Topologie SoSe 2022 — Übungsblatt 9

Ausgabe27.06.22Dozent: Prof. Wolfgang SoergelAbgabe03.07.22Tutorium: Dr. Leonardo Patimo

Aufgabe 9.1: Seien G_1 und G_2 nichttriviale Gruppen. Zeigen Sie, dass die Gruppe $G_1 * G_2$ nicht abelsch ist.

Hinweis: Die Gruppen G_1 und G_2 operieren auf die Menge

$$(G_1 \sqcup G_2)/1_{G_1} \sim 1_{G_2}.$$

Nutzten Sie dann die universelle Eigenschaft, um zu zeigen, dass $xy \neq yx$ für jedes $1_{G_1} \neq x \in G_1$ und $1_{G_2} \neq y \in G_2$.

(4 Punkte)

Aufgabe 9.2: Sei X eine Menge. Man zeige, dass jedes Element der freien Gruppe Grp X über X genau einen Repräsentanten kürzester Länge im freien Monoid $\mathrm{Mon}^{\nwarrow}(X \times \{+1,-1\})$ hat, und dass diese Repräsentanten genau die "unkürzbaren Worte" aus diesem freien Monoid sind.

Hinweis: Man konstruiere eine Operation der Gruppe $\operatorname{Grp}^{\searrow} X$ auf der Menge aller unkürzbaren Worte.

(4 Punkte)

Aufgabe 9.3: Man zeige: Das Möbiusband ist homömorph zum Komplement einer offenen Scheibe in der reellen projektive Ebene $\mathbb{P}^2\mathbb{R}$

(4 Punkte)

Aufgabe 9.4: Die Realisierung $\Delta(K)$ eines Simplizialkomplexes (E,K) ist stets Hausdorff und jede kompakte Teilmenge $A \subset \Delta(K)$ ist schon enthalten in einer Vereinigung von endlich vielen Simplizes.

Hinweis: Eine Teilmenge von $\Delta(K)$, die jeden Simplex in höchstens endlich vielen Punkten trifft, ist stets abgeschlossen und diskret.

(4 Punkte)