Relatório Comparativo de Modelos Preditivos

Este relatório apresenta uma análise comparativa de vários modelos preditivos treinados para estimar o tempo de produção.

Especificações da Máquina

CPU: Intel Core i7-11800H @ 2.30GHz

RAM: 16 GB DDR4

GPU: NVIDIA RTX 3060

Visualizações da Análise Exploratória de Dados (EDA)

Histograma de Producción

Distribución de Tiempo de Producción

Matriz de Correlación

Pré-processamento de Dados

Técnicas de limpeza, codificação de variáveis categóricas (One-Hot Encoding) e escalonamento de características (StandardScaler) foram aplicadas para preparar os dados antes do treinamento.

Métricas de Avaliação de Modelos

Modelo	MAE	MSE	R ²	Tempo (s)
Red Neuronal ANN	5.625	44.995	-0.052	15.20
Random Forest	5.561	43.346	-0.013	3.10
XGBoost	5.761	47.924	-0.120	2.50

Previsões vs. Valores Reais

Red Neuronal ANN

Random Forest

Coeficiente U de Theil

Red Neuronal ANN: U = 0.2601

Random Forest: U = 0.2496

XGBoost: U = 0.2610

Teste de Diebold-Mariano

Comparação	Estatística DM	Valor-p
ANN vs RF	-1.441	0.150
ANN vs XGB	1.720	0.086
RF vs XGB	3.682	0.000

Conclusão

Após analisar as métricas de desempenho, testes estatísticos e tempos de treinamento, o modelo com o melhor desempenho geral, considerando o equilíbrio entre precisão e eficiência, foi: Random Forest.