- 2. The area of a trapezium is 34 cm² and the length of one of the parallel sides is 10 cm and its height is 4 cm. Find the length of the other parallel side.
 - 3. Length of the fence of a trapezium shaped field ABCD is 120 m. If BC = 48 m, CD = 17 m and AD = 40 m, find the area of this field. Side AB is perpendicular to the parallel sides AD and BC.

13 m

24 m

8 m

- 4. The diagonal of a quadrilateral shaped field is 24 m and the perpendiculars dropped on it from the remaining opposite vertices are 8 m and 13 m. Find the area of the field.
 5. The diagonals of a rhombus are 7.5 cm and 12 cm. Find
- the area of the field.The diagonals of a rhombus are 7.5 cm and 12 cm. Find its area.

Example 4: An aquarium is in the form of a cuboid whose external measures are $80 \text{ cm} \times 30 \text{ cm} \times 40 \text{ cm}$. The base, side faces and back face are to be covered with a coloured paper. Find the area of the paper needed?

Example 6: In a building there are 24 cylindrical pillars. The radius of each pillar is 28 cm and height is 4 m. Find the total cost of painting the curved surface area of all pillars at the rate of \ge 8 per m².

5. Daniel is painting the walls and ceiling of a cuboidal hall with length, breadth and height of 15 m, 10 m and 7 m respectively. From each can of paint 100 m² of area is painted.

How many cans of paint will she need to paint the room?

Example 10: A rectangular paper of width 14 cm is rolled along its width and a cylinder

of radius 20 cm is formed. Find the volume of the cylinder (Fig 9.31). (Take $\frac{--}{7}$ for π)

Example 11: A rectangular piece of paper 11 cm \times 4 cm is folded without overlapping to make a cylinder of height 4 cm. Find the volume of the cylinder.

(i)
$$1 \text{ cm}^3 = \text{ mL}$$

(ii) $1 \text{L} = \text{ cm}^3$
(iii) $1 \text{ m}^3 = \text{ cm}^3 = \text{ lL}$