50003 - Models of Computation - Lecture $2\,$

Oliver Killane

15/10/21

Lecture Recording

Lecture recording is available here

Syntax of a while Language

We can define a simple while language (if, else, while loops) to build programs from & to analyse.

```
\begin{array}{lll} B \in Bool & ::= & true|false|E = E|E < E|B\&B|\neg B \dots \\ E \in Exp & ::= & x|n|E + E|E \times E| \dots \\ C \in Com & ::= & x := E|if \ B \ then \ C \ else \ C|C;C|skip|while \ B \ do \ C \end{array}
```

Where $x \in Var$ ranges over variable identifiers, and $n \in \mathbb{N}$ ranges over natural numbers.

We can also define simple expressions (SimpleExp) to work on:

$$E \in SimpleExp ::= n|E + E|E \times E|...$$

Operational Semantics for SimpleExp

- Small-Step Also called structural, gives a method for evaluating an expression step-by-step.
- Big-Step Also called Natural, ignores intermediate steps and gives result immediately.

Big Step Semantics of SimpleExp

The properties OF \Downarrow are:

- **Determinacy** For all E, n_1 and n_2 if $E \downarrow n_1$ and $E \downarrow n_2$ then $n_1 = n_2$
- **Totality** For all E there exists an n such that $E \downarrow n$.

We can break this with loops in matching, e.g.

$$(\text{B-NON-TOTAL}) \frac{1}{true \Downarrow true}$$

As a result, on hitting true will not stop.

Small Step Semantics of SimpleExp

Given a realtion \rightarrow we can define a new relation \leftarrow * such that:

 $E \leftarrow *E'$ holds if and only if E = E' or there is some finite sequence $E \rightarrow E_1 \rightarrow E_3 \rightarrow \cdots \rightarrow E_k \rightarrow E'$

- Normal Form E is in its normal form (irreducable) if there is no E' such that $E \to E'$ In SimpleExp the normal form is the natural numbers.
- **Determinacy** For all E, E_1, E_2 if $E \to E_1$ and $E \to E_2$ then $E_1 = E_2$.

There is at most one next step.

• Confluence For all E, E_1, E_2 if $E \to *E_1$ and $E \to *E_2$ then there exists some E' such that $E_1 \to *E'$ and $E_2 \to *E'$.

 $\mbox{Determinate} \rightarrow \mbox{Confluent}.$

There are several evaluations paths, but they all get the same end result.

• (Strong) Normalisation There are no infinite sequences of expressions $E_1 \to E_2 \to E_3 \to \dots$ such that for all $i, E_i \to E_{i+1}$.

Every evaluation path eventually reaches a normal form.

Theorem: for all E, n_1, n_2 , if $E \to *n_1$ and $E \to *n_2$ then $n_1 = n_2$.