OBJECT-RECOGNITION

Rishabh Gupta (2014086) Kushagra Mahajan (2014055)

5 11 0 1	Characteristics and City
Problem Statement	Given an image, classify them into one of the following classes based on the object present in it.
	<u>Classes</u> : Airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
	adg, nog, norse, simp, track
<u>Datasets</u>	https://www.cs.toronto.edu/~kriz/cifar.html
	CIFAR-10 is an established computer-vision dataset used for object recognition. It consists of 60,000 32x32 color images containing one of 10 object classes, with 6000 images per class.
<u>Learning Techniques</u>	Simple: Support Vector Machine Garage Law
	 <u>Complex</u>: Neural networks using perceptron
	model model
	 Convolution Neural
	Networks(Deep Learning)
Training Approaches	Back-Propogation
Activation functions	Sigmoidal function
	Tanh function
Model selection	Cross Validation Technique will be applied in both
	SVM and Neural Nets for best parameters.
	All the techniques stated above will be explored
	and one giving the best results based on
	Evaluation metrics will be adopted.
Evaluation Metrics	SVM : Accuracy
	Neural Networks : Accuracy, Precision, Recall