Grupa I

Zadanie 1.

Rurociągiem o średnicy 10 cm transportowano sok o gęstości 1200 kg/m³. Wskazywana przez ciśnieniomierz różnica ciśnień pomiędzy króćcami rurki Prandtla zamontowanej na rurociągu wynosiła 350 Pa. **Obliczyć strumień objętości** i **masy** przepływającego soku.

$$p_d = \frac{\rho \cdot \bar{u}^2}{2}; \ \dot{V}_{pd} = A_1 \cdot \bar{u}; \ \dot{m} = \dot{V} \cdot \bar{\rho}$$

Grupa 2

Zadanie 1.

Przez przewód rurowy przepływa gaz o gęstości $\rho = 1,5$ kg/m³. W przewodzie o średnicy wewnętrznej równej 8 cm zamontowano kryzę pomiarową o średnicy otworu wewnętrznego równej 5 cm.

Różnica ciśnień gazu po obu stronach zwężki pomiarowej mierzona za pomocą elektronicznego przetwornika różnicy ciśnień wynosiła 980 Pa.

Obliczyć strumień objętości gazu przepływającego przez rurociąg przyjmując, że liczba ekspansji $\varepsilon=1$.

$$m = \frac{A_0}{A_1} = \left(\frac{d^2}{D^2}\right); \ \dot{V}_{pd} = A_1 \cdot \bar{u};$$

$$\dot{m{V}}_{\Delta p} = m{lpha} \cdot m{arepsilon} \cdot m{A}_{m{\theta}} \sqrt{rac{m{2} \cdot (m{p}_{1} - m{p}_{2})}{m{
ho}}}$$

Rysunek 1. Zależność liczby przepływu α dla kryz od m.

Grupa 3

Zadanie 1

Bazując na zależności dla ciśnieniomierzy cieczowych **obliczyć różnicę ciśnień w Pa** pomiędzy dwoma punktami instalacji, przez którą przypływa płyn o gęstości równej $\rho=1,2$ kg/m³. Różnicę ciśnień pomiędzy wybranymi przekrojami mierzono ciśnieniomierzem cieczowym typu U-rurka. Odczytana z ciśnieniomierza różnica poziomów cieczy manometrycznej (rtęć o gęstości 13 600 kg/m³) wyniosła h = 50 mmHg.

$$\Delta p = hg(\rho_m - \rho)$$

h – wysokość słupa cieczy w manometrze typu U-rurka [m],

g – przyspieszenie ziemskie [m/s²],

 $\rho_{\rm m}$ – gęstość cieczy manometrycznej, kg/m³,

 ρ – gęstość płynu p₁ i p₂ [kg/m³],

Wyznaczoną różnicę ciśnień przedstawiać następnie w barach, atmosferach fizycznych i technicznych oraz w milimetrach słupa rtęci i wody wiedząc, że:

1 **bar** = 10^5 Pa

1 **atm** = $1,01325 \times 10^5$ Pa

 $1 \text{ at} = 9,80665 \times 10^4 \text{ Pa}$

1 mm H_2O (dla temperatury wody $4^{\circ}C$) = 9,80665 Pa

Grupa 1, 2 i 3

Zadanie 2.

Ciśnienie nad cieczą w zbiorniku ciśnieniowym, <u>o dużym przekroju (A₁)</u>, napełnionym wodą do poziomu **8 m** wynosi **445 kPa**. Ze zbiornika woda wypływa do atmosfery poziomą rurą o średnicy **0,05 m** (małym przekroju A₂) umieszczoną przy dnie zbiornika. **Obliczyć prędkość oraz strumień objętości** wody wypływającej z poziomego przewodu. Przyjąć, że: gęstość wody $\rho_{H2O} = 1000 \text{ kg/m}^3$, ciśnienie atmosferyczne $\rho_0 = 1000 \text{ hPa}$. Woda przepływa ruchem burzliwym. Straty ciśnienia na pokonanie oporów przepływu wynoszą **410 kPa**. Proszę zwrócić uwagę na to, że A₁>>A₂.

