MA3209, Homework 1

Due at the beginning of your tutorial session, Monday 27 August or Wednesday 29 August.

- 1. Consider the metric spaces $(\mathbb{R}^n, \rho_p(x, y) = (\sum_{k=1}^n |x_k y_k|^p)^{1/p})$ and $(\mathbb{R}^n, \rho_\infty(x, y) = \max_{k=1}^n |x_k y_k|)$.
 - (a) Show that the function $\rho_{\infty}(x,y)$ satisfies the triangle axiom.
 - (b) Show that for any $p \ge 1$ and x, y in \mathbb{R}^n

$$\rho_{\infty}(x,y) \le \rho_p(x,y) \le n\rho_{\infty}(x,y).$$

(c) Show that for any p > 1 and x, y in \mathbb{R}^n

$$\rho_p(x,y) \le \rho_1(x,y) \le n^{1-\frac{1}{p}}\rho_p(x,y).$$

(Hint: For the left inequality, show $a^p + b^p \le (a+b)^p$ for all a, b > 0 first. For the right inequality, use Hölder's inequality.)

2. Show that the distance function in metric space $C^p([c_1, c_2])$

$$\rho_p(x(t), y(t)) = \left(\int_{c_1}^{c_2} |x(t) - y(t)|^p \right)^{\frac{1}{p}}$$

satisfies the triangle inequality when p > 1, in the following steps.

(a) Show that the triangle inequality follows from the integral form of the Minkowski inequality for any continuous functions a(t), b(t) on $[c_1, c_2]$

$$\left(\int_{c_1}^{c_2} |a(t) + b(t)|^p dt\right)^{\frac{1}{p}} \le \left(\int_{c_1}^{c_2} |a(t)|^p dt\right)^{\frac{1}{p}} + \left(\int_{c_1}^{c_2} |b(t)|^p dt\right)^{\frac{1}{p}}.$$
 (1)

(b) Show that the integral form of the Minkowski inequality (1) follows from the integral form of Hölder's inequality for any continuous functions x(t), y(t) on $[c_1, c_2]$, and p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$

$$\int_{c_1}^{c_2} |x(t)y(t)| dt \le \left(\int_{c_1}^{c_2} |x(t)|^p dt \right)^{\frac{1}{p}} \left(\int_{c_1}^{c_2} |y(t)|^q dt \right)^{\frac{1}{q}}. \tag{2}$$

(Hint: Use the trick

$$\int_{c_1}^{c_2} |a(t) + b(t)|^p dt = \int_{c_1}^{c_2} |a(t) + b(t)|^{p-1} |a(t)| dt + \int_{c_1}^{c_2} |a(t) + b(t)|^{p-1} |b(t)| dt.$$

- (c) Prove the integral form of Hölder's inequality (2). (Hint: Reduce it to the special case that $\int_{c_1}^{c_2} |x(t)|^p dt = 1$, $\int_{c_1}^{c_2} |y(t)|^q dt = 1$.)
- 3. Let (X, ρ) be a metric space. Define the function $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}.$$

Show that (X, d) is also a metric space.

- 4. Let V be a vector space, and let $\|\cdot\|: V \to \mathbb{R}$ be a function (called a *norm* on V) satisfying the following conditions:
 - (i) $||x|| \ge 0$ for all x in V.
 - (ii) ||x|| = 0 if and only if x = 0.
 - (iii) $\alpha ||x|| = |\alpha| ||x||$ for all x in V and all scalar α .
 - (iv) $||x + y|| \le ||x|| + ||y||$ for all x, y in V.

Define $\rho: V \times V \to \mathbb{R}$ by $\rho(x,y) = ||x-y||$ for x,y in V. Show that (V,ρ) is a metric space.

5. (Extra credit) Let p be a prime number. For any integer n > 0 we define $v_p(n)$ as the exponent of p in the decomposition of n into prime numbers. Let $x = \pm \frac{r}{s}$ be any rational number $\neq 0$, with r and s integers > 0. Define

$$v_p(x) = v_p(r) - v_p(s). \tag{3}$$

Then define the function $\rho: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ by (\mathbb{Q} stands for the set of rational numbers)

$$\rho(x,y) = \begin{cases} p^{-v_p(x-y)} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

- (a) Show that $v_p(x)$ is well defined, that is, $v_p(x)$ in (3) does not depend on the particular expression of x as a fraction.
- (b) Show that (\mathbb{Q}, ρ) is a metric space. $(\rho \text{ is the } p\text{-adic distance useful in number theory.})$