REIBURG

Kapitel 4 – Sequentielle Logik

- 1. Speichernde Elemente
- 2. Sequentielle Schaltkreise
- 3. Entwurf sequentieller Schaltkreise
- 4. SRAM
- 5. Anwendung: Datenpfade von ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

SRAM

- Static Random-Access Memory.
- Konzeptuell: Eine (sehr große) Anzahl N von Speicherzellen sowie ein (sehr großer) Multiplexer, um auf die einzelnen Zellen zuzugreifen.
- Durch die Größe spielen Beschränkungen eine Rolle, die bei einer Realisierung beachtet werden müssen.
 - Fanout-Beschränkung: Eine Leitung kann nicht beliebig verzweigen ⇒ Treiberbäume
 - Fanin-Beschränkung: Ein Gatter kann nicht beliebig viele Eingänge haben (Hier: *N*-faches ODER als Baum).

SRAM: Ein-/Ausgänge und Zeichen

- Sei $n \in \mathbb{N}$, $N = 2^n$. Ein N-Bit statischer Speicher oder SRAM hat:
 - n Eingänge $A = (A_{n-1}, ..., A_0)$ "Adresse",
 - Dateneingang D_{in},
 - Datenausgang Dout,
 - Kontrollsignal W "write"

SRAM: Funktionalität

- Der Speicher enthält *N* Speicherzellen $L_0, ..., L_{N-1}$, die je ein Bit speichern können.
- Zelle $L_{\langle A \rangle}$ wird mit Hilfe der Adresse A ausgewählt.
 - An D_{out} erscheint der Inhalt von $L_{\langle A \rangle}$.
 - lacksquare Durch Schreibpuls an W wird D_{in} nach $L_{\langle A \rangle}$ übernommen.

N-Bit-SRAM, *N* × *s*-Bit-SRAM: Aufbau

- Ein N × s-Bit-SRAM besteht aus s N-Bit SRAMs mit gemeinsamen Adress- und Schreibsignalen.
 - s heißt Bitbreite des N × s-Bit-SRAMs.
- Ein *N*-Bit-SRAM besteht im Prinzip aus 3 Hilfsschaltkreisen:
 - mehrfaches ODER
 - Treiberbäume
 - Dekodierer

SRAM: Schaltbild

6/24

O_N: Mehrfaches ODER

- Ein N-faches ODER O_N mit $N = 2^n$ ist ein Schaltkreis, der N-faches Oder berechnet.
- Balancierter Baum, um Verzögerungszeit zu minimieren (Tiefe $O(\log N) = O(n)$).

Treiberbäume

- Ein Treiber ist ein Gatter mit einem Eingang X und einem Ausgang Y, das die Identität Y = X berechnet.
 - Eingesetzt, um Fanout-Beschränkung zu überwinden.
 - Beispiel: Fanout-Beschränkung von 3.

F_N : Treiberbäume im SRAM

- Zur Erinnerung: Ein Baum ist ein azyklischer gerichteter Graph G = (V, E) mit:
 - Genau einer Quelle w,
 - indeg(v) = 1 für alle $v \in V \setminus \{w\}$
 - Blätter = Knoten $v \in V$ mit outdeg(v) = 0
 - Innere Knoten = Knoten $v \in V$ mit outdeg(v) > 1.
- Im SRAM für Realisierung von F_N eingesetzt.
- Fanout-Beschränkung von $10 \rightarrow 10$ -äre Bäume.

10-äre Bäume (1/2)

*B*₀:

•

- Anzahl der Blätter von B_s : $L(B_s)$.
 - Entspricht dem erreichten Verzweigungsgrad.
- Anzahl der inneren Knoten von B_s : $I(B_s)$.
 - Entspricht der benötigten Anzahl von Treibern.

B₁:

10

B_s: ...

 $L(B_s)=10^s$

$$I(B_s) = \sum_{i=0}^{s-1} 10^i = \frac{10^s - 1}{10 - 1} < \frac{L(B_s)}{9}$$

10-äre Bäume (2/2)

- Benutze also B_s zum 10^s-fachen Vervielfältigen eines Signals
- Innere Knoten des Baumes werden durch Treiber ersetzt
- ⇒ Treiberbaum mit Fanoutbeschränkung 10

Treiberbäume: Allgemeiner Fall (1/2)

- Angenommen, ein Signal soll N-fach vervielfältigt werden mit $10^{s-1} < N < 10^s$ keine Zehnerpotenz.
- Ziel: Balancierte Treiberbäume, d.h. alle Pfade von der Wurzel zu einem Blatt haben gleiche Länge.

Treiberbäume: Allgemeiner Fall (2/2)

- Idee: "Fülle Bäume von links her 10-är auf" und sorge zusätzlich für gleiche Tiefe der Blätter!
- Beispiel: ...

Lemma

 $\forall s \in \mathbb{N}$ und $N \in \{10^{s-1} + 1, ..., 10^s\}$ gibt es einen Baum T(N) mit Ausgangsgrad ≤ 10 an jedem inneren Knoten und den folgenden Eigenschaften:

- T(N) hat N Blätter.
- 2 T(N) hat $\leq \frac{N}{9} + s$ innere Knoten.
- Alle Pfade von der Wurzel zu einem Blatt haben genau die Länge $s = \lceil \log_{10} N \rceil$ mit $\lceil \log_{10} N \rceil < \frac{1}{3} \log_2 N + 1$.
 - Beweis: Induktion über $s \Rightarrow Ü$ bung

Notation: Invertierender Treiberbaum

Invertierender Treiberbaum /F_x:
Ersetze den Treiber an der Wurzel durch einen Inverter.

*D*_n: Dekodierer

■ Sei $n \in \mathbb{N}$, $N = 2^n$. Ein n-Bit-Dekodierer D_n ist ein Schaltkreis, der die Funktion $\underline{d} : \mathbb{B}^n \to \mathbb{B}^N$ berechnet, wobei gilt:

$$\underline{d_i(a)} = \begin{cases} 1, & \text{falls } \langle \underline{a} \rangle = i \\ 0, & \text{sonst} \end{cases} \quad \forall i = 0, \dots, N-1$$

 $(d_i(a) \text{ ist Bit } i \text{ des } N\text{-Tupels } d(a).)$

Induktive Konstruktion von D_n : Siehe nächste Folie.

Dekodierer: Rekursiver Aufbau

SMILE - Dekodierer

Welche Tiefe hat ein n-Bit Dekodierer, der - wie auf der vorhergehenden Folie dargestellt - rekursiv aufgebaut wird?

- a. O(1)
- b. O(log(n))
- c. O(n)
- d. Keine der obigen.

SRAM: Lesevorgang (W = 0)

- D_n setzt $Y_i = 1$ für $i = \langle A \rangle$, $Y_j = 0$ für $j \neq i$.
- Der Inhalt der *i*-ten Zelle L_i steht an G_i , für alle $j \neq i$ steht an G_j der Wert 0.

SRAM: Schreibvorgang (Puls auf W)

- *D_{in}* an *D*-Eingänge sämtlicher Latches angelegt.
- Schreibpuls nur am W-Eingang von L_i (da $Y_i = 1$).

Tristate-Treiber und Busse

- Tristate-Treiber sind Treiber mit Eingangssignal x und zusätzlichem Signal /OE, dem Output-Enable-Signal.
- Am Ausgang y erscheint

$$y = \begin{cases} x, & \text{falls } /OE = 0 \\ Z, & \text{sonst } /OE = 1 \end{cases}$$

■ Z bezeichnet den Zustand hoher Impedanz (high-Z).

Zustand hoher Impedanz

- Wir haben bisher Schaltungen betrachtet, die aus CMOS-Gattern bestehen. Dort ist jede Leitung zu jedem Zeitpunkt entweder mit V_{DD} (logisch-1) oder Masse (logisch-0) verbunden.
- Eine Leitung im Zustand Z, also der Ausgang eines Treibers mit /OE = 1, ist weder mit V_{DD} noch mit Masse verbunden. Man sagt, der Treiber ist disabled (/OE = 0: enabled).

n-Bit-Treiber

- *n*-Bit-Treiber: *n* Treiber mit gemeinsamen /OE.
- Im Gegensatz zu Ausgängen üblicher Gatter kann man Ausgänge von Tristate-Treibern zusammenschalten. Man muss dafür sorgen, dass zu jeder Zeit höchstens ein Treiber enabled ist.
- Ein *n* Bit breiter Bus ist ein Bündel aus *n* Leitungen, welches die Ausgänge von mehreren *n*-Bit-Treibern verbindet.

Bus vs. Multiplexer

- <u>k</u> Tristate-Treiber, die durch einen Bus verbunden sind, wirken ähnlich wie ein k-fach-Multiplexer.
- Vorteile Bus gegenüber Multiplexer:

- Leicht erweiterbar.
- Datentransport in verschiedene Richtungen zu verschiedenen Zeiten
- Nachteil von Bus:
 - Man muss Bus Contention vermeiden, d.h. es darf nie mehr als ein Treiber auf einem Bus gleichzeitig enabled sein (sonst Folgen bis hin zur physikalischen Zerstörung der Schaltung)!

Bus zur Kommunikation mit SRAM

SRAM mit gemeinsamem Datenein- und -ausgang.

- Lesezugriff auf den Speicher: /DOE₁ enabled, alle anderen Treiber, z.B. /DOE₂, disabled.
- Schreibzugriff: D_{in} nimmt den Wert vom Bus, /DOE₁ disabled.

