Advanced Projects in Exoplanets The RM Effect

Dina Sofia Mortensen & Jesper Dam Knudgaard

Stellar Astrophysics Centre, Aarhus University

June 21, 2019

Table of Content

- 1 The Rossiter-McLaughlin Effect
- Making a Model of a Star-Planet System
- 3 Preparing Observational Data
- Fitting Data to the Model
- Method Improvements

Transiting Exoplanets

Figure: Credit ESO

Rossiter-McLaughlin Effect

Figure:

https://wasp-planets.net/tag/rossiter-mclaughlin-effect/

Our Model - Linear

Planet moves in straight line in front of the star
This path is determined by:

- Projected obliquity
- Impact parameter

This model is not physical

Keplers Equations

To get r(t):

Calculate mean anomaly:

$$M(t) = \sqrt{rac{G(M_{\star} + M_p)}{a^3}} \cdot (t - t_p).$$

Calculate eccentric anomaly by numerical iteration:

$$E_{n+1} = E_n - \frac{E_n - esin(E_n) - M(t)}{1 - esin(E - n)}.$$

Calculate true anomaly:

$$u(t) = 2 \tan^{-1} \left(\left(\frac{1+e}{1-e} \right)^{1/2} \tan(E(t)/2) \right).$$

Calculate separation:

$$r(t) = a \frac{1 - e^2}{1 + e\cos(\nu(t))}.$$

Our Model - Physical version

Planet orbits the star. Keplers equation is solved for input parameters.

The path is determined by:

a, e, i, ω , M_{\star} , M_p , t_p , λ , R_p/R_{\star} and $v \sin(i_{\star})$.

Much more resource heavy, but also correct

Figure: Credit: Wikipedia user Lassuncty

Modelling Planet Orbit

Calculate projected coordinates of the planet:

$$X_i = -r\cos(\omega + \nu),$$

 $Y_i = -r\sin(\omega + \nu)\cos(i).$

$$X = X_i cos(\lambda) + Y_i sin(\lambda),$$

$$Y = -X_i sin(\lambda) + Y_i cos(\lambda),$$

$$Z = r sin(\omega + \nu) sin(i).$$

Our Model - Outputs

[Video here]

Our Model - Outputs

Our Model - Outputs

Data

Data is of the star MASCARA-1 and comes from HARPS.
Consists of BJD and CCF.

Data - The stellar line

Data - The Transit

Data - The 'Planet Line'

Data - The RM-effect

Data - Fit to CCF

Data - RM curve

Data - RM curve

Data - RM curve

The Fit - System Parameters

Variables:

- λ
- $\blacksquare \omega$
- $\mathbf{v} \sin(i_{\star})$

Constants:

- $t_p = 0$
- $a = 4.756R_{\star}$
- e = 0
- $M_{\star} = 1.72 M_{\odot}$
- $M_p = 3.7 M_J$
- $\frac{R_p}{R_{\star}} = 0.0735$
- $\omega = 90^{\circ}$

Fitting with curvefit

Fitting with curvefit

Improvements and Future Prospects

Improvements:

- Normalize CCFs by area
- Improve model

Alternatives:

- Implement MCMC routine
- Make linear fit

Alternative - Linear fit

Figure: Credit: Albrecht et al. 2011

$$x_1 = \left(\sqrt{1 - b^2} - b \tan(\lambda)\right) \cos(\lambda) = \sqrt{1 - b^2} \cos(\lambda) - b \sin(\lambda)$$

$$x_2 = \left(\sqrt{1 - b^2} + b \tan(\lambda)\right) \cos(\lambda) = \sqrt{1 - b^2} \cos(\lambda) + b \sin(\lambda)$$

The End

Questions?

The End

[Applause]