Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.2.4

по курсу общей физики
на тему:
«Свободные колебания в электрическом контуре»

Работу выполнил: Баринов Леонид (группа Б02-827) Оборудование

1 Аннотация

В работе будет исследована: зависимость периода свободных колебаний контура от ёмкости; зависимость логарифмического декремента затухания от сопротивления. Будет определено критическое сопротивление и добротность контура.

2 Оборудование

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф с разделительной панелью, измеритель LCR.

Экспериментальная установка

На Рис. 1 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность I и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Рис. 1. Схема установки для исследования свободных колебаний

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\sim 1~{\rm MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода синхроимпульсы генератора.

3 Результаты измерений и обработка результатов

Установим на магазине сопротивлений величину R=0; на магазине емкостей – величину C=0,02 мкФ. Прокалибруем горизонтальную ось осциллографа по известному периоду повторения импульсов. Подберем частоту развертки ЭО, при которой расстояние x_0 между импульсами, поступающими с генератора, занимает почти весь экран

$$x_0 = 50 \pm 2$$
 дел

Проведем измерения расстояния x, которое занимают несколько полных периодов n. Зная $T_0 = 0,01$ с и x_0 , рассчитаем период колебаний по формуле $T = T_0 x/(nx_0)$.

C , мк Φ	х, дел	n	T, MC	ΔT , MC
0,10	50	13	0,77	0,03
0,20	50	9	1,11	0,04
0,25	29	5	1,16	0,08
0,30	19	3	1,27	0,13
0,40	15	2	1,50	0,20
0,45	31	4	1,55	0,10
0,50	17	2	1,70	0,20
0,60	27	3	1,80	0,13
0,65	28	3	1,87	0,13
0,70	39	4	1,95	0,10
0,80	32	3	2,13	0,13
0,90	33	3	2,20	0,13

Таблица 1. Измерение периодов колебаний T при различных значениях емкостей конденсатора C

Найдем сопротивление магазина $R_{\rm kp}$, при котором колебательный режим переходит в апериодический.

$$R_{\rm KD} = 9800 \pm 800 \; {\rm OM}$$

Установим сопротивление $R\approx 0,1R_{\rm kp}$. Получим на экране картину затухающих колебаний. Рассчитаем логарифмический декремент затухания Θ по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

где n — целое число периодов, разделяющих измеренные значения амплитуд. Проведем измерения для значений R в интервале $(0, 1-0, 3)R_{\rm кp}$.

U_k , дел	$U_{k+n},$ дел	n	R, Om	Θ	$\Delta\Theta$
22	1	5	960	0,62	0,06
20	1	4	1152	0,75	0,07
18	1	3	1440	0,96	0,11
15	1,5	2	1728	1,15	0,15
15	1	2	1920	1,35	0,18
14	1	2	2112	1,32	0,19
13	2,5	1	2400	1,65	0,25
11	1,5	1	2880	1,99	0,36

Таблица 2. Амплитуды U_k и U_{k+n} , разделенные целым числом периодов n

Также проведем наблюдения затухающих колебаний на фазовой плоскости:

r_k , дел	$r_{k+n},$ дел	n	R, Om	Θ	$\Delta\Theta$
11	1	4	997	0,60	0,05
10	1	3	1050	0,77	0,08
19	1,5	3	1250	0,85	0,04
17,5	1	3	1550	0,95	0,05
15,5	1	2	1950	1,37	0,09
14	1	2	2250	1,32	0,09
12	0,5	2	2450	1,59	0,13
12	2	1	2600	1,79	0,15
11,5	2	1	2800	1,75	0,15

Таблица 3. Радиусы витков спирали r_k и r_{k+n} , разделенные целым числом периодов n при наблюдении затухающих колебаний на фазовой плоскости

Измерим омическое сопротивление катушки R_L и индуктивность L с помощью измерителя LCR

ν, Гц	R_L , Om	L , м Γ н
50	9,66	140,54
1000	12,56	135,56
5000	20,98	136,16

Таблица 4. Измерение сопротивления R_L и индуктивности L катушки с помощью измерителя LCR

Рассчитаем теоретическое значение периода колебания по формуле $T=2\pi\sqrt{LC}$. Соотнесем эти значения со значениям T, полученными экспериментально, из таблицы 1.

C , мк Φ	$T_{ m эксп}$, мс	$\Delta T_{ m skch}$, MC	$T_{\rm reop}$, MC	$\Delta T_{ m reop}$, mc
0,10	0,77	0,03	0,74	0,01
0,20	1,11	0,04	1,05	0,01
0,25	1,16	0,08	1,18	0,01
0,30	1,27	0,13	1,29	0,01
0,40	1,50	0,20	1,49	0,01
0,45	1,55	0,10	1,58	0,01
0,50	1,70	0,20	1,67	0,01
0,60	1,80	0,13	1,82	0,01
0,65	1,87	0,13	1,90	0,01
0,70	1,95	0,10	1,97	0,01
0,80	2,13	0,13	2,11	0,02
0,90	2,20	0,13	2,23	0,02

Таблица 5. Теоретические $T_{\text{теор}}$ и экспериментальные $T_{\text{эксп}}$ значения периодов свободных колебаний при емкости конденсатора C

Рис. 2. График зависимости $T_{\text{эксп}}$ от $T_{\text{теор}}$

Коэффициент наклона прямой равен:

$$k = 1,00 \pm 0,08$$

Сопротивление контура $R_{\text{конт}}$ определяется как сумма сопротивления магазина. Объединим данные из таблицы 2 и таблицы 3 и рассчитаем значения: $1/R_{\text{конт}}^2$, $1/\Theta^2$ и их погрешности. Сопротивление катушки R_L взято при частоте $\nu=5$ к Γ ц.

$R_{\text{конт}}$, Ом	$1/\Theta^2$	$\Delta(1/\Theta^2)$	$1/R_{\text{конт}}^2$, $O_{\text{M}}^{-2} \cdot 10^6$	$\Delta(1/R_{\text{koht}}^2),$ $O_{\text{M}}^{-2} \cdot 10^6$
981	2,62	0,48	1,0392	0,0042
1018	2,78	0,51	0,9650	0,0039
1071	1,70	0,34	0,8718	0,0035
1173	1,78	0,36	0,7268	0,0029
1271	1,40	0,15	0,6190	0,0025
1461	1,08	0,24	0,4685	0,0019
1571	1,10	0,13	0,4052	0,0016
1749	0,75	0,20	0,3269	0,0013
1941	0,55	0,15	0,2654	0,0011
1971	0,53	0,07	0,2574	0,0010
2133	0,57	0,16	0,2198	0,0009
2271	0,57	0,08	0,1939	0,0008
2421	0,37	0,11	0,1706	0,0007
2471	0,40	0,07	0,1638	0,0007
2621	0,31	0,05	0,1456	0,0006
2821	0,33	0,06	0,1257	0,0005
2901	0,25	0,09	0,1188	0,0005

Таблица 6. Зависимость величины, обратной к квадрату декремента $1/\Theta^2$ от величины обратной к квадрату сопротивления контура $1/R_{\rm koht}^2$

Рис. 3. График зависимости величины, обратной к квадрату декремента $1/\Theta^2$ от величины обратной к квадрату сопротивления контура $1/R_{\rm koht}^2$

По коэффициенту наклона рассчитаем $R_{\rm kp}$ по формуле $R_{\rm kp}=2\pi\sqrt{\Delta Y/\Delta X},$ где $\Delta Y=\Delta(1/\Theta^2),\,\Delta X=\Delta(1/R_{\rm kohr}^2)$

$$R_{\text{kd}} = 10000 \pm 2000 \text{ Om}$$

Рассчитаем теоретическое значение критического сопротивления $R_{\rm kp}^{\rm T}=2\sqrt{L/C}$. $C=5~{\rm H\Phi},~\nu=5~{\rm k\Gamma m}$

$$R_{\text{KD}}^{\text{\tiny T}} = 10400 \pm 400 \text{ Om}$$

Рассчитаем добротность контура Q по формуле $Q = \pi/\Theta$ для максимального и минимального значений Θ по картине затухающих колебаний (данные из таблицы 2). Также произведем расчеты добротности $Q^{\text{конт}}$ по формуле $Q = 1/R\sqrt{L/C}$

$$Q_{min} = 1, 6 \pm 0, 3;$$
 $Q_{min}^{\text{конт}} = 1,812 \pm 0,007$
 $Q_{max} = 5, 1 \pm 0, 5;$ $Q_{max}^{\text{конт}} = 5,44 \pm 0,02$

Выполним расчет добротности Q по значениям декремента затухания при наблюдении колебаний на фазовой плоскости (таблица 3)

$$\begin{split} Q_{min}^{\text{ch}} &= 1,76 \pm 0,15 \\ Q_{max}^{\text{ch}} &= 5,3 \pm 0,4 \end{split}$$

4 Обсуждение результатов и выводы

В работе была исследована зависимость периода свободных колебаний контура от ёмкости (Таблица 1). По результатам был построен график зависимости периода колебаний контура, найденного экспериментально $T_{\text{эксп}}$, от теоретического значения периода колебаний $T_{\text{теор}}$ (Рис. 2). Из графика коэффициент наклона прямой k:

$$k = 1,00 \pm 0,08$$

что свидетельствует о совпадении экспериментального и теоретического значений периода колебаний контура

Была исследована зависимость логарифмического декремента затухания Θ от сопротивления контура R. (Puc 3)

Разными способами было определено критическое сопротивление контура $R_{\rm kp}$, а также его добротность Q.

$L_{\text{Kat}}, \text{ M}\Gamma\text{H}$	$R_{\mathrm{kp}}, \mathrm{OM}$				
$L_{\rm KAT}$, MI H	Teop.	Подбор	Граф.		
137 ± 3	10400 ± 400	9800 ± 800	10000 ± 2000		
R, Om	Q				
It, OM	Teop.	$f(\Theta)$	Спираль		
2880	$5,44 \pm 0,02$	$5, 1 \pm 0, 5$	$5, 3 \pm 0, 4$		
960	$1,812 \pm 0,007$	$1,6 \pm 0,3$	$1,76 \pm 0,15$		