БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра теории вероятностей и математической статистики

Т. В. Цеховая

ЭЛЕМЕНТЫ ТЕОРИИ СЛУЧАЙНЫХ ПРОЦЕССОВ

Методические указания и упражнения для студентов факультета прикладной математики и информатики

МИНСК 2012

Утверждено на заседании кафедры теории вероятностей и математической статистики факультета прикладной математики и информатики 22 ноября 2012 г., протокол № 5

Цеховая, Т. В.

Ц55 Элементы теории случайных процессов : метод. указания и упражнения для студентов фак. прикладной математики и информатики / Т. В. Цеховая. – Минск : БГУ, 2012. – 48 с.

Методические указания и упражнения «Элементы теории случайных процессов» посвящены изучению отдельных разделов дисциплины «Теория вероятностей и математическая статистика» и содержат задачи, рекомендуемые для решения на практических занятиях. В начале каждой темы приведены необходимые теоретические сведения и примеры решения типовых задач.

Предназначено для студентов факультета прикладной математики и информатики.

УДК 519.2(075.8) ББК 22.171я73

© Цеховая Т. В., 2012 © БГУ, 2012

ВВЕДЕНИЕ

специальностей «Актуарная Для студентов математика», «Информатика», «Прикладная математика» факультете на прикладной математики И информатики Белорусского государственного университета дисциплина «Теория читается в 4 - 6вероятностей математическая статистика» рассчитана на 204 часа, 102 часа – семестрах и из которых практические занятия. Методические указания упражнения И «Элементы теории случайных процессов» соответствуют программе 6-го семестра вышеуказанного общего курса.

Методические указания и упражнения состоят ИЗ семи тем, которые предназначены для первоначального ознакомления с теорией случайных процессов, содержат упражнения самостоятельной работы студентов И контроля усвоения В конце теоретического материала. приводится список сборников задач, которые были использованы для написания настоящего пособия.

245 Студентам предлагается около задач, имеющих разную степень трудности. В начале каждой темы приводятся основные определения и формулы. Далее излагаются решения примеров, затем следуют типовых задачи ДЛЯ самостоятельного решения.

Автор выражает благодарность Н. Н. Трушу и Н. М. Зуеву за ряд ценных советов и замечаний.

1. СЛУЧАЙНЫЕ ПРОЦЕССЫ И ИХ ВЕРОЯТНОСТНЫЕ ХАРАКТЕРИСТИКИ. ОСНОВНЫЕ КЛАССЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

Случайный (вероятностный, стохастический) процесс $\xi(t) = \xi(t, \omega)$ есть семейство (действительных или комплексных) случайных величин $\{\xi(t, \omega), t \in T\}$, определенных на вероятностном пространстве $\{\Omega, \mathcal{F}, P\}$, где $\omega \in \Omega$, T – некоторое параметрическое множество.

Случайный процесс называется *действительным* (*вещественным*), если случайные величины являются действительными для любого $t \in T$.

Комплексным случайным процессом $\xi(t)$, $t \in T$, называется процесс, который можно представить в виде: $\xi(t) = \xi_1(t) + i \xi_2(t)$, где $\xi_1(t) = \xi_1(t, \omega)$, $\xi_2(t) = \xi_2(t, \omega)$ — действительные случайные процессы.

Если $T = Z = \{0, \pm 1, \pm 2, ...\}$ или T – некоторое подмножество из Z, например, $T = \{0, 1, 2, ...\}$ или $T = \{3, 4, 5, ...\}$, то в этом случае говорят, что $\xi(t)$ – случайный процесс с дискретным временем или случайная последовательность.

Если $T = R = (-\infty, +\infty)$ или T — некоторое подмножество из R, например вида T = [0, 1] или $T = [0, +\infty)$, то в этом случае говорят, что $\xi(t)$ — случайный процесс с непрерывным временем.

Пусть $t_0 \in T$ — фиксированный момент времени. Случайная величина $\xi(t_0, \omega), \omega \in \Omega$, называется *сечением* процесса в точке t_0 .

При фиксированном $\omega_0 \in \Omega$ неслучайная функция $\xi(t, \omega_0)$, $t \in T$, называется *также реализациями* или *выборочными* функциями случайного процесса.

Пример 1. Пусть случайный процесс $\xi(t)$ определен следующим образом: $\xi(t, \omega) = t \, X(\omega), \quad t \in [0, 1], \quad X(\omega) -$ случайная величина, равномерно распределенная на отрезке [0, 1]. Описать множество сечений и траекторий случайного процесса $\xi(t)$.

Решение. При фиксированном $t_0 \in [0, 1]$ сечение $\xi(t_0, \omega) = t_0 X(\omega)$ является случайной величиной, имеющей равномерное распределение на отрезке $[0, t_0]$.

Траектории процесса $\xi(t)$, т.е. неслучайные функции $\xi(t, \omega_0) = t X(\omega_0)$, являются прямыми, выходящими из точки (0, 0) со случайным тангенсом угла наклона, равным $X(\omega_0)$.

Определим функцию вида

$$F_{\xi}(x_1, ..., x_n; t_1, ..., t_n) = P\{\xi(t_1) < x_1, ..., \xi(t_n) < x_n\},$$
(1)

где $x_i \in \mathbb{R}, t_i \in \mathbb{T}, i = 1, n, n \ge 1$, которая в дальнейшем будет называться n-мерной функцией распределения случайного процесса $\xi(t), t \in \mathbb{T}$.

Совокупность функций (1) для различных n = 1, 2,... и всех возможных моментов времени $t_i \in T$ называется *семейством* конечномерных распределений случайного процесса $\xi(t)$, $t \in T$.

Пример 2. Пусть случайный процесс задан соотношением $\xi(t,\omega) = \varphi(t)U(\omega)$, $t \in [0,1]$, где $U(\omega)$ – некоторая случайная величина с функцией распределения $F_U(x)$, $x \in \mathbb{R}$; $\varphi(t)$ – неслучайная функция, $\varphi(t) > 0$. Найти семейство конечномерных распределений процесса $\xi(t)$.

Решение. В соответствие с определением (1) *п*-мерной функции распределения

$$F_{\xi}(x_{1}, ..., x_{n}; t_{1}, ..., t_{n}) = P\{\xi(t_{1}) < x_{1}, ..., \xi(t_{n}) < x_{n}\} =$$

$$= P\{ \varphi(t_{1})U < x_{1}, ..., \varphi(t_{n})U < x_{n}\} = P\{ U < x_{i} / \varphi(t_{i}), i = \overline{1, n} \} =$$

$$= P\{ \bigcap_{i=1}^{n} (U < x_{i} / \varphi(t_{i})) \} = P\{ U < \min_{i=1,n} \{x_{i} / \varphi(t_{i})\} \} = F_{U}(\min_{i=1,n} \{x_{i} / \varphi(t_{i})\}).$$

Пример 3. Пусть случайная последовательность $\xi(t)$, t=1, 2,... такова, что ее сечения независимы в совокупности и имеют одинаковую функцию распределения F(x). Найти семейство конечномерных распределений последовательности $\xi(t)$.

Решение. Из определения (1), учитывая независимость сечений последовательности, имеем

$$F_{\xi}(x_1,\ldots,x_k;t_1,\ldots,t_k) = P\{\xi(t_1) < x_1,\ldots,\xi(t_k) < x_k\} = \prod_{i=1}^k P\{\xi(t_i) < x_i\} = \prod_{i=1}^k F(x_i).$$

Пусть существует неотрицательная функция $p_{\xi}(u_1,...,u_n;t_1,...,t_n)$, $x_i \in \mathbb{R}, t_i \in \mathbb{T}$, такая, что справедливо интегральное представление:

$$F_{\xi}(x_1, ..., x_n; t_1, ..., t_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} p_{\xi}(u_1, ..., u_n; t_1, ..., t_n) du_1 ... du_n,$$

тогда $p_{\xi}(x_1, ..., x_n; t_1, ..., t_n)$ называют *плотностью п*-мерной функции распределения или *п-мерной плотностью распределения вероятностей* процесса $\xi(t), t \in T$.

Свойства *п*-мерной плотности распределения вероятностей:

1. $p_{\xi}(u_1,...,u_n;t_1,...,t_n)$ — неотрицательная функция.

1.
$$p_{\xi}(u_1,...,u_n,t_1,...,t_n)$$
 — неогрицательная
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{\xi}(u_1,...,u_n;t_1,...,t_n)du_1...du_n = 1.$

Упражнения

- **1.** Построить график семейства реализаций случайного процесса $\xi(t) = e^{-tX}$, t > 0, X случайная величина, принимающая только положительные значения. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: a) $t = t_1 = 2$; б) $t = t_2 = 0.01$.
- **2.** Построить график семейства реализаций случайного процесса $\xi(t) = at + X$, X случайная величина, a неслучайная величина. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: a) $t = t_1 = 0$; б) $t = t_2 = 10$.
- **3.** Построить график семейства реализаций случайного процесса $\xi(t) = a + Xt$, где X случайная величина, a неслучайная величина. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: a) $t = t_1 = 0$; б) $t = t_2 = -10$.
- **4.** Построить график семейства реализаций случайного процесса $\xi(t) = X \cos at, \ t > 0, \ X$ случайная величина, a -неслучайная величина. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: a) $t = t_1 = 0$; б) $t = t_2 = \pi/3$.
- **5.** Построить график семейства реализаций случайного процесса $\xi(t) = \cos(at + X), \ t > 0, \ X$ случайная фаза колебаний, распределенная равномерно на отрезке $[-\pi, \pi], \ a$ неслучайная величина. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: а) $t = t_1 = 0$; б) $t = t_2 = \pi$.
- **6.** Построить график семейства реализаций случайного процесса $\xi(t) = U \cos at + V \sin at$, t > 0, (U, V) система случайных величин, a неслучайная величина. Найти сечения $\xi(t)$, соответствующие значениям аргумента a) $t = t_1 = 0$; б) $t = t_2 = \pi/2$.
- **7.** Построить график семейства реализаций случайного процесса $\xi(t) = a + Ut + Vt^2$, где (U, V) система двух случайных величин, a неслучайная величина. Найти сечения $\xi(t)$, соответствующие значениям аргумента a) $t = t_1 = 0$; б) $t = t_2 = 2$.
- **8.** Рассмотрим случайные процессы: $\xi(t) = Va$, $\eta(t) = V\cos^2 t$, $\zeta(t) = Vt^2$, где V нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией σ^2 ; a неслучайная величина. Построить для каждого из них семейство реализаций.
- **9.** Случайный процесс $\xi(t) = U \sin t$, $t \ge 0$, где случайная величина U равномерно распределена на отрезке [0, 1]. Найти сечения $\xi(t)$, соответствующие фиксированным значениям аргумента: а) $t = t_1 = \pi/6$; б) $t = t_2 = \pi/2$. Построить график семейства реализаций $\xi(t)$.

- **10.**Случайный процесс $\xi(t) = U \sin t$, $t \ge 0$, где случайная величина U равномерно распределена на отрезке [2, 4]. Найти а) сечение $\xi(t)$, соответствующее фиксированному значению аргумента $t = \pi/4$; б) траекторию процесса при одном испытании, в котором случайная величина U приняла значение 2.
- **11.**Найти все конечномерные распределения случайного процесса $\xi(t) = at + X$, где X случайная величина, a неслучайная величина.
- **12.**Найти все конечномерные распределения случайного процесса $\xi(t) = a + Xt, t > 0$, где X случайная величина, a неслучайная величина.
- **13.**Пусть $\xi(t,\omega) = X(\omega)t$, t > 0. Случайная величина $X(\omega) = \omega/2$, $\omega \in \Omega = [-2, 2]$, равномерно распределена на отрезке [-1, 1]. Описать траектории и сечения процесса $\xi(t, \omega)$. Найти n-мерные функции распределения, n = 1, 2.
- **14.**Пусть $\xi(t, \omega) = X(\omega) \sin t$, $0 < t < \pi$. Случайная величина $\xi(\omega) = \omega$ равномерно распределена на отрезке [0, 1]. Найти n-мерные функции распределения, n = 1, 2. Описать траектории и сечения процесса $\xi(t, \omega)$.
- **15.**Пусть $\xi(t) = t^2 t \, \eta$, $0 < t < \infty$. Случайная величина η равномерно распределена на отрезке [-1, 1]. Описать траектории процесса $\xi(t)$. Найти n-мерные функции распределения процесса, n = 1, 2.
- **16.**Пусть случайный процесс $\xi(t) = \eta \cos t$, $0 < t < \pi$. Случайная величина η равномерно распределена на отрезке [-1, 1]. Описать траектории и сечения процесса $\xi(t)$. Найти n-мерные функции распределения случайного процесса, n = 1, 2.
- **17.**Пусть $\xi(t) = \sum_{i=1}^{n} X_i \varphi_i(t)$, $t \in T$, где X_i независимые стандартные гауссовские случайные величины, а $\{\varphi_i(t)\}$ заданные на Т детерминированные функции. Найти функцию распределения случайного процесса $\xi(t)$.
- **18.**Одномерная плотность вероятности случайного процесса $\xi(t)$ имеет
 - вид $p_{\xi}(x;t) = (\sigma\sqrt{2\pi})^{-1}e^{-\frac{(x-a\cos t)^2}{2\sigma^2}}$, где a, σ постоянные величины, причем $\sigma > 0$. Определить: а) математическое ожидание и дисперсию случайного процесса $\xi(t)$; б) вероятность неравенства $\xi(\pi/2) < 0$.
- **19.**Случайный процесс $\xi(t)$ задан в виде $\xi(t) = \eta t + b$, где η случайная величина, распределенная по нормальному закону с параметрами $M\{\eta\} = m, \ D\{\eta\} = \sigma^2; \ b$ неслучайная величина. Найти плотность распределения $p_{\xi}(x;t)$ случайного процесса $\xi(t)$.

- **20.**Пусть $\xi(t) = Xt^2 + Yt$, t > 0, случайный процесс, где X, Y независимые стандартные гауссовские случайные величины. Найти вероятность случайного события $A = \{ \min_{t > 0} \xi(t) < 0 \}$.
- **21.**Пусть случайный процесс задан соотношением $\xi(t) = X^2 + 2tY + t^2$, $t \ge 0$, где X, Y независимые стандартные гауссовские случайные величины. Найти вероятность того, что траектория $\xi(t)$ монотонно не убывает.
- **22.** Пусть случайный процесс задан соотношением $\xi(t) = X^2 + 2tY + t^2$, $t \ge 0$, где X, Y независимые стандартные гауссовские случайные величины. Найти вероятность того, что траектория $\xi(t)$ неотрицательна.
- **23.**Рассматривается случайный процесс $\xi(t)$, представляющий собой число заявок, поступивших на телефонную станцию за время t. Заметим, что случайный процесс возрастает скачками величины 1, и его приращения на неперекрывающихся промежутках времени независимы. Найти закон распределения сечения процесса $\xi(t)$.
- 24. Выпишите все конечномерные распределения процесса Коши.
- **25.**Доказать, что оба определения винеровского случайного процесса w(t), $t \ge 0$, эквивалентны.
- **26.**Пусть w(t), $t \ge 0$, винеровский случайный процесс. Найти совместную плотность распределения $p_w(x_1, x_2, x_3; t_1, t_2, t_3)$ величин w(t) и w(s), 0 < s < t < 1 при условии, что w(1) = 0.
- **27.**Пусть случайный процесс $\xi(t) = w(4t)$, $t \ge 0$, где w(t), $t \ge 0$, стандартный винеровский случайный процесс. Будет ли $\xi(t)$ винеровским процессом? Вычислить вероятность $P\{|\xi(t)| < 2\sqrt{t}\}$.
- **28.**Пусть $\xi(t) = w(t/9), \ t \ge 0, \$ где $w(t), \ t \ge 0, \$ стандартный процесс броуновского движения. Будет ли $\xi(t)$ процессом броуновского движения? Вычислить вероятность $P\{\xi(t) < \sqrt{t}/3\}.$
- **29.**Пусть w(t) стандартный винеровский процесс. Показать, что процесс $\xi(t) = \begin{cases} tw(1/t), & t \neq 0, \\ 0, & t = 0, \end{cases}$ также будет винеровским.
- **30.**Пусть $w_1(t)$, $w_2(t)$, $t \ge 0$, независимые стандартные процессы броуновского движения. Показать, что $\xi(t) = (w_1(t) + w_2(t)) / \sqrt{2}$ также является процессом броуновского движения.
- **31.**Пусть случайный процесс $\xi(t) = w(t) (1 w(t)), t \in [0, 1], w(t)$ процесс броуновского движения. Вычислить математическое ожидание $\xi(t)$ и $P\{\xi(t) \ge -2\}$.

- **32.**Доказать, что w(t) и $w(c^2t)/c$, где c, t > 0, w(t) процесс броуновского движения, имеют одно и то же распределение.
- **33.**Пусть w(t), $t \ge 0$, стандартный винеровский процесс. Случайный процесс $\mathbf{w}^0(t) = w(t) t \, w(1), \, t \in [0; 1],$ броуновский мост. Доказать, что процесс $\xi(t) = (1+t) \, \mathbf{w}^0(t/(1+t)), \, t \ge 0$, является винеровским.
- **34.**Случайный процесс $\xi(t)$ представляет собой случайную величину $\xi(t) = \eta$, где η непрерывная случайная величина с плотностью распределения $p_{\eta}(x)$. Написать: а) выражение одномерной плотности распределения $p_{\xi}(x;t)$ процесса $\xi(t)$; б) выражение двумерной функции распределения $F_{\xi}(x_1, x_2; t_1, t_2)$ сечений $\xi(t_1)$, $\xi(t_2)$ процесса $\xi(t)$.
- **35.**Пусть процесс $\xi(t)$ задан на вероятностном пространстве $\{\Omega, A, P\}$, где $\Omega = [0, 1], \ A \sigma$ -алгебра борелевских подмножеств, P мера Лебега, $t \in [0, 1]$ и $\xi(t) = \xi(t, \omega) = \begin{cases} 1, t \leq \omega, \\ 0, t > \omega. \end{cases}$ Найти все реализации процесса.

2. МОМЕНТНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ПРОЦЕССОВ

Пусть $\xi(t)$, $t \in T$, — действительный случайный процесс. Неслучайная функция $m_{\xi}(t)$, $t \in T$, определяемая соотношением

$$m_{\xi}(t) = M\{\xi(t)\} = \int_{-\infty}^{\infty} x dF_{\xi}(x;t),$$

называется математическим ожиданием $\xi(t)$.

Математическое ожидание случайного процесса интерпретируют как усредненную траекторию.

При каждом $t \in T$ математическое ожидание процесса $\xi(t)$ есть математическое ожидание его сечения в точке t.

Если сечение случайного процесса при данном t представляет собой дискретную случайную величину, то его математическое ожидание может быть вычислено по формуле

$$m_{\xi}(t) = \sum_{i} x_{i}(t) P\{\xi(t) = x_{i}(t)\};$$

если сечение случайного процесса при данном t представляет собой непрерывную случайную величину с плотностью $p_{\xi}(x;t)$, то его математическое ожидание может быть вычислено по формуле

$$m_{\xi}(t) = \int_{-\infty}^{\infty} x p_{\xi}(x;t) dx.$$

Если $m_{\xi}(t) = 0$ при всех $t \in T$, то случайный процесс называется *центрированным*.

Сформулируем простейшие свойства математического ожидания. Пусть f(t) – неслучайная функция.

- 1. $M\{f(t)\} = f(t);$
- 2. $M\{f(t)\cdot\xi(t,\omega)\}=f(t)\cdot m_{\xi}(t);$
- 3. $M\{\xi(t, \omega) \pm \eta(t, \omega)\} = m_{\xi}(t) \pm m_{\eta}(t)$.

Неслучайная функция $D_{\xi}(t)$, $t \in T$, определяемая соотношением

$$D_{\xi}(t) = M\{\xi(t) - m_{\xi}(t)\}^{2} = \int_{-\infty}^{\infty} (x - m_{\xi}(t))^{2} dF_{\xi}(x;t) =$$

$$= M\{\xi^{2}(t)\} - m_{\xi}^{2}(t) = \int_{-\infty}^{\infty} x^{2} dF_{\xi}(x;t) - m_{\xi}^{2}(t),$$

называется дисперсией процесса $\xi(t)$, $t \in T$.

Дисперсия указывает на разброс траекторий относительно средней траектории.

Приведем простейшие свойства дисперсии. Пусть f(t) — неслучайная функция.

- 1. $D\{f(t)\}=0$;
- 2. $D\{f(t)\cdot\xi(t,\omega)\}=f^2(t)\cdot D_{\xi}(t);$
- 3. $D\{\xi(t, \omega) \pm f(t)\} = D_{\xi}(t)$.

Стандартным отклонением (среднеквадратическим отклонением) случайного процесса $\xi(t)$ называется функция вида $\sigma_{\xi}(t) = \sqrt{D_{\xi}(t)}$, $t \in T$.

Неслучайная функция $R^0_{\xi}(t,\tau)\,,\;t,\tau\in {\mathbb T},$ определяемая равенством

$$R_{\xi}^{0}(t,\tau) = M\{\xi(t)\xi(\tau)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}x_{2}dF_{\xi}(x_{1},x_{2};t,\tau),$$

называется корреляционной функцией процесса $\xi(t), t \in T$.

Неслучайная функция $R_{\xi}(t,\tau), t, \tau \in T$, определяемая соотношением

$$R_{\xi}(t,\tau) = \operatorname{cov}\{\xi(t),\xi(\tau)\} = M\{(\xi(t) - m_{\xi}(t))(\xi(\tau) - m_{\xi}(\tau))\} =$$

$$= M\{\xi(t)\xi(\tau)\} - m_{\xi}(t) m_{\xi}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}x_{2}dF_{\xi}(x_{1},x_{2};t,\tau) - m_{\xi}(t) m_{\xi}(\tau),$$

называется ковариационной функцией процесса $\xi(t)$, $t \in T$.

Теорема 1. Ковариационная функция $R_{\xi}(t,\tau)$ процесса $\xi(t)$, $t \in T$, с конечным моментом второго порядка обладает следующими свойствами:

1)
$$R_{\xi}(t, t) = D_{\xi}(t) \ge 0$$
 для $\forall t \in T$;

- 2) $R_{\xi}(t,\tau) = R_{\xi}(\tau,t)$, для $\forall t, \tau \in T$;
- 3) $|R_{\xi}(t,\tau)|^2 \leq D_{\xi}(t) D_{\xi}(\tau)$, для $\forall t, \tau \in T$.

Теорема 2. Для того чтобы функция $R_{\xi}(t,\tau)$, $t,\tau\in T$, была ковариационной функцией некоторого действительного случайного процесса $\xi(t)$, $t\in T$, необходимо и достаточно, чтобы она являлась симметричной и неотрицательно определенной, т.е. для $\forall n\geq 1$, любых $t_1,\ldots,t_n\in T$ и произвольного ненулевого набора действительных чисел

$$\{z_1, ..., z_n\}$$
, имело место неравенство $\sum_{i, j=1}^n z_i z_j R_{\xi}(t_i, t_j) \ge 0$.

Простейшие свойства ковариационной функции:

- 1. Если $\eta(t,\omega) = \xi(t,\omega) + f(t)$, где f(t) произвольная неслучайная функция, то $R_n(t,\tau) = R_{\xi}(t,\tau)$, $t,\tau \in T$.
- 2. Если $\eta(t,\omega)=f(t)\,\xi(t,\omega)$, где f(t) произвольная неслучайная функция, то $R_{\eta}(t,\tau)=f(t)f(\tau)R_{\xi}(t,\tau),\ t,\tau\in T.$
 - 3. Для центрированного случайного процесса $\xi(t)$: $R_{\xi}(t,\tau) = R_{\xi}^{0}(t,\tau)$.

Нормированной ковариационной функцией случайного процесса $\xi(t)$, $t \in T$, называется функция вида

$$\rho_{\xi}(t,\tau) = R_{\xi}(t,\tau) / \sqrt{D_{\xi}(t)D_{\xi}(\tau)}, \quad t,\tau \in \mathbf{T}.$$

Простейшие свойства нормированной ковариационной функции:

- 1. $|\rho_{\xi}(t, \tau)| \leq 1$;
- 2. $\rho_{\xi}(t, t) = 1;$
- 3. $\rho_{\xi}(t, \tau) = \rho_{\xi}(\tau, t)$.

Пример 4. Пусть $\xi(t) = X\varphi(t)$, $t \in T$, где X – действительная случайная величина со средним m_X и дисперсией D_X , а $\varphi(t)$ некоторая неслучайная функция на T. Найти математическое ожидание, дисперсию, стандартное отклонение, ковариационную функцию и нормированную ковариационную функцию случайного процесса $\xi(t)$.

Решение. Используя определения характеристик процесса, имеем

$$m_{\xi}(t) = M\{X\varphi(t)\} = M\{X\}\varphi(t) = m_X\varphi(t),$$

$$R_{\xi}(t,\tau) = \operatorname{cov}\{X\varphi(t), X\varphi(\tau)\} = \operatorname{cov}\{X, X\}\varphi(t)\varphi(\tau) = D_X\varphi(t)\varphi(\tau),$$

$$D_{\xi}(t) = R_{\xi}(t, t) = D_X\varphi^2(t), \qquad \sigma_{\xi}(t) = \sigma_X\varphi(t), \qquad \rho_{\xi}(t, \tau) = 1.$$

Определение. Взаимной ковариационной функцией процессов $\xi(t)$ и $\eta(t)$ называется неслучайная функция $R_{\xi\eta}(t,\tau),\ t,\tau\in T,$ определяемая соотношением

$$R_{\xi\eta}(t,\tau) = \text{cov}\{\xi(t), \, \eta(\tau)\} = M\{(\xi(t) - m_{\xi}(t))(\eta(\tau) - m_{\eta}(\tau))\} = M\{\xi(t) \, \eta(\tau)\} - m_{\xi}(t) \, m_{\eta}(\tau).$$

Два случайных процесса называются *некоррелированными*, если их взаимная ковариационная функция тождественно равна нулю. В противном случае – *коррелированными*.

Сформулируем свойства взаимной ковариационной функции. Пусть $f_1(t), f_2(t)$ – произвольные детерминированные функции.

- 1. $R_{\xi\eta}(t, \tau) = R_{\eta\xi}(\tau, t);$
- 2. Если $\xi(t,\omega)=\xi_1(t,\omega)+f_1(t), \quad \eta(t,\omega)=\eta_1(t,\omega)+f_2(t), \quad \text{то}$ $R_{\xi\eta}(t,\tau)=R_{\xi_1\eta_1}(t,\tau)\,, \quad t,\tau\in T.$
- 3. Если $\xi(t,\omega)=\xi_1(t,\omega)\,f_1(t), \quad \eta(t,\omega)=\eta_1(t,\omega)\,f_2(t), \quad \text{то}$ $R_{\xi\eta}(t,\tau)=f_1(t)\,f_2(\tau)\,R_{\xi_1\eta_1}(t,\tau)\,, \quad t,\tau\in \mathrm{T}.$
- 4. Ковариационная функция суммы двух коррелированных случайных процессов $\xi(t)$ и $\eta(t)$, $t \in T$, равна

$$R_{\xi+\eta}(t,\tau) = R_{\xi}(t,\tau) + R_{\eta}(t,\tau) + R_{\xi\eta}(t,\tau) + R_{\xi\eta}(\tau,t).$$

5. Ковариационная функция суммы двух некоррелированных случайных процессов равна

$$R_{\xi+\eta}(t,\,\tau)=R_{\xi}(t,\,\tau)+R_{\eta}(t,\,\tau).$$

Приведем основные характеристики комплексного случайного процесса $\xi(t)=\xi_1(t)+i\,\xi_2(t),\ t\in {\rm T}.$

$$M\{\xi(t)\} = M\{\xi_{1}(t)\} + i M\{\xi_{2}(t)\},$$

$$R_{\xi}^{0}(t,\tau) = M\{\xi(t)\overline{\xi(\tau)}\},$$

$$D_{\xi}(t) = M\{(\xi(t) - m_{\xi}(t))\overline{(\xi(t) - m_{\xi}(t))}\},$$

$$R_{\xi}(t,\tau) = M\{(\xi(t) - m_{\xi}(t))\overline{(\xi(\tau) - m_{\xi}(\tau))}\},$$

$$R_{\xi\eta}(t,\tau) = \operatorname{cov}\{\xi(t),\eta(\tau)\} = M\{(\xi(t) - m_{\xi}(t))\overline{(\eta(\tau) - m_{\eta}(\tau))}\},\,$$

где $t, \tau \in T$, черта означает комплексное сопряжение.

Теорема 3. Ковариационная функция $R_{\xi}(t,\tau)$, $t,\tau \in T$, комплексного случайного процесса $\xi(t)$, $t \in T$, с конечным моментом второго порядка обладает следующими свойствами:

- 1) $R_{\xi}(t, t) = D_{\xi}(t) \ge 0$ для $\forall t \in T$;
- 2) $R_{\xi}(t,\tau) = \overline{R_{\xi}(\tau,t)}$, для $\forall t, \tau \in T$;
- 3) $|R_{\xi}(t,\tau)|^2 \le D_{\xi}(t) D_{\xi}(\tau)$, для $\forall t, \tau \in T$.

Теорема 4. Для того чтобы функция $R_{\xi}(t, \tau)$, $t, \tau \in T$, была ковариационной функцией некоторого комплексного случайного процесса $\xi(t)$, $t \in T$, необходимо и достаточно, чтобы она являлась эрмитовой и неотрицательно определенной, т.е. для $\forall n \geq 1$, любых $t_1, \ldots, t_n \in T$ и произвольного ненулевого набора комплексных чисел

$$\{z_1, ..., z_n\}$$
, имело место неравенство $\sum_{i,j=1}^n z_i \overline{z_j} R_{\xi}(t_i, t_j) \ge 0$.

Каноническим разложением случайного процесса $\xi(t), t \in T,$ называется представление его в виде

$$\xi(t) = m_{\xi}(t) + \sum_{i=1}^{n} X_i \, \varphi_i(t), \, n \leq \infty,$$

где X_i — центрированные некоррелированные случайные величины с дисперсиями $D\{X_i\} = D_i$; $\varphi_i(t)$, $t \in T$, — неслучайные функции.

Если случайный процесс допускает каноническое разложение, то его ковариационная функция выражается суммой вида

$$R_{\xi}(t,s) = \sum_{i=1}^{n} D_i \, \varphi_i(t) \varphi_i(s),$$

которая называется каноническим разложением ковариационной функции.

Упражнения

- **1.** Пусть случайный процесс имеет вид $\xi(t) = Xe^{-t} + a$, t > 0, где X гауссовская случайная величина с математическим ожиданием 3 и единичной дисперсией, a неслучайная величина. Найти математическое ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию случайного процесса $\xi(t)$.
- **2.** Случайный процесс задан выражением $\xi(t) = 6Xe^{2t}$, причем X случайная величина с нулевым математическим ожиданием и единичной дисперсией. Определить математическое ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию случайного процесса $\xi(t)$.
- **3.** Пусть случайный процесс имеет вид $\xi(t) = aX + t$, $t \in T$, где X гауссовская случайная величина с нулевым математическим ожиданием и единичной дисперсией. Найти математическое ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию случайного процесса $\xi(t)$.
- **4.** Случайный процесс $\xi(t) = U \sin t$, $t \ge 0$, где U случайная величина, равномерно распределенная на отрезке [2, 4]. Найти математическое

- ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию процесса $\xi(t)$.
- **5.** Найти математическое ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию процесса $\xi(t) = X\cos 2t$, где X случайная величина, причем $M_X = 5$, $D_X = 6$.
- **6.** Найти математическое ожидание, дисперсию, ковариационную функцию и нормированную ковариационную функцию случайного процесса $\xi(t) = X \sin at$, где a неслучайная величина, X случайная величина с $M_X = 1$, $D_X = 0,2$.
- 7. Найти математическое ожидание, ковариационную функцию, дисперсию и нормированную ковариационную функцию случайного процесса $\xi(t) = Xe^{-t^2}$, где X случайная величина с M_X = 2, D_X = 0,01.
- **8.** Случайный процесс имеет вид $\xi(t) = 5t^2X + 2t$, где X случайная величина с математическим ожиданием, равным 2, и дисперсией 0,4. Найти математическое ожидание, дисперсию, ковариационную функцию и нормированную ковариационную функцию случайного процесса $\xi(t)$.
- **9.** Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\xi(t) = Ut + Vt^2$, где U и V случайные величины с $M_U = 4$; $M_V = 7$; $D_U = 0,1$; $D_V = 2$; $\text{cov}\{U, V\} = 5$.
- **10.**Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\xi(t) = Ut + Vt^2$, где U и V некоррелированные случайные величины с $M_U = 3$; $M_V = 0.5$; $D_U = 1$; $D_V = 0.05$.
- **11.**Найти математическое ожидание, дисперсию, среднеквадратическое отклонение, ковариационную функцию и нормированную ковариационную функцию случайного процесса $\xi(t) = Ut^2 + 2t + 1$, где U случайная величина с $M_U = 1$ и $D_U = 1$.
- **12.**Задан процесс $\xi(t) = V\cos 4t + U\sin 4t$, где U, V некоррелированные случайные величины с единичным математическим ожиданием и единичной дисперсией. Найти математическое ожидание, дисперсию, стандартное отклонение, ковариационную функцию и нормированную ковариационную функцию случайного процесса $\xi(t)$.
- **13.**Задан случайный процесс $\xi(t) = U\cos 2t + V\sin t + t$, где U, V некоррелированные случайные величины, причем $M_U = 1$, $M_V = 2$, $D_U = 3$, $D_V = 4$. Найти математическое ожидание, дисперсию и ковариационную функцию случайного процесса $\xi(t)$.
- **14.**Пусть $A(\omega) = a(\omega) + ib(\omega)$ комплексная случайная величина с нулевым математическим ожиданием, φ неслучайный скалярный параметр.

- Комплексный случайный процесс $\xi(t,\omega)$ имеет вид $\xi(t,\omega) = A(\omega) e^{i\varphi t}$, $t \in [0,\infty)$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\xi(t)$.
- **15.**Определить математическое ожидание и ковариационную функцию случайного процесса $\xi(t) = \sum_{j=1}^{n} (A_j \cos \lambda_j t + B_j \sin \lambda_j t)$, где λ_j заданные числа, вещественные случайные величины A_j и B_j взаимно некоррелированы, имеют нулевое математическое ожидание и
- **16.**Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\xi(t) = W e^{-Vt}$, где случайная величина W распределена нормально с параметрами m, σ^2 , а случайная величина V распределена равномерно на отрезке [0, a], t > 0, a > 0, случайные величины W, V независимы.

дисперсии, определяемые равенствами $D\{A_j\} = D\{B_j\} = \sigma_j^2$.

- **17.**Пусть случайный процесс имеет вид $\xi(t, \omega) = u(\omega)(1 + t^2)^{-1}$, $t \in [a, b]$, $u(\omega)$ действительная случайная величина, распределенная по закону Пуассона с параметром 0,5. Определить математическое ожидание и дисперсию процесса.
- 18. Найти ковариационную функцию процесса Пуассона с параметром λ.
- **19.**Случайный процесс задан выражением $\xi(t) = X \cos at$, где a неслучайная величина, X случайная величина, распределенная по закону Пуассона с параметром λ . Найти математическое ожидание и дисперсию процесса $\xi(t)$.
- **20.**Случайный процесс задан выражением $\xi(t) = X e^{-2t}$, где X случайная величина, распределенная по биномиальному закону с вероятностью p появления события A в каждом из n испытаний, t неслучайный параметр. Найти математическое ожидание и дисперсию процесса.
- **21.**Найти математическое ожидание и ковариационную функцию комплексного процесса $\xi(t) = Ue^{iVt}$, где U, V независимые случайные величины, $M_U = 0, D_U = D$, а случайная величина V распределена по закону Коши с плотностью вероятности $p(x) = \alpha/(\pi(\alpha^2 + x^2)), \alpha > 0$.
- **22.**Найти ковариационную функцию процесса $\xi(t) = X\cos(at Y)$, где X, Y независимые случайные величины, X имеет характеристики m_X , D_X , а Y равномерно распределена на отрезке $[0, 2\pi]$, a неслучайный параметр.
- **23.**Задана ковариационная функция $R_{\xi}(t,s) = ts \, e^{-|t-s|}$ случайного процесса $\xi(t)$. Найти нормированную ковариационную функцию процесса.

- **24.**Найти математическое ожидание, ковариационную функцию суммы двух некоррелированных случайных процессов $\xi(t)$ и $\eta(t)$ с характеристиками: $m_{\xi}(t) = t^3 + 5$, $R_{\xi}(t, s) = \sin t \sin s$, $m_{\eta}(t) = t + 3$, $R_{\eta}(t, s) = \cos t \cos s$.
- **25.**Известны математические ожидания $m_{\xi}(t) = 2t + 1$, $m_{\eta}(t) = t 1$ и ковариационные функции $R_{\xi}(t, s) = ts$, $R_{\eta}(t, s) = e^{-4(t-s)^2}$ некоррелированных случайных процессов $\xi(t)$ и $\eta(t)$. Найти математическое ожидание и ковариационную функцию процесса $\xi(t) + \eta(t)$.
- **26.**Известны математические ожидания $m_{\xi}(t) = t + 2$, $m_{\eta}(t) = -t + 3$ и ковариационные функции $R_{\xi}(t, s) = ts$, $R_{\eta}(t, s) = 2e^{-(t+s)}$ некоррелированных случайных процессов $\xi(t)$ и $\eta(t)$. Найти математическое ожидание и ковариационную функцию процесса $\xi(t) + \eta(t)$.
- **27.**Найти математическое ожидание и ковариационную функцию суммы двух некоррелированных случайных процессов $\xi(t)$ и $\eta(t)$ с характеристиками: $m_{\xi}(t) = t$, $R_{\xi}(t,s) = ts$, $m_{\eta}(t) = -t$, $R_{\eta}(t,s) = ts \, e^{\alpha(t+s)}$.
- **28.**Найти нормированную взаимную ковариационную функцию двух случайных процессов $\xi(t) = tU$ и $\eta(t) = (t+1)U$, где U случайная величина, $D_U = 10$.
- **29.**Найти взаимную ковариационную функцию случайных процессов $\xi(t) = t^2 U$ и $\eta(t) = t^4 U$, где U случайная величина, причем $D_U = 5$.
- **30.**Заданы случайные процессы $\xi(t) = U\cos t + V\sin t$, $\eta(t) = U\cos 3t + V\sin 3t$, где U, V некоррелированные случайные величины, причем $M_U = M_V = 0$, $D_U = D_V = 5$. Найти взаимную ковариационную функцию процессов $\xi(t)$ и $\eta(t)$.
- **31.**Найдите взаимную ковариационную функцию случайных процессов $\xi(t,\omega) = a(\omega)\sin vt + b(\omega)\cos vt$, $\eta(t,\omega) = a(\omega)\sin vt + \gamma(\omega)\cos vt$, $t \in \mathbb{R}, v$ известный неслучайный параметр, случайные величины $a(\omega), b(\omega)$ и $\gamma(\omega)$ являются попарно некоррелированными.
- **32.**Заданы случайные процессы $\eta(t) = U\cos t + V\sin t$, $\eta(t) = U\cos 3t + V\sin 3t$, где U, V некоррелированные случайные величины, причем $M_U = M_V = 0$, $D_U = D_V = 5$. Найти нормированную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t)$.
- **33.**Заданы два случайных процесса: $\xi(t) = U_1 \cos \lambda_1 t + U_2 \sin \lambda_1 t$, $\eta(t) = V_1 \cos \lambda_2 t + V_2 \sin \lambda_2 t$. Математические ожидания всех случайных величин U_1 , U_2 , V_1 , V_2 равны нулю; $D\{U_1\}=D\{U_2\}=4$, $D\{V_1\}=D\{V_2\}=9$. Нормированная ковариационная матрица системы (U_1, U_2, V_1, V_2)

имеет вид
$$\begin{pmatrix} 1 & 0 & 0.25 & 0 \\ & 1 & 0 & -0.25 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix}.$$
 Определить взаимную

ковариационную функцию $R_{\xi\eta}(t, s)$.

34.Заданы два случайных процесса: $\xi(t) = U_1 \cos \lambda_1 t + U_2 \sin \lambda_1 t$, $\eta(t) = V_1 \cos \lambda_2 t + V_2 \sin \lambda_2 t$. Математические ожидания всех случайных величин U_1 , U_2 , V_1 , V_2 равны нулю; $D\{U_1\} = D\{U_2\} = 1$, $D\{V_1\} = D\{V_2\} = 4$. Нормированная ковариационная матрица системы (U_1, U_2, V_1, V_2)

имеет вид
$$\begin{pmatrix} 1 & 0 & 0,5 & 0 \\ & 1 & 0 & -0,5 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix}$$
. Определить взаимную ковариационную

функцию $R_{\xi\eta}(t,s)$.

35.Пусть $T = [0, \infty)$. Рассмотрим процесс, у которого ковариационная функция $R(s, t) = \min(s, t)$, а математическое ожидание m(t) = 0. Доказать неотрицательную определенность R(s, t). Указания: рассмотреть функцию $I_{[0, s]}$ – индикатор соответствующего отрезка.

3. СТАЦИОНАРНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ

Случайный процесс $\xi(t)$, $t \in T$, называется *стационарным в узком смысле*, если для любого целочисленного $n \ge 1$, произвольного набора $t_1, \ldots, t_n \in T$, и любого τ , такого, что $t_1 + \tau$, ..., $t_n + \tau \in T$, справедливо соотношение

$$F_{\xi}(x_1, ..., x_n; t_1, ..., t_n) = F_{\xi}(x_1, ..., x_n; t_1 + \tau, ..., t_n + \tau),$$

$$x_i \in \mathbb{R}, i = \overline{1, n}.$$

Случайный процесс $\xi(t)$, $t \in T$, называется *стационарным в широком смысле* (*стационарным*), если существует момент второго порядка $M\{|\xi(t)|^2\}<\infty$ процесса и выполняются следующие соотношения:

- 1) $m_{\xi}(t) = M\{\xi(t)\} = \text{Const};$
- $(2) R_{\xi}(t,s) = R_{\xi}(t-s)$ для любых $t,s \in \mathbb{T}$, таких, что $(t-s) \in \mathbb{T}$.

Замечания.

1) Если случайный процесс стационарный в узком смысле и для него существует момент второго порядка, то он является и стационарным в широком смысле, но не наоборот.

2) Для гауссовского случайного процесса понятия стационарности в широком и узком смысле эквивалентны.

Пример 5. Пусть $\xi(t) = \cos(tX)$, где t = 1, 2, ..., а случайная величина X равномерно распределенная на отрезке $[0, 2\pi]$. Является ли случайный процесс стационарным в широком смысле?

Решение. Вычислим математическое ожидание и ковариационную функцию процесса.

$$M\{\xi(t)\} = M\{\cos(tX)\} = \int_{-\infty}^{\infty} \cos(tx) \, p_X(x) dx = \frac{1}{2\pi} \int_{0}^{2\pi} \cos(tx) dx = 0,$$

$$R_{\xi}(t,s) = \int_{-\infty}^{\infty} \cos(tx)\cos(sx)p_X(x)dx = \frac{1}{2\pi}\int_{0}^{2\pi} \cos(tx)\cos(sx) dx = 0$$
 при $t \neq s$.

Рассмотрим случай, когда t = s.

$$D_{\xi}(t) = R_{\xi}(t, t) = M\{|\xi(t)|^{2}\} = \int_{-\infty}^{\infty} \cos^{2}(tx) p_{X}(x) dx =$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \cos^{2}(tx) dx = 1/2 < \infty.$$

Таким образом, выполнены все условия определения стационарного в широком смысле случайного процесса, что и доказывает стационарность процесса $\xi(t)$.

Случайные процессы $\xi(t)$ и $\eta(t)$, $t \in T$, называются *стационарно связанными*, если их взаимная ковариационная функция зависит только от разности аргументов, т.е. $R_{\xi\eta}(t,s) = R_{\xi\eta}(t-s)$.

Упражнения

- **1.** Рассматривается случайная величина X как частный случай процесса $\xi(t) = X$. Является ли этот процесс стационарным в широком смысле?
- **2.** Случайный процесс $\xi(t)$ представляет собой случайную величину ξ , т.е. $\xi(t) = \xi$, причем $P\{\xi = \pm 1\} = 0,5$. Является ли процесс $\xi(t)$ стационарным в широком смысле?
- **3.** Случайный процесс $\xi(t) = \xi$, где ξ случайная величина, имеющая распределение Пуассона с параметром $\lambda = 3$. Является ли процесс $\xi(t)$ стационарным в широком смысле?
- **4.** Пусть случайный процесс имеет вид $\xi(t) = V \sin t$, $t \ge 0$, где V случайная величина, распределенная нормально с параметрами $m_V = 2$ и $D_V = 4$. Является ли процесс $\xi(t)$ стационарным в широком смысле?

- **5.** Пусть случайный процесс имеет вид $\xi(t) = A \cos(t + \varphi)$, $t \ge 0$, где φ неслучайная величина, A случайная величина. Является ли процесс $\xi(t)$ стационарным в широком смысле?
- **6.** Пусть случайный процесс имеет вид $\xi(t) = Y \cos 3t$, где Y случайная величина. Является ли процесс $\xi(t)$ стационарным в широком смысле?
- 7. Пусть φ случайная величина с плотностью $p_{\varphi}(x) = \cos x, x \in [0, \pi/2],$ a, b положительные постоянные. Будет ли случайный процесс $\xi(t) = a \sin(bt + \varphi)$ стационарным в широком смысле?
- **8.** Является ли случайный процесс $\xi(t) = X \sin \lambda t$, где λ постоянная, X случайная величина с математическим ожиданием $m_X = 1$ и дисперсией $D_X = 0.2$, стационарным в широком смысле?
- **9.** Является ли случайный процесс $\xi(t) = 5t^2X + 2t$, где X случайная величина с математическим ожиданием, равным 2, и дисперсией 0,4, стационарным в широком смысле?
- **10.**Является ли стационарным в широком смысле случайный процесс вида $\xi(t) = X \cos \lambda t + Y \sin \lambda t + 5t$, где X, Y некоррелированные случайные величины с $m_X = 1$, $m_Y = 0.2$, $D_X = 0.1$, $D_Y = 0.004$, λ положительная постоянная.
- **11.**Доказать, что если $\xi(t)$ стационарный в широком смысле случайный процесс, Y случайная величина, не связанная с $\xi(t)$, то случайный процесс $\eta(t) = \xi(t) + Y$ стационарен в широком смысле.
- **12.**Задан случайный процесс $\xi(t) = t^2 + U \sin t + V \cos t$, где U, V случайные величины, причем $M\{U\} = M\{V\} = 0$, $M\{UV\} = 0$, $D\{U\} = D\{V\} = 10$. Доказать, что а) $\xi(t)$ нестационарный в широком смысле случайный процесс; б) $\xi^0(t) = \xi(t) M\{\xi(t)\}$ стационарный в широком смысле случайный процесс.
- **13.**Пусть φ случайная величина, равномерно распределенная на отрезке $[0, 2\pi]$, A, b положительные постоянные. Доказать, что случайный процесс $\xi(t) = A \sin(bt + \varphi)$ стационарный в широком смысле.
- **14.**Задан случайный процесс $\xi(t) = \cos(t + \varphi)$, где φ случайная величина, распределенная равномерно на отрезке $[0, 2\pi]$. Доказать, что $\xi(t)$ стационарный в широком смысле.
- **15.**Задан случайный процесс $\xi(t) = \sin(t+\phi)$, где ϕ случайная величина, распределенная равномерно на отрезке $[0, 2\pi]$. Доказать, что $\xi(t)$ стационарный в широком смысле.
- **16.**Является ли стационарным в широком смысле случайный процесс вида $\xi(t) = U \sin t + V \cos t$, где U, V некоррелированные случайные величины с $M\{U\} = M\{V\} = 0$, $D\{U\} = D\{V\} = D$?

- **17.**Задано два случайных процесса $\xi(t) = V\cos t U\sin t$ и $\eta(t) = U\cos t + V\sin t$, где U, V некоррелированные случайные величины, причем их математические ожидания равны нулю, а дисперсии равны 5. Доказать, что заданные процессы стационарны и стационарно связаны.
- **18.**Задано два случайных процесса $\xi(t) = \cos(t + \varphi)$ и $\eta(t) = \sin(t + \varphi)$, где φ случайная величина, распределенная равномерно на отрезке $[0, 2\pi]$. Доказать, что заданные стационарные процессы стационарно связаны.
- **19.**Пусть $\xi(t) = 0.5Xt$, $t \ge 0$, $P\{X = \pm 1\} = 0.5$. Будет ли случайный процесс $\xi(t)$ стационарным в широком смысле?
- **20.**Является ли случайный процесс $\xi(t) = X(t) + i Y(t)$, где X(t), Y(t) некоррелированные случайные процессы с характеристиками: $M\{X(t)\} = t^2$, $R_X(t, s) = e^{-\alpha(t-s)^2}$, $M\{Y(t)\} = 1$, $R_Y(t, s) = e^{2\beta(t+s)}$, стационарным в широком смысле?
- **21.**Является ли случайный процесс $\xi(t) = X(t) + i Y(t)$, где X(t), Y(t) некоррелированные случайные процессы с характеристиками: $M\{X(t)\} = M\{Y(t)\} = 0$, $R_X(t, s) = e^{-\alpha(t-s)^2}$, $R_Y(t, s) = e^{2\beta(t+s)}$, стационарным в широком смысле?
- **22.**Является ли случайный процесс $\xi(t) = X(t) + i Y(t)$, где X(t), Y(t) некоррелированные случайные процессы с характеристиками: $M\{X(t)\} = M\{Y(t)\} = 0$, $R_X(t, s) = e^{-(t-s)^2}$, $R_Y(t, s) = 9 \cos bt \cos bs$, стационарным в широком смысле?
- **23.**Задано два стационарных случайных процесса $\xi(t) = V \cos t + U \sin t$ и $\eta(t) = V \cos t + W \sin t$, где U, V, W некоррелированные случайные величины, причем их математические ожидания равны нулю, а дисперсии равны 6. Являются ли заданные процессы стационарно связанными?
- **24.**Задано два стационарных случайных процесса $\xi(t) = U \cos t + V \sin t$ и $\eta(t) = U \cos 2t + V \sin 2t$, где U, V некоррелированные случайные величины, причем их математические ожидания равны нулю, а дисперсии равны 3. Доказать, что заданные процессы стационарно связаны.
- **25.**Пусть случайная величина θ распределена равномерно на отрезке $[-\pi, \pi]$, а случайная величина η имеет стандартное нормальное распределение и не зависит от θ . Показать, что последовательность $\xi(t) = \begin{cases} \eta, & t = 0, \\ e^{i\theta t}, & t \neq 0, \end{cases}$ является стационарной в широком смысле.

26. Пусть v – неслучайный параметр, $a(\omega)$, $b(\omega)$ – случайные величины, плотность распределения которых имеет совместная вид:

совместная плотность распределения которых имеет вид:
$$p_{ab}(x, y) = \begin{cases} 24x^2y^2/\pi, & x^2 + y^2 \le 1, \\ 0, & x^2 + y^2 > 1. \end{cases}$$
 Определить, является ли процесс

- $\xi(t) = a(\omega)\sin vt + b(\omega)\cos vt$, $t \in T$, стационарным в широком смысле.
- **27.**Пусть $w(t), t \in [0, \infty), -$ процесс броуновского движения и $\tau > 0$. Показать, что процесс $\xi(t) = w(t+\tau) - w(t)$, $t \ge 0$, является стационарным, найти его ковариационную функцию.
- **28.**Пусть w(t), $t \ge 0$, стандартный процесс броуновского движения. Положим $\xi(t) = e^{-t} w(e^{2t})$. Докажите, что $\xi(t)$ – стационарный процесс.
- 29. Является ли процесс броуновского движения а) стационарным в широком смысле; б) стационарным в узком смысле?
- **30.** Пусть $\xi(t)$, $t \ge 0$, случайный процесс Пуассона с параметром λ . Является ли этот процесс стационарным в широком смысле?
- 31. Является ли случайный процесс Коши стационарным в широком смысле?
- **32.**Показать, что последовательность скользящего среднего $\xi(n)=\sum_{k=-\infty}^{\infty}a_ke_{n-k}=\sum_{k=-\infty}^{\infty}a_{n-k}e_k$, где последовательность комплексных

чисел a_k такова, что $\sum_{k=-\infty}^{\infty} |a_k|^2 < \infty$, e_n – стандартный белый шум,

- удовлетворяет условиям стационарности в широком смысле.
- **33.**Пусть $\xi(t)$ есть бесконечная в обе стороны последовательность некоррелированных случайных величин, т.е. таких, что $M\{\xi(t)\overline{\xi(s)}\}=0$ при $t \neq s$, причем $M\{\xi(t)\} = 0$, $M\{|\xi(t)|^2\} = 1$ при всех t. Пусть последовательность комплексных чисел c(t) обладает следующим

свойством:
$$\sum_{t=-\infty}^{+\infty} |c(t)|^2 < \infty$$
. Очевидно, ряд $\eta(t) = \sum_{s=-\infty}^{+\infty} c(t-s)\xi(s)$

- сходится в среднеквадратическом смысле. Является ли случайный процесс $\eta(t)$ стационарным в широком смысле?
- **34.**Пусть v неслучайный параметр, $a(\omega)$, $b(\omega)$ случайные величины, совместная плотность распределения которых имеет $p_{ab}(x, y) =$ $\begin{cases} 24x^2y^2/\pi, & x^2 + y^2 \le 1, \\ 0, & x^2 + y^2 > 1. \end{cases}$ Является ли случайный процесс
 - $\xi(t) = a(\omega)\sin vt + b(\omega)\cos vt$, $t \in T$, стационарным в узком смысле?

35.Пусть ξ_1 и ξ_2 — независимые одинаково распределенные случайные величины, принимающие значение +1 и -1 с вероятностями 1/2. Доказать, что случайный процесс $\eta(t) = \xi_1 \cos \lambda t + \xi_2 \sin \lambda t$, $t \in \mathbb{R}$, не является стационарным в узком смысле, но является стационарным в широком смысле.

4. СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СТАЦИОНАРНЫХ СЛУЧАЙНЫХ ПРОЦЕССОВ

Спектральной плотностью $f_{\xi}(\lambda)$, $\lambda \in \Pi = [-\pi, \pi]$, стационарного в широком смысле случайного процесса $\xi(n)$, $n \in \mathbb{Z}$, имеющего ковариационную функцию $R_{\xi}(n)$, $n \in \mathbb{Z}$, называется функция

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} R_{\xi}(n) e^{-i\lambda n}, \qquad (2)$$

при условии, что $\sum_{n=-\infty}^{\infty} \left| R_{\xi}(n) \right| < \infty$.

Спектральной плотностью $f_{\xi}(\lambda)$, $\lambda \in \mathbb{R}$, стационарного в широком смысле случайного процесса $\xi(t)$, $t \in \mathbb{R}$, имеющего ковариационную функцию $R_{\xi}(t)$, $t \in \mathbb{R}$, называется функция вида

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{\xi}(t) e^{-i\lambda t} dt, \qquad (3)$$

при условии, что $\int_{-\infty}^{\infty} |R_{\xi}(t)| dt < \infty$.

Нормированной спектральной плотностью стационарного случайного процесса $\xi(t)$, $t \in Z(R)$, называется отношение вида

$$f_{\xi \text{ HOPM.}}(\lambda) = f_{\xi}(\lambda)/D_{\xi}$$
,

 $\lambda \in \Pi(R), \ D_{\xi}$ – дисперсия процесса $\xi(t)$.

Теорема 5. Ковариационная функция может быть однозначно восстановлена по спектральной плотности обратным преобразованием Фурье:

$$R_{\xi}(n) = \int_{\Pi} e^{i\lambda n} f_{\xi}(\lambda) d\lambda, \ n \in \mathbb{Z},$$

где $f_{\xi}(\lambda)$, $\lambda \in \Pi$, — спектральная плотность стационарного случайного процесса $\xi(n)$, $n \in \mathbb{Z}$;

$$R_{\xi}(t) = \int_{-\infty}^{\infty} e^{i\lambda t} f_{\xi}(\lambda) d\lambda, \ t \in \mathbb{R},$$

где $f_{\xi}(\lambda)$, $\lambda \in \mathbb{R}$, – спектральная плотность стационарного случайного процесса $\xi(t)$, $t \in \mathbb{R}$.

Пример 6. Пусть стационарный случайный процесс $\xi(t)$, $t \in [0,\infty)$ имеет ковариационную функцию $R_{\xi}(t) = \sigma^2 e^{-\alpha|t|}$, $\alpha > 0$, $\sigma^2 = R_{\xi}(0) = D_{\xi}$. Найти спектральную плотность процесса $\xi(t)$.

Решение. Из определения (3) спектральной плотности стационарного процесса с непрерывным временем

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{R} R_{\xi}(t) e^{-i\lambda t} dt = \frac{\sigma^{2}}{2\pi} \int_{R} e^{-\alpha|t| - i\lambda t} dt =$$

$$= \frac{\sigma^{2}}{2\pi} \left(\int_{-\infty}^{0} e^{(\alpha - i\lambda)t} dt + \int_{0}^{\infty} e^{-(\alpha + i\lambda)t} dt \right) = \frac{\sigma^{2}}{2\pi} \left(\frac{1}{\alpha - i\lambda} + \frac{1}{\alpha + i\lambda} \right) = \frac{\alpha \sigma^{2}}{\pi(\alpha^{2} + \lambda^{2})}.$$

Пример 7. Пусть $\varepsilon(n)$, $n \in \mathbb{Z}$, —последовательность некоррелированных случайных величин с нулевым математическим ожиданием и дисперсией $D\{\varepsilon(n)\} = D > 0$. Доказать, что последовательность стационарна в широком смысле, найти ее моментные и спектральные характеристики.

Решение. Известно, что $M\{\varepsilon(n)\}=0$. Тогда $M\{\varepsilon^2(n)\}=D<\infty$. Найдем ковариационную функцию последовательности:

$$\operatorname{cov}\{\varepsilon(n+k), \varepsilon(k)\} = R_{\varepsilon}(n) = \begin{cases} D, n = 0, \\ 0, n \neq 0, \end{cases}$$

так как зависимость от разности аргументов, то последовательность стационарна в широком смысле. Учитывая определение (2), найдем спектральную плотность

$$f_{\varepsilon}(\lambda) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{-i\lambda n} R_{\varepsilon}(n) = \frac{1}{2\pi} e^{-i\lambda n} R_{\varepsilon}(n) \Big|_{n=0} = \frac{D}{2\pi}.$$

От суммы остается только одно слагаемое, т.к. в остальных случаях ковариационная функция равна нулю.

Замечание. Последовательность $\varepsilon(n)$, $n \in \mathbb{Z}$, рассмотренную в примере 7, обычно называют *белым шумом*. При D=1 белый шум называется *стандартным*.

Упражнения

1. Зная ковариационную функцию $R_{\xi}(t) = D \cos bt$, где D > 0, b - неслучайная величина, стационарного случайного процесса $\xi(t)$, найти его спектральную плотность.

- **2.** Зная ковариационную функцию $R_{\xi}(t) = \sum_{i=1}^{n} D_{i} \cos b_{i} t$, где $D_{i} > 0$, b_{i} неслучайные величины, стационарного случайного процесса $\xi(t)$, найти его спектральную плотность.
- 3. Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = \sum_{i=1}^{n} D_{i} e^{-\alpha_{i}|t|}$, где $D_{i} > 0$, $\alpha_{i} > 0$.
- **4.** Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = De^{-\alpha|t|}\cos\lambda_0 t$, где D > 0, $\alpha > 0$, λ_0 постоянная величина.
- **5.** Ковариационная функция стационарного случайного процесса $\xi(t)$ задана в виде $R_{\xi}(t) = D_{\xi}e^{-at^2}\cos bt$, a>0. Определить спектральную плотность случайного процесса $\xi(t)$.
- **6.** Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = D \, e^{-a|t|} \left\{ \cos bt + \frac{a}{b} \sin b|t| \right\}, \ D > 0, \ a,b > 0$ некоторые постоянные.
- 7. Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = D e^{-a|t|} \{\cos bt \frac{a}{b} \sin b|t|\}$, где постоянные D > 0, a, b > 0.
- **8.** Ковариационная функция стационарного случайного процесса $\xi(t)$ задана в виде $R_{\xi}(t) = D_{\xi} e^{-a^2 t^2}$, a > 0. Определить спектральную плотность процесса $\xi(t)$.
- **9.** Ковариационная функция стационарного случайного процесса $\xi(t)$ задана в виде $R_{\xi}(t) = D_{\xi} e^{-a^2 t^2} \cos bt$, a>0. Определить спектральную плотность случайного процесса $\xi(t)$.
- **10.**Найти спектральную плотность стационарного случайного процесса $\xi(t)$, зная его ковариационную функцию $R_{\xi}(t) = De^{-\alpha|t|}(1+\alpha|t|)$, $\alpha > 0$.
- **11.**Стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = D_{\xi}e^{-a|t|}(1+a|t|+a^2t^2/3), \quad a>0.$ Найти спектральную плотность этого процесса.
- **12.**Стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = D_{\xi}e^{-a|t|}(1+a|t|-2a^2t^2+a^3|t|^3/3), \ a>0$. Найти спектральную плотность этого случайного процесса.

- 13. Найти спектральную плотность последовательности скользящего среднего $\xi(n) = \sum_{k=-\infty}^{\infty} a_k e_{n-k} = \sum_{k=-\infty}^{\infty} a_{n-k} e_k$, где последовательность комплексных чисел a_k такова, что $\sum_{k=-\infty}^{\infty} |a_k|^2 < \infty$, e_n — стандартный
- 14. Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = a^2 \{1 - |t|\} I(1 - |t|)$, где $I(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$

белый шум.

- 15. Найти спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = a^2 \{1 - |t|/\tau\} I(1 - |t|/\tau)$, где $I(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$
- 16. Найти спектральную плотность стационарного случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = 1 - |t|/5, \ |t| \le 5;$ и $R_{\xi}(t) = 0$, |t| > 5.
- **17.**Пусть w(t), $t \ge 0$, стандартный процесс броуновского движения. Положим $\xi(t) = e^{-t} w(e^{2t})$. Найти спектральную плотность процесса $\xi(t)$.
- **18.**Зная спектральную плотность $f_{\xi}(\lambda) = 1/2\pi$ стационарной случайной последовательности $\xi(t)$, $t \in \mathbb{Z}$, найти ее ковариационную функцию.
- 19. Найти ковариационную функцию стационарного в широком смысле случайного процесса $\xi(t)$, спектральная плотность которого имеет вид $f_{\xi}(\lambda) = a^2 I(1 - |\lambda|/b), \text{ где } b > 0, I(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$
- **20.**Зная спектральную плотность $f_{\xi}(\lambda) = D/(\pi(1 + \lambda^2)), D > 0, \lambda \in \mathbb{R},$ стационарного случайного процесса $\xi(t)$, найти его ковариационную функцию.
- 21. Найти ковариационную функцию стационарного случайного процесса $\xi(t)$, зная его спектральную плотность $f_{\xi}(\lambda) = 2/(\pi(4 + \lambda^2))$.
- 22. Найти ковариационную функцию стационарного в широком смысле случайного процесса $\xi(t)$, спектральная плотность которого имеет вид

$$f_{\xi}(\lambda) = \sum_{i=1}^{n} D_{i} \alpha_{i} / (\pi(\alpha_{i}^{2} + \lambda^{2})),$$
 где $D_{i} > 0, \alpha_{i} > 0.$

23.Спектральная плотность случайной последовательности имеет вид: $f_{\xi}(\lambda) = 2 + 2\cos\lambda, \ \lambda \in [-\pi, \pi]$. Найти дисперсию процесса $\xi(t)$.

- **24.**Дана спектральная плотность $f_{\xi}(\lambda) = \begin{cases} \sigma^2/2\pi, /\lambda \mid \leq \lambda_0, \\ 0, \lambda_0 < /\lambda \mid, \end{cases}$ стационарного случайного процесса с непрерывным временем. Найти дисперсию $\xi(t)$.
- **25.**Найти дисперсию стационарного случайного процесса $\xi(t)$, спектральная плотность которого имеет вид $f_{\xi}(\lambda) = 10/(\pi(1+\lambda^2))$.
- **26.**Зная спектральную плотность $f_{\xi}(\lambda) = 1/2\pi$ стационарной случайной последовательности $\xi(t)$, $t \in \mathbb{Z}$, найти ее нормированную спектральную плотность.
- **27.**Зная ковариационную функцию $R_{\xi}(t) = D \cos bt$, D > 0, b неслучайная величина, стационарного случайного процесса $\xi(t)$, найти его нормированную спектральную плотность.
- **28.**Найти нормированную спектральную плотность центрированного стационарного в широком смысле случайного процесса $\xi(t)$, зная его ковариационную функцию $R_{\xi}(t) = \sum_{i=1}^{n} D_{i} \cos b_{i} t$, где $D_{i} > 0$, b_{i} неслучайные величины.
- **29.**Задана спектральная плотность $f_{\xi}(\lambda) = 10\alpha / (\pi(\alpha^2 + \lambda^2)), \quad \alpha > 0,$ стационарного случайного процесса $\xi(t)$. Найти нормированную спектральную плотность.
- **30.**Найти нормированную спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, спектральная плотность которого имеет вид $f_{\xi}(\lambda) = \sum_{i=1}^{n} D_{i}\alpha_{i} / (\pi(\alpha_{i}^{2} + \lambda^{2}))$, где $D_{i} > 0$, $\alpha_{i} > 0$.
- **31.**Найти нормированную спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = e^{-|t|} \cos t$.
- **32.**Найти нормированную спектральную плотность центрированного стационарного случайного процесса $\xi(t)$, зная его ковариационную функцию $R_{\xi}(t) = 100e^{-0.1|t|}(1+0.1|t|)$.
- **33.**Ковариационная функция стационарного случайного процесса $\xi(t)$ задана в виде $R_{\xi}(t) = D_{\xi}e^{-at^2}\cos bt$, a > 0. Определить нормированную спектральную плотность процесса $\xi(t)$.
- **34.**Найти нормированную спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, спектральная плотность которого имеет вид $f_{\xi}(\lambda) = a^2 I(1-|\lambda|/b)$, где b>0, $I(x) = \begin{cases} 1, & x>0, \\ 0, & x\leq 0. \end{cases}$

35.Найти нормированную спектральную плотность стационарного в широком смысле случайного процесса $\xi(t)$, ковариационная функция которого имеет вид $R_{\xi}(t) = De^{-a|t|} \{\cos bt - \frac{a}{b} \sin b|t|\}, D > 0, a > 0, b > 0$ некоторые постоянные.

5. НЕПРЕРЫВНОСТЬ СЛУЧАЙНЫХ ПРОЦЕССОВ. ДИФФЕРЕНЦИРУЕМОСТЬ СЛУЧАЙНЫХ ПРОЦЕССОВ

Понятие сходимости является основополагающим не только в классическом, но и в стохастическом анализе. В теории случайных процессов рассматривают различные виды сходимости, и, как следствие, различные виды непрерывности, дифференцируемости, интегрируемости и т.д.

Далее, если не оговорено дополнительно, используем лишь одно понятие сходимости – сходимость в среднеквадратическом смысле. Это связано с тем, что вышеупомянутое понятие сходимости является наиболее приемлемым с точки зрения приложений, поскольку анализ существования предела, непрерывности, дифференцируемости интегрируемости случайных процессов сводится К изучению соответствующих свойств их ожиданий математических ковариационных функций.

Пусть $\xi(t)$, $t \in T \subseteq R$,—действительный случайный процесс с конечным моментом второго порядка $M\{|\xi(t)|^2\} < \infty$.

Случайный процесс $\xi(t)$, $t \in T$, сходится в *среднеквадратическом смысле* к случайной величине η при $t \to t_0$, если

$$\lim_{t \to t_0} M\{|\xi(t) - \eta|^2\} = 0.$$

Указанный вид сходимости будем далее обозначать $\eta = \underset{t \to t_0}{l.i.m.} \xi(t).$

Случайный процесс $\xi(t)$ называют *непрерывным* в среднеквадратическом смысле в точке $t_0 \in T$, если существует предел

$$\underset{t \to t_0}{l.i.m.} \xi(t) = \xi(t_0).$$

В противном случае процесс называется разрывным в точке t_0 .

Если процесс $\xi(t)$ является непрерывным в среднеквадратическом смысле в каждой точке $t \in T$, то его называют непрерывным на всем множестве T.

Пример 8. Доказать, что винеровский случайный процесс w(t), $t \in T = [0, \infty)$, является непрерывным в среднеквадратическом смысле на множестве T.

Решение. Из определения непрерывности в среднеквадратическом смысле, учитывая свойства винеровского процесса, запишем

$$\lim_{t \to t_0} M\{|w(t) - w(t_0)|^2\} = \lim_{t \to t_0} |t - t_0|\sigma^2 = 0.$$

Теорема 6. Для того чтобы случайный процесс $\xi(t)$, $t \in T$, был непрерывен в среднеквадратическом смысле на множестве T, необходимо и достаточно, чтобы была непрерывна в каждой точке (t,s) множества $T \times T$ его корреляционная функция $R_{\xi}^{0}(t,s)$.

Теорема 7. Случайный процесс $\xi(t)$, $t \in T$, непрерывен в среднеквадратическом смысле на множестве T тогда и только тогда, когда на T непрерывно его математическое ожидание $m_{\xi}(t)$, а на T×T непрерывна его ковариационная функция $R_{\xi}(t,s)$.

Следствие. Для того чтобы стационарный случайный процесс $\xi(t)$, $t \in T$, был непрерывен в среднеквадратическом смысле в точке t необходимо и достаточно, чтобы его ковариационная функция $R_{\xi}(t)$ была непрерывна в точке t=0.

Пример 9. Задан случайный процесс
$$\xi(t) = \sum_{k=1}^{n} V_k \varphi_k(t), \ t \in T, \ V_k$$
 —

некоррелированные случайные величины с параметрами $M\{V_k\} = m_k$, $D\{V_k\} = D_k$, $\{\phi_k(t)\}$ — непрерывные на Т неслучайные функции. Исследовать $\xi(t)$ на непрерывность в среднеквадратическом смысле.

Решение. Найдем математическое ожидание и ковариационную функцию. Очевидно, что

$$m_{\xi}(t) = \sum_{k=1}^{n} \varphi_{k}(t) m_{k},$$

$$R_{\xi}(t, s) = \sum_{k=1}^{n} \sum_{l=1}^{n} \text{cov}\{V_{k}, V_{l}\} \varphi_{k}(t) \varphi_{l}(s) = \sum_{k=1}^{n} D_{k} \varphi_{k}(t) \varphi_{k}(s),$$

так как по условию $\text{cov}\{V_k,V_l\}=0$ при $k\neq l$. Отсюда вытекает, что математическое ожидание и ковариационная функция непрерывны на T и T×T соответственно и, следовательно, $\xi(t)$ непрерывна в среднеквадратическом смысле на T.

Случайный процесс $\xi(t)$, $t \in T$, называется $\partial u \phi \phi$ еренцируемым в среднеквадратическом смысле в точке $t_0 \in T$, если существует случайная величина $\xi'(t_0)$, для которой

$$\lim_{t \to t_0} M\{\left| \frac{\xi(t) - \xi(t_0)}{t - t_0} - \xi'(t_0) \right|^2\} = 0.$$

Если процесс $\xi(t)$, $t \in T$, дифференцируем в среднеквадратическом смысле в каждой точке $t \in T$, то будем говорить, что $\xi(t)$ дифференцируем в среднеквадратическом смысле на всем множестве T.

Из дифференцируемости в среднеквадратическом смысле вытекает соответствующая непрерывность.

Теорема 8. Для того чтобы случайный процесс $\xi(t)$, $t \in T$, был непрерывно дифференцируем в среднеквадратическом смысле на T, необходимо и достаточно, чтобы корреляционная функция $R_{\xi}^{0}(t,s)$ обладала на множестве $T \times T$ непрерывной смешанной производной второго порядка по t и s.

Теорема 9. Для того чтобы случайный процесс $\xi(t)$, $t \in T$, был дифференцируем в среднеквадратическом смысле в точке $t_0 \in T$, а для случайной величины $\xi'(t_0)$ существовали математическое ожидание и ковариационная функция, необходимо и достаточно, чтобы существовали производная $\frac{dm_{\xi}(t)}{dt}$ в точке t_0 и смешанная производная

второго порядка
$$\frac{\partial^2 R_{\xi}(t,s)}{\partial t \partial s}$$
 в точке (t_0,t_0) .

Если процесс $\xi(t)$ дифференцируем на T, то его производная в среднеквадратическом смысле $\xi'(t)$, t \in T, имеет математическое ожидание и ковариационную функцию, определенные формулами

$$M\{\xi'(t)\} = \frac{dm_{\xi}(t)}{dt}, \qquad R_{\xi'}(t,s) = \frac{\partial^2 R_{\xi}(t,s)}{\partial t \partial s} = \frac{\partial^2 R_{\xi}(t,s)}{\partial s \partial t}.$$

Следствие. Пусть $\xi(t)$, $t \in T$, — дифференцируемый на множестве T стационарный случайный процесс с постоянным математическим ожиданием и ковариационной функцией $R_{\xi}(t)$. Тогда его производная в среднеквадратическом смысле $\xi'(t)$, $t \in T$, имеет нулевое математическое ожидание $M\{\xi'(t)\}=0$ и ковариационную функцию $R_{\xi'}(t)=-R_{\xi}^{"}(t)$.

Совместная ковариационная функция процесса и его производной определяется матрицей

$$\begin{pmatrix} R_{\xi\xi}(t,s) & R_{\xi\xi'}(t,s) \\ R_{\xi'\xi}(t,s) & R_{\xi'\xi'}(t,s) \end{pmatrix} = \begin{pmatrix} R_{\xi}(t,s) & \partial R_{\xi}(t,s)/\partial s \\ \partial R_{\xi}(t,s)/\partial t & \partial^{2} R_{\xi}(t,s)/\partial t \partial s \end{pmatrix}.$$

Для стационарного в широком смысле случайного процесса соответственно

$$\begin{pmatrix} R_{\xi\xi}(t) & R_{\xi\xi'}(t) \\ R_{\xi'\xi}(t) & R_{\xi'\xi'}(t) \end{pmatrix} = \begin{pmatrix} R_{\xi}(t) & -R'_{\xi}(t) \\ R'_{\xi}(t) & -R''_{\xi}(t) \end{pmatrix}.$$

Пример 10. Задан случайный процесс $\xi(t) = \sum_{k=1}^{n} V_k \varphi_k(t), t \in T$, где

 $\{\phi_k(t)\}$ — неслучайные дифференцируемые функции, $\{V_k\}$ — случайные коэффициенты, причем $M\{V_k\}^2 < \infty$. Является ли процесс $\xi(t)$ дифференцируемым в среднеквадратическом смысле?

Pешение. В силу условия $M{\{V_k\}}^2 < \infty$, следует, что функции $m_{\xi}(t)$ и $R_{\xi}(t,s)$ определены и имеют вид

$$m_{\xi}(t) = \sum_{k=1}^{n} \varphi_k(t) m_k,$$

$$R_{\xi}(t,s) = \sum_{k=1}^{n} \sum_{l=1}^{n} \operatorname{cov}\{V_{k}, V_{l}\} \varphi_{k}(t) \varphi_{l}(s) = \sum_{k=1}^{n} \sum_{l=1}^{n} R_{V}(k,l) \varphi_{k}(t) \varphi_{l}(s),$$

где $M\{V_k\} = m_k$, $R_V(k, l) = \text{cov}\{V_k, V_l\}$. Очевидно, что функции $m_\xi(t)$ и $R_\xi(t, s)$ дифференцируемы необходимое число раз как линейные комбинации дифференцируемых функций. Поэтому функция $\xi(t)$ является дифференцируемой в среднеквадратическом смысле, при этом

$$m_{\xi'}(t) = \sum_{k=1}^{n} \varphi'_k(t) m_k, \qquad R_{\xi'}(t,s) = \sum_{k=1}^{n} \sum_{l=1}^{n} R_V(k,l) \varphi'_k(t) \varphi'_l(s).$$

Упражнения

- **1.** Доказать, что случайный процесс $\eta(t) = \varphi(t)\xi(t) + \psi(t)$ непрерывен в среднеквадратическом смысле, если $\varphi(t)$, $\psi(t)$ непрерывные детерминированные функции, $\xi(t)$ непрерывный в среднеквадратическом смысле случайный процесс.
- **2.** Стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = e^{-\alpha|t|}$. Найти математическое ожидание и ковариационную функцию процесса $\eta(t) = \xi'(t)$.
- **3.** Стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = e^{-\alpha|t|}(1+\alpha|t|)$. Найти математическое ожидание и ковариационную функцию процесса $\eta(t) = \xi'(t)$.
- **4.** Будет ли непрерывным и дифференцируемым в среднеквадратическом смысле стационарный случайный процесс, ковариационная функция которого имеет вид $R_{\xi}(t) = De^{-\alpha|t|}\cos\beta t$, где D, α , β положительные постоянные величины, $t \in \mathbb{R}$.
- **5.** Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$, если $m_{\xi}(t) = 0$, $R_{\xi}(t) = \sigma^2 \cos \varphi t$.

- **6.** На плоскости движется случайная точка M так, что ее полярный угол ϕ является случайной функцией времени с ковариационной функцией $R_{\phi}(t,s) = a^2 e^{-b^2(t-s)^2}$. Найти дисперсию угловой скорости $v(t) = \phi'(t)$ полярного радиуса-вектора точки M.
- **7.** Пусть стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t,s) = 2\,e^{-\lambda(t-s)^2}$, $\lambda>0$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t)=\xi'(t)$.
- **8.** Ковариационная функция дифференцируемого в среднеквадратическом смысле случайного процесса $\xi(t)$ имеет вид: $R_{\xi}(t, s) = \frac{D_{\xi} \cos b(t-s)}{t+s}$, где b постоянная. Найти ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **9.** Известно, что $m_{\xi}(t) = 2t + 1$; $R_{\xi}(t, s) = e^{-(t-s)^2}$; $\eta(t) = \xi'(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t)$.
- **10.**Математическое ожидание и ковариационная функция случайного процесса $\xi(t)$ заданы соответственно формулами: $m_{\xi}(t) = \cos bt$, $R_{\xi}(t,s) = De^{-a|t-s|} \{\cos b(t-s) + \frac{a}{b}\sin b|t-s|\}$, где D,a,b положительные постоянные. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **11.**Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \xi'(t)$, если $m_{\xi}(t) = a + bt + ct^2$,

$$R_{\xi}(t, s) = e^{-\alpha|t-s|} (\cos \lambda_0(t-s) + \frac{\alpha}{\lambda_0} \sin \lambda_0|t-s|),$$

 $a, b, c, \alpha > 0$ – постоянные, $\lambda_0 \in [-\pi, \pi]$.

- **12.**Зная представление случайного процесса $\xi(t) = V \sin t$, $t \ge 0$, где случайная величина V имеет равномерное распределение на отрезке [2, 4], найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **13.**Задан случайный процесс $\xi(t) = Ue^{3t}\cos 2t$, где U случайная величина, причем $M\{U\} = 4$, $D\{U\} = 1$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **14.**Задан случайный процесс $\xi(t) = X e^{-at} \cos bt$, где X случайная величина, характеристики которой $M\{X\} = 0$, $D\{X\} = 1$, a, b постоянные величины. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.

- **15.**Докажите, что случайный процесс $\xi(t) = e^{-2t} \sin(t + \phi)$, $t \in T$, ϕ случайная величина, распределенная по равномерному закону на отрезке $[0, 2\pi]$, дифференцируем на T.
- **16.**Докажите, что случайный процесс $\xi(t) = |\sin t| \sin(2t + \varphi), t \in [0, \infty), \varphi$ случайная величина, распределенная по равномерному закону на отрезке $[0, 2\pi]$, дифференцируем на T.
- **17.**Задан случайный процесс $\xi(t) = |\sin t| \sin(bt + \phi)$, где $t \in [0, \infty)$, b положительная постоянная, ϕ случайная величина, распределенная по равномерному закону на отрезке $[0, 2\pi]$. Будет ли этот процесс дифференцируемым в среднеквадратическом смысле, и будут ли дифференцируемы реализации этого процесса?
- **18.**Найти математическое ожидание производной случайного процесса $\xi(t) = We^{-Vt}$, где случайная величина W распределена нормально с параметрами m, σ^2 , а случайная величина V распределена равномерно на отрезке [0,a]; t>0, a>0, случайные величины W, V независимы.
- **19.**Случайный процесс $\xi(t)$ задан каноническим разложением: $\xi(t) = 1 + t + Ut + Vt^2 + Wt^3$, $D\{U\} = 2$; $D\{V\} = 1$; $D\{W\} = 0,1$. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **20.** Случайный процесс $\xi(t)$ задан каноническим разложением: $\xi(t) = 1 + 2t + Ut + Vt^2 + Wt^3$. Известны дисперсии коэффициентов разложения: $D\{U\} = 4$; $D\{V\} = 3$; $D\{W\} = 2$. Выписать моментные характеристики процесса $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию $\eta(t) = \xi'(t)$.
- **21.**Случайный процесс $\xi(t)$ задан каноническим разложением $\xi(t) = 2 + t + \beta t^2 + \alpha t^3$, где α , β центрированные некоррелированные случайные величины, $D\{\alpha\} = D\{\beta\} = 0,1$. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **22.**Случайный процесс $\xi(t)$ задан каноническим разложением $\xi(t) = 1 + t + \gamma t + \beta t^2 + \alpha t^3$, где α , β , γ центрированные некоррелированные случайные величины, $D\{\alpha\} = 0,1, D\{\beta\} = 1, D\{\gamma\} = 2$. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию, дисперсию процесса $\eta(t) = \xi'(t)$. **23.**Задан случайный процесс $\xi(t) = t + 2 + Ut^2 + Vt^3 + Wt^4$, где U, V, W —
- **23.**Задан случайный процесс $\xi(t) = t + 2 + Ut^2 + Vt^3 + Wt^4$, где U, V, W некоррелированные случайные величины с нулевым математическим ожиданием и дисперсиями $D\{U\} = 1, D\{V\} = 2, D\{W\} = 0,1$. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.

- **24.**Задан случайный процесс $\xi(t) = U_1 \cos bt + U_2 \sin bt$, где U_1 , U_2 некоррелированные случайные величины с нулевым математическим ожиданием и дисперсией σ^2 , b неслучайная величина. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **25.**Задан случайный процесс $\xi(t) = 3t^2 + U \cos bt + V \sin bt$, где U, V некоррелированные случайные величины с нулевым математическим ожиданием и дисперсиями $D\{U\} = 4, D\{V\} = 2, b$ неслучайная величина. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \xi'(t)$.
- **26.**Случайный процесс задан выражением $\xi(t) = V_1 e^{-\alpha_1 t} + V_2 e^{-\alpha_2 t}$, где V_1, V_2 некоррелированные случайные величины с нулевым математическим ожиданием и дисперсиями $D\{V_1\}, D\{V_2\}$. Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **27.**Дан случайный процесс $\xi(t) = t + X_1 \cos t + X_2 \sin t$, где случайный вектор $(X_1; X_2)$ имеет математическое ожидание (-0,5; 1) и ковариационную матрицу $\begin{pmatrix} 3 & -2 \\ 2,9 \end{pmatrix}$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **28.**Дан случайный процесс $\xi(t) = t^2 + X_1 \cos t + X_2 \sin t$, где случайный вектор $(X_1; X_2)$ имеет математическое ожидание (2; -1) и ковариационную матрицу $\begin{pmatrix} 1 & 3 \\ 2 \end{pmatrix}$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t)$.
- **29.**Показать, что центрированный гауссовский случайный процесс $\xi(t)$ с ковариационной функцией $R_{\xi}(t,s)=(1+|t-s|)e^{-|t-s|}$ является дифференцируемым в среднеквадратическом смысле. Найти $R_{\xi'}(t,s)$ и $R_{\xi\xi'}(t,s)$.
- **30.**Задана ковариационная функция $R_{\xi}(t, s) = e^{-(t-s)^2}$. Найти взаимную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t) = \xi'(t)$.
- **31.**Задана ковариационная функция $R_{\xi}(t, s) = t s \, e^{t+s}$. Найти взаимную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t) = \xi'(t)$.
- **32.**Известна взаимная ковариационная функция случайного процесса $\xi(t)$ и его производной $\eta(t) = \xi'(t)$: $R_{\xi\eta}(t, s) = t(s+1)e^{t+s}$. Найти ковариационную функцию процесса $\eta(t)$.

- **33.**Определить совместную ковариационную функцию случайного процесса $\xi(t)$ и его производной, если $R_{\xi}(t) = ae^{-\alpha|t|}(1+\alpha|t|)$.
- **34.**Определить вероятность того, что производная $\eta(t)$ от нормального стационарного процесса $\xi(t)$ будет иметь значения, большие $a = \sqrt{5}$, если $m_{\xi}(t) = 10$, $R_{\xi}(t) = Ae^{-t/t} [\cos bt + b^{-1} \sin b|t|]$, A = 4, b = 2.
- **35.**Показать, что стандартный винеровский случайный процесс нигде не дифференцируем в среднеквадратическом смысле.

6. ИНТЕГРИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ СО СЛУЧАЙНОЙ ПРАВОЙ ЧАСТЬЮ

Пусть случайный процесс $\xi(t)$ определен на отрезке $[a,b]=\mathbb{T}\subseteq\mathbb{R}$. Построим некоторое разбиение $a=t_0\leq t_1\leq\ldots\leq t_{n-1}\leq t_n=b$, на каждом из промежутков этого разбиения выберем произвольную точку $\tau_i\in[t_{i-1},\,t_i)$, $i=\overline{1,n}$. Если при $n\to\infty$ и $\max_{i=1,\ldots,n}(t_i-t_{i-1})\to 0$ существует предел

$$M\{|\sum_{i=1}^{n}\xi(\tau_i)(t_i-t_{i-1})-\eta|^2\}\to 0,$$

не зависящий от способа разбиения $\{t_i\}$ и выбора точек $\{\tau_i\}$, то случайный процесс $\xi(t)$ называется интегрируемым в среднеквадратическом смысле на [a, b], а случайная величина η называется ее интегралом в среднеквадратическом смысле по [a, b] и обозначается $\eta = \int_{0}^{b} \xi(t) dt$.

Теорема 10. Для существования интеграла в среднеквадратическом смысле $\int_a^b \xi(t)dt$ необходимо и достаточно, чтобы существовали следующие интегралы Римана:

а следующие интегралы Римана:
$$I_1 = \int\limits_a^b m_\xi(t) dt\,, \qquad \qquad I_2 = \int\limits_a^b \int\limits_a^b R_\xi(t,s) dt ds\,,$$

где $m_{\xi}(t) = M\{\xi(t)\}, \ R_{\xi}(t,s) = \text{cov}\{\xi(t), \xi(s)\}.$

Теорема 11. Пусть $\xi(t)$, $t \in T$, — непрерывный в среднеквадратическом смысле случайный процесс. Тогда

$$M\{\int_a^b \xi(t)dt\} = \int_a^b m_{\xi}(t)dt = I_1,$$

$$\cot\{\int_a^b \xi(t)dt\,,\,\xi(s)\} = \int_a^b R_\xi(t,s)dt\,,\,\,s\in T,$$
 $\cot\{\int_a^b \xi(t)dt\,,\,\,\int_c^b \xi(s)ds\,\} = \int_a^b \int_a^b R_\xi(t,s)dtds\,,\,\,[c,d]\subseteq T,$ $D\{\int_a^b \xi(t)dt\,\} = \int_a^b \int_a^b R_\xi(t,s)dtds = I_2.$ й случайный процесс $\xi(t)$ непреры

Всякий случайный процесс $\xi(t)$ непрерывный в среднеквадратическом смысле на конечном промежутке [a, b], является интегрируемым в среднеквадратическом смысле на [a, b].

Случайный процесс $\xi(t)$, $t \in T = [a, b]$, называется интегрируемым в среднеквадратическом смысле на множестве T с весом $\phi(t, s)$, где $\phi(t, s)$ — неслучайная функция, определенная на $T \times T$, если существует случайный процесс $\eta(t)$, $t \in T$, такой, что независимо от способа разбиения $\{s_i\}$ и выбора точек $\{\tau_i\}$, существует предел при $n \to \infty$ и $\max_{i=1,\dots,n} (s_i - s_{i-1}) \to 0$

$$M\{|\sum_{i=1}^{n} \varphi(t,\tau_i)\xi(\tau_i)(s_i-s_{i-1})-\eta(t)|^2\} \to 0.$$

Если $\xi(t)$, $t \in T$, является интегрируемым на T с весом $\phi(t, s)$, то случайный процесс $\eta(t)$, $t \in T$, обозначают

$$\eta(t) = \int_{a}^{b} \varphi(t,s)\xi(s)ds \;,\;\; t \in T.$$
 Если $\varphi(t,s) = I(t-s) = \begin{cases} 1,\; t>s, \\ 0,\; t\leq s, \end{cases}$ то $\eta(t) = \int_{a}^{t} \xi(s)ds \;-\;$ случайный

процесс, который называют интегралом с переменным верхним пределом.

Теорема 12. Случайный процесс $\xi(t)$, $t \in T$, является интегрируемым в среднеквадратическом смысле на множестве T с весом $\varphi(t, s)$ тогда и только тогда, когда на T с весом $\varphi(t, s)$ интегрируемо его математическое ожидание и на T×T с весом $\varphi(t, s_1)\varphi(t, s_2)$ интегрируема его ковариационная функция.

Теорема 13. Если $\xi(t)$, $t \in T$, — интегрируемый в среднеквадратическом смысле на множестве T с весом $\varphi(t, s)$ случайный процесс и $\eta(t) = \int_{T} \varphi(t, s) \xi(s) ds$, $t \in T$, то

$$\begin{split} M\{\eta(t)\} &= \int_{\mathbf{T}} \varphi(t,s) m_{\xi}(s) ds\,, \\ R_{\eta}(t_1,t_2) &= \int_{\mathbf{TT}} \varphi(t_1,s_1) \varphi(t_2,s_2) R_{\xi}(s_1,s_2) ds_1 ds_2\,, \\ D\{\eta(t)\} &= R_{\eta}(t,t) = \int_{\mathbf{TT}} \varphi(t,s_1) \varphi(t,s_2) R_{\xi}(s_1,s_2) ds_1 ds_2 \geq 0\,, \\ R_{\xi\eta}(t_1,t_2) &= \int_{\mathbf{T}} \varphi(t_2,s) R_{\xi}(t_1,s) ds\,. \end{split}$$

Пример 11. Пусть случайный процесс $\xi(t)$, $t \ge 0$, имеет характеристики $m_{\xi}(t) = mt$, $R_{\xi}(t, s) = Dts$, где D > 0. Вычислить математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \int_{0}^{t} \xi(s)ds$, $t \ge 0$.

Решение. По условию математическое ожидание и ковариационная функция непрерывны. Следовательно, $\xi(t)$, $t \ge 0$, интегрируем в среднеквадратическом смысле на любом конечном промежутке [0,t], $t \ge 0$. Тогда по теореме 13, находим:

$$M\{\eta(t)\} = \int_{0}^{t} m_{\xi}(s)ds = m \int_{0}^{t} sds = \frac{mt^{2}}{2},$$

$$R_{\eta}(t, s) = \text{cov}\{\int_{0}^{t} \xi(l)dl, \int_{0}^{s} \xi(p)dp\} = \int_{0}^{t} \int_{0}^{s} \text{cov}\{\xi(l), \xi(p)\}dldp =$$

$$= \int_{0}^{t} \int_{0}^{s} R_{\xi}(l, p)dldp = D \int_{0}^{t} ldl \int_{0}^{s} pdp = \frac{D}{4}t^{2}s^{2},$$

$$D\{\eta(t)\} = Dt^{4}/4.$$

Введенные выше понятия производной и интеграла в среднеквадратическом смысле позволяют рассмотреть проблему корректного описания *линейного дифференциального уравнения* со случайной правой частью и случайными начальными условиями:

$$\eta'(t) = a(t)\eta(t) + b(t)\xi(t), t \ge 0,$$

$$\eta(0) = v,$$
(4)

где $\eta'(t)$ — производная в среднеквадратическом смысле $\eta(t)$, $\xi(t)$ — непрерывный в среднеквадратическом смысле при $t \ge 0$ случайный процесс, a(t) и b(t) — непрерывные неслучайные функции, v — некоторая случайная величина.

Для явного построения решения дифференциального уравнения введем вспомогательную неслучайную функцию $\theta(t)$:

$$\theta'(t) = a(t)\theta(t), t \ge 0,$$

$$\theta(0) = 1.$$
(5)

Известно, что $\theta(t)$ такова, что $\theta(t) \neq 0$ при любом $t \geq 0$, если a(t) кусочнонепрерывна. Тогда общее решение уравнения (4) имеет вид:

$$\eta(t) = \theta(t)v + \theta(t) \int_0^t \theta^{-1}(\tau)b(\tau)\xi(\tau)d\tau,$$

где $\theta(t)$ – решение уравнения (5).

Упражнения

- **1.** Зная математическое ожидание $m_{\xi}(t) = \cos t$ случайного процесса $\xi(t)$, найти математическое ожидание интеграла $\eta(t) = \int_{0}^{t} \xi(s) ds$.
- **2.** Зная математическое ожидание $m_{\xi}(t) = 4\cos^2 t$ случайного процесса $\xi(t)$, найти математическое ожидание $\eta(t) = \int \xi(s) ds$.
- 3. На вход интегрирующего устройства поступает случайный процесс математическим ожиданием $m_{\xi}(t) = \sin^2 bt$. $\xi(t)$ математическое ожидание случайного процесса $\eta(t) = \int_{-\infty}^{t} \xi(s) ds$.
- **4.** Зная математическое ожидание $m_{\xi}(t) = t \cos 2t$ случайного процесса $\xi(t)$, найти математическое ожидание интеграла $\eta(t) = \int_{-\infty}^{\infty} \xi(s) ds$.
- **5.** Зная математическое ожидание $m_{\xi}(t) = 3t^2 + 1$ случайного процесса $\xi(t)$, найти математическое ожидание интеграла $\eta(t) = \int_{0}^{t} \xi(s) ds$.

 6. Найти математическое ожидание процесса $\eta(t) = \int_{0}^{t} \xi(s) ds$,
- процесс $\xi(t) = U e^{at} \sin t$, где $U \text{случайная величина, причем } M\{U\} = 2$.
- 7. Задан случайный процесс $\xi(t) = U e^{at} \cos bt$, где U случайная величина, причем $M\{U\} = 5$. Найти математическое ожидание процесса $\eta(t) = \int_{0}^{t} \xi(s) ds$.

- **8.** Найти математическое ожидание случайного процесса $\eta(t) = \int_{0}^{t} \xi(s) ds$, зная случайный процесс $\xi(t) = U \sin^2 t$, где U случайная величина, причем $M\{U\} = 2$.
- 9. Задана случайный процесс $\xi(t) = U\cos^2 t$, где U случайная величина, причем $M\{U\} = 2$. Найти математическое ожидание случайного процесса $\eta(t) = \int_0^t \xi(s) ds$.
- **10.**На вход интегрирующего устройства поступает случайный процесс $\xi(t)$, ковариационная функция которого $R_{\xi}(t,s)=ts$. Найти дисперсию на выходе интегратора $\eta(t)=\int\limits_0^t \xi(s)ds$.
- **11.**Найти дисперсию $\eta(t) = \int\limits_0^t \xi(s) ds$, зная ковариационную функцию случайного процесса $\xi(t)$: $R_{\xi}(t,s) = 2t^2s^2 + 3ts$.
- **12.**Определить дисперсию $\eta(t)$ при t=20, если $\eta(t)=\int\limits_0^t \xi(s)ds$, $R_{\xi}(t)=ae^{-b|t|}(1+b|t|)$, a=10,b=0.5.
- **13.**Найти дисперсию $\eta(t) = \int_0^t \xi(s) ds$, зная ковариационную функцию случайного процесса $\xi(t)$: $R_{\xi}(t,s) = ts \ e^{t+s}$.
- **14.**Задана ковариационная функция $R_{\xi}(t, s) = \sin bt \sin bs$ случайного процесса $\xi(t)$. Найти ковариационную функцию и дисперсию интеграла $\eta(t) = \int_0^t \xi(s) ds$.
- **15.**Задана ковариационная функция $R_{\xi}(t, s) = \cos bt \cos bs$ случайного процесса $\xi(t)$. Найти ковариационную функцию и дисперсию интеграла $\eta(t) = \int\limits_0^t \xi(s) ds$.
- **16.**Стационарный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = ae^{-2|t|}(1+2|t|)$. Во сколько раз дисперсия случайной величины $\eta = \int\limits_0^{10} \xi(s)ds$ больше, чем дисперсия процесса $\xi(t)$?

- **17.**Зная представление случайного процесса $\xi(t) = V \sin t$, $t \ge 0$, где случайная величина V распределена равномерно на отрезке [2, 4], найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \int_0^t \xi(s) ds$.
- **18.**На вход интегрирующего устройства поступает случайный процесс $\xi(t)$ с математическим ожиданием $m_{\xi}(t) = 0,2\cos^2bt$ и ковариационной функцией $R_{\xi}(t,s) = 0,4\cos bt \cos bs$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \int_0^t \xi(s)ds$.
- **19.**Задан случайный процесс $\xi(t) = Ue^{3t}\cos 2t$, где U случайная величина, причем $M\{U\} = 5$, $D\{U\} = 1$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \int_0^t \xi(s) ds$.
- **20.**Пусть $\xi(t) = t^2 + \sum_{k=1}^n V_k e^{-a_k t}, \quad t>0, \quad a_k>0, \quad V_k$ центрированные некоррелированные случайные величины с дисперсиями D_k . Предположим, что случайный процесс $\eta(t) = \int_0^t \xi(s) ds$. Определить его математическое ожидание и ковариационную функцию.
- **21.**Задан случайный процесс $\xi(t) = X_1 t + X_2 \sin t$, где случайный вектор $(X_1; X_2)$ имеет математическое ожидание (1; -1) и ковариационную матрицу $\begin{pmatrix} 2 & 1 \\ & 3 \end{pmatrix}$. Пусть $\eta(t) = \int_0^t \xi(s) ds$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t)$.
- **22.**На вход интегрирующего устройства поступает случайный процесс, имеющий вид $\xi(t) = 1 + Ut + Vt^2$, $M\{U\} = M\{V\} = 0$, $D\{U\} = 3$, $D\{V\} = 1$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \int_0^t \xi(s)ds$.
- **23.**Случайный процесс задан в каноническом виде $\xi(t) = e^{-t} \sin t + X_1 \cos 2t + X_2 \sin 2t, \quad D\{X_1\} = 3, \quad D\{X_2\} = 2.$ Выписать моментные характеристики $\xi(t)$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \int_0^t \xi(s) ds$.

- **24.**Пусть $V(t) = \xi'(t)$, причем $\xi(t)$ стационарный случайный процесс. Проверить, будет ли стационарным $\eta(t) = \int_{0}^{t} V(s) ds$.
- **25.**Найти взаимную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t) = \int_0^t \xi(s) ds$, если известна ковариационная функция процесса $\xi(t)$: $R_{\xi}(t,s) = 2ts + 1$.
- **26.** Найти взаимную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t) = \int_0^t \xi(s) ds$, если известна ковариационная функция процесса $\xi(t)$: $R_{\xi}(t,s) = \cos t \cos s$.
- **27.** Найти взаимную ковариационную функцию случайных процессов $\xi(t)$ и $\eta(t) = \int_0^t \xi(s) ds$, если известна ковариационная функция процесса $\xi(t)$: $R_{\xi}(t,s) = ts \ e^{t+s}$.
- **28.**Случайный процесс $\xi(t)$ с характеристиками $m_{\xi}(t) = t^2 + 3$, $R_{\xi}(t, s) = 5ts$ подвергается преобразованию вида $\eta(t) = \int_{0}^{t} s\xi(s)ds$. Определить математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t)$.
- **29.**Случайный процесс $\xi(t)$, имеющий характеристики $m_{\xi}(t) = 0$, $R_{\xi}(t,s) = 3e^{-(t+s)}$, подвергается преобразованию вида $\eta(t) = \int_{0}^{t} s\xi(s)ds$. Определить математическое ожидание, ковариационную функцию и
- **30.**Характеристики случайного процесса $\xi(t)$ заданы выражениями: $m_{\xi}(t) = t$, $R_{\xi}(t, s) = ts$. Найти математическое ожидание случайного процесса $\eta(t)$, $t \ge 0$, удовлетворяющего уравнению $\eta'(t) + 2t \ \eta(t) = \xi(t)$, если $\eta(0) = 1$.

дисперсию процесса $\eta(t)$.

31.Пусть случайный процесс $\xi(t)$, заданный в виде канонического разложения $\xi(t) = 1 + \xi_1 t + \xi_2 t^2$, где ξ_1 , ξ_2 — случайные величины, поступает на вход динамической системы, работа которой описывается дифференциальным уравнением вида $\eta'(t) + \eta(t) = \xi(t)$, $\eta(0) = 0$. Найти представление процесса $\eta(t)$.

- **32.**Характеристики случайного процесса $\xi(t)$ заданы выражениями: $m_{\xi}(t) = t$, $R_{\xi}(t, s) = ts$. Найти математическое ожидание случайного процесса $\eta(t)$, $t \ge 0$, удовлетворяющего уравнению $\eta'(t) + 2t \ \eta(t) = \xi(t)$, если $\eta(0) = v$, v стандартная гауссовская случайная величина.
- **33.**Пусть случайный процесс $\xi(t)$, заданный в виде канонического разложения $\xi(t) = 1 + \xi_1 t + \xi_2 t^2$, где ξ_1 , ξ_2 случайные величины, поступает на вход динамической системы, работа которой описывается дифференциальным уравнением вида $\eta'(t) + \eta(t) = \xi(t)$, $\eta(0) = 1$. Найти представление процесса $\eta(t)$.
- **34.**Пусть случайный процесс $\xi(t)$, заданный в виде канонического разложения $\xi(t) = \xi_1 t + \xi_2 t^2$, где ξ_1 , ξ_2 случайные величины, поступает на вход динамической системы, работа которой описывается дифференциальным уравнением вида $\eta'(t) + \eta(t) = \xi(t)$, $\eta(0) = 0$. Найти представление процесса $\eta(t)$. Вычислить математическое ожидание $\eta(t)$.
- **35.**Пусть процесс $\xi(t)$, заданный в виде канонического разложения $\xi(t) = \xi_1 t + \xi_2 t^2$, где ξ_1 , ξ_2 случайные величины, поступает на вход динамической системы, работа которой описывается дифференциальным уравнением вида $\eta'(t) + \eta(t) = \xi(t)$, $\eta(0) = v$, v стандартная гауссовская случайная величина. Найти представление процесса $\eta(t)$. Вычислить математическое ожидание $\eta(t)$.

7. ДЕЙСТВИЕ ЛИНЕЙНЫХ ОПЕРАТОРОВ НА СЛУЧАЙНЫЙ ПРОЦЕСС

Символическое преобразование случайного процесса $\xi(t)$, $t \in T$, поступающего на вход системы, в выходной сигнал $\eta(t)$, $t \in T$, можно записать в виде: $\eta(t) = A[\xi(t)]$, где A – оператор системы. Все множество операторов A делится на два непересекающихся подмножества L и N. Подмножество L состоит из линейных операторов, а подмножество N – из нелинейных операторов. В свою очередь, подмножество линейных операторов L можно разделить на два непересекающихся подмножества: L_0 – линейных однородных и $L_{\rm H}$ – линейных неоднородных операторов.

 $\mathit{Линейным}\ oднородным\$ называется оператор L_{o} , удовлетворяющий следующим двум свойствам:

1) Постоянную величину C можно выносить за знак оператора:

$$L_{o}[C \xi(t)] = C L_{o}[\xi(t)].$$

2) К сумме случайных процессов оператор может применяться почленно:

$$L_{\rm o}[\xi_1(t)+\xi_2(t)]=L_{\rm o}[\xi_1(t)]+L_{\rm o}[\xi_2(t)].$$

 \mathcal{J} инейным неоднородным оператором $L_{\rm H}$ называется сумма линейного однородного оператора $L_{\rm o}$ и некоторой заданной неслучайной функции $\phi(t)$, т.е. $L_{\rm H}[\xi(t)] = L_{\rm o}[\xi(t)] + \phi(t)$.

Операторы N, которые не удовлетворяют указанным выше условиям, называются *нелинейными*.

Линейными однородными являются, например, преобразования

вида:
$$\eta(t) = a(t)\xi(t);$$
 $\eta(t) = a(t)\xi'(t);$ $\eta(t) = a(t)\int_0^t \xi(\tau)d\tau,$ где $a(t)$ –

неслучайная функция.

Примерами линейного неоднородного преобразования являются: $\eta(t) = \xi'(t) + \varphi(t); \quad \eta(t) = \int_0^t \xi(\tau) d\tau + \varphi(t); \quad \eta(t) = a(t)\xi(t) + \varphi(t).$

В качестве примеров нелинейного преобразования можно привести: $\eta(t) = \cos \xi(t) + \varphi(t); \quad \eta(t) = a(t)\xi^3(t)$ и т.д.

Теорема 14. Если $\xi(t)$ — случайный процесс, математическое ожидание которого $m_{\xi}(t)$, а ковариационная функция $R_{\xi}(t,s)$, преобразуется линейным однородным оператором $L_{\rm o}$ в случайный процесс $\eta(t)$, т.е. если $\eta(t) = L_{\rm o}[\xi(t)]$, то его математическое ожидание $m_{\rm n}(t)$ получается из $m_{\xi}(t)$ при помощи того же оператора $L_{\rm o}$:

$$m_{\eta}(t) = L_{\rm o}[m_{\xi}(t)],$$

а для нахождения ковариационной функции $R_{\eta}(t, s)$ нужно применить к функции $R_{\xi}(t, s)$ оператор L_{o} один раз по t, другой раз, к вновь полученному выражению, по s:

$$R_{\eta}(t,s) = L_0^s [L_0^t [R_{\xi}(t,s)]]. \tag{6}$$

Здесь индексы у $L_{\rm o}$ означают переменные, по которым применяется оператор. Так как ковариационная функция симметрична относительно своих аргументов, то (6) имеет вид

$$R_{\rm n}(t,s) = L_{\rm o}^{\rm s} [L_{\rm o}^{\rm t}[R_{\rm E}(t,s)]] = L_{\rm o}^{\rm t} [L_{\rm o}^{\rm s}[R_{\rm E}(t,s)].$$

Теорема 15. Если $\xi(t)$ — случайный процесс, математическое ожидание которого $m_{\xi}(t)$, а ковариационная функция $R_{\xi}(t,s)$, преобразуется линейным неоднородным оператором $L_{\rm H}$ в случайный процесс $\eta(t)$, т.е. если $\eta(t) = L_{\rm H}[\xi(t)] = L_{\rm O}[\xi(t)] + \varphi(t)$, то

$$m_{\eta}(t) = L_{\text{H}}[m_{\xi}(t)] = L_{\text{o}}[m_{\xi}(t)] + \varphi(t)$$
,

$$R_{\eta}(t, s) = L_{o}^{s} [L_{o}^{t} [R_{\xi}(t, s)]] = L_{o}^{t} [L_{o}^{s} [R_{\xi}(t, s)]].$$

Рассмотрим далее линейный однородный дифференциальный оператор с постоянными коэффициентами

$$P\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} a_k \frac{d^k}{dt^k}.$$

Предположим, что его можно применить к стационарному в широком смысле случайному процессу $\xi(t), t \in T$. Тогда оператор переводит $\xi(t)$ также в стационарный процесс $\eta(t) = P\left(\frac{d}{dt}\right)\xi(t)$. Формулы для математического ожидания, ковариационной функции и взаимной ковариационной функции имеют в данном случае вид:

$$m_{\eta}(t) = P\left(\frac{d}{dt}\right) m_{\xi}(t) = a_0 m_{\xi},$$
 (7)
$$R_{\eta}(t) = P\left(\frac{d}{dt}\right) \overline{P}\left(-\frac{d}{dt}\right) R_{\xi}(t),$$

$$R_{\eta\xi}(t) = P(\frac{d}{dt}) R_{\xi}(t), \qquad R_{\xi\eta}(t) = \overline{P}\left(-\frac{d}{dt}\right) R_{\xi}(t),$$
где $m_{\xi} = m_{\xi}(t), \quad \overline{P}\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} \overline{a_k} \frac{d^k}{dt^k}.$

Пример 12. Пусть на стационарный в широком смысле случайный процесс $\xi(t)$, $t \in T$, действует линейный однородный дифференциальный оператор с постоянными коэффициентами $P\left(\frac{d}{dt}\right) = \sum_{k=0}^{2} a_k \frac{d^k}{dt^k}$. Найти математическое ожидание и ковариационную функцию случайного процесса $\eta(t) = P \sqrt[4]{dt} \, \xi(t)$.

Решение. Нетрудно видеть, что коэффициенты линейного оператора дифференцирования $a_0=a_1=a_2=1, a_3, a_4, \ldots =0$. Таким образом, $\eta(t)=\xi(t)+\xi'(t)+\xi''(t)$. Учитывая (7), имеем $m_\eta(t)=a_0m_\xi$. Поскольку

$$\overline{P}\left(-rac{d}{dt}
ight) = P\left(-rac{d}{dt}
ight) = 1 - rac{d}{dt} + rac{d^2}{dt^2}$$
. Тогда $P\left(rac{d}{dt}
ight)\overline{P}\left(-rac{d}{dt}
ight) = 1 + rac{d^2}{dt^2} + rac{d^4}{dt^4}$

и ковариационная функция $R_{\eta}(t) = R_{\xi}(t) + R_{\xi}^{''}(t) + R_{\xi}^{(IV)}(t)$.

Упражнения

1. Математическое ожидание и ковариационная функция случайного процесса $\xi(t)$ заданы выражениями: $m_{\xi}(t) = 2t + 3$, $R_{\xi}(t, s) = ts$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = 3t^2 \xi(t) + 5t$.

- **2.** Имеются два некоррелированных случайных процесса $\xi(t)$ и $\eta(t)$ с характеристиками: $m_{\xi}(t) = t$, $R_{\xi}(t,s) = e^{a(t+s)}$, $m_{\eta}(t) = t^2$, $R_{\eta}(t,s) = e^{b(t-s)}$. Найти математическое ожидание и ковариационную функцию случайного процесса $\zeta(t) = \xi(t) + t^2 \eta(t) + t^3$.
- **3.** Имеются два некоррелированных случайных процесса $\xi(t)$ и $\eta(t)$ с характеристиками: $m_{\xi}(t) = t^2$, $R_{\xi}(t,s) = e^{a_1(t+s)}$, $m_{\eta}(t) = 1$, $R_{\eta}(t,s) = e^{a_2(t-s)^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\zeta(t) = \xi(t) + t \eta(t) + t^2$.
- **4.** Известна дисперсия $D_{\xi}(t)$ случайного процесса $\xi(t)$. Найти дисперсию случайного процесса: а) $\eta(t) = \xi(t) + 2$; б) $\zeta(t) = \xi(t)(t+3)$.
- **5.** При стрельбе по движущейся цели используется следующая приближенная формула для угла упреждения: $\psi(t) = \varphi(t) T(t)$, где $\psi(t) \varphi(t) T(t)$ угол упреждения, $\varphi(t) \varphi(t) T(t)$ угол упреждения, $\varphi(t) \varphi(t) T(t)$ угол упреждения, определяемая начальной скоростью снаряда и начальным расстоянием до цели. Пусть угол визирования цели $\varphi(t) \varphi(t) T(t)$ с ковариационной функцией $\varphi(t) T(t) T(t)$ угол визирования цели $\varphi(t) T(t) T(t)$ с ковариационной функцией $\varphi(t) T(t) T(t)$ угол визирования цели $\varphi(t) T(t)$ угол визирования цели $\varphi(t) T(t)$ угол визирования $\varphi(t) T(t) T(t)$ угол визирования $\varphi(t) T(t)$ угол визиро
- **6.** Пусть $\eta(t) = a(t) + b(t)\xi'(t)$, причем математическое ожидание $m_{\xi}(t) = m_{\xi}$, ковариационная функция $R_{\xi}(t, s) = R_{\xi}(t s)$. Найти математическое ожидание и ковариационную функцию процесса $\eta(t)$.
- **7.** Характеристики процесса $\xi(t)$ заданы следующими выражениями: $m_{\xi}(t) = t^2 + 2t 4$, $R_{\xi}(t, s) = e^{-t^2 s^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = 3t \ \xi'(t) 5t^2$.
- **8.** Задан случайный процесс $\xi(t)$ с математическим ожиданием $m_{\xi}(t) = t^2 1$ и ковариационной функцией $R_{\xi}(t,s) = 2e^{-a(t-s)^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = t \, \xi'(t) + t^2 + 1$.
- **9.** Случайный процесс $\xi(t)$ имеет характеристики $m_{\xi}(t) = 2t + 5$, $R_{\xi}(t,s) = e^{a(t+s)}$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = t^2 \, \xi'(t) + 2$.
- **10.**Случайный процесс $\xi(t)$ имеет характеристики $m_{\xi}(t) = t^2 1$, $R_{\xi}(t,s) = 2e^{-a(t-s)^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = 2t \, \xi'(t) + (1-t)^2$.
- **11.**Характеристики процесса $\xi(t)$ заданы следующими выражениями: $m_{\xi}(t) = 2t + 3$, $R_{\xi}(t, s) = ts$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = 3t^2 \xi'(t) + 5t$.

- **12.**Случайный процесс $\xi(t)$ имеет характеристики $m_{\xi}(t) = t^3 + 2t^2 5t$, $R_{\xi}(t, s) = t^3 s^3$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = t^3 \xi'(t) + 5t^3$.
- **13.**Характеристики процесса $\xi(t)$ заданы следующими выражениями: $m_{\xi}(t) = t^4 + 2t$, $R_{\xi}(t,s) = e^{-t^2-s^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = 2t \ \xi'(t)$.
- **14.**На вход устройства поступает случайный процесс $\xi(t) = X e^{-at} \cos bt$, где X случайная величина с нулевым математическим ожиданием и единичной дисперсией, a, b постоянные величины. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \xi'(t) + 1$.
- **15.**Пусть случайный процесс $\xi(t)$ задан каноническим разложением $\xi(t) = t + 2 + \xi_1 t^2 + \xi_2 t^3 + \xi_3 t^4$, причем $D\{\xi_1\} = 1$, $D\{\xi_2\} = 2$, $D\{\xi_3\} = 0,1$. Найти каноническое разложение и моментные характеристики процесса $\eta(t) = t^2 \xi'(t) + 3t$.
- **16.**Пусть случайный процесс $\xi(t)$ задан каноническим разложением $\xi(t) = t + \xi_1 t^2 + \xi_2 t^3 + \xi_3 t^4$, причем $D\{\xi_1\} = 2$, $D\{\xi_2\} = 3$, $D\{\xi_3\} = 0,1$. Найти каноническое разложение и моментные характеристики случайного процесса $\eta(t) = t^2 \xi'(t) + 2t^2$.
- **17.**Задана ковариационная функция $R_{\xi}(t,s) = e^{a(t+s)} \cos bt \cos bs$ процесса $\xi(t)$. Найти дисперсию случайной функции $\eta(t) = \frac{1}{2t^2} \int\limits_0^t \xi(s) ds$.
- **18.**Задан случайный процесс $\xi(t) = U\cos 3t$, где U случайная величина, причем $M\{U\} = 1$, $D\{U\} = 1$. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \frac{1}{t} \int_0^t \xi(s) ds$.
- **19.**Задан случайный процесс $\xi(t) = Y \cos t$, $t \ge 0$, где Y случайная величина, имеющая нормальное распределение с математическим ожиданием $M\{Y\} = 2$ и дисперсией $D\{Y\} = 1$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \xi(t) 2\xi'(t)$.
- **20.** Дифференцируемый в среднеквадратическом смысле случайный процесс $\xi(t)$, $t \in T$, имеет математическое ожидание $m_{\xi}(t)$ и ковариационную функцию $R_{\xi}(t,s)$. Найти математическое ожидание и ковариационную функцию процесса $\eta(t) = \xi(t) + \xi'(t)$, $t \in T$.
- **21.**Дифференцируемый в среднеквадратическом смысле стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t, s)$. Найти математическое ожидание, дисперсию и ковариационную функцию процесса $\eta(t) = \xi(t) + \xi'(t)$.

- **22.**Дифференцируемый в среднеквадратическом смысле стационарный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t) = \sigma^2 e^{-a^2 t^2}$. Случайный процесс $\eta(t) = \xi(t) + \xi'(t)$. Найти математическое ожидание, дисперсию и ковариационную функцию процесса $\eta(t)$.
- **23.**Найти ковариационную функцию процесса $\eta(t) = U(t)\xi(t) + V(t)\xi'(t)$, где $\xi(t)$ дифференцируемый случайный процесс, ковариационная функция которого известна; U(t) и V(t) неслучайные функции.
- **24.**Пусть $\xi(t)$ стационарный случайный процесс с ковариационной функцией $R_{\xi}(t)$. Найти ковариационную функцию процесса $\eta(t) = a\xi(t) + b\xi'(t)$.
- **25.**Пусть $\xi(t)$ стационарный случайный процесс с ковариационной функцией $R_{\xi}(t) = Ae^{-\alpha|t|}(1+\alpha|t|)$. Найти ковариационную функцию процесса $\eta(t) = a\xi(t) + b\xi'(t)$.
- **26.**Дан случайный процесс $\xi(t) = X e^{\beta t} \cos bt$, где X случайная величина с $M\{X\} = 3, \ D\{X\} = 1; \quad \beta$ и b постоянные величины. Найти математическое ожидание, ковариационную функцию и дисперсию процесса $\eta(t) = \frac{1}{2t^2} \int_0^t \xi(s) ds$.
- **27.**Случайный процесс $\xi(t)$ имеет математическое ожидание $m_{\xi}(t) = t^2 1$ и ковариационную функцию $R_{\xi}(t,s) = 2e^{-a(t-s)^2}$. Найти математическое ожидание, ковариационную функцию и дисперсию случайного процесса $\eta(t) = \frac{d^2\xi(t)}{dt^2} + 1$.
- **28.**Пусть $\xi(t)$ случайный процесс с ковариационной функцией $R_{\xi}(t,s)$. Найти взаимную ковариационную функцию связи $R_{\xi\eta}(t,s)$ между процессами $\xi(t)$ и $\eta(t) = \frac{d^2\xi(t)}{dt^2}$.
- **29.**Дважды дифференцируемый стационарный случайный процесс $\xi(t)$ имеет ковариационную функцию $R_{\xi}(t)$. Найти ковариационную функцию процесса $\eta(t) = \xi(t) + \frac{d^2 \xi(t)}{dt^2}$.
- **30.**Пусть $\xi(t)$ стационарный случайный процесс с ковариационной функцией $R_{\xi}(t)$. Найти взаимную ковариационную функцию связи $R_{\xi\eta}(t)$ между процессами $\xi(t)$ и $\eta(t)=\frac{d^2\xi(t)}{dt^2}$.

- **31.**Пусть $\xi(t)$ стационарный случайный процесс с ковариационной функцией $R_{\xi}(t) = \sigma^2 e^{-a|t|} (1 + a|t| + a^2 t^2/3)$. Найти взаимную ковариационную функцию связи между процессами $\xi(t)$ и $\eta(t) = \frac{d^2 \xi(t)}{dt^2}$.
- **32.**Найти взаимную ковариационную функцию связи $R_{\xi\eta}(t,s)$ между процессами $\xi(t)=a\;X(t)+b\;\frac{dX(t)}{dt}$ и $\eta(t)=A\frac{dX(t)}{dt}+B\;\frac{d^2X(t)}{dt^2}$, если X(t) дважды дифференцируемый случайный процесс с ковариационной функцией $R_X(t,s)$; a,b,A,B постоянные.
- **33.**Задана ковариационная функция $R_X(t,s)$ действительного случайного процесса X(t). Найти взаимную ковариационную функцию $R_{\eta\xi}(t,s)$ процессов $\xi(t) = aX(t) + b\frac{dX(t)}{dt}$ и $\eta(t) = A\frac{dX(t)}{dt} + B\frac{d^2X(t)}{dt^2}$, где a,b,A,B постоянные действительные числа.
- **34.**Найти взаимную ковариационную функцию связи $R_{\xi\eta}(t)$ между процессами $\xi(t)=a\;X(t)+b\;\frac{dX(t)}{dt}$ и $\eta(t)=A\frac{dX(t)}{dt}+B\;\frac{d^2X(t)}{dt^2}$, где X(t) дважды дифференцируемый стационарный случайный процесс с ковариационной функцией $R_X(t)$; a,b,A,B постоянные.
- **35.**Найти взаимную ковариационную функцию связи $R_{\eta\xi}(t)$ между процессами $\xi(t)=a\;X(t)+b\frac{dX(t)}{dt}$ и $\eta(t)=A\frac{dX(t)}{dt}+B\frac{d^2X(t)}{dt^2}$, где X(t) дважды дифференцируемый стационарный случайный процесс с ковариационной функцией $R_X(t)$; a,b,A,B постоянные.

ЛИТЕРАТУРА

- 1. Вентиель A. Д. Курс теории случайных процессов.— М.: Наука, Главная редакция физико-математической литературы, 1975.-320 с.
- 2. Вентиель Е. С., Овчаров Л. А. Задачи и упражнения по теории вероятностей.— М.: Высшая школа, 2000.-366 с.
- 3. *Прохоров А. В.*, *Ушаков В. Г.*, *Ушаков Н. Г.* Задачи по теории вероятностей: Основные понятия. Предельные теоремы. Случайные процессы.— М.: Наука, Главная редакция физико-математической литературы, 1986.— 328 с.
- 4. Сборник задач по теории вероятностей, математической статистике и теории случайных функций, под ред. А. А. Свешникова.— М.: Наука, 1970.—656 с.
- 5. *Севастьянов Б. А.*, *Чистяков В. П.*, *Зубков А. М.* Сборник задач по теории вероятностей. М.: Наука, Главная редакция физико-математической литературы, 1980.–223 с.
- 6. *Харин Ю.С.*, *Зуев Н.М.*, *Жук Е.Е*. Теория вероятностей, математическая и прикладная статистика. Минск: БГУ, 2011. 463 с.
- 7. Ширяев А.Н. Вероятность. М.: Наука, Главная редакция физико-математической литературы, 1980. 576 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. Случайные процессы и их вероятностные характеристики. Основные классы случайных процессов	4
3. Стационарные случайные процессы	17
4. Спектральные характеристики стационарных случайных процессов	22
5. Непрерывность случайных процессов. Дифференцируемость случайных процессов	27
6. Интегрирование случайных процессов. Дифференциальные уравнения со случайной правой частью	34
7. Действие линейных операторов на случайный процесс	41
ЛИТЕРАТУРА	47

Учебное излание

Цеховая Татьяна Вячеславовна

ЭЛЕМЕНТЫ ТЕОРИИ СЛУЧАЙНЫХ ПРОЦЕССОВ

Методические указания и упражнения для студентов факультета прикладной математики и информатики

В авторской редакции

Ответственный за выпуск Т. В. Цеховая

Подписано в печать 06.12.2012. Формат $60 \times 84/16$. Бумага офсетная. Усл. печ. л. 2,79. Уч.-изд. л. 2,09. Тираж 50 экз. Заказ

Белорусский государственный университет. ЛИ № 02330/0494425 от 08.04.2009. Пр. Независимости, 4, 220030, Минск.

Отпечатано на копировально-множительной технике факультета прикладной математики и информатики Белорусского государственного университета.

Пр. Независимости, 4, 220030, Минск.