

Instituto Tecnológico de Buenos Aires

Trabajo Práctico N° 3

Teoría de Circuitos I 25.10

Grupo N° 2

Juan Bautista Correa Uranga Juan Ignacio Caorsi Rita Moschini

Legajo: 67026

Legajo: 65016

Legajo: 65532

Resumen

Índice

1.	Intr	oducción	3
	1.1.	Instrumental	3
	1.2.	Marco teórico	3
2		arrollo	4
	2.1.	Procedimiento	4
	2.2.	Mediciones	4
	2.3.	Cálculos	5
	2.4.	Ecuaciones utilizadas	5
	2.5.	Resultados	5
	2.6.	Análisis	6
3	Con	clusiones	6

1. Introducción

Este trabajo práctico aborda la respuesta transitoria en circuitos RLC serie. Se busca aplicar conceptos teóricos mediante mediciones reales, utilizando generador de señales y osciloscopio. Se analiza cómo varían las respuestas al modificar resistencia, inductancia y capacitancia, observando casos de subamortiguamiento, sobreamortiguamiento y amortiguamiento crítico. El objetivo es comprender la dinámica temporal de circuitos RLC y validar modelos teóricos con datos experimentales.

1.1 Instrumental

En esta experiencia se utilizaron los siguientes instrumentos:

- Osciloscopio Keysight DSOX 1202G con generador de ondas integrado.
- Capacitores de 47 pF y 470 pF.
- Resistencias de 220 Ω nominal y potenciómetro de 5 k Ω nominal.
- Inductor de resistencia indefinida, con inductancia aproximada de 1 mH.
- Multímetro UNI-T, Standar Digital multimeter, modelo: UT39C.

1.2 Marco teórico

Un circuito RLC serie está compuesto por una resistencia (R), una inductancia (L) y una capacitancia (C) conectadas en serie. Dependiendo de la resistencia del circuito, la respuesta transitoria puede ser subamortiguada, sobreamortiguada o críticamente amortiguada. La ecuación diferencial que describe la respuesta del circuito RLC serie es:

$$L\frac{d^{2}i(t)}{dt^{2}} + R\frac{di(t)}{dt} + \frac{1}{C}i(t) = V_{in}(t)$$
 (1)

y su solución general es la suma de la respuesta natural y la respuesta forzada: Para la respuesta natural $(V_{in}(t) = 0)$, se define:

$$\alpha = \frac{R}{2L}, \quad \omega_0 = \frac{1}{\sqrt{LC}}, \quad \Delta = \alpha^2 - \omega_0^2$$
 (2)

La solución general depende del valor de Δ :

• Sobreamortiguado ($\Delta > 0$):

$$i(t) = Ae^{(-\alpha + \sqrt{\Delta})t} + Be^{(-\alpha - \sqrt{\Delta})t}$$
(3)

• Críticamente amortiguado ($\Delta = 0$):

$$i(t) = (A + Bt)e^{-\alpha t} \tag{4}$$

• Subamortiguado ($\Delta < 0$):

$$i(t) = e^{-\alpha t} \left(A \cos(\omega_d t) + B \sin(\omega_d t) \right)$$
 (5)
donde $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

2. Desarrollo

2.1 Procedimiento

2.2 Mediciones

- $R_f = 215\Omega$
- $R_{V_{max}} = 9980\Omega$
- $\quad \blacksquare \ R_{V_{min}} = 2\Omega$
- $R_L = 0.8\Omega$
- $L \approx 1mH$

Capacitor de C = 470 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento fue crítico: $R_{critico}=1,9k\Omega$
- \blacksquare Tiempo τ en que la salida llegó a 3,175 V con R_V en su valor máximo: $\tau=5,75\mu s$
- Salida cuando $t = 5\tau$ con R_V en su valor máximo: V=3,175 V

Capacitor de C = 47 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento fue crítico: $R_{critico}=3,47k\Omega$
- \blacksquare Tiempo en que la salida llegó a 3,175 V con R_V en su valor crítico: $t=2,20\mu s$
- \blacksquare Tiempo en que la salida llegó a 5,24 V con R_V en su valor mínimo: $t=14,30\mu s$

 \blacksquare Tiempo en que la salida llegó a 4,982 V $(5V\pm 0,05V)$ con las resistencias cortocircuitadas: $t = 11 \mu s$

2.3 Cálculos

2.4 Ecuaciones utilizadas

Cálculo del valor de la resistencia variable tal que el amortiguamiento fuera crítico

$$\alpha_{serie} = \omega_0 \Rightarrow \frac{R}{2L} = \frac{1}{\sqrt{LC}}$$

$$R = \frac{2L}{\sqrt{LC}} \tag{6}$$

Cálculo de τ

Sabemos que $\alpha_{serie}=\frac{R}{2L}$ y $\tau=\frac{1}{\alpha}$ Tomando $R=R_f+R_V+R_L$, nos queda

$$\tau = \frac{2L}{R_f + R_V + R_L} \tag{7}$$

2.5 Resultados

Capacitor de C = 470 pF

1) Valor de la resistencia variable tal que el amortiguamiento fuera crítico:

$$R_{critico} = 2{,}702k\Omega \tag{8}$$

2) Cálculo del valor de τ para $R_V = R_{V_{max}} = 9980\Omega$:

$$\tau = 19,616\mu s \tag{9}$$

Capacitor de C = 47 pF

3) Valor de la resistencia variable tal que el amortiguamiento fuera crítico:

$$R_{critico} = 9,010k\Omega \tag{10}$$

4) Valor de τ para $R_V = R_{V_{min}}$:

$$\tau = 9,1827\mu s \tag{11}$$

6) Valor de τ para $R=R_L$ (resistencias cortocircuitadas):

$$\tau = 2500\mu s \tag{12}$$

2.6 Análisis

3. Conclusiones