Tutoría 06

Problema 1: Calcule la potencia promedio entregada a $\mathbf{Z}_L = 5 + j4$. Considere la tensión de la fuente de tensión como valor eficaz (rms).

Figura 1. Circuito para el problema 1

Respuesta:

a)
$$P_L = 329.9 W$$

Problema 2: Para el circuito de la Figura 2, considere que:

$$[\mathbf{z}] = \begin{bmatrix} 40 & 60 \\ 80 & 120 \end{bmatrix} \Omega$$

Obtenga:

- a) El valor de \mathbf{Z}_L para una máxima transferencia de potencia a la carga.
- b) Calcule la máxima potencia entregada a la carga para el valor obtenido en el punto anterior.

Figura 2. Circuito para el problema 2

Respuestas:

- a) $\boldsymbol{Z_L} = 24 \Omega$
- b) $P_L = 384 W$

Problema 3: Obtenga los parámetros de admitancia \boldsymbol{y} para la red de dos puertos del circuito de la Figura 3.

Figura 3. Circuito para el problema 3

Respuesta:

$$\bullet \quad [\mathbf{y}] = \begin{bmatrix} \frac{1}{8} & -\frac{1}{12} \\ -\frac{1}{12} & \frac{1}{2} \end{bmatrix} S$$

Problema 4: Determine un circuito equivalente utilizando los parámetros de admitancia de la red de dos puertos descrita en el siguiente circuito:

Figura 4. Circuito para el problema 4

Respuesta:

- $[\mathbf{y}] = \begin{bmatrix} 0.4 & 0 \\ -0.2 & 0.1 \end{bmatrix} S$
- \bullet A partir de los parámetros y el circuito equivalente para circuitos no recíprocos se obtiene el circuito equivalente.

Problema 5: Determine los parámetros \boldsymbol{h} y \boldsymbol{g} del circuito mostrado en la Figura 5.

Figura. 5. Circuito para el problema 5

Respuestas:

•
$$[h] = \begin{bmatrix} 85 \Omega & 0.25 \\ 14.75 & 0.0725 S \end{bmatrix}$$

•
$$[g] = \begin{bmatrix} 0.029 \text{ S} & -0.101 \\ -5.96 & 34.34 \Omega \end{bmatrix}$$

Problema 6: Obtenga los parámetros \boldsymbol{h} de las siguientes redes:

Figura. 6. Circuitos para el problema 6

Respuestas:

•
$$[h_1] = \begin{bmatrix} 24 \Omega & 0.6 \\ -0.6 & 0.01 S \end{bmatrix}$$

•
$$[\mathbf{h}_2] = \begin{bmatrix} 10 \Omega & 1 \\ -1 & 0.05 \text{ S} \end{bmatrix}$$

Problema 7: Considere el circuito de la Figura 7. Calcule los parámetros h y g como una matriz en términos de s, donde $s = j\omega$.

Figura. 7. Circuito para el problema $7\,$

Respuestas:

•
$$[h] = \begin{bmatrix} \frac{s^3 + s^2 + 2s + 1}{s^2 + 1} & \Omega & \frac{1}{s^2 + 1} \\ \frac{-1}{s^2 + 1} & \frac{s}{s^2 + 1} & S \end{bmatrix}$$

• $[g] = \begin{bmatrix} \frac{s}{s^2 + s + 1} & S & \frac{-1}{s^2 + s + 1} \\ \frac{1}{s^2 + s + 1} & \frac{s^3 + s^2 + 2s + 1}{s^2 + s + 1} & \Omega \end{bmatrix}$