Nome	Cognome			Numero di matricola	

Appello Prefestivo di Fisica del 14/12/2023.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un punto materiale di massa m scivola lungo un piano inclinato scabro, con angolo di inclinazione α e coefficiente di attrito statico μ_s e dinamico μ_d , che a sua volta è vincolato ad una superficie orizzontale. Il punto materiale è soggetto alla forza peso. Sul piano inclinato, vincolata al suo estremo inferiore, giace anche una molla di massa trascurabile, costante elastica k e lunghezza a riposo ℓ_0 . All'istante t_0 il punto materiale si trova ad una quota h_0 dalla superficie orizzontale e si muove con velocità di modulo ν_0 verso l'estremo inferiore del piano inclinato. Si utilizzino i seguenti valori numerici: m=1.10 kg, $\alpha=0.780$ rad, $\mu_d=0.750$, k=13.0 N/m, $\ell_0=1.10$ m, $t_0=5.80$ s, $t_0=1.20$ m, $t_0=2.40$ m/s.

Determinare:

Detei	minare.					
,	il tempo t_1 al quale il po t_1 [s] $=$	unto materiale enti A [6.65]	ra in contatto con B 9.03	la molla; X 6.03	D 21.6	E 12.2
1.2)	l'energia cinetica K_1 de K_1 [J] =	l punto materiale a	I tempo t_1 ; B $\boxed{9.33}$	C 7.81	D 12.1	E 5.30
,	il lavoro \mathcal{L}_1 della forza o \mathcal{L}_1 [J] $=$	di attrito dinamico A $\boxed{-2.93}$	tra i tempi t_0 e t_1 ; B $\boxed{-1.86}$	C 6.37	X [−3.56]	E 2.61
,	la minima quota h_2 rage h_2 [m] =	giunta dal punto m A 0.0572	ateriale; B 0.427	C 0.148	X 0.0913	E 0.314
1.5)	il minimo valore $\mu_{\rm s}^{({\rm min})}$ o $\mu_{\rm s}^{({\rm min})}=$	del coefficiente di a A 0.731	ttrito statico affino B 0.289	ché il punto materi C 1.24	ale rimanga in quie	te alla quota h_2 . E 0.534

Problema 2: Due dischi sottili di massa m_1 ed m_2 e raggio R_1 ed R_2 giacciono sul piano (x,y). I due dischi sono liberi di ruotare attorno ai propri centri, che si trovano nell'origine e sulla semiretta positiva dell'asse \hat{x} , rispettivamente. I bordi dei due dischi si toccano in un punto e si muovono senza strisciare l'uno sull'altro. I due dischi sono inizialmente in quiete e, a partire dall'istante $t_0=0$, il primo disco è soggetto ad una forza di momento $\vec{M}_1=M_1\hat{z}$ rispetto all'origine. Si consideri il moto del sistema all'istante t_1 , quando il primo disco ha compiuto una rotazione completa. Si utilizzino i seguenti valori numerici: $m_1=1.60$ kg, $m_2=1.70$ kg, $R_1=1.80$ m, $R_2=1.60$ m, $M_1=1.20$ N m.

Determinare:

