Solution Notes

Context: singular value decomposition.

(a) A is positive semi-definite if $x^TAx > 0$ for any vector x. Now $(A^TA)^T = A^T(A^T)^T = A^TA$

so $A^{T}A$ is symmetric. Also $\underline{x}^{T}(A^{T}A)\underline{x} = (A\underline{x})^{T}(A\underline{x}) \geqslant 0$

so ATA is semi-definite.

[3 marks]

(b) $\|A\|_2 = \sqrt{\text{maximum eigenvalue of } A^TA}$ = maximum singular value of A.

Schwarg's inequality is

11AZIIV < 11A IIM . 11ZIIV

where 11.11 is a vector norm and 11.11 is the compatible

matrix norm.

[2 marks]

(c) Let $\lambda_1, \lambda_2, \ldots \lambda_n$ be the eigenvalues of ATA in non-increasing order. If $\sigma_j = J \lambda_j$ then $\sigma_1, \sigma_2, \ldots \sigma_n$ are the singular values of A. W is the diagonal natrix of singular values, i.e. diag $(\sigma_1, \sigma_2, \ldots \sigma_n)$. V is the square matrix of eigenvectors corresponding to $\{\lambda_i\}$ so that $V^TV = I$.

If A is an mexh matrix then U is also men and is such that $U^TU = In$. [3 mosts]

(d) $A = A \times A \times A = B - A \times = Y$ so $e = A^{-1}Y$

11e11 = 11 A-1 x 11

≤ || A-1 || . || r || by Schwarz

Dividing by
$$||X||$$
 we get
$$\frac{||E||}{||X||} \leq ||A^{-1}|| \cdot \frac{||Y||}{||X||}$$

but we cannot compute the right-hand side as we do not show 11 ×11. But

50

$$\frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \leq \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\| \cdot \frac{\|\mathbf{r}\|}{\|\mathbf{g}\|}$$

and the right-hand side is computable.

If the le norm is used, the condition number

$$K_n = \|A\|_2 \cdot \|A^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$$
 [8 marks]

(e)
$$K_3 = \frac{10^2}{10^{-10}} = 10^{12}$$
, $K_4 = \frac{10^2}{10^{-16}} = 10^{18}$, $K_5 = \frac{10^2}{10^{-22}} = 10^{24}$, $K_6 = \frac{10^3}{10^{-29}} = 10^{31}$.

(i)
$$E_m = 10^{-15}$$
 and $K_4 > \frac{1}{E_m}$ so choose rank 3

(ii)
$$E_{\rm m} = 10^{-30}$$
 and $K_6 > \frac{1}{E_{\rm m}}$ so choose rank S

[4 marks]

Computer Science Tripos Part II 2005

Paper 9 Question 12

MRO'D — Numerical Analysis II