

### Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων

### Δίκτυα Διασύνδεσης

Συστήματα Παράλληλης Επεξεργασίας 9° Εξάμηνο



- Διασυνδέουν δομικές μονάδες ενός σύνθετου συστήματος
- On-Chip Network (OCN) or Network-on-Chip (NoC):
  - O Caches
  - O Processing cores
  - O CMPs.
- System/Storage Area Networks (SAN):
  - Ο Επεξεργαστές με μονάδες μνήμης
  - Ο Υπολογιστές μεταξύ τους
  - Ο Υπολογιστές με συσκευές αποθήκευσης
- Local Area Networks (LAN):
  - Ο Υπολογιστές σε ένα τοπικό δίκτυο
- Wide Area Networks (WAN):
  - Ο Υπολογιστές σε οποιοδήποτε σημείο του πλανήτη



- Διασυνδέουν δομικές μονάδες ενός σύνθετου συστήματος
- On-Chip Network (OCN) or Network-on-Chip (NoC):
  - O Caches
  - O Processing cores
  - O CMPs.
- System/Storage Area Networks (SAN):
  - Ο Επεξεργαστές με μονάδες μνήμης
  - Ο Υπολογιστές μεταξύ τους
  - Ο Υπολογιστές με συσκευές αποθήκευσης
- Local Area Networks (LAN):
  - Ο Υπολογιστές σε ένα τοπικό δίκτυο
- Wide Area Networks (WAN):
  - Ο Υπολογιστές σε οποιοδήποτε σημείο του πλανήτη













## Κρίσιμες μετρικές για την αξιολόγηση ενός δικτύου διασύνδεσης

#### • Επίδοση:

- **Latency**: Χρόνος που απαιτείται για να φτάσει το πρώτο byte πληροφορίας από τον αποστολέα στον παραλήπτη
- O Bandwidth: Ο ρυθμός με τον οποίο μεταδίδεται η πληροφορία

#### • Κόστος:

- Αριθμός ports στα switches
- Αριθμός switches
- Ο Αριθμός συνδέσεων
- Επεκτασιμότητα (scalability): Η δυνατότητα του δικτύου να υποστηρίξει επέκταση σε μεγαλύτερο αριθμό διασυνδεόμενων μονάδων
- Λειτουργικότητα (functionality): υποστήριξη του δικτύου σε λειτουργίες όπως δρομολόγηση, συλλογική επικοινωνία, συγχρονισμός, μονόπλευρη επικοινωνία



## Latency και Bandwidth

simplified



## Δομή δικτύου και λειτουργίες

- Τοπολογία (topology): Ποια μονοπάτια είναι δυνατά για την επικοινωνία;
   (Πώς διασυνδέονται φυσικά οι κόμβοι;)
- Δρομολόγηση (routing): Ποια από τα δυνατά μονοπάτια είναι επιτρεπτά (έγκυρα) για την επικοινωνία;
- Διαιτησία (arbitration): Πότε θα είναι διαθέσιμα τα μονοπάτια επικοινωνίας (σε συνθήκες διεκδίκησης ενός μονοπατιού από διαφορετικές λειτουργίες επικοινωνίας)
- Μεταγωγή (switching): Με ποιο τρόπο θα δοθεί το μονοπάτι σε μια λειτουργία επικοινωνίας;



## Χαρακτηριστικά τοπολογιών

- Βαθμός κόμβου (node degree) d: αριθμός συνδέσμων σε ένα κόμβο
  - Ο Θέλουμε να είναι:
    - μικρός (λόγω κόστους)
    - σταθερός (για επεκτασιμότητα)
- Διάμετρος δικτύου D: μέγιστο ελάχιστο μονοπάτι μεταξύ δύο οποιονδήποτε κόμβων
  - Ο Όσο μικρότερη, τόσο καλύτερη η χειρότερη περίπτωση επικοινωνίας
- Εύρος τομής (bisection width) b: ο ελάχιστος αριθμός ακμών που κόβουμε,
   χωρίζοντας το δίκτυο στα δύο
  - Ο Αποτελεί ένα καλό δείκτη του μέγιστου εύρους ζώνης επικοινωνίας σε ένα δίκτυο



## Κατηγορίες δικτύων

- Shared-media networks: Το μέσο είναι διαμοιραζόμενο από όλους τους κόμβους, π.χ.
  - Ο Δίαυλος (bus) σε μονοεπεξεργαστικά και πολυεπεξεργαστικά συστήματα
  - Ο Το παραδοσιακό Ethernet
- Switched-media networks: Υπάρχουν διακοπτόμενα μονοπάτια που μπορούν να υποστηρίξουν την ταυτόχρονη επικοινωνία ανάμεσα σε διαφορετικά ζεύγη κόμβων







### Κατηγορίες δικτύων

- Shared-media networks: Το μέσο είναι διαμοιραζόμενο από όλους τους κόμβους
  - Πλεονεκτήματα:
    - Εύκολο στην υλοποίηση
    - Χαμηλό κόστος
  - Μειονεκτήματα:
    - Χαμηλή κλιμάκωση (λόγω bandwidth, διαιτησίας, κλπ)
- Switched-media networks: Υπάρχουν διακοπτόμενα μονοπάτια που μπορούν να υποστηρίξουν την ταυτόχρονη επικοινωνία ανάμεσα σε διαφορετικά ζεύγη κόμβων
  - Centralized και distributed switched networks
  - Πλεονεκτήματα:
    - Καλή κλιμάκωση
    - Ευελιξία στο σχεδιασμό
    - Υψηλές επιδόσεις
  - Μειονεκτήματα:
    - Υψηλό κόστος



## Shared-media networks: Δίαυλος (bus)

- Παραδοσιακός τρόπος διασύνδεσης σε ένα NoC
- Απλή υλοποίηση με χαμηλό κόστος
  - Data, address, control buses
  - Διαιτησία (arbitration):
    - Κεντρική μέσω του control bus
    - Κατανεμημένη (CSMA/CD, Token Ring)
  - Μεταγωγή (switching)
    - Απλά η συσκευή συνδέεται στο μέσο
  - Δρομολόγηση (routing):
    - Σε όλους τους παραλήπτες (έλεγχος αν το πακέτο προορίζεται για εμένα)
    - Υποστηρίζει εύκολα broadcast και multicast
- Εύκολη υλοποίηση cache coherence με snooping
- Αλλά: δεν είναι επεκτάσιμος (τυπικά λίγες δεκάδες στοιχείων)
  - Περιορισμένο συνολικό bandwidth
  - Μεγάλο overhead στη διαιτησία για μεγάλο αριθμό κόμβων





### Διακόπτες





Bασικό building block 2 x 2 διακόπτης (switching cell) 2 λειτουργίες: "through" / "crossed"



Κατασκευή 4 x 4 διακόπτη από 2 x 2



Γενίκευση: Αναδρομική κατασκευή N x N διακόπτη από 2 N/2 x N/2 διακόπτες και 2 x 2 διακόπτες



## Centralized switched networks: Crossbar switch

- Απλούστερη, ταχύτερη αλλά και ακριβότερη λύση για τη διασύνδεση Ν στοιχείων
- Υποστηρίζει ταυτόχρονη επικοινωνία διαφορετικών ζευγών πηγής προορισμού
- Απαιτεί N² διακόπτες, δεν κλιμακώνει λόγω κόστους
- Χρησιμοποιείται σε ΝοC για τη διασύνδεση λίγων δεκάδων στοιχείων





## Centralized switched networks: Crossbar switch



$$0-1$$
 $1-3$ 
 $3-7$ 
 $7-4$ 
 $4-6$ 
 $6-5$ 
 $2-0$ 
 $5-2$ 



## Γενική οργάνωση διακόπτη (switch)



Image taken from: Parallel Computer Architecture, D. Culler, J.P. Singh



# Centralized switched networks: Multistage Interconnection Networks

- Διασυνδέουν Ν στοιχεία με τη χρήση πολυεπίπεδων διακοπτών
- Αν χρησιμοποιηθούν k \* k διακόπτες, χρειάζονται log<sub>k</sub>N στάδια με N/k διακόπτες ανά στάδιο (σύνολο N/k log<sub>k</sub>N διακόπτες)
- Ανάλογα με τη διασύνδεση των διακοπτών έχουν προκύψει διαφορετικά δίκτυα που ανταποκρίνονται σε διαφορετικά patterns επικοινωνίας





- Ονομάζεται και Perfect Shuffle (οι διασυνδέσεις σε κάθε επίπεδο προκύπτουν σαν ανακάτεμα τράπουλας)
- Destination-tag και xor-tag routing
- Είναι blocking (πολλά μονοπάτια επικαλύπτονται)





#### Destination-tag routing

- Λαμβάνεται υπόψη μόνο ο προορισμός
- Π.χ. από οποιαδήποτε πηγή, για να φτάσω στον προορισμό 1011 θα πάρω διαδοχικά τις εξόδους «κάτω», «πάνω», «κάτω», «κάτω»





#### Destination-tag routing

- Λαμβάνεται υπόψη μόνο ο προορισμός
- Π.χ. από οποιαδήποτε πηγή, για να φτάσω στον προορισμό 1011 θα πάρω διαδοχικά τις εξόδους «κάτω», «πάνω», «κάτω», «κάτω»





#### Destination-tag routing

- Λαμβάνεται υπόψη μόνο ο προορισμός
- Π.χ. από οποιαδήποτε πηγή, για να φτάσω στον προορισμό 1011 θα πάρω διαδοχικά τις εξόδους «κάτω», «πάνω», «κάτω», «κάτω»





#### XOR-tag routing

- Source xor Destination
- Αν το αποτέλεσμα είναι 0, ο αντίστοιχος διακόπτης περνιέται through, αν είναι 1 περνιέται crossed





#### **XOR-tag routing**

- Source xor Destination
- Αν το αποτέλεσμα είναι 0, ο αντίστοιχος διακόπτης περνιέται through, αν είναι 1 περνιέται crossed





#### **XOR-tag routing**

- Source xor Destination
- Αν το αποτέλεσμα είναι 0, ο αντίστοιχος διακόπτης περνιέται through, αν είναι 1 περνιέται crossed

 $\Pi.\chi.~0010 \rightarrow 1110$ 0010 xor 1110 = 1100 crossed crossed through through 



#### XOR-tag routing

- Source xor Destination
- Αν το αποτέλεσμα είναι 0, ο αντίστοιχος διακόπτης περνιέται through, αν είναι 1 περνιέται crossed





#### XOR-tag routing

- Source xor Destination
- Αν το αποτέλεσμα είναι 0, ο αντίστοιχος διακόπτης περνιέται through, αν είναι 1 περνιέται crossed





- Στόχος: Μείωση συμφόρησης (contention) λόγω διεκδίκησης κοινών διαδρομών
- Προσέγγιση: Χρήση επιπλέον διακοπτών
  - Ο Περισσότερα επίπεδα
  - Ο Μεγαλύτερους διακόπτες





- Στόχος: Μείωση συμφόρησης (contention) λόγω διεκδίκησης κοινών διαδρομών
- Προσέγγιση: Χρήση επιπλέον διακοπτών
  - Ο Περισσότερα επίπεδα
  - Ο Μεγαλύτερους διακόπτες





- Στόχος: Μείωση συμφόρησης (contention) λόγω διεκδίκησης κοινών διαδρομών
- Προσέγγιση: Χρήση επιπλέον διακοπτών
  - Ο Περισσότερα επίπεδα
  - Ο Μεγαλύτερους διακόπτες





- Στόχος: Μείωση συμφόρησης (contention) λόγω διεκδίκησης κοινών διαδρομών
- Προσέγγιση: Χρήση επιπλέον διακοπτών
  - Ο Περισσότερα επίπεδα
  - Ο Μεγαλύτερους διακόπτες



**Δίκτυο Benes 16-port Clos topology** 



## Centralized switched networks: Fat tree

- Τα φύλλα του δέντρου είναι τα στοιχεία που διασυνδέονται
- Οι εσωτερικοί κόμβοι είναι διακόπτες
- Χρησιμοποιείται κατά κόρον σε SANs και κυρίως σε Supercomputers (Infiniband, Myrinet, κλπ)
- Ιδιότητες του fat tree:
  - Στα ενδιάμεσα επίπεδα uplinks = downlinks
  - Στο υψηλότερο επίπεδο uplinks = 0







#### Distributed switched networks

- Οι διακόπτες του δικτύου κατανέμονται στους κόμβους του συστήματος
- Μεγάλος αριθμός (ίσος με τον αριθμό των κόμβων) από μικρούς διακόπτες
- Συχνά οι διακόπτες ολοκληρώνονται μαζί με τον επεξεργαστή
- Κρίσιμες μετρικές:
  - Ο Αριθμός συνδέσμων (κόστος)
  - Ο Βαθμός κόμβου (επεκτασιμότητα)
  - Ο Διάμετρος (επίδοση)
  - Ο Εύρος τομής (επίδοση)



# Distributed switched networks: Γραμμικό

- Ν κόμβοι
- N-1 σύνδεσμοι



- Βαθμός d = 2 για τους εσωτερικούς κόμβους
- Διάμετρος D = N-1
- Εύρος τομής b = 1
- Δεν είναι συμμετρικό
- Επεκτάσιμο
- Διαφορά από το διάδρομο: διαφορετικά κανάλια-σύνδεσμοι μπορούν να χρησιμοποιούνται ταυτόχρονα



## Distributed switched networks: Δακτύλιος

- Ν κόμβοι
- Ν σύνδεσμοι
- Βαθμός κόμβων d = 2
- Διάμετρος: D = floor(N/2)
- Εύρος τομής b = 2
- Είναι συμμετρικό





# Distributed switched networks: Πλήρες

- Ν κόμβοι
- N(N-1)/2 σύνδεσμοι
- Βαθμός κόμβου d = N-1
- Διάμετρος D = 1
- Εύρος τομής  $b = (N/2)^2$
- Είναι συμμετρικό





### Distributed switched networks: Mesh

- N=n<sup>k</sup> κόμβοι
- k-διάστατο mesh με n κόμβους ανά διεύθυνση
- βαθμός κόμβου d = 2k
- διάμετρος δικτύου D = k(n-1)
- Για ένα 2-διάστατο mesh:
  - O N=n² κόμβοι
  - 2N-2n=2n²-2n σύνδεσμοι
  - Ο Βαθμός εσωτερικών κόμβων d=4
  - Ο Διάμετρος D=2(n-1)
  - Ο Εύρος τομής b=n
  - Ο Δεν είναι συμμετρικό





### Distributed switched networks: Torrus

- Υποδιπλασιάζεται η διάμετρος
- για έναν n×n δυαδικό torus (k=2):
  - Ο N=n² κόμβοι
  - Ο 2Ν σύνδεσμοι
  - Ο βαθμός κόμβου d=4
  - $\bigcirc$  Διάμετρος D = 2 floor(N/2)
  - Ο Εύρος τομής 2n
  - Ο Είναι συμμετρικό





### Distributed switched networks: Iliac mesh

Αναδίπλωση συνδέσεων για την εξισορρόπηση του μήκους των καλωδίων







#### Distributed switched networks: Δέντρο

- N = 2<sup>k</sup>-1 κόμβοι
- Ν-1 σύνδεσμοι
- Βαθμός κόμβου d = 3 (επεκτάσιμο)
- Διάμετρος: D = 2(k-1)
- Εύρος τομής b = 1 (bottleneck)
- Δεν είναι συμμετρικό





#### Distributed switched networks: Υπερκύβος (hypercube)

- N=2<sup>n</sup> κόμβοι
- nN/2 σύνδεσμοι
- Βαθμός κόμβου d=n
- Διάμετρος D=n
- Εύρος τομής b=N/2
- Είναι συμμετρικό
- Άμεσος προσδιορισμός διαδρομής





#### Αναδρομική Κατασκευή Υπερκύβου











Οι διευθύνσεις γειτονικών κόμβων διαφέρουν κατά 1 bit





 $000 \rightarrow 111$ 





 $000 \to 111$ 





 $000 \to 111$ 





 $000 \to 111$ 



### Παράδειγμα Προσδιορισμού Διαδρομής

 $0011 \rightarrow 1101$   $0011 \oplus 1101 = 1110$   $0011 \rightarrow 1011 \rightarrow 1111 \rightarrow 1101$ 





### Distributed switched networks: Γενίκευση: k-δικός n-κύβος

- N = k<sup>n</sup> κόμβοι
- ηΝ σύνδεσμοι
- Βαθμός κόμβου d = 2n
- $\Delta$ ιάμετρος: D = n floor(k/2)
- Εύρος τομής b = 2k<sup>n-1</sup>
- Είναι συμμετρικό







### Χαρακτηριστικά συνδεσμολογιών

| Τύπος Δικτύου      | Κόμβοι              | Σύνδεσμοι | Βαθμός κόμβου | Διάμετρος δικτύου                               | Εύρος τομής        | Συμμετρία |
|--------------------|---------------------|-----------|---------------|-------------------------------------------------|--------------------|-----------|
| Γραμμικό           | N                   | N-1       | 2             | N-1                                             | 1                  | Όχι       |
| Δακτύλιος          | N                   | N         | 2             | [N/2]                                           | 2                  | Ναι       |
| Πλήρες             | N                   | N(N-1)/2  | N-1           | 1                                               | (N/2) <sup>2</sup> | Ναι       |
| Δυαδικό δένδρο     | N=2 <sup>k</sup> -1 | N-1       | 3             | 2(k-1)                                          | 1                  | Όχι       |
| Αστεροειδές        | N                   | N-1       | N-1           | 2                                               | [N/2]              | Όχι       |
| 2D-Mesh            | N=n <sup>2</sup>    | 2N-2n     | 4             | 2(n-1)                                          | n                  | Όχι       |
| Iliac Mesh         | N=n <sup>2</sup>    | 2N        | 4             | N-1                                             | 2n                 | Όχι       |
| 2D-Torus           | N=n <sup>2</sup>    | 2N        | 4             | 2[n/2]                                          | 2n                 | Ναι       |
| Υπερκύβος          | N=2 <sup>n</sup>    | nN/2      | n             | n                                               | N/2                | Ναι       |
| k-δικός<br>n-κύβος | N=k <sup>n</sup>    | nN        | 2n            | $2k-1+\lfloor k/2\rfloor$ $n\lfloor k/2\rfloor$ | 2k <sup>n-1</sup>  | Ναι       |



#### Δίκτυα εμπορικών συστημάτων

- BlueGene/Q: 5D torus
- BlueGene/P : binary tree, 3D torus
- K computer: 6D torus
- Infiniband configuration: fat tree
- Historical note (1987): Connection Machine CM-2, 8192 nodes, hypercube



 Ο ελληνικός υπερυπολογιστής ARIS χρησιμοποιεί την τεχνολογία InfiniBand FDR και την τοπολογία fat tree

Χρησιμοποιεί το 648-port Mellanox switch SX-6536





- Το 648-port switch αποτελείται από πολλά 36-port switches σε τοπολογία fat tree δύο επιπέδων
- Γενικά, σε ένα port μπορούμε να συνδέσουμε:
  - Ο Έναν σύνδεσμο προς έναν κόμβο
  - Έναν σύνδεσμο προς άλλο port





- Τα 36-port switches συνδέονται σε τοπολογία δύο επιπέδων
  - Ο Πόσα switches χρειαζόμαστε σε κάθε επίπεδο;





648 κόμβοι

Επίπεδο 0

- Ιδιότητες του fat tree:
  - Ο Στα ενδιάμεσα επίπεδα uplinks = downlinks
  - Ο Στο υψηλότερο επίπεδο **uplinks = 0**
- Διαθέσιμα ports για συνδέσεις:
  - X1 \* 36 ports στο επίπεδο 1
  - X2 \* 36 ports στο επίπεδο 2
- Στο επίπεδο 1 (ενδιάμεσο επίπεδο):
  - O downlinks = uplinks = (36 ports / 2) \* X1 = 18 \* X1
  - O downlinks = κόμβοι = 648
  - O 648 = 18 \* X1

=>

X1 = 36

- Στο επίπεδο 2 (υψηλότερο επίπεδο):
  - O downlinks = 648 = 36 \* X2

=>

X2 = 18



- Το δίκτυο του ARIS ένα fat-tree ως 648-port switch
  - 18 switches στο επίπεδο 2, 36 switches στο επίπεδο 1
  - 18 downlinks \* 36 switches του επιπέδου 1 = 648 ports προς κόμβους





# Ζητήματα δρομολόγησης (routing)

- Εφαρμόζεται σε κάθε διακόπτη ανεξάρτητα από την τοπολογία
- Ορίζει τα επιτρεπόμενα μονοπάτια και κατευθύνει τα πακέτα μέσα στο δίκτυο
- Ιδανικά: Παρέχει τόσες επιλογές δρομολόγησης όσα και τα φυσικά μονοπάτια που παρέχει η τοπολογία, και κατανέμει ομοιόμορφα το φορτίο στο δίκτυο
- Απαιτούνται απλές και γρήγορες τεχνικές



## Ζητήματα δρομολόγησης (routing)

- Μηχανισμοί δρομολόγησης:
  - Ο **Αριθμητικοί:** ο υπολογισμός της διαδρομής γίνεται με απλές πράξεις λαμβάνοντας υπόψη π.χ. την πηγή ή/και τον προορισμό (βλ. destination/xor-tag routing στο δίκτυο omega)
  - Ο Υπολογισμός στην πηγή: Ο αποστολέας υπολογίζει και ενσωματώνει στην κεφαλίδα του μηνύματος τη ρύθμιση κάθε ενδιάμεσου διακόπτη.
    - + Απλοποιεί τη σχεδίαση των διακοπτών
    - Μεγαλώνει την κεφαλίδα
    - Δεν υποστηρίζει εύκολα προσαρμοστική δρομολόγηση (βλ. συνέχεια)
  - Ο **Αναζήτηση σε πίνακα δρομολόγησης:** Γενική προσέγγιση, όπου κάθε διακόπτης τηρεί έναν πίνακα δρομολόγησης.
    - + Μικρός μέγεθος κεφαλίδας
    - Κόστος αποθήκευσης πίνακα δρομολόγησης
    - Επικοινωνία μεταξύ διακοπτών για την ενημέρωση των πινάκων
    - Γενικά εφαρμόζεται σε LAN και WAN
- Ντετερμινιστική vs προσαρμοστική (adaptive) δρομολόγηση
  - Ο Tradeoff ανάμεσα σε απλότητα και ανοχή σε σφάλματα / αποφυγή συμφόρησης



# Ζητήματα δρομολόγησης (routing)

Προβλήματα: Καταστάσεις κατά τις οποίες ένα πακέτο δεν φτάνει ποτέ στον προορισμό του:

#### O Livelock

- Προκύπτει όταν υπάρχει άπειρος επιτρεπόμενος αριθμός από ενδιάμεσους κόμβους
- Λύση: Περιορισμός των ενδιάμεσων κόμβων που θα περάσει ένα πακέτο

#### O Deadlock

- Προκύπτει όταν ένα σύνολο από πακέτα μπλοκάρουν περιμένοντας πόρους του δικτύου (π.χ. συνδέσεις, buffers) να απελευθερωθούν
- Η πιθανότητα αυξάνει σε καταστάσεις συμφόρησης



# Deadlock κατά τη δρομολόγηση σε 2-διάστατο mesh





## Deadlock κατά τη δρομολόγηση σε 2-διάστατο mesh



Υπάρχει κυκλική εξάρτηση στην αίτηση για πόρους του δικτύου



#### Στρατηγικές χειρισμού deadlocks

- Αποφυγή deadlock:
  - Π.χ. DOR (dimension-order routing) σε meshes και hypercubes
     (εφαρμόζει global ordering στους πόρους), Up\*/Down\* routing
- Ανάνηψη από deadlock: επιτρέπει την εμφάνιση deadlock αλλά επεμβαίνει και επιλύει την κυκλική εξάρτηση
  - Ο Απαιτείται μηχανισμός εντοπισμού (πιθανότητας) αδιεξόδου
  - Ο Ανάκαμψη με οπισθοδρόμηση (regressive recovery abort-and-retry): Αφαιρεί πακέτα από την κυκλική εξάρτηση και αναμεταδίδει μετά από κάποια καθυστέρηση
  - Ο Ανάκαμψη με πρόοδο (progressive recovery preemptive): Αφαιρεί πακέτα από την κυκλική εξάρτηση και αναζητά εναλλακτικό δρόμο που δεν οδηγεί σε αδιέξοδο



#### Διαιτησία

- Εφαρμόζεται σε κάθε διακόπτη ανεξάρτητα από την τοπολογία
- Καθορίζει το πότε θα είναι διαθέσιμη η χρήση των μονοπατιών και απαιτείται για την επίλυση συγκρούσεων για κοινούς πόρους
- Ιδανικά:
  - Ο Βελτιστοποίηση των συνταιριασμάτων ανάμεσα στους διαθέσιμους πόρους και τα πακέτα που τους διεκδικούν
  - Ο Σε επίπεδο διακόπτη οι διαιτητές μεγιστοποιούν το συνταίριασμα ανάμεσα στις πόρτες εξόδου και στα πακέτα που βρίσκονται στην είσοδο
- Προβλήματα:
  - Starvation
    - Προκύπτει όταν δεν παρέχονται ποτέ πόροι σε κάποιο πακέτο
    - Λύση: Απόδοση πόρων με δικαιοσύνη
- Απλές προσεγγίσεις διαιτησίας σε διακόπτες
  - O Two-phased arbiters, three-phased arbiters, και iterative arbiters



# **Διαιτησία: Two-phased vs.**Three-phased arbiter







#### Μεταγωγή (switching)

- Εφαρμόζεται σε κάθε διακόπτη ανεξάρτητα από την τοπολογία
- Εγκαθιστά τη σύνδεση των μονοπατιών για τα πακέτα και χρειάζεται για να αυξηθεί η χρησιμοποίηση των μοιραζόμενων πόρων
- Ιδανικά:
  - Ο Εγκατάσταση σύνδεσης ανάμεσα στους πόρους του δικτύου για ακριβώς το χρονικό διάστημα που αυτοί είναι απαραίτητοι
  - Ο Επιτρέπεται αποδοτική χρήση του bandwidth από ανταγωνιστικές ροές
- Τεχνικές μεταγωγής:
  - O Circuit switching
    - Pipelined circuit switching
  - O Packet switching
    - Store-and-forward switching
    - Cut-through switching: virtual cut-through και wormhole



#### **Circuit switching**

- Ένα μονοπάτι «κύκλωμα» δημιουργείται εξαρχής και καταστρέφεται μετά τη χρήση
- Υπάρχει η δυνατότητα μετάδοσης πολλών πακέτων μετά την εγκατάσταση της επικοινωνίας
  - O pipelined circuit switching
- Η δρομολόγηση, η διαιτησία και η μεταγωγή πραγματοποιείται μία φορά για όλη τη σειρά των πακέτων
  - Ο Δεν απαιτείται πληροφορία δρομολόγησης σε κάθε επικεφαλίδα πακέτου
  - Ο Μειώνει το latency και την κατανάλωση bandwidth
- Μπορεί να σπαταλά πολύτιμο bandwidth δικτύου
  - Ο Κατά τη δημιουργία του κυκλώματος
  - Ο Αν δεν αποσταλούν πολλά μηνύματα μετά την εγκατάσταση του κυκλώματος



#### **Packet switching**

- Η δρομολόγηση, η διαιτησία και η μεταγωγή πραγματοποιείται για κάθε πακέτο
- Πιο αποδοτικός διαμοιρασμός των πόρων του δικτύου
- Store-and-forward switching
  - Ο Όλα τα bits ενός πακέτου μεταδίδονται μόνο όταν όλο το πακέτο είναι έτοιμο
  - Ο Ο χρόνος μετάδοσης πολλαπλασιάζεται με τον αριθμό των ενδιάμεσων κόμβων

#### Cut-through switching

- Ο Bits ενός πακέτου μπορούν να προωθηθούν όταν έχει ληφθεί ολόκληρη η κεφαλίδα
- Ο χρόνος μετάδοσης είναι αθροιστικός σε σχέση με τον αριθμό των ενδιάμεσων κόμβων
- Ο Virtual cut-through: έλεγχος ροής σε επίπεδο πακέτου
- **Wormhole**: έλεγχος ροής σε επίπεδο flow unit (flit) που είναι μικρότερη του πακέτου



# Store-and-forward vs cut-through switching (routing)



Image taken from: Parallel Computer Architecture, D. Culler, J.P. Singh

#### Επιπλέον διάβασμα

Computer Architecture: A Quantitative Approach, D. Patterson Appendix E: Interconnection Networks

