GRIP@The Spark Foundation- Data Science & Business Analytics Internship

Author - Samarth Waghmode

Task 2: Prediction using Unsupervised ML

Dataset used: Iris dataset

It can be downloaded through the following link - https://bit.ly/3kXTdox)

Problem Statement(s):

*** Predict the optimum number of clusters and represent it visually.

Import necessary libraries

```
In [1]: # Importing Libraries required for data analysis
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.cluster import KMeans
   import seaborn as sns
   import warnings
   warnings.filterwarnings("ignore")
```

Read the data from Dataset

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

```
In [3]: df.shape
```

Out[3]: (150, 6)

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Ιd
                150 non-null int64
SepalLengthCm
                150 non-null float64
                150 non-null float64
SepalWidthCm
PetalLengthCm
                150 non-null float64
PetalWidthCm
                150 non-null float64
Species
                150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

```
In [5]: # dropping Id column
    df.drop('Id', axis=1, inplace=True)
    df.columns
```

Drop duplicate rows

```
In [7]: # Drop duplicate rows
    df.drop_duplicates(inplace=True)
    df.shape[0] # gives number of rows. Similarly, data.shape[1] will give number o
    f columns
## now number of rows left 147, earlier there were 150 rows.
```

Out[7]: 147

In [8]: # Check for any outliers in the numeric data
for i in df.columns:
 if df[i].dtype=='float64':
 plt.figure(figsize=(6,3))
 sns.boxplot(df[i])
 plt.show()


```
In [10]: sns.boxplot(df['SepalWidthCm']);
```


Understanding the data

```
In [11]: # Target class
    print(df.Species.value_counts())
    sns.countplot(df.Species);
```

Iris-versicolor 50
Iris-virginica 49
Iris-setosa 48

Name: Species, dtype: int64

In [12]: df.describe()

Out[12]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	147.000000	147.000000	147.000000	147.000000
mean	5.856463	3.052381	3.780272	1.208844
std	0.829100	0.426331	1.759111	0.757874
min	4.300000	2.050000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.050000	6.900000	2.500000

```
In [13]: | df.Species.unique()
```

Out[13]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

Out[14]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.110155	0.871305	0.817058
SepalWidthCm	-0.110155	1.000000	-0.420140	-0.355139
PetalLengthCm	0.871305	-0.420140	1.000000	0.961883
PetalWidthCm	0.817058	-0.355139	0.961883	1.000000

In [15]: plt.figure(figsize=(10,5)) sns.heatmap(abs(df.corr()), cmap='GnBu', annot=True);

K-means clustering

Finding optimal number of clusters using elbow method

```
In [18]: #find optimal number of clusters using elbow method
    plt.plot(range(1, 11), wcss, 'go-', color='red')
    plt.title('Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.grid()
    plt.show()
```


Applying K-means clustering

Visualize clusters

```
In [20]: # visualize clusters
         plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 25, c = 'red', label
         = 'Cluster 1')
         plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], S = 25, C = blue, label
         = 'Cluster 2')
         plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 25, c = 'green', labe
         1 = 'Cluster 3')
         # Plotting the cluster centers
         plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 1
         00, c = 'yellow', label = 'Centroids')
         plt.title('Clusters of Customers')
         plt.xlabel('Annual Income (k$)')
         plt.ylabel('Spending Score (1-100)')
         plt.grid()
         plt.legend()
         plt.show()
```


In [21]: sns.pairplot(df,hue=None)

Out[21]: <seaborn.axisgrid.PairGrid at 0x2d94885eb08>

In [22]: plt.figure(figsize=(10,5))
sns.heatmap(df.corr(), annot=True)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x2d9494183c8>

In []: