

APPLICATIONS

- Presentation
- Video Editing
- **Video Authoring**
- Video Teleconferencing
- **Interactive Education Systems**
- **■** Games

FEATURES

- Supports up to three simultaneous video data streams
- Video scaling
- **Complete Frame Buffer control**
- Interfaces to CODECs, decoders, encoders
- Integrated ISA, MCA, and host bus interface
- Supports both YCbCr and RGB formats
- 1/2 8 Mbytes of Frame Buffer memory

(cont. next page)

Digital Video Processor

OVERVIEW

The CL-PX2070 Digital Video Processor provides a powerful, cost-effective solution on the desktop for computer graphics and imaging. The CL-PX2070 can be used in presentations, video teleconferencing, animation, and video capture for scaling with Video Signal Processors dedicated to compressing and decompressing video data streams.

(cont. next page)

Functional Block Diagram

FEATURES (cont.)

- Video stream format conversion
- **■** Color space conversion
- Supports up to eight simultaneous object buffers
- **■** Programmable, triple-channel LUT RAM
- Prescaling, zoom, and windowing
- Graphic and bit-mapped stream support
- Programmable sync slave or master
- When used with the CL-PX2070 MediaDAC™
 - Simultaneous video and graphics display
 - Four simultaneous, overlapping (occluded) display windows
 - Zooms from 1x to 256x
 - 1024 x 768 display at 85 MHz

OVERVIEW (cont.)

The CL-PX2070 extends the real-time video scaling features of the CL-PX0070 VWG by combining the Frame Buffer memory management, arithmetic and logical processing, a programmable host system bus interface, flexible mainstream video datapath, and windowing control for multiple simultaneous video data streams.

The CL-PX2070 has four major functional units:

HIU: Host Interface Unit

· VBU: Video Bus Unit

VPU: Video Processing Unit

RFU: Reference Frame Unit

HIU: Host Interface Unit

The HIU interfaces the CL-PX2070 to the host system. The unit supports high-speed DMA transfers of graphic or video data between the host system and the Frame Buffer through direct access to FIFOs in the Video Processing Unit, and provides access to the CL-PX2070 control registers.

VBU: Video Bus Unit

The VBU manages the flow of video and graphic streams between the CL-PX2070 and up to three independent devices (including the host system). It also provides a data path between the CL-PX2070 and the host system for bidirectional graphic streams through the HIU.

The VBU provides two independent, real-time video I/O ports, and contains two subunits — VIU and VSII

Video ports V1 and V2 have the following characteristics:

- Each can be configured as input only, output only, or pixel- or field-duplexed I/O;
- Each provides programmable sync polarity;
- Either port can use the sync generator provided ed by the CL-PX2070;
- Each supports the following formats:
 - 16-bit 4:2:2 YCbCr, 12-bit 4:1:1 YCbCr, 16
 bit RGB, 8-bit RGB (input),
 - 16-bit YCbCr, 16-bit RGB, 8-bit RGB (out put);

	ISA Bus Interface	MCA Bus Interface	Local Hardware Interface
Interface	CL-PX2070 interfaces with the h	CL-PX2070 interfaces with the processor bus.	
Multiplex Support	CL-PX2070 signals support the data impleading, and provide bid system data bus.		'N/A
Address Decode	CL-PX2070 internally decodes the cycles.	The host system provides the decoded chip select signal for use with register select input signals.	
DMA DMA through I/O port.		N/A	DMA through indexed port or I/O port.

Pixel
Semiconductor
A Cirrus Logic Company

 V2 controls the video stream data flow between the CL-PX2070 and typical CODEC devices.

The VIU (Video Interface Unit) controls the flow of internal video streams through the video ports to all external devices. It specifies:

- the source and direction of video stream and sync control inputs;
- the Field-toggling Mode and field ID signals;
- the watchdog-timer feature.

The VSU (Video Sync Unit) implements identical, independent reference signals for each video port:

- Vertical sync specifies the beginning of a field or frame.
- Horizontal sync specifies the beginning of a line.
- Horizontal/composite blanking specifies the horizontal/ composite blanking interval.

Each video port independently controls sync polarity for each of these signals. Two VIU master control registers provide matching fields that specify input and output sync modes. FIFO-D can send to, and FIFO-F can receive from, the HIU directly.

VPU: Video Processing Unit

The VPU provides field-oriented video processing. It can simultaneously process two external, bidirectional real-time video streams and a single external, bidirectional host video or graphic data stream.

As shown in the functional block diagram on the cover, the VPU has five subunits: the IPU1, IPU2, OPU, ALU, and SIU.

The IPU1 (Input Processor Unit 1) prepares an input video stream for ALU processing and/or storage in the Frame Buffer, then outputs the prepared stream to the Frame Buffer Data Bus. Its video processing features include:

- YCbCr and RGB input stream format conversion,
- color space conversion,
- programmable data tagging,
- three-channel lookup table operations,
- horizontal prescaling,
- · window clipping,
- horizontal and vertical scaling, and

output stream format conversion.

The IPU2 (Input Processor Unit 2) provides prescaling and windowing.

The OPU (Output Processing Unit) provides zoom, window-clipping, and output-format functions.

The ALU (Arithmetic Logic Unit), shown below, performs logical and tagging operations for RGB and 8-bit pseudo-color streams. The ALU also performs arithmetic, logical, and tagging operations for YCbCr streams. Its registers control stream format, operand source selection, tagging operation selection, and arithmetic or logical operation for both field times. The ALU can process up to three simultaneous video streams input through its FIFOs.

The SIU (Sequencer Instruction Unit) is a specialpurpose microcontroller that coordinates the flow of multiple, simultaneous data streams between the IPU1, IPU2, OPU, ALU, and OBU.

The SIU is field-based when processing interlaced-video data; distinguishing between the vertical sync pulses for each field and executing one of two different instruction sequences. The manner in which it executes these instructions causes multiple stream flows to appear concurrent.

RFU: Reference Frame Unit

The RFU provides simultaneous access to eight object buffers and four display windows. It has three subunits — OBU, DWU, and MMU.

The OBU (Object Buffer Unit) allows each object buffer to be locked to either video source, or to be programmed to operate independently. Object buffers may also be placed anywhere within the linearly-addressable Frame Buffer. OBU Registers specify the size, location, operating mode, X and Y raster directions, FIFO association, chrominance and luminance channel masking, and output decimation for each object buffer.

The DWU (Display Window Unit) allows each display window to be any size or location. When used with the CL-PX2080, display windows can overlap

The MMU (Memory Management Unit) provides the Frame Buffer control interface for up to 8 Mbytes of DRAM or VRAM.

Table of Contents

	CON	VENTIC)NS, ABBI	REVIATIONS, AND TRADEMARKS	10				
1.	PIN	NFORM	IATION		12				
	1.1	Pin Di	agrams		12				
	1.2	Pin Assignment Table							
2.	DET	DETAILED SIGNAL DESCRIPTIONS							
	2.1								
	2.2		19						
	2.3			ace — Local Hardware Interface Mode					
	2.4			y Interface					
	2.5	Video	Port 1 Inte	orface	21				
	2.6	Video Port 2 Interface							
	2.7	Frame	Buffer Inte	erface	23				
	2.8	Power	and Grou	nd	24				
3.	FUN	CTIONA	L DESCR	IPTION	25				
	3.1	HIU: F	lost Interfa	ace Unit	27				
		3.1.1		re Configuration					
			3.1.1.1	CL-PX2070 Configuration					
			3.1.1.2	Host System Bus Configuration	29				
			3.1.1.3	Frame Buffer Configuration	37				
			3.1.1.4	Port Address Configuration	37				
		3.1.2	Register	and Frame Buffer Interface	37				
			3.1.2.1	Internal Register Access	37				
			3.1.2.2	Accessing the Frame Buffer					
	3.2	VBU: '		Unit					
		3.2.1 Video Ports V1 and V2							
		3.2.2		eo Interface Unit					
			3.2.2.1	Video Stream and Sync Control Inputs					
			3.2.2.2	Field Toggling and Field ID					
			3.2.2.3	Watchdog Timer					
		3.2.3		deo Sync Unit					
	3.3			cessor Unit					
		3.3.1		quencer Instruction Unit					
			3.3.1.1	Programming the SIU					
			3.3.1.2	Master Control Register SIU_MCR					
				Sequencer Instruction Memory SIUs_SIM					
		0.00	3.3.1.4	Accessing FIFO Control/Status Indicators					
		3.3.2	3.3.2.1	put Processor Unit 16Input Format Converter and Chrominance Interpolator					
			3.3.2.1	Input Tag Unit					
				Color Space Converter					
			3.3.2.3 3.3.2.4	LUT RAM					
			3.3.2.4	X Prescaler					
			3.3.2.5	Window Clipping and XY Scaler					
			3.3.2.0	William Olipping and AT Scale					

			3.3.2.7 IPU1 Interrupt Request Unit	
			3.3.2.8 Output Format Converter Unit	58
		3.3.3		
			3.3.3.1 IPU2 X Prescaler	61
			3.3.3.2 IPU2 Window Clipping Unit	61
			3.3.3.3 IPU2 Interrupt Request Unit	
		3.3.4		
			3.3.4.1 Operand Selection	64
			3.3.4.2 Data Tagging	
			3.3.4.3 Logical Operations	
			3.3.4.4 Arithmetic Operations	
			3.3.4.5 Output Selection	
			3.3.4.6 Special a-Mixed Y Scaling Mode	
		3.3.5		
			3.3.5.1 Output Format Converter	
			3.3.5.2 2:1 X Zoom Unit	
	0.4	חבוו. ו	3.3.5.3 OPU Window Clipping Unit	
	3.4		Reference Frame Unit	
		3.4.1	OBU: Object Buffer Unit	
		3.4.2		
		3.4.2		
		3.4.4	DWU: Display Window Unit	
		3.4.4	3.4.4.1 Frame Buffer Architecture	
	DET.	=		
4.			REGISTER DESCRIPTONS	
	4.1		Host Interface Unit — Registers	
		4.1.1	HIU_CSU: Configuration Setup (Read Only)	
		4.1.2	HIU_DBG: Debug Control (Write Only)	
		4.1.3	HIU_DRD: Debug Read (Read Only)	
		4.1.4	HIU_OCS: Operation Control/Status (Read/Write)	
		4.1.5 4.1.6	HIU_IRQ: Interrupt Request (Read Only)	
		4.1.0 4.1.7	HIU_RIN: Register Index (Read/Write)	
		4.1.7 4.1.8	HIU_RDT: Register Data Port	
		4.1.0 4.1.9	HIU_MDT: Memory Data Port (Read/Write) HIU_IMD: Indexed Memory Data (Local Hardware Interface Mode)	
			LIII ICI I: Interrunt Cetun	
	10) HIU_ISU: Interrupt Setup	
	4.2	VBU: \	Video Bus Unit — Registers	90
	4.2		Video Bus Unit — Registers	90 91
	4.2	VBU: \	Video Bus Unit — Registers	90 91 91
	4.2	VBU: \	Video Bus Unit — Registers	90 91 91
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit	90 91 91 92
	4.2	VBU: \	Video Bus Unit — Registers VIU: Video Interface Unit	9091919294
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit 4.2.1.1 VIU_MCRp: Master Control 4.2.1.2 VIU_DPCf: Datapath Contol 4.2.1.3 VIU_WDT: Watchdog Timer VSU: Video Sync Unit 4.2.2.1 VSU_HSW: Horizontal Sync Width	91 91 92 94 95
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit 4.2.1.1 VIU_MCRp: Master Control 4.2.1.2 VIU_DPCf: Datapath Contol 4.2.1.3 VIU_WDT: Watchdog Timer VSU: Video Sync Unit 4.2.2.1 VSU_HSW: Horizontal Sync Width 4.2.2.2 VSU_HAD: Horizontal Active Delay	
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit	
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit 4.2.1.1 VIU_MCRp: Master Control 4.2.1.2 VIU_DPCf: Datapath Contol 4.2.1.3 VIU_WDT: Watchdog Timer VSU: Video Sync Unit 4.2.2.1 VSU_HSW: Horizontal Sync Width 4.2.2.2 VSU_HAD: Horizontal Active Delay 4.2.2.3 VSU_HAP: Horizontal Active Pixels 4.2.2.4 VSU_HP: Horizontal Period	
	4.2	VBU: \ 4.2.1	Video Bus Unit — Registers VIU: Video Interface Unit	90 91 92 94 95 96 96 97

		4.2.2.7	VSU_VAP: Vertical Active Pixels	99
		4.2.2.8	VSU_VP: Vertical Period	
4.3	VPU: Y	Video Proc	essor Unit — Registers	100
	4.3.1	VPU Glo	bal Controlbal Control	105
		4.3.1.1	VPU_MCR: Master Control	105
	4.3.2	IPU1: Inp	out Processor Unit 1	106
		4.3.2.1	IPU1_PIX: Pixel Count	106
		4.3.2.2	IPU1_LIC: Line Count	106
		4.3.2.3	IPU1_FLC: Field Count	107
		4.3.2.4	IPU1_LIR: Line Count Interrupt Request	107
		4.3.2.5	IPU1_FIR: Field Count Interrupt Request	108
		4.3.2.6	IPU1_LRB: LUT RAM Base Address	108
		4.3.2.7	IPU1_LRD: LUT RAM Data	109
		4.3.2.8	IPU1_MCRf: Master Control	109
		4.3.2.9	IPU1_XBnf: X Begin	111
		4.3.2.10	IPU1_XEIf: X End	112
		4.3.2.11	IPU1_XSnf: X Shrink	113
		4.3.2.12	IPU1_YBnf: Y Begin	
		4.3.2.13	IPU1_YEIf: Y End	
		4.3.2.14	IPU1_YSnf: Y Shrink	
		4.3.2.15	IPU1_KFCf: Key Function Code	
		4.3.2.16	IPU1_MMxf: Chroma Key Max/Min	
	4.3.3	IPU2: Inp	out Processing Unit 2	119
		4.3.3.1	IPU2_PIX: Pixel Count	119
		4.3.3.2	IPU2_LIC: Line Count	119
		4.3.3.3	IPU2_FLC: Field Count	
		4.3.3.4	IPU2_LIR: Line Count Interrupt Request	
		4.3.3.5	IPU2_FIR: Field Count Interrupt Request	
		4.3.3.6	IPU2_MCRf: Master Control	
		4.3.3.7	IPU2_XBIf: X Begin	
		4.3.3.8	IPU2_XEIf: X End	
		4.3.3.9	IPU2_YBIf: Y Begin	
		4.3.3.10	IPU2_YEIf: Y End	
	4.3.4	•	uencer Instruction Unit	
		4.3.4.1		
			SIU_FCS: FIFO Control/Status	
		4.3.4.3	SIU_FOU: FIFO Overflow/Underflow	
		4.3.4.4	SIUs_SIM: Sequencer Instruction Memory	
	4.3.5		hmetic and Logic Unit	
		4.3.5.1	ALU_MCRf: Master Control	
		4.3.5.2	ALU_TOP: Tag Operation	
		4.3.5.3	ALU_AV: Alpha Value	
		4.3.5.4	ALU_LOPx: Logic Operation	
		4.3.5.5	ALU_CAx: Constant A	
		4.3.5.6	ALU_CBx: Constant B	
		4.3.5.7	ALU_CCx: Constant C	
	4.3.6		tput Processing Unit	
		4.3.6.1	OPU_MCRf: Master Control	
		4.3.6.2	OPU_XBIf: X Begin	134

			4.3.6.3	OPU_XEIf: X	End		134
			4.3.6.4	OPU_YBIf: Y	Begin		135
			4.3.6.5	OPU_YEIf: Y	End		135
	4.4	RFU: R	leference l	Frame Unit —	Registers		136
		4.4.1	OBU: Ob	ject Buffer Unit			140
			4.4.1.1	OBUo_MCR:	Object Buffer Master Control		140
			4.4.1.2	OBUo_RFX:	Object Buffer Reference Frame >	X Size	141
			4.4.1.3	OBUo_LSb:	De Buffer Linear Start Addres	ss	142
			4.4.1.4	OBUo_BSa:	Object Buffer Size		143
			4.4.1.5			••••	
		4.4.2	MMU: Me		•	••••••	
			4.4.2.1	MMU_MCR:	Master Control	••••••••••••	145
		4.4.3	DWU: Dis			•••••••	
			4.4.3.1	DWU_MCR:	Display Window Master Control	••••••	146
			4.4.3.2	DWU_HCR:	Display Window Horizontal Contro	ol Register	147
			4.4.3.3			actor	
			4.4.3.4			ne X Size	
			4.4.3.5	DWUd_LSb:	Display Window Linear Start Add	dress	150
			4.4.3.6			•••••••	
			4.4.3.7			•••••••••••••••••••	
5.	FLFC	TRICAL	SPECIFIC			·· 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	
•	5.1						
	5.2					•••••••••••••••••••••••••••••••••••••••	
	5.3		•	, •	•		
	5.4						
	J. 4	5.4.1		_		•••••••••••••••••	
		5.4.2		_		•••••••••••••••••••••••••••••••••••••••	
		5.4.3					
		5.4.4		• .			
		5.4.5					
		5.4.6		• •	•		
		5.4.7		• •	•	•••••••••••••	
		5.4.8		• '	•	•••••••••••••••••••••••••••••••••••••••	
		5.4.9					
		5.4.10		~ '	· ·	•••••••••••••••••••••••••••••••••••••••	
						••••••••••••••••	
_							
6.							
7.	ORDE	RING IN	NFORMAT	ΓΙΟΝ			167
					11.4.6		
					List of Figures		
 : .		D' - 5	N	10 A D 1-4			40
_	re 1-1.		_				
-	re 1-2.					,	
_	re 1-3.						
rigu	re 3-1.	Func	tional Bloc	ск Diagram			.25

Figure 3-2.	Typical CL-PX2070 System Interconnection	26
Figure 3-3.	External Configuration	28
Figure 3-4.	Default (Local) Configuration	28
Figure 3-5.	ISA Bus Interface for Register Access Cycles	31
Figure 3-6.	ISA Bus Interface for DMA Cycles	32
Figure 3-7.	ISA and MCA Interface Address/Data Multiplexers	33
Figure 3-8.	MCA Bus Interface for Register Access Cycles	34
Figure 3-9.	Local Hardware Interface Write Cycle	35
Figure 3-10.	Read Timing (Local Hardware Interface)	35
Figure 3-11.	Local Hardware Interface DMA Cycles	36
Figure 3-12.	Register Access	38
Figure 3-13.	Possible Paths for Video Data	
Figure 3-14.	Programmability of the Internal Sync Generator	45
Figure 3-15.	SIU Instruction Flow	
Figure 3-16.	IPU1: Input Processor Unit 1	51
Figure 3-17.	Input Tag Unit	55
igure 3-18.	Window Clipping and XY Scaling Control Registers	56
Figure 3-19.	Input Processing Unit 2	60
Figure 3-20.	IPU2 2:1 Prescale Example	61
Figure 3-21.	IPU2 Window Clipping Unit	62
igure 3-22.	ALU Simplified Block Diagram	63
Figure 3-23.	ALU: Arithmetic and Logic Unit	65
igure 3-24.	OPU: Output Processor Unit	68
Figure 3-25.	The Reference Frame Unit	70
igure 3-26.	Frame Buffer Addressing (32-bit)	71
Figure 3-27.	Reference Frame Allocation	71
igure 3-28.	Object Buffer	72
Figure 3-29.	XY BLT Direction Control	75
igure 3-30.	Display Window	77
igure 3-31.	Frame Buffer Addressing (16-Bit)	79
Figure 3-32.	Typical Frame Buffer Implementation	80
Figure 4-1.	VSU Horizontal Sync Timing	95
igure 4-2.	VSU Vertical Sync Timing	95
Figure 5-1.	I/O Timing (ISA Bus)	. 155
Figure 5-2.	DMA Timing (ISA Bus)	. 156
Figure 5-3.	MCA I/O Cycle Timing	. 158
Figure 5-4.	CDSFDBK* Timing (MCA Bus)	. 159
igure 5-5.	CDSETUP* Timing (MCA Bus)	. 159
igure 5-6.	Write Timing (Local Hardware Interface)	. 160
Figure 5-7.	Read Timing (Local Hardware Interface)	. 161
Figure 5-8.	DMA Timing (Local Hardware Interface)	. 163
igure 5-9.	Input Video Timing	. 164
igure 5-10.	Input Video Timing	. 165
igure 6-1.	CL-PX2070 Package Information	
Figure 6-2.	CL-PX2070 Package Information (Expanded View)	. 167

List of Tables

Table 3-1.	Register Bit Assignments — External and Default (Local) Configurations	27
Table 3-2.	CL-PX2070 System Interface Highlights	29
Table 3-3.	Host System Bus I/O Pins	30
Table 3-4.	VO Address Maps	37
Table 3-5.	Video Stream and Sync Control Inputs — Control Registers	41
Table 3-6.	Field Toggling and Field ID — Control Registers	42
Table 3-7.	Watchdog Timer — Control Registers	42
Table 3-8.	Input and Output Sync Modes — Control Registers	43
Table 3-9.	Horizontal and Vertical References — Control Registers	44
Table 3-10.	CL-PX2070 FIFOs	
Table 3-11.	Master Control Register SIU_MCR	48
Table 3-12.	SIUs_SIM Instruction Fields	
Table 3-13.	Accessing FIFO Control/Status Indicators — Control Registers	50
Table 3-14.	YCbCr Video Input Stream Formats	52
Table 3-15.	16-bit RGB Video Input Stream Formats	53
Table 3-16.	8-bit Pseudocolor Video Input Stream Formats	53
Table 3-17.	IPU1 Interrupt Request Unit — Control Registers	58
Table 3-18.	Frame Buffer Data Formats	59
Table 3-19.	IPU2 Window Clipping Unit — Control Registers	61
Table 3-20.	IPU2 Interrupt Request Unit — Control Registers	62
Table 3-21.	Operand Selection — Control Registers	64
Table 3-22.	Data Tagging — Control Registers	66
Table 3-23.	Arithmetic Operations	67
Table 3-24.	Arithmetic Operations — Control Registers	67
Table 3-25.	OPU Window Clipping Unit — Control Registers	69
Table 3-26.	Object Buffers — Control Registers	73
Table 3-27.	OBU Operation Modes — Control Registers	74
Table 3-28.	DWU: Display Window Unit — Control Registers	77
Table 3-29.	MMU: Memory Management Unit — Control Registers	79
Table 4-1.	Variables Used in Register Names	
Table 4-2.	HIU Register Address Map	81
Table 4-3.	HIU Registers Accessed by the Register Data Port	
Table 4-4.	VBU Registers Accessed by the Register Data Port	
Table 4-5.	VPU Registers Accessed by the Register Data Port	
Table 4-6.	RFU registers Accessed by the Register Data Port	136
Table 5-1.	VO Timing (ISA Bus)	155
Table 5–2.	DMA Timing (ISA Bus)	
Table 5–3.	MCA I/O Cycle Timing	
Table 5–4.	CDSFDBK* Timing (MCA Bus)	159
Table 5-5.	CDSETUP* Timing (MCA Bus)	
Table 5–6.	Local Hardware Interface Mode Write	
Table 5–7.	Local Hardware Interface Mode Read	
Table 5–8.	Local Hardware Interface Mode DMA Timing	
Table 5–9.	Input Video Timing	
Table 5-10.	Input Video Timing	165

CONVENTIONS, ABBREVIATIONS, AND TRADEMARKS

CONVENTIONS

Conventions used in this document are described in the following example:

VIU_DPCf	Register names that contain lower-case variables represent groups of registers with similar func-
_	tions. For example, VIU_DPCf represents both of the Datapath Contol registers — register VIU_D-
	PC1 (Datapath Control Field 1) and register VIU_DPC2 (Datapath Control Field 2). Table 4-1 on
5 ° 54.	page 84 defines all variables used in this manner.

ABBREVIATIONS, ACRONYMS, and MNEMONICS

Abbreviations, acronyms, and mnemonics used in this document are described in the following table:

ALU	Arithmetic and Logic Unit				
CODEC	Code/Decode or Compress/decompress				
CPU	Central Processing Unit				
CRT	Cathode Ray Tube				
CTAG	Control Tag Multiplexer signal				
DMA	Direct Memory Access				
DRAM	Dynamic Random Access Memory				
DWU	Display Window Unit				
FBD	Frame Buffer Data				
FIFO	First In First Out				
ISA	Industry Standard Architecture				
I/O	Input / Output				
LSA	Linear Start Address				
JPEG	Joint Photographic Expert Group				
LSB	Least Significant Byte				
LSb	Least Significant bit				
LUT	Look-Up Table				
MCA	Micro Channel Architecture				
MMU	Memory Management Unit				
MSB	Most Significant Byte				

MSb	Most Significant bit
OPU	Output Processor Unit
OTAG	Output Tag Multiplexer signal
IPU1	Input Processor Unit 1
IPU2	Input Processor Unit 2
PQFP	Plastic Quad Flat Pack
PSE	PreScaler Enable
RGB	Red, Green, Blue
RAM	Random Access Memory
RFU	Reference Frame Unit
SIM	Sequencer Instruction Memory
SIU	Sequencer Instruction Unit
VPU	Video Processor Unit
VRAM	Video Dynamic Random Access Memory
YCbCr	Components of the CCIR601 color representation standard. Luminance, Y-blue, Y-red (color difference values)

TRADEMARKS

Trademarks used in this document are described in the following table:

MediaDAC™ is a trademark of Pixel Semiconductor, Inc.

1. PIN INFORMATION

The CL-PX2070 is available in a 160-lead Plastic Quad Flat Pack (PQFP) surface-mount package. It can be configured for ISA, MCA, and local hardware interface configurations, as shown in Figure 1-1, Figure 1-2, and Figure 1-3.

NOTE: (*) denotes active-low signals.

1.1 Pin Diagrams

Figure 1-1. Pin Diagram — ISA Bus Interface

Figure 1-2. Pin Diagram — MCA Bus Interface

Figure 1-3. Pin Diagram — Local Hardware Interface

1.2 Pin Assignment Table

The following conventions are used in the pin assignment table:

- * = active-low signal
- I = input
- O = output
- I/O = input/output
- PWR power
- TTL = the pad has standard TTL input threshold and output levels
- OD = open drain, TTL inputs
 - 4 = 4-mA sink and 2-mA source drive capability
- 24 = 24-mA sink and 8-mA source drive capability
- N/A = not applicable

NAME	PIN	TYPE	CELL	FUNCTION					
PROCESSO	PROCESSOR INTERFACE — ISA BUS MODE								
SAD[15:0]	48:62, 65	I/O	TTL, 4	Address/Data Bus					
DEN*	44	OD	TTL, 8	Data Buffer Enable					
DDIR	43	OD	TTL, 8	Data Buffer Direction					
IOR*	35	i	TTL	I/O Read					
IOM.	36	ĺ	TTL	I/O Write					
AEN	32	1	TTL	Address Enable					
DMARQ	38	0	TTL, 4	DMA Request					
DMACK*	37	1	TTL	DMA Acknowledge					
IRQ	45	0	TTL, 4	Interrupt Request					
CHRDY	40	OD	TTL, 24	Channel Ready					
IO16*	39	OD	TTL, 24	16-bit I/O Cycle					
BCLK	41	1	TTL	Bus Clock					
RESET	42	1	TTL	Reset					
NC	33	N/A	N/A	No Connect (must be left floating)					
AUXCS*	34		TTL	Auxiliary Chip Select					
	R INTERFACE -								
AD[15:0]	48:62, 65	I/O	TTL, 4	Address/Data Bus					
DEN*	44	OD	TTL, 8	Data Buffer Enable					
DDIR	43	OD	TTL, 8	Data Buffer Direction					
S1*	35 ·	i	TTL	Status 1					
S0*	36	1	TTL	Status 0					
CARDEN	34	1	TTL	Card Enable					
M/IO*	32	ı	TTL	Memory or I/O Cycle					
CDSFDBK*	38	0	TTL, 4	Card Select Feedback					
CDSETUP*	37	<u>l</u>	TTL	Card Setup					
IRQ*	45	0	TTL, 4	Interrupt Request					
CDCHRDY	40	OD	TTL, 24	Channel Ready					
CDDS16*	39	OD	TTL, 24	Card Data Size					
CMD*	41	ı	TTL	Command					
CDRESET	42	1	TTL	Reset					
ADL*	33	I	TTL	Address Latch					

NAME	PIN	TYPE	CELL	FUNCTION (cont.)
PROCESSOF	RINTERFACE -	LOCAL HARD	WARE INTERFA	ACE MODE
D[15:0]	48:62, 65	I/O	TTL, 4	Data Bus
RS[3:1]	34:33, 44	1	TTL	Register Select
BLAST*	43	0	TTL, 4	Burst Last
IOR*	35	1	TTL	I/O Read Cycle
IOW*	36	l	TTL	I/O Write Cycle
CS*	32	1	TTL	Chip Select
DMARQ*	38	0	TTL, 4	DMA Request
DMACK*	37	1	TTL	DMA Acknowledge
IRQ*	45	0	TTL, 4	Interrupt Request
CHRDY*	40	OD	TTL, 24	Channel Ready
PCLK	41	1	TTL	Processor Clock
RESET	42	1	TTL	Reset
NC	39	N/A	N/A	No Connect (must be left floating)
GRAPHICS O	VERLAY INTER	FACE		
GPCLK	69	1	TTL	Pixel Clock
GVS	67	i	TTL	Vertical Sync
GHS	66	i	TTL	Horizontal Sync
GBL	68	i	TTL	Blanking
GDL	00	•	,,,	
VIDEO PORT	1 INTERFACE			
V1CLK	2	1	TTL	Video Data Clock
V1D[15:0]	137:138,	I/O	TTL, 4	Video Data Bus
	141:153, 156			
V1VS	1	1/0	TTL, 4	Vertical Sync
V1HS	160	1/0	TTL, 4	Horizontal Sync
V1BL	159	1/0	TTL, 4	Horizontal/Composite Blanking
V1PH	158	1	TTL	Phase
V1IEN*	157	0	TTL, 4	Input Enable
	2 INTERFACE			
V2CLK	29	1	TTL	Video Data Clock
V2D[15:0]	3:12, 14:16,	I/O	TTL, 4	Video Data Bus
V2VS	19:20, 22 27	I/O	TTL, 4	Vertical Sync
V2HS	26 ~	I/O	TTL, 4	Horizontal Sync
V2H5 V2BL	25	1/0	TTL, 4	Horizontal/Composite Blanking
V2BL V2PH	24	1/0	TTL	Phase
	23	o	TTL, 4	Input Enable
V2IEN*	23 31	_	TTL, 4	
STALLRQ*		0		Stall Request Stall
STALL*	30	J	TTL, 4	Siaii

CL-PX2070

Video Processor

NAME	PIN	TYPE	CELL	FUNCTION (cont.)
FRAME BUFF	ER INTERFACE			
FBD[31:0]	99, 101:102, 105:107,	1/0	TTL, 4	Data Bus
	109:125, 128:136			
FBA[9:0]	98:94, 92:88	0	TTL, 8	Address Bus
RAS[1:0]*	87:86	Ö	TTL, 8	Row Address Strobes
CAS[1:0]*	85:84	Ö	TTL, 8	Column Address Strobes
WE*	83	0	TTL, 12	Write Enable
DTE*	82	0	TTL, 12	Data Transfer Enable
FRDY	81	1	TTL	FIFO Ready
ZC[3:0]	80:77	0	TTL, 4	Zoom Control Bus
SBCLK	76	0	TTL, 8	Serial Bus Clock
SOE[1:0]*	73:72	0	TTL, 8	VRAM Serial Port Output Enable
MCLK	71	1	TTL	Memory Clock
FCLK	70	0	TTL, 8	FIFO Write Clock
POWER				
VDD	18, 21, 46, 64,	PWR	N/A	+5 VDC for Digital Logic and Interface Buffers
	75, 100, 103,			
	126, 140, 155			
VSS	13, 17, 28, 47,	PWR	N/A	Ground for Digital Logic and Interface Buffers
	63, 74, 93,			
	104, 108, 127,			
	139, 154			

2. DETAILED SIGNAL DESCRIPTIONS

2.1 Processor Interface — ISA Bus Mode

Signal	Pin	Туре	Cell	Function
SAD[15:0]	48:62, 65	I/O	TTL, 4	Address/Data Bus: Bidirectional, multiplexed address/data bus that transfers video data between the host system and the CL-PX2070.
DEN*	44	OD	TTL, 8	Data Buffer Enable: When pulled low, enables the host data bus buffer.
DDIR	43	OD	TTL, 8	Data Buffer Direction: Specifies the direction of data flow. When high, the host system is writing data to SAD[15:0]; when low, the host system is reading data from SAD[15:0].
IOR*	35	1	TTL	I/O Read: Specifies an I/O read cycle.
IOW*	36	ı	TTL	I/O Write: Specifies an I/O write cycle.
AEN	32	l	TTL	Address Enable: Specifies that a DMA cycle is in progress.
DMARQ	38	0	TTL, 4	DMA Request: Specifies that the CL-PX2070 is requesting a DMA transfer.
DMACK*	37	1	TTL	DMA Acknowledge: Specifies that the host system is ready to perform a DMA transfer.
IRQ	45	0	TTL, 4	Interrupt Request: Specifies that the CL-PX2070 is requesting service from the host system.
CHRDY	40	OD	TTL, 24	Channel Ready: When pulled low, specifies that the CL-PX2070 is not ready to complete the current host access cycle. The CL-PX2070 releases CHRDY to indicate that the current host access cycle should be completed.
IO16*	39	OD	TTL, 24	16-bit I/O Cycle: Specifies that the CL-PX2070 is able to respond as a 16-bit I/O data device for both read and write cycles.
BCLK	41	1	TTL	Bus Clock: Clock input used to synchronize access between the host system and the CL-PX2070.
RESET	42	1	TTL	Reset: Causes the CL-PX2070 to cease all activity and perform a hardware reset.
NC	33	N/A	N/A	No Connect: (must be left floating).
AUXCS*	34	-	TTL	Auxiliary Chip Select: When programmed for AuxISA Mode, primary and secondary addresses are ignored: AUXCS* and SAD[3:1] select specific registers.

2.2 Processor Interface — MCA Bus Mode

Signal	Pin	Туре	Cell	Function
AD[15:0]	48:62, 65	VO	TTL, 4	Address/Data Bus: Bidirectional, multiplexed address/data bus that transfers video data between the host system and the CL-PX2070.
DEN*	44	OD	TTL, 8	Data Buffer Enable: When pulled low, enables the host data bus buffer.
DDIR	43	OD	TTL, 8	Data Buffer Direction: Specifies the direction of data flow. When high, the host system is writing data to SAD[15:0]; when low, the host system is reading data from SAD[15:0].
S1*	35	ł	TTL	Status 1: Used with M/IO* and S0* to specify the current bus cycle (see table under M/IO*).
S0*	36		TTL	Status 0: Used with M/IO* and S1* to specify the current bus cycle (see table under M/IO*).
CARDEN	34	l	TTL	Card Enable: Specifies that the data on bus AD[15:8] is valid.
M/IO*	32	I	TΠL	Memory or I/O Cycle: Used with S1* and S0* to specify the current bus cycle: M/IO* S0* S1* 0 0 0 Reserved 0 0 1 VO Write 0 1 0 VO Read 0 1 1 Inactive 1 0 0 Reserved 1 0 1 Memory Write 1 1 1 Nemory Read 1 1 Inactive
CDSFDBK*	38	0	TTL, 4	Card Select Feedback: Specifies that the CL-PX2070 has decoded the current address and status inputs. The CL-PX2070 does not drive CDSFDBK* low during the configuration period (CDSETUP* low).
CDSETUP*	37	I	ΠL	Card Setup: Specifies that the host system is accessing the configuration (POS-programmable option select) registers of the MCA adapter. (The adapter ID and configuration data is obtained by performing an I/O read cycle to the CL-PX2070. It contains POS 100, 101, and 102.)
IRQ*	45	0	TTL, 4	Interrupt Request: Specifies that the CL-PX2070 is requesting service from the host system.
CDCHRDY	40	OD	TTL, 24	Channel Ready: When pulled low, specifies that the CL-PX2070 is not ready to complete the current host access cycle. The CL-PX2070 releases CDCHRDY to indicate that the current host access cycle should be completed.

Signal	Pin	Туре	Cell	Function (cont.)
CDDS16*	39	OD	TTL, 24	Card Data Size: Specifies that the CL-PX2070 is able to respond as a 16-bit I/O data device for both read and write cycles.
CMD*	41	î	TTL	Command: Specifies that valid data is on bus AD[15:0] during a write cycle, and that the CL-PX2070 should place valid data on the bus during a read cycle.
CDRESET	42	ı	TTL	Reset: Causes the CL-PX2070 to cease all activity and perform a hardware reset.
ADL*	33	1	TTL .	Address Latch: Used to demultiplex the address from bus AD[15:0], and status from signals M/IO*, S1*, and S0*. The address and status must be valid during the LOW-to-HIGH transition.

2.3 Processor Interface — Local Hardware Interface Mode

Signal	Pin	Type	Cell	Function
D[15:0]	48:62, 65	I/O	TTL, 4	Data Bus: Bidirectional data bus that transfers video data between the host system and the CL-PX2070.
RS[3:1]	34:33, 44	ı	ΠL	Register Select: Specify the register address during a host access.
BLAST*	43	0	TTL, 4	Burst Last: Specifies the last cycle of a DMA transfer.
IOR*	35	1	TTL	I/O Read Cycle: Specifies an I/O read cycle.
IOW*	36	ı	TTL	I/O Write Cycle: Specifies an I/O write cycle.
CS*	32	ı	TTL	Chip Select: Specifies that the host system is accessing the CL-PX2070.
DMARQ*	38	0	TTL, 4	DMA Request: Specifies that the CL-PX2070 is requesting a DMA transfer.
DMACK*	37		TTL	DMA Acknowledge: Specifies that the host system is ready to perform a DMA transfer.
IRQ*	45	0	TTL, 4	Interrupt Request: Specifies that the CL-PX2070 is requesting service from the host system.
CHRDY*	40	OD	TTL, 24	Channel Ready: When asserted, indicates that the CL-PX2070 is not ready to complete the current host access cycle. The CL-PX2070 releases CHRDY to indicate that the current host access cycle should be completed.
PCLK	41	ı	TTL	Processor Clock: This input clock is used to synchronize the flow of data on bus D[15:0] during DMA data transfers.

Signal	Pin	Туре	Cell	Function (cont.)
RESET	42	ı	TTL	Reset: This active-high input signal causes the CL-PX2070 to cease all activity and perform a hardware reset.
NC	39	N/A	N/A	No Connect: (must be left floating)

2.4 Graphics Overlay Interface

Signal	Pin	Туре	Cell	Function
GPCLK	69	1	TTL	Pixel Clock: Clocks display output pixel data from the graphics controller.
GVS	67	ı	TTL	Vertical Sync: Identifies the start of the vertical sync interval. A vertical sync pulse is generated once every field time for interlaced data, and once every frame time for non-interlaced data. Its polarity can be specified as either active-high or active-low.
GHS	66	i	TTL	Horizontal Sync: Identifies the start of the horizontal sync interval. A horizontal sync pulse is generated once for each input line. Its polarity can be specified as either active-high or active-low.
GBL	68	ı	TTL	Blanking: Identifies the blanking interval. Its polarity can be specified as either active-high or active-low.

2.5 Video Port 1 Interface

Signal	Pin	Туре	Cell	Function
V1CLK	2	1	TTL	Video Data Clock: Clocks bidirectional video data on bus V1D[15:0].
V1D[15:0]	156, 153:141, 138:137	VO	TTL, 4	Video Data Bus: Bidirectional data bus that transfers video data between the CL-PX2070 and an external device.
V1VS	1	VO	TTL, 4	Vertical Sync: Identifies the start of the vertical sync interval. A vertical sync pulse is generated once every field time for interlaced data, and once every frame time for non-interlaced data. It can be specified as active-high or active-low.
V1HS	160	VO	TTL, 4	Horizontal Sync: Identifies the start of the horizontal sync interval. It can be specified as either active-high or active-low.
V1BL	159	·VO	TTL, 4	Horizontal/Composite Blanking: Identifies the blanking interval. It can be specified as active-high or active-low.

Signal	Pin	Туре	Cell	Function (cont.)
V1PH	158	1	TTL, 4	Phase: Controls data qualification and duplexing of video data on bus V1D[15:0].
V1IEN*	157	0	TTL, 4	Input Enable: Specifies that the CL-PX2070 is not driving bus V1D[15:0]. V1IEN* can be used as a tristate control by an external buffer connected to bus V1D[15:0].

2.6 Video Port 2 Interface

Signal	Pin	Туре	Cell	Function
V2CLK	29	í	TTL	Video Data Clock: Clocks bidirectional video data on bus V2D[15:0].
V2D[15:0]	3:12, 14:16, 19:20, 22	1/0	TTL, 4	Video Data Bus: Transfers video data between the CL-PX2070 and an external device.
V2VS	27	I/O	TTL, 4	Vertical Sync: Identifies the start of the vertical sync interval. A vertical sync pulse is generated once every field time for interlaced data, and once every frame time for non-interlaced data. V2VS can be specified as active-high or active-low.
V2HS	26	I/O	TTL, 4	Horizontal Sync: Identifies the start of the horizontal sync interval. V2HS can be specified as either active-high or active-low.
V2BL	25	I/O	TTL, 4	Horizontal/Composite Blanking: Identifies the blanking interval. V2BL can be specified as active-high or active-low.
V2PH	24	I	TTL	Phase: Controls data qualification and duplexing of video data on bus V2D[15:0].
V2IEN*	23	0	TTL, 4	Input Enable: Specifies that the CL-PX2070 is not driving bus V2D[15:0]. V2IEN* can be used as a tristate control by an external buffer connected to bus V2D[15:0].
STALLRQ*	31	I	ΠL	Stall Request: Requests that the current transfer of video data on bus V2D[15:0] be suspended.
STALL*	30	0	TTL, 4	Stall: Specifies that the CL-PX2070 has suspended transferring data on bus V2D[15:0].

NOTE: Video-input data mapping to the video data bus depends on the input-data format. See Section 3.3.2.1 for detailed information.

2.7 Frame Buffer Interface

Signal	Pin	Туре	Cell	Function
FBD[31:0]	136:128, 125:109, 107:105, 102:101, 99		TTL, 4	Data Bus: Bidirectional data bus that transfers data between the CL-PX2070 and the Frame Buffer.
FBA[9:0]	98:94, 92:88	0	TTL, 8	Address Bus: Multiplexed output bus that specifies an address to the Frame Buffer. The row address is valid during the HIGH-to-LOW transition of signals RAS[1:0]*, and the column address is valid during the HIGH-to-LOW transition of signals CAS[1:0]*.
RAS[1:0]*	87:86	0	TTL, 8	Row Address Strobes: Instruct the Frame Buffer to latch the row address from bus FBA[9:0] during the HIGH-to-LOW transition.
CAS[1:0]*	85:84	0	TTL, 8	Column Address Strobes: Instruct the Frame Buffer to latch the column address from bus FBA[9:0] during the HIGH-to-LOW transition.
WE*	83	0	TTL, 12	Write Enable: Specifies a write cycle to the Frame Buffer.
DTE*	82	0	TTL, 12	Data Transfer Enable: Specifies a transfer cycle to the Frame Buffer (VRAMs only).
FRDY	81	1	TTL	FIFO Ready: (CL-PX2080 Mode) Specifies that the CL-PX2080 is ready to receive serial data from the Frame Buffer into its input FIFO.
ZC[3:0]	80:77	0	TTL, 4	Zoom Control Bus: (CL-PX2080 Mode) Specifies to the CL-PX2080 the zoom factor to be used on the current data.
SBCLK	76	0	TTL, 8	Serial Bus Clock: Clocks serial data from the Frame Buffer (VRAMs only).
SOE[1:0]*	73:72	0	TTL, 8	VRAM Serial Port Output Enable: Cause the Frame Buffer to as sert the serial data port.
MCLK	71	1	TTL	Memory Clock: Synchronizes all Frame Buffer control signals
FCLK	70	0	TTL, 8	FIFO Write Clock: (CL-PX2080 Mode) Clocks serial data into the CL-PX2080.

2.8 Power and Ground

Signal	Pin	Type	Cell	Function
VDD	18, 21, 46, 64, 75, 100, 103, 126, 140, 155	PWR	N/A	+5 VDC for Digital Logic and Interface Buffers: Each VDD pin must be connected directly to the VDD plane.
VSS	13, 17, 28, 47, 63, 74, 93, 104, 108, 127, 139, 154	PWR	N/A	Ground for Digital Logic and Interface Buffers: Each VSS pin must be connected directly to the ground plane.

3. FUNCTIONAL DESCRIPTION

The CL-PX2070 contains four major functional blocks — a core Video Processing Unit, which can process up to two external, bidirectional, real-time video streams and a single external, bidirectional host video or graphic stream, and three related subsystems that perform complex interface functions. Figure 3-1 shows a functional block diagram of the CL-PX2070.

Figure 3-1. Functional Block Diagram

The Host Interface Unit (HIU) is a complete host interface that can be configured for ISA Bus, MCA Bus, or local hardware interface operation. The HIU is the communication and data path between the host system and the CL-PX2070-based display system. See Section 3.1 on page 27 for additional information.

- The Video Bus Unit (VBU) is a highly programmable I/O path for video data. It contains two external, digital video I/O ports, an internal input path from the HIU to the VPU, a sync unit, and a watchdog timer. See Section 3.2 on page 38 for additional information.
- The Video Processor Unit (VPU) provides field- or frame-oriented video processing. It contains the master control register, a Sequencer Instruction Unit, two Input Processor Units, an Arithmetic and Logic Unit, and an Output Processor Unit. See Section 3.3 on page 46 for additional information.
- The Reference Frame Unit (RFU) manages the video data flow to and from the frame buffer. It contains an Object Buffer Unit, Display Window Control Unit, and Memory Management Unit. The RFU directly controls DRAM/VRAM devices, and defines up to eight graphics objects in multiple display windows. The innovative use of reference frames allows display windows to be resized and moved rapidly, with little CPU or software overhead. See Section 3.4 on page 70 for additional information.

Figure 3-2 shows the relationship of these blocks to each other, and the interconnection of the CL-PX2070 in a typical system.

Figure 3-2. Typical CL-PX2070 System Interconnection

For additional detail concerning specific CL-PX2070 registers discussed in this section, refer to Section 4.

NOTE: Register names that contain lower-case variables represent groups of registers with similar functions. For example, VIU_DPCf represents either or both of the Datapath Contol Registers — Register VIU_DPC1 (Datapath Control Field 1) and Register VIU_DPC2 (Datapath Control Field 2). Table 4-1 defines all variables used in this manner.

3.1 HIU: Host Interface Unit

The HIU, shown in Figure 3-1, provides the interface between the CL-PX2070 and the host system. It supports high-speed DMA transfers of graphic or video data between the host system and the Frame Buffer, contains address decoding, Interface Registers, and related functions, and provides access to the CL-PX2070 Control Registers.

The HIU has two primary control functions:

- Hardware Configuration
- Register and Frame Buffer Interface.

3.1.1 Hardware Configuration

The HIU is central to the following hardware configurations:

- CL-PX2070 Configuration
- Host System Bus Configuration
- Frame Buffer Configuration
- Port Address Configuration.

3.1.1.1 CL-PX2070 Configuration

The CL-PX2070 is configured during power-up reset. The state of FBD[5:0] is written to the lower five bits of Register HIU_CSU at the falling edge of RESET. The FBD Signals are internally pulled up, which results in a 111 code (Local Mode) in HIU_CSU. (See Section 4.1.1 on page 82 for additional information.) Table 3-1 shows the HIU_CSU bit-field assignments.

Table 3-1. Register Bit Assignments — External and Default (Local) Configurations

Signal(s)	HIU_CSU Field	Definition	Function (External Configuration)	Function (Default Configuration)	
FBD[5:3]	HSB	Host System Bus	Specifies the host system connected to the CL-PX2070 to be ISA, MCA, or local hardware interface.	Defaults to local hardware interface.	
FBD[2]		Reserved			
FBD[1]	FBT	Frame Buffer Type	Specifies the Frame Buffer memory to be DRAM or VRAM. This bit indicates the condition of FBD1 during reset, which is sometimes useful to application software. It has no effect on how the frame-buffer interface functions.	Defaults to VRAM.	
FBD[0]	Select select the address		Specifies whether the host system should select the primary or secondary I/O address map when accessing the CL-PX2070.	Field PAS is not active in local hardware interface mode. Address decode specified by Signals RS[2:1] (see Table 3-4).	

External Configuration

External configuration is always used to configure ISA and MCA systems. The CL-PX2070 selects this configuration when any of FBD[5:3] are low. As shown in Figure 3-3, the CL-PX2070 reads the configuration dataset from Frame Buffer Data Bus Signals FBD[5:0]. These signals are latched into the LSB of Register HIU_CSU from an external tristate buffer at the falling edge of Signal RESET. Table 3-1 shows the bit-to-field mapping required for the data on these signals.

Figure 3-3. External Configuration

Default (Local) Configuration

The CL-PX2070 selects default (local) configuration when FBD[5:3] are high. This configuration, shown in Figure 3-4, causes the host system bus to default to local hardware interface mode. A fixed, default configuration of all bits high is loaded into the LSB of Register HIU_CSU, automatically providing the default configuration dataset. FBD[5:0] are internally pulled up.

Figure 3-4. Default (Local) Configuration

3.1.1.2 Host System Bus Configuration

The HIU interfaces to two popular PC expansion buses:

- Industry Standard Architecture (ISA) Bus;
- Micro Channel Architecture (MCA) Bus.

For higher performance, the CL-PX2070 can also reside on the local hardware interface.

Table 3-2 highlights the primary features of the CL-PX2070 when operating in each of the three bus interfaces.

Table 3-2. CL-PX2070 System Interface Highlights

NOTE: Field HSB of Register HIU_CSU specifies which of the three interfaces is to be used.

	ISA Bus Interface	MCA Bus Interface	Local Hardware Interface				
Interface	CL-PX2070 interfaces with the h shown in Figure 3-7.	CL-PX2070 resides on the local hardware interface.					
Multiplex Support	Address and data buses are mul Signals DDIR and DEN* to supp address/data muliplexing, and to the host system data bus as sho	The data bus is not multiplexed.					
Address Decode	CL-PX2070 internally decodes the cycles. Table 3-4 lists the primary maps, selected during configurate mapped to each.	The host processor provides the decoded chip select Signal CS* to enable the CL-PX2070 host interface. Register select input Signals RS[3:1] can be connected to low-order address lines to select the individual HIU Register. Table 3-4 shows the register select addresses.					
Register Access	CL-PX2070 supports standard register access cycles.						
DMA Support	DMA through direct memory port.	No DMA support.	DMA through indexed memory port.				

The bus interface signals share a common set of I/O pins, as shown in Table 3-3. For a complete pin assignment table, refer to Section 1.2 on page 15.

Table 3-3. Host System Bus I/O Pins

Pin	ISA Bus Interface		MCA Bus Interface		Local Hard	Local Hardware Interface	
32	AEN	i	M/IO*	1	cs*	ı	
33	NC		ADL*	ı	RS[2]	ŧ	
34	AUXCS*a	1	CARDEN	1	RS[3]	ŀ	
35	IOR*	ı	S1*	1	IOR*	ı	
36	IOW*	1 .	S0*	1	IOW*	1	
37	DMACK*	1	CDSETUP*	l	DMACK*	ı	
38	DMARQ	0	CDSFDBK*	0	DMARQ*	0	
39	IO16*	0	CDDS16*	0	NC		
40	CHRDY	0	CDCHRDY	0	CHRDY*	0	
41	BCLK	į	CMD*	ı	PCLK	ı	
42	RESET	l	CDRESET	ı	RESET	1	
43	DDIR	0	DDIR	0	BLAST*	l .	
44	DEN*	0	DEN*	0	RS[1]	ı	
45	IRQ	0	IRQ*	0	IRQ*	0	
48:62, 65	SAD[15:0]	VO	AD[15:0]	VO	D[15:0]	VO	

a. AUXCS* is used in AUX ISA mode. SAD[3:0] are used to address individual registers.

ISA Bus Interface

The CL-PX2070 interfaces with an ISA Bus using the pins listed in the Pin Assignment Table on page 15. The CL-PX2070 responds to I/O-mapped bus cycles, including register access cycles and DMA cycles.

Register access cycles. The CL-PX2070 multiplexes the system address (SA[15:0]) and data (SD[15:0]) buses to Bus SAD[15:0] using external buffers controlled by Signals DDIR and DEN*. Figure 3-5 shows the signal relationship for the ISA Bus interface for register access cycles.

NOTE: BALE is shown only for reference — it is not used; AEN = 0.

Figure 3-5. ISA Bus Interface for Register Access Cycles

DMA cycles. The CL-PX2070 supports high-speed DMA cycles for bidirectional data transfer between the host system and the Frame Buffer. The CL-PX2070 must be programmed for DMA mode using Register HIU_OCS. Figure 3-6 shows the signals and general timing for the ISA Bus interface for DMA cycles.

Figure 3-6. ISA Bus Interface for DMA Cycles

The lower eight bits of the CL-PX2070 address bus is multiplexed with the data bus. Figure 3-7 shows a method of interfacing the CL-PX2070 with the separate address and data buses of ISA. A similar circuit can be used to interface to the MCA Bus.

Figure 3-7. ISA and MCA Interface Address/Data Multiplexers

MCA Bus Interface

The CL-PX2070 interfaces with an MCA Bus using the pins shown in the Pin Assignment Table on page 15. The CL-PX2070 responds only to I/O-mapped bus cycles.

Register access cycles. The CL-PX2070 multiplexes the system address (A[15:0]) and data (D[15:0]) buses to Bus AD[15:0] using external buffers controlled by Signals DDIR and DEN*. Figure 3-8 shows the general timing for register access cycles. Refer to the detailed signal description on page 19 for the MCA Bus cycle decoding performed for Signals M/IO*, S0*, and S1*.

Figure 3-8. MCA Bus Interface for Register Access Cycles

Local Hardware Interface

The CL-PX2070 interfaces with a local processor using the pins shown in the Pin Assignment Table on page 16. The CL-PX2070 responds as an I/O device to register access cycles and DMA cycles, or may be used as a memory-mapped device. Figure 3-9 shows the general timing for a register write, and Figure 3-10 shows the timing for a read cycle.

Figure 3-9. Local Hardware Interface Write Cycle

Figure 3-10. Read Timing (Local Hardware Interface)

DMA cycles. The CL-PX2070 supports high-speed DMA cycles for bidirectional data transfer between the host system and the Frame Buffer. The CL-PX2070 must be programmed for DMA mode using Register HIU_OCS. Figure 3-11 shows the signals and general timing for DMA cycles.

Figure 3-11. Local Hardware Interface DMA Cycles

3.1.1.3 Frame Buffer Configuration

No operational changes are required on the part of the CL-PX2070 between a design using a DRAM frame buffer and one using VRAM. The use of VRAM in a system based on the CL-PX2070 and the CL-PX2080 enables the full range of features. Field FBT of Register HIU_CSU is provided so that the firmware can determine the hardware configuration in which it is operating and adjust the available features accordingly. FBT defaults to VRAM.

3.1.1.4 Port Address Configuration

Table 3-4 shows the port address configurations for ISA, MCA, and Local Hardware Interface Modes. As shown in Table 3-1 on Page 27, field PAS of Register HIU_CSU specifies whether the host system uses the primary or secondary I/O address map when accessing the CL-PX2070 in ISA or MCA Modes (PAS is not active in Local Hardware Interface Mode).

Table 3-4. I/O Address Maps

	ISA and Interface		Local H/W Interface		
Register	Pri	Sec	RS[3:1]	Used By Re	egisters
HIU_0	27C0h	0290h	0h	HIU_CSU HIU_DBG HIU_DRD	Configuration Setup (Read Only) Debug Control (Write Only) Debug Read (Read Only)
HIU_1	27C2h	0292h	1h	HIU_OCS HIU_IRQ	Operation Control/Status (Read/Write) Interrupt Status (Read Only)
HIU_2	27C4h	0294h	2h	HIU_RIN	Register Index (Read/Write)
HIU_3	27C6h	0296h	3h	HIU_RDT	Register Data Port (Read/Write)
HIU_4	27C8h	0298h	4h	HIU_MDT	Memory Data (Read/Write)

3.1.2 Register and Frame Buffer Interface

Regardless of whether the CL-PX2070 is operating in ISA, MCA, or local hardware interface mode, the CPU regards it as the five 16-bit registers defined in Table 3-4. These registers allow access to all CL-PX2070 data registers and to the Frame Buffer.

- HIU_0 and HIU_1 control configuration and setup, overall operation, general status, and interrupt status.
- HIU 2 and HIU 3 allow the host system to access the data registers:
 - HIU 2 is the index, which points to the internal register to be accessed in the next I/O cycle;
 - HIU 3 is the data port.
- HIU 4 is a frame-buffer memory data port.

3.1.2.1 Internal Register Access

To read an internal register, the CPU writes the index address of the desired register into HIU_2 (HI-U_RIN). It then reads HIU_3 (HIU_RDT), returning the value stored in the register specified by HIU_2. When autoincrement is enabled in HIU_3, the index value in HIU_2 increments after each access, allowing a group of contiguous registers to be loaded with a block transfer.

3.1.2.2 Accessing the Frame Buffer

To access the frame buffer, the CPU sets up an object buffer in the Reference Frame Unit for a block transfer, providing a pointer to a specific location in memory. A subsequent access to HIU_4 reads from or writes to the address associated with that buffer, taking advantage of the direct access that the HIU has to an input and an output FIFO within the VPU.

Figure 3-12. Register Access

For additional information on the Index and Data Registers, see also:

- Table 4-3. HIU Registers Accessed by the Register Data Port, p. 81
- Table 4-4. VBU Registers Accessed by the Register Data Port, p. 90
- Table 4-5. VPU Registers Accessed by the Register Data Port, p. 100
- Table 4-6. RFU registers Accessed by the Register Data Port, p. 136
- HIU_RIN: Register Index (Read/Write), page 87
- HIU_RDT: Register Data Port, page 88.

3.2 VBU: Video Bus Unit

The VBU, shown in Figure 3-1, manages the flow of video and graphic streams between the CL-PX2070 and up to three independent devices (including the host system). It also provides a data path between the CL-PX2070 and the host system for bidirectional graphic streams through the HIU.

The VBU provides two independent, real-time video I/O ports and contains two subunits, which are detailed in the following sections:

- VIU: Video Interface Unit. The VIU controls the flow of video data streams between the VPU and external video devices.
- VSU: Video Sync Unit. The VSU has independent sync signals for both video ports. Signal polarity

and direction are programmable.

In addition, three functional blocks within the Video Processing Unit (VPU) are closely related to the functionality of the VBU because of their I/O involvement. Each of these blocks and their associated FIFOs can be connected to either V1 or V2 under software control. For additional information concerning the VPU and its functional units, refer to Section 3.3 on page 46.

- Input Processing Unit 1 (IPU1) performs scaling, format conversion, window clipping, and color-space conversion. FIFO G is IPU1's output. It feeds a data stream to the Sequencer Instruction Unit in the VPU. See Section 3.3.2 on page 50 for additional information.
- Input Processing Unit 2 (IPU2) performs window clipping only. FIFO F is IPU2's output. It feeds a data stream to the Sequencer Instruction Unit (SIU), also located in the VPU. See Section 3.3.3 on page 60 for additional information.
- The Output Processor Unit (OPU) receives data through FIFO D. The OPU can be connected back into IPU1 or IPU2. The OPU can act as sync slave, with outputs conforming to incoming video, if preferred. See Section 3.3.5 on page 68 for additional information.

Figure 3-13 illustrates the possible input and output paths (shown separately for simplicity) for video data. In addition to these paths, FIFO D can send to and FIFO F can receive from the HIU directly.

Figure 3-13. Possible Paths for Video Data

3.2.1 Video Ports V1 and V2

The VBU provides two 16-bit digital video ports — V1 and V2. Either port can be used with the VSU at any single point in time. V1 and V2 have the following characteristics:

- can be configured as input only, output only, or pixel- or field-duplexed I/O;
- provide programmable sync polarity;
- either port at one time can use the sync generator provided by the CL-PX2070;
- support the following formats:
 - 16-bit YCbCr, 12-bit YCbCr, 16-bit RGB, 8-bit RGB (input),
 - 16-bit YCbCr, 16-bit RGB, 8-bit RGB (output);
- V2 controls the video stream data flow between the CL-PX2070 and typical CODEC devices using Signals STALL* and STALLRQ*.

3.2.2 VIU: Video Interface Unit

The VIU controls the flow of video data streams between the VPU and external video devices. It specifies:

- the source and direction of video stream and sync control inputs,
- · the field-toggling mode and field ID signals,
- the watchdog timer feature.

3.2.2.1 Video Stream and Sync Control Inputs

As shown in Figure 3-1, the VIU controls the flow of video streams through video ports V1 and V2 to all external devices, as well as the flow of internal streams. An input multiplexer directs one of two input streams or the output stream of the OPU to the input of the IPU1. A second input multiplexer directs one of two input streams or the output stream of the OPU to the input of the IPU2. A pair of buffers can output a stream from the output of the OPU to V1 or V2.

These functions are performed by the registers specified in Table 3-5.

Table 3-5. Video Stream and Sync Control Inputs — Control Registers

Register	Field	Input/Output Mode. Specifies the direction of video stream data flow through video ports V1 and V2. Each port can be programmed as input only, or as duplexed I/O under the control of Signal VpPH.						
VIU_MCRp	IOM							
		NOTE: Each video port provides input enable Signal VpIEN* to control the three-state buffers used in duplexed systems. If the port is programmed as input only, VpIEN* is asserted and held low. If the port is programmed as output only, VpIEN* is deasserted and held high. Two duplex modes are also provided. Depending on the control polarity specified for pixel phase input Signal VpPH in field IOM of Register Vi-U_MCRp, output Signal VpIEN* is driven to either match or be a complement of input Signal VpPH.						
VIU_DPCf	IPU1DC	IPU1 Datapath Control. Specifies the video stream and sync control inputs of the IPU1. IPU1 stream data and control sync can be driven by either V1 or V2. The input stream optionally can be qualified by Signal VpPH. When the OPU is specified as the source of the input stream, the sync references are provided by the internal sync generator. See also: VSU: Video Sync Unit, page 43.						
VIU_DPCf	IPU2DC	IPU2 Datapath Control. Specifies the stream and sync control inputs of the IPU2. IPU2 stream data and control sync can be driven by either V1 or V2. The input stream optionally can be qualified by Signal VpPH. The stream data also can be driven from the host system through the HIU, bypassing the IPU2 and flowing directly to FIFO F. When the OPU is specified as the source of the input stream, the sync references are provided by the internal sync generator. See also: VSU: Video Sync Unit, page 43.						
VIU_DPCf	ODC	ODC Datapath Control. Specifies the control sync source for the stream output from the OPU. A stream can also output to the host system by flowing directly from FIFO D to the HIU, bypassing the OPU.						

3.2.2.2 Field Toggling and Field ID

The VPU subunits IPU1, IPU2, ALU, and OPU each contain parallel sets of registers (i.e., ALU Master Control Registers ALU_MCR1 and ALU_MCR2), allowing the CL-PX2070 to perform different operations on two independent, single-field video streams during a common frame time.

The SIU is the only VPU subunit that does not contain dual processors, but it does have a field toggle feature that distinguishes between the vertical sync pulses for each field and executes one of two different instruction sequences. This dual-field toggle feature requires a signal that specifies the set or field to be used.

The field synchronization signal is the master sync signal for the VPU; it is used to derive two signals:

- Field ID Signal FID. The state of this internal signal (in interlaced mode) is determined by the sync signals. In non-interlaced mode this value remains at 0. FID specifies the register set that is to be used in the IPU1, IPU2, ALU, and OPU; it is shown in Figure 3-16, Figure 3-17, and Figure 3-24.
- Field Toggle Signal. This signal determines whether the SIU selects field 1 or field 2. See also: SIU: Sequencer Instruction Unit, page 46.
- These functions are performed by the register specified in Table 3-6.

Table 3-6. Field Toggling and Field ID — Control Registers

Register	Field	Function								
VIU_WDT	MFTS	 Master Field Toggle Select. Specifies whether the VPU is to determine its field synchronization signal from the vertical sync pulse on: video port V1, video port V2, or the watchdog timer (the watchdog timer can supply a signal when processing streams without sync controls), software command. See Section 4.2.1.3 on page 94. 								

3.2.2.3 Watchdog Timer

The VIU's watchdog timer can generate a watchdog timer signal to detect a loss-of-sync condition, or it can emulate sync references for streams which have no sync (such as graphic stream data to or from the host system).

Its functions are performed by the register fields specified in Table 3-7.

Table 3-7. Watchdog Timer — Control Registers

Register	Field	Function
VIU_WDT	WTE	Watchdog Timer Enable. Enables or disables the operation of the watchdog timer. Disabling and then re-enabling resets the counter to the programmed value.
VIU_WDT	TMOUT	Timeout interval. Specifies the 10-bit timeout period count of the watchdog timer. This count is based on the input memory clock Signal MCLK. MCLK is prescaled by a factor of 49,152 (3 * 214) for use by the timeout counter. Assuming a 60-MHz value for Signal MCLK, the timeout range available would be from 0.82 ms (TMOUT count = 1) to 838 ms (TMOUT count = 1023).

3.2.3 VSU: Video Sync Unit

The Video Sync Unit (VSU) has independent sync signals for both video ports. Signal polarity and direction are programmable.

The VSU implements identical, independent video reference signals for each video port:

- VpVS (vertical/composite sync) bidirectional video sync signal that identifies the beginning of a field (interlaced stream) or frame (non-interlaced stream);
- VpHS (horizontal sync) bidirectional video sync signal that identifies the beginning of a line;
- *VpHB (horizontal/composite blanking)* input or output signal that specifies the horizontal/composite blanking interval.

Each video port implements independent control of sync polarity for each of these signals. Master control Registers VIU_MCRp provide matching fields that specify input and output sync modes, as shown in Table 3-8.

Table 3-8. Input and Output Sync Modes — Control Registers

Fields	Function
Modes	
OVSP	Output Video Vertical Sync Polarity. Specifies polarity of vertical sync signals V1VS (VIU_MCR1) and V2VS (VIU_MCR2) when signals are used as output.
OHSP	Output Video Horizontal Sync Polarity. Specifies polarity of horizontal sync Signals V1HS (VIU_MCR1) and V2HS (VIU_MCR2) when signals are used as output.
ОВР	Output Video Blank Polarity. Specifies polarity of horizontal/composite blanking Signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when signals are used as output.
OBT	Output Video Blank Type. Specifies horizontal/composite blanking signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) to be either Hblank or Cblank when signals are used as output.
lodes	
IVSP _	Input Video Vertical Sync Polarity. Specifies polarity of vertical sync Signals V1VS (VIU_MCR1) and V2VS (VIU_MCR2) when signals are used as input.
IHSP	Input Video Horizontal Sync Polarity. Specifies polarity of horizontal sync Signals V1HS (VIU_MCR1) and V2HS (VIU_MCR2) when signals are used as input.
IBP .	Input Video Blank Polarity. Specifies polarity of horizontal/composite blanking Signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when signals are used as input.
IBT	Input Video Blank Type. Specifies horizontal/composite blanking Signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) to be either Hblank or Cblank when signals are used as input.
	OHSP OBP OBT Iodes IVSP IHSP

The VSU implements an internal sync generator to provide the horizontal and vertical references, listed in Table 3-9, when the CL-PX2070 is programmed as a sync master (see Figure 3-14). The references can then be directed to V1, V2, IPU1, or IPU2. Fields IPU1DC and IPU2DC in Register VIU_DPCf specify the horizontal timebase reference for the internal sync generator as either MCLK/3 or as MCLK/6 when the OPU sources the data stream to IPU1 or IPU2. The OPU must always be programmed with the VSU internal syncs if it outputs to the IPU1 or IPU2 data paths.

Table 3-9. Horizontal and Vertical References — Control Registers

Register	Field	Function
Horizontal R	eferences	
VSU_HP		Horizontal Period. Specifies the total number of horizontal timebase clock periods in the horizontal interval.
		NOTE: The actual period is the number entered in this field <i>plus one</i> .
VSU_HSW		Horizontal Sync Width. Specifies the number of horizontal timebase clock periods for the interval of the horizontal sync pulse.
VSU_HAD		Horizontal Active Delay. Specifies the number of horizontal timebase clock periods for the interval between the beginning of the horizontal sync pulse and the beginning of active pixel period.
VSU_HAP	_	Horizontal Active Pixels. Specifies the number of horizontal timebase clock periods for the interval of active pixels per line.
Vertical Refe	erences	
VSU_VP		Vertical Period. Specifies the total number of horizontal sync intervals in the vertical interval.
vsu_vsw		Vertical Sync Width. Specifies the number of horizontal sync intervals for the interval of the vertical sync pulse.
VSU_VAD		Vertical Active Delay. Specifies the number of horizontal sync intervals for the interval between the beginning of the vertical sync pulse and the beginning of active line period.
VSU_VAP		Vertical Active Pixels. Specifies the number of horizontal sync intervals for the interval of active rows per field (interlaced) or frame (non-interlaced).

NOTE: In this example, the VIU_MCR sync polarity bits are programmed as 1, for active-high sync.

Figure 3-14. Programmability of the Internal Sync Generator

3.3 VPU: Video Processor Unit

The VPU, shown in Figure 3-1, provides field-oriented video processing. It can simultaneously process up to two external, bidirectional real-time video streams and a single external, bidirectional host video or graphic stream.

The VPU contains the Master Control Register VPU_MCR (described in section 4.3.1, page 105), and five subunits, each of which is detailed in the following subsections:

- SIU: Sequencer Instruction Unit
- IPU1: Input Processor Unit 1
- IPU2: Input Processor Unit 2
- ALU: Arithmetic and Logic Unit
- OPU: Output Processor Unit.

IPU1, IPU2, and the OPU provide the video data paths between video ports V1 and V2 and the SIU. The SIU moves data between the hardware resources. The ALU can operate on pixels logically or arithmetically, replace a pixel or one of its component values with a constant, and decode and/or encode pixels tags.

3.3.1 SIU: Sequencer Instruction Unit

The SIU is a special-purpose microcontroller that moves pixel data between the hardware resources under the control of instruction sequences stored in the SIM.

The SIU resembles a short software loop made of conditional instructions. Each instruction causes data to move between the components listed in Table 3-10, and specifies:

- the source of the video information,
- conditions for execution, destination, and
- the location of the next instruction.

Possible sources and destinations are object buffers and FIFOs A-G.

Table 3-10. CL-PX2070 FIFOs

Component	Dedicated FIFO	FIFO Depth	
IPU1: Input Processor Unit 1	FIFO G	128 bytes	
IPU2: Input Processor Unit 2	FIFO F	128 bytes	
ALU: Arithmetic and Logic Unit	FIFOs A, B, C, E	64 bytes	
OPU: Output Processor Unit	FIFO D	128 bytes	
OBU: Object Buffer Unit	N/A	N/A	

Figure 3-15 is an overview of SIU instruction flow.

Figure 3-15. SIU Instruction Flow

The SIU can execute SIM instructions much faster than the stream rates of typical video data. Therefore, the instructions are conditional. At any given time, the FIFO associated with the current instruction may or may not be ready to source or receive data. If it is not ready, the SIU skips the instruction and continues with the next until an instruction is found which can be executed.

Internal OBU controls allow a stream being written from an output FIFO to an object buffer to be simultaneously copied to an input FIFO, reducing data-path traffic in recursive processing operations.

The following sections detail the major components and functions of the SIU:

- Programming the SIU
- Master Control Register SIU MCR
- Sequencer Instruction Memory SIUs SIM
- Accessing FIFO Control/Status Indicators.

3.3.1.1 Programming the SIU

The SIU can be programmed for all the following operations:

- a single instruction sequence loop used to process...
 - a single non-interlaced stream, or
 - one or both fields of an interlaced stream;

- two instruction sequence loops used to process...
 - two different, non-interlaced streams,
 - a single non-interlaced stream and a single field from an interlaced stream,
 - both fields of a single interlaced stream, or
 - a single field each from two different, interlaced streams;
- multiple instruction sequences used to process...
 - an arbitrary number of streams.

To program the SIU, determine the path of the video stream and plan the desired conversions. Then allocate the various hardware resources and configure them accordingly.

The SIU can be programmed to be field-time controlled. That is, it can execute one sequence loop in the even field time, and another sequence loop in the odd field time. (See also: Field Toggling and Field ID, page 42.)

Because the SIU is field-based, the controlling software application must specify the source of the vertical sync pulse that performs the field toggle, and whether other stream processing is to be performed at the same time. Field MFTS of Register VIU_WDT specifies the source of the sync signal used for the field toggle, as shown in Table 3-6.

3.3.1.2 Master Control Register SIU_MCR

Master Control Register SIU_MCR directs entry points into the SIU for sequencer cycling. It performs the functions specified in Table 3-11.

Table 3-11. Master Control Register SIU_MCR

Register	Field	Function						
SIU_MCR	SI1	Start Index 1. Specifies a start instruction index for Field Time 1. The value in SI1 is the index in the SIM of the first instruction executed in Field Time 1.						
SIU_MCR	SI2	Start Index 2. Specifies a start instruction index for Field Time 2. The value in SI2 is the index in the SIM of the first instruction executed in Field Time 2.						
SIU_MCR	FT	 Field Toggle. Specifies four modes of field timing sync: No field toggle (SI1 is used, SI2 is ignored). SI1 and SI2 toggle on vertical sync; no field association. Field 1 is associated to SI1, and fields 1 and 2 toggle on vertical sync. Field 2 is associated to SI2, and fields 1 and 2 toggle on vertical sync. 						
SIU_MCR	SE	Sequencer Enable. Halts the SIU, or specifies that the SIU start on field SI1 or SI2.						

3.3.1.3 Sequencer Instruction Memory SIUs_SIM

Sequencer Instruction Memory SIUs_SIM is a register file that stores the sequence instruction. It contains 32 identical 16-bit registers, indexed from 0 to 31 (SIM[31:0]). Each register stores one instruction that contains four fields, as described in Table 3-12.

Table 3-12. SIUs_SIM Instruction Fields

Register	Field	Function
SIUs_SIM	OTN	Offset to Next Instruction. Specifies the signed, 5-bit offset to the next instruction. This value can be positive or negative (to implement a simple loop), and is added to the current instruction index to generate the index of the next instruction to execute. For example, if SIM[8] is the current instruction and has an OTN value of -3, SIM[5] will be the next instruction executed.
SIUs_SIM	EP	Exit Point. Specifies that the current instruction is the exit point of the current sequence loop.
SIUs_SIM	FA	FIFO Association. Specifies the source or destination FIFO for the current instruction. (Each SIM instruction associates a FIFO to an object buffer; thus, implying a direction. For example, associating an output FIFO to an object buffer implies a write operation from the FIFO to the object buffer.)
SIUs_SIM	OBA	Object Buffer Association. Specifies the corresponding destination or source object buffer for the current instruction.

3.3.1.4 Accessing FIFO Control/Status Indicators

Each FIFO has four flags which the controlling software application can access through the two SIU Registers described in Table 3-13.

Table 3-13. Accessing FIFO Control/Status Indicators — Control Registers

Register	Field	Function
SIU_FOU	_	FIFO Overflow/Underflow. Provides access to the overflow and underflow flags.
SIU_FCS		FIFO Control/Status. Returns the current full and empty status flags. Writing to any of the FIFO empty fields (FxE) halts and resets the corresponding FIFO. See also: SIU_FCS: FIFO Control/Status, page 124.
		NOTE: Register SIU_FCS is a special read/write register. On read, the status flags are returned. During a write, only the FxE fields are used to reset the FIFO. The reset values cannot be read back, so the controlling software application must retain a copy.

3.3.2 IPU1: Input Processor Unit 1

The IPU1, shown in Figure 3-16, prepares an input video stream for ALU processing and/or storage in the Frame Buffer, then outputs the prepared stream through FIFO G to the Frame Buffer Data Bus. Its video processing features include YCbCr and RGB input stream format conversion, color space conversion, programmable data tagging, three-channel lookup table operations, horizontal prescaling, window clipping, horizontal and vertical scaling, and output stream format conversion.

The IPU1 has two Master Control Registers (IPU1_MCR1 and IPU1_MCR2), allowing the IPU1 to perform different operations on two independent, single-field video streams during a common frame time. Field ID Signal FID, shown in Figure 3-16, determines the register set to be used. See also: Field Toggling and Field ID, page 42.

The IPU1 contains seven subunits, each of which is detailed in the following paragraphs:

- 6Input Format Converter and Chrominance Interpolator
- Input Tag Unit
- Color Space Converter
- LUT RAM
- X Prescaler
- Window Clipping and XY Scaler
- Output Format Converter Unit.

This section also describes the IPU1 Interrupt Request Unit.

Figure 3-16. IPU1: Input Processor Unit 1

3.3.2.1 Input Format Converter and Chrominance Interpolator

The Input Format Converter and Chrominance Interpolator, shown in Figure 3-16, has two functions:

- The Input Format Converter operates on external and internal streams. It produces three 8-bit and
 one 1-bit tag buses that are used exclusively by the other IPU1 subunits. These tag buses do not appear outside the IPU1.
- The Chrominance Interpolator

Input Format Converter

The Input Format Converter demultiplexes 16-bit 4:2:2 or 12-bit 4:1:1 YCbCr video data into the non-multiplexed format used by IPU1 (8-bit YR, UG, and VB buses with a 1-bit tag, as shown in Figure 3-16). The Input Format Converter accepts as input:

- the YCbCr video input stream formats defined in Table 3-14,
- the 16-bit RGB video input stream formats defined in Table 3-15, and
- the pseudocolor video input stream format defined in Table 3-16.

These formats are specified by field IF in Registers IPU1_MCRf for each field time.

NOTE: These specified input formats *do not* imply that the Input Format Converter performs color space conversion. A specified YCbCr format implies that the stream input for processing will be in YCbCr format. A specified RGB format implies that the stream input for processing will be in RGB format. The controlling software application must ensure that the desired processing is compatible with input video stream.

Table 3-14. YCbCr Video Input Stream Formats

NOTE: The Video Input Stream Formats in this table are shown for four consecutive VpCLK clocks C₁-C₄.

4:2:2 YCbCr Non-Tagged					4:2:2 YCbCr Tagged					4:1:1 YCbCr Non-Tagged					
VpD	CLK ₁	CLK ₂	CLK ₃	CLK ₄	VpD	CLK ₁	CLK ₂	CLK ₃	CLK4	VpD	CLK ₁	CLK ₂	CLK ₃	CLK4	
VpD15	Y7 ₁	Y72	Y7 ₃	Y7₄	VpD15	Y7 ₁	Y72	Y7 ₃	Y7 ₄	VpD15	Y7 ₁	Y72	Y7 ₃	Y74	
VpD14	Y6₁	Y62	Y63	Y6₄	VpD14	Y6₁	Y62	Y63	Y64	VpD14	Y61	Y62	Y63	Y6.	
VpD13	Y5₁	Y52	Y53	Y5₄	VpD13	Y5,	Y52	Y53	Y5₄	VpD13	Y5 ₁	Y52	Y53	Y54	
VpD12	Y41	$Y4_2$	Y43	Y44	VpD12	Y41	$Y4_2$		Y4₄	VpD12	Y41	Y42	Y43	Y44	
VpD11	Y3 ₁	Y3 ₂	Y33	Y3₄	VpD11	Y3 ₁	Y32	Y33	Y3₄	VpD11	Y3 ₁	Y32	Y33	Y3.	
VpD10	Y2 ₁	Y22	Y23	Y24	VpD10	Y2 ₁	$Y2_2$	Y23	Y24	VpD10	Y2 ₁	Y22	Y23	Y2.	
VpD9	Y1 ₁	Y12	Y13	Y14	VpD9	Y1 ₁	Y12	Y13	Y14	VpD9	Y11	Y12	Y13	Y14	
VpD8	Y01	$Y0_2$	Y03	Y04	VpD8	Y01	$Y0_2^-$	Y03	Y04	VpD8	Y01	Y02	Y03	Y04	
VpD7	U7 ₁	V7 ₁	U73	V73	VpD7	U7 ₁	V7 ₁	U73	V7 ₃	VpD7	U7 ₁	U5 ₁	U3 ₁	U1,	
VpD6	U6 ₁	V6 ₁	U6 ₃	V63	VpD6	U6 ₁	V6 ₁	U6 ₃	V6 ₃	VpD6	U6 ₁	U4 ₁	U2 ₁	UO,	
VpD5	U5 ₁	V5 ₁	U5 ₃	V5 ₃	VpD5	U5 ₁	V5 ₁	U5 ₃	V5 ₃	VpD5	V7 ₁	V5 ₁	V3 ₁	V1,	
VpD4	U4 ₁	V4 ₁	U4 ₃	V4 ₃	VpD4	U4 ₁	V4 ₁	U4 ₃	V4 ₃	VpD4	V6 ₁	V4 ₁	V2₁	V0 ₁	
VpD3	U3 ₁	V3 ₁	U3 ₃	V3 ₃	VpD3	U3 ₁	V3 ₁	$U3_3$	V3 ₃	VpD3	_ `				
VpD2	U21	V2 ₁	U23	V23	VpD2	U2 ₁	V2 ₁	U23	V23	VpD2			_	_	
VpD1	U1 ₁	V1 ₁	U13	V13	VpD1	U1 ₁	V1 ₁	U13	V1 ₃	VpD1					
VpD0	UO ₁	V01	U0 ₃	V03	VpD0	T ₁	T ₂	T ₃	T ₄	VpD0					

Table 3-15. 16-bit RGB Video Input Stream Formats

5:6:5 RGB Non-Tagged				5:5:5 RGB Non-Tagged					5:5:5 RGB Tagged					
VpD	CLK ₁	CLK ₂	CLK ₃				CLK ₂	CLK ₃	CLK ₄	VpD			CLK ₃	CLK ₄
VpD15	R7 ₁	R72	R73	R74	VpD15	_	_			VpD15	Τ,	T ₂	T ₃	T₄
VpD14	R6 ₁	$R6_2$	R63	R64	VpD14	R7₁	R72	R73	R7₄	VpD14	RŻ₁	R72	R73	R7₄
VpD13	R51	R52	R53	R54	VpD13	R6₁	R62	R63	R6₄	VpD13	R6	R6 ₂	R6 ₃	R6₄
VpD12	R4 ₁	R42	R4 ₃	R44	VpD12	R5₁	R52	R53	R54	VpD12	R5₁	R52	R5 ₃	R5₄
VpD11	R3	R32	R33	R34	VpD11	R41	R42	R43	R44	VpD11	R4 ₁	R42	R43	R4₄
VpD10	G7 ₁	G7,	G73	G7₄	VpD10	R3₁	R32	R3 ₃	R3₄	VpD10	R3	R32	R3 ₃	R3₄
VpD9	G6₁	G62	G63	G6₄	VpD9	G7₁	G7,	G73	G74	VpD9	G7₁	G72	G7 ₃	G7₄
VpD8	G5 ₁	$G5_2$	G5 ₃	G5₄	VpD8	G6₁	$G6_2$	G63	G6₄	VpD8	G6₁	G62	G6 ₂	G6₄
VpD7	G4 ₁	$G4_2$	G4 ₃	G4 ₄	VpD7	G5₁	G52	G53	G54	VpD7	G5₁	$G5_2^2$	G5 ₃	G5₄
VpD6	G3₁	$G3_2$	$G3_3$	G3₄	VpD6	G4 ₁	$G4_2$	G43	G44	VpD6	G4.	G42	G43	G4₄
VpD5	G2₁	$G2_2$	G2 ₃	G2₄	VpD5	G3 ₁	$G3_{2}$	$G3_3$	G3₄	VpD5	G3₁	G32	G3 ₃	G3₄
VpD4	B7₁	B72	B73	B74	VpD4	B71	B72	B73	B74	VpD4	B71	B72	B73	B7,
VpD3	B6₁	B62	B6 ₃	B6₄	VpD3	B6₁	B62	B6 ₃	B6₄	VpD3	B6₁	B62	B6 ₃	B6,
VpD2	B5₁	B52	B53	B54	VpD2	B5₁	B5 ₂	B53	B5₄	VpD2	B5,	B52	B5 ₃	B54
VpD1	B4 ₁	B4 ₂	B4 ₃	B4 ₄	VpD1	B4 ₁	B42	B4 ₃	B4 ₄	VpD1	B41	B42	B4 ₃	B4,
VpD0	B3 ₁	B3 ₂	B3 ₃	B3 ₄	VpD0	B3 ₁	B3 ₂	B3 ₃	B3 ₄	VpD0	B3 ₁	B3 ₂	B3 ₃	В3.

Table 3-16. 8-bit Pseudocolor Video Input Stream Formats

8-bit Pseudocolor Non-Tagged (Multiplexed a,b)

VpD	C _{LK1}
VpD15	P7
VpD14	P6
VpD13	P5
VpD12	P4
VpD11	P3
VpD10	P2
VpD9	P1
VpD8	P0
VpD7	
VpD6	
VpD5	
VpD4	
VpD3	
VpD2	
VpD1	
VpD0	

Chrominance Interpolator

The Chrominance Interpolator accepts the following input data formats.

- 4:2:2 YCbCr. When 4:2:2 YCbCr data is input, the Chrominance Interpolator increases the sample
 rate of the Cb and Cr channels with a low-pass filter function to produce the equivalent of a 4:4:4 YCbCr stream.
- 4:1:1 YCbCr. The Chrominance Interpolator first converts 4:1:1 YCbCr data into a 4:2:2 YCbCr stream, then outputs it to the chrominance filter for processing (this process is automatic when 4:1:1 YCbCr data is specified). All results are rounded to 8 bits. Values less than 0 are set to 0, and values greater than 255 are set to 255.
- 8-bit pseudocolor. When the 8-bit pseudocolor input data format is specified, the Input Format Converter replicates the input 8-bit pixel value to all three 8-bit channels (primarily for the use of the Color Space Converter in producing 24-bit RGB or YCbCr data).

3.3.2.2 Input Tag Unit

The Input Tag Unit, shown in Figure 3-17, implements independent YCbCr chroma key tagging on the input data stream. A complete register set (IPU1_MCR1 through IPU1_MMV1, IPU1_MCR2 through IP-U1_MMV2, as shown in Table 4-6) is provided for each field time to independently tag fields 1 and 2.

Field ODT in Registers IPU1_MCRf specifies four tagging modes:

- existing input stream tag (if any) remains unchanged,
- input stream is tagged with the ID of the current field (0 = field 1, 1 = field 2),
- input stream is tagged with the output of the chroma key multiplexer,
- input stream is tagged with the inverse of the chroma key multiplexer.

Three independent, identical chroma key comparator circuits — one for each of three input channels — discriminate pixel values found between the programmable 8-bit minimum and maximum values defined in Registers IPU1_MMY1, IPU1_MMU1, and IPU1_MMV1. As shown in Figure 3-17, the output of each comparator circuit selects one of the four inputs to the chroma key multiplexer.

NOTE: The inputs of the comparator circuits are also programmable using Registers IPU1_KFCf. This flexibility allows the input stream to be tagged according to a pixel data value for any of the three channels independently, or for any independent combination of pixel values found on the three channels.

3.3.2.3 Color Space Converter

The Color Space Converter transforms YCbCr pixel values into the equivalent RGB pixel values using the functions specified in *The International Telecommunications Union Recommendation 601-1 "Encoding Parameters of Digital Television"*. Excess 128 notation is assumed to be used for the Cr and Cb channels. The value of 128 identifies the 0 point within a range of 225 quantization levels for the Cr and Cb channels. The result is rounded to 8 bits — values less than 0 are set to 0, and values greater than 255 are set to 255. Fields CSCE in Registers IPU1_MCRf specify whether the Color Space Converter is enabled or bypassed for each field time.

3.3.2.4 LUT RAM

The LUT RAM is a programmable Look-Up Table (LUT) comprised of three independent, 8-bit channels, each containing 256 8-bit read/write elements. Each LUT accepts input from one of the 8-bit output channels of the Input Format Converter.

The LUT RAM performs the following functions:

· gamma correction,

- RGB or YCbCr production from 8-bit pseudocolor data,
- point transforming (any input-to-output pixel mapping dependent on the input pixel value).

Fields LE in Registers IPU1_MCRf specify whether the LUT RAM is enabled or bypassed for each field time.

NOTE: Although the LUT RAM can be enabled or bypassed independently each field time, only one lookup function is possible during both fields times. Therefore, the controlling software application must either perform identical operations during both field times, or bypass the LUT RAM during one field time.

Figure 3-17. Input Tag Unit

.....

3.3.2.5 X Prescaler

The X Prescaler is a 2:1 decimator; that is, it drops all even-numbered pixels. Data along the Y axis remains unchanged. Fields PSE within Registers IPU1_MCRf specify whether the X Prescaler is enabled or bypassed.

3.3.2.6 Window Clipping and XY Scaler

The Window Clipping and XY Scaler, shown in Figure 3-18, has two functions:

- The IPU1 Window Clipping Unit clips the input stream into a rectangular region.
- The Y Scaler and X Scaler perform independent vertical and horizontal scaling.
 - The Y Scaler uses a nearest-neighbor (decimation) algorithm to selectively drop full rows from the input stream. (A Special Y Scaling Path Mode using interpolation is described on page 57.)
 - The X Scaler uses linear interpolation for horizontal scaling.

Registers within the Window Clipping and XY Scaler define the clipping window coordinates and the X and Y scaling values for each field time.

Figure 3-18. Window Clipping and XY Scaling Control Registers

IPU1 Window Clipping Unit

The Window Clipping Unit defines the clipping window — a rectangular area in the input video data stream. The clipping window can be a region of only a few pixels per side, up to the entire input stream, and is defined by the following registers:

- Registers IPU1_XBnf and IPU1_YBnf specify the upper-left corner of the clipping window,
- Registers IPU1_XEIf and IPU1_YEIf specify the lower-right corner of the clipping window.

NOTE: X and Y scaling logic processes only those pixels within the clipping window; it ignores all pixels outside the window and does not generate any output for them. The upper-left coordinate of the clipping window can be a fractional value, indicating a starting column between two pixels, or a starting row between two rows.

Y Scaler

The Y Scaler uses a nearest-neighbor (decimation) algorithm to scale an image vertically and maintains a row index generator and an 11-bit row counter. At the beginning of each field:

- the row index generator resets to the value programmed into Registers IPU1 YBnf, and
- the row counter resets to 1 for field 1, and to 2 for field 2 (interlaced data only).

The row counter determines if the current row lies within the clipped region. For each row input to the Y scaler, the row counter increments by 1 for progressive scan data, and increments by 2 for interlaced data. The current row is output when it lies within the clipped region and is within one row of the row index generator value. The row index generator value then increments by the Y shrink value programmed into Registers IPU1_YSnf. This procedure repeats until the current row reaches the boundary of the clipped region.

Registers IPU1_YSnf specify the vertical scaling factor as a 6.10 fixed-point shrink value. The following equation specifies how the shrink value is used:

output row count =
$$\frac{\text{input clipped row count}}{\text{IPU1}_{YSnf}}$$

X Scaler

The X Scaler uses an interpolation circuit that maintains a pixel index generator and an 11-bit pixel counter. At the beginning of each row, the pixel index generator resets to the value programmed into Registers IPU1_XBnf, and the pixel counter resets to 1. The pixel counter determines if the current pixel lies within the clipped region, and it increments by 1 for each pixel processed by the X Scaler. When the current pixel lies within the clipped region and is within one pixel of the pixel index generator value, the interpolation circuit produces an output pixel. The pixel index generator value then increments by the X shrink value specified by Registers IPU1_XSnf. This procedure repeats until the current pixel lies outside the clipped region.

Registers IPU1_XSnf specify the horizontal scaling factor as a 6.10 fixed-point shrink value. The following equation specifies how the shrink value is used:

$$output pixel count = \frac{input clipped pixel count}{IPU1_XSnf}$$

NOTE: The Frame Buffer Data Bus transports data as pixel pairs. Therefore, the controlling software application must ensure that the Window Clipping Unit and the X Scaler produce an even number of pixels per row. FIFO G will not operate correctly when an odd number of pixels per row is produced.

Special Y Scaling Path Mode

The Y Scaler works with the ALU to implement a special two-line vertical interpolation using an α table stored in the frame buffer (in contrast to the decimation method). This mode is specified by field YSP in

Registers IPU1_MCRf, and field AOP in Registers ALU_MCRf. See also: ALU: Arithmetic and Logic Unit, page 63, Table 3-23, and Section 4.3.2.8 on page 109.

3.3.2.7 IPU1 Interrupt Request Unit

The IPU1 contains pixel, line, and field count registers that provide input stream-based interrupt requests based on any combination of line and field counts. These registers are described in Table 3-17.

Table 3-17. IPU1 Interrupt Request Unit — Control Registers

Register	Field	Function
IPU1_PIX	_	Pixel count Register. This 11-bit upcounter is incremented as each pixel is input to the IPU1; it is automatically reset to 0 at the beginning of each line.
IPU1_LIC		Line count Register. This 11-bit upcounter is incremented at the beginning of each line input to the IPU1; it is automatically reset to 0 at the beginning of each field. Its LSb specifies the field ID for interlaced sources: 0 = field 1, 1 = field 2.
IPU1_FLC		Field count Register. This 16-bit upcounter is incremented at the beginning of each field input to the IPU1. Unlike the pixel and line counters, the field counter can be reset under software control (see Register IPU1_FIR below).
IPU1_LIR		Line Count Interrupt Request. Specifies the 11-bit line count value at which an interrupt request should be generated.
IPU1_FIR	_	Field Count Interrupt Request. Specifies the 16-bit field count value at which an interrupt request should be generated. While bit 15 of this register = 0, Field Count Register IPU1_FLC is held at a count of 0. See Section 4.1.5 for more information on the interrupt request system of the CL-PX2070.

3.3.2.8 Output Format Converter Unit

The Output Format Converter Unit packs the 25-bit video stream used exclusively within the IPU1 into the pixel-pair format used by the internal Frame Buffer Data Bus and the Frame Buffer. It does not perform color space conversion. It supports the output formats shown in Table 3-18.

Table 3-18. Frame Buffer Data Formats

NOTE: These formats are shown for consecutive input pixels a-d.

Frame Buffer Bit	YCbCr 4:2:2 Non- tagged	4:2:2 Tagged	RGB 5:6:5 Non- tagged	5:5:5 Non- Tagged	5:5:5 Tagged	8:8:8 Non- Tagged	8:8:8 Tagged	3:3:2 16-bit	3:3:2 32-bit
FBD31	Y7 _b	Y7 _b	R7 _b		T_b		Ta		R7 _d
FBD30	Y6 _b	Y6 _b	R6 _b	R7 _b	R7 _b	_			R6 _d
FBD29	Y5 _b	Y5 _b	R5 _b	R6 _b	R6 _b				R5 _d
FBD28	Y4 _b	Y4 _b	R4 _b	R5 _b	R5 _b				$G7_d$
FBD27	Y3 _b	Y3 _b	R3 _b	R4 _b	R4 _b				G6 _d
FBD26	Y2 _b	Y2 _b	G7 _b	R3 _b	R3 _b				$G5_d$
FBD25	Y1 _b	Y1 _b	G6 _b	G7 _b	G7 _b				B7 _d
FBD24	Y0 _b	Y0 _b	G5 _b	G6 _b	G6 _b				$B6_d$
FBD23	V7 _a	$V7_a$	G4 _b	G5 _b	G5 _b	R7a	R7 _a		R7 _c
FBD22	V6 _a	V6a	G3 _b	G4 _b	G4 _b	$R6_a$	$R6_a$		R6 _c
FBD21	V5 _a	V5a	G2 _b	G3 _b	G3 _b	R5 _a	R5 _a		R5 _c
FBD20	V4 _a	V4 _a	B7 _b	B7 _b	B7 _b	R4 _a	R4a		G7 _c
FBD19	V3 _a	٧3 <mark>a</mark>	B6 _b	B6 _b	B6 _b	R3 _a	R3 _a		G6 _c
FBD18	V2 _a	V2 _a	B5 _b	B5 _b	B5 _b	R2 _a	R2 _a		G5 _c
FBD17	V1 _a	V1 _a	B4 _b	B4 _b	B4 _b	R1 _a	R1 _a	*********	B7 _c
FBD16	V0a	T _b	B3 _b	B3 _b	B3 _b	R0a	R0 _a		B6 _c
FBD15	Y7a	Y7 _a	R7a		T_a	$G7_a$	G7 _a	R7 _b	R7 _b
FBD14	Y6 _a	Y6 _a	R6a	R7 _a	R7 _a	$G6_a$	G6 _a	R6 _b	R6 _b
FBD13	Y5 _a	Y5 _a	R5 _a	R6 _a	R6 _a	G5 _a	G5 _a	R5 _b	R5 _b
FBD12	Y4 _a	Y4 _a	R4a	R5 _a	R5 _a	G4 _a	G4 _a	G7 _b	G7 _b
FBD11	Y3 _a	Y3 _a	R3 _a	R4a	$R4_a$	$G3_a$	$G3_a$	G6 _b	G6 _b
FBD10	Y2 _a	Y2 _a	G7 _a	R3 _a	$R3_a$	G2 _a	G2 _a	G5 _b	G5 _b
FBD9	Y1 _a	Y1 _a	G6 _a	G7 _a	G7 _a	G1 _a	G1 _a	B7 _b	B7 _b
FBD8	Y0a	Y0a	G5 _a	G6 _a	G6 _a	G0 _a	G0 _a	B6 _b	B6 _b
FBD7	U7 _a	U7 _a	G4 _a	G5 _a	G5 _a	B7 _a	B7 _a	R7 _a	R7 _a
FBD6	U6 _a	U6 _a	G3 _a	G4 _a	$G4_a$	B6 _a	B6 _a	R6a	R6 _a
FBD5	U5 _a	U5 _a	G2 _a	G3 _a	G3 _a	B5 _a	B5 _a	R5 _a	R5 _a
FBD4	U4 _a	U4 _a	B7 _a	B7 _a	B7a	B4 _a	B4 _a	G7 _a	G7 _a
FBD3	U3 _a	U3 _a	B6 _a	B6 _a	B6 _a	B3 _a	B3 _a	G6 _a	G6 _a
FBD2	U2 _a	U2 _a	B5 _a	B5 _a	B5 _a	B2 _a	B2 _a	G5 _a	G5 _a
FBD1	U1 _a	~ U1 _a	B4 _a	B4 _a	B4 _a	B1 _a	B1 _a	B7 _a	B7 _a
FBD0	U0a	T _a	B3 _a	B3 _a	B3 _a	B0 _a	B0a	B6 _a	B6 _a

NOTE: The controlling application software must track the format of the video stream being processed within the IPU1 and the Frame Buffer for both field times. For example, it would be invalid to specify an RGB input stream with an output YCbCr stream. The 25-bit RGB stream formed by the Input Format Converter must remain RGB data because the Output Format Converter Unit cannot perform the color space conversion necessary to produce the specified YCbCr format. However, a YCbCr input stream could be specified with an RGB output stream since the input YCbCr stream would be converted into the internal 25-bit YCbCr format, then to RGB using the Color Space Converter. This data is then packed into the specified RGB format for use by the internal Frame Buffer Data Bus and the external Frame Buffer.

3.3.3 IPU2: Input Processor Unit 2

The IPU2, shown in Figure 3-19, prepares an input video stream for ALU processing and/or storage in the Frame Buffer. The stream is output through FIFO F.

The IPU2 has two Master Control Registers (IPU2_MCR1 and IPU2_MCR2), allowing the IPU2 to perform different operations on two independent, field-synchronized, single-field video streams during a common frame time. Field ID Signal FID, shown in Figure 3-19, determines the register set to be used. See also: Field Toggling and Field ID, page 42.

Figure 3-19. Input Processing Unit 2

The IPU2 contains three subunits, each of which is detailed in the following paragraphs:

- IPU2 X Prescaler
- IPU2 Window Clipping Unit
- IPU2 Interrupt Request Unit

3.3.3.1 IPU2 X Prescaler

The X Prescaler is a 2:1 decimator designed specifically for 4:2:2 YCbCr input streams. It drops every second luminance channel value, and every second chrominance channel pair values, as shown in Figure 3-20. Data along the Y axis of the input stream is unchanged. Fields PSE within Registers IPU2_MCRf specify whether the X Prescaler is enabled or bypassed.

Figure 3-20. IPU2 2:1 Prescale Example

3.3.3.2 IPU2 Window Clipping Unit

The Window Clipping Unit, shown in Figure 3-21, defines the clipping window — a rectangular area of interest in the input video data stream. The clipping window can be a region of only a few pixels per side, up to the entire input stream, and is defined by the following registers:

- Registers IPU2_XBlf and IPU2_YBlf specify the upper-left corner of the clipping window;
- Registers IPU2_XEIf and IPU2_YEIf specify the lower-right corner of the clipping window.

NOTE: The Frame Buffer Data Bus transports data as pixel pairs. Therefore, the controlling application software must ensure that the Window Clipping Unit produces an even number of pixels per row. FIFO F will not operate correctly if an odd number of pixels per row is produced.

Table 3-19. IPU2 Window Clipping Unit — Control Registers

Register	Field	Function
IPU2_MCRf	IM ·	Interlace Mode. Specifies whether the input stream is interlaced or non-interlaced.
IPU2_MCRf	FPS	Field Polarity Select. Specifies the sync polarity of the input stream.

Figure 3-21. IPU2 Window Clipping Unit

3.3.3.3 IPU2 Interrupt Request Unit

The IPU2 contains Pixel, Line, and Field Count Registers, described in Table 3-20, that provide input stream-based interrupt requests based on any combination of line and field counts.

Table 3-20. IPU2 Interrupt Request Unit — Control Registers

Register	Field	Function
IPU2_PIX	_	Pixel count Register. This 11-bit upcounter is incremented as each pixel is input to the IPU2. It is automatically reset to 0 at the beginning of each line.
IPU2_LIC		Line count Register. This 11-bit upcounter is incremented at the beginning of each line input to the IPU2. It is automatically reset to 0 at the beginning of each field. Its LSb specifies the field ID for interlaced sources: 0 = field 1, 1 = field 2
IPU2_FLC		Field count Register. This 16-bit upcounter is incremented at the beginning of each field input to the IPU2. Unlike the pixel and line counters, the field counter can be reset under software control (see Register IPU1_FIR below).
IPU2_LIR		Line Count Interrupt Request. Specifies the 11-bit line count value at which an interrupt request should be generated.
IPU2_FIR		Field Count Interrupt Request. Specifies the 16-bit field count value at which an interrupt request should be generated. While bit 15 of this register = 0, Field Count Register IPU1_FLC is held at a count of 0. See Section 4.1.5 for more information on the Interrupt Request System of the CL-PX2070.

3.3.4 ALU: Arithmetic and Logic Unit

The ALU, shown in simplified form in Figure 3-22, is actually more than its name implies. It can operate on a pixel logically or arithmetically, or replace it or one of its component values with a constant. It can decode and/or encode pixels tags. A simplified block diagram is shown below.

Figure 3-22. ALU Simplified Block Diagram

The ALU, shown in Figure 3-23, processes two simultaneous input video streams through FIFOs A and B, as well as the mask or mixing controls through FIFO C. Processed streams output through FIFO E.

The ALU accepts the following input streams and performs the corresponding function for each:

- tagged and non-tagged YCbCr arithmetic, logical, and tagging operations;
- tagged and non-tagged RGB logical and tagging operations;
- 8-bit pseudocolor input streams logical and tagging operations.

Arithmetic and logical operations are mutually exclusive during a single field time.

Registers ALU_MCRf control stream format, operand source selection, tagging operation selection, and arithmetic or logical operation for both field times. Table 3-23 lists the arithmetic operations.

Like most of the other VPU subunits, the ALU has dual processors. Field ID Signal FID determines the register set to be used (refer to Section 3.2.2.2 on page 42).

The ALU has five primary functions, which are described in the following subsections:

- Operand Selection
- Data Tagging
- Logical Operations
- Arithmetic Operations
- Output Selection.

Section 3.3.4.6 describes the special Y Scaling Path. Refer to Figure 3-23 for all discussions of the ALU.

3.3.4.1 Operand Selection

The ALU contains three input FIFOs — A, B, and C. Data input to FIFO A sources Operand A (OpA), data input to FIFO B sources Operand B (OpB), and data input to FIFO C sources Operand C (OpC). With the exception of the special Y Scaling Path and bit-per-pixel controls in OpC, each input FIFO and its operand selection circuit are identical.

YCbCr input streams are subdivided into separate 8-bit Y, Cb, and Cr component channels. RGB input streams are subdivided into separate 8-bit R, G, and B component channels.

Table 3-21. Operand Selection — Control Registers

Register	Field	Function	
ALU_CAx	_	Constant A, Channels each component chann	SYUV. Specifies the 8-bit constant values to supply to lel and the tag bit.
ALU_MCRf	OPAS OPBS OPCS		e Select. Specifies whether the OpA multiplexers select am or the contents of Registers ALU_CAx as the input for netic sections.
		and CrB com and constant same field. H	controls four multiplexers simultaneously: the YR, CbG, ponent channels and the tag bit. Real-time stream data data cannot be mixed in the same operand during the owever, for a given operand, real-time stream data can be no one field 1, and constant data during the field 2.

Figure 3-23. ALU: Arithmetic and Logic Unit

3.3.4.2 Data Tagging

Data tagging in the ALU performs three independent tasks:

- Logical operation,
- · output multiplexer control, and
- output stream tag value.

The operand selection multiplexers select either the realtime tag or a constant tag as specified by the operand selection fields OPAS, OPBS, and OPCS (see Section 3.3.4.1). The control tag (CTAG) and the output tag (OTAG) are generated identically.

Table 3-22. Data Tagging — Control Registers

Register	Field	Function
ALU_MCRf	OPAS OPBS OPCS	Operands ABC Source Select. Specifies that the operand selection multiplexers select either the realtime tag or a constant tag (see Section 3.3.4.1).
ALU_MCRf	TF	Tag Format. Specifies the format of both the input and output streams.

NOTE:

Specifying "No Tag" ensures that no tag bit will be added to the output stream (see Section 4.3.5.1). However, a constant tag could be generated for one of the operands, which in turn could be used by the logical operations or output multiplexers. Similarly, one of the tagged data formats could be specified. The output tag multiplexer could be programmed to pass the tag unchanged, or override the input tag with a new value. In either case, the format of the stream cannot be changed. The controlling software application must ensure that the input tag, the generation of the internal CTAG and OTAG controls, and the output stream tagging are consistent with the desired operation and stream format.

Logical Operation Control

The tag bits from each operand are combined at the control tag multiplexer. This combination specifies the input bit to be selected from field CTC of Register ALU_TOP to generate CTAG. CTAG is one of four control signals provided to the logical operation multiplexers, and is also used by the output control section, as described in Section 3.3.4.5. Since each operand contributes a single, realtime control bit to the CTAG multiplexer, logical operations and output selection can be controlled on a pixel-by-pixel basis.

Output Multiplexer Control

In the same way, the tag bits from each operand specify the input bit to be selected by the output tag multiplexer from field OTC of Register ALU_TOP to generate OTAG. OTAG is the output tag value that FIFO E adds to the output stream. Since each operand contributes a single, realtime control bit to the OTAG multiplexer, the output tag can be controlled on a pixel-by-pixel basis.

Output Stream Tag Value

The value of the output tag is encoded under control of the TF field in ALU_MCR, then passed to the output FIFO.

3.3.4.3 Logical Operations

The ALU performs logical operations using eight parallel 16:1 multiplexers, each providing one bit to the 8-bit output stream. Register ALU_LOPY specifies the 16-bit input to all eight multiplexers.

The CTAG control and eight bits from each channel of each operand provide a 4-bit input selection control to the multiplexer. Each 16:1 multiplexer uses a different bit from each of the channel streams—the first uses bit 0 from each stream, the second uses bit 1, etc. All eight multiplexers share the CTAG value. Different operations can be programmed for each channel of the same input stream.

3.3.4.4 Arithmetic Operations

The arithmetic sections of the ALU only process YCbCr input streams. They do not support RGB streams. The arithmetic unit performs eight operations, as shown in Table 3-23.

Table 3-23. Arithmetic Operations

NOTE: U = unsigned 8-bit (Uses excess 128 notation where appropriate. See also 3.3.2.3, page 54.)

S = signed 8-bit

OpA	ОрВ	OpC	E	Formula	Function
U	U	_	U	$E = (A^*\alpha) + (B^*(1\text{-}\alpha))$	Alpha mix using ALU_AV
U	U	U	U	E = (A*C) + (B*(1-C))	Alpha mix using C
U	U		U	E = A + B	Add A and B
U	U		U	E = A - B	Subtract B from A
U	U		S	E = (A - B) / 2	Difference A to B
U	S		U	E = A + (2*B)	Reconstruct from A and B
U	S		U	E = A + ((2*B) / 4)	Four frame interpolate from A and B
U	Ú		U	$E = (A^*n^a) + (B^*(1-n))$	Special ALU Y Scaling Path

a. n = fractional pixel value from IPU2 scaler.

Table 3-24. Arithmetic Operations — Control Registers

Register	Field	Function
ALU_MCRf	AOP	Arithmetic Operation Select. Specify the arithmetic operation to perform for each field time.
ALU_AV	<u> </u>	Alpha value. Specifies the alpha mix value when performing a constant alpha mix.

.....

3.3.4.5 Output Selection

The output multiplexers select between the output of the logical operation multiplexers and the arithmetic unit. CTAG and fields YOUT, UOUT, and VOUT of Registers ALU_MCRf specify the output selection of each output multiplexer. Since CTAG is generated by the realtime input stream, output selection can be made pixel-by-pixel.

3.3.4.6 Special \alpha-Mixed Y Scaling Mode

The Y scaler, in combination with the ALU, provides a special mode of operation in which a 2-line interpolation scales in the Y direction using a table of α values (as opposed to the decimation method). Fields YSP in Registers IPU1_MCRf and field AOP in Registers ALU_MCRf specify this mode (see Section 3.3.2.6 on page 56).

3.3.5 OPU: Output Processor Unit

The OPU, shown in Figure 3-24, converts the stream data written to FIFO D from the format used in the Frame Buffer to an output stream format. The OPU contains three subunits, each of which is detailed in the following paragraphs:

- Output Format Converter
- 2:1 X Zoom Unit
- OPU Window Clipping Unit.

Figure 3-24. OPU: Output Processor Unit

The OPU has two Master Control Registers (OPU_MCR1 and OPU_MCR2) — one for each field time — allowing the OPU to perform different operations on two independent, single-field video streams during a common frame time. Field ID Signal FID determines the register set to be used. See also: Field Toggling and Field ID, page 42).

NOTE: The Frame Buffer Data Bus transports data as pixel pairs. Therefore, the controlling application software must ensure that FIFO D receives an even number of pixels per row. FIFO D will not operate correctly if it receives an odd number of pixels per row.

3.3.5.1 Output Format Converter

The Output Format Converter unpacks the pixel-pair stream data written to FIFO D into one of five formats for transport to the VIU. The OPU supports two YCbCr and three RGB formats.

The OPU supports two YCbCr and three RGB formats (refer to Table 3-14, Table 3-15, Table 3-16, and Table 3-18):

- YCbCr 4:2:2 non-tagged
- YCbCr 4:2:2 tagged
- RGB 5:6:5 non-tagged
- RGB 5:5:5 tagged
- RGB 3:3:2 non-tagged.

NOTE: The OPU does not convert between YCbCr and RGB formats. The controlling software application must track the format of the video stream transported from the Frame Buffer to the OPU for both field times. For example, it would be invalid to specify an RGB output stream if the Frame Buffer is actually supplying a YCbCr stream.

3.3.5.2 2:1 X Zoom Unit

The 2:1 X Zoom Unit performs a 2-to-1 zoom along the X axis of the output stream. That is, it outputs exactly twice the number of pixels input. A linear interpolation unit generates a new pixel with a value average that of the pixels on either side.

The 2:1 X Zoom Unit does not support RGB 3:3:2 non-tagged output streams.

3.3.5.3 OPU Window Clipping Unit

The Window Clipping Unit defines the clipping window — a rectangular area of interest in the stream transported from the Frame Buffer Data Bus. The clipping window can be a region of only a few pixels per side, up to the entire input stream, and is defined by the following registers.

- Registers OPU_XBIf and OPU_YBIf specify the upper-left corner of the clipping window,
- Registers OPU XBIf and OPU YEIf specify the lower-right corner of the clipping window.

Table 3-25. OPU Window Clipping Unit — Control Registers

Register	Field	Function
OPU_MCRf	IM	Interlace Mode. Specifies whether the input stream is interlaced or non-interlaced.
OPU_MCRf	FPS	Field Polarity Select. Specifies the sync polarity of the input stream.

3.4 RFU: Reference Frame Unit

The RFU, shown in Figure 3-25, creates and manages multiple reference frames, and provides simultaneous access to eight object buffers and four display windows.

The RFU contains three subunits, each of which is detailed in the following sections:

- OBU: Object Buffer Unit
- DWU: Display Window Unit
- MMU: Memory Management Unit.

The OBU and DWU Registers control the operation of the RFU.

Figure 3-25. The Reference Frame Unit

Reference frames are rectangular, two-dimensional regions of the Frame Buffer that are allocated and deallocated as necessary by the controlling software application; they can be any size, order, or location, and can be contiguous or separated.

The name reference frame comes from the manner by which the RFU manages the frame buffer. Rather than re-arranging graphics objects by recopying bitmaps, the CL-PX2070 moves the frame of reference around the data that represents the object. A number of virtual frame buffers can exist within the physical frame buffer.

NOTE: The number of virtual reference frames which can be allocated is limited only by the total amount of memory available in the Frame Buffer. However, there can be no more than eight physical, simultaneous reference frames (since the CL-PX2070 contains only eight object buffer register sets).

The RFU accesses the Frame Buffer using linear rather than rectangular addresses, as shown in Figure 3-26. Although all storage elements are 16 bits wide, the Frame Buffer is addressable only on 32-bit, or pixel-pair, boundaries; therefore, the LSb of the address is always treated as 0h, regardless of the value written by the controlling software application. The bit assignments used by the Frame Buffer Data Bus FBD[31:0] are listed in Table 3-18.

Figure 3-26. Frame Buffer Addressing (32-bit)

The Linear Start Address (LSA) represents the upper-left corner (coordinate (0,0)) of the reference frame. It specifies the start of the reference frame relative to the start of the Frame Buffer (physical address 00000h).

NOTE: The CL-PX2070 does not specify a height parameter when defining a reference frame. The controlling software application must ensure that the object buffers and display windows are located within the intended boundaries.

The linear addressing architecture of the RFU allows reference frames to be allocated from contiguous, one-dimensional strings of memory, rather than inefficient rectangular areas typical in simpler architectures. A reference frame is specified by two values, as shown in Figure 3-27.

- the LSA, and
- the width in 16-bit pixels.

*Dimension must be implied by the controlling software application; it is not programmed into the CL-PX2070.

Figure 3-27. Reference Frame Allocation

3.4.1 OBU: Object Buffer Unit

The OBU creates and manages up to eight physical, simultaneous object buffers, each of which can be programmed (via its *linear start address*, or *LSA*) to be located anywhere in the frame buffer memory.

The object buffer, shown in Figure 3-28, is a rectangular, two-dimensional storage region allocated within a reference frame. The object buffer is the only means by which data can be stored to or retrieved from the Frame Buffer.

*Parameter supported by Pixel Semiconductor, Inc., low-level drivers.

Figure 3-28. Object Buffer

The OBU allows each object buffer to be locked to either video source, or to be programmed to operate independently. Object buffers also can be placed anywhere within the linearly-addressable Frame Buffer One pair of registers for each object buffer completely specify an object buffer and locate it within a reference frame, as shown in Table 3-26:

Table 3-26. Object Buffers — Control Registers

Register	Field	Function
OBUo_LSb	_	Display Window Linear Start Address. Specifies the location of the object buffer. This physical location represents a corner of the rectangular region relative to the start of the Frame Buffer (physical location 00000h), <i>not relative to the reference frame</i> .
OBUo_MCR	XBDC, YBDC	XY BLT Direction Control. Determine which corner of the object buffer is specified.
OBUo_RFX	_	Object Buffer Reference Frame X Size. Specifies the X dimension (pitch) of the reference frame in 16-bit pixels. OBUo_RFX is the only OBU Register that has any direct, hardware control of the reference frame.
OBUo_BSa		Object Buffer Size. Specifies the X and Y dimensions of the object buffer in 16-bit pixels.
OBUo_RFX	RFX	the X dimension of the reference frame, within which the object buffer is relatively located (the Y dimension is implied by number of lines);
OBUo_BSX OBUo_BSY	BSX BSY	the X and Y size of the object;
OBUo_LSH OBUo_LSL	RSVD LSL	the starting pixel of the object buffer;
OBUo_DEC	DM7-DM0	output decimation — small preview windows which can be displayed at low bandwidth;
OBUo_MCR	ОРМ	operating mode;
OBUo_MCR	XBDC YBDC	X and Y BLT directions;
OBUo_MCR	FA	FIFO association;
OBUo_MCR	LME CME	chrominance and luminance channel masking.

An object resize operation illustrates the advantages of this arrangement — the processor must only write to three registers to complete the resizing. "Tearing" is eliminated by only "moving" during the Vsync time.

3.4.1.1 OBU Operation Modes

The OBU has several modes of operation, each of which is described in Table 3-27.

NOTE:

The Synchronization Modes and the Addressing Modes can be specified in several combinations, including one that disables the object buffer.

Table 3-27, OBU Operation Modes — Control Registers

Register	Field	Function					
Synchronization Modes							
OBUo_MCR	OPM	 Operation Mode. Specifies two synchronization modes: Synchronized to IPU1. Synchronized mode must be specified when perform ing Y scaling in the IPU1 to ensure that the destination row and column addresses in the object buffer are synchronized to the input video stream. See also: Window Clipping and XY Scaler, page 56. Independent (not synchronized to IPU1). When one of the Independent modes is specified, the destination row and column addresses are generated independent of the IPU1. Therefore, the controlling software application must ensure that the correct number of pixels per row and the correct number of rows per frame (or field) are written to or read from the object buffer. The destination row and column addresses are reset to 0 when the last pixel has been accessed, in preparation for the next frame (or field). 					
Addiesonig ii							

OBUo_MCR OPM

Operation Mode. Specifies four addressing modes. The first two provide standard access to the object buffer:

- Normal. Normal addressing is used for all non-interlaced access to the object buffer; pixels are accessed sequentially within a row, and rows are accessed sequentially by frame.
- Interlaced. Interlaced addressing accesses pixels in the same way as normal
 addressing, but sequential row accesses are separated by an intervening
 row. In this case, the controlling software application must specify whether
 line 1 or line 2 should be the first line of the current field.

The second two addressing modes provide for special cases:

- Line Replicate on Read. Line Replicate on Read addressing is a read-only, non-interlaced mode; each row is read twice from the object buffer to produce a simple 2:1 vertical zoom.
- Block. Block addressing is a special read/write mode provided for JPEG devices. All access between the object buffer and the I/O stream is automatically performed in blocks either 8 or 16 pixels wide by 8 rows high. That is, 8 or 16 pixels are accessed from the first row, followed immediately by access to the second through the eighth rows of the same block. The object must be defined to be a multiple of 8 or 16 columns and a multiple of 8 rows. Fields XBDC and YBDC of Register OBUo_MCR specify block order. BLT direction controls are not recognized in block mode; blocks are always read in "normal" left to right and top to bottom order regardless of the BLT direction.

Table 3-27. OBU Operation Modes — Control Registers (cont.)

Register	Field	Function						
Single Sweep Mode								
OBUo_MCR	SSM	Single-Sweep Mode. Specifies the current addressing mode for use by the Single-Sweep Mode. Once a complete field (interlaced addressing) or frame (normal addressing) has been accessed, OPM is set to 0 to disable subsequent I/O access. This mode provides for automatic frame capture.						
FIFO Associa	ation							
OBU ₀ _MCR	FA	FIFO Association. Optionally allows a stream being written into an object buffer to be simultaneously copied to one of the three ALU inputs, or to the OPU input.						
Luminance a	nd Chromina	nce Channel Masking						
OBUo_MCR	LME, CME	 Luminance/Chrominance Mask Enable. Control whether the high byte or low byte of a 16-bit input stream is written into the object buffer or discarded. These controls are normally used when a 16-bit YCbCr stream is input. Masking the luminance channel causes the chrominance channels to be updated but leaves the luminance channel unchanged; Masking the chrominance channel causes the luminance channel to be updated but leaves the chrominance channels unchanged. 						
BLT Direction	n Control							
OBUo_MCR	XBDC, YBDC	X and Y BLT Direction Control. Specify whether the row and column address generators increment or decrement after each object buffer access. As shown in Figure 3-29, these controls also move the starting corner specified by Registers OBUo_LSb. The controlling software must shift the LSA to the appropriate cor-						

Figure 3-29. XY BLT Direction Control

ner when modifying the X or Y BLT directions. The BLT direction controls are not

Table 3-27. OBU Operation Modes — Control Registers (cont.)

Register	Field	Function							
Decimation Mask									
OBUo_DEC		Display Window X Start. Each object buffer has a write decimation mask (Register OBUo_DEC) that selectively drops 32-bit pixel-pairs written into the object buffer. The input data is treated as a stream of eight pixel-pair substreams; each 32-bit pixel-pair in the substream is represented by a bit in the Mask Register (the LSb being the first pixel-pair and the MSb being the last). A zero in Register OBUo_DEC causes the corresponding pixel-pair to be written into the object buffer; a one causes the corresponding pixel-pair to be dropped. Therefore, seven unique decimation factors — 7:8 to 1:8 — are possible.							

3.4.2 Interrupt Request Unit

The interrupt-request unit asserts an external interrupt-request signal when any of several conditions occur in the IPU1, IPU2, the OBU, the watchdog timer, or the FIFOs. See Section 4.1.5 on page 86 for additional information.

3.4.3 DWU: Display Window Unit

The DWU creates and manages up to four display windows simultaneously. The display window, shown in Figure 3-30, is the visible area within a reference frame. It is the only way to view Frame Buffer data.

Four display windows area available in the RFU. Each has registers for linear start address, reference frame size (X dimension), the X and Y size, XY window-start coordinates, and zoom factor.

Identical register sets specify the following for each display window:

- size and location,
- output display CRT pixel width,
- X- and Y-zoom factors,
- minimum window separation (non-CL-PX2080), and
- operation with and without the CL-PX2080.

Table 3-28. DWU: Display Window Unit — Control Registers (cont.)

Register	Register Field Function						
DWUd_DSY	_	Display Window Display Y Start. Specifies the number of rows between the top row of the CRT display and the top row of the display window.					
DWU_HCR		Display Window Horizontal Control Register. Specifies the total number of active pixels per row expected by the current sync parameters of the output CRT display device. (The number of rows to output is not required.)					
DWUd_DZF	YZOOM, XZOOM	Functional only when used with CL-PX2080. Specifies zoom factor. The image is scaled according to the following formula:					
		$Scaling = \frac{256}{ZOOM FACTOR}$					

Operation with and without the CL-PX2080 MediaDAC™

The CL-PX2080 MediaDAC is a companion device for the CL-PX2070 that allows overlapping (occluded) display windows, as specified by field OCC in Register DWU_MCR.

- When the CL-PX2070 is used with the CL-PX2080, the system supports up to four occluded display windows.
- When the CL-PX2070 is used without the CL-PX2080, the display windows cannot overlap. In this case, the controlling software application *must* ensure that:
 - the display windows do not overlap;
 - adjacent display windows are separated by the minimum distance specified by Register DWU_HCR;
 - rows within a display window do not cross physical memory row boundaries.

NOTE: The value written into Register DWU_HCR depends upon the dotclock of the CRT display system. For more information, see 4.4.3.2, page 147. Use the following equation to determine the minimum possible value:

$$MWS = \frac{1\mu S}{GPCLK \text{ period}}$$

^{*}Parameter supported by Pixel Semiconductor, Inc. low-level drivers.

Figure 3-30. Display Window

The registers listed in Table 3-28 define a display window and locate it within a reference frame.

NOTE: Registers DWUd_LSb, DWUd_RFX, and DWUd_WSa specify a display window and locate it within a reference frame. The reference frame is a column DWUd_RFX pixels wide. Its left and right boundaries are established in hardware; however, it has no top or bottom boundaries because the object buffer has no linear start address. Therefore, the controlling software application must imply the top and bottom boundaries by the location and size of the object buffers and display windows within that reference frame.

Table 3-28. DWU: Display Window Unit — Control Registers

Register	Field	Function
DWUd_LSb		Display Window Linear Start Address. Specify the location of the display window. This physical location represents the upper-left corner relative to the start of the Frame Buffer (physical location 00000h), <i>not relative to the reference frame</i> .
DWUd_RFX		Display Window Reference Frame X Size. Specifies the X dimension (pitch) of the reference frame in 16-bit pixels. DWUd_RFX is the only DWU Register that has any direct, hardware control of the reference frame.
DWUd_WSa DWU_MCR		Display Window Size. Specify the X and Y dimensions of the display window in 16-bit pixels.
DWU_MCR	WC3-WC0	Display Windows 3:0 Controls. Independently enable or disable each display window.
DWUd_DSX		Display Window Display X Start. Specifies the number of pixels between the left edge of the CRT display and the left edge of the display window.

3.4.4 MMU: Memory Management Unit

The MMU provides DRAM/VRAM support and translates the parameters from the rest of the system into physical memory addresses using Register MMU_MCR, as shown in Table 3-29. Frame buffer size can be up to 8 megabytes.

Table 3-29. MMU: Memory Management Unit — Control Registers

Register	Field	Function					
MMU_MCR FBC		Frame Buffer Configuration. Specifies the memory device, ensuring that the Frame Buffer is addressed correctly.					
MMU_MCR	FBD	 Frame Buffer Depth. Specifies the width of the Frame Buffer to be 16 or 32 bits wide. As shown in Figure 3-31, a 16-bit Frame Buffer is addressed identically to the 32-bit Frame Buffer, except that only the least significant 16-bit pixels can be accessed (the most significant 16-bit pixels do not exist). Note the following when using 16-bit mode: 8-bit pseudocolor stream data is the input format normally used with 16-bit mode, as shown in Table 3-18. This 16-bit mode is the only mode in which the IPU1 output formatter fills only the lower 16 bits of the 32-bit Frame Buffer Data Bus. 16-bit input streams can be used, but the input stream device must pack 16-bit pixels in the 32-bit format. A 16-bit output stream can be used if the output stream device unpacks the 16-bit data from the 32-bit format of the OPU. 					

Figure 3-31. Frame Buffer Addressing (16-Bit)

3.4.4.1 Frame Buffer Architecture

The frame buffer is a DRAM/VRAM array with a 32-bit data bus (FBD[31:0]). Two RAS* signals are provided to select between two 32-bit banks. Four CAS* signals are provided, and are typically used for byte selection. The memory device size is chosen from the options in field FBC of the MMU_MCR register, described in Section 4.4.2.1 on page 145. Figure 3-32 shows a typical frame-buffer implementation.

Figure 3-32. Typical Frame Buffer Implementation

4. DETAILED REGISTER DESCRIPTONS

This section lists and defines the CL-PX2070 registers. The registers are organized according to CL-PX2070 subsection.

NOTE:

Register names containing lower-case variables represent groups of registers with similar functions. For example, VIU_DPCf represents *both* Datapath Control registers — VIU_DPC1 (Datapath Control Field 1) and VIU_DPC2 (Datapath Control Field 2). Table 4-1 lists and defines all variables used in this manner.

In order to maintain compatibility with future Pixel Semiconductor products, all reserved bits in all registers must be written as zero.

Table 4-1. Variables Used in Register Names

٧٤	riable	Replaces	ariable Repl	Replaces		
а	(axis)	X, Y	(number) F (Fra	action) or I (Integer)		
b	(byte)	L (Low) or H (High)	(object buffer #) 0:7			
С	(color space)	Y, U, V or R, G, B	(port) 1:2			
d	(display window #)	0:3	(SIM) 0:31			
f	(field)	1:2	(channel) Y, U,	V		

4.1 HIU: Host Interface Unit — Registers

Table 4-2. HIU Register Address Map

Register	Pri. Map	Sec. Map	Definition	Used by I	Registers	Ref. Section
HIU_0	27C0	0290	Register I/O Address 0	HIU_CSU HIU_DBG HIU_DRD	Configuration Setup Debug Control Debug Read	4.1.1, page 82 4.1.2, page 83 4.1.3, page 84
HIU_1	27C2	0292	Register I/O Address 1	HIU_OCS HIU_IRQ	Operation Control/Status Interrupt Request	4.1.4, page 85 4.1.5, page 86
HIU_2	27C4	0294	Register I/O Address 2	HIU_RIN	Register Index	4.1.6, page 87
HIU_3	27 C 6	0296	Register I/O Address 3	HIU_RDT	Register Data Port	4.1.7, page 88
HIU_4	27C8	0298	Register I/O Address 4	HIU_MDT	Memory Data Port	4.1.8, page 88

Table 4-3. HIU Registers Accessed by the Register Data Port

Register	Index	Definition	Ref. Section
HIU_IMD	0000	Indexed Memory Data (Local Hardware Interface Mode)	4.1.9, page 88
HIU_ISU	0001	Interrupt Setup	4.1.10, page 89

4.1.1 HIU_CSU: Configuration Setup (Read Only)

I/O Address

27C0 (Primary Map)

0290 (Secondary Map)

See also:

Section 3.1.1 on page 27

Register HIU_CSU stores hardware configuration data for the CL-PX2070. An external configuration register must provide configuration data to the LSB of HIU_CSU during the reset interval. HIU_CSU is shadowed by registers HIU_DBG and HIU_DRD.

	RS	/D2			VER			RSVD			HSB		RSVD	FBT	PAS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	ription			
15:12	R	0000	RSVD	Reserved (read as 0)			
11:8	R	0000	VER	Video Processor Device Version 0000 CL-PX2070			
7:6	R	000	RSVD	Reserved (read as 0 in ISA and MCA modes; read as 1 in local hard- ware interface mode)			
5:3	R	111	HSB	Host System Bus. Specifies the type of host system connected to the CL-PX2070. 000 ISA bus definition 100 Aux ISA 001 MCA bus definition 101 Aux MCA 010 Reserved 011, 111 Local hardware interface definition 1xx All other configurations reserved.			
2	R	1	RSVD	Reserved (read as 1)			
1	R	1	FBT	Frame Buffer Jumper State. 0 DRAM 1 VRAM			
0	R	0	PAS	Port Address Select. Specifies the I/O address map that the host system should use when accessing the CL-PX2070. O Primary port map select Secondary port map select			

4.1.2 HIU_DBG: Debug Control (Write Only)

I/O Address

27C0 (Primary Map) 0290 (Secondary Map)

Register HIU_DBG controls the diagnostic mode of the CL-PX2070. Field MDE of register HIU_OCS must be set to 1 before write access to this register is enabled. HIU_DBG is shadowed by register HIU_DRD. Field DRE must be set to 1 before read access to register HIU_DRD is enabled.

	RSVD					DRE	O	RS	SSE	EE	SIMBP				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Description								
15:10	R/W	0h	RSVD	Reserved (read as 0)							
9	W	0	DRE	Debug Read Enable. Controls access to shadow register HIU_DRD. O Disable debug read 1 Enable debug read							
8:7	W	00	ORS	Operation Restart Select. Specifies the instruction index at which the SIU should restart. O Restart from current index O Restart from SI1 Restart from SI2 11 Reserved							
6	W	0	SSE	Single Step Enable. Controls the operation of the single-step mode. O Normal operation Single step operation (auto reset)							
5	W	0	EE	Execution Enable. Controls the operation of the SIU in debug mode 1 Halt CL-PX2070 1 Execute instruction (auto reset on breakpoint or single step)							
4:0	W	0h	SIMBP	Sequence Instruction Memory Breakpoint. Specifies the instruction in dex at which SIU execution will halt during debug mode. (0-1Fh)							

4.1.3 HIU_DRD: Debug Read (Read Only)

I/O Address

27C0 (Primary Map)

0290 (Secondary Map)

See also:

HIU_DBG: Debug Control (Write Only), p. 83

HIU_OCS: Operation Control/Status (Read/Write), p. 85

SIU_MCR: Master Control, p. 124

SIUs_SIM: Sequencer Instruction Memory, p. 127

Register HIU_DRD accesses diagnostic information provided by the global Error Detection Trap, the current object buffer counters, and the SIU current index. HIU_DRD is a shadow register to HIU_CSU. Field MDE of register HIU_OCS and field DRE of register HIU_DBG must be set to 1 before read access to this register is enabled.

EDT		XC						YC			SIMIN					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Descrip	otion
15	R	0	EDT	Error Detection Trap. This field is the logical OR of all FIFO overflow and underflow flags, and the watchdog timeout. O No error Error detected
14:10	R	0h	хс	Upper 5 bits of X Counter (Single-Step Mode) (0-1Fh)
9:5	R	0h	YC	Upper 5 bits of Y Counter (Single-Step Mode) (0-1Fh)
4:0	R	0h	SIMIN	Sequence Instruction Memory Current Index (0-1Fh)

4.1.4 HIU_OCS: Operation Control/Status (Read/Write)

. I/O Address

27C2h(Primary Map) 0292 (Secondary Map)

Register HIU_OCS controls the operating mode of the CL-PX2070 and provides status indicators. HI-U_OCS is shadowed during read cycles by register HIU_IRQ (see field SRC below).

	RSVD	FFH	FDH	DMAW	SRC	MDE	DPC	MPC	РМС	DMD	DME	SR		IE	М	
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15	R	0	RSVD	Reserved (read as 0)
14	R	0	FFH	FIFO F half full when read as 1
13	R	0	FDH	FIFO D half full when read as 1
12	R	0	DMAW	indicates DMA wait state when read as 1
11	R/W	0	SRC	Status Read Select. Specifies register to access during a read cycle. O Read status from register HIU_OCS Read status from shadow register HIU_IRQ
10	R/W	0	MDE	Master Debug Enable. Controls access to the debug support registers. Disable debug operation Enable debug operation; enables access to registers HIU_D-BG and HIU_DRD
9	R/W	0	DPC	Display Window Posting Operation Control (auto reset). Specifies the register posting mode of the DWU. O Disable posting 1 Enable posting (auto reset on post)
8	R/W	0	MPC	Master Posting Control (auto reset). Enables or disables all register posting logic of the CL-PX2070. Disable posting Enable posting (auto reset on post)
7	R/W	0	PMC	Posting Mode Control. Specifies normal register posting or forces an immediate register posting operation. O Normal posting operation Immediate post all registers (auto reset on post)
6	R/W	0	DMD	DMA Direction 0 DMA input to CL-PX2070 1 DMA output from CL-PX2070
5	R/W	0	DME	DMA Enable 0 Disable DMA transfers 1 Enable DMA transfers

Bit #	Access	Reset	Descri	ption (c	ont.)
3:0	R/W	0	SR	SR: 0 1	Soft Reset (auto reset). Causes a soft reset to be performed on all internal units. All registers are reset to 0, all FIFOs are cleared, and all counters are set to 0. Output signals are not placed in tristate. No reset performed Perform soft reset (auto reset)
3:0	R/W	0000	IEM	0001 0010 0100 1000	Interrupt Enable Mask. This field enables or disables interrupt requests from the four major interrupt sources. When more than one interrupt source is enabled, the requests are ORedany source can assert IRQ. See Section 4.1.10 on page 89 for additional information on the interrupt system. Enable counter to generate signal IRQ Enable watchdog to generate signal IRQ Enable object buffer termination to generate signal IRQ Enable FIFO overflow/underflow to generate signal IRQ

4.1.5 HIU_IRQ: Interrupt Request (Read Only)

I/O Address

27C2 (Primary Map)

0292 (Secondary Map)

See also:

HIU_OCS: Operation Control/Status (Read/Write), p. 85

HIU_ISU: Interrupt Setup, p. 89

Register HIU_IRQ accesses all interrupt requests generated by the IPU1, the IPU2, the OBU, the Watchdog Timer, and the FIFO overflow and underflow flags. An interrupt service routine typically uses HIU_IRQ to determine the interrupt request source(s). HIU_IRQ shadows register HIU_OCS. Field SRC of register HIU_OCS must be set to 1 before access to this register is enabled. An interrupt request appears as a 1, and inactive interrupt sources remain at 0.

	RSVD										IP2C	IP1C	FUN	FOV	WDT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion
15:6	R	0h	RSVD	Reserved (read as 0)
5	R	0	OBT	Object Buffer Termination (auto reset on read). Indicates that an object buffer termination condition occurred in the OBU.
4	R	0	IP2C	IPU2 Counter (auto reset on read). Indicates that a line, field, or vertical sync pulse interrupt request occurred in the IPU2.
3	R	0	IP1C	IPU1 Counter (auto reset on read). Indicates that a line, field, or vertical sync pulse interrupt request occurred in the IPU1.
2	R	0	FUN	FIFO Underflow (auto reset on read). Indicates that an underflow condition occurred in a FIFO. (SIU_FCS: FIFO Control/Status, p. 124.)

Bit #	Access	Reset	Descri	otion (cont.)
1	R	0	FOV	FIFO Overflow (auto reset on read). Indicates that an overflow condition occurred in a FIFO. (SIU_FCS: FIFO Control/Status, p. 124.)
0	R	0	WDT	Watchdog Timer to generate signal IRQ (auto reset on read). Indicates that a timeout condition occurred in the Watchdog Timer. (VIU_WDT: Watchdog Timer, p. 94.)

4.1.6 HIU_RIN: Register Index (Read/Write)

I/O Address

27C4 (Primary Map)

0294 (Secondary Map)

See also:

HIU_IMD: Indexed Memory Data (Local Hardware Interface Mode), p. 88

Register HIU_RIN specifies the index value of the next register to be accessed. An optional control automatically increments the index address on consecutive access (read or write) cycles.

AIC								RIN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Acces	s Reset	Descr	iption
15	R/W	0h	AIC	Automatic Increment Control. Controls the automatic increment feature of the index address. O Disable automatic increment 1 Enable automatic increment
14:0	R/W	0h	RIN	Register Index (0-7FFFh)

4.1.7 HIU_RDT: Register Data Port

I/O Address

27C6 (Primary Map) 0296 (Secondary Map)

HIU_RDT is the register data port. All registers mapped to HIU_RDT are index mapped by HIU_RIN.

							D	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:0	R/W	0h	DIO	Register Data I/O

4.1.8 HIU_MDT: Memory Data Port (Read/Write)

I/O Address

27C8 (Primary Map) 0298 (Secondary Map)

MDT accesses the Frame Ruffer. To maintain data integrity w

I/O port HIU_MDT accesses the Frame Buffer. To maintain data integrity when reading or writing to this port, first check the status of the appropriate FIFO.

							М	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:0	R/W	0h	MIO	Memory Data I/O

4.1.9 HIU_IMD: Indexed Memory Data (Local Hardware Interface Mode)

I/O Address

HIU_RDT

Index

0000

Register HIU_IMD may be used to accesses the Frame Buffer when the CL-PX2070 is operating in local hardware interface mode. The CL-PX2070 accesses the Frame Buffer through register data port HIU_R-DT when register HIU_IMD is specified.

MIO																
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion		
15:0	R/W	0h	МЮ	Memory Data I/O	•	

CL-PX2070 Video Processor

4.1.10 HIU_ISU: Interrupt Setup

I/O Address

HIU_RDT

Index

0001

Register HIU_ISU specifies the interrupt modes for the IPU1, IPU2, and the OBU. Any interrupt requests generated in the IPU1, IPU2, and OBU must also be enabled through field IEM of register HIU_OCS.

IPU interrupts are combined with an AND function. If more than one interrupt source is enabled within an IPnS field, all sources must be active before an interrupt request is posted.

The interrupt sources in the OBIS field use an OR function. If more than one interrupt source is selected, any one active source can trigger an interrupt.

RS	VD		IP2S		IP1S			OBIS								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit#	Access	Reset		
15:14	R/W	00	RSVD	Reserved (read as 0)
13:11	R/W	000	IP2S	IPU2 Interrupt Select. Specifies the IPU2 line count, field count, and input vertical sync pulse combination required to generate an interrupt request. Old Interrupt on line count Interrupt on field count Interrupt on VSync
10:8	R/W	000	IP1S	IPU1 Interrupt Select. Specifies the IPU1 line count, field count, and input vertical sync pulse combination required to generate an interrupt request. Old Interrupt on line count Interrupt on field count Interrupt on VSync
7:0	R/W	Oh 	OBIS	Object Buffer Termination Interrupt Request. Specifies the OBU object buffer termination conditions combination required to generate an interrupt request signal IRQ. O1h Object buffer 0 termination O2h Object buffer 1 termination O4h Object buffer 2 termination O8h Object buffer 3 termination 10h Object buffer 4 termination 20h Object buffer 5 termination 40h Object buffer 6 termination 80h Object buffer 7 termination

4.2 VBU: Video Bus Unit — Registers

Table 4-4. VBU Registers Accessed by the Register Data Port

Register	Index	Definition	Ref. Section
VIU: Video Inte	erface Unit		4.2.1, page 91
VIU_MCR1	1000	Master Control V1	4.2.1.1, page 91
VIU_MCR2	1001	Master Control V2	4.2.1.1, page 91
VIU_DPC1	1002	Datapath Control Field 1	4.2.1.2, page 92
VIU_DPC2	1003	Datapath Control Field 2	4.2.1.2, page 92
VIU_WDT	1004	Watchdog Timer	4.2.1.3, page 94
VSU: Video Sy	nc Unit		4.2.2, page 95
VSU_HSW	1100	Horizontal Sync Width	4.2.2.1, page 96
VSU_HAD	1101	Horizontal Active Delay	4.2.2.2, page 96
VSU_HAP	1102	Horizontal Active Pixels	4.2.2.3, page 97
VSU_HP	1103	Horizontal Period	4.2.2.4, page 97
VSU_VSW	1104	Vertical Sync Width	4.2.2.5, page 98
VSU_VAD	1105	Vertical Active Delay	4.2.2.6, page 98
VSU_VAP	1106	Vertical Active Pixels	4.2.2.7, page 99
VSU_VP	1107	Vertical Period	4.2.2.8, page 99

CL-PX2070

Video Processor

4.2.1 VIU: Video Interface Unit

4.2.1.1 VIU_MCRp: Master Control

I/O Address

HIU_RDT

Index

1000 (VIU_MCR1: Master Control V1)

1001 (VIU_MCR2: Master Control V2)

Registers VIU_MCR1 and VIU_MCR2 specify the functional and I/O characteristics of Video Port Interfaces 1 and 2.

STM	OFP	oss		OVSP	OHSP	OBP	OBT	IFP	ISS	IVSP	IHSP	IBP	IBT	Ю	M
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Res	Descrip	tion
15	R/W	0	STM	Stall Mode 0 stall mode disabled 1 stall mode enabled
14	R/W	0	OFP	Output Video Field Polarity O normal polarity I inverted polarity
13:12	R/W	00	oss	Output Video Sync Source 00 Vsync, Hsync, and blank input to CL-PX2070 01 Vsync, Hsync input to CL-PX2070; blank output from OP 10 Vsync, Hsync, and blank output from VSU 11 Blank output from OPU
11	R/W	0	OVSP	Output Video Vertical Sync Polarity. Specifies polarity of vertical sync signals V1VS (VIU_MCR1) and V2VS (VIU_MCR2) when signals are used as output. O active low 1 active high
10	R/W	0	OHSP	Output Video Horizontal Sync Polarity. Specifies polarity of horizontal sync signals V1HS (VIU_MCR1) and V2HS (VIU_MCR2) when used as outputs. O active low 1 active high
9	R/W	0	OBP	Output Video Blank Polarity. Specifies polarity of horizontal/composite blanking signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when used as outputs. O active low 1 active high
8	R/W	0	OBT	Output Video Blank Type. Specifies type of horizontal/composite blanking signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when used as outputs. O Hblank Cblank
7	R/W	0	IFP	Input Video Field Polarity 0 active low 1 active high

Bit #	Access	Res	Descrip	otion (cont.)
6	R/W	0	ISS	Input Sync Source 0 V1VS/V2VS, V1HS/V2HS, V1BL/V2BL input to CL-PX2070 1 V1VS/V2VS, V1HS/V2HS, V1BL/V2BL output from CL-PX2070
5	R/W	0	IVSP	Input Video VSync Polarity. Specifies polarity of vertical sync signals V1VS (VIU_MCR1) and V2VS (VIU_MCR2) when signals are used as input. 0 active low 1 active high
4	R/W	0	IHSP	Input Video Horizontal Sync Polarity. Specifies polarity of horizontal sync signals V1HS (VIU_MCR1) and V2HS (VIU_MCR2) when used as inputs. 0 active low 1 active high
3	R/W	0	IBP	Input Video Blank Polarity. Specifies polarity of horizontal/composite blanking signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when used as inputs. O active low 1 active high
2	R/W	0	IBT	Input Video Blank Type. Specifies type of horizontal/composite blanking signals V1BL (VIU_MCR1) and V2BL (VIU_MCR2) when used as inputs. O Hblank 1 Cblank
1:0	R/W	00	IOM	Input/Output Mode. Specifies whether Video Port V1 or V2 is input only, output only, or duplexed under the control of V1PH (V1) or V2PH (V2). Input only Duplex, output on V1PH/V2PH high Duplex, output on V1PH/V2PH low

4.2.1.2 VIU_DPCf: Datapath Contol

I/O Address

HIU_RDT

Index

1002 (VIU_DPC1: Datapath Control Field 1) 1003 (VIU_DPC2: Datapath Control Field 2)

Registers VIU_DPC1 and VIU_DPC2 specify the flow of stream data and the source of control sync references for the IPU1, the IPU2, and the OPU for fields 1 and 2.

RSVD 15 14 13 1				VSUDC				IPU1DC			IPU2DC	;	ODC		
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:12	R/W	0000	RSVD	Reserved (read as 0)
11:9	R/W	000	VSUDC	VSU Datapath Control 000 V1 sources clock 001 V1 sources clock, V1PH qualified 010 V2 sources clock 011 V2 sources clock, V2PH qualified 100 MCLK/3 timebase 101 MCLK/6 timebase 110, 111 Reserved
8:6	R/W	000	IPU1DC	IPU1 Datapath Control. Specifies the source of control sync references and input stream data for the IPU1. O00 V1 sources control sync/data O01 V1 sources control sync/data, V1PH qualified O10 V2 sources control sync/data O11 V2 sources control sync/data, V2PH qualified OPU sources data, MCLK/3 HS timebase, sync from VSU OPU sources data, MCLK/6 HS timebase, sync from VSU 110, 111 Reserved
5:3	R/W	000	IPU2DC	IPU2 Datapath Control. Specifies the source of control sync references and input stream data for the IPU2. O00 V1 sources control sync/data O01 V1 sources control sync/data, V1PH qualified O10 V2 sources control sync/data O11 V2 sources control sync/data, V2PH qualified OPU sources data, MCLK/3ª HS timebase, sync from VSU
				101 OPU sources data, MCLK/6 HS timebase, sync from VSU 110 BIU sources control data, no sync controls 111 Reserved
2:0	R/W		ODC	OPU Datapath Control. Specifies the source of control sync references and the destination of output stream data from the OPU. OOU V1 sources control sync OO1 V1 sources control sync, V1PH qualified OO1 V2 sources control sync OO1 V2 sources control sync OO1 V2 sources control sync OO2 V2PH qualified OO3 VSU sources control sync, MCLK/3 timebase OO3 VSU sources control sync, MCLK/6 timebase OO3 NCLK/6 timebase

a. MCLK/3 is expressed as "sequencer clock" in some other places in this document.

4.2.1.3 VIU_WDT: Watchdog Timer

I/O Address

HIU_RDT

Index

1004

Register VIU_WDT controls the operation of the watchdog timer, and specifies the field toggle mode of the SIU.

RSVD	MMS		MFTS		WTE	TMOUT									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15	R/W	0	RSVD	Reserved (read as 0)
14	R/W	0	MMS	Manual Mode Start. Writing 0, then 1 while MFTS is programmed to 6h initiates a field toggle in manual mode.
13:11	R/W	000	MFTS	Master Field Toggle Select. Specifies the field toggle mode for the SIU. The field toggles on the leading edge of Vsync. 000 Field timing from V1 input video Vsync 001 Field timing from V1 output video Vsync 010 Field timing from V2 input video Vsync 011 Field timing from V2 output video Vsync 100 Field timing from watchdog timer 101 Field timing from VSU Vsync 110 Field timing from manual mode start 111 Reserved
10	R/W	0	WTE	Watchdog Timer Enable. Enables or disables the operation of the watchdog timer. O Disable watchdog timer Enable watchdog timer
9:0	R/W	0h	TMOUT	Timeout. Specifies the watchdog timer interval. The timebase interval is the memory clock signal MCLK prescaled by a factor of 49,152 (3 * 214). (0-3FFh)

4.2.2 VSU: Video Sync Unit

The following sections describe the VSU registers, shown in Figure 4-1 and Figure 4-2.

Figure 4-1. VSU Horizontal Sync Timing

Figure 4-2. VSU Vertical Sync Timing

4.2.2.1 VSU_HSW: Horizontal Sync Width

I/O Address

HIU_RDT

Index

1100

See also:

Figure 4-1. VSU Horizontal Sync Timing, p. 95

Register VSU_HSW specifies the width of the horizontal sync pulse generated by the internal sync generator. The timebase is specified by fields IPU1DC and IPU2DC of register VIU_DPCf.

	RSVD							HSW							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:7	R/W	0h	RSVD	Reserved (read as 0)
6:0	R/W	0h	HSW	Horizontal sync width (0-7Fh)

4.2.2.2 VSU_HAD: Horizontal Active Delay

I/O Address

HIU_RDT

Index

1101

See also:

Figure 4-1. VSU Horizontal Sync Timing, p. 95

Register VSU_HAD specifies the delay from the start of the horizontal sync pulse generated by the internal sync generator to the beginning of the horizontal active interval. The timebase is specified by fields IPU1DC and IPU2DC of register VIU_DPCf.

RSVD							HAD								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

15:10 R/W 0h RSVD Reserved (read as 0) 9:0 R/W 0h HAD Horizontal active delay (0-3FFh)	Bit #	Access	Reset	Descri	otion
9:0 R/W 0h HAD Horizontal active delay (0-3FFh)	15:10	R/W	0h	RSVD	Reserved (read as 0)
	9:0	R/W	0h	HAD	Horizontal active delay (0-3FFh)

4.2.2.3 VSU_HAP: Horizontal Active Pixels

I/O Address

HIU RDT

Index

1102

See also:

Figure 4-1. VSU Horizontal Sync Timing, p. 95

Register VSU_HAP specifies the width of the horizontal active interval generated by the internal sync generator. The timebase is input memory clock signal MCLK prescaled by a factor of 3 or 6, as specified by fields IPU1DC and IPU2DC of register VIU_DPCf.

		RSVD								HAP					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	HAP	Horizontal active pixels (0-3FFh)

4.2.2.4 VSU HP: Horizontal Period

I/O Address

HIU_RDT

Index

1103

See also:

15

14

13

12

11

Figure 4-1. VSU Horizontal Sync Timing, p. 95

10

Register VSU_HP specifies the width of the horizontal sync period generated by the internal sync generator. The timebase is input memory clock signal MCLK prescaled by a factor of 3 or 6, as specified by fields IPU1DC and IPU2DC of register VIU_DPCf.

NOTE: The number entered in HP must be one less than the desired interval. See Section 3.2.3 on page 43 for additional information

RSVD HP

7

6

5

Bit #	Access	Reset	Descrip	otion
15:10	R/W	0h	RSVD	Reserved (read as 0)
9:0	R/W	0h	HP	Desired horizontal period (0-3FFh) - 1

8

3

1

0

4.2.2.5 VSU_VSW: Vertical Sync Width

I/O Address

HIU_RDT

Index

1104

See also:

Figure 4-2. VSU Vertical Sync Timing, p. 95

Register VSU_VSW specifies the width of the vertical sync pulse generated by the internal sync generator. The time-base is the horizontal sync interval specified by register VSU_HP.

	RSVD										vsw					
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit # Access Reset			Descrip	Description					
15:7	R/W	0h	RSVD	Reserved (read as 0)					
6:0	R/W	0h	vsw	Vertical sync width (0-7Fh)					

4.2.2.6 VSU_VAD: Vertical Active Delay

I/O Address

HIU_RDT

Index

1105

See also:

Figure 4-2. VSU Vertical Sync Timing, p. 95

Register VSU_VAD specifies the delay from the start of the vertical sync pulse generated by the internal sync generator to the beginning of the vertical active interval. The timebase is the horizontal sync interval specified by register VSU_HP.

	RSVD					VAD										
I	15	14	13	12	11	10	9	8	7	6	. 5	4	3	2	1	0

Bit # Access Reset			Descrip	Description						
15:10	R/W	0h	RSVD	Reserved (read as 0)						
9:0	R/W	0h	VAD	Vertical active delay (0-3FFh)						

CL-PX2070 Video Processor

4.2.2.7 VSU_VAP: Vertical Active Pixels

I/O Address

HIU_RDT

Index

1106

See also:

Figure 4-2. VSU Vertical Sync Timing, p. 95

Register VSU_VAP specifies the width of the vertical active interval generated by the internal sync generator. The timebase is the horizontal sync interval specified by register VSU_HP.

RSVD				VAP											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit # Access Reset			Description						
15:11	R/W	0h	RSVD	Reserved (read as 0)	,				
10:0	R/W	0h	VAP	Vertical active pixels (0-7FFh)	,				

4.2.2.8 VSU_VP: Vertical Period

I/O Address

HIU_RDT

Index

1107

See also:

Figure 4-2. VSU Vertical Sync Timing, p. 95

Register VSU_VP specifies the width of the vertical sync period generated by the internal sync generator. The timebase is the horizontal sync interval specified by register VSU_HP. This register also provides the enable and single sweep controls for the internal sync generator.

	SGE	SSE		RSVD			VP									
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Access	Reset	Description						
R/W	0 ~	SGE	Sync Generator Enable					
R/W	0	SSE	Single Sweep Enable - 1 Enables single sweep mode. When this bit is written as 1, SGE resets to 0 at the end of the sweep. When SGE is set (written as 1), another single sweep occurs, after which it is reset.					
R/W	0000	RSVD	Reserved (read as 0)					
R/W	0h	VP	Vertical active count (0-7FFh)					
	R/W R/W	R/W 0000	R/W 0 SGE R/W 0 SSE					

4.3 VPU: Video Processor Unit — Registers

Table 4-5. VPU Registers Accessed by the Register Data Port

Name	Index	Definition	Ref. Section
VPU Global Cor	ntrol	·	4.3.1, page 105
VPU_MCR	2000	Master Control	4.3.1.1, page 105
IPU1: Input Pro	cessor Unit 1		4.3.2, page 106
IPU1_PIX	2100	Pixel Count	4.3.2.1, page 106
IPU1_LIC	2101	Line Count	4.3.2.2, page 106
IPU1_FLC	2102	Field Count	4.3.2.3, page 107
IPU1_LIR	2103	Line Count Interrupt Request	4.3.2.4, page 107
IPU1_FIR	2104	Field Count Interrupt Request	4.3.2.5, page 108
IPU1_LRB	2200	LUT RAM Base Address	4.3.2.6, page 108
IPU1_LRD	2201	LUT RAM Data	4.3.2.7, page 109
IPU1_MCR1	3000	Master Control Field 1	4.3.2.8, page 109
IPU1_XBF1	3001	X Begin Fraction Field 1	4.3.2.9, page 111
IPU1_XBI1	3002	X Begin Integer Field 1	4.3.2.9, page 111
IPU1_XEI1	3003	X End Integer Field 1	4.3.2.10, page 112
IPU1_XSF1	3004	X Shrink Fraction Field 1	4.3.2.11, page 113
IPU1_XSI1	3005	X Shrink Integer Field 1	4.3.2.11, page 113
IPU1_YBF1	3006	Y Begin Fraction Field 1	4.3.2.12, page 114
IPU1_YBI1	3007	Y Begin Integer Field 1	4.3.2.12, page 114
IPU1_YEI1	3008	Y End Integer Field 1	4.3.2.13, page 115
IPU1_YSF1	3009	Y Shrink Fraction Field 1	4.3.2.14, page 116
IPU1_YSI1	300a	Y Shrink Integer Field 1	4.3.2.14, page 116
IPU1_KFC1	300b	Key Function Code Field 1	4.3.2.15, page 117
IPU1_MMY1	300c	Chroma Key Y/R Max/Min Field 1	4.3.2.16, page 117
IPU1_MMU1	300d	Chroma Key U/G Max/Min Field 1	4.3.2.16, page 117
IPU1_MMV1	300e	Chroma Key V/B Max/Min Field 1	4.3.2.16, page 117
IPU1_MCR2	3100	Master Control Field 2	4.3.2.8, page 109
IPU1_XBF2	3101	X Begin Fraction Field 2	4.3.2.9, page 111

Table 4-5. VPU Registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
IPU1_XBI2	3102	X Begin Integer Field 2	4.3.2.9, page 111
IPU1_XEI2	3103	X End Integer Field 2	4.3.2.10, page 112
IPU1_XSF2	3104	X Shrink Fraction Field 2	4.3.2.11, page 113
IPU1_XSI2	3105	X Shrink Integer Field 2	4.3.2.11, page 113
IPU1_YBF2	3106	Y Begin Fraction Field 2	4.3.2.12, page 114
IPU1_YBI2	3107	Y Begin Integer Field 2	4.3.2.12, page 114
IPU1_YEI2	3108	Y End Integer Field 2	4.3.2.13, page 115
IPU1_YSF2	3109	Y Shrink Fraction Field 2	4.3.2.14, page 116
IPU1_YSI2	310a	Y Shrink Integer Field 2	4.3.2.14, page 116
IPU1_KFC2	310b	Key Function Code Field 2	4.3.2.15, page 117
IPU1_MMY2	310c	Chroma Key Y/R Max/Min Field 2	4.3.2.16, page 117
IPU1_MMU2	310d	Chroma Key U/G Max/Min Field 2	4.3.2.16, page 117
IPU1_MMV2	310e	Chroma Key V/B Max/Min Field 2	4.3.2.16, page 117
IPU2: Input Pro	cessor Unit 2		4.3.3, page 119
IPU2_PIX	2300	Pixel Count	4.3.3.1, page 119
IPU2_LIC	2301	Line Count	4.3.3.2, page 119
IPU2_FLC	2302	Field Count	4.3.3.3, page 120
IPU2_LIR	2303	Line Count Interrupt Request	4.3.3.4, page 120
IPU2_FIR	2304	Field Count Interrupt Request	4.3.3.5, page 121
IPU2_MCR1	3200	Master Control Field 1	4.3.3.6, page 121
IPU2_XBI1	3202	X Begin Integer Field 1	4.3.3.7, page 122
IPU2_XEI1	3203	X End Integer Field 1	4.3.3.8, page 122
IPU2_YBI1	3207	Y Begin Integer Field 1	4.3.3.9, page 123
IPU2_YEI1	3208	Y End Integer Field 1	4.3.3.10, page 123
IPU2_MCR2	3300	Master Control Field 2	4.3.3.6, page 121
IPU2_XBI2	3302	X Begin Integer Field 2	4.3.3.7, page 122
IPU2_XEI2	3303	X End Integer Field 2	4.3.3.8, page 122
IPU2_YBI2	3307	Y Begin Integer Field 2	4.3.3.9, page 123

Table 4-5. VPU Registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
IPU2_YEI2	3308	Y End Integer Field 2	4.3.3.10, page 123
SIU: Sequence	r Instruction Uni	t	4.3.4, page 124
SIU_MCR	2800	Master Control	4.3.4.1, page 124
SIU_FCS	2801	FIFO Control/Status	4.3.4.2, page 124
SIU_FOU	2802	FIFO Overflow/Underflow	4.3.4.2, page 124
SIU0_SIM	2e00	Sequencer Instruction Memory 0	4.3.4.4, page 127
SIU1_SIM	2e01	Sequencer Instruction Memory 1	4.3.4.4, page 127
SIU2_SIM	2e02	Sequencer Instruction Memory 2	4.3.4.4, page 127
SIU3_SIM	2e03	Sequencer Instruction Memory 3	4.3.4.4, page 127
SIU4_SIM	2e04	Sequencer Instruction Memory 4	4.3.4.4, page 127
SIU5_SIM	2e05	Sequencer Instruction Memory 5	4.3.4.4, page 127
SIU6_SIM	2e06	Sequencer Instruction Memory 6	4.3.4.4, page 127
SIU7_SIM	2e07	Sequencer Instruction Memory 7	4.3.4.4, page 127
SIU8_SIM	2e08	Sequencer Instruction Memory 8	4.3.4.4, page 127
SIU9_SIM	2e09	Sequencer Instruction Memory 9	4.3.4.4, page 127
SIU10_SIM	2e0a	Sequencer Instruction Memory 10	4.3.4.4, page 127
SIU11_SIM	2e0b	Sequencer Instruction Memory 11	4.3.4.4, page 127
SIU12_SIM	2e0c	Sequencer Instruction Memory 12	4.3.4.4, page 127
SIU13_SIM	2e0d	Sequencer Instruction Memory 13	4.3.4.4, page 127
SIU14_SIM	2e0e	Sequencer Instruction Memory 14	4.3.4.4, page 127
SIU15_SIM	2e0f-	Sequencer Instruction Memory 15	4.3.4.4, page 127
SIU16_SIM	2e10	Sequencer Instruction Memory 16	4.3.4.4, page 127
SIU17_SIM	2e11	Sequencer Instruction Memory 17	4.3.4.4, page 127
SIU18_SIM	2e12	Sequencer Instruction Memory 18	4.3.4.4, page 127
SIU19_SIM	2e13	Sequencer Instruction Memory 19	4.3.4.4, page 127
SIU20_SIM	2e14	Sequencer Instruction Memory 20	4.3.4.4, page 127
SIU21_SIM	2e15	Sequencer Instruction Memory 21	4.3.4.4, page 127
SIU22_SIM	2e16	Sequencer Instruction Memory 22	4.3.4.4, page 127

Table 4-5. VPU Registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
SIU23_SIM	2e17	Sequencer Instruction Memory 23	4.3.4.4, page 127
SIU24_SIM	2e18	Sequencer Instruction Memory 24	4.3.4.4, page 127
SIU25_SIM	2e19	Sequencer Instruction Memory 25	4.3.4.4, page 127
SIU26_SIM	2e1a	Sequencer Instruction Memory 26	4.3.4.4, page 127
SIU27_SIM	2e1b	Sequencer Instruction Memory 27	4.3.4.4, page 127
SIU28_SIM	2e1c	Sequencer Instruction Memory 28	4.3.4.4, page 127
SIU29_SIM	2e1d	Sequencer Instruction Memory 29	4.3.4.4, page 127
SIU30_SIM	2e1e	Sequencer Instruction Memory 30	4.3.4.4, page 127
SIU31_SIM	2e1f	Sequencer Instruction Memory 31	4.3.4.4, page 127
ALU: Arithmetic	and Logic Unit		4.3.5, page 128
ALU_MCR1	2900	Master Control Field 1	4.3.5.1, page 128
ALU_MCR2	2901	Master Control Field 2	4.3.5.1, page 128
ALU_TOP	2902	Tag Operation	4.3.5.2, page 129
ALU_AV	2903	Alpha Value	4.3.5.3, page 130
ALU_LOPY	2904	Logic Operation Channel Y	4.3.5.4, page 130
ALU_LOPU	2905	Logic Operation Channel U	4.3.5.4, page 130
ALU_LOPV	2906	Logic Operation Channel V	4.3.5.4, page 130
ALU_CAY	2907	Constant A, Channel Y	4.3.5.5, page 131
ALU_CAU	2908	Constant A, Channel U	4.3.5.5, page 131
ALU_CAV	2909	Constant A, Channel V	4.3.5.5, page 131
ALU_CBY	290a	Constant B, Channel Y	4.3.5.6, page 131
ALU_CBU	290b	Constant B, Channel U	4.3.5.6, page 131
ALU_CBV	290c	Constant B, Channel V	4.3.5.6, page 131
ALU_CCY	290d	Constant C, Channel Y	4.3.5.7, page 132
ALU_CCU	290e	Constant C, Channel U	4.3.5.7, page 132
ALU_CCV	290f	Constant C, Channel V	4.3.5.7, page 132

Table 4-5. VPU Registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
OPU: Output Po	rocessing Unit		4.3.6, page 133
OPU_MCR1	2a00	Master Control Field 1	4.3.6.1, page 133
OPU_XBI1	2a02	X Begin Integer Field 1	4.3.6.2, page 134
OPU_XEI1	2a03	X End Integer Field 1	4.3.6.3, page 134
OPU_YBI1	2a07	Y Begin Integer Field 1	4.3.6.4, page 135
OPU_YEI1	2a08	Y End Integer Field 1	4.3.6.5, page 135
OPU_MCR2	2b00	Master Control Field 2	4.3.6.1, page 133
OPU_XBI2	2b02	X Begin Integer Field 2	4.3.6.2, page 134
OPU_XEI2	2b03	X End Integer Field 2	4.3.6.3, page 134
OPU_YBI2	2b07	Y Begin Integer Field 2	4.3.6.4, page 135
OPU_YEI2	2b08	Y End Integer Field 2	4.3.6.5, page 135

4.3.1 VPU Global Control

4.3.1.1 VPU_MCR: Master Control

I/O Address

HIU_RDT

Index

2000

Register VPU_MCR controls the operation of the IPU1, the IPU2, and the OPU for fields 1 and 2.

	RSVD		ALUE		OPI	FSS			IP2	FSS			IP1	FSS	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:13	R/W	0h	RSVD	Reserved (read as 0)
12	R/W	0	ALUE	ALU Enable. Enables or disables the operation of the ALU. Disable ALU operation Enable ALU operation
11:8	R/W	0000	OPFSS	OPU Field Sync Select. Enables or disables the operation of the OPU, specifies whether it processes one or both fields, and specifies the field synchronization. O000 Disable unit operation O001 Start unit on next field, both fields O010 Start unit on field 1, single field only O011 Start unit on field 1, both fields O100 Start unit on field 2, single field only O101 Start unit on field 2, both fields
7:4	R/W	0000	IP2FSS	IPU2 Field Sync Select. Enables or disables the operation of the IPU2, specifies whether it processes one or both fields, and specifies the field synchronization. O000 Disable unit operation O001 Start unit on next field, both fields O010 Start unit on field 1, single field only O011 Start unit on field 2, single field only O100 Start unit on field 2, single field only O101 Start unit on field 2, both fields
3:0	R/W	0000	IP1FSS	IPU1 Field Sync Select. Enables or disables the operation of the IPU1, specifies whether it processes one or both fields, and specifies the field synchronization. O000 Disable unit operation O001 Start unit on next field, both fields O010 Start unit on field 1, single field only O011 Start unit on field 2, single field only O100 Start unit on field 2, both fields O101 Start unit on field 2, both fields

4.3.2 IPU1: Input Processor Unit 1

4.3.2.1 IPU1_PIX: Pixel Count

I/O Address

HIU_RDT

Index

2100

Register IPU1_PIX is a read-only register that reads back the value of the current 11-bit pixel counter. It automatically resets to 0 at the beginning of each line.

		RSVD								PC					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion
15:11	Read Only	0h	RSVD	Reserved (read as 0)
10:0	Read Only	0h	PC	Pixel Count current line (0-7FFh)

4.3.2.2 IPU1_LIC: Line Count

I/O Address

HIU_RDT

Index

2101

Register IPU1_LIC is a read-only register of the current 11-bit line count. It automatically resets to 0 at the beginning of each field.

		RSVD								LC					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 ,	0

Bit #	Access	Reset	Descrip	otion
15:11	Read Only	0h	RSVD	Reserved (read as 0)
10:0	Read Only	0h	LC	Line Count current field (0-7FFh)

4.3.2.3 IPU1_FLC: Field Count

I/O Address

HIU_RDT

Index

2102

Register IPU1_FLC returns the current 15-bit field count on read, is set to zero when bit FCE in IPU1_FIR is set to zero.

F	RSVD								FC							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15	Read Only	0h	RSVD	Reserved (read as 0)
15:0	Read Only	0h	FC	Field Count

4.3.2.4 IPU1_LIR: Line Count Interrupt Request

I/O Address

HIU_RDT

Index

2103

Register IPU1_LIR generates an interrupt request when the 11-bit value in field IRLC is equal to the value in field LC of register IPU1_LIC.

		RSVD								IRLC					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	IRLC	Interrupt Request Line Count (0-7FFh)

4.3.2.5 IPU1_FIR: Field Count Interrupt Request

I/O Address

HIU RDT

Index

2104

Register IPU1_FIR generates an interrupt request when the 15-bit value in field IRFC is equal to the value in field FC of register IPU1_FLC.

FCE								IRFC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	ption
15	R/W	0h	FCE	Field Count Enable. 1 field count enabled 0 field count disabled
14:0	R/W	0h	IRFC	Interrupt Request Field Count

4.3.2.6 IPU1_LRB: LUT RAM Base Address

I/O Address

HIU_RDT

Index

2200

Register IPU1_LRB preloads the 8-bit LUT RAM address counter and initializes the channel pointer to the YR channel. The channel pointer automatically advances to the next channel after each LUT RAM access, and address counter automatically increments after accessing the CrB channel. LUT RAM elements are accessed in the following order: YR[LRB+0], CbG[LRB+0], CrB[LRB+0], YR[LRB+1], CbG[LRB+1], CrB[LRB+1], etc.

RSVD								LRB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit # Access Reset		Description				
15:8	R/W	 0h	RSVD	Reserved (read as 0)		
7:0	R/W	0h	LRB	LUT RAM Base Address. Specifies the 8-bit address generator preload value. (0-FFh)		

CL-PX2070 Video Processor

4.3.2.7 IPU1_LRD: LUT RAM Data

I/O Address

HIU_RDT

Index

2201

See also:

IPU1_LRB: LUT RAM Base Address, p. 108

Register IPU1 LRD is the bidirectional data port to the storage elements of the three-channel LUT RAM.

RSVD											LF	RD			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:8	R/W	0h	RSVD	Reserved (read as 0)
7:0	R/W	0h	LRD	LUT RAM Data. Data written to this field transfers to the current LUT RAM element; data to be read from the current LUT RAM element appears in this field. (0-FFh)

4.3.2.8 IPU1_MCRf: Master Control

I/O Address

HIU_RDT

Index

3000 (IPU1_MCR1: Master Control Field 1)

3100 (IPU1_MCR2: Master Control Field 2)

See also:

Special Y Scaling Path Mode, p. 57

IPU1: Input Processor Unit 1,Section 3.3.2 on page 50

Figure 3-16. IPU1: Input Processor Unit 1, p. 51

Registers IPU1_MCR1 and IPU1_MCR2 control the operation of the IPU1 for fields 1 and 2.

	FPS	IM	PSE	CSCE	LE	YSP	Ol	ODT		0	F		IF				
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit#	Access	Reset	Descri	ption
15	R/W	0	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the Window Clipping and XY Scaler. O Normal polarity Invert polarity
14	R/W	0	IM	Interlace Mode. Specifies the input stream as interlaced or non-interlaced data. O Progressive scan input Interlaced input

Bit #	Access	Reset	Descri	ption (cont.)
13	R/W	0	PSE	Prescaler Enable. Enables or disables the operation of the X Prescaler. O Bypass prescaler 1 Enable 0.5 X prescaler
12	R/W	0	CSCE	Color Space Converter Enable. Enables or disables the operation of the Color Space Converter. O Bypass color space converter Enable color space converter
11	R/W	0	LE	LUT Enable. Enables or disables the operation of the LUT RAM. O Bypass LUT RAM 1 Enable LUT RAM
10	R/W	0	YSP	Y Scaling Path. Enables or disables the special Y Scaling Path Mode. O Y Scaler performs Y scaling ALU performs Y scaling
9:8	R/W	00	ODT	Output Data Tag. Controls the input selection of the Input Tag Unit tag multiplexor (see Figure 3-27). O Pass tag unchanged O Set tag to field ID Set tag to inverse chroma key tag Set tag to chroma key tag
7:4	R/W	0000	OF	Output Data Format. Specifies the format of the output stream. 0000 YCbCr 4:2:2 non-tagged data 0001 YCbCr 4:2:2 tagged data 1000 RGB 5:6:5 non-tagged data 1001 RGB 1:5:5:5 tagged data 1010 RGB 8:8:8 non-tagged data 1011 RGB 1:8:8 tagged data 1110 RGB 3:3:2 non-tagged data
3:0	R/W	0000	IF	Input Data Format. Specifies the format of the input stream. 0000 YCbCr 4:2:2 non-tagged data 0001 YCbCr 4:2:2 tagged data 0010 YCbCr 4:1:1 non-tagged data 1000 RGB 5:6:5 non-tagged data 1001 RGB 1:5:5:5 tagged data 1110 Pseudo color (indirect color mapping via IPU1 LUT)

4.3.2.9 IPU1_XBnf: X Begin

I/O Address

HIU_RDT

Index

3001 (IPU1_XBF1: X Begin Fraction Field 1) 3002 (IPU1_XBI1: X Begin Integer Field 1) 3101 (IPU1_XBF2: X Begin Fraction Field 2) 3102 (IPU1_XBI2: X End Integer Field 2)

See also:

Section 3.3.2 on page 50

Section 3.3.2.5 on page 56

Registers IPU1_XBnf specify the 11.3 format X begin value for fields 1 and 2.

X Begin Fraction Index (IPU1_XBF1 and IPU1_XBF2)

IPU1_XBF1 and IPU1_XBF2 allow the virtual left boundary of the post-scaled window to be aligned between pixels of the pre-scaled window for fields 1 and 2.

	BF								RSVD						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:13	R/W	0h	BF	Begin X Column Fractional Index. Specifies the 3-bit fractional portion of the 11.3 format X begin value. (0-7h)
12:0	R/W	0h	RSVD	Reserved (read as 0)

X Begin Integer Index (IPU1_XBI1 and IPU1_XBI2)

Registers IPU1_XBI1 and IPU1_XBI2 define the left boundary of the pre-scaling window for fields 1 and 2. All video to the left of this boundary is clipped and is not used to generate the scaled window.

		RSVD				ВІ										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	ВІ	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11.3 format X begin value. (0-7FFh)

4.3.2.10 IPU1_XEIf: X End

I/O Address

HIU RDT

Index

3003 (IPU1_XEI1: X End Integer Field 1)

3103 (IPU1_XEI2: X End Integer Field 2)

See also:

Figure 3-18. Window Clipping and XY Scaling Control Registers, p. 56

Registers IPU1_XEI1 and IPU1_XEI2 specify the 11-bit X end value for fields 1 and 2.

	RSVD					EI									
15	15 14 13 12 11				10	9	8	7	6	5	4	3	2	1	0

Bit #	Acces	s Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	El	X End Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)

4.3.2.11 IPU1_XSnf: X Shrink

I/O Address

HIU_RDT

Index

3004 (IPU1_XSF1: X Shrink Fraction Field 1) 3005 (IPU1_XSI1: X Shrink Integer Field 1) 3104 (IPU1_XSF2: X Shrink Fraction Field 2) 3105 (IPU1_XSI2: X Shrink Integer Field 2)

See also:

Figure 3-18. Window Clipping and XY Scaling Control Registers, p. 56

Registers IPU1_XSnf specify the 6.10 format X shrink value for fields 1 and 2.

X Shrink Fraction (IPU1_XSF1 and IPU1_XSF2)

SF											RSVD					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Descrip	tion
15:5	R/W	0h	SF	X Shrink Fraction. Specifies the 10-bit fractional portion of the 6.10 format X shrink value. (0-3FFh)
4:0	R/W	0h -	RSVD	Reserved (read as 0)

X Shrink Integer (IPU1_XSI1 and IPU1_XSI2)

	RSVD									SI					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:6	R/W	0h	RSVD	Reserved (read as 0)
5:0	R/W	0h	SI	X Shrink Integer. Specifies the 4-bit integer portion of the 4.10 format X shrink value. (0-Fh)

4.3.2.12 IPU1_YBnf: Y Begin

I/O Address

HIU_RDT

Index

3006 (IPU1_YBF1: Y Begin) 3007 (IPU1_YBI1: Y Begin) 3106 (IPU1_YBF2: Y Begin) 3107 (IPU1_YBI2: Y Begin)

See also:

Figure 3-18. Window Clipping and XY Scaling Control Registers, p. 56

Registers IPU1_YBnf specify the 11.3 format Y begin value for fields 1 and 2.

Y Begin Fraction Index (IPU1_YBF1 and IPU1_YBF2)

Registers IPU1_YBF1 and IPU1_YBF2 allow the virtual top row of the post-scaled window to be aligned between rows of the pre-scaled window for fields 1 and 2.

	BF														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:13	R/W	0h	BF	Begin Y Row Fractional Index. Specifies the 3-bit fractional portion of the 11.3 format Y begin value. (0-7h)
12:0	R/W	0h	RSVD	Reserved (read as 0)

Y Begin Integer Index (IPU1_YBI1 and IPU1_YBI2)

Registers IPU1_YBI1 and IPU1_YBI2 define the top edge of the pre-scaling window for fields 1 and 2. All video above this boundary is clipped and does not become part of the scaled window.

			RSVD			ВІ										
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Acces	s Reset	Descri	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	ВІ	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11.3 format Y begin value. (0-7FFh)

CL-PX2070

Video Processor

4.3.2.13 IPU1_YEIf: Y End

I/O Address

HIU_RDT

Index

3008 (IPU1_YEI1: Y End Integer Field 1)

3108 (IPU1_YEI2: Y End Integer Field 2)

See also:

Figure 3-18. Window Clipping and XY Scaling Control Registers, p. 56

Registers IPU1_YEI1 and IPU1_YEI2 specify the 11-bit Y end value for fields 1 and 2.

	RSVD										EI					
1:	5	14	13	12	11	10	9	8	7	6	5	- 4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	EI	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)

4.3.2.14 IPU1_YSnf: Y Shrink

I/O Address

HIU_RDT

Index

3009 (IPU1_YSF1: Y Shrink Fraction Field 1) 300a (IPU1_YSI1: Y Shrink Integer Field 1) 3109 (IPU1_YSF2: Y Shrink Fraction Field 2) 310a (IPU1_YSI2: Y Shrink Integer Field 2)

See also:

Figure 3-18. Window Clipping and XY Scaling Control Registers, p. 56

Registers IPU1_YSnf specify the 4.10 format Y shrink value for fields 1 and 2.

Y Shrink Fraction (IPU1_YSF1 and IPU1_YSF2)

	SF											RS	VD		
15	14	13	12	11	10	9	8	7	6	5	4	3	Ž	1	0

Bit#	Access	Reset	Descrip	otion
15:6	R/W	0h	SF	Y Shrink Fraction. Specifies the 10-bit fractional portion of the 4.10 format Y shrink value. (0-3FFh)
5:0	R/W	0h	RSVD	Reserved (read as 0)

Y Shrink Integer (IPU1_YSI1 and IPU1_YSI2)

	RSVD											S	SI		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:6	R/W	0h	RSVD	Reserved (read as 0)
5:0	R/W	0h	SI	Y Shrink Integer. Specifies the 4-bit integer portion of the 4.10 format Y shrink value. (0-Fh)

4.3.2.15 IPU1_KFCf: Key Function Code

I/O Address

HIU_RDT

Index

300b (IPU1_KFC1: Key Function Code Field 1)

310b (IPU1_KFC2: Key Function Code Field 2)

See also:

Figure 3-17. Input Tag Unit, p. 55

Registers IPU1_KFC1 and IPU1_KFC2 specify eight 1-bit values used by the key function code multiplexers for fields 1 and 2.

	RSVD						KEYFC								
15	14	13	12	11	10	9	8 4	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:8	R/W	0h	RSVD	Reserved (read as 0)
7:0	R/W	0h	KEYFC	Key Function Code. Specifies eight 1-bit input values used by the key function code multiplexers. (0-FFh)

4.3.2.16 IPU1_MMxf: Chroma Key Max/Min

I/O Address

HIU RDT

Index

300c (IPU1_MMY1: Chroma Key Y/R Max/Min Field 1)

300d (IPU1_MMU1: Chroma Key U/G Max/Min Field 1) 300e (IPU1_MMV1: Chroma Key V/B Max/Min Field 1) 310c (IPU1_MMY2: Chroma Key Y/R Max/Min Field 2) 310d (IPU1_MMU2: Chroma Key U/G Max/Min Field 2) 310e (IPU1_MMV2: Chroma Key V/B Max/Min Field 2)

Registers IPU1_MMxf specify the maximum and minimum 8-bit chroma key comparator values used by the Input Tag Unit for fields 1 and 2. These values are used for each of three 8-bit input channels for both fields 1 and 2 (see Figure 3-27).

Key Y/R Maximum/Minimum (IPU1_MMY1 and IPU1_MMY2)

	YRMAX										YRI	MIN			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	tion
15:8	R/W	0h	YRMAX	Key Y/R Maximum. Specifies the upper threshold for the 8-bit Y (YCbCr stream) or R (RGB stream) channel comparator. (0-FFh)
7:0	R/W	Oh j	YRMIN	Key Y/R Minimum. Specifies the lower threshold for the 8-bit Y (YCbCr stream) or R (RGB stream) channel comparator. (0-FFh)

Key U/G Maximum/Minimum (IPU1_MMU1 and IPU1_MMU2)

			UGI	XAN		UGMAX							UGMIN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					

Bit#	Access	Reset	Descrip	tion
15:8	R/W	0h	UGMAX	Key U/G Maximum. Specifies the upper threshold for the 8-bit Cb (YCb-Cr stream) or G (RGB stream) channel comparator. (0-FFh)
7:0	R/W	0h	UGMIN	Key U/G Minimum. Specifies the lower threshold for the 8-bit Cb (YCb-Cr stream) or G (RGB stream) channel comparator. (0-FFh)

Key V/B Maximum/Minimum (IPU1_MMV1 and IPU1_MMV2)

	VBMAX							VBMIN								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit#	Access	Reset	Descrip	tion
15:8	R/W	0h	VBMAX	Key V/B Maximum. Specifies the upper threshold for the 8-bit Cr (YCb-Cr stream) or B (RGB stream) channel comparator. (0-FFh)
7:0	R/W	0h	VBMIN	Key V/B Minimum. Specifies the lower threshold for the 8-bit Cr (YCbCr stream) or B (RGB stream) channel comparator. (0-FFh)

CL-PX2070 Video Processor

4.3.3 IPU2: Input Processing Unit 2

4.3.3.1 IPU2_PIX: Pixel Count

I/O Address

HIU_RDT

Index

2300

Register IPU2_PIX is a read-only register of the current 11-bit pixel count. It automatically resets to 0 at the beginning of each line.

		RSVD			PC										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	. 0

Bit#	Access	Reset	Descrip	otion
15:11	Read Only	0h	RSVD	Reserved (read as 0)
10:0	Read Only	0h	PC	Pixel Count current line (0-7FFh)

4.3.3.2 IPU2_LIC: Line Count

I/O Address

HIU_RDT

Index

2301

Register IPU2_LIC is a read-only register of the current 11-bit line count. It automatically resets to 0 at the beginning of each field.

	RSVD					· LC										
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
14:11	Read Only	0h⁻	RSVD	Reserved (read as 0)
10:0	Read Only	0h	LC	Line Count current field (0-7FFh)

4.3.3.3 IPU2_FLC: Field Count

I/O Address

HIU_RDT

Index

2302

On read, register IPU2_FLC returns the current 15-bit field count.

F	RSVD								FC							,
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15	Read Only	0h	RSVD	Reserved (read as 0)
14:0	Read Only	0h	FC	Field count

4.3.3.4 IPU2_LIR: Line Count Interrupt Request

I/O Address

HIU RDT

Index

2303

Register IPU2_LIR specifies an 11-bit line count value that generates an interrupt request when equal to the realtime line count value in register IPU2_LIC.

		RSVD			-		, , , , , , , , , , , , , , , , , , , ,		<u> </u>	IRLC		•			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15	R/W	0h	RSVD	Reserved (read as 0)
0	R/W	0h	IRLC	Interrupt Request Line Count (0-7FFh)

4.3.3.5 IPU2_FIR: Field Count Interrupt Request

I/O Address

HIU_RDT

Index 2304

Register IPU2_FIR specifies a 16-bit field count value that generates an interrupt request when equal to the realtime field count value in register IPU2_FLC.

FCE								IRFC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	ption
15	R/W	0	FCE	Field Count Enable field count enable field count disabled
14:0	R/W	0h	IRFC	Interrupt Request Field Count

4.3.3.6 IPU2_MCRf: Master Control

I/O Address

HIU RDT

Index

3200 (IPU2_MCR1: Master Control Field 1)

3300 (IPU2_MCR2: Master Control Field 2)

See also:

Figure 3-19. Input Processing Unit 2, p. 60

Figure 3-21. IPU2 Window Clipping Unit, p. 62

Registers IPU2_MCR1 and IPU2_MCR2 control the operation of the IPU2.

FPS	IM	PSE							RSVD		_				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15	R/W	0h	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the XY Window Clipping subunit. Normal polarity Invert polarity
14	R/W	0h	IM	Interlace Mode. Specifies the input stream as interlaced or non-interlaced data. O Progressive scan input Interlaced input
13	R/W	0h	PSE	Prescaler Enable. Enables or disables the operation of the X Prescaler. O Bypass prescaler 1 Enable 0.5 X prescaler
12:0	R/W	0h	RSVD	Reserved (read as 0)

4.3.3.7 IPU2_XBIf: X Begin

I/O Address

HIU_RDT

Index

3202 (IPU2_XBI1: X Begin Integer Field 1)

3302 (IPU2_XBI2: X Begin Integer Field 2)

See also:

Figure 3-21. IPU2 Window Clipping Unit, p. 62

Registers IPU2_XBI1 and IPU2_XBI2 specify the 11-bit X begin value for fields 1 and 2.

			ВІ												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	ВІ	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11.0 format X begin value. (0-7FFh)

4.3.3.8 IPU2_XEIf: X End

I/O Address

HIU_RDT

Index

3203 (IPU2_XEI1: X End Integer Field 1)

3303 (IPU2_XEI2: X End Integer Field 2)

See also:

Figure 3-21. IPU2 Window Clipping Unit, p. 62

Registers IPU2_XEI1 and IPU2_XEI2 specify the 11-bit X end value for fields 1 and 2.

		RSVD			· El										
15	14	13	12	11	10	9	8	.7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	El	End X Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)

CL-PX2070

Video Processor

4.3.3.9 IPU2_YBIf: Y Begin

I/O Address

HIU RDT

Index

3207 (IPU2_YBI1: Y Begin Integer Field 1)

3307 (IPU2_YBI2: Y Begin Integer Field 2)

See also:

Figure 3-21. IPU2 Window Clipping Unit, p. 62

Registers IPU2_YBI1 and IPU2_YBI2 specify the 11-bit Y begin value for fields 1 and 2.

RSVD					ВІ										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	-1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	ВІ	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11 bit Y begin value. (0-7FFh)

4.3.3.10 IPU2_YEIf: Y End

I/O Address

HIU_RDT

Index

3208 (IPU2 YEI1: Y End Integer Field 1)

3308 (IPU2_YEI2: Y End Integer Field 2)

See also:

Figure 3-21. IPU2 Window Clipping Unit, p. 62

Registers IPU2_YEI1 and IPU2_YEI2 specify the 11-bit Y end value for fields 1 and 2.

		RSVD								EI					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0ĥ	RSVD	Reserved (read as 0)
10:0	R/W	0h	EI	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)

4.3.4 SIU: Sequencer Instruction Unit

4.3.4.1 SIU_MCR: Master Control

I/O Address

HIU_RDT

Index

2800

Register SIU_MCR controls the operation of the SIU for fields 1 and 2.

RSVD SE		E	F	Т	SI2					SI1					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Description								
15:14	R/W	0h	RSVD	Reserved (read as 0)							
13:12	R/W	00	SE	Sequencer Enable. Enables or disables the operation of the SIU. OO SIU halted 10 SIU enabled, start on SI1 11 SIU enabled, start on SI2							
11:10	R/W	00	FT	Field Toggle. Specifies the field toggle mode and the association of the start index values to a field. O No field toggle (SI1 is used, SI2 is ignored) SI1 and SI2 toggle on vertical sync; no field association Field 1 is associated to SI1, and fields 1 and 2 toggle on vertical sync Field 1 is associated to SI2, and fields 1 and 2 toggle on vertical sync							
9:5	R/W	0h	SI2	Start Index 2. Specifies the 5-bit sequencer instruction start index 2. (0-1Fh)							
4:0	R/W	0h	SI1	Start Index 1. Specifies the 5-bit sequencer instruction start index 1. (0-1Fh)							

4.3.4.2 SIU_FCS: FIFO Control/Status

I/O Address

HIU_RDT

Index

2801

Register SIU_FCS is a special read/write register that provides realtime access to the full and empty flags from FIFOs A-G. All flags are active high. Writing a 1 to FIFO Empty Flag fields resets the corresponding FIFOs. Writing a 0 to FIFO Empty Flag fields enables the corresponding FIFOs.

RS	VD	FGF	FGE	FFF	.FFE	FEF	FEE	FDF	FDE	FCF	FCE	FBF	FBE	FAF	FAE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

.....

Bit #	Access	Reset	Descrip	tion
15:14	R/W	0h	RSVD	Reserved (read as 0)
13	Rd-only	0h	FGF	FIFO G Full Flag
12	R/W	0h	FGE	FIFO G Empty Flag On read: empty flag On write: FIFO reset
11	Rd-only	0h	FFF	FIFO F Full Flag
10	R/W	0h	FFE	FIFO F Empty Flag On read: empty flag On write: FIFO reset
9	Rd-only	0h	FEF	FIFO E Full Flag
8	R/W	0h	FEE	FIFO E Empty Flag On read: empty flag On write: FIFO reset
7	Rd-only	0h	FDF	FĮFO D Full Flag
6	R/W	0h	FDE	FIFO D Empty Flag On read: empty flag On write: FIFO reset
5	Rd-only	0h	FCF	FIFO C Full Flag
4	R/W	0h	FCE	FIFO C Empty Flag On read: empty flag On write: FIFO reset
3	Rd-only	0h	FBF	FIFO B Full Flag
2	R/W	0h	FBE	FIFO B Empty Flag On read: empty flag On write: FIFO reset
1	Rd-only	0h	FAF	FIFO A Full Flag
0	R/W	0h	FAE	FIFO A Empty Flag On read: empty flag On write: FIFO reset

4.3.4.3 SIU_FOU: FIFO Overflow/Underflow

I/O Address

HIU_RDT

Index

2802

Register SIU_FOU is a read-only register that provides realtime access to the overflow and underflow flags from FIFOs A-G. All flags are active high (overflow, underflow = 1).

RS	VD	FGO	FGU	FFO	FFU	FEO	FEU	FDO	FDU	FCO	FCU	FBO	FBU	FAO	FAU
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	tion	
15:14	Rd-only	0h	RSVD	RSVD:	Reserved (read as 0)
13	Rd-only	0h	FGO	FGO:	FIFO G Overflow Flag (write 0 to clear); 0-1h
12	Rd-only	0h	FGU	FGU:	FIFO G Underflow Flag (write 0 to clear); 0-1h
11	Rd-only	0h	FFO	FFO:	FIFO F Overflow Flag (write 0 to clear); 0-1h
10	Rd-only	0h	FFU	FFU:	FIFO F Underflow Flag (write 0 to clear); 0-1h
9	Rd-only	0h	FEO	FEO:	FIFO E Overflow Flag (write 0 to clear); 0-1h
8	Rd-only	0h	FEU	FEU:	FIFO E Underflow Flag (write 0 to clear); 0-1h
7	Rd-only	0h	FDO	FDO:	FIFO D Overflow Flag (write 0 to clear); 0-1h
6	Rd-only	0h	FDU	FDU:	FIFO D Underflow Flag (write 0 to clear); 0-1h
5	Rd-only	0h	FCO	FCO:	FIFO C Overflow Flag (write 0 to clear); 0-1h
4	Rd-only	0h	FCU	FCU:	FIFO C Underflow Flag (write 0 to clear); 0-1h
3	Rd-only	0h	FBO	FBO:	FIFO B Overflow Flag (write 0 to clear); 0-1h
2	Rd-only	0h	FBU	FBU:	FIFO B Underflow Flag (write 0 to clear); 0-1h
1	Rd-only	0h	FAO	FAO:	FIFO A Overflow Flag (write 0 to clear); 0-1h
0	Rd-only	0h	FAU	FAU:	FIFO A Underflow Flag (write 0 to clear); 0-1h

4.3.4.4 SIUs_SIM: Sequencer Instruction Memory

VO Address	HIU_RDT			
Index	2e00 (SIU0_SIM)	2e08 (SIU8_SIM)	2e10 (SIU16_SIM)	2e18 (SIU24_SIM)
	2e01 (SIU1_SIM)	2e09 (SIU9_SIM)	2e11 (SIU17_SIM)	2e19 (SIU25_SIM)
	2e02 (SIU2_SIM)	2e0a (SIU10_SIM)	2e12 (SIU18_SIM)	2e1a (SIU26_SIM)
	2e03 (SIU3_SIM)	2e0b (SIU11_SIM)	2e13 (SIU19_SIM)	2e1b (SIU27_SIM)
	2e04 (SIU4_SIM)	2e0c (SIU12_SIM)	2e14 (SIU20_SIM)	2e1c (SIU28_SIM)
	2e05 (SIU5_SIM)	2e0d (SIU13_SIM)	2e15 (SIU21_SIM)	2e1d (SIU29_SIM)
	2e06 (SIU6_SIM)	2e0e (SIU14_SIM)	2e16 (SIU22_SIM)	2e1e (SIU30_SIM)
	2e07 (SIU7_SIM)	2e0f (SIU15_SIM)	2e17 (SIU23_SIM)	2e1f (SIU31_SIM)

The 32 identical registers SIUs_SIM store the instruction sequence for fields 1 and 2.

RS	RSVD OTN						EP		F	Ά			Ol	ВА	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:14	R/W	0h	RSVD	Reserved (read as 0)
13:9	R/W	0h	OTN	Offset to Next Instruction. Specifies the signed, 5-bit displacement to the next instruction to execute. (0-1Fh)
8	R/W	0	EP	Exit Point. Identifies the current instruction as the exit point when the field toggle condition is detected. O Normal fall-through instruction 1 Exit point instruction
7:4	R/W	0000	FA	FIFO Association. Associates a FIFO with the current instruction. 0000 FIFO G 0001 FIFO F 0010 FIFO E 0011 FIFO A 0100 FIFO B 0101 FIFO C 0110 FIFO D
3:0	R/W	0000	OBA	Object Buffer Association. Associates an object buffer with the current instruction (see field FA). O000 Object buffer 0 O001 Object buffer 1 O010 Object buffer 2 O011 Object buffer 3 O100 Object buffer 4 O101 Object buffer 5 O110 Object buffer 6 O111 Object buffer 7

4.3.5 ALU: Arithmetic and Logic Unit

4.3.5.1 ALU_MCRf: Master Control

I/O Address

HIU_RDT

Index

2900 (ALU_MCR1: Master Control Field 1) 2901 (ALU_MCR2: Master Control Field 2)

See also:

ALU: Arithmetic and Logic Unit, p. 63

Registers ALU_MCR1 and ALU_MCR2 specify the ALU operating mode for fields 1 and 2.

GВM	Т	F		AC	OP		YO	UT	UC	TU	VO	UT	OPCS	OPBS	OPAS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion
15	R/W	00	GBM	Three-operand Bit Mask selecting tag source 0 Bit per bit mask — one 16-bit value in FIFO C will mask one pixel in the ALU, tag bit per bit) 1 Bit per pixel mask — one 16-bit value in FIFO C will mask 16 pixels in the ALU (one tag bit per pixel)
14:13	R/W	0000	TF	Tag Format. Specifies both the input and output stream format. 00 No tag• 01 Tagged 4:2:2 YCbCr data 10 Tagged 5:5:5 RGB data 11 Tagged 8:8:8 RGB data
12:9	R/W	00	AOP	Arithmetic Operation Select 0000 Alpha mix using alpha register (dA + (1-d)B) 0001 Alpha mix using operand C (cA + (1-c)B) 0010 Operand A + Operand B 0011 Operand A - Operand B 0100 (Operand A - Operand B) / 2 0101 Reconstruct field from operands A and B 0110 Four frame interpolate from operands A and B 1000 Y scaling mode xxxx All other configurations are reserved; results of these configurations are unpredictable
8:7	R/W	00	YOUT	Y output Source Select 00 Source output from logical unit 01 Source output from arithmetic unit 10 Source output based on control tag 11 Enable arithmetic out based on tag
6:5	R/W	00	UOUT	U output Source Select 00 Source output from logical unit 01 Source output from arithmetic unit 10 Source output based on control tag 11 Enable arithmetic out based on tag

Bit #	Access	Reset	Descrip	otion
4:3	R/W	0	VOUT	V output Source Select O Source output from logical unit O Source output from arithmetic unit Source output based on control tag Enable arithmetic out based on tag
2	R/W	0	OPCS	Operand C Source Select Operand sourced from constant register Operand sourced from FIFO
1	R/W	0	OPBS	Operand B Source Select O Operand sourced from constant register Operand sourced from FIFO
0	R/W	0	OPAS	Operand A Source Select Operand sourced from constant register Operand sourced from FIFO

4.3.5.2 ALU_TOP: Tag Operation

I/O Address

HIU_RDT

Index

2902

See also:

Data Tagging, p. 66

Register ALU_TOP specifies the control and output tag multiplexer operation codes.

	CTC 15 14 13 12 11 10 9 8								отс							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit#	Access	Reset	Descrip	otion
15:8	R/W	0h	СТС	Control Tag Code (0-FFh)
7:0	R/W	0h	OTC	Output Tag Code (0-FFh)

4.3.5.3 ALU_AV: Alpha Value

I/O Address

HIU_RDT

Index

2903

See also:

Arithmetic Operations, p. 67

Table 3-23. Arithmetic Operations, p. 67

Register ALU_AV specifies the alpha mix constant.

	RSVD								AV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Descrip	otion
15:8	R/W	0h	RSVD	Reserved (read as 0)
7:0	R/W	0h	AV	Alpha Value (0-FFh)

4.3.5.4 ALU_LOPx: Logic Operation

I/O Address

HIU_RDT

Index

2904 (ALU_LOPY: Logic Operation Channel Y)

2905 (ALU_LOPU: Logic Operation Channel U) 2906 (ALU_LOPV: Logic Operation Channel V)

See also:

Logical Operations, p. 67

Registers ALU_LOPY, ALU_LOPU, and ALU_LOPV specify the constant values for logical multiplexers A, B, and C, respectively.

							ML	OP.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:0	R/W	0h -	MLOP	Multiplexor Logical Operation

CL-PX2070

Video Processor

4.3.5.5 ALU_CAx: Constant A

VO Address

HIU_RDT

Index

2907 (ALU_CAY: Constant A, Channel Y) 2908 (ALU_CAU: Constant A, Channel U) 2909 (ALU_CAV: Constant A, Channel V)

See also:

ALU_MCRf: Master Control, p. 128

Registers ALU_CAY, ALU_CAU, and ALU_CAV specify the constant values for Operand A, based on the value of field OPAS in register ALU_MCRf.

	RSVD						TAG	CON							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:9	R/W	0h	RSVD	Reserved (read as 0)
8	R/W	0h	TAG	Tag. Specifies the constant tag bit to insert in the input stream. (0-1h)
7:0	R/W	0h	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand A. (0-FFh)

4.3.5.6 ALU_CBx: Constant B

VO Address

HIU RDT

Index

290a (ALU_CBY: Constant B, Channel Y) 290b (ALU_CBU: Constant B, Channel U)

290c (ALU_CBV: Constant B, Channel V)

See also:

ALU_MCRf: Master Control, p. 128

Registers ALU_CBY, ALU_CBU, and ALU_CBV specify the constant values for Operand B, based on the value of field OPBS in register ALU_MCRf.

	RSVD							CON							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:9	R/W	0h	RSVD	Reserved (read as 0)
8	R/W	0h	TAG	Tag. Specifies the constant tag bit to insert in the input stream. (0-1h)
7:0	R/W	0h	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand B. (0-FFh)

4.3.5.7 ALU_CCx: Constant C

I/O Address

HIU RDT

Index

290d (ALU_CCY: Constant C, Channel Y) 290e (ALU_CCU: Constant C, Channel U) 290f (ALU_CCV: Constant C, Channel V)

See also:

ALU_MCRf: Master Control, p. 128

Registers ALU_CCY, ALU_CCU, and ALU_CCV specify the constant values for Operand C, based on the value of field OPCS in register ALU_MCRf.

	RSVD										cc	ON			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion
15:9	R/W	0h	RSVD	Reserved (read as 0)
8	R/W	0h	TAG	Tag. Specifies the constant tag bit to insert in the input stream. (0-1h)
7:0	R/W	0h	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand C. (0-FFh)

4.3.6 OPU: Output Processing Unit

4.3.6.1 OPU_MCRf: Master Control

I/O Address

HIU_RDT

Index

2a00 (OPU_MCR1: Master Control Field 1)

2b00 (OPU_MCR2: Master Control Field 2)

See also:

Figure 3-24. OPU: Output Processor Unit, p. 68

Registers OPU_MCR1 and OPU_MCR2 control the operation of the OPU for fields 1 and 2.

FPS	IM	ZE					RSVD						ŀ	F .	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15	R/W	0	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the Window Clipping subunit. O Normal polarity Invert polarity
14	R/W	0	IM	Interlace Mode. Specifies the input stream as interlaced or non-interlaced data. O Progressive scan input Interlaced input
13	R/W	0	ZE	Zoom Enable. Enables or disables the operation of the 2:1 X zoom sub- unit. O Disable zoom 1 Enable 2 X zoom
12:4	R/W	0h	RSVD	Reserved (read as 0)
3:0	R/W	0000	(F	Input Data Format. Specifies the format of the input data stream. O000 YCbCr 4:2:2 non-tagged data O001 YCbCr 4:2:2 tagged data 1000 RGB 5:6:5 non-tagged data 1001 RGB 5:5:5 tagged data 1110 RGB 3:3:2 non-tagged data (non-zoom mode only)

4.3.6.2 OPU_XBIf: X Begin

I/O Address

HIU_RDT

Index

2a02 (OPU_XBI1: X Begin Integer Field 1) 2b02 (OPU_XBI2: X Begin Integer Field 2)

See also:

Figure 3-24. OPU: Output Processor Unit, p. 68

Registers OPU_XBI1 and OPU_XBI2 specify the 11-bit X begin value for fields 1 and 2.

	RSVD					ВІ									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	ВІ	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11-bit X begin value. (0-7FFh)

4.3.6.3 OPU_XEIf: X End

I/O Address

HIU_RDT

Index

2a03 (OPU_XEI1: X End Integer Field 1)

2b03 (OPU_XEI2: X End Integer Field 2)

See also:

Figure 3-24. OPU: Output Processor Unit, p. 68

Registers OPU_XEI1 and OPU_XEI2 specify the 11-bit X end value for fields 1 and 2.

	RSVD					EI									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	EI	End X Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)

CL-PX2070

Video Processor

4.3.6.4 OPU_YBIf: Y Begin

VO Address

HIU_RDT

Index

2a07 (OPU_YBI1: Y Begin Integer Field 1)

2b07 (OPU_YBI2: Y Begin Integer Field 2)

See also:

Figure 3-24. OPU: Output Processor Unit, p. 68

Registers OPU_YBI1 and OPU_YBI2 specify the 11-bit Y begin value for fields 1 and 2.

	RSVD					ВІ										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Description							
15:11	R/W	0h	RSVD	Reserved (read as 0)						
10:0	R/W	0h	ВІ	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11-bit Y begin value. (0-7FFh)						

4.3.6.5 OPU_YEIf: Y End

VO Address

HIU_RDT

Index

2a08 (OPU_YEI1: Y End Integer Field 1)

2b08 (OPU_YEI2: Y End Integer Field 2)

See also:

Figure 3-24. OPU: Output Processor Unit, p. 68

Registers OPU_YEI1 and OPU_YEI2 specify the 11-bit Y end value for fields 1 and 2.

RSVD						El									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	Description								
15:11	R/W	0h²	RSVD	Reserved (read as 0)								
10:0	R/ W	0h	El	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)								

4.4 RFU: Reference Frame Unit — Registers

Table 4-6. RFU registers Accessed by the Register Data Port

Name	Index	Definition	Ref. Section
MMU: Memory	Management Un	it	
MMU_MCR	4000	Master Control	4.4.2.1, page 145
OBU: Object Bo	uffer Unit		4.4.1, page 140
OBUo_MCR	4800	Object Buffer 0 Master Control	4.4.1.1, page 140
OBUo_RFX	4801	Object Buffer 0 Reference Frame X Size	4.4.1.2, page 141
OBUo_LSL	4802	Object Buffer 0 Linear Start Address Low	4.4.1.3, page 142
OBUo_LSH	4803	Object Buffer 0 Linear Start Address High	4.4.1.3, page 142
OBUo_BSX	4804	Object Buffer 0 Buffer X Size	4.4.1.4, page 143
OBUo_BSY	4805	Object Buffer 0 Buffer Y Size	4.4.1.4, page 143
OBUo_DEC	4806	Object Buffer 0 Decimate Control	4.4.1.5, page 144
OBU1_MCR	4810	Object Buffer 1 Master Control	4.4.1.1, page 140
OBU1_RFX	4811	Object Buffer 1 Reference Frame X Size	4.4.1.2, page 141
OBU1_LSL	4812	Object Buffer 1 Linear Start Address Low	4.4.1.3, page 142
OBU1_LSH	4813	Object Buffer 1 Linear Start Address High	4.4.1.3, page 142
OBU1_BSX	4814	Object Buffer 1 Buffer X Size	4.4.1.4, page 143
OBU1_BSY	4815	Object Buffer 1 Buffer Y Size	4.4.1.4, page 143
OBU1_DEC	4816	Object Buffer 1 Decimate Control	4.4.1.5, page 144
OBU2_MCR	4820	Object Buffer 2 Master Control	4.4.1.1, page 140
OBU2_RFX	4821	Object Buffer 2 Reference Frame X Size	4.4.1.2, page 141
OBU2_LSL	4822-	Object Buffer 2 Linear Start Address Low	4.4.1.3, page 142
OBU2_LSH	4823	Object Buffer 2 Linear Start Address High	4.4.1.3, page 142
OBU2_BSX	4824	Object Buffer 2 Buffer X Size	4.4.1.4, page 143
OBU2_BSY	4825	Object Buffer 2 Buffer Y Size	4.4.1.4, page 143
OBU2_DEC	4826	Object Buffer 2 Decimate Control	4.4.1.5, page 144
OBU3_MCR	4830	Object Buffer 3 Master Control	4.4.1.1, page 140
OBU3_RFX	4831	Object Buffer 3 Reference Frame X Size	4.4.1.2, page 141
OBU3_LSL	4832	Object Buffer 3 Linear Start Address Low	4.4.1.3, page 142

Table 4-6. RFU registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
OBU3_LSH	4833	Object Buffer 3 Linear Start Address High	4.4.1.3, page 142
OBU3_BSX	4834	Object Buffer 3 Buffer X Size	4.4.1.4, page 143
OBU3_BSY	4835	Object Buffer 3 Buffer Y Size	4.4.1.4, page 143
OBU3_DEC	4836	Object Buffer 3 Decimate Control	4.4.1.5, page 144
OBU4_MCR	4840	Object Buffer 4 Master Control	4.4.1.1, page 140
OBU4_RFX	4841	Object Buffer 4 Reference Frame X Size	4.4.1.2, page 141
OBU4_LSL	4842	Object Buffer 4 Linear Start Address Low	4.4.1.3, page 142
OBU4_LSH	4843	Object Buffer 4 Linear Start Address High	4.4.1.3, page 142
OBU4_BSX	4844	Object Buffer 4 Buffer X Size	4.4.1.4, page 143
OBU4_BSY	4845	Object Buffer 4 Buffer Y Size	4.4.1.4, page 143
OBU4_DEC	4846	Object Buffer 4 Decimate Control	4.4.1.5, page 144
OBU5_MCR	4850	Object Buffer 5 Master Control	4.4.1.1, page 140
OBU5_RFX	4851	Object Buffer 5 Reference Frame X Size	4.4.1.2, page 141
OBU5_LSL	4852	Object Buffer 5 Linear Start Address Low	4.4.1.3, page 142
OBU5_LSH	4853	Object Buffer 5 Linear Start Address High	4.4.1.3, page 142
OBU5_BSX	4854	Object Buffer 5 Buffer X Size	4.4.1.4, page 143
OBU5_BSY	4855	Object Buffer 5 Buffer Y Size	4.4.1.4, page 143
OBU5_DEC	4856	Object Buffer 5 Decimate Control	4.4.1.5, page 144
OBU6_MCR	4860	Object Buffer 6 Master Control	4.4.1.1, page 140
OBU6_RFX	4861	Object Buffer 6 Reference Frame X Size	4.4.1.2, page 141
OBU6_LSL	4862	Object Buffer 6 Linear Start Address Low	4.4.1.3, page 142
OBU6_LSH	4863	Object Buffer 6 Linear Start Address High	4.4.1.3, page 142
OBU6_BSX	4864	Object Buffer 6 Buffer X Size	4.4.1.4, page 143
OBU6_BSY	4865	Object Buffer 6 Buffer Y Size	4.4.1.4, page 143
OBU6_DEC	4866	Object Buffer 6 Decimate Control	4.4.1.5, page 144
OBU7_MCR	4870	Object Buffer 7 Master Control	4.4.1.1, page 140
OBU7_RFX	4871	Object Buffer 7 Reference Frame X Size	4.4.1.2, page 141
OBU7_LSL	4872	Object Buffer 7 Linear Start Address Low	4.4.1.3, page 142
OBU7_LSH	4873	Object Buffer 7 Linear Start Address High	4.4.1.3, page 142

Table 4-6. RFU registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
OBU7_BSX	4874	Object Buffer 7 Buffer X Size	4.4.1.4, page 143
OBU7_BSY	4875	Object Buffer 7 Buffer Y Size	4.4.1.4, page 143
OBU7_DEC	4876	Object Buffer 7 Decimate Control	4.4.1.5, page 144
DWU: Display Wi	ndow Unit		4.4.3, page 146
DWU_MCR	4100	Display Window Master Control	4.4.3.1, page 146
DWU_HCR	4101	Display Window Horizontal Control Register	4.4.3.2, page 147
DWU0_DZF	4400	Display Window 0 Display Zoom Factor	4.4.3.3, page 148
DWU0_RFX	4401	Display Window 0 Reference Frame X Size	4.4.3.4, page 149
DWU0_LSL	4402	Display Window 0 Linear Start Address Low	4.4.3.5, page 150
DWU0_LSH	4403	Display Window 0 Linear Start Address High	4.4.3.5, page 150
DWU0_WSX	4404	Display Window 0 Window X Size	4.4.3.6, page 151
DWU0_WSY	4405	Display Window 0 Window Y Size	4.4.3.6, page 151
DWU0_DSX	4406	Display Window 0 Display X Start	4.4.3.7, page 152
DWU0_DSY	4407	Display Window 0 Display Y Start	4.4.3.7, page 152
DWU1_DZF	4410	Display Window 1 Display Zoom Factor	4.4.3.3, page 148
DWU1_RFX	4411	Display Window 1 Reference Frame X Size	4.4.3.4, page 149
DWU1_LSL	4412	Display Window 1 Linear Start Address Low	4.4.3.5, page 150
DWU1_LSH	4413	Display Window 1 Linear Start Address High	4.4.3.5, page 150
DWU1_WSX	4414	Display Window 1 Window X Size	4.4.3.6, page 151
DWU1_WSY	4415	Display Window 1 Window Y Size	4.4.3.6, page 151
DWU1_DSX	4416 ~	Display Window 1 Display X Start	4.4.3.7, page 152
DWU1_DSY	4417	Display Window 1 Display Y Start	4.4.3.7, page 152
DWU2_DZF	4420	Display Window 2 Display Zoom Factor	4.4.3.3, page 148
DWU2_RFX	4421	Display Window 2 Reference Frame X Size	4.4.3.4, page 149
DWU2_LSL	4422	Display Window 2 Linear Start Address Low	4.4.3.5, page 150
DWU2_LSH	4423	Display Window 2 Linear Start Address High	4.4.3.5, page 150
DWU2_WSX	4424	Display Window 2 Window X Size	4.4.3.6, page 151
DWU2_WSY	4425	Display Window 2 Window Y Size	4.4.3.6, page 151

Table 4-6. RFU registers Accessed by the Register Data Port (cont.)

Name	Index	Definition	Ref. Section
DWU2_DSX	4426	Display Window 2 Display X Start	4.4.3.7, page 152
DWU2_DSY	4427	Display Window 2 Display Y Start	4.4.3.7, page 152
DWU3_DZF	4430	Display Window 3 Display Zoom Factor	4.4.3.3, page 148
DWU3_RFX	4431	Display Window 3 Reference Frame X Size	4.4.3.4, page 149
DWU3_LSL	4432	Display Window 3 Linear Start Address Low	4.4.3.5, page 150
DWU3_LSH	4433	Display Window 3 Linear Start Address High	4.4.3.5, page 150
DWU3_WSX	4434	Display Window 3 Window X Size	4.4.3.6, page 151
DWU3_WSY	4435	Display Window 3 Window Y Size	4.4.3.6, page 151
DWU3_DSX	4436	Display Window 3 Display X Start	4.4.3.7, page 152
DWU3_DSY	4437	Display Window 3 Display Y Start	4.4.3.7, page 152

4.4.1 OBU: Object Buffer Unit

4.4.1.1 OBUo_MCR: Object Buffer Master Control

I/O Address

HIU_RDT

Index

4800 (OBUo_MCR: Object Buffer 0 Master Control)
4810 (OBU1_MCR: Object Buffer 1 Master Control)
4820 (OBU2_MCR: Object Buffer 2 Master Control)
4830 (OBU3_MCR: Object Buffer 3 Master Control)
4840 (OBU4_MCR: Object Buffer 4 Master Control)
4850 (OBU5_MCR: Object Buffer 5 Master Control)
4860 (OBU6_MCR: Object Buffer 6 Master Control)
4870 (OBU7_MCR: Object Buffer 7 Master Control)

See also:

Figure 3-28. Object Buffer, p. 72

Figure 3-29. XY BLT Direction Control, p. 75

The eight identical registers OBUo_MCR control the operation of the eight object buffers.

	RSVD		LME	CME			ОРМ			SSM	YBDC	XBDC	DC F		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	otion
15:13	R/W	000	RSVD	Reserved (read as 0)
12:	R/W	0	LME	Luminance Mask Enable. Specifies whether the MSB of a 16-bit input stream (typically the Y channel of YCbCr data) is written to the object buffer or masked. O Enable luminance data update Disable luminance data update
11	R/W	0	CME	Chrominance Mask Enable. Specifies whether the LSB of a 16-bit input stream (typically the CbCr channel of YCbCr data) is written to the object buffer or masked. 0 Enable chrominance data update 1 Disable chrominance data update
10:6	Fl/W	Oh	ОРМ	Operation Mode. Enables or disables operation of the object buffer and specifies the synchronization and addressing modes. O0000 Disable OBU O0001 Enable OBU, lock to IPU1, address generation locked to IPU1 O0100 Enable OBU, independent, interlaced addresses, start on line 1 O0101 Enable OBU, independent, interlaced addresses, start on line 2 O1100 Enable OBU, independent, normal addresses O1101 Enable OBU, independent, line replicate addresses (on read) O1110 Enable OBU, independent, block mode addresses (8x8 blocks, OBU0 only) O1111 Enable 16x8 blocks, OBU0 only xxxxx All other configurations reserved; to ensure future compatibility, do not use.

Bit #	Access	Reset	Descrip	otion (cont.)
5	R/W	0	SSM	Single Sweep Mode Disable single sweep mode Enable single sweep mode (reset OPM to 00000 after one field)
4	R/W	0	YBDC	Y BLT Direction Control. Specifies whether the Y address counter is incremented or decremented after each line (see Figure 3-22). BLT to decreasing memory addresses BLT to increasing memory addresses
3	R/W	0	XBDC	X BLT Direction Control. Specifies whether the X address counter is incremented or decremented after each line (see Figure 3-22). BLT to decreasing memory addresses BLT to increasing memory addresses
2:0	R/W	000	FA	FIFO Association. Specifies whether the stream written into the object buffer is to be copied to one of the output FIFOs. OOO No FIFO copy OO1 Copy object buffer to FIFO A during write O10 Copy object buffer to FIFO B during write O11 Copy object buffer to FIFO C during write O10 Copy object buffer to FIFO D during write

4.4.1.2 OBUo_RFX: Object Buffer Reference Frame X Size

I/O Address Index	HIU_RDT 4801 (OBUo_RFX: Object Buffer 0 Reference Frame X Size) 4811 (OBU1_RFX: Object Buffer 1 Reference Frame X Size) 4821 (OBU2_RFX: Object Buffer 2 Reference Frame X Size) 4831 (OBU3_RFX: Object Buffer 3 Reference Frame X Size) 4841 (OBU4_RFX: Object Buffer 4 Reference Frame X Size) 4851 (OBU5_RFX: Object Buffer 5 Reference Frame X Size) 4861 (OBU6_RFX: Object Buffer 6 Reference Frame X Size)
	4871 (OBU7_RFX: Object Buffer 7 Reference Frame X Size)
See also:	Figure 3-28. Object Buffer, p. 72

The eight identical registers OBUo_RFX specify, for each of the eight object buffers, the 11-bit width (in pixels) of the reference frame containing the object buffer.

RSVD					RFX										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	RFX	Reference Frame X size (0-7FFh)

4.4.1.3 OBUo_LSb: Object Buffer Linear Start Address

I/O Address HIU RDT Index 4802 (OBUo_LSL: Object Buffer 0 Linear Start Address Low) 4812 (OBU1_LSL: Object Buffer 1 Linear Start Address Low) 4822 (OBU2_LSL: Object Buffer 2 Linear Start Address Low) 4832 (OBU3_LSL: Object Buffer 3 Linear Start Address Low) 4842 (OBU4 LSL: Object Buffer 4 Linear Start Address Low) 4852 (OBU5_LSL: Object Buffer 5 Linear Start Address Low) 4862 (OBU6_LSL: Object Buffer 6 Linear Start Address Low) 4872 (OBU7_LSL: Object Buffer 7 Linear Start Address Low) 4803 (OBUo_LSH: Object Buffer 0 Linear Start Address High) 4813 (OBU1_LSH: Object Buffer 1 Linear Start Address High) 4823 (OBU2_LSH: Object Buffer 2 Linear Start Address High) 4833 (OBU3 LSH: Object Buffer 3 Linear Start Address High) 4843 (OBU4 LSH: Object Buffer 4 Linear Start Address High) 4853 (OBU5_LSH: Object Buffer 5 Linear Start Address High) 4863 (OBU6_LSH: Object Buffer 6 Linear Start Address High) 4873 (OBU7_LSH: Object Buffer 7 Linear Start Address High)

See also:

Figure 3-28. Object Buffer, p. 72

Registers OBUo_LSL and OBUo_LSH specify the 23-bit linear starting address of the object buffer.

Object Buffer Linear Start Address Low

Bits 15 through 0 of register OBUo_LSL specify the lower 16 bits of the 23-bit linear address.

	LSL									LSB						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	1

Bit#	Access	Reset	Descri	otion
15:1	R/W	0h	LSL	Linear Start Address Low. Specifies the lower bits of the 23-bit linear starting address. (0-7FFFh)
0	R/W	0	LSB	Linear Start Address (LSB must = 0)

Object Buffer Linear Start Address High

Bits 5 through 0 of register OBUo_LSH specify the upper 6 bits of the 22-bit linear address.

	RSVD										LSH					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit #	Access	Reset	Descrip	otion
15:7	R/W	0h	RSVD	Reserved (read as 0)
6:0	R/W	0h	RSVD	Linear Start Address High. Specifies the upper 7 bits of the 23-bit linear starting address. (0-7Fh)

Video Processor

4.4.1.4 OBUo_BSa: Object Buffer Size

VO Address HIU RDT Index 4804 (OBUo_BSX: Object Buffer 0 Buffer X Size) 4814 (OBU1_BSX: Object Buffer 1 Buffer X Size) 4824 (OBU2_BSX: Object Buffer 2 Buffer X Size) 4834 (OBU3 BSX: Object Buffer 3 Buffer X Size) 4844 (OBU4_BSX: Object Buffer 4 Buffer X Size) 4854 (OBU5_BSX: Object Buffer 5 Buffer X Size) 4864 (OBU6_BSX: Object Buffer 6 Buffer X Size) 4874 (OBU7_BSX: Object Buffer 7 Buffer X Size) 4805 (OBUo_BSY: Object Buffer 0 Buffer Y Size) 4815 (OBU1 BSY: Object Buffer 1 Buffer Y Size) 4825 (OBU2_BSY: Object Buffer 2 Buffer Y Size) 4835 (OBU3_BSY: Object Buffer 3 Buffer Y Size) 4845 (OBU4_BSY: Object Buffer 4 Buffer Y Size) 4855 (OBU5_BSY: Object Buffer 5 Buffer Y Size) 4865 (OBU6_BSY: Object Buffer 6 Buffer Y Size) 4875 (OBU7_BSY: Object Buffer 7 Buffer Y Size)

See also:

Figure 3-28. Object Buffer, p. 72

Registers OBUo_BSX and OBUo_BSY specify the size of the object buffer.

Object Buffer X Size

The X size of the Object Buffer is its width in pixels. The hardware always forces the LSB to 0.

	RSVD					BSX										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit#	Access	Reset	Descrip	Description							
15:11	R/W	0h	RSVD	Reserved (read as 0)							
10:0	R/W	0h	BSX	Buffer X Size (0-7FFh)							

Object Buffer Y Size

The Y size of the Object Buffer is its height in pixels.

	RSVD					BSY									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Description							
15:11	R/W	0h	RSVD	Reserved (read as 0)						
10:0	R/W	0h	BSY	Buffer Y Size (0-7FFh)						

4.4.1.5 OBUo_DEC: Object Buffer Decimate Control

I/O Address H

HIU_RDT

Index

4806 (OBUo_DEC: Object Buffer 0 Decimate Control)
4816 (OBU1_DEC: Object Buffer 1 Decimate Control)
4826 (OBU2_DEC: Object Buffer 2 Decimate Control)
4836 (OBU3_DEC: Object Buffer 3 Decimate Control)
4846 (OBU4_DEC: Object Buffer 4 Decimate Control)
4856 (OBU5_DEC: Object Buffer 5 Decimate Control)
4866 (OBU6_DEC: Object Buffer 6 Decimate Control)
4876 (OBU7_DEC: Object Buffer 7 Decimate Control)

Register OBUo_DEC specifies the write decimation mask. Fields DM7-DM0 are mapped to each successive group of eight pixels written into the object buffer. If a bit = 0, its corresponding pixel is written; if a bit = 1, its corresponding pixel is dropped.

RSVD							DM7	DM6	DM5	DM4	DM3	DM2	DM1	DMO	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descri	ption
15:8	R/W	0h	RSVD	RSVD: Reserved (read as 0)
7	R/W	0h	DM7	Write Decimation Mask Bit 7 Write pixel to Frame Buffer Drop pixel
6	R/W	0h	DM6	Write Decimation Mask Bit 6 Write pixel to Frame Buffer Drop pixel
5	R/W	Oh	DM5	Write Decimation Mask Bit 5 0 Write pixel to Frame Buffer 1 Drop pixel
4	R/W	Oh	DM4	Write Decimation Mask Bit 4 0 Write pixel to Frame Buffer 1 Drop pixel
3	R/W	Oh	DM3	Write Decimation Mask Bit 3 0 Write pixel to Frame Buffer 1 Drop pixel
2	R/W	0h	DM2	Write Decimation Mask Bit 2 0 Write pixel to Frame Buffer 1 Drop pixel
1	R/W	0ḥ	DM1	Write Decimation Mask Bit 1 0 Write pixel to Frame Buffer 1 Drop pixel

Bit #	Access	Reset	Descri	ption (cont.)
0	R/W	0h	DM0	Write Decimation Mask Bit 0 Write pixel to Frame Buffer Drop pixel

4.4.2 MMU: Memory Management Unit

4.4.2.1 MMU_MCR: Master Control

VO Address

HIU_RDT

Index

4000

Register MMU_MCR specifies the characteristics of the Frame Buffer used by the CL-PX2070.

					RSVD						FBD		FE	3C	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	ption							
15:5	R/W	0h	RSVD	Reserved (read as 0)							
4	R/W	0	FBD	Frame Buffer Data-Bus Width. 0 16-bit-wide bus 1 32-bit-wide bus							
3:0	R/W	0000	FBC	Frame Buffer Address Configuration. 0000 64K 0001 128K 0010 256K 0011 1 M							

4.4.3 DWU: Display Window Unit

4.4.3.1 DWU_MCR: Display Window Master Control

I/O Address

HIU RDT

Index

4100 (DWU_MCR: Display Window Master Control)

See also:

Figure 3-30. Display Window, p. 77

Register DWU_MCR controls the operation of the display window and indicates to the RFU whether or not the CL-PX2080 is present.

	GCS	GFP	GFM	GVSP	GHSP	GBP	occ	IMS		RS	VD		wсз	WC2	WC1	WC0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15	R/W	0	GCS	Graphics Clock Select 0 1/2x GPCLK 1 1x GPCLK
14	R/W	0	GFP	Graphics Field Polarity 0 normal polarity 1 inverted polarity
13	R/W	0	IMS	Graphics Field Mode 0 field polarity determined by value of GHSP on falling GVSP 1 GHSP input used as field select
12	R/W	0	GVSP	Graphics Vsync Polarity 0 active low 1 active high
11	R/W	0	GHSP	Graphics Hsync Polarity 0 active low 1 active high
10	R/W	0	GBP	Graphics Blank Polarity 0 active low 1 active high
9	R/W	0	occ	Occluded Window Control. Specifies whether the present hardware configuration includes the CL-PX2080. O CL-PX2080 is present — system supports occluded windows CL-PX2080 is not present — system does not support occluded windows
8	R/W	0	GFM	Interlace Mode Select. Specifies whether the stream stored in the object buffer for display by the current display window is interlaced or non-interlaced. O Progressive video (non-interlaced) Interlaced video
7:4	R/W	0000	GVSP	Reserved (read as 0)

Bit #	Access	Reset	Descri	ption (cont.)
3	R/W	0	WC3	Window 3 Control O Disable window 1 Enable window
2	R/W	0	WC2	Window 2 Control 0 Disable window 1 Enable window
1	R/W	0	WC1	Window 1 Control O Disable window 1 Enable window
0	R/W	0	WC0	Window 0 Control 0 Disable window 1 Enable window

4.4.3.2 DWU_HCR: Display Window Horizontal Control Register

VO Address

HIU_RDT

Index

4101 (DWU_HCR: Display Window Horizontal Control Register)

See also:

Figure 3-30. Display Window, p. 77

DWU: Display Window Unit, p. 76

Register DWU_HCR shares two functions, depending on whether or not the CL-PX2070 is operating with the CL-PX2080, as specified by Bit OCC of register DWU_MCR.

Horizontal Active Count

When Bit OCC of register DWU_MCR = 0, the CL-PX2070 is operating with the CL-PX2080, and DWU_MCR specifies the number of pixel periods in the horizontal line active interval for the output CRT display.

		RSVD								HAC					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	5

Bit#	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	HAC	Horizontal Active Count (0-7FFh)

Minimum Window Separation

When Bit OCC of register DWU_MCR = 1, the CL-PX2070 is not operating with the CL-PX2080, and DWU_HCR specifies the minimum number of pixel periods required to separate display windows.

	RSVD 15 14 13 12 11 10 9							M\	NS						
15	14	13	12	11	10	9	8	7	6	- 5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:8	R/W	0h	RSVD	Reserved (read as 0)
7:0	R/W	0h	MWS	Minimum Window Separation (0-ffh)

4.4.3.3 DWUd_DZF: Display Window Display Zoom Factor

I/O Address

HIU RDT

Index

4400 (DWU0_DZF: Display Window 0 Display Zoom Factor)
4410 (DWU1_DZF: Display Window 1 Display Zoom Factor)
4420 (DWU2_DZF: Display Window 2 Display Zoom Factor)

4430 (DWU3_DZF: Display Window 3 Display Zoom Factor)

Register DWUd_DZF specifies the X and Y zoom factors to be applied to the display window output. Functional only when used with CL-PX2080. Specifies zoom factor. The image is scaled according to the following formula:

Scaling =
$$\frac{256}{\text{ZOOM FACTOR}}$$

For example, a zoom factor of 128 yields a scaling factor of 2. A scaling factor of one (no change in image size) is selected by entering a zoom factor of zero.

NOTE: The contents of the object buffer are not affected by the zoom factors.

		YZOOM 5 14 13 12 11 10 9									XZC	МОС				
-	15	14	13	1 12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Description
15:8	R/W	0h	YZOOM Y Zoom Factor — line replication value (0-FFh)
7:0	R/W	0h	XZOOM X Zoom Factor — pixel replication value (0-FFh)

4.4.3.4 DWUd_RFX: Display Window Reference Frame X Size

I/O Address

HIU_RDT

Index

4401 (DWU0_RFX: Display Window 0 Reference Frame X Size) 4411 (DWU1_RFX: Display Window 1 Reference Frame X Size)

4421 (DWU2_RFX: Display Window 2 Reference Frame X Size)

4431 (DWU3_RFX: Display Window 3 Reference Frame X Size)

See also:

Figure 3-30. Display Window, p. 77

Register DWUd_RFX specifies the 11-bit pixel width of the reference frame containing the display window.

	RSVD					RFX									·
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Description					
15:11	R/W	0h	RSVD	Reserved (read as 0)				
10:0	R/W	0h	RFX	Reference Frame X size (0-7FFh)				

4.4.3.5 DWUd_LSb: Display Window Linear Start Address

I/O Address

HIU RDT

Index

4402 (DWU0 LSL: Display Window 0 Linear Start Address Low) 4412 (DWU1_LSL: Display Window 1 Linear Start Address Low) 4422 (DWU2_LSL: Display Window 2 Linear Start Address Low) 4432 (DWU3_LSL: Display Window 3 Linear Start Address Low) 4403 (DWU0_LSH: Display Window 0 Linear Start Address High) 4413 (DWU1_LSH: Display Window 1 Linear Start Address High)

4423 (DWU2_LSH: Display Window 2 Linear Start Address High)

4433 (DWU3_LSH: Display Window 3 Linear Start Address High)

See also:

Figure 3-30. Display Window, p. 77

Register DWUd_LSL and DWUd_LSH specify the 23-bit linear starting address of the display window.

Display Window Linear Start Address Low

Bits 15 through 0 of register DWUd_LSL specify the lower 16 bits of the 23-bit linear address.

							LSL								LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit # Access Reset Des				otion
15:1	R/W	0h	LSL	Linear Start Address Low. Specifies the lower bits of the 23-bit linear starting address. (0-7FFFh)
0	R/W	0	LSB	Linear Start Address (LSb must = 0)

Display Window Linear Start Address High

Bits 6 through 0 of register DWUd_LSH specify the upper 7 bits of the 23-bit linear address.

	RSVD									LSH					
15	15 14 13 12 11 10 9 8 7							6	5	4	3	2	1	0	

Bit#	Access	Reset	Description				
15:7	R/W	0h	RSVD	Reserved (read as 0)			
6:0	R/W	0h	LSH	Linear Start Address High. Specifies the upper 7 bits of the 23-bit linear starting address. (0-7Fh)			

4.4.3.6 DWUd_WSa: Display Window Size

I/O Address HIU_RDT

Index 4404 (DWU0_WSX: Display Window 0 Window X Size)

4414 (DWU1_WSX: Display Window 1 Window X Size) 4424 (DWU2_WSX: Display Window 2 Window X Size)

4434 (DWU3_WSX: Display Window 3 Window X Size) 4405 (DWU0_WSY: Display Window 0 Window Y Size)

4415 (DWU1_WSY: Display Window 1 Window Y Size) 4425 (DWU2_WSY: Display Window 2 Window Y Size)

4435 (DWU3_WSY: Display Window 3 Window Y Size)

See also: Figure 3-30. Display Window, p. 77

Registers DWUd_WSX and DWUd_WSY specify the size of the display window.

Display Window X Size

Register DWUd_WSX specifies the X dimension of the display window in pixels.

	RSVD					WSX									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as 0)
10:0	R/W	0h	wsx	Window X Size (LSb must = 0)

Display Window Y Size

Register DWUd_WSY specifies the Y dimension of the display window in pixels.

			RSVD				WSY									
Γ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Descrip	otion	
15:11	R/W	oh	RSVD	Reserved (read as 0)	
10:0	R/W	0h	WSY	Window Y Size (0-7FFh)	

DWUd_DSa: Display Window Display Start 4.4.3.7

I/O Address

HIU RDT

Index

4406 (DWU0_DSX: Display Window 0 Display X Start) 4416 (DWU1 DSX: Display Window 1 Display X Start) 4426 (DWU2_DSX: Display Window 2 Display X Start) 4436 (DWU3_DSX: Display Window 3 Display X Start) 4407 (DWU0_DSY: Display Window 0 Display Y Start) 4417 (DWU1_DSY: Display Window 1 Display Y Start) 4427 (DWU2_DSY: Display Window 2 Display Y Start) 4437 (DWU3_DSY: Display Window 3 Display Y Start)

See also:

Figure 3-30. Display Window, p. 77

Registers DWUd_DSX and DWUd_DSY specify the location of the top left corner of the display window relative to the top left corner of the output CRT display.

Display Window Display X Start

Register DWUd_DSX specifies the pixel offset from the CRT column 0 to the left-most column of the display window.

	RS	VD			DSX										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit #	Access	Reset	Description					
15:12	R/W	0h	RSVD	Reserved (read as 0)				
11:0	R/W	0h	DSX	Display X Start (0-7FFh)				

Display Window Display Y Start

Register DWUd DSY specifies the pixel offset from the CRT row 0 to the top-most row of the display window.

RSVD							DS	SY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit#	Access	Reset	Descrip	otion
15:12	R/W	0h	RSVD	Reserved (read as 0)
11:0	R/W	0h	DSY	Display Y Start (0-7FFh)

5. ELECTRICAL SPECIFICATIONS

5.1 Absolute Maximum Ratings

This section lists the absolute maximum ratings of the CL-PX2070. Stresses above those listed can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

5.2 CL-PX2070 Specifications (Digital)

Symbol	Parameter	MIN	MAX	Units	Conditions
VDD	Power Supply Voltage	4.75	5.25	V	Normal Operation
V _{IL}	Input Low Voltage	0	0.8	V	
V _{IH}	Input High Voltage	2.0	V _{DD} + 0.8	V	
V _{OL}	Output Low Voltage		0.4	V	I _{OL} = 4 mA
V _{OH}	Output High Voltage	2.4		٧	I _{OH} = 400 μA
I _{DD}	Digital Supply Current		N/A	mA	V _{DD} Nominal
IDDT	Total Supply Current		N/A	mA	Note 1
 IL	Input Leakage	-10	10	μА	0 < V _{IN} < V _{DD}
C _{IN}	Input Capacitance		10	pF	
C _{OUT}	Output Capacitance		10	pF	

NOTE:

5.3 CL-PX2070 DC Characteristics

(VDD = 5V 5%, $T_A = 0^\circ$ to 70° C, unless otherwise specified)

Symbol Parameter		MIN	MAX	Units	Conditions
l _{Omax}	Output Current		-21	mA	V _O < 1 V
Со	Output Capacitance		12	pF	Blank<= V _{IL} MAX

¹⁾ I_{DDT} is the sum of I_{DD} + DACI_{DD} + CLKI_{DD}, and must be <200 mA (package constraint).

²⁾ DACVSS must not exceed V_{DD}.

NOTE:

- 1) t_D is measured from the 50% point of VDCLK to 50% point of full-scale transition.
- 2) Load is 37.5 ohms and 30 pF per analog output.
- 3) $I_{REF} = -8.8 \text{ mA}$.
- 4) t_R is measured from 10% to 90% full scale.
- 5) ts is measured from 50% point of full-scale transition to output remaining within 2% of final value.
- 6) Outputs loaded identically.
- 7) About the mid-point of the distribution of the three DACs measured at full-scale deflection.

5.4 AC Characteristics/Timing Information

This section includes system timing requirements for the CL-PX2080. Timings are provided in nanoseconds (ns), at TTL input levels, with the ambient temperature varying from 0 to 70 $^{\circ}$ C, and V_{CC} varying from 4.75 to 5.25V DC.

NOTE:

- 1. All timings assume a load of 50 pF.
- 2. TTL signals are measured at TTL threshold; CMOS signals are measured at CMOS threshold.

5.4.1 Index of Timing Information

Item		Page Number
I/O Timing (ISA	Bus)(Table 5-1)	155
Figure 5-1.	I/O Timing (ISA Bus)	155
DMA Timing (IS	SA Bus)(Table 5–2)	156
Figure 5-2.	DMA Timing (ISA Bus)	156
MCA I/O Cycle	Timing(Table 5–3)	157
Figure 5-3.	MCA I/O Cycle Timing	158
CDSFDBK* Tim	ning (MCA Bus)(Table 5–4)	159
Figure 5-4.	CDSFDBK* Timing (MCA Bus)	159
CDSETUP* Tim	ing (MCA Bus)(Table 5–5)	159
	CDSETUP* Timing (MCA Bus)	
Local Hardware	e Interface Mode Write(Table 5–6)	160
Figure 5-6.	Write Timing (Local Hardware Interface)	160
Local Hardware	e Interface Mode Read(Table 5–7)	161
Figure 5-7.	Read Timing (Local Hardware Interface)	161
Local Hardware	e Interface Mode DMA Timing(Table 5–8)	162
Figure 5-8.	DMA Timing (Local Hardware Interface)	163
Input Video Tim	ning(Table 5–9)	164
Figure 5-9.	Input Video Timing	164
Input Video Tim	ning(Table 5–10)	165
	Input Video Timing	

5.4.2 I/O Timing (ISA Bus)

Table 5-1. I/O Timing (ISA Bus)

Symbol	Parameter	MIN	MAX	Unit
t ₁	Setup time, valid address to IOR*/IOW* active	30		ns
t ₂	Delay, IOR*/IOW* active to DEN* active, DDIR change	4	20	ns
t ₃	Delay, IOR* active to data out low Z	4	75	ns
<u>t4</u>	Delay, IOR* active to data out valid		75	ns
t ₅	Pulse width, IOR*/IOW*	100		ns
t ₆	Delay, IOR*/IOW* inactive to DEN* inactive, DDIR change	4	20	ns
t ₇	IOR* inactive to Three-State delay	4	20	ns
t _e	Address hold time from IOR*/IOW* active	0		ns
t ₉	Setup time, data valid to IOW* inactive	50		ns
t ₁₀	Hold time, IOW* inactive to data invalid	0		ns
t ₁₁	Delay, IOW* inactive to next IOW* or IOR* active	80		ns
t ₁₂	Setup, AEN rising edge to IOW* or IOR* active	20		ns
t ₁₃	Delay, IOW* or IOR* inactive to AEN falling edge	0		ns

NOTE: AEN must be low.

Figure 5-1. I/O Timing (ISA Bus)

5.4.3 DMA Timing (ISA Bus)

Table 5-2. DMA Timing (ISA Bus)

Symbol	Parameter	MIN	MAX	Unit
t ₁	Delay, IOR*/IOW* active to DEN* active, DDIR change	4	20	ns
t ₂	Delay, IOR* active to data out low Z	4	75	ns
t ₃	Delay, IOR* active to data out valid		75	ns
t ₄	Pulse width, IOR*/IOW*	100		ns
t ₅	Delay, IOR*/IOW* inactive to DEN* inactive, DDIR change	4	20	ns
t ₆	IOR* inactive to Three-State delay	4	20	ns
t ₇	Setup time, data valid to IOW* inactive	50		ns
t ₈	Hold time, IOW* inactive to data invalid	0		ns
t ₉	Delay, IOW* inactive to next IOW* or IOR* active	80		ns
t ₁₀	Delay, BCLK rising edge to DMARQ inactive			ns

Figure 5-2. DMA Timing (ISA Bus)

5.4.4 MCA I/O Cycle Timing

Table 5-3. MCA I/O Cycle Timing

Symbol	Parameter	MIN	MAX	Unit
t ₁	Setup time, address valid to ADL* active	40		ns
t ₂	Setup time, status valid to ADL* active	7		ns
t ₃	Pulse width, ADL*	35		ns
4	Hold time, status from ADL* inactive	20		ns
t ₅	Hold time, address, MI/O* from ADL* inactive	25		ns
t ₆	Setup time, address valid to CMD* active	80		ns
t ₇	Setup time, status valid to CMD* active	50		ns
t ₈	Setup time, ADL* active to CMD* active	35		ns
t ₉	Pulse width, CMD*	90		ns
t ₁₀	Hold time, address, from CMD* active	25		ns
t ₁₁	Hold time, status, from CMD* active	25		ns
t ₁₂	Setup time, write data valid to CMD* active	15		ns
t ₁₃	Hold time, write data valid from CMD* active	0		ns
t ₁₄	Delay, CMD* active to read data valid	45		ns
t ₁₅	Delay, CMD* inactive to read data invalid	0		ns
t ₁₆	Delay, CMD* inactive to read data high Z		30	ns
t ₁₇	Delay, CMD* active to DEN* active / DDIR change		35	ns
t ₁₈	Delay, CMD* inactive to DEN* inactive / DDIR change		20	ns
t ₁₉	Delay, CMD* inactive to CMD* active		The second secon	ns

Figure 5-3. MCA I/O Cycle Timing

5.4.5 CDSFDBK*Timing (MCA Bus)

Table 5-4. CDSFDBK* Timing (MCA Bus)

Symbol	Parameter	MIN	MAX	Unit
t ₁	Address, M/IO* valid to CDSFDBK delay		55	ns
t ₂	Address, M/IO*, invalid, CDSFDBK inactive	0		ns

NOTE: Slaves do not drive CD_S_FDBK* when they are selected by the 'card setup' signal.

Figure 5-4. CDSFDBK* Timing (MCA Bus)

5.4.6 CDSETUP*Timing (MCA Bus)

Table 5-5. CDSETUP* Timing (MCA Bus)

Symbol	Parameter	MIN	MAX	Unit	
t ₁	CD_SETUP* active setup to ADL* active	10		ns	
t ₂	CMD* active to CD_SETUP* inactive hold	25		ns	
t ₃	ADL* inactive to CD_SETUP* inactive hold	20		ns	

Figure 5-5. CDSETUP* Timing (MCA Bus)

5.4.7 Write Timing (Local Hardware Interface)

Table 5-6. Local Hardware Interface Mode Write

Symbol	Parameter	MIN	MAX	Unit
t ₁	period, PCLK	30		ns
t ₂	pulse width, PCLK	12		ns
t ₃	setup time, IOW*, CS* to PCLK rising edge	10		ns
$\overline{t_4}$	setup time, CS*, RS[4:0] to IOW*	1	·	cycle
t ₅	pulse width, IOW*	2		cycle
t ₆	hold time, PCLK rising edge tc IOW*, CS*	2		ns
t ₇	delay, IOW* inactive to IOW* or IOR* active	2		cycles
t ₈	setup time, DATA valid to IOW* inactive	15		ns
tg	hold time, CS*, RS[4:0], DATA valid to IOW* inactive	2		ns
t ₁₀	delay, PCLK rising edge to READY* active	4	20	ns
t ₁₁	delay, IOW* inactive to READY* inactive	4	20	ns
t ₁₂	pulse width, READY*	1	2	cycles
t ₁₃	delay, IOW* active to READY* active	1	1	cycle

NOTE:

- 1) CS*, IOW*, RS[4:0] must be asserted.
- 2) If IOW* exceeds 2 cycles, READY* is negated after 2 cycles. In this case, t_{11} is referenced to CLK.

NOTE:

Timing is shown relative to clock Internally, Data, R*/W, RS[3:1] must be stable entire cycle following CS* active. Data is written on 2nd rising edge after CS* is asserted

Figure 5-6. Write Timing (Local Hardware Interface)

5.4.8 Read Timing (Local Hardware Interface)

Table 5-7. Local Hardware Interface Mode Read

Symbol	Parameter	MIN	MAX	Unit
t ₁	period, PCLK	30		ns
t ₂	pulse width, PCLK	12		ns
t ₃	setup time, IOR*, CS* active to CLK rising edge	12		ns
<u>t</u> 4	setup time, CS*, RS[4:0] valid to IOR* active	1		cycle
t ₅	pulse width, IOR*	3		cycles
t ₆	hold time, PCLK rising edge to IOR* inactive, CS* inactive	2		ns
t ₇	delay, IOR* inactive to IOR* or IOW* active	2		cycles
t _e	delay, IOR* active to DATA low impedance	4	20	ns
tg	delay, IOR* active to DATA valid	4	40	ns
t ₁₀	hold time, IOR* inactive to DATA, CS*, RS[4:0] invalid	2		ns
t ₁₁	delay, PCLK rising edge to READY* active	4	20	ns
t ₁₂	delay, IOR* active to READY* active	1	1	cycles
t ₁₃	pulse width, READY*	2	2	cycles
t ₁₄	delay, PCLK rising edge to READY* inactive	4	20	ns
t ₁₅	delay, IOR* inactive to DATA high impedance	2	20	ns

Figure 5-7. Read Timing (Local Hardware Interface)

5.4.9 I/O DMA Timing (Local Hardware Interface)

Table 5-8. Local Hardware Interface Mode DMA Timing

Symbol	Parameter	MIN	MAX	Unit
t ₁	period, PCLK			ns
t ₂	pulse width, PCLK			ns
t ₃	setup time, DMACK*, IOR*/IOW*, CS*, BLAST* active to PCLK rising edge			ns
t ₄	delay, DMACK* active to CS* active			cycle
t ₅	delay, CS* active to IOR*/IOW* active			cycle
t ₆	delay, CS* active to IOR*/IOW* inactive	•		cycles
t ₇	delay, IOR*/IOW* active to CHRDY* active			cycles
t ₈	delay, PCLK rising edge to CHRDY* active			ns
tg	delay, PCLK rising edge to read DATA valid			ns
t ₁₀	hold time, PCLK rising edge to read DATA invalid, READY inactive			ns
t ₁₁	delay, PCLK rising edge to IOR*/IOW*, CS*, BLAST*, DMACK* inactive			ns
l ₁₂	setup time, write DATA valid to CHRDY* active			ns
t ₁₃	hold time, write DATA valid to PCLK rising edge			ns
t ₁₄	delay, PCLK rising edge to READY* inactive			ns
t ₁₅	delay, IOR* inactive to DATA high impedance			ns

Figure 5-8. DMA Timing (Local Hardware Interface)

5.4.10 Input Video Timing

Table 5-9. Input Video Timing

Parameter	MIN	MAX	Unit
phase setup to clk	10	_	ns
phase hold from clk	2	_	ns
data, sync, blank valid after clk	5	15	ns
ien valid after clk	5	15	ns
ien setup time	10	-	ns
ien hold time	2	_	ns
data, syncs, blank setup time	10	-	ns
data, syncs, blank hold time	2	-	ns
	phase setup to clk phase hold from clk data, sync, blank valid after clk ien valid after clk ien setup time ien hold time data, syncs, blank setup time	phase setup to clk 10 phase hold from clk 2 data, sync, blank valid after clk 5 ien valid after clk 5 ien setup time 10 ien hold time 2 data, syncs, blank setup time 10	phase setup to clk 10 — phase hold from clk 2 — data, sync, blank valid after clk 5 15 ien valid after clk 5 15 ien setup time 10 — ien hold time 2 — data, syncs, blank setup time 10 —

Figure 5-9. Input Video Timing

5.4.11 Input Video Timing

Table 5-10. Input Video Timing

Symbol	Parameter	MIN	MAX	Unit
	minimum clock period	33	-	ns
	minimum clock high period	12	-	ns
tsrs	stall request setup time	10	_	ns
t _{SRH}	stall request hold time	2	-	ns
tstv	stall valid after clock	7	20	ns
t _{STIV}	stall invalid after clock	7	20	ns

Figure 5-10. Input Video Timing

6. PACKAGE DIMENSIONS — 160-Lead PQFP

Figure 6-1. CL-PX2070 Package Information

6. PACKAGE DIMENSIONS — 160-Lead PQFP (cont.)

Figure 6-2. CL-PX2070 Package Information (Expanded View)

7. ORDERING INFORMATION

When ordering the CL-PX2070, use the following format:

[†] Contact Cirrus Logic for up-to-date information on revisions.

Index

Symbols	ALU 63, 66
+5 VDC for digital logic and interface buffers, signal VDD 24	enable 105 master control 128 registers 103
Numerics	ALU_AV: Alpha Value 130 ALU_CAx: Constant A 131
SAD 18 16-bit VO cycle, signal IO16 18 RGB, video input stream formats 53 2:1 X Zoom Unit 69 4:1:1 YCbCr 54 4:2:2 YCbCr 54 8-bit pseudocolor as input to the Chrominance Interpolator 54 video input stream formats 53	ALU_CBx: Constant B 131 ALU_CCx: Constant C 132 ALU_LOPx: Logic Operation 130 ALU_MCRf: Master Control 128 ALU_TOP: Tag Operation 129 Arithmetic and Logic Unit, see ALU arithmetic operations 67 control registers 67 output selection 68 select 128 Y scaling path mode, special 68 automatic
A	increment control 87 reset 86
absolute maximum ratings 153 AC characteristics/timing information 154–165 AD[15:0] 19 address /data bus, signals AD[15:0] 19 /data bus, signals SAD[15:0] 18 bus, signals FBA[9:0] 23 column address strobes, signals CAS[1:0] 23 counter, preloading 108 enable, signal AEN 18 frame buffer addressing	BCLK 18 begin X column fractional index 111 integer index 111, 122, 134 Y row fractional index 114 integer index 114, 135 blanking horizontal/composite signal V1HB 21 signal V2HB 22 signal GBL 21 BLAST* 20 blocks, functional 25 BLT direction control 75 buffer data, see data buffer digital logic and interface +5 VDC, signal VDD 24 ground, signal VSS 24 frame, see frame buffer
AEN 18 alpha value 130	object, see object buffer size 143 burst last, signal BLAST* 20

CL-PX2070

Video Processor

bus	assignment table 15
clock	information 12-17
serial, signal SBCKL 23	signal descriptions, detailed 18-24
signal BCLK 18	system interface highlights 29
video data, signals V1D[15:0] 21	CL-PX2080 146
width, system 82	operation with CL-PX2070 78
byte enable	CMD* 20
high, signal SBHE* 19	Color Space Converter 54
	enable 110
C	column address strobes, signals CAS[1:0] 23
conscitance, input and output 152	command, signal CMD* 20
capacitance, input and output 153 card	composite
data size, signal CDDS16* 20	/horizontal blanking
select feedback, signal CDSFDBK* 19	signal V1HB 21
setup, signal CDSETUP* 19	signal V2HB 22
CAS[1:0] 23	/vertical sync, signal V2VS 22
CDCHRDY 19	configuration
CDDS16* 20	CL-PX2070 27
CDRESET 20	default (local systems) 28
CDSETUP* 19	external (ISA and MCA systems) 28
timing (MCA Bus) 159	frame buffer 37
CDSFDBK* 19	hardware 27
timing (MCA Bus) 159	host system bus 29 ISA 31
channel	local hardware interface 35
masking, luminance and chrominance 75	MCA 34
pointer, initializing 108	port address 37
ready	setup 82
signal CHRDY 18, 19	Constant 131, 132
chip select, signal CS* 20	A 131
CHRDY 18	B 131
CHRDY* 20	C 132
chroma key max/min 117	control
chrominance	sync references, source of 92
Chrominance Interpolator 52, 54	tag
mask enable 140	code 129
clock	multiplexer, operation codes 129
FIFO write, signal FCLK 23	CS* 20
memory, signal MCLK 23	
pixel, signal GPCLK 21	D
processor, signal PCLK 20	
video data, signal V1CLK 21	D[15:0] 20
CL-PX2070	data
configuration 27	buffer
default (local hardware interface) 28	direction, signal DDIR 18, 19
external (ISA and MCA systems) 28	enable, signal DEN* 18, 19
electrical specifications 153–165	bus
FIFOs 46	signals D[15:0] 20
functional	signals FBD[31:0] 23
block diagram 25	tagging 66
description 25–79	control registers 66
operating mode 85	logical operation control 66
pin	output

multiplexer control 66 stream tag value 66 transfer enable, signal DTE 23 DC characteristics 153 DDIR 18, 19 debug control 83 read 84 enable 83	enable input, signal V2IEN* 22 end 115 X column integer index 122, 134 Y row integer index 123, 135 error detection trap 84 execution enable 83 exit point 127 external configuration 28
support registers, accessing 85	F
decimation, write 76	FBA[9:0] 23
default (local hardware interface) configuration 28	FBD[31:0] 23
DEN* 18, 19 detailed signal descriptions 18–24	FCLK 23
diagnostic	FDRY* 23
information, accessing 84	field
mode, controlling 83	count 107, 120
display	interrupt request 108, 121
start 152	register 62
window 77	ID 42
posting operation control 85	polarity select 109, 121, 133
zoom factor 148	toggle 42, 124
Display Window Unit, see DWU	and field ID, control registers 42
DMA	FIFO
acknowledge, signal DMACK* 18, 20	association 75, 127, 141
cycles	control/status indicators, accessing 50
ISA bus interface 32	flag
local hardware interface 36	empty 125 full 125
direction 85	overflow 126
enable 85	underflow 126
request	overflow 87, 126
signal DMARQ 18	ready, signal FDRY* 23
signal DMARQ* 20 DMACK* 18, 20	underflow 86
DMACK 18, 20 DMARQ 18	write clock, signal FCLK 23
DMARQ* 20	frame buffer
DTE 23	accessing
DWU 76	in ISA or MCA mode 88
master control 146	in local hardware interface mode 88
register posting mode 85	addressing
registers 138	16-bit 79
DWU_DSa: Display Start 152	32-bit 71
DWU_DZF: Display Zoom Factor 148	configuration 37, 79, 145
DWU_HAC: Horizontal Active Count 147	data formats 59
DWU_LSb: Linear Start Address 150	depth 79, 145
DWU_MCR: Master Control 146	interface
DWU_RFX: Reference Frame X Size 149	detailed signal descriptions 23
DWU_WSa: Window Size 151	pin assignments 17
_	signals 23
E	type 82
alastriani anasifications 152 165	functional
electrical specifications 153–165	block diagram 25
enable input, signal V1IEN* 22	description, CL-PX2070 25-79

G	host system
OR 31	bus 82
GBL 21	configuration 29
GHS 21	I/O Pins 30
GPCLK 21	specifying 82
graphics	
blank polarity 146	1
field	
mode 146	I/O
polarity 146	address map
hsync polarity 146	used by host system 82
overlay interface	address maps 37
detailed signal descriptions 21	pins, host system bus 30
pin assignments 16	read
vsync polarity 146	signal IOR* 18, 20
ground	timing
for digital logic and interface buffers, signal VSS 24	local hardware interface 161, 162
GVS 21	write
	signal IOW* 18, 20
H	timing
••	ISA bus 155, 156
hardware configuration 27	local hardware interface bus 160
data, storing 82	I/O address maps 37
HIU 27-38	index
register address map 81	address, automatic increment control 87
registers 81–89	-ed memory data 88
HIU_CSU: Configuration Setup 82	value, specifying 87
HIU_DBG: Debug Control 83	input
HIU_DRD: Debug Read 84	data format 110, 133
access to 83	enable
HIU_IMD: Indexed Memory Data 88	signal V1IEN* 22
HIU_IRQ: Interrupt Request 86	signal V2IEN* 22
HIU_MDT: Memory Data Port 88	format
HIU_OCS: Operation Control/Status 85	converter 52
HIU_RDT: Register Data Port 88	Input Processor Unit 2, see IPU2
HIU_RIN: Register Index 87	stream, specifying the format of 110
registers accessed by the Register Data Port 81	sync control 40
horizontal	tag
active	multiplexer, controlling the input selection 110
count 147	unit 54, 55
delay 96	video
pixels 97	stream 40
and composite blanking, signal V2HB 22	VIU input/output mode 92
and vertical references, control registers 44	voltages 153
period 97	Input Processor Unit 1, see IPU1
sync	interlace mode 121, 133
signal GHS 21	select 146
signal V1HS 21	specifying interlaced or non-interlaced 109
signal V2CLK 22	internal sync generator
signal V2HS 22	controls for 99
width 96	references 45
horizontal/composite blanking, signal V1HB 21	
Host Interface Unit, see HIU	interrupt enable mask 86
	GIGNE HEAD OU

mode	IPU2_XEIf: X End 122
IPU1 89	IPU2_YBIf: Y Begin 123
IPU2 89	IPU2_YEIf: Y End 123
OPU 89	window clipping unit 62
request 86	control registers 61
field count 108, 121	IRQ 18
line count 107, 120	IRQ* 19, 20
signal IRQ 18	ISA bus
signal IRQ* 19, 20	VO
Interrupt Request Unit 76	write timing 155, 156
IPU1 58	interface
IPU2 62	address/data multiplexers 33
016* 18	configuration 31
OR* 18, 20	for DMA cycles 32
OW* 18, 20	for register access cycles 31
PU1 50, 51	pin diagram 12
counter 86	mode
datapath control 93	detailed signal descriptions 18
field sync select 105	pin assignments 15
interrupt select 89	processor interface signals 18
master control 109	
registers 58, 100	K
IPU1_FIR: Field Count Interrupt Request 108	
IPU1_FLC: Field Count 107	key
IPU1_KFCf: Key Function Code 117	function code 117
IPU1_LIC: Line Count 106	maximum/minimum
IPU1_LRB: LUT RAM Base Address 108	U/G 118
IPU1_LRD: LUT RAM Data 109	V/B 118
IPU1_MCRf: Master Control 109	Y/R 118
IPU1_MMxf: Chroma Key Max/Min 117	
IPU1_PIX: Pixel Count 106	1
	L
IPU1_XBnf: X Begin 111	lead temperature 153
IPU1_XEIf: X End 112	leakage 153
IPU1_XSI2 113	line count 106, 119
IPU1_XSnf: X Shrink 113	current field 106, 119
IPU1_YBnf: Y Begin 114	interrupt request 120
IPU1_YEIf: Y End 115	register 62
IPU1_YSnf: Y Shrink 116	register 62
PU2 60	
counter 86	to interrupt request 107
datapath control 93	linear start address 142, 150
field sync select 105	local hardware interface
Interrupt Request Unit, control registers 62	configuration 35
interrupt select 89	for DMA Cycles 36
master control 121	VO read timing 161, 162
registers 101	mode
IPU2_FIR: Field Count Interrupt Request 121	detailed signal descriptions 20
IPU2_FLC: Field Count 120	pin assignments 16
IPU2_LIC: Line Count 119	pin diagram 14
IPU2_LIR: Line Count Interrupt Request 120	processor interface signals 20
IPU2_MCRf: Master Control 121	local hardware interface bus
	I/O write timing 160
IPU2_PIX: Pixel Count 119	local hardware interface mode
IPU2_XBIf: X Begin 122	

interface register access cycles 35	master control 145
logic operation 67, 130	registers 79, 136
Luminance Mask Enable 140 LUT	MMU_MCR: Master Control 145
enable 110	mode
	stall 91
RAM 54	multiplexers
base address 108	data, ISA and MCA 33
data 109	key function code 117
22	logical operation 130
M .	logical, specifying the constant values for 130
M/IO* 19	0
manual mode start 94	
master	object buffer 72
control	association 127
ALU 128	control registers 73
DWU 146	termination 86
IPU1 109	termination interrupt request 89
IPU2 121	Object Buffer Unit, see OBU
MMU 145	OBU
OBU 140	addressing modes 74
OPU 133	master control 140
SIU 124	Object Buffer Unit 72
VIU 91	Operation Modes 74
VPU 105	registers 136
debug enable 85	OBU_BSa: Buffer Size 143
posting control 85	OBU_DEC: Decimate Control 144
maximum ratings, absolute 153	OBU_LSb: Linear Start Address 142
MCA bus	OBU_MCR: Master Control 140
CDSETUP* timing 159	OBU_RFX: Reference Frame X Size 141
CDSFDBK* timing 159	Occluded Window Control 146
interface	Offset to Next Instruction 127
address/data multiplexers 33	operands
configuration 34	3-operand bit mask 128
for register access cycles 34	selection 64
pin diagram 13	control registers 64
mode	source select 129
detailed signal descriptions 19	specifying the constant values for
pin assignments 15	A 131
processor interface signals 19	B 131
timing	C 132
write cycle 157	operating mode
MCLK 23	controlling 85
memory	operations
clock, signal MCLK 23	arithmetic 67
data	control/status 85
VO 88	logical 67
port 88	mode 140
or I/O cycle, signal M/IO* 19	OPU 68
Memory Data I/O 88	datapath control 93
Memory Management Unit, see MMU	field sync select 105
Minimum Window Separation 148	master control 133
MMU 79	registers 104

OPU_MCRf: Master Control 133 OPU_XBlf: X Begin 134 OPU_XElf: X End 134 OPU_YBlf: Y Begin 135	detailed signal descriptions 24 signals 24 interface pin assignments 17
OPU_YEIf: Y End 135	supply voltage 153
ordering information 167	power supply voltage 153
output	PQFP 12
data	prescaler enable 110, 121
format 110	processor clock, signal PCLK 20
tag 110	processor interface
stream, specifying the format of 110	ISA bus mode
tag	detailed signal descriptions 18
code 129	pin assignments 15
multiplexer, operation codes 129	local hardware interface mode
Output Format Converter 58, 69	detailed signal descriptions 20
Output Processor Unit, see OPU	pin assignments 16
output voltages 153	MCA bus mode
overflow condition, FIFO 87	detailed signal descriptions 19
flag 126	pin assignments 15
mag 120	pseudocolor, 8-bit
P	as input to the Chrominance Interpolator 54 video input stream formats 53
package dimensions 166 PCLK 20	R
phase	Π
signal V1PH 22	RAS[1:0] 23
signal V2PH 22	Reference Frame
pin	allocation 71
assignment table 15	X size 141, 149
diagram	Reference Frame Unit, see RFU
ISA bus interface 12	register
local hardware interface 14	address map, HIU 81
MCA bus interface 13	bit assignments, external and default (local hard-
information 12–17	ware interface) configurations 27
pixel	data
clock, signal GPCLK 21	VO 88
count 106	port 88
current line 106	index 87
register 62	posting
pixel count 119	DWU mode 85
current line 119	enabling or disabling logic 85
	normal 85
Plastic Quad Flat Pack, 160-lead 12	
polarity	operation, forcing 85
graphics blank 146	select, signals RS[2:1] 20
graphics field 146	register access
graphics hsync 146	cycles
graphics vsync 146	ISA bus interface 31
port address	MCA bus interface 34
configuration 37	during a read cycle 85
select 82	registers
posting mode control 85	HIU 81–89
power	RFU 136–152
and ground	VBU 90–99

CL-PX2070

Video Processor

VPU 100-135	soft reset 86
reset	specifications, electric 153–165
auto 86	stall
signal CDRESET 20	mode 91
signal RESET 18, 21	request, signal STALLRQ* 22
soft 86	STALL* 22
RFU 70-79	STALLRQ* 22
registers 136–152	Start Index 124
RGB, 16-bit	status
video stream input formats 53	read select 85
row address strobes, signals RAS[1:0] 23	signal S0* 19
RS[2:1] 20	signal SI* 19
	storage temperature 153
S	strobes
3	column address, signal CAS[1:0] 23
S0* 19	row address, signals RAS[1:0] 23
S1* 19	supply currents, digital and total 153
SBCLK 23	sync
SBHE* 19	control inputs 40
sequencer enable 124	horizontal
Sequencer Instruction Memory 49, 127	signal GHS 21
breakpoint 83	signal V1HS 21
current index 84	signal V2CLK 22
Sequencer Instruction Unit, see SIU	signal V2HS 22
serial bus clock, signal SBCLK 23	modes 74
signal descriptions, detailed 18-24	input and output control registers 43
frame buffer	vertical
interface 23	/composite, signal V1VS 21
graphics overlay interface 21	/composite, signal VVS 22
power and ground 24	signal GVS 21
processor interface	system bus width 82
ISA bus mode 18	System bus width 62
local hardware interface mode 20	T
MCA bus mode 19	Т
Video Port 1 21	tag 131, 132
Video Port 2 22	format 128
single	operation 129
step enable 83	tagging data 66
sweep mode 75, 141	timeout condition
SIU 46	in watchdog timer 87
debug mode 83	timing
halting 83	CDSETUP* (MCA bus) 159
master control 124	CDSFDBK* (MCA bus) 159
registers 102	I/O read
master control 124	local hardware interface 161, 162
SIU_FCS: FIFO Control/Status 124	I/O write
SIU_FOU:FIFO Overflow/Underflow 126	ISA bus 155, 156
SIU_MCR: Master Control 124	local hardware interface bus 160
SIU_SIM	information/AC characteristics 154–165
Instruction Fields 49	write cycle (MCA bus) 157
SIU_SIM: Sequencer Instruction Memory 127	
restarting 83 SOE(1:0)* 23	
SUELL 01 / 3	

U	16-bit RGB 53
	8-bit pseudocolor 53
U output Source Select 128	YCbCr 52
underflow condition, FIFO 86	output
flag 126	blank
V	polarity 43, 91 type 43, 91
V output Source Select 129	field polarity 91
V1CLK 21	horizontal sync polarity 43, 91
V1D[15:0] 21	sync source 91
V1HB 21	port interfaces
V1HS 21	functional and I/O characteristics 91
V1IEN* 22	processor
V1PH 22	device version 82
V1VS 21	stream
V2CLK 22	and sync control inputs, control registers 41
V2D[15:0] 22	inputs 40
V2HB 22	Video Bus Unit, see VBU Video Interface Unit, see VIU
V2HS 22	video port 1
V2IEN 22	detailed signal descriptions 21, 22
V2PH 22	interface signals 21
V2VS 22	pin assignments 16
VBU 38	video port 2
registers 90–99	detailed signal descriptions 22
+5 VDC for digital logic and interface buffers, signal	pin assignments 16
VDD 24	Video Processor Unit, see VPU
VDD 24	Video Sync Unit, see VSU
vertical	VIU 40
/composite sync	master control 91
signal V1Vs 21	registers
signal V2VS 22	VIU_DPCf: Datapath Contol 92
active	VIU_MCRp/
delay 98	Master Control 91
pixels 99	voltages
period 99	low and high 153
sync	VPU 46–69
signal GVS 21 timing 95	global control 100
width 98	master control 105
video	registers 100–135
data bus	VPU_MCR: Master Control 105
signals V1D[15:0] 21	VPU Global Control 105
signals V1D[15:0] 22	VRAM
data clock, signal V1CLK 21	serial port output enable, signals SOE[1:0]* 23
input	VSS 24
blank polarity 92	VSU 43
blank type 92	registers
field polarity 91	VSU_HAD: Horizontal Active Delay 96
horizontal sync polarity 92	VSU_HAP: Horizontal Active Pixels 97
sync source 92	VSU_HP: Horizontal Period 97
vertical sync polarity 92	VSU_HSW: Horizontal Sync Width 96
input stream formats	VSU_VAD: Vertical Active Delay 98

CL-PX2070

Video Processor

VSU_VAP: Vertical Active Pixels 99 XY scaler 56 VSU VP: Vertical Period 99 VSU_VSW: Vertical Sync Width 98 Υ sync timing Y 114, 116 horizontal 95 Y Begin 114, 123 vertical sync timing 95 Y BLT direction control 141 VSU: Video Sync Unit Y counter 84 registers 95 Y display start 152 Y End 115, 123, 135 W Y output source select 128 watchdog timer 42 Y row integer index 115 control registers 42 Y scaler **IRQ 87 IPU1 57** WE* 23 Y scaling path enabling and disabling 110 window aligning between pixels 111 special mode clipping 56 arithmetic operations 68 control registers 56 **IPU1 57** controls 147 Y shrink 116 size 151 fraction 116 Window Clipping Unit Y window size 151 IPU1 57 Y zoom factor 148 window clipping **YCbCr** Window Clipping Unit 4:1:1 54 **IPU261** 4:2:2 54 **OPU 69** video input stream formats 52 write cycle timing (MCA Bus) 157 Z decimation 76 ZC[3:0] 23 enable, signal WE* 23 zoom write decimation 2:1 X Zoom Unit 69 mask bits 144 control bus, signals ZC[3:0] 23 enable 133 X X 111, 112, 113 X Begin 111, 122 X BLT direction control 141 X counter 84 X display start 152 X End 112, 122 X prescaler 56 enabling and disabling 110 **IPU2 61** X scaler **IPU1 57** X shrink 113 X window size 151 X zoom factor 148 unit, 2:1 69

NOTES

NOTES

Cirrus Logic Direct Sales Offices

Domestic

N. CALIFORNIA

San Jose

TEL: 408/436-7110 FAX: 408/437-8960

S. CALIFORNIA

Tustin

TEL: 714/258-8303 FAX: 714/258-8307

Thousand Oaks TEL: 805/371-5381

FAX: 805/371-5382

ROCKY MT AREA

Boulder, CO

TEL: 303/939-9739 FAX: 303/440-5712 S. CENTRAL AREA

Austin, TX

TEL: 512/794-8490 FAX: 512/794-8069

Plano, TX

TEL: 214/985-2334 FAX: 214/964-3119

CENTRAL AREA

Chicago, IL

TEL: 708/490-5940

N. EASTERN AREA

Andover, MA

TEL: 508/474-9300 FAX: 508/474-9149

New Brunswick, NJ TEL: 908/603-7757 FAX: 908/603-7756 S. EASTERN AREA

Boca Raton, FL TEL: 407/362-5225 FAX: 407/362-5235

International

JAPAN

Tokyo

TEL: 81/3-5389-5300 FAX: 81/3-5389-5540

SINGAPORE

TEL: 65/3532122 FAX: 65/3532166 TAIWAN

Taipei

TEL: 886/2-718-4533 FAX: 886/2-718-4526

GERMANY

Herrsching

TEL: 49/8152-2030 FAX: 49/8152-6211

UNITED KINGDOM

Hertfordshire, England TEL: 44/0727-872424

FAX: 44/0727-875919

The Company

Cirrus Logic, Inc., is a leading supplier of high-integration peripheral controller circuits for mass storage, graphics, and data communications. The company also produces state-of-the-art software and firmware to complement its product lines. Cirrus Logic technology is used in leading-edge personal computers, engineering workstations, and office automation.

Pixel Semiconductor, Inc., a subsidiary of Cirrus Logic, Inc., is a developer of integrated circuits for advanced display systems. These circuits enable the integration of real-time video with traditional computer graphics.

Cirrus Logic's fabless manufacturing strategy, unique in the semiconductor industry, employs a full manufacturing infrastructure to ensure maximum product quality, availability and value for our customers.

Talk to our systems and applications specialists; see how you can benefit from a new kind of semiconductor company.

© Copyright Pixel Semiconductor, Inc., 1992

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Pixel Semiconductor, Inc., believes that the information contained in this document is accurate and reliable. However, it is marked Preliminary and is subject to change without notice. Pixel Semiconductor, Inc., assumes no responsibility for its use, nor for Infringements of patents or other rights of third parties. This document implies no license under patents or copyrights. Trademarks In this document belong to their respective companies.

CIRRUS LOGIC, Inc.,

3100 West Warren Ave.

TEL: 510/623-8300

Fremont, CA 94538

FAX: 510/226-2180