

Credit Value Adjustment (CVA) Introduction

Alex Yang

FinPricing

http://www.finpricing.com

Summary

- CVA History
- CVA Definition
- Risk Free Valuation
- Risky Valuation

CVA History

- Current market practice
 - Discounting using the LIBOR or risk-free curves
 - Using risk-free value for pricing, hedging, P&L
- Real counterparty reality
 - Having different credit qualities from LIBOR
 - Having risk of default
- ISA 39 (International Accounting Standard)
 - Requiring CVA in 2000 (mandatory)
 - Finance and Accounting owning CVA
 - Receiving a little attention in the beginning
 - Becoming significant risk after financial crises

CVA Definition

- Definition
 - CVA = Risk free value True (risky) value
- Benefits
 - Quantifying counterparty risk as a single P&L number
 - Dynamically managing, pricing, and hedging counterparty risk
- Notes
 - CVA is a topic of valuation and requires accurate pricing and riskneutral measure
 - Risk-free valuation is what we use every day. Risky valuation is less explored and less transparent

Risk-Free Valuation

- The risk-free valuation is what brokers quote or what trading systems or models normally report.
- A simple example to illustrate
 - A zero coupon bond paying X at T
- The risk-free value

$$V^{F}(0) = X \exp(-rT) = D(T)X$$

where r is risk-free interest rate and

$$D(T) = exp(-rT)$$
 is risk-free discount factor

Risky Valuation

- Default Modeling
 - Structural models
 - Studying default based on capital structure of a firm
 - Reduced form models
 - Characterizing default as a jump (Poisson) process
 - Market practitioners prefer the reduced form models due to
 - Mathematical tractability
 - Consistency with market observations as risk-neutral default probabilities can be backed out from bond prices and CDS spreads

Risky Valuation (Continuously Defaultable)

- The same simple example: a zero coupon bond paying X at T
- The risk value

$$V^{R}(0) = X \exp[-(r+s)T] = D^{*}(0,T)X$$

where

r is risk-free interest rate and s is credit spread $D^*(T) = exp[-(r+s)T)$ is risk adjusted discounting factor

CVA(0) = $V^F(0) - V^R(0) = (D(T) - D^*(0,T))X$

Risky Valuation (Discrete Defaultable)

- Assumption
 - default may happen only at the payment date
 - At time T, the bond either survives with payoff X or defaults with payoff ϕX where ϕ is the recovery rate
- Risk value

$$V^R(0) = D(T)(pX + q\varphi X) = D(T)[1 - q(1 - \varphi)]X$$

where p is default probability and $q=1$ -p is the survival probability

CVA $= V^F(0) - V^R(0) = q(1 - \varphi)X$

Thanks!

