Tarea VI

Román Contreras

13 de abril de 2018

1. Transformaciones lineales y matrices

1.1. Más propiedades de las transformaciones lineales

Recuerda que hemos estado utlizando las siguientes notaciones y convenciones:

Fijamos un punto en el espacio al que denotamos \mathcal{O} y al que llamamos el origen. Una vez que hemos fijado el origen, consideramos el conjunto de todos los vectores basados en \mathcal{O} , mismo que denotamos por

$$Vect_{\mathcal{C}}$$

y que denotamos los elementos de dicho conjunto por \vec{v}, \vec{w}, \dots etc.

Definicion 1.1. Sea $T: Vect_{\mathcal{O}} \to Vect_{\mathcal{O}}$ una transformación lineal. Definimos las potencias de T recursivamente de acuerdo a las siguientes reglas:

- 1. $T^0 = Id$ la transformación identidad
- 2. $T^{n+1} = T \circ T^n$

Si además T es invertible, definimos T^{-n} como $(T^{-1})^n$

Es decir, T^n es la transformación T compuesta n veces consigo misma.

Ejercicio 1.1. Demuestra que si T es una transformación lineal y m y n son enteros positivos, entonces se cumple que $T^m \circ T^n = T^{m+n}$. Si además T es invertible, demuestra que la igualdad anterior es válidad para m y n cualesquiera dos enteros (no necesariamente positivos).

Ejercicio 1.2. Sea T una homotecia con factor λ , es decir, $T(\vec{v}) = \lambda \vec{v}$ para todo vector \vec{v} . Demuestra que T es lineal. Calcula T^n para todo entero positivo n. Si $\lambda \neq 0$ demuestra que T es invertible y calcula T^{-n} para todo entero positivo n. En cualquier caso, demuestra que T^n es también una homotecia.

Ejercicio 1.3. Sea $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ una base ortonormal. Sea T la rotación de un ángulo α con eje de rotación dado por \vec{w}_1 y con sentido de \vec{w}_2 a \vec{w}_3 , es decir:

$$T(\vec{w}_1) = \vec{w}_1$$

$$T(\vec{w}_2) = \cos(\alpha)\vec{w}_2 + \sin(\alpha)\vec{w}_3$$

$$T(\vec{w}_3) = -\sin(\alpha)\vec{w}_2 + \cos(\alpha)\vec{w}_3$$

 $Demuestra\ que\ T\ es\ invertible.$

Calcula T^n para todo entero n.

Ejercicio 1.4. Sea T como en el ejercicio anterior. Demuestra que si el ángulo de rotación α es un múltiplo racional de π , es decir, $\alpha = \frac{m}{n}\pi$, entonces existe un entero k tal que $T^k = Id$.

1.2. Algunas matrices importantes

Recordemos la definición de la matríz de una transformación lineal. Sea $\beta = \{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$ una base ortonormal y T una transformación lineal. La matríz de T con respecto a β es la matríz:

$$[T]_{eta} = \left(egin{array}{c|c} [T(ec{w}_1)]_{eta} & [T(ec{w}_2)]_{eta} & [T(ec{w}_3)]_{eta} \end{array}
ight)$$

es decir, la matríz cuya enésima columna es el vector de coordenadas del vector $T(\vec{w}_n)$ en la base β .

Recuerda que en clase demostramos que si S y T son dos transformaciones lineales, entonces $[T \circ S]_{\beta} = [T]_{\beta}[S]_{\beta}$, es decir, el producto de matrices corresponde a la composición de transformaciones lineales.

Ejercicio 1.5. Calcula las matrices de las siguientes transformaciones (la base y las transformaciones son como en los ejercicios anteriores):

- 1. La matríz de una homotecia de factor λ
- 2. La matríz de una rotación de ángulo α con eje de rotación \vec{w}_1
- 3. La matríz de la proyeción en el plano generado por \vec{w}_1 y \vec{w}_2
- 4. Las potencias de las matrices arriba mencionadas.

Ejercicio 1.6. Sean \vec{v} y \vec{w} dos vectores linealmente independientes. Supongamos que sus coordenadas en la base β están dadas por $\vec{v}_{\beta} = (a,b,c)$ y $\vec{w}_{\beta} = (d,e,f)$. Sea T la proyección ortogonal en el plano generado por los vectores \vec{v} y \vec{w} .

Demuestra que $T \circ T = T$. Calcula la matríz $[T]_{\beta}$.

Ejercicio 1.7. Sea T una transformación lineal. Demuestra que si $M = [T]_{\beta}$ es la matríz de T con respecto a la base β , entonces las siguientes afirmaciones son equivalentes:

- 1. M cumple $M^TM = Id$
- 2. T es una isometría

A las matrices que cumplen la propiedad 1 se les llama matrices ortogonales.