Álgebra Linear e Geometria Analítica

Geometria analítica em \mathbb{R}^3 : vetores, retas e planos

Departamento de Matemática Universidade de Aveiro

Referenciais em \mathbb{R}^3

Fixamos um sistema de coordenadas:

$$O \longrightarrow \mathsf{origem}$$

$$\left. egin{array}{ll} Ox \\ Oy \\ Oz \end{array}
ight\} \quad o \quad {\sf eixos\ coordenados} \ \end{array}$$

Pontos e vetores em \mathbb{R}^3

 $x_1, x_2, x_3 \rightarrow \text{coordenadas do ponto } P$

Associamos ao segmento de reta orientado \overrightarrow{OP} o vetor

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $y_1, y_2, y_3 \rightarrow$ coordenadas do ponto Q e seja Y o vetor associado a \overrightarrow{OQ}

Ao segmento de reta orientado \overrightarrow{PQ} fica associado o vetor $Z = \begin{bmatrix} y_1 - x_1 \\ y_2 - x_2 \\ y_3 - x_3 \end{bmatrix}$

Observação: A notação adotada neste texto para representar um ponto ou vetor de coordenadas x, y, z é $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Outra notação frequentemente adotada é (x, y, z).

Adição, multiplicação por escalar e combinação linear

Sejam
$$X = (x_1, x_2, x_3)$$
 e $Y = (y_1, y_2, y_3)$ vetores em \mathbb{R}^3 e $\alpha, \beta \in \mathbb{R}$ escalares

$$X \nearrow Y$$

Adição:
$$Z = X + Y = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

$$Z=X+Y$$

Multiplicação por escalar:
$$\alpha X = \alpha \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{bmatrix}$$

$$2X$$
 $\sqrt{-Y}=(-1)Y$

Combinação linear:
$$Z = \alpha X + \beta Y = \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \alpha x_3 + \beta y_3 \end{bmatrix}$$

$$2X$$
 $-Y$

Retas em \mathbb{R}^3 – Equações vetoriais e paramétricas

Dada uma reta \mathcal{R} em \mathbb{R}^3 que passa pelo ponto $P(x_0,y_0,z_0)$ e tem vetor diretor $v=(v_1,v_2,v_3)$, temos

$$X(x, y, z) \in \mathcal{R} \iff \exists \alpha \in \mathbb{R} : \overrightarrow{OX} = \overrightarrow{OP} + \alpha v.$$

Uma equação vetorial da reta
$$\mathcal{R}$$
 é $\overrightarrow{OX} = \overrightarrow{OP} + \alpha v$, ou seja, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + \alpha \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$, $\alpha \in \mathbb{R}$

A partir desta equação obtêm-se as equações paramétricas de \mathcal{R} :

$$\begin{cases} x = x_0 + \alpha v_1 \\ y = y_0 + \alpha v_2 \\ z = z_0 + \alpha v_3 \end{cases} \quad \alpha \in \mathbb{R}.$$

Eliminando o parâmetro α do anterior sistema, obtém-se um sistema de grau 1 com 3 incógnitas e 2 equações, ditas as equações cartesianas de \mathcal{R} .

Retas em \mathbb{R}^3 – Equações cartesianas

► Caso: $v_1 \neq 0$, $v_2 \neq 0$, $v_3 \neq 0$.

Das equações paramétricas obtém-se

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}$$

► Caso: $v = (v_1, v_2, v_3)$ tem exatamente uma coordenada v_i nula.

Se $v_1 = 0$ ($v_2 \neq 0$, $v_3 \neq 0$), das equações paramétricas obtém-se

$$x = x_0, \quad \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}.$$

Nos casos em que $v_2 = 0$ ou $v_3 = 0$ deduzem-se equações cartesianas semelhantes.

▶ Caso: $v = (v_1, v_2, v_3)$ tem exatamente duas coordenadas nulas.

Se as coordenadas nulas de v são v_1 e v_2 ($v_3 \neq 0$), das equações paramétricas obtém-se

$$x = x_0, y = y_0, z \in \mathbb{R}.$$

Nos casos em que ν tem outras coordenadas nulas, deduzem-se equações cartesianas semelhantes.

Planos – Equações vetoriais e paramétricas

Dado um plano \mathcal{P} em \mathbb{R}^3 que passa pelo ponto $P(x_0, y_0, z_0)$ e tem vetores diretores $u = (u_1, u_2, u_3)$ e $v = (v_1, v_2, v_3)$ não colineares $(u \neq \delta v, \text{ para todo o } \delta \in \mathbb{R}),$

$$X(x,y,z) \in \mathcal{P} \iff \exists \alpha, \beta \in \mathbb{R} : \overrightarrow{OX} = \overrightarrow{OP} + \alpha u + \beta v.$$

Uma equação vetorial do plano \mathcal{P} é

$$\overrightarrow{OX} = \overrightarrow{OP} + \alpha u + \beta v, \quad \alpha, \beta \in \mathbb{R},$$

a partir da qual se obtêm as equações paramétricas de \mathcal{P} :

$$\begin{cases} x = x_0 + \alpha u_1 + \beta v_1 \\ y = y_0 + \alpha u_2 + \beta v_2 \\ z = z_0 + \alpha u_3 + \beta v_3 \end{cases} \quad \alpha, \beta \in \mathbb{R}.$$

Planos - Equação cartesiana

Eliminando os parâmetros α e β do anterior sistema, obtém-se uma equação

$$ax + by + cz + d = 0$$
,

dita equação cartesiana ou equação geral do plano $\mathcal{P}.$