Annex - Propagation environment: real field example

Analysis with a high resolution Direction Finder

Annex - Propagation environment: real field example

Analysis with a high resolution Direction Finder

Detection and counting of GSM Tx GSM. Dedicated smart antennas

2 MHz Spectrum of GSM band (high point (Paris Mt Valérien)

Measurement at one traffic GSM carrier (0,2 MHz) > 20 TCH - same location

Annex - Propagation environment: real field example Examples of SIMO measured CIR at 900 MHz

Reference scalar signal $[s(I.T_e)]_{I=0...L-1}$ PN long period L, 40 MHz Low side lobes Time resolution ~ 33 ns

Received N_{ant} x1 vector signal $[\underline{x}(l'.T_e)]_{l'}$ scalar coordinate $[\underline{x}_n(l'.T_e)]_{l'}$ $x(I'.T_0) = (H^*s)(I'.T_0) + b(I'.T_0)$

Example of WB CIR estimator per antenna build with:

$$\underline{S} = [s(0), ..., s((I'+L-1).T_e)]$$

for n = 1.. N_{ant} , time vector signal $X_n(l'.T_e)=[x_n(l'.T_e),...x_n((l'+L-1).T_e)]$ for $I'=0,...H_n(I'.T_e) \propto \underline{R}_{XnS}(I'.T_e) = \underline{X}_n(I'.T_e).\underline{S}^H$ (scalar)

Ex of SIMO CIR 900 MHz frequency ranges propag.

Ex of SIMO CIR 900 MHz frequency ranges ~ 100 m sub-urb. outdoor ~ 100 m sub-urb. outdoor propag. high spatial diversity case

Annex - Oriented processing of communication signals

A/ Wave Form Structure characterization

Narrow band / wide band signal

Continuous / bursted signal

Frame characteristics

Synchronization characteristics

Radio Access protocol characteristics

(FDMA,TDMA,CDMA, ...)

Oriented processing of communication signals

B/ Estimation of modulation parameters

Carrier center frequency

Signal bandwidth, Symbol rate,

Number of states, Constellation

Shift (FSK and CPM), FM depth, AM index...

Signal demodulation

Single carrier AM/FM,CPM, PSK, QAM, FSK...

Multi carrier OFDM, etc.

Analyses of coding scheme

Signal identification

Data bases, semantic descriptions.

STATISTICAL MOMENTS , Spectrum of non-linear transforms of the signal, etc.

SPECTRAL DENSITY POWER

EYE DIAGRAM OTHER SIGNAL STATISTICS HISTOGRAMS, tetc.

AMPLITUDE PHASE POLAR DISPLAY

1: overview of privacy threats within civilian wireless

Europe Munchen,

Oriented processing of communication signals

C/ Regular statistical estimators leading to measurement of modulation parameters

Annex - Oriented processing of communication signals

within civilian wireless networks

E/ Advanced statistical estimators of modulation parameters (cf. ICT QoSMOS)

• Cyclic Correlations:

• First moment order 2:

2D Fourier Transform (t-> α)

of the correlation

$$R_{1x}(t,\tau) = E[x(t) x^*(t+\tau)]$$

Second moment order 2:

2D Fourier Transform (t-> α)

of the correlation

$$R_{2x}(t,\tau) = E[x(t) x(t+\tau)]$$

 Extracts the periodic statistical characteristics of the signal

(guard time repetition=>OFDM symbol length)

o 3D representation: Level versus and 2D cuts $\int delay \tau$,

cyclic Frequency α

wireless networks

Annex - Oriented processing of communication signals

E/ Advanced statistical estimators of modulation parameters

Spectrum Correlations:

- First moment order 2: 2D Fourier Transform (t-> α , τ -> ν) of correlation $R_{1x}(t,\tau)=E[x(t)\ x^*(t+\tau)]$
- Second moment order 2: 2D Fourier Transform (t-> α , τ -> ν) of correlation $R_{2x}(t,\tau)=E[x(t) x(t+\tau)]$
- Extracts characteristics of periodic statistical properties of the signal (carrier, modulation rate) without any a priori knowledge (exotic signals)
- 3D representation and 2D cuts: Level versus

harmonic Frequency ν cyclic Frequency α

Informations propriétés de Thales. Tous droits réservés / Thales