Summit Semiconductor LLC

Summit FS848 Master Module (Wheeler)

Report No. FOCU0081

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: July 27, 2010 Summit Semiconductor LLC

Model: Summit FS848 Master Module (Wheeler)

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Output Power – Channel Power	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass	
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass	
AC Powerline Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Don Facteau, IS Manager

RAJVKI

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Description		Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Summit Semiconductor LLC		
Address:	22867 NW Bennett St, Suite 200		
City, State, Zip:	Hillsboro, OR 97124		
Test Requested By:	Alex Macdonald		
Model:	Summit FS848 Master Module (Wheeler)		
First Date of Test:	July 15, 2010		
Last Date of Test:	July 27, 2010		
Receipt Date of Samples:	July 14, 2010		
Equipment Design Stage:	Preproduction		
Equipment Condition:	No Damage		

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipm	nent Under Test):
UNII radio module	

Testing Objective:

Seeking limited modular approval of the master under FCC 15.247 for operation in the 5.8 GHz band

CONFIGURATION 1 FOCU0081

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Summit FS848 Master Module (Wheeler)	Summit Semiconductor LLC	444-2203	0265		
Antenna	Aeon Technologies	C6276-510004A	None		

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Power Supply - I/O Board	er Supply - I/O Board Summit Semiconductor LLC		Linear			
AC Adapter	Cincon Electronics	TR20B120X 01E03	20120-0007356			

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Compaq	NX9500	CNF4520HP6	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Lead	PA	1.8m	PA	AC Adapter	Power Supply - I/O Board
AC Power	No	1.8m	No	AC Mains	AC Adapter
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC
Antenna Cable	Yes	0.1m	No	Summit FS848 Master Module (Wheeler)	Antenna
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 FOCU0081

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Summit FS848 Master Module (Wheeler)	Summit Semiconductor LLC	444-2203	A146	

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Power Supply - I/O Board Summit Semiconductor LLC		Redmond	18			
AC Adapter	PHIHONG	PSS45W-120	0706			

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Inspiron 6000	IS386	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Lead	PA	1.8m	PA	AC Adapter	Power Supply - I/O Board
AC Power	No	1.8m	No	AC Mains	AC Adapter
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC
Audio	Yes	1.8m	No	Remote PC	Summit FS848 Master Module (Wheeler)
Trigger	Yes	1.1m	No	Summit FS848 Master Module (Wheeler)	Measurement analyzer
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 4 FOCU0081

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Summit FS848 Master Module	Summit	444-2203	0265
(Wheeler) Antenna	Semiconductor LLC Aeon Technologies	C6276-510004A	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply - I/O Board	Summit Semiconductor LLC	Redmond	AC		

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
DC Power Supply (Test Equipment)	Tektronix	PS280	TPM			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Lead (4x)	No	1.0m	No	DC Power Supply (Test Equipment)	Power Supply - I/O Board
AC Power	No	1.8m	No	AC Mains	DC Power Supply
USB - Serial	Yes	1.9m	No	Summit FS848 Master Module (Wheeler)	Remote PC
Antenna Cable	Yes	0.1m	No	Summit FS848 Master Module (Wheeler)	Antenna
PA = Ca	ble is pern	nanently attach	ed to the de	evice. Shielding and/or presence of ferrite	may be unknown.

Revision 4/28/03

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
1	7/15/2010	Output Power – Channel Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	7/16/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	7/16/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	7/16/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	7/20/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
6	7/21/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
7	7/27/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rates called out on the data sheet.

NORTHWEST		OCCUBIED	BANDWIDTH			XMit 2010.01
EMC		OCCUPIED	BANDWIDIR			
EUT:	Summit FS848 Master Module (Wh	neeler)		1	Work Order: FOCU008	1
Serial Number:	A146	•			Date: 07/16/10	
Customer:	Summit Semiconductor LLC			Te	emperature: 23°C	
Attendees:	Alex Macdonald				Humidity: 45%	
Project:	None			Baron	netric Pres.: 30.16 in	
Tested by:	Rod Peloquin		Power: 120VAC/60Hz		Job Site: EV06	
EST SPECIFICATI	IONS		Test Method			
CC 15.247:2010			ANSI C63.10:200	9		
OMMENTS			<u> </u>			
ransmitting rando	om audio data					
ransmitting rando	om audio data					
ransmitting rando	om audio data					
	om audio data M TEST STANDARD					
DEVIATIONS FROM						
No Deviations	M TEST STANDARD	201	P.l			
DEVIATIONS FROM		Rolly le	Reley			
DEVIATIONS FROM	M TEST STANDARD	Roby le Signature	Roley			
DEVIATIONS FROM	M TEST STANDARD	Relig le Signature	Relay	Value	Limit	Result:
DEVIATIONS FROM NO Deviations	M TEST STANDARD	Roby le Signature	Relay	Value	Limit	Result
EVIATIONS FROM to Deviations on figuration #	M TEST STANDARD	Roby le Signature	Roley	Value 16.350 MHz	Limit > 500 kHz	Result :
EVIATIONS FROM to Deviations on figuration #	M TEST STANDARD	Roby le Signature	Rolly			
EVIATIONS FROM Deviations onfiguration #	2 Low Channel 149, 5745 MHz	Roley le Signature	Reling	16.350 MHz	> 500 kHz	Pass
EVIATIONS FROM to Deviations on Deviation #	2 Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz	Signature	Roley	16.350 MHz 16.327 MHz	> 500 kHz > 500 kHz	Pass Pass
EVIATIONS FROM to Deviations on Deviation #	2 Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz	Rocky le Signature	Rolly	16.350 MHz 16.327 MHz	> 500 kHz > 500 kHz	Pass Pass
DEVIATIONS FROM	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz High Channel 165, 5825 MHz	Signature	Rolly	16.350 MHz 16.327 MHz 16.327 MHz	> 500 kHz > 500 kHz > 500 kHz	Pass Pass Pass

802.11(a) 6 Mbps, Low Channel 149, 5745 MHz **Result:** Pass **Value:** 16.350 MHz **Limit:** > 500 kHz

802.11(a) 6 Mbps, Mid Channel 157, 5785 MHz **Result:** Pass **Value:** 16.327 MHz **Limit:** > 500 kHz

802.11(a) 6 Mbps, High Channel 165, 5825 MHz **Result:** Pass **Value:** 16.327 MHz **Limit:** > 500 kHz

Result: Pass **Value:** 16.409 MHz **Limit:** > 500 kHz

802.11(a) 36 Mbps, Mid Channel 157, 5785 MHz

Result: Pass Value: 16.467 MHz Limit: > 500 kHz

802.11(a) 36 Mbps, High Channel 165, 5825 MHz

Result: Pass Value: 16.432 MHz Limit: > 500 kHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

Method #3 found in ANSI C63.10 section 6.10.2.2 was used because the analyzer sweep time was greater than T for the operating mode which has the shortest transmission pulse duration and the Emission Bandwidth was greater than the largest RBW on the analyzer.

An external trigger from the EUT was used to ensure the measurement was only made during the pulse high time. Additionally, the gating function was used during 36 Mbps operation.

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- ➤ The RBW = 1 MHz, VBW = Autocoupled by analyzer firmware
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- Power was integrated across "B", by using the channel power function of the analyzer.

NORTHWEST	OUTE	PUT POWER	- CHANNE	I DOWED			XMit 2010.0
EMC	OUIF	DIFUWER	- CHANNE	LPOWER			
EUT	: Summit FS848 Master Module (Whe	eeler)			Work Order:	FOCU0081	
Serial Number	: A146	•			Date:	07/15/10	
Customer	: Summit Semiconductor LLC				Temperature:	23°C	
Attendees	: Alex Macdonald				Humidity:	45%	
Project	: None				Barometric Pres.:	30.16 in	
Tested by	: Rod Peloquin		Power: 120V	AC/60Hz	Job Site:	EV06	
EST SPECIFICAT	TIONS		Test	Method			
CC 15.247:2010			ANSI	C63.10:2009			
OMMENTS							
ransmitting rand	om audio data. External trigger from M TEST STANDARD	EUT, and gating on analy	/zer				
ransmitting rand		EUT, and gating on analy	/zer				
ransmitting rand EVIATIONS FRO o Deviations		EUT, and gating on analy Roby le Signature					
ransmitting rand EVIATIONS FRO o Deviations onfiguration #	M TEST STANDARD	Roby le		Value	Li	mit	Result
ransmitting rand EVIATIONS FRO o Deviations onfiguration #	M TEST STANDARD	Roby le					
ransmitting rand EVIATIONS FRO o Deviations onfiguration #	2 Low Channel 149, 5745 MHz	Roby le		15.0 dBm	30	dBm	Result Pass
eviations from Deviations Deviations	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz	Roby le		15.0 dBm 13.5 dBm	30 30	dBm dBm	Pass Pass
EVIATIONS FRO to Deviations on Deviations on figuration #	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz High Channel 165, 5825 MHz	Roby le		15.0 dBm	30 30	dBm	Pass
EVIATIONS FRO to Deviations on Deviations on figuration #	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz High Channel 165, 5825 MHz	Roby le		15.0 dBm 13.5 dBm 15.2 dBm	30 30 30	dBm dBm dBm	Pass Pass Pass
EVIATIONS FRO to Deviations porfiguration #	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz High Channel 165, 5825 MHz Low Channel 149, 5745 MHz	Roby le		15.0 dBm 13.5 dBm	30 30 30	dBm dBm	Pass Pass
ransmitting rand	Low Channel 149, 5745 MHz Mid Channel 157, 5785 MHz High Channel 165, 5825 MHz	Roby le		15.0 dBm 13.5 dBm 15.2 dBm	30 30 30 30	dBm dBm dBm	Pass Pass Pass

802.11(g) 6 Mbps, Low Channel 149, 5745 MHz

Result: Pass Value: 15.0 dBm Limit: 30 dBm

802.11(g) 6 Mbps, Mid Channel 157, 5785 MHz **Result:** Pass **Value:** 13.5 dBm **Limit:** 30 dBm

802.11(g) 6 Mbps, High Channel 165, 5825 MHz **Result:** Pass **Value:** 15.2 dBm **Limit:** 30 dBm

802.11(g) 36 Mbps, Low Channel 149, 5745 MHz **Result:** Pass **Value:** 14.7 dBm **Limit:** 30 dBm

802.11(g) 36 Mbps, Mid Channel 157, 5785 MHz **Result:** Pass **Value:** 13.4 dBm **Limit:** 30 dBm

802.11(g) 36 Mbps, High Channel 165, 5825 MHz **Result:** Pass **Value:** 14.8 dBm **Limit:** 30 dBm

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit channels. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the required data rates available.

The spectrum was scanned across each band edge from 35 MHz below the band edge to 35 MHz above the band edge.

NORTHWEST			- 00MBL 14M			XMit 2010.01.1
EMC		BAND EDG	E COMPLIAN	ICE		
EU1	: Summit FS848 Master Modu	le (Wheeler)			Work Order: FOCU008	:1
Serial Numbe	r: A146				Date: 07/16/10	
Custome	r: Summit Semiconductor LLC				Temperature: 23°C	
Attendees	s: Alex Macdonald				Humidity: 45%	
Projec	t: None			Baro	metric Pres.: 30.16 in	
	/: Rod Peloquin		Power: 120VAC/	60Hz	Job Site: EV06	
TEST SPECIFICA	TIONS		Test Meth	hod		
FCC 15.247:2010			ANSI C63	3.10:2009		
COMMENTS						
	lom audio data					
COMMENTS Transmitting rand	lom audio data					
	dom audio data					
Transmitting rand	lom audio data					
Transmitting rand						
Transmitting rand DEVIATIONS FRO	OM TEST STANDARD	10	121			
Transmitting rand		Roby	he Roley			
Transmitting rand DEVIATIONS FRO	OM TEST STANDARD	Signature Recky	he Roleys			
Transmitting rand DEVIATIONS FRO	OM TEST STANDARD	Signature Roby	le Roleys			
Transmitting rand DEVIATIONS FRO No Deviations Configuration #	OM TEST STANDARD	Signature	he Robys	Value	Limit	Results
Transmitting rand DEVIATIONS FRO No Deviations Configuration #	OM TEST STANDARD	Signature Signature	he Falyy			
Transmitting rand DEVIATIONS FRO No Deviations Configuration #	2 Low Channel 149, 5745 MHz	Signature	he Rolays	-38.8 dBc	≤ -20 dBc	Pass
Transmitting rand DEVIATIONS FRO No Deviations Configuration # 302.11(a) 6 Mbps	2 Low Channel 149, 5745 MHz High Channel 165, 5825 MHz	Signature	he Roleys			
Transmitting rand DEVIATIONS FRO No Deviations Configuration # 302.11(a) 6 Mbps	2 Low Channel 149, 5745 MHz High Channel 165, 5825 MHz	Signature Rocky	le Robyy	-38.8 dBc -44.2 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
Transmitting rand DEVIATIONS FRO	2 Low Channel 149, 5745 MHz High Channel 165, 5825 MHz	Signature Signature	he Falyy	-38.8 dBc	≤ -20 dBc	Pass

BAND EDGE COMPLIANCE

802.11(a) 6 Mbps, Low Channel 149, 5745 MHz

Result: Pass Value: -38.8 dBc Limit: ≤ -20 dBc

802.11(a) 6 Mbps, High Channel 165, 5825 MHz **Result:** Pass **Value:** -44.2 dBc **Limit:** ≤ -20 dBc

BAND EDGE COMPLIANCE

802.11(a) 36 Mbps, High Channel 165, 5825 MHz

Result: Pass Value: -44.8 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECC	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST					XMit 2010.0
EMC	SPURIO	US CONDUCTED	EMISSIONS		
EUT: Summit FS848 Master Module (Wheeler)				Work Order: FOCU0081	
Serial Number: A146 & 0265				Date: 07/27/10	
Customer: Summit Semiconductor LLC				Temperature: 23°C	
Attendees: Alex				Humidity: 45%	
Project: Non		B		ometric Pres.: 30.16 in	
Tested by: Rod		Power:	120VAC/60Hz Test Method	Job Site: EV06	
C 15.247:2010			ANSI C63.10:2009		
C 15.247:2010			ANSI C63.10.2009		
OMMENTS					
ansmitting random au	udio data. A146 used for 30 MHz - 26.	5 GHz, 0265 used from 26.5 GHz -	40 GHz.		
EVIATIONS FROM TES Deviations	ST STANDARD				
Deviations					
onfiguration #	2	Rolly be Reley			
	Si	ignature			
			Value	Limit	Resul
Иbps					
Low	Channel 149, 5745 MHz				
	30 MHz - 12.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.5 GHz - 26.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	26.5 GHz - 31 GHz		< -40 dBc	≤ -20 dBc	Pass
	31 GHz - 40 GHz		< -40 dBc	≤ -20 dBc	Pass
Mid	Channel 157, 5785 MHz				
	30 MHz - 12.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.5 GHz - 26.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	26.5 GHz - 31 GHz		< -40 dBc	≤ -20 dBc	Pass
1.0 1	31 GHz - 40 GHz		< -40 dBc	≤ -20 dBc	Pass
Higr	Channel 165, 5825 MHz		40 -ID-	< 00 dD-	D
	30 MHz - 12.5 GHz 12.5 GHz - 26.5 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
	26.5 GHz - 31 GHz 31 GHz - 40 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass
Mbps	31 GHZ - 40 GHZ		< -40 dBC	≥ -20 dBC	Pass
	Channel 149, 5745 MHz				
2011	30 MHz - 12.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.5 GHz - 26.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	26.5 GHz - 31 GHz		< -40 dBc	≤ -20 dBc	Pass
	31 GHz - 40 GHz		< -40 dBc	≤ -20 dBc	Pass
Mid	Channel 157, 5785 MHz				
	30 MHz - 12.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.5 GHz - 26.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	26.5 GHz - 31 GHz		< -40 dBc	≤ -20 dBc	Pass
	31 GHz - 40 GHz		< -40 dBc	≤ -20 dBc	Pass
High	n Channel 165, 5825 MHz				
	30 MHz - 12.5 GHz		< -40 dBc	≤ -20 dBc	Pass
			40 ID	≤ -20 dBc	Pass
	12.5 GHz - 26.5 GHz		< -40 dBc	≥ -20 dbc	rasi
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass

6 Mbps, Low Channel 149, 5745 MHz, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

6 Mbps, Low Channel 149, 5745 MHz, 12.5 GHz - 26.5 GHz

6 Mbps, Low Channel 149, 5745 MHz, 26.5 GHz - 31 GHz Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

6 Mbps, Low Channel 149, 5745 MHz, 31 GHz - 40 GHz

Result: Pass

SPURIOUS CONDUCTED EMISSIONS

6 Mbps, Mid Channel 157, 5785 MHz, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

6 Mbps, Mid Channel 157, 5785 MHz, 12.5 GHz - 26.5 GHz **Value:** < -40 dBc **Limit:** ≤ -20 dBc

6 Mbps, Mid Channel 157, 5785 MHz, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

6 Mbps, Mid Channel 157, 5785 MHz, 31 GHz - 40 GHz

≤ -20 dBc

SPURIOUS CONDUCTED EMISSIONS

Result: Pass 6 Mbps, High Channel 165, 5825 MHz, 30 MHz - 12.5 GHz

Value: < -40 dBc Limit:

6 Mbps, High Channel 165, 5825 MHz, 12.5 GHz - 26.5 GHz

6 Mbps, High Channel 165, 5825 MHz, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

6 Mbps, High Channel 165, 5825 MHz, 31 GHz - 40 GHz

36 Mbps, Low Channel 149, 5745 MHz, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, Low Channel 149, 5745 MHz, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, Low Channel 149, 5745 MHz, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, Low Channel 149, 5745 MHz, 31 GHz - 40 GHz

36 Mbps, Mid Channel 157, 5785 MHz, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, Mid Channel 157, 5785 MHz, 12.5 GHz - 26.5 GHz

SPURIOUS CONDUCTED EMISSIONS

36 Mbps, Mid Channel 157, 5785 MHz, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, Mid Channel 157, 5785 MHz, 31 GHz - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

SPURIOUS CONDUCTED EMISSIONS

36 Mbps, High Channel 165, 5825 MHz, 30 MHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, High Channel 165, 5825 MHz, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

SPURIOUS CONDUCTED EMISSIONS

36 Mbps, High Channel 165, 5825 MHz, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

36 Mbps, High Channel 165, 5825 MHz, 31 GHz - 40 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. While the average output power was measured as defined in section ANSI C63.10:2009, Section 6.11.2.3 was followed.

The spectrum analyzer was set as follows:

The emission peak was located and zoomed in on within the passband.

- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX
- f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

NORTHWEST		DOWED OF CO	EDAL DENOITY			XMit 2010.01.14
EMC		POWER SPECT	IRAL DENSITY			
EUT	Summit FS848 Master Mo	odule (Wheeler)		Work O	der: FOCU0081	
Serial Number:	A146	•			Date: 07/16/10	
Customer	Summit Semiconductor L	LC		Tempera	ure: 23°C	
Attendees	Alex Macdonald			Humi	dity: 45%	
Project	None			Barometric P	res.: 30.16 in	
Tested by	Rod Peloquin		Power: 120VAC/60Hz	Job :	Site: EV06	
TEST SPECIFICAT	TONS		Test Method			
FCC 15.247:2010			ANSI C63.10:2009			
COMMENTS						
Transmitting rande	om audio data. External tri	gger from EUT, and gating on analyze	r			
DEVIATIONS FRO	M TEST STANDARD					
No Deviations						
Configuration #	2	Rocky le Fo	cley			
		Signature				
				Value	Limit	Results
6 Mbps						
	Low Channel 149, 5745 MH				dBm / 3 kHz	Pass
	Mid Channel 157, 5785 MF				dBm / 3 kHz	Pass
	High Channel 165, 5825 M	Hz	-18.5	dBm / 3 kHz 8	dBm / 3 kHz	Pass
36 Mbps						
	Low Channel 149, 5745 MI	Hz	-20.2	dBm / 3 kHz 8	dBm / 3 kHz	Pass
	Mid Channel 157, 5785 MF	l z	-21.3	dBm / 3 kHz 8	dBm / 3 kHz	Pass
	High Channel 165, 5825 M	Hz	-20.1	dBm / 3 kHz 8	dBm / 3 kHz	Pass

6 Mbps, Low Channel 149, 5745 MHz

Result: Pass Value: -18.9 dBm / 3 kHz Limit: 8 dBm / 3 kHz

6 Mbps, Mid Channel 157, 5785 MHz

Result: Pass Value: -20.0 dBm / 3 kHz Limit: 8 dBm / 3 kHz

6 Mbps, High Channel 165, 5825 MHz

Result: Pass Value: -18.5 dBm / 3 kHz Limit: 8 dBm / 3 kHz

36 Mbps, Low Channel 149, 5745 MHz **Result:** Pass **Value:** -20.2 dBm / 3 kHz **Limit:** 8 dBm / 3 kHz

Result: Pass Value: -21.3 dBm / 3 kHz Limit: 8 dBm / 3 kHz

 36 Mbps, High Channel 165, 5825 MHz

 Result:
 Pass
 Value:
 -20.1 dBm / 3 kHz
 Limit:
 8 dBm / 3 kHz

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Transmitting at 6 Mbps

Continuous Transmitting at 36 Mbps

CHANNELS TESTED

Channel 149, 5745 MHz Channel 157, 5785 MHz Channel 165, 5825 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 40 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
5.725-5.875 Notch Filter	Micro-Tronics	BRC50705	HGJ	7/31/2009	13
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	12
EV01 Cables	N/A	Bilog Cables	EVA	7/9/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/9/2010	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/9/2010	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/9/2010	13
Antenna, Horn	EMCO	3115	AHC	7/8/2010	24
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	16
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
OC Cable	ESM Cable Corp.	KMKM-72	OCV	11/3/2009	13
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVR	6/22/2010	13
Antenna, Horn	ETS	3160-10	AIC	NCR	0

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
Measurements were made using the bandwidths and detectors specified. No video filter was used.									

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

			Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz) (d	dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
11491.400 4	45.8	-6.7	205.0	1.1	3.0	0.0	H-Horn	AV	0.0	39.1	54.0	-14.9	CH:149, 36Mbps, EUT Vertical.
11651.500 4	43.6	-5.8	207.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.8	54.0	-16.2	CH:165, 36Mbps, EUT Vertical.
11571.500 4	43.2	-6.3	324.0	1.1	3.0	0.0	H-Horn	AV	0.0	36.9	54.0	-17.1	CH:157, 36Mbps, EUT Vertical.
11489.900 4	42.4	-6.7	205.0	1.1	3.0	0.0	H-Horn	AV	0.0	35.7	54.0	-18.3	CH:149, 6Mbps, EUT Vertical.
11490.650 6	62.3	-6.7	205.0	1.1	3.0	0.0	H-Horn	PK	0.0	55.6	74.0	-18.4	CH:149, 6Mbps, EUT Vertical.
11647.700 4	40.6	-5.8	207.0	1.3	3.0	0.0	H-Horn	AV	0.0	34.8	54.0	-19.2	CH:165, 6Mbps, EUT Vertical.
11491.400 4	41.3	-6.7	219.0	1.1	3.0	0.0	V-Horn	AV	0.0	34.6	54.0	-19.4	CH:149, 36Mbps, EUT Horizontal.
11651.500 4	40.3	-5.8	36.0	1.1	3.0	0.0	V-Horn	AV	0.0	34.5	54.0	-19.5	CH:165, 36Mbps, EUT Horizontal.
11645.700 6	60.2	-5.8	207.0	1.3	3.0	0.0	H-Horn	PK	0.0	54.4	74.0	-19.6	CH:165, 6Mbps, EUT Vertical.
11569.950 4	40.3	-6.3	324.0	1.1	3.0	0.0	H-Horn	AV	0.0	34.0	54.0	-20.0	CH:157, 6Mbps, EUT Vertical.
11571.500 3	39.7	-6.3	216.0	1.1	3.0	0.0	V-Horn	AV	0.0	33.4	54.0	-20.6	CH:157, 36Mbps, EUT Horizontal.
11569.550 5	59.1	-6.3	324.0	1.1	3.0	0.0	H-Horn	PK	0.0	52.8	74.0	-21.2	CH:157, 6Mbps, EUT Vertical.
11647.900 3	38.3	-5.8	36.0	1.1	3.0	0.0	V-Horn	AV	0.0	32.5	54.0	-21.5	CH:165, 6Mbps, EUT Horizontal.
11489.600 3	39.0	-6.7	219.0	1.1	3.0	0.0	V-Horn	AV	0.0	32.3	54.0	-21.7	CH:149, 6Mbps, EUT Horizontal.
11569.700 3	37.7	-6.3	216.0	1.1	3.0	0.0	V-Horn	AV	0.0	31.4	54.0	-22.6	CH:157, 6Mbps, EUT Horizontal.
11647.000 5	56.1	-5.8	36.0	1.1	3.0	0.0	V-Horn	PK	0.0	50.3	74.0	-23.7	CH:165, 6Mbps, EUT Horizontal.
11490.800 5	56.4	-6.7	219.0	1.1	3.0	0.0	V-Horn	PK	0.0	49.7	74.0	-24.3	CH:149, 6Mbps, EUT Horizontal.
11571.000 5	54.9	-6.3	216.0	1.1	3.0	0.0	V-Horn	PK	0.0	48.6	74.0	-25.4	CH:157, 6Mbps, EUT Horizontal.

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx 5825MHz, (Ch.165)

Continuous Tx 5785MHz, (Ch.157)

Continuous Tx 5745MHz, (Ch.149)

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

FOCU0081 - 4

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARE	4/29/2010	12 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/21/2010	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
LISN	Solar	9252-50-R-24-BNC	LIN	5/27/2010	12 mo

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
Measurements were made using the bandwidths and detectors specified. No video filter was used.									

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 **Barometric Pres.** 1015.9 mb Tested by: Dan Haas EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5745MHz, (Ch.149) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Line: High Line Ext. Attenuation: Pass Run# Results 19 20

Quasi Peak Data - vs - Quasi Peak Limit

90 70 60 dBuV 50 40 30 20 10 0.10 1.00 10.00 100.00 MHz

Average Data - vs - Average Limit

Quasi	Peak Data - v	s - Quasi Pea	ak Limit		Ave	erage Data - v	s - Average L	_imit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.432	26.6	20.8	47.4	60.0	-12.6	-	18.432	24.8	20.8	45.6	50.0	-4.4
4.224	17.3	20.2	37.5	56.0	-18.5		24.576	16.6	21.1	37.7	50.0	-12.3
4.608	16.6	20.3	36.9	56.0	-19.2		4.608	12.0	20.3	32.3	46.0	-13.8
3.840	16.0	20.2	36.2	56.0	-19.8		27.650	14.3	21.3	35.6	50.0	-14.4
24.576	17.8	21.1	38.9	60.0	-21.1		4.224	10.8	20.2	31.0	46.0	-15.0
27.650	16.3	21.3	37.6	60.0	-22.4		3.840	10.4	20.2	30.6	46.0	-15.4

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 1015.9 mb Tested by: Dan Haas **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5745MHz, (Ch.149) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Line: Neutral Ext. Attenuation: Pass Run# 20 Results 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 90 90 70 70 60 60 dBuV 50 50 40 40

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	26.5	20.8	47.3	60.0	-12.7	_	18.434	24.7	20.8	45.5	50.0	-4.5
4.224	17.0	20.2	37.2	56.0	-18.8		24.576	17.5	21.1	38.6	50.0	-11.4
26.114	19.4	21.2	40.6	60.0	-19.4		29.186	16.1	21.4	37.5	50.0	-12.5
4.608	16.2	20.3	36.5	56.0	-19.6		26.114	16.3	21.2	37.5	50.0	-12.5
24.576	18.2	21.1	39.3	60.0	-20.7		27.650	15.6	21.3	36.9	50.0	-13.1
29.186	17.5	21.4	38.9	60.0	-21.1		4.608	11.4	20.3	31.7	46.0	-14.4
27.650	17.6	21.3	38.9	60.0	-21.1		4.224	10.3	20.2	30.5	46.0	-15.5

Average Data - vs - Average Limit

Quasi Peak Data - vs - Quasi Peak Limit

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 1015.9 mb Tested by: Dan Haas **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5785MHz, (Ch.157) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Line: High Line Ext. Attenuation: Pass Run# 21 Results 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 90 90 70 70

	Quasi Peak Data - vs - Quasi Peak Limit							Ave	erage Data - v	s - Average L	.imit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.432	26.6	20.8	47.4	60.0	-12.6	-	18.432	24.8	20.8	45.6	50.0	-4.4
6.144	22.8	20.3	43.1	60.0	-16.9		24.576	16.6	21.1	37.7	50.0	-12.3
4.608	16.9	20.3	37.2	56.0	-18.9		29.186	15.0	21.4	36.4	50.0	-13.6
24.576	17.8	21.1	38.9	60.0	-21.1		4.608	12.1	20.3	32.4	46.0	-13.7
29.186	16.3	21.4	37.7	60.0	-22.3		27.650	14.4	21.3	35.7	50.0	-14.3
27.650	16.4	21.3	37.7	60.0	-22.3		6.144	14.3	20.3	34.6	50.0	-15.4

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 1015.9 mb Tested by: Dan Haas **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5785MHz, (Ch.157) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Line: Neutral Ext. Attenuation: Pass Run# 22 Results 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 90 90

100 90 80 70 60 50 40 30 20 10 0.10 1.00 100.00 MHz

Average Data - vs - Average Limit

Quasi	Peak Data - v	s - Quasi Pea	ak Limit		

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.432	26.8	20.8	47.6	60.0	-12.4	18.432	24.9	20.8	45.7	50.0	-4.3
6.144	22.1	20.3	42.4	60.0	-17.6	24.576	17.7	21.1	38.8	50.0	-11.2
4.608	17.6	20.3	37.9	56.0	-18.2	26.114	16.5	21.2	37.7	50.0	-12.3
26.114	19.5	21.2	40.7	60.0	-19.3	27.650	15.8	21.3	37.1	50.0	-12.9
24.576	18.3	21.1	39.4	60.0	-20.6	4.608	11.6	20.3	31.9	46.0	-14.2
27.650	17.9	21.3	39.2	60.0	-20.8	6.144	13.9	20.3	34.2	50.0	-15.8

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 . Humidity: 44.7 Serial Number: 0265 1015.9 mb Tested by: Dan Haas **Barometric Pres.** EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5825MHz, (Ch.165) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Ext. Attenuation: Pass Run# Line: High Line Results 23 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 90 90 70 70 60 60 dBuV 50 50 40 40 30

0 60 40 40 30 20 100.00 100.00 100.00 100.00 100.00 100.00 MHz MHz

Average Data - vs - Average Limit

20

10

0.10

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	25.5	20.8	46.3	60.0	-13.7	-	18.434	23.7	20.8	44.5	50.0	-5.5
4.608	17.6	20.3	37.9	56.0	-18.2		24.576	16.8	21.1	37.9	50.0	-12.1
26.114	18.3	21.2	39.5	60.0	-20.5		29.186	15.2	21.4	36.6	50.0	-13.4
24.576	17.8	21.1	38.9	60.0	-21.1		4.608	12.1	20.3	32.4	46.0	-13.7
29.186	16.5	21.4	37.9	60.0	-22.1		26.114	15.1	21.2	36.3	50.0	-13.7
9.216	17.1	20.4	37.5	60.0	-22.5		19.200	15.0	20.9	35.9	50.0	-14.1
19.200	16.5	20.9	37.4	60.0	-22.6		9.216	13.3	20.4	33.7	50.0	-16.3

NORTHWEST AC POWERLINE CONDUCTED EMISSIONS FOCU0081 07/21/10 Work Order: Date: Project: None Temperature: 24.4 °C Job Site: EV07 **Humidity**: 44.7 Serial Number: Tested by: Dan Haas 0265 **Barometric Pres.** 1015.9 mb EUT: Summit FS848 Master Module (Wheeler) Configuration: 4 - AC powerline conducted emissions Customer: Summit Semiconductor LLC Attendees: None **EUT Power:** 120VAC/60Hz Continuous Tx 5825MHz, (Ch.165) **Operating Mode:** No deviations. **Deviations:** Aeon C627-510004A antennas with 4 inch antenna cables. 12 inch ribbon cable: small donut ferrites on Antenna cables Comments: with two turns: Test Specifications Test Method FCC 15.207:2010 ANSI C63.10:2009 Line: Neutral Ext. Attenuation: Pass Run# 24 Results 20 Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

100 90 80 70 60 50 40 30 20 10 0.10 1.00 10.00 100.00

Quasi Peak Data - vs - 0	Quasi Peak Limit		Average Data	- vs - Avera

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
18.434	26.1	20.8	46.9	60.0	-13.1	18.434	24.3	20.8	45.1	50.0	-4.9
6.144	21.9	20.3	42.2	60.0	-17.8	24.576	17.6	21.1	38.7	50.0	-11.3
26.114	19.6	21.2	40.8	60.0	-19.2	29.186	16.3	21.4	37.7	50.0	-12.3
24.576	18.2	21.1	39.3	60.0	-20.7	26.114	16.5	21.2	37.7	50.0	-12.3
27.650	17.9	21.3	39.2	60.0	-20.8	27.650	15.8	21.3	37.1	50.0	-12.9
29.186	17.7	21.4	39.1	60.0	-20.9	6.144	13.8	20.3	34.1	50.0	-15.9