Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 2

- 1. Пусть $z=2+2\sqrt{3}i$. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{\frac{\sqrt{3}}{2}-\frac{i}{2}}$ имеет аргумент $\frac{17\pi}{18}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(11+10i) + y(-15-6i) = -122 + 385i \\ x(-12+10i) + y(-12-9i) = -413 + 24i \end{cases}$$

- 3. Найти корни многочлена $2x^6 + 16x^5 + 24x^4 40x^3 + 198x^2 + 1064x + 816$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 2i$, $x_2 = -4 + i$, $x_3 = -3$.
- 4. Даны 3 комплексных числа: 17-4i, -25+14i, -1-19i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -3$, $z_2 = -3i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-3| < 2\\ |arg(z-5-4i)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (10, -1, -3), b = (-9, -8, 4), c = (2, -4, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-2,-1,-15) и плоскость P:-16x-18y-26z+188=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(11, 12, 12), $M_1(-1, -14, -10)$, $M_2(-13, -2, -10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 21x + 18y - 10z + 668 = 0 \\ 4x + y + 9z + 46 = 0 \end{cases} \qquad L_2: \begin{cases} 17x + 17y - 19z - 3134 = 0 \\ 5x + 11y + 4z - 583 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.