Полюс и поляра

- 1. Дана окружность ω с центром O радиуса R. Для произвольной точки A, отличной от O, найдите геометрическое место точек X таких, что $\overrightarrow{OA} \cdot \overrightarrow{OX} = R^2$.
- **2.** Докажите, что точки A, B и C лежат на одной прямой тогда и только тогда, когда их поляры a, b и c проходят через одну точку или параллельны.
- 3. Вписанная окружность ω треугольника ABC касается сторон BC, AC и AB в точках A_1 , B_1 , C_1 соответственно. Построим окружность, проходящую через точки B и C и касающуюся ω в точке A_2 . Точки B_2 , C_2 строятся аналогично. Докажите, что прямые A_1A_2 , B_1B_2 , C_1C_2 проходят через одну точку.
- 4. Окружности ω_1 и ω_2 касаются друг друга внешним образом в точке P. Из точки A окружности ω_2 , не лежащей на линии центров окружностей, проведены касательные AB, AC к ω_1 . Прямые BP, CP вторично пересекают ω_2 в точках E и F. Докажите, что прямая EF, касательная к ω_2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке.
- **5.** Секущие ℓ , m, проходящие через точку $A \notin \omega$, пересекают ω в точках L_1 , L_2 и M_1 , M_2 соответственно. Докажите, что $L_1M_1 \cap L_2M_2 \in a$ или $L_1M_1 \parallel L_2M_2 \parallel a$.
- **6.** (Брокар) Четырёхугольник ABCD вписан в окружность с центром O. Пусть $E = AB \cap CD$, $F = AD \cap BC$, $G = AC \cap BD$. Докажите, что O ортоцентр $\triangle EFG$.
- 7. Используя только линейку, построите перпендикуляр из данной точки P, лежащей на полуокружности с диаметром AB, к этому диаметру.