1. Za date funkcije ispitati da li su linearne transformacije i za one koje jesu naći matricu i rang.

1.1
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $f(x,y) = (x^2 - y, x + y)$

1.2
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $f(x,y) = (2x - y, 3x, y + 1)$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

$$f(x) + f(y), \quad f(x,y) = (2x - y, 3x, y + 1)$$

1.3
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x,y,z) = (x-y+2z,-x+3y+z)$
 $t_1x+t_2y+t_3z$, $t_1,t_2,t_3 \in \mathbb{R}$

Ovo deste lin. The diel on ever for ponente observations $t_1x+t_2y+t_3z$, $t_1,t_2,t_3 \in \mathbb{R}$.

My = $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 \end{pmatrix}$

=) rang $(M_1) = 2$ => rang $(+) = 2$

$$1.4 \ f: \mathbb{R}^3 \longrightarrow \mathbb{R}^1, \ f(x,y,z) = 3x + 2y - z$$

$$0 \text{ VO DESTE LIN-TR. DETR. DETREMPONENTA SUICE BASE$$

$$H_{+} = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$$

$$\Rightarrow$$
 rang $(M_f) = 1$

1.5
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x,y,z) = (x+y,0)$
 $0 = 0 \cdot X + 0 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 0 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It, for an $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds lin. It is a substitute of $0 = 0 \cdot X + 1 \cdot y + 0 \cdot 2$ | Owo feeds

1.6
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $f(x,y) = (x,\cos(xy))$

1.7 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ f(x,y) = \sqrt{x}$

Ne more so TX noposati has tax+till

1.8 $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = 5x$

Dub DESTE UN-TR. Jer je obluko tx, tek

$$M_{t} = [5]$$
 = rang $(M_{t}) = 1$

1.9
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $f(\underline{x}, \underline{y}) = (x, y, \sqrt{x^2 + y^2})$

$$X = 1 \cdot X + 0 \cdot Y$$
 $Y = 0 \cdot X + 1 \cdot Y$
 W

1.10
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (\ln 2 \cdot x, x + y)$

$$\lim_{x \to y} f(x,y) = \lim_{x \to y} f($$

DUD JESTE LIN. PR. DER. DE SVANGA LUDIPONENTA ORMIGA LAX+tzy, to,te ER 2. Za sledeće funkcije diskutovari po realnim parametrima kada su linearne transformacije i u slučaju kada jesu naći njihove matrice i odrediti rang.

2.1
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $f(x, y, z) = (ax + y^b, bx - z)$

$$t_1x + t_2y + t_3z$$
, $t_1, t_2, t_3 \in \mathbb{R}$
 $0x + y^b \leftarrow x_{80} \text{ oves } 1b = 1$
 $bx - 2 = x - 2$ $(x_1y_1z_1) = (ax + y_1 x_2)$

DEDINO
$$6 = 1$$
, $a \in \mathbb{R}$, $+(x_1 y_1 z) = (ax + y_1 x_1 - z)$

$$M_{\xi} = \begin{bmatrix} a & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow rang(M_{\xi}) = 2$$

2.2
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = ax + bxy + cy$
 $ax + bxy + cy$
 $ax + bxy + cy$
 $b = 0$
 $f(x,y) = ax + cy$

$$M_{t} = \begin{bmatrix} a & c \end{bmatrix}$$

$$a = 0 \land c = 0 \quad (M_{t} = \begin{bmatrix} 0 & 0 \end{bmatrix}) \Rightarrow rang (M_{t}) = 0$$

$$a \neq 0 \lor c \neq 0 \Rightarrow rang (M_{t}) = 1$$