Financial time series forecasting applying deep learning algorithms

Erik Solís, Sherald Noboa, Erick Cuenca

erik.solis@yachaytech.edu.ec

2021-11-24

- Introduction
- 2 Materials
- 3 Methodology
- 4 Experiments
- 6 Results
- **6** Conclusions

Introduction

••••••••••

Sequence Models

Trading Strategies

- 2 Materials
- 3 Methodology
- 4 Experiments
- 6 Results
- **6** Conclusions

Examples of sequence models

Introduction 000000000000000

Speech recognition

Speech recognition

Machine translation

Examples of sequence models

Speech recognition

Machine translation

Sentiment classification

Examples of sequence models

Introduction

Speech recognition

Machine translation

Sentiment classification

Video activity recognition

Running

• Time series sequence models

Sequence Models

Time Series

Trading Strategies

- 2 Materials
- 3 Methodology
- 4 Experiments
- 6 Results
- **6** Conclusions

Trend Trend

• Moving in a specific direction

Seasonality

Introduction

• Patterns repeats in a predictable interval

Noise

Introduction

Set of random values

Auto-correlation

Introduction

 Deterministic type of decay: it correlates with a delay copy of itself (lag)

Trend + Seasonality + Auto-correlation + Noise

Forecast learned patterns

Introduction

• A ML model is design to spot patterns. And then, predictions.

Non-stationary time series

Introduction

• Time series behaviour can change drastically over time

Non-stationary time series

• Difficult to perform

• To predict: Train over a limited period of time.

Sequence Models

Trading Strategies

- 2 Materials
- 3 Methodology
- 4 Experiments
- 6 Results
- **6** Conclusions

Trading Strategies

- Long-term investment strategies
- Short-term investment strategies

Trading Strategies

Introduction

- High-frequency trading (HFT)
 - Very short-term investment strategies
 - High volumes and high speeds.
 - Hold a position for **minutes** or **seconds**.
 - **60–73%** of all US equity trading volume.

- 2 Materials

Materials

- Programming Language: Python
- **Library:** Tensorflow
- Hardware: Google Colaboratory (Colab)
 - GPU: Nvidia K80s RAM: 12.69GB Disk: 68.35GB

- Introduction
- 2 Materials
- Methodology
 Build Dataset
 Model Setup
- 4 Experiments
- 6 Results
- **6** Conclusions

- 1 Introduction
- 2 Materials
- 3 Methodology
 Build Dataset
 Model Setup
 Training Parameter
- 4 Experiments
- 6 Results
- 6 Conclusions

Data description

- Intraday stock prices of Amazon (ticker: AMZN)
- Last 60 days (January 25 March 25 of 2021)
- 2m & 5m Intervals
- Volume, dividends, open, high, low, and close price.
- Data source: **yfinance** (Yahoo! finance)

Univariate time series

- Opening prices
- 2m Intervals: 6000-6500 observations
- 5m Intervals: 3000-3500 observations

Fig 1: Left: 2 minute intervals - Right: 5 minute intervals

Split data for training and test

- 2m: 3500 observations
- **5m:** 2000 observations

Fig 2: **2m:** 0-3500 (Training) 3501-6000 (Test)

- 2m Intervals
 - Window size: 60 data points (2h)
- 5m Intervals
 - Window size: 108 data points (9h)

Batching the dataset

- **Shuffling the data:** Reduce the variance and the possibility of overfitting
- **Batch data:** Merge randomly selected sequences into a batch for training

- Introduction
- 2 Materials
- 3 Methodology

Build Datase

Model Setup

Training Parameters

- 4 Experiments
- 6 Results
- 6 Conclusions

Convolutional Neural Network

• CNN setup:

• Layers: 1 Filters: 60

Kernel Size: 5

Strides: 1

Padding: Causal (1D convolutions)

Long short-term memory (LSTM)

• Layers: 2

Hidden units: 60

• Returning Sequence: True

Activation function: tanh

• Recurrent activation: sigmoid

- Third Dense Layer Output layer:
 - Hidden units: 1
- Second Dense Layer:
 - Hidden units: 10
 - Activation Function: ReLU
- First Dense Layer:
 - Hidden units: 30
 - Activation Function: ReLU

DENSE LAYER	
	1 Unit Dense Layer
DENSE LAYER	
	10 Unit Dense Layer
DENSE LAYER	
	30 Unit Dense Layer
DENSE LATER	30 Unit Dense Layer

- Lambda Layer:
 - Lambda function: lambda x : x * 400
 - Applied to scale up the output values of the last dense layer in order to help the learning.

LAMBDA LAYER	
	Lambda Layer

Methodology

- 3 Methodology

Training Parameters

Fine-tuning parameters

- Loss Function: Huber
 - Less sensitive to outliers
- Optimizer: Stochastic Gradient Descent (SGD)
 - Iterative method for optimizing an objective function with suitable smoothness properties

Learning Rate (LR)

- Define the optimum learning rate for SGD
- Modulate how the LR of the SGD changes over time
- Loss vs. Learning Rate

Fine-tuning parameters

Training Epochs

Compare Loss vs. Training Epochs

- 4 Experiments

Varying number of training examples

- 1 Introduction
- 2 Materials
- 3 Methodology
- 4 Experiments

Varying window sizes

Varying number of training examples

- 6 Results
- 6 Conclusions

Varying window sizes 2m

 Define an optimum window size in order to face the characteristic of non-stationary time series

- Window size: 40 Intervals: 2m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	2 m	40	11.53

- Window size: 60 Intervals: 2m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	2 m	60	5.7

- Window size: 80 Intervals: 2m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	2 m	80	9.49

- Window size: 46 Intervals 5m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	5 m	46	11.57

- Window size: 72 Intervals 5m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	5 m	72	10.32

- Window size: 108 Intervals 5m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	WS	MAE
One-step	5 m	108	9.11

- 4 Experiments

Varying window sizes

Varying number of training examples

- Performance of the model is affected by varying the number of training examples
- More training examples does not always increase the accuracy of the model

- Training examples: 2500 Interval: 2m
- Forecasted (Orange) vs. Actual values (Blue)

-	Forecasting Approach	Interval	TE	MAE	
	One-step	2 m	2500	8.83	ticec 42

• Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	TE	MAE	
One-step	2 m	3500	5.7	tic

- Training examples: 4500 Interval: 2m
- Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	TE	MAE	· • • • • • • • • • • • • • • • • • • •
One-step	2 m	4500	21.99	ticec 42

- Training examples: 1500 Interval: 5m
- Forecasted (Orange) vs. Actual values (Blue)

-	Forecasting Approach	Interval	TE	MAE	20
_	One-step	5 m	1500	6.46	ticec 42

• Forecasted (Orange) vs. Actual values (Blue)

Forecasting Approach	Interval	TE	MAE	201
One-step	5 m	2000	9.11	ticec 42

- Training examples: 2500 Interval: 5m
- Forecasted (Orange) vs. Actual values (Blue)

_	Forecasting Approach	Interval	TE	MAE	-
	One-step	5 m	2500	9.52	ticec ²²

- 1 Introduction
- 2 Materials
- Methodology
- 4 Experiments
- 6 Results

Forecasting MAE for one-step and multi-step forecasting

6 Conclusions

- 6 Results

Forecasting

One-step forecasting

- 2-minute intervals
- Forecasted (Orange) vs. Actual values (Blue)

Erik Solís, Sherald Noboa, Erick Cuenca

One-step forecasting

- 5-minute intervals
- Forecasted (Orange) vs. Actual values (Blue)

Four-step forecasting

- 2-minute intervals
- Forecasted (Blue) vs. Actual values (Orange)

- 5-minute intervals
- Forecasted (Blue) vs. Actual values (Orange)

- 5-minute intervals
- Forecasted (Blue) vs. Actual values (Orange)
- March 24, 2021.

Fifteen-step forecasting

- 5-minute intervals
- Forecasted (Blue) vs. Actual values (Orange)
- March 25, 2021.

- 1 Introduction
- Materials
- 3 Methodology
- 4 Experiments
- 6 Results

Forecasting

MAE for one-step and multi-step forecasting

6 Conclusions

Forecasting Approach	Interval	WS	TE	MAE
One-step	2 m	60	3500	6.7
One-step	5 m	108	2000	9.94
Four-step	2 m	60	3500	3.49
Four-step	5 m	108	2000	8.07
Fifteen-step	5 m	108	2000	9.84

- 1 Introduction
- Materials
- 3 Methodology
- 4 Experiments
- 6 Results
- **6** Conclusions

- Combination of different deep architectures improves the capability of the model for identifying interrelations within the time series
- Deep architectures can be applied successfully
 - Accuracy, and forecasting speed
- More data does not increase the accuracy of the model
 - Accurate window size
 - Accurate number of training examples
- Future Work
 - Multivariate dataset
 - Apply high-performance computing (HPC) techniques for training the model
 - Develop trading strategies based on fundamental and technical analysis

Conclusions