Problem A1:

a) Gerschgorin's here tells us that eigenvalues of A must either satisfy | lamda - 2 | <= 1 (the sum of the absolute-values of the off-diagonals in the first/last row is 1 and the diagonal is 2), | lambda - 2 | <= 2 (the sum of the absolute-values of the off-diagonals in the rest of the rows is 2). So the eigenvalues are either in the interval [1, 3] or [0, 4], as our matrix is real and symmetric it must have only real eigenvalues.

b)

```
Editor - C:\Users\Nwhybra\Desktop\UW AMATH Masters\AMATH 584\HW\HW8\power_iteration.m
 pure_qr_no_shifts.m × test.m × RandOrthMat.m × power_iteration.m × inverse_iteration.m × +
         function max_eig = power_iteration(A, stop)
  2
             m = size(A, 1);
             v = rand(m, 1);
  3
  4
             v = v / norm(v, 2);
 5
 6
             error = inf;
 7 🗀
             while error > stop
 8
                 W = A * V;
                 V = W / norm(W, 2);
 9
10
                 max_eig = v.' * A * v;
11
                 error = norm(A*v - max_eig*v, 2);
12
             end
13
         end
```



```
Editor - C:\Users\Nwhybra\Desktop\UW AMATH Masters\AMATH 584\HW\HW8\pure_qr_no_shifts.m
pure_qr_no_shifts.m × test.m × RandOrthMat.m × power_iteration.m × inverse_iteration.m × +
 1 -
        function [B, Q] = pure_qr_no_shifts(A, stop)
 2
             B = A;
  3
             m = size(A, 1);
 4 -
             % A matrix with 1's on the off-diagonals and 0's on the diagonals.
             % Used to conveniently grab the matrix entries I want to compute the
  5
  6
             % error.
 7
             off_diagonal_mask = logical(ones(m, m) - eye(m));
  8
  9
             error = inf;
 10 -
             while error > stop
11
                 [Q, R] = qr(B);
 12
                 B = R * Q;
13
                 % Here the error is the maximum of the off-diagonal entries.
                 error = sum(max(abs(B(off_diagonal_mask))));
 14
 15
             end
 16
        end
```

	1	2	3	4	5	6	7	8	9	10
1	3.9190	-9.5441e-13	2.5982e-16	-1.8796e-16	-2.8892e-16	-1.3452e-16	-2.5568e-16	-2.5253e-17	5.7313e-17	1.8443e-17
2	-9.5467e-13	3.6825	1.2341e-16	1.5202e-16	-1.4776e-16	-2.1867e-16	7.2846e-17	-1.3462e-16	-8.3503e-17	1.9793e-16
3	0	-1.2700e-20	3.3097	1.3249e-16	1.5238e-16	1.5350e-16	5.3961e-18	1.5278e-16	-2.8109e-17	-4.7965e-16
4	0	0	-1.1176e-29	2.8308	2.7220e-16	2.9658e-16	1.3209e-16	-1.7298e-16	-1.7246e-16	1.9614e-16
5	0	0	0	-1.8971e-40	2.2846	5.9651e-17	2.5885e-16	3.2062e-16	3.1835e-16	1.4064e-16
6	0	0	0	0	-5.8826e-54	1.7154	-5.9967e-17	2.4485e-16	1.4407e-16	1.3595e-17
7	0	0	0	0	0	-3.7753e-72	1.1692	1.5039e-17	8.4684e-17	1.7691e-16
8	0	0	0	0	0	0	-3.2122e-99	0.6903	1.4902e-17	-2.3424e-16
9	0	0	0	0	0	0	0	-2.6214e-1	0.3175	2.0518e-16
10	0	0	0	0	0	0	0	0	-2.5458e-2	0.0810

```
Editor - C:\Users\Nwhybra\Desktop\UW AMATH Masters\AMATH 584\HW\HW8\inverse_iteration.m
 pure_qr_no_shifts.m × test.m × RandOrthMat.m × power_iteration.m × inverse_iteration.m × +
 1 -
         function eigen_vector = inverse_iteration(A, lambda, stop)
 2
             m = size(A, 1);
 3
             v = rand(m, 1);
 4
             v = v / norm(v, 2);
 5
 6
             error = inf;
 7
             I = eye(m);
 8 -
             while error > stop
                  W = (A - lambda * I) \setminus V;
 9
                 v = w / norm(w, 2);
10
11
                  error = norm(A * v - lambda * v, 2);
12
             end
13
14
             eigen_vector = v;
15
        end
```

	10x1 double	
	1	
1	-0.4221	
2	0.1201	
3	0.3879	
4	-0.2305	
5	-0.3223	
6	0.3223	
7	0.2305	
8	-0.3879	
9	-0.1201	
10	0.4221	
11		

Full test script:

```
☑ Editor - C:\Users\Nwhybra\Desktop\UW AMATH Masters\AMATH 584\HW\HW8\test.m
   pure_qr_no_shifts.m X test.m X RandOrthMat.m X power_iteration.m X inverse_iteration.m X +
   1
            % Construct the matrix A.
   2
             m = 10;
   3
            v = ones(10, 1);
   4
            A = diag(2 * v, 0) + diag(-1 * v(1:m-1), -1) + diag(-1 * v(1:m-1), 1);
   5
   6
            % Computing eigen-values to check my work.
   7
            lambs = eigs(A);
   8
   9
            % Part (b).
            max_eig = power_iteration(A, 1e-6);
  10
  11
  12
            % Part (c).
  13
            D = pure_qr_no_shifts(A, 1e-12);
  14
  15
            % Part(d).
            fifth_eig = D(5, 5);
  16
  17
            eigen_vector_5 = inverse_iteration(A, fifth_eig, 1e-8);
             error = norm(A * eigen_vector_5 - fifth_eig * eigen_vector_5, 2);
  18
  19
```