Hugo Marquerie 17/03/2025

Convergencia en \mathcal{L}^p implica en probabilidad

Proposición 1. Sea $1 \le p \le \infty$ $y(X_n)_{n \in \mathbb{N}}$ tal que $X_n \xrightarrow{\mathcal{L}^p} X \implies X_n \xrightarrow{\mathbb{P}} X$.

Demostración: Sea $\varepsilon > 0$, queremos ver que $\mathbb{P}(|X_n - X| > \varepsilon) \to 0$.

1. Si $p < \infty$, entonces, por la desigualdad de Chebyshev

$$0 \le \mathbb{P}\left(|X_n - X| > \varepsilon\right) \le \frac{\|X_n - X\|_p^p}{\varepsilon^p} \xrightarrow{n \to \infty} 0.$$

- 2. Si $p = \infty$, veamos dos pruebas distintas:
 - Por un lado, como tenemos que $\|X_n X\|_2 \le \|X_n X\|_{\infty}$ (ejercicio), entonces $0 \le \mathbb{P}\left(|X_n X| > \varepsilon\right) \le \frac{\|X_n X\|_2^2}{\varepsilon^2} \le \frac{\|X_n X\|_{\infty}^2}{\varepsilon^2} \xrightarrow{n \to \infty} 0.$
 - Por otro lado, si $X_n \xrightarrow{\mathcal{L}^{\infty}} X$, entonces $X_n \xrightarrow{\text{c.s.}} X$ uniformemente (ejercicio). Entonces, por la proposición anterior, $X_n \xrightarrow{\mathbb{P}} X$.

En cualquier caso hemos probado que $X_n \stackrel{\mathbb{P}}{\to} X$.