STATS 310C Notes

Kenneth Tay

Section 7.1: Definition, Canonical Construction and Law

- (Dfn 7.1.2) Finite-dimensional distributions (f.d.d.) of a stochastic process $\{X_t : t \in \mathbb{T}\}$ is the collection of joint laws of X_{t_1}, \ldots, X_{t_n} for all $n \in \mathbb{N}, t_1, \ldots, t_n$ distinct values in \mathbb{T} .
- (Dfn 7.1.3) A collection of f.d.d. is **consistent** if for any $B_k \in \mathcal{B}$, distinct $t_k \in \mathbb{T}$ and finite n, $\mu_{t_1,...,t_n}(B_1 \times ... \times B_n) = \mu_{t_{\pi(1)},...,t_{\pi(n)}}(B_{\pi(1)} \times ... \times B_{\pi(n)})$ for all permutations π of $\{1,...,n\}$, and $\mu_{t_1,...,t_{n-1}}(B_1 \times ... \times B_{n-1}) = \mu_{t_1,...,t_n}(B_1 \times ... \times B_{n-1} \times \mathbb{R})$.
- (Dfn 7.1.5) $\mathbb{R}^{\mathbb{T}} := \{\text{collection of all functions } x(t) : \mathbb{T} \mapsto \mathbb{R}\}$. A finite-dimensional rectangle in $\mathbb{R}^{\mathbb{T}}$ is of the form $\{x(\cdot) : x(t_i) \in B_i, i = 1, ..., n\}$. The cylindrical σ -algebra $\mathcal{B}^{\mathbb{T}}$ is the σ -algebra generated by the finite-dimensional rectangles.
- \mathcal{B}_c is $\mathcal{B}^{\mathbb{T}}$ when $\mathbb{T} = \{1, 2, \dots\}$.
- (Dfn 7.1.6) $A \subseteq \mathbb{R}^{\mathbb{T}}$ has **countable representation** if $A = \{x(\cdot) \in \mathbb{R}^{\mathbb{T}} : (x(t_1), x(t_2), \dots) \in D\}$ for some $D \in \mathcal{B}_c$ and $\{t_1, t_2, \dots\} \subseteq \mathbb{T}$.
- (Lem 7.1.7) $A \in \mathcal{B}^{\mathbb{T}}$ iff A has countable representation.
- (Lem 7.1.8) Consistent f.d.d. $\implies \exists$ stochastic process with that f.d.d.: For any consistent collection of f.d.d., there is a probability space and a stochastic process on it with that f.d.d.
- (Dfn 7.1.9) The **law** of a stochastic process is the probability measure \mathcal{P}_X on $\mathcal{B}^{\mathbb{T}}$ such that for all $A \in \mathcal{B}^{\mathbb{T}}$, $\mathcal{P}_X(A) = \mathbb{P}\{\omega : X_{\cdot}(\omega) \in A\}$.
- (Ex 7.1.12, HW1) A continuous time stochastic process $\{X_t : t \ge 0\}$ has **independent increments** if $X_{t+h} X_t$ is independent of $\sigma(X_s : 0 \le s \le t)$ for all $h > 0, t \ge 0$.
 - If for all $0 \le t_1 < t_2 < \dots < t_n < \infty$, $X_{t_1}, X_{t_2} X_{t_1}, \dots, X_{t_n} X_{t_{n-1}}$ are mutually independent, then $\{X_t\}$ has independent increments. (Thus, this property is determined by the f.d.d.)

Section 7.2: Continuous and Separable Modifications

- (Dfn 7.2.2) Two stochastic processes $\{X_t\}$ and $\{Y_t\}$ are **versions** of each other if they have the same f.d.d. They are **modifications** if $\mathbb{P}(X_t \neq Y_t) = 0$ for all t. They are **indistinguishable** if $\{\omega : X_t(\omega) \neq Y_t(\omega) \text{ for some } t \in \mathbb{T}\}$ is a \mathbb{P} -null set.
 - Modifications are versions, but converse fails.
- (Ex 7.2.3, HW1) **Right-continuous modification is unique:** Modifications which both have w.p. 1 right-continuous sample functions are indistinguishable. Hence, we can talk of **the** right-continuous modification.

• (Dfn 7.2.5) A function f on metric space (T,d) is locally γ -Hölder continuous if

$$\sup_{\{t \neq s, d(t,u) \lor d(s,u) < h_u\}} \frac{|f(t) - f(s)|}{d(t,s)^{\gamma}} \le c_u,$$

for some $\gamma > 0$, some $c : \mathbb{T} \mapsto [0, \infty)$, and $h : \mathbb{T} \mapsto (0, \infty]$. It is **uniformly** γ -Hölder continuous if the same applies for constant $c < h = \infty$.

A stochastic process is locally/uniformly γ -Hölder continuous if its sample functions have that property. Local γ -Hölder continuity implies continuity.

• (Thm 7.2.6) Kolmogorov-Centsov continuity theorem: Suppose $\{X_t : t \in \mathbb{T}\}$ with $\mathbb{T} = \mathbb{T}^r$, where \mathbb{T} is a compact interval. If there exist positive constants α , β and finite c such that

$$\mathbb{E}[|X_t - X_s|^{\alpha}] \le c||t - s||^{r + \beta}$$

for all $s, t \in \mathbb{T}$, then $\{X_t\}$ has a continuous modification which is locally γ -Hölder continuous for any $0 < \gamma < \beta/\alpha$.

- (Lemma 7.2.12) While the above provides a continuous modification on compact intervals, the proof can be modified to get one continuous modification valid on $[0, \infty)$.
- (Ex 7.2.13, HW1) A simpler condition than Kolmogorov-Centsov to show Hölder continuity.
- (Dfn 7.2.15) A function $x \in \mathbb{R}^{\mathbb{I}}$ is \mathbb{C} -separable if \mathbb{C} is countable and for any t, there is a sequence $\{s_k\} \subseteq \mathbb{C}$ that converges to t such that $x(s_k) \to x(t)$. A continuous-time stochastic process is \mathbb{C} -separable if its sample functions are \mathbb{C} -separable.
- (Prop 7.2.16) Can always work with a separable process: Any continuous time stochastic process $\{X_t : t \in \mathbb{I}\}$ has a separable modification (consisting possibly of \mathbb{R} -valued variables). (But note that separability does not imply measurability.)
- (Dfn 7.2.19) A stochastic process $\{X_t, t \in \mathbb{I}\}$ is **measurable** if $(t, \omega) \mapsto X_t(\omega)$ is measurable w.r.t. the joint σ -algebra.
- (Dfn 7.2.20) A stochastic process $\{X_t, t \in \mathbb{I}\}$ is **continuous in probability** if for any $t \in \mathbb{I}$ and $\varepsilon > 0$, $\lim_{\varepsilon \to t} \mathbb{P}(|X_s X_t| > \varepsilon) = 0$. This is a very mild condition which is determined by the f.d.d.
- (Prop 7.2.21) Any continuous in probability process has a separable modification (consisting possibly of \mathbb{R} -valued variables) which is a measurable process.

Section 7.3: Gaussian and stationary processes

- (Dfn 7.3.1) A stochastic process is a **Gaussian process** iff it has multivariate normal f.d.d. A Gaussian process is **centered** if $\mathbb{E}[X_t] = 0$ for all t.
- (Dfn 7.3.2) A symmetric function c on a product set $\mathbb{T} \times \mathbb{T}$ is **non-negative definite/positive** semidefinite if for any finite n and $t_k \in \mathbb{T}$ and for any $a_k \in \mathbb{R}$, $\sum_{j=1}^n \sum_{k=1}^n a_j c(t_j, t_k) a_k \geq 0$.
- (Eg 7.3.3) The auto-covariance function $c(s,t) = \text{Cov}(X_s, X_t)$ of a square-integrable stochastic process is non-negative definite.

- (Ex 7.3.4, HW2) The law of a Gaussian process is uniquely determined by its mean and auto-covariance functions. A Gaussian process exists for any mean function and PSD auto-covariance function.
- (Prop 7.3.5) Gaussian processes are closed w.r.t. L^2 : i.e. if $\mathbb{E}[(X_t X_t^{(k)})^2] \to 0$ as $k \to \infty$ for each fixed t, then X_t is also a Gaussian process, whose mean and auto-covariance functions are the pointwise limits of those for $X_t^{(k)}$.
- (Cor 7.3.6) Condition for Gaussian SP to have indep increments: A continuous time Gaussian stochastic process has independent increments iff $Cov(Y_t Y_u, Y_s) = 0$ for all $s \le u < t$. Equivalently, the Gaussian process has auto-covariance function of the form $c(t, s) = g(t \land s)$.
- (Dfn 7.3.7) A continuous time stochastic process is **stationary** if its law is invariant under any time shift θ_s , $s \ge 0$, or equivalently, $(X_{t_1}, \ldots, X_{t_n}) \stackrel{d}{=} (X_{t_1+s}, \ldots, X_{t_n+s})$ for all s, t_1, \ldots, t_n .
- (Dfn 7.3.8) A square-integrable continuous time stochastic process of constant mean function and auto-covariance function of the form c(t,s) = r(|t-s|) is **weakly stationary**.

 Any square-integrable stationary process is weakly stationary.
- (Ex 7.3.9, HW2) Any weakly stationary Gaussian process is also stationary. (Not true for general processes.)
- (Ex 7.3.10, HW2) Any centered, weakly stationary process of independent increments must be a modification of the trivial process (i.e. constant sample functions).
- (Dfn 7.3.11) A continuous time stochastic process $\{X_t\}$ has **stationary increments** if the law of $X_t X_s$ depends only on t s.
- (Ex 7.3.14) Every stationary process has stationary increments.

Section 8.1: Continuous time filtrations and stopping times

- (Dfn 8.1.4) Left filtration $\mathcal{F}_{t^-} = \sigma(\mathcal{F}_s, s < t)$, right filtration $\mathcal{F}_{t^+} = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}$. A filtration $\{\mathcal{F}_t\}$ is right-continuous if $\mathcal{F}_t = \mathcal{F}_{t^+}$ for all $t \geq 0$.
- (Eg 8.1.5) Interpolated filtration $\mathcal{F}_t = \mathcal{G}_{\lfloor t \rfloor}$. Any interpolated filtration is right-continuous, but usually not left-continuous.
- (Eg 8.1.6) Sample path continuity for $\{X_t\}$ does not guarantee right-continuity of canonical filtration $\{\mathcal{F}_t^X\}$.
- (Dfn 8.1.7) An \mathcal{F}_t -adapted $\{X_t\}$ is \mathcal{F}_t -progressively measurable if $X_s(\omega): [0,t] \times \Omega \mapsto \mathbb{R}$ is measurable w.r.t. $\mathcal{B}_{[0,t]} \times \mathcal{F}_t$ for each $t \geq 0$.
- (Prop 8.1.8) Adapted + right-continuous \implies progressively measurable: An \mathcal{F}_t -adapted stochastic process with right-continuous sample functions is also \mathcal{F}_t -progressively measurable.
- (Dfn 8.1.9) $\tau : \Omega \mapsto [0, \infty]$ is a \mathcal{F}_t -stopping time if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$. The stopped σ -algebra is $\mathcal{F}_\tau := \{A \in \mathcal{F}_\infty : A \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for all } t \geq 0\}$. \mathcal{F}_{t^+} -stopping times are Markov times/optional times.

 Every stopping time is a Markov time. The 2 ideas are the same for right-continuous filtrations.
- (Ex 8.1.10, HW2) τ is an \mathcal{F}_t -Markov time iff $\{\tau < t\} \in \mathcal{F}_t$ for all $t \ge 0$.

- (Ex 8.1.10, HW2) If τ_1, τ_2, \ldots are \mathcal{F}_t -stopping times, then so are $\tau_1 \wedge \tau_2, \tau_1 + \tau_2$ and $\sup_n \tau_n$. If they are \mathcal{F}_t -Markov times, then in addition $\inf_n \tau_n$, $\liminf_n \tau_n$ and $\limsup_n \tau_n$ are \mathcal{F}_t -Markov times.
- (Ex 8.1.10d, HW2) If τ_1 and τ_2 are \mathcal{F}_t -Markov times, then $\tau_1 + \tau_2$ is an \mathcal{F}_t -stopping time when either both are strictly positive, or alternatively when τ_1 is a strictly positive \mathcal{F}_t -stopping time.
- (Ex 8.1.11, HW3) Suppose θ and τ are \mathcal{F}_t -stopping times. Then
 - $-\sigma(\tau)\subseteq \mathcal{F}_{\tau},\,\mathcal{F}_{\tau}$ is a σ -algebra. If $\tau=t$ non-random, then $\mathcal{F}_{\tau}=\mathcal{F}_{t}$.
 - $-\mathcal{F}_{\theta \wedge \tau} = \mathcal{F}_{\theta} \cap \mathcal{F}_{\tau}$. The events $\{\theta < \tau\}, \{\theta \le \tau\}$ and $\{\theta = \tau\}$ all belong to $\mathcal{F}_{\theta \wedge \tau}$.
 - For any integrable random variable Z, $\mathbb{E}[\mathbb{E}[Z \mid \mathcal{F}_{\theta}] \mid \mathcal{F}_{\tau}] = \mathbb{E}[Z \mid \mathcal{F}_{\theta \wedge \tau}].$
 - If $\theta \leq \xi$ and $\xi \in m\mathcal{F}_{\theta}$, then ξ is an \mathcal{F}_{t} -stopping time.
- (Prop 8.1.13) If {X_s} is F_t-progressively measurable, then for any F_t-stopping time τ, {X_{s∧τ}} is also F_t-progressively measurable. (Not true for adaptedness.)
 In particular, if τ < ∞ or there exists X_∞ ∈ mF_∞, then X_τ ∈ mF_τ.
- (Prop 8.1.15) Let $\{X_s, s \geq 0\}$ be an \mathcal{F}_t -adapted right-continuous stochastic process. The first hitting time $\tau_B(\omega) := \inf\{t \geq 0 : X_t(\omega) \in B\}$ is an \mathcal{F}_t -Markov time for an open set B. If B is a closed set and $\{X_s\}$ has continuous sample functions, then τ_B is an \mathcal{F}_t -stopping time.
- (Prop 8.1.16) Given an \mathcal{F}_t -Markov time τ , there is a decreasing sequence of \mathcal{F}_t -stopping times τ_ℓ such that $\tau_\ell \downarrow \tau$ and τ_ℓ is $\mathbb{Q}^{(2,\ell)}$ -valued.

Section 8.2: Continuous time martingales

- (Ex 8.2.2) If $\{X_t\}$ is a submartingale with $\mathbb{E}X_t = \mathbb{E}X_0$ for all $t \geq 0$, then it is also a martingale.
- (Ex 8.2.3) If $\{X_t\}$ is a square-integrable martingale, then $\mathbb{E}[(X_t X_s)^2 \mid \mathcal{F}_s] = \mathbb{E}[X_t^2 \mid \mathcal{F}_s] X_s^2$ for all $0 \le s \le t$, which implies that $t \mapsto \mathbb{E}X_t^2$ is non-decreasing.
- (Prop 8.2.4) Any integrable stochastic process $\{X_t, t \geq 0\}$ of independent increments and constant mean function is a martingale.
- (Ex 8.2.6, HW3) If $\{X_t\}$ is square-integrable, having zero-mean independent increments, then $X_t^2 \langle X \rangle_t$ is a martingale, where $\langle X \rangle_t = \mathbb{E}X_t^2 \mathbb{E}X_0^2$ is non-random and non-decreasing.
- (Ex 8.2.6, HW3) If $\{X_t\}$ is square-integrable with $X_0=0$ and zero-mean, stationary independent increments, then $X_t^2-t\mathbb{E}X_1^2$ is a martingale.
- (Thm 8.2.14) **Doob's inequality:** If $\{X_s\}$ is a right-continuous submartingale, then for $t \ge 0$ finite, $M_t = \sup_{0 \le s \le t} X_s$ and any x > 0,

$$\mathbb{P}(M_t \ge x) \le \frac{1}{r} \mathbb{E}[X_t 1_{\{M_t \ge x\}}] \le \frac{1}{r} \mathbb{E}[(X_t)_+].$$

• (Ex 8.2.15) For p > 1, in the setting above, $\mathbb{P}(M_t \ge x) \le \frac{1}{x^p} \mathbb{E}[(X_t)_+^p]$. If $\{X_t\}$ is a right-continuous martingale, we have $\mathbb{P}\left(\sup_{0 \le s \le t} |X_s| \ge x\right) \le \frac{1}{x^p} \mathbb{E}[|X_t|^p]$.

- (Cor 8.2.16) L^p maximal inequalities: For any $p > t \ge 0$ and right-continuous submartingale $\{X_t\}$, we have $\mathbb{E}\left[\left(\sup_{0 \le u \le t} X_u\right)_+^p\right] \le q^p \mathbb{E}[(X_t)_+^p]$, where q = p/(p-1) (i.e. $\frac{1}{p} + \frac{1}{q} = 1$).
 - If $\{X_t\}$ is a right-continuous martingale, we have $\mathbb{E}\left[\left(\sup_{0\leq u\leq t}|X_u|\right)^p\right]\leq q^p\mathbb{E}[|X_t|^p]$.
- (Thm 8.2.20) **Doob's Convergence Theorem:** Suppose right-continuous supermartingale $\{X_t\}$ is such that $\sup_t \mathbb{E}[(X_t)_-] < \infty$. Then $X_t \stackrel{a.s.}{\to} X_\infty$ and $\mathbb{E}[X_\infty] \leq \liminf_t \mathbb{E}[X_t]$ is finite.
- (Dfn 8.2.22) A submartingale $\{X_t\}$ is **right closable**, or has a **last element** X_{∞} if $X_{\infty} \in L^1(\Omega, \mathcal{F}_{\infty}, P)$ is such that for any $t \geq 0$, $\mathbb{E}[X_{\infty} \mid \mathcal{F}_t] \geq X_t$ a.s.

For a supermartingale, we require $\mathbb{E}[X_{\infty} \mid \mathcal{F}_t] \leq X_t$ a.s. For a martingale, we require $\mathbb{E}[X_{\infty} \mid \mathcal{F}_t] = X_t$ a.s., i.e. $\{X_t\}$ is a Doob martingale of X_{∞} w.r.t. $\{\mathcal{F}_t\}$.

- (Prop 8.2.23) For a right-continuous non-negative submartingale $\{X_t\}$, the following are equivalent:
 - (a) $\{X_t\}$ is U.I.
 - (b) $X_t \to X_\infty$ in L^1 .
 - (c) $X_t \stackrel{a.s.}{\to} X_{\infty}$ a last element of $\{X_t\}$.

Without non-negativity, we still have $(a) \Leftrightarrow (b) \Rightarrow (c)$. A right-continuous martingale has all these properties iff it is a Doob martingale.

- (Prop 8.2.24) **Doob's** L^p **Martingale Convergence:** If right-continuous martingale $\{X_t\}$ is L^p -bounded for some p > 1, then $X_t \to X_\infty$ a.s. and in L^p .
- (Thm 8.2.25) Suppose (X_t, \mathcal{F}_t) is a supermartingale with right-continuous filtration and $t \mapsto \mathbb{E}X_t$ is right-continuous. Then there exists an RCLL modification \tilde{X}_t of X_t such that $(\tilde{X}_t, \mathcal{F}_t)$ is a supermartingale.
- (Thm 8.2.26) **Doob's Optional Stopping Theorem:** If (X_t, \mathcal{F}_t) is a right-continuous submartingale with a last element $(X_{\infty}, \mathcal{F}_{\infty})$, then for any \mathcal{F}_t -Markov times $\tau \geq \theta$, X_{θ} and X_{τ} are integrable and $\mathbb{E}[X_{\tau}] \geq \mathbb{E}[X_{\theta}]$, with equality in the case of a martingale.
- (Cor 8.2.27) If (X_t, \mathcal{F}_t) is a right-continuous submartingale with a last element $(X_\infty, \mathcal{F}_\infty)$, then for any \mathcal{F}_t -Markov times $\tau \geq \theta$, $\mathbb{E}[X_\tau \mid \mathcal{F}_{\theta^+}] \geq X_\theta$ w.p. 1 (with equality in the case of a martingale). If θ is a \mathcal{F}_t -stopping time, then we also have $\mathbb{E}[X_\tau \mid \mathcal{F}_\theta] \geq X_\theta$ w.p. 1 (with equality in the case of a martingale).
- (Remark 8.2.28) In Thm 8.2.26 and Cor 8.2.27, if τ is a bounded Markov time, then we don't need the existence of a last element for the statements to be true.
- (Cor 8.2.29) **Stopped processes:** If η is an \mathcal{F}_t -stopping time and (X_t, \mathcal{F}_t) is a right-continuous submartingale, then $\{X_{t \wedge \eta}\}$ is also a right-continuous submartingale.
- (Ex 8.2.30, HW4) Optional Stopping Theorem for stopped processes: If (X_t, \mathcal{F}_t) is a right-continuous submartingale and $u \geq 0$ a non-random constant, then for any \mathcal{F}_t -stopping times $\tau \geq \theta$, we have $\mathbb{E}[X_{u \wedge \tau} \mid \mathcal{F}_{\theta}] \geq X_{u \wedge \theta}$ w.p. 1 (equality for a martingale). This implies that $\mathbb{E}[X_{u \wedge \tau}] \geq \mathbb{E}[X_{u \wedge \theta}]$ (equality for martingale).

If $X_{u \wedge \tau}$ is U.I., then we can also conclude that X_{θ} and X_{τ} are integrable and $\mathbb{E}[X_{\tau} \mid \mathcal{F}_{\theta}] \geq X_{\theta}$ a.s. (equality for martingale).

- (Dfn 8.2.37) The standard d-dimensional Brownian motion is the \mathbb{R}^d -valued stochastic process such that its d components are mutually independent, standard one-dimensional Wiener processes. It is a martingale and a centered Gaussian process of continuous sample functions and stationary, independent increments.
- (Dfn 8.2.39) Fix a right-continuous filtration $\{\mathcal{F}_t\}$. $\mathcal{M}_2 :=$ the vector space of all square integrable $\{\mathcal{F}_t\}$ -martingales which have $X_0 = 0$ and right-continuous sample functions.

 $\mathcal{M}_2^c := \text{the linear subspace of } \mathcal{M}_2 \text{ with continuous sample functions.}$

- (Dfn 8.2.40) An $\{\mathcal{F}_t\}$ -increasing process is an \mathcal{F}_t -adapted, integrable stochastic process $\{A_t\}$ of right-continuous, non-decreasing sample functions starting at $A_0 = 0$.
- (Dfn 8.2.41) q^{th} variation: For any finite partition $\pi = \left\{ a = s_0^{(\pi)} < \dots < s_k^{(\pi)} = b \right\}$ of [a, b], let $\|\pi\|$ denote the length of the longest interval in π , and let the q^{th} variation of f on partition π be

$$V_{(\pi)}^{(q)}(f) = \sum_{i=1}^{k} \left| f(s_i^{(\pi)}) - f(s_{i-1}^{(\pi)}) \right|^q.$$

The q^{th} variation of f on [a,b] is $V^{(q)}(f) = \lim_{\|\pi\| \to 0} V^{(q)}_{(\pi)}(f)$.

- (Lem 8.2.43) If a martingale of continuous sample functions has finite total variation on each compact interval, then it is indistinguishable from a constant.
- (Lem 8.2.44) Suppose $X \in \mathcal{M}_2^c$. For any partition $\pi = \{0 = s_0 < s_1 < \dots\}$ of $[0, \infty)$ with a finite number of points on each compact interval, $M_t^{(\pi)} = X_t^2 V_t^{(\pi)}(X)$ is an \mathcal{F}_t -martingale of continuous sample paths, where

$$V_t^{(\pi)}(X) := \sum_{i=1}^k (X_{s_i} - X_{s_{i-1}})^2 + (X_t - X_{s_k})^2, \quad \text{for all } t \in [s_k, s_{k+1}).$$

- (Thm 8.2.45) **Special case of Doob-Meyer Decomposition:** For $X \in \mathcal{M}_2^c$, the continuous modification of $V^{(2)}(X)_t$ is the unique \mathcal{F}_t -increasing process $A_t = \langle X \rangle_t$ of continuous sample paths, such that $M_t = X_t^2 A_t$ is an \mathcal{F}_t -martingale of continuous sample paths. Any two such decompositions of X_t^2 as the sum of a martingale and increasing process are indistinguishable.
- (Ex 8.2.46, HW8) Suppose $\{X_t\}$ of continuous sample paths has an a.s. finite r^{th} variation for each fixed t > 0. Then for each t > 0, $V^{(q)}(X)_t \stackrel{a.s.}{=} 0$ if q > r. If 0 < q < r, $V^{(q)}(X)_t \stackrel{a.s.}{=} \infty$ a.e. ω such that $V^{(r)}(X)_t > 0$.
- (Ex 8.2.46, HW8) If $X \in \mathcal{M}_2^c$ and \widetilde{A}_t has continuous sample paths and finite total variation on compact intervals, then the quadratic variation of $X_t + \widetilde{A}_t$ is $\langle X \rangle_t$.
- (Ex 8.2.46, HW8) If $\{X_t\}$ is locally γ -Hölder continuous on [0, T] for some $\gamma > 1/2$, then its quadratic variation on this interval is 0.
- (Dfn 8.2.47) An \mathcal{F}_t -progressively measurable stochastic process $\{Y_t\}$ is of **class DL** if the collection $\{Y_{u \wedge \theta} : \theta \text{ an } \mathcal{F}_t\text{-stopping time}\}$ is U.I. for each finite, non-random u.
 - (Ex 8.2.50) Every non-negative right-continuous submartingale is of class DL.
- (Thm 8.2.48) **Doob-Meyer Decomposition:** A right-continuous \mathcal{F}_t -submartingale $\{Y_t\}$ admits the decomposition $Y_t = M_t + A_t$ with M_t a continuous \mathcal{F}_t -martingale and A_t an \mathcal{F}_t -increasing process, iff $\{Y_t\}$ is of class DL.

- For uniqueness, we must require A_t to be a natural process. Every continuous increasing process is a natural process, and a natural process is an increasing process.
- (Remark) For each $X \in \mathcal{M}_2$, we can associate with it a unique natural process $\langle X \rangle_t$, called the **predictable quadratic variation**, such that $X_t^2 \langle X \rangle_t$ is a right-continuous martingale. When $X \notin \mathcal{M}_2^c$, it is no longer the case that the predictable quadratic variation must match the quadratic variation.
- (Eg 8.2.53) **Lévy's martingale characterization of Brownian motion:** Any $X \in \mathcal{M}_2^c$ of quadratic variation $\langle X \rangle_t = t$ must be a standard Brownian Markov process.
- (Eg 8.2.53) For any square integrable stochastic process with $X_0 = 0$ and zero-mean, stationary and independent increments, we have $\langle X \rangle_t = t\mathbb{E}[X_1^2]$.
- (Dfn 8.2.56) For any pair $X, Y \in \mathcal{M}_2$, the **bracket of** X and Y is $\langle X, Y \rangle_t := \frac{1}{4} [\langle X + Y \rangle_t \langle X Y \rangle_t]$. X and Y are **orthogonal** if for any $t \geq 0$, $\langle X, Y \rangle_t = 0$ a.s.
- (Ex 8.2.57, HW9) Properties of bracket:
 - $-XY \langle X, Y \rangle$ is a martingale.
 - $-\langle c_1 X_1 + c_2 X_2, Y \rangle = c_1 \langle X_1, Y \rangle + c_2 \langle X_2, Y \rangle.$
 - $\langle X, Y \rangle = \langle Y, X \rangle.$
 - $|\langle X, Y \rangle|^2 \le \langle X \rangle \langle Y \rangle.$
 - $-V(\langle X,Y\rangle)_t V(\langle X,Y\rangle)_s \le \frac{1}{2}[\langle X\rangle_t \langle X\rangle_s + \langle Y\rangle_t \langle Y\rangle_s] \text{ for all } 0 \le s < t < \infty.$

Section 8.3: Markov and Strong Markov processes

• (Dfn 8.3.1) A collection $\{p_{s,t}(\cdot,\cdot), t \geq s \geq 0\}$ of **transition probabilities** on a measurable space $(\mathbb{S}, \mathcal{S})$ is **consistent** if it satisfies the **Chapman-Kolmogorov equations**

$$p_{t_1,t_3}(x,B) = p_{t_1,t_2}p_{t_2,t_3}(x,B) = \int p_{t_1,t_2}(x,dy)p_{t_2,t_3}(y,B) \quad \text{for all } x \in \mathbb{S}, B \in \mathcal{S}, t_3 \ge t_2 \ge t_1 \ge 0.$$

This collection is a **Markov semi-group** if $p_{s,t} = p_{t-s}$ for all $t \ge s \ge 0$.

- (Dfn 8.3.1) An \mathcal{F}_t -adapted $\{X_t\}$ taking values in $(\mathbb{S}, \mathcal{S})$ is an \mathcal{F}_t -Markov process if for any $t \geq s \geq 0$ and $B \in \mathcal{S}$, $\mathbb{P}(X_t \in B \mid \mathcal{F}_s) \stackrel{a.s.}{=} p_{s,t}(X_s, B)$.
 - It is a homogeneous \mathcal{F}_t -Markov process of semi-group $\{p_u\}$ if for any $u, s \geq 0$ and $B \in \mathcal{S}$, $\mathbb{P}(X_{s+u} \in B \mid \mathcal{F}_s) \stackrel{a.s.}{=} p_u(X_s, B)$.
- Define the map $f \mapsto (p_{s,t}f) : b\mathcal{S} \mapsto b\mathcal{S}$ by $(p_{s,t}f)(x) = \int p_{s,t}(x,dy)f(y)$ for each x. Then for $t \geq s \geq 0$, $\mathbb{E}[f(X_t) \mid \mathcal{F}_s] = (p_{s,t}f)(X_s)$.
- (Thm 8.3.2) Given consistent transition probabilities, you can get a Markov process with those transitions. The law of a Markov process is just its f.d.d. We use \mathbb{P}_x to denote the law of the Markov process given that it starts at non-random x.
- (Ex 8.3.4, HW4) Closure of Markov processes (useful for showing that a transformation of a Markov process is still Markov: Let (X_t, \mathcal{F}_t^X) be a Markov process on state space $(\mathbb{S}, \mathcal{S})$. Let $u:[0,\infty)\mapsto[0,\infty)$ be an invertible strictly increasing function. For each t, let $\Phi_t:(\mathbb{S},\mathcal{S})\mapsto(\tilde{\mathbb{S}},\tilde{\mathcal{S}})$ be an invertible measurable mapping such that the inverse is measurable as well.

- If $Y_t = \Phi_t(X_{u(t)})$, then (Y_t, \mathcal{F}_t^Y) is a Markov process on state space $(\tilde{\mathbb{S}}, \tilde{\mathcal{S}})$.
- If X_t is a homogeneous Markov process, then so is $Z_t = \Phi_0(X_t)$.
- (Prop 8.3.5) Independent increments \Longrightarrow Markov process: If a real-valued $\{X_t\}$ has independent increments, then (X_t, \mathcal{F}_t^X) is a Markov process with transition probabilities $p_{s,t}(y,B) = P_{X_t-X_s}(\{z:y+z\in B\})$. If $\{X_t\}$ has stationary independent increments, then this Markov process is homogeneous.
- (Remark) Generator of a Markov process is the operator $\mathbf{L} = \lim_{s\downarrow 0} \frac{p_s p_0}{s}$.
- (Dfn 8.3.7) (W_t, \mathcal{F}_t) is a **Brownian Markov process** if it has continuous sample paths and is a homogeneous \mathcal{F}_t -Markov process with Brownian semi-group. If in addition $W_0 = 0$, we call it a standard Brownian Markov process.
- (Dfn 8.3.8) A probability measure ν on $(\mathbb{S}, \mathcal{S})$ is an **invariant measure** for a semi-group of transition probabilities $\{p_u, u \geq 0\}$, if the induced law $\mathbb{P}_{\nu}(\cdot) = \int_{\mathbb{S}} P_x(\cdot)\nu(dx)$ (induced law on the space of trajectories) is invariant under any time shift θ_s , $s \geq 0$.
- (Ex 8.3.9, HW5) A probability measure ν on (S, S) is an invariant measure for $\{p_u\}$ iff $\nu p_t = \nu$ for any $t \geq 0$.
- (Prop 8.3.11) Markov Property: Suppose $\{X_t\}$ is a homogeneous \mathcal{F}_t -Markov process on $(\mathbb{S}, \mathcal{S})$. Let P_x denote the family of laws associated with its semi-group. Then, $x \mapsto \mathbb{E}_x[h]$ is measurable on $(\mathbb{S}, \mathcal{S})$ for any $h \in b\mathcal{S}^{[0,\infty)}$, and futher for any $s \geq 0$, almost surely

$$\mathbb{E}[h \circ \theta_s(X_{\cdot}(\omega)) \mid \mathcal{F}_s] = \mathbb{E}[h \circ (X_{\cdot+s}(\omega)) \mid \mathcal{F}_s] = \mathbb{E}_{X_s}[h].$$

(Note: If we take $h(x(\cdot)) = I_B(x(u))$, the above reduces to $\mathbb{P}(X_{s+u} \in B \mid \mathcal{F}_s) = \mathbb{P}_{X_s}(X_u \in B) = p_u(X_s, B)$. In order to get the above, it suffices to check that this relation holds for all u, s and B!)

• (Dfn 8.3.13) **Strong Markov process:** An \mathcal{F}_t -progressive measurable, homogeneous Markov process $\{X_t\}$ on $(\mathbb{S}, \mathcal{S})$ has the **strong Markov property** if for any bounded $h(s, x(\cdot))$ measurable on the product σ -algebra $\mathcal{U} = \mathcal{B}_{[0,\infty)} \times \mathcal{S}^{[0,\infty)}$ and any \mathcal{F}_t -Markov time τ , we have (almost surely)

$$I_{\{\tau<\infty\}}\mathbb{E}[h(\tau,X_{\tau+\cdot}(\omega))\mid \mathcal{F}_{\tau^+}] = I_{\{\tau<\infty\}}g_h(\tau,X_{\tau}),$$

where $g_h(s,x) = \mathbb{E}_x[h(s,\cdot)]$ is bounded and measurable on $\mathcal{B}_{[0,\infty)} \times \mathcal{S}$.

• (Cor 8.3.14) If (X_t, \mathcal{F}_t) is a strong Markov process and τ is an \mathcal{F}_t -stopping time, then for any $h \in b\mathcal{U}$, a.s.

$$I_{\{\tau<\infty\}}\mathbb{E}[h(\tau, X_{\tau+\cdot}(\omega)) \mid \mathcal{F}_{\tau}] = I_{\{\tau<\infty\}}g_h(\tau, X_{\tau}).$$

In particular, $\{X_t\}$ is a homogeneous \mathcal{F}_{t^+} -Markov process and for any $s \geq 0$ and $h \in b\mathcal{S}^{[0,\infty)}$, $\mathbb{E}[h(X_{\cdot}) \mid \mathcal{F}_{s^+}] = \mathbb{E}[h(X_{\cdot}) \mid \mathcal{F}_s]$.

- (Prop 8.3.15) Sufficient condtion for strong Markov property: An \mathcal{F}_t -progressive measurable, homogeneous Markov process $\{X_t\}$ with semi-group $\{p_u\}$ has the strong Markov property if for any $u \geq 0, B \in \mathcal{S}$ and bounded \mathcal{F}_t -Markov times τ , we have $\mathbb{P}(X_{\tau+u} \in B \mid \mathcal{F}_{\tau^+}) = p_u(X_{\tau}, B)$.
- (Ex 8.3.17, HW5) If a stopping time takes on only countably many values, then any homogeneous Markov process has the strong Markov property for this stopping time.
- (Dfn 8.3.18) A **Feller semi-group** is a Markov semi-group $\{p_u\}$ on $(\mathbb{R}, \mathcal{B})$ such that $p_t : C_b(\mathbb{R}) \mapsto C_b(\mathbb{R})$ for any $t \geq 0$, i.e. $x \mapsto (p_t f)(x)$ is continuous for any fixed bounded, continuous function f and $t \geq 0$.

- (Prop 8.3.19) **Right-continuous** + **Feller** \implies **strong Markov process:** Any right-continuous homogeneous Markov process with a Feller semi-group is a strong Markov process.
- (Ex 8.3.20, HW5) A real-valued process of stationary and independent increments has Feller semi-group. Hence, if it is also right-continuous, then it is a strong Markov process.
- (Eg 8.3.21) Example of a Markov process which is not a strong Markov process.
- (Dfn 8.3.23) A function $x : \mathbb{R}_+ \mapsto \mathbb{S}$ is a **step function** if it is constant on each of the intervals $[s_{k-1}, s_k)$ for some countable (possibly finite) set of isolated points $0 = s_0 < s_1 < \dots$ (Note that a step function is right-continuous.)

A stochastic process $\{X_t\}$ is a **pure jump process** if its sample functions are step functions.

A Markov (pure) jump process is a homogeneous Markov process which, starting at any non-random $X_0 = x \in \mathbb{S}$, is also a pure jump process. (Sometimes called **continuous-time Markov chains.**)

- (Prop 8.3.24) Any Markov jump process is a strong Markov process.
- (Eg 8.3.25) Example of a Markov jump process with non-Feller semi-group.
- (Prop 8.3.26) Suppose $\{X_t\}$ is a right-continuous, homogeneous Markov process.
 - Time to jump has exponential distribution: There is a measurable $\lambda : \mathbb{S} \mapsto [0, \infty]$ such that for all $y \in \mathbb{S}$, under \mathbb{P}_y , the \mathcal{F}_t^X -Markov time $\tau = \inf\{t \geq 0 : X_t \neq X_0\}$ has the exponential distribution of parameter λ_y . (Note: λ_y can be 0 or ∞ .)
 - When you jump is independent of where you jump to: If $\lambda_y > 0$, then τ is \mathbb{P}_y -a.s. finite and \mathbb{P}_y -independent of the S-valued random variable X_{τ} .
 - If $(X_t, t \ge 0)$ is a strong Markov process and $0 < \lambda_y < \infty$, then P_y -a.s. $X_\tau \ne y$.
 - If $(X_t, t \ge 0)$ is a Markov jump process, then τ is a strictly positive \mathcal{F}_t^X -stopping time.
- (Dfn 8.3.27) For a Markov jump process $\{X_t, t \geq 0\}$, p(x, A) and $\{\lambda_x\}$ are the **jump transition** probability and **jump rates** if

$$p(x,A) = \begin{cases} \mathbb{P}_x(X_\tau \in A) & \text{if } A \in \mathcal{S} \text{ and } x \in \mathbb{S} \text{ s.t. } \lambda_x > 0, \\ I\{x \in A\} & \text{if } A \in \mathcal{S} \text{ and } x \in \mathbb{S} \text{ s.t. } \lambda_x = 0. \end{cases}$$

More generally, a pair (λ, p) with $\lambda : \mathbb{S} \to \mathbb{R}_+$ and $p(\cdot, \cdot)$ transition probability on $(\mathbb{S}, \mathcal{S})$ such that $p(x, \{x\}) = I\{\lambda_x = 0\}$ is called **jump parameters**.

- (Thm 8.3.28) Canonical construction of Markov jump process: Suppose (λ, p) are jump parameters on a \mathcal{B} -isomorphic space $(\mathbb{S}, \mathcal{S})$. Define
 - $\{Z_n, n \geq 0\}$ a homogeneous Markov chain of transition probability $p(\cdot, \cdot)$ and initial state $Z_0 = x \in \mathbb{S}$.
 - For each $y \in \mathbb{S}$, let $\{\tau_j(y) \geq 1\}$ be i.i.d. random variables independent of $\{Z_n\}$ and each having $\operatorname{Exp}(\lambda_y)$ distribution.
 - $-T_0 = 0, T_k = \sum_{j=1}^k \tau_j(Z_{j-1}) \text{ for } k \ge 1.$
 - $-X_t = Z_k \text{ for all } t \in [T_k, T_{k+1}), k \ge 0.$

Assuming $\mathbb{P}_x(T_\infty < \infty) = 0$ for all $x \in \mathbb{S}$ ("non-explosion condition"), then $\{X_t\}$ is the unique Markov jump process with the given jump parameters.

Conversely, (λ, p) are the parameters of a Markov jump process iff $\mathbb{P}_x(T_\infty < \infty) = 0$ for all $x \in \mathbb{S}$.

- (Remark 8.3.29) When the jump rates are all equal, i.e. $\lambda_x = \lambda$, the jump times T_k are those of a Poisson process N_t of rate λ , which is independent of the Markov chain $\{Z_n\}$. Hence, we can write the Markov jump process as $X_t = Z_{N_t}$.
- (Ex 8.3.30, HW9) Suppose (λ, p) are jump parameters on $(\mathbb{S}, \mathcal{S})$.
 - Rewriting of non-explosion condition: $\mathbb{P}_x(T_\infty < \infty) = 0$ iff $\mathbb{P}_x\left(\sum_n \lambda_{Z_n}^{-1} < \infty\right) = 0$.
 - Sufficient condition on jump parameters to get MJP: If $\lambda \in b\mathcal{S}$ (i.e. bounded), then the jump parameters correspond to a well-defined unique Markov jump process.
- (Eg 8.3.31) Birth processes: Birth processes are Markov jump processes which are also counting processes. (Generalization of Poisson processes: jump times can depend on the state.) They have state space $\mathbb{S} = \{0, 1, \dots\}$ and jump transition probability p(x, x + 1) = 1.
- (Dfn 8.3.32) The linear operator $\mathbf{L}: b\mathcal{S} \mapsto m\mathcal{S}$ such that $(\mathbf{L}h)(x) = \lambda_x \int (h(y) h(x))p(x, dy) = \lambda_x \mathbb{E}_x[h(X_\tau) h(X_0)]$ is the **generator** of the Markov jump process with parameters (λ, p) . In particular, $(\mathbf{L}I_{\{x\}^c})(x) = \lambda_x$, and for any $B \subseteq \{x\}^c$, $(\mathbf{L}I_B)(x) = \lambda_x p(x, B)$.
- (Ex 8.3.33, HW9) Let $\{X_t\}$ be a Markov jump process of semi-group $p_t(\cdot,\cdot)$ and jump parameters (λ,p) .
 - Kolmogorov backward equation: $t \mapsto (\mathbf{L}p_t h)(x)$ is continuous and $t \mapsto (p_t h)(x)$ is differentiable for any $x \in \mathbb{S}$, $h \in b\mathcal{S}$, $t \geq 0$. We also have $\partial_t(p_t h)(x) = (\mathbf{L}p_t h)(x)$ for all $t \geq 0, x \in \mathbb{S}, h \in b\mathcal{S}$.
 - Kolmogorov forward equation: If $\sup_{s\in\mathbb{S}} \lambda_x$ is finite, then $\mathbf{L}: b\mathcal{S} \mapsto b\mathcal{S}$, and for all $t \geq 0, x \in \mathbb{S}, h \in b\mathcal{S}$, we have $\partial_t(p_t h)(x) = (p_t(\mathbf{L}h))(x)$.
 - A Markov semi-group $p_t(\cdot,\cdot)$ corresponds to a Markov jump process only if for any $x \in \mathbb{S}$, the limit $\lim_{t\downarrow 0} \frac{1-p_t(x,\{x\})}{t} = \lambda_x$ exists, is finite and S-measurable.
- (Dfn 8.3.35) Compound Poisson process: A compound Poisson process is a real-valued Markov jump processes with a constant jump rate λ , whose jump transition probability is of the form $p(x, B) = P_{\xi}(\{z : x + z \in B\})$ for some law P_{ξ} on $(\mathbb{R}, \mathcal{B})$.

It is of the form $X_t = S_{N_t}$, $S_n = S_0 + \sum_{k=1}^n \xi_k$ is an i.i.d. random walk which is independent of Poisson process N_t with rate λ . (A random walk sampled at Poisson process times.)

- (Prop 8.3.36) A compound Poisson process X_t has stationary, independent increments and the characteristic function of its Markov semi-group $p_t(x,\cdot)$ is $\mathbb{E}_x[e^{i\theta X_t}] = \exp[i\theta x + \lambda t(\Phi_{\xi}(\theta) 1)]$, where $\Phi_{\xi}(\cdot)$ is the characteristic function for ξ .
- (Prop 8.3.38) Partitioning of compound Poisson processes.

Section 9.1: Brownian transformations, hitting times and maxima

- (Ex 9.1.1, HW5) Let $\{W_t, t \geq 0\}$ be a standard Wiener process. The following are also standard Wiener processes:
 - Symmetry: $\widetilde{W}_t^{(1)} = -W_t$.
 - Time-homogeneity: $\widetilde{W}_t^{(2)} = W_{T+t} W_T$, $t \ge 0$ with T > 0 a non-random constant.
 - Time-reversal: $\widetilde{W}_t^{(3)} = W_T W_{T-t}$ for $t \in [0, T]$, with T > 0 a non-random constant. Morever, $\widetilde{W}_t^{(2)}$ and $\widetilde{W}_t^{(3)}$ are independent.
 - Scaling: $\widetilde{W}_t^{(4)} = \alpha^{-1/2} W_{\alpha t}$, where $\alpha > 0$ is a non-random cosntant.
 - Time-inversion: $\widetilde{W}_t^{(5)} = tW_{1/t}$ for t > 0 and $\widetilde{W}_0^{(5)} = 0$.
 - **Averaging:** $\widetilde{W}_t^{(6)} = \sum_{k=1}^n c_k W_t^{(k)}$, where $W_t^{(k)}$ are independent copies of the standard Wiener process and $\sum c_k^2 = 1$.
- (Remark after Ex 9.1.1) If $L_{a,b} = \sup\{t \geq 0 : W_t \notin (-at, bt)\}$, by time inversion we can show that $L_{a,b}$ is a.s. finite and $\mathbb{P}(W_{L_{a,b}} = bL_{a,b}) = a/(a+b)$.
- (Cor 9.1.2) If (W_t, \mathcal{F}_t) is a Brownian Markov process, then it is a homogeneous \mathcal{F}_{t^+} -Markov process, and for any $s \geq 0$ and bounded Borel-measurable functional $h: ([0, \infty)) \mapsto \mathbb{R}$, a.s. $\mathbb{E}[h(W_s) \mid \mathcal{F}_{s^+}] = \mathbb{E}[h(W_s) \mid \mathcal{F}_s]$.
- (Prop 9.1.4) Blumenthal's 0-1 Law: Let P_x denote the law of the Wiener process starting at $W_0 = x$. Then $P_x(A) \in \{0,1\}$ for each $A \in \mathcal{F}_{0^+}^W$ and $x \in \mathbb{R}$. If A is in the tail algebra for $\{W_t\}$, then either $P_x(A) = 0$ for all x or $P_x(A) = 1$ for all x.
- (Cor 9.1.5) Let $\tau_{0+} = \inf\{t \geq 0 : W_t > 0\}$, $\tau_{0-} = \inf\{t \geq 0 : W_t < 0\}$ and $T_0 = \inf\{t \geq 0 : W_t = 0\}$. Then $P_0(\tau_{0+} = 0) = P_0(\tau_{0-} = 0) = P_0(T_0 = 0) = 1$, and w.p. 1 the standard Wiener process changes sign infinitely many times in any time interval $[0, \varepsilon]$, $\varepsilon > 0$.
- (Cor 9.1.5) For any $x \in \mathbb{R}$, with P_x -probability 1,

$$\limsup_{t\to\infty}\frac{W_t}{\sqrt{t}}=\infty,\quad \liminf_{t\to\infty}\frac{W_t}{\sqrt{t}}=-\infty,\quad W_{u_n}=0 \text{ for some } u_n(\omega)\nearrow\infty.$$

- (Cor 9.1.6) **Regeneration:** If (W_t, \mathcal{F}_t) is a Brownian Markov process and τ is an a.s. finite \mathcal{F}_t -Markov time, then $\{W_{\tau+t} W_{\tau}\}$ is a standard Wiener process independent of \mathcal{F}_{τ^+} .
- (Ex 9.1.8, HW6) Let $\tau_b = \inf\{t \ge 0 : W_t \ge b\}$ and $\tau_{b^+} = \inf\{t \ge 0 : W_t > b\}$. Then $P_0(\tau_b \ne \tau_{b^+}) = 0$.
- (Prop 9.1.10) Reflection principle: Let $M_t = \sup_{s \in [0,t]} W_s$, $T_b = \inf\{t \geq 0 : W_t = b\}$. Then for any t, b > 0,

$$P(M_t \ge b) = P(\tau_b \le t) = P(T_b \le t) = 2P(W_t \ge b).$$

Further,

$$f_{T_b}(t) = \frac{b}{\sqrt{2\pi t^3}} e^{-b^2/2t} = \frac{b}{\sqrt{t^3}} \phi\left(\frac{b}{\sqrt{t}}\right), \qquad f_{M_t}(b) = \frac{2}{\sqrt{2\pi t}} e^{-b^2/2t}.$$

- (Ex 9.1.12) For any u > 0 and $a_1 < a_2 \le b$, $\mathbb{P}(T_b < u, a_1 < W_u < a_2) = \mathbb{P}(2b a_2 < W_u < 2b a_1)$.
- (Ex 9.1.12) **Joint density of** (M_t, W_t) is given by $f_{W_t, M_t}(a, b) = \frac{2(2b-a)}{\sqrt{2\pi t^3}} \exp\left[-\frac{(2b-a)^2}{2t}\right]$.

- $M_t = \max_{0 \le s \le t} W_s$ has the same distribution as $\sqrt{t}|Z|$.
- The processes $\{M_t W_t\}$ and $\{|W_t|\}$ have the same distributions.
- (Ex 9.1.15, HW6) Brownian motion absorbed at zero $\{W_{t \wedge T_0}, \mathcal{F}_t\}$ is a homogeneous Markov process whose transition probabilities are

$$p_{-,t}(x,B) = \begin{cases} 1 & \text{if } x = 0, B = \{0\}, \\ p_t(x,B) - p_t(x,-B) & \text{if } x > 0, B \subseteq (0,\infty), \\ 2p_t(x,(-\infty,0]) & \text{if } x > 0, B = \{0\}. \end{cases}$$

- (Ex 9.1.15, HW6) **Reflected Brownian motion** $\{|W_t|, \mathcal{F}_t\}$ is a homogeneous Markov process whose transition probabilities are $p_{+,t}(x,B) = p_t(x,B) + p_t(x,-B)$ for $x \ge 0$ and $B \subseteq [0,\infty)$.
- (Ex 9.1.16, HW6) $Y_t = M_t W_t$ is an \mathcal{F}_t -Markov process with the same transition probabilities (and hence the same law) as reflected Brownian motion.

Section 9.2: Weak convergence and invariance principles

- (Dfn 9.2.1) Convergence in distribution: $\{X_n(t), t \geq 0\}$ of continuous sample functions converge in distribution to a stochastic process $\{X_{\infty}(t), t \geq 0\}$ if the corresponding laws converge weakly in the topological space $C([0,\infty))$ with the topology of uniform convergence on compact subsets of $[0,\infty)$. That is, if $g(X_n(\cdot)) \stackrel{d}{\to} g(X_{\infty}(\cdot))$ whenever $g: C([0,\infty)) \mapsto \mathbb{R}$ is Borel-measurable and is such that w.p. 1, the sample function of $X_{\infty}(\cdot)$ is not in the set D_g of points of discontinuity of $g(D_g = \{X_{\infty}(\cdot) \in C([0,\infty)), \exists X_n(\cdot) \to X_{\infty}(\cdot) \text{ and } g(X_n) \not\to g(X_{\infty})\}$).
- (Thm 9.2.2) **Donsker's Invariance Principle:** If $\{\xi_k\}$ are i.i.d. with $\mathbb{E}\xi_1 = 0$ and $\mathbb{E}\xi_1^2 = 1$, then for $S(\cdot)$ where $S(t) = \sum_{k=1}^{\lfloor t \rfloor} \xi_k + (t \lfloor t \rfloor) \xi_{\lfloor t \rfloor + 1}$, the stochastic processes $\widehat{S}_n(\cdot) = n^{-1/2} S(n \cdot)$ converges in distribution to the standard Wiener process.
- (Prop 9.2.4) If the laws of $\{X_n(\cdot)\}$ of continuous sample functions are uniformly tight in $C([0,\infty))$ and the f.d.d. of $\{X_n(\cdot)\}$ converge weakly to the f.d.d. of $\{X_\infty(\cdot)\}$, then $X_n(\cdot) \stackrel{d}{\to} X_\infty(\cdot)$.
- (Thm 9.2.5) Arzelà-Ascoli Theorem.
- (Eg 9.2.9, Ex 9.2.10, Eg 9.2.11) Examples of applying Donsker's invariance principle for different functionals.
- (Cor 9.2.13) **Glivenko-Cantelli:** Suppose $\{X_k, X\}$ i.i.d. and $x \mapsto F_X(x)$ is continuous. Then if $D_n = \sup_{x \in \mathbb{R}} |F_X(x) F_n(x)|$, as $n \to \infty$ we have $n^{1/2}D_n \stackrel{d}{\to} \sup_{t \in [0,1]} |\widehat{B}_t|$, where \widehat{B}_t is the standard Brownian bridge.
- (Lem 9.2.16) Let $\{W(t)\}$ be a standard Wiener process and let $k \mapsto T_{n,k}$ be non-decreasing, such that $T_{n,\lfloor nt\rfloor} \stackrel{P}{\to} t$ as $n \to \infty$, for each fixed $t \in [0,\ell]$. (Think of the $T_{n,k}$'s as sampling times.)

 Then for the norm $\|x(\cdot)\| = \sup_{t \in [0,\ell]} |x(t)|$ and $\hat{S}_n(t) = S_n(nt)$, where $S_n(t) = W(T_{n,\lfloor t\rfloor}) + (t-\lfloor t\rfloor)[W(T_{n,\lfloor t\rfloor+1}) W(T_{n,\lfloor t\rfloor})]$, we have $\|\hat{S}_n W\| \stackrel{P}{\to} 0$. In fact, $\hat{S}_n(\cdot) \stackrel{d}{\to} W(\cdot)$ in $C([0,\infty))$.

- (Thm 9.2.19) **Skorohod's Representation:** Suppose (W_t, \mathcal{F}_t) is a Brownian Markov process such that $W_0 = 0$. Given the law P_X of an integrable X such that $\mathbb{E}X = 0$, there exists an a.s. finite \mathcal{F}_t -stopping time τ such that $W_\tau \stackrel{d}{=} X$, $\mathbb{E}\tau = \mathbb{E}[X^2]$ and $\mathbb{E}[\tau^2] \leq 2\mathbb{E}[X^4]$.
- (Thm 9.2.20) Strassen's Martingale Representation: Suppose the probability space contains a discrete-time martingale $\{M_{\ell}, \mathcal{F}_{\ell}\}$ such that $M_0 = 0$, as well as a standard Wiener process $\{W(t)\}$, independent of \mathcal{F}_{∞} and $\{M_{\ell}\}$. Then
 - The filtrations $\mathcal{F}_{k,t} = \sigma(\mathcal{F}_k, \mathcal{F}_t^W)$ are such that $(W(t), \mathcal{F}_{k,t})$ is a Brownian Markov process for any $1 \le k \le \infty$.
 - There exist non-decreasing a.s. finite $\mathcal{F}_{k,t}$ -stopping times $\{T_k\}$, starting with $T_0=0$, where $\tau_k=T_k-T_{k-1}$ and the filtration $\mathcal{H}_k=\mathcal{F}_{k,T_k}$ are such that w.p. 1, $\mathbb{E}[\tau_k\mid\mathcal{H}_{k-1}]=\mathbb{E}[D_k^2\mid\mathcal{F}_{k-1}]$ and $\mathbb{E}[\tau_k^2\mid\mathcal{H}_{k-1}]\leq 2\mathbb{E}[D_k^4\mid\mathcal{F}_{k-1}]$, where $D_k=M_k-M_{k-1}$ are the martingale differences, for all $k\geq 1$.
 - The discrete time process $\{W(T_{\ell})\}$ has the same f.d.d. as $\{M_{\ell}\}$.
- (Cor 9.2.21) Skorohod's Representation for random walks: Suppose ξ_1 integrable and of zero mean. The random walk $S_n = \sum_{k=1}^n \xi_k$ for i.i.d. $\{\xi_k\}$ can be represented as $S_n = W(T_n)$ for $T_0 = 0$, i.i.d. $\tau_k = T_k T_{k-1} \ge 0$ such that $\mathbb{E}[\tau_1] = \mathbb{E}[\xi_1^2]$, and standard Wiener process W. Also, each T_k is a stopping time for \mathcal{F}_t^W .
- (Thm 9.2.22) **Lindeberg's Martingale CLT:** Suppose that for any $n \geq 1$ fixed, $(M_{n,\ell}, \mathcal{F}_{n,\ell})$ is a discrete-time L^2 martingale starting at 0, with martingale differences $D_{n,k} = M_{n,k} M_{n,k-1}$ and predictable compensators $\langle M_n \rangle_{\ell} = \sum_{k=1}^{\ell} \mathbb{E}[D_{n,k}^2 \mid \mathcal{F}_{n,k-1}]$. If
 - (a) For any fixed $t \in [0,1]$, $\langle M_n \rangle_{|nt|} \stackrel{P}{\to} t$ as $n \to \infty$, and
 - (b) For each $\varepsilon > 0$, $g_n(\varepsilon) = \sum_{k=1}^n \mathbb{E}[D_{n,k}^2 I\{|D_{n,k}| \ge \varepsilon\} \mid \mathcal{F}_{n,k-1}] \xrightarrow{P} 0$ as $n \to \infty$,

then as $n \to \infty$, the linearly interpolated, time-scaled $\widehat{S}_n(t) = M_{n,\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) D_{n,\lfloor nt \rfloor + 1}$ converges in distribution on C([0,1]) to the standard Wiener process $\{W_t, t \in [0,1]\}$.

- (Cor 9.2.23) CLT for a single martingale: Suppose $(M_{\ell}, \mathcal{F}_{\ell})$ is an L^2 martingale starting at 0. If
 - (a) $\langle M \rangle_n / n \stackrel{P}{\to} 1$ as $n \to \infty$, and

(b) For each
$$\varepsilon > 0$$
, $\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[(M_k - M_{k-1})^2; |M_k - M_{k-1}| \ge \varepsilon \sqrt{n}] \to 0$ as $n \to \infty$,

then as $n \to \infty$, the linearly interpolated, time-scaled $\widehat{S}_n(t) = n^{-1/2} [M_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor)(M_{\lfloor nt \rfloor + 1} - M_{\lfloor nt \rfloor})]$ converges in distribution on C([0,1]) to the standard Wiener process $\{W_t, t \in [0,1]\}$.

• (Thm 9.2.27) **Kinchin's LIL:** Set $h(t) = \sqrt{2t \log \log(1/t)}$ for t < 1/e and $\tilde{h}(t) = th(1/t)$. Then, for standard Wiener processes W_t and \widetilde{W}_t , we have

$$\limsup_{t \downarrow 0} \frac{W_t}{h(t)} = 1, \qquad \qquad \liminf_{t \downarrow 0} \frac{W_t}{h(t)} = -1,$$

$$\limsup_{t \to \infty} \frac{\widetilde{W}_t}{\tilde{h}(t)} = 1, \qquad \qquad \liminf_{t \to \infty} \frac{\widetilde{W}_t}{\tilde{h}(t)} = -1.$$

• (Prop 9.2.9) **Hartman-Wintner's LIL for random walks:** Suppose $S_n = \sum_{k=1}^n \xi_k$, where ξ_k 's are i.i.d. with $\mathbb{E}\xi_1 = 0$ and $\mathbb{E}\xi_1^2 = 1$. Then w.p. 1, $\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1$.

Section 9.3: Brownian path: regularity, local maxima and level sets

- (Dfn 9.3.1) For a continuous $f:[0,\infty) \mapsto \mathbb{R}$ and $\gamma \in (0,1]$, the **upper and lower (right)** γ derivatives at $s \geq 0$ are the $\overline{\mathbb{R}}$ -valued $D^{\gamma}f(s) = \limsup_{u \downarrow 0} u^{-\gamma}[f(s+u)-f(s)]$ and $D_{\gamma}f(s) = \liminf_{u \downarrow 0} u^{-\gamma}[f(s+u)-f(s)]$. (These always exist.)
 - The **Dini derivatives** correspond to the case of $\gamma = 1$. A continuous function is **differentiable from** the right at s if $D^1 f(s) = D_1 f(s)$ is finite.
- (Prop 9.3.2) Nowhere differentiability of BM: With probability 1, the sample function of a Wiener process is nowhere differentiable. More precisely, for $\gamma = 1$ and any $T < \infty$,

$$\mathbb{P}(\{\omega : -\infty < D_{\gamma}W_t(\omega) \le D^{\gamma}W_t(\omega) < \infty \text{ for some } t \in [0, T]\}) = 0.$$

(Ex 9.3.3, HW8) The above actually holds for any $\gamma > 1/2$.

- (Thm 9.3.5) **Lévy's modulus of continuity:** For $\delta \in (0,1]$, set $g(\delta) = \sqrt{2\delta \log(1/\delta)}$. For a Wiener process $\{W_t, t \in [0,T]\}$ for $0 < T < \infty$, almost surely $\limsup_{\delta \downarrow 0} \frac{osc_{T,\delta}(W_{\cdot})}{g(\delta)} = 1$, where $osc_{t,\delta}(W_{\cdot}) = \sup_{0 \le h \le \delta} \sup_{0 \le s \le s + h \le t} |W_{s+h} W_s|$.
- (Dfn) For non-random $b \in \mathbb{R}$, the **level set** of the standard Wiener process is defined by $\mathcal{Z}_{\omega}(b) = \{t \geq 0 : W_t(\omega) = b\}$. The **zero set** is $\mathcal{Z}_{\omega} = \mathcal{Z}_{\omega}(0)$.
- (Prop 9.3.7, Cor 9.3.8) Fix $b \in \mathbb{R}$. For almost every $\omega \in \Omega$, the level set $\mathcal{Z}_{\omega}(b)$ of the standard Wiener process is closed, unbounded, of zero Lebesgue measure and having no isolated points.
- (Remark 9.3.9) For almost every ω , the sample path of the Wiener process is monotone in no interval.
- (Dfn 9.3.11) Suppose $f:[0,\infty)\mapsto\mathbb{R}$. $t\geq 0$ is a **point of local maximum** if there is a neighborhood such that $f(t)\geq f(s)$ for s in that neighborhood. It is a **strict point of local maximum** if f(t)>f(s) for any point in a neighborhood. It is a **point of increase** if there exists $\delta>0$ s.t. $f((t-h)_+)\leq f(t)\leq f(t+h)$ for all $h\in (0,\delta]$.
- (Prop 9.3.13) For almost every $\omega \in \Omega$, the set of points of local maximum for the Wiener sample path is a countable dense subset of $[0, \infty)$, and all local maxima are strict.
- (Thm 9.3.14) Almost every sample path of the Wiener process has no point of increase (or decrease).

Other Stuff

Brownian Motion Facts

• (Dfn 7.3.12) $\{W_t, t \geq 0\}$ is called a **Brownian motion/Wiener process** starting at $x \in \mathbb{R}$ if it is a Gaussian process with mean function m(t) = x, auto-covariance $Cov(W_t, W_s) = t \wedge s$, and its sample functions are continuous.

If x = 0, it is called **standard Brownian motion**.

- (Ex 7.3.13c, HW2) For any finite T, $\{W_t, t \in [0,T]\}$ can be viewed as the random variable W: $(\Omega, \mathcal{F}) \mapsto (C([0,T]), \|\cdot\|_{\infty})$, which is measurable w.r.t. the Borel σ -algebra on C([0,T]), and is a.s. locally γ -Hölder continuous for any $\gamma < 1/2$.
 - Kinchin's LIL tells us that Brown motion sample paths are not γ -Hölder continuous for any $\gamma \geq 1/2$.
- (Ex 7.3.13d, HW2) Brownian motion is non-stationary but has stationary, independent increments.
- (Ex 7.3.16a, HW2) For s < t, $W_s \mid W_t \sim \mathcal{N}\left(\frac{s}{t}W_t, \frac{s(t-s)}{t}\right)$. (Proof: Look at joint density function of W_s and W_t .)
- (Ex 7.3.16b, HW2) $\lim_{t\to\infty} \frac{W_t}{t} = 0$ (a.s. limit).
- (Ex 8.2.35d, HW4) $\limsup_{t\to\infty}W_t=\infty$ w.p. 1 and $\liminf_{t\to-\infty}W_t=-\infty$ w.p. 1.
- (Ex 8.2.7, HW3) Important collection of martingales based on Brownian motion and $u_0(t, y, \theta) = \exp(\theta y \theta^2 t/2)$.
 - For any $\theta \in \mathbb{R}$, $\{u_0(t, B_t, \theta)\} = \{\exp(\theta B_t \theta^2 t/2)\}$ is a martingale.
 - Let $u_{k+1}(t, y, \theta) = \frac{\partial}{\partial \theta} u_k(t, y, \theta)$. For any $k \ge 0$, $u_k(t, B_t, \theta)$ is a martingale.
 - Evaluating at $\theta = 0$, we get that $B_t^2 t$, $B_t^3 3tB_t$, $B_t^4 6tB_t^2 + 3t^2$ and $B_t^6 15tB_t^4 + 45t^2B_t^2 15t^3$ are all martingales.
- $(x + B_t)^2 (t + x^2)$ is a martingale.
- (Ex 8.2.36, HW4) **Exit times:** For a, b > 0, let $\tau_{a,b} = \inf\{t \ge 0 : W_t \notin (-a, b)\}$.
 - $-\tau_{a,b}$ is an a.s. finite \mathcal{F}_t^W -stopping time, and $\mathbb{P}\left(W_{\tau_{a,b}}=-a\right)=\frac{b}{a+b}$.
 - For all $s \ge 0$, $\mathbb{E}[e^{-s\tau_{a,b}}] = \frac{\sinh(a\sqrt{2s}) + \sinh(b\sqrt{2s})}{\sinh[(a+b)\sqrt{2s}]}$
 - $-\mathbb{E}\tau_{a,b} = ab$ and $\operatorname{Var}\tau_{a,b} = \frac{ab}{3}(a^2 + b^2).$
- (Eg 8.2.51) Quadratic variation: A quadratic variation for the standard Brownian motion is $\langle W \rangle_t = t$. By Ex 8.2.46, this implies that the total variation of the Brownian sample path is a.s. infinite on any interval of positive length.
- (Eg 8.3.6) Brownian motion is a homogeneous Markov process with semi-group $p_t(x, B) = \int_B \frac{e^{-(y-x)^2/2t}}{\sqrt{2\pi t}} dy$.
- (Ex 8.3.20, HW5) Any Brownian Markov process is a strong Markov process.
- Wald's Lemma for Brownian motion: If $\{W_t\}$ is a standard Brownian motion and τ is a Markov time s.t. $\mathbb{E}\tau < \infty$, then $\mathbb{E}[B_{\tau}] = 0$ and $\mathbb{E}[B_{\tau}^2] = \mathbb{E}\tau$. If $\{B_{t \wedge \tau}\}$ is dominated by an integrable random variable, then we still have $\mathbb{E}[B_{\tau}] = 0$.
- (Karatzas & Shreve Prop 2.8.15, p100) Define the last exit time $\theta_t = \sup\{0 \le s \le t : W_s = M_t\}$. Then for $a \in \mathbb{R}$, $b \ge a^+$, 0 < s < t, we have

$$\mathbb{P}(W_t \in da, M_t \in db, \theta_t \in ds) = \frac{b(b-a)}{\pi \sqrt{s^3(t-s)^3}} \exp\left[-\frac{b^2}{2s} - \frac{(b-a)^2}{2(t-s)}\right] da \ db \ ds.$$

• (Mörters & Peres Thm 2.37) Let $W_1(t)$ and $W_2(t)$ be independent Brownian motions. Let $T_a = \inf\{t : W_1(t) = a\}$. Then $W_2(T_a)$ has density $\frac{a}{\pi(a^2 + x^2)}$.

k-dimensional Brownian Motion Facts

• (Ex 8.2.38, HW4) Let $R_t = \|\underline{W}(t)\|_2$ be the Euclidean distance of the process from the origin. Let $\theta_b = \inf\{t \geq 0 : R_t \geq b\}$ be the first hitting time of a sphere of radius b > 0 centered at the origin. Then $M_t = R_t^2 - kt$ is an \mathcal{F}_t^W -martingale of continuous sample functions, and θ_b is an a.s. finite \mathcal{F}_t^W stopping time with $\mathbb{E}[\theta_b] = b^2/k$.

Brownian Motion with Drift Facts

- We write it as $Z_t^{(r,\sigma)} = \sigma W_t + rt + x$, with non-random drift $r \in \mathbb{R}$ and diffusion coefficient $\sigma > 0$.
- (Ex 8.3.10, HW5) $Z_t^{(r,\sigma)}$ is a homogeneous Markov process.
- Since $\exp\left[\theta W_t \frac{\theta^2 t}{2}\right]$ is a martingale for all θ , so is $\exp\left[\theta (W_t + rt) \frac{(\theta^2 + 2r\theta)t}{2}\right]$.
- Hitting times: Let $Z_t^{(r)} = W_t + rt$. For b > 0, let $\tau_b^{(r)} = \inf\{t \ge 0 : Z_t^{(r)} \ge b\}$.
 - (Ex 8.2.35, HW4) $\tau_b^{(r)}$ is an \mathcal{F}_t^W -stopping time.
 - (Karatzas & Shreve p
197) $\tau_b^{(r)}$ has density

$$\mathbb{P}\left(\tau_b^{(r)} \in dt\right) = \frac{b}{\sqrt{2\pi t^3}} \exp\left[-\frac{(b+rt)^2}{2t}\right] dt.$$

 – (Karatzas & Shreve p
197) $\mathbb{P}\left(\tau_b^{(r)}<\infty\right)=\exp[-rb-|rb|].$

Case 1: r > 0.

$$- \mathbb{P}\left(\tau_b^{(r)} < \infty\right) = 1.$$

$$- \mathbb{E}[\tau_b^{(r)}] < \infty.$$

Case 2: r = 0.

- (Ex 8.2.35, HW4)
$$\mathbb{E}\left[\exp\left(-s\tau_b^{(0)}\right)\right] = \exp\left[-b\sqrt{2s}\right]$$

- (Ex 8.2.35, HW4)
$$\mathbb{P}\left(\tau_b^{(0)} < \infty\right) = 1.$$

– (Prob Qual 2011-6, Session 11)
$$\mathbb{E}[\tau_b^{(0)}] = \infty$$
.

Case 3: r < 0.

$$- \text{ (Ex 8.2.35, HW4) } \mathbb{E}\left[\exp\left(-s\tau_b^{(r)}\right)\right] = \exp\left[-b(\sqrt{r^2+2s}-r)\right].$$

- (Ex 8.2.35, HW4)
$$\mathbb{P}\left(\tau_b^{(r)} < \infty\right) = e^{2rb} < 1$$
. Hence, $\mathbb{E}[\tau_b^{(r)}] = \infty$.

• (Ex 8.2.36, HW4) **Exit times from** (-a,b): Now consider $Z_t^{(r)}$ for all $r \in \mathbb{R}$. For a,b > 0, let $\tau_{a,b}^{(r)} = \inf\{t \geq 0 : Z_t^{(r)} \notin (-a,b)\}$. Then $\tau_{a,b}^{(r)}$ is an a.s. finite \mathcal{F}_t^W -stopping time, and for $r \neq 0$,

$$\mathbb{P}\left(Z_{\tau_{a,b}^{(r)}}^{(r)}) = -a\right) = 1 - \mathbb{P}\left(Z_{\tau_{a,b}^{(r)}}^{(r)}) = b\right) = \frac{1 - \exp(-2rb)}{\exp(2ra) - \exp(-2rb)}.$$

When r=0, we have $\mathbb{P}\left(W_{\tau_{a,b}^{(0)}}=-a\right)=\frac{b}{a+b}$.

• (Eg 8.3.6) $\{Z_t^{(r)}\}$ is a homogeneous Markov process with semi-group $p_t(x+rt,B)$, where $p_t(x,B) = \int_B \frac{e^{-(y-x)^2/2t}}{\sqrt{2\pi t}} dy$.

Brownian Bridge Facts

- The standard Brownian bridge is a Gaussian process with mean function 0 and auto-covariance function $c(s,t) = s \wedge t st$.
- (Ex 7.3.15a) We can write the standard Brownian bridge as $\widehat{B}_t = W_t \min(t, 1)W_1$.
- (Ex 7.3.16c,d, HW2) We can also write it as $\widetilde{B}_t = (1-t)W_{t/(1-t)}$ with $\widetilde{B}_0 = 0$, or $W_t \mid W_1 = 0$, $t \in [0,1]$.
- (Ex 8.3.10, HW5) Brownian bridge is a Markov process with stationary increments, but is not a homogeneous Markov process.
- Useful transformation for stopping times: By time inversion, we have $\left\{\sup_{t\in[0,1]}\{W_t-tW_1\}\geq b\right\}=\left\{\sup_{s\geq 1}\{\widetilde{W}_s-\widetilde{W}_1-sb\}\geq 0\right\}$, where $\widetilde{W}_t=tW_{1/t}$.
- (Ex 9.2.14, HW7) $\mathbb{P}\left(\sup_{t \in [0,1]} \widehat{B}_t \ge b\right) = \exp(-2b^2)$. For any non-random a, c > 0, $\mathbb{P}\left(\inf_{t \in [0,1]} \widehat{B}_t \le -a \text{ or } \sup_{t \in [0,1]} \widehat{B}_t \ge c\right) = \sum_{n \ge 1} (-1)^{n-1} (p_n + r_n)$, where $p_{2n} = r_{2n} = \exp[-2(na + nc)^2]$, $r_{2n+1} = \exp[-2(na + nc + c)^2]$ and $p_{2n+1} = \exp[-2(na + nc + a)^2]$.
- (Ex 9.2.14, HW7) Let $F_{KS}(\cdot)$ be the distribution function for $\sup_{t \in [0,1]} |\widehat{B}_t|$. Then $F_{KS}(b) = 1 2\sum_{n=1}^{\infty} (-1)^{n-1} e^{-2n^2 b^2}$.
- (Lemma used in HW7 Ex 9.2.14) For b > 0, let $P_{b,\varepsilon} = \mathbb{P}(W_t \ge b \text{ for some } t \in [0,1] \mid |W_1| < \varepsilon)$. Then $P_{b,\varepsilon} = \frac{\mathbb{P}(|W_1 2b| < \varepsilon)}{\mathbb{P}(|W_1| < \varepsilon)}$, and $\lim_{\varepsilon \downarrow 0} P_{b,\varepsilon} = \exp(-2b^2)$.

Fractional Brownian Motion Facts

- (Ex 7.3.17, HW2) For $H \in (0,1)$, fractional Brownian motion of Hurst parameter H is the centered Gaussian stochastic process with auto-covariance function $c(s,t) = \frac{1}{2} \left[|t|^{2H} + |s|^{2H} |t-s|^{2H} \right]$.
- (Ex 7.3.17b) Fractional Brownian motion exists and has a continuous modification that is locally γ -Hölder continuous for any $0 < \gamma < H$.
- (Ex 7.3.17c) When H = 1/2, fBM is the standard Wiener process.
- (Ex 7.3.17d) For any non-random b > 0, $\{b^{-H}X_{bt}, t \ge 0\}$ is also an fBM with Hurst parameter H.
- (Ex 7.3.17e) The increments of fBM are stationary for all values of H. The increments of fBM are independent only when H = 1/2.

Geometric Brownian Motion Facts

- (Ex 8.3.10) This is defined by $Y_t = e^{W_t}$.
- (Ex 8.3.10, HW5) Geometric Brownian motion is a homogeneous Markov process whose increments are neither independent nor stationary.

Ornstein-Uhlenbeck Process Facts

- (Ex 7.3.15b) The Ornstein-Uhlenbeck process is given by $U_t = e^{-t/2}W_{e^t}$.
- The OU process is a stationary process.
- (Ex 8.3.10, HW5) The OU process is a homogeneous Markov process.
- (Qual 2010 Qn5) The OU is a homogeneous, zero-mean, Gaussian Markov process such that $\mathbb{E}[U_t \mid U_0] = e^{-t/2}U_0$ and Var $(U_t \mid U_0) = 1 e^{-t}$.
- (Qual 2010 Qn5) $\mathbb{E}[U_t] = 0$, $Cov(U_t, U_s) = \exp\left(-\frac{|s-t|}{2}\right)$.
- (Qual 2010 Qn5) The transition kernel is $p_t(x,y) = \frac{1}{\sqrt{2\pi(1-e^{-t})}} \exp\left[-\frac{1}{2(1-e^{-t})}(y-e^{-t/2}x)^2\right]$.

Poisson process

- (Dfn 3.4.8) The Poisson process of rate $\lambda > 0$, denoted N_t , is the unique counting process with gaps between jump times being i.i.d. $\text{Exp}(\lambda)$ variables.
- The k^{th} arrival time T_k has distribution $\operatorname{Gam}(k,\lambda)$ (shape-rate).
- As $t \to \infty$, $N_t/t \stackrel{a.s.}{\to} \lambda$.
- (Prop 3.4.9) The Poisson process has independent increments, and $N_t N_s \sim \text{Pois}(\lambda(t-s))$.
- (Eg 8.2.5) The compensated Poisson process $M_t = N_t \lambda t$ is a martingale.
- (Eg 8.2.53) $M_t^2 \lambda t$ is a right-continuous martingale, so $\langle M \rangle_t = \lambda t$.
- (Eg 8.3.6) The **Poisson process with drift** is $N_t^{(r)} = N_t + rt + x$. This is a homogeneous Markov process with semi-group $q_t(x + rt, B)$, where $q_t(x, B) = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} I_B(x + k)$.
- (Ex 8.3.20, HW5) The Poisson process is a strong Markov process.