Exercise 5.1: Trigonometric Ratios

1.) Find the value of Trigonometric ratios in each of the following provided one of the six trigonometric ratios are given.

Sol.

(i) sinA=23
$$\sin A=rac{2}{3}$$

Given:

$$\sin A$$
=23 $\sin A=rac{2}{3}$ (1)

By definition,

$$SinA = 23 sin A = \frac{2}{3}$$
 = Perpendicular Hypotenuse $\frac{Perpendicular}{Hypotenuse}$ (2)

By Comparing (1) and (2)

We get,

Perpendicular side = 2 and

Hypotenuse = 3

Therefore, by Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of perpendicular side (BC) and hypotenuse (AC) and get the base side (AB)

Therefore,

$$3^2 = AB^2 + 2^2$$

$$AB^2 = 3^2 - 2^2$$

$$AB^2 = 9 - 4$$

$$AB^{2} = 5$$

$$AB = \sqrt{5}\sqrt{5}$$

Hence, Base =
$$\sqrt{5}\sqrt{5}$$

Now, COSA= BaseHypotenuse
$$\cos A = rac{Base}{Hypotenuse}$$

$$\cos \mathsf{A} = \sqrt{5}3\cos A = \frac{\sqrt{5}}{3}$$

Now, cosec A =
$$1 \sin A \frac{1}{\sin A}$$

Therefore,

$$cosec A = 32 \frac{3}{2}$$

Now, sec A = HypotenuseBase
$$\frac{Hypotenuse}{Base}$$

$$\sec A = 3\sqrt{5} \frac{3}{\sqrt{5}}$$

Now, tan A = PerependicularBase $\frac{Perependicular}{Base}$

$$\tan A = 2\sqrt{5} \frac{2}{\sqrt{5}}$$

Now, cot A = BasePerpendicular $\frac{Base}{Perpendicular}$

Therefore,

$$\cot A = \sqrt{5}2 \frac{\sqrt{5}}{2}$$

(ii)
$$\cos$$
A=45 $\cos A=rac{4}{5}$

Given: $\cos A = 45 \cos A = \frac{4}{5}$ (1)

By Definition,

COSA=BaseHypotenuse
$$\cos A = rac{Base}{Hypotenuse}$$
 (2)

By comparing (1) and (2)

We get,

Base =4 and

Hypotenuse = 5

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base (AB) and hypotenuse (AC) and get the perpendicular side

(BC)

$$5^2 = 4^2 + BC^2$$

$$BC^2 = 5^2 - 4^2$$

$$BC^2 = 25 - 16$$

$$BC^{2} = 9$$

Hence, Perpendicular side = 3

Now,

$$\sin A$$
=23 $\sin A=rac{2}{3}$ = PerpendicularHypotenuse $rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin$$
A=35 $\sin A=rac{3}{5}$

Now, cosec A =
$$1 \sin A \frac{1}{\sin A}$$

Therefore,

$$\operatorname{cosec} \mathsf{A=1sinA} \, \frac{1}{sinA}$$

Therefore,

$$\textbf{COSEC A} = \textbf{HypotenusePerependicular} \ \frac{Hypotenuse}{Perependicular}$$

$$cosec A = 53 \frac{5}{3}$$

Now, sec A =
$$1\cos A \frac{1}{\cos A}$$

$$\texttt{sec A} = \texttt{HypotenuseBase} \, \frac{Hypotenuse}{Base}$$

$$\sec A = 54 \frac{5}{4}$$

Now,
$$tan A = Perpendicular Base \frac{Perpendicular}{Base}$$

Therefore,

$$\tan A = 34 \frac{3}{4}$$

Now, cot A =
$$1 \tan A \frac{1}{tanA}$$

Therefore,

$$\texttt{cot A = BasePerpendicular} \frac{Base}{Perpendicular}$$

$$\cot A = 43 \frac{4}{3}$$

(iii)
$$an\Theta$$
=111 $an\Theta$ = $frac{11}{1}$

Given:
$$tan\Theta = 111 tan \Theta = \frac{11}{1} (1)$$

By definition,

$$an\Theta$$
= PerpendicularBase $an\Theta=rac{Perpendicular}{Base}$ (2)

By Comparing (1) and (2)

We get,

Base= 1 and

Perpendicular side= 5

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base side (AB) and perpendicular side (BC) and get hypotenuse(AC)

$$AC^2 = 1^2 + 11^2$$

$$AC^2 = 1 + 121$$

$$AC^2 = 122$$

$$AC = \sqrt{122}\sqrt{122}$$

Now, $\sin\Theta$ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta = 11\sqrt{122}\sin\Theta = \frac{11}{\sqrt{122}}$$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $= \frac{1}{\sin\Theta}$

cosec
$$\Theta$$
= $\sqrt{122}$ 11 Θ = $\frac{\sqrt{122}}{11}$

Now, $\cos\Theta$ = BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta = 1\sqrt{122}\cos\Theta = \frac{1}{\sqrt{122}}$$

Now, Sec
$$\Theta$$
=1 $\cos\Theta\sec\Theta=rac{1}{\cos\Theta}$

Therefore,

secΘ=HypotenuseBase Sec
$$\Theta=\frac{Hypotenuse}{Base}$$
 secΘ= $\sqrt{122}$ 1 sec $\Theta=\sqrt{122}$ 1 sec $\Theta=\sqrt{122}$ 1 sec $\Theta=\sqrt{122}$ 2

Now,
$$\cot\Theta$$
=1 $\tan\Theta\cot\Theta=rac{1}{\tan\Theta}$

$$\mathsf{cot}\Theta$$
= BasePerpendicular $\cot\Theta=rac{Base}{Perpendicular}$ $\cot\Theta$ = 111 $\cot\Theta=rac{1}{11}$

(iv) $\sin\Theta$ =1115 $\sin\Theta=rac{11}{15}$

Given: $\sin\Theta = 1115\sin\Theta = \frac{11}{15}$ (1)

By definition,

Sin Θ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$ (2)

By Comparing (1) and (2)

We get,

Perpendicular Side = 11 and

Hypotenuse= 15

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of perpendicular side (BC) and hypotenuse (AC) and get the base side (AB)

$$15^2 = AB^2 + 11^2$$

$$AB^2 = 15^2 - 11^2$$

$$AB^2 = 225 - 121$$

$$AB^2 = 104$$

$$\mathsf{AB} = \sqrt{104}\sqrt{104}$$

$$\mathsf{AB} = \sqrt{2 \times 2 \times 2 \times 13} \sqrt{2 \times 2 \times 2 \times 13}$$

$$AB = 2\sqrt{2 \times 13}\sqrt{2 \times 13}$$

$$AB = 2\sqrt{26}\sqrt{26}$$

Hence, Base = $2\sqrt{26}\sqrt{26}$

Now, $\cos\Theta$ = BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta = 2\sqrt{26}15\cos\Theta = \frac{2\sqrt{26}}{15}$$

Now,
$$\operatorname{cosec}[\Theta = 1 \sin\Theta \Theta = \frac{1}{\sin\Theta}]$$

Therefore,

cosec
$$\Theta$$
= HypotenusePerpendicular $\Theta = rac{Hypotenuse}{Perpendicular}$

$$cosecΘ$$
=1511 $\Theta = \frac{15}{11}$

Now,
$$\sec\Theta$$
=HypotenuseBase $\Theta=rac{Hypotenuse}{Base}$

Therefore,

$$\sec\Theta = 152\sqrt{26}\Theta = \frac{15}{2\sqrt{26}}$$

Now,
$$an\Theta$$
= PerpendicularBase $an\Theta = rac{Perpendicular}{Base}$

Therefore,

$$\tan\Theta = 112\sqrt{26}\tan\Theta = \frac{11}{2\sqrt{26}}$$

Now, COt
$$\Theta$$
= BasePerpendicular $\cot\Theta=rac{Base}{Perpendicular}$

$$\cot\Theta = 2\sqrt{26}$$
11 $\cot\Theta = \frac{2\sqrt{26}}{11}$

(v)
$$an \alpha$$
=512 $an lpha = rac{5}{12}$

Given:
$$\tan \alpha = 512 \tan \alpha = \frac{5}{12}$$
 (1)

By definition,

tan
$$lpha$$
= PerpendicularBase $anlpha=rac{Perpendicular}{Base}$ (2)

By comparing (1) and (2)

We get,

Base= 12 and

Perpendicular side = 5

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base side (AB) and the perpendicular side (BC) and gte hypotenuse (AC)

$$AC^2 = 12^2 + 5^2$$

$$AC^2 = 144 + 25$$

$$AC^2 = 169$$

Hence Hypotenuse = 13

Now, $\sin\!lpha$ = Perpendicular Hypotenuse $\sinlpha=rac{Perpendicular}{Hypotenuse}$

$$\sin \alpha$$
=513 $\sin lpha=rac{5}{13}$

Now,
$$\mathsf{cosec} \alpha$$
= HypotenusePerpendicular $lpha = rac{Hypotenuse}{Perpendicular}$

$$\csc\alpha$$
= 135 $\alpha = \frac{13}{5}$

Now, $\cos \alpha$ = BaseHypotenuse $\cos \alpha = \frac{Base}{Hypotenuse}$

Therefore,

$$\cos \alpha$$
= 1213 $\cos \alpha = \frac{12}{13}$

Now, Seca=1
$$\cos a \sec \alpha = \frac{1}{\cos a}$$

Therefore,

$$\cot \alpha$$
 = BasePerpendicular $\cot \alpha = \frac{Base}{Perpendicular}$ $\cot \alpha$ = 125 $\cot \alpha = \frac{12}{5}$

(vi)
$$\sin\Theta = \sqrt{3} 2 \sin\Theta = \frac{\sqrt{3}}{2}$$

Given:
$$\sin\Theta = \sqrt{3}2\sin\Theta = \frac{\sqrt{3}}{2}$$
 (1)

By definition,

$$\sin\Theta$$
=PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$ (2)

By comparing (1) and (2)

We get,

Perpendicular Side =
$$\sqrt{3}\sqrt{3}$$

Hypotenuse = 2

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of perpendicular side (BC) and hypotenuse (AC) and get the base side (AB)

$$2^2 = AB^2 + (\sqrt{3}\sqrt{3})^2$$

$$AB^2 = 2^2 - (\sqrt{3}\sqrt{3})^2$$

$$AB^2 = 4 - 3$$

$$AB^{2} = 1$$

Hence Base = 1

Now,
$$\cos\Theta$$
= BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta$$
=12 $\cos\Theta = \frac{1}{2}$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $=\frac{1}{\sin\Theta}$

Therefore,

cosec
$$\Theta$$
= HypotenusePerpendicualar $\Theta = \frac{Hypotenuse}{Perpendicualar}$

$$\csc\Theta = 2\sqrt{3}\Theta = \frac{2}{\sqrt{3}}$$

Now, Sec
$$\Theta$$
= HypotenuseBase $\sec\Theta=rac{Hypotenuse}{Base}$

Therefore,

secΘ=21 sec
$$\Theta = \frac{2}{1}$$

Now,
$$an\Theta$$
= PerpendicularBase $an\Theta = rac{Perpendicular}{Base}$

Therefore,

$$\tan\Theta = \sqrt{3} 1 \tan \Theta = \frac{\sqrt{3}}{1}$$

Now, COt
$$\Theta$$
= BasePerpendicular $\cot\Theta=rac{Base}{Perpendicular}$

$$cotΘ = 1\sqrt{3}cotΘ = \frac{1}{\sqrt{3}}$$

(vii)
$$\cos\Theta$$
=725 $\cos\Theta=rac{7}{25}$

Given:
$$\cos\Theta = 725\cos\Theta = \frac{7}{25}$$
 (1)

By definition,

$$\cos\Theta$$
= BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

By comparing (1) and (2)

We get,

Base = 7 and

Hypotenuse = 25

Therefore

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base side (AB) and hypotenuse (AC) and get the perpendicular side (BC)

$$25^2 = 7^2 + BC^2$$

$$BC^2 = 25^2 - 7^2$$

$$BC^2 = 625 - 49$$

$$BC = 576$$

BC=
$$\sqrt{576}\sqrt{576}$$

Hence, Perpendicular side = 24

Now, $\sin\Theta$ = perpendicularHypotenuse $\sin\Theta = \frac{perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta = 2425\sin\Theta = \frac{24}{25}$$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $=\frac{1}{\sin\Theta}$

Therefore,

cosec
$$\Theta$$
= HypotenusePerpendicualar $\Theta = \frac{Hypotenuse}{Perpendicualar}$

$$cosecΘ$$
=2524 $\Theta = \frac{25}{24}$

Now,
$$\sec\Theta = 1\cos\Theta\sec\Theta = \frac{1}{\cos\Theta}$$

Therefore,

SecΘ=HypotenuseBase
$$\sec\Theta = \frac{Hypotenuse}{Base}$$
 $\sec\Theta$ =257 $\sec\Theta = \frac{25}{7}$

Now,
$$an\Theta$$
=PerpendicularBase $an\Theta=rac{Perpendicular}{Base}$

Therefore,

$$\tan\Theta = 247 \tan\Theta = \frac{24}{7}$$

Now,
$$\mathsf{cot}\Theta$$
= 1 $\mathsf{tan}\Theta\cot\Theta=rac{1}{\mathsf{tan}\,\Theta}$

Therefore,

$$\mathsf{cot}\Theta$$
= BasePerpendicular $\mathsf{cot}\,\Theta = \frac{\mathit{Base}}{\mathit{Perpendicular}}\,\,\mathsf{cot}\Theta$ = 724 $\mathsf{cot}\,\Theta = \frac{7}{24}$

(viii)
$$an\Theta$$
=815 $an\Theta$ $=rac{8}{15}$

Given:
$$tan\Theta = 815 tan \Theta = \frac{8}{15} (1)$$

By definition,

$$an\Theta$$
= PerpendicularBase $an\Theta=rac{Perpendicular}{Base}$ (2)

By comparing (1) and (2)

We get,

Base= 15 and

Perpendicular side = 8

Therefore,

By Pythagoras theorem,

$$AC^2 = 15^2 + 8^2$$

$$AC^2 = 225 + 64$$

$$AC^2 = 289$$

$$AC = \sqrt{289}\sqrt{289}$$

Hence, Hypotenuse = 17

Now, $\sin\Theta$ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta = 817\sin\Theta = \frac{8}{17}$$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $=\frac{1}{\sin\Theta}$

cosec
$$\Theta$$
= HypotenusePerpendicular $\Theta = \frac{Hypotenuse}{Perpendicular}$

$$\Theta$$
=178 $\Theta = \frac{17}{8}$

Now, $\cos\Theta$ = BaseHypotenuse $\cos\Theta=\frac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta$$
= 1517 $\cos\Theta = \frac{15}{17}$

Now,
$$\sec\Theta = 1\cos\Theta \sec\Theta = \frac{1}{\cos\Theta}$$

Therefore,

$$\sec\Theta$$
= HypotenuseBase $\sec\Theta = \frac{Hypotenuse}{Base}$ $\sec\Theta$ = 1715 $\sec\Theta = \frac{17}{15}$

Now,
$$\cot\Theta$$
= 1 $\tan\Theta$ $\cot\Theta$ = $\frac{1}{\tan\Theta}$

Therefore,

$$\mathsf{cot}\Theta$$
= BasePerpendicular $\cot\Theta = \frac{\mathit{Base}}{\mathit{Perpendicular}}$ $\mathsf{cot}\Theta$ = 158 $\cot\Theta = \frac{15}{8}$

(ix)
$$\cot\Theta$$
= 125 $\cot\Theta = \frac{12}{5}$

Given:
$$\cot\Theta = 125 \cot\Theta = \frac{12}{5}$$
 (1)

By definition,

$$\mathsf{cot}\Theta$$
= 1 $\mathsf{tan}\Theta\cot\Theta=rac{1}{\mathsf{tan}\,\Theta}$

$$\cot\Theta$$
= BasePerpendicular $\cot\Theta=rac{Base}{Perpendicular}$ (2)

By comparing (1) and (2)

We get,

Base = 12 and

Perpendicular side = 5

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base side (AB) and perpendicular side(BC) and get the hypotenuse (AC)

$$AC^2 = 12^2 + 5^2$$

$$AC^2 = 144 + 25$$

$$AC^2 = 169$$

$$AC = \sqrt{169}\sqrt{169}$$

$$AC = 13$$

Hence, Hypotenuse = 13

Now, $\sin\Theta$ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta = 513\sin\Theta = \frac{5}{13}$$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $=\frac{1}{\sin\Theta}$

cosec
$$\Theta$$
= HypotenusePerpendicular $\Theta = rac{Hypotenuse}{Perpendicular}$

$$\csc\Theta$$
=135 $\Theta = \frac{13}{5}$

Now,
$$\cos\Theta$$
= BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta$$
= 1213 $\cos\Theta = \frac{12}{13}$

Now, Sec
$$\Theta$$
=1 $\cos\Theta\sec\Theta=rac{1}{\cos\Theta}$

Therefore,

$$\sec\Theta$$
= HypotenuseBase $\sec\Theta = \frac{Hypotenuse}{Base}$ $\sec\Theta$ = 1312 $\sec\Theta = \frac{13}{12}$

Now,
$$an\Theta$$
= 1cot Θ $an\Theta$ $= rac{1}{\cot\Theta}$

Therefore,

tan
$$\Theta$$
=PerpendicularBase $an\Theta=rac{Perpendicular}{Base}$ tan Θ =512 $an\Theta=rac{5}{12}$

(x)
$$\sec\Theta$$
=135 $\sec\Theta=\frac{13}{5}$

Given:
$$\sec\Theta = 135\sec\Theta = \frac{13}{5}...$$
 (1)

By definition,

secΘ=
$$1\cos\Theta$$
 sec $\Theta = \frac{1}{\cos\Theta}$ (2)

By comparing (1) and (2)

We get,

Base=5

Hypotenuse = 13

Therefore,

By Pythagoras theorem,

Substituting the value of base side (AB) and hypotenuse (AC) and get the perpendicular side (BC)

$$13^2 = 5^2 + BC^2$$

$$BC^2 = 13^2 - 5^2$$

$$BC^2=169-25$$

$$BC^2 = 144$$

$$BC = \sqrt{144}\sqrt{144}$$

Hence, Perpendicular side = 12

Now,
$$\sin\Theta$$
=PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta$$
=1213 $\sin\Theta=rac{12}{13}$

Now, cosec
$$\Theta$$
=1sin Θ $= \frac{1}{\sin \Theta}$

Therefore,

cosec
$$\Theta$$
= HypotenusePerpendicular $\Theta = \frac{\mathit{Hypotenuse}}{\mathit{Perpendicular}}$

$$cosecΘ$$
=1312 $\Theta = \frac{13}{12}$

Now,
$$\cos\Theta = 1\sec\Theta\cos\Theta = \frac{1}{\sec\Theta}$$

Therefore,

$$\cos\Theta$$
= BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$ $\cos\Theta$ = 513 $\cos\Theta=rac{5}{13}$

Now,
$$an\Theta$$
= PerpendicularBase $an\Theta = rac{Perpendicular}{Base}$

$$\tan\Theta$$
= 125 $\tan\Theta=rac{12}{5}$

Now,
$$\cot\Theta$$
= 1 $\tan\Theta\cot\Theta$ = $\frac{1}{\tan\Theta}$

Therefore,

$$\mathsf{cot}\Theta$$
= BasePerpendicular $\cot\Theta = \frac{\mathit{Base}}{\mathit{Perpendicular}}$ $\mathsf{cot}\Theta$ = 512 $\cot\Theta = \frac{5}{12}$

(xi)
$$\csc\Theta = \sqrt{10}\Theta = \sqrt{10}$$

Given:
$$\csc\Theta = \sqrt{10} \cdot \Theta = \frac{\sqrt{10}}{1} \dots (1)$$

By definition

$$cosecΘ = 1sinΘΘ = \frac{1}{sinΘ}$$
(2)

$$\Theta$$
=HypotenusePerpendicular $\Theta = rac{Hypotenuse}{Perpendicular}$

By comparing (1) and(2)

We get,

Perpendicular side= 1 and

Hypotenuse =
$$\sqrt{10}\sqrt{10}$$

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of perpendicular side (BC) and hypotenuse (AC) and get the base side (AB)

$$(\sqrt{10}\sqrt{10})^2 = AB^2 + 1^2$$

$$AB^2 = (\sqrt{10}\sqrt{10})^2 - 1^2$$

$$AB^2 = 10 - 1$$

$$AB = \sqrt{9}\sqrt{9}$$

AB = 3

Hence, Base side = 3

Now, $\sin\Theta$ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

Therefore,

$$\sin\Theta = 1\sqrt{10}\sin\Theta = \frac{1}{\sqrt{10}}$$

Now, $\cos\Theta$ = BaseHypotenuse $\cos\Theta=rac{Base}{Hypotenuse}$

Therefore,

$$\cos\Theta = 3\sqrt{10}\cos\Theta = \frac{3}{\sqrt{10}}$$

Now,
$$\sec\Theta = 1\cos\Theta \sec\Theta = \frac{1}{\cos\Theta}$$

Therefore,

SecΘ=HypotenuseBase
$$\sec\Theta = \frac{Hypotenuse}{Base}$$
 $\sec\Theta = \sqrt{10}3\sec\Theta = \frac{\sqrt{10}}{3}$

Now,
$$an\Theta$$
=PerpendicularBase $an\Theta=rac{Perpendicular}{Base}$

Therefore,

$$\tan\Theta = 13 \tan \Theta = \frac{1}{3}$$

Now,
$$\cot\Theta$$
= 1 $\tan\Theta$ $\cot\Theta$ = $\frac{1}{\tan\Theta}$

cotΘ=31 cot Θ =
$$\frac{3}{1}$$
 cotΘ=3cot Θ = 3

(xii)
$$\cos\Theta$$
 1215 $\cos\Theta$ $\frac{12}{15}$

Given: $\cos\Theta$ 1215 $\cos\Theta\frac{12}{15}$ (1)

By definition,

COSΘ=BaseHypotenuse
$$\cos \Theta = \frac{Base}{Hypotenuse}$$
 (2)

By comparing (1) and (2)

We get,

Base=12 and

Hypotenuse = 15

Therefore,

By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

Substituting the value of base side (AB) and hypotenuse (AC) and get the perpendicular side (BC)

$$15^2 = 12^2 + BC^2$$

$$BC^2 = 15^2 - 12^2$$

$$BC^2 = 225 - 144$$

$$BC = \sqrt{81}\sqrt{81}$$

$$BC = 9$$

Hence, Perpendicular side = 9

Now, Sin Θ =PerpendicularHypotenuse $\sin\Theta=rac{Perpendicular}{Hypotenuse}$

$$\sin\Theta$$
=915 $\sin\Theta=rac{9}{15}$

Now,
$$\csc\Theta$$
=1 $\sin\Theta$ $=\frac{1}{\sin\Theta}$

Therefore,

cosec
$$\Theta$$
=HypotenusePerpendicular $\Theta = \frac{Hypotenuse}{Perpendicular}$

$$\csc\Theta$$
= 159 $\Theta = \frac{15}{9}$

Now,
$$\sec\Theta = 1\cos\Theta \sec\Theta = \frac{1}{\cos\Theta}$$

Therefore,

$$\sec\Theta$$
= HypotenuseBase $\sec\Theta=\frac{Hypotenuse}{Base}$ $\sec\Theta$ = 1512 $\sec\Theta=\frac{15}{12}$

Now,
$$an\Theta$$
= PerpendicularBase $an\Theta = rac{Perpendicular}{Base}$

Therefore,

$$\tan\Theta = 912 \tan\Theta = \frac{9}{12}$$

Now,
$$\cot\Theta = 1\tan\Theta \cot\Theta = \frac{1}{\tan\Theta}$$

Therefore,

$$\mathsf{cot}\Theta$$
= BasePerpendicular $\mathsf{cot}\,\Theta = \frac{\mathit{Base}}{\mathit{Perpendicular}}\,\,\mathsf{cot}\Theta$ = 129 $\mathsf{cot}\,\Theta = \frac{12}{9}$

- 2.) In a $\Delta\Delta$ ABC, right angled at B , AB 24 cm , BC= 7 cm , Determine
- (i) sin A , cos A
- (ii) sin C, cos C

Sol.

(i) The given triangle is below:

Given: In $\Delta\Delta$ ABC , AB= 24 cm

BC = 7cm

$$\angle ABC \angle ABC = 90^{\circ}$$

To find: sin A, cos A

In this problem, Hypotenuse side is unknown

Hence we first find hypotenuse side by Pythagoras theorem

By Pythagoras theorem,

We get,

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 24^2 + 7^2$$

$$AC^2 = 576 + 49$$

$$AC^2 = 625$$

$$AC = \sqrt{625}\sqrt{625}$$

Hypotenuse = 25

By definition,

SINA= Perpendicularsideoppositeto
$$\angle$$
AHypotenuse $\sin A = \frac{Perpendicularsideoppositeto \angle A}{Hypotenuse}$

$$\sin\! A$$
= BCAC $\sin A=rac{BC}{AC}$ $\sin\! A$ = 725 $\sin A=rac{7}{25}$

By definition,

COSA= Basesideadjacentto
$$\angle$$
AHypotenuse $\cos A=\frac{Basesideadjacentto}{Hypotenuse}$ COSA= ABAC $\cos A=\frac{AB}{AC}$ COSA= 2425 $\cos A=\frac{24}{25}$

Answer:

sinA=725
$$\sin A=rac{7}{25}$$
, cosA=2425 $\cos A=rac{24}{25}$

(ii) The given triangle is below:

Given: In $\Delta\Delta$ ABC , AB= 24 cm

BC = 7cm

$$\angle ABC \angle ABC = 90^{\circ}$$

To find: sin C, cos C

In this problem, Hypotenuse side is unknown

Hence we first find hypotenuse side by Pythagoras theorem

By Pythagoras theorem,

We get,

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 24^2 + 7^2$$

$$AC^2 = 576 + 49$$

$$AC^2 = 625$$

$$\mathsf{AC} = \sqrt{625}\sqrt{625}$$

Hypotenuse = 25

By definition,

$${\sf SinC}=$$
 Perpendicularsideoppositeto ${\angle C}$ Hypotenuse ${\sf sinC}=\frac{Perpendicularsideoppositeto{\angle C}}{Hypotenuse}$ ${\sf sinC}=$ ABAC ${\sf sinC}=\frac{AB}{AC}$ ${\sf sinC}=$ 2425 ${\sf sinC}=\frac{24}{25}$

By definition,

$$\cos$$
C=Basesideadjacentto \angle CHypotenuse $\cos C=\frac{Basesideadjacentto}{Hypotenuse}$ \cos A=BCAC $\cos A=\frac{BC}{AC}\cos$ A=725 $\cos A=\frac{7}{25}$

Answer:

sinA=2425
$$\sin A=rac{24}{25}$$
 , cosA=725 $\cos A=rac{7}{25}$

3.) In the below figure, find tan P and cot R. Is tan P = cot R?

To find, tan P, cot R

Sol.

In the given right angled $\Delta PQR\Delta PQR$, length of side OR is unknown

Therefore , by applying Pythagoras theorem in $\Delta \mathsf{PQR}\Delta PQR$

We get,

$$PR^2 = PQ^2 + QR^2$$

Substituting the length of given side PR and PQ in the above equation

$$13^2 = 12^2 + QR^2$$

$$QR^2 = 13^2 - 12^2$$

$$QR^2 = 169 - 144$$

$$QR^2 = 25$$

$$QR = \sqrt{25}\sqrt{25}$$

By definiton, we know that,

 $\mathsf{tanP} = \mathsf{Perpendicularsideoppositeto} \angle \mathsf{PBasesideadjacentto} \angle \mathsf{P} \ \mathsf{tan} \ P = \frac{Perpendicularsideoppositeto}{Basesideadjacentto} \angle \mathsf{PBasesideadjacentto} \angle \mathsf{P$

$$an \mathsf{P} = \mathsf{QRPQ} an P = rac{QR}{PQ}$$

$$tanP = 512 tan P = \frac{5}{12} (1)$$

Also, by definition, we know that

cotR=Basesideadjacentto∠RPerpendicularsideoppositeto∠R

$$\cot R = rac{\textit{Base side adjacent to} \, \angle \textit{R}}{\textit{Perpendicular side opposite to} \, \angle \textit{R}}$$

$$\mathsf{cotR} = \mathsf{QRPQ} \cot R = rac{QR}{PQ}$$

$$\cot R = 512 \cot R = \frac{5}{12} \dots (2)$$

Comparing equation (1) ad (2), we come to know that that R.H.S of both the equation are equal.

Therefore, L.H.S of both equations is also equal

$$tan P = cot R$$

Answer:

Yes , tan P =cot R = 512
$$\frac{5}{12}$$

4.) If sin A = 941 $\frac{9}{41}$, Compute cos A and tan A.

Sol.

Given: $\sin A = 941 \sin A = \frac{9}{41}$ (1)

To find: cos A, tan A

By definition,

 $SINA = Perpendicular side opposite to <math>\angle A$ Hypotenuse $SINA = \frac{Perpendicular\ side\ opposite\ to\ \angle A}{Hypotenuse}\ \dots$ (2)

By comparing (1) and (2)

We get,

Perpendicular side = 9 and

Hypotenuse = 41

Now using the perpendicular side and hypotenuse we can construct $\Delta \mathsf{ABC}\Delta ABC$ as shown below

Length of side AB is unknown is right angled $\Delta \mathsf{ABC}\Delta ABC$,

To find the length of side AB, we use Pythagoras theorem,

Therefore, by applying Pythagoras theorem in $\Delta \mathsf{ABC}\Delta ABC$,

We get,

$$AC^2 = AB^2 + BC^2$$

$$41^2 = AB^2 + 9^2$$

$$AB^2 = 41^2 - 9^2$$

$$AB^2 = 168 - 81$$

$$\mathsf{AB} = \sqrt{1600}\sqrt{1600}$$

$$AB = 40$$

Hence, length of side AB= 40

Now

By definition,

COSA= Basesideadjacentto
$$\angle$$
AHypotenuse $\cos A=\frac{Base\ side\ adjacent\ to\ \angle A}{Hypotenuse}$ COSA= ABAC $\cos A=\frac{AB}{AC}$ COSA=4041 $\cos A=\frac{40}{41}$

Now,

By definition,

tanA=Perpendicularsideoppositeto∠ABasesideadjacentto∠A

$$an A = rac{Perpendicular\ side\ opposite\ to\ \angle A}{Base\ side\ adjacent\ to\ \angle A}\$$
 tan A = BCAB $an A$ = $rac{BC}{AB}\$ tan A = 940 $an A$ = $rac{9}{40}$

Answer:

cosA=4041
$$\cos A=rac{40}{41}$$
 , an A=940 $an A=rac{9}{40}$

5.) Given 15cot A=8, find sin A and sec A.

Answer:

To find: sin A, sec A

Since 15 cot A =8

By taking 15 on R.H.S

We get,

$$\mathsf{cotA}$$
=815 $\cot A = rac{8}{15}$

By definition,

$$\mathsf{cotA}$$
= 1 tanA cot $A = \frac{1}{\mathsf{tan}\,A}$

Hence,

$$\mathsf{cotA} = \mathsf{1}_{\mathsf{Perpendicular}}$$
 side oppositeto $\angle \mathsf{A}$ Base side adjacent to $\angle \mathsf{A}$ Cot $A = \frac{1}{\frac{Perpendicular}{Perpendicular}} \frac{1}{\frac{Perpendicular}{Perpendicular}}} \frac{1}{\frac{Perpend$

COtA= Basesideadjacentto∠APerpendicularsideoppositeto∠A

$$\cot A = rac{Base\ side\ adjacent\ to\ \angle A}{Perpendicular\ side\ opposite\ to\ \angle A}\$$
 (2)

Comparing equation (1) and (2)

We get,

Base side adjacent to $\angle A \angle A = 8$

Perpendicular side opposite to $\angle A \angle A = 15$

 $\triangle \mathsf{ABC} \triangle ABC$ can be drawn below using above information

Hypotenuse side is unknown.

Therefore, we find side AC of $\triangle ABC \triangle ABC$ by Pythagoras theorem.

So, by applying Pythagoras theorem to $\Delta \mathsf{ABC}\Delta ABC$

We get,

$$AC^2 = AB^2 + BC^2$$

Substituting values of sides from the above figure

$$AC^2 = 8^2 + 15^2$$

$$AC^2 = 64 + 225$$

$$AC^2 = 289$$

$$AC = \sqrt{289}\sqrt{289}$$

$$AC = 17$$

Therefore, hypotenuse =17

Now by definition,

SinA= Perpendicular side opposite to \angle A Hypotenuse $\sin A = \frac{Perpendicular\ side\ opposite\ to\ \angle A}{Hypotenuse}$

Therefore, sinA= $_{BCAC} sinA = \frac{BC}{AC}$

Substituting values of sides from the above figure

$$\sin$$
A=1517 $\sin A=rac{15}{17}$

By definition,

SecA=1
$$\cos A \sec A = \frac{1}{\cos A}$$

Hence,

SECA= 1 Basesideadjacentto
$$\angle$$
AHypotenuse Sec $A=rac{1}{rac{Base\ side\ adjacent\ to\ \angle A}{Hypotenuse}}$

SECA= HypotenuseBasesideadjacentto
$$\angle \mathsf{A}\sec A = rac{Hypotenuse}{Base\ side\ adjacent\ to\ \angle A}$$

Substituting values of sides from the above figure

$$\sec A$$
= 178 $\sec A = \frac{17}{8}$

Answer:

sinA=1517
$$\sin A=rac{15}{17}$$
, secA=178 $\sec A=rac{17}{8}$

6.) In $\Delta PQR\Delta PQR$, right angled at Q, PQ = 4cm and RQ= 3 cm .Find the value of sin P, sin R, sec P and sec R.

Sol.

Given:

 $\Delta \mathsf{PQR} \Delta PQR$ is right angled at vertex Q.

PQ= 4cm

RQ=3cm

To find,

sin P, sin R, sec P, sec R

Given $\Delta PQR\Delta PQR$ is as shown below

Hypotenuse side PR is unknown.

Therefore, we find side PR of $\Delta PQR\Delta PQR$ by Pythagoras theorem

By applying Pythagoras theorem to $\Delta PQR\Delta PQR$

We get,

$$PR^2 = PQ^2 + RQ^2$$

Substituting values of sides from the above figure

$$PR^2 = 4^2 + 3^2$$

$$PR^2 = 16 + 9$$

$$PR^2 = 25$$

$$PR = \sqrt{25}\sqrt{25}$$

Hence, Hypotenuse =5

Now by definition,

$$\mathsf{sinP} = \mathsf{Perpendicular} side opposite to \angle \mathsf{PHypotenuse} \sin P = \frac{Perpendicular}{Hypotenuse}$$

$$\mathsf{sinP} = \mathsf{RQPR} \sin P = rac{RQ}{PR}$$

Substituting values of sides from the above figure

$$sinP = 35 sin P = \frac{3}{5}$$

Now by definition,

 sinR = Perpendicularsideoppositeto \angle RHypotenuse $\mathsf{sin}\,R = \frac{Perpendicular\,side\,opposite\,to\,\angle R}{Hypotenuse}$ sinR = PQPR $\mathsf{sin}\,R = \frac{PQ}{PR}$

Substituting the values of sides from above figure

$$\sin$$
R= $45\sin R=rac{4}{5}$

By definition,

$$\mathsf{SECP} = \mathsf{1cosP} \, \mathsf{Sec} \, P = \frac{1}{\cos P} \, \, \mathsf{SECP} = \mathsf{1}_{\mathsf{Base} \, \mathsf{side} \, \mathsf{adjacent} \, \mathsf{to} \, \angle \mathsf{p}} \\ \frac{1}{\frac{Base \, \, \mathsf{side} \, \, \mathsf{adjacent} \, \, \mathsf{to} \, \angle \mathsf{p}}{Hypotenuse}}$$

SecP=HypotenuseBasesideadjacentto∠P
$$\sec P = rac{Hypotenuse}{Base\ side\ adjacent\ to\ ∠P}$$

Substituting values of sides from the above figure

SecP=prp
$$\sec P=rac{PR}{PQ}$$
 SecP=54 $\sec P=rac{5}{4}$

By definition,

SECR=1cosR
$$\sec R=rac{1}{\cos R}$$
 SECR=1 Basesideadjacentto \angle RHypotenuse $\sec R=rac{1}{\frac{Base\ side\ adjacent\ to\ \angle R}{Hypotenuse}}$

SECR= HypotenuseBasesideadjacentto
$$\angle$$
R Sec $R=rac{Hypotenuse}{Base\ side\ adjacent\ to\ \angle R}$

Substituting values of sides from the above figure

SecR=PRRQ
$$\sec R=rac{PR}{RQ}$$
 SecR=53 $\sec R=rac{5}{3}$

Answer:

$$\mathsf{sinP}$$
 = 35 $\sin P = \frac{3}{5}$, sinR = 45 $\sin R = \frac{4}{5}$,

secP=54
$$\sec P=rac{5}{4}$$
, secR=53 $\sec R=rac{5}{3}$

7.) If
$$\cot\Theta = 78 \cot\Theta = \frac{7}{8}$$
, evaluate

(i) 1+sin
$$\Theta$$
×1-sin Θ 1+cos Θ ×1-cos Θ $\frac{1+\sin\Theta\times1-\sin\Theta}{1+\cos\Theta\times1-\cos\Theta}$

(ii)
$$\cot^2\Theta\cot^2\Theta$$

Sol.

Given: $\cot\Theta$ =78 $\cot\Theta$ = $\frac{7}{8}$

To evaluate: $1+\sin\Theta\times1-\sin\Theta1+\cos\Theta\times1-\cos\Theta\frac{1+\sin\Theta\times1-\sin\Theta}{1+\cos\Theta\times1-\cos\Theta}$

1+sin
$$\Theta$$
×1-sin Θ 1+cos Θ ×1-cos Θ $\frac{1+\sin\Theta\times 1-\sin\Theta}{1+\cos\Theta\times 1-\cos\Theta}$...(1)

We know the following formula

$$(a + b)(a - b) = a^2 - b^2$$

By applying the above formula in the numerator of equation (1)

We get,

$$(1+\sin\theta)\times(1-\sin\theta)=1-\sin^2\theta.....(2)$$
 (Where, $a=1$ and $b=\sin\theta$) $(1+\sin\theta)\times(1-\sin\theta)=1-\sin^2\theta.....(2)$ (Where, $a=1$ and $b=\sin\theta$)

Similarly,

By applying formula $(a + b) (a - b) = a^2 - b^2$ in the denominator of equation (1).

We get,

(1+cos
$$\Theta$$
)(1-cos Θ)=1 2 -cos $^2\Theta$ (1+cos Θ)(1-cos Θ) = 1 2 -cos $^2\Theta$... (Where a=1 and b= cos Θ cos Θ

Substituting the value of numerator and denominator of equation (1) from equation (2), equation (3).

Therefore,

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta)\frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)} = 1-\sin^2\Theta 1 - \cos^2\Theta \frac{1-\sin^2\Theta}{1-\cos^2\Theta} \dots (4)$$

Since,

$$\cos^2\Theta + \sin^2\Theta = 1\cos^2\Theta + \sin^2\Theta = 1$$

$$\cos^2\Theta = 1 - \sin^2\Theta \cos^2\Theta = 1 - \sin^2\Theta$$

Also,
$$\sin^2\Theta = 1 - \cos^2\Theta \sin^2\Theta = 1 - \cos^2\Theta$$

Putting the value of 1–sin $^2\Theta1-\sin^2\Theta$ and 1–cos $^2\Theta1-\cos^2\Theta$ in equation (4)

We get,

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta)\,\frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)}\,=\,\cos^2\!\Theta\sin^2\!\Theta\,\frac{\cos^2\Theta}{\sin^2\Theta}$$

We know that, $\cos\Theta\sin\Theta=\cot\Theta\frac{\cos\Theta}{\sin\Theta}=\cot\Theta$

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta)\frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)} = (\cot\Theta)^2(\cot\Theta)^2$$

Since, it is given that $\cot\Theta$ =78 $\cot\Theta=\frac{7}{8}$

Therefore,

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta)\frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)}=\big(78\big)^2\big(\frac{7}{8}\big)^2$$

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta) \frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)} = 7^28^2 \frac{7^2}{8^2}$$

$$(1+\sin\Theta)(1-\sin\Theta)(1+\cos\Theta)(1-\cos\Theta)\frac{(1+\sin\Theta)(1-\sin\Theta)}{(1+\cos\Theta)(1-\cos\Theta)} = 4964\frac{49}{64}$$

(ii) Given:
$$\cot\Theta$$
=78 $\cot\Theta=\frac{7}{8}$

To evaluate: $\cot^2\Theta\cot^2\Theta$

$$\cot\Theta = 78 \cot\Theta = \frac{7}{8}$$

Squaring on both sides,

We get,

$$(\cot\Theta)^2$$
=(78) 2 (cot Θ) 2 = $(\frac{7}{8})^2$

$$(\cot\Theta)^2(\cot\Theta)^2 = 4964 \frac{49}{64}$$

Answer:

4964
$$\frac{49}{64}$$

8.) If $3\cot A = 4 \cot A = 4$, check whether 1- $\tan^2 A = \cos^2 A - \sin^2 A$

$$rac{1- an^2A}{1+ an^2A}=\cos^2A-\sin^2A$$
 or not.

Sol.

Given: 3cot A =4

To check whether 1–tan²A1+tan²A= \cos^2 A– \sin^2 A $\frac{1-\tan^2 A}{1+\tan^2 A}=\cos^2 A-\sin^2 A$ or not.

3cot A =4

Dividing by 3 on both sides,

We get,

$$\cot A = 43 \frac{4}{3} \dots (1)$$

By definition,

$$\mathsf{cotA}$$
= 1 tanA cot $A = rac{1}{\mathsf{tan}\,A}$

Therefore,

$$\mathsf{cotA} = \mathsf{1}$$
 Perpendicular side opposite to $\angle \mathsf{A}$ Base side adjacent to $\angle \mathsf{A}$ $= \frac{1}{\frac{Perpendicular\ side\ opposite\ to\ \angle \mathsf{A}}{Base\ side\ adjacent\ to\ \angle \mathsf{A}}}$

 $\textbf{COtA} = \texttt{Bases} ideadjacent to \angle \textbf{APerpendiculars} ideopposite to \angle \textbf{A}$

$$\cot A = rac{Base\ side\ adjacent\ to\ \angle A}{Perpendicular\ side\ opposite\ to\ \angle A}\$$
 (2)

Comparing (1) and (2)

We get,

Base side adjacent to $\angle A \angle A = 4$

Perpendicular side opposite to $\angle A \angle A = 3$

Hence $\Delta \mathsf{ABC} \Delta ABC$ is as shown in figure below

In $\triangle \mathsf{ABC} \triangle ABC$, Hypotenuse is unknown

Hence, it can be found by using Pythagoras theorem

Therefore by applying Pythagoras theorem in $\Delta ABC\Delta ABC$

We get

$$AC^2 = AB^2 + BC^2$$

Substituting the values of sides from the above figure

$$AC^2 = 4^2 + 3^2$$

$$AC^2 = 16 + 9$$

$$AC^2 = 25$$

$$AC = \sqrt{25}\sqrt{25}$$

$$AC = 5$$

Hence, hypotenuse= 5

To check whether

To check whether 1–tan²A1+tan²A= \cos^2 A– \sin^2 A $\frac{1-\tan^2A}{1+\tan^2A}=\cos^2A-\sin^2A$ or not.

We get thee values of tan A, cos A, sin A

By definition,

$$tan A = 1cot A \frac{1}{cot A}$$

Substituting the value of cot A from equation (1)

We get,

$$\tan A = 14\frac{1}{4}$$

$$\tan A = 34 \frac{3}{4} \dots (3)$$

Now by definition,

COSA=Basesideadjacentto
$$\angle$$
AHypotenuse $\cos A=rac{Base\ side\ adjacent\ to\ \angle A}{Hypotenuse}$ COSA=ABAC $\cos A=rac{AB}{AC}$

Substituting the values of sides from the above figure

$$\cos A$$
=45 $\cos A=rac{4}{5}$ (5)

Now we first take L.H.S of equation 1-tan²A1+tan²A=cos²A-sin²A

$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$

L.H.S = 1-
$$\tan^2 A1 + \tan^2 A \frac{1-\tan^2 A}{1+\tan^2 A}$$

Substituting value of tan A from equation (3)

We get,

L.H.S= 1-(34)²1+(34)²
$$\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}$$

1-tan²A1+tan²A
$$\frac{1-\tan^2 A}{1+\tan^2 A}$$
 = 1-(34)²1+(34)² $\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}$

$$1-\tan^2 A 1 + \tan^2 A \frac{1-\tan^2 A}{1+\tan^2 A} = 1-9161+916 \frac{1-\frac{9}{16}}{1+\frac{9}{16}}$$

Taking L.C.M on both numerator and denominator

We get,

$$1-\tan^2 A 1 + \tan^2 A \frac{1-\tan^2 A}{1+\tan^2 A} = _{16-916} _{16+916} \frac{\frac{16-9}{16}}{\frac{16+9}{16}}$$

1-
$$\tan^2 A$$
1+ $\tan^2 A$ $\frac{1-\tan^2 A}{1+\tan^2 A}$ = 725 $\frac{7}{25}$ (6)

Now we take R.H.S of equation whether 1-tan²A1+tan²A = cos²A-sin²A

$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$

$$R.H.S = \cos^2 A - \sin^2 A \cos^2 A - \sin^2 A$$

Substituting value of sin A and cos A from equation (4) and (5)

We get,

R.H.S=
$$(45)^2 - (35^2)(\frac{4}{5})^2 - (\frac{3}{5}^2)$$

$$\cos^2 A - \sin^2 A \cos^2 A - \sin^2 A = (45)^2 - (35^2)(\frac{4}{5})^2 - (\frac{3}{5})^2$$

$$\cos^2 A - \sin^2 A \cos^2 A - \sin^2 A = 1625 - 925 \frac{16}{25} - \frac{9}{25}$$

$$\cos^2 A - \sin^2 A \cos^2 A - \sin^2 A = 16-925 \frac{16-9}{25}$$

$$\cos^2 A - \sin^2 A \cos^2 A - \sin^2 A = 725 \frac{7}{25} \dots (7)$$

Comparing (6) and (7)

We get.

1–tan²A1+tan²A=
$$\cos^2$$
A $-\sin^2$ A $\frac{1-\tan^2A}{1+\tan^2A}=\cos^2A-\sin^2A$

Answer:

Yes, 1-tan²A1+tan²A=
$$\cos^2$$
A- \sin^2 A $\frac{1-\tan^2A}{1+\tan^2A}=\cos^2A-\sin^2A$

9.) If $an\Theta$ = ab $an\Theta$ = $an\Theta$, find the value of $an\Theta$ + $an\Theta$ - $an\Theta$ - $an\Theta$.

Sol.

Given:

$$\tan\Theta = ab \tan\Theta = rac{a}{b}$$
 (1)

Now, we know that $tan\Theta = \sin\Theta \cos\Theta \tan\Theta = \frac{\sin\Theta}{\cos\Theta}$

Therefore equation (1) become as follows

$$\sin\Theta\cos\Theta \frac{\sin\Theta}{\cos\Theta} = ab \frac{a}{b}$$

Now, by applying invertendo

$$\cos\Theta\sin\Theta = \tan\frac{\cos\Theta}{\sin\Theta} = \frac{b}{a}$$

Now by applying Componendo - dividendo

We get,

$$\cos$$
Θ+ \sin Θ \cos Θ- \sin Θ $=$ b+ a b- a $\frac{\cos$ Θ+ \sin Θ}{ \cos Θ- \sin Θ} $=\frac{b+a}{b-a}$

Therefore,

$$\cos$$
Θ+ \sin Θ \cos Θ- \sin Θ $=$ $\frac{\cos$ Θ+ \sin Θ}{ \cos Θ- \sin Θ} $=\frac{b+a}{b-a}$

10.) If $3\tan\Theta=43\tan\Theta=4$, find the value of $4\cos\Theta-\sin\Theta$ 2 $\cos\Theta+\sin\Theta$ $\frac{4\cos\Theta-\sin\Theta}{2\cos\Theta+\sin\Theta}$

Sol.

Given: If $3\tan\Theta = 43\tan\Theta = 4$

Therefore,

$$\tan\Theta = 43 \tan \Theta = \frac{4}{3} \dots (1)$$

Now, we know that $tan\Theta=\sin\Theta\cos\Theta\tan\Theta=\frac{\sin\Theta}{\cos\Theta}$

Therefore equation (1) becomes

$$\sin\Theta\cos\Theta = 43 \frac{\sin\Theta}{\cos\Theta} = \frac{4}{3}$$
(2)

Now, by applying Invertendo to equation (2)

We get,

$$\cos\Theta\sin\Theta = 34 \frac{\cos\Theta}{\sin\Theta} = \frac{3}{4} \dots (3)$$

Now, multiplying by 4 on both sides

We get

$$4 \times \cos\Theta\sin\Theta = 4 \times 344 \times \frac{\cos\Theta}{\sin\Theta} = 4 \times \frac{3}{4}$$

Therefore

4cosΘ–sinΘsinΘ = 3–11
$$\frac{4\cos\Theta-\sin\Theta}{\sin\Theta} = \frac{3-1}{1}$$

$$4\cos\Theta$$
-sinΘsinΘ = 21 $\frac{4\cos\Theta$ -sinΘ}{\sin\Theta} = $\frac{2}{1}$ (4)

Now, multiplying by 2 on both sides of equation (3)

We get,

$$2\cos\Theta\sin\Theta = 32\frac{2\cos\Theta}{\sin\Theta} = \frac{3}{2}$$

Now by applying componendo in above equation

$$2\cos\Theta + \sin\Theta\sin\Theta = 3 + 22 \frac{2\cos\Theta + \sin\Theta}{\sin\Theta} = \frac{3+2}{2}$$

$$2\cos\Theta + \sin\Theta \sin\Theta = 52 \frac{2\cos\Theta + \sin\Theta}{\sin\Theta} = \frac{5}{2}$$
(5)

We get,

$$4\cos\Theta - \sin\Theta \sin\Theta \cos\Theta + \sin\Theta \sin\Theta = 2152 \frac{\frac{4\cos\Theta - \sin\Theta}{\sin\Theta}}{\frac{2\cos\Theta + \sin\Theta}{\sin\Theta}} = \frac{\frac{2}{1}}{\frac{5}{2}}$$

Therefore,

$$4\cos\Theta-\sin\Theta\sin\Theta$$
 × $\sin\Theta2\cos\Theta+\sin\Theta$ = 21 × 25 $\frac{4\cos\Theta-\sin\Theta}{\sin\Theta}$ × $\frac{\sin\Theta}{2\cos\Theta+\sin\Theta}$ = $\frac{2}{1}$ × $\frac{2}{5}$

Therefore, on L.H.S $\sin\Theta\sin\Theta$ cancels and we get,

4cosΘ–sinΘ2cosΘ+sinΘ = 21 × 25
$$\frac{4\cos\Theta-\sin\Theta}{2\cos\Theta+\sin\Theta}=\frac{2}{1} imes\frac{2}{5}$$

Therefore,

**4cos
$$\Theta$$
-sin Θ =4**4 cos Θ -sin Θ = 4

11.) If $3\cot\Theta=23\cot\Theta=2$, find the value of $4\sin\Theta-3\cos\Theta2\sin\Theta+6\cos\Theta\frac{4\sin\Theta-3\cos\Theta}{2\sin\Theta+6\cos\Theta}$

Sol.

Given:

$$3\cot\Theta=23\cot\Theta=2$$

Therefore,

$$\cot\Theta$$
=23 $\cot\Theta=\frac{2}{3}$ (1)

Now, we know that $\cot\Theta = \cos\Theta\sin\Theta\cot\Theta = \frac{\cos\Theta}{\sin\Theta}$

Therefore equation (1) becomes

$$\cos\Theta\sin\Theta = 23 \frac{\cos\Theta}{\sin\Theta} = \frac{2}{3}$$
(2)

Now, by applying invertendo to equation (2)

$$\sin\Theta\cos\Theta = 32 \frac{\sin\Theta}{\cos\Theta} = \frac{3}{2}$$
(3)

Now, multiplying by 43 $\frac{4}{3}$ on both sides,

We get,

$$43 \times \sin\Theta\cos\Theta = 43 \times 32 \frac{4}{3} \times \frac{\sin\Theta}{\cos\Theta} = \frac{4}{3} \times \frac{3}{2}$$

Therefore, 3 cancels out on R.H.S and

We get,

$$4\sin\Theta 3\cos\Theta = 21 \frac{4\sin\Theta}{3\cos\Theta} = \frac{2}{1}$$

Now by applying invertendo dividendo in above equation

We get,

$$4\sin\Theta$$
- $3\cos\Theta$ 3 $\cos\Theta$ = 2-11 $\frac{4\sin\Theta$ - $3\cos\Theta}{3\cos\Theta} = \frac{2-1}{1}$

$$4\sin\Theta$$
-3cosΘ3cosΘ = 11 $\frac{4\sin\Theta$ -3 cos Θ}{3 cos Θ} = $\frac{1}{1}$ (4)

Now, multiplying by $26\frac{2}{6}$ on both sides of equation (3)

We get,

$$26 \times \sin\Theta\cos\Theta = 26 \times 32 \frac{2}{6} \times \frac{\sin\Theta}{\cos\Theta} = \frac{2}{6} \times \frac{3}{2}$$

Therefore, 2 cancels out on R.H.S and

We get,

$$2\sin\Theta6\cos\Theta = 36\frac{2\sin\Theta}{6\cos\Theta} = \frac{3}{6} 2\sin\Theta6\cos\Theta = 12\frac{2\sin\Theta}{6\cos\Theta} = \frac{1}{2}$$

Now by applying componendo in above equation

2cos
$$\Theta$$
+6sin Θ 6sin Θ = 1+22 $\frac{2\cos\Theta+6\sin\Theta}{6\sin\Theta}=\frac{1+2}{2}$

2cosΘ+6sinΘ6sinΘ = 32
$$\frac{2\cos\Theta+6\sin\Theta}{6\sin\Theta}=\frac{3}{2}$$
(5)

Now, by dividing equation (4) by (5)

We get,

$$4\sin\Theta - 3\cos\Theta 3\sin\Theta 2\cos\Theta + 6\sin\Theta 6\sin\Theta = \frac{4\sin\Theta - 3\cos\Theta}{3\sin\Theta} = \frac{\frac{4\sin\Theta - 3\cos\Theta}{3\sin\Theta}}{\frac{2\cos\Theta + 6\sin\Theta}{6\sin\Theta}} = \frac{\frac{1}{1}}{\frac{3}{2}}$$

Therefore,

$$4\sin\Theta - 3\cos\Theta 3\sin\Theta \times 6\sin\Theta 2\cos\Theta + 6\sin\Theta = 11 \times 23 \frac{4\sin\Theta - 3\cos\Theta}{3\sin\Theta} \times \frac{6\sin\Theta}{2\cos\Theta + 6\sin\Theta} = \frac{1}{1} \times \frac{2}{3}$$
$$4\sin\Theta - 3\cos\Theta 3\sin\Theta \times 2\times 3\sin\Theta 2\cos\Theta + 6\sin\Theta = 11 \times 23 \frac{4\sin\Theta - 3\cos\Theta}{3\sin\Theta} \times \frac{2\times 3\sin\Theta}{2\cos\Theta + 6\sin\Theta} = \frac{1}{1} \times \frac{2}{3}$$

Therefore, on L.H.S (3 $\sin\Theta\sin\Theta$) cancels out and we get,

$$2\times4\sin\Theta-3\cos\Theta2\cos\Theta+6\sin\Theta=11\times23\frac{2\times4\sin\Theta-3\cos\Theta}{2\cos\Theta+6\sin\Theta}=\frac{1}{1}\times\frac{2}{3}$$

Now, by taking 2 in the numerator of L.H.S on the R.H.S

We get,

$$4\sin\Theta$$
- $3\cos\Theta$ 2 $\cos\Theta$ + $6\sin\Theta$ = $23\times2\frac{4\sin\Theta$ - $3\cos\Theta}{2\cos\Theta$ + $6\sin\Theta} = \frac{2}{3\times2}$

Therefore, 2 cancels out on R.H.S and

We get,

$$4\sin\Theta - 3\cos\Theta 2\cos\Theta + 6\sin\Theta = 13 \frac{4\sin\Theta - 3\cos\Theta}{2\cos\Theta + 6\sin\Theta} = \frac{1}{3}$$

Hence answer,

4sin
$$\Theta$$
-3cos Θ 2cos Θ +6sin Θ = 13 $\frac{4\sin\Theta$ -3 $\cos\Theta}{2\cos\Theta$ +6 $\sin\Theta} = \frac{1}{3}$

12.) If
$$an\Theta=ab an\Theta=rac{a}{b}$$
, prove that $a\sin\Theta-b\cos\Theta$ a $\sin\Theta+b\cos\Theta=a^2-b^2a^2+b^2$

$$\frac{a\sin\Theta - b\cos\Theta}{a\sin\Theta + b\cos\Theta} = \frac{a^2 - b^2}{a^2 + b^2}$$

Sol.

Given:

 $an\Theta$ ab $an\Thetarac{a}{b}$ (1)

Now, we know that $tan\Theta = \sin\Theta \cos\Theta \tan\Theta = \frac{\sin\Theta}{\cos\Theta}$

Therefore equation (1) becomes

$$\sin\Theta\cos\Theta = ab \frac{\sin\Theta}{\cos\Theta} = \frac{a}{b}$$
(2)

Now, by multiplying by $ab \frac{a}{b}$ on both sides of equation (2)

We get,

ab
$$imes \sin\Theta \cos\Theta =$$
 ab $imes ab \, rac{a}{b} imes rac{\sin\Theta}{\cos\Theta} = rac{a}{b} \, imes rac{a}{b}$

Therefore,

asin
$$\Theta$$
bcos Θ = $a^2b^2\frac{a\sin\Theta}{b\cos\Theta} = \frac{a^2}{b^2}$ (3)

Now by applying dividendo in above equation (3)

We get,

asinΘ-bcosΘbcosΘ =
$$a^2$$
- $b^2b^2\frac{a\sin\Theta-b\cos\Theta}{b\cos\Theta} = \frac{a^2-b^2}{b^2}$ (4)

Now by applying componendo in equation (3)

We get,

asinΘ+bcosΘbcosΘ =
$$a^2+b^2b^2\frac{a\sin\Theta+b\cos\Theta}{b\cos\Theta} = \frac{a^2+b^2}{b^2}$$
(5)

Now, by dividing equation (4) by equation (5)

We get,

$$asin\Theta-bcos\Thetabcos\Theta asin\Theta+bcos\Thetabcos\Theta = a^2-b^2b^2 a^2+b^2b^2 \frac{\frac{a \sin \Theta-b \cos \Theta}{b \cos \Theta}}{\frac{a \sin \Theta+b \cos \Theta}{b \cos \Theta}} = \frac{\frac{a^2-b^2}{b^2}}{\frac{a^2+b^2}{b^2}}$$

Therefore,

 $asinΘ-bcosΘbcosΘ × bcosΘasinΘ+bcosΘ = a^2-b^2b^2 × b^2a^2+b^2$

$$\frac{a\sin\Theta-b\cos\Theta}{b\cos\Theta} imes \frac{b\cos\Theta}{a\sin\Theta+b\cos\Theta} = \frac{a^2-b^2}{b^2} imes \frac{b^2}{a^2+b^2}$$

Therefore, $\mathsf{bcos}\Theta b\cos\Theta$ and b^2 cancels on L.H.S and R.H.S respectively

asinΘ–bcosΘasinΘ+bcosΘ =
$$a^2$$
– b^2a^2 + $b^2\frac{a\sin\Theta-b\cos\Theta}{a\sin\Theta+b\cos\Theta}=\frac{a^2-b^2}{a^2+b^2}$

Hence, it is proved that

asinΘ-bcosΘasinΘ+bcosΘ =
$$a^2$$
-b 2 a 2 +b 2 $\frac{a\sin\Theta-b\cos\Theta}{a\sin\Theta+b\cos\Theta} = \frac{a^2-b^2}{a^2+b^2}$

13.) If Sec Θ =135 $\sec\Theta=rac{13}{5}$, show that $2\sin\Theta-3\cos\Theta 4\sin\Theta-9\cos\Theta=3rac{2\sin\Theta-3\cos\Theta}{4\sin\Theta-9\cos\Theta}=3$

Sol.

Given:

secΘ=135 sec
$$\Theta = \frac{13}{5}$$

To show that $2\text{sin}\Theta-3\text{cos}\Theta4\text{sin}\Theta-9\text{cos}\Theta=3\frac{2\sin\Theta-3\cos\Theta}{4\sin\Theta-9\cos\Theta}=3$

Now, we know that $\cos\Theta$ = 1sec Θ $\cos\Theta$ = $\frac{1}{\sec\Theta}$

Therefore,

$$\cos\Theta$$
=1135 $\cos\Theta = \frac{1}{\frac{13}{5}}$

Therefore,

$$\cos\Theta$$
=513 $\cos\Theta = \frac{5}{13}$ (1)

Now, we know that

COS
$$\Theta$$
= Basesideadjacentto∠ Θ Hypotenuse $\cos\Theta = \frac{\textit{Base side adjacent to } \angle\Theta}{\textit{Hypotenuse}}$

Now, by comparing equation (1) and(2)

We get,

Base side adjacent to $\angle\Theta\angle\Theta$ = 5

And

Hypotenuse =13

Therefore from above figure

Base side BC = 5

Hypotenuse AC = 13

Side AB is unknown. It can be determined by using Pythagoras theorem

Therefore by applying Pythagoras theorem

We get,

$$AC^2 = AB^2 + BC^2$$

Therefore by substituting the values of known sides

We get,

$$13^2 = AB^2 + 5^2$$

Therefore,

$$AB^2 = 13^2 - 5^2$$

$$AB^2 = 169 - 25$$

$$AB^2 = 144$$

$$AB = \sqrt{144}\sqrt{144}$$

Therefore,

Now, we know that

$$\sin\Theta$$
=abac $\sin\Theta=rac{AB}{AC}$

$$\sin\Theta$$
=1213 $\sin\Theta=rac{12}{13}$ (4)

Now L.H.S of the equation to be proved is as follows

L.H.S =
$$2\sin\Theta - 3\tan\Theta + 3\cos\Theta = \frac{2\sin\Theta - 3\tan\Theta}{4\sin\Theta - 3\cos\Theta}$$

Substituting the value $\cos\Theta\cos\Theta$ of $\sin\Theta\sin\Theta$ and from equation (1) and (4) respectively We get,

$$2 \times 1213 - 3 \times 5134 \times 1213 - 9 \times 513 \frac{2 \times \frac{12}{13} - 3 \times \frac{5}{13}}{4 \times \frac{12}{13} - 9 \times \frac{5}{13}}$$

Therefore,

L.H.S =
$$2 \times 12 - 3 \times 54 \times 12 - 9 \times 5 = \frac{2 \times 12 - 3 \times 5}{4 \times 12 - 9 \times 5}$$

L.H.S = 24–1548–45
$$\frac{24-15}{48-45}$$

L.H.S=
$$93\frac{9}{3}$$

Hence proved that,

2sin
$$\Theta$$
-3tan Θ 4sin Θ -3cos Θ $\frac{2\sin\Theta-3\tan\Theta}{4\sin\Theta-3\cos\Theta}$ = 3

14.) If $\cos\Theta$ =1213 $\cos\Theta=\frac{12}{13}$, show that $\sin\Theta$ (1- $\tan\Theta$)=35156 $\sin\Theta$ (1- $\tan\Theta$) = $\frac{35}{156}$

Sol.

Given:
$$\cos\Theta$$
= 1213 $\cos\Theta = \frac{12}{13}$ (1)

To show that $\sin\Theta(1-\tan\Theta)=35156\sin\Theta(1-\tan\Theta)=\frac{35}{156}$

Now we know that $\cos\Theta$ = Basesideadjacentto $\angle\Theta$ Hypotenuse $\cos\Theta = \frac{\textit{Base side adjacent to } \angle\Theta}{\textit{Hypotenuse}}$ (2)

Therefore, by comparing equation (1) and (2)

We get,

Base side adjacent to $\angle\Theta\angle\Theta$ = 12

And

Hypotenuse = 13

Therefore from above figure

Base side BC= 12

Hypotenuse AC= 13

Side AB is unknown and it can be determined by using Pythagoras theorem

Therefore by applying Pythagoras theorem

We get,

$$AC^2 = AB^2 + BC^2$$

Therefore by substituting the values of known sides

We get,

$$13^2 = AB^2 + 12^2$$

Therefore,

$$AB^2 = 13^2 - 12^2$$

$$AB^2 = 169 - 144$$

$$AB = 25$$

$$AB = \sqrt{25}\sqrt{25}$$

Therefore,

$$AB = 5 (3)$$

Now, we know that

Sin
$$\Theta$$
=Perpendicularsideoppositeto $\angle\Theta$ Hypotenuse $\sin\Theta=rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

Now from figure (a)

We get,

$$\sin\Theta$$
=ABAC $\sin\Theta=rac{AB}{AC}$

Therefore,

$$\sin\Theta$$
=512 $\sin\Theta=rac{5}{12}$ (5)

Now L.H.S of the equation to be proved is as follows

L.H.S of the equation to be proved is as follows

L.H.S =
$$\sin\Theta(1-\tan\Theta)\sin\Theta(1-\tan\Theta)$$
 (6)

Substituting the value of $\sin\Theta\sin\Theta$ and $\tan\Theta\tan\Theta$ from equation (4) and (5)

We get,

L.H.S =
$$513(1-512)\frac{5}{13}(1-\frac{5}{12})$$

Taking L.C.M inside the bracket

We get,

L.H.S= 513(1×121×12-512)
$$\frac{5}{13}$$
($\frac{1\times12}{1\times12}$ - $\frac{5}{12}$)

Therefore,

L.H.S= 513(12–512)
$$\frac{5}{13}$$
($\frac{12-5}{12}$)

L.H.S =
$$513(712)\frac{5}{13}(\frac{7}{12})$$

Now by opening the bracket and simplifying

We get,

L.H.S =
$$5 \times 713 \times 12 \frac{5 \times 7}{13 \times 12}$$

L.H.S=
$$35136 \frac{35}{136}$$

From equation (6) and (7), it can be shown that

that
$$\sin\Theta(1-\tan\Theta)\sin\Theta(1-\tan\Theta)$$
 = 35136 $\frac{35}{136}$

15.) If
$$\cot\Theta=1\sqrt{3}\cot\Theta=\frac{1}{\sqrt{3}}$$
 , show that 1-cos² Θ 2-sin² Θ =35 $\frac{1-\cos^2\Theta}{2-\sin^2\Theta}=\frac{3}{5}$

Sol.

Given:
$$\cot\Theta = 1\sqrt{3}\cot\Theta = \frac{1}{\sqrt{3}}$$
 (1)

To show that
$$1-\cos^2\Theta 2-\sin^2\Theta = 35 \frac{1-\cos^2\Theta}{2-\sin^2\Theta} = \frac{3}{5}$$

Now, we know that
$$\cot\Theta$$
=1 $an\Theta\cot\Theta=rac{1}{ an\Theta}$

Since tanΘ=Perpendicularsideoppositeto∠ΘBasesideadjacentto∠Θ

$$an\Theta = rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Base\ side\ adjacent\ to\ \angle\Theta}$$

Therefore,

tan
$$\Theta$$
= 1 Perpendicular side opposite to $\angle \Theta$ Base side adjacent to $\angle \Theta$ and Θ = $\frac{1}{\frac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Base\ side\ adjacent\ to\ \angle\Theta}}$

Therefore,

 $cot\Theta$ = Basesideadjacentto $\angle \Theta$ Perpendicularsideoppositeto $\angle \Theta$

$$\cot\Theta = \frac{\textit{Base side adjacent to } \angle\Theta}{\textit{Perpendicular side opposite to } \angle\Theta} \ \ \textbf{(2)}$$

Comparing Equation (1) and (2)

We get.

Base side adjacent to $\angle\Theta\angle\Theta$ = 1

Perpendicular side opposite to $\angle\Theta\angle\Theta = \sqrt{3}\sqrt{3}$

Therefore, triangle representing angle $\sqrt{3}\sqrt{3}$ is as shown below

Therefore, by substituting the values of known sides

$$AC^2 = (\sqrt{3})^2 (\sqrt{3})^2 + 1^2$$

Therefore,

$$AC^2 = 3 + 1$$

$$AC^2 = 4$$

$$AC = \sqrt{4}\sqrt{4}$$

Therefore,

$$AC = 2 (3)$$

Now, we know that

$$\sin\Theta$$
=Perpendicularsideoppositeto $\angle\Theta$ Hypotenuse $\sin\Theta=rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

Now from figure (a)

$$\sin\Theta$$
=abac $\sin\Theta=rac{AB}{AC}$

Therefore from figure (a) and equation (3),

$$\sin\Theta = \sqrt{3}2\sin\Theta = \frac{\sqrt{3}}{2}$$

Now we know that

COS
$$\Theta$$
 Basesideadjacentto∠ Θ Hypotenuse COS Θ $\frac{Base\ side\ adjacent\ to\ \angle\Theta}{Hypotenuse}$

Now from figure (a)

We get,

$$\operatorname{BCAC} \frac{BC}{AC}$$

Therefore from figure (a) and equation (3),

$$\cos\Theta$$
=12 $\cos\Theta=\frac{1}{2}$ (5)

Now, L.H.S of the equation to be proved is as follows

L.H.S =
$$1-\cos^2\Theta 2-\sin^2\Theta \frac{1-\cos^2\Theta}{2-\sin^2\Theta}$$

Substituting the value of from equation (4) and (5)

L.H.S =
$$1-(12)^22-(\sqrt{3}2)^2\frac{1-(\frac{1}{2})^2}{2-(\frac{\sqrt{3}}{2})^2}$$

L.H.S =
$$1 - 142 - 34 \frac{1 - \frac{1}{4}}{2 - \frac{3}{4}}$$

Now by taking L.C.M in numerator as well as denominator

We get,

L.H.S=
$$(4\times1)-14(4\times2)-34$$
 $\frac{\frac{(4\times1)-1}{4}}{\frac{(4\times2)-3}{4}}$

Therefore,

L.H.S =
$$_{4-14.8-34} = _{\frac{8-3}{4}}$$

L.H.S =
$$34 \times 45 \frac{3}{4} \times \frac{4}{5}$$

L.H.S =
$$35\frac{3}{5}$$
 = R.H.S

Therefore,

1–
$$\cos^2\Theta$$
2– $\sin^2\Theta$ = 35 $\frac{1-\cos^2\Theta}{2-\sin^2\Theta}=\frac{3}{5}$

16.) If
$$\tan\Theta=1\sqrt{7}\tan\Theta=\frac{1}{\sqrt{7}}$$
, then show that $\csc^2\Theta-\sec^2\Theta\csc^2\Theta+\sec^2\Theta$
$$\frac{\csc^2\Theta-\sec^2\Theta}{\csc^2\Theta+\sec^2\Theta}=34\frac{3}{4}$$

Sol.

Given:
$$\tan\Theta = 1\sqrt{7}\tan\Theta = \frac{1}{\sqrt{7}}$$
 (1)

To show that
$$\csc^2\Theta - \sec^2\Theta \csc^2\Theta + \sec^2\Theta \frac{\csc^2\Theta - \sec^2\Theta}{\csc^2\Theta + \sec^2\Theta} = 34\frac{3}{4}$$

Now, we know that

Since, tanΘ=Perpendicularsideopositeto∠ΘBasesideadjacentto∠Θ

$$an\Theta = rac{Perpendicular\ side\ oposite\ to\ \angle\Theta}{Base\ side\ adjacent\ to\ \angle\Theta}\$$
(2)

Therefore,

Comparing equation (1) and (2)

We get.

Perpendicular side opposite to $\angle\Theta\angle\Theta$ = 1

Base side adjacent to $\angle\Theta\angle\Theta=\sqrt{7}\sqrt{7}$

Therefore, Triangle representing $\angle\Theta\angle\Theta$ is shown below

Hypotenuse AC is unknown and it can be found by using Pythagoras theorem

Therefore by applying Pythagoras theorem

We get,

$$AC^2 = AB^2 + BC^2$$

Therefore by substituting the values of known sides

We get,

$$AC^2 = (1)^2 + (\sqrt{7})^2 (\sqrt{7})^2$$

Therefore,

$$AC^2 = 1 + 7$$

$$AC^2 = 8$$

$$AC = \sqrt{8}\sqrt{8}$$

$$AC = \sqrt{2 \times 2 \times 2} \sqrt{2 \times 2 \times 2}$$

Therefore,

$$AC = 2\sqrt{2}2\sqrt{2}$$
 (3)

Now we know that

Sin Θ =Perpendicularsideoppositeto $\angle\Theta$ Hypotenuse $\sin\Theta=rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

 $\sin\Theta = \operatorname{ABAC}\sin\Theta = rac{AB}{AC}$

 $\sin\Theta = 12\sqrt{2}\sin\Theta = \frac{1}{2\sqrt{2}}$ (4)

Now, we know that $\csc\Theta$ = 1 $\sin\Theta$ $\Theta = \frac{1}{\sin\Theta}$

Therefore, from equation (4)

We get,

$$\csc\Theta = 2\sqrt{2}\Theta = 2\sqrt{2}$$
 (5)

Now, we know that

COSΘ= Basesideadjacentto∠ΘHypotenuse
$$\cos\Theta = \frac{\textit{Base side adjacent to} ∠\Theta}{\textit{Hypotenuse}}$$

Now from figure (a)

We get,

$$\cos\Theta$$
= $\operatorname{BCAC}\cos\Theta = \frac{BC}{AC}$

Therefore from figure (a) and equation (3)

$$\cos\Theta = \sqrt{7}2\sqrt{2}\cos\Theta = \frac{\sqrt{7}}{2\sqrt{2}}....(6)$$

Now we know that Sec Θ =1cos Θ sec Θ = $\frac{1}{\cos\Theta}$

Therefore, from equation (6)

We get,

secΘ=1
$$\sqrt{7}2\sqrt{2}$$
 sec Θ = $\frac{1}{\frac{\sqrt{7}}{2\sqrt{2}}}$

secΘ=
$$2\sqrt{2}\sqrt{7}\sec\Theta = \frac{2\sqrt{2}}{\sqrt{7}}$$
 (7)

Now, L.H.S of the equation to be proved is as follows

L.H.S =
$$\csc^2\Theta - \sec^2\Theta \csc^2\Theta + \sec^2\Theta \frac{cosec^2\Theta - \sec^2\Theta}{cosec^2\Theta + \sec^2\Theta}$$

Substituting the value of $\csc\Theta\Theta$ and $\sec\Theta\sec\Theta$ from equation (6) and (7)

We get,

L.H.S =
$$[(2\sqrt{2})]^2 - (2\sqrt{2}\sqrt{7})^2 [(2\sqrt{2})]^2 + (2\sqrt{2}\sqrt{7})^2 \frac{[(2\sqrt{2})]^2 - (\frac{2\sqrt{2}}{\sqrt{7}})^2}{[(2\sqrt{2})]^2 + (\frac{2\sqrt{2}}{\sqrt{7}})^2}$$

L.H.S= (8)-(87)(8)+(87)
$$\frac{(8)-\left(\frac{8}{7}\right)}{(8)+\left(\frac{8}{7}\right)}$$

Therefore,

$$56-8756+87 \frac{\frac{56-8}{7}}{\frac{56+8}{7}}$$

L.H.S =
$$_{487647} \frac{\frac{48}{7}}{\frac{64}{7}}$$

Therefore,

L.H.S =
$$4864 \frac{48}{64}$$

L.H.S =
$$34\frac{3}{4}$$
 = R.H.S

Therefore,

$$\csc^2\Theta - \sec^2\Theta \csc^2\Theta + \sec^2\Theta \frac{cosec^2\Theta - \sec^2\Theta}{cosec^2\Theta + \sec^2\Theta} = 34\frac{3}{4}$$

Hence proved that

$$cosec^2\Theta - sec^2\Theta cosec^2\Theta + sec^2\Theta \frac{cosec^2\Theta - sec^2\Theta}{cosec^2\Theta + sec^2\Theta} = 34\frac{3}{4}$$

17.) If Sec Θ = 54 $\sec\Theta=\frac{5}{4}$, find the value of $\sin\Theta$ –2 $\cos\Theta$ tan Θ – $\cot\Theta$ $\frac{\sin\Theta-2\cos\Theta}{\tan\Theta-\cot\Theta}$

Sol.

Given: Sec
$$\Theta$$
=54 sec $\Theta=\frac{5}{4}$ (1)

To find the value of $\sin\Theta$ –2cos Θ tan Θ –cot Θ $\frac{\sin\Theta$ –2 cos Θ $\tan\Theta$ –cot Θ

Now we know that Sec
$$\Theta$$
=1 $\cos\Theta\sec\Theta=rac{1}{\cos\Theta}$

Therefore,

$$\cos\Theta = 1\sec\Theta\cos\Theta = \frac{1}{\sec\Theta}$$

Therefore from equation (1)

$$\cos\Theta = 15\cos\Theta = \frac{1}{5}$$

$$\cos\Theta = 45\cos\Theta = \frac{4}{5} \dots (2)$$

Also, we know that $\cos^2\Theta + \sin^2\Theta = 1\cos^2\Theta + \sin^2\Theta = 1$

Therefore,

$$\sin^2\Theta = 1 - \cos^2\Theta \sin^2\Theta = 1 - \cos^2\Theta \sin\Theta = \sqrt{1 - \cos^2\Theta} \sin\Theta = \sqrt{1 - \cos^2\Theta}$$

Substituting the value of $\cos\Theta\cos\Theta$ from equation (2)

We get,

$$\sin\Theta = \sqrt{1 - \left(\frac{45}{5}\right)^2} \sin\Theta = \sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$= \sqrt{1 - 1625} \sqrt{1 - \frac{16}{25}}$$

$$= 925 \frac{9}{25}$$

$$= 35 \frac{3}{5}$$

Therefore,

$$\sin\Theta = 35\sin\Theta = \frac{3}{5}$$
 (3)

Also, we know that

$$\sec^2\Theta = 1 + \tan^2\Theta \sec^2\Theta = 1 + \tan^2\Theta$$

Therefore,

$$an^2\Theta$$
=(54) 2 –1 $an^2\Theta=\left(rac{5}{4}
ight)^2-1$ $an\Theta$ =($\sqrt{9}$ 16) $an\Theta=\left(\sqrt{rac{9}{16}}
ight)$

Therefore,

$$\tan\Theta = 34 \tan\Theta = \frac{3}{4} \dots (4)$$

Also,
$$\mathsf{cot}\Theta$$
= 1 $\mathsf{tan}\Theta\cot\Theta=rac{1}{\mathsf{tan}\,\Theta}$

Therefore from equation (4)

We get,

$$\cot\Theta$$
=43 $\cot\Theta=\frac{4}{3}$ (5)

Substituting the value of $\cos\Theta\cos\Theta$, $\cot\Theta\cot\Theta$ and $\tan\Theta\tan\Theta$ from the equation (2), (3),(4) and (5) respectively in the expression below

$$sin\Theta-2cos\Thetatan\Theta-cot\Theta \frac{sin\Theta-2cos\Theta}{tan\Theta-cot\Theta}$$

We get,

$$\sin\Theta - 2\cos\Theta \tan\Theta - \cot\Theta \frac{\sin\Theta - 2\cos\Theta}{\tan\Theta - \cot\Theta} = _{35} - 2\left(_{45}\right)_{34} - _{43} \frac{\frac{3}{5} - 2\left(\frac{4}{5}\right)}{\frac{5}{4} - \frac{4}{3}}$$

$$= 127 \frac{12}{7}$$

Therefore,
$$\sin\Theta$$
–2 $\cos\Theta$ tan Θ – $\cot\Theta$ $\frac{\sin\Theta$ –2 $\cos\Theta$ = 127 $\frac{12}{7}$

18.) If $\sin\Theta$ = 1213 $\sin\Theta=rac{12}{13}$, find the value of 2sin Θ cos Θ cos Θ -sin $^2\Theta$ $rac{2\sin\Theta\cos\Theta}{\cos^2\Theta-\sin^2\Theta}$

Sol.

Given:
$$\sin\Theta$$
=1213 $\sin\Theta$ = $\frac{12}{13}$ (1)

To, find the value of $2\sin\Theta\cos\Theta\cos^2\Theta-\sin^2\Theta$ $\frac{2\sin\Theta\cos\Theta}{\cos^2\Theta-\sin^2\Theta}$

Now, we know the following trigonometric identity

$$\mathsf{cosec^2}\,\Theta$$
=1+ $\mathsf{tan^2}\Theta$ $=1+\mathsf{tan^2}\,\Theta$

Therefore, by substituting the value of $tan\Theta tan\Theta$ from equation (1)

$$\operatorname{\mathsf{cosec}}^2\Theta$$
=1+(1213) $\overset{2}{\Theta}=1+\left(\frac{12}{13}\right)^2$

$$= 1 + 12^2 13^2 1 + \frac{12^2}{13^2}$$

$$= 1 + 1441691 + \frac{144}{169}$$

By taking L.C.M on the R.H.S

We get,

$$\csc^2\Theta$$
= 169+144169 $\Theta = \frac{169+144}{169}$

$$= 313169 \frac{313}{169}$$

Therefore

$$cosecΘ=\sqrt{313169}Θ=\sqrt{\frac{313}{169}}$$

=
$$\Theta$$
= $\sqrt{313}$ 13 Θ = $\frac{\sqrt{313}}{13}$

Therefore

$$cosecΘΘ = Θ = \sqrt{313}13Θ = \frac{\sqrt{313}}{13} (2)$$

Now, we know that

$$\mathsf{COSeC}\Theta cosec\Theta = 1\sin\Theta \frac{1}{\sin\Theta}$$

$$\sin\Theta = 1\sqrt{313} \sin\Theta = \frac{1}{\sqrt{313}}$$

Therefore

$$\sin\Theta = 13\sqrt{313}\sin\Theta = \frac{13}{\sqrt{313}}....(3)$$

Now, we know the following trigonometric identity

$$\cos^2\Theta + \sin^2\Theta = 1\cos^2\Theta + \sin^2\Theta = 1$$

Therefore,

$$\cos^2\Theta = 1 - \sin^2\Theta \cos^2\Theta = 1 - \sin^2\Theta$$

Now by substituting the value of $\sin\Theta\sin\Theta$ from equation (3)

$$\cos^2\Theta = 1 - (13\sqrt{313})^2 \cos^2\Theta = 1 - (\frac{13}{\sqrt{313}})^2$$

$$=1-1693131-\frac{169}{313}$$

Therefore, by taking L.C.M on R.H.S

We get,

$$\cos^2\Theta = 144313\cos^2\Theta = \frac{144}{313}$$

Now, by taking square root on both sides

We get,

$$\cos$$
Θ=12 $\sqrt{313}$ \cos Θ = $\frac{12}{\sqrt{313}}$

Therefore,

$$\cos\Theta$$
= 12 $\sqrt{313}\cos\Theta = \frac{12}{\sqrt{313}}$ (4)

Substituting the value of $Sin\Thetasin\Theta$ and $COS\Thetacos\Theta$ from equation (3) and (4) respectively in the equation below

$$2 \text{sin}\Theta \text{cos}\Theta \text{cos}^2\Theta - \text{sin}^2\Theta \ \frac{2 \sin\Theta \cos\Theta}{\cos^2\Theta - \sin^2\Theta}$$

Therefore,

$$2 sin\Theta cos\Theta cos^2\Theta - sin^2\Theta \, \frac{2 sin\Theta \, cos\,\Theta}{cos^2\,\Theta - sin^2\,\Theta} = \, \, 2 \times {}_{13}\sqrt{{}_{313}} \times {}_{12}\sqrt{{}_{313}} ({}_{13}\sqrt{{}_{313}})^2 - ({}_{12}\sqrt{{}_{313}})^2 \, \frac{2 \times \frac{13}{\sqrt{{}_{313}}} \times \frac{12}{\sqrt{{}_{313}}} \times \frac{12}{\sqrt{{}_{313}}} ({}_{12}\sqrt{{}_{313}})^2 - ({}_{12}\sqrt{$$

$$= {}_{312313} {}_{25313} \frac{{}_{313}^{12}}{{}_{313}^{25}}$$

$$31225 \frac{312}{25}$$

Therefore

2sin
$$\Theta$$
cos Θ cos $^2\Theta$ -sin $^2\Theta$ $\frac{2 \sin \Theta \cos \Theta}{\cos^2 \Theta - \sin^2 \Theta}$ =

31225
$$\frac{312}{25}$$

19.) If
$$\cos\Theta=35\cos\Theta=\frac{3}{5}$$
 , find the value of $\sin\Theta-1\tan\Theta$ $\frac{\sin\Theta-\frac{1}{\tan\Theta}}{2\tan\Theta}$

Sol.

Given: $\cos\Theta = 35\cos\Theta = \frac{3}{5}$ (1)

To find the value of $\sin\Theta$ — $1 an\Theta$ 2 $an\Theta$ $\frac{\sin\Theta}{2 an\Theta}$

Now we know the following trigonometric identity

$$\cos^2\Theta + \sin^2\Theta = 1\cos^2\Theta + \sin^2\Theta = 1$$

Therefore by substituting the value of $\cos\Theta\cos\Theta$ from equation (1)

We get,

$$(35)^2 + \sin^2\Theta = 1(\frac{3}{5})^2 + \sin^2\Theta = 1$$

Therefore,

$$\begin{aligned} &\sin^2\!\Theta = 1 - (35)^2 \sin^2\Theta = 1 - (\tfrac{3}{5})^2 \, \sin^2\!\Theta = 1 - (925) \sin^2\Theta = 1 - (\tfrac{9}{25}) \, \sin^2\!\Theta = 25 - 925 \\ &\sin^2\Theta = \tfrac{25 - 9}{25} \, \sin^2\!\Theta = 1625 \sin^2\Theta = \tfrac{16}{25} \end{aligned}$$

Therefore by taking square root on both sides

We get,

$$\sin\Theta$$
=45 $\sin\Theta=rac{4}{5}$ (2)

Now, we know that

$$\tan\Theta = \sin\Theta\cos\Theta \tan\Theta = \frac{\sin\Theta}{\cos\Theta}$$

Therefore by substituting the value of $Sin\Thetasin\Theta$ and $COS\Thetacos\Theta$ from equation (2) and (1) respectively

We get,

$$\tan\Theta = {}_{4535} = 43 \tan\Theta = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \dots (4)$$

Now, by substituting the value of $\sin\Theta\sin\Theta$ and of $\tan\Theta\tan\Theta$ from equation (2) and equation (4) respectively in the expression below

$$\sin\Theta - 1\tan\Theta 2\tan\Theta \frac{\sin\Theta - \frac{1}{\tan\Theta}}{2\tan\Theta}$$

$$\sin\Theta - 1\tan\Theta 2\tan\Theta \frac{\sin\Theta - \frac{1}{\tan\Theta}}{2\tan\Theta} = 45 - 142 \times 43 \frac{\frac{4}{5} - \frac{1}{4}}{2 \times \frac{4}{3}}$$

$$\sin\Theta - 1\tan\Theta 2\tan\Theta \frac{\sin\Theta - \frac{1}{\tan\Theta}}{2\tan\Theta} = 1620 - 1520 83 \frac{\frac{16}{20} - \frac{15}{20}}{\frac{8}{3}}$$

$$\sin\Theta - 1\tan\Theta 2\tan\Theta \frac{\sin\Theta - \frac{1}{\tan\Theta}}{2\tan\Theta} = 3160 \frac{3}{160}$$

Therefore,

$$\sin\Theta - 1\tan\Theta = \frac{\sin\Theta - \frac{1}{\tan\Theta}}{2\tan\Theta} = 3160 \frac{3}{160}$$

20.) If
$$\sin\Theta=35\sin\Theta=\frac{3}{5}$$
 , find the value of $\cos\Theta-1\tan\Theta$ 2 $\cot\Theta=\frac{\cos\Theta-\frac{1}{\tan\Theta}}{2\cot\Theta}$

Sol.

Given:

$$\sin\Theta$$
=35 $\sin\Theta=rac{3}{5}$ (1)

To find the value of $\cos\Theta$ -1tano2cot Θ $\frac{\cos\Theta - \frac{1}{\tan\Theta}}{2\cot\Theta}$

Now, we know the following trigonometric identity

$$\cos^2\Theta + \sin^2\Theta = 1\cos^2\Theta + \sin^2\Theta = 1$$

Therefore by substituting the value of $\cos\Theta\cos\Theta$ from equation (1)

We get,

$$\cos^2\Theta + (35)^2 = 1\cos^2\Theta + (\frac{3}{5})^2 = 1$$

Therefore,

$$\cos^2\Theta = 1 - (35)^2\cos^2\Theta = 1 - (\frac{3}{5})^2\cos^2\Theta = 1 - 925\cos^2\Theta = 1 - \frac{9}{25}$$

Now by taking L.C.M

We get,

$$\cos^2\Theta = 25 - 925\cos^2\Theta = \frac{25 - 9}{25}\cos^2\Theta = 25 - 925\cos^2\Theta = \frac{25 - 9}{25}$$

Therefore, by taking square roots on both sides

We get,

$$\cos\Theta = 45\cos\Theta = \frac{4}{5}$$

Therefore,

$$\cos\Theta = 45\cos\Theta = \frac{4}{5}$$
 (2)

Now we know that

$$tan\Theta = sin\Theta cos\Theta tan\Theta = \frac{sin\Theta}{cos\Theta}$$

Therefore by substituting the value of $Sin\Thetasin\Theta$ and $COS\Thetacos\Theta$ from equation (1) and (2) respectively

We get,

$$\tan\Theta = {}_{3545}\tan\Theta = \frac{\frac{3}{5}}{\frac{4}{5}}$$

$$\tan\Theta = 34 \tan \Theta = \frac{3}{4} \dots (3)$$

Also, we know that

$$\mathsf{cot}\Theta$$
= 1 $\mathsf{tan}\Theta\cot\Theta = rac{1}{\mathsf{tan}\,\Theta}$

Therefore from equation (3)

We get,

$$\cot\Theta$$
=134 $\cot\Theta = \frac{1}{\frac{3}{4}}$

$$\cot\Theta = 43\cot\Theta = \frac{4}{3}$$
 (4)

Now by substituting the value of $\cos\Theta\cos\Theta$, $\tan\Theta\tan\Theta$ and $\cot\Theta\cot\Theta$ from equation (2) ,(3) and (4) respectively from the expression below

$$\cos\Theta - 1\tan\Theta 2\cot\Theta \frac{\cos\Theta - \frac{1}{\tan\Theta}}{2\cot\Theta} = 45 - 132 \times 43 \frac{\frac{4}{5} - \frac{1}{3}}{2 \times \frac{4}{3}}$$

$$\cos\Theta - 1\tan\Theta 2\cot\Theta \frac{\cos\Theta - \frac{1}{\tan\Theta}}{2\cot\Theta} = 1215 - 2015 83 \frac{\frac{12}{15} - \frac{20}{15}}{\frac{8}{3}}$$

$$= -81583 \frac{\frac{-8}{15}}{\frac{8}{3}}$$

$$=-15\frac{-1}{5}$$

Therefore,
$$\cos\Theta$$
-1tane2cot Θ $\frac{\cos\Theta - \frac{1}{\tan\Theta}}{2\cot\Theta}$ = -15 $\frac{-1}{5}$

21.) If
$$an\Theta$$
=247 $an\Theta$ $=$ $rac{24}{7}$, find that $an\Theta$ + $an\Theta$ + $an\Theta$

Sol.

Given:

$$\tan\Theta$$
=247 $\tan\Theta=\frac{24}{7}$ (1)

To find,

$$\sin\Theta + \cos\Theta \sin\Theta + \cos\Theta$$

Now we know that $tan\Theta tan\Theta$ is defined as follows

tanΘ= Perpendicularsideoppositeto∠ΘBasesideadjacentto∠Θ

$$an\Theta = rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Base\ side\ adjacent\ to\ \angle\Theta}\ \dots$$
 (2)

Now by comparing equation (1) and (2)

We get,

Perpendicular side opposite to $\angle\Theta\angle\Theta$ = 24

Base side adjacent to $\angle\Theta\angle\Theta=7$

Therefore triangle representing $\angle\Theta\angle\Theta$ is as shown below

Side AC is unknown and can be found by using Pythagoras theorem

Therefore,

$$AC^2 = AB^2 + BC^2$$

Now by substituting the value of unknown sides from figure

We get,

$$AC^2 = 24^2 + 7^2$$

$$AC = 576 + 49$$

Now by taking square root on both sides,

We get,

$$AC = 25$$

Therefore H hy

Hypotenuse side AC = 25 (3)

Now we know $\sin\Theta\sin\Theta$ is defined as follows

 $\sin\Theta$ =Perpendicularsideoppositeto $\angle\Theta$ Hypotenuse $\sin\Theta=rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

Therefore from figure (a) and equation (3)

sinΘ=abac
$$\sin\Theta=rac{AB}{AC}$$

$$\sin\Theta$$
=2425 $\sin\Theta=\frac{24}{25}$ (4)

Now we know that $\cos\Theta\cos\Theta$ is defined as follows

COS
$$\Theta$$
= Basesideadjacentto∠ Θ Hypotenuse COS $\Theta = \frac{\textit{Base side adjacent to } \angle \Theta}{\textit{Hypotenuse}}$

Therefore by substituting the value of $Sin\Thetasin\Theta$ and $COS\Thetacos\Theta$ from equation (4) and (5) respectively, we get

$$\sin\Theta + \cos\Theta \sin\Theta + \cos\Theta = 2425 + 725 \frac{24}{25} + \frac{7}{25}$$

$$\sin\Theta + \cos\Theta \sin\Theta + \cos\Theta = 3125\frac{31}{25}$$

Hence,
$$\sin\Theta + \cos\Theta \sin\Theta + \cos\Theta = 3125 \frac{31}{25}$$

22.) If $\sin\Theta=ab\sin\Theta=rac{a}{b}$, find $\sec\Theta+ an\Theta\sec\Theta+ an\Theta$ in terms of a and b.

Sol.

Given:

$$\sin\Theta$$
=ab $\sin\Theta=rac{a}{b}$ (1)

To find: $\sec\Theta + \tan\Theta \sec\Theta + \tan\Theta$

Now we know, $\sin\Theta\sin\Theta$ is defined as follows

Sin
$$\Theta$$
=Perpendicularsideoppositeto $\angle\Theta$ Hypotenuse Sin $\Theta=\frac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

Now by comparing equation (1) and (2)

We get,

Perpendicular side opposite to $\angle\Theta\angle\Theta$ = a

Hypotenuse = b

Therefore triangle representing $\angle\Theta\angle\Theta$ is as shown below

Hence side BC is unknown

Now we find BC by applying Pythagoras theorem to right angled $\Delta ABC\Delta ABC$

Therefore,

$$AC^2 = AB^2 + BC^2$$

Now by substituting the value of sides AB and AC from figure (a)

We get,

$$b^2 = a^2 + BC^2$$

Therefore,

$$BC^2 = b^2 - a^2$$

Now by taking square root on both sides

We get,

BC=
$$\sqrt{b^2-a^2}\sqrt{b^2-a^2}$$

Therefore,

Base side BC =
$$\sqrt{b^2-a^2}\sqrt{b^2-a^2}$$
 (3)

Now we know $\cos\Theta\cos\Theta$ is defined as follows

COS
$$\Theta$$
= Basesideadjacentto∠ Θ Hypotenuse COS $\Theta = \frac{\textit{Base side adjacent to } \angle \Theta}{\textit{Hypotenuse}}$

Therefore from figure (a) and equation (3)

$$\cos\Theta$$
=BCAC $\cos\Theta=rac{BC}{AC}$

$$= \sqrt{b^2-a^2}b \frac{\sqrt{b^2-a^2}}{b}$$

$$\cos\Theta$$
=BCAC $\cos\Theta=rac{BC}{AC}$

$$= \sqrt{b^2 - a^2} b \frac{\sqrt{b^2 - a^2}}{b} \dots (4)$$

Now we know, $\sec\Theta = 1\cos\Theta\sec\Theta = \frac{1}{\cos\Theta}$

Therefore,

secΘ=
$$b\sqrt{b^2-a^2}$$
secΘ= $\frac{b}{\sqrt{b^2-a^2}}$(5)

Now we know, $tan\Theta = sin\Theta cos\Theta tan\Theta = \frac{sin\Theta}{cos\Theta}$

Now by substituting the values from equation (1) and (3)

We get,

$$an\Theta={}_{\mathsf{ab}\,\sqrt{\mathsf{b}^2-\mathsf{a}^2}\mathsf{b}} an\Theta=rac{rac{a}{b}}{\sqrt{b^2-a^2}} an\Theta={}_{\mathsf{a}}\sqrt{\mathsf{b}^2-\mathsf{a}^2} an\Theta=rac{a}{\sqrt{b^2-a^2}}$$

Therefore,

$$\tan\Theta = a\sqrt{b^2-a^2}\tan\Theta = \frac{a}{\sqrt{b^2-a^2}}$$
 (6)

Now we need to find $\sec\Theta + \tan\Theta \sec\Theta + \tan\Theta$

Now by substituting the values of $\sec\Theta\sec\Theta$ and $\tan\Theta\tan\Theta$ from equation (5) and (6) respectively

We get,

secΘ+tanΘsec Θ + tan Θ =
$$b\sqrt{b^2-a^2} + a\sqrt{b^2-a^2} \frac{b}{\sqrt{b^2-a^2}} + \frac{a}{\sqrt{b^2-a^2}}$$

secΘ+tanΘsec Θ + tan Θ = b+a
$$\sqrt{b^2-a^2} \frac{b+a}{\sqrt{b^2-a^2}}$$
 (7)

We get,

secΘ+tanΘsecΘ + tanΘ = b+a
$$\sqrt{b+a}$$
- $\sqrt{b-a}$ $\frac{b+a}{\sqrt{b+a}-\sqrt{b-a}}$

Now by substituting the value in above expression

We get,

secΘ+tanΘsecΘ + tanΘ =
$$\sqrt{b+a} \times \sqrt{b+a} \sqrt{b+a} - \sqrt{b-a} \frac{\sqrt{b+a} \times \sqrt{b+a}}{\sqrt{b+a} - \sqrt{b-a}}$$

Now, $\sqrt{b+a}\sqrt{b+a}$ present in the numerator as well as denominator of above denominator of above expression gets cancels we get,

secΘ+tanΘ=
$$\sqrt{b+a}\sqrt{b-a}\sec\Theta+\tan\Theta=\frac{\sqrt{b+a}}{\sqrt{b-a}}$$

Square root is present in the numerator as well as denominator of above expression

Therefore we can place both numerator and denominator under a common square root sign

Therefore, Sec
$$\Theta$$
+tan Θ = $\sqrt{b+a}\sqrt{b-a}\sec\Theta+ an\Theta=rac{\sqrt{b+a}}{\sqrt{b-a}}$

23.) If <code>8tanA=15</code> tan A=15 , find <code>sinA-cosAsin</code> A- $\cos A$

Sol.

Given:

 $8 \tan A = 158 \tan A = 15$

Therefore,

$$tanA = 158 tan A = \frac{15}{8} (1)$$

To find:

sinA-cosAsin A-cos A

Now we know tan A is defined as follows

tanA=Perpendicularsideoppositeto∠ABasesideadjacentto∠A

$$\tan A = \frac{Perpendicular \ side \ opposite \ to \ \angle A}{Base \ side \ adjacent \ to \ \angle A} \ \dots (2)$$

Now by comparing equation (1) and (2)

We get

Perpendicular side opposite to $\angle A \angle A = 15$

Base side adjacent to $\angle A \angle A = 8$

Therefore triangle representing angle A is as shown below

Side AC= is unknown and can be found by using Pythagoras theorem

Therefore,

$$AC^2 = AB^2 + BC^2$$

Now by substituting the value of known sides from figure (a)

We get,

$$AC^2 = 15^2 + 8^2$$

$$AC^2 = 225 + 64$$

$$AC = 289$$

Now by taking square root on both sides

We get,

$$AC = \sqrt{289}\sqrt{289}$$

$$AC = 17$$

Therefore Hypotenuse side AC=17 (3)

Now we know, sin A is defined as follows

SinA=Perpendicularsideoppositeto
$$\angle$$
AHypotenuse $\sin A = rac{Perpendicular\ side\ opposite\ to\ \angle A}{Hypotenuse}$

Therefore from figure (a) and equation (3)

$$\sin A = 1517 \sin A = \frac{15}{17}$$
 (4)

Now we know, cos A is defined as follows

COSA= Basesideadjacentto
$$\angle$$
AHypotenuse $\cos A=rac{\textit{Base side adjacent to } \angle A}{\textit{Hypotenuse}}$

Therefore from figure (a) and equation (3)

We get,

$$\mathsf{COSA} = \mathsf{ABAC} \cos A = rac{AB}{AC}$$

$$\cos A = 817 \cos A = \frac{8}{17} \dots (5)$$

Now we find the value of expression sinA-cosAsin A-cosA

Therefore by substituting the value of sinAsin A and cosAcos A from equation (4) and (5) respectively, we get,

$$\sin A - \cos A = 1517 - 817 \sin A - \cos A = \frac{15}{17} - \frac{8}{17} \sin A - \cos A = 15 - 817 \sin A - \cos A = \frac{15 - 8}{17} \sin A - \cos A = \frac{7}{17}$$

Hence,
$$\sin A$$
- $\cos A$ =717 $\sin A$ - $\cos A$ = $\frac{7}{17}$

24.) If
$$tan\Theta$$
=2021 $tan\Theta$ = $\frac{20}{21}$, show that 1-sinΘ-cosΘ1+sinΘ+cosΘ=37

$$\frac{1-\sin\Theta-\cos\Theta}{1+\sin\Theta+\cos\Theta} = \frac{3}{7}$$

Sol.

Given:

$$\tan\Theta$$
=2021 $\tan\Theta$ = $\frac{20}{21}$

To show that
$$1-\sin\Theta+\cos\Theta+\sin\Theta+\cos\Theta=37$$
 $\frac{1-\sin\Theta+\cos\Theta}{1+\sin\Theta+\cos\Theta}=\frac{3}{7}$

Now we know that

tanΘ= Perpendicularsideoppositeto∠ΘBasesideadjacentto∠Θ

$$an\Theta = rac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Base\ side\ adjacent\ to\ \angle\Theta}$$

Therefore,

 $\tan\Theta$ =2021 $\tan\Theta=rac{20}{21}$

Side AC be the hypotenuse and can be found by applying Pythagoras theorem

Therefore,

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 21^2 + 20^2$$

$$AC^2 = 441 + 400$$

$$AC^2 = 841$$

Now by taking square root on both sides

We get,

$$AC = \sqrt{841}\sqrt{841}$$

Therefore Hypotenuse side AC= 29

Now we know, $\sin\Theta\sin\Theta$ is defined as follows,

SINA
$$\Theta$$
= Perpendicular side opposite to $\angle\Theta$ Hypotenuse $\sin A\Theta = \frac{Perpendicular\ side\ opposite\ to\ \angle\Theta}{Hypotenuse}$

Therefore from figure and above equation

We get,

$$\sin\Theta$$
=abac $\sin\Theta=rac{AB}{AC}\sin\Theta$ =2029 $\sin\Theta=rac{20}{29}$

Now we know $\cos\Theta\cos\Theta$ is defined as follows

COS
$$\Theta$$
= Basesideadjacentto∠ Θ Hypotenuse COS $\Theta = \frac{\textit{Base side adjacent to } \angle \Theta}{\textit{Hypotenuse}}$

Therefore from figure and above equation

We get,

$$\cos\Theta$$
= ABAC $\cos\Theta=\frac{AB}{AC}$ $\cos\Theta$ = 2129 $\cos\Theta=\frac{21}{29}$

Now we need to find the value of expression 1– $\sin\Theta$ + $\cos\Theta$ 1+ $\sin\Theta$ + $\cos\Theta$ $\frac{1-\sin\Theta+\cos\Theta}{1+\sin\Theta+\cos\Theta}$

Therefore by substituting the value of $Sin\Theta_{sin}\Theta$ and $COS\Theta_{cos}\Theta$ from above equations, we get

1–
$$\sin\Theta$$
+ $\cos\Theta$ 1+ $\sin\Theta$ + $\cos\Theta$ $\frac{1-\sin\Theta+\cos\Theta}{1+\sin\Theta+\cos\Theta}$ =

$$29-20+21297029 \frac{ 29-20+21}{29}$$

Therefore after evaluating we get,

1-
$$\sin\Theta$$
+ $\cos\Theta$ 1+ $\sin\Theta$ + $\cos\Theta$ $\frac{1-\sin\Theta+\cos\Theta}{1+\sin\Theta+\cos\Theta}$ = 37 $\frac{3}{7}$

Hence,

1–
$$\sin\Theta$$
+ $\cos\Theta$ 1+ $\sin\Theta$ + $\cos\Theta$ $\frac{1-\sin\Theta+\cos\Theta}{1+\sin\Theta+\cos\Theta}$ =

$$37\frac{3}{7}$$

25.) If COSECA=
$$2cosecA=2$$
 , find 1tanA+ \sin A1+ \cos A $\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$

Sol.

Given:

$$cosecA = 2cosecA = 2$$

To find 1tanA + sinA1+cosA
$$\frac{1}{\tan A} + \frac{\sin A}{1+\cos A}$$

Now cosec A = HypotenuseOppositeside
$$\frac{Hypotenuse}{Oppositeside}$$
 = 21 $\frac{2}{1}$

Here BC is the adjacent side,

By applying Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$4 = 1 + BC^2$$

$$BC^2 = 3$$

BC =
$$\sqrt{3}\sqrt{3}$$

Now we know that

$$\mathsf{sinA}$$
= 1 cosecA $\mathsf{sin}\,A = rac{1}{\mathit{cosecA}}$

$$\sin A = 12 \sin A = \frac{1}{2}$$
 (1)

tan
$$A$$
=ABBC $an A=rac{AB}{BC}$

$$\tan A = 1\sqrt{3} \tan A = \frac{1}{\sqrt{3}}$$
 (2)

$$\cos A$$
= $\operatorname{BCAC} \cos A = \frac{BC}{AC}$

$$\cos \mathsf{A}$$
= $\sqrt{3}2\cos A=rac{\sqrt{3}}{2}$ (3)

Substitute all the values of sin Asin A, cos Acos A and tan Atan A from the equations(1), (2) and (3) respectively

We get.

$$1 \tan A + \sin A 1 + \cos A \frac{1}{\tan A} + \frac{\sin A}{1 + \cos A} = 1_{1}\sqrt{3} + \frac{1}{1_{2}}1 + \sqrt{3}_{2} \frac{1}{\frac{1}{\sqrt{3}}} + \frac{\frac{1}{2}}{1 + \frac{\sqrt{3}}{2}}$$

$$=\sqrt{3}+12+\sqrt{3}\sqrt{3}+\frac{1}{2+\sqrt{3}}$$

$$=2(2+\sqrt{3})2+\sqrt{3}\,\frac{2(2+\sqrt{3})}{2+\sqrt{3}}$$

= 2

Hence,

1tanA + sinA1+cosA
$$\frac{1}{\tan A}$$
 + $\frac{\sin A}{1+\cos A}$ = 2

26.) If $\angle A \angle A$ and $\angle B \angle B$ are acute angles such that $\cos A = \cos B$, then show that $\angle A \angle A = \angle B \angle B$

Sol.

Given:

 $\angle A \angle A$ and $\angle B \angle B$ are acute angles

 $\cos A = \cos B$ such that $\angle A \angle A = \angle B \angle B$

Let us consider right angled triangle ACB

Now since $\cos A = \cos B$

Therefore

$$ACAB = BCAB \frac{AC}{AB} = \frac{BC}{AB}$$

Now observe that denominator of above equality is same that is AB

Hence ACAB = BCAB
$$\frac{AC}{AB} = \frac{BC}{AB}$$
 only when AC=BC

Therefore AC=BC

We know that when two sides of triangle are equal, then opposite of the sides are also

Equal.

Therefore

We can say that

Angle opposite to side AC = angle opposite to side BC

Therefore,

$$\angle B \angle B = \angle A \angle A$$

Hence,
$$\angle A \angle A = \angle B \angle B$$

27.) In a $\Delta ABC\Delta ABC$, right angled triangle at A, if tan C = $\sqrt{3}\sqrt{3}$, find the value of sin B cos C + cos B sin C.

Sol.

Given:

 $\triangle ABC \triangle ABC$

To find: sin B cos C + cos B sin C

The given a $\Delta \mathsf{ABC}\Delta ABC$ is as shown in figure

Side BC is unknown and can be found using Pythagoras theorem,

Therefore,

$$BC^2 = AB^2 + AC^2$$

$$BC^2 = \sqrt{3}^2 \sqrt{3}^2 + 1^2$$

$$BC^2 = 3 + 1$$

$$BC^{2} = 4$$

Now by taking square root on both sides

We get,

$$BC = \sqrt{4}\sqrt{4}$$

Therefore Hypotenuse side BC= 2 (1)

Now, $\sin B = \text{Perpendicular} \text{side opposite to } \angle B \text{Hypotenuse} \frac{Perpendicular side opposite to } \angle B \text{Hypotenuse}$

Therefore,

$$\sin\! B = \arcsin B = rac{AC}{BC}$$

Now by substituting the values from equation (1) and figure

We get,

$$\sin B = 12\frac{1}{2}$$
 (2)

Now, cos B= basesideadjacentto \angle BHypotenuse $\frac{base\ side\ adjacent\ to\ \angle B}{Hypotenuse}$

Therefore,

$$\cos B = ABBC \frac{AB}{BC}$$

Now substituting the value from equation

$$\cos B = \sqrt{3}2 \frac{\sqrt{3}}{2} \dots (3)$$

Similarly

$$\sin C = \sqrt{3}2 \frac{\sqrt{3}}{2} \dots (4)$$

Now by definition,

tanC=
$$sinCcosCtan\,C = rac{sinC}{cosC}$$

So by evaluating

$$\cos$$
C=12 \cos $C=\frac{1}{2}$ (5)

Now, by substituting the value of sinB, cosB,sin C and cosC from equation (2),(3),(4) and (5) respectively in sinB cosC + cosB sin C

$$\sin \text{B cosC} + \cos \text{B sin C= } 12 \times 12 + \sqrt{3}2 \times \sqrt{3}2 \, \frac{1}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$$

$$= 14 + 34 \frac{1}{4} + \frac{3}{4}$$

= 1

Hence,

sinB cosC + cosB sin C = 1

- 28.) State whether the following are true or false. Justify your answer.
 - (i) The value od tan A is always less than 1.
 - (ii) $\sec A = 125 \frac{12}{5}$ for some value of $\angle A \angle A$.
 - (iii) cos A is the abbreviation used for the cosecant of $\angle A \angle A$.
 - (iv) $\sin\Theta$ =43 $\sin\Theta=\frac{4}{3}$ for some angle $\Theta\Theta$.

Sol.

Value of tan A at 45° i.e... tan 45 = 1

As value os A increases to 90°

Tan A becomes infinite

So given statement is false.

(ii)
$$\sec A = 125 \frac{12}{5}$$
 for some value of angle if

M-I

$$sec A = 2.4$$

sec A > 1

So given statements is true.

M-II

For sec A = $125 \frac{12}{5}$ we get adjacent side = 13

Subtending 9i at B.

So, given statement is true.

(iii) Cos A is the abbreviation used for cosecant of angle A.

The given statement is false.

As such cos A is the abbreviation used for cos of angle A, not as cosecant of angle A.

(iv) Cot A is the product of cot A and A

Given statement is false

cot A is a co-tangent of angle A and co-tangent of angle A = adjacentsideOpositeside

adjacent side
Oposite side

(v) $\sin\Theta = 43\sin\Theta = \frac{4}{3}$ for some angle $\Theta\Theta$.

Given statement is false

Since value of $\sin\Theta\sin\Theta$ is less than(or) equal to one.

Here value of $\sin\Theta\sin\Theta$ exceeds one,

So given statement is false.

29.) If
$$\sin\Theta$$
= 1213 $\sin\Theta=\frac{12}{13}$ find $\sin^2\Theta-\cos^2\Theta$ 2 $\sin\Theta\cos\Theta$ × 1 $\tan^2\Theta\frac{\sin^2\Theta-\cos^2\Theta}{2\sin\Theta\cos\Theta}$ × $\frac{1}{\tan^2\Theta}$

Sol.

Given: $\sin\Theta$ = 1213 $\sin\Theta = \frac{12}{13}$

To Find: $\sin^2\Theta - \cos^2\Theta 2 \sin\Theta \cos\Theta \times 1 \tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta}$

As shown in figure

Here BC is the adjacent side,

By applying Pythagoras theorem,

$$AC^2=AB^2+BC^2$$

$$169 = 144 + BC^2$$

$$BC^2 = 169 - 144$$

$$BC^2 = 25$$

$$BC = 5$$

Now we know that,

$$\cos\Theta$$
= basesideadjacentto ∠ΘHypotenuse $\cos\Theta=\frac{base\ side\ adjacent\ to\ ∠Θ}{Hypotenuse}\cos\Theta$ = BCAC $\cos\Theta=\frac{BC}{AC}\cos\Theta$ = 513 $\cos\Theta=\frac{5}{13}$

We also know that,

$$\tan\Theta = \sin\Theta\cos\Theta \tan\Theta = \frac{\sin\Theta}{\cos\Theta}$$

Therefore, substituting the value of $\sin\Theta\sin\Theta$ and $\cos\Theta\cos\Theta$ from above equations We get,

$$\tan\Theta$$
= 125 $\tan\Theta = \frac{12}{5}$

Now substitute all the values of $\sin\Theta\sin\Theta$, $\cos\Theta\cos\Theta$ and $\tan\Theta\tan\Theta$ from above equations in $\sin^2\Theta-\cos^2\Theta2\sin\Theta\cos\Theta$ × $1\tan^2\Theta\frac{\sin^2\Theta-\cos^2\Theta}{2\sin\Theta\cos\Theta}$ × $\frac{1}{\tan^2\Theta}$

We get,

$$\sin^2\Theta - \cos^2\Theta 2\sin\Theta \cos\Theta \times 1\tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta} = (1213)^2 - (513)^2 2\times (1213)\times (513) \times 1(125)^2$$

$$\frac{\left(\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2}{2 \times \left(\frac{12}{13}\right) \times \left(\frac{5}{13}\right)} \times \frac{1}{\left(\frac{12}{5}\right)^2}$$

Therefore by further simplifying we get,

$$\sin^2\Theta - \cos^2\Theta 2 \sin\Theta \cos\Theta \times 1 \tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta} = 119169 \times 169120 \times 25144$$

 $\frac{119}{169} \times \frac{169}{120} \times \frac{25}{144}$

Therefore,

$$\sin^2\Theta - \cos^2\Theta 2\sin\Theta\cos\Theta \times 1\tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta} = 5953456 \frac{595}{3456}$$

Hence,

$$\sin^2\!\Theta - \cos^2\!\Theta 2 \sin\!\Theta \cos\!\Theta \times 1 \tan^2\!\Theta \, \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \, \times \, \frac{1}{\tan^2\Theta} \, = \, 5953456 \, \frac{595}{3456}$$

30.) If $\cos\Theta$ = 513 $\cos\Theta=\frac{5}{13}$, find the value of $\sin^2\Theta-\cos^2\Theta$ 2sin $\Theta\cos\Theta$ × 1tan $^2\Theta$ 0 $\frac{\sin^2\Theta-\cos^2\Theta}{2\sin\Theta\cos\Theta}$ × $\frac{1}{\tan^2\Theta}$

Sol.

Given: If
$$\cos\Theta = 513\cos\Theta = \frac{5}{13}$$

To find:

The value of expression $\sin^2\Theta - \cos^2\Theta 2 \sin\Theta \cos\Theta \times 1 \tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta}$

Now we know that

COS
$$\Theta$$
cos Θ = basesideadjacentto∠ΘHypotenuse $\frac{base\ side\ adjacent\ to\ ∠Θ}{Hypotenuse}\$ (2)

Now when we compare equation (1) and (2)

We get,

Base side adjacent to $\angle\Theta\angle\Theta$ = 5

Hypotenuse = 13

Therefore, Triangle representing $\angle\Theta\angle\Theta$ is as shown below

Perpendicular side AB is unknown and it can be found by using Pythagoras theorem

Therefore by applying Pythagoras theorem

We get,

$$AC^2 = AB^2 + BC^2$$

Therefore by substituting the values ogf known sides,

$$AB^2 = 13^2 - 5^2$$

$$AB^2 = 169 - 25$$

$$AB^2 = 144$$

$$AB = 12 (3)$$

Now we know from figure and equation,

$$\sin\Theta$$
=1213 $\sin\Theta$ = $\frac{12}{13}$ (4)

Now we know that,

tan
$$\Theta$$
= $\sin\Theta\cos\Theta$ $tan\Theta$ $=$ $\frac{\sin\Theta}{\cos\Theta}$

$$tan\Theta$$
= 125 $tan\Theta=rac{12}{5}$ (5)

Now w substitute all the values from equation (1), (4) and (5) in the expression below,

$$\sin^2\!\Theta - \cos^2\!\Theta 2 \sin\!\Theta \!\cos\!\Theta \times 1 \tan^2\!\Theta \, \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\,\cos\Theta} \, \times \, \frac{1}{\tan^2\Theta}$$

Therefore

We get,

$$\sin^2\Theta - \cos^2\Theta 2 \sin\Theta \cos\Theta \times 1 \tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta} = (1213)^2 - (513)^2 2 \times (1213) \times (513) \times 1(125)^2 = (1213)^2 + (1$$

$$\frac{\left(\frac{12}{13}\right)^2 - \left(\frac{5}{13}\right)^2}{2 \times \left(\frac{12}{13}\right) \times \left(\frac{5}{13}\right)} \times \frac{1}{\left(\frac{12}{5}\right)^2}$$

Therefore by further simplifying we get,

Therefore,

$$\sin^2\Theta - \cos^2\Theta 2\sin\Theta\cos\Theta \times 1\tan^2\Theta \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \times \frac{1}{\tan^2\Theta} = 5953456 \frac{595}{3456}$$

Hence,

$$\sin^2\!\Theta - \cos^2\!\Theta 2 \sin\!\Theta \cos\!\Theta \times 1 \tan^2\!\Theta \, \frac{\sin^2\Theta - \cos^2\Theta}{2\sin\Theta\cos\Theta} \, \times \, \frac{1}{\tan^2\Theta} \, = \, 5953456 \, \frac{595}{3456}$$

31.) If sec A = $178 \frac{17}{8}$, verify that $3-4\sin^2 A 4\cos^2 A - 3 = 3-\tan^2 A 1 - 3\tan^2 A$

$$\frac{3-4\sin^2 A}{4\cos^2 A-3} = \frac{3-\tan^2 A}{1-3\tan^2 A}$$

Sol.

Given: $\sec A = 178 \frac{17}{8}$

To verify: $3-4\sin^2 A 4\cos^2 A - 3 = 3-\tan^2 A 1 - 3\tan^2 A \frac{3-4\sin^2 A}{4\cos^2 A - 3} = \frac{3-\tan^2 A}{1-3\tan^2 A}$

Now we know that $\cos A = 1\sec A \cos A = \frac{1}{\sec A}$

Now, by substituting the value of sec A

We get,

$$\cos A$$
=817 $\cos A = \frac{8}{17}$

Now we also know that,

$$\sin^2 A + \cos^2 A = 1\sin^2 A + \cos^2 A = 1$$

Therefore

$$\sin^2 A = 1 - \cos^2 A \sin^2 A = 1 - \cos^2 A$$

$$= \left(817\right)^2 \left(\frac{8}{17}\right)^2$$

$$=225289\,\frac{225}{289}$$

Now by taking square root on both sides,

We get,

$$\sin$$
A=1517 $\sin A=rac{15}{17}$

We also know that , $an \mathsf{A} = \sin \mathsf{A} \cos \mathsf{A} an A = \frac{\sin A}{\cos A}$

Now by substituting the value of all the terms,

We get,

$$tanA=158 tan A=rac{15}{8}$$

Now from the expression of above equation which we want to prove:

L.H.S =
$$3-4\sin^2 A 4\cos^2 A - 3\frac{3-4\sin^2 A}{4\cos^2 A - 3}$$

Now by substituting the value of cos A ad sin A from equation (3) and (4)

We get,

L.H.S = 3-42252894-64289-3
$$\frac{3-4\frac{225}{289}}{4-\frac{64}{289}-3}$$

$$= 867 - 900256 - 867 \frac{867 - 900}{256 - 867}$$

$$= 33611 \frac{33}{611}$$

From expression

R.H.S =
$$frac3$$
- tan^2A1 - $3tan^2A$ $frac3$ - tan^2A1 - $3tan^2A$

Now by substituting the value of tan A from above equation

We get,

R.H.S=
$$3-(158)^2 1-3(158)^2 \frac{3-\left(\frac{15}{8}\right)^2}{1-3\left(\frac{15}{8}\right)^2}$$

$$= -3364 - 61164 \frac{\frac{-33}{64}}{\frac{-611}{64}}$$

$$= 33611 \frac{33}{611}$$

Therefore,

We can see that,

3–4
$$\sin^2$$
A4 \cos^2 A–3 = 3– \tan^2 A1–3 \tan^2 A $\frac{3-4\sin^2A}{4\cos^2A-3} = \frac{3-\tan^2A}{1-3\tan^2A}$

32.) If
$$\sin\Theta$$
= 34 $\sin\Theta=\frac{3}{4}$, prove that $\sqrt{\csc^2\Theta-\cot^2\Theta\sec^2-1}=\sqrt{7}$ 3 $\sqrt{\frac{\cos ec^2\Theta-\cot^2\Theta}{\sec^2-1}}=\frac{\sqrt{7}}{3}$

Sol.

Given:
$$\sin\Theta$$
= 34 $\sin\Theta=\frac{3}{4}$ (1)

To prove:

$$\sqrt{\text{cosec}^2\Theta-\text{cot}^2\Theta\text{sec}^2-1} = \sqrt{7}3\sqrt{\frac{cosec^2\Theta-\text{cot}^2\Theta}{\text{sec}^2-1}} = \frac{\sqrt{7}}{3}$$
 (2)

By definition,

$$\sin A = \text{Perpendicular side opposite to } \angle A \text{Hypotenuse} \frac{Perpendicular side opposite to } \angle A \text{Hypotenuse} \dots$$
 (3)

By comparing (1) and (3)

We get,

Perpendicular side = 3 and

Hypotenuse = 4

Side BC is unknown.

So we find BC by applying Pythagoras theorem to right angled $\Delta \mathsf{ABC}\Delta ABC$

Hence,

$$AC^2 = AB^2 + BC^2$$

Now we substitute the value of perpendicular side (AB) and hypotenuse (AC) and get the base side (BC)

Therefore,

$$4^2 = 3^2 + BC^2$$

$$BC^2 = 16 - 9$$

$$BC^2 = 7$$

BC =
$$\sqrt{7}\sqrt{7}$$

Hence, Base side BC = $\sqrt{7}\sqrt{7}$ (3)

Now $\cos A = BCAC \frac{BC}{AC}$

$$\sqrt{7}4\frac{\sqrt{7}}{4}$$
 (4)

Now , ${\sf COSECA} = 1{
m sin}A \, cosecA = rac{1}{{
m sin}\,A}$

Therefore, from fig and equation (1)

COSEC A = HypotenusePerpendicular $cosecA = rac{Hypotenuse}{Perpendicular}$

$$\mathsf{cosecA} = 43 \, cosecA = rac{4}{3} \, \, (5)$$

Now, similarly

$$\sec A = 4\sqrt{7} \sec A = \frac{4}{\sqrt{7}}$$
 (6)

Further we also know that

$$\operatorname{\mathsf{cotA}}=\operatorname{\mathsf{cosAsinA}}\operatorname{\mathsf{cot}} A = rac{\cos A}{\sin A}$$

Therefore by substituting th values from equation (1) and (4),

We get,

$$\cot A = \sqrt{7} \cot A = \frac{\sqrt{7}}{3} \dots$$
 (7)

Now by substituting the value of cosec A, sec A and cot A from the equations (5), (6), and (7) in the L.H.S of expression (2)

$$\sqrt{\csc^2\Theta - \cot^2\Theta \sec^2 - 1} \sqrt{\frac{\cos ec^2\Theta - \cot^2\Theta}{\sec^2 - 1}} = \Box \Box \Box \sqrt{\frac{(43)^2 - (\sqrt{7}3)^2 (4\sqrt{7})^2 - 1}{\left(\frac{4}{\sqrt{7}}\right)^2 - 1}} \sqrt{\frac{\left(\frac{4}{3}\right)^2 - \left(\frac{\sqrt{7}}{3}\right)^2}{\left(\frac{4}{\sqrt{7}}\right)^2 - 1}}$$

$$= _{169-79167}-1 \frac{\frac{16}{9}-\frac{7}{9}}{\frac{16}{7}-1}$$

$$=\sqrt{7}3\frac{\sqrt{7}}{3}$$

Hence it is proved that,

$$\sqrt{\mathrm{cosec^2\Theta-cot^2\Theta sec^2-1}}$$
 = $\sqrt{7}3$ $\sqrt{\frac{\mathrm{cosec^2\Theta-cot^2~\Theta}}{\mathrm{sec^2-1}}}$ = $\frac{\sqrt{7}}{3}$

33.) If SecA=178 $\sec A=\frac{17}{8}$, verify that 3–4 \sin^2 A4 \cos^2 A–3=3– \tan^2 A1–3 \tan^2 A

$$\frac{3-4\sin^2 A}{4\cos^2 A-3} = \frac{3-\tan^2 A}{1-3\tan^2 A}$$

Sol.

Given: SecA=178
$$\sec A = \frac{17}{8}$$
 (1)

To verify:

$$3-4\sin^2 A 4\cos^2 A - 3 = 3-\tan^2 A 1 - 3\tan^2 A \frac{3-4\sin^2 A}{4\cos^2 A - 3} = \frac{3-\tan^2 A}{1-3\tan^2 A} \dots (2)$$

Now we know that sec A = $1\cos A \frac{1}{\cos A}$

Therefore COSA=1secA $\cos A=rac{1}{secA}$

We get,

$$\cos A = 817 \cos A = \frac{8}{17} \dots (3)$$

Similarly we can also get,

$$\sin A=\sin A=1517\sin A=rac{15}{17}$$
 (4)

An also we know that $an \mathsf{A} = ext{sin} \mathsf{A} \cos \mathsf{A} an A = frac{\sin A}{\cos A}$

$$tanA = 158 tan A = \frac{15}{8} (5)$$

Now from the expression of equation (2)

L.H.S: Missing close brace Missing close brace

Now by substituting the value of cos A and sin A from equation (3) and (4)

We get,

L.H.S =
$$3-4(1517)^24(817)^2-3\frac{3-4(\frac{15}{17})^2}{4(\frac{8}{17})^2-3}$$

$$= 867-900289256-867289 \frac{867-900}{289} \frac{289}{256-867}$$

$$=33611 \frac{33}{611} \dots (6)$$

R.H.S =
$$3-\tan^2 A 1 - 3\tan^2 A \frac{3-\tan^2 A}{1-3\tan^2 A}$$

Now by substituting the value of tan A from equation (5)

We get,

R.H.S=3-(1518)²1-3(158)²
$$\frac{3-\left(\frac{15}{18}\right)^2}{1-3\left(\frac{15}{8}\right)^2}$$

$$-3364 - 61164 \frac{\frac{-33}{64}}{\frac{-611}{64}}$$

$$=33611 \frac{33}{611} \dots (7)$$

Now by comparing equation (6) and (7)

We get,

3-4
$$\sin^2$$
A4 \cos^2 A-3 = 3- \tan^2 A1-3 \tan^2 A $\frac{3-4\sin^2A}{4\cos^2A-3} = \frac{3-\tan^2A}{1-3\tan^2A}$

34.) If $\cot\Theta$ = 34 $\cot\Theta$ = $\frac{3}{4}$, prove that $\sec\Theta$ - $\csc\Theta$ = $\cot\Theta$ = $1\sqrt{7}$

$$\frac{\sec\Theta-\csc\Theta}{\sec\Theta+\csc\Theta} = \frac{1}{\sqrt{7}}$$

Sol.

Given: $\cot\Theta = 34 \cot\Theta = \frac{3}{4}$

Prove that: $\sec\Theta - \csc\Theta \sec\Theta + \csc\Theta = 1\sqrt{7} \frac{\sec\Theta - \csc\Theta}{\sec\Theta + \csc\Theta} = \frac{1}{\sqrt{7}}$

Now we know that

$$secΘ-cosecΘsecΘ+cosecΘ = 1\sqrt{7} \frac{sec Θ-cosecΘ}{sec Θ+cosecΘ} = \frac{1}{\sqrt{7}}$$

Here AC is the hypotenuse and we can find that by applying Pythagoras theorem

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 16 + 9$$

$$AC^2 = 25$$

$$AC = 5$$

Similarly

$$\sec\Theta$$
=ACBC $\sec\Theta=\frac{AC}{BC}$ $\sec\Theta$ =53 $\sec\Theta=\frac{5}{3}$ COSEC=ACAB $\cos ec=\frac{AC}{AB}$ COSEC=54 $\cos ec=\frac{5}{4}$

Now on substituting the values in equations we get,

$$secΘ-cosecΘsecΘ+cosecΘ = 1\sqrt{7} \frac{secΘ-cosecΘ}{secΘ+cosecΘ} = \frac{1}{\sqrt{7}}$$

Therefore,

$$\sec\Theta$$
-cosecΘ $\sec\Theta$ +cosecΘ $=$ 1 $\sqrt{7}$ $\frac{\sec\Theta$ -cosecΘ $}{\sec\Theta$ +cosecΘ $}=\frac{1}{\sqrt{7}}$

35.) If 3cos Θ –4sin Θ =2cos Θ +sin Θ 3 cos Θ – $4\sin\Theta$ = $2\cos\Theta$ + $\sin\Theta$,find tan Θ tan Θ

Sol.

Given: $3\cos\Theta - 4\sin\Theta = 2\cos\Theta + \sin\Theta \cos\Theta - 4\sin\Theta = 2\cos\Theta + \sin\Theta$

To find: $tan\Theta tan \Theta$

We can write this as:

$$3\cos\Theta-4\sin\Theta=2\cos\Theta+\sin\Theta$$
 $\cos\Theta-4\sin\Theta=2\cos\Theta+\sin\Theta$ $\cos\Theta=5\sin\Theta$ $\cos\Theta=5\sin\Theta$

Dividing both the sides by $\cos\Theta\cos\Theta$,

We get,

$$\cos\Theta\cos\Theta=5\sin\Theta\cos\Theta~\frac{\cos\Theta}{\cos\Theta}=\frac{5\sin\Theta}{\cos\Theta}~\text{1=5}\\ \tan\Theta1=5\tan\Theta~\text{tan}~\Theta=1$$

Hence,

$$tan\Theta = 1tan\Theta = 1$$

36.) If $\angle A \angle A$ and $\angle P \angle P$ are acute angles such that tan A = tan P, then show $\angle A = \angle P \angle A = \angle P$

Sol.

Given: A and P are acute angles tan A =tan P

Prove that: $\angle A = \angle P \angle A = \angle P$

Let us consider right angled triangle ACP

We know $tan\Theta$ = oppositesideadjacentside $tan\Theta$ = $\frac{oppositeside}{adjacentside}$

$$\tan A = PCAC \frac{PC}{AC}$$

$$tan P = ACPC \frac{AC}{PC}$$

∴∴ tan A =tan P

PCAC=ACPC
$$\frac{PC}{AC}=\frac{AC}{PC}$$

PC =AC [:::Angle opposite to equal sides are equal]

$$\angle$$
 $\angle A = \angle P$

Exercise 5.2: Trigonometric Ratios

Evaluate each of the following:

Q 1 .
$$\sin 45^{\circ}45^{\circ} \sin 30^{\circ}30^{\circ} + \cos 45^{\circ}45^{\circ} \cos 30^{\circ}30^{\circ}$$

Solution:

Sin
$$45^{\circ}45^{\circ}$$
 sin $30^{\circ}30^{\circ} + \cos 45^{\circ}45^{\circ} \cos 30^{\circ}30^{\circ}$ [1]

We know that by trigonometric ratios we have,

$$\sin 45^\circ = 1\sqrt{2}\sin 45^\circ = \frac{1}{\sqrt{2}}$$
 $\sin 30^\circ = 12\sin 30^\circ = \frac{1}{2}$

$$\cos 45^{\circ} = 1\sqrt{2}\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$
 $\cos 30^{\circ} = \sqrt{3}2\cos 30^{\circ} = \frac{\sqrt{3}}{2}$

Substituting the values in equation 1, we get

$$1\sqrt{2} \cdot 12 + 1\sqrt{2} \cdot \sqrt{3}2 \frac{1}{\sqrt{2}} \cdot \frac{1}{2} + \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}$$

$$= 1\sqrt{2} \cdot \sqrt{3}2\sqrt{2} \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2\sqrt{2}}$$

$$= \sqrt{3} + 12\sqrt{2} \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Q 2 . $\sin 60^{\circ}60^{\circ} \cos 30^{\circ}30^{\circ} + \cos 60^{\circ}60^{\circ} \sin 30^{\circ}30^{\circ}$

Solution:

$$\sin 60^{\circ}60^{\circ} \cos 30^{\circ}30^{\circ} + \cos 60^{\circ}60^{\circ} \sin 30^{\circ}30^{\circ}$$
 [1]

By trigonometric ratios we have,

$$\sin 60^\circ = \sqrt{3}2 \sin 60^\circ = \frac{\sqrt{3}}{2}$$
 $\sin 30^\circ = 12 \sin 30^\circ = \frac{1}{2}$

$$\cos 30^\circ = \sqrt{3}2 \cos 30^\circ = \frac{\sqrt{3}}{2}$$
 $\cos 60^\circ = 12 \cos 60^\circ = \frac{1}{2}$

Substituting the values in equation 1, we get

$$= \sqrt{3}2 \cdot \sqrt{3}2 + 12 \cdot 12 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

$$= 34 + 14 \frac{3}{4} + \frac{1}{4} = 44 \frac{4}{4} = 1$$

Q 3 . \cos 60° 60° \cos 45° 45° – \sin 60° 60° \sin 45° 45°

Solution:

$$\cos 60^{\circ}60^{\circ} \cos 45^{\circ}45^{\circ} - \sin 60^{\circ}60^{\circ} \sin 45^{\circ}45^{\circ}$$
 [1]

We know that by trigonometric ratios we have,

$$\cos 60^{\circ} = 12 \cos 60^{\circ} = \frac{1}{2}$$
 $\cos 45^{\circ} = 1\sqrt{2} \cos 45^{\circ} = \frac{1}{\sqrt{2}}$

$$\sin 60^{\circ} = \sqrt{3}2 \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 $\sin 45^{\circ} = 1\sqrt{2} \sin 45^{\circ} = \frac{1}{\sqrt{2}}$

Substituting the values in equation 1, we get

$$12 \cdot 1\sqrt{2} - \sqrt{3}2 \cdot 1\sqrt{2} \frac{1}{2} \cdot \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$$

$$= 1 - \sqrt{3}2\sqrt{2} \frac{1 - \sqrt{3}}{2\sqrt{2}}$$

Q.4: $\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ + \sin^2 90^\circ sin^2 30^\circ + sin^2 45^\circ + sin^2 60^\circ + sin^2 90^\circ$

Solution:

$$\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ + \sin^2 90^\circ \ sin^2 30^\circ + sin^2 45^\circ + sin^2 60^\circ + sin^2 90^\circ \$$

We know that by trigonometric ratios we have,

$$\sin 30^\circ = 12 \sin 30^\circ = \frac{1}{2}$$
 $\sin 45^\circ = 1\sqrt{2} \sin 45^\circ = \frac{1}{\sqrt{2}}$

$$\sin 60^\circ$$
 = $\sqrt{3}2 sin 60^\circ$ = $\frac{\sqrt{3}}{2}$ $\sin 90^\circ sin 90^\circ$ = 1

Substituting the values in equation 1, we get

$$= \left[12\right]^2 + \left[1\sqrt{2}\right]^2 + \left[\sqrt{3}2\right]^2 + 1\left[\frac{1}{2}\right]^2 + \left[\frac{1}{\sqrt{2}}\right]^2 + \left[\frac{\sqrt{3}}{2}\right]^2 + 1$$

=
$$14 + 12 + 34 + 1\frac{1}{4} + \frac{1}{2} + \frac{3}{4} + 1$$

$$= 52\frac{5}{2}$$

Q 5.
$$\cos^2 30^\circ + \cos^2 45^\circ + \cos^2 60^\circ + \cos^2 90^\circ$$
 $\cos^2 30^\circ + \cos^2 45^\circ + \cos^2 60^\circ + \cos^2 90^\circ$

Solution:

$$\cos^2 30^\circ + \cos^2 45^\circ + \cos^2 60^\circ + \cos^2 90^\circ$$
 [1]

We know that by trigonometric ratios we have,

$$\cos 30^\circ = \sqrt{3}2 \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 45^\circ = 1\sqrt{2}\cos 45^\circ = \frac{1}{\sqrt{2}}$$

$$\cos 60^\circ$$
= 12 $\cos 60^\circ=rac{1}{2}$

$$\cos 90^{\circ} \cos 90^{\circ} = 0$$

Substituting the values in equation 1, we get

$$\left[\sqrt{3}2\right]^2 + \left[1\sqrt{2}\right]^2 + \left[12\right]^2 + 0\left[\frac{\sqrt{3}}{2}\right]^2 + \left[\frac{1}{\sqrt{2}}\right]^2 + \left[\frac{1}{2}\right]^2 + 0$$

$$= 34 + 12 + 14 \frac{3}{4} + \frac{1}{2} + \frac{1}{4}$$

$$= 32\frac{3}{2}$$

Q 6 .
$$tan^230^\circ$$
+ tan^245° + tan^260° $tan^230^\circ+tan^245^\circ+tan^260^\circ$

Solution:

tan
$$^230^\circ$$
+tan $^245^\circ$ +tan $^260^\circ$ tan $^230^\circ$ +tan $^245^\circ$ +tan $^260^\circ$

We know that by trigonometric ratios we have,

tan30°=1
$$\sqrt{3}tan30^\circ=rac{1}{\sqrt{3}}$$

tan60°=
$$\sqrt{3}tan60^\circ=\sqrt{3}$$

$$tan45^{\circ}$$
=1 $tan45^{\circ}=1$

Substituting the values in equation 1, we get

$$\left[1\sqrt{3}\right]^2 + \left[\sqrt{3}\right]^2 + 1\left[\frac{1}{\sqrt{3}}\right]^2 + \left[\sqrt{3}\right]^2 + 1$$

$$= 13 + 3 + 1 \frac{1}{3} + 3 + 1$$

$$= 133 \frac{13}{3}$$

Q 7 . 2
$$\sin^2$$
30°-3 \cos^2 45°+ \tan^2 60°2 \sin^2 30° $-3\cos^2$ 45° $+\tan^2$ 60°

Solution:

$$2\sin^2 30^\circ - 3\cos^2 45^\circ + \tan^2 60^\circ 2\sin^2 30^\circ - 3\cos^2 45^\circ + \tan^2 60^\circ$$
 [1]

We know that by trigonometric ratios we have,

$$\sin 30^\circ = 12 \sin 30^\circ = \frac{1}{2}$$

$$\cos 45^\circ$$
 = $1\sqrt{2}\cos 45^\circ = \frac{1}{\sqrt{2}}$

$$tan60^{\circ} = \sqrt{3}tan60^{\circ} = \sqrt{3}$$

Substituting the values in equation 1, we get

$$=2{{\left({12} \right)}^{2}}-3{{\left({1\sqrt{2}} \right)}^{2}}+{{\left(\sqrt{3} \right)}^{2}}2{{\left({\frac{1}{2}} \right)}^{2}}-3{{\left({\frac{1}{\sqrt{2}}} \right)}^{2}}+{{\left(\sqrt{3} \right)}^{2}}$$

=
$$2(14)$$
 - $3(12)$ + $32(\frac{1}{4})$ - $3(\frac{1}{2})$ + 3

$$= 1 - 3 + 62 \frac{1 - 3 + 6}{2}$$

= 2

Q8:sin²30°cos²45°+4tan²30°+12sin²90°-2cos²90°+124cos²0°

$$sin^230^{\circ}cos^245^{\circ} + 4tan^230^{\circ} + rac{1}{2}sin^290^{\circ} - 2cos^290^{\circ} + rac{1}{24}cos^20^{\circ}$$

Solution:

$$\sin^2 30^\circ \cos^2 45^\circ + 4 \tan^2 30^\circ + {}_{12} \sin^2 90^\circ - 2 \cos^2 90^\circ + {}_{124} \cos^2 0^\circ \\ sin^2 30^\circ cos^2 45^\circ + 4 tan^2 30^\circ + {}_{2} sin^2 90^\circ - 2 cos^2 90^\circ + {}_{24} cos^2 0^\circ$$

We know that by trigonometric ratios we have,

$$\sin 30^{\circ} = 12 sin 30^{\circ} = \frac{1}{2} \cos 45^{\circ} = 1\sqrt{2} cos 45^{\circ} = \frac{1}{\sqrt{2}} \tan 30^{\circ} = 1\sqrt{3} tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\sin 90^{\circ} \sin 90^{\circ} = 1$$

$$\cos 90^{\circ} \cos 90^{\circ} = 0$$

$$\cos 0^{\circ} \cos 0^{\circ} = 1$$

Substituting the values in equation 1, we get

$$[12]^{2} \cdot [1\sqrt{2}]^{2} + 4[1\sqrt{3}]^{2} + 12[1]^{2} - 2[0]^{2} + 124[1]^{2}$$

$$[\frac{1}{2}]^{2} \cdot [\frac{1}{\sqrt{2}}]^{2} + 4[\frac{1}{\sqrt{3}}]^{2} + \frac{1}{2}[1]^{2} - 2[0]^{2} + \frac{1}{24}[1]^{2}$$

$$= 18 + 43 + 12 + 124 \frac{1}{8} + \frac{4}{3} + \frac{1}{2} + \frac{1}{24}$$

$$= 4824 \frac{48}{24} = 2$$

Q 9 . 4(sin⁴60°+cos⁴30°)-3(tan²60°-tan²45°)+5cos²45°
$$4\left(sin^460^\circ+cos^430^\circ\right)-3\left(tan^260^\circ-tan^245^\circ\right)+5cos^245^\circ$$

Solution:

$$4(\sin^4 60^\circ + \cos^4 30^\circ) - 3(\tan^2 60^\circ - \tan^2 45^\circ) + 5\cos^2 45^\circ \\ 4\left(\sin^4 60^\circ + \cos^4 30^\circ\right) - 3\left(\tan^2 60^\circ - \tan^2 45^\circ\right) + 5\cos^2 45^\circ \\ \text{[1]}$$

We know that by trigonometric ratios we have,

$$\sin 60^\circ = \sqrt{3}2 \sin 60^\circ = \frac{\sqrt{3}}{2}$$
 $\cos 45^\circ = 1\sqrt{2}\cos 45^\circ = \frac{1}{\sqrt{2}}$

tan
$$60^\circ = \sqrt{3}tan60^\circ = \sqrt{3}$$
 cos $30^\circ = \sqrt{3}2cos30^\circ = \frac{\sqrt{3}}{2}$

Substituting the values in equation 1, we get

$$4([\sqrt{3}2]^{4} + [\sqrt{3}2]^{4}) - 3(3)^{2} - 1^{2} + 5[1\sqrt{2}]^{2} 4\left(\left[\frac{\sqrt{3}}{2}\right]^{4} + \left[\frac{\sqrt{3}}{2}\right]^{4}\right) - 3(3)^{2} - 1^{2} + 5\left[\frac{1}{\sqrt{2}}\right]^{2}$$

$$= 4 \cdot 1816 - 6 + 524 \cdot \frac{18}{16} - 6 + \frac{5}{2}$$

$$= 14 - 6 + 52\frac{1}{4} - 6 + \frac{5}{2}$$

$$= 142 - 6\frac{14}{2} - 6 = 7 - 6 = 1$$

Q 10 . (cosec²45°sec²30°)(sin²30°+4cot²45°-sec²60°) $\left(cosec^245^\circ sec^230^\circ\right)\left(sin^230^\circ+4cot^245^\circ-sec^260^\circ\right)$

Solution:

$$(\csc^2 45^\circ \sec^2 30^\circ)(\sin^2 30^\circ + 4\cot^2 45^\circ - \sec^2 60^\circ) \ \left(\cos ec^2 45^\circ \sec^2 30^\circ \right) \left(\sin^2 30^\circ + 4\cot^2 45^\circ - \sec^2 60^\circ \right) \ [1]$$

We know that by trigonometric ratios we have,

$$\cos \cot 45^\circ = \sqrt{2} \csc 45^\circ = \sqrt{2}$$
 $\sec 30^\circ = 2\sqrt{3} \sec 30^\circ = \frac{2}{\sqrt{3}}$

$$\sin 30^\circ = 12 \sin 30^\circ = \frac{1}{2}$$
 $\cot 45^\circ \cot 45^\circ = 1$

 $sec60^{\circ}sec60^{\circ} = 2$

Substituting the values in equation 1, we get

$$([\sqrt{2}]^{2}, [2\sqrt{3}]^{2})([12]^{2} + 4(1)(2)^{2}) \left([\sqrt{2}]^{2}, [\frac{2}{\sqrt{3}}]^{2} \right) \left([\frac{1}{2}]^{2} + 4(1)(2)^{2} \right)$$

$$= 3 \cdot 43 \cdot 143 \cdot \frac{4}{3} \cdot \frac{1}{4}$$

$$= 23 \frac{2}{3}$$

Q11. $\csc^3 30^{\circ} \cos 60^{\circ} \tan^3 45^{\circ} \sin^2 90^{\circ} \sec^2 45^{\circ} \cot 30^{\circ} \cos^3 30^{\circ} \cos 60^{\circ} \tan^3 45^{\circ} \sin^2 90^{\circ} \sec^2 45^{\circ} \cot 30^{\circ}$

Solution:

=
$$\cos^3 30^{\circ} \cos 60^{\circ} \tan^3 45^{\circ} \sin^2 90^{\circ} \sec^2 45^{\circ} \cot 30^{\circ}$$

 $\cos^3 30^{\circ} \cos 60^{\circ} \tan^3 45^{\circ} \sin^2 90^{\circ} \sec^2 45^{\circ} \cot 30^{\circ}$

$$=2^{3}(12)(1^{3})(1^{2})(\sqrt{2}^{2})(\sqrt{3})2^{3}(\frac{1}{2})(1^{3})(1^{2})(\sqrt{2}^{2})(\sqrt{3})$$

$$(cos0^\circ + sin45^\circ + sin30^\circ)(sin90^\circ - cos45^\circ + cos60^\circ)$$

Solution:

$$= 8 \times (12) \times (1) \times (1) \times (2) \times (\sqrt{3}) \times (\frac{1}{2}) \times (1) \times (1) \times (2) \times (\sqrt{3})$$

 $= (2)^{3} \times (12) \times (1^{3}) \times (1^{2}) \times (\sqrt{2}^{2}) \times (\sqrt{3})(2)^{3} \times (\frac{1}{2}) \times (1^{3}) \times (1^{2}) \times (\sqrt{2}^{2}) \times (\sqrt{3})$

 $= 8\sqrt{38}\sqrt{3}$

Q12. cot²30°-2cos²60°-34sec²45°-4sec²30°

 $\cot^2 30^{\circ} - 2\cos^2 60^{\circ} - \frac{3}{4}sec^2 45^{\circ} - 4sec^2 30^{\circ}$

$$= \cot^2 30^{\circ} - 2\cos^2 60^{\circ} - 34 \sec^2 45^{\circ} - 4 \sec^2 30^{\circ}$$

$$\cot^2 30^{\circ} - 2\cos^2 60^{\circ} - \frac{3}{4} \sec^2 45^{\circ} - 4 \sec^2 30^{\circ}$$

$$= (\sqrt{3}^2) \times 2(12)^2 \times (34 \times \sqrt{2}^2) \times (4 \times (2\sqrt{3})^2) (\sqrt{3}^2) \times 2(\frac{1}{2})^2 \times (\frac{3}{4} \times \sqrt{2}^2) \times (4 \times (\frac{2}{\sqrt{3}})^2)$$

$$= 3 - 12 - 32 - 1633 - \frac{1}{2} - \frac{3}{2} - \frac{16}{3}$$

$$(\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ})(\sin 90^{\circ} - \cos 45^{\circ} + \cos 60^{\circ})(1 + 1\sqrt{2} + 1\sqrt{2})(1 - 1\sqrt{2} + 1\sqrt{2})$$

$$\begin{array}{l} (32+1\sqrt{2})(32-1\sqrt{2})((32)^2-(1\sqrt{2})^2)94-12\,74 \\ (cos0^\circ+sin45^\circ+sin30^\circ)(sin90^\circ-cos45^\circ+cos60^\circ) \\ (1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}) \\ (\frac{3}{2}+\frac{1}{\sqrt{2}})(\frac{3}{2}-\frac{1}{\sqrt{2}}) \\ ((\frac{3}{2})^2-(\frac{1}{\sqrt{2}})^2)\frac{9}{4}-\frac{1}{2}\frac{7}{4} \end{array}$$

Q14.
$$\sin 30^\circ - \sin 90^\circ + 2\cos 0^\circ \tan 30^\circ \tan 60^\circ \frac{sin 30^\circ - sin 90^\circ + 2cos 0^\circ}{tan 30^\circ tan 60^\circ}$$

Solution:

Given,

$$\frac{sin30^{\circ} - sin90^{\circ} + 2cos0^{\circ}}{tan30^{\circ}tan60^{\circ}}$$

$$\frac{\frac{1}{2} - 1 + 2}{\frac{1}{\sqrt{3}} \times \sqrt{3}}$$

sin30°-sin90°+2cos0°tan30°tan60° 12-1+21 $\sqrt{3}$ × $\sqrt{3}$ 32 $\frac{3}{2}$

Q15. 4
$$\cot^2$$
30°+1 \sin^2 60°- \cos^2 45° $\frac{4}{\cot^2$ 30°+ $\frac{1}{\sin^2$ 60°- \cos^2 45°

Solution:

$$4\cot^2 30^\circ + 1\sin^2 60^\circ - \cos^2 45^\circ = 4(\sqrt{3})^2 + 1(\sqrt{3})^2 - (1\sqrt{2})^2 = 43 + 43 - 12 = 16 - 36 = 136$$

$$egin{aligned} &rac{4}{cot^2 30^\circ} + rac{1}{sin^2 60^\circ} - cos^2 45^\circ \ &= rac{4}{(\sqrt{3})^2} + rac{1}{(rac{\sqrt{3}}{2})^2} - (rac{1}{\sqrt{2}})^2 \ &= rac{4}{3} + rac{4}{3} - rac{1}{2} \ &= rac{16-3}{6} \ &= rac{13}{6} \end{aligned}$$

Q16. 4(
$$\sin^4 30^\circ + \cos^2 60^\circ$$
)-3($\cos^2 45^\circ - \sin^2 90^\circ$)- $\sin^2 60^\circ$ 4($\sin^4 30^\circ + \cos^2 60^\circ$) - $3(\cos^2 45^\circ - \sin^2 90^\circ) - \sin^2 60^\circ$

Solution:

$$4(\sin^4 30^\circ + \cos^2 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ) - \sin^2 60^\circ = 4((12)^4 + (12)^2) - 3((1\sqrt{2})^2 - 1) - (12)^4 + (12)^2 +$$

$$\begin{array}{l} (\sqrt{3}2)^2 = 4(116+14) + 32 - 34 = 84 = 2 \\ 4(sin^4 30^\circ + cos^2 60^\circ) - 3(cos^2 45^\circ - sin^2 90^\circ) - sin^2 60^\circ \\ = 4((\frac{1}{2})^4 + (\frac{1}{2})^2) - 3((\frac{1}{\sqrt{2}})^2 - 1) - (\frac{\sqrt{3}}{2})^2 \\ = 4(\frac{1}{16} + \frac{1}{4}) + \frac{3}{2} - \frac{3}{4} \\ = \frac{8}{4} = 2 \end{array}$$

Q17. tan²60°+4cos²45°+3sec²30°+5cos²90°cosec30°+sec60°-cot²30°

$$\frac{tan^260^{\circ} + 4cos^245^{\circ} + 3sec^230^{\circ} + 5cos^290^{\circ}}{cosec30^{\circ} + sec60^{\circ} - cot^230^{\circ}}$$

Solution:

Given,

 $\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ + 5\cos^2 90^\circ \csc 30^\circ + \sec 60^\circ - \cot^2 30^\circ = (\sqrt{3})^2 + 4(\sqrt{2})^2 + 3(2\sqrt{3})^2 + 5(0)2 + 2(\sqrt{3})^2 + 3(\sqrt{3})^2 + 3(\sqrt{3}$

$$\begin{array}{c} \frac{tan^260^\circ + 4cos^2 45^\circ + 3sec^2 30^\circ + 5cos^2 90^\circ}{cosec30^\circ + sec60^\circ - cot^2 30^\circ} \\ = \frac{(\sqrt{3})^2 + 4(\frac{1}{\sqrt{2}})^2 + 3(\frac{2}{\sqrt{3}})^2 + 5(0)}{2 + 2 - (\sqrt{3})^2} \\ = 3 + 2 + 4 \\ (\sqrt{3})^2 = 3 + 2 + 4 = 9 = 9 \end{array}$$

Q18. $\sin 30^{\circ} \sin 45^{\circ} + \tan 45^{\circ} \sec 60^{\circ} - \sin 60^{\circ} \cot 45^{\circ} - \cos 30^{\circ} \sin 90^{\circ} \frac{\sin 30^{\circ}}{\sin 45^{\circ}} + \frac{\tan 45^{\circ}}{\sec 60^{\circ}} - \frac{\sin 60^{\circ}}{\cot 45^{\circ}} - \frac{\cos 30^{\circ}}{\sin 90^{\circ}}$

Solution:

 $\sin 30^{\circ} \sin 45^{\circ} + \tan 45^{\circ} \sec 60^{\circ} - \sin 60^{\circ} \cot 45^{\circ} - \cos 30^{\circ} \sin 90^{\circ} = {}_{12} \, {}_{1}\sqrt{2} \, + \, 12 - \sqrt{3}21 - \sqrt{3}21 = \sqrt{2}2 + 12 - \sqrt{3}2 - \sqrt{2}2 + 12 - \sqrt{2}2 + \sqrt{2}2 +$

$$\begin{split} \frac{\sin 30^{\circ}}{\sin 45^{\circ}} + \frac{\tan 45^{\circ}}{\sec 60^{\circ}} - \frac{\sin 60^{\circ}}{\cot 45^{\circ}} - \frac{\cos 30^{\circ}}{\sin 90^{\circ}} \\ &= \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} + \frac{1}{2} - \frac{\frac{\sqrt{3}}{2}}{1} - \frac{\frac{\sqrt{3}}{2}}{1} \\ &= \frac{\sqrt{2}}{2} + \frac{1}{2} - \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \\ \sqrt{3}2 = \sqrt{2} + 1 - 2\sqrt{3}2 = \frac{\sqrt{2} + 1 - 2\sqrt{3}}{2} \end{split}$$

Q19. tan45°cosec30°+sec60°cot45°+ssin90°2cos0°
$$\frac{tan45^{\circ}}{cosec30^{\circ}}+\frac{sec60^{\circ}}{cot45^{\circ}}+\frac{ssin90^{\circ}}{2cos0^{\circ}}$$

Solution:

Given,

 $\tan 45^{\circ} \csc 30^{\circ} + \sec 60^{\circ} \cot 45^{\circ} + \sin 90^{\circ} 2\cos 0^{\circ} = 12 + 21 - 5(1)2(1) = 52 - 52 = 0$

$$\frac{tan45^{\circ}}{cosec30^{\circ}} + \frac{sec60^{\circ}}{cot45^{\circ}} + \frac{ssin90^{\circ}}{2cos0^{\circ}}$$

$$= \frac{1}{2} + \frac{2}{1} - \frac{5(1)}{2(1)}$$

$$= \frac{5}{2} - \frac{5}{2}$$

$$= 0$$

Q20. 2sin3x=
$$\sqrt{3}2sin3x=\sqrt{3}$$

Solution:

Given,

$$2sin3x = \sqrt{3}$$
 $=> sin3x = \frac{\sqrt{3}}{2}$ $=> sin3x = sin60^{\circ}$ $=> 3x = 60^{\circ}$ $=> 3x = 50^{\circ}$ $=> 3x = 50^{\circ}$ $=> 3x = 50^{\circ}$ $=> 3x = 50^{\circ}$ $=> 3x = 50^{\circ}$

Q21) 2sinx2=1,x=?
$$2sin\frac{x}{2}=1,\;x=$$
?

Solution:

$$\sin$$
 x2 = 12 sin $\frac{x}{2} = \frac{1}{2} \sin$ x2 = \sin 30 $^{0} sin$ $\frac{x}{2} = sin$ 30 0 x2 = 30 0 $\frac{x}{2} = 30^{0}$

Q22)
$$\sqrt{3}$$
sinx= $\cos x\sqrt{3}sinx=\cos x$

Solution:

$$\sqrt{3}$$
tanx=1 $\sqrt{3}$ $tanx=1$ tanx= $1\sqrt{3}$ $tanx=\frac{1}{\sqrt{3}}$ \therefore tanx=tan45 0 . \therefore $tanx=tan45^{0}$

Q23) Tan x =
$$\sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$$

Solution:

$$\begin{aligned} &\mathsf{Tanx} = \mathsf{1}\sqrt{2}\,.\,\mathsf{1}\sqrt{2}\,\mathsf{+}\,\mathsf{12}\big[\because\!\sin\!45^0 \!=\! \mathsf{1}\sqrt{2}\cos\!45^0 \!=\! \mathsf{1}\sqrt{2}\sin\!30^0 \!=\! \mathsf{12}\big] \\ &Tanx = \frac{1}{\sqrt{2}}\,.\,\frac{1}{\sqrt{2}}\,\mathsf{+}\,\frac{1}{2} \quad \left[\because\!\sin\!45^0 = \frac{1}{\sqrt{2}}\cos\!45^0 = \frac{1}{\sqrt{2}}\sin\!30^0 = \frac{1}{2}\right]\mathsf{Tanx} \!=\! \mathsf{12}\,\mathsf{+}\,\mathsf{12} \\ &Tanx = \frac{1}{2}\,\mathsf{+}\,\frac{1}{2} \end{aligned}$$

Tan x = 1

Tan
$$x = 45^0$$

$$x = 45^{\circ}$$

Q24)
$$\sqrt{3}$$
Tan2x=cos 60^{0} +sin45 0 cos $45^{0}\sqrt{3}\ Tan2x=cos $60^{0}+sin45^{0}cos45^{0}$$

Solution:

$$\sqrt{3}$$
T an2x=12+1 $\sqrt{2}$. 1 $\sqrt{2}$ [::cos60⁰=12sin45⁰=cos45⁰=1 $\sqrt{2}$]
$$\sqrt{3}$$
 $Tan2x=\frac{1}{2}+\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}$ [:: $cos60^0=\frac{1}{2}$ $sin45^0=cos45^0=\frac{1}{\sqrt{2}}$]
$$\sqrt{3}$$
T an2x=1 $\sqrt{3}$ \$\Rightarrow\$tan2x=tan30⁰ $\sqrt{3}$ $Tan2x=\frac{1}{\sqrt{3}}$ \$\Rightarrow\$tan2x=tan30⁰

$$2x = 30^{0}$$

$$x = 15^{0}$$

Q25) $\cos 2x = \cos 60^{0} \cos 30^{0} + \sin 60^{0} \sin 30^{0}$ $\cos 2x = \cos 60^{0} \cos 30^{0} + \sin 60^{0} \sin 30^{0}$

Solution:

$$\cos 2x = 12. \sqrt{3}2 + \sqrt{3}2. 12 [\because \cos 60^0 = \sin 30^0 = 12 \sin 60^0 = \cos 30^0 = \sqrt{3}2]$$

$$\cos 2x = \frac{1}{2}. \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}. \frac{1}{2} \quad [\because \cos 60^0 = \sin 30^0 = \frac{1}{2} \sin 60^0 = \cos 30^0 = \frac{\sqrt{3}}{2}]$$

$$\cos 2x = 2. \sqrt{3}4 \cos 2x = 2. \frac{\sqrt{3}}{4} \cos 2x = \sqrt{3}2 \cos 2x = \frac{\sqrt{3}}{2} \cos 2x = \cos 30^0 \cos 2x = \cos 30^0$$

$$2x = 30^0 2x = 30^0 x = 15^0 x = 15^0$$

Q26)
$$If \ \theta=30^0, \ verify$$

$$If \theta=30^0, \ verify(i) Tan 2\theta=2 Tan \theta 1-tan^2 \theta \ (i) Tan 2\theta=\frac{2 Tan \theta}{1-tan^2 \theta}$$

Solution:

Tan2θ=2Tanθ1-tan²θ
$$\dots$$
 (i) $Tan2\theta=rac{2Tan\theta}{1-tan^2\theta}\dots$ (i)

Substitute θ =30 $^{0}\theta$ = 30 0 in equation (i)

LHS = Tan
$$60^0 = \sqrt{3}\sqrt{3}$$

RHS = 2Tan30⁰1+(Tan30⁰)²=2-
$$1\sqrt{2}$$
1- $(1\sqrt{2})^2$ = $\sqrt{3}\frac{2Tan30^0}{1+(Tan30^0)^2}=\frac{2-\frac{1}{\sqrt{2}}}{1-(\frac{1}{\sqrt{2}})^2}=\sqrt{3}$

Therefore, LHS = RHS

(ii)
$$extstyle extstyle extstyle$$

Substitute θ =30 $^{0}\theta$ = 30 0

$$\sin 60^0$$
 = $_{2 an 30^0 (1- an 30^0)^2} sin 60^0 = rac{2tan 30^0}{(1-tan 30^0)^2}$

=>
$$\sqrt{3}2$$
=2.1 $\sqrt{2}$ 1+(1 $\sqrt{2}$)² $\frac{\sqrt{3}}{2}$ = $\frac{2.\frac{1}{\sqrt{2}}}{1+(\frac{1}{\sqrt{2}})^2}$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{2}{\sqrt{3}} \cdot \frac{3}{4}$$

$$\sqrt{3}2 = 2\sqrt{3} \cdot 34 \Rightarrow \sqrt{3}2 = \sqrt{3}2 \Rightarrow \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

Therefore, LHS = RHS.

(iii) COS
$$2 heta$$
= 1-tan $^2 heta$ 1+tan $^2 heta$ $cos 2 heta=rac{1-tan^2 heta}{1+tan^2 heta}$

Substitute θ =30 $^{0}\theta=30^{0}$

LHS =
$$\csc\theta \csc\theta \cot\theta$$
 RHS = $1-\tan^2\theta 1+\tan^2\theta \frac{1-\tan^2\theta}{1+\tan^2\theta}$

=
$$\cos 2(30^{\circ})$$
 = $1-\tan^2 30^{\circ} 1 + \tan^2 30^{\circ} = \frac{1-tan^2 30^{\circ}}{1+tan^2 30^{\circ}}$

Cos 60⁰ = 12
$$\frac{1}{2}$$
 = 1-(1 $\sqrt{2}$)²1+(1 $\sqrt{2}$)² = 22 12 = 12 = $\frac{1-(\frac{1}{\sqrt{2}})^2}{1+(\frac{1}{\sqrt{2}})^2} = \frac{\frac{2}{2}}{\frac{1}{2}} = \frac{1}{2}$

Therefore, LHS = RHS

(iv) $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$

Solution:

LHS = $\cos 3\theta \cos 3\theta$

Substitute heta=30 $^0 heta$ = 30 0

 $=\cos 3 (30^0) = \cos 90^0$

= 0

RHS = $4\cos^3\theta - 3\cos\theta + 4\cos^3\theta - 3\cos\theta$

 $=4\cos^3 \! 30^0 \! - \! 3\cos \! 30^0 \! 4\cos^3 \! 30^0 - 3\cos \! 30^0$

=
$$4(\sqrt{3}2)^3 - 3.\sqrt{3}24(\frac{\sqrt{3}}{2})^3 - 3.\frac{\sqrt{3}}{2}$$

$$=3.\sqrt{3}2-3.\sqrt{3}23.\frac{\sqrt{3}}{2}-3.\frac{\sqrt{3}}{2}$$

= 0

Therefore, LHS = RHS.

Q27) If $A = B = 60^{\circ}$. Verify (i) Cos $(A - B) = \cos A \cos B + \sin A \sin B$

Solution:

Cos(A - B) = Cos A Cos B + Sin A Sin B.....(i)

Substitute A and B in (i)

$$=>\cos(60^0-60^0)=\cos 60^0\cos 60^0+\sin 60^0\sin 60^0$$

=>cos 0⁰ =
$$(12)^2 + (\sqrt{3}2)^2 (\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2$$

$$=>1 = 14 + 34 \frac{1}{4} + \frac{3}{4}$$

Therefore, LHS = RHS

(ii) Substitute A and B in (i)

 $=>\sin (60^0-60^0)=\sin 60^0\cos 60^0-\cos 60^0\sin 60^0$

 $=> \sin 0^0 = 0$

=>0 = 0

Therefore, LHS = RHS

(iii) extstyle extstyl

 $A = 60^{0}$, $B = 60^{0}$ we get,

 $\mathsf{Tan}(60^0-60^0)$ = $\mathsf{Tan}60^0$ - $\mathsf{Tan}60^0$ 1+ $\mathsf{Tan}60^0$ $\mathsf{Tan}60^0$ $\mathsf{Tan}(60^0-60^0)=rac{Tan}{1+Tan}60^0$ $\frac{Tan}{1+Tan}60^0$ $\frac{Tan}{1+Tan}60^0$

Tan $0^0 = 0$

0 = 0

Therefore, LHS = RHS

Q28) If $A = 30^{\circ}$, $B = 60^{\circ}$ verify:

(i) Sin (A + B) = Sin A Cos B + Cos A Sin B

Solution:

 $A = 30^{\circ}$, $B = 60^{\circ}$ we get

 $Sin (30^0 + 60^0) = Sin 30^0 Cos 60^0 + Cos 30^0 Sin 60^0$

Sin (90⁰) = 12.12+ $\sqrt{3}$ 2. $\sqrt{3}$ 2 $\frac{1}{2}$. $\frac{1}{2}$ + $\frac{\sqrt{3}}{2}$. $\frac{\sqrt{3}}{2}$

Sin (90^0) = 1 => 1 = 1

Therefore, LHS = RHS

(ii) Cos(A + B) = Cos A Cos B - Sin A Sin B

$$A = 30^{0}$$
, $B = 60^{0}$ we get

$$\cos (30^0 + 60^0) = \cos 30^0 \cos 60^0 - \sin 30^0 \sin 60^0$$

Cos (90°) = 12.
$$\sqrt{3}$$
2 – $\sqrt{3}$ 2.12 $\frac{1}{2}$. $\frac{\sqrt{3}}{2}$ – $\frac{\sqrt{3}}{2}$. $\frac{1}{2}$

$$0 = 0$$

Therefore, LHS = RHS

Q29. If sin(A+B) = 1 and cos(A-B) = 1, 0°<A+B≤90° 0° < $A+B \le 90^{\circ}$, A≥B find A and B.

Sol:

Given,

sin(A+B) = 1 this can be written as $sin(A+B) = sin(90^{\circ})sin(90^{\circ})$

cos(A-B) = 1 this can be written as $cos(A-B) = cos(0^{\circ})cos(0^{\circ})$

$$=> A + B = 90^{\circ}90^{\circ}$$

$$A - B = 0^{\circ}0^{\circ}$$

$$2A = 90^{\circ}90^{\circ}$$

A =
$$90^{\circ}2 \frac{90^{\circ}}{2}$$

$$A = 45^{\circ}45^{\circ}$$

Substitute A value in A – B = $0^{\circ}0^{\circ}$

$$45^{\circ}45^{\circ} - B = 0^{\circ}0^{\circ}$$

$$B = 45^{\circ}45^{\circ}$$

Hence, the value of A = $45^{\circ}45^{\circ}$ and B = $45^{\circ}45^{\circ}$

Q30. If $tan(A-B) = 1\sqrt{3} \frac{1}{\sqrt{3}}$ and $tan(A+B) = \sqrt{3}\sqrt{3}$, $0^{\circ} < A + B \le 90^{\circ}$, A>B find A and B

Given,

$$tan(A-B) = 1\sqrt{3} \frac{1}{\sqrt{3}}$$

$$A - B = tan^{-1}(1\sqrt{3})tan^{-1}(\frac{1}{\sqrt{3}})$$

$$tan(A+B) = \sqrt{3}\sqrt{3}$$

A + B =
$$\tan^{-1}\sqrt{3}tan^{-1}\sqrt{3}$$

Solve equations 1 and 2

$$A + B = 30^{\circ}30^{\circ}$$

$$\mathsf{A}-\mathsf{B}=60^\circ 60^\circ$$

$$2A = 90^{\circ}90^{\circ}$$

$$A = 90^{\circ}2 \frac{90^{\circ}}{2}$$

$$A = 45^{\circ}45^{\circ}$$

Substitute the value of A in equation 1

$$45^{\circ}45^{\circ} + B = 30^{\circ}30^{\circ}$$

$$B = 30^{\circ}30^{\circ} - 45^{\circ}45^{\circ}$$

$$\mathsf{B} = 15^{\circ}15^{\circ}$$

The value of A = $45^{\circ}45^{\circ}$ and B = $15^{\circ}15^{\circ}$

Q31. If $sin(A-B) = 12\frac{1}{2}$ and $cos(A+B) = 12\frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ} 0^{\circ} < A + B \le 90^{\circ}$, A<B find A and B.

Given,

$$sin(A-B) = 12\frac{1}{2}$$

$$A - B = \sin^{-1}(12)sin^{-1}(\frac{1}{2})$$

$$A - B = 30^{\circ}30^{\circ}$$
 ——

$$cos(A+B) = 12\frac{1}{2}$$

A + B =
$$\cos^{-1}(12)\cos^{-1}(\frac{1}{2})$$

Solve equations 1 and 2

$$A + B = 60^{\circ}60^{\circ}$$

$$A - B = 30^{\circ}30^{\circ}$$

$$2A = 90^{\circ}90^{\circ}$$

$$A = 90^{\circ}2 \frac{90^{\circ}}{2}$$

$$A = 45^{\circ}45^{\circ}$$

Substitute the value of A in equation 2

$$45^{\circ}45^{\circ} + B = 60^{\circ}60^{\circ}$$

$$B = 60^{\circ}60^{\circ} - 45^{\circ}45^{\circ}$$

$$B = 15^{\circ}15^{\circ}$$

The value of A = $45^{\circ}45^{\circ}$ and B = $15^{\circ}15^{\circ}$

Q32. In a $\Delta\Delta$ ABC right angled triangle at B, $\angle A = \angle C \angle A = \angle C$. Find the values of:

1. sinAcosC + cosAsinC

since, it is given as $\angle A = \angle C \angle A = \angle C$

the value of A and C is $45^{\circ}45^{\circ}$, the value of angle B is $90^{\circ}90^{\circ}$

because the sum of angles of triangle is $180^{\circ}180^{\circ}$

$$=> \sin(45^{\circ}45^{\circ})\cos(45^{\circ}45^{\circ}) + \cos(45^{\circ}45^{\circ})\sin(45^{\circ}45^{\circ})$$

$$=> (1\sqrt{2}\times1\sqrt{2})(\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}})+(1\sqrt{2}\times1\sqrt{2})(\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}})$$

$$\Rightarrow$$
 12 $\frac{1}{2}$ + 12 $\frac{1}{2}$

=> 1

The value of sinAcosC + cosAsinC is 1

2. sinAsinB + cosAcosB

Solution:

since, it is given as $\angle A = \angle C \angle A = \angle C$

the value of A and C is $45^{\circ}45^{\circ}$, the value of angle B is $90^{\circ}90^{\circ}$

because the sum of angles of triangle is $180^{\circ}180^{\circ}$

$$=> \sin(45^{\circ}45^{\circ})\sin(90^{\circ}90^{\circ}) + \cos(45^{\circ}45^{\circ})\sin(90^{\circ}90^{\circ})$$

$$\Rightarrow 1\sqrt{2} \frac{1}{\sqrt{2}}(1) + 1\sqrt{2} \frac{1}{\sqrt{2}}(0)$$

$$=> 1\sqrt{2} \frac{1}{\sqrt{2}} + 0$$

$$=> 1\sqrt{2} \frac{1}{\sqrt{2}}$$

The value of sinAsinB + cosAcosB is $1\sqrt{2} \frac{1}{\sqrt{2}}$

Q33. Find the acute angle A and B, if $sin(A+2B) = \sqrt{3}2 \frac{\sqrt{3}}{2}$ and cos(A+4B) = 0, A>B.

Given,

$$\sin(A+2B) = \sqrt{3}2 \frac{\sqrt{3}}{2}$$

A + 2B =
$$\sin^{-1} \sqrt{3} 2 \sin^{-1} \frac{\sqrt{3}}{2}$$

$$Cos(A+4B) = 0$$

$$A + 4B = \sin^{-1}(90)sin^{-1}(90)$$

$$A + 4B = 90^{\circ}90^{\circ}$$
 —— 2

Solve equations 1 and 2

$$A + 2B = 60^{\circ}60^{\circ}$$

$$A + 4B = 90^{\circ}90^{\circ}$$

$$-2B = -30^{\circ}30^{\circ}$$

$$2B = 30^{\circ}30^{\circ}$$

$$B = 30^{\circ}2 \frac{30^{\circ}}{2}$$

$$B = 15^{\circ}15^{\circ}$$

Substitute B value in eq 2

$$A + 4B = 90^{\circ}90^{\circ}$$

$$A + 4(15^{\circ}15^{\circ}) = 90^{\circ}90^{\circ}$$

$$A + 60^{\circ}60^{\circ} = 90^{\circ}90^{\circ}$$

$$A = 90^{\circ}90^{\circ} - 60^{\circ}60^{\circ}$$

$$A = 30^{\circ}30^{\circ}$$

The value of A = $30^{\circ}30^{\circ}$ and B = $15^{\circ}15^{\circ}$

Q 34. In $\triangle PQR\triangle PQR$, right angled at Q, PQ = 3 cm and PR = 6 cm. Determine $\angle\angle$ P and $\angle\angle$ R.

Solution:

Given,

In $\triangle PQR\triangle PQR$, right angled at Q, PQ = 3 cm and PR = 6 cm

By Pythagoras theorem,

$$\begin{array}{l} {\sf PR^2=PQ^2+QR^2=>6^2=3^2+QR^2=>QR^2=36-9=>QR=\sqrt{27}=>QR=3\sqrt{3}}\\ PR^2=PQ^2+QR^2\\ =>6^2=3^2+QR^2\\ =>QR^2=36-9\\ =>QR=\sqrt{27}\\ =>QR=3\sqrt{3}\\ \\ \sin {\sf R=~36=12=sin30^\circ}\frac{3}{6}=\frac{1}{2}=sin30^\circ \end{array}$$

$$\angle R=30^{\circ} \angle R=30^{\circ}$$

As we know, Sum of angles in a triangle = 180

$$\angle P + \angle Q + \angle R = 180^{\circ} = > \angle P + 90^{\circ} + 30^{\circ} = 180^{\circ} = > \angle P = 180^{\circ} - 120^{\circ} = > \angle P = 60^{\circ}$$

 $\angle P + \angle Q + \angle R = 180^{\circ}$
 $= > \angle P + 90^{\circ} + 30^{\circ} = 180^{\circ}$
 $= > \angle P = 180^{\circ} - 120^{\circ}$
 $= > \angle P = 60^{\circ}$

Therefore, $\angle R=30^{\circ} \angle R=30^{\circ}$

And,
$$\angle P = 60^{\circ} \angle P = 60^{\circ}$$

Q35. If sin(A - B) = sin A cos B - cos A sin B and cos (A - B) = cos A cos B + sin A sin B, find the values of sin 15 and cos 15.

Solution:

Given,

sin(A - B) = sin A cos B - cos A sin B

And, $\cos (A - B) = \cos A \cos B + \sin A \sin B$

We need to find, sin 15 and cos 15.

Let A = 45 and B = 30

 $\sin 15 = \sin (45-30) = \sin 45 \cos 30 - \cos 45 \sin 30$

$$= (\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}) - (\frac{1}{\sqrt{2}} \times \frac{1}{2})$$
$$= (1\sqrt{2} \times \sqrt{3}2) - (1\sqrt{2} \times 12) = \sqrt{3} - 12\sqrt{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

 $\cos 15 = \cos (45-30) = \cos 45 \cos 30 - \sin 45 \sin 30$

$$= \left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \times \frac{1}{2}\right)$$
$$= \left(1\sqrt{2} \times \sqrt{3}2\right) + \left(1\sqrt{2} \times 12\right) = \sqrt{3} + 12\sqrt{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Q36. In a right triangle ABC, right angled at C, if \angle B=60° \angle B = 60° and AB=15 units. Find the remaining angles and sides.

 $sin60^{\circ}=x15\sqrt{3}2=x15$ $x=15\sqrt{3}2$ units $cos60^{\circ}=x15$ 12=x15 x=152 x=7.5 units

$$sin60^\circ=rac{x}{15}$$

$$\frac{\sqrt{3}}{2} = \frac{x}{15}$$

$$x=rac{15\sqrt{3}}{2}units \ cos 60^\circ=rac{x}{15}$$

$$cos60^{\circ} = \frac{x}{15}$$

$$\frac{1}{2} = \frac{x}{15}$$

$$x=rac{15}{2}$$

$$x = 7.5units$$

Q37. In $\Delta\Delta$ ABC is a right triangle such that \angle C=90 $^{\circ}\angle C=90^{\circ}$, \angle A=45 $^{\circ}\angle A=45^{\circ}$ and BC = 7 units. Find the remaining angles and sides.

Solution:

Here, $\angle\mathsf{C} extsf{=}90^{\circ}\angle\mathit{C}=90^{\circ}$ and $\angle\mathsf{A} extsf{=}45^{\circ}\angle\mathit{A}=45^{\circ}$

We know that,

$$\angle A+\angle B+\angle C\angle A+\angle B+\angle C=180^{\circ}180^{\circ}$$

$$=>45^{\circ}45^{\circ}+90^{\circ}90^{\circ}+\angle C\angle C=180^{\circ}180^{\circ}$$

$$\Rightarrow$$
 135°135° + $\angle C \angle C = 180°180°$

The value of the remaining angle C is $45^{\circ}45^{\circ}$

Now, we need to find the sides x and y

here,

$$cos(45) = BCAB \frac{BC}{AB}$$

$$1\sqrt{2} \frac{1}{\sqrt{2}} = 7y \frac{7}{y}$$

$$y = 7\sqrt{2}7\sqrt{2}$$
 units

$$\sin(45) = ACAB \frac{AC}{AB}$$

$$1\sqrt{2} \frac{1}{\sqrt{2}} = xy \frac{x}{y}$$

$$1\sqrt{2} \frac{1}{\sqrt{2}} = x7\sqrt{2} \frac{x}{7\sqrt{2}}$$

$$x = 7\sqrt{2}\sqrt{2} \frac{7\sqrt{2}}{\sqrt{2}}$$

x = 7 units

the value of x = 7 units and y = $7\sqrt{2}7\sqrt{2}$ units

Q 38 . In a rectangle ABCD , AB = 20 cm , $\angle\angle$ BAC = $60^{\circ}60^{\circ}$, calculate side BC and diagonals AC and BD .

Let AC = x cm and CB = y cm

Since , $\cos \theta cos \theta$ = basehypotenuse $\frac{base}{hypotenuse}$

Therefore , $\cos 60^{\circ}$ = $_{20x}cos 60^{\circ}=\frac{20}{x}$

$$\Rightarrow$$
 12 = 20x $\Rightarrow \frac{1}{2} = \frac{20}{x}$

[since,cos60°=12
$$cos60$$
° = $\frac{1}{2}$]

Similarly BD = 40 cm

Now,

Since , extstyle extst

Therefore , ${
m sin}60^\circ$ = BCAC $sin60^\circ=rac{BC}{AC}$

$$\Rightarrow \sqrt{3}2 = y40 \Rightarrow \frac{\sqrt{3}}{2} = \frac{y}{40} \Rightarrow y = 40\sqrt{3}2 \Rightarrow y = \frac{40\sqrt{3}}{2}$$

$$\Rightarrow$$
v= $20\sqrt{3}$ \Rightarrow $y=20\sqrt{3}$ cm .

Q39:If A & B are acute angles such that tanA=1/2 tanB=1/3 and tan(A+B)= tanA+tanB1-tanAtanB $\frac{tanA+tanB}{1-tanA\ tanB}$, find A+B.

Solution:

$$\mathsf{Tan}(\mathsf{A}+\mathsf{B}) = {}_{12}+{}_{13}\mathsf{1}-{}_{12.13} Tan(A+B) = \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}} = {}_{3+26\,56} = \frac{\frac{3+2}{6}}{\frac{5}{6}} = {}_{56\,56} = \frac{\frac{5}{6}}{\frac{5}{6}}$$

$$\mathsf{Tan}(\mathsf{A}+\mathsf{B}) = {}_{56}\times {}_{65} Tan(A+B) = \frac{5}{6}\times \frac{6}{5} \; (\mathsf{A}+\mathsf{B}) = \mathsf{Tan}^{-1}(\mathsf{1})(A+B) = Tan^{-1}(\mathsf{1})$$

$$(\mathsf{A}+\mathsf{B}) = {}_{45}^{0}$$

Q 40: Prove that : (
$$\sqrt{3}$$
–1)(3–cot30°)=tan 3 60–2sin 60 ° ($\sqrt{3}-1$)(3 – $cot30$ °) = $tan^360-2sin60$ °

Ans:

L.H.S =>
$$(\sqrt{3}+1)(3-\cot 30^{\circ})(\sqrt{3}+1)(3-\cot 30^{\circ})$$

$$1)(3-cot 30^\circ)$$

$$-\cot 30^\circ)$$

$$\pi 30^{\circ})$$

= $(\sqrt{3}+1)(3-\sqrt{3})$::cot30°= $(\sqrt{3}+1)(3-\sqrt{3})$:: cot30° = $(\sqrt{3}+1)(3-\sqrt{3})$

 $= (\sqrt{3} + 1)(\sqrt{3} - 1)\sqrt{3}(\sqrt{3} + 1)(\sqrt{3} - 1)\sqrt{3}$

 $=((\sqrt{3})^2-(1)^2)\sqrt{3}((\sqrt{3})^2-(1)^2)\sqrt{3}$

 $=2\sqrt{32\sqrt{3}}$

R.H.S => $\tan^3 60 - 2\sin 60^{\circ} tan^3 60 - 2\sin 60^{\circ}$

$$= (\sqrt{3})^3 - 2 \times \sqrt{3}2 (\sqrt{3})^3 - 2 \times \frac{\sqrt{3}}{2}$$

$$=3\sqrt{3}-\sqrt{3}3\sqrt{3}-\sqrt{3}$$
$$=2\sqrt{3}2\sqrt{3}$$

$$L.H.S = R.H.S$$

Hence proved.

Exercise 5.3: Trigonometric Ratios

Q.1) Evaluate the following : (i) $\sin 20 \cos 70 \, rac{sin 20}{cos 70}$

Sol (i) : Given that, $\sin 20\cos 70 \frac{\sin 20}{\cos 70}$

Since $\sin (90 - \Theta\Theta) = \cos\Theta\Theta$

$$\Rightarrow \Rightarrow \sin 20\cos 70 \frac{sin 20}{cos 70} = \sin(90-70)\cos 70 \frac{sin(90-70)}{cos 70}$$

$$\Rightarrow \Rightarrow \sin 20\cos 70 \frac{sin20}{cos70} = \cos 70\cos 70 \frac{cos70}{cos70}$$

$$\Rightarrow \Rightarrow$$
 sin20cos70 $\frac{sin20}{cos70}$ =1

Therefore $\sin 20\cos 70 \frac{\sin 20}{\cos 70} = 1$

(ii) cos19sin71 $\frac{cos19}{sin71}$

Soln.(ii): Given that, cos19sin71 $\frac{cos19}{sin71}$

$$\Rightarrow \Rightarrow \cos 19 \sin 71 \frac{\cos 19}{\sin 71} = \cos(90-71) \sin 71 \frac{\cos(90-71)}{\sin 71}$$

$$\Rightarrow\Rightarrow\cos$$
19sin71 $\frac{cos19}{sin71}$ = sin71sin71 $\frac{sin71}{sin71}$

$$\Rightarrow \Rightarrow \cos 19 \sin 71 \frac{\cos 19}{\sin 71} = 1$$

Since
$$cos(90-\Theta\Theta) = sin \Theta\Theta$$

Therefore cos19sin71
$$\frac{cos19}{sin71}$$
 = 1

(iii)
$$\sin 21 \cos 69 \, rac{sin21}{cos69}$$

Soln.(iii): Given that,
$$\sin 21 \cos 69 \frac{\sin 21}{\cos 69}$$

Since
$$(90-\Theta\Theta) = \cos\Theta\Theta$$

$$\Rightarrow \Rightarrow \sin 21 \cos 69 \, \frac{\sin 21}{\cos 69} \, = \, \sin (90 - 69) \cos 69 \, \frac{\sin (90 - 69)}{\cos 69}$$

$$\Rightarrow \Rightarrow \sin 21\cos 69 \frac{\sin 21}{\cos 69} = \cos 69\cos 69 \frac{\cos 69}{\cos 69}$$

$$\Rightarrow\Rightarrow\sin21\cos69\frac{sin21}{cos69}$$
 =1

(iv) tan10cot80
$$rac{tan10}{cot80}$$

Soln.(iv): We are given that, $tan10cot80 \frac{tan10}{cot80}$

Since
$$tan(90-\Theta\Theta) = cot\Theta\Theta$$

$$\Rightarrow \Rightarrow \tan 10 \cot 80 \frac{tan10}{cot80} = \tan(90-80) \cot 80 \frac{tan(90-80)}{cot80}$$

$$\Rightarrow \Rightarrow tan10cot80 \frac{tan10}{cot80} =$$

$$\cot 80 \cot 80 \frac{cot 80}{cot 80}$$

$$\Rightarrow \Rightarrow \tan 10 \cot 80 \frac{tan10}{cot80} = 1$$

Therefore $tan10cot80 \frac{tan10}{cot80} = 1$

(v) sec11cosec79 $\frac{sec11}{cosec79}$

Soln.(v):

Given that, sec11cosec79 $\frac{sec11}{cosec79}$

Since $sec(90-\Theta\Theta)=cosec\Theta\Theta$

$$\Rightarrow\Rightarrow$$
 sec11cosec79 $\frac{sec11}{cosec79}$ = sec(90-79)cosec79 $\frac{sec(90-79)}{cosec79}$

$$\Rightarrow\Rightarrow$$
 sec11cosec79 $\frac{sec11}{cosec79}$ = cosec79cosec79 $\frac{cosec79}{cosec79}$

$$\Rightarrow \Rightarrow$$
 sec11cosec79 $\frac{sec11}{cosec79}$ = 1

Therefore $sec11cosec79 \frac{sec11}{cosec79} = 1$

Q.2: EVALUATE THE FOLLOWING:

(i)
$$\left(\sin 49^{\circ}\cos 41^{\circ}\right)^{2}\left(\frac{\sin 49^{\circ}}{\cos 41^{\circ}}\right)^{2}+\left(\cos 41^{\circ}\sin 49^{\circ}\right)^{2}\left(\frac{\cos 41^{\circ}}{\sin 49^{\circ}}\right)^{2}$$

Soln.(i):

We have to find:
$$\left(\sin 49^{\circ}\cos 41^{\circ}\right)^{2}\left(\frac{\sin 49^{\circ}}{\cos 41^{\circ}}\right)^{2}+\left(\cos 41^{\circ}\sin 49^{\circ}\right)^{2}\left(\frac{\cos 41^{\circ}}{\sin 49^{\circ}}\right)^{2}$$

Since
$$\sec 70^{\circ} \csc 20^{\circ} \frac{\sec 70^{\circ}}{\csc 20^{\circ}} + \sin 59^{\circ} \cos 31^{\circ} \frac{\sin 59^{\circ}}{\cos 31^{\circ}} \sin (90^{\circ}90^{\circ} - \Theta\Theta) = \cos \Theta\Theta$$
 and $\cos (90^{\circ}10^{\circ} + \cos \Theta\Theta) = \cos \Theta\Theta$

$$90^{\circ} - \Theta\Theta$$
) = $\sin\Theta\Theta$

So

$$\left(\sin(90^{\circ} - 41^{\circ}) \cos 41^{\circ} \right)^{2} \left(\frac{\sin(90^{\circ} - 41^{\circ})}{\cos 41^{\circ}} \right)^{2} + \left(\cos(90^{\circ} - 49^{\circ}) \sin 49^{\circ} \right)^{2} \left(\frac{\cos(90^{\circ} - 49^{\circ})}{\sin 49^{\circ}} \right)^{2} = \\ \left(\cos 41^{\circ} \cos 41^{\circ} \right)^{2} \left(\frac{\cos 41^{\circ}}{\cos 41^{\circ}} \right)^{2} + \left(\sin 49^{\circ} \sin 49^{\circ} \right)^{2} \left(\frac{\sin 49^{\circ}}{\sin 49^{\circ}} \right)^{2}$$

$$= 1+1 = 2$$

So value of
$$\left(\sin 49^{\circ}\cos 41^{\circ}\right)^{2}\left(\frac{\sin 49^{\circ}}{\cos 41^{\circ}}\right)^{2}+\left(\cos 41^{\circ}\sin 49^{\circ}\right)^{2}\left(\frac{\cos 41^{\circ}}{\sin 49^{\circ}}\right)^{2}$$
 is 2

(ii) $\cos 48^{\circ} \cos 48^{\circ} - \sin 42^{\circ} \sin 42^{\circ}$

Soln.(ii)

We have to find: $\cos 48^{\circ} \cos 48^{\circ} - \sin 42^{\circ} \sin 42^{\circ}$

Since
$$cos(90^{\circ}-\Theta90^{\circ}-\Theta) = sin\Theta\Theta$$
.So

$$\cos 48^{\circ} cos 48^{\circ} - \sin 42^{\circ} sin 42^{\circ} = \cos (90^{\circ} - 42^{\circ}) - \sin 42^{\circ} cos (90^{\circ} - 42^{\circ}) - sin 42^{\circ} cos (90^{$$

=
$$\sin 42^{\circ} sin 42^{\circ} - \sin 42^{\circ} sin 42^{\circ} = 0$$

So value of $\cos 48^{\circ} \cos 48^{\circ} - \sin 42^{\circ} \sin 42^{\circ}$ is 0

(iii) cot40°tan50°
$$-$$
 12 (cos35°sin55°) $\frac{cot40^\circ}{tan50^\circ} - \frac{1}{2} \left(\frac{cos35^\circ}{sin55^\circ} \right)$

Soln.(iii)

We have to find:

$$\cot 40^{\circ} \tan 50^{\circ} - 12 \left(\cos 35^{\circ} \sin 55^{\circ}\right) \frac{\cot 40^{\circ}}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos 35^{\circ}}{\sin 55^{\circ}}\right)$$

Since
$$\cot(90^{\circ}-\Theta90^{\circ}-\Theta) = \tan\Theta\Theta$$
 and $\cos(90^{\circ}-\Theta90^{\circ}-\Theta) = \sin\Theta\Theta$

$$\begin{array}{l} \cot 40^{\circ} \tan 50^{\circ} - 12 \left(\cos 35^{\circ} \sin 55^{\circ}\right) \frac{\cot 40^{\circ}}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos 35^{\circ}}{\sin 55^{\circ}}\right) = \cot (90^{\circ} - 50^{\circ}) \tan 50^{\circ} - 12 \left(\cos (90^{\circ} - 55^{\circ}) \sin 55^{\circ}\right) \\ \frac{\cot (90^{\circ} - 50^{\circ})}{\tan 50^{\circ}} - \frac{1}{2} \left(\frac{\cos (90^{\circ} - 55^{\circ})}{\sin 55^{\circ}}\right) \end{array}$$

=
$$tan50$$
° $tan50$ ° - 12 $\left(sin55$ ° $sin55$ ° $\right) \frac{tan50$ ° - $\frac{1}{2} \left(\frac{sin55}{sin55}\right)$

$$= 1 - 121 - \frac{1}{2} = 12\frac{1}{2}$$

So value of cot40°tan50° – 12 $\left(\cos35^{\circ}\sin55^{\circ}\right)\frac{cot40^{\circ}}{tan50^{\circ}} - \frac{1}{2}\left(\frac{cos35^{\circ}}{sin55^{\circ}}\right)$ is 12 $\frac{1}{2}$

(iv)(sin27°cos63°)
2
 $\left(\frac{sin27^\circ}{cos63^\circ}\right)^2$ $-$ (cos63°sin27°) 2 $\left(\frac{cos63^\circ}{sin27^\circ}\right)^2$

Soln(iv)

We have to find:
$$\left(\sin 27^{\circ}\cos 63^{\circ}\right)^{2}\left(\frac{sin27^{\circ}}{cos63^{\circ}}\right)^{2}-\left(\cos 63^{\circ}\sin 27^{\circ}\right)^{2}\left(\frac{cos63^{\circ}}{sin27^{\circ}}\right)^{2}$$

Since $\sin (90^\circ - \Theta 90^\circ - \Theta) = \cos\Theta\Theta$ and $\cos (90^\circ - \Theta 90^\circ - \Theta) = \sin\Theta\Theta$

$$\left(\sin 27^{\circ} \cos 63^{\circ}\right)^{2} \left(\frac{\sin 27^{\circ}}{\cos 63^{\circ}}\right)^{2} - \left(\cos 63^{\circ} \sin 27^{\circ}\right)^{2} \left(\frac{\cos 63^{\circ}}{\sin 27^{\circ}}\right)^{2} = \left(\sin (90^{\circ} - 63^{\circ}) \cos 63^{\circ}\right)^{2} \left(\frac{\sin (90^{\circ} - 63^{\circ})}{\cos 63^{\circ}}\right)^{2} - \left(\cos (90^{\circ} - 27^{\circ}) \sin 27^{\circ}\right)^{2} \left(\frac{\cos (90^{\circ} - 27^{\circ})}{\sin 27^{\circ}}\right)^{2}$$

$$= \left(\cos 63^{\circ} \cos 63^{\circ}\right)^{2} \left(\frac{\cos 63^{\circ}}{\cos 63^{\circ}}\right)^{2} - \left(\sin 27^{\circ} \sin 27^{\circ}\right)^{2} \left(\frac{\sin 27^{\circ}}{\sin 27^{\circ}}\right)^{2} = 1-1 = 0$$

So value of
$$\left(\sin 27^{\circ}\cos 63^{\circ}\right)^{2}\left(\frac{\sin 27^{\circ}}{\cos 63^{\circ}}\right)^{2}-\left(\cos 63^{\circ}\sin 27^{\circ}\right)^{2}\left(\frac{\cos 63^{\circ}}{\sin 27^{\circ}}\right)^{2}$$
 is 0

(v) tan35°cot55° + cot78°tan12°
$$-1 rac{tan35^\circ}{cot55^\circ} + rac{cot78^\circ}{tan12^\circ} - 1$$

Soln.(v)

We have to find:

tan35°cot55°+cot78°tan12°
$$-1\frac{tan35^\circ}{cot55^\circ}+\frac{cot78^\circ}{tan12^\circ}-1$$

Since $\tan (90^{\circ} - \Theta 90^{\circ} - \Theta) = \cot\Theta\Theta$ and $\cot (90^{\circ} - \Theta 90^{\circ} - \Theta) = \tan\Theta\Theta = 1$

So value of tan35°cot55°+cot78°tan12° is $1 rac{tan35^\circ}{cot55^\circ} + rac{cot78^\circ}{tan12^\circ} is 1$

(vi) sec70°cosec20°+sin59°cos31°
$$\frac{sec70^\circ}{cosec20^\circ}+\frac{sin59^\circ}{cos31^\circ}$$

Soln.(vi)

We have to find: $\sec 70^\circ \csc 20^\circ + \sin 59^\circ \cos 31^\circ \frac{\sec 70^\circ}{\csc 20^\circ} + \frac{\sin 59^\circ}{\cos 31^\circ}$

Since $\sec 70^\circ \csc 20^\circ + \sin 59^\circ \cos 31^\circ \frac{sec 70^\circ}{cosec 20^\circ} + \frac{sin 59^\circ}{cos 31^\circ}$ and $\sec (90^\circ - \Theta 90^\circ - \Theta) = \csc \Theta \Theta$

So

$$\sec 70^{\circ} \csc 20^{\circ} + \sin 59^{\circ} \cos 31^{\circ} \frac{sec 70^{\circ}}{cosec 20^{\circ}} + \frac{sin 59^{\circ}}{cos 31^{\circ}} = \left(\sec (90^{\circ} - 20^{\circ}) \csc 20^{\circ}\right)^{2} \left(\frac{sec (90^{\circ} - 20^{\circ})}{cosec 20^{\circ}}\right)^{2} - \left(\sin (90^{\circ} - 31^{\circ}) \cos 31^{\circ}\right)^{2} \left(\frac{sin (90^{\circ} - 31^{\circ})}{cos 31^{\circ}}\right)^{2}$$

=
$$\cos 20^{\circ} \csc 20^{\circ} + \cos 31^{\circ} \cos 31^{\circ} \frac{\cos 20^{\circ}}{\cos 20^{\circ}} + \frac{\cos 31^{\circ}}{\cos 31^{\circ}} = 1+1=2$$

So value of sec70°cosec20°+sin59°cos31° $\frac{sec70^\circ}{cosec20^\circ}+\frac{sin59^\circ}{cosec20^\circ}$ is 2

(vii) $cosec31^{\circ} - sec59^{\circ} cosec31^{\circ} - sec59^{\circ}$.

Soln(vii)

We have to find: $cosec31^{\circ}-sec59^{\circ}cosec31^{\circ}-sec59^{\circ}$

Since $cosec(90^{\circ}-\Theta)cosec(90^{\circ}-\Theta)=sec\Theta\Theta$.So

= cosec31°-sec59° $cosec31^\circ-sec59^\circ$

= $\csc(90^\circ-59^\circ)$ - $\sec59\csc(90^\circ-59^\circ)$ - $\sec59^\circ$ - \sec

So value of COSeC 31° – $\sec 59^{\circ} cosec 31^{\circ} - sec 59^{\circ}$ is 0

(viii)(
$$\sin72^\circ + \cos18^\circ$$
)($\sin72^\circ + \cos18^\circ$) ($\sin72^\circ - \cos18^\circ$)($\sin72^\circ - \cos18^\circ$)

Soln.(viii)

We have to find: $(\sin 72^\circ + \cos 18^\circ)(\sin 72^\circ + \cos 18^\circ)$ $(\sin 72^\circ - \cos 18^\circ)$ $(\sin 72^\circ - \cos 18^\circ)$

Since $\sin(90^{\circ}-\Theta)sin(90^{\circ}-\Theta)=\cos\Theta\Theta$, So

 $(\sin 72^{\circ} + \cos 18^{\circ})(\sin 72^{\circ} + \cos 18^{\circ}) (\sin 72^{\circ} - \cos 18^{\circ})(\sin 72^{\circ} - \cos 18^{\circ}) = (\sin 72^{\circ})^{2} (\sin 72^{\circ})^{2} - (\cos 18^{\circ})^{2}(\cos 18^{\circ})^{2}$

 $= \left[\sin(90^{\circ}-18^{\circ})\right]^{2} - \left(\cos18^{\circ}\right)^{2} \left[\sin\left(90^{\circ}-18^{\circ}\right)\right]^{2} - \left(\cos18^{\circ}\right)^{2}$

 $=(\cos 18^{\circ})^{2}(\cos 18^{\circ})^{2}-(\cos 18^{\circ})^{2}(\cos 18^{\circ})^{2}$

 $-\cos^2 18^{\circ} - \cos^2 18^{\circ} \cos^2 18^{\circ} - \cos^2 18^{\circ} = 0$

So value of (sin72°+cos18°) $(sin72^\circ+cos18^\circ)$ (sin72°-cos18°) $(sin72^\circ-cos18^\circ)$ is 0.

(ix)sin35°sin55°sin35°sin55°-cos35°cos55°cos35°cos55°

Soln(ix)

We find:

 $\sin 35^{\circ} \sin 55^{\circ} \sin 35^{\circ} \sin 55^{\circ} - \cos 35^{\circ} \cos 55^{\circ} \cos 35^{\circ} \cos 55^{\circ}$

Since $\sin(90^\circ - \Theta)sin(90^\circ - \Theta) = \cos\Theta\Theta$ and $\cos(90^\circ - \Theta)cos(90^\circ - \Theta) = \sin\Theta\Theta$

 $sin35^{\circ}sin55^{\circ}sin55^{\circ}-cos35^{\circ}cos55^{\circ}cos55^{\circ}=sin(90^{\circ}-55^{\circ})sin55^{\circ}\\sin(90^{\circ}-55^{\circ})sin55^{\circ}-cos(90^{\circ}-55^{\circ})cos55^{\circ}cos(90^{\circ}-55^{\circ})cos55^{\circ}=1-1=0$

So value of $\sin 35^{\circ} \sin 55^{\circ} \sin 35^{\circ} \sin 55^{\circ} - \cos 35^{\circ} \cos 55^{\circ} \cos 35^{\circ} \cos 55^{\circ}$ is 0

(x) $tan48^{\circ}tan23^{\circ}tan42^{\circ}tan67^{\circ}tan48^{\circ}tan23^{\circ}tan42^{\circ}tan67^{\circ}$

Soln.(x)

We have to find $tan48^{\circ}tan23^{\circ}tan42^{\circ}tan67^{\circ}tan48^{\circ}tan23^{\circ}tan42^{\circ}tan67^{\circ}$

Since $tan(90^{\circ}-\Theta)tan(90^{\circ}-\Theta)=cot\Theta\Theta$. So

tan48°tan23°tan42°tan48°tan23°tan42°tan67° =

tan(90°-42°)tan(90°-67°)tan42°tan67°

 $tan\left(90^\circ-42^\circ
ight)tan\left(90^\circ-67^\circ
ight)tan42^\circ tan67^\circ$

 $=\cot 42^{\circ}\cot 67^{\circ}\tan 42^{\circ}\tan 67^{\circ}\cot 42^{\circ}\cot 67^{\circ}\tan 42^{\circ}\tan 67^{\circ}$

= $(tan67^{\circ}cot67^{\circ})(tan42^{\circ}cot42^{\circ})(tan67^{\circ}cot67^{\circ})(tan42^{\circ}cot42^{\circ})$ =1×1 =1

So value of tan48°tan23°tan42°tan48°tan23°tan42°tan67° is 1

(xi)sec50°sin40°+cos40°cosec50°sec50°sin40°+cos40°cosec50°

Soln.(xi)

We have to find $\sec 50^\circ \sin 40^\circ + \cos 40^\circ \csc 50^\circ sec 50^\circ sin 40^\circ + \cos 40^\circ cosec 50^\circ$

Since $\cos(90^\circ - \Theta)\cos(90^\circ - \Theta) = \sin\Theta\Theta$, $\sec(90^\circ - \Theta)\sec(90^\circ - \Theta) = \csc\Theta\Theta$ and $\sin\Theta\Theta$. $\csc\Theta\Theta=1$. So

 $\sec 50^\circ \sin 40^\circ + \cos 40^\circ \csc 50^\circ sin 40^\circ + \cos 40^\circ cosec 50^\circ = \\ \sec (90^\circ - 40^\circ) \sin 40^\circ sec (90^\circ - 40^\circ) sin 40^\circ + \cos (90^\circ - 50^\circ) cosec 50^\circ \\ \cos (90^\circ - 50^\circ) cosec 50^\circ = 1 + 1 = 2$

So value of sec50°sin40°+cos40°cosec50°sec50°sin<math>40°+cos40°cosec50° is 2.

Q.3) Express $\cos 75^{\circ}75^{\circ} + \cot 75^{\circ}75^{\circ}$ in terms of angle between 0^{0} and 30^{0} .

Soln. 3:

Given that: $\cos 75^{\circ}75^{\circ} + \cot 75^{\circ}75^{\circ}$

$$=\cos 75^{\circ}75^{\circ}+\cot 75^{\circ}75^{\circ}$$

=
$$\cos(90^{\circ}-15^{\circ})+\cot(90^{\circ}-15^{\circ})\cos(90^{\circ}-15^{\circ})+\cot(90^{\circ}-15^{\circ})$$

$$=\sin 15^{\circ}15^{\circ} + \tan 15^{\circ}15^{\circ}$$

Hence the correct answer is $\sin 15^{\circ}15^{\circ}$ + $\tan 15^{\circ}15^{\circ}$

Q.4) If $sin3A = cos(A - 26^{\circ})$, where 3A is an acute angle, find the value of A.

Soln.4:

We are given 3A is an acute angle

We have: sin3A=cos(A-26°26°)

$$\Rightarrow \Rightarrow \sin 3A = \sin(90^{\circ}90^{\circ} - (A-26^{\circ}26^{\circ}))$$

$$\Rightarrow \Rightarrow \sin 3A = \sin(116^{\circ}116^{\circ}-A)$$

$$\Rightarrow \Rightarrow$$
 4A=116°116°

Hence the correct answer is 29°29°

Q.5)If A, B, C are the interior angles of a triangle ABC, prove that,

(i)
$$an(c+A2)=\cot B2 tan\left(rac{C+A}{2}
ight)=cotrac{B}{2}$$

(ii) Sin(B+C2)=COS A2
$$sin\left(rac{B+C}{2}
ight)=cosrac{A}{2}$$

Soln.5:

(i)We have to prove:
$$an($$
 C+A2 $)=\cot$ B2 $tan\left(rac{C+A}{2}
ight)=cotrac{B}{2}$

Since we know that in triangle ABC

$$\Rightarrow\Rightarrow$$
 C+A2=90°-B2 $\frac{C+A}{2}=90^{\circ}-\frac{B}{2}$

$$\Rightarrow\Rightarrow$$
tan C+A2 =tan(90° B2) $tanrac{C+A}{2}=tan\left(90^{\circ}rac{B}{2}
ight)$

$$\Rightarrow \Rightarrow an($$
C+A2 $)=\cot$ B2 $tan\left(rac{C+A}{2}
ight)=cotrac{B}{2}$

Hence proved

(ii)We have to prove : Sin(B+C2)=COSA2
$$sin\left(rac{B+C}{2}
ight)=cosrac{A}{2}$$

Since we know that in triangle ABC

$$\Rightarrow\Rightarrow$$
B+C=180°180°-A

$$\Rightarrow\Rightarrow$$
 B+C2= 90° – A2 $rac{B+C}{2}=90^{\circ}-rac{A}{2}$

$$\Rightarrow\Rightarrow$$
sin B+C2=sin(90°A2) $sinrac{B+C}{2}=sin\left(90^\circrac{A}{2}
ight)$

$$\sin($$
B+C2 $)$ = \cos A2 $\sin\left(rac{B+C}{2}
ight)=\cosrac{A}{2}$

Hence proved

Q.6)Prove that:

(i)
$$\tan 20^{\circ}20^{\circ} \tan 35^{\circ}35^{\circ} \tan 45^{\circ}45^{\circ} \tan 55^{\circ}55^{\circ} \tan 70^{\circ}70^{\circ} = 1$$

(ii)
$$\sin 48^{\circ}48^{\circ}.\sec 48^{\circ}48^{\circ}+\cos 48^{\circ}48^{\circ}.\csc 42^{\circ}42^{\circ}=2$$

$$rac{sin70^{\circ}}{cos20^{\circ}}+rac{cosec20^{\circ}}{sec70^{\circ}}-2cos70^{\circ}$$
 . $cosec20^{\circ}=0$

(iv) cos80°sin10°+cos59°.cosec31°=2
$$\frac{cos80^\circ}{sin10^\circ}+cos59^\circ$$
. $cosec31^\circ=2$

Soln.6:

(i)Therefore

 $tan20^{\circ}20^{\circ}tan35^{\circ}35^{\circ}tan45^{\circ}45^{\circ}tan55^{\circ}55^{\circ}tan70^{\circ}70^{\circ}$

=tan(90°-70°)
$$tan$$
(90°-70°) tan(90°-55°) tan (90°-55°) tan45°45° tan55° 55° tan70°70°

 $=\cot 70^{\circ}70^{\circ}\cot 55^{\circ}55^{\circ}\tan 45^{\circ}45^{\circ}\tan 55^{\circ}55^{\circ}\tan 70^{\circ}70^{\circ}$

=
$$(tan70^{\circ}cot70^{\circ})(tan55^{\circ}cot55^{\circ})tan45^{\circ}(tan70^{\circ}cot70^{\circ})(tan55^{\circ}cot55^{\circ})tan45^{\circ}$$

=1x1x1 =1

Hence proved

(ii) We will simplify the left hand side

$$\sin 48^{\circ}48^{\circ}.\sec 48^{\circ}48^{\circ}+\cos 48^{\circ}48^{\circ}.\csc 42^{\circ}42^{\circ}=\sin 48^{\circ}48^{\circ}.\sec (90^{\circ}-48^{\circ})$$

 $\sec (90^{\circ}-48^{\circ})\cos 48^{\circ}48^{\circ}.\csc (90^{\circ}-48^{\circ})\cos ec (90^{\circ}-48^{\circ})$

$$=\sin 48^{\circ}48^{\circ}.\cos 48^{\circ}48^{\circ}+\cos 48^{\circ}48^{\circ}.\sin 48^{\circ}48^{\circ}=1+1=2$$

Hence proved

(iii) We have, sin70°cos20° + cosec20°sec70° -2cos70°.cosec20°=0

$$rac{sin70^{\circ}}{cos20^{\circ}}+rac{cosec20^{\circ}}{sec70^{\circ}}-2cos70^{\circ}$$
. $cosec20^{\circ}=0$

So we will calculate left hand side

$$rac{sin70^{\circ}}{cos20^{\circ}}+rac{cosec20^{\circ}}{sec70^{\circ}}-2cos70^{\circ}.cosec20^{\circ}=0$$
=

 $\sin 70^{\circ}\cos 20^{\circ} + \cos 70^{\circ}\sin 20^{\circ} - 2\cos 70^{\circ}.\cos (90^{\circ} - 70^{\circ})$

$$rac{sin70^\circ}{cos20^\circ} + rac{cos70^\circ}{sin20^\circ} - 2cos70^\circ$$
 . $cosec(90^\circ - 70^\circ)$

$$= \sin(90^{\circ}-20^{\circ})\cos 20^{\circ} \frac{\sin(90^{\circ}-20^{\circ})}{\cos 20^{\circ}} + \cos(90^{\circ}-20^{\circ})\sin 20^{\circ} \frac{\cos(90^{\circ}-20^{\circ})}{\sin 20^{\circ}} - 2\cos 70^{\circ}.\cos (90^{\circ}-70^{\circ})$$

$$2\cos 70^{\circ}.\cos ec(90^{\circ}-70^{\circ})$$

$$= \cos 20^{\circ}\cos 20^{\circ} + \sin 20^{\circ}\sin 20^{\circ} - 2 \times 1 \frac{\cos 20^{\circ}}{\cos 20^{\circ}} + \frac{\sin 20^{\circ}}{\sin 20^{\circ}} - 2 \times 1 = 1 + 1 - 2 = 2 - 2 = 0$$

Hence proved

(iv)We have cos80°sin10°+cos59°.cosec31°=2
$$rac{cos80^\circ}{sin10^\circ}+cos59^\circ.cosec31^\circ=2$$

We will simplify the left hand side

$$\begin{aligned} &\cos 80^{\circ} \sin 10^{\circ} + \cos 59^{\circ}. \cos ec 31^{\circ} \frac{\cos 80^{\circ}}{\sin 10^{\circ}} + \cos 59^{\circ}. \cos ec 31^{\circ} = \\ &\cos (90^{\circ} - 10^{\circ}) \sin 10^{\circ} + \cos 59^{\circ}. \csc (90^{\circ} - 59^{\circ}) \frac{\cos (90^{\circ} - 10^{\circ})}{\sin 10^{\circ}} + \cos 59^{\circ}. \csc (90^{\circ} - 59^{\circ}) \\ &= \sin 10^{\circ} \sin 10^{\circ} + \cos 59^{\circ}. \sec 59^{\circ}. \sec 59^{\circ}. \sec 59^{\circ}. \sec 59^{\circ} = 1 + 1 = 2 \end{aligned}$$

Hence proved.

Question 7

If A,B,C are the interior of triangle ABC, show that

(i)
$$\sin(B+C2)$$
= $\cos A2\sin(\frac{B+C}{2})=\cos\frac{A}{2}$

Solution

B + C =
$$180^{0}$$
 - A2 $\frac{A}{2}$

LHS=RHS

(ii)cos(90
0
–A2)= \sin A2 \cos (90 0 $-\frac{A}{2}$) $=\sin\frac{A}{2}$

LHS=RHS

Question 8

If 2O+45 0 and 30 – Θ $2\Theta+45^{0}$ and 30 – Θ are acute angles , find the degree measure of

$$\Theta\Theta$$
 satisfying sin(20+45⁰)=cos(30⁰+Θ)sin(20 + 45⁰) = cos(30⁰ + Θ)

Solution

Here $20+45^0=\sin(60^0+\Theta)\sin(60^0+\Theta)$

We know that ,($(90^0-\Theta)(90^0-\Theta)=\cos(\Theta)\cos(\Theta)$

=
$$\sin(2\Theta + 45^0) = \sin(90^0 - (30^0 - \Theta))\sin(2\Theta + 45^0) = \sin(90^0 - (30^0 - \Theta))$$

=
$$\sin(2\Theta + 45^0) = \sin(90^0 - 30^0 - \Theta)\sin(2\Theta + 45^0) = \sin(90^0 - 30^0 - \Theta)$$

=
$$\sin(2\Theta + 45^0) = \sin(60^0 + \Theta)\sin(2\Theta + 45^0) = \sin(60^0 + \Theta)$$

On equating sin of angle of we get,

=
$$2\Theta + 45^0 = 60^0 + \Theta + \Theta = \Theta = 15^0 = 15^0 = 15^0$$

Question 9

If $\Theta\Theta$ is appositive acute angle such that $\sec\Theta = \csc 60^0 \sec \Theta = \csc 60^0$, find

2cos²
$$\Theta$$
-12 cos² Θ − 1

Solution

We know that, $\sec(90^0 - \Theta) = \csc^2\Theta \sec(90^0 - \Theta) = \csc^2\Theta$

=
$$\sec(\Theta) = \sec(90^{0} - 60^{0}) \sec(\Theta) = \sec(90^{0} - 60^{0})$$

=
$$\Theta = 30^{0}\Theta = 30^{0} = 2\cos^{2}\Theta - 12\cos^{2}\Theta - 1$$

$$= 2\cos^2 30 - 12\cos^2 30 - 1$$

=
$$2(\sqrt{3}2)^2 - 12(\frac{\sqrt{3}}{2})^2 - 1$$

=
$$2(34)-12(\frac{3}{4})-1=(32)-1(\frac{3}{2})-1=(12)(\frac{1}{2})$$

Q10.If sin3O=cos(O-6°)where3OandO-6circ

 $\sin 3\Theta = \cos(\Theta - 6^{\circ}) \ where \ 3\Theta \ and \ \Theta - 6^{circ}$ acute angles, find the value of $\Theta\Theta$.

Soln:

We have, $\sin 3\Theta = \cos(\Theta - 6^{\circ})\sin 3\Theta = \cos(\Theta - 6^{\circ})$

$$\begin{aligned} &\cos(90^\circ + 3\Theta) = \cos(\Theta - 6^\circ)\cos(90^\circ + 3\Theta) = \cos(\Theta - 6^\circ) \; 90^\circ - 3\Theta = \Theta - 6^\circ \\ &90^\circ - 3\Theta = \Theta - 6^\circ \; - 3\Theta - \Theta = 6^\circ - 90^\circ - 3\Theta - \Theta = 6^\circ - 90^\circ \; - 4\Theta = 96^\circ - 4\Theta = 96^\circ \\ &\Theta = -96^\circ - 4 = 24^\circ\Theta = \frac{-96^\circ}{-4} = 24^\circ \end{aligned}$$

Q11.If Sec2A=csc(A-42°) $\sec 2A=\csc(A-42^\circ)$ where 2A is acute angle, find the value of A.

Soln:we know that $\sec(90-3\text{Theta})=\csc\Theta\sec(90-3\text{Theta})=\csc\Theta$

$$\sec 2A = \sec(90-(A-42))\sec 2A = \sec(90-(A-42))\sec 2A = \sec(90-A+42)$$

 $\sec 2A = \sec(90-A+42)$ $\sec 2A = \sec(132-A)$

Now equating both the angles we get

$$2A = 132 - A$$

$$A = = 1323 = \frac{132}{3}$$

$$A = 44$$