LEARNING-BASED SUPPORT ESTIMATION IN SUBLINEAR TIME

Talya Eden MIT

Piotr Indyk MIT Shyam Narayanan MIT

Ronitt Rubinfeld MIT

Sandeep Silwal MIT

Tal Wagner MSR

Code available at:

https://github.com/ssilwa/Learning-augmented-support-estimation

Introduction

Setting: Sample access to an unknown distribution $\mathcal{P} = (p_1, ..., p_n)$ over domain $[n] = \{1, ..., n\}$

Goal: Estimate the support size $S = |i: p_i > 0|$ up to $\pm \epsilon n$ using **few** samples

- Example of distinct elements if $p_i = \frac{count \ of \ element \ i}{n}$
- Applications in search engines (How many distinct queries?) Biology (How may distinct species?) etc

Promise: For every i, either $p_i \ge 1/n$ or $p_i = 0$

Naturally holds in distinct element setting

Learning-based Algorithm

Estimator: $\sum_{i} (1 + h(N_i)) = S + \sum_{i} h(N_i)$

- for $h: \{0\} \cup \mathbb{N} \to \mathbb{R}$ with h(0) = -1
- $N_i = \#$ of samples of i th element.

Bias: $\mathbb{E}[Est - S] = \sum_{i} \mathbb{E}[h(N_i)]$

Previous Algorithms:

- Pick "best" h to minimize bias for rare samples
 (Chebyshev polynomials).
- Just count for *frequent* samples.

Tailor polynomial estimator for each "bucket"

Theoretical Results

Parameters: n = domain size, $\epsilon = \text{error}$, $L = O(\log \epsilon^{-1})$

Reference	# Samples	Predictor Model
(Wu, Yang '19)	$\Theta\left(\frac{n}{\log n}\log^2\left(\frac{1}{\epsilon}\right)\right)$	No predictor
(Clemont, Rubinfeld '13)	$\Theta\left(\frac{1}{\epsilon^2}\right)$	Perfect predictor
This Work	$\Theta(Ln^{1-1/L})$	Imperfect predictor

Optimal Samples: Any algorithm with constant factor predictor must use $\Omega(Ln^{1-1/L})$ samples

Natural Predictor Model: Cannot replace predictor with models such as additive error Π is close to \mathcal{P} in TV distance or additive approximations

Contribution

Our Algorithm

• Learning Based: Assume predictor that \prod such that $\Pi(i) \le p_i \le C \cdot \Pi(i)$

for every sample i for constant C > 0

- Empirically use ML driven predictors (RNN)
- Sublinear sample complexity: n^c for c < 1
- Experimentally **robust** to noisy predictors ("sanity check" to fall back on previous best algorithm)

References

- Clement Canonne and Ronitt Rubinfeld. Testing probability distributions underlying aggregateddata. InInternational Colloquium on Automata, Languages, and Programming, pp. 283–295. Springer, 2014
- Yihong Wu and Pengkun Yang. Chebyshev polynomials, moment matching, and optimal estimation of the unseen. The Annals of Statistics, 47(2):857–883, 2019.

Benchmarks:

• WY: (Wu, Yang '19)
Optimal for no predictors

• CR: (Clemont, Rubinfeld '13)
Optimal for perfect predictors

Error: Report |1 - Est/S|Averaged over 50 independent trials _{0.0}

Experiments

n	Predictor
$\sim 4 \cdot 10^5$	RNN (Hsu et
	al. '19)
$\sim 3 \cdot 10^7$	RNN (Hsu et
	al. '19)
$\sim 2 \cdot 10^5$	Empirical
	count
	$\sim 4 \cdot 10^5$ $\sim 3 \cdot 10^7$

Conclusion:

- Predictors can be leveraged to outperform previously optimal algorithms (WY)
- CR can fail badly sometimes whereas we are robust against different predictors
- Predictors can still be useful for data far in the future (not shown)