# CSE 431/531: Algorithm Analysis and Design (Fall 2024) Introduction IV: Asymptotic Notation

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

#### Announcements: Quiz 2

- Posted on Ublearns
- Should take < 30 minutes, 2 attempts
- Due Thur 5th Sep @ 11:59PM

#### Outline

1 Introduction: Asymptotic Analysis

Common Running times

## Recall: $O, \Omega, \Theta$ -Notation: Asymptotic Bounds

**O-Notation** For a function 
$$g(n)$$
,

$$O(g(n)) = \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that}$$
 
$$f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

$$\Omega$$
-**Notation** For a function  $g(n)$ ,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that}$$
$$f(n) \ge cg(n), \forall n \ge n_0 \}.$$

$$\Theta ext{-}\mathbf{Notation}$$
 For a function  $g(n)$ ,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that}$$

$$c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}.$$

| Asymptotic Notations | O      | Ω      | Θ |
|----------------------|--------|--------|---|
| Comparison Relations | $\leq$ | $\geq$ | = |

$$\begin{array}{c|cccc} \text{Asymptotic Notations} & O & \Omega & \Theta \\ \hline \text{Comparison Relations} & \leq & \geq & = \\ \end{array}$$

#### Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \iff a \le b \text{ and } a \ge b$
- $a \le b$  or  $a \ge b$

$$\begin{array}{c|cccc} \text{Asymptotic Notations} & O & \Omega & \Theta \\ \hline \text{Comparison Relations} & \leq & \geq & = \\ \end{array}$$

#### Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \Leftrightarrow a \le b \text{ and } a \ge b$
- $a \le b$  or  $a \ge b$

#### **Correct Analogies**

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$

#### Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $\bullet \ a = b \ \Leftrightarrow \ a \le b \ \text{and} \ a \ge b$
- $a \le b$  or  $a \ge b$

#### **Correct Analogies**

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

#### Incorrect Analogy

$$\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$$

#### **Incorrect Analogy**

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$ 

#### **Incorrect Analogy**

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$ 

$$f(n) = n^2$$
 
$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed,  $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed,  $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of  $O(\cdot)$ , nothing tells us to ignore lower order terms and leading constant.

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed,  $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of  $O(\cdot)$ , nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$  is correct, though weird

- ignoring lower order terms:  $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant:  $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed,  $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of  $O(\cdot)$ , nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$  is correct, though weird
- $3n^2-10n-5=O(n^2)$  is the most natural since  $n^2$  is the simplest term we can have inside  $O(\cdot)$ .

## Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$  is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is  $O(n^4)$ .
- We say: the running time of the insertion sort algorithm is  $O(n^2)$  and the bound is tight.

## Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$  is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is  $O(n^4)$ .
- We say: the running time of the insertion sort algorithm is  $O(n^2)$  and the bound is tight.
- We do not use  $\Omega$  and  $\Theta$  very often when we upper bound running times.

More Exercise: Lecture notes and Quiz 2

| Asymptotic Notations | O      | Ω      | Θ | 0 | $\omega$ |
|----------------------|--------|--------|---|---|----------|
| Comparison Relations | $\leq$ | $\geq$ | = | < | >        |

| Asymptotic Notations | O      | Ω      | Θ | 0 | $\omega$ |
|----------------------|--------|--------|---|---|----------|
| Comparison Relations | $\leq$ | $\geq$ | = | < | >        |

## Questions?

#### Outline

1 Introduction: Asymptotic Analysis

2 Common Running times

Computing the sum of n numbers

#### sum(A, n)

1:  $S \leftarrow 0$ 

2: for  $i \leftarrow 1$  to n

3:  $S \leftarrow S + A[i]$ 

4: return S

| 3 8 | 12 20 | 32 48 |
|-----|-------|-------|
|-----|-------|-------|



Merge two sorted arrays



3

Merge two sorted arrays



3



















```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i < n_1 and j < n_2 do
       if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
        else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i \leq n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

## O(n) (Linear) Running Time

```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i < n_1 and j < n_2 do
     if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
     else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i < n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

Running time = O(n) where  $n = n_1 + n_2$ .

## $O(n \log n)$ Running Time

```
merge-sort(A, n)
```

```
1: if n=1 then
```

2: return A

3:  $B \leftarrow \mathsf{merge\text{-}sort}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right)$ 4:  $C \leftarrow \mathsf{merge\text{-}sort}\left(A\big[\lfloor n/2\rfloor + 1..n\big], n - \lfloor n/2\rfloor\right)$ 

5: **return** merge(B, C, |n/2|, n - |n/2|)

## $O(n \log n)$ Running Time

Merge-Sort



## $\overline{O(n\log n)}$ Running Time

Merge-Sort



• Each level takes running time O(n)

## $\overline{O(n \log n)}$ Running Time

Merge-Sort



- Each level takes running time O(n)
- There are  $O(\log n)$  levels

## $\overline{O(n \log n)}$ Running Time

Merge-Sort



- Each level takes running time O(n)
- There are  $O(\log n)$  levels
- Running time =  $O(n \log n)$

#### Closest Pair

**Input:** *n* points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 

Output: the pair of points that are closest

#### Closest Pair

**Input:** *n* points in plane:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 

Output: the pair of points that are closest



#### Closest Pair

```
Input: n points in plane: (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)
```

Output: the pair of points that are closest

### closest-pair(x, y, n)

```
1: bestd \leftarrow \infty

2: for i \leftarrow 1 to n-1 do

3: for j \leftarrow i+1 to n do

4: d \leftarrow \sqrt{(x[i]-x[j])^2+(y[i]-y[j])^2}

5: if d < bestd then

6: besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d

7: return (besti, bestj)
```

#### Closest Pair

**Input:** *n* points in plane:  $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ 

Output: the pair of points that are closest

### closest-pair(x, y, n)

```
1: bestd \leftarrow \infty
```

2: **for**  $i \leftarrow 1$  to n-1 **do** 

```
3: for j \leftarrow i + 1 to n do
```

4: 
$$d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$$

5: **if** d < best d **then** 

6: 
$$besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$$

7: return (besti, bestj)

Closest pair can be solved in  $O(n \log n)$  time!

## $O(n^3)$ (Cubic) Running Time

Multiply two matrices of size  $n \times n$ 

```
{\sf matrix-multiplication}(A,B,n)
```

```
1: C \leftarrow \text{matrix of size } n \times n, with all entries being 0
```

```
2: for i \leftarrow 1 to n do
```

3: **for** 
$$j \leftarrow 1$$
 to  $n$  **do**

4: **for** 
$$k \leftarrow 1$$
 to  $n$  **do**

5: 
$$C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$$

6: return C

**Def.** An independent set of a graph G=(V,E) is a subset  $S\subseteq V$  of vertices such that for every  $u,v\in S$ , we have  $(u,v)\notin E$ .

**Def.** An independent set of a graph G=(V,E) is a subset  $S\subseteq V$  of vertices such that for every  $u,v\in S$ , we have  $(u,v)\notin E$ .



**Def.** An independent set of a graph G=(V,E) is a subset  $S\subseteq V$  of vertices such that for every  $u,v\in S$ , we have  $(u,v)\notin E$ .



#### Maximum Independent Set Problem

**Input:** graph G = (V, E)

**Output:** the maximum independent set of G

### Maximum Independent Set Problem

**Input:** graph G = (V, E)

Output: the maximum independent set of  ${\cal G}$ 

### max-independent-set(G = (V, E))

- 1:  $R \leftarrow \emptyset$
- 2: **for** every set  $S \subseteq V$  **do**
- 3:  $b \leftarrow \mathsf{true}$
- 4: for every  $u, v \in S$  do
- 5: if  $(u, v) \in E$  then  $b \leftarrow$  false
- 6: if b and |S| > |R| then  $R \leftarrow S$
- 7: return R

Running time =  $O(2^n n^2)$ .

#### Hamiltonian Cycle Problem

**Input:** a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



#### Hamiltonian Cycle Problem

**Input:** a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



```
\mathsf{Hamiltonian}(G = (V, E))
```

```
1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: b \leftarrow true
3: for i \leftarrow 1 to n-1 do
4: if (p_i, p_{i+1}) \notin E then b \leftarrow false
5: if (p_n, p_1) \notin E then b \leftarrow false
6: if b then return (p_1, p_2, \cdots, p_n)
7: return "No Hamiltonian Cycle"
```

Running time =  $O(n! \times n)$ 

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.

- Binary search
  - Input: sorted array A of size n, an integer t;
  - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
  - Input: sorted array A of size n, an integer t;
  - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
  - Input: sorted array A of size n, an integer t;
  - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
  - Input: sorted array A of size n, an integer t;
  - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



# $\overline{O(\log n)}$ (Logarithmic) Running Time

- Binary search
  - Input: sorted array A of size n, an integer t;
  - Output: whether t appears in A.
- E.g, search 35 in the following array:



#### Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

### binary-search(A, n, t)

- 1:  $i \leftarrow 1, j \leftarrow n$
- 2: while  $i \leq j$  do
- 3:  $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then  $j \leftarrow k-1$  else  $i \leftarrow k+1$
- 6: return false

#### Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

### binary-search(A, n, t)

- 1:  $i \leftarrow 1, j \leftarrow n$
- 2: while  $i \leq j$  do
- 3:  $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then  $j \leftarrow k-1$  else  $i \leftarrow k+1$
- 6: return false

Running time =  $O(\log n)$ 

## Comparing the Orders

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$

## Comparing the Orders

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $\bullet \ n = O(n^2)$

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $n = O(n \log n)$
- $\bullet \ n \log n = O(n^2)$

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)$

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(n!)$

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- $\bullet \ e^n = O(n!)$

- Sort the functions from smallest to largest asymptotically  $\log n$ ,  $n \log n$ , n, n!,  $n^2$ ,  $2^n$ ,  $e^n$ ,  $n^n$
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- $e^n = O(n!)$
- $n! = O(n^n)$

# **Terminologies**

When we talk about upper bound on running time:

- Logarithmic time:  $O(\log n)$
- Linear time: O(n)
- Quadratic time  $O(n^2)$
- Cubic time  $O(n^3)$
- Polynomial time:  $O(n^k)$  for some constant k
  - $O(n \log n) \subseteq O(n^{1.1})$ . So, an  $O(n \log n)$ -time algorithm is also a polynomial time algorithm.
- Exponential time:  $O(c^n)$  for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time:  $o(n^2)$

## Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

### Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

## Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

#### A:

Sometimes yes

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough,  $1000n < 0.1n^2$

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough,  $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!

• e.g, how can we compare an algorithm with running time  $0.1n^2$  with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough,  $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.