

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Zobrazovací soustava

Josef Horálek upravil Peter Mikulecký

Zobrazovací soustava

- Zobrazovací soustava je tvořena dvěma základními prvky:
 - = zobrazovací adaptér, který tvoří obraz
 - = grafická nebo video karta
 - adaptér kam se vytvořený obraz přenáší
 - = CRT, LCD monitor
- Zobrazovací soustava může pracovat ve dvou základních režimech:
 - = textový režim
 - = grafický režim

= Starší možnosti

- obrazovka je při něm rozdělena na malá políčka
- = každé zobrazí jeden znak
 - nejčastěji je na displeji 80 sloupců a 25 řádků
- typický pro staré programy určené k práci s operačním systémem
- = Je to rychlý a hardwarově nenáročný režim

- = Princip na obrazovce je rozprostřena matice bodů
 - rozsvícením určitých bodů se nakreslí libovolný text, obrazec, obrázek či provede animace
 - = barevné možnosti jsou téměř neomezené
 - každý bod je schopen být jinak barevný výsledný text nebo obrázek může své barvy měnit plynule
 - nejdůležitější charakteristikou grafického způsobu je rozlišovací schopnost
 - = popisuje, kolika body (pixel) je tvořen jeden řádek
 - kolik řádků se vejde na obrazovku
 - čím více má obrazovka pixelů, tím jemněji a pro oko příjemněji kreslí

Rozlišení v pixelech (režim 4:3)

• XGA 1024 × 768

• SXGA- 1280 × 960

• SXGA+ 1400 × 1050

• UXGA 1600 × 1200

• QXGA 2048 × 1536

QSXGA+ 2800 × 2100

QUXGA 3200 × 2400

Rozlišení v pixelech (režim 16:9)

- WVGA 854 × 480
- HD 720 1280 × 720
- WXGA 1366 × 768
- WXGA++ 1600 × 900
- HD 1080 1920 × 1080 (full HD)
- QFHD 3840 x 2160 (ultra HD)

Barevná hloubka

1 bit monochromatické zobrazení

• 8 bitů 256 barev

• 16 bitů 65 536 hicolor

• 24 bitů 16,7 . 10⁶ truecolor

• 32 bitů 4,3 . 10⁹

lidské oko rozliší 2 - 4 mil. barev

= Pixel (picture element)

- nejmenší jednotka digitální rastrové (bitmapové) grafiky
 - představuje jeden svítící bod na monitoru
 - body na obrazovce tvoří čtvercovou síť- každý pixel je možné jednoznačně identifikovat podle jeho souřadnic
 - u barevných obrazovek se každý pixel skládá ze tří svítících obrazců odpovídajících základním barvám - červené, modré a zelené
- velikost pixelu záleží na typu monitoru
 - u analogových typů lze velikost pixelu měnit změnou rozlišení
 - LCD obrazovky mají počet fyzických pixelů pevně vázaný na používané rozlišení a zobrazování
 - jiné rozlišení u takového monitoru vede k určité deformaci obrazu, neboť "počítačové pixely" jsou přepočítávány a nerovnoměrně přerozdělovány na větší počet "fyzických pixelů".

 Obrázek rozložený na jednotlivé pixely

 Barevné složky RGB pixelů na LCD obrazovce

- = Karta kreslí obraz je tak jádrem celé soustavy
 - = její činnost není jednoduchá
 - = karta musí zvládnout mnoho úkolů a je velmi důležitým ukazatelem kvality PC
 - v podstatě jde o další samostatný počítač

Kontakty pro připojení ke sběrnici (AGP, PCIe)

Hardware grafické karty

- Jádrem je grafický čip GPU (Graphics processor unit)
 - = samostatný mikroprocesor řídící činnost karty, zajišťující tvorbu obrazu
- = Operační paměť
 - GPU s ní bezprostředně spolupracuje
 - ukládá do ní hotový obraz
 - odkud se pak obraz přenáší na obrazovku
- = Množství přenesených dat limituje
 - = frekvence a šířka sběrnice spojující GPU a operační paměť
 - podstatným ukazatelem kvality karty.

= RAMDAC

- digitálně analogový převodník
 - převádí digitální obraz z operační paměti karty na analogový
 - analogový signál vstupuje do monitoru

Hardware grafické karty

- Pro dosažení maximálního výkonu pracuje celá soustava s co nejvyšším kmitočtem
 - důležitou částí je chlazení
- Karty bývají doplněny dalšími obvody
 - = televizní tuner
 - = obvody VIVO (video in, video out)
- = Důležité jsou konektory karty, spojující GK s okolím
 - = jejich počet samozřejmě závisí na funkčním vybavení karty
- = Karty se k základní desce připojují prostřednictvím:
 - = AGP
 - = standardu PCle

- GPU řídicí jednotka grafického adaptéru
 - vlastnosti definují zaměření karty, výkon a cenu
 - nejčastěji se setkáme s GPU specializovaných výrobců:
 - = ATI (v majetku AMD)
 - = nVidia
 - = AMD
 - = Matrox
 - úkolem GPU je vytvářet jednotlivé body pixely obrazu
 - dříve používaly grafické čipy pouze jednu cestu pro zpracování instrukcí (pipeline)
 - = jedna pipeline mohla vykreslit jeden pixel v jednom taktu
 - = na každý vykreslený pixel mohla být aplikována jedna textura za jeden cyklus fill-rate
 - pro prostorový obraz nutno na každý pixel aplikovalo více textur
 - elementární textury se nazývají texely
 - jeden pixel je tedy složen z několika texelů
 - dnešní karty jsou vybaveny několika pipeline, které dokážou pracovat paralelně

- GPU dokážou za jeden takt vytvořit více texelů
 - v každé pipeline jsou umístěny Shadery
 - Shader je počítačový program sloužící k řízení jednotlivých částí programovatelného grafického řetězce grafické karty (přesněji GPU)
 - Grafický řetězec (nebo též vykreslovací řetězec) označuje sekvenci procesů, jejichž aplikací na data popisující scénu získáme dvourozměrný obraz této scény
 - Shadery pracují s jednotlivými pixely:
 - Vertex Shader vytváří trojrozměrné objekty, umísťuje je do prostoru a stará se o světelné efekty
 - Pixel Shader definuje barvu a průhlednost objektů
 - vytvářený obraz se rozloží na části
 - nejčastěji čtverce
 - každá pipeline produkuje jeden čtverec obrazu
 - dosaženo paralelního kreslení a zrychlení tvorby obrazu

= Charakteristické znaky GPU:

- = počet texturovacích pipelines
 - počtu pipelines odpovídá počet Shaderů a je základním kritériem GPU
- počet texelů vytvořených v jedné pipeline za jeden takt
- = maximální teoretický fill-rate
- = maximální teoretický texel fill-rate
 - = pixel fill-rate násoben počtem texelů na jednotku pipeline
- = frekvence, s níž karta pracuje
 - běžný rozsah od 350 až 1000 MHz
 - čím vyšší frekvence, tím více pixelů karta vytvoří
 - podstatná je výrobní technologie mikroprocesoru GPU

- = GPU úzce spolupracuje s pamětí grafické karty, jejíž charakteristiky jsou:
 - = kapacita paměti od 1 až po 2,5 GB (GDDR3 až GDDR5)
 - = takt paměti a její typ od 1024 až po 2560 MB
 - = GDDR5 přenos 4 bity za 1 takt
 - = šířka paměťové sběrnice od 256 až 320 bitů

Další obvody grafické karty

- = TV-Output (televizní výstup)
- = Obvod VIVO (Video In Video Out)
- = TV-Tuner
- = Single-Link
- = DVI Dual-Link
- = DVI HDMI 1.4a
- = DisplayPort → do budoucna nahrazen ThunderBolt portem
 - Thunderbolt je rychlé hardwarové rozhraní, které umožňuje připojit k počítači zařízení (periferie) přes rozšiřující sběrnici. Spojuje PCI-Express a DisplayPort do sériového datového rozhraní, které může být provedeno za použití delších a levnějších kabelů.

- Tvorbu obrazu řídí také software nazvaný API
 - DirectX od Microsoftu
 - integrováno ve Windows
 - OpenGL

ve vašem PC příkazem dxdiag vyzkoušejte

- Dnešní technologie
 - = Microsoft DirectX11
 - = DirectCompute 5.0
 - = Shader Model 5.0
 - = Open GL 4.1
 - = NVIDIA CUDA
 - = NVIDIA Mosaic
 - NVIEW Display Management Software
 - NVIDIA Scalable Geometry Engine
 - NVIDIA Parallel DataCache
 - NVIDIA GigaThread Engine
 - NVIDIA High Precision High Dynamic Range

- = NVIDIA 3D Vision
- NVIDIA 3D Vision Pro
- NVIDIA Application Acceleration Engines
- = NVIDIA SLI Multi-OS
- = NVIDIA SLI
- = NVIDIA SLI Mosaic
- = SDI Option
- = FSAA (max. 64x, v SLI 128x)
- NVIDIA Quadro Digital Video Pipeline
- NVIDIA Quadro G-Sync Solution

- Současné adaptéry běžně disponují konektory
 - = D-SUB
 - = Single-Link DVI
 - = Dual-Link DVI
 - = HDMI 1.4 (dnes už i 2.0 a 2.1)
 - = Mini-DisplayPort 1.2

= D-SUB

- = standardní analogový konektor
- = dlouho byl D-SUB jediným konektorem
- = nevhodný pro spojení grafiky s LCD
 - grafický čip totiž digitálně nakreslí obraz do paměti
 - obraz je pomocí převodníku RAMDAC převeden na analogový a rozhraním D-SUB přenesen do LCD-panelu
 - v LCD-panelu je další převodník z analogového do digitálního signálu

Konektory D-SUB

- = DVI-D (digital only)
 - pouze digitální signál
- = DVI-A (analog only)
 - pro kompatibilitu s analogovými monitory
- = DVI-I (digital & analog)
 - = digitální i analogový signál

DVI-D

DVI-I

W 71717111

- Založen na sériovém formátu používá Transition Minimized Differential Signaling (TMDS)
 - single DVI link se skládá ze čtyř párů kroucené dvoulinky
 - přenos je 24 bitů na pixel
 - obraz je přenášen řádek po řádku s intervaly mezi každým řádkem a každým snímkem
 - nepoužívá kompresi
 - nejvyšší rozlišení je při 60 Hz, a to 2,75 megapixelů (1915 x 1436 pixelů 4:3); (1854 x 1483 pixelů 5:4); (2098 x 1311 pixelů 16:10)
 - specifikace DVI má pro single link pevně nastavenou obnovitelnou frekvenci na 165 MHz
 - = režimy vyžadující vyšší frekvenci musí přepnout do režimu dual link
 - když jsou obě linky v provozu může frekvence přesáhnout 165 MHz
 - druhá linka může být také použita pokud je potřeba více než 24 bitů na pixel
 - doporučená délka klasického DVI kabelu je do 4,5

= High-Definition Multi-media Interface

- rozhraní pro přenos nekomprimovaného obrazového a zvukového signálu v digitálním formátu
- HDMI podporuje přenos videa ve standardní, rozšířené nebo high-definition kvalitě
- až 8-kanálový digitální zvuk
- konektor HDMI typu A má 19 pinů
 - konektor typu A je zpětně kompatibilní s rozhraním Single-link DVI
- málo rozšířená verze s označením B má 29 pinů pro přenos videa s větším rozlišením
 - konektor typu B je pak zpětně kompatibilní s Dual-link DVI
- Verze HDMI 1.0 až 1.4; verze 2.0 od září 2013

- = Přenos nekomprimovaných dat.
- Potřeba jen jednoho kabelu pro přenos obrazu i zvuku.
- Obraz v maximálním rozlišení (HD) je celkově 2 × až 5 × podrobnější než obraz ve standardním rozlišení, mezery mezi řádky jsou menší nebo nepostřehnutelné. Jeho větší podrobnost umožňuje pohodlné sledování na větších úhlopříčkách.
- Možnost přenosu až 8kanálového nekomprimovaného digitálního zvuku.

- Konektory jsou "nezátěžové" (nelze je téměř vůbec ohýbat), například v prodejnách, kde jsou kabely k HD televizorům často zamotány, jsou koncovky značně namáhány.
- Kabely s novějšími standardy mají vysokou pořizovací cenu.
- Pro použití vstupu a výstupu zároveň je nutné použít dva samostatné kabely. Jedním kabelem není možný obousměrný přenos dat.

- Digitální konektor sloužící k přenosu nekomprimovaného digitálního obsahu s podporou až 8kanálového zvuku a ochrany DPCP (DisplayPort Content Protection)
 - = využívá 128bitové šifrování AES
 - = podporuje rychlost přenosu 10,8 Gbit/s
 - do 3 metrů podporuje rozlišení WQXGA (2560 × 1600 pixelů)
 - do 15 metrů podporuje rozlišení 1920 × 1080 pixelů
 - = s konektory typu DVI a HDMI je jen omezeně zpětně kompatibilní
 - navržen tak, aby nahradil digitální (DVI) i analogové (VGA) konektory v monitorech počítačů stejně jako v grafických kartách
 - = má všechny funkce HDMI
 - určen spíše pro kancelářské a IT využití

- = TV OUT je výstupem televizního signálu
 - = realizován (4, 7 nebo 9pinovým) konektorem S-video
 - = konektorem Cinch (TV OUT C)
- = TV IN je vstupem
 - používá stejné konektory jako TV OUT

- Při paralelní spoluprací dvou grafických karet se rozdělí původních
 16 linek PCIe jednoho slotu mezi sloty dva
 - = každý z nich má pak k dispozici rychlost PCIe 8x
 - o rozdělovaní dat se stará speciální propojení obou karet
 - = samotné vykreslování obrazu pak řídí přímo ovladač grafické karty
 - = nVidia řešení SLI (Scalable Link Interface)
 - obě karty propojeny speciálním můstkem SLI
 - deska zabírá dva sloty PCIe x 16
 - dvě stejné grafické karty podporující SLI
 - = jeden výrobce
 - neliší se verzí BIOSu SLI
 - Propojení pomocí "bridge" modulu

= Řešeni firmy ATI pracuje na podobném principu

- používá dva sloty PCle x 16
- propojení obou karet je realizováno kabelem
 - spojuje speciální konektory DMS I/O
 - každá karta tedy obsahuje jeden propojovací konektor
- = karty si nejsou rovnocenné
 - jedna je řídicí (Master) a druhá podřízenou (Slave)
 - mohou spolupracovat rozdílné karty

- Dlouhou dobu byly téměř jediným výstupním zařízením počítačů
 PC
 - = dnes nahrazeny LCD panely
 - 1. Elektronové dělo (emitor)
 - 2. Svazky elektronů
 - 3. Zaostřovací cívky
 - 4. Vychylovací cívky
 - 5. Připojení anody
 - Maska pro oddělení paprsků pro červenou, zelenou a modrou část zobrazovaného obrazu
 - 7. Luminoforová vrstva s červenými, zelenými a modrými oblastmi
 - 8. Detail luminoforové vrstvy, nanesené z vnitřní strany obrazovky

- = Ve srovnání s CRT mají LCD
 - = podstatně nižší spotřebu
 - = menší rozměry
 - nevydávají žádná škodlivá záření
 - = obraz u nich nekmitá
 - = nedochází ke zkreslování obrazu na okrajích displeje

- Činnost LCD displeje (Liquid Crystal Display) je založena na natáčení tekutých krystalů
 - = z nich jsou složeny jednotlivé obrazové buňky
 - = každý displej musí být podsvětlen
 - pod tekutými krystaly svítí nejčastěji elektroluminiscenční výbojka
 - mezi ní a horní stranou je umístěna matice tekutých krystalů
 LCD
 - ty světlo bud' nepropustí, utlumí nebo nechají projít

- = Na spodní a horní straně každé buňky jsou umístěny polarizátory
 - ty propouštějí pouze polarizované světlo buď ve vodorovném, nebo svislém směru
 - = mezi oběma orientačními filtry (polarizátory) je vrstva tekutého krystalu.
 - v průchozím stavu jsou tekuté krystaly buňky LCD šroubovicově pootočeny
 - světlo procházející horizontálním polarizátorem pootočí buňky
 - světlo tak projde i druhým vertikálním polarizátorem
 - na displeji se rozzáří jeden bod
 - druhým mezním stavem je když světlo neprojde k očím pozorovatele
 - na elektrody tekutého krystalu se připojí střídavé napětí
 - tekuté krystaly se narovnají, spodní světlo projde prvním polarizátorem
 - = krystaly je nepootočí, a tak je světlo druhým polarizátorem zastaveno
 - bod na displeji zůstane temný

Technologie výroby LCD-panelů

- = Existují tři základní technologie výroby LCD panelů
 - = liší se způsobem natáčení molekul tekutých krystalů
 - = technologie TN (Twisted Nematle)
 - = technologie IPS (In-Plane Switching)
 - = technologie VA, MVA, PVA

Technologie TN (Twisted Nematle)

- Nejstarší technologie výroby
 - molekuly tekutých krystalů pro průchod světla vytvářejí spirálu
 - = ta otáčí světlo o 90°
 - když se krystaly ocitnou pod napětím
 - = spirála se rozpadne a světlo přestane procházet
 - u TN-matic dochází při pohledu z větších úhlů k žloutnutí bílé a k šednutí tmavších barev
 - současné TN-panely vybaveny doplňkovou optickou vrstvou, tenkým filmem, který zlepšuje úhly pohledu
 - technologie se pak označuje jako TN+F
 - 1- Zdroj bílého světla
 - 2- Polarizační desky
 - 3- Polarizované světlo
 - 4- Elektrody
 - 5- Tekuté krystaly
 - 6- Film zlepšující pozorovací úhly

Technologie IPS (in-Plane Switching)

- Molekuly tekutých krystalů vyrovnány souběžně se spodní deskou displeje
 - v základním (vypnutém) stavu panel nepropouští světlo
 - = po přivedení napětí se tekuté krystaly pootočí a začnou propouštět světlo
 - oba krajní stavy jsou přesnější a lépe definované, než tomu je u TN
 - = panely IPS vynikají věrnými barvami a širokými pozorovacími úhly
 - = nevýhodou je umístěni elektrod v jedné rovině
 - u krajních krystalů dochází k nedokonalému otočení molekul vinou slabšího elektrického pole na okrajích buněk
 - důsledkem je nižší jas a kontrast těchto panelů
 - 1- Zdroj bílého světla
 - 2- Polarizační desky
 - 3-Polarizované světlo
 - 4- Elektrody
 - 5- Tekuté krystaly
 - 6- Polarizované světlo

Technologie VA, MVA, PVA

- Řešení postaveno na myšlence orientovat molekuly vertikálně (Vertical Alignment)
 - = molekuly se otáčejí pouze o 45°
 - dosaženo vysokého kontrastu a krátké odezvy
 - technologie příliš závislá na velikosti úhlu pohledu při natočení podlouhlé molekuly docházelo k posunutí molekuly mimo zorné pole uživatele

 Vylepšení původní VA technologií MVA (Multi-Domain Vertical Alignment)

- = molekuly rozděleny do domén
 - pokud část molekuly není ve své doméně viditelná, je opticky kompenzována molekulou z druhé domény, jež je orientována opačně
 - 1- Zdroj bílého světla
 - 2- Polarizační filtr
 - 3- Polarizované světlo
 - 4- Elektrody
 - 5- Tekuté krystaly

Technologie OLED

- Mezi průhlednou vrstvou (6 anoda)
 a kovovou vrstvou (1 katoda)
 je několik vrstev organické látky:
 - 2. Vrstva vypuzující díry
 - 3. Vrstva přenášející díry
 - 4. Vyzařovací vrstva
 - 5. Vrstva přenášející elektrony
- Po přivedení napětí jsou vyvolány kladné a záporné náboje, ty se spojují ve vyzařovací vrstvě a produkují světelné záření
- = Principiálně jde o matici miniaturních LED v ploše displeje
- = Zásadním problémem OLED displejů je stárnutí světelných bodů
 - Modrá 1000 hodin, zelená 10 000 hodin a červená 30 000 hodin

Základní vlastnosti

Obnovovací frekvence

vychází z použité technologie obecně nad 60Hz

= Doba odezvy

3-5 ms

= Jas

 $250 - 300 \text{ cd/m}^2$

= Kontrast

400:1-900:1

často uváděn dynamický

(v řádech deseti tisíců)

nesměrodatný údaj

cca 160° v obou osách

= Úhel pohledu

Děkuji za pozornost...