Basis and Dimension

Nachiketa Mishra IIITDM Kancheepuram, Chennai

Linearly Dependent (L.D.)

Let V be a vector space over the field F. A subset S of V is said to be linearly dependent if there exist distinct vectors

 $\alpha_1, \alpha_2, \dots, \alpha_n \in S$ and scalars $c_1, c_2, c_n \in F$, $c_i \neq 0$ for at least one i, such that

$$c_1\alpha_1+c_2\alpha_2+\ldots+c_n\alpha_n=0.$$

A set of which is not linearly dependent is called linearly independent (L.I.)

Remark

If S is a linearly independent set, then for any (finite) distinct vectors $\alpha_1, \alpha_2, \dots, \alpha_n \in S$,

$$c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n = 0 \Longrightarrow c_1 = c_2 = \ldots = c_n = 0.$$

$$\implies \left[\begin{array}{cccc} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ \dots \\ c_n \end{array}\right] = 0$$

 \implies AX = 0 has only trivial solution X = 0.

Remark contd.

Note: (i) If AX = 0 has only trivial solution, then columns of A forms a linearly independent set.

(ii) If A is an invertible matrix, then columns of A forms a linearly independent set (By note (i) and Theorem 13, chapter 1).

Note

- 1. Any set which contains a linearly dependent set is linearly dependent.
- 2. Any subset of a linearly independent set is linearly independent.
- 3. Any set which contains the 0 vector is linearly dependent. Reason 1.0=0
- 4. A set S of vectors is linearly independent if and only if each finite subset of S is linearly independent if and only if for any distinct vectors $\alpha_1, \alpha_2, \ldots, \alpha_n$ of S,

$$c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n = 0 \Longrightarrow c_1 = c_2 = \ldots = c_n = 0$$

4

Problem 1

Show that $\alpha_1=(3,0,-3), \alpha_2=(-1,1,2), \alpha_3=(4,2,-2)$ and $\alpha_4=(2,1,1)$ are linearly dependent (L.D.) on R^3 .

Solution : Find sclars c_1, c_2, c_3, c_4 (at leaset one $c_i \neq 0$) such that $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 = 0$.

$$2\alpha_1 + 2\alpha_2 - \alpha_3 + 0\alpha_4 = 0$$

Problem 2

Show that $\epsilon_1=(1,0,0), \epsilon_2=(0,1,0)$ and $\epsilon_3=(0,0,1)$ is a linearly independent (L.I.) subset of F^3 .

Consider
$$c_1\epsilon_1 + c_2\epsilon_2 + c_3\epsilon_3 = 0$$

$$\implies$$
 $(c_1, c_2, c_3) = (0, 0, 0)$

$$\implies$$
 $c_1 = c_2 = c_3 = 0$

Hence $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ is a *L.I.* subset of F^3 .

Note:

$$\{\epsilon_1 = (1, 0, 0, \dots, 0, 0), \epsilon_2 = (0, 1, 0, \dots, 0, 0), \dots, \epsilon_n = (0, 0, 0, \dots, 0, 1)\}$$
 is a linearly independent subset of F^n .

6

Basis

Let V be a vector space over the field F. A set $\mathbb{B} \subseteq V$ is basis for V if

- 1. $\mathbb B$ is a linearly independent subset of V and
- 2. $V = \operatorname{span} \mathbb{B} (= L(\mathbb{B})).$

Note: A vector space V is finite dimensional if it has a finite basis.

Problem 3

Show that $\mathbb{B} =$

$$\{\epsilon_1 = (1, 0, 0, \dots, 0, 0), \epsilon_2 = (0, 1, 0, \dots, 0, 0), \dots, \epsilon_n = (0, 0, 0, \dots, 0, 1)\}$$
 is a basis of F^n .

Solution:

Claim 1: \mathbb{B} is a linearly independent set in F^n .

Consider
$$c_1\epsilon_1 + c_2\epsilon_2 + \ldots + c_n\epsilon_n = 0$$

$$\implies$$
 $(c_1, c_2, \ldots, c_n) = (0, 0, \ldots, 0)$

$$\implies c_1 = c_2 = \ldots = c_n = 0$$

 $\Longrightarrow \mathbb{B}$ is a L.1. set.

Problem 3 contd.

Claim 2:
$$F^n = \operatorname{span} \mathbb{B}$$
.
Since $\mathbb{B} \subseteq F^n$, $\operatorname{span} \mathbb{B} = L(\mathbb{B}) \subseteq F^n - - - (a)$
Let $x \in F^n$
 $\Longrightarrow x = (x_1, x_2, \dots, x_n) = x_1 \epsilon_1 + x_2 \epsilon_2 + \dots + x_n \epsilon_n \in \operatorname{span} \mathbb{B}$
 $x \in F^n \Longrightarrow x \in \operatorname{span} \mathbb{B}$
 $\Longrightarrow F^n \subseteq \operatorname{span} \mathbb{B} - - - - (b)$

From (a) and (b), $F^n = \operatorname{span} \mathbb{B}$.

By Claims 1 and 2, \mathbb{B} is a basis of F^n

Note: $\mathbb{B} = \{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}$ is called the standard basis of F^n .

Problem 3

```
Show that \mathbb{B} = \{(1,0,0),(0,1,0),(0,0,1)\} and \mathbb{B}_1 = \{(0,1,1),(1,0,1),(1,1,0)\} are basis for R^3.
```

Problem 4

Let $P \in F^{n \times n}$ be an invertible matrix. Let P_1, P_2, \dots, P_n be the columns of P. Show that $\mathbb{B} = \{P_1, P_2, \dots, P_n\}$ is a basis of $F^{n \times 1}$.

Claim 1: \mathbb{B} is a L.I. set.

Consider $x_1P_1 + x_2P_2 + ... + x_nP_n = 0$.

$$\Longrightarrow \left[\begin{array}{ccc} P_1 & P_2 & \dots & P_n \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array}\right] = 0$$

$$\implies PX = 0$$

 $\implies X = 0$, (P is an invertible matrix)

Problem 4 contd.

$$\implies x_1 = x_2 = \ldots = x_n = 0 \Longrightarrow \mathbb{B}$$
 is a L.I. set

Claim 2: $F^{n\times 1} = \text{Span } \mathbb{B}$

We have $\mathbb{B} \subseteq F^{n \times 1}$. \Longrightarrow Span $\mathbb{B} \subseteq F^{n \times 1} - - - - (i)$

Let $Y \in F^{n \times 1}$. By Theorem 13 (Note that P is invertible),

PX = Y has a solution X for a each $Y \in F^{n \times 1}$.

$$Y = PX = x_1P_1 + x_2P_2 + \ldots + x_nP_n \in L(\{P_1, P_2, \ldots, P_n\})$$

$$\implies$$
 $Y \in \text{Span } \mathbb{B}. \implies F^{n \times 1} \subseteq \text{Span } \mathbb{B} - - - (ii)$

From (i) and (ii), $F^{n\times 1} = \text{Span } \mathbb{B}$. By Claims 1 and 2, \mathbb{B} (the set of all columns of P) is a basis of $F^{n\times 1}$.

Problem 5

Let $A \in F^{n \times n}$ and let $\{P_1, P_2, \dots, P_n\}$ be columns of A. Prove that A is invertible if and only if $\{P_1, P_2, \dots, P_n\}$ is a L.I. set. **Solution :** A is invertible if and only if AX = 0 has only trivial solution X = 0 (Theorem 13, chapter 1) if and only if $x_1P_1 + x_2P_2 + \dots + x_nP_n = 0$ has only trivial solution $x_1 = x_2 = \dots = x_n = 0$ if and only if $\{P_1, P_2, \dots, P_n\}$ is a L.I. set.

Note 1: (Visit previous lecture notes)

Find the solution space of the system RX = 0

$$R = \begin{bmatrix} 0 & 1 & -3 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{array} \right\}$$

No. of non-zero rows of R, r=2, No. of variables, n=5

$$k_1 = 2, k_2 = 4 \Longrightarrow$$
 Pivot variables $= \{x_{k_1}, x_{k_2}\} = \{x_2, x_4\}$
No. of free variables $= n - r = 5 - 2 = 3$,

Free variables = $\{u_1, u_2, u_3\} = \{x_1, x_3, x_5\}$

$$\begin{cases} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_{k_1} + \sum_{j=1}^{n-r} C_{1j}u_j = 0 \\ x_{k_2} + \sum_{j=1}^{n-r} C_{2j}u_j = 0 \end{cases}$$
 (general expression

Note 1 contd.

$$\begin{vmatrix} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{vmatrix} \Longrightarrow \begin{vmatrix} x_{k_1} + \sum_{j=1}^{n-r} C_{1j}u_j = 0 \\ x_{k_2} + \sum_{j=1}^{n-r} C_{2j}u_j = 0 \end{vmatrix}$$
 general expression)

Set the free variables as:

$$u_1 = x_1 = a, \ u_2 = x_3 = b, \ u_3 = x_5 = c$$

 $\implies x_2 = 3b - \frac{1}{2}c, \ x_4 = -2c$
Solution set $S = \{(a, 3b - \frac{1}{2}c, b, -2c, c) : a, b, c \in R\}$

Note 1 contd. (back to chapter one !)

Solution set
$$S = \{(a, 3b - \frac{1}{2}c, b, -2c, c) : a, b, c \in R\}$$

$$S = \left\{ a(1,0,0,0,0) + b(0,3,1,0,0) + c(0,-\frac{1}{2},0,-2,1) : a,b,c \in \mathbb{R} \right\}$$

= Span of
$$\left\{ (1,0,0,0,0), (0,3,1,0,0), (0,-\frac{1}{2},0,-2,1) \right\}$$

Dimension of S = dim S = 3 = n - r (Information for future)

Alternate way to find a basis of S

$$\begin{vmatrix} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{vmatrix} - -(i)$$

Note that $\{x_2, x_4\}$ are pivot variables and $\{x_1, x_3, x_5\}$ are free variables.

Set
$$x_1 = 1, x_3 = 0, x_5 = 0. \implies x_2 = 0, x_4 = 0$$

Let $E_1 = (1, 0, 0, 0, 0)$
Set $x_1 = 0, x_3 = 1, x_5 = 0. \implies x_2 = 3, x_4 = 0$
Let $E_3 = (0, 3, 1, 0, 0)$
Set $x_1 = 0, x_3 = 0, x_5 = 1. \implies x_2 = -\frac{1}{2}, x_4 = -2$
Let $E_5 = (0, -\frac{1}{2}, 0, -2, 1)$
Clearly, $S = \text{Span } \{E_1, E_3, E_5\}$ (See the previous slide)

Prove that $\{\textit{E}_{1},\textit{E}_{3},\textit{E}_{5}\}$ is a linearly independet set.

Prove that $\{E_1, E_3, E_5\}$ is a linearly independet set. Hence $\{E_1, E_3, E_5\}$ is a basis of S. Please read chater 2, example 15 for details.

Problem 5 (assignment)

Let W be set of all $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ which satisfies

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$$

Find a basis of W.

(2) Find a basis of the vector space of all polynomials over the field F (see chapter 2, example 16)

Theorem 4

Let V be a vector space which is spanned by a finite set of vectors $\beta_1, \beta_2, \ldots, \beta_m$. Then any linearly independent set of vectors in V is finite and contains no more than m elements.

Proof: We have

$$V = \operatorname{span} \{\beta_1, \beta_2, \dots, \beta_m\} - - - - (i)$$

It is enough to prove that

if $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq V$ is an arbitrary L.I. set, then $n \leq m$.

We prove by method of contradiction. Assume that m < n.

By (i),
$$\alpha_1 = A_{11}\beta_1 + A_{21}\beta_2 + \ldots + A_{m1}\beta_m$$

 $\alpha_2 = A_{12}\beta_1 + A_{22}\beta_2 + \ldots + A_{m2}\beta_m$

$$\alpha_j = A_{1j}\beta_1 + A_{2j}\beta_2 + \ldots + A_{mj}\beta_m = \sum_{i=1}^{n} A_{ij}\beta_i , \quad j = 1, 2, \ldots, n$$

Consider the homogeneous system

$$x_{1}\alpha_{1} + x_{2}\alpha_{2} + \dots + x_{n}\alpha_{n} = 0 - - - - - (ii)$$

$$\implies \sum_{j=1}^{n} x_{j}\alpha_{j} = 0$$

$$\implies \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{m} A_{ij}\beta_{i}\right) = 0$$

$$\implies \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_{j}\right)\beta_{i} = 0$$

Theorem 4 contd.

Consider
$$\sum_{j=1}^{n} A_{ij} x_j = 0, i = 1, 2, ..., m - - - - (iii)$$

The system (iii) is a homogeneous linear system with m equations and n variables. Since m < n, the system (iii) has a non-trivial solution say $x_1^*, x_2^*, \ldots, x_n^*$ (at least one $x_j^* \neq 0$) such that

$$\sum_{j=1}^{n} A_{ij} x_{j}^{*} = 0, i = 1, 2, \dots, m - - - (iv)$$

$$x_1^* \alpha_1 + x_2^* \alpha_2 + \ldots + x_n^* \alpha_n = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j^* \right) \beta_i$$
 (see (ii))

$$x_1^* \alpha_1 + x_2^* \alpha_2 + \ldots + x_n^* \alpha_n = \sum_{i=1}^m (0) \beta_i = 0$$
 (see (iv))

Theorem 4 contd.

Hence

$$x_1\alpha_1 + x_2\alpha_2 + \ldots + x_n\alpha_n = 0 - - - - - (ii)$$

has a non-trivial solution $x_1^*, x_2^*, \ldots, x_n^*$ (at least one $x_j^* \neq 0$). A contradiction to the assumption that $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a L.I. set.

Therefore, $n \leq m$. This completes the proof.

Corollary to Theorem 4

Corollary 1 If V is a finite dimensional vector space, then any two bases of V have the same (finite) number of elements.

Proof: Since V is a finite dimensional vector space, it has a finite basis say

$$B_1 = \{\beta_1, \beta_2, \ldots, \beta_m\}.$$

Hence B_1 is a L.I. set and span $B_1 = V$. Let

 $B_2 = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be another basis of V. That is B_2 is a L.I. set and span $B_2 = V$.

Since span $B_1 = V$ and B_2 is a L.I. set, $n \le m - - - (a)$ (by Theorem 4).

Since span $B_2 = V$ and B_1 is a L.I. set, $m \le n - - - (b)$ (by Theorem 4).

By (a) and (b), m = n. $\Longrightarrow |B_1| = |B_2|$. It completes the proof.

Dimension

The dimension of a finite dimensional vector space V is the number of elements in a basis for V.

1. Conisder the vector space F^n . Let $\mathbb{B} = \{\epsilon_1 = (1, 0, 0, \dots, 0, 0), \epsilon_2 = (0, 1, 0, \dots, 0, 0), \dots, \epsilon_n = (0, 0, 0, \dots, 0, 1)\}$ is a basis of F^n .

Dimension of
$$F^n = dim(F^n) = |\mathbb{B}| = n$$

- 2. Let r be the number of non-zero rows of a row-reduced echelon matrix $R \in F^{m \times n}$. Show that dimension of the solution space of the homogeneous system of linear equations RX = 0 is of dimension n r. (Assignment)
- 3. Show that dimension of $F^{m \times n} = mn$ (Assignment).
- 4. The dimension of zero space is zero.

Corollary to Theorem 4

Corollary 2: Let V be a finite dimensional vector space and let $n = \dim V$. Then

- 1. any subset of V which contains more than n vectors is a L.D.;
- 2. no subset of V which contains fewer than n vectors can span V.

Proof. Let $B = \{\beta_1, \beta_2, \dots, \beta_n\}$ be a basis of V. Then (i) B is L.I. and (ii) V = span B.

Proof of (1). Let $S = \{\alpha_1, \alpha_2, \dots, \alpha_p\} \subseteq V$.

If S is a linearly independent set, (by Theorem 4) $p \le n$.

Therefore, if p > n, then S is L.D. This proves (1).

Proof of (2). Suppose that $V = \text{span } \{\gamma_1, \gamma_2, \dots, \gamma_p\}$. Since B is a linearly independent set, (by Theorem 4) $n \leq p$. \Longrightarrow Any set of vectors which spans V contains at least n vectors. This proves (2).

Lemma

Let S be a linearly independent subset of a vector space V. Suppose that there is a vector $\beta \in V - L(S)$. Then $S \cup \{\beta\}$ is a L.I. subset of V.

Proof: Suppose that $\alpha_1, \alpha_2, \dots, \alpha_n$ be distinct vectors in S and that

$$c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n + b\beta = 0 - - - - - (i)$$

Then b=0; otherwise $\beta=-\frac{c_1}{b}\alpha_1-\frac{c_2}{b}\alpha_2-\ldots-\frac{c_n}{b}\alpha_n\in L(S)$, a contradiction.

$$(i) \Longrightarrow c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n = 0$$

Since S is a L.I. set, $c_1 = c_2 = \ldots = c_n = 0 = b$. Thus $S \cup \{\beta\}$ is a L.I. set in V.

Theorem 5

If W is a subspace of a finite-dimensional vector space V, every linearly independent subset of W is finite and is a part of a (finite) basis for W.

Proof: Since V is a finite-dimensional vector space,

 $n = \dim V < \infty$. Suppose that S_0 is a L.I. subset of W.

Claim 1: $|S_0|$ is finite.

Since $S_0 \subseteq W \subseteq V$, S_0 is a L.I. subset of V and thus by Corollary 2 to Theorem 4, $|S_0| \le \dim V = n$.

Claim 2: S_0 is a part of a (finite) basis for W.

We extend S_0 to a basis for W, as follows.

If $W = \text{span } S_0$ (= $L(S_0)$), S_0 is a basis for W and we are done. If not, there exists a non-zero vector $\beta_1 \in W - L(S_0)$. Let $S_1 = S_0 \cup \{\beta_1\}$. By previous lemma, S_1 is a L.I. subset of W.

Theorem 5 contd

If W= span S_1 , we are done. If not, apply the previous lemma to obtain a $\beta_2\in W-L(S_1)$ such that $S_2=S_1\cup\{\beta_2\}$ is a L.I. set. If we continue in this way, then (in not more than dim V steps) we reach a L.I. set

$$S_m = S_0 \cup \{\beta_1, \beta_2, \dots, \beta_m\}$$

which is basis for W.

Example

Let $S_0 = \{(1, 1, 1)\}$. Find a basis for R^3 which contains S_0 . Solution :

$$L(S_0) = \{a(1,1,1) : a \in R\} = \{(a,a,a) : a \in R\}$$

Clearly, $\beta_1 = (1, 1, 0) \notin L(S_0)$. By Theorem 5, $S_1 = S_0 \cup \{\beta_1\} = \{(1, 1, 1), (1, 1, 0)\}$ is a L.I. subset of R^3 .

$$L(S_1) = \{a(1,1,1) + b(1,1,0) = (a+b,a+b,a) : a,b \in R\}$$

Clearly $\beta_2=(1,0,0)\notin L(S_1)$. By Theorem 5, $S_2=S_1\cup\{\beta_2\}=\{(1,1,1),(1,1,0),(1,0,0)\}$ is a L.I. set. Verify that $L(S_2)=R^3$. Hence, S_2 is a basis for R^3 .

Corollary to Theorem 5

Corollary 1 : If W is a proper subspace of a finite-dimensional vector space V, then W is finite-dimensional and dim $W < \dim V$. **Proof:** (assignment)

Corollary 2 : In a finite-dimensional vector space V every non-empty linearly independent set of vectors is part of a basis.

Corollary 3 to Theorem 5

Let $A \in F^{n \times n}$, and suppose the row vectors of A form a linearly independent set of vectors in F^n . Then A is invertible.

Proof: Let

$$A = \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{array} \right]$$

where $\alpha_i \in F^n$. Let $W = \operatorname{span} \{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Since $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is a L.I. set, dim W = n. Since dim $W = n = \dim F^n$ and $W \subseteq F^n$, by Corollary 1 to Theorem 5, $W = F^n$.

$$F^n = W = \text{span } \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

Corollary 3 Theorem 5 contd.

Since
$$\epsilon_1=(1,0,\ldots,0)\in F^n=\operatorname{span}\ \{\alpha_1,\alpha_2,\ldots,\alpha_n\},$$

$$\epsilon_1=B_{11}\alpha_1+B_{12}\alpha_2+\ldots+B_{1n}\alpha_n$$
 Similarly, $\epsilon_2=(0,1,\ldots,0),\ldots,\epsilon_n=(0,0,\ldots,1)\in F^n,$
$$\epsilon_2=B_{21}\alpha_1+B_{22}\alpha_2+\ldots+B_{2n}\alpha_n$$

$$\epsilon_n=B_{n1}\alpha_1+B_{n2}\alpha_2+\ldots+B_{nn}\alpha_n$$

Corollary 3 Theorem 5 contd.

$$\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \dots & \dots & \dots & \dots \\ B_{n1} & B_{n2} & \dots & B_{nn} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix}$$

 $\implies I = BA$

Hence B is a left inverse of A and thus A is invertible.

Sum of Subsets

Definition: If $S_1,\ S_2,\ldots,S_k$ are subsets of a vector space V, the set of all sums

$$\alpha_1 + \alpha_2 + \cdots + \alpha_k$$

of vectors α_i in S_i is called the sum of the subsets $S_1,\ S_2,\dots,S_k$ and is denoted by

$$\mathrm{S}_1 + \mathrm{S}_2 + \dots + \mathrm{S}_k$$

or by

$$\sum_{i=1}^{k} S_i$$

Sum of Subspaces

If W_1, W_2, \ldots, W_k are subspaces of V, then the sum

$$W = W_1 + W_2 + \cdots + W_k$$

is easily seen to be a subspace of V containing each subspace W_i . From this it follows, as in the proof of Theorem 3, that W is the subspace spanned by the union of W_1, W_2, \ldots, W_k .

Example 9

Let F be a subfield of the field C of complex numbers, and let V be the vector space of all 2×2 matrices over F. Let W_1 be the subset of V consisting of all matrices of the form

$$\left[\begin{array}{cc} x & y \\ z & 0 \end{array}\right]$$

where x, y, z are arbitrary scalars in F. Finally, let W_2 be the subset of V consisting of all matrices of the form

$$\left[\begin{array}{cc} x & 0 \\ 0 & y \end{array}\right]$$

where x and y are arbitrary scalars in F. Then W_1 and W_2 are subspaces of V(Verify!).

Example 9

Also

$$V = W_1 + W_2$$

because

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & 0 \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 0 & d \end{array}\right].$$

The subspace $W_1 \cap W_2$ consists of all matrices of the form

$$\left[\begin{array}{cc} x & 0 \\ 0 & 0 \end{array}\right]$$

Dimension of $(W_1 + W_2)$

Theorem 6: If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then W_1+W_2 is finite-dimensional and

$$\mathsf{dim}\, W_1 + \mathsf{dim}\, W_2 = \mathsf{dim}\, \big(W_1 \cap W_2\big) + \mathsf{dim}\, \big(W_1 + W_2\big)\,.$$

Proof: By Theorem 5 and its corollaries, $W_1 \cap W_2$ has a finite basis $\{\alpha_1, \ldots, \alpha_k\}$ which is part of a basis

$$\{\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_m\}$$
 for W_1

and part of a basis

$$\{\alpha_1,\ldots,\alpha_k,\gamma_1,\ldots,\gamma_n\}$$
 for W_2 .

Proof

The subspace $W_1 + W_2$ is spanned by the vectors

$$\alpha_1, \ldots, \alpha_k, \quad \beta_1, \ldots, \beta_m, \quad \gamma_1, \ldots, \gamma_n$$

and these vectors form an independent set. For suppose

$$\sum x_i\alpha_i + \sum y_j\beta_j + \sum z_r\gamma_r = 0.$$

Then

$$-\sum z_r \gamma_r = \sum x_i \alpha_i + \sum y_j \beta_j$$

which shows that $\sum z_r \gamma_r$ belongs to W_1 . As $\sum z_r \gamma_r$ also belongs to W_2 it follows that

$$\sum z_r \gamma_r = \sum c_i \alpha_i$$

for certain scalars c_1, \ldots, c_k .

Proof

Because the set

$$\{\alpha_1,\ldots,\alpha_k,\gamma_1,\ldots,\gamma_n\}$$

is independent, each of the scalars $z_r = 0$. Thus

$$\sum x_i \alpha_i + \sum y_j \beta_j = 0$$

and since

$$\{\alpha_1,\ldots,\alpha_k,\beta_1,\ldots,\beta_m\}$$

is also an independent set, each $x_i = 0$ and each $y_j = 0$. Thus,

$$\{\alpha_1,\ldots,\alpha_k,\beta_1,\ldots,\beta_m,\gamma_1,\ldots,\gamma_n\}$$

is a basis for $W_1 + W_2$.

Finally

$$\dim W_1 + \dim W_2 = (k+m) + (k+n)$$

$$= k + (m+k+n)$$

$$= \dim (W_1 \cap W_2) + \dim (W_1 + W_2).$$

Verify Theorem 6 by Example 9.