CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1 1. (Previously Presented) A method of providing reliability to an interconnect 2 fabric for communication among a set of nodes, the method comprising: 3 partitioning ports associated with each node into a first set of ports and 4 a second set of ports, the first set of ports comprising at least one port of each 5 node and the second set of ports comprising at least one other port of each 6 node; 7 forming a first interconnect fabric among the first set of ports for 8 meeting a set of flow requirements, the set of flow requirements specifying 9 communication bandwidth requirements between pairs of the nodes and the 10 first interconnect fabric comprising a plurality of communication links and at 11 least one interconnect device coupled to three or more of the communication 12 links; and 13 forming a second interconnect fabric among the second set of ports. 1 2. (Original) The method according to claim 1, wherein said forming the first 2 interconnect fabric comprises generating arrangements of flow sets in 3 response to the flow requirements, determining one or more port violations 4 with respect to the first set of ports for each node and alleviating at least one of 5 the port violations by merging a pair of the flow sets. 1 3. (Original) The method according to claim 1, wherein said set of nodes 2 includes source nodes and terminal nodes. 1 4. (Cancelled) 1 5. (Original) The method according to claim 1, said partitioning further 2 comprising partitioning the ports associated with each node into a number of 3 additional sets of ports.

1	6. (Original) The method according to claim 5, further comprising forming
2	additional interconnect fabrics among the additional sets of ports.
1	7. (Previously Presented) The method according to claim 1, wherein said
2 .	forming said second interconnect fabric is performed to meet the set of flow
3	requirements.
1	8. (Previously Presented) The method according to claim 1, wherein said
2	forming said second interconnect fabric is performed to meet a relaxed set of
3	flow requirements.
1	9. (Previously Presented) The method according to claim 1, wherein a node
2	has an odd number of ports equal to 2n+1, the first set of ports includes n+1
3	ports and the second set of ports includes n ports.
2	ports and the second set of ports metades it ports.
1	10. (Previously Presented) The method according to claim 1, wherein when a
2	node has only one port, further comprising a step of coupling an interconnect
3	device to the port.
1	11. (Previously Presented) A system for providing reliability to a design for
2	an interconnect fabric for communication among a set of nodes, the system
3	comprising:
4	means for storing a set of design information including a set of flow
5	requirements for the interconnect fabric, the set of flow requirements
6	specifying communication bandwidth requirements between pairs of the
7	nodes; and
8	a fabric design tool that partitions ports associated with each node into
9	a first set of ports and a second set of ports, the first set of ports comprising at
10	least one port of each node and the second set of ports comprising at least one
11	other port of each node and that generates a first design for the interconnect
12	fabric among the first set of ports, the first design for meeting the flow
13	requirements and the first design specifying a plurality of communication links

and at least one interconnect device coupled to three or more of the

14

15	communication links, and that generates a second design for the interconnect
16	fabric among the second set of ports.
1	12. (Original) The system according to claim 11, wherein said fabric design
2	tool generates arrangements of flow sets in response to the flow requirements,
3	determines one or more port violations with respect to the first set of ports for
4	each node and alleviates at least one of the port violations by merging a pair of
5	the flow sets.
1	13. (Original) The system according to claim 11, wherein said set of nodes
2	includes source nodes and terminal nodes.
1	14. (Cancelled)
1	15. (Original) The system according to claim 11, wherein said fabric design
2	tool further partitions the ports associated with each node into a number of
3	additional sets of ports.
1	16. (Original) The system according to claim 15, wherein said fabric design
2	tool forms additional interconnect fabrics among the additional sets of ports.
1	17. (Previously Presented) The system according to claim 11, wherein said
2	fabric design tool forms said second interconnect fabric to meet the set of flow
3	requirements.
1	18. (Previously Presented) The system according to claim 11, wherein said
2	fabric design tool forms said second interconnect fabric to meet a relaxed set
3	of flow requirements.
1	19. (Previously Presented) The system according to claim 11, wherein node
2	has an odd number of ports equal to 2n+1, the first set of ports includes n+1
3	ports of the node and the second set of ports includes n ports of the node.

1 20. (Previously Presented) The system according to claim 11, wherein when 2 a node has only one port, an interconnect device coupled to the port is added 3 to the design prior to the fabric design tool partitioning the ports into the first 4 set of ports and the second set of ports. 1 21. (Previously Presented) The method according to claim 1, wherein the 2 second set of ports includes fewer ports of at least one node than the first set of 3 ports. 1 22. (Previously Presented) The method according to claim 1, wherein the 2 second interconnect fabric comprises a plurality of second communication 3 links and at least one interconnect device coupled to three or more of the 4 second communication links. 1 23. (Previously Presented) The method according to claim 8, wherein the 2 relaxed set of flow requirements for the second interconnect fabric comprise 3 reduced bandwidth requirements between pairs of the nodes, the reduced 4 bandwidth requirements being a percentage of the bandwidth requirements 5 between the pairs for the nodes for the first interconnect fabric. 1 24. (Previously Presented) The system according to claim 11, wherein the 2 second set of ports includes fewer ports of at least one node than the first set of 3 ports. 1 25. (Previously Presented) The system according to claim 11, wherein the 2 second design for the interconnect fabric specifies a plurality of second 3 communication links and at least one interconnect device coupled to three or 4 more of the second communication links. 26. (Previously Presented) The system according to claim 18, wherein the 1 2 relaxed set of flow requirements for the second interconnect fabric comprise reduced bandwidth requirements between pairs of the nodes, the reduced 3 4 bandwidth requirements being a percentage of the bandwidth requirements 5 between the pairs for the nodes for the first interconnect fabric.