Introdução

Árvores de decisão

Temas principais:

Classificação em árvore de decisão Regressão em árvore de decisão Floresta aleatória (classificação e regressão)

Revisão Tipo de variável

Variáveis Quantitativas: valores numéricos

Variáveis Contínuas: escala contínua

Variáveis Discreta: valores inteiros

Variáveis Qualitativas (ou categóricas): várias categorias

Variáveis Ordinais: existe uma ordenação

Variáveis Nominais: não existe ordenação

Qual a utilidade?

Classificação:

Estimar e prever categorias (Vivo ou morto?)

Regressão:

Estimar e prever valores (Qual sua idade?)

Prevendo

Qual a chance, de um homem solteiro, comprar o nosso perfume feminino?

Alta

Estrutura

Árvore de decisão(Classificação)

Como criar uma árvore de decisão(Classificação)?

1° Selecionando colunas usando o gini impurity ou entropia:

Binário Óculos Chance Alta sim não Baixa Baixa cim Alta não Alta não - não Alta / IIIU Baixa não Alta não Baixa não Baixa cim OHIT

Calculando gini impurity

Calculando gini impurity

do sim Gini Impurity = 1 - (Probabilidade do "Alta")² - (Probabilidade do "Baixa")²

Probabilidade do "Alta" = $\frac{1}{1+2}$ Probabilidade do "Baixa" = $\frac{2}{1+2}$

Gini Impurity = $1 - (4(4+3))^2 - (3/(4+3))^2$

Gini Impurity = 0,4898

Gini Impurity = $1 - (1/(1+2))^2 - (2/(1+2))^2$

Gini Impurity = 0.4444

do não

Gini Impurity = 1 - (Probabilidade do "Alta")² - (Probabilidade do "Baixa")²

Probabilidade do "Alta" = $\frac{4}{4+3}$ Probabilidade do "Baixa" = $\frac{3}{4+3}$

Calcular impureza para diversos tipos de variáveis

Calcular impureza para diversos tipos de variáveis

Calcular impureza para diversos tipos de variáveis

Como criar uma árvore de decisão(Classificação)?

Quando a árvore termina? Ou seja, ao invés de virar um node, vira leaf?

Limites:

- -Profundidade máxima da árvore
- -Quantidade de amostras que para virar um leaf

Árvore de decisão(Regressão)

Como criar uma árvore de decisão(Regressão)?

Selecionando colunas		
Classificação	Regressão	
Mínima impureza (Gini, entropy)	Mínimo da soma do quadrado dos resíduos	

Como criar uma árvore de decisão(Regressão)?

Previsão na Folha (Leaf)		
Classificação	Regressão	
Valor categórico (sim, não)	Média dos valores restantes	

Floresta aleatória

Previsão em uma Floresta aleatória?

Votação

5 árvores deram vermelho

1 árvore deu verde

RESULTADO: Vermelho

Como criar uma Floresta aleatória?

Seleção de dados		
	Coluna	Índice (Linha)
Árvore (Classificação)	gini / entropia	Todas
Árvore (Regressão)	Mínimo da soma do quadrado dos resíduos	Todas
Floresta aleatória	Aleatório em cada node (Podem ser aleatório ou não)	Diferentes amostragens em cada árvore (São sempre aleatórias)

Referências

https://github.com/HygorSantiago/GEIA/tree/main/F%C3%A1bio%20Lofredo/ML-Without-Sklearn

https://youtu.be/_L39rN6gz7Y

https://youtu.be/g9c66TUylZ4

https://youtu.be/J4Wdy0Wc_xQ

https://youtu.be/sQ870aTKqiM

http://leg.ufpr.br/~silvia/CE055/node8.html#:~:text=Vari%C3%A1veis%20cont%C3%ADnuas%2C%20caracter%C3%ADsticas%20mensur%C3%A1veis%20que,)%2C%20press%C3%A3o%20arterial%2C%20idade.

https://www.geeksforgeeks.org/gini-impurity-and-entropy-in-decision-tree-ml/

https://medium.com/thatascience/gini-index-vs-entropy-for-information-gain-in-decision-trees-252f9afa8229