Persuasion with Verifiable Information

BY

Maria (Masha) Titova

VANDERBILT UNIVERSITY

September 29, 2022

INTRODUCTION

- ▶ persuasion games with verifiable information
 - privately informed sender
 - · wants receiver to approve his proposal
 - sends verifiable messages
 - uninformed receiver who chooses choosing between
 - approving and rejecting proposal
- many applications
 - prosecutor convinces judge to convict, selects evidence
 - ♦ politician convinces voter to elect him, chooses campaign promises
 - ♦ job market candidate convinces employer to offer job, lists qualifications

PREVIEW OF RESULTS

- persuasion games with verifiable information
 - direct implementation: can restrict attention to direct equilibria
 - sender tells receiver what to do
 - ranking of equilibrium outcomes (ex-ante utility of sender):
 - worst: equivalent to full disclosure
 - best: commitment outcome (Kamenica and Gentzkow, 2011)

MOTIVATING EXAMPLE: PROSECUTOR AND JUDGE

- \triangleright prosecutor knows that defendant committed $\theta \in \{0,1,2\}$ violations
 - possesses hard inculpatory evidence for each violation
 - communicates with judge by presenting evidence
 - ♦ wants to convince judge to convict
- ▶ judge thinks each $\theta \in \{0, 1, 2\}$ is equally likely
 - \diamond wants to convict if $\theta = 2$
 - \diamond net payoff from conviction is 1 id $\theta = 2$ and -1 otherwise

MOTIVATING EXAMPLE: SENDER-WORST EQUILIBRIUM

one equilibrium:

- ▶ prosecutor presents all the evidence he has
- ▶ when judge sees
 - \diamond 2 pieces of evidence $\rightarrow \theta$ must be 2
 - \diamond 1 piece of evidence $\rightarrow \theta$ could be 1 or 2 $\rightarrow \theta$ must be 1
 - \diamond 0 pieces of evidence $\rightarrow \theta$ must be 0
- ▶ outcome: defendants with 2 violations are convicted, rest acquitted
 - \diamond ex-ante probability of conviction is 1/3

MOTIVATING EXAMPLE: SENDER-PREFERRED EQUILIBRIUM

another equilibrium:

- ▶ prosecutor presents 1 piece of evidence whenever $\theta \geq 1$
- ▶ when judge sees
 - \diamond 2 pieces of evidence $\rightarrow \theta$ must be 2 (this is off path / never happens)
 - \diamond 1 piece of evidence $\rightarrow \theta$ could be 1 or 2
 - $\theta = 1$ with prob. 1/2 and $\theta = 2$ with prob. 1/2
 - net payoff from conviction is 0, on average
 - judge convicts
- ▶ <u>outcome</u>: defendants with 1 and 2 violations are convicted
 - \diamond ex-ante probability of conviction is 2/3
 - ♦ happens to also be a *commitment outcome*

LITERATURE

communication:

- ♦ Milgrom (1981) and Grossman (1981); Kamenica and Gentzkow (2011): Crawford and Sobel (1982); Spence (1973); Lipnowski and Ravid (2020) my contribution: sender reaches commitment outcome with evidence
- mechanisms with evidence:
- ♦ Glazer and Rubinstein (2004, 2006); Sher (2011); Hart, Kremer, and Perry (2017); Ben-Porath, Dekel, and Lipman (2019)
 - my contribution: upper bound of sender's equilibrium payoff is solution to optimal information design problem
- applied Bayesian persuasion:
- (2015); Romanyuk and Smolin (2019); Alonso and Câmara (2016); Bardhi and Guo (2018); Gehlbach and Sonin (2014); Egorov and Sonin (2019)

my contribution: sender has commitment \rightarrow sender's messages are verifiable

♦ Kolotilin (2015); Ostrovsky and Schwarz (2010); Boleslavsky and Cotton

MODEL SETUP

$$\Theta := \left\{0, \frac{1}{T}, \dots, \frac{T-1}{T}, 1\right\} - \underline{\text{state space}}$$
if $T = \infty$, then $\Theta = [0, 1]$ is $rich$

- ▶ sender (he/him)
 - \diamond privately observes state of the world $\theta \in \Theta$
 - θ drawn from common prior $\mu_0 \in \Delta\Theta$ with full support
 - ♦ gets 1 if receiver approves, 0 otherwise
 - state-independent preferences
 - \diamond sends verifiable message $m \in M := \mathcal{B}(\Theta)$ to receiver
 - message m is verifiable in state θ if $\theta \in m$

MODEL SETUP

- ► receiver (she/her)
 - \diamond net payoff from approval is $\delta(\theta)$
 - she approves in state θ if only if $\delta(\theta) \geq 0$
 - her complete-information approval set is

$$A := \{ \theta \in \Theta \mid \delta(\theta) \ge 0 \}$$

- ♦ I assume that
 - δ is integrable
 - receiver's approval set has positive prior measure: $\int\limits_{A}\delta(\theta)d\mu_{0}(\theta)>0$
 - receiver rejects under prior: $\int\limits_{\Omega} \delta(\theta) d\mu_0(\theta) < 0$

EXAMPLE: CHALLENGER AND VOTER

- \triangleright state space: [0,1], range of policies
 - \diamond status quo policy $\theta_0 \in [0,1]$
- ▶ sender: challenger who wants voter to approve his policy
- **receiver**: voter with spatial preferences
 - \diamond ideal policy $v \in [0,1]$, net payoff from approval is $\delta(\theta) = |v \theta_0| |v \theta|$

EXAMPLE: PROSECUTOR AND JUDGE

- **state space**: fraction of violations committed by defendant (out of 9)
- ▶ **sender**: prosecutor who wants judge to convict
- ▶ receiver: judge who wants to convict defendants with at least 7 violations
 - \diamond net payoff from approval is $\delta(\theta) = 1$ if $\theta \geq 7/9$ and $\delta(\theta) = -1$ if $\theta < 7/9$

EQUILIBRIUM

- ▶ (Perfect Bayesian) Equilibrium (σ, a, q)
 - $\diamond \ \sigma : \Theta \times M \rightarrow [0,1]$ sender's strategy
 - $\sigma(m \mid \theta)$ is probability of sending message m from state θ
 - $\forall \theta \in \Theta$, $\sigma(\cdot \mid \theta)$ is supported on $\arg \max_{m \in M} u_s(a(m))$, subject to $\theta \in m$
 - $\diamond a: M \to \{0,1\}$ approval strategy of receiver
 - $\forall m \in M$, best response is $a(m) = \mathbb{1}\left(\int_{\Theta} \delta(\theta) dq(\theta \mid m) \ge 0\right)$
 - $\diamond q:\Theta\times M\to [0,1]$ posterior belief of receiver
 - $q(\cdot \mid m) \in \Delta\Theta$ is posterior belief after message $m \in M$
 - Bayes-rational on equilibrium path
 - supp $q(\cdot \mid m) \subseteq m, \forall m \subseteq \Theta$

OUTCOMES: DEFINITIONS

- ▶ outcome $\alpha: \Theta \to [0,1]$ specifies probability $\alpha(\theta)$ that receiver approves proposal in state θ
- \triangleright outcome α is equilibrium outcome if it corresponds to some equilibrium
- \triangleright outcome α^c is commitment outcome if it solves¹

$$\max_{\alpha} \int_{\Theta} \alpha(\theta) d\mu_0(\theta), \quad \text{subject to} \quad \begin{cases} \forall \theta \in \Theta, \ 0 \leq \alpha(\theta) \leq 1 \\ \int_{\Theta} \alpha(\theta) \delta(\theta) d\mu_0(\theta) \geq 0 \end{cases}$$

¹ Kamenica and Gentzkow (2011), Alonso and Câmara (2016)

DETERMINISTIC OUTCOMES

- \blacktriangleright outcome α is deterministic if $\alpha(\theta) \in \{0,1\}$ for every $\theta \in \Theta$
- \triangleright set of approved states W in the deterministic outcome α is

$$W := \{ \theta \in \Theta \mid \alpha(\theta) = 1 \}$$

EQUILIBRIUM OUTCOMES

 \triangleright consider deterministic equilibrium outcome with set of approved states W. What conditions does W satisfy?

- sender cannot deviate to full disclosure:
 - if $\theta \in A$, message $\{\theta\}$ convinces receiver to approve

$$A \subseteq W$$
 (IC)

receiver's expected net payoff from approval is non-negative:

$$\int_{W} \delta(\theta) d\mu_0(\theta) \ge 0 \qquad \text{(obedience)}$$

DIRECT IMPLEMENTATION

Theorem 1

- (1) every equilibrium outcome is deterministic
- (2) $W \subseteq \Theta$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)

- ▶ **Proof** of |(1)|, by contradiction:
 - \diamond consider equilibrium (σ, a, q) with outcome α
 - $\diamond \alpha$ is not deterministic \Longrightarrow exists θ s.t. $\alpha(\theta) \in (0,1)$
 - \diamond since $\alpha(\theta) > 0$, there exists message m such that a(m) = 1 and $\theta \in m$
 - \diamond profitable deviation: send m with certainty when state is θ

DIRECT IMPLEMENTATION

Theorem 1

- (1) every equilibrium outcome is deterministic
- (2) $W \subseteq \Theta$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)
- ▶ **Proof** of (2), \Longrightarrow : W is set of approved states in equilibrium (σ, a, q)
 - \diamond W satisfies (IC), or else sender can deviate to full disclosure
 - \diamond W satisfies (obedience):
 - let $\mathcal{M} := \{m \in M \mid a(m) = 1\}$ be set of convincing messages
 - if $\theta \in W$, sender convinces with prob. 1: $\sigma(\mathcal{M} \mid \theta) = 1$
 - every $m \in \mathcal{M}$ convinces receiver: $\int_{W} \delta(\theta) \sigma(m \mid \theta) d\mu_0(\theta) \geq 0$
 - true for \mathcal{M} : $\int_{W} \delta(\theta) \sigma(\mathcal{M} \mid \theta) d\mu_0(\theta) = \int_{W} \delta(\theta) d\mu_0(\theta) \ge 0$

DIRECT IMPLEMENTATION

Theorem 1

- every equilibrium outcome is deterministic
- (2) $W \subseteq \Theta$ is an equilibrium set of approved states $\iff W$ satisfies (IC) and (obedience)
- ▶ **Proof** of $|(2), \Leftarrow|$: direct implementation of W:
 - $\diamond \text{ sender: } \sigma(W \mid \theta) = \mathbb{1}(\theta \in W) \text{ and } \sigma(\Theta \smallsetminus W \mid \theta) = \mathbb{1}(\theta \notin W)$
 - receiver:
 - on path, approves after W by (obedience), rejects after $\Theta \setminus W$
 - off path is "skeptical"

$$\forall m \subseteq A$$
, supp $q(\cdot \mid m) \subseteq m$, so that $\int_{\Omega} \delta(\theta) dq(\theta \mid m) \ge 0$

 $\forall m \not\subseteq A, m \neq W, \text{ supp } q(\cdot \mid m) \subseteq m \setminus A, \text{ so that } \int_{\Omega} \delta(\theta) dq(\theta \mid m) < 0$

Persuasion with Verifiable Information

EQUILIBRIUM PAYOFF SET

- ▶ Theorem 1 allows us to restrict attention to sets of approved states $W \subseteq \Theta$ satisfying (IC) and (obedience)
- rank equilibria by sender's ex-ante utility
 - same as his ex-ante odds of approval
 - \diamond equals $\mu_0(W) = \int\limits_W d\mu_0(\theta)$, prior measure of set of approved states

SENDER-WORST EQUILIBRIUM

- ▶ minimize sender's ex-ante utility across all equilibria
 - \diamond smallest (in terms of ex-ante utility) set of approved states <u>W</u>
 - \diamond sender's (IC) constraint binds: $\underline{W} = A$
- receiver makes fully informed choice
- ▶ outcome-equivalent to full disclosure AKA full unraveling
 - ♦ (Grossman, 1981); (Milgrom, 1981); (Milgrom and Roberts, 1986); reviewed by (Milgrom, 2008)

SENDER-PREFERRED EQUILIBRIUM

- ▶ maximize sender's ex-ante utility across all equilibria
 - \diamond largest (in terms of ex-ante utility) set of approved states \overline{W}
 - ⋄ receiver's (obedience) constraint binds

Theorem 2

Let $\Theta = [0, 1]$. Then, \overline{W} is characterized by a cutoff value $c^* > 0$ such that

- \blacktriangleright receiver approves a.s. if $\delta(\theta) > -c^*$ and rejects if $\delta(\theta) < -c^*$
- ▶ whenever receiver approves, her expected net payoff from approval is zero: $\int \delta(\theta) d\mu_0(\theta) = 0$

Furthermore, SP equilibrium outcome is a commitment outcome.

PROOF OF THEOREM 2, PART I

▶ \overline{W} solves $\max_{W \subseteq \Theta} \int_W d\mu_0(\theta)$ subject to $A \subseteq W$ and $\int_W \delta(\theta) d\mu_0(\theta) \ge 0$

- \diamond adding θ to \overline{W} has "benefit" $\mu_0(\theta)$ and "cost" $-\delta(\theta)\mu_0(\theta)$
 - add $\theta \in A$ to \overline{W} because $\delta(\theta) \geq 0 \Longrightarrow (IC)$ holds
 - if $\delta(\theta_2) < \delta(\theta_1) < 0$, add θ_1 first
- ♦ (obedience) binds, or else can increase objective

PROOF OF THEOREM 2, PART II

	SP equilibrium	commitment	
find α to maximize	$\int_{\Theta} \alpha(\theta) d\mu_0(\theta)$	$\int\limits_{\Theta} \alpha(\theta) d\mu_0(\theta)$	
subject to	$\int\limits_{\Theta}\alpha(\theta)\delta(\theta)d$		
	$\alpha(\theta) \in \{0, 1\}$	$\alpha(\theta) \in [0,1]$	$\forall \theta \in 0$

- \triangleright if commitment outcome α^c is not deterministic, **purify it**
 - \diamond let $\mathcal{D} := \{\theta \in \Theta \mid 0 < \alpha^c(\theta) < 1\}$ notice that $\delta(\theta) = const, \forall \theta \in \mathcal{D}$
 - \diamond partition \mathcal{D} into X and Y, where $\int_{\mathcal{D}} \alpha^c(\theta) d\mu_0(\theta) = \int_X d\mu_0(\theta)$

$$\widetilde{\alpha}^{c}(\theta) = \begin{cases} \alpha^{c}(\theta), & \text{if } \theta \notin \mathcal{D} \\ 1, & \text{if } \theta \in X \\ 0, & \text{if } \theta \in Y \end{cases}$$
 is a deterministic commitment outcome

EXAMPLE: CHALLENGER AND VOTER

SENDER-PREFERRED EQUILIBRIUM, ORDERED STATE SPACE

- suppose receiver weakly prefers higher states
- ▶ then, we can characterize sender-preferred equilibrium via cutoff state

Corollary 1

Suppose that $\Theta = [0, 1]$ and δ is (weakly) increasing in θ . Then,

- ▶ there exists $\theta^* \in \Theta \setminus A$ such that $\int_{\theta^*}^1 \delta(\theta) d\mu_0(\theta) = 0$
- ▶ set $[\theta^*, 1]$ is a SP equilibrium set of approved states
- ▶ SP equilibrium outcome $\overline{\alpha}(\theta) = \mathbb{1}(\theta \ge \theta^*)$ is a commitment outcome

SENDER-PREFERRED EQUILIBRIUM, FINITE STATE SPACE

• even if $\delta(\theta)$ is increasing, SP equilibrium may not feature cutoff state if Θ is finite

example:

state	0	1/2	1
prior	1/6	1/2	1/3
net payoff from approval	-2	-1	1

▶ however, commitment payoff can always be implemented via cutoff state

SENDER-PREFERRED EQUILIBRIUM, FINITE STATE SPACE

Theorem 3

Suppose that Θ is finite, δ is (weakly) increasing in θ , and there exists $\theta^* \in \Theta \setminus A$ such that $\sum_{i=1}^{n} \delta(\theta) \mu_0(\theta) = 0$. Then,

- \blacktriangleright interval $[\theta^*, 1]$ is a SP equilibrium set of approved states
- ▶ SP equilibrium outcome $\overline{\alpha}(\theta) = \mathbb{1}(\theta \ge \theta^*)$ is a commitment outcome

PROSECUTOR AND JUDGE: SP EQUILIBRIUM

$$\delta(\theta) = 1$$

- ▶ <u>uniform prior</u>: prosecutor finds smallest θ^+ such that $\sum_{\theta=\theta^+}^1 \delta(\theta) \ge 0$
 - $\rightarrow \theta^* = 4/9$, which binds the constraint
 - ♦ apply Theorem 3
 - SP equilibrium set of approved states is $\{4/9, \dots, 8/9, 1\}$
 - SP equilibrium outcome is a commitment outcome

PROSECUTOR AND JUDGE: SP EQUILIBRIUM

- ▶ SP equilibrium set of approved states is $\{4/9, \dots, 8/9, 1\}$
 - ♦ every defendant with 4+ violations is convicted
 - ♦ 60% of defendants are convicted / 70% are ex-ante innocent
- ▶ implementation: for each defendant with 4+ violations, prosecutor presents exactly 4 pieces of evidence
 - \diamond judge sees 4 pieces of evidence \rightarrow must be 4+ violations
 - 4, 5, ... 9 violations are equally likely
 - judge is indifferent so she convicts

MANY (INDEPENDENT) RECEIVERS

$$I := \{1, \dots, n\}$$
 – set of receivers
$$\mu_0 \in \Delta\Theta \text{ is } \underline{\text{common prior}}$$

▶ sender:

- \diamond has state-independent utility $u_s: \{0,1\}^n \to \mathbb{R}$
- $\diamond u_s$ weakly increases in every receiver's action

▶ receiver $i \in I$:

- \diamond observes private verifiable message $m_i \subseteq \Theta$ chosen by sender
- \diamond solves independent problem: approves iff $\delta_i(\theta) \geq 0$

MANY (INDEPENDENT) RECEIVERS: RESULTS

- ▶ $(W_1, ..., W_n)$ is an equilibrium collection of sets of approved states \iff for all $i \in I$
 - $\diamond A_i \subseteq W_i$
 - $\diamond \int_{W_i} \delta_i(\theta) d\mu_0(\theta) \ge 0$
- ightharpoonup if $\Theta = [0, 1]$, then SP equilibrium outcome is a commitment outcome

ONE RECEIVER WITH 3+ ACTIONS

- \blacktriangleright receiver chooses action from set $J = \{0, 1, \dots, k\}$ with $k \ge 2$
- \blacktriangleright receiver's complete-information approval set for action $j \in J$ is A_j
- \blacktriangleright outcome is a partition (W_0, W_1, \dots, W_k)
 - $\diamond W_j \subseteq \Theta$ are states in which receiver plays action $j \in J$
- ▶ (IC): if $\theta \in A_j$ then $\theta \in W_j \cup \cdots \cup W_k$
 - o may be violated in every commitment outcome

CONCLUSION

- ▶ I solve persuasion games with verifiable information
 - \diamond direct implementation: W is an equilibrium set of approval states \iff
 - W satisfies receiver's (obedience) and sender's (IC) constraints
 - set of equilibrium outcomes:

worst: full disclosure \rightarrow best: commitment outcome*

* if state space is sufficiently rich

Thank You!

CONNECTION TO REVELATION PRINCIPLE(S)

- ▶ Myerson (1986) and Forges (1986):
 - any equilibrium of a mediated sender-receiver game is outcome-equivalent to one in which
 - sender truthfully reveals θ to mediator
 - mediator recommends action
 - receiver obediently follows recommendation
 - \diamond **Theorem 1** provides necessary and sufficient conditions for W to be implementable in equilibrium
- ▶ Kamenica and Gentkow (2011) and Bergemann and Morris (2019):
 - ♦ WLOG to let set of signals equal set of actions