LEC014 Traveling Salesman Problem (TSP)

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Traveling Salesman Problem (TSP)

- A set of cities $V = \{1, 2, ..., n\}$
- A distance function (*metric*) $d: V \times V \rightarrow R_+$
 - Symmetry:

$$d(u,v) = d(v,u), \forall u, v \in V$$

Triangular inequality:

$$d(u, w) \le d(u, v) + d(v, w), \forall u, v, w \in V$$

Consider a complete graph

Objective: find a tour of minimum distance that visits each city exactly once and return to its starting point

Metric TSP

Hamiltonian Cycle

Metric TSP

Set cover og. Karp's 21 Problems Metric TSP

Metric TSP is NP-Hard!

7大数约的疑之一就

TSP

Lemma: For any instance I to the traveling salesman problem, the cost of optimal tour it at least the cost of the minimum spanning tree on I, i.e., $MST(I) \leq TSP(I)$

Proof: We assume instance I has $n \geq 2$ cities. Start with the optimal TSP tour of cost TSP(I). If your remove one edge from the tour (break the cycle), the result is a spanning tree ST(I) with a cost at most TSP(I). since the minimum spanning tree (MST) is the one with the minimum cost over all spanning trees, it follows that $MST(I) \leq TSP(I)$.

TSP Double-Tree Algorithm

Algorithm (Double-tree algorithm)

- 1. Compute the minimum spanning tree M on (V, d).
- 2. Double all edges of M and call the resulting graph D.
- 3. Find a walk W that uses each edge of D exactly once.
- 4. Shortcut W by skipping vertices that are re-visited to get a valid TSP tour T.

$$a \rightarrow d \rightarrow b \rightarrow d \rightarrow e \rightarrow d \rightarrow a \rightarrow c \rightarrow a$$

Find a Eulerian path (use DFS traversal)

$$a \rightarrow d \rightarrow b \rightarrow d \rightarrow e \rightarrow d \rightarrow a \rightarrow c \rightarrow a$$

Before shortcutting: $a \to d \to b \to d \to e \to d \to a \to c \to a$

After shortcutting: $a \rightarrow d \rightarrow b \rightarrow e \rightarrow c \rightarrow a$

Double Tree = 2-Approximation

Theorem: The double-tree algorithm for TSP is a 2-approximation algorithm.

Proof: Let OPT be the cost of the optimal TSP tour.

- The cost of the minimum spanning tree M is at most OPT.
- We then double each edge (replace it with two copies) of M and the cost of the resulting graph D is at most 2OPT. Also D is Eulerian by construction and a walk W of cost at most 2OPT.
- Let W be the sequence i_0, i_1, \ldots, i_k of cities where there may be repetitions. To get a tour T, we removing all but the first occurrence of each city in this sequence. This tour T contains each city exactly once (starts at i_0 and returns to i_0). We now show that the cost of T is at most that of W. Consider two consecutive cities in $T:i_\ell$ and i_m (we omitted $i_{\ell+1},\ldots,i_{m-1}$ since these cities were already visited earlier in T). It then follows from the triangle inequality (and induction) that the distance d_{i_ℓ,i_m} is upper bounded by the total distance of the edges $(i_\ell,i_{\ell+1}),\ldots,(i_{m-1},i_m)$ Adding up over all edges in T, the cost of T is at most the cost of W which is at most 2OPT.

A Better Approximation Algorithm?

Yes, the celebrated Christofides' algorithm for TSP

Matching: The input is a graph G = (U, E) with even number of vertices U and distance function $d: U \times U \to R_+$. The goal is to find edges $K \subseteq E$ such that each vertex has exactly one end-point in K with minimum cost $\sum_{e \in K} d(e)$

"Minimum-weight-perfect-matching" can be efficiently solved in O(nmlogn)

https://www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf

Christofides' algorithm

Algorithm: (Christofides' algorithm for TSP)

- 1. Compute the minimum spanning tree M on (V, d)
- 2. Compute the minimum cost matching K on odd degree vertices of M
- 3. Add the edges of K to M to obtain an Eulerian graph D'
- 4. Find a walk W' that uses each edge of D' exactly once.
- 5. Shortcut W' by skipping vertices that are re-visited to get a valid TSP tour T'

Find the set of odd degree vertices in M: $U = \{e, d, b, c\}$

Before shortcutting: $a \to d \to b \to d \to e \to c \to a$

After shortcutting: $a \rightarrow d \rightarrow b \rightarrow e \rightarrow c \rightarrow a$

1.5-Approximation

Lemma: The number of odd degree vertices in M is even.

Proof: Let $V_{\text{even}} \subset V$ and $V_{\text{odd}} \subset V$ be the subsets of even and odd degree vertcies in M, respectively

$$2|E| = \sum_{\vartheta \in V} \deg(\vartheta) = \sum_{\vartheta \in V_{odd}} \deg(\vartheta) + \underbrace{\sum_{\vartheta \in V_{even}} \deg(\vartheta)}_{\text{even}} = \text{even}$$

Hence $|V_{\text{odd}}|$ is even.

1.5-Approximation

Lemma: The minimum cost matching on any set U (even number of vertices) is at most $\frac{1}{2}OPT$, where OPT is the cost of the optimal TSP tour.

Proof: Consider the optimal TSP tour O and shortcut over all vertices not in U to obtain cycle O' containing vertices U. By triangle inequality, the cost of O' is at most that of O which is OPT. We define two candidate matchings on U using O'. By renumbering vertices let O' be the sequence $1, 2, \dots, |U|, 1$ of vertices. Let M_1 be the matching that pairs vertices as $(1, 2), (3, 4) \cdots (|U| - 1, |U|)$ and M_2 be $(|U|, 1), (2, 3) \cdots (|U| - 2, |U| - 1)$. Then $cost(M_1) + cost(M_2) = cost(O') \leq OPT$. So min $(cost(M_1), cost(M_2)) \leq OPT/2$.

1.5-Approximation

Theorem: Christofides' algorithm for TSP is a 3/2-approximation algorithm.

Proof: We know that the $Cost(MST) \leq OPT$, and that the min-cost matching has $Cost(K) \leq OPT/2$. So the cost of D' (and hence T') is at most $\frac{3}{2}OPT$.

Python Time

pip install Christofides

Use the compute() function which takes as input a distance_matrix and returns a Christofides solution as follows:

```
from Christofides import christofides

TSP = christofides.compute(distance_matrix)
```

The Distance Matrix is an upper Triangular matrix with distance from a node on to itself 0, since Christofides algorithm could only be applied for undirected graphs. Also the distance between a node on to itself is practically 0. Example for distance_matrix is as follows, distance_matrix =

```
[[0,45,65,15],
[0,0,56,12],
[0,0,0,89],
[0,0,0,0]]
```