Département de Mathématiques Faculté des Sciences Université Badji Mokhtar-Annaba

Masters: -Probabilités et Statistique -Actuariat

Probabilités1(Série N°4)

Exercice 1:

Soit \mathcal{H} un espace de Hilbert et soient E, F deux sous espaces de \mathcal{H} tels que $E \subset F$. Montrer que $F^{\perp} \subset E^{\perp}$.

Exercice 2:

Soit (Ω, \mathcal{F}, P) un espace probabilisé et soient $\mathcal{V} \subset \mathcal{U}$ deux sous tribus de \mathcal{F} . 1.Montrer que pour tout $X \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$, on a:

$$\mathbb{E}\left(X\mid\mathcal{V}\right) = \mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{U}\right)\mid\mathcal{V}\right).$$

2. Montrer que pour tout $Z\in \left(\mathcal{L}^{2}\left(\Omega,\digamma,P\right)\right)^{\perp},$ on a:

$$\mathbb{E}(Z) = 0.$$

Exercice 3:

Soit (Ω, \mathcal{F}, P) un espace probabilisé et soient $F_1 \subset \mathcal{F}_2$ deux sous tribus de \mathcal{F} .

1.Montrer que

$$\mathbb{E}\left(\left[X - \mathbb{E}\left(X \mid \mathcal{F}_{2}\right)\right]^{2}\right) + \mathbb{E}\left(\left[\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) - \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)\right]^{2}\right)$$

$$= \mathbb{E}\left(\left[X - \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)\right]^{2}\right)$$

2.On pose $var\left(X\mid\mathcal{F}_{1}\right):=\mathbb{E}\left(X^{2}\mid\mathcal{F}_{1}\right)-\left(\mathbb{E}\left(X\mid\mathcal{F}_{1}\right)\right)^{2}.$ Montrer que

$$var(X) = \mathbb{E}(var(X \mid \mathcal{F}_1)) + var(\mathbb{E}(X \mid \mathcal{F}_1)).$$

Exercice 4:

Soit $(Y_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. d'espérances μ et de variances σ^2 . Soit N une v.a.d. à valeurs dans $\mathbb N$ indépendantes de toutes les v.a. Y_n . On pose $X=Y_1+Y_2+\ldots+Y_N$. Calculer var(X).

Indication: Utiliser 2. de l'exercice précédant avec $\mathcal{F}_1 := \sigma(N)$ la tribu engendrée par N.

Exercice 5:

Soit (Ω, \mathcal{F}, P) un espace probabilisé et soient $\mathcal{U} \subset \mathcal{F}$ une sous tribu de \mathcal{F} . Soient X et Y deux v.a. telles que X - Y soit indépendante de \mathcal{U} , d'espérance m et de variance σ^2 . On suppose que Y est \mathcal{U} -mesurable.

1. Calculer $\mathbb{E}\left(X-Y\mid\mathcal{U}\right)$. En déduire $\mathbb{E}\left(X\mid\mathcal{U}\right)$.

2.Calculer
$$\mathbb{E}\left(\left(X-Y\right)^{2}\mid\mathcal{U}\right)$$
. En déduire $\mathbb{E}\left(X^{2}\mid\mathcal{U}\right)$.