Πολυτεχνείο Κρήτης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ψηφιακή Επεξεργασία Εικόνας ΤΗΛ411 4η Εργαστηριακή Άσκηση Αναφορά

Περιγραφή

Στην άσκηση αυτή δίνονται δύο εικόνες που περιέχουν τον άξονα ενός νευρωνικού κυττάρου κύτταρα. Επειδή όμως είναι εικόνες από μικροσκόπιο και περιέχουν θόρυβο, σκοπός είναι να προκύψει μόνο ο άξονας από την εικόνα, μέσα από διάφορες διαδικασίες που θα αναλυθούν παρακάτω. Αρχικά, οι εικόνες που δίνονται είναι οι εξής:

Άξονες 1

Άξονες 2

• Για την πρώτη εικόνα:

Αρχικά, για να αφαιρεθεί ο θόρυβος χρησιμοποιείται η μέθοδος **imerode()** με structuring element ένα τετράγωνο 3x3 και μετά με 5x5. Ο λόγος που επέλεξα το τετράγωνο είναι γιατί παρατηρώ ότι ο θόρυβος έχει κυκλική μορφή και το εφαρμόζω δύο φορές για να αφαιρεθεί όσο παραπάνω γίνεται. Έπειτα, εφαρμόζεται η **imdilate()** δύο φορές με sructuring element ένα δίσκο με διάμετρο δύο. Τέλος, ξανά η **imerode()** με structuring element ένα διαμάντι. Το αποτέλεσμα είναι:

Στη συνέχεια, έπρεπε να τονιστούν οι γραμμές. Αυτό έγινε υπολογίζοντας την μορφολογική κλίση (morphological gradient). Χρησιμοποιήθηκε ο εξής κώδικας:

```
se = strel(ones(3,3));
enhanced_im1 = imdilate(im1, se) - imerode(im1, se);
```


Μετά, έγινε η δυαδοποίηση (binarization) με τον κώδικα:

```
level = graythresh(enhanced_im1)
bin_im1 = imbinarize(enhanced_im1, level);
```


Τέλος, φτιάχτηκε η τελική μορφή του σκελετού με την γραμμή κώδικα:

```
bw1 = bwmorph(bin_im1,'skel', inf);
```

και εμφανίστηκε η εξής εικόνα:

Τέλος, για την τελική μορφή του σκελετού εφαρμόστηκε η *imfill()* και προέκυψε:

• Για την δεύτερη εικόνα:

Για την αφαίρεση του θορύβου χρησιμοποιείται και εδώ η μέθοδος **imerode()** δύο φορές για να αφαιρεθεί όσο παραπάνω γίνεται. Έπειτα, εφαρμόζεται η **imdilate()** δύο φορές και ξανά η **imerode()**. Το αποτέλεσμα είναι:

Για τον τονισμό των γραμμών αυτή τη φορά, χρησιμοποιήθηκε παρόμοιος κώδικας με παραπάνω μόνο που ο πίνακας ήταν ones(9,9) δηλαδή είχε διαστάσεις 9x9.

Στη συνέχεια, έγινε η δυαδοποίηση (binarization) με τον ίδιο τρόπο και προέκυψε το παρακάτω αποτέλεσμα.

Τέλος, χρησιμοποιήθηκαν οι ίδιες συναρτήσεις για γίνει το skeletization και η ένωση του σκελετού και προέκυψε ο τελικός άξονας (δεύτερη εικόνα):

