Problem 1. Assume $\vec{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$. Let $f(\vec{x}) = \vec{b}^T A \vec{x}$. Find ∇f .

Solution. Given, $\vec{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $\vec{b} \in \mathbb{R}^m$, $f(\vec{x}) = \vec{b}^T A \vec{x}$. Let,

$$\vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \text{ and } A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$\vec{b}^T A = \left[\sum_{i=1}^m b_i \cdot a_{i1} \cdots \sum_{i=1}^m b_i \cdot a_{in} \right]$$

Therefore,

$$f(\vec{x}) = \vec{b}^T A \vec{x} = \sum_{j=1}^n \left(\left(\sum_{i=1}^m b_i \cdot a_{ij} \right) x_j \right)$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^m b_i \cdot a_{i1} \\ \vdots \\ \sum_{i=1}^m b_i \cdot a_{in} \end{bmatrix}$$

$$= (\vec{b}^T A)^T$$

$$= A^T \vec{b}$$

Problem 2. Assume $\vec{x} \in \mathbb{R}^n$. Find $\frac{\partial \vec{x}^T \vec{x}}{\partial \vec{x}}$.

Solution. Let,
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \implies \vec{x}^T \vec{x} = \sum_{i=1}^n x_i^2$$
.

Therefore,

$$\frac{\partial \vec{x}^T \vec{x}}{\partial \vec{x}} = \begin{bmatrix} 2 \cdot x_1 \\ \vdots \\ 2 \cdot x_n \end{bmatrix}$$
$$= \boxed{2 \cdot \vec{x}}$$

Problem 3. Assume \vec{x} and $\vec{a} \in \mathbb{R}^n$. Find $\frac{\partial (\vec{x}^T \vec{a})^2}{\partial \vec{x}}$

Solution. Let,
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $\vec{d} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \implies \vec{x}^T \vec{d} = \sum_{i=1}^n x_i \cdot a_i \implies (\vec{x}^T \vec{d})^2 = (\sum_{i=1}^n x_i \cdot a_i)^2$

Therefore,

$$\frac{\partial (\vec{x}^T \vec{a})^2}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial (\vec{x}^T \vec{a})^2}{\partial x_1} \\ \vdots \\ \frac{\partial (\vec{x}^T \vec{a})^2}{\partial x_n} \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot (\sum_{i=1}^n x_i \cdot a_i) \cdot a_1 \\ \vdots \\ 2 \cdot (\sum_{i=1}^n x_i \cdot a_i) \cdot a_n \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot (\vec{x}^T \vec{a}) \cdot \vec{a} \end{bmatrix}$$

Problem 4. Suppose $\vec{x}: \mathbb{R}^n \to \mathbb{R}^m$ is a map sending $\vec{z} \in \mathbb{R}^n$ to $\vec{x}(\vec{z}) \in \mathbb{R}^m$. Similarly, suppose $\vec{y}: \mathbb{R}^n \to \mathbb{R}^m$ and \vec{A} is an $m \times m$ constant matrix. Prove that $\frac{\partial (\vec{y}^T A \vec{x})}{\partial \vec{z}} = \frac{\partial \vec{y}}{\partial \vec{z}} \vec{A} \vec{x} + \frac{\partial \vec{x}}{\partial \vec{z}} \vec{A}^T \vec{y}$

Solution. Let,
$$\vec{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$
, $\vec{x}(\vec{z}) = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$, $\vec{y}(\vec{z}) = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$, $A = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{bmatrix}$

Also let, $G = A^T \vec{y}$, $F = \vec{x}$ and $H = G^T F = \vec{y}^T A \vec{x}$. As per lecture notes,

(1)
$$\frac{\partial H}{\partial \vec{z}} = \frac{\partial G}{\partial \vec{z}} F + \frac{\partial F}{\partial \vec{z}} G$$

Therefore,

(2)
$$\frac{\partial F}{\partial \vec{z}} = \frac{\partial \vec{x}}{\partial \vec{z}}$$

Consider,

$$\frac{\partial G}{\partial \vec{z}} = \frac{\partial (A^T \vec{y})}{\partial \vec{z}} \\
= \frac{\partial}{\partial \vec{z}} \left(\begin{bmatrix} \sum_{i=1}^m a_{i1} \cdot y_i \\ \vdots \\ \sum_{i=1}^m a_{im} \cdot y_i \end{bmatrix} \right) \\
= \begin{bmatrix} \frac{\partial}{\partial z_1} \left(\sum_{i=1}^m a_{i1} \cdot y_i \right) & \cdots & \frac{\partial}{\partial z_1} \left(\sum_{i=1}^m a_{im} \cdot y_i \right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial z_n} \left(\sum_{i=1}^m a_{i1} \cdot y_i \right) & \cdots & \frac{\partial}{\partial z_n} \left(\sum_{i=1}^m a_{im} \cdot y_i \right) \end{bmatrix} \\
= \begin{bmatrix} \sum_{i=1}^m \left(a_{i1} \cdot \frac{\partial y_i}{\partial z_1} \right) & \cdots & \sum_{i=1}^m \left(a_{im} \cdot \frac{\partial y_i}{\partial z_1} \right) \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^m \left(a_{i1} \cdot \frac{\partial y_i}{\partial z_n} \right) & \cdots & \sum_{i=1}^m \left(a_{im} \cdot \frac{\partial y_i}{\partial z_n} \right) \end{bmatrix} \\
= \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \cdots & \frac{\partial y_m}{\partial z_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial z_n} & \cdots & \frac{\partial y_m}{\partial z_n} \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{bmatrix} \\
= \frac{\partial \vec{y}}{\partial \vec{z}} A$$

Therefore,

(3)
$$\frac{\partial G}{\partial \vec{z}} = \frac{\partial \vec{y}}{\partial \vec{z}} A$$

From equations (1), (2) and (3) above,

$$\frac{\partial (\vec{y}^T A \vec{x})}{\partial \vec{z}} = \frac{\partial \vec{y}}{\partial \vec{z}} A \vec{x} + \frac{\partial \vec{x}}{\partial \vec{z}} A^T \vec{y}$$

Problem 5. Suppose $A(x): \mathbb{R} \to \mathbb{R}^{n \times n}$ is a map from \mathbb{R} to $\mathbb{R}^{n \times n}$.

Show that if
$$A(x)$$
 is invertible, then $\frac{dA^{-1}}{dx} = -A^{-1}\frac{dA}{dx}A^{-1}$

Solution. Given $A(x): \mathbb{R} \to \mathbb{R}^{n \times n}$. We have, $AA^{-1} = I_n$. Differentiating both sides w.r.t x gives,

$$\frac{d}{dx}(AA^{-1}) = \frac{dI_n}{dx}$$

$$\implies \frac{dA}{dx}A^{-1} + A\frac{dA^{-1}}{dx} = 0$$

$$\implies \frac{dA^{-1}}{dx} = -A^{-1}\frac{dA}{dx}A^{-1}$$

Problem 6. Let \vec{x} and $\beta \in \mathbb{R}^p$. Prove that $\frac{\partial \vec{x}^T \beta}{\partial \vec{x}} = \beta$

Solution.

$$\frac{\partial \vec{x}^T \beta}{\partial \vec{x}} = \frac{\partial \left(\sum_{i=1}^p x_i \beta_i\right)}{\partial \vec{x}}$$

$$= \begin{bmatrix} \frac{\partial \left(\sum_{i=1}^p x_i \cdot \beta_i\right)}{\partial x_1} \\ \vdots \\ \frac{\partial \left(\sum_{i=1}^p x_i \cdot \beta_i\right)}{\partial x_p} \end{bmatrix}$$

$$= \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

$$= \begin{bmatrix} \beta \end{bmatrix}$$

Problem 7. Assume that Y is an n vector but assume that Y depends on X and X depends on some $Z \in \mathbb{R}^q$. Show that

$$\frac{\partial Y}{\partial Z} = \frac{\partial X}{\partial Z} \frac{\partial Y}{\partial X}$$

Does the order matter?

Hint: This means that $X : \mathbb{R}^q \to \mathbb{R}^p$ *and* $Y : \mathbb{R}^p \to \mathbb{R}^n$.

Solution. Given, $Y(X) \in \mathbb{R}^n$ depends on $X(Z) \in \mathbb{R}^p$ for some $Z \in \mathbb{R}^q$.

$$\frac{\partial Y}{\partial Z} = \begin{bmatrix}
\frac{\partial \left(y_1(x_1, \dots x_p)\right)}{\partial z_1} & \dots & \frac{\partial \left(y_m(x_1, \dots x_p)\right)}{\partial z_1} \\
\vdots & & \ddots & \vdots \\
\frac{\partial \left(y_1(x_1, \dots x_p)\right)}{\partial z_n} & \dots & \frac{\partial \left(y_m(x_1, \dots x_p)\right)}{\partial z_n}
\end{bmatrix} \\
= \begin{bmatrix}
\sum_{i=1}^p \frac{\partial x_i}{\partial z_1} \cdot \frac{\partial y_1}{\partial x_i} & \dots & \sum_{i=1}^p \frac{\partial x_i}{\partial z_1} \cdot \frac{\partial y_m}{\partial x_i} \\
\vdots & & \ddots & \vdots \\
\sum_{i=1}^p \frac{\partial x_i}{\partial z_n} \cdot \frac{\partial y_1}{\partial x_i} & \dots & \sum_{i=1}^p \frac{\partial x_i}{\partial z_n} \cdot \frac{\partial y_m}{\partial x_i}
\end{bmatrix} \\
= \begin{bmatrix}
\frac{\partial x_1}{\partial z_1} & \dots & \frac{\partial x_p}{\partial z_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_1}{\partial z_n} & \dots & \frac{\partial x_p}{\partial z_n}
\end{bmatrix} \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_1}{\partial x_p} & \dots & \frac{\partial y_m}{\partial x_p}
\end{bmatrix} \\
= \frac{\partial X}{\partial Z} \frac{\partial Y}{\partial Z}$$

Yes, the ordering matters as the dimensions won't allow multiplication if placed in the other way.

Problem 8. Let $z : \mathbb{R}^p \to \mathbb{R}$ be a function that depends on $\vec{x} \in \mathbb{R}^p$ and let Y be a n-vector that depends on $\vec{x} \in \mathbb{R}^p$. Prove that

$$\frac{\partial}{\partial \vec{x}}(zY) = z\frac{\partial Y}{\partial \vec{x}} + \frac{\partial z}{\partial \vec{x}}Y^T$$

Solution. Given, $\vec{x} \in \mathbb{R}^p$, $z(\vec{x}) \in \mathbb{R}$ and $Y(\vec{x}) \in \mathbb{R}^n$. Therefore,

$$\frac{\partial}{\partial \vec{x}}(zY) = \frac{\partial}{\partial \vec{x}} \begin{pmatrix} z \cdot y_1 \\ \vdots \\ z \cdot y_n \end{pmatrix} \\
= \begin{bmatrix} \frac{\partial(z \cdot y_1)}{\partial x_1} & \cdots & \frac{\partial(z \cdot y_n)}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial(z \cdot y_1)}{\partial x_p} & \cdots & \frac{\partial(z \cdot y_n)}{\partial x_p} \end{bmatrix} \\
= \begin{bmatrix} z \cdot \frac{\partial y_1}{\partial x_1} + y_1 \cdot \frac{\partial z}{\partial x_1} & \cdots & z \cdot \frac{\partial y_n}{\partial x_1} + y_n \cdot \frac{\partial z}{\partial x_1} \\ \vdots & \ddots & \vdots \\ z \cdot \frac{\partial y_1}{\partial x_p} + y_1 \cdot \frac{\partial z}{\partial x_p} & \cdots & z \cdot \frac{\partial y_n}{\partial x_p} + y_n \cdot \frac{\partial z}{\partial x_p} \end{bmatrix} \\
= z \frac{\partial Y}{\partial \vec{x}} + \begin{bmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_p} \end{bmatrix} [y_1 \cdots y_n] \\
= z \frac{\partial Y}{\partial \vec{x}} + \frac{\partial z}{\partial \vec{x}} Y^T$$