

Электрохимическая эксфолиация графита: перспективный подход к получению функционализированного оксида графена для применения в электрохимии

м.н.с. лаборатории ЭиМБ Оськин П.В.

Тульский государственный университет

A

P

- Смесь КМпО₄ и Н₂SO₄ взрывоопасна;
- Сточные воды, содержащие Mn²⁺;
- Необходимость восстановления;
- Необходимость дополнительной функционализации.

- + Взрывобезопасна;
- + Есть возможность тонкой настройки свойств;
- + Соответствует принципам «зеленой» химии;
- + Позволяет проводить функционализацию в процессе получения ОГ.

Получение оксида графена

Функционализация ОГ ПАБК

Полимеризация п-аминобензойной кислоты в процессе электрохимической эксфолиации графита

 ΔG_{TS} =664.42021 кДж/моль

 ΔG_{TS} =745.80423 кДж/моль

Характеристика оксида графена спектральными методами

Характеристика оксида графена с помощью электрохимических зондов

	T		T	
э/х зонд	Параметр	Стеклоуглерод	ОГ	ОГ+ПАБК
$[Fe(CN)_6]^{3-}$	ΔE_{100} , MB	190±3	162±7	144±2
	$k_s \times 10^4$, cm/c	5.9±0.1	2±1	1.3±0.3
	S, MM ²	6±1	5±1	4±1
$[Cu(bipy)_2]^{2+}$	ΔE_{100} , MB	337±5	276±4	171±3
	$k_s \times 10^4$, cm/c	6.3±0.2	4.8±0.6	18.3±0.6
	S, MM ²	7±1	14±2	13±1
$[\text{Co(NH}_3)_6]^{3+}$	Е ₁₀₀ , мВ	-0.485	-0.367	-0.354
	$k_s \times 10^3$, cm/c	2.7	3.5	3.5
	S, MM ²	7±1	15±1	14±2
парацетамол	Е ₁₀₀ , мВ	810	781	765
	$k_s \times 10^3$, cm/c	2.5	2.8	3.2
	S, MM ²	7±1	15±1	13±2

 ΔE_{100} — разность между потенциалами анодного и катодного пиков при скорости развертки потенциала 100 MB/c; k_s — константа скорости гетерогенного переноса электронов; E_{100} — потенциал пика необратимого электрохимического процесса при скорости развертки потенциала 100 MB/c; S — электрохимически-активная площадь электрода

E, V

0.2

0.4

-0.5

-0.4

Электрохимический сенсор для определения ионов Cu²⁺

ААС – атомно-абсорбционная спектроскопия

Oskin, P., Kovaleva, A., Mashkovich A., et al. A novel approach to single-step graphene oxide functionalization for application in selective amperometric chemosensors (2025). Microchemical Journal, 114546.

Электрохимический сенсор для определения ионов Cu²⁺

Метод	E,	Линейный	S, μA/мM	ПО,	C _H , μM	Литература
	mV	диапазон, μΜ		μΜ		
Амперометрия	-0.1	0.2-120	170±20	0.06	0.2	Эта работа
(ОГ+ПАБК)						
КВВА	0.08	3-20	7.7±0.5	10	3	https://doi.org/10.1016/j.aca.2019.12.017
ДИВА	0.02	570-2310	3	8.81	29.4	https://doi.org/10.1016/j.microc.2019.104299
ДИВА	-0.15	2-4	-	1.4	4.7	https://doi.org/10.1007/s13391-020-00222-3
КВВА	-0.05	100-1750	372	0.05	0.17	https://doi.org/ 10.1016/j.talanta.2024.126520
ИВА	0.12	10-180	640	0.03	0.09	https://doi.org/10.1016/j. snb.2017.12.160
ИВА	-0.1	0.005-3.7	14873	0.001	0.005	https://doi. org/10.1016/j.saa.2021.119610

Е – потенциал восстановления; S- коэффициент чувствительности; ПО – предел обнаружения; Сн – нижняя граница определяемых концентраций; КВВА – квадратно-волновая вольтамперометрия; ДИВА – дифференциально-импульсная вольтамперометрия; ИВА – инверсионная вольтамперометрия

Oskin, P., Kovaleva, A., Mashkovich A., et al. A novel approach to single-step graphene oxide functionalization for application in selective amperometric chemosensors (2025). Microchemical Journal, 114546.

Примеры других электрохимических сенсоров

Определение индигокармина (Е132)

Выводы

- 1. Продемонстрировано, что электрохимическая эксфолиация графита в присутствии ароматических аминов является перспективным одностадийным методом получения функционализированного оксида графена для последующего применения при разработке электрохимических сенсоров
- 2. Предложен механизм функционализации ОГ фрагментами ароматических аминов в процессе электрохимической эксфолиации графита
- 3. Функционализированный оксид графена охарактеризован с использованием комплекса физико-химических методов анализа. Продемонстрированы высокие электрохимические характеристики полученного материала.
- 4. Материал успешно применен при создании высокоселективных и чувствительных электрохимических сенсоров для определения ионов меди, рибофлавина и индигокармина. Результаты анализа реальных образцов хорошо согласуются с данными референтных методов.
- 5. Предложенный подход открывает перспективы для направленного синтеза графеновых материалов с заданными свойствами для задач электроанализа и сенсорики.

Спасибо за внимание!

