

Circuitos Eletrônicos

Aula 9 - Amplificadores operacionais

Prof. Leonardo Felipe Takao Hirata leonardo.hirata@hausenn.com.br https://github.com/leofthirata

Amplificador Operacional (amp-op)

 Usado para amplificação de sinais de baixa amplitude, osciladores, filtros, inversores, e diversos outros circuitos;

 Sua estrutura é composta por uma junção de resistores, capacitores e transistores como a de um amplificador diferencial (figura ao lado).

Características

- Ganho muito alto;
- Impedância de entrada muito alta (MΩ) → correntes de entrada quase nulas;
- Baixa impedância de saída (< 100 Ω);
- A saída é dada por Vout = (V₊ V₋) * A, onde V₊ é a tensão na entrada não inversora e V₋ é a tensão na entrada inversora.

Determine a tensão de saída para os seguintes casos:

- a) V + = 2.075 mV, V = 2.408 mV;
- b) V+ = 1 V, V- = 0.987 V;
- c) V + = 4.051 V, V = 4.050 V.

Dados:

$$V_{CC} = 12 V$$

 $V_{EE} = 0$
 $A = 1000$

Amp-op ideal x LM741

Característica	Símbolo	Ideal	LM741C
Ganho de tensão em malha aberta	A_{VOL}	Infinito	100.000
Frequência de ganho unitário	f _{unidade}	Infinito	1 MHz
Resistência de entrada	R _{in}	Infinito	2 ΜΩ
Resistência de saída	R _{out}	Zero	75 Ω
Corrente de polarização de entrada	I _{in(bias)}	Zero	80 nA
Corrente de offset de entrada	I _{in(off)}	Zero	20 nA
Tensão de offset de entrada	$V_{in(off)}$	Zero	2 mV
Razão de rejeição de modo comum	CMRR	Infinito	90 dB

Amp-op como comparador

- Como o ganho do amplificador é muito alto, pode-se dizer que:

 - Se V+ > V-, Vout = V_{CC};
 Se V- < V+, Vout = -V_{EE}.

Determine a tensão de saída para os seguintes casos:

a)
$$V+ = 2 V$$
, $V- = 1 V$;

b)
$$V+ = 1 V, V- = 0.9 V;$$

c)
$$V + = 4.05 V$$
, $V - = 4.1 V$.

Dados:

$$V_{CC} = 9 V$$

 $V_{EE} = -9 V$

Simulação 1 - Amp-op comparador

Amp-op com realimentação negativa

- Usado para amplificação de sinais de baixa amplitude;
- Curto circuito virtual: a tensão de entrada V+ é igual a tensão de entrada V-.

Amp-op com realimentação negativa e entrada inversora

A saída é dada por V_{out} = - (R2/R1) * V_{in}.

Considere R1 = $5 k\Omega$, R2 = $100 k\Omega$ e Vin = 150 mV. Determine:

- a) A tensão na entrada inversora;
- b) A tensão de saída Vo.

Simulação 2 - Amp-op com realimentação negativa e entrada inversora

Amp-op com realimentação negativa e entrada não inversora

A saída é dada por V_{out} = (1 + R2/R1) * V_{in}.

Considere R1 = $10 \text{ k}\Omega$, R2 = $50 \text{ k}\Omega$ e Vin = 500 mV. Determine:

- a) A tensão na entrada inversora;
- b) A tensão de saída Vout.

Simulação 3 - Amp-op com realimentação negativa e entrada não inversora

Considere R1 = $10 \text{ k}\Omega$, R2 = $50 \text{ k}\Omega$ e Vin = 500 mV. Determine:

- a) A tensão na entrada inversora;
- b) A tensão de saída Vout.

Solução

Usando a mesma lógica do exemplo anterior,

$$Id = (20 - 2) / 560$$

$$Id = 32,1428 \text{ mA}.$$

Calcule:

- a) O ganho necessário para que Vout = 5 V sendo que Vin = 100 mV;
- b) Os valores de R1 e R2;

c) Os valores de R1 e R2 para que a corrente que flui por eles seja

de 20 mA.

Calcule:

a) O ganho necessário para que Vout = 5 V sendo que Vin = 100

mV;

b) Os valores de R1 e R2;

c) Os valores de R1 e R2 para que a corrente que flui por eles seja de 20 mA.

BOYLESTAD, R. L., NASHELSKY, L., Dispositivos Eletrônicos, ed. 11, São Paulo, Pearson, 2013, p. 743

