March 17, 2016 @RIKEN BSI

Statistical Analysis on Order Structures

Mahito Sugiyama (ISIR, Osaka University)

(杉山麿人;大阪大学産業科学研究所)

Summary

S. Amari, Information geometry on hierarchy of probability distributions, IEEE TIT 2001 M. Sugiyama, H. Nakahara, K. Tsuda, Information Decomposition on Structured Space, arXiv 2016

Summary

S. Amari, Information geometry on hierarchy of probability distributions, IEEE TIT 2001 M. Sugiyama, H. Nakahara, K. Tsuda, Information Decomposition on Structured Space, arXiv 2016

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

ID10:

Itemset lattice

ID 8: 1 1 1

ID 9: 1 0 0

JD10: 0 1 0

Negative

class

LAMP (Terada et al. PNAS 2013)

Westfall-Young light (Llinares-López et al. KDD 2015)

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Upward = Pattern mining

η: Frequency

p: Probability

$$\eta(\{\bullet,\bullet\}) = p(\{\bullet,\bullet\}) + p(\{\bullet,\bullet,\bullet\})$$

Exponential p(x) = exp($\sum \theta(s)F_s(x) - \psi(\theta)$) family:

Triple for each node

Make a Poset from Data

Dataset ID 1: ID 2: 1 ID 3: 1 1 0 ID 4: 1 1 1 ID 5: 1 1 0 ID 6: 1 0 1 ID 7:

1

ID10: 0 1

1

1

0

ID 8:

ID 9:

Make a Poset from Data

Remove Nodes with Probability 0

Dataset

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0

ID 4: 1 1 1

ID 5: 1 1 0

ID 6: 1 0 1

ID 7: 1 0 1

ID 8: 1 1 1

ID 9: 1 0 0

ID10: 0 1 0

Example on Real Data (kosarak)

features: 41,270

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

Total runtime: 4.95 seconds

nodes: 3,253 (Threshold: 10⁻⁵)

significant interactions: 583

Single feature: 537

Pairwise interactions: 41

Triple interactions: 5

Example on Real Data (accidents)

features: 468

ID 1: 1 1 0

ID 2: 1 1 1

ID 3: 1 1 0 ···

ID 4: 1 1 1

ID 5: 1 1 0

•

Total runtime: 4.95 seconds

nodes: 281

(Threshold: 5×10^{-6})

significant interactions: 280 # features in each interaction is between 26 to 41

Conclusion

- We build information geometry for posets (partially ordered sets)
 - Natural connection between the information geometric dual coordinates and the partial order structure
 - M. Sugiyama, H. Nakahara, K. Tsuda, Information Decomposition on Structured Space, arXiv:1601.05533 (2016)
 - S. Amari, Information geometry on hierarchy of probability distributions, IEEE Trans. Info. Theory (2001)
- We can decompose a probability distribution and asses the significance of any-order interactions beyond pairwise interactions