

G.	OWF A PRA PRF AMC A hashing to bloch apher.
	G. Stort somewhere, build everything also
	Solutions
١.	Encryption scheme: < Gen, Enc, Dec, M>
	Shift Copher Substitution upher
	Gen:= k <= [0,25] Gen:= k <- Permutation of az
	Enc:= $c_i = (m_i + k) \%$ 26 Enc:= $c_i = k(m_i)$
	Dec: $m_i = (c_i - k)^{\alpha} _{0.26}$ Dec: $m_i = k^{-1}(M_i)$
	$M = [a, z]^* \qquad M = [a, z]^*$
	Vigenere cipher (key length l) b-0 n
	Gen:= k < [0,25]e
	Enc:= $C_{ln+i} = (m_{ln+i} + k_i)^{*} 626$ $ N \in W$
	Dec:= M _{ln+i} = (C _{ln+i} - K _i) % 26 N & W
	$M = [a, z]^*$
2.	let an alphabet permutation be p: [a,z] -> [a,z]
	Key: P, P2Pt
	1. If we know key lengths
	· superate cipher text into t buckets: C, C _{t1} , C _{2t+1} ,
	C ₂ C ₄₊₂ C ₂₊₂
	· For each bucket, use frequency analysis attack
	- court all character frequencies.
	- soft characters by frequencies) the up, form the key
	- sort alphabet by known real-world frequencies
	2. Finding key length:

b)
$$N(n) = f(f(n))$$
assume A.for Wa).

င)

$$f(n)$$
 is OWF $f(n)$ is a bijection of the same space or $f(n)$ some space $f(n)$ $f(n)$ $f(n)$ is also for $f(n)$

This f' is one-way. In fact, this holds even if only f is one-way (regardless of g, as long as g is efficiently-computable). To see this, fix a PPT adversary \mathcal{A}' and let

$$\epsilon(n) \stackrel{\text{def}}{=} \Pr[\mathcal{A}'(f'(x)) \text{ outputs an inverse of } f'(x)],$$

where the probability is taken over uniform choice of x and the random coins of \mathcal{A}' . Consider the following PPT adversary \mathcal{A} : given input y_1 (which is equal to $f(x_1)$ for randomly-chosen x_1), choose random x_2 , compute $y_2 := g(x_2)$, and run $\mathcal{A}'(y_1||y_2)$. Then output the first half of the string output by \mathcal{A}' . It is not hard to see that (1) the input $y_1||y_2$ given to \mathcal{A}' is distributed identically to $f'(x_1||x_2)$ for randomly-chosen x_1, x_2 . This implies that \mathcal{A}' inverts its input with probability $\epsilon(n)$. Furthermore, (2) whenever \mathcal{A}' successfully inverts its own input. We conclude that \mathcal{A} outputs an inverse of y_1 with probability at least $\epsilon(n)$, showing that ϵ must be negligible.

d)
$$h(n_1,n_2) = (f(n_1), n_2)$$

A, $P[A(h(n,n_2)) = y_1,y_2 \mid h(y_1,y_2) = h(n_1,n_2)] \neq negl$
 $y_2 = n_2$
 $f(y_1) = f(n_1)$ not poss by PDTM 4
= contradiction.

$$\frac{\text{Lip constructing }A: A(y_b) = D_1(y_b) \left\{ 0 \text{ if } y_b = y_0 \right\}}{\left\{ 1 \text{ if } y_b = y_0 \right\}}$$

For any adversary A interacting with the given experiment, we have that

$$\begin{aligned} \Pr[b' = b] &= \Pr[b' = 0 \mid b = 0] \cdot \Pr[b = 0] + \Pr[b' = 1 \mid b = 1] \cdot \Pr[b = 1] \\ &= \frac{1}{2} \cdot \Pr[A(G(s)) = 0] + \frac{1}{2} \cdot \Pr[A(r) = 1] \\ &= \frac{1}{2} \cdot \left(1 - \Pr[A(G(s)) = 1]\right) + \frac{1}{2} \cdot \Pr[A(r) = 1] \\ &= \frac{1}{2} + \frac{1}{2} \cdot \left(\Pr[A(r) = 1] - \Pr[A(G(s)) = 1]\right). \end{aligned}$$

So
$$\left|\Pr[b'=b] - \frac{1}{2}\right| \le \mathsf{negl}(n)$$
 iff $\left|\Pr[A(r)=1] - \Pr[A(G(s))=1]\right| \le \mathsf{negl}(n)$.

$$\begin{split} P(\ b_{-}^{\prime}b) & \leq \frac{1}{2} + \varepsilon(u) & P(A(y_{1})=0) + P(A(y_{1})=1) \leq 1 + \varepsilon(u) \\ P(A(y_{0})=b) & \leq \frac{1}{2} + \varepsilon(u) & And \\ P(A(y_{0})=0) & = 1 - P(A(y_{0})=1) \\ P(A(y_{0})=0) & \leq \frac{1}{2} + \varepsilon(u) & \sum_{1 \leq i \leq u} \left[\frac{1 - P(A(y_{0})=i)}{p(A(y_{0})=i)} \right] \\ P(A(y_{1})=1) & \leq \frac{1}{2} + \varepsilon(u) & \sum_{1 \leq i \leq u} \left[\frac{1 - P(A(y_{0})=i)}{p(A(y_{0})=i)} \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} - P(A(y_{0})=i) \right] \\ & \leq \frac{1}{2} + \frac{1}{2} \left[\frac{p(A(y_{0})=i)}{p(A(y_{0})=i)} -$$

$$P(D(3)=1) \leq \frac{1}{2} + \epsilon(n)$$

time in years:
$$2^{256} \times 5.8 \times 10^{-23} \text{ J} = 2^{256} \times 4.79 \times 10^{-57}$$

$$2^{10} > 10^{3}$$

$$2^{140} > 10^{57}$$

$$2^{140} \simeq 1.6 \times 10^{57}$$

$$2^{256} \times 3 \times 2^{-190}$$

$$2^{256} \times 3 \times 2^{-190}$$
 3×2^{66}

8. Let G be a function that maps strings of length n to strings of length 2n. Define

$$\gamma(n) \stackrel{\text{def}}{=} \Pr[\text{the } (n+1)^{th} \text{ bit of } G(x) \text{ is equal to } 1]$$

where the probability is taken over random choice of $x \in \{0,1\}^n$. Prove that if G is a pseudorandom generator, then there is a negligible function ϵ with $\gamma(n) \leq 1/2 + \epsilon(n)$. (Give a formal proof, not just

Gisa PRG.

9.

in a purely random 2n-bit strong, distribution of 0,1 bits 15 in G, if $y(n) \geq \frac{1}{2} + negl$, then y(n) can act as a distinguisher

for G (differing distribution compared to random)

contradicts the assumption that G is a PRG.

y(n) < 1 + negl.

1 ر٥

ii) Phas \Rightarrow PRFS $A: 20,13^{n} \longrightarrow 20,13^{en}$ Let $a_{0}(s) = Lett half of a(s)$ $a_{1}(s) = vight half of a(s)$

Here $\alpha(s) = \alpha_0(s) \| \alpha_1(s)$ $k = 30,13^{h}$, $r = 30,13^{h}$ $F_{K}(r) = \alpha_{r_{n-1}} \left[\alpha_{r_{n-2}} \left[\dots \alpha_{r_{2}} \left[\alpha_{r_{1}} \left[\alpha_{r_{1}} \left(\kappa \right) \right] \right] \dots \right]$

 $\frac{d}{dx}$: $\frac{d}{dx} = \frac{dx}{dx} \left(\frac{dx}{dx} \left(\frac{dx}{dx} \right) - \frac{dx}{dx} \left(\frac{dx}{dx} \right) \right) \leq \text{regl}(x)$

Assure to the contrary that 3 a PPTM D.

Base Case: For |r| = 1, $F_{k}(r) = G_{r_{k}}(k)$ Clearly if D can distinguish $F_{k}(r)$ then if can distinguish G.

Inductive Hypo: We cannot distingnish upto r or length h.

Consider r of length n+1.

If we can distinguish $F_K(r)$

