

Année universitaire 2016/2017

Site : \boxtimes Luminy \boxtimes St-Charles	\Box St-Jérôme \Box Cht-Gombert	\boxtimes Aix-Montperrin \square Aubagne-SATIS
Sujet de : \Box 1 ^{er} semestre \boxtimes 2 ^{èn}	$^{ m ne}$ semestre \Box Session 2	Durée de l'épreuve : 2h
Examen de : L1	Nom du diplôme : Licence de M	athematiques et Informatique
Code du module : $SIM2U2$	Libellé du module : Algebre line	eaire 1
Calculatrices autorisées : NON	Documents autorisés : NON	

Exercice 1.

1. Donner la définition d'application linéaire entre deux espaces vectoriels réels.

2. Soit E un espace vectoriel réel et soient $u, v, w \in E$ trois vecteurs tels que $u \neq w$ et w = u + v. Montrer qu'il n'existe pas d'application linéaire $f : E \to E$ telle que f(v) = v, f(u) = w et f(w) = u.

3. Énoncer le théorème du rang.

1 pt

1,5 pt

0,5+0,5 pt

1.5 pt

1+0,5 pt

1 pt

1 pt

0,5+2 pt

4. Existe-il une application linéaire injective $f: \mathbb{R}_3[X] \to \mathbb{R}^3$? Justifiez votre réponse.

Exercice 2. Soit E un espace vectoriel réel et $\mathcal{B} = (a, b, c, d)$ une base de E. Considérons les sous-espaces vectoriels suivants de E:

$$F = \text{Vect}(a + b, c + d)$$
 et $G = \text{Vect}(a - c, b - d)$.

- 1. Déterminer la dimension de F et de G.
- 2. Déterminer une base et la dimension de l'espace somme F+G.
- 3. Trouver un sous-espace vectoriel H de E tel que $E=(F+G)\oplus H$ en en précisant une base
- 4. Montrer que $F \cap G \neq \{0_E\}$.

Exercice 3. Considérons la matrice $A_h = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ 3 & 2 & h \end{pmatrix}$.

- 1. Déterminer le rang de A_h en fonction du paramétre h. Pour quelles valeurs de h la matrice A_h n'est pas inversible?
- 2. Pour h = 4 trouver l'inverse de A_4 .
- 3. Résoudre l'équation

$$A_4X = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix}$$

où l'inconnue X représente une matrice dont on déterminera la taille.

Exercice 4. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z) = (x - y, y - z, z - x).$$

- 1. Écrire la matrice de f dans la base canonique \mathcal{B} de \mathbb{R}^3 .
- 2. Déterminer une base et la dimension du noyau et de l'image de f.
- 3. Soient $u, v \in \mathbb{R}^3$ tels que f(u) = v. Montrer que $f^{-1}(v) = \{u + w \mid w \in \text{Ker}(f)\}$. En déduire $f^{-1}(1, -1, 0)$.
- 4. Considérons maintenant les vecteurs suivants

$$u_1 = (1, 0, 1), u_2 = (1, 1, -1), u_3 = (0, 0, 1).$$

Après avoir montré que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 , écrire la matrice de f dans la nouvelle base \mathcal{B}' .