ST4234: Bayesian Statistics

Tutorial 3, AY 19/20

Instructions: For each group who will present on Tuesday, 11 February, please upload **one** copy of your solutions to the folder "Tutorial Submission" by **6pm Tuesday, 11 February**.

1. Assume that $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n$ is an i.i.d. sample generated from

$$\mathbf{x} = (x_1, x_2, x_3) \sim \text{Multinomial}(1; \theta_1, \theta_2, \theta_3),$$

which has a pdf

$$p(\mathbf{x}|\theta_1, \theta_2, \theta_3) = \frac{1!}{x_1! x_2! x_3!} \theta_1^{x_1} \theta_2^{x_2} \theta_3^{x_3},$$

 $x_j \in 0, 1$ for j = 1, 2, 3, $x_1 + x_2 + x_3 = 1$ and $\theta_j \ge 0$ for j = 1, 2, 3, $\theta_1 + \theta_2 + \theta_3 = 1$. Assume a Dirichlet prior with known nonnegative parameters α_j , j = 1, 2, 3 for $(\theta_1, \theta_2, \theta_3)$:

$$p(\theta_1, \theta_2, \theta_3) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \theta_3^{\alpha_3 - 1}.$$

This density is defined on the set $\{(\theta_1, \theta_2, \theta_3): \theta_1 \geq 0, \theta_2 \geq 0, \theta_3 \geq 0, \theta_1 + \theta_2 + \theta_3 = 1\}$. Denote $\boldsymbol{x}_i = (x_{i1}, x_{i2}, x_{i3}), i = 1, 2, ..., n$ and set $x_{.j} = \sum_{i=1}^n x_{ij}, j = 1, 2, 3$.

- (a) Find the posterior pdf $p(\theta_1, \theta_2, \theta_3 | \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$ and show that the prior $p(\theta_1, \theta_2, \theta_3)$ is a conjugate prior for $(\theta_1, \theta_2, \theta_3)$ with respect to $p(\boldsymbol{x}|\theta_1, \theta_2, \theta_3)$.

 (Hint: To show that a prior is conjugate, just show that the posterior belongs to the same family as the prior, i.e. Dirichlet distribution.)
- (b) Let \mathbf{x}_{n+1} be a new observation. Derive the predictive pdf $p(\mathbf{x}_{n+1}|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n)$ and identify the distribution. Note that $\Gamma(a+1)=a\Gamma(a), a>0, 1!=0!=1$. (Hint: $\mathbf{x}_{n+1}=(1,0,0), (0,1,0)$ or (0,0,1). Therefore the predictive pdf must be a multinomial distribution and we just need to find the parameters.)

- 2. Suppose that $\mathbf{x} = \{x_1, \dots, x_m\}$ is an i.i.d. sample from $N(\theta_1, \sigma^2)$. $\mathbf{y} = \{y_1, \dots, y_n\}$ is an i.i.d. sample from $N(\theta_2, \sigma^2)$. \mathbf{x} and \mathbf{y} are independent.
 - (a) Suppose that σ^2 is known. We assign the independent prior on (θ_1, θ_2) : $p(\theta_1, \theta_2) = p(\theta_1)p(\theta_2)$, where $p(\theta_1)$ is the density of $N(0, \tau_1^2)$, $p(\theta_2)$ is the density of $N(0, \tau_2^2)$, and $\tau_1^2 > 0$, $\tau_2^2 > 0$ are fixed numbers. Derive the posterior distribution of $p(\theta_1, \theta_2 | \boldsymbol{x}, \boldsymbol{y})$. Are θ_1 and θ_2 independent in the posterior?
 - (b) Let $\delta = \theta_1 \theta_2$. From (a), find the posterior distribution $p(\delta | \boldsymbol{x}, \boldsymbol{y})$.
 - (c) In the frequentist statistics, the following random variable is often used for testing hypothesis about $\delta = \theta_1 \theta_2$:

$$T = \frac{(\bar{x} - \bar{y}) - (\theta_1 - \theta_2)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}}.$$

What is the distribution of T given θ_1 and θ_2 ? Comment on the relation between this distribution and $p(\delta|\mathbf{x},\mathbf{y})$ from (b).

3. The following data represent the number of arrivals for 45 time intervals of length 2 minutes at a cashier's desk at a supermarket and are taken from Andersen (1980):

We can model such arrival counts by a Poisson model $p(x|\theta) = \theta^x e^{-\theta}/x!$, for $\theta > 0$ and x = 0, 1, 2, ...

- (a) For a Gamma(2,1) prior on θ , find the posterior distribution of θ . Plot the prior and the posterior. Find the mean, standard deviation and mode of the posterior. Is this prior sensible? What prior information does it add to the data?
- (b) We consider an noninformative prior Gamma (1/2,0), with $p(\theta) \propto \theta^{-1/2}$. Repeat part (a) and compare the results.