Reg. No.	-+0				
Reg. 140.	1				

MINOR CERTIFICATION EXAMINATION, JUNE 2023 Second & Third Semester

18CSC003J – COMPUTER ORGANIZATION AND ARCHITECTURE (For the candidates admitted during the academic year 2021-2022 & 2022-2023)

(i) (ii)	Part - A should be answered in OMR sheet to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in			should be	hand	ded o	over					
Time: 3 hours					Max. Marks: 100							
	$PART - A (20 \times 1 =$	= 20 M	arks)	Marks	BL	со	РО					
	Answer ALL Qu											
1	. A source program is usually in			1	1	1	1					
	(A) Assembly language	(B)	Machine level language									
· ·	(C) High level language		Natural language									
2	structure is usually used to com	nect 1/	0 devices.	1	1	1	1					
	(A) Single bus		Multiple bus									
	(C) Star bus	, ,	Ram bus									
3	The decoded instruction is stored in	٠.		1	1	1	1					
	(A) IR	(B)	PC									
5	(C) Registers	, ,	MDR	W. 11.		-						
. 4	. ISP stands for			1	1	I	1					
	(A) Information standard processing	_(B)	Instruction set processor									
	(C) Interchange standard protocol		Interrupt service procedure									
5	Convert binary to decimal (11000) ₂			1	1	2	1					
	(A) $(45)_{10}$	(B)	$(24)_{10}$									
	(C) $(25)_{10}$		$(42)_{10}$									
. 6	. For the addition of large integers, most	of the	systems make use of	1	1	2	1					
	(A) Fast address	(B)	Full address									
	(C) Carry-look ahead address	(D)	Parallel address									
. 7	. When we perform subtraction on -7 an is	d 1, th	e answer in 2's complement fo	rm ¹	1	2	1					
	(A) 1010 (C) 0110	(B)	1110 1000									
	(0) 0110	(1)	1000									
8	. Which methods of representation of memory than others?	f num	bers occupies large amount	of ¹	1	2	1					

(B) 1's compliment (D) 10's compliment

(A) Sign-magnitude(C) 2's compliment

9.	In a three bus architecture, how many inj (A) 2 output and 2 input (C) 2 output and 1 input	out and output ports are there? (B) 1 output and 2 input (D) 1 output and 1 input	1	1	3	1	20.	In a program using subroutine call instruction, it is necessary to (A) Initialize program counter (B) Clear the accumulator (C) Reset the microprocessor (D) Clear the instruction register	er	1 .	1	5 =	1
10.	The method used for restoring data depe	endency conflict by the compiler itself	1	1	3	1		PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Ma	ırks	BL	CO	P
	(A) Delayed load(C) Prefect target instruction	(B) Operand forwarding(D) Loop buffer		6			21.	What are the four types of instruction set architecture you are aware of?	4	4	2	1	Ī
11.	Microinstructions are stored in contro	l memory groups, with each group	1	1	3	1	22.	Sketch Big-Endian and Little-Endian assignment.	4		2		
- 54	specifying a (A) Routine	(B) Subroutine						Write down the steps used for restoring and non restoring division.	2	4	2		
	(C) Vector	(D) Address						Elaborate the different techniques for micro instruction sequencing.		4		3	
12.	Comparing the time T_1 taken for a single time T_2 taken on a non-pipelined but iden	~ ~	1	1	3	1		Elaborate on branch prediction with example. Elaborate on software parallelism and its types.			2	3	
	(A). $T_1 \le T_2$ (C) $T_1 \le T_2$	(B) $T_1 > = T_2$ (D) T_1 and T_2 plus time taken for						Write short notes on DMA data transfer.		4	3	5]
10		are instruction fetch cycle						$PART - C (5 \times 12 = 60 \text{ Marks})$	Ma	ırks	BL	со	P
13.	Which one of the following is not a Flyn (A) MISD (C) MISD	(B) SISD	Ţ	2	4	2	28 a	Answer ALL Questions List and explain various addressing modes, with its formats and example.	1	2	3	1]
-1.4	(C) MIMD	(D) SMID		2		5 1	20. 4.	(OR)					
14.	cache miss.	only on costly stalls, such as last-level	-1	2	4	1		Outline on instruction formats with suitable examples.			3		
	(A) Coarse grained(C) Course grained	(B) Fine grained(D) Tune grained					29. a.	Write Booth's algorithm and perform Booth multiplication of -23×-19.	1:	2	3	2	
15.	I = i + 1;	-	1	1	4	1 .	b .	(OR) Write restoring division algorithm and perform restoring division of 10/3.	1.	2	3	2	1
	J = i + 1; The above is example sequence logic of						30. a.	List and explain the steps involved in execution of complete instruction.	1.	2	3	3]
	(A) Write After Write (WAW)(C) Read After Write (RAW)	(B) Write After Read (WAR)(D) Read After Read (RAR)					b.	(OR) Describe the generation of control signals using hardwire control unit,	with 1	2	3	3]
16.	The objective of S/W and H/W technique (A) Parallelism	(B) Scalability	1	1	4	1	31. a.	necessary diagrams. Explain Flynn's classification and the four architecture in detail.	1	2	3	4]
	(C) Supervision	(D) Computability						(OR)					
17.	PCI stands for (A) Peripheral component interconnect (C) Processor computer interconnect	(B) Peripheral computer internet(D) Processor cable interconnect	1	1	4	1	b.	Discuss in detail the cache coherence problem and the protocol that is us overcome cache coherence.	ed to	2	3	5	1
18.	The device connected to USB is assigned	an address.	1	1	5	1	32. a.	Discuss about various mapping schemes used in cache design.	1:	2	3	5	1
Y	(A) 9 bit (C) 4 bit	(B) 16 bit (D) 7 bit			e K	x a	b.i.	(OR) Differentiate memory mapped I/O and I/O mapped I/O.	6	5	3	5	1
19.	Once the bus is granted to a device it (A) Activates the bus busy line	(B) Performs the required operation	1	2	5	1	ii.	Write a note on DMA transfer.	6	5	3	5	1
	(C) Raises an interrupt	(D) Activates the ready line					,	****				-	

Page 2 of 3

08JF2&3-18CSC003J

Page 3 of 3