Aluminium - Cerium - Cobalt

Oksana Bodak

Literature Data

Critical analysis of the literature data has been carried out by [1991Gri], based on 11 articles, from which the following information could be retrieved: the partial isothermal section at 600°C [1980Zar], composition and structure of several compounds such as CeCoAl₄ [1974Yar, 1977Ryk], CeCoAl [1971Oes, 1983Gri], Ce₂Co₁₅Al₂ [1962Zar], structure of the phases at 33.3 [1968Man, 1982Eva] and 16.7 at.% Ce (RCo_{5-x}Al_x) [1976Zak, 1982Eva], enthalpy of formation of the CeCoAl compound [1987Shi]. Three new works contain the results of investigations concerning crystal structure and magnetic properties of the CeCoAl₄ compound [1997Moz] and the Ce₂Co_{17-x}Al_x phase [1999Hu, 1999She1, 1999She2]. The samples were generally prepared by arc melting the pure metals. Both annealed and as cast alloys were investigated. Mainly the X-ray diffraction methods were used for crystal structure determination. Only the CeCoAl₄ crystal structure was studied also by neutron diffraction [1997Moz]. Magnetic properties were studied by means of a SQUID magnetometer in the 5-300 K temperature range and in magnetic fields up to 5 T [1997Moz, 1999Hu]. Extracting sample magnetometer in fields up to 65 kOe was used by [1999She1, 1999She2]. Foner magnetometer and Faraday method were used in older works.

Binary Systems

Ce-Co and Al-Ce binary systems were taken from [Mas2]. Al-Co system was accepted from the [2003Gru] assessment.

Solid Phases

Four ternary compounds were found in the system, for all of them the crystal structure has been determined: τ_1 , CeCo₂Al₈ by [1974Yar], τ_3 , CeCoAl₄ by [1977Ryk, 1997Moz]. [1962Zar] described the Ce₂Co₁₅Al₂ ternary phase. The existence of this phase was confirmed by [1999Hu, 1999She1, 1991She2]. However the stability ranges of the rhombohedral phase significantly differ in these articles: it is Ce₂Co₁₅₋₁₄Al₂₋₃ according to [1999Hu], and Ce₂Co₁₆₋₁₄Al₁₋₃ according to [1999She2]. Moreover, in the latter article, at the composition Ce₂Co₁₃₋₁₂Al₄₋₅ a hexagonal phase similar to CaCu₅ was reported. This discrepancy may result from different investigation temperatures (1000°C in [1999She1, 1999She2]). An earlier investigation of the Ce_{1-x}Co₅Al_x composition, annealed at 1000°C, was made by [1982Eva]. It showed that substitution of 1 to 3 at.% Al (0.06 $\le x \le 0.18$) for Ce in CeCo₅ produces a mixture of the 1:5 and 2:17 phases; there are two variations of the 2:17 phase which are isostructural with the hexagonal Th₂Ni₁₇ type and rhombohedral Th₂Zn₁₇ type phases respectively. At the composition Ce_{0.76}Co₅Al_{0.24} (4 at.% Al) the alloy consists of the 2:17 type phases and the metallographic appearance is single phase.

Some uncertainty is with the CeCoAl compound. [1968Man, 1969Tes] adopted for this phase the MgZn₂ type structure. Previously [1971Oes] had proposed a different crystal structure, even though [1968Man] reported the presence of an additional phase. [1980Zar] also reports that CeCoAl does not belong to MgZn₂ type structure. Complete investigation of the CeCoAl structure using single-crystal technique was performed by [1983Gri]: he determined a monoclinic structure related to MgZn₂.

The crystal structure of all the phases included in the investigated part of the system is presented in Table 1.

Isothermal Section

The Al-Ce-Co isothermal section at 600° C is presented in Fig. 1. It is built according to [1980Zar], but modified taking into account new data on the Al-Co system [2003Gru]. The CeCo_{5-x}Al_x phase is reported to exist in the ternary [1976Oes, 1980Zar, 1982Eva] but, at this temperature, it is not stable in the Ce-Co subsystem.

MSIT®

Landolt-Börnstein
New Series IV/11A1

Miscellaneous

In most cases, the magnetic properties of CeCoAl, CeCoAl₄ and of the solid solutions based on Ce₂Co₁₇, CeCo₅ and CeCo₂ were investigated. Only for CeCoAl phase also the enthalpy of formation was measured [1987Shi].

References

- [1962Zar] Zarechnyuk, O.S., Kripyakevich, P.I., "The Crystal Structures of Ternary Compounds in the Systems Cerium-Transition Metal-Aluminium" (in Russian), *Kristallografiya*, 7, 543-554 (1962) (Experimental, Crys. Structure, 9)
- [1968Man] Mansey, R.C., Raynor, G.V., Harris, I.R. "Rare-Earth Intermediate Phases. VI. Pseudo binary Systems Between Cubic Laves Phases Formed by Rare-Earth Metals with Fe, Co, Ni, Al and Rh", *J. Less-Common Met.*, **14**, 337-347 (1968) (Experimental, Crys. Structure, 6)
- [1969Tes] Teslyuk, M.Yu., "Intermetallic Compounds with Structure of Laves Phases" (in Russian), Intermetallic Compounds with Structure of Laves Phases, Moscow, Nauka, 1-138 (1969) (Review, Crys. Structure, Equi. Diagram, 132)
- [1971Oes] Oesterreicher, H., "Structural Studies of Rare-Earth Compounds RCoAl", *J. Less-Common Met.*, **25**, 228-230 (1971) (Experimental, Crys. Structure, 13)
- [1974Yar] Yarmolyuk, Ya.P., Rykhal, R.M., Zarechnyuk, O.S., "Crystal Structure of CeFe₂Al₈ and LaCoAl₄" (in Russian), *Tezisy Dokl.-Vses. Konf. Kristallokhim. Intermet.*, 2nd., 39-40 (1974) (Experimental, Crys. Structure, 10)
- [1976Oes] Oesterreicher, H., McNeely, D., "Low-Temperature Magnetic Studies on Various Substituted Rare Earth", *J. Less-Common Met.*, **45**, 111 (1976) (Experimental, Crys. Structure, 6)
- [1976Zak] Zakharova, M.I., Gladyshev, S.N., Khatanova, N.A., Tulupov, I.F., Vereshnikov, E.E., Bal'zhinev, S.A., "Phase Composition and Structure of RCo₅ Type Alloys with Additional Elements (Cu, Al, Mn, Nb, Ni)", *Russ. Metall.*, (3), 156-159 (1976) translated from *Izv. Akad. Nauk SSSR, Met.*, (3), 205-209 (1976) (Crystal Structure, Experimental, 3)
- [1977Ryk] Rykhal, R.M., Zarechnyuk, O. S., Yarmolyuk, Y.P., "Crystal Structure of the Compounds LaCoAl₄, GeCoAl₄ and PrCoAl₄" (in Ukrainian), *Dop. Akad. Nauk Ukr. RSR A, Fiz-Mat. Tekh. Nauki*, **3**, 265-268 (1977) (Experimental, Crys. Structure, 2)
- [1980Zar] Zarechnyuk, O.S., Rykhal, R.M., Korin, V.V. "X-Ray Structural Study of Alloys of the Ternary Cerium-Cobalt-Aluminium System in the Region 0-33.3 at.% Cerium" (in Ukrainian), *Dop. Akad. Nauk Ukr. RSR*, **1A**, 84-85 (1980) (Experimental, Crys. Structure, Equi. Diagram, #, *, 9)
- [1982Eva] Evans, J., Harris, I. R., "Constitution, Structure and Magnetic Properties of Some Rare-Earth-Cobalt-Aluminium Alloys", *J. Mater. Sci.*, **17**(1), 17-30 (1982) (Experimental, Crys. Structure, 18)
- [1983Gri] Grin, Yu. N., Sichevich, O.M., Bruskov, V.A., Rykhal, R.M., Yarmolyuk, Ya.P. "Crystal Structure of CeAlCo and CeGaCo Compounds", *Sov. Phys. Crystallogr.*, **28**(3), 346-347 (1983) (Experimental, Crys. Structure, 8)
- [1987Shi] Shilov, A.L., "Heats of Formation of Intermetallic Compounds", *Russ. J. Phys. Chem.*, **61**(5), 719 (1987), translated from *Zh. Fiz. Khim.*, **61**, 1384-1385 (1987) (Experimental, Thermodyn., 13)
- [1988Gsc] Gschneidner, Jr.K.A., Calderwood, F.W., "The Aluminum-Cerium (Al-Ce) System", *Bull. Alloy Phase Diagrams*, **9**(6), 669-72 (1988) (Review, 35)
- [1991Gri] Grieb, B., "Aluminium-Cobalt-Cerium", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart, Document ID: 10.14766.1.20 (1991) (Review, Equi. Diagram, Crys. Structure, 11)

Landolt-Börnstein
New Series IV/11A1

MSIT®

[1997Moz]	Moze, O., Tung, L.D., Franseand, J.J.M., Buschow, K.H.J., "Crystal Structure and the
	Magnetic Properties of the Compound CeCoAl ₄ ", J. Alloys Compd., 256, 45-47 (1997)
	(Experimental, Crys. Structure, Magn. Prop., 8)
[1999Hu]	Hu, S.J., Wei, X.Z., Zeng, D.C., Kou, X.C., Liu, Z.Y., Brueck, E., Klaasse, J.C.P., de Boer,
	F.R., Buschow, K.H.J., "Structure and Magnetic Properties of Ce ₂ Co _{17-x} Al _x Compounds",
	J. Alloys Compd., 283, 83-87 (1999) (Experimental, Crys. Structure, Magn. Prop., 10)
[1999She1]	Shen, B., Cheng, Z., Zhang, S., Wang, J., Liang, B., Zhang, H., Zhan, W., "Magnetic
	Properties of R ₂ Co ₁₅ Al ₂ Compounds with R= Y, Ce, Pr, Nd, Sm, Gd, Tb, Ho, Er, Tm",
	J. Appl. Phys., 85(5), 2787-2792 (1999) (Experimental, Crys. Structure, Magn. Prop., 43)
[1999She2]	Shen, B., Wang, J., Zhang, H., Zhang, S., Cheng, Z., Liang, B., Zhan, W., Lin, C.,
	"Magnetocrystalline Anisotropy of $Ce_2Co_{17-x}Al_x$ Compounds with $x = 0-3$ ", J. Appl. Phys.,
	85(8), 4666-4668 (1999) (Experimental, Crys. Structure, Magn. Prop., 6)
[2003Gru]	Grushko, B, Cacciamani, G., "Al-Co (Aluminium-Cobalt)", MSIT Binary Evaluation
	Program, in MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials Science International
	Services GmbH, Stuttgart; to be published, (2003) (Equi. Diagram, Assessment, Crys.
	Structure, 72)

 Table 1: Crystallographic Data of Solid Phases

Phases/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
(Al) < 660.452	<i>cF4 Fm3m</i> Cu	a = 404.88	[Mas2]
(αCo) 1495-422	<i>cF4</i> <i>Fm3m</i> Cu	a = 354.46	[Mas2]
(εCo) < 422	hP2 P6 ₃ /mmc Mg	a = 250.71 c = 406.95	[Mas2]
Co ₂ Al ₉ < 970	mP22 P2 ₁ /a 	a = 855.6 b = 629.0 c = 621.3 $\beta = 94.76^{\circ}$	[2003Gru]
O-Co ₄ Al ₁₃ < 1080	oP102 Pmn2 ₁ O-Co ₄ Al ₁₃	a = 815.8 b = 1234.7 c = 1445.2	[2003Gru]
M-Co ₄ Al ₁₃ 1093-?	mC102 C2/m Fe ₄ Al ₁₃	a = 1517.3 b = 810.9 c = 1234.9 $\beta = 107.84^{\circ}$	[2003Gru]
Y 1127-? either (o-Co ₄ Al ₁₃) or (m-Co ₄ Al ₁₃)	Immm mC34 C2/m Os ₄ Al ₁₃	a = 1531.0 b = 1235.0 c = 758.0 a = 1704.0 b = 409.0 c = 758.0 $\beta = 116.0^{\circ}$	[2003Gru]

MSIT®

Landolt-Börnstein
New Series IV/11A1

Phases/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
Z < 1158	C-centr. monocl.	a = 3984.0 b = 814.8 c = 3223.0 $\beta = 107.97^{\circ}$	[2003Gru]
Co ₂ Al ₅ < 1188	hP28 P6 ₃ /mmc Co ₂ Al ₅	a = 767.2 c = 760.5	[2003Gru]
Co _{1-x} Al _x < 1640	cP2 Pm3m CsCl	a = 285.7 a = 286.2 a = 285.9	x = 0.52 [2003Gru] x = 0.5 x = 0.43
βCe ₃ Al ₁₁ 1235-1020	tI10 I4/mmm BaAl ₄	a = 437.4 c = 1012	[Mas2, V-C2]
αCe ₃ Al ₁₁ < 1020	oI28 Immm La ₃ Al ₁₁	a = 439.5 b = 1302.5 c = 1009.2	[Mas2, V-C2]
CeAl ₃ < 1135	<i>hP</i> 8 <i>P6₃/mmc</i> Ni₃Sn	a = 654.1 c = 461.0	[Mas2, V-C2]
$ \frac{\text{CeAl}_{2-x}\text{Co}_x}{< 1480} $	$cF24$ $Fd\overline{3}m$ $MgCu_2$	a = 804.73 $a = 801.5 \pm 2$	0 < x < 0.3 at 600°C [1980Zar] x = 0 [1968Man] x = 0.166 [1968Man]
CeAl < 845	oC16 Cmc2 or Cmcm CeAl	a = 926.9 b = 768.0 c = 576.1	[1988Gsc]
βCe ₃ Al 655-250	cP4 Pm3̄m AuCu₃	a = 498.9	[1988Gsc]
αCe ₃ Al < 250	hP8 P6 ₃ /mmc Ni ₃ Sn	a = 704.2 c = 545.1	[1988Gsc]

Phases/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
$\beta \text{Ce}_2 \text{Co}_{17-x} \text{Al}_x$ 1220-~1050	hP38 P6 ₃ /mmc	a = 839 c = 816.3	x = 0 [1976Oes]
	Th_2Ni_{17}	a = 838 c = 812	x = 0 [1962Zar] at 500°C
		a = 838.1 c = 814.0	x = 0 [1999She2] at 1000°C
		a = 838.8 c = 814.4	x = 0 [1999Hu] at 1000°C
		a = 840.2 c = 816.4	x = 1 [1999She2]at 1000°C
	hP6 P6/mmm	a = 846.2 c = 1232.8	x = 3 [1999She2] at 1000°C
	CaCu ₅	a = 843.0 c = 1235.1	x = 3.5 [1999Hu] at 1000°C two phase sample (1:5)
		a = 493.3 c = 411.6	x = 4 [1999Hu] at 1000°C
		a = 494.8 c = 409.3	x = 5 [1999Hu] at 1000°C
$\frac{\alpha \text{Ce}_2 \text{Co}_{17-x} \text{Al}_x}{\lesssim 1050}$	$hR57$ $R\overline{3}m$	a = 837.8 c = 1220.6	x = 0 [Mas2, V-C2]
	Th_2Zn_{17}	a = 839.7 c = 1222.7	$x = 1 [1999 \text{Hu}] \text{at } 1000^{\circ} \text{C}$
		a = 841.1 c = 1225.4	x = 2 [1999Hu] at 1000°C
		a = 843.4 c = 1228.8	x = 2 [1999She2] at 1000°C
		a = 843.3 c = 1230.2	x = 3 [1999Hu] at 1000°C

MSIT®

Landolt-Börnstein
New Series IV/11A1

Phases/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
CeCo _{5-x} Al _x	<i>hP</i> 6 <i>P6/mmm</i> CaCu ₅	a = 491.97 c = 402.9	0.03 < x < 1.2 at 600°C [1980Zar] x = 0 [Mas2, V-C2]
CeCo ₅ 1134-600	J	a = 491.6 c = 401.2	x = 0 [1976Oes]
		a = 493	x = 0, at 600°C
		c = 402	[1980Zar]
		a = 492.92	x = 0, at 1000°C
		c = 401.73	[1982Eva]
		$a = 492.87 \pm 50$ c/a = 0.815	$x = 0.06 (Ce_{1-x}Co_5Al_x) [1982Eva]$
		$a = 492.92 \pm 50$ c/a = 0.815	$x = 0.12 (Ce_{1-x}Co_5Al_x) [1982Eva]$
		$a = 493.00 \pm 50$ c/a = 0.815	$x = 0.18 (Ce_{1-x}Co_5Al_x) [1982Eva]$
		a = 492.9 c = 402.2	x = 0.3 [1976Oes]
		a = 493.8 c = 403.2	x = 0.6 [1976 Oes]
		a = 490.2 c = 410.5	x = 0.9 [1976 Oes]
		a = 491.0 c = 410.4	x = 1.2 [1976Oes]
		a = 503 $c = 407$	x = 1.2 [1980Zar]
Ce ₅ Co ₁₉	hR72	a = 494.75	[Mas2, V-C2]
< 1134	R3m Ce ₅ Co ₁₉	c = 4874.34	[
Ce ₂ Co ₇	hP36	a = 494.9	[Mas2, V-C2]
< 1130	P6 ₃ /mmc Ce ₂ Ni ₇	c = 2449	[
CeCo ₃	hR36	a = 496.4	[Mas2, V-C2]
< 1103	R3m NbBe ₃	c = 2481.4	[
$CeCo_{2-x}Al_x$			0.3 < x < 0 [1980Zar]
< 1036	$Fd\overline{3}m$	a = 714.67	x = 0 [1968Man]
1030	MgCu ₂	a = 715	x = 0 [1980Zar]
	1115042	a = 717.6	x = 0.167 [1968Man]
		a = 719	x = 0.3 [1980Zar]
Ce ₂₄ Co ₁₁	hP70	a = 958.7	[V-C2]
- 524 5 511	$P6_3mc$	c = 2182.5	[]
	Ce ₂₄ Co ₁₁	2102.0	
* τ ₁ , CeCo ₂ Al ₈	oP44	a = 1241	[1974Yar, 1980Zar]
	Pbam	b = 1430	-
	CeFe ₂ Al ₈	c = 412	

Landolt-Börnstein New Series IV/11A1

Phases/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
* τ ₂ , Ce ₂ Co ₁₅ Al ₂	$hR57$ $R\overline{3}m$ Th_2Zn_{17}	a = 844 $c = 1230$ $a = 844$ $c = 1250$	[1962Zar] [1980Zar]
* τ ₃ , CeCoAl ₄	oC12 Pmma LaCoAl ₄	a = 770.1 $b = 408.2$ $c = 702.3$ $a = 7589$ $b = 404.8$ $c = 701.4$	[1977Ryk] [1980Zar]
		a = 766.024 b = 405.616 c = 691.355	[1997Moz]
* τ ₄ , CeCoAl	hP12 P6 ₃ /mmc MgZn ₂ mC12 C2/m PdBi ₂	a = 514.0 c = 800.0 a = 549.0 c = 866.0 a = 1109.8(7) b = 441.0(1) c = 480.7(3) $\alpha = 104.61(5)^{\circ}$	[1969Tes] [1968Man] (related to MgZn ₂) [1983Gri]

Fig. 1: Al-Ce-Co. Isothermal section at 600°C

