The Pos-Chair

3x height

infrared

sensors

adjustable

integrated in

seat back

4x vibration

motors in

motor

mounts

Senior Capstone Design Project

Jennifer Yang

Riley Forster

Gabriel Botero

Aurielle Barnett

Jonathan Ali

Design Opportunity

- Poor posture is a common problem
- Current posture aids fail to holistically address posture correction
- Need a product to assess and provide feedback to correct seated posture

Market Research

 Targeted Stakeholders: Students, office workers, medical professionals

Interest Level of Intended User Group

Design Requirements

- Accurate sensing with ≤ 20% error
- ≥ 8/10 user ratings on clear feedback, increased posture, and ease of setup
- Capacity from 5% female to 95% male height and weight

Prototype 2

- IR sensor, load cell, and vibration systems functioning independently and on chair
- Visualization of back posture and seat map

4x load

integrated

Electronics

integrated

the seat

underneath

box

into seat

bottom

cells

Seat Map

Stress Analysis

Goal: Determine maximum load capacity of the chair for different material selections

Variable: Material Constraints:

- Existing chair geometry
- Loads (250 lbf) and supports
 Result: FOS 3 with 4130 Steel

Battery Life Analysis

Net Power Consumption: 0.552 Watts

Total Battery Energy: 144 Whr Assumption: 8 hr/day on time

1 Charge Battery Lifetime: 32 work days

Final Prototype

- Systems integrated with visualization
- Posture benchmarks tuned
- User customizable features

IR Adjustability

Full Chair

Prototype 1

- Ultrasonic sensors on a rail
- FSR sensor testing
- Basic back posture visualization

Ultrasonic Sensors

FSR Sensors