

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

C	CIRCUITOS DIGITALES		7	10
	Asignatura	Clave	Semestre	Créditos
INGENIEI E IND	INGENIERÍA MECÁNICA E INDUSTRIAL INGENIERÍA MECATI		INGENIERÍA MECATRÓNICA	
	División Departamento		Licenciatura	
Asigna Obligat		Horas/semana: Teóricas 4.0	Horas/seme Teóricas	estre: 64.0
Obligat	ona A	100110as 4.0	Teoricas	04.0
Optativ	a	Prácticas 2.0	Prácticas	32.0
		Total 6.0	Total	96.0
_	atoria antecedente: El			
•		, media y alta escala de integración, as as digitales.	sí como diferentes	metodologías
Temario				
NÚM.		1	HOR	
1. 2.	Introducción a los circuitos digitales		12 12	
2. 3.	Máquinas de estado algorítmico (cartas ASM) Microprogramación y diseño de microprocesadores			3.0
3. 4.	Programación de microcontroladores			2.0
			3-	
			64	.0
	Actividades prácticas		32	0
	Total		96	5.0

1 Introducción a los circuitos digitales

Objetivo: El alumno identificará las características técnicas de los dispositivos digitales así como, el uso para la implementación de circuitos combinacionales y secuenciales.

Contenido:

- **1.1** Compuertas TTL, DTL, RTL y CMOS. Voltaje de los estados lógicos (VIH, VIL, VOH y VOL). Concepto de fanout, conexión entre compuertas TTL y CMOS.
- **1.2** Diagramas lógicos y diagramas de conexiones, implementación de funciones con compuertas NAND, NOR, multiplexores y decodificadores.
- 1.3 Circuitos secuenciales: modelo Mealy y modelo Moore, diagramas de estado, registros (ES/SS, EP/SS, ES/SP, EP/SP, registro universal), memorias (tipos de memorias, direccionamiento, expansión del tamaño de palabra y tamaño de la memoria, partición de memoria).
- **1.4** PLDs, implementación de funciones booleanas, implementación de circuitos secuencias con funciones de estado, el PLD como máquina de estado (síncrona y asíncrona).

2 Máquinas de estado algorítmico (cartas ASM)

Objetivo: El alumno usará la técnica de máquinas de estado para la solución de problemas con múltiples entradas y salidas para la solución de circuitos secuenciales.

Contenido:

- **2.1** Definición de una carta ASM, componentes de una carta ASM, proceso de diseño, representación de estructuras while y for.
- 2.2 Implementación de cartas ASM con memorias y registros.
- 2.3 Implementación de cartas ASM con PLDs.
- 2.4 Diseño auxiliado con multiplexores, decodificadores, contadores y registros.

3 Microprogramación y diseño de microprocesadores

Objetivo: El alumno comprenderá el funcionamiento y la arquitectura de un microprocesador así como, la secuencia de operación para la ejecución de instrucciones.

Contenido:

- **3.1** Direccionamiento por trayectoria, direccionamiento entrada-estado, direccionamiento implícito, direccionamiento en formato variable.
- 3.2 Lenguaje de trasferencia de registros y microinstrucciones.
- 3.3 Instrucciones y ciclo de fetch, códigos de instrucción.
- **3.4** La unidad de procesamiento (ALU, bus de datos, bus de instrucción, registro de instrucción, contador de programa, el registro de status, stack pointer).

4 Programación de microcontroladores

Objetivo: El alumno experimentará la operación de un microcontrolador, así como de sus periféricos a través de la programación en lenguaje ensamblador y de alto nivel.

Contenido:

- **4.1** Introducción (diferencia entre un microprocesador y un microcontrolador), arquitecturas y periféricos, herramientas de desarrollo.
- **4.2** Estructura del lenguaje ensamblador e instrucciones del microcontrolador.
- 4.3 Interrupciones (definición, el Stack Pointer, vector de interrupción, manejo de interrupciones).
- 4.4 El timer (interrupción en tiempo real, contador de eventos externos, salida de comparación).
- 4.5 Modulación de ancho de pulso (PWM), programación y aplicaciones.
- **4.6** El convertidor analógico digital (arquitectura, configuración y aplicaciones).
- 4.7 Configuración serial asíncrona (definición, configuración y aplicación).

- 4.8 Configuración serial síncrona (definición, configuración y aplicación).
- 4.9 Lenguaje de alto nivel.
- **4.10** Combinación de lenguaje de alto nivel y lenguaje ensamblador.

Bibliografía básica	Temas para los que se recomienda:
FLETCHER, William	
An Engineering Approach to Digital Design	1,2,3,4
E.U.A.	
Prentice Hall, 1980	
MORRIS, Mano	
Diseño Digital	1,2,3,4
3a edición	
México	
Prentice Hall, 2003	
NASHELSKY	
Fundamentos de tecnología digital	1,2,3,4
México	
Limusa, 1993	

Bibliografía complementaria

Temas para los que se recomienda:

AXELSON, Jan
Serial Port Complete

E.U.A.

Madison, 1998

	(4/4)
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Uso de software especializado Uso de plataformas educativas	Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo Búsqueda especializada en internet Uso de redes sociales con fines académicos
Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula	Participación en clase Asistencia a prácticas X

Ingeniero Mecatrónico, Mecánico, Electrónico o afín. Preferentemente con posgrado, con conocimientos teóricos y prácticos y con amplia experiencia en el diseño de sistemas digitales. Con experiencia docente o con preparación en los programas de formación docente de la Facultad.

