

Squares and Square Roots Ex 3.1 Q9

Answer:

We know that 10² is equal to 100 and 9² is equal to 81.

Since 10 and 9 are consecutive numbers, there is no perfect square between 100 and 81. Since 100 is the first perfect square that has more than two digits, 81 is the greatest two-digit perfect square.

Squares and Square Roots Ex 3.1 Q10

Answer:

Let us make a list of the squares starting from 1.

 $1^2 = 1$

 $2^2 = 4$

 $3^2 = 9$

 $4^2 = 16$

-

 $5^2 = 25$

 $6^2 = 36$

 $7^2 = 49$

 $8^2 = 64$

 $9^2 = 81$

 $10^2 = 100$

The square of 10 has three digits. Hence, the least three-digit perfect square is 100.

Squares and Square Roots Ex 3.1 Q11

Answer:

Prime factorisation of 4851:

4851 = 3 x 3 x 7 x 7 x 11

3	4851
3	1617
7	539
7	77
11	11
	1

Grouping them into pairs of equal factors:

$$4851 = (3 \times 3) \times (7 \times 7) \times 11$$

The factor, 11 is not paired. The smallest number by which 4851 must be multiplied such that the resulting number is a perfect square is 11.