สูตรการสั่งซื้อที่ประหยัดที่สุด

$$Q^* = \sqrt{2DC_o/C_b} \tag{1}$$

$$Q^* = \sqrt{2DC_o / C_h} \sqrt{(C_h + C_b) / C_h}$$
 (2)

$$TC_i = C_o + C_h + DC_i (3)$$

เมื่อ Q^* คือ ปริมาณการสั่งซื้อที่ประหยัดต่อครั้ง (Economic Order Quantity)

- Co คือ ต้นทุนการสั่งซื้อต่อครั้ง
- C_h คือ ต้นทุนการเก็บรักษาต่อครั้ง
- C_b คือ ต้นทุนการสั่งซื้อที่ค้างส่งต่อครั้ง
- D คือ ปริมาณวัสดุที่ต้องการใช้ต่อครั้ง
- TC คือ ต้นทุนรวม (total cost)
- C_i คือ ต้นทุนส่วนลดตามปริมาณการสั่งซื้อ

การสั่งซื้อที่ประหยัดที่สุด (Economic Order Quantity: EOQ) [4], [5] เป็นการสั่งซื้อวัสดุที่เหมาะสมคุ้มค่า เพื่อ ไม่ให้เกิด ต้นทุนจมจากการสต็อกวัสดุในคลังไม่ว่าจะเป็นการเคลื่อนย้าย การจัดเก็บ ต้นทุนเสื่อมสภาพ ฯลฯ ช่วย ให้รู้ว่าควรสั่งของมา ปริมาณมากเท่าไร โดยคำนวณจากความต้องการวัสดุ (demand) ก่อนที่จะนำเข้ามาสต็อกไว้ ดังสมการที่ (1) แต่บางทีก็ยอมให้วัสดุ ขาดแคลนตามแผนงานดังสมการที่ (2) และเมื่อซื้อวัสดุจำนวน มาก ทาง ฝ่ายจัดซื้อจะต่อรองให้ราคาต่อหน่วยของวัสดุลดลง ยิ่ง สั่งซื้อจำนวนมาก ราคาต่อหน่วยยิ่งลดลง มีผลทำให้ต้นทุน การ เก็บรักษาเปลี่ยนแปลงตามไปด้วยดังสมการที่ (3)

ตัวอย่างวิธีคำนวณ

สมมุติ

- ullet อุปสงค์ต่อปี D=12,000หน่วย/ปี
- ullet ต้นทุนสั่งชื้อ/ครั้ง $\mathcal{C}_o=300$ บาท/ครั้ง
- ullet ต้นทุนเก็บรักษา/หน่วย/ปี $\mathcal{C}_h=2$ บาท/หน่วย/ปี

- ullet ต้นทุนการขาดส่ง/หน่วย/ปี $\mathcal{C}_h=8$ บาท/หน่วย/ปี
- ullet ราคาต่อหน่วย (ช่วงส่วนลดที่ i) $C_i=50$ บาท/หน่วย ightarrow ใช้หาค่าซื้อทั้งปี DC_i
- 1) กรณีพื้นฐาน (ไม่มีขาดส่ง)

สูตร (1)

1) กรณีพื้นฐาน (ไม่มีขาดส่ง)

สตร (1) ในภาพ

$$Q^* = \sqrt{rac{2DC_o}{C_h}}$$

แทนค่า

$$Q^* = \sqrt{rac{2(12,000)(300)}{2}} = \sqrt{3,600,000} = \mathbf{1,897.37}$$
 หน่วย

ต้นทุนรายปีที่จุด Q^* (สั่งซื้อ = เก็บรักษา)

$$ullet$$
 คำสั่งชื้อ/ปี $=rac{D}{Q^*}C_opproxrac{12,000}{1,897.37} imes300pprox1,897.37$ บาท คำเก็บรักษา/ปี $=rac{Q^*}{2}C_hpproxrac{1,897.37}{2} imes2pprox2 imes1,897.37$ บาท คำสินคำทั้งปี $=DC_i=12,000 imes50=600,000$ บาท

$$ullet$$
 ค่าเก็บรักษา/ปี $=rac{Q^*}{2}C_hpproxrac{1,897.37}{2} imes2pprox2pprox1,897.37$ บาท

$$ullet$$
 ค่าสินค้าทั้งปี $=DC_i=12{,}000 imes50={f 600{,}000}$ บาท

ดังนั้น

$$TC = 1.897.37 + 1.897.37 + 600.000 = 603.794.74$$
 บาท/ปี

2) กรณี "มีการยอมให้ขาดส่ง" (มี C_b)

สูตร (2) ในภาพ (EOQ เมื่อมี backorder)

$$Q^* = \sqrt{rac{2DC_o}{C_h} \cdot rac{C_h + C_b}{C_h}}$$

แทนค่า

$$Q^*=\sqrt{rac{2(12,000)(300)}{2}\cdotrac{2+8}{8}}=\sqrt{3,\!600,\!000 imes1.25}=\sqrt{4,\!500,\!000}= extbf{2,121.32}$$
 หน่วย

ขนาด "ยอดค้างส่งสูงสุด" ที่เหมาะสม (เผื่ออ่านเสริม)

$$S^* = rac{C_h}{C_b + C_b}\,Q^* = rac{2}{10} imes 2{,}121.32 = \mathbf{424.26}$$
 หน่วย

ดังนั้น ยอดคงคลังสูงสุด ต่อรอบ = $Q^*-S^*=2{,}121.32-424.26=\mathbf{1,}\mathbf{697.06}$ หน่วย

คำนวณต้นทุนรายปีรายองค์ประกอบ

• ค่าสั่งซื้อ/ปี

$$C_o$$
(ต่อปี) $=rac{D}{Q^*}C_o=rac{12{,}000}{2{,}121{,}32} imes300=$ 1,697.06 บาท

• ค่าเก็บรักษา/ปี (เมื่อมี backorder): ค่าเฉลี่ยคงคลังต่อรอบ = $\dfrac{(Q^*-S^*)^2}{2Q^*}$

$$\Rightarrow C_h$$
(ถือครอง/ปี) $=C_h\cdotrac{(Q^*-S^*)^2}{2Q^*}=2\cdotrac{1,697.06^2}{2 imes2,121.32}=$ **1,357.65** บาท

• ค่าขาดส่ง/ปี: ค่าเฉลี่ย backorder ต่อรอบ = $rac{(S^*)^2}{2Q^*}$

$$C_b$$
(ขาดส่ง $/$ ปี $)=C_b\cdot rac{(S^*)^2}{2Q^*}=8\cdot rac{424.26^2}{2 imes 2,121.32}=$ $f 339.41$ บาท

ullet ค่าสินค้าทั้งปี $=DC_i=600{,}000$ บาท

สรุปดันทุนรวมต่อปี (ตามสูตร (3) ในภาพ ที่เขียนย่อว่า $TC_i=C_o+C_h+DC_i$ โดย C_h ที่นี่รวม "ถือครอง + ขาด ส่ง")

สมการ	เงื่อนไข	จุดประสงค์	ปัจจัยที่พิจารณา
(1)	ปกติ ไม่มีขาดส่ง	หา Q* ที่ทำให้ต้นทุนรวมต่ำที่สุด	(C _o , C _h)
(2)	ยอมให้ขาดส่งได้	ปรับ Q* โดยพิจารณาต้นทุนขาดส่ง	(C_o, C_h, C_b)
(3)	มีส่วนลดราคา	คำนวณต้นทุนรวมเมื่อราคาต่อหน่วยลดลง	(C _o , C _h , D, C _i)

จาก https://ph01.tci-thaijo.org/index.php/TNUournal/article/view/251798 แบบจำลองปริมาณการ สั่งซื้อเหล็กเส้นที่ประหยัดสำหรับโครงการก่อสร้าง ณรงค์ฤทธิ์ ว่องไว, ฐิติพร แจ่มจรัส, ศุภวุฒิ มาลัยกฤษณะชลี

ลำดับ	ชนิดสินค้า	ปริมาณ ความ ต้องการ ต่อเดือน	H ต้นทุน การเก็บ รักษา (บาท/ หน่วย/ปี)	S ต้นทุน การ สั่งซื้อ (บาท/ ครั้ง)	จำนวน ครั้งการ สั่งซื้อ (ครั้ง/ปี)	ปริมาณ การสั่งซื้อ (หน่วย/ ครั้ง)	ซื้อจริง (หน่วย/ ครั้ง)	หน่วย
1	น้ำมันเครื่อง 15W-40 (1 ลิตร)	140	20.9	180	9.9	170	171	ขวด
2	กรองอากาศ เครื่องตัดหญ้า	80	9.9	180	5.1	187	190	ขึ้น
3	หัวเทียนเบอร์ CMR7H	65	16.5	180	6.0	130	131	ตัว
4	ใบมีดรถตัด หญ้า 12"	40	26.4	180	5.9	81	82	ใบ
5	สายพาน A- 35	55	24.2	180	6.7	99	100	เส้น
6	ลูกปืน 6203Z	120	8.36	180	5.8	249	250	ลูก
7	ปะเก็นชุด เครื่องสูบน้ำ	35	35.2	180	6.4	66	70	ଅଦ
8	เชือกสตาร์ท (เมตร)	90	2.64	180	2.8	384	385	เมตร
9	กรองน้ำมัน เชื้อเพลิงเล็ก	70	6.6	180	3.9	214	215	ชิ้น

10	คาร์บูเรเตอร์	18	92.4	180	7.5	29	30	ଅ୍ ନ
	ชุดเล็ก							

จากสูตร

$$EOQ = \sqrt{\frac{2DS}{H}}$$

โดยที่

D= ความต้องการต่อปี = (ปริมาณต่อเดือน imes 12)

S= ต้นทุนการสั่งซื้อแต่ละครั้ง

H= ต้นทุนการเก็บรักษาต่อหน่วยต่อปี

ตัวอย่างน้ำมันเครื่อง

ความต้องการเฉลี่ย/เดือน = 140หน่วย

ดังนั้น ความต้องการต่อปี D=140 imes12=1,680หน่วย/ปี

ต้นทุนการสั่งซื้อ/ครั้ง S=180บาท/ครั้ง

ราคาทุนต่อหน่วย C=95บาท ightarrow กำหนด **อัตราถือครอง/ปี** h=0.22

จึงได้ ต้นทุนการถือครอง/หน่วย/ปี H=h imes C=0.22 imes 95=20.9บาท/หน่วย/ปี

กำหนด Lead time = 7 วัน (ใช้หา ROP)

วิธีคำนวณ

1) คำนวณ EOQ

$$EOQ = \sqrt{\frac{2DS}{H}} = \sqrt{\frac{2(1,680)(180)}{20.9}} = \sqrt{\frac{604,800}{20.9}} = \sqrt{28,939.712} = 170.1$$

ดึงนั้น EOQ ≈ 170 หน่วย/ครั้ง (ปัดเป็น 171 หน่วย/ครั้ง สำหรับสั่งจริง)

2) จำนวนครั้งสั่งซื้อ/ปี

ครั้ง/ปี
$$=\frac{D}{EOQ}=\frac{1,680}{170.1}=9.88$$
 ครั้ง/ปี

3) รอบการสั่งซื้อ (วัน/ครั้ง)

รอบสั่งซื้อ =
$$\frac{365}{9.88}$$
 = $36.9 \approx 37$ วัน/ครั้ง

4) จุดสั่งซื้อ (ROP)

อุปสงค์ต่อวัน
$$=\frac{1,680}{365}=4.60$$
 หน่อย/วัน

$$ROP = 4.60 \times 7 = 32.2$$
 ปัดเป็น 33 หน่วย

การเปรียบเทียบต้นทุนก่อน และหลังการน ากระบวนการหาปริมาณการสั่งซื้อที่เหมาะสม (EOQ)

	ต้นทุนในการ	ต้นทุนในการสั่ง	ต้นทุนรวมทั้งหมด	ต้นทุนรวมทั้งหมด
	จัดเก็บ (บาท/ปี)	ซื้อ (บาท/ปี)	(บาท/ปี)	(บาท/ปี)
วิธีปัจจุบัน	5887.75	21600.0	27487.75	120.00
วิธี EOQ	10793.22	10793.22	21586.43	59.96
ลดลง	-4905.47	10806.78	5901.32	60.04

สรุปตัวเลขรวมทั้งปี

• วิธีปัจจุบัน

o ต้นทุนในการจัดเก็บ: **5,887.75 บาท/ปี**

ต้นทุนในการสั่งซื้อ: 21,600.00 บาท/ปี

o ต้นทุนรวมทั้งหมด: 27,487.75 บาท/ปี

o จำนวนในการสั่งซื้อ: **120 ครั้ง/ปี** (เดือนละ 1 ครั้ง/รายการ)

• วิธี EOQ

o ต้นทุนในการจัดเก็บ: **10,793.22 บาท/ปี**

o ต้นทุนในการสั่งซื้อ: **10,793.22 บาท/ป**ี

o ต้นทุนรวมทั้งหมด: 21,586.43 บาท/ปี

จำนวนในการสั่งซื้อ (รวมทุกสินค้า): ≈ 59.96 ครั้ง/ปี

• ลดลง (ประหยัดได้)

o ต้นทุนรวมลดลง: ≈ **5,901.32 บาท/ปี**

จำนวนครั้งสั่งซื้อลดลง: ≈ 60 ครั้ง/ปี

คอลัมน์	ความหมาย
ชนิดสินค้า	ชื่อสินค้าหรืออะไหล่ที่ใช้ในระบบ (เช่น น้ำมันเครื่อง, หัวเทียน, ใบมีด ฯลฯ)
ปริมาณความต้องการ	ปริมาณเฉลี่ยที่ขายหรือใช้ในแต่ละเดือน (จากข้อมูลขายหรือเบิกคลัง)
ต่อเดือน	
Н	ต้นทุนการเก็บรักษาต่อหน่วยต่อปี (บาท/หน่วย/ปี) คำนวณจาก H = h × ราคา
	ทุน/หน่วย เช่น 0.22 × 95 = 20.9
S	ต้นทุนการสั่งซื้อแต่ละครั้ง (บาท/ครั้ง) เช่น ค่าขนส่ง ค่าดำเนินการ — อาจใช้ 180
	บาท/ครั้ง เท่ากันทุกสินค้า
จำนวนครั้งการสั่งซื้อ	คำนวณจาก D ÷ EOQ
(ครั้ง/ปี)	
ปริมาณการสั่งซื้อ	ค่าที่ได้จากสูตร EOQ = √(2DS/H)
(หน่วย/ครั้ง)	
ซื้อจริง (หน่วย/ครั้ง)	ปัดขึ้นให้เป็นจำนวนเต็ม เช่น จาก 170.1 → 171
หน่วย	หน่วยนับสินค้านั้น ๆ (เช่น ขวด, ตัว, ใบ, ชุด, เมตร ฯลฯ)

การคำนวณหรือต้นทุนต่อพื้นที่ ทางคณะผู้วิจัย ได้ทำการเก็บข้อมูลค่าใช้จ่าย ต่างๆ ของร้านที่มีการ
บันทึกเอาไว้ ประกอบไปด้วย ค่าจ้างพนักงาน ซึ่งคือเจ้าของร้านเอง แต่โดยปกติทาง ร้านไม่ได้จ่าย
เงินเดือนให้พนักงานส่วนนี้ เนื่องจาก เป็นกิจการของครอบครัว ค่าไฟฟ้า ค่าน้ำ รวมทั้งสิ้น 375,863 บาท
ตารางค่าใช้จ่ายในการจัดเก็บ

เดือน	ค่าไฟ(บาท)	ค่าน้ำ(บาท)	ค่าจ้าง(บาท)	รวม(บาท)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
รวม	•	•		

ค่าสร้างร้านรวมที่ดิน = 1,026,000 บาท
อายุการใช้งาน 20 ปี = 1,026,000 / 20
ค่าสร้างร้านเฉลี่ย = 51,300 บาท/ปี
รวมค่าใช้จ่ายในการจัดเก็บ = 375,863 + 51,300
บาท/ปี = 427,163 บาท/ปี
เฉลี่ยค่าใช้จ่ายในการจัดเก็บ = 35,596.92 บาท/เดือน
ขนาดของร้าน = กว้าง × ยาว = 135 ตารางเมตร
ค่าใช้จ่ายในการจัดเก็บ = 35,596.92 / 135 = 263.68 บาท/ตร.ม.

ตารางที่ 1 แสดงคำใช้จ่ายในการจัดเก็บ

เดือน	ค่าไฟ (บาท)	ค่าน้ำ (บาท)	ค่าจ้าง (บาท)	รวม (บาท)
1	13,258	132	20,000	33,390
2	11,214	98	20,000	31,312
3	10,857	106	20,000	30,963
4	13,873	143	20,000	34,016
5	10,065	87	20,000	30,152
6	9,836	74	20,000	29,910
7	10,483	82	20,000	30,565
8	10,132	91	20,000	30,223
9	9,987	78	20,000	30,065
10	10,214	93	20,000	30,307
11	10,563	102	20,000	30,665
12	14,168	127	20,000	34,295
	1	וגנו		375,863

เมื่อนำรายการสินค้าที่อยู่ในกลุ่ม A มา คำนวณต้นทุนในการจัดเก็บสินค้า ต่อ 1 ตารางเมตร

จะสามารถหาค่าใช้จ่ายในการจัดเก็บของสินค้าแต่ละ ชนิดได้

จาก https://so04.tci-thaijo.org/index.php/stou-sms-pr/article/view/249256/175488 หน้าที่ 137,140,141

EOQ (Economic Order Quantity) =

"ปริมาณการสั่งซื้อที่เหมาะสมที่สุดต่อครั้ง" ที่ทำให้ ต้นทุนรวมของระบบสินค้าคงคลังต่ำที่สุด
โดยต้นทุนรวมประกอบด้วย 2 ส่วนหลักคือ

- 1. ต้นทุนการสั่งซื้อ (Ordering Cost)
 - → คือต้นทุนที่เกิดขึ้นทุกครั้งที่มีการสั่งของ เช่น ค่าขนส่ง, ค่าพนักงานจัดซื้อ, ค่าเอกสาร
- 2. ต้นทุนการเก็บรักษา (Holding/Carrying Cost)
 - → คือต้นทุนที่เกิดจากการเก็บของไว้ในสต็อก เช่น
 ค่าเช่าพื้นที่, ดอกเบี้ยเงินทุน, ค่าประกันภัย, การสูญเสียหรือเสื่อมสภาพ
- เมื่อสั่งของ ครั้งละมากเกินไป → ต้นทุนเก็บรักษาสูง
 ดังนั้น EOQ คือจุดสมดุลระหว่างสองต้นทุนนี้

สูตรต้นทุนรวม (Total Cost: TC) ใช้คำนวณต้นทุนรวมทั้งหมดต่อปี

$$TC = \frac{D}{Q}S + \frac{Q}{2}H + DC$$

โดยที่

TC ต้นทุนรวมต่อปี (Total Cost per Year)

- D ปริมาณความต้องการใช้ต่อปี (หน่วย/ปี)
- Q ปริมาณการสั่งซื้อแต่ละครั้ง (หน่วย/ครั้ง)
- S ต้นทุนการสั่งซื้อแต่ละครั้ง (บาท/ครั้ง)
- H ต้นทุนการเก็บรักษาต่อหน่วยต่อปี (บาท/หน่วย/ปี)
- C ราคาต่อหน่วยของสินค้า (บาท/หน่วย)
- DC มูลค่าสินค้าที่ซื้อทั้งหมดต่อปี (เป็นต้นทุนสินค้าทั้งปี)

ตัวอย่างการคำนวณ

สมมติว่า:

ความต้องการใช้สินค้า (D) = 12,000 หน่วย/ปี

ต้นทุนการสั่งซื้อ (S) = 300 บาท/ครั้ง

ต้นทุนการเก็บรักษา (H) = 2 บาท/หน่วย/ปี

ราคาสินค้าต่อหน่วย (C) = 50 บาท

ขั้นตอนที่ 1 : คำนวณ EOQ ก่อน

$$EOQ = \sqrt{\frac{2DS}{H}} = \frac{\sqrt{2(12,000)(300)}}{2} = 1,897$$
 หน่วย

ขั้นตอนที่ 2 : คำนวณต้นทุนรวม (TC)

$$TC = \frac{D}{O}S + \frac{Q}{2}H + DC$$

แทนค่า

$$TC = \frac{12,000}{1,897}(300) + \frac{1,897}{2}(2) + (12,000)(50)$$

$$TC = (1,896.9) + (1,897) + (600,000)$$

$$TC = 603,793.9$$

TC = 603,793.9 บาท/ปี

ดังนั้น ต้นทุนรวมที่ต่ำที่สุด (Total Cost) = ≈ 603,794 บาท/ปี

ประเภทต้นทุน	ค่าประมาณ (บาท/ปี)	สัดส่วน
ต้นทุนการสั่งซื้อ	1,897	0.3%
ต้นทุนการเก็บรักษา	1,897	0.3%
มูลค่าสินค้า (DC)	600,000	99.4%
รวมทั้งหมด (TC)	603,794	100%

- เมื่อสั่งซื้อในปริมาณ EOQ (1,897 หน่วย) → TC จะ "ต่ำที่สุด"
- \circ ถ้าสั่ง น้อยกว่า EOQ \rightarrow สั่งบ่อย ต้นทุนสั่งซื้อจะสูง
- \circ ถ้าสั่ง มากกว่า EOQ \rightarrow เก็บของเยอะ ต้นทุนถือครองจะสูง
- \circ ที่ EOQ พอดี ightarrow ต้นทุนสองส่วนนี้สมดุลกัน
- O จุดที่ TC ต่ำที่สุด คือจุดที่ต้นทุนสั่งซื้อ = ต้นทุนเก็บรักษ

จุดสั่งซื้อซ้ำ (Reorder Point: ROP) = ระดับสต็อกที่เมื่อถึงแล้วเราต้องสั่งของทันที เพื่อให้ของใหม่มาทันช่วง เวลาเดินทาง (Lead time, L) โดยไม่ขาดสต็อก

สูตรหลัก (เลือกใช้ให้ตรงสถานการณ์)

1. กรณีพื้นฐาน (ไม่มี Safety Stock, ความต้องการคงที่)

$$ROP = d imes L$$

- d = อัตราการใช้เฉลี่ยต่อวัน (หน่วย/วัน) = D/จำนวนวันทำการต่อปี
- L = Lead time (วัน)
- 2. กรณีมี Safety Stock (ต้องการระดับบริการตาม z-score)

$$ROP = d \times L + ext{Safety Stock}$$

โดย

Safety Stock =
$$z \times \sigma_{dL}$$

- 3. การหาค่า σ_{dL} (ความไม่แน่นอนช่วง Lead time)
- ถ้า ความต้องการแปรผัน แต่ Lead time คงที่

$$\sigma_{dL} = \sqrt{L}\,\sigma_d$$

• ถ้า ทั้งความต้องการและ Lead time แปรผัน

$$\sigma_{dL} = \sqrt{\,L\,\sigma_d^2\,+\,d^2\,\sigma_L^2}$$

 $(\sigma_d$ =ส่วนเบี่ยงเบนมาตรฐานของความต้องการ/วัน, σ_L =ส่วนเบี่ยงเบนของ Lead time (วัน))

ตัวอย่างคำนวณ

- ullet ความต้องการทั้งปี $D=12{,}000$ หน่วย/ปี
- ใช้ 365 วัน (หรือเปลี่ยนเป็น "วันทำการจริง" ในงานจริง)
- ullet Lead time L=7 วัน

คำนวณอัตราใช้เฉลี่ย/วัน:

$$d=rac{12,000}{365}=32.88$$
 หน่วย $/$ วัน

กรณี A: ไม่เผื่อ Safety Stock

$$ROP = dL = 32.88 imes 7 = 230.16 pprox 230$$
 หน่วย

กรณี B: เผื่อ Safety Stock (ต้องการบริการ 95% \Rightarrow z=1.65)

ให้ความต้องการแปรผัน $\sigma_d=8$ หน่วย/วัน และ Lead time คงที่

$$\sigma_{dL} = \sqrt{7} \times 8 = 21.17$$

Safety Stock =
$$1.65 \times 21.17 \approx 34.9 \approx 35$$

$$ROP = 230 + 35 = 265$$
 หน่วย

กรณี C: เผื่อ Safety Stock และ Lead time ก็แปรผัน

สมมติ
$$\sigma_L=2$$
 วัน (ยังคง $z=1.65,~\sigma_d=8$)
$$\sigma_{dL}=\sqrt{7\cdot 8^2+32.88^2\cdot 2^2}=\sqrt{448+4324.4}=\sqrt{4772.4}=69.08$$
 Safety Stock $=1.65\times 69.08\approx 115$ $\boxed{ROP=230+115=345}$ หน่วย

- ใช้ วันทำการจริง (เช่น 300 วัน/ปี) แทน 365 ถ้าร้าน/โรงงานไม่ได้เปิดทุกวัน
- อัปเดต $d,\;\sigma_d,\;L,\;\sigma_L$ เป็นระยะๆ เพื่อให้ ROP สะท้อนพฤติกรรมล่าสุด
- ตั้ง Trigger ให้ระบบแจ้งเตือนเมื่อสต็อก ≤ ROP
- ถ้าทำ EOQ ไว้อยู่แล้ว: สั่งครั้งละ Q^st ทุกครั้งที่สต็อกลงถึง ROP

ต้นทุนขาย (Cost of Goods Sold: COGS)

COGS คือ "มูลค่าต้นทุนของสินค้าที่ขายออกไปในช่วงระยะเวลาหนึ่ง" COGS ใช้ในงบกำไรขาดทุน เพื่อคำนวณกำไรขั้นต้น (Gross Profit):

สูตรมาตรฐานการคำนวณ COGS

COGS =สินค้าคงเหลือต้นงวด + สินค้าที่ซื้อหรือผลิตเพิ่มระหว่างงวด - สินค้าคงเหลือปลายงวด

ตัวอย่างการคำนวณ

รายการ	จำนวนเงิน (บาท)
สินค้าคงเหลือต้นงวด	80,000
ซื้อสินค้าเพิ่มระหว่างงวด	250,000
สินค้าคงเหลือปลายงวด	70,000

แทนค่า

COGS=80,000+250,000-70,000

COGS=330,000-70,000=260,000 บาท

องค์ประกอบ	อธิบาย
สินค้าคงเหลือต้นงวด	ของที่เหลือจากงวดก่อน
สินค้าที่ซื้อหรือผลิตเพิ่ม	ของใหม่ที่เข้าคลังในงวดนี้
สินค้าคงเหลือปลายงวด	ของที่ยังไม่ถูกขายออก
COGS	ของที่ขายออกไปจริงในงวดนี้

ต้นทุนถัวเฉลี่ย (Average Cost Method)

คือ "วิธีการหาต้นทุนต่อหน่วยโดยเฉลี่ยของสินค้าที่มีอยู่ทั้งหมดในคลัง" **สูตรคำนวณต้นทุนต่อหน่วยเฉลี่ย**

COGS=จำนวนสินค้าที่ขาย×ต้นทุนต่อหน่วยเฉลี่ย
สินค้าคงเหลือปลายงวด=จำนวนสินค้าที่เหลืออยู่×ต้นทุนต่อหน่วยเฉลี่ย

ตัวอย่างการคำนวณ

รายการ	จำนวน (หน่วย)	ราคาต่อหน่วย (บาท)	มูลค่า (บาท)
สินค้าคงเหลือต้นงวด	100	50	5,000
ซื้อเพิ่มระหว่างงวด	200	60	12,000
รวมทั้งหมดก่อนขาย	300	-	17,000

ขั้นตอนที่ 1: คำนวณต้นทุนต่อหน่วยเฉลี่ย

ต้นทุนเฉลี่ยต่อหน่วย =
$$\frac{5,000+12,000}{100+200}=\frac{17,000}{300}=56.67$$
บาท/หน่วย

ขั้นตอนที่ 2: คำนวณต้นทุนขาย (COGS)

สมมติขายสินค้าออกไป 180 หน่วย

$$COGS = 180 \times 56.67 = 10,200.6$$
 บาท

ขั้นตอนที่ 3: คำนวณสินค้าคงเหลือปลายงวด

สินค้าคงเหลือ = 300 - 180 = 120 หน่วย

สินค้าคงเหลือปลายงวด =
$$120 \times 56.67 = 6,800.4$$

รายการ	จำนวน (หน่วย)	มูลค่า (บาท)
ต้นทุนต่อหน่วยเฉลี่ย	-	56.67
ต้นทุนขาย (COGS)	180	10,200.6
สินค้าคงเหลือปลายงวด	120	6,800.4
รวม	300	17,001