PCIC 2021 Competition Causal Discovery Track

Solution Analysis

Team: JayceHaha

Member: Fuqiang Jiang

- 1. Get intuition: check the data
- 2. PC algorithm do not work
- 3. Estimate DAG by causal effect
- 4. Estimate DAG by TTPM method

Get intuition

Ground true DAG of data-4:

Get intuition

Topology graph of data-4:

Get intuition

Statistics of data-4:

	device_id		duration	
	count	mean	count	mean
alarm_id				
0	3156	19.107414	3156	13.869455
1	1447	17.953697	1447	55.198341
2	4326	18.575127	4326	24.649561
3	1857	18.478729	1857	27.588045
4	20106	20.148911	20106	19.436188
5	5808	19.356921	5808	24.266357
6	4881	18.904118	4881	35.641262
7	12112	19.592305	12112	23.346929
8	3572	18.844345	3572	33.975644
9	1499	18.354236	1499	56.389593
10	9800	19.650714	9800	25.252347
11	22652	20.066572	22652	19.337277
12	2112	18.659091	2112	29.479640

Time interval between events

count	93327.000000
mean	6.479679
std	12.537947
min	0.00000
25%	1.000000
50%	2.000000
75%	6.000000
max	223.000000
Mama	

PC-Algorithm do not work

- * construct feature by windowing
- * should be explored further

Calculate the treatment effect of event i on event j

$$Y(x_j|do(x_i = 1)) - Y(x_j|do(x_i = 0) > E(Y(x_j))$$

Treatment effect: Summation inside a specified window

$$x_1,x_2,x_3,\ldots x_j,\ldots x_k,\ldots x_j\ldots,x_n\ldots$$

Windowing

```
--#-apply-sliding-window, [N, num_events] ---> [N, num_events, win_size]
--data_view = np.lib.stride_tricks.sliding_window_view(data_onehot, delta_index, axis=0)
```

Sum over the window

```
...#.sum.over.the.sliding.window,.[N,.num_events,.win_size-1].-->.[N,.num_events]
...data_final.=.np.sum(data_view[:,.:,.1:],.axis=-1)
...#.clip.values
...data_final_clipped.=.np.clip(data_final,.a_min=0,.a_max=1)
```

Iterate over all edge pairs

effect_matrix = np.zeros((num_events, num_events), dtype=np.float32) avg_effect_times = np.zeros((num_events, num_events), dtype=np.float32) std_effect_times = np.zeros((num_events, num_events), dtype=np.float32) for i in range(num_events): for j in range(num_events): |----|---if i == j: continue cause_rows = cause_events[:, i] == 1 selected_data = data_final_clipped[cause_rows] effect_matrix[i, j] = np.mean(selected_data[:, j])

Apply same method to effect time

Treatment effect matrix

#### effect_matri	x:										
0 1 00 [0.415 0.178	2 0.566	3 0.224	4 2.079	5 0.683		7 1.363	8 0.480	9 0.181	10 1.179	11 2.582	12 0.262]
0 1 00 [0.038 0.007	2 0.036	3 0.009		5 0.052	_	7 0.067	Ŭ	9 0.008	10 0.093	11 0.097	12 0.014]
0 1 00 [-0.000 0.025 01 [-0.127 -0.000 02 [-0.009 -0.024 03 [0.239 0.055 04 [-0.096 -0.002 05 [-0.080 -0.028 06 [-0.068 0.005 07 [-0.117 -0.027 08 [0.027 -0.026 09 [-0.028 0.035 10 [-0.005 -0.017 11 [-0.054 -0.003	0.247 -0.000 -0.036 -0.079 -0.138 0.071 -0.128 -0.027 -0.039 -0.114	0.014 -0.014 -0.000 0.012 -0.030 -0.003 -0.027 -0.044 0.060 -0.016	-0.044 -0.022 -0.183 -0.000 -0.071 -0.091 0.980 -0.640 1.098 -0.177	-0.215 -0.107 -0.101 -0.123 -0.000 -0.130 -0.093 0.488 -0.044 0.181	-0.015 0.664 0.042 0.013 -0.061 -0.206 -0.000 -0.096 -0.138 -0.035 -0.169	0.220 0.223 -0.254 0.012 0.545 -0.079 -0.000 -0.130 -0.262 0.069	0.176 -0.118 0.019 -0.063 -0.109 -0.095 -0.025 -0.138 -0.000 -0.013 -0.093	0.001 -0.007 0.066 0.009 -0.023 -0.004 -0.025 -0.033 -0.000 -0.016	-0.410 -0.306 0.561 -0.192 0.352 -0.327 -0.094 0.566 -0.208 -0.000	-0.023 0.428 -0.265 -0.221 -0.135 0.715 -0.170 0.176 -0.542 0.300	-0.020] -0.013] 0.080] -0.002] -0.043] 0.002] -0.046] -0.062] 0.100] -0.025]

Estimate DAG by deviation detect

#	#### effect	_matrix	(:										
mean value along rows:	0 0 0 [0.415	1 0.178	2 0 . 566	3 0.224	4 2 . 079	5 0.683	6 0.631	7 1.363	8 0.480	9 0.181	10 1.179	11 2.582	12 0.262]
standard value along rows:	0 0 0.038	1 0.007	2 0.036	3 0.009	4 0.145	5 0.052	6 0.062	7 0.067	 8 0.051	9 0.008	10 0.093	11 0.097	12 0.014]
	0 00 [-0.000 01 [-0.127	-0.000	0.247	0.014	-0.044	-0.215	0.664	0.220	-0.118	0.001	-0.410	0.011 -0.023	
	[-0.009]3 [0.239]4 [-0.096]5 [-0.080	0.055 -0.002	-0.036 -0.079	-0.000 0.012	-0.183 -0.000	-0.101 -0.123	0.013 -0.061	-0.254 0.012	-0.063 -0.109	0.066 0.009	0.561 -0.192	-0.265 -0.221	0.080] -0.002]
	06 [-0.068 07 [-0.117 08 [0.027 09 [-0.028	-0.027 -0.026	-0.128 -0.027	-0.027 -0.044	0.980 -0.640	-0.093 0.488	-0.096 -0.138	-0.000 -0.130	-0.138 -0.000	-0.025 -0.033	-0.094 0.566	-0.170 0.176	-0.062]
1	[-0.005 [-0.054	-0.017 -0.003	-0.114 -0.052	-0.016 -0.012	-0.177 0.021	0.181 0.040	-0.169 -0.051	0.069 0.068	-0.093 -0.068	-0.016 -0.008	-0.000 -0.062	0.300 -0.000	-0.025]

DAG[i, j] = 1 if effect_delta[i, j] > effect_std[j] * scale

DAG estimated:

Ground True Estimated - Ground True Estimated

^{*}Recall most edges

^{*}Some false positive edges

Estimate DAG by sorting

####	# effect	t_matri	x:										
00	0 [0.415	1 0.178	2 0.566	3 0.224	4 2.079	5 0.683	6 0.631	7 1.363		9 0.181	10 1.179	11 2.582	12 0.262]
00	0 0.038	1 0.007	2 0.036	3 0.009	4 0.145	5 0.052	6 0.062	7 0.067	8 0.051	9 0.008	10 0.093	11 0.097	12 0.014]
01 02 03 04	[0.239 [-0.096	-0.000 -0.024 0.055 -0.002	0.247 -0.000 -0.036 -0.079	0.014 -0.014 -0.000 0.012	-0.365 -0.044 -0.022 -0.183 -0.000	-0.215 -0.107 -0.101 -0.123	-0.015 0.664 0.042 0.013 -0.061	0.220 0.223 -0.254 0.012	0.176 -0.118 0.019 -0.063 -0.109	0.001 -0.007 0.066 0.009	-0.306 0.561 -0.192	-0.023 0.428 -0.265 -0.221	-0.020] -0.013]
06 07 08 09 10 11	[-0.068 [-0.117 [0.027 [-0.028 [-0.005	0.005 -0.027 -0.026 0.035 -0.017 -0.003	0.071 -0.128 -0.027 -0.039 -0.114 -0.052	-0.003 -0.027 -0.044 0.060 -0.016 -0.012	-0.091 0.980 -0.640 1.098 -0.177	-0.130 -0.093 0.488 -0.044 0.181 0.040	-0.000 -0.096 -0.138 -0.035 -0.169 -0.051	-0.079 -0.000 -0.130 -0.262 0.069 0.068	-0.025 -0.138 -0.000 -0.013 -0.093 -0.068	-0.004 -0.025 -0.033 -0.000 -0.016 -0.008	-0.327 -0.094 0.566 -0.208 -0.000 -0.062	0.715 -0.170 0.176 -0.542 0.300 -0.000	0.002] -0.046] -0.062]

Simply sort all effect value and select the top k edges

Remove bi-directional edges by removing the less significant one

DAG estimated:

Estimated Estimated - Ground True

^{*}Recall all edges

^{*}Some false positive edges (less than checking std value)

Apply same process to effect time, Got:

What these DAG can do?

- *Give some intuition
- *Used as initial edge_mat for TTPM
- *Used as candidate edges for TTPM

Run the baseline method

Hyper-parameters

```
*max_hop
    *For data without topo_mat: 0
    *For data with topo_mat: 2 is better 1 (that's what the paper tell us too)

*max_iterations
    *the larger the better, util the likelihood converges
    *> 40 for phase1, > 60 for phase 2

*delta
    *roughly around 0.01 ~ 0.04 (default 0.10)

*epsilon
    *2.0 ~ 4.0 (default 1.0)

*penalty method:
    *"BIC" is better than "AIC"
```

Hyper-parameters: delta

delta: 0.10 (default)

delta: 0.02

*higher likelihood *higher g-score

Hyper-parameters: epsilon

epsilon: 1.0 (default)

*Converge more earlier

epsilon: 4.0

Key details of phase 2

Phase 2: data-1, 2 are hard to learn

*max_iteration
 *much larger then phase 1
*likelihood changes too smoothly

TTPM is time consuming

$$\mathcal{O}\left(Km^3E\frac{|\mathbf{V}|(|\mathbf{V}|+1)}{2}\right).$$

Improving speed

Use the DAG estimated by treatment effect as initial edge mat Only keep edges with significant treatment effect (Use the top 6% edges)

Improving speed

Use the DAG estimated by treatment effect as candidate edges

Keep most edges with significant treatment effect (Use the top 25% edges)

Recover to search around all edges when likelihood converges

10x speed up in data [1, 2, 3, 4] in phase 1, not tested for phase2 yet

Failed effort

Try to estimate DAG by gradient but failed

Q & A

Thanks!