

(sd5963@nyu.edu)

(rc5553@nyu.edu)

(syg2021@nyu.edu)

CS-GY 6923 Machine Learning

Contents

- 1. Introduction
- 2. Data Collection and Preprocessing
- 3. Model Selection and implementation
- 4. Results, findings, and key insights.
- Challenges faced and how they were overcome.
- 6. Real-world applications of our findings.

Introduction

'Did you know that only **0.05%** of startups receive venture capital funding? Yet, these few companies drive a significant portion of innovation and economic growth in our economy ...'

- The startup ecosystem is critical for innovation, contributing to job creation and technological progress.
- Early-stage funding is a significant challenge for entrepreneurs.
- Shark Tank US provides a real-world view of investment decision-making by venture capitalists and angel investors.

Research Focus

- Analyzing factors influencing funding decisions on Shark Tank US.
- Studying the investment patterns of key investors like Mark Cuban and Barbara Corcoran.
- Bridge gaps in qualitative and quantitative funding assessments.

Goals

- Analyze "shark" investment patterns (industries, amounts).
- Compare predictive models (SVC, Logistic Regression, XGBoost, Random Forest).
- Address data challenges like class imbalance and non-numerical fields.

DataSet Overview

Dataset Introduction:

 Dataset from Kaggle includes 1,360+ pitches and 53 features spanning all 16 seasons of Shark Tank US.

Investment Analysis by Sharks

- Mark Cuban leads with 249 deals, followed by Lori Greiner with 217 deals.
- Largest total Investment by Mark Cuban **\$62.9M**, followed by Lori Greiner with **\$46.5M**.

Top Industries by Shark

- Food & Beverage: Barbara Corcoran, Mark Cuban, Guest Sharks
- **Lifestyle/Home:** Lori Greiner, Kevin O'Leary
- Fashion/Beauty: Robert Herjavec, Daymond John

Dataset Fields Overview

- **Key Pitch Details:** Industry, Business Description, Original Ask Amount, Offered Equity etc.
- **Pitcher Specific Information**: Gender, City/State, Multiple Entrepreneurs, Pitcher's age, city etc.
- **Shark specific Data:** Investments by individual sharks (e.g., Barbara Corcoran Investment Amount, Daymond John Equity).

- Counts of Investment made by each Shark Total Investment amount by each Shark

DataSet

ng **Values:**Numerical fields (Original Ask Amount) imputed with medians.

- Categorical fields (Pitchers Gender) replaced with placeholders.
- Dropped columns with excessive missing data (Pitchers City).

Data Balancing:

Applied SMOTE to address class imbalance in Investment vs. No Investment.

Feature Engineering:

Converted text fields (Industry, Business Description) into numerical embeddings via OpenAI Embedding Model.

Embeddings for Textual

Why Use Embeddings?

Purpose: Transform textual data into numerical vectors to capture semantic and contextual information.

Applications:

- Identify nuanced relationships in text features like Industry and Business Description.
- Understand patterns influenced by demographic data (e.g., Pitchers Gender).

Benefits of Embeddings

- Enable models to leverage complex, latent relationships in the data.
- Capture subtle patterns that are strong predictors of investment decisions.

3D Word Embeddings Visualization (Top Terms)

1. Logistic Regression (Baseline model)

Definition:

- Statistical model for binary classification.
- Predicts probabilities of binary outcomes using a logistic (sigmoid) function.

Key Concepts:

- Relationship between input features and log-odds.
- Decision threshold (commonly 0.5) for classification.

Figure 2: Logistic Regression Curve

2. Support Vector Machines (SVM)

• Definition:

- Supervised learning model for classification tasks.
- Focuses on finding an optimal hyperplane that maximizes the margin between different classes.

• Key Concepts:

- Support Vectors: Data points closest to the hyperplane.
- Margin: Distance between the hyperplane and support vectors, maximized for robustness.

• Handling Non-linear Data:

 Uses kernel functions (e.g., linear, polynomial, RBF, sigmoid) to map input into a higher-dimensional space for non-linear decision boundaries.

Figure 1: SVM Separating Hyperplanes

3. XGBOOST

Definition:

- An advanced machine learning algorithm based on the gradient boosting framework.
- Efficient for both classification and regression tasks, offering scalability and high performance.

Key Concepts:

- Gradient Boosting: Iterative process where each tree corrects the errors of the previous trees.
- **Regularization**: L1 and L2 techniques reduce overfitting.
- **Sparse-aware Learning**: Handles missing values effectively.
- **Parallelization**: Fast training via parallelized tree construction.

Process Highlights:

- Starts with a base model (e.g., constant value).
- Each tree minimizes residual errors using gradients of the loss function.
- Aggregates tree outputs for final predictions.

Figure 3: Schematic Diagram of XGBoost

4. Random Forest

Definition:

- Ensemble learning algorithm combining multiple decision trees for classification and regression.
- Uses majority voting for classification or averaging for regression.

Key Concepts:

- Randomness: Trains trees on random subsets of data and features to reduce overfitting.
- Robustness: Effective for high-dimensional data and missing values.

Process Highlights:

- Trains each tree independently on bootstrapped subsets of data.
- Aggregates predictions across all trees for final output.

Hyperparameter Tuning

Steps Implemented:

- **Objective**: Optimize model parameters to improve prediction of shark investments.
- **Approach**: Conducted hyperparameter tuning for Random Forest, Logistic Regression, and XGBoost on validation data using GridSearchCV.
- **SVM:** Performed manual tuning due to its time-intensive nature.

Key Results:

- **XGBoost:** learning_rate=0.1, max_depth=6-9, n_estimators=70-100.
- **Random Forest**: max_depth=None, n_estimators=50-100.
- Logistic Regression: Limited performance (<0.66 accuracy) due to dataset complexity.
- **SVM:** 'rbf' kernel

GridSearchCV:

- Purpose: Optimized model parameters to maximize validation accuracy using 5-fold cross-validation.
- Key Parameters tuned: (Random Forest): n_estimators, max_depth, (Logistic Regression):
 C, penalty and (XGBoost): learning_rate, max_depth, n_estimators.

Hyperparameter Tuning

Sharks

Model training

Classification:

- Objective: Train and evaluate models to classify sharks' investment decisions using multi-output binary classification (shark-wise predictions).
- Models Used: Random Forest, Logistic Regression, SVC, XGBoost.

Regression:

- **Objective:** Predict exact investment amounts for each shark.
- Models Used: RandomForestRegressor and XGBRegressor.
- **Key metrics:** RMSE, MSE, MAE and R2 score.

Results: Classification

Random Forest:

- Strengths: Consistently achieved the highest accuracy across sharks.
- Shark 1: 79.02% (Best model), but low recall for "Investment" class (33%).
- Shark 5: Best recall (54%) with an F1-score of 25%, indicating improved minority-class handling.

Logistic Regression:

- Strengths: Served as a baseline but struggled with complex relationships in the data
- Shark 1: 62.44% test accuracy, limited precision and recall for investments.
- Shark 6: Lowest test accuracy at 57.56%, highlighting challenges with imbalanced data.

SVM:

- Performance: Moderate results with the RBF kernel.
- Shark 1: Test accuracy of 66.34%, showing slight improvement over Logistic Regression.
- Shark 5: Achieved 68.78% test accuracy, but computational demands limited scalability.

XGBoost:

- Strengths: Competed closely with Random Forest in accuracy and robustness.
- Shark 1: 75.12% test accuracy, reflecting strong generalization.
- Shark 6: Test accuracy of 74.15%, with balanced performance across classes.

Results: Classification

Shark	Random Forest		Logistic Regression (baseline)		SVM		XGBoost	
	Val	Test	Val	Test	Val	Test	Val	Test
Shark 1	80.49%	79.02%	61.95%	62.44%	66.83%	66.34%	74.63%	75.12%
Shark 2	67.32%	66.83%	49.76%	51.22%	54.15%	52.68%	60.49%	62.44%
Shark 3	69.27%	71.71%	40.98%	47.80%	52.68%	57.07%	72.68%	65.85%
Shark 4	80.98%	74.15%	64.88%	59.51%	63.90%	66.83%	79.51%	73.66%
Shark 5	82.44%	79.51%	63.41%	63.90%	63.41%	68.78%	74.63%	72.20%
Shark 6	75.12%	79.02%	56.59%	57.56%	63.90%	63.41%	71.71%	74.15%

Results: Classification

Index 1: Barbara

Index 4: Robert

Corcoran

Herjavec

Results: Regression

Key insights:

- XGBoost: Best model for Shark 1 (RMSE: 22570.87, R²: 0.8353) and Shark 5 (RMSE: 8524.34, R²: 0.9578).
- Random Forest: Best for Shark 2 (RMSE: 109626.95, R²: 0.5898), Shark 3 (RMSE: 85036.95, R²: 0.6453), and Shark 6 (RMSE: 27258.33, R²: 0.8910).
- **Challenges:** Shark 4 showed poor results with Random Forest (RMSE: 216530.50, R²: -5.0121), likely due to outliers and high variability.

Index 1: Barbara Corcoran Index 2: Mark Cuban Index 3: Lori Greiner Index 4: Robert Herjavec Index 5: Daymond John Index 6: Kevin O'Leary

Results: Regression

Shark	Model	Test RMSE
Shark 1	Random Forest	24,994.13
Silaik i	XGBoost	22,570.87
Shark 2	Random Forest	109,626.95
Silark 2	XGBoost	113,666.52
Shark 3	Random Forest	85,036.95
Silark 3	XGBoost	93,039.88
Shark 4	Random Forest	216,530.50
Stiatk 4	XGBoost	233,194.26
Shark 5	Random Forest	21,579.29
Silark 5	XGBoost	8,524.34
Shark 6	Random Forest	27,258.33
SHAIK O	XGBoost	46,840.22

Challenges and Overcoming them

Non-Numerical Data:

- Problem: Features like Business Description and Startup Name posed challenges in direct analysis.
- **Solution**: Used OpenAI embeddings to convert text into numerical representations, followed by PCA for dimensionality reduction.

High Dataset Imbalance:

- **Problem**: Imbalance in investment ("minority class") vs. non-investment data affected model performance.
- **Solution**: Applied SMOTE (Synthetic Minority Oversampling Technique) to generate synthetic data points and balance classes.

Index 1: Barbara Corcoran Index 2: Mark Cuban Index 3: Lori Greiner Index 4: Robert Herjavec Index 5: Daymond John Index 6: Kevin O'Leary

Real World Applications

Investment Insights:

- Analyzing shark-specific investment patterns can help aspiring entrepreneurs tailor their pitches to align with individual investor preferences.
- Predictive models provide valuable insights into the likelihood of securing investments, empowering startups to refine their strategies.

Interactive Online Game:

- Create a Shark Tank Simulation Game, allowing users to pitch their ideas to virtual AI sharks modeled after real investors.
- Competitive Element: Friends can compete to secure the highest investment, fostering creativity and entrepreneurial thinking.
- Educational Value: Gamifies the startup funding process, helping users understand the dynamics of pitching and investor decision-making.

Thank you

