

WHAT IS CLAIMED IS

1. A suspension for a vehicle comprising:

a wheel-in motor which is equipped with a motor provided in a wheel and an output shaft of the motor rotating with the wheel, and

5 an arm for suspending a car body, wherein

one end of the arm is fixed to the car body with a pivot to perform a swing motion in the longitudinal direction of the car body, another end of the arm is connected to the output shaft of the motor so as to rotate relatively to the output shaft.

10 2. The suspension according to Claim 1,

further comprising a swing control mechanism for controlling the swing motion of the arm during traveling of the car.

15 3. The suspension according to Claim 1,

further comprising a spring and a damper for absorbing vibration transmitted to the car body via the wheel-in motor and the arm, wherein the damper has a function for controlling the swing motion of the arm.

20 4. The suspension according to Claim 1, wherein

a damper and a spring for a shock absorber is provided at the pivot of the arm;

the spring is a coil spring, which is arranged

25 around the pivot so as to be twisted against the swing

motion of the arm.

5. The suspension according to Claim 1, wherein
a damper and a spring for a shock absorber is
provided at the pivot of the arm;

5 the spring is a coil spring, which is arranged
around the pivot so as to be twisted against the swing
motion of the arm; and

a load of the spring is applied adjustably
beforehand with a spring load adjusting mechanism.

10 6. The suspension according to Claim 1, wherein a
damper and a spring for a shock absorber is provided
between the arm and the car body.

7. The suspension according to Claim 1, wherein
the wheel has a built-in brake unit driven by an
15 electric signal.

8. The suspension according to Claim 1, further
comprising a wheel speed sensor for detecting a wheel
speed, an arm angle sensor for detecting an angle of
the arm, a torque sensor for detecting torque of the
20 motor, and a body angle sensor for detecting a tilt of
the car body.

9. A vehicle control method comprising:
using each suspension having the arm and the
wheel-in motor in any one of Claims 1 to 8 as an
25 independent suspension system of a car body;

controlling a posture of the car body during traveling of the car by at least controlling a revolution speed and a torque of each wheel-in motor of front wheels and rear wheels, and controlling the 5 swing motions of the arm of each suspension of front wheels and rear wheels in the longitudinal direction of the car body.

10. The vehicle control method according to Claim 9, wherein a posture of the car body is controlled during traveling of the car by controlling a response 10 of the swing motion of each arm according to a state of a road surface, and by controlling an angle of the arm by controlling the revolution speed and the torque of each wheel-in motor.

15. The vehicle control method according to Claim 9, wherein during traveling of the car, (1) when the height on the front side of the car body is to be lowered, the revolution speed and the torque of the wheel-in motors on the front wheel side are made 20 larger than those of the wheel-in motors on the rear wheel side, and (2) when the height on the rear side is to be lowered, the revolution speed and the torque of the wheel-in motors on the rear wheel side are made smaller than those of the wheel-in motors on the front 25 wheel side, and (3) when the car height on the front

side is to be increased, the revolution speed and the torque of the wheel-in motors on the front wheel side are made smaller than those of the wheel-in motors on the rear wheel side, and (4) when the height on the 5 rear side is to be increased, the revolution speed and the torque of the wheel-in motors on the rear wheel side are made larger than those of the wheel-in motors on the front wheel side.

12. The vehicle control method according to Claim
10 9, wherein during traveling of the car, (1) when the height of either of the left and right sides of the car body is to be lowered, the revolution speed and the torque of the front wheel-in motor on the side of the height to be lowered are made larger than the 15 revolution speed and the torque of the front wheel-in motor on the side of the height not to be lowered, and the revolution speed and the torque of the rear wheel-in motor on the side of the height to be lowered are made smaller than the revolution speed and the torque 20 of the rear wheel-in motor on the side of the height not to be lowered, and

25 (2) when the height of either of the left and right sides of the car body is to be increased, the revolution speed and the torque of the front wheel-in motor on the side of the height to be increased are

made smaller than the revolution speed and the torque
of the front wheel-in motor on the side of the height
not to be increased, and the revolution speed and the
torque of the rear wheel-in motor on the side of the
height to be increased are made larger than the
revolution speed and the torque of the rear wheel-in
motor on the side of the height not to be increased.

5 13. A vehicle control apparatus comprising:
 a wheel-in motors which is provided in each wheel
10 of front and rear wheels and has an output shaft
 rotating with the wheels;

10 an arm of each one of front and rear suspensions
 for suspending a car body, wherein one end of the arm
 is fixed to the car body with a pivot to perform a
15 swing motion in the longitudinal direction of the car
 body, another end of the arm is connected to the
 output shaft of the motor so as to rotate relatively
 to the output shaft; and

20 an arm angle control unit for controlling a
 revolution speed and a torque of each wheel-in motor
 to control an angle of the arm..

25 14. The vehicle control apparatus according to
 Claim 13, further comprising a control mechanism for
 controlling a response of the swing motion of the arm,
 and when controlling an angle of the arm, the

response of the swing motion are controlled to be more rapid than usual traveling.

15. 1. A suspension for a vehicle comprising:
a wheel-in motor which is equipped with a motor
5 provided in a wheel and an output shaft of the motor
rotating with the wheel, and
an arm for suspending a car body, wherein
one end of the arm is fixed to the car body with a
pivot to perform a swing motion in the longitudinal
10 direction of the car body, another end of the arm is
connected to the output shaft of the motor with at a
bearing mechanism.