ВЪВЕДЕНИЕ В СИСТЕМАТА WOLFRAM MATHEMATICA

Име	Оператор
събиране	+
изваждане	-
умножение	*
деление	/
степенуване	۸
математически скоби	()
матем. равенство	==
присвояване	=
списъци	{,,}
аргументи на команди и функции	[,,]
разделител на команди и оператори	;
стартиране	Shift + Enter
нов ред	Enter
коментар	(* *)

Имената на всички вградени функции, команди и константи започват с главна буква. Wolfram Mathematica може да смята точно (обикновени дроби) и приближено (десетични дроби).

Основни функции и команди:

 $(* \int \frac{dx}{1+x^2} *)$ ArcTan[x]

1)	Числен вид:				
	N[E]	(* числен вид на <i>е</i> *)			2.71828
	N[Pi,20](* числ	вен вид на π с 15 символа	*)	3.1415	926535897932385
2)	Многократна с	ума:			
	Sum $[1/k^2, \{k$	1 Infinity}]	$(* \Sigma^{\infty})$	$(\frac{1}{k^2})^*$	$\frac{\pi^2}{}$
	5um[1/k 2, (k	, 1, minity)]	$\Delta k=1$	k^2	6
3)	Многократно п	поизвеление:			
3)	Product[k^2 , { k		$(*\prod_{k=1}^{5}$	$(k^{2}*)$	14400
	1100000[10 2](1	., 1,0,,]	(11k=1	(")	11100
4)	Граници:				
ĺ	Limit[(1+1/n)]	$^{n,n} \rightarrow Infinity$			e
5)	Интегриране:				

Integrate $[1/(1+x^2), x]$

NIntegrate
$$[1/(1+x^2), \{x, 0, 1\}]$$

$$\left(* \int_0^1 \frac{dx}{1+x^2} *\right) \qquad \frac{\pi}{4}$$

6) Решаване на уравнения и системи уравнения:

Solve[
$$\{x + y == 2, x - 5y == -1\}, \{x, y\}$$
]

$$\{\{x \to \frac{3}{2}, y \to \frac{1}{2}\}\}$$

$$NSolve[z^3 - 3z^2 + 5z - 2 == 0]$$

$$\{\{z \rightarrow 0.5466023484835962\}, \{z \rightarrow$$

1.4677115087102244*i*}}

7) Разлагане на множители:

Factor[
$$x^3 + y^3$$
]

$$(x + y)(x^2 - xy + y^2)$$

8) Разкриване на скоби:

$$x^3 + y^3$$

9) Развитие в ред на Телор:

Series[
$$x * Cot[x], \{x, 0, 11\}$$
]

$$1 - \frac{x^2}{3} - \frac{x^4}{45} - \frac{2x^6}{945} - \frac{x^8}{4725} - \frac{2x^{10}}{93555} + O[x]^{12}$$

10) Матрично смятане:

$$A = \{\{1,2,3\},\{1,0,-1\},\{2,2,3\}\}$$

$$-2$$

$$\{\{-1,0,1\},\{\frac{5}{2},\frac{3}{2},-2\},\{-1,-1,1\}\}$$

11) Дефиниране на функции и графика:

 $h[x_{,y_{}}] := Sin[x y] + Cos[x^2+y^2];$ Plot3D[h[x,y],{x,0,2Pi},{y,0,2Pi}]

12) Условен оператор:

$$k = \text{Input}[k]; l = 0; \text{If}[k < 0, l = -k, l = k]; l$$
 (* $l = \text{Abs}[k]$ *)

13) Оператор за цикъл:

$$s = 0$$
; Do[$s = s + k$, { k , 1,99,2}]; s (* $s = 1 + 3 + \dots + 99 *$) 2500

14) Условен оператор за цикъл:

$$s1 = 0$$
; While $[k < 100, k = k + 2; s1 = s1 + k]$; $s1 (*s1 = 0 + 2 + 4 + \dots + 100 *) 2550$.

Интерполационен полином на Лагранж (ИПЛ)

Нека $a \leq x_0 < x_1 < \dots < x_n \leq b$ са различни реални точки и $f(x_k)$ са дадени. Интерполационният полином на Лагранж се задава по следния начин: $L_n(f;x) = \sum_{k=0}^n l_k(x) \ f(x_k)$, където $\omega(x) = \prod_{k=0}^n (x-x_k)$ и базисните полиноми на Лагранж са $l_k(x) = \frac{\omega(x)}{(x-x_k)\omega'(x_k)} = \frac{\omega_k(x)}{\omega_k(x_k)}$, където $\omega_k(x) = \frac{\omega(x)}{x-x_k}$. Знаем, че $L_n(f;x_k) = f(x_k)$, $\forall k = 0,1,\dots,n$.

Ако f(x) има непракъсната (n+1) производна и $\left|f^{(n+1)}(x)\right| \leq M$, $\forall x \in [a,b]$, то

$$|f(x) - L_n(f;x)| \le \frac{M}{(n+1)!} |\omega(x)|.$$

Твърдение: Ако $f(x) \in \pi_n$, то $L_n(f;x) \equiv f(x)$.

Задача 1. С помощта на *Wolfram Mathematica* да се построи ИПЛ за $f(x) = \frac{1}{1+x}$ с интерполационни възли:

а)
$$x_k = \frac{k}{n}$$
, $k = 0,1,...,n$; за $n = 5$; 15 и 50;

б)
$$x_k = \sin^2 \frac{(2k+1)\pi}{4n+4}$$
, $k = 0,1,...,n$; за $n = 5$; 10.

Решение:

a) n=5; f[t_]:=1/(1+t); Do[x[k]=k/n, {k,0,n}]; W[t_]:=Product[t-x[k], {k,0,n}]; Do[v[k_,t_]:=w[t]/(t-x[k]), {k,0,n}]; Do[1[k_,t_]:=v[k,t]/Simplify[v[k,t]/.t \rightarrow x[k]], {k,0,n}]; L[f_,t_]:=Sum[1[k,t]*f[x[k]], {k,0,n}]; m=Expand[L[f,t]] Plot[Abs[f[t]-m], {t,0,1}]
$$1 - \frac{251t}{252} + \frac{2875t^2}{3024} - \frac{4625t^3}{6048} + \frac{625t^4}{1512} - \frac{625t^5}{6048}$$


```
6) n=5;
f[t_]:=1/(1+t);
Do[x[k]=(Sin[(2k+1)Pi/(4n+4)])^2, {k,0,n}];
w[t_]:=Product[t-x[k], {k,0,n}];
Do[v[k_,t_]:=w[t]/(t-x[k]), {k,0,n}];
Do[1[k_,t_]:=v[k,t]/Simplify[v[k,t]/.t→x[k]], {k,0,n}];
L[f_,t_]:=Sum[1[k,t]*f[x[k]], {k,0,n}];
m=Expand[L[f,t]];
Plot[Abs[f[t]-m], {t,0,1}]
```


Задача 2. Да се докаже, че $\sum_{k=0}^{n} l_k(x) \equiv 1$.

Доказателство: Нека $f(x)=1\in\pi_0\subset\pi_n=>L_n(f;x)\equiv f(x)\equiv 1$, но $f(x_k)=1$, $\forall~x.$

$$L_n(f;x) = \sum_{k=0}^n l_k(x) \equiv 1.$$

Задача 3. Да се докаже, че за m=1,2 ...,n е в сила $\sum_{k=0}^n l_k(x).x_k^m=x^m.$

Доказателство: Нека $f(x) = x^m \in \pi_m \subseteq \pi_n => L_n(f; x) \equiv f(x) = x^m$, но $f(x_k) = x_k^m$, $\forall x_k$.

$$=> L_n(f;x) = \sum_{k=0}^n l_k(x) x_k^m = x^m.$$

Задача 4. Нека $a \leq x_0 < x_1 < \dots < x_n \leq b$. Да се намери $\sum_{k=0}^n l_k(x). \, x_k^{n+1}.$

Решение: Нека $f(x) = x^{n+1} \in \pi_{n+1} => L_n(f;x) = \sum_{k=0}^n l_k(x). x_k^{n+1}$. Но $L_n(f;x_k) = f(x_k), \forall k = 0, 1, ..., n => f(x) - L_n(f;x) \in \pi_{n+1}$ със старши коефициент $1 => f(x) - L_n(f;x) = \omega(x)$.

$$=> \sum_{k=0}^{n} l_k(x). x_k^{n+1} = x^{n+1} - \omega(x).$$

Задача 5. Нека $a \leq x_0 < x_1 < \dots < x_n \leq b$. Да се намери $\sum_{k=0}^n l_k(x). x_k^{n+2}.$

Решение: Нека $f(x) = x^{n+2} \in \pi_{n+2} = > L_n(f;x) = \sum_{k=0}^n l_k(x). x_k^{n+2}$. Но $L_n(f;x_k) = f(x_k), \forall k = 0, 1, ..., n = > f(x) - L_n(f;x) \in \pi_{n+2}$ със старши коефициент $1 = > f(x) - L_n(f;x) = \omega(x)(x-A)$. Приравняваме коефициентите пред x^{n+1} от двете страни на равенството. Отляво този коефициент е нула, а в дясната страна по формулите на Виет е равен на сумата от корените. Получаваме:

$$0 = -x_0 - x_1 - \dots - x_n - A$$

$$= > A = -\sum_{i=0}^n x_i$$

$$= > \sum_{k=0}^n l_k(x) \cdot x_k^{n+2} = x^{n+2} - \omega(x) \left(x + \sum_{i=0}^n x_i \right).$$

Задача 6. Нека $a \le x_0 < x_1 < \dots < x_n \le b$. Да се докаже , че за $m=1,2\dots,n$ е в сила $\sum_{k=0}^n l_k(x).(x-x_k)^m=0$.

Доказателство: Нека $f(t) = (x - t)^m \in \pi_m \subseteq \pi_n => L_n(f;t) \equiv f(t)$.

$$=> L_n(f;t) = \sum_{k=0}^n l_k(t)(x-x_k)^m = (x-t)^m,$$

и за t=x получаваме $\sum_{k=0}^n l_k(x).(x-x_k)^m=0$.

Разделени разлики

Разделена разлика за функцията f(x) във възлите $x_0 < x_1 < \cdots < x_n$ се дефинира по следния

- B един възел $f[x_0] = f(x_0)$;
- Рекурентно в повече възли $f[x_0, x_1, ..., x_k] = \frac{f[x_1, x_2, ..., x_k] f[x_0, x_1, ..., x_{k-1}]}{x_k x_0}$

На лекции е доказана следната формула (1) за разделената разлика във всички интерполационни възли:

$$f[x_0, x_1, ..., x_n] = \sum_{k=0}^{n} \frac{f(x_k)}{\omega'(x_k)}$$
 (1)

Разделената разлика $f[x_0, x_1, ..., x_n]$ е равна на коефициента пред x^n в интерполационния полином на Лагранж $L_n(f;x)$ от n-та степен за f(x) с възли x_0,x_1,\dots,x_n .

От горното твърдение получаваме:

- 1) $f[x_0, x_1, ..., x_n] = 0$, sa $f(x) = x^m, m = 0, 1, ..., n 1$; 2) $f[x_0, x_1, ..., x_n] = 1$, sa $f(x) = x^n$.

Тези тъждества могат да бъдат написани в следния вид, използвайки формула (1):

1')
$$\sum_{k=0}^{n} \frac{x_k^m}{\omega'(x_k)} = 0, m = 0, 1, ..., n-1;$$

2')
$$\sum_{k=0}^{n} \frac{x_k^n}{\omega'(x_k)} = 1.$$

Задача 1. Да се намерят коефициентите A_k в разлагането $\frac{p(x)}{\omega(x)} = \sum_{k=0}^n \frac{A_k}{x-x_k}$, където $p(x) \in \pi_n$.

Решение:
$$p(x) \in \pi_n => p(x) = L_n(p;x) => p(x) = \sum_{k=0}^n \frac{\omega(x)}{(x-x_k)\omega'(x_k)} p(x_k)$$

Делим двете страни на равенството на $\omega(x)$ и получаваме:

$$\frac{p(x)}{\omega(x)} = \sum_{k=0}^{n} \frac{A_k}{x-x_k}$$
, където $A_k = \frac{p(x_k)}{\omega'(x_k)}$.

Задача 2. Да се разложи на елементарни дроби рационалната функция $\frac{x+2}{x(x-1)(x-2)}$

Решение: p(x) = x + 2; $\omega(x) = x(x - 1)(x - 2)$. Използвайки изведените в Задача 1. формули за коефициентите A_k получаваме:

$$A_0 = \frac{p(x_0)}{\omega'(x_0)} = \frac{p(0)}{\omega'(0)} = 1;$$

$$A_1 = \frac{p(x_1)}{\omega'(x_1)} = \frac{p(1)}{\omega'(1)} = -3;$$

$$A_2 = \frac{p(x_2)}{\omega'(x_2)} = \frac{p(2)}{\omega'(2)} = 2.$$

$$=>\frac{x+2}{x(x-1)(x-2)}=\frac{1}{x}-\frac{3}{x-1}+\frac{2}{x-2}$$

Задача 3. Нека $m \in \{1,2,\dots,n-1\}$. Да се докаже, че $\sum_{k=m}^n \frac{1}{\omega'(x_k)} \neq 0$.

Доказателство:

Нека $p(x) \in \pi_n$ е зададен с интерполационните условия:

x_k	x_0	x_1	••••	x_{m-1}	x_m	x_{m+1}	 x_n
$p(x_k)$	0	0	•••	0	1	1	 1

 $p(x_i) = 0, i = 0, ..., m - 1; p(x_i) = 1, i = m, m + 1, ..., n$

 $=>p[x_0,x_1,\dots,x_n]=\sum_{k=m}^n rac{1}{\omega'(x_k)}$. Ще покажем, че степентта на p(x) е точно равна на n, т. е. не е по-ниска. По теоремата на Рол p'(x) ще се нулира поне веднъж във всеки един от интервалите $(x_0,x_1),\dots,(x_{m-2},x_{m-1})$ и в интервалите $(x_m,x_{m+1}),\dots,(x_{n-1},x_n)$, защото в краищата им има равни стойности. Тогава нулите на p'(x) са (m-1)+(n-m)=n-1. Следователно p(x) има точно n нули $=>p[x_0,x_1,\dots,x_n]=\sum_{k=m}^n rac{1}{\omega'(x_k)}\neq 0$.

Задача 4. Да се намери $\sum_{k=0}^n \frac{\omega''(x_k)}{\omega'(x_k)}$.

Решение: Търсим разделената разлика на функцията $f(x) = \omega''(x)$.

Но $\omega(x) \in \pi_{n+1} => \omega''(x) \in \pi_{n-1}$ и от твърдението 1) получаваме, че $\sum_{k=0}^{n} \frac{\omega''(x_k)}{\omega'(x_k)} = 0$.

Задача 5. Да се намери $\sum_{k=0}^{n} \frac{x_k \omega''(x_k)}{\omega'(x_k)}$.

Решение: Търсим разделената разлика на функцията $f(x) = x\omega''(x)$. Но $\omega(x) \in \pi_{n+1} = x\omega''(x) \in \pi_n$.

$$\begin{split} \omega(x) &= (x-x_0)(x-x_1) \dots (x-x_n) = x^{n+1} + a_1 x^n + \dots + a_{n+1}, \\ &=> \omega'(x) = (n+1)x^n + n. \, a_1 x^{n-1} + \dots \\ &=> \omega''(x) = (n+1)n. \, x^{n-1} + n(n-1)a_1 x^{n-2} + \dots \\ &=> x\omega''(x) = (n+1)n. \, x^n + n(n-1)a_1 x^{n-1} + \dots \\ &=> \sum_{k=0}^n \frac{x_k \omega''(x_k)}{\omega'(x_k)} = n(n+1). \end{split}$$

Задача 6. Да се докаже, че $\sum_{k=0}^n \frac{x_k^{n+1}}{\omega'(x_k)} = \sum_{k=0}^n x_k$.

Доказателство: Лявата страна на равенството е разделена разлика за функцията $f(x) = x^{n+1}$. Търсим коефициента пред x^n в интерполационния полином на Лагранж (ИПЛ) $L_n(f;x)$. Но той интерполира функцията във възлите $x_0, x_1, ..., x_n$. Следователно

$$f(x_i) - L_n(f; x_i) = 0, i = 0, 1, ..., n$$

=> $f(x) - L_n(f; x) = \omega(x)$

Приравняваме коефициентите пред x^n от двете страни на равенството. От дясната страна използваме формулите на Виет. Получаваме:

$$f[x_0, x_1, ..., x_n] = \sum_{k=0}^{n} x_k,$$

Следователно $\sum_{k=0}^{n} \frac{x_k^{n+1}}{\omega'(x_k)} = \sum_{k=0}^{n} x_k$.

Задача 7. Като използвате ИПЛ докажете тъждествата:

a)
$$\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} {m \choose n} \frac{1}{m-k} = \frac{1}{m-n}, \forall m > n \ge 0;$$

6)
$$\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} {m \choose n} \frac{k}{m-k} = \frac{m}{m-n}, \forall m > n \ge 1.$$

Решение: Нека $x_k = k$, k = 0,1,..., $n => \omega(x) = x(x-1)(x-2)...(x-n)$;

$$\omega'(k) = \prod_{j=0, j\neq k}^{n} (k-j);$$

$$L_n(f;x) = \sum_{k=0}^n \frac{\omega(x)f(k)}{(x-k)\omega'(k)} = \sum_{k=0}^n \frac{x(x-1)\dots(x-n)f(k)}{(x-k)\cdot k(k-1)(k-2)\dots 1\cdot (-1)(-2)\dots(-(n-k))}.$$

Нека $x=m=>L_n(f;m)=\sum_{k=0}^n\frac{(-1)^{n-k}m(m-1)...(m-n)f(k)}{(m-k)k!(n-k)!}$. Умножаваме и делим на n! в дробта и получаваме:

$$L_n(f;m) = \sum_{k=0}^n \frac{(-1)^{n-k}(m-n)}{(m-k)} {n \choose k} {m \choose n} f(k).$$

- а) Нека $f(x)=1\in\pi_0=>f(m)=L_n(f;m)=1$. Делим двете страни на равенството на $(m-n)\neq 0$ и получаваме $\sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \binom{m}{n} \frac{1}{m-k} = \frac{1}{m-n}$.
- б) Нека $f(x) = x \in \pi_1 => f(m) = L_n(f;m) = m$. Делим двете страни на равенството на $(m-n) \neq 0$ и получаваме $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \binom{m}{n} \frac{k}{m-k} = \frac{m}{m-n}$.

Задача 8. Нека f(x) има производни от всякакъв ред в интервала [a,b], и съществуват положителни константи C и M, такива че за всяко естествено число n е изпълнено

$$|f^{(m)}(x)| \le CM^m$$
 за всяко $x \in [a,b]$

Докажете, че за всеки избор на интерполационни възли $a \le x_0 < x_1 < \dots < x_n \le b$ е изпълнено

$$\max_{x \in [a,b]} |f(x) - L_n(f;x)| \to 0$$
 при $n \to \infty$.

Доказателство:

От формулата за грешката и условието имаме

$$|f(x) - L_n(f;x)| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} |\omega(x)| \le \frac{CM^{n+1}}{(n+1)!} (b-a)^{n+1} = \frac{C(M(b-a))^{n+1}}{(n+1)!} \to 0, \ \xi \in (a,b)$$

е изпълнено за всяко $x \in [a, b]$. Следователно

$$\max_{x \in [a,b]} |f(x) - L_n(f;x)| \to 0$$
 при $n \to \infty$.

Интерполационна формула на Нютон с разделени разлики:

$$L_n(f;x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Задача 9. Да се намери полином $p(x) \in \pi_3$, такъв че p(-1) = 3, p(0) = 1, p(1) = -1, p(2) = 3.

Решение: Имаме 4 интерполационни възела. Можем да построим единствен полином от трета степен с тези условия по формулата на Нютон. За целта са ни необходими разделените разлики. Тях най-лесно можем да пресметнем от рекурентната връзка в следната таблица:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i x_{i+1}, x_{i+2}, x_{i+3}]$
-1	3	$\frac{1-3}{0-(-1)} = -2$	$\frac{-2 - (-2)}{1 - (-1)} = 0$	$\frac{3-0}{2-(-1)} = 1$
0	1	$\frac{-1-1}{1-0} = -2$	$\frac{4 - (-2)}{2 - 0} = 3$	
1	-1	$\frac{3 - (-1)}{2 - 1} = 4$		
2	3			

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1})$$
$$= 3 - 2(x+1) + 0(x+1)(x-0) + 1(x+1)(x-0)(x-1) = x^3 - 3x + 1.$$

Задача 10. Да се напише програма на Wolfram *Mathematica* за намиране на ИПЛ по условията от **задача 9**.

Решение: Нека означим разделената разлика $a[i,j] = f[x_i, x_{i+1}, ..., x_{i+j}]$. Програмата е:

```
n=3;  \begin{aligned} &\text{Do}[x[i]=i-1,\{i,0,n\}]; \\ &\text{a}[0,0]=3; \\ &\text{a}[1,0]=1; \\ &\text{a}[2,0]=-1; \\ &\text{a}[3,0]=3; \end{aligned} \\ &\text{Do}[\text{Do}[a[i,j]=(a[i+1,j-1]-a[i,j-1])/(x[i+j]-x[i]),\{i,0,n-j\}],\{j,1,n\}]; \\ &\text{L[t_]}:=a[0,0]+\text{Sum}[a[0,j]*\text{Product}[t-x[i],\{i,0,j-1\}],\{j,1,n\}]; \\ &\text{Simplify}[\text{L[t]}] \end{aligned} \\ &\text{Out}[1]=1-3t+t^3
```

Разделени разлики с кратни възли. Интерполационен полином на Ермит

Нека $a \le x_0 \le x_1 \le \cdots \le x_n \le b$ и $f \in C^n[a, b]$. Разделена разлика на функцията f(x) във възлите x_0, x_1, \dots, x_k се дефинира по следния начин:

$$f[x_0, x_1, \dots, x_k] = \begin{cases} \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}, x_0 \neq x_k \\ \frac{f^{(k)}(x_0)}{k!}, & x_0 = x_k \end{cases}$$

Интерполационният полином на Ермит се задава с формулата на Нютон:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$= \sum_{k=0}^{n} f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}).$$

Задача 1. Да се намери полином $p(x) \in \pi_4$, такъв че $p(-1) = \frac{1}{2}$, p(0) = 1, p'(0) = 0, p''(0) = -2, $p(1) = \frac{1}{2}$.

Решение: Имаме 5 интерполационни възела $x_0 = -1$, $x_1 = x_2 = x_3 = 0$, $x_4 = 1$. Нулата е трикратен възел. Можем да построим единствен полином от четвърта степен с тези условия по формулата на Нютон. За целта са ни необходими разделените разлики. Тях най-лесно можем да пресметнем от рекурентната връзка в следната таблица:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	$\frac{1}{2}$	$\frac{1-\frac{1}{2}}{0-(-1)} = \frac{1}{2}$	$\frac{0-\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{-1+\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{\frac{1}{2} + \frac{1}{2}}{1 + 1} = \frac{1}{2}$
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{p''(0)}{2!} = -1$	$\frac{-\frac{1}{2}+1}{1-0} = \frac{1}{2}$	
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{-\frac{1}{2} - 0}{1 - 0} = -\frac{1}{2}$		
0	1	$\frac{\frac{1}{2} - 1}{1 - 0} = -\frac{1}{2}$			
1	$\frac{1}{2}$				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}) =$$

$$= \frac{1}{2} + \frac{1}{2}(x + 1) - \frac{1}{2}(x + 1)(x - 0) - \frac{1}{2}(x + 1)x^2 + \frac{1}{2}(x + 1)x^3 = \frac{x^4}{2} - x^2 + 1.$$

Задача 2. Да се намери полином $p(x) \in \pi_4$, такъв че p(-1) = 4, p'(-1) = -11, p(1) = 2, p'(1) = 5, p''(1) = 10.

Решение: Преминаваме към попълване на таблицата с разделените разлики:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	4	$\frac{p'(-1)}{1!} = -11$	$\frac{-1+11}{1-(-1)} = 5$	$\frac{3-5}{2} = -1$	$\frac{1+1}{1+1} = 1$
-1	4	$\frac{2-4}{1-(-1)} = -1$	$\frac{5+1}{1+1} = 3$	$\frac{5-3}{2}=1$	
1	2	$\frac{p'(1)}{1!} = 5$	$\frac{p''(1)}{2!} = 5$		
1	2	$\frac{p'(1)}{1!} = 5$			
1	2				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1}) =$$

$$= 4 - 11(x+1) + 5(x+1)^2 - 1(x+1)^2(x-1) + 1(x+1)^2(x-1)^2$$

$$= x^4 - x^3 + 2x^2.$$

Задача 3. Да се намери интерполационния полином на Ермит във възлите $x_0=-1, x_1=x_2=x_3=0, x_4=1$ за функцията $f(t)=\frac{1}{1+t^2}$ чрез функция на Wolfram Mathematica. Да се визуализира графиката на грешката.

Решение: Намираме $f(-1) = f(1) = \frac{1}{2}$; f(0) = 1; f'(0) = 0; f''(0) = -2. Ще използваме вградената функция за намиране на интерполационен полином по зададени възли, техните функционални стойности и стойностите на производните. Така изглежда:

$$f[t_{-}] := 1/(1+t^{2}); \\ L[t_{-}] := InterpolatingPolynomial[{\{-1,1/2\},\{0,\{1,0,-2\}\},\{1,1/2\}\},t]}; \\ a = Expand[L[t]] \\ Plot[f[t]-a,\{t,-1,1\}]$$

Out [1] =
$$1 - t^2 + \frac{t^4}{2}$$

Крайни разлики

Крайни разлики използваме, когато интерполационните възли са равноотдалечени със стъпка h, т. е. възлите се задават се с формулата $x_k = x_0 + k$. h, k = 0,1,...,n. Означаваме функционалните стойности в тези възли с $f_k = f(x_k)$.

Разделена разлика за функцията f(x) във възлите $x_0 < x_1 < \cdots < x_n$ се дефинира по следния начин:

- от първи ред: $\Delta f_j = f_{j+1} f_j$;
- от k-ти ред рекурентно: $\Delta^k f_j = \Delta^{k-1} f_{j+1} \Delta^{k-1} f_j$.

На лекции са доказани следните формули:

1)
$$\Delta^n f_0 = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f_j;$$

2)
$$f[x_0, x_1, ..., x_n] = \frac{\Delta^n f_0}{n! h^n}$$

Доказали сме (в предходното упражнение), че:

a)
$$f[x_0, x_1, ..., x_n] = 0$$
, sa $f(x) = x^m, m = 0, 1, ..., n - 1$; (*)

6)
$$f[x_0, x_1, ..., x_n] = 1$$
, sa $f(x) = x^n$. (**)

Ще интерпретираме тези изводи в термините на крайни разлики.

Задача 4: Да се докаже тъждеството
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^k = 0$$
 за $k = 0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^k, k \in \{0,1,\dots,n-1\}$. Това са стойностите на функцията $f(x) = x^k \in \pi_{n-1}$ в точките $x_j = j, \ j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от (n-1) степен е равна на нула, т. е. $x^k[x_0x_1,\dots,x_n] = 0, \ k = 0 \div n - 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = 0$, т.е. $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} j^k = 0$.

Задача 5: Да се докаже тъждеството
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^n = n!$$

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^n$. Това са стойностите на функцията $f(x) = x^n \in \pi_n$ в точките $x_j = j$, $j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от n-та степен е равна на едно, т. е. $x^n[x_0x_1, ..., x_n] = 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = n! \, h^n f[x_0, x_1, ..., x_n]$, т.е. $\sum_{j=0}^n (-1)^{n-j} {n \choose j} j^k = n!$

Задача 6: Да се намери
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{m+j}{k}$$
, където $m \in N, k = 0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика от n-ти ред за $f_j = f(j) = \binom{m+j}{k}$.

$$=> f(x) = \binom{x+m}{k} = \frac{(x+m)(x+m-1)\dots(x+m-k+1)}{k!} \in \pi_k \subseteq \pi_{n-1}.$$

Но $f[x_0,x_1,...,x_n]=0$ и от равенството 2) получаваме, че $\Delta^n f_0=0$ и следователно $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \binom{m+j}{k} = 0$.

Лема на Поповичу

Тя ни дава формула, по която да пресметнем разделената разлика на произведение на две функции в (n+1) интерполационни възли чрез раделените разлики на отделните функции. Лемата гласи:

$$(f.g)[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f[x_0, x_1, \dots, x_k].g[x_k, x_{k+1}, \dots, x_n].$$

Задача 7: Да се намери $x^{n+1}[x_0, x_1, ..., x_n]$.

Решение: Можем да представим $x^{n+1} = x. x^n$. От (*) и (**) получаваме, че

$$x[x_0] = x_0, x[x_0, x_1] = 1, \ x[x_0, x_1, ..., x_k] = 0, \ x^n[x_0, x_1, ..., x_n] = 1.$$

Прилагаме лемата на Поповичу за функцията x^{n+1}

$$\begin{aligned} x^{n+1}[x_0, x_1, \dots, x_n] &= \sum_{k=0}^n x[x_0, x_1, \dots, x_k]. \, x^n[x_k, x_{k+1}, \dots, x_n] = \\ &= x[x_0]. \, x^n[x_0, x_1, \dots, x_n] + x[x_0, x_1]. \, x^n[x_1, x_2, \dots, x_n] + 0 = x_0 + x^n[x_1, x_2, \dots, x_n]. \end{aligned}$$

Така получихме рекурентна връзка за разделените разлики на функциите x^{n+1} и x^n

Прилагаме отново лемата за $x^n[x_1, x_2, ..., x_n]$

$$x^{n+1}[x_0, x_1, \dots, x_n] = x_0 + x^n[x_1, x_2, \dots, x_n] = x_0 + x_1 + x^{n-1}[x_2, x_3, \dots, x_n]$$

След многократно приложение на лемата на Поповичу окончателно получаваме

$$x^{n+1}[x_0, x_1, \dots, x_n] = \sum_{k=0}^n x_k.$$

Задача 8: Да се намери $\frac{1}{x}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да представим $1 = x.\frac{1}{x}$, но $1 \in \pi_0 => 1[x_0, x_1, ..., x_n] = 0$. Прилагаме лемата на Поповичу за константата 1, равенствата (*) и (**). Получаваме:

$$0 = 1[x_0, x_1, \dots, x_n] = \sum_{k=0}^n x[x_0, x_1, \dots, x_k] \cdot \frac{1}{x}[x_k, x_{k+1}, \dots, x_n] = x_0 \cdot \frac{1}{x}[x_0, x_1, \dots, x_n] + x[x_0, x_1] \cdot \frac{1}{x}[x_1, x_2, \dots, x_n] + 0 = x_0 \cdot \frac{1}{x}[x_0, x_1, \dots, x_n] + \frac{1}{x}[x_1, x_2, \dots, x_n].$$

От това равенство изразяваме $\frac{1}{x}[x_0,x_1,\ldots,x_n]$ и получаваме

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = -\frac{1}{x_0} \cdot \frac{1}{x}[x_1, x_2, \dots, x_n]$$

Аналогично прилагаме лемата на Поповичу още (n-1) пъти и получаваме:

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = \frac{(-1)^n}{x_0, x_1, \dots, x_n}.$$

Задача 9: Да се намери $\frac{1}{x^2}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да използваме намереното в Задача 8 и лемата на Поповичу.

$$\frac{1}{x^2} = \frac{1}{x} \cdot \frac{1}{x} = > \frac{1}{x^2} [x_0, x_1, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{1}{x} [x_0, x_1, \dots, x_k] \cdot \frac{1}{x} [x_k, x_{k+1}, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{(-1)^k}{x_0 \cdot x_1 \dots x_k} \cdot \frac{(-1)^{n-k}}{x_k \cdot x_{k+1} \dots x_n} = \frac{(-1)^n}{x_0 \cdot x_1 \dots x_n} \sum_{k=0}^{n} \frac{1}{x_k}.$$

Системи на Чебишов

Задача 1. Да се намери $\sum_{k=0}^{n} k^3$ чрез интерполиране с разделени разлики.

Решение: Нека $S(n) = \sum_{k=0}^{n} k^3 \Rightarrow S(0) = 0$, S(1) = 1, S(2) = 9, S(3) = 36, S(4) = 100, ..., $S(n) = S(n-1) + n^3$. Интерполационните възли са $x_i = i$, i = 0, 1, 2, ..., n. Създаваме таблицата за намиране на разделените разлики:

x_i	S[i]	S[<i>i</i> , <i>i</i> +1]	S[i,i+1,i+2]	S[i,i+1,i+2,i+3]	S[<i>i</i> , <i>i</i> +1,, <i>i</i> +4]	S[i,i+1,,i+5]
0	0	1	7/2	2	1/4	0
1	1	8	19/2	3	1/4	•••
2	9	27	37/2	4		0
3	36	64	61/2		1/4	
4	100	125	•••	<i>n</i> -1		
	•••		$3n^2 - 3n + 1$			
			2			
<i>n</i> -1	S(n-1)	n^3				
n	S(n)					

$$S(n) \in \pi_4 => S(n) = L_n(S; n) =$$

$$= \frac{0 + 1}{1} \cdot n + \frac{7}{2} n(n-1) + \frac{2}{1} n(n-1)(n-2) + \frac{1}{4} n(n-1)(n-2)(n-3)$$

$$= \frac{n^2(n+1)^2}{4}.$$

Системи на Чебишов:

Нека $\{\varphi_k(x)\}_{k=0}^n$ са непрекъснати и линейно независими функции в интервала І. Казваме, че те образуват система на Чебишов в интервала І, ако всеки обобщен ненулев полином по тези функции има не повече от n различни нули в І.

Обобщен полином на функциите наричаме линейна комбинация на системата $\{\varphi_k(x)\}_{k=0}^n$:

$$\varphi(x) = \sum_{k=0}^n a_k \varphi_k(x)$$
, където $a_k \neq 0$ за някое k .

Задача 2. Нека $\alpha_0 < \alpha_1 < \dots < \alpha_n$ са различни реални числа. Да се докаже, че $\{e^{\alpha_i x}\}_{i=0}^n$ образуват Чебишова система върху реалната права.

Доказателство: Индукция по броя на функциите.

$$n=0$$
, $\varphi(x)=a_0e^{\alpha_0x}\neq 0$ за $a_0\neq 0=>$ твърдението е вярно.

Допускаме, че твърдението е вярно за (n-1). Ще докажем, че твърдението е в сила за $n \in \mathbb{N}$.

Да допуснем противното, т.е. съществува обобщен полином $\varphi(x) = \sum_{k=0}^n a_k e^{\alpha_k x}$, който има (n+1) различни реални нули $x_0 < x_1 < \dots < x_n$. Ясно е, че $a_i \neq 0$, $i = 0,1,\dots,n$, защото в противен случай ще попаднем в индукционното предположение. Тогава

 $\varphi(x) = e^{\alpha_0 x} \{a_0 + a_1 e^{(\alpha_1 - \alpha_0)x} + \dots + a_n e^{(\alpha_n - \alpha_0)x} \}$. Но $e^{\alpha_0 x} \neq 0 =>$ нулите на $\varphi(x)$ съвпадат с нулите на $\theta(x) = a_0 + a_1 e^{(\alpha_1 - \alpha_0)x} + \dots + a_n e^{(\alpha_n - \alpha_0)x}$. За $\theta(x)$ прилагаме теоремата на Рол. Следователно $\theta'(x)$ има поне n различни реални нули. Но $\theta'(x)$ е обобщен полином на функциите

 $\{e^{(\alpha_i-\alpha_0)x}\}_{i=1}^n$, където $\alpha_1-\alpha_0<\alpha_2-\alpha_0<\dots<\alpha_n-\alpha_0$. Съгласно индукционното предположение $\theta'(x)$ има не повече от (n-1) различни реални нули, което е противоречие, дължащо се на грешното допускане. Следователно $\{e^{\alpha_i x}\}_{i=0}^n$ образуват Чебишова система върху реалната права.

Задача 3. Нека $f(x) \in C^n[a,b]$ и $f^{(n)}(x) \neq 0$, $\forall x \in (a,b)$. Да се докаже, че $\{1,x,...,x^{n-1},f(x)\}$ образуват Чебишова система в интервала [a,b].

Доказателство: Да допуснем, че функциите не са Т-система в интервала [a,b]. Тогава съществува $\varphi(x)=a_0+a_1x+\dots+a_{n-1}x^{n-1}+a_nf(x)$ с (n+1) различни нули в интервала [a,b]. Ясно е, че $a_n\neq 0$, защото ако $a_n=0$, то $\varphi(x)$ има не повече от n различни нули. От теоремата на Рол следва, че $\varphi'(x)$ има n различни нули в (a,b) и след многократно приложение на теоремата на Рол получаваме, че $\varphi^{(n)}(x)=a_nf^{(n)}(x)$ има поне една нула в (a,b). Но $f^{(n)}(x)\neq 0$ и $a_n\neq 0=>\varphi^{(n)}\neq 0$, което е противоречие, дължащо се на грешното допускане. Следователно $\{1,x,\dots,x^{n-1},f(x)\}$ образуват Чебишова система в интервала [a,b].

Задача 4. Да се докаже, че $\{1, x, x \cos x\}$ образуват Чебишова система в интервала $[0, \frac{\pi}{2}]$.

Доказателство: Да допуснем, че функциите $\{1, x, x \cos x\}$ не са Т-система в интервала. Тогава съществува $\varphi(x) = a_0 + a_1 x + a_2 x \cos x$, която има три различни нули в интервала $[0, \frac{\pi}{2}], a_2 \neq 0$, защото ако $a_2 = 0$, то $\varphi(x)$ има не повече от един корен. От теоремата на Рол следва, че $\varphi''(x)$ има поне един корен в интервала $(0, \frac{\pi}{2})$. Но $\varphi''(x) = -a_2(2\sin x + x\cos x) \neq 0$, $\forall x \in (0, \frac{\pi}{2})$. Получихме противоречие, дължащо се на грешното допускане. Следователно $\{1, x, x\cos x\}$ образуват Чебишова система в интервала $[0, \frac{\pi}{2}]$.

Задача 5. Да се докаже, че функциите $\{1, \sin x\}$ не образуват Чебишова система в интервала $\left[0, \frac{3\pi}{4}\right]$.

Доказателство: Трябва да намерим такава линейна комбинация на тези функции, която да има поне две нули в интервала $\left[0,\frac{3\pi}{4}\right]$. Нека $a_0=\frac{\sqrt{2}}{2}$, $a_1=-1$. Функцията $\varphi(x)=\frac{\sqrt{2}}{2}-\sin x$ има два корена $x_1=\frac{\pi}{4}$ и $x_2=\frac{3\pi}{4}$ в интервала $\left[0,\frac{3\pi}{4}\right]$. Следователно функциите $\{1,\sin x\}$ не образуват Чебишова система в интервала $\left[0,\frac{3\pi}{4}\right]$.

Интерполиране с тригонометрични полиноми

Нека f(x) е периодична функция с период 2π . Нека са зададени стойностите на тази функция $f(x_k) = y_k$ в (2n+1) възела $0 \le x_0 < x_1 < \dots < x_{2n} \le 2\pi$. Тогава може да построим единствен тригонометричен полином $\tau(f;x)$, който интерполира функцията f(x) във възлите $\{x_k\}_{k=0}^{2n}$.

$$\tau(f;x) = \sum_{k=0}^{2n} \lambda_k(x) y_k,$$

$$\lambda_k(x) = \prod_{j=0, j \neq k}^{2n} \frac{\sin \frac{x - x_j}{2}}{\sin \frac{x_k - x_j}{2}}.$$

Изпълнени са следните интерполационни условия: $\tau(f; x_k) = f(x_k) = y_k, \ k = 0,1,...,2n$.

Задача: Да се състави програма за построяването на тригонометричен полином $\tau(f;x)$ за функцията $f(x) = \frac{\sin x}{1 + (\cos x)^2}$ с интерполационни възли $x_k = \frac{2k\pi}{2n+1}$, k = 0,1,...,2n, за n = 4.

Решение:

```
 \begin{array}{l} n=4; \\ Do[x[k]=2k*Pi/(2n+1),\{k,0,2n\}]; \\ f[t_{-}]:=Sin[t]/(1+Cos[t]^2); \\ Do[1[k_{-},t_{-}]:=(s=1;Do[If[j\neq k,s*=Sin[(t-x[j])/2]/Sin[(x[k]-x[j])/2]],\{j,0,2n\}];s),\{k,0,2n\}]; \\ T[t_{-}]:=Sum[1[k,t]*f[x[k]],\{k,0,2n\}]; \\ Plot[T[t],\{t,0,2Pi\}] \\ Plot[f[t]-T[t],\{t,0,2Pi\}] \\ \end{array}
```


Задачи са самостоятелна работа:

- 1) Да се докаже, че функциите $\{1, \cos x\}$ не образуват Чебишова система в интервала $[-\frac{\pi}{2}, \frac{\pi}{2}]$.
- 2) Да се докаже, че $\{1, x, x\sin x\}$ образуват Чебишова система в интервала $[\frac{\pi}{2}, \pi]$

Интерполиране със сплайни от първа степен

Задача 1. Да се докаже, че функциите $\left\{\frac{1}{x-a_i}\right\}_{i=0}^n$ образуват Чебишова система върху всеки интервал, несъдържащ $a_0,\ a_1,\dots,a_n$.

Доказателство: Всеки обобщен полином на тези функции има вида

$$\varphi(x) = \sum_{k=0}^{n} \frac{c_k}{x - a_k} = \frac{P_n(x)}{\omega(x)}, \ P_n(x)\epsilon\pi_n.$$

Нулите на $\varphi(x)$ съвпадат с нулите на $P_n(x)$, а броят им не надвишава n. Следователно функциите $\left\{\frac{1}{x-a_i}\right\}_{i=0}^n$ образуват Чебишова система върху всеки интервал, несъдържащ a_0, a_1, \dots, a_n .

Задача 2. С помощта на Wolfram Mathematica да се построи обобщен полином по функциите

 $f_0(t)=\frac{1}{t+1}$, $f_1(t)=\frac{1}{t+2}$, $f_2(t)=\frac{1}{t+3}$, интерполиращ функцията $f(t)=e^{-t}$ във възлите $t_0=1$, $t_1=2$, $t_2=3$. Да се изобрази графиката на грешката в интервала [1,3].

Решение:

```
f0[t_]:=1/(1+t);
f1[t_]:=1/(2+t);
f2[t_]:=1/(3+t);
f[t_]:=Exp[-t];
result=Solve[{a*f0[1]+b*f1[1]+c*f2[1]==f[1],
   a*f0[2]+b*f1[2]+c*f2[2]==f[2],a*f0[3]+b*f1[3]+c*f2[3]==f[3]},{a,b,c}]
L[t_]:=Simplify[a*f0[t]+b*f1[t]+c*f2[t]/.result];
Plot[f[t]-L[t],{t,0.9,3.1}]
```


Сплайн функции от първа степен – начупена линия

Когато интерполираме със сплайни от първа степен ще използваме модулните функции вместо отсечените. Ще докажем, че те са линейно независими в интервала на интерполационните възли. Без ограничение на общността ще разглеждаме интервала [0,1].

Задача 3. Нека $0 = x_0 < x_1 < \dots < x_n = 1$. Докажете, че функциите $\{|x - x_i|\}_{i=0}^n$ са линейно независими в интервала [0,1].

Доказателство: Допускаме, че $f(x) = c_0|x - x_0| + c_1|x - x_1| + \dots + c_n|x - x_n| \equiv 0$ в интервала [0,1].

Нека $x \in (x_k, x_{k+1}), \ k = 0 \div n - 1$. Тогава, разкривайки модулите имаме

$$f(x) = c_0(x - x_0) + c_1(x - x_1) + \dots + c_k(x - x_k) - c_{k+1}(x - x_{k+1}) - \dots - c_n(x - x_n)$$

$$= (c_0 + c_1 + \dots + c_k - c_{k+1} - \dots - c_n)x + A \equiv 0$$

$$= > (c_0 + c_1 + \dots + c_k - c_{k+1} - \dots - c_n) = 0, x \in (x_k, x_{k+1}).$$

Получаваме аналогично равенство, ако $x \in (x_{k-1}, x_k)$. Като извадим две такива последователни уравнения получаваме $2c_k = 0 > c_k = 0, k = 1 \div n - 1$. Тогава

$$f(x) = c_0(x - 0) + c_n(1 - x) = (c_0 - c_n)x + c_n \equiv 0 = c_0 = c_n = 0.$$

Следователно функциите $\{|x-x_i|\}_{i=0}^n$ са линейно независими в интервала [0,1]. Техният брой е равен на размерността на множеството от сплайни от първа степен $S_1(x_1,x_2,...,x_{n-1})$ и следователно те образуват базис.

Задача 4. Нека $0 = x_0 < x_1 < \dots < x_n = 1, I_1(f;x) \in S_1(x_1,x_{2,\dots},x_{n-1})$ е сплайн функция от първа степен, такъв че $I_1(f;x_i) = f(x_i), i = 0 \div n$. Да се намерят коефициентите c_k в представянето

$$I_1(f;x) = \sum_{k=0}^{n} c_k |x - x_k|.$$

Решение: От интерполационните условия имаме

$$\begin{split} I_1(f;x_i) &= \sum_{k=0}^n c_k |x_i - x_k| = f(x_i), i = 0 \div n. \\ &= > \sum_{k=0}^{i-1} c_k (x_i - x_k) + \sum_{k=i+1}^n c_k (x_k - x_i) = \sum_{k=0}^{i-1} c_k (x_i - x_k) - \sum_{k=i+1}^n c_k (x_i - x_k) = f(x_i). \end{split}$$

Аналогично

$$I_1(f; x_{i+1}) = \sum_{k=0}^{i} c_k (x_{i+1} - x_k) - \sum_{k=i+2}^{n} c_k (x_{i+1} - x_k) = f(x_{i+1}).$$

От второто равенство изваждаме първото и получаваме

$$\sum_{k=0}^{i} c_k(x_{i+1} - x_i) - \sum_{k=i+1}^{n} c_k(x_{i+1} - x_i) = f(x_{i+1}) - f(x_i),$$

Делим двете страни на уравнението на $(x_{i+1} - x_i) \neq 0$

$$\sum_{k=0}^{i} c_k - \sum_{k=i+1}^{n} c_k = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = f[x_i, x_{i+1}], i = 0, 1, \dots, n-1$$
 (1)

$$=> \sum_{k=0}^{i-1} c_k - \sum_{k=i}^{n} c_k = f[x_{i-1}, x_i], i = 1, ..., n$$
 (2)

Изваждаме левите и десните страни на тези равенства и получаваме:

$$2c_{i} = f[x_{i}, x_{i+1}] - f[x_{i-1}, x_{i}]$$

$$=> c_{i} = \frac{f[x_{i}, x_{i+1}] - f[x_{i-1}, x_{i}]}{2}, i = 1 \div n - 1$$
 (3)

Остава да намерим c_0 и c_n . Използваме интерполация в краищата на интервала.

$$I_1(f;x_0) = \sum_{k=0}^n c_k(x_k - x_0) = f(x_0),$$

$$I_1(f; x_n) = \sum_{k=0}^{n} c_k(x_n - x_k) = f(x_n).$$

Събираме двете уравнения и получаваме:

$$\sum_{k=0}^{n} c_k = \frac{f(x_0) + f(x_n)}{x_n - x_0} \tag{4}.$$

Прилагаме равенството (1) за i=0 и събираме с уравнението (4). Така намираме c_0

$$c_0 = \frac{1}{2} \left(f[x_0, x_1] + \frac{f(x_0) + f(x_n)}{x_n - x_0} \right)$$
 (5).

За да намерим c_n използваме уравнението (2) за i=n и го изваждаме от уравнението (4). Получаваме

$$c_n = \frac{1}{2} \left(\frac{f(x_0) + f(x_n)}{x_n - x_0} - f[x_{n-1}, x_n] \right)$$
 (6).

Задача 5. Да се построи сплайн функция от първа степен $I_1(f;x) \in S_1(x_1,x_2,...,x_{n-1})$ за функцията $f(x) = \sqrt{x}$ с възли:

а)
$$x_k = \frac{k}{n}$$
, $k = 0,1,...,n$ при $n = 5$;

б)
$$x_k = \left(\frac{k}{n}\right)^4$$
, $k = 0,1, ..., n$ при $n = 5$.

Да се визуализира графика на грешката, както и графика на функцията и сплайна едновременно. Сравнете грешките в двата случая.

Решение:

а) От формули (3), (5) и (6) за коефициентите в представянето на сплайна $I_1(f;x)$ като линейна комбинация на модулните функции.

В конкретната задача $x_n - x_0 = 1$. В програмата ще запазим същите означения.

```
 \begin{array}{l} n=5;\\ \text{Do}[x[k]=k/n,\{k,0,n\}];\\ f[t\_]:=&\text{Sqrt}[t];\\ c[0]=&(f[x[0]]+f[x[n]]+&(f[x[1]]-f[x[0]])/&(x[1]-x[0]))/2;\\ c[n]=&(f[x[0]]+f[x[n]]-&(f[x[n]]-f[x[n-1]])/&(x[n]-x[n-1]))/2;\\ \text{Do}[c[i]=&((f[x[i+1]]-f[x[i]])/&(x[i+1]-x[i])-\\ &(f[x[i]]-f[x[i-1]])/&(x[i]-x[i-1]))/2,&(i,1,n-1\}];\\ \text{I1}[t\_]:=&\text{Sum}[c[k]*&\text{Abs}[t-x[k]],&(k,0,n)];\\ \text{Plot}[f[t]-&\text{I1}[t],&(t,0,1),&\text{PlotRange}\rightarrow&\text{All}]\\ \text{Plot}[&f[t],&\text{I1}[t],&(t,0,1)] \end{array}
```


Първата графика е на грешката, а втората е сравнителна графика на функцията и сплайна.

Наблюдения: От първата графика на грешката забелязваме, че грешката е най-голяма в левия край на интервала. Това се дължи на факта, че функцията f(x) бързо нараства, както е видно от втората графика на сплайна и функцията едновременно. В син цвят е графика на функцията $f(x) = \sqrt{x}$, а в червен цвят е графиката на сплайна $I_1(f;x)$.

Моля студентите да стартират програмата с други стойности на n, например 10 и 50. Направете съответните изводи.

б) За подточка б) е необходимо да се промени формулата за изчисляване на интерполационните възли. Ето програмата:

```
 \begin{array}{l} n=5;\\ \text{Do}[x[k]=(k/n)^4,\{k,0,n\}];\\ f[t_]:=&\text{Sqrt}[t];\\ c[0]=&(f[x[0]]+f[x[n]]+(f[x[1]]-f[x[0]])/(x[1]-x[0]))/2;\\ c[n]=&(f[x[0]]+f[x[n]]-(f[x[n]]-f[x[n-1]])/(x[n]-x[n-1]))/2;\\ \text{Do}[c[i]=&((f[x[i+1]]-f[x[i]])/(x[i+1]-x[i])-\\ (f[x[i]]-f[x[i-1]])/(x[i]-x[i-1]))/2,\{i,1,n-1\}];\\ \text{I1}[t_]:=&\text{Sum}[c[k]*&\text{Abs}[t-x[k]],\{k,0,n\}];\\ \text{Plot}[f[t]-&\text{I1}[t],\{t,0,1\},\text{PlotRange}\rightarrow&\text{All}]\\ \text{Plot}[\{f[t],\text{I1}[t]\},\{t,0,1\}] \end{array}
```


Наблюдения и изводи: Забелязваме, че грешката значително намалява при втория случай. Това е така, защото интерполационните възли са сгъстени в левия край на интервала, където функцията стръмно нараства.

Моля студентите да стартират втория вариант на програмата с други стойности на n, например $10\,$ и 50. Направете съответните изводи. Сравнете двата случая за различните стойности на n.

Разделени разлики с кратни възли. Интерполационен полином на Ермит

Нека $a \le x_0 \le x_1 \le \cdots \le x_n \le b$ и $f \in C^n[a, b]$. Разделена разлика на функцията f(x) във възлите x_0, x_1, \dots, x_k се дефинира по следния начин:

$$f[x_0, x_1, \dots, x_k] = \begin{cases} \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}, x_0 \neq x_k \\ \frac{f^{(k)}(x_0)}{k!}, & x_0 = x_k \end{cases}$$

Интерполационният полином на Ермит се задава с формулата на Нютон:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$= \sum_{k=0}^{n} f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}).$$

Задача 1. Да се намери полином $p(x) \in \pi_4$, такъв че $p(-1) = \frac{1}{2}$, p(0) = 1, p'(0) = 0, p''(0) = -2, $p(1) = \frac{1}{2}$.

Решение: Имаме 5 интерполационни възела $x_0 = -1$, $x_1 = x_2 = x_3 = 0$, $x_4 = 1$. Нулата е трикратен възел. Можем да построим единствен полином от четвърта степен с тези условия по формулата на Нютон. За целта са ни необходими разделените разлики. Тях най-лесно можем да пресметнем от рекурентната връзка в следната таблица:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	$\frac{1}{2}$	$\frac{1-\frac{1}{2}}{0-(-1)} = \frac{1}{2}$	$\frac{0-\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{-1+\frac{1}{2}}{0-(-1)}=-\frac{1}{2}$	$\frac{\frac{1}{2} + \frac{1}{2}}{1 + 1} = \frac{1}{2}$
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{p''(0)}{2!} = -1$	$\frac{-\frac{1}{2}+1}{1-0} = \frac{1}{2}$	
0	1	$\frac{p'(0)}{1!} = 0$	$\frac{-\frac{1}{2} - 0}{1 - 0} = -\frac{1}{2}$		
0	1	$\frac{\frac{1}{2} - 1}{1 - 0} = -\frac{1}{2}$			
1	$\frac{1}{2}$				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}) =$$

$$= \frac{1}{2} + \frac{1}{2}(x + 1) - \frac{1}{2}(x + 1)(x - 0) - \frac{1}{2}(x + 1)x^2 + \frac{1}{2}(x + 1)x^3 = \frac{x^4}{2} - x^2 + 1.$$

Задача 2. Да се намери полином $p(x) \in \pi_4$, такъв че p(-1) = 4, p'(-1) = -11, p(1) = 2, p'(1) = 5, p''(1) = 10.

Решение: Преминаваме към попълване на таблицата с разделените разлики:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$p[x_i, \dots, x_{i+4}]$
-1	4	$\frac{p'(-1)}{1!} = -11$	$\frac{-1+11}{1-(-1)} = 5$	$\frac{3-5}{2} = -1$	$\frac{1+1}{1+1} = 1$
-1	4	$\frac{2-4}{1-(-1)} = -1$	$\frac{5+1}{1+1} = 3$	$\frac{5-3}{2}=1$	
1	2	$\frac{p'(1)}{1!} = 5$	$\frac{p''(1)}{2!} = 5$		
1	2	$\frac{p'(1)}{1!} = 5$			
1	2				

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1}) =$$

$$= 4 - 11(x+1) + 5(x+1)^2 - 1(x+1)^2(x-1) + 1(x+1)^2(x-1)^2$$

$$= x^4 - x^3 + 2x^2.$$

Задача 3. Да се намери интерполационния полином на Ермит във възлите $x_0=-1, x_1=x_2=x_3=0, x_4=1$ за функцията $f(t)=\frac{1}{1+t^2}$ чрез функция на Wolfram Mathematica. Да се визуализира графиката на грешката.

Решение: Намираме $f(-1) = f(1) = \frac{1}{2}$; f(0) = 1; f'(0) = 0; f''(0) = -2. Ще използваме вградената функция за намиране на интерполационен полином по зададени възли, техните функционални стойности и стойностите на производните. Така изглежда:

$$f[t_{-}] := 1/(1+t^{2}); \\ L[t_{-}] := InterpolatingPolynomial[{\{-1,1/2\},\{0,\{1,0,-2\}\},\{1,1/2\}\},t]}; \\ a = Expand[L[t]] \\ Plot[f[t]-a,\{t,-1,1\}]$$

Out [1] =
$$1 - t^2 + \frac{t^4}{2}$$

Крайни разлики

Крайни разлики използваме, когато интерполационните възли са равноотдалечени със стъпка h, т. е. възлите се задават се с формулата $x_k = x_0 + k$. h, k = 0,1,...,n. Означаваме функционалните стойности в тези възли с $f_k = f(x_k)$.

Разделена разлика за функцията f(x) във възлите $x_0 < x_1 < \cdots < x_n$ се дефинира по следния начин:

- от първи ред: $\Delta f_j = f_{j+1} f_j$;
- от k-ти ред рекурентно: $\Delta^k f_j = \Delta^{k-1} f_{j+1} \Delta^{k-1} f_j$.

На лекции са доказани следните формули:

1)
$$\Delta^n f_0 = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f_j;$$

2)
$$f[x_0, x_1, ..., x_n] = \frac{\Delta^n f_0}{n! h^n}$$

Доказали сме (в предходното упражнение), че:

a)
$$f[x_0, x_1, ..., x_n] = 0$$
, sa $f(x) = x^m, m = 0, 1, ..., n - 1$; (*)

6)
$$f[x_0, x_1, ..., x_n] = 1$$
, sa $f(x) = x^n$. (**)

Ще интерпретираме тези изводи в термините на крайни разлики.

Задача 4: Да се докаже тъждеството
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^k = 0$$
 за $k = 0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^k, k \in \{0,1,\dots,n-1\}$. Това са стойностите на функцията $f(x) = x^k \in \pi_{n-1}$ в точките $x_j = j, \ j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от (n-1) степен е равна на нула, т. е. $x^k[x_0x_1,\dots,x_n] = 0, \ k = 0 \div n - 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = 0$, т.е. $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} j^k = 0$.

Задача 5: Да се докаже тъждеството
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^n = n!$$

Доказателство: Лявата страна на равенството е крайна разлика за функцията $f_j = f(j) = j^n$. Това са стойностите на функцията $f(x) = x^n \in \pi_n$ в точките $x_j = j$, $j = 0 \div n$. Интерполационните възли са равноотдалечени със стъпка h = 1. Но разделената разлика в (n+1) точки на полином от n-та степен е равна на едно, т. е. $x^n[x_0x_1, ..., x_n] = 1$ и от връзката между разделена и крайна разлика 2) получаваме $\Delta^n f_0 = n! \, h^n f[x_0, x_1, ..., x_n]$, т.е. $\sum_{j=0}^n (-1)^{n-j} {n \choose j} j^k = n!$

Задача 6: Да се намери
$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{m+j}{k}$$
, където $m \in N, k = 0,1,\dots,n-1$.

Доказателство: Лявата страна на равенството е крайна разлика от n-ти ред за $f_j = f(j) = \binom{m+j}{k}$.

$$=> f(x) = \binom{x+m}{k} = \frac{(x+m)(x+m-1)\dots(x+m-k+1)}{k!} \in \pi_k \subseteq \pi_{n-1}.$$

Но $f[x_0,x_1,...,x_n]=0$ и от равенството 2) получаваме, че $\Delta^n f_0=0$ и следователно $\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \binom{m+j}{k} = 0$.

Лема на Поповичу

Тя ни дава формула, по която да пресметнем разделената разлика на произведение на две функции в (n+1) интерполационни възли чрез раделените разлики на отделните функции. Лемата гласи:

$$(f.g)[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f[x_0, x_1, \dots, x_k].g[x_k, x_{k+1}, \dots, x_n].$$

Задача 7: Да се намери $x^{n+1}[x_0, x_1, ..., x_n]$.

Решение: Можем да представим $x^{n+1} = x. x^n$. От (*) и (**) получаваме, че

$$x[x_0] = x_0, x[x_0, x_1] = 1, \ x[x_0, x_1, ..., x_k] = 0, \ x^n[x_0, x_1, ..., x_n] = 1.$$

Прилагаме лемата на Поповичу за функцията x^{n+1}

$$\begin{aligned} x^{n+1}[x_0, x_1, \dots, x_n] &= \sum_{k=0}^n x[x_0, x_1, \dots, x_k]. \, x^n[x_k, x_{k+1}, \dots, x_n] = \\ &= x[x_0]. \, x^n[x_0, x_1, \dots, x_n] + x[x_0, x_1]. \, x^n[x_1, x_2, \dots, x_n] + 0 = x_0 + x^n[x_1, x_2, \dots, x_n]. \end{aligned}$$

Така получихме рекурентна връзка за разделените разлики на функциите x^{n+1} и x^n

Прилагаме отново лемата за $x^n[x_1, x_2, ..., x_n]$

$$x^{n+1}[x_0, x_1, \dots, x_n] = x_0 + x^n[x_1, x_2, \dots, x_n] = x_0 + x_1 + x^{n-1}[x_2, x_3, \dots, x_n]$$

След многократно приложение на лемата на Поповичу окончателно получаваме

$$x^{n+1}[x_0, x_1, \dots, x_n] = \sum_{k=0}^n x_k.$$

Задача 8: Да се намери $\frac{1}{x}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да представим $1 = x.\frac{1}{x}$, но $1 \in \pi_0 => 1[x_0, x_1, ..., x_n] = 0$. Прилагаме лемата на Поповичу за константата 1, равенствата (*) и (**). Получаваме:

$$0 = 1[x_0, x_1, \dots, x_n] = \sum_{k=0}^{n} x [x_0, x_1, \dots, x_k] \cdot \frac{1}{x} [x_k, x_{k+1}, \dots, x_n] = x_0 \cdot \frac{1}{x} [x_0, x_1, \dots, x_n] + x[x_0, x_1] \cdot \frac{1}{x} [x_1, x_2, \dots, x_n] + 0 = x_0 \cdot \frac{1}{x} [x_0, x_1, \dots, x_n] + \frac{1}{x} [x_1, x_2, \dots, x_n].$$

От това равенство изразяваме $\frac{1}{x}[x_0,x_1,\ldots,x_n]$ и получаваме

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = -\frac{1}{x_0} \cdot \frac{1}{x}[x_1, x_2, \dots, x_n]$$

Аналогично прилагаме лемата на Поповичу още (n-1) пъти и получаваме:

$$\frac{1}{x}[x_0, x_1, \dots, x_n] = \frac{(-1)^n}{x_0, x_1, \dots, x_n}.$$

Задача 9: Да се намери $\frac{1}{x^2}[x_0, x_1, ..., x_n]$, за $x_k \neq 0$, $\forall k$.

Решение: Можем да използваме намереното в Задача 8 и лемата на Поповичу.

$$\frac{1}{x^2} = \frac{1}{x} \cdot \frac{1}{x} = > \frac{1}{x^2} [x_0, x_1, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{1}{x} [x_0, x_1, \dots, x_k] \cdot \frac{1}{x} [x_k, x_{k+1}, \dots, x_n] =$$

$$= \sum_{k=0}^{n} \frac{(-1)^k}{x_0 \cdot x_1 \dots x_k} \cdot \frac{(-1)^{n-k}}{x_k \cdot x_{k+1} \dots x_n} = \frac{(-1)^n}{x_0 \cdot x_1 \dots x_n} \sum_{k=0}^{n} \frac{1}{x_k}.$$