Example Deliverable

My portion of an analysis for a Duke Impact Investing Group (DIIG) Data Team Spring 21 Deliverable. I created and presented the following slides (originally part of a larger, four-person presentation).

count	950.000000
mean	13.620000
std	19.009393
min	1.000000
25%	2.000000
50%	6.000000
75%	16.000000
max	132.000000

count	950.000000
mean	0.000666
std	0.001597
min	0.000012
25%	0.000102
50%	0.000255
75%	0.000727
max	0.035714

Summary Statistics

- R-squared: 0.176
- R: 0.42
- On average, an increase in \$---- of ---- correlates to 1.145 more entries per 10,000 ---- in a given ----.

OLS Regression Results Dep. Variable: 0.176 R-squared: OLS Model: Adj. R-squared: 0.173 Method: Least Squares F-statistic: 55.66 Date: Sat, 15 May 2021 Prob (F-statistic): 1.29e-12 Time: 15:58:01 Log-Likelihood: 1508.4 No. Observations: 262 AIC: -3013. Df Residuals: 260 BIC: -3006.Df Model: Covariance Type: nonrobust std err P>|t| [0.025 0.975] coef **const** 0.0002 0.000 1.840 0.067 -1.66e-05 0.000 Income 1.145e-08 1.54e-09 7.460 0.000 8.43e-09 1.45e-08 Omnibus: 128.445 **Durbin-Watson**: 1.395 Prob(Omnibus): 0.000 Jarque-Bera (JB): 774.589 Skew: 1.903 Prob(JB): 6.31e-169 **Kurtosis:** 10.515 Cond. No. 2.28e+05

11,250

236,912

Conclusion

- ----- displays a modest positive, linear correlation with the number of ----- per ----- (excluding ----- with < 15 entries).
- If we assume median -----s display a proportional relationship with median -----, this **confirms the preexisting ranking value** for ------.
 - Our R² value is **0.173** which approximately equals the **15%** value used in the ranking model to account for -----.
 - Precisely, excluding ----- with less than 15 entries, median ---- accounts for 17.3% of the variability in number of potential ----- entries.
- We thus conclude it is best to focus marketing in higher ----- ----.