# Zynq 7000: Overview, GPIOs, Interrupt Controller



Aleksei Rostov, PhD,
Senior R&D Engineer,
FPGA/Embedded Linux Developer,
aleksei.rostov@protonmail.com

### **AGENTA**

- 1. Zynq 7000 overview
- 2. Working with AXI GPIO and Generic Interrupt Controller (GIC)



## **AXI GPIO**

#### Table 2-4 shows the AXI GPIO registers and their addresses.

#### Table 2-4: Registers

| Address Space<br>Offset <sup>(3)</sup> | Register<br>Name    | Access<br>Type       | Default<br>Value | Description                                     |
|----------------------------------------|---------------------|----------------------|------------------|-------------------------------------------------|
| 0x0000                                 | GPIO_DATA           | R/W                  | 0x0              | Channel 1 AXI GPIO Data Register.               |
| 0x0004                                 | GPIO_TRI            | R/W                  | 0x0              | Channel 1 AXI GPIO 3-state Control<br>Register. |
| 0x0008                                 | GPIO2_DATA          | R/W                  | 0x0              | Channel 2 AXI GPIO Data Register.               |
| 0x000C                                 | GPIO2_TRI           | R/W                  | 0x0              | Channel 2 AXI GPIO 3-state Control.             |
| 0x011C                                 | GIER <sup>(1)</sup> | R/W                  | 0x0              | Global Interrupt Enable Register.               |
| 0x0128                                 | IP IER(1)           | R/W                  | 0x0              | IP Interrupt Enable Register (IP IER).          |
| 0x0120                                 | IP ISR(1)           | R/TOW <sup>(2)</sup> | 0x0              | IP Interrupt Status Register.                   |



Figure 2-3: Global Interrupt Enable Register

Table 2-8: Global Interrupt Enable Register Description

| Bits   | Name                       | Core Access | Reset Value | Description                                                                                                  |
|--------|----------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------|
| 31     | Global Interrupt<br>Enable | Read/Write  | 0           | Master enable for the device interrupt output to the system interrupt controller:  0 = Disabled  1 = Enabled |
| 30 – 0 | Reserved                   | N/A         | 0           | Reserved. Set to zeros on a read.                                                                            |



AXI GPIO Block Diagram

## **AXI GPIO**



Figure 2-4: IP Interrupt Enable and IP Interrupt Status Register

Table 2-9: IP Interrupt Enable Register Description

| Bits | Name                       | Core Access | Reset Value | Description                                                     |
|------|----------------------------|-------------|-------------|-----------------------------------------------------------------|
| 31–2 | Reserved                   | N/A         | 0           | Reserved. Set to zeros on a read.                               |
| 1    | Channel 2 Interrupt Enable | Read/Write  | 0           | Enable Channel 2 Interrupt.  0 = Disabled (masked)  1 = Enabled |
| 0    | Channel 1 Interrupt Enable | Read/Write  | 0           | Enable Channel 1 Interrupt. 0 = Disabled (masked) 1 = Enabled   |

Table 2-10: IP Interrupt Status Register Description

| Bits | Name                          | Core Access             | Reset<br>Value | Description                                                                                 |
|------|-------------------------------|-------------------------|----------------|---------------------------------------------------------------------------------------------|
| 31–2 | Reserved                      | N/A                     | 0              | Reserved. Set to zeros on a read.                                                           |
| 1    | Channel 2 Interrupt<br>Status | Read/TOW <sup>(1)</sup> | 0              | Channel 2 Interrupt Status 0 = No Channel 2 input interrupt 1 = Channel 2 input interrupt   |
| 0    | Channel 1 Interrupt<br>Status | Read/TOW <sup>(1)</sup> | 0              | Channel 1 Interrupt Status  0 = No Channel 1 input interrupt  1 = Channel 1 input interrupt |

#### Notes:

1. Toggle-On-Write (TOW) access toggles the status of the bit when a value of 1 is written to the corresponding bit.

#### **Programming Sequence**

The following steps are helpful in accessing the AXI GPIO core.

For input ports when the Interrupt is enabled, follow these steps:

- 1. Configure the port as input by writing the corresponding bit in GPIOx\_TRI register with the value of 1.
- 2. Enable the channel interrupt by setting the corresponding bit in the IP Interrupt Enable Register; also enable the global interrupt, by setting bit 31 of the Global Interrupt Register to 1.
- 3. When an interrupt is received, read the corresponding bit in the GPIOx\_DATA register. Clear the status in the IP Interrupt Status Register by writing the corresponding bit with the value of 1.

For input ports when the Interrupt is not enabled, use the following steps:

- 1. Configure the port as input by writing the corresponding bit in GPIOx\_TRI register with the value of 1.
- 2. Read the corresponding bit in GPIOx\_DATA register.

For output ports, use the following steps:

- 1. Configure the port as output by writing the corresponding bit in GPIOx\_TRI register with a value of 0.
- 2. Write the corresponding bit in GPIOx\_DATA register.

## Interrupt Controller

