Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2020

Contents

Division Algorithm
Prime Numbers
Congruency

Prime Numbers

Definition(P193)

- 1. prime
- 2. composite

Theorem

(P193) Let $p \in \mathbb{N} \setminus \{0,1\}$ and $a,b \in \mathbb{Z}$. If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary

(P193) Let $p \in \mathbb{N} \setminus \{0,1\}$ and $a_1, \dots, a_n \in \mathbb{Z}$. If p is prime and $p \mid \prod_{k=1}^n a_k$, then $p \mid a_k$ for some k with $1 \leq k \leq n, k \in \mathbb{Z}$.

Corollary

(P194) Let $p, q_1, \dots, q_n \in \mathbb{N} \setminus \{0, 1\}$. If p is prime and $p \mid \prod_{k=1}^m q_k$, then $p = q_k$ for some k with $1 \le k \le n, k \in \mathbb{Z}$.

Theorems of Prime Numbers

Theorem (Fundamental Theorem of Arithmetic)

(P195) Every $n \in \mathbb{N} \setminus \{0,1\}$ is prime or the product of primes. This product is unique, apart from the order in which the primes occur.

Corollary

(P196) Any $n \in \mathbb{N} \setminus \{0,1\}$ can be written in the canonical from

$$n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$$

where $p_1 < \cdots < p_r$ are prime numbers and $k_1, \cdots, k_r \in \mathbb{N} \setminus \{0\}$

Theorem (The Sieve of Eratosthenes)

(P197) If n is a composite integer, then n has a prime divisor whose square is not greater than n.

Theorem

(P199) There are infinitely many primes.

Congruency

Definition(P204)

congruency: a is congruent to b modulo m, writing $a \equiv b \pmod{m}$ if and only if $m \mid (a - b)$

Lemma

(P204) Let
$$a,b\in\mathbb{Z}$$
 and $m\in\mathbb{N}\setminus\{0\}$. Then

$$a \equiv b \pmod{m} \Leftrightarrow \underset{k \in \mathbb{Z}}{\exists} a = b + km$$

Theorem

(P205) Let
$$a, b \in \mathbb{Z}$$
 and $m \in \mathbb{N} \setminus \{0\}$. Then

$$a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$$

Congruency Class

Definition(P206-P207)

- 1. congruency classes: $\mathbb{Z}_m = \{[0]_m, [1]_m, \cdots, [m-1]_m\}$
- 2. addition: $[a]_m + [b]_m = [a + b]_m$
- 3. multiplication: $[a]_m \cdot [b]_m = [a \cdot b]_m$

Lemma

(P208) Let $a, \tilde{a}, b, \tilde{b} \in \mathbb{Z}$ and $m \in \mathbb{N} \setminus \{0\}$. If $a \equiv \tilde{a} \mod m$ and $b \equiv \tilde{b} \mod m$, then

$$a+b=\tilde{a}+\tilde{b}\ mod\ m,\qquad ab\equiv \tilde{a}\tilde{b}\ mod\ m$$

Corollary

(P209) Let
$$a, b \in \mathbb{Z}$$
 and $m \in \mathbb{N} \setminus \{0\}$. Then

$$a + b \equiv (a \mod m + b \mod m) \mod m$$

 $ab \equiv (a \mod m)(b \mod m) \mod m$

Division in Modular Arithmetic

Theorem

(P213) Let
$$a,b,c\in\mathbb{Z}$$
 and $m\in\mathbb{N}\setminus\{0\}$. Then

$$ac \equiv bc \mod m$$

implies

$$a \equiv b \mod m/d$$

where d = gcd(c, m).

Corollary

(P214) Let
$$a,b,c\in\mathbb{Z}$$
 and $m\in\mathbb{N}\setminus\{0\}$ and $\gcd(c,m)=1$. Then

$$ac \equiv bc \mod m$$

implies

$$a \equiv b \mod m$$

Modular Inverse

Definition(P215)

inverse of a modulo m

Theorem

(P215) Let $a \in \mathbb{N} \setminus \{0,1\}$. If gcd(a,m) = 1, an inverse of a modulo m exists. This inverse is unique modulo m.

Theorem

(P217) The partition \mathbb{Z}_p is a field if and only if p is a prime number.

Finding Modular Inverse

Theorem

Define that $\mathbb{Z}_m^* = \{[k]_m | \exists x \in \mathbb{Z} (kx \equiv 1 \mod m) \}$, then (\mathbb{Z}_m^*, \cdot) is a group.

Proof.

- 1. Show that the group operation is closed on the set.
- 2. Show that the unit element exists.
- 3. Show that the inverse exists.

All the representatives in \mathbb{Z}_m^* and m are relatively prime.

Cayley Table

Table: Cayley Table for modulo 6

\otimes_6	$ [1]_6$	[5] ₆
$[1]_{6}$	[1]6	[5] ₆
[5] ₆	[5] ₆	$[1]_{6}$

Table: Cayley Table for modulo 12

\otimes_{12}	$[1]_{12}$	[5] ₁₂	[7] ₁₂	$[11]_{12}$
$[1]_{12}$	[1] ₁₂	[5] ₁₂	[7] ₁₂	$[11]_{12}$
[5] ₁₂	[5] ₁₂	$[1]_{12}$	$[11]_{12}$	[7] ₁₂
[7] ₁₂	[7] ₁₂	$[11]_{12}$	$[1]_{12}$	[5] ₁₂
$[11]_{12}$	$[11]_{12}$	[7] ₁₂	[5] ₁₂	$[1]_{12}$

Linear Congruence

Definition(P219)

linear congruence: $ax \equiv \mod m$ for unknowns $x \in \mathbb{Z}$.

Theorem

Let $a,b\in\mathbb{Z}$ and $m\in\mathbb{N}\setminus\{0\}$ and $d=\gcd(a,m)$. The linear congruence $ax\equiv\mod m$ has a solution if and only if d|b. In this case, it has d solutions that are mutually incongruent modulo m.

Proof.

- 1. existence: just the same as Linear Diophantine Equations
- 2. *d* mutually incongruent solutions: proof by contradiction
- 3. Show all the other solutions are congruent with these *d* solutions.

Corollary

(P224) Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N} \setminus \{0\}$ and gcd(a, m) = 1. Then the linear congruence $ax \equiv mod m$ has a unique solution modulo m.

Theorem (Chinese Remainder Theorem)

Let $m_1, \ldots, m_n \in \mathbb{N} \setminus \{0\}$ be pairwise relatively prime and let $a_1, \ldots, a_n \in \mathbb{Z}$. Then the system of congruences

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution (mod m) where $m = m_1 \cdots m_n$.

Proof.

We first prove the existence of a solution. For all $1 \le k \le n$, define

$$M_k = \frac{m}{m_k} = \prod_{i \neq k} m_i$$

Note that since m_1, \ldots, m_n are pairwise relatively prime, it follows that for all $1 \le k \le n$, $\gcd(m_k, M_k) = 1$. Therefore for all $1 \le k \le n$ $[M_k]_{m_k} \in \mathbb{Z}_{m_k}^*$ and there exists $y_k \in \mathbb{Z}$ such that

$$[M_k y_k]_{m_k} = [M_k]_{m_k} \cdot [y_k]_{m_k} = [1]_{m_k} \text{ or } M_k y_k \equiv 1 \pmod{m_k}$$

Proof(Continued).

Let

$$x = \sum_{k=1}^{n} a_k M_k y_k$$

since for all $1 \le i, j \le n$, if $i \ne j$, then $M_i \equiv 0 \pmod{m_j}$, it follows that x is a solution to (11).

We now turn to showing uniqueness. Let $x, x' \in \mathbb{Z}$ be such that for all $1 \le k \le n$,

$$x \equiv a_k \equiv \chi' \pmod{m_k}$$

We will show that x and x' must be congruent (mod m). Now, for all $1 \le k \le n$, $m_k | (x - x')$. An elementary induction argument applied to one of the consequences of Bézout's Lemma that we proved shows that since for all $1 \le i, j \le n$ with $i \ne j, \gcd(m_i, m_i) = 1$

Proof(Continued).

$$m=m_1\cdots m_n|(x-x')$$

This shows that

$$x \equiv x' \pmod{m}$$

Useful Conclusion

Given that $a, b, c, d \in \mathbb{N} \setminus \{0\}$, b, c, d are mutually relatively prime, then:

$$\begin{cases} dx \equiv a \pmod{b} \\ dx \equiv a \pmod{c} \end{cases} \Leftrightarrow dx \equiv a \pmod{bc}$$

Exercises

1.

$$15x \equiv 2 \mod 7$$
$$12x \equiv 3 \mod 5$$
$$20x \equiv 6 \mod 13$$

2.

$$7x \equiv 3 \mod 30$$

 $11x \equiv 7 \mod 24$
 $13x \equiv 11 \mod 20$

Solutions

▶ 1. Manipulate the oringinal equation(s) to the form that Chinese Remainder Theorem is applicable.

$$15x \equiv 2 \mod 7 \iff x \equiv 2 \mod 7$$

$$12x \equiv 3 \mod 5 \iff 2x \equiv 3 \mod 5 \iff x \equiv 4 \mod 5$$

$$20x \equiv 6 \mod 13 \iff x \equiv 12 \mod 13$$

- 2. Check whether solution(s) exists.
- 3. Apply Chinese Remainder Theorem:

$$M_1 = 65,$$
 $y_1 = 4$
 $M_2 = 91,$ $y_2 = 1$
 $M_3 = 35,$ $y_2 = 3$

Then we have

$$x_0 = 2 \cdot 65 \cdot 4 + 4 \cdot 91 \cdot 1 + 12 \cdot 35 \cdot 3 = 2144$$

 $x = 2144 + 455t, t \in \mathbb{Z}$

Solutions

$$7x \equiv 3 \mod 30 \Leftrightarrow \begin{array}{l} 7x \equiv 3 \mod 5 \Leftrightarrow 2x \equiv 3 \mod 5 \\ 7x \equiv 3 \mod 6 \Leftrightarrow x \equiv 3 \mod 6 \end{array}$$

$$11x \equiv 7 \mod 24 \Leftrightarrow \begin{array}{l} 11x \equiv 7 \mod 4 \Leftrightarrow 3x \equiv 3 \mod 4 \\ 11x \equiv 7 \mod 6 \Leftrightarrow 5x \equiv 1 \mod 5 \end{array}$$

$$13x \equiv 11 \mod 20 \Leftrightarrow \begin{array}{l} 13x \equiv 11 \mod 4 \Leftrightarrow x \equiv 3 \mod 4 \\ 13x \equiv 11 \mod 5 \Leftrightarrow 3x \equiv 1 \mod 5 \end{array}$$

This series has no solutions.