Class 7: Machine Learning 1

SungWoo Park (PID: 69026846)

Clustering

We will start with k-means clustering, one of the most prevalent of all clustering methods. To get started let's make some data up:

```
hist ( rnorm(10000, mean=3) )
```

Histogram of rnorm(10000, mean = 3)


```
tmp <- c( rnorm(30, 3), rnorm(30, -3) )
x <- cbind(x=tmp, y=rev(tmp) )
plot(x)</pre>
```


The main function in R for K-means clustering is called 'kmeans()'.

```
k <- kmeans(x, centers=2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster: [1] 53.081 53.081

(between_SS / total_SS = 90.0 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster

k\$size

[1] 30 30

Q2. The clustering result i.e. membership vector?

k\$cluster

Q3. Cluster centers

k\$centers

x y 1 2.827604 -2.804050 2 -2.804050 2.827604

Q4. Make a plot of out data colored by clustering results with optionally the cluster centers shown.

```
plot(x, col=k$cluster, pch=16 )
points(k$centers, col="blue", pch=15, cex=2)
```


Q5. Run kmeans again but cluster into 3 groups and plot the results like we did above.

```
k3 <- kmeans(x, centers=3, nstart=20)
plot(x, col=k3$cluster, pch=16)
points(k3$centers, col="blue", pch=15, cex=2)</pre>
```


Hierarchial

First we need to calculate point (dis)similarity as the Euclidean distance between observations $dist_matrix \leftarrow dist(x)$ The hclust() function returns a hierarchical clustering model hc $\leftarrow hclust(d = dist_matrix)$ the print method is not so useful here hc

```
hc <- hclust( dist(x) )
hc</pre>
```

```
Call:
```

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
abline(h=6, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

Draws a dendrogram

The function to get our clusters/groups from a hclust object is called 'cutree()'

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

```
grps <- cutree(hc, k=2)</pre>
```

Q. Plot our helust results in terms of our data colored by cluster membership.

```
plot(x, col=grps)
```


Principal Component Analysis (PCA)

Principal components are new low dimensional axis closest to the observations. The data have maximum variance along PC1 which makes the first few PCs useful for visualizing our data and as a basis for further analysis.

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions? 17 rows and 5 column. Use $\dim(x)$, $\operatorname{nrow}(x)$, ncol

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
head(x)</pre>
```

	Х	${\tt England}$	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

```
dim(x)
```

[1] 17 5

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer changing the row.names=1. This way is more robust than set the rowname and delete one.

Q3: Changing what optional argument in the above barplot() function results in the following plot?

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

If a given point lies on the diagnol means that the measurement is similar between two countries. The more a given point lies out of the diagnol means that the measurement is different.

```
pairs(x, col=rainbow(10), pch=16)
```


The main function for PCA in base R is called 'prcomp()'

It wants the transpose (with the 't()') of our food data for analysis.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

The correlation of northern Ireland with other countries are not as linear as other countries

t(x)

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	otatoes	Fres	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874		265		570			203
Scotland		566	;	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als 1	Beverages	Soft_d	drinks
England		360		1102	2 :	1472	57		1374

572
506

```
pca <- prcomp( t(x) )
pca$x</pre>
```

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-9.152022e-15
Wales	-240.52915	-224.646925	-56.475555	5.560040e-13
Scotland	-91.86934	286.081786	-44.415495	-6.638419e-13
N.Ireland	477.39164	-58.901862	-4.877895	1.329771e-13

```
summary(pca)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

One of the main results that look for is called the "score plot" a.k.a. PC plot, PC1 vs PC2 plot... > Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot( pca$x[,1], pca$x[,2])
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col=c(1,2,3,4))
```



```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v

[1] 67 29 4 0

## or the second row here...
z <- summary(pca)
z$importance</pre>
```

```
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

Fresh_potatoes and Soft_drinks. Soft drinks account for scotland and Wales account for Fresh_potatoes.

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```

