从GPU视角看Linux图形栈

汇报人: 黄虎才

目录 Contents

一、开放图形标准技术演进

- 二、GPU芯片架构的演进
- 三、LINUX图形栈的演进

四、图形系统的发展趋势

3D图形标准OpenGL技术演进

1992~2003

OGL1.0~1.5

1.4中引入GPU编程着色语言 GLSL1.0作为OGL的扩展 2004~2008

OGL2.0~2.1 正式引入GLSL 2008~2010

OGL3.0~3.3 3.2引入几何着色器 2010~2017

OGL4.0~4.6 4.0引入曲面细分着色器 4.3引入计算着色器 4.6增加对SPIR-V着色器的支持

新一代图形标准Vulcan

GPU芯片架构的演进

渲染架构的演进

•20世纪80年代末,2D加速,如位块传输、矩形填充等

2D加速

•20世纪90年代中期, Gouraud染色、深度缓存的 应用,开启了3D加速

•20世纪90年代末,顶点 着色与片元着色相互分离, 固定管线演化为可编程着 色管线

•2006年,将顶点着色与片元着色相统一,实现统一着色器,开启新一代革命性渲染架构

•20世纪80年代中期,功能逐渐完善的显示控制

分离式渲染架构—mali 400

功耗管理单 元

分离式渲染架构—Geforce 6800

统一渲染架构—ARM Bifrost

统一渲染架构—GenBu

统一渲染架构—NVIDIA Volta GPU

统一渲染架构—NVIDIA Volta GPU

GPU芯片架构规模演进和对比—NVIDIA Tesla 系列GPU

Tesla 产品	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SM 数量	15	24	56	80
TPC 数量	15	24	28	40
FP32 核心数/SM	192	128	64	64
FP32 核心数/GPU	2880	3072	3584	5120
FP64 核心数/SM	64	4	32	32
FP64 核心数/GPU	960	96	1792	2560
Tensor 核心数/SM	NA	NA	NA	8
Tensor 核心数/GPU	NA	NA	NA	640
GPU 加速频率	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
FP32 TFLOPS 峰值 ¹	5	6.8	10.6	15.7
FP64 TFLOPS 峰值 ¹	1.7	0.21	5.3	7.8
Tensor TFLOPS 峰值 ¹	NA	NA	NA	125
纹理单元数量	240	192	224	320
显存位宽	384 位 GDDR5	384 位 GDDR5	4096 位 HBM2	4096位 HBM2

GPU芯片规模演进和对比—NVIDIA Tesla 系列GPU比较

显存容量	最大为 12 GB	最大为 24 GB	16 GB	16 GB
L2 缓存大小	1536 KB	3072 KB	4096 KB	6144 KB
共享内存大小/SM	16 KB/32 KB/48 KB	96 KB	64 KB	最大可配置为 96 KB
寄存器文件大小/SM	256 KB	256 KB	256 KB	256KB
寄存器文件大小 /GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP(热设计功耗)	235 W	250 W	300 W	300 W
晶体管数量	71 亿	80 IZ	153亿	211亿
GPU 芯片大小	551 mm ²	601 mm ²	610 mm ²	815 mm ²
制造工艺	28 nm	28 nm	16 nm FinFET+	12 nm FFN

¹ TFLOPS 峰值速率基于 GPU 加速频率测试

3

LINUX图形栈的演进

Linux图形栈

Linux图形栈基础框架—X11 vs Wayland

X11图形数据流—2D时代

X11图形数据流—3D时代 (间接渲染)

X11图形数据流—3D时代(直接渲染)

X11 3D图形数据流

嵌入式系统图形栈—minigui

桌面vs嵌入式

桌面

渲染场景相对复杂

丰富的特效

功耗限制小

3D逐渐成为主流

显示存储与系统内存相分离

嵌入式

渲染场景相对简单

特效需求低

低功耗设计

2D为主流应用

统一的显示存储和系统内存

图形系统分类

性能 功耗

图形系统之高性能图形处理器

更高的效能

更高的算力

更新的渲染架构

更丰富的加速指令

更高的存储带宽

图形系统之低功耗图形处理

更高的效能

更低的功耗

更丰富的图形硬件架构

新型 CPU+图形处理硬件 组合模式

图形系统之图形软件

优化的窗口系统

更优化的渲染技术

桌面领域, 3D渲染逐渐成为主流

更丰富逼真的视觉效果

更高性能的图形中间件

谢谢聆听!