Arquitetura de Computadores I
Instruções executáveis por um processador
- a arquitetura MIPS

António de Brito Ferrari ferrari@ua.pt

7. O conjunto de instruções do processador

Das Linguagens de Alto Nível à linguagem do processador

Critérios de seleção de um Reportório de Instruções (ISA)	
 simplicidade do equipamento exigido para execução das instruções, clareza da sua aplicação aos problemas realmente importantes e a velocidade de resolução desses problemas 	
Burks, Goldstine e von Neumann, 1947	
: : 3 100	
2 10 1 101	
0 1 Address Data	
Processor Memo ry	
Memória: array de células que armazenam informação spaço de Endereçamento – número de células de memória endereçáveis _{Duas} operações possíveis	
Escrita – armazena informação na célula de memória indicada pelo endereço Mem[Address] = Data Leitura – obtem a informação armazenada na célula de memória cujo endereço é fornecido Data = Mem[Address]	
ispaço de Endereçamento do MIPS: 2³² (4,294,967,296 bytes = 4 GB)	
Passos básicos de execução de um	
programa	
 FETCH: processador endereça a memória para obter o código da instrução seguinte a executar 	
Program Counter (PC) - registo onde o processador guarda o endereço da instrução seguinte a executar	
 Instruction Register (IR) – registo onde o processador guarda o código da instrução a executar IR = Mem[PC] 	
2. EXECUTE: processador executa a operação indicada no código de instrução	

Tipos de instruções

- Que operações incluir no IS (Instruction Set)?
 - Aritméticas e lógicas
 - Transferência de dados de/para a memória ir buscar à memória os dados sobre que operar (load) e armazenar na memória o resultado das operações efetuadas (store)
 - Instruções de controle da sequência de execução das instruções do programa (if-then-else, case, invocação de funções)

O Instruction Set do MIPS – instruções básicas

Execução de uma instrução

EXECUTE: processador executa a operação indicada no código de instrução

Onde estão colocados os operandos?

Duas alternativas:

 Na memória – de cada vez que uma operação aritmética ou lógica é executada é necessário ir buscar o operando à memória

von Neumann bottleneck

 Em registos do processador – acesso mais rápido – operandos em registos e resultado da operação colocado tambem num registo

MIPS e todas as outras arquiteturas tipo RISC

MIPS: 32 registos - r0 a r31

Op	oerações aritméticas	
Todas as instr	ruções aritméticas têm 2 operandos:	
	# a = b + c # a = a + d (= b + c + d) # a = a + o (= b + c + d + o)	
 add a, a, e # a = a + e (= b + c + d + e) 3 instruções para somar 4 variáveis Sintaxe do assembly: 1 instrução por linha comentários são iniciados por # e terminam na linha 		
	pilação de instruções de tribuição (C ou Java)	
c a = b + c; d = a - e;	Assembly add a, b, c sub d, a, e	
f = (g + h) - (i + j)	add t0, g, h add t1, i, j sub f, t0, t1	
	t0, t1 – variáveis temporárias f, g, h, i, j, a, b, c, d, e – variáveis	
qΟ	erandos em Registos	
t0, t1 – variáveis temporárias		
f, g, h, i, j – variáveis		
 MIPS – 32 Registos, r0r31 de 32-bits "arquitetura de 32-bits" \$zero (r0) – contem a constanto 0 Convenções de uso e nomes dos registos em assembly: \$s0,,\$s7 (r16 a r23) - correspondem a variáveis em C \$t0,,\$t7 (r8 a r15) - correspondem a variáveis temporárias 		
Nota: em C os operandos (variáveis) são declarados, em a Assembly os operandos (registos) são fixos e não são declarados		

Compilar us	sando os registos	
<pre>f = (g+h) - (i+j); f mapeado em \$s0 g mapeado em \$s1 h mapeado em \$s2 i mapeado em \$s3 j mapeado em \$s4</pre>	add \$t0, \$s1, \$s2 add \$t1, \$s3, \$s4 sub \$s0, \$t0, \$t1 Sintaxe do assembly: 1) Nome da operação 2) Operando onde é colocado o resultado 3) 1º operando da operação 4) 2º operando da operação	
•		
С	Assembly	
Declarar uma variável numa linguagem de alto nível é	# transferir operandos da memória para registos	
reservar uma posição de memória para armazenar o	add a, b, c # colocar resultado na memória	
respetivo valor int a, b, c;	load – transfere para um registo o conteúdo da	
	posição de memória cujo endereço é indicado no código de operação— Memory Read	
a = b + c;	(Registo) = Mem[Address]	
	store – transfere para a memória o conteúdo de um registo – Memory Write	
	Mem[Address] = (Registo)	
Instruções de tr	ansferência de dados	
 Load e Store precisam de indicar o endereço de memória: 		
Mem.Addr. = Base Register + Offset (único modo de endereçamento do MIPS)		
• lw (load word):		
lw \$t0, 8(\$s3)	# (\$t0) = Mem[(\$s3) + 8]	
"offset" "base r	egister"	
• sw (store word):	<u>egister</u>	-
	# Mem[(\$s3) + 8] = (\$t0)	

Organização da memória	
MIPS – Memória endereçável byte a	
byte – a bytes sucessivos correspondem endereços sucessivos (byte-addressible memory) 12 100	
Byte = 8 bits;	-
Word – 32 bits (4 bytes) 8 10 ≻Endereço de duas palavras	
sucessivas de memória difere de 4 4 10 1	
Exemplo: 0 1	
A[12] = h + A[8] Byte Add ress Data	
Processor Memo ry Iw \$t0, 32(\$s3)	
add \$t0, \$s2, \$t0	
sw \$t0, 48(\$s3)	
Endereço do 1º elemento do array	
Constantes e Operandos Imediatos	
·	
Muitas operações aritméticas envolvem	
constantes	
Exemplo: endereçar elementos sucessivos de um array	
 Mais eficiente incluir a constante no código de instrução em lugar de a armazenar em memória e ter de a transferir 	
para um registo sempre que se queira utilizá-la	
F	
addi \$s3, \$s3, 4 # \$s3 = \$s3 + 4	
1	
\$s3 "fica a apontar" para o elemento seguinte do array	
Inteiros com e sem sinal	
ilitellos colli e selli siliai	
• Revisão – ver slides	
"Representação de inteiros e aritmética	
binária"	
MINITE	