Plano perpendicular a la intersección de dos planos

Juan Vicente Vía Baylet

30 de abril de 2020

Resumen

Vamos a ver una manera de resolver un ejercicio en donde se busca el plano perpendicular a la intersección entre dos planos y que pase por un punto dado. Esta resolución cumple con las condiciones de que no se usen matrices y de que no se use el producto vectorial.

1. El problema

Se consideran los planos $\Pi \to 4x - y + 3z = 2$ y $\Pi' \to 2x + 2y - z = 6$. Hallar la ecuación de un plano que sea ortogonal a $\Pi \cap \Pi'$ y que pase por (4, 2, -1).

2. La solución

NOTA: En https://www.geogebra.org/3d/a3scf54u se puede ver este problema y su solución en un gráfico 3D interactivo.

2.1. Bautismos

Para solucionar un problema es generalmente útil comenzar asegurándose de que las cosas estén bien identificadas y tengan un nombre. Entonces...

Vamos a llamar Λ^{\cap} a la recta intersección $\Pi \cap \Pi'$. Nuestra misión es encontrarla para que nos ayude a llegar al plano buscado.

Vamos a llamar Π^{\perp} al plano buscado, el único entre los infinitos planos perpendiculares a Λ^{\cap} que pasa por el punto (4,2,-1).

Tengamos presentes además las ecuaciones que definen los planos originales del problema:

$$\Pi \to 4x - y + 3z = 2 \tag{1}$$

$$\Pi' \to x + 2y - z = 6 \tag{2}$$

Vamos a referirnos frecuentemente a estas ecuaciones como la ecuación (1) y la ecuación (2)

2.2. Método

- 1. Primero vamos a encontrar la intersección Λ^{\cap} de los dos planos: Π y Π' :
- 2. Luego vamos a encontrar la ecuación de los planos ortogonales a Λ^{\cap} y entre ellos seleccionar Π^{\perp} , el que pasa por (4,2,-1).

2.3. La intersección Λ^{\cap}

Como la intersección Λ^{\cap} está en ambos planos Π y Π' sus puntos deben cumplir simultáneamente con las ecuaciones que los definen, es decir:

$$\Lambda^{\cap}=(x,y,z)\in\mathbb{R}^3$$
 para los cuales se cumplen
$$\begin{cases} 4x-y+3z=2\\ 2x+2y-z=6 \end{cases}$$

Eso es una recta. Vamos a expresar la recta en forma paramétrica. Buscamos entonces $x = f_x(\lambda)$, $y = f_y(\lambda)$ y $z = f_z(\lambda)$ a partir de la anterior restricción que nos permitan calcular los puntos de esta recta intersección Λ^{\cap} en función de un parámetro λ .

2.3.1. Operaciones para poner x, y y z en función de λ . Obtención de la forma paramétrica de la recta de intersección Λ^{\cap} .

Recordemos que partimos de

$$\Lambda^{\cap} = (x, y, z) \in \mathbb{R}^3$$
 para los cuales se cumplen
$$\begin{cases} 4x - y + 3z = 2\\ 2x + 2y - z = 6 \end{cases}$$

Decidimos tomar λ como parámetro y hacemos $\lambda = x$. Obtenemos así directamente la primera de las ecuaciones paramétricas de Λ^{\cap} , la de x:

$$x = \lambda \tag{3}$$

Por la ecuación (2)
$$2x+2y-z=6$$
 Despejamos
$$z \qquad \qquad z=2x+2y-6$$
 Usando (3)
$$z=2\lambda+2y-6 \qquad \qquad (4)$$

Por la ecuación (1)
$$4x - y + 3z = 2$$
 Usando (3)
$$4\lambda - y + 3z = 2$$
 Usando (4)
$$4\lambda - y + 3(2\lambda + 2y - 6) = 2$$
 Distribuyendo
$$4\lambda - y + 6\lambda + 6y - 18 = 2$$
 Agrupando y sumando
$$10\lambda + 5y - 18 = 2$$
 Aislando
$$y$$

$$5y = 2 + 18 - 10\lambda$$
 Agrupando y sumando
$$5y = -10\lambda + 20$$
 Dividiendo por 5
$$y = -2\lambda + 4$$
 (5)

Sólo queda z para resolver

Por la ecuación (4)
$$z = 2\lambda + 2y - 6$$
Usando (5)
$$z = 2\lambda + 2(-2\lambda + 4) - 6$$
Distribuyendo
$$z = 2\lambda - 4\lambda + 8 - 6$$
Agrupando y sumando
$$z = -2\lambda + 2 \tag{6}$$

Resumiendo: en las ecuaciones (3), (5) y (6) hemos hallado la forma de obtener las coordenadas de los puntos de Λ^{\cap} en función del parámetro λ :

$$x = \lambda$$

$$y = -2\lambda + 4$$

$$z = -2\lambda + 2$$

Entonces
$$\Lambda^{\cap}=(x,y,z), \lambda \in \mathbb{R}^3$$
 para los cuales se cumple: $\forall \lambda \begin{cases} x=\lambda \\ y=-2\lambda+4 \\ z=-2\lambda+2 \end{cases}$

Por fin llegamos a nuestra recta intersección Λ^{\cap} :

$$\Lambda^{\cap} = \{ (x, y, z) \in \mathbb{R}^3 \mid \forall \lambda \in \mathbb{R} : (x = \lambda, y = -2\lambda + 4, z = -2\lambda + 2) \}$$
 (7)

2.3.2. Forma vectorial de Λ^{\cap} en función de λ

Si tomamos $\vec{x} = (x, y, z)$, $\vec{u} = (0, 4, 2)$ y $\vec{v} = (1, -2, -2)$ el conjunto de ecuaciones anterior se puede expresar como:

$$\vec{x} = \vec{u} + \lambda \vec{v}$$

O, en la extraña notación de los profesores de tu alumna $(\vec{x} = |\vec{v}| + \vec{u})$ ':

$$\vec{x} = [(1, -2, -2)] + (0, 4, 2)$$

2.3.3. Geogebra me da otra ecuación

Si. Claro. Sería una casualidad que de la misma. Todo depende de una decisión personal: de donde sacamos el parámetro λ . Lo que hizo Geogebra es tomar z como parámetro, no x como -tan inteligentemente- hiciste vos.

La recta que obtiene Geogebra al intersecar los planos Π y Π' es $(1,67,0,67,-1,33) + \lambda(-5,10,10)$ que se puede expresar como $(\frac{5}{3},\frac{2}{3},-\frac{4}{3}) + \lambda(-5,10,10)$.

Analicemos esta situación. En primer lugar, como siempre, pongamos nombres a las cosas:

$$\vec{x} = (x, y, z), \vec{u} = (0, 4, 2), \vec{v} = (1, -2, -2), \vec{w} = (\frac{5}{3}, \frac{2}{3}, -\frac{4}{3}), \vec{z} = (-5, 10, 10) \text{ y } \lambda_1, \lambda_2 \in \mathbb{R}$$

Nuestra recta Λ^{\cap} : $\vec{x} = \vec{u} + \lambda_1 \vec{v}$ (8)

y la de Geogebra
$$\Lambda^G$$
: $\vec{x} = \vec{w} + \lambda_2 \vec{z}$ (9)

Pero ambas ecuaciones (8) y (9) aluden a la misma recta. Es decir que $\Lambda^{\cap} = \Lambda^{G}$.

¿Porqué? Porque se cumplen dos condiciones:

La primera condición es que **cada vector director es combinación lineal del otro**. Si hacemos las cuentas veremos que $\vec{v} = -\frac{1}{5}\vec{z}$. Es decir que ambos están "apuntando a la misma dirección" (Aunque con distinto sentido, pero esto es irelevante, sólo un poco molesto).

La segunda condición es que **ambos puntos de paso** \vec{u} y \vec{w} **están en la misma recta**. Si restamos \vec{u} a \vec{w} obtenemos $\vec{d} = (\frac{5}{3}, -\frac{10}{3}, -\frac{10}{3})$ que es el vector director de la recta que ambos definen. A simple vista encontramos que:

$$\vec{d}$$
 es una combinacion lineal de \vec{v}
$$\vec{d} = \frac{5}{3} \vec{v}$$

 \vec{d} es tambien es una combinacion lineal de \vec{z} $\vec{d} = -\frac{1}{3}\vec{z}$

Es decir que la diferencia entre los puntos de paso se puede expresar como una combinación lineal de cualquiera de los directores.

Este resultado era una condición obligatoria para llegar a la conclusión de que ambos puntos están en Λ^{\cap} y también en Λ^G . Y así poder afirmar que $\Lambda^{\cap} = \Lambda^G$.

Gráficamente lo podemos ver en https://www.geogebra.org/3d/a3scf54u.

2.3.4. Verificación de que Λ^{\cap} es realmente la intersección entre Π y Π'

Sabemos que para cada x, para cada y y para cada z en Λ^{\cap} también se cumplen las condiciones impuestas por los planos $\Pi \to 4x - y + 3z = 2$ y $\Pi' \to 2x + 2y - z = 6$. Esto se debe, recordemos, al hecho de que, al ser Λ^{\cap} la intersección entre dichos planos sus puntos están en ambos. Cualquiera que sea λ se deben cumplir, entonces, todas las ecuaciones involucradas en las definiciones de Λ^{\cap} , Π y Π' .

Comencemos verificando el plano $\Pi \to 4x - y + 3z = 2$. Usando la definición hallada de Λ^{\cap} podemos reemplazar las coordenadas por sus correspondientes funciones de λ :

$$4x - y + 3z = 2$$

$$4(\lambda) - (-2\lambda + 4) + 3(-2\lambda + 2) = 2$$

$$4\lambda + 2\lambda - 6\lambda + 6 - 4 = 2$$

$$2 = 2$$

3

El reemplazo de las coordenadas en el plano $\Pi \to 4x-y+3z=2$ por las funciones de Λ^{\cap} nos llevó por buen camino. Ahora podemos afirmar, sin temor a equivocarnos, que 2=2. ¿Podemos decir lo mismo en el caso del plano $\Pi' \to 2x+2y-z=6$? Veamos:

$$2x + 2y - z = 6$$
$$2(\lambda) + 2(-2\lambda + 4) - (-2\lambda + 2) = 6$$
$$2\lambda - 4\lambda + 8 + 2\lambda - 2 = 6$$
$$2\lambda - 4\lambda + 2\lambda + 8 - 2 = 6$$
$$6 = 6$$

¡Perfecto! Matamos tres pájaros de un tiro: No solo verificamos que $\Lambda^{\cap} = \Pi \cap \Pi'$ sino que además aprendimos que 2 = 2 y 6 = 6.

2.3.5. Conclusión de la búsqueda de la intersección Λ^{\cap}

$$\Lambda^{\cap} = \{(x, y, z) \in \mathbb{R}^3 \mid \forall \lambda \in \mathbb{R} : (x = \lambda, y = -2\lambda + 4, z = -2\lambda + 2)\}$$

2.4. Plano tangente Π^{\perp} a la intersección Λ^{\cap}

2.4.1. Obtención de la ecuación que define a Π^{\perp}

Podemos expresar nuestra recién encontrada Λ^{\cap} de la siguiente manera, si tomamos $\vec{x}=(x,y,z), \vec{u}=(0,4,2)$ y $\vec{v}=(1,-2,-2)$:

$$\vec{x} = \vec{u} + \lambda \vec{v}$$

O, en la extraña notación de los profesores de tu alumna $(\vec{x} = [\vec{v}] + \vec{u})$ ':

$$\vec{x} = [(1, -2, -2)] + (0, 4, 2)$$

Prestemos atención al hecho de que $\vec{v} = (1, -2, -2)$ es el vector **director** de Λ^{\cap} y el vector **normal** a infinitos planos que llenan el espacio \mathbb{R}^3 . Esos planos tienen en común una ecuación que vamos a encontrar a continuación.

Recordemos que la ecuación general del plano es ax + by + cz = d. De ella podemos extraer el vector $\vec{c} = (a, b, c)$. Y entonces podemos expresar la ecuación general del plano como $\langle (a, b, c), (x, y, z) \rangle = d$. Si llamamos \vec{x} a (x, y, z) podemos expresar dicha ecuación como $\langle \vec{x}, \vec{c} \rangle = d$. En el origen, que es el lugar en donde d = 0, queda claro por qué el vector \vec{c} de los coeficientes se llama vector **normal** al plano.

Si buscamos un plano ortogonal a nuestra Λ^{\cap} , entonces, ya conocemos sus coeficientes (a, b, c) porque son los los valores del vector director de Λ^{\cap} que son (1, -2, -2). Es decir a = 1, b = -2 y c = -2.

Podemos reemplazarlos entonces en la ecuación general para ir avanzando en nuestra búsqueda:

$$ax + by + cz = d$$

$$(1)x + (-2)y + (-2)z = d$$

$$x - 2y - 2z = d$$

Ok. Los infinitos planos normales a Λ^{\cap} se especifican con la ecuación que tienen en común (x-2y-2z=d). Recordemos que x, y y z son las variables independientes, pueden tener cualquier valor en \mathbb{R}^3 , aunque solo aquellos valores que cumplen x-2y-2z=d hacen que el punto que definen esté en el plano determinado por un cierto valor de d.

¿Cual es, entonces, el valor de d que determina el plano Π^{\perp} buscado?

Afortunadamente, por la definición del problema ("...y que pase por (4,2,-1)"), tenemos un punto que sabemos que está en Π^{\perp} . Vamos a usarlo entonces para que queden determinados x, y y z en la ecuación de los planos ortogonales a Λ^{\cap} y así quede aislada la única incógnita, d.

$$x - 2y - 2z = d$$

$$d = x - 2y - 2z$$

$$d = (4) - 2(2) - 2(-1)$$

$$d = 4 - 4 + 2$$

$$d = 2$$

Conocemos ahora la única incógita que nos quedaba (d), sabemos ahora que su valor es 2, por lo tanto nuestro plano Π^{\perp} es:

$$\Pi^{\perp} = \{ (x, y, z) \in \mathbb{R}^3 \mid x - 2y - 2z = 2 \}$$
(10)

2.4.2. Verificación de que $\Pi^{\perp} \perp \Lambda^{\cap}$

Es directa y bastante obvia, el vector director de Λ^{\cap} es $\vec{v} = (1, -2, -2)$ que coincide con el vector normal de $\Pi^{\perp} \to x - 2y - 2z = -2$ que es (1, -2, -2).

2.4.3. Verificación de que $(4,2,-1) \in \Pi^{\perp}$

$$x - 2y - 2z = 2$$

$$(4) - 2(2) - 2(-1) = 2$$

$$4 - 4 + 2 = 2$$

$$2 = 2$$

Eso ya lo sabíamos.

2.4.4. ¿Es (4,2,-1) la intersección de Π^{\perp} y Λ^{\cap} ?

Veamos:

$$x = \lambda$$

$$y = -2\lambda + 4$$

$$z = -2\lambda + 2$$

$$x - 2y - 2z = 2$$

se tienen que cumplir todas en $\Pi^\perp \cap \Lambda^\cap$

Aislamos y encontramos el valor de λ reemplazando, en la ecuación del plano Π^{\perp} , las coordenadas por sus correspondientes funciones de λ :

$$x - 2y - 2z = 2$$

$$\lambda - 2(-2\lambda + 4) - 2(-2\lambda + 2) = 2$$

$$\lambda + 4\lambda - 8 + 4\lambda - 4 = 2$$

$$(1 + 4 + 4)\lambda = 2 + 8 + 4$$

$$9\lambda = 14$$

$$\lambda = \frac{14}{9}$$

Ahora que sabemos λ de $\Pi^{\perp} \cap \Lambda^{\cap}$ podemos obtener sus coordenadas.

$$x = \lambda$$

$$x = \frac{14}{9}$$

$$y = -2\lambda + 4$$

$$y = -2\frac{14}{9} + 4$$

$$z = -2\lambda + 2$$

$$z = -2\frac{14}{9} + 2$$

$$z = -\frac{10}{9}$$

Llamemos P_i a la intersección $\Pi^{\perp} \cap \Lambda^{\cap}$. Acabamos de obtener:

$$P_i = (\frac{14}{9}, \frac{8}{9}, -\frac{10}{9}) \tag{11}$$

¿Está bien hecha la cuenta? Veamos si $P_i \in \Pi^{\perp}$

$$x - 2y - 2z = 2$$

$$\left(\frac{14}{9}\right) - 2\left(\frac{8}{9}\right) - 2\left(-\frac{10}{9}\right) = 2$$

$$\frac{14}{9} - \frac{16}{9} + \frac{20}{9} = 2$$

$$\frac{18}{9} = 2$$

$$2 = 2$$

Efectivamente $P_i \in \Pi^{\perp}$. Por lo tanto la respuesta a la pregunta $\sharp(4,2,-1) = \Pi^{\perp} \cap \Lambda^{\cap}$? es **no**, (4,2,-1) no es la intersección de Π^{\perp} y Λ^{\cap} , ese honor le corresponde a $(\frac{14}{9}, \frac{8}{9}, -\frac{10}{9})$.

3. Respuesta

Siendo $\Pi \to 4x - y + 3z = 2$ y $\Pi' \to 2x + 2y - z = 6$ y $\Lambda^{\cap} = \Pi \cap \Pi'$.

Buscábamos $\Pi^{\perp} \mid \Pi^{\perp} \perp \Lambda^{\cap}, (4, 2, -1) \in \Pi^{\perp}.$

Lo encontramos. Es: $\Pi^{\perp} = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y - 2z = 2\}$. Está en la ecuación (10).

Misión cumplida.

Índice

1.	El p	orobler	ma	1	
2.	La solución			1	
	2.1.	Bautismos		1	
			Métod	lo	1
			La inte	ersección Λ^{\cap}	1
		2.3.1.	Operaciones para poner x, y y z en función de λ . Obtención de la forma paramétrica de la recta de intersección Λ^{\cap}	2	
		2.3.2.	Forma vectorial de Λ^\cap en función de λ	3	
		2.3.3.	Geogebra me da otra ecuación	3	
		2.3.4.	Verificación de que Λ^\cap es realmente la intersección entre Π y Π'	3	
		2.3.5.	Conclusión de la búsqueda de la intersección Λ^\cap	4	
	2.4.	Plano	tangente Π^{\perp} a la intersección Λ^{\cap}	4	
		2.4.1.	Obtención de la ecuación que define a Π^\perp	4	
		2.4.2.	Verificación de que $\Pi^\perp \perp \Lambda^\cap$	5	
		2.4.3.	Verificación de que $(4,2,-1)\in\Pi^\perp$	5	
		2.4.4.	¿Es (4,2,-1) la intersección de Π^{\perp} y $\Lambda^{\cap}?$	5	
3.	Res	puesta		6	