Sagemath Quiz Pointers

Jia Cheng

November 2020

Quiz Instructions

- 1. The quiz covers all materials in SageMath Notes Lesson 1-5.
- 2. There are 8 sections, and the total mark is 8.
- 3. The LumiNUS quiz system will select one question from each section to generate a paper for you.
- 4. All questions are fill-in-blank questions, and all answers are positive numbers.
- 5. If the answer is an integer, fill in that integer. For example, the answer of 1+1 is 2. Note that 2.0 is wrong!
- 6. If the answer is not an integer, correct to 5 decimal places. For example, if the answer is the Euler number e = 2.718281828..., then only numerical answer between 2.71828 and 2.71829 are acceptable.
- 7. If the answer is 0.5, since it is not an integer, how can I key in the answer? The answers like 0.5, 0.50, 0.500, 0.5000, 0.50000 are all acceptable.

Pointers

- Suggested variables
 - summation index i
 - summation limits m, n
 - derivative limit h
 - eval function at values x=a, y=b
 - function f(x), first derivative g(x), second derivative h(x)
- Remember to use var("y") when creating expressions that use y as a variable
- Plotting functions
 - Plotting 2 single variable functions
 plot((f(x), g(x)), (x, left_limit, right_limit), ymin=..., ymax=..., plot_points=...,
 color=("red", "violet"))
 - Plotting 2 implicit functions
 A = implicit_plot(f(x, y), (x, left_limit, right_limit), (y, left_limit, right_limit))

```
B = implicit\_plot(g(x, y), (x, left\_limit, right\_limit), (y, left\_limit, right\_limit)) \\ A+B
```

- f(x).derivative(x)
 - This is the variable of differentiation.
- f(x, y).implicit_derivative(y, x)
 - Note that ...(y, x) is for finding dy/dx. So if we want to find dx/dy, then use ...(x, y) as the params.
- The right way to use implicit_derivative
 - Suppose $f(x,y) = x^2 + y^2 = 1$, $g(x,y) = x^2 + y^2 1$
 - f(x, y).implicit_derivative will cause errors. Instead, do g(x, y).implicit_derivative
 - In other words, implicit_derivative accepts functions instead of equations
- Integrals
 - Indefinite f(x).integral(x)
 - Definite f(x).integral(x, a, b)
 - Algorithms: Default(Maxima), sympy, mathematica_free, giac f(x).integral(x, a, b, algorithm="name of algorithm") sympy is recommended
 - When differentiating an integral, use hold=True As an example, cos(t^2).integral(t, cos(x), 5*x, hold=True).derivative(x).show()
- Generic function
 - To declare f as a function in variable t,
 var("t")
 function("f")(t)
- For complicated expressions
 - .factor()
 - .full_simplify()
 - .expand()
- Differential Equations
 - function("y")(x)
 desolve(y(x).derivative(x) == x+y(x), y(x))
 - With initial conditions
 ode = y(x).derivative(x) == x+y(x)
 desolve(ode, y(x), ics=[1,2])
 In general, ics=[x,y,dy/dx]
- Evaluation functions
 - .find_root(left_limit, right_limit)
 Example: (log(x) == sin(x)).find_root(1, 3)

```
    - .n(digits=...)
        For numerical approximation

    - .solve(x)
        Example: (g(x)==x).solve(x, algorithm="sympy")
```

- Other helper functions
 - .is_prime()
 - .is_real()