МГТУ им. Н.Э. Баумана

Дисциплина основы электроники Лабораторный практикум №3

> Работу выполнил: студент группы ИУ7-31Б Костев Дмитрий

> > Работу проверил:

Цель работы: получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах **Multisim** и Mathcad по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

Диод моего варианта:

```
* Variant 10
.model D2d251b D(Is=504f Rs=4.988m Ikf=28.24 N=1 Xti=3 Eg=1.11 Cjo=838.3p
+ M=.4544 Vj=.75 Fc=.5 Isr=4.491u Nr=2 Bv=70.2 Ibv=.5173
+ Tt=24.58n)
```

Добавим диод в базу для работы в **Multisim** Создадим новое семейство, где будут размещаться добавленные компоненты.

Окно находится по данному пути: Tools -> Database -> Database Manager

Далее запустим мастер создания компонента: **TOOLS** -> **Component Wizard**. Добавим имя для нового компонента, также можно указать имя автора

Далее видим окно с выбором количества выводов компонента

Выбираем вид Диода:

Задаем параметры контактов

Теперь добавляем описание диода из библиотеки диодов в соответствии со своим вариантом:

Для правильной работы модели необходимо назначить узлы графического изображения и модельного представления для однозначного соответствия одному другому

Теперь добавим диод в добавленное ранее семейство компонентов

Строим стенд моделирования и производим замеры тока и напряжения через мультиметры

Произведем настройку для построения ВАХ

Построим ВАХ для прямого включения

vv1 Voltage (V)

-12µ

-16µ

<u>√</u> <u>I(DU1[ID])</u>

Legend

Исследование ВАХ диода с помощью осциллографа и генератора

Собираем стенд

Настраиваем приборы и запускаем осциллограф

Передаем данные в GrapherView

Дальше точки переводим файл с расширение dlm и передаем его в **Mathcad**

Рассчитаем параметры диода через Given Minerr и сравним экспериментальную ВАХ с теоретической

$$\begin{aligned} &\text{Ud} := \text{VAX}^{(0)} & \text{Id} := \text{VAX}^{(1)} \\ &\text{Rb} := 0.001 \text{ Is0} := 0.0000001 & \text{m}_{\text{M}} := 0.02 \end{aligned}$$
 Ft := 0.02 Given
$$&\text{Ud}_{10} = \text{Id}_{10} \cdot \text{Rb} + \text{Im} \left[\frac{(\text{Is0} + \text{Id}_{10})}{\text{Is0}} \right] \text{m-Ft}$$

$$&\text{Ud}_{15} = \text{Id}_{15} \cdot \text{Rb} + \text{Im} \left[\frac{(\text{Is0} + \text{Id}_{15})}{\text{Is0}} \right] \text{m-Ft}$$

$$&\text{Ud}_{17} = \text{Id}_{17} \cdot \text{Rb} + \text{Im} \left[\frac{(\text{Is0} + \text{Id}_{17})}{\text{Is0}} \right] \text{m-Ft}$$

$$&\text{Ud}_{5} = \text{Id}_{5} \cdot \text{Rb} + \text{Im} \left[\frac{(\text{Is0} + \text{Id}_{5})}{\text{Is0}} \right] \text{m-Ft}$$

$$&\text{Diod}_{P} := \text{Minerr} (\text{Is0}, \text{Rb}, \text{m, Ft}) = \begin{pmatrix} 1.522 \times 10^{-5} \\ 26.247 \\ 2.116 \\ 0.029 \end{pmatrix}$$

$$&\text{Idiod} := \text{VAX}^{(1)} \quad \text{Rb1} := \text{Diod}_{P} \text{1} \quad \text{Is01} := \text{Diod}_{P} \text{0 NFt1} := \text{Diod}_{P} \text{2-Diod}_{P} \text{3}$$

$$&\text{Uformula}(\text{Idiod}) := \text{Idiod} \cdot \text{Rb1} + \text{NFt1} \cdot \text{Im} \left[\frac{(\text{Idiod} + \text{Is01})}{\text{Is01}} \right]$$

$$&\frac{5 \times 10^{-3}}{\text{Idiod}} \\ &\frac{\text{VAX}^{(1)}}{\text{Idiod}} &\frac{3 \times 10^{-3}}{\text{2-10}^{-3}} \\ &\frac{\text{VAX}^{(1)}}{\text{Idiod}} &\frac{3 \times 10^{-3}}{\text{2-10}^{-3}} \end{aligned}$$

0.2

 $\mathrm{VAX}^{\left\langle 0\right\rangle }\,,\mathrm{Uformula}\left(\mathrm{Idiod}\right)$

0.4

0.6

 1×10^{-3}

0.2

Исследование выпрямительных свойств диода с помощью осциллографа

Собираем стенд моделирования и настраиваем осциллограф

Показания осциллографа

Подключаем свой диод в схему

Добавим в схему накопительный конденсатор

 \times Oscilloscope-XSC1 Channel_A Channel_B Time T1 ← → Reverse 18.624 V 2.776 s 0.000 V T2 **→** 2.776 s 0.000 V 18.624 V Save 0.000 V 0.000 V T2-T1 0.000 sExt. trigger Timebase Channel A Channel B Trigger 1 ms/Div Scale: 10 V/Div Scale: 10 V/Div Scale: Edge: **∡ A** B Ext X pos.(Div): 0 Y pos.(Div): 0 Y pos.(Div): 0 Level:

Y/T Add B/A A/B

AC 0

DC

DC

AC 0

Single Normal Auto None