Python - Marketing Analytics

February 5, 2025

1 Retail Marketing Analytics

By Hiba Farhan

1.0.1 Import Packages

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from causalimpact import CausalImpact
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
from imblearn.over_sampling import SMOTE
from sklearn.cluster import KMeans
from scipy import stats
from sklearn.ensemble import RandomForestClassifier
import statsmodels.api as sm
```

1.1 Load Data Set

```
[2]: campaigns_df = pd.read_csv('marketing_campaigns_data.csv')
sales_df = pd.read_csv('marketing_sales_data.csv')
```

1.2 Understand Data

```
[3]: campaigns_df

# Marketing Campaigns Dataset (500 rows, 11 columns)

# Contains information about marketing campaigns
```

```
[3]:
          campaign_id ad_platform
                                    impressions
                                                 clicks conversions
                                                                          spend \
                 1361
                                         281966
                                                  25262
                                                                  366
                                                                        6177.57
                        Instagram
                 1073
                                                                      32400.49
     1
                         Facebook
                                         316468
                                                  11546
                                                                  684
     2
                 1374 Google Ads
                                         388467
                                                  31963
                                                                 1975
                                                                       11585.87
     3
                 1155
                         LinkedIn
                                         321255
                                                  29269
                                                                 2106 31359.81
```

4	1104	${\tt LinkedIn}$	481326	23650	3194	32859.85
	•••	•••				
495	1106	Snapchat	107492	3541	3774	48863.22
496	1270	Snapchat	234074	605	592	6425.31
497	1348	Google Ads	306010	9578	895	21704.87
498	1435	Instagram	401743	25503	3653	3059.21
499	1102	Instagram	272320	6590	3086	37255.30
		_				
	target_audienc	e campaign_	objective dev	rice_type	start_date	end_date
0	Retargetin	g Sales (Conversion	Tablet	2024-10-09	2024-12-31
1	New Customer	s Vi	ldeo Views	Mobile	2024-08-16	2024-12-29
2	Millennial	s Sales (Conversion	Tablet	2024-08-14	2025-01-16
3	Millennial	s Sales (Conversion	Desktop	2024-09-26	2025-01-01
4	Millennial	s Sales (Conversion	Mobile	2024-08-22	2025-01-21
	•••			•••		•••
495	Gen	Z Brand	Awareness	Mobile	2024-09-13	2024-11-24
496	Retargetin	g Sales (Conversion	Desktop	2024-10-02	2025-01-19
497	Retargetin	g Brand	Awareness	Tablet	2024-09-20	2024-12-14
498	Retargetin	ıg Re	etargeting	Mobile	2024-08-11	2025-01-01
499	Millennial	_	ldeo Views	Tablet	2024-08-08	2024-11-06

[500 rows x 11 columns]

[4]: sales_df

Marketing Sales Dataset (100,000 rows, 15 columns)
Contains transactional sales data linked to marketing campaigns

[4]:	transaction_id	customer_id	campaign_id	purchase_date	sales_amount	\
0	500000	29961	1140	2024-09-29	421.94	
1	500001	20002	1159	2024-11-09	32.99	
2	500002	28397	1182	2025-01-23	250.22	
3	500003	25951	1361	2024-10-28	21.10	
4	500004	25626	1026	2024-12-09	372.30	
•••	•••	•••	•••	•••	•••	
99995	599995	22298	1375	2024-08-15	428.83	
99996	599996	26044	1229	2024-08-15	87.10	
99997	599997	23131	1251	2024-10-25	76.04	
99998	599998	27236	1456	2025-01-23	41.27	
99999	599999	27620	1405	2024-10-28	138.62	
	nmodust id		nr	aduct nama nurc	haga channal	\
0	product_id	category	product_name purchase_c		-	\
0	9026	Automotive		ow Brother	In-Store	
1	9038	Sports	Do	og Several	\mathtt{Online}	
2	9071	Fashion	Letter Sell (Online	
3	9000 Hea	alth & Beauty		Clear Sit	Online	
4	9013	Sports	roT	ward Begin	In-Store	

```
99995
              9058
                                       International Account
                                                                        In-Store
                          Automotive
99996
              9071
                             Fashion
                                                     Free Kid
                                                                        In-Store
99997
              9014
                                Home
                                                   Firm Heavy
                                                                        In-Store
99998
              9049
                             Fashion
                                                     Word Win
                                                                        In-Store
99999
              9053
                              Sports
                                          Government Perform
                                                                          Online
       discount_applied repeat_customer
                                            time_since_last_purchase (days)
0
                                                                            91
                       10
                                       Yes
1
                       10
                                       Yes
                                                                            75
2
                       0
                                        No
                                                                           136
3
                       0
                                       Yes
                                                                            53
4
                       20
                                        No
                                                                            89
99995
                      15
                                       Yes
                                                                             0
99996
                       5
                                        No
                                                                            80
                       5
                                                                             3
99997
                                       Yes
                       0
                                        No
                                                                           113
99998
99999
                      15
                                       Yes
                                                                            67
       basket_size payment_method
                                       location
0
                  4
                          Gift Card
                                        Calgary
1
                  2
                        Credit Card
                                      Vancouver
2
                  2
                          Gift Card
                                      Vancouver
3
                  3
                         Debit Card
                                      Vancouver
4
                  1
                         Debit Card
                                        Toronto
99995
                  3
                               Cash
                                        Toronto
99996
                  3
                       Credit Card
                                     Vancouver
99997
                  3
                               Cash
                                         Ottawa
99998
                  2
                          Gift Card
                                        Toronto
                  4
99999
                          Gift Card
                                        Calgary
```

[100000 rows x 15 columns]

1.3 Clean up data

```
[5]: # Convert dates
    campaigns_df["start_date"] = pd.to_datetime(campaigns_df["start_date"])
    campaigns_df["end_date"] = pd.to_datetime(campaigns_df["end_date"])
    sales_df["purchase_date"] = pd.to_datetime(sales_df["purchase_date"])

# Check Data Types
    campaigns_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 11 columns):

```
Column
     #
                             Non-Null Count Dtype
         _____
                             _____
         campaign_id
                             500 non-null
                                             int64
     0
     1
         ad_platform
                             500 non-null
                                             object
     2
         impressions
                             500 non-null
                                             int64
     3
         clicks
                             500 non-null
                                             int64
     4
         conversions
                             500 non-null
                                             int64
     5
         spend
                             500 non-null
                                             float64
                             500 non-null
     6
         target_audience
                                             object
     7
         campaign_objective 500 non-null
                                             object
     8
         device_type
                             500 non-null
                                             object
                             500 non-null
                                             datetime64[ns]
         start_date
                                             datetime64[ns]
     10
         end_date
                             500 non-null
    dtypes: datetime64[ns](2), float64(1), int64(4), object(4)
    memory usage: 43.1+ KB
[6]: # Check Data Types
    sales_df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 100000 entries, 0 to 99999
    Data columns (total 15 columns):
         Column
                                          Non-Null Count
                                                           Dtype
         ----
                                          _____
     0
         transaction id
                                          100000 non-null int64
     1
         customer_id
                                          100000 non-null int64
     2
                                          100000 non-null int64
         campaign_id
                                          100000 non-null datetime64[ns]
     3
         purchase_date
         sales_amount
                                          100000 non-null float64
     5
                                          100000 non-null int64
         product_id
     6
                                          100000 non-null object
         category
     7
         product_name
                                          100000 non-null object
                                          100000 non-null object
         purchase_channel
                                          100000 non-null int64
         discount applied
        repeat_customer
                                          100000 non-null object
     10
         time since last purchase (days)
                                          100000 non-null int64
         basket size
                                          100000 non-null int64
     12
                                          100000 non-null object
     13 payment_method
     14 location
                                          100000 non-null object
    dtypes: datetime64[ns](1), float64(1), int64(7), object(6)
    memory usage: 11.4+ MB
[7]: # Check missing values
    print("\nMissing values in Campaigns:\n", campaigns_df.isnull().sum())
    print("\nMissing values in Sales:\n", sales_df.isnull().sum())
```

Missing values in Campaigns: campaign_id 0

```
impressions
                           0
    clicks
                           0
    conversions
                           0
    spend
                           0
    target_audience
                           0
    campaign_objective
                           0
    device_type
                           0
    start_date
                           0
    end_date
                           0
    dtype: int64
    Missing values in Sales:
     transaction_id
                                         0
                                        0
    customer_id
    campaign_id
                                        0
    purchase_date
                                        0
                                        0
    sales_amount
    product_id
                                        0
                                        0
    category
                                        0
    product_name
    purchase_channel
                                        0
                                        0
    discount_applied
    repeat_customer
                                        0
    time_since_last_purchase (days)
                                        0
    basket_size
                                        0
                                        0
    payment_method
                                        0
    location
    dtype: int64
[8]: # Check duplicated values
     print("\nDuplicated values in Campaigns:\n", campaigns_df.duplicated().sum())
     print("\nDuplicated values in Sales:\n", sales_df.duplicated().sum())
    Duplicated values in Campaigns:
    Duplicated values in Sales:
[9]: # Display dataset shapes
     print("\nCampaigns Data Shape:", campaigns_df.shape)
     print("\nSales Data Shape:", sales_df.shape)
    Campaigns Data Shape: (500, 11)
    Sales Data Shape: (100000, 15)
```

ad_platform

0

1.4 Exploratory Data Analysis (EDA)

Sales Trends Over Time

Insights from Visual: - Seasonal Trends: December 2024 shows a significant sales peak, likely due to holiday shopping, while early 2025 exhibits a post-holiday dip. - Sales Variability: Daily sales fluctuate, with some spikes likely driven by specific campaigns or promotions. - Actionable Insight: Focus on replicating successful December strategies and addressing dips during slower periods like early 2025.

```
[10]: # Plot sales trend over time
sales_trend = sales_df.groupby("purchase_date")["sales_amount"].sum()
plt.figure(figsize=(12, 5))
plt.plot(sales_trend.index, sales_trend.values, marker='o', linestyle='-')
plt.xlabel("Date")
plt.ylabel("Total Sales ($)")
plt.title("Sales Trend Over Time")
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```


Conversion rate by campaign

Insights from visual:

- Top Platforms: Snapchat and Google Ads have the highest average conversion rates (~25%), indicating strong performance for driving conversions.
- Low Performers: Instagram has the lowest average conversion rate, suggesting less effectiveness compared to other platforms.
- Actionable Insight: Allocate more budget and focus to high-performing platforms like

Snapchat and Google Ads while reevaluating strategies for lower-performing platforms like Instagram.

Conversion Rate Distribution

Insights from Visual: - Highly Skewed Distribution: The majority of campaigns have conversion rates clustered at the lower end (near 0–20%), with very few campaigns achieving higher conversion rates. - Outliers: Some campaigns show exceptionally high conversion rates (above 100%), indicating either niche target success or possible data anomalies that need verification. - Optimization Opportunity: Focus on analyzing and replicating the strategies behind campaigns with higher conversion rates while identifying and addressing factors leading to poor performance in low-conversion campaigns.

Click-Through Rate (CTR) Distribution

Insights from Visual:

- Skewed Distribution: Most campaigns have a CTR concentrated between 0-20%, indicating typical performance, with a long tail of higher CTRs.
- High CTR Outliers: A few campaigns have CTRs exceeding 40%, suggesting exceptionally engaging content or highly targeted campaigns.
- Optimization Opportunity: Investigate campaigns with high CTR to identify successful strategies (e.g., ad content, targeting) and apply those insights to underperforming campaigns concentrated at lower CTRs.

```
[13]: campaigns_df["CTR"] = (campaigns_df["clicks"] / campaigns_df["impressions"]) *_\cup \displaystyle 100

# Click-Through Rate (CTR) Distribution
```

```
plt.figure(figsize=(10, 5))
sns.histplot(campaigns_df["CTR"], bins=30, kde=True, color="blue")
plt.xlabel("CTR (%)")
plt.ylabel("Frequency")
plt.title("Distribution of Click-Through Rate (CTR)")
plt.grid(True)
plt.show()
```


ROAS Distribution

Insights from Visual: - Majority of Campaigns: Most campaigns have a ROAS clustered between 0 and 5, indicating moderate returns on ad spend. - High ROAS Outliers: A few campaigns achieve significantly higher ROAS values (greater than 10), indicating exceptional performance and efficient ad spending. - Actionable Insight: Investigate high-performing campaigns to identify successful strategies and replicate them, while reassessing and optimizing low-performing campaigns with ROAS close to or below 1 to ensure profitability.

```
[16]: # ROAS Calculation
    campaign_sales = sales_df.groupby("campaign_id")["sales_amount"].sum()
    campaign_spend = campaigns_df.set_index("campaign_id")["spend"]
    roas = campaign_sales / campaign_spend
    campaigns_df["ROAS"] = campaigns_df["campaign_id"].map(roas)

# ROAS Distribution
    plt.figure(figsize=(10, 5))
    sns.histplot(campaigns_df["ROAS"], bins=30, kde=True, color="purple")
```

```
plt.xlabel("ROAS")
plt.ylabel("Frequency")
plt.title("Distribution of Return on Ad Spend (ROAS)")
plt.grid(True)
plt.show()
```


High Value Customers

Visualization of High-Value Customers

- Customer Distribution
 - The majority of customers are regular customers, with high-value customers forming a smaller portion ($\sim 10\%$).
- Sales Amount Distribution

- High-value customers tend to have significantly higher transaction amounts.
- There is a wider range of sales amounts among high-value customers.
- Basket Size Comparison
 - High-value customers generally purchase more items per transaction.
 - Some high-value customers have exceptionally large basket sizes.

```
[18]: # Visualizing High-Value Customers
      # Count plot of High-Value vs. Regular Customers
      plt.figure(figsize=(8, 5))
      sns.countplot(x=sales df["high value customer"])
      plt.xticks(ticks=[0, 1], labels=["Regular Customer", "High-Value Customer"])
      plt.xlabel("Customer Type")
      plt.ylabel("Count")
      plt.title("Distribution of High-Value vs Regular Customers")
      plt.grid(axis="y")
      plt.show()
      # Sales Distribution for High-Value vs Regular Customers
      plt.figure(figsize=(10, 5))
      sns.boxplot(x=sales_df["high_value_customer"], y=sales_df["sales_amount"])
      plt.xticks(ticks=[0, 1], labels=["Regular Customer", "High-Value Customer"])
      plt.xlabel("Customer Type")
      plt.ylabel("Sales Amount ($)")
      plt.title("Sales Amount Distribution for High-Value vs Regular Customers")
      plt.grid(True)
      plt.show()
      # Basket Size Distribution for High-Value vs Regular Customers
      plt.figure(figsize=(10, 5))
      sns.boxplot(x=sales_df["high_value_customer"], y=sales_df["basket_size"])
      plt.xticks(ticks=[0, 1], labels=["Regular Customer", "High-Value Customer"])
      plt.xlabel("Customer Type")
      plt.ylabel("Basket Size")
      plt.title("Basket Size Distribution for High-Value vs Regular Customers")
      plt.grid(True)
      plt.show()
```


1.5 Build a predictive model for high-value customers

Uses Logistic Regression with SMOTE to predict high-value customers $\,$

Balances classes for better model performance

```
[19]: # Predictive Modeling: Classifying High-Value Customers
      features = ["sales_amount", "discount_applied", "basket_size",

¬"time_since_last_purchase (days)"]
      X = sales_df[features]
      y = sales_df["high_value_customer"]
      # Standardization
      scaler = StandardScaler()
      X_scaled = scaler.fit_transform(X)
      # Handle Class Imbalance with SMOTE
      smote = SMOTE(random_state=42)
      X_resampled, y_resampled = smote.fit_resample(X_scaled, y)
      # Train-Test Split
      X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, __
       →test_size=0.2, random_state=42, stratify=y_resampled)
      # Train Logistic Regression Model with Balanced Class Weights
      model = LogisticRegression(class_weight="balanced")
      model.fit(X_train, y_train)
```

```
# Predictions
y_pred = model.predict(X_test)

# Model Evaluation
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
print("Classification Report:\n", report)
```

Model Accuracy: 0.56 Classification Report:

	precision	recall	f1-score	support
0	0.56	0.54	0.55	16975
1	0.56	0.57	0.56	16975
accuracy			0.56	33950
macro avg	0.56	0.56	0.56	33950
weighted avg	0.56	0.56	0.56	33950

Random Forest Model

Insights from both models:

- Random Forest Outperforms: The Random Forest model achieves 78% accuracy, significantly higher than Logistic Regression's 56%, with better precision, recall, and F1-scores.
- Strength of Random Forest: It effectively handles non-linear relationships and class balancing, making it more reliable for predicting high-value customers.
- Recommendation: Use the Random Forest model and further optimize it with hyperparameter tuning for improved performance.

```
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, u_stest_size=0.2, random_state=42, stratify=y_resampled)

# Train Random Forest Model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# Predictions
y_pred = rf_model.predict(X_test)

# Model Evaluation
print(f"Random Forest Model Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Random Forest Model Accuracy: 0.78 Classification Report:

	precision	recall	f1-score	support
0	0.78	0.77	0.77	18002
1	0.77	0.79	0.78	18002
accuracy			0.78	36004
macro avg	0.78	0.78	0.78	36004
weighted avg	0.78	0.78	0.78	36004

Customer Segmentation (K-Means Clustering) - Customers are grouped into three segments based on sales amount and basket size. - This can help in personalized marketing and pricing strategies.

```
plt.xlabel("Average Sales Amount ($)")
plt.ylabel("Average Basket Size")
plt.title("Customer Segmentation Based on Purchase Behavior")
plt.legend(title="Customer Segment")
plt.grid(True)
plt.show()
```


Identify Repeat Customers

Repeat Purchase Rate: 99.42%

1.6 A/B Testing

Interpretation

- The p-value (0.530) is greater than 0.05, meaning we fail to reject the null hypothesis.
- This suggests that there is no statistically significant difference between the average sales amounts of In-Store and Online purchases.
- The sales averages for both platforms are very close, indicating that customers spend similar amounts regardless of the purchase channel.

```
[24]: # Perform A/B Testing on Conversion Rates for Two Major Ad Platforms
      # Identify the two most used purchase channels
      platform_counts = sales_df["purchase_channel"].value_counts()
      if len(platform_counts) >= 2:
          platform_A, platform_B = platform_counts.index[:2]
          # Extract conversion rates for each platform
          conv_rate_A = sales_df[sales_df["purchase_channel"] ==_
       →platform_A] ["sales_amount"]
          conv_rate_B = sales_df[sales_df["purchase_channel"] ==_
       →platform_B]["sales_amount"]
          # Perform independent t-test
          t_stat, p_value = stats.ttest_ind(conv_rate_A, conv_rate_B, equal_var=False)
          # Display results
          ab_test_results = {
              "Platform A": platform_A,
              "Platform B": platform_B,
              "Mean Conversion Rate A": conv rate A.mean(),
              "Mean Conversion Rate B": conv_rate_B.mean(),
              "T-Statistic": t stat,
              "P-Value": p_value
```