

LOG2810 STRUCTURES DISCRÈTES

TD 4 : ENSEMBLES ET FONCTIONS

H2023

SOLUTIONNAIRE

Exercice1.

Dans chacun des cas, dites si f est une fonction de $\mathbb R$ dans $\mathbb R$ et expliquez brièvement pourquoi le domaine de définition de f n'est pas $\mathbb R$.

a)
$$f(x) = \frac{1}{x}$$

Réponse:

f est bien une fonction de \mathbb{R} dans \mathbb{R} , car à chaque élément de l'ensemble départ, on associe 0 ou 1 image. Cependant, le domaine de définition de f est \mathbb{R}^* , car x n'a pas d'image lorsque x est nulle.

b)
$$f(x) = \sqrt{x}$$

Réponse :

f est bien une fonction de $\mathbb R$ dans $\mathbb R$, car à chaque élément de l'ensemble départ, on associe 0 ou 1 image. Cependant, le domaine de définition de f est $\mathbb R^+$, car x n'est pas d'image lorsque x est négative.

c)
$$f(x) = \pm \sqrt{1 + x^2}$$

Réponse :

Ici, la fonction n'est pas bien définie, car on assigne plus d'une image à des éléments du domaine.

Exercice 2.

Soit G l'ensemble de notes de musique sous la notation solfège, défini comme $G = \{do, r\acute{e}, mi, fa, sol, la, si\}$ et une fonction $\psi : G \to G$.

Déterminez, dans chacun des cas suivants, si ψ telle que définie est une fonction, une fonction injective, une fonction surjective ou une fonction bijective. Justifiez votre réponse.

a) $\psi(do) = fa$, $\psi(r\acute{e}) = la$, $\psi(mi) = do$, $\psi(fa) = mi$, $\psi(sol) = sol$, $\psi(la) = si$, $\psi(si) = do$ Réponse :

- ψ est fonction, car au plus un élément du codomaine est affecté à chaque élément du domaine.
- ψ n'est pas injective, car $\psi(mi) = \psi(si) = do$, sauf que $mi \neq si$.
- ψ n'est pas surjective, car $r\acute{e}$ n'a pas d'antécédant.
- ψ n'est pas bijective, car elle n'est ni injective, ni surjective.

b) $\psi(do) = r\acute{e}$, $\psi(r\acute{e}) = fa$, $\psi(mi) = la$, $\psi(fa) = si$, $\psi(sol) = do$, $\psi(la) = sol$, $\psi(si) = mi$ Réponse :

- ψ est fonction, car au plus un élément du codomaine est affecté à chaque élément du domaine.
- ψ est injective, car chaque image a un antécédent distinct.
- ψ est surjective, car chaque image a un antécédent.
- ψ est bijective, car elle est à la fois injective et surjective.

c) $\psi(do) = r\acute{e}$, $\psi(r\acute{e}) = do$, $\psi(mi) = sol$, $\psi(sol) = mi$, $\psi(la) = si$, $\psi(si) = la$ Réponse :

- ψ est fonction, car au plus un élément du codomaine est affecté à chaque élément du domaine.
- ψ n'est pas injective, car fa n'a pas d'image.
- ψ n'est pas surjective, car fa n'a pas d'antécédant.
- ψ n'est pas bijective, car elle n'est pas surjective

d) $\psi(do) = mi$, $\psi(r\acute{e}) = sol$, $\psi(mi) = r\acute{e}$, $\psi(fa) = la$, $\psi(sol) = si$, $\psi(mi) = fa$, $\psi(si) = si$ Réponse :

• ψ n'est pas une fonction, car plus d'un élément du codomaine sont affectés à mi, notamment les deux images $r\acute{e}$ et fa.

Exercice 3.

Soit A, B, C et D quatre ensembles. Montrez que

Si
$$[(A \subseteq C) \land (B \subseteq D)]$$
, alors $[(A \times B) \subseteq (C \times D)]$

Réponse :

Soit $x \in A$ et $y \in B$.

Si $(A \subseteq C)$, alors $[(x \in A) \rightarrow (x \in C)]$.

Et si $(B \subseteq D)$, alors $[(y \in B) \rightarrow (y \in D)]$.

```
Donc, si [(A \subseteq C) \land (B \subseteq D)], alors [[(x \in A) \rightarrow (x \in C)] \land [(y \in B) \rightarrow (y \in D)]].
```

Et si $[(x \in A) \rightarrow (x \in C)] \land [(y \in B) \rightarrow (y \in D)]$, alors $[(x \in A \text{ et } y \in B) \rightarrow (x \in C \text{ et } y \in D)]$.

Et $[x \in A \text{ et } y \in B] \equiv (x,y) \in A \times B$.

Et $[x \in C \text{ et } y \in D] \equiv (x,y) \in C \times D$.

Donc, si $[(x \in A) \rightarrow (x \in C)] \land [(y \in B) \rightarrow (y \in D)]$, alors $[(x,y) \in A \times B] \rightarrow [(x,y) \in C \times D]]$.

Donc, si $[(A \subseteq C) \land (B \subseteq D)]$, alors $[(x,y) \in A \times B] \rightarrow [(x,y) \in C \times D]]$.

Et si $[(x,y) \in A \times B] \rightarrow [(x,y) \in C \times D]]$, alors $[(A \times B) \subseteq (C \times D)]$.

Ainsi, si $[(A \subseteq C) \land (B \subseteq D)]$, alors $[(A \times B) \subseteq (C \times D)]$.

CQFD

Alternativement,

Supposons que $[(A \subseteq C) \land (B \subseteq D)]$.

Soit E le complémentaire de A dans C et F le complémentaire de B dans D.

On a donc $C = A \cup E$ et $A \cap E = \emptyset$.

Et aussi, D = B U F et B \cap F = \emptyset .

Donc,
$$C \times D = (A \cup E) \times (B \cup F)$$

 $= [A \times (B \cup F)] \cup [E \times (B \cup F)]$

= $[(A \times B) \cup (A \times F)] \cup [(E \times B) \cup (E \times F)]$, car $B \cap F = \emptyset$

, car $A \cap E = \emptyset$

 $= (A \times B) \cup (A \times F) \cup (E \times B) \cup (E \times F)$

On en déduit que $(A \times B) \subseteq (C \times D)$.

Ainsi, si $[(A \subseteq C) \land (B \subseteq D)]$, alors $[(A \times B) \subseteq (C \times D)]$.

CQFD

Exercice 4.

Soit la fonction h

$$h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$h(x,y) = \begin{cases} x \cdot y, & x \leq y \\ x - y, & x > y \end{cases}$$

a) Déterminez si h telle que définie est injective. Justifiez votre réponse.

Réponse :

Non injective, car par exemple pour $(x_1,y_1) = (2,5)$ et $(x_2,y_2) = (1,10)$

$$x_1 \le y_1$$
, donc $h(x_1, y_1) = 2 \cdot 5 = 10$
et $x_2 \le y_2$, donc $h(x_2, y_2) = 1 \cdot 10 = 10$

Il existe donc deux éléments distincts (x_1,y_1) et (x_2,y_2) de $\mathbb{Z} \times \mathbb{Z}$ qui ont pour images $h(x_1,y_1)$, $h(x_2,y_2)$ de valeurs identiques. Ainsi, la fonction h n'est pas injective lorsque $x \leq y$.

Et par exemple pour $(x_1,y_1) = (20,10)$ et $(x_2,y_2) = (40,30)$

$$x_1 > y_1$$
, donc $h(x_1, y_1) = 20 - 10 = 10$
et $x_2 > y_2$, donc $h(x_2, y_2) = 40 - 30 = 10$

Il existe donc deux éléments distincts (x_1,y_1) et (x_2,y_2) de $\mathbb{Z} \times \mathbb{Z}$ qui ont pour images $h(x_1,y_1)$, $h(x_2,y_2)$ de valeurs identiques. Ainsi, la fonction h n'est pas injective lorsque x > y.

Ainsi, la fonction h n'est donc pas injective.

b) Déterminez si h telle que définie est surjective. Justifiez votre réponse.

Réponse :

Lorsque $x \leq y$,

$$\forall z \in \mathbb{Z}, \exists (x, y) \in \mathbb{Z} \times \mathbb{Z}, z = x \cdot y = h(x, y)$$

Pour z = 20, il est possible de trouver plusieurs couples (x,y) tel que z = x.y = h(x,y).

Par exemple, (1, 20), (2, 10) et (4, 5).

Donc, h est surjective lorsque $x \le y$.

Lorsque x > y,

$$\forall z \in \mathbb{Z}, \exists (x, y) \in \mathbb{Z} \times \mathbb{Z}, z = x - y = h(x, y)$$

Pour z = 5, il est possible de trouver plusieurs couples (x,y) tel que z = x - y = h(x,y).

Par exemple, (5, 0), (10, 5), (15, 10) et etc.

Donc, h est surjective lorsque x > y.

Ainsi, la fonction h est surjective.

Exercice 5.

Soit A et B deux ensembles. Montrez que

$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Réponse :

$$x \in (A - B) \cup (B - A) \qquad \Leftrightarrow [x \in (A - B)] \vee [x \in (B - A)]$$

$$\Leftrightarrow [x \in A \land x \notin B] \vee [x \in B \land x \notin A]$$

$$\Leftrightarrow [x \in A \lor (x \in B \land x \notin A)] \land [x \notin B \lor (x \in B \land x \notin A)]$$

$$\Leftrightarrow [(x \in A \lor x \in B) \land (x \in A \lor x \notin A)] \land [(x \notin B \lor x \in B) \land (x \notin B \lor x \notin A)]$$

$$\Leftrightarrow [x \in A \lor x \in B] \land [x \notin B \lor x \notin A]$$

$$\Leftrightarrow [x \in A \lor x \in B] \land [\neg x \in B \lor \neg x \in A]$$

$$\Leftrightarrow [x \in A \lor x \in B] \land \neg [x \in B \land x \in A]$$

$$\Leftrightarrow [x \in A \lor x \in B] \land \neg [x \in B \land x \in A]$$

$$\Leftrightarrow [x \in (A \cup B)] \land \neg [x \in (B \cap A)]$$

$$\Leftrightarrow x \in [(A \cup B) - (A \cap B)]$$
Ainsi, $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

Exercice 6.

CQFD

Montrez que

$$\overline{\left(A\cap\overline{B}\right)\cup\left(B\cap\overline{A}\right)}=\left(\overline{A}\cap\overline{B}\right)\cup\left(A\cap B\right)$$

Réponse :

CQFD

$$\overline{(A \cap \overline{B}) \cup (B \cap \overline{A})} = \overline{(A \cap \overline{B})} \cap \overline{(B \cap \overline{A})}
= \overline{(A \cup B)} \cap \overline{(B \cup A)}
= \overline{(\overline{A} \cap \overline{(B \cup A)})} \cup \overline{(B \cap \overline{(B \cup A)})}
= \overline{(\overline{A} \cap \overline{B})} \cup \overline{(\overline{A} \cap A)} \cup \overline{((B \cap \overline{B}))} \cup \overline{(B \cap A)}
= \overline{(\overline{A} \cap \overline{B})} \cup \overline{(B \cap A)}
= \overline{(\overline{A} \cap \overline{B})} \cup \overline{(A \cap B)}$$

Exercice 7.

Soit une suite géométrique d'intervalles musicaux $(V_n)_{n \in \mathbb{N}^*}$, où le premier terme est une quinte juste (3/2) et la raison est un quart de ton (16/15).

a) Trouvez les trois termes suivants de cette séquence.

Réponse:

Soit la formule générale d'une suite géométrique : $u_n = a \cdot r^n$ où a est le premier terme, r est la raison et n est l'indice du terme.

Nous avons donc la suite géométrique d'intervalles musicaux $(V_n)_{n\in\mathbb{N}^*}$ telle que $V_n=\frac{3}{2}\left(\frac{16}{15}\right)^n$

On peut donc trouver les trois termes suivants de la séquence.

- $2^{\text{ème}}$ terme : $V_2 = \frac{3}{2} \left(\frac{16}{15}\right)^2 = \frac{128}{75}$
- $3^{\text{ème}}$ terme : $V_3 = \frac{3}{2} \left(\frac{16}{15}\right)^3 = \frac{6144}{3375}$
- $4^{\text{ème}}$ terme : $V_4 = \frac{3}{2} \left(\frac{16}{15}\right)^4 = \frac{98\ 304}{50\ 625}$

Ainsi, les trois termes suivants sont $\frac{128}{75}$, $\frac{6144}{3375}$ et $\frac{98304}{50625}$

b) Calculez la somme des vingt premiers termes de $(V_n)_{n\in\mathbb{N}^*}$

Réponse:

Soit S_{20} la somme des vingt premiers termes de $(V_n)_{n\in\mathbb{N}^*}$

Donc,
$$S_{20} = V_1 + V_2 + \dots + V_{19} + V_{20}$$

$$=\sum_{k=1}^{20}V_k$$

$$=\sum_{k=1}^{20} \frac{3}{2} \left(\frac{16}{15}\right)^k$$

$$=\sum_{k=0}^{19} \frac{3}{2} \left(\frac{16}{15}\right)^{k+1}, par \ glissement \ d'indice$$

$$=\frac{16}{15} \cdot \frac{3}{2} \sum_{k=0}^{19} \left(\frac{16}{15}\right)^k$$

$$= \frac{8}{5} \cdot \left(\frac{1 - \left(\frac{16}{15}\right)^{20}}{1 - \left(\frac{16}{15}\right)} \right)$$