What is Claimed Is:

1. The present invention relates to compounds of formula I:

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{7}
 R_{7}
 R_{1}
 R_{7}
 R_{7

its enantiomer, diastereomer, or pharmaceutically acceptable salt, hydrate or prodrug thereof wherein:

R₁ and R₂ independently represent

hydrogen, NR₅R₆, CR₇R₈R₉, C(R)₂OR₁₄, CH₂NHR₁₄, C(=O)R₁₃, C(=NOH)H, C(=NOR₁₃)H, C(=NOR₁₃)R₁₃, C(=NOH)R₁₃, C(=O)N(R₁₃)₂, C(=NOH)N(R₁₃)₂, NHC(=X₁)N(R₁₃)₂, (C=NH)R₇, N(R₁₃)C(=X₁)N(R₁₃)₂, COOR₁₃, SO₂R₁₄, N(R₁₃)SO₂R₁₄, N(R₁₃)COR₁₄, (C₁₋₆alkyl)CN, CN, CH=C(R)₂, C(R₄)₂X₁SiR₁₆, (CH₂) POH, C(=O)CHR₁₃, C(=NR₁₃)R₁₃, NR₁₀C(=X₁)R₁₃; or C₅-10 heterocycle optionally substituted with 1-3 groups of R₇, which may be attached through either a carbon or a heteroatom;

A represents C (when --- is present), CH or N (when --- is not present);

--- represents a bond;

Or

represents aryl or heteroaryl, heterocycle, heterocyclyl or heterocyclic, provided that in the case of a heteroaryl, heterocycle, heterocyclyl or heterocyclic, a cyclopropyl is not attached to a nitrogen atom on the ring;

WDC99 937452-1.050193.0175

R_x represents hydrogen or C₁₋₆ alkyl;

R3 represents which is an optionally substituted aromatic heterocyclic group containing at least one nitrogen in the ring and which is attached through a bond on any N, and which is unsubstituted or contains 1 to 3 substituents of R₇

R4 and R4a independently represent hydrogen, halogen, C1-6 alkoxy, or C1-6 alkyl

r and s independently are 1-3, with the provision that when $(R_{4a})_s$ and $(R_4)_r$ are attached to an Ar or HAr ring the sum of r and s is less than or equal to 4;

R5 and R6 independently represent

hydrogen, C₁₋₆ alkyl optionally substituted with 1-3 groups of halogen, CN, OH, C₁₋₆ alkoxy, amino, imino, hydroxyamino, alkoxyamino, C₁₋₆ acyloxy, C₁₋₆ alkylsulfenyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylsulfonyl, aminosulfonyl, C₁₋₆ alkylaminosulfonyl, C₁₋₆ dialkylaminosulfonyl, 4-morpholinylsulfonyl, phenyl, pyridine, 5-isoxazolyl, ethylenyloxy, or ethynyl, said phenyl and pyridine optionally substituted with 1-3 halogen, CN, OH, CF3, C₁₋₆ alkyl or C₁₋₆ alkoxy; C₁₋₆ acyl optionally substituted with 1-3 groups of halogen, OH, SH, C₁₋₆ alkoxy, naphthalenoxy, phenoxy, amino, C₁₋₆ acylamino, hydroxylamino, alkoxylamino, C₁₋₆ acyloxy, aralkyloxy, phenyl, pyridine, C₁₋₆ alkylcarbonyl, C₁₋₆ alkylamino, C₁₋₆ dialkylamino, C₁₋₆ hydroxyacyloxy, C₁₋₆ alkylsulfenyl, phthalimido, maleimido, succinimido, said phenoxy, phenyl and pyridine optionally substituted with 1-3 groups of halo, OH, CN, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl; C1-6 alkylsulfonyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy, amino, hydroxylamino, alkoxylamino, C1-6 acyloxy, or phenyl; said phenyl optionally substituted with 1-3 groups of halo, OH, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl; arylsulfonyl optionally substituted with 1-3 of halogen, C1-6 alkoxy, OH or C1-6 alkyl;

C₁₋₆ alkoxycarbonyl optionally substituted with 1-3 of halogen, OH, C₁₋₆ alkoxy, C₁₋₆ acyloxy, or phenyl, said phenyl optionally substituted with 1-3 groups of halo, OH, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl; aminocarbonyl, C1-6 alkylaminocarbonyl or C1-6 dialkylaminocarbonyl, said alkyl groups optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy or phenyl, five to six membered heterocycles optionally substituted with 1-3 groups of halogen, OH, CN, amino, C1-6 acylamino, C1-6 alkylsulfonylamino, C1-6 alkoxycarbonylamino, C1-6 alkoxy, C1-6 acyloxy or C1-6 alkyl, said alkyl optionally substituted with 1-3 groups of halogen, or C1-6 alkoxy; C₃-6 cycloalkylcarbonyl optionally substituted with 1-3 groups of halogen, OH, C₁-6 alkoxy or CN; benzoyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy, C1-6 alkyl, CF₃, C₁₋₆ alkanoyl, amino or C₁₋₆ acylamino; pyrrolylcarbonyl optionally substituted with 1-3 of C1-6 alkyl; C1-2 acyloxyacetyl where the acyl is optionally substituted with amino, C1-6 alkylamino, C1-6 dialkylamino, 4-morpholino, 4-aminophenyl, 4-(dialkylamino)phenyl, 4-(glycylamino)phenyl; or R5 and R6 taken together with any intervening atoms can form a 3 to 7 membered heterocyclic ring containing carbon atoms and 1-2 heteroatoms independently chosen from O, S, SO, SO₂, N, or NR₈;

R7 represent

hydrogen, halogen, CN, CO₂R, CON(R)₂, CHO, CH₂NHAc, C(=NOR), OH, C₁₋₆ alkoxy, C₁₋₆ alkyl, alkenyl, (CH₂)_namino, (CH₂)_nC₁₋₆ alkylamino, C₁₋₆ dialkylamino, hydroxylamino or C₁₋₂ alkoxyamino all of which can be optionally substituted on the nitrogen with C₁₋₆ acyl, C₁₋₆ alkylsulfonyl or C₁₋₆ alkoxycarbonyl, said acyl and alkylsulfonyl optionally substituted with 1-2 of halogen or OH;

R8 and R9 independently represents

H, CN,

C₁-6 alkyl optionally substituted with 1-3 halogen, CN, OH, C₁-6 alkoxy, C₁-6 acyloxy, or amino,

phenyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy; or

R7 and R8 taken together can form a 3-7 membered carbon ring optionally interrupted with 1-2 heteroatoms chosen from O, S, SO, SO₂, NH, and NR₈;

X1 represents O, S or NR13, NCN, NCO₂R₁₆, or NSO₂R₁₄

R₁₀ represents hydrogen, C₁₋₆ alkyl or CO₂R₁₅;

Each R₁₃ represents independently hydrogen, C_{1-6} alkyl, C_{6-10} aryl, NR_5R_6 , SR_8 , $S(O)R_8$, $S(O)_2$ R₈, CN, OH, C_{1-6} alkylS(O)R, C_{1-6} alkoxycarbonyl, hydroxycarbonyl, C_{1-6} acyl, C_{3-7} membered carbon ring optionally interrupted with 1-4 heteroatoms chosen from O, S, SO, SO_2 , NH and NR_8 where said C_{1-6} alkyl, aryl or C_{1-6} acyl groups may be independently substituted with 0-3 halogens, hydroxy, $N(R)_2$, CO_2R , C_{6-10} aryl, C_{5-10} heteroaryl, or C_{1-6} alkoxy groups;

When two R₁₃ groups are attached to the same atom or two adjacent atoms they may be taken together to form a 3-7 membered carbon ring optionally interrupted with 1-2 heteroatoms chosen from O, S, SO, SO₂, NH, and NR₈;

R represents hydrogen or C1-6 alkyl;

R₁₄ represents amino, C₁₋₆ alkyl, C₁₋₆ haloalkyl, five to six membered heterocycles or phenyl, said phenyl and heterocycles optionally substituted with 1-3 group of halo, C₁₋₆ alkoxy, C₁₋₆ acylamino, or C₁₋₆ alkyl, hydroxy and/or amino, said amino and hydroxy optionally protected with an amino or hydroxy protecting group;

R₁₅ is C₁₋₆ alkyl or benzyl said benzyl optionally substituted with 1-3 groups of halo, OH, C₁₋₆ alkoxy, amino, C₁₋₆ acylamino, or C₁₋₆ alkyl;

R₁₆ is hydrogen, C₅₋₁₀heteroaryl, C₆₋₁₀aryl, said heteroaryl and aryl optionally substituted with 1-3 groups of R₇;

m, n, p and q represents 0-1.

2. A compound according to claim 1 wherein R_1 and R_2 independently represent H, NR5R6, CN, OH, C(R)₂OR₁₄, NHC(=X1)N(R₁₃)₂, C(=NOH)N(R₁₃)₂, NR₁₀C(=X₁)R₁₃ or CR7R₈R₉.

a or

- 3. A compound according to claim 2 wherein har is phenyl, pyridine, pyrimidine, or piperidine.
- 4. A compound according to claim 3 wherein one of R_1 and R_2 is H and the other is NR_5R_6 ; H and the other is CN; or H and the other is $NR_{10}C(=X_1)R_{13}$.
- 5. A compound according to claim 4 wherein A is C, --- is present, and $Z=(O)_n$ where n=0; A is C, --- is not present and Z=H, OH or halogen or A is N, --- is not present and $Z=(O)_n$ where n=1.
- 6. A compound according to claim 5 wherein R₃ is 1,2,3-triazole, 1,2,4-triazole, 1,2,5-triazole, tetrazole, pyrazole, or imidazole, any of which may contain 1 to 3 substitutents of R₇.

7. A compound which is:

1- $[5(R)-3-[4-[(1\alpha,5\alpha,6\alpha)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,$

1- $[5(R)-3-[4-[(1\alpha,5\alpha,6\alpha)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-3,5-difluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,$

1-[5(R)-3-[4-[(1α ,5 α ,6 α)-6-[(t-butyldiphenylsilyl)oxy]methylbicyclo[3.1.0]hex-2-en-3-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

1-[5(R)-3-[4-[(1α ,5 α ,6 α)-6-[(t-butyldiphenylsilyl)oxy]methylbicyclo[3.1.0]hex-2-en-3-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

1-[5(R)-3-[4-[(1α , 5α , 6α)-6-hydroxyoxymethylbicyclo[3.1.0]hex-2-en-3-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

1-[5(R)-3-[3-fluoro-4-[(1α , 5α , 6α)-6-hydroxyoxymethylbicyclo[3.1.0]hex-2-en-3-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

1-[5(R)-3-[4-[(1α ,5 α ,6 α)-6-cyanobicyclo[3.1.0]hex-2-en-3-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

1-[5(R)-3-[4-[(1α ,5 α ,6 α)-6-cyanobicyclo[3.1.0]hex-2-en-3-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,

or its enantiomer, diastereomer, or pharmaceutically acceptable salt, hydrate or prodrug thereof.

- 8. A pharmaceutical composition comprised of a compound in accordance with claim 1 in combination with a pharmaceutically acceptable carrier and optionally a in combination with a vitamin selected from the group consisting vitamin B2, vitamin B6, vitamin B12 and folic acid.
- 9. A method of treating or preventing a bacterial infection in a mammalian patient in need thereof, comprising administering to said patient an effective amount of a compound of claim 1.
- 10. A method of treating or preventing bacterial infection or an oxazolidinone-associated side effect by administering an effective amount of a compound of formula I of claim 1 and an effective amount of one or more of a vitamin selected from the group consisting of vitamin B2, vitamin B6, vitamin B12 and folic acid to a patient in need thereof.
- A method according to claim 10 for treating or preventing oxazolidinone-associated normocyctic anemia, peripheral sensory neuropathy, sideroblastic anemia, peripheral sensory neuropathy, optic neuropathy, seizures, thrombocytopenia, cheilosis, hypo-regenerative anemia, megaloblastic anemia and seborrheic dermatitis by administering an effective amount of vitamin B2 to a patient in need thereof.