EE-379 Linear Control Systems

Week No. 4 & 5: Performance Specifications

- Steady State Error
- System Sensitivity
- Sensitivity Functions
- > Effect of Disturbances
- Effect of Measurement Noise
- Ziegler Nichols Compensation

Tracking Systems

- Two aspects of performance are often considered when a control system is designed
 - Transient Performance
 - Steady state performance
- Previously (Ch 1 and 2) we have concentrated on defining the differential equations, transfer function, and stability in terms of the natural response.
- Now we will analyze the tendency of the system to follow a desired command. Emphasis will shift to the steady state performance of a closedloop system.

Tracking Systems - Analysis

- Why tracking systems?
- In general, the input r(t) can be written as a power series in terms of powers of t.

$$r(t) = r(a) + \frac{dr}{dt}_{t=0} (t-a) + \frac{\frac{d^2r}{dt^2}_{t=a}}{2!} (t-a)^2 + \frac{\frac{d^3r}{dt^3}_{t=a}}{3!} (t-a)^3 + \cdots$$

$$r(t) = A_0 + A_1 t + A_2 t^2 + A_3 t^3 + \cdots$$

- In this chapter we will examine how a control system responds to commands (particularly those that are powers of *t*).
- More complicated commands are expressible in powers of t

Tracking Systems – Analysis

- A tracking system creates an output that tracks (follows) an input with some tolerance
- The elevation control system for a shipboard satellite dish antenna may have a transfer function as;

$$T(s) = \frac{50}{s^2 + 4s + 50}$$

• Unit step response of this function is:

$$Y(s) = T(s)(\frac{1}{s}) = \frac{50}{s(s^2 + 4s + 50)}$$

$$= \frac{1}{s} + \frac{-s - 4}{s^2 + 4s + 50}$$
forced natural

• This is a function of time after t = 0.

$$y(t) = 1 + 1.04e^{-2t}\cos(6.78t + 163.6^{\circ})$$

- Good tracking system has a rapidly decreasing natural response (depending on the initial conditions).
- Forced response component should then be able to accurately track reference inputs

Tracking Systems – Analysis

- Analysis and design of tracking systems can be separated into following major parts
 - Locate characteristics roots (poles) of the transfer function. This determines
 the natural response which should decay quickly and have well-damped
 oscillatory terms.
 - Tracking the reference input by the forced response of the system.

— What happens to performance if the model is inaccurate?

Tracking system response due to unwanted, inaccessible disturbance inputs

Relative Stability

 Relative stability is the distance into the left half of the complex plane from the imaginary axis to the nearest pole.

• Pair of complex conjugate roots s1, $s2 = -\sigma \pm jw$ gives rise to a damped oscillatory term in the natural response.

$$y_i(t) = Ae^{-at}\cos(\omega t + \theta)$$
 where A and θ depends on initial conditions.

• The damping ratio of this term is $\zeta = cos(\varphi)$ where φ is the damping angle.

Steady State Error – Initial/Final Value

 The initial value of a function of time y(t) is related to the function's Laplace transform by:

$$y(0) = \lim_{s \to \infty} [sY(s)]$$

• For example:

$$Y(s) = \frac{-4s^4 + 3s^3 + s^2 - s + 1}{3s^5 - 2s^4 + s^3 - s + 10}$$

$$y(0) = \lim_{s \to \infty} [sY(s)] = -\frac{4}{3}$$

The initial value theorem is often used to find the initial conditions of a system

 The final value of a function of time y(t) is related to the function's Laplace transform by:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} [sY(s)]$$

For example:

$$Y(s) = \frac{-4s^3 - s^2 + 7s + 3}{s^3 + 9s^2 + 2s}$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} [sY(s)] = \frac{3}{2}$$

The final value theorem is commonly used to determine the **steady-state behavior** of a system in response to a **specific input** 7

Steady State Error - Definition

• The steady-state error is defined as the difference between the input and the output for a prescribed test input as $t \to infinity$

$$E(s) = input - output$$
$$= R(s) - Y(s)$$

Steady-state error analysis only applicable to stable systems, as the unstable systems
represent the loss of control in steady state

EE-379 Continuous Time Response

Steady State Error – Test Inputs

• Some **common test inputs** used for **steady-state error analysis** and design are:

Input	Waveform	Physical Interpretation	Time Function	Laplace transform
Step	$f(t)$ $\downarrow u(t)$ $\downarrow t$	Constant position	1	$\frac{1}{s}$
Ramp	$f(t)$ $\downarrow u(t)$ $\downarrow t$	Constant velocity	t	$\frac{1}{s^2}$
Parabola	$f(t)$ $\downarrow u(t)$ $\downarrow t$	Constant velocity	$rac{1}{2}t^2$	$\frac{1}{s^3}$

Steady State Error – Graphical Representation

Steady State Error – Mathematical Expression

 The steady-state error is the difference between the input and output, assume a closed loop transfer function, *T(s)*. The general representation of steady-state error for a unity feedback system is:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

$$E(s) = input - output$$

$$= R(s) - Y(s)$$

Steady State Error – Mathematical Expression

 The steady-state error for a unity feedback system:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

$$E(s) = input - output$$

$$= R(s) - Y(s)$$

$$R(s)$$
 $E(s)$
 $G(s)$
 $Y(s)$

$$E(s) = R(s) - \frac{G(s)}{1 + G(s)} \cdot R(s)$$

$$= R(s) \left| 1 - \frac{G(s)}{1 + G(s)} \right|$$

$$= R(s) \left\lceil \frac{1 + G(s) - G(s)}{1 + G(s)} \right\rceil$$

$$E(s) = \left[\frac{1}{1 + G(s)}\right] R(s)$$

Steady State Error – Mathematical Expression

 The steady-state error for a unity feedback system using final value theorem:

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Need to analyze the steady state error for different R(s)and G(s)

$$E(s) = R(s) - \frac{G(s)}{1 + G(s)} \cdot R(s)$$

$$= R(s) \left[1 - \frac{G(s)}{1 + G(s)} \right]$$

$$= R(s) \left[\frac{1 + G(s) - G(s)}{1 + G(s)} \right]$$

$$E(s)$$
 $E(s)$
 $G(s)$
 $Y(s)$

$$E(s) = \left[\frac{1}{1 + G(s)}\right] R(s)$$

Steady State Error – System Types

In order to simplify the analysis of steady-state error, systems can be classified by system type.

R(s)

E(s)

$$G(s) = \frac{K(s+z_1)(s+z_2)\dots(s+z_m)}{s^N(s+p_1)(s+p_2)\dots(s+p_n)}$$

$$m \le n$$

- The system type can be determined by identifying the value for N at the denominator
 of the transfer function.
 - If N = 0, the system is of **Type 0**
 - If N = 1, the system is of Type 1
 - If N = 2, the system is of Type 2

Y(s)

Steady State Error – System Types

Examples of System Type.

Type 2
$$\xrightarrow{R(s)}$$
 $\xrightarrow{E(s)}$ $\xrightarrow{E(s)}$ $\xrightarrow{S00(s+2)(s+4)(s+5)(s+6)(s+7)}$ $\xrightarrow{Y(s)}$

Steady State Error – Unit Step Input

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \cdot \frac{1}{s}$$

$$= \frac{1}{1 + \lim_{s \to 0} G(s)}$$

$$e_{ss} = \frac{1}{1 + K_p}$$

where,

$$K_p = \lim_{s \to 0} G(s)$$

$$K_p$$
 = position error constant

Steady State Error – Unit Step Input

• For system of Type 0.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N = 0$$

$$K_p = \lim_{s \to 0} \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_p = \frac{Kz_1.z_2...z_m}{p_1.p_2...p_n}$$

$$e_{ss} = \frac{1}{1 + K_p}$$

For system of Type 1 and above.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N \ge 1$$

$$K_p = \lim_{s \to 0} \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_p = \infty$$

$$e_{ss} = \frac{1}{1 + K_p} = 0$$

Steady State Error – Unit Step Input

Conclusion

Those systems from **Type 1 and above** will have **zero steady-state error for step input**.

Steady State Error – Unit Ramp Input

$$e_{SS} = \lim_{s \to 0} \frac{s}{1 + G(s)} \cdot \frac{1}{s^2}$$

$$= \lim_{s \to 0} \frac{1}{s + sG(s)}$$

$$= \frac{1}{\lim_{s \to 0} sG(s)}$$

$$e_{ss} = \frac{1}{K_v}$$

where,

$$K_v = \lim_{s \to 0} sG(s)$$

 K_v =velocity error constant

Steady State Error – Unit Ramp Input

• For system of Type 0.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N = 0$$

$$K_v = \lim_{s \to 0} s \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_v = 0$$

$$e_{SS} = \frac{1}{K_v} = \infty$$

For system of Type 1.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N = \frac{for N}{s^N(s + z_1)(s + z_2) \dots (s + z_m)}$$

$$K_{v} = \lim_{s \to 0} s \frac{K(s + z_{1})(s + z_{2}) \dots (s + z_{m})}{s^{1}(s + p_{1})(s + p_{2}) \dots (s + p_{n})}$$

$$K_v = \frac{Kz_1.z_2...z_m}{p_1.p_2...p_n}$$

$$e_{SS} = \frac{1}{K_{v}}$$

Steady State Error – Unit Ramp Input

For system of Type 2 and above.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N \ge 2$$

$$K_v = \lim_{s \to 0} s \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^2(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_{\nu} = \infty$$

$$e_{ss} = \frac{1}{K_v} = 0$$

Conclusion:

- Systems of type 0 will have infinity steady state error.
- Systems of type 1 will have finite steady state error.
- Those systems from type 2 and above will have zero steady state error for ramp input

Steady State Error – Unit Parabolic Input

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} \cdot \frac{1}{s^3}$$

$$= \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)}$$

$$= \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

$$e_{ss} = \frac{1}{K_a}$$

where,

$$K_a = \lim_{s \to 0} s^2 G(s)$$

$$K_a$$
 = acceleration error constant

Steady State Error – Unit Parabolic Input

For system of Type 0 & 1.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N \le 1$$

$$K_a = \lim_{s \to 0} s^2 \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_a = 0$$

$$e_{ss} = \frac{1}{K_a} = \infty$$

For system of Type 2.

$$G(s) = \frac{K(s+z_1)(s+z_2) \dots (s+z_m)}{s^N(s+p_1)(s+p_2) \dots (s+p_n)}$$

$$for N = 1$$

$$K_a = \lim_{s \to 0} s^2 \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^2(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_a = \frac{Kz_1. z_2 ... z_m}{p_1. p_2 ... p_n}$$

$$e_{ss} = \frac{1}{ka}$$

Steady State Error – Unit Ramp Input

For system of Type 3 and above.

$$G(s) = \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^N(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$for N \ge 3$$

$$K_a = \lim_{s \to 0} s^2 \frac{K(s + z_1)(s + z_2) \dots (s + z_m)}{s^3 (s + p_1)(s + p_2) \dots (s + p_n)}$$

$$K_a = \infty$$

$$e_{ss} = \frac{1}{K_a} = 0$$

Conclusion:

- Systems of type 0 and 1 will have infinity steady state error
- Systems of type 2 will have finite steady state error
- Those systems from type 3 and above will have zero steady state error for parabolic input.

Steady State Error – Summary

• The steady-state error for a system with unity feedback can be summarized as given below:

Input	Steady State Error Formula	Type 0		Type 1		Type 2	
		Static Error Constant	Error	Static Error Constant	Error	Static Error Constant	Error
Step <i>u(t)</i>	$\frac{1}{1+K_p}$	$K_p = constant$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp tu(t)	$\frac{1}{K_v}$	$K_v = 0$	∞	$K_v = constant$	$\frac{1}{K_v}$	$K_v = \infty$	0
Parabola $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = constant$	$\frac{1}{K_a}$

Steady State Error – Non-Unity Feedback Systems

- The steady-state error with a non-unity feedback system can be determined in two ways:
 - ✓ By solving the problem using the fundamental definition of steadystate error
 - ✓ By changing the block diagram into the equivalent unity feedback system, and the respective formula to calculate the respective steadystate errors

$$E(s) = input - output$$

$$= R(s) - Y(s)$$

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$

Steady State Error – Example

- For the system shown, the steady-state error for a unit step input. (non-unity feedback)
- Using the equivalent unity feedback system block diagram:

$$G_e(s) = \frac{G(s)}{1 + G(s)H(s) - G(s)}$$

$$= \frac{100(s+5)}{s^3 + s^2 - 50s - 400}$$
 (Type - 0 system)

• The appropriate static error constant is then K_p , whose value is:

$$K_p = \lim_{s \to 0} G_e(s) = \frac{100(5)}{-400} = -\frac{5}{4}$$

• The steady-state error, $e(\infty)$ is

$$e(\infty) = \frac{1}{1 + K_p} = \frac{1}{1 - (5/4)} = -4$$

System Sensitivity – Plant Variations

- Feedback can be used to make the response of a system relatively independent of certain type of changes or inaccuracies
- Suppose we have a system
- Now, suppose one of the plant parameters change or is inaccurately modelled
- For $K_1 = 1$ the plant is the same; other values of K_1 will cause perturbations from the nominal plant

$$T(s) = \frac{400/(s + 2K_1)}{1 + 400/(s + 2K_1)} = \frac{400}{s + 400 + 2K_1}$$

System Sensitivity – Plant Variations

- Even **50**% changes in the parameter from $K_1=1/2$ to $K_1=3/2$ results in a relatively minor change in the T(s)
- Even negative value $K_1 = -1$ gives the same stable overall T(s)
- The system steady-state error for a unit step input is
- Steady State Error is dominated by the factor of 400 and is proportional to K_1

System Sensitivity – Plant Variations

- Suppose the inaccuracy is of the form K_2
- The Transfer function becomes
- The systems steady-state error for a unit step input is:
 - Dominated by the factor of $400K_2$ and is inversely proportional to K_2
- Changes in amplifier gain of 400 will produce the same effect on T(s) and its step response

$$e_{ss} = \lim_{s \to 0} s \left(\frac{1}{s}\right) [1 - T(s)] = \lim_{s \to 0} \frac{s+2}{s+400K_2 + 2}$$
$$= \frac{2}{400K_2 + 2}$$

System Sensitivity – Sensor Variations

- Suppose the inaccuracy is in the sensor gain i.e., K_3
- The Transfer function becomes
- The system's steady-state error for a unit step input is:
- This can become quite large for comparable percentage parameter changes
- Is this result expected ??

Why?

 Error by the sensor in the perceived output is indistinguishable from actual output error

$$T(s) = \frac{400/(s+2)}{1+400K_3/(s+2)} = \frac{400}{s+400K_3+2}$$

$$e_{ss} = \lim_{s \to 0} s\left(\frac{1}{s}\right) [1 - T(s)] = \lim_{s \to 0} \frac{s + 400(K_3 - 1) + 2}{s + 400K_3 + 2}$$

$$=\frac{400(K_3-1)+2}{400K_3+2}$$

Sensitivity Functions

- A process, represented by G(s), is subject to a **changing environment**, **aging**, and **ignorance** of the exact values of the process parameters.
- In the open-loop system, all these errors and changes result in a changing and inaccurate output.
- In the open-loop case, the change in the output is:

$$AG(s) \xrightarrow{Y(s)} Y(s)$$

$$\Delta Y(s) = \Delta G(s)R(s)$$

 However, a closed-loop system senses the changes in the output due to process changes and attempts to correct the output.

Consider a change in the process as:

$$Y(s) + \Delta Y(s) = \frac{G(s) + \Delta G(s)}{1 + (G(s) + \Delta G(s))H(s)}R(s)$$

$$\Delta Y(s) = \frac{\Delta G(s)}{(1 + G(s)H(s) + \Delta G(s)H(s))(1 + G(s)H(s))}R(s)$$

Sensitivity Functions

$$\Delta Y(s) = \frac{\Delta G(s)}{[1+G(s)H(s)+\Delta G(s)H(s)][1+G(s)H(s)]}R(s)$$

$$G(s)H(s) >>> \Delta G(s)H(s)$$

$$\Delta Y(s) = \frac{\Delta G(s)}{[1 + G(s)H(s)]^2} R(s)$$

• The change in the output of the closed-loop system is reduced by a factor $[1 + G(s)H(s)]^2$

Sensitivity Functions

- During the design process, the engineer may want to consider the extent to which changes in system
 parameters affect the behavior of a system.
- The degree to which changes in system parameters affect system transfer functions, and hence performance, is called Sensitivity.
- The sensitivity function of T with respect to changes in a parameter α is defined as

$$S_a^T = \lim_{\Delta a \to 0} \frac{Percentage\ change\ in\ the\ function, \textbf{\textit{T}}\ due\ to\ parameter\ \textbf{\textit{a}}}{Percentage\ change\ in\ the\ parameter, \textbf{\textit{a}}}$$

$$S_a^T = \lim_{\Delta a \to 0} \frac{\Delta T/T}{\Delta a/a}$$

$$S_a^T = \lim_{\Delta a \to 0} \frac{a \, \Delta T}{T \, \Delta a}$$

$$S_a^T = \frac{a \, \delta T}{T \, \delta a}$$

Sensitivity Functions

Assume that the function **G** depends upon a parameter **a** then for the closed-loop system,

$$T(s) = \frac{G}{1 + GH}$$

The sensitivity function of *T* with respect to *a* is:

$$S_a^T = \frac{\delta T}{\delta a} \times \frac{a}{T} = \frac{\delta T}{\delta G} \cdot \frac{G}{T} \times \frac{\delta G}{\delta a} \cdot \frac{a}{G} = S_G^T S_a^G$$

Where,

$$S_G^T = \frac{\delta T}{\delta G} \cdot \frac{G}{T} = \frac{1}{(1+GH)^2} \cdot \frac{G}{G/(1+GH)} \quad \delta = \left(\frac{G}{1+GH}\right)^2 \cdot \frac{-H}{G/(1+GH)}$$

$$S_G^T = \frac{\delta T}{\delta G} \cdot \frac{G}{T} = \frac{1}{(1 + GH)}$$

- As the loop gain G(s)H(s) becomes large, sensitivity of the closed-loop characteristics is reduced.
- **Result:** Sensitivity of the system may be reduced below that of the open-loop system by increasing G(s)H(s) over the frequency range of interest.
- The sensitivity of the feedback system to changes in the feedback element H(s) is:

$$S_H^T = \frac{\delta T}{\delta H} \cdot \frac{H}{T} = \left(\frac{G}{1 + GH}\right)^2 \cdot \frac{-H}{G/(1 + GH)}$$

$$S_H^T = \frac{-GH}{(1+GH)}$$

Effect of Disturbances

- Another major advantage of a feedback system is that it can be used to reduce the effects of disturbance inputs upon system response
- In this system the disturbance signal D(s)
 affects the plant but is not accessible to
 the designer
- The transfer function relating Y(s) to D(s) is
- For a unit step disturbance input the final value of the output due to the disturbance is

$$T_D(s) = \frac{Y(s)}{D(s)} = \frac{1}{s+2}$$

$$Y(s) = \frac{1}{s} \cdot \frac{1}{s+2}$$

$$\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s) = \frac{1}{2}$$

Effect of Disturbances

- If the plant is driven in the feedback arrangement as shown
- The transfer function relating Y(s) to D(s) is
- For a unit step disturbance input to the feedback system, the resulting steady state output is
- This error can be made arbitrarily small by making K sufficiently large

$$T_D(s) = \frac{Y(s)}{D(s)} <=> \frac{\frac{1}{s+2}}{1 - \left[-\frac{K}{s+2}\right]} = \frac{1}{s+2+K}$$

$$Y(s) = D(s)T_D(s) = \frac{1}{s} \cdot \frac{1}{s+2+K}$$

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \frac{1}{2+K}$$

Effect of Disturbances

Another type of system is shown below

 $\lim_{s \to 0} s \left(\frac{1}{s}\right) T_D(s) = \lim_{s \to 0} \frac{10s}{s^3 + 2s^2 + 20s + 30} = 0$

- The two system transfer functions are
- Routh Array shows that the system is stable
- Unit step disturbance produces zero contribution

s^3	1	20
s^2	2	30
s^1	5	0
s^0	30	

$$T_R(s) = \frac{Y(s)}{R(s)} = \frac{10(s+3)/s(s^2+2s+10)}{1+10(s+3)/s(s^2+2s+10)} = \frac{10(s+3)}{s^3+2s^2+20s+30}$$

$$T_D(s) = \frac{Y(s)}{D(s)} = \frac{10/(s^2 + 2s + 10)}{1 + 10(s + 3)/s(s^2 + 2s + 10)} = \frac{10s}{s^3 + 2s^2 + 20s + 30}$$

Effect of Disturbances

- Now consider the open loop (nonfeedback) system as shown
- This system has the same transfer function relating Y(s) and R(s)
- Relationship between output Y(s) and disturbance D(s) is not modified by feedback
- Unit step disturbance produces a unit contribution to the steady state output.

$$T_D(s) = \frac{Y(s)}{D(s)} = \frac{10}{s^2 + 2s + 10}$$

$$\lim_{s \to 0} s \left(\frac{1}{s}\right) T_D(s) = \lim_{s \to 0} \frac{10}{s^2 + 2s + 10} = 1$$

Effect of Disturbances

• Effect of D(s) for an open-loop system.

$$Y(s) = G_c(s)G_p(s)R(s) + G_p(s)D(s)$$

• Effect of D(s) for the closed-loop system.

$$Y(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)H(s)}R(s) + \frac{G_p(s)}{1 + G_c(s)G_p(s)H(s)}D(s)$$

• For large loop gain, $G_cG_pH(s)$

$$Y(s) \approx \frac{1}{H(s)}R(s) + \frac{1}{G_cH(s)}D(s)$$

High gain controllers can significantly reduce the effect of disturbance inputs while maintaining the desired Y(s)/R(s) relationship.

Effect of Measurement Noise

- Measurement noise may be represented by a signal injected in the feedback path.
- For a closed-loop system.

$$Y(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)H_1H_2(s)}R(s) + \frac{G_c(s)G_p(s)H_1(s)}{1 + G_c(s)G_p(s)H_1H_2(s)}N(s)$$

• For large loop gain, $Y(s) \approx \frac{1}{H_1 H_2(s)} R(s) + \frac{1}{H_2(s)} N(s)$

Ziegler Nichols Compensation

- A typical process control plant has real poles and zeros and is type 0.
- The compensator to the plant is generally either Proportional (P), Proportional Integral (PI) or Proportional Integral Derivative (PID) having the following form.

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s = \frac{K_d s^2 + K_p s + K_i}{s}$$

- The Ziegler Nichols Method has the following two steps:
 - 1. Step I: Set the true plant under proportional control, with a very small gain so that $G_c(s) = K_p$. This gain is adjusted until the system becomes marginally stable. Adjusted $Gain = K_{p_o}$ Period of oscillation = T_o
 - 1. Step II: The compensator is defined by

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

once values of T_d , and T_i have been calculated

$$K_i = \frac{K_p}{T_i}, \qquad K_d = K_p T_d$$

Design Equations for Ziegler Nichols

	K _p	T_i	T_d
Р	$K_p = 0.5 K_{po}$		
PI	$K_p = 0.45 K_{po}$	$T_i = 0.83T_o$	
PID	$K_p = 0.6 K_{po}$	$T_i = 0.5T_o$	$T_d = 0.125T_o$

Ziegler Nichols Compensation-Example

Consider the process control plant

$$G_p(s) = \frac{64}{s^3 + 14s^2 + 56s + 64}$$

• First step is to let $G_c(s) = K_p$ and find the value of $K_p = K_{po}$ such that $1 + G_c(s)G_p(s)$ is marginally stable.

$$T(s) = \frac{G_c(s)G_p(s)}{1 + G_c(s)G_p(s)} = \frac{64}{s^3 + 14s^2 + 56s + 64(1 + K_p)}$$
• This gives $T_o = \frac{2\pi}{\omega_o} = \frac{2\pi}{7.483} = 0.84$ and the remaining values can be easily found from the

The Routh Array is formed as

s^3	1	56
s^2	14	$64(1+K_p)$
s^1	$(1/14)[784-64(1+K_p)]$	0
s^0	$64(1+K_p)$	

The value of K_{po} is found by setting the first term in row s^1 to 0 this gives $K_{po} = 11.25$

- At this value of K_{po} the complex conjugate roots are obtained from the row s^2 i.e., $14(s^2 + 56)$ which gives the roots as $\pm j7.483$
- The characteristic polynomial is then divided by $(s^2 + 56)$ which gives the remaining root -14.
- design table.

	K _p	T_i	T_d
Р	$K_p = 0.5 K_{po}$		
PI	$K_p = 0.45 K_{po}$	$T_i = 0.83T_o$	
PID	$K_p = 0.6K_{po}$	$T_i = 0.5T_o$	$T_d = 0.125T_o$

Ziegler Nichols Compensation-Example

 The Simulink model of a simple mass damper spring (mck) system with a PID controller

Ziegler Nichols Compensation-Example

Response of uncompensated System

Ziegler Nichols Compensation-Example

- Set up the system with only proportional control and provide a step input
- start with a small value for K_p and increase until the output gives constant amplitude oscillations
- This value of the proportional constant will be called, K_u , the ultimate gain

Ziegler Nichols Compensation-Example

The controller equation can be written as

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

• Select K_p , T_i and T_d according to.

	Kp	T_i	T_d
Р	$K_p = 0.5 K_{po}$		
PI	$K_p = 0.45 K_{po}$	$T_i = 0.83T_o$	
PID	$K_p = 0.6 K_{po}$	$T_i = 0.5T_o$	$T_d = 0.125T_o$

Ziegler Nichols Compensation-Example

Response of Ziegler Nichols compensated System

