Algebra z geometria analityczna

dr Joanna Jureczko

Zestaw 4

Potęgowanie i pierwiastkowanie liczb zespolonych Równania i nierówności w ciele liczb zespolonych

4.1. Korzystając z postaci wykładniczej liczby zespolonej znaleźć zbiory liczb zespolonych z spełniające warunki:

a)
$$z^2 = \overline{z}$$

b)
$$|z^4| = z$$
.

a)
$$z^2 = \overline{z}$$
, b) $|z^4| = z$, c) $z^3 \cdot (\overline{z})^2 = -1$.

4.2. Wykonać działania stosując wzór de Moivre'a

a)
$$(1-i)^{12}$$
,

b)
$$(1+\sqrt{3}i)^8$$
,

c)
$$(2\sqrt{3}-2i)^{30}$$

a)
$$(1-i)$$
, b) $(1+\sqrt{3}i)$, c) $(2\sqrt{3}-2i)^{30}$, d) $(1+i)^{10}-(1+i)^{6}$, e) $(-\frac{1}{2}+i\frac{\sqrt{3}}{2})^{12}$, f) $\frac{(1+i)^{22}}{(1-i\sqrt{3})^{6}}$.

e)
$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{12}$$

f)
$$\frac{(1+i)^{22}}{(1-i\sqrt{3})^6}$$
.

4.3. Wyznaczyć wartości wyrażeń

a)
$$Re^{\frac{(1+3i)(1-i)^3}{3+i}}$$
, b) $Im^{\frac{(1-i)^{10}}{(\sqrt{3}+i)^6}}$, c) $|\frac{-4}{1+i\sqrt{3}}|$, d) $Arg\left(\frac{2+2i}{i}\right)$.

b)
$$Im \frac{(1-i)^{10}}{(\sqrt{3}+i)^6}$$

c)
$$\left| \frac{-4}{1+i\sqrt{3}} \right|$$

d)
$$Arg\left(\frac{2+2i}{i}\right)$$
.

4.4. Obliczyć i przedstawić w postaci algebraicznej pierwiastki:

a)
$$\sqrt{-4}$$
,

b)
$$\sqrt{-8i}$$
,

c)
$$\sqrt{3-4i}$$

d)
$$\sqrt{-15 - 8i}$$
,

a)
$$\sqrt{-4}$$
, b) $\sqrt{-8i}$, c) $\sqrt{3-4i}$, d) $\sqrt{-15-8i}$, e) $\sqrt{-11-60i}$,

f)
$$\sqrt{-8-6i}$$
, g) $\sqrt[3]{i}$, h) $\sqrt[6]{-64}$,

h)
$$\sqrt[6]{-64}$$
,

i)
$$\sqrt[4]{16}$$
,

j)
$$\sqrt[4]{-4}$$
.

4.5. Rozwiązać równania

a)
$$2z + (3-i)\overline{z} = 5 + 4i$$

b)
$$z + i = \overline{z + i}$$

c)
$$z \cdot \overline{z} + (z - \overline{z}) = 3 + 2i$$

a)
$$2z + (3 - i)\overline{z} = 5 + 4i$$
, b) $z + i = \overline{z + i}$, c) $z \cdot \overline{z} + (z - \overline{z}) = 3 + 2i$, d) $z + \overline{z} + i(z - \overline{z}) = 5 + 3i$, e) $\frac{1+i}{z} = \frac{2-3i}{z}$, f) $\frac{2+i}{z-1+4i} = \frac{1-i}{2z+i}$, g) $z^2 - 4z + 13 = 0$, h) $(z + 2)^2 = (\overline{z} + 2)^2$,

e)
$$\frac{1+i}{z} = \frac{2-3i}{\overline{z}}$$
,

f)
$$\frac{2+i}{z-1+4i} = \frac{1-i}{2z+i}$$
,

g)
$$z^2 - 4z + 13 = 0$$
,

h)
$$(z+2)^2 = (\overline{z}+2)^2$$

i)
$$z^2 - (6+i)z + 11 - 7i = 0$$
.

4.6. Rozwiązać równania

a)
$$z^2 + 4z + 5 = 0$$
,

b)
$$z^3 = -8$$
,

a)
$$z^2 + 4z + 5 = 0$$
, b) $z^3 = -8$, c) $z^2 + (1 + 4i)z = (5 + i)$, d) $z^4 - 2z^2 + 4 = 0$,

d)
$$z^4 - 2z^2 + 4 = 0$$
,

e)
$$z^4 - 4i\sqrt{3}z^2 = 16$$

e)
$$z^4 - 4i\sqrt{3}z^2 = 16$$
, f) $(z - i)^4 = (iz + 3)^4$.

4.7. Rozwiązać równania

a)
$$|z| + z = 8 + 4i$$
,

a)
$$|z| + z = 8 + 4i$$
, b) $|z| - z = 8 + 12i$.

4.8.* Korzystając ze wzoru de Moivre'a wyrazić podane funkcje przez $\cos \varphi$, $\sin \varphi$:

1

a)
$$\cos 3\varphi$$
, b) $\sin 4\varphi$.

4.9.* Obliczyć i^n dla $n \in \mathbb{N}$. (Podać odpowiedź w postaci ogólnej).

4.10.* Wykazać, że

a) jeśli
$$|z| < 1$$
, to $|z^2 - z + i| < 3$, b) jeśli $z \le 2$, to $1 \le |z^2 - 5| \le 9$.

b) jeśli
$$z \le 2$$
, to $1 \le |z^2 - 5| \le 9$

ODPOWIEDZI

- **4.1.** a) $0, 1, -1/2 + i\sqrt{3}/2, -1/2 i\sqrt{3}/2,$ b) 0, 1, c) -1.
- **4.2.** a) -2^6 , b) $2^7(-1+\sqrt{3}i)$, c) -4^{30} , d) 40i, e) 1, f) -32i.
- **4.3.** a) 2/5, b) 1/2, c) 2, d) $\frac{7}{4}\pi$.
- **4.4.** a) $\pm 2i$, b) $\pm (2-2i)$, c) $\pm (2-i)$, d) $\pm (1-4i)$, e) $\pm (5-6i)$, f) $\pm (1-3i)$,
- g) $\frac{1}{2}(\sqrt{3}+i), \frac{1}{2}(-\sqrt{3}+i), -i, \text{ h}) \pm (\sqrt{3}+i), \pm (\sqrt{3}-i), \pm (2i), \text{ i}) \pm 2, \pm 2i,$
- j) 1+i, -1+i, -1-i, 1-i. **4.5.** a) $\frac{1}{6} \frac{25}{6}i$, b) $z = a i, a \in \mathbb{R}$, c) $-\sqrt{2} + i, \sqrt{2} + i$, d) \emptyset , e) brak rozwiązań, f) $\frac{7-i}{6}$, g) 2-3i, 2+3i, h) Rez = -2, Imz = 0, i) 1-2i, 5+3i.
- **4.6.** a) -2+i, -2-i, b) -2, $1+i\sqrt{3}$, $1-i\sqrt{3}$, c) 1-i, -2-3i, d) $\pm \frac{\sqrt{3}+i}{\sqrt{2}}$, $\pm \frac{\sqrt{3}-i}{\sqrt{2}}$,
- e) $\pm (1 + i\sqrt{3}), \pm (\sqrt{3} + i), f)$ 1 + 2*i*, 2*i*, -1 + 2*i*.
- **4.7.** a) 3 + 4i, b) 5 12i.
- **4.8.** a) $\cos^3 \varphi 3\cos\varphi\sin^2\varphi$, b) $4\sin\varphi\cos\varphi(\cos^2\varphi \sin^2\varphi)$.
- **4.9.** $i^n = \cos \frac{1}{2} n \pi + i \sin \frac{1}{2} n \pi$.