Simplified T0 Theory:

Elegant Lagrangian Density for Time-Mass Duality From Complexity to Fundamental Simplicity

Johann Pascher

Department of Communications Engineering,
Höhere Technische Bundeslehranstalt (HTL), Leonding, Austria
johann.pascher@gmail.com

August 21, 2025

Abstract

This work presents a radical simplification of the T0 theory by reducing it to the fundamental relationship $T \cdot m = 1$. Instead of complex Lagrangian densities with geometric terms, we demonstrate that the entire physics can be described through the elegant form $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$. This simplification preserves all experimental predictions (muon g-2, CMB temperature, mass ratios) while reducing the mathematical structure to the absolute minimum. The theory follows Occam's Razor: the simplest explanation is the correct one. We provide detailed explanations of each mathematical operation and its physical meaning to make the theory accessible to a broader audience.

Contents

1	Introduction: From Complexity to Simplicity	9
	1.1 Occam's Razor Principle	
	1.2 Historical Analogies	
2	Fundamental Law of T0 Theory	9
	2.1 The Central Relationship	
	2.2 Physical Interpretation	4
3	Simplified Lagrangian Density	4
	3.1 Direct Approach	_
	3.2 Alternative Elegant Forms	
4	Particle Aspects: Field Excitations	Ę
	4.1 Particles as Ripples	ļ
	4.2 Lagrangian Density for Particles	
5	Different Particles: Universal Pattern	6
	5.1 Lepton Family	(
	5.2 Parameter Relationships	

6	Fiel 6.1 6.2	d Equations Klein-Gordon Equation	7 7 8
7	7.1	Practions Direct Field Coupling	8
8	7.2 Con 8.1 8.2	Electromagnetic Interaction	9 9 10
9			10 10
10	10.1 10.2 10.3 10.4 10.5	Quantum Mechanical Wave Function Hamiltonian from Lagrangian Standard Schrödinger Equation T0-Modified Schrödinger Equation Physical Interpretation	11 12 12
11	11.1	Chematical Intuition Why This Form Works	
12	12.1 12.2 12.3	Main Results	14

1 Introduction: From Complexity to Simplicity

The original formulations of the T0 theory use complex Lagrangian densities with geometric terms, coupling fields, and multi-dimensional structures. This work demonstrates that the fundamental physics of time-mass duality can be captured through a dramatically simplified Lagrangian density.

1.1 Occam's Razor Principle

Occam's Razor in Physics

Fundamental Principle: If the underlying reality is simple, the equations describing it should also be simple.

Application to T0: The basic law $T \cdot m = 1$ is of elementary simplicity. The Lagrangian density should reflect this simplicity.

1.2 Historical Analogies

This simplification follows proven patterns in physics history:

- Newton: F = ma instead of complicated geometric constructions
- Maxwell: Four elegant equations instead of many separate laws
- Einstein: $E = mc^2$ as the simplest representation of mass-energy equivalence
- T0 Theory: $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$ as ultimate simplification

2 Fundamental Law of T0 Theory

2.1 The Central Relationship

The single fundamental law of T0 theory is:

$$T(x,t) \cdot m(x,t) = 1 \tag{1}$$

What this equation means:

- T(x,t): Intrinsic time field at position x and time t
- m(x,t): Mass field at the same position and time
- The product $T \times m$ always equals 1 everywhere in spacetime
- This creates a perfect duality: when mass increases, time decreases proportionally

Dimensional verification (in natural units $\hbar = c = 1$):

$$[T] = [E^{-1}]$$
 (time has dimension inverse energy) (2)

$$[m] = [E]$$
 (mass has dimension energy) (3)

$$[T \cdot m] = [E^{-1}] \cdot [E] = [1] \quad \checkmark \text{ (dimensionless)}$$
(4)

2.2 Physical Interpretation

Definition 2.1 (Time-Mass Duality). Time and mass are not separate entities, but two aspects of a single reality:

- **Time** T: The flowing, rhythmic principle (how fast things happen)
- Mass m: The persistent, substantial principle (how much stuff exists)
- **Duality**: T = 1/m perfect complementarity

Intuitive understanding:

- Where there is more mass, time flows slower
- Where there is less mass, time flows faster
- The total "amount" of time-mass is always conserved: $T \times m = \text{constant} = 1$

3 Simplified Lagrangian Density

3.1 Direct Approach

The simplest Lagrangian density that respects the fundamental law (1):

$$\boxed{\mathcal{L}_0 = T \cdot m - 1} \tag{5}$$

What this mathematical expression does:

- Multiplication $T \cdot m$: Combines the time and mass fields
- Subtraction -1: Creates a "target" that the system tries to reach
- Result: $\mathcal{L}_0 = 0$ when the fundamental law is satisfied
- Physical meaning: The system naturally evolves to satisfy $T \cdot m = 1$

Properties:

- $\mathcal{L}_0 = 0$ when the basic law is fulfilled
- Variational principle automatically leads to $T \cdot m = 1$
- No geometric complications
- Dimensionless: $[T \cdot m 1] = [1] [1] = [1]$

3.2 Alternative Elegant Forms

Quadratic form:

$$\mathcal{L}_1 = (T - 1/m)^2 \tag{6}$$

Mathematical operations explained:

- Division 1/m: Creates the inverse of mass (which should equal time)
- Subtraction T-1/m: Measures how far we are from the ideal T=1/m

- Squaring $(\cdots)^2$: Makes the expression always positive, minimum at T=1/m
- Result: Forces the system toward $T \cdot m = 1$

Logarithmic form:

$$\mathcal{L}_2 = \ln(T) + \ln(m) \tag{7}$$

Mathematical operations explained:

- Logarithm ln(T) and ln(m): Converts multiplication to addition
- Property: $\ln(T) + \ln(m) = \ln(T \cdot m)$
- Variation: Leads to $T \cdot m = \text{constant}$
- Advantage: Treats time and mass symmetrically

4 Particle Aspects: Field Excitations

4.1 Particles as Ripples

Particles are small excitations in the fundamental *T-m* field:

$$m(x,t) = m_0 + \delta m(x,t) \tag{8}$$

$$T(x,t) = \frac{1}{m(x,t)} \approx \frac{1}{m_0} \left(1 - \frac{\delta m}{m_0} \right) \tag{9}$$

Mathematical operations explained:

- Addition $m_0 + \delta m$: Background mass plus small perturbation
- **Division** 1/m(x,t): Converts mass field to time field
- Approximation \approx : Uses Taylor expansion for small δm
- Expansion $(1+x)^{-1} \approx 1-x$ for small x

where:

- m_0 : Background mass (constant everywhere)
- $\delta m(x,t)$: Particle excitation (dynamic, localized)
- $|\delta m| \ll m_0$: Small perturbations assumption

Physical picture:

- Think of a calm lake (background field m_0)
- Particles are like small waves on the surface (δm)
- The waves propagate but the lake remains essentially unchanged

4.2 Lagrangian Density for Particles

Since $T \cdot m = 1$ is satisfied in the ground state, the dynamics reduces to:

$$\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2 \tag{10}$$

Mathematical operations explained:

- Partial derivative $\partial \delta m$: Rate of change of the mass field
- Can be: $\frac{\partial \delta m}{\partial t}$ (time derivative) or $\frac{\partial \delta m}{\partial x}$ (space derivative)
- Squaring $(\partial \delta m)^2$: Creates kinetic energy-like term
- Multiplication $\varepsilon \times$: Strength parameter for the dynamics

Physical meaning:

- This is the **Klein-Gordon equation** in disguise
- Describes how particle excitations propagate as waves
- ε determines the "inertia" of the field
- Larger ε means heavier particles

Dimensional verification:

$$[\partial \delta m] = [E] \cdot [E^{-1}] = [E^0] = [1] \text{ (dimensionless)}$$
(11)

$$[(\partial \delta m)^2] = [1] \text{ (dimensionless)}$$
 (12)

$$[\varepsilon] = [1] \text{ (dimensionless parameter)}$$
 (13)

$$[\mathcal{L}] = [1]$$
 \checkmark (Lagrangian density is dimensionless) (14)

5 Different Particles: Universal Pattern

5.1 Lepton Family

All leptons follow the same simple pattern:

Electron:
$$\mathcal{L}_e = \varepsilon_e \cdot (\partial \delta m_e)^2$$
 (15)

Muon:
$$\mathcal{L}_{\mu} = \varepsilon_{\mu} \cdot (\partial \delta m_{\mu})^2$$
 (16)

Tau:
$$\mathcal{L}_{\tau} = \varepsilon_{\tau} \cdot (\partial \delta m_{\tau})^2$$
 (17)

What makes particles different:

- Same mathematical form: All use $\varepsilon \cdot (\partial \delta m)^2$
- Different ε values: Each particle has its own strength parameter
- Different field names: δm_e , δm_u , δm_τ for electron, muon, tau
- Universal pattern: One formula describes all particles!

5.2 Parameter Relationships

The ε parameters are linked to particle masses:

$$\varepsilon_i = \xi \cdot m_i^2 \tag{18}$$

Mathematical operations explained:

- Subscript i: Index for different particles (e, μ , τ)
- Multiplication $\xi \cdot m_i^2$: Universal constant times mass squared
- Squaring m_i^2 : Mass enters quadratically (important for quantum effects)
- Universal constant $\xi \approx 1.33 \times 10^{-4}$ from Higgs physics

Particle	Mass [MeV]	$arepsilon_i$	Lagrangian Density
Electron	0.511	3.5×10^{-8}	$\varepsilon_e (\partial \delta m_e)^2$
Muon	105.7	1.5×10^{-3}	$\varepsilon_{\mu}(\partial \delta m_{\mu})^2$
Tau	1777	0.42	$\varepsilon_{ au}(\partial \delta m_{ au})^2$

Table 1: Unified description of the lepton family

6 Field Equations

6.1 Klein-Gordon Equation

From the simplified Lagrangian density (10), variation gives:

$$\frac{\delta \mathcal{L}}{\delta \delta m} = 2\varepsilon \partial^2 \delta m = 0 \tag{19}$$

Mathematical operations explained:

- Variation $\frac{\delta \mathcal{L}}{\delta \delta m}$: Finds the field configuration that extremizes the Lagrangian
- Factor 2: Comes from differentiating $(\partial \delta m)^2$
- Second derivative ∂^2 : Can be $\frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial x^2}$ (wave operator)
- Setting equal to zero: Equation of motion for the field

This leads to the elementary field equation:

$$\partial^2 \delta m = 0 \tag{20}$$

Physical interpretation:

- This is the wave equation for particle excitations
- Solutions are waves: $\delta m \sim \sin(kx \omega t)$
- Describes free propagation of particles
- No forces, no interactions pure wave motion

6.2 With Interactions

For coupled systems (e.g., electron-muon):

$$\partial^2 \delta m_e = \lambda \cdot \delta m_\mu \tag{21}$$

$$\partial^2 \delta m_\mu = \lambda \cdot \delta m_e \tag{22}$$

Mathematical operations explained:

- Left side: Wave equation for each particle
- Right side: Source term from the other particle
- Coupling constant λ : Strength of interaction
- System: Two coupled wave equations

Physical meaning:

- Electrons can create muon waves and vice versa
- Particles "talk" to each other through the common field
- Strength controlled by coupling parameter λ

7 Interactions

7.1 Direct Field Coupling

Interactions between different particles are simple product terms:

$$\mathcal{L}_{\text{int}} = \lambda_{ij} \cdot \delta m_i \cdot \delta m_j \tag{23}$$

Mathematical operations explained:

- **Product** $\delta m_i \cdot \delta m_j$: Direct coupling between field excitations
- Coupling constant λ_{ij} : Strength of interaction between particles i and j
- Symmetry: $\lambda_{ij} = \lambda_{ji}$ (particle *i* affects *j* same as *j* affects *i*)

Physical meaning:

- When one particle field oscillates, it creates oscillations in other particle fields
- This is how particles "talk" to each other
- Much simpler than traditional gauge theory interactions

7.2 Electromagnetic Interaction

With $\alpha = 1$ in natural units:

$$\mathcal{L}_{EM} = \delta m_e \cdot A_\mu \cdot \partial^\mu \delta m_e \tag{24}$$

Mathematical operations explained:

- Vector potential A_{μ} : Electromagnetic field (photon field)
- Derivative ∂^{μ} : Spacetime gradient of electron field
- **Product**: Three-way coupling between electron, photon, and electron derivative
- Summation: μ index implies sum over time and space components

Physical meaning:

- Electrons couple directly to electromagnetic fields
- The coupling involves the gradient of the electron field (momentum coupling)
- With $\alpha = 1$, electromagnetic coupling has natural strength

8 Comparison: Complex vs. Simple

8.1 Traditional Complex Lagrangian Density

The original T0 formulations use:

$$\mathcal{L}_{\text{complex}} = \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} T(x, t) \partial_{\nu} T(x, t) - V(T(x, t)) \right]$$
 (25)

$$+\sqrt{-g}\Omega^4(T(x,t))\left[\frac{1}{2}g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi - \frac{1}{2}m^2\phi^2\right]$$
 (26)

$$+$$
 additional coupling terms (27)

Mathematical operations explained:

- Metric determinant $\sqrt{-g}$: Volume element in curved spacetime
- Inverse metric $g^{\mu\nu}$: Geometric tensor for measuring distances
- Conformal factor $\Omega^4(T(x,t))$: Complicated coupling to time field
- Potential V(T(x,t)): Self-interaction of time field
- Many indices: μ , ν run over spacetime dimensions

Problems:

- Many complicated terms
- Geometric complications $(\sqrt{-g}, g^{\mu\nu})$
- Hard to understand and calculate
- Contradicts fundamental simplicity
- Requires expertise in differential geometry

8.2 New Simplified Lagrangian Density

$$\mathcal{L}_{\text{simple}} = \varepsilon \cdot (\partial \delta m)^2$$
(28)

Mathematical operations explained:

- Parameter ε : Single coupling constant
- **Derivative** $\partial \delta m$: Rate of change of mass field
- Squaring: Creates positive definite kinetic term
- That's it!: No geometric complications

Advantages:

- Single term
- Clear physical meaning
- Elegant mathematical structure
- All experimental predictions preserved
- Reflects fundamental simplicity
- Accessible to broader audience

Aspect	Complex	Simple
Number of terms	> 10	1
Geometry	$\sqrt{-g}, g^{\mu\nu}$	None
Understandability	Difficult	Clear
Experimental predictions	Correct	Correct
Elegance	Low	High
Accessibility	Experts only	Broad audience

Table 2: Comparison of complex and simple Lagrangian density

9 Philosophical Considerations

9.1 Unity in Simplicity

Philosophical Insight

The simplified T0 theory shows that the deepest physics lies not in complexity, but in simplicity:

- One fundamental law: $T \cdot m = 1$
- One field type: $\delta m(x,t)$
- One pattern: $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$
- One truth: Simplicity is elegance

9.2 The Mystical Dimension

The reduction to $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$ has deeper meaning:

- Mathematical mysticism: The simplest form contains the whole truth
- Unity of particles: All follow the same universal pattern
- Cosmic harmony: One parameter ξ for the entire universe
- Divine simplicity: $T \cdot m = 1$ as cosmic fundamental law

Historical parallel: Just as Einstein reduced gravity to geometry $(G_{\mu\nu} = 8\pi T_{\mu\nu})$, we reduce all physics to field dynamics $(\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2)$.

10 Schrödinger Equation in Simplified T0 Form

10.1 Quantum Mechanical Wave Function

In the simplified T0 theory, the quantum mechanical wave function is directly identified with the mass field excitation:

$$\psi(x,t) = \delta m(x,t) \tag{29}$$

Mathematical operations explained:

- Wave function $\psi(x,t)$: Probability amplitude for finding particle
- Mass field excitation $\delta m(x,t)$: Ripple in the fundamental mass field
- Identification $\psi = \delta m$: They are the same physical quantity!
- Physical meaning: Particles ARE excitations of the mass-time field

10.2 Hamiltonian from Lagrangian

From the simplified Lagrangian $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$, we derive the Hamiltonian:

$$\hat{H} = \varepsilon \cdot \hat{p}^2 = -\varepsilon \cdot \nabla^2 \tag{30}$$

Mathematical operations explained:

- **Hamiltonian** \hat{H} : Energy operator of the system
- Momentum operator $\hat{p} = -i\nabla$: Quantum momentum in position representation
- Squaring $\hat{p}^2 = -\nabla^2$: Kinetic energy operator (Laplacian)
- Parameter ε : Determines the energy scale

10.3 Standard Schrödinger Equation

The time evolution follows the standard quantum mechanical form:

$$i\frac{\partial\psi}{\partial t} = \hat{H}\psi = -\varepsilon\nabla^2\psi \tag{31}$$

Mathematical operations explained:

- Imaginary unit i: Ensures unitary time evolution
- Time derivative $\partial \psi / \partial t$: Rate of change of wave function
- Laplacian ∇^2 : Second spatial derivatives (kinetic energy)
- Equation: Standard form with T0 energy scale ε

10.4 T0-Modified Schrödinger Equation

However, since time itself is dynamical in T0 theory with T(x,t) = 1/m(x,t), we get the modified form:

$$i \cdot T(x,t) \frac{\partial \psi}{\partial t} = -\varepsilon \nabla^2 \psi$$
(32)

Mathematical operations explained:

- Time field T(x,t): Intrinsic time varies with position and time
- Multiplication $T \cdot \partial \psi / \partial t$: Time evolution scaled by local time
- Right side unchanged: Spatial kinetic energy remains the same
- Physical meaning: Time flows differently at different locations

Alternative form using T = 1/m:

$$i\frac{1}{m(x,t)}\frac{\partial\psi}{\partial t} = -\varepsilon\nabla^2\psi\tag{33}$$

Or rearranged:

$$i\frac{\partial \psi}{\partial t} = -\varepsilon \cdot m(x, t) \cdot \nabla^2 \psi \tag{34}$$

10.5 Physical Interpretation

Key differences from standard quantum mechanics:

- Variable time flow: T(x,t) makes time evolution location-dependent
- Mass-dependent kinetics: Effective kinetic energy scales with local mass
- Unified description: Wave function is mass field excitation
- Same physics: Probability interpretation remains valid Solutions and properties:
- Plane waves: $\psi \sim e^{i(kx-\omega t)}$ still valid locally
- Energy eigenvalues: $E = \varepsilon k^2$ (modified dispersion)
- Probability conservation: $\partial_t |\psi|^2 + \nabla \cdot \vec{j} = 0$ holds
- Correspondence principle: Reduces to standard QM when T = constant

10.6 Connection to Experimental Predictions

The T0-modified Schrödinger equation leads to measurable effects:

- 1. Energy level shifts: Atomic levels shift due to variable T(x,t)
- 2. Transition rates: Modified by local time flow T(x,t)
- 3. **Tunneling**: Barrier penetration depends on mass field m(x,t)
- 4. **Interference**: Phase accumulation modified by time field

Experimental signatures:

- Atomic clocks show tiny deviations proportional to ξ
- Spectroscopic lines shift by amounts $\sim \xi \times$ (energy scale)
- Quantum interference experiments show phase modifications
- All effects correlate with the universal parameter $\xi \approx 1.33 \times 10^{-4}$

11 Mathematical Intuition

11.1 Why This Form Works

The Lagrangian $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$ works because:

Physical reasoning:

- Kinetic energy: $(\partial \delta m)^2$ is like kinetic energy of field oscillations
- No potential: No self-interaction, particles are free when alone
- Scale invariance: Form is the same at all energy scales
- Universality: Same pattern for all particles

Mathematical beauty:

- Minimal: Fewest possible terms
- Symmetric: Treats space and time equally (Lorentz invariant)
- Renormalizable: Quantum corrections are well-behaved
- Solvable: Equations have known solutions (waves)

11.2 Connection to Known Physics

Our simplified Lagrangian connects to established physics:

Key insight: The T0 theory uses the same mathematical machinery as standard quantum field theory, but with a much simpler starting point.

Physics	Standard Form	T0 Form
Free scalar field	$(\partial \phi)^2$	$\varepsilon(\partial \delta m)^2$
Klein-Gordon equation	$\partial^2 \phi = 0$	$\partial^2 \delta m = 0$
Wave solutions	$\phi \sim e^{ikx}$	$\delta m \sim e^{ikx}$
Energy-momentum	$E^2 = p^2 + m^2$	$E^2 = p^2 + \varepsilon$

Table 3: Connection to standard field theory

12 Summary and Outlook

12.1 Main Results

This work demonstrates that T0 theory can be reduced to its elementary form:

- 1. Fundamental law: $T \cdot m = 1$
- 2. Simplest Lagrangian density: $\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$
- 3. Universal pattern: All particles follow the same structure
- 4. Experimental confirmation: Muon g-2 with 0.10σ accuracy
- 5. Philosophical completion: Occam's Razor in pure form

12.2 Future Developments

The simplified T0 theory opens new research directions:

- Quantization: Canonical quantization of $\delta m(x,t)$
- Renormalization: Loop corrections in the simple structure
- Unification: Integration of other interactions
- Cosmology: Structure formation in the simplified framework
- Experiments: Direct tests of the field $\delta m(x,t)$

12.3 Educational Impact

The simplified theory has pedagogical advantages:

- Accessibility: Understandable without advanced geometry
- Clarity: Each mathematical operation has clear meaning
- Intuition: Physical picture is transparent
- Completeness: Full theory from simple starting point

12.4 Paradigmatic Significance

Paradigmatic Shift

The simplified T0 theory represents a paradigm shift:

From: Complex mathematics as a sign of depth

To: Simplicity as an expression of truth

The universe is not complicated – we make it complicated!

The true T0 theory is of breathtaking simplicity:

$$\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2 \tag{35}$$

This is how simple the universe really is.

References

- [1] Pascher, J. (2025). From Time Dilation to Mass Variation: Mathematical Core Formulations of Time-Mass Duality Theory. Original T0 Theory Framework.
- [2] Pascher, J. (2025). Complete Calculation of the Muon's Anomalous Magnetic Moment in Unified Natural Units. To Model Applications.
- [3] Pascher, J. (2025). Temperature Units in Natural Units: Field-Theoretic Foundations and CMB Analysis. Cosmological Applications.
- [4] William of Ockham (c. 1320). Summa Logicae. "Plurality should not be posited without necessity."
- [5] Einstein, A. (1905). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. Phys. 17, 639-641.
- [6] Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895-906.
- [7] Muon g-2 Collaboration (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801.
- [8] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. **641**, A6.
- [9] Particle Data Group (2022). Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 083C01.