Počítačové videnie - Príznaky II

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

3.3.2020

0. moment

Definícia

$$m_{0,0} = \int_{R} \int_{R} F(x, y) dxdy \to m_{0,0} = \sum_{i=x}^{X} \sum_{y=1}^{Y} J(x, y)$$

Úloha

Vypočítajte nultý moment pre obrázok jeden.png. Čo predstavuje tento moment?

Ďalšie momenty

Definícia

$$m_{p,q} = \int_R \int_R x^p y^q F(x,y) dxdy \rightarrow m_{p,q} = \sum_{x=1}^X \sum_{y=1}^Y x^p y^q J(x,y)$$

Normalizácia

$$n_{p,q} = \frac{m_{p,q}}{m_{0,0}}$$

Úloha

Vypočítajte $n_{0.1}$ a $n_{1.0}$, čo pre obrázok predstavujú?

Centrálne momenty

Definícia

$$\mu_{p,q} = \int_{R} \int_{R} (x - \bar{x})^{p} (y - \bar{y})^{q} F(x, y) dx dy \to$$

$$\mu_{p,q} = \sum_{x=1}^{X} \sum_{y=1}^{Y} (x - \bar{x})^{p} (y - \bar{y})^{q} J(x, y)$$

Ótazka

Čomu zodpovedá \bar{x} a \bar{y} . Akú výhodu má centrálny moment?

Centrálne momenty

Normalizácia

$$\eta_{p,q} = \frac{\mu_{p,q}}{m_{0,0}}$$

Histogram

imhist

imhist(I) - vráti počty jednotlivých hodnôt pre jasy z obrázka. Histogram aj nakreslí.

Pozor!

Ak chceme aby imhist rozlíšiloval medzi kanálmi, tak ho musíme aplikovať zvlášť po kanáloch.

Úloha

Pre obrázok hrib.jpg nakreslite histogram(y), tak aby z neho boli vidieť jednotlivé kanály.

Histogram ako príznakový vektor

Príznakový vektor

Histogram je v podstate vektor, ktorý predstavuje početnosť jednotlivých hodnôt intenzít v obrázku. Ak máme histogramy tri môžeme ich dať 'za seba'.

Normalizácia

Histogram by sám o sebe nebol vhodný príznak, keď že napr. väčšie obrázky budú ď aleko od rovnakých ale malých obrázkov. Je preto nutné histogramy normalizovať, napr. predelením celkovým počtom pixelov.

Histogram

Príznakový priestor

Opäť môžeme porovnávať príznaky pomocou metriky. Napr.

$$\rho(\vec{a},\vec{b}) = \sqrt{\sum_{i}^{N} (a_i - b_i)^2}.$$

Úloha

Použite normalizovaný histogram ako príznakový vektor a zistite vzdialenosti obrázkov hrib.jpg, mech.jph a bobule.jpg.

Kvantizácia

Histogram ako príznak

V obrázku je strašne veľa unikátnych RGB trojíc. Štandardný histogram tak nieje úplne vhodný.

Riešenie - kvantizácia

Znížime v obraze počet unikátnych farieb. Tento proces sa nazýva kvantizácia. Výsledkom je tzv. indexovaný obraz. (Prípadne stále RGB obraz s menším počtom farieb.)

Kvantizácia - matlab

rgb2ind

[X, map] = $\operatorname{rgb2ind}(I,n)$ - vráti indexovaný obraz X (podobné label matici) s n farbami a mapu $n \times 3$ tj. zoznam trojíc farieb v poradí podľa ktorého sa indexuje.

rgb2ind

X = rgb2ind(I,map) - vráti indexovaný obraz X pre danú mapu.

Kvantizácia - matlab

Kód - zobraznie

```
load('macbeth.mat', 'macbeth_map');
X = rgb2ind(I,macbeth_map);
imagesc(X);
colormap(macbeth_map);
imhist(X,macbeth_map);
```

Úloha

Porovnajte vzdialenosti rovnakých obrázkov ale na histogramoch indexovaných obrázkov. Indexujte buď mapou Macbeth, alebo použite lubovoľné *n*. Všetky obrázky, ale indexujte pomocou tej istej mapy.

Freeman Code

Freeman Code

```
I = imread('jeden.jpg');
BW = imbinarize(I);
B = bwboundaries(BW, 'noholes');
F = Freeman_code(B{1});
```


Obvod - Úloha

Zadanie

Spočítajte obvod špendlíka z obrázku jeden.jpg. Použite imrotate(I, uhol, 'bilinear', 'crop'); a zistite ako sa mení s úhlom.

Definície obdovdu

 N_p , N_n je počeť párnych resp. nepárnych čísel v kóde a N_r je počet rohov (2 po sebe idúce čísla sú rôzne):

$$P_s = N_p + N_n$$

 $P_d = N_p + \sqrt{2}N_n$
 $P_v = 0.948N_p + 1.340N_n$
 $P_c = 0.980N_p + 1.406N_n - 0.091N_r$