Extending some linear methods to nonlinear methods by positive definite kernel and RKHS

yataka

0 Motivation and Notation

0.1 Motivation

Thre are a lot of Machine Learning methods which approximate linear data. However, most of data in this World are non-linear. Thus, we show you a method, called kernel method, that embed data of input space into high dimentional vector space with inner.

0.2 Notation

 \mathcal{X} : input space

 \mathcal{Y} : output space

 \mathcal{L} : Loss function

K: field

V: vector space

 $(V, \|\cdot\|)$: normed space

 $(V, \langle \cdot, \cdot \rangle)$: inner space

 \mathcal{H} : hypothesis space or Hilbert space

 \mathcal{H}_k : RKHS with positive definate kernel k

1 Functional Analysis

Definition 1.1. (vector space)

Let \mathbb{K} , V be a field and a set with two operations, addition and scalar multiplication. If V statisfies

- 1. V becomes commutative group by addition,
- 2. $\forall \alpha \in \mathbb{K}, \forall u, v \in V, \alpha(u+v) = \alpha u + \alpha v,$
- 3. $\forall \alpha, \beta \in \mathbb{K}, \forall v \in V, (\alpha + \beta)v = \alpha v + \beta v,$
- 4. $\forall \alpha, \beta \in \mathbb{K}, \forall v \in V, \alpha(\beta v) = (\alpha \beta)v$ and
- 5. $\exists 1_{\mathbb{K}} \in \mathbb{K} \text{ s.t. } \forall v \in V, 1_{\mathbb{K}}v = v.$

Then, V is called **vector space** over \mathbb{K} .

We consider only real verctor space or complex vector space in this article. Thus, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

Definition 1.2. (normed vector space)

Let V, $\|\cdot\|$ be a vector space over \mathbb{K} and a map from V to \mathbb{K} . $\|\cdot\|$ is called **norm** on \mathbb{K} when $\|\cdot\|$ statisfies

- $1. \ \forall v \in V, \|v\| \ge 0,$
- 2. $\forall v \in V, ||v|| = 0 \iff v = 0,$
- 3. $\forall \alpha \in \mathbb{K}, \forall v \in V, \|\alpha v\| = |\alpha| \|v\|$ and
- 4. $\forall v, w \in V, ||v + w|| \le ||v|| + ||w||$.

A pair (V, ||||) is called **normed vector space** or **normed space**

Proposition 1.3. Suppose that (V, ||||) is normed space. Then, norm space is metric space by a distance $d: V \times V \to \mathbb{K}$ generated by norm,

$$d(x,y) = ||x - y||.$$

Definition 1.4. (complete)

Let (X,d) be metric space. (X,d) is called **complete** when every cauchy sequence in X converges a element in X.

Definition 1.5. (compact)

Let (X, \mathcal{O}) be topological space. X is called compact if every open covering of X has finite open covering. i.e.

$$\forall \{O_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{O}, X = \bigcup_{\lambda \in \Lambda} O_{\lambda} \Longrightarrow \exists \lambda_1, \lambda_n, \cdots, \lambda_n \text{ s.t. } X = \bigcup_{i=1}^n O_{\lambda_i}$$

Definition 1.6. (Banach space)

Let (V, ||||) be normed space. (V, ||||) is called **Banach space** when V is complete by a distance generated by norm.

Banach space is very important space in mathematics. Therefore, I show you some examples of Banach space.

Example 1.7. (C[X])

Let X be compact space. Suppose that C[X] is a collection of all continuous functions on X. We define a norm on X below:

$$||x||_{\infty} = \max\{|x(t)| | t \in X\}.$$

Then, $(C[X], ||||_{\infty})$ becomes Banach space.

Example 1.8. $(\mathcal{L}^{p}(a,b), p \geq 1)$

Let (a, b) be interval. Suppose that $((a, b), \mathcal{B}(a, b), L)$ is measure space where $\mathcal{B}(a, b)$ is Borel space and L is Lebesugue measure. we define $L^p(a, b)$ as

$$L^{p}(a,b) := \left\{ x : (a,b) \to \mathbb{K} \mid \int_{a}^{b} |x(t)|^{p} dt < \infty \right\}$$

and a norm as

$$||x||_p = \left(\int_a^b |x(t)|^p dt\right)^{\frac{1}{p}}.$$

We consider a equivarence relation \sim on $L^p(a,b)$. $x \sim y$ is defined x(t) = y(t) $a.s.t \in (a,b)$. Then, a collection of all equivarence classes on $L^p(a,b)$ is donated $\mathcal{L}^p(a,b)$ and becomes a vector space under addition and scalar multiplication defined by

$$(x+y)(y) = x(t) + y(t) \qquad (\alpha x)(t) = \alpha x(t).$$

A pair $(\mathcal{L}^p, ||||_p)$ is Banach space and called \mathbf{L}^p space.

Definition 1.9. (inner space)

Let V be vector space over \mathbb{K} . Suppose that $\langle \cdot, \cdot \rangle$ is a map from $V \times V$ to \mathbb{K} which statisfies

- 1. $\forall v \in V, \langle v, v \rangle \ge 0$,
- 2. $\forall v \in V, \langle v, v \rangle = 0 \iff v = 0,$
- $3. \ \forall v,w \in V, \langle v,w \rangle = \overline{\langle w,v \rangle},$
- 4. $\forall u, v, w \in V, \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ and
- 5. $\forall v, w \in V, \forall \alpha \in \mathbb{K}, \langle \alpha v, w \rangle = \alpha \langle v, w \rangle.$

Then, a pair $(V, \langle \cdot, \cdot \rangle)$ is called **inner space** and $\langle \cdot, \cdot \rangle$ is called **inner** on V.

Proposition 1.10. Let $(V, \langle \cdot, \cdot \rangle)$ be inner space over \mathbb{K} . we difine a map $\| \cdot \|$ from V to \mathbb{K} as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Then, $\|\cdot\|$ is a norm on V and is called norm generated by inner.

Definition 1.11. (Hilbert space)

Let $(V, \langle \cdot, \cdot \rangle)$ be inner space. V is called **Hilbert space** if V is banach space by a norm generated by inner.

2 Positive definate kernel

Definition 2.1. (positive definate kernel)

Let \mathcal{X} , k be a set and a map from $\mathcal{X} \times \mathcal{X}$ to \mathbb{K} . k is called **positive definate kernel** on \mathbb{K} if k has two conditions below:

- 1. $\forall x, y \in \mathcal{X}, k(x, y) = k(y, x)$ and
- 2. $\forall n \in \mathbb{N}, \forall x_1, \cdots, x_n \in \mathcal{X}, \forall c_1, \cdots, c_n \in \mathbb{R},$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) \ge 0.$$

second condition is called **definiteness**. definiteness under symmetrically means that a matrix

$$\begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{pmatrix}$$

is positive-semidefinite. This symmetric matrix is called **gram matrix**.

Proposition 2.2. Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{K}$ be positive definate kernel. Then,

- 1. $\forall x \in \mathcal{X}, k(x, x) > 0$,
- 2. $\forall x, y \in \mathcal{X}, |k(x,y)|^2 \ge k(x,x)k(y,y)$ and

3. every subset \mathcal{Y} , $k_{|\mathcal{Y}\times\mathcal{Y}}$ is positive difine kernel too.

Proof. 1.) From definateness of k, $1 \times 1 \times k(x,x) \ge 0$ for every x in \mathcal{X} . Hence, $k(x,x) \ge 0$.

- 2.) I can't prove....
- 3.) It is clear. \Box

Proposition 2.3. Let \mathcal{X} , $\{k_n\}_{n\in\mathbb{N}}$ be a set and a sequence of positive definate kernal on \mathbb{K} . Then, $\alpha k_1 + \beta k_2(\alpha, \beta \geq 0)$, $k_1 k_2$, $\lim_{n\to\infty} k_n$ are also positive definate kernels. However, we assume that

- 1. $\forall x, y \in \mathcal{X}, k_1 k_2(x, y) = k_1(x, y) k_2(x, y)$ and
- 2. $\{k_n\}_{n\in\mathbb{N}}$ converges a map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{K}$.

Proof. just a moment please....

Proposition 2.4. Let \mathcal{X} be a set.

- 1. A non negative constant map $k: \mathcal{X} \times \mathcal{X} \to \{c\} \ (c \in \mathbb{R}_{\geq 0})$ is positive definate kernel.
- 2. Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ be positive definate kernal. Then, a map $k': \mathcal{X} \times \mathcal{X} \to \mathbb{C}$, defined by

$$k'(x,y) = f(x)k(x,y)\overline{f(y)},$$

is positive definate kernel for every function $f: \mathcal{X} \to \mathbb{C}$.

Proposition 2.5. (kernel tric)

Let $\mathcal{X}, (V, \langle \cdot, \cdot \rangle)$ be a set and inner space. a map $k : \mathcal{X} \times \mathcal{X} \to \mathbb{K}$, defined by

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle,$$

is positive definate kernal for every function $\Phi: \mathcal{X} \to V$.

3 Reproducing Kernel Hilbert Space

Definition 3.1. (reproducing kernel Hilbert space)

Let \mathcal{X} , \mathcal{H} be a set and Hilbert space from some functions on \mathcal{X} .

 \mathcal{H} is called **Reproducing Kernel Hilbert Space** or **RKHS** simply when

$$\forall x \in \mathcal{X}, \exists k_x \in \mathcal{H} \text{ s.t. } \forall f \in \mathcal{H}, \langle f, k_x \rangle = f(x).$$

a map $k: \mathcal{X} \times \mathcal{X} \to \mathbb{K}$, defined by $k(y, x) = k_x(y)$, is called **reproducing kernel** of \mathcal{H} .