Final Examination

ELEC8550 Computer Arithmetic, Fall 2020

December 12, 2020

	Read before start writing your solution					
1.	It is an open book examination. There are five problems.					
2.	The exam time is 125 minutes (7:00pm-9:05pm) which includes the time it takes you to					
	open the exam problem file from mailbox and answer the problems.					
3.	Write down 0 your name, 2 <u>ID</u> and 3 page number at the top of each page of your					
	answer sheets.					
4.	A 15-minute time span at 9:05pm-9:20pm will be available to you to scan your answer					
	sheets, form one pdf file and upload the file to Resources/Online exams/final exam at					
	Blackboard course website.					
5.	In order to minimize the geometric distortion and unrecognizability caused by photo					
	-taking, your answer sheets must be scanned (using either a scanner or software based)					
	and then formed into one pdf file. There will be 10% deduction for failing to do so.					
6.	The deadline that your submitted answer file will appear at Blackboard is 9:20pm.					
7.	Submission later than 9:20pm but before 9:30pm will be deducted 10%. Submission					
	after 9:30pm will be assigned zero mark.					
8.	The use of external aid of any kind is not permitted. Certain measures will be taken if					
	plagiarism is found. You are expected to take this final exam fairly.					

$$\frac{4n24461}{4n^{2}} = \frac{10}{10} = -[(8)_{10} \times (0.1)_{10}] = -[(1000)_{1} \times (0.5)_{10} \times (0.5)_{10}]$$

$$= -[(1000)_{1} \times \{(0.1)_{2} + (0.1)_{2}\}]$$

$$= -[(1000)_{1} \times (0.00011)_{2}]$$

$$F_1 = 1.0 \times 2^3 = 1.0 \times 2^{130-123}$$

$$F_2 = (-1)^1 \times 1.10011 \times 1002^{-14} = (-1)^1 \times 1.10011 \times 2^{123-123}$$

$$\Rightarrow F_3 = F_1 \times F_2 = (-1)^1 \times (1.0 \times 1.10011) \times 2^{(130 - 12 + 123) - 127}$$
$$= (-1)^1 \times 1.10011 \times 2^{126 - 127}$$

:. I E E E 64 - bit representation that consists of sign, magnitude & significant is as follows:

+ 1/2

011

e = 1111 1110

0

f = 6 1001100110011001100

Problem 2

1

0

1	×. O	×	1	{82 8, 803	Exten=y-x
1	1	0	0	044	+ 0
1	1	0	4	.100	+ 3/4
1	1	7	0	100	+ 1/2
1	1	1	1	1001	+1/4

°°, Maximal errors,
$$e_{max}^{+} = +3/4$$

Bûs = $\frac{1}{16} \left[4 \left(+ \frac{1}{4} + \frac{1}{2} + \frac{3}{4} \right) \right] = \frac{3/2}{4} = +\frac{3}{8}$

		1-91	90	
X, X	00	61	11	10
00	0.	(1.	(1),	1),
01	(3)	0	Oz	04
11	12/	Q	0"	0.1
10	0	1,	(2)	10

Fon }	31
7 7 00 OI	11 10
00 00	0,0
01 0, 14	0 1
11 1.00	0, 0,4
10/02/12	1, 12,
8, = x, x.	+ + 1 = = =

1843	2		,	0.5
N'A"	00	01	11	10
00	09	0,	0.	a.
01	0.	0,	0,	0
11	0.	a,	Q,	1).
19	0	0.	0,	Q 10

9 = x, x, (x -1 + x -2)

HA end HA

Y= \(\mathre{y} = \mathre{y} =

Problem 3)

Answer) For the following configuration of the CLA and the two Full Adder's, the critical path delay will be minimal

O ther configurations that are possible are

Totaled = Telyocy + Tenocor + TFA

= 409 + 209 + 309 = 909

So Minimal critical path delay = 8 Ds for config. 1

Problem 4) Designing the 26 bit carry-select adder

=> Let 26 - lit carry select addler be divided into l groups of length $k_1, k_2, ..., k_L$ => (l-1) 2Dq = 2 k_L Dg (For FA's for addition 2 assuming i/h's to

MUX are available at exactly same line

k_L = l-1 => Diges are 1, 1, 2, 3, 4,

Also, (3. $1 + L(1-1) > n \Rightarrow L(1-1) > 2n+1 (n=26)$ $\Rightarrow L(1-1) > 53$

So, l = 8

And group size are, $k_1 = 1$, $k_2 = 1$, $k_3 = 2$, $k_4 = 3$, $k_5 = 4$, $k_6 = 5$, $k_9 = 6$, $k_8 = 4$

" ο, Culect = 50 FA'S + 1 HA

Tudect=24+2×7 Δq = 15 Δq

* Designing the 26 - bit carry - this adder

⇒ Let 26- Get adder he divided into k groups of equal eyes

$$= (k-1)t_n + t_b + (\frac{m}{R} - 2)(t_5 + t_b) + (k-1)t_n$$

$$= (4k + 2m - 7)\Delta_G \quad (t_n = 2\Delta_G, t_s = t_B = \Delta_G)$$

$$\frac{1}{8} \frac{1}{8} = \frac{1}{12} = \frac{$$

$$T_{opt} = (4\sqrt{13} + 2(26) - 7) \Delta_{\varsigma} = (52 + 52 - 7\sqrt{13}) \Delta_{\varsigma} = (\frac{104 - 2\sqrt{13}}{\sqrt{13}}) \Delta_{\varsigma}$$

= 21.8 AG

" C sheet = 26 F A'S

Toket = 21.8 Δ_G

Hence, Cachet > Carip & Tarib > Taclect > (B)

Problem 5) A = (a3 a2 a1 a); X = (73 x2 x3 x6) then the seven product lits P = (po ps p4 p3 p2 p, p0) can be obtained as follows:

No. of FA's required = 8 No. of HA's required = 4

PH

Time delay of multiplier = Time delay to generate + Time delay for the partial products array multiplier partial array multiplia partial

> 1 Da + (1 Da + 2D4 + 2D4 + 1D4 + 2D4 + 2D4) 11 AG