Identity Involving Partial Derivative

The Jacobian of [u(x,y),v(x,y)] with respect to (x,y) is defined by

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

Here are some indentity relating the Jacobian with partial derivative.

Unity. Unity as in one

$$\frac{\partial(u,v)}{\partial(x,y)} = 1$$

Proof. Trivial

$$\frac{\partial(x,y)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{vmatrix} = \frac{\partial x}{\partial x} \frac{\partial y}{\partial y} - \frac{\partial x}{\partial y} \frac{\partial y}{\partial x} = 1 \quad \blacksquare$$

Change of order. It can be proved that change of order cost the minus sign

$$\frac{\partial(u,v)}{\partial(x,y)} = -\frac{\partial(v,u)}{\partial(x,y)} = -\frac{\partial(u,v)}{\partial(y,x)}$$

 ${\it Proof.}$ Those three terms literally have the same value when evaluated

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

$$-\frac{\partial(v,u)}{\partial(x,y)} = -\begin{vmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{vmatrix} = \frac{\partial v}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}$$

$$\frac{\partial(u,v)}{\partial(y,x)} = - \begin{vmatrix} \frac{\partial u}{\partial y} & \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} & \frac{\partial v}{\partial x} \end{vmatrix} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

See? ■

Jacobian. In terms of Jacobian, partial derivative of u with respect to x can be written as

$$\left. \frac{\partial u}{\partial x} \right|_y = \frac{\partial (u, y)}{\partial (x, y)}$$

Proof. Just evaluate the Jacobian

$$\frac{\partial(u,y)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{vmatrix} = \frac{\partial u}{\partial x} \frac{\partial y}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial u}{\partial x} \quad \blacksquare$$

Chain rule for partial derivative. The expression is

$$\frac{\partial(u,y)}{\partial(x,y)} = \frac{\partial(u,y)}{\partial(w,z)} \frac{\partial(w,z)}{\partial(x,y)}$$

Proof. The total differential of u and v as function w and z read

$$du = \frac{\partial u}{\partial w} dw + \frac{\partial u}{\partial v} dz \quad \wedge \quad dv = \frac{\partial v}{\partial w} dw + \frac{\partial v}{\partial z} dz$$

We can therefore evaluate the Jacobian

$$\frac{\partial(u,y)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{\partial u}{\partial w} \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial x} & \frac{\partial u}{\partial w} \frac{\partial w}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial y} \\ \frac{\partial v}{\partial w} \frac{\partial w}{\partial x} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial x} & \frac{\partial v}{\partial w} \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial y} \end{vmatrix}$$

$$= \left| \begin{pmatrix} \frac{\partial u}{\partial w} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial w} & \frac{\partial v}{\partial z} \end{pmatrix} \begin{pmatrix} \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{pmatrix} \right| = \left| \frac{\partial u}{\partial w} & \frac{\partial u}{\partial z} \right| \left| \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \right| \left| \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \right|$$

$$\frac{\partial(u,y)}{\partial(x,y)} = \frac{\partial(u,y)}{\partial(w,z)} \frac{\partial(w,z)}{\partial(x,y)} \quad \blacksquare$$

The real chain rule. We have

$$\frac{\partial x}{\partial z}\Big|_{y} \frac{\partial z}{\partial x}\Big|_{y} = 1$$

Proof. Trivial

$$1 = \frac{\partial(x,y)}{\partial(x,y)} = \frac{\partial(x,y)}{\partial(z,y)} \frac{\partial(z,y)}{\partial(x,y)} = \frac{\partial x}{\partial z} \bigg|_{y} \frac{\partial z}{\partial x} \bigg|_{y} \quad \blacksquare$$

Yet another chain rule... Even more chain rule...

$$\left. \frac{\partial x}{\partial y} \right|_{w} = \left. \frac{\partial x}{\partial z} \right|_{w} \left. \frac{\partial z}{\partial y} \right|_{w}$$

Proof. Trivial

$$\frac{\partial x}{\partial y}\bigg|_{w} = \frac{\partial(x,w)}{\partial(y,w)} = \frac{\partial(x,w)}{\partial(z,w)} \frac{\partial(z,w)}{\partial(y,w)} = \frac{\partial x}{\partial z}\bigg|_{w} \frac{\partial z}{\partial y}\bigg|_{w}$$

Cyclic rule. This is chain rule all over again...

$$\frac{\partial x}{\partial z}\Big|_{y} \frac{\partial z}{\partial y}\Big|_{x} \frac{\partial y}{\partial x}\Big|_{z} = -1$$

Proof. Trivial

$$1 = \frac{\partial(x,y)}{\partial(x,y)} = \frac{\partial(x,y)}{\partial(z,y)} \frac{\partial(z,y)}{\partial(z,x)} \frac{\partial(z,x)}{\partial(x,y)} = -\frac{\partial(x,y)}{\partial(z,y)} \frac{\partial(y,z)}{\partial(x,z)} \frac{\partial(z,x)}{\partial(y,x)}$$
$$= -\frac{\partial x}{\partial z} \Big|_{y} \frac{\partial y}{\partial x} \Big|_{z} \frac{\partial z}{\partial y} \Big|_{x} \blacksquare$$

Application in Thermodynamics

Here we will derive some usefull intensive parameter used in thermodynamics. We assumed entopy function S has the form of

$$S = S(U, V, N_{i|r})$$

where N is number of chemical potential and $N_{i|r} \equiv N_1, \dots N_r$. Therefore, its total differential is

$$dS = \frac{\partial S}{\partial U} \bigg|_{V, N_{i|r}} dU + \frac{\partial S}{\partial V} \bigg|_{U, N_{i|r}} dV + \sum_{j=1}^{r} \frac{\partial S}{\partial N_{j}} \bigg|_{U, V, N_{i \neq r}} dN_{j}$$

We also assume the following quantities

$$T = \frac{\partial U}{\partial S}\bigg|_{V,N_i} \quad ; P = -\frac{\partial U}{\partial V}\bigg|_{S,N_i} \quad ; \mu_j = \frac{\partial U}{\partial S}\bigg|_{S,V,N_{i\neq j}}$$

First identity. As follows

$$\left. \frac{\partial S}{\partial U} \right|_{V,N_i} = \frac{1}{T}$$

Proof. We use chain rule with $x \to U, y \to V, z \to S$; while keeping all the N_i constant

$$\left. \frac{\partial U}{\partial S} \right|_{V,N_i} \left. \frac{\partial S}{\partial U} \right|_{V,N_i} = 1 \implies \left. \frac{\partial S}{\partial U} \right|_{V,N_i} = \left(\left. \frac{\partial U}{\partial S} \right|_{V,N_i} \right)^{-1}$$

Then, from the definition of temperature

$$\left. \frac{\partial S}{\partial U} \right|_{V,N_i} = \frac{1}{T} \quad \blacksquare$$

Second identity. The identity written as

$$\left. \frac{\partial S}{\partial V} \right|_{U.N.} = \frac{P}{T}$$

Proof. We invoke cyclic rule with $x \to U, y \to V, z \to S$; while keeping all the N_i constant

$$1 = -\frac{\partial U}{\partial S}\bigg|_{V,N_i} \left.\frac{\partial S}{\partial V}\right|_{U,N_i} \left.\frac{\partial V}{\partial U}\right|_{U,N_i}$$

Then, from the first identity and the definition of pressure

$$1 = T \left. \frac{\partial S}{\partial V} \right|_{U, N_i} \frac{1}{P} \implies \left. \frac{\partial S}{\partial V} \right|_{U, N_i} = \frac{P}{T} \quad \blacksquare$$

Third Identity. Expressed as

$$\left.\frac{\partial S}{\partial N_j}\right|_{U,N_{i\neq j}} = -\frac{P}{T}$$

Proof. We again invoke cyclic with $x \to U, y \to Nj, z \to S$; while keeping V and all N except N_i constant

$$1 = -\frac{\partial U}{\partial S}\bigg|_{V,N_i} \left. \frac{\partial S}{\partial N_j} \right|_{U,N_{i\neq j}} \left. \frac{\partial N_j}{\partial U} \right|_{U,N_{i\neq j}}$$

Then, from the definition of temperature and chemical potential

$$1 = -T \frac{\partial S}{\partial N_j} \bigg|_{U, N_{i \neq j}} \frac{1}{\mu_j} \implies \frac{\partial S}{\partial N_j} \bigg|_{U, N_{i \neq j}} = -\frac{\mu_j}{T} \quad \blacksquare$$