

Ankara Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü

Makine Öğrenmesi Kullanarak Meme Kanseri Hastalarının Sağ Kalma Tahmini

Veri Bilimi

Prof. Dr. Semra Gündüç Dersin Öğretim Üyesi 22822606 Oğuzhan Panatlı Doktora Öğrencisi

Aralık 2023

İçindekiler

- Giriş
 - Veri Setine Genel Bakış
 - Veri Setinin İncelenmesi
 - Keşifsel Veri Analizi (Explatory Data Analysis EDA)
- Yöntem
 - Veri Ön İşleme
 - Makine Öğrenmesi Modellerinin Uygulanması
 - Logistic Regression
 - K-Nearest Neighbor (KNN)
 - Support Vector Machine (SVM)
 - Decision Tree
 - Random Foress
 - Performans Metrikleri
- Sonuçların Değerlendirmesi
 - Modellerin Sonuçlarının Değerlendirilmesi ve Yorumlanması
- Sonuç

Veri Setine Genel Bakış

Veri Setine Genel Bakış

- Veri setinde 4024 hasta dahil edilmiştir. (gözlem sayısı)
- Değişkenlerin Açıklanması:
 - Age hastanın yaşı (numerik)
 - Race hastanın ırkı (kategorik)
 - Marital Status medeni Durum (kategorik)
 - T Stage primer tümörün büyüklüğünü ve kapsamını ifade ediyor. (kategorik)
 - N Stage yakındaki lenf düğümlerinin tutulumunu ifade ediyor. (kategorik)
 - 6th Stage Kanserin kaç tane koltuk altı lenf düğümüne ve/veya iç meme lenf düğümlerine yayıldığına dair bilgi veriyor. Ayrıca tespit edilmişse tümör boyutu hakkında da bilgi veriyor. (kategorik)
 - Differentiate Farklılaşma derecesi, kanser hücrelerinin yapı ve fonksiyon bakımından normal, sağlıklı hücrelere ne kadar benzediğini ifade ediyor. (kategorik)
 - Grade Farklılaşma derecesi (kategorik)

Veri Setine Genel Bakış

- Veri setinde 4024 hasta dahil edilmiştir. (gözlem sayısı)
- Değişkenlerin Açıklanması:
 - A Stage Kanserin bölgesel mi uzak yerlere mi yayılmış bilgisini içeriyor. (kategorik)
 - Tumor Size milimetre cinsinden tam boyutu gösteriyor. (numerik)
 - Estrogen Status östrojen durumu: pozitif—negatif (kategorik)
 - Progesterone Status progesteron durumu: pozitif—negatif (kategorik)
 - Regional Node Examined tanı sürecinde incelenen bölgesel lenf düğümlerinin sayısını ifade ediyor. (numerik)
 - Regional Node Positive bölgesel lenf düğümlerinde kanser hücrelerinin varlığını ifade ediyor. (numerik)
 - Survival Months hastanın hayatta kaldığı ay sayısı (numerik)
 - Status hastanın durumu: yaşıyor yaşamıyor (kategorik)

Veri Setininin İncelenmesi

```
#Genel Bilgiler
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4024 entries, 0 to 4023
Data columns (total 16 columns):
    Column
                             Non-Null Count Dtype
                             4024 non-null
                                             int64
     age
                             4024 non-null
    race
                                             object
    marital status
                             4024 non-null
                                             object
                             4024 non-null
                                             object
    t_stage
                                             object
    n_stage
                             4024 non-null
     6th_stage
                             4024 non-null
                                             object
     differentiate
                             4024 non-null
                                             object
     grade
                             4024 non-null
                                             object
    a stage
                             4024 non-null
                                             object
     tumor_size
                             4024 non-null
                                             int64
     estrogen_status
                             4024 non-null
                                             object
 10
    progesterone_status
                             4024 non-null
                                             object
    regional_node_examined
 12
                             4024 non-null
                                             int64
    regional_node_positive
                             4024 non-null
                                             int64
    survival_months
                                             int64
                             4024 non-null
 15 status
                             4024 non-null
                                             object
dtypes: int64(5), object(11)
memory usage: 503.1+ KB
```

#Temel Istatistikler
df.describe().T

	count	mean	std	min	25%	50%	75%	max
age	4024.0	53.972167	8.963134	30.0	47.0	54.0	61.0	69.0
tumor_size	4024.0	30.473658	21.119696	1.0	16.0	25.0	38.0	140.0
regional_node_examined	4024.0	14.357107	8.099675	1.0	9.0	14.0	19.0	61.0
regional_node_positive	4024.0	4.158052	5.109331	1.0	1.0	2.0	5.0	46.0
survival_months	4024.0	71.297962	22.921430	1.0	56.0	73.0	90.0	107.0

* T Stage – primer tümörün büyüklüğünü ve kapsamını ifade ediyor.

* N Stage – yakındaki lenf düğümlerinin tutulumunu ifade ediyor.

6th Stage – Kanserin kaç tane koltuk altı lenf düğümüne ve/veya iç meme lenf düğümlerine yayıldığına dair bilgi veriyor. Ayrıca tespit edilmişse tümör boyutu hakkında bilgi veriyor.

A Stage – Kanserin bölgesel mi uzak yerlere mi yayılmış bilgisini içeriyor.

Differentiate - Farklılaşma derecesi, kanser hücrelerinin yapı ve fonksiyon bakımından normal, sağlıklı hücrelere ne kadar benzediğini ifade ediyor

Tumor Size - milimetre cinsinden tam boyutu gösteriyor.

Regional Node Examined - tanı sürecinde incelenen bölgesel lenf düğümlerinin sayısını ifade ediyor.

Regional Node Positive - bölgesel lenf düğümlerinde kanser hücrelerinin varlığını ifade ediyor.

Survival Months – hastanın hayatta kaldığı ay sayısı

Differentiate - Farklılaşma derecesi, kanser hücrelerinin yapı ve fonksiyon bakımından normal, sağlıklı hücrelere ne kadar benzediğini ifade ediyor

Veri Ön İşleme

- Kategorik verilerin sayısal verilere dönüştürülmesi (label and one-hot encoding)
 - Race, Marital Status, A Stage, Estrogen Status, Progesterone Status ve Status -> nominal
 - Differentiate, 6th Stage, T Stage, ve N Stage verileri ---> ordinal
- Bagimsiz degiskenlerin ve bagimli degiskenin belirlenmesi (feature vector and target variable)
 - Status -> Bağımlı Değişken
 - Diğer değişkenler -> Bağımsız Değişken
- Veri setinin eğitim ve test olarak ayrılması (train-test split)
 - Eğitim Veri seti %80 Test Veri seti %20
- Ölçeklendirme (Feature Scaling)
 - Standard scaler ile ölçeklendirme yapıldı.

Makine Öğrenmesi Modellerinin Uygulanması

- Logistic Regression
- K-Nearest Neighbor (KNN)
- Support Vector Machine (SVM)
- Decision Tree
- Random Forest

https://mfatihto.medium.com/support-vector-machine-algoritması-makine-öğrenmesi-8020176898d8

Makine Öğrenmesi Modellerinin Uygulanması

- Logistic Regression
- K-Nearest Neighbor (KNN)
- Support Vector Machine (SVM)
- Decision Tree
- Random Forest

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Mild	High	Strong	No
2	Rain	Hot	Normal	Strong	No
3	Rain	Cool	High	Strong	No
4	Overcast	Hot	High	Strong	Yes
5	Overcast	Cool	Normal	Weak	Yes
6	Rain	Hot	High	Weak	Yes
7	Overcast	Mild	Normal	Weak	Yes
8	Overcast	Cool	High	Weak	Yes
9	Rain	Cool	High	Weak	Yes
10	Rain	Mild	Normal	Strong	No
11	Overcast	Mild	High	Weak	Yes
12	Sunny	Mild	Normal	Weak	Yes
13	Sunny	Cool	High	Strong	No
14	Sunny	Cool	High	Weak	No

Belirli bir sorunu çözmek için ağaç benzeri bir yapı ve bunların olası kombinasyonlarını kullanır.

Makine Öğrenmesi Modellerinin Uygulanması

- Logistic Regression
- K-Nearest Neighbor (KNN)
- Support Vector Machine (SVM)
- Decision Tree
- Random Forest

Performans Metrikleri

- Model sonuçlarının değerlendirilmesinde kullanılan performans metrikleri
 - Accuracy
 - Precision
 - Recall (Sensitivity)
 - F1 Score
 - AUC

Predicted Class

Makine Öğrenmesi Modellerinin Sonuçlarının Değerlendirilmesi

Method	Accuracy	Precision	Recall	F1 Score	AUC
Logistic Regression	0.89	0.90	0.98	0.94	0.69
KNN	0.87	0.90	0.96	0.93	0.68
SVM	0.89	0.89	0.99	0.94	0.66
Decision Tree	0.82	0.91	0.88	0.89	0.69
Random Forest	0.90	0.90	0.98	0.94	0.72

Makine Öğrenmesi Modellerinin Sonuçlarının Değerlendirilmesi

Method	Accuracy	Precision	Recall	F1 Score	AUC
Logistic Regression	0.89	0.90	0.98	0.94	0.69
KNN	0.87	0.90	0.96	0.93	0.68
SVM	0.89	0.89	0.99	0.94	0.66
Decision Tree	0.82	0.91	0.88	0.89	0.69
Random Forest	0.90	0.90	0.98	0.94	0.72

Sonuç

- Breast Cancer veri setinde 5 farklı makine öğrenmesi modeli uygulanarak sınıflandırma yapılmıştır.
- Bu veri setinde en yüksek doğruluğa ve AUC değerine sırası ile %90 ve 0.72 değerleri ile Random Forest algoritması kullanarak ulaşılmıştır.
- Daha yüksek doğrulukta bir model elde edebilmek adına ileri çalışmalarda;
 - Veri sayısı artıralarak tekar makine öğrenmesi yöntemleri uygulanabilir.
 - Hiperparametre optimizasyonu yapılarak tekrar modeller oluşturabilir.
 - Adaboost, XGBoost, LightGBM, ANN gibi farklı modeler kullanılabilir.

DINLEDIĞINIZ İÇIN TEŞEKKÜRLER