Metody Obliczeniowe i Symulacja, Laboratorium 5 Całkowanie Numeryczne (cz. I i II), Kamil Klimowicz, 2020-12-05

1. Zadania

Tematem zadania będzie obliczanie różnymi sposobami całki funkcji $x^2 + x + 1$ oraz 1/sqrt(x) w przedziale (0,1).

Cz. I:

- 1. Znaleźć dokładną wartość całki (całkując ręcznie)
- 2. Napisać program obliczający całkę metodą prostokątów. Program powinien mieć następujące parametry:
 - 1. float a początek przedziału
 - 2. float b koniec przedziału
 - 3. int n ilość podprzedziałów, na które dzielimy przedział (a,b).
- 3. Zbadać, przy użyciu programu z poprzedniego punktu, jak zmienia się błąd całkowania wraz ze wzrostem liczby podprzedziałów. Kiedy błąd jest mniejszy niż 1e⁻³, 1e⁻⁴, 1e⁻⁵ i 1e⁻⁶?

Cz. II:

- 4. Obliczyć wartość całki korzystając z funkcji **gsl_integration_qag** metodą GSL_INTEG_GAUSS15 dla zadanych dokładności takich jak w p. 3. Sprawdzić, ile przedziałów (*intervals*) potrzebuje ta procedura, aby osiągnąć zadaną dokładność (1e⁻³, 1e⁻⁴, 1e⁻⁵ i 1e⁻⁶). Porównać, ile przedziałów potrzebuje metoda prostokątów do osiągniecia podobnej dokładności. Patrz przykład w <u>dokumentacji GSL</u>.
- 5. Wykorzystać funkcję **gsl_integration_qag()** do obliczenia całki z wartościami błędów mniejszymi niż 1e⁻³, 1e⁻⁴, 1e⁻⁵ i 1e⁻⁶ dla funkcji:
 - 1. sin(x) na przedziale [0, pi]
 - 2. tan(x) na przedziale (0, pi/2]
 - 3. log(x+x^2) na przedziale [1,4]

2. Podejście do rozwiązania

Rozwiązania zostały wywołane/zaimplementowane w środowisku operacyjnym Linux Mint, Windows, wykorzystując języki skrypty odpowiednio przygotowane w C oraz Pyton, pozwalające na numeryczne obliczenia równań całkowych. Przygotowane pliki zostały skompilowane w ww systemach operacyjnych.

3. Wyniki

Cz. I:

1. Dokładna wartość całki wynosi:

$$\int_{0}^{1} (x^{2} + x + 1) dx = \int_{0}^{1} \left(\left(x + \frac{1}{2} \right)^{2} + \frac{3}{2} \right) dx = \int_{0}^{1} \left(x + \frac{1}{2} \right)^{2} dx + \int_{0}^{1} \frac{3}{4} dx =$$

$$= \frac{1}{3} \cdot \left| \left(x + \frac{1}{2} \right)^{3} \right|_{0}^{1} + \left| \frac{3}{4} x \right|_{0}^{1} =$$

$$= \frac{1}{3} \cdot \left(\frac{27}{8} - \frac{1}{8} \right) + \frac{3}{4} =$$

$$= \frac{11}{6} \approx 1.8333 \dots$$

2. Program realizujący całkowanie funkcji z zadania:

Rys.1. Kod źródłowy.

Rys.2. Wykres argumentów i wartości funkcji.

3. Analiza błędu całkowania została zamieszczona w poniższej tabeli.

W analizie została założona dokładna wartość całki S(f) wyznaczona ręcznie: $S(F) = \frac{11}{6}$ wyrażona w zmiennej typu float. Błąd przybliżenia został wyrażony w postaci różnicy wartości dokładnej i wynikowej: S(F) - Q(f).

Tabela 1. Wyniki błędu całkowania dla różnych wielkości podziałów funkcji całkowanej.

n	2	4	6	8	10	20	50
Err	-0.5417	-0.0729	0.0694	0.1380	0.1783	0.2571	0.3031
	1e	³ =0.0498 1	.e ⁻⁴ =0.0182	1e ⁻⁵ =0.0069	1e ⁻⁶ =0.0025	5	

Legenda:

n – ilość przedziałów

Err – błąd przybliżenia

Zaimplementowane rozwiązanie nie pozwala na uzyskanie dokładności poniżej e⁻⁶. Najlepsza wartość przybliżenia wynosi e⁻². Co więcej wraz ze wzrostem liczby przedziałów, wartość błędu rośnie. Jest to

wynikiem niedokładności powodowanej przez zwiększającą się liczbę iteracji przy rosnącej liczbie przedziałów.

Cz. II:

4. Wyniki całkowania funkcji zrealizowane z wykorzystaniem biblioteki gsl integration qag.

Wykorzystana zasada kwadratury funkcji Gauss'a-Kronrod'a rzędu 1, zapewnia uzyskanie wyników obarczonych błędem poniżej e⁻¹⁰. Znakomita rezultat jest uzyskany bez względu na przyjęty stopień podziału, gdyż przyjęta metoda wykorzystuje algorytm adaptacyjny.

```
1 #include <stdio.h>
2 #include <gsl/gsl_math.h>
3 #include <gsl/gsl_integration.h>
  double f(double x, void *p) {
       return x*x + x + 1;
  int main (void) {
       //int a=0, b=M_PI/2;
int a = 1, b=4;
       int i, n=10;
       gsl_integration_workspace *iw = gsl_integration_workspace_alloc(10)
       gsl_function F;
       F.function = &f;
       F.params = 0;
       double result, error;
       double x = i / (double)n;
       qsl integration_qag(&F,
                                 GSL INTEG GAUSS15,
                                 iw,
                                 &result, &error);
       printf ("result = % .20f\n", result);
printf ("error = % .20f\n", error);
//float Err = (11.0/6.0) - result;
       gsl_integration_workspace_free (iw);
       return 0;
```

Rys.3. Implementacja biblioteki gsl_integration_qag.

5. Poniżej przedstawiono wyniki całkowania funkcji trygonometrycznych i logarytmicznej wykorzystując bibliotekę gsl_integration_qag.

Tabela 2. Funkcje całkowane i przyjęte wartości błędu ograniczenia.

		1e ⁻³	1e ⁻⁴	1e ⁻⁵	1e ⁻⁶		
sin(x)	∈ [0,pi]	0.000000000018318680					
tan(x)	∈ (0,pi/2]	0.0000000163700368514					
$log(x+x^2)$	∈ [1,4]	0.0000000163700368514					

Rys.5. Funkcje całkowe z tabeli 2 dla zadanej dziedziny.

4. Wnioski

Metoda całkowania funkcji przez numeryczną analizę pola powierzchni funkcji dla zadanej dziedziny może wydawać się mało dokładna. Jednakże rozważając trudności w implementacji (a czasami wręcz całkowity jej brak) pochodnej funkcji podcałkowej, widzimy, że wspomniana metoda może okazać się zdecydowanie skuteczniejszą i jedyną dostępną opcją (szczególnie dla funkcji nieciągłych w całej dziedzinie).

Analizując stopień dokładności uzyskiwanych wyników w stosunku do metody klasycznej, widzimy, że popełniany błąd jest zależy od metody implementacji rozwiązania. Biblioteka GNU znakomicie rozwinięte metody adaptacyjne obliczania równań całkowych (szczególnie odnosząc się do własnej implementacji z wykorzystaniem aproksymacji trapezoidalnej).

5. Bibliografia

- [1] https://artemis.wszib.edu.pl/~funika/mois/lab5/
- [2] Wykład Systemy i metody obliczeniowe, Dr inż. Włodzimierz Funika
- [3] http://www.gnuplot.info/
- [4] https://www.wolframalpha.com
- [5] http://wazniak.mimuw.edu.pl