ДИСКРЕТНИ СТРУКТУРИ II ТЕОРИЯ II

КОНТЕКСТНО-СВОБОДНА ГРАМАТИКА

17. Контекстно-свободна граматика (КСГ).

КСГ наричаме наредената четворка $G = \langle \Sigma, V, S, R \rangle$, където

- Σ е крайно множество от терминални символи (азбука на граматиката);
- V е крайно множество от нетерминални символи (променливи) и $V \cap \Sigma = \emptyset$;
- $S \in V$ е начален нетерминал;
- $R \subseteq V \times (\Sigma \times V)^*$ е крайно множество от правила, които преобразуват нетерминален символ в последователност от други символи.
- 18. Релацията \Rightarrow_G за дадена контекстно-свободна граматика (КСГ) G.

Нека $G=\langle \Sigma,V,S,R \rangle$ е КСГ. За всело две думи $\alpha_1,\alpha_2 \in (\Sigma \cup V)^*$ ще казваме, че са в релацията \Rightarrow_G и ще бележим с $\alpha_1\Rightarrow_G\alpha_2$ тогава и само тогава, когато съществуват други две думи $\beta_1,\beta_2 \in (\Sigma,V)^*$ и нетерминал $T\in V$, за които е изпълнено $\alpha_1=\beta_1T\beta_2$, $\alpha_2=\beta_1\gamma\beta_2$ и $T\to\gamma$. Тоест от думата α_1 може да преобразуваме до думата α_2 чрез една стъпка (чрез прилагане точно веднъж на едно правило).

19. Релацията \Rightarrow_G^* за дадена контекстно-свободна граматика (КСГ) G.

Релацията \Rightarrow_G^* е рефлексивното и транзитивното затваряне на релацията \Rightarrow_G . Тоест, ако $\alpha_1 \Rightarrow_G^* \alpha_2$, то от думата α_1 може да отидем в думата α_2 чрез няколко (може и 0) стъпки.

20. Език на граматика.

Езикът на граматиката $G=\langle \Sigma,V,S,R\rangle$ е $\mathscr{L}(G)=\{\omega\in\Sigma^*\,|\,S\Rightarrow_G^*\omega\}$ или аналогично $\mathscr{L}(G)=\{\omega\in\Sigma^*\,|\,S\stackrel{l}{\Rightarrow}\omega,$ за някое $l\in\mathbb{N}_0\}.$

21. Кога една дума $\omega \in \Sigma^*$ се приема от КСГ $G = \langle \Sigma, V, S, R \rangle$.

Казваме, че $\omega\in\mathcal{Z}(G)$ тогава и само тогава, когато от началния символ S, за краен брой стъпки се извежда $\omega\colon S\stackrel{l}{\Rightarrow}_G\omega, l\in\mathbb{N}.$

22. Граматика в нормална форма на Чомски.

КСГ $G=\langle \Sigma, V, S, R \rangle$ е в нормална форма на Чомски (НФЧ), ако всеички правила R са от вида $A \to BC$ или $A \to a$. Казано с други думи, G не може да породи дума с дължина по-малка от 2.

Така дефинираната граматика няма да е способна да възпроизведе празната дума ε . Следователно констекстно-свободните езици, които съдържат тези думи не могат да се генерират от КСГ в НФЧ. Но това е единствената загуба, която идва с преминаването на дадена КСГ в НФЧ.

23. Теорема за КСГ в НФЧ.

За всяка КСГ G, съществува КСГ G_C в НФЧ, за която $\mathscr{L}(G_C)=\mathscr{L}(G)\backslash\{\varepsilon\}$. Освен това, консгтруирането на G_C може да се направи с полиномиална сложност по време по отношение на размера на G. Под размер на КСГ G разбираме дължината на думата образувана от конкатенацията на всички десни части на правилата R в G.

24. Лемата за разрастването на граматични дървета (лемата за разрастването x y z u v).

Нека $G = \langle \Sigma, V, S, R \rangle$ е КСГ с безкраен език $\mathcal{L}(G) = L$.

СЪЩЕСТВУВА естествено число n, такова че

ЗА ВСЯКА дума $\omega \in L$ с дължина $|\omega| \ge n$,

СЪЩЕСТВУВАТ думи x,y,z,u,v, за които $\omega=xyzuv,yu\neq\varepsilon,|yzu|\leq n$ и

ЗА ВСЯКО естествено число i, думата xy^izu^iv е от L.

CTEKOB ABTOMAT

25. (Недетерминиран) стеков автомат (Push-down automaton PDA).

НСА наричаме наредената седморка $P=\langle Q, \Sigma, \Gamma, \#, q_{\mathsf{start}}, q_{\mathsf{accept}}, \Delta \rangle$, където

- 1) Q е крайно множество от състояния;
- 2) Σ е крайна входна азбука;
- 3) Γ е крайна стекова азбука (тук няма изискване както при граматиките $\Sigma \cap \Gamma = \emptyset$);
- 4) # е специален символ за дъно на стека, # $\notin \Sigma \cup \Gamma$;
- 5) q_{start} е началното състояние на автомата;
- 6) $q_{\sf accept}$ е финалното състояние (единственото финално състояние не променя изразителната сила на стековия автомат);
- 7) Δ е релацията на преходите, която е подмножество на

Важни неща, които трябва да отбележим за сигнатурата на Δ : буквата за прочитане може да е буква от азбуката или празната буква, но задължително трябва да имаме буква в стека, която да прочетем, за да може да извършим преход.

 $\Gamma^{\leq 2} = \Gamma^0 \cup \Gamma^1 \cup \Gamma^2; \ \Gamma^0 = \{\varepsilon\}$ – изтрива върха на стека; $\Gamma^1 = \{a\}$ – заменя върха на стека; $\Gamma^2 = \{ab\}$ – добавя над върха на стека.

26. Релацията \vdash_P за стеков автомат P.

Елементите на $Q \times \Sigma^* \times \Gamma^*$ ще наричаме конфигурация на P, където $P = \langle Q, \Sigma, \Gamma, \#, q_{\mathsf{start}}, q_{\mathsf{accept}}, \Delta \rangle$. Нека (p, u, α) и (q, v, γ) са две конфигурации на P.

Дефинираме релацията ⊢_Р по следния начин:

 $(p,u,\alpha) \vdash_P (q,v,\gamma) \stackrel{\mathsf{def.}}{\Leftrightarrow} \exists \big((p,\alpha,\beta), (q,\delta) \big) \in \Delta$, такова че $u=a \cdot v$, $\alpha=\beta \cdot \eta$, $\gamma=\delta \cdot \eta$, за някое $\eta \in \Gamma^*$.

27. Релацията \vdash_P^* за стеков автомат P.

Релацията \vdash_P^* за стеков автомат P е рефлексивното (включително 0 стъпки) и транзитивното затваряне на релацията \vdash_P . Тази релация ни казва до каква конфигурация е доведен автомата след краен брой стъпки от дадена начална конфигурация.

28. Език на стеков автомат.

Език на стеков автомат $P = \langle Q, \Sigma, \Gamma, \#, q_{\mathsf{start}}, q_{\mathsf{accept}}, \Delta \rangle$ дефинираме по следния начин: $\mathcal{L}(P) = \{ \omega \in \Sigma^* \mid (q_{\mathsf{start}}, \omega, \#) \vdash_n^* (q_{\mathsf{accept}}, \varepsilon, \varepsilon) \}.$

29. Кога една дума се приема от стеков автомат.

Стековият автомат $P=\langle Q, \Sigma, \Gamma, \#, q_{\mathsf{start}}, q_{\mathsf{accept}}, \Delta \rangle$ приема думата $\omega \in \Sigma^*$, ако е изпълнено $(q_{\text{start}}, \omega, \#) \vdash_n^* (q_{\text{accept}}, \varepsilon, \varepsilon).$

30. Прост стеков автомат.

Казваме, че стековият автомат $P = \langle Q, \Sigma, \Gamma, \#, q_{\mathsf{start}}, q_{\mathsf{accept}}, \Delta \rangle$ е прост, ако за всяко правило $\big((q,a,\beta),(p,\gamma)\big)\in \Delta$, такова че $q\neq s$ е изпълнено, че $\beta\in \Gamma$ и $|\gamma|\leq 2.$

МАШИНА НА ТЮРИНГ

31. Машина на Тюринг (МТ).

МТ наричаме наредената петорка $M = \langle K, \Sigma, \delta, s, H \rangle$, където:

- K е крайно множество от състояния;
- Σ е азбука, която съдържа символ за празна клетка \sqcup и символ за ляв ограничител \triangleright , но не съдържа \leftarrow и \rightarrow ;
- $s \in K$ е началното състояние;
- $H \in K$ е множество от стоп състояния;
- δ е функцията на преходите: $(K \setminus H) \times \Sigma \to K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$, за която за всяко $q \in K \backslash H$:
 - ако $\delta(q, \triangleright) = (p, b)$, то $b = \rightarrow$;
 - $\forall a \in \Sigma$, ako $\delta(q, a) = (p, b)$, to $b \neg \triangleright$.
- 32. Кога една машина на Тюринг разпознава един език.

Езикът L се разпознава от машина на Тюринг $M=\langle K,\Sigma,\delta,s,H\rangle$ s $y,n\in H$, ако за y=yes, n=no

всяка дума $\omega \in \Sigma^*$ (азбука с допълнителен символ) е изпълнено:

- ako $\omega \in L$, to M приема ω . $(s, \triangleright \sqcup \omega)$ спира на приемаща конфигурацуя (такава с y);
- ако $\omega \notin L$, то M отхвърля ω . $(s, \triangleright \sqcup \omega)$ спира на отхвърляща конфигурацуя (такава с n);
- 33. Какво и в какво преобразува простата машина на Тюринг $R_{\rm II}$. $ho \omega_1 \sqcup \omega_2 \to_{R_{\sqcup}}
 ho \omega_1 \sqcup \omega_2 \sqcup \; ; \; \omega_1, \omega_2 \in (\Sigma \setminus \{ \, \, \triangleright \, , \, \sqcup \, \}) \, * \;$ - обхожда (сканира) лентата

надясно докато не намери символ за празната клетка.

- 34. Какво и в какво преобразува простата машина на Тютинг L_{\sqcup} $\rhd \ \omega_1 \sqcup \omega_2 \ \underline{\sqcup} \ \to_{L_{\sqcup}} \rhd \ \omega_1 \ \underline{\sqcup} \ \omega_2; \ \omega_1, \omega_2 \in \left(\Sigma \backslash \{\ \rhd\ , \sqcup\ \}\right) * \quad \text{- обхожда (сканира) лентата}$ наляво докато не намери символ за празната клетка.
- 35. Какво и в какво преобразува машината C на Тюринг (копиращата (сору) машина). $\sqcup \omega \sqcup \stackrel{\mathcal{C}}{\rightarrow} \sqcup \omega \sqcup \omega \sqcup , \omega \in (\Sigma \setminus \{ \triangleright, \sqcup \}) *.$

36. Какво и в какво преобразува машината S_{\rightarrow} на Тюринг.

$$\sqcup \omega \sqcup \xrightarrow{R} \sqcup \sqcup \omega \sqcup , \omega \in (\Sigma \setminus \{ \triangleright, \sqcup \}) *.$$

37. Какво и в какво преобразува D (delete) машината на Тюринг. Заменя непразните символи от лентата с празни (изтрива ги).

$$\triangleright R_{\sqcup}$$
 $a \neq \sqcup$

$$\triangleright R_{\square} = A \neq \square$$

$$\triangleright R_{\square} = A \neq \square$$

$$\triangleright R_{\square} = A \neq \square$$

$$\triangleright R \stackrel{\checkmark}{\sqcup} \stackrel{a}{\longrightarrow} \sqcup$$

- 38. Твърденията за разрешимите (рекурсивните) и полуразрешимите (рекурсивно номеруемите) езици:
 - всеки разрешим език е полуразрешим;
 - ако $L = \left(\Sigma\backslash\{\
 hd\ , \sqcup\ \}\right)*$ е разрешим език, то и допълненоието му \overline{L} е разрешим
 - съществува полуразрешим език, който не е разрешим.
- 39. Кога една функция $f: \Sigma^* oup \Sigma^*$ се изчислява с помощта на машина на Тюринг $M = \langle K, \Sigma, \delta, s, H \rangle, \Sigma ^* \subseteq \Sigma \setminus \{ \triangleright, \sqcup \}.$

Тогава, когато за всяка дума $\omega \in \Sigma^*$ са изпълнени условията:

- $(s, \triangleright \sqcup \omega) \vdash_{M}^{*} (h, \triangleright \sqcup y)$, sa $y \in \Sigma^{*} \Leftrightarrow f(\omega) = y$
- $f(\omega)$ е определена $\Leftrightarrow M$ спира работа върху $(s, \triangleright \sqcup \omega)$, тоест $M(\omega) = y$.
- 40. Кога една машина на Тюринг изчислява една функция $F:\mathbb{N}^k o \mathbb{N}$ на k променливи. Нека $F:\mathbb{N}^k op\mathbb{N}$. Казваме, че машината на Тюринг $M=\langle K,\Sigma,\delta,s,H\rangle$ изчислява фунцкията F точно тогава, когато са изпълнени следните условия:
 - $![F](n_1,\ldots,n_k)$ е дефинирана $\Leftrightarrow M(1^{n_1}\sqcup\ldots\sqcup 1^{n_k})\downarrow$ спира работа: $(s, \triangleright \underline{\sqcup} 1^{n_1} \sqcup \ldots \sqcup 1^{n_k}) \vdash_M^* (h, \triangleright \underline{\sqcup} 1^{f(n_1, \ldots, n_k)}).$
 - ако $F(n_1, \ldots, n_k) = m$, то $M(1^{n_1} \sqcup \ldots \sqcup 1^{n_k}) = 1^m$.
- 41. Теоремата за неразрешимите проблеми на машина на Тюринг свързани с:
 - празната дума
 - съществуването на вход
 - стоп-проблема
 - всеки вход
 - две машини на Тюринг
 - регулярните езици

Следните проблеми на машината на ТюрингM са неразрешими:

- определяне на това дали M спира на празната дума.
- определяне на това дали M спира върху поне един вход. Тоест дали съществува дума ω , за която $M(\omega) \downarrow$ спира.
- определяне на това дали M спира при вход ω .
- определяне на това дали M спира за всеки вход.
- определяне на това давли две машини на Тюринг M_1 и M_2 спират върху един и същ
- определяне на това дали $\mathscr{L}(M)$ е регулярен език.

ФОРМАЛИЗИРАНЕ НА ОПЕРАЦИИТЕ

42. Операцията минимизация.

Нека $f:\mathbb{N}^{n+1} o \mathbb{N}$. Казваме, че $g:\mathbb{N}^n o \mathbb{N}$ се получава от f с помощта на операцията

минимизация (μ -операция), ако за произволни x_1,\dots,x_n,y е изпълнена еквивалентността:

$$g(x_1, \dots, x_n) = y \Leftrightarrow f(x_1, \dots, x_n, y) = 0 \land \forall z < y : f(x_1, \dots, x_n, z)$$
 е дефинирана и $f(x_1, \dots, x_n, z) > 0$.

43. Операцията примитивна рекурсия.

Нека $f: \mathbb{N} \to \mathbb{N}$ и $g: \mathbb{N}^3 \to \mathbb{N}$. Казваме, че $h: \mathbb{N}^2 \to \mathbb{N}$ се определя с помощта на операцията примитивна рекирсия от f и g, ако за всяко $x,y \in \mathbb{N}$ е в сила:

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

44. Примитивно рекурсивна функция.

Индуктивна дефиниция:

- 1) Всички изходни ПРФ $\left(\{O,S,I_i^n\}\right)$ са ПРФ (винаги връщаща 0, инкрементираща с 1 (successor) и проектиращата функция).
- 2) Ако f,g_1,\dots,g_n са ПРФ, то и функцията h, която се получава от тях с помощта на операцията суперпозиция, също е ПРФ.
- 3) Ако f и g са ПРФ, то и функцията h, която се получава от f и g с помощта на операцията примитивна рекурсия, също е ПРФ.
- 45. Частично рекурсивна функция.

Индуктивна дефиниция:

- 1) Всички изходни ПРФ $\left(\{O,S,I_i^n\}\right)$ са ЧРФ (винаги връщаща 0, инкрементираща с 1 (successor) и проектиращата функция).
- 2) Ако f, g_1, \ldots, g_n са ЧРФ, то и функцията h, която се получава от тях с помощта на операцията суперпозиция, също е ЧРФ.
- 3) Ако f и g са ЧРФ, то и функцията h, която се получава от f и g с помощта на операцията примитивна рекурсия, също е ЧРФ.
- 4) Ако f е ЧРФ, то и g, която се получава от f с помощта на μ -операция (минимизация), също е ЧРФ.