# Cryptographie

Cryptographie asymétrique

Alexander Schaub<sup>1</sup>

schaub.alexander@free.fr

11/12/2024

#### Dans l'épisode précédent...

- On a vu comment protéger la confidentialité d'un message...
- ... si l'émetteur et le destinataire partagent la même clé

Mais alors:

#### Dans l'épisode précédent...

- On a vu comment protéger la confidentialité d'un message...
- ... si l'émetteur et le destinataire partagent la **même** clé

#### Mais alors:

- comment partager la clé si on ne s'est jamais vu?
- comment garantir que le message n'a pas été modifié ?
- comment garantir **l'origine** du message ?

#### Parlons un peu d'Alice et de Bob...



Chiffré(clé, message)





### Et s'ils ne se sont jamais vus?



clé



Chiffré(clé, message)



### Et s'ils ne se sont jamais vus?



clé







message

# Trois services de la cryptographie asymétrique :

l'échange de clés,

le chiffrement asymétrique,

l'authenticité

# Service n°1: échange de clé



 $K_{
m priv}^B$ 







## Service n°1 : échange de clé











# Service n°1 : échange de clé



$$K_{
m priv}^B, K_{
m pub}^A$$



$$f(K_{\text{priv}}^B, K_{\text{pub}}^A) = K$$



$$K_{
m pub}^B, K_{
m pub}^A$$

$$K = f(K_{\mathrm{priv}}^A, K_{\mathrm{pub}}^B)$$

#### Echange de clés de Diffie-Hellman

Comment trouver  $f, K_{\text{priv}}$  et  $K_{\text{pub}}$  pour que cela fonctionne ?

1976: Schéma de Diffie-Hellman.

- Données partagées : p premier,  $g \in [1, p-1]$ .
- Clés privées :  $a, b \in [1, p-1]$
- Clés publiques :  $g^a[p], g^b[p]$
- Secret partagé :  $K = g^{ab}[p]$

Pourquoi ça marche ?  $(g^a)^b[p] = g^{ab}[p] = (g^b)^a[p]$ 

#### Echangeons les clés avec Diffie-Hellman











#### Echangeons les clés avec Diffie-Hellman



t



$$g^a[p] = A$$





#### Echangeons les clés avec Diffie-Hellman



b, A



$$A^b = K$$



$$K = B^a$$

## Et Eve dans tout ça ? 🕵

#### Eve connaît :

- *p*, *g*
- $A = g^{a}[p], B = g^{b}[p]$
- Doit calculer  $g^{ab}[p]$

Facile si elle pouvait calculer a à partir de  $g^a[p] \to \text{problème}$  du **logarithme discret** supposé difficile.

#### Diffie-Hellman en pratique

- Dans le corps des entiers  $modulo p : p \approx 2048$  bits  $\rightarrow$  c'est beaucoup!
- On peut faire du Diffie-Hellman dans d'autres corps : les **courbes elliptiques** (on parle de ECDH *Elliptic Curve Diffie-Hellman*)
  - ▶ il faut bien choisir ses courbes, son implémentation, etc...
  - mais la taille du corps est plus petite : entre 256 et  $\approx 500$  bits !
    - courbes elliptiques : solutions d'une équation de type  $y^2=x^3+ax+b$  dans un corps fini...

# Service n°2: le chiffrement asymétrique

#### Ou encapsulation de clé

Problème de Diffie-Hellman : protocole interactif

- Alice et Bob doivent tous deux échanger des messages avant d'établir la clé
- Parfois, ce n'est pas possible, on aimerait pouvoir utiliser un protocole plus simple

## Le chiffrement asymétrique



$$K_{
m priv}^B$$







### Le chiffrement asymétrique







### Chiffrement asymétrique : pour résumer

Dans un système de chiffrement asymétrique :

- la clé privée est secrète, la clé publique est connue de tous
- on chiffre avec la clé publiqué, on déchiffre avec la clé privée
- on peut facilement retrouver la clé **publique** à partir de la clé **privée** (mais l'inverse n'est pas possible !)

#### Chiffrement asymétrique : notation

Un système de chiffrement asymétrique se compose de:

- Quatre ensembles E, F, K(cl'es priv'ees), K'(cl'es publiques)
- D'une fonction à sens unique  $h: K \mapsto K'$
- De deux fonctions,  $f: E \times K \mapsto F, g: F \times K' \mapsto E$  telles que
  - $\rightarrow \forall x \in E, k \in K, g(f(x, h(k)), k) = x$
  - On ne doit pas pouvoir retrouver x à partir de f(x,h(k)) sans connaître k

### Le 1er algorithme de chiffrement asymétrique : RSA



Image 1: Rivest, Shamir, Adleman

#### RSA: définitions

Publié en 1977.

- Clé publique :
  - $\rightarrow n$  produit de deux grands nombre premiers p et q
  - e, un nombre quelconque premier avec (p-1)(q-1)
- Clé privée :
  - ► *n* comme précédemment
  - d inverse de e modulo (p-1)(q-1)

#### RSA: chiffrons et déchiffrons!

#### Rappels:

$$n = p \cdot q$$

$$\varphi(n) = (p-1)(q-1)$$

$$\operatorname{pgcd}(e, \varphi(n)) = 1$$

$$e \cdot d \equiv 1[\varphi(n)]$$

Pour chiffrer m < n:

• 
$$C = m^e[n]$$

Pour déchiffrer:

• 
$$m = C^d[n]$$

Pourquoi ça marche?

$$m^{e \cdot d} = m[n] ???$$

#### RSA: chiffrons et déchiffrons!

#### Rappels:

$$n = p \cdot q$$

$$\varphi(n) = (p-1)(q-1)$$

$$\operatorname{pgcd}(e, \varphi(n)) = 1$$

$$e \cdot d \equiv 1[\varphi(n)]$$

Pour chiffrer m < n:

• 
$$C = m^e[n]$$

Pour déchiffrer:

• 
$$m = C^d[n]$$

Pourquoi ça marche?

$$m^{e \cdot d} = m[n] ???$$

En fait, 
$$\forall m, m^{\varphi(n)} = 1[n]$$

Du coup, comme  $e \cdot d = 1 + k \cdot \varphi(n)$ ,
$$m^{e \cdot d}[n] = m^{1+k \cdot \varphi(n)}[n]$$

$$= m \cdot m^{k \cdot \varphi(n)}[n]$$

 $= m \cdot (m^{\varphi(n)})^k [n] = m[n]$ 

### Pourquoi c'est sûr?

Un attaquant doit pouvoir retrouver (p-1)(q-1) à partir de  $n \to \text{cela}$  revient à trouver p et q, donc de **factoriser** n.

Il existe peut-être des méthodes plus efficaces mais elle ne sont pas connues.

On considère que  $n\approx 2048$  bits confère une bonne sécurité aujourd'hui, et  $n\approx 4096$  bits confère suffisamment de sécurité pour toutes les applications usuelles.

#### Envoyons des clés!

m: clé AES = entre 128 bits et 256 bits

e: historiquement la valeur 3 était beaucoup utilisée et elle est valide

Il suffit de générer p, q, calculer n et envoyer  $m^3[n]$ !

Chiffrement asymétrique

#### Envoyons des clés!

m: clé AES = entre 128 bits et 256 bits

e: historiquement la valeur 3 était beaucoup utilisée et elle est valide

Il suffit de générer p, q, calculer n et envoyer  $m^3[n]$ !

# NE FAITES JAMAIS ÇA

 $m^3$  est plus petit que n, il suffit de prendre la racine troisième pour décrypter

## Quand est-ce que RSA est sûr?

La sécurité de RSA n'est effective uniquement pour m généré uniformément dans [1; n-1]. Pour simuler cela :

#### Le retour des paddings!

• PKCS#1 v1.5 : PS est une chaîne aléatoire (d'octets non nuls) de longueur suffisante, et on chiffre :

```
0x00 || 0x02 || PS || 0x00 || m
```

• OAEP: mieux, plus moderne, plus sûr et plus compliqué

#### Choix de e

Choix historique e=3 déconseillé (certaines attaques sont plus faciles avec e petit)

Tout le monde ou presque utilise  $e = 65537 = 2^{16} + 1$ 

#### Chiffrer avec Diffie-Hellman?

Cryptosystème de ElGamal (1985) :

On choisit p premier,  $g \in [1, p-1]$  comme paramètres plublics.

La clé privée est  $x \in [1, p-1]$  choisie uniformément.

La clé publique est  $h = g^x$ .

Le chiffré est  $(c_1, c_2) = (g^y[p], m \cdot h^y[p])$  (y choisi uniformément)

Pour déchiffrer :  $s = c_1^x = h^y[p]$  puis  $m = c_2 \cdot s^{-1}[p]$ 

Algorithme général marche aussi sur des courbes elliptiques

# Interlude : le projet!

- Groupes de 2 ou 3
- Proposition de sujet d'ici la prochaine séance
- Noté sur des présentations de 30 (?) min









$$K_{
m priv}^B, K_{
m pub}^B$$

$$K_{\mathrm{priv}}^{E}, K_{\mathrm{pub}}^{E}, K_{\mathrm{pub}}^{B}$$

K









$$K_{
m priv}^B, K_{
m pub}^B$$

$$K_{\mathrm{priv}}^{E}, K_{\mathrm{pub}}^{E}, K_{\mathrm{pub}}^{B}$$

K







$$K_{\mathrm{priv}}^{B}, K_{\mathrm{pub}}^{B}$$

$$K_{\mathrm{priv}}^{E}$$
,  $K_{\mathrm{pub}}^{E}$ ,  $K_{\mathrm{pub}}^{B}$ 

$$K, K_{\mathrm{pub}}^{\underline{E}}$$



 $Chif(K_{pub}^B, K)$ 





$$K_{\mathrm{priv}}^{B}, K_{\mathrm{pub}}^{B}$$

$$K_{\mathrm{priv}}^{E}, K_{\mathrm{pub}}^{E}, K_{\mathrm{pub}}^{B},$$
 $K = \mathrm{D\acute{e}chif}(K_{\mathrm{priv}}^{E}, C)$ 

$$K, K_{
m pul}^{{m E}}$$

#### L'attaque de l'homme-du-milieu (man-in-the-middle)

#### Comme on a pu le voir :

- un attaquant **actif** peut intercepter **et modifier** des messages entre correspondants
- en cas de réussite, les correspondants **ne se doutent de rien** mais la **confidentialité** de leurs échanges va être **compromise**
- possible car rien ne garantit **l'origine** des messages reçus (ici, principalement  $K_{\mathrm{pub}}^B$ )

#### Les signatures électroniques

Permet de garantir l'origine du message.

Seul le détenteur de la **clé de génération de signature** peut authentifier des messages, tous les détenteurs de la **clé de vérification de signature** peuvent vérifier leur authenticité.

#### Signature électronique : notation

- Quatre ensembles E (messages), F(signatures), K (clés de génération), K' (clés de vérification)
- D'une fonction à sens unique  $h: K \mapsto K'$
- De deux fonctions,  $f: E \times K \mapsto F, g: F \times E \times K' \mapsto \{\text{true}, \text{false}\}$  telles que
  - $\forall x \in E, k \in K, g(f(x,k), x, h(k)) = \text{true}$
  - Frouver  $y \in F$  tel que g(y, x, h(k)) = true revient à connaître k

#### Un exemple de signature électronique : RSA!

- Clé de vérification :
  - $\rightarrow n$  produit de deux grands nombre premiers p et q
  - e, un nombre quelconque premier avec (p-1)(q-1)
- Clé de génération :
  - ► *n* comme précédemment
  - d inverse de e modulo (p-1)(q-1)

#### RSA: signons et vérifions!

Rappels:

Pour signer 
$$m < n$$
:

$$egin{array}{l} n = p \cdot q \ arphi(n) = (p-1)(q-1) \ \mathrm{pgcd}(e,arphi(n)) = 1 \end{array} \quad S = m^d[n]$$

$$S = m^d[n]$$

$$e \cdot d \equiv 1[\varphi(n)]$$

Pour vérifier :

$$S^e[n] = m \rightarrow \text{true sinon false}$$

Pourquoi ça marche?

 $m^{e \cdot d} = m[n] \rightarrow$  ah oui on vient de le voir

### Signons des clés!

m: clé AES = entre 128 bits et 256 bits On envoie  $m^d[n]$ , et c'est bon cette fois non ?

#### Signons des clés!

m: clé AES = entre 128 bits et 256 bits On envoie  $m^d[n]$ , et c'est bon cette fois non ?

## NE FAITES JAMAIS ÇA

On peut trivialement générer des signatures pour tous les messages de type  $r^e[n]$ , r quelconque par exemple.

En plus : on aimerait pouvoir signer des messages plus long que 4096 bits. Comment peut-on faire ?

## Aparté : les fonctions de hachage

On ne peut signer que des éléments relativement courts

## Aparté : les fonctions de hachage

On ne peut signer que des éléments relativement courts

Il faut donc réduire les messages avant de les signer

### Aparté : les fonctions de hachage

On ne peut signer que des éléments relativement courts

Il faut donc réduire les messages avant de les signer

Mais attention ! pas n'importe comment ! Il ne faut pas réduire **deux messages** de la **même façon** 

### Fonctions de hachage : les attendus

Une **fonction de hachage** est une fonction  $f: \{0,1\}^* \mapsto \{0,1\}^n$ :

- résistante aux collisions : on ne doit pas pouvoir trouver  $m_1 \neq m_2$  tels que

$$f(m_1) = f(m_2)$$

- résistante à l'inversion : étant donné  $y \in \{0,1\}^n$ , on ne doit pas pouvoir trouver m tel que

$$f(m) = y$$

#### Fonctions de hachage : les bonus

En général, on peut aussi s'attendre aux propriétés suviantes :

- Indistinguable de l'aléa : une fonction de hachage f est idéalement **indistinguable** d'une fonction choisie au hasard
- Propriété *d'avalanche* : en changeant **1** bit de l'entrée, chaque bit de sortie a **une chance sur deux** d'être inversé
  - (c'est impliqué par la propriété précédente, voyez-vous pourquoi ?)

#### Les fonctions de hachage modernes

- MD4, MD5, SHA1: on oublie, c'est cassé
- SHA2 : existe en plusieurs versions, en fonction de la taille de sortie :
  - ► SHA256, SHA384, SHA512, SHA512-256, SHA512-384
- SHA3 (alias Keccak ) : une famille de fonctions
  - ► Existe en version à tailles standardisées (256, 384, 512 bits)
  - Existe aussi en version à taille arbitraire

#### Signatures : le retour

- On ne signe pas les clés, on signe **le haché** des clés
- On ne les signe pas non plus directement, c'est le retour du padding :
  - ► PKCS#1 v1.5 (Signature) : déterministe
  - $0 \times 00$  ||  $0 \times 01$  || FFFFF...FFFF ||  $0 \times 00$  || Type de hash || n
  - PSS : probabiliste et plus moderne
    - et également plus compliqué à décrire

# C'est tout pour aujourd'hui!

La séance prochaine, nous verrons :

- quelques services de plus : intégrité, dérivation de clés
- comment assembler les services en des **protocoles** de la vraie vie : TLS, SSH
- en bonus : un peu de temps pour le projet