Op-Amp Circuits: Part 4

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

Half-wave rectifier

Half-wave rectifier

Half-wave rectifier

M. B. Patil, IIT Bombay

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

$$V_+ - V_- = rac{V_{o1}}{A_V} = rac{V_o + 0.7 \, V}{A_V} pprox 0 \, V
ightarrow V_o = V_- pprox V_+ = V_i.$$

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

$$V_+ - V_- = rac{V_{o1}}{A_V} = rac{V_o + 0.7 \, V}{A_V} pprox 0 \, V
ightarrow V_o = V_- pprox V_+ = V_i.$$

This situation arises only if $i_D > 0$ (since the diode can only conduct in the forward direction), i.e., $i_R > 0 \rightarrow V_o = i_R R > 0$, and therefore $V_i = V_o > 0$ V.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

$$V_+ - V_- = rac{V_{o1}}{A_{V}} = rac{V_o + 0.7 \ V}{A_{V}} pprox 0 \ V
ightarrow V_o = V_- pprox V_+ = V_i.$$

This situation arises only if $i_D > 0$ (since the diode can only conduct in the forward direction), i.e., $i_R > 0 \rightarrow V_o = i_R R > 0$, and therefore $V_i = V_o > 0$ V.

Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_- \approx 0$, $i_R = i_D$.

$$V_+ - V_- = rac{V_{o1}}{A_{V}} = rac{V_o + 0.7 \ V}{A_{V}} pprox 0 \ V
ightarrow V_o = V_- pprox V_+ = V_i.$$

This situation arises only if $i_D > 0$ (since the diode can only conduct in the forward direction), i.e., $i_R > 0 \rightarrow V_o = i_R R > 0$, and therefore $V_i = V_o > 0$ V.

Note: V_{on} does not appear in the graph.

(ii) D is not conducting $\rightarrow V_o = 0 \ V$.

(ii) D is not conducting $\rightarrow V_o = 0 V$.

What about V_{o1} ?

Since the op-amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

(ii) D is not conducting $\rightarrow V_o = 0 V$.

What about V_{o1} ?

Since the op-amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0$ V (we have already looked at $V_i > 0$). Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to $-V_{\rm sat}$.

(ii) D is not conducting $\rightarrow V_0 = 0 V$.

What about V_{o1} ?

Since the op-amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0$ V (we have already looked at $V_i > 0$). Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to $-V_{\rm sat}$.

* The circuit is called "super diode" (an ideal diode with $V_{\rm on}=0\,{\rm V}$).

- * The circuit is called "super diode" (an ideal diode with $V_{\rm on} = 0 \, \rm V$).
- * When D conducts, the op-amp operates in the linear region, and we have $V_+ \approx V_-$.

- * The circuit is called "super diode" (an ideal diode with $V_{on} = 0 \text{ V}$).
- * When D conducts, the op-amp operates in the linear region, and we have $V_+ \approx V_-$.
- * When D is off, the op-amp operates in the saturation region, $V_-=0$, $V_+=V_i$, and $V_{o1}=-V_{sat}$.

- * The circuit is called "super diode" (an ideal diode with $V_{on} = 0 \text{ V}$).
- * When D conducts, the op-amp operates in the linear region, and we have $V_+ \approx V_-$.
- * When D is off, the op-amp operates in the saturation region, $V_-=0$, $V_+=V_i$, and $V_{o1}=-V_{\rm sat}$.
- * Where does i_R come from?

M. B. Patil, IIT Bombay

Carrier wave:

 $c(t) = A\sin(2\pi f_c t)$

M. B. Patil, IIT Bombay

25

50

time (μ sec)

Carrier wave:

Signal (e.g., audio):

M. B. Patil, IIT Bombay

100

75

AM wave:

Carrier wave:

$$y(t) = [1 + m(t)] c(t)$$
(Assume $M < 1$)

 $c(t) = A\sin(2\pi f_c t)$ Signal (e.g., audio):

Application: AM demodulation

Carrier wave:

$$c(t) = A\sin(2\pi f_c t)$$

Signal (e.g., audio):

$$m(t) = M\sin(2\pi f_m t + \phi)$$

AM wave:

$$y(t) = [1 + m(t)] c(t)$$

(Assume M < 1)

e.g., Vividh Bharati:

$$f_c = 1188 \, \mathrm{kHz},$$

$$f_m \simeq 10 \, \mathrm{kHz}$$
 (audio).

M. B. Patil, IIT Bombay

AM demodulation using a peak detector

* charging through super diode, discharging through resistor

AM demodulation using a peak detector

- * charging through super diode, discharging through resistor
- * The time constant (RC) needs to be carefully selected.

AM demodulation using a peak detector

- * charging through super diode, discharging through resistor
- * The time constant (RC) needs to be carefully selected. SEQUEL file: super_diode.sqproj

Clipping and clamping

* What is the function provided by each circuit?

Clipping and clamping

- * What is the function provided by each circuit?
- * Verify with simulation (and in the lab).

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R.$

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R.$

KCL:
$$i_D = \frac{V_R}{R_I} + \frac{V_R - V_i}{R}$$
.

$$V_{i}$$
 V_{R}
 V_{i}
 V_{R}
 V_{i}
 V_{i

When D conducts, feedback path is closed \rightarrow $V_- \approx V_+ = V_R$ \rightarrow $V_o = V_R$.

KCL:
$$i_D = \frac{V_R}{R_I} + \frac{V_R - V_i}{R}$$
.

Since
$$i_D > 0$$
, $V_R\left(\frac{1}{R_I} + \frac{1}{R}\right) > \frac{V_i}{R} \rightarrow V_i < V_R\left(\frac{R + R_L}{R_L}\right) \equiv V_{i1}$.

$$V_{i}$$
 V_{R}
 V_{o}
 V_{o}
 V_{o}
 V_{o}
 V_{o}
 V_{o}
 V_{o}

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R$.

KCL:
$$i_D = \frac{V_R}{R_I} + \frac{V_R - V_i}{R}$$
.

Since $i_D > 0$, $V_R\left(\frac{1}{R_I} + \frac{1}{R}\right) > \frac{V_i}{R} \rightarrow V_i < V_R\left(\frac{R + R_L}{R_I}\right) \equiv V_{i1}$.

For
$$V_i > V_{i1}$$
, D does not conduct $\rightarrow V_o = \frac{R_L}{R + R_I} V_i$.

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R.$

$$KCL: i_D = \frac{V_R}{R_L} + \frac{V_R - V_i}{R}.$$

Since
$$i_D > 0$$
, $V_R\left(\frac{1}{R_L} + \frac{1}{R}\right) > \frac{V_i}{R} \rightarrow V_i < V_R\left(\frac{R + R_L}{R_L}\right) \equiv V_{i1}$.

For
$$V_i > V_{i1}$$
, D does not conduct $\rightarrow V_o = \frac{R_L}{R_i + R_I} V_i$.

When D conducts, feedback path is closed \rightarrow $V_{-} \approx V_{+} = V_{R}$ \rightarrow $V_{o} = V_{R}$.

$$KCL: i_D = \frac{V_R}{R_I} + \frac{V_R - V_i}{R}.$$

Since
$$i_D > 0$$
, $V_R\left(\frac{1}{R_I} + \frac{1}{R}\right) > \frac{V_i}{R} \rightarrow V_i < V_R\left(\frac{R + R_L}{R_I}\right) \equiv V_{i1}$.

For
$$V_i > V_{i1}$$
, D does not conduct $\rightarrow V_o = \frac{R_L}{R + R_I} V_i$.

If
$$R_L \gg R$$
, $V_{i1} = R$, and slope = 1 for $V_i > V_{i1}$.

When D conducts, feedback path is closed \rightarrow $V_{-} \approx V_{+} = V_{R}$ \rightarrow $V_{o} = V_{R}$.

When D conducts, feedback path is closed \rightarrow $V_{-} \approx V_{+} = V_{R} \ \rightarrow \ V_{o} = V_{R}.$

KCL:
$$i_D + \frac{V_R}{R_L} + \frac{V_R - V_i}{R} = 0.$$

$$V_{i}$$
 V_{R}
 V_{R}
 V_{R}
 V_{R}
 V_{R}
 V_{R}
 V_{R}
 V_{R}

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R.$

$$KCL: i_D + \frac{V_R}{R_I} + \frac{V_R - V_i}{R} = 0.$$

Since
$$i_D > 0$$
, $-V_R\left(\frac{1}{R_I} + \frac{1}{R}\right) + \frac{V_i}{R} > 0 \rightarrow V_i > V_R\left(\frac{R + R_L}{R_I}\right) \equiv V_{i1}$.

$$V_{i}$$
 V_{R}
 V_{i}
 V_{o}
 V_{o}
 V_{o}
 V_{o}
 V_{o}
 V_{o}

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \rightarrow V_o = V_R$.

$$KCL: i_D + \frac{V_R}{R_I} + \frac{V_R - V_i}{R} = 0.$$

$$\frac{N_L}{N_L} = \frac{N_L}{N_L} =$$

Since
$$i_D > 0$$
, $-V_R\left(\frac{1}{R_L} + \frac{1}{R}\right) + \frac{V_i}{R} > 0 \rightarrow V_i > V_R\left(\frac{R + R_L}{R_L}\right) \equiv V_{i1}$.

For
$$V_i < V_{i1}$$
, D does not conduct $\rightarrow V_o = \frac{R_L}{R + R_L} V_i$.

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \ \rightarrow \ V_o = V_R$.

$$KCL: i_D + \frac{V_R}{R_I} + \frac{V_R - V_i}{R} = 0.$$

Since
$$i_D>0$$
, $-V_R\left(\frac{1}{R_L}+\frac{1}{R}\right)+\frac{V_i}{R}>0 \rightarrow V_i>V_R\left(\frac{R+R_L}{R_L}\right)\equiv V_{i1}.$

For
$$V_i < V_{i1}$$
, D does not conduct $\rightarrow V_o = \frac{R_L}{R_i + R_i} V_i$.

When D conducts, feedback path is closed $\rightarrow V_- \approx V_+ = V_R \rightarrow V_o = V_R$.

KCL:
$$i_D + \frac{V_R}{R_I} + \frac{V_R - V_i}{R} = 0.$$

Since
$$i_D>0$$
, $-V_R\left(\frac{1}{R_L}+\frac{1}{R}\right)+\frac{V_i}{R}>0 \rightarrow V_i>V_R\left(\frac{R+R_L}{R_L}\right)\equiv V_{i1}.$

For $V_i < V_{i1}$, D does not conduct $\rightarrow V_o = \frac{R_L}{R + R_I} V_i$.

If
$$R_L \gg R$$
, $V_{i1} = R$, and slope = 1 for $V_i < V_{i1}$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_R - V_m \sin \omega t$.

$$\rightarrow V_C^{\text{max}} = V_R - (-V_m) = V_R + V_m.$$

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_R - V_m \sin \omega t$.

$$\rightarrow V_C^{\text{max}} = V_R - (-V_m) = V_R + V_m.$$

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) + V_C^{\max} = V_m \sin \omega t + V_R + V_m$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_R - V_m \sin \omega t$.

$$\rightarrow V_C^{\text{max}} = V_R - (-V_m) = V_R + V_m.$$

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) + V_C^{\max} = V_m \sin \omega t + V_R + V_m$.

Note: V_{on} of the diode does not appear in the expression for $V_o(t)$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_R - V_m \sin \omega t$.

$$\rightarrow V_C^{\text{max}} = V_R - (-V_m) = V_R + V_m.$$

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) + V_C^{\max} = V_m \sin \omega t + V_R + V_m$.

Note: V_{on} of the diode does not appear in the expression for $V_o(t)$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_m \sin \omega t - V_R$.

$$ightarrow \ V_C^{\text{max}} = V_m - V_R.$$

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_m \sin \omega t - V_R$.

$$\rightarrow V_C^{\text{max}} = V_m - V_R$$
.

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) - V_C^{\max} = V_m \sin \omega t + V_R - V_m$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_m \sin \omega t - V_R$.

$$\rightarrow V_C^{\max} = V_m - V_R$$
.

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) - V_C^{\max} = V_m \sin \omega t + V_R - V_m$.

Note: V_{on} of the diode does not appear in the expression for $V_o(t)$.

Assume $R_L C \gg T \rightarrow V_C$ can only increase (in one cycle).

When D conducts, $V_- \approx V_R$, and $V_C(t) = V_m \sin \omega t - V_R$.

$$\rightarrow V_C^{\text{max}} = V_m - V_R.$$

In steady state, V_C remains equal to $V_C^{\max} \rightarrow V_o(t) = V_i(t) - V_C^{\max} = V_m \sin \omega t + V_R - V_m$.

Note: V_{on} of the diode does not appear in the expression for $V_o(t)$.

* When $V_i > 0$, the op-amp operates in the linear region, and $V_{o1} = V_o + V_{on}$.

- * When $V_i > 0$, the op-amp operates in the linear region, and $V_{o1} = V_o + V_{on}$.
- * When $V_i <$ 0, the op-amp operates in the open-loop configuration, leading to saturation, and $V_{o1} = -V_{\rm sat}$.

- * When $V_i > 0$, the op-amp operates in the linear region, and $V_{o1} = V_o + V_{on}$.
- * When $V_i < 0$, the op-amp operates in the open-loop configuration, leading to saturation, and $V_{o1} = -V_{\rm sat}$.
- * The V_i < 0 to V_i > 0 transition requires the op-amp to come out of saturation. This is a relatively slow process and is limited by the op-amp slew rate.

- * When $V_i > 0$, the op-amp operates in the linear region, and $V_{o1} = V_o + V_{on}$.
- * When $V_i < 0$, the op-amp operates in the open-loop configuration, leading to saturation, and $V_{o1} = -V_{\rm sat}$.
- * The V_i < 0 to V_i > 0 transition requires the op-amp to come out of saturation. This is a relatively slow process and is limited by the op-amp slew rate.

SEQUEL file: ee101_super_diode_1.sqproj

* The time taken by the op-amp to come out of saturation can be neglected at low signal frequencies.

* The time taken by the op-amp to come out of saturation can be neglected at low signal frequencies.

- * The time taken by the op-amp to come out of saturation can be neglected at low signal frequencies.
- * At high signal frequencies, it leads to distortion in the output waveform.

- * The time taken by the op-amp to come out of saturation can be neglected at low signal frequencies.
- * At high signal frequencies, it leads to distortion in the output waveform.

- * The time taken by the op-amp to come out of saturation can be neglected at low signal frequencies.
- At high signal frequencies, it leads to distortion in the output waveform.
- * Hook up the circuit in the lab, and check it out!

(i)
$$D_1$$
 conducts: $V_-=V_+=0~V$, $V_{o1}=-V_{D1}pprox -0.7~V$.

(i) D_1 conducts: $V_-=V_+=0~V$, $V_{o1}=-V_{D1}pprox -0.7~V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0$ V.

(i)
$$D_1$$
 conducts: $V_-=V_+=0~V$, $V_{o1}=-V_{D1}\approx -0.7~V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0$ V.

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). \rightarrow $i_{R2}=0$, $V_o=V_-=0$ V .

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(i)
$$D_1$$
 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o).

$$\rightarrow i_{R2} = 0, \ V_o = V_- = 0 \ V.$$

 $i_{R1}=i_{D1}$ which can only be positive $\Rightarrow V_i>0~V$.

(ii) D_1 is off; this will happen when $V_i < 0 \ V$.

(i) D_1 conducts: $V_- = V_+ = 0 \ V$, $V_{o1} = -V_{D1} \approx -0.7 \ V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2}=0,\ V_o=V_-=0\ V$.

 $i_{R1}=i_{D1}$ which can only be positive $\Rightarrow V_i>0~V$.

(ii) D_1 is off; this will happen when $V_i < 0 \ V$. In this case, D_2 conducts and closes the feedback loop through R_2 .

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2}=0,\ V_o=V_-=0\ V$.

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 \ V$.

In this case, D_2 conducts and closes the feedback loop through R_2 .

$$V_o = V_- + i_{R2}R_2 = 0 + \left(\frac{0 - V_i}{R_1}\right)R_2 = -\frac{R_2}{R_1}V_i$$
.

* Note that the op-amp does not enter saturation since a feedback path is available for $V_i > 0$ V and $V_i < 0$ V.

* Note that the op-amp does not enter saturation since a feedback path is available for $V_i>0$ V and $V_i<0$ V.

SEQUEL file: precision_half_wave.sqproj

The diodes are now reversed.

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

SEQUEL file: precision_half_wave_2.sqproj

(SEQUEL file: precision_full_wave.sqproj)

(SEQUEL file: precision_full_wave.sqproj)

When D is off,
$$i=rac{V}{R_0}$$
 , and V_A is (by superposition), $V_A=Vrac{R'}{R+R'}-V_0rac{R}{R+R'}$.

When D is off,
$$i=\frac{V}{R_0}$$
, and V_A is (by superposition), $V_A=V\frac{R'}{R+R'}-V_0\frac{R}{R+R'}$.

For D to turn on, $V_A=V_{\sf on}pprox 0.7~V
ightarrow V\equiv V_{\sf break}=rac{R}{R'}\left(V_0+V_{\sf on}
ight)+V_{\sf on}$.

When D is off,
$$i=\frac{V}{R_0}$$
, and V_A is (by superposition), $V_A=V\frac{R'}{R+R'}-V_0\frac{R}{R+R'}$.

For D to turn on, $V_A=V_{
m on}pprox 0.7~V
ightarrow V\equiv V_{
m break}=rac{R}{R'}\left(V_0+V_{
m on}
ight)+V_{
m on}$.

When D is off,
$$i=\frac{V}{R_0}$$
, and V_A is (by superposition), $V_A=V\frac{R'}{R+R'}-V_0\frac{R}{R+R'}$.

For D to turn on,
$$V_A=V_{
m on} pprox 0.7 \ V
ightarrow V \equiv V_{
m break} = rac{R}{R'} \left(V_0+V_{
m on}
ight) + V_{
m on} \, .$$

When D is on,
$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'} = V \left[\frac{1}{R_0} + \frac{1}{R} \right] + \text{(constant)}$$

When D is off,
$$i=\frac{V}{R_0}$$
, and V_A is (by superposition), $V_A=V\frac{R'}{R+R'}-V_0\frac{R}{R+R'}$.

For D to turn on,
$$V_A=V_{
m on}pprox 0.7\,V
ightarrow\,V\equiv\,V_{
m break}=rac{R}{R'}\left(V_0+V_{
m on}
ight)+\,V_{
m on}\,.$$

When D is on,
$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'} = V\left[\frac{1}{R_0} + \frac{1}{R}\right] + \text{(constant)}$$

i.e., $V=(R_0\parallel R)i+(\text{constant})$.

When D is off,
$$i=\frac{V}{R_0}$$
, and V_A is (by superposition), $V_A=V\frac{R'}{R+R'}-V_0\frac{R}{R+R'}$.

For D to turn on,
$$V_A = V_{\rm on} \approx 0.7 \, V \rightarrow V \equiv V_{\rm break} = \frac{R}{R'} \left(V_0 + V_{\rm on} \right) + V_{\rm on}$$
 .

When D is on,
$$i = \frac{V}{R_0} + \frac{V - V_{\text{on}}}{R} + \frac{-V_0 - V_{\text{on}}}{R'} = V\left[\frac{1}{R_0} + \frac{1}{R}\right] + \text{(constant)}$$

i.e.,
$$V = (R_0 \parallel R) i + (constant)$$
.

(a)
$$V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$$
. (b) When D is on, $V = (R_0 \parallel R) i + (\text{constant})$.

(a)
$$V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$$
. (b) When D is on, $V = (R_0 \parallel R) i + (\text{constant})$.

* V_{break} depends on the ratio R/R'.

(a)
$$V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$$
. (b) When D is on, $V = (R_0 \parallel R) i + (\text{constant})$.

- * V_{break} depends on the ratio R/R'.
- * The slope $R_0 \parallel R$ depends on the resistance values.

(a)
$$V_{\text{break}} = \frac{R}{R'} (V_0 + V_{\text{on}}) + V_{\text{on}}$$
. (b) When D is on, $V = (R_0 \parallel R) i + (\text{constant})$.

- * V_{break} depends on the ratio R/R'.
- * The slope $R_0 \parallel R$ depends on the resistance values.
- * Given the break point and the two slopes, the resistance values can be easily determined.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

SEQUEL file: ee101_wave_shaper.sqproj

Wave shaping with diodes: spectrum

Wave shaping with diodes: spectrum

