

CE-ATA Embedded Cable and Connector Specification

Révision 1.0 23-August-2005

Apple Computer Corporation
Hitachi Global Storage Technologies Corporation
Intel Corporation
Marvell Semiconductor Corporation
Nokia Corporation
Seagate Technology LLC
Toshiba America Information Systems Corporation

This 1.0 revision of the CE-ATA Embedded Cable and Connector specification ("Final Specification") is available for download at www.ce-ata.org.

SPECIFICATION DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMNETATION OF INFORMATION IN THIS SPECIFICATION. THE AUTHORS DO NOT WARRANT OR REPRESENT THAT SUCH USE WILL NOT INFRINGE SUCH RIGHTS. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Copyright 2004-2005, Apple Computer Corporation, Hitachi Global Storage Technologies Corporation, Intel Corporation, Marvell Semiconductor Corporation, Nokia Corporation, Seagate Technology LLC, Toshiba America Information Systems Corporation. All rights reserved.

For more information about CE-ATA, refer to the CE-ATA Workgroup website at www.ce-ata.org.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

CE-ATA Workgroup Cable and Connector Technical Editor:

Frank Chu Hitachi Global Storage Technologies 650 Harry Road San Jose, CA 95120 USA Tel: (408) 323-7221

Email: Frank.Chu@Hitachigst.com

Table of Contents

1 Introduction	4
1.1 Overview	
1.2 Objectives	4
1.3 References	
1.4 Definitions, abbreviations, and conventions	
1.4.1 Definitions and Abbreviations	
1.4.2 Conventions	
1.4.3 Precedence	
1.4.4 Keywords	
1.4.5 Dimensions	
2 General description	
2.1 CE-ATA Embedded Cable and Connector	
2.2 CE-ATA Embedded Cable and Connector Pin Assignment	
2.3 CE-ATA Embedded Cable and Connector Signal Name Definitions	
2.4 CE-ATA Embedded Cable Mating Interface	
2.5 CE-ATA Connector orientation	
2.6 CE-ATA Connector Location	
2.6.1 1" CE-ATA Device	
2.6.2 30mm x 40mm CE-ATA device	
2.6.3 1.8" CE-ATA Device	
3 CE-ATA Connector Requirements and Test Procedures	
3.1 Electrical Requirements and Test Procedure	
3.2 Mechanical Requirements and Test Procedures	15
Table of figures	
Figure 1 CE-ATA Embedded Cable and Connector Examples	
Figure 2 FFC/FPC mating interface	10
Figure 3 CE-ATA Device Connector	
Figure 4 CE-ATA Connector Location for 1" Devices	
Figure 5 CE-ATA Connector Location for 30mm x 40mm Devices	
Figure 6 CE-ATA Connector Location for 1.8" Device	14
Table of tables	
Table of tables	
Table 1 CE-ATA Embedded Pin Assignment, x4 data lines	9
Table 2 CE-ATA Embedded Pin Assignment, x8 data lines (TBD)	9
Table 3 CE-ATA Embedded pin definition	10
Table 4 Housing and contact electrical parameters, test procedures, and requirements	
Table 5 Mechanical test procedures, and requirements	15

CE-ATA Embedded Cable and Connector Specification

1 Introduction

This is a CE-ATA embedded cable and connector addendum specification.

This specification defines the CE-ATA embedded cable and connector requirements for x4 data lines and x8 data lines.

1.1 Overview

The CE-ATA embedded connector and cable shall support either x4 data lines or x8 data lines. The maximum clock rate is 52 MHz. Two separate power lines deliver the supply voltage and the interface voltage reference.

This specification defines the following:

- · Connector and cable mating interfaces
- Electrical, mechanical and reliability requirements of the connector
- Connector testing procedures

1.2 Objectives

- Solution is cost competitive for consumer electronics applications
- Minimal electrical discontinuity at connectors
- Low profile solution, fitting for 1.8", 1" and sub 1" hard disk drives (HDD's) and other storage devices

1.3 References

This specification makes reference to the following specifications:

MMC System Specification v 4.1 available to MMCA members under NDA. The CE-ATA specification builds on the MMC specification. Refer to MMCA for IP terms for MMC material.

MMC Systems Summary Specification v 3.31 available at http://www.mmca.org/tech/MMC-system-Summary-v3.31.pdf

CE-ATA Digital Protocol Specification, rev 1.0 available at http://ce-ata.org/docs/ceata 1 00 gold.pdf

1.4 Definitions, abbreviations, and conventions

1.4.1 Definitions and Abbreviations

The terminology used in this specification is intended to be self-sufficient and does not rely on meanings defined in other specifications. Terms with specific meaning not directly clear from the context are clarified in the following sections.

1.4.1.1 ATA (AT Attachment)

ATA defines the physical, electrical, transport, and command protocols for the internal attachment of storage devices as defined in the ATA reference.

1.4.1.2 CE

CE is the acronym used for "Consumer Electronics" and commonly refers to consumer and handheld electronic devices.

1.4.1.3 DATx

DATx refers to an MMC data line, where 'x' signifies a particular data line (0 through 7). An MMC design may support one, four, or eight data lines. See the MMC reference.

1.4.2 Conventions

The names of abbreviations, ATA commands, fields, and acronyms used as signal names are in all uppercase (e.g., IDENTIFY DEVICE). MMC commands are in uppercase with underscores between words (e.g., RW_MULTIPLE_BLOCK). Fields containing only one bit are usually referred to as the "name" bit instead of the "name" field.

Names of device registers begin with a capital letter (e.g., LBA Low register).

1.4.3 Precedence

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures, and then text.

1.4.4 Keywords

Several keywords are used to differentiate between different levels of requirements.

1.4.4.1 mandatory

A keyword indicating items to be implemented as defined by this specification.

1.4.4.2 may

A keyword that indicates flexibility of choice with no implied preference.

1.4.4.3 optional

A keyword that describes features that are not required by this specification. However, if any optional feature defined by the specification is implemented, the feature shall be implemented in the way defined by the specification.

1.4.4.4 reserved

A keyword indicating reserved bits, bytes, words, fields, and code values that are set-aside for future standardization. Their use and interpretation may be specified by future extensions to this or other specifications. A reserved bit, byte, word, or field shall be cleared to zero, or in accordance with a future extension to this specification. The recipient shall not check reserved bits, bytes, words, or fields. When designating the signal assignment for a physical transmission line, the physical transmission line is reserved for future use and shall be not connected.

1.4.4.5 shall

A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to the specification.

1.4.4.6 should

A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase "it is recommended".

1.4.5 Dimensions

All dimensions are shown in millimeters unless otherwise noted.

2 General description

A CE-ATA device is typically embedded in a mobile handheld host. For this embedded system, a flexible cable is directly inserted into a CE-ATA connector on the device, or as an integrated part of the 0.85" device.

2.1 CE-ATA Embedded Cable and Connector

For compliance with CE-ATA Embedded Cables And Connectors, there are three possible configurations. In the first case, the flexible cable is an integrated part of the Host and is inserted into a connector on the device. In the second case, a separate flexible cable is inserted into mating connectors on both the Host and the device. The third case is only valid for 0.85" devices, where the flexible cable is an integrated part of the 0.85" device and is inserted into a connector on the Host. Figure 1 illustrates these configurations.

Figure 1 CE-ATA Embedded Cable and Connector Examples

2.2 CE-ATA Embedded Cable and Connector Pin Assignment

There shall be a minimum x4 signal data lines for CE-ATA embedded applications with an alternate configuration supporting x8 signal data lines.

Table 1 and Table 2 specify the pin assignments for x4 signal data lines and x8 signal data lines, respectively. Table 3 defines the signal names.

Pin#	Signal Name
1	VSS
2	DAT2
3	DAT3
4	Supply Voltage
5	CMD
6	Interface Voltage
7	CLK
8	VSS
9	DAT0
10	DAT1
11	VSS
12	Reserved

Table 1 CE-ATA Embedded Pin Assignment, x4 data lines

Pin#	Signal Name

Table 2 CE-ATA Embedded Pin Assignment, x8 data lines (TBD)

2.3 CE-ATA Embedded Cable and Connector Signal Name Definitions

Signal Name	Definition
VSS	Ground
CLK	Clock line, up to 52 MHz
Supply Voltage	Supply voltage: Class A (Standard) = 3.3V ± 5% Class B (Expanded) = 2.7V to 3.6V
Interface Voltage	Interface Voltage reference. The Interface Voltage shall not be present without the Supply Voltage present.
CMD	Command line
DAT0-DAT3, DAT4-DAT7	Data lines, x4, x8

Table 3 CE-ATA Embedded pin definition

2.4 CE-ATA Embedded Cable Mating Interface

The connection interface of the flex cable is defined in Figure 2. The flex cable shall be 0.3 ± 0.03 mm thick in the 2.5 min. area. N = number of conductors.

Figure 2 FFC/FPC mating interface

2.5 CE-ATA Connector orientation

The CE-ATA connector is a ZIF (Zero Insertion Force) or LIF (Low Insertion Force) connector. Figure 3 illustrates connector pin 1 location and flex orientation for CE-ATA devices.

Figure 3 CE-ATA Device Connector

2.6 CE-ATA Connector Location

2.6.1 1" CE-ATA Device

Reference CE-ATA connector locations. See SFF specifications for exact dimensions.

Figure 4 CE-ATA Connector Location for 1" Devices

1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 3 5 FF Proposal CE-ATA/MMC 1 3 MACROSIA, WILLIAMS ROTTO 1 MA

2.6.2 30mm x 40mm CE-ATA device

Reference CE-ATA connector location. See SFF specifications for exact dimensions.

Figure 5 CE-ATA Connector Location for 30mm x 40mm Devices

2.6.3 1.8" CE-ATA Device

Reference CE-ATA connector location. See SFF specifications for exact dimensions.

Figure 6 CE-ATA Connector Location for 1.8" Device

3 CE-ATA Connector Requirements and Test Procedures

3.1 Electrical Requirements and Test Procedure

Table 4 lists the connector housing and contact electrical requirements.

Parameter	Test Procedure	Requirement
Insulation resistance	EIA 364-21	50 M Ω minimum
	100 VDC for 1 minute, mated and	
	unmated connector assemblies.	
Dielectric withstanding	EIA 364-20 Method B	No breakdown
voltage	150 VAC (rms) for mated and	
	unmated connector assemblies.	
Low level contact	EIA 364-23	Initial 40 milliohms Max
resistance (LLCR)	Subject mated contacts assembled	
	in housing to 20 mV maximum	
	open circuit at 100 mA	
Contact current rating	EIA 364-70, Method "B"	0.5 A per pin minimum @
	Connector mounted to a test PCB	25°C

Table 4 Housing and contact electrical parameters, test procedures, and requirements

3.2 Mechanical Requirements and Test Procedures

Table 5 lists the mechanical parameters and requirements:

Parameter	Test Procedure	Requirement
Visual and dimensional inspections	EIA 364-18 Visual, dimensional and functional per applicable	Meets product drawing requirements.
	quality inspection plan.	
Durability	EIA 364-09 20 cycles. Test done at a maximum rate of 10 cycles per minute	No physical damage. Contact resistance change of 20 milliohms max
Contact plating	NA	Gold

Table 5 Mechanical test procedures, and requirements