EALID	EAIiIB Autor 1: Rafał Mazur		Rok II	Grupa 5	Zespół 3	
EAIIID	Autor 2: Jakub Ficoń		TOK II	Grupa 5	Zespoi 5	
Temat:			Numer ćwiczenia:			
Fale p	Fale podłużne w ciałach stałych			29		
Data wykonania	Data oddania	Zwrot do poprawki	i Data oddania Data zaliczenia Od			

1 Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

2 Wstęp teoretyczny

W załącznikach na końcu sprawozdania

3 Aparatura pomiarowa

- 1. Waga elektroniczna o dokładności 1g
- 2. Zestaw 6 próbek służących do zmierzenia gęstości
- 3. Suwmiarka o dokładności do 0.05mm (0.00005m)
- 4. Miarka w rolce o podziałce 1mm
- 5. Zestaw 6 prętów o różnych kształtach
- 6. Młotek
- 7. Komputer stacjonarny z mikrofonem
- 8. Program Zelscope

4 Wykonanie ćwiczenia

- 1. Pomiar wymiarów próbek materiałów z których wykonane są pręty
- 2. Zważenie próbek materiałów i na podstawie wymiarów i wagi wyliczenie gęstości
- 3. Zmierzenie częstotliwości drgań harmonicznych dla prętów, przy pomocy programu Zelscope i mikrofonu ustawionego przy pręcie przez uderzeniu w pręt młotkiem.
- 4. Powtórzenie powyższej czynności dla wszystkich prętów

5 Wyniki pomiarów

Materiał	Masa pręta [kg]	Długość próbki [cm]	Pole podstawy $[cm^2]$	Objętość $[cm^3]$	Gęstość $ \left[\frac{kg}{m^3} \right] $
Aluminium (1)	0.024	44	0.196	8.639	2777.97
Aluminium (2)	0.030	55.7	0.196	10.937	2743.05
Mosiądz (1)	0.074	31.3	0.154	4.805	7492.50
Mosiądz (2)	0.174	22.2	0.273	8.557	8647.53
Stal	0.036	0.311	0.935	20.757	8382.71
Miedź	0.066	0.440	0.189	7.279	9067.20

Aluminium (koł	(a) $l = 1[m]$		
Harmoniczna	Częstotliwość f	Długość fali λ	Prędkość fali υ
пагшошсив	[HZ]	[m]	[m/s]
1	93.75	2	187.50
2	187.50	1	187.50
3	281.25	0.67	187.50
4	375.00	0,50	187.50
5	468.75	0,40	187.50
6	562.50	0,33	187.50

$$v = 187.50 \left[\frac{m}{s} \right]$$

$$E=0.0242\,[GPa]$$

Mosiądz (koło)	l=1[m]		
TT	Częstotliwość f	Długość fali λ	Prędkość fali υ
Harmoniczna	[HZ]	[m]	[m/s]
1	93.75	2	187.50
2	187.50	1	187.50
3	281.25	0.67	187.50
4	375.00	0,50	187.50
5	468.75	0,40	187.50
6	562.50	0,33	187.50

$$v = 187.50 \left[\frac{m}{s} \right]$$

$$E = 0.299 \left[GPa \right]$$

Mosiądz (okrąg)	l=1[m]		
Harmoniczna	Częstotliwość f	Długość fali λ	Prędkość fali v
Harmoniczna	[HZ]	[m]	[m/s]
1	93.75	2	187.50
2	187.50	1	187.50
3	281.25	0.67	187.50
4	375.00	0,50	187.50
5	468.75	0,40	187.50
6	562.50	0,33	187.50

$$v = 187.50 \left[\frac{m}{s} \right]$$

$$E=0.299\,[GPa]$$

Stal (koło) $l=1$	1, 8[m]		
Harmoniczna	Częstotliwość f	Długość fali λ	Prędkość fali v
патшошегна	[HZ]	[m]	[m/s]
1	93.75	3,6	337.50
2	187.50	1,8	337.50
3	281.25	1,2	337.50
4	375.00	0,9	337.50
5	468.75	0,72	337.50
6	562.50	0,6	337.50

$$v = 337.50 \left[\frac{m}{s} \right]$$
$$E = 0.853 \left[GPa \right]$$

Stal (prostokąt)	l = 1, 8[m]		
Harmoniczna	Częstotliwość f	Długość fali λ	Prędkość fali υ
Harmoniczna	[HZ]	[m]	[m/s]
1	93.75	3,6	337.50
2	187.50	1,8	337.50
3	281.25	1,2	337.50
4	375.00	0,9	337.50
5	468.75	0,72	337.50
6	562.50	0,6	337.50

$$v = 337.50 \left[\frac{m}{s} \right]$$
$$E = 0.853 \left[GPa \right]$$

Miedź (koło) l =	= 1, 8[m]		
Harmoniczna	Częstotliwość f	Długość fali λ	Prędkość fali υ
Harmoniczna	[HZ]	[m]	[m/s]
1	93.75	3,6	337.50
2	187.50	1,8	337.50
3	281.25	1,2	337.50
4	375.00	0,9	337.50
5	468.75	0,72	337.50
6	562.50	0,6	337.50

$$v = 337.50 \left[\frac{m}{s} \right]$$
$$E = 1.033 \left[GPa \right]$$

6 Opracowanie wyników

Błędy pomiarów:

Długości pręta: u(l) = 0.001m

Promienia lub boku podstawy: u(r) = 0.00005m

Masy próbki: u(m) = 0.001kgCzęstotliwości: u(f) = 0.25Hz

Niepewność gęstości:

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m} u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l} u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r} u(r)\right)^2} = \sqrt{\left(\frac{1}{l\pi r^2} u(m)\right)^2 + \left(\frac{-m}{l^2\pi r^2} u(l)\right)^2 + \left(\frac{-2m}{l\pi r^3} u(r)\right)^2}$$

Niepewność długości fali:

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

Niepewność prędkości fali:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Niepewność modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho} u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v} u(v)\right)^2} = \sqrt{\left(v^2 u(\rho)\right)^2 + \left(2\rho v \cdot u(v)\right)^2}$$

1: Tabela niepewności dla gęstości

Materiał	Niepewność złożona gęstości	Niepewność rozszerzona $k=2$	Gęstość obliczona $\left[\frac{kg}{m^3}\right]$	Gęstość tabelaryczna $ \left[\frac{kg}{m^3} \right] $	Czy w przedziale niepewności
Aluminium (1)	160.58	321.16	2777.97	2720	TAK
Aluminium (2)	142.92	185.84	2743.05	2720	TAK
Mosiądz (1)	47.39	94.78	8647.53	8400-8700	TAK
Mosiądz (2)	78.47	156.94	8382.71	8400-8700	TAK
Stal	108.62	217.24	7492.50	7500-7900	TAK
Miedź	126.91	253.82	9067.20	8933	TAK

2: Tabela niepewności dla prędkości dźwięku

Materiał	Niepewność złożona prędkości dźwięku	Niepewność rozszerzona $k=2$	Prędkość obliczona $\left[\frac{m}{s}\right]$	Prędkość tabelaryczna $\left[\frac{m}{s}\right]$
Aluminium 1m (koło)	50	100	187.50	6300
Mosiądz 1m (koło)	50	100	187.50	3500
Mosiądz 1m (okrąg)	50	100	187.50	3500
Stal 1.8m (koło)	90	180	337.50	5100-6000
Stal 1.8m (prostokąt)	90	180	337.50	5100-6000
Miedź 1.8m (okrąg)	90	180	337.50	3900

3: Tabela niepewności dla modułu Younga

	Niepewność złożona modułu Younga	Niepewność	Moduł	Moduł Younga
Materiał		rozszerzona	obliczony	wartość tablicowa
		k = 2	[GPa]	[GPa]
Aluminium 1m (koło)	$0.0523 \cdot 10^9$	100	0.0242	69
Mosiądz 1m (koło)	$0.1597 \cdot 10^9$	100	0.299	103-124
Mosiądz 1m (okrąg)	$0.1597 \cdot 10^9$	100	0.299	103-124
Stal 1.8m (koło)	$0.4553 \cdot 10^9$	180	0.853	205-210
Stal 1.8m (prostokąt)	$0.4553 \cdot 10^9$	180	0.853	205-210
Miedź 1.8m (okrąg)	$0.5510 \cdot 10^9$	180	1.033	110-135

7 Wnioski

Wartości, gęstości dla różnych materiałów są zgodne z wartościami tabelarycznymi, dla obliczonej niepewności rozszerzonej. Świadczy to o prawidłowym zmierzeniu przekrojów, długości, oraz wag próbek materiałów.

Wyniki pomiaru częstotliwości przy użyciu programu Zelscope są identyczne co świadczy o nieprawidłowym działania bądź niewłaściwym użycia oprogramowania i/ lub aparatury pomiarowych.

Błędy pomiaru częstotliwości przeniosły się dalej co spowodowało zakłamanie pozostałych wyników