ArchSummit全球架构师峰会 北京站2015

智能家庭智能联动实践绿米联创张龙

Geekbang》. 极客邦科技

整合全球最优质学习资源,帮助技术人和企业成长 Growing Technicians, Growing Companies

技术媒体

高端技术人员 学习型社交网络

实践驱动的 IT职业学习和服务平台

一线专家驱动的 企业培训服务

旧金山 伦敦 北京 圣保罗 东京 纽约 上海 San Francisco London Beijing Sao Paulo Tokyo New York Shanghai

2016年4月21-23日 | 北京:国际会议中心

主办方 **Geekbang**》. **InfoQ**®

优惠(截至12月27日) 现在报名,节省2040元/张,团购享受更多优惠

请问,您有在用智能家庭(设备/应用)吗?

智能家庭"智能之痛"

全APP控制

智能家庭"智能之痛"

设备之间相互隔离

智能化生活 — 首先要做到"简单""自然"

基于感知的设备之间的联动是智能的基础

猜你想做的

做你做不到的

帮你做你不想做的

联动一设备描述

- 家庭中设备的操作与交互
 - 开关控制(灯的开/关、门锁开/关、摄像头开启/关闭、安防的设防/撤防等)
 - 增、减调整(灯光亮度调节,水阀流量调节,音量强弱调节等)
 - 开关状态读取(灯的开关状态、门锁的开关状态)
 - 调节到某个设定目标(控制回路,如温度、湿度、照度等的反馈调节控制)
 - 跟踪某个变化(控制回路,同上)
 - 进入可选的N个状态中的第M个(离散状态多选一,如风扇5个风速级别等)
- 基于抽象模型的设备描述
 - BO (Binary Output, Binary)
 - AO (Analog Output, 模拟输出)
 - LOOP(环路)
 - MO(Multiple Output, N选一多态输出)
 - BI (Binary Input, 数字输入)
 - AI (Analog Input, 模拟输入)
 - **–**

联动 — 设备描述

开/关

音量/亮度/ 流量/温度...

联动 — 设备描述

变速风扇 空调模式 洗衣模式 电视频道

.. ...

温度控制 湿度控制 水位控制

联动 一 设备寻址

• 设备对象寻址

电视对象

BO

开

关

频道 MO

CCTV1 CCTV2

影像对象

AO

画面 AO

0%

设备地址.模型对象.属性

if控制.甩动 = 1 then ...电视对象.开关 = 开

中十二十

if控制.翻转 = 1 then ...电视对象.频道 + 1

if控制.旋转 = 5° then ...影像对象.声音 + 1

金字塔控制器

智能联动 — 如何保证场景执行的可靠性?(一)

无线自组织网络

Zigbee Thread

分布式网络 可实现M2M通信

智能联动 — 如何保证场景执行的可靠性? (二)

联动分层存放

智能联动

学习用户行为习惯 为用户提供个性化智能生活服务

可靠的智能联动

- 分布式网络提供基础保障
- 联动信息分层存放保证可靠
- 云端扩大联动执行范围
- 学习用户习惯,提供真正的智能化

各种智能设备之间互联互通 提供真正的智能家庭生活

未来我们身边的一切设备都将是今天所谓的"智能设备"

现有的开放物联网平台

更多地是管理控制而非联动

小米智能家庭生态链 互联互通

智能家庭的开放

家庭中的设备 多样化与个性化 单平台下的智能设备难以满足用户需求

智能家庭的跨平台联动 开放协议

智能家庭的跨平台联动 开放协议

• 获取设备信息

```
- 请求:
    "cmd":"read",
    "uri":"gateway/smart/4578",
    "id":2
- 应答
    "cmd":"read_ack",
    "uri": "gateway/smart/4578",
    "id":2, "data":"{\"version\":\"1.0\",\"rgb\":0,\"illumionation\":1232}",
    "result":"ok"
```

小结

- 基于感知的智能联动是智能家庭的基础
- 分布式网络和联动下发来保证联动的可靠性
- 借助云的力量来扩大联动的执行范围
- 利用云和数据的能力来提供真正的智能
- 授权智能家庭的传感数据给第三方,实现跨平台的联动

Thanks!

More...

后端云服务架构

后端云服务架构

物联网云端服务能力

Thanks!

