5.4

Autres problèmes

NSI TLE - JB DUTHOIT

5.4.1 Découpe d'une barre

Exercice 5.56

On dispose d'une barre de longueur donnée que l'on peut revendre d'un seul tenant ou en morceaux.

Par exemple : la barre est de longueur 8 et le tableau ci-dessous donne les prix en fonction de la longueur du morceau :

Longueur du morceau	0	1	2	3	4	5	6	7	8
Prix du morceau	0	2	3	8	10	13	15	16	21

- 1. a) Combien y a t'il de découpes possibles pour une barre de longueur 2?
 - b) Combien y a t'il de découpes possibles pour une barre de longueur 3?
 - c) Combien y a t'il de découpes possibles pour une barre de longueur 4?
 - d) Combien y a t'il de découpes possibles pour une barre de longueur 5?
- 2. Voici un algorithme Approche naïve qui repose sur le principe suivant :
 - Trouver toutes les découpes possibles.
 - Calculer le gain pour chacune d'entre elles.
 - Récupérer le plus grand.

```
1 VARIABLE
2 Données :taille est un entier
3 prix est une liste d'entiers, ou un dictionnaire
4 DEBUT
5 Fonction fonction coupe(taille,prix)
       SI taille \le 0 ALORS
           renvover 0
       meilleur \leftarrow 0
8
       decoupe \leftarrow 1
9
       Tant que decoupe <= taille Faire
10
           meilleur \leftarrow max(meilleur,prix[decoupe]+coupe(taille-decoupe,prix))
11
            decoupe \leftarrow decoupe + 1
12
13
       renvoyer meilleur
14 fin
```

- 3. implementer cet algoritme en python.
 - La complexité de l'algorithme étant exponentielle, nous allons essayer d'améliorer l'algorithme.
- 4. Proposer un programme python Top down
- 5. Proposer un programme python Bottom up.
- 6. Essayer d'améliorer l'algorithme précédent pour qu'il donne la découpe optimale.

5.4.2 Pyramide de nombres

Exercice 5.57

Une pyramide de nombre est un graphe donc les sommets sont des nombres. Chaque sommet d'un même niveau a deux arrêtes vers le bas. Deux sommets voisins d'un même niveau sont reliés à un même sommet du niveau suivant.

```
1 2 3 3 3 2 4 4 2 7 5 5 9 5 4 6
```

Ici on peut suivre le chemin 3 - 4 - 7 - 5 mais pas 3 - 2 - 5 : les sommets 2 et 5 ne sont pas reliés. Objectif :Déterminer la valeur maximale de la somme des chemins traversant une pyramide de nombre.

- 1. Quel est le chemin qui donne la somme maximale dans l'exemple ci-dessus ? ***
- 2. Choix d'une structure de données adaptée pour les pyramides : T[i,j] est la valeur du nombre situé à l'étage i en partant du bas et en position j en partant de la gauche.
 - \bullet Toujours sur l'exemple,T[1,1]=9, T[1,2]=5, T[2,1]=2, T[3,1]=2. Donner les valeurs de T[4,1] et T[3,2].
- 3. L[i, j] est la somme maximale de la sous pyramide dont le sommet est la case en position (i, j).
 - a) Que vaut L[1, j]?
 - b) Montrer que pour i > 1, L[i,j] = T[i,j] + max(L[i-1, j], L[i-1, j+1]).
- 4. a) Proposer un programme python récursif qui répond au problème.
 - b) Est-ce qu'on effectue plusieurs fois le même calcul? Est-ce optimal?
- 5. Proposer une amélioration en utilisant la programmation dynamique.

Exercice 5.58

Avec les programmes précédents, on obtient bien la somme maximale, mais pas le chemin qui y mène. Que pourrait-on ajouter pour l'obtenir?