Heaps, Binary Heaps and Heapsort

Subhabrata Samajder

IIIT, Delhi Summer Semester, 20th June, 2022

Heapsort

Heapsort

• Like Merge-sort it's worst case time complexity is $O(n \log n)$.

• Like Quick-sort it is an in place algorithm.

ullet # of elements stored outside the input array at any time: $\mathcal{O}(1)$.

• Combines the better attributes of the two sorting algorithms.

Heapsort (Cont.)

- Introduces a different algorithm design technique:
 - the use of a data structure to manage information during the execution of the algorithm.
 - This data structure is called a heap.
- Apart from heapsort it also makes an efficient priority queue.
- The term heap was originally coined in the context of heapsort.
- But it has since come to refer to as garbage-collection storage provided by programming languages like Lisp and Java.
- But heap data structure is not garbage-collected storage!

Heaps

Heap

A **Min-Heap** is a (rooted) tree data structure where the value stored in a node less than or equal to the value stored in each of its children.

Heap (Cont.)

• The lowest/highest priority element is always stored at the root.

It is not a sorted structure.

• It can be regarded as being partially ordered.

• It is useful when it is necessary to repeatedly remove the object with the lowest/highest priority.

Basic Operations

Query Operations:

• FIND-MIN(H): Report the smallest key stored in the heap.

Modifying Operations:

- CREATEHEAP(H): Create an empty heap H.
- INSERT(x, H): Insert a new key with value x into the heap H.
- EXTRACT-MIN(H): Delete the smallest key from H.
- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
- MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

Variants

- 2-3 heap
- B-heap
- Beap
- Binary heap
- Binomial heap
- Brodal queue
- d-ary heap
- Fibonacci heap
- K-D Heap
- Leaf heap

- Leftist heap
- Pairing heap
- Radix heap
- Randomized meldable heap
- Skew heap
- Soft heap
- Ternary heap
- Treap
- Weak heap

Variants

- 2-3 heap
- B-heap
- Beap
- Binary heap
- Binomial heap
- Brodal queue
- d-ary heap
- Fibonacci heap
- K-D Heap
- Leaf heap

- Leftist heap
- Pairing heap
- Radix heap
- Randomized meldable heap
- Skew heap
- Soft heap
- Ternary heap
- Treap
- Weak heap

Can we implement a binary tree using an array?

Yes, in some special cases.

A complete binary of 12 nodes.

Can you see a relationship between label of a node and labels of its children?

- The label of the **leftmost node** at level $i = 2^i 1$.
- The label of a **node** v at level i occurring at k^{th} place from left $= 2^i + k 2$.
- The label of the **left** child of v is $= 2 \cdot (2^i + (k-2)) + 1$.
- The label of the **right** child of v is $= 2 \cdot (2^i + (k-2)) + 2$.

- Let v be a node with label j.
- Label of **left child**(v) = 2j + 1.
- Label of **right child**(v) = 2j + 2.
- Label of **parent** $(v) = \lfloor (j-1)/2 \rfloor$.

Can we implement a complete binary tree using an array? Yes!

Advantage: It is the most compact representation.

Binary Heap

Binary (Min) Heap

Definition: It is a complete binary tree satisfying the heap property at each node.

Implementation of a Binary Heap

H[]: An array of size n used for storing the binary heap.

size: A variable for the total number of keys currently in the heap.

FIND-MIN(H)

FIND-MIN(H)

Return H[0]

Goal: Deletes the smallest key from H.

Goal: Deletes the smallest key from H.

Challenge: Preserve the complete binary tree structure as well as the heap property!

• swap(H[0], H[size - 1]).

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1
- While x > key[left[x]] or x > key[right[x]], then
 - $swap(x, min\{left[x], right[x]\})$.

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.
- While x > key[left[x]] or x > key[right[x]], then
 - $swap(x, min\{left[x], right[x]\}).$

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.
- While x > key[left[x]] or x > key[right[x]], then
 - $swap(x, min\{left[x], right[x]\})$.
- Complexity: # swaps = $\mathcal{O}(\#$ levels in binary heap) = $\mathcal{O}(\log n)$ (show it!).

- H: 9 14 21 17 23 33 29 71 37 25 88 41 52 32 76 98 85 47 57 11 ...
- H[size] = x.
- size = size + 1

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

INSERT(x, H) (Cont.)

```
Begin i \leftarrow size(H);
H[size] \leftarrow x;
size(H) \leftarrow size(H) + 1;
while (i > 0 \text{ and } H[i] < H[\lfloor (i-1)/2 \rfloor])
swap(H[i], H[\lfloor (i-1)/2 \rfloor]);
i \leftarrow \lfloor (i-1)/2 \rfloor;
End
```

Complexity?

INSERT(x, H) (Cont.)

Complexity: $\mathcal{O}(\log n)$.

```
Begin
  i \leftarrow size(H);
  H[size] \leftarrow x;
  size(H) \leftarrow size(H) + 1;
  while (i > 0 \text{ and } H[i] < H[|(i-1)/2|])
     swap(H[i], H[|(i-1)/2|]);
     i \leftarrow |(i-1)/2|;
End
```

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity?

• MERGE(H_1 , H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - **Note:** Searching for p takes $\mathcal{O}(n)$
 - Can you do it in $\mathcal{O}(\log n)$?

• Merge(H_1, H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called MAP!
 - Map: Stores the index corresponding to each key.

• MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called $\mathrm{Map}!$
 - Map: Stores the index corresponding to each key.

- MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .
 - Complexity?

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called MAP!
 - MAP: Stores the index corresponding to each key.

- MERGE(H_1 , H_2): Merge two heaps H_1 and H_2 .
 - Complexity: $\mathcal{O}(n \log n)$
 - Can you do it in $\mathcal{O}(n)$?

Building a Binary heap

Building a Binary Heap Incrementally

Problem: Given elements $\{x_0, \ldots, x_{n-1}\}$, build a binary heap H storing them.

Building a Binary Heap Incrementally

Problem: Given elements $\{x_0, \dots, x_{n-1}\}$, build a binary heap H storing them.

Trivial Solution: Build the Binary heap incrementally.

CREATEHEAP(H):

for i = 0 to n - 1

INSERT (x_i, H) ;

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left[\frac{1}{2} \{ 2^h + k - 1 \} \right] = \lceil n/2 \rceil$

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left[\frac{1}{2} \{ 2^h + k - 1 \} \right] = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $\mathcal{O}(\log n)$
- Time complexity for building a heap incrementally is $\mathcal{O}(n \log n)$.

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left[\frac{1}{2} \{ 2^h + k - 1 \} \right] = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $\mathcal{O}(\log n)$
- Time complexity for building a heap incrementally is $\mathcal{O}(n \log n)$.

A Binary Heap can be build in $\mathcal{O}(n)$ time.

- Consider a complete binary tree of height h with k leaf nodes in the last level.
- The total number of nodes $n = (2^h 1) + k$.
- Therefore, number of leaf nodes is equal to

$$k + (2^{h-1} - \lceil k/2 \rceil) = 2^{h-1} + \lfloor k/2 \rfloor$$

= $\left[\frac{1}{2} \{ 2^h + k - 1 \} \right] = \lceil n/2 \rceil$

- Time complexity for inserting a leaf node = $\mathcal{O}(\log n)$
- Time complexity for building a heap incrementally is $\mathcal{O}(n \log n)$.

A Binary Heap can be build in $\mathcal{O}(n)$ time.

Conclusion: $\mathcal{O}(n)$ algorithm \Rightarrow each leaf nodes must take $\mathcal{O}(1)$.

• Heap Property: Every node stores values smaller than its children.

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property?

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property?
 All the leaf nodes surely does!

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property?
 All the leaf nodes surely does!
- Question: Does this suggest a new approach to build binary heap?

- Heap Property: Every node stores values smaller than its children.
- Note: Only need to ensure this property at each node.
- Question: In any complete binary tree, how many nodes satisfy the heap property?
 All the leaf nodes surely does!
- Question: Does this suggest a new approach to build binary heap?

- Copy the given n elements $\{x_0, \dots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given *n* elements $\{x_0, \ldots, x_{n-1}\}$ into an array *H*.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given *n* elements $\{x_0, \ldots, x_{n-1}\}$ into an array *H*.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.

- H: 0 11 21 14 23 33 29 47 17 25 88 41 52 32 76 85 75 37 57 98 ...
- Copy the given n elements $\{x_0, \ldots, x_{n-1}\}$ into an array H.
- The heap property holds for all the leaf nodes.
- Leaving all the leaf nodes, process the elements in the decreasing order of their index and set the heap property for each of them.
- Let v be a node corresponding to index i in H.
- The process of restoring heap property at i called HEAPIFY(i, H).

HEAPIFY(i, H)

For node i, compare its value with those of its children

- If it is greater than any of its children
 - Swap it with smallest child
 - and move down ...
- Else stop.

HEAPIFY(i, H)

```
Begin
   n \leftarrow size(H) - 1;
   Flag \leftarrow true;
   while (i \le |(n-1)/2| and Flag = true)
      min \leftarrow i;
      if (H[i] > H[2i + 1])
         \min \leftarrow 2i + 1;
      if (2i + 2 \le n \text{ and } H[min] > H[2i + 2])
         \min \leftarrow 2i + 2:
      if (\min \neq i)
         swap(H[i], H[min]);
         i \leftarrow min;
      else
         Flag \leftarrow false;
End
```

Complexity

• How many nodes of height *h* can there be in a complete binary tree of *n* nodes?

Complexity

- How many nodes of height h can there be in a complete binary tree of n nodes?
- **Note:** Each sub-tree is also a complete binary tree.
 - A sub-tree of height h has at least 2^h nodes.
 - No two sub-tree of height *h* have any element in common.

Complexity

- How many nodes of height h can there be in a complete binary tree of n nodes?
- Note: Each sub-tree is also a complete binary tree.
 - A sub-tree of height h has at least 2^h nodes.
 - No two sub-tree of height h have any element in common.
- : the # nodes of height h is bounded above by $\frac{n}{2^h}$.
- Hence, time complexity of building a heap is given by

$$\sum_{h=1}^{\log n} \frac{n}{2^h} \cdot \mathcal{O}(h) \leq cn \sum_{h=1}^{\log n} \frac{h}{2^h} < cn \sum_{h=1}^{\infty} \frac{h}{2^h}$$

$$= cn \cdot \frac{(1/2)}{(1-1/2)^2} \quad [\because \sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2} \text{ for } |x| < 1]$$

$$= 2cn = \mathcal{O}(n).$$

Heapsort

Heapsort

• Build heap *H* on the given *n* elements.

```
    While (H is not empty)
    x ← EXTRACT-MIN(H);
    print x;
```

• Complexity: $\mathcal{O}(n \log n)$.

Heapsort

Homework:

- Implement a BINARY-MAX-HEAP in C.
- Use it to sort numbers in an decreasing order.
- For a given n,
 - Take (fixed) *m* many random inputs of size *n* each.
 - Compute the average time take by your Heapsort program.
- Repeat the above process for $n = 4, 5, \dots, 1000$.
- Plot the values in a graph where *x*-axis is *n* and *y*-axis denotes the average time taken for each *n*.

Thank You for your kind attention!

Books and Other Materials Consulted

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein.

Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.

Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.

Questions!!