Решения 8 класс

- 1) В цилиндре дизельного двигателя воздух сжимается в 20 раз. Какова плотность воздуха в цилиндре после сжатия, если до сжатия она составляет 1.2 кг/м^3 ?
- **Решение.** По определению плотности ρ =m/V . Масса воздуха в цилиндре не изменяется, значит, плотность после сжатия увеличится во столько же раз, так же, как и объём: ρ ' = 1,2 · 20 = 24 кг/м³.
- **2)** Цилиндрический стакан, наполовину заполненный водой, стоит на пружинных весах на горизонтальной поверхности. В него на ниточке опускают стальной шарик, так, что он полностью погружается в воду. Вода из стакана при этом не выливается, а шарик не соприкасается со стенками стакана. Изменится ли, и если изменится, то на сколько и в какую сторону, показание весов? Ответьте на тот же вопрос в случае, если опыт проводится не на воздухе, а в водной среде, например, на дне бассейна. Объём шарика равен 10 см³.

Решение. Пусть площадь основания стакана равна S. В первом опыте шарик вытесняет объём воды $V = \Delta h \cdot S = 10 \text{см}^3$, где Δh – расстояние, на которое поднялся уровень воды в стакане. Увеличение давления воды на дно стакана равно $\Delta p = \Delta h \cdot \rho g = V/S \cdot \rho g$, где ρ – плотность воды. Сила давления на дно, а значит, и вес стакана, увеличатся на $\Delta F = \Delta p \cdot S = V \cdot \rho g$. Так как весы проградуированы в единицах массы, то их показание увеличится на массу, дающую вес ΔF , т.е., на $\Delta F/g = V \cdot \rho = 10$ г.

Если этот опыт проводится в водной среде, то стакан оказывается полностью погружённым в воду, и на него со стороны воды действует одна и та же сила Архимеда (вес вытесненной стаканом воды) независимо от того, находится шарик внутри стакана или нет. Поэтому первоначальное равновесие, в котором пребывали весы, не нарушится, и показание весов не изменится.

Ответ: показание весов увеличится на 10 г, в водной среде – не изменится.

3) На фотографии (рис.1) запечатлены т.н. лучи Будды: Солнце затенено облаками, но через прорехи в них часть солнечных лучей достигает поверхности моря. Оцените с помощью фотографии, на какой высоте h над поверхностью воды находится подошва облака. Известно, что расстояние между солнечными пятнами A и B, расположенными на поверхности воды, равно $1000\,$ м. Сетка нанесена поверх фотографии для удобства измерений.

Рис.1

<u>Решение.</u> Судя по фотографии, оба пятна A и B пересекаются примерно одной и той же плоскостью предметов объектива камеры. Проведём отрезок A'B' \parallel AB, проходящий по подошве облака через верхний конец отрезка h, и ограниченный лучами, попадающими в пятна A и B. В силу большой удалённости Солнца от Земли, солнечные лучи можно считать практически параллельными. Поэтому A'B' = AB = 1000м. Высота h и отрезок A'B' находятся в одной плоскости предметов, и отображаются объективом с одним и тем же увеличением (в данном случае, уменьшением). Соотнося длину h с длиной A'B', получаем h = 2 A'B' = 2000м. Ответ: h = 2000м

4) Гидравлический пресс увеличивает силу F (рис.2) в 400 раз. Сколько ходов должен сделать поршень насоса (1), чтобы пресс (2) поднялся на 20 см? За один ход поршень насоса перемещается внутрь и наружу цилиндра на 10 см. Рабочая жидкость несжимаема, её плотностью можно пренебречь.

<u>Решение.</u> Так как жидкость несжимаема, то каждый ход поршня увеличивает объём жидкости в цилиндре пресса на $\Delta V=S_1h_1=S_2h_2$, где $S_{1,2}$ – площади поршня насоса и поршня пресса, а $h_{1,2}$ – перемещения этих поршней за один ход ($h_1=10$ см.). Перемещение пресса на H=20см потребует N ходов поршня, причём $H=h_2\cdot N$. Отсюда

$$N = H/h_2 = H/h_1 \cdot S_2/S_1$$

Из данных на рис. ясно, что на поршень насоса действует сила $F_1 = F \cdot n$, где n = (0,3+0,1)/0,1 = 4. Раз массой жидкости можно пренебречь, то давление в любой точке жидкости будет одно и то же: $p = F_1/S_1 = F_2/S_2$. Значит,

$$S_2/S_1 = F_2/F_1 = F_2/(Fn)$$

Имеем: $N = H/h_1 \cdot F_2/(Fn) = 2 \cdot 400/4 = 200$

Ответ: надо качнуть насос 200 раз.

5) Тележка (рис.4) снабжена двигателем в виде пружины (1), которая тянет за верёвку (2), намотанную на барабан (3), жёстко связанный с колёсами (4). Диаметр барабана равен 0,5 м, диаметр колёс равен 1 м. Какую силу покажет динамометр *D* в случае а), когда второй конец пружины соединён с тележкой, и в случае б), когда второй конец пружины соединён со стенкой? Удлинение пружины в обоих случаях одинаково и равно 10 см. Коэффициент жёсткости пружины равен 500 Н/м. Колёса не проскальзывают, трением в осях пренебречь.

Решение (рис.4') В случае a) к тележке приложены силы $F_{1,2}$ – со стороны пружины, сила трения F_3 со стороны поверхности, и сила F со стороны динамометра. Силы $F_{1,2}$ вызваны исключительно удлинением одной и той же пружины, и равны по модулю $F_{1,2} = k \cdot x = 500 \text{ H/m} \cdot 0,1 \text{ м} = 50 \text{ H}$. Так как колесо не вращается, то моменты сил F_1 и F_3 относительно оси колеса равны нулю, а это значит, что $F_3 = F_1/2$. Динамометр уравновешивает все остальные силы, приложенные к тележке:

$$F = F_1 - F_2 + F_3 = 25 H$$

В случае δ) сила F_2 приложена к стенке, поэтому её надо исключить из суммы:

$$F' = F_1 + F_3 = 75 \text{ H}$$

