UNIVERSIDADE FEDERAL DE OURO PRETO CIÊNCIAS DA COMPUTAÇÃO

CÉSAR GABRIEL DE PAULA BATISTA JULIANA APARECIDA BORGES MARIA CLARA MIRANDA DE SÁ

RELATÓRIO 7TRANSISTORES COM CHAVE

INTRODUÇÃO

No relatório de hoje abordaremos um pouco sobre transistores e como eles podem ser usados com chaves. Vamos mostrar alguns circuitos montados e também contas, tanto de como calcular a corrente do circuito, além de calcularmos a corrente em cima do transistor, esse relatório tem como objetivo, além de testar nossos conhecimentos, fazer testes, e aprender como usar um transistor na prática.

DESENVOLVIMENTO

No começo da aula foi explicado o que era um transistor, que é como se fosse a união de dois diodos, e conforma associasse seus dois lados (catodo e diodo), que como foi abordado em outro relatório, o diodo tem como objetivo evitar o fluxo de carga no sentido contrário e assim evitar que o circuito seja completamente comprometido. Por isso tem uma lado dele que apenas aceita carga com sinal positiva, e outro que aceita carga com sinal negativo, e chamados eles respectivamente de P e N.

E assim é o transistor, porém ele possui 3 polarizações diferentes, uma na base e duas nas saídas, que são conhecidas como coletor e receptor, e os principais objetivos do transistor é amplificar a corrente, ou barrar a sua passagem (funcionando como uma chave, que estaria aberta quando barrasse a passagem de corrente).

Uma usualidade dos transistores é ser como um interruptor, e assim bloquear ou deixar a passagem de carga, e dei uma pesquisada e encontrei que ele faz isso bilhões de vezes por segundo, e por isso ele é muito usual para representar bits, que seria a linguagem binária, e atribuiria bit 0 para valores de correntes altas, e bit 1 para valores de correntes baixa.

Além disso, foi apresentado na prática qual é a tensão em cima do transistor, quando ele está em estado de corte ou quando está conduzindo. Quando a chave está fechada, e opera como um curto, a tensão entre o coletor e o emissor $Vce \approx 0V$ e quando o está em corte ou circuito aberto $V_{ce} \approx V_{cc}$.

Saturação é o estado quando o transistor deixa de efetuar o seu trabalho, ou seja ele não barra e nem amplifica mais a passagem da corrente.

Primeiro foi pedido que calculássemos a corrente de case do transistor, quando sua

tensão fosse 6 V, o circuito está apresentado abaixo:

Porém já havia sido calculado na própria prática.

$$I_B = (V_{BB} - V_{BE}) / RB = (6 - 0.7) / 5600 = 0.964 mA$$

E logo após foi pedido que imaginássemos um curto entre coletor e emissor, ou seja agora o circuito teria duas malhas diferentes, uma alimentada por 6 V e outra alimentada por 12 V, e estava afirmando que a tensão entre coletor e emissor assume 0 V, e a corrente de saturação foi calculada, e o calculo está abaixo:

$$V_{RC} = V_{CC} - v_{CE} = 12 - 0 = 12 \text{ V}$$

Na prática 2, foi pedido que calculássemos os valores de IB, Ic e Vce para o circuito abaixo: Foi pedido que considerássemos a queda de tensão nos extremos do LED = 1,6V.

Circuito para transistor PNP

Prática 4

1. Foi pedido que usássemos o transistor PNP

2.Cálculos:

$$I_B = (V_{bb} - V_{be}) / R_b$$

 $I_B = (15 - 0.7) / 10000$
 $I_B = 0.00143$ ou 1.43mA

$$\begin{split} I_{\text{C}} &= V_{\text{CC}} - V_{\text{RC}} \ / \ R_{\text{C}} \\ I_{\text{C}} &= 15 - 1,6 \ / \ 1000 \\ I_{\text{C}} &= 0,0134 \ ou \ 13,4\text{mA} \end{split}$$

$$\begin{array}{lll} V_{\text{ce}} = V_{\text{cc}} - V_{\text{RC}} & V_{\text{ce}} = V_{\text{cc}} - V_{\text{RC}} \\ V_{\text{ce}} = 15 - 1,6 & V_{\text{ce}} = 15 - 13,4 \\ V_{\text{ce}} \simeq 13,4 \ V & V_{\text{ce}} \simeq 1,6 \ V \end{array}$$

3. A seguir foi pedido para que anotássemos os valores calculados na tabela, e analisássemos os valores calculados e medidos através do TinkerCad.

TABELA 1

CALCULADO	MEDIDO
CALCULADO	MILDIDO

TRANSISTOR	I _B	Ic	V _{CE}	I _B	Ic	V _{CE}
BC558						
VBB=VCC	4 40 4	10 4 1	4.6\/	35uA	12mA	1,04V
(chave na	1,43mA	13,4mA	1,6V	SSUA	TZIIIA	1,044
posição 1)						
BC558						
VBB=GND			12 41/	0 A	0 A	12 61
(chave na	0 A	0 A	13,4V	UA	UA	13,6V
posição 2)						
BC548						
VBB=VCC						
(chave na						
posição 1)						
BC548						
VBB=GND						
(chave na						
posição 2)						

CONCLUSÃO DA TABELA:

Com isso terminamos a tabela, algumas contas não sei ao certo se efetuamos corretamente, pois tivemos dúvida, porém os valores foram aproximados. Observamos que quando a chave está desligada, a uma tensão maior em cima do coletor e emissor, porém ao ligarmos as chaves a tensão entre esses dois se aproxima de 0. Além disso, podemos perceber que apenas a tensão, era diferente por mais que o circuito estivesse aberto ou fechado, ainda haveria tensão, em cima do coletor e emissor do transistor. Além disso pudemos observar na prática a queda provocada pelo diodo e pelo transistor, pois a uma diferença nas medições de tensão.

CONCLUSÃO

Com a finalização deste trabalho soubemos quais são as utilizações de um transistor, além de algumas contas, e admito que não me familiarizei com todas, além disso vimos como é utilizado os transistores em sistemas eletrônicos, e que através de sua utilização se da o a linguagem de máquina em binário. Esse laboratório foi um pouco mais complicado para meu grupo, pois a parte de transistores vimos rápido em aula, porém ao saber sua aplicação e algumas fórmulas, conseguiremos aprender um pouco mais sobre eles.