Time Series Party 2023-04-11

	Name:	

- 1. Consider the difference equation: $y_t = 1 + 0.7y_{t-1} 0.12y_{t-2} + u_t$, where (u_t) is a white noise and $y_{100} = 1$, $y_{99} = -1$.
 - a) Find 95% prediction interval for y_{102} .
 - b) Approximately find the best point forecast for y_{10000} .
- 2. Consider the difference equation: $y_t = 1 + 0.7y_{t-1} 0.12y_{t-2} + u_t$, where (u_t) is a white noise.
 - a) Find first two values of autocorrelation function.
 - b) Find α_{2023} in $MA(\infty)$ representation

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \alpha_3 u_{t-3} + \dots$$

3. Consider ETS(AAdN) model

$$\begin{cases} u_t \sim \mathcal{N}(0; 20) \\ b_t = 0.9b_{t-1} + 0.2u_t \\ \ell_t = \ell_{t-1} + 0.9b_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + 0.9b_{t-1} + u_t \end{cases}$$

with $\ell_{100} = 20$ and $b_{100} = 1$.

- a) Find 95% prediction interval for y_{102} .
- b) Approximately find the best point forecast for y_{10000} .
- 4. Stationary process (y_t) is described by equation $(y_t \mu) = 0.5(y_{t-2} \mu) + u_t$, where (u_t) is a normal white noise with known variance $\sigma_u^2 = 1$.

Winnie-the-Pooh and Rabbit have a lot of observations to create 95% confidence interval for μ . Rabbit estimates μ in the true model but Winnie-the-Pooh wrongly believes that equation is $(y_t - \mu) = \beta(y_{t-1} - \mu) + u_t$.

Approximately find the ratio of confidence interval widths.

- 5. Consider the sum of two independent stationary processes, $y_t = 0.5y_{t-1} + u_t$ and $x_t = v_t + 0.7v_{t-1}$, where (u_t) and (v_t) are independent white noise processes with unit variance.
 - a) Classify the sum $s_t = y_t + x_t$ as ARMA(p,q) process with finite p and q.
 - b) Explicitely find the polynomials A(L) and B(L) in the corresponding ARMA(p,q) equation $A(L)s_t = B(L)w_t$, where (w_t) is a white noise.