PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 9/10, 15/82, A01H 5/06
A1
(11) International Publication Number: WO 97/20040
(43) International Publication Date: 5 June 1997 (05.06.97)
(21) International Application Number: PCT/SE96/01558 (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ

(30) Priority Data:

9504272-7 9601506-0

(22) International Filing Date:

29 November 1995 (29.11.95) SE 19 April 1996 (19.04.96) SE

28 November 1996 (28.11.96)

(71) Applicant (for all designated States except US): AMYLOGENE HB [SE/SE]; c/o Svalöf Weibull AB, S-268 81 Svalöv (SE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): EK, Bo [SE/SE]; Nyhagen, S-740 30 Björklinge (SE). KHOSNOODI, Jamshid [SE/SE]; Bandstolsvägen 3, 2 tr., S-756 48 Uppsala (SE). LARSSON, Clas-Tomas [SE/SE]; Flogstavägen 55 B II, S-752 73 Uppsala (SE). LARSSON, Håkan [SE/SE]; Hammarbygatan 58, S-753 24 Uppsala (SE). RASK, Lars [SE/SE]; Säves väg 14, S-752 63 Uppsala (SE).
- (74) Agent: AWAPATENT AB; P.O. Box 5117, S-200 71 Malmö (SE).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: STARCH BRANCHING ENZYME II OF POTATO

(57) Abstract

The present invention relates to an amino acid sequence of second starch branching enzyme (SBE II) of potato and a fragment thereof as well as to the corresponding isolated DNA sequences. Furthermore, the invention relates to vectors comprising such an isolated DNA sequence, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch. The starch obtained will show a changed pattern of branching of amylopectin as well as a changed amylopectin ratio.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Armenia			MW	Malawi
	GB GF	United Kingdom	MX	Mex:co
		•	NE	Nige:
				Netherlands
				Norvay
Belgium				New Zealand
Burkina Faso	_			•••
Bulgaria	ŀΤ	Italy	-	Polacid
Benin	JР	Japan		Portugal
Brazil	KE	Kenya		Romania
	KG	Kyrgystan	RU	Russian Federation
	KP	Democratic People's Republic	SD	Suda n
		of Korea	SE	Swe len
•	KR	Republic of Korea	SG	Singapore
	KZ	Kazakhstan	SI	Slovenia
	LI	Liechtenstein	SK	Slovakia
	LK	Sri Lanka	SN	Sent gal
	LR	Liberia	SZ	Swaziland
		Lithuania	TD	Cha-i
******	LU	Luxembourg	TG	Tog)
-		Latvia	TJ	Taji cistan
•		Monaco	TT	Trinidad and Tobago
		Republic of Moldova	UA	Ukr tine
		•	UG	Uganda
•	-	•	US	United States of America
			UZ	Uzbekistan
		•	VN	Vic: Nam
Gabon	MK	Manitana		
	Bulgaria	Australia GN Barbados GR Belgium HU Burkina Faso IE Bulgaria IT Benin JP Brazil KE Belarus KG Canada KP Central African Republic Congo KR Switzerland KZ Côte d'Ivoire LI Cameroon LK China LR Czechoslovakia LT Czech Republic LU Germany LV Denmark MC Estonia MD Spain MG Finland ML France MN	Australia GN Guinea Barbados GR Greece Belgium HU Hungary Burkina Faso IE Ireland Bulgaria IT Italy Benin JP Japan Brazil KE Kenya Belarus KG Kyrgystan Canada KP Democratic People's Republic of Korea Congo KR Republic of Korea Switzerland KZ Kazakhstan Côte d'Ivoire IJ Liechtenstein Cameroon LK Sri Lanka China LR Liberia Czechoslovakia LT Lithuania Czech Republic Germany LV Latvia Denmark MC Monaco Estonia MD Republic of Moldova Spain MG Madagascar Finland ML Mali France MN Mongolia	Australia GN Guinea NE Barbados GR Greece NL Belgium HU Hungary NO Burkina Faso IE Ireland NZ Bulgaria IT Italy PL Benin JP Japan PT Brazil KE Kenya RO Belarus KG Kyrgystan RU Canada KP Democratic People's Republic SD Central African Republic of Korea SE Congo KR Republic of Korea SG Switzerland KZ Kazakhstan SI Côte d'Ivoire IJ Liechtenstein SK Cameroon LK Sri Lanka SN China LR Liberia SZ China LR Liberia SZ Czechoslovakia LT Lithuania TD Czech Republic LU Luxembourg TG Germany LV Latvia TJ Denmark MC Monaco TT Estonia MD Republic of Moldova UA Spain MG Madagascar UG Finland ML Mali US France MN Mongolia

1

STARCH BRANCHING ENZYME II OF POTATO

The present invention relates to a novel starch branching enzyme of potato. More specifically, the present invention relates to an amino acid sequence of a second starch branching enzyme (SBE II) of potato and a fragment thereof as well as their corresponding DNA sequences. Furthermore, the invention relates to vectors comprising such DNA sequences, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch.

Starch is a complex mixture of different molecule forms differing in degree of polymerization and branching of the glucose chains. Starch consists of amylose and amylopectin, whereby the amylose consists of an essentially linear α -1,4-glucan and amylopectin consists of α -1,4-glucans connected to each other via α -1,6-linkages and, thus, forming a branched polyglucan. Thus, starch is not a uniform raw material.

Starch is synthesized via at least three enzymatic reactions in which ADP glucose phosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21) and starch branching enzyme (EC 2.4.1.18) are involved. Starch branching enzyme (SBE, also called Q-enzyme) is believed to have two different enzymatic activities. It catalyzes both the hydrolysis of α -1,4-glucosidic bonds and the formation of α -1,6-glucosidic bonds during synthesis of the branched component in starch, i.e. amylopectin.

Plant starch is a valuable source of renewable raw material used in, for example, the chemical industry (Visser and Jacobsen, 1993). However, the quality of the starch has to meet the demands of the processing industry wherein uniformity of structure is an important criterion. For industrial application there is a need of plants only containing amylose starch and plants only containing amylopectin starch, respectively.

30

2

Processes for altering the amylose/amylopectin ratio in starch have already been proposed. For example, in WO95/04826 there is described DNA sequences encoding debranching enzymes with the ability to reduce or increase the degree of branching of amylopectin in transgenic plants, e.g. potatoes.

In W092/14827 plasmids are described having DNA sequences that after insertion into the genome of the plants cause changes in the carbohydrate concentration and the carbohydrate composition in regenerated plants. These changes can be obtained from a sequence of a pranching enzyme that is located on these plasmids. This branching enzyme is proposed to alter the amylose/amylopectin ratio in starch of the plants, especially in commercially used plants.

10

15

20

25

30

35

WO92/14827 describes the only hitherto known starch branching enzyme in potato and within the art it is not known whether other starch branching enzymes are involved in the synthesis of branched starch of potato.

In Mol Gen Genet (1991) 225:289-296, Visser et al., there is described inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Inhibition of the enzyme in potato tuber starch was up to 100% in which case amylose-free starch was provided.

However, the prior known methods for inhibiting amylopectin have not been that successful and, therefore, alternative methods for inhibiting amylopectin are still highly desirable (Müller-Röber and Ko β mann, 1994; Martin and Smith, 1995).

The object of the present invention is to enable altering the degree of amylopectin branching and the amylopectin/amylose ratio in potato starch.

According to the present invention this object is achieved by providing a novel isolated DNA sequence encoding a second starch branching enzyme, SBE II, and

5

20

fragments thereof, which after insertion into the genome of the plants cause changes in said branching degree and ratio in regenerated plants.

Within the scope of the present invention there is also included the amino acid sequence of SBE II and fragments thereof.

Also variants of the above DNA sequence resulting from the degeneracy of the genetic code are encompassed.

The novel DNA sequence encoding SBEII, comprising

3074 nucleotides, as well as the corresponding amino acid
sequence comprising 878 amino acids, are shown in SEQ ID
No. 1. One 1393 nucleotides long fragment of the above DNA
sequence, corresponding to nucleotides 1007 to 2399 of the
DNA sequence in SEQ ID No. 1, as well as the corresponding
amino acid sequence comprising 464 amino acids, are shown
in SEQ ID No. 2.

Furthermore, there are provided vectors comprising said isolated DNA-sequences and regulatory elements active in potato. The DNA sequences may be inserted in the sense or antisense (reversed) orientation in the vectors in relation to a promoter immediately upstream from the DNA sequence.

Also there is provided a process for the production of transgenic potatoes with a reduced degree of branching of amylopectin starch, comprising the following steps:

a) transfer and incorporation of a vector according to the invention into the genome of a potato cell, and b) regeneration of intact, whole plants from the transformed cells.

Finally, the invention provides the use of said transgenic potatoes for the production of starch.

The invention will be described in more detail below in association with an experimental part and the accompanying drawings, in which

Fig. 1 shows SDS polyacrylamide electrophoresis of proteins extracted from starch of normal potato (lane A)

4

and transgenic potato (lane B). Excised protein bands are marked with arrows. Lane M: Molecular weight marker proteins (kDa).

Fig. 2 shows 4 peptide sequences derived from 5 digested proteins from potato tuber starch.

EXPERIMENTAL PART

25

30

Isolation of starch from potato tubers

Potato plants (Solanum tuberosum) were grown in the field. Peeled tubers from either cv. Early Puritan or from 10 a transgenic potato line essentially lacking granule-bound starch synthase I (Svalöf Weibull AB, international application number PCT/SE91/00892), were homogenized at 4°C in a fruit juicer. To the "juice fraction", which contained a large fraction of the starch, was immediately 15 added Tris-HCl, pH 7.5, to 50 mM, Na-dithionite to 30 mM and ethylenedinitrilotetraacetic acid (EDTA) to 10 mM. The starch granules were allowed to sediment for 30 min and washed 4x with 10 bed volumes of washing buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA). The starch, which was left 20 on the bench at +4°C for 30 min to sediment between every wash, was finally washed with 3×3 bed volumes of acetone, air dried over night, and stored at -20°C. Extraction of proteins from tuber starch

Stored starch (20 g) was continuously mixed with 200 ml extraction buffer (50 mM Tris-HCl, pH 7.5, 2% (w/v) sodium dodecyl sulfate (SDS), 5 mM EDTA) by aspiration with a pipette at 85°C until the starch was gelatinized. The samples were then frozen at -70°C for 1 hour. After thawing at 50°C, the samples were centrifuged for 20 min at 12,000xg at 10°C. The supernatants were collected and re-centrifuged at 3,000xg for 15 min. The final supernatants were filtered through 0.45 μ filters and 2.25 volumes of ice-cold acetone were added. After 30 min incubation at 4°C, the protein precipitates were collected by centrifugation (3,000xg for 30 min at 4°C), and

dissolved in 50 mM Tris-HCl, pH 7.5. An aliquot of each preparation was analyzed by SDS poly-acrylamide gel electrophoresis according to Laemmli (1970) (Fig. 1). The proteins in the remaining portions of the preparations were concentrated by precipitation with trichloroacetic acid (10%) and the proteins were separated on an 8% SDS polyacrylamide gel Laemmli, (1970). The proteins in the gel were stained with Coomassie Brilliant Blue R-250 (0.2% in 20% methanol, 0.5% acetic acid, 79.5% $\rm H_2O$).

10 In gel digestion and sequencing of peptides

The stained bands marked with arrows in Fig. 1 corresponding to an apparent molecular weight of about 100 kDa were excised and washed twice with 0.2M $\rm NH_4HCO_3$ in 50% acetonitrile under continuous stirring at 35°C for 20 min.

- After each washing, the liquid was removed and the gel pieces were allowed to dry by evaporation in a fume hood. The completely dried gel pieces were then separately placed on parafilm and 2 μ l of 0.2M NH₄CO₃, 0.02% Tween-20 were added. Modified trypsin (Promega, Madison,
- WI,USA) (0.25 μg in 2 μl) was sucked into the gel pieces whereafter 0.2M NH₄CO₃ was added in 5 μl portions until they had resumed their original sizes. The gel slices were further divided into three pieces and transferred to an Eppendorf tube. 0.2M NH₄CO₃ (200 μl) was added and the
- proteins contained in the gel pieces were digested over night at 37°C (Rosenfeld et al. 1992). After completed digestion, trifluoroacetic acid was added to 1% and the supernatants removed and saved. The gel pieces were further extracted twice with 60% acetonitrile, 0.1% tri-
- fluoroacetic acid (200 µl) under continuous shaking at 37°C for 20 min. The two supernatants from these extractions were combined with the first supernatant. The gel pieces were finally washed with 60% acetonitrile, 0.1% trifluoroacetic acid, 0.02% Tween-20 (200 µl). Also these
- 35 supernatants were combined with the other supernatants and the volume was reduced to 50 μl by evaporation. The

6

extracted peptides were separated on a SMART® chromatography system (Pharmacia, Uppsala, Sweden) equipped with a µRPC C2/C18 SC2.1/10 column. Peptides were eluted with a gradient of 0 - 60% acetonitrile in water/0.1% trifluoroacetic acid over 60 min with a flow rate of 100 µl/min. Peptides were sequenced either on an Applied Biosystems 470A gas phase sequenator with an on line PTH-amino acid analyzer (120A) or on a model 476A according to the instructions of the manufacturer (Applied Biosystems, Foster City, CA, USA).

Four of the peptides sequenced gave easily interpretable sequences (Fig. 2). A data base search revealed that these four peptides displayed similarity to starch branching enzymes and interestingly, the peptides were more related to starch branching enzyme II from other plant species than to starch branching enzyme I from potato.

Construction of oligonucleotides encoding peptides 1 and 2.

Degenerated oligonucleotides encoding peptide 1 and peptide 2 were synthesized as forward and reverse primers, respectively:

Oligonucleotide 1: 5'-gtaaaacgacggccagt-TTYGGNGTNTGGGARATHTT-3' (Residues 2 to 8 of peptide 1)

Oligonucleotide 2: 5'-aattaaccctcactaaaggg-CKRTCRAAYTCYTGIARNCC-3' (Residues 2 to 8 of peptide 2, reversed strand)

wherein

10

15

H is A, C or T, I is inosine; K is G or T; N is A, C, G or T; R is A or G; Y is C or T; bases in lower case were added as tag sequences.

10

Purification of mRNA from potato tuber, synthesis of cDNA and PCR amplification of a cDNA fragment corresponding to potato starch branching enzyme II.

Total RNA from mature potato tubers (S. tuberosum cv. Amanda) was isolated as described (Logemann et al. 1987). First strand cDNA was synthesized using 2 μ g of total RNA and 60 pmol of oligo-dT₃₀ as downstream primer. The primer was annealed to the polyA of the mRNA at 60°C for 5 min. The extension of the cDNA was performed according to the technical manual of the manufacturer using the Riboclone⁶⁹ cDNA Synthesis System M-MLV (H-) (Promega).

cDNA encoding the novel starch branching enzyme II according to the invention was amplified in a Perkin-Elmer GeneAmp® 9600 PCR thermocycler (Perkin-Elmer Cetus

- Instruments, CT, USA) using the two degenerate primers designed from the peptides 1 and 2 (see above) under the following conditions: 1 mM dNTP, 1 μ M of each primer and an alicot of the cDNA described above in a total reaction volume of 20 μ l with 1x AmpliTaq® buffer and 0,8 U
- AmpliTaq® (Perkin-Elmer Cetus). The cycling conditions were: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 15'), an unintended drop to 25°C, five cycles of 94°C for 20", 45°C for 1', ramp to 72°C for 1' and 72°C for 2', and 30 cycles of 94°C for 5", 45°C for 30", and 72°C for (2'+2" per cycle) and completed with 72°C
- 30", and 72°C for (2'+2" per cycle) and completed with 72°C for 10' prior to chilling to 4°C.

A sample of this reaction (0.1 µl) was reamplified using the cycling conditions: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 5'), five cycles of 94°C for 20'', 45°C for 1', and 72°C for 2', and 25 cycles of 94°C for 5'', 45°C for 30'', and 72°C for (2' + 2'' per cycle) and completed with 72°C for 10' prior to chilling to 4°C. After completion of the PCR amplification, the reaction was loaded on a 1.5% Seakem® agarose gel (FMC Bioproducts, Rockland, ME, USA). After electrophoresis and staining with ethidium bromide a major

8

band with an apparent size of 1500 bp was exc.sed and the fragment was eluted by shaking in water (200 μ l) for 1 h. This fragment was used as template in sequencing reactions after reamplification using primers corresponding to the tag sequences (in oligonucleotides 1 and 2), purification by agarose gel electrophoresis as above and extraction from the gel using the Qiaex® gel extraction kit according to the manufacturer's instructions (DIAGEN GmbH, Hilden, Germany). The sequencing reactions were done using the 10 DyeDeoxy® Terminator Cycle Sequencing kits (Perkin-Elmer Cetus Instruments) using tag sequences and internal primers. The sequencing reaction were analyzed on an Applied Biosystems 373A DNA sequencer according to the manufacturer's protocols. The sequence was edited and 15 comprised 1393 bp.

To complete the determination of the sequence of starch branching enzyme II, the 5' and 3' ends of the full length cDNA were amplified from the same total RNA as above using rapid amplification of cDNA ends, RACE, 20 methodology with specific primers from the 1393 bp sequence. In the 3' end amplification, an oligo $T_{29}G$ primer was used against the poly A tail and in the 5' end, the 5'/3' RACE kit from Boehringer Mannheim (Cat. No. 1734792) was used. The fragments from these amplifications were 25 sequenced in the same way as above using internal and end primers. The sequences from the two ends were aligned together with the 1393 base pairs to give a composite full length cDNA sequence. Primers were designed from this sequence to amplify the whole coding region in one part. 30 Partial sequencing of the amplified coding cDNA confirmed the presence of a cDNA corresponding to the composite sequence. The full length cDNA is 3074 bp and the translated sequence comprises 878 amino acids. The mature protein comprises 830 amino acids.

35 Comparisons of the consensus sequence with the EMBL and GenBank databases showed 68% identity to potato starch

5

10

15

20

30

branching enzyme I and about 80% identity to starch branching enzyme II from other plant species. The present inventors therefore denote the enzyme encoded by the new branching enzyme sequence potato starch branching enzyme II.

Transformation of potato plants

The isolated full length cDNA of potato starch branching enzyme II and other functionally active fragments in the range of 50-3 074 bp are cloned in reverse orientation behind promoters active in potato tubers. By the term "functionally active" is meant fragments that will affect the amylose/amylopectin ratio in potato starch. The DNA and amino acid sequence of SBE II according to the invention as well as one fragment of the DNA and corresponding amino acid sequence are shown in SEQ ID No. 1 and 2, respectively.

The promoters are selected from, for example, the patatin promoter, the promoter from the potato granule-bound starch synthase I gene or promoters isolated from potato starch branching enzymes I and II genes.

The constructs are cloned by techniques known in the art either in a binary Ti-plasmid vector suitable for transformation of potato mediated by *Agrobacterium tumefaciens*, or in a vector suitable for direct

transformation using ballistic techniques or electroporation. It is realized that the sense (see below) and antisense constructs must contain all necessary regulatory elements.

Transgenic potato plants transcribe the inverse starch branching enzyme II construct specifically in tubers, leading to antisense inhibition of the enzyme. A reduction and changed pattern of the branching of amylopectin as well as a changed amylose/amylopectin ratio thereby occur in tuber starch.

The antisense construct for potato starch branching enzyme II is also used in combination with antisense

10

constructs for potato starch branching enzyme I, for potato granule-bound starch synthase II, for potato soluble starch synthases II and III, for potato starch disproportionating enzyme (D-enzyme) or for potato starch debranching enzyme to transform potato to change the degree of branching of amylopectin and the amylose/amylopectin ratio. This gives new and valuable raw material to the starch processing industry.

The full-length cDNA sequence encoding the enzyme is,
in different constructs, cloned in sense orientation
behind one or more of the promoters mentioned above, and
the constructs are transferred into suitable transformation vectors as described above and used for the
transformation of potato. Regenerated transformed potato
plants will produce an excess of starch branching enzyme
II in the tubers leading to an increased degree and
changed pattern of branching of amylopectin or to
inhibition of transcription of endogenous starch branching
enzyme II transcription due to co-suppression, resulting
in a decreased branching of amylopectin.

References

Müller-Röber, B., Koβmann, J., (1994) Approaches to 5 influence starch quantity and starch quality in transgenic plants. Plant Cell Environm. 17, 601-613.

Martin, C., Smith, A. (1995) Starch Biosynthesis. Plant Cell 7, 971-985.

10

Laemmli, U.K. (1979) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680-685.

- Logemann, J., Schell, J. and Willmitzer, L. (1987) Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16-20.
- Rosenfeld, J., Capdeville, J, Guillemot, J.C., Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173-179.
- Visser, R.G.F., Jacobsen, E. (1993) Towards modifying 25 plants for altered starch content and composition. TibTech 11, 63-68.

SEO ID No. 1

Sequenced molecule: cDNA
Name: beII gene (branching enzyme II) from Solanum
tuberosum (potato)
Length of sequence: 3074 bp

															TTGIA	60
															TTTC GAGNA	120 180
															CCI	230
Genta	nano														Pro	
				•	-45			-		-40					-3!5	
TCA	C.IV.C	ጥልሮ	AAA	ጥርጥ	ААТ	GGA	ጥ ር:	AGC.	AGT	ААТ	GGT	GAT	CGG	AGG	AAT	278
						Gly										
		-,-		-30		•			-25		•	-	_	-20		
~~	יחממ	YELAL.	ጥ ር ጥ	CT3	TTT	TTG	מממ	DAG.	CAC	тст	СТТ	TCΔ	ന്ദര	AAG	ATC	326
						Leu										
			-15					-10					- 5	-		
						TAC										374
Leu	Ala	Glu 1	гЛз	Ser	ser	Tyr 5	Asn	ser	GIU	Ser	Arg 10	Pro	ser	Inr	vai	
		1				•										
GCA	GCA	TCG	GGG	AAA	GTC	CTT	GTG	CCT	GGA	ACC	CAG	AGT	GAT	AGC	TCC	422
Ala	Ala	Ser	Gly	Lуз		Leu	Val	Pro	Gly		Gln	Ser	Asp	Ser		
15					20					25					30	
TCA	ŤŒ	TCA	ACA	GAC	CAA	TTT	GAG	TTC	ACT	GAG	ACA	TCT	CCA	GAA	AAT	470
						Phe										
				35					40					45		
mcc.		CCA	תר א	እርጥ	СЛТ	GTA	ርእጥ	አርጥ	ጥሮል	۵۵۵	ATC	CAA	CAC	GCT	AGC	518
						Val										. 510
Ser	- 10		50		p			55					60			•
	•															
						GAT										566
Gln	Ile	-	Thr	Glu	Asn	Asp		Val	Glu	Pro	Ser	Ser 75	Asp	Leu	Thr	
		65					70					,,				
GGA	AGT	GTT	GAA	GAG	CTG	GAT	TTT	GCT	TCA	TCA	CTA	CAA	CTA	CAA	GAA:	614
Gly	Ser	Val	Glu	Glu	Leu	Asp	Phe	Ala	Ser	Ser		Gln	Leu	Gln	Glu	
	80					85			•		90					
GGT	GGT	AAA	CTG	GAG	GAG	TCT	AAA	ACA	TTA	AAT	ACT	TCT	GAA	GAG	ACF.	662
						Ser										
95					100					105					110	
		~ m	CNA	mc m	CATT	100	א יייי	a Ca	CAC	- NCC		איזייר		ררא	ייין יי	710
AIT	TIA	OA1	GAA	Ser	. Asu	Arg	Tle	Arn	Glu	Arn	Glv	Tle	Pro	Pro	CCI'	110
116	116	Nob	GIU	115		nra	110	9	120		~-,			125		
															TAT'	758
Gly	Leu	Gly			Ile	Tyr	Glu			Pro	Leu	Leu			Тул	
			130					135	,				140	,		
CGT	CAA	CAC	CTI	GAT	TAC	AGG	TAT	TCA	CAG	TAC	: AAG	AAA :	CTG	AGG	GAG	806
															Glu	
		145	ò				150)				155	5			

GC Al	A AT a Il 16	e As	C AF	G TA	T GA	G GG u G1; 16:	y Gl	r TTC y Lei	GAN 1 Glu	A GC u Ala	T TT a Pho 17	e Se	T CG	T GG	T TAT y Tyr	854
GA. G1: 17.	u Ly	A AI s Me	e GG t Gl	T TT y Ph	C AC e Th	r Ar	r AG	r GCI r Ala	Thr	A GG: C Gly 185	/ Ile	C AC	TA Ty	C CG	T GAG g Glu 190	
TG	G GCT	r cc a Pr	T GG o Gl	T GC y Al 19	a Gli	G TC	A GCT	r GCC	Leu 200	Ile	GG Gly	A GAT	TTO Ph	C AA e As 20	C AAT n Asn 5	950
TG(G GAG Asp	Al S GC	A AA a As 21	n Ala	T GAO a Asp	C ATT	ATC Met	ACT Thr 215	Arg	TAA a	GAM Glu	A TTT	GG: G1: 220	y Va	C TGG 1 Trp	998
GA(ATT	TT Ph	e Le	G CC	A AA1 > Asr	CAA 7 neA c	GT0 Val 230	qeA .	GGT	TCI Ser	CC1	C GCA Ala 235	Ile	r cc	CAT His	1046
GGC Gly	Ser 240	Ar	A GTO	G AAG Lys	G ATA	A CGI Arg 245	Met	GAC Asp	ACT Thr	Pro	Ser 250	Gly	' GT' ' Val	AA(G GAT	1094
Ser 255	Ile	CC: Pro	C GC:	TGC Try	ATC Ile 260	Asn	TAC	TCT Ser	TTA Leu	CAG Gln 265	Leu	CCT Pro	GAI Asp	GAI Glu	ATT lle 270	1142
Pro	TAT	AA! Ası	GGI Gly	ATA Ile 275	Tyr	TAT Tyr	GAT	CCA Pro	CCC Pro 280	GAA Glu	GAG Glu	GAG Glu	AGG	TAT Tyr 285	ATC Ile	1190
TTC Phe	CAA Gln	CAC His	Pro 290	Arg	Pro	AAG Lys	AAA Lys	CCA Pro 295	AAG Lys	TCG Ser	CTG Leu	AGA Arg	ATA Ile 300	Туг	GAA Glu	1238
TCT Ser	CAT His	ATT Ile 305	Gly	ATG Met	AGT Ser	AGT Ser	CCG Pro 310	GAG Glu	CCT Pro	AAA Lys	ATT Ile	AAC Asn 315	TCA Ser	TAC	GTG Val	1286
AAT Asn	TTT Phe 320	AGA Arg	GAT Asp	GAA Glu	GTT Val	CTT Leu 325	CCT Pro	ŒC Arg	ATA Ile	AAA Lys	AAG Lys 330	CTT Leu	GGG Gly	TAC	AAT Asn	1334
GCG Ala 335	GTG Val	CAA Gln	ATT	ATG Met	GCT Ala 340	ATT Ile	CAA Gln	GAG Glu	CAT His	TCT Ser 345	TAT Tyr	TAT Tyr	GCT Ala	AGT Ser	TTT Phe 350	1382
GGT Gly	TAT Tyr	CAT His	GTC Val	ACA Thr 355	AAT Asn	TTT Phe	TTN Xaa	GCA Ala	CCA Pro 360	AGC Ser	AGC Ser	CGT Arg	TTT Phe	GGA Gly 365	ACN Thr	1430
CCC Pro	GAC Asp	GAC Asp	CTT Leu 370	AAG Lys	TCT Ser	TTG Leu	ATT Ile	GAT . Asp 375	AAA Lys	GCT Ala	CAT His	GAG Glu	CTA Leu 380	GGA Gly	ATT Ile	1478
Val	Val	Leu 385	Met	Asp	Ile	Val	His 390	AGC (His .	Ala	Ser	Asn 395	Asn	Thr	Leu	1526
GAT Asp	GGA Gly 400	CTG Leu	AAC Asn	ATG Met	TTT Phe	GAC Asp 405	GGC Gly	ACA (SAT :	Ser	TGT Cys 410	TAC Tyr	TTT Phe	CAC His	TCT Ser	1574

			CC CTC TTT AAC TAT 1622 rg Leu Phe Asn Tyr 430
			T GCG AGA TGG TGG 1670 in Ala Arg Trp Trp 445
Leu Asp Glu Phe 450	Lys Phe Asp Gly	Phe Arg Phe As 455	T GGT GTG ACA TCA 1718 p Gly Val Thr Ser 460
Met Met Tyr Thr 465	His His Gly Leu 470	Ser Val Gly Ph	C ACT GGG AAC TAC 1766 e Thr Gly Asn Tyr 475
Glu Glu Tyr Phe 480	Gly Leu Ala Thr 485	Asp Val Asp Al 49	
Met Leu Val Asn 495	Asp Leu Ile His 500	Gly Leu Phe Pr 505	A GAT GCA ATT ACC 1862 to Asp Ala Ile Thr 510
Ile Gly Glu Asp	Val Ser Gly Met 515	Pro Thr Phe Xa 520	T ATT CCC GTT CAA 1910 a Ile Pro Val Gln 525
Asp Gly Gly Val 530	Gly Phe Asp Tyr	Arg Leu His Me 535	G GCA ATT GCT GAT 1958 t Ala Ile Ala Asp 540
Lys Trp Ile Glu 545	Leu Leu Lys Lys 550	Arg Asp Glu As	T TGG AGA GTG GGT 2006 p Trp Arg Val Gly 555
Asp Ile Val His 560	Thr Leu Thr Asn 565	Arg Arg Trp Se 57	
Ser Tyr Ala Glu 575	Ser His Asp Gln 580	Ala Leu Val Gl 585	T GAT AAA ACT ATA 2102 y Asp Lys Thr Ile 590
Ala Phe Trp Leu	Met Asp Lys Asp 595	Met Tyr Asp Ph 600	T ATG GCT CTG GAT 2150 e Met Ala Leu Asp 605
Arg Pro Ser Thr 610	Ser Leu Ile Asp	Arg Gly Ile Al 615	A TTG CAC AAG ATG 2198 a Leu His Lys Met 620
Ile Arg Leu Val 625	Thr Met Gly Leu 630	Gly Gly Glu Gl	G TAC CTA AAT TTC 2246 y Tyr Leu Asn Phe 635
Met Gly Asn Glu 640	Phe Gly His Pro 645	Glu Trp Ile As	
GAA CAA CAC CTC Glu Gln His Leu	TUT GAT GGC TCA	GTA ATT CCC GG	A AAC CAA TTC AGT 2342

WO 97/20040															PCT	SE96/01558
TAT	GAT	AAA	TGC	AGA	CGG	AGA	TTT	GAC	CTG	GGA	GAT	GCA	GAA	тат	TTA	2390
Tyr	Asp	Lys	Суз	Arg	Arg	Arg	Phe	Asp	Leu	Gly	Asp	Ala	Glu	Tvr	Leu	2350
				675	-	-		•	680		•			685		
														•••		
AGA	TAC	CGT	GGG	TTG	CAA	GAA	TTT	GAC	CGG	GCT	ATG	CAG	TAT	CTT	GAA	2438
Arg	Tyr	Arg	Gly	Leu	Gln	Glu	Phe	Asp	Arg	Ala	Met	Gln	Tyr	Leu	Glu	2.00
			690					695					700			
GAT	AAA	TAT	GAG	TTT	ATG	ACT	TCA	GAA	CAC	CAG	TTC	ATA	TCA	CGA	AAG	2486
Asp	Lys	Tyr	Glu	Phe	Met	Thr	Ser	Glu	His	Gln	Phe	Ile	Ser	Arg	Lys	
		705					710					715				
GAT	GAA	GGA	GAT	AGG	ATG	ATT	GTA	TTT	GAA	AAA	GGA	AAC	CTA	GTT	TTT	2534
Asp	GIU	GIĀ	Asp	Arg	Met		Val	Phe	Glu	Lys	Gly	Asn	Leu	Val	Phe	
	720					725					730					
CTC.	ىلمدىك	አስጥ	distrati	CNC	TCC	3.03		3.00								
Val	Phe	Asn Asn	Phe	His	TOG	The	AAA	AGC	TAT	TCA	GAC Asp	TAT	CGC	ATA	GGC	2582
735	LIIC	ASII	FIIG	ms	740	THE	гу	ser	tAr	3er	Asp	Tyr	Arg	Ile		
,,,,					, 10					743					750	
TGC	CTG	AAG	CCT	GGA	AAA	TAC	AAG	GTT	GCC	TTG	GAC	TYTA	САТ	ChT	CCA	2630
Cys	Leu	Lys	Pro	Gly	Lys	Tyr	Lys	Val	Ala	Leu	Asp	Ser	Asn	Asp	Pro	2630
				755	-	•	-		760					765		
CTT	TTT	GGT	GGC	TTC	GGG	AGA	ATT	GAT	CAT	AAT	GCC	GAA	TAT	TTC	ACC	2678
Leu	Phe	Gly	Gly	Phe	Gly	Arg	Ile	Asp	His	Asn	Ala	Glu	Tyr	Phe	Thr	
			770					775					780			
TTT	GAA	GGA	TGG	TAT	GAT	GAT	CGT	CCT	CGT	TCA	ATT	ATG	GTG	TAT	GCA	2721
Phe	GIU	GIY	Trp	lyr	Asp	qeA		Pro	Arg	Ser	Ile	Met	Val	Tyr	Ala	
		785					790					795				
CTT.	y Cali	n C n	BCB	CCN	CTTC	CTC.									•	
Pro	Ser	Aca	Thr	Ala	GIG.	GIC.	TAT	GCA	CIA	GTA	GAC	AAA -	GAA	GAA	GAA	2774
110	800	nry	IIIL	ма	vaI	805	ıyr	ALA	Leu	val	Asp	Lys	Glu	Glu	Glu	
						003					810					
GAA	GAA	GAA	GAA	GTA	GCA	GTA	GTA	GAA	CNA	ста	GTA	מינים	C 3 3	CNN	CNA	2022
Glu	Glu	Glu	Glu	Val	Ala	Val	Val	Glu	Glu	Val	Val	Val	Glu	Glu	Glu	2822
815				•	820					825			014		830	•
	•														•	
TGA	ACGA	A CT	TGTG	ATCG	CGT	TGAA	AGA	TTTG	AAGG	CT A	CATA	GAGC	T TC	TTGA	CGTA	2880

TCTG	GCAA	TA T	TGCA	TCAG	T CT	TGGC	GGAA	TIT	CATG	TGA	CAAA	AGGT	TT G	CAAT	TCTTT	2940
CCAC	TATT	AG T	AGTG	CAAC	G AT	ATAC	GCAG	AGA	TGAA	GTG	CTGC	ACAA	AC A	TATG	TAAAA	3000
TCGA	IGAA	TT T	ATGT	CGAA	T GC	TGGG	ACGG	GCT	TCAG	CAG	GTTT	TGCT	TA G	TGAG	TTCTG	3060
TAAA	iTGT	CA T	CIC													3074

PCT/SE96/01558 WO 97/20040

SEO ID No. 2

Sequenced molecule: cDNA
Name: beII gene fragment (branching enzyme II) from
Solanum tuberosum (potato)
Length of sequence: 1393 bp

									a Il				y Se	C AGA r Acg 5	49
										AAG Lys					97
										GAA Glu					145
										TAT Tyr 60					193
										TAT Tyr					241
										TAC Tyr					289
									Gly	TAC Tyr					337
										AGT Ser					385
	Asn									GGA Gly 140					433
Lys					Lys					GGA Gly					481
				Ser					Asn	ACT Thr				Leu	529
			Gly					Tyr		CAC His			Ala		577
		Tr					Arg					Gly		TG3	625
	Lei					Se 1					Tr			GAG Glu	673

TTC I Phe I 225											Thr					721
ACT C															Tyr	769
TTT (Leu		812
AAC (Asn A													Ile			865
GAT C Asp V	GTT Val 290	AGC Ser	GGA Gly	ATG Met	CCG Pro	ACA Thr 295	TTT Phe	TNT Xaa	ATT	CCC	GTT Val 300	CAA Gln	GAT Asp	GCG	GGT Gly	913
GTT G Val G 305																961
GAG T Glu I																1019
CAT A																1057
GAA A Glu S	Ser	CAT His 355	GAT Asp	CAA Gln	GCT Ala	CTA Leu	GTC Val 360	GGT Gly	GAT Asp	AAA Lys	ACT Thr	ATA Ile 365	GCA Ala	TTC Phe	TGG Trp	1105
CTG A Leu M 3	ATG Met 370	GAC Asp	AAG Lys	GAT Asp	ATG Met	TAT Tyr 375	GAT Asp	TTT Phe	ATG Met	GCT Ala	CTG Leu 380	GAT Asp	AGA Arg	CCN Pro	TCA Ser	1153
ACA T Thr S 385	CA Ser	TTA Leu	ATA Ile	GAT Asp	CGT Arg 390	GGG Gly	ATA Ile	GCA Ala	TTG Leu	CAC His 395	AAG Lys	ATG Met	ATT Ile	AGG Arg	CTT Leu 400	1201
GTA A Val T	CT Thr	ATG Met	GGA Gly	TTA Leu 405	GGA Gly	GGA Gly	GAA Glu	GGG Gly	TAC Tyr 410	CTA Leu	AAT Asn	TTC Phe	ATG Met	GGA Gly 415	AAT Asn	1249
GAA T Glu P	TC he	GGC Gly	CAC His 420	CCT Pro	GAG Glu	TGG Trp	ATT Ile	GAT Asp 425	TTC Phe	CCT Pro	AGG Arg	GCT Ala	GAA Glu 430	CAA Gln	CAC His	1297
CTC T Leu S	er .	GAT Asp 435	GGC Gly	TCA Ser	GTA Val	ATT Ile	CCC Pro 440	GGA Gly	AAC Asn	CAA Gln	TTC Phe	AGT Ser 445	TAT Tyr	GAT Asp	AAA Lys	1345
TGC A Cys A	GA (lrg /	CGG . Arg .	AGA Arg	TTT Phe	GAC Asp	CTG Leu 455	GGA Gly	GAT Asp	GCA Ala	GAA Glu	TAT Tyr 460	TTA Leu	AGA Arg	TAC Tyr	CGT Arg	1393

FCT/SE96/01558

CLAIMS

- An amino acid sequence of starch branching enzyme
 II (SBE II) comprising the amino acid sequence as shown in SEQ ID No. 1.
 - 2. Fragments of the amino acid sequence of starch branching enzyme II (SBEII).
- 3. A fragment according to claim 2, having the amino acid sequence as shown in SEQ ID No. 2.
 - 4. An isolated DNA sequence encoding starch branching enzyme II (SBE II) of potato comprising the nucleotide sequence as shown in SEQ ID No. 1 variants thereof resulting from the degeneracy of the genetic code.
- 5. Fragments of the isolated DNA sequence encoding starch branching enzyme II (SBEII) of potato.
 - 6. A fragment according to claim 5, comprising the nucleotide sequence as shown in SEQ ID No. 2.
- 7. A vector comprising the whole or a functionally active part of the isolated DNA sequence claimed in any one of claims 4-6 and regulatory elements active in potato.
- 8. A vector according to claim 7, wherein the DNA sequence is in the antisense (reversed) orientation in relation to a promoter immediately upstream from the DNA sequence.
 - 9. A process for the production of transgenic potatoes with either an increased or a decreased degree of branching of amylopectin starch, c h a r a c t e r i z e d in that it comprises the following steps:
 - a) transfer and incorporation of a vector according to claim 7 into the genome of a potato cell, and b) regeneration of intact, whole plants from the transformed cells.

30

35 10. A process for the production of transgenic potatoes with a reduced degree of branching of amylopectin

15

starch, c h a r a c t e r i z e d in that it comprises the following steps:

- a) transfer and incorporation of a vector according to claim 8 into the genome of a potato cell, and
- b) regeneration of intact, whole plants from the transformed cells.
 - 11. A process according to claim 10, wherein the vector also comprises an antisense construct of starch branching enzyme I (SBE I).
- 10 12. A process according to claims 10 or 11, wherein the vector also comprises an antisense construct of potato granule bound starch synthase II.
 - 13. A process according to one or more of claims 10-12, wherein the vector also comprises an antisense construct of potato soluble starch synthases II and III.
 - 14. A process according to one or more of claims 10--13, wherein the vector also comprises an antisense construct of potato starch disproportionating enzyme (Denzyme).
- 20 15. A process according to one or more of claims 10-14, wherein the vector also comprises an antisense construct of potato starch debranching enzyme.
 - 16. A transgenic potato obtainable by the process according to any one of claims 9-15.
- 25 17. Use of transgenic potatoes according to claim 16 for the production of starch.

FIG. 2

Peptide 1. EFGVWEIFLPN

Peptide 2. HGLQEFDRA

Peptide 3. ENDGIAAKADE

Peptide 4. YEIDPEI/LTN

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 96/01558

A. CLASSIFICATION OF SUBJECT MATTER IPC6: C12N 9/10, C12N 15/82, A01H 5/06 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC6: C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, CA, BIOSIS, EMBL/GENBANK/DDBJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 9504826 A1 (INSTITUT FÜR GENBIOLOGISCHE 1 - 17FORSCHUNG BERLIN GMBH), 16 February 1995 (16.02.95), see abstract and claim 23 X WO 9214827 A1 (INSTITUT FÜR GENBIOLOGISCHE 1-17 FORSCHUNG BERLIN GMBH), 3 Sept 1992 (03.09.92), see page 5, line 1-7 and examples A SE 467160 B (AMYLOGENE HANDELSBOLAG), 1 June 1992 1-17 (01.06.92)Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand Special categories of cited documents: "A" document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance "E" ertier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance: the claimed invention cannot be "O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 0 1 -03- 1997 27 February 1997 Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Yvonne Siösteen Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/SE 96/01558

Patent do cited in sear		Publication date		nt family mber(s)	Publication date
√O-A1-	9504826	16/02/95	AU-A- EP-A- CA-A- DE-A- HU-A- HU-D- IL-D-	7535294 0713531 2169174 4327165 73740 9600285 110583	28/02/95 29/05/96 16/02/95 16/02/95 30/09/96 00/00/00 00/00/00
O-A1-	9214827	03/09/92	AU-B- AU-A- CA-A- DE-A- EP-A- HU-A-	663072 1226592 2104123 4104782 0571427 65740	28/09/95 15/09/92 14/08/92 20/08/92 01/12/93 28/07/94
E-B-	467160	01/06/92	AU-A- EP-A- PL-B- SE-A- WO-A-	9109791 0563201 169859 9004095 9211375	22/07/92 06/10/93 30/09/96 01/06/92 09/07/92

Form PCT/ISA/210 (patent family annex) (July 1992)