Відповідність транспортної та симплекс таблиць

Для заданого ДБР ТЗЛП побудувати відповідну симплекс-таблицю:

	4		1		3	
3		1		6		9
	3		1		2	
3		4		0		7
	5		2		1	
		5				5
6		9		6		-

Знайдемо відносні оцінки небазисних змінних:

	4		2		3		
		4		1		3	
0	3		1)	6		9
		3		1		2	
-1	3		4		0)	7
		5		2		1	
0	-1)	5		2		5
	6		9		6		

БП	x11	x12	x13	x21	x22	x23	x31	x32	x33	Розв.
Z		1				0	-1		2	53
x11	1	1				-1	0		-1	3
x13		0	1			1	0		1	6
x21		-1		1		1	1		1	3
x22		1			1	0	-1		-1	4
x32		0				0	1	1	1	5

- 1) Переміщення по компенсаторному циклу будь-якого числа Δ не змінює балансових рівностей по рядках і стовпцях таблиці. І при цьому для компенсації зміни колишньої небазисної змінної $x_{i_0j_0}$ деякі базисні змінні збільшуються на Δ , а деякі зменшуються на Δ .
- 2) Знаком "+" помічаються клітки циклу, відповідні базисним змінним, що збільшується на Δ , а знаком "-" що зменшується на Δ . Множина I_B пар індексів базисних змінних відповідно розбивається на три підмножини, які не перетинаються:

$$I_B^+, I_B^-, I_B \setminus (I_B^+ \cup I_B^-).$$

3) У симплекс-методі при виборі змінної, що виводиться з базису, використовується формула, згідно якої зміна значення небазисної змінної впливає тільки на базисні змінні:

$$x_B = \beta - \alpha_{*_p}(x_N)_p,$$

- де $\alpha_{*p} = B^{-1} a_{*p}$. (стовпець симплекс-таблиці, який відповідає змінній, що вводиться в базис, в залежності від значень компонент цього вектору, відповідні базисні змінні зменшуються, збільшуються або залишаються незмінними)
- 4) 3 урахуванням теореми 3 (Будь-який мінор матриці P транспортної задачі приймає одне з трьох значень 0, 1 або -1) можна показати, що компоненти вектора α_{*p} ($\alpha_{*(i_0,j_0)}$) також приймають тільки одне з трьох значень 0, 1 або -1 і при цьому:
 - а. підмножина базисних змінних, у яких $a_{ip} > 0$, відповідає підмножині пар індексів I_B^- ;
 - b. підмножина базисних змінних, у яких $a_{ip} < 0$, відповідає підмножині пар індексів I_B^+ ;
 - с. підмножина базисних змінних, у яких a_{ip} =0, відповідає підмножині пар індексів $I_B \setminus (I_B^+ \cup I_B^-)$