

Genome-Wide Association Study (TD GWAS)

2020-11-06

Lijiao Ning

lijiao.ning@cnrs.fr

Course Outline

- Brief Introduction
 - ► The Omics
 - ► Some Notions In Genetics
- Basic Genetic Analyses
 - ► Linkage Analysis
 - Association Analysis
- Data Quality Control
- Association Test
- Visualization
- Practical Session

Proteome

- Proteomics
 - ▶ Proteome: the complete set of proteins synthesized by a cell or organism at a given time and under given conditions
 - Characterize biological information such as protein structure, function, location, interaction
 - Study methods
 - ► Electrophoresis
 - Mass spectrometry

- Transcriptomics
 - ► Transcriptome: the total set of transcripts (RNA) produced in a cell or organism
 - ▶ Reflect the level of gene expression
 - Characteristics: dynamic
 - Study methods
 - ► DNA microarrays
 - ▶ NGS (Next generation sequencing) for RNA sequencing

- Genomics
 - ▶ Genome: the whole set of genetic information (DNA) in a cell or organism
 - Human genome
 - ► About 3 billion DNA base pairs
 - ► More than 20,000 protein coding genes
 - Diploid (2n)
 - ▶ 23 pairs of chromosomes
 - Study method
 - ► DNA microarray
 - ► NGS for genotyping

Genomic Sequence

Alleles

- Allele: different versions of the same gene which located at the same genetic position (locus)
 - ► Homozygotes: two copies of the same allele
 - ► Heterozygotes: one of each type of allele

- Dominant: the presence of a single allele is sufficient for the phenotype to be expressed
- Recessive: need a pair of alleles for the phenotype to be expressed
- ► Codominant: simultaneous expression of both alleles

Genotype & Phenotype

- Genotype: all genes carried by an individual
- Phenotype: observable characteristics of an individual
- ► *E.g.*: Blood group gene on chromosome 9

Mutation & Polymorphism

- Mutation: changes in DNA sequence compared to a "normal" form (reference genome consortium: https://www.ncbi.nlm.nih.gov/grc), naturally occurring but rare
- Polymorphism: variations in DNA sequence, relatively more frequent in a population
- Different types of mutation / polymorphism
 - ▶ Germline vs. Somatic
 - ► Chromosomal modification: translocation, inversion, fission, fusion
 - Punctual modification: substitution, insertion, deletion, duplication

Punctual Mutations

- SNP (single nucleotide polymorphism)
 - Synonym: no change in produced amino acid
 - ► Missense: results in produced of another amino acid
 - ► Nonsense: results in a premature stop codon
- INDEL (insertion or deletion)
 - ► In-frame: insertion or deletion of a multiple of 3 bases, no shift in the reading frame
 - Frameshift

VCF (Variant Call Format)

Meta information

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data"
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Qualit
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth":
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                                                                                     NA00001
#CHROM POS
                                                                                         FORMAT
                ID
                                          QUAL FILTER INFO
                                                                                                                    NA00002
                                                                                         GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51
                                              PASS NS=3:DP=14:AF=0.5:DB:H2
       14370
               rs6054257 G
                                                                                         GT:GQ:DP:HQ 0 0 0:49:3:58,50 0 1:3:5:65,3
20
       17330
                                                      NS=3;DP=11;AF=0.017
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
       1110696 rs6040355 A
                                              PASS
20
                                                                                         GT:GQ:DP:HQ 0 0 0:54:7:56,60 0 0 0:48:4:51,51
       1230237 .
                                              PASS
                                                      NS=3;DP=13;AA=T
        1234567 microsat1 GTC
                                              PASS
                                                      NS=3;DP=9;AA=G
                                                                                         GT:GQ:DP
                                                                                                     0/1:35:4
                                                                                                                     0/2:17:2
```

mandatory columns

Genotype columns

(Source: https://samtools.github.io/hts-specs/VCFv4.2.pdf)

Basic Genetic Analyses

- Linkage Analysis
 - Applied to family data
 - ▶ Aims to find alleles whose transmission is not independent in the family
- Association Analysis
 - Applied to population data
 - Search for alleles significantly associated with the phenotype of interest
 - Two main types
 - ► Candidate gene study
 - ▶ Genome-wide

Association Test

Chi2 test

	AA	Aa	aa
Status = 1 (case)	O _{AA, 1}	O _{aa, 1}	O _{aa, 1}
Status = 0 (control)	$O_{AA, 0}$	$O_{aa, 0}$	$O_{aa, 0}$

- Generalized linear regression
 - ► Logistic model for discrete trait
 - ► Linear model for continuous trait

PLINK: A GWAS Toolset

- Open-source whole genome association analysis toolset
- Special input formats for PLINK
 - ► For plink1.*: .bim, .bed, .fam
 - ► For plink2.0: .pvar, .pgen, .psam
- More details: https://www.cog-genomics.org/plink2/formats

```
| > head -n 3 1_QC_GWAS/HapMap_3_r3_1.fam

1328 NA06989 0 0 2 2

1377 NA11891 0 0 1 2

1349 NA11843 0 0 1 1

| /disks/DATATMP/SB_lning/TD_GWAS @ R402 (lning)

| > head -n 3 HapMap_3_r3_1.psam

#FID IID PAT MAT SEX PHENO1

1328 NA06989 0 0 2 2

1377 NA11891 0 0 1 2
```

Data Quality Control

- Sample-based
 - Sample call rate (--missing)
 - Heterozygosity (--het)
 - Gender discordant (--check-sex)

0.4

Homozygosity Rate

0.6

0.8

Data Quality Control

- Sample-based
 - ► Sample call rate
 - Heterozygosity
 - Gender discordant
 - Relatedness (--genome)
 - Population structure (--make-grm-bin -- pca)

```
IBD windows Pair count
1 [0.2,0.3] = Second degree relatives 2
2 (0.3,0.4] 0
3 (0.4,0.6] = First degree relatives 97
4 (0.6,0.8] 0
5 (0.8,1] = MZ twins/duplicates 0
```


Data Quality Control

- Variant-based
 - Variant call rate (--missing)
 - Mendel errors (--mendel)
 - Minor allele frequency (MAF) distribution (--freq)
 - Hardy-Weinberg Equilibrium (--hardy)

Variant Call Rate Check

HWE P-value Distribution

Generalize Linear Regression

Results of logistic model

Visualization

- Quantile-Quantile Plot
 - ightharpoonup Genomic inflation factor λ

Visualization

- Manhattan Plot
 - ► Adapt for huge data-points visualization

References

- Agler, Cary S et al. "Protocols, Methods, and Tools for Genome-Wide Association Studies (GWAS) of Dental Traits." *Methods in molecular biology (Clifton, N.J.)* vol. 1922 (2019): 493-509. doi:10.1007/978-1-4939-9012-2_38
- Tam, Vivian et al. "Benefits and limitations of genome-wide association studies." *Nature reviews. Genetics* vol. 20,8 (2019): 467-484. doi:10.1038/s41576-019-0127-1
- Marees, Andries T et al. "A tutorial on conducting genome-wide association studies: Quality control and statistical analysis." *International journal of methods in psychiatric research* vol. 27,2 (2018): e1608. doi:10.1002/mpr.1608
- Chang, Christopher C et al. "Second-generation PLINK: rising to the challenge of larger and richer datasets." GigaScience vol. 47. 25 Feb. 2015, doi:10.1186/s13742-015-0047-8
- Chang C.C. (2020) Data Management and Summary Statistics with PLINK. In: Dutheil J. (eds) Statistical Population Genomics. Methods in Molecular Biology, vol 2090. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0199-0_3
- Zhang, Xiang et al. "Chapter 10: Mining genome-wide genetic markers." PLoS computational biology vol. 8,12 (2012): e1002828. doi:10.1371/journal.pcbi.1002828

Practical Session

QC + Association test on HapMap data:

https://share-good.egid.fr/fop/VZfxQvAD/TD_GWAS_data.zip

Data description can be found here:

https://github.com/Ning-L/TD_GWAS