Data Communications and Networking

Textbook
William Stallings, Data and Computer Communications, 6e

Chapter 16 Internetwork Operation

Yang Xianchun
Department of Computer Science and Technology
Nanjing University

Key Points

- ***Routing Protocols**
 - □ I RP and its' instance OSPF
 - □ ERP and its' instance BGP
- **XISA** Integrated Services Architecture
 - △Approach, Components, and Services
- **XRSVP** Resource Reservation Protocol
 - ☐ Goals, Characteristics, Operation, and Mechanisms
- **#Differentiated Services**

Internetworking Protocols in Context

16.1 Routing Protocols

- **#Autonomous Systems**
 - □ Interior Router/Gateway Protocol (IRP/IGP)
 - □ Exterior Router/Gateway Protocol (ERP/EGP)
- **#Border Gateway Protocol (BGP)**
 - **△**Second generation EGP
- **#Open Shortest Path First Protocol (OSPF)**

Distinguish Two Concepts

- ***Routing Information**
 - △About topology and delays in the internet
- ★Routing Algorithm
 - □ Used to make routing decisions based on information

16.1.1 Autonomous Systems (AS)

- ₩Group of routers

 - □ Common routing protocol
- **#**Set of routers and networks
- **XA** connected network (graph)
 - ☑ There is at least one route between any pair of nodes

Interior Router Protocol (IRP)

- ****Passes routing information between routers** within an AS
 - No need to implement IRP outside of the AS
 - △Allows I RPs to be custom-tailored
- ****May be more than one AS in internet**
 - □ linked together through a wide area network
 - ☑Routing algorithms and tables may differ between different ASs
 - □ Routers need some info about networks outside their ASs
 - □ Use ERP to pass routing info between routers in different ASs

Application of IRP and ERP

Different Flavor between IRP and ERP

- #IRP needs to build up a rather detailed interconnection model of routers within an AS
 □Calculate least-cost path from a given router to
 any network within AS
- **#ERP** supports to exchange summary reachability info between separately administered ASs
- **#ERP** is simpler and uses less detailed info than I RP

16.1.2 Border Gateway Protocol (BGP)

#BGP-4 (RFC 1771)

□ For use with TCP/IP internets

□Preferred ERP(EGP) of the Internet

#Messages sent over TCP connections

Open Used to open a neighbor relationship with another router.

Update Used to (1) transmit information about a single

route and/or (2) list multiple routes to be

withdrawn.

Keepalive Used to (1) acknowledge an Open message and

(2) periodically confirm the neighbor relationship.

Notification Send when an error condition is detected.

BGP Procedures

- ***Neighbor acquisition**
 - △ Acquisition: Open
 - □ Response: Keep alive
- ***Neighbor** reachability
 - ☐ To tell other routers that this router is still here
 - □ Periodically exchange info each other: Keep alive
- ****Network reachability**

 - □ Change or withdraw routing info: Update

BGP Messages

#Header

□ Length (2 octets)

Octets

16

2

Marker

Length

Type

Data

variable

Open and Keepalive Messages

- ₩ Open TCP connection to neighbor router
- ★ Send Open message
 - ☐ I dentifies the AS to which the sender belongs
 - □ Provides IP address of the router
 - □ I ncludes proposed hold time
- # Target router return a Keepalive message in response to accept the request
- ★ Receiver selects minimum of its hold time and that in received Open message

 - □ Each router often issues these messages to each of its peers enough to prevent Hold Timer from expiring

Update Message

- **#**May contain one or two types of info
 - □ Info about single routes through internet
 - **⊠**Network Layer Reachability Information NLRI
 - **⊠**Total Path Attributes Length
 - **⊠**Path Attributes
 - □List of (one or more) routes being withdrawn

 - **⊠**I dentified by IP address of destination network
- **#Path Attributes field includes path info**
 - □ Origin (I RP or ERP)
 - △AS_Path (list of AS traversed)
 - Next_hop (IP address of boarder router)

 - □ Local_pref (Inform other routers within AS)
 - △Atomic_Aggregate, Aggregator (Uses address tree

structure to reduce amount of info needed)

Uses of AS_Path and Next_Hop

#AS_Path

□ Enables routing policy

⊠Security

⊠Quality

#Next_Hop

○Only a few routers implement BGP

Notification Message

- ******Message header error
 - △Authentication and syntax
- **₩Open message error**

 - □ Unacceptable hold time
- **#Update** message error
- **#Hold time expired**
 - □ Connection is closed
- #Finite state machine error
- **#**Cease

□Used to close a connection when there is no error

Add a word "不" in Line 5 on Page 453

BGP Routing Information Exchange

- ## Consider R1 in AS1, in Fig. 16.2
- **X** Within AS, router builds topology picture using IRP
- # Router issues Update message to other routers (e.g.
 - R5) outside AS using BGP
 - △AS-Path: the identity of AS1
 - Next-Hop: the IP address of R1
 - ☑ NLRI: a list of all of networks in AS1

This message informs R5 that all of networks listed in NLRI are reachable via R1 and that the only AS traversed is AS1

- # These routers exchange info with other routers in other AS
- **X** Routers must then decide best routes
- **X** Internal neighbor may exchange BGP info
 - No ID of common AS added to AS-Path by sending router
- # Multiple entry points into an AS available to a border router in another AS, use Multi-Exit_Disc to choose

16.1.3 Open Shortest Path First (1)

- - □ Each router keeps list of state of local links to network

 - □Little traffic as messages are small and not sent often
- Route computed on least cost based on user cost metric

Open Shortest Path First (2)

#Topology stored as directed graph

XVertices or nodes →

△Router

Network

⊠Transit

#Edges

□Graph edge

⊠Connect two router

⊠Connect router to network

AS Represent as Directed Graph

- **X** Two router are joined by a point-to-point link
 - □ directly connected by a pair of edges, one in each direction (e.g. R6 and R10)
- **X** Multiple routers are attached to a network
 - △all routers bidirectionally connected to network vertex (e.g. R1,R2,R3,and R4 all connected to N3)
- **X** A single router attached to a network
 - ☐ The network will appear in graph as a stub connection (N7)
- **X** A host directly connected to a router
 - ☑ It is depicted in the corresponding graph (e.g. H1)
- # A router is connected to other AS
 - □ Each network in other AS is represented as a stub (e.g. N12 through N15)

Operation

#Dijkstra's algorithm (Appendix 10A) used to find least cost path to all other networks #Next hop used in routing packets

Destination	Next Hop	Distance
N1	R3	10
N2	R3	10
N3	R3	7
N4	R3	8
N6	R10	8
N7	R10	12
N8	R10	10
N9	R10	11
N10	R10	13
N11	R10	14
H1	R10	21
R.5	R.5	6
R7	R10	8
N12	R10	10
N13	R.5	14
N14	R.5	14
N15	R10	17

Routing Table for R6

16.2 Integrates Services Architecture

#Changes in traffic demands require variety of quality of service

XInternet phone, multimedia, multicast

#ATM schemes are costly

***New means of requesting QoS in TCP/IP**

***New functionality required in routers**

XISA

△A suite of standards that IETF is developing **#RFC** 1633

16.2.1 Internet Traffic

#Elastic

□ Can cope with wide changes in delay and/or throughput

XInelastic

□ Does not easily adapt to variations

△e.g. real time traffic

How stringent the quality-of-service requirements are

Application	Reliability	Delay	Jitter	Bandwidth
E-mail	High	Low	Low	Low
File transfer	High	Low	Low	Medium
Web access	High	Medium	Low	Medium
Remote login	High	Medium	Medium	Low
Audio on demand	Low	Low	High	Medium
Video on demand	Low	Low	High	High
Telephony	Low	High	High	Low
Videoconferencing	Low	High	High	High

Requirements for Inelastic Traffic

- **#Throughput**
 - △Absolutely require a given minimum value
- **#** Delay
 - △As short as possible
- **#Jitter**
 - □ Delay variation require a reasonable upper bound
- **#Packet loss**
 - □Real-time applications vary in amount
- Require preferential treatment for certain types of traffic
- Require elastic traffic to be supported as well

16.2.2 ISA Approach

- **♯Congestion controlled by**
 - □ Routing algorithms minimum delay
 - □Packet discard the most recent
- ****Associate each packet with a flow**
 - △e.g. Consists of a transport connection or a video stream
 - △A flow differ from a TCP connection
 - **⊠**Unidirectional
 - **⊠**Can be multicast
- ****Manage congestion and provide QoS**
 - △Admission Control require RSVP for a new flow
 - □ Routing Algorithm OSPF select routes based on QoS
 - □ Queuing discipline effective
 - □ Discard policy manage congestion and guarantee Qos

16.2.3 ISA Components

- #Principal background functions of ISA in a router
 - **△**Reservation Protocol
 - △Admission Control

 - □ Routing Protocol
- ***Background functions support the main task** of router
 - □ Forwarding of Packets
- #Functional area that accomplish forwarding
 - □Classifier and routing selection

ISA Implemented in Router

16.2.4 ISA Services

#Guaranteed
#Controlled load
#Best effort

Token Bucket Traffic Specification

- **X**Token replenishment rate *R*
 - □ Continually sustainable data rate
- **♯**Bucket size *B*
 - △Amount that data rate can exceed R for short period
 - □ During time period Tamount of data sent can not exceed RT + B

Token Bucket Scheme

ISA Services

- **#Guaranteed**
 - △ Assured data rate
 - □ Upper bound on queuing delay

 - □ Real time playback
- **Controlled load**
 - △Approximates behavior to best efforts on unloaded network
 - No specific upper bound on queuing delay

12.6.5 Queuing Discipline

XTraditionally FIFO

- No special treatment for high priority flow packets
- □ Large packet can hold up smaller packets
- □Greedy connection can crowd out less greedy connection

- □ Queue maintained at each output port
- □ Packet placed in queue for its flow
- □ Round robin servicing
- □ Can have weighted fair queuing

FIFO and Fair Queue

(b) Fair Queuing

16.3 Resource Reservation: RSVP

- **#**Unicast applications can reserve resources in routers to meet QoS
- **XIf** router can not meet request, application informed
- **#Multicast is more demanding**
- ★ May be reduced
 - Some members of group may not require delivery from particular source over given time
 ⋈e.g. selection of one from a number of "channels"
 - □Some group members may only be able to handle
 a portion of the transmission

Soft State

- **#Set of state info in router that expires**unless refreshed
- **#Applications must periodically renew** requests during transmission
- ***Resource ReSerVation Protocol (RSVP)**
- **#RFC 2205**

RSVP Goals

- #Ability for receivers to make reservations
 #Deal gracefully with changes in multicast
 group membership
- **#**Specify resource requirements such that aggregate resources reflect requirements
- **#**Enable receivers to select one source
- **#**Deal gracefully with changes in routes
- **#Control protocol overhead**
- **XI** Independent of routing protocol

RSVP Characteristics

- **#Unicast and Multicast**
- **#**Simplex
- ***Receiver initiated reservation**
- ****** Maintain soft state in the internet
- ****Provide different reservation styles**
- **X**Transparent operation through non-RSVP routers
- **#Support for IPv4 and IPv6**

Data Flow Concepts

- **#Session**
 - □ Data flow identified by its destination
- **#Flow descriptor**
 - □ Reservation request issued by destination

 - - **⊠**Service class
 - **⊠**Rspec
 - **⊠**Tspec
 - □ Filterspec defines set of packets for which reservation is required

Treatment of Packets

X Relationship among session, flowspec, and filterspec

RSVP Operation

(a) Data distrubution to a multicast group

(b) Merged Resv Messages

RSVP Message Types

#Resv

- Originate at multicast receivers
- □Propagate upstream through distribution tree
- □ Create soft states within routers
- □Reach sending host enabling it to set up traffic control for first hop

#Path

RSVP Operation From Host Perspective

- **#**Receiver joins multicast group (I GMP)
- ****Potential sender issues Path message**
- ****Receiver gets message identifying sender**
- Receiver has reverse path info and may start sending Resv messages
- ****Resv** messages propagate through internet and is delivered to sender
- **#**Sender starts transmitting data packets
- ******Receiver starts receiving data packets

16.4 Differentiated Services

- # Provide simple, easy to implement, low overhead tool to support range of network services
- **#** differentiated on basis of performance
 - □ I P Packets labeled for differing QoS using existing I Pv4 Type of Service or I Pv6 Traffic Class
 - □Service level agreement (SLA) established between provider and customer prior to use of DS
 - □ Built in aggregation
 - **⊠**Good scaling to larger networks and loads
 - □ I mplemented by queuing and forwarding based on DS octet
 - ■No state info on packet flows stored
- # Reference RFC 2475

16.4.1 DS Services

#Defined within DS domain

□Contiguous portion of internet over which consistent set of DS policies are administered

☐ Typically under control of one organization

□ Defined by service level agreements (SLA)

SLA Parameters

- **#** Detailed service performance

 - □ Drop probability
 - **△**Latency
- **#**Constraints on ingress and egress points
- **X**Traffic profiles
 - △e.g. token bucket parameters
- **#**Disposition of traffic in excess of profile

Example Services

- **#Level A low latency**
- **¥Level B low loss**
- **#Level C 90% of traffic < 50ms latency**
- **X**Level D 95% in profile traffic delivered
- **X**Level E allotted twice bandwidth of level F traffic
- **X**Traffic with drop precedence X higher probability of delivery than that of Y

16.4.2 DS Octet - Code Pools

- # Placed in Type of Service field of I Pv4 header or Traffic Class field of I Pv6 header
- # Leftmost 6 bits used
- - □ assignment as standards
- **¥** xxxx11
 - □ experimental or local use
- ₩ xxxx01
 - experimental or local but may be allocated for standards in future

DS Octet - Precedence Field

□ Compatibility with IPv4 precedence service

XThree approaches

- □ Routing selection
- □ Queuing discipline

 - **⊠**Congestion control

Type of Service (TOS) field

- 3-bit precedence subfield provides guidance to IP entity in the source or router on selecting the next hop for this datagram
- **4-bit TOS subfield**provides guidance about the relative allocation of router resources for this datagran

DS Domains

16.4.3 DS Configuration and Operation

- **#Within domain, interpretation of DS code** points is uniform
- ****Routers in domain are boundary nodes or interior nodes**
- **X**Traffic conditioning functions
 - **△**Classifier
 - Meter
 - Marker

 - □ Dropper

DS Traffic Conditioner

Required Reading

Problem

#16.3

