CSCI 341 Problem Set 2

Language Acceptance; Finite and Infinite Automata; Finitely Recognizable Languages

Due Friday, September 12

Language Acceptance

Problem 1 (Cooking with Gas). In each of the following questions, you are asked to design an automaton with a state that accepts a given language. Draw its state diagram and its transition table, and briefly explain why the automaton works.

(1) Over the alphabet $A_1 = \{1, 2\}$ of input letters, define the function sum: $A^* \to \mathbb{N}$ by

$$sum(\varepsilon) = 0 sum(a_1 a_2 \cdots a_n) = a_1 + a_2 + \cdots + a_n$$

So, for example, sum(1221) = 1 + 2 + 2 + 1 = 6. Design an automaton with a state that accepts the language

$$L_1 = \{ w \in A^* \mid \operatorname{sum}(w) \text{ is a multiple of } 3 \}$$

(2) Over the alphabet $A_2=\{a,c,t\}$ of input letters, design an automaton with a state that accepts the language

$$L_2 = \{ w \in A_2^* \mid w \text{ contains the word } cat \}$$

(3) Over the alphabet $A_3 = A_1 \cup A_2$ of input letters, design an automaton with a state that accepts the language

$$L_3 = L_1 \cdot L_2 = \{ wu \in A_3^* \mid w \in L_1 \text{ and } u \in L_2 \}$$

Problem 2 (Pythonic Automaton III). Write a Python script in the same format as the Pythonic Automaton I that implements state s_1 in abstract state diagram (1) from the games and puzzles section. Submit your program as a .py file.

Figure 1: Abstract state diagram (1).

Finite and Infinite Automata

Problem 3 (Unravelling an Infinite Language). Draw a state diagram of all of the languages that are reachable from the language $L = \{(ab)^n \mid n \in \mathbb{N}\}$ in the Brzozowski automaton by taking a- and b-derivatives (the words in this language are ε , ab, abab, ...). Include all of the double-circled states to indicate which languages are accepting states of the Brzozowski automaton. What language is accepted by L?

Problem 4 (Language Accepts Itself). Let $L \subseteq A^*$ be any language. Prove that $\mathcal{L}(\mathcal{A}_{Brz}, L) \subseteq L$.

Finitely Recognizable Languages

Problem 5 (Languages as Trees). Let $A = \{0, 1\}$, and let $L \subseteq A^*$ be a language from A. Prove that if L is finite, i.e., $L = \{w_1, \dots, w_n\}$ for some $n \in \mathbb{N}$, then L is finitely recognizable.

Problem 6 (Total vs Partial). Prove that DFin = TDFin by describing how to turn a deterministic automaton into a total deterministic automaton without changing the languages accepted by the states.