December 04, 2024

Cartan	Label	Dimension	Rank
A,	Su(n)	n ² -1	n - (
B_{g}	so(n), nodd	n (n-1)	(N-1)/2
Ce	Sp (~1	n(n+1)	N/2
DR	So(n), neven	n (n-1)	N/2_
E.		2 70	6
Es E-		78 133	_
E7 E8		248	7
2 8			8
	1 \ p		din.
Georgi	's book:		45
	E5>	V_5	(3
	$E_4 \longrightarrow$	A4 \	24
	_		

Simple roots: Basis that can generate entrie lie group. It independent vedon. Rank of the lie grong. Dinemoiality of Cartan natrix. for Eg, the rank is 8. One can contract 8 simple voots. There are 240 more voots (i.e. vecloss in eight-din space). one popular choise: i=1....8[1-1000000] [0 1 -1 0 0 0 0 0] 1 -1 0 0 0 0] $\int_{0}^{\infty} b = o$ [00001-1000] $\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}$

Can generate all olter 240 by meer combination of them 8. Note that di's me not orthogonal. Some are. Also $d_i \cdot d_i = 2$. Can put 52 for normalization but not inprostnt here-Killing 1891 Roots are the basis of Lie group climification due to carten, the Roots are the basis Cartan matrix if $d_i \cdot d_j = 0$ [not converted] di-dj = -1 [one line comedes] Farnors Dynkin Diagram of Eg...

From the roots, easy to contract -xr Cartan natrix. Diagonals are 2.

 $A = \begin{cases} 2 - 1 & 0 \\ -1 & 2 - 1 \\ -1 & 2 - 1 \end{cases}$ -12-1 -1

det = (9-r) where r = rank of EG (det) certain Eg = 1

Now, we are ready to explore the relation by spin chairs and En groups. Just largest rigenrection of Centain natrix of Eq (Perron-Frobenius vector) Arrange in solending order. Scale such that minimum is M. Then.

$$\lambda_{1} = M$$

$$\lambda_{2} \cong 1.618$$

$$\lambda_{3} \cong 1.98$$

$$\vdots$$

$$\vdots$$

$$\lambda_{8} = \dots$$

$$M_1 = M$$
 $M_2 = 2M \cos(M_5) = Q = \frac{1+\sqrt{5}}{2}$
 $M_3 = 2M \cos(M_5)$
 $M_4 = 2M_2 \cos(M_{30})$
 $M_5 = 2M_2 \cos(M_{15})$
 $M_6 = 2M_2 \cos(M_{15})$
 $M_7 = 4M_2 \cos(M_{15})$
 $M_7 = 4M_2 \cos(M_{15})$
 $M_8 = 4M_2 \cos(M_{15})$
 $M_8 = 4M_2 \cos(M_{15})$
 $M_8 = 4M_2 \cos(M_{15})$

In 1989, Z found that this is wouldy the spectrum of a certain spri model in a certain limit

$$H = -\left[\sum_{\langle i \rangle} Z_i Z_j + \sum_{i} g_z Z_i + \sum_{i} g_x X_i\right]$$

$$Q = 1 \quad 97 = 0 \quad QCP$$

$$g_{x} = 1$$
, $g_{z} = 0$ QCP
 $g_{x} = 1$, $g_{z} \neq 0$ \longrightarrow 2?

$$\eta = \frac{(9 \times -1)}{19218/15} \quad \eta = 0 \quad \rightarrow E_8$$

$$\eta = 0 \quad \rightarrow F_F$$

at $\eta = 0$, spectrum matches Es spectrum.

In fact, we know the coefficients .. M, ~ 4.4 | gz | 8/15 $M_2 \stackrel{\sim}{=} \phi M_1$ In two limits $\eta = 0$, $\eta = 0$ the model is integrable but for other " η " it is not ... This model is two-parameter deformations of ICFT :: e. Thermal def.

A | FT = $A | CFT + T \int_{0}^{2} dx \, \xi(x)$ T & T-Tc +h d2x o(x)
h & mag. field. Spin def. Class of M3,4 mininel unitary
CFT models $C = 1 - \frac{6}{(3)(4)} = \frac{1}{2}$ 6

It turn out, there is a whole family of these type of models $E_8 \longrightarrow M_{3,4} \longrightarrow ICFT + \sigma(x)$ $E_7 \longrightarrow M_{4,5} \longrightarrow TCI + \varepsilon(x)$ $E_6 \longrightarrow M_{5,6} \longrightarrow TCP + \varepsilon(x)$

What is TCI? Tri-critical-Ising.

Two lattice Hamiltonians that con reproduce this field theory...

1) Blume-Capel model 2) Brien-Fendley model

BC model also known as Ising model with varant sites.

$$fl = -J \sum_{i} Z_{i}Z_{j} - T \sum_{i} Z_{i}^{2}$$

where at $J = 1$, $T \Delta \cong (0.61)(3.22)$
 $\cong 1.964$

it has Toi- critical point
 $\Delta I \rightarrow figarity$

BF model
$$\rightarrow$$
 PRL 120, 206403 (2018)

$$H = -\sum_{j=1}^{N} \left[Z_{j} Z_{j+1} + g X_{j} + h Z_{j} \right]$$

$$+ \lambda \sum_{j=1}^{N} \left[X_{j} Z_{j+1} Z_{j+2} + Z_{j} Z_{j+2} X_{j} \right]$$
at $\lambda \cong 0.428$, $g = 1$, $h = 0$
it has TCI behaviour...

 $M_2 = 2M \cos(M_5) = 0 = \frac{1+\sqrt{5}}{2}$ m3 = 2m con (730) my = 2 m2 cos (7 M20) my = 2 ~ 2 cos (2 [715) my = 2m2 cos (1730) $m_{\uparrow} = 4 m_{2} cos \left(\frac{2\pi}{5} \right) cos \left(\frac{7\pi}{30} \right)$ ng = 4 m2 cos (M5) cos (2715) M2 = 2M cos(M5) m3 = 2m con (7/30) my = 2 m2 cos (7 M20) my = 2 ~ 2 cos (2 [715) m = 2m cos (1730) mf = 4 m2 vos (25) vos (715)

 $M_1 = M$ $M_2 = 2M \cos(M_5)$ $M_3 = 2M \cos(M_5)$ $M_4 = 2M_2 \cos(7M_2 \circ)$

E6 Spectrum