

Art of Problem Solving 1993 Balkan MO

Balkan MO 1993

_	May 5th
1	Let a, b, c, d, e, f be six real numbers with sum 10, such that $(a-1)^2 + (b-1)^2 + (c-1)^2 + (d-1)^2 + (e-1)^2 + (f-1)^2 = 6.$ Find the maximum possible value of f . Cyprus
2	A positive integer given in decimal representation $\overline{a_n a_{n-1} \dots a_1 a_0}$ is called monotone if $a_n \leq a_{n-1} \leq \dots \leq a_0$. Determine the number of monotone positive integers with at most 1993 digits.
3	Circles C_1 and C_2 with centers O_1 and O_2 , respectively, are externally tangent at point λ . A circle C with center O touches C_1 at A and C_2 at B so that the centers O_1 , O_2 lie inside C . The common tangent to C_1 and C_2 at λ intersects the circle C at K and L . If D is the midpoint of the segment KL , show that $\angle O_1OO_2 = \angle ADB$.
	Greece
4	Let p be a prime and $m \geq 2$ be an integer. Prove that the equation
	$\frac{x^p + y^p}{2} = \left(\frac{x + y}{2}\right)^m$
	has a positive integer solution $(x, y) \neq (1, 1)$ if and only if $m = p$. Romania

Contributors: Valentin Vornicu