

Задача: Abracadabra

Тін Голубіч, також відомий як *Пан Чарівник*, є одним із найталановитіших молодих фокусників Вараждину. Його спеціалізація — карткова магія, і це — данина поваги деяким із справді вражаючих магічних подвигів, свідками яких ми були протягом багатьох років.

Трюк Тіна, описаний у цьому завданні, включає колоду з N карт, де на кожній карті записане унікальне ціле число від 1 до N, а загальна кількість карт є парною. Тін збирається виконати серію *тасувань*, і у будь-який момент глядач з аудиторії може поставити запитання: «Яке число було написано на лицьовій стороні i-ї картки знизу після того, як ви виконали t тасувань?». Звичайно, Тін негайно дасть відповідь.

Секрет трюку полягає в поєднанні неймовірних розумових здібностей Тіна та його спритності в роботі з картами. По-перше, він точно запам'ятає початковий стан колоди, тобто він точно знає, яка карта в якій позиції спочатку.

Потім він використовує унікальний спосіб тасування, який залишається непоміченим для глядачів. Подібно до звичайного тасування, Тін візьме нижню половину карт у ліву руку, а верхню — у праву, тримаючи їх весь час зображенням донизу і скидуючи їх одну за одною, щоб сформувати нову колоду на столі. Замість того, щоб довільно скидати нижню карту з однієї зі своїх рук, він завжди скидає нижню карту з меншим числом, записаним на її лицьовій стороні. Крім того, коли він скинув уже всі карти з однієї руки, він також скидає й всі інші карти, що залишилися, з іншої руки. Потім скинуті картки збираються, і тасування вважається завершеним.

Починаючи з початкової колоди, Тін буде повторно тасувати поточну колоду, отримуючи новий порядок карт, на яких буде виконано наступне тасування.

Ваше завдання — написати програму, яка імітує трюк Тіна, тобто, враховуючи початковий стан колоди, вам потрібно буде відповісти на Q запитів аудиторії.

Вхідні дані

Перший рядок містить два цілі числа N і Q з опису завдання. Гарантується, що N парне.

Другий рядок містить N натуральних чисел — перестановку набору $\{1, 2, \dots, N\}$, що представляє початковий стан колоди знизу вгору.

j-й з наступних Q рядків містить два цілі числа t і i ($1 \le i \le N$), що описують j-й запит від аудиторії. Точніше, запит запитує про число, написане на i-й карті знизу колоди після завершення t тасувань.

Вихідні дані

Виведіть Q рядків, j-й з яких містить одне натуральне число від 1 до N — відповідь на j-й запит.

Оцінювання

В усіх блоках виконуються обмеження: $2 < N < 200\,000$, $1 < Q < 1\,000\,000$ та $0 < t < 10^9$.

Блок	Балів	Обмеження
1	10	$N \le 1000$
2	40	Усі запити мають однакове значення t .
3	25	$N,Q \le 100000$
4	25	Без додаткових обмежень.

Приклади

вхідні дані	вхідні дані	вхідні дані
6 3	6 6	10 10
1 5 6 2 3 4	2 1 5 4 6 3	7 5 2 9 10 8 4 3 6 1
1 2	0 1	3 1
0 4	1 1	3 2
1 5	0 3	3 3
	1 3	3 4
вихідні дані	0 6	3 5
2	10 6	3 6
2		3 7
5	вихідні дані	3 8
	2	3 9
	$\frac{1}{2}$	3 10
	5	вихідні дані
	4	
	3	2
	3	3
		6
		1
		7
		5
		8
		4
		9
		10

Пояснення третього прикладу:

У наведеній нижче таблиці показано стан колоди після кожного тасування. Усі запити мають t=3, тому результатом ϵ саме стан колоди після трьох тасувань.

Кількість тасувань	Колода (знизу вгору)		
0	7 5 2 9 10 8 4 3 6 1		
1	7 5 2 9 10 8 4 3 6 1 7 5 2 8 4 3 6 1 9 10 3 6 1 7 5 2 8 4 9 10 2 3 6 1 7 5 8 4 9 10		
2	3 6 1 7 5 2 8 4 9 10		
3	2 3 6 1 7 5 8 4 9 10		