

Ensemble Learning: Adaptive Boosting (AdaBoost)

Pilsung Kang School of Industrial Management Engineering Korea University

AdaBoosting: Idea

- A letter than random Guessing
- √ Strong model vs. Weak model
 - A weak model, performing only slightly better than random guessing, could be boosted in to arbitrarily accurate strong model
- ✓ New classifiers should focus on difficult cases
 - Examine the learning set
 - Get some rule of thumb > Weak Model
 - Reweight the examples of the training set, concentrate on hard cases for the previous rule
 - Derive the next rule of thumb
 - **.** . . .
 - Build a single, accurate predictor by combining the rules of thumb

AdaBoosting: Idea

+ Classification Case

- ✓ Strong model vs. Weak model
 - A weak model, performing only slightly better than random guessing, could be boosted in to arbitrarily accurate strong model
- √ Train models sequentially, with a new model training at each round
- ✓ At the end of each round, misclassified examples are identified and have their emphasis increased in a new training set which is then fed back into the next round
- √ Large errors made by earlier models can be compensated by the subsequent models

AdaBoosting:Algorithm

- Illustrative example I
 - ✓ Round I

• 3 misclassifications out of 10: $\epsilon_i=0.30$

• Model confidence: $\alpha_i = \frac{1}{2}\log\left(\frac{1-\epsilon_i}{\epsilon_i}\right) = \frac{1}{2}\log\frac{1-0.3}{0.3} = 0.42$

AdaBoost Example

 \checkmark The selection probability of x_i for the next training dataset

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \qquad \text{Total particles}$$

- \checkmark Case I: $y_i = 1, h_t(x_i) = 1 \rightarrow y_i h_t(x_i) = 1 \rightarrow -\alpha_t y_i h_t(x_i) < 0 \rightarrow \text{decrease p}$
- \checkmark Case 2: $y_i = -1, h_t(x_i) = -1 \rightarrow y_i h_t(x_i) = 1 \rightarrow -\alpha_t y_i h_t(x_i) < 0 \rightarrow \text{decrease p}$
- \checkmark Case 3: $y_i = 1, h_t(x_i) = -1 \rightarrow y_i h_t(x_i) = -1 \rightarrow -\alpha_t y_i h_t(x_i) > 0 \rightarrow \text{increase p}$
- $\checkmark \ \alpha_t$ is the confidence of the current model that controls the magnitude of change

- Illustrative example I
 - ✓ Round 2

0.3 0.3 0.3

B2

0.3 0.3 0.3

B3 0.3 0.3 0.3 Booseing

05 0.3 0.2

- Illustrative example I
 - ✓ Round 3

 $\varepsilon_3 = 0.14$

 $\alpha_3 = 0.92$

- Illustrative example I
 - √ Final classifier

$$H_{\text{final}} = \text{sign} \left(0.42 \right) + 0.65 + 0.92$$

• Illustrative example 2

• Illustrative example 3

https://www.slideshare.net/DataRobot/gradient-boosted-regression-trees-in-scikitlearn?from_action=save

• Illustrative example 4

+0.92

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

+ 0.65

• Single model vs. Bagging vs. Boosting

AdaBoost in Action

AdaBoost in Action

Kai O. Arras

Social Robotics Lab, University of Freiburg

Nov 2009 🗓 🗓 Social Robotics Laboratory

- Bagging vs. Boosting
 - √ Selected instances in each training dataset

A sample of a single of	classifier on an imaginary set of data.
	(Original) Training Set
Training-set-1:	1, 2, 3, 4, 5, 6, 7, 8

A sample of B	agging on the same data.	
	(Resampled) Training Set	
Training-set-1:	2, 7, 8, 3, 7, 6, 3, 1	
Training-set-2:	7, 8, 5, 6, 4, 2, 7, 1	-> random
Training-set-3:	3, 6, 2, 7, 5, 6, 2, 2	/ (00. 001.)
Training-set-4:	4, 5, 1, 4, 6, 4, 3, 8	

A sample of Boosting on the same data.		
	(Resampled) Training Set	
Training-set-1:	2, 7, 8, 3, 7, 6, 3, 1)	
Training-set-2:	(1) 4, 5, 4, (1) , 5, 6, 4	
Training-set-3:	7,(1), 5, 8(1), 8,(1), 4	
Training-set-4:	1, 1, 6, 1, 1, 3, 1, 5	

h, h2, h3, h4= 9年 19 example 想管 经制起 次叶

Face detection with AdaBoost

