Bayesian Synthesis Models part 1

Jingchen (Monika) Hu

Vassar College

Statistical Data Privacy

Outline

- Introduction
- Synthesing continuous variables
- Synthesizing binary variables
- Summary and References

Outline

- Introduction
- 2 Synthesing continuous variables
- Synthesizing binary variables
- Summary and References

Recap

• Lecture 1 Overview of synthetic data: various aspects of creating synthetic data for microdata privacy protection

Recap

- Lecture 1 Overview of synthetic data: various aspects of creating synthetic data for microdata privacy protection
- Lectures 2 & 3 Introduction to Bayesian modeling: nuts and bolts of Bayesian modeling
 - ► The foundation of Bayesian inference: prior, likelihood, Bayes' rule (discrete and continuous), and posterior
 - ► Markov chain Monte Carlo (MCMC): estimation and diagnostics
 - ▶ Posterior predictive and synthetic data
 - Case study: gamma-Poisson conjugate model, Poisson regression model, posterior prediction, prior choices, posterior inference, MCMC, MCMC diagnostics, using the brms package

Synthesis approaches

- Two general approaches to synthetic data creation
 - Sequential synthesis
 - Joint synthesis
- Sequential synthesis
 - More commonly used and easier to estimate
 - ▶ The main focus of this lecture and next

Synthesis approaches

- Two general approaches to synthetic data creation
 - Sequential synthesis
 - Joint synthesis
- Sequential synthesis
 - More commonly used and easier to estimate
 - ▶ The main focus of this lecture and next
- Joint synthesis
 - Less commonly used and usually more challenging to estimate
 - ► The DPMPM model for multivariate nominal categorical data (Hu, Reiter, and Wang (2014)), next lecture

The CE sample

 Our sample is from the 1st quarter of 2019, containing five variables on 5133 CUs

-	
Variable	
Name	Variable information
UrbanRural	Binary; the urban $/$ rural status of CU: $1=$ Urban, $2=$ Rural.
Income	Continuous; the amount of CU income before taxes in past 12 months (in USD).
Race	Categorical; the race category of the reference person: 1 = White, 2 = Black, 3 = Native American, 4 = Asian, 5 = Pacific Islander, 6 = Multi-race.
Expenditure	Continuous; CU's total expenditures in last quarter (in USD).
${\sf KidsCount}$	Count; the number of CU members under age 16.

The CE sample

```
CEdata <- readr::read_csv(file = "CEdata.csv")
CEdata[1:3, ]</pre>
```

```
## # A tibble: 3 \times 5
##
    UrbanRural Income Race Expenditure KidsCount
          <dbl> <dbl> <dbl>
##
                                   <dbl>
                                             <dbl>
## 1
                 73720
                                  27542.
                 12000
                                  7416.
## 2
                 20000
                                   8608.
## 3
```

Plan for this lecture

- Synthesis models for continuous outcome variables (e.g., Expenditure and Income)
- Synthesis models for binary outcome variables (e.g., UrbanRural)

Outline

- Introduction
- 2 Synthesing continuous variables
- 3 Synthesizing binary variables
- 4 Summary and References

Log transformation

- Suppose we want to use the Income variable to perform a partial synthesis for Expenditure
- Both Income and Expenditure are highly skewed, we apply the logarithm transformation for both in our model building, creating two new variables: LogIncome and LogExpenditure

```
CEdata$LogIncome <- log(CEdata$Income)
CEdata$LogExpenditure <- log(CEdata$Expenditure)
```

- Y_i is LogExpenditure and X_i is LogIncome for CU i
- A Bayesian simple linear regression model:

$$Y_i \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \beta_0 + \beta_1 X_i \tag{2}$$

- Y_i is LogExpenditure and X_i is LogIncome for CU i
- A Bayesian simple linear regression model:

$$Y_i \stackrel{ind}{\sim} \operatorname{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \beta_0 + \beta_1 X_i \tag{2}$$

• The expected LogExpenditure of CU i is μ_i , which is a linear function of LogIncome X_i through the **intercept parameter** β_0 and the **slope** parameter β_1

Discussion question: How would you interpret the intercept β_0 and the slope β_1 in this CE context?

• We use the brms R package to estimate our chosen Bayesian simple linear regression model

- We use the brms R package to estimate our chosen Bayesian simple linear regression model
- We will obtain pre-specified number of posterior parameter draws from the output, a process similar to what we have seen for the bike sharing rental case study
- These posterior parameter draws will be used for synthetic data generation through the posterior predictive distribution

Make sure to install and load the brms library

```
library(brms)
```

To streamline our synthesis process, we create the design matrix X
based on the chosen model

```
SLR_ff <- stats::as.formula(LogExpenditure ~ 1 + LogIncome)
SLR_model <- stats::model.frame(SLR_ff, CEdata)
SLR_X <- data.frame(stats::model.matrix(SLR_ff, SLR_model))</pre>
```

- We use the default priors
- The information of default priors can be extracted by the get_prior() function

```
##
                      prior
                                 class
                                             coef group resp dpar nlpar bound
                     (flat)
##
                                     b
                     (flat)
##
                                     b LogIncome
##
    student_t(3, 8.9, 2.5) Intercept
      student_t(3, 0, 2.5)
##
                                 sigma
##
          source
##
         default
##
    (vectorized)
##
         default
         default
##
```

 We use family = gaussian in the brm() function to fit the simple linear regression model

- The key to applying Bayesian synthesis models is to save posterior parameter draws of estimated parameters
- These draws will be used to generate synthetic data given the posterior predictive distribution
- We use the posterior_samples() function to retrieve the posterior parameter draws in post_SLR

```
post_SLR <- brms::posterior_samples(x = SLR_fit)
post_SLR[1:3, ]</pre>
```

```
## b_Intercept b_LogIncome sigma lp__

## 1 5.030315 0.3578751 0.7613313 -5799.006

## 2 5.037303 0.3570114 0.7330382 -5799.746

## 3 5.079390 0.3537355 0.7455257 -5797.711
```

Discussion question: What is the dimension of post_SLR?

A Bayesian simple linear regression: MCMC diagnostics

Discussion question: What are being plotted by the commands above? What features of the plots indicate issues with convergence? What remedies do you have to improve the MCMC convergence?

• To predict the LogExpenditure, Y_i^* for a CU given its LogIncome, X_i and a set of parameter draws, denoted as $\{\beta_0^*, \beta_1^*, \sigma^*\}$:

$$Y_i^* \mid \beta_0^*, \beta_1^*, \sigma^* \stackrel{ind}{\sim} \text{Normal}(\beta_0^* + \beta_1^* X_i, \sigma^*).$$
 (3)

Now for each of the n CUs, we create a predicted value

compute
$$E[Y_1^*] = \beta_0^* + \beta_1^* X_1 \rightarrow \text{sample } Y_1^* \sim \operatorname{Normal}(E[Y_1^*], \sigma^*)$$

$$\vdots$$

$$\operatorname{compute } E[Y_i^*] = \beta_0^* + \beta_1^* X_i \rightarrow \text{sample } Y_i^* \sim \operatorname{Normal}(E[Y_i^*], \sigma^*)$$

$$\vdots$$

$$\operatorname{compute } E[Y_n^*] = \beta_0^* + \beta_1^* X_n \rightarrow \text{sample } Y_n^* \sim \operatorname{Normal}(E[Y_n^*], \sigma^*)$$

 Suppose we use one set of posterior draws at the index iteration of the MCMC

```
SLR_synthesize <- function(X, post_draws, index, n, seed){
    set.seed(seed)
    mean_Y <- as.matrix(X) %*%
        t(data.matrix(post_draws[index, c("b_Intercept", "b_LogIncome")]))
    synthetic_Y <- stats::rnorm(n, mean_Y, post_draws[index, "sigma"])
    data.frame(X, synthetic_Y)
}</pre>
```

Dicussion question: What are the inputs and outputs of this SLR synthesize() function?

Perform synthesis for the CE dataset

A Bayesian simple linear regression: utility check

Density plots of LogExpenditure

A Bayesian simple linear regression: m > 1 synthetic datasets

A Bayesian multiple linear regression: overview

Model expression

$$Y_i \stackrel{ind}{\sim} \operatorname{Normal}(\mu_i, \sigma)$$
 (4)

$$\mu_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_r X_{ir} \tag{5}$$

Design matrix

Discussion question: What are the predictors in this model?

Outline

- Introduction
- 2 Synthesing continuous variables
- Synthesizing binary variables
- 4 Summary and References

A Bayesian logistic regression: overview

- Binary outcome variables
 - ▶ labor participation (0 or 1)
 - ▶ loan default (yes or no)
 - ▶ UrbanRural in our CE sample

A Bayesian logistic regression: overview

- Binary outcome variables
 - ▶ labor participation (0 or 1)
 - ▶ loan default (yes or no)
 - ▶ UrbanRural in our CE sample
- When modeling a binary outcome variable, regular linear regression models would not work (linear regression models are used to model continuous outcome variables through a normal data model)
- The idea of modeling the outcome variable as a function of predictor variables in linear regression can be extended to modeling other types of outcome variables
 - ► Categorical and count will be covered later

• When working with a binary outcome variable, Y_i , we can think of it as a **Bernoulli random variable**:

$$Y_i \stackrel{ind}{\sim} \operatorname{Bernoulli}(p_i)$$
 (6)

where p_i is the success probability of observation i taking $Y_i = 1$

• $p_i \in (0,1)$

• When working with a binary outcome variable, Y_i , we can think of it as a **Bernoulli random variable**:

$$Y_i \stackrel{ind}{\sim} \text{Bernoulli}(p_i)$$
 (6)

where p_i is the success probability of observation i taking $Y_i=1$

- $p_i \in (0,1)$
- The **odds**, $p_i/1 p_i$ is then a positive, continuous quantity
- If we take its log, $\log (p_i/1-p_i)$, typically known as the **log odds**, we have an unknown continuous quantity which is on the real line, i.e., $\log (p_i/1-p_i) \in (-\infty,\infty)$
- This log odds, also known as the **logit of** p_i , $\log (p_i/1 p_i)$, can then be modeled as a linear function of predictor variables

- Assume r predictor variables, X_{i1}, \dots, X_{ir}
- A linear function of X_i for the logit of p_i can be expressed as:

$$\operatorname{logit}(p_i) = \log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_r X_{ir}$$
with $r + 1$ parameters, $\{\beta_0, \dots, \beta_r\}$ (7)

- Assume r predictor variables, X_{i1}, \dots, X_{ir}
- A linear function of X_i for the logit of p_i can be expressed as: $\operatorname{logit}(p_i) = \log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_r X_{ir}$ (7)

with r+1 parameters, $\{\beta_0, \cdots, \beta_r\}$

- p_i is fixed once $\{\beta_0, \dots, \beta_r\}$ are known, therefore not considered as a parameter
- From a Bayesian perspective, we specify prior distributions for $\{\beta_0, \cdots, \beta_r\}$ and from MCMC estimation, we obtain posterior draws of these parameters

A Bayesian logistic regression: synthesis details

• Once posterior draws of parameters $\{\beta_0, \dots, \beta_r\}$ are available, we can then simulate a posterior predictive draw of Y_i^* given predictor variable X_i and a set of posterior parameter draws, denoted as $\{\beta_0^*,\cdots,\beta_r^*\}$:

$$\log it(p_i^*) = \log \left(\frac{p_i^*}{1 - p_i^*}\right) = \beta_0^* + \beta_1^* X_{i1} + \dots + \beta_r^* X_{ir}, \quad (8)$$

$$Y_i^* \stackrel{ind}{\sim} \operatorname{Bernoulli}(p_i^*).$$
 (9)

A Bayesian logistic regression: synthesis details

• Note that to calculate p_i^* from $\beta_0^*, \dots, \beta_r^*$ and X_i , we need the following algebra transformation

$$\log\left(\frac{p_{i}^{*}}{1-p_{i}^{*}}\right) = \beta_{0}^{*} + \beta_{1}^{*}X_{i1} + \dots + \beta_{r}^{*}X_{ir}$$

$$\frac{p_{i}^{*}}{1-p_{i}^{*}} = \exp(\beta_{0}^{*} + \beta_{1}^{*}X_{i1} + \dots + \beta_{r}^{*}X_{ir})$$

$$p_{i}^{*} = \frac{\exp(\beta_{0}^{*} + \beta_{1}^{*}X_{i1} + \dots + \beta_{r}^{*}X_{ir})}{1 + \exp(\beta_{0}^{*} + \beta_{1}^{*}X_{i1} + \dots + \beta_{r}^{*}X_{ir})}$$
(10)

A Bayesian logistic regression: synthesis details

- For notation simplicity, we let $p_i^* = h(\beta_0^*, \dots, \beta_r^*, \mathbf{X}_i)$ represent the previous expression, where \mathbf{X}_i is the vector of predictors for observation i
- Then to simulate synthetic values for all n observations using the following procedure

compute
$$p_1^* = h(\beta_0^*, \cdots, \beta_r^*, \boldsymbol{X}_1) \rightarrow \text{sample } Y_1^* \sim \text{Bernoulli}(p_1^*)$$
 \vdots
compute $p_i^* = h(\beta_0^*, \cdots, \beta_r^*, \boldsymbol{X}_i) \rightarrow \text{sample } Y_i^* \sim \text{Bernoulli}(p_i^*)$
 \vdots
compute $p_n^* = h(\beta_0^*, \cdots, \beta_r^*, \boldsymbol{X}_n) \rightarrow \text{sample } Y_n^* \sim \text{Bernoulli}(p_n^*)$

• This process creates one synthetic binary vector $(Y_i^*)_{i=1,\dots,n}$

- We wish to synthesize binary UrbanRural with continuous LogExpenditure as the single predictor
- UrbanRural is coded as 1= Urban and 2= Rural: we need to create a 0 / 1 version of Y_i as $\tilde{Y}_i = Y_i 1$

$$\tilde{Y}_i \mid p_i \stackrel{ind}{\sim} \operatorname{Bernoulli}(p_i)$$
 (11)

$$\operatorname{logit}(p_i) = \log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 X_i$$
 (12)

Discussion question: Is $\tilde{Y}_i = 0$ referring to an urban CU or rural CU?

To streamline our synthesis process, we create the design matrix X based on the chosen model

```
logistic_ff <- stats::as.formula((UrbanRural - 1) ~ 1 + LogExpenditure)
logistic_model <- stats::model.frame(logistic_ff, CEdata)
logistic_X <- data.frame(stats::model.matrix(logistic_ff, logistic_model))</pre>
```

To streamline our synthesis process, we create the design matrix X
based on the chosen model

```
logistic_ff <- stats::as.formula((UrbanRural - 1) ~ 1 + LogExpenditure)
logistic_model <- stats::model.frame(logistic_ff, CEdata)
logistic_X <- data.frame(stats::model.matrix(logistic_ff, logistic_model))</pre>
```

• We use the **default priors**

 We use family = bernoulli(link = "logit") in the brm() function to fit the simple linear regression model

- The key to applying Bayesian synthesis models is to save posterior parameter draws of estimated parameters
- These draws will be used to generate synthetic data given the posterior predictive distribution
- We use the posterior_samples() function to retrieve the posterior parameter draws in post_logistic

```
post_logistic <- brms::posterior_samples(x = logistic_fit)
post_logistic[1:3, ]</pre>
```

```
## b_Intercept b_LogExpenditure lp__

## 1 1.7386479 -0.5095163 -1236.636

## 2 -0.0674308 -0.2962953 -1232.647

## 3 -0.1452401 -0.2913404 -1232.939
```

A Bayesian logistic regression: MCMC diagnostics

Don't forget to do them!

A Bayesian logistic regression: synthesis

 Suppose we use one set of posterior draws at the index iteration of the MCMC

```
logistic_synthesize <- function(X, post_draws, index, n, seed){
    set.seed(seed)
    log_p <- as.matrix(X) %*%
        t(data.matrix(post_draws[index, c("b_Intercept", "b_LogExpenditure")]))
    p <- exp(log_p) / (1 + exp(log_p))
    synthetic_Y <- stats::rbinom(n, size = 1, prob = p) + 1
    data.frame(X, synthetic_Y)
}</pre>
```

Dicussion question: What are the inputs and outputs of this SLR_synthesize() function?

A Bayesian logistic regression: synthesis

• Perform synthesis for the CE dataset

A Bayesian logistic regression: utility check

Confidential UrbanRural vs synthetic UrbanRur

Outline

- Introduction
- Synthesing continuous variables
- Synthesizing binary variables
- Summary and References

Summary

- Synthesizing continuous outcome variables
 - ▶ Bayesian simple / multiple linear regressions
- Synthesizing binary outcome variables
 - Bayesian logistic regression
- In both cases
 - Prior (default priors in brms)
 - MCMC estimation and diagnostics
 - Posterior predictions for synthetic data generation (writing R functions)
 - ► Simple utility checks

Summary

- Synthesizing continuous outcome variables
 - Bayesian simple / multiple linear regressions
- Synthesizing binary outcome variables
 - Bayesian logistic regression
- In both cases
 - Prior (default priors in brms)
 - MCMC estimation and diagnostics
 - Posterior predictions for synthetic data generation (writing R functions)
 - ► Simple utility checks
- Homework 4: a few R programming exercises
 - ► Submission on Moodle and prepare to discuss next time
- Lecture 5: Bayesian synthesis models part 2: categorical, count (sequential synthesis), and DPMPM
 - ► Section 3 of Kinney et al. (2011)
 - Section 2 of Hu, Reiter, and Wang (2014)

References I

Hu, J., J. P. Reiter, and Q. Wang. 2014. "Disclosure Risk Evaluation for Fully Synthetic Categorical Data." <u>Privacy in Statistical Databases</u>, 185–99.

Kinney, S. K., J. P. Reiter, A. P. Reznek, J. Miranda, R. S. Jarmin, and J. M. Abowd. 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database." <u>International Statistical</u> Review 79 (3): 362–84.