Последовательности

Функция, заданная на множестве натуральных чисел N, называется последовательностью.

Аргумент этой функции обозначается n, а сама функция x_n .

Таким образом, числовая последовательность задана, если указан закон, по которому каждому натуральному числу n ставится в соответствие определенное число x_n .

Числа x_1, x_2, \dots, x_n называются членами последовательности.

Принято обозначать последовательность символом $\{x_n\}$.

Последовательности бывают числовыми, если все ее элементы – числа и функциональными, когда ее элементы – функции.

Примеры.

1.
$$\left\{\frac{1}{n^2}\right\}_{n\in\mathbb{N}} = 1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \dots$$
 — числовая последовательность,

$$2. \left\{ \frac{\sin(nx)}{n} \right\}_{n \in \mathbb{N}} = \sin x, \frac{\sin(2x)}{2}, \frac{\sin(3x)}{3}, \frac{\sin(4x)}{4}, \frac{\sin(5x)}{5}, \dots, x \in [0, 2\pi], -1$$

функциональная последовательность.

Последовательность $\{x_n\}$ называется **ограниченной снизу**, если \exists число m : \forall $n \in \mathbb{N}$ \Rightarrow $a_n \geq m$.

Последовательность $\{x_n\}$ называется **ограниченной сверху**, если \exists число $M: \forall n \in \mathbb{N} \Rightarrow a_n \leq M$.

Последовательность $\{x_n\}$ называется **ограниченной**, если

 \exists m и M : $\forall n \in N \Rightarrow m \leq a_n \leq M$.

Последовательность $\{x_n\}$ называется возрастающей, если $\forall \ n \in N$ выполняется $a_{n+1} > a_n$.

Последовательность $\{x_n\}$ называется **убывающей**, если $\forall n \in \mathbb{N}$ выполняется $a_{n+1} < a_n$.

Последовательность $\{x_n\}$ называется **неубывающей**, если $\forall n \in \mathbb{N}$ выполняется $a_{n+1} \geq a_n$.

Последовательность $\{x_n\}$ называется **невозрастающей**, если $\forall n \in \mathbb{N}$ выполняется $a_{n+1} \leq a_n$.

Последовательность $\{x_n\}$ называется **монотонной**, если она возрастающая, убывающая, невозрастающая или неубывающая.

Предел числовой последовательности

Число a называется **пределом числовой последовательности** $\{x_n\}$ или $a=\lim_{n\to\infty}x_n$, если для $\forall \varepsilon>0$ $\exists N=N(\varepsilon)\in \mathbb{N}$ такое, что при $\forall n>N(\varepsilon)$ справедливо неравенство: $|x_n-a|<\varepsilon$.

или

$$\lim_{n\to\infty} x_n = a \qquad \iff \left(\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) : \forall n > N \Longrightarrow |x_n - a| < \varepsilon \right)$$

Последовательность, имеющая конечный предел, называется *сходящейся последовательностью*. В противном случае последовательность называют *расходящейся*.

Рассмотрим

$$|x_n-a| или $x_n\in (a-arepsilon;a+arepsilon)$$$

Интервал $(a - \varepsilon; a + \varepsilon)$ называется ε — окрестностью числа a.

Значит, определение предела последовательности можно сформулировать так:

Число a называется *пределом числовой последовательности* $\{x_n\}$, если в любую ε — окрестностью числа a попадают все члены последовательности, кроме, может быть, конечного их числа.

Теорема Вейерштрасса (без доказательства):

Любая ограниченная сверху монотонно возрастающая (или ограниченная снизу монотонно убывающая) последовательность имеет предел, причём этот предел равен её точной верхней (или нижней) грани.

Бесконечно большие и бесконечно малые последовательности

Последовательность $\{x_n\}$ называет *бесконечно большой*, если

$$\forall M > 0 \quad \exists N = N(M): \quad \forall n \ge N \Rightarrow \quad |x_n| > M,$$

то есть $\lim_{n\to\infty} x_n = \infty$.

Последовательность $\{x_n\}$ называет **бесконечно малой**, если

$$\forall \varepsilon > 0 \quad \exists N = N(M): \quad \forall n > N \Rightarrow \quad |x_n| < \varepsilon,$$

то есть $\lim_{n\to\infty} x_n = 0.$

Число е

Последовательность $x_n = \left(1 + \frac{1}{n}\right)^n$, $n = 1, 2, \dots$ возрастает и ограниченна сверху, а значит по теореме Вейерштрасса сходится. Ее пределом является иррациональное число e = 2,718281828... - число Непера. Таким образом,

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Примеры.

1. Вычислить $\lim_{n\to\infty} \frac{n^3 - 10n^2 + 1}{3n^3 + 4n^2 - n + 1}.$

Решение:
$$\lim_{n \to \infty} \frac{n^3 - 10n^2 + 1}{3n^3 + 4n^2 - n + 1} = \lim_{n \to \infty} \frac{n^3 \left(1 - \frac{10}{n} + \frac{1}{n^3}\right)}{n^3 \left(3 + \frac{4}{n} - \frac{1}{n^2} + \frac{1}{n^3}\right)} = \frac{1}{3}.$$

2. Вычислить $\lim_{n\to\infty} \left(\frac{4n-3}{4n+7}\right)^{3n}$

Решение:

$$\lim_{n \to \infty} \left(\frac{4n-3}{4n+7} \right)^{3n} = \lim_{n \to \infty} \left(1 + \frac{4n-3}{4n+7} - 1 \right)^{3n} = \lim_{n \to \infty} \left(1 + \frac{-10}{4n+7} \right)^{3n} = \lim_$$

$$= \lim_{n \to \infty} \left(1 + \frac{-10}{4n+7} \right)^{\frac{4n+7}{-10} \cdot \left(\frac{-10}{4n+7} \right) \cdot 3n} = e^{\lim_{n \to \infty} \frac{-30n}{4n+7}} = e^{-\frac{30}{4}} = e^{-7.5}.$$

3. Последовательность $(-1)^{n+1} = 1, -1, 1, -1....$ не имеет предела, и значит, расходится.

Последовательность $b_n = b_1$, b_2 , b_3 называется **подпоследовательностью** последовательности $a_n = a_1$, a_2 , a_3, если все ее элементы b_n являются элементами последовательности a_n .

К примеру, последовательность
$$\left\{\frac{1}{3^{2n}}\right\} = \frac{1}{3^2}, \frac{1}{3^4}, \frac{1}{3^6}, \dots$$
 является подпоследовательности $\left\{\frac{1}{3^n}\right\} = \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \frac{1}{3^4}, \frac{1}{3^5}, \frac{1}{3^6}, \dots$

Существует теорема, доказывающая, что если последовательность сходится к некоторому значению, то все ее подпоследовательности сходятся и к тому же значению.

Предел функции.

Если при вычислении предела последовательности всегда $n \to \infty$, то, вычисляя предел функции f(x), следует оговаривать, к чему стремится ее аргумент. Рассмотрим, в чем различие между пределами последовательности и функции

$$\lim_{n\to\infty}\frac{1}{n^2}\qquad \qquad \lim_{x\to+\infty}\frac{1}{x^2}.$$

Если в последовательности n возрастает, принимая только значения из множества натуральных чисел, то x может возрастать, принимая любые вещественные значения. Пределы последовательности и функции в этом случае равны нулю.

В то же время имеет смысл рассмотреть предел

$$\lim_{x\to 0}\frac{1}{x^2}.$$

Стоящая под знаком предела функция увеличивается с приближением ее аргумента x к нулю, оставаясь положительной, причем, при x сколь угодно близких к нулю, ее значение становится все большим и большим. Ясно, что

$$\lim_{x\to 0}\frac{1}{x^2}=\infty.$$

Поскольку при x=0 рассматриваемая функция не существует, этот ее предел дает важнейшую информацию — показывает поведение функции в окрестности предельной точки. При подходе к этой точке она уходит в бесконечность.

Сформулируем два, эквивалентных между собой, определения предела функции.

Пусть функция y = f(x) определена в некоторой окрестности точки a, кроме, быть может, самой точки a.

Определение 1 (на «языке последовательностей» или «по Гейне»):

Число b называется пределом функции f(x) в точке a (или при $x \to a$), если для любой последовательности допустимых значений аргумента $x_n, n \in N$ ($x_n \neq a$) стремящейся к a (т.е. $\lim_{n \to \infty} x_n = a$), соответствующая ей функциональная последовательность $f(x_n), n \in N$ сходится к b (т.е. $\lim_{n \to \infty} f(x_n) = b$).

Приведенное определение предела функции в точке, связанное с рассмотрением числовых последовательностей, неудобно тем, что реально невозможно изучить все числовые последовательности, сходящиеся к числу a. Поэтому для исследования существования предела пользуются вторым определением, равносильным первому.

Определение 2 (на «языке $\varepsilon - \delta$ » или «по Коши»):

$$\lim_{x\to a} f(x) = b \Leftrightarrow \text{если } \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \text{: } \forall x \text{: } \underbrace{|x-a| < \delta, \ x \neq a} \Rightarrow |f(x)-b| < \varepsilon.$$

или
$$0 < |x - a| < \delta$$

Словесная формулировка приведенной фразы такова:

Число b называется пределом функции f(x) в точке a (или при $x \to a$), если для любого положительного ε существует такое положительное $\delta(\varepsilon)$, что для любого x такого, что $0 < |x - a| < \delta$ выполняется неравенство $|f(x) - b| < \varepsilon$.

Выясним геометрический смысл определения предела. Неравенство $|x-a| < \delta$ равносильно следующим неравенствам:

$$-\delta < x - a < \delta$$

$$a - \delta < x < a + \delta$$
.

Интервал $(a - \delta, a + \delta)$ называется δ – окрестностью точки a.

Неравенство

$$a - \delta < x < a + \delta$$
,

а, следовательно, и неравенство

$$0 < |x - a| < \delta$$

означает, что точка x лежит в δ – окрестностью точки a.

Значит, определение 2 еще можно сформулировать так:

Число b называется пределом функции f(x) в точке a (или при $x \to a$), если для любой \mathcal{E} - окрестности точки b найдется такая δ -окрестность точки a, что для всех $x \neq a$ из этой δ -окрестности соответствующие значения функции f(x) лежат в \mathcal{E} - окрестности точки b.

Доказана эквивалентность определений 1 и 2, то есть из 1 следует 2, и наоборот.

Пример: Доказать, что $\lim_{x\to 3} (2x-1) = 5$.

Решение: Возьмем произвольное $\varepsilon > 0$, найдем $\delta(\varepsilon) > 0$: $\forall x : |x - 3| < \delta \Rightarrow |(2x - 1) - 5| < \varepsilon$ (по определению),

т.е.
$$|2x-6| < \varepsilon$$
 или $|x-3| < \frac{\varepsilon}{2}$.

Значит,

если для произвольного $\varepsilon > 0$ возьмем $\delta = \frac{\varepsilon}{2}$, то $\forall x : |x - 3| < \delta \left(= \frac{\varepsilon}{2} \right) \Rightarrow |(2x - 1) - 5| < \varepsilon \Leftrightarrow \lim_{x \to 3} (2x - 1) = 5.$

Теорема единственности предела:

Если функция имеет предел в точке a, то он единствен.

Доказательство: Предположим, что $\underset{x \to a}{lim} f(x) = A$ и $\underset{x \to a}{lim} f(x) = B$, $A \neq B$.

Предположим, например, что A > B.

Возьмем $\varepsilon = \frac{A-B}{2} > 0$. Из определения предела:

$$\lim_{x \to a} f(x) = A \Leftrightarrow \text{Для } \varepsilon = \frac{A-B}{2} \ \exists \delta_1 > 0 \colon \forall x \colon \ 0 < |x-a| < \delta_1 \Rightarrow |f(x)-A| < \varepsilon.$$

или

$$|f(x) - A| < \varepsilon \iff -\varepsilon < f(x) - A < \varepsilon$$
.

Рассмотрим левую часть неравенства: $-\varepsilon < f(x) - A \iff$

$$f(x) > A - arepsilon$$
 $f(x) > A - rac{A-B}{2} = rac{2A-A+B}{2} = rac{A+B}{2}$, то есть $f(x) > rac{A+B}{2}$.

Аналогично,

Для
$$\varepsilon = \frac{A-B}{2} > 0$$
. Из определения предела: $\lim_{x \to a} f(x) = B \Leftrightarrow$ Для $\varepsilon = \frac{A-B}{2}$ $\exists \delta_2 > 0$: $\forall x$: $0 < |x-a| < \delta_2 \Rightarrow |f(x) - B| < \varepsilon$.

или

$$|f(x) - B| < \varepsilon \iff -\varepsilon < f(x) - B < \varepsilon$$
.

Рассмотрим правую часть неравенства: $f(x) - B < \varepsilon \iff$

$$f(x) < B + arepsilon$$
 $f(x) < B + rac{A-B}{2} = rac{2B+A-B}{2} = rac{A+B}{2}$, то есть $f(x) < rac{A+B}{2}$.

Рассмотрим пересечение δ_1 – окрестности и δ_2 – окрестности.

Пересечение этих окрестностей является непустым множеством, и в этом непустом множестве одновременно выполняются неравенства $f(x) < \frac{A+B}{2}$ и $f(x) > \frac{A+B}{2}$. Полученное противоречие доказывает теорему.

Бесконечно малые и бесконечно большие функции

Функция $\alpha(x)$ называется **бесконечно малой функцией** (бесконечно малой) при $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$.

Функция A(x) называется **бесконечно большой функцией** (бесконечно большой) при $x \to x_0$, если $\lim_{x \to x_0} A(x) = \pm \infty$.

Функция $\frac{1}{A(x)}$ при $x \to x_0$ бесконечно малая, а $\frac{1}{\alpha(x)}$ – бесконечно большая.

Функции $\alpha(x)$ и $\beta(x)$ называется **бесконечно малыми одного порядка малости** при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = K$, причем $0 < /K / < \infty$.

Функции $\alpha(x)$ и $\beta(x)$ называется эквивалентными бесконечно малыми при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$.

Функция $\alpha(x)$ называется **бесконечно малой более высокого порядка малости**, чем $\beta(x)$, при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$.

Известны следующие свойства бесконечно малых.

- 1) Алгебраическая сумма конечного числа бесконечно малых бесконечно малая.
- 2) Произведение бесконечно малой и конечной величины величина бесконечно малая.
- 3) Произведение конечного числа бесконечно малых бесконечно малая.

Другими словами, если $\lim_{x\to a} f(x) = b$ и $f(x) = b + \beta(x)$, то $\lim_{x\to a} \beta(x) = 0$.

Необходимость. Пусть

$$\lim_{x\to a} f(x) = b \text{ if } f(x) = b + \beta(x)$$

докажем, что $\beta(x)$ – бесконечно малая при $x \to a$.

Из второго определения предела имеем

$$\lim_{x \to a} f(x) = b \Leftrightarrow \text{если } \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \ \forall x \colon 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon.$$

но $f(x)-b=\beta(x)$, следовательно,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \forall x \colon 0 < |x - a| < \delta \Rightarrow |\beta(x) - 0| < \varepsilon \Leftrightarrow \lim_{x \to a} \beta(x) = 0$$

следовательно, $\beta(x)$ – бесконечно малая.

Достаточность. Пусть

$$f(x)=b+\beta(x)$$
, причем $\lim_{x\to a}\beta(x)=0$,

нужно доказать, что $\lim_{x\to a} f(x) = b$.

Из $\lim_{x\to a}\beta(x)=0$ следует

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \forall x \colon 0 < |x - a| < \delta \Rightarrow |\beta(x) - 0| < \varepsilon$$

и поскольку

$$f(x) = b + \beta(x),$$

имеем

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \forall x \colon 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon \iff \lim_{x \to a} f(x) = b$$

Доказано.

Свойства пределов функций

- 1) Предел постоянной равен самой постоянной. Это свойство следует из определения предела.
 - 2) Постоянную можно выносить за знак предела.

В самом деле,

пусть

$$\lim_{x\to x_0} f(x) = b,$$

в соответствии с теоремой

$$f(x) = b + \alpha(x)$$
, причем $\lim_{x \to x_0} \alpha(x) = 0$.

Очевидно,

$$K \cdot f(x) = K \cdot b + K \cdot \alpha(x)$$
, где K постоянная.

Но $K \cdot \alpha(x)$ – бесконечно малая при $x \to x_0$, что следует из свойств бесконечно малых, тогда функция $K \cdot f(x)$ отличается от $K \cdot b$ на бесконечно малую величину, следовательно,

$$\lim_{x \to x_0} K \cdot f(x) = K \cdot b = K \cdot \lim_{x \to x_0} f(x).$$

3) Предел суммы двух функций равен сумме пределов этих функций, если они существуют.

Пусть

$$\lim_{x \to x_0} f(x) = b \quad \text{if } \lim_{x \to x_0} g(x) = c,$$

Тогда

$$f(x)=b+\alpha(x)$$
и $g(x)=c+\gamma(x)$,

где $\lim_{x\to x_0} \alpha(x) = 0$ и $\lim_{x\to x_0} \gamma(x) = 0$,

Рассмотрим

$$f(x)+g(x)=b+c+\alpha(x)+\gamma(x).$$

Но подчеркнутые члены – это бесконечно малая величина, и значит,

$$\lim_{x \to x_0} (f(x) + g(x)) = b + c = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x).$$

- 4) Предел произведения двух функций равен произведению их пределов, если они существуют (доказывается аналогично).
- 5) Предел отношения двух функций: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, если оба предела существуют и $\lim_{x \to x_0} g(x) \neq 0$.
- 6) Если $f(x) \le g(x)$ для всех x в некоторой окрестности точки x_0 , то $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.
- 7) Если $h(x) \le f(x) \le g(x)$ для всех x в некоторой окрестности точки x_0 и $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = b$, то $\lim_{x \to x_0} f(x) = b$ (принцип двух полицейских).