

Knowledge Representation and Inference

IT426: Artificial Intelligence

Second Semester 1444

Information Technology Department

Propositional Logic (PL)

- Propositional logic pros:
 - + Propositional logic is **declarative**: Knowledge base and inference are **separated**
 - + Propositional logic is **compositional**: meaning of $B_{1,1} \lor P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
 - + Meaning in propositional logic is **context-independent** unlike natural language, where meaning depends on context
- Propositional logic cons:
 - Propositional logic has **limited expressive power** unlike natural language
 - e.g. cannot say
 - "pits cause breezes in adjacent squares" (except by writing one sentence for each square)

Question: How can we write one sentence only that can be applied on a group of objects?

First-order Logic (FOL)

- Is an extension to propositional logic.
- First-order logic (like natural language) assumes the following things in the world:
 - Facts (like propositional logic)
 - Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,
 - Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation such as: the sister of, brother of, has color, comes between evaluates to true or false
 - Function: Father of, best friend, third inning of, end of, gives another object
- Can express the following:
 - Squares neighboring the Wumpus are smelly
 - Squares neighboring a pit are breezy

Sentences

- Any sentence can be thought of as:
 - Objects
 - Relation
 - Property
 - Function
- "One plus two equals three."
- "Squares neighboring the Wumpus are smelly."
- "Evil King John ruled England in 1200."
- More examples: text book ch8

FOL Elements

Constant	1, 2, A, John, Mumbai, cat,	
Variables	x, y, z, a, b,	
Predicates	Brother, Father, >,	
Function	sqrt, LeftLegOf,	
Connectives	$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$	
Equality	==	
Quantifier	∀,∃	

First order logic (FOL)

- Examples of things we can say:
 - All men are mortal:
 - $\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(x)$
 - Everybody loves somebody
 - $\forall x \exists y Loves(x, y)$
 - The meaning of the word "above"
 - $\forall x \forall y \text{ above}(x,y) \Leftrightarrow (\text{on}(x,y) \lor \exists z (\text{on}(x,z) \land \text{above}(z,y))$

Syntax Of FOL

- *User defines* these primitives:
 - 1. Constant symbols (i.e., the "individuals" in the world) e.g., Mary, 3, apple
 - 2. Predicate/relation symbols (mapping from individuals to truth values)

e.g., greater(5,3), green(apple), color(apple, Green)

3. Function symbols (mapping individuals to individuals) e.g., fatherOf(Mary) = John, colorOf(Sky) = Blue

Syntax of FOL: Constant Symbols

- Each constant symbol names exactly one object in a universe of discourse, but:
 - Not all objects have symbol names;
 - Some objects have several symbol names.
- Usually denoted with *upper-case* first letter.
 - e.g. Wumpus, Ali.

Syntax of FOL: Relation (Predicate) Symbols

- A predicate symbol is used to represent a *relation* in a universe of discourse.
- The sentence: Relation(Term1, Term2,...)
 - is either **TRUE** or **FALSE** depending on whether Relation holds of Term1, Term2,...
- To write "Malek wrote Muata" in a universe of discourse of names and written works:
 - Wrote(Malek, Muata) → This sentence is true in the intended interpretation.
- Another example:
 - A proposition in predicate logic: **Taking(IT426, Sarah)**

Syntax Of FOL: Function Symbols

- Functions refer to objects.
- It gives us a powerful way to refer to objects without using a constant symbol to name them.
 - Father(Ali) → Refers to the father of Ali
 - Father(x) \rightarrow Refers to the father of variable x

Syntax Of FOL: Variables

- Used to represent objects or properties of objects without explicitly naming the object.
- Usually lower case.
- For example:
 - X
 - father
 - square

Syntax Of FOL: Quantifiers

- Quantifiers: Universal (∀) and Existential (∃)
- Allow us to express properties of collections of objects instead of enumerating objects by name
 - Universal: "for all":
 - ∀ <variables> <sentence>
 - $\forall x \ At(x,KSU) \Rightarrow Smart(x)$
 - Existential: "there exists"
 - **3** <variables> <sentence>
 - $\exists x At(x, KSU) \land Smart(x)$

Syntax Of FOL: Quantifiers

(\(\right)\)

- ⇒ is the main connective with(∀)
- $\forall x At(x,KSU) \Rightarrow Smart(x)$
- "everyone that is at KSU is smart"
- Read as: For all x, For each
 x ,For every x.

(E)

- ∧ is the main connective with(∃)
- $\exists x At(x, KSU) \land Smart(x)$
- "there are students at KSU that are smart"
- Read as: There exists a x, For some x, For at least one x

Syntax of FOL: Properties of Quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$:
 - $\exists \ x \ \forall \ y \ Loves(x,y)$ "There is a person who loves everyone in the world"
 - ∀ y ∃ x Loves(x,y)
 "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
 - $\forall x \text{ Likes}(x, \text{IceCream}) \equiv \neg \exists x \neg \text{Likes}(x, \text{IceCream})$
 - $\exists x \text{ Likes}(x, \text{Broccoli}) \equiv \neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

Syntax of FOL: Atomic sentence

- Term is a logical expression that refers to an object
 - constant.
 - Variable
 - function (term₁,...,term_n). i.e. refer to an object using a function
- Atomic sentence = Predicate and Objects (terms)
 - predicate (term₁,...,term_n).
 - $term_1 = term_2$
 - E.g: Ginger is a cat: => cat (Ginger)

Syntax of FOL: Complex Sentence

• Complex sentences are made from atomic sentences using connectives and by applying quantifiers.

• Examples:

- $Sibling(Ali,Mohamed) \Rightarrow Sibling(Mohamed,Ali)$
- $Greater(1,2) \lor Less-or-equal(1,2)$
- $\forall x,y \ Sibling(x,y) \Rightarrow Sibling(y,x)$

Syntax of FOL

 $Function \rightarrow Mother \mid Leftleg \mid ...$

```
Sentence \rightarrow Atomic Sentence
               (Sentence connective Sentence)
                 Quantifier variable,... Sentence
                 \neg Sentence
Atomic\ Sentence \rightarrow Predicate\ (Term,...)\ |\ Term=Term
Term \rightarrow Function(Term,...) \mid Constant \mid variable
Connective \rightarrow \Leftrightarrow | \land | \lor | \Rightarrow
Quantifier \rightarrow \forall \mid \exists
Constant \rightarrow A \mid X_1...
Variable \rightarrow a \mid x \mid s \mid ...
Predicate \rightarrow Before \mid hascolor \mid ....
```


Examples (Text Book Ch8)

- Male and female are disjoint categories:
 - $\forall x \text{ Male}(x) \Leftrightarrow \neg \text{Female}(x)$.
- One's mother is one's female parent:
 - $\forall m,c Mother(c)=m \Leftrightarrow Female(m) \land Parent(m,c)$.
- Parent and child are inverse relations:
 - $\forall p,c \ Parent(p,c) \Leftrightarrow Child(c,p)$.

Recall

- Knowledge base is a set of sentences. Each sentence is expressed in a language called a knowledge representation language.
- A sentence represents some **assertion** about the world.
- Entailment $\alpha \models \beta$ if and only if in every model in which α is true, β is also true
- Inference is the process of **deriving** new sentences from old ones $KB \vdash_i \alpha$
- Sound inference algorithms derive **only** sentences that are entailed.
- Complete inference algorithms derive all sentences that are entailed.
- Model checking Enumerates all possible models to check that α is true in all models in which KB is true.
- Inference rules (e.g. modus ponens, resolution rule) are patterns of sound inference that can be used to find proofs
- Proof a sequence of applications of inference rules.
- Resolution is a sound and complete method of inference
- Forward chaining and backward chaining are natural reasoning algorithms for knowledge bases in Horn form.
- Horn clause is a disjunction of literals of which at most one is positive.

Inference in FOL

Purpose of inference: KB $\mid \alpha$?

Inference in FOL can be performed by:

- 1. Reducing FOL to PL and then apply PL inference
- 2. Use inference rules of FOL
 - Generalized Modus Ponens
 - Resolution
 - Forward and Backward chaining

Inference in FOL: From FOL to PL

- First order inference can be done by converting the knowledge base to PL and using propositional inference.
- Two questions:
 - How to convert universal quantifiers (∀)?
 - Replace variable by ground term.
 - How to convert existential quantifiers (∃)?
 - Skolemization.

Inference in FOL: Substitution

• Given a sentence α and **binding list** σ , the result of applying the **substitution** σ to α is denoted by Subst(σ , α).

Example:

```
\sigma = \{x/Ali, y/Fatima\} \alpha = Likes(x,y)
```

Subst($\{x/Ali, y/Fatima\}$, Likes(x,y)) = Likes(Ali, Fatima)

Inference in FOL: Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by it:

$$\frac{\forall \ v \ \alpha}{\text{Subst}(\{v/g\}, \ \alpha)}$$

for any variable v and ground term g
e.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

• UI can be applied several times to add new sentences

Inference in FOL: Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists v \alpha}{\text{Subst}(\{v/k\}, \alpha)}$$

- E.g., $\exists x \ Crown(x) \land OnHead(x,John)$ yields: $Crown(C1) \wedge OnHead(C1,John)$ provided C1 is a new constant symbol, called a Skolem constant
- EI can be applied once to replace the existential sentence

Inference in FOL: Reduction to propositional inference

- Suppose the KB contains just the following:
 - $\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
 - King(John)
 - Greedy(John)
 - Brother(Richard, John)
- Instantiating the universal sentence in all possible ways, we have:
 - King(John) \land Greedy(John) \Rightarrow Evil(John)
 - King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) \rightarrow irrelevant substitution
 - King(John)
 - Greedy(John)
 - Brother(Richard, John)
- The new KB is propositionalized

Inference in FOL: Reduction to PL

- A ground sentence is entailed by a new KB iff entailed by the original KB.
- Every FOL KB can be propositionalized so as to preserve entailment
- IDEA: propositionalize KB and query, apply resolution, return result
- PROBLEM: with function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John)))

Inference in FOL

- Instead of translating the knowledge base to PL, we can make the inference rules work in FOL.
- For example, given:
 - $\forall x \operatorname{King}(x) \land \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
 - King(John)
 - Greedy(John)
- Can we prove Evil(John)?
- The inference that John is evil works like this:
 - 1. find some x such that x is a king and x is greedy,
 - 2. and then infer that x is evil.
- Generally:
 - 1. It is intuitively clear that we can substitute {x/John} and obtain that Evil(John)

Inference in FOL

- What if we have:
 - $\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
 - King(John)
 - \forall y Greedy(y)

• It is intuitively clear that we can substitute {x/John,y/John} and obtain that Evil(John)

Inference in FOL: Unification

- We can make the inference if we can find a substitution such that King(x) and Greedy(x) match King(John) and Greedy(y), e.g. {x/John,y/John} works
- This above process is called Unification
- Unification is a process of making two different logical atomic expressions identical by finding a substitution. In other words, it takes two literals as input and makes them identical using substitution.
- It returns fail if the expressions do not match with each other.

Inference in FOL: Conditions Unification

- Predicate symbol must be same, atoms or expression with different predicate symbol can never be unified.
- Number of arguments in both expressions must be identical.
- Unification will fail if there are two similar variables present in the same expression.

Inference in FOL: Unification Example

• Unify(α , β) = θ if Subst(θ , α) = Subst(θ , β)

α	β	Subst
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(y,OJ)	{x/OJ,y/John}
Knows(John,x)	Knows(y, Mother(y))	{y/John,x/Mother(John)}}
Knows(John,x)	Knows(x,OJ)	{fail}

Inference in FOL

- 1) Generalized Modus Ponens (GMP)
- Suppose that Subst(θ , pi) = Subst(θ , pi) for all i then:

$$\frac{p1', p2', \dots, pn', (p1 \land p2 \land \dots \land pn \Rightarrow q)}{Subst(\theta, q)}$$

- p1' is King(John) p1 is King(x)
- p2' is Greedy(y) p2 is Greedy(x)
- θ is $\{x/John, y/John\}$ q is Evil(x)
- Subst(θ , q) is Evil(John)
- All variables assumed universally quantified.

Inference in FOL

2) Resolution

• Full first-order version:

```
\frac{l1\ v\cdots vlk, \qquad m1\ v\cdots vmn}{\text{Subst}(\theta, l1\ v\cdots vli-1\ vli+1\ v\cdots vlk\ vm1\ v\cdots vmj-1\ vmj+1\ v\cdots vmn)} where \theta = \text{Unify}(\ li,\ \neg mj)
```

$$\neg Rich(x) \lor Unhappy(x)$$
, $Rich(Ken)$

$$Unhappy(Ken)$$

```
with \theta = \{x/Ken\}
```

• Apply resolution steps to CNF(KB $\land \neg \alpha$); complete for FOL

Inference in FOL: Forward Chaining

For each rule such that a fact unifies with a premise, if the other premises are known then add the conclusion to the KB and continue chaining.

• Forward chaining is **data-driven**, e.g., inferring conclusions from incoming percepts.

Inference in FOL: Forward chaining example

• Rules

- 1. Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)
- 2. $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$
- 3. Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)

• Facts

- 1. Buffalo(Bob)
- 2. Pig(Pat)
- 3. Slug(Steve)

New facts

- 4. Faster(Bob, Pat)
- 5. Faster(Pat, Steve)
- 6. Faster (Bob, Steve)

Inference in FOL: Backward Chaining

Backward chaining starts with a hypothesis (query) and work backwards, according to the rules in the knowledge base until reaching confirmed findings or facts.

Example

- 1. $Pig(y) \land Slug(z) \Rightarrow Faster(y, z)$
- 2. Slimy(z) \land Creeps(z) \Rightarrow Slug(z)
- 3. Pig(Pat)
- 4. Slimy(Steve)
- 5. Creeps(Steve)

Applications of Knowledge Representation and Reasoning in AI

- Query answering
- Explaining
- Story generation
- Planning
- Diagnosis
- •

References

- https://www.javatpoint.com/artificial-intelligence-tutorial