6.) TEORIE POLI , je i komulation teleso (A+101-1-11-1) je somulatim osnih s jednotkorým a inverzním protem Ide nejm delitele mely: ta, b ∈ A\ 803: a · b ≠ 0 Va, k∈A: (a· & = 0) -> (a=0 v k=0) A\\\\\\\\\\\ (A1+101-) zi homeletin' (Abeloosla') genja (A(\\ 03\) \\ \(1\) \\ \((A 1 11-1) is sen pologrupa, Alora je komulation a ma zednothor a inverm poek X nem'ho ale grupa - no grupë je saëdy frolk sinverlibilm' a rde nem'O inverlibilm' zeliloz O-1 = 1 = NDEF - doplném: for orach platipe (A1+101-) se Abelovska grupa Sakre + je waniena limarun operace mad A, + je asocializan' i komulatione a O si mulon prock (mentin'hur prock rehledem &+) a - si inverem prock a HaCA plan' , se you invertibilin' + (A,.) je pologrupa a lechy o je warriena operace na A a je apociation - pole zi bůba (P1+1.) nebo (R1+1.) a tedy zjidnodušeně Q a R Podpole - pound omerime normon mnozim provodníh pole a nové vznikle pole ma stale vlustnosti pole tak zi to podpole privodního pole Minimalni pole - nema radna jina prodpole ner sebe sama (wholise odebele R nomé
monoring plat wi ho melon ele pole) - Særde pole ma' jidno minimalen podpole (mimo zine)

Rad pruku - ricid prolin a vi grupe G- enacime O(a) reles ord (a) reles (a) a m = & Robe e je newbrahm proek genpy G a · a · ... · a = l - jestliže talové m metristuje (milety to metré l) tak je ord (a) = O (Z,+) ma ta EZ: Ord (a) = 00 $(z_{51}+)$ ma' $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ $\sqrt{25}$ ord (4)=5 4+4+4+4+4=20=0 ~25 Charakteristika Okruhu - OSruh (R,+10,-1.11) ma' charalleristiku Char R dám dvirna sprisoby:

Rede se povinise mistr o přímo seddom' státelm'

1) Chat R (O(1) polud O(1) EN (0) polend (1) = 00 - rud jednoshového prou 2) char R < 18m.1/meZ3/ polad je la ma horiena (O jimak - velikos množiny (kardinalila) obsahující na'soby probac množiny zidnotkovým probem Char 25 = 5 application of the state of the second Char 2101 = 101 gidalle gapadamitelle char 2 = 0 - poste bolily's musin sicist sidullary fulle abel doll melos field char Q = 0 char R = 0 - jerthine Char K = p &de K je pole a p je procéalo, pak Zpe je minimaln' podpole boho pole K (met je s him minima lum'm reomorfin' - laber lo se porte minima lui prodpole)

Kozsíření pole - porud rossisione noman musician a stale la bude pole - dulo by se marrel i madpole - pole L je rossírením pole K Nahné se existinje podpole 3 pole L re SEL a par je definovamo lo roistrem pole K jako L= K(S) = 1 & E = L | E je podpole pole L, blue obodinje KUSS - je-li S jednopulæré S= & R3 lak se jedna o jednoch che rosisiem pole K, ledy K(s) = K(d) Konečna pole (Galoisova pole) - je pole, lhou' ma' koneing' poiet polu, envisi se GF(pt)
a poiet polu je pt - maji. GF(32) = GF(9) a ma' ledy 9 polu
- loneina' (Galoisora) pole maji charakteristiku char GF(pt) = pt - p je procésle a k eN Sde k > 0 - ledylag bylo k=0 bal je GF(po) a hed G(1), coè mejde, proboèse rime, re pole ma' mulon pool O a jednothový proch 1 lde 0 + 1 a ledy nejmensi GF je GF(2) led GF(21) - konerna tilesa pon konmlation (honisma pole jon konmlation) - GF lee Slasificanal podle velilosti -> pokud nalezneme choi GF(2) treba tel jou iromorpu' - poure jedno je bijellionim robrurenim boho denhesho - minimalui podpole pole GF(pk) je iromorfui se rhythoron trichon Zp - jerblire mame bonerne pole K a jeho podpole P, las la K Je velbrorjim prostsem mad podpolem P => Sonième pole je verborovým poslorem mad sraými podpoli => koneine pole ma led dum baki vellovilo postom dum {1,d,..., 2 -13 led { 20,..., 2 k-1} Melor i & Do. 12m3 Ide m = [K:P] mEN Je rozdíl velikost. pole a podpole - pro him - cish vý lepou há prás pod

