ST2132 Tutorial 7 2210

- 1. Let $(X_1, \ldots, X_r) \sim \text{Multinomial}(n, \mathbf{p})$.
 - (a) Derive the MOM estimator of p_i , where i = 1, ..., r.
 - (b) Given r = 3 and $(x_1, x_2, x_3) = (2, 7, 1)$, find the MOM estimate of p_i , state the exact SE, and estimate it to two decimal places, for i = 1, 2, 3.
- 2. Let X_1, \ldots, X_n be IID Poisson(λ) random variables. Define

$$\hat{\lambda}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \hat{\lambda}_2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\lambda}_1)^2$$

- (a) Are $\hat{\lambda}_1$ and $\hat{\lambda}_2$ unbiased estimators of λ ?
- (b) Calculate $SD(\hat{\lambda}_1)$.
- (c) Let $\lambda = 0.8$ and n = 100. In R, perform a Monte Carlo approximation of the expectations and SDs of the two estimators to two decimal places, using 10,000 iterations. Are your results consistent with your answers to (a) and (b)?
- (d) Which estimator seems to have a smaller SE?
- 3. Let X_1, \ldots, X_n be IID Exponential(λ) random variables. You are given that $Y = X_1 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$.
 - (a) Obtain $\hat{\lambda}$, the MOM estimator of λ .
 - (b) Is $\hat{\lambda}$ unbiased for λ ?
- 4. Let x_1, \ldots, x_n be realisations of IID Bernoulli(p) random variables X_1, \ldots, X_n , and let $y = \sum_{i=1}^n x_i$.
 - (a) Write down $Pr(X_i = x_i)$ as a single expression.
 - (b) Write down the joint probability of x_1, \ldots, x_n . Find the value of p that maximises the logarithm of the joint probability.
 - (c) Write down the probability of y. Find the value of p that maximises the logarithm of the probability.
- 5. Let $\hat{\theta}$ be an estimator of θ . I.e., $\hat{\theta}$ is an RV and θ is an unknown constant. The MSE of $\hat{\theta}$ is

$$E\{(\hat{\theta}-\theta)^2\}$$

Show that the MSE is equal to " $SE^2 + bias^2$ ".