OSF-Material C

Mathematical Proof: The Six Conditions Stated in Figure 3 are Sufficient for a Strict Congruence Effect

We can understand the second-degree polynomial model that builds the basis of RSA as a function g that maps X and Y to the respective Z value:

$$Z = g(X,Y) = b_0 + b_1 X + b_2 Y + b_3 X^2 + b_4 XY + b_5 Y^2.$$
(3)

Now, let all six necessary conditions for a strict congruence effect hold, that is, let

- 1. $p_{10} = 0$
- $2. p_{11} = 1,$
- 3. $a_2 = 0$,
- 4. $a_1 = 0$,
- 5. $a_4 < 0$,
- 6. $a_3 = 0$.

We will now proof that when all six conditions are satisfied, the model reflects a strict congruence effect in the sense that it predicts higher Z values the smaller the distance between X and Y. In mathematical terms, such an effect means that g(X,Y) > g(X',Y') is equivalent to |X - Y| < |X' - Y'|. To proof that this equivalence holds when the six conditions are satisfied, we proceed in six steps.

Step 1: Show that $b_1 = b_2 = 0$.

From the condition $a_1 = b_1 + b_2 = 0$, it follows that $b_1 = -b_2$. Moreover, because $a_3 = b_1 - b_2 = 0$, we know that $b_1 = b_2 = -b_1$. Consequently, $b_1 = 0$ and $b_2 = 0$.

Step 2: Show that $b_4 \neq 0$.

We proof this claim by contradiction: Suppose $b_4 = 0$. Then, from $a_2 = b_3 + b_4 + b_5 = 0$, it follows that $b_3 + b_5 = 0$. Also, from $a_4 = b_3 - b_4 + b_5 < 0$, it follows that $b_3 + b_5 < 0$, which is a contradiction. Consequently, b_4 must differ from zero.

Step 3: Show that $b_5 = b_3$.

From $p_{11} = \frac{b_5 - b_3 + \sqrt{(b_3 - b_5)^2 + b_4^2}}{b_4} = 1$ (see Edwards, 2007, for the formula of p_{11}), it follows that

$$b_{5} - b_{3} + \sqrt{(b_{3} - b_{5})^{2} + b_{4}^{2}} = b_{4}$$

$$\Leftrightarrow (b_{3} - b_{5})^{2} + b_{4}^{2} = ((b_{3} - b_{5}) + b_{4})^{2}$$

$$\Leftrightarrow (b_{3} - b_{5})^{2} + b_{4}^{2} = (b_{3} - b_{5})^{2} + 2b_{4}(b_{3} - b_{5}) + b_{4}^{2}$$

$$\Leftrightarrow 0 = 2b_{4}(b_{3} - b_{5})$$

$$\Leftrightarrow 0 = b_{3} - b_{5}$$

$$\Leftrightarrow b_{5} = b_{3},$$

$$(4)$$

where the second-last step is valid because $b_4 \neq 0$.

Step 4: Show that $b_4 = -2b_3$.

From $a_2 = 0$ and $b_5 = b_3$, it follows that

$$a_2 = b_3 + b_4 + b_5 = 0$$

$$\Leftrightarrow b_3 + b_4 + b_3 = 0$$

$$\Leftrightarrow b_4 = -2b_3$$
(5)

Step 5: Show that g simplifies to $g(X,Y)=b_0+b_3(X-Y)^2$ with $b_3<0$.

Taken together, the function g (Equation 3) is given by

$$g(X,Y) = b_0 + b_1 X + b_2 Y + b_3 X^2 + b_4 X Y + b_5 Y^2$$

$$= b_0 + 0 X + 0 Y + b_3 X^2 - 2b_3 X Y + b_3 Y^2$$

$$= b_0 + b_3 (X - Y)^2.$$
(6)

From $a_4 < 0$, $b_5 = b_3$, and $b_4 = -2b_3$, it follows that the coefficient b_3 is negative:

$$a_4 < 0$$

$$\Leftrightarrow b_3 - b_4 + b_5 < 0$$

$$\Leftrightarrow b_3 + 2b_3 + b_3 < 0$$

$$\Leftrightarrow 4b_3 < 0$$

$$\Leftrightarrow b_3 < 0.$$
(7)

Step 6: Show that g(X,Y) > g(X',Y') is equivalent to |X-Y| < |X'-Y'|.

We can now use the simplified formula for g to show that there is a strict congruence effect:

$$g(X,Y) > g(X',Y')$$

$$\Leftrightarrow b_0 + b_3(X - Y)^2 > b_0 + b_3(X' - Y')^2$$

$$\Leftrightarrow b_3(X - Y)^2 > b_3(X' - Y')^2$$

$$\Leftrightarrow (X - Y)^2 < (X' - Y')^2$$

$$\Leftrightarrow |X - Y| < |X' - Y'|.$$
(8)

where the third step is valid because $b_3 < 0$.

To sum up, we showed that the six conditions are sufficient for the existence of a strict congruence effect.