Deep Learning

Presented by Hanchen Zhou

Introduction to Machine Learning

Linear Model

Introduction to Deep Learning

Neural Network

Improvement of Neural Network

Machine learning is a field of computer science that gives computer systems the ability to "learn" with data, without being explicitly programmed.

1.1 What is Machine Learning

Traditional Programming

An analyst compares the relationships of variables.

Statistics

1.1 What is Machine Learning

Machine Learning

Intelligent Apps

How Machine Learning Works

- some data: $x \rightarrow y$
- using data to build a model: m
- other data: $x' \rightarrow y'$
- using model to achieve:

$$m(x') = \tilde{y} \rightarrow y'$$

Data Mining

Search Engines

Handwriting Recognition

Linear Model

Some data about house prices

Area(m^2)	Prices
123	250
150	320
87	160
102	220

$$y = wx + b$$

With more dimensions of data

$$x = (x_1, x_2, ..., x_n)^T$$

$$y = w_1 x_1 + w_1 x_1 + \dots + w_1 x_1 + b$$

$$y = \boldsymbol{w}^T \boldsymbol{x} + b$$

Linear Regression

Back to the house prices problem

$$f(x) = wx + b$$

Loss function is minimized

$$L(w,b) = \frac{1}{2} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

House prices

? How to make Loss function to a minimum

Linear Regression

Gradient Descent

$$\nabla_i = \frac{\partial}{\partial w_i} L(w_1, w_2, \dots, w_n)$$

$$\mathbf{w}_i = \mathbf{w}_i - \alpha \nabla_i$$

Logistic Regression

Data needs to be classified

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

'

How to quantify

Logistic Regression

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-(w^T x + b)}} \, {}^{\frac{\Im}{6} \, 0.5}$$

Why Sigmoid function

- result is compressed to 0-1
- result is converted to a probability value
- derivable and it's derived function is very easy

$$\nabla \sigma(z) = \sigma(z) \times (1 - \sigma(z))$$

Loss function

$$p(y = 1|x) = \frac{e^{w^T x + b}}{1 + e^{w^T x + b}}$$
$$p(y = 0|x) = \frac{1}{1 + e^{w^T x + b}}$$

$$L(w,b) = \ln\left(\prod_{i=1}^{m} p(y^i|x^i;w,b)\right) = -\sum_{i=1}^{m} \left(y^i \times \ln\left(\sigma(x^i)\right) + (1-y^i) \times \ln\left(1-\sigma(x^i)\right)\right)$$

Introduction to Deep Learning

Better than other Machine Learning algorithm

THE MNIST DATABASE

• 28×28

• 0-9

http://yann.lecun.com/exdb/mnist/

object detection

A woman is throwing a **frisbee** in a park.

A dog is standing on a hardwood floor.

A **stop** sign is on a road with a mountain in the background

A little **girl** sitting on a bed with a teddy bear.

A group of **people** sitting on a boat in the water.

A giraffe standing in a forest with **trees** in the background.

From image to text

photo stylization

Twitch anchor Charles

mastering the game of go

Even better than human!

Neural Network

Basic structure of Artificial Neural Network

Input Layer

Hidden Layer

Output Layer

- 1. Input (external stimulation)
- 2. Weights (Quantitative stimulation)
- 3. Activation function (generate signal)
- 4. Output (signal transmission)

$$\vec{x} = (a_1, a_2, a_3)$$

$$\sigma(z) = \frac{1}{1 + e^{-(z)}}$$

$$\hat{y} = \sigma(w^T \mathbf{x} + b)$$

4.2 Input Layer

Loss functions

•
$$L(Y, f(X)) = (Y - f(X))^2$$

•
$$L(Y, f(X)) = -lnP(Y|X)$$

•
$$L(Y, f(X)) = \max(0, 1 - Y \times f(X))$$

Expected loss function

$$j(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(Y, f(X))$$

4.3

Hidden Layer

$$y_{l} = f(z_{l})$$

$$z_{l} = \sum_{k \in H2} w_{kl} y_{k}$$

$$y_{k} = f(z_{k})$$

$$z_{k} = \sum_{j \in H1} w_{jk} y_{j}$$

$$j \in H1$$

$$\frac{\partial E}{\partial z_{k}} = \frac{\partial E}{\partial y_{k}} \frac{\partial y_{k}}{\partial z_{k}}$$

 $\frac{\partial E}{\partial y_k} = \sum_{l \text{ } \epsilon \text{ out}} w_{kl} \frac{\partial E}{\partial z_l}$

$$y_j = f(z_j)$$

 $z_j = \sum_{i \in \text{Input}} w_{ij} x_i$

Compare outputs with correct answer to get error derivatives

forward-propagation

back-propagation

encoding of data: One-Hot

Output Layer

Softmax

easy to calculate

$$\bullet \, S_i = \frac{e^{v_i}}{\sum_j e^{v_j}}$$

derivable and it's derived function is very easy

•
$$\nabla = S_i - 1$$

convert data to **One-Hot** encoding

Improvement of Neural Network

Activation functions

Improvement of Neural Network

Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Improvement of Neural Network

Dropout

5.1

Convolutional Neural Networks

5.1 Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

5.1 Structure of a Convolutional Neural Networks

5.1 How does Convolutional Neural Networks work

Recurrent Neural Networks

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional RNN

Citation

- [1] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015).
- [2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- [3] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.
- [4] Zhu, Jun Yan, et al. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks." (2017).
- [5] deeplearning.ai, https://www.deeplearning.ai/. (2018)
- [6] 机器学习: 基本概念, 五大流派与九种常见算法, http://wwv.cyzone.cn/a/20170422/310196. html. (2017.04.22)
- [6] 黄安埠. 深入浅出深度学习[M]. 北京: 电子工业出版社, 2017
- [7] 高扬, 卫峥. 白话深度学习与TensorFlow[M]. 北京: 机械工业出版社, 2017

THANK YOU!

Q&A