Lógica

Lógica de Predicados Aula 16 – Unificação e Substituição

Profa. Helena Caseli helenacaseli@ufscar.br

$$\forall X(p(X,a) \lor q(X))$$

- O que são os elementos?
- Qual o significado dessa sequência?
- Quem é X?
- Em algum momento X deverá assumir um valor que dê "sentido" à fórmula
- Esse processo é denominado **Unificação** e fundamenta-se no conceito de **Substituição** que é a troca de variáveis por termos
- → **Unificação** é essencial no raciocínio por Resolução

Substituição

Uma substituição na Lógica de Predicados é um conjunto

$$\theta = \{t_1/v_1, t_2/v_2, ..., t_n/v_n\}$$

- Onde
 - v_i (1 $\leq i \leq n$) é variável e t_i (1 $\leq i \leq n$) é termo
 - $V_i \neq t_i$
 - \forall i, j tem-se que $v_i \neq v_i$ se $i \neq j$
- Substituição vazia (ε) não contém nenhum elemento
- → Substituição *ground* quando t₁,..., tₙ são termos *ground* (termos que não contêm variáveis)

- Seja $\theta = \{t_1/v_1, t_2/v_2, ..., t_n/v_n\}$ uma substituição
 - → O conjunto $\{v_1, v_2, ..., v_n\}$ é o **domínio** de θ (dom(θ))
 - \rightarrow O conjunto $\{t_1, t_2, ..., t_n\}$ é o **contradomínio** de θ

- Aplicação de substituição (instanciação)
 - Seja $\theta = \{t_1/v_1, t_2/v_2, ..., t_n/v_n\}$ uma substituição e seja E uma expressão
 - Eθ é uma expressão obtida a partir de E substituindo simultaneamente cada ocorrência da variável v_i (1 ≤ i ≤ n) em E pelo termo t_i de acordo com θ
 - → Eθ é uma instanciação
 - → Se θ = ε então E θ = E

- Aplicação de substituição
 - Exemplo
 - $E_1 = p(Y)$
 - $E_2 = \neg q(Y, Z, X)$
 - $E_3 = \neg p(W)$
 - $E_4 = r(W, Y, Z, X, Z)$
 - $\theta = \{W/Y, g(a, Z, X)/W, W/X\}$
 - $E_1\theta = p(W)$
 - $E_2\theta = \neg q(W, Z, W)$
 - $E_3\theta = \neg p(g(a, Z, X))$
 - $E_4\theta = r(g(a, Z, X), W, Z, W, Z)$

- Composição de substituições
 - Considere as substituições
 - $\theta_1 = \{t_1/x_1, t_2/x_2, ..., t_n/x_n\}$
 - $\theta_2 = \{s_1/y_1, s_2/y_2, ..., s_m/y_m\}$
 - A composição $\theta_1\theta_2$ é calculada como: θ_1 após aplicar θ_2 θ_2
 - **1.**Construa o conjunto $\phi = \{t_1\theta_2/x_1, ..., t_n\theta_2/x_n, s_1/y_1, ..., s_m/y_m\}$
 - 2.Retire de ϕ as ligações s_i/y_i tal que $y_i = x_j$ para algum j, i $1 \le j \le n$. Faça ϕ igual ao novo conjunto
 - 3. Retire de ϕ as ligações $t_i\theta_2/x_i$ tal que $x_i = t_i\theta_2$. Faça $\theta_1\theta_2$ igual ao novo conjunto obtido

- Composição de substituições
 - Exemplo
 - $\theta_1 = \{f(Y)/X, Z/W, X/Z\}$
 - $\theta_2 = \{W/Y, Z/X, W/Z\}$
 - 1. $\phi = \{f(Y)\theta_2/X, Z\theta_2/W, X\theta_2/Z, W/Y, Z/X, W/Z\}$ $\phi = \{f(W)/X, W/W, Z/Z, W/Y, Z/X, W/Z\}$
 - 2. $\phi = \{f(W)/X, W/W, Z/Z, W/Y\}$
 - 3. $\theta_1 \theta_2 = \{f(W)/X, W/Y\}$
- 1. Construa o conjunto $\phi = \{t_1 \theta_2 / x_1, ..., t_n \theta_2 / x_n, s_1 / y_1, ..., s_m / y_m \}$
- 2. Retire de ϕ as ligações s/y tal que y = x para algum j, i $1 \le j \le n$. Faça ϕ igual ao novo conjunto
- 3. Retire de ϕ as ligações $t_i\theta_2/x_i$ tal que x_i = $t_i\theta_2$. Faça $\theta_1\theta_2$ igual ao novo conjunto obtido

- Substituição
 - Composição de substituições

$\begin{array}{c} \text{Propriedades} \\ \theta_{1} \varepsilon = \varepsilon \theta_{1} = \theta_{1} \\ (E \theta_{1}) \theta_{2} = E(\theta_{1} \theta_{2}) \\ (\theta_{1} \theta_{2}) \theta_{3} = \theta_{1}(\theta_{2} \theta_{3}) \end{array} \qquad \text{(associatividade)} \end{array}$

Unificação

• Uma substituição θ é unificadora de um conjunto de expressões $\{E_1, E_2, ..., E_k\}$ se e somente se:

$$\mathsf{E}_1\theta = \mathsf{E}_2\theta = \ldots = \mathsf{E}_k\theta$$

ightharpoonup O conjunto $\{E_1, E_2, ..., E_k\}$ é dito **unificável** se existir uma substituição unificadora para ele

Exemplo

- Dado o conjunto S = {p(X, Y), p(W, X)}
- θ_1 = {W/X, W/Y} e θ_2 = {a/X, a/Y, a/W} são substituições unificadoras de S

→
$$S\theta_1 = \{p(W, W), p(W, W)\} e S\theta_2 = \{p(a, a), p(a, a)\}$$

- Unificadora mais geral (most general unifier, mgu)
 - Uma substituição unificadora δ do conjunto de expressões $\{E_1, E_2, ..., E_k\}$ é a **unificadora mais geral** (mgu) se e somente se para cada unificadora do conjunto existir uma substituição γ tal que $\theta = \delta \gamma$
 - Duas ou mais expressões são unificáveis se elas têm a mesma mgu
 - Uma mgu é uma substituição unificadora que faz o mínimo possível de substituições para unificar um dado conjunto de expressões

- Unificadora mais geral (most general unifier, mgu)
 - Exemplo
 - Dado o conjunto S = {p(X, Y), p(W, X)} e as unificadoras
 - $\theta_1 = \{W/X, W/Y\} e$
 - θ_2 = {a/X, a/Y, a/W}
 - → θ₁ é a mgu

- Conjunto de diferenças
 - Seja S = $\{E_1, ..., E_n\}$ um conjunto finito de expressões
 - O conjunto de diferenças é determinado como:
 - 1. Aponte para o símbolo mais à esquerda em cada expressão E_i , $1 \le i \le n$
 - 2. Enquanto todos os símbolos apontados coincidirem, desloque simultaneamente o apontador para a direita
 - 3. Se forem encontrados símbolos que não coincidem,
 - Então crie um conjunto de diferenças D = {F_i, ..., F_n} contendo as subexpressões F_i de cada expressão E_i, que inicia no símbolo de diferença
 - Caso contrário faça D = {}

- Conjunto de diferenças
 - Exemplo
 - Dado o conjunto $S = \{ p(f(X)), p(Z) \}$
 - Qual o conjunto de diferenças D de S?
 - D = $\{f(X), Z\}$

Unificação

Algoritmo

- Seja S um conjunto de expressões da Lógica de Predicados, se S é unificável, o algoritmo retorna uma mgu de S, caso contrário indica que S não é unificável
- Sejam $k \in \mathbb{N}$ e θ_k substituições
 - **1.** Faça $k = 0 e \theta_k = \{\}$
 - 2. Se $|S\theta_k| = 1$ então pare! θ_k é uma mgu de S. Caso contrário, determine o conjunto de diferenças D_k de $S\theta_k$
 - 3. Se existe uma variável x e um termo t em D_k tal que x não ocorre em t, então faça $\theta_{k+1} = \theta_k \{t/x\}$, k = k + 1, vá para o passo 2. Caso contrário, pare! S não é unificável

Unificação

- Algoritmo
 - Exemplo
 - $S = \{ p(f(X), Y, X), p(Z, g(Z), a) \}$
 - 1. $k = 0 e \theta_0 = {}$
 - 2. $S\theta_0 = \{ p(f(X), Y, X), p(Z, g(Z), a) \} e |S\theta_0| \neq 1 D_0 = \{ f(X), Z \}$
 - 3. Z não ocorre em f(X) então $\theta_1 = \{\}\{f(X)/Z\} = \{f(X)/Z\}, k = 1$
 - 4. (passo 2 com k = 1) $S\theta_1 = \{ p(f(X),Y,X), p(f(X),g(f(X)),a) \} e$ $|S\theta_1| \neq 1$ $D_1 = \{ Y, g(f(X)) \}$
 - 5. (passo 3 com k = 1) Y não ocorre em g(f(X)) então θ_2 = $\{f(X)/Z\}\{g(f(X))/Y\} = \{f(X)/Z, g(f(X))/Y\}, k = 2$

3. Se existe uma variável x e um termo t em D_k tal que x não ocorre em t, então faça $\theta_{k+1} = \theta_k \{t/x\}$, k = k + 1, vá para o passo 2. Caso contrário, pare! S não é unificável

- Algoritmo
 - Exemplo
 - $S = \{ p(f(X), Y, X), p(Z, g(Z), a) \}$
 - 6. (passo 2 com k = 2) $S\theta_2 = \{p(f(X),g(f(X)),X), p(f(X),g(f(X)),a)\}$ e $|S\theta_2| \neq 1$ $D_2 = \{X, a\}$
 - 7. (passo 3 com k = 2) X não ocorre em a então θ_3 = {f(X)/Z, g(f(X))/Y}{a/X} = {f(a)/Z, g(f(a))/Y, a/X}, k = 3
 - 8. (passo 2 com k = 3) $S\theta_3 = \{p(f(a),g(f(a)),a), p(f(a),g(f(a)),a)\}$ e $|S\theta_3| = 1$. Pare!
 - $\rightarrow \theta_3 = \{f(a)/Z, g(f(a))/Y, a/X\}$ é uma mgu de S

Unificação

- Aplique o algoritmo de unificação para os seguintes conjuntos
 - a) $S = \{ p(M, a, h(X, b)), p(N,Y, h(Z, R)) \}$
 - b) $T = \{ p(M, K, c), p(Z, f(a), M) \}$
 - c) $U = \{ p(M,g(X)), p(a,X) \}$

Algoritmo

- 1. Faça $k = 0 e \theta_k = \{\}$
- 2. Se $|S\theta_k| = 1$ então pare! θ_k é uma mgu de S. Caso contrário, determine o conjunto de diferenças D_k de $S\theta_k$
- 3. Se existe uma variável x e um termo t em D_k tal que x não ocorre em t, então faça $\theta_{k+1} = \theta_k \{t/x\}$, k = k + 1, vá para o passo 2. Caso contrário, pare! S não é unificável

Unificação

 Aplique o algoritmo de unificação para os seguintes conjuntos

```
a) S = \{ p(M, a, h(X, b)), p(N,Y, h(Z, R)) \}
```

b)
$$T = \{ p(M, K, c), p(Z, f(a), M) \}$$

c)
$$U = \{ p(M,g(X)), p(a,X) \}$$

RESPOSTAS

- a) mgu de $S = \{ N/M, a/Y, Z/X, b/R \}$
- b) mgu de $T = \{ c/M, f(a)/K, c/Z \}$
- c) U não é unificável