

COMBINATIONAL LOGIC

MULTIPLEXER DEMULTIPLEXERS

DIGITAL LOGIC DESIGN

Iqra Chaudhary (Lecturer CS dept. NUML)

Multiplexer

★ Multiplexer is a combinational circuit that has 2ⁿ input lines, n selection lines and a single output line. The select lines determine which input is connected to the output.

Multiplexer Block Diagram

- **★ Multiplexer a**lso known as a data selector.
- ★ Mux acts as an electronic switch.It Allows for conditional transfer of data.
- **★** MUX Types
 - \rightarrow 2-to-1 (1 select line)
 - \rightarrow 4-to-1 (2 select lines)
 - \rightarrow 8-to-1 (3 select lines)
 - \rightarrow 16-to-1 (4 select lines)

Multiplexers

Typical Application of a MUX

Multiplexers: 2-to-1 lines mux

(a) Logic diagram

(b) Block diagram

$$Y = I_0 \overline{S}_0 + I_1 S_0$$

Fig. 4-24 2-to-1-Line Multiplexer

Multiplexers: 4 to 1 line mux

$S_1 S_0$	Y
0 0	$\mathbf{I_0}$
0 1	I_1
1 0	I_2
1 1	I_3

$$\mathbf{Y} = \overline{\mathbf{I}_0} \overline{S}_I \overline{S}_0 + \overline{\mathbf{I}_1} \overline{S}_I S_0 + \overline{\mathbf{I}_2} S_I \overline{S}_0 + \overline{\mathbf{I}_3} S_I S_0$$

What is a Demultiplexer (DEMUX)?

★ Demux is a combinational circuit that has a single input lines, n selection lines and 2ⁿ output line. The select lines determine which output the input is connected to.

★ DEMUX Types

- **→** 1-to-2 (1 select line)
- **→** 1-to-4 (2 select lines)
- **→** 1-to-8 (3 select lines)
- **→** 1-to-16 (4 select lines)

Typical Application of a DEMUX

DeMultiplexers (1 to 4 lines demux)

$S_1 S_0$	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	Ι
0 1	0	0	I	0
1 0	0	I	0	0
1 1	Ι	0	0	0

$$Y_0 = \overline{IS}_1 \overline{S}_0$$

$$Y_I = \overline{IS}_I S_0$$

$$Y_2 = \mathbf{I} S_1 \, \overline{S}_0$$

$$\mathbf{Y}_3 = \mathbf{I} S_1 S_0$$

Multiplexer / DeMultiplexer Pairs

DeMultiplexers / Decoders

Multiplexer Expansion

★ 8-to-1 MUX using Dual 4-to-1 MUX and single 2-to-1 MUX

Motivation

★ Design a single bit ALU

