Medical/Bio Research Topics II: Week 12 (23.11.2023)

Brain disease diagnosis artificial intelligence models (1-2): data and prediction problem, model construction (뇌질환 진단 인공지능 모델 개발 연습 (1-2): 데이터 및 예측 문제, 예측 모델 구성)

Parkinson's Disease

- Neurodegenerative disease that affects the nervous system and the parts of the body controlled by the nerve
 - Primarily manifests abnormalities of movement
- Resulted from the death of nerve cells in the substantia nigra (region of the midbrain that supplies dopamine to the basal ganglia)
 - Involves the aggregation of a-synuclein proteins into Lewy bodies (clumps of abnormal protein particles) within neurons and their spread throughout the brain

Anatomical locations of the substantia nigra and basal ganglia

[Delenclos et al., 2019, Forloni, 2023]

Scenario in the pathogenesis of Parkinson's disease

Prevalence

- Commonest form of parkinsonism (group of neurological disorders that cause similar symptoms to those seen in Parkinson's disease)
- Typically occurs in individuals over the age of 60
 - About 1% of individuals over the age of 60 are affected [Reeve et al., 2014]
- More frequently in males than in females
- Average life expectancy of 7-15 years following diagnosis

- Signs and symptoms
 - Usually start and develop slowly over years
 - Motor symptoms
 - Cardinal signs and most recognizable symptoms of Parkinson's disease
 - Tremor (rhythmic shaking), rigidity (limb stiffness), bradykinesia (slowed movement), and postural instability (gait and balance problems)
 - Non-motor symptoms
 - Dysautonomia (autonomic dysfunction), neuropsychiatric problems (mood, cognition, behaviour, or thought alterations), and sensory (especially altered sense of smell) and sleep difficulties

[https://en.wikipedia.org/wiki/Parkinson's_disease]

Signs and symptoms of Parkinson's disease

Cause

- Remains largely unknown
 - Called idiopathic (no identifiable cause) parkinsonism
- Possibly combination of genetic and environmental factors
 - Genetic risks
 - Affected family member
 - » Around 15% of individuals with Parkinson's disease have a first-degree relative who has the disease [Samii et al., 2004]
 - Certain genes
 - Environmental risks
 - Exposure to pesticides
 - Prior head injuries
 - History of exposure to trichloroethylene

Diagnosis

- Mainly based on medical history and neurological examination
 - By assessing motor symptoms using clinical diagnosis criteria
- Brain imaging to rule out other diseases
 - MRI
 - Dopamine transporter (DaT) scan
 - Measures the metabolic activity of dopamine transporters in the basal ganglia by using single-photon emission computed tomography (SPECT)
- Checked by the finding of Lewy bodies in the midbrain on autopsy
 - Usually considered final proof that an individual had Parkinson's disease
 - 80.6% of Parkinson's disease diagnoses are accurate [Rizzo et al., 2016]

[https://movementdisorders.ufhealth.org/2012/04/11/should-i-get-a-dat-scan-to-confirm-my-parkinsons-disease/]

DaT scans for essential tremor (normal) and parkinsonism (decreased)

Treatment

- No known cure
- Aims to reduce the effects of symptoms and improve the quality of an individual's life
 - Medications
 - Diet and certain forms of rehabilitation
 - Surgery to place microelectrodes for deep brain stimulation
- Much more effective than treatment for other neurological disorders such as Alzheimer's disease [Connolly et al., 2014]

Prodrome

- Early signs or symptoms that often indicate the onset of a disease before more diagnostically specific signs and symptoms develop
 - In several psychiatric diseases such as schizophrenia and bipolar disorder
 - In several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease

Prodromal Parkinson's disease

- Prodromal phase of Parkinson's disease
 - Progressive neurodegenerative pathology is initiated, but motor symptoms necessary for the diagnosis of Parkinson's disease are not yet manifested
- May begin several years before the onset of motor symptoms
 - Disease course modifying treatment may be given before motor symptoms occur
- Characterized by a range of non-motor symptoms as well as subtle motor symptoms
 - Hyposmia, constipation, depression, anxiety, rapid eye movement (REM) sleep behavior disorder (RBD), and excessive daytime sleepiness (EDS)
- Increased risk of Parkinson's disease in case of genetic variants

Symptoms characterizing prodromal Parkinson's disease

Parkinson's Progression Markers Initiative (PPMI)

- Launched in 2010 by the Michael J. Fox Foundation and a core group of academic scientists and industry partners
- Assesses progression of clinical features, imaging outcomes, biologic and genetic markers, and digital outcomes of Parkinson's disease across its all stages from prodromal to moderate disease

- Aims to identify biomarkers of Parkinson's disease progression
 - By assessing multiple cohorts to develop the largest collection of clinical, imaging, and biologic specimens ever created in the Parkinson's community
 - To accelerate therapeutic trials to reduce progression of disability
 - Diagnostic vs. progression marker
 - Diagnostic marker: any objectively measurable physical characteristic associated with the presence of the disease
 - Progression marker: any characteristic that changes over time in a way that can be tied to the progression of the disease

Study design

- Longitudinal, observational, multi-center natural history study
 - Comprehensive longitudinal within-participant data in approximately 4,000 participants enrolled at about 50 sites worldwide
 - By enrolling individuals with (diagnosed with Parkinson's disease in the past two years and not yet taking medication) and without Parkinson's disease
- Through the pathway from PPMI online to PPMI Remote and finally to PPMI clinical

[https://www.ppmi-info.org/study-design]

Prodromal pyramid

Data

- Imaging data
 - Structural MRI
 - Diffusion-weighted MRI
 - DaT scan
- Clinical information and assessment results
 - Medical and family history (including demographics)
 - Physical examination
 - Neurological examination
 - Vital signs
 - Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores (including Part III and Hoehn & Yahr)

- Modified Schwab & England Activities of Daily Living (ADL)
- University of Pennsylvania Smell Identification Test (UPSIT, olfactory testing)
- Hopkins Verbal Learning Test
- Benton Judgment of Line Orientation
- Semantic fluency
- Letter number sequencing
- Symbol digit modalities
- Montreal Cognitive Assessment (MoCA)
- Epworth Sleepiness Scale
- REM Sleep Behaviour Questionnaire
- Geriatric Depression Scale (GDS-15)
- State-Trait Anxiety Inventory for Adults

- Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP)
- Scale for Outcomes in Parkinson's disease for Autonomic Symptoms (SCOPA-AUT)
- Current medical conditions review
- Concomitant medication review

Study cohorts

- Parkinson's disease cohort
 - Clinical diagnosis of Parkinson's disease
 - Positive DaT scan
 - Comprised of subgroups:
 - Untreated Parkinson's disease
 - Parkinson's disease and pathogenic genetic variant(s) in LRRK2, GBA, SNCA

Healthy controls

- No current or active clinically significant neurologic disorder
- No first-degree relative with Parkinson's disease
- Normal DaT scan

Prodromal cohort

- No clinical diagnosis of Parkinson's disease or other parkinsonism or of dementia
- At risk of Parkinson's disease based on clinical features, genetic variants, or other biomarkers
 - REM sleep behaviour disorder (RBD)
 - Known genetic risk variants including LRRK2, GBA, SNCA, or other rare genetic variants (e.g., PRKN, PINK1)
 - Hyposmia based on UPSIT testing
 - First-degree family history of Parkinson's disease
 - Other known Parkinson's disease risk criteria including those based on questionnaires in PPMI Online
- Positive DaT scan

PPMI participants by visit

PPMI participants by age

PPMI participants by sex

PPMI participants by race

Dataset

- Data from PPMI (n = 1,145)
 - T1-weighted MRI scans at baseline
 - Demographic information including chronological age and sex

Distribution of cohorts for the whole data

- HealthyControl (healthy individuals): n = 174
 - Age: 60.8±11.5 years
 - Sex: 68 women and 106 men
- PD (individuals with Parkinson's disease): n = 601
 - Age: 62.9±9.7 years
 - Sex: 233 women and 368 men
- ProdromalPD (individuals with prodromal Parkinson's disease): n = 370
 - Age: 64.6±7.3 years
 - Sex: 186 women and 184 men

Distribution of age and sex for three cohorts

HealthyControl

ProdromalPD

T1-weighted MRI scan

Preprocessing

- Correction for intensity non-uniformity (bias field)
- Segmentation into grey matter, white matter, and cerebrospinal fluid
- Normalisation into the MNI standard brain space

Segmentation and normalisation

- Statistical inferences on processed maps: group differences in brain structure
 - Grey matter volume ~ HealthyControl + PD + ProdromalPD + age+ sex + total intracranial volume (TIV)
 - White matter volume ~ HealthyControl + PD + ProdromalPD + age+ sex + TIV

Design matrix for group comparison

Main effect of ANOVA

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

Healthy control > PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

Healthy control > PD: grey matter volume

Healthy control > PD: white matter volume

Healthy control < PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

Healthy control > Prodromal PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

Healthy control > Prodromal PD: grey matter volume

Healthy control > Prodromal PD: white matter volume

Healthy control < Prodromal PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

PD < Prodromal PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

PD > Prodromal PD

Thresholded at FDR corrected p = 0.05 at the cluster level and uncorrected p = 0.001 at the voxel level

PD > Prodromal PD: grey matter volume

PD > Prodromal PD: white matter volume

Brain Disease Diagnosis

Input data

- Brain image after skull-stripping, intensity non-uniformity correction, and normalisation
- Grey matter probability (partial volume fraction) image after segmentation and normalisation
- White matter probability (partial volume fraction) image after segmentation and normalisation

Brain image

Grey matter probability image

White matter probability image

Input data for brain disease diagnosis

- Training and test datasets
 - Training dataset: n = 1,030
 - Brain image: Brain/train/0001-1030.nii.gz
 - Grey matter probability image: GM/train/0001-1030.nii.gz
 - White matter probability image: WM/train/0001-1030.nii.gz
 - Cohort label
 - 0: HealthyControl
 - 1: PD
 - 2: ProdromalPD
 - Test dataset: n = 115
 - Brain image: Brain/test/0001-0115.nii.gz
 - Grey matter probability image: GM/test/0001-0115.nii.gz
 - White matter probability image: WM/test/0001-0115.nii.gz

Distribution of cohorts for training and test datasets

- Brain disease diagnosis performance
 - Accuracy
 - Proportion of correct predictions

		Predicted cond	lition				
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$		
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$		
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$		
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP/PP = 1 - FDR	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR		
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-		
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP		

[https://en.wikipedia.org/wiki/Confusion_matrix]

Machine Learning for Brain Disease Diagnosis

- Reviews
 - Mei et al., 2021
 - Nissar et al., 2021
 - Khan et al., 2021

Data source/Database	Number of studies	Percentage
independent recruitment of human participants	93	43.06%
UCI Machine Learning Repository	44	20.37%
PPMI database	33	15.28%
PhysioNet	15	6.94%
HandPD dataset	6	2.78%
mPower database	4	1.85%
Other databases (1 PACS, 1 PaHaW, 1 PC-GITA database, 1 PDMultiMC database, 1 Neurovoz corpus, 1 The NTUA Parkinson Dataset)	6	2.78%
Collected postmortem	1	0.46%
Commercially sourced	1	0.46%
Acquired at another institution	1	0.46%
From another study	1	0.46%
From the author's institutional database	1	0.46%
Others (1 PPMI + Sheffield Teaching Hospitals NHS Foundation Trust; 1 PPMI + Seoul National University Hospital cohort; 1 UCI + collected from participants)	3	1.39%

PACS, Picture Archiving and Communication System; PaHaW, Parkinson's Disease Handwriting Database.

[Mei et al., 2021]

[Mei et al., 2021]

Sample sizes in machine learning for Parkinson's disease diagnosis

Performance metric	Definition	Number of studies
Accuracy	TP+TN TP+TN+FP+FN	174
Sensitivity (recall)	TP TP+FN	110
Specificity (TNR)	TN TN+FP	94
AUC	The two-dimensional area under to Receiver Operating Characteristi (ROC) curve	
MCC	$\frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$	9
Precision (PPV)	TP TP+FP	31
NPV	TN TN+FN	8
F1 score	2 × precision×recall precision+recall	25
Others (7 kappa; 4 error rate; 3 EER; 1 MSE; 1 LOR; 1 confusion matrix; 1 cross validation score; 1 YI; 1 FPR; FNR; 1 G-mean; 1 PE; 5 combination of metrics)	N/A 1	28

TNR, true negative rate; AUC, Area under the ROC Curve; MCC, Matthews correlation coefficient; PPV, positive predictive value; NPV, negative predictive value; EER, equal error rate; MSE, mean squared error; LOR, log odds ratio; YI, Youden's Index; FPR, false positive rate; FNR, false negative rate; PE, probability excess.

[Mei et al., 2021]

Machine learning algorithms for Parkinson's disease diagnosis

[Mei et al., 2021]

Data types and algorithms in machine learning for Parkinson's disease diagnosis

Data types and in machine learning for Parkinson's disease diagnosis

Conventional machine learning

Author	Technique Applied	Highest Accuracy Achieved (%)			
Little et al (2009)	SVM	91.4			
David Gil A. et al (2009)	SVM	93.33			
Resul Das (2010)	Neural network	92.9			
Ipsita Bhattacharya et al (2010)	Linear SVM	65.21			
R. Arefi Shirvan et al (2011)	k-NN	98.2			
R. Geetha Ramani et al (2011)	Random tree	100			
Uma Rani et al (2012)	SVM (RBF)	87.5			
A. Ozcift et al (2012)	IBk	96.93			
B.E Sakar et al (2013)	Linear SVM	85.0			
Mohammad Shahbakhi et al (2014)	SVM	94.50			
Achraf Benba et al (2015)	Linear SVM	91.17			
Achraf Benba et al (2016)	Linear SVM	90.0			
Richa Mathur et al (2018)	k-NN + Adaboost.M1	91.28			
Salama A. Mostafa et al (2019)	Random forest	99.49			
Diogo Braga et al (2019)	Random forest	99.94			
Amin ul Haq et al (2019)	SVM	99.0			
C.O. Sakar et al (2019)	SVM (RBF)	86.0			
I.Nissar et al (2020)	XGBoost	95.39			
C.D. Anisha (2020)	AdaBoost	94.0			
O. Asmae et al (2020)	ANN	96.7			
Z.K. Senturk (2020)	SVM	93.84			
Tuncer et al (2020)	k-NN	96.83			

Deep learning

Author	Technique Applied	Highest Accuracy Achieved (%)
Ali H. Al-Fatlawi et al (2016)	DBN	94
Alex Frid et al (2017)	CNN	83.63
Abdullah Caliskan et al (2017)	DNN classifier	86.09
Savitha S. Upadhya et al (2018)	NN classifier	98.0
Srishti Grover et al (2018)	DNN	81.66
Chitra Rajagopal et al (2019)	NN classifier	99.49
D. R . Rizvi et al (2020)	LSTM	99.03
S. Kaur et al (2020)	DNN	91.69
K. Akyol (2020)	DNN	95.15

[Nissar et al., 2021]

Performance of Parkinson's disease diagnosis depending on machine learning algorithms

SN	Ref	Year	Image	Database	Extracted	Classifier/Detector		Performance measurement					Others
			Modality/other		Feature	(Single-stage)	Acy	Sny	Spy	AUC	Pm	F1	
			data				(%)	(%)	(%)	(%)	(%)	(%)	
	Machine Learning												
1	[146]	2020	Tremor at rest	UCI ML repository	Feature vectors	RF	99.79	99.91	99.61				PD vs NC
			Bradykinesia			RF	97.50	100	100				
			Rigidity			RF	83.12	81.03	89.47				
			Voice impairment			KNN	97.96	100	97.50				
2	[147]	2020	Hand movement signal	Federal State Budget Scientific Institution	Speed, frequency, and	KNN (K=11)	81.30						PD vs non-PD
			Signai	+ Scientific and	amplitude	SVM	98.40						
				Educational Medical	estimates	DT	82.80						
				and Technological Center		RF	94.10						
3	[148]	2020	R-fMRI	Wuhan Children's	Discriminative	Linear SVM	80.75	73.61	86.52	81.09			PD vs NC
				Hospital	features								
4	[149]	2020	SPECT	E-Da Hospital, I-	Pixel-based	SVM	52.50					37	PD vs NC
				Shou University	features	RF	54.50					38.50	
						Deep CNN-VGG16	65.30					60.60	
5	[150]	2020	Voice	UCI ML repository	Phonetic	CART	90.76						PD vs NC
					features	SVM	93.84						
						ANN	91.54						
6	[151]	2020	Sensors data	John Radcliffe Hospital, Oxford	Clinical features	RF	88	86	90				PD vs Progressive supranuclear palsy
				1		LR	80	85	75				(Combined tasks)
-	[150]	2020	C	17 - d'1 1	C4-4'-4'1	DT	00.40	00.60	00.00			00.25	Cumulative
7	[152]	2020	Sensors data related	Vertical ground reaction force	Statistical features	DI	99.40	99.60	99.80			99.25	performance for
			to gait patterns	datasets	Kinematic	DT	99.40	99.60	99.80			99.25	different stages of
				datasets	features	D1	99.40	99.60	99.80			99.25	PD detection
8	[153]	2020	16S rRNA gene	Sequencing Read	Metagenomic	RF	71	69		80	78	71	PD vs NC
			sequencing data	Archive	data	ANN	66	66		67	70	66	
						SVM	60	55		54	68	60	
9	[154]	2020	Voice	Data collected from	Paralinguistic	LR		75.90		91	81.10	78.40	Mild PD vs NC
				Synapse research	features	RF		69.30		94	90.20	78.30	
				portal		GBT		79.70		95	90.10	83.60	
10	[155]	2020	sMRI	Data collected at Beijing Tiantan Hospital, Capital Medical University, China	Brain features	SVM					ent = 75. on=56.49		HD severity prediction

SN	Ref	Year	Image	Database	Extracted	Classifier/Detector	Performance measurement			Others			
			Modality/other data		Feature	(Single-stage)	A _{cy} (%)	S _{ny} (%)	S _{py} (%)	AUC (%)	P _m (%)	F1 (%)	
	Deep Learning												
11	[156]	2020	Speech	PC-GITA	Deep features	CNN-AlexNet + MLP CNN-AlexNet + RF	99.30 98.30						PD vs NC
12	[157]	2020	Sensors data	Self-generated	Feature maps	CNN	67.39						PD motor state detection
13	[158]	2020	Rapid Eye Movement and olfactory loss, CSF, dopaminergic imaging	PPMI	Feature vectors	Deep ensemble model based on feed-forward ANN	96.68	97.52	94.84	98.86	97.67	97.58	PD vs NC
14	[159]	2020	Sensors data related to left and right gait patterns	PhysioBank	Discriminative features	CNN-LSTM + Softmax	99.31	99.35	99.23				PD vs NC
15	[160]	2020	Voice	UCI ML repository	Feature vectors	Sparse autoencoder + LDA	95	96	98				PD vs NC
16	[161]	2020	Real-world data	UCI ML repository	Feature map	DBN + ELM	Coeffi	cient of	determi	r=53.70 nation=8	88.90%		Motor-UPDRS
							Coeffi			r=52.20 nation=9			Total-UPDRS
17	[162]	2020	sMRI, DaTscans	PPMI	Feature vectors	CNN-RNN	99.76						PD vs non PD
18	[163]	2020	Sensor data	UK Brain Bank	Feature vectors	CNN-LSTM		84.90	84.90	92.30			Freezing of gait detection
19	[164]	2020	Real-world data	UCI ML repository	Feature vectors	DNN				r=14.22 nation=9			Motor-UPDRS
							Root n	nean squ	are erro	r=22.21 nation=9	%		Total-UPDRS
20	[165]	2020	Speech	UCI ML repository	Feature vectors	DNN	91.69						PD vs NC
21	[166]	2020	MRI	PPMI	Mean diffusivity, fractional	Spatial variational autoencoder Spatial autoencoder				80			PD vs NC (WM)
					anisotropy	Dense variational autoencoder				74			
22	[167]	2020	Handwriting	Kaggle handwriting dataset	Spiral patterns Wave patterns	CNN-VGG19	88.50 88	86.50 89.20	92.20 87.90	91.60 88.60			PD vs non PD
23	[168]	2020	SNPs and DaT-	PPMI	Genetic features	DNN				84.75			Biomarker
23	[108]	2020	SPECT	TTWI	Genetic reatures	DININ				04.73			identification for PD
24	[169]	2020	Speech	UCI ML repository	Vocal features	Autoencoder	96.11	98.15	89.78		96.78	97.45	PD vs NC
25	[170]	2020	EEG	Henan Provincial People's Hospital repository	Non-linear features	RNN		84.84	91.81		88.31		PD vs NC
26	[171]	2020	Sensors data	Self-generated	Motion signals	LSTM	Pe			n coeffic		6%	Dyskinesia severity estimation
27	[172]	2020	Handwriting	Kaggle handwriting dataset	Spiral patterns, Wave patterns	CNN-RF and CNN-LR with ensemble voting	93.30	94			93.50	93.94	PD vs NC
28	[173]	2020	sMRI (T2), clinical data	PPMI and ADNI	ROI	CNN + Softmax	77.90						PD detection
29	[174]	2020	sMRI (T1)	PPMI	Brain features	Autoencoder	85	100	80				NC vs. mild impairment
30	[175]	2020	DaT-SPECT	PPMI	Feature vectors	3D-CNN	97			96			PD vs NC
31	[176]	2020	sMRI (T1)	PPMI	Feature vectors	3D-CNN	95.29	94.30	94.30	98	92.70	93.60	PD vs NC
32	[177]	2020	Sensors data related to gait patterns	Physionet	Discriminative features	DNN	98.70 85.30	98.10 85.30	100		87.30	85.30	PD detection Parkinson severity
													prediction

Hands on Machine Learning Modelling for Brain Disease Diagnosis

- Two-class classification
 - HealthyControl vs. PD
- Multiclass classification
 - HealthyControl vs. PD vs. ProdromalPD