trode thu

$$at = \frac{1}{2} \frac{\Delta [A]}{\Delta t} = \frac{\Delta [B]}{\Delta t}$$

in general:

$$at = -\frac{1}{a} \frac{\Delta(A)}{\Delta t} = -\frac{1}{b} \frac{\Delta(B)}{\Delta t}$$

ex:
$$30_2(g) \longrightarrow 20_3(g)$$
 * con masure rate = $-\frac{1}{3}\frac{\Delta(o_3)}{\Delta t} = \frac{1}{2}\frac{\Delta(o_3)}{\Delta t}$ any from

We've learnt how to measure rate.
-we would like to predict/radrulate a rate.

RATE LAW = A modhematical equation that can be used to PREDICT a new rate.

as long as we know [Reackent]

Or:
$$A + 2B \rightarrow C$$

ot = $-\Delta(A) = -\frac{1}{2} \Delta(B) = +\Delta(C)$
 $\Delta t = -\frac{1}{2} \Delta(B) = +\Delta(C)$

rate law: (rate = K [A] B] L examp4.

ex: $F_2(g) + 2C_1 O_2(g) \rightarrow 2FC_1 O_2(g)$ @ start of xer (<u>mit</u>)

XPT #	[E]./M	/[ao.]./M	init. at /ms-1
1	0.10	0.010	1.2 ×10-3
2	0.10	0.040	4 .8×10-3
3	0.20	0.010	2.4 x 10-3

look @ XPT 1+2

*4 init conc Clo2} note a [Clo3]

-> *4 init note

}

rate
$$\propto (F_2)$$
 \Rightarrow rate $\propto (F_2)[\alpha o_2]$ $\propto (\alpha o_2)$