FUNKSIYALARNI FORMULALAR KO'RINISHIDA IFODALASH

Reja:

- Bul funksiyalar, ularning usullari. Bul funksiyalari soni. Bul algebrasi.
- Ahamiyatli va ahamiyatsiz o'zgaruvchilar
- Bul funksiyalarning formulalar orqali amalga oshirilishi
- Ikkilamchi funksiyalar. Ikkilamchi prinsipi

Ma'lumki, mantiqiy amallar mulohazalar algebrasi nuqtai nazardan chinlik jadvallari bilan to'liq xarakterlanadi. Agarda funskiyaning jadval shaklda berilishini esga olsak, u vaqtda mulohazalar algebrasida ham funksiya tushunchasini aniqlashimiz mumkin.

Ta'rif. $x_1, x_2, ..., x_n$ mulohazalar algerbasining $x_1, x_2, ..., x_n$ argumentli $f(x_1, x_2, ..., x_n)$ funksiyasi deb nol va bir qiymat qabul funksiyaga aytiladi va uning $x_1, x_2, ..., x_n$ argumentlari ham nol va bir qiymatlar qabul qilinadi.

<u>Ta'rif</u>. F: $\{0,1\}^n$ -> $\{0,1\}$ funksiya mantiqiy algebraning funksiyasi yoki Bul funksiyasi to'plami P_n orqali belgilaymiz, ya'ni

Bir o'zgaruvchili funksiyalar 4 ta bo'lib, ular quyidagilar:

 $f_0(x)=0$ – aynan nolga teng funksiya yoki aynan yolg'on funksiya

$$f_1(x)=x - aynan funksiya$$

- inkor funksiya

 $f_3(x)=1$ – aynan birga teng funksiya yoki aynan chin funksiya

Argument	Bul funksiyalar					
	0	X	$\bar{x}, \neg x, x'$	1		
X	$f_o(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$		
1	0	1	0	1		
0	0	0	1	1		

Barcha ikki o'zgaruvchili funksiyalarni sanab o'tamiz.

X	v	0	٨			→	X	0	\bar{x}	\leftrightarrow	y	\bar{y}	V	1	1		1
Λ	1	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	1	1
1	0	0	0	1	0	0	1	1	0	0	0	1	1	1	0	1	1
0	1	0	0	0	1	0	0	1	1	0	1	0	1	1	1	0	1
0	0	0	0	0	0	1	0	0	1	1	0	1	0	1	1	1	1

Hammasi bo'lib 16 ta har xil iki o'zgaruvchili funksiyalar mavjud. Ularning ko'pchiligi maxsus nomlanadi:

$$g_1(x, y) = x \wedge y - \text{konyunksiya}$$

$$g_4(x, y) = x \downarrow y$$
 - Pirs strelkasi

 $g_6(x,y) = x \oplus y - 2$ modul bo'yicha qo'shish yoki Jegalkin yig'indisi Bul funksiyalarining qiymatlar jadvaliga chinlik jadvali deyiladi. Har qanday n o'lchovli $f(x_1, x_2, ..., x_n)$ Bul funksiyani chinlik jadvali orqali berish mumkin:

x	у	х⊕у
1	1	0
1	0	1
0	1	1
0	0	0

$$x \oplus y = \overline{x} \leftrightarrow \overline{y}$$

 $1 \oplus 1 = 2 = 2 \cdot 1 + 0$
 $1 \oplus 0 = 1 = 2 \cdot 0 + 1$
 $0 \oplus 1 = 1 = 2 \cdot 0 + 1$
 $0 \oplus 0 = 0 = 2 \cdot 0 + 0$
 $g_8(x,y) = x \leftrightarrow y - \text{ekvivalentlik}$
 $g_{11}(x,y) = x \lor y - \text{dizyunksiya}$
 $g_{12}(x,y) = x | y - \text{Sheffer shtrixi}$
 $g_{13}(x,y) = x \rightarrow y - \text{implikatsiya}$

Bul funksiyalarining qiymatlar jadvaliga chinlik jadvali deyiladi. Har qanday n o'lchovli f($x_1,x_2,...,x_n$) Bul funksiyani chinlik jadvali orqali berish mumkin:

•	\	·	 	
	\mathbf{x}_{1}	\mathbf{x}_2	 X_n	$f(x_1, x_2,, x_n)$
	0	0	 0	λ_1
	1	0	 0	λ_2
	0	1	 0	λ_3
	1	1	 1	λ_{2n}

bu yerda $\lambda_i \in \{0,1\}$, $i=1,2,...,2^n$. Bu jadval 2^n ta satr bo'lib, ularga 2^{2^n} ta har xil ustunlar mos qo'yish mumkin. Lekin bunday har bir ustun biror n o'zgaruvchili Bul funksiyaga mos keladi. Shunday qilib, quyidagi teorema isbotlandi:

<u>Teorema</u>. N o'zgaruvchili har xil Bul funksiyalarining soni 2^{2^n} ga teng, ya'ni $|P_n|=2^{2^n}$

Bul algebrasi

<u>**Teorema**</u>. Konyunksiya $(x \land y)$, dizyunksiya $(x \lor y)$, inkor (\bar{x}) amallari va $0,1 \in M$ elementlari uchun quyidagi amallar:

$\bar{\bar{x}} = x$	$x \wedge y = y \wedge x$	$x \wedge (y \wedge z) = (x \wedge y) \wedge z$
$\underline{x \lor y} = \bar{x} \land \bar{y}$	$x \lor y = y \lor x$	$x \lor (y \lor z) = (x \lor y) \lor z$
$x \wedge y = \bar{x} \vee \bar{y}$	$x \lor y = x$	$x \lor (y \land z) = (x \lor y) \land (x \lor x)$
$x \wedge x = x$	$1 \land x = x$	$0 \forall x = x$

bajarilsa, bunday M to'plamga Bul algebrasi deyiladi.

Mulohazalar to'plami uchun konyunksiya (Λ), dizyunksiya(V), inkor(\neg , -) amallari va {0,1} elementlari aniqlangani uchun, bu to'plam Bul algebrasi bo'ladi.

Ta'rif. Agar o'zgaruvchining shunday $a_1, a_2,...,a_{i-1},a_i,...,a_n$ qiymatlar majmuasi mavjud bo'lib, $f(a_1, a_2,...,a_{i-1}, I,a_i,...,a_n) = f(a_1, a_2,...,a_{i-1},0,a_i,...,a_n)$ munosabat bajarilsa, u vaqtda x_i o'zgaruvchiga $f(x_1,x_2,...,x_n)$ funksiyaning nomuhim (sohta) o'zgaruvchisi, agar $f(a_1, a_2,...,a_{i-1}, I,a_i,...,a_n) \neq f(a_1, a_2,...,a_{i-1},0,a_i,...,a_n)$ munosabat bajarilsa, u vaqtda x_i o'zgaruvchiga $f(x_1,x_2,...,x_n)$ funksiyaning muhim (sohta emas) o'zgaruvchisi deb ataladi.

Misol. $f(x,y) = xV(x \wedge y)$ funksiyada y o'zgaruvchi sohta bo'ladi. Haqiqatdan, x = 1, y = 0 $da f(1,0) = 1V(1 \wedge 0) = 1$ x = 1, y = 1 $da f(1,0) = 1V(1 \wedge 0) = 1$ ya'ni f(1,0) = f(1,1)

Misol. f₁,f₂ va f₃ funksiyalar quyidagi chinlik jadvali orqali berilgan bo'lsin:

x	у	f_1	f_2	f_3
1	1	0	1	1
1	0	0	1	0
0	1	1	1	0
0	0	1	1	0

Ko'rinib turibdiki, f₁ funksiya uchun x o'zgaruvchi muhim o'zgaruvchi, u esa nomuhim, f₂ uchun ikkala o'zgaruvchi ham nomuhim, f₃ uchun ikkala o'zgaruvchi ham muhim.

 $\Phi = \{f_1, f_2, ..., f_n\}$ Bul funksiyalar to'plami berilgan bo'lsin.

Ta'rifΦ to'plam ustida aniqlangan formula deb, $F(\Phi)=f(t_1,t_2,...,t_n)$ ifodaga aytiladi, bu yerda $f\in\Phi$ va $t_i\Phi$ ustidagi yoki o'zgaruvchi, yoki formula.

Φ to'plam bazis, f tashqi funksiya, t_i lar esa qism formulalar deyiladi. Har qanday F formulaga bir qiymatli biror f Bul funksiyasi mos keladi. Bu holda F formula f funksiyani ifodalaydi deyiladi va f=funcF ko'rinishida belgilanadi.

Bazis funksiyalarini chinlik jadvalini bilgan holda, bu formula ifodalaydigan funksiyaning chinlik jadvalini hisoblashimiz mumkin.

$\underline{\mathbf{Misol}}.\ \Phi = \{ \bigwedge_{\underline{\oplus}} \} \ va\ F = (x \land y) \to x$									
	χ	у	$x \wedge y$	$F = (x \land y) \to x$					
	1	1	1	1					
	1	0	0	1					
	0	1	0	1					
	0	0	0	1					
·									

F formulaga mos keluvchi f funksiyani Φ dan olingan funksiyalarning superpozitsiyasi, f funksiyani Φ dan hosil qilinish jarayonini superpozitsiya amali deb ataymiz.

Misol. $f(x_1, x_2, x_3) = ((x_1 \land x_2) \lor x_1) \rightarrow x_3$ formula berilgan bo'lsin. $((x_1 \land x_2) \lor x_1) \rightarrow x_3$ formula uchta qadamda ko'riladi. Haqiqatdan, biz quyidagi uchta qism formulalarga ega bo'lamiz:

 $(x_1 \wedge x_2) ((x_1 \wedge x_2) \vee x_1), ((x_1 \wedge x_2) \vee x_1) \rightarrow x_3$

x_1	x_2	χ_3	$x_1 \wedge x_2$	$(x_1 \wedge x_2) \vee x_1$	$((x_1 \land x_2) \lor x_1) \to x_3$
1	1	1	1	1	1
1	1	0	1	1	0
1	0	1	0	1	1
1	0	0	0	1	0
0	1	1	0	0	1
0	1	0	0	0	1
0	0	1	0	0	1
0	0	0	0	0	1

Biz yuqorida ko'rdikki, Φ to'plamdan hosil qilingan har bir formulaga mantiq algebrasining formulasi mos keladi, biroq har xil formulalarga teng funksiyalar mos kelishi mumkin.

Ta'rif Bitta Bul funksiyasini ifodalovchi formulalar ekvivalent deyiladi, ya'ni

$$F_1 = F_2 \Leftrightarrow funcF_1 = funcF_2$$

Teorema. Ixtiyoriy f,g,h Bul funksiyalar uchun quyidagi ekvivalentliklar o'rinli:

- 1. $\bar{f} = f$
- 2. Konyunksiya, dizyunksiya va ikki modul bo'yicha qo'shishning idempotentligi: $f \wedge f = f$, $f \vee f = f$, $f \oplus f = f$
- Konyunksiya, dizyunksiyava ikki modul bo'yicha qo'shishning kommunikativligi:

$$f \wedge g = g \wedge f$$
, $f \vee g = g \vee f$, $f \oplus g = g \oplus f$

4. Konyunksiya, dizyunksiya va ikki modul bo'yicha qo'shishning assotsiativligi: $f \wedge (g \wedge h) = (f \wedge g) \wedge h$, $f \vee (g \vee h) = (f \vee g) \vee h$, $f \oplus (g \oplus h) = (f \oplus g) \oplus h$

5. Distributivlik qonunlari:

$$f \wedge (g \wedge h) = (f \wedge g) \vee (f \wedge h), \quad f \vee (g \wedge h) = (f \vee g) \wedge (f \vee h), \quad (f \wedge g) \oplus (f \wedge h)$$

6. Yutish qonuni:

$$f \wedge (f \vee g) = g$$
, $f \vee (f \wedge g) = f$

7. De Morgan qonuni:

8.
$$\overline{f \vee g} = \overline{f} \wedge \overline{g}, \ \overline{f \wedge g} = \overline{f} \vee \overline{g},$$

9.
$$fV\bar{f} = 1$$
, $f\Lambda\bar{f} = 0$

10.
$$f \rightarrow g = \bar{g} \rightarrow \bar{f}$$

11.Implikatsiyani yo'qotish qonuni:

$$f \leftrightarrow g = \bar{f} \nabla g$$

12. Ekvivalentlikni yo'qotish qoidasi:

$$f \leftrightarrow g = (f \to g) \land (g \to f)$$

13.
$$\bar{f} = f | f = f \downarrow f = f \oplus 1$$

14.
$$f|g = \overline{(f \land g)}, \quad f \downarrow g = \overline{f \lor g}$$

$$15.f \lor g = (f|f)|(g|g), \ f \land g = (f \downarrow f) \downarrow (g \downarrow g), \ f \rightarrow g = f|(g|g)$$

16.
$$f \oplus g = f \leftrightarrow g$$

Ta'rif. $f(x_1,x_2,...,x_n) \in P_n$ bul funksiya bo'lsin, unda

 $f^*(x_1, \overline{x_2, \dots, x_n}) = \overline{f^*(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$ funksiya, f bul funksiyaga ikkilamchi bo'lgan funksiya deyiladi.

Bu ta'rifdan bevosita, ixtiyoriy f bul funksiyasi uchun f**=f ekanligi kelib chiqadi. Haqiqatdan,

$$f^{**} = (f^*)^* = (\overline{f^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})})^* = \overline{f^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})} = f(x_1, x_2, ..., x_n) = f.$$
Misol. a) $f = x \lor g$, $f^* = ?$ b) $g = x$, $g^* = ?$ c) $h = \overline{x}$, $h^* = ?$
Yechish.

$$a)f^* = \overline{\bar{x}} \sqrt{\bar{g}} = \bar{\bar{x}} \wedge \bar{\bar{g}} = x \wedge g;$$

$$b)g^* = \overline{(\bar{x})} = x = g, \qquad g^* = g$$

$$c)h^* = \overline{(\bar{\bar{x}})} = \bar{x} = h$$

Ta'rif. Agar f*=f bo'lsa, f funksiya o'z-o'ziga ikkilamchi deyiladi.

Yuqoridagi misoldan ko'rinadiki, inkor va aynan funksiya o'z-o'ziga ikkilamchi, dizyunksiya funksiya o'z-o'ziga ikkilamchi emas.

Isbot.

$$\varphi^*(\overline{x_1}, x_2, ..., x_n) = \overline{\varphi}(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}) = func\overline{f}(f_1(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}), ..., f_n(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})) = func\overline{f}(\overline{f_1}(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}), ..., \overline{f_n}(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})) = func\overline{f}(\overline{f_1}^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}), ..., \overline{f_n}^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})) = func\overline{f}(f_1^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n}), ..., f_n^*(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})).$$
 Teorema isbotlandi.

Keyingi teorema "ikkilamchi prinsipli" deb nomlanadi va matematik induksiya usuli bilan isbotlanadi. Bunda induksiya o'tishlar yuqoridagi isbotlangan teorema asosida amalga oshiriladi.

Teorema. (Ikkilamchi prinsipli)

 $\Phi = \{f_1, f_2, ..., f_n\}$ va $\Phi^* = \{f_1^*, f_2^*, ..., f_m^*\}$ - bazislar bo'lsin. U holda, agar F formula Φ bazisda f funksiyani ifodalasa, unda F formuladan f_i ni uni ikkilamchi f_i^* funksiyaga almashtirish natijasida hosil qilingan F* formula Φ bazisda f* funksiyani ifodalaydi, ya'ni

$$f = func[\Phi]u \Rightarrow f^* = funcF^*[\Phi^*], bu \ yerda \ F^*[\Phi^*] = F[\Phi]\{f_i^*|f_i\}_{i=1}^m$$