页码	位置	原文	勘误
12	正文倒数第5行	······平衡光子气的热容 <mark>量</mark> .	······平衡光子气的热容.
20	(1.35)式	$\cdots = U_0 + AT^4$	$\cdots = \frac{U_0}{V} + AT^4$
20			
20	倒数底3行	$K = \omega / \nu_0$ (希腊字母 nu)	$K = \omega/v_0$ (拉丁字母)
22	(1.38')式第1行	$\cdots (X_N^* - X_{N+M})(X_N - X_{N+M})$	$\cdots (X_N^* - X_{N+M}^*)(X_N - X_{N+M})$
25	倒数第3行	$\approx -\sum_{\mathbf{K},r} \left[\frac{P^2}{2\omega\eta\hbar} \left a_{\alpha}^{(r)}(\mathbf{K}) \right ^2 \frac{1 + \mathrm{e}^{-\hbar\omega/kT}}{1 - \mathrm{e}^{-\hbar\omega/kT}} \right].$	$\approx \exp\left\{-\sum_{K,r} \left[\frac{P^2}{2\omega\eta\hbar} \left a_{\alpha}^{(r)}(K) \right ^2 \frac{1+\mathrm{e}^{-\hbar\omega/kT}}{1-\mathrm{e}^{-\hbar\omega/kT}}\right]\right\}.$
26	倒数第2行	它与一个储有粒子的大容器相连	它与一个大粒子库相连
27	图 1.6	我们将粒子系统想象成 <mark>连接在大容器上</mark> 的盒子	我们将粒子系统想象成连接着大粒子库的盒子
27	第1行	假如需要能量µ才能把一个粒子从盒中移到容器	总系统表现出来的统计力学性质是: 需要能量µ才能
27	万 1 1]	中,则该系统与原系统将具有相同的统计力学性质.	把一个粒子从盒中移到粒子库中.
28	第6行	于是 $\langle n_a \rangle = \partial g / \partial f_a$	于是 $\langle n_a \rangle = \partial g / \partial \varepsilon_a$
32	(1.70)式	$\frac{\langle N \rangle}{V} = \rho = s \left(\frac{mkT_c}{2\pi\hbar^2}\right) (2.612)$	$\frac{\langle N \rangle}{V} = \rho = s \left(\frac{mkT_{\rm c}}{2\pi\hbar^2}\right)^{3/2} (2.612)$
32	脚注第5行	⁸⁷ RB	⁸⁷ Rb
33	倒数第3行	$\langle n_0 \rangle = \langle N \rangle - n_{\text{alg}}$	$\langle n_0 \rangle = \langle N \rangle - N_{\mbox{\scriptsize \mathfrak{N}}\mbox{\scriptsize ξ}}$

34	倒数第2行	Statistical Physics, §59 的习题.	Statistical Physics, Pergamon Press, 1959, §59 的习题.
37	第1行	\cdots 变成 $4\pi p^2 dp d\varepsilon = 2\pi (2m)^{3/2} \sqrt{\varepsilon} d\varepsilon$.	······变成 $4\pi p^2 dp = 2\pi (2m)^{3/2} \sqrt{\varepsilon} d\varepsilon$.
41	(2.2)式	$ \psi\rangle = \sum_{ij} C_{ij} \varphi_i\rangle \theta_i\rangle$	$ \psi angle = \sum_{ij} C_{ij} arphi_i angle heta_j angle$
55	(2.92)式	$\cdots \exp\left(-\frac{m\omega x^2}{2\hbar}\right) \exp\left(-\frac{m\omega^2 x'^2}{2\hbar}\right)$	$\cdots \exp\left(-\frac{m\omega x^2}{2\hbar}\right) \exp\left(-\frac{m\omega x'^2}{2\hbar}\right)$
63	正文倒数第3行	$\psi_i(P\mathbf{x_1}) = \psi_i(\mathbf{x}_k)$	$\psi_i(P\mathbf{x}_k) = \psi_i(\mathbf{x}_k)$
66	第1行	$h_{\nu} = V \left(\frac{m}{2\pi h^2 \beta \nu}\right)^{3/2}$	$h_{\nu} = V \left(\frac{m}{2\pi\hbar^2 \beta \nu}\right)^{3/2}$
66	倒数第4行	其中 $\prod_{\nu} \nu C_{\underline{\nu}} = N$.	其中 $\sum_{\nu} \nu C_{\nu} = N$.
70	(2.177)式	$\cdots \int_0^\beta \int_0^{u_1} du_1 du_2 tr \left[e^{-(\beta - u_1)H_0} V e^{-(u_1 - u_2)H_0} V e^{-u_1 H_0} \right]$	$\cdots \int_0^\beta \int_0^{u_1} du_1 du_2 tr \left[e^{-(\beta - u_1)H_0} V e^{-(u_1 - u_2)H_0} V e^{-u_2 H_0} \right]$
71	(2.179)式	$\int_{A} \operatorname{tr} \left[e^{-\beta H_0} e^{wH_0} V e^{-wH_0} V \right]$	$\int_{A} \mathrm{d}x \mathrm{d}w \mathrm{tr} \big[\mathrm{e}^{-\beta H_0} \mathrm{e}^{w H_0} V \mathrm{e}^{-w H_0} V \big]$
71	(2.180)式	$\int_{A'} \operatorname{tr} \left[e^{-\beta H_0} e^{\mathbf{w} H_0} V e^{-\mathbf{w} H_0} V \right]$	$\int_{A'} \mathrm{d}x' \mathrm{d}w' \operatorname{tr} \left[e^{-\beta H_0} e^{w' H_0} V e^{-w' H_0} V \right]$
71	(2.183)式	$= \sum_{n} \langle n e^{-\beta H_0} e^{wH_0} V \cdots$	$= \sum_{n} \langle n e^{-\beta H_0} e^{wH_0} V \cdots$

84	正文倒数第7行	$\cdots + \int_0^u \frac{mx}{2} (-\ddot{x} + \omega^2 \bar{x}) du = \cdots$	$\cdots + \int_0^U \frac{m\bar{x}}{2} (-\ddot{x} + \omega^2 \bar{x}) du = \cdots$
87	第 4 行	$\cdots + V'(x)]du]\mathcal{D}x$	$\cdots + V'(x)]du$ $\mathcal{D}x$
87	倒数第8行	$\cdots V_0(x)]du'\}+\cdots$	$\cdots V_0(x)]du'\}\mathcal{D}x + \cdots$
88	第 3 行	$+\frac{1}{\hbar}\int_0^U\!\mathrm{d}u\cdots$	$+\frac{1}{\hbar^2}\int_0^U\!\mathrm{d}u\cdots$
88	图 3.4	$(z, \mathbf{U}), (y, \mathbf{V})$	(z,u), (y,v)
92	第2行	$\exp\left[-\int_0^U \left[\frac{m\dot{x}^2}{2} + Uw(\bar{x})\right] du\right]$	$\exp\left[-\int_0^U \left[\frac{m\dot{x}^2}{2}\mathrm{d}u + Uw(\bar{x})\right]\right]$
92	第3行	$\exp\left[-\int_0^U \left[\frac{m\dot{x}^2}{2}du + Uw(\bar{x})\right] \frac{du}{du}\right]$	$\exp\left[-\int_0^U \left[\frac{m\dot{x}^2}{2} du + Uw(\bar{x})\right]\right]$
92	第 5 行	$\exp\left[-\int_0^U \frac{m\dot{y}^2}{2}\right]$	$\exp\left[-\int_0^U \frac{m\dot{y}^2}{2} du\right]$
93	(3.65)式第1行	$\cdots \exp[-Uw(\bar{x})]$	$\cdots \exp[-Uw(\bar{x})] \mathcal{D}x(u)$
99	倒数第3行	$e^{-\beta F} = \frac{1}{N!} \int \rho_{D}(X_{1}, \dots, X_{N}; PX_{1}, \dots PX_{N}) dX_{1} \dots dX_{N}$	$e^{-\beta F} = \frac{1}{N!} \int \rho_{D}(X_{1}, \dots, X_{N}; X_{1}, \dots X_{N}) dX_{1} \dots dX_{N}$
104	(4.27)式	$\cdots + \int_{b}^{\infty} \left[1 - \mathrm{e}^{\beta \varphi(r)}\right] 4\pi r^{2} \mathrm{d}r$	$\cdots + \int_{b}^{\infty} \left[1 - \mathrm{e}^{-\beta \varphi(r)}\right] 4\pi r^2 \mathrm{d}r$
112	(4.61)式	$\cdots = \frac{N}{2} \int \left[1 - e^{\beta \mathbf{B}(r_{12})} \right] dR_2$	$\cdots = \frac{N}{2} \int \left[1 - e^{\beta V(r_{12})} \right] dR_2$
113	(4.66)式	振幅 = $a(\theta) \sum_{j} \left(e^{ikR_{jP}} e^{ikZ_{j}/R_{jP}} \right)$	振幅 = $a(\theta) \sum_{j} \left(e^{ikR_{jP}} e^{ikZ_{j}} / R_{jP} \right)$

117	第 15 行	$d^3R_3\cdots d^3R_n$	$d^3R_3\cdots d^3R_N$
117	第 17 行	$\times d^3 R_3 \cdots d^3 R_N'$	$\times d^3 R_3 \cdots d^3 R_N$
120	倒数第4行	$=F'-Vf\left(\frac{V}{N}\right)$	$= F - Vf\left(\frac{V}{N}\right)$
122	(4.88)式	$\mathrm{d}x_1\cdots\mathrm{d}x_2$	$\mathrm{d}x_1\cdots\mathrm{d}x_N$
123	第1行	$(\alpha + e^{-x_0})(e^{-x_1} + \dots + e^{-x_N})$	$(\alpha + e^{x_0})(e^{-x_1} + \dots + e^{-x_N})$
125	第11行	为了将 (4.95) 式用微分项表达出来	为了将 (4.95) 式用微分表达出来
138	(5.6)式	$e^{2H} = \frac{e^{2/3} - \varepsilon^{-2/3}}{e^{1/3} - \varepsilon^{-1/3}} = \varepsilon^{1/3} + \varepsilon^{-1/3}$	$e^{2H} = \frac{\varepsilon^{2/3} - \varepsilon^{-2/3}}{\varepsilon^{1/3} - \varepsilon^{-1/3}} = \varepsilon^{1/3} + \varepsilon^{-1/3}$
140	(5.16)式	$2^{\mathbf{K}}Q' = \cdots$	$2^N Q' = \cdots$
143	第 11 行	$H_{\text{m}} = \frac{1}{2}\log(1-\sqrt{2})$	$H_{临界} = \frac{1}{2}\ln(1+\sqrt{2})$
161	(6.35)式	$[Q_i, P_i] = i\hbar \delta_{ij}$	$\left[Q_i, P_j\right] = \mathrm{i}\hbar \delta_{ij}$
179	第 17 行	因为 $ \chi\rangle = \alpha^* \langle \psi + \beta^* \langle \psi $	因为 $\langle \chi = \alpha^* \langle \psi + \beta^* \langle \psi $
187	第1行	并且 β , β' < G	并且 $\beta, \beta' \leq G$
202	倒数第6行	······还没有涉及电子自旋或 <mark>排斥</mark> 原理.	······还没有涉及电子自旋或不相容原理.
221	(7.109)式	$M_{\rm fi} = -\frac{4A}{N^2} \cdots$	$M_{\rm fi} = -\frac{4A}{N} \cdots$

222	(7.119)式	$\sigma_{N+} = \frac{1}{\sqrt{N}} \sum_{k}^{ik \cdot N} a_{k}$	$\sigma_{N+} = \frac{1}{\sqrt{N}} \sum_{k} e^{ik \cdot N} a_k$
-----	----------	--	--