PID Component Analysis

Plant

The plant used in this example is the model of a car of mass m, pushed by a force F and subject to aerodynamic drag $-bv^2$.

The dynamic equation is:

$$mrac{dv}{dt} = F - bv^2$$

The parameters used are:

$$m=1000kg \ b=1rac{Ns^2}{m^2}$$

Top Level - Xcos

Car Model - Xcos

Simulation

PID Control

Interested in PID Control? Check out my digital course:

https://simonebertoni.thinkific.com/

Very helpful and practical

Very good sharing of experience

★★★★ A different way to learn PID!

★★★★ Great course

Find the link here!

