1. test iz Uvoda v geometrijsko topologijo

10. 4. 2018

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna ziroma napačna .

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

2. naloga (5 točk)

Prostor $\mathcal{C}(\mathbb{R}, \mathbb{R})$ opremimo s kompaktno odprto topologijo. Naj bo $A = \{f \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid \text{obstaja } a \in \mathbb{R}, \text{ da je } \lim_{x \to \infty} f(x) = a\}.$

Topološka grupa G je T_2 natanko tedaj, ko obstaja $g \in G$, da je $\{g\}$ zaprta množica.

- 1. Ali je $A \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$ odprta?
- 2. Kaj je zaprtje množice $A \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$?
- 3. Ali je $A \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$ povezana s potmi?
- 4. Ali je preslikava $F: A \to \mathbb{R}$, podana s predpisom $F(f) = \lim_{x \to \infty} f(x)$, zvezna?
- 5. Ali je preslikava $F: A \to \mathbb{R}$, podana s predpisom $F(f) = \lim_{x \to \infty} f(x)$, odprta?

3. naloga (5 točk)

Naj bo $X = (\mathbb{R} \times \{0\}) \cup ((-\infty, -1] \times [0, 1]) \cup ([1, \infty) \times [0, 1]).$

- 1. Naj bo $(x,y) \sim (x',y')$ natanko tedaj, ko je (x,y) = (x',y') ali $(|x| = |x'| \ge 1 \text{ in } y = y')$. Poišči podprostor evklidskega prostora, ki je homeomorfen X/\sim .
- 2. Naj bo $A = ((-\infty, -2] \times [0, 1]) \cup ([2, \infty) \times [0, 1])$ Poišči podprostor evklidskega prostora, ki je homeomorfen X/A.