Bahan kuliah IF2120 Matematika Diskrit

Himpunan

(Bag. 1 – Update 2022)

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI - ITB

Definisi

• Himpunan (set) adalah sekumpulan objek yang berbeda.

• Objek di dalam himpunan disebut elemen, unsur, atau anggota.

• HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain.

 Satu set komputer desktop terdiri dari CPU, monitor, dan keyboard

• Himpunan mahasiswa

• Satu *set* mainan huruf (huruf besar dan kecil)

• Perhatikan bedanya:

$$\{1, 2, 3, 4, 5, 6\} \rightarrow \text{Himpunan } (set)$$

$$\{1, 2, 2, 3, 4, 4, 4, 5, 6\} = \{1, 2, 3, 4, 5, 6\}$$

- Urutan elemen di dalam himpunan tidak penting
 {a, b, c, d} = {d, b, a, c}
- Setiap elemen di dalam himpunan boleh tidak berkorelasi satu sama lain, yang penting BERBEDA satu sama lain

{ 56, Rp3000, Amir, cacing, Silver Queen, -45° C, paku}

Cara Penyajian Himpunan

1. Enumerasi

Setiap anggota himpunan didaftarkan secara rinci.

Contoh 1.

- Himpunan empat bilangan asli pertama: $A = \{1, 2, 3, 4\}$.
- Himpunan lima bilangan genap positif pertama: $B = \{4, 6, 8, 10\}$.
- *C* = {kucing, *a*, Amir, 10, paku}
- $R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $K = \{ \{ \} \}$
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}.

Keanggotaan

 $x \in A$: x merupakan anggota himpunan A;

 $x \notin A$: x bukan merupakan anggota himpunan A.

• Contoh 2. Misalkan:

$$A = \{1, 2, 3, 4\}, R = \{a, b, \{a, b, c\}, \{a, c\}\}\$$
 $K = \{\{\}\}$

maka

$$\{a, b, c\} \in R$$

$$c \notin R$$

$$\{\}\in K$$

Contoh 3. Jika
$$P_1 = \{a, b\},\$$

$$P_2 = \{ \{a, b\} \},$$

$$P_3 = \{\{\{a, b\}\}\},\$$

maka

$$a \in P_1$$

$$a \notin P_2$$

$$P_1 \in P_2$$

$$P_1 \notin P_3$$

$$P_2 \in P_3$$

2. Simbol-simbol Baku

```
P = himpunan bilangan bulat positif = \{1, 2, 3, ...\}

N = himpunan bilangan alami (natural) = \{1, 2, ...\}

Z = himpunan bilangan bulat = \{..., -2, -1, 0, 1, 2, ...\}

Z<sup>+</sup> = himpunan bilangan bulat positif = \{1, 2, 3, ...\}

Q = himpunan bilangan rasional = \{a/b \mid a, b \in \mathbf{Z} \text{ dan } b \neq 0\}

= \{..., -3/4, -4/5, 2/3, 1/2, ...\} = \{..., -0.6, -0.8, 0.666...\}

R = himpunan bilangan riil

R<sup>+</sup> = himpunan bilangan riil positif

C = himpunan bilangan kompleks = \{a + bi \mid a, b \in \mathbf{R}\}
```

Himpunan yang universal: **semesta**, disimbolkan dengan U atau S. Contoh: Misalkan U = $\{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$.

3. Notasi Pembentuk Himpunan

Notasi: { x | syarat yang harus dipenuhi oleh x }

Contoh 4.

(i) A adalah himpunan bilangan bulat positif kecil dari 5 $A = \{x \mid x \text{ adalah bilangan bulat positif lebih kecil dari 5}$ atau $A = \{x \mid x \in P, x < 5\} = \{1, 2, 3, 4\}$

(ii) $M = \{x \mid x \text{ adalah mahasiswa yang mengambil mata kuliah IF2120}\}$

4. <u>Diagram Venn</u>

Contoh 5.

Misalkan U =
$$\{1, 2, ..., 7, 8\}$$
,
 $A = \{1, 2, 3, 5\}$ dan $B = \{2, 5, 6, 8\}$.

Diagram Venn:

Kardinalitas

Jumlah elemen di dalam A disebut **kardinal** dari himpunan A. Notasi: n(A) atau A

Contoh 6.

(i) $B = \{x \mid x \text{ merupakan bilangan prima lebih kecil dari } 20 \}$, atau $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$ maka |B| = n(B) = 8(ii) $T = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku, laptop}\}$, maka |T| = 6(iii) $A = \{2, \{2, 3\}, \{4\}, 6, \{\{7\}\}\}\}$, maka |A| = 5(iv) $C = \emptyset$, maka n(C) = 0(v) $D = \{x \in \mathbb{N} \mid x < 5000 \}$, maka n(D) = 4999(vi) $D = \{x \in \mathbb{N} \mid x \ge 5000 \}$, maka n(D) tak berhingga

Himpunan kosong (null set)

- Himpunan dengan kardinal = 0 disebut himpunan kosong (*null set*).
- Notasi : Ø atau {}

Contoh 7.

- (i) $E = \{x \mid x < x\}$, maka n(E) = 0
- (ii) $P = \{ \text{ orang Indonesia yang pernah ke bulan } \}$, maka n(P) = 0
- (iii) $A = \{x \mid x \text{ adalah akar riil persamaan kuadrat } x^2 + 1 = 0 \}, n(A) = 0$
- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\}$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}$
- $\{\emptyset\}$ bukan himpunan kosong karena ia memuat satu elemen yaitu \emptyset .

Himpunan Bagian (Subset)

- Notasi: $A \subseteq B$
- Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B.
- Secara formal: $A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$

A adalah subset dari B.
 Dalam hal ini, B dikatakan superset dari A,
 B ⊇ A

Contoh 8.

- (i) $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- (ii) $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- (iii) $N \subseteq Z \subseteq R \subseteq C$
- (iv) Jika $A = \{ (x, y) \mid x + y < 4, x \ge, y \ge 0 \}$ dan $B = \{ (x, y) \mid 2x + y < 4, x \ge 0 \text{ dan } y \ge 0 \}$, maka $B \subseteq A$.
- $(v) A = \{3, 9\}, B = \{5, 9, 1, 3\},$
- $A \subseteq B$?
- benar

- (vi) $A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\}, A \subseteq B$?
- benar

- (vii) $A = \{1, 2, 3\}, B = \{2, 3, 4\},$
- $A \subseteq B$?

salah

- Ø ⊆ A untuk sembarang himpunan A
- A ⊆ A untuk sembarang himpunan A
- $\varnothing \subseteq A$ dan $A \subseteq A$, maka \varnothing dan A disebut himpunan bagian tak-sebenarnya (improper subset) dari himpunan A.

```
Contoh: A = \{1, 2, 3\}, maka \{1, 2, 3\} dan \emptyset adalah improper subset dari A. \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\} adalah proper subset dari A
```

- A dikatakan proper subset dari B jika:
 - (i) setiap elemen dari A juga elemen dari B (dengan kata lain $A \subseteq B$), dan
 - (ii) sekurang-kurangnya ada satu elemen di B yang tidak ada di A

• Perhatikan bahwa $A \subseteq B$ berbeda dengan $A \subset B$

- (i) $A \subset B : A$ adalah himpunan bagian dari B tetapi $A \neq B$.
 - A disebut himpunan bagian sebenarnya (proper subset) dari B.
 - Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3}
 Jadi, {1} ⊂ {1, 2, 3}, {2, 3} ⊂ {1, 2, 3}

- (ii) $A \subseteq B$: digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.
 - Contoh: $\{1, 2, 3\} \subseteq \{1, 2, 3\}$

Latihan

Misalkan $A = \{1, 2, 3\}$ dan $B = \{1, 2, 3, 4, 5\}$. Tentukan semua kemungkinan himpunan C sedemikian sehingga $A \subset C$ dan $C \subset B$, yaitu A adalah *proper subset* dari C dan C adalah *proper subset* dari C.

Jawaban:

Data: A = {1, 2, 3} dan B = {1, 2, 3, 4, 5}, lalu A \subset C dan C \subset B

C harus mengandung semua elemen $A = \{1, 2, 3\}$ dan sekurang-kurangnya satu elemen dari B.

Dengan demikian, $C = \{1, 2, 3, 4\}$ atau $C = \{1, 2, 3, 5\}$.

C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

• Jika $A \subseteq B$ dan $B \subseteq C$ maka $A \subseteq C$

Latihan

- 1. Misalkan $A = \{5\}$ dan $B = \{5, \{5\}\}$.
 - (a) Apakah $A \subseteq B$? Jelaskan!
 - (b) Apakah $A \in B$? Jelaskan!
 - (c) Apakah A adalah himpunan bagian sebenarnya (proper subset) dari B?
- 2. Tentukan apakah pernyataan di bawah ini benar atau salah:
 - (a) $\{\emptyset\} \subseteq \{\emptyset\}$
 - (b) $\emptyset \in \{\emptyset\}$
 - (c) $\{\emptyset\} \in \{\emptyset\}$
 - (d) $\{a, b\} \subseteq \{a, b, \{\{a, b\}\}\}\$
 - (e) Jika $A \subseteq B$ dan $B \in C$, maka $A \in C$
 - (f) Jika $A \in B$ dan $B \subseteq C$, maka $A \in C$.
 - (g) Jika $A = \{\emptyset, \{\emptyset\}\}, \text{ maka } \emptyset \in 2^A$
 - (h) Jika $A = \{\emptyset, \{\emptyset\}\}$, maka $\{\{\emptyset\}\} \subseteq 2^A$

- i) $\emptyset \subset \emptyset$
- $j) \varnothing \in \varnothing$
- k) $\{\emptyset\} \in \emptyset$
- 1) $\{a, b\} \subseteq \{a, b, c, \{\{a, b, c\}\}\}$
- m) $\{a, b\} \in \{a, b, c, \{\{a, b, c\}\}\}$
- n) $\{a, b\} \in \{a, b, \{\{a, b\}\}\}\$
- o) jika $A \in B$ dan $B \subseteq C$, maka $A \subseteq C$
- p) jika $A \subseteq B$ dan $B \in C$, maka $A \subseteq C$
- q) $x \in \{x\}$
- r) $\{x\} \subseteq \{x\}$
- s) $\{x\} \in \{x\}$
- t) $\{x\} \in \{\{x\}\}$
- u) $\emptyset \subseteq \{x\}$
- (v) $\varnothing \in \{x\}$

3. Didefinisikan A, B, C, D, dan E sebagai berikut:

$$A = \{1, 2, 3, 4\}, B = \{1, 2, \{2\}, \{\{4\}\}\},\$$

 $C = \{1, \{1, 2\}, \{\{1, 2, 3\}\}\}, D = \{1, 2, 2, 1\}.$

Untuk tiap W, X, Y, Z yang didefinisikan di bawah ini, nyatakan apakah ia adalah elemen atau himpunan bagian dari tiap-tiap himpunan A, B, C, D.

$$W = \{1, 3, 5\}$$
 $X = \{1, 2, 3\}$ $Y = \{4\}$ $Z = \{2\}$

$$X = \{1, 2, 3\}$$

$$Y = \{4\}$$

$$Z = \{2\}$$

Himpunan yang Sama

• A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.

• A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \neq B$.

• Notasi : $A = B \leftrightarrow A \subseteq B \text{ dan } B \subseteq A$

Contoh 9.

- (i) Jika $A = \{0, 1\}$ dan $B = \{x \mid x (x 1) = 0\}$, maka A = B
- (ii) Jika $A = \{3, 5, 8\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iii) Jika $A = \{3, 5, 5, 5, 8, 8\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iv) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$
- (iv) $A = \{anjing, kucing, kuda\}, B = \{kucing, kuda, tupai, anjing\}, maka <math>A \neq B$
- Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:
 - (a) A = A, B = B, dan C = C
 - (b) jika A = B, maka B = A
 - (c) jika $A = B \operatorname{dan} B = C$, maka A = C

Himpunan yang Ekivalen

• Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.

• Notasi :
$$A \sim B \leftrightarrow |A| = |B|$$

Contoh 10. Misalkan $A = \{ 1, 3, 5, 7 \}$ dan $B = \{ a, b, c, d \}$, maka $A \sim B$ sebab |A| = |B| = 4

Himpunan Saling Lepas

• Dua himpunan A dan B dikatakan saling lepas (*disjoint*) jika keduanya tidak memiliki elemen yang sama.

Notasi : A // B

• Diagram Venn:

Contoh 11. Jika $A = \{ x \mid x \in P, x < 8 \} \text{ dan } B = \{ 10, 20, 30, ... \}, \text{ maka } A // B.$

Himpunan Kuasa

- Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A.
- Notasi: P(A) atau 2^A
- Jika |A| = m, maka $|P(A)| = 2^m$.

Contoh 12. Jika A = { 1, 2 }, maka P(A) = $2^A = {\emptyset, {1}, {2}, {1, 2}}$, dan |P(A)| = 4

Contoh 13. Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = {\emptyset}$, dan himpunan kuasa dari himpunan ${\emptyset}$ adalah $P({\emptyset}) = {\emptyset}$, ${\emptyset}$.

Operasi Terhadap Himpunan

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh 14.

- (i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$
- (ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh 15.

- (i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A \cup B = \{ 2, 5, 7, 8, 22 \}$
- (ii) $A \cup \emptyset = A$

3. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Contoh 16.

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

- (i) jika $A = \{1, 3, 7, 9\}$, maka $\overline{A} = \{2, 4, 6, 8\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 9 \}$, maka $\overline{A} = \{ 1, 3, 5, 7, 9 \}$

Contoh 17. Misalkan:

A = himpunan semua mobil buatan dalam negeri

B = himpunan semua mobil impor

C = himpunan semua mobil yang dibuat sebelum tahun 1990

D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta

E = himpunan semua mobil milik mahasiswa universitas tertentu

- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" $\rightarrow (E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" $\rightarrow A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" $\rightarrow \overline{C} \cap \overline{D} \cap B$

4. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh 18.

- (i) Jika $A = \{ 1, 2, 3, ..., 10 \}$ dan $B = \{ 2, 4, 6, 8, 10 \}$, maka $A B = \{ 1, 3, 5, 7, 9 \}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Contoh 20. Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A": $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Semua mahasiswa yang mendapat nilai C" : $U (P \cup Q)$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

6. Perkalian Kartesian (cartesian product)

• Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh 20.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B =$ himpunan semua titik di bidang datar

Catatan:

1. Jika A dan B merupakan himpunan berhingga, maka:

$$|A \times B| = |A| \cdot |B|$$
.

- $2. (a, b) \neq (b, a).$
- 3. $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.

Pada Contoh 20(i) di atas,
$$C = \{1, 2, 3\}$$
, dan $D = \{a, b\}$, $D \times C = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$ $C \times D = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ $D \times C \neq C \times D$.

- 4. Jika $A=\varnothing$ atau $B=\varnothing$, maka $A\times B=B\times A=\varnothing$
- 5. Perkalian kartesian dari dua himpunan atau lebih didefinisikan sebagai: $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}$

Contoh 21. Misalkan

 $A = \text{himpunan makanan} = \{ s = \text{soto}, g = \text{gado-gado}, n = \text{nasi goreng}, m = \text{mie rebus} \}$

 $B = \text{himpunan minuman} = \{ c = \text{coca-cola}, t = \text{teh}, d = \text{es dawet} \}$

Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?

Jawab:

 $|A \times B| = |A| \cdot |B| = 4 \cdot 3 = 12$ kombinasi dan minuman, yaitu $\{(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)\}.$

Contoh 21. Daftarkan semua anggota himpunan berikut:

(a)
$$P(\emptyset)$$
 (b) $\emptyset \times P(\emptyset)$ (c) $\{\emptyset\} \times P(\emptyset)$ (d) $P(P(\{3\}))$

Penyelesaian:

- (a) $P(\emptyset) = {\emptyset}$
- (b) $\emptyset \times P(\emptyset) = \emptyset$ (ket: jika $A = \emptyset$ atau $B = \emptyset$ maka $A \times B = \emptyset$)
- (c) $\{\emptyset\} \times P(\emptyset) = \{\emptyset\} \times \{\emptyset\} = \{(\emptyset,\emptyset)\}$
- (d) $P(P(\{3\})) = P(\{\emptyset, \{3\}\}) = \{\emptyset, \{\emptyset\}, \{\{3\}\}, \{\emptyset, \{3\}\}\}\}$

Latihan

Misalkan *A* adalah himpunan. Periksalah apakah setiap pernyataan di bawah ini benar atau salah dan jika salah, bagaimana seharusnya:

(a)
$$A \cap P(A) = P(A)$$

(b)
$$\{A\} \cup P(A) = P(A)$$

(c)
$$A - P(A) = A$$

(d)
$$\{A\} \in P(A)$$

(e)
$$A \subseteq P(A)$$

Jawaban:

- (a) $A \cap P(A) = P(A) \rightarrow \text{salah}$, seharusnya $A \cap P(A) = \emptyset$
- (b) $\{A\} \cup P(A) = P(A) \rightarrow \text{benar}$
- (c) $A P(A) = A \rightarrow benar$
- (d) $\{A\} \in P(A) \rightarrow \text{salah, seharusnya } \{A\} \subseteq P(A)$
- (e) $A \subseteq P(A) \rightarrow$) salah, seharusnya $A \in P(A)$

Perampatan Operasi Himpunan

$$A_1 \cap A_2 \cap ... \cap A_n = igcap_{i=1}^n A_i$$
 $A_1 \cup A_2 \cup ... \cup A_n = igcup_{i=1}^n A_i$
 $A_1 imes A_2 imes ... imes A_n = igcap_{i=1}^n A_i$
 $A_1 \oplus A_2 \oplus ... \oplus A_n = igoplus_{i=1}^n A_i$

Contoh 22.

(i)
$$A \cap (B_1 \cup B_2 \cup ... \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_n)$$

 $A \cap (\bigcup_{i=1}^n B_i) = \bigcup_{i=1}^n (A \cap B_i)$

(ii) Misalkan
$$A = \{1, 2\}, B = \{a, b\}, \text{dan } C = \{\alpha, \beta\}, \text{ maka}$$

 $A \times B \times C = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha),$
 $(2, a, \beta), (2, b, \alpha), (2, b, \beta)\}$

(iii) Misalkan
$$A = \{a, b\}, B = \{5, 6\}, C = \{x, y, z\}$$

maka, $A \times B \times C = \{(a, 5, x), (a, 5, y), (a, 5, z),$
 $(a, 6, x), (a, 6, y), (a, 6, z),$
 $(b, 5, x), (b, 5, y), (b, 5, z),$
 $(b, 6, x), (b, 6, y), (b, 6, z)\}$

Latihan

1. Jika $A = \{a, b, \{a, c\}, \emptyset\}$ dan $B = \{a, \{a\}, d, e\}$, tentukan himpunan berikut:

(a)
$$A - \emptyset$$

(b)
$$A - \{\emptyset\}$$

(a)
$$A - \emptyset$$
 (b) $A - \{\emptyset\}$ (c) $\{\{a, c\}\} - A$

(d)
$$A \oplus B$$

(e)
$$\{a\} - \{A\}$$

(f)
$$P(A-B)$$

(g)
$$\varnothing$$
 – A

(h)
$$B^2$$

(d)
$$A \oplus B$$
 (e) $\{a\} - \{A\}$ (f) $P(A-B)$ (g) $\varnothing - A$ (h) B^2 (i) $A \cup (B \cap A)$

- (i) $A \cap P(A)$
- 2. Diketahui $A = \{+, -\}, B = \{00, 01, 10, 11\}.$
 - Daftarkan A x B
 - Berapa banyak elemen A⁴ dan (A x B)³?

- 3. Misalkan A, B, dan C adalah himpunan. Tunjukkan bahwa
 - (a) $(A-C) \cap (C-B) = \emptyset$
 - (b) $(B-A) \cup (C-A) = (B \cup C) A$
 - (c) $(A-B)-C\subseteq A-C$
- 4. Apa yang dapat dikatakan tentang himpunan A dan B jika kesamaan berikut benar?
 - (a) A B = B A
 - (b) $A \cap B = B \cap A$
- 5. Dapatkah disimpulkan A = B jika A, B, dan C adalah himpunan sedemikian sehingga
 - (a) $A \cup C = B \cup C$
 - (b) $A \cap C = B \cap C$