Ex 06 - RAID 5

mercoledì 4 marzo 2020 11:10

Consider the following RAID 5 setup:

- \bullet n = 4 disks
- MTTR = 3 days
- MTTF(one disk) = 1000 day

The MTTDL will be:

MTDC-20 FR

FR = MIF (M-1, MITE)

Ex 07 - RAID 6

mercoledì 4 marzo 2020 11:11

Consider the following RAID 6 setup:

- n = 5 disks
- MTTR = 2 days
- MTTF(one disk) = 1100 day

The MTTDL will be:

TIDY = 2 & MITE3 U=(M-4) & MITE2

Further Reading

lunedì 30 marzo 2020 22:21

Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson. 1994. RAID: high-performance, reliable secondary storage. ACM Comput. Surv. 26, 2 (June 1994), 145–185. DOI:https://doi.org/10.1145/176979.176981

Double-Columns

https://www.cs.cornell.edu/courses/cs4410/2017fa/schedule/slides/RAID.pdf

Single-Column:

http://meseec.ce.rit.edu/eecc722-fall2006/papers/io/3/chen94raid.pdf

RAID: High-Performance, Reliable Secondary Storage

PETER M. CHEN

Department of Electrical Engineering and Computer Science. 1301 Beal Avenue, University of Michigan, Ann Arbor, Michigan, 48109-2122

EDWARD K. LEE

DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301-1044

GARTH A. GIBSON

School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3891

RANDY H. KATZ

Department of Electrical Engineering and Computer Science, 571 Evans Hall, University of California, Berkeley, California 94720

DAVID A. PATTERSON

Department of Electrical Engineering and Computer Science, 571 Evans Hall. University of California, Berkeley, California 94720

01 - Single Component – R

lunedì 20 aprile 2020 09:01

A heart pacemaker has a failure rate of λ = 0.25 × 10–8 per hour.

- 1. What is its MTTF?
- 2. What is the probability that it fails during the first five years of operation?

 $MMF = \frac{1}{\lambda} = 4 * 10^8 h = Y \frac{1}{2 h * 365} = \frac{5}{2 h * 365} = \frac{5}{2 h * 365} = \frac{5}{4 * 108} = \frac{5}{4$

02 - Single Component - MTTF

mercoledì 4 marzo 2020 11:14

Let us now consider a generic component D. Compute the minimum integer value of $MTTF_D$ in order to have at t = 5 days a reliability $R_D(t) \ge 0.96$.

03 - Single Component - T

domenica 19 aprile 2020 22:58

A smartphone manufacturer determines that their products have a MTTF of 59 years in normal use. Estimate how long a warranty should be set if no more than 5% of the items are to be returned for repair.

$$R(W) \ge 95\%$$

$$R(W) = e^{-\frac{W}{HHP}} = 0.85$$

$$= 0.85 = 0 W = 110 + 4 \text{ (no.85)}$$

$$= 3.026 \text{ years}$$

$$W \le 3 \text{ (no.85)}$$

04 - RBD Server - MTTF and R

domenica 19 aprile 2020 23:40

- Lets' consider a server architecture in terms only of its main 3 components: CPU, MEMORY and HardDrive. Considers that the components have a constant failure rates of 1/64, 1/58 and 1/28 per year respectively for CPU, MEMORY and HardDrive. Assuming that component failures are independent events, compute:
 - 1. Draw the RBD of the server architecture
 - 2. Compute the MTTF for the server
 - 3. Compute the reliability of the server for a 3-year mission

A system with four modules: A, B, C, D and, E has been designed, so that it operates correctly if

- (1) modules A or B operate correctly, and
- (2) modules C and D operate correctly, or module E operates correctly.
- 1. Draw an RBD of the system.
- 2. Write an expression for the reliability of the system.
- 3. Extra Considering that the MTTF for modules A and B is 3412hours, while for modules C, D and E is 1245hours, calculate the reliability value after 1 month of the system.

QUIZ - R - Additional Insurance

lunedì 20 aprile 2020 09:47

A computer system is designed to have a failure rate of one fault in 5 years in normal use. The system has no fault tolerance capabilities, so it fails upon occurrence of the first fault.

- 1. What is the MTTF of such a system? $\lambda = \frac{1}{2} \infty$ MTF.5 Y
- 2. What is the probability that the system will fail during its first year of operation?
- 3. (EXTRA) The usual warranty for the system is 2 years. The vendor wishes to offer an additional insurance against failures for the first 5 years of operation at extra cost. The vendor wants to charge \$20 for each 1 % drop in reliability to offer such an insurance. How much should the vendor charge for such an insurance? (QUIZ)

$$(2) F = 1 - R(1) = 1 - e^{-\frac{1}{5}} = 0.18\%$$

$$R(2) = (2) - \frac{2}{5} = 0.18\%$$

$$R(3) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(6) = (2) - \frac{2}{5} = 0.18\%$$

$$R(1) - R(6) = (2) - \frac{2}{5} = 0.18\%$$

$$R(1) - R(6) = (2) - \frac{2}{5} = 0.18\%$$

$$R(2) - \frac{2}{5} = 0.18\%$$

$$R(3) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(4) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(5) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(6) - R(5) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(8) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

$$R(7) - R(7) = (2) - \frac{2}{5} = 0.18\%$$

07 - Availabilility if MTTR increases

lunedì 20 aprile 2020 09:36

A complex system has a failure rate of $\lambda = 0.25 \times 10{\text -}4$ per hour and an MTTR = 72 hours in normal use.

- 1. What is its steady-state availability?
- 2. If MTTR is increased to 120 h, what failure rate can be tolerated without decreasing the availability of the system?

$$\frac{1}{53882} = \frac{1}{6} * 10^{-4}$$