Sine and Cosine Transforms

$$u(t) = 2\sum_{k=1}^{\infty} b_k \sin(kt)$$
, where $b_k = \frac{1}{\pi} \int_0^{\pi} u(t) \sin(kt) dt$

Discrete sine transform:

Comes from Fourier series, when
$$u(k)$$
 is an odd function on $[-17,17]$

Discrete sine transform:

Let $t_j = \overline{TT}_{N,j}^{j}$, $j = 0, 1, ..., N$, Apply trapezoradal rule to $\frac{1}{2}$
 $\frac{1}{2}$

$$\hat{\mathcal{L}}_{k} = \hat{\mathcal{L}}_{k} = \hat{\mathcal{L}}_{k} + \hat{\mathcal{L}}_{j-1} + \hat{\mathcal{L}}_{j-1} + \hat{\mathcal{L}}_{k-1} + \hat{$$

Inverse DST: $U_j = 2 \sum_{k=1}^{N-1} \hat{U}_k sin(\overline{T}_i k_i), j=1,2,...,N-1$ These form a transform pair.

. There are fist ways to compute the DST:

FST fust

· Based on the FFT.

· (ode on Blackboard that does this (Matheb)

Continuous cosine series: $u(t) = a_0 + 2\sum_{k=0}^{\infty} a_k \cos(kt)$, where $a_k = \frac{1}{\pi} \int_0^{\pi} u(t) \cos(kt) dt$

. Form a transform poir.

Comes from the Former series when u(t) is even: U(-t)=U(t)

Apply touperodal rule to integral, like the DST:

 $\alpha_{k} = \frac{h}{\pi} \sum_{i=1}^{N-1} U_{i} \cos\left(\frac{\pi}{N}ik\right) + \frac{h}{2\pi} \left[U_{0} \cos(0) + U_{N} \cos(\pi k)\right]$

 $U_{ij} = 2 \sum_{k=0}^{N} \hat{U}_{k} \cos(\pi_{ij}k)$, j = 0,1,...,N

 $= \frac{1}{N} \left[\frac{U_0}{3} + \sum_{i=1}^{N-1} U_i \cos \left(\frac{\pi}{N} i k \right) + \frac{U_N}{3} \cos \left(\frac{\pi K}{N} \right) \right], \quad k=0,1,...,N$

= 1 2 Uscos (Tik) (Forward Piscrete Cosine Transform (DCT)

Computing derivatives using the DFT (FFT)

Recall the discrete Fourier series (trigonometric interpolant) obtained from samples u_i at the location $t_j = \frac{2\pi j}{N}, j = 0, 1, \dots, N - 1$ (N is odd):

$$p_N(t) = \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} \underline{\tilde{c}_k e^{ikt}}, \quad \text{where} \quad \tilde{c}_k = \frac{1}{N} \sum_{j=0}^{N-1} u_j e^{-\frac{2\pi i}{N} jk}, \ k = -\frac{N-1}{2}, \dots, \frac{N-1}{2}.$$

Also recall the discrete Fourier transforms (DFT) for u_i (N is odd):

forward DFT:
$$\hat{u}_k = \sum_{j=0}^{N-1} u_j e^{-2\pi i j k/N}, \ k = 0, \dots, N-1$$

inverse DFT:
$$u_j = \frac{1}{N} \sum_{k=0}^{N-1} \hat{u}_k e^{2\pi i j k/N}, \ j = 0, \dots, N-1$$

$$\hat{\Omega} = \frac{1}{h} \left[\hat{Z}, \hat{Z}, \dots, \hat{Z}_{\frac{N-1}{2}}, \hat{Z}_{\frac{N-1}{2}}, \dots, \hat{Z}_{\frac{N-1}{2}}, \hat{Z}_{\frac{N-1}{2}}, \dots, \hat{Z}_{\frac{N-1}{2}}, \hat{Z}_{\frac{N-1}{2}}, \dots, \hat{Z$$

Evaluate at ti

$$\frac{d}{dt}P_{N}(t) \Big|_{t=t_{j}} = P_{N}(t_{j}) = \sum_{k=-(n-1)}^{n-1} C_{k}k e$$

$$\frac{d}{dt}P_{N}(t) \Big|_{t=t_{j}} = P_{N}(t_{j}) = P_{N}($$

Step 1: Apply DFT to
$$\mathcal{E}U_{ij}^{i}$$
 and $\mathcal{E}U_{ij}^{i}$ and $\mathcal{E}U_{ik}^{i}$ $\mathcal{E}_{k=0}^{i}$

Step 3: Compute $\mathcal{E}_{k=1}^{i}$ $\mathcal{E}_{k=1$

Example:

$$u(t) = \cos(1 + \pi \cos(3(t - 0.1)))$$
 and choose $N = 1$ % 63

Approximation of the derivative:

Error in the approximation:

Convergence: max-norm of the error vs. N

error = Be-cn los(error) = log(B) - CN scope

U"(x)=f(x) periodic over [0,11])
Gren f(x) food u(x)?