	Open in Colab Dataset validation vs LOOCV vs CV (Gamma)
In []:	Docente: Karla Esquerre (@kesquerre) Facilitador: Lucas Mascarenhas (@mascalmeida) # Pacotes e Definindo a semente ## Manipulação e visualização de dados
	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline ## ModeLagem from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix ## Setando a semente seed = 2021</pre>
In []: Out[]:	0 NaN 204.890455 20791.318981 7.300212 368.516441 564.308654 10.379783 86.990970 2.963135 0
In []:	1 3.716080 129.422921 18630.057858 6.635246 NaN 592.885359 15.180013 56.329076 4.500656 0 2 8.099124 224.236259 19909.541732 9.27584 NaN 418.606213 16.868637 66.420093 3.055934 0 3 8.316766 214.373394 22018.417441 8.059332 356.886136 363.266516 18.436524 100.341674 4.628771 0 4 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 11.558279 31.997993 4.075075 0 # Identificando problemas ## Valores faltantes nas = pd. DataFrame(data.isna().sum()).reset_index().rename(columns={"index": "variavel", 0: "nas"}) nas['nas_100'] = 100 - ((abs(len(data) - nas['nas'])/len(data))*100) print('Quantidade de valores faltantes')
	<pre>print(nas) ## Dados desbalanceados print('\n\n') print('Balanceamento dos dados') print(data['Potability'].value_counts())</pre> Quantidade de valores faltantes
	variavel name nas nas 100 0 ph 49 14,987790 1 Hardness 0 0.000000 2 Solids 0 0.000000 3 Chloramines 781 23.84049 5 Conductivity 0 0.000000 6 Organic_carbon 0 0.000000 7 Trihalomethanes 162 4.945055 8 Turbidity 0 0.000000 9 Potability 0 0.000000
In []:	<pre>0 1998 1 1278 Name: Potability, dtype: int64 # Lidando com os valores faltantes considerando o desbalanceamento data_novo = data.loc[~((data['Potability'] == 0) & ((data['ph'].isna()) (data['Sulfate'].isna()) (data['Trihalomethanes'].isna()))), :].\</pre>
	<pre>dropna() # Conferindo ## Valores faltantes nas = pd.DataFrame(data_novo.isna().sum()).reset_index().rename(columns={"index": "variavel", 0: "nas"}) nas['nas_100'] = 100 - ((abs(len(data_novo) - nas['nas'])/len(data_novo))*100) print('Quantidade de valores faltantes') print(nas) ## Dados desbalanceados print('\n\n') print('Balanceamento dos dados') print('Balanceamento dos faltantes</pre>
	O
In []:	1 1220 0 1200 Name: Potability, dtype: int64 # Pré processamento ## Reservando dados para validação do modelo data_modelo, test = train_test_split(data_novo,
	<pre>stratify=data_novo['Potability'],</pre>
	Validation approach 123 n 7 22 13 91
In []:	<pre># Pré processamento 2 ## Dividindo o dataset em treino e validação x_train, x_valid, y_train, y_valid = train_test_split(x, y,</pre>
	# Treinando o modelo (árvore de decisão) modelo = DecisionTreeClassifier(random_state = seed) modelo = modelo.fit(x_train, y_train) modelo1 = modelo # Predição e avalidção do modelo y_valid_pred = modelo.predict(x_valid) ## print classification report print('Avaliando o modelo\n', classification_report(y_valid, y_valid_pred)) ##Confusion Matrix plot_confusion_matrix(modelo, x_valid, y_valid, normalize='true', cmap='binary') plt.show(); Avaliando o modelo
	0 0.55 0.53 0.54 216 1 0.55 0.56 0.56 220 accuracy 0.55 436 macro avg 0.55 0.55 0.55 436 weighted avg 0.55 0.55 0.55 436
	-0.56 -0.54 -0.52 -0.50 -0.48 -0.48
	Cross-validation 123 n
	11 76 5 47 11 76 5 47 11 76 5 47 11 76 5 47 11 76 5 47
In []:	# Modelagem from sklearn.model_selection import GridSearchCV # Importando o Make Scorer from sklearn.metrics import make_scorer # Importando os módulos de cálculo de métricas
	<pre>from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import fbeta_score # Criando um dicionário com as métricas que desejo calcular. meus_scores = { 'accuracy' :make_scorer(accuracy_score),</pre>
	<pre>k = 5 ## Defining parameter range to grid search param_grid = [{'splitter': ['best', 'random']}] # Treinando o modelo (árvore de decisão) clf = DecisionTreeClassifier(random_state = seed) modelo = GridSearchCV(estimator=clf,</pre>
	<pre>modelo.fit(x, y); modelo.fit(x, y); modelo2 = modelo # Results print('Model =', modelo.best_params_) display(pd.DataFrame(modelo.cv_results_)[['params', 'mean_test_accuracy', 'mean_test_recall', 'mean_test_f1']]) Model = {'splitter': 'best'}</pre> Model = Ti # Results # Results
In []:	params mean_test_accuracy mean_test_precision mean_test_recall mean_test_f1 0 {'splitter': 'best'} 0.561981 0.564843 0.566488 0.565572 1 {'splitter': 'random'} 0.556911 0.561438 0.556430 0.558771 # Criando um dicionário com as métricas que desejo calcular. meus_scores = {'accuracy' :make_scorer(accuracy_score),
	<pre>'recall' :make_scorer(recall_score), 'precision':make_scorer(precision_score), 'fi' :make_scorer(fbeta_score, beta = 1)} # Definindo o 'K' para o K-Fold k = 10 # Defining parameter range to grid search param_grid = [{'splitter': ['best', 'random']}] # Treinando o modelo (árvore de decisão) clf = DecisionTreeClassifier(random_state = seed) modelo = GridSearchCV(estimator=clf,</pre>
	<pre>scoring = meus_scores,</pre>
	Model = {'splitter': 'best'} params mean_test_accuracy mean_test_recall mean_test_f1 0 {'splitter': 'best'} 0.569776 0.573132 0.571802 0.571021 1 {'splitter': 'random'} 0.554196 0.559937 0.545471 0.551790
	<pre>print(y.value_counts()) 1 1098 0 1080 Name: Potability, dtype: int64 # Criando um dicionário com as métricas que desejo calcular. meus_scores = {'accuracy' : make_scorer(accuracy_score),</pre>
	<pre># Definindo o 'K' para o K-Fold k = 1080 ## Defining parameter range to grid search param_grid = [{'splitter': ('best', 'random']}] # Treinando o modelo (árvore de decisão) clf = DecisionTreeClassifier(random_state = seed) modelo = GridSearchCV(estimator=clf,</pre>
In []:	<pre>modelo.fit(x, y); LOOCV = modelo # Results print('Model =', modelo.best_params_) display(pd.DataFrame(modelo.cv_results_)[['params', 'mean_test_accuracy', 'mean_test_recall', 'mean_test_f1']]) ## Definindo entradas e saída ### Saída</pre>
In []:	<pre>y_test = test['Potability'] ### Entradas x_test = test.drop(columns=['Potability']) # Predição e avaliação do modelo 1 y1 = modelo1.predict(x_test) ## print classification report print('Avaliando o modelo 1\n', classification_report(y_test, y1)) ###Constant Matrix</pre>
	##Confusion Matrix plot_confusion_matrix(modelo1, x_test, y_test, normalize='true', cmap='binary') plt.show(); Avaliando o modelo 1
	accuracy
	1 - 0.48 0.52 -0.450 -0.425 -0.400
In []:	# Predição e avaliação do modelo 2 y2 = modelo2.predict(x_test) ## print classification report print('Avaliando o modelo 2\n', classification_report(y_test, y2)) ##Confusion Matrix plot_confusion_matrix(modelo2, x_test, y_test, normalize='true', cmap='binary')
	Plt.show(); Avaliando o modelo 2
	macro avg
In []:	# Predição e avaliação do modelo 10 y10 = modelo10.predict(x_test) ## print classification report
	<pre>print('Avaliando o modelo 10\n', classification_report(y_test, y10)) ##Confusion Matrix plot_confusion_matrix(modelo10, x_test, y_test, normalize='true', cmap='binary') plt.show(); Avaliando o modelo 10</pre>
	1 0.60 0.66 0.63 122 accuracy macro avg 0.60 0.60 0.60 242 weighted avg 0.60 0.60 0.60 0.60 242 - 0.65 - 0.60 - 0.55 - 0.50
	1 - 0.34 0.66 -0.45 -0.40 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35
In []:	<pre># Predição e avaliação do modelo LOOCV yLOOCV = LOOCV.predict(x_test) ## print classification report print('Avaliando o LOOCV\n', classification_report(y_test, yLOOCV)) ##Confusion Matrix plot_confusion_matrix(LOOCV, x_test, y_test, normalize=None, cmap='binary') plt.show();</pre>
	Avaliando o LOOCV
	weighted avg 0.60 0.60 0.60 242 0 - 65 55 5 - 70
	1 - 41 81 - 55 - 50 - 45 Predicted label
	REFERÊNCIAS • Kaggle - Water Quality • List item