Evaluating Public Policy

Problems (easy) vs Solutions (hard)

Understanding Political Numbers

April 1, 2019

No shortage of bad things in the world

How U.S. Voter Turnout Measures Up

Share of voting age population that voted in the most recent national election

^{*} National law makes voting compulsory, though not necessarily enforced. In addition, one Swiss canton has compulsory voting.

Source: Pew Research Center

Policy "problems"

Are data in context?

What's causing the problem?

What policy could address that mechanism?

Policy "problems"

Are data in context?

What's causing the problem?

What policy could address that mechanism?

Policy "solutions"

Has the policy been implemented elsewhere?

Is there evidence that the policy works? How do you know?

Can the evidence be *generalized?*

What if the policy hasn't been enacted anywhere else?

Unintended consequences of policy

As economists say, "externalities"

Voter Identification Requirements

Problem? Election security

- Are there fraudulent ballots?
- Voters have shaky confidence that votes are counted as intended

Solution? Tighter ID requirements

- Bills, bank statements, birth certificates, SS cards not good enough
- Student photo ID? Not good enough (no signature)
- Wisconsin: must have photo and a signature

Problem? Election security

- Are there fraudulent ballots?
- Voters have shaky confidence that votes are counted as intended

Solution? Tighter ID requirements

- Bills, bank statements, birth certificates, SS cards not good enough
- Student photo ID? Not good enough (no signature)
- Wisconsin: must have photo and a signature

Externalities?

Voter Identification Laws in Effect in 2019

Strict Photo ID	Strict Non-Photo ID	Photo ID requested	ID requested; photo not required	No document required to vote

Do voter ID requirements reduce turnout?

Unit of analysis: states (state-years)

Independent variable: state has voter ID law (1) or not (0)

Dependent variable: turnout rate (% VEP)

Sticky Causality

Turnout in 2008

strict_id	turnout
0	63.3
1	60.8

Voter ID states (IN and GA) had 2.5 percent lower turnout in 2008

Sticky Causality

Turnout in 2008

strict_id turnout 0 63.3 1 60.8

Voter ID states (IN and GA) had 2.5 percent lower turnout

in 2008

Turnout in 2004, before any strict photo ID laws

strict_id	turnout
0	62.5
1	55.5

IL and GA had 7 percent lower turnout *before* strict photo ID

Confounding and selection bias

There's something about states (U) that make them adopt voter ID requirements (X)

Is that something related to turnout (Y) also?

We should compare states *against themselves*

Figure 3. Total Count of Restrictive Voter Provisions Passed: 2006-2011

One bill was passed in Alaska; Hawaii did not pass any such legislation

Turnout naturally fluctuates

Turnout goes down in voter ID states, so what?

Is that different from non-voter ID states?

We want to compare across time *and* across states

Difference-in-differences

Background characteristics

Difference 1: difference over time

Difference 2: are treatment and control changes the same?

Counterfactuals

$$\hat{y} = a + b_1 \text{ (Treat)} + b_2 \text{ (After)} + b_3 \text{ (Treat} \times \text{After)}$$

Understanding the Diff-in-diff model

$$\hat{y} = a + b_1 \text{ (Treat)} + b_2 \text{ (After)} + b_3 \text{ (Treat} \times \text{After)}$$

Control group, before treatment (after = 0, treat = 0): a

Treatment group, before treatment (after = 0, treat = 1): $a + b_1$

Control group, after treatment (after = 1, treat = 0): $a + b_2$

Treatment group, after treatment (after = 1, treat = 1): $a + b_1 + b_2 + b_3$

Understanding the Diff-in-diff model

$$\hat{y} = a + b_1 \text{ (Treat)} + b_2 \text{ (After)} + b_3 \text{ (Treat} \times \text{After)}$$

Control group, before treatment (after = 0, treat = 0): a

Treatment group, before treatment (after = 0, treat = 1): $a + b_1$

Control group, after treatment (after = 1, treat = 0): $a + b_2$

Treatment group, after treatment (after = 1, treat = 1): $a + b_1 + b_2 + b_3$

 b_3 is the effect of treatment, controlling for over-time change (b_2 After) and background characteristics of the treatment and control groups (b_1 Treat)

With real data

turnout =
$$a + d_{year} + d_{states} + b$$
 (ID. Law)

With real data

turnout =
$$a + d_{year} + d_{states} + b$$
 (ID. Law)

turnout_data

```
## # A tibble: 1,000 x 4
##
      year state
                       turnout strict id
      <dbl> <chr>
                         <dbl>
                                   <dbl>
##
   1 1980 Alabama
                          49.2
##
##
   2 1980 Alaska
                          58.7
##
   3 1980 Arizona
                          46.2
                          52
   4 1980 Arkansas
##
##
   5 1980 California
                           55
##
   6 1980 Colorado
                           57.2
   7 1980 Connecticut
                           63.9
##
##
   8 1980 Delaware
                           56
   9 1980 Florida
                           52
     1980 Georgia
## 10
                          42.1
## # ... with 990 more rows
```

With real data

turnout =
$$a + d_{year} + d_{states} + b$$
 (ID. Law)

turnout_data

```
## # A tibble: 1,000 x 4
##
      year state
                       turnout strict id
      <dbl> <chr>
                         <dbl>
                                   <dbl>
##
   1 1980 Alabama
                          49.2
##
                                       0
   2 1980 Alaska
                          58.7
##
##
   3 1980 Arizona
                          46.2
                          52
##
   4 1980 Arkansas
   5 1980 California
                          55
##
   6 1980 Colorado
                          57.2
##
##
  7 1980 Connecticut
                          63.9
##
   8 1980 Delaware
                          56
   9 1980 Florida
                          52
##
## 10 1980 Georgia
                          42.1
## # ... with 990 more rows
```

```
# within lm(), as.factor() makes a sequence of dummies
# one category is automatically omitted (alphanumerically)
diff_diff <-
  lm(turnout ~ strict_id + as.factor(state) + as.factor(year),
  data = filter(turnout_data))</pre>
```

```
summary(diff_diff)
```

Each state/year effect is comparison to omitted category (Alabama or 1980)

e.g. CA is (on avg) 2% higher turnout than AL

Turnout in 2008 was (on avg) 7 pts higher than 1980

Turnout under voter ID is (on avg) 1.2 pts higher (not sig.)

```
##
## Call:
## lm(formula = turnout ~ strict_id + as.factor(state) + as.factor(year)
       data = filter(turnout data))
##
##
## Residuals:
##
        Min
                       Median
                                    3Q
                  10
                                             Max
            -2.4630
                       0.1195
                                2.4472 15.0295
## -14.3247
##
## Coefficients:
##
                                  Estimate Std. Error t value Pr(>|t|)
                                                1.1226 47.012 < 2e-16 *
## (Intercept)
                                    52.7747
## strict id
                                    1.2652
                                                0.9409
                                                         1.345 0.179076
## as.factor(state)Alaska
                                   11.0648
                                                1.3519
                                                         8.184 8.97e-16 *
## as.factor(state)Arizona
                                    -2.8552
                                                1.3519
                                                        -2.112 0.034959 *
## as.factor(state)Arkansas
                                    -1.1102
                                                1.3519
                                                        -0.821 0.411742
## as.factor(state)California
                                    2.3348
                                                1.3519
                                                         1.727 0.084504 .
## as.factor(state)Colorado
                                    8.0348
                                                1.3519
                                                         5.943 3.95e-09 *
## as.factor(state)Connecticut
                                                         5.632 2.35e-08 *
                                    7.6148
                                                1.3519
## as.factor(state)Delaware
                                    2.7698
                                                1.3519
                                                         2.049 0.040768 *
## as.factor(state)Florida
                                    2.5298
                                                1.3519
                                                         1.871 0.061629 .
## as.factor(state)Georgia
                                    -4.9248
                                                1.3519
                                                        -3.643 0.000285 *
## as.factor(state)Hawaii
                                    -2.9402
                                                1.3519
                                                        -2.175 0.029896 *
## as.factor(state)Idaho
                                    7.5148
                                                1.3519
                                                         5.558 3.56e-08 *
## as.factor(state)Illinois
                                    3.6398
                                                1.3519
                                                         2.692 0.007225 *
                                                        -0.941 0.346768
## as.factor(state)Indiana
                                    -1.2780
                                                1.3577
## as.factor(state)Iowa
                                                         7.448 2.16e-13 *
                                   10.0698
                                                1.3519
## as.factor(state)Kansas
                                    3.8467
                                                1.3454
                                                         2.859 0.004342 *
## as.factor(state)Kentucky
                                                        -1.539 0.124222
                                    -2.0802
                                                1.3519
```

Threats of time-varying confounders?

Threats of time-varying confounders?

Threats of time-varying confounders?

Counter-mobilization, Battleground states, Other legal changes

Exogenous vs endogenous policy change

Policy change comes from within the system (endogenous)

Policy change is imposed from external forces (exogenous)

Exogenous policy change are easier to study

Looking ahead

On Wednesday:

- experiments (and ethics)
- Discuss in-section presentation

Section:

• More multiple regression

Next week:

- Big data (by Michael)
- Elections, campaigns, polls...