The Definition of the Limit

Whenever we are given a limit $\lim_{x\to a} f(x) = L$, we often wish to prove the limit is true using the definition of the limit...which is often not an easy task for a lot of people. We will have a look at some examples in which the steps of proving the limit should hopefully be clarified for everyone. Let's have a look at the first limit.

Definition 1. If $\lim_{x \to 0} f(x) = L$, then we say that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $|x-a| < \delta$, then $|f(x) - L| < \varepsilon$.

Example 1. Prove that $\lim_{x\to 2} x = 2$. Show $|x-2| \in \mathcal{E}$

$$\omega_{|f(x)-L|}=|x-a|<\delta.$$

(1) Choose
$$\delta = \epsilon$$
. Then

(4)
$$|x-2|<\epsilon$$
 =) $\lim_{x\to 2} x = 2$

VII

Example 2. Prove that $\lim_{x \to 2} x^2 = 4$.

let 270 be arbitrary. Since lim x2=4,

$$\lim_{\chi \to 2} \chi^2 = 4$$

there exists a 870 such that

$$|f(x) - L| = |x^2 - 4| = |x - 2||x + 2|$$

Let 8 = 1. Then

$$|\chi-2|<1$$
 =) $-1<\chi-2<1$ =) $3<\chi+2<5$

Now

Now let
$$\delta = \frac{1}{5}$$

 $|2-2||2+2| < \delta|x+2| < 5\delta = 5$. $\frac{1}{5} = \epsilon$.

Now let's have a look at one sided limits.

Definition 2. If $\lim_{x\to a^+} f(x) = L$, then we say that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < x - a < \delta$, then $|f(x) - L| < \varepsilon$.

Definition 3. If $\lim_{x\to a^-} f(x) = L$, then we say that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $-\delta < x - a < 0$, then $|f(x) - L| < \varepsilon$.

Example 3. Prove that $\lim_{x\to 0^+} \sqrt{x} = 0$.

Let £70 be arbitrary. Since $\lim_{x\to 0^+} \sqrt{x} = 0$, there exists a \$70 such that if x-0=x<8, then $\sqrt{x}<\sqrt{x}$, and \$9

Choose
$$\delta = \ell^2$$

 $\sqrt{2} < \sqrt{8} = \sqrt{\ell^2} = \ell$

$$=) |\sqrt{x} - 0| < \varepsilon =) \lim_{x \to 0^+} |\sqrt{x}| = 0$$

Example 4. Prove that $\lim_{x\to 2^-} \sqrt{2-x} = 0$.

Let 270 be arbitrary. Since $\lim_{x\to 5} \sqrt{2}-x=0$, there exists a \$>0 such that =if $-8 < x-2 \Rightarrow 2-x < 8$ then $= \sqrt{2}-x < \sqrt{8}$

$$|f(x) - L| = |\sqrt{2-x} - 0| = \sqrt{2-x} < \sqrt{8}$$

Choose & = e2. So that

$$\sqrt{2-x} < \sqrt{8} = \sqrt{2^2} = 2$$

=)
$$|\sqrt{2-x} - 0| < \varepsilon =$$
 $|\lim_{x \to 2^{-}} \sqrt{2-x} = 0$

7/

For infinite limits, we have a similar definition, but instead of $\varepsilon > 0$, we use other variables like M here.

Definition 4. If $\lim_{x\to a} f(x) = \infty$, then we say that for all M > 0, there exists a $\delta > 0$ such that if $|x-a| < \delta$, then f(x) > M.

Definition 5. If $\lim_{x\to a} f(x) = -\infty$, then we say that for all M < 0, there exists a $\delta > 0$ such that if $|x-a| < \delta$, then f(x) < M.

Example 5. Prove that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Example 6. Prove that $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$.

Now let's have a look at a finite limit but x is approaching both ∞ or $-\infty$.

Definition 6. If $\lim_{x\to\infty} f(x) = L$, then we say that for all $\varepsilon > 0$, there exists a N > 0 such that $|f(x) - L| < \varepsilon$ for all x > N.

Definition 7. If $\lim_{x \to -\infty} f(x) = L$, then we say that for all $\varepsilon > 0$, there exists a N < 0 such that $|f(x) - L| < \varepsilon$ for all x < N.

Example 7. Prove that $\lim_{x\to\infty} \frac{1}{x} = 0$.

Example 8. Prove that $\lim_{x\to-\infty}\frac{1}{x^2}=0$.