LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

CURS 9

FORME NORMALE ÎN LPr

- În LP există două forme echivalente ale unei propoziţii, FNC (Forma Normal Conjunctivă) şi FND (Forma Normal Disjunctivă).
- În contextul **LPr** există două forme suplimentare:
- 1. Forma Normală Prenex (FNP)
- 2. Forma Normală Skolem (FNS).

Formula φ este o formulă prenex, pe scurt
 FNP, dacă φ este de forma:

$$\varphi: (Q_1x_1)(Q_2x_2)...(Q_nx_n)\sigma$$

unde fiecare Q_i , i = 1,..., n, este unul din cuantificatorii \forall , \exists și σ este o formulă fără cuantificatori.

 $(Q_1x_1)(Q_2x_2)...(Q_nx_n)$ se numeşte **prefixul** lui φ , iar σ se numeşte **matricea** lui φ .

Exemplul 1: Următoarele fraze sunt în **FNP**:

- $(\forall x)(\forall y)[P(x, y) \rightarrow Q(x)]$
- $(\forall x)(\exists y) [Q(x, y) \lor P(x, y)]$

Pentru a transforma o formulă sau o frază în FNP, pe lângă formulele utilizate în LP, în LPr folosim de asemenea următoarele formule:

- (1) $(Qx)P(x) \lor G \leftrightarrow (Qx)[P(x) \lor G]$ unde x nu apare liberă în G
- (2) $(Qx)P(x) \land G \leftrightarrow (Qx)[P(x) \land G]$ unde x nu apare liberă în G
- $(3) \qquad \neg(\forall x)P(x) \leftrightarrow (\exists x)(\neg P(x))$
- $(4) \qquad \neg(\exists x)P(x) \longleftrightarrow (\forall x)(\neg P(x))$
- $(5) \qquad (\forall x) P(x) \land (\forall x) G(x) \longleftrightarrow (\forall x) [P(x) \land G(x)]$
- (6) $(\exists x)P(x) \lor (\exists x)G(x) \leftrightarrow (\exists x)[P(x) \lor G(x)]$

unde (Qx) este $(\forall x)$ sau $(\exists x)$.

- $(7) \quad (Q_1x)P(x) \wedge (Q_2x)G(x) \leftrightarrow (Q_1x)(Q_2z)[P(x) \wedge G(z)]$
- $(8) \quad (Q_1 x) P(x) \vee (Q_2 x) G(x) \longleftrightarrow (Q_1 x) (Q_2 z) [P(x) \vee G(z)]$

unde Q_1 , $Q_2 \in \{ \forall, \exists \}$ și unde variabila z nu apare în G(x) și nu apare ca variabilă liberă în P(x).

Construcția unui FNP

Pasul 1: Eliminarea simbolurilor \leftrightarrow şi \rightarrow pe baza formulelor:

(1a)
$$(A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))$$

(1b)
$$(A \rightarrow B) \leftrightarrow (\neg A \lor B)$$

Pasul 2: Transferarea negației în fața atomilor pe baza formulelor:

(2a)
$$\neg (A \lor B) \leftrightarrow \neg A \land \neg B$$

(2b)
$$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$$

(2c)
$$\neg(\neg A) \leftrightarrow A$$

(2d)
$$\neg(\forall x)A \leftrightarrow (\exists x) \neg A$$

(2e)
$$\neg(\exists x)A \leftrightarrow (\forall x) \neg A$$

Pasul 3: Transferarea cuantificatorilor la stânga pe baza formulelor:

(3a)
$$(\forall x)A(x) \land (\forall x)B(x) \leftrightarrow (\forall x) [A(x) \land B(x)]$$

 $(\exists x)A(x) \lor (\exists x)B(x) \leftrightarrow (\exists x) [A(x) \lor B(x)]$

(3b)
$$(Qx)A(x) \wedge B \leftrightarrow Q(x) [A(x) \wedge B]$$

 $(Qx)A(x) \vee B \leftrightarrow Q(x) [A(x) \vee B]$

unde x nu apare ca variabilă liberă în B în formulele (3b).

(3c)
$$(Q_1x)A(x) \lor (Q_2x)B(x) \leftrightarrow (Q_1x)(Q_2z) [A(x) \lor B(z)]$$

 $(Q_1x)A(x) \land (Q_2x)B(x) \leftrightarrow (Q_1x)(Q_2z) [A(x) \land B(z)]$

unde x nu apare ca variabilă liberă în B în formulele (3c), z nu apare în B și nu apare ca o variabilă liberă în A, iar B(z) este rezultatul înlocuirii fiecărei apariții libere a lui x cu z.

Exemplul 2:

$$\varphi \colon (\forall x) P(x) \to (\exists x) R(x) \longleftrightarrow \neg(\forall x) P(x) \lor (\exists x) R(x) \qquad (1b)$$

$$\longleftrightarrow (\exists x) \neg P(x) \lor (\exists x) R(x) \qquad (2d)$$

$$\longleftrightarrow (\exists x) [\neg P(x) \lor R(x)] \qquad (3a)$$

Exemplul 3:

$$\varphi \colon (\forall x)(\forall y)[(\exists z)(P(x,z) \land P(y,z)) \to (\exists u)R(x,y,u)]$$

$$\longleftrightarrow (\forall x)(\forall y)[\neg(\exists z)(P(x,z) \land P(x,z)) \lor (\exists u)R(x,y,u)] \quad (1b)$$

$$\longleftrightarrow (\forall x)(\forall y)[(\forall z)(\neg P(x,z) \lor \neg P(y,z)) \lor (\exists u)R(x,y,u)] \quad (2e,2b)$$

$$\longleftrightarrow (\forall x)(\forall y)(\forall z)[\neg P(x,z) \lor \neg P(y,z) \lor (\exists u)R(x,y,z)] \quad (3b)$$

$$\longleftrightarrow (\forall x)(\forall y)(\forall z)(\exists u)[\neg P(x,z) \lor \neg P(y,z) \lor R(x,y,u)] \quad (3b)$$

Teorema: Loewenheim, Skolem:

Pentru orice frază φ al **LPr,** putem forma o frază universală φ * astfel încât:

 ϕ este realizabilă \Leftrightarrow ϕ * este realizabilă.

CONSTRUCȚIA UNUI FNS

Fie φ o frază a **LPr**.

Pasul 1:

Determinăm FNP a lui φ.

Pasul 2:

Eliminăm treptat fiecare cuantificator existenţial ($\exists y$), înlocuind fiecare apariţie a lui y printr-un simbol funcţional nou, neutilizat, f, cu argumente toate variabilele legate prin cuantificatori universali ce preced ($\exists y$). f se numeşte **funcţie Skolem** a formulei φ , pe scurt **FNS**.

Exemplul 4: Fie fraza:

 $\varphi\colon (\forall x)(\exists y)(\forall z)(\exists \upsilon)\mathsf{P}(x,y,z,\upsilon)$

care este în FNP.

(1). Eliminăm ($\exists y$) și înlocuim y cu funcția Skolem f(x). Obținem astfel fraza:

$$\varphi_1$$
: $(\forall x)(\forall z)(\exists \upsilon)P(x, f(x), z, \upsilon)$

(2). Eliminăm $(\exists v)$ din φ_1 şi înlocuim v cu funcția Skolem g(x, z), deoarece $(\forall x)$, $(\forall z)$ precede $(\exists v)$. Obținem astfel:

 φ^* : $(\forall x)(\forall z)P(x, f(x), z, g(x, z))$

Exemplul 5: **FNS** a formulei

 $\varphi\colon (\exists y)(\forall x)(\forall z)\psi(x,y,z)$

este

 ϕ^* : $(\forall x)(\forall z)\psi(x, c, z)$

unde c este o constantă deoarece funcția Skolem f corespunzătoare nu are nici o variabilă ($\exists y$) este primul cuantificator al lui φ , deci y nu este determinată de nici o variabilă și f este funcția constantă c).

Fie φ o frază în **LPr** în **FNS**:

$$\varphi: (\forall x_1) ... (\forall x_l) A(x_1, ..., x_l)$$
 (*)

unde $A(x_1, ..., x_l)$ este conjuncţia:

$$C_1(x_1, ..., x_l) \wedge ... \wedge C_k(x_1, ..., x_l)$$

şi fiecare C_i , $1 \le i \le k$, este o disjuncţie de atomi sau de atomi negaţi în **LPr**.

Atunci φ este reprezentată conform teoriei mulţimilor ca mulţimea:

sau
$$S = \{C_1, ..., C_k\}$$

Fiecare C_i este o clauză, S fiind mulţimea de clauze.

Exemplul 6: Fraza:

$$(\forall x)(\forall z)[P_1(x, z) \land (P_2(x) \lor P_3(z)) \land P_4(z, x)]$$

se reprezintă ca mulțime de clauze prin:

$$S = \{\{P_1(x, z)\}, \{P_2(x), P_3(z)\}, \{P_4(z, x)\}\}$$

Tablourile semantice din **LPr** sunt o extensie a tablourilor semantice din **LP**, care include cazuri suplimentare pentru cuantificatori.

Cu ajutorul tabloului semantic:

$$a(\forall x)\phi(x)$$
 $|$
 $a\phi(c)$ pentru oricare c

reprezentăm faptul că "pentru ca ($\forall x$) $\varphi(x)$ să fie adevărată, $\varphi(x)$ trebuie să fie adevărată pentru orice constantă c".

Corespunzător, cu tabloul semantic

reprezentăm faptul că "pentru ca $(\exists x) \phi(x)$ să fie adevărată trebuie să existe o constantă c, care nu a apărut încă în tablou, astfel încât $\phi(c)$ să fie adevărată".

$ \begin{array}{c} a (\sigma_1 \vee \sigma_2) \\ / $	$ \begin{array}{c c} f(\sigma_1 \vee \sigma_2) \\ & \\ f\sigma_1 \\ & \\ f\sigma_2 \end{array} $	$ \begin{array}{c c} & a (\sigma_1 \wedge \sigma_2) \\ & a \\ $	$ \begin{array}{c} f(\sigma_1 \wedge \sigma_2) \\ $
7 $a (\sigma_1 \rightarrow \sigma_2)$ $/ \setminus f \sigma_1 \ a \sigma_2$	$ \begin{array}{c c} f(\sigma_1 \rightarrow \sigma_2) \\ & \\ & a\sigma_1 \\ & \\ & f\sigma_2 \end{array} $	9 $a (\sigma_1 \leftrightarrow \sigma_2)$ $/ $	$ \begin{array}{c c} 10 \\ f(\sigma_1 \leftrightarrow \sigma_2) \\ & & \\ & \sigma_1 & f\sigma_1 \\ & & \\ & & \\ f\sigma_2 & a\sigma_2 \end{array} $
11 $a (\forall x) \varphi(x)$ $ $ $a \varphi(c)$ pentru oricare c	$ \begin{array}{c c} f(\forall x)\varphi(x) \\ & \\ f\varphi(c) \\ & \text{pentru } c \text{ nou} \end{array} $	13 $a (\exists x) \varphi(x)$ $ \qquad \qquad$	$ \begin{array}{c c} f(\exists x)\varphi(x) \\ f\varphi(c) \\ pentru oricare c \end{array} $

Exemplu Să presupunem că dorim să demonstrăm că:

 $\sigma: (\forall x) \varphi(x) \to (\exists x) \varphi(x)$

este logic adevărată, unde φ este o frază în LPr.

Începem cu un tablou care are $f \varphi$ ca origine:

Exemplu

Exemplul Fie fraza $(\exists x)\phi(x) \rightarrow (\forall x)\phi(x)$. Această frază nu este logic adevărată deoarece existența unui x pentru care $\phi(x)$ este adevărată nu implică adevărul lui $\phi(x)$ pentru orice x (de exemplu, existența lui x > 3 nu implică faptul că pentru orice x este adevărat x > 3). Dar:

În nodul 5 nu am fi avut dreptul să utilizăm aceeași constantă c ca în nodul precedent 4. Am "demonstrat" astfel că $(\exists x)\phi(x) \rightarrow (\forall x)\phi(x)$ este o frază logic adevărată, ceea ce, evident, nu este corect.

Definiția

- (i) Un TSC este contradictoriu dacă toate ramurile lui sunt contradicții.
- (ii) O frază φ este demonstrabilă Beth(respinsă Beth) dacă există un TSC contradictoriu cu originea în fσ(aσ). Faptul că σ este demonstrabilă Beth se notează |- B σ.
- (iii) O frază σ este demonstrabilă Beth dintr-o mulțime de fraze S dacă există un TSC contradictoriu cu originea în fo și un nod următor aP, unde P este conjuncția frazelor din S. Acest lucru se notează S ⊢ B σ.

Exemplu. nod 1 $a[(\forall x)A(x,x) \land (\exists y)(\neg(A(y,y)) \lor B(y,y))]$ nod 2 $a[(\forall x)A(x,x)]$ nod 3 $a[(\exists y)(\neg A(y, y) \lor B(y, y)]$ pentru co nou nod 4 $a[-A(c_0, c_0) \vee B(c_0, c_0)]$ de la 2 pentru orice c $a[-A(c_0, c_0)]$ $a[B(c_0, c_0)]$ $f[A(c_0, c_0)]$ a[A(c, c)]din 2 $a[A(c_0, c_0)]$ $aA(c_0, c_0)$ $aA(c_1, c_1)$

În acest exemplu, ramura din stânga este contradictorie în timp ce ramura din dreapta continuă la infinit.

SEMINAR 9

Ex1: Să se transforme în FNP următoarele formule:

- a) $(\forall x)P(x) \rightarrow (\exists x)Q(x)$
- b) $(\forall x) (\forall y) [[(\exists z)P(x,y) \land P(x,z)] \rightarrow (\exists u)Q(x,y,u)]$
- c) $(\forall x) (\forall y)[(\exists z)P(x,y,z)\wedge[(\exists u)Q(x,u) \rightarrow (\exists u)Q(y,u)]]$

SEMINAR 9

Ex2: Să se determine *forma mulțime-teoretică* a următoarelor fraze:

a)
$$\sigma: (\exists x) (\forall y) (\exists z) [(P(x,y) \lor \neg Q(x) \lor R(z))$$

$$\Lambda(\neg P(x,y) \lor \neg Q(x)) \Lambda(\neg P(x,y) \lor R(z))$$

b)
$$\sigma': \neg [(\forall x)(\exists y) [P(x,y) \rightarrow Q(y)]$$

c)
$$\varphi$$
: \neg [(\forall x)P(x) \rightarrow (\exists y)(\forall z)Q(y,z)]