UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América) FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

EXAMEN FINAL

CURSO: ÁLGEBRA Y GEOMETRIA ANALÍTICA SEMESTRE 2022-I

- 1. Resolver
 - a. [3p] Si $x \in \mathbb{R}$, $\vec{a} = (2x 5; 2 x)$, $\vec{b} = (x 5; 4 x)$ y $\|\vec{a} \vec{b}^{\perp}\| = \sqrt{10}$. Calcular $\|(2\vec{a} + \vec{b}) (\vec{a}^{\perp} + 3\vec{b}^{\perp})\|$
 - b. [3p] Sea ABCD un parlelogramo , M un punto sobre el lado \overline{BC} . Si se sabe que el área del triángulo \overrightarrow{ABM} es igual a la mitad del área del cuadrilátero \overrightarrow{AMCD} y que $\overrightarrow{AM} = m\overrightarrow{DC} + n\overrightarrow{AD}$. Calcular m+3n.
- 2. [3p] Dadas las rectas $L_1: x+3y-5=0$ y $L_2=\{(-1;2)+t(4;3)/t\in\mathbb{R}\}$. Si $A\in L_1\cap L_2$, $B\in L_2, C\in L_1$ y $\tan\theta=\frac{13}{16}$, donde θ es el ángulo ABC. Determinar las coordenadas B y C, donde la ordenada de B es igual a 8 y la abscisa de C es positiva.
- 3. [4p] Sea \mathscr{C} una circunferencia cuyo radio es r (r > 0), su centro tiene coordenadas enteras, $(-2;6) \in \mathscr{C}$ y $(-1;9) \in \mathscr{C}$. Desde el punto A(4;7) se traza rectas tangentes a \mathscr{C} de tal manera que A dista 3r unidades de cada punto de tangencia.
 - a. Determine la ecuación de la circunferencia \mathscr{C} .
 - b. Determine uno de los dos puntos de tangencia.
- 4. [4p] Calcular la longitud del radio vector del punto de la parabola $y^2 + 4x + 2y 19 = 0$, cuya ordenada es igual a 3.
- 5. [3p] En una elipse se inscribe un cuadrado. Calcular el perímetro y el área del cuadrado, si la elipse tiene por ecuación $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

Lima, 25 de agosto de 2022.