1 Convex Functions

Check convexity: (1) definition $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ (2) 1-order, 2-order condition (3) function of any line in the domain must satisfy convexity conditions (4) epif must be convex.

1.1 Definition of Convexity

• 3.1 (a): Since the linear function g(x) is always above the convex f(x), hence applying the slope

$$\frac{f(b) - f(a)}{b - a} = \frac{g(x) - f(a)}{x - a}$$

gives

$$g(x) = f(a) + (x - a)\frac{f(b) - f(a)}{b - a} = \frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b) \ge f(x)$$

• 3.1 (b): Subtract both sides by f(a)

$$f(x) - f(a) \le (x - a) \frac{f(b) - f(a)}{b - a}$$

gives

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a}$$

• 3.1 (c): When $x \to a$, the lhs inequality becomes f'(a). Likewise the rhs inequality becomes f'(b).

• 3.1 (d): Since $f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a}$, and $f'(x) \ge f'(a)$ when $x \ge a$, hence $f''(a) \ge 0$.

• 3.2: Level Sets of convex, concave, quasiconvex, and quasiconcave functions.

• 3.3: Inverse of an "increasing" convex function. g is an inverse function of an increasing convex function $f: \mathcal{R} \to \mathcal{R}$, where dom f = (a, b), dom g = (f(a), f(b)), and g(f(x)) = x. Prove that g is concave.

Proof:

Since f is increasing, given $x_2 > x_1$, we know that $f(x_2) > f(x_1)$, set $x_1 = \theta a + (1-\theta)b$ for $0 < \theta < 1$. Due to convexity of f, if $f(x_2) = \theta f(a) + (1-\theta)f(b)$ then $f(x_2) > f(\theta a + (1-\theta)b) = f(x_1)$ is satisfied. We want to show that g is concave by proving $g(\theta f(a) + (1-\theta)f(b)) > \theta g(f(a)) + (1-\theta)g(f(b))$. From g(f(x)) = x, we know that the lhs of the inequality is $g(f(x_2)) = x_2$ and rhs is $\theta a + (1-\theta)b = x_1$, therefore $x_2 > x_1$.

• 3.4: $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, show that f is convex iff given any line segment (with endpoints x and y)

$$\int_0^1 f((1-\lambda)x + \lambda y)d\lambda \le \frac{f(x) + f(y)}{2},$$

i.e. the mean of f over the line segment is less than the average of the values on the endpoints. (Notice that the lhs comes from the mean

$$\frac{1}{y-x} \int_{x}^{y} f(z)dz$$

by setting $z = (1 - \lambda)x + \lambda y$, $dz = (y - x)d\lambda$, and z = x when $\lambda = 0$ and z = y when $\lambda = 1$, hence

$$\frac{1}{y-x} \int_0^1 f(1-\lambda)x + \lambda y)(y-x)d\lambda = \int_0^1 f((1-\lambda)x + \lambda y)d\lambda.$$

Proof:

The linear function g(z) that intersects f(x) and f(y) is $g(z) = f(x) + \frac{f(y) - f(x)}{y - x}(z - x)$. We know that convexity of f gives $f(z) \le g(z)$, hence taking the mean of g(z) over [xy] gives $\frac{f(x) + f(y)}{2}$ which is \ge the mean of f.

• 3.5: Running average of a convex function.

 $f: \mathcal{R} \to \mathcal{R}$ is convex, show that the running avarage

$$F(x) = \frac{1}{x} \int_0^x f(t)dt \tag{1}$$

is convex with $dom F = \mathcal{R}_{++}$.

(Notice as 3.4, set $t = \lambda x$, $dt = xd\lambda$, t = x when $\lambda = 1$, t = 0 when $\lambda = 0$, hence

$$\frac{1}{x} \int_0^1 f(\lambda x) x d\lambda = \int_0^1 f(\lambda x) d\lambda \tag{2}$$

is the moving average over [0, x].)

Proof:

Since for any given λ , $f(\lambda x) = f(g(x))$ has a convex domain $\mathrm{dom} f = g(x)$, where g(x) is an affine function. Therefore, given f is a convex function, f(g(x)) is convex over x. A nonnegative weighted (by 1's) sum of convex functions preserves convexity. Therefore, $F(x) = \int_0^1 f(\lambda x) d\lambda$ is convex.

• 3.6: Functions and epigraphs.

When is the epigraph of a function a (1) halfspace (2) convex cone (3) polyhedron?

Proof:

$$epif = \{(x,t)|t \ge f(x)\}$$

- 1. The normal vector $(\nabla f, -1)$ is a constant over the entire domain, and the epif is bounded by the hyperplane formed by the graph (x, f(x)).
- 2. Any conic combination of points (x,t) are in the epigraph.
- 3. Intersection of hyperplanes on the graph (x, f(x)) forming halfspaces with normal vectors $(\nabla f, -1)$.

• 3.7: Prove that a convex function, with $dom f = \mathbb{R}^n$, bounded above is a constant. Proof:

Suppose f is non-differentiable and bounded above at the point y. Any line segment in \mathbb{R}^n must give convexity of f, and suppose $z \succ y \succ x$ on this line segment. If f(z) = f(y) > f(x), then the convex combination $\theta f(z) + (1 - \theta)f(x) < f(y)$, which is non-convex. If f(z) > f(y) > f(x), then f is unbounded. Therefore, f must be a constant, since all other possibilities are non-convex.

• 3.8: 2-order condition for convexity.

If f is twice differentiable, then f is convex iff $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom } f$.

Proof:

 (\Rightarrow) (1) $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$ (2) epif is convex (3) any function of a line segment

in the domain is convex (4) 1-order condition $f(y) \ge f(x) + \nabla f(x)^T (y-x)$ (5) sublevel set is convex. Use (4) The 2-order Taylor expansion which better approximates f(y) is $f(x) + \nabla f(x)^T (y-x) + \nabla^2 f(x)^T (y-x)^2$, this is always greater than or equal to the 1-order expansion if $\nabla^2 f(x) \ge 0$. (\Leftarrow) From the 2-order condition we know that $f(y) \ge f(x) + \nabla f(x)^T (y-x) + \nabla^2 f(x)^T (y-x)^2 \ge f(x) + \nabla f(x)^T (y-x)$, therefore f is convex.

• 3.9: 2-order conditions for convexity on an affine set.

Suppose f twice differentiable with a convex domain $x = Fz + \hat{x} \in \text{dom } f$.

- 1) Show that $\tilde{f}(z) = f(Fz + x)$ is convex iff $F^T f(Fz + \hat{x})F \succeq 0$, where $F \in \mathcal{R}^{n \times m}$, $\hat{x} \in \mathcal{R}^n$, $z \in \mathcal{R}^m$, $Fz + \hat{x} \in \text{dom } f$, and $z \in \text{dom } \tilde{f}$. (Notice, this convexity condition of $F^T \nabla^2 f F$ on $z \in \text{dom } \tilde{f}$ is analogous to that of $\nabla^2 f(x)$ on $x \in \text{dom } f$.)
- 2) $A \in \mathbb{R}^{p \times n}$ has null $A = \operatorname{range} F$. Show that \tilde{f} is convex iff there exists a $\lambda \in \mathbb{R}$ such that

$$\nabla^2 f(Fz + \hat{x}) + \lambda A^T A \succeq 0 \tag{3}$$

Proof:

(1) Since f is convex iff $\nabla^2 f(Fz + \hat{x}) \succeq 0$ for all $Fz + \hat{x} \in \text{dom} f$. For a positive semidefinite matrix, the rhs is satisfied when $\left(Fz + \hat{x}\right)^T \nabla^2 f\left(Fz + \hat{x}\right) = z^T \left(F^T \nabla^2 fF\right) z + 2\hat{x}^T \nabla^2 fFz + \hat{x} \nabla^2 f\hat{x} \ge 0$. Since \hat{x} and Fz are in domf satisfying $\nabla^2 f \succeq 0$, therefore the first term must satisfies $z^T \left(F^T \nabla^2 fF\right) z \ge 0 \Rightarrow \left(F^T \nabla^2 fF\right) \succeq 0$.

This shows that \tilde{f} is convex iff $F^T \nabla^2 f F \succeq 0$ for all $z \in \text{dom } \tilde{f}$.

- 2) $(\Rightarrow) \lambda F^T A^T A F z$ is strictly zero for any λ , therefore from 1) we know that a convex f implies $F^T \nabla^2 f F \succeq 0 \Rightarrow \text{null} F^\perp \in \text{dom} f$, we know that Az = A(null F) + 0, therefore $\lambda F^T A^T A F z$ is strictly zero for any λ . $F^T \nabla^2 f F + \lambda F^T A^T A F \succeq 0 \Rightarrow F^T \Big(\nabla^2 f + \lambda A^T A \Big) F \succeq 0 \Rightarrow \nabla^2 f (Fz + \hat{x}) + \lambda A^T A \succeq 0$. $(\Leftarrow) F^T \Big(\nabla^2 f (Fz + \hat{x}) + \lambda A^T A \Big) F \succeq 0$ gives the previous result in 1).
- 3.10: An extension of Jensens inequality.

Given a convex f with $\mathbf{E}f(x_0+v) \geq f(x_0)$, where v is a random variable with zero mean.

- 1) Find a counterexample that a higher variance v (i.e., randomization, more deviated from the mean) raises the mean value of f, i.e., $\mathbf{Var}(v) > \mathbf{Var}(w)$, but $\mathbf{E}f(x_0 + v) < \mathbf{E}f(x_0 + w)$. (The general case is supported by supposing $\mathbf{Var}(w) \to 0$, then $\mathbf{E}f(x_0 + w) \to \mathbf{E}f(x_0) = f(x_0)$, where $\mathbf{E}f(x_0 + v) \ge f(x_0)$ concludes that $\mathbf{E}f(x_0 + v) \ge \mathbf{E}f(x_0 + w)$, i.e., randomization will raise the mean of a convex function.)
- 2) Show that $\mathbf{E}f(x_0+tv)$ is monotonically increasing for $t\geq 0$, i.e. w=tv just a scaling of the values of v without changing distribution.

Proof:

- 1) Given a convex function $f(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$ and two distributions, p(v = -4) = 0.1 and p(v = -4) = 0.1
- 4/9) = 0.9 with $\mathbf{Var}(v) = 1.777$, and p(w = -1) = 0.5 and p(w = 1) = 0.5 with $\mathbf{Var}(w) = 1$. Therefore $\mathbf{Var}(v) > \mathbf{Var}(w)$, $\mathbf{E}f(v) = 0.4 < \mathbf{E}f(w) = 0.5$.
- 2) $g(t) = \mathbf{E}f(x_0 + tv) = \theta_1 f_{v_1}(t) + \ldots + \theta_n f_{v_n}(t)$ is a convex function of t, indexed by v_i , since a nonnegative sum of convex functions is convex.
- 3.11 *Monotone Mappings* Definition of a "monotone" function $\psi : \mathbb{R}^n \to \mathbb{R}^n$

$$(\psi(x) - \psi(y))^T (x - y) \ge 0. \tag{4}$$

i.e. ψ increases (decreases) with positive (negative) x, they are positively correlated.

Given f is a differentiable convex function. 1) Prove ∇f is monotone. 2) Is the converse true?

Proof:

- 1) From the 1-order condition, $f(y) \ge f(x) + \nabla f(x)^T (y-x)$ and $f(x) \ge f(y) + \nabla f(y)^T (x-y)$. Adding the two equations we get $(\nabla f(x) \nabla (y))^T (x-y) \ge 0$.
- 2) Given a monotone $(\nabla f(x) \nabla (y))^T (x y) \ge 0$, is f convex? (UNPROOFED)
- 3.12 Fit an affine function between a convex and concave function with the same domain

 $g(x) \leq f(x)$, g is concave and f is convex.

Proof:

We know that hypog and epif are both convex sets which does not intersect, therefore there exists a hyperplane between the two sets. Suppose the two points $z_1 = (x_1, f(x_1))$ and $z_2 = (x_2, g(x_2))$ gives $\inf ||u - v||$, where $u \in \{(x, f(x))\}$ and $v \in \{(x, g(x))\}$. $(\nabla f(x_1), -1)^T((x, h(x)) - (z_1 + z_2)/2) = 0$ $\Rightarrow h(x) = \nabla f(x_1)^T x - (\nabla f(x_1), -1)^T(\frac{z_1+z_2}{2})$, where h is affine.

• 3.13 Kullback-Leibler divergence and the information inequality KL divergence:

$$D_{KL}(u, v) = \sum_{i=1}^{n} (u_i \log \frac{u_i}{v_i} - u_i + v_i),$$
 (5)

becomes relative entropy when u and v are n dimensional probability vectors s.t. $1^T u = 1$ and $1^T v = 1$, n is also the sample size.

- 1) Prove infomation inequality $D_{KL}(u,v) \geq 0$ for all $u, v \in \mathbb{R}^n_{++}$.
- 2) $D_{KL}(u, v) = 0$ iff u = v.

Hint: $D_{KL} = f(u) - f(v) - \nabla f(v)^T (u - v) = \sum_i u_i \log u_i - \sum_i v_i \log v_i - (\log v_1 + 1, \dots, \log v_n + 1)^T (u_1 - v_1, \dots, u_n - v_n)$ where $f(v) = \sum_{i=1}^n v_i \log v_i$ is the negative entropy of v.

Proof:

Since negative entropy is strictly convex and differentiable, therefore for $u \neq v$, $f(u) > f(v) + \nabla f(v)^T (u-v) \Rightarrow D_{KL}(u,v) = f(u) - f(v) - \nabla f(v)^T (u-v) > 0$.

- 3.14 (unproof)
- 3.15 *A family of Concave Utility functions* For $0 < \alpha \le 1$,

$$u_{\alpha}(x) = \frac{x^{\alpha} - 1}{\alpha} \tag{6}$$

with $\operatorname{dom} u_{\alpha} = \mathcal{R}_{+}$, and $u_{0} = \log x$ with domain \mathcal{R}_{++} . (a) Show that $\lim_{\alpha \to 0} u_{\alpha} = u_{0}$.

(b) Show that u_{α} are concave, monotone increasing, and $u_{\alpha}(1) = 0$.

Proof:

- (a) $u' = x^{\alpha 1}$, at $\alpha = 0$ $u' = x^{-1} = u'_0$.
- (b) $f(x) = (x^{\alpha} 1)/\alpha$ is concave iff $f'' \le 0$. $f'' = (\alpha 1)x^{\alpha 2}$, $0 < \alpha \le 1$ and $x \in \mathcal{R}_{++}$ imply $f'' \le 0$. $x \ge y$ implies $x^{\alpha} \ge y^{\alpha}$, therefore $(x^{\alpha} 1)/\alpha \ge (y^{\alpha} 1)\alpha$, which indicates monotonicity. $u_{\alpha}(1) = 0$ is trivial to prove.
- 3.16 Determine convex, concave, quasi-convex, quasi-concave (a) $f(x) = e^x 1$ on \mathcal{R} .

(b)
$$f(x_1, x_2) = x_1 x_2$$
 on \mathcal{R}^2_{++} .

(c)
$$f(x_1, x_2) = 1/(x_1 x_2)$$
 on \mathcal{R}^2_{++} .

(d)
$$f(x_1, x_2) = x_1/x_2$$
 on \mathcal{R}^2_{++} .

(e)
$$f(x_1, x_2) = x_1^2/x_2$$
 on $\mathcal{R} \times \mathcal{R}_{++}$

(e)
$$f(x_1, x_2) = x_1^2/x_2$$
 on $\mathcal{R} \times \mathcal{R}_{++}$.
(f) $f(x_1, x_2) = x_1^a x_2^{1-a}$, where $0 \le a \le 1$, on \mathcal{R}_{++}^2 .

- (a) Strictly convex, since $e^x 1$ is the convex e^x , with $f'' = e^x > 0$, shifted by a constant, and monotonically increasing. Hence quasi-convex and quasi-concave (superlevel set is convex).
- (b) The Hessian $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is not a positive semidefinite nor negative semidefinite matrix, hence neither convex nor concave. f is quasiconcave since the superlevel set $\{x|f(x)=x_1x_2\geq t,t\in\mathcal{R}\}$ is convex on \mathcal{R}^2_{++} .
- (c) The Hessian $\frac{1}{x_1x_2}\begin{pmatrix} 2x_2^{-2} & 1/(x_1x_2) \\ 1/(x_1x_2) & 2x_1^{-2} \end{pmatrix} \succeq 0$, by row reduction the diagonal elements are positive

Therefore convex, and quasi-convex. The superlevel set $\{x|1/(x_1x_2) \geq t, t \in \mathcal{R}\}$ is not convex, hence not quasi-concave.

- (d) The Hessian $\begin{pmatrix} 0 & -x_2^{-2} \\ -x_1^{-2} & 0 \end{pmatrix}$ is not PSD nor NSD. The level set $\{x|x_1/x_2=t\}$ is a line (hyper-
- (e) The Hessian $2/x_2\begin{pmatrix} 1 & -x_1/x_2 \\ -x_1/x_2 & x_1^2/x_2^2 \end{pmatrix}\succeq 0$ by row reduction, thus convex and quasiconvex. It is the quadratic-over-linear function.
- (f) The Hessian $a(1-a)x_1^ax_2^{-a}\begin{pmatrix} -x_1^{-2}x_2 & x_1^{-1} \\ x_1^{-1} & -x_2^{-1} \end{pmatrix} \leq 0$ by row reduction, hence concave and quasiconcave. It is not quasi-convex
- 3.17 Show $f(x) = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$ is concave with p < 1, $p \neq 0$, and dom $f = \mathbb{R}^n_{++}$.

Special case: $f(x) = \left(\sum_{i=1}^{n} x_i^{1/2}\right)^2$ and the harmonic mean $f(x) = \left(\sum_{i=1}^{n} 1/x_i\right)^{-1}$. (Hint: prove by using

Cauchy-Schwarz inequality $||a||||b|| \ge a^T b$, which is from triangular inequality $||a+b|| \le ||a|| + ||b||$ taken squares on both sides $a^T a + 2a^T b + b^T b \le a^T a + 2||a||||b|| + b^T b \Rightarrow a^T b \le ||a||||b||$)

Proof:

$$(\nabla f)_i = (\sum_{k=1}^n x_k^p)^{\frac{1-p}{p}} x_i^{p-1}$$

$$(\nabla^2 f)_{ii} = -(1-p)x_i^{p-2} \left(\sum_{k=1}^n x_k^p\right)^{\frac{1-p}{p}} + (1-p)x_i^{2p-2} \left(\sum_{k=1}^n x_k^p\right)^{\frac{1-2p}{p}} = (1-p)\left(\sum_{k=1}^n x_k^p\right)^{\frac{1-2p}{p}} \left(-x_i^{p-2} \sum_{k=1}^n x_k^p + x_i^{2p-2}\right)^{\frac{1-2p}{p}} \left(-x_i^{p$$

$$(\nabla^2 f)_{ij} = (1-p)x_i^{p-1} \left(\sum_{k=1}^n x_k^p\right)^{\frac{1-2p}{p}} x_j^{p-1} = (1-p)\left(\sum_{k=1}^n x_k^p\right)^{\frac{1-2p}{p}} \left(x_i^{p-1} x_j^{p-1}\right)$$

$$\nabla^2 f = (1 - p) \left(\sum_{k=1}^n x_k^p \right)^{\frac{n-1}{p}} \left(-\operatorname{diag}(x_i^{p-2} \sum_{i=1}^n x_k^p) + zz^T \right)$$

where
$$z = (x_1^{p-1}, \dots, x_n^{p-1})$$
. The condition $v^T \nabla^2 f v = (1-p)(\sum_{k=1}^n x_k^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_k^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_k^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_k^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p)^{\frac{1-2p}{p}} \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p) \Big(-\sum_{i=1}^n (v_i^2 x_i^{p-2} \sum_{i=1}^n x_i^p) + (1-p)(\sum_{i=1}^n x_i^p) \Big(-\sum_{i=1}^n x_i^p) \Big(-\sum_{i=1}^n$

 $(\sum v_i z_i)^2$ ≤ 0 must be satisfied for $\nabla^2 f$ to be NSD for concavity. Where the components in the bracket must be negative. Therefore, with $a_i = v_i x_i^{\frac{p-2}{2}}$, $b_i = x_i^{p/2}$ and $a_i b_i = v_i x_i^{p-1} = v_i z_i$, the component being negative becomes $||a||^2 ||b||^2 \ge (a^T b)^2$ which complies with Cauchy-Schwarz inequality.

• 3.18 Function of PSD matrices

Prove by using spectral theory (Hermitian self-adjoint matrices can be diagonalized w.r.t. orthonormal eigenbasis).

- (a) $f(X) = \operatorname{tr}(X^{-1})$ is convex on $\operatorname{dom} f = S_{++}^n$. (b) $f(X) = (\det X)^{1/n}$ is concave on $\operatorname{dom} f = S_{++}^n$.

Proof:

- (a) Consider an arbitrary line $X^{-1} = Y + tZ$, $g(t) = f(Y + tZ) = tr(Y + tZ) = trY^{1/2}(I + tY^{-1/2}ZY^{-1/2})Y^{1/2}$. $tY^{-1/2}ZY^{-1/2})Y^{1/2}$.
- (b) (unproof).

• 3.19 Nonnegative Weighted Sum and Integrals

- (a) Show that $f(x) = \sum_{i=1}^{\bar{k}} \alpha_i x_{[i]}$ is convex, where $x_{[i]}$ is the kth largest component of $x \in \mathcal{R}^n$, and $\alpha_1 \ge \alpha_2 \ge \ldots \ge 0$. Use the fact that $f(x) = \sum_{i=1}^k x_{[i]}$ is convex.
- (b) Show that $f(x) = -\int_0^{2\pi} \log T(x,\omega) d\omega$ is convex on $\{x \in \mathcal{R}^n | T(x,\omega) > 0\}$, where $T(x,\omega) = \int_0^{2\pi} \log T(x,\omega) d\omega$ is convex on $\{x \in \mathcal{R}^n | T(x,\omega) > 0\}$, $x_1 + x_2 \cos \omega + x_3 \cos 2\omega + \ldots + x_n \cos(n-1)\omega$

Proof:

- (a) The nonnegative sum of the set of convex functions $f_j = \sum_{i=1}^j x_{[i]}$ is $\sum_{j=1}^k \alpha_j f_j = \sum_{i=1}^k \alpha_i x_{[i]} + \sum_{j=1}^{k-1} \alpha_{j+1} f_j$. Which indicates $\sum_{i=1}^k \alpha_i x_{[i]} = \sum_{j=1}^{k-1} (\alpha_j \alpha_{j+1}) f_j + \alpha_k f_k$ is also a nonnegative sum of convex functions which must also be convex.
- (b) $T(x, \omega) = \sum_{k=1}^{n} x_k \cos(k-1)\omega$.

 $(\nabla \log T)_i = -\cos(i-1)\omega/(\sum x_k \cos(k-1)\omega)$

$$(\nabla^{2} \log T)_{ij} = -\cos(i-1)\omega/(\sum x_{k}\cos(k-1)\omega)^{2}$$

$$(\nabla^{2} \log T)_{ij} = -\cos(i-1)\omega\cos(j-1)\omega/(\sum x_{k}\cos(k-1)\omega)^{2}$$
Hence,
$$\nabla^{2} \log T = -\frac{1}{(\sum x_{k}\cos(k-1)\omega)^{2}} \begin{pmatrix} 1\\\cos\omega\\ \vdots\\\cos(n-1)\omega \end{pmatrix} [1,\cos\omega,\cdots,\cos(n-1)\omega] \leq 0$$

Which shows that $\log T$ is concave, and $-\log T$ is convex. Therefore f(x) is a continuous sum of convex functions indexed by ω .

• 3.20 Composition with an Affine Function

Show the followings are convex functions:

- (a) f(x) = ||Ax b||, norm on \mathbb{R}^m .
- (b) $f(x) = -(\det(A_0 + x_1 A_1 + \dots + x_n A_n))^{1/m}$, on $\{x | A_0 + x_1 A_1 + \dots + x_n A_n > 0\}$, where $A_i \in S^m$.

Proof:

An affine function preserves the convexity of the points in dom f, i.e., y = Ax - b is a convex set of points. (a) Since a norm is a convex function, therefore operating on a convex set of points y = Ax - bpreserves the convexity of the function.

(b) (unproof)

• 3.21 Pointwise Maximum and Supremum

Show the followings are convex functions:

- (a) $f(x) = \max_{i=1,\dots,k} ||A^{(i)}x b^{(i)}||$.
- (b) $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbb{R}^n , where $|x|_{[i]}$ is the rth ordered maximum coordinates.

Proof:

(a) f is a pointwise maximum function evaluated at a fixed point x_1 over a set of convex norm

functions (composed over affine functions), which is convex.

- (b) (unproof) hint: An affine function $f(x) = a^T x = [0, 1, 0, 1, 1]^T [x_1, \dots, x_5] = x_2 + x_4 + x_5$ is convex.
- $f(x) = \max_{1 \leq i_1 \leq \dots \leq n} \{x_{i_1} + \dots + x_{i_r}\}$ is the pointwise maximum of fixed set of affine functions. Same thing applied to the function in (b).

• 3.22 Composition Rule

Show the followings are convex functions:

- (a) $f(x) = -\log(-\log(\sum_{i=1}^{m} e^{a_i^T x + b_i}))$ on $dom f = \{x | \sum_{i=1}^{m} e^{a_i^T x + b_i} < 1\}$. Notice $\log(\sum_{i=1}^{m} e^y_i)$ is convex by $\nabla^2 f > 0$.
- (b) $f(x, u, v) = -\sqrt{uv x^T x}$, dom $f = \{(x, u, v) \mid uv > x^T x, u, v > 0\}$, and $-\sqrt{x_1 x_2}$ is convex on \mathcal{R}^2_{++} . Quadratic-over-linear is a convex function.
- (c) $f(x, u, v) = -\log(uv x^T x)$, same dom f as (b).
- (d) $f(x,t) = -(t^p ||x||_p^p)^{1/p}$ where p > 1 and $dom f = \{(x,t) \mid t \ge ||x||_p\}$.
- (e) $f(x,t) = -\log(t^p||x||_p^p)$ where p > 1 and $\text{dom } f = \{(x,t) \mid t > ||x||_p\}$. **Proof**:
- (a) $h(x) = \log(\sum_{i=1}^{m} e^{a_i^T x + b_i})$ is a composition of log-sum-exp function over the affine functions $y_i = a_i Tx + b_i$ (where any x point is transformed linearly to another point $y_i(x)$ indexed by i), where convexity is preserved. $h: \mathcal{R}^n \to \mathcal{R}$ and $g: \mathcal{R} \to \mathcal{R}$. We can restrict the domain of h to a line $x = x_0 + tv$, then f(x) = g(h(x)), where $g(h) = -\log(-h)$, has the condition $f'' = g''h'^2 + g'h''$. h(x) = k(z(x)), where $k = \log(z)$ and $k = \sum_{i=1}^{n} e^{a_i^T x + b_i}$, hence $k'' = k'' z'^2 + k' z'' = \frac{1}{z^2} (\sum_{i=1}^{n} 1^T a_i e^{a_i^T x + b_i})^2 + (\sum_{i=1}^{n} 1^T a_i^2 e^{a_i^T x + b_i})/z \ge 0$ since a_i 's are the only terms possibly negative. Therefore, $g'' = 1/h^2 > 0$, g' = 1/h > 0, h'' > 0, hence f is convex.
- (b) $-\sqrt{x_1x_2}$ is convex by the Hessian being $0.25x_1^{-1/2}x_2^{-1/2}[x_1^{-1}, -x_2^{-1}][x_1^{-1}, -x_2^{-1}]^T \succeq 0$. $g(x, u) = x_1^2/u + x_2^2/u + \cdots + x_n^n/u = g_1(x_1, u) + \cdots + g_n(x_n, u)$ is a positive sum of quadratic-over-linear functions, hence the nonnegative sum is convex.

 $f(x, u, v) = -\sqrt{u(v - g(x, u))}$, where both $g_1(x, u, v) = u$ and $g_2(x, u, v) = v - g(x, u)$ are positive, and v - g(x, u) is an affine transformation of the concave function -g, hence also concave. Therefore, the composition f = h(g(x, u, v)) is convex.

- (c) Suppose $h(x,y) = -\log(xy)$, $\nabla^2 h(x,y) = \begin{pmatrix} x^{-2} & 0 \\ 0 & y^{-2} \end{pmatrix} \succeq 0$, hence h(x,y) is convex on \mathcal{R}^2_{++} . Following the same logic from (b), f(x,u,v) = h(g(x,u,v)) is convex.
- (d) $-(t^{p-1}(t-\frac{||x||_p^p}{t^{p-1}}))^{1/p}$, where $\frac{||x||_p^p}{t^{p-1}}$ is convex by 3.23 (a). $h(x,y)=-(xy)^{1/p}$, both x and y are nonnegative, hence the Hessian

$$1/p^2x^{1/p-1}y^{1/p-1}[\sqrt{(p-1)y/x}, -\sqrt{x/((p-1)y)}][\sqrt{(p-1)y/x}, -\sqrt{x/((p-1)y)}]^T \succeq 0$$

over the domain \mathcal{R}^2_+ . Therefore, t^{p-1} is either convex or concave depending on p, and $t - \frac{||x||_p^p}{t^{p-1}}$ is concave. The composition by h over the convex domain gives convex f.

(e) $f(x,t) = -\log(t^{p-1}) - \log(t - (||x||_p/t)^p)$, where $-(p-1)\log(t)$ is convex and $-\log(t - (||x||_p/t)^p)$ is convex (by the composition rule $f'' = h''g'^2 + g''h' \ge 0$). The positive sum of convex functions is convex.

• 3.23 Perspective of a Function

The perspective of a function g is f(x,t) = tg(x/t) (Notice the perspective function $P(x,t) = \frac{x}{t}$ on

 $dom P = \mathcal{R}^n \times \mathcal{R}_{++}$ preserves convex sets, from domain to image, but is not a convex function!) (a) Show that for p > 1,

$$f(x,t) = \frac{|x_1|^p + \dots + |x_n|^p}{t^{p-1}} = \frac{||x||_p^p}{t^{p-1}}$$
(7)

is convex on $\{(x,t)|t>0\}$.

(b) Show that $f(x) = \frac{\|Ax + b\|_2^2}{c^T x + d}$ is convex on $\{x \mid c^T x + d > 0\}$, where $A \in \mathcal{R}^{m \times n}$, $b \in \mathcal{R}^m$, $c \in \mathcal{R}^n$ and $d \in \mathcal{R}$.

Proof:

(a) $f(x,t) = t(\frac{||x||_p}{t})^p = t(||\frac{x}{t}||_p)^p = tg(x/t)$ From Minkowski's Inequality $||\lambda x + (1-\lambda)y||_p \le ||\lambda x||_p + ||(1-\lambda)y||_p = \lambda ||x||_p + (1-\lambda)||y||_p$, which shows that $||x/t||_p$ is convex. Since p > 1, $g(x/t) = ||x/t||_p^p$ is convex. Therefore f(x,t) = tg(x/t) is convex (proven by using perspective function preserving convexity by mapping $\text{epi} f = \{(x,t,v) \mid v \ge tg(x/t)\}$ to $\text{epi} g = \{(x/t,v/t) \mid v/t \ge g(x/t)\}$, by knowing g is convex we know that f must be convex).

(b) $\frac{||Ax+b||_2^2}{c^Tx+d} = (c^Tx+d)\left(\frac{||Ax+b||_2}{c^Tx+d}\right)^2 = (c^Tx+d)\left(||\frac{Ax+b}{c^Tx+d}||_2\right)^2$, $\frac{Ax+b}{c^Tx+d}$ is a perspective function preserving convex affine sets. From (a), the perspective of a convex function is a convex function.

• 3.24 Functions on the Probability Simplex

A probability simplex is the n-dim'l probability vector space that satisfies

$$\{p \in \mathcal{R}_{+}^{n} \mid 1^{T}(p_{1}, \dots, p_{n}) = 1, \text{ where } p_{i} = p(x = a_{i}), a_{i} < a_{i+1}\},$$

which is a convex set (the triangular surface on a simplex spanned by p_1 , p_2 and p_3 , if n = 3). Determine the convexity or quasi-convexity of the functions:

- (a) **E**x
- (b) $\operatorname{prob}(x > \alpha)$
- (c) $\operatorname{\mathbf{prob}}(\beta \geq x \geq \alpha)$
- (d) $f(p) = \sum_{i=1}^{n} p_i \log p_i$, the negative entropy of the distribution.
- (e) $\mathbf{Var} x = \mathbf{E}(x \mathbf{E}x)^2$
- (f) quartile(x) = $\inf\{\beta \mid \mathbf{prob}(x \leq \beta) \geq 0.25\}.$
- (g) The cardinality of the smallest set $A \subseteq \{a_1, \dots, a_n\}$ with $\mathbf{prob}(A) \ge 0.9$. (Disprove quasiconvexity by an example!)
- (h) The minimum width interval that contains 90% of the probability, i.e., $\inf\{\beta \alpha \mid \mathbf{prob}(\alpha \leq x \leq \beta) \geq 0.9\}$.
- (f),(g), and (h) is crutial in thinking quasi-convexity, and is proven by giving counter-examples. Logic of proof: fix the p used for sub- (super-) level set, then prove if given the higher-(lower-) levels whether the p's forms a halfspace.

Proof:

quasiconvex function must satisfy the 1st-order condition $f(y) \leq f(x) \Rightarrow \nabla f(x)^T (y-x) \leq 0$, and 2nd-order condition $y^T \nabla f(x) = 0 \Rightarrow y^T \nabla^2 f(x) y \geq 0$ (i.e., whenever the slope is zero, the curvature is nonnegative). (a) $\mathbf{E}x = f(p) = \sum_i a_i p(x=a_i), f: \mathcal{R}^n_+ \to \mathcal{R}$, is an affine/linear transformation on the simplex (a convex set) which preserves convexity. Hence f(p) is a convex line in \mathcal{R} which satisfies convex, concave, quasi-convex and quasi-concave.

(Notice if f(x) is a convex function, a random variable of x, and the probability vector is fixed on each outcome of x, then $\mathbf{E}f(x)$ is just a point, we talk only about whether randomization will hurt the mean.)

- (b) $\operatorname{prob}(x \geq \alpha) = f(p) = \sum_{\{i \mid a_i \geq \alpha\}} p(x = a_i)$, where the set $\{p \in \mathcal{R}^{n-m+1} \mid 1^T(p_m, \dots, p_n) \leq 1, \text{ and } \alpha \leq a_m < \dots < a_n\}$ is a convex subset of the probability simplex set. Hence this is just a linear function of a convex set of p, which is convex, concave, quasiconvex and quasiconcave. To visualize the domain when part of the probability basis vectors are chopped off, we can focus on n = 3, a triangular simplex set. If we chop off $p(x = a_3)$, we get a triangle area projected on p_1 - p_2 -plane with $p_1 + p_2 \leq 1$, $p \in \mathcal{R}^n_+$.
- (c) $\operatorname{\mathbf{prob}}(\beta \geq x \geq \alpha) = \sum_{\{i \mid \beta \geq a_i \geq \alpha\}} p(x = a_i)$ is a linear function of the set of p, which is convex, concave, quasiconvex and quasiconcave.
- (d) Since $x \log x$ is a convex function, f(p) is convex by a nonnegative sum of convex functions, quasiconvex.
- (e) $\mathbf{Var} x = f(p) = \sum_i x_i^2 p_i (\sum_i x_i p_i)^2$ is a linear function subtracting a sum of nonnegative quadratic functions, which is concave, quasiconcave.
- (f) quartile $(x) = \inf\{\beta \mid \mathbf{prob}(x \leq \beta) = \sum_i p_i \geq 0.25\}$. If p is fixed, the quartile only give a single number. When p changes, the quartile may change, i.e., different distributions may have the same or different quartiles. If quartile is a_1 , then $p_1(a_1) \geq 0.25$. If quartile is a_2 , then $p_1(a_1) + p_2(a_2) \geq 0.25$. Hence this is a function of p, $f(p) = \operatorname{quartile}(x) = \inf\{\beta \mid \operatorname{prob}(x \leq \beta) = \sum_i p_i \geq 0.25\}$. Given a point p in the simplex set, we can find the minimum p that satisfies the condition $\operatorname{prob}(x \leq \beta) = \sum_i p_i \geq 0.25$. Since p is picked from one of the values of p in the function is not continuous, which is not convex or concave. Therefore, we check if the sub-or-super-level sets are convex for quasi-convex-or-concave. The superlevel set is the p satisfying quartile p if p is satisfies quartile p defines an open halfspace in the domain, which is convex. If p if p if p is p if p is p if p in the same p is p if p in the prob p in the same p is p in the same p in the same p in the same p in the same p is p in the same p in the same
- (g) $C = \{ \operatorname{card}(A) \mid A \subseteq \{a_1, \ldots, a_n\} \text{ with } \mathbf{prob}(A) = \sum_i p_i \geq 0.9 \}$, and $f(p) = \operatorname{minimum}\{C\}$. Same logic as (f), the function gives integer values which is not continuous over the domain, hence not convex or concave. \blacksquare Given a $\operatorname{card}(A)$, there will be multiple A in the set C. If p's satisfy $f(p) \geq \alpha$, then for all $\operatorname{card}(B) < \alpha$, $\operatorname{prob}(B) = \sum_i p_i < 0.9$. Hence the superlevel set is a strictly convex set bounded by in a halfspace, quasiconcave. \blacksquare If p's satisfy $f(p) \leq \alpha$, then for $\operatorname{card}(B) > \alpha$, $\operatorname{prob}(B) = \sum_i p_i$ not necessary greater than 0.9, no halfspace is defined (The solution gives an example!). Hence the sublevel set is not convex, not quasiconvex. \blacksquare
- (h) $f(p) = \inf\{\beta \alpha \mid \mathbf{prob}(\alpha \leq x \leq \beta) \geq 0.9\}$. Since β and α are integers, the function cannot be convex or concave. \blacksquare If p's satisfy $f(p) \leq \gamma$, then any $\beta \alpha$ with wider range does not necessary contain the 90% probability using the same p, hence not necessary quasiconvex. Now disprove quasiconvexity by an example. Suppose n = 3, $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, $p' = (p'_1, p'_2, p'_3) = (0.1, 0.2, 0.7)$, p'' = (0.7, 0.2, 0.1), f(p') = 1, f(p'') = 1. Given $\gamma = 1$, then both p' and p'' are in the sublevel set, but p''' = 0.5 * p' + 0.5 * p'' = (0.4, 0.2, 0.4) with f(p''') = 2 is not in the sublevel set, hence not quasiconvex. \blacksquare If p's satisfy $f(p) \geq \gamma$, then any $\beta \alpha$ with narrower range satisfies $\mathbf{prob}(\alpha \leq x \leq \beta) < 0.9$, which is quasiconcave. \blacksquare
- 3.25 Maximum probability distance between distributions.

$$d_{mp}(p,q) = \max\{|\mathbf{prob}(p,C) - \mathbf{prob}(q,C)| \mid C \subseteq \{1,\cdots,n\}\}$$
(8)

where the two probability vectors $p, q \in \mathbb{R}^n_+$, and $\mathbf{prob}(p, C) = \sum_{i \in C} p_i$.

- (a) Find an expression for d_{mp} involving $||p-q||_1 = \sum_{i=1}^n |p_i \overline{q_i}|$.
- (b) Show d_{mp} is convex on $\mathbb{R}^n \times \mathbb{R}^n$.

Proof

- (a) Suppose $C^+ = \{i \mid p_i \geq q_i, \}, C^- = \{i \mid p_i < q_i\}, i \in 1, \dots, n. \text{ Since } \mathbf{prob}(p, C^+) + \mathbf{prob}(p, C^-) = 1, \text{ then } \mathbf{prob}(p, C^+) + \mathbf{prob}(q, C^+) = 1 \mathbf{prob}(p, C^-) (1 \mathbf{prob}(q, C^-)) = -(\mathbf{prob}(p, C^-) \mathbf{prob}(q, C^-)$
- (b) Since $||p-q||_1^{C^+} = \sum_{i \in C^+} |p_i q_i| = 1^T p 1^T q$ is a linear function of the domain, hence convex. To make it even more simplified, notice that since $\sum_{i \in C^+} (p_i q_i) = -\sum_{i \in C^-} (p_i q_i)$, then $d_{mp}(p,q) = 1/2 \sum_{i \in C^+} (p_i q_i) + 1/2 \sum_{i \in C^+} (p_i q_i) = 1/2 \sum_{i \in C^+} (p_i q_i) 1/2 \sum_{i \in C^-} (p_i q_i) = 1/2 \sum_{i \in C^+} (p_i q_i) + 1/2 \sum_{i \in C^-} (q_i p_i) = 1/2 \sum_{i} |p_i q_i| = 1/2 ||p q||_1$. Maximum probability distance between distributions is $1/2 ||p q||_1$.

• 3.26 Functions of eigenvalues

Let $\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_n(X)$, where $X \in S^n$. Several convex or concave functions of the eigenvalues:

- Maximum (minimum) eigenvalue of a symmetric matrix is convex (concave). $f(X) = \lambda_{\max}(X) = \sup\{y^T X y \mid ||y||_2\}$. Given $y = y_1$, $f_{y_1}(X) = y_1^T X y_1$ is linear for all X. Given a point X, there are infinite numbers of linear functions indexed by unit vectors y, and f(X) is just finding the function that gives the maximum value. Hence it is a pointwise maximum of linear functions, which is convex.
- Sum of the eigenvalues (trace) is linear
- Sum of the inverses of the eigenvalues (trace of the inverse) is convex on S_{++}^n
- Geometric mean $(\det X)^{1/n}$, and the logorithm of the product of the eigenvalues $\log \det X$