [0,1]$ is a **probability measure**, i.e.
 - 1. $Pr(\Omega) = 1$
 - 2. $Pr(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} Pr(E_i)$ for $E_i \in \mathcal{F}$ and $E_i \cap E_j = \emptyset$ for $i \neq j$
- Pr(E) is the probability of E, i.e., E is **measurable**

Properties of Probability Measures

- An event E with Pr(E)=1 is called **almost sure** $Pr(D)=Pr(E\cap D)+\underbrace{Pr(D\setminus E}_{=0}=Pr(E\cap D)$
- $E_1, \dots E_n$ are almost sure implies $\bigcap_{1 \le i \le n} E_i$ is almost sure
- For any Ω and $\mathcal{F} \subseteq 2^{\Omega}$ there exists a smallest σ -algebra containing $\{$ it is obtained by taking the intersection over all σ -algebras on Ω that contain \mathcal{F}

Probability Space on DTMC Paths

- Events are **infinite paths** in the DTMC \mathcal{M} , i.e., $\Omega = Paths(\mathcal{M})$
- σ -algebra on \mathcal{M} is generated by **cylinder sets** of finite paths $\hat{\pi}$:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{M}) | \hat{\pi} \text{ is a prefix of } \pi \}$$

cylinder sets serve as events of the smallest σ -algebra on $Paths(\mathcal{M})$

• Pr is the **probability measure** on the σ -algebra on $Paths(\mathcal{M}:$

$$Pr(Cyl(s_0 \dots s_n)) = \iota_{init}(s_0) \cdot P(s_0 \dots s_n)$$

where

$$- P(s_0 s_1 \dots s_n) = \prod_{0 \le i \le n} P(s_i, s_{i+1} \text{ if } n > 0)$$

- $P(s_0) = 1$ for all paths containing a single state

Reachability Probabilities

What is the probability to reach a set of states $B \subseteq S$ in DTMC \mathcal{M} ?

Which event does $\diamond B$ mean formally?

the union of all cylinders $Cyl(s_0...s_n)$ where $s_0...s_n$ is an initial path fragment \mathcal{M} with $s_0,...,s_{n-1} \notin \mathcal{B}$ and $s_n \in \mathcal{B}$

$$Pr(\diamond B) = \sum_{s_0...s_n \in Paths_{fin}(\mathcal{M}) \cap (S \backslash B)^*B} Pr(Cyl(s_0...s_n))$$

$$= \sum_{s_0...s_n \in Paths_{fin}(\mathcal{M}) \cap (S \backslash B)^*B} \iota_{init} \cdot P(s_0...s_n)$$

notice: infinite sum

Computing Reachability Properties in finite DTMCs

- Let $Pr(s \models \diamond B) = Pr_s(\diamond B) = Pr_s\{\pi \in Paths(s) | \models \diamond B\}$ where Pr_s is the probability measure in \mathcal{M} with only initial state s
- Let variable $x_s = Pr(s \models \diamond B)$ for any state s
 - if B is not reachable from s then $x_s = 0$
 - if $s \in B$ then $x_s = 1$
- For any state $s \in Pre^*(B) \setminus B$:

$$x_s = \underbrace{\sum_{t \in S \setminus B} P(s, t) \cdot x_t}_{\text{reach B via t}} + \underbrace{\sum_{u \in B} P(s, u)}_{\text{reach B in one step}}$$

• Rewrite equations:

$$x = Ax + b$$

- vector $x = (x_s)_{s \in \tilde{S}}$ with $\tilde{S} = Pre^*(B) \setminus B$, $x_s = 1$ if reachable, $x_s = 0$ if not
- $-A = (P(s,t))_{s,t \in \tilde{S}}$ the transition probabilities in \tilde{S}
- $-b = (b_s)_{s \in \tilde{S}}$ contains the probabilities to reach B within one step
- Linear equation system: (I A)x = b
 - More than one solution may exist, if I-A has no inverse (i.e. is singular) \Rightarrow characterize the desired probability as least fixed point

Algorithm Scheme

- two phase algorithm
 - 1. using graph search, determine the set of \tilde{S} of all states that can reach B
 - 2. generate A and b and solve equation system (I A)x = b
- if I-A singular, i.e., it does not have an inverse, then (I-A)x=b has more than one solution
 - characterize the solution as the least solution in $[0,1]^{\tilde{S}}$
- calculate probability vector with iterative approximation
- consider constrained reachability $\underbrace{c}_{\text{constraint}} \underbrace{\mathcal{U}^{\leq n}}_{\text{reach set } E}$
 - $-CU \leq nB$ is the union of the basic cylinders of fragments

$$s_0 s_1 \dots s_k$$
 with $k \leq n$ and $s_i \in C$ for all $0 \leq i < k$ and $s_k \in B$

- Let $S_{=0}$, $S_{=1}$, $S_{?}$ be a patition of S such that:
 - * $B \subseteq S_{=1} \subseteq \{s \in S | Pr(s \models C \mathcal{U} B) = 1\}$ certain satisfaction
 - * $S \setminus (CUB) \subseteq S_{=0} \subseteq \{s \in S | Pr(s \models CUB) = 0\}$ will certainly not satisfy
 - * all states in S_7 belong to $S \setminus B_{\text{don't know yet}}$
- Let $A = \underbrace{(P(s,t))_{s,t \in S_?}}_{\text{Probability to transit inside } S_?}$ and $(b_s)_{s \in S_?}$ where $\underbrace{b_s = P(s,S_{=1})}_{\text{one step proabbility to reach } S_{=1}}$
- Define: $y \leq y'$ iff $y_s \leq y'_s$ for all $s \in S$
 - y is a fixed point of $F:[0,1]^S \to [0,1]^S$ if F(y)=y
 - x is a **least fixed point** of F if $x \le y$ for any other fixed point y of F
- The vector $x = (Pr(s \models C \mathcal{U} B))_{s \in S_2}$ is the least fixed point of $F : [0,1]^{S_2} \to [0,1]^{S_2}$ given by $F(y) = A \cdot y + b$
 - $-x^{(n)}=\left(x_s^{(n)}\right)_{s\in S_0}$ where for any $s:x_s^{(n)}=Pr\left(s\models C\,\mathcal{U}^{\leq n}S_{=1}\right)$
 - $-x^{(0)} \le x^{(1)} \le x^{(2)} \le \cdots \le x$ increasing monotonically
 - $-x = \lim_{n \to \infty} x^{(n)}$

 - $\Rightarrow x$ is the least solution of Ax + b = x in $[0, 1]^{S_?}$ \Rightarrow Approximation: $x^{(0)} = 0$ and $x^{(n+1)} = Ax^{(n)} + b$ for $n \ge 0$
 - Power Method: compute vectors $x^{(n)}$ iteratively, abort on:

$$\max_{s \in S_2} |x_s^{(n)}(n+1) - x_s^{(n)}| < \epsilon$$
 for some small tolerance ϵ

convergence is guaranteed, alternate ways: eg Jacobi, Gauss-Seidel, successive overrelaxation

Unique Solution

For $B, C \subseteq S$ the vector

$$(PR(s \models CUB))_{s \in S_?}$$

is the **unique solution** of the linear equation system:

$$x = Ax + b$$
 where $A = (P(s,t))_{s,t \in S_2}$ and $b = (P(s,S_{=1}))_{s \in S_2}$

Example how matrix works ⇒exercises

Transient Probabilities

A transient probability is the probability to reside in some state t after exactly n steps.

$$\Theta_n^{\mathcal{M}}(t) = \sum_{s \in S} \iota_{init}(s) \cdot P^n(s, t)$$

$$\Theta_n^{\mathcal{M}} = \underbrace{P \cdot P \cdot \dots \cdot P}_{n \text{ times}} \cdot \iota_{init} = P^n \cdot \iota_{init}$$

 \Rightarrow Compute $\Theta_n^{\mathcal{M}}$ by successive vector-matrix multiplications (reduces numerical instability)

$$\Theta_0^{\mathcal{M}} = \iota_{init}$$

$$\Theta_n^{\mathcal{M}} = P \cdot \Theta_{n-1}^{\mathcal{M}} \qquad \text{for } n \ge 1$$

Reachability in DTMC

Can be computed via transient probability \Rightarrow adapt \mathcal{M} by making all states in B absorbing, then:

$$\underbrace{Pr^{\mathcal{M}}}_{\text{Reachability in }\mathcal{M}} \left(\diamond^{\leq n} B \right) = \underbrace{\sum_{s' \in B} \Theta_n^{\mathcal{M}_B}(s')}_{\text{transient probability in }\mathcal{M}_B}$$

Constrained Reachability in DTMC

Can also be computed via transient probability \Rightarrow adapt \mathcal{M} by making all states in B and $S \setminus (C \mathcal{U} B)$ absorbing, then:

$$\underbrace{Pr^{\mathcal{M}}}_{\text{Reachability in }\mathcal{M}} \left(C \mathcal{U}^{\leq n} B \right) = \underbrace{\sum_{s' \in B} \Theta_n^{\mathcal{M}_{C,B}}(s')}_{\text{transient probability in }\mathcal{M}_{C,B}}$$

5.1 Probabilistic CTL (PCTL)

Probabilistic CTL (PCTL)

- Temporal Logic for describing properties of DTMC
- Extension to temporal logic CTL
- probabilistic operator \mathbb{P} replaces universal and existential path quantification: $\mathbb{P}_J(\Phi)$

Syntax of PCTL

For $a \in AP, J \subseteq [0,1]$ an interval with rational bounds and natural n:

$$\begin{split} \Phi &:= true |a| \Phi \wedge \Phi |\neg \Phi| \mathbb{P}_J(\varphi) \\ \varphi &:= \circ \Phi |\Phi_1 \, \mathcal{U} \, \Phi_2 |\Phi_1 \, \mathcal{U}^{\leq n} \Phi_2 \end{split}$$

- $s_0 s_1 s_2 \dots \models \Phi \mathcal{U}^{\leq n} \Psi$ if Φ holds until Ψ holds within n steps
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J

Derived Operators in PCTL

$$\begin{split} & \diamond \Phi = true\,\mathcal{U}\,\Phi \\ & \diamond^{\leq n}\Phi = true\,\mathcal{U}^{\leq n}\Phi \\ & \mathbb{P}_{\leq p}(\Box\Phi) = \mathbb{P}_{\geq 1-p}(\diamond\neg\Phi) \\ & \mathbb{P}_{]p,q]}(\Box^{\leq n}\Phi) = \mathbb{P}_{[1-q,1-p[}(\diamond^{\leq n}\neg\Phi) \end{split}$$

PCTL Semantics

 $\mathcal{M}, s \models \Phi$ iff formula Φ holds in s tate s of DTMC \mathcal{M}

$$\begin{array}{lll} s \models a & iff & a \in L(s) \\ s \models \neg \Phi & iff & not(s \models \Phi) \\ s \models \Phi \land \Psi & iff & (s \models \Phi) \text{ and } (s \models \Psi) \\ s \models \mathbb{P}_J(\varphi) & iff & Pr(s \models \varphi) \in J \end{array}$$

where $Pr(s \models \varphi) = Pr_s\{\pi \in Paths(s) | \pi \models \varphi\}$ Semantics of path-formulas defined as in CTL

Measurability

For any PCTL path formula φ and state s of DTMC \mathcal{M} the set $\{\pi \in Paths(s) | \pi \models \varphi\}$ is measurable.

- $\circ\Phi$: cylinder sets constructed form paths of length one
- $\Phi \mathcal{U}^{\leq n} \Psi$: (finite number of) cylinder sets from paths of length at most n
- $\Phi \mathcal{U} \Psi$: countable union of paths satisfying $\Phi \mathcal{U}^{\leq n} \Psi$ for all $n \geq 0$

PCTL Model Checking

Check whether a state s in a DTMC satisfies a PCTL formula:

- compure recursively the set $Sat(\Phi)$ of states that satisfy Φ
- check whether state s belongs to $Sat(\Phi)$
- \Rightarrow bottom-up traversal of the parse tree of Φ (like for CTL)
- for probabilistic operators:
 - 1. compute $Sat(\Phi)$
 - 2. compute probabilities

Probability and Next-Operator

- $s \models \mathbb{P}_J(\circ \Phi) \text{ iff } Prob(s, \circ \Phi) \in J$
- $Prob(s, \circ \Phi) \equiv \sum_{s' \in Sat(\Phi)} P(s, s')$ sum up probabilities to get into $Sat(\Phi)$
- Matrix-Vector Multiplication: $(Probs(s, \circ \Phi))_{s \in S} = P \cdot \iota_{\Phi}$ one step from init of Φ

Probability and Bounded Until Operator

 $s \models \mathbb{P}_J(\Phi \, \mathcal{U}^{\, \leq h} \Psi) \text{ iff } Prob(s, \Phi \, \mathcal{U}^{\, \leq h}) \in J \text{ is the least solution of:}$

- 1 if $s \models \Psi$ 0 steps
- for h > 0 and $s \models \Phi \lor \neg \Psi$:

$$\sum_{s' \in S} P(s,s') \cdot Prob(s',\Phi \, \mathcal{U}^{\, \leq h-1} \Psi)$$

iterate number of steps

• 0 otherwise fail

PCTL Model Checking

- Computation of probabilities $Prob(s, \Phi_1 \mathcal{U} \Phi_2)$ for all $s \in S$
- identify all states where probability is 1 or 0: ("Precomputation")

$$- S^{yes} = Sat(P_{\geq 1}[\Phi_1 \mathcal{U} \Phi_2])$$
$$- S^{no} = Sat(P_{\leq 0}[\Phi_1 \mathcal{U} \Phi_2])$$

• solve linear equation system for remaining states

$$Prob(s, \Phi_1 \mathcal{U} \Phi_2) = \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \Phi_1 \mathcal{U} \Phi_2) & \text{otherwise} \end{cases}$$

 \Rightarrow reduction of linear equation system in $|S^{?}|$ unknowns instead of |S|, where $S^{?} = S \setminus (S^{yes} \cup S^{no})$

Make all Ψ and all ¬(Φ ∧ Ψ)-states absorbing in M
 ⇒: Check ⋄=hΨ in obtained DTMC
 ⇒Matrix-vector multiplication

Time Complexity

For finite DTMC \mathcal{M} and PCTL formula Φ , $\mathcal{M} \models \Phi$ can be solved in time:

$$\mathcal{O}(poly(size(\mathcal{M})) \cdot n_{\max} \cdot |\Phi|)$$

- $n_{\max} = \max\{n|\Psi_1 \mathcal{U}^{\leq n} \Psi_2 \text{ occurs in } \Phi\}$
- $n_{\text{max}} = 1$ if Φ does not contain the bounded until-operator
- $size(\mathcal{M} \text{ probably exponential})$
- \bullet Φ can be exponentially larger than LTL

5.2 Outlook

Continuous Time Markov Chain (CTMC)

- transitions are labelled with rates which are parameters of negative exponential distributions
- Continuous Stochastic Logic (CSL)
- Model Checking: reduce to DTMC via uniformization

Discrete Time Markov Decision Process (DTMDP)

- alternating non-deterministic and probabilistic choices
- Model Checking involves computing a scheduler that resolves nondeterminism

Counterexamples

- A set of offending paths with probability equal or greater than p.
- An informative counterexample is one which is small and has a high probability.

6 Binary Decision Diagrams and Symbolic Model Checking

Explicit Representation of TS might be to large, need something smaller.

Boolean Functions

boolean variable x_1, x_2, \dots, x, y, z ranging over values 0 and 1

Boolean Function

- function $f: \{0,1\}^n \to \{0,1\}$
 - $-\overline{0} := 1$ and $\overline{1} := 0$
 - $-x \cdot y := 1$ if x and y have value 1, otherwise $x \cdot y := 0$ and
 - -x+y:=0 if x and y have value 0, otherwise x+y:=1 or
 - $-x \oplus y := 1$ if exactly one of x and y equals 1

Alternative Representations

• function: $f(x,y) := \overline{x+y}$

		\boldsymbol{x}	y	f(x,y)
		1	1	0
•	truth tables	0	1	0
		1	0	0

 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ Seemingly easy comparison (for identical variable

Seemingly easy comparison (for identical variable ordering), satisfiability, validity, but exponential number of lines (variable combinations)

• boolean formula $\neg(p \lor q)$ compact, but deciding, e.g., satisfiability is NP-complete

6.1 Binary Decision Tree

Binary Decision Tree

- non-terminal nodes labelled with boolea variables
- terminal nodes labelled with 0 or 1 unique boolean functions on variables in terminal nodes
 - dashed outgoing edge of node: variable=0
 - solid outgoing edge of node variable = 1
 - function value: value of terminal node along path

⇒not a compact representation ⇒build something that is no longer a tree

6.2 Binary Decision Diagram (BDD)

Binary Decision Diagram (BDD)

- a BDD is a finite Directed Acyclic Graph, such that: (all binary decision trees are BDDs)
 - it has a unique initial node
 - all terminal nodes are labelled with 0 or 1
 - all non-terminal nodes are labelled with boolean variables
 - each non-terminal node has exactly

two outgoing edges labelled 0 (dashed line) or 1 (solid line)

From Binary Decision Tree to BDD

C1: removal of duplicate terminals

C2: removal of redundant tests

C3: removal of duplicate non-terminals: If two non-terminal nodes n and m are the roots of structurally identical sub-trees, then eliminate one of them and redirect all its incoming edges to the other node.

The boolean function is not very recognizable after reduction.

Reduced BDD

A BDD is reduced, when no further reduction C1 - C3 is possible:

Special BDDs

Consistent Path

A Path through a BDD is **consistent** if every value for a variable is decided no more than once. when a variable is decided upon one value, it cannot be changed.

 \Rightarrow prevent multiple variable occurrences \Rightarrow impose and order on variables along every path \Rightarrow Ordered BDDs

Conjunction and Disjunction

This works only for consistent paths!

Ordered BDD (OBDD)

- let $[x_1, \ldots, x_n]$ a list of variable names without duplicates
- ullet let B BDD so that all its non-terminal nodes are members of this list
- B has the ordering $[x_1, \ldots, x_n]$ if for any path, the occurrence of x_i preceding the occurrence of x_j implies i < j
- B is then called an **ordered BDD** (OBBD)

Compatible Variable Ordering

- For OBDDs B_1 and B_2 , if it does not happen that there is a variable x occurring before y in B_1 and after y in B_2 , then we say that the variable orderings of B_1 and B_2 are **compatible**.
- \bullet If reduced OBDDs B_1 and B_2 describe the same boolean function, then they have identical structure.
 - equivalence checking: check for identical structure

- applying C1-C3 to an OBDD until no further reduction \Rightarrow leads to the same reduced OBDD, irrespective of the order they are applied \Rightarrow canonical form
- OBDDs offer canonical representation for boolean functions
- OBDDs have worst case exponential size, computing optimal order is expensive, good heuristics usable

Benefits of Canonical Representation

- ullet absence of redundant variables: if the value does not depend on some x it will not appear in reduced OBDD
- \bullet test for semantic equivalence of functions f and g
 - 1. determine compatible ordering of variables (with heuristics to make them good)
 - 2. reduce B_f and B_g
 - 3. check B_f and B_q for identical structure
- test for validity: reduced OBDD is B_1
- test for implication $f \implies g$:compute reduced OBDD for $f.g^{-1}$ and check whether it is B_0
- test for satisfiability: reduced OBDD is not B_0

reduce

- idea:
 - implements C1-C3 in efficient fashion ${\scriptscriptstyle C1}$ is just a special case of ${\scriptscriptstyle C3}$
 - traverse BDD bottom-up, start with terminal nodes
 - for B with $[x_1, \ldots, x_l]$, B has at most l+1 layers
 - during traversal: assign integer labels id(n) to each node n
- algorithm
 - node n and m have the same label, is sub-BDD computes same boolean function
 - keep only one node per id

- if id(lo(n)) = id(hi(n)), then id(n) := id(lo(n))boolean test represented by n is redundant
- if another node m labeled with same variable x_i and if id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then $id(n) := id(m) \Rightarrow$ they compute the same boolean function
- if nothing of above applies, assign next unused integer

apply

- idea: implement the application of operations to boolean functions
 - examples: $+, ., \oplus$, complement $(f \oplus 1)$
 - $apply(op, B_f, B_g)$ computes reduced OBDD of f op g
 - algorithm operates recursively on structure of two OBDDs
 - * let v be the variable highest in the variable order that occurs in B_f or B_q
 - * solve problem separately for v = 0 and v = 1
 - * at the leaves apply op directly
 - * reduce result
- Restriction:
 - -f[0/x]: boolean formula obtained by replacing all occurrences of x in f by 0
 - -f[1/x]: boolean formula obtained by replacing all occurrences of x in f by 1
- perform recursion on boolean formulas by decomposing them into simpler ones: f on x is equivalent to $\overline{x} \cdot f[0/x] + x \cdot f[1/x]$ (\equiv Shannon Expansion)
- use in apply $f \circ p g = \overline{x_i} \cdot (f[0/x_i] \circ p g[0/x_i]) + x_i \cdot (f[1/x_i] \circ p g[1/x_i])$

Algorithm of apply:

- \bullet proceed from roots of B_f and B_g to construct the nodes of OBDD $B_{f\,op\,g}$
- let r_f and r_g the root nodes of B_f and B_g , respectively
- case:
 - both nodes are terminal nodes: compute $l_f op l_g$, if $0 \Rightarrow B_0$, if $1 \Rightarrow B_1$
 - both root nodes are x_i nodes: create x_i node n with
 - * dashed line to $apply(op, lo(r_f), lo(r_g))$
 - * solid line to $apply(op, hi(r_f), hi(r_g))$
 - $-r_f$ is an x_i node, but r_g is a terminal node or an x_j node with j > i
 - * we know there is no x_i node in B_g because the two OBDDs have a compatible ordering $\Rightarrow g$ is independent of x_i since $g \equiv g[0/x_i] \equiv g[1/x_i]$
 - \Rightarrow create x_i node n with
 - · dashed line to $apply(op, lo(r_f), r_g$
 - · solid line to $apply(op, hi(r_f), r_g)$
 - r_g is a non-terminal node, but r_f is a terminal node or an x_j node with j>i \Rightarrow symmetrically to above case
- call reduce on the result

Memoisation

- remember results of apply for future calls with identical arguments
 - more efficient
 - less reduction needed
- without memoization: apply is exponential in size of arguments
- with memoization: number of calls bounded by $2 \cdot |B_f| \cdot |B_g|$
- in praxis often even better

restrict

Purpose

- compute f[0/x] and f[1/x]
- calls: $restrict(0, x, B_f)$ and $restrict(1, x, B_f)$
- \Rightarrow yields same variable ordering in result as in B_f

Procedure

- $restrict(0, x, B_f)$: for each node n labeled x
 - redirect incoming edges to lo(n)
 - remove n
 - call *reduce* on the result (iteratively)
- $restrict(1, x, B_f)$: same, but redirect to hi(n)

exists

useful to express relaxations on constraints for subset of variables:

- $\exists x.f := f[0/x] + f[1/x]$ (3x.f can be true by x being 1 or 0)
 - $-\ exists: \quad apply(+, restrict(0, x, B_f), restrict(1, x, B_f))$

Implementation Improvements:

• restricted nodes have same structure until x-nodes, compute application of + to these sub-BDDs

OBDD Operations

Boolean formula \boldsymbol{f}	OBDD B_f
0	B_0
1	B_1
x	B_x
\overline{f}	swap 0 and 1 nodes in B_f
f+g	$\mathtt{apply}(+,B_f,B_g)$
$f\cdot g$	$\texttt{apply}(\cdot, B_f, B_g)$
$f\oplus g$	$\texttt{apply}(\oplus, B_f, B_g)$
f[1/x]	$\mathtt{restrict}(1,x,b_f)$
f[0/x]	$\mathtt{restrict}(0,x,b_f)$
$\exists x.f$	$ \text{ apply}(+, B_{f_{f[0/x]}}, B_{f_{g[1/x]}}) $
$\forall x.f$	$apply(\cdot, B_{f_f[0/x]}, B_{f_g[1/x]})$

Algorithm	Input OBDD(s)	Output OBDD	Time Complexity
reduce	B	reduced B	$\mathcal{O}(B \cdot \log B)$
apply	$B_f, B_g \text{ (reduced)}$	$B_{f \ op \ g}$ (reduced)	$\mathcal{O}(B_f \cdot B_g)$
restrict	B_f (reduced)	$B_{f[0/x]}$ or $B_{f[1/x]}$ (reduced)	$\mathcal{O}(B_f \cdot \log B_f)$
3	B_f (reduced)	$B_{\exists x_1.\exists x_2\exists x_n.f}$ (reduced)	NP-complete

Domain specific OBDDs exists, which may improve some operations, but they mostly use the canonicity property.

Symbolic Model Checking Algorithm

```
\phi is \top
                                                   : return S
\phi is \perp
                                                   : \mathbf{return} \, \varnothing
\phi is atomic
                                                   : return \{s \in S | \phi \in L(s)\}
\phi is \neg \phi_1
                                                   : return S - SAT(\phi_1)
\phi is \phi_1 \wedge \phi_2
                                                   : return SAT(\phi_1) \cap SAT(\phi_2)
\phi is \phi_1 \vee \phi_2
                                                   : return SAT(\phi_1) \cup SAT(\phi_2)
\phi is \phi_1 \to \phi_2
                                                   : return SAT(\neg \phi_1 \lor \phi_2)
\phi is \forall \circ \phi_1
                                                   : return SAT(\neg \exists \circ \neg \phi_1)
\phi is \exists \circ \phi_1
                                                   : return SAT_{\exists \circ}(\phi_1)
\phi is \forall (\phi_1 \mathcal{U} \phi_2)
\phi is \exists (\phi_1 \mathcal{U} \phi_2)
                                                   : return SAT(\neg(\exists [\neg \phi_2 \mathcal{U} (\neg \phi_1 \land \neg \phi_2)] \lor \exists \Box \neg \phi_2))
                                                   : return SAT(\exists \mathcal{U}(\phi_1, \phi_2))
\phi is \exists \diamond \phi_1
                                                   : return SAT(\exists(\top \mathcal{U} \phi_1))
                                                   : return SAT(\neg \forall \diamond \neg \phi_1)
\phi is \exists \Box \phi_1
\phi is \forall \diamond \phi_1
                                                   : return SAT_{\forall \diamond (\phi_1)}
                                                    : return SAT(\neg \exists \diamond \neg \phi_1)
\phi is \forall \Box \phi_1
```

Representing OBDDs

Transition System: $(S, Act, \rightarrow, I, AP, L)$

- characteristic function f_s for $L: S \to 2^{AP}$, ordering of OBDD is characteristic vector
- transition relation: two copies of characteristic vector: $s \to s' \Longrightarrow ((v_1, \ldots, v_n), (v'_1, \ldots, v'_n))$

Operations on OBDDs used in Model Checking Algorithm

- \bullet intersection: .
- \bullet union: +
- complementation: \neg
- $pre_{\exists}(Y) = \{s \in S | \exists s', (s \to s' \text{ and } s' \in Y)\}$
- $\begin{array}{l} \bullet \ pre_{\forall}(Y) = \{s \in S | \forall s', (s \rightarrow s' \ \text{implies} \ s' \in Y) \\ pre_{\forall}(Y) = S pre_{\exists}(S Y) \end{array}$

Algorithm

Sat_{EX}

```
local var X, Y

X := SAT(\Phi);

Y := pre_{\exists}(X);

return Y
```

$SAT_{AF}(\Phi)$

```
\begin{split} & \text{local var } X, Y \\ X &:= S; \\ Y &:= SAT(\Phi); \\ & \textbf{while } X \neq Y \textbf{ do} \\ & \mid X &:= Y; \\ & Y &:= Y \cup pre_{\forall}(Y); \\ & \textbf{end} \\ & \textbf{return } Y \end{split}
```

$SAT_{EU}(\Phi, \Psi)$

```
\begin{array}{l} W := SAT(\Phi); \\ X := S; \\ Y := SAT(\Psi) \text{ while } X \neq Y \text{ do} \\ \mid X := Y; \\ \mid Y := Y \cup (W \cap pre_{\exists}(Y)) \\ \text{end} \\ \text{return } Y \end{array}
```

OBDD synthesis

- so far: $(model) \rightarrow TS \rightarrow truth \ table \rightarrow OBDD \rightarrow \texttt{reduce}$
- better: $(model) \rightarrow OBDD$ (reduced)