SOUP: A new approach in handling Imbalanced Multi-class problems

ML2 Individual Presentation

JAZEL R. JAYME

November 18, 2021

Imbalanced data BINARY CLASS VS MULTI-CLASS

- Most of the current research concerns binary classification problem
- Multiclass imbalanced classification problems are more difficult than their binary counterparts.
- Mainstream technique for multi-class:
 - SMOTE

Problems with existing approaches:

Do not consider the mutual relations between classes that

are different for majority

What is SOUP?

It stands for Similarity Oversampling and Undersampling Preprocessing. (Lango et al. (2017))

Theory Safe level.

$$\operatorname{safe}(x_{C_i}) = \frac{1}{n} \sum_{j=1}^{l} n_{C_j} \mu_{ij}$$

Eq.1

$$\mu_{ij} = \frac{\min(|C_i|, |C_j|)}{\max(|C_i|, |C_j|)}$$

 μ_{ij} : the degree of similarity

 n_{C_j} : the number of examples from class C_j inside the considered neighborhood of x

n: a total number of neighbors

 $|C_i|$: the number of samples belonging to class i

Process

$$m = \text{mean}(\max\{N_{i_{MIN}}\}, \min\{M_{i_{MAJ}}\})$$

Eq.2

where m = final size of the all classes

 $N_{i_{MIN}}$ = the size of minority class

 $M_{i_{MAI}}$ = the size of the majority class

MEASURE the Safe level of samples within class UNDERSAMPLE
Majority
classes with
size m
(remove unsafe

(remove unsafe samples)

OVERSAMPLE minority classes with size m (duplicate safe samples within

safe levels)

UCI Glass

Imbalanced Data

6 Types of glass 2 majority classes; 4 minority classes

01

Data Cleaning and Scaling.

Dataset has **9 numeric attributes** which corresponds to different mineral contents. The goal is to **predict the type of glass**.

02

Data Resampling using SOUP and SMOTE.

Examine plot and play with different *k_neighbors*

03

Auto-ML implementation.

Get the G-Mean score as the performance metric.

$$gmean = (\prod_{i=1}^{n} sensitivity_i)^{\frac{1}{2}}$$

SOUP

All glass types have 34 samples.

SMOTE

All glass types have 53 samples.

Comparing SOUP With SMOTE

	TEST	TEST SET G-mean (%) SCORES		
MODEL	NO RESAMPLING	SOUP (k=7)	SMOTE(k=7)	
Logistic Regression	21.1	79.2	70.2	
Linear SVM	19.8	70.7	65.5	
Decision Trees	57.0	47.9	53.5	
Random Forest	57.8	62.9	64.3	
Gradient Boosting	54.1	60.0	50.4	

UCI Glass Dataset Test size = 30%

Best model: Logistic Regression trained from resampled dataset using SOUP

INSIGHTS

- Safety coefficients can be efficiently exploited in resampling techniques to improve classifiers.
- SOUP looks at the complex relations and similarities between classes and proposed a dataset with reasonable size.
- It can also work significantly better than SMOTE.

SALAMAT © Questions?