Gram-positieve en negatieve bacteriën

Gram-positieve en negatieve bacteriën

Celwand bacteriën

Bestaat uit peptidoglycaan (polysaccharide van *N*-acetylglucosamine (NAG) en *N*-acetylmuraminezuur (NAM) met aminozuren)

De ketens zijn met elkaar verbonden via peptidebruggen tussen de aminozuren aan de NAM subunits

16e: figuur 2.8

Peptidoglycaan

Tetrapeptide aan NAM:

- 3e aminozuur: diamino aminozuur (b.v. DAP/ Lys)
- 2^e en 4^e aminozuur: D-aminozuur (bijzonder!)
- Crosslinking tussen diamino aminozuur en D-Ala

Crosslinking peptidoglycaanketens

Gram negatieve bacteriën (b.v. *E. coli*):

G M G M G M G M G M G M G M G M G M

- Crosslink tussen aminozuren (direct 3-4)
- Meestal 1 laag

Gram positieve bacteriën (b.v. *S. aureus*):

- Crosslink vaak indirect 3-4 (interpeptidebrug)
- Meerdere lagen (+/- 30)
- Crosslinking vaak in drie dimensies

G: Acetylglucosamine

(M): Muraminezuur

🔵 : aminozuur

Peptidoglycaan

Peptidoglycaan

- Alleen in bacteriën
- NAM en DAP nog nooit gevonden in eukarya en archaea
- Target voor antibiotica!
 (want antibiotica moeten selectief toxisch zijn)

Crosslinking peptidoglycaanketens

1. Losse ketens, 5 a.z., eindigend op D-Ala D-ALA

2. Penicillin binding protein (PBP) is een **transpeptidase.**

3. PBP bindt aan D-ala D-ala (4 en 5)

4. PBP maakt binding tussen DAP (3) en D-ala (4)

5. crosslink is gemaakt

6. PBP laat weer los

β-lactam antibiotica

lijken qua structuur op D-Ala D-Ala

binden covalent aan PBP \rightarrow geen cross-linking \rightarrow peptidoglycaanlaag groeiende cel verzwakt \rightarrow osmotische druk: cel barst open

voorbeelden: penicilline, methicilline, cephalosporine

Lysozym

Enzym in o.a. speeksel en tranen. Knipt de β -1-4-glycosidische binding tussen NAM en NAG => cel lyseert

Gram negatieve bacteriën (b.v. *E. coli*):

Gram positieve bacteriën (b.v. *S. aureus*):

G: Acetylglucosamine

: aminozuur

M: Muraminezuur

Gram-kleuring

Differential stain: onderscheid tussen verschillende cellen

Gram-positive (G+) cells are purple; gram-negative

(G⁻) cells are pink to red

16e: figuur 1.23

Gram-positieve celwand

Teichoinezuren gecrosslinkt aan NAM

Lipoteichoinezuren gecrosslinkt aan fosfolipiden

Gram-negatieve bacteriën

Buitenmembraan bestaat uit lipiden, eiwitten en polysacchariden en biedt bescherming (b.v. tegen galzouten en sommige antibiotica)

16e: figuur 2.12

Lipopolysacchariden

In het buitenmembraan van Gram-negatieve bacteriën

Lipid A is toxisch (endotoxin)

Komt vrij als buitenmembraan uit elkaar valt

Veroorzaakt o.a.: koorts (pyrogeen), ontsteking, diarree, shock bloedingen, bloedstolling

Periplasma en porines

Periplasma:

- ruimte tussen het buiten- en cytoplasmatisch mebraan
- vol met eiwitten → gel-achtige consistentie

Voorbeelden van periplasmatische eiwitten:

- hydrolytische enzymen
- bindingseiwitten

Porhemmakenteen
periplamatisch membraan
relatief goed doorlaatbaar
voor kleine moleculen

"Sucrose porin 1a0s" by Opabinia regalis - Self-created from PDB ID 1A0S using PyMol. Licensed under CC BY-SA 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Sucrose_porin_1a0s.p ng#mediaviewer/File:Sucrose_porin_1a0s.png

Celwand van Archaea

Verschillende varianten (b.v. polysacchariden, (glyco)proteins)

Geen peptidoglycaan

Meestal geen buitenmembraan

Pseudomureine

Bij sommige methanogene Archaea

16e: figuur 2.11

Bacteriën

Archaea

16e: figuur 2.9 en 2.11

N-Acetyltalosaminuronic acid (T) Lysozyme-insensitive CH₃ N-Acetyl group N-Acetylglucosamine (G) C=O β(1,3) CH₂OH NH HO HO NH C=O L-Glu L-Glu CH₃ L-Lys L-Ala L-Lys L-Ala **Peptide** L-Glu cross-link

- N-acetylglucosamine en N-acetylmuramic acid
- β 1,4-glycosidische bindingen
- D stereoisomeren

- N-acetylglucosamine en
 N-acetyltalosaminonuronic acid
- β 1,3-glycosidische bindingen
- L stereoisomeren

S-layer

In bijna alle *Archaea* en in veel bacteriën

Bij veel Archaea dient een dikke S-laag als celwand

(glyco)proteins

Rigide, permeabel, parakristallijn

Soms enige, altijd buitenste laag

Functies o.a.:

- "Moleculaire zeef"
- Aanhechting (ook aan een gastheer!)
- Bescherming tegen afweersysteem gastheer

Variaties in de celenvelop

Bijvoorbeeld:

16e: figuur 2.15 15e: geen figuur

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biologiy of Microorganisms (16th edition, Pearson) tenzij anders vermeld.