## Assignment P2-1

1. In the molecular surface reaction of  $N_2$  interaction with iron (Fe) solid surface, the elemental iron is bcc in its ground state, which is metallic only due to 2 of its valence electrons. Within the free electron theory, calculate the Fermi energy ( $E_F$  in the units of eV) of elemental iron (Fe at T= 0 K). Consider the atomic radius of Fe is 1.86 Å.

Plank constant (
$$\hbar$$
; read it as h-bar)=  $1.05 \times 10^{-34}$  J.s Mass of electron (m) =  $9.1 \times 10^{-31}$  kg  $1 \text{ eV} = 1.6 \times 10^{-19}$  J

## Solution:

From lecture notes, the Fermi energy can be written as:



Since Fe crystal is *bcc*, the unit cell has 2 atoms per cell.

Volume of the **bcc** unit cell is:  $[4r/sqrt(3)]^3$ ,

r is the radius of Fe = 1.86 Å = 1.86 x 10<sup>-10</sup> m

Therefore, volume of the unit cell =  $7.93 \times 10^{-29} \text{ m}^3$ 

Since Fe crystal has 2 atoms per unit cell, the crystal also will have 2 valence electrons per unit cell.

From this one can get the value of N/V.

Upon substitution of the values given for h-bar and mass of the electron, one can get the Fermi energy  $(E_F) = 4.98 \times 10^{-19} \text{ J} = 3.1 \text{ eV}$ 

2. Write the Hamiltonian that one would need to calculate the electronic wavefunction for a system of interacting particles. The system consisting of two atoms labeled as A and B each with an electron is pictorially depicted below.



Solution

$$\frac{p_1^2}{2m} - \frac{e^2}{4\pi\varepsilon_0 r_{1A}} + \frac{p_2^2}{2m} - \frac{e^2}{4\pi\varepsilon_0 r_{2B}} - \frac{e^2}{4\pi\varepsilon_0 r_{1B}} - \frac{e^2}{4\pi\varepsilon_0 r_{2A}} + \frac{e^2}{4\pi\varepsilon_0 r_{12}} + \frac{e^2}{4\pi\varepsilon_0 R_{AB}} + \frac{p_A^2}{2M_A} + \frac{p_B^2}{2M_B}$$

For the electronic Hamiltonian, the last two terms (kinetic energy of the nucleus is ignored by invoking the Born-Oppenheimer approximation, see below). Note that the nucleus may be designated with the charge Ze, for example, the charge on the two atoms labeled as A and B would be  $Z_Ae$  and  $Z_Be$ , respectively. The idea is: according to the given diagram, the notation must be strictly followed.

For electrons (i) and nuclei ( $\alpha$ ), the Schrödinger equation is approximated as (following the clamped nuclei model in other words, Born-Oppenheimer approximation)

$$\hat{H}_{el}\psi(r,R) = E_{el}\psi(r,R)$$

$$\hat{H}_{el} = \hat{T}_{el}(r) + \hat{V}_{eN}(r,R) + \hat{V}_{rr}$$

$$\hat{H}_{el} = -\frac{1}{2}\sum_{i}\nabla_{i}^{2} - \frac{1}{2}\sum_{\alpha,i}\frac{Z_{\alpha}e^{2}}{r_{i}-R_{\alpha}} + \frac{1}{2}\sum_{i\neq j}\frac{e^{2}}{r_{i}-r_{j}}$$