UNIVERSIDADE FEDERAL ALFENAS (UNIFAL)

Bacharelado em Ciência da Computação

Disciplina	Método de realização	Data da prova
DCE529 - Algoritmos e Estrutura de Dados III	Presencial	06/03/2024 às 08h00
Professor		
Iago Augusto de Carvalho (iago.carvalho@unifal-mg.edu.br)		

Prova 01

Exercício 1 (20%)

Resolva as seguintes equações de recorrência utilizando o teorema mestre. Apresente qual caso do teorema mestre foi utilizado, os valores de a, b, f(n), e dê, ao final, a classe de complexidade assintótica do algoritmo

a)
$$T(n) = 16T(\frac{n}{4}) + n^2$$

b)
$$T(n) = 4T(\frac{8n}{16}) + 2$$

c)
$$T(n) = T\left(\frac{3n}{5}\right) + n$$

d)
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

Exercício 2 (20%)

Diga se é verdadeiro ou falso e justifique

- a) Se $f(n) = o(n^3)$, então, com certeza, $f(n) = \mathcal{O}(n^2)$
- b) Um algoritmo com ordem de complexidade $\mathcal{O}(n^{5000})$ é considerado polinomial
- c) Todos os problemas da classe P também pertencem a classe NP
- d) Se $f(n) = \Theta(g(n))$, então podemos afirmar que $f(n) = \mathcal{O}(g(n))$ e que $f(n) = \Omega(g(n))$

Exercício 3 (15 %)

Ordene as seguintes funções de acordo com as suas taxas de crescimento assintótico. Justifique sua resposta $4 n \log n + 2n$, 210, $2 \log n$, $3n + 100 \log n$, 4n, 2n, 33n, $n^2 + 10n$, n^3 , $n \log n$

Exercício 4 (25%)

Veja o algoritmo abaixo. Escreva sua função de recorrência, apresentando T(n), a, b, e f(n). Além disso, calcule sua complexidade utilizando o teorema mestre.

```
int Fact(int number)
{
   if (number == 0)
      return 1;
   else
      return number * Fact(number - 1);
}
```

Exercício 5 (20%)

Seja o problema do CLIQUE como definido em aula. Ou seja, dado um grafo G = (V, E), um clique $V' \subseteq V$ é tal que $i, j \in V' \iff (i, j) \in E$ e que V' é um subgrafo completo de G e que todo par de vértices em V' é adjacente.

Além disso, seja o problema do $CONJUNTO\ INDEPENDENTE$ também como definido em aula. Ou seja, dado um grafo G=(V,E), um conjunto independente $V'\subseteq V$ é tal que $i,j\in V'\iff (i,j)\notin E$ e que V' é um grafo totalmente desconectado e que todo par de vértices em V' não é adjacente.

Para ilustrar ambos os problemas, veja a figura abaixo. Nesta figura, temos que a resolução do CLIQUE é o conjunto $V' = \{A, B, C\}$. Além disso, a resolução do $CONJUNTO\ INDEPENDENTE$ é o conjunto $V' = \{A, D, E, F\}$.

Sabendo que ambos os problemas pertencem a NP e que o problema CLIQUE é NP-Completo, mostre que o problema $CONJUNTO\ INDEPENDENTE$ também é NP-Completo.

