Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

Test 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 3 i. Arătați că $z^2 6z + 10 = 0$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 6$. Determinați numărul real a, știind că f(a) = f(a-2).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_4(x^2 + 4x + 5) = \log_4(2x + 4)$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă produsul cifrelor egal cu 16.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,5), B(3,3) și C(7,3). Determinați coordonatele punctului D, știind că ABCD este paralelogram.
- **5p 6.** Se consideră $E(x) = \operatorname{tg} \frac{x}{2} \operatorname{ctg} \frac{x}{2} + \operatorname{ctg} x + 2\sin \frac{5x}{3}$, unde $x \in (0, \pi)$. Arătați că $E\left(\frac{\pi}{2}\right) = 1$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & -2a & 0 \\ 0 & 1 & 0 \\ 2a & -2a^2 & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Demonstrați că A(a)A(b) = A(a+b), pentru orice numere reale a și b.
- **5p** c) Demonstrați că, dacă $A(n) = A(1)A(2)A(3) \cdot ... \cdot A(2020)$, atunci numărul natural n este multiplu de 2021.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x*y = xy \sqrt{3}(x+y) + 3 + \sqrt{3}$.
- **5p a)** Arătați că $\sqrt{3} * 0 = \sqrt{3}$.
- **5p b**) Demonstrați că $x * y = (x \sqrt{3})(y \sqrt{3}) + \sqrt{3}$, pentru orice numere reale x și y.
- **5p** c) Calculați $\frac{\sqrt{5}}{\sqrt{1}} * \frac{\sqrt{6}}{\sqrt{2}} * \frac{\sqrt{7}}{\sqrt{3}} * ... * \frac{\sqrt{100}}{\sqrt{96}}$.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + 4x + 4}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{-x(x+2)}{e^x}$, $x \in \mathbb{R}$.
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $\lim_{n \to +\infty} (g(1) + g(2) + ... + g(n)) = \frac{1}{e-1}$, unde $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{f(x)}{(x+2)^2}$.

- **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x+1}{x+1}$.
- 5p a) Arătați că $\int_{0}^{1} (x+1) f(x) dx = 2$.

 5p b) Arătați că $\int_{0}^{1} f(x) dx = 2 \ln 2$.
- c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 e^x (x+1)^n (f(x))^n dx$. Demonstrați că $I_n + 2nI_{n-1} = 3^n e - 1$, pentru orice număr natural n, $n \ge 2$.