Bret Young

DSC 640

Assignment 6.2

19 November 2020

- histogram
- boxplot
- bullet chart

```
In [1]: # Import required packages
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

In [2]: # Load dataset
   url_1 = '~/Desktop/DSC 640/ex6-2/birth-rate.csv'
   data_1 = pd.read_csv(url_1)
```

```
In [3]: data_1.head()
```

Out[3]:

	Country	1960	1961	1962	1963	1964	1965	1966	1967	1968	 19
0	Aruba	36.400	35.179	33.863	32.459	30.994	29.513	28.069	26.721	25.518	 15.0
1	Afghanistan	52.201	52.206	52.208	52.204	52.192	52.168	52.130	52.076	52.006	 51.2
2	Angola	54.432	54.394	54.317	54.199	54.040	53.836	53.585	53.296	52.984	 48.6
3	Albania	40.886	40.312	39.604	38.792	37.913	37.008	36.112	35.245	34.421	 17.7
4	Netherlands Antilles	32.321	30.987	29.618	28.229	26.849	25.518	24.280	23.173	22.230	 15.8

5 rows × 50 columns

```
In [4]: # select 2000+
    data_1_filt = data_1.iloc[:,41:]
    data_1_filt.head()
```

Out[4]:

	2000	2001	2002	2003	2004	2005	2006	2007	2008
0	14.528	14.041	13.579	13.153	12.772	12.441	12.159	11.919	11.716
1	50.903	50.486	49.984	49.416	48.803	48.177	47.575	47.023	46.538
2	48.355	48.005	47.545	46.936	46.184	45.330	44.444	43.607	42.875
3	16.850	16.081	15.444	14.962	14.644	14.485	14.464	14.534	14.649
4	15.412	15.096	14.824	14.565	14.309	14.051	13.790	13.532	13.281

```
In [5]: # Create axes and figure
        fig, (ax1, ax2, ax3) = plt.subplots(3, 3,sharex = True, sharey = True)
        # Set figure size
        fig.set size inches(18.5, 10.5)
        # Add plots to figure
        ax1[0].hist(data 1 filt['2000'], edgecolor = 'black', linewidth = 1.2)
        ax1[1].hist(data_1_filt['2001'], edgecolor = 'black', linewidth = 1.2)
        ax1[2].hist(data 1 filt['2002'], edgecolor = 'black', linewidth = 1.2)
        ax2[0].hist(data 1 filt['2003'], edgecolor = 'black', linewidth = 1.2)
        ax2[1].hist(data 1 filt['2004'], edgecolor = 'black', linewidth = 1.2)
        ax2[2].hist(data 1 filt['2005'], edgecolor = 'black', linewidth = 1.2)
        ax3[0].hist(data 1 filt['2006'], edgecolor = 'black', linewidth = 1.2)
        ax3[1].hist(data 1_filt['2007'], edgecolor = 'black', linewidth = 1.2)
        ax3[2].hist(data 1 filt['2008'], edgecolor = 'black', linewidth = 1.2)
        # Set titles, caption and axis labels
        fig.suptitle("Live Births per 1,000 Population", x = 0.25, y = 0.95, f
        ontsize = 20)
        fig.text(.87, .08, 'Source: Data Collected by Nathan Yau from The Worl
        d Bank', ha = 'right', color = 'gray')
        # add titles to subplots
        ax1[0].set title('2000')
        ax1[1].set title('2001')
        ax1[2].set title('2002')
        ax2[0].set title('2003')
        ax2[1].set title('2004')
        ax2[2].set title('2005')
        ax3[0].set title('2006')
        ax3[1].set title('2007')
        ax3[2].set title('2008')
        # Show plot
        plt.show
        # save file
        fig.savefig("python histogram.png", bbox inches = 'tight')
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site -packages/numpy/lib/histograms.py:839: RuntimeWarning: invalid value encountered in greater equal

keep = (tmp a >= first edge)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site -packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encountered in less equal

keep &= (tmp a <= last edge)</pre>

Live Births per 1,000 Population

In [7]: data_2.head()

Out[7]:

	state	reading	math	writing	percent_graduates_sat	pupil_staff_ratio	dropout_rate
0	United States	501	515	493	46	7.9	4.4
1	Alabama	557	552	549	7	6.7	2.3
2	Alaska	520	516	492	46	7.9	7.3
3	Arizona	516	521	497	26	10.4	7.6
4	Arkansas	572	572	556	5	6.8	4.6

Out[8]:

	variable	value
0	reading	501
1	reading	557
2	reading	520
3	reading	516
4	reading	572

In [9]: import seaborn as sns # Create axes and figure fig = plt.figure() ax1 = fig.add subplot(111) # Set figure size fig.set size inches(18.5, 10.5) # Add plot to figure sns.swarmplot(data = data 2 filt, x = "variable", y = "value", color=" sns.boxplot(data = data 2 filt, x = "variable", y = "value", color="sk yblue") # Set titles, caption and axis labels fig.suptitle("SAT Category Scores in the United States", x = 0.28, y = 0.95, fontsize=20) fig.text(.87, .08, 'Source: Data Collected by Nathan Yau from National Center for Education Statistics', ha = 'right', color = 'gray') ax1.set title("Reading and Math median scores, 523 and 525 respectivel y, are similar while Writting scores are lower with a median of 510.", y = 1.02, loc='left', color = 'gray') ax1.set xlabel("") ax1.set ylabel("Category Scores", rotation = 0, ha = 'right') # Remove frame ax1.spines['right'].set visible(False) ax1.spines['top'].set visible(False) ax1.spines['bottom'].set visible(False) # Show plot plt.show # save file fig.savefig("python boxplot.png")

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site -packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.ut il.testing is deprecated. Use the functions in the public API at pan das.testing instead.

import pandas.util.testing as tm

SAT Category Scores in the United States

0 1006.0

Name: total sat, dtype: float64

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site -packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This is separate from the ipykernel package so we can avoid doing imports until

```
In [33]: # import library
         import plotly.graph objects as go
         # create visual
         fig = go.Figure(go.Indicator(
             mode = "number+gauge+delta", value = int(usa data['total sat']),
             domain = \{'x': [0.1, 1], 'y': [0, 1]\},
             title = {'text' :"<b>United States</b>", 'font': {"size": 18}},
             delta = {'reference': sat 50, 'position': "top"},
             gauge = {
                  'shape': "bullet",
                  'axis': {'range': [sat min, sat max]},
                  'threshold': {
                      'line': {'color': "red", 'width': 2},
                      'thickness': 1,
                      'value': sat 50},
                  'steps': [
                      {'range': [sat_min, sat_49], 'color': "gray"},
                      {'range': [sat_49, sat_74], 'color': "darkgray"},
                      {'range': [sat 74, sat 91], 'color': "lightgray"}],
                  'bar': {'color': "blue"}}))
         # add figure title, legend and set height
         fig.update_layout(
             title = {
                      'text': "United States SAT Scores",
                      'y':0.9,
                      'x':0.155},
             legend title = "The target value is 1070 or thhe 50th percentile.
         We can see the average for the United States falls below target.",
             font=dict(
                      size = 18,
                         ),
             height = 250,
             width = 1000,
             annotations = [dict(xref = 'paper',
                                  yref = 'paper',
                                  x = 0.09, y = 1.7,
                                  showarrow = False,
                                  text = 'This is my caption for the Plotly figu
         re')])
         fig.show()
         # save image
         fig.write image('python bullet.png')
```

Young_DSC	640_Assignme	ent 6.2_Python

In []:

11/21	/20.	10:26	ΑM

http://localhost:8888/nbconvert/html/Desktop/DSC%20640/ex6-2/Young_DSC%20640_Assignment%206.2_Python.ipynb?download=false