Attacks and Fixes on Distributed Key Generation Protocols

Chelsea Komlo, University of Waterloo

Naval Postgraduate School, November 23, 2021

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- ► Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover
 - ▶ While *t* can equal *n*, the setting where $t \le n$ is often desirable.

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- ► Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover.
 - \blacktriangleright While t can equal n, the setting where $t \leq n$ is often desirable.

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover.
 - ▶ While *t* can equal *n*, the setting where $t \le n$ is often desirable.

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover.
 - ▶ While *t* can equal *n*, the setting where $t \le n$ is often desirable.

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover.
 - ▶ While *t* can equal *n*, the setting where $t \le n$ is often desirable.

Generating key material without relying on a trusted entity is often desirable for distributed protocols.

- Goal is to:
 - Generate a secret that all parties contribute to but no party knows
 - t parties are required to recover.
 - ▶ While *t* can equal *n*, the setting where $t \le n$ is often desirable.

DKG Threat Model

 ▶ At minimum, requires assuming the adversary can control up to t – 1 players.

▶ If the adversary controlled t players, they could trivially recover the secret.

DKG Threat Model

▶ At minimum, requires assuming the adversary can control up to t − 1 players.

If the adversary controlled t players, they could trivially recover the secret.

Use Cases for DKGs

- Key generation for threshold or multiparty signatures
- Distributed PRFs (League of Entropy)

Key generation for anonymous token issuance (Privacy Pass)

Use Cases for DKGs

- Key generation for threshold or multiparty signatures
- Distributed PRFs (League of Entropy)

► Key generation for anonymous token issuance (Privacy Pass)

Use Cases for DKGs

- Key generation for threshold or multiparty signatures
- Distributed PRFs (League of Entropy)

Key generation for anonymous token issuance (Privacy Pass)

- Each party *i* begins by:
 - ► Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ► Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- After having received all c_1, \ldots, c_n , each party publishes X_i
- ▶ Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- ► Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ► Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.
- After having received all c_1, \ldots, c_n , each party publishes X_i
- ▶ Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- ► Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- After having received all c_1, \ldots, c_n , each party publishes X_i
- ▶ Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- ▶ After having received all $c_1, ..., c_n$, each party publishes X_i
- ▶ Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.
- After having received all c_1, \ldots, c_n , each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.
- After having received all c_1, \ldots, c_n , each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- ▶ After having received all $c_1, ..., c_n$, each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - \triangleright pk $\leftarrow \prod X_i$
 - \triangleright While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- ▶ After having received all $c_1, ..., c_n$, each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - ▶ $pk \leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- ▶ After having received all $c_1, ..., c_n$, each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - ▶ $pk \leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

- Each party *i* begins by:
 - ▶ Sampling $x_i \leftarrow \$ \mathbb{Z}_q$
 - ▶ Generating $X_i \leftarrow g^x$
 - ▶ Generating the commitment $c_i \leftarrow H(X_i)$
 - Each party publishes their commitment to all other parties.

- ▶ After having received all $c_1, ..., c_n$, each party publishes X_i
- ► Each party checks that $c_i \stackrel{?}{=} H(X_i)$. If not, they abort and identify misbehaving parties.
- Otherwise:
 - ▶ $pk \leftarrow \prod X_i$
 - ▶ While unknown to any party, $sk \leftarrow \sum x_i$

In practice, it is desirable to require only a *subset* of the parties to be online.

- ▶ *t* is referred to as the *threshold* number of participants required to participate.
- ▶ *n* is the total number of participants.

In practice, it is desirable to require only a *subset* of the parties to be online.

- ▶ *t* is referred to as the *threshold* number of participants required to participate.
- ▶ *n* is the total number of participants.

In practice, it is desirable to require only a subset of the parties to be online.

- t is referred to as the threshold number of participants required to participate.
- ▶ *n* is the total number of participants.

In practice, it is desirable to require only a *subset* of the parties to be online.

- t is referred to as the threshold number of participants required to participate.
- n is the total number of participants.

Background

- Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- f is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ► Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

- ▶ Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- f is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ► Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

- ▶ Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- ▶ *f* is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ▶ Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

- ▶ Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- ▶ *f* is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ▶ Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

- Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- f is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ▶ Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

- Allows a *dealer* to share a secret α among n participants, where t participants must cooperate to recover α .
- f is the polynomial defined by the coefficients

$$f = \alpha + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{t-1} x^{t-1}$$

- ▶ Each participant $i \in \{1, ..., n\}$ receives a share $w_i \leftarrow f(i)$.
- ightharpoonup Recall that t points uniquely define a polynomial of degree t-1!
- ▶ By polynomial interpolation, $\alpha = f(0) = \sum_{i=1}^{t} f(i)\lambda_i$.
- λ_i is $L_i(0)$, where L_i is the i^{th} Lagrange polynomial for the set $\{1, \ldots, t\}$.

Verifiable Secret Sharing

- Allows participants to verify their share $w_i = f(i)$ is on the same polynomial as all other participants, without revealing f directly.
- ▶ Working in the discrete log setting: a commitment to f is $\vec{D} \leftarrow \langle A_0, A_1, \dots, A_{t-1} \rangle$, where

$$A_0 \leftarrow g^{\alpha}, A_1 \leftarrow g^{a_1}, \dots$$

Verification of shares requires performing polynomial interpolation in the exponent to check that $g^{f(i)}$ is a point on g^f .

Verifiable Secret Sharing

- Allows participants to verify their share $w_i = f(i)$ is on the same polynomial as all other participants, without revealing f directly.
- ▶ Working in the discrete log setting: a commitment to f is $\vec{D} \leftarrow \langle A_0, A_1, \dots, A_{t-1} \rangle$, where

$$A_0 \leftarrow g^{\alpha}, A_1 \leftarrow g^{a_1}, \dots$$

Verification of shares requires performing polynomial interpolation in the exponent to check that $g^{f(i)}$ is a point on g^f .

Verifiable Secret Sharing

- Allows participants to verify their share $w_i = f(i)$ is on the same polynomial as all other participants, without revealing f directly.
- ▶ Working in the discrete log setting: a commitment to f is $\vec{D} \leftarrow \langle A_0, A_1, \dots, A_{t-1} \rangle$, where

$$A_0 \leftarrow g^{\alpha}, A_1 \leftarrow g^{a_1}, \dots$$

Verification of shares requires performing polynomial interpolation in the exponent to check that $g^{f(i)}$ is a point on g^f .

Rushing Adversary

In a multi-party protocol where scheduling of communication is not enforced, an adversary can choose when to participate.

A rushing adversary is one that waits to "speak last", and so learns every other participant's contributions before selecting their own.

Rushing Adversary

► In a multi-party protocol where scheduling of communication is not enforced, an adversary can choose when to participate.

A rushing adversary is one that waits to "speak last", and so learns every other participant's contributions before selecting their own.

Distributed Key Generation

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties
 - Output to each party includes
 - Public key pk
 - 2. The set gual of parties remaining at the end.
 - 3. Their secret key share sk_L
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among *n* predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among *n* predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end
 - 3. Their secret key share sk_i .
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming |C| ≥ t, sk is recovered by combining {sk_i}_C.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming |C| ≥ t, sk is recovered by combining {sk_i}_C.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i.
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming |C| ≥ t, sk is recovered by combining {sk_i}_C.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- $ightharpoonup Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- ▶ $Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- ▶ $Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$.

- ► $KeyGen(\lambda, n, t) \rightarrow (pk, qual, \{sk_1, ..., sk_n\})$
 - A probabilistic protocol among n predetermined parties.
 - Output to each party includes:
 - 1. Public key pk
 - 2. The set qual of parties remaining at the end.
 - 3. Their secret key share sk_i .
- ▶ $Recover(\{sk_i\}_C) \rightarrow sk$
 - A deterministic algorithm performed by one entity.
 - ▶ Assuming $|C| \ge t$, sk is recovered by combining $\{sk_i\}_C$.

On Determining qual

 Because cheating parties can be picked out during protocol execution,

$$t \leq |qual| \leq n$$

If qual ≥ t, then the DKG simply fails, as t parties are required for Recover.

Parties perform a sub-protocol to identify and kick out cheaters.

On Determining qual

 Because cheating parties can be picked out during protocol execution,

$$t \leq |qual| \leq n$$

Parties perform a sub-protocol to identify and kick out cheaters.

On Determining qual

 Because cheating parties can be picked out during protocol execution,

$$t \leq |qual| \leq n$$

Parties perform a sub-protocol to identify and kick out cheaters.

Correctness of a DKG

All subsets of t shares define the same secret key sk (or any subset fulfilling the required access structure)

▶ All parties that honestly followed the protocol have the same value of the public key *pk*.

Gennaro, Rosario and Jarecki, Stanislaw and Krawczyk, Hugo and Rabin, Tal. Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of Cryptology, 2007

Correctness of a DKG

- All subsets of t shares define the same secret key sk (or any subset fulfilling the required access structure)
- ▶ All parties that honestly followed the protocol have the same value of the public key *pk*.

Gennaro, Rosario and Jarecki, Stanislaw and Krawczyk, Hugo and Rabin, Tal. Secure Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of Cryptology, 2007

- Stand-Alone: The DKG can be proven secure without reference to how it is used.
 - Nothing about sk is revealed beyond what is revealed by pk (from GJKR).
 - The protocol can be perfectly simulated to an adversary for a challenge public key.
 - In other words, the simulated DKG must output the challenge as the group's public key.
- Contextual: Prove the security of the DKG in the context of demonstrating security of the protocol in which it is used ²

²Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu. Aggregatable Distributed Key Generation, EUROCRYPT 2021

- Stand-Alone: The DKG can be proven secure without reference to how it is used.
 - ▶ Nothing about sk is revealed beyond what is revealed by pk (from GJKR).
 - The protocol can be perfectly simulated to an adversary for a challenge public key.
 - In other words, the simulated DKG must output the challenge as the group's public key.
- Contextual: Prove the security of the DKG in the context of demonstrating security of the protocol in which it is used ²

²Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu. Aggregatable Distributed Key Generation, EUROCRYPT 2021

- Stand-Alone: The DKG can be proven secure without reference to how it is used.
 - ▶ Nothing about sk is revealed beyond what is revealed by pk (from GJKR).
 - The protocol can be perfectly simulated to an adversary for a challenge public key.
 - In other words, the simulated DKG must output the challenge as the group's public key.
- Contextual: Prove the security of the DKG in the context of demonstrating security of the protocol in which it is used ²

²Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu. Aggregatable Distributed Key Generation, EUROCRYPT 2021

- Stand-Alone: The DKG can be proven secure without reference to how it is used.
 - Nothing about *sk* is revealed beyond what is revealed by *pk* (from GJKR).
 - The protocol can be perfectly simulated to an adversary for a challenge public key.
 - In other words, the simulated DKG must output the challenge as the group's public key.
- Contextual: Prove the security of the DKG in the context of demonstrating security of the protocol in which it is used ²

²Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu. Aggregatable Distributed Key Generation, EUROCRYPT 2021

- Stand-Alone: The DKG can be proven secure without reference to how it is used.
 - Nothing about *sk* is revealed beyond what is revealed by *pk* (from GJKR).
 - The protocol can be perfectly simulated to an adversary for a challenge public key.
 - In other words, the simulated DKG must output the challenge as the group's public key.

Contextual: Prove the security of the DKG in the context of demonstrating security of the protocol in which it is used ²

²Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, Alin Tomescu. Aggregatable Distributed Key Generation, EUROCRYPT 2021

Stand-Alone:

- ▶ Pro: Proving security means that the DKG can be used in any context.
- Con: Very hard definition to achieve, requires guaranteed output delivery.
 - No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

Stand-Alone:

- Pro: Proving security means that the DKG can be used in any context.
- Con: Very hard definition to achieve, requires guaranteed output delivery.
 - No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

- Stand-Alone:
 - Pro: Proving security means that the DKG can be used in any context.
 - Con: Very hard definition to achieve, requires guaranteed output delivery.
 - No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

- Stand-Alone:
 - Pro: Proving security means that the DKG can be used in any context.
 - Con: Very hard definition to achieve, requires guaranteed output delivery.
 - ▶ No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

Stand-Alone:

- Pro: Proving security means that the DKG can be used in any context.
- Con: Very hard definition to achieve, requires guaranteed output delivery.
 - ▶ No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

Stand-Alone:

- Pro: Proving security means that the DKG can be used in any context.
- Con: Very hard definition to achieve, requires guaranteed output delivery.
 - ▶ No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

Stand-Alone:

- Pro: Proving security means that the DKG can be used in any context.
- Con: Very hard definition to achieve, requires guaranteed output delivery.
 - No notion of failure and/or rewinding in the existing definition.

- Pro: Allows for more efficient protocols to be proven secure (more on this later).
- Con: Proofs are unwieldy and requires proving the security of the DKG over and over in different use cases.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- ► In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ► Here, $\alpha \leftarrow \mathbb{Z}_a$ and each b_i is chosen non-uniformly.
 - \triangleright y is random if each $\beta_i \in \mathbb{Z}_q$ is chosen without knowledge of α .
 - ightharpoonup Otherwise, γ is not random.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ightharpoonup Here, $lpha \leftarrow \mathbb{Z}_q$ and each b_i is chosen non-uniformly.
 - \triangleright γ is random if each $\beta_i \in \mathbb{Z}_q$ is chosen without knowledge of α .
 - \triangleright Otherwise, γ is not random.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ► Here, $\alpha \leftarrow \mathbb{Z}_q$ and each b_i is chosen non-uniformly.
 - $ightharpoonup \gamma$ is random if each $\beta_i \in \mathbb{Z}_q$ is chosen *without* knowledge of α .
 - ightharpoonup Otherwise, γ is not random.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ► Here, $\alpha \leftarrow \mathbb{Z}_q$ and each b_i is chosen non-uniformly.
 - \triangleright γ is random if each $\beta_i \in \mathbb{Z}_q$ is chosen without knowledge of α .
 - ightharpoonup Otherwise, γ is not random.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- ▶ In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ▶ Here, $\alpha \leftarrow \mathbb{Z}_q$ and each b_i is chosen non-uniformly.
 - $ightharpoonup \gamma$ is random if each $\beta_i \in \mathbb{Z}_q$ is chosen without knowledge of α .
 - ightharpoonup Otherwise, γ is not random.

- In a single-party setting, ensuring that a secret key is randomly sampled is easy.
- In a multi-party setting, where the adversary is a participant, ensuring key material is uniformly distributed is harder.
- ► For example: $\gamma \leftarrow \alpha + \sum_{i=1}^{n} \beta_i$
 - ▶ Here, $\alpha \leftarrow \$ \mathbb{Z}_q$ and each b_i is chosen non-uniformly.
 - $ightharpoonup \gamma$ is random if each $\beta_i \in \mathbb{Z}_q$ is chosen without knowledge of α .
 - ightharpoonup Otherwise, γ is not random.

Current Landscape

- ▶ Each participant i acts as the dealer and performs a Shamir secret sharing of a secret α_i , distributing shares w_{ij} to each other.
- ▶ The group's secret at the end is $sk \leftarrow \sum \alpha_i = \sum \sum w_{ij}\lambda_i$.
- Proven secure in the context of threshold signatures. 3

A rushing adversary *can* bias key material, but by a limited amount.

³Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin. Secure Applications of Pedersen's Distributed Key Generation Protocol, CT-RSA, 2003.

- ▶ Each participant i acts as the dealer and performs a Shamir secret sharing of a secret α_i , distributing shares w_{ij} to each other.
- ▶ The group's secret at the end is $sk \leftarrow \sum \alpha_i = \sum \sum w_{ij}\lambda_i$.
- Proven secure in the context of threshold signatures. 3

A rushing adversary *can* bias key material, but by a limited amount.

³Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin. Secure Applications of Pedersen's Distributed Key Generation Protocol, CT-RSA, 2003.

- ▶ Each participant i acts as the dealer and performs a Shamir secret sharing of a secret α_i , distributing shares w_{ij} to each other.
- ▶ The group's secret at the end is $sk \leftarrow \sum \alpha_i = \sum \sum w_{ij}\lambda_i$.
- Proven secure in the context of threshold signatures. 3

A rushing adversary *can* bias key material, but by a limited amount.

³Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin. Secure Applications of Pedersen's Distributed Key Generation Protocol, CT-RSA, 2003.

- Each participant i acts as the dealer and performs a Shamir secret sharing of a secret α_i , distributing shares w_{ij} to each other.
- ▶ The group's secret at the end is $sk \leftarrow \sum \alpha_i = \sum \sum w_{ij}\lambda_i$.
- Proven secure in the context of threshold signatures. 3

A rushing adversary can bias key material, but by a limited amount.

³Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin. Secure Applications of Pedersen's Distributed Key Generation Protocol, CT-RSA, 2003.

Participant i

Other Participants

$$\alpha_i \leftarrow \mathbb{Z}_q$$

$$(\{w_{i1},\ldots,w_{in}\},\{\alpha_i,a_{i1},\ldots,a_{i(t-1)}\}) \leftarrow s$$
 Shamir.Share (α_i,n,t) $\vec{D}_i = \langle A_{i0},\ldots,A_{i(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_i,a_{i1},\ldots,a_{i(t-1)})$

Broadcast \vec{D}_i Send w_{ij}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

$$sk_i = \sum_{k \in P(n)} w_k \lambda_k$$
, $//$ qual are the players that issued valid shares.

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{i \in \text{qual}} \alpha_i}$$

Participant i

$$\alpha_i \leftarrow \mathbb{Z}_q$$

$$(\{w_{i1},\ldots,w_{in}\},\{\alpha_i,a_{i1},\ldots,a_{i(t-1)}\}) \leftarrow s Shamir.Share(\alpha_i,n,t)$$

$$\vec{D}_i = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_i, a_{i1}, \dots, a_{i(t-1)})$$

Broadcast
$$\vec{D}_i$$
Send w_{ij}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

$$sk_i = \sum_{k \in P(k)} w_k \lambda_k$$
, \(\mathre{\psi} \) qual are the players that issued valid shares.

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{i \in \text{qual}} \alpha_i}$$

Participant i

Other Participants

$$lpha_i \leftarrow \mathbb{Z}_q$$
 $(\{w_{i1}, \ldots, w_{in}\}, \{\alpha_i, a_{i1}, \ldots, a_{i(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_i, n, t)
 $\vec{D}_i = \langle A_{i0}, \ldots, A_{i(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_i, a_{i1}, \ldots, a_{i(t-1)})$

Broadcast \vec{D}_i Send w_{ij}

Shamir.Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

$$sk_i = \sum_{k \in \text{qual}} w_k \lambda_k, \quad \text{$/\!\!/} \text{ qual are the players that issued valid shares.}$$

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = q^{\sum_{i \in \text{qual}} \alpha_i}$$

Participant i

Other Participants

$$lpha_i \leftarrow \mathbb{Z}_q$$
 $(\{w_{i1}, \ldots, w_{in}\}, \{\alpha_i, a_{i1}, \ldots, a_{i(t-1)}\}) \leftarrow \mathbb{S} \text{Shamir.Share}(\alpha_i, n, t)$
 $\vec{D}_i = \langle A_{i0}, \ldots, A_{i(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_i, a_{i1}, \ldots, a_{i(t-1)})$

Broadcast \vec{D}_i

Send Wi

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

$$sk_i = \sum_{k \in P(k)} w_k \lambda_k$$
, \(\mathre{\psi} \) qual are the players that issued valid shares.

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{k \in \text{qual}} \alpha}$$

Participant i

Other Participants

$$\alpha_i \leftarrow \mathbb{Z}_q$$

$$(\{w_{i1}, \dots, w_{in}\}, \{\alpha_i, a_{i1}, \dots, a_{i(t-1)}\}) \leftarrow \mathbb{S} \text{Shamir.Share}(\alpha_i, n, t)$$

$$\vec{D}_i = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_i, a_{i1}, \dots, a_{i(t-1)})$$

Broadcast \vec{D}_i

Send w_{ij}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

$$sk_i = \sum_{k=0}^{N} w_k \lambda_k$$
, \mathbb{Z} qual are the players that issued valid shares.

$$pk \leftarrow \prod A_{k0} = g^{\sum_{i \in q}}$$

Participant i

Other Participants

$$\alpha_i \leftarrow \mathbb{Z}_q$$

 $(\{w_{i1}, \dots, w_{in}\}, \{\alpha_i, a_{i1}, \dots, a_{i(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_i, n, t)
 $\vec{D}_i = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_i, a_{i1}, \dots, a_{i(t-1)})$

Broadcast \vec{D}_i

Send w_{ij}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

 $sk_i = \sum_{k=1}^{n} w_k \lambda_k$, \(\mathre{\pi}\) qual are the players that issued valid shares.

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{i \in \text{qual}} \alpha_i}$$

Participant i

Other Participants

$$lpha_i \leftarrow \mathbb{Z}_q$$
 $(\{w_{i1}, \dots, w_{in}\}, \{\alpha_i, a_{i1}, \dots, a_{i(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_i, n, t)
 $\vec{D}_i = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_i, a_{i1}, \dots, a_{i(t-1)})$

Broadcast $\vec{D_i}$ Send w_{ii}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

 $sk_i = \sum_{k \in \text{qual}} w_k \lambda_k, \quad /\!\!/ \text{ qual are the players that issued valid shares.}$

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{l \in \text{qual}} \alpha_l}$$

Participant i

Other Participants

$$\alpha_i \leftarrow \mathbb{Z}_q$$

$$(\{w_{i1}, \dots, w_{in}\}, \{\alpha_i, a_{i1}, \dots, a_{i(t-1)}\}) \leftarrow \mathbb{S} \text{Shamir.Share}(\alpha_i, n, t)$$

$$\vec{D}_i = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_i, a_{i1}, \dots, a_{i(t-1)})$$

Broadcast \vec{D}_i Send w_{ii}

Shamir. Verify
$$(w_i, \vec{D}_j) \stackrel{?}{=} 1$$

 $sk_i = \sum_{k \in \text{qual}} w_k \lambda_k, \quad \text{// qual are the players that issued valid shares.}$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} \alpha_i}$$

Key Bias Attack Against Pedersen DKG

- A rushing adversary can learn the output public key before publishing their own contribution.
- Nothing prevents this adversary from adaptively choosing their contributions.

We show an example of this adversary forcing pk to be even without detection from other participants.

Key Bias Attack Against Pedersen DKG

A rushing adversary can learn the output public key before publishing their own contribution.

Nothing prevents this adversary from adaptively choosing their contributions.

► We show an example of this adversary forcing *pk* to be even without detection from other participants.

Key Bias Attack Against Pedersen DKG

A rushing adversary can learn the output public key before publishing their own contribution.

Nothing prevents this adversary from adaptively choosing their contributions.

▶ We show an example of this adversary forcing pk to be even without detection from other participants.

Adversary

Other Participants

Broadcast \vec{D}_i

Send w_{ij}

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{lpha_A} \cdot \prod_{k=1; k
eq A} A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{lpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share $(lpha_A, n, t)$ $\vec{D}_A = (A_{A0}, \ldots, A_{A(t-1)}) \leftarrow \mathbb{S}$ Shamir.Commit $(lpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send W_{Aj}

Adversary

Other Participants

Broadcast \vec{D}_i

Send W_{ij}

Until pk is even, do:

$$lpha_A \leftarrow$$
s \mathbb{Z}_q ; check $pk = g^{lpha_A} \cdot \prod_{k=1; k
eq A} A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{lpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow$ s Shamir.Share $(lpha_A, n, t)$ $\vec{D}_A = \langle A_{A0}, \ldots, A_{A(t-1)} \rangle \leftarrow$ Shamir.Commit $(lpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send W_{Ai}

Adversary

Other Participants

Broadcast \vec{D}_i

Send Wij

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{lpha_A} \cdot \prod_{k=1; k \neq A}^n A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{lpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share $(lpha_A, n, t)$ $\vec{D}_A = \langle A_{A0}, \ldots, A_{A(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(lpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send W_{Ai}

Adversary

Other Participants

Broadcast \vec{D}_i

Send W_{ij}

Until pk is even, do:

 $\vec{D}_A = \langle A_{A0}, \dots, A_{A(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_A, a_{A1}, \dots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send WAi

Adversary

Other Participants

Broadcast \vec{D}_i

Send Wij

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{lpha_A} \cdot \prod_{k=1; k
eq A}^{"} A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{lpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share $(lpha_A, n, t)$

 $\vec{D}_A = \langle A_{A0}, \dots, A_{A(t-1)} \rangle \leftarrow \text{Shamir.Commit}(\alpha_A, a_{A1}, \dots, a_{A(t-1)})$

Send w_{Ai}

Adversary

Other Participants

Broadcast \vec{D}_i

Send W_{ij}

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{\alpha_A} \cdot \prod_{k=1; k \neq A}^n A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{\alpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_A, n, t) $\vec{D}_A = \langle A_{A0}, \ldots, A_{A(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send W_{Ai}

Adversary

Other Participants

Broadcast \vec{D}_i

Send W_{ij}

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{\alpha_A} \cdot \prod_{k=1; k \neq A}^n A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{\alpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_A, n, t) $\vec{D}_A = \langle A_{A0}, \ldots, A_{A(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send w_{Ai}

Adversary

Other Participants

Broadcast \vec{D}_i

Send W_{ij}

Until pk is even, do:

$$lpha_A \leftarrow \mathbb{Z}_q$$
; check $pk = g^{\alpha_A} \cdot \prod_{k=1; k \neq A}^n A_{k0}$ $(\{w_{A1}, \ldots, w_{An}\}, \{\alpha_A, a_{A1}, \ldots, a_{A(t-1)}\}) \leftarrow \mathbb{S}$ Shamir.Share (α_A, n, t) $\vec{D}_A = \langle A_{A0}, \ldots, A_{A(t-1)} \rangle \leftarrow \mathbb{S}$ Shamir.Commit $(\alpha_A, a_{A1}, \ldots, a_{A(t-1)})$

Broadcast \vec{D}_A

Send W_{Aj}

- Stand-alone security; secure against key biasing.
- Assumes t honest players.
- Participants issue a blinded VSS commitment in round one and then unblinds in round three.

- Share correctness is verified using blinded commitments.
- Contributions from cheating players can be extracted in round three (by t honest players).

- Stand-alone security; secure against key biasing.
- Assumes t honest players.

- Share correctness is verified using blinded commitments.
- Contributions from cheating players can be extracted in round three (by t honest players).

- Stand-alone security; secure against key biasing.
- Assumes t honest players.

- Share correctness is verified using blinded commitments.
- Contributions from cheating players can be extracted in round three (by t honest players).

- Stand-alone security; secure against key biasing.
- Assumes t honest players.

- Share correctness is verified using blinded commitments.
- Contributions from cheating players can be extracted in round three (by t honest players).

- Stand-alone security; secure against key biasing.
- Assumes t honest players.

- Share correctness is verified using blinded commitments.
- Contributions from cheating players can be extracted in round three (by t honest players).

Participant i

Participant i

Participant i

Participant i

Other Participants

Send w_{ij}, z_{ij} to player j

Participant i

Other Participants

Send w_{ij}, z_{ij} to player j

Participant i

$$\alpha_{i}, b_{i} \leftarrow \$ \mathbb{Z}_{q}$$

$$(\{w_{i1}, \dots, w_{in}\}, \{\alpha_{i}, a_{i1}, \dots, a_{i(t-1)}\}) \leftarrow \$ \operatorname{Shamir.Share}(\alpha_{i}, n, t)$$

$$\vec{D}_{i} = \langle A_{i0}, \dots, A_{i(t-1)} \rangle \leftarrow \operatorname{Shamir.Commit}(g, \alpha_{i}, a_{i1}, \dots, a_{i(t-1)})$$

$$// \operatorname{Commit} \text{ with base } g$$

$$(\{z_{i1}, \dots, z_{in}\}, \{b_{i}, \hat{a_{i1}}, \dots, a_{i(\hat{t}-1)}\}) \leftarrow \$ \operatorname{Shamir.Share}(b_{i}, n, t)$$

$$\vec{E}_{i} = \langle \hat{A}_{i0}, \dots, \hat{A}_{i(t-1)} \rangle \leftarrow \operatorname{Shamir.Commit}(h, b_{i}, \hat{a_{i1}}, \dots, a_{i(\hat{t}-1)})$$

$$// \operatorname{Commit} \text{ with base } h$$

$$\vec{H}_{i} \leftarrow \langle (A_{i0}\hat{A}_{i0}), \dots, (A_{i(t-1)}\hat{A}_{i(t-1)}) \rangle // \operatorname{Pedersen commitment}$$

$$\operatorname{Broadcast} \vec{H}_{i}$$

Participant i

Other Participants

Broadcast \vec{H}_i

Send w_{ij}, z_{ij} to player j

GJKR Construction: Rounds One and Two

Participant i

Other Participants

Send w_{ij}, z_{ij} to player j

GJKR Construction: Rounds One and Two

Participant i

Other Participants

Send w_{ij}, z_{ij} to player j

Participant i

Other Participants

Broadcast \vec{D}_i

excluded ← 0

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

 $\mathsf{excluded} \leftarrow \mathsf{excluded} \cup \{j\}$

$$\mathbf{s} \mathbf{k}_i = \sum_{j \in \mathsf{excluded}} lpha + \sum_{k \in (\mathsf{qual} \setminus \mathsf{excluded})} \mathbf{w}_k \lambda_k$$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} lpha}$$

Participant i

Other Participants

Broadcast \vec{D}_i

excluded $\leftarrow \emptyset$

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

excluded \leftarrow excluded \cup {j}

$$\mathbf{s} \mathbf{k}_i = \sum_{j \in \mathsf{excluded}} lpha + \sum_{k \in (\mathsf{qual} \setminus \mathsf{excluded})} \mathbf{w}_k \lambda_k$$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} lpha}$$

Participant i

Other Participants

Broadcast $ec{D}_i$

excluded $\leftarrow \emptyset$

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

excluded \leftarrow excluded \cup {j}

$$sk_i = \sum_{j \in ext{excluded}} lpha + \sum_{k \in (ext{qual} \setminus ext{excluded})} w_k \lambda_k$$

$$pk \leftarrow \prod_{k \in \text{qual}} A_{k0} = g^{\sum_{i \in \text{qual}} \alpha}$$

Participant i

Other Participants

Broadcast $ec{D}_i$

excluded $\leftarrow \emptyset$

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

excluded \leftarrow excluded $\cup \{j\}$

$$\mathsf{sk}_i = \sum_{j \in \mathsf{excluded}} lpha + \sum_{k \in (\mathsf{qual} \setminus \mathsf{excluded})} w_k \lambda_k$$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} \alpha}$$

Participant i

Other Participants

Broadcast \vec{D}_i

excluded $\leftarrow \emptyset$

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

excluded \leftarrow excluded $\cup \{j\}$

$$extstyle extstyle ext$$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} \alpha}$$

Participant i

Other Participants

Broadcast \vec{D}_i

excluded $\leftarrow \emptyset$

For all j where Shamir. Verify $(w_{ji}, \vec{D}_j) \neq 1$:

excluded \leftarrow excluded $\cup \{j\}$

$$extstyle extstyle ext$$

$$pk \leftarrow \prod_{k \in \mathsf{qual}} A_{k0} = g^{\sum_{i \in \mathsf{qual}} \alpha_i}$$

- ▶ Cheating parties must choose their contributions having seen only the blinded commitment \vec{H}_i from other players.
- Pedersen commitments guarantee that $H_i = g^i h^j$ will not reveal any information about g^i .
- ▶ If player *A* cheats and is kicked out in round 3, α_A can be extracted (assuming *t* honest parties).
- ► So key material will remain unbiased even if a player cheats in the last round after learning *pk*.

- ▶ Cheating parties must choose their contributions having seen only the blinded commitment \vec{H}_i from other players.
- Pedersen commitments guarantee that $H_i = g^i h^j$ will not reveal any information about g^i .
- ▶ If player *A* cheats and is kicked out in round 3, α_A can be extracted (assuming *t* honest parties).

So key material will remain unbiased even if a player cheats in the last round after learning *pk*.

- ▶ Cheating parties must choose their contributions having seen only the blinded commitment \vec{H}_i from other players.
- Pedersen commitments guarantee that $H_i = g^i h^j$ will not reveal any information about g^i .
- If player A cheats and is kicked out in round 3, α_A can be extracted (assuming t honest parties).

So key material will remain unbiased even if a player cheats in the last round after learning *pk*.

- ▶ Cheating parties must choose their contributions having seen only the blinded commitment \vec{H}_i from other players.
- Pedersen commitments guarantee that $H_i = g^i h^j$ will not reveal any information about g^i .
- ▶ If player A cheats and is kicked out in round 3, α_A can be extracted (assuming t honest parties).
- So key material will remain unbiased even if a player cheats in the last round after learning pk.

- DKGs are a useful building block for distributing trust among set of parties.
- Properties for centralized protocols are difficult to guarantee in a multi-party setting (such as uniform distribution of key material).
- ▶ Pedersen DKG is simple and efficient, but must be proven seperately for each context which it is used.
- GJKR is proven in a stand-alone manner, but at the loss of efficiency.
- Stay tuned for future research!

- DKGs are a useful building block for distributing trust among set of parties.
- Properties for centralized protocols are difficult to guarantee in a multi-party setting (such as uniform distribution of key material).
- ▶ Pedersen DKG is simple and efficient, but must be proven seperately for each context which it is used.
- GJKR is proven in a stand-alone manner, but at the loss of efficiency.
- Stay tuned for future research!

- DKGs are a useful building block for distributing trust among set of parties.
- Properties for centralized protocols are difficult to guarantee in a multi-party setting (such as uniform distribution of key material).
- Pedersen DKG is simple and efficient, but must be proven seperately for each context which it is used.
- GJKR is proven in a stand-alone manner, but at the loss of efficiency.
- Stay tuned for future research!

- DKGs are a useful building block for distributing trust among set of parties.
- Properties for centralized protocols are difficult to guarantee in a multi-party setting (such as uniform distribution of key material).
- Pedersen DKG is simple and efficient, but must be proven seperately for each context which it is used.
- GJKR is proven in a stand-alone manner, but at the loss of efficiency.
- Stay tuned for future research!

- DKGs are a useful building block for distributing trust among set of parties.
- Properties for centralized protocols are difficult to guarantee in a multi-party setting (such as uniform distribution of key material).
- Pedersen DKG is simple and efficient, but must be proven seperately for each context which it is used.
- GJKR is proven in a stand-alone manner, but at the loss of efficiency.
- Stay tuned for future research!

Thank you!