<u>1.1</u>

a.

Floating point values are always an approximation to the real number. When you add two floating point numbers together, there will be a slight deviation due to the limited precision of a 32 bit floating point number. This will lead to rounding errors.

b)
I would compare the difference between the result value and the correct value and compare it to a tolerance value (t). If the difference is smaller than the t, we deem it sufficiently accurate.

1.2				اسا
a) <u>6</u>	-10	14	16 -6	(1)
-9	6	-3		(2)
- 3	3	-2	-3	(3)
- 9	6	-3	- 6	(4)
6	-10	19	16	(5)
-3	3	- 7	-3	(6)
- 9	6	-3	-6	(7)
0	-6	12	12	$(8) = (6) + \frac{2}{3}(4)$
0	1	-1	-1	(9)=(6)-1/3(9)
<u> </u>	6	-3	—6	(40)
0	-6	12	12	(41)
0	0	1	1	(12) = (9) + 2 (8)
- 9	6	0	- 3	(13) = (10) + 3. (12)
O	-6	0	0	(19)=(11)-12.(12)
0	0	1	1	(15)
~9	0	0	-3	(16)=(13)+(14)
0	1	Ø	O	$(17) = -\frac{1}{6} \cdot (14)$
0	0	1	1	(18)
1	0	0	13	(19)=-3 (16)
0	7	0	0	(20)
0	O	1	1	(27)
Lo ×1 = 3 x, = 0 ×2 = 1				

b)
$$\overline{((x)} = A_{\times} = \begin{pmatrix} 2 & 9 & 0 & 1 & 3 \\ 0 & 1 & -2 & 2 & 1 \\ 5 & 7 & 1 & -5 & 6 \end{pmatrix} \begin{pmatrix} \times_1 \\ \times_2 \\ \times_3 \\ \times_9 \\ \times_5 \end{pmatrix} = \begin{pmatrix} 2_{\times_1} + q_{\times_2} + \chi_9 + 3_{\times_5} \\ \times_2 - 2x_3 + 2x_9 + x_5 \\ \overline{5}_{\times_1} + \overline{7}_{\times_2} + x_3 - \overline{5}_{\times_4} + 6_{\times_6} \end{pmatrix}$$

The input Vector x modifies the matrix A by multiplying of x by the coefficients in A and adding them together in each row.