<u>1st</u> 03
(1) F., continous colf
a) $U \sim U(0,1)$ $Y = F^{-1}(U)$ $col_{y} = 0$ $f(y)$ 2
$\begin{cases} \mathcal{F} : \mathbb{R} \to \mathbb{R}^+ & \dots \text{ pdf of } U \text{ sample space } \mathbb{R} \\ \times \mapsto \begin{cases} 1, & \text{if } 0 \leq x \leq 1 \\ 0, & \text{else} \end{cases}$
25 : 그리고 하는데 그리고 10 : 15 : 15 : 15 : 15 : 15 : 15 : 15 :
F-1invertible, (F-1) = Fdifferentiable mith F'= frpay
$\Rightarrow f_{y}(y) = f_{u}(F(y)) f_{F}(y) \dots pdf \circ f Y$
$\Rightarrow coldof Y \Rightarrow \int_{\infty} \int_{U(F(z))} f_{F}(z) dz$
$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(z) dz = \int_{-\infty}^{\infty} f(z) dz = F(y)$
b) X random variable F cdf of X Z=F(X) cdf of Z?
⇒ Fpdf of X
=> pol fz(z) = fx(F-1(z)) (F-1)'(z))
cdf= 5 fx(F-1(s)) (F-1)(s)/ds (g(h(x))) = g'(h(x)). L'(x)
$= F(F^{-1}(z)) = z \text{for } 0 \le z \le 1 (F^{-1}[0,1] \to \mathbb{R})$
since a colf is monotonely increasing the colf of values 2<0 is 0
and of values 2>1 is 1.
$\Rightarrow cold = \begin{cases} 0, z < 0 \\ z, 0 \leq z \leq 1 \end{cases}$ which is the uniform dishibution
(1,271