Dzień 3 - Analiza wariancji - manova

Spis treści

Analiza wariancji - manova

1

Analiza wariancji - manova

Wersja pdf

Do tej pory rozważaliśmy sytuację, kiedy zmienna zależna była jedna, a zmiennych niezależnych było kilka. Odwróćmy sytuację. Mamy kilka zmiennych zależnych i jedną zmienną niezależną.

Załadujmy dane:

```
dane<-iris
head(iris)</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa

Spójrzmy na rysunek:

https://melindahiggins 2000.github.io/N741 Unsupervised Learning/Unsupervised Learning.html

```
sepl <- iris$Sepal.Length
petl <- iris$Petal.Length
model <- manova(cbind(Sepal.Length, Petal.Length) ~ Species, data = iris)
summary(model)
## Df Pillai approx F num Df den Df Pr(>F)
```

```
## Species 2 0.9885 71.829 4 294 < 2.2e-16 ***

## Residuals 147

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Hipoteza zerowa: średnie w poszczególnych grupach są równe. Hipoteza alternatywna: co najmniej jedna średnia jest inna od pozostałych.