# CERTIFIED DATA SCIENTIST

PEOPLE INFORMATION TECHNOLOGY PROGRAM Lecture 02

Muhammad Nabeel Ibrahim Khan NED University of Engineering and Technology

# **Agenda**

- Importance of Projects in the Data Science Journey
- Introduction to Datasets



## Why Projects Matter in Your Data Science

- Theoretical knowledge is important, but real learning happens when you apply that knowledge to projects.
- Projects provide tangible proof of skills for potential employers or clients.
- Projects expose you to real-world data problems, helping you build critical thinking and problem-solving skills.
- Projects allow you to experience the complete data science pipeline, from data collection to model deployment.

# Types of Projects to Work On

- Beginner Projects: Start with simple datasets (e.g., Iris dataset, Titanic dataset).
- Intermediate Projects: Work on real-world datasets involving significant data cleaning and feature engineering (e.g., Kaggle competitions).
- Advanced Projects: Build end-to-end projects that include deployment, automation, and monitoring (e.g., fraud detection system, recommendation engine).

#### What is a Dataset?

- A dataset is a collection of data. It can contain rows and columns, where:
  - Rows represent individual observations or records (e.g., a customer, a transaction, a plant species).
  - Columns represent attributes or features of those observations (e.g., name, age, height, species).
- Types of Datasets:
  - Structured Data: Organized in rows and columns, such as spreadsheets or CSV files (e.g., Iris dataset).
  - Unstructured Data: Unorganized in a predefined way, such as images, videos, and text (e.g., raw social media posts).

## **Example Dataset**



Iris Setosa

- Iris Dataset: Contains data about Iris flowers species.
- Data for each flower includes columns like: "Sepal Length", "Sepal Width", "Petal Length", "Petal Width" and "Species"





Iris Virginica

# **Example Dataset (Cont'd)**

- Iris dataset is considered beginner-friendly for several reasons:
  - The dataset contains only 150 instances, making it easy to **load** and **manipulate**.
  - There are only four features (sepal length, sepal width, petal length, and petal width), simplifying analysis and visualization.
  - The three species are relatively well-separated, making it easier to build accurate models.
  - The dataset is widely used and well-documented, with plenty of resources available online.
  - There are no missing values, eliminating the need for data cleaning or imputation.

# **Example Dataset (Cont'd)**

• Sample data in Iris dataset

| S. No. | sepal length<br>(cm) | sepal width (cm) | petal length<br>(cm) | petal width (cm) | species |
|--------|----------------------|------------------|----------------------|------------------|---------|
| 0      | 6.1                  | 3.0              | 4.9                  | 1.8              | 2       |
| 1      | 4.7                  | 3.2              | 1.3                  | 0.2              | 0       |
| 2      | 6.0                  | 2.9              | 4.5                  | 1.5              | 1       |
| 3      | 5.1                  | 3.8              | 1.6                  | 0.2              | 0       |
| 4      | 4.6                  | 3.4              | 1.4                  | 0.3              | 0       |

# **Group Activity – Brainstorming Project Ideas**



Think of a simple data science project.

- What problem does the model solve?
- How will the user interact with it?
- How will you deploy the model?