Elements mathématiques pour le codage

seconde séance : appli

1. Etude des corps $F_p[X]/P(X)$ - suite

Théorème 1. Soit un corps premier F_p et un polynôme P(X) à coefficients dans F_p , **irréductible** et de degré d;

On désigne par $K = F_p[X]/P(X)$ l'ensemble des classes de congruence de $F_p[X]$ modulo P(X).

- 1) Si on munit $K=F_p[X]/P(X)$ de l'addition modulo P(X) et de la multiplication modulo P(X) il devient un corps.
- 2) Par ailleurs $K = F_p[X]/P(X)$ est un F_p espace vectoriel de base $(\bar{1}, \bar{X}, \overline{X^2}, ..., \overline{X^{d-1}})$; par suite il possède p^d éléments.
- 3) Il contient $F_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}.$

On peut démontrer qu'il n'y a qu'un seul type de corps possédant p^d éléments, on le notera F_{p^d}

4) L'ensemble $K^*=K\setminus\{0\}$, formé par les éléments non nuls de K est un groupe multiplicatif cyclique.

Exemple 2. On reprend le corps $F_3[X]/(X^2+1)$

On désigne par μ la classe de X+1

1. Montrons que les éléments non nuls sont tous de puissances de ω :

puissance de μ classe de

$$\begin{array}{cccc} \mu^0 & & 1 \\ \mu^1 & & X+1 \\ \mu^2 & & -X \\ \mu^3 & & -X+1 \\ \mu^4 & & -1 \\ \mu^5 & & -X-1 \\ \mu^6 & & X \\ \mu^7 & & X-1 \\ \mu^8 & & 1 \end{array}$$

2. Ce tableau permet désormais de gagner du temps pour les multiplications:

$$\mu^m \odot \mu^n = \mu^{m+n \text{ modulo } (8)}$$

 $3.\ {\rm Ce}$ tableau permet désormais de gagner du temps pour le calcul de l'inverse:

comme $\mu^8 = 1$ l'inverse de μ^k s'écrit tout simplement μ^{8-k} .

Au placard Euclide amélioré!!!!

4. Reste l'addition elle se fait en additionnant les coefficients modulo 3:

$$cl(X+1)\oplus cl(X+1) = cl(-X-1)...$$

Exercice 1. $F_3[X]$

- 1. Vérifier que le polynôme $X^3 X^2 + X + 1$ est irréductible dans $F_3[X]$
- 2. Déterminer le nombre d'éléments du corps $F_3[X]/(X^3-X^2+X+1)$
- 3. Vérifier avec maxima que la classe μ de X est bien un générateur du groupe $(F_3[X]/(X^3-X^2+X+1)\setminus\{0\},\odot)$

On pourra s'aider de la procédure ci-jointe

```
 \begin{split} & test(P) := block([Q,k,L],Q:P,k:1,L:[P], while(k < 27) do(Q:second(divide(Q*P,X^3-X^2+X+1)),L:endcons(Q,L),k:k+1), return(L)) dollar \end{split}
```

Remarque 3. Le package de maxima pour les corps finis

```
avant tout charger le package : load(gf); puis définir le corps fini exemple: la commande « gf_set_data(5,x^3+x+1) » va définir que l'on travaille modulo 5 (c'est à dire avec F_5[X] et que le polynôme P(X)=X^3+X+1. Si P(X) est irréductible dans F_5[X] on va travailler dans F_5[X]/P(X). exemple: a:X^2+1; b:X+1; gf_mult(a,b); donnera -x-1; de même gf_add(a,b); donnera 2X^2+X+1; et gf_inv(a); donnera l'inverse la division euclidienne sera donnée par gf_div(a,b): on peut créer des matrices comme d'habitude m:matrix([x+1,x^2+x,x],[x^2+1,x^2+x,1]);
```

2. Les Corps F_{2^d}

les multiplier par gf matmult(m,n).

Tout devient plus facile en remplaçant 3 par $2: F_2$

inverser par gf matinv(m) ou(cf la version)

- 1. D'une part les additions dans F_2 et $F_2[X]$ sont faciles (1+1=0,1+0=1,0+0=0) c'est l'addition booléenne
- 2. Donc dans $F_2[X]/P(X)$ la loi \oplus sera simple, plus encore que modulo 3
- 3. D'autre part le groupe des éléments non nuls, au lieu d'être engendré par un élément pas simple, et pas simple à trouver, sera tout simplement engendré par la classe de X.

Proposition 4. Liste de polynômes irréductibles dans $F_2[X]$ (il y en a d'autres à chaque degré)

$$degré~2:~X^2+X+1$$
 $degré~3:~X^3+X+1$ $degré~4:~X^4+X+1$

degré 5: $X^5 + X^2 + 1$

degré 6: X^6+X+1

degré 7: $X^7 + X^3 + 1$

degré 8: $X^8 + X^4 + X^3 + X^2 + 1$

Théorème 5. Soit un polynôme P(X) irréductible, de degré d, dans $F_2[X]$ et le corps $F_2[X]/P(X)$

- 1) Si on désigne par ω la classe de X, $K = \{a_0 + a_1\omega + a_2\omega^2 + \dots + a_{d-1}\omega^{d-1}, (a_0, a_1, \dots, a_{d-1}) \in \{0, 1\}^d\}$
- 2) P(X) est le polynôme unitaire de plus bas degré qui admette ω comme racine.
- 3) K possède 2^d éléments
- 4) K, muni de l'addition modulo P(X) et de la multiplication modulo P(X) est un corps
- 5) K est désigné par F_{2d}
- 6) ω engendre le groupe multiplicatif $K^* = K \setminus \{0\}$, c'est à dire $K = \{0, \omega, \omega^2,, \omega^{d-1} = 1\}$

Remarque 6. Contrairement au cas de F_3 la classe de X est un générateur du groupe des éléments non nuls, ce qui allège les calculs.

3. Exemple F_8

On prend par exemple le polynôme irréductible X^3+X+1 et on considère $F_2[X]/(X^3+X+1)$

On note ω la classe de X

ses éléments s'écrivent $a+b\omega+c\omega^2$ (où a,b,c valent 0 ou 1)

- 1) l'addition est banale
- 2) exemple de multiplication $(1+\omega+\omega^2)\odot(1+\omega^2)=\omega+\omega^2$

rappel : deux méthodes de calcul: soit on multiplie et on garde le reste modulo P(X), soit on remplace chaque fois X^3 par -(1+X), c'est à dire ici (modulo 2).

3) table des puissances de ω :

$$\omega, \omega^2, \omega^3 = 1 + \omega, \omega^4 = \omega^2 + \omega, \omega^5 = 1 + \omega + \omega^2, \omega^6 = 1 + \omega^2, \omega^7 = 1$$

4) par exemple : l'inverse de $1 + \omega + \omega^2 = \omega^5$ est ω^2

Problème 1. Dans $F_2[X]/(X^3 + X + 1)$

- 1. Déterminer l'expression de $(1+\omega)\odot(\omega+\omega^2)$ sous la forme $a+b\omega+c\omega^2$
- 2. Déterminer l'expression de l'inverse de $1+\omega^2$ sous la forme $a+b\omega+c\omega^2$

Exemple 7. F_{16} (sera utilisé pour les codes correcteurs)

On part de $F_2[X]/(X^4 + X + 1)$

- 1. On vérifie que $X^4 + X + 1$ est irréductible.
- 2. On pose $\theta = \text{classe}(X)$, chaque élément s'écrit alors $a + b\theta + c\theta^2 + d\theta^3$, où (a,b,c,d) valent 0 ou 1.
- 3. On peut écrire les puissances de θ sous cette forme:

θ^0	1	[0001]
θ^1	θ	[0010]
θ^2	θ^2	[0100]
θ^3	θ^3	[1000]
θ^4	$1 + \theta$	[0011]
θ^5	$\theta + \theta^2$	[0110]
θ^6	$\theta^2 + \theta^3$	[1100]
θ^7	$1 + \theta + \theta^3$	[1011]
θ^8	$1 + \theta^2$	[0101]
θ^9	$\theta + \theta^3$	[1010]
θ^{10}	$1 + \theta + \theta^2$	[0111]
θ^{11}	$\theta + \theta^2 + \theta^3$	[1110]
θ^{12}	$1+\theta+\theta^2+\theta^3$	[1111]
θ^{13}	$1 + \theta^2 + \theta^3$	[1101]
θ^{14}	$1+\theta^3$	[1001]
0	0	[0000]

Travaux Dirigés

Exercice 2. On travaille avec $F_2[X]$

- 1. Vérifier que $X^3 + X^2 + 1$ est irréductible
- 2. Vérifier que $X^4 + X^2 + 1\,$ n'est pas irréductible
- 3. Vérifier que $X^4 + X^3 + 1$ est irréductible

Exercice 3. Etude de $F_2[X]/(X^3+X^2+1)$

- 0. On admettra le théorème du cours et on note ω pour la classe de X
- 1. Liste des éléments sous la forme $a+b\omega+c\omega^2$
- 2. Liste des correspondances avec les puissances de $\omega.$
- 3. Liste des inverses sous la forme $a+b\omega+c\omega^2$

Exercice 4. Etude de $F_2[X]/(X^4 + X^3 + 1)$

- 0. On admet ce que dit le théorème du cours et on note θ pour la classe de X
- 1. Liste des éléments sous la forme $\mathbf{a} + \mathbf{b}\theta + c\theta^2 + d\theta^3$
- 2. Liste des correspondances avec les puissances de $\theta.$
- 3. Liste des inverses sous la forme $a+b\theta+c\theta^2+d\theta^3$

Exercice 5. Etude de l'ensemble M des matrices 2x2 à coefficients dans $F_2[X]/(X^4+X^3+1)$

- 1. Nombre d'éléments.
- 2. Soit A= $\begin{pmatrix} 1+\theta & \theta^3 \\ \theta^2 & 1+\theta^2 \end{pmatrix}$. Déterminer si A est inversible.
- 3. Soit B=($\begin{smallmatrix} 1+\theta^2 & \theta \\ \theta^2 & 1+\theta^2 \end{smallmatrix}$). Déterminer si B est inversible.
- 4. Soit X=($\frac{x}{y}$), résoudre le système BX=(0).

Exercice 6. (avec maxima) à préparer !!!!!!!

on utilisera le package gf qui sera chargé par load(gf)

Etude de
$$K = F_2[X]/(X^7 + X^3 + 1)$$

nombre d'éléments (sans maxima)

table de multiplication

produit des matrices
$$\begin{pmatrix} 1+\theta+\theta^4 & \theta^3 \\ \theta+\theta^6 & 1+\theta^2+\theta^4 \end{pmatrix}$$
 et $\begin{pmatrix} 1+\theta^4+\theta^5 & \theta^3 \\ \theta+\theta^2 & 1+\theta^3+\theta^6 \end{pmatrix}$

Exercice 7. (suite du 6) Un essai de codage

on décide d'un principe de codage:

on choisit une matrice de codage $G = \begin{pmatrix} g_1 & g_2 \\ h_1 & h_2 \end{pmatrix}$ à coefficients dans K, puis tout message (a1,a2) (dont les éléments sont dans K) est transformé en $G \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

a. Sachant que le message reçu est $\begin{pmatrix} \theta^6 + \theta^4 + \theta^3 + \theta^2 \\ \theta^5 \end{pmatrix}$ et que $G = \begin{pmatrix} \theta & \theta^3 + \theta^2 \\ \theta^4 + 1 & \theta^5 \end{pmatrix}$, quel était le message original?

4. Cryptage fondé sur les propriétés du groupe $F_{2^d}^*$

Diffie-Hellman-ElGamal

Alice et Bob

4.1 Choix commun du groupe F_{2^d} et d'un générateur θ

(ceci revient à choisir le degré d et un polynôme irréductible dans $F_2[X]$ de degré 2.)

4.2 Alice choisit secrètement un exposant $\alpha \in \{2,...,2^d-2\}$

et publie officiellement
$$(F_{2^d}, \theta, y_A = \theta^{\alpha})$$

4.3 Bob choisit secrètement un exposant $\beta \in \{2, ..., 2^d - 2\}$

et publie officiellement
$$(F_{2^d}, \theta, y_B = \theta^{\beta})$$

- 4.4 Bob veut envoyer à Alice le message m $\in F_{2^d}$; il le crypte : $s=my_A^\beta$
- 4.5 Alice décrypte $y_B^{-\alpha}$ ce qui donne $my_A^{\beta}y_B^{-\alpha} = m\theta^{\alpha\beta}\theta^{-\beta\alpha} = m!$

Remarque 8. La force de cet algorithme de cryptage réside dans le fait qu'il n'est pas possible facilement de trouver α quand on connait θ^{α} ou β quand on connait θ^{β} ; c'est le problème du logarithme discret.

Une analyse montre que la difficulté du problème du logarithme discret est beaucoup plus grande lorsque le nombre d'éléments $2^d - 1$ du groupe $F_{2^d}^*$ est premier, ce qui nous ramène aux nombres de Mersenne.

Exemple 9.

Pour $d = 7 2^7 - 1$ est premier

conséquence F_{2^7} est un corps de 128 éléments et le groupe multiplicatif possède 127 éléments, il est cyclique.

Pour le « fabriquer » il faut un polynôme irréductible dans $F_2[X]$ de degré 7.

Il existe des listes de polynômes irréductibles dans $F_2[X]$ des divers degrés j'en ai vus jusqu'à d =11: par exemple $P(X) = (X^7 + X^3 + 1)$.

Remarque 10.

Le groupe multiplicatif $G = F_{2^d}^*$ a pour cardinal 127, qui est premier, donc tous ses éléments, à part 1, sont d'ordre 127.

Choisissons $g=\theta$, la classe de X.....