CSE 560 Computer Systems Architecture

Multiprocessors

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - · Each processor executes its own instructions
 - · Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - · MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
 - · Systolic array

Shared-Memory Multiprocessors

Conceptual model

1

- · The shared-memory abstraction
- Familiar and feels natural to programmers
- Life would be easy if systems actually looked like this...

3

Distributed-Memory Multiprocessors ...but systems actually look more like this

Memory is physically distributed

- · Previously covered common address space and cache coherence
- · Scales to about 10s to 100 processors
- · When we want to scale up to 1000s (or millions) of cores
 - Separate address spaces

6

Connect Processors via Network

Cluster approach

- Off-the-shelf processors (each of which is a multicore)
- Connect using off-the-shelf networking technology
- Leverages existing components → inexpensive to design
- · Cloud service providers do this a lot!
 - · Amazon Web Services (AWS)
 - · Microsoft Azure
- Scales up very easily
 - 1000s of nodes
- · Long latency to move data
 - · Traverse network for one cache line? Nope!

Programming Models

- The interconnect is a Local-Area Network (LAN)
 - TCP/IP message delivery
 - · IP addresses
 - · Network handles routing, etc.
 - · Socket-based programming
- Higher-level abstractions
 - · Distributed shared memory
 - Works but performs poorly latency again
 - · Map-Reduce
 - · Hadoop, etc.
 - · Streaming data • Apache Storm, etc.
 - Explicit message passing (more later)

Can we fix latency issue? **Cluster approach** • TCP/IP network technology is dominant • But is it needed? Or just readily available? Computer Cluster

Custom Interconnect Known topology, trusted environment · Routing is easier · Security is easier Computer Cluster

10

9

Interconnect Topologies Mesh · Torus (wraparound mesh) · Low-overhead message delivery · Routing is straightforward · Move along row to destination column · Move along column to destination · Forwarding can be fast · Old-school: store-and-2D Torus forward • Modern: cut-through

Cray Dragonfly **Custom Design for Supercomputers** · Big applications with lots of parallelism · All tiers in one switch (Aries)

Infiniband Network

- Standardized technology
 - · Multiple vendors
 - Equipment works together
 - Competition
 - Not trying to be the "Internet"
- · Focus on low latency interconnect needs
 - · Minimize protocol processing
 - · E.g., easier routing, simpler security model
 - · Fast forwarding
 - Cut-through packet delivery
 - Remote Direct Memory Access (RDMA)
 - · Supports single-ended messaging

15

16

14

More MPI MPI capabilities beyond just send() and rcve() • One-sided communication: get() and put() · Collective operations broadcast

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - · Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - Each processor executes its own instructions
 - · Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
- · Systolic array

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - · Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - · Each processor executes its own instructions
 - · Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
 - MIMD machine, each node is executing the same code
- · MISD multiple instruction, single data
 - · Systolic array

21

22

Flynn's Taxonomy

- Proposed by Michael Flynn in 1966
- SISD single instruction, single data
 - · Traditional uniprocessor
- SIMD single instruction, multiple data
 - Execute the same instruction on many data elements
 - · Vector machines, graphics engines
- MIMD multiple instruction, multiple data
 - Each processor executes its own instructions
 - · Multicores are all built this way
 - SPMD single program, multiple data (extension proposed by Frederica Darema)
- MIMD machine, each node is executing the same code
- MISD multiple instruction, single data
 - Systolic array

26