1279 - Graph Coloring

Given an undirected graph G, you want to color each vertex of the graph using K colors. The colors are numbered from 0 to K-1. But there is one restriction. Let v be any vertex of the graph and u_1 , u_2 ... u_m be the adjacent vertices of v, then

$$color(v) = color(u_1) + color(u_2) + ... + color(u_m)$$
 (modulo K)

Now you have to find the number of ways you can color the graph maintaining this restriction.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing three integers N, M and K ($1 \le N \le 100$, $2 \le K \le 10^9$ and K is a prime) where N denotes the number of vertices and M denotes the number of edges of the graph. Each of the next M lines contains two integers $u \ v \ (1 \le u, v \le N, u \ne v)$ denoting that there is an edge between vertex u and v. You can safely assume that there is at most one edge between any two vertices.

Output

For each case, print the case number and the result modulo 100000007.

Sample Input	Output for Sample Input
2	Case 1: 1
6 0 5	Case 2: 3
5 4 3	
1 2	
1 3	
2 4	
3 5	

Note

For the second case, let the colors are red (0), green (1) and blue (2). Then the possible results are:

