Price Prediction for Ames Iowa Housing Kaggle Dataset

CHANTANEE MANONOM

Background

- Population of 66,000 in 2020 (around half are university students)
- Low temperature climate area

Climate	Climate data for Ames 8 WSW, Iowa (1991–2020 normals, extremes 1964–present) [hi									[hide]			
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Record high °F (°C)	67	68	90	97	100	101	101	102	98	95	80	73	102
	(19)	(20)	(32)	(36)	(38)	(38)	(38)	(39)	(37)	(35)	(27)	(23)	(39)
Average high °F (°C)	28.9	33.6	47.7	62.0	72.5	81.3	83.9	81.8	77.0	64.1	47.5	33.7	59.5
	(-1.7)	(0.9)	(8.7)	(16.7)	(22.5)	(27.4)	(28.8)	(27.7)	(25.0)	(17.8)	(8.6)	(0.9)	(15.3)
Daily mean °F (°C)	20.4 (-6.4)	24.9 (-3.9)	37.7 (3.2)	50.3 (10.2)	61.6 (16.4)	71.1 (21.7)	74.0 (23.3)	71.8 (22.1)	65.3 (18.5)	52.8 (11.6)	38.1 (3.4)	25.6 (-3.6)	49.5 (9.7)
Average low °F (°C)	11.9	16.1	27.7	38.6	50.7	60.9	64.1	61.8	53.5	41.4	28.6	17.5	39.4
	(-11.2)	(-8.8)	(-2.4)	(3.7)	(10.4)	(16.1)	(17.8)	(16.6)	(11.9)	(5.2)	(-1.9)	(-8.1)	(4.1)
Record low °F (°C)	-26	-28	-12	8	27	38	44	40	29	11	-7	−24	-28
	(-32)	(-33)	(-24)	(-13)	(-3)	(3)	(7)	(4)	(-2)	(-12)	(-22)	(−31)	(-33)

Focus

- ▶ Goal: To predict Sale Price for each house in the test file based on houses sold during 2006 – 2010 using
 - ► Model: Linear Regression/Ridge/Lasso
 - ▶ Performance to be measured by R² & Root Mean Squared Error (RMSE)

Data Features

- Data files:
 - train(80 features)
 - test (79 features)

Features with high correlation to Sale Price

EDA – Sale Price & Year Built

Handling missing values in train

Feature Engineering

- Combine train & test DataFrames to
 - Transform ordinal features to numerical scale
 - Create additional features
 - ► Total Area
 - Property Age
 - ▶ Is Remodeled(?)
 - ▶ New or Resale
 - Scoring for house features (combination of Quality & Condition)
 - ▶ Hot encoding (Dummify nominal features)
- Split DataFrames back to train & test

Feature Selection

► Total features: **253**

▶ Use forward selection: **105** features

► Ridge: **104** features

Lasso: 19 features

Model Creation & Evaluation

> Split train Data Frame to Train(70%) & Test(30%) set for model training and valuation

Model	Train Score	Test Score	RMSE
Linear Regression	0.94	0.85	0.1614
Ridge (alpha = 1)	0.93	0.87	0.1536
Ridge (alpha = 0.01)	0.94	0.85	0.1611
Lasso (alpha = 1)	0.76	0.73	0.2170
Lasso (alpha = 0.01)	0.86	0.82	0.1745

Lasso(alpha = 0.01) is chosen as the final model for price prediction based on both R² and RMSE

Inference

Inference

- Lasso's chosen features show overall quality, heating, kitchen quality and functional have positive effects to the price which is sensible due to general cold climate in the area
- House's age has negative impact to the price

Next Steps/Possible Improvements

- Re-look at Data processing & features engineering to improve performance
- Find out more features that could influence the impact to Sale Price

