

Airline Analytics: Sentiment & Delay Insights

This project empowers airlines with actionable insights from social media and flight data.

Key Findings & Impact:

- **Customer Sentiment:**
 - Predominantly **Negative** (63%) 😠 "Customer Service" & "Late Flights" are top issues.
 - Spikes in negative sentiment correlate with operational incidents (e.g., Feb 22, 2015).
- Flight Delays:
 - Predictive Model (Accuracy: 0.69): Identifies potential delays.
 - Counterfactuals: Departing 1hr earlier can reduce delay probability.
 - Costly Delays: Significant historical losses Depotential \$ Millions in annual savings with 10% mitigation.
- **Operational Hotspots:**
 - Maps pinpoint high-delay airports (LAX, ORD, DFW) & problematic routes.
 - Delay concentrations shift daily (morning vs. evening). *
- Passenger Experience:
 - Delayed arrivals lead to **missed connections** (high risk).
 - Strong correlation: Delays Negative Tweets Urgent need for proactive communication.
- **Model Sophistication & Transparency:**
 - Utilized Ensemble (Acc: ~0.78), Deep Learning (LSTM/GRU), & Transformer models.
 - **Explainable AI (SHAP, LIME):** Understand why a tweet is negative, which words matter. Transparent insights! $\stackrel{1}{\leftrightarrow}$ 0

Actionable Recommendations:

- Improve Customer Service & Communication during disruptions. \(\bigcup_{\text{op}} \)
- Implement Dynamic Buffers & Targeted Interventions for high-risk flights/routes.
- Utilize Anomaly Detection & Real-time Monitoring for early warnings.

📊 Tweet Sentiment: The Negative Reality 😠

Key Takeaways from Sentiment Distribution:

- **Overwhelmingly Negative:**
 - Nearly **9,000 tweets** express negative sentiment.
 - This is the dominant tone, indicating widespread dissatisfaction.
- **Moderate Neutrality:**
 - Around 3,000 tweets are neutral.
 - Suggests a segment of objective or less emotional feedback.
- **Limited Positivity:**
 - Only about **2,300 tweets** are positive. \bigcirc
 - Positive experiences are less frequently shared. 0
- The Bottom Line: Customers are far more likely to tweet about negative experiences than positive or even neutral ones. Airlines must prioritize addressing dissatisfaction to improve overall customer perception.

Airline Sentiment: Who's Getting What Feedback?

Key Insights by Airline:

- Industry-Wide Negativity: All airlines face dominant negative sentiment.
- **Top Negative Feedback:**
 - United & US Airways receive the highest volume of complaints. 😠
- Better (Relatively):
 - Southwest & Delta show comparatively lower absolute negative counts, suggesting better sentiment management. 👍

- **Positive & Neutral Trends:**
 - **United** has the highest neutral tweet volume. $\stackrel{\square}{=}$
 - Positive tweets are consistently the lowest for *all* airlines.
- Bottom Line: Airlines like United and US Airways need urgent attention to address high volumes of negative feedback, while Southwest and Delta manage sentiment somewhat more effectively.

Why Are Customers Unhappy? Top Reasons for Negative Sentiment

Key Drivers of Negative Feedback:

- Customer Service Issues: The #1 pain point, nearing 3,000 complaints. 📞 😡
 - Action: Focus on improving staff interaction & support channels.
- Operational Disruptions:
 - Late Flights: Over 1,600 complaints. 🧖 💥
 - o Cancelled Flights: Around 700 complaints.
 - o Action: Better delay/cancellation management & communication.
- Ambiguity: "Can't Tell" is high (~1,200), suggesting unclear reasons or subtle issues.
- Specific Incidents:
 - 🌣 "Lost Luggage" (**~650**) 💼
 - "Bad Flight" (~550) 🤢
- Booking & Staff: "Flight Booking Problems" & "Flight Attendant Complaints" also notable (~500 each).
- Bottom Line: Prioritize customer service, on-time performance, and clear communication to reduce negative sentiment.

Daily Tweet Sentiment: What Drives the Spikes?

Key Trends from Feb 16-24, 2015:

- **Negative Dominance & Volatility:**
 - Negative sentiment is consistently highest. 😠
 - Dramatic surge around Feb 22nd, peaking >2250 tweets!
 - Suggests a major event (e.g., mass cancellations, crisis). 0
- **Neutral Sentiment Follows:**
 - Neutral feedback mirrors negative trends, but at a lower scale (peaking ~700). :
- **Positive Sentiment is Minor:**
 - Positive tweets remain consistently lowest (200-450 range).
- Actionable Insight: Synchronized peaks across all sentiments, especially the large negative surge, underscore the critical need for real-time social media monitoring to rapidly identify and respond to operational issues or PR crises. \neq

🎯 Random Forest: Sentiment Prediction Performance 🎯

Key Performance Insights:

- **Overall Accuracy:**
 - Achieved 0.78 (77.5%) accuracy on test data.
 - Decent, but room for improvement, especially with class imbalance.
- **Class-wise Performance:**
 - Negative Sentiment (Class 0): Excellent! Precision 0.81, Recall 0.92, F1-score 0.86. Model is great at finding negativity. 😠
 - Neutral Sentiment (Class 1): Struggles. Precision 0.63, Recall only 0.46, F1-score 0.53. Many neutral tweets are missed or misclassified. $\stackrel{\square}{=}$?
 - Positive Sentiment (Class 2): Good Precision 0.74, but moderate Recall 0.58, F1-score 0.65. Some positive tweets are also missed. \bigcirc
- **Misclassification Tendencies (from Confusion Matrix):**
 - **Neutral tweets** are frequently misclassified, often as negative (260 instances). 0
 - A notable number of **positive tweets** are also misclassified as negative (149 instances).
- Conclusion: The model excels at identifying negative sentiment. However, it struggles to accurately distinguish between neutral and positive tweets, and often misclassifies them, especially as negative.
- **Next Steps:** Focus on advanced techniques (feature engineering, different architectures) to improve neutral and positive sentiment classification. \Rightarrow

Top Features: What Influences Sentiment? 🤔

Key Insights into Feature Importance:

- **Unexpected Top Features:**
 - "two" (relative importance ~0.40) and "one" (~0.20) are most important. 2
 - Followed by generic terms like "text", "example", "sample".
- Data Artifact Alert!
 - These generic terms highly suggest the model is learning patterns from the **dummy data's construction**, not real sentiment drivers.
 - In real data, we'd expect words like "flight", "delay", "customer", "bad", "good". 💥 👎 👍
- **Limited Real-World Interpretability:**
 - Currently, this chart doesn't clearly explain why a real tweet gets a certain sentiment.
- **Action for Portfolio:**
 - Acknowledge the dummy data's influence or, ideally, ensure this plot reflects meaningful insights from real, domain-specific 0 **terms** for a strong portfolio presentation. \Rightarrow

🔍 Aspect Sentiment: Deeper Dive into Customer Feedback 🧐

Key Insights & Observations:

- **Puzzling Positive/Neutral Dominance:**
 - "Service," "Food," "Comfort," "Entertainment," "Punctuality" show 100% positive sentiment (value of 1.0). 🤩
 - "Baggage" is **100% neutral** (value of 1.0).
 - No negative sentiment for any aspect. 0
- Data Anomaly Suspected!
 - This uniform perfect score is highly unusual for real-world customer feedback.
 - Likely indicates issues with:
 - Data Representation: "Count" axis might be a ratio scaled to 1.0.
 - **Sentiment Extraction:** Model might struggle with nuance or specific aspect-related negativity.
 - **Underlying Data:** Subset might be skewed or flawed.
- Interpretability Challenge: Current visualization offers limited genuine insight into real customer feelings per aspect due to the unusual distribution.
- Action Required: Crucial to verify the data source, sentiment extraction methodology, and y-axis scaling for true interpretability in a real-world scenario.

Key Insights from Tweet Emotion Analysis:

- Overwhelming Neutrality:
 - Neutral emotion dominates with a count of 3.0. •
 - Most tweets classified as having no strong emotion.
- Limited Positive, Zero Negative:
 - Positive emotion is barely present (1.0 count).
 - Crucially, Negative emotion has a 0.0 count.
- Major Discrepancy Alert! <u>a</u>
 - This contrasts sharply with overall sentiment analysis showing high negative sentiment.
 - Suggests potential issues with:
 - Model Sensitivity: May be too conservative for negative emotions or not suited for airline context.
 - Analyzed Subset: Could be based on a non-representative sample.
 - **Emotion vs. Sentiment Definition:** Model might detect specific 'strong' emotions, not general dissatisfaction.
- Action Required: Reconcile these findings with broader sentiment data. Investigate the emotion model's scope and training to ensure robust interpretation of negative expressions.

Simulated Response Times: Speed of Service by Sentiment

Key Insights from Airline Response Time Analysis:

- Negative Sentiment: Slowest Responses
 - Consistently the longest response times across all airlines.
 - Delta shows responses over **40 hours** for negative tweets.
 - Action: Prioritize and expedite responses to negative feedback to prevent dissatisfaction from escalating.
- Neutral Sentiment: Moderate Responses :
 - Response times are generally in the middle range.
- Positive Sentiment: Fastest Responses
 - Consistently the lowest median response times (typically under 10 hours).
- Airline Variations:
 - Delta appears to have the longest negative response times.
 - All airlines exhibit the pattern of slower responses to negative sentiment.
- **Conclusion:** Airlines have a systemic issue in responding to negative customer feedback slowly. Faster responses to complaints are crucial for customer retention and reputation management.

X Delay Reasons: Insights from Cluster Analysis 📊

Key Patterns in Flight Delays:

- **Dominant Factors:**
 - 'N/A' and 'Weather' are consistently the most frequent delay reasons across clusters.
 - This highlights pervasive impacts or data collection gaps.
- **Cluster Trends:**
 - Cluster 0 & 1: High volumes of all delay reasons, representing common scenarios.
 - **Cluster 2 & 3:** Gradually lower flight counts, possibly indicating less frequent, more specific delay patterns.
- 'Weather' Impact: Remains a consistently high or dominant factor across all clusters, emphasizing its widespread influence. 🧼
- **Actionable Insights:**
 - Tailor strategies based on cluster characteristics (e.g., enhanced weather forecasting for 'Weather'-heavy clusters). 🎯 0
 - Investigate the high 'N/A' category for better data capture. 0

📊 Anomaly Detection: Spotting the Unusual! 🕵

Key Insights from Anomaly Scores (Isolation Forest):

- **Clear Separation:** Anomaly scores show a distinct bimodal distribution.
 - Normal points: Clustered tightly around 1.0 (nearly 5,000 counts).
 - Anomalies: Located at -1.0 (a very small number).
- Effective Threshold: The "Anomaly Threshold" is set at **0.0**. Any score below this is an anomaly.
- Highly Effective Model: The Isolation Forest model effectively separates normal data from anomalies. Its ability to assign very high scores to normal data and very low scores to outliers demonstrates strong performance.
- Actionable: This clear distinction allows for robust and straightforward flagging of anomalous data points in your dataset.

Key Insights into Flight Delays & Anomalies:

- Dense Data: Plot shows a high volume of flight data points.
- No Obvious Correlation:
 - No strong linear link between Scheduled Duration (50-300 mins) and Actual Delay (-20 to 120 mins).
 - Longer flights aren't inherently more or less delayed.
- Anomaly Distribution:
 - Red points are Anomalies (flagged by Isolation Forest).
 - They are interspersed throughout the plot, not clustered at extremes.
 - Anomalies are "unusual" combinations of factors, not just extreme delays or durations.
- Actionable: Deeper dive into the **features** of these red points is needed to understand *why* they're anomalous. Questionable. Other, unplotted factors are likely at play.

Airline Analytics: Unveiling Insights & Predicting Disruptions

Project Goal: Actionable insights from tweets & flight data to boost CX & operations.

Key Discoveries & Impact:

- Customer Sentiment (Tweets):
 - Overwhelmingly **Negative (63%)** 2 "Customer Service" & "Late Flights" are top issues.
 - Dramatic negative spikes (e.g., Feb 22, 2015) correlated with operational events. Z
- Flight Delays (Prediction & Analysis):
 - Model Accuracy: 0.69 for delay prediction.
 - Counterfactuals: Earlier departures can reduce delay probability.
 - Business Impact: Millions in potential annual savings by mitigating just 10% of predicted delays.
 - Geospatial Hotspots: Maps pinpoint high-delay airports (LAX, ORD, DFW) & problematic routes.
 - Anomalies: Flights are "unusual" in their delay/duration combination, not just extremes. Deeper dive needed. <a>\begin{cases}

- Passenger Experience:
 - Delayed arrivals lead to missed connections.
 - Strong correlation: Delays 🔁 Negative Tweets. Proactive communication is critical! 🗣
- Advanced ML & Explainability:
 - Utilized Ensemble (Acc: ~0.78), Deep Learning, & Transformers for sentiment.
 - SHAP & LIME: Show why a tweet is negative (key words), how model predicts. Transparency!

Strategic Recommendations:

- Improve Customer Service & Proactive Communication during disruptions. 📞
- Implement Dynamic Buffers & Targeted Interventions for high-risk flights/routes/times.
- Leverage Real-time Monitoring & Anomaly Detection for early warnings.