シナリオデータに基づくLLMを 用いた動画の生成手法の提案

創発ソフトウェア研究室 B4 河地 駿太朗

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

動画コンテンツの重要性

公知のミームの使用

- ・必要な素材の数を抑制
- 容易に動画制作が可能

ミーム

- ・インターネット上で Web サイトや SNS を 通して拡散され、話題になった文章や画像
- 進化生物学者リチャード・ドーキンスが命名
- 人から人へ広がる行動やアイデアの概念

猫ミームの例

Girlfriend 猫

しょんぼり猫

ハァ猫

怒られる猫

驚き猫

ハッピー猫

猫ミーム動画例

本研究の目的

テキストから必要な情報を抽出し, ミームを用いた動画の生成

- 1. テキストの解析
- 2. 背景画像とミーム素材の決定
- 3. 素材を使用した動画の生成

様々な動画生成AIが存在

高度な映像を使用せず,シナリオを重視

猫ミーム: 背景画像+ミーム素材+テキスト

構成要素が単純で実装が容易

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

LLM (Large Language Models)

- 大規模なデータセットを使用して訓練
- ・自然言語処理モデル
- ゼロショットや少数ショット学習により 様々なタスクを実現
 - 自然言語理解
 - -感情分析
 - 文章生成

GPT (Generative Pre-trained Transformer)

- ・OpenAI の提供する 強力な自然言語処理モデル
- ・高速で効率的な処理を実現
- ・複雑な文脈を理解

Faiss (Facebook AI Similarity Search)

- 高次元ベクトルの類似性探索,クラスタリングのためのライブラリ
- 高速かつスケーラブルな処理を実現
 - メモリ内での検索
 - インデックスの圧縮

Gemini

- Google が開発した大規模言語モデル
- ・テキストや画像などの複数のデータを処理
- 文脈理解や応答精度が優秀

SQL (Structured Query Language)

- ・リレーショナルデータベースのデータを 操作するための言語
- ・データの検索,追加,更新,削除等が可能

Adobe After Effects (AE)

- Adobe 社が提供する映像制作ソフト
- 高品質なモーショングラフィックや ビジュアルエフェクトを動画に加える ツール
- 外部エディタからの実行が可能

ExtendScript

- Adobe 製品向けのスクリプト言語
- JavaScript ベース
- Adobe 製品の自動化や拡張に使用
- After Effects へのプログラムの実行に使用

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

シナリオの解析→動画の生成

- 1. テキストから情報を抽出
- 2. データベースを使用して,背景画像とミーム 素材のファイルパスを入手
- 3. ファイルパスとテキスト情報をもとに ExtendScript を作成, 実行

1. テキストからの情報の抽出

- ・プロンプトを使用して,入力文から時間,場所, 登場人物の状態,テキスト情報を入手 出力を正規表現で処理し,使用
- モデルとして Gemini-1.5-flash を使用 temperature = 1.0

2. ファイルパスの決定

- ・背景画像のファイルパスの決定には Faiss を使用
- ミーム素材のファイルパスの決定には モデルとして GPT-4o-mini を使用 temperature = 0.5

2. ファイルパスの決定(背景画像)

表1. 表 images の構成

image_id	location_id	time_condition_id	file_path
1	1	3	/Users/
2	1	2	/Users/
3	1	1	/Users/
4	2	3	/Users/

2. ファイルパスの決定(背景画像)

表2. 表 locations の構成

locatioin_id	location_name
1	ATM コーナー
2	アーケード商店街
3	アイランドキッチン
4	アジト

2. ファイルパスの決定(背景画像)

表3. 表 time_conditions の構成

time_condition_id	time_and_condition
1	日中
2	夜
3	夕方
4	夜·照明 OFF

2. ファイルパスの決定(背景画像)

表1. 表 images の構成

image_id	location_id	time_condition_id	file_path
1	1	3	/Users/
2	1	2	/Users/
3	1	1	/Users/
4	2	3	/Users/

2. ファイルパスの決定(ミーム素材)

表4. 表 Meme_Features の構成

meme_id	feature_id	file_path
1	1	/Users/
2	2	/Users/
2	3	/Users/
3	3	/Users/

2. ファイルパスの決定(ミーム素材)

表5. 表 Memes の構成

meme_id	meme_name
1	DJ 猫
2	EDM 猫
3	Girlfriend 猫
4	oiia 猫

2. ファイルパスの決定(ミーム素材)

表6. 表 Features の構成

feature_id	feature_name
37	1匹の猫を叩く
2	EDM
9	いびきをかく
5	キーボード

2. ファイルパスの決定(ミーム素材)

表4. 表 Meme_Features の構成

meme_id	feature_id	file_path
1	1	/Users/
2	2	/Users/
2	3	/Users/
3	3	/Users/

システムの概要(1)

システムの概要(2)

システムの概要(3)

8. 画像 ID [127, 128, 129, 130]

場所ID	時間ID
40	3
40	5
40	4
40	1
	40 40 40

システムの概要(4)

10. 時間 ID [3, 5, 4, 1]

画像ID	場所ID	時間ID
127	40	3
128	40	5
129	40	4
130	40	1
l .		

システムの概要(5)

システムの概要(6)

システムの概要(7)

提案手法

システムの概要(8)

提案手法

3. ExtendScriptの生成, 実行

動画の長さ,素材の位置やサイズを指定した テンプレートにテキスト情報とファイルパス を入力

ExtendScript ファイルを出力, これを実行

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

実験方法

- 実験 1
 - テキストからの情報の抽出の際,GPT と Gemini を使用して結果を比較(5回)
 - 入力文: 勉強している時は、一休みすると気分が 楽になる。
- 実験 2
 - 背景画像のファイルパスの決定の際,GPT と Faiss を使用して結果を比較
 - -異なる5つの時間と場所を入力

実験 1:

表 7. GPT を使用して抽出した結果

時間	場所	登場人物の状態	テキスト情報
勉強中	不明	一休み中	気分が楽になる
勉強中	不明	一休み中	気分が楽になる
勉強中	不明	一休み中	気分が楽になる
勉強中	不明	一休み中	気分が楽になる
勉強中	不明	一休み中	気分が楽になる

実験 1:

表 8. Gemini を使用して抽出した結果

時間	場所	登場人物の状態	テキスト情報
勉強中	不明	疲れている	気分転換が必要
勉強中	不明	疲れている	気分転換必要
勉強中	不明	疲れている	気分転換が必要
勉強中	不明	疲れている	気分転換必要
勉強中	不明	疲れている	一休みで気分転換

実験 1: Geminiを使用

実験 2:

表 9. GPT を使用して得られた結果

入力場所	入力時間	出力場所	出力時間
ファミレス	昼	レストラン	日中
図書館	夜	市立図書館	照明ON
学校	昼休み	学校のベンチ	日中
街中	タ方	街中のビル	夕方
自宅	夜	家	夜 · 照明OFF

実験 2:

表 10. Faiss を使用して得られた結果

入力場所	入力時間	出力場所	出力時間
ファミレス	昼	アジト	照明ON
図書館	夜	図書室	夕方
学校	昼休み	学校のベンチ	日中
街中	タ方	都会の街中	夕方
自宅	夜	家	夕方

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察
- 6. まとめと今後の課題

実験1の考察

- GPT, Gemini のいずれも時間と場所は 同様の結果
- ・登場人物の状態とテキスト情報には 明確な違い
 - GPT: 「一休み中」, 「気分が楽になる」入力文から直接情報を抽出
 - Gemini: 「疲れている」,「気分転換が必要」 入力文から,登場人物が疲れていると想定

実験1の考察

表 7. GPT を使用して抽出した結果

B	寺間	場所	登場人物の状態	テキスト情報
免	边強中	不明	一休み中	気分が楽になる
免	边強中	不明	一休み中	気分が楽になる
免	边強中	不明	一休み中	気分が楽になる
免	边強中	不明	一休み中	気分が楽になる
免	边強中	不明	一休み中	気分が楽になる

実験1の考察

表 8. Gemini を使用して抽出した結果

時間	場所	登場人物の状態	テキスト情報
勉強中	不明	疲れている	気分転換が必要
勉強中	不明	疲れている	気分転換必要
勉強中	不明	疲れている	気分転換が必要
勉強中	不明	疲れている	気分転換必要
勉強中	不明	疲れている	一休みで気分転換

実験2の考察

- 「ファミレス」のようなデータベースに直接 存在しない単語を使用
 - GPT: 正確に解釈 LLM を使用しているため, 高度な検索が可能
 - Faiss: 存在していない単語や略称の処理に失敗 一方でオフラインでも実行可能

実験 2:

表 9. GPT を使用して得られた結果

入力場所	入力時間	出力場所	出力時間
ファミレス	昼	レストラン	日中
図書館	夜	市立図書館	照明ON
学校	昼休み	学校のベンチ	日中
街中	タ方	街中のビル	夕方
自宅	夜	家	夜·照明OFF

実験 2:

表 10. Faiss を使用して得られた結果

入力場所	入力時間	出力場所	出力時間
ファミレス	昼	アジト	照明ON
図書館	夜	図書室	夕方
学校	昼休み	学校のベンチ	日中
街中	タ方	都会の街中	夕方
自宅	夜	家	夕方

発表の流れ

- 1. はじめに
- 2. 要素技術
- 3. 提案手法
- 4. 実験
- 5. 考察

まとめと今後の課題

本研究の成果

- 1. 正確なテキストの解析
- 2. データベースを使用した,背景画像とミーム 素材の正確なファイルパスの決定
- 3. 素材を使用した動画の生成

を自動化するスクリプトの作成

まとめと今後の課題

今後の課題

- 背景画像の自動生成
- ・ミーム素材の生成の検討