```
In [196]: import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import math
           from scipy import stats
           import statsmodels.api as sm
           from matplotlib.lines import Line2D
           from sklearn.linear_model import LinearRegression
          trans = pd.read_csv("desktop/transactions.csv")
  In [4]:
  In [5]: trans
                            1
                                     2547
                                               1.0
                                                          3.13
               0
                                      822
                            2
                                               1.0
                                                          5.46
               1
               2
                            3
                                     3686
                                               1.0
                                                          6.35
                            4
                                     3719
                                                          5.59
               3
                                               1.0
                            5
                                     9200
                                               1.0
                                                          6.88
               4
                                               ...
            64677
                         64678
                                     9614
                                               1.0
                                                          7.43
                                     3320
                                              2.0
                                                          8.59
                         64679
            64678
                         64680
                                     1666
                                               1.0
                                                          6.80
            64679
            64680
                         64681
                                    22044
                                               1.0
                                                          4.50
                         64682
                                    20543
                                               1.0
                                                          5.19
            64681
           64682 rows × 4 columns
In [256]: def log likelihood(Sales Amount, scale):
               return len(trans["Sales Amount"])*np.log(scale) - scale*sum(trans["Sale
In [257]: |scale = np.arange(0,1,1/100)|
In [263]: L = log likelihood(trans["Sales Amount"], scale)
In [264]: print(scale[L.argmax()])
           0.04
```

```
In [266]: plt.plot(scale, L, color = 'red')
   plt.title('Log-Likelihood Function', fontsize = 12)
```

```
Out[266]: Text(0.5, 1.0, 'Log-Likelihood Function')
```



```
In [65]: mtcars = pd.read_csv("desktop/mtcars.csv")
```

In [66]: mtcars

Out[66]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

```
In [70]: | mpg_median = np.median(mtcars["mpg"])
 In [71]: mpg median
 Out[71]: 19.2
In [337]: medians = [np.median(np.random.choice(mtcars.mpg,mtcars.shape[0])) for i in
In [339]: plt.figure(figsize = (11, 4))
          plt.title("MPG Bootstrap Sample Medians")
          plt.xlabel("Medians")
          plt.ylabel("Frequency")
          plt.hist(medians)
          plt.grid()
                                         MPG Bootstrap Sample Medians
             350
             300
             250
             200
             150
             100
              50
               0
                  15
                          16
                                   17
                                                                     21
                                                                             22
                                           18
                                                    19
                                                            20
                                                                                      23
                                                 Medians
In [340]: se = np.std(medians)
          print("The Standard Error of the medians is: "+str(se))
           The Standard Error of the medians is: 1.3027231008545137
In [341]: norm_lower = np.median(mtcars.mpg)-1.96*se
          norm upper = np.median(mtcars.mpg)+1.96*se
In [342]: norm lower
Out[342]: 16.646662722325154
In [343]: norm upper
Out[343]: 21.753337277674845
In [193]: Y = mtcars["mpg"]
          X = mtcars["cyl"]
          X = sm.add constant(X)
```

I chose cylinders as the explanatory variable because smaller engines usually have higher mpg, so I expect a strong relationship between mpg and cyl.

```
In [194]: plt.figure(figsize=(12,6))
    plt.title("MPG&CYL")
    plt.xlabel("cyl")
    plt.ylabel("mpg")
    plt.scatter( mtcars["cyl"] , mtcars["mpg"] )
    plt.grid()
```



```
In [344]: ols_model = sm.OLS(Y, X).fit()
    ols_model.summary()
```

Out[344]:

OLS Regression Results

De	p. Variable	e:	n	npg	R-se	0.726	
	Mode	ıl:	(DLS	Adj. R-se	0.717	
	Method	d: L	east Squa	ares	F-st	79.56	
	Date	e: Wed,	20 Oct 2	021 P ı	rob (F-st	6.11e-10	
	Time	e:	18:31	:36	Log-Like	-81.653	
No. Ob	servations	s:		32		167.3	
Df	Residuals	s:		30		170.2	
	Df Mode	ıl:		1			
Covar	iance Type	e:	nonrob	oust			
	_						
	coef	std err	t	P> t	[0.025	0.975]	
const	37.8846	2.074	18.268	0.000	33.649	42.120	
cyl	-2.8758	0.322	-8.920	0.000	-3.534	-2.217	
Omnibus:		1.007	Durbin	-Watso	n: 1.67	0	
Prob(Omnibus):		0.604	Jarque-E	Bera (JE	3): 0.87	4	
	Skew:	0.380		Prob(JE	3): 0.64	6	
1	Kurtosis:	2.720	C	Cond. N	o. 24.	1	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Looking at the coefficient of CYL, -2.8758: we conclude that as the number of cylinders go up, the mpg goes down. This makes sense because bigger engines usually have lower mpg, while smaller engines usually have higher mpg. The intercept coefficient implies that when there are zero cylinders, the mpg would be 37.8846, however, that does not make intuitive sense because there are no cars with 0 cylinders.

The \mathbb{R}^2 is 0.726, which implies that our model explains 72.6% of the variation in mpg.

The p-values are smaller than 0.01, so we reject the null hypothesis that there is no relationship between mpg and cyl. Our variables are statistically significant.

```
In [ ]:
```