

CURSO SUPERIOR DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS ORGANIZAÇÃO DE COMPUTADORES Aula 02

SISTEMA DE NUMERAÇÃO

Professor M Silvio Augusto Langer Aula 02

Objetivo

- ► Tipos de Bases de Numeração
- Conversão de Bases

Introdução

- Existem vários sistemas numéricos, dentre os quais se destacam:
 - ► Sistema decimal = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - ► Sistema binário = 0, 1
 - ► Sistema octal = 0, 1, 2, 3, 4, 5, 6, 7
 - ► Sistema hexadecimal = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Sistema decimal é utilizado por nós no dia-a-dia.
 - ▶ Possui 10 algarismos.
- Sistema binário e hexadecimal
 - Área de técnicas digitais e informática.

Sistema de Numeração

- ► A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de Base.
 - Serve para indicar a noção de grupamento.
 - Sistema decimal tem base 10, binário base 2.
- ► Representação numérica é chamada notação posicional.
 - ► Algarismos componentes de um número assumem valores diferentes, dependendo da posição relativa no número.

Sistema de Numeração

- Forma de representação numérica mais comum: notação posicional
 - Os algarismos componentes de um número assumem valores diferentes, dependendo de sua posição relativa no número
 - ► Exemplo de sistema posicional: decimal
 - ▶ Os computadores usam sistema de numeração posicional.
 - Exemplo de sistema não posicional: Romano.

Sistema Decimal de Numeração

- Exemplo sistema posicional:
 - ► Seja o número 1303₁₀. Considerando-se a base 10.

UM	С	D	U	
1	3	0	3	
$1x10^{3}$	$3x10^{2}$	$0x10^{1}$	$3x10^{0}$	
1000	300	O	- 3	
1303 ₁₀				

Sistema Decimal de Numeração

Exemplo:

100	10	1
5	9	4

$$\rightarrow$$
 5 x 100 + 9 x 10 + 4 x 1 = 594

Centena Dezena Unidade

10 ²	10 ¹	10 ⁰
5	9	4

$$\rightarrow$$
 5 x 10² + 9 x 10¹ + 4 x 10⁰ = 594

- Existem apenas dois algarismos:
 - ► Para representar a quantidade zero utilizarmos o algarismo 0.
 - ► Para representar a quantidade um utilizamos o algarismo 1.
 - ► Cada dígito binário recebe a denominação de bit (binary digit),
 - ▶ O conjunto de 4 bits é denominado de *nibble*
 - ▶ O conjunto de 8 bits é denominado *byte*.

DECIMAL	BINÁRIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

- ► Conversão do Sistema Binário para o Sistema Decimal
 - \triangleright Exemplo: número 5 = 101₂.

	2 ²	21	2 ⁰	
	1	0	1	
1				
	1 x 2 ² +	0 x 2 ¹	+ 1 x 2 ⁰	l
	1 x 4 +	0 x 2 -	+ 1 x 1	→ 5

- **Exemplos:**
 - **▶** 1011₂
 - **▶** 1043₂
 - **▶** 01110₂

- ► Conversão do Sistema Decimal para o Sistema Binário
 - ► Exemplo: 53₁₀

- ► Conversão do Sistema Decimal para o Sistema Binário
 - ▶ Bit menos significativo de um número binário recebe a notação de LSB (*Least Significant Bit*)
 - ▶ Bit mais significativo de MSB (*Most Significant Bit*)

- ► Conversão do Sistema Decimal para o Sistema Binário
 - Exemplos:
 - **▶**47₁₀

▶21₁₀

►552₁₀

Sistema Octal de Numeração Sistema de Numeração

- ► Conversão do Sistema Octal para Sistema Decimal
 - **Existem 8 algarismos: 0,1,2,3,4,5,6,7.**

DECIMAL	OCTAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

DECIMAL	OCTAL
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

- ► Conversão do Sistema Octal para o Sistema Decimal
 - Exemplo: 144₈.

8 ²		8 ¹		8 ⁰		
1		4		4		
1 x 8 ²	+	4 x 8 ¹	+	4 x	80	
1 x 64	+	4 x 8	+	4 x	$1 \rightarrow$	

Exemplos:

- **▶77**₈
- ►100₈ ►476₈

- ► Conversão do Sistema Decimal para o Sistema Octal
 - ▶ O processo é análogo à conversão do sistema decimal para o binário, somente que neste caso, utilizaremos a divisão por 8, pois sendo o sistema octal, sua base é igual a 8.

► Conversão do Sistema Decimal para o Sistema Octal

Conversão do número 2001₁₀ para Octal.

Resultado: 37218

- ► Conversão do Sistema Decimal para o Sistema Octal
 - Exemplos:
 - **▶92**₁₀
 - **►74**₁₀
 - **►**512₁₀
 - **►719**₁₀

► Conversão do Sistema Octal para o Sistema Binário

- ► A principal vantagem do sistema octal é a facilidade com que a conversão pode ser feita entre os números binário e octal.
- ► Essa conversão é realizada convertendo-se cada dígito octal no seu equivalente de 3 bits.
- ▶ Os oito dígitos possíveis são convertidos conforme tabela.

Digito Octal	0	1	2	3	4	5	6	7
Equivalente binário	000	001	010	011	100	101	110	111

$$2^3 = 8$$

- ► Conversão do Sistema Octal para o Sistema Binário
 - ► Exemplo:

- ► Conversão do Sistema Octal para o Sistema Binário
 - Exemplos:
 - **▶**34₈
 - ▶536₈
 - ▶5431₈
 - ►44675₈

- ► Conversão do Sistema Binário para o Sistema Octal
- **Exemplo:** 100111010₂

$$100\ 111\ 010_2 = 472_8$$

Algumas vezes, o <u>número binário não tem grupos regulares de 3 bits</u>. Para esses casos, podemos contar um ou dois 0s à <u>esquerda</u> do MSB do número binário para completar o último grupo.

Sentido da conversão

- ► Conversão do Sistema Binário para o Sistema Octal
- **Exemplos:**
 - ► 110010₂
 - **►** 1010₂
 - **►** 10111₂

Sistema de Numeração

▶ O sistema de numeração hexadecimal usa a base 16.

Possui 16 símbolos possíveis.

▶ Utiliza os dígitos de 0 a 9 mais as letras A, B, C, D, E, F com símbolos.

Hexadecimal	Decimal	Binário
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hexadecimal	Decimal	Binário
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

- ► Conversão de Hexa para Decimal
 - ► Exemplo: 3F₁₆

$$3 \times 16^1 + F \times 16^0$$

$$3 \times 16 + 15 \times 1 = 63_{10}$$

- ► Conversão de Hexa para Decimal
- **Exemplos:**
 - ► 1C3₁₆
 - **▶** 238₁₆
 - ► 1FC9₁₆
 - ► 2AF₁₆
 - **▶** 356₁₆

- ► Conversão de Decimal para Hexa
 - ▶ Da mesma forma que nos casos anteriores, esta conversão se faz através de divisões pela base do sistema a ser convertido. Neste caso divisões por 16.
 - **Exemplos:**
 - **►** 423₁₀
 - **►** 214₁₀
 - Quando os restos forem maiores que 9 são representados pelas letras de A até F.

► Conversão de Decimal para Hexa

	2001	16	
V.	1	125	16
•	*****	13	7

Quociente	Hexadecimal
7	7
13	D
1	1

Resultado: $2001_{10} \rightarrow 7D1_{16}$

Exercícios:

- **1.** 1000₁₀
- **2.** 134₁₀
- 3. 348₁₀
- **4.** 3882₁₀

- ► Conversão de Hexa para Binário
 - ► Cada dígito hexa é convertido no equivalente binário de 4 bits. Exemplo: 9F2₁₆

9F2₁₆ = 10011110010₂

- ► Conversão de Hexa para Binário
- Exercícios:
 - ► BA6₁₆
 - ► C13₁₆
 - ► 1ED₁₆
 - ► 6CF9₁₆

► Conversão de binário para hexa

- ► Consiste em fazer o inverso do processo anterior. O número binário é disposto em grupos de quatro (4) bits e cada grupo é convertido no digito hexa equivalente.
- ► Zeros podem ser necessários para completar um grupo de 4 bits.
- **Exemplos:**
 - ► 1110100110₂
 - **▶** 101011111₂

- **Exercícios:**
 - ► 10011000₂
 - **►** 1100011₂
 - ► 11000111100011100₂

- ► Vantagens dos sistemas hexa e octal
 - ▶ Forma compacta de representar sequencia de bits.
 - Em computadores sequencias binárias de até 64 bits não são incomuns.
 - Estas sequências não são necessariamente números. Podem representar algum tipo de código.

▶ O sistema de numeração hexadecimal usa a base 16.

Possui 16 símbolos possíveis.

▶ Utiliza os dígitos de 0 a 9 mais as letras A, B, C, D, E, F com símbolos.

Hexadecimal	Decimal	Binário
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hexadecimal	Decimal	Binário
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

- ► Conversão de Hexa para Decimal
 - ► Exemplo: 3F₁₆

$$3 \times 16^{1} + F \times 16^{0}$$

$$3 \times 16 + 15 \times 1 = 63_{10}$$

- Conversão de Hexa para Decimal
- **Exemplos:**
 - ► 1C3₁₆
 - **▶** 238₁₆
 - ► 1FC9₁₆
 - ► 2AF₁₆
 - **▶** 356₁₆

- Conversão de Decimal para Hexa
 - ▶ Da mesma forma que nos casos anteriores, esta conversão se faz através de divisões pela base do sistema a ser convertido. Neste caso divisões por 16.
 - **Exemplos:**
 - **►** 423₁₀
 - **►** 214₁₀
 - Quando os restos forem maiores que 9 são representados pelas letras de A até F.

Exercícios:

- **1.** 1000₁₀
- **2.** 134₁₀
- 3. 348₁₀
- **4.** 3882₁₀

- ► Conversão de Hexa para Binário
 - ► Cada dígito hexa é convertido no equivalente binário de 4 bits. Exemplo: 9F2₁₆

9F2₁₆ = 10011110010₂

- ► Conversão de Hexa para Binário
- Exemplos:
 - ► BA6₁₆
 - ► C13₁₆
 - ► 1ED₁₆
 - ► 6CF9₁₆

► Conversão de binário para hexa

- ► Consiste em fazer o inverso do processo anterior. O número binário é disposto em grupos de quatro (4) bits e cada grupo é convertido no digito hexa equivalente.
- ► Zeros podem ser necessários para completar um grupo de 4 bits.
- **Exemplos:**
 - ► 1110100110₂
 - **▶** 101011111₂

- **Exercícios:**
 - ► 10011000₂
 - **►** 1100011₂
 - ► 11000111100011100₂

- ► Vantagens dos sistemas hexa e octal
 - ► Forma compacta de representar sequencia de bits.
 - ► Em computadores sequencia binárias de até 64 bits não são incomuns.
 - Estas sequências não são necessariamente números. Podem representar algum tipo de código.

CONVERSÃO DE NÚMERO FRACIONÁRIOS

Sistema de Numeração

Conversão de Números Binários Fracionários em Decimais

Exemplo: 101,101₂

2² 2¹ 2⁰ 2⁻¹ 2⁻² 2⁻³

1 0 1 1 0 1

- ▶ Primeiramente deve-se transformar a parte inteira do número.
- Em seguida transforma-se a parte fracionária.
- Exemplo: 8,375 = 8 + 0,375

▶ Primeiro Caso:

0,375 x 2 0,750 x 2 1,500

Quando atingirmos o número 1, e a parte do número após a vírgula não for nula, separamos esta última e reiniciamos o processo

0,500 x 2 1,000

O processo para aqui, pois a parte nula do número depois da vírgula é nula.

▶ Primeiro Caso:

$$1000_2 = 8_{10}$$

$$0.011_2 = 0.375_{10}$$
 $1000_2 + 0.011_2 = 1000.011_2$

► Segundo Caso:

- ► Terceiro Caso:
 - ► Exemplo 3,380₁₀

- ▶ Quanto mais casas decimais, maior precisão.
- Devemos aplicar o método até atingir a precisão desejada.

Exercícios:

$$2. 10,33_{10} =$$

3.
$$15,45_{10} =$$

4.
$$23,375_{10} =$$

6.
$$92,015625_{10} =$$

Exercícios:

- 1. $5,10_{10} = 101,000110011_2$
- 2. $10,33_{10} = 1010,010101000_2$
- 3. $15,45_{10} = 11110111001100_2$
- 4. $23,375_{10} = 10111,0101_2$
- 5. $73,405_{10} = 110101,011001111_2$
- 6. $92,015625_{10} = 1011100,000001_2$

Bibliografia

- Sistemas Digitais Princípios e Aplicações, Ronald J. Tocci, Neal S. Widmer
- Elementos de Eletrônica Digital, Ivan Idoeta, Francisco Capuano.
- Introdução a Organização de Computadores, Monteiro, Mario A. 5ed, Rio de Janeiro, LTC, 2007.
- Organização Estruturada de Computadores, Tanenbaum, Andrew S., Prentice Hall Brasil, 5ed, PRENTICE HALL BRASIL, 2007.

CURSO SUPERIOR DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ORGANIZAÇÃO DE COMPUTADORES

Professor Me. Silvio Augusto Langer