

COLLEGE OF ENGINEERING

ECE/CS 472/572
Computer Architecture:
Special Topics Part 1:
Terminology

Prof. Lizhong Chen Spring 2019

Level of Parallelism

- Instruction-Level Parallelism (ILP)
 - e.g., pipepline
- Memory-Level Parallelism (MLP)
 - Multiple outstanding cache misses
- Thread-Level Parallelism (TLP)
 - In single core: multi-threading
 - In multiple cores

Superpipeline

- Some stages in the 5-stage integer pipeline are further pipelined
 - To increase the clock rate
 - Not "free"
 - Branch penalty is now 3 clock cycles
 - Instruction latency in cycles is higher

Superscalar

- Also called "multiple issue"
 - Issue multiple instructions in the same cycle
- Static multiple issue
- Dynamic multiple issue

Static Multiple Issue

- 2-way multiple-issue
- Compiler detects and avoids hazards

Address	Instruction type	Pipeline Stages						
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store			IF	ID	EX	MEM	WB

Dynamic Multiple Issue

Speculation

- "Guess" what to do with an instruction
 - Start operation as soon as possible
 - Check whether guess was right
 - If so, complete the operation
 - If not, roll-back and do the right thing
- Examples
 - Speculate on branch outcome
 - Roll back if path taken is different
 - Speculate on load
 - Roll back if location is updated
- Value-prediction

ITRS

International Technology Roadmap for Semiconductors

2013	2015	2017	2019		2021	202	23	2025		2028
"16/14"	"10"	"7"	"5"		"3.5"	"2.	5"	"1.8"		
DRAM ½ Pitch (nm)		28	24	20	17	14	12	10	7.7	
FinFET Fin Half-pitch (new) (nm)		30	24	19	15	12	9.5	7.5	5.3	
FinFET Fin Width (new) (nm)		7.6	7.2	6.8	6.4	6.1	5.7	5.4	5.0	
6-t SRAM Cell Size(1	6-t SRAM Cell Size(um2) [@60f2]		0.096	0.061	0.038	0.024	0.015	0.010	0.0060	0.0030
MPU/ASIC HighPer	f 4t NAND Gate Size(um	2)	0.248	0.157	0.099	0.062	0.039	0.025	0.018	0.009
4-input NAND Gate	4-input NAND Gate Density (Kgates/mm) [@155f2]		4.03E+03	6.37E+03	1.01E+04	1.61E+04	2.55 E +04	4.05 E +04	6.42 E+ 04	1.28 E +05
Flash Generations L	abel (bits per chip) (SLC	'/MLC)	64G /128G	128G /256G	256G / 512G	512G / 1T	512 G / 1 T	1T / 2T	2T / 4T	4T / 8T
Flash 3D Number oj	Flash 3D Number of Layer targets (at relaxed Poly half pitch)		16-32	16-32	16-32	32-64	48-96	64-128	96-192	192-384
Flash 3D Layer half-pitch targets (nm)		64nm	54nm	45nm	30nm	28nm	27nm	25nm	22nm	
DRAM Generations	Label (bits per chip)		4G	8 G	8 G	16 G	32 G	32 G	32 G	32 G
450mm Production	High Volume Manufactu	ring Begins (100Kwspm)				2018				
Vdd (High Performa	nce, high Vdd transistors	;)[**]	0.86	0.83	0.80	0.77	0.74	0.71	0.68	0.64
1/(CV/I) (1/psec) [*	*]		1.13	1.53	1.75	1.97	2.10	2.29	2.52	3.17
On-chip local clock	MPU HP [at 4% CAGR]		5.50	5.95	6.44	6.96	7.53	8.14	8.8	9.9
Maximum number w	viring levels [unchanged		13	13	14	14	15	15	16	17
MPU High-Perform	ance (HP) Printed Gate I	Length (GLpr) (nm) [**]	28	22	18	14	11	9	7	5
MPU High-Perform	ance Physical Gate Leng	th (GLph) (nm) [**]	20	17	14	12	10	8	7	5
ASIC/Low Standby I	Power (LP) Physical Gate	e Length (nm) (GLph)[**]	23	19	16	13	11	9	8	6

SISD, MIMD, SPMD, SIMD

- SISD
 - Single Instruction stream Single Data stream
- MIMD
 - Multiple Instruction streams Multiple Data streams
- SPMD
 - Single Program Multiple Data streams
- SIMD
 - Single Instruction stream Multiple Data streams

GPU Architecture: Nvidia Tesla

The Hype Cycle

"The Hype Cycle offers a glimpse of the future"

Cortex A8 and Intel i7

Processor	ARM A8	Intel Core i7 920		
Market	Personal Mobile Device	Server, cloud		
Thermal design power	2 Watts	130 Watts		
Clock rate	1 GHz	2.66 GHz		
Cores/Chip	1	4		
Floating point?	No	Yes		
Multiple issue?	Dynamic	Dynamic		
Peak instructions/clock cycle	2	4		
Pipeline stages	14	14		
Pipeline schedule	Static in-order	Dynamic out-of-order with speculation		
Branch prediction	2-level	2-level		
1 st level caches/core	32 KiB I, 32 KiB D	32 KiB I, 32 KiB D		
2 nd level caches/core	128-1024 KiB	256 KiB		
3 rd level caches (shared)	-	2- 8 MB		

LIW/VLIW

- Long Instruction Word / Very Long Instr. Word
- Multiple independent RISC instructions are packaged in one LIW or VLIW instruction
- Independent functional units
- May have some forwarding to reduce latency

LIW/VLIW

Miss Status Handling Registers (MSHR)

Multithreading

- Fine-grain multithreading
 - Interleave instruction execution
 - If one thread stalls, others are executed
- Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (eg, data hazards)
- Simultaneous Multithreading (SMT)
 - In multiple-issue dynamically scheduled processor

Multithreading

Quantum Computers

- "Qubit"
 - A qubit (quantum bit) is the basic unit of quantum information
 - Superposition of 0 and 1
 - Store two bits of information
- Basics of quantum computers
 - https://www.youtube.com/watch?v=JhHMJCUmq28