Comparison of correlation method with the method for convolution.

- (1) both time-domain
- (2) similar mathematical definition (i.e. sum of products)
- (3) in convolution folding is required.
- (4) in correlation folding is not required.

We find that
$$r_{xy}(l) = x(n) \diamond y(n)$$

= $x(n) * y(-n)$

Example 1.19:

Determine the cross-correlation of the sequences.

$$x (n) = \{1, 2, 3, 4\}$$

 $y (n) = \{5, 6, 7, 8\}$

$$r_{xy}(l) = \sum_{n = -\infty}^{\infty} x(n) y(n-l)$$

$$r_{xy}(0) = \Sigma x (n) y (n)$$

= 1 × 5 + 2 × 6 + 3 × 7 + 4 × 8

$$r_{xy}(1) = \Sigma \times (n) y (n-1)$$

= 2 \times 5 + 3 \times 6 + 4 \times 7

$$r_{xy}(2) = \sum x(n) y(n-2)$$

= 3 \times 5 + 4 \times 6

Example 1.20:

Perform auto correlation

$$x(n) = \{1, 2, 3, 4\}$$

Solution:

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n-l)$$

$$r_{xx}(0) = \Sigma x (n) x (n)$$

= 1 × 1 + 2 × 2 + 3 × 3 + 4 × 4
= 30

$$r_{xx}(1) = \sum x(n) x(n-1)$$

= 2 × 1 + 3 × 2 + 4 × 3

$$r_{xx}(2) = \sum x(n) x(n-2)$$

= 3 × 1 + 4 × 2

