Count Pseudo-Palindromes

Input file: standard input
Output file: standard output

Time limit: 3 seconds

Memory limit: 1024 megabytes

A sequence $B = (B_1, B_2, ..., B_M)$ of length M is called a **palindrome** if $B_i = B_{M+1-i}$ holds for all i = 1, 2, ..., M.

A sequence B is called a **pseudo-palindrome** if there exists a permutation of B that is a palindrome.

You are given a sequence $A = (A_1, A_2, \dots, A_{2N})$ of length 2N, where each number from 1 to N appears exactly twice.

For each of $i=1,2,\ldots,2N$, count the number of pairs of integers (l,r) $(1 \le l \le r \le 2N)$ satisfying the following conditions:

- 1. $l \leq i \leq r$
- 2. The number A_i appears exactly once in $(A_l, A_{l+1}, \dots, A_r)$.
- 3. $(A_l, A_{l+1}, \dots, A_r)$ is a pseudo-palindrome.

Input

The input is given from Standard Input in the following format:

$$egin{array}{c} N \ A_1 \ A_2 \ \dots \ A_{2N} \end{array}$$

- $1 \le N \le 5 \times 10^5$
- Each of 1, 2, ..., N appears exactly twice in A.
- All input values are integers.

Output

Let X_i denote the answer for i. Print X_1, X_2, \ldots, X_{2N} in this order, separated by a space.

Examples

standard input	standard output
2	1 2 2 1
1 1 2 2	
3	1 2 2 2 2 1
2 1 2 3 1 3	
4	1 2 1 2 1 3 1 1
1 2 4 3 4 1 3 2	
1	1 1
1 1	

Note

In the first example, the pairs that satisfy the conditions for each i are:

• i = 1: (1,1)

- i = 2: (2, 2), (2, 4)
- i = 3: (1,3), (3,3)
- i = 4: (4,4)