Show that if $f:(a,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x)=L$ where $L\in\mathbb{R}$, then $\lim_{x\to\infty}f(x)=0$.

Proof. Given $\lim_{x\to\infty} xf(x) = L$. Let $\{x_n\}$ be any sequence diverges to ∞ . Then $\lim_{n\to\infty} x_n f(x_n) = L$ as $\lim_{x\to\infty} x f(x) = L$. Let $X_n = x_n f(x_n)$ and $Y_n = \frac{1}{x_n}$. Now $\lim_{n\to\infty} X_n = L$ and $\lim_{n\to\infty} Y_n = \lim_{n\to\infty} \frac{1}{x_n} = 0$. So by Algebra of limits $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} X_n Y_n = \lim_{n\to\infty} X_n \times \lim_{n\to\infty} Y_n = L \times 0 = 0$. So for any arbitrary sequence $\{x_n\}$ converging to ∞ , $\lim_{n\to\infty} f(x_n) = 0$ concluding $\lim_{x\to\infty} f(x) = 0$.

Q2 b) Example of any such continuous function could be given (domain to be specified)

For Example -

lim ⊥ = 0
 2→∞

 $\left(\begin{array}{c}
\text{but } x \neq 0 \\
\text{or } z \in R \setminus \{0\}
\end{array}\right)$

• f(x) = a (a is constant, $x \in R$) lim $f(x) = \lim_{x \to \infty} a = a$