Occupancy Detection MT7038

Anton Stråhle & Max Sjödin

Fall 2020

Data

The occupancy status of a room was observed for a few days. Snapshots of the features below were taken every minute.

- ► Features Numerical
 - ▶ Temperature
 - CO2
 - ▶ Humidity
 - ▶ HumidityRatio
 - ▶ Light
- ► Labels Binary
 - Occupancy
 - Occupied
 - Unoccupied

Data

The occupancy status of a room was observed for a few days. Snapshots of the features below were taken every minute.

- Features
 - ▶ Temperature
 - ▶ CO2
 - ▶ Humidity
 - ▶ HumidityRatio
 - ▶ Light
- Response
 - Occupancy
 - Occupied
 - Unoccupied

Light is excluded as the best classifier would otherwise become *Are the lights on?*

Brief Exploration

- ► Unbalanced data set
 - ▶ Many more unoccupied data points than occupied

Figure: Pairplots of Features

Brief Exploration

Figure: Boxplots of Features

- ► SVM
- ► KNN
- Decision Trees

SVM

- Why? ▷ Good for non-linear classification problems.
- How? ▶ Using the package **e1071** and the function **svm**
 - ▶ Linear, polynomial and radial kernels

- Why? ▶ Good for non-linear classification problems

 - ▶ Good if data is not noisy
- How? ▶ Regular KNN using the package **class** and the function **knn**
 - ▶ Weighted KNN using the package kknn and the function kknn

Decision Trees

Why? ▷ WHY??? ▷ WHY MORE?

How? ▶ HOW?

▶ HOW MORE?