

DETERMINACIÓN DE INVERSIONES Y GASTOS DE ADMINISTRACIÓN, OPERACIÓN Y MANTENIMIENTO PARA LA ACTIVIDAD DE GENERACIÓN EN ZONAS NO INTERCONECTADAS CON PLANTAS TÉRMICAS

INFORME FINAL

VOLUMEN 2 – ESTUDIOS EN ZNI

DOCUMENTO No. AN-C-882-03

Revisión 01

Bogotá D.C., 01 de Febrero de 2013

CREG INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	Doc. AN-USA-882-03
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013

LISTA DE DISTRIBUCIÓN

Copias de este documento fueron entregadas a las siguientes personas:

PERSONA	CARGO	COPIAS
German Castro Ferreira	Director Ejecutivo	2

CREG INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	Doc. AN-USA-882-03
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013

ÍNDICE DE MODIFICACIONES

Índice de Revisión	Sección Modificada	Fecha de Modificación	Observaciones
Rev. 00	Todo el documento	14-12-2012	Versión Original
Rev. 01	Todo el documento	01-02-2013	Versión Original

Rev. 01 Fecha: 01/02/2013

INFORME FINAL – ESTUDIOS EN ZNI

REVISIÓN Y APROBACIÓN

Actividad: Informe N	lo. 2				
Título del documento	: Informe Final	– Inversiones y Gas	stos de AOM en ZNI	con plantas térmica	as.
Documento N°: AN-L	JSA-882-03				
Número de revisión 0		1	2	3	
Elaboró	Nombre	A. Tobón	A. Tobón		
	Área	Ing. Eléctrica	Ing. Eléctrica		
	Nombre	J. Castro	J. Castro		
	Área	Ing. Mecánica	Ing. Mecánica		
	Nombre	L. Prieto	L. Prieto		
	Área	Ing. Mecánica	Ing. Mecánica		
	Nombre	S. Osorio	S. Osorio		
	Área	Ambiental	Ambiental		
	Fecha	13-12-2012	28-01-2013		
Aprobó:	Nombre	J. Ramírez	J. Ramírez		
	Firma				
	Fecha	14-12-2012	31-01-2013		
Control de calidad	Nombre	R. Jaimes	R. Jaimes		
	Firma				
	Fecha	14-12-2012	31-01-2013		
USAENE LLC. Ingeniería Mecánica: Ing. Edgar Viana R. Barbosa Ingeniería Eléctrica: Alonso Bautista. Ingeniería Civil: Ing. Rafael Matiz.		a R., Ing. Giovanni			
Coordinación y revisi	ión CREG.		Dirección: Maurici Ing. Miguel García		

Doc. AN-USA-882-03

INFORME FINAL - ESTUDIOS EN ZNI

Rev. 01 Fecha: 01/02/2013

TABLA DE CONTENIDO

2	PARQUE GENERADOR EN ZNI COLOMBIANA	14
2.1 AISLA	TOTAL DE PLANTAS DIÉSEL EN COLOMBIA PARA GENERACIÓN EL ADA	ÉCTRICA. 14
2.1.1	Distribución de las potencias instaladas	15
2.1.2	Agrupaciones Actuales	17
2.1.3	Marcas de grupos electrógenos en ZNI	19
2.2	INFORMACIÓN DE PLANTAS EN SITIO	21
2.2.1	Sitios visitados	21
2.2.2	Resumen de análisis y resultados	25
3	ESTUDIO DE COSTOS DE PLANTAS EN ZNI EN COLOMBIA	83
3.1	COSTOS DE PRODUCCION EN GRUPOS ELECTROENOS DIESEL	83
3.1.1	Costos de Inversión	84
3.1.2	Costos de Administración, Operación y Mantenimiento	104
3.1.3	Costos de Combustible	131
3.1.4	Transporte de combustible en cabeceras municipales de las ZNI	140
3.1.5	Elementos que afectan los costos de producción	141
3.1.6	Propuesta de configuración para una central eficiente	156
3.1.7	Diseño Operacional Eficiente para los sitios visitados	166
4	PROPUESTA DE ESQUEMA DE AGRUPACIÓN EN ZNI	191
4.1	ANÁLISIS SOBRE EL ESQUEMA DE AGRUPACIÓN ACTUAL	191
4.2	PROPUESTA DE LA CONSULTORÍA SOBRE LAS AGRUPACIONES	196
4.3	COSTOS EFICIENTES EN LAS AGRUPACIONES	197
4.3.1	Costo eficiente de Inversión	197
4.3.2	Costo eficiente de administración de una agrupación	199
4.3.3	Costo eficiente de operación y mantenimiento de una agrupación	199
4.4 LEGU	ANALISIS DE PROPUESTA DE ZONA EXCLUSIVA. CASO JIZAMO	PUERTO 201
4.4.1	Emisiones con diseños planteados en Puerto Leguízamo	206
4.5	CONCLUSIONES	207

Rev. 01 Fecha: 01/02/2013

LISTA DE TABLAS

Tabla 2-1 Cantidad de grupos electrógenos en las ZNI y distribución por departamento	. 14
Tabla 2-2 Distribución porcentual por rango de potencia de las Plantas Diésel instala en las ZNI	
Tabla 2-3 Distribución de grupos electrógenos por agrupaciones	. 18
Tabla 2-4 Número de unidades en las agrupaciones de las ZNI por rangos de potencia	. 18
Tabla 2-5 Número de unidades en cada sitio o localidad	. 19
Tabla 2-6 Relación de marcas en ZNI	. 20
Tabla 2-7 Sitios visitados	. 22
Tabla 2-8 Empresas que operan en la muestra de municipios seleccionada	. 22
Tabla 2-9 Relación de datos y configuración de plantas visitadas	. 24
Tabla 2-10 Grupos electrógenos Central de MITU –VAUPÉS	. 25
Tabla 2-11 Usuarios por estrato y por sector Mitú – Vaupés, 2012	. 28
Tabla 2-12 Principales parámetros eléctricos de la localidad de Mitú – Agosto de 2012.	. 29
Tabla 2-13 Comparativo de consumo especifico de la unidades de MITÚ	. 36
Tabla 2-14 Energía generada por Unidad 2012 - MITÚ - (kWh)	. 37
Tabla 2-15 Consumo de combustible por Unidad 2012 - MITÚ - (galones)	. 37
Tabla 2-16 Consumo específico por Unidad 2012 (gl/kWh)	. 38
Tabla 2-17 Comparativo del consumo específico de las unidades, tomando el consupromedio de 2012	
Tabla 2-18 Actividades de mantenimiento rutinario - Mitú	. 42
Tabla 2-19 Grupos electrógenos Central de GUAPI	. 47
Tabla 2-20 Histórico de Generación Unidad N° 1 (CUMMINS 800 kW)	. 48
Tabla 2-21 Histórico de Consumo Combustible Unidad N° 1 (CUMMINS 800 kW)	. 48
Tabla 2-22 Número de actividades de mantenimiento sobre las Unidades Diesel	. 54
Tabla 2-23 Gastos de mantenimiento – Guapi	. 55
Tabla 2-24 Costos de Mantenimiento anual - Guapi	. 56
Tabla 2-25 Promedio de costos de mantenimiento anual - Guapi	. 57
Tabla 2-26 Mantenimientos correctivos 2010 a 2012 - Guapi	. 58
Tabla 2-27 Gastos de mantenimiento – octubre 2010 a junio 2012	. 60
Tabla 2-28 Grupos electrógenos central de PUERTO INIRIDA	. 61
Tabla 2-29 Estructura de costos AO&M para evaluación de la información	. 69

Rev. 01 Fecha: 01/02/2013

Tabla 2-30 Costos de Operación y Mantenimiento de la Planta de Mitú (pesos corrientes)
Tabla 2-31 Costo de Operación y Mantenimiento de la Planta de Mitu (pesos corrientes/kWh)70
Tabla 2-32 Costo de Operación y Mantenimiento de la Planta de Mitú (pesos constantes del 2009/kWh)
Tabla 2-33 Costo de Operación y Mantenimiento de la Planta de Mitú (dólar /kWh)-precios constantes del 2009
Tabla 2-34 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento
Tabla 2-35 Costos de Operación y Mantenimiento de la Planta de Guapi (pesos corrientes)
Tabla 2-36 Costo de Operación y Mantenimiento de la Planta de Guapi (pesos corrientes/kWh)74
Tabla 2-37 Costo de Operación y Mantenimiento de la Planta de Guapi (pesos constantes del 2009/kWh)
Tabla 2-38 Costo de Operación y Mantenimiento de la Planta de Guapi (dólar /kWh) precios constantes del 2009
Tabla 2-39 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento Guapi
Tabla 2-40 Costos de Operación y Mantenimiento de la Planta de Inirida (pesos corrientes)
Tabla 2-41 Costo de Operación y Mantenimiento de la Planta de Inirida (pesos corrientes/kWh)
Tabla 2-42 Costo de Operación y Mantenimiento de la Planta de Inirida (pesos constantes del 2009/kWh)
Tabla 2-43 Costo de Operación y Mantenimiento de la Planta de Inírida (dólar /kWh) precios constantes del 2009
Tabla 2-44 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento Inírida
Tabla 2-45 Promedios de los costos anuales fijos y variables
Tabla 2-46 Referentes de eficiencia del estudio del Banco Mundial
Tabla 2-47 Costos Fijos y Variables de O&M por central
Tabla 3-1 Precios Unitarios Generadores Diésel (USD/kW) 2012
Tabla 3-2 Precios Cabinas de insonorización (USD) 2012
Tabla 3-3 Precios de Transformadores (USD) 2012
Tabla 3-4 Precios de Tanques de combustible (USD) 2012

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013
Tabla 3-5 Precios de Tableros (USD) 2012	91
Tabla 3-6 Precios de equipos electrógenos y sus auxiliares puestos e Colombianos de 2012	
Tabla 3-7 Relación de pesos de equipos en kg por potencia	93
Tabla 3-8 Indicadores definidos para los costos de transporte (\$/ton-km)	2012 94
Tabla 3-9 Comparación entre los diferentes modos de transporte	95
Tabla 3-10 Costos de Transporte en COP\$/ton 2012	96
Tabla 3-11 Costos de los equipos puestos en sitio (en pesos colombiano	s 2012) 98
Tabla 3-12 Costos de Obra Civil Col\$ 2012	102
Tabla 3-13 Resumen de costos de instalación	102
Tabla 3-14 Costos de montaje electromecánico por sitio (en pesos colomb	bianos 2012) 103
Tabla 3-15 Costo Total de Inversión por sitio visitado a Col\$ de 2012	104
Tabla 3-16 Tiempos por labor ejecutada \$2012	108
Tabla 3-17 Personal para 6 horas de servicio y menor de 12	112
Tabla 3-18 Personal para 12 horas de servicio y menos de 18 horas	113
Tabla 3-19 Personal para 18 horas de servicio y menos de 24	113
Tabla 3-20 Personal para 24 horas de servicio	113
Tabla 3-21 Personal para 6 horas de servicio y menos de 12 y atención a	localidades . 114
Tabla 3-22 Personal para 12 horas de servicio y menos de 18 hora localidades	
Tabla 3-23 Personal para 18 horas de servicio y atención a las localidade	s115
Tabla 3-24 Personal para 24 horas de servicio y atención a las localidade	s115
Tabla 3-25 Personal para 18 horas de servicio, varias unidades	116
Tabla 3-26 Personal para 24 horas de servicio y número variable de unida	ades 116
Tabla 3-27 Costos de personal	117
Tabla 3-28 Acandí – Localidades atendidas	119
Tabla 3-29 Acandí – Esquema de personal propuesto	120
Tabla 3-30 Pizarro Bajo Baudó – Localidades atendidas	120
Tabla 3-31 Pizarro Bajo Baudó - Esquema de personal propuesto	122
Tabla 3-32 Guapi – Localidades atendidas	122
Tabla 3-33 Guapi – Esquema de personal propuesto	124
Tabla 3-34 Puerto Leguízamo – Esquema de personal propuesto	124
Tabla 3-35 Miraflores – Localidades atendidas	125

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013
Tabla 3-36 Miraflores – Esquema de personal propuesto	
Tabla 3-37 Mitú – Esquema de personal	
Tabla 3-38 Puerto Inírida – Esquema de personal	
Tabla 3-39 Costos AOM fijos y variables en ZNI Colombiana US\$ (1800	COL \$ = 1 US\$)
Tabla 3-40 Costos generadores diesel año 2010	
Tabla 3-41 Costos eficientes fijos y variables de O&M (dólares del 2012)	
Tabla 3-42 Costos fijos y variables eficientes por rangos de potencia	
Tabla 3-43 Distancia centros de abasto a cabeceras municipales	
Tabla 3-44 Costos de transporte de combustible para cada sitio de estudi	
Tabla 3-45 Costos de transporte fluvial y marítimo en \$/ton-km 2012	
Tabla 3-46 Condiciones ambientales de las ZNI	
Tabla 3-47 Presión de vapor real de combustibles	
Tabla 3-48 Factor de pérdida por tipo de cargo	
Tabla 3-49 Costos de transporte de GLP por sitio	
Tabla 3-50 Transporte de combustible a cabeceras municipales de las ZN	
Tabla 3-51 Indicadores de Transporte	
Tabla 3-52 Localidades de las ZNI con Telemetria - 2012	
Tabla 3-53 Consumo de auxiliares por planta (factor de utilización 50%).	
Tabla 3-54 Transformadores trifásicos de 15 kVA a 3750 kVA, serie AT < 1.2 kV	15kV, serie BT <
Tabla 3-55 Transformadores trifásicos de 75 kVA a 10000 kVA, 15 kV <	serie BT < 15 kV
Tabla 3-56 Pérdidas en transformación por potencia	155
Tabla 3-57 Relación de transformadores por Plantas de Generación	155
Tabla 3-58 Caso 1: Primera configuración 3 máquinas de 1/3 de la potenc	cia máxima 161
Tabla 3-59 Despacho de unidades para el periodo total de servicio	162
Tabla 3-60 Caso 2: Segunda configuración 2 máquinas, una de poter segunda de potencia intermedia	
Tabla 3-61 Despacho de unidades para el periodo total de servicio	163
Tabla 3-62 Resultados de consumos de combustibles para casos no eficie	
Tabla 3-63 Despacho para las configuraciones no eficientes	165
Tabla 3-64. Integración de curva de demanda de Puerto Inírida divida en	secciones 168

Rev. 01 Fecha: 01/02/2013

Tabla 3-65. Consumo de combustible de grupos electrógenos en servicio actualmente en Puerto Inírida
Tabla 3-66. Análisis consumo de combustible diario Inírida
Tabla 3-67. Análisis consumo de combustible diario diseño óptimo Inírida
Tabla 3-68. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos
Tabla 3-69. Integración de curva de demanda en Mitú
Tabla 3-70. Consumo de combustible de grupos electrógenos en servicio actualmente en Mitú
Tabla 3-71. Análisis consumo de combustible diario Mitú
Tabla 3-72. Análisis consumo de combustible diario diseño óptimo Mitú
Tabla 3-73. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos
Tabla 3-74. Integración curva de demanda de energía municipio de Guapi 176
Tabla 3-75. Consumo de combustible de grupos electrógenos en servicio actualmente er Guapi
Tabla 3-76. Análisis consumo de combustible diario Guapi
Tabla 3-77. Análisis consumo de combustible diario diseño óptimo Guapi 178
Tabla 3-78. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos
Tabla 3-79. Integración curva de demanda eléctrica municipio de Acandí
Tabla 3-80. Consumo de combustible de grupos electrógenos en servicio actualmente en Acandí
Tabla 3-81. Análisis consumo de combustible diario Acandí
Tabla 3-82. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos
Tabla 3-83. Integración curva de demanda de energía municipio de Miraflores 184
Tabla 3-84. Consumo de combustible de grupos electrógenos en servicio actualmente er Miraflores
Tabla 3-85. Análisis consumo de combustible diario Miraflores
Tabla 3-86. Análisis consumo de combustible diario diseño óptimo Miraflores
Tabla 3-87. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos
Tabla 3-88. Integración curva de demanda energética municipio de Puerto Leguízamo. 188
Tabla 3-89. Consumo de combustible de grupos electrógenos en servicio actualmente er Puerto Leguízamo

Rev. 01 INFORME FINAL - ESTUDIOS EN ZNI Fecha: 01/02/2013 Tabla 3-91. Análisis consumo de combustible diario diseño óptimo Puerto Leguízamo. 189 Tabla 4-5. Costo equipos electrógenos de diversos casos de Puerto Leguízamo............ 202 Tabla 4-6. Costo de O&M fijos y variables de generadores para casos de Puerto LISTA DE FIGURAS Figura 2-2 Distribución de la cantidad de grupos electrógenos por agrupaciones. Se indica Figura 2-8 Histórico de Generación Unidad N° 1 (CUMMINS KTA 50 - 1500 kW) 32 Figura 2-9 Histórico de Consumo Combustible Unidad N° 1 (CUMMINS KTA 50 - 1500 Figura 2-10 Histórico de Generación Unidad N° 2 (CUMMINS QST 30 - 750 kW)............ 33 Figura 2-11 Histórico de Consumo Combustible Unidad N° 2 (CUMMINS QST 30 - 750 kW).......33 Figura 2-12 Histórico de Generación Unidad N° 3 (CUMMINS QST 30 - 750 kW).......... 34 Figura 2-13 Histórico de Consumo Unidad N° 3 (CUMMINS QST 30 - 750 kW) 34 Figura 2-14 Histórico de Generación Unidad N° 4 (CUMMINS QST 30 - 750 kW)............. 35 Figura 2-15 Histórico de Consumo Combustible Unidad N° 4 (CUMMINS QST 30 - 750 kW).......35

Rev. 01 Fecha: 01/02/2013

Figura 2-17 Resumen de Potencias máxima por localidad agosto 2012 [mayor a 450	_
Figura 2-18 Histórico de Generación Unidad N° 2 (MTU 500 kW)	49
Figura 2-19 Histórico de Consumo Combustible Unidad N° 2 (MTU 500 kW)	49
Figura 2-20 Histórico de Generación Unidad N° 3 (MTU 500 kW)	50
Figura 2-21 Histórico Consumo Combustible Unidad N° 3 (MTU 500 kW)	50
Figura 2-22 Histórico de Generación Unidad N° 4 (MTU 500 kW)	51
Figura 2-23 Histórico Consumo Combustible Unidad N° 4 (MTU 500 kW)	51
Figura 2-24 Curva de carga promedio diaria mensual	52
Figura 2-25 Histórico de Generación Unidad N° 1 (EMD 2.100 kW)	63
Figura 2-26 Histórico de Consumo Combustible Unidad N° 1 (EMD 2.100 kW)	63
Figura 2-27 Histórico de Generación Unidad N° 2 (Cummins 1.500 kW)	64
Figura 2-28 Histórico de Consumo Combustible Unidad N° 2 (Cummins 1.500 kW)	64
Figura 2-29 Histórico de Generación Unidad N° 3 (Cummins 1.250 kW)	65
Figura 2-30 Histórico Consumo Combustible Unidad N° 3 (Cummins 1.250 kW)	65
Figura 2-31 Histórico de Generación Unidad N° 4 (Cummins 1.000 kW)	66
Figura 2-32 Histórico de Consumo Combustible Unidad N° 4 (Cummins 1.000 kW)	66
Figura 2-33 Diagrama Unifilar de la Central de Generación de Inírida - Guainía	67
Figura 2-34 Curva de carga promedio diaria mensual	67
Figura 2-35 Costos AO&M y Combustible Planta Mitú (\$/kWh) pesos constantes	71
Figura 2-36 Costos AO&M y Combustible Planta Guapi (\$/kWh) Pesos constantes	75
Figura 2-37 Costos AO&M y Combustible Planta Inirida (\$/kWh) Pesos constantes	79
Figura 3-1 Precios de generadores diesel a Octubre de 2012 (5 a 2500 kW) – USI 2012	D del 86
Figura 3-2 Obras Civiles	99
Figura 3-3 Esquema genérico de empresa prestador de servicios en ZNI	. 118
Figura 3-4 Organigrama general de la operación de un empresa de energía en ZNI	. 118
Figura 3-5 Plantas de abasto en Colombia	. 132
Figura 3-6 Esquema genérico de suministro de electro combustible	. 133
Figura 3-7 Operación y disponibilidad en poblaciones ZNI	. 143
Figura 3-8 Curva de carga para 6 horas de servicio	. 144
Figura 3-9 Curva de carga típica para 12 horas de servicio	. 144
Figura 3-10 Curva de carga típica para 18 horas de servicio	. 145

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013
Figura 3-11 Curva de carga típica para 24 horas de servicio	145
Figura 3-12 Curva característica de pérdidas sin carga	153
Figura 3-13 Curva de pérdidas con carga	153
Figura 3-14 Valores máximos declarados admisibles de pérdidas o transformadores trifásicos de 15 kVA, serie AT <= 15 kV, serie BT <=	• , ,
Figura 3-15 Valores máximos declarados admisibles transformadore a 10 000 kVA, 15 KV< serie A.T. ≤ 46 kV, serio B.T. ≤ 15 kV"	
Figura 3-16 Curva de carga de 6 horas y una sola unidad prestando	el servicio 156
Figura 3-17 Curva de carga para prestación de 12 o 16 horas de serv	vicio 157
Figura 3-18 Diseño eficiente para prestación de servicio en 12 o 16 h	oras de servicio 157
Figura 3-19 Diseño eficiente y Curva de carga para prestación de ser	rvicio en 24 horas 158
Figura 3-20 Comportamiento de consumo de combustible para diferen	entes potencias 159
Figura 3-21 Aproximación de curva de demanda	159
Figura 3-22 Posibles Configuraciones de la central de generación	160
Figura 3-23 Diseño eficiente para una prestación de servicio de 12 –	16 horas 160
Figura 3-24 Diferentes configuraciones para observar eficiencia	161
Figura 3-25 Consumo de combustible para todos los casos planteado	os 166
Figura 3-26 Demanda energética Puerto Inírida en diciembre 2010 y	2011 167
Figura 3-27 Eficiencia de motor diesel de generación de energía en de combustible. Fuente: http://www.generatorsales.com/order/09152	
Figura 3-28 Demanda energética Mitú diciembre 2010 y 2011	172
Figura 3-29 Demanda energética en Guapi diciembre 2010 y 2011	176
Figura 3-30 Demanda eléctrica municipio de Acandí	180
Figura 3-31 Demanda energética Miraflores diciembre 2010 y 2011	183
Figura 3-32 Demanda eléctrica Puerto Leguízamo	187
Figura 4-1 Agrupación de las localidades de las ZNI	193
Figura 4-2 Distribución geográfica general de Cabeceras Municipales	s ZNI 194
Figura 4-3. Curva de demanda eléctrica del municipio de Puerto 2010 – 2011	•
Figura 4-4. Curva de demanda eléctrica simplificada	204

Rev. 01 Fecha: 01/02/2013

2 PARQUE GENERADOR EN ZNI COLOMBIANA

En Colombia existen 1241 poblaciones denominados sitios ZNI o que pertenecen a sitios donde no llega la red eléctrica Nacional Colombiana.

La operación de la plantas se hace localmente y la mayoría de ellas se encuentran agrupadas en empresas de generación debidamente constituidas. La cabecera municipal generalmente posee la planta más grande de la empresa, la cual puede ser operada por la empresa misma o por un tercero mediante un contrato de operación. Las plantas individuales aisladas son operadas por personal que depende de la empresa de distribución o que pertenece a la comunidad o municipio local y han sido entrenados en estas labores.

2.1 TOTAL DE PLANTAS DIÉSEL EN COLOMBIA PARA GENERACIÓN ELÉCTRICA AISLADA

A partir de la información reportada por los prestadores de las ZNI al Sistema Único de Información (SUI), administrado por la Superintendencia de Servicios Públicos Domiciliarios (SSPD) en la siguiente tabla se muestra la distribución geográfica de las plantas Diesel con las potencias de cada una de ellas.

Tabla 2-1 Cantidad de grupos electrógenos en las ZNI y distribución por departamento

	Número		otencia de las dades
Departamento	Grupos Electrógenos	Potencia mínima (kW)	Potencia máxima (kW)
Bolívar	1	35	35
Caquetá	53	10	500
Cauca	140	2	1250
Chocó	252	3	1000
La Guajira	2	500	800
Meta	15	15	1608
Nariño	543	3	800
Valle del Cauca	23	13	352
Casanare	2	300	496
Putumayo	11	31	1000
Amazonas	52	11	6969
Guainía	58	5	2100
Guaviare	33	15	625
Vaupés	73	1	1500
Vichada	25	22	1000
Total	1283		
Fuente: SUI_SSPD			

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01
Fecha: 01/02/2013

2.1.1 Distribución de las potencias instaladas

A partir de información reportada por los prestadores de servicio inscritos al SUI (Sistema Unificado de Información de la Superintendencia de Servicios Públicos), en la siguiente tabla se muestran las potencias de las plantas instaladas en estos sitios. La siguiente gráfica presenta el histograma de distribución del número de unidades instaladas en las ZNI de acuerdo a su potencia nominal.

Tabla 2-2 Distribución porcentual por rango de potencia de las Plantas Diésel instaladas en las ZNI

Rango de	Cantidad de				
potencia (kW)	unidades	participación	acumulado		
0 a 25	256	30,9%	30,9%		
26 a 50	258	31,2%	62,1%		
51 a 75	129	15,6%	77,7%		
76 a 100	61	7,4%	85,0%		
101 a 150	43	5,2%	90,2%		
151 a 200	5	0,6%	90,8%		
201 a 300	15	1,8%	92,6%		
301 a 500	35	4,2%	96,9%		
501 a 1000	20	2,4%	99,3%		
1001 a 1500	5	0,6%	99,9%		
más de 1500	1	0,1%	100,0%		
	828	100,0%			

Fuente: USAENE

Se puede observar entonces, conforme con la información reportada por los prestadores al Sistema Único de Información de la SSP, que el 85% de la plantas térmicas con base en combustible diésel que operan en las ZNI se encuentran en el rango de potencia inferior a 100 kW nominales; de un total de 828 unidades instaladas, 128 unidades se encuentran en el rango de potencia entre 101 kW y 1000 kW nominales, representando el 14.3%. Sin incluir los departamentos de San Andrés y Amazonas.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

Fuente: SUI - SSPD

Figura 2-1 Distribución de potencias por localidad de ZNI

La propiedad de los activos es variada, sin embargo aquí para efectos de la metodología se consideran propiedad de la empresa generadora y los operadores y equipo de mantenimiento son empleados de la empresa generadora/distribuidora.

Finalmente en términos generales cada localidad cuenta con un sistema de generación con una unidad, dos o varias de iguales o diferentes potencias y de diferentes edades y estado actual. Por otro lado, hay poblaciones sin servicio al que se le podría colocar un sistema de generación eventualmente.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

2.1.2 Agrupaciones Actuales

En el siguiente mapa se muestra la distribución del número de plantas por cada una de las doce (12) agrupaciones regionales actualmente establecidas en la Resolución CREG 091 de 2007, las cuales son objeto de revisión en el presente estudio. Se indica la potencia máxima y la potencia mínima en cada grupo.

Figura 2-2 Distribución de la cantidad de grupos electrógenos por agrupaciones. Se indica la potencia mínima y máxima dentro de la agrupación

Rev. 01 Fecha: 01/02/2013

Tabla 2-3 Distribución de grupos electrógenos por agrupaciones

	Número	Rango de Potencia de la unidades					
Agrupaciones	Grupos Electrógenos	Potencia mínima (kW)	Potencia máxima (kW)				
Grupo 1	108	3	1000				
Grupo 2	182	10	1000				
Grupo 3	683	2	1250				
Grupo 4	18	50	600				
Grupo 5	35	15	1608				
Grupo 6	15	10	500				
Grupo 7	12	31	1000				
Grupo 8	50	11	6969				
Grupo 9	73	1	1500				
Grupo 10	58	5	2100				
Grupo 11	9	22	1000				
Grupo 12	77	13	800				

Fuente: USAENE con base en información SUI

Tabla 2-4 Número de unidades en las agrupaciones de las ZNI por rangos de potencia

Potencia kW	menor de 100	entre 100 y 300	entre 300 y 1000	más de 1000
Grupo				
1	86	14	8	0
2	165	8	9	0
3	616	39	27	1
4	7	3	8	0
5	26	2	4	3
6	14	0	1	0
7	4	4	4	0
8	37	4	1	8
9	66	3	3	1
10	51	2	2	3
11	5	2	2	0
12	56 14		7	0
Total	1133	95	76	16
Porcentaje	85,8%	7,2%	5,8%	1,2%

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

Con base en la anterior información en la Tabla siguiente se relaciona el número de plantas de generación de acuerdo con el número de unidades que la conforman.

Tabla 2-5 Número de unidades en cada sitio o localidad

Número de localidades	Número de unidades en cada localidad
1198	1
27	2
6	3
5	4
4	5
1	8 (Leticia)
Fuente: USAENE	

Del análisis de los datos relacionados en la tablas anteriores, se puede señalar que el 85.8% de las plantas tienen una potencia nominal por debajo de 100 kW, y que 1198 de las 1283 plantas, es decir el 92%, de las plantas reportadas por los prestadores al SUI_SSPD a junio de 2012, están conformadas por una sola unidad o grupo electrógeno.

2.1.3 Marcas de grupos electrógenos en ZNI

La tabla siguiente agrupa las marcas de fabricantes de grupos electrógenos encontradas en ZNI distribuidas por plantas y potencias. Como puede verse existe una alta diversidad de marcas en el mercado correspondientes a plantas instaladas en los diversos sitios, siendo Lister y Perkins las más representativas en número y Cummis y Detroit en Potencia.

Rev. 01 Fecha: 01/02/2013

Tabla 2-6 Relación de marcas en ZNI

MARCA	CANTIDAD PLANT	KW NOMIN -	RPM -
SIN INFORMACION	635	27,034.0	
LISTER	98	2,798.3	1800
PERKINS	91	8,768.0	1800
CUMMINS	55	24,901.0	1800
VM-MARELLI	45	2,697.0	1800
DETROIT	33	11,370.0	1800
CATERPILLAR	25	8,137.0	1800
JOHN DEERE	20	1,820.0	1800
MAN	13	4,054.0	1800
ISOTTA FRASCHINI	10	5,575.0	1200
MWM	8	522.0	1800
BLACKSTONE	4	1,280.0	900
GMT - ANS	4	12,160.0	514
KUBOTA	4	45.3	1800
GENERAL	3	300.0	1800
EMD	2	4,600.0	900
HATS	2	14.0	1800
HONDA	2	22.0	1800
INTERNATIONAL	2	173.0	1800
IVECO	2	56.0	1800
KOHLER	2	1,200.0	1800
OLIMPIAN	2	120.0	1800
PEGASO	2	275.0	1800
BRIGGS	1	7.0	1800
CHINA	1	40.0	1800
F:G. WILSON	1	40.0	1800
FORD	1	50.0	1800
GUASCOR	1	837.0	1800
SAMBO	1	48.0	1800
VOLVO	1	171.0	1800
VOLVO PENTA	1	352.0	1800
WILSON	1	200.0	1800
YAMMAR	1	16.0	1800
TOTAL	1074	119,682.6	

Rev. 01 Fecha: 01/02/2013

2.2 INFORMACIÓN DE PLANTAS EN SITIO

En este numeral se presenta el análisis de la información recopilada durante las visitas efectuadas a sitios y plantas, designadas como muestra representativa.

2.2.1 Sitios visitados

En la gráfica siguiente se muestra la ubicación geográfica de los sitios visitados, Acandí, Pizarro Bajo Baudó, Guapi, Puerto Leguizamo, Miraflores, Mitú y Puerto Inirida.

Figura 2-3 Localización geográfica de los 7 sitios visitados

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

Las cabeceras municipales y localidades menores visitadas, se relacionan en la tabla a continuación:

Tabla 2-7 Sitios visitados

Grupo	Sitio Visitado	Grupo	Sitio Visitado
Chocó	Acandí		Puerto Inírida
CHOCO	San Francisco	Guainía	El Remanso
	Pizarro Bajo Baudó		Chorrobocón
Chocó	Piliza	Guaviare	Miraflores
	Virudó	Guaviale	Lagos del Dorado
	Guapi		Puerto Leguízamo
Cauca	Atajo 1	Putumayo	Puerto Ospina
Cauca	Atajo 2		Nueva Paya
	Chamón	Vaupés	Mitú
		vaupes	Acaricuara

En las cabeceras municipales visitadas se encuentran plantas de generación conformadas por varias unidades alcanzando en conjunto el orden de algunos megavatios (1 a 5 MW) de potencia instalada, estas plantas son atendidas por operadores dedicados como en el caso de GUAPI, MITU e INIRIDA, cuyas centrales de generación son operadas por GENSA S.A. E.S.P. a través de un contrato de comodato con el Ministerio de Minas y Energía (MME). Bajo la misma modalidad se encuentra la planta de PUERTO LEGUIZAMO que es atendida por la empresa CEDENAR S.A. E.S.P.

En las demás cabeceras municipales las plantas de generación son operadas por las empresas distribuidoras locales quienes tienen a cargo las plantas de las localidades menores de su jurisdicción.

Tabla 2-8 Empresas que operan en la muestra de municipios seleccionada

Razón Social	Sigla		
EMPRESA DE ENERGIA ELECTRICA DEL DEPARTAMENTO DEL GUAVIARE SA ESP	ENERGUAVIARE SA ESP		
EMPRESA DE SERVICIOS PUBLICOS DE LEGUIZAMO	EMPULEG E.S.P.		
EMPRESA DE SERVICOS PUBLICOS DE ACANDI S.A E.S.P.	EMSELCA S.A.E.S.P.		
EMPRESA MIXTA DE SERVICIOS PUBLICOS DE ENERGIA ELECTRICA DE GUAPI ENERGUAPI S.A. E.S.P.	ENERGUAPI S.A. E.S.P.		
GESTION ENERGETICA S.A. ESP	GENSA S.A. ESP		
E. S. P. DE ENERGIA ELECTRICA DE BAJO BAUDO PIZARRO S.A.	ELECTROBAUDO S.A. E.S.P.		
MUNICIPIO DE MIRAFLORES GUAVIARE	MUNICIPIO DE MIRAFLORES GUAVIARE		
DEPARTAMENTO DEL VAUPES	GOBERNACION DEL VAUPES		
CENTRALES ELECTRICAS DE NARIÑO S.A. E.S.P.	CEDENAR S.A. E.S.P.		

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

La información y resultados logrados de las visitas de campo realizadas se encuentran en cada uno de los informes anexos a este documento, de manera general los informes contienen: Rutas de acceso, descripción de la zona, planos topográficos, levantamientos de planos de planta de las centrales, características técnicas de los equipos, distribución de equipos mayores, información técnica y operativa suministrada por las empresas en sitio.

Igualmente se incluye en anexo aparte, la información suministrada en sede administrativa de los operadores CEDENAR S.A. E.S.P. y GENSA S.A. E.S.P. y de las empresas distribuidoras locales referidas a: Históricos de mantenimiento, actividades adelantadas, costos de dichas actividades, costos de administración, operación y mantenimiento, costos de combustibles, etc. Con base en esta información, se efectuó una revisión y análisis con relación a operación y mantenimiento que se presenta en el siguiente numeral.

A continuación se presenta una tabla que resumen la configuración y datos básicos de las plantas visitadas a ser analizadas:

Rev. 01

Fecha: 01/02/2013

Doc. AN-USA-882-03

Tabla 2-9 Relación de datos y configuración de plantas visitadas

						pacida (kW)	d			Transformadores (kVA)			Tanques de Combustible (galones)				*							Consumo combustible	Operación
GRUPO	SITIO	U1	U2	U3	U4	U5	Instalada	En Uso	1	2	3	4	5	1	2	3	4	5	6	7	8	Total	gal/mes	hora/dia	
Chacá	Acandí	1.000	1.000	1.000			3.000	1.000	1.000	1.000				2.000	1.500							3.500	25.500	15	
	San Francisco	144					144	144	150													0	2.070	8	
Chacá	Pizarro Bajo Baudó	738	800				1.538	1.538	800					10.000	8.000	6.000	5.000				2.000	31.000	11.550	11	
	Pilizá	180	146				326	326	225					1.500								1.500	720	5	
	Virudó	106	75				181	181	150					60								60	600	4	
Cauca	Guapi	500	500	500	800	1.600	3.900	2.300	2.000	2.500	45			3.000	3.000	3.000	6.800	6.800	6.800	10.800	10.800	51.000	48.000	18	
	Atajo 1	7					7	7														0	300	6	
	Atajo 2	20					20	20														0	360	6	
	Chamón	125					125	125	150					800								800	870	6	
Guainía	Puerto Inírida	1.000	1.250	1.500	2.100		5.850	3.750	1.600	1.600	1.600	2.500	3.820	10.000	5.000	2.000	2.000					19.000	216.000	24	
	El Remanso	60					60	60														0	440	4	
	Chorrobocón	60					60	60	113													0	440	4	
Guaviare	Miraflores	412	412	320			1.144	824	1.000	400				1.800								1.800	540	6	
	Lagos del Dorado	180	230				410	180	225													0	1,116	4	
Vaupés	Mitú	750	750	750	1.600		3.850	2.250	1.600	2.000				5.300	5.300	5.300	1.500					17.400	54.000	24	
	Acaricuara	120					120	120	113													0	120	6	
Putumayo	Puerto Leguizamo	900	900	900	1.000	1.500	5.200	2.700						48.000	10.000	5.000						63.000	54.000	16	
	Puerto Ospina	255	220				475	475	75													0	1.440	8	
	Nueva Paya	94					94	94	75													0	420	4	

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01 Fecha: 01/02/2013

2.2.2 Resumen de análisis y resultados

Los análisis que se presentan a continuación tienen en cuenta principalmente las plantas de Mitú, Guapi y Puerto Inírida, dado que son éstas las que presentan información técnica y de costos de operación y mantenimiento de los últimos 4 años.

En las demás visitas la información requerida fue escasa o inexistente lo que no permite al consultor hacer un análisis particular.

2.2.2.1 Central de generación de Mitú (Vaupés)

La Central de MITÚ, es operada por la empresa GESTIÓN ENERGÉTICA S.A. E.S.P., GENSA S.A. E.S.P., cuya vinculación como operador de esta central data del 9 de septiembre de 2004. En la siguiente Tabla se relacionan los grupos electrógenos que conforman la central.

Tabla 2-10 Grupos electrógenos C	Central de MITU -VAUPES
----------------------------------	-------------------------

Potencia instalada	Marca	kW	Entrada en operación	Estado actual	Horas de operación a sep/2012	Overhaul realizados
Unidad 1	Cummins KTA-50	1500	Antes de 09/09/2004	En operación	39724,3	Tres (el último realizado el 18 de julio de 2011 a las 35600 horas)
Unidad 2	Cummins QST-30	750	Antes de 09/09/2004	En operación	21633,4	No especifica cuantos. Ultimo overhaul 7 de diciembre de 2011
Unidad 3	Cummins QST-30	750	Marzo de 2010	En operación	10840,1	Mtto sistema de inyección, 15 sep 2012
Unidad 4	Cummins QST-30	750	Marzo de 2010	En operación	12183	Mtto sistema de inyección, 15 sep 2012

2.2.2.1.1 Operación de la central

GENSA S.A. E.S.P., adelanta la operación de esta central, en virtud del Convenio Interadministrativo de Comodato celebrado entre el operador y el Ministerio de Minas y Energía; Según los antecedentes referidos en el CONTRATO INTERADMINISTRATIVO GSA 07 de 2008 entre La Nación – Ministerio de Minas y Energía y Gestión Energética S.A.E.S.P., GENSA, suscrito el 31 de enero de 2008, conforme a la copia suministrada por GENSA S.A. E.S.P. El convenio ha sido objeto de renovaciones y actualmente se encuentra vigente.

Dentro de los principales apartes del contrato se destaca:

"Que los bienes a entregar a GENSA por parte del MINISTERIO son los determinados en el inventario levantado para efectos de la transferencia de la central de generación entre

Rev. 01 Fecha: 01/02/2013

el IPSE, MINISTERIO y GENSA, efectuado el 17 de noviembre de 2007, el cual hace parte del presente convenio como Anexo 1.

Objeto: Administrar, operar y mantener (AOM) los bienes recibidos en comodato y comercializar la energía producida a través de los mismos, cuyo inventario se relaciona en el anexo 1.

El valor de los bienes entregados se estimó en \$1.036.855.367,76 m/cte.

Principales obligaciones:

Administrar, operar y mantener los bienes recibidos en Comodato de acuerdo con el inventario físico de los bienes que el MINISTERIO le entregue, el cual hace parte integrante de este convenio.

Constituir pólizas contra todo riesgo de la infraestructura entregada en COMODATO.

Suscribir un contrato de compraventa de energía eléctrica con el prestador del servicio en Mitú por medio del cual le sean remunerados a GENSA los costos en los que incurra para el cumplimiento de las obligaciones impuestas en este Convenio, así como para el reconocimiento de los honorarios de GENSA.

Presentar en forma mensual por medio de archivo electrónico en Word y Excel un informe de costos y de actividades dentro de los primeros quince días del mes siguiente al del informe en donde reportará el costo de la energía generada por kWh, la generación bruta de la unidades, las pérdidas de energía por transformación las energía autoconsumida, las horas de operación acumuladas de las unidades de generación, los mantenimientos de tipo mecánico y eléctrico realizados, el consumo de combustibles y lubricantes por unidad de generación, el porcentaje de disponibilidad de las unidades de generación, la ejecución del plan de manejo ambiental y un resumen de los costos incurridos en el AOM de la central, así como toda aquella información específica solicitada por el Ministerio y pertinente para verificar el cumplimiento de las obligaciones pactadas."

2.2.2.1.2 Suministro de combustible

De otra parte, el suministro del combustible para la operación de la central para el año 2012, es objeto de un contrato suscrito entre el operador y TERPEL S.A., cuyos aspectos principales se señalan a continuación:

CONTRATO 014 DE 2012 DE COMBUSTIBLE GENSA – ORGANIZACIÓN TERPEL S.A.

"Objeto: Suministro de Electrocombustible liquido tipo Biodiesel o ACPM, entregado en la planta de abastecimiento ubicada en San José del Guaviare, según la normatividad vigente para la Central de Generación Diesel de Mitú (Vaupés).

Plazo: Desde la fecha de suscripción del acta de inicio del contrato hasta el 31 de diciembre de 2012.

Valor: \$4.179.900.000.00

El sitio de entrega será en la planta de abasto de San José del Guaviare. Los combustibles suministrados se recibirán conforme las lecturas de los medidores de combustible localizados en la planta del mayorista. El combustible contratado se pagará a

Fecha: 01/02/2013

Rev. 01

SEIS MIL NOVECIENTOS SESENTA Y SEIS PESOS CON PUNTO CINCO CENTAVOS POR GALÓN (\$6.966,5).

El valor será reajustado de acuerdo con la regulación vigente y conforme a los criterios y valores publicados en la página WEB de Ecopetrol para los meses posteriores."

2.2.2.1.3 Transporte de combustible

El transporte del combustible hasta la central de generación de Mitú para 2012 está contratado con la empresa AEROLÍNEA DEL CARIBE S.A. AER CARIBE S.A. según contrato No. 019 – 2012.

Los principales aspectos del contrato son:

"Objeto: Contratar el transporte de combustible requerido para la operación de la central de generación diesel del municipio de Mitú en el departamento del Vaupés.

Valor: \$5.528.400,00

El contratista deberá desarrollar las siguientes actividades:

El contratista deberá transportar y poner en sitio seiscientos mil (600.000) galones de electrocombustible tipo biodiesel o ACPM, necesarios para la operación de la central de generación diesel de Mitú – Vaupés. Las cantidades mensuales de combustible a transportar serán determinadas por GENSA S.A. E.S.P., según los requerimientos y necesidades de la central de generación.

En caso de contingencia el contratista deberá recibir el combustible en la planta "Mansilla" departamento de Cundinamarca, para su posterior transporte a la localidad de Mitú, al precio establecido en el Formulario 2.2 de la oferta económica para contingencia.

El combustible será recibido por el líder de la Unidad Operativa de la Central de generación, conforme a las lecturas del equipo de medición de combustible de la central de generación y de los valores entregados se dejará constancia mediante acta suscrita por un representante del contratista y el líder de la unidad operativa.

Solo se aceptará un porcentaje de diferencia máxima del 0.5% con relación al volumen adquirido por GENSA SA ESP.

En caso que las pérdidas reales superen el 0.5 % el contratista deberá reintegran a GENSA la cantidad de combustible correspondiente a la diferencia entre la pérdida máxima permitida y la pérdida real reportada."

2.2.2.1.4 Compra – venta de energía

La energía generada por la Central de Generación de Mitú, es vendida a la Gobernación del Vaupés quien tiene a cargo la distribución y comercialización del servicio en el municipio de Mitú, es decir, la prestación del servicio de energía eléctrica.

Algunos apartes del contrato:

"Objeto: El presente contrato tiene por objeto la venta o el suministro de energía eléctrica por parte del VENDEDOR, requerida por los clientes del COMPRADOR, ubicados en el área urbana y comunidades aledañas interconectadas del Municipio de Mitú, según las INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

condiciones, precios y demás estipulaciones que se establecen en este contrato bajo la modalidad PAGUE LO DEMANDADO sin tope.

Sitio de entrega: El vendedor pondrá a disposición del COMPRADOR la energía contratada por éste, en el arranque de los circuitos de distribución, cuyos medidores se constituyen en la frontera comercial para efectos de entrega y facturación de la energía por parte del VENDEDOR al COMPRADOR, sometiéndose a las normas y procedimientos aplicables para tal fin. Dichos medidores pertenecen al Sistema Nacional de Monitoreo del IPSE y cuentan con telemedida.

Precio.- El precio de energía eléctrica que pagará el COMPRADOR al VENDEDOR se determinará mensualmente conforme lo establecido en el CAPITULO IV de la Resolución CREG 091 de 2007 CARGOS REGULADOS PARA LA REMUNERACIÓN DE LA ACTIVIDAD DE GENERACIÓN, o aquella que la modifique, adicione o subrogue, para los costos de generadores diesel, operando con ACPM a velocidades de 1800 rpm tal como se muestra en el anexo 1.

En el evento que la remuneración máxima del cargo de generación calculada conforme a la resolución CREG 091 de 2007 o aquella que la modifique, adicione o subrogue, sea inferior a los costos reales incurridos por el VENDEDOR en la actividad de generación, éste facturará al COMPRADOR los costos reales incurridos con el objeto de hacer sostenible la actividad de generación amparado en la resolución en la Resolución del Ministerio de Minas y Energía 181891 del 4 de noviembre de 2008, en la cual dicho Ministerio se compromete a asignar subsidios para cubrir el faltante de remuneración."

2.2.2.1.5 Composición del Mercado del Mitú -Vaupés

En la Tabla siguiente se muestra el número de usuarios por estrato y sector que conforman el mercado de energía eléctrica del casco urbano del municipio de Mitú y zonas aledañas atendido por la Gobernación del Vaupés, a partir de la energía generada por la central de generación de Mitú.

Tabla 2-11 Usuarios por estrato y por sector Mitú – Vaupés, 2012

2012	Estrato 1	Estrato 2	Estrato 3	Oficiales	Comerciales	Total usuarios	Consumo de energía (kWh)
Enero	1022	291	16	31	161	1521	66880,13
Febrero	1022	291	16	31	162	1522	66557,21
Marzo	1015	291	16	31	162	1515	67574,20
Abril	1016	290	16	31	159	1512	67241,02
Mayo	1016	290	17	31	158	1512	66955,11
Junio	1017	293	17	31	157	1515	66756,47
Julio	1028	296	17	33	162	1536	68210,76
Agosto	1030	298	17	33	164	1542	68483,46
Septiembre	1035	298	17	33	167	1550	68829,96

Fuente: SUI - SSPD

Rev. 01 Fecha: 01/02/2013

Figura 2-4 Consumo de energía (kWh) – 2012

A partir de la información publicada por el Centro Nacional de Monitoreo (CNM), en la siguiente tabla se muestran los parámetros para agosto de 2012.

Tabla 2-12 Principales parámetros eléctricos de la localidad de Mitú – Agosto de 2012

Localidad	Capacidad instalada	Potencia Máxima Mensual (kW)	Fecha Potencia Máxima	Demanda mensual (kWh)	Demanda promedio día (kWh)	Horas de servicio	
Mitú - Vaupés	2250	1625,28	Miércoles, agosto/08 /2012; 18:45:00	732.695	23.635	23 horas 43 minutos	

Fuente: Centro Nacional de Monitoreo - IPSE

Conforme con la información del CNM la demanda máxima presentada en agosto de 2012 alcanzó los 1625.28 kW, valor que representa el 43.34 % de la capacidad instalada (1x1500 + 3x750); de acuerdo con la información del operador la máquina de 1500 kW estuvo fuera de servicio desde el 13 de marzo de 2012 y volvió a operar a finales de junio de 2012. Factor de planta de 43.34%

La potencia máxima presentada en el lunes 5 de diciembre de 2011 fue de 1668.52 kW registrando una disminución del 1.8% respecto a la presentada en diciembre de 2010.

Rev. 01 Fecha: 01/02/2013

Figura 2-5 Diagrama Unifilar de la Central de Generación de MITÚ

2.2.2.1.6 Curvas de carga Central de Generación Mitú

Las curvas de cargas mostradas cuya fuente es el Centro Nacional de Monitoreo, indican que con excepción del comportamiento un tanto atípico, mostrado entre las seis y la once de la mañana en la curva de carga de día lunes, la curva del carga diaria tiende una tendencia casi plana entre las 6 a.m. y las 17 p.m. presentando un leve pico de demanda entre las 11 y las 12 del mediodía, y un marcado aumento de la demanda a entre las 17 y las 21 horas.

Figura 2-6 Curva de carga promedio por tipo de día

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

Figura 2-7 Curva de carga promedio diaria mensual

Entonces, conforme a las curvas de carga mostradas, tenemos que la demanda superior a los 1200 kW, se presenta entre las 17:00 y las 21:00 horas correspondiente a las horas pico del día. Esto indica que durante 20 de las 24 horas la demanda puede ser atendida con dos de las cuatro unidades instaladas en la central; tres grupos electrógenos Cummins QST30 de 750 Kw y un grupo electrógeno Cummins KTA50 de 1500 kW. Sin embargo, el tema relacionado con la configuración de la central y el análisis del despacho de las unidades se trata de manera detallada más adelante.

Rev. 01 Fecha: 01/02/2013

2.2.2.1.7 Energía generada y consumos de combustible por unidad

A continuación se presenta la información reportada por GENSA, correspondiente a la energía generada por cada una de las cuatro (4) Unidades en operación y los consumos de combustible para el periodo enero a octubre de 2012.

MES	Cant.
Enero	315.622
Febrero	171.341
Marzo	250.980
Abril	
Mayo	
Junio	84.237
Julio	268.566
Agosto	202.768
Septiembre	152.822
Octubre	
TOTAL	1.446.336

Figura 2-8 Histórico de Generación Unidad N° 1 (CUMMINS KTA 50 - 1500 kW)

MES	Cant.
Enero	26.502,00
Febrero	14.696,00
Marzo	20.741,00
Abril	
Mayo	
Junio	8.088,00
Julio	32.214,00
Agosto	21.347,00
Septiembre	14.976,00
Octubre	
TOTAL	138.564

Figura 2-9 Histórico de Consumo Combustible Unidad N° 1 (CUMMINS KTA 50 - 1500 kW)

Conforme a las gráficas mostradas y de acuerdo con los históricos de mantenimiento, esta Unidad estuvo fuera de operación durante los meses de abril y mayo 2012. En la Central existe una quinta Unidad de 1500 kW que se encuentra fuera de operación pendiente de la realización de un Overhaul.

Rev. 01 Fecha: 01/02/2013

MES	Cant.		
Enero	182.928		
Febrero	232.448		
Marzo	267.784		
Abril	261.442		
Mayo	271.695		
Junio	256.042		
Julio	239.296		
Agosto	233.836		
Septiembre	214.955		
Octubre	262.613		
TOTAL	2.423.039		

Figura 2-10 Histórico de Generación Unidad N° 2 (CUMMINS QST 30 - 750 kW)

MES	Cant.
Enero	14.451,00
Febrero	18.106,00
Marzo	19.638,00
Abril	18.519,00
Mayo	19.263,00
Junio	18.077,00
Julio	17.942,00
Agosto	17.024,00
Septiembre	16.317,00
Octubre	22.314,00
TOTAL	181.651

Figura 2-11 Histórico de Consumo Combustible Unidad N° 2 (CUMMINS QST 30 - 750 kW)

Rev. 01 Fecha 01/02/2013

MES	Cant.
Enero	60.000
Febrero	76.291
Marzo	
Abril	248.460
Mayo	265.852
Junio	248.486
Julio	108.001
Agosto	167.184
Septiembre	101.097
Octubre	249.148
TOTAL	1.524.519

Figura 2-12 Histórico de Generación Unidad N° 3 (CUMMINS QST 30 - 750 kW)

MES	Cant.
Enero	4.261,00
Febrero	5.462,00
Marzo	
Abril	16.517,00
Mayo	18.067,00
Junio	16.831,00
Julio	7.571,00
Agosto	11.879,00
Septiembre	7.636,00
Octubre	19.847,00
TOTAL	108.071

Figura 2-13 Histórico de Consumo Unidad N° 3 (CUMMINS QST 30 - 750 kW)

Rev. 01 Fecha: 01/02/2013

MES	Cont			
INIES	Cant.			
Enero	135.686			
Febrero	180.459			
Marzo	270.806			
Abril	231.029			
Mayo	202.929			
Junio	143.293			
Julio	27.925			
Agosto	132.987			
Septiembre	226.235			
Octubre	269.690			
TOTAL	1.821.039			

Figura 2-14 Histórico de Generación Unidad N° 4 (CUMMINS QST 30 - 750 kW)

MES	Cant.
Enero	10.751,00
Febrero	13.673,00
Marzo	20.738,00
Abril	17.473,00
Mayo	15.123,00
Junio	10.578,00
Julio	2.128,00
Agosto	9.736,00
Septiembre	17.394,00
Octubre	21.262,00
TOTAL	138.856

Figura 2-15 Histórico de Consumo Combustible Unidad N° 4 (CUMMINS QST 30 - 750 kW)

2.2.2.1.8 Consumo específico por unidad

La siguiente tabla se presenta un comparativo entre los rendimientos reportados por el operador a septiembre de 2012 para cada una de las cuatro unidades frente a los rendimientos de las fichas técnicas de fabricante y frente a los rendimientos reconocidos por rangos de potencia en la Resolución CREG 091 de 2007; consumo específico de 0.801 gl/kWh para máquinas entre 1000 y <=2000 kW y de 0.825 gl/kWh para máquinas entre 200 y <=1000kW.

Rev. 01 Fecha: 01/02/2013

Tabla 2-13 Comparativo de consumo especifico de la unidades de MITÚ

Potencia	Marca	kW (nomin	2012 a 75% de carga		Rendimiento ficha fabricante (PRIME)		Diferencia	%	Rendimient o 091 CREG	Diferencia	%
instalada	IVIdTCd	al)	kWh/gl	gl/kWh	A 100% de carga gal/kWh	A 75% de carga gal/kWh	respecto a fabrica	70	gl/kWh	respecto a CREG	70
Unidad 1	Cummins KTA- 50	1500	10,42263235	0,0959451	0,0674131	0,0700129	0,0259322	0,37	0,0801	0,0158451	0,20
Unidad 2	Cummins QST- 30	750	13,31166536	0,0751221	0,0705882	0,0715686	0,0035535	0,05	0,0825	-0,0073779	-0,09
Unidad 3	Cummins QST- 30	750	14,03777873	0,0712363	0,0705882	0,0715686	-0,0003323	0,00	0,0825	-0,0112637	-0,14
Unidad 4	Cummins QST- 30	750	13,14588539	0,0760694	0,0705882	0,0715686	0,0045008	0,06	0,0825	-0,0064306	-0,08

Los resultados indican que la unidad 1, Cummins KTA 50 de 1500 kW, presenta un consumo actual que esta 37% por encima del consumo de ficha técnica del fabricante; y un 20 % por encima del valor reconocido por la resolución CREG 091 de 2007 para el rango de potencia entre 1000 y 2000 kW. Es de aclarar que la Resolución CREG no especifica a que porcentaje de carga se reconoce dicho consumo.

La unidades 2 y 4 (Cummins QST-30) tienen un consumo en un rango de 5 a 6 % superior al ofrecido por el fabricante en su ficha técnica, pero inferior en un rango del 8% al 9% respecto al reconocido en la Resolución CREG 091 de 2007. La Unidad 3 instalada en marzo de 2010 junto con la unidad 4, tiene un consumo específico ligeramente menor al dado por el fabricante, y menor en un 14% al reconocido en la Resolución CREG 091 de 2007.

Estos resultados indican por una parte, que los consumos dados por el fabricante para la máquina QST30 a condiciones ISO se cumplen a las condiciones ambientales de MITÚ (27 grados, humedad relativa 84% y 450 msnm) y por otra parte que el rendimiento reconocido en la Resolución CREG está un 14% por encima para una máquina con cerca de 11.840.1 horas de operación.

Con base en la información suministrada por el operador, a continuación se presentan los datos y el análisis correspondiente de la energía generada y el consumo de combustible de cada Unidad.

Rev. 01 Fecha: 01/02/2013

Tabla 2-14 Energía generada por Unidad 2012 - MITÚ - (kWh)

MES	Unidad 1	Unidad 2	Unidad 3	Unidad 4	Total GENSA	CNM	Diferencia
Enero	315.622	182.928	60.000	135.686	694.236		
Febrero	171.341	232.448	76.291	180.459	660.539		
Marzo	250.980	267.784		270.806	789.570		
Abril		261.442	248.460	231.029	740.931		
Mayo		271.695	265.852	202.929	740.476		
Junio	84.237	256.042	248.486	143.293	732.058		
Julio	268.566	239.296	108.001	27.925	643.788		
Agosto	202.768	233.836	167.184	132.987	736.775	732.695	4.080
Septiembre	152.822	214.955	101.097	226.235	695.109		
Octubre		262.613	249.148	269.690	781.451		
TOTAL	1.446.336	2.423.039	1.524.519	1.821.039	7.214.933		

Tabla 2-15 Consumo de combustible por Unidad 2012 - MITÚ - (galones)

MES	Unidad 1	Unidad 2	Unidad 3	Unidad 4	Total
Enero	26.502,00	14.451,00	4.261,00	10.751,00	55.965
Febrero	14.696,00	18.106,00	5.462,00	13.673,00	51.937
Marzo	20.741,00	19.638,00		20.738,00	61.117
Abril		18.519,00	16.517,00	17.473,00	52.509
Mayo		19.263,00	18.067,00	15.123,00	52.453
Junio	8.088,00	18.077,00	16.831,00	10.578,00	53.574
Julio	32.214,00	17.942,00	7.571,00	2.128,00	59.855
Agosto	21.347,00	17.024,00	11.879,00	9.736,00	59.986
Septiembre	14.976,00	16.317,00	7.636,00	17.394,00	56.323
Octubre		22.314,00	19.847,00	21.262,00	63.423
TOTAL	138.564	181.651	108.071	138.856	567.142

El consumo promedio diario de combustible durante los meses de enero a octubre de 2012 es de 1890.47 galones. Con un precio por galón de \$ 16,180.5 incluido el transporte, según contrato para 2012, tenemos que en solo combustible la central de generación de MITÚ genera un gasto diario de \$30,588,803.8.

Por concepto de solo combustible el valor del kWh generado durante lo corrido de 2012 en la Central de Generación de Mitú resulta en \$1271.89/kWh.

Así las cosas, a título ilustrativo se puede mencionar que una reducción del 10% en el consumo de combustible representa para la central de generación de Mitú una reducción por encima de tres millones de pesos diarios, teniendo en cuenta que actualmente la

central de Mitú consume \$30,588,803.8 equivalente a 1.890, 47 galones diarios de combustible.

Tabla 2-16 Consumo específico por Unidad 2012 (gl/kWh)

MES	Unidad 1	Unidad 2	Unidad 3	Unidad 4
IVILO	Officaci i	Officac 2	Officaci 5	Officaci 4
Enero	0,08396753	0,07899829	0,07101667	0,07923441
Febrero	0,08577048	0,07789269	0,07159429	0,0757679
Marzo	0,08264005	0,07333523		0,07657881
Abril		0,07083407	0,0664775	0,0756312
Mayo		0,07089935	0,06795886	0,0745236
Junio	0,09601482	0,0706017	0,0677342	0,07382077
Julio	0,11994817	0,07497827	0,0701012	0,07620412
Agosto	0,10527795	0,07280316	0,07105345	0,07321016
Septiembre	0,09799636	0,07590891	0,07553142	0,07688466
Octubre		0,08496914	0,07965948	0,07883867
PROMEDIO	0,09594505	0,07512208	0,07123634	0,07606943

Figura 2-16 Consumo específico por Unidad. Para 2012 (gl/kWh)

Los datos suministrados y gráfica anterior indican que durante los meses de enero, febrero, junio, julio, agosto y septiembre de 2012, operaron las cuatro unidades, lo cual en primera instancia y bajo condiciones normales de operación, no pareciera un despacho orientado a la eficiencia, teniendo en cuenta que la carga máxima de cerca de 1700 kW se presenta en la hora pico, y aún en ese evento la demanda puede ser atendida por las

Rev. 01 Fecha: 01/02/2013

tres de las cuatro unidades. No obstante, será el operador quien disponga de las razones de tipo operativo o comercial pertinentes que expliquen este despacho.

Tabla 2-17 Comparativo del consumo específico de las unidades, tomando el consumo promedio de 2012

				ito promedio % de carga		ento ficha e (PRIME)	Diferencia respecto a fabrica %		Rendimiento 091 CREG	Diferencia	
Potencia instalada	Marca	kW (nominal)	kWh/gl	gl/ kW h	A 100% de carga gal/kWh	A 75% de carga gal/kWh			carga fabrica		gl/kWh
Unidad 1	Cummins KTA-50	1500	10,42263	0,0959451	0,0674131	0,0700129	0,0259322	0,37	0,0801	0,0158451	0,20
Unidad 2	Cummins QST-30	750	13,31167	0,0751221	0,0705882	0,0715686	0,0035535	0,05	0,0825	-0,0073779	-0,09
Unidad 3	Cummins QST-30	750	14,03778	0,0712363	0,0705882	0,0715686	0,0003323	0,00	0,0825	-0,0112637	-0,14
Unidad 4	Cummins QST-30	750	13,14589	0,0760694	0,0705882	0,0715686	0,0045008	0,06	0,0825	-0,0064306	-0,08

Fuente: Calculos USAENE LLC

Tomando el consumo específico promedio de los diez meses transcurridos de 2012 (enero – octubre), se obtienen los resultados mostrados en la Tabla anterior, los cuales no difieren de los calculados con base en el promedio para septiembre de 2012. La Unidad 1, tiene un consumo específico que supera en 37% el consumo específico dado por el fabricante y en 20% el consumo específico reconocido en la Resolución CREG091 de 2007. Esta unidad tiene tres overhaul el último realizado el 18 de julio de 2011 a las 35600 horas de operación.

La Unidad 2, muestra un consumo específico que supera en 5% el consumo específico dado por el fabricante y es menor en 9% del reconocido en la Resolución CREG 091 de 2007.

La Unidad 3, presenta un consumo específico igual al consumo ofrecido por el fabricante y menor en un 14% del reconocido en la Resolución CREG 091 de 2007. Es la unidad que presenta el mejor desempeño y la que tiene menos horas de operación (10840,1 horas).

La Unidad 4, presenta un consumo específico superior en 6% al consumo ofrecido por el fabricante y menor en un 8% del reconocido en la Resolución CREG 091 de 2007. Horas de operación (12183 horas).

Rev. 01 Fecha: 01/02/2013

Figura 2-17 Resumen de Potencias máxima por localidad agosto 2012 [mayor a 450 kW].

En la gráfica anterior tomada del informe del Centro Nacional de Monitoreo (CNM), se muestran las potencias máximas presentadas a agosto de 2012 para plantas con capacidad instalada superior a 450 kW. Para la Central de MITÚ la potencia máxima presentada durante ese periodo fue de 1625,28 kW, el día 8 de agosto de 2012.

Teniendo en cuenta que la Unidad No. 1 (Cummins KTA50; 1500 kW) está presentando un consumo específico muy alto, con más de 35000 horas de servicio, sería recomendable utilizar esta unidad solamente como respaldo y bajo condiciones normales atender la demanda con las tres Unidades Cummins de 750 kW. Como se mencionó anteriormente y conforme a la curva de carga, durante 20 horas diarias la demanda está por debajo de 1400 kW la cual puede ser atendida con dos de las tres unidades de 750 kW.

2.2.2.1.9 Operación y mantenimiento

Con base en la información suministrada por el operador, a continuación se hace un análisis de la información correspondiente a la Central de Generación de MITÚ.

UNIDAD 1: CUMMINS KTA 50, 1500 kW

La fecha de entrada en operación de esta unidad es anterior a la vinculación de GENSA (09/09/2004) en que asumió la operación de esta central. Horas de operación: 39.724,3. Indisponible desde el 13 de marzo por *"posible recostamiento de pistones"* La unidad es sacada de operación por el personal técnico de la central al notar mal funcionamiento.

El histórico de mantenimiento suministrado por GENSA, incluye cinco registros entre el 9 de octubre de 2010 hasta el 13 de marzo de 2012 fecha en que sale de operación. Vuelve a generar a partir de junio de 2012, de acuerdo con la información de energía generada y consumo de combustible por Unidad suministrada por el operador.

Rev. 01 Fecha: 01/02/2013

Así las cosas, realmente la información sobre las actividades de mantenimiento adelantadas obre esta unidad es muy escasa, cinco registros de mantenimiento para 17 meses, lo cual no permite adelantar mayores análisis sobre las actividades desarrolladas.

El rendimiento promedio reportado para el mes de septiembre de 2012 es de 10,204 kWh/galón.

UNIDAD 2: CUMMINS QST 30, 750 kW

La fecha de entrada en operación de esta unidad es anterior al 9 de septiembre de 2004, que es la fecha en que GENSA S.A. E.S.P. asumió la operación de esta central. Horas de operación: 21.633.4 Indisponible desde el 1 de febrero por daño en el turbo.

El histórico de mantenimiento suministrado por GENSA solo relaciona una actividad realizada el 7 de diciembre de 2011 consistente en un overhaul a las 15.569 horas de operación.

El operador reporta un rendimiento promedio para el mes de septiembre de 13.174 kWh/gal.

UNIDAD 3: CUMMINS QST 30, 750 kW

La fecha de entrada en operación de esta unidad es marzo de 2010. Horas de operación a octubre de 2012: 10.840,1 horas; vida útil esperada: 25.000 horas aproximadamente, de acuerdo con la información de GENSA.

El histórico de mantenimiento reportado incluye solo el registro de dos actividades, una correspondiente a la fecha de la instalación de la unidad y una segunda actividad al mantenimiento de 6000 horas, realizado a las 6.725 con la siguiente descripción: "Mantenimiento de 6000 horas, corresponde al cambio de toberas, inyectores. Calibración motor. Reparación turbos. Reparación bomba de agua. Reparación tensor correas. Horómetro: 6.725.

El operador reporta un rendimiento promedio a septiembre de 2012 de 13.240 kWh/galón, teniendo en cuenta un porcentaje de carga de 75%.

UNIDAD 4: CUMMINS QST 30, 750 kW

La fecha de entrada en operación de esta unidad, al igual que la unidad 3, fue en marzo de 2010. Horas de operación a octubre de 2012: 12.183 horas; vida útil esperada: 25.000 horas aprox. GENSA.

El histórico de mantenimiento reportado solamente incluye cuatro (4) actividades entre marzo de 2010 y febrero 11 de 2012. La primera actividad corresponde al montaje de la Unidad. La segunda corresponde al mantenimiento de 6000 horas, similar al realizado sobre la Unidad 3.

A partir de los históricos de mantenimiento suministrados por GENSA, se puede inferir lo siguiente:

La Unidad 1, CUMMINS KTA 50, 1500 kW con 39.724,3 horas de operación y tres (3) overhaul realizados, está al término de su vida útil, y presenta un consumo específico superior en 37% del consumo de fabricante y 20% del reconocido por la CREG. Así las cosas, lo recomendable sería que esta Unidad se utilice como respaldo y solamente se despache en situaciones de emergencia, dado que con las otras tres Unidades se tiene

CREG			
INVERSIONES Y GASTOS DE	AOM EN ZNI	CON PLANTAS	TÉRMICAS

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

una potencia de 2250 kW, suficiente para atender la demanda máxima que se presenta en las horas pico de cerca de 1700 kW.

En cuanto a las actividades de mantenimiento, tenemos que las reportadas sobre las Unidades 3 y 4, Cummins QST30 de 750 kW con fecha de instalación marzo de 2010 y 12.000 horas de operación en promedio, corresponden básicamente al mantenimiento programado de las 6000 horas y ninguna salida forzada. No se registran en el histórico las actividades de mantenimiento operativo a realizar cada 250 – 300 horas (cambios filtros y aceite).

A continuación se relacionan las actividades de mantenimiento rutinario durante 2010 adelantadas por el operador de acuerdo con su información.

Tabla 2-18 Actividades de mantenimiento rutinario - Mitú

COSTOS MES DE ENERO 2010 COSTOS DE MANTENIMIENTO RUTINARIO MITÚ - 2010 Anticipo 50% orden P02713 cuyo objeto es suministro de materias para obras civiles Rollos de cinta super, cuchillos de zapateria, rollos cinta scotch FN 57768 \$ 591.716,00

materias para obras civiles			+ ==:==::;::
Rollos de cinta super, cuchillos de zapateria, rollos cinta scotch	FN	57768	\$ 591.716,00
COSTOS MES DE FEBRERO			
COSTOS DE MANTENIMIENTO RUTINARIO	\$ 107.386.464,00		
tornilleria montaje unidades de generacion en mitu	FN	CF-30155	\$ 178.698,00
Pago final orden P02713 cuyo objeto es suministro de materias para obras civiles	FN	17324054	\$ 22.020.500,00
Envio de muestras aceites	FN	32128780	\$ 18.400,00
Envio de ponchadora hidraulica	FN	32128780	\$ 133.200,00
Turbocargador, filtros de combustible, filtros de aceite, filtros de aire, refrigerante	FN	50258	\$ 34.603.904,00
N. (12) 531 1 50 4000 1			

para obras civiles		17021001	Ψ 22:020:000,00
Envio de muestras aceites	FN	32128780	\$ 18.400,00
Envio de ponchadora hidraulica	FN	32128780	\$ 133.200,00
Turbocargador, filtros de combustible, filtros de aceite, filtros de aire, refrigerante	FN	50258	\$ 34.603.904,00
Nota credito por filtro separador FS 1206 por cobro en mayor cantidad	FΝ	567	-\$ 282.641,00
Baterias willard y planta auxiliar, arrancador directo	FΝ	58063	\$ 9.342.622,00
Celda secc 15Kv 630A mando motorizado QM15kv	FN	58033	\$ 35.205.000,00
Tiquete aereo Miller cambiando mzles-bog-mzles por motivo de puesta en servicio de unidades de generacion nuevas y equipos asociados	FN	23961	\$ 288.216,00
Tiquete aereo Miller cambiando bog-mitu-bog por motivo de puesta en servicio de unidades de generacion nuevas y equipos asociados	FΝ	23923	\$ 639.507,00
Viaticos Miller cambindo por motivo de puesta en servicio de unidades de generacion nuevas y equipos asociados	FN	94439518	\$ 1.358.500,00
Viaticos Miller cambindo por motivo de puesta en servicio de unidades de generacion nuevas y equipos asociados	FΝ	94439518	\$ 1.261.000,00
Tiquete aereo Gustavo moreno mlzes-bog-mzles por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	23891	\$ 267.336,00
Tiquete aereo REVISADO Gustavo moreno mlzes-bog-mzles por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	24140	\$ 84.456,00
Tiquete aereo REVISADO Miller cambindo y gustavo moreno por motivo de puesta en servicio de unidades de generacion	FN	24399	\$ 222.718,00

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01 Fecha: 01/02/2013

ACTIVIDADES DE MANTENIMIENTO RUTINARIO – MITÚ - 2010					
nuevas y equipos asociados					
Viaticos gustavo moreno por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	10236573	\$ 2.045.048,00		

COSTOS MES DE MARZO

COSTOS DE MANTENIMIENTO RUTINARIO			\$ 24.550.749,00
Filtro de aire AH1135 y carcaza	FN	50511	\$ 3.415.040,00
acompañamiento en la puesta en servicio de dos unidades de generación. instalacion de seccionadores de acople para sincronismo, cableado de potencia	FN	10215434	\$ 7.626.740,00
Manguera plana, manguera de lado succion, etc	FN	50585	\$ 3.217.596,00
Envio de martillo moledor	FN	32142203	\$ 73.000,00
Tiquete aereo Gustavo moreno bog-mitu-bog por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	23739	\$ 673.507,00
Tiquete aereo REVISADO Gustavo moreno mizes-bog-mzles por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	23991	\$ 94.896,00
Tiquetes aereos REVISADO gustavo moreno, miller cambindo bog-mzles, bog-pei por motivo de pruebas electricas y montaje de dos unidades de generacion	FN	24679	\$ 265.677,00
Filtros de combustible, filtros de aceite, filtros de agua	FN	50737	\$ 9.184.293,00

COSTOS MES DE ABRIL

			\$ 14.525.603,00
Prestacion de servicio tecnicio en la central de mitu como ayudante No 2	FN	18204258	\$ 1.326.000,00
Prestacion de servicio tecnicio en la central de mitu como ayudante No 1	FN	18202866	\$ 1.326.000,00
Filtros de agua W2074-W2076	FN	50980	\$ 4.006.153,00
Elementos de ferreteria	FN	6428-6429- 6431-6432- 6433-6434- 6435-6436- 6437-6438- 6439-6441- 6442-6444- 6445-6446- 6447-6448- 6449-6450- 6453-6456-	\$ 7.867.450,00

COSTOS MES DE MAYO

COSTOS DE MANTENIMIENTO RUTINARIO			\$ 0,00
	FN		
COSTOS DE MANTENIMIENTO RUTINARIO	\$ 0,00		
	FN		

COSTOS MES DE JUNIO

COSTOS DE MANTENIMIENTO RUTINARIO	\$ 7.475.550,00		
Puerta de madera y ventilador para casa maquinas	FN	6871	\$ 500.000,00
Fusibles de 2 amp tipo h y juego de copas	FN	6878	\$ 290.000,00

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01 Fecha: 01/02/2013

ACTIVIDADES DE MANTENIMIENTO RU	TINARIC) – MITÚ - 2010	
Crc electrico, juego de destornilladores, caja para herramientas, alicate, pinzas y terminales	FN	6879	\$ 304.000,00
candados, cintas enmascarar y aislantes	FN	6880	\$ 199.500,00
terminales premoldeadas 13,200 kv 3m	FN	6891	\$ 2.340.000,00
Electrovalvulas, reducciones, universales hembra, fusibles varios	FN	6916	\$ 3.468.000,00
Electrobombas 1/2 hp	FN	6918	\$ 240.000,00
Envio de baterías	FN	32185579	\$ 134.050,00

COSTOS MES DE JULIO

COSTOS DE MANTENIMIENTO RUTINARIO	\$ 2.674.529,00		
Tiquete aereo Miller cambindo y andrea osorio mzles-bog- mzles por motivo de instalacion medidores de combustible con control electronico	FN	26552	\$ 340.716,00
Tiquete aereo Miller cambindobog-mitu-bog por motivo de instalacion medidores de combustible con control electronico	FN	26553	\$ 603.863,00
Viaticos miller cambindo por motivo de instalacion medidores de combustible con control electronico			\$ 786.600,00
	\$ 943.350,00		
llave bristol,acido bateria,limpiones. convertidor, lamparas, acido muriatico, tornillos, detergente	FN	71003002-7	\$ 367.750,00
gasolina pura para mtto unidades	FN	79,105,106-1	\$ 345.600,00
servicio de limpieza y poda de la central por los alrededores	FN	18201855	\$ 80.000,00
compra de palo rollizo para los tanques de combustible	FN	7,837,580	\$ 150.000,00

COSTOS MES DE AGOSTO

COSTOS DE MANTENIMIENTO RUTINARIO			\$ 29.212.062,00
reparacion sistema de inyeccion y mano de obra unidad qst 30 (2) 750kw	\$ 29.212.062,00		
COSTOS DE MANTENIMIENTO RUTINARIO			\$ 0,00
	FN		

COSTOS MES DE SEPTIEMBRE

COSTOS DE MANTENIMIENTO RUTINARIO			\$ 13.942.933,00
Filtros de aire, filtros de combustible, filtros de aceite	FN	52494	\$ 13.942.933,00

COSTOS MES DE OCTUBRE

COSTOS DE MANTENIMIENTO RUTINARIO	\$ 58.982.564,00		
Primer pago suministro, transporte, montaje, pruebas y puesta en operación de dos reconectadores que serán utilizados para protección de los alimentadores de la central de generación diesel de mitú, departamento del vaupés.	FN	50055	\$ 47.306.644,00
Filtro de aire externo AF4674	FN	52871	\$ 6.811.520,00
Elementos para operación unidades central diesel mitu		7350-7353- 7354-7355- 7356-7365- 7366-7367- 7368-7369- 7370-7371	\$ 4.755.900,00
Viaticos gustavo moreno por motivo de pruebas a reconectadores para alimentadores de la central diesel de mitu	FN	10236573	\$ 50.000,00

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01 Fecha: 01/02/2013

ACTIVIDADES DE MANTENIMIENTO RU	TINARIC) – MITŮ - 2010	
Viaticos Miller cambindo por motivo de pruebas a reconectadores para alimentadores de la central diesel de mitu	FN	94439518	\$ 58.500,00

COSTOS MES DE NOVIEMBRE

COSTOS DE MANTENIMIENTO RUTINARIO	\$ 141.511.707,00			
Coordinacion protecciones reconectadores media tension mitu	FN	414	\$ 1.369.685,00	
repuestos para la unidad 1500kw, y mano de obra	FN	122480	\$ 19.360.720,00	
mantenimiento correctivo unidades generadoras	FN	122478	\$ 41.455.104,00	
repuestos requeridos para mantenimiento planta electrica 1500kw motor cummins k50g9				
Filtro aire interno AF4675	FN	53301	\$ 4.732.800,00	
Anticipo 50% servicio suministro, transporte y montaje de una celda de distribucion para las unidades 3 y 4 de mitu	FN	19118788	\$ 13.734.400,00	
Servicio de asistencia tecnica para el mantenimiento y calibracion de un medidor de flujo marca LIQUID CONTROL M-7-1	FN	627	\$ 870.000,00	
Elementos para operación unidades central diesel mitu		7544-7545- 7546-7547- 7548-7549- 7550-7551- 7552-7553	\$ 5.673.200,00	
	\$ 1.350.000,00			
servicio y mantenimiento pc escritorio oficina y impresora	FN	14898728	\$ 140.000,00	
soldadura unidades generadoras y contadores	FN	18392876	\$ 200.000,00	
gasolina pura,lavada pisos, maquinaria,tornillos	FN	79105106-1	\$ 870.000,00	
servicio y poda de la central por los alrededores	FN	17324054	\$ 140.000,00	

COSTOS MES DE DICIEMBRE 2010

COSTOS DE MANTENIMIENTO RUTINARIO			\$ 97.110.538,01
Tiquete aereo miller cambindo y gustavo moreno pei-bog por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK52063	\$ 449.614,00
Tiquete aereo miller cambindo y gustavo moreno bog-mitu-bog por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK51636	\$ 1.077.368,00
Tiquete aereo miller cambindo y gustavo moreno pei-bog-pei por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK51646	\$ 850.688,00
Tiquete aereo miller cambindo y gustavo moreno pei-bog por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK51961	\$ 548.214,00
Tiquete aereo REVISADO JK51964 gustavo moreno bog-pei por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK52062	\$ 44.608,00
Tiquete aereo REVISADO JK51646 Gustavo moreno bog-pei por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de	FN	JK51964	\$ 71.868,00

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

ACTIVIDADES DE MANTENIMIENTO RUTINARIO – MITÚ - 2010			
sincronismo unidades 3 y 5			
Tiquete aereo REVISADO JK51963 miller cambindo bog-pei por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 5	FN	JK52061	\$ 102.608,00
Tiquete aereo REVISADO JK51646 miller cambindo bog-pei por motivo de acompañamiento e inspeccion del adecuado montaje reconectadores y tablero de distribucion de sincronismo unidades 3 y 4	FN	JK51963	\$ 71.868,00
Viaticos gustavo moreno por motivo de intento viaje Mitu	FN	10236573	\$ 453.204,00
Viaticos miller cambindo por motivo de intento viaje Mitu (Viaje pendiente para enero)	FN	94439518	\$ 470.204,00
Pago contrato 071-2010 Contratar el suministro, transporte, montaje, pruebas y puesta en operación de dos reconectadores que serán utilizados para protección de los alimentadores de la central de generación diesel de Mitú, Departamento del Vaupés	FN	51865	\$ 47.306.644,00
Anticipo 50% orden P03676 Reparación de Radiador para motor K 50 de 1500 Kw.	FN	51.673.450-4	\$ 10.750.000,00
Pago final orden P03676 Reparación de Radiador para motor K 50 de 1500 Kw.	FN	5811	\$ 14.190.000,00
Elementos para operación unidades central diesel mitu	FN	7592-7591	\$ 960.000,00
Diseño de estructura metálica para el área de almacenamiento de combustible central diesel de Mitú		10028800	\$ 1.000.000,00
Correa Bomba Agua QST30	FN	124052	\$ 3.100.680,00
Correa V Alternador QST	FN	124052	\$ 519.070,01
Suministro, transporte y montaje de celda de distribución para el sincronismo de las unidades 3 y 4 de mitú. Acople de barrajes entre tableros, de acuerdo con el documento "ESPECIFICACIONES PARA TABLERO MITÚ"		4029	\$ 13.734.400,00
			\$ 1.409.500,00
servicio de asistencia técnica para el mantenimiento y suministro de combustibles de un medidor de flujo	FN	830,123,869,2	\$ 522.000,00
gasolina pura,lavada pisos, maquinaria,tornillos,radiadores	FN	79,105,106-1	\$ 797.500,00
tranporte de basuras al basurero municipal		5603330	\$ 90.000,00

Se destacan con fondo amarillo los precios de algunos ítems que en principio y ante la ausencia de mayor información parecieran estar por encima de los costos de mercado, especialmente aquellos cuyo concepto refieren compra de filtros e insumos menores como correas. Otros no parecieran encajar dentro del concepto de mantenimiento rutinario, sino que parece corresponder a suministros de equipos nuevos y mantenimientos correctivos.

CREG INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	Doc. AN-USA-882-03
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013

2.2.2.2 Central de generación de GUAPI

La Central de Guapi, es operada actualmente por la empresa GENSA S.A. E.S.P., en virtud de contrato de comodato suscrito por el Ministerio de Minas y Energía (MME). En la siguiente Tabla se relacionan cinco (5) grupos electrógenos encontrados en la central al momento de la visita. La empresa GENSA S.A. E.S.P., no relaciona dentro del parque de generación la unidad EMD de 1600 kW que se encuentra fuera de servicio.

Tabla 2-19 Grupos electrógenos Central de GUAPI

Grupo Electrógeno	Marca	Potencia nominal (kW)	Observaciones
Unidad 1	Cummnins KTA38	800 kW	
Unidad 2	MTU	500 kW	
Unidad 3	MTU	500 kW	
Unidad 4	MTU	500 kW	
Unidad 5	EMD	1600 kW	Fuera de servicio (no reportada por GENSA en la información suministrada)

2.2.2.2.1 Contrato de comodato GENSA- MME

Objeto: Administrar, operar y mantener (AOM) los bienes recibidos en comodato y comercializar la energía producida a través de los mismos, cuyo inventario se relaciona en el anexo 1.

El valor de los bienes entregados se estimó en \$794.624.279,67

Según inventario levantado por IPSE, MINISTERIO Y GENSA el 4 de julio de 2008

Constituir pólizas contra todo riesgo de la infraestructura entregada en COMODATO

Presentar informes mensuales de AOM (SE PIDIERON AL MME)

2.2.2.2.2 Contrato de combustible GENSA – ORGANIZACIÓN TERPEL S.A.

Objeto: Contratar la compraventa de electrocombustible líquido tipo biodiesel o ACPM puesto en sitio, según la normatividad vigente para las centrales de Guapi y Bahía Solano.

MES	Cant.
Enero	203.119
Febrero	237.249
Marzo	261.717
Abril	247.723
Mayo	220.250
Junio	224.886
Julio	239.963
Agosto	96.299
Septiembre	72.207
Octubre	203.119
TOTAL	2.006.532

Tabla 2-20 Histórico de Generación Unidad N° 1 (CUMMINS 800 kW)

MES	Cant.
Enero	2.238,00
Febrero	17.789,00
Marzo	19.738,00
Abril	18.926,00
Mayo	16.626,00
Junio	17.288,00
Julio	18.457,00
Agosto	7.285,00
Septiembre	5.313,90
Octubre	15.201,00
TOTAL	138.862

Tabla 2-21 Histórico de Consumo Combustible Unidad N° 1 (CUMMINS 800 kW)

MES	Cant.			
Enero	167.919			
Febrero	43.040			
Marzo	48.605			
Abril	66.626			
Mayo	77.929			
Junio	79.778			
Julio	71.193			
Agosto	139.895			
Septiembre	191.838			
Octubre	190.447			
TOTAL	1.077.268			

Figura 2-18 Histórico de Generación Unidad N° 2 (MTU 500 kW)

MES	Cant.
Enero	12.937,00
Febrero	3.338,00
Marzo	3.812,00
Abril	5.411,20
Mayo	6.078,00
Junio	6.379,00
Julio	5.747,00
Agosto	10.483,00
Septiembre	14.314,00
Octubre	14.364,00
TOTAL	82.863

Figura 2-19 Histórico de Consumo Combustible Unidad N° 2 (MTU 500 kW)

MES	Cant.
Enero	71.465
Febrero	188.158
Marzo	184.306
Abril	166.128
Mayo	175.978
Junio	159.257
Julio	164.427
Agosto	179.135
Septiembre	182.111
Octubre	178.707
TOTAL	1.649.673

Figura 2-20 Histórico de Generación Unidad N° 3 (MTU 500 kW)

MES	Cant.		
Enero	5.360,00		
Febrero	14.044,00		
Marzo	13.742,00		
Abril	13.170,34		
Mayo	13.497,00		
Junio	12.372,00		
Julio	12.975,00		
Agosto	13.421,00		
Septiembre	13.510,00		
Octubre	13.520,00		
TOTAL	125.611		

Figura 2-21 Histórico Consumo Combustible Unidad N° 3 (MTU 500 kW)

MES	Cant.
Enero	167.442
Febrero	164.909
Marzo	167.726
Abril	180.312
Mayo	188.194
Junio	177.665
Julio	182.085
Agosto	196.445
Septiembre	196.580
Octubre	85.715
TOTAL	1.707.072

Figura 2-22 Histórico de Generación Unidad N° 4 (MTU 500 kW)

MES	Cant.
Enero	12.628,00
Febrero	12.286,00
Marzo	12.680,00
Abril	13.757,00
Mayo	14.312,00
Junio	13.645,00
Julio	14.116,00
Agosto	14.913,00
Septiembre	14.881,00
Octubre	6.602,00
TOTAL	129.820

Figura 2-23 Histórico Consumo Combustible Unidad N° 4 (MTU 500 kW)

Rev. 01 Fecha: 01/02/2013

En la Figura 2-17 del Centro Nacional de Monitoreo (CNM), se muestran las potencias máximas presentadas a agosto de 2012 para plantas con capacidad instalada superior a 450 kW. Para la Central de **GUAPI** la potencia máxima presentada durante ese periodo fue de 1684.76 kW.

Durante el año 2011, la potencia máxima fue de 1755.16 kW y se presentó el sábado 31 de diciembre a las 20:15 horas, con respecto a la máxima de diciembre de 2010 (1673.32 kW) creció 4.9%.

Durante 2012, la potencia máxima de 1601.16 kW se presentó el 8 de agosto a las 19:15 horas.

Tomando un crecimiento anual del 5% como el presentado para entre diciembre de 2010 y diciembre de 2011, se esperaría que la potencia máxima a presentarse en diciembre de 2012 fuese de 1842.9 kW.

Así las cosas, la potencia agregada de las cuatro (4) unidades que se encuentran en operación, suma 2300 kW para un factor de planta de 80.12%.

Figura 2-24 Curva de carga promedio diaria mensual

En la gráfica anterior se compara la curva promedio diaria del mes diciembre del 2010 y del 2011, presentándose un crecimiento en la demanda del 9.3%.

La demanda que supera los 1400 kW se presenta entre las 18:00 y las 21:00 horas. Entre las 00:30 y las 06:30 se presenta una demanda por debajo de los 500 kW, la cual puede ser atendida por una sola máguina de 500 kW.

Rev. 01 Fecha: 01/02/2013

2.2.2.3 Operación y mantenimiento

Con base en la información suministrada por el operador, a continuación se hace un análisis de la información correspondiente a la Central de GUAPI.

UNIDAD 1: CUMMINS KTA38 800 kW; 480 V; SERIE J9505906

La fecha de entrada en operación es anterior al 24 de junio de 2005 según lo informado por GENSA S.A. E.S.P. Horas de operación: 35.914,5

Para esta unidad, la empresa operadora, suministró las actividades de mantenimiento realizadas para el periodo comprendido entre el 17 de diciembre de 2010, hasta el 22 de junio de 2012.

Durante el periodo de tiempo reportado de aproximadamente 18 meses, la empresa según histórico de mantenimiento relaciona diez (10) actividades sobre esta Unidad; tres (3) operativos; cuatro (4) preventivos; dos (2) correctivos y uno (1) externo al grupo electrógeno consistente en el cambio de la acometida eléctrica de esta unidad.

Se destaca el mantenimiento correctivo realizado al generador el 12 de mayo de 2012, pero sin descripción alguna del tipo de reparación realizada. Generalmente las labores de mantenimiento sobre los generadores se limitan a verificar el estado de los bujes o rodamientos y al soplado y limpieza de interna especialmente de los devanados, para mantener en nivel de aislamiento.

Los costos asociados a estas actividades no se encuentran desagregados por actividad y tampoco por unidad de generación. No obstante, con base en los precios de filtros y lubricantes se determinaran de manera aproximada los costos de los mantenimientos operativos.

El operador reporta un rendimiento promedio para esta Unidad de 13.588 kWh/gal durante septiembre de 2012.

UNIDAD 2: MTU 500 kW, SERIE SSC-101006135

La fecha de entrada en operación de esta unidad fue el 6 de octubre de 2010. Horas de operación a octubre de 2012: 9.493,4 horas; vida útil esperada: 30.000 horas aprox.

Con los datos anteriores tenemos un promedio diario de operación de 13.18 horas.

El operador reporta información histórica de mantenimiento desde el 11 de diciembre de 2010 hasta el 26 de abril de 2012. Catorce (14) meses.

De 37 actividades de mantenimiento reportadas durante este periodo, seis (6) son de mantenimiento preventivo; veintinueve (29) operativo y dos (2) correctivos. No se hace referencia a actividad alguna realizada sobre el generador.

Para el 26 de septiembre de 2011 se realizó una revisión general del grupo electrógeno la cual concluyó con una recomendación de "No operar los equipos por encima del 80% de carga hasta que se tenga análisis de fábrica." No se encuentra la descripción de los motivos que originan la restricción en la operación de la máquina. Posteriormente, para el 6 de octubre, se registra una actividad de mantenimiento correctivo con la anotación "Ajuste DEEP SEA de la unidad", la cual parecería que corrigió o eliminó el motivo de la restricción por cuanto no se encuentra otro registro posterior sobre el tema.

CREG			
INVERSIONES Y GASTOS DE	AOM FN 7NI	CON PLANTAS	TÉRMICAS

INVERCIONES I SASTOS DE ACIMENAZIA SONTE MATA CONTROLO	
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2013

El operador reporta un rendimiento promedio para esta Unidad de 13.402 kWh/gal durante septiembre de 2012.

UNIDAD 3: MTU 500 KW, SSC-101006134

La fecha de entrada en operación de esta unidad fue el 6 de octubre de 2012. Horas de operación a octubre de 2012: 10.266,5 horas; vida útil esperada: 29.000 horas aprox.

El histórico de mantenimiento reportado va desde el 25 de abril de 2011 a 25 de mayo de 2012, e indica que de las 42 actividades de mantenimiento adelantadas sobre este equipo, 39 corresponden a mantenimiento operativo; 2 a mantenimiento correctivo y una de mantenimiento correctivo.

La actividad de mantenimiento correctivo corresponde al cambio de un sensor de presión de aceite.

El operador reporta un rendimiento promedio para esta Unidad de 13.480 kWh/gal durante septiembre de 2012.

Llama la atención la vida útil esperada de 29.000 horas aproximadamente, lo que pareciera estar relacionado con la expectativa de realizar tres overhauls.

UNIDAD 4: MTU 500 Kw, SERIAL No SSC - 101006136

La fecha de entrada en operación de esta unidad fue el 6 de octubre de 2012. Horas de operación a octubre de 2012: 10.319,41 horas; vida útil esperada: 29.000 horas aprox.

El histórico de mantenimiento reportado va desde el 5 de marzo de 2011 hasta el 25 de mayo de 2012. Del total de 31 actividades, 26 corresponden a mantenimiento operativo, 2 a preventivo y 3 a correctivo.

Las dos actividades de mantenimiento correctivo son: Cambio de sensor de combustible y ajuste DEEP SEA de la unidad.

La máquina tiene a la septiembre 2012 10.320 horas de servicio, frente a una vida esperada según el operador de 29.000 horas.

El operador reporta un rendimiento promedio para esta Unidad de 13.210 kWh/gal durante septiembre de 2012. A continuación se presenta el resumen del número de actividades por tipo de mantenimiento realizado sobre las cuatro (4) unidades que conforman la planta de GUAPI.

Tabla 2-22 Número de actividades de mantenimiento sobre las Unidades Diesel

Unidad No.	Tipo	Tipo de mantenimiento		Periodo	
Officiac NO.	Operativo	Preventivo	Correctivo	Pellodo	
Unidad 1, 800 kW	3	4	2	17 diciembre 2010 a 22 junio 2012	
Unidad 2, 500 kW	29	6	2	11 diciembre 2010 a 26 abril 2012	
Unidad 3, 500 kW	39	2	1	25 abril 2011 a 25 mayo 2012	
Unidad 4, 500 kW	26	2	3	5 marzo 2011 a 25 mayo 2012	
Totales	97	14	8		
Porcentaje	82%	12%	6%		

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2013

De la relación de actividades de mantenimiento suministrada por el operador GENSA S.A. E.S.P., podemos concluir de manera general que la mayoría de ellas (94%), corresponden a actividades de mantenimiento operativo y preventivo con la periodicidad recomendada por el fabricante.

Los históricos de mantenimiento reportados corresponden básicamente a los dos últimos años (2011 hasta mayo 2012), mientras que la información de costos de AO&M suministrada por GENSA S.A. E.S.P., data de octubre de 2008 hasta junio de 2012, estos costos se presentan de manera agregada, es decir no se encuentran discriminados los costos por unidad, hecho que dificulta la identificación y valoración de los mismos.

El periodo de reporte de actividades de mantenimiento que es común para las cuatro unidades, va desde el 25 de abril de 2011 hasta el 26 de abril de 2012, es decir, un año.

Tabla 2-23 Gastos de mantenimiento – Guapi

	abr-11	may-11	jun-11	jul-11	ago-11	sep-11	oct-11
GASTOS DE MANTENIMIENTO	60.992.800	47.171.200	96.490.160	75.718.648	65.293.598	44.585.850	78.017.500
Overhaul							
Mantenimiento Correctivo	4.4080.000	47.144.200	96.490.160	57.754.848	46.181.000	44.585.850	78.011.500
Mantenimiento Preventivo	16.912.800				2.500.000		
Mejoras en la Central		27.000		17.963.800	16.612.598		6.000

	nov-11	dic-11	ene-12	teb-12	mar-12	abr-12
GASTOS DE MANTENIMIENTO	49.576.520	166.133.638	25.668.550	174.214.212	31.009.235	12.333.663
Overhaul		102.981.748				
Mantenimiento Correctivo	44.293.000	63.104.000	25.668.550	174.214.212	31.009.235	11.977.133
Mantenimiento Preventivo	5.283.520	47.890				288.030
Mejoras en la Central						68.500

Para abril de 2011 se relaciona un costo de \$16´912.800 por concepto de mantenimiento preventivo. Para ese periodo no se reporta ningún mantenimiento preventivo para ninguna de las cuatro unidades. No obstante, cabe la posibilidad de que esta labor se haya efectuado en un periodo anterior y que en el mes de abril se haya cancelado esta obligación.

Para diciembre de 2011 se registra un overhaul por valor de \$102´981.748, sin embargo, en los históricos de mantenimiento no se encuentra registrada esta actividad sobre alguna de las tres (3) unidades en operación de 500 kW, o sobre la unidad de 800 kW que se encuentra fuera de servicio.

Conforme con la información reportada por GENSA S.A. E.S.P., tenemos que para el año comprendido entre abril de 2011 a abril de 2012, durante el cual se cuenta con una relación de las actividades realizadas sobre las máquinas, se causaron los siguientes costos por concepto de mantenimiento:

Rev. 01 Fecha: 01/02/2013

Tabla 2-24 Costos de Mantenimiento anual - Guapi

Mantenimiento	Costo total en el año (\$)	Promedio mensual (\$)	Promedio mensual por máquina (4)
Preventivo	25.032.240	5.006.448	1.251.612
Correctivo	764.513.688	58.808.745	14.702.186

2.2.2.2.4 Costos del mantenimiento preventivo, operativo y correctivo realizado

De acuerdo con la información suministrada por el operador, los costos de los overhauls o mantenimientos mayores están relacionados en un rubro aparte de los de mantenimiento preventivo y correctivo, por ejemplo, para el mes de diciembre de 2010 y diciembre de 2011 se registran \$140.360.047 y \$102.981.748 respectivamente por concepto de overhauls. Lo que no se encuentra especificado dentro de la información suministrada, es sobre cuales máquinas se realizaron.

Igual sucede con el costo del lubricante que se encuentra relacionado en un rubro aparte, por lo tanto el rubro de mantenimiento operativo que se encuentra incluido dentro de los costos registrados en mantenimiento preventivo, se refiere a:

- Cambios de filtros (combustible, aceite y aire).
- Cambio de filtros primarios y secundarios.
- Mano de obra.
- Herramientas

Los mantenimientos operativos, no requieren la contratación de mano de obra especializada, se realizan con el personal operativo de planta y con herramientas básicas disponibles en la misma y dado que el costo del lubricante está en rubro aparte, los costos registrados y asociados a mantenimientos operativos deben corresponder básicamente a los costos de los filtros.

Ahora bien, como se mencionó anteriormente para el caso de la central de GUAPI, el promedio de horas diarias de operación por unidad es de 16 horas. Conforme a las recomendaciones de fabricante, bajo condiciones normales de operación, los mantenimientos operativos (cambios de filtros y lubricante) deben hacerse cada 300 horas, lo que se traduce en periodos promedio de 19 días aproximadamente.

Conforme con los históricos de mantenimiento reportados los cambios de filtros de aceite se realizan cada 21 días en promedio, resultado consistente con el despacho de cada unidad teniendo en cuenta la curva de carga promedio diaria presentada anteriormente y obtenida del Centro Nacional de Monitoreo. Entonces los costos mensuales de los mantenimientos operativos deberían estar cercanos al costo de los filtros multiplicado por 1.5 veces, que corresponde al número de cambios promedio en un mes, teniendo en consideración los costos adicionales del transporte hasta el sitio de la planta.

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

De acuerdo con los precios de mercado, el juego de filtros para lubricante, combustible y aire para este tipo de máquinas se encuentran en un rango que va desde 300.000 hasta 900.000 pesos en las principales ciudades del país, el precio máximo generalmente se encuentra a nivel de representante de la marca del equipo o de concesionario en el mercado automotriz, los fabricantes de equipos no son fabricantes de filtros; a nivel de mercado y distribuidores de filtros y repuestos pueden obtenerse menores precios para los misma marca y calidad de los filtros.

Los filtros primarios de combustible generalmente son del orden de 10 micras y los secundarios de 5 micras y su precio oscila entre 60 y 170 mil pesos. Los filtros de aire son los más costosos y están en un rango de precios de 300 a 500 mil pesos.

El precio promedio mensual resultante de \$1´251.612 para los mantenimientos preventivos sobre cada máquina, para el periodo de abril 2011 a abril 2012 y de acuerdo con la información de GENSA S.A. E.S.P se encuentran cercanos a los precios máximos, si bien existe un componente de transporte adicional que los pudiese incrementar, en este caso hasta GUAPI, es de anotar que si se programan compras anuales previendo los cambios que se surtirán durante el periodo, es posible obtener precios más favorables, pero eso dependerá de la disponibilidad de recursos o de las limitaciones presupuestales que se tengan en cada caso.

Ahora bien, tomando la información de costos correspondiente a la totalidad del periodo reportado (diciembre 2008 a junio 2012), obtenemos los siguientes promedios conforme con la información del operador:

Mantenimiento	Costo total diciembre 2008 a junio 2012 (\$)	Promedio mensual (\$)	Promedio mensual por máquina (4 U)	Promedio anual por máquina (4U)
Preventivo	140.209.705	3.260.691	815.173	9.782.072
Correctivo	2.306.030.802	53.628.623	13.407.156	160.885.870

Tabla 2-25 Promedio de costos de mantenimiento anual - Guapi

En este horizonte de tiempo, el costo promedio mensual para mantenimiento preventivo se reduce a \$815.173 valor que se reduce sensiblemente, pero debe considerarse que la entrada en operación de las tres máquinas MTU de 500 kW se produjo en octubre de 2010.

2.2.2.5 Costos de Mantenimiento correctivo

Por lo general los mantenimientos correctivos se contratan con empresas especializadas o con el mismo representante de la máquina. Todo servicio externo incluye el pago de:

 Viáticos: Entre \$30.000 y \$50.000 diarios, dependiendo del fabricante o representante, por ejemplo, Caterpillar es uno de los más costosos. INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

- Transporte: Depende de la ubicación de la planta y los modos de transporte a emplear.
- Mano de Obra: Entre \$50.000 y \$80.000 por hora, técnico especializado.

Sin embargo, existen alternativas para reducir costos, por ejemplo, la celebración de contratos de mantenimiento con empresas especializadas o representantes de los equipos, lo cual se traduce en menores tiempos de respuesta, de reparación y garantía en los trabajos.

Ahora bien, los resultados mostrados en la tabla anterior arrojan un promedio mensual por concepto de mantenimientos correctivos de \$13´407.156 por unidad, cifra que en criterio de la consultoría y en principio es demasiado alta, máxime si se tiene en cuenta que el costo de los overhaul están en un rubro aparte, al igual que el costo del lubricante.

No obstante solo una auditoria de detalle podría entrar a entrar a explicar estos costos.

Adicionalmente, los mantenimientos correctivos registrados en los históricos de mantenimiento suministrados por el operador son los siguientes:

Tabla 2-26 Mantenimientos correctivos 2010 a 2012 - Guapi

Unidad 1: CUMMINS 800 kW

•	., •••••••	• • • • • • • • • • • • • • • • • • • •	
2010	17 - dic	Informe de servicio realizado por Tecnodiesel	Inspección y diagnóstico del motor
2011		NO se registra ningún mantenimiento correctivo	
2012	14 - feb	Revisión general unidades	Ajustes DEEP SEA unidad CUMMINS
	06- feb	Informe de servicio realizado por Tecnodiesel	Se sugiere mantenimiento interno del radiador
	21 - mar	Trabajo realizado en la unidad	Cambio de acometida unidad CUMMINS
	12 - mayo	Mantenimiento correctivo	Reparación generador
	21 - mayo	Mantenimiento correctivo	Corrección fuga de aceite por retenedor de la volante

Unidad 2; MTU 500 kW

2010	11 - dic	Revisión Unidades MTU	Adecuación de soportes de vibración cambio de platina de soporte
2011	3 - feb	Revisión unidades MTU	Corrección fuga de aceite de la unidad quedó disponible para operación
	13 -mayo	Revisión unidades MTU	Ajuste y calibración válvulas del motor
	26 - sep	Revisión general grupo electrógeno	Se recomienda no operar los equipos por encima del 80% de carga hasta que se tenga análisis de fábrica.
	24 - nov	Mantenimiento correctivo	Cambio sensor presión de aceite
2012	26 - abril	Revisión unidades MTU	Falla atribuida al sistema de inyección que por tiempo de operación ya debe ser intervenido.

Doc	ΔNL	_882	ഹദ

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01
	Fecha: 01/02/2013

Unidad 3; MTU 500 kW

2011	10 - junio	Mantenimiento preventivo	Cambio nivel sensor de refrigerante
	10 - junio	Mantenimiento preventivo	Lavado radiador y limpieza general de la unidad
2012	14 - enero	Revisión general unidades MTU	Revisión falla eléctrica de la unidad

Unidad 4; MTU 500 kW

2011	21 - mayo	Mantenimiento preventivo	Lavado de radiador		
	23 - mayo	Inspección general de la unidad	Se recomienda llevar el retorno del combustible al tangue principal		
	01 - junio	Mantenimiento correctivo	Cambio sensor presión de combustible		
	06 - oct	Mantenimiento correctivo	Ajuste DEEP SEA de la unidad		
2012	02 - abr	Mantenimiento correctivo	Cambio sensor presión de aceite		

De las actividades relacionadas referidas a mantenimiento preventivo y correctivo, se pueden destacar como las más representativas en cuanto a complejidad y costos asociados, las correspondientes al cambio de la acometida eléctrica a la unidad CUMMINS de 800 kW y la reparación del generador efectuada el 12 de mayo de 2012.

En cuanto a la reparación del generador, no se presenta una descripción del alcance de los trabajos efectuados, para dimensionar el trabajo realizado y su costo asociado.

Teniendo en cuenta que las tres unidades MTU de 500 kW fueron instaladas en octubre de 2010, es de presumir que las revisiones realizadas por Tecnodiesel durante el primer año corresponden al servicio postventa dentro del término de garantía.

Las demás actividades conforme a su descripción no representan no trabajos complejos ni mayores costos asociados.

Los costos suministrados por GENSA S.A. E.S.P., asociados a los mantenimientos correctivos desde octubre de 2010, fecha de instalación de las tres unidades MTU de 500 kW cada una, se muestran en la tabla siguiente.

El costo toral correspondiente a mantenimiento correctivo desde octubre de 2010 es de \$ 1.186.299.197

Con un promedio mensual de \$56.490.437,95 para las cuatro máquinas y un promedio mensual de \$14.122.609 por unidad. Cifras que con base en la información disponible y en criterio de la consultoría resultan demasiado altas, teniendo en cuenta que se trata de tres unidades MTU DE 500 kW instaladas hace dos años (octubre de 2010) con un régimen de 14 a 15 horas diarias de operación, más una unidad marca Cummins de 800 kW sobre la que con base en la información suministrada se infiere que se le practicó un overhol en diciembre de 2011 por valor de \$102.981.748 y un régimen de operación promedio similar a las anteriores.

Se concluye entonces que los gastos por concepto de mantenimiento preventivo se encuentran cercanos a los precios máximos de mercado y que el operador con base en su experiencia y conocimiento bien puede realizar compras programadas, hacer indagaciones de mercado para obtener menores precios con igual calidad en materia de filtros.

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉ	RMICAS

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

En cuanto a los gastos por concepto de mantenimiento correctivo, a criterio de la consultoría deberían tener un mejor soporte, dado que son demasiado altos para las actividades de mantenimiento relacionadas en los históricos suministrados por el operador, toda vez que conforme a los resultados representan más del 10% del costo de las máquinas. Un grupo electrógeno de 500 kW actualmente tiene un precio promedio de 115 millones de pesos y un gasto mensual de 14 millones de pesos en mantenimiento correctivo, sin incluir overhaul, representa cerca del 12% de su costo en mantenimiento correctivo parecería en principio demasiado alto.

Tabla 2-27 Gastos de mantenimiento – octubre 2010 a junio 2012

	oct-10	nov-10	dic-10	ene-11	feb-11	mar-11	abr-11
GASTOS DE MANTENIMIENTO	74.730.782	84.631.240	215.987.773	28.011.200	81.984.410	(11.322.067)	60.992.800
Overhaul			140.360.047			(109.811.957)	
Mantenimiento Correctivo	73.018.734	74.320.000	64.742.806	28.011.200	44.080.000	80.290.690	44.080.000
Mantenimiento Preventivo	1.712.048	10.311.240	5.494.920		19.705.210		16.912.800
Mejoras en la Central			5.390.000		18.199.200	18.199.200	
	may-11	jun-11	jul-11	ago-11	sep-11	oct-11	nov-11
GASTOS DE MANTENIMIENTO	47.171.200	96.490.160	75.718.648	65.293.598	44.585.850	78.017.500	49.576.520
Overhaul							
Mantenimiento Correctivo	47.144.200	96.490.160	57.754.848	46.181.000	44.585.850	78.011.500	44.293.000
Mantenimiento Preventivo				2.500.000			5.283.520
Mejoras en la Central	27.000		17.963.800	16.612.598		6.000	
	dic-11	ene-12	feb-12	mar-12	abr-12	may-12	jun-12
GASTOS DE MANTENIMIENTO	166.133.638	25.668.550	174.214.212	31.009.235	12.333.663	23.850.972	40.676.957
Overhaul	102.981.748						
Mantenimiento Correctivo	63.104.000	25.668.550	174214212	31.009.235	11.977.133	16.936.022	40.386.057
Mantenimiento Preventivo	47.890				288.030	6.776.450	290.900
Mejoras en la Central					68.500	138.500	
	Total						
GASTOS DE MANTENIMIENTO	1.465.756.841						
Overhaul	133.529.838						
Mantenimiento Correctivo	1.186.299.197						
Mantenimiento Preventivo	69.323.008						
	76.604.798						

2.2.2.3 Central de generación de Puerto Inirida (Guainia)

La Central de PUERTO INIRIDA, es operada por la empresa GENSA S.A. E.S.P., en virtud de contrato de comodato suscrito por el Ministerio de Minas y Energía (MME). La vinculación de GENSA como operador de esta central data desde el 7 de agosto de 2004. En la siguiente Tabla se relacionan cuatro (4) grupos electrógenos encontrados en la central al momento de la visita.

Rev. 01 Fecha: 01/02/2013

Tabla 2-28 Grupos electrógenos central de PUERTO INIRIDA

Grupo Electrógeno	Marca	Potencia nominal (kW)	Observaciones
Unidad 1	EMD	2100	Fuera de servicio desde 1 feb de 2012, por daño en el turbo. Entró en operación antes de la vinculación de GENSA (antes del 7 de agosto de 2004)
Unidad 2	CUMMINS KTA 50 G9	1500	Tiene tres overhaul (El fabricante recomienda realizar tres overhaul)
Unidad 3	CUMMINS KTA 50 G3	1250	Tiene tres overhaul (El fabricante recomienda realizar tres overhaul)
Unidad 4	CUMMINS KTA 38 G8	1000	Al momento de recibir por parte de GENSA (7/8/2004) no tenía registros de mantenimiento.

2.2.2.3.1 Contratos

CONTRATO DE COMODATO GENSA – MME suscrito el 31 de enero de 2008, conforme a la copia suministrada por GENSA S.A. E.S.P.

Que los bienes a entregar a GENSA por parte del MINISTERIO son los determinados en el inventario levantado para efectos de la transferencia de la central de generación entre el IPSE, MINISTERIO y GENSA, efectuado el 17 de noviembre de 2007, el cual hace parte del presente convenio como Anexo 1.

Objeto: Administrar, operar y mantener (AOM) los bienes recibidos en comodato y comercializar la energía producida a través de los mismos, cuyo inventario se relaciona en el anexo 1.

El valor de los bienes entregados se estimó en \$2.644.538.739,21

Principales obligaciones:

Constituir pólizas contra todo riesgo de la infraestructura entregada en COMODATO

Presentar en forma mensual por medio de archivo electrónico en Word y Excel un informe de costos y de actividades dentro de los primeros quince días del mes siguiente al del informe en donde reportará el costo de la energía generada por kWh, la generación bruta de la unidades, las pérdidas de energía por transformación las energía autoconsumida, las horas de operación acumuladas de las unidades de generación, los mantenimientos de tipo mecánico y eléctrico realizados, el consumo de combustibles y lubricantes por unidad de generación, el porcentaje de disponibilidad de las unidades de generación, la ejecución del plan de manejo ambiental y un resumen de los costos incurridos en el AOM de la central, así como toda aquella información específica solicitada por el Ministerio y pertinente para verificar el cumplimiento de las obligaciones pactadas.(SE PIDIERON AL MME)

CONTRATO 014 DE 2012 DE COMBUSTIBLE GENSA – ORGANIZACIÓN TERPEL S.A.

Algunos apartes del contrato:

"Objeto: Suministro de Electrocombustible liquido tipo Biodiesel o ACPM, entregado en los tanques de almacenamiento de la central de Inírida (Guainía) según la normativa vigente.

Rev. 01 Fecha: 01/02/2013

Contratar la compraventa de electro combustible líquido tipo biodiesel o ACPM puesto en sitio, según la normatividad vigente para las centrales de Guapi y Bahía Solano.

Sitio de entrega y recepción del producto: El sitio de entrega y recepción del producto será en los tanques de almacenamiento de la Central de Generación de Inirida departamento de Guainia, por lo mismo el producto se recibirá conforme a las lecturas de los medidores de combustible localizados en la planta de generación diesel de dicha localidad, los cuales están debidamente calibrados y son propiedad del Ministerio de Minas y Energía, administrados por GENSA SA ESP, de acuerdo con lo dispuesto en el convenio de comodato GSA 006 – 2008.

GENSA SA ESP, pagará al CONTRATISTA el combustible contratado a un precio de NUEVE MIL SESENTA Y SIETE PESOS POR GALÓN (\$9.067).

El valor será reajustado de acuerdo con la regulación vigente y conforme a los criterios y valores publicados en la página WEB de Ecopetrol para los meses posteriores."

CONTRATO DE COMPRAVENTA DE ENERGIA No. 017 - 2011

Algunos apartes del contrato:

"Entre la empresa de energía del Guainía La Ceiba S.A. E.S.P. (EMELCE S.A. E.S.P.) y la empresa GENSA S.A. E.S.P.

El costo del contrato es estimado. El precio de la energía eléctrica que pagará el comprador al vendedor se determinará mensualmente conforme con lo establecido en el capítulo IV de la Resolución CREG 091 de 2007, tal y como se muestra en el Anexo 1 del contrato.

En el evento que la remuneración máxima del cargo de generación calculada conforme con la Resolución CREG 091 de 2007 sea inferior a los costos reales incurridos por el vendedor en la actividad de generación, éste facturará al COMPRADOR los costos reales con el objeto de hacer sostenible la actividad de generación, amparado en la Resolución del MME 181891 del 4 de noviembre de 2008, en la cual dicho Ministerio se compromete a asignar subsidios para cubrir el faltante de remuneración."

2.2.2.3.2 Generación y consumos de combustible

A continuación se presenta la información suministrada por el operador sobre generación de energía y consumo de combustible por unidad de enero a octubre de 2012.

Rev. 01 Fecha: 01/02/2013

Cant.
64.595
195.479
260.074,00

Figura 2-25 Histórico de Generación Unidad N° 1 (EMD 2.100 kW)

Figura 2-26 Histórico de Consumo Combustible Unidad N° 1 (EMD 2.100 kW)

Esta Unidad, se encuentra fuera de servicio desde el 1° de febrero de 2012. La fecha de entrada en operación de esta unidad es anterior al 7 de agosto de 2004, que es la fecha en que GENSA S.A. E.S.P. asumió la operación de esta central. Horas de operación: 13.108,88. Indisponible desde el 1 de febrero por daño en el turbo.

Llama la atención el reducido número de horas de operación de esta unidad, pero de acuerdo a la información verbal recibida, esta máquina estuvo trabajando en otro sitio y finalmente fue trasladada desde Soacha Cundinamarca en donde se encontraba almacenada antes de ser trasladada a Inirida.

Dentro de la información suministrada por el operador no se incluye histórico de mantenimiento para esta unidad EMD.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01 Fecha: 01/02/2013

MES	Cant.		
Enero	400.730		
Febrero	438.340		
Marzo	260.657		
Abril	270.570		
Mayo	184.547		
Junio	304.517		
Julio	484.337		
Agosto	275.919		
Septiembre	295.286		
Octubre	408.688		
TOTAL	3.323.591,00		

Figura 2-27 Histórico de Generación Unidad N° 2 (Cummins 1.500 kW)

MES	Cant.		
Enero	33.370,00	COMPORTAMIENTO HISTORICO DE CONSUMO DE CO UNIDAD Nº 2 (CUMMINS 1.500 KW)	MBUSTIBLE
Febrero	35.662,00		
Marzo	21.364,00	^	
Abril	22.079,00		
Mayo	15.273,00	Galones	
Junio	24.914,00	8	
Julio	39.809,00		
Agosto	22.599,00		,
Septiembre	24.419,00		
Octubre	33.492,00	Mes	
TOTAL	272.981,00	GE 54	

Figura 2-28 Histórico de Consumo Combustible Unidad N° 2 (Cummins 1.500 kW)

MES	Cant.		
Enero	410.494		
Febrero	208.535		
Marzo	353.095		
Abril	317.350		
Mayo	397.392		
Junio	147.683		
Julio			
Agosto	303.253		
Septiembre	261.891		
Octubre	218.096		
TOTAL	2.617.789,00		

Figura 2-29 Histórico de Generación Unidad N° 3 (Cummins 1.250 kW)

MES	Cant.
Enero	33.214,00
Febrero	16.587,00
Marzo	27.814,00
Abril	24.479,00
Mayo	31.652,00
Junio	13.334,00
Julio	
Agosto	27.267,00
Septiembre	23.952,00
Octubre	19.842,00
TOTAL	218.141,00

Figura 2-30 Histórico Consumo Combustible Unidad N° 3 (Cummins 1.250 kW)

Rev. 01 Fecha: 01/02/2013

INFORME	FINAI — F	ESTUDIOS	FN 7N

MES	Cant.
Enero	198.290
Febrero	207.758
Marzo	107.719
Abril	
Mayo	
Junio	84.634
Julio	63.868
Agosto	469
Septiembre	
Octubre	
TOTAL	662.738,00

Figura 2-31 Histórico de Generación Unidad N° 4 (Cummins 1.000 kW)

MES	Cant.
Enero	13.253,00
Febrero	13.645,00
Marzo	7.049,00
Abril	
Mayo	
Junio	5.769,00
Julio	4.423,00
Agosto	37,00
Septiembre	
Octubre	
TOTAL	44.176,00

Figura 2-32 Histórico de Consumo Combustible Unidad N° 4 (Cummins 1.000 kW)

En Figura 2-17 tomada del informe del Centro Nacional de Monitoreo (CNM), se muestran las potencias máximas presentadas a agosto de 2012 para plantas con capacidad instalada superior a 450 kW. Para la Central de INIRIDA la potencia máxima presentada durante ese periodo fue de 2203,52 Kw, el día 23 de agosto de 2012.

Figura 2-33 Diagrama Unifilar de la Central de Generación de Inírida - Guainía

Figura 2-34 Curva de carga promedio diaria mensual

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

Entre las 00:00 y las 06:00 horas se presenta la demanda más baja cercana a los 1100 kW promedio. Con excepción del pico presentado entre las 16:00 y las 21:00 horas, cuya demanda máxima se presenta a las 18:00 horas (2203 kW), durante el resto del día la curva tiende a tener un comportamiento aplanado.

En cuanto a las actividades de mantenimiento adelantadas sobre las Unidades, los resultados de su análisis es similar al de las anteriores centrales de generación. A continuación se presenta el análisis de los costos de administración, operación y mantenimiento conforme con la presentación de la información reportada por el operador.

2.2.2.4 Análisis de costos de administración, operación y mantenimiento

2.2.2.4.1 Análisis de la información del operador

La empresa operadora GENSA suministro la información financiera de los costos mensuales de administración, operación y mantenimiento de las siguientes plantas:

- Mitú(2250kW) (febrero 2008 a Junio 2012)
- Guapi(1300kW) (Octubre 2008 a Junio 2012)
- Inírida(1800kW) (febrero 2008 a Junio 2012)
- Cúpica (Febrero 2009 a Junio 2012)
- Bahía Solano (Diciembre 2009 a Junio 2012)

La información se revisó, se organizó de acuerdo con estructura de costos indicada en la siguiente tabla, se resumió en el costo anual. Para poder realizar los comparativos de costos se tomaron solo los años con información de los 12 meses, o sea del 2009 al 2011 y se llevaron los costos a precio constante del 2009, se calculó el valor del costo en \$/kWh y en US\$/kWh, y se calculó el porcentaje de participación de los componentes del costo de AO&M fijos y variables sobre el total del costo, para ver cuál es la importancia de cada componente. También se calculó el porcentaje de participación de los costos sobre el costo del combustible, con el fin de verificar con la metodología actual, donde los costos de administración corresponden al 10% del costo del combustible y para análisis de la información. La información de Cúpica y Bahía Solano no se proceso totalmente ya que no estaba completa, arrojando valores de los costos que pudiesen ser no comparables.

Tabla 2-29 Estructura de costos AO&M para evaluación de la información

Administración Administración y funcionamiento Tiquetes y viáticos Arrendamiento de Computadores y compra Comunicaciones (internet y telefonia) Vigilancia Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte Transporte Costo de almacenamiento y seguros	Costo fijo anual de adm	ninistración, operación y mantenimiento
Tiquetes y viáticos Arrendamiento de Computadores y compra Comunicaciones (internet y telefonía) Vigilancia Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor Cubricante Valor Cubricante Costo de transporte	Administración	
Arrendamiento de Computadores y compra Comunicaciones (internet y telefonía) Vigilancia Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor Cumbos Corrective Valor Lubricante Costo de transporte	Administración y	y funcionamiento
Comunicaciones (internet y telefonía) Vigilancia Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor Cubricante Costo de transporte	Tiquetes y viátic	os
Vigilancia Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Arrendamiento d	de Computadores y compra
Otros Costos Administrativos Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Comunicaciones	s (internet y telefonía)
Pólizas Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Vigilancia	
Operación Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Otros Costos Ad	Iministrativos
Personal Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Pólizas	
Mantenimiento Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Operación	
Dotación personal e Implementos seguridad industrial Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Personal	
Equipos de Monitoreo Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Mantenimiento	
Repuestos y herramientas Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Dotación person	al e Implementos seguridad industrial
Costo variable anual de operación y mantenimiento Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Equipos de Mon	itoreo
Operación Apoyo técnico Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Repuestos y her	rramientas
Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Costo variable anual de	e operación y mantenimiento
Apoyo técnico ambiental Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Operación	
Costo plan de manejo ambiental Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Apoyo técnico	
Consultorías, asesorías y estudios Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Apoyo técnico a	mbiental
Mantenimiento Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Costo plan de m	nanejo ambiental
Overhaul Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Consultorías, as	esorías y estudios
Mantenimiento Correctivo Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Mantenimiento	
Mantenimiento Preventivo Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Overhaul	
Mejoras en la Central Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Mantenimiento (Correctivo
Costo Combustible y lubricante Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Mantenimiento F	Preventivo
Costo transporte Valor combustible y lubricante Valor Lubricante Costo de transporte	Mejoras en la Ce	entral
Valor Lubricante Costo de transporte	Costo Combustible y lu	bricante
·	Costo transporte	Valor combustible y lubricante
Transporte Costo de almacenamiento y seguros	Valor Lubricante	Costo de transporte
	Transporte	Costo de almacenamiento y seguros
Impuestos y Costos financieros	Impuestos y Costos fin	ancieros

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

2.2.2.4.1.1 Mitú

Los costos de Administración, operación y mantenimiento, extractados de la información son los siguientes:

Tabla 2-30 Costos de Operación y Mantenimiento de la Planta de Mitú (pesos corrientes)

Data	2008	2009	2010	2011	2012
Sum of GASTOS DE ADMINISTRACIÓN(+poliza)	325,135,242	360,274,113	376,373,133	418,902,561	542,465,678
Sum of Operativos fijos	114,641,400	120,468,634	127,633,350	163,492,518	103,510,766
Sum of Mantenimiento fijos	7,848,678	24,345,774	9,867,706	20,213,967	4,461,183
Sum of Operativos variables	65,398,911	65,340,318	77,033,038	100,478,352	45,668,144
Sum of GASTOS DE MANTENIMIENTO variable	182,397,536	1,566,701,085	519,984,915	548,608,632	332,168,528
Sum of Combustible	1,569,684,443	1,623,346,716	2,119,172,083	4,023,798,338	2,304,475,976
Sum of Transporte Combustibles	2,496,160,000	2,999,720,000	3,576,580,000	5,789,363,264	3,076,019,250
Sum of Lubricante	26,633,383	30,515,690	90,166,190	141,202,206	35,580,000
Sum of Impuestos + costos financieros	47,657,566	183,743,460	191,293,431	454,259,382	321,658,387
Sum of ENERGÍA GENERADA (kWh)	3,938,871	4,337,055	5,155,556	8,083,505	4,142,467

Nota: el costo de las pólizas corresponden del 2009 al 2011, respectivamente a un 6%, 5% y 8% del valor del rubro de los gastos de administración más póliza.

Tabla 2-31 Costo de Operación y Mantenimiento de la Planta de Mitu (pesos corrientes/kWh)

	Unidad	Mitu	Mitu	Mitu
		2009	2010	2011
MIN - COSTO OPERATIVO, AO&M	\$/kWh	1,337.74		
MAX - COSTO OPERATIVO, AO&M	\$/kWh	1,565.74		
COSTO OPERATIVO+AO&M	\$/kWh	1,565.74	1,337.74	1,386.29
CAO&M FIJOS	\$/kWh	116.46	99.67	74.55
Gastos Administracion	\$/kWh	83.07	73.00	51.82
Operativos fijos	\$/kWh	27.78	24.76	20.23
Mantenimiento fijos	\$/kWh	5.61	1.91	2.50
CO&M VARIABLES	\$/kWh	376.30	115.80	80.30
Operativos Variables	\$/kWh	15.07	14.94	12.43
Mantenimiento Variable	\$/kWh	361.24	100.86	67.87
GASTOS DE OPERACIÓN (combustible)	\$/kWh	1,072.98	1,122.27	1,231.44
Combustible	\$/kWh	374.30	411.05	497.78
Transporte	\$/kWh	691.65	693.73	716.19
Lubricante	\$/kWh	7.04	17.49	17.47
Impuestos + costos financieros		42.37	37.10	56.20
ENERGÍA GENERADA (kWh)	MWh	4,337,055	5,155,556	8,083,505
% variacion			-15%	4%

Rev. 01 Fecha: 01/02/2013

Tabla 2-32 Costo de Operación y Mantenimiento de la Planta de Mitú (pesos constantes del 2009/kWh)

		Mitu	Mitu	Mitu
		2009	2010	2011
% variacion de C. combustibles y AO&M			-18%	-2%
COSTO OPERATIVO y AO&M		1,565.74	1,281.71	1,258.85
% variacion de AO&M fijos			-18%	-29%
CAO&M FIJOS	\$/kWh	116.46	95.50	67.70
Gastos Administracion	\$/kWh	83.1	69.9	47.1
Operativos fijos	\$/kWh	27.8	23.7	18.4
Mantenimiento fijos	\$/kWh	5.6	1.8	2.3
% variacion de O&M variables			-71%	-34%
CO&M VARIABLES		376.30	110.95	72.92
Operativos Variables	\$/kWh	15.1	14.3	11.3
Mantenimiento Variable	\$/kWh	361.2	96.6	61.6
% variacion de O&M variables			0%	49
GASTOS Combustibles	\$/kWh	1,072.98	1,075.26	1,118.24
Combustible		374.3	393.8	452.0
Transporte		691.6	664.7	650.4
Lubricante		7.0	16.8	15.9
% variacion de impuestos + fros			-16%	449
Impuestos + costos financieros	\$/kWh	42.37	35.55	51.03
ENERGÍA GENERADA (MWh)	MWh	4,337	5,156	8,08
POTENCIA INSTALADA(kW)	kW	2,250	2,250	2,250

Nota: se lleva a pesos contantes con el IPP: 2009=107.97, 2010= 112,69, 2011=118.9

Figura 2-35 Costos AO&M y Combustible Planta Mitú (\$/kWh) pesos constantes

Rev. 01 Fecha 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

Tabla 2-33 Costo de Operación y Mantenimiento de la Planta de Mitú (dólar /kWh)precios constantes del 2009

		Mitu	Mitu	Mitu
		2009	2010	2011
CAO&M FIJOS	US\$/kW	104.25	101.62	112.95
Gastos Administracion	US\$/kW	74.36	84.41	91.54
Operativos fijos	US\$/kW	24.86	28.63	35.73
Mantenimiento fijos	US\$/kW	5.03	2.21	4.42
CAORNATHOS I CORNA veriebles	LICĆ/IAA/Is	0.220	0.100	0.070
CAO&M FIJOS + CO&M variables	US\$/kWh	0.229	0.109	0.076
CAO&M FIJOS	US\$/kWh	0.05	0.05	0.04
Gastos Administracion	US\$/kWh	0.039	0.037	0.025
Operativos fijos	US\$/kWh	0.013	0.012	0.010
Mantenimiento fijos	US\$/kWh	0.003	0.001	0.001
CO&M VARIABLES	US\$/kWh	0.175	0.058	0.039
Operativos Variables	US\$/kWh	0.007	0.008	0.006
Mantenimiento Variable	US\$/kWh	0.168	0.051	0.033
Combustible	US\$/kWh	0.498	0.499	0.519
Combustible	US\$/kWh	0.174	0.207	0.245
Transporte	US\$/kWh	0.321	0.350	0.352
Lubricante	US\$/kWh	0.003	0.009	0.009

Nota: para pasar de peso al dólar se utilizó la TRM promedio histórica correspondiente a cada vigencia 2009=2153.3, 2010=1898.68 2011=1846.97

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2013

Tabla 2-34 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento

		Mitu	Mitu	Mitu
		2009	2010	2011
% Participacion sobre el combustible			·	
CAO&M FIJOS	%PART	10.9%	8.9%	6.19
GASTOS DE ADMINISTRACIÓN	%PART	7.7%	6.5%	4.29
Operativos fijos	%PART	2.6%	2.2%	1.69
Mantenimiento fijos	%PART	0.5%	0.2%	0.29
CO&M VARIABLES	%PART	35.1%	10.3%	6.59
Operativos Variables	%PART	1.4%	1.3%	1.0
Mantenimiento Variable	%PART	33.7%	9.0%	5.59
% Participacion sobre total de Costos op		7 40/	7.50/	F 4
CAO&M FIJOS	%PART	7.4%	7.5%	5.4
GASTOS DE ADMINISTRACIÓN	%PART	5.3%	5.5%	3.7
Operativos fijos	%PART	1.8%	1.9%	1.5
Mantenimiento fijos	%PART	0.4%	0.1%	0.2
CO&M VARIABLES	%PART	24.0%	8.7%	5.8
Operativos Variables	%PART	1.0%	1.1%	0.9
Mantenimiento Variable	%PART	23.1%	7.5%	4.9

2.2.2.4.1.2 Guapi

Los costos de Administración, operación y mantenimiento, extractados de la información son los siguientes:

Tabla 2-35 Costos de Operación y Mantenimiento de la Planta de Guapi (pesos corrientes)

Data	2008	2009	2010	2011	2012
Sum of GASTOS DE ADMINISTRACIÓN(+poliza)	96,957,095	378,914,043	426,081,536	447,221,017	229,734,035
Sum of Operativos fijos	63,604,725	253,516,481	252,860,432	245,231,902	132,437,803
Sum of Mantenimiento fijos	356,100	8,821,002	21,096,074	25,407,537	4,683,753
Sum of Operativos variables	11,471,068	61,849,375	81,797,015	92,229,784	47,072,233
Sum of GASTOS DE MANTENIMIENTO variable	80,851,079	379,259,881	1,112,874,940	782,653,457	307,753,589
Sum of Combustible	767,774,307	3,229,284,199	3,371,756,766	3,826,136,148	2,313,324,200
Sum of Transporte Combustibles	88,060,000	406,094,100	237,627,730	412,182,624	73,592,000
Sum of Lubricante	-	122,871,506	170,251,076	37,740,000	35,070,000
Sum of Impuestos + costos financieros	11,215,806	106,191,040	169,040,142	280,827,852	183,660,919
Sum of ENERGÍA GENERADA (kWh)	1,650,941	7,038,093	6,598,625	7,623,852	3,875,883
Sum of Overhaul	-	-	140,360,047	(6,830,209)	-

Nota: el costo de las pólizas corresponden aproximadamente del 22 al 25% del valor del rubro de los gastos admón más póliza.

Rev. 01 Fecha: 01/02/2013

Tabla 2-36 Costo de Operación y Mantenimiento de la Planta de Guapi (pesos corrientes/kWh)

	Unidad	Guapi	Guapi	Guapi
		2009	2010	2011
MIN - COSTO OPERATIVO, AO&M	\$/kWh	687.77		
MAX - COSTO OPERATIVO, AO&M	\$/kWh	859.93		
COSTO OPERATIVO+AO&M	\$/kWh	687.77	859.93	769.79
CAO&M FIJOS	\$/kWh	91.11	106.09	94.16
Gastos Administracion	\$/kWh	53.84	64.57	58.66
Operativos fijos	\$/kWh	36.02	38.32	32.17
Mantenimiento fijos	\$/kWh	1.25	3.20	3.33
CO&M VARIABLES	\$/kWh	62.67	181.05	114.76
Operativos Variables	\$/kWh	8.79	12.40	12.10
Mantenimiento Variable	\$/kWh	53.89	168.65	102.66
GASTOS DE OPERACIÓN(combustible)	\$/kWh	533.99	572.79	560.88
Combustible	\$/kWh	458.83	510.98	501.86
Transporte	\$/kWh	57.70	36.01	54.06
Lubricante	\$/kWh	17.46	25.80	4.95
Impuestos + costos financieros		15.09	25.62	36.84
ENERGÍA GENERADA (kWh)	MWh	7,038,093	6,598,625	7,623,852
% variacion COSTO OPERATIVO+AO&M			25%	-10%

Rev. 01 Fecha: 01/02/2013

Tabla 2-37 Costo de Operación y Mantenimiento de la Planta de Guapi (pesos constantes del 2009/kWh)

		Guapi	Guapi	Guapi
		2009	2010	2011
% variacion de C. combustibles y AO&M			20%	-15%
COSTO OPERATIVO y AO&M		687.77	823.91	699.03
% variacion de AO&M fijos			12%	-16%
CAO&M FIJOS	\$/kWh	91.11	101.64	85.50
Gastos Administracion	\$/kWh	53.8	61.9	53.3
Operativos fijos	\$/kWh	36.0	36.7	29.2
Mantenimiento fijos	\$/kWh	1.3	3.1	3.0
% variacion de O&M variables			177%	-40%
CO&M VARIABLES		62.67	173.47	104.21
Operativos Variables	\$/kWh	8.8	11.9	11.0
Mantenimiento Variable	\$/kWh	53.89	161.6	93.2
% variacion de O&M variables			3%	-7%
GASTOS Combustibles	\$/kWh	533.99	548.80	509.32
Combustible		458.8	489.6	455.7
Transporte		57.7	34.5	49.1
Lubricante		17.5	24.7	4.5
% variacion de impuestos + fros			63%	36%
Impuestos + costos financieros	\$/kWh	15.09	24.54	33.45
ENERGÍA GENERADA (MWh)	MWh	7,038	6,599	7,624
POTENCIA INSTALADA(kW)	kW	2,300	2,300	2,300

Nota: se lleva a pesos contantes con el IPP: 2009=107.97, 2010= 112,69, 2011=118.9

Figura 2-36 Costos AO&M y Combustible Planta Guapi (\$/kWh) Pesos constantes

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

Tabla 2-38 Costo de Operación y Mantenimiento de la Planta de Guapi (dólar /kWh) precios constantes del 2009

		Guapi	Guapi	Guapi
CAO&M FIJOS	US\$/kW ano	129.48	153.59	153.45
Gastos Administracion	US\$/kW ano	76.51	93.48	95.60
Operativos fijos	US\$/kW ano	51.19	55.48	52.42
Mantenimiento fijos	US\$/kW ano	1.78	4.63	5.43
CAO&M FIJOS + CO&M variables	US\$/kWh	0.071	0.145	0.103
CAO&M FIJOS	US\$/kWh	0.042	0.054	0.046
Gastos Administracion	US\$/kWh	0.025	0.033	0.029
Operativos fijos	US\$/kWh	0.017	0.019	0.016
Mantenimiento fijos	US\$/kWh	0.001	0.002	0.002
CO&M VARIABLES	US\$/kWh	0.029	0.091	0.056
Operativos Variables	US\$/kWh	0.004	0.006	0.006
Mantenimiento Variable	US\$/kWh	0.025	0.085	0.050
Combustible	US\$/kWh	0.248	0.255	0.237
Combustible	US\$/kWh	0.213	0.258	0.247
Transporte	US\$/kWh	0.027	0.018	0.027
Lubricante	US\$/kWh	0.008	0.013	0.002

Nota: para pasar de peso al dólar se utilizó la TRM promedio histórica correspondiente a cada vigencia 2009=2153.3, 2010=1898.68 2011=1846.97

Doc. AN-USA-882-03

INFORME FINAL - ESTUDIOS EN ZNI

Rev. 01 Fecha: 01/02/2013

Tabla 2-39 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento Guapi

		Guapi	Guapi	Guapi
		2009	2010	2011
% Participacion sobre el combustible				
CAO&M FIJOS	%PART	17%	19%	17%
GASTOS DE ADMINISTRACIÓN	%PART	10%	11%	10%
Operativos fijos	%PART	7%	7%	6%
Mantenimiento fijos	%PART	0.2%	0.6%	0.6%
CO&M VARIABLES	%PART	12%	32%	20%
Operativos Variables	%PART	2%	2%	2%
Mantenimiento Variable	%PART	10%	29%	18%

% Participacion sobre total de Costos operacion y AO&M

CAO&M FIJOS	%PART	13%	12%	12%
GASTOS DE ADMINISTRACIÓN	%PART	8%	8%	8%
Operativos fijos	%PART	5%	4%	4%
Mantenimiento fijos	%PART	0%	0%	0%
CO&M VARIABLES	%PART	9%	21%	15%
Operativos Variables	%PART	1%	1%	2%
Mantenimiento Variable	%PART	8%	20%	13%

2.2.2.4.1.3 Puerto Inirida

Los costos de Administración, operación y mantenimiento, extractados de la información son los siguientes:

Tabla 2-40 Costos de Operación y Mantenimiento de la Planta de Inirida (pesos corrientes)

Data	2008	2009	2010	2011	2012
Sum of GASTOS DE ADMINISTRACIÓN(
+poliza)	433,765,451	448,285,418	510,529,699	527,241,718	435,892,550
Sum of Operativos fijos	200,038,239	262,575,430	272,041,825	261,168,997	136,400,816
Sum of Mantenimiento fijos	19,376,689	20,066,157	12,787,240	26,546,957	7,800,123
Sum of Operativos variables	58,704,738	72,491,950	139,189,537	163,548,157	60,806,087
Sum of Preventivo y correctivo	469,317,441	827,736,599	688,144,391	416,347,011	580,041,611
Sum of Overhaul	-	381,568,221	53,713,112	204,334,567	-
Sum of Combustible	5,011,972,194	6,549,286,347	6,660,599,124	8,572,402,626	4,531,402,734
Sum of Transporte Combustibles	-	-	-	-	-
Sum of Lubricante	88,512,975	333,654,266	259,938,829	194,504,427	89,485,651
Sum of Impuestos + costos financieros	37,945,865	249,591,548	134,039,607	279,039,413	157,752,318
Sum of ENERGÍA GENERADA (kWh)	8,960,103	11,395,194	12,451,010	12,993,860	6,365,722

Nota: el costo de las pólizas corresponden del 2009 al 2011, respectivamente a un 12%, 25% y 22% del valor del rubro de los gastos admón más póliza.

Rev. 01 Fecha: 01/02/2013

Tabla 2-41 Costo de Operación y Mantenimiento de la Planta de Inirida (pesos corrientes/kWh)

	Unidad	Inirida	Inirida	Inirida
		2009	2010	2011
MIN - COSTO OPERATIVO, AO&M	\$/kWh	1,263.93		
MAX - COSTO OPERATIVO, AO&M	\$/kWh	1,359.69		
COSTO OPERATIVO+AO&M	\$/kWh	1,263.93	1,302.84	1,359.69
CAO&M FIJOS	\$/kWh	103.85	120.53	106.90
Gastos Administracion	\$/kWh	63.69	77.37	69.16
Operativos fijos	\$/kWh	37.31	41.23	34.26
Mantenimiento fijos	\$/kWh	2.85	1.94	3.48
CO&M VARIABLES	\$/kWh	182.12	133.52	102.87
Operativos Variables	\$/kWh	10.30	21.09	21.45
Mantenimiento Variable	\$/kWh	171.82	112.43	81.41
GASTOS DE OPERACIÓN(combustible)	\$/kWh	977.96	1,048.78	1,149.93
Combustible	\$/kWh	930.55	1,009.39	1,124.42
Transporte	\$/kWh	-	-	-
Lubricante	\$/kWh	47.41	39.39	25.51
Impuestos + costos financieros		35.46	20.31	36.60
ENERGÍA GENERADA (kWh)	MWh	7,038,093	6,598,625	7,623,852
% variacion COSTO OPERATIVO+AO&M			3%	4%

Rev. 01 Fecha: 01/02/2013

Tabla 2-42 Costo de Operación y Mantenimiento de la Planta de Inirida (pesos constantes del 2009/kWh)

		Inirida	Inirida	Inirida
		2009	2010	2011
% variacion de C. combustibles y AO&M			-1%	-1%
COSTO OPERATIVO y AO&M		1,263.93	1,248.27	1,234.70
% variacion de AO&M fijos			11%	-16%
CAO&M FIJOS	\$/kWh	103.85	115.49	97.07
Gastos Administracion	\$/kWh	63.7	74.1	62.8
Operativos fijos	\$/kWh	37.3	39.5	31.1
Mantenimiento fijos	\$/kWh	2.9	1.9	3.2
% variacion de O&M variables			-30%	-27%
CO&M VARIABLES		182.12	127.93	93.41
Operativos Variables	\$/kWh	10.3	20.2	19.5
Mantenimiento Variable	\$/kWh	171.8	107.7	73.9
% variacion de O&M variables			3%	4%
GASTOS Combustibles	\$/kWh	977.96	1,004.86	1,044.22
Combustible		930.5	967.1	1,021.1
Transporte		-	-	-
Lubricante		47.4	37.7	23.2
% variacion de impuestos + fros			-45%	71%
Impuestos + costos financieros	\$/kWh	35.46	19.46	33.24
ENERGÍA GENERADA (MWh)	MWh	7,038	6,599	7,624
POTENCIA INSTALADA(kW)	kW	1,800	1,800	1,800

Nota: se lleva a pesos contantes con el IPP: 2009=107.97, 2010= 112,69, 2011=118.9

Figura 2-37 Costos AO&M y Combustible Planta Inirida (\$/kWh) Pesos constantes

Rev. 01 Fecha: 01/02/2013

Tabla 2-43 Costo de Operación y Mantenimiento de la Planta de Inírida (dólar /kWh) precios constantes del 2009

		Inirida	Inirida	Inirida
		2009	2010	2011
CAO&M FIJOS	US\$/kW ano	188.58	222.98	222.60
Gastos Administracion	US\$/kW ano	115.66	143.12	144.01
Operativos fijos	US\$/kW ano	67.74	76.27	71.34
Mantenimiento fijos	US\$/kW ano	5.18	3.58	7.25
CAO&M FIJOS + CO&M variables	US\$/kWh	0.133	0.128	0.103
CAO&M FIJOS	US\$/kWh	0.05	0.06	0.05
Gastos Administracion	US\$/kWh	0.030	0.039	0.034
Operativos fijos	US\$/kWh	0.017	0.021	0.017
Mantenimiento fijos	US\$/kWh	0.001	0.001	0.002
CO&M VARIABLES	US\$/kWh	0.085	0.067	0.051
Operativos Variables	US\$/kWh	0.005	0.011	0.011
Mantenimiento Variable	US\$/kWh	0.080	0.057	0.040
Combustible	US\$/kWh	0.454	0.467	0.485
Combustible	US\$/kWh	0.432	0.509	0.553
Transporte	US\$/kWh	-	-	-
Lubricante	US\$/kWh	0.022	0.020	0.013

(Nota:1) para pasar de peso al dólar se utilizó la TRM promedio histórica correspondiente a cada vigencia 2009=2153.3, 2010=1898.68 2011=1846.97

Tabla 2-44 Porcentaje de participación del costo de AO&M respecto al precio del combustible y sobre el costo total de operación y mantenimiento Inírida

		Inirida	Inirida	Inirida
		2009	2010	2011
% Participacion sobre el combustible				
CAO&M FIJOS	%PART	11%	11%	9%
GASTOS DE ADMINISTRACIÓN	%PART	7%	7%	6%
Operativos fijos	%PART	4%	4%	3%
Mantenimiento fijos	%PART	0.3%	0.2%	0.3%
CO&M VARIABLES	%PART	19%	13%	9%
Operativos Variables	%PART	1%	2%	2%
operation random				
Mantenimiento Variable	%PART	18%	11%	79
· ·		18%	11% 9%	
Mantenimiento Variable West of the control of the	peracion y AO&M			8%
Mantenimiento Variable % Participacion sobre total de Costos op CAO&M FIJOS	peracion y AO&M %PART	8%	9%	7% 8% 5% 3%
Mantenimiento Variable % Participacion sobre total de Costos op CAO&M FIJOS GASTOS DE ADMINISTRACIÓN	peracion y AO&M %PART %PART	8% 5%	9% 6%	8% 5% 3%
Mantenimiento Variable % Participacion sobre total de Costos op CAO&M FIJOS GASTOS DE ADMINISTRACIÓN Operativos fijos	%PART %PART %PART	8% 5% 3%	9% 6% 3%	8% 5%
Mantenimiento Variable % Participacion sobre total de Costos op CAO&M FIJOS GASTOS DE ADMINISTRACIÓN Operativos fijos Mantenimiento fijos	%PART %PART %PART %PART %PART	8% 5% 3% 0%	9% 6% 3% 0%	8% 5% 3% 0%

Rev. 01 Fecha: 01/02/2013

En la siguiente Tabla se presentan los promedios de los costos anuales fijos y variables de AO&M, de las centrales de GUAPI, INIRIDA y MITU.

Tabla 2-45 Promedios de los costos anuales fijos y variables

		Guapi	Inirida	Mitu
		Promedio	Promedio	Promedio
		2009-2011	2009-2011	2009-2011
CAO&M FIJOS	US\$/kW ano	145,51	211,39	87,70
Gastos Administracion	US\$/kW ano	88,53	134,27	62,54
Operativos fijos	US\$/kW ano	53,03	71,78	22,14
Mantenimiento fijos	US\$/kW ano	3,95	5,34	3,02
CAO&M FIJOS + CO&M variables	US\$/kWh	0,11	0,12	0,14
CAO&M FIJOS	US\$/kWh	0,05	0,05	0,05
Gastos Administracion	US\$/kWh	0,03	0,03	0,03
Operativos fijos	US\$/kWh	0,02	0,02	0,01
Mantenimiento fijos	US\$/kWh	0,00	0,00	0,00
CO&M VARIABLES	US\$/kWh	0,06	0,07	0,09
Operativos Variables	US\$/kWh	0,01	0,01	0,01
Mantenimiento Variable	US\$/kWh	0,05	0,06	0,08
Combustible	US\$/kWh	0,25	0,47	0,51
Combustible	US\$/kWh	0,24	0,50	0,21
Transporte	US\$/kWh	0,02	-	0,34
Lubricante	US\$/kWh	0,01	0,02	0,01
Capacidad instalada (kW)		2300	3750	3750

Tabla 2-46 Referentes de eficiencia del estudio del Banco Mundial

Diesel/Gasolin	e Generator Dolar	res de 2009			
Capacity	Contents	Units			
capacity	contents		Minimum	Probable	Maximum
	Capital Cost	\$/kW	713	888	1064
300 W	Fixed O&M	cent/kWh			
300 11	Variable O&M	cent/kWh	4,35	5,48	6,58
	Fuel	cent/kWh	44,47	64,85	71,56
	Capital Cost	\$/kW	548,4	685,5	822,6
1 kW	Fixed O&M	cent/kWh			
I KVV	Variable O&M	cent/kWh	2,62	3,29	3,94
	Fuel	cent/kWh	36,13	44,67	58,15
	Capital Cost	\$/kW	526,46	652,59	767,66
100 kW	Fixed O&M	cent/kWh	1,75	2,20	2,63
100 KW	Variable O&M	cent/kWh	2,62	3,30	3,94
	Fuel	cent/kWh	10,97	14,35	20,14
	Capital Cost	\$/kW	504,53	608,72	712,92
5 MW	Fixed O&M	cent/kWh	0,87	1,10	1,31
JIVIVV	Variable O&M	cent/kWh	2,18	2,70	3,29
	Fuel	cent/kWh	3,2	4,81	7,56

Rev. 01 Fecha: 01/02/2013

INFORME FINAL - ESTUDIOS EN ZNI

A partir de la información anterior y de acuerdo con las potencias agregadas instaladas en las centrales de generación de Mitú, Guapí e Inírida, obtenemos los siguientes valores máximos en costos fijos y variables de O&M. Se toman los valores máximos en consideración a las particularidades de las ZNI de nuestro país.

Tabla 2-47 Costos Fijos y Variables de O&M por central

CENTRAL	Fijos (cent/kWh)	Variables (cent/kWh)	Total O&M (cent/kWh)	Costos Fijos + Variables de O&M (Reales)
GUAPI				
2300	2,04	3,65	5,69	11,00
MITU				
3750	1,65	3,46	5,11	14,00
INIRIDA				
3750	1,65	3,46	5,11	12,00

Los anteriores resultados indican que los costos de O&M en las centrales objeto de análisis pertenecientes a las ZNI Colombianas, presentan costos de O&M que se encuentran en un rango de dos y tres veces los costos de referencia del estudio del Banco Mundial tomados como referencia para el presente estudio.

Rev. 01 Fecha: 01/02/2013

3 ESTUDIO DE COSTOS DE PLANTAS EN ZNI EN COLOMBIA

En la primera parte de este capítulo se hace una descripción de los principales componentes de costos de inversión de plantas térmicas con motores reciprocantes.

A continuación se determinan los costos de suministro e instalación de estas plantas de generación térmica en las ZNI de Colombia, discriminando los costos en sus diferentes componentes, así:

- Grupo electrógeno
- Cabina insonorizadora
- Transformadores y sus auxiliares
- Tanques de almacenamiento de combustible y sus accesorios
- Tableros
- Transporte
- Obras civiles
- Montaje
- Costos Indirectos: Los costos indirectos incluyen inspectoría RETIE, interventoría técnica, interventoría para lo administrativo y financiero.

Posteriormente se presenta un resumen de la información recopilada durante las visitas de campo efectuadas (en anexos independientes se adjunta toda la información detallada que se logró recopilar entorno a cada uno de los sitios objeto de las visitas de campo)

A continuación se presenta la información referente a los costos de inversión y de AO&M de las plantas objeto de este estudio en cada uno de los sitios visitados.

Los resultados del análisis de determinación de costos de inversión y de AO&M en los 7 sitios visitados, se comparan con los reportados con otras fuentes y se extraen las conclusiones de eficiencia pertinentes.

Finalmente, con fundamento en los elementos presentados en los capítulos 1 y 2, se incluye una propuesta de conformación eficiente de equipos y sistemas de una central ubicada en las ZNI en atención a los criterios de minimizar el costo de la generación de energía eléctrica, garantizando disponibilidad y confiabilidad y se incluye un análisis con base en el uso de diferentes tecnologías de generación con motores reciprocantes, utilizando las curvas de carga de Puerto Leguízamo para proponer el diseño de planta más eficiente.

3.1 COSTOS DE PRODUCCION EN GRUPOS ELECTROENOS DIESEL

De manera general, para los sistemas de generación de energía eléctrica de las ZNI se agruparán los costos de producción en dos grandes componentes:

• Costos de Inversión: comprende los que hacen referencia a la compra, instalación y puesta en funcionamiento del sistema de generación.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2013

 Costos de Administración, Operación y Mantenimiento: en este rubro se agrupan todos aquellos costos asociados a la actividad de producción de energía eléctrica, excepto los costos de combustible y lubricantes. Incluyen todas las actividades que se requieren para garantizar la disponibilidad, confiabilidad y eficiencia de las máquinas.

Adicionalmente a estos dos componentes, se tiene presente también un tercer componente:

 Costos de combustibles y lubricantes: para este estudio se propone dejar este ítem independiente dado el peso relativo que el mismo tiene sobre el costo de producción, así como la diferenciación en el análisis cuando se busca mayor eficiencia en el costo de generación.

A continuación se presentará la información correspondiente a los costos de los componentes mencionados.

3.1.1 Costos de Inversión

En las ZNI (1000 localidades aproximadamente) se instalan principalmente grupos electrógenos individuales, aunque también se encuentran, en menor número, plantas de generación conformadas por varios grupos electrógenos individuales. Las instalaciones y diseños de estas plantas son heterogéneos.

La determinación de los costos de inversión está asociada a la condición de que las plantas funcionan aisladas eléctricamente y atienden un mercado local único.

Las plantas atienden mercados que van desde 10 kW hasta 4,000 kW de demanda pico.

Los principales elementos de costo que componen el rubro de inversión en este tipo de plantas en sitio corresponden a los siguientes componentes:

- Grupo electrógeno
- Cabina insonorizadora
- Transformadores y sus auxiliares
- Tanques de almacenamiento de combustible y sus accesorios
- Transporte
- Montaje: Comprende los costos relacionados a equipos auxiliares y materiales de la parte electromecánica y la mano de obra.
- Obras civiles: Este componente es basado en la construcción de las bases y casa de máquinas de los grupos electrógenos.
- Costos Indirectos: Los costos indirectos incluyen inspectoría RETIE, interventoría técnica, interventoría para lo administrativo y financiero.

En los siguientes numerales se presenta la información sobre los costos de los componentes de inversión:

3.1.1.1 Costos del Electrogrupo

Para una potencia determinada de un grupo electrógeno, la oferta de precios que se encuentra en el mercado colombiano varía en un amplio margen, de acuerdo al

Rev. 01 Fecha: 01/02/2013

distribuidor o representante de las diferentes marcas o a la empresa ensambladora de grupos electrógenos. Dentro de la información acopiada por la consultoría, podemos mencionar los siguientes ejemplos sobre grupos electrógenos de diferentes potencias y precios en dólares del 2012:

- 60 kW de potencia: se encuentran en el mercado colombiano aproximadamente seis marcas, cuyos precios varían entre \$11,800 y \$14,500 dólares, con una variación cercana al 20%.
- 200 kW de potencia: el precio oscila entre \$21,700 y \$26,800 dólares, variación cercana al 25%.
- 400 kW: precio entre \$43,500 y \$54,500 dólares, con una variación porcentual cercana al veinte por ciento.
- 900 kW: precio entre \$107,000 y \$151,000 dólares, variación cercana al 40%
- Mayores a 1,000 kW: se reduce el número de marcas y potenciales proveedores a nivel nacional se reduce y los precios que se encuentran en el mercado varían entre \$107,000 y \$151,000 dólares. En este rango de potencia la variación de precios lista de mercado es del 35% aproximadamente.

Los anteriores datos corresponden a precios de lista e incluyen costos de nacionalización e impuesto de valor agregado, CIF Bogotá. Conforme con la información de los proveedores, los precios aplican a nivel nacional en donde tenga representación determinada marca, generalmente en las principales ciudades del país.

Adicionalmente se encuentran vendedores de grupos electrógenos a nivel nacional como Dieselectros, Plantidiesel, ListerPeter, entre otros, los cuales se dedican a ensamblar en muchos casos grupos electrógenos utilizando diferentes marcas de motores y generadores, ofreciendo al mercado mejores precios frente a los grupos electrógenos importados por las grandes marcas. Esta competencia de precios se presenta en la configuración de grupos electrógenos de potencias inferiores a 2,000 kW. Para potencias mayores el mercado se restringe principalmente al uso de las máquinas importadas de fábrica al país.

En Colombia, puesto que existe una diversidad amplia de empresas que ofrecen grupos electrógenos de motor reciprocante y ninguno tiene una posición dominante, se considera que están dadas las condiciones de mercado que permiten disponer de costos eficientes para estos grupos electrógenos.

Integrando un universo amplio de información de costos de grupos electrógenos de múltiples distribuidores y marcas en Colombia, y procesando esta información con métodos estadísticos, se produce la siguiente gráfica que muestra los costos esperados en Colombia de los grupos electrógenos diesel de capacidades hasta de 2500 kW, expresados en USD y en USD/kW a precios del 2012.

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01
Fecha: 01/02/2013

Figura 3-1 Precios de generadores diesel a Octubre de 2012 (5 a 2500 kW) – USD del 2012

(Fuente: USAENE LLC)

Rev. 00 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Como se aprecia de la gráfica anterior, el nivel de precios comienza en 950 USD/kW para grupos de baja potencia hasta un valor asintótico de cerca de 153 USD/kW para grupos mayores a 600 kW. Nótese también, de manera complementaria, la tendencia creciente de los precios en USD al aumentar la potencia en kW de estas máquinas.

En cuanto al nivel de precio de los equipos, éste depende de su posicionamiento en el mercado, el servicio de postventa, la asistencia técnica, el suministro de repuestos y los puntos de atención o representación que tenga a nivel nacional.

Con base en esta información de precios, la cual no incluye tableros, interruptores, transformadores, sistemas de almacenamiento y trasiego de combustible, obra civil, y mediante un procedimiento estadístico de regresión, se calculan los precios alto, bajo y promedio en USD de 2012 para el rango de potencias entre 5 y 2500 kW. La tabla siguiente muestra el resultado obtenido.

Tabla 3-1 Precios Unitarios Generadores Diésel (USD/kW)¹ 2012

kW	High price (ajustado) USD/kW	Low price (ajustado) USD/kW	Average price (ajustado) USD/kW
5	1.342	547	939
10	744	347	543
20	445	247	345
25	385	227	305
30	346	213	279
40	296	197	245
50	266	187	226
60 70	246 232	180 175	212 203
80	232	175	196
100	206	167	186
125	194	163	178
150	186	160	173
200	176	157	166
250	170	155	162
300	166	153	160
350	163	152	158
400	161	152	156
450	160	151	155
500	158	151	154
600	156	150	153
700	155	149	152
800	154	149	151
900	153	149	151
1.100	152	148	150
1.500	150	148	149
2.000	149	148	148
2.500	149	147	148

*Calculo USAENE

87

Rev. 01 Fecha: 01/02/2012

Respecto a esta tabla es conveniente expresar que el precio esperado de un grupo electrógeno diesel en Colombia se encuentra entre el precio mínimo y el precio máximo de la tabla con un nivel de confiabilidad del 95%.

Los precios promedio reportados en la tabla anterior son los que se utilizan para el cálculo de la inversión a realizar en la planta de generación en cada uno de los sitios de las ZNI.

Es importante anotar que por lo general los equipos son cotizados en dólares y se convierten a pesos a la tasa del día de pago de los mismos. Dado que la tasa de cambio ha mantenido una tendencia a la baja durante los últimos años, en particular desde la fecha de la resolución CREG 091 de 2006, se infiere que el nivel de precios en pesos ha disminuido en términos reales.

3.1.1.2 Costos de la cabina insonorizadora

Del análisis estadístico del universo de información obtenido de los diferentes distribuidores en Colombia se presenta la siguiente tabla con precios calculados para las cabinas de insonorización, por potencia:

Tabla 3-2 Precios Cabinas de insonorización (USD)¹ 2012

kW	USD			
5	\$	1.607		
10	\$	2.073		
20	\$	2.674		
25	\$	2.902		
30	\$	3.102		
40	\$	3.448		
50	\$	3.742		
60	\$	4.001		
70	\$	4.234		
80	\$	4.447		
100	\$	4.826		
125	\$	5.238		
150	\$	5.601		
200	\$	6.224		
250	\$	6.755		
300	\$	7.223		
350	\$	7.643		
400	\$	8.027		
450	\$	8.382		
500	\$	8.712		
600	\$	9.315		
700	\$	9.857		
800	\$	10.352		
900	\$	10.810		
1.000	\$	11.236		
1.500	\$	13.039		
2.000	\$	14.490		
2.500	\$	15.727		

*Calculo USAENE

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

3.1.1.3 Costos del transformador

Para los rangos de potencia asociados a los proyectos de las ZNI, existe en el mercado una gama importante de fabricantes nacionales e internacionales que tienen representaciones en el país.

Si bien desde el punto de vista de oferta es muy importante contar con una diversidad de oferentes, la selección del equipo debería tener en cuenta criterios de costo/eficiencia en relación con sus pérdidas, sus características de diseño y sus índices de disponibilidad.

Con base en cotizaciones de fabricantes de transformadores trifásicos en aceite (ver anexos) y en los datos reportados por los proyectos visitados durante este estudio, los datos se ajustaron mediante análisis un estadístico (ver anexo memorias de cálculo) para obtener una tabla de precios por capacidad de los transformadores, la cual se observa a continuación:

Tabla 3-3 Precios de Transformadores (USD)¹ 2012

kVA	USD			
5	\$	4.365		
10	\$	4.458		
20	\$	4.643		
25	\$	4.736		
30	\$	4.828		
40	\$	5.013		
50	\$	5.199		
60	\$	5.384		
70	\$	5.569		
80	\$	5.754		
100	\$	6.125		
125	\$	6.588		
150	\$	7.051		
200	\$	7.978		
250	\$	8.904		
300	\$	9.830		
350	\$	10.757		
400	\$	11.683		
450	\$	12.609		
500	\$	13.535		
600	\$	15.388		
700	\$	17.241		
800	\$	19.093		
900	\$	20.946		
1.000	\$	22.798		
1.500	\$	32.061		
2.000	\$	41.324		
2.500	\$	50.587		

W/A LISD

*Calculo USAENE

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01
Fecha: 01/02/2012

3.1.1.4 Costo de los tanques de almacenamiento de combustible

Los datos de precios y volúmenes de tanques de combustible relacionados en las bases de datos de algunos de los proyectos en ZNI de Colombia, se incluyeron en el análisis que se realizó mediante el cálculo de los materiales requeridos (acero) para la construcción de tanques de combustible de los volúmenes requeridos en las ZNI. A continuación se presenta la relación de precios por volumen de tanque en pesos colombianos:

Tabla 3-4 Precios de Tanques de combustible (USD) 2012

Volumen (gal)	Precio del Tanque (USD)
48.000,0	\$ 113.400,00
10.900,0	\$ 25.751,25
10.000,0	\$ 23.625,00
8.000,0	\$ 18.900,00
6.800,0	\$ 16.065,00
6.000,0	\$ 14.175,00
5.000,0	\$ 11.812,50
3.800,0	\$ 8.977,50
2.000,0	\$ 4.725,00
1.800,0	\$ 4.252,50
1.500,0	\$ 3.543,75
1.000,0	\$ 2.362,50

^{*}Calculo USAENE

3.1.1.5 Costo de Tableros de Sincronismo

Se encuentra que para muchas aplicaciones son suficientes las protecciones y elementos estándares del grupo generador provisto por el fabricante. En los casos en que se requieren tableros de sincronismo, estos deben proveerse con protección, barras de distribución, interruptores y totalizadores. Se encontró mediante cotizaciones y relaciones de algunos proyectos en Colombia que los tableros de sincronismo pueden alcanzar precios alrededor de 140 millones de pesos colombianos (precios 2012) para potencias de 3,000 kW. A continuación se presenta una relación de los precios estimados para potencias de generadores entre 5 y 1000 kW.

Rev. 01 Fecha: 01/02/2012

Tabla 3-5 Precios de Tableros (USD) 2012

	Tablero	Tableros de
kW	General	sincronismo
	(A)	(USD)
5	10	\$ 824
10	20	\$ 953
20	40	\$ 1.210
25	50	\$ 1.338
30	60	\$ 1.467
40	80	\$ 1.724
50	100	\$ 1.981
60	120	\$ 2.238
70	140	\$ 2.495
80	160	\$ 2.751
100	200	\$ 3.265
125	250	\$ 3.908
150	300	\$ 4.550
200	400	\$ 5.835
250	500	\$ 7.119
300	600	\$ 8.404
350	700	\$ 9.689
400	800	\$ 10.974
450	900	\$ 12.258
500	1.000	\$ 13.543
600	1.200	\$ 16.112
700	1.400	\$ 18.682
800	1.600	\$ 21.251
900	1.800	\$ 23.821
1.000	2.000	\$ 26.390
1.500	3.000	\$ 39.237
2.000	4.000	\$ 52.084
2.500	5.000	\$ 64.931

*Calculo USAENE

3.1.1.6 Resumen de los costos de los equipos

A continuación se presenta la tabla con los resultados de los costos de equipos de grupos electrógenos y sus auxiliares situados en Bogotá, para potencias en el rango de 20 a 2500 kW aprecios de 2012 y una tasa de cambio de US\$1800/USD.

 INFORME FINAL – ESTUDIOS EN ZNI
 Rev. 01 Fecha: 01/02/2012

Tabla 3-6 Precios de equipos electrógenos y sus auxiliares puestos en Bogotá. Pesos Colombianos de 2012

Capacidad	Precio Equipos Bogotá (COP)								
kW	Gru	po Electrógeno	Cabina Insonorizadora		Tanques de combustible		Тга	Transformadores	
5	\$	8.454.088	\$	2.893.338	\$	4.252.500	\$	7.857.054	
10	\$	9.771.462	\$	3.731.446	\$	4.252.500	\$	8.023.788	
20	\$	12.406.210	\$	4.812.327	\$	4.252.500	\$	8.357.256	
25	\$	13.723.583	\$	5.223.014	\$	4.252.500	\$	8.523.990	
30	\$	15.040.957	\$	5.584.453	\$	4.252.500	\$	8.690.724	
40	\$	17.675.705	\$	6.206.306	\$	4.252.500	\$	9.024.192	
50	\$	20.310.453	\$	6.735.955	\$	4.252.500	\$	9.357.660	
60	\$	22.945.201	\$	7.202.092	\$	4.252.500	\$	9.691.128	
70	\$	25.579.949	\$	7.621.284	\$	4.252.500	\$	10.024.596	
80	\$	28.214.696	\$	8.004.076	\$	4.252.500	\$	10.358.064	
100	\$	33.484.192	\$	8.687.147	\$	21.262.500	\$	11.025.000	
125	\$	40.071.062	\$	9.428.512	\$	21.262.500	\$	11.858.670	
150	\$	46.657.931	\$	10.080.978	\$	21.262.500	\$	12.692.340	
200	\$	59.831.670	\$	11.203.538	\$	21.262.500	\$	14.359.680	
250	\$	73.005.409	\$	12.159.652	\$	21.262.500	\$	16.027.020	
300	\$	86.179.148	\$	13.001.117	\$	21.262.500	\$	17.694.360	
350	\$	99.352.887	\$	13.757.836	\$	21.262.500	\$	19.361.700	
400	\$	112.526.626	\$	14.448.847	\$	21.262.500	\$	21.029.040	
450	\$	125.700.365	\$	15.087.114	\$	21.262.500	\$	22.696.380	
500	\$	138.874.104	\$	15.681.917	\$	21.262.500	\$	24.363.720	
600	\$	165.221.582	\$	16.767.128	\$	21.262.500	\$	27.698.400	
700	\$	191.569.060	\$	17.743.045	\$	21.262.500	\$	31.033.080	
750	\$	204.742.799	\$	18.198.041	\$	21.262.500	\$	32.700.420	
800	\$	217.916.538	\$	18.634.219	\$	21.262.500	\$	34.367.760	
900	\$	244.264.016	\$	19.457.371	\$	21.262.500	\$	37.702.440	
1000	\$	270.611.494	\$	20.224.471	\$	42.525.000	\$	41.037.120	
1250	\$	336.480.189	\$	21.950.435	\$	42.525.000	\$	49.373.820	
1500	\$	402.348.884	\$	23.469.436	\$	42.525.000	\$	57.710.520	
1600	\$	428.696.363	\$	24.031.960	\$	42.525.000	\$	61.045.200	
2000	\$	534.086.275	\$	26.082.858	\$	42.525.000	\$	74.383.920	
2500	\$	665.823.665	\$	28.308.780	\$	42.525.000	\$	91.057.320	

*Calculo USAENE

3.1.1.7 Costos de Transporte de equipos

Se entiende que los costos eficientes del transporte se obtienen donde existe un mercado en el cual hay diversidad de empresas oferentes del servicio (libre oferta) y ninguna puede imponer el precio de este (mercado oligopólico). Esta condición es factible encontrarla en parte del servicio de transporte terrestre y del aéreo.

De la información obtenida se evidencia un alto costo de transporte fluvial en las ZNI, lo cual se explica en gran medida a condiciones de mercados de tipo monopólico y de posición dominante local, el cual no permite obtener precios de competencia en muchos casos debido a las condiciones sociales y políticas de cada región o localidad.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

3.1.1.7.1 Metodología

Para determinar entonces los costos por cada medio de transporte a cada uno de los sitios visitados, y a las otras localidades se utilizó la siguiente metodología:

Se determinan los costos de transporte, manejo y espera por cada medio requerido, se determina el monto total de los seguros y se suman las cifras correspondientes.

1. Los pesos y dimensiones de los diferentes equipos se obtienen de la información establecida por los fabricantes en sus catálogos técnicos.

Teniendo la información de los pesos y dimensiones de los equipos a transportar, se define el tipo de vehículo de transporte para utilizar el modelo mencionado del Ministerio de Transporte y la capacidad de los equipos de transporte fluvial y marítimo.

Tabla 3-7 Relación de pesos de equipos en kg por potencia

	Total peso			
kW	equipos			
	(ton)			
5	2,0			
10	2,0			
20	2,1			
25	2,1			
30	2,1			
40	2,2			
50	2,3			
60	2,4			
70	2,4			
80	2,5			
100	4,2			
125	4,4			
150	4,6			
200	5,0			
250	5,4			
300	5,8			
350	6,3			
400	6,8			
450	7,2			
500	7,8			
600	8,8			
700	9,8			
750	10,3			
800	10,9			
900	12,0			
1000	14,1			
1250	17,0			
1500	19,8			
1600	21,0			
2000	25,2			
2500	29,3			

,3 Catálogos de fabricantes

2. Para los costos terrestres se emplea el modelo desarrollado por el Ministerio de Transporte, disponible en la página web de este ministerio, al cual se le define el

Rev. 01 Fecha: 01/02/2012

tipo de vehículo a utilizar y del cual se calculan los costos de transporte, de manejo, carga y descarga y de espera.

Los costos de carga y descarga y de espera así calculados, se aplican también a los otros medios de transporte.

- 3. Los costos de transporte fluvial, marítimo y aéreo se obtienen de las cotizaciones de varias empresas dedicadas a esta actividad en las ZNI.
- 4. La estimación del costo de los seguros de transporte corresponde, en los diferentes medios, al 2% del valor reportado sin IVA de los equipos.
- 5. Las distancias que se recorren utilizando los diferentes medios de transporte, se determinan utilizando las tablas de distancias del Ministerio de Transporte, la información contenida en sitios web de alcaldías y herramientas de georeferenciación.
- 6. Para efectos de realizar los cálculos de costos de transporte, se utiliza el dato del peso de los equipos y se determina un indicador de costo en términos de \$/ton-km para los distintos modos de transporte, el cual afecta la distancia a recorrer. Para el modo terrestre se opta por el indicador definido por el Ministerio de Transporte y para los modos fluvial, marítimo y aéreo se utiliza el promedio de los valores obtenidos recientemente en cotizaciones para transporte a las diversas áreas de las ZNI.

Tabla 3-8 Indicadores definidos para los costos de transporte (\$/ton-km) 2012

Indicadores	\$/ton-km
Terrestre vía primaria	250
Terrestre vía secundaria	500
Terrestre vía terciaria	1,000
Fluvial	3,000
Marítimo	2,500
Aéreo	5,500

*Cálculos USAENE

7. Para cada uno de los sitios, el costo total del transporte de equipos se determina efectuando la sumatoria de los costos indicados en esta metodología.

NOTA: Para el transporte de los combustibles también se aplicara esta metodología.

3.1.1.7.2 Indicadores de costo de transporte

Cómo se puede apreciar en la Tabla 3-8, los valores de los indicadores fluvial y marítimo, son varias veces superiores a los indicadores del modo de transporte terrestre, lo cual parecería inconsistente y contrario a lo presentado a nivel mundial, dado los bajos volúmenes, tipos de transporte ofrecidos y los volúmenes de carga, asociados a posiciones de baja competitividad de oferentes en libre mercado.

A nivel mundial el ordenamiento de costos de transporte de más barato a más costoso es el siguiente:

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

- 1. Transporte Marítimo
- 2. Transporte Fluvial
- 3. Transporte Ferroviario
- 4. Transporte Terrestre
- 5. Transporte Aéreo

El Ministerio de Transporte de Colombia realizó un estudio en el año 2004, en el cual se observa el ordenamiento teórico y el nivel de costos en COP\$/ton-km, de los diversos modos de transporte en Colombia.

Tabla 3-9 Comparación entre los diferentes modos de transporte

Modo	Toneladas por vehículo	Vehículos (unidades)	Costo (\$/ton-km)
Aéreo	12	600	1552
Terrestre	35	206	92
Fluvial	1200	6	64

Fuente: Ministerio de Transporte. Octubre de 2004. Ejemplo para transportar 7200 ton a 500 km

Este estudio no se utilizó para establecer las tarifas de transporte en Colombia en las ZNI.

Es de resaltar que el costo calculado por ton/km del modo fluvial es cerca de 70% del costo por modo terrestre.

Sin embargo y de acuerdo a los datos de las cotizaciones recibidas por esta consultoría sobre el transporte fluvial para los sitios de ZNI, el costo de este modo de transporte es 12 veces superior al del costo terrestre, principalmente por las razones expuestas anteriormente

3.1.1.7.3 Resultados de cálculo de costos de transporte en \$/ton

Aplicando la metodología presentada, se calcularon los costos de transporte de los equipos desde Bogotá hasta las cabeceras municipales y sitios visitados y los resultados se consignan en la siguiente tabla:

Rev. 01 Fecha: 01/02/2012

Tabla 3-10 Costos de Transporte en COP\$/ton 2012

Municipio	Tramo	Modo	km	\$/ton	TOTAL (\$/ton)
	Bogotá - Turbo	TVP	748	\$ 187.000	\$ 187.000,00
			0	\$ -	
			0	\$ -	
			0	\$ -	
			0	\$ -	\$ -
Acandí			0	\$ -	
Addital			0	\$ -	
	Turbo - Acandí	M	75	\$ 187.500	\$ 187.500
			0	\$ -	
	Bogotá - Acandí	Α	594	\$ 3.267.000	\$ 3.267.000
	Acandí - San Francisco	M	26	\$ 65.000	\$ 65.000
				\$ -	\$ -
	Bogotá - Buenaventura	TVP	493	\$ 123.250	\$ 123.250,00
				\$ -	
				\$ -	
				\$ -	
				\$ -	\$ -
Pizarro Bajo Baudó				\$ -	
				\$ -	
	Buenaventura - Pizarro	M	262	\$ 655.000	\$ 655.000
				\$ -	
	Bogotá - Pizarro	А	437	\$ 2.403.500	\$ 2.403.500
	Pizarro - Pilizá	M	13	\$ 32.500	\$ 32.500
	Pizarro - Virudó	М	49	\$ 122.500	\$ 122.500
	Bogotá - Buenaventura	TVP	493	\$ 123.250	\$ 123.250,00
				\$ -	
				\$ -	
				\$ -	
				\$ -	\$.
				\$ -	
Guapi		—	470	\$ -	100.000
	Buenaventura - Guapi	M	172	\$ 430.000	\$ 430.000
	Donaté Occasi		470	\$ -	A 0.004.500
	Bogotá - Guapi	A	479	\$ 2.634.500	\$ 2.634.500
	Guapi - Atajo 1	M	6	\$ 15.000	\$ 15.000
	Guapi - Atajo 2	M	5,6		\$ 14.000
	Guapi - Chamón	M	2,6	\$ 6.500	

Rev. 01 Fecha: 01/02/2012

Municipio	Tramo	Modo	km		\$/ton	то	TAL (\$/ton)
	Bogotá - Villavicencio	TVP	90	\$	22.500	\$	167.500,00
	Villavicencio - Pto Gaitan	TVP	190	\$	47.500		
	Pto Gaitan - Planas	TVS	52				
	Planas - Pto Oriente	TVS	143	\$	71.500		
	Pto Oriente - Pto Inirida	F	820		2.460.000	\$	2.460.000
Pto Inírida				\$	-		
l to minad				\$	-		
		М	0	-	-	\$	-
		M	0	i			
	Bogotá - Pto Inirida	A	700	÷	3.850.000	\$	3.850.000
	Pto Inirida - El Remanso	F	44	Ė	132.000	\$	132.000
	Pto Inirida - Chorrobocón	F	85	_	255.000	\$	255.000
	Bogotá - Fuente de Oro	TVP	236	_	59.000	\$	199.400,00
	Fte Oro - Sn José del Guaviare		182		91.000		
	Sn J. Guaviare - Calamar	TVS	98,8	_	49.400		
				\$	-		
	Calamar - Miraflores	F	168	_	504.000	\$	504.000
Miraflores				\$	-		
				\$	- /	_	
				\$		\$	-
	D 1/ 15 5		544	\$	-	_	2 222 222
	Bogotá - Miraflores	A	544		2.992.000	\$	2.992.000
	Miraflores - Lagos del dorado	F	37	\$	111.000	\$	111.000
	D 1/ 5 1 1 0	T) (D)	200	\$	-	\$	100 500 00
	Bogotá - Fuente de Oro	TVP	236		59.000	\$	199.500,00
	Fte Oro - Sn José del Guaviare		182	_	91.000		
	Sn J. Guaviare - Calamar	TVS	99	÷	49.500	l	
	Colours B. Mark	F	1000	\$	2 000 000	S	3.000.000
	Calamar - Mitú	F	1000	\$	3.000.000	2	3.000.000
Mitú				₽	-		
			0	_		6	
				φ \$	- 1	\$	
	Bogotá - Mitú	Α	582		3.201.000	\$	3.201.000
	Mitú - Acaricuara	F	63	-	189.000	\$	189.000
	TVIICA - 7 (Odi IOddi d		- 55	\$	-	\$	100.000
	Bogotá - Mocoa	TVP	607	\$	151.750	_	203.750,00
	Mocoa - Puerto Asís	TVS	104	÷	52.000	۳	_30.7 30,00
			,	\$	-	1	
				\$	_		
	Pto Asís - Pto Leguízamo	F	400	٠	1.200.000	S	1.200.000
<u></u>	229.2	-		\$	-	Ť	
Pto Leguízamo				\$		1	
				\$	_	\$	
				\$	_		
	Bogotá - Pto Leguízamo	Α	566	-	3.113.000	\$	3.113.000
	Pto Leguízamo - Pto Ospina	F	115	-	345.000	\$	345.000
	Pto Leguízamo - Nueva Paya	F	66		198.000	\$	198.000

*Cálculos USAENE

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01 Fecha: 01/02/2012

3.1.1.7.4 Costos de los equipos puestos en las cabeceras municipales visitadas

El costo total de los equipos de un grupo electrógeno, sus auxiliares y los elementos complementarios se calcula adicionándole al costo de los equipos electrógenos, el costo de los auxiliares y complementarios, el costo del transporte multimodal y los seguros correspondientes desde Bogotá hasta el sitio de instalación.

Para establecer el costo de transporte multimodal utilizado, se selecciona el modo de más bajo costo entre los posibles.

La tabla a continuación resume los datos de los costos de los equipos entre 5 y 2,500 kW, puestos en las cabeceras municipales visitadas. Estas cifras no incluyen IVA.

Tabla 3-11 Costos de los equipos puestos en sitio (en pesos colombianos 2012)

	ACANDI	PIZARRO	GUAPI	PTO INIRIDA	I.	MRAFLORES	MITÚ	РТ	O LEGUIZAMO
kW	(COP \$)	(COP \$)	(COP \$)	(COP \$)		(COP \$)	(COP \$)		(COP \$)
5	\$ 29.101.603	\$ 29.003.674	\$ 28.559.896	\$ 33.183.311	\$	29.924.250	\$ 31.903.260	\$	31.366.601
10	\$ 31.712.716	\$ 31.631.197	\$ 31.179.521	\$ 35.922.987	\$	32.546.472	\$ 34.620.154	\$	34.013.255
20	\$ 36.327.802	\$ 36.279.360	\$ 35.811.765	\$ 40.738.510	\$	37.183.952	\$ 39.448.456	\$	38.699.979
25	\$ 38.503.046	\$ 38.471.271	\$ 37.995.654	\$ 42.994.768	\$	39.370.479	\$ 41.731.130	\$	40.911.318
30	\$ 40.628.093	\$ 40.613.068	\$ 40.129.390	\$ 45.201.239	\$	41.506.867	\$ 43.964.151	\$	43.072.643
40	\$ 44.775.241	\$ 44.793.969	\$ 44.294.047	\$ 49.512.460	\$	45.676.866	\$ 48.328.872	\$	47.292.893
50	\$ 48.828.475	\$ 48.881.290	\$ 48.364.962	\$ 53.731.390	\$	49.753.177	\$ 52.601.831	\$	51.419.952
60	\$ 52.817.060	\$ 52.904.293	\$ 52.371.400	\$ 57.887.280	\$	53.765.063	\$ 56.812.275	\$	55.483.079
70	\$ 56.757.892	\$ 56.879.872	\$ 56.330.256	\$ 61.997.013	\$	57.729.419	\$ 60.977.081	\$	59.499.164
80	\$ 60.666.414	\$ 60.835.153	\$ 60.263.033	\$ 66.132.830	\$	61.669.597	\$ 65.187.013	\$	63.508.956
100	\$ 86.018.555	\$ 86.951.668	\$ 86.011.668	\$ 95.200.564	\$	87.539.223	\$ 95.466.300	\$	90.516.559
125	\$ 95.559.413	\$ 96.583.192	\$ 95.599.555	\$ 105.182.145	\$	97.141.462	\$ 105.591.589	\$	100.253.779
150	\$ 105.010.371	\$ 106.126.753	\$ 105.098.548	\$ 115.083.245	\$	106.655.113	\$ 115.639.467	\$	109.905.295
200	\$ 123.728.527	\$ 125.035.753	\$ 123.915.698	\$ 134.729.086	\$	125.502.472	\$ 135.587.801	\$	129.036.776
250	\$ 142.279.807	\$ 143.785.101	\$ 142.569.719	\$ 154.243.167	\$	144.187.845	\$ 155.415.826	\$	148.017.027
300	\$ 160.716.901	\$ 162.427.138	\$ 161.113.120	\$ 173.676.478	\$	162.763.686	\$ 175.173.975	\$	166.897.980
350	\$ 179.070.171	\$ 180.991.874	\$ 179.576.081	\$ 193.057.675	\$	181.260.120	\$ 194.890.352	\$	185.709.238
400	\$ 197.358.894	\$ 199.498.236	\$ 197.977.697	\$ 212.404.335	\$	199.696.185	\$ 214.581.976	\$	204.469.318
450	\$ 215.596.155	\$ 217.958.959	\$ 216.330.871	\$ 231.727.838	\$	218.084.731	\$ 234.259.673	\$	223.190.548
500	\$ 233.795.965	\$ 236.399.392	\$ 234.655.496	\$ 251.097.307	\$	236.447.444	\$ 254.010.535	\$	241.911.493
600	\$ 270.085.749	\$ 273.162.064	\$ 271.190.575	\$ 289.685.784	\$	273.057.376	\$ 293.348.553	\$	279.225.447
700	\$ 306.271.147	\$ 309.838.039	\$ 307.630.444	\$ 328.255.857	\$	309.574.897	\$ 332.696.204	\$	316.473.325
750	\$ 324.332.535	\$ 328.150.472	\$ 325.822.053	\$ 347.537.569	\$	327.806.244	\$ 352.375.830	\$	335.078.421
800	\$ 342.376.078	\$ 346.448.433	\$ 343.997.567	\$ 366.817.825	\$	346.022.030	\$ 372.059.343	\$	353.672.975
900	\$ 378.416.474	\$ 383.006.376	\$ 380.306.423	\$ 405.373.996	\$	382.412.807	\$ 411.435.840	\$	390.834.261
1000	\$ 436.277.824	\$ 441.859.948	\$ 438.682.455	\$ 468.058.502	\$	440.945.897	\$ 475.693.046	\$	450.844.542
1250	\$ 529.424.476	\$ 535.198.389	\$ 531.376.319	\$ 567.364.391	\$	535.222.455	\$ 574.106.744	\$	547.193.294
1500	\$ 618.992.706	\$ 626.102.622	\$ 621.637.556	\$ 663.426.880	\$	625.695.167	\$ 672.286.833	\$	639.655.006
1600	\$ 654.769.718	\$ 662.403.307	\$ 657.686.205	\$ 701.749.446	\$	661.826.708	\$ 711.439.435	\$	676.566.176
2000	\$ 797.621.898	\$ 807.218.821	\$ 801.556.799	\$ 854.145.317	\$	806.008.075	\$ 866.947.242	\$	823.670.496
2500	\$ 975.639.840	\$ 987.185.210	\$ 980.585.433	\$ 1.041.634.585	\$	985.345.126	\$ 1 057.524.850	\$	1.005.908.335

*Calculo USAENE

En la información contenida en esta tabla es conveniente anotar que los costos de los grupos electrógenos, sus auxiliares y elementos complementarios se obtienen en mercados sin deformación monopólica; pero los costos de transporte fluvial presentan niveles de precios altos producto de un mercado de transporte de tipo monopólico local.

Rev. 01 Fecha: 01/02/2012

3.1.1.8 Descripción general y costos en las obras civiles

La obra civil asociada a los grupos electrógenos es muy variada. La obra civil mínima necesaria correspondería a la base física requerida para colocar el equipo en sitio de tal manera que la base resista el peso del equipo y responda de manera adecuada a los impactos y vibraciones propias de la operación del equipo.

La mayoría de estos equipos viene para ser operada en intemperie o en muchos casos viene instalada en cabinas o conteiner insonorizado que requiere solamente la base mencionada, como se puede observar para plantas de 500 kW en las figuras siguientes.

Figura 3-2 Obras Civiles

Rev. 01 Fecha: 01/02/2012

Los demás elementos de obra civil deberían corresponder a unas normas o condiciones mínimas establecidas para efectos de seguridad y condiciones ambientales locales, las cuales a pesar de haberse trabajado no han sido adoptadas para la prestación del servicio en estas zonas.

En este sentido, los aislamientos por ruido, por seguridad, por emisiones y las condiciones de operación y mantenimiento imponen ciertas condiciones de obras e instalaciones las cuales son muy variadas y sin una norma mínima cada central se vuelve particular y solo se acomoda a las condiciones escogidas por las municipalidades como sitio final de instalación.

Las plantas pueden ser ubicadas en locales individuales construidos para este fin, lo cual no es la norma o lo encontrado sino más bien comparten las instalaciones de algunos talleres y o bodegas de la municipalidad que es utilizada para muchos otros fines, lo cual no hace fácil determinar la obra física asociada a la central de generación.

Por lo tanto, teniendo en consideración lo anterior y al hecho que las plantas visitadas han venido siendo objeto de procesos de remodelación, ampliaciones, adecuaciones, y repotenciación de máquinas, las cuales se han efectuado desde la entrada en operación de estas centrales, se optó por presentar los aspectos principales relacionados con las obras civiles requeridas para la construcción e instalación de los grupos electrogeneradores en las ZNI colombianas.

La descripción y los cálculos pertinentes se hacen a partir de la información levantada en campo y de los planos de las plantas visitadas, en los cuales se señalan las dimensiones de las áreas mayores, para calcular las áreas correspondientes y las características básicas. Luego, con base en los costos estimados por las agremiaciones del sector de la construcción, se calculan los costos aproximados en sitio de las obras civiles, edificaciones y cimentaciones especiales correspondientes a cada central.

Nótese que en la mayoría de los casos las obras civiles ya se encuentran construidas y que no corresponden necesariamente a la obra civil mínima de una planta nueva que se construyera para estos efectos con las normas de seguridad ambiental, seguridad personal y operacional mínima.

Así entonces, para efectos de este cálculo se han establecido los siguientes items:

3.1.1.8.1 Vías de acceso

Para las vías internas y parqueaderos indicados en los planos de cada planta, se estiman los costos de acuerdo a las necesidades dadas por el tamaño de la central con acabado en pavimento rígido, concreto armado en espesor mínimo de 25 cm.

3.1.1.8.2 Adecuación de sitio

Limpieza y Descapote. Se refiere a las labores necesarias para ejecutar el desmonte y limpieza de las zonas requeridas para la construcción de las obras.

El descapote comprende la excavación y remoción de la capa vegetal y de otros materiales blandos, orgánicos y objetables, en un espesor promedio de 0.30 m, en las

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha: 01/02/2012

áreas donde se proyecte construir las obras para la central y terraplenes, así como en la sub-rasante de las vías internas y de la porción de vía externa o acceso al predio.

Esta actividad incluye además, el cargue, transporte, descargue, extendido y compactación en capas horizontales de altura inferior a 50 cm. en las zonas de depósito para los materiales del descapote.

Excavación de Explanación. El trabajo de excavación de explanación consiste en el conjunto de las operaciones de excavar, remover, cargar, transportar y disponer en las zonas de terraplén o en depósitos provisionales, todos los materiales de los cortes indicados en los planos y secciones transversales del proyecto. Comprende también el conjunto de actividades de excavación y nivelación de las zonas donde han de quedar construidas las estructuras y edificaciones, incluyendo la conformación de taludes y cunetas.

3.1.1.8.3 Tanques de almacenamiento de agua

Se debe efectuar el diseño y construcción de los siguientes tanques:

- Almacenamiento de aguas Iluvias
- Agua del sistema contraincendios
- Agua potable

3.1.1.8.4 Estructuras

Este ítem está integrado por los costos que corresponden a los siguientes elementos:

- Acero para estructuras
- Base en concreto para máquinas
- Bodega
- Oficinas Administrativas
- Portería

La siguiente tabla presenta de forma resumida los costos totales de las obras civiles necesarias para las plantas si se instalaran en los sitios visitados. Para calcular el monto de las obras civiles se tiene como referencia los planos básicos obtenidos en sitio y los datos económicos de la instalación de una pequeña unidad térmica contenidos en los programas especializados THERMOFLEX® y PEACE®.

Rev. 01 Fecha: 01/02/2012

Tabla 3-12 Costos de Obra Civil Col\$ 2012

Ubicación	COP\$
ACANDI	524.658.632
PIZARRO	328.168.944
GUAPI	585.051.014
PTO INIRIDA	905.909.472
MIRAFLORES	231.992.679
MITÚ	789.386.220
PTO LEGUIZAMO	1.076.083.160

*Cálculos USAENE

3.1.1.9 Montaje electromecánico

A continuación se resume el valor de instalación eléctrica de grupos electrógenos pequeños para plantas monofásicas y trifásicas que parten de un modelo básico que se muestra a continuación y en el anexo memoria de cálculo se incluye el detalle correspondiente.

Tabla 3-13 Resumen de costos de instalación

INSTALACION PLANTAS ELE	CTRICA TRIFASICAS	
GDP75		
DESCRIPCION	CANTIDAD	PRECIO Vta Total
PLANTA ELECTRICA GDL75		
TRANSFERENCIA AUTOMATICA: 200amp	1	
CARGADOR DE BATERIA	1	350,000
ACOMETIDO ELECTRICA:		
Cable THW# 2 (3X2 línea) de potencia	20	2,040,757
Cable THW# 2 (2 Lineas) , para nuetro	20	
Cable THW# 2, para Tierra.	20	
Cable Control THW # 12 (transfencia auto)	20	
Correas de amarre	200	
Rollo de cinta aislante SCOTT 23	2	
Rollo de cinta aislante SCOTT 33	4	
Tubería de PVC 3"	20	
Codos de PVC 3 "	10	
Abrazaderas de PVC 3", Chazos, tornillos	12	
Varilla COOPERWELL	1	18,567
TERMINALES PARA CABLE	48	192,064
ACOMETIDA ESCAPE		,
Tubería recta de 3"	3	224,000
Codos de 3"	2	•
Abrazadera 3"	2	
Soporte silenciador 3"	2	
Flexible 30 ctms 3"		
Mano de obra instalación y arranque equipo	glb	900,000
	SUBTOTAL	3,725,388
	16% IVA	596,062
	TOTAL	4,321,450

CREG	Doc. AN-USA-882-03
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01
INFORME FINAL - ESTUDIOS EN ZIVI	Fecha 01/02/2012

Para las centrales de mayor tamaño debido a su diferente configuración en la siguiente tabla presenta los costos determinados por la consultoría para el montaje electromecánico en los diferentes sitios:

Tabla 3-14 Costos de montaje electromecánico por sitio (en pesos colombianos 2012)

l te m	ACANDI	PIZARRO	GUAPI	PTO INIRIDA	MIRAFLORES	MITÚ	PTO LEGUIZAMO
Capacidad	3000	1538	3900	5850	1144	3850	5200
Montaje electromecánico	294.587.929	185.670.707	363.345.665	635.108.359	117.394.273	384.563.568	519.481.979

Para efectos de calcular el monto del montaje electromecánico, se utilizó el programa denominado THERMOFLEX y con los datos económicos sobre la instalación de una pequeña unidad térmica y se estableció el porcentaje en que participan los costos de montaje electromecánico en el total del costo para el contratista.

3.1.1.10 Costos de RETIE e Interventoría y otros

Respecto a los costos indirectos se tienen los valores asociados a la actividad del RETIE como porcentaje que asciende al 1.5% de los costos totales con IVA. En caso de contratarse una interventoría técnica externa, su valor se ha determinado como 6% del valor de los costos directos con IVA.

Los costos de la administración y algunos financieros que se presentan durante la construcción y contratación, de acuerdo al estudio de algunos proyectos recientes podrían ser equivalentes al 4.48% de los costos directos con IVA.

3.1.1.11 Cálculo inferido de costos de inversión para centrales visitadas en ZNI

Con el fin de determinar los posibles costos de inversión de las centrales visitadas en las cabeceras municipales de Inirida, Mitú, Miraflores, Guapi, Acandí, Pizarro instalación Bajo Baudó y Puerto Leguizamo se tomaron los valores razonables que se pueden inferir de los datos anteriores.

Aplicando la metodología de determinación de costos de transporte, sumándolo a los costos de equipos, obras civiles, instalación, RETIE e Interventoria determinados en este numeral se obtienen los costos totales de suministro e instalación que se consignan en la siguiente tabla:

Rev. 01 Fecha: 01/02/2012

Tabla 3-15 Costo Total de Inversión por sitio visitado a Col\$ de 2012

ltem		ACAND	PIZARRO	GUAPI	PTO INIRIDA	MIRAFLORES	MITÚ	PTO LEGUIZAMO
Capacidad	kW	3000	1538	3900	5850	1144	3850	5200
Costos de Inversión								
Grupo electrogeno		811.834.483	422.659.337	634.538.851	1.009.440.568	311.232.400	1.016.577.282	1.405.752.428
Cabina de insonorización		60.673.412	36.832.260	65.679.971	65.644.343	41.898.810	78.063.561	102.066.021
Transform ador		82.074.240	34.367.760	165.441.240	409.268.016	62.066.160	144.119.844	152.102.520
Tanque de combustible		14.883.750	110.565.000	227.934.000	80.797.500	7.654.500	91.428.750	267.907.500
Tableros de sincronismo		142.505.488	74.191.571	111.383.873	177.192.302	54.632.226	178.445.046	246.758.964
Seguros		22.239.427	13.572.319	24.099.559	34.846.855	9.549.682	30.172.690	43.491.749
Transporte		12.690.906	25.187.774	49.841.722	203.124.960	20.101.305	186.788.000	134.234.374
Obras civiles		524.658.632	328.168.944	585.051.014	905.909.472	231.992.679	789.386.220	1.076.083.160
Montaje electromecánico		288.344.158	129.517.879	210.379.252	330.397.882	93.706.326	311.528.704	428.116.639
Sub total		1 959 904 498	1 175 062 843	2.074 349.480	3.216,621,898	832,834,089	2,826,510.097	3 856 513.355
IVA	16%	313,584,720	188.010.055	331.895.917	514.659.504	133.253.454	452.241.616	617.042.137
Total Costos Directos (instalacion y puesta en servicio)	16,0%	2.273.489.217	1.363.072.898	2.406.245.397	3.731.281.401	966,087,543	3.278.751.713	4.473.555.492
Inspectoria RETIE	1.5%	34.102.338	20.446.093	36.093.681	55.969.221	14 491.313	49.181.276	67.103.332
Interventoria Técnica	6,0%	136.409.353	81.784.374	144.374.724	223.876.884	57.965.253	196.725.103	268.413.330
Interventoria Admon y Financiero	4,5%	101.852.317	61.065.666	107.799.794	167.161.407	43.280.722	146.888.077	200.415.286
Total Costos Indirectos	12,0%	272.364.008	163.296.133	288 268,199	447 007.512	115.737.288	392.794.455	535.931 948
Costo Total de Inversión de la planta	\$	2.545,853,225	1.526.369.031	2 694 513.596	4.178,288.913	1,081,824,830	3.671,546,168	5.009.487.440
Costo de Inversión por kW instalado	USD/kW	471	551	384	397	525	530	535

^{*}Calculo USAENE

Nótese que los valores y supuestos utilizados son los correspondientes a cada sitio y no una aplicación general de las tablas, ya que cada central tiene particularidades propias que no permiten extrapolar valores sin la razonabilidad de la visita del sitio.

3.1.1.12 Comentarios sobre costos de inversión

- Los costos de los grupos electrógenos determinados con la metodología en este estudio correspondería a costos eficientes de mercado en condiciones de competencia razonable.
- 2. Los costos de transporte terrestre, determinados mediante el programa y la metodología del Ministerio de Transporte, correspondería a costos eficientes razonables de mercado para estas zonas.
- 3. Los costos de transporte aéreo determinados por cotizaciones de varias empresas prestadoras de este servicio, bajo condiciones de competencia nos lleva razonablemente al concepto de costos eficientes de mercado.
- 4. Los costos de transporte fluvial y marítimo, definitivamente corresponden a condiciones de mercado no tan competitivo e incluso de orden monopólico.

3.1.2 Costos de Administración, Operación y Mantenimiento

En este numeral se analizan los elementos que componen la operación de una planta de generación para servicio público en las ZNI.

Para este análisis se parte de la consideración de que la central de generación es un ente independiente creado y operado solo para este fin, lo cual en estas Zonas no es definitivamente cierto. La Generación se opera paralelamente con la distribución y

Rev. 01 Fecha: 01/02/2012

comercialización (donde se efectué, ya que en la mayoría de las localidades pequeñas no se ejecuta tales funciones)

La generación se opera en conjunto con otras actividades de servicios públicos y operaciones administrativas conjuntas y no se tienen registros de contabilidades separadas para poder corroborar dicha información o determinar los costos reales cargados a una actividad específica.

Por lo tanto en este numeral se presentan las funciones y actividades que deben desarrollarse para la actividad de generación como si esta operara aisladamente y se le cargaran los costos como si todo el personal fuera dedicado a esta actividad. De las visitas realizadas a campo no fue posible obtener información al respecto.

3.1.2.1 Composición de costos de Administración, Operación y Mantenimiento

La actividad de generación, requiere de una administración, operación y efectuar el mantenimiento de las planta.

La administración se refiere a las personas encargadas del tema contable, de tesorería, y de personal en general.

El mantenimiento se refiere a las actividades rutinarias según las recomendaciones del fabricante y están diferenciadas entre las que se deben hacer mientras la planta esté generando y las que se harían mientras las plantas estén apagadas o detenidas, las cuales son llevadas a cabo por el operador o por el personal de mantenimiento

Los costos de estas actividades se suelen agrupar en componentes fijos y variables para efectos contables. Las actividades fijas corresponden a las que se causan independiente que las unidades generen o no. Los costos de las actividades variables dependen de la generación real.

En general para plantas pequeñas la Administración y la Operación se vuelven Costos Fijos dado que estos costos se deberán reconocer independientemente de la operación de la máquina.

3.1.2.2 Costos de Administración

La generación de electricidad por medio de un grupo electrógeno requiere de una administración de la operación del grupo electrógeno en cuanto a su personal, las compras de insumos y repuestos y el mantenimiento en general del grupo electrógeno.

En el caso de empresas en ZNI esta administración se efectúa de manera integrada, generación, distribución, comercialización, debido a la pequeña escala del servicio.

Dadas las especificaciones y alcances del trabajo, en este estudio se consideran los costos de administración como si los servicios se prestaran por separado en cuanto a generación y distribución.

La administración se refiere a las personas encargadas del tema contable, de compras, de tesorería, y de personal en general. Por lo tanto, se presentan los costos asociados a la administración de la generación.

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha: 01/02/2012

3.1.2.3 Costos de Operación y Mantenimiento Fijos y Variables

Las plantas diésel son relativamente estándares, sin embargo dependiendo del fabricante y del tipo de la planta los mantenimientos cambian, así como los equipos y herramientas necesarias.

De manera genérica se anexa en este estudio, un manual de operación y mantenimiento de plantas diésel, así como la descripción detallada de las mismas desde el punto de vista técnico.

Como se mencionó, en la práctica general los costos de O&M de operación de plantas eléctricas térmicas se suelen dividir en costos fijos o costos que se tienen independiente de si la central genera o no y costos variables los cuales se causan dada la generación y son asociados principalmente a cada kWh generado, mientras que los fijos se asocian a la potencia instalada o kW instalado.

Nótese que aquí se propone un cambio de distribución de costos, frente al concepto de los mismos que ha venido utilizando la Res. 091 del 2007 vigente actual la cual asocia la operación a un porcentaje del consumo de combustible y el mantenimiento a un porcentaje de la depreciación de la máquina.

También es importante mencionar que en los costos fijos y variables se excluyen los costos de combustible los cuales por su gran tamaño e impacto son tratados separadamente.

En términos muy generales y como "estándares del sector de plantas diésel" se puede afirmar que las plantas requieren un mantenimiento rutinario que depende del número de horas de servicio y un mantenimiento de overhaul menor y mayor de 4,000 y 8,000 horas, pudiendo llegar a efectuar overhaul mayores hasta dos o tres veces en una máquina antes de terminar su vida útil, lo que depende del cuidado de la maquina durante su operación. Es importante mencionar que la vida útil del generador y de muchos de sus auxiliares es mucho mayor, sin embargo dado que lo critico es la vida del motor, no se menciona mucho esto dado que los mantenimientos eléctricos siempre se hacen mientras se encuentran en reparación las partes mecánicas.

Por otro lado, los operadores en general en estas zonas no cuentan con un buen sistema de mantenimiento preventivo y más bien responden siempre a mantenimientos correctivos. No hay en el país una normalización sobre la contabilización de los costos de mantenimiento y su correcta clasificación, para las empresas de energía establecidas en el país y solo se tuvo información organizada de GENSA (operador externo contratado por el MME) asociado a sus informes contables y operativos donde está operando las centrales.

De la información recopilada de GENSA y de CEDENAR (quien se encarga de la operación de la central de Puerto Leguizamo) se pudieron establecer unos costos históricos reportados, los cuales se anexan y se analizan.

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha: 01/02/2012

3.1.2.3.1 Actividades de mantenimiento rutinario general para plantas diésel de generación

Son variadas las actividades que un operador o un técnico de mantenimiento debe ejecutar para una planta de generación este está operando o no. Seguramente las rutinas aumentan en la medida que aumenta la operación, sin embargo las actividades siguen siendo iguales.

Para el caso de mantenimientos mayores de 4,000 y 8,000 horas en general se requiere de mano de obra especializada. El de 4,000 horas en general se puede hacer en sitio si se posee un taller con herramientas básicas y personal capacitado.

Los mantenimientos de 8,000 horas u overhaul mayor requiere efectuarse en un taller especializado y por lo tanto se requiere del traslado del equipo o del motor en caso de que se pueda separar del electro-grupo.

3.1.2.3.2 Tiempos estándares por actividad de mantenimiento para una planta diésel

La labor de mantenimiento la efectúa el personal de mantenimiento durante sus horas laborales, por lo tanto los costos de mantenimiento adicionales se refieren a los insumos utilizados, compra de repuestos, asesoría técnica especializada o contratos de prestación de servicios de mantenimiento intermedios y overhaul mayor.

Se presenta a continuación una tabla típica de tiempos por labor ejecutada en las labores de mantenimiento para una planta diésel típica delos rangos que este estudio abarca.

Rev. 01 Fecha 01/02/2012

Tabla 3-16 Tiempos por labor ejecutada \$2012

		TEMPARIO MOTORES DIESEL INDUSTRI	ALES		HOMBRE
					\$60,000
em		Descripción de la tarea	Tiempo (Min) Motores 3 cilindros	Tiempo (Min) Motores 4 cilindros	Tiempo (Min) Motores 6 cilindros
1		e de plantas le Balancines	0-30 kw	31-200 kw	200-1000 kw
1	i ren d	Reemplazo de los balancines	0.98	1 50	2
		Reemplazo de las vanilas impulsoras	0 49	0.75	1
		Reemplazo del empaque y la lapa válvulas	0.49	0.75	1
2	Cul ata		0.11	0.75	
		Reemplazo de la culata Reemplazo de las válvulas de admisión y escape*	2 44	375	- (
		Primer cilladro	299	4 50	
		Cilindro adicional	0.29	0.45	(
		Reemplazo de los resorles de las válvulas de admisión y escape			
		Primer cilindro	0.65	1 00	
		Cilindro adicional Reemplazo de quas y váslagos de válvulas de admisión y escape	0 16	0.25	(
		Primer cilindro	299	4 50	
		Cilindro adicional	039	0.50	(
		Calibración y ajuste de válvulas de admisión y escape	0 49	0.75	-
_		Reemplazo del empaque de culata	2 11	3 26	- (
3	Cubie	rta de Sincronismo - Tapa de sincronización	4.00	0.77	
		Reemplazo de la cubierla de sincronismo Reemplazo del piñon de minima	1 69 2 44	2 50 3 75	
		Reemplazo del piñon de alla	299	4 50	
		Reemplazo del gobernador	0.91	1.25	
		Reemplazo de la piñonena de sincronismo	4 06	6.25	10
4	Arbol	de levas	F 00	0.00	
		Reemplazo del arbol de levas Reemplazo de los rodamientos del arbol de levas	5 20 5 69	9 00 9 75	10
_		Reemplazo de los rodamientos del arboi de levas Reemplazo de los impulsadores	569	8 75	14
5	Cigüe		3.00		
		Reemplazo de la casquelena	6.89	10 50	17
		Reemplazo del cigueñal**	731	11 25	16
		Reemplazo del relenedor Irasero (del lado de la volanle) Reemplazo de la volanle	3 25 2 11	5 00 3 25	
		⊼eemplazo de la voia ne Reemplazo del relenedor delantero (del lado de la cubierta de sincronisi		250	
		Reemplazo de la polea	1 63	2 50	4
6	Pistór	y Biela			
		Reemplazo del pislón***			
		2nmer cifindro	5 20	9 00	13
7	Sieter	Cilindro adicional na de lubricación	0.49	0.75	
_	0.310	Reemplazo de la bomba de aceile	4 55	7 00	11
		Reemplazo del filtro de aceile	0 49	0.75	
		Reemplazo del sensor de presión de aceile	0 16	0.25	(
8	0: 1	Reemplazo del carter	0.81	1.25	- 2
•	Sister	Pa de emiramiento Pa emplazo del radiador	169	2.50	4
		Reemplazo del soporte del radiador	0 49	0.75	
		Reemplazo de las manqueras del radiador	0.65	1 00	
		Reemplazo del ventilador	0.81	1.25	2
		Reemplazo de la correa del ventilador	0.49	0.75 2.50	
		Reemplazo de la bomba de agua Reemplazo del sello mecánico de la bomba de aqua	1 69 2 11	325	
		Reemplazo del serio mecanico de la borniba de aqua.	0 49	0.75	-
		Reemplado del sensor de lemperatura	0 16	0.25	(
9	Equip	o eléctrico			
_		Reemplazo del lacomeiro	0.20	0.30	(
		Reemplazo del suche de encendido Reemplazo del molor de arranque	0 49	0.75	
		Reemplazo del motor de ananque Reemplazo del altemador de carga de balena	0.65	1 00	
		Reemplazo del ames elécinco	130	200	
		Reemplazo de parles inlemas del molor de arranque	2 11	3 25	- (
•		Reemplazo de la solenoide de apagado	0 49	0.75	
0	Sister	na de Inyección Reemplazo de la bomba de inyección	2 11	3 25	
_		Reemplazo de la bomba de inyección Reemplazo de la válvula de enfrega****	049	0.75	
		Reemplazo del inyector****	0 49	0.75	
		Reemplazo del lubo de alla****	0 49	0.75	-
1	Ajuste		,		
2		Ajuste del sistema de inyección orios de admisión y escape	1 30	200	3
_	nues	on os de admisión y escape Reemplazo del indiciador del fillro de aire	0.07	0.10	(
		Reemplazo del filtro de aire	0 49	0.75	
		Reemplazo del multiple de escape	0.81	1.25	2
	_	Reemplazo del lurbocargador	0.61	1 25	2
13	Dica	Peemplazo del mofle e de cilindros	0 49	0.75	
		Reemplazo del bloque	19 00	20 00	30
4		Descabinar y cabinar planta industrial	3	4	
			-0.35		
		* Incluye la asentada de las válvulas			
		Incluye cambio de la casquelena			

Doc. AN-USA-882-03

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI Fecha: 01/02/2012

De la tabla anterior se pueden determinar entonces los costos de mano de obra por tipo de actividad de mantenimiento, bien sea que estos sean efectuados por el personal de planta o por un externo contratado.

3.1.2.3.3 Costos de Mantenimiento

Los costos de mantenimientos en general dependen de los fabricantes y de la localización de las unidades. El mantenimiento se refiere a las actividades rutinarias según las recomendaciones del fabricante y están diferenciadas entre las que se deben hacer mientras la planta esté generando y las que se harían mientras las plantas estén apagadas o detenidas.

La organización de costos propuesta en el siguiente numeral, es la que se recomienda, dado que permitirá asimilarse a los estándares internacionales para plantas de generación térmica, y que tienen como fin el de verificar el comportamiento de los mismos en el tiempo.

3.1.2.3.4 Organización y cálculo de costos fijos y variables de AOM

Se propone considerar los siguientes ítems para la estimación de los valores fijos y variables de AOM:

Fijos

ADMINISTRACION

PROFESIONALES (para centrales grandes de más de 2,000 o 3,000 kW)

Ingeniero Director+ ADMINISTRACION

Ingeniero Mecánico

PERSONAL DE PLANILLA

Celadores

Supernumerario

VIATICOS

Director

EQUIPO Y OFICINA

Dotación Computadores y otros

COSTOS INDIRECTOS

Transporte fluvial y aéreo

Aseo y cafetería

Comunicaciones (internet y teléfono)

POLIZAS

Seguro total planta

OPERACION

Rev. 01

Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

PERSONAL TECNICO

Operadores

MANTENIMIENTO FIJO

Dotación y protecciones industriales,

Dotación equipos monitoreo

Insumos mantenimiento básico de Instalaciones planta física

Variables

OPERACIÓN

Apoyo técnico

Apoyo técnico ambiental

Costo plan de manejo ambiental

Consultorías, asesorías y estudios

MANTENIMIENTO PREVENTIVO

Mano de obra

Suministro de Insumos

Aceite Lubricante

Aditivo Para Refrigerante

Filtro De Aire

Filtro De Aceite

Filtro Racor O Separación

Elemento Trampas

Filtro De Combustible

Filtro De Agua

Agua Para Batería

Repuestos y otros

3.1.2.4 AOM Eficiente para plantas de generación aislada

Las actividades AOM demandan recursos de personal, insumos, activos y tiempo de dedicación por parte del mismo para la realización de estas actividades cuyo volumen y complejidad está en relación en general con la potencia instalada en la planta, con el número de unidades o grupos electrógenos que la conforman, y el horario de prestación del servicio.

Fecha: 01/02/2012

Rev. 01

Dentro de las labores administrativas se deberán considerar los recursos necesarios para cubrir las actividades relacionadas con seguridad, mantenimiento de la planta física y servicios generales de las instalaciones y de la planta de generación en general.

Igualmente, se deberán considerar dentro de los costos de inversión, las áreas para oficinas, su equipamiento y demás recursos e insumos de trabajo necesarios para el ejercicio de las labores administrativas, así como las áreas para talleres, depósitos, almacén, etc., junto con los equipos y máquinas-herramientas necesarias para el ejercicio de las labores técnico-operativas.

3.1.2.5 Estimación de los recursos de personal

Se requiere determinar los requerimientos de personal para estas plantas, considerándolas como una unidad de negocio aislada, toda vez que representan el caso mayoritario.

No obstante, si bien existen plantas compuestas por una sola unidad o grupo electrógeno a cargo de Asociaciones de Usuarios y Juntas de Acción Comunal este número de casos es minoritario, la realidad es que cerca del 90% de este tipo de plantas (con una sola unidad) ubicadas en las localidades menores y geográficamente dispersas, realmente se encuentran a cargo de la empresa distribuidora ubicada en la cabecera municipal, quien asume la responsabilidad del suministro de combustible y el apoyo técnico.

Esto significa que, se deben determinar las necesidades reales de personal especialmente operativo, con que debería contar el distribuidor para atender de manera eficiente la operación y mantenimiento de un parque de generación con base en pequeñas plantas diesel distribuido por la geografía del municipio.

Para los casos de las grandes centrales de generación, las estimaciones y cálculos deberán realizarse de manera particular, teniendo en cuenta la configuración de la planta y el horario de prestación del servicio que en la mayoría de los casos es de 24 horas, junto con la inclusión de sistemas y equipos auxiliares adicionales conforme al tamaño de la planta, que demandan mayores recursos tanto de personal como logísticos.

A continuación se analizarán los diferentes casos que se presentan en la ZNI.

3.1.2.5.1 Personal y actividades en AO&M en Generación en ZNI

A continuación se relaciona el personal básico necesario para la adecuada administración y operación de un sistema de generación en ZNI, teniendo en consideración las actividades necesarias, dada la condición aislada del sistema.

3.1.2.5.1.1 Administración

- 1. Gerente. Encargado de la administración de la generación
- 2. Contador. Encargado de los asuntos contables y financieros relacionados con la actividad de generación
- 3. Jefe de Personal. Se encarga del manejo del recurso humano (contratos y nóminas de personal)

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

- 4. Tesorero. Se encarga del manejo y control de los recursos económicos, recaudos y pagos
- 5. Almacenista e inventarios. Ejecuta la gestión de compras de materiales e insumos.

3.1.2.5.1.2 Operación

INFORME FINAL - ESTUDIOS EN ZNI

- 1. Jefe de Planta. Responsable de la operación integral de la planta de manejo de personal y del despacho de la misma.
- Operadores. Encargados de la operación de los equipos, llevar los registros de operación diarios de los principales parámetros de la planta e informar cualquier situación anormal que se detecte en el funcionamiento de la planta y equipos auxiliares.
- 3. Personal de Mantenimiento. Encargado de adelantar rutinas y chequeos de mantenimiento recomendados por el fabricante, inspecciones rutinarias y atención de salidas y/o reparaciones menores de las máquinas. La planta deberá disponer de las áreas adecuadas para adelantar estas labores, tales como taller y almacén.

3.1.2.5.2 Estimación del personal administrativo y operativo de acuerdo a las horas de prestación del servicio

3.1.2.5.2.1 Personal necesario para generación según horas de servicio

Tabla 3-17 Personal para 6 horas de servicio y menor de 12

Departamento	No de personas	Observaciones
Administración	1	Ejecuta las labores de Personal y Compras
De Personal	X	(1)
Contabilidad	1	Ejecuta labores de tesorería (1)
Tesorería	X	(1)
Compras	X	(1)
Generación		
Jefe de planta	1	Opera, Mantenimiento rutinario, Almacén, No hay Taller
Operadores	X	
Mantenimiento	1	Auxiliar de Mantenimiento
Taller y Almacén	X	
Total	4	

PARA LOS CASOS DE PLANTAS CONFORMADAS POR UNA SOLA UNIDAD Y CON UN HORARIO INFERIOR A LAS DOCE HORAS, LOS ROLES DEL PERSONAL ADMINISTRATIVO DEMANDAN UNA DEDICACIÓN PARCIAL DADO EL BAJO VOLUMEN DE ASUNTOS Y TAREAS QUE SE DEBEN ATENDER. EN DESARROLLO DEL ESTUDIO DE ANALIZARÁN ESTOS CASOS QUE COMO SE DIJO ANTERIORMENTE SE PRESENTAN EN CASO DE ASOCIACIONES DE USUARIOS O JUNTAS DE ACCIÓN COMUNAL, LOS CUALES NO REPRESENTAN MÁS ALLÁ DEL 10%.

Rev. 01 Fecha: 01/02/2012

Tabla 3-18 Personal para 12 horas de servicio y menos de 18 horas

Departamento	No de personas	Observaciones	
Administración	1	Ejecuta las labores de Personal y Compras	
Personal	X		
Contabilidad	1	Ejecuta labores de tesorería	
Tesorería	Х		
Compras	X		
Generación			
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, No hay Taller	
Operadores	1	Auxiliar de operación	
Mantenimiento	1	Auxiliar de mantenimiento	
Taller y Almacén	X		
Total	5	Personas	

Tabla 3-19 Personal para 18 horas de servicio y menos de 24

Departamento	No de personas	Observaciones
Administración	1	Ejecuta las labores de Compras
Personal	1	Manejo y contratos de personal
Contabilidad	1	Ejecuta labores de tesorería
Tesorería	X	
Compras	X	
Generación		
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, Puede haber un Tallercito
Operadores	2	Operador y auxiliar
Mantenimiento	1	Mecánico-Electricista
Taller y Almacén	X	
Total	7	Personas

Tabla 3-20 Personal para 24 horas de servicio

Departamento	No de personas	Observaciones		
Administración	1	Jefe de administración		
Personal	1	Manejo y contratos de personal		
Contabilidad	1	Ejecuta labores de tesorería		
Tesorería	X			
Compras	1	Ejecuta las labores de compras y subcontratos		
Generación				
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, Puede haber un Tallercito		
Operadores	4	Operador y auxiliar		
Mantenimiento	3	Mecánico, Electricista y Auxiliar		
Taller y Almacén	1	Encargado de herramientas y consumibles		
Total	13	Personas		

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01 Fecha: 01/02/2012

La cabecera municipal puede estar operada por un tercero, como GENSA o CEDENAR o puede ser operada por personal propio

En cuanto a los mantenimientos rutinarios siempre se hace con personal propio. Desde la cabecera se tienen unos técnicos de apoyo a las localidades y puede ser uno, dos o tres dependiendo del número y distancia de las mismas. Igualmente se puede tener un stock de repuestos para la planta de base y para las localidades o alguna de ella.

Los mantenimientos mayores de 4,000 y 8,000 horas u overhaul se contratan con terceros y pueden ser en sitio o pueden ser efectuados en talleres externos.

De la misma forma, la cantidad de personal en las cabeceras que atienden las localidades corresponde a las siguientes.

Tabla 3-21 Personal para 6 horas de servicio y menos de 12 y atención a localidades

Departamento	No de personas	Observaciones
Administración	1	Ejecuta las labores de Personal y Compras
Personal	X	
Contabilidad	1/2	Ejecuta labores de tesorería
Tesorería	X	
Compras	X	
Generación		
Jefe de planta	1	Opera, Mantenimiento rutinario, Almacén, No hay Taller
Operadores	X	
Mantenimiento	1	
Taller y Almacén	Х	
Técnicos de apoyo a las localidades	2	Entrega de combustible
Total	5.5	

Tabla 3-22 Personal para 12 horas de servicio y menos de 18 horas y apoyo a las localidades

Departamento	No de personas	Observaciones
Administración	1	Ejecuta las labores de Personal y Compras
Personal	X	
Contabilidad	1	Ejecuta labores de tesorería
Tesorería	X	
Compras	X	
Generación		
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, No hay Taller
Operadores	1	Auxiliar de operación
Mantenimiento	1	Auxiliar de mantenimiento
Taller y Almacén	1	
Técnicos de apoyo a las localidades	3	
Total	8	Personas

Rev. 01 Fecha: 01/02/2012

Tabla 3-23 Personal para 18 horas de servicio y atención a las localidades

Departamento	No de personas	Observaciones
Administración	1	Ejecuta las labores de Compras
Personal	1	Manejo y contratos de personal
Contabilidad	1	Ejecuta labores de tesorería
Tesorería	Χ	_
Compras	X	
Generación		
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, Puede haber un Tallercito
Operadores	2	Operador y auxiliar
Mantenimiento	1	Mecánico-Electricista
Taller y Almacén	1	
Técnicos de apoyo localidades	4	Personal técnico de apoyo a las localidades
Total	12	Personas

Tabla 3-24 Personal para 24 horas de servicio y atención a las localidades

Departamento	No de personas	Observaciones		
Administración	1	Jefe de administración		
Personal	1	Manejo y contratos de personal		
Contabilidad	1	Ejecuta labores de tesorería		
Tesorería	Х			
Compras	1	Ejecuta las labores de compras y subcontratos		
Generación				
Jefe de planta	1	Opera, Mantenimiento Rutinario, Almacén, Puede haber un Tallercito		
Operadores	3	Operador y auxiliar		
Mantenimiento	3	Mecánico, Electricista y Auxiliar		
Taller y Almacén	1	Encargado de herramientas y consumibles		
Técnicos de apoyo a las localidades	4	Personal técnico de apoyo a las localidades		
Total	16	Personas		

La organización anterior se refiere al personal operativo bajo el supuesto de una sola unidad en la planta, sin embargo en las cabeceras municipales se cuenta con más de una unidad por planta, siendo 5 el número máximo encontrado.

La tabla siguiente muestra los ajustes necesarios para un número mayor de unidades por planta.

Rev. 01 Fecha: 01/02/2012

Tabla 3-25 Personal para 18 horas de servicio, varias unidades

Departamento	No de personas 1 UNIDAD	No de personas 2 UNIDADES	No de personas 3 UNIDADES	No de personas 4 UNIDADES	No de personas 5 UNIDADES
Administración	1	1	1	1	1
Personal	1	1	1	1	1
Contabilidad	1	1	1	1	1
Tesorería	X	X	X	Х	1
Compras	X	Χ	1	1	1
Generación					
Jefe de planta	1	1	1	1	1
Operadores	2	3	4	5	6
Mantenimiento	1	2	2	3	3
Taller y Almacén	1	1	1	1	1
Técnicos de					
apoyo	4	4	4	4	4
localidades					
Total	12	14	16	18	20

Tabla 3-26 Personal para 24 horas de servicio y número variable de unidades

Departamento	No de personas 1 UNIDAD	No de personas 2 UNIDADES	No de personas 3 UNIDADES	No de personas 4 UNIDADES	No de personas 5 UNIDADES
Administración	1	1	1	1	1
Personal	1	1	1	1	1
Contabilidad	1	1	1	1	1
Tesorería	Χ	Χ	Χ	X	1
Compras	1	Χ	1	1	1
Generación					
Jefe de planta	1	1	1	1	1
Operadores	3	4	5	6	7
Mantenimiento	3	2	2	3	3
Taller y Almacén	1	1	1	1	1
Técnicos de apoyo localidades	4	4	4	4	4
Total	16	15	17	19	21

La tabla anterior supone que los mantenimientos mayores de 4,000 horas y 8,000 son contratados con terceros y personal temporal.

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

3.1.2.5.3 Costos de personal

Los costos de personal reportado varia y no hay un dato exacto sobre si incluye prestaciones sociales u otros componentes. Los valores siguientes son rango de valores obtenidos de reportes contables y de encuestas personales durante visita. Son valores globales de referencia los cuales pueden ser modificados de localidad en localidad e igualmente dependiendo de las prestaciones o bonificaciones que se paguen en cada sitio.

Tabla 3-27 Costos de personal

Cargo	Rango Mínimo encontrado	Rango Máximo encontrado
Jefe Administrativo	\$800,000	\$1,500,000
Contador	\$550,000	\$1,000,000
Administrador	\$550,000	\$800,000
Auxiliar Administrativo	\$350,000	\$560,000
Auxiliar Tesorería	\$350,000	\$560,000
Jefe de planta	\$1,500,000	\$3,000,000
Operador Cabecera	\$600,000	\$800,000
Operador local	\$350,000	\$560,000
Técnicos	\$400,000	\$800,000

3.1.2.5.4 Personal requerido por empresa de generación

Para las 7 empresas visitadas y de acuerdo a los datos de número de localidades que atienden se ha integrado una propuesta de personal considerando solo generación, sin embargo en estas zonas las empresas operan integradamente los negocios de G, D y C y en ocasiones prestan otros servicios públicos.

En términos generales las empresas de prestación de servicio eléctrico cuenta con el siguiente esquema general de atención.

Doc. AN-USA-882-03

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

Figura 3-3 Esquema genérico de empresa prestador de servicios en ZNI

La empresa tiene sede en la cabecera municipal que atiende la región y allí tiene su centro administrativo, pero tienen que atender diferentes localidades que en general se comunican por vía fluvial a diversas distancias. Estas empresas ESP no tienen contabilidad separada por lo tanto no se puede determinar exactamente como utilizan y a quien cargan los costos del personal que puede hacer varias funciones para diferentes empresas de servicios.

Si la empresa solo operara el servicio de energía el siguiente seria el organigrama genérico.

Figura 3-4 Organigrama general de la operación de un empresa de energía en ZNI

CREG			
INVERSIONES Y GASTOS DE	AOM EN ZNI	CON PLANTAS	TÉRMICAS

Doc. AN-USA-882-03

Rev 01 Fecha: 01/02/2012

Actualmente no se dispone de una fuente con información detallada y desagregada por servicio y actividad (en nuestro caso servicio de energía, actividad generación) de las empresas prestadores en las ZNI y separada de los temas de distribución y comercialización, así que se propone un esquema de personal que debería funcionar para una empresa de generación que funcione solo para esa actividad. Lo cual es teórico a no ser que se contrate la operación de la planta principal de la cabecera en donde estas empresas si tienen información separada para esta actividad.

A continuación se presenta entonces la estructura básica de personal que cada una de las empresas visitas debería tener para atender el servicio de generación solamente.

En los cuadros siguientes se muestra la cabecera y la o las poblaciones importantes que atienden ya que las otras son pequeñas plantas que solo cuentan con un operador.

3.1.2.5.4.1 Acandi

INFORME FINAL - ESTUDIOS EN ZNI

La tabla siguiente muestra las localidades atendidas por la empresa.

Tabla 3-28 Acandí – Localidades atendidas

nom_local	horas servicio	Capacidad	plantas loc
ACANDI	17	1000	
ACANDI	0	1000	
ACANDI	5	900	3
SAN FRANCISCO	8	135	1
CALETA	4	38	1
PENALOZA	4	35	1
SANMIGUEL	4	21	1
PESCADITO	4	10	2
SANTACRUZDECHUGANDI	4	10	1
PESCADITO	4	5	
CHIDIMA	4	3	1
CHIDIMA	4	3	1
Total		13	

Para la atención de estas localidades se propone el siguiente esquema de personal con un total de 31 personas si opera el sistema aislado de las otras actividades.

Rev. 01 Fecha: 01/02/2012

Tabla 3-29 Acandí – Esquema de personal propuesto

EMPRESA DE SERVICOS PUBLICOS DE ACANDI S.A F.S.P.

E.S.P.			
	Acandi	San Francisco	
Administración	1	1	2
Personal	1	X	1
Contabilidad	1	1	2
Tesorería	Х	X	0
Compras	1	X	1
Generación			0
Jefe de planta	1	1	2
Operadores	4	1	5
Mantenimiento	2	1	3
Taller y Almacén	1	X	1
Técnicos de apoyo a las localidades	3	X	3
Operadores de las localidades	11		11
Total	26	5	31

3.1.2.5.4.2 Pizarro Bajo Baudo

La siguiente tabla muestra las localidades atendidas por la empresa de servicios para un total de 49.

Tabla 3-30 Pizarro Bajo Baudó – Localidades atendidas

nom_local	horas servicio	Capacidad	plantas loc
BAJO BAUDO	6	650	1
PIZARRO	8	591	1
GUINEAL	8	170	1
ORPUA	5	135	1
SIVIRU	8	125	1
SEPULCRO	5	125	1
TERRON	5	110	1
BELEN DE DOCAMPADO	0	110	1
SAN JOSE DE QUERA	5	100	1
BUENAVISTA	5	90	1
VIRUDO	5	90	1
FIRME USURAGA	5	80	1
LA COMBA	5	65	1
MOCHADO	5	65	1
PUERTO ABADIA	5	65	1

Rev. 01 Fecha: 01/02/2012

nom_local	horas servicio	Capacidad	plantas loc
CANTIL	5	60	1
BUCHUA	4	60	1
LA AURORA	4	60	1
BOCAS DE ATRATO	0	60	1
VALERIO	5	50	1
DOTENEDO	5	50	1
POMENO	4	50	1
AGUACATE	5	45	1
BELEN TAPARA	5	45	1
BIRRINCHADO	5	45	1
PUERTO SAMARIA	5	45	1
CUEVITA	5	45	1
PAVASA	5	45	1
VILLA MARIA	5	45	1
LA VACA	5	40	1
PUERTO BOLIVAR	5	40	1
PUERTO VIVEROS	5	40	1
SAN MIGUEL COSTA	5	40	1
VILLA NUEVA	4	40	1
PUNTA HIJUA	4	40	1
COCALITO GEYA	0	40	1
EL PIE	4	37	1
BAJO GRANDE	5	35	1
LA ISLA	5	35	1
PAYA LINDA	5	35	1
UNION PITALITO	5	35	1
ABAQUIA	4	35	1
FIRME SAN MIGUEL	4	35	1
MANGLARES	4	35	1
NICARAGUA	4	33	1
LA OFICINA	0	30	1
SAN LUIS	0	30	1
PAMPON	4	27	1
LA CARCEL	4	17	1
Total		49	

Basado en la demanda y la potencia instalada en cada sitio se propone la siguiente configuración eficiente de personal para la atención del servicio. Se requeriría un total de 95 personas si se incluye la administración independiente.

Rev. 01 Fecha 01/02/2012

Tabla 3-31 Pizarro Bajo Baudó - Esquema de personal propuesto

E. S. P. DE ENERGIA ELECTRICA DE BAJO BAUDO PIZARRO S.A.										
	PIZARRO	BAJO BAUDO	GUINEAL	ORPUA	SIVIRU	SEPULCRO	TERRON	BELEN DE DOCAMPADO	SAN JOSE DE QUERA	
Administración	1	1	1	1	1	1	1	1	1	9
Personal	1	х	Х	Х	Х	х	Х	х	X	1
Contabilidad	1	1	1	Х	Х	х	Х	х	х	3
Tesorería	1	х	Х	Х	Х	х	Х	х	х	1
Compras	1	х	Х	Х	Х	х	Х	X	х	1
Generación										0
Jefe de planta	1	1	1	1	1	1	1	1	1	9
Operadores	2	1	1	1	1	1	1	1	1	10
Mantenimiento	1	1	1	1	1	1	1	1	1	9
Taller y Almacén	1	1	1	1	1	1	1	1	1	9
Técnicos de apoyo a las localidades	4									4
Operadores	39									39
Total	53	6	6	5	5	5	5	5	5	95

3.1.2.5.4.3 Guapi

La tabla siguiente muestra las localidades atendidas por ENERGUAPI, CON LA SALVEDAD DE LA PLANTA en Guapi la cual está siendo operada por GENSA. Se atiende un total de 64 localidades.

Tabla 3-32 Guapi – Localidades atendidas

Localidad	NOMBRE EMPRESA	horas servicio	Capacidad	plantas loc
GUAPI	GESTION ENERGETICA S.A. ESP	24	1250	
GUAPI	GESTION ENERGETICA S.A. ESP	0	800	
GUAPI	GESTION ENERGETICA S.A. ESP	0	500	
GUAPI	GESTION ENERGETICA S.A. ESP	24	500	
GUAPI	GESTION ENERGETICA S.A. ESP	24	500	5
BELEN	ENERGUAPI S.A. E.S.P.	5	116	1
LIMONES	ENERGUAPI S.A. E.S.P.	11	110	1
SAN ANTONIO	ENERGUAPI S.A. E.S.P.	8	110	1
CHAMON	ENERGUAPI S.A. E.S.P.	8	70	1
SAN AGUSTIN GUAPI	ENERGUAPI S.A. E.S.P.	4	53	1
CHUARE	ENERGUAPI S.A. E.S.P.	5	52	1
ATAJO II	ENERGUAPI S.A. E.S.P.	4	50	1
SANTA ROSA	ENERGUAPI S.A. E.S.P.	5	45	1
BALSITAS	ENERGUAPI S.A. E.S.P.	5	45	1
CALLELARGA	ENERGUAPI S.A. E.S.P.	5	45	1
CARMELO	ENERGUAPI S.A. E.S.P.	5	45	1
SOLEDAD	ENERGUAPI S.A. E.S.P.	5	45	1
NARANJO	ENERGUAPI S.A. E.S.P.	5	45	1
FIRME	ENERGUAPI S.A. E.S.P.	4	40	1
PENITENTE	ENERGUAPI S.A. E.S.P.	5	40	1
BELLAVISTA	ENERGUAPI S.A. E.S.P.	5	33	1
BUENA VISTA	ENERGUAPI S.A. E.S.P.	4	25	1
GUABAL	ENERGUAPI S.A. E.S.P.	4	25	1
JOANICO II	ENERGUAPI S.A. E.S.P.	4	25	1

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

INFORME FINAL – ESTUDIOS EN ZNI

Localidad	NOMBRE EMPRESA	horas servicio	Capacidad	plantas loc
PARCELAS	ENERGUAPI S.A. E.S.P.	4	25	1
PLAYA DE OBREGONES	ENERGUAPI S.A. E.S.P.	4	25	1
QUIROGA II	ENERGUAPI S.A. E.S.P.	5	25	1
SAN AGUSTIN NAPI	ENERGUAPI S.A. E.S.P.	5	25	1
SAN ANTONIO DE NAPI	ENERGUAPI S.A. E.S.P.	5	25	1
SANTA GELTRUDYS	ENERGUAPI S.A. E.S.P.	4	25	1
YANTIN	ENERGUAPI S.A. E.S.P.	5	25	1
CASCAJERO	ENERGUAPI S.A. E.S.P.	4	25	1
FIRME CHANZARA	ENERGUAPI S.A. E.S.P.	5	25	1
QUIROGA	ENERGUAPI S.A. E.S.P.	5	25	1
CUERVAL	ENERGUAPI S.A. E.S.P.	4	20	1
PAMPA II	ENERGUAPI S.A. E.S.P.	4	20	1
CARMEN	ENERGUAPI S.A. E.S.P.	4	18	1
CHICOPEREZ	ENERGUAPI S.A. E.S.P.	4	18	1
OBREGONES	ENERGUAPI S.A. E.S.P.	4	18	1
PARTIDERO	ENERGUAPI S.A. E.S.P.	4	18	1
PASCUALERO	ENERGUAPI S.A. E.S.P.	4	18	1
SANTA ANA	ENERGUAPI S.A. E.S.P.	4	18	1
VIENTO LIBRE	ENERGUAPI S.A. E.S.P.	4	18	1
VUELTA LARGA	ENERGUAPI S.A. E.S.P.	4	18	1
SAN VICENTE	ENERGUAPI S.A. E.S.P.	4	18	1
ROSARIO	ENERGUAPI S.A. E.S.P.	4	18	1
SANTA CLARA	ENERGUAPI S.A. E.S.P.	4	18	1
SAN JOSE	ENERGUAPI S.A. E.S.P.	4	18	1
JOANICO I	ENERGUAPI S.A. E.S.P.	4	15	1
SAN MIGUEL Y PASC	ENERGUAPI S.A. E.S.P.	4	12	1
SANSON	ENERGUAPI S.A. E.S.P.	4	12	1
ATAJO	ENERGUAPI S.A. E.S.P.	4	12	1
JUNTA S	ENERGUAPI S.A. E.S.P.	4	12	1
BAGRERO	ENERGUAPI S.A. E.S.P.	4	11	1
CAIMITO	ENERGUAPI S.A. E.S.P.	4	11	1
CALLE	ENERGUAPI S.A. E.S.P.	4	11	1
CALLE HONDA	ENERGUAPI S.A. E.S.P.	4	11	1
CAUCHO	ENERGUAPI S.A. E.S.P.	4	11	1
MADRE VIEJA	ENERGUAPI S.A. E.S.P.	4	11	1
PUEBLO NUEVO	ENERGUAPI S.A. E.S.P.	4	11	1
ROBLES	ENERGUAPI S.A. E.S.P.	4	11	1
SAN PIO	ENERGUAPI S.A. E.S.P.	4	11	1
CODICIA	ENERGUAPI S.A. E.S.P.	4	10	1
PAMPA I	ENERGUAPI S.A. E.S.P.	4	8	1
Total			64	

Para la atención de estas 64 localidades se propone una organización eficiente la cual lleva solo a generación a un total de 104 personas.

Rev. 01 Fecha 01/02/2012

Tabla 3-33 Guapi – Esquema de personal propuesto

EMPRESA MIXTA DE SERVICIOS PUBLICOS DE ENERGIA ELECTRICA DE GUAPI ENERGUAPI S.A. E.S.P.								
1	Guapi				SAN			
	GENSA	Energuapi	BELEN	LIMONES	ANTONIO	CHAMON		
Administración	1	1	1	1	1	1	6	
Personal	1	1	Х	х	Х	X	2	
Contabilidad	1	1	1	1	Х	X	4	
Tesorería	1	1	Х	Х	X	X	2	
Compras	1	1	Х	X	Х	X	2	
Generación							0	
Jefe de planta	1		1	1	1	1	5	
Operadores	6		1	1	1	1	10	
Mantenimiento	3		1	1	1	1	7	
Taller y Almacén	1		1	1	1	1	5	
Técnicos de apoyo a las localidades		6					6	
Operadores		55					55	
Total	16	66	6	6	5	5	104	

3.1.2.5.4.4 Puerto Leguizamo

Puerto Leguizamo atiende un total de 7 localidades adicionales en su área de entorno y en la región el municipio de Orito atiendo 3 localidades adicionales. Para ello se propone la tabla organizacional mínima para la atención de dichas localidades. La central de Puerto Leguizamo es operada por CEDENAR y se propone un personal mínimo en la tabla correspondiente.

Tabla 3-34 Puerto Leguízamo – Esquema de personal propuesto

EMPULEP SA ESP			
	Puerto Leguizamo CEDENAR	EMPULEP	
Administración	1	1	2
Personal	1	Х	1
Contabilidad	1	1	2
Tesorería	1	X	1
Compras	1	X	1
Generación		A (0
Jefe de planta	1		1
Operadores	7		7
Mantenimiento	3	2	5
Taller y Almacén	1	Х	1
Técnicos de apoyo a las localidades		4	4
Operadores de las localidades		7	7
Total	17	15	32

Rev. 01 Fecha 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

3.1.2.5.4.5 Miraflores

La tabla siguiente muestra las localidades atendidas desde Miraflores.

Tabla 3-35 Miraflores – Localidades atendidas

nom_local	horas servicio	Capacidad	plantas loc
MIRAFLORES	6	515	1
LAGOS DEL DORADO	24	225	1
BUENOS AIRES	6	225	1
PUERTO SANTANDER	6	134	1
BARRANQUILLITA	24	125	1
PUEBLO NUEVO	8	83	1
LAS PAVAS	24	52	1
PUERTO NARE	24	44	1
PUERTO LAGRIMAS	24	40	1
Total		9	

Nótese las altas horas de servicio en estas localidades. La empresa debe atender 9 localidades y para ello se propone la cantidad de personal de la tabla siguiente, para un total de 93 personas.

Tabla 3-36 Miraflores – Esquema de personal propuesto

MUNICIPIO DE MIRAFLORES GUAVIA	RE						
	Miraflores	LAGOS DEL DORADO	BARRANQUI LLITA	LAS PAVAS	PUERTO NARE	PUERTO LAGRIMAS	
Administración	1	1	1	1	1	1	6
Personal	1	1	1	1	1	1	6
Contabilidad	1	1	1	1	1	1	6
Tesorería	1	1	1	1	1	1	6
Compras	1	1	1	1	1	1	6
Generación							0
Jefe de planta	1	1	1	1	1	1	6
Operadores	1	6	6	6	6	6	31
Mantenimiento	1	3	3	3	3	3	16
Taller y Almacén	1	1	1	1	1	1	6
Técnicos de apoyo a las localidades	1						1
Operadores	3						3
Total	13	16	16	16	16	16	93

CREG	Doc. AN-USA-882-03
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01

3.1.2.5.4.6 Mitú, Vaupés

El servicio de energía en Vaupés es operada por la Gobernación del Vaupés donde la cabecera municipal es operada por GENSA y las 37 localidades adicionales están a cargo de la unidad de energía del Vaupés. El total de personas necesarias para generación seria de 61.

Tabla 3-37 Mitú – Esquema de personal

Gobernacion del Vaupes Unidad de Energia					
		Gobernacion			
	MITU	Vaupes			
	GENSA	Energia			
Administración	1	1	2		
Personal	1	1	2		
Contabilidad	1	1	2		
Tesorería	Х	1	1		
Compras	1	1	2		
Generación			0		
Jefe de planta	1		1		
Operadores	6		6		
Mantenimiento	3		3		
Taller y Almacén	1		1		
Técnicos de apoyo a las localidades		4	4		
Operadores Localidades		37	37		
Total	15	46	61		

3.1.2.5.4.7 Puerto Inírida, Guainía

Para la prestación del servicio de generación la empresa tiene un contrato de operación con GENSA y atiende un total de 62 localidades menores, de las cuales se destacan algunas por potencia y horas de servicio.

Para la atención del sistema de generación se calcula un total mínimo de 104 personas.

Fecha 01/02/2012

Rev. 01 Fecha: 01/02/2012

Tabla 3-38 Puerto Inírida – Esquema de personal

EMELCE SA ESP						
4	INIRIDA		BARRANCO			
	GENSA	EMELCE	MINAS	SAN FELIPE	SAN JOSE	
Administración	1	1	1	1	1	5
Personal	1	1	Х	Х	Х	2
Contabilidad	1	1	1	1	Х	4
Tesorería	Х	1	Х	X	Х	1
Compras	1	1	Х	X	Х	2
Generación						0
Jefe de planta	1		1	1	1	4
Operadores	5		1	1	1	8
Mantenimiento	2		1	1	1	5
Taller y Almacén	1		1	1	1	4
Técnicos de apoyo a las localidades		7				7
Operadores		62				62
Total	13	74	6	6	5	104

El número total de personas y cargos supone una empresa de generación pura, lo cual no es cierto en ZNI y la parte administrativa debería compartir las otras actividades de distribución y comercialización, sin embargo da una idea del personal que se debería encontrar en cada empresa cuando se integre en sus diferentes actividades.

3.1.2.6 Costos de O&M fijos y variables en ZNI Colombiana

Para la estimación de costos O&M fijos y variables, los fabricantes y la literatura internacional especializada definen costos típicos, dando los valores fijos en \$/kW/año instalado y \$/kWh para estas variables.

Costos fijos: 40 - 70 US\$/kW y

Costos variables: 0.05 a 0.06 US\$/kWh

Estos indicadores son el resultado de recopilación de información de proyectos en muchos y variados sitios, en zonas cercanas y remotas, interconectadas y no interconectadas. Si bien pueden no ser aplicados directamente a las ZNI, servirán de comparación con los resultados encontrados durante las visitas a sitios específicos de las ZNI.

Por otro lado, de las visitas realizadas a algunas plantas ubicadas en localidades menores, se identificaron debilidades en el mantenimiento y conservación de las plantas, evidenciadas en la presencia de fugas de aceite, suciedad de la máquina, desorden y mala disposición de elementos, conexiones mal figuradas, etc. Destacando que grado de complejidad de las labores de mantenimiento de estas unidades, en mayoría de los casos se cuenta con una unidad y un operador que hace las veces de operador, administrador y adelanta las labores de mantenimiento menor de la planta. Igualmente se constituye en

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

apoyo para el distribuidor en las labores de distribución y reparto de facturas, en los casos en que se realiza. Es de anotar que el nivel de recaudo en la mayoría de localidades es cero.

A continuación se muestran algunos de los valores encontrados en los datos operativos de algunas de las centrales y que permiten correr el modelo de cálculo de costos de generación.

Tabla 3-39 Costos AOM fijos y variables en ZNI Colombiana US\$ (1800 COL \$ = 1 US\$)

	MAX	MIN	Prom
CAO&M FIJOS	228.34	115.19	155.8
Gastos Administracion	174.41	84.36	131.5
Operativos fijos	108.31	28.61	66.0
Mantenimiento fijos	9.86	2.21	6.1
CO&M VARIABLES	0.209	0.040	0.082
Operativos Variables	0.096	0.006	0.026
Mantenimiento Variable	0.201	0.005	0.062

De acuerdo a lo anterior, los valores encontrados para costos fijos y variables en US\$/kW y US\$/kWh, se encuentran en los siguientes rangos:

Fijos: entre 115 y 230 US\$/kW

Variables: entre 0.20 a 0.04 US\$/kWh

Estos resultados se encuentran bastante alejados de los estándares internacionales. La falta de información estadística que permita disponer de mayores datos de análisis, obedece principalmente a la ausencia de un marco normativo que ordene a los prestadores a llevar contabilidad separada por servicio y actividad, lo cual contribuiría a disponer de mayor información para el análisis y corroboración de resultados en materia de costos de operación y mantenimiento de plantas de generación diesel en la ZNI.

3.1.2.7 Conclusiones

Con excepción de los casos operados por GENSA S.A. E.S.P., CEDENAR S.A.E.S.P. y las áreas de servicio exclusivo, el servicio de energía en cabeceras municipales y localidades de las ZNI se presta de manera integrada por actividades, generación, distribución, comercialización y no se cuenta con contabilidades separadas por actividad.

En otros casos, las empresas de las ZNI prestan el servicio de energía junto con otros servicios como acueducto y aseo, hecho que dificulta aún más conocer costos desagregados.

Rev. 01 Fecha: 01/02/2012

3.1.2.8 Costos eficientes de operación y mantenimiento

Para efectos del cálculo de los costos eficientes de operación y mantenimiento, se utilizará la información del Banco Mundial contenida en el documento "Technical and Economic Assessment of Off-Grid, Mini-Grid and Grid Electrification Technologies".

El Banco Mundial administra desde el año 1983 un programa de asistencia a la administración del sector energético (SMAP por sus siglas en inglés), el cual es una alianza de asistencia técnica global cuya misión es promover el rol de la energía en la reducción de la pobreza y el crecimiento económico de una manera ambientalmente responsable. Su actividad se aplica a economías de bajos ingresos, emergentes y en transición y contribuye al logro de objetivos de desarrollo internacionalmente acordados a través de productos del conocimiento, tales como la asistencia técnica gratuita, estudios específicos, servicios de consultoría, proyectos pilotos, generación y diseminación del conocimiento y similares.

El programa SMAP se financia con aportes realizados por el Banco Mundial y aportantes del sector oficial de Bélgica, Canadá, Dinamarca; Finlandia, Francia, Alemania, Islandia, países bajos, Noruega, Suiza, Suecia, Reino Unido, Naciones Unidas y el Departamento de Estado Unidos.

El documento incluye una evaluación económica que se llevó a cabo para tres periodos de tiempo diferentes (2005, 2010 y 2015), con el fin de incorporar reducciones de costo proyectadas del escalamiento de tecnologías emergentes. Un análisis nivelado de los costos de capital y generación se llevó a cabo en términos económicos, no en financieros, para permitir la aplicación genérica de los resultados a cualquier país en desarrollo. Las proyecciones de costos de capital y generación, incorporaron análisis de incertidumbre, permitiendo que los resultados reflejen sensibilidades a los datos de entrada.

Los resultados del estudio hacen posible comparar los costos económicos nivelados de las tecnologías sobre un rango amplio de modos de instalación y niveles de demanda, tanto en el presente como en el futuro.

De otra parte, como se señaló durante los análisis específicos a los sitios visitados, existe una marcada deficiencia en el reporte, oportunidad y calidad de la información proveniente de los agentes generadores en las ZNI, especialmente de aquellos que operan en la localidades menores, que permita disponer de información histórica y confiable con base en la cual determinar los costos eficientes de la operación y mantenimiento de estas unidades de generación.

Ante esta carencia de información comparativa a nivel nacional, y dadas las características del estudio del Banco Mundial, destacando en particular el hecho de que forma parte de un programa que viene desarrollando este organismo ininterrumpidamente desde 1983 en diferentes países en desarrollo, sus resultados se constituyen en punto de referencia de costos eficientes, con base en los cuales se determinen los cargos o tarifas que busquen remunerar los costos de AO&M que se desarrollen en las ZNI.

3.1.2.8.1 Información de referencia

En la Tabla siguiente se muestra la información del Banco Mundial en la cual para el periodo 2005 – 2015 se presentan los datos de costos fijos y variables de operación y

Rev. 01 Fecha: 01/02/2012

mantenimiento discriminado en valores mínimo, probable y máximo. Para el cálculo de este estudio se tomaron los valores probables calculados para el año 2005 y se actualizaron a dólares del 2012.

Tabla 3-40 Costos generadores diesel año 2010

Diesel/Gasc	line Generator					
			2010			
Capacity	Contents	Units	Minimum	Probable	Maximum	
	Capital Cost	\$/kW	650	810	970	
300 W	Fixed O&M	cent/kWh				
300 00	Variable O&M	cent/kWh	3,97	5,00	6,00	
	Fuel	cent/kWh	40,55	59,13	65,25	
	Capital Cost	\$/kW	500	625	750	
1 kW	Fixed O&M	cent/kWh				
1 KVV	Variable O&M	cent/kWh	2,39	3,00	3,60	
	Fuel	cent/kWh	32,95	40,73	53,02	
	Capital Cost	\$/kW	480	595	700	
100 kW	Fixed O&M	cent/kWh	1,60	2,00	2,40	
100 KVV	Variable O&M	cent/kWh	2,39	3,00	3,60	
	Fuel	cent/kWh	10,01	13,09	18,37	
	Capital Cost	\$/kW	460	555	650	
5 MW	Fixed O&M	cent/kWh	0,80	1,00	1,20	
2 10100	Variable O&M	cent/kWh	1,99	2,50	3,00	
	Fuel	cent/kWh	2,92	4,39	6,9	

Fuente: Estudio del Banco Mundial. "Technical and Economic Assessment of Off-Grid, Mini-Grid and Grid Electrification Technologies". Tabla C1, página C8. 2006.

3.1.2.8.2 Determinación de los costos eficientes fijos y variables de O&M

Con base en la anterior información se calcularon los costos fijos y variables para máquinas de 100 y 5000 kW, asumiendo un factor de planta del 85% y un despacho de 14 horas diarias al 100% de carga y 10 horas diarias al 50 % de carga. Los resultados obtenidos se muestran en la siguiente Tabla.

Tabla 3-41 Costos eficientes fijos y variables de O&M (dólares del 2012)

100 kW	0,02	USD/kWh
Fijo	118,11	USD/kW
Variable	0,04	USD/kWh
5000 kW	0,01	USD/kWh
Fijo	60,31	USD/kW
Variable	0,03	USD/kWh

CREG				
INVERSIONES Y	GASTOS DE	AOM EN ZNI	CON PLANTAS	S TÉRMICAS

CREG	Doc. AN-USA-882-03
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

Rev 01

Fecha: 01/02/2012

Los resultados de costos eficientes de la Tabla anterior se transforman a unidades de USD/kW-año para los costos fijos y USD/kWh para los costos variables. Los valores así calculados se asignan a los rangos de potencia pertinentes según se muestra en la siguiente tabla.

Tabla 3-42 Costos fijos y variables eficientes por rangos de potencia

Rangos	Fijos	Variables
kVV	USD/kW- año	USD/kWh
5 a 25	118,00	0,035
25 a 150	118,00	0,035
150 a 500	60,30	0,029
500 a 1000	60,30	0,029
>1000	60,30	0,029

3.1.3 Costos de Combustible

INFORME FINAL - ESTUDIOS EN ZNI

Los costos de combustible puestos en el sitio de consumo, corresponden al costo de éste en el centro de abastecimiento sumado al costo del transporte más el costo correspondiente a las pérdidas en que se pueda incurrir durante este proceso.

3.1.3.1 Plantas de abasto

Las plantas de abasto son instalaciones en las cuales se realiza el almacenamiento de derivados del petróleo en tanques de mayor dimensión a los que se encuentran en las estaciones de servicio (hasta 2,000 galones), allí la comercialización de los productos se realiza con precios mayoristas y permite que los minoristas puedan abastecerse de los productos y poder llegar a percibir pequeños márgenes de utilidad. Para mantener el suministro a estas plantas normalmente se utilizan los poliductos los cuales desembocan en los tanques de la planta respectiva.

En las Zonas No Interconectadas, así como no existe el Sistema Interconectado Nacional-SIN, no existen los poliductos. Sin embargo y dada la necesidad de plantas de abasto de combustibles, se han construido algunas que deben ser abastecidas mediante la utilización de mecanismos diferentes de transporte. A estas plantas se les denomina plantas de abasto no interconectadas o simplemente no conectadas a poliductos. Ver siguiente figura.

Rev. 01 Fecha: 01/02/2012

Figura 3-5 Plantas de abasto en Colombia

Rev. 01 Fecha: 01/02/2012

3.1.3.2 Esquema típico de transporte de combustibles y lubricantes para las ZNI

El costo del denominado electro-combustible (ACPM que se envía a plantas de generación), está regulado en el punto de abasto y de ahí en adelante, hasta la cabecera municipal, se utiliza un transporte local, el cual en general se hace por vía fluvial y para el cual se encuentran empresas debidamente registradas, las cuales se contratan para el servicio requerido.

Para el tramo entre la cabecera municipal y la localidad donde se consume, el transporte se comporta dentro de un mercado de tipo monopólico y los precios los establecen los transportadores regionales, los cuales enfrentan situaciones socioeconómicas particulares, por lo cual son precios más altos que los esperados en un mercado normal y competitivo.

Figura 3-6 Esquema genérico de suministro de electro combustible

El valor final del combustible puesto en sitio, será la suma del precio en punto de abasto más el costo del transporte hasta la cabecera municipal y para cada localidad se añaden, a lo anterior, el costo del transporte hasta ésta.

Dada la relación de volumen de combustible necesario vs. Lubricante para una operación se considerará que el costo de combustible de combustible y lubricantes está representado por el costo del primero.

3.1.3.3 Costo de Transporte, Manejo y Distribución de Combustibles y Lubricantes

Para el desarrollo de esta actividad se recopiló información sobre transportadores de combustible en cada sitio de estudio (ver anexo). A continuación se relacionan los datos obtenidos en cuanto a distancias recorridas por los transportadores a cada localidad:

Rev. 01 Fecha: 01/02/2012

Tabla 3-43 Distancia centros de abasto a cabeceras municipales

ORIGEN	DESTINO	DISTANCIA (km)	MODO DE TRANSPORTE
Bogotá	Cali	281,0	AEREO
Cali	Guapi	198,0	AEREO
Buenaventura	Guapi	161,0	MARITIMO
	Localidad menor Atajo 1	6.0	FLUVIAL
GUAPI	Localidad menor Atajo 2	5.6	FLUVIAL
	Chamon	2.6	FLUVIAL
Bogotá	Medellín – Rionegro	216,0	AEREO
Medellín – Rionegro	Olaya Herrera	37,0	TERRESTRE
Olaya Herrera	Acandí	341,0	AEREO
ACANDI	Localidad menor San Francisco	26,0	MARITIMO
Bogotá	San José del Guaviare	376,0	TERRESTRE
San José del Guaviare	Miraflores	168,0	AEREO
MIRAFLORES	Localidad menor Lagos del Dorado	37,0	FLUVIAL
Bogotá	Villavicencio	82,0	AEREO
Villavicencio	Mitú	500,0	AEREO
MITU	Localidad menor Acaricuara	63,0	AEREO
Bogotá	Quibdo	312,0	AEREO
QUIBDO	Pizarro	125,0	AEREO
DIZADDO	Localidad menor Piliza	13,0	MARITIMO
PIZARRO	Localidad menor Virudó	49,0	MARITIMO
Bogotá	Puerto Inírida	700,0	AEREO
PUERTO INIRIDA	Localidad menor Chorro Bocón	85,0	FLUVIAL
FUERTU INIRIDA	Localidad menor Remanso	44,0	FLUVIAL
Bogotá	Puerto Leguízamo	566,0	AEREO

Los costos determinados para cada una de las centrales instaladas en los distintos sitios, se relacionan en la tabla continuación:

Rev. 00

Fecha: 14/12/2012

INFORME FINAL – ESTUDIOS EN ZNI

Tabla 3-44 Costos de transporte de combustible para cada sitio de estudio Col\$ 2012

Cer	itro Poblado	Empresa Distribuidora	Costo Transporte a Sitio (\$/gal)	Distancia Abasto - Sitio (km)	Indicador COP\$/ton-km	Modo de transporte
Chocó	Acandí	EMSELCA	1.297,0	286,0	1.409,4	Maritimo
Ciloco	San Francisco	EMSELCA	1.297,0	312,0	1.292,0	Maritimo
	Pizarro Bajo Baudó	Electrobaudó	1.631,4	262,0	1.935,2	Maritimo
Chocó	Piliza	Electrobaudó	2.131,4	275,0	2.408,8	Maritimo
	Virudó	Electrobaudó	2.531,4	311,0	2.529,7	Maritimo
	Guapi	Energuapi	1.731,4	172,0	3.128,5	Maritimo
Cauca	Atajo 1	Energuapi	2.031,4	178,0	3.546,9	Fluvial
Cauca	Atajo 2	Energuapi	2.031,4	177,6	3.554,9	Fluvial
	Chamón	Energuapi	1.931,4	174,6	3.437,9	Fluvial
	Puerto Inírida	Emelce	1.100,0	324,0	1.055,2	Fluvial
Guainía	El Remanso	Emelce	3.800,0	368,0	3.209,2	Fluvial
	Chorrobocón	Emelce	8.100,0	409,0	6.155,0	Fluvial
Guaviare	Miraflores	Municipio Miraflores	116,6	168,0	215,6	Fluvial
Guaviare	Lagos del Dorado	Municipio Miraflores	116,6	205,0	176,7	Fluvial
	Puerto Leguízamo	Empuleg	700,0	400,0	543,9	Fluvial
Putumayo	Puerto Ospina	Empuleg	1.200,0	515,0	724,2	Fluvial
	Nueva Paya	Empuleg	1.200,0	466,0	800,3	Fluvial
Vounée	Mitú	Gobernación Vaupés	16.000,0	500,0	9.945,3	Aéreo
Vaupés	Acaricuara	Gobernación Vaupés	26.843,0	563,0	14.818,0	Aéreo

INFORME FINAL – ESTUDIOS EN ZNI Rev. 00 Fecha: 14/12/2012

Tabla 3-45 Costos de transporte fluvial y marítimo en \$/ton-km 2012

	arítimo Choco Caribe	laritimo Chocó Pacífico	Fluvial Chocó		uvial 2 nírida	uvial 3 Iaviare	ıvial 4 umayo
	\$ 1.409	\$ 2.409	\$ 3.547	\$	1.055	\$ 216	\$ 544
	\$ 1.292	\$ 2.530	\$ 3.555	\$	3.209	\$ 177	\$ 724
		\$ 3.129	\$ 3.438	\$	6.155		\$ 800
Costo eficiente				No	aplica	\$ 196	\$ 689
Costo promedio	\$ 1.351	\$ 2.689	\$ 3.513				

En la tabla anterior se ordenan los costos por ton/km obtenidos para transporte de combustible dirigidos a distintos puertos marítimos y desplazándose por diferentes ríos. Se observa que los costos para el puerto caribe en el Chocó son similares, lo que señala la posible existencia de una condición de oligopolio en el transporte a ese puerto y por tanto el promedio de los datos no arroja un costo eficiente. Lo mismo se puede decir de los costos por vía marítima a los puertos del Chocó pacífico y los costos del transporte fluvial en el Chocó.

Los costos por el río Inírida se ven afectados por las condiciones estacionales del mismo, lo que resulta en precios máximo cuando este tiene un caudal muy bajo, toda vez que no hay continuidad en el desplazamiento de las canoas y la carga se debe llevar por tramos utilizando vía terrestre.

En los ríos Guaviare y Putumayo la relativa uniformidad y bajo costo del transporte fluvial, permite inferir la presencia de un mercado de transporte sobre éstos, dado su caudal suficiente y permanente, por tanto en las condiciones actuales existe un costo eficiente que es el promedio de los datos registrados en la Tabla 3-45.

A diferencia de la mayoría de los sitios en los cuales se encuentran instaladas las plantas de generación objeto de este estudio, y que se abastecen e combustible utilizando los modos terrestre, fluvial o marítimo, el único modo de transporte para abastecer de combustible a la central localizada en Mitú, es el aéreo.

La práctica común en Colombia en el sector de transporte consiste en que al acordar el precio de transporte de una carga, éste incluye el costo del manejo de la misma, por lo cual no se presenta en las tablas de información sobre costo de transporte una relación adicional sobre costo de manejo de la carga.

Los costos de distribución son aquellos calculados, con la información y metodología ya presentadas, para el transporte entre las cabeceras y localidades menores.

3.1.3.4 Pérdidas por evaporación y trasiego

El transporte del combustible desde la planta de abasto hasta los tanques de las centrales de generación ubicadas en las cabeceras municipales, implica la realización de dos o más operaciones de trasiego de acuerdo con los modos de transporte que sea necesario utilizar.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Durante la operación de trasiego para pasar el combustible de un recipiente a otro se presenta evaporación al medio ambiente lo que se traduce en una merma del volumen a transportar.

Tabla 3-46 Condiciones ambientales de las ZNI

ITEM	TEMPERATURA MEDIA	HUMEDAD RELATIVA	ALTURA(m/snm)
ACANDI	28°C	90%	50 mts
GUAPI	28°C	85%	5 mts
MIRAFLORES	28°C	85%	200 mts
PIZARRO	28°C	90%	12 mts
MITU	27°C	84°C	300 mts
PUERTO INIRIDA	27°C	85%	242 mts
PUERTO LEGUIZAMO	30°C	85%	380 mts

Para determinar las pérdidas de combustible por trasiego se hicieron los cálculos utilizando las recomendaciones de la AP 42. En esta se calcula utilizando la siguiente formula (30% de error).

$$Ll = 12.46 \frac{SPM}{T}$$

LI = perdidas por trasiego en lb por cada mil galones bombeados $(\frac{lb}{1000 \ aal})$

S = factor de saturación (ver tabla 2)

P = presión de vapor real en libras por pulgada cuadrada $(\frac{lb}{inch^2})$ (ver tabla 1)

M = peso molecular del vapor en libras por libra-mol $(\frac{b}{lb-mol})$ (ver tabla 1)

T = temperatura del combustible ${}^{\circ}R = {}^{\circ}F + 460 = \frac{9}{5}{}^{\circ}C + 492$

Pérdidas esperadas bajo condiciones estándar para diesel.

S= 0.6 (si la carga es sin salpicadura y no hay balance de vapor)

P a 27°C = 0.012

M = 130

 $T = 27^{\circ}C = 540.6^{\circ}R$

$$Ll = 12.46 \frac{0.6 * 0.012 * 130}{540.6} = \frac{0.0215lb}{1000gal} = \frac{0.0097kg}{1000gal}$$

Rev. 01

Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Este cálculo se debe hacer por cada bombeo de combustible efectuado hasta su depósito final.

En las cabeceras municipales objeto de la visita por lo general se dan tres trasiegos en cada viaje, además la temperatura promedio en las cabeceras municipales visitadas era de 27°C. Por lo tanto se espera que por cada 1000 galones adquiridos se pierdan 0.029 Kg de combustible lo que equivale a 0.131 galones de combustible cada 1000 galones comprados, esto equivale a un 0.013% de pérdidas por evaporación durante el trasiego. Esto varía muy levemente en cada localidad debido a que el diesel es poco volátil lo que hace de estas pérdidas algo no significativo. La mayoría de las pérdidas en trasiego se dan por equipos inadecuados y malas prácticas lo que propicia derrames de combustible más significativos que las pérdidas por evaporación.

Tabla 3-47 Presión de vapor real de combustibles

	Vapor	Liquid			True Va	por Pressure	, P _{VA} (psi)		
Petroleum Liquid	Molecular Weight at 60°F, M _V (lb/lb-mole)	Density At 60°F, W _L (lb/gal)	40°F	50°F	60°F	70°F	80°F	90°F	100°F
Crude oil RVP 5	50	7.1	1.8	2.3	2.8	3.4	4.0	4.8	5.7
Distillate fuel oil No. 2	130	7.1	0.0031	0.0045	0.0065	0.0090	0.012	0.016	0.022
Gasoline RVP 7	68	5.6	2.3	2.9	3.5	4.3	5.2	6.2	7.4
Gasoline RVP 7.8	68	5.6	2.5929	3.2079	3.9363	4.793	5.7937	6.9552	8.2952
Gasoline RVP 8.3	68	5.6	2.7888	3.444	4.2188	5.1284	6.1891	7.4184	8.8344
Gasoline RVP 10	66	5.6	3.4	4.2	5.2	6.2	7.4	8.8	10.5
Gasoline RVP 11.5	65	5.6	4.087	4.9997	6.069	7.3132	8.7519	10.4053	12.2949
Gasoline RVP 13	62	5.6	4.7	5.7	6.9	8.3	9.9	11.7	13.8
Gasoline RVP 13.5	62	5.6	4.932	6.0054	7.2573	8.7076	10.3774	12.2888	14.4646
Gasoline RVP 15.0	60	5.6	5.5802	6.774	8.1621	9.7656	11.6067	13.7085	16.0948
Jet kerosene	130	7.0	0.0041	0.0060	0.0085	0.011	0.015	0.021	0.029
Jet naphtha (JP-4)	80	6.4	0.8	1.0	1.3	1.6	1.9	2.4	2.7
Residual oil No. 6	190	7.9	0.00002	0.00003	0.00004	0.00006	0.00009	0.00013	0.00019

Rev. 01

Fecha: 01/02/2012

Tabla 3-48 Factor de pérdida por tipo de cargo

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

3.1.3.5 Costo de Transporte de GLP

Considerando como recipiente de transporte del GLP un tanque que pueda ser transportado en modo terrestre en un camión de 3 ejes y transportado en modo fluvial y marítimo en barcazas o barcos de cabotaje de 25 toneladas, el peso total del tanque y el GLP asciende a 19.5 toneladas aproximadamente.

Debido a las dimensiones y peso del tanque de transporte del GLP (diámetro externo: 1.9 m., longitud 7.2 m. aproximadamente), este tipo de transporte solo sería factible actualmente a aquellos sitios de generación que estén localizados a la orilla de ríos navegables durante todo el año, tales como el Putumayo, Guaviare, el Meta, el Caquetá y el Casanare.

Para algunos sitios con central generadora tales como Acandí, Guapi y Pizarro Bajo Baudó, se requiere el uso de pequeños barcos de cabotaje que puedan transportar el tipo de tanque cisterna propuesto.

El método de cálculo utilizado para obtener el costo del GLP en los diferentes sitios es el siauiente:

- 1. Se determina las dimensiones del tanque, su peso y el peso del GLP líquido transportado en éste.
- Se establecen las distancias a recorrer entre el sitio de abastecimiento hasta el sitio de generación. Para el cálculo del costo de transporte se tiene en cuenta que se debe pagar tanto el viaje de ida como el de regreso del tanque y el GLP. En el viaje de regreso solo se tiene en cuenta el peso del tanque.
- 3. Se establece el indicador de costo de transporte presentado en la Tabla 3-45.
- 4. Se determina el precio total en pesos colombianos y en pesos por galón.

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI Fecha: 01/02/2012

La siguiente tabla presenta los valores obtenidos al aplicar la metodología anterior.

Tabla 3-49 Costos de transporte de GLP por sitio

	Sitio	Distancia Abasto - Sitio (km)	Peso (ton) de ida	Peso (ton) de regreso	\$/ton-km	COP	\$/gal
Chocó	Acandí	286	19,5	9,4	\$ 1.351	\$ 11.164.042	\$ 2.273
CHOCO	San Francisco	312	19,5	9,4	\$ 1.351	\$ 12.178.955	\$ 2.480
	Pizarro Bajo Baudó	262	19,5	9,4	\$ 2.689	\$ 20.360.623	\$ 4.146
Chocó	Piliza	275	19,5	9,4	\$ 2.689	\$ 21.370.883	\$ 4.352
	Virudó	311	19,5	9,4	\$ 2.689	\$ 24.168.526	\$ 4.921
	Guapi	172	19,5	9,4	\$ 2.689	\$ 13.366.516	\$ 2.722
Cauca	Atajo 1	178	19,5	9,4	\$ 3.513	\$ 18.072.689	\$ 3.680
Cauca	Atajo 2	177,6	19,5	9,4	\$ 3.513	\$ 18.032.076	\$ 3.672
	Chamón	174,6	19,5	9,4	\$ 3.513	\$ 17.727.480	\$ 3.610
Guaviare	Miraflores	168	19,5	9,4	\$ 196	\$ 952.526	\$ 194
	Lagos del Dorado	205	19,5	9,4	\$ 196	\$ 1.162.308	\$ 237
	Puerto Leguízamo	400	19,5			\$ 7.970.123	\$ 1.623
Putumayo	Puerto Ospina	515	19,5	9,4	\$ 689	\$ 10.261.533	\$ 2.090
	Nueva Paya	466	19,5	9,4	\$ 689	\$ 9.285.193	\$ 1.891

3.1.3.6 Conclusiones

- 1. Los costos de transporte fluvial encontrados son los del tipo de mercado propio en cada región.
- 2. Los costos de transporte marítimo a pesar de obtenerse de un mercado local distan de los precios internacionales.

En cuanto a los consumos y costos del combustible se puede mencionar que:

- 3. El consumo de combustible depende del número de horas de servicio y de la eficiencia de la máquina, lo cual está relacionado con el precio del equipo. De manera general a mayor precio mayor eficiencia y por lo tanto se deberá seleccionar el equipo que presente mejor relación precio eficiencia.
- 4. El rendimiento y consumo de combustible dependerá del nivel de carga de la planta en relación con la demanda. En general la planta presenta mejor eficiencia cerca de la demanda máxima, por lo cual debe buscarse que la planta esté operando cerca de la demanda máxima y no muy por debajo ya que esto conlleva rendimientos bajos, y por lo tanto altos consumos.

3.1.4 Transporte de combustible en cabeceras municipales de las ZNI

A continuación se relacionan los costos de combustibles en las cabeceras municipales de las ZNI, con base en la metodología presentada en el numeral 3.1.3.

Rev. 01 Fecha: 01/02/2012

Tabla 3-50 Transporte de combustible a cabeceras municipales de las ZNI

					Distancia Centro de Abasto - Cabecera Municipal (km)				\$/ton-km		\$/gal diesel		\$/ga	ıl GLP
D/pto	Grupo	Cabecera Municipal	Ría	Centro de Abasto	Aereo	Terrestre	Fluvial	Marítimo						
Antioquia	1	Vigia del Fuerte	Atrato	Cartagena	450				\$	5.500	\$	7.964	\$	504
Chocó	1	Bojayá	Atrato	Cartagena				458	\$	1 400	\$	2.063	\$	131
Chocó	1	Unguía	Atrato	Cartagena				314	\$	1 400	\$	1 414	\$	90
Chocó	1	Medio Atrato	Atrato	Cartagena				507	\$	1 400	\$	2.284	\$	145
Chocó	2	Bahia Solano	Mar Pacífico	Buenaventura				269	\$	2.500	\$	2.164	\$	137
Chocó	2	Litoral de San Juan	Mar Pacífico	Buenaventura				62,7	\$	2.500	\$	504	\$	32
Chocó	2	Sipí	Mar Pacífico	Buenaventura				104	\$	2.500	\$	837	\$	53
Chocó	2	Alto Baudó	Mar Pacífico	Buenaventura				182	\$	2.500	\$	1 464	\$	93
Chocó	2	Nuquí	Mar Pacífico	Buenaventura				208	\$	2.500	\$	1 673	\$	106
Chocó	2	Jurado	Mar Pacífico	Buenaventura				365	\$	2.500	\$	2.936	\$	186
Cauca	3	López de Micay	Mar Pacífico	Buenaventura					\$	2.500	\$	-	\$	11.5
Cauca	3	Timbiquí	Mar Pacifico	Buenaventura				140	\$	2.500	\$	1 126	\$	71
Nariño	3	Iscuandé	Mar Pacífico	Buenaventura				188	\$	2.500	\$	1 512	\$	96
Nariño	3	La Tola	Mar Pacífico	Buenaventura				206	\$	2.500	\$	1 657	\$	105
Nariño	3	El Charco	Mar Pacifico	Buenaventura				145	\$	2.500	\$	1 166	\$	74
Nariño	3	Olaya Herrera	Mar Pacifico	Buenaventura	351				\$	2.500	\$	2.823	\$	179
Nariño	3	Mosquera	Mar Pacífico	Buenaventura				216	\$	2.500	\$	1 738	\$	110
Nariño	3	Francisco Pizarro	Mar Pacífico	Buenaventura				122	\$	2.500	\$	981	\$	62
Vichada	4	La Primavera	Meta, Casanare	Mansilla					\$	200	\$	-	\$	-
Vichada	4	Santa Rosalía	Meta, Casanare	Mansilla	459				\$	5.500	\$	8.123	\$	514
Casanare	4	Orocué	Meta, Casanare	Mansilla		377			\$	500	\$	607	\$	38
Meta	5	Mapiripán	Guaviare	Mansilla	326				\$	5.500	\$	5.769	\$	365
Meta	5	La Macarena	Guaviare	Mansilla	270				\$	5.500	\$	4 778	\$	302
Caquetá	6	Solano	Cagueta, Caguan	Neiva o Yumbo		466			\$	500	\$	750	\$	47
Vaupés	9	Carurú	no hay datos	Mansilla, Apiay					\$	700	\$	-	\$	11.5
Vaupés	9	Taraira	no hay datos	Mansilla, Apiay							\$	-	\$	- 3
Vichada	11	Puerto Carreño	terrestre	Puerto Carreno		1400			\$	1_000	\$	4 505	\$	285
Vichada	11	Cumaribo	Aéreo	Puerto Carreno	320				\$	5.500	\$	5.663	\$	358

Para el cálculo de los datos relacionados en la tabla anterior, se utilizaron los siguientes indicadores teniendo en cuenta los resultados obtenidos para durante los análisis de costo de transporte de combustible en cada uno de los sitios objeto de estudio.

Tabla 3-51 Indicadores de Transporte

(aritimo Choco Caribe	C	aritimo hocó acifico	Fluvial Chocó		uvial aviare	uvial umayo
\$	1.400	\$	2.500	\$ 3.000	\$	200	\$ 700

Para los ríos Meta, Casanare, Caquetá se asigna el indicador estimado para el transporte fluvial en el río Guaviare.

3.1.5 Elementos que afectan los costos de producción

3.1.5.1 Disponibilidad

La disponibilidad se refiere al porcentaje del tiempo que la planta deberá estar generando en relación con las horas de servicio ofrecidas. Se puede media horaria, diaria, mensual o anual.

CREG
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS

Doc. AN-USA-882-03

Rev 01 Fecha 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Una planta generando 6 horas puede presentar una disponibilidad de 100% o 50% si solo se presta el servicio la mitad del tiempo, o 0% si la planta se encuentra fuera de servicio todo un día.

Para lograr altas disponibilidades en estas zonas se requiere tener un alto stock de repuestos dado el alto tiempo que requiere su compra sumado a la disponibilidad de personal técnico calificado y su desplazamiento hasta el sitio de la planta. La alternativa para garantizar una alta disponibilidad es disponer de una planta en reserva o back up.

El diseño final de la planta, el concepto de back up o el stock de repuestos dependerá de la disponibilidad que se requiera o se solicite.

La empresa debe comprometerse a una disponibilidad determinada para el establecimiento de la tarifa y la superintendencia o el ente de control deben verificar que se cumpla o se consideren multas o ajustes de la tarifa en caso de no cumplir el requerimiento.

En las gráficas siguientes se muestra la realidad de la operación y la disponibilidad del servicio en algunas de las poblaciones donde se presta el servicio.

Vigía del fuerte Horas promedio de prestación del servicio 4:40 horas

La tola

Horas efectivas de prestación del servicio (cinco horas cincuenta y cinco minutos)

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

La primavera

Horas efectivas de prestación del servicio (diecisiete horas)

Figura 3-7 Operación y disponibilidad en poblaciones ZNI

Como puede observarse la disponibilidad es muy baja y no se tiene un concepto de respaldo que garantice el servicio ofrecido. No hay definición de responsabilidad y tampoco existe control y sanciones por la calidad del mismo.

3.1.5.2 Factor de Carga

El factor de carga se refiere al porcentaje de carga de la generación máxima en relación con la demanda eléctrica real la cual varía dependiendo del número de horas de prestación del servicio. A menor horas de servicio mayor factor de carga.

Rev. 01 Fecha 01/02/2012

Las gráficas siguientes corresponde a datos historios registrados por el centro de monitoreo y control del IPSE para algunos de los sitios donde se debería prestar el servicio por lo menos 6, 12, 18 y 24 horas y que cuentan con telemedida.

Figura 3-8 Curva de carga para 6 horas de servicio

Figura 3-9 Curva de carga típica para 12 horas de servicio

Rev. 01 Fecha: 01/02/2012

Figura 3-10 Curva de carga típica para 18 horas de servicio

Figura 3-11 Curva de carga típica para 24 horas de servicio

Es importante anotar que el IPSE cuenta con equipos de telemedida de operación para las principales plantas de cabeceras municipales de las ZNI. En La tabla siguiente relacionan las 38 plantas de generación que cuentan con telemedida.

Rev. 01 Fecha 01/02/2012

Tabla 3-52 Localidades de las ZNI con Telemetria - 2012

LOCALIDAD	"Capacidad instalada [KW]"	"Potencia Máxima Mensual [kW]"	"Fecha Potencia Máxima"	"Demanda Mensual [kWh]"	"Demanda promedio dia [kWh]"	"Harano Prest. de Servicio"	"Promedic diario"
ACANDI (ACANDI-CHOCO)	3000	645,48	SABADO , DIG/81/2011 19:45:00	226430	7304	LUNES 00:00 - 02:00	17 horas 52 minutos
BALBOA (UNGUIA-CHOCO)	150	81,31	SABADO , DIC/24/2011 19:00:00	8580	343	LUNES 17:00 - 22:00, MARTES 17:00 - 22:00, MIERCOLES 17:00 - 22:00, JUEVES 17:00 - 22:00, VIERNES 17:00 - 22:00, SABADO 17:00 - 22:00, DOMINGO 17:00 - 22:00	6 horas 8 minutos
BARRANCO MINAS (GUAVIARE-GUAINIA)	300	102,09	MIÉRCOLES, DIC/28/2011 18:15:00	13098	436	LUNES 16:00 - 23:00, MARTES 16:00 - 23:00, MIERCOLES 16:00 - 23:00, JUEVES 16:00 - 23:00, VIERNES 16:00 23:00, SABADO 16:00 - 23:00, DCMINGO 16:00 - 23:00	5 horas 18 minutos
BOCAS DE SATINGA (OLAYA HERRERA-NARINO)	1200	1198.03	SABADO , DIC/31/2011 19:45:00	36680D	11832	LUNES 00:00 - 05:00 . 17:00 - 23:59, MARTES 00:00 - 03:00. 17:00 - 23:59, MIERCOLES 00:00 - 03:00. 17:00 - 23:59, JUEVES 00:00 - 03:00, 17:00 - 23:59, VIERNES 00:00 - 03:00, 17:00 - 23:59, SABADO 00:00 - 03:00 . 12:00 - 23:59, DOMINGO 00:00 - 05:00 12:00 - 23:59	12 horas 43 minutos
CAPURGANA (ACANDI-CHOCO)	900	497,36	SABADO , DIC/31/2011 19:15:00	150266	4847	LUNES 00:00 - 03:00 08:00 - 23:59 MARTES 00:00 - 02:00 08:00 - 23:59 MIERCOLES 00:00 - 02:00 08:00 - 23:59 JUEVES 00:00 - 02:00 08:00 - 23:59 VIERNES 00:00 - 02:00 08:00 - 23:59 SABADO 00:00 - 02:00 09:00 - 23:58 DOMINGO 00:00 - 03:00 09:00 - 23:59	17 horas 42 minutos
CARURU (CARURU-VAUPES)	269	143,53	VIERNES DIC/09/2011 17:00:00	19874	641	LUNES 16:00 - 23:00 MARTES 18:00 - 23:00 MIERCOLES 18:00 - 23:00, JUEVES 18:00 - 23:00, VIERNES 18:00 - 23:00, SABADO 18:00 - 23:00, DCMINGO 18:00 - 23:00	5 horas 35 minutos
CHAJAL (TUMACO-NARINO)	275	183,57	VIERNES . DIG/30/2011 19:00:00	28083	936	LUNES 18:00 - 23:00, MARTES 18:00 - 23:00, MIERCOLES 18:00 - 23:00, JUEVES 18:00 - 23:00, VIERNES 18:00 - 23:00, SABADO 18:00 - 23:00, DOMINGO 18:00 - 23:00	5 horas 39 minutos
CUMARIBO (CUMARIBD-VICHADA)	350	515,24	MARTES , DIG/13/2011 19:45:00	27236	1361	LUNES 13.00 - 23.59, MARTES 13.00 - 23.59, MIERCOLES 13.00 - 23.59, JUEVES 13:00 - 23.59, VIERNES 13:00 - 23.59, SABADO 13:00 - 23.59, DOMINGO 13:00 - 23.59	3 horas 20 minutos
CUPICA (BAHIA SOLANO-CHOCO)	125	107,91	JUEVES , DIG/01/2011 18:30:00	31735	1023	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	21 horas 43 minutos
EL CHARCO (EL CHARCO NARINO)	2604	982,08	MARTES . DIC/06/2011 19:45:00	142055	4582	LUNES 00:00 - 02:00, . 13:00 - 23:59, MARTES 13:00 - 23:59, MIERCOLES 13:00 - 23:59, JUEVES 13:00 - 23:59, VIERNES 13:00 - 23:59, SABADO 13:00 - 23:59, DOMINGO 00:00 - 02:00, . 13:00 - 23:59	6 horas 51 minutos
GUAPI (GUAPI-CAUCA)	3675	1755 16	SABADO , DIC/31/2011 20:15:00	720627	23246	LUNES 00 00 - 02 00 , 07 00 - 23:59, MARTES 00 00 - 01 00, 07 00 - 23 59, MIERCOLES 00 00 - 01:00, 07:00 - 23:59, JUEVES 00:00 - 01:00, 07:00 - 23:59, VIERNES 00:00 - 01:00, 07:00 - 23:59, SABADD 00 00 - 01:00, 07:00 - 23:59 DOMINGO 00:00 - 02:00, 07:00 - 23:59	19 horas 59 minutos
INIRIDA (INIRIDA-GUAINIA)	5877	2289.76	JUEVES , DIC/15/2011 18:00:00	1124642	36278	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	24 horas 0 minutos
JURADO (JURADO-CHOCO)	350	253,70	SÁBADO , DIC/31/2011 20:00.00	47131	1745	LUNES 00:00 - 02:00 , 11:00 - 14:00 , 17:00 - 23:59 , MARTES 11:00 - 14:00 , 17:00 - 23:59 , MIERCOLES 11:00 - 14:00 , 17:00 - 23:59 , JUEVES 11:00 - 14:00 , 17:00 - 23:59	9 horas 34 minutos
LA MACARENA (LA MACARENA-META)	964	382,36	VIERNES DIC/09/2011 19:00:00	98439	3177	LUNES 14:00 - 23:00, MARTES 14:00 - 23:00, MIERCOLES 14:00 - 23:00, JUEVES 14:00 - 23:00, VIERNES 14:00 - 23:00, SABADO 10:00 - 23:59, DOMINGO 10:00 - 23:59	12 horas 44 minutos
LA PRIMAVERA (LA PRIMAVERA-VICHADA)	949	665,98	SÁBADO , DIC/17/2011 18:30.00	178666	5763	LUNES 04:00 - 23:59, MARTES 04:00 - 23:59, MIERCOLES 04:00 - 23:59, JUEVES 04:00 - 23:59, VIERNES 04:00 - 23:59, SABADO 04:00 - 23:59, DOMINGO 04:00 - 23:59	16 horas 54 minutos
LA TOLA (LA TOLA-NARINO)		307,61	SÁBADO , DIC/24/2011 19:15:00	34875	1453	LUNES 16:00 - 23:59, MARTES 16:00 - 23:59, MIERCOLES 18:00 - 23:59, JUEVES 16:00 - 23:59, VIERNES 18:00 - 23:59, SABADO 18:00 - 23:59, DOMINGO 18:00 - 23:59	5 horas 55 minutos
LEGUIZAMO (PUERTO LEGUIZAMO-PUTUMAYO)	4000	1486,76	LUNES . DIC/12/2011 18:30:00	538549	17372	LUNES 12:00 - 23:59, MARTES 12:00 - 23:59, MIERCOLES 12:00 - 23:59, JUEVES 12:00 - 23:59, VIERNES 12:00 - 23:59 SABADO 12:00 - 23:59, DOMINGO 12:00 - 23:59	23 horas 49 minutos

Rev. 01 Fecha: 01/02/2012

LOCALIDAD	"Capacidad Instalada [KW]"	"Potencia Māxima Mensual [kW]"	"Fecha Potencia Máxima"	'Demanda Mensual [kWh]'	"Demanda promedio dia (kWh)"	"Horario Presil de Servicio"	"Promedia diarro"
LETICIA (LETICIA-AMAZONAS)	16990	6829,67	JUEVES , DIC/15/2011 18:30.00	3305614	106632	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	24 horas 0 minutos
LIMONES (GUAPI-CAUCA)		64,46	SABADO , DIC/31/2011 19:30.00	7436	323	LUNES 16:00 - 23:00, MARTES 16:00 - 23:00, MIERCOLES 16:00 - 23:00, JUEVES 16:00 - 23:00 VIERNES 16:00 - 23:00, SABADO 16:00 - 23:00, DOMINGO 16:00 - 23:00	5 horas 55 minutos
MAPIRIPAN (MAPIRIPAN-META)	750	186,56	MIÉRCOLES DIC/21/2011 18:45:00	57658	1659	LUNES 13:00 - 22:30, MARTES 13:00 - 22:30, MIERCOLES 13:00 - 22:30, JUEVES 13:00 - 22:30, VIERNES 13:00 - 22:30, SABADO 11:00 - 23:59, DOMINGO 11:00 - 23:59	15 horas 44 minutos
MICAY (LOPEZ-CAUCA)	1075	271,04	VIERNES DIC/16/2011 20:15:00	71923	2320	LUNES 11:00 - 23:59, MARTES 11:00 - 23:59, MIERCOLES 11:00 - 23:59, JUEVES 11:00 - 23:59, VIERNES 11:00 - 23:59, SABADO 11:00 - 23:59, DOMINGO 11:00 - 23:59	12 horas 59 minutes
MIRAFLORES (MIRAFLORES-GUAVIARE)	320	214,72	JUEVES , DIC/01/2011 18:15:00	21486	693	LUNES 12:30 - 14:00, . 18:00 - 22:00, MARTES 12:30 - 14:00, . 18:00 - 22:00, MIERCOLES 12:30 - 14:00, . 18:00 - 22:00, JUEVES 12:30 - 14:00, . 18:00 - 22:00, JUEVES 12:30 - 14:00, . 18:00 - 23:59, SABADO 12:30 - 14:00, . 18:00 - 23:59, DOMINGO 12:30 - 14:00, . 18:00 - 23:59	3 horas 59 minutes
MITU (MITU-VAUPES)	2250	1668.52	LUNES , DIC/05/2011 18:45:00	744184	24005	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	23 horas 46 minutos
MOSQUERA (MOSQUERA-NARINO)	574	300,08	VIERNES DIC/09/2011 18:45:00	52344	1688	LUNES 18:00 - 23:00, MARTES 18:00 - 23:00, MIERCOLES 18:00 - 23:00, JUEVES 18:00 - 23:00, VIERNES 18:00 - 23:00, SABADO 18:00 - 23:00, DOMINGO 18:00 - 23:00	7 horas 20 minutos
MUTIS (BAHIA SOLANO-CHOCO)	2500	924,44	JUEVES , DIG/29/2011 19:15:00	419237	13523	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	23 horas 52 minuto
NUQUI (NUQUI-CHOCO)	300	312,64	JUEVES , DIC/29/2011 19:45:00	49435	1594	LUNES 18:00 - 23:00, MARTES 18:00 - 23:00, MIERCOLES 18:00 - 23:00, JUEVES 18:00 - 23:00, VIERNES 18:00 - 23:00, SABADO 18:00 - 23:00, DOMINGO 18:00 - 23:00	6 horas 38 minutos
OROCUE (OROCUE CASANARE)	75D	821,70	VIERNES DIC/02/2011 19:00:00	435292	14041	LUNES 00:00 - 23:59, MARTES 00:00 - 23:59, MIERCOLES 00:00 - 23:59, JUEVES 00:00 - 23:59, VIERNES 00:00 - 23:59, SABADO 00:00 - 23:59, DOMINGO 00:00 - 23:59	23 horas 53 minuto
PUERTO ALVIRA (MAPIR PAN-META)	180	62,69	VIERNES DIC/23/2011 18:45:00	5432	175	LUNES 12:00 - 14:00, 18:00 - 22:00. MARTES 12:00 - 14:00., 18:00 - 22:00. MIERCOLES 12:00 - 14:00., 18:00 - 22:00, JUEVES 12:00 - 14:00., 18:00 - 22:00, VIERNES 12:00 - 14:00., 18:00 - 22:00. SABADO 12:00 - 14:00 , 18:00 - 22:00, DOMINGO 12:00 - 14:00 , 18:00 - 22:00.	3 horas 41 minutes
PUERTO NARINO (PUERTO NARINO-AMAZONAS)	35D	186,38	JUEVES , DIC/01/2011 19:00 00	53978	1741	LUNES 09:00 - 14:00 , 17:00 - 23:59 MARTES 09:00 - 14:00 , 17:00 - 23:59 MIERCOLES 09:00 - 14:00 , 17:00 - 23:59 JUEVES 09:00 - 14:00 , 17:00 - 23:59 JUEVES 09:00 - 14:00 , 17:00 - 23:59 JUEVES 09:00 - 14:00 , 17:00 - 23:59 DOMINGO 09:00 - 14:00 . 17:00 - 23:5	17 horas 3 minules
REMOLINO DEL CAGUAN (CARTAGENA DEL CHAIRA-CAQUETA)	B4D	78,32	VIERNES DIC/23/2011 18:30:00	12234	394	LUNES 17:00 - 22:00, MARTES 17:00 - 22:00, MIERCOLES 17:00 - 22:00, JUEVES 17:00 - 22:00, VIERNES 17:00 - 22:00, SABADC 12:00 - 23:59, DOMINGO 10:00 - 23:59	6 horas 3 minutos
SALAHONDA (FRANCISCO PIZARRO-NARINO)	75D	727,32	VIERNES DIC/09/2011 19:00 00	193839	6252	LUNES 12:00 - 23:59, MARTES 12:00 - 23:59, MIERCOLES 12:00 - 23:59, JUEVES 12:00 - 23:59, VIERNES 12:00 - 23:59, SABADO 12:00 - 23:59, DOMINGO 12:00 - 23:59	12 horas : minutos
SAN ANTONIO DE GUAJUI (GUAPI-CAUCA)	11D	48,05	SÁBADO , DIC/10/2011 19:15:00	5680	258	LUNES 16:00 - 23:00, MARTES 16:00 - 23:00, MIERCOLES 16:00 - 23:00, JUEVES 16:00 - 23:00, VIERNES 16:00 - 23:00, SABADO 16:00 - 23:00, DOMINGO 16:00 - 23:00	6 horas 3 minutos
SANTA GENOVEVA DE DOCORDO (EL LITORAL DEL SAN JUAN CHOCO)	456	126,32	SÁBADO ; DIG/31/2011 19:45:00	14210	507	LUNES 18:00 - 23:00, MARTES 18:00 - 23:00, MIERCOLES 18:00 - 23:00, JUEVES 18:00 - 23:00, VIERNES 18:00 - 23:00, SABADO 18:00 - 23:00, DOMINGO 18:00 - 23:00	5 horas 1 minutos
SOLANO (SOLANO-CAQUETA)	400	271,66	MIÉRCOLES. DIC/21/2011 19:30:00	39356	1269	LUNES 05:00 - 06:00 , .17:00 - 22:30, MARTES 05:00 - 06:00 , .17:00 - 22:30 MIERCOLES 05:00 - 06:00 , .17:00 - 22:30, JUEVES 05:00 - 06:00 , .17:00 - 22:30, VIERNES 05:00 - 06:00 , .17:00 - 22:30, VIERNES 05:00 - 06:00 , .17:00 - 22:30, SABADO 16:00 - 23:59 DOMINGO 16:00 - 23:59	6 horas I minutos
TARAPACA (TARAPACA-AMAZONAS)		101,27	MIÉRCOLES DIC/14/2011 18:45:00	13183	425	LUNES 18:00 - 22:00, MARTES 18:00 - 22:00, MIERCOLES 18:00 - 22:00, JUEVES 18:00 - 22:00, VIERNES 18:00 - 22:00, SABADO 18:00 - 22:00, DOMINGO 18:00 - 22:00	5 horas 3 minutos
TIMBIQUI-CAUCA)	B0D	592,06	VIERNES DIC/23/2011 19:30:00	140024	4516	LUNES 00:00 - 02:00 12:00 - 23:59, MARTES 12:00 - 23:59, MIEROCLES 12:00 - 23:59, JUEVES 12:00 - 23:59, VIERNES 12:00 - 23:59, SABADO 14:00 - 23:59, DOMINGO 00:00 - 02:00, 14:00 - 23:59	12 horas minutos
TITUMATE (UNGUIA-CHOCO)	150	61,69	SABADO , DIC/24/2011 18:45:00	7278	234	LUNES 18:00 - 22:00, MARTES 18:00 - 22:00, MIERCOLES 18:00 - 22:00, JUEVES 18:00 - 22:00, VIERNES 18:00 - 22:00, SABADC 18:00 - 23:00, DOMINGO 18:00 - 22:00	5 horas 1 minutos
UNGUIA (UNGUIA-CHOCO)	913	396,88	SABADO , DIC/31/2011 19:15:00	98105	3164	LUNES 00:00 - 02:00 , . 12:00 - 23:59, MARTES 12:00 - 23:59, MIERROLES 12:00 - 23:59, JUEVES 12:00 - 23:59, VIERNES 12:00 - 23:59 SABADO 14:00 - 23:59 DOMINGO 00:00 - 02:00 , . 14:00 - 23:59	11 horas 59 minutos

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI 3.1.5.3 Consumos propios

Los consumos propios de una central de generación de energía eléctrica, están asociados a los consumos de energía que demandan los equipos auxiliares de la central, tales como aires acondicionados, sistemas de bombeo, UPS para sistemas de control y protecciones, equipos de refrigeración, maquinas herramientas, iluminación y salidas de fuerza.

La literatura internacional especializada refiere que el consumo propio de una central de generación varía en un rango del uno al cinco por ciento del total de la generación. En pequeñas plantas de generación, como aquellas ubicadas en las ZNI con una potencia inferior a 100 kW, estos consumos están representados en dos o tres salidas para iluminación, al igual que dos o tres tomas eléctricas para servicios, cuyo consumo es inferior al 2% de la energía generada.

Las centrales conformadas por varias unidades de generación generalmente cuentan con un transformador de auxiliares, para atender la demanda de los equipos y sistemas eléctricos propios, se alimenta de la propia energía generada por la central tomada a la salida de bornes de generador o de las barras de la subestación de salida. Para un efectivo control del consumo propio de energía y para efectos de disponer del control de los mismos y calcular los costos asociados, se instala un sistema de medición que registre la energía consumida por los circuitos que alimenta el transformador de auxiliares.

Si bien algunas de las centrales visitadas cuentan con transformador para auxiliares y con sistema de medición, no se obtuvo la información sobre dichos consumos. Así las cosas, con base en el plano de planta levantado en sitio para cada central, en el que se identifican las diferentes áreas operativas y sistemas que conforman la central (Control, tanques, almacén, taller, oficinas, etc) y sus equipos eléctricos asociados, se estimaron las potencias instaladas y consumos correspondientes. Las principales cargas eléctricas consideradas son:

- Iluminación interna
- Tomas eléctricas
- Iluminación externa
- Aires Acondicionados
- Electrobombas
- Compresores
- Congeladores
- Cargadores de baterías
- **UPS**
- Iluminación cabinas
- Otros

En la siguiente tabla se muestran los resultados estimados de la potencia instalada en auxiliares y los consumos mensuales correspondientes de acuerdo con las horas de prestación del servicio y aplicando un factor de utilización industrial de 0.5.

El consumo de energía de los auxiliares se compara con la energía mensual generada por cada central de generación y se expresa en porcentaje. Para el caso de las localidades

Rev. 01 Fecha: 01/02/2012

menores, el consumo se reduce en la mayoría de los casos a dos o tres salidas para toma eléctrica y una o dos salidas para iluminación.

Tabla 3-53 Consumo de auxiliares por planta (factor de utilización 50%)

LOCALIDADES	Potencia instalada en Auxiliares (kW)	Consumo Auxiliares kWh/mes	Energía generada diciembre 2012 (kWh) CNM	consumo de aux / generación (%)
PUERTO INIRIDA	47,56	17121,6	1198560	1,43%
PUERTO LEGUIZAMO	43,79	15764,4	771068	2,04%
GUAPI (CAUCA)	52,7	12648	767613	1,65%
MITU	28,02	10087,2	721493	1,40%
ACANDI	9	2025	128299	1,58%
MIRAFLORES	6,7	603	34362	1,75%
PIZARRO	11,83	851,76	99901	0,85%
PUERTO OSPINA	0,7	33,6	48450	0,07%
LAGOS DEL DORADO	0,7	33,6	47022	0,07%
PILIZA	0,7	33,6	33252	0,10%
VIRUDO	0,3	14,4	18462	0,08%
CHORRO BOCON	0,3	14,4	17034	0,08%
CHAMON	0,3	14,4	12750	0,11%
ACARICURA	0,3	14,4	12240	0,12%
SAN FRANCISCO	0,3	14,4	11628	0,12%
NUEVA PAYA	0,3	14,4	9547,2	0,15%
REMANSO	0,3	14,4	7650	0,19%
ATAJO 1	0,2	9,6	2754	0,35%
ATAJO 2	0,2	9,6	2040	0,47%

El promedio resultante de consumo de energía de equipos y sistemas auxiliares para las centrales de generación es de 1.53% de la energía mensual generada. Este resultado está cercano referente internacional y de los parámetros típicos que arrojan el software especializados para el diseño de plantas térmicas como Thermoflex (2%), con la salvedad que se está comparando con la energía generada en diciembre de 2012, que es un mes de alto consumo.

Con el propósito de disponer de información primaria que permita hacer seguimiento y análisis sobre cifras reales de consumos de auxiliares en estas centrales de generación, es recomendable que se incluya como uno de las variables a reportar de manera periódica al organismo de vigilancia, o que este consumo sea objeto de telemedida al igual que la energía entregada al distribuidor.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Los resultados indican que para el caso de las localidades menores, los consumos propios son inferiores y se encuentran por debajo del uno por ciento de la generación.

3.1.5.4 Pérdidas en transformación

Las pérdidas de energía en los transformadores son dos: i) Pérdidas en Vacio y II) Pérdidas en el cobre. Estas pérdidas se determinan mediante los ensayos en vacio y de cortocircuito respectivamente.

La Norma Técnica Colombiana ICONTEC 819 (cuarta actualización), establece los valores máximos declarados admisibles de corriente sin carga (lo), pérdidas sin carga (Po), pérdidas con carga (Pc) y tensión de cortocircuito, a 85 °C (Uz),para transformadores trifásicos autorefrigerados y sumergidos en líquido refrigerante.

A continuación se presentan algunos apartes de la citada Norma:

"Se aplica transformadores de potencia:

- a. Desde 15 kVA hasta 3 750 kVA, con tensión serie A.T. menor o igual a 15 kV y tensión serie B.T. menor o igual a 1,2 kV;
- b. Desde 75 kVA hasta 10 000 kVA, con tensión serie A.T. mayor que 15 kV y menor o igual a 46 kV y tensión serie B.T. menor o igual a 15 kV.

Transformadores de 15 kVA a 3 750 kVA, serie AT \leq 15 kV serie BT \leq 1,2 kV. Corresponde a los transformadores trifásicos autorefrigerados, sumergidos en líquido refrigerante, con frecuencia igual a 60 Hz, potencia entre 15 kVA y 3 750 kVA, tensión serie de A.T. menor o igual a 15 KV y tensión serie de la B.T. menor o igual a 1,2 kV

Transformadores de 75 kVA a 10 000 kVA, 15 kV < serie AT \leq 46 kV, serie BT \leq 15 kV. Corresponde a los transformadores trifásicos autorefrigerados, sumergidos en líquido refrigerante, con frecuencia igual 60 Hz, potencia de 75 kVA a 10 000 kVA, tensión serie de AT mayor de 15 kV pero menor o igual a 46 kV y tensión serie de D.T. rnenor o igual a 15 kV

Rev. 01 Fecha: 01/02/2012

Tabla 3-54 Transformadores trifásicos de 15 kVA a 3750 kVA, serie AT < 15kV, serie BT < 1.2 kV

Valores máximos declarados permisibles de corrientes sin carga (lo), érdidas sin carga (Po), pérdidas con carga (Pc) y tensión de cortocircuito a 85 °C (Uz)						
Potencia kVA.	lo %. de In	Po W	Pr. W	Uz %		
15	4,4	80	310	3,0		
30	3,6	135	515	3,0		
45	3,5	180	710	3.0		
75	3,0	265	1 090	3,5		
112,5	2,6	365	1 540	3,5		
150	2.4	450	1 960	4,0		
225	2,1	615	2 890	4.0		
300	2,0	765	3 675	4,5		
400	1,9	930	4 730	4,5		
500	1,7	1 090	5 780	5,0		
630	1.6	1 285	7 140	5,0		
750	1,6	1 450	8 380	5,0		
800	1,6	1 520	8 900	5,0		
1 000	1,6	1 780	11 100	5,0		
1 250	1,5	2 090	13 500	6,0		
1 600	1,5	2 520	16 700	6,0		
2 000	1,5	3 010	20 400	6,0		
2 500	1,5	3 620	25 000	6,0		
3 000	1,5	4 230	29 700	6,0		
3 750	1,5	5 160	36 600	6.0		

- 1. El valor máximo admisible de corriente sin carga (lo), pérdidas sin carga (Po), pérdidas con carga (Pc) ya incluye la tolerancia especificada en a Tabla 2 de la NTC 380.
- 2. Las pérdidas con carga (Pc) en transformadores de corriente superiores a 1 200 A, en uno u otro devanado, se deben aumentar en 5 %.
- 3. El valor máximo admisible de la tensión de cortocircuito el 85 °C (Uz) es el valor máximo que puede ser garantizado o declarado por el fabricante. Al valor declarado se le debe aplicar la tolerancia especificada en la Tabla 2 de la NTC 380.
- 4. La cuantificación del valor económico de las pérdidas de energía eléctrica debe estar de acuerdo con la NTC 2135.
- 5. Los valores máximos de lo, Po, Pc y Uz para transformadores trifásicos con potencias inferiores a 75 kVA y superiores a 10 000 kVA serie de tensión correspondiente al numeral 2.2.2. deben ser establecidos por acuerdo entre el comprador y el fabricante.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Tabla 3-55 Transformadores trifásicos de 75 kVA a 10000 kVA, 15 kV < serie BT < 15 kV

				ntes sin carga (lo) n de cortocircuito a
Potencia nominal KVA	lo % de ln	Po W	PC W	UZ %
75	3,5	390	1 370	6,0
112,5	2,6	500	1 890	6,0
150	2,5	610	2 400	6,0
225	2,5	790	3 330	6,0
300	2,0	950	4 210	6,0
400	2,0	1 150	5 320	6,0
500	1,7	1 330	6 370	6,0
630	1,7	1 540	7 690	6,0
750	1.5	1 730	8 860	6,0
800	1,5	1 800	9 330	6,0
1 000	1,2	1 980	12 000	6,0
1 250	1,0	2 370	14 300	
1 600	1,0	2 880	17 400	6,0
2 000	1,0	3 430	20 900	6,0
2 500	1,0	4 100	25 000	6,5
3 000	1,0	4 74C	29 000	6,5
3 750	1,0	5 650	34 400	6.5
4 000	0,8	5 950	36 100	
5 000	0.8	7 10C	42 600	6,5
6 000	0,8	8 200	48 200	7,15
7 500	0,8	9 790	55 100	7,15
10 000	0,8	12 300	63 000	7,15

Notas:

- 1. El valor máximo admisible de corriente sin carga (lo), pérdidas sin carga (Po), pérdidas con carga (Pc) y a Incluye la tolerancia especificada en la Tabla 2 de la NTC 380.
- 2. Las pérdidas con carga (Pc) en transformadores con corrientes superiores a 1 200 A, en uno u otro devanado, se deben aumentar en 5 %.
- 3. El valor máximo admisible de la tensión de cortocircuito a 85 °C (Uz) es el valor máximo que puede ser garantizado o declarado por el fabricante. Al valor declarado se le debe aplicar la tolerancia especificada en la Tabla 2 de la NTC 380.
- 4. La cuantificación del valor económico de las pérdidas de energía eléctrica debe estar de acuerdo con la NTC 2135

Rev. 01 Fecha: 01/02/2012

Figura 3-12 Curva característica de pérdidas sin carga

La curva característica de las pérdidas sin carga se debe establecer de acuerdo al valor de la potencia nominal del transformador, de la siguiente manera:

Desde 15 kVA hasta 150 kVA, Po = 10,514 x Pn 0.7486

Mayores de 150 kVA hasta 800 kVA, Po = 13,27 x Pn 0,7093

Mayores de 800 kVA hasta 3 750 kVA, Po = 1,227 x Pn + 554,59

Figura 3-13 Curva de pérdidas con carga

La curva característica de las pérdidas con carga se debe establecer de acuerdo al valor de la potencia nominal del transformador, de la siguiente manera:

Desde 15 KVA hasta 150 kVA, Pc = -0,0103 Pn ²+ 13,892 Pn + 106,65

Mayores de 150 kVA hasta 800 kVA, Pc = 10,465 x Pn + 537

Mayores de 800 kVA hasta 3 750 kVA, Pc = 9,2632 x Pn + 1875,2

Rev. 01 Fechal 01/02/2012

Figura 3-14 Valores máximos declarados admisibles de pérdidas con carga (Pc) para transformadores trifásicos de 15 kVA, serie AT <= 15 kV, serie BT <= 1.2 kV

La curva característica de las pérdidas sin carga se debe establecer de acuerdo al valor de la potencia nominal del transformador, de la siguiente manera:

Desde 75 kVA hasta 800 kVA, Po = 23,558 x Pn 0.6487

Mayores de 800 kVA hasta 10 000 kVA, Po = 8,3104 x Pn 0 7926

Figura 3-15 Valores máximos declarados admisibles transformadores trifásicos de 76 kVA a 10 000 kVA, 15 KV< serie A.T. ≤ 46 kV, serio B.T. ≤ 15 kV"

Teniendo en cuenta que la citada Norma ICONTEC NTC 819 (cuarta actualización), de la cual se extractaron los anteriores apartes, fue ratificada por el Consejo Directivo el 29 de noviembre de 1995 y se mantiene vigente, se sugiere acoger y mantener los porcentajes

Rev. 01 Fecha 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

de pérdidas reconocidas en transformación establecidos allí, de acuerdo con la siguiente tabla:

Tabla 3-56 Pérdidas en transformación por potencia

kVA	150	225	300	400	500	630	750	800	1000	1250	1600	2000	2500	3000
Pérdidas de transformación	1,8	1,7	1,6	1,6	1,5	1,5	1,5	1,5	1,43	1,39	1,33	1,3	1,27	1,26

En la tabla siguiente se relacionan las potencias en kVA de los transformadores instalados en las centrales de generación y las plantas de las localidades visitadas.

Tabla 3-57 Relación de transformadores por Plantas de Generación

Dpto	Localidad	Transfo	mador (kVA)	es (KV <i>I</i>	N)
		1	2	3	4
Chocó	Acandí	1.000	1.000		
	San Francisco	150			
Chocó	Pizarro Bajo Baudó	800			
	Pilizá	225			
	Virudó	150			
Cauca	Guapi	2.000	2.500		
	Atajo 1	Sin elevador			
	Atajo 2	Sin elevador			
	Chamón	150			
Guainía	Puerto Inírida	1.600	1.600	2.500	3.820
	El Remanso	Sin elevador			
	Chorrobocón	112,5			
Guaviare	Miraflores	1.000	400		
	Lagos del Dorado	225			
Vaupés	Mitú	1.600	2.000		
	Acaricuara	112,5			
Putumayo	Puerto Leguízamo	2.500	1.600		
	Puerto Ospina	75			
	Nueva Paya	75			

Rev. 01 Fecha 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Ahora bien, es de señalar que en la información suministrada por los operadores de las grandes centrales como GENSA y CEDENAR, no se encuentran relacionadas las pérdidas en transformación, las cuales son consideradas marginales.

En las localidades menores, cuyas unidades de generación se encuentran a cargo de las empresas distribuidoras locales, en un rango de potencia por debajo de 100 kW en el 80% de los casos, se encuentran unidades de generación con y sin transformador elevador, de otra manera, con o sin redes de distribución primaria.

Nueve (9) de las doce (12) localidades menores visitadas cuentan con transformador elevador con relación de transformación de 220/440/480 a 13200 V. Dentro de la información suministrada por el distribuidor no se incluye la relativa a pérdidas por transformación.

3.1.6 Propuesta de configuración para una central eficiente

Hasta este punto se trabajó en la determinación de los costos eficientes de inversión, administración, operación y mantenimiento de una central dada. Sin embargo, esta consultoría considera que es posible llegar a un nuevo escenario de eficiencia partiendo de la configuración de una central a partir de los requerimientos energéticos de la zona que atiende esta planta, como se expondrá a continuación.

3.1.6.1 La configuración eficiente de equipos y sistemas

Con el fin de ilustrar el concepto de eficiencia en el diseño y la operación de una central típica se muestra las curvas de carga conceptuales para mostrar el efecto del back up y la eficiencia del sistema. Los diagramas esquemáticos presentados para ilustrar el concepto que se presenta. La información del diagrama no corresponde exactamente con la explicación en cada numeral.

Figura 3-16 Curva de carga de 6 horas y una sola unidad prestando el servicio

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha 01/02/2012

Figura 3-17 Curva de carga para prestación de 12 o 16 horas de servicio

Figura 3-18 Diseño eficiente para prestación de servicio en 12 o 16 horas de servicio

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

Figura 3-19 Diseño eficiente y Curva de carga para prestación de servicio en 24 horas

3.1.6.2 El concepto en eficiencia en la operación

El concepto de eficiencia en este caso tiene que ver con la configuración de la central, es decir el número y potencia de los equipos de acuerdo a la demanda del sitio y la forma de operación para cubrir la demanda en todo momento.

El concepto de eficiencia en este caso tiene que ver con la configuración de la central, es decir el número y potencia de los equipos de acuerdo a la demanda del sitio y la forma de operación para cubrir la demanda en todo momento.

A continuación se muestran diferentes casos de consumo de combustible de acuerdo a una demanda y diferentes formas de cubrimiento de la misma.

Rev. 01 Fecha: 01/02/2012

Figura 3-20 Comportamiento de consumo de combustible para diferentes potencias

La figura muestra el comportamiento de consumo de combustible para 3 diferentes máquinas que se toman como ejemplo para atender una demanda específica.

Figura 3-21 Aproximación de curva de demanda

Rev. 01 Fecha: 01/02/2012

Existen diferentes tipos de demanda para un sitio, que depende del tipo de usuario y de la cantidad de horas de servicio que se tomen en un día, en la figura se muestra un ejemplo de aproximación a una curva de demanda para un período de menos de 6 horas o uno de 12 a 16 horas, donde se puede evidenciar un periodo donde la demanda es máxima y única para un curva de demanda con 6 horas de suministro de servicio y donde se pueden encontrar una demanda mínima y otro de demanda máxima. A su vez, existen diferentes formas de atender esta demanda y diferentes configuraciones para la capacidad instalada.

Figura 3-22 Posibles Configuraciones de la central de generación

La figura muestra posibles configuraciones para la capacidad instalada, que podrían atender la curva de demandas propuestas anteriormente, estas configuraciones son capaces de entregar la energía pero ofrecen una baja confiabilidad del servicio.

Figura 3-23 Diseño eficiente para una prestación de servicio de 12 – 16 horas

Si se requiere tener en cuenta la confiabilidad del servicio y asegurar una disponibilidad adecuada, se debería usar una configuración como se muestra en la figura, donde una máquina es capaz de atender un periodo de demanda y se necesitaría una segunda máquina para atender el periodo restante, mientras que la tercera máquina ofrece confiabilidad y disponibilidad del servicio.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Figura 3-24 Diferentes configuraciones para observar eficiencia

Finalmente, la anterior gráfica muestra una curva de demanda típica diversificada y aproximada para un periodo de servicio de 24 horas, y además se muestran tres tipos de configuraciones para atender esta demanda.

Tabla 3-58 Caso 1: Primera configuración 3 máquinas de 1/3 de la potencia máxima

	Caso 1							
Maquinas		Periodo de demanda uinas		0				
350	kW	Mínima	25,1	gl/h	225,9			
350	kW	Media	25,1	gl/h	225,9			
350	kW	Máxima	25,1	gl/h	100,4			
	Mínima			gl/h	50,2			
		Tota	602,4					

La tabla muestra el caso donde se utilizan 3 máquinas para atender las 24 horas de servicio, en el periodo de demanda mínima se utiliza una máquina generando a su máxima capacidad, mientras que en el periodo de demanda máxima se utilizan las tres máquinas a plena carga, como se muestra en la siguiente tabla que representa el despacho de cada unidad para cada de periodo de tiempo.

Rev. 01 Fecha: 01/02/2012

Tabla 3-59 Despacho de unidades para el periodo total de servicio

Periodo de Demanda	Maquina [kW]	Carga (%)	Cantidad horas [h]
	350	1	
Mínimo	350	0	9
	350	0	
	350	1	
Media	350	1	9
	350	0	
	350	1	
Máximo	350	1	4
	350	1	
	350	1	
Mínimo	350	0	2
	350	0	

El total de consumo de las 3 máquinas en el periodo total de servicio para este caso es de 602 galones.

Tabla 3-60 Caso 2: Segunda configuración 2 máquinas, una de potencia máxima y la segunda de potencia intermedia

	Caso 2							
Maqui	nas	Periodo de Demanda		Consumo/hora	Consumo periodo			
1000	kW	Mínimo	23,8	gl/h	213,9			
500	kW	Medio	46,87	gl/h	421,8			
	Máximo		71,1	gl/h	284,4			
		Mínimo	23,77	gl/h	47,53			
		Tot	967,63					

La tabla anterior muestra los resultados de consumo para el segundo caso de configuración de la central, donde una máquina atiende la demanda máxima y es de la misma capacidad de esta, y otra máquina se encarga de atender los periodos de

CREG				
INVERSIONES Y	GASTOS DE	AOM EN ZNI	CON PLANTAS	TÉRMICAS

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

demanda media y mínima con una capacidad de generación igual a la demanda media. La forma de despacho de esta configuración se muestra en la tabla siguiente.

Tabla 3-61 Despacho de unidades para el periodo total de servicio

Periodo de Demanda	Maquina	Carga (%)	Cantidad horas
	1000	0	
Mínimo	500	2/3	9
	1000	2/3	
Media	500	0	9
	1000	1	_
Máximo	500	0	4
	1000	0	
Mínimo	500	2/3	2

Finalmente se muestran 3 casos no eficientes, donde se utiliza de una a tres máquinas con capacidad igual a la demanda máxima, para atender el periodo total de servicio.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Tabla 3-62 Resultados de consumos de combustibles para casos no eficientes

Caso 3								
Maqui	inas		Consumo/hora	Consumo periodo				
1000	kW	27,52	gl/h	247,68				
	kW	48,96	gl/h	440,64				
	kW	71,1	gl/h	284,4				
		27,52	gl/h	55,04				
		Total C	onsumo	1027,76				
	Caso 4							
Maqui	aquinas		Maquinas		Consumo/hora	Consumo periodo		
1000	kW	20,0	gl/h	360				
1000	kW	27,52	gl/h	495,36				
		36,4	gl/h	145,6				
		20,00	gl/h	80				
		Total C	onsumo	1080,96				
			Caso 5					
Maqui	quinas Cons		Consumo/hora	Consumo periodo				
1000	kW	20,00	gl/h	540				
1000	kW	21,60	gl/h	583,2				
1000	kW	27,52	gl/h	330,24				
		20,00	gl/h	40				
		Total C	1493,44					

La tabla anterior se muestra los resultados de consumo para cada uno de los tres casos planteados que se dice no son eficientes. En estos casos se utilizan todas las máquinas a una fracción de su capacidad total como sea necesario. Cabe resaltar que para el Caso 5, se tiene una alta confiabilidad y disponibilidad del servicio pero esto se penaliza con el alto consumo que se presenta.

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha: 01/02/2012

Tabla 3-63 Despacho para las configuraciones no eficientes

Caso 3								
	Maquina	Cantidad horas						
Mínimo	1000	1/3	9					
Media	1000	2/3	9					
Máximo	100	1	4					
Mínimo	1000	1/3	2					
	Ca	aso 4						
	Maguina	Carga	Cantidad horas					
N A (m i mm m	1000	1/6						
Mínimo	1000	1/6	9					
Madia	1000	1/3						
Media	1000	1/3	9					
NA 4 vivos s	1000	1/2						
Máximo	1000	1/2	4					
N 46	1000	1/6						
Mínimo	1000	1/6	2					
	Ca	aso 5						
	Maguina	Carga	Cantidad horas					
	1000	1/9						
Mínimo	1000	1/9	9					
	1000	1/9						
	1000	1/4						
Media	1000	1/4	9					
	1000	1/4						
	1000	1/3						
Máximo	1000	1/3	4					
	1000	1/3						
	1000	1/9						
Mínimo	1000	1/9	2					
	1000	1/9						

La tabla anterior muestra cómo se comporta el despacho de cada máquina para cada periodo de demanda en los diferentes casos planteados.

Rev. 01 Fecha: 01/02/2012

Por último se puede hacer una comparación del consumo de combustible para cada caso, la siguiente figura, muestra la tendencia de consumo con respecto a la configuración planteada.

Figura 3-25 Consumo de combustible para todos los casos planteados

En el caso eficiente, la central consumiría 602 galones de combustible al día, mientras que en el peor caso, se consumiría 1494 galones de combustible, lo que equivale a un aumento del 148% de consumo de combustible, es decir cerca de tres veces más de consumo de combustible diario.

3.1.7 Diseño Operacional Eficiente para los sitios visitados

A continuación se presenta el resultado de cálculos basados en diversas localidades de Colombia en donde se analiza la situación actual de los generadores, y la operación actual de las plantas generadoras. Además se propone un uso eficiente de las instalaciones actuales y una configuración ideal teniendo en cuenta las curvas de demanda de cada zona. Cabe mencionar que el análisis se basa en las curvas de demanda del mes de diciembre de 2010 - 2011 proporcionadas por el *IPSE* asumiendo que las máquinas que operan actualmente tuvieron 100% de disponibilidad.

Las zonas no interconectadas que se van a analizar son las siguientes:

- INIRIDA
- MITU
- PUERTO LEGUIZAMO
- ACANDI
- MIRAFLORES

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha 01/02/2012

- GUAPI

3.1.7.1 Inírida

El municipio de Inírida pertenece al departamento de Guainía el cual posee aproximadamente 20000 habitantes. Según el IPSE Inírida posee un capacidad eléctrica instalada de 5877 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 2289 kW. También se sabe que Inírida tiene una demanda de energía mensual de 1124642 kWh, y una demanda de energía promedio diaria de 36278 kWh. Se reporta una prestación del servicio de energía las 24 horas en promedio.

La localidad de Inírida posee los siguientes generadores de energía.

- Unidad de generación (1) Marca Cummins KTA50-G9 de 1295 kWe.
- Unidad de generación (1) Marca Cummins KTA38-G8 de 1000 kWe.
- Unidad de generación (1) Marca Cummins KTA50-G3 de 1135 kWe.
- Unidad de generación (1) Marca EMD 16-645-E4 de 2100 kWe.

En caso de emergencia se tienen un grupo electrógeno marca Cummins de 150 kW.

El generador EMD se encuentra fuera de servicio por fallas en el turbo cargador, y la unidad Cummins KTA38-G8 de 1000 kW por horas de servicio.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Inírida:

Figura 3-26 Demanda energética Puerto Inírida en diciembre 2010 y 2011

INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	CREG
THE REPORTED TO SET OF BETTER TO THE WITH THE TERMINOTIC	INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la grafica de demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (2289 kW).

Tabla 3-64. Integración de curva de demanda de Puerto Inírida divida en secciones.

DEMANDA ELECTRICA INIRIDA (MÁXIMO 2289kW)										
HORA (0-24) TIPO DEMANDA TIEMPO (h) MÁXIMO (k										
0 - 6:59	MÍNIMA	7	1200							
7:00 -16:59	MEDIA	10	1700							
17:00 - 21:59	MAXIMA	5	2289							
22:00 -22:59	MEDIA	1	1500							
23:00 - 23:59	MÍNIMA	1	1250							

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Tabla 3-65. Consumo de combustible de grupos electrógenos en servicio actualmente en Puerto Inírida.

MA	QUINA 1 - KTA50-0	G9 1295 kWe	MAG	QUINA 2 – KTA50-0	G3 1135 kWe
% CARGA	POTENCIA (kW)	CONSUMO (gal/h)	% CARGA	POTENCIA (kW)	CONSUMO (gal/h)
100	1295	87,3	100	1000	76,6
75	971	68	75	750	58,7
50	648	47,6	50	500	41,6
25	324	29,2	25	250	23,6

3.1.7.1.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Inírida y mayoría de localidades, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso 1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Rev. 01 Fecha 01/02/2012

Tabla 3-66. Análisis consumo de combustible diario Inírida.

		CASO REAL FUNCIONAMIENTO INIRIDA							
		CONF.	CARGA	POT. USADA	CONSUMO HORAS (gal/h)			CONSUMO	
		MAQ. 1	MAQ. 2	TOTAL	MAQ. 1 MAQ. 2 TOTA			galones	
HORA	DEMANDA	1295 kW	1135 kW	kW	1295 kW	1135 kW	gal/h	Total día	
0 - 6:59	MÍNIMA	27%	75%	1201	31	59	89	626	
7:00 -16:59	MEDIA	44%	100%	1705	43	77	120	1201	
17:00 - 21:59	MAXIMA	95%	95%	2309	83	73	157	784	
22:00 -22:59	MEDIA	29%	100%	1511	32	77	109	109	
23:00 - 23:59	MÍNIMA	53%	50%	1254	50	59	109	109	
						TOTAL	584	2828	

El análisis de la tabla anterior nos muestra que diariamente se consumen 2823 galones que comparado con el real promedio en Inírida de 2900 galones diarios, se podría asumir que las maquinas se operan con esta configuración de carga.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Puerto Inírida tiene un valor de: \$22'621.888,00 COP en promedio para el mes de diciembre.

3.1.7.1.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Este caso se diseñó teniendo en cuenta los grupos electrógenos instalados actualmente en la localidad de Inírida pero optimizando su diseño en cuanto a los periodos de operación durante el día, tratando de en la medida tener encendido un solo generador.

Tabla 3-67. Análisis consumo de combustible diario diseño óptimo Inírida.

		CASO OPTIMO REAL FUNCIONAMIENTO INIRIDA							
		CONF.	CARGA	POT. USADA	CONSUMO HORAS (gal/h)			CONSUMO	
		MAQ. 1	MAQ. 2	TOTAL	MAQ. 1 MAQ. 2		TOTAL	galones	
HORA	DEMANDA	1295 kW	1135 kW	kW	1295 kW	1135 kW	gal/h	Total día	
0 - 6:59	MÍNIMA	93%	0%	1204	82	0	82	573	
7:00 -16:59	MEDIA	70%	70%	1701	64	55	119	1192	
17:00 - 21:59	MAXIMA	94%	94%	2284	83	73	155	776	
22:00 -22:59	MEDIA	62%	62%	1507	57	50	107	107	
23:00 - 23:59	MÍNIMA	97%	0%	1256	85	0	85	85	

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS	TÉRMICAS

CREG	Doc. AN-USA-882-03
NIVED SIGNIES VICASTOS DE AOM EN 7NI CON DI ANTAS TÉDMICAS	

1		1
TOTAL	548	2733

Rev 01

Fecha 01/02/2012

Como se observa en la tabla anterior el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 3,36% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 94 galones de combustible diarios.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Puerto Inírida con el diseño optimo tiene un valor de: \$21'867.648,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$754.240,00 COP diarios y cerca de \$275'297.600,00 COP por año que podrían servir para la compra de nuevos equipos electrógenos.

3.1.7.1.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Con la curva de demanda y teniendo en cuenta la información de la tabla 1 es posible diseñar el sistema con grupos electrógenos que suplan eficientemente los diferentes tipos de demanda. El término de eficiencia en grupos electrógenos es basado en que a medida que se disminuye el porcentaje de carga impuesta en el generador, el consumo de combustible específico (g/kWh o gal/h) tiende aumentar. Esto quiere decir que se va a consumir mayor cantidad de combustible trabajando el motor en 50% de carga que en 100% para alcanzar una misma cantidad de energía. La eficiencia se puede explicar con la siguiente curva de un motor diesel de 100 kW:

Consumption Fuel Consumption GPH Fuel Consumption Consumption at 1/2 allons/hou load Consumption at 3/4 allons/hor load Consumption at ful oad load nallons/hor 25% 100% Percent Load

Figura 3-27 Eficiencia de motor diesel de generación de energía en términos de consumo de combustible. Fuente: http://www.generatorsales.com/order/09152.asp?page=9152

Teniendo en cuenta la eficiencia y la demanda en los diversos periodos se diseñó el siguiente sistema para satisfacer energéticamente Puerto Inírida.

Se debería instalar dos máquinas de 500 kW y una máquina de 1295 kW repartidos de la siguiente manera. La demanda mínima se va a satisfacer con el generador de 1295 kW, la demanda media con el generador de 1295 kW y uno de los generadores de 500 kW, y la

Rev. 01 Fecha: 01/02/2012

demanda máxima se satisface trabajando con carga máxima los tres generadores. Además se propone tener disponible una (1) unidad de 1295 kW y una (1) unidad de 500 kW en caso de emergencia o que alguno de los equipos principales quede fuera de servicio o entre en mantenimiento.

Tabla 3-68. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos.

			CASO EFICIENTE FUNCIONAMIENTO INIRIDA							
		CONF. CARGA			POT. USADA	CONSUMO HORAS (gal/h)			al/h)	CONSUMO
						MAQ. 3	TOTAL	galones		
HORA	DEMANDA	1295 kW	500 kW	500 kW	KW	1295 kW	500 kW	500 kW	gal/h	TOTAL DIA
0 - 6:59	MÍNIMA	93%	0%	0%	1204	82	0	0	82	573
7:00 -16:59	MEDIA	95%	95%	0%	1705	83	33	0	117	1168
17:00 - 21:59	MAXIMA	100%	99%	100%	2290	87	35	35	157	785
22:00 -22:59	MEDIA	100%	50%	0%	1545	87	19	0	106	106
23:00 - 23:59	MÍNIMA	97%	0%	0%	1256	85	0	0	85	85
								TOTAL	547	2717

Como se observa en la tabla 5 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 3,9% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 94 galones de combustible diarios.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Puerto Inírida con el diseño eficiente tiene un valor de: \$21'737.888,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$884.000,00 COP diarios y cerca de \$322'660.000,00 COP por año.

3.1.7.2 Mitu

El municipio de Mitú pertenece al departamento de Vaupés el cual posee aproximadamente 30000 habitantes. Según el IPSE Mitú posee un capacidad eléctrica instalada de 2250 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 1668 kW. También se sabe que Mitú tiene una demanda de energía mensual de 744184 kWh, y una demanda de energía promedio diaria de 24005 kWh. Se reporta una prestación del servicio de energía por 23,75 horas en promedio.

La localidad de Mitú posee los siguientes generadores de energía.

- Unidad de generación (3) Marca Cummins DQCB de 680 kWe.
- Unidad de generación (1) Marca Cummins KTA50-G9 de 1295 kWe.
- Unidad de generación (1) marca Cummins 1600 kW, fuera de servicio.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Mitú:

Figura 3-28 Demanda energética Mitú diciembre 2010 y 2011

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la gráfica de demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (1700 kW).

Tabla 3-69. Integración de curva de demanda en Mitú.

DEMANDA ELECTRICA MITU (MÁXIMO 1700kW)										
HORA (0-24)	TIPO DEMANDA	TIEMPO (h)	MÁXIMO (kW)							
0:00 - 5:59	MÍNIMA	6	800							
7:00 -16:59	MEDIA	11	1100							
17:00 - 21:59	MAXIMA	5	1700							
22:00 -22:59	MEDIA	1	1000							
23:00 - 23:59	MÍNIMA	1	800							

Rev. 01 Fecha 01/02/2012

INFORME FINAL – ESTUDIOS EN ZNI

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Tabla 3-70. Consumo de combustible de grupos electrógenos en servicio actualmente en Mitú

MAQUIN	IA 1,2,3 – CUMMIN	S DQCB 680 kWe	MAQUINA 4 – KTA50 G9 1295 kWe				
% CARGA	POTENCIA (kW)	TENCIA (kW) CONSUMO (gal/h)		POTENCIA (kW)	CONSUMO (gal/h)		
100	680	48	100	1295	87,3		
75	510	36,5	75	971	68		
50	340	25	50	648	48		
25	170	15	25	324	29		

3.1.7.2.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Mitú, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Tabla 3-71. Análisis consumo de combustible diario Mitú

		CASO REAL FUNCIONAMIENTO MITU										
		CONF. CARGA				POT. USO	CONSUMO HORAS (gal/h)					CONSUMO
	MAQ 1 MAQ 2 MAQ 3 MAQ 4			TOTAL	MAQ 1	MAQ 2	MAQ 3	MAQ 4	TOTAL	galones		
HORA	DEMANDA	680 kW	680 kW	680 kW	1295 kW	kW	680 kW	680 kW	680 kW	1295 kW	TOTAL	TOTAL DIA
0-5:59	MÍNIMA	25%	25%	25%	25%	834	15	15	15	29	74	445
7-16:59	MEDIA	33%	33%	33%	33%	1101	18	18	18	35	90	987
17-21:59	MAXIMA	50%	50%	50%	53%	1706	25	25	25	50	125	625
22-22:59	MEDIA	30%	30%	30%	30%	1001	17	17	17	33	84	84
23-23:59	MÍNIMA	25%	25%	25%	25%	834	15	15	15	29	74	74
										TOTAL	447	2215

El análisis de la tabla anterior nos muestra que diariamente se consumen 2215 galones que comparado con el real promedio en Mitú de 2000 galones diarios, se podría asumir que las maquinas se operan con esta configuración de carga.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Mitú tiene un valor de: \$17'720.704,00 COP en promedio para el mes de diciembre.

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha 01/02/2012

3.1.7.2.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Este caso se diseñó teniendo en cuenta los grupos electrógenos instalados actualmente en la localidad de Mitú pero optimizando su diseño en cuanto a los periodos de operación durante el día, tratando de en la medida tener encendido un solo generador.

Tabla 3-72. Análisis consumo de combustible diario diseño óptimo Mitú.

			CASO OPTIMO REAL FUNCIONAMIENTO MITU									
			CONF. CARGA				CONSUMO HORAS (gal/h)					CONSUMO
		MAQ 1 MAQ 2 MAQ 3 MAQ 4			TOTAL	MAQ 1	MAQ 2	MAQ 3	MAQ 4	TOTAL	galones	
HORA	DEMANDA	680 kW	680 kW	680 kW	1295 kW	kW	680 kW	680 kW	680 kW	1295 kW	TOTAL	TOTAL DIA
0-5:59	MÍNIMA	0%	0%	0%	62%	803	0	0	0	57	57	344
7-16:59	MEDIA	0%	0%	0%	85%	1101	0	0	0	76	76	833
17-21:59	MAXIMA	60%	0%	0%	100%	1703	30	0	0	87	117	585
22-22:59	MEDIA	0%	0%	0%	78%	1010	0	0	0	70	70	70
23-23:59	MÍNIMA	0%	0%	0%	62%	803	0	0	0	57	57	57
										TOTAL	378	1889

Como se observa en la tabla 9 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 14,7% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 326 galones de combustible diarios.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Mitú con el diseño optimo tiene un valor de: \$15'115.840,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$2.604.864,00 COP diarios y cerca de \$950'775.360,00 COP por año que podrían servir para la compra de nuevos equipos electrógenos.

3.1.7.2.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Con la curva de demanda y teniendo en cuenta la información de la tabla 6 es posible diseñar el sistema con grupos electrógenos que suplan eficientemente los diferentes tipos de demanda en Mitú.

Se debería instalar una (1) máquina de 300 kW y dos máquinas de 800 kW repartidos de la siguiente manera. La demanda mínima se va a satisfacer con el generador de 800 kW, la demanda media con un generador de 300 kW y uno de 800 kW trabajando a carga plena, y la demanda máxima se satisface trabajando con carga alta los tres generadores. Además se propone tener disponible una (1) unidad de 300 kW y una (1) unidad de 800 kW en caso de emergencia o que alguno de los equipos principales quede fuera de servicio o entre en mantenimiento.

Rev. 01

INFORME FINAL – ESTUDIOS EN ZNI

Fecha 01/02/2012

Tabla 3-73. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos.

			CASO EFICIENTE FUNCIONAMIENTO MITU									
	CONF. CARGA			POT. USADA	CON	изимо н	ORAS (ga	l/h)	CONSUMO			
		MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	galones		
HORA	DEMANDA	300 kW	800 kW	800 kW	kW	300 kW	800 kW	800 kW	gal/h	TOTAL DIA		
0-5:59	MÍNIMA	0%	98%	0%	807	0	48	0	48	285		
7-16:59	MEDIA	100%	100%	0%	1123	23	49	0	72	791		
17-21:59	MAXIMA	88%	88%	88%	1712	20	43	43	105	527		
22-22:59	MEDIA	90%	90%	0%	1011	20	43	0	63	63		
23-23:59	MÍNIMA	0%	98%	0%	807	0	48	0	48	48		
		·		·		·		TOTAL	335	1714		

Como se observa en la tabla 5 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 22,64% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 500 galones de combustible diarios.

Asumiendo que el precio del galón de Diesel es de \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Mitú con el diseño eficiente tiene un valor de: \$13'708.528,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$4'012.000,00 COP diarios y cerca de \$1'464.444.240,00 COP por año.

3.1.7.3 Guapi

El municipio de Guapi pertenece al departamento de Cauca el cual posee aproximadamente 30000 habitantes. Según el IPSE Guapi posee un capacidad eléctrica instalada de 3675 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 1755 kW. También se sabe que Guapi tiene una demanda de energía mensual de 720627 kWh, y una demanda de energía promedio diaria de 23246 kWh. Se reporta una prestación del servicio de energía por 20 horas en promedio.

La localidad de Guapi posee los siguientes generadores de energía.

- Unidad de generación (1) Marca EMD de 1600 kW, fuera de servicio.
- Unidad de generación (3) Marca MTU de 500 kWe.
- Unidad de generación (1) marca Cummins KTA38-G5 de 800 kW.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Guapi:

Rev. 01 Fecha: 01/02/2012

Figura 3-29 Demanda energética en Guapi diciembre 2010 y 2011

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la gráfica de demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (1755 kW).

Tabla 3-74. Integración curva de demanda de energía municipio de Guapi.

DEMA	DEMANDA ELECTRICA GUAPI (MÁXIMO 1750kW)											
HORA (0-24)	TIPO DEMANDA	MÁXIMO (kW)										
0 - 00:59	MEDIA	1	800									
1:00 -6:59	MÍNIMA	400										
7:00 - 8:00	MEDIA	1	600									
8:00 -17:59	MEDIA	10	1300									
18:00 - 21:59) - 21:59 MÁXIMA 4		1750									
22:00 - 23:59	MEDIA	2	1200									

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Rev. 01 Fecha: 01/02/2012

Tabla 3-75. Consumo de combustible de grupos electrógenos en servicio actualmente en Guapi.

MAQUIN	A 1 – CUMMINS K	TA38-G5 800 kWe	MAQUINA 2,3,4 – MTU 500 kWe				
% CARGA	POTENCIA (kW)	CONSUMO (gal/h)	% CARGA	POTENCIA (kW)	CONSUMO (gal/h)		
100	800	800 52,65		500	35		
75	600	41,01	75	375	26,9		
50	400	28,71	50	250	18,6		
25	200	17,61	25	125	16,5		

3.1.7.3.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Guapi, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Tabla 3-76. Análisis consumo de combustible diario Guapi

			CASO REAL FUNCIONAMIENTO GUAPI										
		CONF. CARGA			POT. USO		CONSU	O HORAS	3 (gal/h)		CONSUMO		
		MAQ 1	MAQ 2	MAQ 3	MAQ 4	TOTAL	MAQ 1	MAQ 2	MAQ 3	MAQ 4	TOTAL	galones	
HORA	DEMANDA	800 kW	500 kW	500 kW	500 kW	kW	800 kW	500 kW	500 kW	500 kW	gal/h	Total día	
0 - 00:59	MEDIA	25%	50%	50%	25%	825	18	19	19	17	71	71	
1-6:59	MÍNIMA	25%	25%	25%	25%	575	18	17	17	17	67	403	
7- 7:59	MEDIA	25%	30%	25%	25%	600	18	17	17	17	68	68	
8-17:59	MEDIA	75%	50%	50%	50%	1350	41	19	19	19	97	968	
18-21:59	MÁXIMA	80%	75%	75%	75%	1765	43	27	27	27	124	496	
22-23:59	MEDIA	50%	75%	50%	50%	1275	29	27	19	19	93	186	
			·	·		·	·			TOTAL	520	2191	

El análisis de la tabla 13 nos muestra que diariamente se consumen 2191 galones que comparado con real promedio en Guapi de 1600 galones diarios, no es congruente debido a que no se sabe la disponibilidad durante todo el año y por otro lado se está asumiendo que las máquinas están operando las 24 horas del día. Por la cantidad de habitantes se deberían estar gastando unos 2000 galones diarios para la producción de energía actualmente.

CREG
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS
INFORME FINAL - ESTUDIOS EN ZNI

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

TOTAL

Conociendo que el precio del galón de Diesel se vende a la central en \$7669,56 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Guapi tiene un valor de: \$16'807.148,00 COP en promedio para el mes de diciembre.

3.1.7.3.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Este caso se diseñó teniendo en cuenta los grupos electrógenos instalados actualmente en la localidad de Guapi pero optimizando su diseño en cuanto a los periodos de operación durante el día, tratando de en la medida tener encendido un solo generador.

CASO OPTIMO REAL FUNCIONAMIENTO GUAPI POT. USO CONSUMO HORAS (gal/h) CONSUMO **CONF. CARGA** MAQ 1 MAQ 2 MAQ3 MAQ4 TOTAL MAQ 1 MAQ 2 MAQ3 MAQ4 TOTAL galones gal/h **HORA** DEMANDA 800 kW 500 kW 500 kW 500 kW kW 800 kW 500 kW 500 kW 500 kW Total día 0% 0 - 00:59 MEDIA 100% 0% 0% 800 0 53 0 0 53 53 1-6:59 MÍNIMA 0% 80% 0% 0% 400 0 29 0 0 29 171 7-7:59 MEDIA 75% 0% 0% 0% 600 41 0 0 0 41 41 8-17:59 MEDIA 100% 100% 0% 0% 1300 53 35 0 0 88 877 18-21:59 MÁXIMA 100% 1760 96% 96% 0% 53 34 34 0 120 480 22-23:59 MEDIA 93% 93% 0% 0% 1209 49 33 0 0 82 164

Tabla 3-77. Análisis consumo de combustible diario diseño óptimo Guapi

Como se observa en la tabla 14 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 18,51% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 406 galones de combustible diarios.

Conociendo el precio del galón de Diesel \$7669,59 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Guapi con el diseño optimo tiene un valor de: \$13'695.979,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$3.111.169,00 COP diarios y cerca de \$1'135.576.638,00 COP por año que podrían servir para la compra de nuevos equipos electrógenos.

3.1.7.3.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Con la curva de demanda y teniendo en cuenta la información de la tabla 11 es posible diseñar el sistema con grupos electrógenos que suplan eficientemente los diferentes tipos de demanda en Guapi.

Se debería instalar dos (2) máquinas de 400 kW y una (1) máquina de 1000 kW repartidos de la siguiente manera. La demanda mínima se va a satisfacer con un generador de 400 kW, la demanda media con los dos generadores de 400 kW trabajando a carga plena, y la

1786

Rev. 01 Fecha: 01/02/2012

demanda máxima se satisface trabajando con carga alta los tres generadores. Además se propone tener disponible una (1) unidad de 400 kW y una (1) unidad de 1000 kW en caso de emergencia o que alguno de los equipos principales quede fuera de servicio o entre en mantenimiento.

Tabla 3-78. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos

			CASO EFICIENTE FUNCIONAMIENTO GUAPI									
	- 7	CONF. CARGA			POT. USADA	со	h)	CONSUMO				
	MAQ. 1 MAQ. 2 MAQ. 3 TOTAL MAQ. 1 MAQ. 2					MAQ. 2	MAQ. 3	TOTAL	galones			
HORA	DEMANDA	400 kW	400 kW	1000 kW	MAQ. kW	400 kW	400 kW	1000 kW	gal/h	TOTAL DIA		
0 - 00:59	MEDIA	100%	100%	0%	800	28	28	0	57	57		
1-6:59	MÍNIMA	100%	0%	0%	400	28	0	0	28	170		
7- 7:59	MEDIA	75%	75%	0%	600	22	22	0	43	43		
8-17:59	MEDIA	93%	0%	93%	1302	26	0	59	86	859		
18-21:59	MÁXIMA	94%	94%	100%	1752	27	27	63	117	468		
22-23:59	MEDIA	86%	0%	86%	1204	25	0	56	80	160		
·			·	·		·	·	TOTAL	411	1758		

Como se observa en la tabla 15 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 19,79% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 434 galones de combustible diarios.

Conociendo el precio del galón de Diesel \$7669,56 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Guapi con el diseño eficiente tiene un valor de: \$13'481.675,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$3'325.472,00 COP diarios y cerca de \$1'213.797.407,00 COP por año.

3.1.7.4 Acandí

El municipio de Acandí pertenece al departamento de Choco el cual posee aproximadamente 9922 habitantes. Según el IPSE Guapi posee un capacidad eléctrica instalada de 3000 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 645 kW. También se sabe que Guapi tiene una demanda de energía mensual de 226435 kWh, y una demanda de energía promedio diaria de 7304 kWh. Se reporta una prestación del servicio de energía por 17,86 horas en promedio.

La localidad de Acandí posee los siguientes generadores de energía.

Unidad de generación (3) Marca Cummins de 910 kWe.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

De los grupos electrógenos dos están fuera de servicio. Un generador presenta fallas en el cigüeñal y otro equipo esta nuevo y no se ha instalado.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Acandí:

Figura 3-30 Demanda eléctrica municipio de Acandí

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la gráfica de demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (645 kW).

Tabla 3-79. Integración curva de demanda eléctrica municipio de Acandí

DEMA	DEMANDA ELECTRICA ACANDI (MÁXIMO 645 kW)										
HORA (0-24)	TIPO DEMANDA	TIEMPO (h)	MÁXIMO (kW)								
0 - 1:59	MEDIA	2	350								
2:00 -3:59	MÍNIMA	2	100								
8:00 - 8:59	MÍNIMA	1	150								
9:00 -16:59	MEDIA	9	375								
17:00 - 20:59	MÁXIMA	4	645								
21:00 - 23:59	MEDIA	2	450								

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Rev. 01

INFORME FINAL - ESTUDIOS EN ZNI

Fecha 01/02/2012

Tabla 3-80. Consumo de combustible de grupos electrógenos en servicio actualmente en Acandí

MAQUINA 1 – CUMMINS KTA38-G3 910 kWe								
% CARGA	POTENCIA (kW)	CONSUMO (gal/h)						
100	910	57,2						
75	683	44,3						
50	455	31,4						
25	228	19,4						

3.1.7.4.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Acandí, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Tabla 3-81. Análisis consumo de combustible diario Acandí.

		CASO REAL FUNCIONAMIENTO ACANDÍ						
		CONF. CARGA	POT. USO	CONSUMO HORAS (gal/h)				
		MAQUINA 1	TOTAL	MAQUINA 1	CONSUMO (gal/h)	galones		
HORA	DEMANDA	910 kW	kW	910 kW	TOTAL	TOTAL DIARIO		
0 - 1:59	MEDIA	0,39	355	26	26	52		
2:00 -3:59	MÍNIMA	0,11	100	9	9	17		
8:00 - 8:59	MÍNIMA	0,17	155	13	13	13		
9:00 -16:59	MEDIA	0,42	382	28	28	248		
17:00 - 20:59	MÁXIMA	0,71	646	42	42	169		
21:00 - 23:59	MEDIA	0,5	455	31	31	63		
				TOTAL	149	562		

El análisis de la tabla anterior nos muestra que diariamente se consumen 562 galones que comparado con real promedio en Acandí de 850 galones diarios, no es congruente debido a que no se sabe la disponibilidad durante todo el año. Es posible que para el periodo evaluado haya habido racionamiento de electricidad, esto explicaría el menor consumo de combustible.

Asumiendo que el precio del galón Diesel se vende a la central en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Guapi tiene un valor de: \$4'498.304,00 COP en promedio para el mes de diciembre.

Rev. 01 Fecha 01/02/2012

3.1.7.4.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Debido a que solo se tiene un grupo electrógeno actualmente en funcionamiento el anterior análisis ya representa la mejor forma de operar este generador.

3.1.7.4.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Con la curva de demanda y teniendo en cuenta la información de la tabla 16 es posible diseñar el sistema con grupos electrógenos que suplan eficientemente los diferentes tipos de demanda en Acandí.

Se debería instalar una (1) máquina de 150 kW, una (1) máquina de 250 kW, y una (1) máquina de 500 kW repartidos de la siguiente manera. La demanda mínima se va a satisfacer con un generador de 150 kW, la demanda media con los dos generadores de 150 kW y 250 kW trabajando a carga plena, y la demanda máxima se satisface trabajando con carga alta los tres generadores. Además se propone tener disponible una (1) unidad de cada grupo electrógeno en caso de emergencia o que alguno de los equipos principales quede fuera de servicio o entre en mantenimiento.

Tabla 3-82. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos.

			CASO EFICIENTE FUNCIONAMIENTO ACANDÍ							
		cc	NF. CAR	GA	POT. USADA	CON	NSUMO H	ORAS (ga	ıl/h)	CONSUMO
		MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	galones
HORA	DEMANDA	150 kW	250 kW	500 kW	MAQ. kW	150 kW	250 kW	500 kW	gal/h	TOTAL DIA
0 - 1:59	MEDIA	100%	100%	0%	400	9	15	0	24	48
2-3:59	MÍNIMA	75%	0%	0%	112,5	7	0	0	7	14
8-8:59	MÍNIMA	100%	0%	0%	150	9	0	0	9	9
9-16:59	MEDIA	94%	94%	0%	376	8	14	0	23	203
17-20:59	MÁXIMA	100%	0%	100%	650	9	0	33	42	166
21-23:59	MEDIA	0%	0%	90%	450	0	0	28	28	56
								TOTAL	132	496

Como se observa en la tabla 20 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 11,79% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 66 galones de combustible diarios.

Asumiendo el precio del galón Diesel en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Guapi con el diseño eficiente tiene un valor de: \$3'967.594,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$530.710,00 COP diarios y cerca de \$193'709.296,00 COP por año.

INFORME FINAL – ESTUDIOS EN ZNI

Rev. 01
Fecha: 01/02/2012

3.1.7.5 Miraflores

El municipio de Miraflores pertenece al departamento de Guaviare el cual posee aproximadamente 13100 habitantes. Según el IPSE Miraflores posee un capacidad eléctrica instalada de 320 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 215 kW. También se sabe que Miraflores tiene una demanda de energía mensual de 21486 kWh, y una demanda de energía promedio diaria de 643 kWh. Se reporta una prestación del servicio de energía por 4 horas en promedio.

La localidad de Miraflores posee los siguientes generadores de energía.

- Unidad de generación (2) Detroit Diesel de 500 kW.
- Unidad de generación (1) Caterpillar de 400 kW.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Miraflores:

Figura 3-31 Demanda energética Miraflores diciembre 2010 y 2011

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la gráfica de demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (215 kW).

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01
INFORME FINAL - ESTUDIOS EN ZINI	Fecha 01/02/2012

Tabla 3-83. Integración curva de demanda de energía municipio de Miraflores.

DEMANDA ELECTRICA MIRAFLORES (MÁXIMO 215kW)								
HORA (0-24)	TIPO DEMANDA	TIEMPO (h)	MÁXIMO (kW)					
0 - 1:59	MÍNIMA	2	10					
12:00 -13:59	MEDIA	2	120					
16:00 - 17:59	MÍNIMA	2	10					
18:00 -21:59	MÁXIMA	4	215					
22:00 - 23:59	MEDIA	2	100					

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Tabla 3-84. Consumo de combustible de grupos electrógenos en servicio actualmente en Miraflores.

MAQUINA 1,2 – Detroit 500 kWe							
% CARGA	POTENCIA (kW)	CONSUMO (gal/h)					
100	500	32,8					
75	375	21,3					
50	250	16,1					
25	125	12,3					

3.1.7.5.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Miraflores, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Doc. AN-USA-882-03

Rev. 01 Fecha 01/02/2012

Tabla 3-85. Análisis consumo de combustible diario Miraflores.

			CA	SO REAL FUNCIO	NAMIENT	O MIRAFI	ORES		
		CONF.		POT. USADA		CONSUMO HORAS (gal/h)			
		MAQ. 1	MAQ. 2	TOTAL	MAQ. 1	MAQ. 2	TOTAL	galones	
HORA	DEMANDA	500 kW	500 kW	MAQUINAS kW	500 kW	500 kW	gal/h	Total día	
0 - 1:59	MÍNIMA	2%	2%	20	1	1	2	4	
12:00 -13:59	MEDIA	12%	12%	120	6	6	12	24	
16:00 - 17:59	MÍNIMA	2%	2%	20	1	1	2	4	
18:00 -21:59	MÁXIMA	22%	22%	220	11	11	22	87	
22:00 - 23:59	MEDIA	12%	12%	120	6	6	12	24	
						TOTAL	49	142	

El análisis de la tabla anterior nos muestra que diariamente se consumen 142 galones que comparado con real promedio en Miraflores de 147 galones diarios, por lo que se puede asumir que el diseño anterior se ajusta a la operación de generadores en Miraflores.

Asumiendo que el precio del galón Diesel se vende a la central en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Miraflores tiene un valor de: \$1'133.568,00 COP en promedio para el mes de diciembre.

3.1.7.5.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Este caso se diseñó teniendo en cuenta los grupos electrógenos instalados actualmente en la localidad de Miraflores pero optimizando su diseño en cuanto a los periodos de operación durante el día, tratando de en la medida tener encendido un solo generador.

Tabla 3-86. Análisis consumo de combustible diario diseño óptimo Miraflores.

		CASO OPTIMO REAL FUNCIONAMIENTO MIRAFLORES							
		CONF. CARGA		POT. USADA	CONSUMO HORAS (gal/h)			CONSUMO	
		MAQ. 1	MAQ. 2	TOTAL	MAQ. 1	MAQ. 2	TOTAL	Galones	
HORA	DEMANDA	500 kW	500 kW	MAQUINAS kW	500 kW	500 kW	gal/h	Total día	
0 - 1:59	MÍNIMA	2%	0%	10	1	0	1	2	
12:00 -13:59	MEDIA	24%	0%	120	12	0	12	24	
16:00 - 17:59	MÍNIMA	2%	0%	10	1	0	1	2	
18:00 -21:59	MÁXIMA	43%	0%	215	15	0	15	60	
22:00 - 23:59	MEDIA	20%	0%	100	10	0	10	20	
						TOTAL	39	107	

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

Como se observa en la tabla 23 el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 24,22% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 34 galones de combustible diarios.

Asumiendo el precio del galón Diese en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Miraflores con el diseño óptimo tiene un valor de: \$859.000,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$274.560,00 COP diarios y cerca de \$100.214.000,00 COP por año que podrían servir para la compra de nuevos equipos electrógenos.

3.1.7.5.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Con la curva de demanda y teniendo en cuenta la información de la tabla 20 es posible diseñar el sistema con grupos electrógenos que suplan eficientemente los diferentes tipos de demanda en Miraflores.

Se debería instalar dos (2) máquinas de 100 kW y una (1) máquina de 20 kW repartidos de la siguiente manera. La demanda mínima se va a satisfacer con un generador de 20 kW, la demanda media con un generador de 20 kW y otro de 100 kW trabajando a carga plena, y la demanda máxima se satisface trabajando con carga alta los tres generadores. Además se propone tener disponible una (1) unidad de 20 kW y una (1) unidad de 100 kW en caso de emergencia o que alguno de los equipos principales quede fuera de servicio o entre en mantenimiento.

Tabla 3-87. Análisis de consumo de combustible con diseño eficiente de grupos electrógenos

		CASO EFICIENTE FUNCIONAMIENTO MIRAFLORES								
		CONF. CARGA		F. CARGA POT. USADA CONSUMO HORAS (gal/h)						CONSUMO
		MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	galones
HORA	DEMANDA	20 kW	100 kW	100 kW	kW	20 kW	100 kW	100 kW	gal/h	Total día
0 - 1:59	MÍNIMA	50%	0%	0%	10	0,7	0	0	0,74	1
12 -13:59	MEDIA	100%	100%	0%	120	1,4	6,1	0	7,54	15
16- 17:59	MÍNIMA	50%	0%	0%	10	0,7	0	0	0,74	1
18-21:59	MÁXIMA	100%	100%	100%	220	1,4	6,1	6,1	7,54	30
22 23:59	MEDIA	0%	100%	0%	100	0	6,1	0	6,1	12
								TOTAL	22.66	60

Como se observa en la tabla anterior el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 57,37% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 81 galones de combustible diarios.

Asumiendo el precio del galón Diesel \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Miraflores con el

Rev. 01 Fecha 01/02/2012

diseño eficiente tiene un valor de: \$483.200,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$650.368,00 COP diarios y cerca de \$237.384.320,00 COP por año.

3.1.7.6 Puerto Leguizamo

El municipio de Puerto Leguízamo pertenece al departamento de Putumayo el cual posee aproximadamente 15613 habitantes. Según el IPSE Puerto Leguízamo posee un capacidad eléctrica instalada de 4000 kW, en donde la demanda en potencia máxima registrada para el periodo de evaluación (dic. 2010 -2011) fue de 1486 kW. También se sabe que Puerto Leguízamo tiene una demanda de energía mensual de 538549 kWh, y una demanda de energía promedio diaria de 17372 kWh. Se reporta una prestación del servicio de energía por 23,81 horas en promedio.

La localidad de Puerto Leguízamo posee los siguientes generadores de energía.

- Unidad de generación (3) marca Cummins QST30-G3 de 823 kWe.
- Unidad de generación (1) marca Cummins QST30-G4 de1007 kWe, fuera de servicio.
- Unidad de generación (1) marca Cummins DQGAB de 1350 kWe, fuera de servicio.

La siguiente grafica presenta la curva de demanda de energía de diciembre de 2010-2011 de Puerto Leguízamo:

Figura 3-32 Demanda eléctrica Puerto Leguízamo

Teniendo en cuenta la información de la figura anterior se realizó una integración para encontrar el tipo de demanda (Mínima, Media, Máxima) para la potencia promedio por horas para el periodo de evaluación. La potencia máxima no se extrajo de la gráfica de

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01
INFORME FINAL - ESTUDIOS EN ZINI	Fecha 01/02/2012

demanda si no se tuvo en cuenta la potencia máxima instantánea registrada en la telemetría (1486 kW).

Tabla 3-88. Integración curva de demanda energética municipio de Puerto Leguízamo.

DEMANDA ELECTRICA P. LEGUIZAMO (MÁXIMO 1486kW)						
HORA (0-24)	TIPO DEMANDA	TIEMPO (h)	MÁXIMO (kW)			
0 - 0:59	MEDIA	1	800			
1:00 -8:59	MÍNIMA	8	150			
9:00 - 17:59	MEDIA	9	1020			
18:00 -21:59	MÁXIMA	4	1486			
22:00 - 23:59	MEDIA	2	800			

La siguiente tabla presenta la potencia y el consumo de combustible por hora para diversos tipos de carga en el generador (teniendo en cuenta los generadores en servicio):

Tabla 3-89. Consumo de combustible de grupos electrógenos en servicio actualmente en Puerto Leguízamo.

MAQUINA 1,2,3 – Cummins DQGAB 823 kWe							
% CARGA	POTENCIA (kW)	CONSUMO (gal/h)					
100	823	48,5					
75	617	36,6					
50	412	24,7					
25	206	13,4					

3.1.7.6.1 ANALISIS 1 – Caso actual (total generadores encendidos)

El caso 1 contempla la situación actual de la localidad de Puerto Leguízamo, en donde sin importar el tipo de demanda horaria se tienen encendidos los generadores disponibles. Con la suposición del caso1 y asumiendo una repartición de cargas para los equipos instalados se desarrolló el análisis de consumo de combustible diario.

Doc. AN-USA-882-03

Rev. 01 Fecha 01/02/2012

Tabla 3-90. Análisis consumo de combustible diario Puerto Leguízamo.

			CASO REAL FUNCIONAMIENTO PUERTO LEGUIZAMO							
		cc	NF. CAR	GA	POT. USADA	CONSUMO HORAS (gal/h)			l/h)	CONSUMO
		MAQ. 1	MAQ. 1 MAQ. 2 MAQ. 3 TOTAL MAQ. 1 MAQ. 2 MA			MAQ. 3	TOTAL	galones		
HORA	DEMANDA	823 kW	823 kW	823 kW	kW	823 kW	823 kW	823 kW	gal/h	Total día
0 - 0:59	MEDIA	33%	33%	33%	815	17	17	17	51	51
1-8:59	MÍNIMA	7%	7%	7%	173	4	4	4	11	90
9-17:59	MEDIA	43%	43%	43%	1062	22	22	22	65	581
18-21:59	MÁXIMA	61%	61%	61%	1506	30	30	30	90	359
22-23:59	MEDIA	33%	33%	33%	815	17	17	17	51	102
								TOTAL	268	1184

El análisis de la tabla anterior nos muestra que diariamente se consumen 1184 galones que comparado con promedio real en Puerto Leguízamo de 2000 galones diarios, no es congruente probablemente por racionamientos de luz para este mes del año.

Asumiendo que el precio del galón Diesel se vende a la central en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Puerto Leguízamo tiene un valor de: \$9'471.168,00 COP en promedio para el mes de diciembre.

3.1.7.6.2 ANALISIS 2 – Caso actual optimizando el control de las maquinas

Este caso se diseñó teniendo en cuenta los grupos electrógenos instalados actualmente en la localidad de Miraflores pero optimizando su diseño en cuanto a los periodos de operación durante el día, tratando de en la medida tener encendido un solo generador.

Tabla 3-91. Análisis consumo de combustible diario diseño óptimo Puerto Leguízamo.

		CASO REAL OPTIMO FUNCIONAMIENTO PUERTO LEGUIZAMO								
		cc	ONF. CAR	GA	POT. USADA	CONSUMO HORAS (gal/h)				CONSUMO
	MAQ. 1 MAQ. 2 MAQ. 3			TOTAL	MAQ. 1	MAQ. 2	MAQ. 3	TOTAL	galones	
HORA	DEMANDA	823 kW	823 kW	823 kW	kW	823 kW	823 kW	823 kW	gal/h	Total día
0 - 0:59	MEDIA	98%	0%	0%	807	48	О	О	48	48
1-8:59	MÍNIMA	19%	0%	0%	156	10	0	0	10	81
9-17:59	MEDIA	75%	50%	0%	1029	37	25	0	61	552
18-21:59	MÁXIMA	91%	91%	0%	1498	44	44	0	88	354
22-23:59	MEDIA	98%	0%	0%	807	48	0	0	48	95
								TOTAL	255	1130

CREG	
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMIC	AS

Doc. AN-USA-882-03

Rev. 01 Fecha: 01/02/2012

Como se observa en la tabla anterior el diseño óptimo de operación de los equipos actualmente instalados podría reducir en 4,59% la cantidad de combustible usado por día, en cifras el sistema podría ahorrarse 54 galones de combustible diarios.

Asumiendo el precio del galón Diese en \$8000,00 COP y teniendo en cuenta el consumo de combustible diario, se encuentra que el gasto diario por combustible en Puerto Leguízamo con el diseño óptimo tiene un valor de: \$9'036.352,00 COP en promedio para el mes de diciembre. Y comparado con el diseño actual (caso 1) se estaría ahorrando cerca de \$434.816,00 COP diarios y cerca de \$158.707.840,00 COP por año que podrían servir para la compra de nuevos equipos electrógenos.

3.1.7.6.3 ANALISIS 3 - Diseño eficiente teniendo en cuenta la demanda eléctrica

Este diseño puede ser el mismo que el caso 2 ya que se propuso tener un sistema conformado por tres generadores, 200 kW, 823 kW y 1295 kW, los cuales resultaron ser menos eficientes probablemente a la unidad de 200 kW (a medida que se disminuye la potencia en generadores aumenta el consumo especifico de combustible. Con este sistema el consumo de combustible es de 1185 galones (55 más que el caso anterior).

INFORME FINAL – ESTUDIOS EN ZNI Rev. 00
Fecha: 14/12/2012

4 PROPUESTA DE ESQUEMA DE AGRUPACIÓN EN ZNI

En este capítulo se presenta inicialmente cuál es la agrupación vigente de los sitios en las ZNI que reciben el servicio de la energía eléctrica generada mediante las plantas de motores reciprocantes instaladas en estas zonas.

Posteriormente se presenta la propuesta de la consultoría sobre el esquema de agrupación en las ZNI que considera apropiado.

4.1 ANÁLISIS SOBRE EL ESQUEMA DE AGRUPACIÓN ACTUAL

Con base en el análisis de las características de las ZNI en el año 2000 se realizó una agrupación de los tipos de centros poblados de las ZNI, para la prestación del servicio de energía y otros servicios públicos. En ese momento se propuso que estas agrupaciones podrían ser promovidas y divulgadas a las administraciones municipales y gobernaciones, para que estos conformen zonas o grupos de manejo que les permita una mayor eficiencia y economías de escala en la prestación de los servicios públicos.

Los municipios tienen la opción de prestar el servicio de energía, por si mismos, en los centros poblados de su jurisdicción, con el apoyo técnico y financiero del gobierno central e incluso vender la prestación de los diferentes servicios a sus comunidades vecinas. Como lo establece la Ley, si las administraciones locales no se encuentran en capacidad de garantizar la eficiente prestación de los servicios públicos, el Estado puede promover la conformación de estos grupos de manejo y garantizar la prestación de los servicios públicos mediante la vinculación de privados por medio de concesiones, contratos de administración, BOT o similar que permita cumplir esta función constitucional².

La distribución y composición de los grupos de manejo de las localidades de las ZNI, se presentan en la Tabla 4-1 y en la Figura 4-1 a continuación. Se incluye en la tabla una relación de los medios de transporte que aplican para cada región:

Tabla 4-1 Agrupación de las localidades de las ZNI²

Grupo	Nombre	Vías de comunicación
1	Chocó/Atrato	Terrestre y Fluvial
<u>'</u>	Choco/Atrato	El río Atrato constituye el eje de la región.
2	Litoral Pacífico – Chocó	Marítimo
	Litoral Pacifico – Crioco	Mar Pacífico.
3	Literal posífice. Nerião/Couce	Marítimo
၂ ၁	Litoral pacífico- Nariño/Cauca	Mar Pacífico
4	Die Mete v Casanara	Terrestre – Fluvial
4	Rio Meta y Casanare	Río Meta
5	Río Guaviare	Terrestre – Aéreo – Fluvial
	Rio Guaviale	Río Guaviare
6	Ríos Caquetá y Caguán	Terrestre - Fluvial
	Caqueta y Caguan	Río Caquetá

² Se ajustaron los resultados

Rev. 01 Fecha: 01/02/2012

INFORME FINAL – ESTUDIOS EN ZNI

Grupo	Nombre	Vías de comunicación
7	Río Putumayo	Terrestre y Fluvial
,	Fuluinayo	Río Putumayo
8	Departamento del Amazonas	Aéreo o Fluvial
•	Departamento dei Amazonas	Río Amazonas
9	Departamento del Vaupés	Aéreo o Fluvial
10	Departamento del Guainía	Aéreo o Fluvial
11	Departamento del Vichada	Aéreo o Fluvial
12	Localidades y municipios aislados	Terrestre

Rev. 01 Fecha 01/02/2012

Figura 4-1 Agrupación de las localidades de las ZNI

Rev. 01 Fecha 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

El total de cabeceras municipales ubicadas en ZNI corresponde a 39, lo cual incluye 5 capitales de departamento. Un esquema general de ubicación de las cabeceras municipales se observa a continuación (se resalta del listado, los municipios visitados durante el desarrollo de este estudio):

Figura 4-2 Distribución geográfica general de Cabeceras Municipales ZNI

Areas de Servicio Exclusivo (ASE): Son áreas en las ZNI en las que se entrega en concesión la generación, transmisión, distribución y comercialización de la energía eléctrica, con el fin de extender la cobertura de los servicios públicos de energía a personas de menores ingresos.

El artículo 65 de la Ley 1151 de 2007, en concordancia con el artículo 40 de la Ley 142 de 1994, facultó al MME para establecer las áreas de servicio exclusivo y suscribir contratos de concesión especial para prestar el servicio de energía eléctrica.

INFORME FINAL – ESTUDIOS EN ZNI Rev. 01
Fecha: 01/02/2012

El MME firmó los contratos de concesión de áreas de servicio exclusivo en la Zona de San Andrés y Providencia en el mes de noviembre de 2009 y en la Zona de Amazonas en marzo de 2010. Con la firma de estos contratos, se busca implementar esquemas sostenibles de gestión que les permitan a los usuarios ubicados en las ZNI, tener acceso a un mejor servicio de energía eléctrica en términos de calidad, cobertura y continuidad.

De igual forma, el Concesionario deberá rehabilitar, operar y mantener la infraestructura existente, y hacer las reposiciones que sean del caso, para cumplir con los niveles de prestación del servicio exigido, así como generar parte de la energía con fuentes no renovables.

ASE Amazonas³

El Área de Amazonas incluye 9,383 usuarios con un consumo eléctrico aproximado de 24.9 GWh/año y está integrada por las siguientes 40 localidades:

Leticia, La Libertad, La Milagrosa, Loma Linda, Macedonia, Mocagua, El Progreso, Palmeras, Puerto Triunfo, San Martin Amacayacu, Santa Sofía, El Vergel, Las Yaguas, Zaragoza, La Chorrera, El Encanto, San Rafael, Miriti- Paraná, Pacoa, La Pedrera, Cameyafú, Puerto Remanso, Puerto Santander, Puerto Alegría, El Refugio, Puerto Arica, Puerto Nariño- Puerto Esperanza- 20 de Julio- Patrullero y Ticoya, Boyahuasú, Doce de Octubre, Naranjales, San Francisco, San Juan de Atacuari, San Juan del Socó, Siete de Agosto, San Pedro de Tipisca, Nuevo Paraiso, Santa Teresita, San José, Tarapaca, Puerto Ventura

Con el objetivo de promover el uso de fuentes alternativas y renovables de energía, el concesionario de esta área deberá atender el 10% de la totalidad de la generación en Localidades pequeñas (con menos de 300 casas) del Área de Amazonas con este tipo de fuentes al finalizar el quinto año de la concesión.

ASE San Andrés, Providencia y Santa Catalina³

Esta Área incluye las islas de San Andrés, Providencia y Santa Catalina con aproximadamente:

Usuarios atendidos	18,578
Usuarios con medición	96.7%
Demanda Pico	28 MW
Tarifa Promedio	333.33 \$/kWh
Consumo Combustible	1,170,000 gal/mes
Energía suministrada	150 GWh/año
Cobertura	99.3%

.. .

s mediante reg

Rev 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

PROPUESTA DE LA CONSULTORÍA SOBRE LAS AGRUPACIONES 4.2

Los criterios de conformación de las agrupaciones de las ZNI en su momento, fueron los siguientes:

- 1. Vías de comunicación y afinidad comercial que los une principalmente por medio de los ríos de las regiones los cuales son los medios principales de comunicación.
- Características energéticas: dispersidad y magnitud de la demanda
- 3. Características sociales y económicas.

Por lo tanto las siguientes son las razones principales para que esta consultoría sugiera el mantener las agrupaciones vigentes.

- 1. Los medios de transporte de equipos, materiales y combustible se constituyen en el criterio de mayor peso relativo en la decisión de cómo se integran los diferentes grupos en las ZNI.
 - Dado que los medios de transporte que se utilizan actualmente siguen siendo los mismos que aplicaban cuando se generó la resolución 091 del 2007 y además no hay proyectos de infraestructura en desarrollo o planeados a corto plazo que ofrezcan nuevas rutas para el comercio y la comunicación, este criterio se mantiene.
- 2. Actualmente, los sistemas de electrificación existentes en la mayoría de los centros poblados, mantienen sus condiciones de: aislados, diversos en capacidad, tamaño y grado de desarrollo, con carencias en la gestión operativa y comercial.
- 3. No hay evidencia de ningún proceso de cambio de las condiciones sociales de los grupos humanos que habitan en las ZNI que hayan modificado las características sociales y económicas, que dieron lugar a la actual zonificación de las ZNI.

La consultoría considera por lo tanto que es conveniente mantener la agrupación actual de los tipos de centros poblados de las ZNI, para la prestación del servicio de energía eléctrica y otros servicios públicos.

La distribución y composición de estos grupos que está acorde a la resolución 091 de 2007 vigente actualmente, se listan en la tabla continuación:

Tabla 4-2 Agrupación de las localidades de las ZNI²

Grupo	Nombre
1	Chocó/Atrato
2	Litoral Pacífico – Chocó
3	Litoral pacífico- Nariño/Cauca
4	Rio Meta y Casanare
5	Río Guaviare
6	Ríos Caquetá y Caguán
7	Río Putumayo
8	Departamento del Amazonas
9	Departamento del Vaupés

Rev. 01 Fecha: 01/02/2012

Grupo	Nombre
10	Departamento del Guainía
11	Departamento del Vichada
12	Localidades y municipios aislados

4.3 COSTOS EFICIENTES EN LAS AGRUPACIONES

Para la determinación de los costos eficientes en las agrupaciones se debe definir el escenario de eficiencia sobre el cual trabajar. Si se está hablando del escenario de configuración eficiente, los costos se deben determinar a partir del conocimiento detallado de las curva de demanda y requerimientos energéticos de cada una de las localidades y cabeceras municipales que conforman cada una de las agrupaciones. Esta información no está disponible y requiere de un levantamiento exhaustivo de información en campo. Vale la pena resaltar que una vez determinada la configuración eficiente, toda la metodología de cálculo de costos de inversión y de AOM corresponde a la metodología propuesta por esta consultoría.

En el segundo escenario de eficiencia que corresponde a los costos eficientes de un equipamiento y condiciones dados, se presenta a continuación la metodología a desarrollar para determinar los costos eficientes de inversión y de AOM.

4.3.1 Costo eficiente de Inversión

La siguiente tabla presenta la información de los costos totales de inversión en las siguientes cabeceras municipales: Acandí, Pizarro Bajo Baudó, Guapi, Puerto Inirida, Mitu, Miraflores, Puerto Leguízamo para plantas diesel con rangos de potencia entre 5 y 2500 kW.

Doc. AN-USA-882-03

Rev 01 Fecha: 01/02/2012

Tabla 4-3 Resumen de costos de inversión para grupos por potencia

kW	ACANDI (COP)	PIZARRO (COP)	GUAPI (COP)	PTO INIRIDA (COP)	MIRAFLORES (COP)	MITÚ (COP)	PTO LEGUIZAMO (COP)
5	\$ 64.598.744	\$ 64.381.364	\$ 63.396.282	\$ 73.659.180	\$ 66.424.827	\$ 70.817.767	\$ 69.626.509
10	\$ 70.394.803	\$ 70.213.850	\$ 69.211.236	\$ 79.740.619	\$ 72.245.547	\$ 76.848.636	\$ 75.501.461
20	\$ 80.639.213	\$ 80.531.684	\$ 79.493.733	\$ 90.429.953	\$ 82.539.666	\$ 87.566.335	\$ 85.904.891
25	\$ 85.467.746	\$ 85.397.212	\$ 84.341.456	\$ 95.438.317	\$ 87.393.245	\$ 92.633.337	\$ 90.813.546
30	\$ 90.184.853	\$ 90.151.501	\$ 89.077.850	\$ 100.336.166	\$ 92.135.525	\$ 97.590.121	\$ 95.611.182
40	\$ 99.390.551	\$ 99.432.123	\$ 98.322.412	\$ 109.906.068	\$ 101.391.946	\$ 107.278.780	\$ 104.979.149
50	\$ 108.387.781	\$ 108.505.018	\$ 107.358.890	\$ 119.271.104	\$ 110.440.402	\$ 116.763.748	\$ 114.140.253
60	\$ 117.241.505	\$ 117.435.143	\$ 116.252.245	\$ 128.496.207	\$ 119.345.850	\$ 126.109.947	\$ 123.159.443
70	\$ 125.989.230	\$ 126.259.996	\$ 125.039.978	\$ 137.618.851	\$ 128.145.791	\$ 135.354.842	\$ 132.074.211
80	\$ 134.665.234	\$ 135.039.795	\$ 133.769.821	\$ 146.799.396	\$ 136.892.064	\$ 144.699.904	\$ 140.975.010
100	\$ 190.941.051	\$ 193.012.343	\$ 190.925.761	\$ 211.322.960	\$ 194.316.577	\$ 211.912.832	\$ 200.925.566
125	\$ 212.119.520	\$ 214.392.069	\$ 212.208.626	\$ 233.479.733	\$ 215.631.299	\$ 234.388.603	\$ 222.539.913
150	\$ 233.098.433	\$ 235.576.540	\$ 233.294.165	\$ 255.457.855	\$ 236.749.376	\$ 256.692.539	\$ 243.964.018
200	\$ 274.648.358	\$ 277.550.093	\$ 275.063.833	\$ 299.067.022	\$ 278.586.099	\$ 300.973.169	\$ 286.431.427
250	\$ 315.827.855	\$ 319.169.255	\$ 316.471.391	\$ 342.383.714	\$ 320.063.252	\$ 344.986.741	\$ 328.563.140
300	\$ 356.753.887	\$ 360.550.211	\$ 357.633.400	\$ 385.521.112	\$ 361.297.269	\$ 388.845.205	\$ 370.474.434
350	\$ 397.493.849	\$ 401.759.577	\$ 398.616.850	\$ 428.542.832	\$ 402.355.021	\$ 432.610.945	\$ 412.231.021
400	\$ 438.090.531	\$ 442.839.368	\$ 439.464.129	\$ 471.487.886	\$ 443.278.770	\$ 476.321.738	\$ 453.874.008
450	\$ 478.572.978	\$ 483.817.850	\$ 480.203.877	\$ 514.381.538	\$ 484.097.035	\$ 520.001.618	\$ 495.430.754
500	\$ 518.972.295	\$ 524.751.293	\$ 520.880.254	\$ 557.377.223	\$ 524.857.958	\$ 563.843.908	\$ 536.986.869
600	\$ 599.527.117	\$ 606.355.817	\$ 601.979.574	\$ 643.034.606	\$ 606.123.434	\$ 651.165.095	\$ 619.815.109
700	\$ 679.850.229	\$ 687.767.894	\$ 682.867.550	\$ 728.651.137	\$ 687.183.781	\$ 738.507.667	\$ 702.496.675
750	\$ 719.942.280	\$ 728.417.207	\$ 723.248.662	\$ 771.452.022	\$ 727.653.102	\$ 782.191.828	\$ 743.795.632
800	\$ 759.994.722	\$ 769.034.396	\$ 763.594.047	\$ 814.249.675	\$ 768.087.880	\$ 825.884.619	\$ 785.071.187
900	\$ 839.995.961	\$ 850.184.468	\$ 844.191.205	\$ 899.835.347	\$ 848.866.885	\$ 913.291.221	\$ 867.560.540
1000	\$ 968.434.608	\$ 980.825.616	\$ 973.772.326	\$ 1.038.980.273	\$ 978.796.638	\$ 1.055.927.172	\$ 1.000.769.311
1250	\$ 1 175.198.364	\$ 1 188.015.100	\$ 1 179.530.998	\$ 1.259.416.092	\$ 1 188.068.521	\$ 1.274.382.537	\$ 1.214.640.980
1500	\$ 1.374.018.861	\$ 1.389.801.211	\$ 1.379.889.808	\$ 1.472.652.322	\$ 1.388.896.754	\$ 1.492.319.343	\$ 1 419.884.329
1600	\$ 1.453.435.450	\$ 1 470.380.231	\$ 1.459.909.369	\$ 1.557.719.445	\$ 1.469.100.315	\$ 1.579.228.951	\$ 1.501.818.483
2000	\$ 1.770.533.839	\$ 1.791.836.760	\$ 1.779.268.398	\$ 1.896.002.594	\$ 1.789.149.189	\$ 1.924.419.869	\$ 1.828.355.626
2500	\$ 2.165.691.985	\$ 2.191.320.002	\$ 2.176.670.043	\$ 2.312.184.865	\$ 2.187.235.447	\$ 2.347.457.532	\$ 2.232.880.957

Los elementos de costo detallados de estas cabeceras se entregan adjuntos en una memoria de cálculo electrónica.

Para determinar los costos eficientes en cada uno de los sitios donde hay una planta de generación en las ZNI, se requiere una información detallada que no está disponible en la información secundaria consultada, por tanto para este cálculo de costos eficientes se recomienda obtener en sitio la siguiente información por localidad:

- Distancia desde la cabecera municipal
- Potencia de los grupos electrógenos
- Horas de operación diaria

Con la información necesaria completa sobre cada sitio se aplica la siguiente metodología de cálculo:

- 1. Determinar el costo eficiente de inversión con todos sus componentes aplicando la metodología presentada el capítulo 3 de este estudio (3.1.1).
- 2. Determinar el costo eficiente de O&M de acuerdo a la información presentada en el numeral 3.1.2.

CREG INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	Doc. AN-USA-882-03
INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01 Fecha: 01/02/2012

3. Determinar el costo eficiente de administración, que depende de la configuración de la central, de acuerdo a la información contenida en el numeral 3.1.2.4.

4.3.2 Costo eficiente de administración de una agrupación

Para determinar el costo eficiente de administración de una agrupación, se requiere conocer la estructura técnica y administrativa, los servicios que se prestan y las áreas que se atienden en las distintas cabeceras municipales y localidades que conforman dicha agrupación, así como la relación administrativa y técnica de las cabeceras con cada una de las localidades para realizar actividades diversas tales como: el mantenimiento de redes, transformadores de distribución, equipos de generación.

Dado que no se dispone de esta información, se sugiere realizar eventualmente un trabajo de campo que pueda obtenerla.

Una vez se disponga de esta información se puede hacer el cálculo del costo eficiente de administración siguiendo las pautas establecidas en el numeral 3.1.2.4. de este estudio.

4.3.3 Costo eficiente de operación y mantenimiento de una agrupación

De acuerdo con la metodología descrita en el numeral 3.1.2.8, se calculan los cargos sugeridos de remuneración por potencia de las unidades o grupos electrógenos en las ZNI, con relación al número de horas diarias de prestación del servicio. Éstos se presentan a continuación:

Rev. 01 Fecha: 01/02/2012

Tabla 4-4 Costos de operación y mantenimiento sugeridos

	Fijos	Variables					
kW	horas	USD/año		USD/año		USD/año	COP/kWh
5	12	\$ 590	\$	767	\$	1.357	111
10	12	\$ 1.180	\$	1.533	\$	2.713	111
20	12	\$ 2.360	\$	3.066	\$	5.426	111
25	12	\$ 2.950	\$	3.833	\$	6.783	111
30	12	\$ 3.540	\$	4.599	\$	8.139	111
40	12	\$ 4.720	\$	6.132	\$	10.852	111
50	12	\$ 5.900	\$	7.665	\$	13.565	111
60	12	\$ 7.080	\$	9.198	\$	16.278	111
70	12	\$ 8.260	\$	10.731	\$	18.991	111
80	12	\$ 9.440	\$	12.264	\$	21.704	111
100	12	\$ 11.800	\$	15.330	\$	27.130	111
125	12	\$ 14.750	\$	19.163	\$	33.913	111
150	12	\$ 9.045	\$	22.995	\$	32.040	88
200	12	\$ 12.060	\$	25.404	\$	37.464	77
250	12	\$ 15.075	\$	31.755	\$	46.830	77
300	12	\$ 18.090	\$	38.106	\$	56.196	77
350	12	\$ 21.105	\$	44.457	\$	65.562	77
400	12	\$ 24.120	\$	50.808	\$	74.928	77
450	12	\$ 27.135	\$	57.159	\$	84.294	77
500	12	\$ 30.150	\$	63.510	\$	93.660	77
600	12	\$ 36.180	\$	76.212	\$	112.392	77
700	12	\$ 42.210	\$	88.914	\$	131.124	77
750	12	\$ 45.225	\$	95.265	\$	140.490	77
800	12	\$ 48.240	\$	101.616	\$	149.856	77
900	12	\$ 54.270	\$	114.318	\$	168.588	77
1000	12	\$ 60.300	\$	127.020	\$	187.320	77
1250	12	\$ 75.375	\$	158.775	\$	234.150	77
1500	12	\$ 90.450	\$	190.530	\$	280.980	77
1600	12	\$ 96.480	\$	203.232	\$	299.712	77
2000	12	\$ 120.600	\$	254.040	\$	374.640	77
2500	12	\$ 150.750	\$	317.550	\$	468.300	77

Rev. 01 Fecha: 01/02/2012

4.4 ANALISIS DE PROPUESTA DE ZONA EXCLUSIVA. CASO PUERTO LEGUIZAMO

Como resultado de la revisión de las regiones actuales se pudo detectar que el caso de Puerto Leguizamo podría ser un caso atractivo para convertirse en zona exclusiva ya que por la característica de la demanda, 24 horas de servicio, lo concentrado del mercado y posible diversidad de combustibles que podrían llevarse habría la posibilidad de sacar a competencia la prestación del servicio y así obtener precios razonables de producción.

Con el fin de dar una idea preliminar del tema, esta consultoría desarrollo un análisis que podría llevar a determinar la configuración, costo y tipo de combustible eficientes a utilizar en esta central.

La metodología que se desarrolla para este caso se fundamenta en partir del conocimiento de la demanda a atender y diseñar la configuración técnica de la planta (número y potencia de máquinas a instalar), buscando maximizar la disponibilidad de la central, la confiabilidad en la atención a la demanda y el mínimo costo de generación de energía.

Esta consultoría considera que esta es una mayor aproximación para optimizar la eficiencia global, porque no solo está basada en un la búsqueda de un costo de inversión más eficiente, sino que también está basada en una configuración técnica de la planta que optimiza el costo de generación de energía eléctrica.

Este caso es basado en el análisis tarifario para el municipio de Puerto Leguízamo. Para poder resolver el análisis de producción de energía se utilizó la curva de demanda energética de Puerto Leguízamo del mes de diciembre de 2010 y 2011. Se realizó una derivación por tipos de demanda de la curva y luego se realizó el análisis para mantener la demanda con una configuración de generadores eficientes. Cabe mencionar que los generadores GLP se encuentran en potencias desde 1 kW hasta 400 kW de potencia, por lo cual es importante diseñar el sistema manteniendo esta limitación. Se quiere comparar un sistema con generadores diésel y otro con glp, con precios de combustibles y maquinaria reales para hallar la tarifa en \$/kWh. También se va a implementar un diseño con motores de HFO. Se debe tener en cuenta que los precios pueden variar dependiendo de la calidad y marca de la máquina, sin embargo los precios indicados en este artículo son una aproximación real dependiendo de la potencia del grupo electrógeno.

Los generadores utilizados fueron los siguientes:

- Motor Diesel Perkins 400 kW, 1800 RPM 6 Cilindros.
- Motor Diesel Perkins 800 kW, 1800 RPM.
- Motor Diesel LOVOL 1800 RPM, 150 kW.
- Motor GLP KOHLER 150REZGC 150 kW.
- Motor GLP KOHLER 400RZXB 400 kW.
- Motor Mitsubishi 1350 RD Diesel Generator set (HFO), se deben agregar una centrifugadora de HFO que tiene un costo aproximado de U\$D 7500.

Rev. 01 Fecha: 01/02/2012

Tabla 4-5. Costo equipos electrógenos de diversos casos de Puerto Leguízamo

	COSTO GRUPO ELECTROGENO											
	1	150 kW Diesel 400 kW Diesel		800 kW Diesel		150 kW GLP		400 kW GLP		1350 kW HFO		
COP	\$	42.781.000	\$	84.149.690	\$	271.261.970	5	77,800.560	\$	245.337.400	\$	415.845.640
U\$D	\$	23.900	\$	47.011	\$	151.543	\$	43.464	\$	137.060	\$	232.316

El valor de los motores Diesel se obtuvo de una matriz con precios comerciales en Colombia, y el valor de los motores GLP se obtuvieron de una cotización directa con KOHLER POWER SYSTEMS para máquinas de 180 kW y 250 kW que luego se extrapolaron. Tener en cuenta que el precio utilizado para los generadores diésel es el electro-combustible.

Los costos de operación y mantenimiento para el caso de Puerto Leguízamo se enuncian a continuación:

Tabla 4-6. Costo de O&M fijos y variables de generadores para casos de Puerto Leguízamo

	O	&M FIJO	O&M VARIABLE						
		DOLAR (U\$D) / kW		DOLAR (U\$D) /					
GENERADOR	(COP) / kW inst.	inst.	(COP) / kWh	kWh					
Diesel 150 kW	107400	60	44,75	0,0250					
Diesel 400 kW	107400	60	44,75	0,0250					
Diesel 823 kW	107400	60	34,01	0,0190					
GLP 150 kW	107400	60	37,23	0,0208					
GLP 400 kW	107400	60	28,75	0,0161					
HFO 1350 kW	125300	70	35,80	0,0200					

A continuación se presenta la curva de demanda de Puerto Leguízamo obtenida del IPSE:

Rev. 01 Fecha: 01/02/2012

Figura 4-3. Curva de demanda eléctrica del municipio de Puerto Leguízamo diciembre 2010 – 2011.

Con fines de analizar la demanda en Puerto Leguízamo la curva anterior se simplifica en la siguiente gráfica:

Rev. 01 Fecha: 01/02/2012

Figura 4-4. Curva de demanda eléctrica simplificada.

De esta manera ya es posible diseñar un sistema de generadores que suplan eficientemente la curva de demanda. Para el sistema con Diesel se propone tener generadores de 150 kW, 400kW, y 823 kW. Distribuidos de la siguiente manera, para la demanda mínima se utiliza el generador de 150 kW, para demanda media se utiliza el generador de 823 kW y el de 150 kW cuando sea necesario, y en la demanda máxima se utilizan los 3 generadores.

Para el diseño de la planta de generación de energía con GLP se propone utilizar un (1) generador de 150 kW, y tres (3) generadores de 400 kW con la siguiente configuración. En demanda mínima se utiliza el generador de 150 kW, en demanda media se utilizan 2 generadores de 400kW y cuando sea necesario se enciende el de 150 kW, en demanda máxima se encienden todos (4) los generadores propuestos.

El análisis trabajando con HFO se realizó de la siguiente manera. Dado que para trabajar con HFO únicamente se han fabricado maquinas con potencias por encima de los 1000 kW, se va a asumir el diseño de dos generadores de 1350 kW cada uno encendidos las 24 horas del día trabajando a carga media (50%). Es decir que se va a tener un diseño ineficiente porque las maquinas no operan con carga alta, sin embargo se va a tener 24 horas de disponibilidad de electricidad. Son dos generadores ya que en caso de que falle alguno el otro entraría a remplazarlo, supliendo en cualquier momento la demanda máxima de Puerto Leguízamo.

Rev. 01 Fecha: 01/02/2012

INFORME FINAL - ESTUDIOS EN ZNI

Se debe tener en cuenta que en la visita a Puerto Leguízamo fue posible obtener el costo de transporte de combustible y lubricante. El costo de transporte desde Puerto Asís hasta el muelle en Puerto Leguízamo tiene un valor de \$650/gal COP y el transporte desde el muelle hasta los tanques de almacenamiento de la planta tiene un costo de \$50/gal COP.

Dado la información anterior es posible encontrar la tarifa en COP\$/kWh:

Tabla 4-7. Análisis de tarifa para cada uno de los diseños planteados.

COMBUSTIBLE	GLP	·		DIESEL		HFO
Potencia planta (kW)	1350	Potencia planta (kW)		1373	Potencia planta (kW)	2700
Produc. energia/año (kWh)	6.405.750	Produc, energia/año (kWh)		6.686.070	Produc, energia/año (kWh)	11.826.000
		Costo lubrio	ante			
Transporte lubricante	\$ 14.564	Transporte lubricante	\$	14.819	Transporte lubricante	\$ 24.528
Costo total lubricante	\$ 511.054	Costo total lubricante	S	520.020	Costo total lubricante	\$ 860.723
		Costo equipos e i	nsta	lación		
Gen. 150 kW	\$ 179.887.579	Gen. 150 kW	\$	98,916.647	Gen. 1350 kW	\$ 961.502.919
Gen. 400 kW	\$ 567.260.069	Gen. 400 kW	\$	194.567.803	Gen. 1350 kW	\$ 961.502.919
Gen. 400 kW	\$ 567.260.069	Gen. 823 kW	\$	627.201.901		
Gen. 400 kW	\$ 567.260.069					
		Anualidad pl	anta	1		
Gen. 150 kW	\$ 84.008.699	Gen. 150 kW	\$	46.194.734	Gen. 1350 kW	\$ 504.368.139
Gen. 400 kW	\$ 210.665.652	Gen. 400 kW	\$	32,487,280	Gen. 1350 kW	\$ 504.368.139
Gen. 400 kW	\$ 210.665.652	Gen. 823 kW	\$	232.926.491		
Gen. 400 kW	\$ 85.311.343					
		Costo combustil	ole a	nual		
Galones diarios	963	Galones diarios		1223	Galones diarios	2482
Transporte combustible	\$ 245.959.630	Transporte combustible	\$	312.563.370	Transporte combustible	\$ 634.048.800
Costo total combustible	\$ 874.913.541	Costo total combustible	\$	2.814.275.932	Costo total combustible	\$ 3.747.047.251
		Costos O8	М			
O&M fijo	\$ 144.990.000	O&M fijo	\$	147.460.200	O&M fijo	\$ 338.310.000
O&M variables	\$ 238.498.884	O&M variables	\$	299.201.633	O&M variables	\$ 423.370.800
GRAN TOTAL	\$ 1.849.564.824	GRAN TOTAL	\$	3.573.066.289	GRAN TOTAL	\$ 5.518.325.052
COSTO ENERGÍA (\$/kWh)	289	COSTO ENERGÍA (\$/kWh)		534	COSTO ENERGÍA (\$/kWh)	467

La tabla anterior muestra que trabajar con generadores Diésel resulta 1,85 veces más costoso que trabajar con combustible GLP, y 1,15 veces más costo que trabajar con HFO.

El alto costo de los equipos de GLP influye fuertemente en el desarrollo de la tarifa, sin embargo el bajo costo del combustible permite que el GLP tenga la tarifa más económica de todos los casos analizados anteriormente. Por otro lado se observa que el HFO es competitivo en precio teniendo en cuenta que se tiene una disponibilidad alta, por lo cual si se encontraran o se desarrollara equipos pequeños para manejo de HFO esta sería una opción a tener en cuenta ya que su transporte es relativamente sencillo y no como lo es el transporte de GLP en donde solo se puede almacenar este combustible en cilindros de cierto tamaño y se debe tener cuidado con la evaporación del mismo al transferirlo al tanque principal del grupo electrógeno.

Para contrastar los resultados se realizó el análisis anterior para una planta de generación de energía con motores y combustible Diesel con el mismo diseño de la planta de HFO, es decir, con dos generadores de 1350 kW trabajados a 50% de carga durante las 24 horas del día. La tarifa que se encontró fue de \$ COP 630/kWh, lo que nos lleva afirmar

Rev. 01 Fecha: 01/02/2012

que se debe tener en cuenta el diseño eficiente de las plantas en cuanto a consumo de combustible. En comparación con la planta eficiente diésel de 3 generadores con una potencia de 1350 kW se gastan 1223 galones diarios, mientras que con el diseño ineficiente diésel planteado actualmente el cual posee la misma potencia se gastan 2482 galones diarios. Esta es la razón del aumento en la tarifa (96 pesos más) siendo plantas con la misma potencia de generación de energía.

4.4.1 Emisiones con diseños planteados en Puerto Leguízamo

Por medio del software *ThermoFlex 22* ® se encontró las emisiones de contaminantes producidas por cada uno de los diseños presentados en este informe. La composición del GLP para este análisis se encuentra en la tabla 5. El análisis con ThermoFlex se tuvo en cuenta las condiciones promedio del municipio de Puerto Leguízamo el cual corresponde a una altura de 177 m respecto del nivel del mar, una temperatura de 29 °C, y una humedad relativa de 64%.

EMISIONES GLP DIESEL - INEFICIENTE DIESEL - EFICIENTE Potencia planta 1350 1350 1350 1350 CO2 (TONELADA/AÑO) 7686 8623 8636 8422 SO2 (TONELADA/AÑO) 0 27,15 148,4 26.51 TOTAL EMISIONES 7686 8650 8784

Tabla 4-8. Emisiones de diseño de plantas en Puerto Leguízamo.

La tabla anterior presenta que la planta menos contaminante es la de GLP, y la más contaminante es la planta de HFO. Entre las planta diésel el diseño ineficiente es el de menor contaminación probablemente porque son 2 máquinas y no 3 como en el caso eficiente y porque las maquinas grandes tienden a ser más eficientes y menos contaminantes.

Teniendo en cuenta la resolución 0909 de 2008 la cual trata sobre las normas y estándares de emisiones de contaminantes a la atmósfera por fuentes fijas se logró conocer si el diseño de las plantas era apto para el desarrollo en Colombia.

El artículo 2, parágrafo 5° de la norma dice explícitamente: "Los motores de combustión interna con capacidad igual o superior a 1 MW existentes en actividades industriales deberán cumplir un estándar de emisión admisible para MP de 100 mg/m³, para SO_2 de 400 mg/m³ y para NOx de 1800 mg/m³ a condiciones de referencia y con oxígeno de referencia del 15%.

Los motores de combustión interna con capacidad igual o superior a 1 MW nuevos en actividades industriales deberán cumplir un estándar de emisión admisible para MP de 50 mg/m³, para SO_2 de 400 mg/m³ y para NOx de 1800 mg/m³ a condiciones de referencia y con oxígeno de referencia del 15%". La norma no comenta nada acerca del CO_2 pero si dice que los niveles de SO_2 deben ser menores a 400 mg/m³, y el ThermoFlex ofrece los datos en kg/hr así que se debe realizar una conversión de unidades.

Rev. 01 Fecha: 01/02/2012

$$FC = \frac{C_{CR} * Q_{CR}}{1000000} \leftrightarrow C_{CR} = \frac{FC * 100000}{Q_{CR}}$$

En donde:

- FC = Flujo del contaminante en kg/h.
- Ccr = Concentración del contaminante a condiciones de referencia en mg/m3.
- Qcr = Caudal del contaminante a condiciones de referencia en m³/h.

Ya que las únicas máquinas que sobrepasan la potencia de 1 MW son los grupos electrógenos de 1350 kW el siguiente análisis se centrara en estos equipos.

COMBUSTIBLE	HFO	DIESEL
CARGA DE TRABAJO	50%	50%
POTENCIA ELECTRICA (kW)	1350	1350
FC (kg/hr)	9,157	1,637
QCR (m3/hr)	11520	11520
CCR (mg/m3)	795	142

Tabla 4-9. Análisis de emisiones para maquinas mayores a 1 MW

Como se observa en la tabla 11 las emisiones cuando se trabaja con HFO son mayores a las permitidas por la norma 0909 de 2008, un grupo electrógeno de 1350 kW trabajando al 50% de su carga emite prácticamente el doble de SO2 que lo permitido por las normas colombianas en referencia al ambiente. Por otro lado la tabla 11 también muestra que el uso de Diesel en máquinas mayores a 1 MW es viable según las normas de ambiente impuestas en Colombia.

4.5 CONCLUSIONES

El análisis de tarifas teniendo en cuenta el modelo financiero de las diversas configuraciones de generadores eléctricos para zonas aisladas, muestra que el trabajar con combustibles diferentes al Diesel como los HFO o el GLP son alternativas muy atractivas que se deberían tener en cuenta para la producción de energía en Colombia. Remplazar el uso actual de Diesel por HFO o GLP representa una rebaja en las tarifas actuales de energía para zonas donde transportar la energía por red es altamente costoso. A pesar de tener ineficiencias en el diseño de plantas eléctricas por la limitación del tamaño de los equipos de HFO o GLP, y además el alto costo inicial de los equipos, las tarifas son mucho más bajas que trabajar con Diesel principalmente por el bajo costo de los combustibles y el menor consumo de combustible (mejor eficiencia) en máquinas de gran tamaño.

Aunque trabajar HFO garantiza una tarifa baja, estos sistemas no pueden ser implementados en Colombia porque las normas del ministerio de ambiente restringen las emisiones de SO2 que en estos grupos electrógenos es elevada. Si se desea implementar sistemas de HFO una solución viable seria tener grupos electrógenos

INFORME FINAL – ESTUDIOS EN ZNI	Rev. 01
INVERSIONES Y GASTOS DE AOM EN ZNI CON PLANTAS TÉRMICAS	
CREG	Doc. AN-USA-882-03

menores a 1 MW, o tal vez implementar sistemas de filtrado que garanticen que los límites de contaminación no sean sobrepasados.

Se señala que los precios de las tarifas encontradas pueden variar dependiendo de los grupos electrógenos que se compren y del correcto mantenimiento que se les proporcionen. Es de importancia seguir las indicaciones de los fabricantes para brindarle una vida útil satisfactoria a los generadores eléctricos.

Fecha: 01/02/2012