Appunti di Algebra Lineare

Contents

1	Sistemi Lineari	2
2	2 MATRICI	3
	2.1 OPERAZIONI	
	2.1.1 Prodotto Matriciale	
	2.2 DEFINIZIONI	3

1 Sistemi Lineari

Definizione Teorema Fondamentale dell'algebra

Considerando un polinomio di grado n, a coefficienti complessi:

$$\bullet \ \ P(z)=a_nz^n+\ldots+a_1z+a_0 \qquad \text{ Dove } a_i\in\mathbb{C}, \ z_n\neq 0$$

Si dice che $z_0\in\mathbb{C}$ è una radice di P se:

$$P(z_0) = 0$$

In tal caso esiste un polinomio ${\it Q}$ di grado n-1 tale che:

$$P(z) = (z - z_0)Q(z)$$

Definizione Molteplicità

La molteplcità di $z_0\in\mathbb{C}$ come radice di un polinomio P, è il massimo numero $m\geq 0$ per il quale esiste un polinomio Q tale che:

$$P(z) = \left(z - z_0\right)^m Q(z) \quad \text{con } Q(z_0) \neq 0$$

2 MATRICI

2.1 OPERAZIONI

2.1.1 Prodotto Matriciale

Definizione Prodotto Matriciale

• **A**: Mat(m,n)

B: Mat(n,p)

• Risultato: Mat(m,p)

• Sintassi: AB

• Ordine dei fattori: Importante perchè non vale la propr. commutativa

• Requisito: Righe di A == Colonne di B

L'elemento c_{ij} della matrice risultante è dato dal prodotto scalare del **vettore riga** i-esimo di A, per il **vettore** colonna j-esimo.

Esempio:

$$\begin{pmatrix} 1 & 2 \\ 3 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 & 4 \\ 4 & 3 & 6 \end{pmatrix} = \begin{pmatrix} (1 & 2) \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} & (1 & 2) \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} & (1 & 2) \cdot \begin{pmatrix} 4 \\ 6 \end{pmatrix} \\ (3 & 3) \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} & (3 & 3) \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} & (3 & 3) \cdot \begin{pmatrix} 4 \\ 6 \end{pmatrix} \end{pmatrix}$$

2.2 DEFINIZIONI

Definizione Spazio vettoriale

Uno spazio vettoriale \mathbb{V} su un campo \mathbb{F} è un insieme dotato di un'addizione e di una moltiplicazione per scalare che soddisfano le proprietà assiali (chiusura, associatività, elemento neutro, inverso additivo, distributività, compatibilità con scalari, moltiplicazione per 1).

Esempio:

\mathbb{R}^n

Definizione Linearmente Indipendenti/dipendenti

l vettori $v_1,...,v_k \in \mathbb{R}^n$ si dicono <u>linearmente indipendenti</u> se vale l'implicazione:

$$\lambda_1 v_1 + \ldots + \lambda_k v_k = \underline{0} \quad \Rightarrow \quad \lambda_1 = \ldots = \lambda_k = 0$$

In caso contrario si dice che $v_1,...,v_k$ sono <u>linearmente dipendenti</u>.

Nota:

- Proprietà attribuibile ad una collezione di vettori, riga o colonna che siano.
- Le matrici sono una lista di vettori riga o vettori colonna, quindi si può stabilire la dipendenza lineare di righe e di colonne, vedere la definizione di **Rango**.

Esempio:

Confronto tra 1,2,3 vettori:

	lin. Ind.	lin. Dip.
$v_1 \in \mathbb{R}^n$	Se v_1 non nullo	nullo
$v_1,v_2\in\mathbb{R}^n$	Se non sono paralleli tra loro	paralleli
$v_1,v_2,v_3\in\mathbb{R}^n$	Se non complanari	Complanari

Definizione Base

Una base di un spazio vettoriale è una collezione di vettori linearmente indipendenti che genera lo spazio.

Esempio:

$$e = \begin{pmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Definizione Span

È lo spazio vettoriale generato dalla combinazione lineare di unsieme di vettori

Definizione Rango (o caratteristica)

Numero massimo di vettori riga o vettori colonna della matriche tra loro linearmente indipendenti.

Proposizione Rango (o caratteristica)

Sia $A \in Mat(m, n)$, si può dimostrare che il massimo numero di righe linearmente indipendenti coincide con il massimo numero di colonne linearmente indipendenti.

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$ e $\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}$ sono linearmente indipendenti (perchè non sono paralleli), per cui il numero massimo di colonne linearmente indipendenti sarà 2.