Analisi Funzionale

Richiami di algebra lineare

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Spazi vettoriali

 $\mathbb{N} = \{0, 1, 2, \dots\}$ denota l'insieme dei numeri naturali,

 $\mathbb{N}_{+} = \{1, 2, 3, \dots\}$ denota l'insieme degli interi positivi,

 $\mathbb F$ denota il campo dei numeri reali $\mathbb R$ o il campo dei numeri complessi $\mathbb C$.

Def. Uno *spazio vettoriale* su
$$\mathbb{F}$$
 è un insieme V dotato di due operazioni, $V \times V \ni (x, y) \mapsto x + y \in V$ (somma),

 $ightharpoonup \mathbb{F} \times V \ni (\alpha, x) \mapsto \alpha x \in V$ (prodotto scalare-vettore),

che soddisfano le seguenti proprietà:

1.
$$\forall x, y, z \in V : (x+y)+z = x+(y+z)$$
 5. $\forall \alpha \in \mathbb{F} : \forall x, y \in V :$

(proprietà associativa della somma),

2. $\forall x, y \in V : x + y = y + x$

(proprietà commutativa della somma), 3. $\exists ! 0 \in V : \forall x \in V : x + 0 = 0 + x = x$

(vettore nullo: elemento neutro della somma),
4.
$$\forall x \in V : \exists ! -x \in V :$$

 $x + (-x) = (-x) + x = 0$

Gli elementi di V sono detti vettori.

(esistenza dell'inverso rispetto alla somma):

 $\alpha(x+y) = \alpha x + \alpha y$ (proprietà distributiva rispetto alla somma di vettori),

6.
$$\forall \alpha, \beta \in \mathbb{F} : \forall x \in V : (\alpha + \beta)x = \alpha x + \beta x$$

(proprietà distributiva rispetto alla somma di scalari). 7. $\forall \alpha, \beta \in \mathbb{F} : \forall x \in V : (\alpha \beta) x = \alpha(\beta x)$ (proprietà associativa mista),

8 $\forall x \in V \cdot 1x = x$ (il prodotto per lo scalare 1 è l'identità su V).

mentre gli elementi di \mathbb{F} sono detti *scalari*.

Esempi di spazi vettoriali

- ▶ $\mathbb{F}^n = \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{F}\}$ con le operazioni componente per componente $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n), \quad \alpha(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$
 - ▶ L'insieme $C(I) = C_{\mathbb{F}}(I)$ delle funzioni continue $f: I \to \mathbb{F}$, ove I è un intervallo di \mathbb{R} , con le operazioni puntuali

$$(f+g)(t)=f(t)+g(t), \qquad (\alpha f)(t)=\alpha f(t).$$

$$\blacktriangleright \text{ L'insieme } C(\Omega)=C_{\mathbb{F}}(\Omega) \text{ delle funzioni continue } f:\Omega\to\mathbb{F}, \text{ ove }\Omega \text{ è}$$

- uno spazio topologico, con le operazioni puntuali.
- L'insieme $\mathcal{P} = \mathbb{F}[X]$ dei polinomi in una indeterminata X a coeff. in \mathbb{F} .

 Il prodotto diretto $V \times W = \{(v, w) : v \in V, w \in W\}$ di due spazi

vettoriali V e W, con le operazioni componente per componente.

- L'insieme $\mathcal{F}(S,V)$ delle funzioni $f:S\to V$ da un insieme S a uno spazio vettoriale V, con le operazioni puntuali.
- ightharpoonup Ogni spazio vettoriale su $\mathbb C$ si può anche pensare come uno spazio vettoriale su $\mathbb R$, restringendo l'operazione di prodotto scalare-vettore.

Sottospazi vettoriali e sottoinsiemi convessi

Def. Sia V uno spazio vettoriale su \mathbb{F} . Si dice *sottospazio* vettoriale di V ogni sottoinsieme U di V che, dotato della restrizione delle operazioni su V, sia a sua volta uno spazio vettoriale.

Prop. Sia V uno spazio vettoriale su \mathbb{F} . Sono equivalenti:

- (i) U è un sottospazio vettoriale di V;
- (ii) U è un sottoinsieme non vuoto di V tale che

$$\forall x, y \in U : \forall \alpha, \beta \in \mathbb{F} : \alpha x + \beta y \in U$$
 (cioè U è "chiuso per combinazioni lineari").

Def. Sia V uno spazio vettoriale. Un sottoinsieme A di V si dice convesso se

$$\forall x, y \in A : \forall \theta \in [0, 1] : (1 - \theta)x + \theta y \in A$$
 (cioè A è "chiuso per combinazioni convesse").

Oss. Un sottoinsieme A di uno spazio vettoriale è convesso se e solo se, per ogni coppia di punti $x, y \in A$, il segmento di retta di estremi x e y è contenuto in A.

Esempi di sottospazi vettoriali

- ▶ Per ogni spazio vettoriale V, gli insiemi {0} e V sono sottospazi vettoriali di V.
- ▶ I sottospazi vettoriali del piano \mathbb{R}^2 , oltre a $\{0\}$ e \mathbb{R}^2 ,sono le rette passanti per l'origine.
- ▶ Per ogni $d \in \mathbb{N}$, l'insieme $\mathcal{P}_d = \{p \in \mathcal{P} : \deg p \leq d\}$ dei polinomi di grado al più d è un sottospazio vettoriale di \mathcal{P} .
- Se Ω è uno spazio topologico, $C_{\mathbb{F}}(\Omega)$ è un sottospazio vettoriale di $\mathcal{F}(\Omega, \mathbb{F})$.
- ▶ Se $I \subseteq \mathbb{R}$, l'insieme $\{p|_I : p \in \mathcal{P}\}$ delle restrizioni a I dei polinomi è un sottospazio vettoriale di C(I).
- Se V è uno spazio vettoriale, e U_1 e U_2 sono sottospazi vettoriali di V, allora lo sono anche l'*intersezione*

$$U_1 \cap U_2$$

e la somma

$$U_1 + U_2 := \{x + y : x \in U_1, y \in U_2\}.$$

Combinazioni lineari e indipendenza lineare

Def. Siano V uno spazio vettoriale su \mathbb{F} , $k \in \mathbb{N}_+$, $v_1, \ldots, v_k \in V$ e $A \subseteq V$.

(a) Si dice *combinazione lineare* di
$$v_1, \ldots, v_k$$
 (con coefficienti $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$) il vettore $\alpha_1 v_1 + \cdots + \alpha_k v_k$.

- (b) I vettori v_1, \ldots, v_k si dicono linearmente indipendenti se $\forall \alpha_1, \ldots, \alpha_k \in \mathbb{F} : (\alpha_1 v_1 + \cdots + \alpha_k v_k = 0 \implies \alpha_1 = \cdots = \alpha_k = 0);$ v_1, \ldots, v_k si dicono linearmente dipendenti in caso contrario.
- (c) L'insieme A si dice *linearmente indipendente* se, per ogni $s \in \mathbb{N}_+$ e $w_1, \ldots, w_s \in A$ distinti, i vettori w_1, \ldots, w_s sono linearmente indipendenti. Altrimenti, A si dice *linearmente dipendente*.
- indipendenti. Altrimenti, A si dice linearmente dipendente.

 (d) Lo spazio vettoriale generato da A è l'insieme $\operatorname{span}_{\mathbb{F}} A = \operatorname{span} A = \left\{ \sum_{i=1}^s \alpha_j w_j : s \in \mathbb{N}, \ \alpha_1, \dots, \alpha_s \in \mathbb{F}, \ w_1, \dots, w_s \in A \right\}$

di tutte le combinazioni lineari di elementi di
$$A$$
 (inclusa la combinazione vuota per $s=0$, cioè il vettore nullo).

Oss. Se U_1 e U_2 sono sottospazi vettoriali di V, allora $U_1 + U_2 = \text{span}(U_1 \cup U_2)$.

Basi e dimensione

Def. Sia V uno spazio vettoriale su \mathbb{F} . Si dice *base* di V ogni sottoinsieme $B \subseteq V$ linearmente indipendente tale che span B = V.

Teor. Sia V uno spazio vettoriale su \mathbb{F} . Allora:

- (i) V ha una base. Più precisamente, dati sottoinsiemi $A\subseteq G\subseteq V$, dove A è linearmente indipendente e span G=V, esiste una base B di V tale che $A\subseteq B\subseteq G$. (In particolare, ogni sottoinsieme linearmente indipendente A di V si può completare a una base B di V.)
- (ii) Tutte le basi di V hanno la stessa cardinalità (num. di elementi).

Def. Sia V uno spazio vettoriale su \mathbb{F} .

- (a) Se V ha una base con n elementi per qualche $n \in \mathbb{N}$, diciamo che V ha dimensione n e scriviamo dim V = n.
- (b) Se V non ha basi con un numero finito di elementi, diciamo che V ha dimensione infinita e scriviamo dim $V = \infty$.

Scriviamo anche dim \mathbb{F} V al posto di dim V.

Basi e dimensione: esempi

- Per ogni $n \in \mathbb{N}$, $\dim_{\mathbb{R}} \mathbb{R}^n = n$. Una base di \mathbb{R}^n è la base canonica $\{e_1, \ldots, e_n\}$, ove $e_j = (0, \ldots, 0, 1, 0, \ldots, 0)$ è la n-upla che ha un 1 in posizione j e 0 in tutte le altre componenti.
- ▶ Similmente, per ogni $n \in \mathbb{N}$, dim $\mathbb{C}^n = n$, e una base di \mathbb{C}^n è la base canonica $\{e_1, \ldots, e_n\}$ definita come sopra.
- ▶ Per ogni $n \in \mathbb{N}$, dim $_{\mathbb{R}} \mathbb{C}^n = 2n$. Una base di \mathbb{C}^n pensato come spazio vettoriale su \mathbb{R} è l'insieme $\{e_1, ie_1, \dots, e_n, ie_n\}$.
- Per ogni $d \in \mathbb{N}$, dim $\mathcal{P}_d = d + 1$. Una base di \mathcal{P}_d è l'insieme $\{1, X, \dots, X^d\}$ dei monomi monici di grado al più d.
- ▶ dim $\mathcal{P} = \infty$, e una base di \mathcal{P} è l'insieme $\{X^n\}_{n \in \mathbb{N}}$ di tutti i monomi monici.
- ▶ Se S è un insieme di n elementi per qualche $n \in \mathbb{N}$, allora dim $\mathcal{F}(S,\mathbb{F}) = n$. Se invece S è un insieme infinito e $V \neq \{0\}$ è uno spazio vettoriale su \mathbb{F} , allora dim $\mathcal{F}(S,V) = \infty$.
- ▶ Se $I \subseteq \mathbb{R}$ è un intervallo di lunghezza positiva, dim $C_{\mathbb{F}}(I) = \infty$.

Basi e coordinate lineari. Somma diretta

Oss. Sia V uno spazio vettoriale su \mathbb{F} e $B = \{e_j\}_{j \in J}$ una base di V (indicizzata iniettivamente, cioè $e_j \neq e_k$ se $j \neq k$).

Allora ogni $v \in V$ si scrive in maniera unica come

$$v = \sum_{j \in J} \alpha_j e_j \tag{\dagger}$$

ove $\alpha_j \in \mathbb{F}$ per ogni $j \in J$ e $\alpha_j \neq 0$ per al più un numero finito di $j \in J$.

I coefficienti α_j in (†) si possono pensare come coordinate del vettore v rispetto alla base B.

Def. Due sottospazi U_1 , U_2 di V si dicono *in somma diretta* se ogni elemento $x \in U_1 + U_2$ si scrive <u>in maniera unica</u> come $x = x_1 + x_2$ per $x_1 \in U_1$ e $x_2 \in U_2$. In tal caso scriviamo anche $U_1 \oplus U_2$ al posto di $U_1 + U_2$.

Prop. Due sottospazi U_1 e U_2 di uno spazio vettoriale V sono in somma diretta se e solo se $U_1 \cap U_2 = \{0\}$.

Applicazioni lineari

Def. Siano V, W spazi vettoriali su \mathbb{F} .

(a) Si dice applicazione lineare da V a W ogni funzione $T:V\to W$ tale che

$$T(\alpha x + \beta y) = \alpha Tx + \beta Ty$$

per ogni $x, y \in V$ e $\alpha, \beta \in \mathbb{F}$.

(Qui usiamo la notazione Tx con lo stesso significato di T(x).)

- (b) Denotiamo con $\mathcal{L}(V, W)$ l'insieme delle applicazioni lineari da V a W; per brevità, scriviamo anche $\mathcal{L}(V)$ invece di $\mathcal{L}(V, V)$.
- (c) Il *nucleo* Ker T di un'applicazione lineare $T \in \mathcal{L}(V, W)$ è l'insieme Ker $T = T^{-1}(\{0\}) = \{x \in V : Tx = 0\}.$
- (d) L'immagine Im T di un'applicazione lineare $T \in \mathcal{L}(V, W)$ è l'insieme Im $T = T(V) = \{Tx : x \in V\}.$

A volte si scrive $\mathcal{R}(T)$ invece di Im T.

Proprietà delle applicazioni lineari

Prop. Siano V, W, X spazi vettoriali su \mathbb{F} .

- (i) $\mathcal{L}(V, W)$ è un sottospazio vettoriale di $\mathcal{F}(V, W)$.
- (ii) Per ogni $T \in \mathcal{L}(V, W)$ e $S \in \mathcal{L}(W, X)$, la loro composizione $ST := S \circ T$ è un elemento di $\mathcal{L}(V, X)$.
- (iii) Se $T \in \mathcal{L}(V, W)$ è invertibile, allora $T^{-1} \in \mathcal{L}(W, V)$.

Sia ora $T \in \mathcal{L}(V, W)$. Allora:

- (iv) T0 = 0;
- (v) per ogni sottospazio vettoriale U di V, l'immagine T(U) di U è un sottospazio vettoriale di W;
- (vi) per ogni sottospazio vettoriale Z di W, la controimmagine $T^{-1}(Z)$ di Z è un sottospazio vettoriale di V;
- (vii) il nucleo Ker T di T è un sottospazio vettoriale di V;
- (viii) l'immagine $\operatorname{Im} T$ di T è un sottospazio vettoriale di W; (ix) T è iniettiva se e solo se $\operatorname{Ker} T = \{0\}$;
 - (x) T è suriettiva se e solo se Im T = W;
 - (xi) dim Ker T + dim Im T = dim V;
 - in particolare, dim Im $T \leq \dim V$, con = se T è iniettiva.

Applicazioni lineari e basi

Prop. Siano V, W spazi vettoriali su \mathbb{F} . Sia B una base di V. Allora, per ogni funzione $f: B \to W$, esiste un'unica applicazione lineare $T \in \mathcal{L}(V, W)$ tale che Tx = f(x) per ogni $x \in B$.

In altre parole:

- possiamo costruire un'applicazione lineare da V a W assegnando liberamente i suoi valori su una base di V;
- questi valori determinano univocamente l'applicazione lineare.

Oss. Sia V spazio vettoriale su $\mathbb F$ di dimensione $n\in\mathbb N$ e sia $B=\{v_1,\ldots,v_n\}$ una base di V. Allora $\Phi_B:\mathbb F^n\to V$ definita da

$$\Phi_B(x_1,\ldots,x_n)=x_1v_1+\cdots+x_nv_n$$

è lineare e biiettiva, e l'inversa Φ_B^{-1} associa ad ogni $v \in V$ la n-upla delle sue coordinate rispetto alla base B.

Applicazioni lineari e matrici

Siano V,W spazi vettoriali su \mathbb{F} con dim $V=n\in\mathbb{N}$, dim $W=m\in\mathbb{N}$. Siano $B=\{v_1,\ldots,v_n\}$ e $C=\{w_1,\ldots,w_m\}$ basi di V e W.

▶ Sia $T \in \mathcal{L}(V, W)$. Allora possiamo scrivere

$$Tv_k = a_{1,k}w_1 + \cdots + a_{m,k}w_m, \qquad k = 1, \dots, n,$$
 e i coefficienti $a_{j,k}$ determinano univocamente T .

- La matrice $A=(a_{j,k})_{j=1,...,m}\in\mathbb{F}^{m\times n}$ di questi coefficienti
 - è detta la *matrice associata* a T nelle basi B e C.
- ► Si ha allora

$$T\Phi_B x = \Phi_C A x \qquad \forall x \in \mathbb{F}^n,$$

dove gli $x \in \mathbb{F}^n$ sono pensati come vettori-colonna e Ax è il prodotto matrice-vettore.

- C'è una corrispondenza biunivoca fra appl. lineari $T \in \mathcal{L}(V, W)$ e matrici $A \in \mathbb{F}^{n \times m}$ determinata dalla scelta delle basi $B \in C$.
 - ► Tale corrispondenza è lineare (cioè preserva comb. lineari). In particolare dim $\mathcal{L}(V,W) = \dim \mathbb{F}^{n \times m} = nm = \dim V \dim W$.
 - La composizione di applicazioni lineari corrisponde al prodotto riga-per-colonna di matrici.