Lecture 4, Sept. 14

Class

4.1 Definition. A class is a collection of sets of the form

$$\{x \mid F(x) \text{ is true }\}$$

Where F(x) is a mathematical statement about an unknown set x.

4.2 Example. The collection of all sets is the class $\{x \mid x = x\}$

4.3 Example. If A is a set then $A = \{x \mid x \in A\}$ which is also a class

Mathematical Statement

4.4 Definition. In the languages of Propositional logic we use symbols from the symbol set

$$\{\neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}$$

together with propositional variable symbols such as P, Q, R, \dots

The variable symbols are intended to represent mathematical statements which are either true or false.

In propositional logic, a formula is a non-empty, finite string of symbols (from the above set of symbols) which can be obtained by applying the following rules.

1. Every propositional variable is a formula.

2. If F is a formula, then so is the string $\neg F$.

3. If F and G are formulas then so is each of the following strings

- $(F \vee G)$
- $(F \wedge G)$
- $(F \rightarrow G)$
- $(F \leftrightarrow G)$

A derivation for a formula F is a list of formulas

$$F_1, F_2, F_3, \dots$$

with $F = F_k$ for some index k and for each index l, either F_l is a propositional variable, or F_l is equal to $F_l = \neg F_i$ for some i < l, or $F_l = (F_i * F_i)$ for some i, j < l and for some symbol $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

4.5 Example.

$$(\neg(\neg P \to Q) \leftrightarrow (R \lor \neg S))$$

is a formula and one possible derivation, with justification on each line, is as follows

1. P

- 2. Q
- 3. R
- 4. *S*
- 5. ¬*P*
- 6. $(\neg P \rightarrow Q)$
- 7. *¬S*
- 8. $R \lor \neg S$
- 9. $\neg(\neg P \rightarrow Q)$
- 10. $(\neg(\neg P \rightarrow Q) \leftrightarrow (R \lor \neg S))$

4.6 Definition. An **assignment** of truth-values to the propositional variables is a function $\alpha: \{P, Q, R...\} \rightarrow \{0, 1\}$

For a propositional variable X when $\alpha(X)=1$ we say X is true under α and when $\alpha(X)=0$ we say X is false under α

Given an assignment α : {propositional variables} \to 0, 1 we extend α to a function α : {formulas} \to 0, 1 by defining $\alpha(F)$ for all formulas F recursively as follows:

When F = X where X is a propositional variable symbol, the value of $\alpha(X)$ is already known

When $F = \neg G$ where G is a formula, define $\alpha(F)$ according to the following table

$$\begin{array}{c|c}
G & \neg G \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

When F = (G * H) where G and H are formulas and where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

we define $\alpha(F)$ according to the following table

G	Н	$G \wedge H$	$G \vee H$	$G \rightarrow H$	$G \leftrightarrow H$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1