

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

Отчет о выполнении Лабораторной работы №1 по дисциплине Цифровые устройства и микропроцессоры

Выполнил студент:	Худяков Артём Сергеевич	
	фамилия, имя, отчество	
Группа: РЛ6-61		
Проверил: Семеренко Д. А.		
	подпись	
Оценка	Дата	

Цель и задачи работы

Цель:

Зарегистрировать переход сигнала из высокого в низкое нажатии/отпускании кнопки, после отобразить число, соответствующее числу возникших при нажатии кнопки. Через пять секунд, если кнопка не была отпущен нажата, уменьшать каждую секунду число на ССИ (до 0) и включать светодиод на, 0,5с, при этом схема не должна реагировать на нажатие или отпускание кнопки в течение этого времени.

Задачи:

- 1. Разработать функциональную схему устройства;
- 2. Реализовать суммирующий четырёхразрядный счётчик на D-триггерах, который выполняет счёт импульсов срабатывания кнопки («дребезг контакта») после нажатия кнопки;
- 3. Использовать BCD декодер из ДЗ1;
- 4. Отобразить число прошедших импульсов на ССИ после нажатия/отпускания кнопки;
- 5. Реализовать на Т-триггере схему формирования импульсов, число которых соответствует прошедшим импульсам;
- 6. Реализовать логическую схему, формирующую сигнал на выходе сдвигового регистра обеспечивающий мерцание светодиода («0» «1» «0»);
- 7. Провести симуляцию проекта на заранее заданном сигнале с кнопки и убедиться в правильности работы схемы;
- 8. Провести исследования работы кнопок;
- 9. Предложить схемы исключения «дребезга контакта»;
- 10. Определить длительность «дребезга контакта» кнопок;
- 11. Обеспечить сброс счётчиков после обратного счёта дошедшего до 0.

Форма отчётности

- 1. Принципиальные и функциональные схемы.
- 2. Временные диаграммы работы схемы.
- 3. Экспериментально определённое среднее значение длительности «дребезга контактов».

Принципиальные и функциональные схемы, временные диаграммы

Общая схема устройства

Рис. 1 – Общая схема.

Временная диаграмма

Рис. 2 – Временная диаграмма работы схемы.

Схема ButtonPressIndicatorFront

Рис. 3 – Cxeмa ButtonPressIndicatorFront.

Рис. 4 — Временная диаграмма ButtonPressIndicatorFront.

Схема Counter15

Рис. 5 – Cxeмa Counter15.

Рис. 6 – Временная диаграмма Counter15.

Подсхема D2 Counter15

Рис. 7 – Подсхема D2 Counter15.

Подсхема D3 Counter15

Рис. 8 – Подсхема D3 Counter15.

Схема FiveDetector

Рис. 9 – Схема FiveDetector.

Рис. 10 – Временная диаграмма FiveDetector.

Схема счетчика до 99

Рис. 11 – Схема счетчика до 99.

Рис. 10 – Временная диаграмма счетчика до 99.