CS217: Data Structures & Algorithm Analysis (DSAA)

Lecture #1

Getting Started

Prof. Pietro Oliveto
Department of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading (that means homework!): read Chapter 1 and Chapter 2, Sections 2.1-2.2, (skip problems, exercises, and pseudocode conventions)

Aims of this lecture

- to set the scene for the analysis of algorithms
- to define correctness of algorithms and to demonstrate how to show that an algorithm is correct
- to show how the running time of an algorithm can be analysed
- to analyse InsertionSort as a simple sorting algorithm

Algorithms

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - It is a tool for solving a well-specified computational problem.
- Example: the sorting problem
 - **Input**: a sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$.
 - **Output**: a permutation (reordering) $\langle a_1', a_2', \ldots, a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq \cdots \leq a_n'$.

A sequence like $\langle 31, 41, 59, 26, 41, 58 \rangle$ is called an **instance** of the sorting problem.

We expect an algorithm to solve any instance of the problem

How we describe algorithms

We use an abstract language, **pseudocode**, for two reasons:

- See that algorithms exist independent from any particular programming language
- 2. Focus on ideas rather than syntax issues, error-handling, etc.

"If you wish to implement any of the algorithms, you should find the translation of our pseudocode into your favourite programming language to be a fairly straightforward task.

[...]

We attempt to present each algorithm simply and directly without allowing the idiosyncrasies of a particular programming language to obscure its essence."

What's an ideal algorithm?

Correctness

- An algorithm is **correct** if for every input instance it halts with the correct output. A correct algorithm **solves** the problem.
- ? How do you know whether an algorithm is correct?
- ? Who would you rather be?
 - Person A: "I designed an algorithm and I think it is correct."
 - Person B: "I tested my algorithm on 3 instances and it worked."
 - Person C: "I can prove that my algorithm is always correct."
- Ideally, all algorithms should be taught with a proof of correctness!

How to measure time?

- Computers are different (clock rate, speed of memory...)
- Computer architecture can be complex (memory hierarchy, pipelining, multi-core...)
- Choice of programming language affects execution time
- We need a model that provides a good level of abstraction:
 - Gives a good idea about the time an algorithm needs
 - Allows us to compare different algorithms
 - Without us getting bogged down with details

Random-access machine (RAM) model

- A generic random-access machine; instructions are executed one after another, with no concurrent operations
- Elementary operations:
 - Arithmetic: Add, subtract, multiply, divide, remainder
 - Logical operations, shifts, comparisons
 - Data movement: variable assignments (storing, retrieving)
 - Control instructions: loops, subroutine/method calls
- The RAM model assumes that each elementary operation takes the same amount of time (a *constant* independent of the problem size)
- The elementary operations are those commonly found in real computers

Runtime

- Common cost model: count the number of elementary operations in the RAM model.
- Assumes all operations take the same time.

Runtime of Algorithm A on instance I:

The number of elementary operations in the RAM model A takes on I.

- But... don't get obsessed counting operations in detail
- We'll often abstract from constants (you'll see how)
- Focus on asymptotic growth of runtime with problem size
- We'll meet some Greek friends to help us: $\Theta, O, \Omega, o, \omega$

Example: InsertionSort

Idea: build up a sorted sequence by inserting the next element at the right position.

Like sorting a hand of cards!

InsertionSort

InsertionSort(A)

```
1: for j = 2 to A.length do
2: key = A[j]
3: // Insert A[j] into the sorted sequence A[1 ... j - 1].
4: i = j - 1
5: while i > 0 and A[i] > \text{key do}
6: A[i + 1] = A[i]
7: i = i - 1
8: A[i + 1] = \text{key}
```


Example for InsertionSort

Coming up

- 1. How do we know whether InsertionSort is always correct?
 - Proof by loop invariant
- 2. How long does InsertionSort take to run?
 - Naïve and messy approach for now to motivate a cleaner and easier way (next week).

Loop invariants

- A popular way of proving correctness of algorithms with loops.
- A **loop invariant** is a statement that is always true and that reflects the progress of the algorithm towards producing a correct output.
 - Example: "After i iterations of the loop, at least i things are nice."
 - The hard bit is finding out what is "nice" for your algorithm!
 - Initialisation: the loop invariant is true at initialisation.
 - Often trivial: "After 0 iterations of the loop, at least 0 things are nice."
 - Maintenance: if the loop invariant is true after i iterations, it is also true after i+1 iterations.
 - Need to prove that the loop turns i nice things into i+1 nice things.
 - Termination: when the algorithm terminates, the loop invariant tells that the algorithm is correct.
 - "When terminating, all is nice and that means the output is correct!"

Loop invariant: Example

$$\frac{\text{INSERT-ALL-FIVES}(A, n)}{1: \text{ for } i = 1 \text{ to } n \text{ do}}$$

2: A[i] = 5

- Loop invariant: "At the start of each iteration of the for loop, each element of the subarray A[1..i-1] is a 5"
- Initialisation: For i=1 the empty subarray has no elements (trivial).
- **Maintenance:** Loop invariant says that at step i of the *for* loop the subarray A[1..i-1] contains 5s. During the i_th iteration we insert a 5 in A[i], so by the end of the iteration the loop invariant still holds for step i+1.
- **Termination:** The algorithm terminates when *i=n+1*. Then the loop invariant for *i=n+1* says that all the elements of the subarray *A*[1..n] contain 5s, so the algorithm returns the correct output!

Correctness of InsertionSort

- Loop invariant: "At the start of each iteration of the for loop of lines 1-8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order."
- Initialisation: For j=2 the subarray A[1] is the original A[1] and it is sorted (trivially).
- **Maintenance:** The while loop moves A[j-1], A[j-2], ... one position to the right and inserts A[j] at the correct position i+1. Then A[1..j] contains the original A[1..j], but in sorted order:

$$\underbrace{A[1] \leq A[2] \leq \cdots \leq A[i-1] \leq A[i]}_{\text{sorted before}} \underbrace{A[i+1] \leq A[i+1] \leq A[i+1]}_{\text{from while loop}} \underbrace{A[i+2] \leq \cdots \leq A[j]}_{\text{sorted before}}$$

• **Termination:** The for loop ends when j=n+1. Then the loop invariant for j=n+1 says that the array contains the original A[1..n] in sorted order!

Runtime of InsertionSort

Cost

```
INSERTIONSORT(A)
 1: for j = 2 to A.length do
        \ker = A[j]
 2:
    // Insert A[j] into ...
 3:
    i = j - 1
        while i > 0 and A[i] > \text{key do}
 5:
             A[i+1] = A[i]
 6:
             i = i - 1
 7:
        A[i+1] = \text{key}
 8:
```

Define t_j as the number of times the while loop is executed for that j.

Times

Runtime of InsertionSort

$\overline{\text{InsertionSort}(A)}$	Cost	Times
1: for $j = 2$ to A.length do	c_1	n
2: $\ker = A[j]$	c_2	n-1
3: $// \text{ Insert } A[j] \text{ into } \dots$		
4: $i = j - 1$	c_4	n-1
5: while $i > 0$ and $A[i] > \text{key do}$	<i>c</i> ₅	$t_2 + t_3 + = \sum_{j=2}^{n} t_j$
6: A[i+1] = A[i]	<i>c</i> ₆	$(t_2-1) + (t_3-1) + \dots = \sum_{j=2}^{n} (t_j-1)$
i = i - 1	_	J=2 n
8: $A[i+1] = \text{key}$	c ₇	$(t_2-1) + (t_3-1) + \dots = \sum_{j=2}^{n} (t_j-1)$
	<i>c</i> ₈	n-1

Define t_j as the number of times the while loop is executed for that j.

Runtime of InsertionSort

- How to analyse the runtime of InsertionSort (in a naïve way):
 - 1. Assume that line i is run in time (cost) c_i .
 - 2. Count the number of times that line is executed.
 - \circ Use t_j for the number of times the while loop was executed
 - 3. Sum up products of costs and times.
- Result (it's messy; our Greek friends will help keep things tidy):

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Runtime of InsertionSort: Best case

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Best case: the array is sorted, $t_j=1$ (1x head of while loop)

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

$$= an + b$$

for constants a, b composed of c_1 , c_2 , etc.

Note: an + b is a **linear function** in n.

Runtime of InsertionSort: Worst case

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

Worst case: the array is reverse sorted, $t_i = j$

The following formula is very helpful:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

So

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad \text{and} \quad \sum_{j=2}^{n} (j-1) = \sum_{j=1}^{n-1} j = \frac{(n-1)n}{2}$$

Runtime of InsertionSort: Worst case (2)

Worst case: the array is reverse sorted, $t_i = j$

Using these formulas gives

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \left(\frac{n(n + 1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n - 1)}{2}\right) + c_7 \left(\frac{n(n - 1)}{2}\right) + c_8 (n - 1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

$$= an^2 + bn + c$$

For constants a, b, c composed of c_1 , c_2 , etc.

Note: a **quadratic function** in n

Summary

- Correctness means that an algorithm always produces the intended output for any input.
- Runtime describes the number of elementary operations in a RAM machine.
- Seen InsertionSort as a first example of an algorithm
 - Idea: build up sorted sequence by slotting in the next element.
 - Used a loop invariant to prove that the algorithm is correct.
 - A loop invariant is a statement that is always true.
 - Captures the progress towards producing a correct output at termination.
 - Analysed the runtime of InsertionSort.