K-rational preperiodic hypersurfaces on \mathbb{P}^n

Sebastian Troncoso

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

July 4, 2017.

Notation

Let K be a number field and \mathcal{O}_K its ring of algebraic integers,

 $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K ϕ^m the mth iterate of ϕ .

The **orbit** of a point $P \in \mathbb{P}^n$ is the set

$$O_{\phi}(P) = \{P, \phi(P), \phi^{2}(P), \phi^{3}(P), \ldots\}.$$

Notation

Periodic point: $\phi^m(P) = P$ for some $m \ge 1$. Minimal m is called the **period** of P.

The set of K-rational periodic points for ϕ is denoted by $Per(\phi, K)$.

Preperiodic point: $\exists m \geq 0$ such that $\phi^m(P)$ is periodic *i.e.* P has finite orbit.

The set of K-rational preperiodic points for ϕ is denoted by $PrePer(\phi, K)$.

Tail point: A point that is preperiodic but not periodic.

The set of K-rational tail points for ϕ is denoted by Tail (ϕ, K) .

Examples:

We can view $\mathbb{P}^1(K)$ as $K \cup \{\infty\}$ and endomorphism of \mathbb{P}^1 as rational functions.

 \mathbb{Q} -rational tail points (red) and \mathbb{Q} -rational periodic points (green) of $\phi_c(z)=z^2+c$.

Question:

• Are the sets Tail(ϕ , K), Per(ϕ , K) and PrePer(ϕ , K) finite? **Yes**.

Theorem (Northcott 1950)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then ϕ has only finitely many preperiodic points in $\mathbb{P}^n(K)$.

We can deduce from the original proof of Northcott's theorem a bound for $|\operatorname{PrePer}(\phi, K)|$ depending on

- n
- [K : ℚ]
- ullet the degree of ϕ
- ullet height of the coefficients of ϕ

Goals:

Give explicit bounds for $|\operatorname{Tail}(\phi, K)|$, $|\operatorname{Per}(\phi, K)|$ and $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- \bullet The dimension n of the projective space
- The degree d of ϕ .

Conjecture (Uniform Boundedness Conjecture - Morton–Silverman 1994)

There exists a bound B=B(D,n,d) such that if K/\mathbb{Q} is a number field of degree D, and $\phi:\mathbb{P}^n\to\mathbb{P}^n$ is an endomorphism of degree $d\geq 2$ defined over K, then

$$|\mathsf{PrePer}(\phi, K)| \leq B.$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Goals:

In order to get explicit bounds for the cardinality of the set $PrePer(\phi, K)$ we need an extra parameter.

Instead of the height of ϕ we can use a weaker and more natural parameter to get bound on $|\operatorname{PrePer}(\phi, K)|$.

This parameter is the number of places of bad reduction of ϕ . Give explicit bounds for $|\operatorname{Tail}(\phi, K)|$, $|\operatorname{Per}(\phi, K)|$ and $|\operatorname{PrePer}(\phi, K)|$ in terms of:

- $D = [K : \mathbb{Q}]$
- The dimension *n* of the projective space
- The degree d of ϕ .
- The number of places of bad reduction of ϕ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Good Reduction

Let S be a finite set of places K, including all archimedean ones.

• We say that ϕ has **good reduction outside** S if ϕ has good reduction for every $\mathfrak{p} \notin S$.

If we allow the number of primes of bad reduction as a parameter, much more is known for the cardinality of the set of K-rational preperiodic points in the case of \mathbb{P}^1 .

Bounds independent of the degree

Theorem (S. Troncoso 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K, and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S.

(a) If there are at least three K-rational tail points of ϕ then

$$|\operatorname{Per}(\phi,K)| \le 2^{16|S|} + 3.$$

(b) If there are at least four ${\it K}$ -rational periodic points of ϕ then

$$|\operatorname{Tail}(\phi, K)| \le 4(2^{16|S|}).$$

Notice that under these hypotheses the bounds are independent of the degree of ϕ . Those hypotheses are sharp, *i.e.* if there are two (three) K-rational tail (periodic) points then $|\operatorname{Per}(\phi,K)|$ ($|\operatorname{Tail}(\phi,K)|$) must depend on d.

Distance between periodic and tail points

Theorem (S. Troncoso 2016)

Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K. Suppose ϕ has good reduction outside S. Let $R \in \mathbb{P}^1(K)$ be a tail point and let n be the period of the periodic part of the orbit of R. Let $P \in \mathbb{P}^1(K)$ be any periodic point that is not $\phi^{mn}(R)$ for some m. Then $\delta_{\mathfrak{p}}(P,R)=0$ for every $\mathfrak{p} \notin S$.

For simplicity suppose \mathcal{O}_S is a PID and write P = [x : y] and Q = [w : t] in coprime S-integer coordinates.

Using the theorem we get that there is a S-unit element u such that

$$xt - yw = u$$

Theorem (S. Troncoso 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K, and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S. Then

- (a) $|\operatorname{Per}(\phi, K)| \le 2^{16|S|d^3} + 3.$
- (b) $|\operatorname{Tail}(\phi, K)| \le 4(2^{16|S|d^3}).$
- (c) $|\operatorname{PrePer}(\phi, K)| \leq 5(2^{16|S|d^3}) + 3.$

Notice that the bounds obtained in the theorem are a significant improvement from the previous bound given by Canci and Paladino which was of the order $d^{2^{16s}(s\log(s))^D}$ for the set $|\operatorname{PrePer}(\phi,K)|$.

Another technique

Using another technique we can get a better result in terms of d.

Theorem (S. Troncoso 2016)

Let K be a number field and S a finite set of places of K containing all the archimedean ones. Let ϕ be an endomorphism of \mathbb{P}^1 , defined over K, and $d \geq 2$ the degree of ϕ . Assume ϕ has good reduction outside S. Then

- (a) $|\operatorname{Tail}(\phi, K)| \le d \max \left\{ (5 \cdot 10^6 (d^3 + 1))^{|S| + 4}, 4(2^{64(|S| + 3)}) \right\}.$
- (b) In addition, if ϕ has at least one K-rational tail point then then

$$|\operatorname{Per}(\phi,K)| \leq \max\left\{ (5\cdot 10^6 (d-1))^{|S|+3}, 4(2^{128(|S|+2)})
ight\} + 1.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Current project: Arithmetic dynamics in \mathbb{P}^n .

We are generalizing our results and techniques in \mathbb{P}^1 into results and techniques in \mathbb{P}^n .

Notation of preperiodic hypersurfaces

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism defined over K and H an irreducible hypersurface defined over K of degree e.

The **orbit** of *H* is the set

$$O_{\phi}(H) = \{H, \phi(H), \phi^{2}(H), \phi^{3}(H), \ldots\}.$$

Notation of preperiodic hypersurfaces

Periodic hypersurface: $\phi^m(H) = H$ for some $m \ge 1$. Minimal m is called the **period** of H.

The set of K-rational periodic hypersurface (of degree e) is denoted by $\mathsf{HPer}(\phi,K)$ ($\mathsf{HPer}(\phi,K,e)$).

Preperiodic hypersurface: $\exists m \geq 0$ such that $\phi^m(H)$ is periodic *i.e.* H has finite orbit.

The set of K-rational preperiodic hypersurface (of degree e) is denoted by $\mathsf{HPrePer}(\phi,K)$ ($\mathsf{HPrePer}(\phi,K,e)$).

Tail hypersurface: A hypersurface that is preperiodic but not periodic.

The set of K-rational tail hypersurface (of degree e) is denoted by $\mathsf{HTail}(\phi,K)$ ($\mathsf{HTail}(\phi,K,e)$).

Questions:

- Are the sets $\mathsf{HTail}(\phi, K)$, $\mathsf{HPer}(\phi, K)$ and $\mathsf{HPrePer}(\phi, K)$ finite? **No**, an example by J. Bell, D. Ghioca, and T. Tucker have shown that in general these sets are not finite.
- Are the sets $\mathsf{HTail}(\phi, K, e)$, $\mathsf{HPer}(\phi, K, e)$ and $\mathsf{HPrePer}(\phi, K, e)$ finite? **Yes**.

Theorem (B. Hutz 2016)

Let $\phi: \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree ≥ 2 defined over a number field K. Then there are only finitely many preperiodic K-rational subvarieties of degree at most e.

His result is based on theory of canonical heights for subvarieties of \mathbb{P}^N . From his proof we can give a bound for the cardinality of the set $\mathsf{HPrePer}(\phi, K, e)$ depending on

- n
- [K : ℚ]
- ullet the degree of ϕ
- e
- ullet height of the coefficients of ϕ

Goals

Just like the one dimensional case.

We would like to give explicit bounds for the cardinality of the sets $\mathsf{HTail}(\phi, K, e)$, $\mathsf{HPer}(\phi, K, e)$ and $\mathsf{HPrePer}(\phi, K, e)$ in terms of:

- $D = [K : \mathbb{Q}].$
- The dimension *n* of the projective space.
- The degree d of ϕ .
- The degree e of the hypersurfaces.
- The number of places of bad reduction of ϕ .

• For now, we have just proven the following result for \mathbb{P}^2 .

If $T \in \mathsf{HTail}(\phi, K, e)$ then n_T is the period of the periodic part of T. Consider N the number of monomials of degree e in three variables.

Theorem (S. Troncoso 2017)

Let ϕ be an endomorphism of \mathbb{P}^2 , defined over K and suppose ϕ has good reduction outside S. Let $\{P_i\}_{i=1}^{2N+1}$ be a set of K-rational periodic points of \mathbb{P}^2 . Assume that no N+1 of them lie in a curve of degree e. Consider $\mathcal{B}=\{H'\in \mathsf{HPer}(\phi,K)\colon \forall 1\leq i\leq 2N+1 \mid P_i\notin supp\ H'\}$ and $\mathcal{A}=\{T\in \mathsf{HTail}(\phi,K,e)\colon \mathsf{there}\ \mathsf{is}\ I\geq 0\quad \phi^{ln_T}(T)\in \mathcal{B}\}.$ Then

$$|\mathcal{A}| \le (2^{33} \cdot (2N+1)^2)^{(N+1)^3(s+2N+1)}$$

4□ > 4□ > 4 = > 4 = > = 90

- There is strong result from dynamical system that states that the set of periodic points is Zariski dense.
- On \mathbb{P}^2 . We can give an alternative proof than the one given by B. Hutz for the finiteness of the set $\mathsf{HPrePer}(\phi,K,e)$, **the idea** is to use the previous theorem and the Zariski density of periodic points.

Tools

The theorem is based on the following three tools:

- Logarithmic *v*-adic distance between a point and a hypersurface.
- Study the distance between tail hypersurfaces and periodic points.
- Finiteness of integral points of \mathbb{P}^n $\{2n+1 \text{ hyperplanes in general position}\}$ due to Ru and Wong.
- Bounds for the number of solutions to decomposable form equations (Evertse).

logarithmic v-adic distance

Let H be a hypersurface of \mathbb{P}^n defined over K of degree e. Further, suppose H is defined by

$$f = \sum_{|\mathbf{i}| = d} a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}} \in K[\mathbf{X}]$$

an homogeneous polynomial of degree e.

Let v be a nonarchimedean place of K and $P = [x_0 : \cdots : x_n]$ a point in $\mathbb{P}^n(K)$ such that $P \notin supp(H)$.

logarithmic v-adic distance between P and H with respect to v is given by

$$\delta_{v}(P; H) = v(f(x_0, \dots, x_n)) - e \min_{0 \le i \le n} \{v(x_i)\} - \min_{|i| = e} \{v(a_i)\}$$

Distance between tail hypersurfaces and periodic points

Theorem (S. Troncoso 2017)

Let ϕ be an endomorphism of \mathbb{P}^n , defined over K. Suppose ϕ has good reduction outside S. Let H be a K-rational tail hypersurface , m the period of the periodic part of the orbit of H and H' the periodic hypersurface such that $H'=\phi^{m_0m}(H)$ for some $m_0>0$. Let $P\in\mathbb{P}^n(K)$ be any periodic point such that $P\notin supp\{H'\}$. Then $\delta_v(P;H)=0$ for every $v\notin S$.

For simplicity suppose \mathcal{O}_S is a PID. Assume H is defined by

$$f = \sum_{|\mathbf{i}| = d} a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}} \in \mathcal{O}_{\mathcal{S}}[\mathbf{X}]$$

an homogeneous polynomial of degree e with at least one coefficient in \mathcal{O}_S^* and $P = [x_0 : \cdots : x_n]$ in coprime S-integer coordinates.

Using the theorem we get that there is a S-unit element u such that

$$f(x_0,\ldots,x_n)=u$$

□ ト 4 個 ト 4 重 ト 4 国 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 4 回 ト 9 へ ○

If $T \in \mathsf{HTail}(\phi, K, e)$ then n_T is the period of the periodic part of T. Consider N the number of monomials of degree e in three variables.

Theorem (S. Troncoso 2017)

Let ϕ be an endomorphism of \mathbb{P}^2 , defined over K and suppose ϕ has good reduction outside S. Let $\{P_i\}_{i=1}^{2N+1}$ be a set of K-rational periodic points of \mathbb{P}^2 . Assume that no N+1 of them lie in a curve of degree e. Consider $\mathcal{B}=\{H'\in \mathsf{HPer}(\phi,K)\colon \forall 1\leq i\leq 2N+1 \mid P_i\notin supp\ H'\}$ and $\mathcal{A}=\{T\in \mathsf{HTail}(\phi,K,e)\colon \mathsf{there}\ \mathsf{is}\ I\geq 0\quad \phi^{ln_T}(T)\in \mathcal{B}\}.$ Then

$$|\mathcal{A}| \le (2^{33} \cdot (2N+1)^2)^{(N+1)^3(s+2N+1)}$$

Idea of the proof:

Use the d-veronese map.

$$\begin{aligned} \{P_i\}_{i=1}^{2N+1} &\to \{H_i\}_{i=1}^{2N+1} \\ T &\to P_T \\ T(P_i) &= H_i(P_T) \end{aligned}$$

- Use the arithmetic relation given by the v-adic distance between a periodic point and a tail curve.
 - $T(P_i)$ is a S-unit $\Rightarrow H_i(P_T)$ is a S-unit.
- **3** Use the Finiteness of integral points of \mathbb{P}^n $\{2n+1 \text{ hyperplanes in general position}\}$ to prove that our system of equation has finitely many solutions.
 - Take $F = H_1 \cdot \ldots \cdot H_{2N+1} \in O_S^*$ has finitely many solutions.
- Use the known bound for the number of solutions to the decomposable form equation (Evertse).
 We get an explicit bound previous descomposable equation.

Future work:

- **①** Generalize the explicit result that we have in \mathbb{P}^2 to a result in \mathbb{P}^n .
- ② Assume that we have enough K-rational periodic points $(2N+1+e^2)$ to get a bound for the cardinality of $\mathrm{HTail}(\phi,K,e)$ in \mathbb{P}^2 in terms of the number of places of bad reduction, $[K:\mathbb{Q}]$ and e (independent on the degree of ϕ).
- **9** Get a bound for HPrePer (ϕ, K, e) in \mathbb{P}^2 in terms of the number of places of bad reduction, $[K : \mathbb{Q}]$, e and the degree of ϕ .
- **1** Do the previous results in \mathbb{P}^n .

THANK YOU