Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Технология машиностроения»

Лабораторная работа №3

По дисциплине: «Математическое моделирование и методы исследования операций»
На тему «Оптимизация оснащения обрабатывающего центра»

Выполнил студент группы АП-31 Сальников С.Д. Принял преподаватель Мурашко В.С.

Цель работы: Овладение навыками разработки математической модели и решение задачи оптимизации оснащения магазина обрабатывающего центра с помощью теории графов, «Поиска решения» в MS Excel, реализующего методы перебора с возвратом и нахождения кратчайшего пути.

Практическая часть

Имеется n различных видов инструментов для оснащения магазина обрабатывающего центра, причем число инструментов каждого вида можно считать неограниченным. Известно, что каждый инструмент i-го вида занимает a_i гнезд обрабатывающего центра и время его переточки равно c_i . После установки по одному инструменту каждого вида осталось b свободных гнезд обрабатывающего центра. Необходимо оснастить оставшуюся свободной части магазина таким образом, чтобы суммарное время работы инструментов было максимальным (минимальным). Для всех вариантов u0 свободных u1 магазина обрабатывающего центра u2.

В лабораторной работе требуется решить следующие четыре задачи.

- 1. Суммарное время работы инструментов должно быть максимальным, причем в одном гнезде может быть несколько экземпляров одного инструмента.
- 2. Суммарное время работы инструментов должно быть минимальным, причем в одном гнезде может быть несколько экземпляров одного инструмента.
- 3. Суммарное время работы инструментов должно быть максимальным, причем в одном гнезде может быть только один инструмент.
- 4. Суммарное время работы инструментов должно быть минимальным, причем в одном гнезде может быть только один инструмент.

Исходные данные:

Вариант 20

Инструменты	1	2	3	4	5	6
Стойкость	2	3	1	4	2	1
Число гнезд	5	4	3	3	2	1

Решение задач:

Задача 1

_									
	Α	В	С	D	Е	F	G	Н	1
1	Инструменты	1	2	3	4	5	6		
2	Стойкость	2	3	1	4	2		max z(x)	9
3	Число гнёзд	5	4	3	3	2	1	ограничение	7
4	Оптимальное решение	0	0	0	2	0	1	емкость магазина	7

Задача 2

	А	В	С	D	Е	F	G	Н	1
1	Инструменты	1	2	3	4	5	6		
2	Стойкость	2	3	1	4	2	1	min z(x)	3
3	Число гнёзд	5	4	3	3	2	1	ограничение	7
4	Оптимальное решение		0	2	0	0	1	емкость магазина	7

	Α	В	С	D	Е	F	G	Н	- 1
1	Инструменты	1	2	3	4	5	6		
2	Стойкость	2	3	1	4	2	1	max z(x)	7
3	Число гнёзд	5	4	3	3	2	1	ограничение	7
4	Оптимальное решение	0	1	0	1	0	0	емкость магазина	7

Задача 4

1	Α	В	С	D	E	F	G	Н	-1
1	Инструменты	1	2	3	4	5	6		
2	Стойкость	2	3	1	4	2	1	min z(x)	4
3	Число гнёзд	5	4	3	3	2	1	ограничение	7
4	Оптимальное решение	0	1	1	0	0	0	емкость магазина	7

Формулы

4	А	В	С	D	Е	F	G	Н	I	J
1	Инструменты	1	2	3	4	5	6			ЗАДАЧА 1
2	Стойкость	2	3	1	4	2	1	max z(x)	=СУММПРОИЗВ(B2:G2; B4:G4)	
3	Число гнёзд	5	4	3	3	2	1	ограничение	=СУММПРОИЗВ(B3:G3; B4:G4)	
4	Оптимальное решение	0	1	1	0	0	0	емкость магазина	7	
5							ļ			
6	Инструменты	1	2	3	4	5	6			ЗАДАЧА 2
7	Стойкость	2	3	1	4	2	1	min z(x)	=СУММПРОИЗВ(B7:G7; B9:G9)	
8	Число гнёзд	5	4	3	3	2	1	<mark>ограничение</mark>	=СУММПРОИЗВ(B8:G8; B9:G9)	
9	Оптимальное решение	0	0	2	0	0	1	емкость магазина	7	
10										
11	Инструменты	1	2	3	4	5	6			ЗАДАЧА З
12	Стойкость	2	3	1	4	2	1	max z(x)	=СУММПРОИЗВ(B12:G12; B14:G14)	
13	Число гнёзд	5	4	3	3	2	1	ограничение	=CУММПРОИЗВ(B13:G13; B14:G14)	
14	Оптимальное решение	0	1	0	1	0	0	емкость магазина	7	
15										
16	Инструменты	1	2	3	4	5	6			ЗАДАЧА 4
17	Стойкость	2	3	1	4	2	1	min z(x)	=СУММПРОИЗВ(В17:G17; В19:G19)	
18	Число гнёзд	5	4	3	3	2	1	ограничение	=СУММПРОИЗВ(B18:G18; B19:G19)	
19	Оптимальное решение	1	0	0	0	1	0	емкость магазина	7	
20										

Нахождение кратчайшего пути графическим методом

Так как $a_3 = 3 = a_4$, при $c_3 = 1$ и $c_4 = 4$, примем $x_4 = 0$ Приведенная задача имеет следующий вид

$$z(x) = 2 \cdot x_1 + 3 \cdot x_2 + 1 \cdot x_3 + 2 \cdot x_5 + 1 \cdot x_6$$
 $5 \cdot x_1 + 4 \cdot x_2 + 3 \cdot x_3 + 2 \cdot x_5 + 1 \cdot x_6 = 7$ $x_i \ge 0$ и x_i — целые

Строим орграф

Для вершины 0: Для вершины 1: Для вершины 2: $1 \rightarrow 2, 2-1=1=a_6, c_6=1$ $0 \rightarrow 1$, $1-0=1=a_6$, $c_6=1$ $2 \rightarrow 3$, $3-2=1=a_6$, $c_6=1$ $0 \rightarrow 2, 2 - 0 = 2 = a_5, c_5 = 2$ $1 \rightarrow 3$, $3-1=2=a_5$, $c_5=2$ $2 \rightarrow 4, 4-2=2=a_5, c_5=2$ $0 \rightarrow 3$, $3 - 0 = 3 = a_3$, $c_3 = 1$ $1 \rightarrow 4, 4-1=3=a_3, c_3=1$ $2 \rightarrow 5$, $5-2=3=a_3$, $c_3=1$ $2 \rightarrow 6$, $6-2=4=a_2$, $c_1 = 3$ $0 \rightarrow 4, 4-0=4=a_2, c_1=3$ $1 \rightarrow 5$, $5-1=4=a_2$, $c_1=3$ $0 \rightarrow 5, 5 - 0 = 5 = a_1, c_1 = 2$ $1 \rightarrow 6, 6-1=5=a_1, c_1=2$ $2 \rightarrow 7, 7-2=5=a_1, c_1=2$

Для вершины 3: Для вершины 4: Для вершины 5: $3 \rightarrow 4, \, 4\text{-}3\text{=}1\text{=}a_6, \, c_6=1$ $4 \rightarrow 5, \, 5\text{-}4\text{=}1\text{=}a_6, \, c_6=1$ $5 \rightarrow 6, \, 6\text{-}5\text{=}1\text{=}a_6, \, c_6=1$ $3 \rightarrow 5, \, 5\text{-}3\text{=}2\text{=}a_5, \, c_5=2$ $4 \rightarrow 6, \, 6\text{-}4\text{=}2\text{=}a_5, \, c_5=2$ $5 \rightarrow 7, \, 7\text{-}5\text{=}2\text{=}a_5, \, c_5=2$ $3 \rightarrow 6, \, 6\text{-}3\text{=}3\text{=}a_3, \, c_3=1$ $4 \rightarrow 7, \, 7\text{-}4\text{=}3\text{=}a_3, \, c_3=1$ $3 \rightarrow 7, \, 7\text{-}3\text{=}4\text{=}a_2, \, c_1=3$

Для вершины 6: $6 \rightarrow 7$, $7-6=1=a_6$, $c_6=1$

Кратчайший путь: $[0] \rightarrow [3] \rightarrow [6] \rightarrow [7]$ Количество инструментов в работе: 002001

Нахождение длиннейшего пути графическим методом

Так как $a_3 = 3 = a_4$, при $c_3 = 1$ и $c_4 = 4$, примем $x_3 = 0$ Приведенная задача имеет следующий вид

$$z(x) = 2 \cdot x_1 + 3 \cdot x_2 + 4 \cdot x_4 + 2 \cdot x_5 + 1 \cdot x_6$$
 $5 \cdot x_1 + 4 \cdot x_2 + 3 \cdot x_4 + 2 \cdot x_5 + 1 \cdot x_6 = 7$ $x_i \ge 0$ и x_i — целые

Строим орграф

Для вершины 0:

$$0 \rightarrow 1$$
, $1-0=1=a_6$, $c_6 = 1$

$$0 \rightarrow 2$$
, $2 - 0 = 2 = a_5$, $c_5 = 2$

$$0 \rightarrow 3, 3-0=3=a_4, c_4=4$$

$$0 \rightarrow 4, 4-0=4=a_2, c_1 = 3$$

$$0 \rightarrow 5, 5 - 0 = 5 = a_1, c_1 = 2$$

Для вершины 3:

$$3 \rightarrow 4, 4-3=1=a_6, c_6=1$$

$$3 \rightarrow 5$$
, $5-3=2=a_5$, $c_5=2$

$$3 \rightarrow 6, 6-3=3=a_4, c_4=4$$

$$3 \rightarrow 7, 7-3=4=a_2, c_1=3$$

Для вершины 1:

$$1 \rightarrow 2, 2-1=1=a_6, c_6=1$$

$$1 \rightarrow 3, 3-1=2=a_5, c_5=2$$

$$1 \rightarrow 4, 4-1=3=a_4, c_4=4$$

$$1 \rightarrow 5, 5-1=4=a_2, c_1=3$$

$$1 \rightarrow 6, 6-1=5=a_1, c_1=2$$

Для вершины 4:

$$4 \rightarrow 5, 5-4=1=a_6, c_6=1$$

$$4 \rightarrow 6$$
, $6-4=2=a_5$, $c_5 = 2$
 $4 \rightarrow 7$, $7-4=3=a_4$, $c_4 = 4$

Для вершины 2:

$$2 \rightarrow 3, 3-2=1=a_6, c_6=1$$

$$2 \rightarrow 4, 4-2=2=a_5, c_5=2$$

$$2 \rightarrow 5, 5-2=3=a_4, c_4=4$$

$$2 \rightarrow 6, 6-2=4=a_2, c_1=3$$

$$2 \rightarrow 7, 7-2=5=a_1, c_1=2$$

Для вершины 5:

$$5 \rightarrow 6$$
, $6-5=1=a_6$, $c_6=1$

$$5 \rightarrow 7, 7-5=2=a_5, c_5=2$$

Для вершины 6: $6 \rightarrow 7$, $7-6=1=a_6$, $c_6=1$

Длиннейший путь: $[0] \rightarrow [3] \rightarrow [6] \rightarrow [7]$ Количество инструментов в работе: 000201

Вывод: овладел навыками разработки математической модели и решил задачи оптимизации оснащения магазина обрабатывающего центра с помощью теории графов, «Поиска решения» в MS Excel, реализующего методы перебора с возвратом и нахождения кратчайшего пути