

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$ 

# AQA GCSE Maths: Higher



# Histograms

#### **Contents**

- \* Frequency Density
- \* Drawing Histograms
- Interpreting Histograms

### **Frequency Density**

# Your notes

# **Frequency Density**

# What is frequency density?

- Frequency density is given by the formula
  - frequency density =  $\frac{\text{frequency}}{\text{class width}}$
- Frequency density is used with grouped data (i.e. data grouped by class intervals)
  - It is useful when the class intervals are of unequal width
  - It provides a measure of how dense data is within its class interval
    - relative to the width of the interval
  - For example,
    - 10 data values spread over a class interval of width 20 would have a frequency density of

$$\frac{10}{20} = \frac{1}{2}$$

• 20 data values spread over a class interval of width 100 would have a frequency density of

$$\frac{20}{100} = \frac{1}{5}$$

• As 
$$\frac{1}{2} > \frac{1}{5}$$

# How do I calculate frequency density?

- In questions it is usual to be presented with grouped data in a **table**
- Add two extra columns to the table
  - one to work out and write down the **class width** of each interval
  - the second to then work out the **frequency density** for each group (row)



#### **Worked Example**

The table below shows information regarding the average speeds travelled by trains in a region of the UK.

The data is to be plotted on a histogram.

Work out the frequency density for each class interval.

| Average speed s m/s | Frequency |
|---------------------|-----------|
| 20 ≤ s < 40         | 5         |
| 40 ≤ s < 50         | 15        |
| 50 ≤ s < 55         | 28        |
| 55 ≤ s < 60         | 38        |
| 60 ≤ s < 70         | 14        |

Add two columns to the table

- one for class width
- one for frequency density

Writing the calculation in each box helps to keep accuracy

| Average speed s m/s | Frequency | Class width  | Frequency density    |
|---------------------|-----------|--------------|----------------------|
| 20 ≤ s < 40         | 5         | 40 - 20 = 20 | 5 ÷ 20 = <b>0.25</b> |
| 40 ≤ s < 50         | 15        | 50 - 40 = 10 | 15 ÷ 10 = <b>1.5</b> |
| 50 ≤ s < 55         | 28        | 55 - 50 = 5  | 28 ÷ 5 = <b>5.6</b>  |
| 55 ≤ s < 60         | 38        | 60 - 55 = 5  | 38 ÷ 5 = <b>7.6</b>  |
| 60 ≤ s < 70         | 14        | 70 - 60 = 10 | 14 ÷ 10 = <b>1.4</b> |



### **Drawing Histograms**

# Your notes

# **Drawing Histograms**

## What is a histogram?

- A histogram looks similar to a bar chart, but there are important differences
- Bar charts are used for discrete (and sometimes non-numerical) data
  - In a bar chart, the **height** (or **length**) of a bar determines the frequency
  - There are usually **gaps** between the bars
- Histograms are used with continuous data, grouped into class intervals (usually of unequal width)
  - In a histogram, the **area of a bar** determines the frequency
    - This means it is difficult to tell anything simply from looking at a histogram
    - Some basic calculations will be needed for conclusions and comparisons to be made
  - There are **no gaps** between the bars

### How do I draw a histogram?

- Drawing a histogram first requires the calculation of the frequency densities for each class interval (group)
  - Use frequency density =  $\frac{\text{frequency}}{\text{class width}}$
  - Exam questions often ask you to finish an incomplete histogram, rather than start with a blank graph
- Once the frequency densities are known, the bars (rectangles) for each class interval can be **drawn** 
  - with widths being measured on the horizontal (x) axis
  - and the height of each bar (the frequency density) being measured on the vertical (y) axis
  - As the data is continuous, the bars will be touching



#### **Examiner Tips and Tricks**



 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ 

- Always work out and write down the frequency densities
  - It is easy to make errors and lose marks by going straight to the graph
  - Method marks may depend on showing you know to use frequency density rather than frequency





#### **Worked Example**

A histogram is shown below representing the distances achieved by some athletes throwing a javelin.



There are two classes missing from the histogram.



#### $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

#### These are:

| Distance, X m      | Frequency |
|--------------------|-----------|
| $60 \le x < 70$    | 8         |
| $80 \le x \le 100$ | 2         |



Add these to the histogram.

Before completing the histogram, remember to show clearly you've worked out the missing frequency densities

| Distance, X m    | Frequency | Class width   | Frequency density |
|------------------|-----------|---------------|-------------------|
| $60 \le x < 70$  | 8         | 70 - 60 = 10  | 8 ÷ 10 = 0.8      |
| $80 \le x < 100$ | 2         | 100 - 80 = 20 | 2 ÷ 20 = 0.1      |

Now the bars can be drawn on the histogram

They should stretch along the x-axis from the start to the end of the class interval The heights will be equal to the frequency densities



 $Head to \underline{www.savemyexams.com} for more awe some resources$ 





### **Interpreting Histograms**

# Your notes

# Interpreting Histograms

# How do I interpret a histogram?

- It is important to remember that the frequency density (y-) axis does not tell us frequency
  - The area of the bar is equal to the frequency
    - frequency = frequency density × class width
- Note that a very **simple** histogram may have **equal class widths** 
  - In this case the y-axis may be labelled 'frequency' instead of 'frequency density'
  - If 'frequency' is on the y-axis, then you **can** use the heights of the bars to directly determine the frequencies
- You may be asked to **estimate** the frequency of **part** of a bar/class interval within a histogram
  - Find the area of the bar for the part of the interval required
  - Once area is known, frequency can be found as above
- You can use histograms for two data sets to **compare** the data distributions
  - but only if they have the same class intervals and the same frequency density scales



#### **Examiner Tips and Tricks**

- The frequency density axis will not always be labelled
  - Look carefully at the scale, it is unlikely to be I unit to I square



#### **Worked Example**

The table below and the corresponding histogram show the weight, in kg, of some newborn bottlenose dolphins.



 $Head to \underline{www.savemyexams.com} for more awe some resources$ 

| Weight<br>w kg | Frequency |
|----------------|-----------|
| 4 ≤ w < 8      | 4         |
| 8 ≤ w < 10     | 16        |
| 10 ≤ w < 12    | 19        |
| 12 ≤ w < 15    | 12        |
| 15 ≤ w < 30    |           |





(a) Use the histogram to complete the table.

The frequency for the  $15 \le w < 30$  class interval is missing



Head to www.savemyexams.com for more awesome resources

The bar for that class interval on the histogram has a

- height (frequency density) of 0.6
- width of 30-15 = 15

Rearrange frequency density =  $\frac{\text{frequency}}{\text{class width}}$  to get

frequency = frequency density  $\times$  class width

frequency = 
$$0.6 \times 15 = 9$$

| Weight wkg  | Frequency |
|-------------|-----------|
| 4≤w<8       | 4         |
| 8 ≤ w < 10  | 16        |
| 10 ≤ w < 12 | 19        |
| 12 ≤ w < 15 | 12        |
| 15 ≤ w < 30 | 9         |

(b) Use the table to complete the histogram.

The bar for the  $4 \le w < 8$  class interval is missing

That class interval has a

- frequency of 16
- width of 10-8 = 2

Use frequency density =  $\frac{\text{frequency}}{\text{class width}}$  to find the frequency density

frequency density = 
$$\frac{16}{2}$$
 = 8

Draw a bar with that height on the histogram, between 8 and 10 on the horizontal axis





 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ 



Your notes

(c) Estimate the number of dolphins whose weight is greater than 13 kg.

We know from part a) that there are 9 dolphins in the  $15 \le w < 30$  class interval So we need to estimate the number of dolphins that are in the interval  $13 \le w < 15$ 

For  $13 \le w < 15$ , the histogram shows that

- the frequency density is 4
- the width is 15-13 = 2



Head to <a href="https://www.savemyexams.com">www.savemyexams.com</a> for more awesome resources



Your notes

Now use frequency = frequency density  $\times$  class width to estimate the number of dolphins in the 13  $\le$  w < 15 interval

(Note that using the histogram in this way is actually a form of linear interpolation)

frequency = 
$$4 \times 2 = 8$$

This is only an estimate because we don't actually know that dolphins are evenly distributed across the entire  $12 \le w < 15$  class interval

Now the total number of dolphins with a weight greater than 13 kg can be estimated

$$8 + 9 = 17$$

There are approximately 17 dolphins with a weight greater than 13 kg