

Page 1 of 56

APPLICATION CERTIFICATION FCC Part 15C On Behalf of I-SYST Inc.

BLE Module Model No.: IMM-NRF52832-NANO

FCC ID: 2ALTY-52832NANO

Prepared for : I-SYST Inc.

Address : 212-6415 Corbiere, Brossard, QC., Canada J4Z OH7

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20180553
Date of Test : April 17, 2018
Date of Report : April 19, 2018

Report No.: ATE20180553 Page 2 of 56

TABLE OF CONTENTS

Description	Page

Test Report Certification

1.	GF	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	6
2.	Ml	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OF	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	8
4.	TE	EST PROCEDURES AND RESULTS	9
5.	PC	OWER LINE CONDUCTED MEASUREMENT	10
	5.1.	Block Diagram of Test Setup	
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	11
	5.6.	Data Sample	12
	5.7.	Power Line Conducted Emission Measurement Results	12
6.	6 D	B BANDWIDTH MEASUREMENT	17
	6.1.	Block Diagram of Test Setup	17
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3.	EUT Configuration on Measurement	17
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	\mathbf{M}_{A}	AXIMUM PEAK OUTPUT POWER	22
	7.1.	Block Diagram of Test Setup	22
	7.2.	The Requirement For Section 15.247(b)(3)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	23
8.	PC	OWER SPECTRAL DENSITY MEASUREMENT	27
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(e)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	BA	AND EDGE COMPLIANCE TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(d)	
	9.3.	EUT Configuration on Measurement	32

9.4.	Operating Condition of EUT	32
9.5.	Operating Condition of EUT Test Procedure	33
9.6.	Test Result	33
10. RA	ADIATED SPURIOUS EMISSION TEST	39
10.1.	Block Diagram of Test Setup	39
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	41
10.4.	Configuration of EUT on Measurement	41
10.5.	Operating Condition of EUT	42
10.6.	Test Procedure	42
10.7.	Data Sample	43
10.8.	The Field Strength of Radiation Emission Measurement Results	43
11. AN	TENNA REQUIREMENT	56
11.1.	The Requirement	
11.2.	Antenna Construction	

Page 4 of 56

Test Report Certification

Applicant : I-SYST Inc.

Manufacturer : I-SYST Inc.

EUT Description : BLE Module

Model No. : IMM-NRF52832-NANO

Trade Name : I-SYST

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	April 17, 2018
Date of Report :	April 19, 2018
Prepared by :	(St. Yang Englisher) Approved 3
Approved & Authorized Signer :	(Sean Liu, Manager)

Page 5 of 56

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : BLE Module

Model Number : IMM-NRF52832-NANO

Bluetooth version : V5.0 BLE

Frequency Range : 2402MHz-2480MHz

Number of Channels : 40

Antenna Gain : 1dBi

Antenna type : ceramic antenna

Power Supply : DC 3.3V

Modulation mode : GFSK

Hardware version : 1.0

Software version : 1.0

Applicant : I-SYST Inc.

Address : 212-6415 Corbiere, Brossard, QC., Canada J4Z OH7

Manufacturer : I-SYST Inc.

Address : 212-6415 Corbiere, Brossard, QC., Canada J4Z OH7

1.2. Carrier Frequency of Channels

Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channe 1	Frequeeny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Page 6 of 56

1.3. Special Accessory and Auxiliary Equipment

USB to A serial port plate (provided by Manufacturer)

Notebook PC	•	Manufacturer: LENOVO
(provided by laboratory)		M/N: 4290-RT8
		S/N: R9-FW93G 11/08

1.4. Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm • Shenzhen Accurate Technology Co., Ltd.

Site Location · 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 06, 2018	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 06, 2018	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU1183540-01	3791	Jan. 06, 2018	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 06, 2018	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 06, 2018	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 06, 2018	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 06, 2018	1 Year
Temporary antenna connector	NTGS	14AE	N/A	Apr. 17, 2018	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Page 8 of 56

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: BLE Transmitting mode

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

Note: The Bluetooth has been tested under continuous transmission mode.

Its duty cycle setting is greater than 98%.

EUT is connected to a computer through the usb-serial controller tool and Use test software to set the test mode.

Test software is (nrfgostudio_win-32_1.21.2_installer)

3.2. Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20180553 Page 10 of 56

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

(EUT: BLE Module)

5.1.2. Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 11 of 56

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)			
(MHz)	Quasi-peak Level	Average Level		
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *		
0.50 - 5.00	56.0	46.0		
5.00 - 30.00	60.0	50.0		

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 12 of 56

5.6.Data Sample

	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
Frequency	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	11.1	41.8	32.0	56.0	46.0	14.2	14.0	Pass

$$\begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$

Calculation Formula:

Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

5.7. Power Line Conducted Emission Measurement Results

Pass.

Test Lab: Shielding room Test Engineer: Star

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

Page 13 of 56

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

BLE Module M/N:IMM-NRF52832-NANO EUT:

Manufacturer: I-SYST Inc. Operating Condition: BT Communication Test Site: 1#Shielding Room Star Operator:

Test Specification: N 240V/60Hz

Report NO.:ATE20180533 17/4/2018 / 5:04:56PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SUB_STD_VTERM2 1.70 Stop Step ΙF Transducer Start Detector Meas. Bandw. Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TXJ-1101 fin"

	018 5:08 quency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.	350000	22.50	10.6	59	36.5	OP	N	GND
0.	420000	28.60	10.7	57	28.8	ÕP	N	GND
1.	080000	20.30	10.9	56	35.7	OP	N	GND
3.	010000	31.10	11.1	56	24.9	ÕP	N	GND
8.	790000	18.00	11.3	60	42.0	QΡ	N	GND
22.	030000	28.20	11.4	60	31.8	OP	N	GND

MEASUREMENT RESULT: "TXJ-1101 fin2"

17/4/2018 5:0 Frequency MHz	8PM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.345000	14.00	10.6	49	35.1	AV	N	GND
0.425000	19.10	10.7	47	28.2	AV	N	GND
1.025000	11.20	10.8	46	34.8	AV	N	GND
3.070000	12.50	11.1	46	33.5	AV	N	GND
9.540000	10.00	11.3	50	40.0	AV	N	GND
23.440000	17.10	11.5	50	32.9	AV	N	GND

Report No.: ATE20180553 Page 14 of 56

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: BLE Module M/N:IMM-NRF52832-NANO

Manufacturer: I-SYST Inc. Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: Star

Test Specification: L 240V/60Hz

Report NO.:ATE20180533 17/4/2018 / 5:09:44PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SU _SUB_STD_VTERM2 1.70 Step ΙF Start Detector Meas. Transducer Stop Bandw. Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TXJ-1102 fin"

	18 5:14 uency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.3	35000	28.10	10.6	59	31.2	QP	L1	GND
0.4	25000	33.20	10.7	57	24.1	Q̈́Ρ	L1	GND
0.9	80000	24.00	10.8	56	32.0	QP	L1	GND
3.0	80000	29.90	11.1	56	26.1	QP	L1	GND
7.3	80000	22.90	11.2	60	37.1	QP	L1	GND
21.4	90000	26.90	11.4	60	33.1	QP	L1	GND

MEASUREMENT RESULT: "TXJ-1102 fin2"

17/4/2018 5	:14PM						
Frequency			Limit	_	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.340000	16.90	10.6	49	32.3	AV	L1	GND
0.425000	21.20	10.7	47	26.1	AV	L1	GND
0.890000	13.10	10.8	46	32.9	AV	L1	GND
3.060000	12.50	11.1	46	33.5	AV	L1	GND
8.920000	14.00	11.3	50	36.0	AV	L1	GND
22.495000	16.70	11.4	50	33.3	AV	L1	GND

Page 15 of 56

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT: BLE Module M/N:IMM-NRF52832-NANO

Manufacturer: I-SYST Inc. Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: Star

Test Specification: L 120V/60Hz

Report NO.:ATE20180533 17/4/2018 / 5:15:15PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: __SU _SUB_STD_VTERM2 1.70 Step Detector Meas. ΙF Transducer Start Stop Bandw. Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TXJ-1103 fin"

17/4/201 Freque			Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.36	0000	25.50	10.6	59	33.2	QP	L1	GND
0.43	0000	31.30	10.7	57	26.0	QP	L1	GND
0.89	5000	22.10	10.8	56	33.9	QP	L1	GND
3.12	0000	25.00	11.1	56	31.0	QP	L1	GND
7.76	0000	19.30	11.2	60	40.7	QP	L1	GND
21.32	5000	29.10	11.4	60	30.9	OP	L1	GND

MEASUREMENT RESULT: "TXJ-1103_fin2"

17/4/2018 5: Frequency MHz	18PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.360000	14.30	10.6	49	34.4	AV	L1	GND
0.430000	20.20	10.7	47	27.1	AV	L1	GND
0.885000	11.70	10.8	46	34.3	AV	L1 $L1$	GND
4.640000	11.10	11.1	46	34.9	AV		GND
5.860000	12.10	11.2	50	37.9	AV	L1	GND
21.760000	19.00	11.4	50	31.0	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

BLE Module M/N:IMM-NRF52832-NANO EUT:

Manufacturer: I-SYST Inc. Operating Condition: BT Communication Test Site: 1#Shielding Room Star Operator:

Test Specification: N 120V/60Hz

Report NO.:ATE20180533 17/4/2018 / 5:23:26PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SUI
Start Stop Step __SUB_STD_VTERM2 1.70 Detector Meas. Stop ΙF Transducer Bandw. Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average QuasiPeak 1.0 s 150.0 kHz 30.0 MHz 5.0 kHz 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TXJ-1104 fin"

17/4/2018 5 Frequency MHz	y Level	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.345000	19.90	10.6	59	39.2	QP	N	GND
0.430000	26.60	10.7	57	30.7	Q̈́Ρ	N	GND
1.135000	13.20	10.9	56	42.8	QP	N	GND
2.860000	26.80	11.0	56	29.2	Q̈́Ρ	N	GND
7.880000	13.00	11.2	60	47.0	QΡ	N	GND
21.400000	31.00	11.4	60	29.0	QP	N	GND

MEASUREMENT RESULT: "TXJ-1104 fin2"

17/4/201 Frequ	.8 5:24 nency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.35	5000	11.90	10.6	49	36.9	AV	N	GND
0.43	30000	19.10	10.7	47	28.2	AV	N	GND
0.89	0000	10.10	10.8	46	35.9	AV	N	GND
2.86	0000	10.70	11.0	46	35.3	AV	N	GND
7.36	0000	9.00	11.2	50	41.0	AV	N	GND
22.25	55000	18.40	11.4	50	31.6	ΑV	N	GND

Page 17 of 56

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

(EUT: BLE Module)

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result

Test Lab: Shielding room Test Engineer: Star

Note: We tested the rates of all the mode and recorded the worst case data

Channel	Frequency	6 dB Ba (Ml		Minimum	Results	
	(MHz)	1M Rate	2M Rate	Limit(MHz)		
0	2402	0.492	0.680	0.5	PASS	
19	2440	0.496	0.696	0.5	PASS	
39	2480	0.488	0.676	0.5	PASS	

The spectrum analyzer plots are attached as below.

1M Rate:

2M Rate:

channel 0

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

(EUT: BLE Module)

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3MHz.
- 7.5.3.Measurement the maximum peak output power.

7.6.Test Result

Test Lab: Shielding room Test Engineer: Star

Note: We tested the rates of all the mode and recorded the worst case data

Channel	Frequency (MHz)	Peak Power Output (dBm) 1M Rate 2M Rate				Peak Power Limit (dBm)	Results
				(ubiii)			
0	2402	-2.27	-2.08	30	PASS		
19	2440	-2.38	-1.94	30	PASS		
39	2480	-2.71	-2.71	30	PASS		

The spectrum analyzer plots are attached as below.

1M Rate:

2M Rate:

channel 0

Report No.: ATE20180553 Page 27 of 56

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

(EUT: BLE Module)

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

Page 28 of 56

8.5.Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.
- 8.5.4. Measurement the maximum power spectral density.

8.6.Test Result

Test Lab: Shielding room Test Engineer: Star

Note: We tested the rates of all the mode and recorded the worst case data

CHANNEL NUMBER	FREQUENCY (MHz)	(dRm/3KH7)		LIMIT (dBm/3KHz)	Results
NOMBER	(WILL)			(dDill/3ixiiz)	
0	2402	-16.44	-15.88	8	PASS
19	2440	-15.51	-16.56	8	PASS
39	2480	-16.17	-16.84	8	PASS

The spectrum analyzer plots are attached as below.

1M Rate:

channel 0

2M Rate:

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

(EUT: BLE Module)

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Page 33 of 56

9.5. Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 9.5.5. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 9.5.8.RBW=1MHz, VBW=1MHz
- 9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass.

Test Lab: Shielding room Test Engineer: Star

Note: We tested the rates of all the mode and recorded the worst case(2M rates) data

Conducted Band Edge Result

2M rates:

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.402GHz	47.11	20
39	2.480GHz	46.86	20

Report No.: ATE20180553 Page 35 of 56

Radiated Band Edge Result: 2M Rates

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2017 #1136

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V Date: 18/04/17/

Time: 9/48/58

Engineer Signature: star

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	39.40	-6.32	33.08	74.00	-40.92	peak	150	106	
2	2390.000	31.87	-6.32	25.55	54.00	-28.45	AVG	150	124	
3	2400.000	44.11	-6.27	37.84	74.00	-36.16	peak	150	263	
4	2400.000	36.11	-6.27	29.84	54.00	-24.16	AVG	150	199	

TC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 36 of 56

Job No.: star2017 #1135

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/46/57

Engineer Signature: star

Distance: 3m

2

3

4

2390,000

2400.000

2400.000

30.14

39.54

32.93

-6.32

-6.27

-6.27

23.82

33.27

26.66

54.00

74.00

54.00

-30.18

-40.73

-27.34

AVG

peak

AVG

150

150

150

275

258

132

ATC[®]

Page 37 of 56

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Job No.: star2017 #1137

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/56/06

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	42.73	-5.89	36.84	74.00	-37.16	peak	200	248	
2	2483.500	34.00	-5.89	28.11	54.00	-25.89	AVG	200	181	
3	2500.000	41.48	-5.81	35.67	74.00	-38.33	peak	200	111	
4	2500.000	33.48	-5.81	27.67	54.00	-26.33	AVG	200	97	

Report No.: ATE20180553 Page 38 of 56

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2017 #1138

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note:

Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/59/03

Engineer Signature: star

Distance: 3m

									limit1:		
90			1	ererieserrysers		2000000000		220222242	limit2:		
50											
80	***************************************				**********			******		********	
70				**********	*********	*22993293					
60											
50				**********	********			>+			
		(
40			L.	3				المنسيان أن	Landana	nu mananala	
40 30	some some some some some	m Herry work and	2	washing will have	war an wellen and her	ndjord lister when	apidikrultenapernosta	in the lange of	Loudesterostu	rugativativativativativativativativativativ	
	aterization designation of the control of	Municipality	Sylver the trusphale	wadana walaban	ometra and block received be	edjaret to to conserve	apablyrus promoter and a	entrolled control	i konsketenniku	rugan was weekless	
30	atropassa designo sek panjarit	Managerian	Salar Martin Josephan	J Walter Land Hook Land	and have no shiften and her	ndjarthibu vona	opdflowd the applicated	un't who bearing to	i, London de la companya della companya de la companya de la companya della companya della companya de la companya della compa	ngga, was an	
30 20		n Maranes de la Constitución de	Shartmatery hear	g waterwayship	and the contract of the contra	ndjaret lakurrone	gyddig w ^{hi} ll aggl sawlet.	entertablement de	s. konskrenovsku	rugaman kan awakan	
30 20 10 0.0		Mariner	Sharton to white	g was will be hard	and the control of th	adja di laku unan d	ggillig vil Te-agrip v melete	artical description	i knisketunisu	2600.0	
30 20 10 0.0		Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)		

Note:

3

4

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

35.36

27.13

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

74.00

54.00

-38.64

-26.87

150

150

peak

AVG

206

199

Result = Reading + Corrected Factor

41.17

32.94

-5.81

-5.81

2500.000

2500.000

10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Page 41 of 56

10.3. Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20180553

Page 42 of 56

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz, and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 26.5GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading.

Report No.: ATE20180553

Page 43 of 56

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	28.66	-15.19	13.47	40.0	-26.53	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m)-Limit(dB\mu V/m)$ $Result(dB\mu V/m)= Reading(dB\mu V)+ Factor(dB/m)$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8. The Field Strength of Radiation Emission Measurement Results

Pass.

Test Lab: 3m Anechoic chamber

Test Engineer: Star

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The radiation emissions from 9kHz-30MHz and 18-26.5GHz are not reported, because the test values lower than the limits of 20dB.
- 4. We tested the rates of all the mode and recorded the worst case(2M rates) data

Report No.: ATE20180553 Page 44 of 56

Below 1GHz: 2M Rates

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2017 #1123

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Report No.:ATE20180553

Manufacturer: I-SYST Inc.

Note:

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/03/02

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	53.9450	50.71	-26.84	23.87	40.00	-16.13	QP	200	118	
2	100.4711	49.08	-28.05	21.03	43.50	-22.47	QP	200	134	
3	130.7632	50.13	-27.73	22.40	43.50	-21.10	QP	200	98	
4	147.8745	51.42	-28.05	23.37	43.50	-20.13	QP	200	129	
5	403.9334	43.31	-18.23	25.08	46.00	-20.92	QP	200	200	
6	464.8867	39.78	-16.83	22.95	46.00	-23.05	QP	200	207	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 45 of 56

Job No.: star2017 #1124

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V Date: 18/04/17/

Time: 9/03/53

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	54.1349	48.40	-26.88	21.52	40.00	-18.48	QP	100	76	
2	67.3109	47.58	-27.39	20.19	40.00	-19.81	QP	100	171	
3	87.9136	48.31	-27.43	20.88	40.00	-19.12	QP	100	326	
4	99.7676	47.51	-28.00	19.51	43.50	-23.99	QP	100	274	
5	131.2235	45.94	-27.74	18.20	43.50	-25.30	QP	100	205	
6	296.5023	45.98	-21.36	24.62	46.00	-21.38	QP	100	199	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 46 of 56

Job No.: star2017 #1126

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2440MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/05/32

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	54.1349	56.50	-26.88	29.62	40.00	-10.38	QP	200	142	
2	67.7856	49.96	-27.40	22.56	40.00	-17.44	QP	200	155	
3	75.5858	48.08	-27.67	20.41	40.00	-19.59	QP	200	177	
4	88.2229	54.53	-27.44	27.09	43.50	-16.41	QP	200	296	
5	99.7676	46.13	-28.00	18.13	43.50	-25.37	QP	200	344	
6	146.8392	45.88	-28.06	17.82	43.50	-25.68	QP	200	302	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 47 of 56

Job No.: star2017 #1125

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2440MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/04/43

Engineer Signature: star

Distance: 3m

40.00

43.50

43.50

46.00

-18.95

-23.00

-21.13

-23.12

QP

QP

QP

QP

100

100

100

100

208

214

193

200

87.9136

99.4176

204.3052

245.2606

48.48

48.47

46.55

46.55

-27.43

-27.97

-24.18

-23.67

21.05

20.50

22.37

22.88

3

4

5

6

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 48 of 56

Job No.: star2017 #1127

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/06/50

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	Ī
1	53.7559	57.56	-26.81	30.75	40.00	-9.25	QP	200	68		
2	67.5478	51.24	-27.39	23.85	40.00	-16.15	QP	200	112		
3	75.3208	48.85	-27.68	21.17	40.00	-18.83	QP	200	47		ī
4	87.9136	56.01	-27.43	28.58	40.00	-11.42	QP	200	272		
5	100.1188	47.38	-28.04	19.34	43.50	-24.16	QP	200	269		
6	145.2995	46.73	-28.04	18.69	43.50	-24.81	QP	200	300		

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 49 of 56

Job No.: star2017 #1128

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/08/13

Engineer Signature: star

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	54.1349	49.33	-26.88	22.45	40.00	-17.55	QP	100	144		
2	67.7856	52.30	-27.40	24.90	40.00	-15.10	QP	100	198		
3	87.6051	49.85	-27.44	22.41	40.00	-17.59	QP	100	201		
4	103.6989	47.89	-28.11	19.78	43.50	-23.72	QP	100	211		
5	219.9499	46.41	-24.02	22.39	46.00	-23.61	QP	100	178		
6	658.2854	41.87	-12.44	29.43	46.00	-16.57	QP	100	159		

Report No.: ATE20180553 Page 50 of 56

Above 1GHz: 2M Rates

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2017 #1130

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: **BLE Module** Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note:

Report No.:ATE20180553

Horizontal Polarization:

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/14/47

Engineer Signature: star

Distance: 3m

74.00

-24.01

peak

200

123

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 51 of 56

Job No.: star2017 #1129

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2402MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/13/42

Engineer Signature: star

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 52 of 56

Job No.: star2017 #1131

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2440MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/16/25

Engineer Signature: star

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 53 of 56

Job No.: star2017 #1132

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: **BLE Module** Mode: TX 2440MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/18/41

Engineer Signature: star

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 54 of 56

Job No.: star2017 #1134

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note:

Report No.:ATE20180553

Polarization: Horizontal

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/21/18

Engineer Signature: star

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180553

Page 55 of 56

Job No.: star2017 #1133

Standard: FCC Class C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: BLE Module Mode: TX 2480MHz

Model: IMM-NRF52832-NANO

Manufacturer: I-SYST Inc.

Note: Report No.:ATE20180553

Polarization: Vertical

Power Source: DC 3.3V

Date: 18/04/17/ Time: 9/20/03

Engineer Signature: star

11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 1dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****