Using the right tools for doing right research

Yvan Richard

Dragonfly Science
Level 5, 158 Victoria St, Wellington

yvan@dragonfly.co.nz

26th April 2012

New data to be incorporated, or mistake in source data

- Add data to spreadsheet or correct mistake
- Re-run analyses, involving thousands of clicks
- Output of the state of the s
- Update tables, endless copy & paste operations
- 6 Update numbers in report Have you missed one?

Waste of time, stressful moment, ending up with a vague feeling of having forgotten to update something...

Accidental deletion or bad direction

- You realise at some stage that you deleted some data or some text a
 while ago and that you kept working in a wrong direction.
- You wish you could go back in time to a previous version of your work
- The deleted part might be lost forever, or at least requires to re-do everything since the mistake.

Waste of time and frustration! But you learn from your mistake, and since then, you keep a different version of everything every time you change something.

Coming back to an old project

- The review of a submitted paper comes back and requires you to do additional analyses
- You open your project folder only to discover 20-odd different versions of the data
- Which one did you use?
- After being fairly confident of the correct one to use, you re-do the analyses, and find different results!
- Eventually, you manage by trial and error to find the same results and keep going.

Waste of time, ending up unsatisfied and not very confident about the results.

Changing computer

 After spending a lot of time perfecting the formatting of your thesis, presentation, or article, you realise your document looks quite different on another computer

Panic and frustration...

Changing institution

 After finally getting into grip with a given software, you change institution and you realise they use a different software. Unfortunately, you cannot get your favourite one because the license is too expensive.

Waste of time re-learning a new software, never becoming a master at a given one

Auditing

- You work on a sensitive issue, e.g. an endangered species at risk of a proposed development project.
- The "bad guys" do not really like your results, preventing their project to be approved.
- In the environmental court, it is agreed that your project gets audited, requiring you to show that you get the same results from the same data.

... Can you?

Teaching

- A workmate asks you to show him/her how you do a certain analysis.
- You sit at a computer with him/her, and start explaining: "You go to this
 menu, and click there, then there, then you go there and type in that, and
 then you click on this, etc."
- It takes quite a while, as your workmate writes down the whole complicated process.
- He/she gets back to you later, because his/her version of the program is slightly different and he/she cannot find a certain item in the menus.

... (sigh) ...

Let's dream that...

- all these problems could be solved,
- you could focus on content and process rather than formatting and eye-candy,
- all the tools to solve these problems and do proper research are free,
- on the way of solving these problems, you acquire great skills that would make you find a job very easily.

Well, yes, it is possible!

Research

Research should:

- be reproducible
- be transparent
- · have a functional work flow

Sounds trivial, but it is rarely the case!

Scripting power

- Everything is written, no lost clicks
- Reproducible and transparent
- Easily changed
- · Code is re-usable
- Repetitive tasks are done using loops
- Generally quicker than clicks and navigating menus
- Don't Repeat Yourself (DRY) philosophy

Open-source software

- Free!
- Generally quite portable between operating systems
- Huge community for support, bug checking and fixing, for new developments
- Transparent with a non-restrictive license, allowing easy communications between programs.

Main jobs

- Data preparation, exploration, analysis, and plotting
- Reporting
- Bibliography
- Work flow
- Version control
- Distribution

Data preparation, exploration, analysis and plotting

- NZ product!
- Software environment for statistical computing and graphics
- Programming language, but easy to learn
- Works on all systems (Windows, Mac, Linux, ...)
- Increasing popularity, real threat to commercial products (e.g. SAS, SPSS)
- Evolves fast, expandable with thousands of available packages

Example

```
## Load data
dat <- read.csv("file-with-data.csv")
## Data manipulation
dat$var3 <- dat$var1 + dat$var2
## Plot
plot(Xvar, Yvar)</pre>
```


Fitting a linear model

```
Call:
```

lm(formula = indep ~ var1 + var2)

Residuals:

Min 1Q Median 3Q Max -7.8060 -1.3795 -0.0133 1.3950 8.2858

Coefficients:

| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 0.21056 | 0.23224 | 0.0907 | 0.3646 | var1 | 4.95934 | 0.02074 | 239.112 | 42e-16 *** var2 | 0.04883 | 0.02062 | 2.368 | 0.0179 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.083 on 9997 degrees of freedom Multiple R-squared: 0.8512, Adjusted R-squared: 0.8511 F-statistic: 2.859e+04 on 2 and 9997 DF, p-value: < 2.2e-16

- Compiled documents, not WYSIWYG
- Very common
- Most scientific journals provide their own template
- Beautiful typesetting
- Takes care of formatting automatically
- Maths formulae are easy to write
- Easy PDF creation with pdflatex
- Creation of presentations using Beamer (like this one)

the stochastic population growth rate (α_{s}) may be found via simulation using the following formula β_{s} may be found via simulation using the following formula β_{s} may be found via simulation using the following formula β_{s} may be found via simulation β_{s} may be found in β_{s} may be found via simulation β_{s} may be found β_{s} may be found via simulation β_{s} may be found via simulation β_{s} may be found in β_{s} may be found via simulation β_{s} may be found β_{s} and β_{s} may be found β_{s} may be found β_{s} and β_{s} may be found β_{s}

the stochastic population growth rate (λ_s) may be found via simulation using the following formula (Caswell, 2001)

$$\lambda_s = \exp\left(\frac{1}{T}(\ln(N_T) - \ln(N_0))\right)$$

with N_i being the population size at time i, and T the number of time steps in the model. This formula is simply the geometric mean of the population growth rate at each time step $(\lambda_{t\to t+1}=N_{t+1}/N_t)$. Similarly, the

Calling R into LaTeX using Sweave

- Sweave lets data and tables from R to be included in LaTeX documents
- Why copying and pasting data manually when you can call them directly?
- · Enormous time saver
- Chances of mistakes are minimal
- Initial data can be changed, the changes will be automatically reflected in the report

Calling R into LaTeX using Sweave

Example

<<load>>=

```
dat <- read.csv("file-with-data.csv")
minsize <- min(dat$popsize)
maxsize <- max(dat$popsize)
@
The population size varied between \Sexpr{minsize} and \Sexpr{maxsize}.</pre>
```

\SweaveOpts{echo=FALSE, results=tex, prefix.string=sweave/fig}

Bibliography in LaTeX

Including references is easy with BibTeX! References are stored in a text file (e.g.: refs.bib):

Then each reference is called in the LaTeX document by its tag:

```
... is a powerful tool to analyse movements \cite{richard_cost_2010}.
```

Bibliography in LaTeX

- BibTeX format is very common
- References in this format can be downloaded from Google Scholar, imported from Zotero, and from journals web site
- Templates exist for all journals
- No more corrupted EndNote databases...

Workflow management

- GNU make
- Centralise jobs to be run
- Jobs are run in order, and only if necessary
- Jobs can be run in parallel in order to use several computer processors
- Can be used to document the whole workflow.

Workflow management

The jobs are written in a text file (makefile):

all: report.pdf

report.pdf: report.tex datafile.csv refs.bib

bibtex report pdflatex report

datafile.csv: analyse.r inputdata.csv

Rscript analyse.r

You run the whole process by only typing "make" in a terminal, it's that easy.

Version control

- GIT
- Saves all gradual changes of files
- Allows to safely keep only one version of each file
- Do not be afraid to delete stuff! You can always come back to previous versions
- Provides an easy outlook of all modifications
- Utilities to compare versions
- Great also for cooperative work

Easy commands:

git status: to get list of all modified files git add .: to inform git to save all modifications git commit -m "Finished intro of chapter 3": to save locally the current state of modifications, with a comment to describe the changes git push: to save the commits to the server

- GitHub is a web interface and service to store your git project
- Makes it easy to access your project from anywhere and to share it with others
- Free for open-source projects
- Great for issue tracking (to-do list)

Conclusions

- Great suite of tools for doing proper research, and it's free!
- · Risk of mistakes minimised
- Transparent and reproducible
- Fun! Just like playing Lego
- Adopting only one of these tools even is a great improvement over the traditional bad habits
- This workflow allows tackling some large projects comfortably that would be impossible otherwise
- These skills will help you all your life and make your life easier, and are great to get a job
- Open research movement; make research more accessible!

But...

Scary at first; learning curve significant

But still worth it 100%!