then

$$Q = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$
.

Now, row operations operate on the left and column operations operate on the right, so the product $E_1^{-1}E_2^{-1}\cdots E_k^{-1}$ can be computed from left to right as a sequence of column operations.

Let us review the meaning of the elementary row and column operations P(i, k), $E_{i,j;\beta}$, and $E_{i,\lambda}$.

- 1. As a row operation, P(i, k) permutes row i and row k.
- 2. As a column operation, P(i,k) permutes column i and column k.
- 3. The inverse of P(i, k) is P(i, k) itself.
- 4. As a row operation, $E_{i,j;\beta}$ adds β times row j to row i.
- 5. As a column operation, $E_{i,j;\beta}$ adds β times column i to column j (note the switch in the indices).
- 6. The inverse of $E_{i,j;\beta}$ is $E_{i,j;-\beta}$.
- 7. As a row operation, $E_{i,\lambda}$ multiplies row i by λ .
- 8. As a column operation, $E_{i,\lambda}$ multiplies column i by λ .
- 9. The inverse of $E_{i,\lambda}$ is $E_{i,\lambda^{-1}}$.

Given a square matrix A (over K), the row and column operations applied to XI - A in converting it to its Smith normal form may involve coefficients that are polynomials and it is necessary to explain what is the action of an operation $E_{i,j;\beta}$ in this case. If the coefficient β in $E_{i,j;\beta}$ is a polynomial over K, as a row operation, the action of $E_{i,j;\beta}$ on a matrix X is to multiply the jth row of M by the matrix $\beta(A)$ obtained by substituting the matrix A for X and then to add the resulting vector to row i. Similarly, as a column operation, the action of $E_{i,j;\beta}$ on a matrix X is to multiply the ith column of M by the matrix $\beta(A)$ obtained by substituting the matrix A for X and then to add the resulting vector to column j. An algorithm to compute the rational canonical form of a matrix can now be given. We apply the elementary column operations E_i^{-1} for i = 1, ..., k, starting with the identity matrix.

Algorithm for Converting an $n \times n$ matrix to Rational Canonical Form

While applying elementary row and column operations to compute the Smith normal form D of XI - A, keep track of the row operations and perform the following steps:

- 1. Let $P' = I_n$, and for every elementary row operation E do the following:
 - (a) If E = P(i, k), permute column i and column k of P'.