A primer on phylogenetic biogeography and DEC models

Jan 08, 2017
Michael Landis
SSB Meeting
Baton Rouge, LA

Epidemiology

Hemagglutin (HA)

H5N1 (Avian Flu)

Neuraminidase (NA)

Lemey et al., 2008 (PLoS Comp Biol)

Conservation

Historical biogeography

Testing connectivity hypotheses

Species occurrence data (gbif.org, 2013)

Map of results

▶ Your search returned **13,264** occurrences with coordinates.

Discrete presence-absence (Upham & Patterson, 2012)

DEC

Dispersal-(Local) Extinction-Cladogenesis (DEC)
Many areas per taxon (range)
D,E as parameterized event types

Work by:

Ree et al., 2005 (Evolution)

Ree & Smith, 2008 (Syst Biol)

DEC event types

Rate matrix for anagenesis

$$Q = \begin{bmatrix} \emptyset & 1 & 2 & 3 & 12 & 13 & 23 & 123 \\ \hline \emptyset & -- & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & E_1 & -- & 0 & 0 & D_{12} & D_{13} & 0 & 0 & 0 \\ 2 & E_2 & 0 & -- & 0 & D_{21} & 0 & D_{23} & 0 & 0 \\ 3 & E_3 & 0 & 0 & -- & 0 & D_{31} & D_{32} & 0 & 0 \\ 12 & 0 & E_2 & E_1 & 0 & -- & 0 & 0 & D_{13} + D_{23} & 0 \\ 13 & 0 & E_3 & 0 & E_1 & 0 & -- & 0 & D_{12} + D_{32} & 0 & 0 \\ 23 & 0 & 0 & E_3 & E_2 & 0 & 0 & -- & D_{21} + D_{31} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{P}_{ij}(t) = \left[\exp\left\{\mathbf{Q}t\right\}\right]_{ij}$$

Dispersal & Extirpation

Exponentially-distributed times between events

DEC event types

DEC likelihood

Generalized DEC model

Million years before present

P. hexandra OahuX

Ree and Smith, 2008 (Syst Biol)

Stratified model

Transition probability over epochs

$$P(x \to y; t) = \left[\prod e^{Q_i \delta t_i} \right]_{x,y}$$

Dating with biogeographic processes

Areas split

Probable speciation time

Prob > 0

Areas merge

Dating with biogeographic processes

Areas split

Areas merge

Probable speciation time

Prob > 0

Improbable speciation time

Landis, 2016 (Syst Biol)

Prob = 0

RevBayes

Flexible model specification Graphical models

Easy and intuitive to use Rev language interface

Fast computation and efficient inference C++ backend

Bayesian terminology

D

 θ

 $P(D \mid \theta)$

 $P(\theta)$

 $P(\theta \mid D)$

data, observations

model parameters

model likelihood

prior probability

posterior probability

Bayes rule
$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

Model equations

How are variables interrelated?

$$D \sim \text{Exponential}(Y)$$

$$Y = (\theta_1 - \theta_2)^2$$

$$\theta_1 \sim \text{Exponential}(1)$$

$$\theta_2 \sim \text{Exponential}(1)$$

Model graph

$$D \sim \text{Exponential}(Y)$$

$$Y = (\theta_1 - \theta_2)^2$$

 $\theta_1 \sim \text{Exponential}(1)$

 $\theta_2 \sim \text{Exponential}(1)$

Model variable relationships

Edges indicate how child variables depend on parent variables

Model variable types

Nodes have different properties

Model probabilities

Stochastic nodes contribute to model posterior

Parameter estimation

Estimate the values of deterministic and (unobserved) stochastic nodes

Model in Rev

```
D \sim \text{Exponential}(Y) \qquad \qquad \text{for (i in 1:2) } \{ \\ Y = (\theta_1 - \theta_2)^2 \qquad \qquad \text{theta[i] } \sim \text{dnExp(1)} \\ \theta_1 \sim \text{Exponential}(1) \qquad \qquad \text{Y := (theta[1]-theta[2])^2} \\ \theta_2 \sim \text{Exponential}(1) \qquad \qquad \text{D.clamp(3.14159)}
```


Let's build some models!!