2 A motor uses a wire to raise a block, as illustrated in Fig. 2.1.

Fig. 2.1 (not to scale)

The base of the block takes a time of $0.49\,\mathrm{s}$ to move vertically upwards from level X to level Y at a constant speed of $0.64\,\mathrm{m\,s^{-1}}$. During this time the wire has a strain of 0.0012. The wire is made of metal of Young modulus $2.2\times10^{11}\,\mathrm{Pa}$ and has a uniform cross-section.

The block has a weight of $1.4 \times 10^4 \, \text{N}$. Assume that the weight of the wire is negligible.

- (a) Calculate:
 - (i) the cross-sectional area A of the wire

$$A = \dots m^2$$
 [2]

(ii) the increase in the gravitational potential energy of the block for the movement of its base from X to Y.

	(1	b)) The motor	has an	efficiency	of	56%
--	----	----	-------------	--------	------------	----	-----

Calculate the input power to the motor as the base of the block moves from X to Y.

(c) The base of the block now has a uniform deceleration of magnitude 1.3 m s⁻² from level Y until the base of the block stops at level Z.

Calculate the tension *T* in the wire as the base of the block moves from Y to Z.

$$T = \dots N [3]$$

(d) The base of the block is at levels X, Y and Z at times $t_{\rm X}$, $t_{\rm Y}$ and $t_{\rm Z}$ respectively.

On Fig. 2.2, sketch a graph to show the variation with time t of the distance d of the base of the block from level X. Numerical values of d and t are not required.

Fig. 2.2