Randomized Algorithm and Structure things

integer:
$$E_{X,1} = \sum_{k=-\infty}^{+\infty} K \cdot P(x=k)$$

Linearity of expectation: $E(ax+by) = \alpha E_{1X,1} + b E_{1,y}$

Markov's inequality: If $\alpha Z_{\infty} = P(XZ_{\infty}) \leq \frac{E(X)}{\alpha}$
 $P(XZ_{\infty}) = \sum_{k=-\infty}^{+\infty} P(XZ_{\infty}) \leq \frac{E(X)}{\alpha}$

There are two kinds of randomized algorithms:

Las Vegas randomized algorithm(拉斯维加斯随机算法)

those are always correct, but its running time is a random variable.

Quick Sort: ① Runtime proportional to comparisons
②: Never compare Aci] with Acj] more than one

define Xij = f, if ith smallest one compared with jth smallest one

o,

E(Runtime) < E(C(\begin{align*} \begin{align*} \begin{align*}

$$\sum_{j \in J} \sum_{j=1}^{n-1} \sum_{j$$

Monte Carlo randomized algorithms(蒙特卡罗随机算法)

those are always fast, but its correctness is a random variable. for example:

We can test it by create a vector X test if ABx=Cx. So then

Monte Carlo 1 . Varifying Matrix-matrix mult Given: A,B, C & Rman Question: Does AXB=C? Treeval's algorithm: 1) Pick: X1, , Xt & [o, 13" independent Defor i=1 to t: 7 only need to do three motrix vector multiplications if ABX i = Cxi: return False. return true ·O(+·N²)

Exit is Kinterne converse in "j"

claim 1: If AB+C, then Roxilx(ABX=Cx) <= \frac{1}{2}

claim 2: P(Freivold gives wrong answer) < 2\frac{1}{2} < P

One of each a

another example:

find the global mincut of the graph
We will not want to find all n-1 mincut and then find it.
So please use Karger's algorithm.

Fix: Run Korger Romes, and
return Smallist out it ever kinds

P(tixed korger \(\) \

P(Jail)
$$\leq (+ \frac{1}{2})$$
 $(\hat{j}_{e}) = \frac{n!}{|c|(n-k)!}$

Form R times

P(Jail) $\leq (+ \frac{1}{2})$

P(Jail) $\leq (+ \frac{1}{2})$

Formal time: $((n+1) \omega p)$

proof about claim1:

O Fixed particular minut (S,3)

daim 2: PC (carge outputs (5,3)) >6)

notes: implies 6 has < 12) minuts, which is tight

P(Icarger output S,\overline{S}) = P(for all n=2 items, never contract any $e \in E(S,\overline{S})$)

= \overline{II} P(den't contract $e \in E(S,\overline{S})$) haven't contract any $e \in E(S,\overline{S})$) i=1 P(den't contract $e \in E(S,\overline{S})$) $i \in I$ $i \in I$

n'otution: minurt size:=|k

the degraes of A is 3

mi= = dv dv, or there will be a cut smaller than minute

mi > = k.ni = 1.k(n-i+1)

$$= \frac{\frac{h-2}{11}}{\frac{1}{12}} \left(\frac{1-\frac{1}{12}(n-iH)}{\frac{1}{2}(n-iH)} \right) = \frac{7-2}{h-iH} \left(\frac{2}{h-iH} \right) = \left(\frac{1-\frac{2}{12}}{h-iH} \right) \cdot \left(\frac{1-\frac{2}$$

Streaming Algorithm

introduce:

Algorithms must process a "stream" of incoming data, then be able to answer some query or family or like many different queries.

Goal:Use little memory.

in particular,I do not want to remember most of what i saw.

Chebyshev's inequality:

$$\forall t \neq 0$$
 $P(|X-Fx|/7t) < \frac{Var[X]}{t^2} \Rightarrow Variance of X$

$$E[(|X-Fx|/7)]$$

$$= E(|X/7) - (E(|X/7)|^2$$

approximate counter: 0 init n=0

Ø n←n+1 3 query: return n

naive algorithm: (111011) > logn > logn

now we'll settle for knowing n not exactly but up to some approximate factor $n \in \mathbb{R} \cap \mathbb{R}$

approximation factor

1 d d2 -- Llogk

log log n => (log log n)

Morris's algorithm,

query 1): return 24

incre...(i : wilk wp zx x ext)

(with probability)

Olw ido nothing

Induction at a second and a claim: E(2×)=n+1

$$\begin{array}{l}
\mathbb{E}_{00}(x_{n-1}) = \sum_{j=0}^{\infty} P(x_{n-1}) \left(\mathbb{E}_{(x_{n-1})}^{x_{n-1}} X_{n-j} \right) \\
= \sum_{j=0}^{\infty} P(x_{n-1}) \left(\mathbb{E}_{(x_{n-1})}^{x_{n-1}} X_{n-j} \right) \\
= \sum_{j=0}^{\infty} P(x_{n-1}) \left(\mathbb{E}_{(x_{n-1})}^{x_{n-1}} X_{n-j} \right)
\end{array}$$

$$= \sum_{j=0}^{\infty} P(x_{n}=j) \left(2^{j}+1\right)$$

$$= \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$= 1 + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$= 1 + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$= 1 + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$= 1 + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$= 1 + \sum_{j=0}^{\infty} P(x_{n}=j) + \sum_{j=0}^{\infty} P(x_{n}=j) = 2^{j}$$

$$E_{r} = h+1$$

$$Var[r] = E_{r}^{2} - (E_{r})^{2}$$

$$= E_{r}^{2} - (n+1)^{2}$$

$$claim: = \stackrel{?}{=} n^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} n + 1$$

$$Var[r] = \stackrel{?}{=} h^{2} + \stackrel{?}{=} h^{2} + 1$$

$$Var[r] = \stackrel{?}{=} h^{$$

But we can do better.

Run Monris' algorithm Etimes in purellei, => ki, nz, nz ..., na n*= a > n,

Enx=n

 $Var[n^*] = \sum_{i=1}^{q} Var[\frac{Ai}{a}] = a^{\frac{1}{2}} Var[h_i] = \sum_{i=1}^{q^2-1} Var[h_i] = \sum_{i=1}^{q^2-1} Var[h_i]$

= 1 P(x=i) + E P(x=i) 2i > P((n*-n)> 2n) < Var[nx]

rerall; need q=0 (z2p) copics

Total memory: O(loylain)

Doing	better: (with probility)
J	Detter: (with probility) D: Trivial Tincrement X wip pro: tow O Variance (m: Use alogn) memory
	pro: tow O Variance
	con: userlogn) memory
	Increment X up (+n)
	@ Maris: Increment X wp 0.5x
	Pro: O (laylan) memory
	(on: High Variance

Here we have another problem:we want to find the size of different numbers of a list. For example: input 1,2,3,5,1,3 return 4

But if we store all those numbers and then compare them. it will cost a lot of time. So we use the thought of Stream Algorithm: **We just want to remember little things about the list.**

So we can treat it in this way:

Chebyshev's inequality:

inity X <

inc x e f min(x, h(t))

query: \$-1

example: t=1, Exp: . . . > ==1

t=4, Exp: 0 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5

claim1:
$$Ex=\overline{t+1}$$

Pf: $X > 0$
 $Ex = \int_{0}^{\infty} P(x > y) dy$
 $Ey = \int_{0}^{1} P(x > y) dy = \int_{0}^{1} P(y = 1, \dots + x > y) dy$
 $= \int_{0}^{1} (P(x > y))^{\frac{1}{2}} dy$
 $= \int_{0}^{1} (1 - y)^{\frac{1}{2}} dy$

run Q copies of this algorithm in parellel with independent randomness to get X(1), ... X(12))

query: return 1 1

Qx total mem: O(1/2P)

claim1:
$$Ex=\overline{t+1}$$

Pf: $X > 0$
 $Ex = \int_{0}^{\infty} P(x > y) dy$
 $Ey = \int_{0}^{1} P(x > y) dy = \int_{0}^{1} P(y = 1, \dots + x > y) dy$
 $= \int_{0}^{1} (P(x > y))^{\frac{1}{2}} dy$
 $= \int_{0}^{1} (1 - y)^{\frac{1}{2}} dy$

run Q copies of this algorithm in parellel with independent randomness to get X(1), ... X(12))

query: return 1 1

Qx total mem: O(1/2P)

and we can do it better