Régime Harmonique

On a alors:

REPRÉSENTATION TEMPORELLE

$s(t) = S \cdot cos(\omega t + \phi)$

- S: amplitude du signal ω : pulsation du signal (rd/s)
- f : fréquence du signal (Hz)
 - $\omega = 2.\pi.f$
- f = 1/T
- T : période du signal (s) φ : déphasage du signal (rd)

REPRÉSENTATION DE FRESNEL

Représentation graphique des amplitudes et des phases

Vecteurs tournants à ω

En **régime harmonique, linéaire,** invariant, tous les signaux évoluent à la **même pulsation** $\boldsymbol{\omega}$

Pour des signaux plus élaborés, on décompose en ${\bf somme}$ de signaux sinusoïdaux, par application du théorème de superposition

REPRÉSENTATION COMPLEXE

 $s_1(t) = S \cdot \cos(\omega t + \varphi)$

Projection sur y: $s_2(t) = S \cdot \sin(\omega t + \phi)$

On pose: $s(t) = s_1(t) + j \cdot s_2(t)$

 $s(t) = S \cdot \exp(i(\omega t + \phi))$

 $s(t) = S \cdot \exp(j \varphi) \cdot \exp(j (\omega t))$

s(t) = S . $exp(j(\omega t))$

AMPLITUDE COMPLEXE

ne dépendant pas du temps

ANALYSE = COMPORTEMENT FRÉQUENTIEL

IMPÉDANCE COMPLEXE

En **régime harmonique :** v(t) et i(t) ont la même pulsation

 $\frac{\mathbf{v}(\mathbf{t})}{\mathbf{v}(\mathbf{t})} = \frac{\mathbf{V}}{\mathbf{V}} = \mathbf{Z}$

FONCTION DE TRANSFERT

Un système peut être caractérisé par sa **réponse en fréquence**, qu'on appelle aussi **fonction de transfert** $H(j\omega)$

$$\underline{V}_{S}(j\omega) = \underline{H}(j\omega) \cdot \underline{V}_{E}(j\omega)$$

$$v_S(t) = h(t) * v_E(t)$$

convolution

Par application de la transformée de Fourier inverse, on obtient la **réponse impulsionnelle** du système notée h(t)

RÉPONSE IMPULSIONNELLE

DIAGRAMME DE BODE

Un **diagramme de Bode** est une représentation graphique de l'évolution en fonction de la fréquence : - du **gain de la fonction de transfert**, noté $G_{dB}(j\omega)$

avec: $i^2 = -1$

$$G_{dB}(j\omega) = 20 \cdot \log(|\underline{H}(j\omega)|)$$

- de la **phase de la fonction de transfert**, notée $arg(\underline{H}(j\omega))$

