

Complementaria Física Moderna: Taller 5

Autor: Gustavo Ardila MSc. 06 al 10 de Marzo de 2023

1. Una partícula de masa m se encuentra confinada a un pozo infinito de largo a. En un experimento, miden que su función de onda en t=0 es

$$\psi(x,t=0) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin\left(\frac{\pi x}{a}\right) \tag{1}$$

- a) Cuál es la función de onda para t>0?
- b) Cuál es el valor esperado de energía en t=0 y en $t=t_0$?
- c) Cuál es la probabilidad de que la partícula esté a la izquierda del pozo, es decir en $x \in [0, a/2]$ para $t=t_0$?
- 2. Un rotor rígido, con momento de inercia I_z , rota libremente en el plano x-y. Sea ϕ el ángulo que se forma entre el eje x y el rotor.
 - a) Encuentre las energías y funciones propias. Para este caso, ψ no puede ser multivaluada.
 - b) Se ha medido que $\psi(x,t=0)=A\sin^2\phi$. Encuentre $\psi(x,t)$.
- 3. Una partícula de masa m se mueve libremente hasta que se encuentra con el potencial $V(x) = -a\delta(x)$. Donde la función $\delta(x)$ es conocida como el delta de Dirac, cuyas propiedades pueden buscar en https://en.wikipedia.org/wiki/Dirac_delta_function. Suponga que la partícula está en un estado ligado. Encuentre el valor de x, x_0 , tal que la probabilidad de encontrar la partícula con $|x| < x_0$ sea 1/2.
- 4. En t=0 una partícula se encuentra confinada en el potencial $V(x) = \frac{1}{2}m\omega^2x^2$ y se encuentra que su función de onda es

$$\psi(x,t=0) = A \sum_{n} \left(\frac{1}{\sqrt{2}}\right)^{n} \phi_{n}, \tag{2}$$

donde ϕ_n son las funciones propias ortonormales del potencial.

a) Encuentre la constante de normalización A.

- b) Encuentre una expresión general para $\psi(x,t)$
- c) Muestre que $\big|\psi(x,t)\big|^2$ es periodica en t
 y encuentre el periodo máximo.
- d) Encuentre el valor esperado de la energía para t=0.

Ayuda: Tenga en cuenta que las energías toman la forma $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$