DROITES, ALIGNEMENT ET PARALLÉLISME

Résumé

Les droites sont des objets géométriques essentiels. Nous nous intéressons ici à l'alignement et au parallélisme grâce à l'étude de vecteurs dits colinéaires.

Colinéarité et alignement

1.1 Colinéarité

Définition | Vecteurs colinéaires

Soient \vec{u} et \vec{v} deux vecteurs.

On dit que \vec{u} et \vec{v} sont **colinéaires** si et seulement s'il existe un réel k tel que $\vec{u} = k \vec{v}$. Les deux vecteurs ont donc la **même direction**.

Remarque $\overrightarrow{0}$ est colinéaire à tous les vecteurs du plan.

Propriété

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si leurs coordonnées sont **proportionnelles**, c'est-à-dire si et seulement s'il existe un réel k tel que x' = kxet y' = ky. On a alors $\vec{u} = k\vec{v}$.

 $\binom{15}{5}$ et $\binom{3}{1}$ sont colinéaires alors que $\binom{-15}{5}$ et $\binom{3}{1}$ ne le sont pas.

Théorème | Critère de colinéarité

Soient $\vec{u} \begin{pmatrix} x \\ v \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ v' \end{pmatrix}$ deux vecteurs dans un repère orthonormé (O, \vec{t}, \vec{j}) . \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = xv' - vx' = 0$.

Démonstration. C'est direct si \vec{u} ou \vec{v} est le vecteur nul. Dans la suite, \vec{u} et \vec{v} seront non nuls.

Supposons d'abord que \vec{u} et \vec{v} sont colinéaires. Ainsi, il existe $k \in \mathbb{R}^*$ tel que x = kx' et y = ky'et donc xy' - vx' = kx'y' - ky'x' = 0.

Réciproquement, supposons que xy' - yx' = 0. $\overrightarrow{u} \neq \overrightarrow{0}$ donc $x \neq 0$ ou $y \neq 0$.

Traitons le premier cas, le second se fera de la même manière. xy' - yx' = 0 implique que

$$y' = \frac{yx'}{x} \operatorname{donc} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{x'}{x} \\ \frac{yx'}{x} \end{pmatrix} = \frac{x'}{x} \begin{pmatrix} x \\ y \end{pmatrix} d'où \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires.}$$

Exercice

Déterminer quels couples de vecteurs sont colinéaires.

1.
$$\vec{u} \begin{pmatrix} 5 \\ 2 \end{pmatrix}; \vec{v} \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$

1.
$$\vec{u} \begin{pmatrix} 5 \\ 2 \end{pmatrix}; \vec{v} \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
 2. $\vec{u} \begin{pmatrix} -\sqrt{2} \\ \sqrt{3} \end{pmatrix}; \vec{v} \begin{pmatrix} 2\sqrt{3} \\ -3\sqrt{2} \end{pmatrix}$ 3. $\vec{u} \begin{pmatrix} 7 \\ -3 \end{pmatrix}; \vec{v} \begin{pmatrix} \frac{84}{5} \\ -\frac{36}{5} \end{pmatrix}$

3.
$$\overrightarrow{u} \begin{pmatrix} 7 \\ -3 \end{pmatrix}$$
; $\overrightarrow{v} \begin{pmatrix} \frac{84}{5} \\ -\frac{36}{5} \end{pmatrix}$

1.2 Alignement

Théorème | Droites parallèles

Deux droites (AB) et (CD) sont **parallèles** si, et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Démonstration. C'est une conséquence de la caractérisation de l'égalité de vecteurs avec un parallélogramme.

Exemple Les deux droites (AB) et (CD) sont parallèles.

Théorème | Points alignés

Trois points A, B et C sont **alignés** si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont **colinéaires**.

Démonstration. A, B et C sont alignés si et seulement si (AB) et (AC) sont parallèles. On peut utiliser le résultat précédent pour terminer la démonstration de ce théorème.

Exemple A, B et C sont alignés.

Propriété | Milieu d'un segment

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan, dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

Alors le milieu du segment [A, B] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$.

Démonstration. Notons M le milieu de [A, B]. Partant de A, l'image de la translation de vecteur $\frac{1}{2}\overrightarrow{AB}$ est M. Rappelons que $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$ a pour coordonnées $\frac{1}{2}\binom{x_B - x_A}{y_B - y_A} = \binom{\frac{x_B - x_A}{2}}{\frac{y_B - y_A}{2}}$.

Enfin, les coordonnées de M sont donc $\left(x_A + \frac{x_B - x_A}{2}; y_A + \frac{y_B - y_A}{2}\right) = \left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}\right)$. \square

2 Vecteur directeur d'une droite

Définition

Soit (*d*) une droite passant par deux points distincts *A* et *B*. On appelle **vecteur directeur** de la droite (*d*) tout vecteur non nul \overrightarrow{u} colinéaire au vecteur \overrightarrow{AB} .

Exemples ightharpoonup Dans un repère, l'axe des abscisses admet pour vecteurs directeurs des vecteurs à coordonnées $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ ou $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$...

Soit (d) passant par A(5;2) et B(-1;3). \overrightarrow{AB} est un vecteur directeur de (d) dont on peut déterminer les coordonnées : $\overrightarrow{AB} \begin{pmatrix} -1-5 \\ 3-2 \end{pmatrix}$, c'est-à-dire, $\overrightarrow{AB} \begin{pmatrix} -6 \\ 1 \end{pmatrix}$.

On peut donc donner d'autres vecteurs directeurs de (d), colinéaires à \overrightarrow{AB} , comme $\overrightarrow{u} \begin{pmatrix} -12 \\ 2 \end{pmatrix}$ ou $\overrightarrow{v} \begin{pmatrix} 3 \\ -\frac{1}{2} \end{pmatrix}$.

Propriété

Une droite (*d*) peut être définie à partir d'un **vecteur directeur** \overrightarrow{u} et d'un **point** *A* par lequel elle passe. Ainsi, $M \in d \Leftrightarrow \overrightarrow{AM}$ et \overrightarrow{u} sont colinéaires.

Propriété

Soit (*d*) une droite. Dans un repère du plan, il existe *a*, *b* et *c* des nombres réels (avec $(a;b) \neq (0;0)$) tels que si *M* est un point de coordonnées (x;y):

$$M \in d \Leftrightarrow ax + by + c = 0$$

Cette équation est appelée **équation cartésienne** de (*d*).

Démonstration. Nous allons nous ramener à la propriété précédente qui donne aussi une caractérisation d'appartenance à (d). On sait que (d) est définie par un vecteur directeur $\overrightarrow{u} \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$

et $A(\alpha; \beta)$ un point du plan. Ainsi, si M(x; y), alors $\overrightarrow{AM} \begin{pmatrix} x - \alpha \\ y - \beta \end{pmatrix}$.

On utilise la propriété précédente et le critère de colinéarité par déterminant :

$$M \in (d) \Leftrightarrow \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ sont colinéaires}$$

 $\Leftrightarrow \det(\overrightarrow{AM}, \overrightarrow{u}) = 0$
 $\Leftrightarrow (x - \alpha)\delta - (y - \beta)\gamma = 0$
 $\Leftrightarrow \delta x - \gamma y + (\beta \gamma - \alpha \delta) = 0$

Notre propriété est bien démontrée en prenant $a = \delta$, $b = -\gamma$ et $c = \beta \gamma - \alpha \delta$. Notons bien que a et b ne sont jamais nuls simultanément car $\vec{u} \neq \vec{0}$.

Remarque Il existe une **infinité d'équations cartésiennes** pour une même droite. Elles sont toutes équivalentes en appliquant un même coefficient de proportionnalité (non nul) aux trois paramètres a, b et c.

Exemple Soit (d) la droite passant par A(3;2) et B(0;-3). Déterminons une équation cartésienne de (d).

 $\overrightarrow{AB} \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ est un vecteur directeur de (d). Soit M(x; y) un point du plan. Ainsi, $\overrightarrow{AM} \begin{pmatrix} x-3 \\ y-2 \end{pmatrix}$.

$$M \in (d) \Leftrightarrow \det(\overrightarrow{AM}, \overrightarrow{AB}) = 0$$

 $\Leftrightarrow -5(x-3) - (-3)(y-2) = 0$
 $\Leftrightarrow -5x + 15 + 3y - 6 = 0$
 $\Leftrightarrow -5x + 3y + 9 = 0$

Théorème | Droites parallèles

Soient (*d*) et (*d'*) deux droites d'équations cartésiennes respectives ax + by + c = 0 et a'x + b'y + c' = 0.

$$d / / d' \Leftrightarrow ab' - ba' = 0$$

Démonstration. Supposons que $b \neq 0$ et $b' \neq 0$ (si l'un des deux est nul, c'est trivial).

Soient
$$M_1\left(-1; \frac{a-c}{b}\right)$$
, $M_2\left(1; \frac{-a-c}{b}\right)$, $M_1'\left(-1; \frac{a'-c'}{b'}\right)$ et $M_2'\left(1; \frac{-a'-c'}{b'}\right)$.

On peut affirmer que M_1 et M_2 appartiennent à (d) mais aussi que M_1' et M_2' appartiennent à (d'). Pour M_1 par exemple, on vérifie que ses coordonnées sont compatibles avec l'équation cartésienne ax + by + c = 0. C'est le cas : $a \times (-1) + b \frac{a-c}{b} + c = -a + a - c + c = 0$.

On donne ainsi des vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} de (d) et (d').

$$\overrightarrow{u} = \overrightarrow{M_1 M_2} = \begin{pmatrix} 2 \\ -\frac{2a}{b} \end{pmatrix} \text{ et } \overrightarrow{v} = \overrightarrow{M_1' M_2'} = \begin{pmatrix} 2 \\ -\frac{2a'}{b'} \end{pmatrix}$$

Ainsi, (d) // $(d') \Leftrightarrow 2 \times \left(-\frac{2a'}{b'}\right) - 2 \times \left(-\frac{2a}{b}\right) = 0 \Leftrightarrow -4\frac{a'}{b'} + 4\frac{a}{b} = 0 \Leftrightarrow -a'b + ab' = 0$ (nous avons multiplié par $\frac{bb'}{4} \neq 0$).

Exemple Soient (*d*) et (*d'*) d'équations cartésiennes respectives 21x - 3y + 24 = 0 et -7x + y + 2 = 0.

(d) et (d') sont parallèles car $21 \times 1 - (-3) \times (-7) = 0$.

4 Équation réduite d'une droite

Propriété

Soit (*d*) une droite d'équation cartésienne ax + by + c = 0 ((a; b) \neq (0; 0)).

▶ Si b = 0, alors ax + by + c = 0 est équivalente à une **unique** équation de la forme x = k appelée **équation réduite de** (d), où $k \in \mathbb{R}$.

▶ Si $b \neq 0$, alors ax + by + c = 0 est équivalente à une **unique** équation de la forme y = mx + p appelée **équation réduite de** (d), où $m \in \mathbb{R}$ est le **coefficient directeur de** (d) et $p \in \mathbb{R}$ l'**ordonnée à l'origine de** (d).

Démonstration. ► Si b = 0, alors $a \neq 0$ et pour tout point M(x; y) de (d), on a :

$$ax + by + c = 0 \Leftrightarrow ax + c = 0 \Leftrightarrow x = -\frac{c}{a}$$

C'est-à-dire, $k = \frac{c}{a}$.

► Si $b \neq 0$, pour M(x; y) de (d):

$$ax + by + c = 0 \Leftrightarrow y = \frac{-ax - c}{b} \Leftrightarrow y = \frac{-a}{b}x + \frac{-c}{b}$$

C'est-à-dire, $m = -\frac{a}{b}$ et $p = -\frac{c}{b}$.

Exemples Soit (d) d'équation cartésienne 6x + 20 = 0.

Nous sommes dans le premier cas, on isole x et donc l'équation réduite de (d) est $x = -\frac{20}{6}$ ou plutôt $x = -\frac{10}{3}$.

► Soit (*d*) d'équation cartésienne $\frac{2}{3}x - \frac{5}{7}y = 0$. C'est le second cas, on isole *y* et ainsi :

$$\frac{2}{3}x - \frac{5}{7}y = 0 \Leftrightarrow \frac{5}{7}y = \frac{2}{3}x$$
$$\Leftrightarrow y = \frac{7}{5} \times \frac{2}{3}x$$
$$\Leftrightarrow y = \frac{14}{15}x.$$

Remarque Si l'équation réduite d'une droite est sous la deuxième forme y = mx + p, cette droite est la **représentation graphique d'une fonction affine** : c'est ainsi cohérent d'utiliser le même vocabulaire. Le coefficient directeur et l'ordonnée à l'origine peuvent donc aussi être déterminés graphiquement mais il est aussi souvent plus simple de tracer la droite qu'à partir de l'équation cartésienne.

Théorème | Droites parallèles

Soient (*d*) et (*d'*) d'équations réduites respectives y = mx + p et y = m'x + p'.

$$d / / d' \Leftrightarrow m = m'$$

Démonstration. On se ramène au résultat sur les équations cartésiennes. (*d*) et (*d'*) ont pour équations cartésiennes ax + by + c = 0 et a'x + b'y + c' = 0 avec $b \neq 0$ et $b' \neq 0$.

On sait que (d) // $(d') \Leftrightarrow ab' - ba' = 0$ et nous avons déjà vu que $m = -\frac{a}{b}$ et $m' = -\frac{a'}{b'}$. Donc, comme $bb' \neq 0$:

$$(d) // (d') \Leftrightarrow ab' - ba' = 0 \Leftrightarrow \frac{a}{b} - \frac{a'}{b'} = 0 \Leftrightarrow -m + m' = 0 \Leftrightarrow m = m'.$$

Exemple Soient f, g et h trois fonctions affines définies sur \mathbf{R} par : f(x) = 3x + 1, g(x) = 2x + 1 et h(x) = 3x - 10. Les représentations graphiques de f et h sont parallèles (même coefficient directeur) mais pas celles de h et h ou celles de h et h

