Lecture 6: Convex Sets

Shi Pu

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

Convex Sets

Definition

A set $C \subseteq \mathbb{R}^n$ is called convex if for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0, 1]$, the point $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ belongs to C.

■ The above definition is equivalent to saying that for any $\mathbf{x}, \mathbf{y} \in C$, the line segment $[\mathbf{x}, \mathbf{y}]$ is also in C.

Examples of Convex Sets

■ Lines: a line in \mathbb{R}^n is a set of the form

$$L = \{ \mathbf{z} + t\mathbf{d} : t \in \mathbb{R} \},\$$

where $\mathbf{z}, \mathbf{d} \in \mathbb{R}^n$ and $\mathbf{d} \neq \mathbf{0}$.

- $lacksquare [\mathbf{x},\mathbf{y}],(\mathbf{x},\mathbf{y}) ext{ for } \mathbf{x},\mathbf{y} \in \mathbb{R}^n \ (\mathbf{x}
 eq \mathbf{y}) \ .$
- $\blacksquare \varnothing, \mathbb{R}^n.$
- A hyperplane is a set of the form

$$H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^{\top} \mathbf{x} = b \} \quad (\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, b \in \mathbb{R})$$

The associated half-space is the set

$$H^- = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^\top \mathbf{x} \le b\}$$

Both hyperplanes and half-spaces are convex sets.

Convexity of Balls

Lemma

Let $\mathbf{c} \in \mathbb{R}^n$ and r > 0. Then the open ball

$$B(\mathbf{c}, r) = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| < r \}$$

and the closed ball

$$B[\mathbf{c}, r] = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| \le r\}$$

are convex.

Note that the norm is an arbitrary norm defined over \mathbb{R}^n .

Proof. In class

I_1, I_2 and I_∞ Balls

Convexity of Ellipsoids

An ellipsoid is a set of the form

$$E = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2 \mathbf{b}^\top \mathbf{x} + c \le 0 \},$$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is positive semidefinite, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Lemma

E is convex.

Convexity of Ellipsoids

Proof.

- Write E as $E = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \leq 0 \}$ where $f(\mathbf{x}) \equiv \mathbf{x}^\top \mathbf{Q} \mathbf{x} + 2 \mathbf{b}^\top \mathbf{x} + c$.
- Take $\mathbf{x}, \mathbf{y} \in E$ and $\lambda \in [0, 1]$. Then $f(\mathbf{x}) \leq 0, f(\mathbf{y}) \leq 0$.
- The vector $\mathbf{z} = \lambda \mathbf{x} + (1 \lambda) \mathbf{y}$ satisfies $\mathbf{z}^{\top} \mathbf{Q} \mathbf{z} = \lambda^2 \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + (1 \lambda)^2 \mathbf{y}^{\top} \mathbf{Q} \mathbf{y} + 2\lambda (1 \lambda) \mathbf{x}^{\top} \mathbf{Q} \mathbf{y}$.

$$\mathbf{z}^{\top}\mathbf{Q}\mathbf{z} = \lambda^{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x} + (1 - \lambda)^{\top}\mathbf{y}^{\top}\mathbf{Q}\mathbf{y} + 2\lambda(1 - \lambda)\mathbf{x}^{\top}\mathbf{Q}\mathbf{y}.$$

$$\mathbf{z}^{\top}\mathbf{Q}\mathbf{y} \leq \|\mathbf{Q}^{1/2}\mathbf{y}\| + \|\mathbf{Q}^{1/2}\mathbf{y}\| + \sqrt{\mathbf{z}^{\top}\mathbf{Q}\mathbf{y}} \cdot \sqrt{\mathbf{y}^{\top}\mathbf{Q}\mathbf{y}} \leq \frac{1}{2}(\mathbf{z}^{\top}\mathbf{Q}\mathbf{y} + \mathbf{y}^{\top}\mathbf{Q}\mathbf{y})$$

$$\mathbf{x}^{\top} \mathbf{Q} \mathbf{y} \leq \| \mathbf{Q}^{1/2} \mathbf{x} \| \cdot \| \mathbf{Q}^{1/2} \mathbf{y} \| = \sqrt{\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}} \sqrt{\mathbf{y}^{\top} \mathbf{Q} \mathbf{y}} \leq \frac{1}{2} (\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + \mathbf{y}^{\top} \mathbf{Q} \mathbf{y})$$

$$\mathbf{z}^{\mathsf{T}}\mathbf{Q}\mathbf{z} \leq \lambda \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} + (1 - \lambda)\mathbf{y}^{\mathsf{T}}\mathbf{Q}\mathbf{y}$$

$$\mathbf{f}(\mathbf{z}) = \mathbf{z}^{\top} \mathbf{Q} \mathbf{z} + 2 \mathbf{b}^{\top} \mathbf{z} + c
\leq \lambda \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + (1 - \lambda) \mathbf{y}^{\top} \mathbf{Q} \mathbf{y} + 2\lambda \mathbf{b}^{\top} \mathbf{x} + 2(1 - \lambda) \mathbf{b}^{\top} \mathbf{y} + \lambda c + (1 - \lambda) c
= \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}) \leq 0.$$

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

Algebraic Operations Preserving Convexity

Lemma

Let $C_i \subseteq \mathbb{R}^n$ be a convex set for any $i \in I$ where I is an index set (possibly infinite). Then the set $\bigcap_{i \in I} C_i$ is convex.

Proof. In class

Example: Consider the set

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. P is called a convex polyhedron and it is indeed convex. Why?

Algebraic Operations Preserving Convexity

Theorem (preservation under addition, cartesian product, forward and inverse linear mappings)

- 1. Let $C_1, C_2, ..., C_k \subseteq \mathbb{R}^n$ be convex sets and let $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}$. Then the set $\mu_1 C_1 + \mu_2 C_2 + ... + \mu_k C_k$ is convex.
- 2. Let $C_i \subseteq \mathbb{R}^{k_i}, i = 1, 2, ..., m$ be convex sets. Then the cartesian product

$$C_1 \times C_2 \times ... \times C_m = \{(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m) : \mathbf{x}_i \in C_i, i = 1, 2, ..., m\}$$

is convex.

3. Let $M \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the set

$$\mathbf{A}(M) = \{\mathbf{A}\mathbf{x} : \mathbf{x} \in M\}$$

is convex.

4. Let $D \subseteq \mathbb{R}^m$ be a convex set and let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the set

$$\mathbf{A}^{-1}(D) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \in D\}$$

is convex.

Convex Combinations

Given m points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m \in \mathbb{R}^n$, a convex combination of these m points is a vector of the form

$$\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \dots + \lambda_m \mathbf{x}_m,$$

where $\lambda_1,\lambda_2,...,\lambda_m$ are nonnegative numbers satisfying $\lambda_1+\lambda_2+...+\lambda_m=1.$

- A convex set is defined by the property that any convex combination of two points from the set is also in the set.
- We will now show that a convex combination of any number of points from a convex set is in the set.

Convex Combinations

<u>Theorem</u>

Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m \in C$. Then for any $\lambda \in \Delta_m$, the relation $\sum_{i=1}^m \lambda_i \mathbf{x}_i \in C$ holds.

Convex Combinations

Proof.

- Proof by induction on m. For m = 1 the result is obvious.
- Induction hypothesis: for any m vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m \in C$ and any $\lambda \in \Delta_m$, $\sum_{i=1}^m \lambda_i \mathbf{x}_i \in C$. Will prove the theorem for m+1 vectors.
- Suppose that $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{m+1} \in C$ and that $\lambda \in \Delta_{m+1}$. We will show that $\mathbf{z} \equiv \sum_{i=1}^{m+1} \lambda_i \mathbf{x}_i \in C$.
- If $\lambda_{m+1} = 1$, then $\mathbf{z} = \mathbf{x}_{m+1} \in C$ and the result obviously follows.
- If $\lambda_{m+1} < 1$ then

$$\mathbf{z} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i + \lambda_{m+1} \mathbf{x}_{m+1} = (1 - \lambda_{m+1}) \underbrace{\sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} \mathbf{x}_i}_{\mathbf{x}} + \lambda_{m+1} \mathbf{x}_{m+1}$$

 $\mathbf{v} \in C$ and hence $\mathbf{z} = (1 - \lambda_{m+1})\mathbf{v} + \lambda_{m+1}\mathbf{x}_{m+1} \in C$.

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

The Convex Hull

Definition

Let $S \subseteq \mathbb{R}^n$. The convex hull of S, denoted by conv(S), is the set comprising all the convex combinations of vectors from S:

$$\mathsf{conv}(S) \equiv \{ \sum_{i=1}^k \lambda_i \mathbf{x}_i : \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in S, \boldsymbol{\lambda} \in \Delta_k, k \in \mathbb{N} \}.$$

Figure: A nonconvex set and its convex hull

The Convex Hull

The convex hull conv(S) is the "smallest" convex set containing S.

Lemma

Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ for some convex set T, then $conv(S) \subseteq T$.

The Convex Hull

The convex hull conv(S) is the "smallest" convex set containing S.

Lemma

Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ for some convex set T, then $conv(S) \subseteq T$.

Proof.

- Suppose that indeed $S \subseteq T$ for some convex set T.
- To prove that $conv(S) \subseteq T$, take $\mathbf{z} \in conv(S)$.
- There exist $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in S \subseteq T$ (where k is a positive integer), and $\lambda \in \Delta_k$ such that $\mathbf{z} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$.
- Since $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in T$, it follows that $\mathbf{z} \in T$, showing the desired result.

Any element in the convex hull of a given set $S \subseteq \mathbb{R}^n$ can be represented as a convex combination of no more than n+1 vectors from S.

Theorem

Let $S \subseteq \mathbb{R}^n$ and let $\mathbf{x} \in \text{conv}(S)$. Then there exist $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1} \in S$ such that $\mathbf{x} \in \text{conv}(\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1}\})$, that is, there exist $\lambda \in \Delta_{n+1}$ such that

$$\mathbf{x} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i.$$

Proof.

■ Let $\mathbf{x} \in \text{conv}(S)$. Then $\exists \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in S$ and $\lambda \in \Delta_k$ s.t.

$$\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i.$$

- We can assume that $\lambda_i > 0$ for all i = 1, 2, ..., k.
- If $k \le n + 1$, the result is proven.
- Otherwise, if $k \ge n+2$, then the vectors $\mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_1, ..., \mathbf{x}_k \mathbf{x}_1$, being more than n vectors in \mathbb{R}^n , are necessarily linearly dependent $\Rightarrow \exists \mu_2, \mu_3, ..., \mu_k$ not all zeros s.t.

$$\sum_{i=2}^k \mu_i(\mathbf{x}_i - \mathbf{x}_1) = \mathbf{0}.$$

Proof Contd.

- Defining $\mu_1 = -\sum_{i=2}^k \mu_i$, we obtain that $\sum_{i=1}^k \mu_i \mathbf{x}_i = \mathbf{0}$.
- Not all of the coefficients $\mu_1, \mu_2, ..., \mu_k$ are zeros and $\sum_{i=1}^k \mu_i = \mathbf{0}$.
- There exists an index *i* for which $\mu_i < 0$. Let $\alpha \in \mathbb{R}_+$. Then

$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}_i = \sum_{i=1}^{k} \lambda_i \mathbf{x}_i + \alpha \sum_{i=1}^{k} \mu_i \mathbf{x}_i = \sum_{i=1}^{k} (\lambda_i + \alpha \mu_i) \mathbf{x}_i.$$
 (1)

■ We have $\sum_{i=1}^{k} (\lambda_i + \alpha \mu_i) = 1$, so (1) is a convex combination representation iff

$$\lambda_i + \alpha \mu_i \ge 0 \text{ for all } i = 1, ..., k.$$
 (2)

■ Since $\lambda_i > 0$ for all i, it follows that (2) is satisfied for all $\alpha \in [0, \epsilon]$ where $\epsilon = \min_{i:\mu_i < 0} \{-\frac{\lambda_i}{\mu_i}\}$.

1011010111

Proof Contd.

- If we substitute $\alpha = \epsilon$, then (2) still holds, but $\lambda_j + \epsilon \mu_j = 0$ for $j \in \operatorname{argmin}_{i:\mu_i < 0} \{ -\frac{\lambda_i}{\mu_i} \}$.
- This means that we found a representation of \mathbf{x} as a convex combination of k-1 (or less) vectors.
- This process can be carried on until a representation of \mathbf{x} as a convex combination of no more than n+1 vectors is derived.

Example

For n = 2, consider the four vectors

$$\textbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \textbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \textbf{x}_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \textbf{x}_4 = \begin{pmatrix} 2 \\ 2 \end{pmatrix},$$

and let $\mathbf{x} \in \text{conv}(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\})$ be given by

$$\mathbf{x} = \frac{1}{8}\mathbf{x}_1 + \frac{1}{4}\mathbf{x}_2 + \frac{1}{2}\mathbf{x}_3 + \frac{1}{8}\mathbf{x}_4 = \begin{pmatrix} \frac{13}{8} \\ \frac{11}{8} \end{pmatrix}.$$

Find a representation of \mathbf{x} as a convex combination of no more than 3 vectors.

In class

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

Convex Cones

- A set S is called a cone if it satisfies the following property: for any $x \in S$ and $\lambda \ge 0$, the inclusion $\lambda x \in S$ is satisfied.
- The following lemma shows that there is a very simple and elegant characterization of convex cones.

Lemma

A set S is a convex cone if and only if the following properties hold:

- 1. $\mathbf{x}, \mathbf{y} \in S \Rightarrow \mathbf{x} + \mathbf{y} \in S$.
- 2. $\mathbf{x} \in S, \lambda \geq 0 \Rightarrow \lambda \mathbf{x} \in S$.

Simple exercise

Examples of Convex Cones

■ The convex polyhedron

$$C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{0}\}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$.

■ The Lorenz cone, or ice cream cone is given by

$$L^{n} = \left\{ \begin{pmatrix} \mathbf{x} \\ t \end{pmatrix} \in \mathbb{R}^{n+1} : \|\mathbf{x}\| \le t, \mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R} \right\}.$$

■ Nonnegative polynomials: set consisting of all possible coefficients of polynomials of degree n-1 which are nonnegative over \mathbb{R} :

$$K^{n} = \{ \mathbf{x} \in \mathbb{R}^{n} : x_{1}t^{n-1} + x_{2}t^{n-2} + \dots + x_{n-1}t + x_{n} \ge 0, \forall t \in \mathbb{R} \}.$$

The Conic Hull

Definition

Given m points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m \in \mathbb{R}^n$, a conic combination of these m points is a vector of the form $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + ... + \lambda_m \mathbf{x}_m$, where $\lambda \in \mathbb{R}_+^m$.

The definition of the conic hull is now quite natural.

Definition

Let $S \subseteq \mathbb{R}^n$. Then the conic hull of S, denoted by cone(S), is the set comprising all the conic combinations of vectors from S:

$$\mathsf{cone}(S) \equiv \left\{ \sum_{i=1}^k \lambda_i \mathbf{x}_i : \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in S, \boldsymbol{\lambda} \in \mathbb{R}_+^k \right\}.$$

The conic hull of a set S is the smallest convex cone containing S.

Lemma

Let $S \subseteq \mathbb{R}^n$. If $S \subseteq T$ for some convex cone T, then $cone(S) \subseteq T$.

Representation Theorem for Conic Hulls

The following result is similar to Carathéodory Theorem.

Theorem (Conic Representation Theorem)

Let $S \subseteq \mathbb{R}^n$ and let $\mathbf{x} \in \text{cone}(S)$. Then there exist k linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k \in S$ such that $\mathbf{x} \in \text{cone}(\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\})$, that is, there exist $\lambda \in \mathbb{R}_+^k$ such that

$$\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i.$$

In particular, $k \leq n$.

Proof very similar to the proof of Carathéodory theorem; see page 107 of the textbook.

Basic Feasible Solutions

Consider the convex polyhedron.

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}, \quad (\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m)$$

- The rows of **A** are assumed to be linearly independent.
- The above is a standard formulation of the constraints of a linear programming problem.

Definition

 $\bar{\mathbf{x}}$ is a basic feasible solution (bfs) of P if the columns of \mathbf{A} corresponding to the indices of the positive values of $\bar{\mathbf{x}}$ are linearly independent.

Example. Consider the linear system:

$$x_1 + x_2 + x_3 = 6$$
$$x_2 + x_4 = 3$$
$$x_1, x_2, x_3, x_4 \ge 0.$$

Find all the basic feasible solutions. In class

Existence of bfs's

Theorem

Let $P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$. If $P \neq \emptyset$, then it contains at least one bfs.

Existence of bfs's

Proof.

- $P \neq \emptyset \Rightarrow \mathbf{b} \in \text{cone}(\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\})$ where \mathbf{a}_i denotes the *i*-th column of \mathbf{A} .
- By the conic representation theorem, there exist indices $i_1 < i_2 < ... < i_k$ and k numbers $y_{i_1}, y_{i_2}, ..., y_{i_k} \ge 0$ such that $\mathbf{b} = \sum_{j=1}^k y_{i_j} \mathbf{a}_{i_j}$ and $\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, ..., \mathbf{a}_{i_k}$ are linearly independent.
- lacktriangle Denote $ar{\mathbf{x}} = \sum_{j=1}^k y_{i_j} \mathbf{e}_{i_j}$. Then obviously $ar{\mathbf{x}} \geq \mathbf{0}$ and in addition

$$\mathbf{A}\mathbf{ar{x}} = \sum_{j=1}^k y_{i_j} \mathbf{A} \mathbf{e}_{i_j} = \sum_{j=1}^k y_{i_j} \mathbf{a}_{i_j} = \mathbf{b}.$$

■ Therefore, $\bar{\mathbf{x}}$ is contained in P and the columns of \mathbf{A} corresponding to the indices of the positive components of $\bar{\mathbf{x}}$ are linearly independent, meaning that P contains a bfs.

Outline

- Definition and Examples
- 2 Algebraic Operations with Convex Sets
- 3 The Convex Hull
- 4 Convex Cones
- 5 Topological Properties of Convex Sets

Topological Properties of Convex Sets

Theorem

Let $C \subseteq \mathbb{R}^n$ be a convex set. Then cl(C) is a convex set.

Topological Properties of Convex Sets

Theorem

Let $C \subseteq \mathbb{R}^n$ be a convex set. Then cl(C) is a convex set.

Proof.

- Let $\mathbf{x}, \mathbf{y} \in cl(C)$ and let $\lambda \in [0, 1]$.
- There exist sequences $\{\mathbf{x}_k\}_{k\geq 0}\subseteq C$ and $\{\mathbf{y}_k\}_{k\geq 0}\subseteq C$ for which $\mathbf{x}_k\to\mathbf{x}$ and $\mathbf{y}_k\to\mathbf{y}$ as $k\to\infty$.
- (*) $\lambda \mathbf{x}_k + (1 \lambda)\mathbf{y}_k \in C$ for any $k \geq 0$.
- $\blacksquare (**) \lambda \mathbf{x}_k + (1-\lambda)\mathbf{y}_k \to \lambda \mathbf{x} + (1-\lambda)\mathbf{y}.$

The Line Segment Principle

Theorem

Let C be a convex set and assume that $\operatorname{int}(C) \neq \varnothing$. Suppose that $\mathbf{x} \in \operatorname{int}(C)$ and $\mathbf{y} \in \operatorname{cl}(C)$. Then $(1-\lambda)\mathbf{x} + \lambda \mathbf{y} \in \operatorname{int}(C)$ for any $\lambda \in [0,1)$.

The Line Segment Principle

Proof.

- There exists $\epsilon > 0$ such that $B(\mathbf{x}, \epsilon) \subseteq C$.
- Let $\mathbf{z} = (1 \lambda)\mathbf{x} + \lambda\mathbf{y}$. We will show that $B(\mathbf{z}, (1 \lambda)\epsilon) \subseteq C$.
- Let $\mathbf{w} \in B(\mathbf{z}, (1 \lambda)\epsilon)$. Since $\mathbf{y} \in cl(C), \exists \mathbf{w}_1 \in C$ s.t.

$$\|\mathbf{w}_1 - \mathbf{y}\| < \frac{(1 - \lambda)\epsilon - \|\mathbf{w} - \mathbf{z}\|}{\lambda}.$$
 (3)

■ Set $\mathbf{w}_2 = \frac{1}{1-\lambda}(\mathbf{w} - \lambda \mathbf{w}_1)$. Then

$$\begin{aligned} \|\mathbf{w}_2 - \mathbf{x}\| &= \|\frac{\mathbf{w} - \lambda \mathbf{w}_1}{1 - \lambda} - \mathbf{x}\| = \frac{1}{1 - \lambda} \|(\mathbf{w} - \mathbf{z}) + \lambda(\mathbf{y} - \mathbf{w}_1)\| \\ &\leq \frac{1}{1 - \lambda} (\|\mathbf{w} - \mathbf{z}\| + \lambda \|\mathbf{w}_1 - \mathbf{y}\|) < \epsilon \quad \text{(using (3))}, \end{aligned}$$

■ Hence, since $B(\mathbf{x}, \epsilon) \subseteq C$, it follows that $\mathbf{w}_2 \in C$. Finally, since $\mathbf{w} = \lambda \mathbf{w}_1 + (1 - \lambda) \mathbf{w}_2$ with $\mathbf{w}_1, \mathbf{w}_2 \in C$, we have that $\mathbf{w} \in C$.

Convexity of the Interior

Theorem

Let $C \subseteq \mathbb{R}^n$ be a convex set. Then int(C) is convex.

Proof.

- If $int(C) = \emptyset$, then the theorem is obviously true.
- Otherwise, let $\mathbf{x}_1, \mathbf{x}_2 \in \text{int}(C)$, and let $\lambda \in (0,1)$.
- By the LSP, $\lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2 \in \text{int}(C)$, establishing the convexity of int(C).

Combination of Closure and Interior

Lemma

Let C be a convex set with a nonempty interior. Then

- 1. $\operatorname{cl}(\operatorname{int}(C)) = \operatorname{cl}(C)$.
- 2. int(cl(C)) = int(C).

Combination of Closure and Interior

Lemma

Let C be a convex set with a nonempty interior. Then

- 1. $\operatorname{cl}(\operatorname{int}(C)) = \operatorname{cl}(C)$.
- 2. int(cl(C)) = int(C).

Proof of 1.

- Obviously, $cl(int(C)) \subseteq cl(C)$ holds.
- To prove that opposite, let $\mathbf{x} \in \operatorname{cl}(C)$, $\mathbf{y} \in \operatorname{int}(C)$.
- Then $\mathbf{x}_k = \frac{1}{k}\mathbf{y} + (1 \frac{1}{k})\mathbf{x} \in \text{int}(C)$ for any $k \ge 1$.
- Since \mathbf{x} is the limit (as $k \to \infty$) of the sequence $\{\mathbf{x}_k\}_{k \ge 1} \subseteq \operatorname{int}(C)$, it follows that $\mathbf{x} \in \operatorname{cl}(\operatorname{int}(C))$.

For the proof of 2, see pages 109, 110 of the textbook for the proof of Lemma 6.30(b).

Compactness of the Convex Hull of a Compact Set

- In general, the convex hull of a closed set is not necessarily a closed set.
- Example: $S = \{(0,0)^{\top}\} \cup \{(x,y)^{\top} : xy \ge 1, x \ge 0, y \ge 0\}.$

Theorem

Let $S \subseteq \mathbb{R}^n$ be a compact set. Then conv(S) is compact.

Compactness of the Convex Hull of a Compact Set

Proof.

- $\exists M > 0$ such that $\|\mathbf{x}\| \leq M$ for any $\mathbf{x} \in S$.
- Let $\mathbf{y} \in \text{conv}(S)$. Then there exist $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1} \in S$ and $\lambda \in \Delta_{n+1}$ for which $\mathbf{y} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i$ and therefore

$$\|\mathbf{y}\| = \|\sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i\| \le \sum_{i=1}^{n+1} \lambda_i \|\mathbf{x}_i\| \le M \sum_{i=1}^{n+1} \lambda_i = M,$$

establishing the boundedness of conv(S).

- To prove the closedness of conv(S), let $\{y_k\}_{k\geq 1}\subseteq conv(S)$ be a sequence converging to $\mathbf{y}\in\mathbb{R}^n$.
- There exist $\mathbf{x}_1^k, \mathbf{x}_2^k, ..., \mathbf{x}_{n+1}^k \in S$ and $\lambda^k \in \Delta_{n+1}$ such that

$$\mathbf{y}_k = \sum_{i=1}^{n+1} \lambda_i^k \mathbf{x}_i^k. \tag{4}$$

Compactness of the Convex Hull of a Compact Set

Proof Contd.

By the compactness of S and Δ_{n+1} , it follows that $\{(\lambda^k, \mathbf{x}_1^k, \mathbf{x}_2^k, ..., \mathbf{x}_{n+1}^k)\}_{k \geq 1}$ has a convergent subsequence $\{(\lambda^{k_j}, \mathbf{x}_1^{k_j}, \mathbf{x}_2^{k_j}, ..., \mathbf{x}_{n+1}^{k_j})\}_{j \geq 1}$ whose limit will be denoted by $(\lambda, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1})$

with
$$\lambda \in \Delta_{n+1}$$
, $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1} \in S$

■ Taking the limit $j \to \infty$ in

$$\mathbf{y}_{k_j} = \sum_{i=1}^{n+1} \lambda_i^{k_j} \mathbf{x}_i^{k_j},$$

we obtain that $\mathbf{y} = \sum_{i=1}^{n+1} \lambda_i \mathbf{x}_i \in \text{conv}(S)$ as required.

Extreme Points

Definition

Let $S \subseteq \mathbb{R}^n$ be a convex set. A point $\mathbf{x} \in S$ is called an extreme point of S if there do not exist $\mathbf{x}_1, \mathbf{x}_2 \in S$ ($\mathbf{x}_1 \neq \mathbf{x}_2$) and $\lambda \in (0,1)$, such that $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$.

- The set of extreme point is denoted by ext(S).
- For example, the set of extreme points of a convex polytope (bounded polyhedron) consists of all its vertices.

Equivalence Between bfs's and Extreme Points

Theorem

Let $P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has linearly independent rows and $\mathbf{b} \in \mathbb{R}^m$. Then $\bar{\mathbf{x}}$ is a basic feasible solution of P if and only if it is an extreme point of P.

Theorem 6.34 in the book.

Krein-Milman Theorem

Theorem

Let $S \subseteq \mathbb{R}^n$ be a compact convex set. Then

$$S = conv(ext(S)).$$