

Divergence-Free Shape Correspondence by Deformation

Marvin Eisenberger, Zorah Lähner and Daniel Cremers

Technical University of Munich

Shape Correspondence

Shape Interpolation

Heeren, Rumpf, Wardetzky, Wirth: Time-Discrete Geodesics in the Space of Shells, 2012.

Shape Interpolation

Noisy Correspondence

Mutual Influence

A good correspondence should lead to a good interpolation. A good interpolation should lead to a good correspondence.

Vector Fields

in 2D

in 3D

Deformation Fields

- 1. Look at the point at your current position
- 2. Move an infinitesimal step in the direction indicated by the vector field at this point
- 3. Repeat

Divergence

Chair for Computer Vision and Artificial Intelligence

The divergence counts: 1. how many vectors point into one point

- 2. the magnitude of the vector pointing out of the point
- 3. adds both up.

positive divergence

zero divergence

negative divergence

Divergence-Free Deformation Fields TITT And Artificial Intelligence

Divergence-free deformation fields preserve volume.

Smoothness

In the real world smooth movements are normally more energy efficient and therefore more likely.

- 1. Discretize the space (with a grid) and assign one vector to each grid element.
- **2.** Deformation Fields are just functions $\mathbb{R}^3 \to \mathbb{R}^3$. Define a basis for those.

$$\sum_{k=1}^{K} a_k \cdot v_k(x)$$

Basis for Divergence-Free DFs IIII & Chair for Computer Vision and Artificial Intelligence

There is a closed-form solution for basis functions of smooth, divergence-free DFs.

Any smooth deformation field can be written as:

$$\sum_{k=1}^{K} a_k \cdot v_k(x)$$

- The basis becomes more expressive for higher K.
- This is not spatially discretized and can be evaluated at any x.

Soft Correspondences

 W_{ij} indicates how likely x_i and y_j are to be corresponding

Optimization

1. Given a deformation field a, finding a correspondence by applying the deformation and doing nearest neighbors is easy.

2. Given a correspondence, optimizing for the coefficients of the optimal deformation field in the basis v is moderately easy.

Expectation-Maximization

source and target

point clouds

EM is mostly used when there is some observed data

- 1. which depends on some unknown parameters
- 2. and with some hidden variables

deformation field coefficients

Main Idea:

Fix one of the unknowns, solve for the other.

point correspondence between source and target points

Expectation-Step

Optimizing the correspondence given a deformation field

Expectation-Step

Optimizing the correspondence given a deformation field

W is a soft correspondence matrix based on a Gaussian Mixture Model:

mixture of euclidean and descriptor distance between \mathcal{Y}_n and f_n dependent on deformation coefficients a

Gaussian probability that vertices m and n are corresponding according to the given deformation field (intuition from last slide)

Normalization Term

Notation Reminder

a deformation coefficients

 \mathcal{X}_n source vertex set

 y_n target vertex set

 f_n deformed vertex set, depends on a and x

Time Discretization

Lets move for time t in 2 steps.

Time Discretization

Lets move for time t in 5 steps.

less time steps

faster but certain properties (like volume-preservation) are violated

Optimizing the deformation field given a correspondence

Goal: maximize the probability that the given correspondence comes from this particular deformation field

Unlikely: after applying the deformation field none of the corresponding points land close to each other

Optimizing the deformation field given a correspondence

Goal: maximize the probability that the given correspondence comes from this particular deformation field

Unlikely: after applying the deformation field none of the corresponding points land close to each other

Likely: after applying the complicated deformation field most corresponding points land close to each other

Optimizing the deformation field given a correspondence

Goal: maximize the probability that the given correspondence comes from this particular deformation field

Unlikely: after applying the deformation field none of the corresponding points land close to each other

Likely: after applying the complicated deformation field most corresponding points land close to each other

Very Likely: after applying the easy smooth deformation field most corresponding points land close to each other

Optimizing the deformation field given a correspondence

Notation Reminder

deformation coefficients

 \mathcal{X}_n source vertex set

 y_n target vertex set

 f_n deformed vertex set, depends on a

Optimizing the deformation field given a correspondence

$$E(a) \propto \frac{1}{2} a^{\mathsf{T}} L^{-1} a + \frac{1}{\sigma^2} \sum_{m=1}^{M} \sum_{n=1}^{N} W_{nm} p(\|y_m - f_n\|_2)$$

The optimization can be done with a subsampled version of the inputs. (~3000 vertices in our experiments)

The final deformation field can still be applied to any resolution in the end.

source shape interpolated target shape

Zorah Lähner | Divergence-Free Shape Correspondence by Deformation

Texture Transfer

Computer Vision cial Intelligence

over 200k vertices, complete optimization and interpolation in ~10 mins

Runtime

Computer Vision cial Intelligence

Results

Volume preserving and as-smooth-as-possible is not the same thing as as-rigid-as-possible

Hard Cases

Failure Case

white blue yellow source and target shapes interpolated shape at t=0.5

final shape at t=1 (supposed to be the same as the target)

Conclusion

- We can produce good correspondences and interpolations independent of shape resolution and meshing, and will never end up with degenerated or self-intersecting shapes
- But problems are still
 - (semi) topological changes
 - the volume preservation can not be relaxed
 - in some cases the interpolations are not as-rigid-as-possible
 - the deformation field cannot change over time

Thank you for your attention!

