Option Pricing under the Bachelier (Nomral) Model Stochastic Finance (FIN 519)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2023-24 Module 3 (Spring 2024)

Bachelier vs Black-Scholes-Merton model

• Let F_t be the T-forward price of stock price S_t observed at time t:

$$F_t = e^{(r-q)(T-t)} S_t \quad (F_T = S_T),$$

where r is interest rate, q is dividend rate and T is the time-to-expiry.

- Then, F_t is a martingale. (However, let us safely assume r=q=0, so $F_t=S_t$ for now.)
- Under the Bachelier model, S_T follows an arithmetic Brownian motion (BM) with volatility $\sigma_{\rm N}$:

$$S_t = S_0 + \sigma_{\scriptscriptstyle \rm N} B_t \quad ({\sf SDE:} \quad dS_t = \sigma_{\scriptscriptstyle \rm N} dB_t) \,.$$

ullet Under the Black-Scholes-Merton (BSM) model, S_T follows an geometric BM:

$$S_t = S_0 \exp \left(\sigma_{\rm BS} B_t - \frac{1}{2} \sigma_{\rm BS}^2 \, t \right) \quad \left({\rm SDE:} \quad \frac{dS_t}{S_t} = \sigma_{\rm BS} dB_t \right).$$

• The two models are approximately same if the two volatilities are related by

 $\sigma_{ ext{N}} = S_0 \; \sigma_{ ext{BS}}.$

Bachelier model

Also known as

- Bachelier model (vs Black-Scholes-Merton model)
- Normal process (vs Log-normal process)
- Arithmetic BM (vs Geometric BM)

Why Bachelier model?

- Bachelier model, once forgotten, has gained attention recently.
- Provides a model dynamics for some underlying assets. Daily changes are independent of the level of the price level (interest rate, inflation rate)
- Price can be indeed negative:
 - Negative (or near zero) interest rate after the 2008 financial crisis.
 - Negative oil futures due to the pandemic recession (Aprili 2020); See CME Model Switch.
- More intuitive than Black-Scholes-Merton

Call Option Price

Underlying asset price at maturity T:

$$S_T = S_0 + \sigma_{\scriptscriptstyle N} B_T = S_0 + \sigma_{\scriptscriptstyle N} \sqrt{T} z, \quad \text{where} \quad z \sim N(0, 1)$$

Payoff:

$$\max(S_T - K, 0) = (S_T - K)^+ = (S_0 - K + \sigma_N \sqrt{T}z)^+$$

$$S_T = K \quad \Rightarrow \quad z = -d_N = \frac{K - S_0}{\sigma_N \sqrt{T}} \quad \left(d_N = \frac{S_0 - K}{\sigma_N \sqrt{T}}\right)$$

Forward option value (undiscounted):

$$C(K) = \int_{-d_{N}}^{\infty} (S_{0} - K + \sigma_{N}\sqrt{T}z) n(z)dz$$

$$= (S_{0} - K)(1 - N(-d_{N})) + \sigma_{N}\sqrt{T} n(-d_{N})$$

$$= (S_{0} - K)N(d_{N}) + \sigma_{N}\sqrt{T} n(d_{N})$$

Here we used

$$\int z \, n(z) dz = \frac{z}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = -n(z) + C.$$

Present option value (discounted):

$$C_0(K) = e^{-rT}C(K)$$

Put Option Price

Payoff:

$$(K-S_T)^+ = (K-S_0 - \sigma_{\rm N} \sqrt{T} z)^+$$
 The root of $S_T = K \quad \Rightarrow \quad z = -d_{\rm N} = \frac{K-S_0}{\sigma_{\rm N} \sqrt{T}} \quad \left(d_{\rm N} = \frac{S_0 - K}{\sigma_{\rm N} \sqrt{T}}\right)$

Forward option value (undiscounted):

$$P(K) = \int_{-\infty}^{-d_{N}} (K - S_{0} - \sigma_{N} \sqrt{T}z) n(z) dz$$
$$= (K - S_{0})N(-d_{N}) + \sigma_{N} \sqrt{T} n(-d_{N})$$
$$= (K - S_{0})N(-d_{N}) + \sigma_{N} \sqrt{T} n(d_{N})$$

Present option value (discounted):

$$P_0(K) = e^{-rT}P(K)$$

Put-Call parity holds!

$$C(K) - P(K) = (S_0 - K)N(d_N) - (K - S_0)N(-d_N)$$
$$= (S_0 - K)(N(d_N) + N(-d_N)) = S_0 - K$$

Option Price (At-The-Money)

If $K=S_0$ (at-the-money), $d_{\scriptscriptstyle \rm N}=0$ and the option prices are

$$\begin{split} C(K=S_0) &= P(K=S_0) = \sigma_{\text{\tiny N}} \sqrt{T} n(0) = \frac{\sigma_{\text{\tiny N}} \sqrt{T}}{\sqrt{2\pi}} \approx 0.4 \, \sigma_{\text{\tiny N}} \sqrt{T} \\ \text{Straddle} &= C + P \approx 0.8 \, \sigma_{\text{\tiny N}} \sqrt{T} \\ C_0(K=S_0) &= P_0(K=S_0) = \frac{e^{-rT} \sigma_{\text{\tiny N}} \sqrt{T}}{\sqrt{2\pi}} \approx e^{-rT} \, 0.4 \, \sigma_{\text{\tiny N}} \sqrt{T} \end{split}$$

Therefore, the option price is proportional to the width (or stdev) of the distribution of the future price, $\sigma_{\rm N}\sqrt{T}$, which is consistent with the intuition. Before we derive Black-Scholes formula, let's keep this relation between the volatility and the option price in mind. Even without the Black-Scholes formula (which is somewhat complicated), this relation should give you a very good intuition.

4□ > 4□ > 4 = > 4 = > = 90

Greeks (sensitivities of price)

Delta: sensitivity on the underlying price

$$\begin{split} \frac{\partial C}{\partial S_0} &= N(d_{\scriptscriptstyle N}), \quad \frac{\partial P}{\partial S_0} &= -N(-d_{\scriptscriptstyle N}) \quad \left(d_{\scriptscriptstyle N} = \frac{S_0 - K}{\sigma_{\scriptscriptstyle N} \sqrt{T}}\right) \\ & \left(\frac{\partial C}{\partial S_0} - \frac{\partial P}{\partial S_0} = 1\right) \end{split}$$

 $N(d_{\rm N})$ measures how closely the call option price moves with the underlying stock, i.e., how much the option is in-the-money.

Gamma: convexity on the underlying price

$$\frac{\partial^2 C}{\partial S_0^2} = \frac{\partial^2 P}{\partial S_0^2} = \frac{n(d_{\text{\tiny N}})}{\sigma_{\text{\tiny N}} \sqrt{T}}$$

Vega: sensitivity on the volatility

$$rac{\partial C}{\partial \sigma_{\scriptscriptstyle
m N}} = rac{\partial P}{\partial \sigma_{\scriptscriptstyle
m N}} = \sqrt{T} \, n(d_{\scriptscriptstyle
m N})$$

Jaehyuk Choi (PHBS) StoFin: Bachelier Model

Comparison of the two models

Model	Bachelier (Normal)	BSM (Lognormal)
Reference	Bachelier [1900]	Black-Scholes, Merton [1973]
SDE	Arithmetic BM:	Geometric BM:
	$dS_t = \sigma_{ ext{ iny N}} dW_t$	$dS_t/S_t = \sigma_{\scriptscriptstyle \mathrm{BS}} dW_t$
Asset class	Interest rate, Inflation, Spread	Equity, FX
Moneyness	$d_{\mathrm{N}} = rac{S_0 - K}{\sigma_{\mathrm{N}} \sqrt{T}}$	$d_{1,2} = \frac{\log(S_0/K)}{\sigma_{\rm BS}\sqrt{T}} \pm \frac{1}{2}\sigma_{\rm BS}\sqrt{T}$
Call option price	$(S_0-K)N(d_{\scriptscriptstyle m N})+\sigma_{\scriptscriptstyle m N}\sqrt{T}n(d_{\scriptscriptstyle m N})$	$S_0N(d_1)-KN(d_2)$
Equivalent volatility	$\sigma_{ ext{ iny N}}pprox S_0\sigma_{ ext{ iny BS}}$	
Digital, $P(S_t > K)$	$N(d_{ ext{ iny N}})$	$N(d_2)$
Delta $(\partial/\partial S_0)$	$N(d_{ ext{ iny N}})$	$N(d_1)$
Vega $(\partial/\partial\sigma)$	$\sqrt{T}n(d_{ ext{ iny N}})$	$S_0\sqrt{T}n(d_1)$
Gamma $(\partial^2/\partial S_0^2)$	$n(d_{ ext{ iny N}})/\sigma_{ ext{ iny N}}\sqrt{T}$	$n(d_1)/S_0\sigma_{ ext{ iny BS}}\sqrt{T}$
Theta $(-\partial/\partial T)$	$-\sigma_{ ext{ iny N}} n(d_{ ext{ iny N}})/2\sqrt{T}$	$-S_0\sigma_{\scriptscriptstyle \mathrm{BS}}n(d_1)/2\sqrt{T}$

Generalization

The price at maturity T has normal distribution with variance V_T (stdev $\sqrt{V_T}$):

$$X_T = X_0 + \sqrt{V_T}z$$
, where $z \sim N(0, 1)$

Then, for the payoff $\max(\pm(X_T-K),0)$, the option prices are given by

$$\begin{cases} C(K) = (X_0 - K)N(d_{\rm N}) + \sqrt{V_T}\,n(d_{\rm N}) \\ P(K) = (K - X_0)N(-d_{\rm N}) + \sqrt{V_T}\,n(d_{\rm N}), \qquad \text{where} \quad d_{\rm N} = \frac{X_0 - K}{\sqrt{V_T}} \\ C(K = X_0) = P(K = X_0) = 0.4\sqrt{V_T}, \end{cases}$$

Spread/Basket option

$$X_t = X_0 + aW_t + bZ_t$$
 with $E(W_t Z_t) = \rho t$ \Rightarrow $V_T = (a^2 + 2\rho ab + b^2)T$

• Asian option; see Problem 6 (2019HW) of the Bachelier model

$$X_T = X_0 + \frac{\sigma}{N} \sum_{k=1}^{N} W_{kT/N} \quad \Rightarrow \quad V_T = \frac{15}{32} \sigma^2 T \quad (N = 4)$$

Time-varying volatility

$$dS_t = f(t)dB_t \quad \Rightarrow \quad V_T = \int_0^T f^2(t)dt \; ext{ (Itô's isometry)}$$