§1 Lecture 02-28

An action of G on X is a function

$$G \times X \to X$$

 $(g, x) \mapsto gx$

satisfying $1_G \cdot x = x$ and $g_1(g_2x) = (g_1g_2)x$.

Equivalently, an action of G on X is a homomorphism

$$\varphi: G \to S_x = perm(X)$$
$$\varphi \leadsto g \cdot x = \varphi(g)(x)$$
Action $G \times X \to X \leadsto \varphi(g)(x) = gx$

Terminology: A set X endowed with an action of G is called a G-set.

If X_1 and X_2 are two G-sets, a homomorphism $f:X_1\to X_2$ is a function satisfy $ing f(gx_1) = g \cdot f(x_1)$

If X_1 and X_2 are G-sets, so it $X_1 \sqcup X_2$.

Definition 1.1 (Transitive G-set). A G-set X is <u>transitive</u> if it cannot be expressed as a disjoin union of non-empty G-sets. If X is transitive, choose $x_0 \in X$.

$$Gx_0 = \{gx_0, \ g \in G\}$$

is called the <u>orbit</u> of x_0 under actions of G. Then $X = Gx_0, \forall x_0 \in X$. More generally,

$$\exists x_i, (i \in I) \ X = \sqcup_{i \in I} G_{x_i}$$

Example 1.2

X=G. $G\times X\to X$ is left multiplication. X is transitive. If $g\in G$, and $gx=x\forall x\in X\Rightarrow g=id$.

$$\varphi: G \hookrightarrow S_G$$

Cayley's theorem: Every G is a subgroup of S_n . So $G = S_n$, $\varphi : G \hookrightarrow S_{S_n} = S_{n!}$

Example 1.3

If H is a subgroup of G, then G/H is a G-set.

$$(g, aH) \rightsquigarrow gaH$$

$$\ker(G \to S_{G/H}) = \{g \in G \text{ such that } gaH = aH\}$$

$$gaH = aH, \ \forall a \in G$$

$$a^{-1}gaH = H, \ \forall a \in G$$

$$a^{-1}ga \in H, \ \forall a \in G$$

$$g \in aHa^{-1}, \ \forall a \in G$$

$$g \in \cup_{a \in G}aHa^{-1}$$

 $\ker(G \to S_{G/H})$ is the largest normal subgroup of G conained in H. In particular, if H contains no non-trivial normal subgroups, then $G \hookrightarrow S_{G/H}$ is injective.

Example 1.4

$$X = G, \ g * x = gxg^{-1}$$

$$1_G * x = 1x1^{-1} = x$$

$$(g_1g_2) * x = g_1g_2x(g_1g_2)^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = g_1(g_2 * x)g_1^{-1}$$

$$= g_1 * (g_2 * x)$$

$$G = S_3 = \{1, (12), (13), (23), (123), (132)\}$$
 Orbits: $\{1\}, \{(123), (132)\}, \{(12), (13), (23)\}$

Proposition 1.6

If X is a transitive G-set, then it is isomorphic to G/H for some subgroup H.

Proof. Let $x_0 \in X$. We know that $Gx_0 = X$. Consider the function

$$G \to X$$

$$g \mapsto gx_0$$

This function is a homomorphism of G-sets. It is surjective, by transitivity.

The map ζ is not injective in general. $\zeta^{-1}(x_0) = \text{the preimage of } x_0$ is

$$Stab_G(x_0) = G_{x_0} = \{g \in G \text{ such that } gx_0 = x_0\}$$

Set $H = G_{x_0}$. We defined $\overline{\zeta}: G/H \to X$ by $\overline{\zeta}(gH) = gx_0$.

Claim: $\overline{\zeta}$ is a bijection of G-sets.

1. $\overline{\zeta}$ is well-defined.

If
$$g_1H = g_2H$$
, then $g_2 = g_1h$, $h \in H$. $g_2x_0 = (g_1h)x_0 = g_1(hx_0) = g_1x_0$

- 2. $\overline{\zeta}$ is surjective \Leftarrow transitivity.
- 3. $\overline{\zeta}$ is injective.

$$\overline{\zeta}(g_1 H) = \overline{\zeta}(g_2 H) \Rightarrow g_1 x_0 = g_2 x_0 \Rightarrow g_2^{-1} g_1 x_0 = x_0$$
$$\Rightarrow g_2^{-1} g_1 \in H \Rightarrow g_1 H = g_2 H$$

Corollary 1.7

If G is finite, then any transitive G-set X is also finite, and

$$\#X = \frac{\#G}{\#Stab_G(x_0)}$$

Orbit stabiliser theorem.

Proof. $X \simeq G/Stab_G(x_0)$ as a G-set. Hence

$$\#X = \#(G/Stab_G(x_0)) = \frac{\#G}{\#Stab_G(x_0)}$$