L4 Quantum information and computing (QIC)

Lecture 5: Rabi oscillations, $\pi/2$, π and 2π pulses, and the Hadamard gate

January 6, 2023

Aims of Lecture 5: In this lecture, we shall look at specific cases of the Rabi solution used as single-qubit gates.

Recap: The Rabi solution: In the last lecture, we derived the rotation matrix (the Rabi solution) describing the interaction between a qubit with an oscillatory EM field,

$$\begin{array}{lcl} \mathsf{R}_{\boldsymbol{\hat{n}}}^{\Theta} & = & \left[\begin{array}{ccc} \cos\frac{\Theta}{2} - i\frac{\Delta}{\Omega_{\mathrm{eff}}}\sin\frac{\Theta}{2} & -i\frac{\Omega}{\Omega_{\mathrm{eff}}}e^{-i\phi_L}\sin\frac{\Theta}{2} \\ -i\frac{\Omega}{\Omega_{\mathrm{eff}}}e^{i\phi_L}\sin\frac{\Theta}{2} & \cos\frac{\Theta}{2} + i\frac{\Delta}{\Omega_{\mathrm{eff}}}\sin\frac{\Theta}{2} \end{array} \right] \ , \end{array}$$

where $\Theta = \Omega_{\text{eff}}t = (\Omega^2 + \Delta^2)^{1/2}t$. The time evolution of the state vector is given by

$$|\psi(t)\rangle = \mathsf{R}_{\hat{\mathbf{n}}}^{\Theta} |\psi(0)\rangle$$
,

where $|\psi(0)\rangle$ is the state vector at t=0. Next, we shall look at specific cases that are particularly applicable to single-qubit gates. There are 4 free parameters, the detuning Δ , the Rabi frequency Ω , the phase $\phi_{\rm L}$ and the time t. However, as the rotation angle is equal to $\Omega_{\rm eff} t$, fixing either one, restricts the other which reduces the degrees of freedom to three.

Driving on resonance $\Delta = 0$: First, we shall look at what happens to the state vector when we apply a resonant field, $\Delta = 0$. The interaction Hamiltonian reduces to

$$\mathcal{H}_{\text{int}} = \frac{\hbar}{2} \left[\Omega(\cos \phi_{\text{L}} \sigma_x + \sin \phi_{\text{L}} \sigma_y) \right] .$$

As there is no σ_z term this will give us a rotation about an axis in the xy (or equatorial) plane, described by the unit vector, $\mathbf{n}' = (\cos \phi_{\mathrm{L}}, \sin \phi_{\mathrm{L}}, 0)$, where ϕ_{L} is the field phase. After fixing Δ there are only two remaining parameters, the desired rotation, $\Theta = \Omega t$ and the phase ϕ_{L} so we write the rotation matrix as

$$\mathsf{R}^{\Omega t}_{\phi_{\mathrm{L}}} = \left[\begin{array}{cc} \cos(\Omega t/2) & -\mathrm{i}\mathrm{e}^{-\mathrm{i}\phi_{\mathrm{L}}}\sin(\Omega t/2) \\ -\mathrm{i}\mathrm{e}^{\mathrm{i}\phi_{\mathrm{L}}}\sin(\Omega t/2) & \cos(\Omega t/2) \end{array} \right] \; .$$

Rabi oscillations For a qubit initially in state $|0\rangle$

$$|\psi(0)\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} ,$$

an interaction of duration t, the Rabi solution gives

$$|\psi(t)\rangle = \begin{bmatrix} \cos(\Omega t/2) \\ -ie^{i\phi_L}\sin(\Omega t/2) \end{bmatrix}.$$

The populations in states $|0\rangle$ and $|1\rangle$, are given by

$$|a(t)|^2 = \cos^2(\Omega t/2)$$
 and $|b(t)|^2 = \sin^2(\Omega t/2)$.

The population oscillates between the two states at the Rabi frequency, Ω . These oscillations are known as **Rabi** oscillations. Remember that the Rabi frequency is proportional to the field amplitude, i.e. the square root of the field intensity (or power).

In the Bloch sphere picture, on resonance Rabi oscillations¹ appear as circuits from pole to pole. The field phase determine the plane of the circuit. With $\phi_{\rm L}=0$, we obtain a rotation around the x-axis,²

$$\mathsf{R}_x^{\Omega t} = \left[\begin{array}{cc} \cos(\Omega t/2) & -\mathrm{i}\sin(\Omega t/2) \\ -\mathrm{i}\sin(\Omega t/2) & \cos(\Omega t/2) \end{array} \right] \; .$$

For $\phi_{\rm L}=\pi/2$, we rotate around the y-axis,

$$\mathsf{R}_y^{\Omega t} = \left[\begin{array}{cc} \cos(\Omega t/2) & -\sin(\Omega t/2) \\ \sin(\Omega t/2) & \cos(\Omega t/2) \end{array} \right] \; ,$$

and for $\phi_{\rm L} = \pi$, we rotation around the -x-axis,

$$\mathsf{R}_{-x}^{\Omega t} = \left[\begin{array}{cc} \cos(\Omega t/2) & \mathrm{i} \sin(\Omega t/2) \\ \mathrm{i} \sin(\Omega t/2) & \cos(\Omega t/2) \end{array} \right] \; ,$$

 $\pi/2$, π and 2π pulses

The interactions times given by $\Omega t_{\pi/2} = \pi/2$, $\Omega t_{\pi} = \pi$, and $\Omega t_{2\pi} = 2\pi$ are known $\pi/2$, π and 2π pulses, respectively.

 $\pi/2$ pulse: A $\pi/2$ pulse rotates the Bloch vector by 90°, e.g. from a pole to the equator or from the equator to a pole, i.e. it converts a basis state $|0\rangle$ or $|1\rangle$ to an equal superposition of $|0\rangle$ and $|1\rangle$ or vice versa. We shall consider

 $^{^{1}\}mathrm{Rabi}$ oscillations also occur for non-zero detuning but it this case do not go pole to pole.

²Rotations follow a right-hand rule: thump along axis of rotation; fingers direction of rotation.

two examples: First, consider a $\pi/2$ -rotation about the +y-axis, i.e. we put $\Omega t = \pi/2$ and $\phi_{\rm L} = \pi/2$. This gives the rotation matrix,

$$\mathsf{R}_y^{\pi/2} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \; .$$

For an initial state $|0\rangle$, after the rotation we have

$$|\psi(t_{\pi/2})\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) ,$$

corresponding to a Bloch vector pointing in the +x direction with $u = \langle \hat{\sigma_x} \rangle = 1$, $v = \langle \hat{\sigma_y} \rangle = 0$ and $w = \langle \hat{\sigma_z} \rangle = 0$. Alternatively, applying a $\pi/2$ pulse with phase $\phi_L = 0$ to state $|1\rangle$, we find

$$|\psi(t_{\pi/2})\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} (-i|0\rangle + |1\rangle) .$$

It is not so obvious that this points in the +y direction. To check we can either take out a global phase (as in QIC.4) or take the expectation of σ_y ,

$$\langle \sigma_y \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix} = +1.$$

The direction of the Bloch vector becomes more apparent if we take out a global phase factor and write it in the form,

$$|1\rangle \rightarrow -i\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$
.

Importantly, it is only the relative phase between the $|0\rangle$ and $|1\rangle$ components that determines the position on the Bloch sphere!

Hadamard gate: Example with off-resonant driving Applying a $\pi/2$ pulse converts a basis state, $|0\rangle$ or $|1\rangle$ into an equal superposition of $|0\rangle$ and $|1\rangle$. Apply a second $\pi/2$ pulse continues the rotation in the same direction and we end up with a $|1\rangle$ or a $|0\rangle$ (a qubit flip). Two identical back-to-back $\pi/2$ pulses are equivalent to a π pulse, i.e. $\mathsf{R}_{\phi_{\rm L}}^{\pi} = \mathsf{R}_{\phi_{\rm L}}^{\pi/2} \mathsf{R}_{\phi_{\rm L}}^{\pi/2}$. It is also useful to have a pulse that take us into a superposition and then back to the same state. This is known as a **Hadamard gate** or **Hadamard transform**,

$$\mathsf{H} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) .$$

The application of two Hadamard transforms leave the state unchanged, $H^2 = \sigma_0$, the identity matrix. In practice, there are different ways to implement a Hadamard. If we put $\Delta = \Omega$ in the Rabi solution,

$$\mathsf{R} \ = \ \left[\begin{array}{cc} \cos\frac{\Omega}{\sqrt{2}}t - \frac{\mathrm{i}}{\sqrt{2}}\sin\frac{\Omega}{\sqrt{2}}t & -\frac{\mathrm{i}}{\sqrt{2}}\mathrm{e}^{-\mathrm{i}\phi_\mathrm{L}}\sin\frac{\Omega}{\sqrt{2}}t \\ -\frac{\mathrm{i}}{\sqrt{2}}\mathrm{e}^{+\mathrm{i}\phi_\mathrm{L}}\sin\frac{\Omega}{\sqrt{2}}t & \cos\frac{\Omega}{\sqrt{2}}t + \frac{\mathrm{i}}{\sqrt{2}}\sin\frac{\Omega}{\sqrt{2}}t \end{array} \right] \,,$$

and set $(\Omega/\sqrt{2})t = \pi/2$ and $\phi_L = 0$, we obtain

$$\mathsf{R} = -\mathrm{i} \quad \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) = -\mathrm{i} \mathsf{H} \; ,$$

which is a Hadamard with an additional global phase. This global phase can be cancelled by applying another field which shifts both states $|0\rangle$ and $|1\rangle$ by the same energy, E, for a time, $t=\pi\hbar/2E$. A sequence of two Hadamard operations is illustrated using the Bloch sphere in Fig. 1. Note how for $\Delta=\Omega$ the rotation axis is at 45°, as expected given that the rotation axis is given by

$$\hat{\boldsymbol{n}} = (1/\Theta)[\Omega\cos\phi_{L}, \Omega\sin\phi_{L}, \Delta] = (1/\sqrt{2})[1, 0, 1] .$$

Figure 1: A sequence of two Hadamard gates in the Bloch sphere.

Summary:

What do you need to be able to do?

- 1. Explain the concept of Rabi oscillations and sketch the populations versus time with correct labelling of the axes.
- 2. Starting from the Rabi solution derive matrices for $\pi/2$, π , 2π pulses and sketch them on the Bloch sphere.
- 3. Explain the significance of the phase $\phi_{\rm L}$ in the Rabi solution.
- 4. Explain how to realise a Hadamard gate.
- 5. Sketch an Hadamard transform on the Bloch sphere.
- 6. Suggest five reasons why for real physical qubits the Rabi oscillations are less than perfect.