Engine name: RS-68A

Sat Nov 8 11:59:42 2014

Propellant Specification

Componen	Temperature (K	() Mass fra	action M	ole fraction

t

H2(L)	20.27	0.14	0.73
O2(L)	90.17	0.86	0.27
	Total	1.00	1.00

Exploded propellant formula: $O_{0.549} H_{1.451}$

O/F = 6.000

O/F⁰ = 7.937 (stoichiometric)

 $a_{ox} = 0.756$ (oxidizer excess coefficient)

Table 1. Thermodynamic properties

Parameter	Injector	Nozzle inlet	Nozzle throat	Nozzle exit	Unit
Pressure	10.2500	10.2500	5.9010	0.0501	MPa
Temperature	3526.4324	3526.4324	3325.3627	1672.0785	K
Enthalpy	-986.3083	-986.3083	-2143.7175	-9202.2863	kJ/kg
Entropy	17.5979	17.5979	17.5979	17.5979	kJ/(kg·K)
Specific heat (p=const)	8.2029	8.2029	7.5024	3.2137	kJ/(kg·K)
Specific heat (V=const)	7.0177	7.0177	6.4490	2.6235	kJ/(kg·K)
Gas constant	0.6152	0.6152	0.6088	0.5892	kJ/(kg·K)
Molecular weight	13.5161	13.5161	13.6563	14.1105	
Isentropic exponent	1.1427	1.1427	1.1433	1.2249	
Density	4.7251	4.7251	2.9146	0.0509	kg/m³
Sonic velocity	1574.4462	1574.4462	1521.4532	1098.5689	m/s
Velocity	0.0000	0.0000	1521.4532	4053.6349	m/s
Mach number	0.0000	0.0000	1.0000	3.6899	
Area ratio	infinity	infinity	1.0000	21.5000	
Mass flux	0.0000	0.0000	4434.4977	206.3268	kg/(m²⋅s)

Table 2. Fractions of the combustion products

Species	mass		inlet	inlet	throat	throat	Nozzle exit mass	exit
			fractions	fractions	fractions	fractions	fractions	fractions
Н	0.002302	0.030871	0.002302	0.030871	0.001855	0.025143	0.000005	0.000078
	2	3	2	3	8	8	6	8

Species	Injector mass fractions	mole	inlet mass	inlet mole	throat mass	throat mole	Nozzle exit mass fractions	exit mole
H2	0.036989 6	0.248009 1	0.036989 6	0.248009 1	0.036198 7	0.245223 9	0.034854 9	0.243972 8
H2O	0.897564 3	0.673406 6	0.897564 3	0.673406 6	0.915592 6	0.694058 2	0.965123 1	0.755934 8
H2O2	0.000032 0	0.000012 7	0.000032 0	0.000012 7	0.000016 0	0.000006 4		
HO2	0.000080 4	0.000032 9	0.000080 4	0.000032 9	0.000039 2	0.000016 2		
0	0.003338	0.002820 2	0.003338	0.002820 2	0.002093 7	0.001787 1		
O2	0.006962 7	0.002941 0	0.006962 7	0.002941 0	0.004598 7	0.001962 6		
ОН	0.052730 3	0.041906 1	0.052730 3	0.041906 1	0.039605 2	0.031801 7	0.000016 4	0.000013 6

Table 3. Theoretical (ideal) performance

Parameter	Sea level	Optimum expansion	Vacuum	Unit
Characteristic velocity		2311.42		m/s
Effective exhaust velocity	3805.60	4053.63	4296.69	m/s
Specific impulse (by mass)	3805.60	4053.63	4296.69	N∙s/kg
Specific impulse (by weight)	388.06	413.36	438.14	S
Thrust coefficient	1.6464	1.7537	1.8589	

Table 4. Estimated delivered performance

Parameter	Sea level	Optimum expansion	Vacuum	Unit
Characteristic velocity		2293.15		m/s
Effective exhaust velocity	3673.81	3921.85	4164.90	m/s
Specific impulse (by mass)	3673.81	3921.85	4164.90	N·s/kg
Specific impulse (by weight)	374.62	399.92	424.70	S
Thrust coefficient	1.6021	1.7102	1.8162	

Ambient condition for optimum expansion: H=5.56 km, p=0.495 atm