Feuille d'exercices 28 : Espaces euclidiens

1 Produit scalaire et norme euclidienne associée

Exercice 1. Soit:

$$\varphi: \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$$

$$(P,Q) \mapsto \sum_{k=0}^n P(k)Q(k).$$

Montrer que φ est un produit scalaire sur $\mathbb{R}_n[X]$.

Exercice 2. Soit (E, <, >) un espace euclidien. Montrer que : $\forall x, y, z \in E, ||x - z||^2 \le 2(||x - y||^2 + ||y - z||^2)$.

Exercice 3. Soit (E, <,>) un espace euclidien. Soient $f, g \in \mathcal{L}(E)$ tels que :

$$\forall x \in E, \|f(x)\| = \|g(x)\|.$$

Montrer que:

$$\forall x, y \in E, < f(x), f(y) > = < g(x), g(y) > .$$

Exercice 4. Soit $\phi: \mathcal{M}_n(\mathbb{R})^2 \to \mathbb{R}$ $(A,B) \mapsto \operatorname{tr}(^tAB)$.

On rappelle que tr(M) désigne la somme des coefficients diagonaux de M.

1. Montrer que ϕ définit un produit scalaire sur E.

2. En déduire que pour $(a_{i,j})_{1 \le i,j \le n} \in \mathbb{R}^{n^2}$, $\left| \sum_{i=1}^n \sum_{j=1}^n a_{i,j} \right| \le n \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$ et préciser les cas d'égalité.

Exercice 5. Soit $n \in \mathbb{N}^*$, soient $x_1, \ldots, x_n \in \mathbb{R}^{+*}$ tels que $\sum_{i=1}^n x_i = 1$. Montrer que :

$$\sum_{i=1}^{n} \frac{1}{x_i} \ge n^2.$$

Etudier le cas d'égalité.

Exercice 6. Soient a < b, soit $f \in \mathcal{C}([a,b],\mathbb{R})$ telle que f ne s'annule pas sur [a,b]. Montrer que :

$$\int_{a}^{b} f(t) dt. \int_{a}^{b} \frac{1}{f(t)} dt \ge (b - a)^{2}.$$

et caractériser le cas d'égalité.

Exercice 7. On considère l'espace $E = \mathcal{C}^1([0,1],\mathbb{R})$ et on pose :

$$\forall f, g \in E, \quad \langle f, g \rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Établir que :

$$\forall f \in E, \quad \left(f(1) + \int_0^1 f'(t)dt\right)^2 \le 2\left(f(1)^2 + \int_0^1 f'(t)^2dt\right).$$

Exercice 8. Soit (E, <,>) un espace euclidien. Montrer que :

$$\forall n \in \mathbb{N}^*, \forall x_1, \dots, x_n \in E, \left\| \sum_{k=1}^n x_k \right\|^2 \le n \sum_{k=1}^n \|x_k\|^2.$$

Orthogonalité 2

Exercice 9. Soit E un espace euclidien.

- 1. Soit $f: E \to E$ vérifiant f(0) = 0 et : $\forall (x, y) \in E^2$, ||f(x) f(y)|| = ||x y||. Montrer que f est linéaire.
- 2. Soient $f, g: E \to E$ vérifiant : $\forall (x,y) \in E^2, \langle x, f(y) \rangle = \langle g(x), y \rangle$. Montrer que f et g sont linéaires.

Exercice 10. Soit $n \in \mathbb{N}^*$ et soient $e_1, \ldots, e_n \in E$ tels que :

$$\forall i \in [1, n], ||e_i|| = 1 \text{ et } \forall x \in E, ||x||^2 = \sum_{k=1}^n \langle e_k | x \rangle^2.$$

Montrer que (e_1, \ldots, e_n) est une famille orthonormale de E, puis que c'est une base de E. En déduire que E est de dimension finie.

Exercice 11. Soit E un espace préhilbertien. Soient F et G des sous-espaces vectoriels de E. Montrer que :

$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp},$$

$$F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}.$$

Montrer l'égalité lorsque E est de plus de dimension finie.

Exercice 12. Orthonormaliser pour le produit scalaire canonique la famille de \mathbb{R}^3 :

$$u_1 = (1, 1, 0), u_2 = (1, 0, 1), u_3 = (0, 1, 1).$$

Exercice 13. Orthonormaliser, pour le produit scalaire usuel, la base suivante de \mathbb{R}^4 :

$$u_1 = (0, 1, 1, 1), u_2 = (1, 0, 1, 1), u_3 = (1, 1, 0, 1), u_4 = (1, 1, 1, 0).$$

Exercice 14. Soit $n \in \mathbb{N}^*$ et soit $E = \mathbb{R}_n[X]$. On pose :

$$\forall P, Q \in E, (P|Q) = \int_{-1}^{1} P(t)Q(t)dt.$$

- 1. Montrer que (.|.) défini un produit scalaire sur E.
- 2. On pose n=3. Orthonormaliser la base canonique de E pour le produit scalaire (.|.).

Exercice 15. Montrer que l'application suivante est un produit scalaire sur \mathbb{R}^3 :

$$\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \\ ((x_1, x_2, x_3), (y_1, y_2, y_3)) \mapsto (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$

Orthonormaliser pour ce produit scalaire la base canonique de \mathbb{R}^3 .

 $\begin{array}{cccc} \phi: & \mathbb{R}_2[X]^2 & \to & \mathbb{R} \\ & (P,Q) & \mapsto & P(1)Q(1) + 2P'(1)Q'(1) + 3P''(1)Q''(1) \end{array}.$ Exercice 16. On définit

- 1. Montrer que ϕ définit un produit scalaire.
- 2. Donner une base orthonormale de $\mathbb{R}_2[X]$.

Exercice 17. Dans \mathbb{R}^2 , déterminer si les applications suivantes définissent un produit scalaire, et, si oui, donner une base orthonormale de \mathbb{R}^2 :

- $\begin{array}{l} 1. \;\; \phi: ((x,y),(x',y')) \mapsto 2xx' + 2yy' + xy' + x'y. \\ 2. \;\; \phi: ((x,y),(x',y')) \mapsto 2xx' + yy' + 4xy' + 4x'y. \end{array}$

$$\phi: \mathbb{R}_2[X]^2 \to \mathbb{R}$$

Exercice 18. On définit

$$(P,Q) \mapsto \sum_{k=0}^{2} P(k)Q(k) .$$

- 1. Montrer que ϕ définit un produit scalaire.
- 2. Donner une base orthonormale de $\mathbb{R}_2[X]$ pour ce produit scalaire.

Exercice 19. Soit E un espace euclidien, soient $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. On suppose que les matrices de f et de q dans une base orthonormée sont respectivement symétriques et antisymétriques. Montrer que:

$$\forall x \in E, \langle f(x), g(x) \rangle = 0,$$

et

$$\forall x \in E, \|(f - g)(x)\| = \|(f + g)(x)\|.$$

Exercice 20. On munit $E = \mathcal{C}^0([0,1],\mathbb{R})$ du produit scalaire défini par :

$$\forall f, g \in E, (f|g) = \int_0^1 fg.$$

On considère l'espace vectoriel $H = \{ f \in E, f(0) = 0 \}.$

- 1. Soit $f \in H^{\perp}$. On pose $g: t \mapsto tf(t)$. Que peut-on dire de f et g? En déduire que f = 0.
- 2. En déduire H^{\perp} et $(H^{\perp})^{\perp}$.

3 Projection orthogonale sur un sous-espace vectoriel

Exercice 21. Soit E un espace euclidien. Soit $u \in E \setminus \{0\}$ et soit $H = (\text{Vect}(u))^{\perp}$. Soit p la projection orthogonale sur H et s la symétrie orthogonale par rapport à H, c'est-à-dire la symétrie par rapport à H parallèlement à H^{\perp} .

1. Montrer que :

$$\forall x \in E, \, p(x) = x - \frac{(x|u)}{\|u\|^2} u.$$

2. Montrer que:

$$\forall x \in E, \, s(x) = x - 2 \frac{(x|u)}{\|u\|^2} u.$$

Exercice 22. On se place dans \mathbb{R}^4 muni du produit scalaire usuel.

On pose:

$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0, x - y + z - t = 0\}.$$

Déterminer la matrice dans la base canonique de la projection orthogonale sur F.

Exercice 23. On se place dans \mathbb{R}^4 muni du produit scalaire usuel.

On pose:

$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + 3z + 4t = 0, x + 3y + 5z + 7t = 0\}.$$

Déterminer la matrice dans la base canonique de la projection orthogonale sur F.

Exercice 24. Soit p un projecteur de E espace vectoriel euclidien. L'objectif est de prouver que p est une projection orthogonale si et seulement si :

$$\forall x \in E, \|p(x)\| \le \|x\|.$$

- 1. Prouver que si p est un projecteur orthogonale alors : $\forall x \in E, \|p(x)\| \leq \|x\|$...
- 2. On suppose désormais que : $\forall x \in E, ||p(x)|| \le ||x||$.
 - (a) Soit $x \in \text{Im} p$ et $y \in \text{Ker } p$. En considérant le vecteur $u = x + \lambda y$, $\lambda \in \mathbb{R}$, montrer que :

$$\forall \lambda \in \mathbb{R}, \ \lambda^2 ||y||^2 + 2\lambda(x|y) > 0$$

- (b) En déduire que (x|y) = 0
- (c) Montrer que p est un projecteur orthogonal.

Exercice 25. Soit E un espace euclidien et $p \in \mathcal{L}(E)$ un projecteur. Montrer que p est un projecteur orthogonal si et seulement si

$$\forall x, y \in E, \quad < p(x), y > = < x, p(y) > .$$

Exercice 26. Déterminer la projection orthogonale du polynôme X^3 sur $\mathbb{R}_2[X]$ pour le produit scalaire définie par : $\forall (P,Q) \in \mathbb{R}_2[X], < P,Q > = \int_0^1 P(t)Q(t)dt.$

Exercice 27. Soit $E = \mathbb{R}[X]$. On définit :

$$\forall P, Q \in E, (P|Q) = \int_0^1 P(t)Q(t)dt.$$

- 1. Montrer que (.|.) est un produit scalaire sur E. E est-il un espace euclidien?
- 2. Déterminer une base orthonormée de $\mathbb{R}_1[X]$ pour ce produit scalaire.
- 3. Calculer:

$$\min_{(a,b)\in\mathbb{R}^2} \int_0^1 (t^2 - at - b)^2 dt.$$

Exercice 28. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire usuel.

Soit U la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Calculer:

$$\inf_{(a,b)\in\mathbb{R}^2} \|M - aI_n - bU\|.$$

Exercice 29. On note $E = \mathcal{C}([-1,1],\mathbb{R})$ muni du produit scalaire (.|.) défini par :

$$\forall f, g \in E, (f|g) = \int_{-1}^{1} fg.$$

On note $\|.\|$ la norme associée à (.|.) et d la distance associée à $\|.\|$.

Deux sous-espaces vectoriels F et G de E sont dits orthogonaux si : $\forall (x,y) \in F \times G$, (x|y) = 0.

Soit I (resp. P) l'ensemble des fonctions impaires (resp. paires).

- 1. Montrer que I et P sont deux sous-espaces vectoriels de E supplémentaires orthogonaux dans E.
- 2. Soit $f: [-1,1] \to \mathbb{R}, x \mapsto \frac{1}{2+x}$. Calculer d(f,P).

Exercice 30. Soient E un espace euclidien de dimension $n, (x_1, \ldots, x_p) \in E^p$. On définit le déterminant de Gram de ces vecteurs par :

$$Gram(x_1, ..., x_p) = \begin{vmatrix} \langle x_1, x_1 \rangle & ... & \langle x_1, x_p \rangle \\ \vdots & & \vdots \\ \langle x_p, x_1 \rangle & & \langle x_p, x_p \rangle \end{vmatrix}.$$

- 1. Montrer que (x_1, \ldots, x_p) est liée ssi $Gram(x_1, \ldots, x_p) = 0$. On suppose désormais et dans toute la suite de l'exercice que (x_1, \ldots, x_p) est libre et on note $F = \text{Vect}(x_1, \ldots, x_p)$.
- 2. Si B est une base orthonormée de F, montrer que $Gram(x_1,\ldots,x_p) = \det_B(x_1,\ldots,x_p)^2$.
- 3. Montrer que pour $x \in E$, $d(x,F)^2 = \frac{Gram(x,x_1,\ldots,x_p)}{Gram(x_1,\ldots,x_p)}$.

Polynômes orthogonaux

Exercice 31. On considère l'espace $E = \mathbb{R}_n[X]$, et on pose :

$$< P, Q > = \int_0^1 P(t)Q(t)dt.$$

Pour tout $0 \le p \le n$, on pose $Q_p(X) = X^p(X-1)^p$ et $L_p(X) = Q_p^{(p)}$.

- 1. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Montrer que L_p est un polynôme dont on précisera son degré et son coefficient dominant.
- 3. Calculer par intégration par parties $< L_p, L_q > \text{pour } p \neq q$. En déduire que (L_0, \ldots, L_n) est une base orthogonale de $\mathbb{R}_n[X]$.
- 4. Déterminer enfin la norme euclidienne de L_p .

Exercice 32. On considère une fonction continue strictement positive $\omega:[a,b]\to\mathbb{R}$, et on pose :

$$\forall P, Q \in \mathbb{R}_n[X], \quad \langle P, Q \rangle = \int_a^b P(t)Q(t)\omega(t)dt.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. Etablir l'existence et l'unicité d'une base orthonormée de polynômes (P_0, P_1, \dots, P_n) tels que $\deg(P_k) = k$ et $\langle X^k, P_k \rangle > 0$ pour $0 \leq k \leq n$.

En déduire que pour tout $1 \le k \le n$, P_i est orthogonale à $\mathbb{R}_{k-1}[X]$.

3. Etablir, pour $0 \le k \le n$, qu'il existe a_k, b_k, c_k (avec $c_0 = 0$) tels que :

$$XP_k(X) = a_k P_{k+1}(X) + b_k P_k(X) + c_k P_{k-1}(X).$$

- 4. Montrer que $\langle P_k, 1 \rangle = 0$ pour $k \geq 1$, puis en déduire que P_k a au moins une racine x_1 appartenant à]a,b[en laquelle il change de signe.
- 5. On note alors x_1, \ldots, x_p les racines d'ordre impaires de P_k appartenant à]a, b[(2 à 2 distonctes). En considérant le produit scalaire $< P_k, (X x_1) \ldots (X x_p) >$, en déduire que nécessairement p = k, et que les racines de P_k sont simples, réelles et dans]a, b[.