РАСЧЁТ ИСПАРЕНИЯ ДЛЯ ОБЪЕКТА «КОМПЛЕКС ПО ОБРАБОТКЕ И РАЗМЕЩЕНИЮ (ЗАХОРОНЕНИЮ) ТВЕРДЫХ КОММУНАЛЬНЫХ ОТХОДОВ НА ТЕРРИТОРИИ КРАСНОКАМСКОГО РАЙОНА РЕСПУБЛИКИ БАШКОРТОСТАН»

Оглавление

Введение	2
Методика и данные	2
Метод отношений	2
Среднее многолетнее годовое испарение	2
Среднее многолетнее месячное испарение	2
Расчёт с помощью глобальных данных	2
GLDAS	2
MOD16	3
Результаты	4
Среднее годовое испарение и среднее многолетнее месячное испарение	4 ڊ
Обеспеченные значения испарения за тёплый период	4
Список использованных материалов	7

Введение

Цель – определение значений испарения для города Дюртюли Республики Башкортостан.

Задачи:

- Загрузка данных об испарении;
- Расчёт среднегодового испарения;
- Расчёт среднемесячного испарения;
- Расчёт испарения 1%, 3%, 50% обеспеченностей для месяцев тёплого периода (майоктябрь);

Методика и данные

Метод отношений

Среднее многолетнее годовое испарение

Значения среднего многолетнего годового испарения снимаются непосредственно с карты изолиний испарения.

Карта изолиний испарений предназначена для определения среднего многолетнего годового испарения с больших площадей, порядка 6000-7000 км². Погрешность снимаемых с карты значений испарения для большей части равнинной территории составляет 15%. Средний годовой слой испарения, снятый с карты, составил 460 мм [1].

Среднее многолетнее месячное испарение

Среднее многолетнее месячное испарение определяется приближенно с помощью таблиц внутригодового распределения испарения по месяцам (метод отношений) по известной годовой сумме испарения.

Метод отношений позволяет рассчитать среднее многолетнее месячное испарение по заданному внутригодовому ходу и по известной средней годовой сумме испарения. Внутригодовой ход характеризуется выраженными в процентах отношениями месячного испарения к годовой сумме. Отношения по месяцам закономерно изменяются по геоботаническим (почвенно-климатическим зонам) и задаются в виде специально разработанной таблицы [приложение 5; 1].

Расчёт с помощью глобальных данных

С целью расчёта значений испарения использовались два типа данных:

- 1. Данные Глобальной системы ассимиляции данных (GLDAS-2.2) Принстонского метеорологического центра. В настоящее время в GLDAS используются модели поверхности суши (LSM): Noah, CLSM, VIC [2].
 - 2. Данные Глобального проекта эвапотранспирации MODIS (MOD16) [3].

GLDAS

С целью расчёта значений испарения использовались данные Глобальной системы ассимиляции данных (GLDAS-2.2) Принстонского метеорологического центра. В настоящее время в GLDAS используются модели поверхности суши (LSM): Noah, CLSM, VIC.

Моделирование суточной модели водосбора GLDAS-2.2 началось 1 февраля 2003 года с использованием условий из моделирования суточной модели водосбора GLDAS-2.0. Это моделирование было выполнено с использованием полей метеорологического анализа из интегрированной системы прогнозирования Европейского центра среднесрочных прогнозов погоды (ECMWF) (https://www.ecmwf.int/en/publications/ifs-documentation). Было обобщено общее наблюдение аномалий содержания воды в ходе эксперимента по восстановлению силы тяжести

(GRACE). Данные GRACE RL06 и последующих наблюдений GRACE были предоставлены Центром космических исследований Техасского университета. При моделировании ежедневной модели водосбора используется схема растительного покрова UMD из карты растительного покрова AVHRR [2].

С целью расчета испарения использовалась характеристика модели "Evap_tavg" с еденицей измерения кг/м^2/с за период с 01.02.2003 по 31.12.2022 гг.

Таблица 1 – Основные характерис	тики GLDAS.
---------------------------------	-------------

Contents	Outputs from Land Surface Models
Format	NetCDF
Latitude Extent	-60° to 90°
Longitude Extent	-180° to 180°
Spatial Resolution	1.0°, 0.25°
Temporal Resolution	3-hourly, daily, monthly
Temporal Coverage	GLDAS-2.0: 03Z January 1, 1948 – 21Z December 31, 2014
	GLDAS-2.1: 03Z January 1, 2000 - Present
	GLDAS-2.2: February 1, 2003 – Present
Dimensions	360 (lon) x 150 (lat) for the 1.0° x 1.0° data
	1440 (lon) x 600 (lat) for the 0.25° x 0.25° data
Origins (1st grid center)	(179.5 W, 59.5 S) for the 1.0° x 1.0° data
	(179.875 W, 59.875 S) for the 0.25° x 0.25° data
Land Surface Models	Noah-3.6, CLSM-F2.5, VIC-4.1.2

MOD16

Проект MOD16 (MODIS GLOBAL EVAPOTRANSPIRATION PROJECT) является частью проекта NASA/EOS по оценке глобальной земной эвапотранспирации (испарения) с поверхности Земли с использованием данных дистанционного зондирования со спутников. Продукт MOD16 может использоваться для расчета регионального водного и энергетического баланса, состояния водных ресурсов, почвы; следовательно, он предоставляет ключевую информацию для управления водными ресурсами. С помощью долгосрочных данных испарения можно количественно оценить влияние изменений климата, землепользования и нарушений экосистем (например, лесных пожаров и вспышек насекомых) на региональные водные ресурсы.

Разрешение MOD16 составляет 500 м.

С целью расчета испарения использовалась характеристика модели "ET" с единицей измерения кг/м^2/8-day за период с 01.01.2000 по 31.12.2022 гг.

Рисунок 1 – Среднегодовое испарение по данным MOD16

Результаты

Данные об испарении загружались в точке с координатами 55.990389 с.ш. 54.325228 в.д. с помощью Google Earth Engine и языка программирования python. Расчёт выполнялся с помощью библиотеки pandas. Обеспеченные значения рассчитывались с помощью библиотеки scipy с использованием аналитической кривой распределения Пирсона третьего типа.

Среднее годовое испарение и среднее многолетнее месячное испарение

Произведён расчёт среднего годового и среднего многолетнего месячного испарения по двум методикам — методом отношения и с использованием данных GLDAS и MOD16. Результаты представлены в таблице 2.

Таблица 2 – Среднее годовое испарение и среднее многолетнее месячное испарение.

Характеристика	ı	II	Ш	IV	V	VI	VII	VIII	IX	Х	ΧI	XII	Год
Распределение													
испарения с													
поверхности	0.5	1	3	9	18	20	18	13	9	5	3	0.5	100
суши по	0.0	_										0.0	
месяцам (в % от													
годового) [1]													
Среднее													
многолетнее													
месячное	2.3	4.6	13.8	41.4	82.8	92	82.8	59.8	41.4	23	13.8	2.3	460
испарение, мм													
[1]													
Среднее													
многолетнее													
месячное	0.3	1.9	10.0	36.0	86.7	107.1	108.9	77.7	34.3	13.1	3.4	0.0	479
испарение, мм	0.0		10.0	00.0	00.7	10111	100.0		01.0	10.1	0.1	0.0	.,,
(GLDAS, 2003-													
2022 гг.) [2]													
Среднее													
многолетнее													
месячное	7.7	7.5	12.1	36.0	51.3	83.4	95.3	58.4	33.5	19.5	9.5	7.5	422
испарение, мм	' . '	7.5	12.1	00.0	01.0	J J J J	55.5	00.4	00.0	10.0	5.5	7.5	722
(MOD16, 2000-													
2022 гг.) [3]													

Обеспеченные значения испарения за тёплый период

Месячное испарение и испарение за тёплый период (май-октябрь) рассчитано с использованием данных GLDAS и MOD16. Обеспеченные значения рассчитывались с помощью библиотеки scipy с использованием аналитической кривой распределения Пирсона третьего типа.

Таблица 3 — Значения месячного испарения (тёплый период) обеспеченностью 1, 3, 50% (2003-2022 гг.).

	GLDAS	(2003-2	022 гг.)	MOD16 (2000-2022 rr.)				
Месяц	Обеспеченность							
	1%	3%	50%	1%	3%	50%		
5	119.6	112.9	86.3	94.0	80.6	47.8		
6	150.7	142.4	107.1	119.5	110.5	81.6		
7	142.2	135.9	108.9	139.9	131.3	95.3		

	GLDAS	(2003-2	022 гг.)	MOD16 (2000-2022 rr.)				
Месяц	Обеспеченность							
	1%	3%	50%	1%	3%	50%		
8	105.8	100.4	77.7	82.8	78.1	58.4		
9	48.0	44.7	33.7	41.1	39.6	33.6		
10	22.2	20.4	13.0	26.8	25.3	19.4		

Таблица 4 – Значения испарения за тёплый период обеспеченностью 1, 3, 50%.

P, %	GLDAS (2003-2022 rr.)	MOD16 (2000-2022 rr.)					
F, /0	Испарение, мм						
1	502	428					
3	488	411					
50	428	342					

Рисунок 3 – Функции распределения испарения тёплого периода (май-октябрь)

В результате работы:

- Рассчитаны среднегодовые и среднемесячные значения испарения.
- Рассчитаны обеспеченные среднемесячные значения и за тёплый период.

Рекомендуется использовать данные Глобального проекта эвапотранспирации MODIS (MOD16), которые лучше отражают состояние подстилающей поверхности малых по площади объектов в связи с более крупным разрешением пространственных данных (500 м).

Список использованных материалов

- 1. Рекомендации по расчёту испарения с поверхности суши. Гидрометеоиздат. 1976.
- 2. Сайт Google Earth Engine с информацией о GLDAS-2.2: Global Land Data Assimilation System https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V022_CLSM_G025_DA1D#description
- 3. Сайт Google Earth Engine с информацией о MOD16 MODIS GLOBAL EVAPOTRANSPIRATION PROJECT https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD16A2GF