

🗣 : Ιαχώβου Πολυλά 24 - Πεζόδρομος . 📞 : 26610 20144 . 🖫 : 6932327283 - 6955058444

31 Οπτωβρίου 2020

ΔΙΑΓΩΝΙΣΜΑ ΤΥΠΟΥ : Β - ΓΕΝΙΚΑ ΘΕΜΑΤΑ

ΤΑΞΗ - ΜΑΘΗΜΑ

Κεφάλαιο

ӨЕМА А

Α.1 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη.

α. Αν
$$\lim_{x \to x_0} f(x) = 0$$
 τότε

$$\lim_{x \to x_0} \frac{1}{f(x)} = \pm \infty$$

β. Av
$$\lim_{x \to x_0} |f(x)| = +\infty$$
 τότε $\lim_{x \to x_0} f(x) = +\infty$ ή $\lim_{x \to x_0} f(x) = -\infty$

β. Av
$$\lim_{x \to x_0} |f(x)| = +\infty$$
 τότε $\lim_{x \to x_0} f(x) = +\infty$ ή $\lim_{x \to x_0} f(x) = -\infty$.
γ. Av $\lim_{x \to x_0^-} f(x) = +\infty$ μαι $\lim_{x \to x_0^+} f(x) = -\infty$ τότε το όριο $\lim_{x \to x_0} \frac{1}{f(x)}$ δεν υπάρχει.

δ. Αν
$$f: \mathbb{R} \to \mathbb{R}$$
 συνάρτηση με $\lim_{x \to 0} f(x) = +\infty$, τότε το όριο $\lim_{x \to 0} \frac{x}{f(x)}$ δεν υπάρχει. ε. Αν ισχύει $\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = 0$ τότε $\lim_{x \to +\infty} \frac{Q(x)}{P(x)} = +\infty$.

ε. Αν ισχύει
$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = 0$$
 τότε $\lim_{x \to +\infty} \frac{Q(x)}{P(x)} = +\infty$

στ. Ισχύει ότι
$$\lim_{x\to 0} \frac{1}{x^{2v}} = +\infty$$
.

ζ. Αν
$$\lim_{x\to +\infty} f(x) = +\infty$$
 τότε $\lim_{x\to +\infty} \ln \frac{1}{f(x)} = -\infty$.
η. Το όριο $\lim_{x\to 0} \frac{1}{x^{2\nu+1}}$ δεν υπάρχει.

η. Το όριο
$$\lim_{x\to 0} \frac{1}{x^{2\nu+1}}$$
 δεν υπάρχει.

$$θ. Aν \lim_{x \to x_0} f(x) = 0 τότε \lim_{x \to x_0} \left[f(x) \cdot συν \frac{1}{f(x)} \right] = 0.$$

Α.2 Να συμπληρώσετε τα κενά.

$$\alpha$$
. $\lim_{x\to-\infty} x^{2\nu} = \dots,$ όπου $\nu \in \mathbb{N}^*$.

β.
$$\lim_{x \to \infty} \frac{1}{x^{\nu}} = \dots,$$
 όπου $\nu \in \mathbb{N}^*$

α.
$$\lim_{x \to -\infty} x^{2\nu} = \dots$$
, όπου $\nu \in \mathbb{N}^*$.
β. $\lim_{x \to +\infty} \frac{1}{x^{\nu}} = \dots$, όπου $\nu \in \mathbb{N}^*$.
γ. Aν $a > 1$, τότε $\lim_{x \to -\infty} a^x = \dots$ μαι $\lim_{x \to +\infty} a^x = \dots$
δ. $\lim_{x \to 0^+} \log x = \dots$

$$\delta$$
. $\lim_{x\to 0^+} \log x = \dots$

Α.3 Από τις παρακάτω παραστάσεις να επιλέξετε αυτές που αποτελούν απροσδιοριστία.

$$\alpha$$
. $(+\infty) - (-\infty)$

$$\delta$$
. $(-\infty) + (+\infty)$

$$\zeta. \ 0 \cdot (\pm \infty)$$

$$\beta$$
. $(+\infty) + (+\infty)$

$$\delta$$
. $(-\infty) + (+\infty)$
ε. $(-\infty) - (-\infty)$
 σ τ. $(-\infty) + (-\infty)$

1

$$\eta$$
. $\frac{\infty}{0}$

$$\gamma$$
. $(-\infty) - (+\infty)$

στ.
$$(-\infty) + (-\infty)$$

$$\theta$$
. $\frac{-\infty}{+\infty}$

ΘΕΜΑ Β Να υπολογιστούν τα παρακάτω όρια

B.1
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^3 - 6x^2 + 9x}$$

B.2
$$\lim_{x \to -2} \frac{2x-1}{x^2-x-6}$$

B.3
$$\lim_{x \to 1} \left(\frac{1}{(x-1)^2} - \frac{2}{x-1} \right)$$

B.5
$$\lim_{x \to +\infty} \left(\sqrt{4x^2 - 3x + 1} - x \right)$$

B.6 $\lim_{x \to +\infty} \left(\ln(x^2 - x) - \ln(2x^3 - x^2 + 4) \right)$

ΘΕΜΑ Γ Δίνεται η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ με τύπο

$$f(x) = \begin{cases} \sqrt{9x^2 + x + 6} &, x \le 1\\ \frac{ax^2 + \beta x + 5}{x - x^2} &, x > 1 \end{cases}$$

για την οποία υπάρχει το όριο $\lim_{x\to 1} f(x)$.

- **Γ.1** Να δείξετε ότι a = -2, $\beta = -3$.
- **Γ.2** Να βρείτε τα όρια $\lim_{x\to +\infty} f(x)$ και $\lim_{x\to -\infty} f(x)$. **Γ.3** Να βρείτε το όριο $\lim_{x\to +\infty} [(f(x)-2)\eta\mu x]$.

 $\mathbf{\ThetaEMA}$ Δ Δίνεται συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ για την οποία ισχύει

$$\frac{\eta \mu x + 2x^2 + 10x}{x + 2} \le f(x) \le \frac{2x^2 + 8x + 7}{x + 1}$$

για κάθε x > 0.

Δ.1 Να δείξετε ότι

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 2 \text{ Rat } \lim_{x \to +\infty} (f(x) - 2x) = 6$$

Δ.2 Να βρείτε το όριο

$$\lim_{x \to +\infty} \frac{f(x) + 3x + x^2 \cdot \eta \mu_x^{\frac{1}{2}}}{xf(x) - 2x^2 - 4x + 3}$$