CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #7

► Sorting in Linear Time

Prof. Pietro S. Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading: Chapter 8

Aims of this lecture

- To show how to sort numbers in a **bounded range** in **linear time**.
- Two algorithms use operations other than comparisons so the $\Omega(n\log n)$ runtime will not apply to them
- CountingSort
- RadixSort

Linear-Time Sorting

- The lower bound of $\Omega(n \log n)$ is bad news for applications where comparisons are the only source of information.
- However, it suggests a way out: where possible, use more information than mere comparisons!
- Elements to be sorted are often **numbers or strings**, which reveal more information.

CountingSort: Idea

- Assume that the input elements are integers in $\{0, ..., k\}$.
- For each element x, CountingSort counts the number of elements less than x.
 - For instance, if 17 elements are smaller than x, then x belongs in output position 18.
- Caveat: need to make sure that equal elements are put in different output positions.
- CountingSort uses an array C[0 ... k] for counting and an array B[1 ... n] for writing the output.

CountingSort

- Initialise counter array
- Count elements
- Running sum: #elements < i
- Write elements to output

CountingSort(A, B, k)

```
1: let C[0...k] be a new array
```

2: **for**
$$i = 0$$
 to k **do**

$$C[i] = 0$$

4: for
$$j = 1$$
 to A.length do

5:
$$C[A[j]] = C[A[j]] + 1$$

6: **for**
$$i = 1$$
 to k **do**

7:
$$C[i] = C[i] + C[i-1]$$

8: for
$$j = A$$
.length downto 1 do

9:
$$B[C[A[j]]] = A[j]$$

10:
$$C[A[j]] = C[A[j]] - 1$$

CountingSort

CountingSort(A, B, k)

- 1: let C[0...k] be a new array
- 2: **for** i = 0 to k **do**
- 3: C[i] = 0
- 4: for j = 1 to A.length do
- 5: C[A[j]] = C[A[j]] + 1
- 6: **for** i = 1 to k **do**
- 7: C[i] = C[i] + C[i-1]
- 8: for j = A.length downto 1 do

(f)

- 9: B[C[A[j]]] = A[j]
- 10: C[A[j]] = C[A[j]] 1

(e)

(d)

CountingSort: Runtime

- Initialise counter array
- Count elements
- Running sum: #elements
- Write elements to output

Time
$\Theta(k)$
0()
$\Theta(n)$
$\Theta(k)$
$\Theta(n)$

- Runtime is $\Theta(n+k)$
 - Depends on two input parameters instead of just the problem size n.
 - This is O(n) if k = O(n).

CountingSort: Correctness

• Loop Invariant:

"At the start of each iteration j of the last for loop, the elements A[j+1..n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[j] = i, belongs to B[C[i]]."

CountingSort(A, B, k)

1: let C[0...k] be a new array

2: **for**
$$i = 0$$
 to k **do**

$$3: C[i] = 0$$

4: for
$$j = 1$$
 to A.length do

5:
$$C[A[j]] = C[A[j]] + 1$$

6: **for**
$$i = 1$$
 to k **do**

7:
$$C[i] = C[i] + C[i-1]$$

8: for
$$j = A$$
.length downto 1 do

9:
$$B[C[A[j]]] = A[j]$$

10:
$$C[A[j]] = C[A[j]] - 1$$

Initialisation:

At the start of the loop j=n and no elements have been copied. The array C provides for each element, the number of elements in A that are smaller or equal to it. So the last element of A, A[n] = i, naturally goes in position B[C[i]].

CountingSort: Correctness

• Loop Invariant:

"At the start of each iteration j of the last for loop, the elements A[j+1..n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[j] = i, belongs to B[C[i]]."

CountingSort(A, B, k)

1: let C[0...k] be a new array

2: **for**
$$i = 0$$
 to k **do**

$$C[i] = 0$$

4: for
$$j = 1$$
 to A.length do

5:
$$C[A[j]] = C[A[j]] + 1$$

6: **for**
$$i = 1$$
 to k **do**

7:
$$C[i] = C[i] + C[i-1]$$

8: for
$$j = A$$
.length downto 1 do

9:
$$B[C[A[j]]] = A[j]$$

10:
$$C[A[j]] = C[A[j]] - 1$$

Maintenance:

At iteration j, the loop invariant tells us that the element A[j] = i goes in B[C[i]] and we copy it in.

Since the next element equal to i in A that has not yet been copied in B should go in position B[C[i]-1], we decrement C[i] re-stablishing the loop invariant (the array C is updated such that each element i of A still to be copied in is indexed correctly again)

CountingSort: Correctness

• Loop Invariant:

"At the start of each iteration j of the last for loop, the elements A[j+1..n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[j] = i, belongs to B[C[i]]."

CountingSort(A, B, k)

```
1: let C[0...k] be a new array
2: for i = 0 to k do
3: C[i] = 0
4: for j = 1 to A.length do
5: C[A[j]] = C[A[j]] + 1
6: for i = 1 to k do
7: C[i] = C[i] + C[i - 1]
8: for j = A.length downto 1 do
9: B[C[A[j]]] = A[j]
10: C[A[j]] = C[A[j]] - 1
```

Termination:

When the loop terminates j=0. The loop invariant tells us that all the elements of A [1..n] are in the right position in B thus there are no more elements to be copied.

Stability in Sorting

- CountingSort is **stable**: numbers with the same value appear in the output in **the same order as** they do **in the input** array.
 - The order of equal elements is preserved.
 - This property is relevant when satellite data (e.g. Java objects) is attached to keys being sorted.
 - We may think of the original order being used to break ties between elements with equal keys.
 - Works well for sorting emails according to (1) read/unread and (2) date.
- How do we prove stability of CountingSort?
- Can I be faster if I don't care about stability?

Counting Sort: advantages & disadvantages

- Sorts in linear time n integers in the range $\{0..k\}$ if k=O(n)
- Is stable (preserves original ordering for breaking ties)
- Does not sort in place
- What if $k = \omega(n)$ (or $k \gg n$)? (eg., I have to sort n=100 numbers between 0 and 1 billion)
- Is there a way of limiting the size of *k*?

Radix Sort

- How many different integers can appear in a digit in a number of x digits?
- How many different letters can appear in a word written using a latin (eg., English) alphabet?
- Can we sort digit by digit (or letter by letter)?
- Stability helps for sorting numbers digit by digit (or English words letter by letter).

Radix Sort

• Assume that each array element has *d* digits (from lowest significance to highest significance)

RadixSort(A, d)

- 1: **for** i = 1 to d **do**
- 2: use a stable sort to sort array A on digit i

Radix Sort: Example

RadixSort(A, d)

1: **for** i = 1 to d **do**

2: use a stable sort to sort array A on digit i

329		720		720		329
457		355		329		355
657		436		436		436
839]])>-	457	j)))·	839	jjjp-	457
436		657		355		657
720		329		457		720
355		839		657		839

Radix Sort: Correctness

RADIXSORT(A, d)

1: **for** i = 1 to d **do**

2: use a stable sort to sort array A on digit i

Correctness follows from stability and induction on columns.

Loop Invariant: "At each iteration of the **for** loop, the array is sorted on the last *i-1* digits"

Initialisation: The array is trivially sorted on the empty set of digits for i=0

329

457

657

839

436

720

355

Radix Sort: Correctness

RADIXSORT(A, d)

1: **for** i = 1 to d **do**

2: use a stable sort to sort array A on digit i

Correctness follows from stability and induction on columns.

Loop Invariant: "At each iteration of the **for** loop, the array is sorted on the last *i-1* digits"

Maintenance: The invariant tells us that the array is sorted on the last i-1 digits. Now we sort the i_th digit re-establishing the loop invariant, since our stable sort ensures that elements with same i_th digit remain in the same order as before sorting.

Radix Sort: Correctness

RADIXSORT(A, d)

1: **for** i = 1 to d **do**

2: use a stable sort to sort array A on digit i

Correctness follows from stability and induction on columns.

Loop Invariant: "At each iteration of the **for** loop, the array is sorted on the last *i-1* digits"

Termination: The loop terminates when i=d+1. Then the loop invariant states that the array is completely sorted.

3	2	9
3	5	5
4	3	6
4	5	7
6	5	7
7	2	0
8	3	9

Radix Sort: Runtime

RadixSort(A, d)

- 1: **for** i = 1 to d **do**
- 2: use a stable sort to sort array A on digit i
- Given n d-digit numbers in which each digit can take up to k possible values, RadixSort using CountingSort sorts these numbers in time $\Theta(d(n+k))$.
 - This is just the runtime of running CountingSort d times.
- Advantage to CountingSort?
- The support array has only size [0..9] for numbers, [A..Z] for words with latin letters (k is not too large)

Radix Sort: Application

Task: Sort n integers in the range 0 to n^3-1

- Runtime of a ComparisonSort algorithm?
- Runtime of CountingSort?
- Runtime of RadixSort?

A number n^3 -1 requires $\lceil \log_{10} n^3 \rceil = \lceil 3 \log_{10} n \rceil = O(\log n)$ digits

Eg.
$$n = 10$$
, then $n^3 - 1 = 999$, and $\lceil 3 \log_{10} n \rceil = 3$

Eg.
$$n = 20$$
, then $n^3 - 1 = 7999$, and $\lceil 3 \log_{10} n \rceil = 4$

So RadixSort has runtime
$$\Theta(d(n+k)) = \Theta(\log n(n+10)) = \Theta(n\log n)$$

Turn the numbers to base n (eg., n=20 range: [0..JJJ]

$$\Rightarrow$$
 $[3 \log_n n] = O(1)$, and $T(n) = O(n+k) = O(n+k) = O(n)$

Caveat? I have to make sure I can convert bases and back in time O(1)

Summary

- CountingSort sorts numbers in a bounded range $\{0, ..., k\}$ in time $\Theta(n+k)$.
- RadixSort uses a stable sorting algorithm to sort digit by digit.
 - Stability preserves the order of equal elements.
 - The time for sorting d-digit numbers is $\Theta(d(n+k))$.
 - This is $\Theta(n)$ when d = O(1) and k = O(n).