BDC

Bases de données

Normalisation d'un schéma relationnel

Pourquoi normaliser un schéma de relations?

Support théorique d'une « bonne » conception de schémas pour

- éliminer les redondances sans perte d'information
- éviter les incohérences de mise à jour
- éviter, autant que possible, les valeurs nulles
- mieux comprendre les relations sémantiques entre les données

N	<u>IumPropriétaire</u>	Nom	Ville	NumVéhicule	Marque	Date
	1000	AAAA	PARIS	90FE75	PEUGEOT	10-sep-89
	1500	BBBBB	NANTES	43XY97	RENAULT	02-fev-96
	1000	AAAA	PARIS	56GT98	FIAT	06-mar-91
	1350	CCCC	NICE	43ZT88	RENAULT	28-dec-87
	1500	BBBBB	NANTES	57TG92	PEUGEOT	26-jui-91

- Redondances ⇒ risque d'anomalies
- Insertion d 'une personne sans voiture ⇒ introduction de valeurs nulles
- Suppression de la dernière voiture possédée par une personne ⇒ perte d'information

Décomposition

+	NumPropriétaire	Nom	Ville	
	1000	AAAA	PARIS	
	1500	BBBBB	NANTES	
	1350	CCCC	NICE	

	-NumPropriétaire	<u>NumVéhicule</u>	Date	
-	1000	005575	10 00	
	1000	90FE75	10-sep-89	
	1500	43XY97	02-fev-96	
	1000	56GT98	06-mar-91	
	1350	43ZT88	28-dec-87	
	1500	57TG92	26-jui-91	

NumVéhicule	Marque
90FE75	PEUGEOT
43XY97	RENAULT
56GT98	FIAT
43ZT88	RENAULT
57TG92	PEUGEOT

Comment normaliser un schéma relationnel?

Approche par décomposition :

- Entrées : une table contenant tous les attributs et des dépendances fonctionnelles
- Processus : itératif c'est-à-dire décompositions successives jusqu'à ce qu'il n'y ait plus de redondances
- Sortie : un ensembles de tables normalisées

Approche par synthèse :

- Entrées : une table contenant tous les attributs et des dépendances fonctionnelles
- Processus : non itératif basé sur le calcul de la couveture minimale des DFs
 N.Lammari
- Sortie : un ensembles de tables normalisées

Rappel de la définition d'une DF

Soient

- \blacksquare R(A₁, A₂,A_n) un schéma de relation
- \blacksquare X et Y deux sous-ensembles de $\{A_1, A_2,A_n\}$
- On dit que :
 - Y dépend fonctionnellement de X ou X détermine Y (X→Y) si quelle que soit l'instance de R, pour tout tuple T1, T2 de R on a :
 - $T1[X] = T2[X] \Rightarrow T1[Y] = T2[Y]$
 - Ou encore si, à tout moment, lorsque deux tuples ont les mêmes valeurs pour les colonnes de X, ils ont alors nécessairement les mêmes valeurs pour les colonnes de Y
 - NB : Ti[X] est la valeur de X pour le tuple Ti

NumPropriétaire	Nom	Ville	NumVéhicule	Marque	Date
1000	AAAA	PARIS	90FE75	PEUGEOT	10-sep-89
1500	BBBBB	NANTES	43XY97	RENAULT	02-fev-96
1000	AAAA	PARIS	56GT98	FIAT	06-mar-91
1350	CCCC	NICE	43ZT88	RENAULT	28-dec-87
1500	BBBBB	NANTES	57TG92	PEUGEOT	26-jui-91

- NumPropriétaire → Nom
- NumPropriétaire → Ville
- NumVéhicule → Marque
- NumPropriétaire, NumVéhicule → Date

Graphe des DFs

$$X \rightarrow Y$$

$$X, Z \rightarrow Y$$

Un autre exemple : la table cours

Nomprof	Ville	Département	Nometud	Age	cours	Note
Dupont	Lille	59	Alfred	22	Math	12
Dupont	Lille	59	Arthur	25	Math	05
Martin	Arras	62	Alfred	22	Anglais	18
Martin	Arras	62	Pierre	23	Anglais	11
Dupont	Lille	59	Pierre	23	physique	13
Charles	Lille	59	Pierre	23	Histoire	12

- NOMPROF →VILLE
- VILLE →DEPARTEMENT
- NOMPROF → DEPARTEMENT
- NOMETUD → AGE
- NOMETUD, COURS → NOTE
- COURS → NOMPROF

Inférence des Dfs : Axiomes d'Amstrong

- Axiome de réflexivité : $Y \subseteq X \Rightarrow X \rightarrow Y$
- Axiome d'augmentation : $X \rightarrow Y \Rightarrow X, Z \rightarrow Y$
- Axiome de transitivité : $X \rightarrow Y$ et $Y \rightarrow Z \Rightarrow X \rightarrow Z$
- Axiome de pseudo-transitivité : $X \rightarrow Y$ et $Y, W \rightarrow Z \Rightarrow X, W \rightarrow Z$
- Axiome d'union : $X \rightarrow Y$ et $X \rightarrow Z \Rightarrow X \rightarrow Y$, Z
- Axiome de décomposition : $X \rightarrow Y$ et $Z \subseteq Y \Rightarrow X \rightarrow Z$

Autres définitions

- Dépendance élémentaire:
- $X \rightarrow Y$ est élémentaire ssi $Y \not\subset X$ et $\forall X ' \subset X$, $X ' \not\rightarrow Y$
- Fermeture transitive d'un ensemble F de DFs :
 - Ensemble F+de DFs élémentaires obtenu par application de l'axiome de transitivité et de pseudo-transitivité
- Couverture minimale d'un ensemble F de DFs :
 - Plus petit ensemble de DFs permettant d'obtenir par application successives des axiomes d'inférences la fermeture transitive de F

 COURS (NOMPROF, VILLE, DEPARTEMENT, NOMETUD, AGE, COURS, NOTE)

La fermeture transitive

- 1. NOMPROF → VILLE
- 2. VILLE → DEPARTEMENT
- 3. NOMPROF → DEPARTEMENT
- 4. NOMETUD \rightarrow AGE
- 5. NOMETUD, COURS \rightarrow NOTE
- 6. COURS → NOMPROF

Couverture minimale

- 1. NOMPROF \rightarrow VILLE
- 2. VILLE → DEPARTEMENT
- 4. NOMETUDIANT \rightarrow AGE
- 5. NOMETUD, COURS \rightarrow NOTE
- 6. COURS → NOMPROF

- 7. COURS →VILLE
- 8. COURS → DEPARTEMENT

DFs et notion de clé

Soient :

$$X \subseteq \{A1, A2, \dots, An\}$$

On dit que X est une clé candidate de R ssi :

-
$$X \rightarrow A1, A2, \dots, An$$

-
$$\forall Y \subset X$$
, $Y \not\rightarrow A1$, $A2$,, An

- R (NumPropriétaire, NumVéhicule, Nom, Ville, Marque, Date)
 - NumPropriétaire → Nom
 - NumPropriétaire → Ville
 - NumVéhicule → Marque
 - NumPropriétaire, NumVéhicule → Date

{NumPropriétaire, NumVéhicule} est la seule clé pour R

Formes normales

1ère Forme normale 1FN

2 ième Forme normale 2FN

3iéme Forme normale 3FN

etc.

Relation en 1FN

Une relation est en <u>première forme normale</u> lorsque aucun attribut n'est un ensemble d'ensembles

ou

Une relation est en <u>première forme normale</u> si tous ses attributs sont atomiques

EXEMPLE

ETUDIANT (Matricule,	Nom	,,	DIPLOMES)
01	Α		{Bac, BTS}
02	В		{Bac, Deug}
03	C		{Bac}

ETUDIANT n'est pas en 1FN

■ ETUDIANT (Matricule,	Nom	,,	DIPLOME)
01	Α		Bac
01	Α		BTS
02	В		Bac
02	В		Deug
03	С		Deug Bac

Relation en 2FN

- Une relation est en deuxième forme normale ssi :
 - 1 elle est en première forme normale
 - 2 tout attribut non clé dépend de la totalité de la clé

R (A, B, C, D) en 1FN et $A \rightarrow C \Rightarrow R$ n 'est pas en 2FN

R (NumPropriétaire, NumVéhicule, Nom, Ville, Marque, Date

NumPropriétaire → Nom

NumPropriétaire → Ville

NumVéhicule → Marque

NumPropriétaire, NumVéhicule → Date

R n'est pas en 2FN

Décomposition de R

R (NumPropriétaire, NumVéhicule, Nom, Ville, Marque, Date) R1 (NumPropriétaire, NumVéhicule, Marque, Date) R2 (NumPropriétaire, Nom, Ville) R11 (NumVéhicule, Marque)

R12 (NumPropriétaire, NumVéhicule, Date)

Relation en 3FN

- Une relation est en troisième forme normale ssi :
 - 1 elle est en 2FN
 - 2 il n'y a pas de dépendance fonctionnelle entre attributs non clé

R (A, C, D) en 2FN et $C \rightarrow D \Rightarrow R$ n'est pas en 3FN

PRODUIT (NunProduit, Désignation, CodeTVA, TauxTVA)

 $CodeTVA \rightarrow TauxTVA$

PRODUIT (NunProduit, Désignation, CodeTVA)

TVA (CodeTVA, TauxTVA)

Algorithme de synthèse

Etape de l'algorithme

1. Regroupement des dépendances de même partie gauche

2. Construire une relation pour chaque ensemble.

Chacune des relations a pour clé le groupe d'attribut en partie gauche

26

Suite exemple

Décomposition versus synthèse

Algorithme de décomposition :

- préserve le contenu
- Conduit à des relations en au moins 3FN

Algorithme de synthèse

- préserve les DFs
- conduit à des relations en 3FN

NB: une décomposition de R en R1, R2, ...Rn préserve le contenu ssi la jointure des relations de R1, R2, ...Rn est égale à la relation R