Week 4(2/3)

Perceptron Algorithm

Machine Learning with Python

Handong Global University Prof. Youngsup Kim idebtor@gmail.com

Perceptron Algorithm

Goals

Understanding Perceptron Algorithm

Topics

- Perceptron Algorithm
- Perceptron Weight Computation
- Perceptron Learning Process
- Perceptron Algorithm Limitation
- Perceptron Example

1. Perceptron Algorithm: Purpose

Purpose:

To compute w classifying x

Purpose:

To compute w classifying x

• Algorithm:

Initialize w with small random numbers

Purpose:

To compute w classifying x

• Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$

Purpose:

To compute w classifying x

• Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- Purpose:
 - To compute w classifying x
- Algorithm:
 - Initialize w with small random numbers
 - For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_i := w_i + \Delta w_i$

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

Notation:

• $\chi^{(i)}$ (i)th training data, input

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- $\chi^{(i)}$ (i)th training data, input
- x_j⁽ⁱ⁾
 (i)th training data, j_th feature

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- χ⁽ⁱ⁾
 (i)th training data, input
- $x_j^{(i)}$ (i)th training data, j_th feature
- \hat{y} (y hat) output, predicted value
- yclass label, actual value

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- χ⁽ⁱ⁾
 (i)th training data, input
- $x_j^{(i)}$ (i)th training data, j_th feature
- \hat{y} (y hat) output, predicted value
- y
 class label, actual value

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- x⁽ⁱ⁾
 (i)th training data, input
- $x_j^{(i)}$ (i)th training data, j_th feature
- \hat{y} (y hat) output, predicted value
- yclass label, actual value
- w_jweight for j_th feature

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- χ⁽ⁱ⁾
 (i)th training data, input
- x_j⁽ⁱ⁾
 (i)th training data, j_th feature
- \hat{y} (y hat) output, predicted value
- yclass label, actual value
- w_jweight for j_th feature
- Δw_j
 delta weight to adjust

- Purpose:
 - To compute w classifying x
- Algorithm:
 - Initialize w with small random numbers
 - For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

Delta weight expression

14

Purpose:

To compute w classifying x

• Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

$$\Delta w_j = \eta(y^{(i)} - \hat{y}^{(i)}) x_j^{(i)}$$
 (1)

- η (eta) learning rate [0..1]
- j features including bias

$$\Delta w_0 = \eta(y^{(i)} - \hat{y}^{(i)})$$

$$\Delta w_1 = \eta(y^{(i)} - \hat{y}^{(i)})x_1^{(i)}$$

$$\Delta w_2 = \eta(y^{(i)} - \hat{y}^{(i)})x_2^{(i)}$$

Purpose:

To compute w classifying x

Algorithm:

- Initialize w with small random numbers
- For each training data $x^{(i)}$
 - compute output $\hat{y} = h(w^T x)$
 - adjust weight $w_j := w_j + \Delta w_j$

- Test the expression (1):
 - Bipolar step function returns
 -1 or 1
- Case 1: $\hat{y} = y$ $\Delta w_j =$
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j =$

- Test the expression (1):
 - Bipolar step function returns-1 or 1
- Case 1: $\hat{y} = y$
 - $\Delta w_j = 0$
 - Therefore, no change in weight
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j =$

- Test the expression (1):
 - Bipolar step function returns-1 or 1
- Case 1: $\hat{y} = y$
 - $\Delta w_i = 0$
 - Therefore, no change in weight
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j = \eta \left(1^i (-1^i) \right) x_j^i = \eta(2) x_j^i$
 - $\Delta w_j = \eta (-1^i 1^i) x_j^i = \eta (-2) x_j^i$

2. Perceptron Learning Process

2. Perceptron Learning Process: Input

2. Perceptron Learning Process: Net input

2. Perceptron Learning Process: Output

2. Perceptron Learning Process: Compute error

2. Perceptron Learning Process: Adjust weight

- 1943: McCulloc-Pitt neuron
 - Warren McCullock, Wlater Pitts
- 1957: Perceptron by Rosenblatt
- 1958: New York Times
- 1969: Prof. Marvin Minsky at MIT
 - Perceptron's limit: XOR
 - Possible by Multi-Layer Perceptron But no solution found.
- 1974: Paul Worbros at Harvard
 - Graduate student
 - Backpropagation for MLP found
 - 1974, 1982, 1986(Hinton)
- 1980: LeCun
 - Convolutional Neural Network
- 2006, 2007: Hinton, Benjio
 - Breakthrough
 - Use Deep Learning instead of MLP
- 2018: LeCun, Hinton, Benjio

- 1943: McCulloc-Pitt neuron
 - Warren McCullock, Wlater Pitts
- 1957: Perceptron by Rosenblatt
- 1958: New York Times
- 1969: Prof. Marvin Minsky at MIT
 - Perceptron's limit: XOR
 - Possible by Multi-Layer Perceptron But no solution found.
- 1974: Paul Worbros at Harvard
 - Graduate student
 - Backpropagation for MLP found
 - 1974, 1982, 1986(Hinton)
- 1980: LeCun
 - Convolutional Neural Network
- 2006, 2007: Hinton, Benjio
 - Breakthrough
 - Use Deep Learning instead of MLP
- 2018: LeCun, Hinton, Benjio

ACM A.M. Turing Award 2018: Yan Lecun, Geoffrey Hinton and Yoshua Bengio,

Godfathers of Al' honored with Turing Award, the Nobel Prize of computing

XOR 진리표	
x_2	у
0	0
1	1
0	1
1	0
	0 1

3. Perceptron Algorithm's Limit: Classification

 The green straight lines classify two classes, but not the best fit.

4. Perceptron Example

4. Perceptron Example: Training data

- 6 training data
- Class label: y = [1, -1, -1, -1, 1, 1]

4. Perceptron Example: Training data

- 6 training data
- Class label: y = [1, -1, -1, -1, 1, 1]

4. Perceptron Example: Weight computation

- Step 1: Compute weight w
 - Initial weights:
 - $w^T = [0 \ 1 \ 0.5]$
 - Learning rate $\eta = 0.1$

- Step 1: Compute weight w
 - Initial weights:
 - $w^T = [0 \ 1 \ 0.5]$
 - Learning rate $\eta = 0.1$
 - Training data:
 - $x^{(1)} = [1, 1]$
 - $x^{(2)} = [2, -2]$
 - $x^{(3)} = [-1, -1.5]$
 - $x^{(4)} = [-2, -1.0]$
 - $x^{(5)} = [1, -2.0, 1.0]$
 - $x^{(6)} = [1, 1.5, -0.5]$

- Step 1: Compute weight w
 - Initial weights:
 - $w^T = [0 \ 1 \ 0.5]$
 - Learning rate $\eta = 0.1$
 - Training data:

$$x^{(1)} = [1, 1]$$

$$x^{(2)} = [2, -2]$$

$$x^{(3)} = [-1, -1.5]$$

$$x^{(4)} = [-2, -1.0]$$

$$x^{(5)} = [1, -2.0, 1.0]$$

$$x^{(6)} = [1, 1.5, -0.5]$$

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)					
2	(1.0, 2.0, -2.0)						
3	(1.0, -1.0, -1.5)						
4	(1.0, -2.0, -1.0)						
5	(1.0, -2.0, 1.0)						
6	(1.0, 1.5, -0.5)						
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0,w_1,w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)			1	0.1	
2	(1.0, 2.0, -2.0)				-1	0.1	
3	(1.0, -1.0, -1.5	5)			-1	0.1	
4	(1.0, -2.0, -1.0))			-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1_	0.1	
final							•

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)			-1	0.1	
3	(1.0, -1.0, -1.5)				-1	0.1	
4	(1.0, -2.0, -1.0)				-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1	0.1	
final							

		int 1 / Half Page	A Section of the sect	75000	1 -		
i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0,w_1,w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{\mathbf{y}}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	
3	(1.0, -1.0, -1.5)				-1	0.1	
4	(1.0, -2.0, -1.0)				-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1	0.1	
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw	
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0	
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1		
3	(1.0, -1.0, -1.5)			Λω. –	$n(v^{(i)})$	$-\hat{y}^{(i)})x_i^{(i)}$)	
4	(1.0, -2.0, -1.0)					$1 - 1)x_i^{(2)}$		
5	(1.0, -2.0, 1.0)					(2)		
6	(1.0, 1.5, -0.5)				J			
final								

Step 1: Compute weight w

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.
3	(1.0, -1.0, -1.5)			$\Delta w_j =$	n(v ⁽ⁱ⁾ -	
4	(1.0, -2.0, -1.0)				0.1(-1)	
5	(1.0, -2.0, 1.0)				$-0.2x_{i}^{0}$	(2)
6	(1.0, 1.5, -0.5)				1	
final						

 Δw

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0,w_1,w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw	
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0	
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4,	.4)
3	(1.0, -1.0, -1.5)			$\Delta w_j =$	$n(v^{(i)}$	$-\hat{\mathbf{v}}^{(i)}$	$c^{(i)}$	
4	(1.0, -2.0, -1.0)				0.1(-1)		J	
5	(1.0, -2.0, 1.0)				-0.2x		J	
6	(1.0, 1.5, -0.5)			$\Delta w =$	-0.2(1	1.0, 2.0	(0, -2.0)	
final				;=_	(-0.2,	-0.4,	0.4)	

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw		
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0		
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4, .4)		
3	(1.0, -1.0, -1.5)	(-2.0, 0.6, 0.9)		Δ	(ı)	(i)	.(i)		
4	(1.0, -2.0, -1.0)	$W + \Delta W$		$\Delta w_j =$			3		
5	(1.0, -2.0, 1.0)	77 277		$= 0.1(-1-1)x_j^{(2)}$ $= -0.2x_i^{(2)}$					
6	(1.0, 1.5, -0.5)				J		0, -2.0)		
final				=	(-0.2,	-0.4,	0.4)		

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4, .4)
3	(1.0, -1.0, -1.5)	(-2.0, 0.6, 0.9)	-2.15	-1	-1	0.1	0
4	(1.0, -2.0, -1.0)	(-0.2, 0.6, 0.9)	-2.3	-1	-1	0.1	0
5	(1.0, -2.0, 1.0)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2,4, .2)
6	(1.0, 1.5, -0.5)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2, .3,1)
final	-	(0.2, 0.5, 1.0)		-	-	-	

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4, .4)
3	(1.0, -1.0, -1.5)	(-2.0, 0.6, 0.9)	-2.15	-1	-1	0.1	0
4	(1.0, -2.0, -1.0)	(-0.2, 0.6, 0.9)	-2.3	-1	-1	0.1	0
5	(1.0, -2.0, 1.0)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2,4, .2)
6	(1.0, 1.5, -0.5)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2, .3,1)
final	-	(0.2, 0.5, 1.0)		-	-	-	

- Step 1: Compute weight w
 - w = [0.2, 0.5, 1.0]
- Step 2: Compute decision boundary

- Step 1: Compute weight w
 - w = [0.2, 0.5, 1.0]
- Step 2: Compute decision boundary
 - h(z) = 0 or $h(w^T x) = 0$

- Step 1: Compute weight w
 - w = [0.2, 0.5, 1.0]
- Step 2: Compute decision boundary
 - h(z) = 0 or $h(w^T x) = 0$

$$\begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} = 0$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$0.2 + 0.5x_1 + 1.0x_2 = 0$$

- Step 1: Compute weight w
 - w = [0.2, 0.5, 1.0]
- Step 2: Compute decision boundary
 - h(z) = 0 or $h(w^T x) = 0$

$$\begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} = 0$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$0.2 + 0.5 x_1 + 1.0 x_2 = 0$$

$$x_2 = -0.5 x_1 - 0.2$$

4. Perceptron Example: Visualization

- Step 1: Compute weight w
 - w = [0.2, 0.5, 1.0]
- Step 2: Compute decision boundary
 - $x_2 = -.5x_1 0.2$
- Step 3: Visualization
 - plot_xyw()

plot_xyw()

4. Perceptron Example: Visualization

```
import matplotlib.pyplot as plt
 2 | import numpy as np
 3 | %matplotlib inline
4 %run code/plot xyw.py
 5
   x = np.array([[1.0, 1.0], [2.0, -2.0], [-1.0, -1.5],
                  [-2.0, -1.0], [-2.0, 1.0], [1.5, -0.5]]
8 X = np.c[np.ones(len(x)), x]
   y = np.array([1, -1, -1, -1, 1, 1])
10 \mid w = np.array([0.2, 0.5, 1.0])
   plot xyw(X, y, w, X0=True, annotate=True)
```


w[0.0 1.0 0.5]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 0.2 1.1]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 0.2 1.1]

w[0.2 0.5 1.0]

Perceptron Algorithm

Summary

- Perceptron Algorithm
- Perceptron Weight Computation
- Perceptron Learning Process
- Perceptron Algorithm Limitation
- Perceptron Example

Next

4-3 Perceptron Algorithm Implementation

Week 4(2/3)

Perceptron

Machine Learning with Python

Handong Global University Prof. Youngsup Kim idebtor@gmail.com