Deriving Neural Network Gradients

Aravind H. Vijay

June 26, 2019

Contents

1	Output Back Propagation		2
	1.1	Activation Layer	2
	1.2	Linear Multiplication Layer	3
2 Gradient Back Propagation		dient Back Propagation	4
	2.1	Activation Layer	4
	2.2	Linear Multiplication Layer	5

1 Output Back Propagation

1.1 Activation Layer

$$O_{by} = \sigma [I_{by}]$$

$$(\delta O_{by}) = \delta \sigma [I_{by}]$$

$$(\delta O_{by}) = \sigma' [I_{by}] (\delta I_{by})$$

$$\left[(DO1)_{by} \right] \left[\delta (O1)_{by} \right] = \left[(DO1)_{by} \right] \left[\sigma' \left\{ (I1)_{by} \right\} \right] \left[\delta (I1)_{by} \right]$$

$$\left[(DI1)_{by} \right] = \left[(DO1)_{by} \right] \left[\sigma' \left\{ (I1)_{by} \right\} \right]$$

$$\sigma[x] = \frac{x}{1+|x|}$$
When: $x < 0 \Rightarrow \sigma[x] = \frac{x}{1-x} = \frac{1}{1-x} - 1$

$$= (1-x)^{-1} - 1$$

$$\sigma'[x] = \frac{1}{(1-x)^2}$$

$$\sigma''[x] = 2(1-x)^{-3} = \frac{2}{(1-x)^3}$$
When: $x \ge 0 \Rightarrow \sigma[x] = \frac{x}{1+x} = 1 - \frac{1}{1+x}$

$$= 1 - (1+x)^{-1}$$

$$\sigma'[x] = (1+x)^{-2} = \frac{1}{(1+x)^2}$$

$$\sigma''[x] = -2(1+x)^{-3} = \frac{-2}{(1+x)^3}$$

1.2 Linear Multiplication Layer

$$(O1)_{by} = (I2)_{yx} (I1)_{bx} + (I3)_{y}$$

$$(DO1)_{by} \left[\delta (O1)_{by} \right] = (DO1)_{by} (I1)_{bx} \left[\delta (I2)_{yx} \right] + (DO1)_{by} (I2)_{yx} \left[\delta (I1)_{bx} \right] + (DO1)_{by} \left[\delta (I3)_{y} \right]$$

$$\left[(DO1)_{by} \right] \left[\delta (O1)_{by} \right] = + \left[(DO1)_{by} \right] \left[(I1)_{bx} \right] \left[\delta (I2)_{yx} \right]$$

$$+ \left[(DO1)_{by} \right] \left[\delta (I3)_{y} \right]$$

$$+ \left[(DO1)_{by} \right] \left[\delta (I3)_{y} \right]$$

$$(DI1)_{bx} = (DO1)_{by} (I2)_{yx}$$

$$\Rightarrow (DI1) = (DO1) (I2)$$

$$(DI2)_{yx} = (DO1)_{by} (I1)_{bx}$$

$$(DI2)_{yx} = (DO1)^{T} (I1)$$

$$(DI3)_{y} = (DO1)_{by}$$

$$(DI2^{2})_{yx} \equiv (DO1^{2})_{by} (I1^{2})_{bx}$$

$$(DI2^{2}) \equiv (DO1^{2T}) (I1^{2})$$

$$(DI3^{2})_{y} \equiv (DO1^{2})_{by}$$

2 Gradient Back Propagation

2.1 Activation Layer

$$\begin{split} \left[(O1)_{by} \right] &= \left[\sigma \left\{ (I1)_{by} \right\} \right] \\ \left[(OD1)_{bzy} \right] &= \left[\sigma' \left\{ (I1)_{by} \right\} \right] \left[(ID1)_{bzy} \right] \\ + \left[(DOD1)_{bzy} \right] \left[\delta \left(OD1 \right)_{bzy} \right] &= + \left[(DOD1)_{bzy} \right] \left[\sigma'' \left\{ (I1)_{by} \right\} \right] \left[(ID1)_{bzy} \right] \left[\delta \left(I1 \right)_{by} \right] \\ + \left[(DO1)_{by} \right] \left[\delta \left(O1 \right)_{by} \right] &+ \left[(DO1)_{by} \right] \left[\sigma' \left\{ (I1)_{by} \right\} \right] \left[\delta \left(I1 \right)_{by} \right] \\ &+ \left[(DOD1)_{bzy} \right] \left[\sigma' \left\{ (I1)_{by} \right\} \right] \left[\delta \left(ID1 \right)_{bzy} \right] \end{split}$$

$$\begin{bmatrix} (DI1)_{by} \end{bmatrix} = \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} \begin{bmatrix} \sigma'' \left\{ (I1)_{by} \right\} \end{bmatrix} \begin{bmatrix} (ID1)_{bzy} \end{bmatrix}$$

$$+ \begin{bmatrix} (DO1)_{by} \end{bmatrix} \begin{bmatrix} \sigma' \left\{ (I1)_{by} \right\} \end{bmatrix}$$

$$\begin{bmatrix} (DID1)_{bzy} \end{bmatrix} = \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} \begin{bmatrix} \sigma' \left\{ (I1)_{by} \right\} \end{bmatrix}$$

2.2 Linear Multiplication Layer

$$\begin{bmatrix} (O1)_{by} \end{bmatrix} = \begin{bmatrix} (I2)_{yx} \end{bmatrix} [(I1)_{bx}] + \begin{bmatrix} (I3)_y \end{bmatrix}$$

$$\begin{bmatrix} (OD1)_{bzy} \end{bmatrix} = \begin{bmatrix} (I2)_{yx} \end{bmatrix} [(ID1)_{bzx}]$$

$$[(OD1)_b] = [(ID1)_b] \begin{bmatrix} (I2)^T \end{bmatrix}$$

$$\begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} \begin{bmatrix} \delta (OD1)_{bzy} \end{bmatrix} = + \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} [(ID1)_{bzx}] \begin{bmatrix} \delta (I2)_{yx} \end{bmatrix}$$

$$+ \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} \begin{bmatrix} \delta (OD1)_{bzy} \end{bmatrix} = + \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} [(ID1)_{bzx}] \begin{bmatrix} \delta (I2)_{yx} \end{bmatrix}$$

$$+ \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} \begin{bmatrix} \delta (OD1)_{bzy} \end{bmatrix} = + \begin{bmatrix} (DOD1)_{bzy} \end{bmatrix} [(ID1)_{bzx}] \begin{bmatrix} \delta (I2)_{yx} \end{bmatrix}$$

$$+ \begin{bmatrix} (DOD1)_{by} \end{bmatrix} \begin{bmatrix} \delta (OD1)_{by} \end{bmatrix} \begin{bmatrix} \delta (OD1)_{bzy} \end{bmatrix} \begin{bmatrix} \delta$$

$$\begin{split} &[(DID1)_{bzx}] = + \Big[(DOD1)_{bzy} \Big] \Big[(I2)_{yx} \Big] \\ &[(DI2)_{yx} \Big] = + \Big[(DOD1)_{bzy} \Big] [(ID1)_{bzx}] \\ &+ \Big[(DO1)_{by} \Big] [(I1)_{bx}] \\ &\Big[(DI2)_{yx}^2 \Big] = + \sum_b \left(\sum_z \Big[((DOD1)_b)_{zy} \Big] \Big[((ID1)_b)_{zx} \Big] \right)^2 \\ &+ \Big[((DO1)_b)_y \Big] \Big[((I1)_b)_x \Big] \\ &[(DI2)] = \Big[(DO1)^T \Big] [(I1)] + \Big[\Big((DOD1)_b^T \Big) \Big] \Big[((ID1)_b) \Big] \\ &[(DI3)_y \Big] = + \Big[(DO1)_{by} \Big] \Big[(I2)_{yx} \Big] \\ &\Big[(DI3)_y^2 \Big] = + \Big[(DO1)_{by} \Big] \\ &[(DI3)_y^2 \Big] = + \Big[(DO1)_{by} \Big] \end{split}$$