The complementary roles of dimensionality and population structure in neural computations

Flexible learning reading group

Dubreuil et al. 2020 *bioRxiv* 2020.07.03.185942

Modeling neural computations: classical vs novel approach

Machens et al. 2005

Mante&Sussillo et al. 2013; Sussillo et al. 2015; Sohn&Nairan et al. 2019; Yang et al. 2019

Recurrent

External

Mastroguiseppe & Ostojic 2018

This paper (Dubreuil et al. 2020): effect of "populations" in connectivity

#Populations: flexibility

Reduced circuit

Perceptual decision making with a rank 1 RNN

Shadlen & Newsome, 2001

Perceptual decision making: reduced circuit

coherence
$$\kappa(t)$$
 $\kappa(t)$ $\kappa(t)$

$$\frac{d\kappa}{dt} = -\kappa + \tilde{\sigma}_{mn}\kappa + \tilde{\sigma}_{nI}v(t)$$

$$\sigma_{nm}\langle\Phi'\rangle(\Delta) \qquad \Delta = \sqrt{\sigma_m^2\kappa^2 + \sigma_I^2v^2}.$$

$$\langle\Phi'\rangle(\Delta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dz \, e^{-z^2/2} \phi'(\Delta z)$$

Contextual decision making: need 2 populations

Mante&Sussillo et al. 2013

Contextual decision making: reduced circuit

$$\frac{d\kappa}{dt} = -\kappa + \tilde{\sigma}_{mn}\kappa + \sigma_{nI^A}^{(1)} \langle \Phi' \rangle_1 u_A(t) + \sigma_{nI^B}^{(2)} \langle \Phi' \rangle_2 u_B(t)$$

$$\frac{d\kappa}{dt} = -\kappa + \tilde{\sigma}_{mn}\kappa + \sigma_{nI^B}^{(2)} \langle \Phi' \rangle_2 u_B(t)$$

$$\frac{d\kappa}{dt} = -\kappa + \tilde{\sigma}_{mn}\kappa + \sigma_{nIA}^{(1)} \langle \Phi' \rangle_1 u_A(t)$$

#Populations: flexibility

Parametric working memory (Rank = 2, #Populations = 1)

Parametric working memory (Rank = 2, #Populations = 1)

$$\begin{split} \frac{d\kappa_1}{dt} &= -\kappa_1 + \tilde{\sigma}_{n^{(1)}m^{(1)}}\kappa_1 + \tilde{\sigma}_{n^{(1)}I}v(t) \\ \frac{d\kappa_2}{dt} &= -\kappa_2 + \tilde{\sigma}_{n^{(2)}m^{(2)}}\kappa_2 + \tilde{\sigma}_{n^{(2)}I}v(t) \end{split}$$

Delayed match to sample

Gain modulation flexibly shapes network dynamics

Gain modulation flexibly shapes network dynamics

Effective circuit:

$$\tau \frac{d\kappa_{1}}{dt} = -\kappa_{1} + \tilde{\sigma}_{n^{(1)}m^{(1)}}\kappa_{1} + \tilde{\sigma}_{n^{(1)}m^{(2)}}\kappa_{2} + \tilde{\sigma}_{n^{(1)}I^{A}}u_{A}(t) + \tilde{\sigma}_{n^{(1)}I^{B}}u_{B}(t)$$

$$\tau \frac{d\kappa_{2}}{dt} = -\kappa_{2} + \tilde{\sigma}_{n^{(2)}m^{(1)}}\kappa_{1} + \tilde{\sigma}_{n^{(2)}m^{(2)}}\kappa_{2} + \tilde{\sigma}_{n^{(2)}I^{A}}u_{A}(t) + \tilde{\sigma}_{n^{(2)}I^{B}}u_{B}(t).$$

Effective couplings:

$$\tilde{\sigma}_{ab} = \sum_{p=1}^{P} \alpha_p \langle \Phi' \rangle_p \sigma_{ab}^{(p)}.$$

$$\tilde{\sigma}_{n^{(2)}m^{(2)}} = \frac{1}{2} \sigma_{n^{(2)}m^{(2)}}^{(1)} \langle \Phi' \rangle_1 + \frac{1}{2} \sigma_{n^{(2)}m^{(2)}}^{(2)} \langle \Phi' \rangle_2$$

#Populations: flexibility

Discussion

Awesome: dynamics & circuit

Additional slides

Connectivity determines selectivity

Inactivating specific populations

