IN THE CLAIMS

Please amend the following claims which are pending in the present

application:

1. (Original) A method for preparing high purity carbon nanotubes in which

the carbon nanotubes are prepared by the recombination of carbons generated

from a carbon source such as solid carbon, graphite or a hydrocarbon in the

presence or absence of a catalyst, the method being characterized in adding water

into the reaction system or making water exist in the reaction system.

2. (Original) The method according to claim 1, characterized in that water is

supplied into the reaction system with the carbon source or separately.

3. (Original) The method according to claim 1, characterized in that water is

present in an amount of 1 to 2000 wt% based on the total weight of the carbon

source.

4. (Original) The method according to claim 1, characterized in that the

catalyst is at least one metal selected from the group consisting of transition metal,

noble metal, alkali metal and alkali earth metal.

Young Nam Kim

Application No.: Not Yet Assigned

Examiner: Not Yet Assigned

- 3 -

- 5. (Original) The method according to claim 1, characterized in that the graphite as a carbon source is vaporized by arc-discharge or laser ablation.
- 6. (Original) The method according to claim 1, characterized in that the hydrocarbon as a carbon source is supplied in gas phase.
- 7. (Original) The method according to claim 1, characterized in that the catalyst is supplied continuously or intermittently in the form of nanoparticles or a colloid solution thereof.
- 8. (Original) The method according to claim 7, characterized in that the colloid solution is a solution of the catalyst nanoparticles which are dispersed in a solvent selected from the group consisting of water, a nonpolar organic solvent, such as aromatic organic solvent such as benzene, toluene or xylene, or an aliphatic organic solvent such as hexane, heptane or octane, a polar organic solvent such as ethanol or propyl alcohol, and a mixture thereof in the presence of a surfactant.
- 9. (Currently amended) The method according to claim 7 [[or 8]], characterized in that the catalyst in the form of nanoparticles is selected from the

Young Nam Kim
Application No.: Not Yet Assigned
-4Art Unit: Not Yet Assigned

group consisting of metal element, oxides, nitride, borides, fluorides, bromides and sulfides of metal, and a mixture thereof.

- 10. (Currently amended) The method according to claim 1 [[or 7]], characterized in that water is added in the form of water-in-oil or oil-in-water emulsion with the hydrocarbon used as a carbon source in the presence of a surfactant.
- 11. (Original) The method according to claim 10, characterized in that the water-in-oil or oil-in-water emulsion comprises the catalyst nanoparticles which are dispersed in the emulsion medium or encapsulated inside particles of the water-in-oil or oil-in-water emulsion.
- 12. (Original) The method according to claim 10, characterized in that the surfactant is selected from the group consisting of hydrocarbon-, silicon- and fluorocarbon-based surfactants being cationic, anionic, nonionic or amphoteric.
- 13. (Original) The method according to claim 1, characterized in that the carbon source is selected from the group consisting of said solvents, said surfactants, carbon monoxide, saturated or unsaturated aliphatic hydrocarbons

Young Nam Kim
Application No.: Not Yet Assigned

Examiner: Not Yet Assigned Art Unit: Not Yet Assigned

having 1 to 6 carbon atoms, and aromatic hydrocarbons having 6 to 10 carbon atoms; and said carbon source can have 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen, chlorine, fluorine and sulfur.

- 14. (Original) The method according to claim 13, characterized in that the hydrocarbon is selected from the group consisting of aromatic hydrocarbons such as benzene, toluene or xylene, aliphatic hydrocarbons such as hexane, heptane or octane, alcohols such as methanol, ethanol or propyl alcohol, ketones such as acetone, and a mixture thereof.
- 15. (Original) The method according to claim 1, characterized in that an optional reaction gas selected from H₂, H₂S and NH₃ is supplied.

Young Nam Kim
Application No.: Not Yet Assigned
- 6 - Art Unit: Not Yet Assigned