Lineare Algebra

Vektorgeometrie

Berechnung des Skalarprodukts

$$\vec{a} \bullet \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \bullet \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$

Berechnung des Zwischenwinkels zweier Vektoren

$$\cos \angle(\vec{v}, \vec{w}) = \frac{\vec{v} \bullet \vec{w}}{|\vec{v}| \cdot |\vec{w}|} \Rightarrow \angle(\vec{v}, \vec{w}) = \arccos \frac{\vec{v} \bullet \vec{w}}{|\vec{v}| \cdot |\vec{w}|}$$
$$\vec{v} \bullet \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot \cos \angle(\vec{v}, \vec{w})$$

Aussage des Skalarprodukts 0

$$\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \bullet \vec{w} = 0$$

Nullvektoren stehen senkrecht zu allen Vektoren

Berechnung der Länge eines Vektors

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{\vec{a} \cdot \vec{a}}$$
$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = |\vec{a}|^2$$

Satz des Pythagoras

Im Dreieck

Mit Vektoren

$$\begin{split} \vec{b} &= \vec{c} - \vec{a} \\ \vec{c} &= \vec{a} + (\vec{c} - \vec{a}) \\ |\vec{c}| &= \sqrt{\vec{c} \bullet \vec{c}} = \sqrt{(\vec{a} + (\vec{c} - \vec{a}) \bullet (\vec{a} + (\vec{c} - \vec{a}))} = \sqrt{(\vec{a} + \vec{b}) \bullet (\vec{a} + \vec{b})} \\ &= \sqrt{\vec{a} \bullet \vec{a} + \vec{a} \bullet \vec{b} + \vec{c} \bullet \vec{b} + \vec{b} \bullet \vec{b}} = \sqrt{|\vec{a}|^2 + 0 + 0 + \left| \vec{b} \right|^2} = \sqrt{|\vec{a}|^2 + \left| \vec{b} \right|^2} \end{split}$$

Cosinussatz

$$\vec{c} = \vec{b} - \vec{a}$$

$$\left| \vec{b} \right|^2 = \vec{b} \cdot \vec{b} = (\vec{a} + \vec{c}) \cdot (\vec{a} + \vec{c}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{c}$$

$$= |\vec{a}|^2 + 2\cos \angle(\vec{a}, \vec{c}) \cdot |\vec{a}| \cdot |\vec{c}| + |\vec{c}|^2$$

$$(= |\vec{a}|^2 - 2\cos(180^\circ - \angle) \cdot |\vec{a}| \cdot |\vec{c}| + |\vec{c}|^2)$$

Daraus folgt:

$$a^2 + c^2 - 2ac \cdot \cos(\beta) = b^2$$

Orthogonalprojektion

- 1. Einheitsvektor in \vec{a} -Richtung = $\frac{1}{|\vec{a}|} \cdot \vec{a} = \vec{a_1} (= \vec{b_a})$
- 2. $\vec{b} \bullet \vec{a_1} = \left| \vec{b} \right| \cdot |\vec{a_1}| \cdot \cos \angle (\vec{b}, \vec{a_1}) = \left| \vec{b} \right| \cdot \cos \angle (\vec{b}, \vec{a_1})$
- $3. \ \left| \vec{b} \right| \cdot \cos \angle (\vec{b}, \vec{a_1}) \cdot \frac{\vec{a}}{|\vec{a}|} = (\vec{b} \bullet \frac{\vec{a}}{|\vec{a}|}) \bullet \frac{\vec{a}}{|\vec{a}|} = (\vec{b} \bullet \frac{\vec{a}}{|\vec{a}|^2}) \bullet \vec{a}$