Question 5

Use the definition of Θ in order to show the following:

Definition:

Let f and g be two functions Z^+ to Z^+ $f = \Theta(g)$ if f = O(g) and $f = \Omega(g)$.

a.
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

Proof that f is O(g)

$$f(n) = 5n^3 + 2n^2 + 3n$$

$$g(n) = n^3$$

Claim f = O(g):

- 1. Select c=10 and $n_0=1$. We will show that for any $n\geq 1,$ $f(n)\leq 10g(n)$. 2. Explicitly, $5n^3+2n^2+3n\leq 10n^3$.

Facts:

1. Since $n \ge 1$, $n \le n^2 \le n^3$.

Substitutions:

 $f(n) = 5n^3 + 2n^2 + 3n$

 $f(n) \le 5n^3 + 2n^3 + 3n^3$ $f(n) \le 10n^3$

 $f(n) \leq 10g(n) \blacksquare$

...now given fact 1, substitute n^3 for both n^2 and n...

... now adding factors of n^3 we obtain... ... add observing $g(n)=n^3$ we substitute and obtain...

Proof that f is $\Omega(g)$

$$f(n) = 5n^3 + 2n^2 + 3n$$

 $g(n) = n^3$

Noting:

If f(n) is a polynomial of degree k, then $f = \Omega(n^k)$ only if the coefficient of the n^k term in f (call it a_k) is positive. Here are combinations for c and n_0 that suffice as a witness to show that $f = \Omega(n^k).$

If f has no negative coefficients, then $c = a_k$ and $n_0 = 1$ suffice. If f has negative coefficients (but $a_k > 0$), then let A be the sum of the absolute values of the negative coefficients in f(n). The choices $c = a_k/2$ and $n_0 = max\{1, 2A/(a_k)\}$ are sufficient.

Claim $f = \Omega(g)$:

- 1. Noting the polynomial has all positive coefficients, $c = a_k$ and $n_0 = 1$ will suffice.
- 2. Select c=5 and $n_0=1$. We will show that for any $n\geq 1$, $f(n)\geq 5g(n)$.
- 2. Explicitly, $5n^3 + 2n^2 + 3n \ge 5n^3$.

Facts:

- 1. Since $n \ge 1$, $3n \ge 0$. 2. Since $n \ge 1$, $2n^2 \ge 0$. 3. Since $n \ge 1$, $5n^3 \ge 0$.

Building the inequality:

Starting with fact 1...

...now using fact 2 add the inequalities to obtain...

...now using fact 3, we can add $5n^3$ to both sides of the inequality...

 $3n \ge 0$ $2n^2 + 3n \ge 0$ $5n^3 + 3n^2 + 3n \ge 5n^3$

...fact 3 also ensures sign of inequality does not change...

Now observing $g(n) = n^3$ and $f(n) = 5n^3 + 2n^2 + 3n$ we substitute and obtain... $f(n) \ge 5g(n) \blacksquare$

b.
$$\sqrt{7n^2 + 2n - 8} = O(n)$$

Proof that f is O(g)

$$f(n) = \sqrt{7n^2 + 2n - 8}$$
$$g(n) = n$$

Claim f = O(g):

1. Select c=3 and $n_0=1$. We will show that for any $n\geq 1$, $f(n)\leq 3g(n)$.

2. Explicitly, $\sqrt{7n^2 + 2n - 8} \le 3n$.

Facts:

1. Since $n \ge 1$, $n \le n^2$.

2. $0 \ge -8$

3. Since $n^2 \ge 1$, $9n^2 - 8 \ge 1$

Substitutions:

 $f(n) = \sqrt{7n^2 + 2n - 8}$ $f(n) \le \sqrt{7n^2 + 2n^2 - 8}$ $f(n) \le \sqrt{9n^2 - 8}$

 $f(n) \le \sqrt{9n^2}$

 $f(n) \leq 3n$

 $f(n) \leq 3g(n) \blacksquare$

...now given fact 1, substitute n^2 for n...

...now consolidating terms we obtain...

...now given fact 2 we obtain...

...and given fact 3, we can take square root to obtain...

...add observing g(n) = 3n we substitute and obtain...

Proof that f is $\Omega(g)$

$$f(n) = \sqrt{7n^2 + 2n - 8}$$
$$g(n) = n$$

Noting:

If f(n) is a polynomial of degree k, then $f = \Omega(n^k)$ only if the coefficient of the n^k term in f (call it a_k) is positive. Here are combinations for c and n_0 that suffice as a witness to show that $f = \Omega(n^k).$

If f has no negative coefficients, then $c = a_k$ and $n_0 = 1$ suffice. If f has negative coefficients (but $a_k > 0$), then let A be the sum of the absolute values of the negative coefficients in f(n). The choices $c = a_k/2$ and $n_0 = max\{1, 2A/(a_k)\}$ are sufficient.

Claim $f = \Omega(g)$:

- 1. Given the presence of negative coefficients (but $a_k > 0$), we calculate $A = \sqrt{|-8|}$.
- 2. Additionally, $a_k = \sqrt{7}$.
- 3. As such, we select $c = \frac{\sqrt{7}}{2}$ and $n_0 = max\{1, \frac{2(\sqrt{8})}{\sqrt{7}}\}$ which leaves us with $n_0 = \frac{2(\sqrt{8})}{\sqrt{7}}$.
- 4. We will show that for any $n \ge \frac{2(\sqrt{8})}{\sqrt{7}}$, $f(n) \ge \frac{\sqrt{7}}{2}g(n)$.
- 5. Explicitly, $\sqrt{7n^2 + 2n 8} \ge \frac{\sqrt{7}}{2}n$.

Building the inequality:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$

$$f(n) = \sqrt{n^2(7 + \frac{2}{n} - \frac{8}{n^2})}$$

$$f(n) = n\sqrt{7 + \frac{2}{n} - \frac{8}{n^2}}$$

$$f(n) \ge \sqrt{7}n$$

$$f(n) \ge \sqrt{7}n$$
$$f(n) \ge \frac{\sqrt{7}n}{2}$$

...now factoring out n^2 we obtain...

4

...now we can take the n^2 out of root to obtain...

...knowing the limit of a sum is the sum of the limits...

...as it will never obtain this value (asymptotic)...

...and diving by a positive 2 maintains the inequality...

Now observing g(n) = n we substitute and obtain...

$$f(n) \ge \frac{\sqrt{7}}{2}g(n) \blacksquare$$