UT Austin CSE 386D

Homework 3

Jonathan Zhang EID: jdz357

Problem 6.18:

For $f \in \mathcal{S}(\mathbb{R})$, define the Hilbert transform of f by $Hf = PV\left(\frac{1}{\pi x}\right) * f$.

- 1. Show that $PV(1/x) \in \mathcal{S}'$.
- 2. Show that $\mathcal{F}\left(PV\left(1/x\right)\right) = -i\sqrt{\pi/2}sgn\left(\xi\right)$.
- 3. Show that $\|Hf\|_{L^2} = \|f\|_{L^2}$ and HHf = -f for $f \in \mathcal{S}(\mathbb{R})$.
- 4. Extend H to $L^{2}(\mathbb{R})$.

Solution

- 1. asdf
- 2. Recall $xPV\left(1/x\right)=1$. Taking Fourier transform on both sides yields

$$\mathcal{F}\left(xPV\left(1/x\right)\right) =$$

Problem 6.20:

Compute the Fourier transforms of the following functions considered as tempered distributions.

- 1. x^n for $x \in \mathbb{R}$ and integer $n \ge 0$
- 2. $e^{-|x|}$ for $x \in \mathbb{R}$
- 3. $e^{i|x|^2}$ for $x \in \mathbb{R}^d$
- 4. $\sin x$ and $\cos x$ for $x \in \mathbb{R}$.

Problem 6.23:

Define the sapce H, endowed with inner product $(f,g)_H$.

- 1. Show that H is complete.
- 2. Prove that H is continuously imbedded in $L^{2}\left(\mathbb{R}\right) .$
- 3. If $m(\xi) \ge \alpha |\xi|^2$ for some $\alpha > 0$, prove that for $f \in H$, the tempered distributional derivative $f' \in L^2(\mathbb{R})$.

Problem 6.25:

Use the Fourier transform to find a solution to

$$u - \frac{\partial^2 u}{\partial x_1^2} - \frac{\partial^2 u}{\partial x_2^2} = e^{-x_1^2 - x_2^2}$$

Can you find a fundamental solution?

Oden Institute

CSE 386D UT Austin

Solution If we can find a fundamental solution, then we have solved the given right hand side.

Problem 6.27:

Telegrapher's equation

$$u_{tt} + 2u_t + u = c^2 u_{xx}$$

for $x \in \mathbb{R}$ and t > 0, and u(x, 0) = f(x) and $u_t(x, 0) = g(x)$ are given in L^2 .

- 1. Use Fourier transform in x and its inverse to find an explicit representation of the solution.
- 2. Justify your representation is a solution.
- 3. Show that the solution can be viewed as the sum of two wave packets, one moving to the right with a constant speed, and one moving to the left with the same speed.

Problem 6.30:

Consider

$$\Delta^2 u + u = f(x)$$

for $x \in \mathbb{R}^d$ and $\Delta^2 = \Delta \Delta$.

- 1. Suppose that $f \in \mathcal{S}'(\mathbb{R}^d)$. Use the Fourier transform to find a solution $u \in \mathcal{S}'$. Leave answer as a multiplier operator.
- 2. Is the solution unique?
- 3. Suppose that $f \in \mathcal{S}(\mathbb{R}^d)$. Write the solution as a convolution operator.
- 4. Show that $\check{m} \in L^2(\mathbb{R}^d)$ for some range of d and use this to extend the convolution solution to $f \in L^1(\mathbb{R}^d)$. In that case, in what L^p space is u?

Oden Institute