Algorithmen und Wahrscheinlichkeit Programming Exercises

Exercise 1 - Random Triangles

In this exercise you are supposed to examine the random variable denoting the number of triangles in a random graph $G \sim G_{n,p}$.

For $n \in \mathbb{N}$ and $p \in [0,1]$, we let $G_{n,p}$ denote the probability space of graphs on n vertices where each edge is present with probability p independently of other edges. Let X be the random variable denoting the number of triangles in $G \sim G_{n,p}$. Compute the expected number of triangles $\mathbb{E}[X]$ and its variance $\operatorname{Var}[X]$.

Input The first line of the input file contains a number $t \leq 30$ of test cases. Each of the t test cases is described as follows.

• It starts with a line which consists of an integer and a real n p, separated by a space, denoting the number of vertices $(1 \le n \le 1000)$ and the probability of an edge existing $(0 \le p \le 1)$ of a graph $G \sim G_{n,p}$.

Output For each test case output a single line with two values $\mathbb{E}[X]$ and Var[X], separated by a space. Your solution is going to be accepted if it has an absolute or relative error of at most 10^{-5} .

Points This exercise is worth 100 points.

Sample Input	Sample Output
3	
6 0.5	2.5 5.0
10 1.0	120.0 0.0
10 0.3	3.239999 7.439039