APPM 4600 Lab 10

Building L^2 approximations

1 Overview

In this lab, you will build a code that allows you to build L^2 approximations. You will use quadrature algorithm that is built into SCIPY.

2 Before Lab

1. The Legendre polynomials can be evaluated via the following three term recursion:

$$\phi_0(x) = 1$$

$$\phi_1(x) = x$$

$$\phi_{n+1}(x) = \frac{1}{n+1} \left((2n+1)x\phi_n(x) - n\phi_{n-1}(x) \right)$$

Write a subroutine named eval_legendre that takes in an order n and value x where the polynomials are to be evaluated at and returns a vector \mathbf{p} of length n+1 whose entries are the values of the Legendre polynomials at x.

Note that due to the recursion formula, the values of $P_n(x)$ require you to compute P_j from j = 0, 1, ..., n - 1. We might want to save those to be more efficient. If you have time, write down a routine that, given n and a vector of m values \mathbf{x} , returns a matrix \mathbf{P} of size $(n+1) \times m$, with $P[i, j] = P_i(x_j)$.

3 Lab Day: Building the L^2 approximations

During lab, you will write a code that evaluates L^2 approximations of functions.

3.1 Creating the L^2 approximation

Recall from class that the polynomial of degree n $(p_n(x))$ that approximates a function f(x) with respect to a weight function $w(x) \ge 0$ on an interval I is given by

$$p_n(x) = \sum_{j=0}^n a_j \phi_j(x)$$

where

$$a_j = \frac{\langle \phi_j, f \rangle_{L_w^2}}{\langle \phi_j, \phi_j \rangle_{L_w^2}} = \frac{\int_I \phi_j(x) f(x) w(x) dx}{\int_I \phi_j^2(x) w(x) dx}$$

and $\phi_i(x)$ are a set of polynomials orthogonal on I with respect to w(x).

3.2 Exercises

1. Using scipy.integrate.quad, create a one line code that evaluates a coefficient a_j . Note: you have to create a subroutine that evaluates the $f(x)\phi_j(x)w(x)$ to feed into this, and also a subroutine $\phi_j^2(x)w(x)$ for evaluating the normalization. You should not use any symbolic packages.

You may want to use the following to import the package: from scipy.integrate import quad

- 2. Take the method you developed in the prelab and the coefficient evaluator in problem 1 and insert them into the partially completed code legendre_expansion.py, to be found in the Modules tab on Canvas.
- 3. Change the function being approximated to $f(x) = \frac{1}{1+x^2}$. Does the accuracy of the approximation change? If so, how so?

3.3 Additional Exercises

As an additional exercise write a new code that creates an L^2 approximation using the Chebychev polynomials. They are also defined on the interval [-1,1] but the weight function is different

$$w(x) = \frac{1}{\sqrt{1 - x^2}}.$$

The three term recursion is defined as follows

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{n+1}(x) = 2xT_n - T_{n-1}(x)$

Note that the code is the same except for: 1- You need a T_n evaluator and 2- write a new function that gets called in the coefficient evaluator.

3.4 Deliverables

All codes should be pushed to git and your responses to the questions should be entered into Canvas.