Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиотехники»

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

Отчёт

О выполнении лабораторных работ По дисциплине «Общая теория интеллектуальных систем» Система «Самовар»

Выполнил: Астахов А.С., гр. 321701

Проверил: Соколович М.Г.

Цель: построение и исследование модели «чёрный ящик», модели состава системы, модели структуры системы, структурной схемы системы.

Характеристика: система "Самовар" предназначена для кипячения воды, которая функционирует как автономное нагревательное устройство (также известное как чайный кипятильник или традиционный источник горячей воды) в иерархии устройств для приготовления чая.

Построение модели «Чёрный ящик»

входы:

- 1. Топливо (угли, дрова или электричество).
- 2. Вода для кипячения.
- 3. Температура окружающей среды.

выходы:

- 1. Горячая вода для приготовления чая.
- 2. Тепловыделение (нагрев воздуха вокруг самовара).
- 3. Пар.

НЕЖЕЛАТЕЛЬНЫЕ ВХОДЫ:

- 1. Некачественная или грязная вода.
- 2. Неправильное топливо (например, токсичные или слишком влажные материалы).
- 3. Высокая влажность воздуха.
- 4. Недостаточное или избыточное количество топлива.
- 5. Сильный ветер или сквозняки (для угольных самоваров).
- 6. Резкие перепады температуры окружающей среды.
- 7. Наличие легковоспламеняющихся предметов рядом.
- 8. Попадание мусора или посторонних предметов в топку.

НЕЖЕЛАТЕЛЬНЫЕ ВЫХОДЫ:

- 1. Недостаточно горячая вода (недокипевшая).
- 2. Чрезмерное выделение дыма (для угольных самоваров).
- 3. Нагар или копоть на самоваре.
- 4. Перегрев и кипение, приводящее к выбросу воды или пара.
- 5. Повреждение или износ элементов самовара (например, от ржавчины).

СПОСОБЫ УСТРАНЕНИЯ НЕДОСТАТКОВ СИСТЕМЫ:

- 1. Использование чистой воды для предотвращения образования накипи.
- 2. Регулярная чистка топки и внутренних компонентов.
- 3. Использование правильного топлива (для угольных самоваров) или стабильного источника электричества (для электрических моделей).
- 4. Регулировка количества топлива для поддержания оптимальной температуры воды.
- 5. Защита самовара от внешних факторов (ветра, дождя, химических веществ).
- 6. Предотвращение физического воздействия и механических повреждений.

Построение модели состава системы

Название системы	Подсистемы	Элементы
Самовар	Нагрева	Топка (для углей) / Электрический элемент. Водяной резервуар.
	Управления	Кран для подачи кипятка. Регулировка тяги (для угольных самоваров).
	Заварки	Заварочный чайник (сверху самовара).
	Теплоизоляции	Корпус самовара, теплоизолирующие материалы.

Модель структуры системы

Пара элементов	Связь между ними
Корпус самовара и топка	Защита, удержание тепла
Корпус самовара и водяной резервуар	Теплообмен и удержание воды
Заварочный чайник и водяной резервуар	Поддержание температуры
Топка (для углей) и водяной резервуар	Нагрев воды
Кран и водяной резервуар	Подача кипятка
Заварочный чайник и кран	Получение горячей воды для приготовления чая
Топка и кран	Подача горячей воды через регулировку нагрева
Топка и регулятор тяги (для угольных самоваров)	Контроль температуры

Построение структурной схемы таблицы

Вывод. Структурная схема системы является наиболее подробной и полной моделью любой системы на данном этапе нашего познания. При этом остается актуальным вопрос об адекватности этой модели, разрешаемый только на практике. Объединив модели "черного ящика", состава и структуры системы, мы получим самую полную (для наших целей), самую подробную (для нашего уровня знаний) модель системы — ее структурную схему.

Цель: построение алгоритма и разработка программы сведения многокритериальной задачи к однокритериальной.

Марка	Объем (л)	Мощност ь (Вт)	Материал	Вес (кг)	Тип нагрева	Время кипячен ия (мин)	Цена (руб.)
Самовар А	3.0	1500	Нержаве ющая сталь	4.5	Электрич еский	10	5000
Самовар В	5.0	1800	Латунь	5.0	Угольный	25	7000
Самовар С	4.5	1600	Медный	6.2	Электрич еский	12	6000
Самовар D	7.0	2000	Нержаве ющая сталь	8.0	Электрич еский/ Угольный	20	1000

№	Наименование критерия qi	Единица измерения qi	Коэффициент аі	Коэффициент bi
q1	Мощность	Вт	0.4	0.6
q2	Объём воды	л	0.2	0.8
q3	Материал корпуса	-	0.1	0.5
q4	Время закипания	мин	0.2	0.7
q5	Bec	КГ	0.1	0.9

Предста витель	q1 (Мощно сть, л)	q2 (Объё м, л)	q3 (Расход электроэнергии, КВт·ч/год)	q4 (Bec, кг)	q5 (Уровень шума, дБ)	q0 (Оценка системы)	1-q0 (Потенциал улучшений)
Самовар А	4	5	2	3	4	0,64	0,3
Самовар В	3	4	3	3	3	0,54	0,42
Самовар С	5	3	4	2	2	0,58	0,38

Самовар D	2	2	5	4	5	0,77	0,18
Самовар Е	3	1	3	5	4	0,62	0,32

C помощью аддитивной функции было выяснено, что самовар D наилучший по рассматриваемым критериям.

x*(q0) = 0,77 (У самовара D)

С помощью мультипликационной функции было выяснено, что самовар В наилучший по рассматриваемым критериям.

x*(1 - q0) = 0,42 (У самовара В)

Граф предпочтений

Получившийся граф:

- антисимметричный
- антитранзитивный
- антирефлексивный

Вывод: Исходя из построенного графика, можно сделать вывод о том, какие из систем являются лучшими, основываясь на выбранных критериях (цена и производительность процессора). Исходя из анализируемых метрик лучшим будут либо Самовар В, либо Самовар D

Цель: построение алгоритма и разработка программы нахождения оптимальных и удовлетворительных решений

№	Наименование критерия q _i	Единица измерения q _i	Коэффициент а _і	Требуемые параметры
q_1	Мощность	Вт	0,3	1700
q_2	Объём	Л	0,3	4
q ₃	Материал корпуса	-	0,2	Латунь
q ₄	Bec	КГ	0,1	5
q 5	Время заикания	Мин	0,1	3

Марка	Объем (л)	Мощность (Вт)	Материал	Вес (кг)	Время кипячени я (мин)	Цена (руб.)
Самовар А	3.0	1500	Нержавею щая сталь	4.5	10	5000
Самовар В	5.0	1800	Латунь	5.0	25	7000
Самовар С	4.5	1600	Медный	6.2	12	6000
Самовар D	7.0	2000	Нержавею щая сталь	8.0	20	1000
Самовар Е	4.0	1700	Латунь	6	15	4000

Балл	Цена, BYN
1	7000
2	6000
3	5000
4	4000
5	1000

Балл	Мощность, Вт
1	1500
2	1600
3	1700
4	1800
5	2000

Балл	Вес, кг
1	7.0
2	5.0
3	4.5
4	4.0
5	3.0

Балл	Уровень шума, дб
1	8.0
2	6.2
2	6

3	5.0
4	4.5

$$\begin{split} &\mathbf{A} \; d_k(q,\,\underline{q}) \!=\! \sqrt{0,06^* \big|\, 1500 - 1700 \,\big|^2 + \frac{0,3}{7}^* \big|\, 7 - 4 \,\big|^2 + 0,04^* \big|\, 5 - 5 \,\big|^2 + 0,02^* \big|\, 3 - 3 \,\big|^2 + 0,025^* \big|\, 2 - 3 \,\big|^2} \\ &= 0,5739 \\ &\mathbf{B} \; d_k(q,\,\underline{q}) \!=\! \sqrt{0,06^* \big|\, 1600 - 1700 \,\big|^2 + \frac{0,3}{7}^* \big|\, 5 - 4 \,\big|^2 + 0,04^* \big|\, 3 - 5 \,\big|^2 + 0,02^* \big|\, 5 - 3 \,\big|^2 + 0,025^* \big|\, 4 - 3 \,\big|^2} \\ &= 0,5662 \\ &\mathbf{C} \; d_k(q,\,\underline{q}) \!=\! \sqrt{0,06^* \big|\, 1700 - 1700 \,\big|^2 + \frac{0,3}{7}^* \big|\, 4.5 - 4 \,\big|^2 + 0,04^* \big|\, 2 - 5 \,\big|^2 + 0,02^* \big|\, 2 - 3 \,\big|^2 + 0,025^* \big|\, 2 - 3 \,\big|^2 = 0,6583} \\ &\mathbf{D} \; d_k(q,\,\underline{q}) \!=\! \sqrt{0,06^* \big|\, 1800 - 1700 \,\big|^2 + \frac{0,3}{7}^* \big|\, 4 - 4 \,\big|^2 + 0,04^* \big|\, 1 - 5 \,\big|^2 + 0,02^* \big|\, 1 - 3 \,\big|^2 + 0,025^* \big|\, 3 - 3 \,\big|^2} \\ &= 0,7032 \\ &\mathbf{E} \; d_k(q,\,\underline{q}) \!=\! \sqrt{0,06^* \big|\, 2000 - 1700 \,\big|^2 + \frac{0,3}{7}^* \big|\, 3 - 4 \,\big|^2 + 0,04^* \big|\, 4 - 5 \,\big|^2 + 0,02^* \big|\, 5 - 3 \,\big|^2 + 0,025^* \big|\, 4 - 3 \,\big|^2} \\ &= 0,96788 \end{split}$$

На основе поиска альтернативы с заданными свойствами было выяснено, что из выбранных холодильников лучшим является Самовар Е.

НАХОЖДЕНИЕ МНОЖЕСТВА ПАРЕТО

Марка	Объем (л)	Мощность (Вт)
Самовар А	3.0	1500
Самовар В	5.0	1800
Самовар С	4.5	1600
Самовар D	7.0	2000
Самовар Е	4.0	1700

Само множество Парето строится на основе 2ух критериев:

Вывод: На основе поиска по множеству Парето было выявлено две альтернативы Самовар В и Самовар D.

Цель: Построение когнитивной карты для заданной предметной области и ее анализ.

Для рассмотрения и построения когнитивной карты были взяты следующие критерии системы «Самовар»:

- 1. Мощность (Вт);
- 2. Время закипания (мин);
- 3.Вес самовара (кг);
- 4.Объём самовара;
- 5.Стоимость (рубли);
- 6. Энергоэффективность.

В связи с этим появились следующие связи

- Мощность (Вт) и уровень шума;
- Мощность (Вт) и энергопотребления;
- Мощность (Вт) и стоимость;
- Объём самовара и вес;
- Вес самовара (кг) и стоимость;
- Обьём самовара и мощность заморозки
- Энергоэффективность и объём

Разберём каждую связь подробнее и поясним, почему было выбрано то или иное отношение:

• Мощность (Вт) и уровень шума.

Коэффициент -(-0,2);

В данной связи у нас получается отрицательный коэффициент. Это вызвано простым явлением: чем больше в нашей системе мощность нагрева, тем больше на выходе у нас получается уровень шума.

Для борьбы с этим явлением можно, как вариант, при покупке самовара рассматривать такие модели, которые имеют меньшую мощность.

• Мощность (Вт) и энергопотребления.

Коэффициент -(-1);

В данной связи у нас получается отрицательный коэффициент. Это вызвано следующим явлением: чем больше у нашей системы мощность нагрева, тем больше наша система будет потреблять электричества или топлива в процессе её использования.

Для борьбы с этим явлением можно, как вариант, при покупке самовара рассматривать такие модели, которые имеют меньшую мощность.

• Мощность (Вт) и стоимость.

Коэффициент -(-0.6);

В данной связи у нас получается отрицательный коэффициент. Это вызвано следующим явлением: чем более мощный в нашей системе стоит нагреватель, тем выше будет стоимость у нашей системы.

Для борьбы с этим явлением можно, как вариант, при покупке самовара рассматривать такие модели, которые имеют меньшую мощность.

• Объём самовара и вес.

Коэффициент -(-0,1);

В данной связи у нас получается отрицательный коэффициент. Это вызвано следующим явлением: чем больше вместимость самовара, тем более тяжелым будет наш и холодильник. И в результате будет тяжелее транспортировать нашу систему.

Для борьбы с этим явлением можно, как вариант, при покупке самовара рассматривать такие модели, которые имеют меньшую вместимость.

• Вес самовара (кг) и стоимость.

Коэффициент – (-0,2);

В данной связи у нас получается отрицательный коэффициент. Это вызвано следующим явлением: чем больший вес имеет наш самовар, тем выше цена из-за того, что в себестоимость самовара будет входить большая сумма комплектующих материалов. Для борьбы с этим явлением можно, как вариант, при покупке самовара рассматривать такие модели, которые имеют меньший вес.

• Мощность (Вт) и время закипания.

Коэффициент -(0,2);

В данной связи у нас получается положительный коэффициент. Это вызвано простым явлением: чем больше в нашей системе мощность нагрева, тем быстрее вода в самоваре закапает.

Вывод: Построил когнитивную карту для заданной предметной области и ее анализ.

Цель: разработка программы, обеспечивающей выполнение основных операций математического моделирования для заданной математической модели.

В ходе выполнения лабораторной работы была разработана программа на языке Java, с использованием платформы javafx позволяющая редактировать графовые конструкции различных видов.

У графового редактора реализованы общие требования к редактору:

Общие требования к редактору (обязательный функционал):

- 1. одновременно работать с несколькими графами (MDI);
- 2. задавать имена графам;
- 3. сохранять и восстанавливать граф во внутреннем формате программы;
- 4. создавать, удалять (корректное удаление узла вместе с дугами), именовать, переименовывать, перемещать узлы;
- 5. 6. создавать ориентированные и неориентированные дуги, удалять дуги; задавать цвет дуги и узла, образ узла;
- 7. выводить информацию о графе:
- количество вершин, дуг;
- степени для всех вершин и для выбранной вершины;

Редактор должен позволять:

- 1. выводить информацию о графе: матрицу смежности; является ли граф связным;
- 2. приведение произвольного графа к связному графу;
- 3. нахождения гамильтоновых циклов;
- 4. вычисление диаметра, радиуса, центра графа;
- 5. вычисление тензорного и декартово произведения двух графов.

Примеры:

Пример отображения графа

Пример вычисления диаметра, центра и радиуса графа

Пример вычисления декаротово произведения

Вывод: в ходе лабораторной работы разработал программу, обеспечивающей выполнение основных операций математического моделирования для заданной математической модели.