Cutting cuts

Alakh () and Guillermo (Billy) Mosse

() and Universidad de Buenos Aires

July 26, 2018

What we want to prove

Lemma

(Basic Elimination Lemma) If $\vdash_{\rho+1}^{\alpha} \Delta$ then $\vdash_{\rho}^{\omega^{\alpha}} \Delta$

What we want to prove

Lemma

(Basic Elimination Lemma) If $\vdash_{\rho+1}^{\alpha} \Delta$ then $\vdash_{\rho}^{\omega^{\alpha}} \Delta$

Lemma

(Generalized Elimination Lemma) If $\vdash^{\alpha}_{\beta+\omega^{\rho}}$ then $\vdash^{\phi_{\rho}(\alpha)}_{\beta}\Delta$

Veblen functions (defined inductively)

Figure 1: The range (image) of the first Veblen functions. Not on scale

Zero ordinal: $\varphi_0(\alpha) := \omega^{\alpha}$ Successor ordinals ρ : $\varphi_{\rho+1}(\alpha) := Enum_{FIX\left(\varphi(\rho)\right)}(\alpha)$ Limit ordinals λ : $\varphi_{\lambda}(\alpha) := Enum_{FIX\left(\bigcap_{\rho<\lambda}\varphi(\rho)\right)}(\alpha)$

Veblen functions (defined inductively)

Figure 1: The range (image) of the first Veblen functions. Not on scale

Zero ordinal: $\varphi_0(\alpha) := \omega^{\alpha}$ Successor ordinals ρ : $\varphi_{\rho+1}(\alpha) := Enum_{FIX\left(\varphi(\rho)\right)}(\alpha)$ Limit ordinals λ : $\varphi_{\lambda}(\alpha) := Enum_{FIX\left(\bigcap_{\rho<\lambda}\varphi(\rho)\right)}(\alpha)$

Remark: if $\rho_1 < \rho_2$ then φ_{ρ_2} enumerates a subset of fixed points of φ_{ρ_1}

Proof (cont)

Now assume that the last inference was

$$\vdash^{\alpha_0}_{\beta+\omega^\rho}\Delta, F \text{and} \vdash^{\alpha_0}_{\beta+\omega^\rho}\Delta, \neg F \Rightarrow \vdash^{\alpha}_{\beta+\omega^\rho}\Delta$$

for $\alpha_0 < \alpha$, and formula F such that $rank(F) \in [\beta, \beta + \omega^{\rho})$.

Let γ be an ordinal such that $rank(F)=\beta+\gamma.$ We decompose γ into its Cantor Normal Form and get,

$$rank(F) = \beta + \gamma = \beta + \omega^{\sigma_1} + \dots + \omega^{\sigma_n} < \beta + \omega^{\rho}$$

such that $\rho > \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n$, and thus,

$$rank(F) < \beta + \omega^{\sigma_1}(n+1).$$

We now do a side induction on α . When $\alpha=0$, the claim is trivial. Otherwise, we use the induction hypothesis to get,

$$\vdash_{\beta}^{\varphi_{\rho}(\alpha_0)} \Delta, F$$
 and $\vdash_{\beta}^{\varphi_{\rho}(\alpha_0)} \Delta, \neg F$.

Thus, we get $\vdash_{\beta+\omega^{\sigma_1}(n+1)}^{\varphi_{\rho}(\alpha_0)+1} \Delta$ by a cut.

Cinco C Wa apply the induction hypothesis to got Alakh () and Guillermo (Billy) Mosse (() and Universida Cutting cuts

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

When
$$n=0, \varphi^0_{\sigma_1}(\varphi_\rho(\alpha_0)+1)=\varphi_\rho(\alpha_0)+1$$

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

When
$$n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$$

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

When
$$n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$$

$$n \Rightarrow n+1: \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

By induction on n.

When
$$n = 0$$
, $\varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0) + 1) = \varphi_{\rho}(\alpha_0) + 1 < \varphi_{\rho}(\alpha)$.

$$n \Rightarrow n+1 : \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

By I.H., this is less than $\varphi_{\sigma_1}(\varphi_{\rho}(\alpha))$ and by definition this is equal to $\varphi_{\rho}(\alpha)$.

Claim:
$$\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1)<\varphi_{\rho}(\alpha)$$

By induction on n.

When
$$n=0, \varphi_{\sigma_1}^0(\varphi_{\rho}(\alpha_0)+1)=\varphi_{\rho}(\alpha_0)+1<\varphi_{\rho}(\alpha).$$

$$n \Rightarrow n+1 : \varphi_{\sigma_1}^{n+1}(\varphi_{\rho}(\alpha_0)+1) = \varphi_{\sigma_1}(\varphi_{\sigma_1}^n(\varphi_{\rho}(\alpha_0)+1))$$

By I.H., this is less than $\varphi_{\sigma_1}(\varphi_{\rho}(\alpha))$ and by definition this is equal to $\varphi_{\rho}(\alpha)$. And we are done!