Transformations is $\mathfrak{sen}|3*\mathfrak{jan}$ 2017

Examen final

Consignes:

- \bullet Vous disposez de ${\bf 3}$ h pour répondre aux 3×4 questions suivantes.
- Calculatrice non programmable peu utile, mais autorisée.
- Un formulaire sur les transformées de Fourier et Laplace est fourni en annexe.
- Soyez concis et précis dans vos réponses et justifications.

Exercice 1

Considérons le signal suivant :

a) Représenter x'(t) et x''(t), puis utiliser cela pour vous convaincre (sans calcul d'intégrale!) que $x = \Pi_1 * \Pi_3$.

On constate par exemple que

$$x'(t) = \Pi_1\left(t + \frac{3}{2}\right) - \Pi_1\left(t - \frac{3}{2}\right) = \Pi_1(t) * \left(\delta\left(t + \frac{3}{2}\right) - \delta\left(t - \frac{3}{2}\right)\right) = \Pi_1(t) * \Pi_3'(t) = (\Pi_1 * \Pi_3)'(t).$$

Il suit que $x(t) = \Pi_1(t) * \Pi_3(t) + c$ où c est une constante, et on peut se convaincre que c = 0 par exemple en comparant les aires sous la courbe de part et d'autre.

b) À l'aide de la question précédente, donner une expression pour $\widehat{x}(f)$ et vérifier que la valeur obtenue pour $\widehat{x}(0)$ est cohérente avec la figure ci-dessus.

D'après le formulaire,

$$\widehat{x}(f) = \widehat{\Pi}_1(f) \cdot \widehat{\Pi}_3(f) = \operatorname{sinc}(\pi f) \cdot 3\operatorname{sinc}(3\pi f).$$

On trouve donc $\widehat{x}(0) = 3\operatorname{sinc}(0) = 3$, ce qui correspond (comme il se doit) à l'aire totale sous la courbe de x.

c) Étant donnée une fonction y, expliquer et expliciter la signification de chacune des expressions suivantes :

$$\mathrm{III}_1 \cdot y, \qquad \mathrm{III}_1 * y, \qquad \int_{-\infty}^{+\infty} \mathrm{III}_1(t) \, y(t) \, \mathrm{d}t.$$

Puisque
$$\text{III}_1 = \sum_{n \in \mathbb{Z}} \delta(t - n)$$
:

- $(\text{III}_1 \cdot y)(t) = \sum_{n \in \mathbb{Z}} y(n) \, \delta(t-n)$ comporte une raie à chaque entier dont l'amplitude est la valeur de y en ce point : il s'agit d'une version échantillonnée de y.
- $(\text{III}_1 * y)(t) = \sum_{n \in \mathbb{Z}} y(t-n)$ est la superposition d'une infinité de copies de y ayant subi les différents décalages entiers : il s'agit d'une version 1-périodisée de y. Note : puisqu'il peut y avoir interférence entre différentes répliques de y, on ne peut pas vraiment en général considérer y comme un motif ici.
- $\int_{-\infty}^{+\infty} \coprod_{1} (t) y(t) = \sum_{n \in \mathbb{Z}} y(n).$
- d) Si $y \in \hat{y}$ sont des fonctions, donner une démonstration simple (une ligne!) du fait que :

$$\sum_{n=-\infty}^{\infty} y(n) = \sum_{n=-\infty}^{\infty} \widehat{y}(n).$$

Vérifier par calcul direct le validité de ce résultat dans le cas de la fonction x ci-dessus.

Puisque $\widehat{\coprod}_1 = \coprod_1$, on a d'après le théorème de Plancherel

$$\sum_{n=-\infty}^{\infty} y(n) = \int_{-\infty}^{\infty} \widehat{\mathrm{III}}_1(t) \cdot y(t) \, \mathrm{d}t = \int_{-\infty}^{\infty} \mathrm{III}_1(t) \cdot \widehat{y}(t) \, \mathrm{d}t = \sum_{n=-\infty}^{\infty} \widehat{y}(n).$$

En l'occurence, avec notre exemple on trouve bien

$$\sum_{n=-\infty}^{\infty} x(n) = \dots + 0 + 1 + 1 + 1 + 0 + \dots = 3$$

et.

$$\sum_{n=-\infty}^{\infty} \widehat{x}(n) = 3 + \sum_{n \neq 0} \underbrace{3\operatorname{sinc}(n\pi)\operatorname{sinc}(3n\pi)}_{0} = 3.$$

Exercice 2

On considère maintenant, pour $\lambda > 0$ et $n \in \mathbb{N}$, le signal x_n défini par

$$x_n(t) = t^n e^{-\lambda t} H(t),$$

où H est la fonction d'Heaviside.

a) En utilisant directement la définition, calculer la transformée de Laplace de x_0 .

$$X_0(p) = \int_0^\infty e^{-\lambda t} e^{-pt} dt = \frac{e^{-(\lambda + p)t}}{-(\lambda + p)} \Big|_0^\infty = 0 - \frac{1}{-(\lambda + p)} = \frac{1}{\lambda + p}.$$

b) Vérifiez que x_0 est la réponse impulsionnelle du filtre dont la sortie y dépend de l'entrée e via

$$y'(t) + \lambda y(t) = e(t)$$
 et $y(0^{-}) = 0$

et utilisez ceci pour confirmer votre réponse à la question précédente.

Puisque $x_0(t) = e^{-\lambda t}H(t)$, on calcule

$$x_0'(t) = (e^{-\lambda t})'H(t) + e^{-\lambda t}H'(t) = -\lambda e^{-\lambda t}H(t) + e^{-\lambda t}\delta(t) = -\lambda x_0(t) + \delta(t)$$

et on trouve $x_0'(t) + \lambda x_0(t) = \delta(t)$: il s'agit bien de la solution causale de l'équation différentielle avec second membre $e(t) = \delta(t)$.

Prenant la transformée de Laplace de part et d'autre de cette égalité, on retrouve $(p + \lambda)X_0(p) = 1$, ce qui confirme le calcul effectué en a).

c) Calculer par les propriétés la transformée de Laplace de x_n .

Deux façons : soit on écrit $x_n(t) = t^n x_0(t)$, de sorte que

$$X_n(p) = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}p^n} \left(\frac{1}{p+\lambda}\right);$$

soit on écrit $x_n(t) = e^{-\lambda t}t^n$ de sorte que $X_n(p)$ est la transformée de t^n évaluée et $p + \lambda$.

Dans les deux cas, on trouve $X_n(p) = \frac{n!}{(p+\lambda)^{n+1}}$.

d) En passant par le domaine opérationnel, déterminer le produit de convolution

$$x_m * x_n$$
.

$$\mathcal{L}(x_m * x_n) = X_m \cdot X_n = \frac{m! n!}{(p+\lambda)^{m+n+2}} = \frac{m! \, n!}{(m+n+1)!} \cdot X_{m+n+1};$$

par transformée inverse on conclut que

$$x_m * x_n = \frac{m! \, n!}{(m+n+1)!} \, x_{m+n+1}.$$

Exercice 3

a) Soit x(t) un signal $r\acute{e}el$ et soit A(f) et ϕ_f le module et l'argument de $\widehat{x}(f)$, de sorte que $\widehat{x}(f) = A(f) e^{j\phi_f}$. Montrer que l'on peut exprimer x(t) sous la forme d'une somme de sinusoïdes aux différentes fréquences :

$$x(t) = \int_{-\infty}^{+\infty} A(f) \cos(2\pi f t + \phi_f) df.$$

La formule d'inversion de Fourier nous dit que

$$x(t) = \int_{-\infty}^{\infty} \widehat{x}(f) e^{2\pi j f t} df.$$

En écrivant $\widehat{x}(f) = A(f) e^{j\phi_f}$ et développant, on trouve donc

$$x(t) = \int_{-\infty}^{\infty} A(f) e^{j(2\pi f t + \phi_f)} df = \int_{-\infty}^{\infty} A(f) \cos(2\pi f t + \phi_f) df + j \int_{-\infty}^{\infty} A(f) \sin(2\pi f t + \phi_f) df.$$

Dans notre cas, la partie imaginaire est supposée nulle, de sorte que

$$x(t) = \int_{-\infty}^{\infty} A(f) \cos(2\pi f t + \phi_f) df.$$

b) Que devient cette expression si l'on suppose de plus que le signal est périodique : x(t+T) = x(t)?

Dans ce cas nous avons un spectre de raies aux multiples entiers de la fréquence fondamentale $f_0 = \frac{1}{T}$,

$$\widehat{x}(f) = \sum_{n = -\infty}^{\infty} A_n e^{j\phi_n} \delta(f - nf_0)$$

et la formule de la question précédente devient une série :

$$x(t) = \sum_{n=-\infty}^{\infty} A_n \cos(2\pi n f_0 t + \phi_n).$$

c) Soit maintenant x(t) pour lequel $\widehat{x}(f)=0$ lorsque $|f|\geqslant f_{\max}$, et soit $f_e\geqslant 2f_{\max}$. En vous aidant de schémas, expliquer pourquoi on peut écrire :

$$\widehat{x} = (\widehat{x} * \coprod_{f_e}) \cdot \prod_{f_e}$$

Puisque \hat{x} est supportée sur un intervalle de largeur $2f_{\max}$, il n'y a pas d'interférence entre les différentes répliques lorsque l'on f_e -périodise \hat{x} et on récupère donc le motif par fenêtrage. En symboles :

$$(\widehat{x}*\coprod_{f_e})(f)\cdot \Pi_{f_e}(f) = \left(\sum_{n=-\infty}^{\infty} \widehat{x}(f-nf_e)\right) \cdot \Pi_{f_e}(f) = \sum_{n=-\infty}^{\infty} \underbrace{\widehat{x}(f-nf_e)\cdot \Pi_{f_e}(f)}_{0 \text{ si } n\neq 0} = \widehat{x}(f).$$

d) En prenant la transformée inverse et en posant $T_e=1/f_e$, expliquer pourquoi cela implique :

$$x(t) = (x \cdot T_e \coprod_{T_e}) * f_e \operatorname{sinc}(\pi f_e t)$$

et en déduire la $formule\ d$ 'interpolation $de\ Whittaker$:

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_e) \operatorname{sinc} (\pi f_e(t - nT_e)).$$

Conclusion: le signal x(t) peut être exactement reconstruit à partir des échantillons discrets $x(nT_e)$, $n \in \mathbb{Z}$!

Prenons la transformée de Fourier de la formule proposée :

$$\mathcal{F}\bigg((x\cdot T_e \coprod_{T_e}) * f_e \operatorname{sinc}(\pi f_e t)\bigg) = \mathcal{F}(x\cdot T_e \coprod_{T_e}) \cdot \mathcal{F}(f_e \operatorname{sinc}(\pi f_e t)) = (\widehat{x}\cdot \coprod_{f_e}) * \Pi_{f_e} = \widehat{x}.$$

(puisque sinc est une fonction paire, sa transformée directe et inverse coincident; rappellons qu'en général on a seulement $\widehat{\hat{y}}(t) = y(-t)$.) En prenant la transformée inverse de part et d'autre, on trouve bien

$$x(t) = (x \cdot T_e \coprod_{T_e}) * f_e \operatorname{sinc}(\pi f_e t) = (x \cdot \coprod_{T_e}) * \operatorname{sinc}(\pi f_e t)$$

et on obtient le résultat attendu en développant \coprod_{T_e} .

Transformation de Laplace

domaine temporel	domaine opérationnel	remarque
x(t)	$X(p) = \int_0^{+\infty} x(t) e^{-pt} dt$	
x'(t)	$pX(p) - x(0^+)$	
$\int_0^t x(u) \mathrm{d}u$	$\frac{X(p)}{p}$	
tx(t)	-X'(p)	
$(-1)^n t^n x(t)$	$X^{(n)}(p)$	$(n \in \mathbb{N})$
$\frac{x(t)}{t}$	$\int_{p}^{+\infty} X(s) \mathrm{d}s$	
$e^{at}x(t)$	X(p-a)	$(a\in\mathbb{C})$
x(t-a)	$e^{-pa}X(p)$	$(a \geqslant 0)$
x(kt)	$\frac{1}{k}X\left(\frac{p}{k}\right)$	(k > 0)

Théorèmes des valeurs initiale et finale : Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pX(p) = x(0^+) \quad \text{et} \quad \lim_{p \to 0} pX(p) = x(+\infty)$$

original causal $x(t)$	image $X(p)$	remarque
$ \begin{array}{c cccc} 1 & \text{ou} & H(t) \\ & t \\ & \frac{t^n}{n!} \end{array} $	$ \frac{1}{p} $ $ \frac{1}{p^2} $ $ \frac{1}{p^{n+1}} $	
e^{at} $\cos(\omega t)$ $\sin(\omega t)$	$\frac{1}{p-a}$ $\frac{p}{p^2 + \omega^2}$ $\frac{\omega}{p^2 + \omega^2}$	$(a\in\mathbb{C})$
$\delta(t)$	$\frac{p^2 + \omega^2}{1}$	

Produit de convolution

$$(x_1 * x_2)(t) = \int_{-\infty}^{+\infty} x_1(u) x_2(t - u) du = \int_{-\infty}^{+\infty} x_1(t - v) x_2(v) dv$$

Coefficients de Fourier

$$c_n = \frac{1}{T} \int_a^{a+T} x(t) e^{-2\pi n j t/T} dt$$

Transformation de Fourier

domaine temporel	domaine fréquentiel
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2j\pi f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2j\pi f t} dt$
$\lambda x_1(t) + \mu x_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2j\pi af}\widehat{x}(f)$
$e^{2j\pi at}x(t)$	$\widehat{x}(f-a)$
$\frac{\mathrm{d}x}{\mathrm{d}t}$	$2j\pi u\widehat{x}(f)$
$-2j\pi tx(t)$	$\frac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$(x_1 * x_2)(t)$	$\widehat{x_1}(t)\widehat{x_2}(t)$
$x_1(t) x_2(t)$	$(\widehat{x_1}*\widehat{x_2})(f)$
$\Pi_a(t) = H\left(t + \frac{a}{2}\right) - H\left(t - \frac{a}{2}\right)$	$a \operatorname{sinc}(\pi a f)$
$\frac{1}{1+t^2}$	$\pi e^{-2\pi f }$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	1
1	$\delta(f)$
$\mathrm{III}_T(t)$	$\frac{1}{T}\mathrm{III}_{\frac{1}{T}}(f)$