Gramática Unidad 1

Curso: Lenguajes Formales y de Programación

Zulma Aguirre – zaguirre@ingenieria.usac.edu.gt

U2. Gramática

Gramática

Una gramática formal es una estructura lógicomatemática con un conjunto de reglas de formación que definen las cadenas de caracteres admisibles en un determinado lenguaje formal.

Gramática

Una gramática (G) define o describe un Lenguaje (L).

G = { Terminales, No Terminales, Inicio, Producciones}

Σ: Vocabulario finito de símbolos Terminales o Alfabeto. Son los símbolos válidos en el lenguaje.

N: Conjunto de No Terminales o Conjunto de variables.

Inicio: Variable con la cual inicia la gramática

Producciones: Conjunto de Reglas de Producción, izq->der

Gramática

Ejemplo:

Encontrar la gramática que reconoce la palabra reservada FOR, sin importar mayúsculas o minúsculas.

G = { Terminales, No Terminales, Inicio, Producciones}

Izq → Der

Terminales = { F, O, R, f, o, r } No Terminales = { xo, x1, x2, x3 } Inicio = xo

Producciones:

$$xo \rightarrow Fx1 \mid fx1$$
 $xo \rightarrow Fx1$
 $xo \rightarrow fx1$
 $X1 \rightarrow Ox2 \mid ox2$
 $X2 \rightarrow Rx3 \mid rx3$
 $X3 \rightarrow \text{épsilon}$

$$xo \rightarrow Fx1 \mid fx1$$

 $X1 \rightarrow Ox2 \mid ox2$
 $X2 \rightarrow R \mid r$

Válido: For, FOR, for, FoR,... NO Válido: ROF

Autómata Finito (AF)

Ejemplo:

Encontrar el AF que reconoce la palabra reservada FOR, sin importar mayúsculas o minúsculas.

k

Autómata Finito (AF)

Ejemplo:

Encontrar el AF que reconoce la palabra reservada FOR, sin importar mayúsculas o minúsculas.

Gramática

Ejemplo:

Encontrar la gramática que reconoce identificadores de variables, sin importar mayúsculas o minúsculas; inicia con una letra, seguido de cero o más: dígitos, letras o subguion (en cualquier orden).

G = { Terminales, No Terminales, Inicio, Producciones}

$L = \{a,b,c,...z,A,B,...Z\}$ $D = \{0,1,2,3,...9\}$ S = { }

Terminales = $\{L, D, S\}$ No Terminales = {Xo, X1} Inicio =Xo

Producciones:

$$X_0 \rightarrow LX_1$$

 $X_1 \rightarrow LX_1 \mid DX_1 \mid SX_1 \mid \varepsilon$
 $X_1 \rightarrow LX_1$
 $X_1 \rightarrow DX_1$
 $X_1 \rightarrow SX_1$

 $X_1 \rightarrow \varepsilon$

Izq → Der

Válido: Num1, y, i, X_5, a3, ...

NO Válido: 2x, 32, _x, ε, ...

