Sapumaru Amdrei - Kinto Grupa: 314CC data: 13.03.2021

#Osc	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5
t(s)	0	0.80	1.80	2.80	3.80	4.80	5.80	6.80	7.80	8.80	9.80	10,90	11.90	12.80	13.80	14.80	15.85	16.80	17.90	18.90
A	680	720	560	440	350	280	220	170	140	110	85	70	50	40	35	30	20	15	10	5

t(n)=c+T1*n

Calculam T1 folosind dreapta de regresie pentru punctele din tabelul de mai sus . Consideram matricea A de tipul 20 de linii si 2 coloane care este alcatuita astfel: pe prima coloana sunt doar elemente egale cu 1, iar pe a doua se afla numarul de ordin al oscilatiilor . De asemenea , consideram vectorul coloana b egal cu valorile lui t din linia a II-a a tabelului .

$$A \cdot A = A \cdot C = A \cdot$$

#Osc	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5
t(s)	0	0.80	1.80	2.80	3.80	4.80	5.80	6.80	7.80	8.80	9.80	10.90	11.90	12.80	13.80	14.80	15.85	16.80	17.90	18.90
A	680	700	560	440	350	280	220	170	140	110	85	70	50	40	35	30	20	15	10	5
Ln(A)	6.52	6.55	6.32	6.08	5.85	5.63	5.39	5.13	4.94	4.70	4.44	4.24	3.91	3.68	3.55	3.40	3.00	2.70	2.30	1.60

Ln[A(n)]=ln[A(0)]-D*n=6.52-D*n

Analog am calculat D(decrementului logaritmic al oscilației) folosind dreapta de regresie . Am considerat o matrice de tipul 20x2 care pe prima coloana are doar 1, iar pe a doua elementele liniei din tabel #Osc. De asemenea am luat vectorul c.oloana format din elementele liniei din table In(A). In final am obtinut , aproximativ, D=0.44.

Calculam coeficientel de amortisare 8= D

8=0.440=0.21951

e= 2.718 Ori

