Затверджено

482.362.705010201-79 33-5 ЛЗ

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА

Інститут фізико-технічних та комп'ютерних наук Відділ комп'ютерних технологій Кафедра комп'ютерних систем та мереж

СИМУЛЯТОР ТРІЙКОВИХ КВАНТОВИХ МЕРЕЖ

482.362.705010201-79 33-5

(Технічне завдання)

Сторінок 12

КІДАТОНА

Технічне завдання оформлене згідно ГОСТ 19.106-78 і містить інформаційну частину, підстави для розробки програмного продукту, призначення розробленої програми, вимоги до функціональних характеристик, вимоги до програмної документації, техніко — економічні показники розробленого продукту та порядок і приймання роботи.

Технічне завдання містить: 6 розділів, 12 сторінок, 3 таблиці.

3MICT

ВСТУП	. 4
1. ПІДСТАВИ ДЛЯ РОЗРОБКИ	. 5
2. ПРИЗНАЧЕННЯ РОЗРОБКИ	. 5
3. ВИМОГИ ДО ПРОГРАМИ АБО ПРОГРАМНОГО ПРОДУКТУ	. 6
3.1. Вимоги до функціональних характеристик	. 6
3.2. Вимоги до надійності	. 6
3.3. Умови експлуатації	. 7
3.4. Вимоги до складу і параметрів технічних засобів	. 8
3.5. Вимоги до інформаційної та програмної сумісності	. 9
3.6. Вимоги до транспортування і зберігання	. 9
4. ВИМОГИ ДО ПРОГРАМНОЇ ДОКУМЕНТАЦІЇ	. 9
5. ТЕХНІКО-ЕКОНОМІЧНІ ПОКАЗНИКИ	10
6. ПОРЯЛОК КОНТРОЛЮ І ПРИЙМАННЯ	12

ВСТУП

Назва: "Симулятор трійкових зворотних квантових мереж".

Призначення: Тема дипломного проекту затверджена на засіданні кафедри КСМ Чернівецького національного університету імені Юрія Федьковича. Дипломний проект полягає у написанні програмного продукту, за допомогою якого можна симулювати трійкові квантові мережі.

Область застосування: Розроблений програмний продукт може використовуватися в розробці квантових комп'ютерів, для симуляції квантових комп'ютерних мереж.

1. ПІДСТАВИ ДЛЯ РОЗРОБКИ

Документ, на підставі якого ведеться розробка програмного продукту, є завданням керівника проекту, який затверджено на засіданні кафедри комп'ютерних систем та мереж Чернівецького національного університету імені Юрія Федьковича протоколом № 3 від 24 жовтня 2014 р.

2. ПРИЗНАЧЕННЯ РОЗРОБКИ

Дана програма повинна забезпечити можливість симулювати зворотні квантові мережі.

Функціональне призначення програми: отримання початкових даних (користувач вводить вхідні сигнали), вибір примітивів, складання зворотної мережі, мати змогу робити контрольовані елементи. Симулювати роботу квантових обчислень на основі створеної користувачем мережі.

3. ВИМОГИ ДО ПРОГРАМИ

3.1. Вимоги до функціональних характеристик

Розроблений програмний продукт забезпечує зручний графічний інтерфейс користувача. Функціональні характеристики продукту надають можливість виконувати наступне:

- 1) зчитувати початкові вхідні сигнали, встановлені користувачем;
- 2) вибір і встановлення примітивів;
- 3) будувати контрольовані елементи;
- 4) завдання розміру мережі;
- 5) симулювати роботу квантових обчислень на основі складеної користувачем мережі.

Вхідними даними програми є трійкові сигнали, введені користувачем.

3.2. Вимоги до надійності

Надійність роботи програмного продукту завжди є невід'ємною частиною надійності апаратно-програмного комплексу комп'ютерної системи тому, що програма повинна виконуватися під керуванням ОС на апаратній платформі ПК. Якщо апаратна платформа з деяких міркувань не є надійною, то до програмного продукту необхідно застосовувати методи підвищення надійності. У іншому разі враховуємо, що апаратна складова забезпечує нам необхідну надійність, яку можна оцінювати різними показниками надійності, то ми можемо говорити про деякі невиявлені помилки розробленого програмного продукту в процесі тестування під час контролю та приймання, Зазвичай вимоги використовують як засіб комунікації між різними заінтересованими особами та системами. З цього виходить, що вимоги повинні бути простими та зрозумілими як для звичайних користувачів, так і для розробників.

В загальному випадку вимоги по надійності до програмного продукту будуть наступними:

- 1. Уникнення помилок. Ця методика виконання дала нам можливість забезпечити мінімізацію помилок, що виникали в процесі створення програми.
- 2. Виявлення помилок. Ця методика базувалась на засобах і методах, котрі забезпечували виявлення помилок в програмі, що розроблялася.
- 3. Виправлення помилок. Згідно цього методу на основі конструювання і методології використання функцій, що коректували виправлені помилки та усували їх.
- 4. Допущення помилок. Забезпечувалося засобами і методами, котрі дають можливість виконання заданих функцій при наявності помилок.

3.3. Умови експлуатації

Умови експлуатації передбачають техніку безпеки при роботі з ПК, експлуатацію програмного продукту на базі апаратно-програмного комплексу ПК.

Правила техніки безпеки передбачають наступне:

- 1. Персональний комп'ютер повинен зберігатися у приміщеннях від +5 °C до +35 °C при відносній вологості повітря не більше 85 %.
- 2. В приміщеннях для зберігання персонального комп'ютера не повинно бути агресивних сумішей, які викликають корозію.
- 3. При зберіганні й транспортуванні програмного продукту на жорстких носіях інформації, встановлених в системі ПК, необхідно дотримуватись вимог правил пожежної безпеки.
- 4. Розміщення упакованого персонального комп'ютера поблизу джерел тепла забороняється.

Умови експлуатації персонального комп'ютера:

- 1. Електроживлення комп'ютера повинно здійснюватись від однофазної мережі змінного струму номінальною напругою $220B \pm 15\%$ та частотою 50 ± 1 Γ ц.
- 2. Заземлення персонального комп'ютера та периферійних пристроїв повинно здійснюватись згідно ГОСТ 258-61.

Нормальні умови застосування:

- 1. Температура оточуючого повітря, °C: 20 \pm 5.
- 2. Відносна вологість повітря, %: 65 ± 15 .
- 3. Атмосферний тиск, $\kappa \Pi a$ (мм рт, ст.): 100 ± 4 (750±30).
- 4. Напруга живлення, $B: 220 \pm 5$.
- 5. Частота живлячої мережі, Γy : 50 ± 0.5 .

Робочі умови експлуатації:

- 1. Температура оточуючого повітря, °C: від 10 до + 30.
- 2. Відносна вологість повітря, %: 80 при 20 °C.
- 3. Атмосферний тиск, *кПа* (мм рт, ст.): 84-107 (630-800).

3.4. Вимоги до складу і параметрів технічних засобів

Розроблений програмний продукт орієнтований на роботу в ОС з платформою Windows XP/7.

Мінімальними вимогами до апаратної частини ПК, можна вважати:

- процесори 6-го покоління (Intel Pentium Pro/II/Celeron 300 МГц і вище);
- об'єм оперативної пам'яті 64 Мб.;
- графічний адаптер 4 Мб.;
- жорсткий диск ємністю 2 Гб.;
- привід CD/ DVD.

3.5. Вимоги до інформаційної та програмної сумісності

Розроблений програмний продукт орієнтований на роботу в ОС Windows, тому для коректної роботи програми необхідне стабільне функціонування ОС.

Дане програмне забезпечення розроблено на таких технологіях: HTML5, Css, Javascriptз використанням бібліотеки JQuery.

3.6. Вимоги до транспортування і зберігання

Програма не займає багато місця на жорсткому диску. Вона може зберігатися на будь-яких носіях інформації, об'єм яких більший за 2 Мбайт. Відповідно може транспортуватися на будь-яких мобільних носіях інформації, об'єм яких більший за 32 Мбайт.

Терміни зберігання програми на носіях інформації обмежуються технічними параметрами та експлуатаційними характеристиками самих носіїв.

4. ВИМОГИ ДО ПРОГРАМНОЇ ДОКУМЕНТАЦІЇ

Програмна документація додається до кожного програмного продукту й передбачає наявність наступних документів, які описують призначення, структуру, алгоритм функціонування програмного продукту, а саме:

- специфікація;
- технічне завдання;
- пояснювальна записка;
- опис програми;
- текст програми;
- програма та методика випробовування.

5. ТЕХНІКО-ЕКОНОМІЧНІ ПОКАЗНИКИ

Для створення будь-якого програмного продукту необхідно створити техніко-економічне обґрунтування та оцінити необхідні ресурси і вартість розробки. Основними показниками при цьому вважаються трудомісткість, час розробки, чисельність виконавців та продуктивність їх праці.

Трудомісткість розробки програмного продукту (t) визначається за формулою (5.1), люд.-міс.

$$t=3,6 \cdot (3_{\text{\tiny T.B.K}})^{1,2}=3,6 \cdot (2,43)^{1,2}=10,44,$$
 (5.1)

де $\eta_{\scriptscriptstyle T.B.K} = Q/1000 = 2430/1000 = 2,43$ – к-сть тисяч команд програмного коду.

Умовна кількість команд Q визначається за формулою:

$$Q = q \cdot C = 1500 \cdot 1,15 = 2,43, \tag{5.2}$$

де q — коефіцієнт, який враховує умовне число команд в залежності від типу задачі. Значення даного коефіцієнта визначається з таблиці 5.1 (завдання оперативного управління, q = 1500), а C — коефіцієнт, який враховує новизну та складність програми (табл. 5.2).

Таблиця 5.1. Значення коефіцієнта q для визначення кількості команд в програмному коді

Тип завдання, яке вирішує програма	Межі зміни коефіцієнта		
Завдання обліку	від 1400 до 1500		
Завдання оперативного управління	від 1500 до 1700		
Завдання планування	від 3000 до 3500		
Багатоваріантні завдання	від 3000 до 3500		
Багатоваріантні завдання	від 4500 до 5000		
Комплексні завдання	від 5000 до 5500		

Програмні продукти за ступенем новизни відносяться до однієї з 4-х груп:

- Група А розробка принципово нових завдань.
- Група Б розробка оригінальних програм.

- Група В розробка програм з використанням типових рішень.
- Група Г разова типова задача.

За ступенем новизни програма відноситься до групи Б.

За ступенем складності програмні продукти можуть належати до однієї з 3-х груп:

- 1 алгоритми оптимізації та моделювання систем;
- 2 завдання обліку, звітності та статистики;
- 3 стандартні алгоритми.

За ступенем складності програма відноситься до групи 3.

Коефіцієнт C визначається з таблиці 5.2 на перетині показників складності та новизни (групи B і групи 1 для мови програмування високого рівня), звідки C = 1,15.

Таблиця 5.2 Значення коефіцієнта С

Мова програмування	Група складності	Рівень новизни			
		A	Б	В	Γ
Високого	1	1,38	1,26	1,15	0,69
рівня	2	1,3	1,19	1,08	0,65
	3	1,2	1,1	1,00	0,60
Низького	1	1,58	1,45	1,32	0,79
рівня	2	1,49	1,37	1,24	0,74
Pibini	3	1,38	1,26	1,15	0,69

Тепер, виходячи з формул 5.1 i 5.2 можна визначити трудомісткість розробки програмного продукту.

Середня кількість виконавців ($PL_{вик}$) розраховується виходячи з трудомісткості та тривалості розробки ПП за формулою (5.3), люд.:

$$PL_{\text{BHK}} = t/T = 6.93/4.64 = 1.49.$$
 (5.3)

Загальна тривалість розробки ПП (Т) розраховується за формулою (5.4), міс.:

$$T = 2.5 \cdot t^{0.32} = 2.5 \cdot 6.93^{0.32} = 4.64. \tag{5.4}$$

Продуктивність праці групи розробників ПП (Π_p), команд/люд.-міс. визначається за формулою (5.5):

$$\Pi_{\rm p} = 1000 \cdot \eta_{\rm \tiny T.B.K} / t = 1000 \cdot 1,725 / 6,93 = 249.$$
 (5.5)

Результати розрахунків для програми наведено у таблиці 5.3.

Таблиця 5.3.

Очікувані техніко-економічні показники для програмної розробки

Показник	Значення
Трудомісткість (людміс.)	6,93
Тривалість розробки (міс.)	4,64
Середня чисельність виконавців (люд.)	1,49
Продуктивність праці розробників (команд/людміс.)	249

6. ПОРЯДОК КОНТРОЛЮ І ПРИЙМАННЯ

3 метою проведення контролю та приймання здійснюються наступні кроки:

Вибираємо необхідне місце на квантовій мережі.

- 1. Вибираємо примітив і переставляєм його на вибране місце.
- 2. Виконуємо пункти 1, 2 поки мережа не буде сформована.
- 3. Запускаємо на виконання і зчитуємо результати.