Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

Niranjan Srinivas, Andreas Krause[†], Sham Kakade^{††}, Matthias Seeger^{†††}

†: California Institute of Technology ††: University of Pennsylvania †††: Saarland University

January 9, 2023

目次

- 1 はじめに
- 2 ベイズ最適化
- **3** GP-UCB
- 4 実験
- 5 まとめ

- 1 はじめに 背景
 - ブラックボックス関数 ベイズ最適化
 - 本論文の貢献
- 2 ベイズ最適化
- **3** GP-UCB
- 4 実験
- 5 まとめ

背景

- 多くの実問題は,目的関数に対する最適変数探索問題として定式化できる
 - 耐久性の高いロボットの開発

ブラックボックス関数

ブラックボックス関数 f

- 実応用で扱う対象はブラックボックス関数であることが多い
- ブラックボックス関数は、主に以下の2つの性質を持つ
 - 関数の具体的な形状が不明
 - 各入力における関数値を得るには,大きなコストがかかる

ベイズ最適化

- 多くの実問題は、ブラックボックス関数最適化と等価
- できるだけ少ない関数評価回数で最適化を見つけたい
- 有効な手法としてベイズ最適化がある

本論文の貢献

- 本研究の目的
- 本研究の意義
 - •
 - •

- 1 はじめに
- ベイズ最適化 問題設定 ガウス過程 ベイズ最適化 1 獲得関数 従来の獲得関数
- 3 GP-UCB
- 4 実験
- ほ まとめ

問題設定

- 候補入力 $\mathcal{X} = \{x_1, \dots, x_n\}$ が与えられている
- ullet 関数 f を評価して出力 $y_i=f(oldsymbol{x}_i)$ を得るにはコストがかかる
- できるだけ少ないコストで関数 f を最大化するパラメータ x を求めたい

$$\boldsymbol{x}^* = \arg\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$$

- ガウス過程は,確率分布を用いた複雑で非線形な関数を扱うためのモデルである.
- このような複雑で非線形な関数を扱う場合には,一般的な最適化手法では,解決が困難になることがある.

ガウス過程

ガウス過程

任意の入力 $\{x_1,\dots,x_n\}$ に対して $\{f(x_1),\dots,f(x_n)\}$ が n 次元正規分布に従うなら,f はガウス過程に従う.

- 関数 f がガウス過程に従うことを $f(m{x}) \sim \mathcal{GP}(\mu(m{x}), k(m{x}, m{x}'))$
- 平均関数: $\mu(\boldsymbol{x}) = \mathbb{E}[f(\boldsymbol{x})]$
- ・ 共分散関数 (カーネル関数): $k(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}[(f(\boldsymbol{x}) \mu(\boldsymbol{x}))(f(\boldsymbol{x}') \mu(\boldsymbol{x}'))]$

ベイズ最適化1

- f にガウス過程事前分布を仮定する
- 訓練データに基づき、f の事後分布を求める
- 事後分布に基づき最も最大値となりそうな点を次に観測する
- 観測した (x_{next},y_{next}) を訓練データに追加し,再び事後分布を求める

獲得関数

•

従来の獲得関数

variance only

$$oldsymbol{x} = rg \max_{oldsymbol{x}} \ \sigma_T^2(oldsymbol{x})$$

mean only

$$\boldsymbol{x} = \arg \max_{\boldsymbol{x}} \ \mu_T(\boldsymbol{x})$$

•

- 1 はじめに
- 2 ベイズ最適化
- 3 GP-UCB 提案手法 GP-UCB のアルゴリズム
- 4 実験
- 5 まとめ

提案手法

探索・活用に特化した

GP-UCB: Gaussian Process Upper Confidence Bound

$$\boldsymbol{x}_t = \arg \max_{\boldsymbol{x}} \ \mu_{t-1}(\boldsymbol{x}) + \beta_t^{1/2} \sigma_{t-1}(\boldsymbol{x}).$$

- β_t は,探索の度合いを表す定数
 - β_t が小さい \rightarrow 探索
 - β_t が大きい

GP-UCB のアルゴリズム

- 初期化: 最初に,f の予測分布を設定する.これは f の予測分布を表すカーネルを選択し,そのカーネルに対応するガウス過程を設定することで行われる.
- アクションの選択: 次に,f の予測分布から,次のような式を用いてアクションを選択する
 - $a_t = argmax_{a \in D}(\mu_t(a) + \beta_t \sigma_t(a))$

ここで、 $\mu_t(a)$ は、時刻 t において、a が選択されると予測される f の 平均値を表します。 $\sigma_t(a)$ は、時刻 t において、a が選択されると予測 される f の不確実性を表します。 β_t は、時刻 t においてのアクションの 選択におけるリスク係数を表します

- ullet 報酬の観測: 選択したアクション a_t に対して報酬 r_t を観測する.
- 予測分布の更新: 次に,最新のアクション a_t を使用して f の予測分布を 更新する. これは,ガウス過程のアップデートによって行われる.

- 1 はじめに
- 2 ベイズ最適化
- 3 GP-UCB
- 4 実験 実験手法 実験対象データ 実験結果
- 5 まとめ

実験手法

実験対象データ

- 人工的に作成した合成データ
 - 長さスケールパラメータ 0.2 の二乗指数カーネルからランダムな関数をサンプリング
 - サンプリングノイズ分散
- 46 個のセンサーを用いて 5 日間に渡って収集された温度データ (Intel Research Berkeley)
 - 具体的に説明
- カリフォルニア州 I-880 South 高速道路に設置された交通センサーの データ
 - 具体的に説明

実験結果

- 1 はじめに
- 2 ベイズ最適化
- 3 GP-UCB
- 4 実験
- 5 まとめ結論

