Snarks Fluxo-críticos

Breno L. Freitas

2013

Teorema das 4 cores

Todo grafo planar sem arestas de corte admite uma 4-coloração de suas faces.

Teorema das 4 cores

Todo grafo planar sem arestas de corte admite uma 4-coloração de suas faces.

 Em 1880, Tait acreditou ter provado o Teorema das 4 cores por ter provado sua equivalência com: Todo grafo planar cúbico e 3-aresta-conexo tem 3-coloração de arestas.

• Tait acreditava que todo grafo planar cúbico 3-aresta-conexo era hamiltoniano e assim ter provado o Teorema das 4 Cores.

- Tait acreditava que todo grafo planar cúbico 3-aresta-conexo era hamiltoniano e assim ter provado o Teorema das 4 Cores.
- Contra-exemplo:

Grafo de Tutte: cúbico planar 3-conexo e não-hamiltoniano

 Com isso começa o estudo de uma classe interessante de grafos: os snarks.

- Com isso começa o estudo de uma classe interessante de grafos: os snarks.
- Um snark é um grafo cúbico, sem arestas de corte e sem 3-coloração de arestas.

- Com isso começa o estudo de uma classe interessante de grafos: os snarks.
- Um snark é um grafo cúbico, sem arestas de corte e sem 3-coloração de arestas.
- Para evitar casos triviais, os snarks são usualmente restritos a terem cintura no mínimo 5, serem conexos e ciclicamente 4-aresta-conexos (A. Cavicchioli et al., 1998).

- Com isso começa o estudo de uma classe interessante de grafos: os snarks.
- Um snark é um grafo cúbico, sem arestas de corte e sem 3-coloração de arestas.
- Para evitar casos triviais, os snarks são usualmente restritos a terem cintura no mínimo 5, serem conexos e ciclicamente 4-aresta-conexos (A. Cavicchioli et al., 1998).
- Grafo de Petersen foi o primeiro snark descoberto:

Snarks

- O nome, proposto por Martin Gardner, referencia o poema de Lewis Carroll A Caçada do Snark.
- Na obra, o Snark era uma criatura muito rara e também desconhecida, daí o nome para tais grafos: a grande dificuldade de encontrá-los.

Snarks

- O nome, proposto por Martin Gardner, referencia o poema de Lewis Carroll A Caçada do Snark.
- Na obra, o Snark era uma criatura muito rara e também desconhecida, daí o nome para tais grafos: a grande dificuldade de encontrá-los.
- Descobertas:
 - 1898 Petersen -|V(G)| = 10
 - 1946 Blanuša |V(G)| = 18
 - 1948 Descartes -|V(G)| = 210
 - 1948 Szekeres |V(G)| = 50
 - 1973 Watkins -|V(G)| = 50
 - 1975 Flower-Snarks (Uma família infinita descoberta por Isaacs)

Flower-Snark J_7

Snarks

- A importância dos snarks vem em parte de que provar certas conjecturas para estes grafos é suficiente, algumas são:
 - Cobertura dupla por ciclos
 - Conjectura dos 5-fluxos de Tutte

Conjecturas de Tutte

- Todo grafo sem aresta de corte e sem 3-cortes tem 3-fluxo
- Todo grafo sem aresta de corte e sem minor de Petersen tem 4-fluxo
- Todo grafo sem aresta de corte tem 5-fluxo

k-fluxo balanceado (k \geq 2)

É uma 2-tupla $\langle D, \varphi \rangle$, onde D é um direcionamento das arestas de um grafo G e $\varphi := E(G) \to \{1, \cdots, k-1\}$ uma função de peso para as arestas de G, tal que o fluxo líquido $\varphi(v) = 0, v \in V(G)$.

k-fluxo balanceado (k \geq 2)

É uma 2-tupla $\langle D, \varphi \rangle$, onde D é um direcionamento das arestas de um grafo G e $\varphi := E(G) \to \{1, \cdots, k-1\}$ uma função de peso para as arestas de G, tal que o fluxo líquido $\varphi(v) = 0, v \in V(G)$.

Índice cromático

O índice cromático de um grafo G, $\chi'(G)$ é o número mínimo de cores necessárias para colorir E(G) tal que arestas incidentes em um dado vértice tenham cores distintas.

k-fluxo balanceado (k \geq 2)

É uma 2-tupla $\langle D, \varphi \rangle$, onde D é um direcionamento das arestas de um grafo G e $\varphi := E(G) \to \{1, \cdots, k-1\}$ uma função de peso para as arestas de G, tal que o fluxo líquido $\varphi(v) = 0, v \in V(G)$.

Índice cromático

O índice cromático de um grafo G, $\chi'(G)$ é o número mínimo de cores necessárias para colorir E(G) tal que arestas incidentes em um dado vértice tenham cores distintas.

Teorema de Tutte

Todo grafo cúbico tem 3-coloração de arestas se e somente se tem 4-fluxo.

k-fluxo-crítico ($k \ge 2$)

k-fluxo-crítico ($k \ge 2$)

Um grafo G é dito **k-fluxo-crítico**, se G não admite k-fluxo, mas $G \setminus e, e \in E(G)$ admite. Além, se G é k-fluxo-crítico, então $G - e, e \in E(G)$ adimite k-fluxo.

 Todo contra-exemplo mínimo para a conjectura dos 5-fluxos é um snark não-4-fluxo-crítico.

k-fluxo-crítico ($k \ge 2$)

- Todo contra-exemplo mínimo para a conjectura dos 5-fluxos é um snark não-4-fluxo-crítico.
- Além: com cintura no mínimo 11 e ciclicamente 6-aresta conexo. (Kochol, 2010)

k-fluxo-crítico ($k \ge 2$)

- Todo contra-exemplo mínimo para a conjectura dos 5-fluxos é um snark não-4-fluxo-crítico.
- Além: com cintura no mínimo 11 e ciclicamente 6-aresta conexo. (Kochol, 2010)
- Todo Flower-Snark é 4-fluxo-crítico (C. N. da Silva et al., 2012)

k-fluxo-crítico ($k \ge 2$)

- Todo contra-exemplo mínimo para a conjectura dos 5-fluxos é um snark não-4-fluxo-crítico.
- Além: com cintura no mínimo 11 e ciclicamente 6-aresta conexo. (Kochol, 2010)
- Todo Flower-Snark é 4-fluxo-crítico (C. N. da Silva et al., 2012)
- Snarks hipohamiltonianos são 4-fluxo-críticos?

Hipohamiltonicidade

Um grafo G é dito **hipohamiltoniano** se G não é hamiltoniano, mas $G - v, v \in V(G)$ é.

Hipohamiltonicidade

Um grafo G é dito **hipohamiltoniano** se G não é hamiltoniano, mas $G - v, v \in V(G)$ é.

Grafos bicríticos

Um grafo G é dito **bicrítico** se $\chi'(G) = 4$, mas $\chi'(G - \{v, u\}) = 3, \{v, u\} \in V(G)$.

Hipohamiltonicidade

Um grafo G é dito **hipohamiltoniano** se G não é hamiltoniano, mas $G - v, v \in V(G)$ é.

Grafos bicríticos

Um grafo G é dito **bicrítico** se $\chi'(G) = 4$, mas $\chi'(G - \{v, u\}) = 3, \{v, u\} \in V(G)$.

Teorema de Steffen*

Todo snark hipohamiltoniano é bicrítico

Snarks Hipohamiltonianos

• Existem vários snarks hipohamiltonianos conhecidos.

Snarks Hipohamiltonianos

- Existem vários snarks hipohamiltonianos conhecidos.
- A maioria dos snarks nomeados mais famosos são hipohamiltonianos:
 - Grafo de Petersen
 - Primeiro e segundo Blanuša
 - Flower-snarks
 - Primeiro e segundo Loupekine
 - Primeiro e segundo Celmins-Swart
 - Double-star
 - Szekeres

Snarks Hipohamiltonianos e 4-fluxo-críticos

• Todo snark hipohamiltoniano é 4-fluxo-crítico?

Snarks Hipohamiltonianos e 4-fluxo-críticos

- Todo snark hipohamiltoniano é 4-fluxo-crítico?
- Sim!

Snarks Hipohamiltonianos e 4-fluxo-críticos

- Todo snark hipohamiltoniano é 4-fluxo-crítico?
- Sim!

Definições

- Sejam S um snark hipohamiltoniano e v e u dois vértices de S adjacentes pela aresta e.
- Sejam u_1 e u_2 os vértices adjacentes a u diferentes de v e similarmente v_1 e v_2 os vértices adjacentes a v diferentes de u.
- Seja $H := S \{v, u\}.$

Teorema de Steffen* para vértices adjacentes

• S - v claramente possui 3 vértices de grau 2 (um dos quais é u) e é hamiltoniano.

Teorema de Steffen* para vértices adjacentes

- S v claramente possui 3 vértices de grau 2 (um dos quais é u) e é hamiltoniano.
- Por sua vez em H, temos um caminho hamiltoniano ímpar P, com extremos em u_1 e u_2 .

Teorema de Steffen* para vértices adjacentes

- S v claramente possui 3 vértices de grau 2 (um dos quais é u) e é hamiltoniano.
- Por sua vez em H, temos um caminho hamiltoniano ímpar P, com extremos em u_1 e u_2 .
- Pelo Teorema de Steffen*, S é bicrítico, e a 3-coloração é dada 2-colorindo P alternando as cores e colorindo E(H) E(P) (que formam um emparelhamento) com a terceira cor.

Todo snark hipohamiltoniano é 4-fluxo-crítico (I/IV)

• Suponhamos um grafo qualquer G.

Todo snark hipohamiltoniano é 4-fluxo-crítico (I/IV)

- Suponhamos um grafo qualquer G.
- Sabemos que se G é 4-fluxo-crítico, então $G-e, e \in E(G)$ admite 4-fluxo.

Todo snark hipohamiltoniano é 4-fluxo-crítico (I/IV)

- Suponhamos um grafo qualquer G.
- Sabemos que se G é 4-fluxo-crítico, então $G-e, e \in E(G)$ admite 4-fluxo.
- Além, sabemos que G e admite k-fluxo se e somente se $(G e) \setminus \{v_1, v_2\}$ com $\{v_1, v_2\} \in V(G)$ admite k-fluxo.

- Suponhamos um grafo qualquer G.
- Sabemos que se G é 4-fluxo-crítico, então $G-e, e \in E(G)$ admite 4-fluxo.
- Além, sabemos que G e admite k-fluxo se e somente se $(G e) \setminus \{v_1, v_2\}$ com $\{v_1, v_2\} \in V(G)$ admite k-fluxo.
- Provaremos então, que para qualquer snark hipohamiltoniano a remoção de uma aresta implica na obtenção de um grafo que admite 4-fluxo.

Definições

- Sejam S um snark hipohamiltoniano e v e u dois vértices de S adjacentes pela aresta e.
- Sejam u_1 e u_2 os vértices adjacentes a u diferentes de v e similarmente v_1 e v_2 os vértices adjacentes a v diferentes de u.
- Sejam $G := (S e) \setminus \{v, u\} \in H := S \{v, u\}.$

• Notemos que $G \notin H + u_1u_2 + v_1v_2$.

- Notemos que $G \in H + u_1u_2 + v_1v_2$.
- Sabemos que H tem 3-colaração, como vimos anteriormente, pelo Teorema de Steffen*: "a 3-coloração é dada 2-colorindo P (caminho hamiltoniano ímpar) alternando as cores e colorindo E(H) – E(P) (que formam um emparelhamento) com a terceira cor".

- Notemos que $G \in H + u_1u_2 + v_1v_2$.
- Sabemos que H tem 3-colaração, como vimos anteriormente, pelo Teorema de Steffen*: "a 3-coloração é dada 2-colorindo P (caminho hamiltoniano ímpar) alternando as cores e colorindo E(H) E(P) (que formam um emparelhamento) com a terceira cor".
- Logo, a 3-coloração de G é a mesma de H mais a coloração das arestas u_1u_2 e v_1v_2 .

- Notemos que $G \notin H + u_1u_2 + v_1v_2$.
- Sabemos que H tem 3-colaração, como vimos anteriormente, pelo Teorema de Steffen*: "a 3-coloração é dada 2-colorindo P (caminho hamiltoniano ímpar) alternando as cores e colorindo E(H) E(P) (que formam um emparelhamento) com a terceira cor".
- Logo, a 3-coloração de G é a mesma de H mais a coloração das arestas u_1u_2 e v_1v_2 .
- Notemos que u₁ e u₂ em H tem duas arestas incidentes, uma com a primeira cor de P (por ser ímpar) e a outra com a terceira cor do emparelhamento.

 Já que u₁ e u₂ são extremos de P em H, a aresta u₁u₂ torna P um ciclo hamiltoniano, logo basta colorí-la com a segunda cor de P.

- Já que u₁ e u₂ são extremos de P em H, a aresta u₁u₂ torna P um ciclo hamiltoniano, logo basta colorí-la com a segunda cor de P.
- A aresta v₁v₂ por sua vez, é incidente em vértices de grau 2 em H que fazem parte de P. Logo, como tanto v₁ quanto v₂ tem arestas incidentes das duas cores de P, basta que coloramos esta com a terceira cor, finalizando a 3-coloração de G.

- Já que u₁ e u₂ são extremos de P em H, a aresta u₁u₂ torna P um ciclo hamiltoniano, logo basta colorí-la com a segunda cor de P.
- A aresta v₁v₂ por sua vez, é incidente em vértices de grau 2 em H que fazem parte de P. Logo, como tanto v₁ quanto v₂ tem arestas incidentes das duas cores de P, basta que coloramos esta com a terceira cor, finalizando a 3-coloração de G.
- Como G tem 3-coloração de arestas, G admite 4-fluxo, logo, S-e também admite.

- Já que u₁ e u₂ são extremos de P em H, a aresta u₁u₂ torna P um ciclo hamiltoniano, logo basta colorí-la com a segunda cor de P.
- A aresta v₁v₂ por sua vez, é incidente em vértices de grau 2 em H que fazem parte de P. Logo, como tanto v₁ quanto v₂ tem arestas incidentes das duas cores de P, basta que coloramos esta com a terceira cor, finalizando a 3-coloração de G.
- Como G tem 3-coloração de arestas, G admite 4-fluxo, logo, S-e também admite.
- E como, $S e, e \in E(S)$ admite 4-fluxo, e por definição, S não admite, todo snark hipohamiltoniano é 4-fluxo-crítico.

Snarks Hipohamiltonianos e 4-fluxo-críticos

• Todo snark 4-fluxo-crítico é hipohamiltoniano?

Snarks Hipohamiltonianos e 4-fluxo-críticos

- Todo snark 4-fluxo-crítico é hipohamiltoniano?
- Não! Contra-exemplos em 26 vértices de cintura ≥ 5:

Estatísticas

n	cintura	snarks 4-fluxo-críticos	snarks hipohamiltonianos
10	≥ 4	1	1
18	≥ 4	2	2
20	≥ 4	1	1
22	≥ 4	2	2
24	≥ 4	0	0
26	≥ 5	111	95
28	≥ 6	1	1

Observações finais

 O teorema apresentado mostra que nenhum snark que seja hipohamiltoniano é contra-exemplo para a Conjectura dos 5-fluxos.

Observações finais

- O teorema apresentado mostra que nenhum snark que seja hipohamiltoniano é contra-exemplo para a Conjectura dos 5-fluxos.
- \bullet É possível estender as estatísticas para todas as cintura \geq 4, por curiosidades estatísticas.

Observações finais

- O teorema apresentado mostra que nenhum snark que seja hipohamiltoniano é contra-exemplo para a Conjectura dos 5-fluxos.
- É possível estender as estatísticas para todas as cintura

 4, por curiosidades estatísticas.
- O estudo mais aprofundado das estruturas de certos snarks, aliado com outras descobertas, pode ajudar a compreender melhor os contra-exemplos mínimos para a Conjectura dos 5-fluxos.