

AUTOMOTIVE MOSFET

IRF2804 IRF2804S IRF2804L

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	280	А	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	200	ı	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	75	,	
I _{DM}	Pulsed Drain Current ①	1080	0	
P _D @T _C = 25°C	Maximum Power Dissipation	330	W	
	Linear Derating Factor	2.2	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	670	mJ	
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ②	1160		
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α	
E _{AR}	Repetitive Avalanche Energy ®		mJ	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
_	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		
$R_{\theta JA}$	Junction-to-Ambient		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state)®		40	

HEXFET® is a registered trademark of International Rectifier. www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.031		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)} SMD	Static Drain-to-Source On-Resistance		1.5	2.0	mΩ	V _{GS} = 10V, I _D = 75A ⊕
R _{DS(on)} TO-220	Static Drain-to-Source On-Resistance		1.8	2.3	1	V _{GS} = 10V, I _D = 75A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Transconductance	130			S	$V_{DS} = 10V, I_{D} = 75A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	V _{DS} = 40V, V _{GS} = 0V
				250	1	V _{DS} = 40V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	1	V _{GS} = -20V
Qg	Total Gate Charge		160	240	nC	I _D = 75A
Q _{gs}	Gate-to-Source Charge		41	62	1	$V_{DS} = 32V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		66	99	1	V _{GS} = 10V ⊕
t _{d(on)}	Turn-On Delay Time		13		ns	$V_{DD} = 20V$
t _r	Rise Time		120		1	$I_D = 75A$
t _{d(off)}	Turn-Off Delay Time		130		1	$R_G = 2.5\Omega$
t _f	Fall Time		130		Ī	V _{GS} = 10V ⊕
L _D	Internal Drain Inductance		4.5		nΗ	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5		Ī	from package
						and center of die contact
C _{iss}	Input Capacitance		6450		pF	$V_{GS} = 0V$
Coss	Output Capacitance		1690		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		840			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5350		1	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		1520		1	$V_{GS} = 0V$, $V_{DS} = 32V$, $f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		2210		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			280		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			1080		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 75A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		56	84	ns	$T_J = 25$ °C, $I_F = 75$ A, $V_{DD} = 20$ V
Q _{rr}	Reverse Recovery Charge		67	100	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L=0.24mH, $R_G = 25\Omega$, $I_{AS} = 75A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\label{eq:loss_spin_spin} \begin{tabular}{ll} \Im & I_{SD} \leq 75A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 175^{\circ}C. \end{tabular}$
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- 6 Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

20 I_D= 75A V_{DS}= 32V V_{GS}, Gate-to-Source Voltage (V) 16 VDS= 20V VDS= 8.0V 12 8 0 0 120 160 200 240 Q_G Total Gate Charge (nC)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

OPERATION IN THIS AREA

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4 www.irf.com

10000

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

 $D = Duty cycle in avalanche = t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D\;(ave)} = 1/2\;(\;1.3\text{-BV}\cdot I_{av}) &= \triangle T/\;Z_{thJC}\\ I_{av} = 2\triangle T/\;[1.3\text{-BV}\cdot Z_{th}]\\ E_{AS\;(AR)} &= P_{D\;(ave)}\cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M

INTERNATIONAL PART NUMBER RECTIFIER IRF1010 LOGO **I©R** 9246 9B 1M DATE CODE **ASSEMBLY** (YYWW) LOT CODE YY = YEARWW = WEEK

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

NOTES

4

4

3

.190

.115

.039

.035

.055

.025

.055

.029

.380

.420

.555

.146

.065

IGBT

2- COLLECTOR

3- EMITTER

1- GATE

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

ппп

5. CONTROLLING DIMENSION: INCH.

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR's Web site.

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 08/03

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/