EDM in g2HDM thesis outline

Introduction

- Motivation
 - Unanswered questions in HEP
 - Limitations of the current leading model (SM)
 - What extra good does g2HDM bring?
 - EDM as a precision probe of NP

The theoretical framework

A review of the Standard Model of particle physics

- Field-theoretic framework
- An overview of SM group structure, particles, and interactions

g2HDM

- g2HDM as a natural extension of the SM
 - What differentiates it from other (similar) models?
- The Lagrangian and Yukawa structure
- How various parameters in the theory can contribute to NP

EDM

- EDM theory in the context of particle physics
- The Lagrangian and model-independent approach (Wilson coefficients?)
- Current status of EDM experiments

My analyses

Lepton EDM

- How g2HDM contributes to lepton-EDM
 - One-loop
 - Two-loop Barr-Zee
- Results
 - For "double-checking" my calculations are valid (and for completeness), reference key results and plots of Prof. Hou 2020 paper
 - $\circ~$ c.f. our 2022 JHEP paper for μ and au
 - o muon
 - One-loop does not produce sizeable contribution to EDM, but is a driving factor for g-2. Mention plot in paper? Girish made the g-2 plot, I don't have

code written for that (yet)

- Two-loop still at least three orders of magnitude below experimental bound. Plot $|d_{\mu}|v.s.|
 ho_{tt}|$
- Tau
 - Not even remotely close to experimental bounds. Plot $|d_{ au}|v.s.|
 ho_{tt}|$
- Summary of the results
 - Both muon and tau are currently "out of reach" by a long shot

Quark EDM

- How g2HDM contributes to lepton-EDM
 - One-loop
 - Two-loop Barr-Zee
 - Weinberg
- Results
 - o c.f. current CEDM project paper
- Summary and analysis of the results

Conclusion and discussion

- Summary of motivation
- Summary of theoretical framework
- Summary of the analyses
- Future prospects