Ir	hal	tsverzeichnis				4.5.2 Einfeldbalken	
1	Z 119	und Druck in Stäben	2			4.5.3 Balken mit mehreren Feldern 4.5.4 Superposition	
_	1.1	Spannung	2		4.6	Einfluss des Schubes	
	1.2	Dehnung	2		4.0	4.6.1 Schubspannungen	
	1.3	Stoffgesetz	3			4.6.2 Durchbiegung infolge Schub	
	1.4	Einzelstab	3		4.7		
	1.5	Statisch bestimmte Stabsysteme	4		4.7	Schiefe Biegung	
	1.6	Statisch unbestimmte Stabsysteme	4			Biegung und Zug/Druck	
	1.7	Zusammenfassung	4		4.9	Kern des Querschnitts	
	1.1	Zusammemassung	-			Temperaturbelastung	
2	Spa	nnungszustand	4		4.11	Zusammenfassung	14
	2.1	Spannungvektor und Spannungtensor	4	5	Tors	sion	14
	2.2	Ebener Spannungszustand	4	J	5.1	Einführung	
		2.2.1 Koordinatentransformation	4		5.2	Die kreiszylindrische Welle	
		2.2.2 Hauptspannungen	5		5.3	Dünnwandige geschlossene Profile	
	2.3	Mohrscher Spannungkreis	5		5.4	Dünnwandige offene Profile	
		2.3.1 Dünnwandiger Kessel	5		5.5	Zusammenfassung	
	2.4	Gleichgewichtsbedingungen	6		0.0	Zusummemassung	10
	2.5	Zusammenfassung	6	6	\mathbf{Der}	Arbeitsbegriff in der Elastostatik	16
		G			6.1		16
3	Ver	zerrungszustand, Elastizitätsgesetze	6		6.2	Arbeitssatz und Formänderungsenergie	16
	3.1	Verzerrungszustand	6		6.3		16
	3.2	Elastizitätsgesetz	7		6.4	Einflusszahlen und Vertauschungssätze	16
	3.3	Festigkeitshypothesen	7		6.5	Anwendung des Arbeitssatzes auf statisch	
	3.4	Zusammenfassung	8			unbestimmte Systeme	16
					6.6	Zusammenfassung	
4		kenbiegung	8				
	4.1	Einführung	8	7	Kni	ckung	16
	4.2	Flächenträgheitsmomente	8		7.1	Verzweigung einer Gleichgewichtslage	16
		4.2.1 Definition	8		7.2	Der Euler-Stab	16
		4.2.2 Parallelverschiebung der Be-			7.3	Zusammenfassung	16
		zugsachsen	8				
		4.2.3 Drehung des Bezugssystems,		8		•	16
		Hauptträgheitsmomente	9		8.1	Einleitung	
	4.3	Grundgleichungen der geraden Biegung	9		8.2	Zug und Druck in Stäben	
	4.4	Normalspannungen	10		8.3	Reine Biegung	
	4.5	Biegelinie	10		8.4	Biegung und Zug/Druck	
		4.5.1 Differentialgleichung der Biegelinie.	10		8.5	Zusammenfassung	16

2019–11–19 Joshua

(1.3)

1 Zug und Druck in Stäben

1.1 Spannung

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{N}{N}}_{\text{Fläche}[mm^2]}$$
(1.1)

$$\underbrace{\sigma}_{\text{Spannung}\left[\frac{N}{mm^2}\right]} = \underbrace{\frac{F}{A}}_{\text{Fläche}[mm^2]}$$
(1.2)

Normalspannung in einem Schnitt Senkrecht zur Stabachse $\sigma = \frac{\overbrace{\sigma_0}^{\text{Normalspannung}}}{2} \left(1 + \cos 2\varphi\right), \tau = \frac{\sigma_0}{2} \left(\sin 2\varphi\right)$

$$\sigma(x) = \frac{N(x)}{A(x)} \tag{1.4}$$

$$A_{\text{erf}} = \frac{|N|}{\sigma_{\text{zul}}} \tag{1.5}$$

1.2 Dehnung

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]} = \underbrace{\frac{\Delta \ell}{\ell_0}}_{\substack{\text{Ursprüngliche} \\ \text{Länge } [m]}} = \underbrace{\ell - \ell_0}_{\ell_0} \tag{1.6}$$

Örtliche (lokale Dehnung)

$$\varepsilon(x) = \frac{\mathrm{d}u}{\mathrm{d}x} \tag{1.7}$$

2019 – 11 – 19

1.3 Stoffgesetz

Hooke'sches Gesetz

$$\underbrace{E}_{\text{Elastizitätsmodul}} = \underbrace{\frac{\varepsilon}{\sigma}}_{\text{Dehnung}[1]}$$

$$\underbrace{E}_{\text{Dehnung}[1]}$$

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]}$$

$$\underbrace{\varepsilon}_{\text{Dehnung}[1]}$$

Umgestellt nach Sigma, übliche Form:

$$\sigma = E\varepsilon = \frac{\Delta\ell}{\ell_0}E$$

$$\underbrace{\varepsilon}_{\text{Dehnung[1]}} = \frac{\sigma}{E} \tag{1.9}$$

$$\underbrace{\varepsilon_{T}}_{\text{Wärmedehnung[1]}} = \underbrace{\alpha}_{\text{Thermischer Aus-}\atop \text{dehnungskoeffizient}} \cdot \underbrace{\Delta T}_{\text{Temperaturänderung[°C]}\atop \text{dehnungskoeffizient}}$$

$$\underbrace{(1.10)}_{[1/°C]}$$

$$\varepsilon = \frac{\sigma}{E} + \alpha_T \Delta T \tag{1.11}$$

$$\sigma = E\left(\varepsilon - \alpha_T \Delta T\right) \tag{1.12}$$

1.4 Einzelstab

$$\frac{\mathrm{d}N}{\mathrm{d}x} + \underbrace{n}_{\text{Linienkraft}} = 0 \tag{1.13}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{N}{EA} + \alpha_T \Delta T \tag{1.14}$$

$$\Delta \ell = u(l) - u(0) = \int_0^\ell \varepsilon dx$$
(1.15)

$$\Delta \ell = \int_0^\ell \left(\frac{N}{EA} + \alpha_T \Delta T \right) dx$$
 (1.16)

$$\Delta \ell = \frac{F\ell}{EA} + \alpha_T \Delta T \ell \tag{1.17}$$

Für $\Delta T = 0$

$$\Delta \ell = \frac{F\ell}{EA} \tag{1.18}$$

Oder F = 0

$$\Delta \ell = \alpha_T \Delta T \ell \tag{1.19}$$

$$(EAu')' = -n + (EA\alpha_t \Delta T)'$$
(1.20a)

Sei in 1.20a EA = const und $\Delta T = const$

$$EAu'' = -n \tag{1.20b}$$

2019 - 11 - 19

1.5 Statisch bestimmte Stabsysteme

$$u = |\Delta \ell_1| = \frac{F\ell}{EA} \frac{1}{\tan \alpha},$$

$$v = \frac{\Delta \ell_2}{\sin \alpha} + \frac{u}{\tan \alpha} = \frac{F\ell}{EA} \frac{1 + \cos^3 \alpha}{\sin^2 \alpha \cos \alpha}$$
(1.21)

1.6 Statisch unbestimmte Stabsysteme

1.7 Zusammenfassung

2 Spannungszustand

2.1 Spannungvektor und Spannungtensor

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$
 (2.1)

$$| \mathbf{t} = \tau_{yx} \mathbf{e}_x + \sigma_y \mathbf{e}_y + \tau_{yz} \mathbf{e}_z |$$
 (2.2)

$$\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx}, \tau_{yz} = \tau_{zy}$$

$$(2.3)$$

$$\begin{vmatrix}
\boldsymbol{\sigma} = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z
\end{bmatrix} = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z
\end{bmatrix}$$
(2.4)

2.2 Ebener Spannungszustand

2.2.1 Koordinatentransformation

$$\sigma_{\xi} = \sigma_{x} \cos^{2} \varphi + \sigma_{y} \sin^{2} \varphi + 2\tau_{xy} \sin \varphi \cos \varphi$$

$$\tau_{\xi\eta} = -(\sigma_{x} - \sigma_{y}) \sin \varphi \cos \varphi + \tau_{xy} (\cos^{2} \varphi - \sin^{2} \varphi)$$
(2.5a)

$$\sigma_{\eta} = \sigma_x \sin^2 \varphi + \sigma_y \cos^2 \varphi - 2\tau_{xy} \cos \varphi \sin \varphi$$
(2.5b)

$$\sigma_{\xi} = \frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\sigma_{\eta} = \frac{1}{2}(\sigma_x + \sigma_y) - \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\sin 2\varphi,$$

$$\tau_{\xi\eta} = - \frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi,$$
(2.6)

$$\sigma_{\xi} + \sigma_{\eta} = \sigma_x + \sigma_y \tag{2.7}$$

2019–11–19 Joshua

2.2.2 Hauptspannungen

$$\tan 2\varphi^* = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \tag{2.8}$$

$$\cos 2\varphi^* = \frac{1}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{\sigma_x - \sigma_y}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$

$$\sin 2\varphi^* = \frac{\tan 2\varphi^*}{\sqrt{1 + \tan^2 2\varphi^*}} = \frac{2\tau_{xy}}{\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}}$$
(2.9)

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(2.10)

$$\tan 2\varphi^{**} = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} \tag{2.11}$$

$$\tau_{\text{max}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 (2.12a)

$$\tau_{\text{max}} = \pm \frac{1}{2} (\sigma_1 - \sigma_2) \tag{2.12b}$$

$$\sigma_M = \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_1 + \sigma_2)$$
(2.13)

2.3 Mohrscher Spannungkreis

$$\sigma_{\xi} - \frac{1}{2}(\sigma_x + \sigma_y) = \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\varphi + \tau_{xy}\cos 2\varphi$$

$$\tau_{\xi\eta} = -\frac{1}{2}(\sigma_x - \sigma_y)\sin 2\varphi + \tau_{xy}\cos 2\varphi$$
(2.14)

$$\left| \left[\sigma_{\xi} - \frac{1}{2} (\sigma_x + \sigma_y) \right]^2 + \tau_{\xi\eta}^2 = \left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2 \right|$$
 (2.15)

$$\left[\left(\sigma - \sigma_M \right)^2 + \tau^2 = r^2 \right] \tag{2.16}$$

$$r^{2} = \frac{1}{4} \left[(\sigma_{x} + \sigma_{y})^{2} - 4(\sigma_{x}\sigma_{y} - \tau_{xy}^{2}) \right]$$
(2.17)

2.3.1 Dünnwandiger Kessel

$$\sigma_x = \frac{1}{2} p \frac{r}{t} \tag{2.18}$$

$$\sigma_{\varphi} = p \frac{r}{t} \tag{2.19}$$

$$\sigma_t = \sigma_\varphi = \frac{1}{2} p \frac{r}{t} \tag{2.20}$$

2019-11-19

2.4 Gleichgewichtsbedingungen

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + f_x = 0$$
 (2.21a)

$$\boxed{\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + f_y = 0}$$
(2.21b)

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_x = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_y = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + f_z = 0$$
(2.22)

2.5 Zusammenfassung

3 Verzerrungszustand, Elastizitätsgesetze

3.1 Verzerrungszustand

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}$$
(3.1)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
 (3.2)

$$\tan 2\varphi^* = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} \tag{3.4}$$

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right) + \left(\frac{1}{2}\gamma_{xy}\right)}$$
 (3.5)

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \varepsilon_z = \frac{\partial w}{\partial z},$$
(3.6a)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y},$$
(3.6b)

$$\begin{bmatrix}
\varepsilon_{x} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{y} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{z}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{x} & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\
\frac{1}{2}\gamma_{xy} & \varepsilon_{x} & \frac{1}{2}\gamma_{yz} \\
\frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & \varepsilon_{z}
\end{bmatrix}$$
(3.7)

2019–11–19 Joshua

Joshua

3.2 Elastizitätsgesetz

$$\varepsilon_y = -\nu \varepsilon_x \tag{3.8}$$

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y), \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x)$$
(3.9)

$$\tau_{xy} = G\gamma_{xy} \tag{3.10}$$

$$G = \frac{E}{2(1+\eta)} \tag{3.11}$$

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y})$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x})$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$
(3.12a)

$$\sigma_{x} = \frac{E}{1 - \nu^{2}} (\varepsilon_{x} + \nu \varepsilon_{y})$$

$$\sigma_{y} = \frac{E}{1 - \nu^{2}} (\varepsilon_{y} - \nu \varepsilon_{x})$$

$$\tau_{xy} = G \gamma_{xy}$$
(3.12b)

$$\tau_{xy} = G\gamma_{xy}$$

$$\varepsilon_1 = \frac{1}{E}(\sigma_1 - \nu\sigma_2), \quad \varepsilon_2 = \frac{1}{E}(\sigma_2 - \nu\sigma_1)$$
(3.13)

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{z} + \sigma_{x} \right) \right] + \alpha_{T} \Delta T$$

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right] + \alpha_{T} \Delta T$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \quad \gamma_{xz} = \frac{1}{G} \tau_{xz}, \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$(3.14)$$

3.3 Festigkeitshypothesen

$$\sigma_V \le \sigma_{zul} \tag{3.15}$$

$$|\sigma_V = \sigma_1| \tag{3.16}$$

$$\sigma_V = \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}$$
(3.17)

$$\sigma_V = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$
(3.18)

2019-11-19

3.4 Zusammenfassung

4 Balkenbiegung

4.1 Einführung

$$\sigma(z) = cz \tag{4.1}$$

$$M = \int z\sigma \, \mathrm{d}A$$
 (4.2)

$$I = \int z^2 \, \mathrm{d}A \tag{4.3}$$

$$\sigma = \frac{M}{I}z \tag{4.4}$$

4.2 Flächenträgheitsmomente

4.2.1 Definition

$$S_y = \int z dA, \quad S_z = \int y dA$$
(4.5)

$$I_y = \int z^2 dA, \quad I_z = \int y^2 dA$$
(4.6a)

$$I_{yz} = I_{zy} = -\int yz \, \mathrm{d}A \tag{4.6b}$$

$$I_p = \int r^2 dA = \int (z^2 + y^2) dA = I_y + I_z$$
 (4.6c)

$$i = seltsameWurzel;$$
da bin ich jetzt zu faul (4.7)

4.2.2 Parallelverschiebung der Bezugsachsen

$$\begin{bmatrix}
I_{\bar{y}} = I_y + \bar{z}_s^2 A \\
I_{\bar{z}} = I_z + \bar{y}_s^2 A \\
I_{\bar{y}\bar{z}} = I_{yz} - \bar{y}_s \bar{z}_s A
\end{bmatrix} \tag{4.13}$$

4.2.3 Drehung des Bezugssystems, Hauptträgheitsmomente

$$I_{\eta} = \frac{1}{2} (I_{y} + I_{z}) + \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi + I_{yz} \sin 2\varphi$$

$$I_{\zeta} = \frac{1}{2} (I_{y} - I_{z}) - \frac{1}{2} (I_{y} - I_{z}) \cos 2\varphi - I_{yz} \sin 2\varphi$$

$$I_{\eta\zeta} = -\frac{1}{2} (I_{y} - I_{z}) \sin 2\varphi + I_{yz} \cos 2\varphi$$

$$(4.14)$$

$$\boxed{I_{\eta} + I_{\zeta} = I_y + I_z = I_p} \tag{4.15}$$

$$\left| \tan 2\varphi^* = \frac{2I_{yz}}{I_y - I_z} \right|$$
(4.16)

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$
(4.17)

4.3 Grundgleichungen der geraden Biegung

$$M = \int z\sigma \,\mathrm{d}A \tag{4.19a}$$

$$Q = \int \tau \, \mathrm{d}A$$
 (4.19b)

$$N = \int \sigma \, \mathrm{d}A$$
 (4.19c)

$$\varepsilon = \frac{\partial u}{\partial x} \tag{4.20}$$

$$\sigma = E \varepsilon, \quad \tau = G \gamma \tag{4.21}$$

$$\omega = \omega(x) \tag{4.22a}$$

$$u(x,z) = \psi(x)z \tag{4.22b}$$

$$\sigma = E \frac{\partial u}{\partial x} = E \psi' z \tag{4.23a}$$

$$\tau = G\left(\frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z}\right) = G(\omega' + \psi)$$
(4.23b)

$$M = EI\psi' \tag{4.24}$$

$$Q = \varkappa GA(\omega' + \psi) \tag{4.25}$$

2019-11-19

4.4 Normalspannungen

$$\sigma = \frac{M}{I}z \tag{4.26}$$

$$W = \frac{I}{|z|_{\text{max}}} \tag{4.27}$$

Aber hier mit subscript, also $W_{\text{Achse}} = \frac{I_{\text{Achse}}}{|\text{andere Achse}|_{\text{max}}}$

$$\sigma_{\text{max}} = \frac{|M|}{W} \tag{4.28}$$

4.5 Biegelinie

4.5.1 Differentialgleichung der Biegelinie

$$\omega' + \psi = 0 \tag{4.29}$$

$$Q' = -q, \quad M' = Q, \quad \psi' = \frac{M}{EI}, \quad \omega' = -\psi$$
(4.30)

$$\omega'' = -\frac{M}{EI} \tag{4.31}$$

$$\varkappa_B = \frac{\omega''}{(1 + \omega'^2)^{3/2}} \tag{4.32a}$$

$$\varkappa_B \approx \omega''$$
(4.32b)

$$Q = -(EI\omega'')' \tag{4.33}$$

$$(EI\omega'')'' = q \tag{4.34a}$$

$$EI\omega^{IV} = q \tag{4.34b}$$

- 4.5.2 Einfeldbalken
- 4.5.3 Balken mit mehreren Feldern
- 4.5.4 Superposition
- 4.6 Einfluss des Schubes
- 4.6.1 Schubspannungen

$$\frac{\partial \sigma}{\partial x} = \frac{Q}{I} \zeta \tag{4.35}$$

4.6.2 Durchbiegung infolge Schub

4.7 Schiefe Biegung

da bin ich jetzt zu faul	(4.45)
--------------------------	--------

4.8 Biegung und Zug/Druck

da bin ich jetzt zu faul	(4.54b)
--------------------------	---------

4.9 Kern des Querschnitts

da bin ich	jetzt zu faul	(4.55))

da bin ich jetzt zu faul (4.56)

da bin ich jetzt zu faul (4.57)

4.10 Temperaturbelastung

da bin ich jetzt zu faul	(4.58)
da bin ich jetzt zu faul	(4.59)
da bin ich jetzt zu faul	(4.60)
da bin ich jetzt zu faul	(4.61)
da bin ich jetzt zu faul	(4.62)
da bin ich jetzt zu faul	(4.63)
da bin ich jetzt zu faul	(4.64)
da bin ich jetzt zu faul	(4.65)

4.11 Zusammenfassung

5 Torsion

5.1 Einführung

5.2 Die kreiszylindrische Welle

2	Die kreiszylindrische Welle		
		da bin ich jetzt zu faul	(5.1)
		da bin ich jetzt zu faul	(5.2)
		da bin ich jetzt zu faul	(5.3)
		da bin ich jetzt zu faul	(5.4)
		da bin ich jetzt zu faul	(5.5)
		da bin ich jetzt zu faul	(5.6)
		da bin ich jetzt zu faul	(5.7)
		da bin ich jetzt zu faul	(5.8)
		da bin ich jetzt zu faul	(5.9)
		da bin ich jetzt zu faul	(5.10)
		da bin ich jetzt zu faul	(5.11)
		da bin ich jetzt zu faul	(5.12)
		da bin ich jetzt zu faul	(5.13)
		da bin ich jetzt zu faul	(5.14)
		3	(-)

5.3 Dünnwandige geschlossene Profile

Dünnwandige offene Profile

da bin ich jetzt zu faul	(5.15)
da bin ich jetzt zu faul	(5.16)
da bin ich jetzt zu faul	(5.17)
da bin ich jetzt zu faul	(5.18)
da bin ich jetzt zu faul	(5.19)
da bin ich jetzt zu faul	(5.20)
da bin ich jetzt zu faul	(5.21)
da bin ich jetzt zu faul	(5.22)
da bin ich jetzt zu faul	(5.23)
da bin ich jetzt zu faul	(5.24)
da bin ich jetzt zu faul	(5.25)
da bin ich jetzt zu faul	(5.26)
da bin ich jetzt zu faul	(5.27)
da bin ich jetzt zu faul	(5.28)
da bin ich jetzt zu faul	(5.29)
da bin ich jetzt zu faul	(5.30)
da bin ich jetzt zu faul	(5.31)
da bin ich jetzt zu faul	(5.32)
da bin ich jetzt zu faul	(5.33)
da bin ich jetzt zu faul	(5.34)

Joshua

5.5 Zusammenfassung

6 Der Arbeitsbegriff in der Elastostatik

- 6.1 Einleitung
- 6.2 Arbeitssatz und Formänderungsenergie
- 6.3 Das Prinzip der virtuellen Kräfte
- 6.4 Einflusszahlen und Vertauschungssätze
- 6.5 Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme
- 6.6 Zusammenfassung

7 Knickung

- 7.1 Verzweigung einer Gleichgewichtslage
- 7.2 Der Euler-Stab
- 7.3 Zusammenfassung
- 8 Verbundquerschnitte
- 8.1 Einleitung
- 8.2 Zug und Druck in Stäben
- 8.3 Reine Biegung
- 8.4 Biegung und Zug/Druck
- 8.5 Zusammenfassung

2019–11–19