CGS698C: BAYESIAN MODELS & DATA ANALYSIS

Assignment - 4

Roshan Patil (Roll no .220760)

Part 1: A simple linear regression: Power posing and testosterone

```
import pandas as pd
# Load the data
df_powerpose = pd.read_csv('/content/df_powerpose_99f68d8a-2128-47c5-
84c4-93af776c0468.csv')
# Display the first few rows of the dataframe
df powerpose.head()
## Now, let's prepare the data by creating a column for the change in
testosterone levels:
# Calculate the change in testosterone levels
df powerpose['delta testosterone'] = df powerpose['testm2'] -
df powerpose['testm1']
# Display the first few rows to check the new column
df powerpose.head()
## Next, we will perform the linear regression using statsmodels:
# Import necessary libraries for regression
import statsmodels.api as sm
# Define the dependent variable (delta testosterone) and independent
variable (hptreat)
X = df powerpose['hptreat'].map({'Low': 0, 'High': 1}) # Convert
categorical to numerical
y = df powerpose['delta testosterone']
# Add a constant to the independent variable (intercept)
X = sm.add constant(X)
# Perform the linear regression
model = sm.OLS(y, X).fit()
# Print the summary of the regression results
print(model.summary())
```

```
## Finally, let's interpret the results:
# Interpreting the results
summary = model.summary()
print("Summary of regression results:\n", summary)
# Interpretation:
# If the coefficient for 'hptreat' is significantly positive, it
suggests that high power posing is associated with an increase in
testosterone levels.
# Check the p-value of the 'hptreat' coefficient to determine
statistical significance (typically p < 0.05 is considered
significant).
                           OLS Regression Results
Dep. Variable: delta testosterone
                                      R-squared:
0.048
Model:
                                 0LS
                                      Adj. R-squared:
0.022
                       Least Squares F-statistic:
Method:
1.869
Date:
                    Mon, 01 Jul 2024 Prob (F-statistic):
0.180
Time:
                            11:17:51 Log-Likelihood:
-171.48
No. Observations:
                                  39
                                      AIC:
347.0
Df Residuals:
                                  37
                                      BIC:
350.3
Df Model:
                                   1
Covariance Type:
                           nonrobust
                coef std err t P>|t| [0.025]
0.9751
             -4.3666
                          4.628 -0.944
                                               0.351 -13.743
const
5.010
hptreat
              8.8346
                          6.462
                                     1.367
                                               0.180
                                                          -4.259
21.928
                               0.353
                                      Durbin-Watson:
Omnibus:
2.135
Prob(Omnibus):
                               0.838
                                       Jarque-Bera (JB):
```

0.524									
Skew:		0.14	6	Prob(JB)):				
0.770		2 51	-	Canal Na					
Kurtosis: 2.65		2.51	3	Cond. No).				
2.03									
Notes:									
[1] Standard Errors assume that the covariance matrix of the errors is									
correctly specified.									
Summary of regression results:									
OLS Regression Results									
Dep. Variable	e: delta	a testosteron	e	R-square	ed:				
0.048		1_1031031010110		5444.641					
Model:		0LS		Adj. R-squared:					
0.022	023			•	•				
Method:	Least Squares			F-statistic:					
1.869									
Date:	Date: Mon, 01		4	Prob (F-	-statistic	c):			
0.180	0.180								
Time:	11:17:51			Log-Likelihood:					
-171.48									
No. Observations:		3	9	AIC:					
347.0		2	_	DIC					
Df Residuals:		3	/	BIC:					
350.3			7						
Df Model:			1						
Covariance Ty	/ne ·	nonrobus	+						
covariance is	γpc.	110111 0003							
=========			:			=========			
	coef	std err		t	P> t	[0.025			
0.975]									
const	-4.3666	4.628	- 0	.944	0.351	-13.743			
5.010			_						
hptreat	8.8346	6.462	1	.367	0.180	-4.259			
21.928									
	========	========	===:		=======				
Omnibus:		0.35	3	Durhin	Vatson:				
2.135			,	Durbin-Watson:					
Prob(Omnibus)):	0.83	8	Jarque-F	Bera (JB):				
0.524	-	0.05	_	3 a 4 a o .	(32)				
-									

```
Skew: 0.146 Prob(JB):
0.770
Kurtosis: 2.513 Cond. No.
2.65

------
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

Part 2: Poisson regression models and hypothesis testing

Exercise 2.1: Implement the Poisson Regression Model

The number of crossings Ni in a sentence follows a Poisson distribution with rate parameter λi :

Ni ~ Poisson(λ i)

The rate parameter λ i is given by:

```
log(\lambda i) = \alpha + \beta Li
```

Here's the implementation of the model in Python:

```
import numpy as np
def poisson crossings(sentence length, alpha, beta):
    Function to compute the number of crossings in a sentence using a
Poisson model.
    Parameters:
    sentence length (int): Length of the sentence (number of words)
    alpha (float): Expected rate of crossings in a sentence of average
    beta (float): Change in rate of crossings as a function of
sentence length
    Returns:
    int: Number of crossings
    # Calculate lambda
    log lambda = alpha + beta * sentence length
    lambda i = np.exp(log lambda)
    # Generate number of crossings from Poisson distribution
    crossings = np.random.poisson(lambda i)
```

```
return crossings

# Example usage
sentence_length = 11  # Average sentence length
alpha = 0.15  # Example alpha
beta = 0.05  # Example beta

print("Number of crossings:", poisson_crossings(sentence_length, alpha, beta))

Number of crossings: 2
```

Exercise 2.2: Generate Prior Predictions

Generate prior predictions of the model for sentences of length 4 under the prior assumptions:

```
\alpha \sim Normal(0.15, 0.1)
```

$\beta \sim Normal(0.25, 0.05)$

```
# Generate prior predictions
def generate_prior_predictions(sentence_length, num_samples=1000):
    alpha_prior = np.random.normal(0.15, 0.1, num_samples)
    beta_prior = np.random.normal(0.25, 0.05, num_samples)

    predictions = [poisson_crossings(sentence_length, alpha, beta) for
alpha, beta in zip(alpha_prior, beta_prior)]

    return predictions
# Generate predictions for sentence length 4
sentence_length = 4
prior_predictions = generate_prior_predictions(sentence_length)

print("Prior predictions for sentence length 4:",
prior_predictions[:10]) # Display first 10 predictions

Prior predictions for sentence length 4: [4, 4, 6, 6, 4, 1, 3, 3, 3, 4]
```

Exercise 2.3: Fit Models M1 and M2 to the Data

Load the data and fit the models M1 and M2 using the statsmodels library. We'll use Poisson regression for this purpose.

```
import pandas as pd
import statsmodels.api as sm

# Load the data
crossings_data = pd.read_csv('/content/crossings_24a167f3-2f8f-4f5c-bca9-884567bb1c33.csv')
```

```
## Model M1: Rate of Crossings as a Function of Sentence Length
# Define the dependent variable (number of crossings) and independent
variables (sentence length)
X M1 = crossings data[['s.length']]
X M1 = sm.add constant(X M1) # Add a constant term for the intercept
y M1 = crossings data['nCross']
# Fit the Poisson regression model
model M1 = sm.GLM(y M1, X M1, family=sm.families.Poisson()).fit()
##Model M2: Different Rates of Crossings for English and German
# Create an indicator variable for language (0 for English, 1 for
German)
crossings data['s.id'] = (crossings data['Language'] ==
'German').astype(int)
# Define the dependent variable and independent variables for Model M2
X M2 = crossings data[['s.length', 's.id']]
X_M2['interaction'] = X_M2['s.length'] * X_M2['s.id'] # Interaction
term
X M2 = sm.add constant(X M2) # Add a constant term for the intercept
y M2 = crossings data['nCross']
# Fit the Poisson regression model
model M2 = sm.GLM(y M2, X M2, family=sm.families.Poisson()).fit()
# Summary for Model M1
summary M1 = model M1.summary()
print("Summary of Model M1:\n", summary M1)
# Summarv for Model M2
summary M2 = model M2.summary()
print("Summary of Model M2:\n", summary M2)
# Interpretation:
# In Model M1, we look at the coefficients for 'length' to understand
how sentence length affects the number of crossings.
# In Model M2, we look at the coefficients for 'length', 's.id', and
'interaction' to understand how sentence length and language interact
to affect the number of crossings.
Summary of Model M1:
                  Generalized Linear Model Regression Results
```

Dep. Variable:		r	Cross	No. Ob	servations:			
1900 Model:			GLM	Df Res	iduals:			
1898			GEIT	DI NES	rada es.			
Model Family: 1		Po	isson	Df Model:				
Link Function:			Log	Scale:				
1.0000 Method:			IRLS	Log-Li	kelihood:			
-2813.4			21120	_09				
Date:	Tu	e, 02 Jul	2024	Devian	ce:			
2272.1 Time:		13.	08:50	Paarco	n chi2:			
2.08e+03		13:08:59 Pearson chi2:						
No. Iterations			5	Pseudo	R-squ. (CS	5):		
0.6070 Covariance Type	• د	nonr	obust					
- 1								
	coef	std err	-	Z	P> z	[0.025		
0.975]	6061	Sta Cii		_	17 [2]	[01023		
	-1.4429	0.061		3.755	0.000	-1.562		
const - -1.324	-1.4429	נסט. ט	Z.	3.733	0.000	-1.302		
s.length	0.1494	0.004	3	8.505	0.000	0.142		
0.157								
====== Summary of Mode		alized Li	near M	odel Reg	ression Res	ults		
========= ======= Dep. Variable:		 r	:===== :: ::Cross	No. Ob	======= servations:			
1900				Df Doc	iduals:			
Model: 1896			GLM	DI Kes	Iduals:			
Model Family:		Po	isson	Df Mod	el:			
3				_				
Link Function:			Log	Scale:				
1.0000 Method:								
-2677.7			IRLS	Loa-Li	kelihood:			
Date:			IRLS	Log-Li	kelihood:			
	Tu	e, 02 Jul		Log-Li Devian				
2000.7	Tu		. 2024	Devian	ce:			
Time:	Tu			Devian				
2000.7 Time: 1.82e+03	Tu		. 2024	Devian	ce:			

```
No. Iterations:
                                        Pseudo R-squ. (CS):
0.6593
Covariance Type:
                            nonrobust
                  coef std err
                                                   P > |z| [0.025]
                                           Z
0.9751
               -0.9057
                            0.081
                                     -11.168
                                                   0.000
const
                                                              -1.065
-0.747
s.length
                0.0970
                            0.006
                                      17.521
                                                   0.000
                                                               0.086
0.108
s.id
               -1.0257
                            0.122
                                      -8.433
                                                   0.000
                                                              -1.264
-0.787
interaction
                0.0957
                            0.008
                                      12.209
                                                   0.000
                                                               0.080
0.111
<ipython-input-4-29f7cac8ba04>:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  X M2['interaction'] = X M2['s.length'] * X M2['s.id'] # Interaction
term
```

Exercise 2.4: Quantify evidence for the models M1 and M2 using k-fold cross-validation.

```
# Visualize the average rate of crossings by sentence length
crossings_data.groupby('s.length')['nCross'].mean().plot(kind='bar')
plt.xlabel('Sentence Length')
plt.ylabel('Average Rate of Crossings')
plt.title('Average Rate of Crossings by Sentence Length')
plt.show()

# Center the predictors
crossings_data['sentence_length_centered'] =
crossings_data['s.length'] - crossings_data['s.length'].mean()
crossings_data['language_ind_centered'] = crossings_data['s.id'] -
crossings_data['s.id'].mean()

## Prepare k-Fold Cross-Validation
from sklearn.model_selection import KFold
```

```
import numpy as np
# Set up k-fold cross-validation
k = 10 # Number of folds
kf = KFold(n splits=k, shuffle=True, random state=1)
# Initialize arrays to store log predictive densities
lpd M1 = np.zeros(k)
lpd M2 = np.zeros(k)
# Function to calculate log predictive density
def calculate_lpd(model, X_test, y_test):
    predictions = model.get prediction(X test)
    mean pred = predictions.predicted mean
    lpd = np.sum(y test * np.log(mean pred) - mean pred) # Poisson
log likelihood
    return lpd
## Fit the Models on Training Data and Evaluate on Test Data
for i, (train_index, test_index) in
enumerate(kf.split(crossings data)):
    # Split the data into training and test sets
    train data, test data = crossings_data.iloc[train_index],
crossings data.iloc[test index]
    # Prepare training and test data for Model M1
    X train M1 = train data[['sentence length centered']]
    X_train_M1 = sm.add_constant(X_train_M1)
    y train M1 = train data['nCross']
    X test M1 = test data[['sentence length centered']]
    X test M1 = sm.add constant(X test M1)
    y test M1 = test data['nCross']
    # Fit Model M1
    model M1 = sm.GLM(y train M1, X train M1,
family=sm.families.Poisson()).fit()
    # Calculate log predictive density for Model M1
    lpd M1[i] = calculate lpd(model M1, X test M1, y test M1)
    # Prepare training and test data for Model M2
    X train M2 = train data[['sentence length centered',
'language_ind_centered']].copy()
    X_train_M2['interaction'] = X_train_M2['sentence_length_centered']
* X train M2['language ind centered']
    X train M2 = sm.add constant(X train M2)
    y train M2 = train data['nCross']
    X test M2 = test data[['sentence length centered',
```

```
'language ind centered']].copy()
    X test M2['interaction'] = X test M2['sentence length centered'] *
X test M2['language ind centered']
    X \text{ test } M2 = \text{sm.add constant}(X \text{ test } M2)
    y test M2 = test data['nCross']
    # Fit Model M2
    model_M2 = sm.GLM(y_train_M2, X_train_M2,
family=sm.families.Poisson()).fit()
    # Calculate log predictive density for Model M2
    lpd M2[i] = calculate lpd(model M2, X test M2, y test M2)
## Compare the Models Using the Log Predictive Densities python
# Calculate the mean log predictive density for both models
mean lpd M1 = np.mean(lpd M1)
mean_lpd_M2 = np.mean(lpd_M2)
# Print the results
print(f'Mean log predictive density for Model M1: {mean lpd M1}')
print(f'Mean log predictive density for Model M2: {mean lpd M2}')
# Evidence in favor of M2 over M1
evidence = mean lpd M2 - mean lpd M1
print(f'Evidence in favor of Model M2 over Model M1: {evidence}')
```


Mean log predictive density for Model M1: -65.64008731874553 Mean log predictive density for Model M2: -52.13438926842021 Evidence in favor of Model M2 over Model M1: 13.505698050325321