Naam: Manu Donders Plaatsnummer: 29 Datum: 12/02/2021 nr. onbekende: /

1 BEPALING VAN DE MOLAIRE MASSA VAN ZUURSTOF

OPMERKING: - Lees de vragen aandachtig!

- Berekeningen worden als bijlage toegevoegd!

DOEL:

Het bepalen van de molaire massa van O2 (zuurstof).

REACTIEVERGELIJKING:

$$MnO_2 + \Delta T$$

Hierbij is MnO₂ een katalysator.

RESULTATEN:

Massa proefbuisje + inhoud vóór de proef (g):	16,04 g
Massa proefbuisje + inhoud na de proef (g):	14,65 g
Massa der vrijgekomen zuurstof (g):	1,39 g
Volume opgevangen gas (mL en L):	895 mL
	0,895 L
Temperatuur van het gas (°C en K):	14 °C
	287,15 K
Temperatuur van het water (°C en K):	15 °C
	288,15 K
Dampdruk van water bij deze temperatuur,	12,8 mmHg
(mm Hg en atm):	0,0168 atm
Barometerdruk (mm Hg en atm):	762 mmHg
	1.0026 atm
Dampdruk zuurstofgas (atm):	0.986 atm
Berekende molaire massa zuurstofgas (g/mol):	37 g/mol

Naam: Manu Donders Plaatsnummer: 29 Datum: 12/02/2021 nr. onbekende: /

BESLUIT:

De molaire massa van O₂ bedraagt 37 g/mol volgens deze proef. Hierbij verschilt het resultaat 5 g/mol met de werkelijke waarde. Dit kan komen door kleine onnauwkeurigheden (ontsnapte zuurstof, kleine luchtbellen of

een heel kleine fout op het volume water) .

EXTRA VRAGEN:

Waarom ga je het MnO₂ eerst even doen gloeien?

MnO₂ is een katalysator. Het moet daarom geactiveerd worden om de reactie te laten werken. Dit gebeurd door er een hoeveelheid energie (warmte) aan toe te voegen. Tegelijkertijd worden ook nog resterende stoffen verwijderd.

• Tot welke groepen in de tabel van Mendeljev behoren de elementen die voorkomen in de gebruikte en gevormde chemicaliën tijdens deze proef?

Kalium (K): alkalimetalen (IA)

Zuurstof(O): zuurstof-groep (VIA)

Chloor(Cl): halogenen (VIIA)

Mangaan(Mn): Mangaan-groep (VIIB)

• Geef een de juiste chemische naam:

MnO₂: Mangaan(IV)oxide ClO₄: Perchloraat anion

ClO₂ : Chloriet anion

ClO₂: Chloordioxide

• Welke niet-S.I. eenheden heb je gebruikt in deze proef, en wat zijn de overeenkomstige S.I.

eenheden?

°C(celcius) -> K(kelvin)

mmHg(milimeterkwik), atm(atmosfeer) en Torr-> Pa(pascal)

Naam: Manu Donders Plaatsnummer: 29 Datum: 12/02/2021 nr. onbekende: /

Berekeningen
Volume kalf (Vk) = 2.500 ml + 100 ml
mano proefbuis + inhoud use proef (m,) = 16,04 g
Volume unta (Vw) = 205 mL = 0,205 L
Tqu = 14° C -> 287, 15 K
Tweeter = 15°C => Proper = 12,8 minty 2:760
Poz = Ptot = Posti = (762 - 12,8) mm Hy
= 749, 2 mm +3 2: 760 = 0, 996 atm 2: 760
mana proef buin + inhand no proef = 14,65 g = mn
$m_{0_2} = m_1 - m_n = 1,35 g$
Volume Oz (Voz) = 1,14-0,205L=0,895L
Sdede garnet: PV = RT 0,986 atm - 0,895 L = 0,037 mol
Moz = 1,39 g = 377019/mol