Московский государственный технический университет имени Н.Э. Баумана

ИДЕНТИФИКАЦИЯ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

Домашнее задание № 1 по курсу «Метрология, стандартизация и сертификация»

ЦЕЛИ РАБОТЫ

- 1. Изучить методы оценивания параметров закона распределения случайной величины по результатам эксперимента
- 2. Научиться проводить идентификацию закона распределения результатов измерений с помощью критерия согласия «хи-квадрат» Пирсона

СОДЕРЖАНИЕ

- 1. Основные теоретические положения
- 2. Пример выполнения работы
- 3. Задания для выполнения
- 4. Требования к оформлению отчета
- 5. Приложения

1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

На практике, когда требования к тщательности и достоверности обработки результатов измерений достаточно высоки, знание реального закона распределения измеряемых величин необходимо: числовые значения вероятностных характеристик могут существенно отличаться при различных законах.

С целью нахождения закона распределения той или иной величины (параметра) производятся сотни, а иногда и тысячи измерений. После построения эмпирического закона распределения величины необходимо построить соответствующую ему модель теоретического закона распределения, обычно путем сопоставления эмпирической модели известным теоретическим законам распределения. Эта задача решается с помощью критериев согласия.

В качестве меры расхождения между теоретическими вероятностями и статистическими частотами на практике используется критерий χ^2 Пирсона («хи-квадрат»):

$$\chi^2 = n \sum_{i=1}^k \frac{(P_i^* - P_i)^2}{P_i},\tag{1}$$

где

n – объем выборки, количество измерений;

k – число разрядов (интервалов) статистического ряда;

 P_i^* — эмпирическая (статистическая) частота появления случайной величины X (результата измерения) в i-ом интервале;

 P_i — вероятность попадания величины X в i-й интервал, рассчитанная по предполагаемому теоретическому распределению (в частности, для нормального закона распределения).

Пусть произведено n независимых измерений некоторой величины X, рассматриваемой как случайная. Результаты измерений для удобства представляются в виде вариационного ряда — последовательности измеренных значений величины, расположенных в порядке возрастания от наименьшего до наибольшего.

Далее весь диапазон измеренных значений величины X разделяется на некоторое число интервалов (разрядов). Число этих интервалов k определяется с помощью формулы

$$k = 3{,}32 \lg n + 1 \tag{2}$$

После определения числа разрядов вариационного ряда строится статистический ряд — таблица, в которой приведены длины разрядов I_i (в порядке их соответствия оси абсцисс измеряемой величины X), количества значений величины n_i , оказавшихся в том или ином разряде, а также статистические частоты P^*_i (см. таблицу 1).

Таблица 1 – Статистический ряд

I_i	$x_1; x_2$	$x_2; x_3$	•••	x_i, x_{i+1}	•••	$x_k; x_{k+1}$
n_i	n_{I}	n_2	•••	n_i	•••	n_k
P^*_i	$P_1^* = \frac{n_1}{n}$	$P_2^* = \frac{n_2}{n}$	•••	$P_i^* = \frac{n_i}{n}$	•••	$P_k^* = \frac{n_k}{n}$

В таблице границы интервалов обозначаются как x_i ; x_{i+1} . Затем находятся *теоретические вероятности* попадания величины X в каждый из интервалов: P_1, P_2, \ldots, P_k .

В случае рассмотрения гипотезы о том, что измеряемая случайная величина подчиняется нормальному закону распределения, для описания теоре-

тического распределения случайной величины можно использовать дифференциальный закон f(x):

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{-\frac{(x - m_x)^2}{2\sigma_x^2}}$$
 (3)

где

 m_{χ} – математическое ожидание величины X;

 σ_{χ} — среднее квадратическое отклонение (СКО) величины X.

Теоретическую вероятность в интервале (x_i, x_{i+1}) при нормальном законе распределения можно определить с помощью формулы (4).

$$P_{i} = \Phi\left(\frac{x_{i+1} - m_{x}}{\sigma_{x}}\right) - \Phi\left(\frac{x_{i} - m_{x}}{\sigma_{x}}\right),\tag{4}$$

Поскольку m_x и σ_x неизвестны, то при расчетах их заменяют статистическими значениями: средним арифметическим значением m_x^* и статистическим СКО S_x , расчет которых выполняется в соответствии с формулами (5) и (6) соответственно.

$$m^*_{x} = \sum_{i=1}^k \tilde{x}_i P_i^* \tag{5}$$

где

 \tilde{x}_i — среднее значение величины X в i-м интервале.

$$S_x^2 = \sum_{i=1}^k \frac{n_i (\tilde{x}_i - m_x^*)^2}{n - 1} \tag{6}$$

Доказано, что статистика χ^2 при $n \to \infty$ имеет χ^2 – распределение с m степенями свободы.

$$m = k - r - 1, \tag{7}$$

где

k — число интервалов эмпирического распределения (вариационного ряда);

r — число параметров теоретического распределения, определяемых по опытным данным (в случае нормального закона распределения число оцениваемых по выборке параметров r=2).

Если расхождение случайное, то χ^2 подчиняется χ^2 – распределению Пирсона.

Схема применения критерия χ^2 сводится к следующему:

- 1. Определяется мера расхождения эмпирических и теоретических частот χ^2 по формуле (1).
- 2. Для выбранного уровня значимости α по таблице χ^2 —распределения находят критическое значение $\chi^2_{\kappa p} = \chi^2(\alpha, m)$ при числе степеней свободы m = k r 1.
- 3. Если фактически наблюдаемое значение χ^2 больше критического, то есть $\chi^2 > \chi_{\kappa p}^2$ гипотеза о нормальности закона распределения измеряемой величины X отвергается, если $\chi^2 \leq \chi_{\kappa p}^2$, то гипотеза не противоречит опытным данным.

2. ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

При проведении 500 опытов для нахождения абсолютной погрешности Δ автоматического наведения радиотелескопа в заданную точку небесной сферы (в угловых секундах) получены результаты, сведенные в статистический ряд (Таблица 2).

Таблица 2 – Статистический ряд результатов измерения

$I_i=\Delta_i$	-8; -6	-6; -4	-4; -2	-2; 0	0; +2	+2; +4	+4; +6	+6; +8
n_i	5	26	74	131	137	86	30	11
P^*_i	0,010	0,052	0,148	0,262	0,274	0,172	0,060	0,022

Требуется идентифицировать закон распределения погрешностей по данным статистического ряда одному из теоретических законов распределения.

1. Построим *гистограмму* как графическое представление статистической плотности распределения. Вид гистограммы на рис. 1 свидетельствует о том, что возможной теоретической моделью данного распределения является нормальный закон, который и примем с целью идентификации.

Рис. 1 – Гистограмма распределения результатов измерений

2. Определим статистические оценки числовых параметров нормального распределения — математического ожидания m и дисперсии σ .

Среднее арифметическое значение погрешности m^* найдем по формуле (5)

$$m^* = \sum_{i=1}^k \widetilde{\Delta}_i \, P_i^*$$

где

 $\widetilde{\Delta}_i$ — среднее арифметическое погрешности Δ в i-м разряде (интервале);

$$m^* = 0,2080$$
 угл. с.

Статистическое СКО S найдем с помощью формулы (6).

$$S^{2} = \sum_{i=1}^{k} \frac{n_{i} (\widetilde{\Delta}_{i} - m^{*})^{2}}{n-1}$$

$$S^2 = 7,7562 (угл. c)^2$$

$$S = 2,7850$$
 угл. c

3. Найдем теоретические вероятности попадания случайной величины в каждый из интервалов, используя формулу (4) и таблицу функции Лапласа (приложение 1). Результаты расчетов сведем в таблицу 3.

Таблица 3 – Результаты расчетов теоретических вероятностей

i	n_i	x_i, x_{i+1}	$z_i = \frac{x_i - m_x}{\sigma_x}$	$z_{i+1} = \frac{x_{i+1} - m_{x}}{\sigma_{x}}$	$\Phi(z_i)$	$\Phi(z_{i+1})$	P_i			
1	5	-8; -6	-2,95	-2,23	-0,49840	-0,48710	0,01130			
2	26	-6; -4	-2,23	-1,51	-0,48710	-0,43450	0,05260			
3	74	-4; -2	-1,51	-0,79	-0,43450	-0,28520	0,14930			
4	131	-2; 0	-0,79	-0,07	-0,28520	-0,02790	0,25730			
5	137	0; +2	-0,07	0,64	-0,02790	0,23890	0,26680			
6	86	+2; +4	0,64	1,36	0,23890	0,41310	0,17420			
7	30	+4; +6	1,36	2,08	0,41310	0,48120	0,06810			
8	11	+6; +8	2,08	2,80	0,48120	0,49740	0,01620			
	$\sum P_i = 0,99580$									

В рассматриваемом примере $\sum P_i \approx 0,996$, так как табличные аргументы функции Лапласа обычно позволяют учесть только два разряда после запятой.

4. С помощью формулы (1) определим меру расхождения между теоретическими вероятностями P_i и статистическими частотами P_i^* . Оформим вычисления в виде таблицы 4.

Таблица 4 –	- Результаты	вычисления	критерия	χ^2
				<i>/</i> L

i	n_i	X_i, X_{i+1}	P_i^*	P_i	$\frac{n(P_i^* - P_i)^2}{P_i}$
1	5	-8; -6	0,0100	0,01130	0,0748
2	26	-6; -4	0,0520	0,05260	0,0034
3	74	-4; -2	0,1480	0,14930	0,0057
4	131	-2; 0	0,2620	0,25730	0,0429
5	137	0; +2	0,2740	0,26680	0,0972
6	86	+2; +4	0,1720	0,17420	0,0139
7	30	+4; +6	0,0600	0,06810	0,4817
8	11	+6; +8	0,0220	0,01620	1,0383
	•				$\chi^2 = 1,7578$

- 5. Находим число степеней свободы распределения «хи-квадрат» по формуле (7) с учетом того, что достаточное число независимых условий для нормального закона равно трем: m=k-r-1=8-3=5.
- 6. Для заданного уровня значимости $\alpha = 0.02$ по таблице χ^2 распределения (приложение 2) найдем критическое значение $\chi^2_{\kappa\rho} = \chi^2 (0.02; 5)$ при числе степеней свободы m = 5.

$$\chi_{\rm \kappa p}^2 = 13,388.$$

7. Так как фактически наблюдаемое значение χ^2 меньше критического, то гипотеза не противоречит опытным данным и закон распределения опытных данных можно считать нормальным.

8. Запишем теоретический закон распределения и построим *график плотности распределения вероятностей* результатов измерения, как графическое представление теоретической плотности распределения.

Для описания теоретического закона распределения воспользуемся формулой (3), в которой неизвестные параметры распределения m_x и σ_x заменим статистическими оценками числовых параметров нормального распределения m^* и S, рассчитанными в п.2:

$$f(\Delta) = \frac{1}{2.7850 \sqrt{2\pi}} e^{-\frac{(\Delta - 0.2080)^2}{2 \cdot 7.7562}}$$

Для наглядности *теоретический график* плотности распределения вероятностей и *гистограмму* (как графическое представление статистической плотности распределения) построим на одной диаграмме.

Для приведения графиков статистического и теоретического распределений к одному масштабу используем нормированные значения $f(\Delta)_{\rm H}$.

$$f(\Delta)_{\mathrm{H}} = \delta \Delta \cdot n \cdot f(\Delta)$$

где

 $\delta\Delta$ — ширина интервала, $\delta\Delta=\Delta_{i+1}-\Delta_i,\,\delta\Delta=2$ угл. с. n — количество измерений.

Диаграмма представлена на рис. 2.

Рис. 2 – Диаграмма сравнения теоретического и статистического распределений

3. ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ

3.1. ЗАДАНИЕ

- 1. Изучить параметры закона распределения случайной величины и методы их оценивания по результатам эксперимента.
- 2. Изучить порядок применения критерия χ^2 Пирсона для идентификации закона распределения результатов измерений.
- 3. На основе данных результатов измерений построить гистограмму, выдвинуть гипотезу о законе распределения случайной величины и проверить, насколько она согласуется с экспериментом.

3.2. ПОРЯДОК ВЫПОЛНЕНИЯ

- 1. Получить исходные данные у преподавателя (данные предоставляются в виде статистического ряда). Занести данные в графы 1, 2, 3 сводной таблицы (таблица 5).
- 2. Для каждого интервала статистического ряда *найти статистиче- ские частовы* P^*_{i} . Данные занести в графу 4 сводной таблицы (таблица 5).
- 3. На основе данных результатов измерений *построить гистограмму* (см. рисунок 1) и выдвинуть гипотезу о законе распределения случайной величины.
- 4. *Определить статистические оценки* числовых параметров закона распределения:
 - среднее арифметическое m^* с помощью формулы (5);
 - статистическое СКО S с помощью формулы (6).

Данные расчетов занести в графы 5, 6, 7 сводной таблицы.

- 5. *Найти теоретические вероятности* попадания случайной величины в каждый из интервалов, используя формулу (4) и таблицу функции Лапласа (приложение 1). Результаты вычислений записать в графы 8, 9, 10, 11, 12 сводной таблицы (см. таблицу 5).
- 6. **Вычислить значение критерия** χ^2 с помощью формулы (1). Результаты вычислений записать в графу 13 сводной таблицы.
- 7. **Найти число степеней свободы** m распределения «хи-квадрат» по формуле (7).
- 8. Для уровня значимости $\alpha = 0.02$ по таблице χ^2 –распределения (приложение 2) найти критическое значение $\chi^2_{\kappa p}$ при числе степеней свободы m.
- 9. **Сравнить** фактически наблюдаемое значение χ^2 с критическим $\chi^2_{\kappa p}$. Сделать вывод о принятии выдвинутой гипотезы о законе распределения случайной величины.
- 10. На гистограмме построить теоретический график плотности распределения вероятностей случайной величины (см. рис. 2).

Таблица 5 – Сводная таблица результатов расчетов

i	X_i, X_{i+1}	n_i	$P_i^* = \frac{n_i}{n}$	$ ilde{x}_i$	$\tilde{x}_i P_i^*$	$\frac{n_i(\tilde{x}_i - m^*_{\chi})^2}{n-1}$	$z_i = \frac{x_i - m_x}{\sigma_x}$	$z_{i+1} = \frac{x_{i+1} - m_x}{\sigma_x}$	$\Phi(z_i)$	$\Phi(z_{i+1})$	P_i	$\frac{n(P_i^* - P_i)^2}{P_i}$
1	2	3	4	5	6	7	8	9	10	11	12	13
1	$x_1; x_2$	n_1	P_1^*	\widetilde{x}_1	$\tilde{x}_1 P_1^*$		z_1	Z_2	$\Phi(z_1)$	$\Phi(z_2)$		
2	$x_2; x_3$	n_2	P_2^*	\tilde{x}_2	$\tilde{x}_2 P_2^*$		z_2	Z_3	$\Phi(z_2)$	$\Phi(z_3)$		
			•••	•••	•••				•••			•••
i	X_i, X_{i+1}	n_i	P_i^*	\tilde{x}_i	$\tilde{\pmb{\chi}}_iP_i^*$		z_i	z_{i+1}	$\Phi(z_i)$	$\Phi(z_{i+1})$		•••
		•••	•••	•••	•••		•••		•••	• • •	•••	•••
k	$x_k; x_{k+1}$	n_k	P_k^*	\widetilde{x}_k	$\tilde{x}_k P_k^*$		Z_k	z_{k+1}	$\Phi(z_k)$	$\Phi(z_{k+1})$		•••
		$n = \sum n_i$	$\sum P_i^* =$		$m^*_{\ _{\mathcal{X}}}=$	$S^2 = S = S = S$					$\sum P_i =$	$\chi^2 =$

m = k - r - 1, m =______ $\alpha =$ ______ $\chi^{2}_{\text{Kp}} =$ ______

4. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ОТЧЕТА

Отчет о выполнении домашнего задания должен содержать нижеприведенные материалы и удовлетворять следующим условиям:

- 1. **Титульный лист** с обязательным указанием названия работы, Ф.И.О. студента, номера группы, Ф.И.О. преподавателя, проверяющего задание (приложение 3).
 - 2. Основные теоретические положения, определения и формулы.
 - 3. Основные расчеты
 - исходные данные;
 - расчетные формулы;
 - сводная таблица результатов расчетов.
 - 4. Построенные по данным вычислений графики, диаграммы.
 - 5. Выводы по работе.

Отчет по домашнему заданию выполняется рукописным способом, аккуратно, формулы записываются четко.

5. ПРИЛОЖЕНИЯ

Приложение 1

Функция распределения Лапласа

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{t^{2}}{2}} dt$$

Z	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0,00
-3,5	-0,49983	-0,49983	-0,49982	-0,49981	-0,49980	-0,49980	-0,49979	-0,49978	-0,49978	-0,49977
-3,4	-0,49976	-0,49975	-0,49974	-0,49973	-0,49972	-0,49971	-0,49970	-0,49969	-0,49967	-0,49966
-3,3	-0,49965	-0,49964	-0,49962	-0,49961	-0,49960	-0,49958	-0,49957	-0,49955	-0,49953	-0,49952
-3,2	-0,49950	-0,49948	-0,49946	-0,49944	-0,49942	-0,49940	-0,49938	-0,49936	-0,49934	-0,49931
-3,1	-0,49929	-0,49926	-0,49924	-0,49921	-0,49918	-0,49915	-0,49913	-0,49910	-0,49909	-0,49903
-3,0	-0,49900	-0,49896	-0,49893	-0,49889	-0,49886	-0,49882	-0,49878	-0,49874	-0,49869	-0,49865
-2,9	-0,49860	-0,49860	-0,49850	-0,49850	-0,49840	-0,49840	-0,49830	-0,49830	-0,49820	-0,49810
-2,8	-0,49810	-0,49800	-0,49790	-0,49790	-0,49780	-0,49770	-0,49770	-0,49760	-0,49750	-0,49740
-2,7	-0,49740	-0,49730	-0,49720	-0,49710	-0,49700	-0,49690	-0,49680	-0,49670	-0,49660	-0,49650
-2,6	-0,49640	-0,49630	-0,49620	-0,49610	-0,49600	-0,49590	-0,49570	-0,49560	-0,49550	-0,49530
-2,5	-0,49520	-0,49510	-0,49490	-0,49480	-0,49460	-0,49450	-0,49430	-0,49410	-0,49400	-0,49380
-2,4	-0,49360	-0,49340	-0,49320	-0,49310	-0,49290	-0,49270	-0,49250	-0,49220	-0,49200	-0,49180
-2,3	-0,49160	-0,49130	-0,49110	-0,49090	-0,49060	-0,49040	-0,49010	-0,48980	-0,48960	-0,48930
-2,2	-0,48900	-0,48870	-0,48840	-0,48810	-0,48780	-0,48750	-0,48710	-0,48680	-0,48640	-0,48610
-2,1	-0,48570	-0,48540	-0,48500	-0,48460	-0,48420	-0,48380	-0,48340	-0,48300	-0,48260	-0,48210
-2,0	-0,48170	-0,48120	-0,48080	-0,48030	-0,47980	-0,47930	-0,47880	-0,47830	-0,47780	-0,47720
-1,9	-0,47670	-0,47610	-0,47560	-0,47500	-0,47440	-0,47380	-0,47320	-0,47260	-0,47190	-0,47130
-1,8	-0,47060	-0,46990	-0,46930	-0,46860	-0,46780	-0,46710	-0,46640	-0,46560	-0,46490	-0,46410
-1,7	-0,46330	-0,46250	-0,46160	-0,46080	-0,45990	-0,45910	-0,45820	-0,45730	-0,45640	-0,45540
-1,6	-0,45450	-0,45350	-0,45250	-0,45150	-0,45050	-0,44950	-0,44840	-0,44740	-0,44630	-0,44520
-1,5	-0,44410	-0,44290	-0,44180	-0,44060	-0,43940	-0,43820	-0,43700	-0,43570	-0,43450	-0,43320
-1,4	-0,43190	-0,43060	-0,42920	-0,42790	-0,42650	-0,42510	-0,42360	-0,42220	-0,42070	-0,41920
-1,3	-0,41770	-0,41620	-0,41470	-0,41310	-0,41150	-0,40990	-0,40820	-0,40660	-0,40490	-0,40320
-1,2	-0,40150	-0,39970	-0,39800	-0,39620	-0,39430	-0,39250	-0,39070	-0,38880	-0,38690	-0,38490
-1,1	-0,38300	-0,38100	-0,37900	-0,37700	-0,37490	-0,37290	-0,37080	-0,36860	-0,36650	-0,36430
-1,0	-0,36210	-0,35990	-0,35770	-0,35540	-0,35310	-0,35080	-0,34850	-0,34610	-0,34380	-0,34130
-0,9	-0,33890	-0,33650	-0,33400	-0,33150	-0,32890	-0,32640	-0,32380	-0,32120	-0,31860	-0,31590
-0,8	-0,31330	-0,31060	-0,30780	-0,30510	-0,30230	-0,29950	-0,29670	-0,29390	-0,29100	-0,28810
-0,7	-0,28520	-0,28230	-0,27930	-0,27640	-0,27340	-0,27030	-0,26730	-0,26420	-0,26110	-0,25800
-0,6	-0,25490	-0,25170	-0,24860	-0,24540	-0,24220	-0,23890	-0,23570	-0,23240	-0,22910	-0,22570
-0,5	-0,22240	-0,21900	-0,21570	-0,21230	-0,20880	-0,20540	-0,20190	-0,19850	-0,19500	-0,19150
-0,4	-0,18790	-0,18440	-0,18080	-0,17720	-0,17360	-0,17000	-0,16640	-0,16280	-0,15910	-0,15540
-0,3	-0,15170	-0,14800	-0,14430	-0,14060	-0,13680	-0,13310	-0,12930	-0,12550	-0,12170	-0,11790
-0,2	-0,11410	-0,11030	-0,10640	-0,10260	-0,09870	-0,09480	-0,09100	-0,08710	-0,08320	-0,07930
-0,1	-0,07530	-0,07140	-0,06750	-0,06360	-0,05960	-0,05570	-0,05170	-0,04780	-0,04380	-0,03980
-0,0	-0,03590	-0,03190	-0,02790	-0,02390	-0,01990	-0,01600	-0,01200	-0,00800	-0,00400	0,00000

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
+0,0	0,00000	0,00400	0,00800	0,01200	0,01600	0,01990	0,02390	0,02790	0,03190	0,03590
+0,1	0,03980	0,04380	0,04780	0,05170	0,05570	0,05960	0,06390	0,06750	0,07140	0,07530
+0,2	0,07930	0,08320	0,08710	0,09100	0,09480	0,09870	0,10260	0,10610	0,11030	0,11410
+0,3	0,11790	0,12170	0,12550	0,12930	0,13310	0,13680	0,14060	0,14430	0,14800	0,15170
+0,4	0,15540	0,15910	0,16280	0,16640	0,17000	0,17360	0,17720	0,18080	0,18440	0,18790
+0,5	0,19150	0,19500	0,19850	0,20190	0,20540	0,20880	0,21230	0,21570	0,21900	0,22240
+0.6	0,22570	0,22910	0,23240	0,23570	0,23890	0,24220	0,24540	0,24860	0,25170	0,25490
+0,7	0,25800	0,26110	0,26420	0,26730	0,27040	0,27340	0,27640	0,27910	0,28230	0,28520
+0,8	0,28810	0,29100	0,29390	0,29670	0,29950	0,30230	0,30510	0,30790	0,31060	0,31330
+0,9	0,31560	0,31860	0,32120	0,32380	0,32640	0,32890	0,33150	0,33400	0,33650	0,33890
+1,0	0,34130	0,34380	0,34610	0,34850	0,35080	0,35310	0,35540	0,35770	0,35990	0,36210
+1,1	0,36430	0,36650	0,36860	0,37080	0,37290	0,37490	0,37700	0,37900	0,38100	0,38300
+1,2	0,38490	0,38690	0,38880	0,39070	0,39250	0,39440	0,39620	0,39800	0,39970	0,40150
+1,3	0,40320	0,40490	0,40660	0,40820	0,40990	0,41150	0,41310	0,41470	0,41620	0,41770
+1,4	0,41920	0,42070	0,42220	0,42360	0,42510	0,42650	0,42790	0,42920	0,43060	0,43190
+1,5	0,43320	0,43450	0,43570	0,43700	0,43820	0,43940	0,44060	0,44180	0,44290	0,44410
+1,6	0,44520	0,44630	0,44740	0,44840	0,44950	0,45050	0,45150	0,45250	0,45350	0,45450
+1,7	0,45540	0,45640	0,45730	0,45820	0,45910	0,45990	0,46080	0,46160	0,45250	0,46330
+1,8	0,46410	0,46490	0,46560	0,46640	0,46710	0,46780	0,46860	0,46930	0,46990	0,47060
+1,9	0,47130	0,47190	0,47260	0,47320	0,47380	0,47440	0,47500	0,47560	0,47610	0,47670
+2,0	0,47730	0,47780	0,47830	0,47880	0,47930	0,47980	0,48030	0,48080	0,48120	0,48170
+2,1	0,48210	0,48260	0,48300	0,48340	0,48380	0,48420	0,48460	0,48500	0,48540	0,48570
+2,2	0,48610	0,48640	0,48680	0,48710	0,48750	0,48780	0,48810	0,48840	0,48870	0,48900
+2,3	0,48930	0,48960	0,48980	0,49010	0,49040	0,49060	0,49090	0,49110	0,49130	0,49160
+2,4	0,49180	0,49200	0,49220	0,49250	0,49270	0,49290	0,49310	0,49320	0,49340	0,49360
+2,5	0,49380	0,49400	0,49410	0,49430	0,49450	0,49460	0,49480	0,49490	0,49510	0,49520
+2,6	0,49530	0,49550	0,49560	0,49570	0,49590	0,49600	0,49610	0,49620	0,49630	0,49640
+2,7	0,49650	0,49660	0,49670	0,49680	0,49690	0,49700	0,49710	0,49720	0,49730	0,49740
+2,8	0,49740	0,49750	0,49790	0,49770	0,49770	0,49780	0,49790	0,49790	0,49800	0,49810
+2,9	0,49810	0,49820	0,49830	0,49830	0,49840	0,49840	0,49850	0,49850	0,49860	0,49860
+3,0	0,49865	0,49869	0,49874	0,49878	0,49882	0,49886	0,49889	0,49893	0,49896	0,49900
+3,1	0,49903	0,49906	0,49910	0,49913	0,49915	0,49918	0,49921	0,49924	0,49926	0,49929
+3,2	0,49931	0,49934	0,49936	0,49938	0,49940	0,49942	0,49944	0,49946	0,49948	0,49950
+3,3	0,49952	0,49953	0,49955	0,49957	0,49958	0,49960	0,49961	0,49962	0,49964	0,49965
+3,4	0,49966	0,49967	0,49969	0,49970	0,49971	0,49972	0,49973	0,49974	0,49975	0,49976
+3,5	0,49977	0,49978	0,49978	0,49979	0,49980	0,49981	0,49981	0,49982	0,49983	0,49983

Приложение 2

Значения $\chi^2_{\kappa p}$ в зависимости от числа степеней свободы m и уровня значимости α

m			Урово	ень значимо	ости α		
m	0,20	0,15	0,10	0,05	0,02	0,01	0,001
1	1,642	2,072	2,706	3,841	5,412	6,635	10,828
2	3,219	3,794	4,605	5,991	7,824	9,210	13,816
3	4,642	5,317	6,251	7,815	9,837	11,345	16,266
4	5,989	6,745	7,779	9,488	11,668	13,277	18,467
5	7,289	8,115	9,236	11,070	13,388	15,086	20,515
6	8,558	9,446	10,645	12,592	15,033	16,812	22,458
7	9,803	10,748	12,017	14,067	16,622	18,475	24,322
8	11,030	12,027	13,362	15,507	18,168	20,090	26,124
9	12,242	13,288	14,684	16,919	19,679	21,666	27,877
10	13,442	14,534	15,987	18,307	21,161	23,209	29,588