There exist a lot of different approaches for each of those tasks. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Use of a static code analysis tool can help detect some possible problems. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Scripting and breakpointing is also part of this process. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. There are many approaches to the Software development process. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Computer programmers are those who write computer software. There are many approaches to the Software development process. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Following a consistent programming style often helps readability. Trial-and-error/divide-and-conguer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Programmable devices have existed for centuries.