实验 1 基于 C 的 MDK 工程建立及跟踪和调试过程

1.1 实验目的

- (1) 了解 MDK 开发环境建立过程
- (2) 掌握 Wision IDE 下创建 C语言工程 (Project) 的基本步骤
- (3) 了解 Project 的组成和 Project 管理的作用
- (4) 了解基于软件仿真的系统开发流程
- (5) 养成查阅联机帮助的习惯,并掌握联机帮助查询技巧
- (6) 养成调试习惯,并掌握基础代码调试技巧

1.2 实验内容

1.2.1 MDK 基于 C 程序 Project 的建立、编译、链接

[1-1] 建立一个用于存放工程的目录,该目录将用于保存和工程相关的所有文件(建议初学者每个工程都建立一个单独的目录)。

[1-2] 双击桌面 Keil Wision5 图标,通过 IDE 环境的主菜单 "Project" → "New Wision Project" 创建 Project,选择保存工程的目录和工程名。 选择 Device 为 "STMicroelectronics->STM32F4 Series->···->STM32F407ZG"如下图 1-1 所示(如果选择了其他 Device,后续界面显示会略有差异)。

图 1-1 创建 Project 过程的 Device 选择

- [1-3] 配置 Manage Run-Time Environment,选择 CMSIS 库模块和对应 Device 的启动文件(Startup)。
- ◆ 勾选 CMSIS :: CORE Keil μVision 自带的 CMSIS 库的核心模块
- ◆ 勾选 Device :: Startup 对应 Device 的启动文件 (Startup)

图 1-2 Manage Run-Time Environment 配置界面示意

[1-4] 工程建立完成后需要对工程进行必要配置,点击工具栏魔术棒图标 "Options for Target",如图 1-3 所示 IDE 已根据所选 Device 完成 ROM 和 RAM 地址空间配置。

图 1-3 工程配置 Target 界面

切换至 Debug 页,选择仿真器类型,如图 1-4 所示从默认 ULINK 改为 J-LINK。

图 1-4 选择实验平台的仿真器类型

点击 "Settings" 按钮,显示实验平台使用的仿真器资源属性。

	Adapter	JIAG De	vice Chain —			
SN: 429496729	T		IDCODE	Device Name	IR] 🔺	Move
Device: J-I	Link ARM	TDO	⊙ 0x4BA0	ARM CoreSight JTAG-DP	4	Up
HW : V8.00	dll V4.90	TDI	0x0641	Unknown JTAG device	5	Down
FW : J-Link AR	M V8 compiled 1	101				
ort:	Max		omatic Detecti			
JTAG ▼	20MHz ▼	C Man	ial Configurat	i Device Name:		
	Auto Clk	Add	Delete U	Jpdate IR len:		
		1				
Connect & Reset	▼ leset: N	Tormal	▼ ▽	Cache Code	ad Option ify Code aload to	Downlo
▼ Reset after					-Misc-	
▼ Reset after Interface					100000000000000000000000000000000000000	100
	IP Network	: Settings-	7	Autodetect	TLin	k Info
-Interface	IP Network	es	Port			k Info
Interface • USB C TCP/	IP Network	-		Autodetect Ping		k Info dk Cmd

图 1-5 仿真器资源属性

至此工程建立完成,工程建立后必须添加相关源文件和包含头文件等。

```
[1-5]建立 C 源文件。File->New 建立文件,并添加代码如下:
int main (void)
{
    unsigned int ui_tmp;
```

unsigned int ui_a, ui_b, ui_c;

```
ui_tmp = 255;
ui_a = 1;
ui_b = 2;
ui_c = 0xFF;
```

添加代码后,保存文件为***. C表示保存为文件名不限的 C源文件。

图 1-6 新建 C 源文件

[1-6] 添加源文件至 Project。

图 1-7 在 Project 中添加已有的 C 文件

[1-7] 编译、链接 Project。 可从主菜单 "Project"选择 "Build Target",或 采用热键 "F7",或者点击工具栏按钮 ,如图 1-8 所示。

图 1-8 Build Target 操作示意

编译过程请注意观察 Build Output 窗口的输出,如图 1-9 所示。有错误,都 会在 Build Output 窗口有输出提示。

```
Build Coutput

Build target 'Target 1'
compiling ustc_sample_basic_c.c...
linking...

Program Size: Code=608 RO-data=992 RW-data=4 ZI-data=3628
".\Objects\ustc_basic_c.axf" - 0 Error(s), 0 Warning(s).
Build Time Elapsed: 00:00:01
```

图 1-9 Build Output 窗口示意

注意:示例代码如有警告信息,可以在变量声明前加"volatile"关键字修饰。volatile unsigned int ui tmp;

1.2.2 Project 的调试(Debug)

[1-8] 程序编译链接无误后,点击工具栏 , Download 下载执行。在 main 函数 第一行中设置断点(Breakpoint),以便后续采用单步跟踪方式执行程序。 在程序中设置断点有 3 种方式,如图 1-10 所示。

- □ 方法 1: 点击菜单 Debug → Insert/Remove Breakpoint
- □ 方法 2: 点击工具栏上设置断点图标
- □ 方法 3: 用热键 F9

图 1-10 设置断点的 3 种途径(菜单、工具栏图标、热键 F9)

[1-9] 以调试方式执行程序(菜单 Debug → Start/Stop Debug Sesssion, 或热键 CTRL+F5)。

图 1-11 进入调试状态的 2 种方法(菜单、热键 CTRL+F5)

常用的程序调试操作包括: Run(运行到下一个断点), Step(单步运行、会进入子函数内部), Step Over(单步运行、不会进入子函数内部), Run to cursor line(运行到光标位置)、设置/取消断点等功能,各项功能均可以通过点击菜单项或使用热键触发,如图 1-12 所示。请逐一测试功能,如果程序完毕或调试进入了不可理解的状态,可随时通过 CTRL+F5 结束本次调试,再重头开始调试。

图 1-12 调试状态下可以进行的操作示意

注意: 由于在执行 main()函数前需要先执行启动文件中代码,故而以调试方式运行程序 可能需要多次 Run(F5)才能到达 main()函数中的断点。

[1-10] 通过试验分析图 1-13 所示 Debug 工具栏(红色框内)各个图标对应功能的区别。

[1-11] 单步调试过程中观察通用寄存器的变化,即图 1-14 所示左边的子窗口内各个寄存器。

图 1-14 调试过程各个监测窗口示意图

[1-12] 单步调试过程中观察反汇编(Diassembly)窗口中汇编代码与 C 程序行的 关系,如图 1-14 中上子窗口所示。课程不要求记住汇编指令,但是在 C 程序行和

汇编指令映射关系确 定的情况下,应具备读懂汇编指令的能力。如果遇到反汇编(Diassembly) 窗口未显示情况, 可以点击菜单 View → Diassembly Window。

[1-13] 单步调试过程中观察 Call Stack + Locals 子窗口的变量值变化情况,即图 1-14 所示右 上子窗口。如果遇到 Call Stack + Locals 子窗口未显示情况,可以点击菜单 View → Call Stack Window。

[1-14] 单步调试过程中观察 Memory 1 子窗口显示的存储器内容变化情况,即图 1-14 所示 右中子窗口,图 1-16 中该子窗口显示的起始地址是 SP 寄存器中保存的值。如果遇到 Memory1 子窗口未显示情况,可以点击菜单 View → Memory Window → Memory1。

[1-15] 单步调试过程中观察 Memory 2 子窗口显示的存储器内容变化情况,即图 1-14 所示 右下子窗口,图 1-14 中该子窗口显示的起始地址是 Cortex-M4 的 SRAM 区起始地址。如果 遇到 Memory2 子窗口未显示情况,可以点击菜单 View \rightarrow Memory Window \rightarrow Memory2。 MDK 支持看是 4 个 Memory Window。

[1-16] 通过 Watch 窗口(主菜单 View → Watch Window) 观察一下代码执行前后变量值。 Watch Window 中可输入拟监控的变量, MDK 支持 2 个 Watch window。

图 1-15 Watch Window 示意图

1.2.3 μVision 联机资源使用

[1-17] 打开联机帮助文档(菜单 Help → μVision Help),搜索 "Disassembly Window"的作用。阅读返回结果中关于"Instruction Trace Window"的信息,如图 1-16 所示。

图 1-16 联机帮助搜索 "Disassembly Window" 的返回结果

1.3 实验练习及思考题(五次实验后提交)

```
1. 观察以下变量存放格式并记录。
int main (void)
   unsigned int ui tmp;
   unsigned int ui a, ui b, ui c;
                        //signed int (32bits)
   static int i tmp;
   static short s16 tmp; //signed short (16bits)
   static float f tmp;
                      //floating point (32bits)
   static int s[8];
   int k:
   //记录浮点数 IEEE754 规范表示方法
   f tmp = -0.5;
   f_{tmp} = f_{tmp} + 1;
   //临时变量,观察 ui_tmp, ui_a, ui_b, ui_c 被保存在哪里
   //观察执行前后 PC 寄存器
   ui a = 1;
   ui_b = 2;
   ui c = 0xFF;
   //观察执行后 PSR 寄存器的标志位 Negtive
   ui_c = ui_a - ui_b;
   ui tmp = ui c;
```

```
//观察数的表示方法(补码)
i_tmp = -1;
i_tmp = i_tmp - 1;
s16_tmp = -1;
s16_tmp = -2;
s16_tmp = s16_tmp - 32766;

//单步跟踪观察循环体执行过程
for(k=8; k>0; --k)
s[k-1] = 0x80000000 + k;
```

- 2. 编写子函数实现统计 unsigned char 型数据中二进制"1"数量的功能。例: unsigned char uc_c=0x78;统计结果为 4,提示: 可使用 C 语言中"位与"及"移位"功能实现。
- 3. 使用 CMSIS-CORE 函数实现底层操作并记录读取内容。 阅读教材 P278~P282,特殊寄存器。单步执行程序中如下代码并记录,对比 ui tmp 的值和 Register 窗口观察到的数值是否一致,如图 1-17 所示。

注意:相关 CMSIS-CORE 函数调用需包含头文件#include "stm32f4xx.h"

```
ui_tmp = __get_FAULTMASK(); //Get Fault Mask register
ui_tmp = __get_BASEPRI(); //Get Base Priority register
ui_tmp = __get_PRIMASK(); //Get Priority Mask Register
ui_tmp = __get_CONTROL(); //Get CONTROL Register
ui_tmp = __get_MSP(); //Get Main Stack Pointer
```


图 1-17 使用 CMSIS-core 函数访问寄存器

1.4 附录

附录 STM32F407 实验箱管脚约束

名称	信号名	管脚	名称	信号名	管脚
LED 灯	D0	PG11		SEG_A	PG7
	D1	PG10		SEG_B	PG6
	D2	PG9		SEG_C	PG5
	D3	PD7		SEG_D	PG4
	D4	PG3		SEG_E	PA8
	D5	PG2		SEG_F	PC7
	D6	PD13		SEG_G	PC6
	D7	PD12	SEG 数码管	SEG_DP	PG8
	DIP0	PE4	SEC WHO	SEG_S0	PF13
	DIP1	PE5		SEG_S1	PG0
DIP	DIP2	PC14		SEG_S2	PE9
	DIP3	PC15		SEG_S3	PF12
	DIP4	PF0		SEG_S4	PE8
	DIP5	PF1		SEG_S5	PE7
	DIP6	PF2		SEG_S6	PE10
	DIP7	PF3		SEG_S7	PF11
	SW_RST	NRST		LCD_CS	PG1
轻触开关	SW0	PE0	LCD12864	LCD_SID	PF15
	SW1	PE1		LCD_CLK	PF14
	SW2	PE2	DC222 TOD	GPIO_UART_TXD	PA9
	SW3	PE3	RS232_TOP	GPIO_UART_RXD	PA10
DC422	RS422_TXD	PA2		RTC_RST	PC5
RS422	RS422_RXD	PA3	DS1302	RTC_IO	PB5

DS18B20	Tem_IN	PG14		RTC_SCLK	PG15
---------	--------	------	--	----------	------

名称	信号名	管脚	名称	信号名	管脚
矩阵键盘	SW_C0	PF10		SCL_I2C	PB8
	SW_C1	PC4	24LC02	SDA_I2C	PB9
	SW_C2	PA0	93LC46	SPI2_CS	PB12
	SW_C3	PA1		SPI2_MISO	PB14
	SW_R0	PF4		SPI2_MOSI	PB15
	SW_R1	PF5		SPI2_SCK	PB13
	SW_R2	PF8		PWM_OUT1	PB10
	SW_R3	PF9	PWM	PWM_OUT2	PB11
IR	INF_IN	PB0		SDIO_D0	PC8
ADC	ADC_IN1	PC3		SDIO_D1	PC9
	ADC_IN2	PC2		SDIO_D2	PC10
	ADC_VOL	PC1	SD	SDIO_D3	PC11
	ADC_VOL_G	PC0		SDIO_CMD	PD2
	DAC_OUT1	PA4		SDIO_CLK	PC12
DAC	DAC_OUT2	PA5		VS_MISO	PA6
	USB_D+	PA12		VS_MOSI	PA7
CAN/USB	USB_D-	PA11		VS_SCLK	PA5
			VS1003	XCS	PF7
				XDCS	PF6
				DREQ	PC13
				XRESET	PE6