Al and Deep Learning

Multi-Layer Neural Networks and Non-linear Decision Boundary

Jeju National University Yungcheol Byun

Agenda

- Machine Learning revisited
- Linear decision boundary
- XOR problem
- Non-linearity and multi-layer neural networks
- Complex nonlinear boundary as you like

Machine Learning

- \bigcirc Parameters (w, b) initialization randomly
- 2 Building computation graph of E by TensorFlow framework
- ${\color{red} {\mathfrak Z}}$ Foreword propagation by putting values into the graph and calculate ${\color{red} {\it E}}$
- 4 Back-propagation to get the influence of w, b change on the error E (applying chain rules)
- 5 Update w, b to adjust a decision boundary
- 6 go to 3

How to change the decision boundary

 $\begin{array}{ccc} & & \text{sigmoid(w1\cdot length} + \text{w2}\cdot \text{width} + \text{b)} \\ \text{db slope} & & \text{db shift} \\ w_1x_1 + w_2x_2 + b & = 0 \\ & & \text{db rotation} \end{array}$


```
slope
rotation
shift
w1 = 0.00
w2 = 0.00
b = 0.00
```

Machine Learning

```
(6) go to
import tensorflow as tf
#---- training data
x data = [-2, -1, 1, 2]
y data = [0, 0, 1, 1]
#---- a neuron
w = tf.Variable(tf.random normal([1]))
hypo = tf.sigmoid(x data * w)
#----- learning
cost = -tf.reduce_mean(y_data * tf.log(hypo) +
       tf.subtract(1., y_data) * tf.log(tf.subtract(1., hypo)))
train =
tf.train.GradientDescentOptimizer(learning rate=0.01).
minimize(cost)
```

Parameters (w, b) initialization randomly

Update w, b to adjust a decision boundary

Foreword propagation by putting values into the graph

Back-propagation to get the influence of w, b change on

Building computation graph of E

the error \mathbf{E} (applying chain rules)

and calculate

Machine Learning

- Parameters (w, b) initialization randomly
- Building computation graph of E
- Foreword propagation by putting values into the graph and calculate
- Back-propagation to get the influence of w, b change on the error **E** (applying chain rules)
- Update w, b to adjust a decision boundary
- (6) go to

```
sess = tf.Session()
sess.run(tf.global variables initializer())
```

for i in range(1001):

```
sess.run(train) (3)(4)(5)
```


Learning finished after 1001 times updates

```
if i % 100 == 0:
  print( ' w: ' , sess.run(w), ' cost: ' , sess.run(cost))
```

```
#---- test (classification)
x_{data} = [-2, 4] #new data
print(sess.run(hypo))
```

hypo = tf.sigmoid(x data * w)

Testing new data

- After learning,
- a neuron can classify new input data correctly.

```
#---- test (classification)
x_data = [-2, 4] #new data
print(sess.run(hypo))
```

- When the computation graph is created, data is set only one time.
- Still old data in the computation graph.
- No feeding the new data[-2,4] into the pre-created computational graph
- Therefore, not working!

- Marking certain place holders in a computational graph
- and then replace it with new data when it <u>runs</u>(evaluation).

```
sess.run ()
```

import tensorflow as tf

```
#---- training data

x_data = [[-2], [-1], [1], [2]]

y_data = [[0], [0], [1], [1]]
```

- X = tf.placeholder (tf.float32)
- Y = tf.placeholder (tf.float32)

- 1. Place holders: X, Y
- 2. x_data \rightarrow X, y_data \rightarrow Y
- 3. Feeding real data when hypo, cost, and train operations are executed.

```
#---- a neuron
w = tf.Variable (tf.random_normal([1]))
hypo = tf.sigmoid(X * w)
```

```
#----- learning
cost = -tf.reduce mean(Y * tf.log(hypo) +
    tf.subtract(1., Y) * tf.log(tf.subtract(1., hypo)))
train =
tf.train.GradientDescentOptimizer(learning rate=0.01).minimize(cost)
sess = tf.Session()
sess.run(tf.global variables initializer())
for i in range(1001):
  sess.run(train, feed dict={X:x data, Y:y data})
  if i % 100 == 0:
    print(sess.run(w), sess.run(cost feed_dict={X:x_data, Y:y_data}))
```

```
#---- testing(classification)
x_data = [-2, 4]
result = sess.run(hypo, feed_dict={X: x_data})
print(result)
```

Lab 15.py

- Classification into one of four classes
- Using placeholders

1-Input Neuron (1D)

Decision boundary: Value

$$w \cdot x = 0$$
$$x = 0$$

2-Input Neuron (2D)

3-Input Neuron (3D)

More than 4 inputs?

$$x_1 w_1 + x_2 w_2 + x_3 w_3 + x_4 w_4 + b = 0$$

→ hyper<u>plane</u>

초평면

Linear Decision Boundary

SSUES in the **Linear** Decision Boundary!

XOR (2D)

x_1	x_2	h
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

View from above

XOR (2D) Binary Cross-Entropy Loss

- Number of class: 2
- 1-decision boundary for 2-class classification
- Impossible to classify using a single linear decision boundary

Lab 16.py

- XOR problem
- A neuron, 1 linear decision boundary
- Cannot be solved!

How to solve

How to solve

by Luis Serrano, A friendly introduction to Deep Learning, UDACITY

How to solve

Hidden Layer

by Luis Serrano, A friendly introduction to Deep Learning, UDACITY

3-layer Neural Network

Hidden Layer

What is a **linear** decision boundary?

3-layer NN (one more layer) for nonlinear decision boundary

View from above

XOR

View from above

Side view

- Solving XOR gate problem using 3-layer neural network
- The way to create nonlinear decision boundary

Nonlinear Decision Boundary

 Combination of three linear decision boundaries

Nonlinear Decision Boundary

Merging four linear decision boundaries

Nonlinear Decision Boundary

Side view

As you wish (2 classes)

21

View from above

As you wish (4 classes)

View from above

More neurons (wider & deeper), more complex(detail) decision boundary

http://playground.tensorflow.org

As you want

go wider & deeper

- to make more complex nonlinear decision boundaries.
- We can classify anything we imagine.

The way of machine learning

- Learning over and over again just like human being
- If it misrecognizes, just say 'Nope, you were wrong', which makes it update its weights to do better next time.
- Try it over and over again just like a child.

Learning or Programming?

"This (machine learning) is the next transformation...the programming paradigm is changing. Instead of programming a computer, you teach a computer to learn something and it does what you want"

Eric Schmidt, Google

Change of Paradigm

Not programming, but data-driven learning (parameter tuning)