DAY 5

1. Evaluate:

[Ex 8.1, Q1]

i) $\sin 60^{\circ} \cdot \cos 30^{\circ} + \cos 60^{\circ} \cdot \sin 30^{\circ}$

ii) $2\tan^2 45^0 + \cos^2 30^0 - \sin^2 60^0$

Sol :- i) $\sin 60^{\circ}$. $\cos 30^{\circ} + \cos 60^{\circ}$. $\sin 30^{\circ} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = \frac{3+1}{4} = \frac{4}{4} = 1$

ii)
$$2\tan^2 45^0 + \cos^2 30^0 - \sin^2 60^0 = 2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = 2$$

2. If $n(A - B) = \frac{1}{2}$, $cos(A + B) = \frac{1}{2}$ then find A and B.

[Example 8]

and $cos(A + B) = \frac{1}{2} = cos60^{\circ} \implies A + B = 60^{\circ} \dots \dots \dots \dots (ii)$

Adding (i) and (ii), we've

$$(A - B) + (A + B) = 30^{0} + 60^{0} \implies 2A = 90^{0}$$

 \Rightarrow **A** = $\frac{90^0}{2}$ = **45**° Put in (i), we get come-become-educated

i)
$$\Rightarrow$$
 45⁰ - B = 30⁰ \Rightarrow **B** = **15**⁰

3. If In $\triangle ABC$, $\angle B = 90^{\circ}$, AB = 5cm and $\angle ACB = 30^{\circ}$. Determine the length of sides BC and AC. [Example 6]

Sol:-
$$\frac{AB}{BC} = \frac{P}{B} = \tan C$$

$$\Rightarrow \frac{5}{BC} = \tan 30^0 = \frac{1}{\sqrt{3}} \Rightarrow BC = 5\sqrt{3} \text{ cm}.$$

To find the length of AC, we've

$$\frac{AB}{AC} = \frac{P}{H} = \sin C$$

$$\Rightarrow \frac{5}{AC} = \sin 30^0 = \frac{1}{2} \Rightarrow AC = 10 \text{ cm}.$$

EXERCISE

1. Ex 8.2