

М. К. Потапов А. В. Шевкин

Дидактические материалы

7 класс

Учебное пособие для общеобразовательных организаций

11-е издание

Москва «Просвещение» 2017 УДК 373.167.1:512 ББК 22.14я72 П64

Серия «МГУ — школе» основана в 1999 году

Потапов М. К.

П64 Алгебра. Дидактические материалы. 7 класс: учеб. пособие для общеобразоват. организаций / М.К. Потанов, А.В. Шевкин. — 11-е изд. — М.: Просвещение, 2017. — 96 с. — (МГУ — школе). — ISBN 978-5-09-045947-1.

Пособие содержит задания для подготовки к самостоятельным работам по основным темам учебника «Алгебра, 7» С. М. Никольского и др., а также самостоятельные и контрольные работы в четырёх вариантах.

УДК 373.167.1:512 ББК 22.14я72

Учебное издание

Серия «МГУ — школе»

Потапов Михаил Константинович **Шевкин** Александр Владимирович

АЛГЕБРА

Дидактические материалы

7 класс

Учебное пособие пля общеобразовательных организаций

Центр естественно-математического образования Редакция математики и информатики

Звв. редакцией Т.А. Бурмистрова, редактор Т.Г. Войлокова, младший редактор Е.А. Андрееннова, художественный редактор О.П. Богомолова, техническое редактирование и компьютерная вёрстка Л.В. Марухно, корректоры И.А. Григалашвили, И.В. Чернова

Налоговая льгота — Общероссийский классификатор продукции ОК 005-98—953000. Изд. лиц. Серия ИД № 05824 от 12.09.01. Подписано в печать 25.07.16. Формат 60×90 1/16. Вумага типографская. Гарнитура SchoolBookCSanPin. Печать офсетняя. Уч.-изд. л. 4,81. Доп. тираж 5000 экз. Заказ № 40410.

Анционерное общество «Издательство «Просвещение». 127521, Москва, 3-й проезд Марьиной рощи, 41.

Отпечатано в АО «Саратовский полиграфкомбинат». 410004, г. Саратов, ул. Чернышевского, 59. www.sarpk.ru

ISBN 978-5-09-045947-1

- © Издательство «Просвещение», 2004
- © Издательство «Просвещение», 2015, с изменениями
- © Художественное оформление. Издательство «Просвещение», 2015 Все права защищены

Предисловие

Дидактические материалы по курсу алгебры содержат 27 самостоятельных и 7 контрольных работ в четырёх вариантах. Ко всем вариантам контрольных работ имеются ответы.

Содержание дидактических материалов полностью соответствует учебнику алгебры для 7 класса серии «МГУ — школе» и дополняет его более сложными заданиями, необходимыми для работы в классах, нацеленных на подготовку к обучению на повышенном уровне. Дидактические материалы можно использовать при работе по дюбым учебникам, а также для восполнения пробелов в знаниях и самообразования. Представленные здесь самостоятельные работы могут предлагаться учащимся как обучающие для классной или домашней работы.

К каждой самостоятельной работе в первой части книги даны примеры выполнения заданий, аналогичных заданиям из самостоятельных работ, разбор которых существенно повысит результативность выполнения самостоятельных и контрольных работ и усвоение темы в целом.

Материалы для подготовки к самостоятельным работам содержат подробный разбор решений заданий, так как имеют целью объяснение выбранных способов действий. А оформление решений учащимися может быть кратким.

Темы «Весконечные десятичные дроби», «Приближённые вычисления», «Делимость чисел», «Делимость многочленов», «Линейные уравнения с параметром», «Системы трёх линейных уравнений», отмеченные в дидактических материалах звёздочкой, не являются обязательными для изучения в общеобразовательном классе. Они охватывают программу углублённого изучения математики.

Любые из самостоятельных работ учитель может использовать для контроля на отметку. Но при этом следует учесть, что многие самостоятельные и все контрольные работы избыточны по объёму, предполагается, что учитель самостоятельно отберёт из них часть заданий с учётом уровня подготовки учащихся и времени, отводимого на выполнение работы.

Некоторые задания вариантов III и IV несколько сложнее соответствующих заданий вариантов I и II. Так как в классах с углублённым изучением математики контрольных работ должно быть больше, чем в классе, работающем по общеобразовательной программе, то отдельные самостоятельные работы, отмеченные звёздочками, можно провести как контрольные.

Материалы для подготовки к самостоятельным работам

1. Действия с натуральными числами

Пример 1. Вычислим, не пользуясь калькулятором:

- a) 98 765 + 2345; 6) 123 456 56 789;
- B) 67 · 68;

- г) 403 · 306:
- л) 1593:27:
- e) 44 850:65.

4) 50 + 50 = 100.

Решение.

a)
$$+\frac{98765}{2345}$$
 6) $-\frac{123456}{56789}$ B) $\times \frac{67}{68}$ r) $\times \frac{403}{306}$ $\times \frac{306}{402}$ $\times \frac{1209}{123318}$

Пример 2. Вычислим, не пользуясь калькулятором: a) $3926: 13-12\cdot 21+50;$ 6) $59\cdot (27+27:9)-770.$

Решение.

a) 1)
$$-\frac{3926}{39} \begin{vmatrix} 13 \\ 802 \end{vmatrix}$$
 2) $\times \frac{12}{21}$ 3) $-\frac{302}{252}$ $-\frac{26}{26}$ $+\frac{12}{252}$ 50 $+\frac{24}{252}$

1) 27:9=3;

2) 27 + 3 = 30;

3) × 59 30 4) 1770 - 770 = 1000.

Пример 3. Придумаем пятизначное число, которое делилось бы:

б) на 5 и на 3; в) на 4440. а) на 2 и на 9;

Решение. а) Чтобы число делилось на 2, его запись должна оканчиваться на чётную цифру, а чтобы оно делилось ещё и на 9, сумма его цифр должна делиться на 9. Пример: 99 990;

б) чтобы число делилось на 5, его запись должна оканчиваться на 0 или на 5, а чтобы оно делилось ещё и на 3. сумма его цифр должна делиться на 3. Пример: 33 315:

в) чтобы найти пятизначное число, делящееся на 4440. умножим, например, число 4440 на 11, получим 48 840.

Пример 4. Используя свойства арифметических действий, найдём значение числового выражения

$$623 \cdot 81 - 623 \cdot 71 + 10 \cdot 77$$
.

Решение.
$$623 \cdot 81 - 623 \cdot 71 + 10 \cdot 77 = 623 \cdot (81 - 71) + 10 \cdot 77 = 623 \cdot 10 + 10 \cdot 77 = (623 + 77) \cdot 10 = 700 \cdot 10 = 7000.$$

Пример 5*. Не выполняя вычисления столбиком, найдём значение числового выражения 181 818: 54 - 818 181: 243.

Решение. Применяя основное свойство частного, разделим делимое и делитель первого частного на 18, а второго — на 81;

181818:54-818181:243=10101:3-10101:3=0.

2. Действия с рациональными числами

Пример 1. Вычислим:

a)
$$\frac{5}{11} + \frac{3}{22}$$
; 6) $\frac{12}{35} - \frac{11}{28}$; B) $-\frac{2}{13} \cdot \frac{39}{40}$; r) $\frac{25}{51} : \frac{15}{17}$;

6)
$$\frac{12}{35} - \frac{11}{28}$$
;

B)
$$-\frac{2}{12} \cdot \frac{39}{40}$$
;

$$\mathbf{r}$$
) $\frac{25}{51}$: $\frac{15}{17}$;

д)
$$5\frac{7}{25} + 1\frac{1}{30}$$
; e) $6\frac{5}{6} - 4\frac{7}{8}$; ж) $1\frac{3}{26} \cdot 2$; 3) $8\frac{3}{4} \cdot 25$.

e)
$$6\frac{5}{6}-4\frac{7}{9}$$

$$x) 1\frac{3}{26} \cdot 2$$

3)
$$8\frac{3}{4}$$
:25.

Решение. a) $\frac{5}{11}^{2} + \frac{3}{22} = \frac{10}{22} + \frac{3}{22} = \frac{13}{22}$;

6)
$$\frac{12}{35}^{14} - \frac{11}{28}^{15} = \frac{48}{140} - \frac{55}{140} = \frac{48 - 55}{140} = -\frac{7}{140} = -\frac{1}{20}$$
;

B)
$$-\frac{2}{13} \cdot \frac{39}{40} = -\frac{2 \cdot 39}{13 \cdot 40} = -\frac{1 \cdot 3}{1 \cdot 20} = -\frac{3}{20}$$
;

r)
$$\frac{25}{51}$$
; $\frac{15}{17} = \frac{25 \cdot 17}{51 \cdot 15} = \frac{5 \cdot 1}{3 \cdot 3} = \frac{5}{9}$;

$$\text{д) } 5\frac{7}{25}^{6} + 1\frac{1}{30}^{5} = 5\frac{42}{150} + 1\frac{5}{150} = 6\frac{47}{150};$$

e)
$$6\frac{5^{1/4}}{6} - 4\frac{7^{1/3}}{8} = 6\frac{20}{24} - 4\frac{21}{24} = 5 + \frac{44}{24} - 4\frac{21}{24} = 1\frac{23}{24}$$
;

$$\mathfrak{K}) \ 1\frac{3}{26} \cdot 2 = \frac{29 \cdot 2}{26} = \frac{29 \cdot 1}{13} = 2\frac{3}{13};$$

3)
$$8\frac{3}{4}:25=\frac{35}{4\cdot 25}=\frac{7}{4\cdot 5}=\frac{7}{20}$$
.

Пример 2. Вычислим:

- a) 41,34 + 3,8; b) 2,5 · (-0,64); f) 13,2 15,18; r) 0,42 : 0,007.

- a) 41,34+3,8=41,34+3,80=45,14;
- 6) 13,2-15,18=-(15,18-13,20)=-1,98;
- B) $2.5 \cdot (-0.64) = -2.5 \cdot 4 \cdot 0.16 = -10 \cdot 0.16 = -1.6$;
- r) 0.42 : 0.007 = 420 : 7 = 60.

Пример 3. Вычислим:

a)
$$3\frac{1}{12} + 4.3$$
; 6) $\frac{1}{5} - 0.5$; B) $-1\frac{3}{5} \cdot 1.5$; r) $-0.9 : \left(-2\frac{1}{4}\right)$.

Решение. a)
$$3\frac{1}{12} + 4.3 = 3\frac{1}{12} + 4\frac{3}{10} = 3\frac{5}{60} + 4\frac{18}{60} = 7\frac{23}{60}$$
;

6)
$$\frac{1}{5} - 0.5 = 0.2 - 0.5 = -0.3$$
;

B)
$$-1\frac{3}{5} \cdot 1,5 = -1,6 \cdot 1,5 = -2,4;$$

r)
$$-0.9: \left(-2\frac{1}{4}\right) = +\frac{9}{10}: \frac{9}{4} = \frac{9\cdot 4}{10\cdot 9} = \frac{4}{10} = 0.4$$
.

Пример 4*. Вычислим: $\frac{4,8 \cdot 6,25 \cdot 0,36}{0,125 \cdot 3,6 \cdot 0,48}$. Решение.

$$\frac{4,8 \cdot 6,25 \cdot 0,36}{0,125 \cdot 3,6 \cdot 0,48} = \frac{0,48 \cdot 10 \cdot 6,25 \cdot 0,36}{0,125 \cdot 0,36 \cdot 10 \cdot 0,48} = \frac{6,25}{0,125} = \frac{6250}{125} = 50.$$

3*. Бесконечные десятичные дроби

Пример 1. Какая из двух десятичных дробей: 0,71 или 0,72 — является более точным приближением числа $\frac{5}{7}$?

Решение. Для ответа на вопрос задачи сравним числа $|\frac{5}{7} = 0.71|$ и $|\frac{5}{7} = 0.72|$:

$$\left| \frac{5}{7} - 0.71 \right| = \left| \frac{5}{7} - \frac{71}{100} \right| = \left| \frac{500}{700} - \frac{497}{700} \right| = \frac{3}{700};$$

$$\left| \frac{5}{7} - 0.72 \right| = \left| \frac{5}{7} - \frac{72}{100} \right| = \left| \frac{500}{700} - \frac{504}{700} \right| = \frac{4}{700}.$$

Так как $\frac{3}{700} < \frac{4}{700}$, то десятичная дробь 0,71 является более точным приближением числа $\frac{5}{7}$.

Пример 2. Запишем обыкновенную дробь в виде периодической десятичной дроби:

a)
$$\frac{13}{99}$$
; 6) $\frac{23}{33}$; 8) $\frac{17}{999}$; r) $\frac{10}{3333}$.

Решение. a)
$$\frac{13}{99} = 0$$
,(13); b) $\frac{23}{33} = \frac{69}{99} = 0$,(69);
в) $\frac{17}{999} = 0$,(017); г) $\frac{10}{3333} = \frac{30}{9999} = 0$,(0030).

- Замечание 1. Те же результаты можно получить, разделив числитель дроби на знаменатель уголком.
- Замечание 2. Если в числителе дроби цифр меньше, чем девяток в её знаменателе, то при записи периода впереди дописывают нули так, чтобы цифр в периоде стало столько же, сколько девяток в знаменателе дроби.

Пример 3. Сравним числа:

- а) 7,8(3) и 7,(83);
- 6) -1.98(7) μ -1.9(87).

Решение. a) Так как 7.8(3) = 7.8333... и 7.(83) = 7.8383..., то $7.8(3) \le 7.(83)$;

б) так как 1,98(7) = 1,98777... и 1,9(87) = 1,98787..., то 1,98(7) < 1,9(87), поэтому -1,98(7) > -1,9(87).

Пример 4. Запишем периодическую десятичную дробь в виде обыкновенной дроби:

- a) 0,(7);
- 6) 0,(14);
- в) 0,12(7).

Решение.

a) Пусть x = 0,(7) = 0,777..., тогда 10x = 7,777..., 10x - x = 7,777... - 0,777..., 9x = 7, $x = \frac{7}{9}$.

Итак,
$$0,(7) = \frac{7}{9};$$

б) пусть x = 0,(14) = 0,1414..., тогда 100x = 14,1414..., 100x - x = 14,1414..., 99x = 14, $x = \frac{14}{99}$.

Итак,
$$0,(14) = \frac{14}{99};$$

B) HYCTS x = 0.12(7) = 0.12777..., 100x = 12,777..., 1000x = 127,777..., 1000x = 127,777..., 1000x = 1000x = 127,777..., 900x = 115, $x = \frac{115}{900}$, $x = \frac{23}{180}$.

Итак,
$$0.12(7) = \frac{28}{180}$$
.

• Замечание. При переводе периодической дроби в обыкновенную мы пользовались интуитивно ясным, но недоказанным правилом умножения десятичной дроби на 10, 100, 1000 и т. д., поэтому полученный результат нужно проверить, разделив числитель дроби на знаменатель уголком.

Пример 5. Вычислим:

- a) $0,(25)+\frac{1}{4};$
- 6) 0,(4) 0,(41);
- B) $-0,(8)\cdot0,(4)$;
- r) $-0.4848... + \frac{7}{11}$.

Решение. a)
$$0,(25) + \frac{1}{4} = \frac{25}{99} + \frac{1}{4} = \frac{100}{396} + \frac{99}{396} = \frac{199}{396}$$
;

6)
$$0,(4) - 0,(41) = \frac{4}{9} - \frac{41}{99} = \frac{44}{99} - \frac{41}{99} = \frac{3}{99} = \frac{1}{33};$$

B)
$$-0,(8)\cdot 0,(4) = -\frac{8}{9}\cdot \frac{4}{9} = -\frac{8\cdot 4}{9\cdot 9} = -\frac{32}{81}$$
;

r)
$$-0.4848... + \frac{7}{11} = -\frac{48}{99} + \frac{63}{99} = \frac{63}{99} - \frac{48}{99} = \frac{15}{99} = \frac{5}{33}$$
.

Пример 6. Вычислим: $\frac{0.(5) \cdot 0.(3) \cdot 0.(14)}{0.(15) \cdot 0.(2) \cdot 0.(7)}$.

Решение.
$$\frac{0,(5)\cdot 0,(3)\cdot 0,(14)}{0,(15)\cdot 0,(2)\cdot 0,(7)} = \frac{\frac{5}{9}\cdot \frac{3}{9}\cdot \frac{14}{99}}{\frac{15}{90}\cdot \frac{2}{9}\cdot \frac{7}{9}} = \frac{5\cdot 3\cdot 14\cdot 99\cdot 9\cdot 9}{9\cdot 9\cdot 99\cdot 15\cdot 2\cdot 7} = 1.$$

4*. Приближённые вычисления

Пример 1. Найдём приближение десятичной дроби 4,298 с точностью до единицы второго разряда после запятой:

а) с недостатком; б) с избытком; в) с округлением.

Решение. а) 4,298 ≈ 4,29 с недостатком;

- б) 4,298 ≈ 4,30 с избытком;
- в) 4,298 ≈ 4,30 с округлением.

Пример 2. Округлим число:

- а) 3,859 с точностью до сотых;
- б) 83,95 с точностью до десятых;
- в) 649,8 с точностью до единиц;
- г) 649,8 с точностью до десятков;
- д) 2731,54 с точностью до сотен.

Решение. а) 3,859 ≈ 3,86 с точностью до сотых;

- 6) 83,95≈84,0 с точностью до десятых;
- в) 649,8 ≈ 650 с точностью до единиц;
- г) $649.8 \approx 650 = 65 \cdot 10$ с точностью до десятков;
- π) $2731.54 \approx 2700 = 27 \cdot 100$ с точностью до сотен.
- Замечание. Результат округления в заданиях «г» и «д» записан так, чтобы в записи числа после последней верной цифры ответа не было нулей.

Пример 3. Округлим до второй значащей цифры число:

a) 0,00385; 6) 2 013 000.

Решение. a) $0.00385 \approx 0.0039$;

6) $2.013.000 \approx 2.000.000 = 20 \cdot 10^5$.

Пример 4. Вычислим приближённо:

- а) a+b и a-b, если $\hat{a}=13,529,\ b=-3,(14),$ округлив данные числа и результаты с точностью до одной сотой;
- б) $a \cdot b$ и $a : \hat{b}$, если a = 8.91, b = 6.(5), округлив данные числа и результаты с точностью до второй значащей цифры.

Решение. а) Сначала округлим числа a и b с точностью до одной сотой:

$$a \approx 13,53$$
; $b = -3,1414... \approx -3,14$.

Затем вычислим сумму a + b и разность a - b:

$$a + b \approx 13,53 + (-3,14) = 13,53 - 3,14 = 10,39;$$

 $a - b \approx 13,53 - (-3,14) = 13,53 + 3,14 = 16,67;$

б) сначала округлим числа a и b с точностью до второй значащей цифры:

$$a \approx 8.9$$
; $b = 6.555... \approx 6.6$.

Затем вычислим произведение $a \cdot b$, частное a : b и округиим полученные результаты до второй значащей цифры:

$$a \cdot b \approx 8.9 \cdot 6.6 = 58.74 \approx 59;$$

 $a : b \approx 8.9 : 6.6 = 1.34... \approx 1.3.$

Пример 5*. Из справочника выписали приближение числа $\pi \approx 3.14159265$. Сколько первых цифр числа π надовзять для приближённого вычисления:

- а) длины окружности, если её радиус приближённо равен 25.1 м;
- б) площади круга, если его радиус приближённо равен 4.1 м?

Вычислим приближённо длину окружности и площадь круга.

Решение. а) Радиус окружности измерен с точностью до третьей значащей цифры, следовательно, множитель д и произведение должны содержать не больше трёх значащих цифр.

$$C = 2\pi R \approx 2 \cdot 3,14 \cdot 25,1 = 157,628 \approx 158$$
 (M);

б) радиус круга измерен с точностью до второй значащей цифры, следовательно, множители π , R^2 и произведение должны содержать не больше двух значащих цифр.

$$R^2 \approx 4.1 \cdot 4.1 = 16.81 \approx 17 \text{ (M}^2\text{)},$$

 $S = \pi R^2 \approx 3.1 \cdot 17 = 52.7 \approx 53 \text{ (M}^2\text{)}.$

5*. Делимость чисел

Пример 1. Пусть a, b и c — натуральные числа. Докажем, что если a делится на b, b делится на c, то a делится на c.

Доказательство. Так как a делится на b, то a=bn, где n — натуральное число. Так как b делится на c, то b=cm, где m — натуральное число. Но тогда a=bn=cmn, где mn — натуральное число. Это означает, что a делится на c, что и требовалось доказать.

Пример 2. Докажем, что если натуральное число a делится и на 2, и на 3, то число a делится на произведение $2 \cdot 3 = 6$.

Доказательство. Так как число a делится на 2, то a=2x, где x— натуральное число. Так как a делится на 3, а 2 на 3 не делится, то число x делится на 3, т. е. x=3y, где y— натуральное число. Но тогда $a=2\cdot 3y=6y$. Это означает, что число a делится на 6, что и требовалось доказать.

Пример 3. Используя алгоритм Евклида, вычислим:

а) НОД (425, 500);

6) HOK (425, 500).

Решение. а) Применим алгоритм $500 \mid 425$ Евклида для чисел 425 и 500: $500 = 425 \cdot 1 + 75, \\ 425 = 75 \cdot 5 + 50, \\ 75 = 50 \cdot 1 + 25, \\ 50 = 25 \cdot 2$ (справа показаны вычисления столбиком). $50 \mid 25 \atop 50 \mid 2$

Последний, отличный от нуля остаток в алгоритме Евклида равен 25, следовательно, НОД (425, 500) = 25;

б) так как $425 = 25 \cdot 17$, а $500 = 25 \cdot 20$ и 17 и 20 взаимно простые числа, то наименьшее число, которое делится и на 425, и на 500, содержит множители 25, 17 и 20. Значит, НОК $(425, 500) = 25 \cdot 17 \cdot 20 = 8500$.

Тот же результат можно получить из равенства $a \cdot b = \text{HOД}(a, b) \cdot \text{HOK}(a, b)$:

HOK (425, 500) =
$$\frac{425 \cdot 500}{\text{HOM}(425,500)} = \frac{425 \cdot 500}{25} = 8500$$
.

Пример 4*. Докажем, что числа 111 111 и 111 113 — взаимно простые.

Доказательство. Если числа 111 111 и 111 113 имеют общий делитель, то их разность 111 113 – 111 111 = 2 имеет тот же делитель. Число 2 имеет единственный простой делитель 2, но ни 111 111, ни 111 113 на 2 не делятся, следовательно, числа 111 111 и 111 113 не имеют другого общего делителя, кроме числа 1, т. е. они взаимно простые, что и требовалось доказать.

6. Одночлены

Пример 1. Является ли одночленом выражение:

a)
$$a + 3ab$$
; 6) $\frac{1}{7}ab$; B) $\frac{5a}{3b}$; r) 5; μ b; e) 0?

Решение. a) Сумма a + 3ab не является одночленом;

 $6) \frac{1}{7}ab$ — одночлен;

- в) частное $\frac{5a}{3b}$ не является одночленом;
- г) 5 одночлен;
- д) b одночлен;
- е) 0 одночлен (нулевой одночлен).

Пример 2. Запишем одночлен в стандартном виде, укажем его коэффициент и степень:

a)
$$\frac{3}{7}a^5 \cdot 2a$$
; 6) $\frac{1}{3}a^2b \cdot \frac{3}{4}ab^2$; B) $\left(\frac{1}{7}ac\right)^2$; r) $-(c^3d^2)^2$.

Решение. a) $\frac{3}{7}a^5 \cdot 2a = \frac{3}{7} \cdot \frac{2}{1}a^5a = \frac{6}{7}a^6$; коэффициент $\frac{6}{7}$, степень 6;

б)
$$\frac{1}{3}a^2b \cdot \frac{3}{4}ab^2 = \frac{1}{3} \cdot \frac{3}{4}a^2abb^2 = \frac{1}{4}a^3b^3$$
; коэффициент $\frac{1}{4}$, степень 6:

в)
$$\left(\frac{1}{7}ac\right)^2 = \left(\frac{1}{7}\right)^2 \cdot a^2 \cdot c^2 = \frac{1}{49}a^2c^2$$
; коэффициент $\frac{1}{49}$, степень 4;

г) $-(c^3d^2)^2 = -(c^3)^2 \cdot (d^2)^2 = -c^6d^4$; коэффициент -1, степень 10.

Пример 3. Запишем одночлен в виде квадрата другого одночлена:

a)
$$49c^6d^8$$
; 6) $2\frac{7}{9}c^4d^{12}$.

Решение. a)
$$49c^6d^8 = 7^2 \cdot (c^3)^2 \cdot (d^4)^2 = (7c^3d^4)^2$$
;

$$6) \ \ 2\frac{7}{9}c^4d^{12} = \frac{25}{9}c^4d^{12} = \left(\frac{5}{3}\right)^2 \cdot (c^2)^2 \cdot (d^6)^2 - \left(\frac{5}{3}c^2d^6\right)^2.$$

Пример 4. Запишем одночлен в виде куба другого одночлена:

a)
$$27b^{12}$$
; 6) $3\frac{3}{9}a^3b^{27}$.

Решение. a) $27b^{12} = 3^3 \cdot (b^4)^3 = (3b^4)^3$;

6)
$$3\frac{3}{8}a^3b^{27} = \frac{27}{8}a^3b^{27} = \left(\frac{3}{2}\right)^3 \cdot a^3 \cdot (b^9)^3 = \left(\frac{3}{2}ab^9\right)^3$$
.

Пример 5. Выпишем подобные одночлены;

$$12a^2b$$
, $11ab^2$, $3a^2b$, $-ab$, $-4ab^2$.

Решение. Подобные одночлены: $12a^2b$ и $3a^2b$, $11ab^2$ и $-4ab^2$, у одночлена -ab нет подобного одночлена.

Пример 6*. Запишем все ненулевые одночлены стандартного вида, используя дюбой из множителей 2, a, b не более одного раза.

Решение. Запишем все одночлены, взяв по одному, по два, по три множителя всеми возможными способами:

Всего 7 одночленов.

Пример 1. Является ли многочленом выражение:

- a) 3a + b 7ab; b) $\frac{12}{13}a^2b$; B) $\frac{12}{13a}$;

Решение. a) 3a + b - 7ab — многочлен;

- б) $\frac{12}{10}a^2b$ многочлен (одночлен является многочленом);
- в) $\frac{12}{13a}$ не является многочленом, так как это не одночлен и не сумма одночленов;
 - г) 150 многочлен.

Пример 2. Запишем многочлен в стандартном виде:

- a) 7 8a + 9a 12; 6) $13a + 5a^2 22a 13a^2$.

Решение. a) 7-8a+9a-12=(9-8)a+(7-12)=a-5;

6) $13a + 5a^2 - 22a - 13a^2 = (5 - 13)a^2 + (13 - 22)a =$ $= -8a^2 - 9a$.

Пример 3. Приведём многочлен к стандартному виду и укажем его степень:

- a) $\frac{1}{5}a^2 + 12a 13a$;
- 6) $14a^2 3a^2b + a^2b$;
- B) $a^3b 5a \cdot 4a^2b + 3abb 4bab$; r) $5b^2 \cdot 6b 6b \cdot 5b^2 b$.

Решение. a) $\frac{1}{7}a^2 + \underline{12a} - \underline{13a} = \frac{1}{7}a^2 + (12 - 13)a = \frac{1}{7}a^2 - a;$ степень многочлена 2;

- 6) $14a^2 3a^2b + a^2b = (-3+1)a^2b + 14a^2 = -2a^2b + 14a^2$; creпень многочлена 3:
- B) $a^3b 5a \cdot 4a^2b + 3abb 4bab = a^3b 20a^3b + 3ab^2 4ab^2 =$ $=(1-20)a^3b+(3-4)ab^2=-19a^3b-ab^2;$ степень многочлена 4;
- r) $5b^2 \cdot 6b 6b \cdot 5b^2 b = 30b^3 30b^3 b = -b$; степень многочлена 1.

Пример 4. Вместо каждой из букв C и D подберём одночлен так, чтобы выполнялось равенство:

- a) 7a + C + 3a = 12b + D; 6) $12a^2 C + 11a = 3a^2 + D$.

Решение.

а) Приведя подобные члены в левой части равенства, перепишем его в виде 10a + C = 12b + D. Если C = 12b, D=10a, то равенство верно.

Возможно и другое решение: C = -10a, D = -12b;

б) вычтя из обеих частей равенства по $3a^2$, перепишем его в виде $9a^2-C+11a=D$. Если $C=9a^2$, D=11a, то равенство верно.

Возможно и другое решение: C = 11a, $D = 9a^2$.

Пример 5*. Состаним все возможные ненулевые многочлены стандартного вида, используя каждый из одночленов x^2 , -2x, 1 не более одного раза.

Решение. Запишем все многочлены, взяв по одному, по два, по три члена всеми возможными способами:

$$x^2$$
, $-2x$, 1, $x^2 + (-2x) = x^2 - 2x$,
 $x^2 + 1$, $-2x + 1$, $x^2 + (-2x) + 1 = x^2 - 2x + 1$.

Всего 7 многочленов.

8. Сложение и вычитание многочленов

Пример 1. Вычислим сумму многочленов:

a)
$$5x - 4y = 7x + y$$
; 6) $7 - x + x^2 = 5x - x^2$.

Решение.

a)
$$(5x-4y)+(7x+y)=\underline{5x}-\underline{4y}+7x+\underline{y}=12x-3y;$$

6)
$$(7-x+x^2)+(5x-x^2)=\overline{7-x}+x^2+\overline{5x-x^2}=4x+7$$
.

Пример 2. Вычислим разность многочленов:

a)
$$5x + 4y$$
 in $7x - y$; 6) $5 - 4x + 3x^2$ in $4x^2 - 2x - 1$. Pennenue.

a)
$$(5x + 4y) - (7x - y) = \underline{5x} + \underline{4y} - 7x + \underline{y} = -2x + 5y;$$

6)
$$(5-4x+3x^2)-(4x^2-2x-1)=5-4x+3x^2-4x^2+2x+1=-x^2-2x+6$$
,

Пример 3. Преобразуем выражение в многочлен стандартного вида:

a)
$$13x^2 - (3 - 5x + x^2)$$
; 6) $5 + (-2x + 3x^2) + 2x$;

B)
$$x - (5 + 4x - x^2) + (4 - x^2)$$
;

r)
$$15 + (12x^2 - 13x) - (14x^2 + 15) + 2x$$
.

Решение.

a)
$$13x^2 - (3 - 5x + x^2) = 13x^2 - 3 + 5x - x^2 = 12x^2 + 5x - 3$$
;

6)
$$5 + (-2x + 3x^2) + 2x = 5 - 2x + 3x^2 + 2x = 3x^2 + 5$$
;

B)
$$x - (5 + 4x - x^2) + (4 - x^2) = \underline{x} - 5 - \underline{4x} + \underline{x^2} + 4 - \underline{x^2} = -3x - 1;$$

r)
$$15 + (12x^2 - 13x) - (14x^2 + 15) + 2x = 15 + 12x^2 - 13x - 14x^2 - 15 + 2x = -2x^2 - 11x$$
.

Пример 4. Перепишем выражение, изменив знак перед скобкой на противоположный:

a)
$$2x^2 - (3-8x)$$
; 6) $3x + (-x^2 + 4)$.

Решение.

a)
$$2x^2 - (3 - 8x) = 2x^2 + (-3 + 8x)$$
;

6)
$$3x + (-x^2 + 4) = 3x - (x^2 - 4)$$
.

Пример 5. Заключим два последних члена многочлена 8-3x+2y-z в скобки, перед которыми стоит знак: а) плюс; б) минус.

Решение. a)
$$8-3x+2y-z=8-3x+(2y-z)$$
;

6)
$$8-3x+2y-z=8-3x-(-2y+z)$$
.

Пример 6*. Подберём такой многочлен А, чтобы выряжение B было равно нулевому многочлену, если

$$B = (x - 2x^2) - (x^2 - 3x + 1) + A.$$

Решение. $B = (x - 2x^2) - (x^2 - 3x + 1) + A = x - 2x^2 - x^2 + x^2 + x^2 - x^2 + x^2 - x^2 + x^2 + x^2 - x^2 - x^2 + x^2 - x^2$ $+3x-1+A=-3x^2+4x-1+A$. Если $A=3x^2-4\overline{x}+1$. то B=0.

9. Умножение многочлена на одночлен

Пример 1. Найдём произведение многочлена и одночлена:

a) 5(a-3);

- 6) a(5+2a);
- B) 0.3x(2x-7);
- r) -0.2x(5x-4).

Решение. a) 5(a-3) = 5a-15; 6) $a(5+2a) = 5a+2a^2$;

- B) $0.3x(2x-7) = 0.6x^2 2.1x$;
- $\mathbf{r}) -0.2x(5x-4) = -x^2 + 0.8x.$

Пример 2. Запишем произведение многочлена и одночлена в виде многочлена стандартного вида:

- a) $2a(a^2-5a+9)$:
- 6) $3a^2(7-6a+5a^2)$;
- B) $0.3x(10-x+x^2)$; r) -5x(0.2x-4);
- д) $4x(3-2x)+3(2x^2-x)-2(x-3)$.

Решение. a) $2a(a^2-5a+9)=2a^3-10a^2+18a$;

- 6) $3a^2(7-6a+5a^2) = 21a^2-18a^3+15a^4=15a^4-18a^3+21a^2$:
- B) $0.3x(10-x+x^2) = 3x-0.3x^2+0.3x^3=0.3x^3-0.3x^2+3x$:
- r) $-5x(0.2x-4) = -x^2 + 20x$;
- $(x^2 + 3)(2x^2 2x) + 3(2x^2 x) 2(x 3) = 12x 8x^2 + 6x^2 3x 3x$ $-2x+6=-2x^2+7x+6.$

Пример 3. Вынесем за скобки общий множитель:

a) 2x - 12:

6) $5x^2 - 10x + 15$;

B) $7x - 14x^2$:

r) $6x^3 - 12x^2 + 18x$.

Решение. a) 2x-12=2(x-6);

- 6) $5x^2 10x + 15 = 5(x^2 2x + 3)$;
- B) $7x 14x^2 = 7x(1-2x)$;
- F) $6x^3 12x^2 + 18x = 6x(x^2 2x + 3)$.

Пример 4. Перепищем выражение так, чтобы знак каждого слагаемого, заключённого во вторые скобки, изменился на противоположный:

- a) 3(5x-7)+x(2x-1); 6) x(2x-3)-5(-2x+1).
- **Решение.** a) 3(5x-7) + x(2x-1) = 3(5x-7) x(-2x+1);
- 6) x(2x-3)-5(-2x+1)=x(2x-3)+5(2x-1).

Пример 5*. Подберём такой многочлен А. чтобы выражение В было равно нулевому многочлену, если B = -9x(x-7) + 5(x-6) + A.

Решение. $B = -9x^2 + 63x + 5x - 30 + A = -9x^2 + 68x - 30 + A$. Если $A = 9x^2 - 68x + 30$, то B = 0.

10. Умножение многочленов

Пример 1. Вычислим произведение многочленов:

a)
$$(a+5)(3a+1)$$
;

6)
$$(a^2+4)(a-3)$$
;

a)
$$(a+5)(3a+1)$$
;
B) $(x-5)(2x-3)$;

r)
$$(-x-1)(2x-2)$$
.

Решение. a) $(a+5)(3a+1) = 3a^2+15a+a+5=3a^2+16a+5$:

6)
$$(a^2+4)(a-3)=a^3+4a-3a^2-12=a^3-3a^2+4a-12$$
;

B)
$$(x-5)(2x-3) = 2x^2 - 10x - 3x + 15 = 2x^2 - 13x + 15$$
:

r)
$$(-x-1)(2x-2) = -2x^2 - 2x + 2x + 2 = -2x^2 + 2$$
.

Пример 2. Запишем выражение в виде многочлена стандартного вида:

a)
$$8-(x+1)(x-2)$$
; 6) $3a^3+(a^2-a)(3a-2)$;

B)
$$(2-x)(x-1)+(x+1)(x+2)$$
;

r)
$$(3x+3)(5-x)-(5x-5)(3x-2)$$
.

Решение.

a)
$$8-(x+1)(x-2)=8-(x^2+x-2x-2)=8-x^2-x+2x+2x+2=-x^2+x+10$$
;

6)
$$3a^3 + (a^2 - a)(3a - 2) = 3a^3 + (3a^3 - 3a^2 - 2a^2 + 2a) =$$

 $a^3 + 3a^3 - 3a^2 - 2a^2 + 2a = 6a^3 - 5a^2 + 2a$:

B)
$$(2-x)(x-1) + (x+1)(x+2) = (2x-x^2-2+x) + (x^2+x+2x+2) = 2x-x^2-2+x+x^2+x+2x+2=6x;$$

r)
$$(3x+3)(5-x)-(5x-5)(3x-2)=(15x+15-3x^2-3x)-(15x^2-15x-10x+10)=15x+15-3x^2-3x-15x^2+15x+10x-10=-18x^2+37x+5$$
.

Пример 3. Вынесем за скобки общий множитель:

a)
$$5x^3 - 10x^2$$
;

a)
$$5x^3-10x^2$$
; 6) $4(x-1)-x(x-1)$.

Решение. a)
$$5x^3 - 10x^2 = 5x^2(x-2)$$
;
6) $4(x-1) - x(x-1) = (x-1)(4-x)$.

Пример 4. Разложим на множители выражение:

a)
$$2(x-5) + x^2 - 5x$$
;

6)
$$3x-9-x(x-3)$$
;

B)
$$x^3 + 6x^2 - 3x - 18$$
:

B)
$$x^3 + 6x^2 - 3x - 18$$
; r) $x^3 - 5x^2 - 5x + 25$.

Решение.

a)
$$2(x-5)+x^2-5x=2(x-5)+x(x-5)=(x-5)(2+x)$$
;

6)
$$3x-9-x(x-3)=3(x-3)-x(x-3)=(x-3)(3-x)=$$

= $-(x-3)(x-3)=-(x-3)^2$;

B)
$$x^3 + 6x^2 - 3x - 18 = x^2(x+6) - 3(x+6) = (x+6)(x^2-3);$$

r)
$$x^3 - 5x^2 - 5x + 25 = x^2(x - 5) - 5(x - 5) = (x - 5)(x^2 - 5)$$
.

Пример 5^* . Представим многочлен $x^2 - 2x - 3$ в виде произведения двучленов.

Решение. $x^2 - 2x - 3 = x^2 - 3x + x - 3 = x(x - 3) + 1(x - 3) =$ =(x-3)(x+1).

31. Числовое значение выражения

Пример 1. Вычислим значение выражения:

a)
$$6(3-a)+5(2a-3)$$
, если $a=2,5$;

6)
$$2.5(a^2+2a)-5(a-2a^2)$$
, если $a=-0.8$;

B)
$$(5-2x)-(7-3x)+(8-x)$$
, echm $x=2{,}007$.

Решение. a) Если a = 2.5, то 6(3-a) + 5(2a-3) =

$$=18-6a+10a-15=4a+3=4\cdot 2,5+3=13;$$

б) если
$$a = -0.8$$
, то $2.5(a^2 + 2a) - 5(a - 2a^2) = 2.5a^2 + 5a - 2a^2$

$$-5a + 10a^2 = 12,5a^2 = 12,5 \cdot (-0,8)^2 = 8;$$

в) если
$$x = 2,007$$
, то $(5-2x)-(7-3x)+(8-x)=$

$$=5-2x-7+3x+8-x=0\cdot x+6=6.$$

• Замечание. В случае с заданием «в» говорят, что значение выражения не зависит от значений x, так как при любом значении x значение выражения равно 6.

Пример 2. Найдём значение x, при котором числовое значение выражения 5x - (8x - 11) равно 2.

Решение, Упростим выражение

$$5x - (8x - 11) = 5x - 8x + 11 = -3x + 11.$$

Значение выражения -3x + 11 равно 2 лишь при x = 3. Значит, значение выражения 5x - (8x - 11) равно 2 при x = 3.

Пример 3. Найдём числовое значение выражения

$$(3+x)(2-x)-(4-x)(1+x)$$

при
$$x=-\frac{3}{4}$$
.

Pemenue. Если $x=-\frac{3}{4}$, то

$$(3+x)(2-x)-(4-x)(1+x)=6+2x-3x-x^2-(4-x+4x-x^2)=6+2x-3x-x^2-4+x-4x+x^2=$$

$$=-4x+2=-4\cdot\left(-\frac{3}{4}\right)+2=5.$$

Пример 4*. Докажем, что значение выражения

$$(2x-1)(3x-2)-(3x+2)(2x+1)+14x+1$$

не зависит от значений х.

Решение. (2x-1)(3x-2)-(3x+2)(2x+1)+14x+1= $=6x^2-3x-4x+2-(6x^2+4x+3x+2)+14x+1=6x^2-3x-4x+2-6x^2-4x-3x-2+14x+1=1$ не зависит от значений x.

12. Формулы сокращённого умножения

Пример 1. Применяя формулу сокращённого умножения, запишем выражение в виде многочлена стандартного вида:

a)
$$(a+2)^2$$
; 6) $(x-3)(x+3)$; B) $(a+3)^3$.

Решение. a) $(a+2)^2 = a^2 + 2 \cdot a \cdot 2 + 2^2 = a^2 + 4a + 4$:

6) $(x-3)(x+3) = x^2-3^2 = x^2-9$:

B) $(a+3)^3 = a^3 + 3 \cdot a^2 \cdot 3 + 3 \cdot a \cdot 3^2 + 3^3 = a^3 + 9a^2 + 27a + 27$.

Пример 2. Запишем выражение в виде многочлена:

a)
$$(a + 3b)^2$$
;

6)
$$(2a-b)(2a+b)$$
;

B)
$$(3x-y)^3$$
;

r)
$$(x-1)(x^2+x+1)$$
.

Решение. a) $(a+3b)^2 = a^2 + 2 \cdot a \cdot 3b + (3b)^2 = a^2 + 6ab + 9b^2$;

6) $(2a-b)(2a+b)=(2a)^2-b^2=4a^2-b^2$;

6)
$$(2a-b)(2a+b) = (2a)^2 - b^2 = 4a^2 - b^2;$$

8) $(3x-y)^3 = (3x)^3 - 3 \cdot (3x)^2 \cdot y + 3 \cdot 3x \cdot y^2 - y^3 = 27x^3 - 27x^2y + 9xy^2 - y^3;$

r)
$$(x-1)(x^2+x+1) = x^3-1^3 = x^3-1$$
.

Пример 3. Запишем выражение в виде квадрата или куба двучлена:

a)
$$x^2 - 6x + 9$$
;

6)
$$x^2 + 10x + 25$$
:

B)
$$x^3 - 3x^2 + 3x - 1$$
;

a)
$$x^2-6x+9$$
; 6) $x^2+10x+25$; 8) x^3-3x^2+3x-1 ; 7) $x^3-6x^2+12x-8$.

Решение. a) $x^2 - 6x + 9 = x^2 - 2 \cdot x \cdot 3 + 3^2 = (x - 3)^2$;

6)
$$x^2 + 10x + 25 = x^2 + 2 \cdot x \cdot 5 + 5^2 = (x+5)^2$$
;

B)
$$x^3 - 3x^2 + 3x - 1 = x^3 - 3 \cdot x^2 \cdot 1 + 3 \cdot x \cdot 1^2 - 1^3 = (x - 1)^3$$
;

r)
$$x^3 - 6x^2 + 12x - 8 = x^3 - 3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2 - 2^3 = (x - 2)^3$$
.

Пример 4*. Запишем многочлен $x^2 + 2x - 8$ в виде произведения двучленов.

Решение.
$$I$$
 способ. $x^2 + 2x - 8 = x^2 - 2x + 4x - 8 = x(x-2) + 4(x-2) = (x-2)(x+4)$.

II cnocoo.
$$x^2 + 2x - 8 = x^2 + 2x + 1 - 9 = (x+1)^2 - 3^2 = (x+1-3)(x+1+3) = (x-2)(x+4).$$

13. Разложение многочленов на множители

Пример 1. Разложим на множители многочлен:

a)
$$a^3-4a^2+4a$$
;

6)
$$ab^8 + 4a^2b^2 + 4a^3b$$
:

B)
$$7a - b + 7ab - b^2$$
;

r)
$$6a + 6b - ay - by$$
;

a)
$$a^3 - 4a^2 + 4a$$
;
b) $7a - b + 7ab - b^2$;
c) $13a - 13b + 5a^2 - 5ab$;

e)
$$b^3 - b - 4b^2 + 4$$
.

Решение. a) $a^3-4a^2+4a=a(a^2-4a+4)=a(a-2)^2$;

6)
$$ab^3 + 4a^2b^2 + 4a^3b = ab(b^2 + 4ab + 4a^2) = ab(b + 2a)^2$$
;

B)
$$7a - b + 7ab - b^2 = 1(7a - b) + b(7a - b) = (7a - b)(1 + b);$$

r)
$$6a + 6b - ay - by = 6(a + b) - y(a + b) = (a + b)(6 - y);$$

$$\pi$$
) $13a - 13b + 5a^2 - 5ab = 13(a - b) + 5a(a - b) = (a - b) \times (13 + 5a);$

e)
$$b^3 - b - 4b^2 + 4 = b(b^2 - 1) - 4(b^2 - 1) = (b^2 - 1)(b - 4) = (b - 1)(b + 1)(b - 4)$$
.

Пример 2. Разложим на множители многочлен:

a)
$$x^2 - 25 - 3ax + 15a$$
; 6) $x^2 + 14x + 13$; B) $x^3 + 4$.

Решение. a) $x^2 - 25 - 3ax + 15a = (x - 5)(x + 5) - 3a(x - 5) =$ =(x-5)(x+5-8a);

6)
$$x^2 + 14x + 13 = x^2 + x + 13x + 13 = x(x+1) + 13(x+1) = (x+1)(x+13);$$

B)
$$x^{8} + 4 = x^{8} + 4x^{4} + 4 - 4x^{4} = (x^{4} + 2)^{2} - (2x^{2})^{2} = (x^{4} + 2 - 2x^{2})(x^{4} + 2 + 2x^{2}) = (x^{4} - 2x^{2} + 2)(x^{4} + 2x^{2} + 2).$$

Пример 3*. Разложим многочлен $x^4 - 37x^2 + 36$ на возможно большее число множителей.

Решение.
$$x^4 - 37x^2 + 36 = x^4 - x^2 - 36x^2 + 36 = x^2(x^2 - 1) - 36(x^2 - 1) = (x^2 - 1)(x^2 - 36) = (x - 1)(x + 1)(x - 6)(x + 6).$$

14. Алгебраические дроби

Пример 1. Сократим дробы:

a)
$$\frac{8x^2}{36x^3}$$
; 6) $\frac{5x-15}{4x-12}$; B) $\frac{x^2-8x+16}{x^2-16}$.

Решение. a)
$$\frac{8x^2}{36x^3} = \frac{4 \cdot 2 \cdot x^2}{4 \cdot 9 \cdot x^2 \cdot x} = \frac{2}{9x}$$
;

6)
$$\frac{5x-15}{4x-12} = \frac{5(x-3)}{4(x-3)} = \frac{5}{4}$$
;

B)
$$\frac{x^2 - 8x + 16}{x^{2-1} \cdot 16} = \frac{(x-4)^2}{(x-4)(x+4)} = \frac{x-4}{x+4}$$
.

Пример 2. Преобразуем дробь так, чтобы знак перед дробью изменился на противоположный:

a)
$$\frac{x^2-5x+1}{x^2-9}$$
; 6) $-\frac{13x-14}{2x-1}$.

Решение. *I способ.* a) $\frac{x^2-5x+1}{x^2-9} = -\frac{-x^2+5x-1}{x^2-9}$;

$$6) -\frac{13x-14}{2x-1} = \frac{-13x+14}{2x-1}.$$

II cnocoo. a)
$$\frac{x^2-5x+1}{x^2-9} = -\frac{x^2-5x+1}{-x^2+9}$$
;

6)
$$-\frac{13x-14}{2x-1} = \frac{13x-14}{-2x+1}$$
.

Пример 3. Приведём дроби к общему знаменателю:

a)
$$\frac{x}{x-4}$$
 $\frac{7}{20-5x}$; 6) $\frac{2x}{(x-3)^2}$ $\frac{6}{x^2-9}$; B) $\frac{2}{2x-1}$ $\frac{3}{3x+2}$.

Решение. a)
$$\frac{x}{x-4}^{\sqrt{5}} = \frac{5x}{5(x-4)}$$
 и $\frac{7}{20-5x} = \frac{7}{5(4-x)}^{-1} = \frac{-7}{5(x-4)}$;

6)
$$\frac{2x}{(x-3)^2}^{(x+3)} = \frac{2x(x+3)}{(x-3)^2(x+3)} \text{ H}$$
$$\frac{6}{x^2-9} = \frac{6}{(x-3)(x+3)}^{(x-3)} = \frac{6(x-3)}{(x-3)^2(x+3)};$$

$$\mathbf{a}) \ \frac{2}{2x-1}^{\sqrt{3x+2}} = \frac{2(3x+2)}{(2x-1)(3x+2)} \ \mathbf{H} \ \frac{3}{3x+2}^{\sqrt{2x-1}} = \frac{3(2x-1)}{(3x+2)(2x-1)}.$$

Пример 4. Запишем многочлен 2x - 5 в виде дроби со знаменателем:

a) 1; 6)
$$x + 2$$
; a) $x^2 + 1$.

Решение. a) $2x-5=\frac{2x-5}{3}$;

6)
$$2x-5=\frac{(2x-5)(x+2)}{x+2}=\frac{2x^2-5x+4x-10}{x+2}=\frac{2x^2-x-10}{x+2}$$
;

B)
$$2x-5=\frac{(2x-5)(x^2+1)}{x^2+1}=\frac{2x^3-5x^2+2x-5}{x^2+1}$$
.

Пример 5*. Сократим дробь $\frac{x^3-125}{2x^2+10-x^2}$.

Решение.
$$\frac{x^3 - 125}{2x^2 + 10x + 50} = \frac{(x - 5)(x^2 + 5x + 25)}{2(x^2 + 5x + 25)} = \frac{x - 5}{2}.$$

15. Сложение и вычитание алгебраических дробей

Пример 1. Преобразуем выражение, приведя дроби к общему знаменателю:

a)
$$\frac{3x-7}{x-2} + \frac{7x+3}{2-x}$$
;

6)
$$\frac{11-12x}{7x-9} - \frac{13x+14}{9-7x}$$

Решение

a)
$$\frac{3x-7}{x-2} + \frac{7x+3}{2-x} = \frac{3x-7}{x-2} + \frac{-7x-3}{x-2} = \frac{3x-7+(-7x-3)}{x-2} = \frac{-4x-10}{x-2}$$
;

6)
$$\frac{11-12x}{7x-9} - \frac{13x+14}{9-7x} = \frac{11-12x}{7x-9} + \frac{13x+14}{7x-9} = \frac{11-12x+13x+14}{7x-9} = \frac{x+25}{7x-9}$$

Пример 2. Выполним действия:

a)
$$\frac{2x+11}{x+6} + \frac{x+7}{x+6}$$
;

a)
$$\frac{2x+11}{x+6} + \frac{x+7}{x+6}$$
; 6) $\frac{10-9x}{3x-5} + \frac{8-7x}{5-3x}$;

B)
$$\frac{5x-1}{3x+9} - \frac{3x-7}{3x+9}$$
; r) $\frac{2x-1}{5x-y} - \frac{3y+2}{y-5x}$.

$$\mathbf{r}) \ \frac{2x-1}{5x-y} - \frac{3y+2}{y-5x}.$$

a)
$$\frac{2x+11}{x+6} + \frac{x+7}{x+6} = \frac{2x+11+x+7}{x+6} = \frac{3x+18}{x+6} = \frac{3(x+6)}{x+6} = \frac{3}{1} = 3$$
;

6)
$$\frac{10-9x}{3x-5} + \frac{8-7x^{-1}}{5-3x} = \frac{10-9x}{8x-5} + \frac{7x-8}{3x-5} = \frac{10-9x+7x-8}{3x-5} = \frac{2-2x}{3x-5}$$
;

B)
$$\frac{5x-1}{3x+9} - \frac{3x-7}{3x+9} = \frac{5x-1-(3x-7)}{3x+9} = \frac{5x-1-8x+7}{3x+9} = \frac{2x+6}{3x+9} = \frac{2(x+3)}{3(x+3)} = \frac{2}{3}$$

r)
$$\frac{2x-1}{5x-y} - \frac{3y+2}{y-5x} = \frac{2x-1}{5x-y} + \frac{3y+2}{5x-y} = \frac{2x-1+3y+2}{5x-y} = \frac{2x+3y+1}{5x-y}$$
.

Пример 3*. Найдём многочлен A, для которого верно равенство

$$\frac{3x-4}{5x-6} - \frac{2x-7}{6-5x} = \frac{A}{5x-6}.$$

Решение.

Tak kak
$$\frac{3x+4}{5x-6} - \frac{2x-7}{6-5x} = \frac{3x-4}{5x-6} + \frac{2x-7}{5x-6} = \frac{3x-4+2x-7}{5x-6} = \frac{5x-11}{5x-6}$$
, to $A = 5x - 11$.

Умножение и деление алгебраических дробей

Пример 1. Вычислим произведение:

a)
$$\frac{7x}{9} \cdot \frac{6}{x^3}$$
; 6) $(x-2) \cdot \frac{x+3}{5x-10}$; B) $\frac{3x+21}{x^2-9} \cdot \frac{x+3}{2x+14}$.

Решение. a)
$$\frac{7x}{9} \cdot \frac{6}{r^3} = \frac{7x \cdot 6}{9 \cdot r^3} = \frac{7 \cdot 2}{3 \cdot r^2} = \frac{14}{3r^2}$$
;

6)
$$(x-2) \cdot \frac{x+3}{5x-10} = \frac{(x-2)(x+3)}{5(x-2)} = \frac{x+3}{5}$$
;

$$\mathbf{B}) \frac{3x+21}{x^2-9} \cdot \frac{x+3}{2x+14} = \frac{(3x+21)(x+3)}{(x^2-9)(2x+14)} = \frac{3(x+7)(x+3)}{(x-3)(x+3) \cdot 2(x+7)} = \frac{3}{2(x-3)} = \frac{3}{2x-6}.$$

Пример 2. Вычислим частное:

a)
$$\frac{4x-8}{x+1}$$
: $(3x-6)$; 6) $\frac{2x^2-2}{3x-3}$: $\frac{3x+3}{4x-4}$; B) $\frac{5x+10}{x^2-25}$: $\frac{x^2+2x}{x-5}$.

Решение.

a)
$$\frac{4x-8}{x+1}$$
: $(3x-6) = \frac{4x-8}{x+1}$: $\frac{3x-6}{1} = \frac{(4x-8)\cdot 1}{(x+1)(3x-6)} = \frac{4(x-2)}{(x+1)\cdot 3(x-2)} = \frac{4}{3x+3}$;

6)
$$\frac{2x^2-2}{3x-3}: \frac{3x+3}{4x-4} = \frac{(2x^2-2)(4x-4)}{(3x-3)(3x+3)} = \frac{2(x^2-1)\cdot 4(x-1)}{3(x-1)\cdot 3(x+1)} =$$

$$=\frac{8(x^2-1)(x-1)}{9(x^2-1)}=\frac{8(x-1)}{9}=\frac{8x-8}{9};$$

B)
$$\frac{5x+10}{x^2-25}$$
; $\frac{x^2+2x}{x-5} = \frac{(5x+10)(x-5)}{(x^2-25)(x^2+2x)} = \frac{5(x+2)(x-5)}{(x-5)(x+5)\cdot x(x+2)} = \frac{5(x+2)(x-5)}{(x-5)(x+5)\cdot x(x+2)} = \frac{5(x+2)(x-5)}{(x-5)(x+5)\cdot x(x+2)} = \frac{5(x+2)(x-5)}{(x-5)(x-5)(x-5)} = \frac{5(x+2)(x-5)}{(x-5)(x-5)} = \frac{5(x+5)(x-5)}{(x-5)(x-5)} = \frac{5(x-5)(x-5)}{(x-5)(x-5)} = \frac{5(x-5)(x-5)}{(x$

$$=\frac{5}{x(x+5)}=\frac{5}{x^2+5x}.$$

Пример 3*. Вычислим: $\frac{2x-2}{3x+3} \cdot \frac{5x-15}{4x-4} : \frac{x-3}{x+1}$.

$$\frac{2x-2}{3x+3} \cdot \frac{5x-15}{4x-4} : \frac{x-3}{x+1} = \frac{(2x-2)(5x-15)(x+1)}{(3x+3)(4x-4)(x-3)} = \frac{2(x-1) \cdot 5(x-3)(x+1)}{3(x+1) \cdot 4(x-1)(x-3)} = \frac{6}{6}.$$

17. Рациональные выражения

Пример 1. Упростим рациональное выражение:

a)
$$\left(x+1+\frac{1}{x-1}\right)\cdot\frac{2x-2}{x^2};$$

6)
$$(x^2-1)\cdot\left(\frac{x}{x^2-1}+\frac{1}{x-1}+\frac{1}{x+1}\right)$$
.

Решение.

a) 1)
$$x+1+\frac{1}{x-1}=\frac{x+1}{1}+\frac{1}{x-1}=\frac{(x+1)(x-1)}{x-1}+\frac{1}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=\frac{x^2-1}{x-1}$$
;

2)
$$\frac{x^2}{x-1} \cdot \frac{2x-2}{x^2} = \frac{x^2 \cdot (2x-2)}{(x-1) \cdot x^2} = \frac{2(x-1)}{x-1} = 2;$$

6) 1)
$$\frac{x}{x^2 - 1} + \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{x}{x^2 - 1} + \frac{1}{x - 1} + \frac{1}{x + 1} = \frac{x}{x^2 - 1} + \frac{x + 1}{x^2 - 1} = \frac{3x}{x^2 - 1};$$

2)
$$(x^2-1)\cdot \frac{3x}{x^2-1} = \frac{x^2-1}{1}\cdot \frac{3x}{x^2-1} = \frac{(x^2-1)\cdot 3x}{x^2-1} = 3x$$
.

Пример 2. Выполним действия:

a)
$$\left(\frac{5x-4y}{5x+4y} - \frac{5x+4y}{5x-4y}\right)$$
: $\frac{16xy}{25x^2-16y^2}$; 6) $\frac{\frac{3}{xy} - \frac{4}{y} + \frac{5}{x}}{3-4x+5y}$: $\frac{x}{6y}$.

a) 1)
$$\frac{5x - 4y^{\sqrt{5x - 4y}}}{5x + 4y} - \frac{5x + 4y^{\sqrt{5x + 4y}}}{5x - 4y} = \frac{(5x - 4y)^2}{(5x + 4y)(5x - 4y)} - \frac{(5x + 4y)^2}{(5x + 4y)(5x - 4y)} = \frac{(5x + 4y - (5x + 4y))(5x - 4y + 5x + 4y)}{25x^2 - 16y^2} = \frac{-80xy}{25x^2 - 16y^2};$$

2)
$$\frac{-80xy}{25x^2-16y^2}$$
: $\frac{16xy}{25x^2-16y^2} = \frac{-80xy\cdot(25x^2-16y^2)}{(25x^2-16y^2)\cdot16xy} = -5$;

6) 1)
$$\frac{3}{xy} - \frac{4}{y} + \frac{5}{x} = \frac{3}{xy} - \frac{4x}{xy} + \frac{5y}{xy} = \frac{3 - 4x + 5y}{xy}$$
;

2)
$$\frac{\frac{3-4x+5y}{xy}}{\frac{xy}{3-4x+5y}} = \frac{3-4x+5y}{xy(3-4x+5y)} = \frac{1}{xy};$$

3)
$$\frac{1}{xy}: \frac{x}{6y} = \frac{1 \cdot 6y}{xy \cdot x} = \frac{6}{x^2}$$
.

Пример 3*. Выполним действия:

$$\left(\frac{x+3}{x^2-4x+4} - \frac{x-3}{x^2-4}\right) : \left(\frac{x+3}{x^2-4} - \frac{x-3}{x^2+4x+4}\right).$$

$$\mathbf{Pemehue.} \ 1) \frac{x+3}{x^2-4x+4} - \frac{x-3}{x^2-4} = \frac{x+3}{(x-2)^2} - \frac{x-3}{(x-2)(x+2)} = = \frac{(x+3)(x+2)}{(x-2)^2(x+2)} - \frac{(x-3)(x-2)}{(x-2)^2(x+2)} = \frac{x^2+3x+2x+6-(x^2-3x-2x+6)}{(x-2)^2(x+2)} = \frac{x^2+3x+2x+6-x^2+3x+2x-6}{(x-2)^2(x+2)} = \frac{10x}{(x-2)^2(x+2)};$$

$$2) \frac{x+3}{x^2-4} - \frac{x-3}{x^2+4x+4} = \frac{x+3}{(x-2)(x+2)} - \frac{x-3}{(x+2)^2} = = \frac{(x+3)(x+2)}{(x-2)(x+2)^2} = \frac{x^2+3x+2x+6-(x^2-3x-2x+6)}{(x-2)(x+2)^2} = = \frac{x^2+3x+2x+6-x^2+3x+2x-6}{(x-2)(x+2)^2} = \frac{10x}{(x-2)(x+2)^2};$$

$$3) \frac{10x}{(x-2)^2(x+2)} : \frac{10x}{(x-2)(x+2)^2} = \frac{10x(x-2)(x+2)^2}{(x-2)^2(x+2)\cdot 10x} = \frac{x+2}{x-2}.$$

18. Числовое значение рационального выражения

Пример 1. Найдём значение рационального выражения:

a)
$$\frac{30}{x^2-25} + \frac{3}{x-5}$$
 при $x = 305$;

б)
$$\frac{x^2}{x^2-4x+4} - \frac{x+2}{x-2}$$
 при $x = 202$;

в)
$$\frac{a^3 - 27b^3}{a^2 + 3ab + 9b^2} + \frac{a^3 + 27b^3}{a^2 - 3ab + 9b^2}$$
 при $a = 0,48, b = -17\frac{18}{19}$.

Решение. а) При x = 305

$$\frac{30}{x^2 - 25} + \frac{3}{x + 5} = \frac{30}{(x - 5)(x + 5)} + \frac{3(x - 5)}{(x + 5)(x - 5)} = \frac{30 + 3x - 15}{(x + 5)(x - 5)} =$$

$$= \frac{3x + 15}{(x + 5)(x - 5)} = \frac{3(x + 5)}{(x + 5)(x - 5)} = \frac{3}{x - 5} = \frac{3}{305 - 5} = 0,01;$$

б) при
$$x = 202$$

$$\frac{x^2}{x^2 - 4x + 4} - \frac{x + 2}{x - 2} = \frac{x^2}{(x - 2)^2} - \frac{x + 2^{x - 2}}{x - 2} = \frac{x^2}{(x - 2)^2} - \frac{x^2 - 4}{(x - 2)^2} = \frac{x^2 - (x^2 - 4)}{(x - 2)^2} = \frac{x^2 - x^2 + 4}{(x - 2)^2} = \frac{4}{(202 - 2)^2} = \frac{4}{40000} = 0,0001;$$

в) при
$$a = 0.48$$
, $b = -17\frac{18}{19}$

$$\frac{a^3 - 27b^3}{a^2 + 3ab + 9b^2} + \frac{a^3 + 27b^3}{a^2 - 3ab + 9b^2} = \frac{(a - 3b)(a^2 + 3ab + 9b^2)}{a^2 + 3ab + 9b^2} + \frac{(a + 3b)(a^2 - 3ab + 9b^2)}{a^2 - 3ab + 9b^2} = \frac{a - 3b}{1} + \frac{a + 3b}{1} = a - 3b + a + 3b = 2a = 2 \cdot 0.48 = 0.96$$

Пример 2. Преобразуем в алгебраическую дробь рациональное выражение

$$\frac{1}{x-1} - \frac{2x}{x^3-1} - \frac{x-1}{x^2+x+1}$$

и найдём значение полученной дроби: а) при x = 0; б) при x = 2.

Решение. Так как

$$\frac{1}{x-1} - \frac{2x}{x^2 - 1} - \frac{x-1}{x^2 + x + 1} = \frac{1}{x-1} x^{2+x+1} - \frac{2x}{(x-1)(x^2 + x + 1)} - \frac{x-1}{x^2 + x + 1} = \frac{x-1}{x^2 + x + 1} = \frac{x^2 + x + 1}{(x-1)(x^2 + x + 1)} - \frac{2x}{(x-1)(x^2 + x + 1)} - \frac{(x-1)^2}{(x-1)(x^2 + x + 1)} = \frac{x^2 + x + 1 - 2x - (x^2 - 2x + 1)}{(x-1)(x^2 + x + 1)} = \frac{x}{x^3 - 1},$$
To

a) при x = 0 имеем $\frac{x}{x^3 - 1} = \frac{0}{0 - 1} = 0$;

6) при
$$x=2$$
 имеем $\frac{x}{x^3-1}=\frac{2}{2^3-1}=\frac{2}{7}$.

Пример 3*. Докажем, что значение рационального выражения

 $\frac{x+3}{2x-5} - \frac{x+3}{2x+5} + \frac{4x^2+2x-25}{4x^2-25}$

одно и то же при каждом значении x, кроме x=2,5 и x=-2,5.

Локазательство.

$$\frac{x-3}{2x-5} \stackrel{\backslash 2x+5}{-} \frac{x+3}{2x+5} \stackrel{\backslash 2x-5}{+} \frac{4x^2+3x-26}{4x^2-25} = \frac{(x-8)(2x+6)}{4x^2-25} - \frac{(x+3)(2x-5)}{4x^2-25} + \frac{4x^2+2x-25}{4x^2-25} = \frac{2x^2-6x+5x-16}{4x^2-25} - \frac{2x^2+6x-5x-16}{4x^2-25} + \frac{4x^2+2x-25}{4x^2-25} = \frac{2x^2-x-15-(2x^2+x-15)+4x^2+2x-25}{4x^2-25} = \frac{2x^2-x-15-(2x^2+x-15)+4x^2+2x-25}{4x^2-25} = \frac{2x^2-x-15-2x^2-x+15+4x^2+2x-25}{4x^2-25} = \frac{4x^2-25}{4x^2-25} = 1.$$

То есть значение выражения одно и то же при каждом значении x, кроме x=2,5 и x=-2,5.

Пример 1. Докажем тождество:

$$x^2 - 6x + 9$$
 $x - 3$ $x^2 - 3x$,
 $(x - 5 + x + 5)$ $x^2 + 25 = 9$

B)
$$\left(x+4+\frac{16}{x-4}\right)\cdot\frac{x-4}{x^2}=1;$$
 r) $\left(\frac{x-5}{x+5}+\frac{x+5}{x-5}\right):\frac{x^2+25}{x^2-25}=2.$

При каких значениях х определены обе части данного тождества?

Доказательство.

a)
$$\frac{x+6}{x-6} = \frac{x-6}{x+6} = \frac{(x+6)^2}{(x-6)(x+6)} = \frac{(x-6)^2}{(x+6)(x-6)} = \frac{x^2+12x+36}{x^2-36} = \frac{x^2+12x+36-(x^2-12x+36)}{x^2-36} = \frac{24x}{x^2-36}$$

что и требовалось доказать. Обе части данного тождества определены при каждом значении x, кроме x = 6 и x = -6;

6)
$$\frac{3}{x^2-6x+9}$$
: $\frac{x}{x-3} = \frac{3}{(x-3)^2}$: $\frac{x}{x-3} = \frac{3 \cdot (x-3)}{(x-3)^2 \cdot x} = \frac{3}{(x-3) \cdot x} = \frac{3}{x^2-3x}$

что и требовалось доказать. Обе части данного тождества определены при каждом значении x, кроме x=3 и x=0;

B)
$$\left(x+4+\frac{16}{x-4}\right)\cdot\frac{x-4}{x^2} = \left(\frac{x+4}{1}\right)^{x-4} + \frac{16}{x-4}\cdot\frac{x-4}{x^2} =$$

$$=\left(\frac{x^2-16}{x-4}+\frac{16}{x-4}\right)\cdot\frac{x-4}{x^2}=\frac{x^2}{x-4}\cdot\frac{x-4}{x^2}=1$$
, что и требовалось дока-

зать. Обе части данного тождества определены при каждом значении x, кроме x = 4 и x = 0;

$$\Gamma\left(\frac{x-5}{x+5}^{x-5} + \frac{x+5}{x-5}^{x+5}\right) : \frac{x^2+25}{x^2-25} = \left(\frac{(x-5)^2}{x^2-25} + \frac{(x+5)^2}{x^2-25}\right) : \frac{x^2+25}{x^2-25} = \frac{x^2-10x+25+x^2+10x+25}{x^2-25} : \frac{x^2+25}{x^2-25} = \frac{2x^2+50}{x^2-25} : \frac{x^2+25}{x^2-25} = \frac{x^2+25}{x^2-25}$$

$$=\frac{2(x^2+25)(x^2-25)}{(x^2-25)(x^2+25)}=2$$
, что и требовалось доказать. Обе части

данного тождества определены при каждом значении х, кроме x=5 и x=-5.

Пример 2*. Докажем тождество

$$\left(\frac{x^3 - 125}{x^2 - 10x + 25} + \frac{x^3 + 125}{x^2 + 10x + 25}\right) \cdot \frac{x^2 - 25}{x^3 + 50x} = 2.$$

Доказательство

1)
$$\frac{x^3 - 125}{x^2 - 10x + 25} + \frac{x^3 + 125}{x^2 + 10x + 25} = \frac{x^3 - 5^3}{(x - 5)^2} + \frac{x^3 + 5^3}{(x + 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5^3}{(x - 5)^2} = \frac{(x - 5)(x^2 + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{(x - 5)(x + 5x + 25)}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x + 25}{(x - 5)^2} = \frac{x^3 + 5x + 25}{(x - 5)^2} + \frac{x^3 + 5x +$$

$$+ \frac{(x+5)(x^2-5x+25)}{(x+5)^2} = \frac{x^2+5x+25}{x-5} + \frac{x^2-5x+25}{x+5} =$$

$$= \frac{(x^2+5x+25)(x+5)}{x^2-25} + \frac{(x^2-5x+25)(x-5)}{x^2-25} = \frac{x^3+5x^2+25x+5x^2+25x+125}{x^2-25} +$$

$$+ \frac{x^3-5x^2+25x-5x^2+25x-125}{x^2-25} = \frac{x^3+10x^2+50x+125+x^3-10x^2+50x-125}{x^2-25} =$$

$$= \frac{2x^3+100x}{x^2-25} = \frac{2(x^3+50x)}{x^2-25};$$

$$= \frac{2(x^3+50x)}{x^2-25} \cdot \frac{x^2-25}{x^3+50x} = \frac{2(x^3+50x)\cdot(x^2-25)}{(x^2-25)\cdot(x^3+50x)} = 2, \text{ что и требова-}$$

лось доказать.

Отметим, что обе части данного тождества определены при каждом значении x, кроме x = -5, x = 0 и x = 5.

20. Степень с целым показателем

Пример 1. Вычислим;

a)
$$6^{-2}$$
; 6) $\left(\frac{3}{5}\right)^{-3}$; B) $(-0.2)^{-3}$; r) -10^{-2} ; π) $(-0.4)^{0}$.

Решение. a) $6^{-2} = \frac{1}{c^2} = \frac{1}{2c}$;

6)
$$\left(\frac{3}{5}\right)^{-3} = \frac{1}{\left(\frac{3}{5}\right)^3} = 1: \frac{3^3}{5^3} = \frac{1 \cdot 5^3}{3^3} = \frac{5^3}{3^3} = \frac{125}{27} = 4\frac{17}{27};$$

B)
$$(-0,2)^{-3} = \left(-\frac{1}{5}\right)^{-3} = \frac{1}{\left(-\frac{1}{5}\right)^3} = 1 : \frac{(-1)^3}{5^3} = \frac{1 \cdot 5^3}{(-1)^3} = -125;$$

r)
$$-10^{-2} = -\frac{1}{10^2} = -\frac{1}{100} = -0.01$$
;

д)
$$(-0,4)^0 = 1$$
.

• Замечание. По вналогии с заданием «б» можно доказать, что для любых отличных от нуля чисел а и b и любого целого n верно равенство $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$. Этим равенством удобно пользоваться. Например, задание «в» с его помощью решается так:

$$(-0,2)^{-9} = \left(\frac{-1}{5}\right)^{-3} = \left(\frac{5}{-1}\right)^3 = \frac{5^3}{(-1)^3} = -125.$$

Пример 2. Упростим выражение

a)
$$x^{-5} \cdot x$$
; 6) $x^2 : x^{-3}$; b) $\frac{x^2 \cdot x^{-4}}{x^{-5}}$.

Решение. a)
$$x^{-5} \cdot x = x^{-5} \cdot x^1 = x^{-5+1} = x^{-4}$$
;

6)
$$x^2: x^{-3} = x^{2-(-3)} = x^{2+3} = x^5$$
;

B)
$$\frac{x^2 \cdot x^{-4}}{x^{-5}} = \frac{x^{2+(-4)}}{x^{-5}} = \frac{x^{-2}}{x^{-5}} = x^{-2-(-5)} = x^{-2+5} = x^3$$
.

Пример 3. Упростим выражение

$$\left(\frac{2x-3}{x}\right)^{-3}\cdot(9x^{-3}-12x^{-1}+4).$$

Решение.

$$\left(\frac{2x-3}{x}\right)^{-3} \cdot \left(9x^{-2} - 12x^{-1} + 4\right) = \left(\frac{x}{2x+3}\right)^{3} \cdot \left(\frac{9}{x^{2}} - \frac{12}{x} + 4\right) =$$

$$= \frac{x^{3}}{(2x-3)^{3}} \cdot \frac{9 - 12x + 4x^{2}}{x^{2}} = \frac{x(2x-3)^{2}}{(2x-3)^{2}(2x-3)} = \frac{x}{2x-3}.$$

Пример 4*. Вычислим: $\frac{6^{n+1} \cdot 5^n}{15^n \cdot 2^n}$, где n — любое целое число.

Решение.
$$\frac{6^{n+1} \cdot 5^n}{15^n \cdot 2^n} = \frac{6^n \cdot 6 \cdot 5^n}{15^n \cdot 2^n} = \frac{(2 \cdot 3)^n \cdot 6 \cdot 5^n}{(3 \cdot 5)^n \cdot 2^n} = \frac{2^n \cdot 3^n \cdot 6 \cdot 5^n}{3^n \cdot 5^n \cdot 2^n} = 6.$$

21*. Делимость многочленов

Пример 1. Разделим многочлен A на многочлен B, если:

a)
$$A = x^3 - 6x^2 + 13x - 10$$
, $B = x - 2$;

6)
$$A = x^4 - x^2 + 2x - 8$$
, $B = x + 2$;

6)
$$A = x^4 - x^2 + 2x - 8$$
, $B = x + 2$;
B) $A = x^3 + 2x^2 + 3x + 2$, $B = x^2 + x + 2$.

Решение. Разделим многочлен A на многочлен B уголком, получим:

a)
$$x^3 - 6x^2 + 13x - 10$$
 $x - 2$
 $x^3 - 2x^2$ $x^2 - 4x + 5$
 $-4x^2 + 13x$
 $-4x^2 + 8x$
 $5x - 10$
 $5x - 10$

$$x^3-6x^2+13x-10=(x-2)(x^2-4x+5);$$

$$x^{3}-6x^{2}+13x-10=(x-2)(x^{2}-4x+5);$$
6) $x^{4}+0x^{3}-x^{2}+2x-8$ $x+2$ $x^{4}+2x^{3}$ $x^{3}-2x^{2}+3x-4$ $x^{2}-2x^{3}-x^{2}$ $x^{2}-2x^{3}-4x^{2}$ $x^{2}+2x$ $x^{2}-2x^{2}+3x-4$ $x^{2}-2x^{3}-4x^{2}$ $x^{2}+2x$ $x^{2}-4x-8$ $x^{2}-4x-8$ $x^{2}-4x-8$ $x^{2}-4x-8$

$$x^4 - x^2 + 2x - 8 = (x + 2)(x^3 - 2x^2 + 3x - 4);$$

B)
$$x^3 + 2x^2 + 3x + 2$$
 $x^2 + x + 2$ $x^2 + x + 2$

$$x^3 + 2x^2 + 3x + 2 = (x^2 + x + 2)(x + 1)$$

Пример 2. С помощью алгоритма Евклида найдём HOД(A, B), если

 $A = x^3 - 2x^2 - 5x + 6$, $B = x^2 - 3x + 2$.

Решение. Применим алгоритм Евклида:

$$\begin{array}{c|c}
x^{3} - 2x^{2} - 5x + 6 \\
\underline{x^{3} - 3x^{2} + 2x} & x + 1
\end{array}$$

$$\begin{array}{c|c}
x^{2} - 7x + 6 \\
\underline{x^{2} - 7x + 6} \\
x^{2} - 3x + 2
\end{array}$$

$$\begin{array}{c|c}
x^{2} - 3x + 2 \\
\underline{x^{2} - 3x + 2} \\
-4x + 4
\end{array}$$

$$\begin{array}{c|c}
-\frac{1}{4}x + \frac{1}{2} \\
-2x + 2 \\
-2x + 2
\end{array}$$

$$x^{3}-2x^{2}-5x+6=(x+1)(x^{2}-3x+2)+(-4x+4),$$

$$x^{2}-3x+2=\left(-\frac{1}{4}x+\frac{1}{2}\right)(-4x+4).$$

Последний неравный нулю остаток равен -4x + 4 = -4(x-1). Следовательно, НОД(A, B) = x-1. Чтобы в этом убедиться, можно разделить многочлены A и B на x-1:

$$A = (x-1)(x^2-x-6), B = (x-1)(x-2)$$

и убедиться, что x^2-x-6 не делится на x-2 без остатка: $x^2-x-6=(x-2)(x+1)-4$.

Пример 3*. При каком значении a многочлен A делится на многочлен B с остатком 0, если $A = x^3 - x^2 - 4x + a$, $B = x^2 + x - 2$?

Решение. Разделим многочлен A на многочлен B уголком, получим

$$x^3-x^2-4x+a=(x^2+x-2)(x-2)+a-4$$

Теперь очевидно, что многочлен A делится на многочлен B с остатком 0 лишь при a=4.

22. Линейные уравнения

Пример 1. Решим уравнение:

a)
$$7x = 2$$
;

6)
$$-7x = 0$$
;

B)
$$0x = 7$$
.

Решение.

a)
$$7x = 2$$
;
 $x = 2 : 7$;
 $x = \frac{2}{\pi}$;

6)
$$-7x = 0$$
;
 $x = 0$: (-7);
 $x = 0$:

в)
$$0x = 7$$
; нет корней.

Пример 2. Решим уравнение:

a)
$$10x - 9 = 8x + 7$$
;

6)
$$3x-4=5x+6$$
;

B)
$$3(x-1)=7x+5$$
;

r)
$$11x - 2(5x - 4) = 7x - 6$$
.

Решение.

a)
$$10x-9=8x+7;$$

 $10x-8x-9=7;$
 $2x-9=7;$
 $2x=7+9;$
 $2x=16;$
 $x=8;$

6)
$$3x-4=5x+6$$
;
 $3x-5x-4=6$;
 $-2x-4=6$;
 $-2x=6+4$;
 $-2x=10$;
 $x=-5$;

B)
$$3(x-1) = 7x + 5;$$

 $3x - 3 = 7x + 5;$
 $3x - 7x - 3 = 5;$
 $-4x - 3 = 5;$
 $-4x = 5 + 3;$
 $-4x = 8;$
 $x = -2;$

r)
$$11x - 2(5x - 4) = 7x - 6;$$

 $11x - 10x + 8 = 7x - 6;$
 $x + 8 = 7x - 6;$
 $x - 7x + 8 = -6;$
 $-6x = -6 - 8;$
 $-6x = -14;$
 $x = 2\frac{1}{2}.$

Пример 3. Решим уравнение:

a)
$$6(0.2x - 8) = 3(0.4x - 15)$$
;

6)
$$4(0.2x-0.8) = 2(0.4x-1.6)$$
.

Решение.

a)
$$6(0,2x-8) = 3(0,4x-15);$$

 $1,2x-48 = 1,2x-45;$
 $1,2x-1,2x = 48-45;$
 $0x = 3;$
нет корней;

6)
$$4(0,2x-0,8) = 2(0,4x-1,6);$$

 $0,8x-3,2 = 0,8x-3,2;$
 $0,8x-0,8x = 3,2-3,2;$
 $0x = 0;$
 $x = \pi \omega \omega \omega \omega \omega \omega$

Пример 4*. Решим уравнение

$$x-(2x-(3x-4))=4x-(3x-(2x+1)).$$

Решение.
$$x - (2x - (3x - 4)) = 4x - (3x - (2x + 1));$$

 $x - (2x - 3x + 4) = 4x - (3x - 2x - 1);$
 $x - (-x + 4) = 4x - (x - 1);$
 $x + x - 4 = 4x - x + 1;$
 $2x - 4 = 3x + 1;$
 $2x - 3x = 1 + 4;$
 $-x = 5;$
 $x = -5.$

23*. Линейные уравнения с параметром

Пример 1. Решим уравнение 2x - 3a = 12 для каждого значения a.

Решение. Для каждого значения a данное уравнение можно переписать в ниде

$$2x = 3a + 12.$$

Разделив обе части этого уравнения на 2, получим x = 1,5a+6.

Таким образом, для каждого значения a данное уравнение имеет корень x=1,5a+6.

Пример 2. При каком значении a уравнение 11x - 3a = 10 имеет корень x = 5?

Решение. Так как число 5 является корнем данного уравнения, то при некотором значении а верно равенство

$$11 \cdot 5 - 3a = 10$$
,

из которого найдём это значение а:

$$55 - 3a = 10;$$

 $-3a = -45;$
 $a = 15.$

Следовательно, при a=15 данное уравнение имеет корень 5.

Пример 3. При каком значении a уравнения 5x - 2a = 10 и 3x + 2a = 22 имеют общий корень? Найдём этот корень.

Решение. Для каждого значения a решим уравнения 5x - 2a = 10 и 3x + 2a = 22.

Первое из этих уравнений имеет корень $\frac{2a+10}{5}$, а второе $\frac{22-2a}{3}$. Найдём значение a, при котором эти корни равны. Для этого решим относительно a уравнение:

$$\frac{2a+10}{5} = \frac{22-2a}{3};$$

$$3(2a+10) = 5(22-2a);$$

$$6a+30 = 110-10a;$$

$$16a = 80;$$

$$a = 5.$$

Так как это уравнение имеет корень a=5, то при a=5 исходные уравнения имеют общий корень. Этот корень равен $\frac{2\cdot 5+10}{5}=4$.

Пример 4. При каком значении a уравнение 2(x+5)-ax=3 не имеет корней?

Решение. Для каждого значения a данное уравнение можно переписать в виде

$$(2-a)x=-7.$$

Если a=2, то уравнение имеет вид 0x=-7, оно не имеет корней. Итак, при a=2 уравнение не имеет корней.

Пример 5. Для каждого значения a решим уравнение 3(x-2)-ax=5.

Решение. Для каждого значения a данное уравнение можно переписать в виде

$$(3-a)x=11.$$

- 1) Если a=3, то уравнение имеет вид 0x=11. Оно не имеет корней.
 - 2) Если $a \neq 3$, то уравнение имеет корень $x = \frac{11}{3-a}$.

Итак, если a=3, то уравнение не имеет корней; если $a\neq 3$, то уравнение имеет корень $x=\frac{11}{3-a}$.

24. Решение задач с помощью линейных уравнений

Задача 1. Отношение двух чисел равно 3:7, а их разность равна 160. Найдите эти числа.

Решение. Обозначим данные числа 3k и 7k, где k — некоторое число (коэффициент пропорциональности). Составим уравнение:

$$7k - 3k = 160$$
.

Решив это уравнение, получим, что k=40. Следовательно, искомые числа равны 3k=120 и 7k=280.

Ответ. 120 и 280.

Задача 2. Сумма двух чисел равна 300, а разность — 200. Найдите эти числа.

Решение. Обозначим данные числа x и x+200. Составим уравнение:

x + (x + 200) = 300.

Решив это уравнение, получим, что x=50; x+200=250. Следовательно, искомые числа равны 50 и 250.

Ответ. 50 и 250.

Задача 3. Сумма трёх последовательных натуральных чисел равна 300. Найдите эти числа.

Решение. Обозначим данные числа x, x + 1 и x + 2. Составим уравнение:

$$x + (x + 1) + (x + 2) = 300.$$

Решив это уравнение, получим, что x = 99; x + 1 = 100; x + 2 = 101. Следовательно, искомые числа равны 99, 100 и 101.

Ответ. 99, 100 и 101.

Задача 4*. На трёх полках стоят книги. На нижней полке книг в 2 раза меньше, чем на двух остальных полках вместе, на средней — в 3 раза меньше, чем на двух остальных полках вместе, а на верхней полке стоит 80 книг. Сколько книг на трёх полках вместе?

Решение. Пусть на средней полке было x книг, тогда на нижней полке было $\frac{x+30}{2}$ книг. Так как на средней полке было в 3 раза меньше книг, чем на двух остальных полках вместе, то если число книг на средней полке увеличить в 3 раза, то получится столько же книг, сколько их стоит на двух остальных полках вместе. Составим уравнение:

$$3x = 30 + \frac{x+30}{2}.$$

Решив это уравнение, получим, что x=18. Следовательно, книг на трёх полках вместе было $30+18+\frac{30+18}{2}=72$. Ответ. 72 книги.

25. Системы двух линейных уравнений

Пример 1. Является ли пара чисел (1; -3) решением системы уравнений:

a)
$$\begin{cases} 5x + y = 2, \\ 2x - y = 5; \end{cases}$$
 6)
$$\begin{cases} 4x - 5y = 19, \\ 6x + 7y = 15? \end{cases}$$

Решение. а) Подставив в уравнения системы число 1 вместо x и число -3 вместо y, получим

$$5 \cdot 1 + (-3) = 2$$
 (верно), $2 \cdot 1 - (-3) = 5$ (верно).

Следовательно, пара чисел (1; -3) является решением системы уравнений;

б) подставив в уравнения системы число 1 вместо x и число -3 вместо y, получим

$$4 \cdot 1 - 5 \cdot (-3) = 19$$
 (верно), $6 \cdot 1 + 7 \cdot (-3) = 15$ (неверно).

Следовательно, пара чисел (1; -3) не является решением системы уравнений.

Пример 2. Решим систему уравлений:

a)
$$\begin{cases} 3x = 18, \\ 2x - y = 8; \end{cases}$$
 6)
$$\begin{cases} 3x - 2y = -1, \\ 4x + 3y = 27. \end{cases}$$

Решение. а) Из первого уравнения системы найдём x = 6, подставив во второе уравнение системы число 6 вместо x, получим уравнение

$$2\cdot 6-y=8,$$

имеющее единственный корень y=4. Следовательно, пара (6; 4) является решением системы уравнений;

б) умножим первое уравнение системы на 3, а второе — на 2:

$$\begin{cases} 3x - 2y = -1, & 3 \\ 4x + 3y = 27, & 2 \end{cases}$$

получим систему

$$\begin{cases}
9x - 6y = -3, \\
8x + 6y = 54,
\end{cases}$$
(1)

равносильную данной системе.

Заменив в системе (1) первое уравнение суммой двух уравнений, получим систему

$$\begin{cases}
17x = 51, \\
8x + 6y = 54,
\end{cases}$$
(2)

равносильную системе (1), а значит, равносильную данной системе.

Решив систему (2), получим, что $x=3,\ y=5.$ Следовательно, пара (3; 5) является решением системы (2), а значит, и данной системы уравнений.

Пример 3*. При каких значениях а система уравнений

$$\begin{cases} x-ay+5a=0, \\ x+2y-10=0 \end{cases}$$

- а) имеет бесконечно много решений;
- б) имеет единственное решение?

В каждом случае запишем решения системы в виде пар чисел.

Решение. Из первого уравнения системы найдём, что x = ay - 5a,

подставив во второе уравнение системы выражение ay - 5a вместо x, получим уравнение

$$ay - 5a + 2y - 10 = 0.$$

Перепишем это уравнение в виде

$$(a+2)(y-5)=0. (3)$$

а) Теперь видно, что при a=-2 и любом у равенство (3) верно, следовательно, система уравнений имеет бесконечно много решений:

$$x = -2y - 5 \cdot (-2) = 10 - 2y$$
, y — любое число.

То есть при a = -2 решением системы является любая пара чисел (10 - 2y; y), где y - любое число;

6) если $a \neq -2$, то из уравнения (8) следует, что y = 5, тогда

$$x=5a-5a=0.$$

То есть для каждого числа $a \neq -2$ решением системы является единственная пара чисел вида (0; 5).

26. Решение задач с помощью систем уравнений

Задача 1. Три буханки чёрного клеба и четыре батона белого клеба стоят 114 р., а четыре буханки и два батона стоят 102 р. Сколько стоит буханка чёрного клеба, сколько стоит батон белого клеба?

Решение. Пусть буханка чёрного хлеба стоит x р., а батон белого хлеба стоит y р. По условиям задачи составим два уравнения:

$$3x + 4y = 114$$
 m $4x + 2y = 102$.

Решив систему этих двух уравнений, получим, что x=18, y=15. Следовательно, буханка чёрного хлеба стоит 18 р., а батон белого хлеба стоит 15 р.

Ответ. 18 р., 15 р.

Задача 2. В классе 27 человек. Чтобы выдать девочкам по три тетради, а мальчикам по две тетради, потребуется 69 тетрадей. Сколько в классе мальчиков и сколько девочек?

Решение. Пусть в классе было x девочек и y мальчиков. По условиям задачи составим два уравнения:

$$x + y = 27$$
 m $3x + 2y = 69$.

Решив систему этих двух уравнений, получим, что $x=15,\ y=12.$ Следовательно, в классе было 15 девочек и 12 мальчиков.

Ответ. 12 мальчиков и 15 девочек.

Задача 3*. На трёх банковских картах имелось 3000 р. На третьей карте было в 2 раза больше, чем на остальных картах вместе, а на первой карте — третья часть той суммы, что была на остальных картах вместе. Какая сумма была на каждой банковской карте?

Решение. Пусть на первой карте было x р., на второй — y р., тогда на третьей карте было 2(x+y) р. Составим первое уравнение:

$$x + y + 2x + 2y = 3000.$$

Так как на первой карте была треть той суммы, что на остальных картах вместе, то составим второе уравнение:

$$x = \frac{1}{3}(y + 2x + 2y).$$

Решив систему этих двух уравнений, получим, что x = 750, y = 250. Следовательно, на первой карте было 750 р., на второй — 250 р., а на третьей — 2(750 + 250) = 2000 р.

Ответ. 750 р., 250 р., 2000 р.

27*. Системы трёх линейных уравнений

Пример 1. Является ли тройка чисел (1; 2; 3) решением системы уравнений:

a)
$$\begin{cases} 3x + 2y - z = 4, \\ x - 3y + z = -2, \\ x + y + z = 6; \end{cases}$$
 6)
$$\begin{cases} x + 3y = 7, \\ 4y - z = 5, \\ 2x + z = 4? \end{cases}$$

Решение. а) Подставив в уравнения системы число 1 вместо x, число 2 вместо y и число 3 вместо z, получим

$$3 \cdot 1 + 2 \cdot 2 - 3 = 4$$
 (верно), $1 - 3 \cdot 2 + 3 = -2$ (верно), $1 + 2 + 3 = 6$ (верно).

Следовательно, тройка чисел (1; 2; 3) является решением системы уравнений;

б) подставив в уравнения системы число 1 вместо x, число 2 вместо y и число 3 вместо z, получим

$$1+3\cdot 2=7$$
 (верно), $4\cdot 2-3=5$ (верно), $2\cdot 1+3=4$ (неверно).

Следовательно, тройка чисел (1; 2; 3) не является решением системы уравнений.

Пример 2. Решим систему уравнений:

a)
$$\begin{cases} x+2y+3z=22, \\ y-2z=-15, \\ -3z=-21; \end{cases}$$
 6)
$$\begin{cases} x+y+z=5, \\ x-y-z=3, \\ x+y-z=1; \end{cases}$$

B)
$$\begin{cases} 3x - 2y + z = -2, \\ -2x + 3y - 2z = -2, \\ 4x + y - 3z = -17. \end{cases}$$

Решение. а) Из третьего уравнения системы найдём, что z=7. Подставив во второе уравнение системы число 7 вместо z, найдём, что y=-1. Подставив в первое уравнение системы число -1 вместо y и число 7 вместо z, найдём, что x=3.

Следовательно, решением системы уравнений является тройка чисел (3; -1; 7);

б) чтобы привести исходную систему уравнений к «треугольному» виду (как система в задании «а»), сначала исключим z из второго и третьего уравнений этой системы.

Сложив первое уравнение системы с третьим, получим уравнение

2x + 2y = 6.

Сложив первое уравнение системы со вторым, получим уравнение

2x = 8

(неизвестное у уже исключено).

«Треугольная» система

$$\begin{cases} x + y + z = 5, \\ 2x + 2y = 6, \\ 2x = 8 \end{cases}$$
 (1)

равносильна исходной системе. Решив систему (1), найдём её единственное решение: (4; -1; 2). Оно и является решением исходной системы:

в) сначала исключим z из второго и третьего уравнений исходной системы. Для этого первое уравнение системы умножим на 2 и сложим со вторым уравнением, получим уравнение

4x - y = -6.

Теперь первое уравнение системы умножим на 3 и сложим с третьим уравнением, получим уравнение

$$13x - 5y = -23.$$

Исходная система равносильна системе

$$\begin{cases} 3x - 2y + z = -2, \\ 4x - y = -6, \\ 13x - 5y = -23. \end{cases}$$
 (2)

Теперь исключим *у* из третьего уравнения системы (2). Для этого второе уравнение системы (2) умножим на -5 и сложим с третьим уравнением, получим уравнение -7*x* = 7. Исходная система равносильна системе

$$\begin{cases} 3x - 2y + z = -2, \\ 4x - y = -6, \\ -7x = 7. \end{cases}$$
 (3)

Решив систему (3), найдём её единственное решение: (-1; 2; 5). Оно и является решением исходной системы.

• Замечание. Решения систем в заданиях «б» и «в» обычно записывают кратко, указывая справа от вертикальной черты числа, на которые умножают уравнения перед сложением:

6)
$$\begin{cases} x+y+z=5, & 1 \\ x-y-z=3, & 1 \\ x+y-z=1; & 1 \end{cases} \Leftrightarrow \begin{cases} x+y+z=5, \\ 2x+2y=6, \\ 2x=8; \end{cases} \Leftrightarrow \begin{cases} x+y+z=5, \\ x+y=3, \\ x=4; \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 4, \\ y = -1, \\ z = 2; \end{cases}$$

B)
$$\begin{cases} 3x - 2y + z = -2, \\ -2x + 3y - 2z = -2, \\ 4x + y - 3z = -17; \end{cases} \begin{vmatrix} 2 & 3 \\ 1 & \Rightarrow \begin{cases} 3x - 2y + z = -2, \\ 4x - y = -6, \\ 13x - 5y = -23; \end{cases} \begin{vmatrix} -5 & \Rightarrow \\ 1 & \Rightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 2y + z = -2, \\ 4x - y = -6, \\ -7x = 7; \end{cases} \Leftrightarrow \begin{cases} x = -1, \\ y = 2, \\ z = 5. \end{cases}$$

При этом знак равносильности систем (⇔) часто опускают, но подразумевают его.

Пример 3*. При каком значении а система уравнений

$$\begin{cases} x + y + z = 2, \\ x + 2y + 3z = 12, \\ ax + 2y + z = -3 \end{cases}$$

а) не имеет решений; б) имеет единственное решение? Решение. Из первого уравнения системы выразим z через x и y: z = 2 - x - y.

Подставив во второе и третье уравнения системы выражение 2-x-y вместо z, получим систему уравнений, равносильную исходной:

$$\begin{cases}
z = 2 - x - y, \\
x + 2y + 6 - 3x - 3y = 12, \\
ax + 2y + 2 - x - y = -3.
\end{cases}$$
(4)

Из второго уравнения системы (4) выразим y через x: y = -2x - 6.

Подставив в третье уравнение системы выражение -2x-6 вместо y, перепишем это уравнение в виде

$$(a-3)x=1.$$

Получим систему уравнений, равносильную исходной:

$$\begin{cases}
z = 2 - x - y, \\
y = -2x - 6, \\
(a - 3)x = 1.
\end{cases}$$
(5)

- а) Исходная система уравнений не имеет решений, если равносильная ей система (5) не имеет решений. Лишь при a=3 система (5) не имеет решений. Поэтому исходная система не имеет решений при a=3;
- б) исходная система уравнений имеет единственное решение, если равносильная ей система (5) имеет единственное решение. При каждом $a \neq 3$ система (5) имеет единственное решение:

$$x = \frac{1}{a-3}$$
, $y = -\frac{2}{a-3} - 6$, $z = \frac{1}{a-3} + 8$.

Поэтому исходная система имеет единственное решение при каждом $a \neq 3$.

Самостоятельные работы

C-1Действия с натуральными числами

Вариант І

Вычислите, не нользуясь калькулятором (1-2).

- 1. a) 38 571 + 2349:
- 6) 48 931 39 582:
- в) 48 · 53:

- r) 72 · 205;
- n) 736:23:
- e) 7650:25.
- 2. a) $724:4-4\cdot41+1$: 6) $53\cdot(42+24:6)-2315$.
- 3. Придумайте трёхзначное число, которое делилось бы:
 - а) на 2 и на 9; б) на 5 и на 3; в) на 150.
- 4. Используя свойства арифметических действий, найдите значение числового выражения

$$57 \cdot 79 - 57 \cdot 69 + 10 \cdot 43$$
.

5*. Не выполняя вычисления столбиком, найдите значение числового выражения

555555:15-222222:6.

Вариант II

Вычислите, не пользуясь калькулятором (1-2).

- 1. a) 47 672 + 3458: r) 69 · 302;
- 6) 37 633 29 365: л) 768:24:
- в) 57·49: e) 1680:35.

в) на 120.

- 2. a) $714:6-3\cdot36+2$;
- 6) $52 \cdot (42 + 24 : 4) 2314$.
- 3. Придумайте трёхзначное число, которое делилось бы:

 - а) на 2 и на 3; б) на 5 и на 9;
- 4. Используя свойства арифметических действий, найдите аначение числового выражения

$$48 \cdot 56 - 48 \cdot 46 + 10 \cdot 52$$
.

5*. Не выполняя вычисления столбиком, найдите значение числового выражения

444 444 : 12 - 333 333 : 9.

Bapuanm III

Вычислите, не пользуясь калькулятором (1-2).

- 1. a) 88 765 + 4567; 6) 23 232 16 789; r) 405 · 504;
 - л) 15 652:26;
- B) 59 · 48; e) 3780:45.
- 2. a) $3272:8-6\cdot34+3$; 6) $57\cdot(72+72:9)-2313$.

- 3. Придумайте четырёханачное число, которое делилось ñы:
 - а) на 2 и на 9; б) на 5 и на 3; в) на 1500.
- 4. Используя свойства арифметических действий, найдите значение числового выражения

$$607 \cdot 619 - 607 \cdot 608 + 11 \cdot 393$$

5*. Не выполняя вычисления столбиком, найдите значение числового выражения

Bapuanm IV

Вычислите, не пользуясь калькулятором (1-2).

- 1. a) 77 665 + 5476; r) 506 · 605:
 - 6) 32 323 23 987; π) 12 550 : 25:
- в) 58 · 49; e) 3520:55.

- 2. a) $5472:9-5\cdot43+4$; 6) $58\cdot(72+72:8)-2312$.
- 3. Придумайте четырёхзначное число, которое делилось бы:

 - а) на 2 и на 3; б) на 5 и на 9; в) на 1200.
- 4. Используя свойства арифметических действий, найдите значение числового выражения

$$706 \cdot 548 - 706 \cdot 536 + 12 \cdot 294$$
.

5*. Не выполняя вычисления столбиком, найдите значение числового выражения

C-2 Действия с рациональными числами

Вариант І

Вычислите (1-4).

- 1. a) $\frac{3}{4} + \frac{1}{8}$; 6) $\frac{11}{15} \frac{7}{20}$; B) $\frac{5}{4} \cdot \frac{2}{3}$; r) $\frac{3}{20} : \frac{9}{10}$;

- A) $2\frac{2}{5} + 3\frac{1}{6}$; e) $5\frac{2}{3} 2\frac{3}{4}$; x) $4\frac{2}{15} \cdot 5$; 3) $7\frac{3}{5} : 19$.

- 2. a) 4,3+0,48; 6) 3,3-5,4; b) 2,5 · (-3,2); 7) 0,48 : 0,006.
- 3. a) $2\frac{1}{2}+1,2;$ 6) $\frac{3}{4}-0,5;$

 - B) $-1\frac{2}{5} \cdot 2,3$;
 - r) $(-0.8): \left(-2\frac{2}{3}\right)$.
- $4*, \frac{4,9 \cdot 3,24 \cdot 0,32}{1.08 \cdot 0.49 \cdot 3.2}.$

Вариант II

Вычислите (1-4).

1. a)
$$\frac{1}{3} + \frac{2}{9}$$
;

6)
$$\frac{23}{30} - \frac{11}{20}$$
; B) $\frac{5}{8} \cdot \frac{7}{5}$; r) $\frac{4}{25} : \frac{8}{5}$;

B)
$$\frac{6}{8} \cdot \frac{7}{5}$$
;

r)
$$\frac{4}{25}$$
: $\frac{8}{5}$;

д)
$$3\frac{3}{5} + 2\frac{1}{3}$$
; e) $6\frac{1}{2} - 4\frac{2}{3}$; ж) $3\frac{3}{8} \cdot 4$; a) $5\frac{3}{7} \cdot 19$.

e)
$$6\frac{1}{2} - 4\frac{2}{3}$$

$$3\frac{3}{8} \cdot 4$$

a)
$$5\frac{3}{7}:19$$

2. a)
$$3.5 + 0.45$$
;

2. a)
$$3.5 + 0.45$$
;
b) $(-2.4) \cdot (-3.5)$;

3. a)
$$3\frac{2}{9}+1,1$$
;

6)
$$\frac{2}{5}$$
 - 0,3;

B)
$$1\frac{3}{11} \cdot (-2,2)$$
;

r)
$$(-0.9):2\frac{1}{4}$$

4*.
$$\frac{5.6 \cdot 12 \cdot 0.39}{3.9 \cdot 2.4 \cdot 0.56}$$
.

Bapuanm III

Вычислите (1-4).

1. a)
$$\frac{3}{7} + \frac{1}{14}$$
; 6) $\frac{4}{25} - \frac{11}{15}$; B) $-\frac{11}{14} \cdot \frac{21}{22}$; r) $\frac{12}{19} : \frac{9}{38}$;

6)
$$\frac{4}{25} - \frac{11}{15}$$

B)
$$-\frac{11}{14} \cdot \frac{21}{22}$$
;

r)
$$\frac{12}{19}:\frac{9}{38};$$

д)
$$7\frac{4}{16} + 3\frac{11}{12}$$
; e) $3\frac{5}{12} - 2\frac{5}{6}$; ж) $3\frac{3}{13} \cdot 4$; 3) $3\frac{7}{9} : 17$.

$$3\frac{5}{12}-2\frac{5}{6}$$

$$3\frac{3}{13}\cdot 4$$
;

3)
$$3\frac{7}{9}$$
:17

2. a)
$$5.78 + 0.342$$
;
b) $2.7 \cdot (-7.5)$;

3. a)
$$5\frac{2}{7} + 5.4$$
;

6)
$$\frac{2}{9}$$
 - 0,3;

B)
$$-1\frac{2}{15}\cdot 1,2;$$

r)
$$(-2,2):(-3\frac{2}{3})$$
.

$$4^*, \frac{1,25 \cdot 3, 2 \cdot 4, 8}{0,43 \cdot 16 \cdot 125}.$$

Вариант IV

Вычислите (1-4).

1. a)
$$\frac{3}{8} + \frac{1}{16}$$
; b) $\frac{7}{15} - \frac{13}{25}$; b) $-\frac{13}{16} \cdot \frac{20}{39}$; r) $\frac{15}{21} : \frac{12}{35}$;

6)
$$\frac{7}{15} - \frac{13}{25}$$
;

B)
$$-\frac{13}{16} \cdot \frac{20}{39}$$
;

r)
$$\frac{15}{21}$$
: $\frac{12}{35}$

д)
$$2\frac{7}{18} + 5\frac{13}{24}$$
; e) $4\frac{5}{18} - 2\frac{5}{9}$; ж) $3\frac{3}{25} \cdot 4$; 3) $8\frac{1}{6} \cdot 7$.

e)
$$4\frac{5}{18} - 2\frac{5}{9}$$

$$x) 3\frac{3}{25} \cdot 4$$

3)
$$8\frac{1}{6}$$
:7.

2. a)
$$7.36 + 0.248$$
;
b) $(-3.5) \cdot (-1.8)$;

8. a)
$$4\frac{4}{9} + 6.2$$
;

6)
$$\frac{3}{7}$$
 - 0,2;

B)
$$1\frac{3}{14} \cdot (-2,5)$$
;

r) 2,8:
$$\left(-4\frac{2}{3}\right)$$
.

4*.
$$\frac{1,35 \cdot 4,8 \cdot 4,7}{0,47 \cdot 16 \cdot 135}$$
.

Вариант І

- 1. Какая из двух десятичных дробей: 0,14 или 0,15 является более точным приближением числа $\frac{1}{2}$?
- Запишите обыкновенную дробь в виде периодической десятичной дроби:
 - a) $\frac{1}{9}$; 6) $\frac{2}{9}$; B) $\frac{41}{99}$; P) $\frac{7}{11}$.
- 3. Сравните числа:
 - a) 3.4(2) m 3.42; 6) -5.73 m -5.(73).
- 4. Запишите периодическую десятичную дробь в виде обыкновенной дроби:
 - a) 0,(8); 6) 0,(17).
- 5. Вычислите:
 - a) $0,(3) + \frac{1}{2}$; 6) 0,(7) 0,(70);
 - B) $0,(2)\cdot 0,(6);$ r) $0,3636...+\frac{1}{8}.$
- 6. Вычислите: $\frac{0,(6)\cdot 0,(7)\cdot 0,(12)}{0,(21)\cdot 0,(3)\cdot 0,(2)}$.

Вариант II

- 1. Какая из двух десятичных дробей: 0,28 или 0,29 является более точным приближением числа $\frac{2}{7}$?
- Запишите обыкновенную дробь в виде периодической десятичной дроби;
 - a) $\frac{7}{9}$; b) $\frac{4}{9}$; b) $\frac{43}{99}$; r) $\frac{4}{11}$.
- 3. Сравните числа:
 - a) 2.5(7) u 2.57; 6) -4.35 u -4.(35).
- 4. Запишите периодическую десятичную дробь в виде обыкновенной дроби:
 - a) 0,(5); 6) 0,(13).
- 5. Вычислите:
 - a) $0,(4) + \frac{1}{5};$ 6) 0,(6) 0,(60);
 - B) $0,(3)\cdot 0,(4);$ r) $0,4545...+\frac{1}{3}.$
- 6. Вычислите: $\frac{0,(7)\cdot 0,(8)\cdot 0,(60)}{0,(50)\cdot 0,(4)\cdot 0,(5)}$

Вариант III

- 1. Какая из двух десятичных дробей: 0,42 или 0,43 является более точным приближением числа $\frac{3}{2}$?
- 2. Запишите обыкновенную дробь в виде периодической десятичной дроби:
 - a) $\frac{8}{9}$; 6) $\frac{2}{3}$; B) $\frac{4}{99}$; r) $\frac{13}{111}$.
- 3. Сравните числа:
 - 6) -3.12(3) и -3.1(23). a) 5,6(2) и 5,(62);
- 4. Запишите периодическую десятичную дробь в виде обыкновенной дроби:
 - a) 0,3(2);
- б) 0,(19).
- 5. Вычислите:
 - a) $0,(71)+\frac{1}{2}$;
- 6) 0,(8) 0,(80);
- B) $0,(6)\cdot 0,(4);$ r) $0,7272...+\frac{3}{11}.$
- **6.** Вычислите: $\frac{0,(56)\cdot 0,(13)\cdot 0,(3)}{0,(39)\cdot 0,(2)\cdot 0,(14)}$

Вариант IV

- 1. Какая из двух десятичных дробей: 0,57 или 0,58 является более точным приближением числа $\frac{4}{7}$?
- 2. Запишите обыкновенную дробь в виде периодической десятичной дроби:

- a) $\frac{5}{9}$; 6) $\frac{1}{9}$; B) $\frac{5}{99}$; r) $\frac{14}{111}$.
- 3. Сравните числа:

 - a) 6.5(4) и 6.(54); 6) -2.73(5) и -2.7(35).
- 4. Запишите периодическую десятичную дробь в виде обыкновенной дроби:
 - a) 0.5(7);
- б) 0,(16).
- 5. Вычислите:

 - a) $0,(17) + \frac{1}{2};$ 6) 0,(5) 0,(50);

 - B) $0,(7)\cdot 0,(3);$ r) $0,8181...+\frac{2}{11}.$
- 6. Вычислите: $\frac{0.(63) \cdot 0.(17) \cdot 0.(6)}{0.(51) \cdot 0.(14) \cdot 0.(3)}$

Вариант І

- 1. Найдите приближение десятичной дроби 5,736 с точностью до единицы второго разряда после запятой:
 - а) с недостатком; б) с избытком; в) с округлением.
- 2. Округлите число:
 - а) 2,746 с точностью до сотых;
 - б) 38,43 с точностью до десятых;
 - в) 184.52 с точностью до единиц;
 - г) 537,7 с точностью до десятков;
 - д) 1642,83 с точностью до сотен.
- 3. Округлите до второй значащей цифры число:
 - a) 0.02946:
- 6) 2496 000.
- 4. Вычислите приближённо:
 - а) a+b и a-b, если a=12,537, b=6,(28), округлив данные числа с точностью до одной сотой;
 - б) $a \cdot b$ и a : b, если a = 2.43, b = 1.(3), округлин данные числа и результаты с точностью до второй значащей цифры.
- 5*. Из справочника выписали приближение числа $\pi \approx 3.14159265$. Сколько первых цифр числя π надо взять для приближённого вычисления:
 - а) длины окружности, если её радиус приближённо равен 3,25 м:
 - б) площади круга, если его радиус приближённо равен

Вычислите приближённо длину окружности и площадь круга.

Вариант II

- 1. Найдите приближение десятичной дроби 3,825 с точностью до единицы второго разряда после запятой:
 - а) с недостатком; б) с избытком; в) с округлением.
- 2. Округлите число:
 - а) 4,274 с точностью до сотых;
 - б) 53,84 с точностью до десятых;
 - в) 618.45 с точностью до единиц;
 - г) 353,7 с точностью до десятков;
 - д) 8164,28 с точностью до сотен.
- 3. Округлите до второй значащей цифры число:
 - a) 0.09463; 6) 4 925 000.

- 4. Вычислите приближённо:
 - а) a+b и a-b, если $a=16,253,\ b=3,(62),$ округлив данные числа с точностью до одной сотой;
 - б) $a \cdot b$ и a : b, если a = 6,24, b = 3,(1), округлив данные числа и результаты с точностью до второй значащей цифры.
- 5*. Из справочника выписали приближение числа π≈ 3,14159265. Сколько первых цифр числа π надо взять для приближённого вычисления:
 - а) длины окружности, если её радиус приближённо равен 3,22 м;
 - б) площади круга, если его радиус приближённо равен 1,5 м?

Вычислите приближённо длину окружности и площадь круга.

Вариант III

- 1. Найдите приближение десятичной дроби 8,395 с точностью до единицы второго разряда после вапятой:
 - а) с недостатком; б) с избытком; в) с округлением.
- 2. Округлите число:
 - а) 8,427 с точностью до сотых;
 - б) 45.38 с точностью до десятых;
 - в) 361,84 с точностью до единиц;
 - г) 735,3 с точностью до десятков;
 - д) 2816,42 с точностью до сотен.
- 3. Округлите до третьей значащей цифры число:
 - a) 0,09495; 6) 4 393 600.
- 4. Вычислите приближённо:
 - а) a+b и a-b, если a=4,625, b=-5,(6), округлив данные числа с точностью до одной сотой;
 - б) $a \cdot b$ и a : b, если a = 5,62, b = 2,(5), округлив данные числа и результаты с точностью до второй значащей цифры.
- 5*. Из справочника выписали приближение числа $\pi \approx 3,14159265$. Сколько первых цифр числа π надовзять для приближённого вычисления;
 - а) длины окружности, если её радиус приближённо равен 4.58 м;
 - б) площади круга, если его радиус приближённо равен
 м?

Вычислите приближённо длину окружности и площадь круга.

Вариант IV

- 1. Найдите приближение десятичной дроби 7,926 с точностью до единицы второго разряда после запятой:
 - а) с недостатком; б) с избытком; в) с округлением.
- 2. Округлите число:
 - а) 4,842 с точностью до сотых;
 - б) 74,53 с точностью до десятых;
 - в) 636,18 с точностью до единиц;
 - г) 473,5 с точностью до десятков;
 - д) 5281,64 с точностью до сотен.
- 3. Округлите до третьей значащей цифры число:
 - a) 0,03796; 6) 3 364 700.
- 4. Вычислите приближённо:
 - а) a+b и a-b, если a=2,537, b=-5,(28), округлив данные числа с точностью до одной сотой;
 - б) $a \cdot b$ и a : b, если a = 8,43, b = 3,(2), округлив данные числа и результаты с точностью до второй значащей цифры.
- 5*. Из справочника выписали приближение числа π ≈ 3,14159265. Сколько первых цифр числа π надо взять для приближённого вычисления:
 - а) длины окружности, если её радиус приближённо равен 4,85 м;
 - б) площади круга, если его радиус приближенно равен 1.7 м?

Вычислите приближённо длину окружности и площадь круга.

C-5*

Делимость чисел

Вариант І

- 1. Докажите, что если каждое из двух чисел a и b делится на число c, то их сумма тоже делится на число c.
- 2. Докажите признак делимости на 4: число $\overline{a_n}a_{n-1}...a_1a_0$ делится на 4, если либо число $\overline{a_1}a_0$ делится на 4, либо $a_0=a_1=0$. (Пример: число 67 912 делится на 4, так как число 12 делится на 4; число 67 900 делится на 4, так как запись числа оканчивается на два нуля.)
- 3. Вычислите: а) НОД (252, 180); 6) НОК (252, 180).
- **4*.** Докажите, что числа 333 333 и 333 331 взаимно простые.

Вариант II

- 1. Докажите, что если каждое из двух чисел a в b делится на число c, то их разность тоже делится на число c.
- 2. Докажите признак делимости на 25: число $\overline{a_n}\overline{a_{n-1}}...a_1}\overline{a_0}$ делится на 25, если либо число $\overline{a_1}\overline{a_0}$ делится на 25, либо $a_0=a_1=0$. (Пример: число 67 975 делится на 25, так как число 75 делится на 25; число 67 900 делится на 25, так как запись числа оканчивается на два нуля.)
- 3. Вычислите:
 - a) НОД (264, 231); 6) НОК (264, 231).
- **4***. Докажите, что числа 555 555 и 555 553 взаимно простые.

Вариант III

- 1. Докажите, что если число a делится на число c, а число b не делится на число c, то их сумма не делится на число c.
- 2. Докажите признак делимости на 8: число $\overline{a_n a_{n-1} \dots a_n a_1 a_0}$ делится на 8, если либо число $\overline{a_2 a_1 a_0}$ делится на 8, либо $a_0 = a_1 = a_2 = 0$. (Пример: число 67 912 делится на 8, так как число 912 делится на 8; число 679 000 делится на 8, так как запись числа оканчивается на три нуля.)
- 3. Вычислите:
 - а) НОД (868, 620); 6) НОК (868, 620).
- **4***. Докажите, что числа 777 777 и 777 773 взаимно простые.

Вариант IV

- 1. Докажите, что если число a делится на число c, а число b не делится на число c, то их разность не делится на число c.
- 2. Докажите признак делимости на 125: число $\overline{a_n a_{n-1} \dots a_2 a_1 a_0}$ делится на 125, если либо число $\overline{a_2 a_1 a_0}$ делится на 125, либо $a_0 = a_1 = a_2 = 0$. (Пример: число 67 875 делится на 125, так как число 875 делится на 125; число 678 000 делится на 125, так как запись числа оканчивается на три нуля.)
- 3. Вычислите:
 - а) НОД (875, 750); 6) НОК (875, 750).
- **4*.** Докажите, что числа 999 999 и 999 995 взаимно простые.

Вариант І

- 1. Является ли одночленом выражение:

 - a) $a + b^2$; 6) $\frac{2}{3}ab$; B) $\frac{2x}{a}$; r) -8; μ a; e) 0?

- 2. Запишите одночлен в стандартном виде, укажите его коэффициент и степень:
 - a) $5a^3 \cdot \frac{1}{3}a^3$; 6) $8ab \cdot \frac{1}{8}a^2b$; b) $\left(\frac{1}{2}ab\right)^2$; r) $-(a^2b)^3$.

- Запишите одночлен в виде квадрата другого одночлена:

 - a) $4a^4b^2$; 6) $2\frac{1}{4}a^2b^{20}$.
- 4. Запишите одночлен в виде куба другого одночлена:

 - a) $8a^{12}b^{21}$; 6) $\frac{1}{27}a^{19}b^{9}$.
- 5. Выпишите подобные одночлены:

7ab: $7ab^2$: $4a^2b$: -ab: -b: 4ab.

6*. Запишите все ненудевые одночлены стандартного вида, используя любой из множителей 3, х, у не более одного раза.

Вариант II

- 1. Является ли одночленом выражение:
- a) $\frac{1}{2}a^3$; 6) 8 + ab; B) $\frac{x}{2y}$; r) -10; A) ab; e) 0?
- 2. Запишите одночлен в стандартном виде, укажите его коэффициент и степень:

 - a) $3c^2 \cdot \frac{1}{3}c^3$; b) $5cd \cdot \frac{1}{4}c^2d^2$; b) $\left(\frac{1}{3}cd\right)^2$; r) $-(c^4d)^3$.
- 8. Запишите одночлен в виде квадрата другого одночлена:

 - a) $9c^6d^4$; 6) $6\frac{1}{4}c^{24}d^2$.
- 4. Запишите одночлен в виде куба другого одночлена:
 - a) $64c^9d^{24}$;
- 6) $\frac{1}{6}c^{12}d^6$.
- 5. Выпишите подобные одночлены:

$$5c^2$$
; cd ; $3c^2$; $-d$; c ; $-2cd^2$; $-c^2$.

6*. Запишите все ненулевые одночлены стандартного вида, иснользуя любой из множителей 4, т, п не более одного раза.

Вариант III

1. Является ли одночленом выражение:

a) $a - \frac{1}{3}a^2$; 6) $5a \cdot \frac{1}{2}b^4$; B) -17; r) $-\frac{x^2}{y}$; π) a^3b ; e) 0?

Запишите одночлен в стандартном виде, укажите его коэффициент и степень:

a) $14b^2 \cdot \frac{2}{21}b^4$; 6) $24ab^2 \cdot \frac{1}{8}a^3b$; B) $\left(\frac{2}{3}a^2b\right)^2$; r) $-(a^4b^3)^3$.

3. Запишите одночлен в виде квадрата другого одночлена:

a) $49a^4b^{12}$; 6) $1\frac{7}{9}a^{26}b^{22}$.

4. Запишите одночлен в виде куба другого одночлена:

a) $64a^{12}b^{27}$; 6) $-3\frac{3}{8}a^{21}b^{36}$.

5. Выпишите подобные одночлены:

14ab; $20a^3b^2$; $6a^3b^2$; -ab; -24ab.

6*. Запишите все ненудевые одночлены стандартного вида, используя любой на множителей **5**, **a**, **b**, **c** не более одного раза.

Вариант IV

1. Является ли одночленом выражение:

a) $a + \frac{1}{2}a^2$; 6) $11a^2 \cdot \frac{1}{3}b$; B) -18; r) $-\frac{x}{y^2}$; A) ab^3 ; e) 0?

2. Запишите одночлен в стандартном виде, укажите его коэффициент и степень:

a) $24c^2 \cdot \frac{3}{8}c^3$; 6) $5cd \cdot \frac{1}{4}c^2d^2$; B) $\left(\frac{3}{4}cd^2\right)^2$; F) $(-c^5d^2)^3$.

3. Запишите одночлен в виде квадрата другого одночлена:

a) $81c^{16}d^4$; 6) $12\frac{1}{4}c^{20}d^{32}$.

4. Запишите одночлен в виде куба другого одночлена:

a) $125c^{18}d^{21}$; 6) $-2\frac{10}{27}c^{12}d^{33}$.

5. Выпишите подобные одночлены:

 $15c^3d$; cd; $12c^3d$; -6cd; $-2c^3d$.

6*. Запишите все ненулевые одночлены стандартного вида, используя любой из множителей 6, x, y, z не более одного раза.

Вариант І

- 1. Является ли многочленом выражение:
 - a) a + b 2a; 6) $\frac{2}{3}ab$; B) $\frac{2}{3a}$; r) 5?

- 2. Приведите многочлен к стандартному виду:
 - a) 3-2a+5a-11; 6) $3a+a^2+2a-3a^2$.
- 3. Приведите многочлен к стандартному виду, укажите его степень:
 - a) $\frac{3}{7}a^2 + 3a a$;

- 6) $8a^2 a^2b + 3a^2b$:
- B) $4a^3b + 5a \cdot 2a^2b + abb 3bab$; r) $7a^2 \cdot 3a 4a \cdot 6a^2 a$.
- 4. Вместо каждой из букв C и D подберите одночлен так, чтобы выполнялось равенство:

 - a) 3a + C + 5a = b + D; 6) $6a^2 C + 3a = a^2 + D$.
- 5*. Составьте все возможные ненулевые многочлены стандартного вида, используя каждый из одночленов $3x^2$, -2x, 5 не более одного раза.

Вариант II

- 1. Является ли многочленом выражение:
 - a) a-b+2b; 6) $\frac{5}{2}ab$; B) $\frac{6}{2}$; r) 6?

- 2. Приведите многочлен к стандартному виду:

 - a) -5 + x 3x + 12; 6) $5x x^2 3x + 4x^2$.
- 8. Приведите многочлен к стандартному виду, укажите его степень:
 - a) $\frac{1}{2}a^2 + 5a a$;

- 6) $3a^3 + ab 4ab$:
- B) $5a^3b + 4a \cdot 3a^2b + abb 4bab$; r) $6a^2 \cdot 4a 5a \cdot 6a^2 + a$.
- 4. Вместо каждой из букв C и D подберите одночлен так, чтобы выполнялось равенство:

 - a) 4a + C + 4a = 2b + D; 6) $5a^2 C + 4a = a^2 + D$.
- 5*. Составьте все возможные ненулевые многочлены стандартного вида, используя каждый из одночленов $5x^2$, -10x, 7 не более одного раза.

Вариант III

- 1. Является ли многочленом выражение:
 - a) ab ba 2; 6) $-\frac{2}{7}ab$; B) $\frac{2}{7a}$; F) $\frac{2}{7a+b}$; A) -5?

- 2. Приведите многочлен к стандартному виду:
 - a) 5-6a+15a-12-a; 6) $6a+a^2+a-8a^2$;
 - B) 7 + 3a 5a 7.
- 3. Приведите многочлен к стандартному виду, укажите его степень:
 - a) $\frac{1}{\epsilon}a^2 + 3a \frac{1}{\epsilon}a^2 a + 4;$ 5) $5a^2 ab + ab 5a^2 + 3;$
 - B) $6a^3b 3a \cdot 4a^2b abb + 7bab$:
 - r) $5a^2 \cdot 2a 6a \cdot 6a^2 + a^2$.
- **4.** Вместо каждой из букв C и D подберите одночлен так, чтобы выполнялось равенство (найдите два решения залячи):

 - a) 5a + C + 3a = 3b + D; 6) $4a^2 C + 5a = a^2 + D$.
- 5*. Составьте все возможные непулевые многочлены стандартного вида, используя каждый из одночленов x^2 . -3x. 4 не более одного раза.

Вариант IV

- 1. Является ли многочленом выражение:
 - a) ac ca + 2; 6) $-\frac{5}{7}ab$; B) $\frac{5}{7a}$; r) $\frac{3}{a-2b}$; Д) -6?

- 2. Поиведите многочлен к стандартному виду:
 - a) -5 + 8x 12x + 13 a; 6) $15x x^2 + x 5x^2$;
- - B) 5 + 8a 10a 5.
- 3. Приведите многочлен к стандартному виду, укажите его степень:

 - a) $-\frac{1}{a}a^2-4a+a+\frac{1}{a}a^2$; 6) $4a-a^2b+a^2b-4a+2$;
 - B) $7a^3b 3a \cdot 3a^2b abb + 6bab$; r) $4a^2 \cdot 3a 7a \cdot 6a^2 + a^4$.
- **4.** Вместо каждой из букв C и D подберите одночлен так, чтобы выполнялось равенство (найдите два решения задачи):

 - a) 6a + C + 2a = 4b + D; 6) $3a^2 C + 6a = a^2 + D$.
- 5*. Составьте все возможные ненулевые многочлены стандартного вида, используя каждый из одночленов $7x^2$, -8x, 3 не более одного раза.

C-8 Сложение и вычитание многочленов

Вариант І

- 1. Найдите сумму многочленов:

 - a) (3x-2y)+(3x+2y); 6) $(4+x-x^2)+(x^2-x)$.

- 2. Найдите разность многочленов:
 - a) (4x-y)-(2x+y); 6) $(5-x+3x^2)-(2x^2-x+5)$.
- 3. Преобразуйте выражение в многочлен стандартного вида:
 - a) $3x^2 (2 + 3x 5x^2)$; 6) $4 + (-x + 5x^2) + 2x$;
 - B) $x (4 + 3x x^2) + (2 x^2)$;
 - r) $5 + (2x^2 x) (4x^2 + 5) + x$.
- Преобразуйте выражение так, чтобы знак перед скобкой изменился на противоположный:
 - a) $x^2 (2 3x)$; 6) 5x + (-x + 5).
- 5. Два последних члена многочлена 7 2x + 3y 4z заключите в скобки, перед которыми стоит знак: а) плюс; б) минус.
- 6*. Подберите такой многочлен A, чтобы выражение B было равно нулевому многочлену, если

$$B = (2x - 3x^2) - (x^2 - 5x + 1) + A.$$

Вариант II

- 1. Найдите сумму многочленов:
 - a) (4x-3y)+(4x+3y); 6
 - 6) $(3+2x-x^2)+(x^2-x)$.
- 2. Найдите разность многочленов:
 - a) (5x-y)-(5x+y); 6) $(4-x+3x^2)-(2x^2-x+4)$.
- 3. Преобразуйте выражение в многочлен стандартного вида:
 - a) $6y^2 (-3 + 2y 2y^2)$; 6) $9 + (y^2 4) + 5y$;
 - B) $2y (5 3y^2) + (4 y^2)$;
 - r) $6 (9 2y^2) + (6y^2 7y + 3) + 7y$.
- 4. Преобразуйте выражение так, чтобы знак перед скобкой изменился на противоположный:
 - a) $2x^2 (4-2x)$; 6) 4x + (-2x + 1).
- 5. Два последних члена многочлена 9-x-2y+3z заключите в скобки, перед которыми стоит знак: а) плюс; б) минус.
- 6*. Подберите такой многочлен A, чтобы выражение B было равно нулевому многочлену, если

$$B = (3x - 2x^2) - (2x^2 - 4x + 2) + A$$

Вариант III

- 1. Найдите сумму многочленов:
 - a) (5x-4y)+(5x+4y);
 - 6) $(2+3x-4x^2)+(4x^2-3x+2)$.

- 2. Найдите разность многочленов:
 - a) (6x-3y)-(6x-2y); 6) (2a+3)-(2a-1);
 - B) $(3-2x+3x^2)-(4x^2-2x+3)$.
- Преобразуйте выражение в многочлен стандартного вида:
 - a) $5x^2 + (3-4x-x^2)$; 6) $5 + (-4x+6x^2) + 4x$;
 - B) $7x (8 + 4x 3x^2) + (5 3x^2)$;
 - r) $6 + (2x^2 5x) (4x^2 + 6) + 5x$.
- 4. Преобразуйте выражение так, чтобы знак перед скобкой изменился на противоположный:
 - a) $4x^2 (6-5x)$;
 - 6) 6x + (-3x + 4).
- 5. Три последних члена многочлена $12 x^2 3x^3 + 5x^4$ заключите в скобки, перед которыми стоит знак: а) плюс; б) минус.
- 6*. Подберите такой многочлен A, чтобы выражение B было равно нулевому многочлену, если

$$B = (4x - x^2) - (3x^2 - 3x + 3) + A.$$

Bapuanm IV

- 1. Найдите сумму многочленов:
 - a) (6x-5y)+(6x+5y);
 - 6) $(1+4x-3x^2)+(3x^2-4x+2)$.
- 2. Найдите разность многочленов:
 - a) (7x-2y)-(7x-3y); 6) (3a+5)-(3a-7);
 - B) $(2-3x+3x^2)-(5x^2-3x+2)$.
- Преобразуйте выражение в многочлен стандартного вида:
 - a) $6y^2 (-3 + y + 2y^2)$; 6) $9 + (y^2 4) + 5y$;
 - B) $2y (5 3y + 5y^2) + (4 5y^2)$;
 - r) $7 + (9y 3y^2) + (5y^2 7y + 7) 2y$.
- 4. Преобразуйте выражение так, чтобы знак перед скобкой изменился на противоположный:
 - a) $3x^2 (5-4x)$;
 - 6) 7x + (-4x + 3).
- 5. Три последних члена многочлена $13-2x^2+x^3-4x^4$ заключите в скобки, перед которыми стоит знак: а) плюс; б) минус.
- 6*. Подберите такой многочлен A, чтобы выражение B было равно нулевому многочлену, если

$$B = (5x - x^2) - (5x^2 - 2x + 4) + A.$$

C-9 Умножение многочлена на одночлен

Вариант І

- 1. Найдите произведение многочлена и одночлена:
 - a) 3(a-2):

- 6) a(4 + 3a):
- B) 0.2x(5x+3);
- \mathbf{r}) -0.5x(4.2x-7).
- 2. Преобразуйте произведение многочлена и одночлена в многочлен стандартного вида:
 - a) $3a(a^2 + 3a 2)$:
- 6) $2a^2(3-2a+4a^2)$:
- B) $0.4x(3-5x+10x^2)$; r) $-3x^2(0.3x-0.7)$;
- π) $5x(2-3x)+3(5x^2-x)-7(x-1)$.
- 3. Вынесите за скобки общий множитель:
 - a) 3x 6:

6) $4x^2-6x+12$:

B) $5x + 4x^2$:

- r) $5x^3 + 15x^2 25x$.
- 4. Преобразуйте выражение так, чтобы знак каждого слагаемого, заключённого во вторые скобки, изменился на противоположный:

 - a) 3(5-2x)-x(-5+2x); 6) x(5x-1)+11(-5x+1).
- 5*. Подберите такой многочлен A, чтобы выражение Bбыло равно нулевому многочлену, если

$$B = 7x(x-3) - 3(x-10) + A$$
.

Вариант II

- 1. Найдите произведение многочлена и одночлена:
 - a) 4(b-3):

- 6) b(3+2b);
- B) 0.1y(5y + 8);
- $\mathbf{r}(1.5y 3)$.
- 2. Преобразуйте произведение многочлена и одночлена в многочлен стандартного вида:
 - a) $4b(b^2-2b+3)$;
- 6) $3b^2(5+3b-2b^2)$:
- B) $0.5y(6-4y+8y^2)$; r) $-4y^2(0.5y-0.3)$;
- π) $4x(3-5x)+5(4x^2-2x)-2(x-2)$.
- 3. Вынесите за скобки общий множитель:
 - a) 4x 8;

6) $15x^2 - 10x + 5$:

B) $3x + 2x^2$:

- r) $3x^3 + 9x^2 12x$.
- 4. Преобразуйте выражение так, чтобы знак каждого слагаемого, заключённого во вторые скобки, изменился на противоположный:

 - a) 4(4-3x)-x(-4+3x); 6) x(6x-2)+12(-6x+2).
- 5*. Подберите такой многочлен A, чтобы выражение Bбыло равно нулевому многочлену, если

$$B = 6x(x-4) - 5(x-5) + A.$$

Вариант III

- 1. Найдите произведение многочлена и одночлена:
 - a) 5(4b-1,2);

- 6) 3b(4+5b):
- B) 0.2y(4y+9);
- r) $-8y^2(2.5y-0.6)$.
- 2. Преобразуйте произведение многочлена и одночлена в многочлен стандартного вида:

- a) $5a(2a^2+4a-3)$; 6) $4a^2(5-6a+3a^2)$; b) $0.8x(7-8x+9x^2)$; 7) $-1.5x(4x^2-6.4x+7)$;
- π) $6x(4-5x)+3(10x^2-6x)-6(x-3)$;
- e) x-2(x-3(x+4))+5.
- 3. Вынесите за скобки общий множитель:
 - a) 7x 21;

- 6) $8x^2 12x + 24$;
- B) $13x + 17x^2$:
- r) $6x^3 + 8x^2 10x$.
- 4. Преобразуйте выражение так, чтобы знак каждого слагаемого, заключённого во вторые скобки, изменился на противоположный:

 - a) 5(3-4x)-x(-3+4x); 6) x(7x-3)+13(-7x+3).
- 5*. Подберите такой многочлен A, чтобы выражение Bбыло равно нулевому многочлену, если

$$B = 8x(3x-1) - 10(x-1) + A.$$

Вариант IV

- 1. Найдите произведение многочлена и одночлена:
 - a) 5(b-7);

- 6) b(4+3b);
- B) 0.1y(4y+5);
- \vec{r}) $-5\nu^2(0.7\dot{u}-0.8)$.
- 2. Преобразуйте произведение многочлена и одночлена в многочлен стандартного вида:
 - a) $3b(b^2-2b+3)$;
- 6) $4b^2(5+3b-2b^2)$:
- B) $1.5y(6-4y+8y^2)$;
 - \mathbf{r}) $-0.8y(8y^2+2.5y-3)$;
- π) $7x(3-6x)+3(14x^2-5x)-6(x-1)$;
- e) x + 2(x + 3(x 4)) 5.
- 3. Вынесите за скобки общий множитель:
 - a) 8x 24:

- 6) $9x^3 18x + 36$;
- B) $15x + 11x^2$:
- r) $5x^3 + 10x^2 15x$.
- 4. Преобразуйте выражение так, чтобы знак каждого слагаемого, заключённого во вторые скобки, изменился на противоположный:

 - a) 6(2-5x)-x(-2+5x); 6) x(8x-4)+14(-8x+4).
- 5*. Подберите такой многочлен A, чтобы выражение Bбыло равно нулевому многочлену, если

$$B = 9x(2x-2) - 8(x-2) + A$$
.

Вариант І

- 1. Выполните умножение:

 - a) (3+a)(2a+1); 6) $(5a+a^2)(3-2a)$; b) (3-x)(2-4x); 7) (-x-3)(2x-4).
- 2. Запишите выражение в виде многочлена стандартного вида;
 - a) 8 (2 + a)(3a + 4); 6) $2a^3 + (a + a^2)(5 2a)$; b) (1 x)(2 + 2x) + (2 x)(1 2x);

 - r) (x-2)(x-5)-(x-3)(x-4).
- 3. Вынесите за скобки общий множитель:

 - a) $3x^2-6x$; 6) x(x-3)-8(x-3).
- 4. Разложите на множители выражение:
 - a) $3(x-4) + x^2 4x$; 6) 2x 8 x(x-4); b) $x^3 + 5x^2 2x 10$; 7) $x^3 6x^2 2x + 12$.
- 5*. Представьте многочлен $x^2 + 3x 4$ в виде произведения двучленов.

Вариант II

- 1. Выполните умножение:
 - a) (2+b)(3b+2):
- 6) $(5b-b^2)(2+3b)$; r) (-3b-4)(2b-5).
- B) (2-b)(3-5b);
- 2. Запишите выражение в виде многочлена стандартного вида:
 - a) 9-(3+a)(2a+3); 6) $4a^3+(a-a^2)(3+4a)$;
 - B) (1-2x)(2+x)+(1-x)(2-2x);
 - r) (x-3)(x-4)-(x-5)(x-2).
- 3. Вынесите за скобки общий множитель:

 - a) $14x + 7x^2$; 6) x(x-4) 5(x-4).
- 4. Разложите на множители выражение:
 - a) $2(x-3) + x^2 3x$; b) 3x 6 x(x-2); b) $x^3 + 4x^2 3x 12$; c) $x^3 5x^2 3x + 15$.
- **5*.** Представьте многочлен $x^2 3x + 2$ в виде произведения двучленов.

Bapuanm III

- 1. Выполните умножение:
 - a) (3+4a)(2a+6); b) (7-4x)(8-3x);
- 6) $(3a + a^2)(4 5a)$:
- r) (-3x-4)(3x-4).
- 2. Запишите выражение в виде многочлена стандартного вида:

 - a) 9a (4+a)(2a+1); 6) $3a^3 + (2a+3a^2)(6-a)$;

B)
$$(3-x)(1+2x)+(1-x)(3-2x)$$
;

F)
$$(x-2)(2x-6)-(x-3)(2x-4)$$
.

- 3. Вынесите за скобки общий множитель:
 - a) $5x^2 15x$:

- 6) $x(x^2-2)-4(x^2-2)$;
- B) 4(x-6)-3x(-6+x);
- r) 6(x-6) + x(6-x).
- 4. Разложите на множители выражение:
 - a) $4(x-5) + 3x^2 15x$; 6) 4x 8 x(x-2); B) $2x^3 + 6x^2 3x 9$; 7) $x^3 7x^2 3x + 21$.
- 5*. Представьте многочлен $x^2 4x + 3$ в виде произведения двучленов.

Вариант IV

- 1. Выполните умножение:

- a) (5+3b)(3b+4); 6) $(3b-b^2)(4+7b)$; b) (2-3b)(4-5b); 7) (-5b-3)(5b-3).
- 2. Запишите выражение в виде многочлена стандартного вида:
 - a) 16a (5 + a)(2a + 6); 6) $4a^3 + (a + 4a^2)(4 a)$;
 - B) (4-x)(1+3x)+(2-x)(1-5x);
 - r) (x-4)(2x-10)-(2x-6)(x-5).
- 3. Вынесите за скобки общий множитель:
 - a) $18x + 9x^2$;

- 6) x(x-4)-5(x-4);
- B) 5(x-5)-2x(-5+x); r) 5(x-7)+x(7-x).
- 4. Разложите на множители выражение:
 - a) $5(x-4) + 2x^2 8x$; 6) 5x 10 x(x-2); B) $2x^3 + 5x^2 4x 10$; 7) $x^3 8x^2 3x + 24$.
- 5*. Представьте многочлен $x^2 + 4x 5$ в виде произведения двучленов.

C-11

Числовое значение выражения

Вариант І

- 1. Вычислите значение выражения:
 - a) 5(3-2a)+3(4a-5) при a=3,5;
 - 6) $7.2(a+a^2)-3.6(a+2a^2)$ при a=-0.1;
 - B) (3-x)-(2-4x)+(4-3x) при x=0.1234.
- 2. Найдите значение x, при котором числовое значение выражения 2x - (7x - 13)

равно 1.

3. Найдите числовое значение выражения

$$(1+x)(2-x)+(2+x)(3+x)$$

 $_{\Pi P H} x = \frac{5}{\epsilon}.$

4*. Докажите, что значение выражения

$$(3x-2)(2x-3)-(8x+2)(2x+3)+26x+1$$

не зависит от значений х.

Вариант II

- 1. Вычислите значение выражения:
 - a) 4(5-3a)+5(3a-4) при a=2,5;
 - 6) $6.4(a+a^2)-3.2(a+2a^2)$ при a=-0.1;
 - B) (4-2x)-(3-5x)+(4-3x) при x=0,2345.
- **2.** Найдите значение x, при котором числовое значение выражения

$$3x - (8x - 11)$$

равно 1.

3. Найдите числовое значение выражения

$$(1-x)(2+x)+(3+x)(4+x)$$

 $\mathbf{при} \ x = \frac{5}{6}.$

4*. Докажите, что значение выражения

$$(3x-1)(4x-3)-(3x+1)(4x+3)+26x+2$$

не зависит от значений х.

Вариант III

- 1. Вычислите значение выражения:
 - a) 7(8-2a)+4(3a-14) при a=4.5;
 - 6) $7.5(a + a^2) 2.5(a + 3a^2)$ при a = -0.12;
 - B) (7-5x)-(6,4-9x)+(4,4-4x) при x=0,3456.
- 2. Найдите значение x, при котором числовое значение выражения

$$5 + 2x - 3(x - 13)$$

равно 50.

3. Найдите числовое значение выражения

$$(2-x)(3+x)+(4-x)(5-x)$$

 $npu x = \frac{3}{20}$.

4*. Докажите, что значение выражения

$$(4x-1)(5x-2)-(4x+1)(5x+2)+26x+3$$

не зависит от значений х.

Bapuanm IV

- 1. Вычислите значение выражения:
 - a) 8(5-3a)+2(11a-20) npm a=5.5;
 - 6) $5.6(a + a^2) 2.8(a + 2a^2)$ при a = -0.11;
 - B) (6-7x)-(8,2-9x)+(7,2-2x) при x=0,4567.

2. Найдите значение х, при котором числовое значение выражения

$$7 + 3x - 4(x - 12)$$

равно 60.

3. Найдите числовое значение выражения

$$(3-x)(2+x)+(5-x)(6-x)$$

при
$$x=\frac{3}{20}$$
.

4*. Докажите, что значение выражения

$$(3x-2)(5x-1)-(3x+2)(5x+1)+26x+4$$

не зависит от значений х.

C-12 Формулы сокращённого умножения

Вариант І

- Применяя формулу сокращённого умножения, запишите выражение в виде многочлена стандартного вида:
 - a) $(a+b)^2$;
- 6) (a+b)(a-b);
- B) $(x-y)^3$.
- 2. Запишите выражение в виде многочлена:
 - a) $(a-4)^2$;

6) (a + 7)(a - 7);

B) $(x+3)^3$:

- r) $(x-4)(x^2+4x+16)$.
- 3. Запишите выражение в виде квадрата или куба двучле-Ha:
 - a) $x^2 + 4x + 4$;
- 6) $x^2 10x + 25$;
- a) $x^2 + 4x + 4$; 0) $x^2 10x + 25$; B) $x^3 + 3x^2 + 3x + 1$; r) $x^3 12x^2 + 48x 64$.
- 4*. Запишите многочлен

$$x^2 + 4x - 5$$

в виде произведения двучленов.

Вариант II

- 1. Применяя формулу сокращённого умножения, запишите выражение в виде многочлена стандартного вида:
 - a) $(a-b)^2$;
- 6) (a-b)(a+b);
- B) $(x+y)^3$.
- 2. Запишите выражение в виде многочлена:
 - a) $(a+5)^2$;

6) (a+6)(a-6);

B) $(x-2)^{3}$:

- r) $(x+3)(x^2-3x+9)$.
- 3. Запишите выражение в виде квадрата или куба двучле
 - a) $x^2 2x + 1$;

- 6) $x^2 + 6x + 9$:
- B) $x^3 + 6x^2 + 12x + 8$; F) $x^3 9x^2 + 27x 27$.
- 4*. Запишите многочлен

$$x^2 + 6x - 7$$

в виде произведения двучленов.

Bapuanm III

1. Применяя формулу сокращённого умножения, запишите выражение в виде многочлена стандартного вида:

a) $(x + u)^2$:

б) (x+y)(x-y);

B) $(a+b)(a^2-ab+b^2)$.

2. Запишите выражение в виде многочлена:

a) $(a-6)^2$;

6) (a+4)(a-4);

B) $(2x+5)^3$;

- r) $(x-3)(x^2+3x+9)$.
- 3. Запишите выражение в виде квадрата или куба двучле-

a) $x^2 - 8x + 16$; 6) $49x^2 + 14x + 1$;

B) $x^3 + 15x^2 + 75x + 125$: F) $x^3 = 0.6x^2 + 0.12x - 0.008$.

4*. Запишите многочлен

$$x^2 - 4x - 5$$

в виде произведения двучленов.

Вариант IV

1. Применяя формулу сокращённого умножения, запишите выражение в виде многочлена стандартного вида:

- a) $(x-y)^2$; 6) (x-y)(x+y);
- B) $(a-b)(a^2+ab+b^2)$.
- 2. Запишите выражение в виде многочлена:

a) $(a+4)^2$;

6) (a+5)(a-5):

 $(2x-3)^3$;

- r) $(x+2)(x^2-2x+4)$.
- 3. Запишите выражение в виде квадрата или куба двучле-

a) $x^2 + 18x + 81$; 6) $100x^2 - 20x + 1$;

B) $x^3 + 12x^2 + 48x + 64$:

- r) $x^3 0.9x^2 + 0.27x 0.027$.
- 4*. Зашишите многочлен

$$x^2 - 6x - 7$$

в виде произведения двучленов.

C - 13Разложение многочленов на множители

Вариант I

1. Разложите на множители многочлен:

a) $b^3 - 2b^2 + b$; b) 3a + 3b - ax - bx; c) $5a - b + 5a^3 - ab$; d) $5a - b + 5a^3 - ab$; e) $5a - b + 5a^3 - ab$; e) $5a - b + 5a^3 - ab$; e) $5a - b + 5a^3 - ab$;

2. Разложите на множители многочлен:

a) $x^2 - 4 - 3ax + 6a$:

6) $x^3 + 27$.

3*. Разложите многочлен x^4-5x^2+4 на возможно большее число множителей.

Вариант II

- Разложите на множители многочлен:

 - a) $a^3 + 2a^2 + a$; 6) $a^3b 2a^2b^2 + ab^3$; b) 5a + 5b ay by; r) $a 5b + a^2 5ab$; c) $a 8b 3b^2 + 3ab$; e) $a^4 a^2 + 6a + 6$.

- 2. Разложите на множители многочлен:
 - a) $x^2 9 2ax 6a$:
- б) $x^3 8$.
- 3*. Разложите многочлен $x^4 10x^2 + 9$ на возможно большее число множителей.

Вариант III

- 1. Разложите на множители многочлен:

- a) $b^4 2b^3 + b^2$; 6) $a^2b^3 + 2a^3b^2 + a^4b$; B) $9a + 9b ax^2 bx^2$; r) $3a + b 3a^3 + ab$; d) $5a 5b + b^2 ab$; e) $b^2 + 8b + 16 c^2$.

- 2. Разложите на множители многочлен:
 - a) $x^2 9 3ax + 9a$; 6) $x^2 + 5x + 4$; B) $x^3 + 64$.
- 3*. Разложите многочлен $x^4 17x^2 + 16$ на возможно большее число множителей.

Вариант IV

- 1. Разложите на множители многочлен:
- a) $a^4 + 2a^3 + a^2$; 6) $a^3b^2 2a^2b^3 + ab^4$; B) $4a + 4b ay^2 by^2$; 7) $a 2b a^3 2ab$; 4) $6a 6b 5b^2 + 5ab$; e) $a^2 + 6a + 9 b^2$.

- 2. Разложите на множители многочлен:
 - a) $x^2 16 ax + 4a$; 6) $x^2 + 6x + 5$; B) $x^4 + 64$.
- 3*. Разложите многочлен $x^4 26x^2 + 25$ на возможно большее число множителей.

C-14

Алгебраические дроби

Вариант І

- 1. Сократите дробы:

 - a) $\frac{3x^2}{15x^3}$; 6) $\frac{2x-12}{x-6}$; B) $\frac{x^2-9}{(x+3)^2}$.
- 2. Преобразуйте дробь так, чтобы знак перед дробью изменился на противоположный:

 - a) $\frac{3x+2}{x-1}$; 6) $-\frac{6x-1}{x+1}$.
- 3. Приведите дроби к общему знаменателю:

 - a) $\frac{x}{x-5}$ is $\frac{3}{5-x}$; 6) $\frac{x}{(x-4)^2}$ is $\frac{7}{x^2-16}$; b) $\frac{5}{x+1}$ is $\frac{7}{x-2}$.

- 4. Запишите многочлен 2x + 3 в виде дроби со знаменателем:
 - a) 1:
- 6) 5: B) x 1.
- **5***. Сократите дробь $\frac{x^3-8}{3x^2+6x+12}$.

Вариант II

- 1. Сократите дробь:
- a) $\frac{4x^3}{12x^2}$; 6) $\frac{2x+6}{3x+9}$; B) $\frac{x^2-4}{(x-2)^2}$.
- 2. Преобразуйте дробь так, чтобы знак перед дробью изменился на противоположный:

 - a) $\frac{2x-3}{x+5}$; 6) $-\frac{3x+1}{x+5}$.
- Приведите дроби к общему знаменателю:

 - a) $\frac{4}{x-6}$ H $\frac{x}{6-x}$; 6) $\frac{x}{(x+5)^2}$ H $\frac{5}{x^2-25}$; B) $\frac{x}{x-3}$ H $\frac{2}{x+2}$.
- **4.** Запишите многочлен 3x-2 в виде дроби со знаменателем:
 - a) 1;
- 6) 4; B) x + 1.
- **5*.** Сократите дробь $\frac{2x^2-4x+8}{x^3+8}$.

Вариант III

- 1. Сократите дробы:
- a) $\frac{14x^3}{40x^2}$; 6) $\frac{2x-8}{2x-12}$; b) $\frac{x^2+12x+36}{x^2-36}$.
- 2. Преобразуйте дробь так, чтобы знак перед дробью изменился на противоположный:
 - a) $\frac{x^2-3x+5}{x-8}$; 6) $-\frac{5x-12}{x+13}$.
- 3. Приведите дроби к общему знаменателю:

 - a) $\frac{x}{x-8}$ u $\frac{4x}{24-3x}$; 6) $\frac{x}{(6-x)^2}$ u $\frac{5}{x^2-36}$; b) $\frac{11}{3x+4}$ u $\frac{12}{2x-3}$.
- 4. Запишите многочлен 4x + 5 в виде дроби со знаменателем:
 - a) 1;
- 6) x + 1; B) $x^2 3$.
- **5*.** Сократите дробь $\frac{x^3-27}{4x^2+12x+26}$.

Bapuanm IV

1. Сократите дробь:

a)
$$\frac{17x^2}{51x^3}$$

6)
$$\frac{3x+15}{4x+20}$$

a)
$$\frac{17x^2}{51x^3}$$
; 6) $\frac{3x+15}{4x+20}$; B) $\frac{x^2+10x+25}{x^2-25}$.

2. Преобразуйте дробь так, чтобы знак перед дробью изменился на противоположный:

a)
$$\frac{x^2+6x-7}{x-9}$$
; 6) $-\frac{7x-13}{x-12}$.

6)
$$-\frac{7x-13}{x-12}$$
.

3. Приведите дроби к общему знаменателю:

a)
$$\frac{x}{x-7}$$
 H $\frac{11}{21-3x}$;

a)
$$\frac{x}{x-7}$$
 H $\frac{11}{21-3x}$; 6) $\frac{x}{(7-x)^2}$ H $\frac{4}{x^2-49}$; 8) $\frac{13}{8x-4}$ H $\frac{11}{2x+6}$.

$$3) \ \frac{13}{3x-4} \ \mathbf{H} \ \frac{11}{2x+6}$$

4. Запишите многочлен 5x + 4 в виде дроби со знаменателем:

$$x - 1$$
:

6)
$$x-1$$
; B) x^2+3 .

5*. Сократите дробь $\frac{2x^2-6x+18}{x^3+27}$.

C-15

Сложение и вычитание алгебраических дробей

Вариант І

1. Преобразуйте выражение, приведя дроби к общему знаменателю:

a)
$$\frac{1}{x-2} + \frac{x}{-x+2}$$

a)
$$\frac{1}{x-2} + \frac{x}{-x+2}$$
; 6) $\frac{3x}{4x-7} - \frac{1}{7-4x}$.

2. Выполните действия:

$$6) \ \frac{3x}{x-4} + \frac{x+8}{4-x};$$

B)
$$\frac{5x+1}{x-1} - \frac{6}{x-1}$$

B)
$$\frac{5x+1}{x-1} - \frac{6}{x-1}$$
; r) $\frac{5x-3}{x-3y} - \frac{1-5y}{3y-x}$.

3*. Найдите многочлен А, для которого верно равенство

$$\frac{2x-1}{x-5} - \frac{x+2}{5-x} = \frac{A}{x-5}.$$

Вариант II

1. Преобразуйте выражение, приведя дроби к общему знаменателю:

a)
$$\frac{5x}{x-4} + \frac{13+x}{4-x}$$

a)
$$\frac{5x}{x-4} + \frac{13+x}{4-x}$$
; 6) $\frac{12x}{5x-3} - \frac{3}{3-5x}$.

2. Выполните действия:

a)
$$\frac{2x+3}{x+1} + \frac{2+3x}{x+1}$$
; 6) $\frac{3x}{x-2} + \frac{2x+2}{2-x}$;

6)
$$\frac{3x}{x-2} + \frac{2x+2}{2-x}$$
;

B)
$$\frac{7x-2}{x-1}-\frac{5}{x-1}$$

B)
$$\frac{7x-2}{x-1} - \frac{5}{x-1}$$
; r) $\frac{3x+5}{x-4y} - \frac{1+3y}{4y-x}$.

3*. Найдите многочлен А, для которого верно равенство

$$\frac{3x-1}{x-4} - \frac{x-3}{4-x} = \frac{A}{x-4}.$$

Вариант III

1. Преобразуйте выражение, приведя дроби к общему зна-

a)
$$\frac{4x+2}{2x-3} + \frac{x-17}{3-2x}$$

a)
$$\frac{4x+2}{2x-3} + \frac{x-17}{3-2x}$$
; 6) $\frac{1-2x}{4x-3} - \frac{3+x}{3-4x}$.

2. Выполните действия:

a)
$$\frac{2x+13}{x+5} + \frac{2+x}{x+5}$$
;

a)
$$\frac{2x+13}{x+6} + \frac{2+x}{x+5}$$
; 6) $\frac{4x-1}{3x-7} + \frac{13-2x}{7-3x}$;

B)
$$\frac{7x-11}{x-4}-\frac{13+x}{x-4}$$
;

B)
$$\frac{7x-11}{x-4} = \frac{13+x}{x-4}$$
; r) $\frac{5x-6}{x^2-3xy} = \frac{5y-2}{xy-3y^2}$.

8*. Найдите многочлен А, для которого верно равенство

$$\frac{4x+5}{2x-7}+\frac{3x-1}{7-2x}=\frac{A}{2x-7}.$$

Вариант IV

1. Преобразуйте выражение, приведя дроби к общему зна-

a)
$$\frac{x+12}{8x-7} + \frac{2x-7}{7-8x}$$

a)
$$\frac{x+12}{8x-7} + \frac{2x-7}{7-8x}$$
; 6) $\frac{11-x}{5x-9} - \frac{5+4x}{9-5x}$.

2. Выполните действия

a)
$$\frac{3x+11}{x+4} + \frac{9+2x}{x+4}$$
;

a)
$$\frac{3x+11}{x+4} + \frac{9+2x}{x+4}$$
; 6) $\frac{7x-11}{2x-5} + \frac{x+4}{5-2x}$;

B)
$$\frac{5x-11}{x-6} - \frac{7+2x}{x-6}$$
;

B)
$$\frac{5x-11}{x-6} - \frac{7+2x}{x-6}$$
; P) $\frac{4x-10}{x^2-5xy} - \frac{4y-2}{xy-5y^2}$.

3*. Найдите многочлен А, для которого верно равенство

$$\frac{6x+4}{7x-2} + \frac{x-3}{2-7x} = \frac{A}{7x-2}.$$

C - 16

Умножение и деление алгебраических дробей

Вариант І

1. Вычислите произведение:

a)
$$\frac{5x}{2} \cdot \frac{6}{x^2}$$
;

a)
$$\frac{5x}{2} \cdot \frac{6}{x^2}$$
; 6) $(x-1) \cdot \frac{2x+1}{3x-3}$;

B)
$$\frac{3x+6}{x-3} \cdot \frac{4x-12}{x^2-4}$$
.

2. Вычислите частное:

a)
$$3x:\frac{2x^2}{x-7}$$
;

6)
$$\frac{5x+10}{x-5}$$
: $\frac{3x+6}{x^2-25}$

a)
$$3x: \frac{2x^2}{x-7}$$
; 6) $\frac{5x+10}{x-5}: \frac{3x+6}{x^2-25}$; B) $\frac{4x-8}{x^2-9}: \frac{5x-10}{(x+3)^2}$.

3*. Вычислите:

$$\frac{2x-4}{x+1}$$
, $\frac{4x-12}{3x-6}$; $\frac{2x-6}{3x+3}$.

Вариант II

1. Вычислите произведение:

a)
$$\frac{3x^2}{10} \cdot \frac{5}{x}$$
;

6)
$$(x+1) \cdot \frac{6x-3}{4x+4}$$

a)
$$\frac{3x^2}{10} \cdot \frac{5}{x}$$
; 6) $(x+1) \cdot \frac{5x-3}{4x+4}$; B) $\frac{3x+9}{x-4} \cdot \frac{4x-16}{x^2-9}$.

2. Вычислите частное:

a)
$$2x:\frac{3x^3}{x-4}$$

a)
$$2x: \frac{3x^3}{x-4}$$
; 6) $\frac{5x+15}{3x-15}: \frac{3x+9}{x^2-25}$; B) $\frac{7x-14}{(x-3)^2}: \frac{2x-4}{x^2-9}$.

B)
$$\frac{7x-14}{(x-9)^2}$$
: $\frac{2x-4}{x^2-9}$

3*. Вычислите:

$$\frac{3x-6}{x+1} \cdot \frac{2x-10}{4x-8} : \frac{x-5}{4x+4}$$

Вариант III

1. Вычислите произведение:

a)
$$\frac{4x}{9} \cdot \frac{12}{x^2}$$
;

6)
$$(x+1) \cdot \frac{2x+5}{3x^2-3}$$

a)
$$\frac{4x}{9} \cdot \frac{12}{x^2}$$
; 6) $(x+1) \cdot \frac{2x+5}{3x^2-3}$; B) $\frac{x^2-4}{2x-6} \cdot \frac{5x-15}{2x+4}$.

2. Вычислите частное:

a)
$$(2x-6) \cdot \frac{3x-9}{3x-9}$$
:

$$\frac{(x+12)}{(x-12)}:\frac{x^2+6x+9}{8-2x}$$

a)
$$(2x-6): \frac{3x-9}{5x^2}$$
; 6) $\frac{4x+12}{3x-12}: \frac{x^2+6x+9}{8-2x}$; B) $\frac{2x+12}{(3-x)^2}: \frac{x^2+6x}{x-3}$.

3*. Вычислите:

$$\frac{5x-10}{x+5}:\frac{2x-4}{3x+3}\cdot\frac{2x+10}{5x+5}.$$

Вариант IV

1. Вычислите произведение:

a)
$$\frac{12x^2}{35} \cdot \frac{5}{2x}$$

6)
$$(x-1) \cdot \frac{9x-7}{4x^2-4}$$

a)
$$\frac{12x^2}{35} \cdot \frac{5}{2x}$$
; 6) $(x-1) \cdot \frac{3x-7}{4x^2-4}$; B) $\frac{x^2-9}{3x-6} \cdot \frac{5x-10}{3x+9}$.

2. Вычислите частное:

a)
$$(2x+4):\frac{3x+6}{7x^3}$$

a)
$$(2x+4): \frac{3x+6}{7x^2}$$
; 6) $\frac{5x-15}{3x-18}: \frac{x^2-6x+9}{12-2x}$; B) $\frac{3x+12}{(7-x)^2}: \frac{x^2+4x}{x-7}$.

B)
$$\frac{3x+12}{(7-x)^2}$$
: $\frac{x^2+4x}{x-7}$

3*. Вычислите:

$$\frac{3x-9}{x+2}:\frac{2x-6}{7x-14}\cdot\frac{2x+4}{3x-6}.$$

C - 17

Рациональные выражения

Вариант І

1. Упростите рациональное выражение:

a)
$$\left(x+3+\frac{9}{x-3}\right)\cdot\frac{5x-15}{x^2}$$
;

6)
$$(x^2-4)\cdot\left(\frac{x}{x^2-4}+\frac{1}{x-2}+\frac{1}{x+2}\right)$$
.

2. Выполните действия:

a)
$$\left(\frac{2x-y}{2x+y} - \frac{2x+y}{2x-y}\right)$$
: $\frac{4xy}{y^2 - 4x^2}$; 6) $\frac{\frac{1}{xy} - \frac{1}{y} + \frac{1}{x}}{1 - x + y}$: $\frac{x}{y}$.

3*. Выполните действия:

$$\left(\frac{x+1}{x^2-6x+9}-\frac{x-1}{x^2-9}\right):\left(\frac{x+1}{x^2+9}-\frac{x-1}{x^2+6x+9}\right),$$

Bapuanm II

1. Упростите рациональное выражение:

a)
$$\left(x-2+\frac{4}{x+2}\right)\cdot\frac{6x+12}{x^2}$$
;

6)
$$(x^2-9)\cdot\left(\frac{2x}{x^2-9}+\frac{1}{x-3}+\frac{1}{x+3}\right)$$
.

2. Выполните действия:

a)
$$\left(\frac{x-2y}{x+2y} - \frac{x+2y}{x-2y}\right) : \frac{4xy}{x^2-4y^2};$$
 6) $\frac{\frac{1}{xy} + \frac{1}{y} - \frac{1}{x}}{1+x-y} : \frac{x}{y}.$

3*. Выполните действия:

$$\left(\frac{x+2}{x^2-2x+1}-\frac{x-2}{x^2-1}\right):\left(\frac{x+2}{x^2-1}-\frac{x-2}{x^2+2x+1}\right),$$

Вариант III

1. Упростите рациональное выражение:

a)
$$\left(x-4+\frac{16}{x+4}\right)\cdot\frac{5x+20}{x^2}$$
;

6)
$$(x^2-25)\cdot\left(\frac{2x}{25-x^2}+\frac{1}{x-5}+\frac{1}{x+5}\right)$$
.

2. Выполните действия:

a)
$$\left(\frac{4x-3y}{4x+3y}-\frac{4x+3y}{4x-3y}\right)$$
: $\frac{12xy}{9y^2-16x^2}$; 6) $\frac{\frac{1}{xy}+\frac{2}{y}-\frac{3}{x}}{1+2x-3y}$: $\frac{x^2}{y}$.

3*. Выполните действия:

$$\left(\frac{x+3}{x^2-8x+16}-\frac{x-3}{x^2-16}\right):\left(\frac{x+3}{x^2-16}-\frac{x-3}{x^2+8x+16}\right).$$

Вариант IV

1. Упростите выражение:

a)
$$\left(x-5+\frac{25}{x+5}\right)\cdot\frac{7x+35}{x^2}$$
;

6)
$$(x^2-16)\cdot\left(\frac{2x}{16-x^2}+\frac{1}{x-4}+\frac{1}{x+4}\right)$$
.

2. Выполните действия:

a)
$$\left(\frac{3x-4y}{3x+4y} - \frac{3x+4y}{3x-4y}\right)$$
; $\frac{12xy}{16y^2-9x^2}$; 6) $\frac{\frac{3}{xy} - \frac{2}{y} + \frac{1}{x}}{3-2x-y}$; $\frac{x^2}{y}$.

3*. Выполните действия:

$$\left(\frac{x+4}{x^2-10x+25}-\frac{x-4}{x^2-25}\right):\left(\frac{x+4}{x^2-25}-\frac{x-4}{x^2+10x+25}\right).$$

C-18

Числовое значение рационального выражения

Вариант I

1. Найдите значение рационального выражения:

a)
$$\frac{12}{x^2-4} + \frac{3}{x+2}$$
 mpu $x = 2002$;

6)
$$\frac{x^2}{x^2+2x+1} - \frac{x-1}{x+1}$$
 mps $x = 19$;

в)
$$\frac{a^3-b^3}{a^2+ab+b^2} + \frac{a^3+b^3}{a^2-ab+b^2}$$
 при $a=0.05,\ b=13\frac{14}{15}$.

2. Преобразуйте в алгебраическую дробь рациональное выражение

 $\frac{2}{x-2} - \frac{12x}{x^3-8} - \frac{x-2}{x^2+2x+4}$

и найдите значение полученной дроби при: а) x=0; б) x=2.

3*. Докажите, что значение рационального выражения

$$\frac{x+2}{x-3} - \frac{x-2}{x+3} + \frac{2x^2 - 10x - 18}{x^2 - 9}$$

одно и то же при каждом значении x, кроме x=3 и x=-3.

Вариант II

1. Найдите значение рационального выражения:

a)
$$\frac{-6}{x^2-1} + \frac{3}{x-1}$$
 upu $x = 1999$;

6)
$$\frac{x^2}{x^2-2x+1}-\frac{x+1}{x-1}$$
 HPH $x=21$;

B)
$$\frac{a^3+b^3}{a^2-ab+b^2} - \frac{a^3-b^3}{a^2+ab+b^2}$$
 upw $a=14\frac{15}{16}$, $b=0.05$.

 $\frac{2}{x-3} - \frac{18x}{x^3 - 27} - \frac{x-3}{x^2 + 3x + 9}$

- и найдите значение полученной дроби при: а) x = 0; 6) x = 3.
- 3*. Докажите, что значение рационального выражения

$$\frac{x+3}{x-2} - \frac{x-8}{x+2} + \frac{2x^2 - 10x - 8}{x^2 - 4}$$

одно и то же при каждом значении x, кроме x=2 и x=-2.

Вариант III

- 1. Найдите значение рационального выражения:
 - a) $\frac{2x+24}{x^2-9} + \frac{3}{x+3}$ при x = 1997;
 - 6) $\frac{x^2}{x^2+2x+1} \frac{3x-4}{3x+3}$ npu x = 19;
 - B) $\frac{8a^3-b^3}{4a^2+2ab+b^2} + \frac{8a^3+b^3}{4a^2-2ab+b^2}$ при a = 0.05, $b = -13\frac{14}{15}$.
- 2. Преобразуйте в алгебраическую дробь рациональное выражение $\frac{2}{x+3} + \frac{18x}{x^3+27} \frac{x+3}{x^2-3x+9}$

и найдите значение полученной дроби при x = -3.

3*. Докажите, что значение рационального выражения

$$\frac{x+3}{x-5} - \frac{x-3}{x+5} + \frac{3x^2 - 16x - 75}{x^2 - 25}$$

одно и то же при каждом значении x, кроме x=5 и x=-5.

Вариант IV

- 1. Найдите значение рационального выражения:
 - a) $\frac{3x-28}{x^2-16} + \frac{2}{x-4}$ mpu x = 1996;
 - 6) $\frac{x^2}{x^2+4x+4} \frac{2x-5}{2x+4}$ mpu x = 18;
 - в) $\frac{a^3 + 8b^3}{a^2 2ab + 4b^2} \frac{a^3 8b^3}{a^2 + 2ab + 4b^2}$ при $a = -14\frac{15}{16}$, b = 0.05.
- 2. Преобразуйте в алгебраическую дробь рациональное выражение $\frac{2}{x+2} + \frac{12x}{x^3+8} \frac{x+2}{x^2-2x+4}$

и найдите значение полученной дроби при x = -2.

3*. Докажите, что значение рационального выражения

$$\frac{x+5}{x-4} - \frac{x-5}{x+4} + \frac{3x^2 - 18x - 48}{x^2 - 16}$$

одно и то же при каждом значении x, кроме x = 4 и x = -4.

C-19

Тождества

Вариант I

1. Докажите тождество:

a)
$$\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{8x}{x^2-4}$$
;

6)
$$\frac{10}{x^2+2x+1}$$
: $\frac{x}{x+1} = \frac{10}{x^2+x}$;

B)
$$\left(x+5+\frac{25}{x-5}\right)\cdot\frac{x-5}{x^2}=1;$$
 F) $\left(\frac{x-3}{x+3}+\frac{x+3}{x-3}\right):\frac{x^2+9}{x^2-9}=2.$

F)
$$\left(\frac{x-3}{x+3} + \frac{x+3}{x-3}\right) : \frac{x^2+9}{x^2-9} = 2.$$

При каких значениях х определены обе части данного тождества?

2*. Докажите тождество

$$\left(\frac{x^3-1}{x^2-2x+1}+\frac{x^3+1}{x^2+2x+1}\right)\cdot\frac{x^2-1}{x^3+2x}=2.$$

Вариант II

1. Докажите тождество:

a)
$$\frac{x+3}{x-3} - \frac{x-3}{x+3} = \frac{12x}{x^2-9}$$
;

$$6) \ \frac{11}{x^2+4x+4} : \frac{x}{x+2} = \frac{11}{x^2+2x};$$

B)
$$\left(x-6+\frac{36}{x+6}\right)\cdot\frac{x+6}{x^2}=1$$

B)
$$\left(x-6+\frac{36}{x+6}\right)\cdot\frac{x+6}{x^2}=1;$$
 $\Gamma\left(\frac{x-2}{x+2}+\frac{x+2}{x-2}\right):\frac{x^2+4}{x^2-4}=2.$

При каких значениях x определены обе части данного тождества?

2*. Докажите тождество

$$\left(\frac{x^3-8}{x^2-4x+4}+\frac{x^3+8}{x^2+4x+4}\right)\cdot\frac{x^2-4}{x^3+8x}=2.$$

Вариант III

Докажите тождество:

a)
$$\frac{x+5}{x-5} - \frac{x-5}{x+5} = \frac{20x}{x^2-25}$$
;

6)
$$\frac{12}{x^2-2x+1}:\frac{x}{x-1}=\frac{12}{x^2-x};$$

B)
$$\left(x+7+\frac{49}{x-7}\right)\cdot\frac{7-x}{x^2}=-1$$

B)
$$\left(x+7+\frac{49}{x-7}\right)\cdot\frac{7-x}{x^2}=-1;$$
 r) $\left(\frac{x-6}{x+6}+\frac{x+6}{x-6}\right):\frac{x^2+36}{x^2-36}=2.$

При каких значениях х определены обе части данного тождества?

2*. Докажите тождество

$$\left(\frac{x^3-27}{x^2-6x+9}+\frac{x^3+27}{x^2+6x+9}\right)\cdot\frac{x^2-9}{x^3+18x}=2.$$

Вариант IV

1. Докажите тождество:

a)
$$\frac{x+4}{x-4} - \frac{x-4}{x+4} = \frac{16x}{x^2-16}$$
;

$$6) \ \frac{13}{x^2 - 4x + 4} : \frac{x}{x - 2} = \frac{13}{x^2 - 2x};$$

B)
$$\left(x-8+\frac{64}{x+8}\right)\cdot\frac{-x-8}{r^2}=-1$$

B)
$$\left(x-8+\frac{64}{x+8}\right)\cdot\frac{-x-8}{x^2}=-1;$$
 r) $\left(\frac{x-4}{x+4}+\frac{x+4}{x-4}\right)\cdot\frac{x^2+16}{x^2-16}=2.$

При каких значениях х определены обе части данного тождества?

2*. Докажите тождество

$$\left(\frac{x^3-64}{x^2-8x+16}+\frac{x^3+64}{x^2+8x+16}\right)\cdot\frac{x^2-16}{x^3+32x}=2.$$

C-20

Степень с целым показателем

Вариант І

1. Вычислите:

a)
$$2^{-3}$$
; 6) 3^{-4} ; B) $\left(\frac{4}{5}\right)^{-1}$; r) $(-10)^{-2}$; π) $(-0.5)^{0}$.

$$д)$$
 $(-0,5)^0$.

2. Упростите:

a)
$$x^{-3} \cdot x$$
;

$$x^3:x^{-2};$$

a)
$$x^{-3} \cdot x$$
; 6) $x^3 : x^{-2}$; b) $\frac{x^3 \cdot x^{-4}}{x^{-3}}$.

- 3. Упростите выражение $\left(\frac{x+1}{x}\right)^{-2} \cdot (x^{-2} + 2x^{-1} + 1)$.
- 4*. Вычислите: $\frac{10^{n+1} \cdot 3^n}{15^n \cdot 2^n}$, где n любое целое число.

Вариант II

1. Вычислите:

a)
$$3^{-4}$$
; b) 4^{-2} ; b) $\left(\frac{3}{4}\right)^{-1}$; r) $(-10)^{-3}$; д) $(-0,6)^{0}$.

д)
$$(-0,6)^0$$
.

2. Упростите:

a)
$$x^{-4} \cdot x$$

5)
$$x^2: x^{-1}$$

a)
$$x^{-4} \cdot x$$
; 6) $x^2 : x^{-1}$; b) $\frac{x^4 \cdot x^{-3}}{x^{-2}}$.

- 3. Упростите выражение $\left(\frac{x-1}{x}\right)^{-2} \cdot (x^{-2}-2x^{-1}+1)$.
- **4***. Вычислите: $\frac{15^{n+1} \cdot 2^n}{8^n \cdot 5^n}$, где n любое целое число.

Вариант III

- 1. Вычислите:
- a) 4^{-1} ; 6) $(0,1)^{-2}$; B) $\left(\frac{2}{3}\right)^{-4}$; r) -10^{-3} ; π) $(-0,7)^0$.

2. Упростите:

a)
$$x^{-6} \cdot x^4$$
; 6) $x^4 : x^{-5}$; b) $\frac{x^5 \cdot x^{-7}}{x^{-4}}$.

8. Упростите выражение:

a)
$$\left(\frac{2x+1}{x}\right)^{-3} \cdot (x^{-2} + 4x^{-1} + 4);$$
 6) $\left(\frac{1}{a} - \frac{1}{2b}\right) \cdot \left(\frac{a-2b}{a^2b^2}\right)^{-1}.$

4*. Вычислите: $\frac{12^{n+1} \cdot 5^n}{6^n \cdot 10^n}$, где n — любое целое число.

Вариант IV

1. Вычислите:

a)
$$5^{-2}$$
; 6) $(0,1)^{-1}$; B) $\left(\frac{3}{2}\right)^{-3}$; r) -10^{-4} ; π) $(-0,8)^0$.

2. Упростите:

a)
$$x^{-7} \cdot x^5$$
; 6) $x^5 : x^{-4}$; B) $\frac{x^6 \cdot x^{-8}}{x^{-8}}$.

3. Упростите выражение:

a)
$$\left(\frac{3x-1}{x}\right)^{-3} \cdot (x^{-2} - 6x^{-1} + 9);$$
 6) $\left(\frac{1}{2a} - \frac{1}{b}\right) \cdot \left(\frac{2a-b}{a^2b^2}\right)^{-1}.$

4*. Вычислите: $\frac{20^{n+1} \cdot 3^n}{10^n \cdot 5^n}$, где n — любое целое число.

C-21*

Делимость многочленов

Вариант І

Разделите многочлен A на многочлен B, если:

a)
$$A = x^3 - x^2 - 11x + 3$$
, $B = x + 3$;

a)
$$A = x^3 - x^2 - 11x + 3$$
, $B = x + 3$;
6) $A = x^4 + x^3 - 7x^2 + 3x - 2$, $B = x - 2$;
8) $A = x^3 - 3x^2 - 3x - 4$, $B = x^2 + x + 1$.

B)
$$A = x^3 - 3x^2 - 3x - 4$$
, $B = x^2 + x + 1$.

2. С помощью алгоритма Евклида найдите НОД (А, В), если

$$A = x^3 - 6x^2 + 11x - 12$$
, $B = x^2 - 2x + 3$.

3*. При каком значении а многочлен А делится на многочлен B с остатком 0, если $A = x^3 - 2x^2 - x + a$, $B = x^2 - x - 2$?

Вариант II

1. Разделите многочлен A на многочлен B, если:

a)
$$A = x^3 + x^2 + 11x + 3$$
, $B = x - 3$;

6)
$$A = x^4 - x^3 - 7x^2 - 3x - 2$$
, $B = x + 2$;
B) $A = x^3 + 4x^2 - 4x + 5$, $B = x^2 - x + 1$.

B)
$$A = x^3 + 4x^2 - 4x + 5$$
, $B = x^2 - x + 1$.

2. С помощью алгоритма Евклида найдите НОД (А, В), если

$$A = x^3 + 6x^2 + 5x - 12$$
, $B = x^2 + 2x - 3$.

3*. При каком значении a многочлен A делится на многочлен B с остатком 0, если $A=x^3+2x^2-x+a$, $B=x^2+x-2$?

Вариант III

- 1. Разделите многочлен A на многочлен B, если:
 - a) $A = x^3 15x + 4$, B = x + 4;
 - 6) $A = x^4 5x^3 + 9x^2 13x + 12$, B = x 3;
 - B) $A = x^3 4x^2 6x + 5$, $B = x^2 + x 1$.
- 2. С помощью алгоритма Евклида найдите НОД ($A,\ B$), если

$$A = x^3 - 2x^2 - 29x + 30$$
, $B = x^2 + 4x - 5$.

3*. При каком значении a многочлен A делится на многочлен B с остатком 0, если $A = x^3 - 3x^2 - 4x + a$, $B = x^2 - x - 6$?

Вариант IV

- 1. Разделите многочлен А на многочлен В, если:
 - a) $A = x^3 15x 4$, B = x 4;
 - 6) $A = x^4 + 5x^3 + 3x^2 5x + 12$, B = x + 3;
 - B) $A = x^3 + 3x^2 5x 4$, $B = x^2 x 1$.
- 2. С помощью алгоритма Евклида найдите ${
 m HOД}\,(A,\ B),$ если

$$A = x^3 + 2x^2 - 19x + 30, B = x^2 - 4x + 5.$$

3*. При каком значении a многочлен A делится на многочлен B с остатком 0, если $A=x^2+3x^2-4x+a$, $B=x^2+x-6$?

C-22

Линейные уравнения

Вариант I

Решите уравнение (1-4).

- 1. a) 2x = 7; 6) 2x = 0; B) $0 \cdot x = 2$.
- 2. a) 7x-3=2x+1:
- 6) 2x + 3 = 5x 1;
- B) 3(x-2)=5x+3;
- r) 5x 7(x 3) = 4x + 5.
- 8. a) 3(2x-0.8) = 2(3x-1.2);
 - 6) 5(2x-0.4)-3x=7x-2.
- 4*. x + (2x (3x + 4)) = 4x (3x + (2x 1)).

Вариант II

Решите уравнение (1-4).

- 1. a) 5x = 3; 6) 3x = 0; B) $0 \cdot x = 3$.
- 2. a) 6x-2=x+3; 6) 3x+2=6x-4;
 - B) 2(x-3) = 4x + 1; F) 2x 5(x-4) = 3x + 4.

3. a)
$$4(5x+1) = 5(4x+0.8)$$
;

6)
$$3(2x-0.5)-4x=2x-1.5$$
.

$$4*. x - (2x + (3x - 4)) = -4x + (3x - (2x + 1)).$$

Решите уравнение (1-4).

1. a)
$$-7x = 5$$
; 6) $4x = 0$;

$$\mathbf{B}) \ \mathbf{0} \cdot \mathbf{x} = \mathbf{4}.$$

2. a)
$$5x-12=2x+11$$
;

6)
$$5x + 7 = 2x - 3$$
;

$$\mathbf{B)} \ 5(2x-3)=3x+3;$$

r)
$$x-3(5x-4)=-10x+1$$
.

3. a)
$$5(0.4x-0.8) = 4(0.5x+1)$$
;

6)
$$6(0.4x-0.5)-1.3x=1.1x-3$$
.

$$4*. x + 2(x - 3(x + 4)) = 4x - 3(x + 2(x - 1)).$$

Вариант IV

Решите уравнение (1-4).

1. a)
$$-3x = -2$$
;

6)
$$5x = 0$$
; B) $0 \cdot x = 5$.

2. a)
$$6x-13=3x+10$$
;

6)
$$7x + 5 = 4x - 5$$
;

B)
$$4(3x-2)=5x+9$$
;

r)
$$x - 5(3x - 5) = -10x + 2$$
.

3. a)
$$6(0,3x+0,4) = 3(0,6x-0,8)$$
;

6)
$$5(0.4x-0.6)-0.3x=1.7x-3$$
.

$$4*. x-2(x+3(x-4))=-5x+4(x-3(x+2)).$$

С - 23* Линейные уравнения с параметром

Вариант І

- 1. Решите уравнение 4x 7a = 11 для каждого значения a.
- 2. При каком значении a уравнение 12x 5a = -1 имеет корень x = 2?
- 3. При каком значении a уравнения 3x 5a = -7 и 4x + 7a = 18 имеют общий корень? Найдите этот корень.
- 4. При каком значении a уравнение 4(x+6) ax = 3 не имеет корней?
- 5. Для каждого значения а решите уравнение

$$2(x-1)-ax=7.$$

Вариант II

- 1. Решите уравнение 7x 4a = 13 для каждого значения a.
- 2. При каком значении a уравнение 9x 5a = 2 имеет корень x = 3?
- 3. При каком значении a уравнения 5x 3a = 7 и 4x + 7a = 15 имеют общий корень? Найдите этот корень.
- 4. При каком значении a уравнение 3(x+7)-ax=6 не имеет корней?
- 5. Для каждого значения а решите уравнение

$$5(x-4)-ax=6.$$

- 1. Решите уравнение 5x 8a = 13 для каждого значения a.
- 2. При каком значении а уравнение 7x + 4a = 2 имеет корень x = -2?
- 8. При каком значении a уравнения 5x 3a = 9 и 6x + 5a = 28 имеют общий корень? Найдите этот корень.
- **4.** При каком значении a уравнение 5(x+1)-ax=2 не имеет корней?
- 5. Для каждого значения а решите уравнение

$$3(x-2)-ax=1$$
.

Вариант IV

- 1. Решите уравнение 8x 5a = 17 для каждого значения a.
- 2. При каком значении a уравнение 5x + 6a = 3 имеет корень x = -3?
- 3. При каком значении a уравнения 6x + 7a = 33 и 5x 4a = -2 имеют общий корень? Найдите этот корень.
- 4. При каком значении a уравнение 7(x+2)-ax=1 не имеет корней?
- 5. Для каждого значения а решите уравнение

$$4(x-3)-ax=2.$$

C-24

Решение задач с помощью линейных уравнений

Вариант І

- 1. Одно число в 8 раза больше другого, а их сумма равна 144. Найдите эти числа.
- Сумма двух чисел равна 120, а разность равна 12. Найдите эти числа.
- 3. Сумма трёх последовательных натуральных чисел равна 102. Найдите эти числа.
- 4*. У Алёши, Бори и Вани есть по некоторой сумме денег. У Алёши — 100 р., у Бори — в 2 раза меньше, чем у остальных мальчиков вместе, а у Вани — в 3 раза меньше, чем у остальных мальчиков вместе. Сколько денег у трёх мальчиков вместе?

Вариант II

- Одно число в 2 раза больше другого, а их сумма равна 441. Найдите эти числа.
- Сумма двух чисел равна 140, а разность равна 14. Найдите эти числа.

- Сумма трёх последовательных натуральных чисел равна 201. Найдите эти числа.
- 4*. У Поли, Раи и Светы есть по некоторой сумме денег. У Поли 150 р., у Раи в 3 раза меньше, чем у остальных деночек вместе, а у Светы в 2 раза меньше, чем у остальных девочек вместе. Сколько денег у трёх девочек вместе?

- 1. Отношение двух чисел равно 3:5, а их сумма равна 440. Найдите эти числа.
- Сумма двух чисел равна 679, а разность равна 123. Найдите эти числа.
- 3. Сумма трёх последовательных чётных натуральных чисел равна 372. Найдите эти числа.
- 4*. У Алёши, Бори и Вани есть по некоторой сумме денет. У Алёши 200 р., у Бори половина того, что у остальных мальчиков вместе, а у Вани треть того, что у остальных мальчиков вместе. Сколько денег у трёх мальчиков вместе?

Вариант IV

- 1. Отношение двух чисел равно 4:5, а их сумма равна 441. Найдите эти числа.
- 2. Сумма двух чисел равна 967, а разность равна 321. Найдите эти числа.
- 3. Сумма трёх последовательных нечётных натуральных чисел равна 669. Найдите эти числа.
- 4*. У Поли, Раи и Светы есть по некоторой сумме денег. У Поли 250 р., у Раи треть того, что у остальных девочек вместе, а у Светы половина того, что у остальных девочек вместе. Сколько денег у трёх девочек вместе?

С-25 Системы двух линейных уравнений

Вариант 1

1. Является ли пара чисел (2; -1) решением системы уравнений:

a)
$$\begin{cases} 3x + 2y = 4, \\ x - 3y = 5; \end{cases}$$
 6)
$$\begin{cases} 2x - 3y = 7, \\ 3x + y = 6? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} 2x = 9, \\ 4x - y = 8; \end{cases}$$
 6)
$$\begin{cases} 2x - y = 2, \\ 3x + 7y = 20. \end{cases}$$

3*. При каких значениях а система уравнений

$$\begin{cases} x - ay + 3a = 0, \\ x + 5y - 15 = 0 \end{cases}$$

- а) имеет бесконечно много решений;
- б) имеет единственное решение?

В каждом случае запишите решения системы в виде пар чисел.

Вариант II

1. Является ли пара чисел (-2; 1) решением системы уравнений:

a)
$$\begin{cases} 4x + y = 9, \\ -x - y = -3; \end{cases}$$
 6)
$$\begin{cases} 2x - y = -5, \\ 3x + 7y = 1? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} 2x = 7, \\ 6x - y = 10; \end{cases}$$
 6)
$$\begin{cases} 3x - y = 6, \\ x + 4y = 15. \end{cases}$$

3*. При каких значениях а система уравнений

$$\begin{cases} x - ay + 5a = 0, \\ x + 3y - 15 = 0 \end{cases}$$

- а) имеет бесконечно много решений;
- б) имеет единственное решение?

В каждом случае запишите решения системы в виде пар чисел.

Вариант III

1. Является ли пара чисел (3; -2) решением системы уравнений:

a)
$$\begin{cases} -x + 2y = -1, \\ x - 3y = 7; \end{cases}$$
 6)
$$\begin{cases} 5x - y = 17, \\ 3x + 2y = 6? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} 3x = 2, \\ 9x - y = 7; \end{cases}$$
 6)
$$\begin{cases} 4x - y = 11, \\ 2x + 5y = 11; \end{cases}$$
 B)
$$\begin{cases} 5x + 6y = -4, \\ 3x - 6y = 12. \end{cases}$$

3*. При каких значениях а система уравнений

$$\begin{cases} 2x - ay + a = 0, \\ x + y - 1 = 0 \end{cases}$$

- а) имеет бесконечно много решений;
- б) имеет единственное решение?

В каждом случае запишите решения системы в виде пар чисел.

Вариант IV

1. Является ли пара чисел (-2; 3) решением системы уравнений:

a)
$$\begin{cases} 3x + 5y = 9, \\ x - y = 5; \end{cases}$$
 6)
$$\begin{cases} 3x + 2y = 0, \\ 2x - y = -7? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} 3x = 4, \\ 6x - y = 11; \end{cases}$$
6)
$$\begin{cases} 5x - y = 2, \\ 4x + 2y = 8; \end{cases}$$
B)
$$\begin{cases} 5x + 7y = -2, \\ 2x - 7y = 23. \end{cases}$$

3*. При каких значениях а система уравнений

$$\begin{cases} 3x - ay + 2a = 0, \\ x + y - 2 = 0 \end{cases}$$

- а) имеет бесконечно много рещений;
- б) имеет единственное решение?

В каждом случае запишите решения системы в виде пар чисел.

C-26

Решение задач с помощью систем уравнений

Вариант І

- 1. Три пирожка и две булки стоят 40 р., а два пирожка и три булки стоят 45 р. Сколько стоит пирожок, сколько стоит булка?
- 2. В классе 24 человека. Чтобы выдать девочкам по три тетради, а мальчикам по две тетради, нотребуется 59 тетрадей. Сколько в классе мальчиков и сколько девочек?
- 3*. На трёх банковских картах имелось 9000 р. На третьей карте было в 2 раза больше, чем на остальных картах вместе, а на нервой карте восьмая часть той суммы, что была на остальных картах вместе. Какая сумма была на каждой банковской карте?

Вариант II

- 1. Три ватрушки и пять плюшек стоят 45 р., а пять ватрушек и три плюшки стоят 43 р. Сколько стоит ватрушка, сколько стоит плюшка?
- 2. В классе 25 человек. Чтобы выдать девочкам по три тетради, а мальчикам по две тетради, потребуется

- 62 тетради. Сколько в классе мальчиков и сколько девочек?
- 3*. На трёх банковских картах имелось 12 000 р. На третьей карте было в 2 раза больше, чем на остальных картах вместе, а на первой карте одиннадцатая часть той суммы, что была на остальных картах вместе. Каная сумма была на каждой банковской карте?

- 1. Три марки и пять конвертов стоят 39 р., а четыре марки и два конверта стоят 24 р. Сколько стоит марка, сколько стоит конверт?
- 2. Токарь и его ученик за 3 ч обтачивают 75 деталей. Если токарь будет работать 2 ч, а его ученик 4 ч, то вместе они обточат 70 деталей. Сколько деталей обтачивает каждый из них за 1 ч?
- З*. На трёх банковских картах имелось 10 000 р. На третьей карте было в 1,5 раза больше, чем на остальных картах вместе, а на первой карте девятая часть той суммы, что была на остальных картах вместе. Какая сумма была на каждой банковской карте?

Bapuanm IV

- 1. Пять открыток и четыре конверта стоят 44 р., а две открытки и три конверта стоят 26 р. Сколько стоит открытка, сколько стоит конверт?
- 2. Токарь и его ученик за 2 ч обтачивают 54 детали. Если токарь будет работать 3 ч, а его ученик 4 ч, то вместе они обточат 92 детали. Сколько деталей обтачивает каждый из них за 1 ч?
- 3*. На трёх банковских картах имелось 8000 р. На третьей карте было в 1,5 раза больше, чем на остальных картах вместе, а на первой карте третья часть той суммы, что была на остальных картах вместе. Какая сумма была на каждой банковской карте?

С-27* Системы трёх линейных уравнений

Вариант І

1. Является ди тройка чисел (1; 1; 1) решением системы уравнений:

a)
$$\begin{cases} 3x + 2y - z = 4, \\ 2x - 3y + 2z = 1, \\ x + y + z = 3; \end{cases}$$
 6)
$$\begin{cases} x + 2y = 3, \\ 3y - z = 2, \\ x + z = 1? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} x + 2y - 3z = 4, \\ y + 5z = 7, \\ -z = -1; \end{cases}$$
 6)
$$\begin{cases} x + y - z = 5, \\ x - y + z = 5, \\ x - y - z = 3; \end{cases}$$
 8)
$$\begin{cases} x + 3y - z = 2, \\ -2x + 4y + 2z = 4, \\ 3x + y - 5z = -6. \end{cases}$$

3*. При каком значении а система уравнений

$$\begin{cases} x + y + z = 0, \\ x - 2y - 3z = 6, \\ ax + 3y + z = 2 \end{cases}$$

- а) не имеет решений;
- б) имеет единственное решение?

Вариант II

1. Является ли тройка чисел (1; 1; 1) решением системы уравнений:

a)
$$\begin{cases} 2x + 3y - z = 4, \\ 3x - 2y + 2z = 3, \\ x + y - z = 1; \end{cases}$$
 6)
$$\begin{cases} x - 2y = -1, \\ 3y + z = 4, \\ x - z = 1? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} x - 2y + 3z = 6, \\ y + 2z = 8, \\ -z = -3; \end{cases}$$
 6)
$$\begin{cases} x - y + z = 6, \\ x - y - z = 2, \\ x + y - z = 6; \end{cases}$$

B)
$$\begin{cases} x - 3y + z = 6, \\ 2x - y + 3z = 9, \\ -x + 4y + 5z = 5. \end{cases}$$

3*. При каком значении а система уравнений

$$\begin{cases} x + y + z = 0, \\ x + 3y + 2z = -3, \\ ax - 2y + z = 3: \end{cases}$$

- а) не имеет решений;
- б) имеет единственное решение?

Вариант III

1. Является ли тройка чисел (1; 2; -1) решением системы уравнений:

a)
$$\begin{cases} 2x + y - z = 5, \\ 2x - 2y + z = -3, \\ x + y - z = 4; \end{cases}$$
 6)
$$\begin{cases} 3x - 2y = -1, \\ 3y + z = 5, \\ x - y = 1? \end{cases}$$

2. Решите систему уравнений

a)
$$\begin{cases} x - 2y + 3z = 9, \\ y + 2z = 7, \\ -2z = -6; \end{cases}$$
 6)
$$\begin{cases} x + y + z = 2, \\ x - y + z = 6, \\ x + y - z = -4; \end{cases}$$
 B)
$$\begin{cases} x + 3y - z = 4, \\ 3x - y + 2z = 7, \\ -x + 5y - 4z = -3. \end{cases}$$

3*. При каком значении а система уравнений

$$\begin{cases} x + y + z = 2, \\ x - 3y - 2z = 7, \\ ax + 2y + 3z = -1 \end{cases}$$

- а) не имеет решений;
- б) имеет единственное решение?

Bapuanm IV

1. Является ли тройка чисел (1; -1; 2) решением системы vравнений:

a)
$$\begin{cases} x + 3y - z = -4, \\ 3x - 2y + z = 7, \\ x + y - z = 2; \end{cases}$$
 6)
$$\begin{cases} x - 2y = 3, \\ 3y + 2z = 1, \\ x + z = 2? \end{cases}$$

2. Решите систему уравнений:

a)
$$\begin{cases} x + 2y - 3z = 1, \\ y + 3z = 9, \\ -2z = -4; \end{cases}$$
b)
$$\begin{cases} x + y + z = 4, \\ x - y + z = 6, \\ x - y - z = 0; \end{cases}$$
c)
$$\begin{cases} x + 3y - 2z = -2, \\ -x + y + 5z = 13, \\ 3x + y - 4z = -10. \end{cases}$$

B)
$$\begin{cases} x - 6y - 2z - 2z, \\ -x + y + 5z = 13, \\ 3x + y - 4z = -10. \end{cases}$$

3*. При каком значении а система уравнений

$$\begin{cases} x + y + z = 2, \\ x + 3y + 2z = 7, \\ ax + y - 3z = 1 \end{cases}$$

- а) не имеет решений:
- б) имеет единственное решение?

Контрольные работы

K-1 Вариант І

- 1. Разложите на простые множители число:
- б) 2520.
- Представьте в виде десятичной дроби число: 2.
- 6) $\frac{48}{99}$.
- 3. Сравните числа: 0,3; $\frac{1}{3}$; 0,(32); 0,(322). Выбрав единичный отрезок, укажите расположение данных чисел на координатной оси.
- 4. Вычислите:

 - a) (1.075 0.05) : 0.25; 6) $\frac{3}{5} : \frac{5}{6} + 2\frac{1}{2} \cdot \frac{2}{5} 1 : 1\frac{1}{9};$
 - B) $(-2)^3 + \left(\frac{1}{2}\right)^2 \cdot 2^4$.

Вариант II K—1

- 1. Разложите на простые множители число:
 - a) 376:
- 6) 2640.
- 2. Представьте в виде десятичной дроби число:
 - a) $3\frac{1}{4}$;
- 6) $\frac{41}{99}$.
- 3. Сравните числа: 0.6; $\frac{2}{3}$; 0.(67); 0.(677). Выбрав единичный отрезок, укажите расположение данных чисел на координатной оси.
- 4. Вычислите:

 - a) (1,225+0,05):0,25; 6) $1:1\frac{7}{8}+\frac{3}{7}\cdot 3\frac{1}{9}-\frac{2}{3}:\frac{5}{8};$
 - B) $(-3)^2 + \left(\frac{1}{2}\right)^2 \cdot 3^3$.

K—1 Вариант III

- 1. Разложите на простые множители число:
- б) 16 830;
- в) 14641.
- 2. Представьте в виде десятичной дроби число:
 - a) $2\frac{1}{8}$; 6) $\frac{30}{13}$.

- 3. Представьте в виде обыкновенной дроби число:
 - a) 0,(7);
- **6)** 0,(17);
- в) 0,(045);
- r) 3,6(17).
- Вычислите:
 - a) $2.2(7) + 4\frac{1}{6} \cdot (0.625 1.64 : 1.6)$;
 - 6) $(0.5)^{20} \cdot 2^{21} + 3^7 \cdot 5^7 : 15^6$.
- 5. Сколько делителей имеет число 140?

K-1 Вариант IV

- 1. Разложите на простые множители число:
 - a) 7020;
- 6) 17 680:
- в) 28 561.
- 2. Представьте в виде десятичной дроби число:
 - a) $3\frac{1}{4}$;
- $6) \frac{61}{41}$.
- 3. Представьте в виде обыкновенной дроби число:
 - a) 0.(8);
- б) 0,(43); r) 5,2(18).
- в) 0,(027); 4. Вычислите:
 - a) $(0.75 0.25 \cdot 4.2) : 0.2(45) + \frac{1}{2}$;
 - 6) $(0.2)^{20} \cdot 5^{21} + 2^6 \cdot 5^6 : 10^5$.
- 5. Сколько делителей имеет число 150?

K-2 Вариант І

- 1. Запишите одночлен в стандартном виде:
 - a) $3a^2bc \cdot 6abc$:
 - 6) $\left(-1\frac{2}{3}\right)b^2c^3\cdot\left(-\frac{2}{15}\right)b^2c^2$.
- 2. Запишите многочлен в стандартном виде:
 - a) a 7a:
- 6) $7a + b^2 3a 2b^2$;
- B) 3x (2a x).
- 3. Вынесите за скобки общий множитель многочлена:
 - a) 12x 6y;
- 6) 2ab 6bc:
- B) $9x^2 12x^2y^3$.
- 4. Преобразуйте выражение в многочлен стандартного вида:

 - a) $2x^2(x-3y)$; 6) (2x-3y)(3y+2x);
 - B) (a+b)(a-b)(a+b).
- Разложите на множители:
 - a) m(n-3) + 2(n-3);
 - 6) x 2y a(2y x).

K-2 Вариант II

- 1. Запишите одночлен в стандартном виде:
 - a) $4a^3bc \cdot 3ab^2c$:
 - 6) $\left(-2\frac{2}{3}\right)b^3c^2\cdot\left(-\frac{9}{16}\right)b^2c^2$.
- 2. Запишите многочлен в стандартном виде:
 - a) b 8b;
- 6) $15x + 3y^2 8x + 3y^2$;
 - B) 14b (3a 7b).
- 3. Вынесите за скобки общий множитель многочлена:
 - a) 15a + 3b:
- 6) 14xy 28ay;
- B) $20a^5b^3 15b^4$.
- 4. Преобразуйте выражение в многочлен стандартного вида:

 - a) 3a(2-b); 6) (5a-6b)(6b-5a);
 - B) (x-y)(x+y)(x-y).
- Разложите на множители:
 - a) a(5-b)+7(5-b);
 - 6) 7a 4b u(4b 7a).

K-2 Вариант III

- 1. Запишите одночлен в стандартном виде:
 - a) $-4.5a^3bc \cdot 1.2ab^2c^3$;
 - 6) $\left(-8\frac{3}{4}\right)b^3c^2\cdot\left(-\frac{8}{25}\right)b^2c^3$.
- 2. Упростите выражение

$$(x-1)(x-3)(x+4)-(x+1)(x+3)(x-4).$$

- 3. Преобразуйте выражение в многочлен стандартного вида:
 - a) $(x^2-3y)(3y+x^2)$:
- 6) $(a^2-b^2)(b^4+a^2b^2+a^4)$.
- 4. Разложите на множители:
 - a) $12x^2y 18xy^2$;
- 6) $15a^4b^3 25a^3b^4$; r) $x^2 xy 2y^2$.
- B) mn 3m + 2n 6;
- 5. Докажите тождество

$$(x-1)(x+1)(x^2+1)(x^4+1) = x^8-1.$$

K--2 Bapuanm IV

- 1. Запишите одночлен в стандартном виде:
 - a) $-3.5ab^3c^2 \cdot 1.6a^3bc$;
 - 6) $\left(-2\frac{3}{4}\right)b^4c^2\cdot\left(-\frac{8}{33}\right)b^2c^4$.

2. Упростите выражение

$$(x-1)(x-2)(x+3)-(x+1)(x+2)(x-3).$$

3. Преобразуйте выражение в многочлен стандартного вида:

a)
$$(2b+a^3)(a^3-2b)$$
;

6)
$$(x^2 + y^2)(y^4 - x^2y^2 + x^4)$$
.

- 4. Разложите на множители:

 - a) $16ab^3 20a^2b^2$; 6) $18x^4y^2 12x^5y^3$; 8) mn 2m + 4n 8; 7) $x^2 + 3xy 4y^2$.
- 5. Докажите тождество

$$(x-1)(x^7+x^6+x^5+x^4+x^3+x^2+x+1)=x^8-1$$
.

K-3 Вариант І

1. Преобразуйте выражение в многочлен стандартного вида:

a)
$$(x-3)^2$$
;

6)
$$(2a + 5b)^2$$
;

- B) (a-2)(a+2);
- r) (3x y)(y + 3x).
- 2. Разложите на множители:
 - a) $18ab^3 2a^3b$:
- 6) $a^4 + 6a^2b + 9b^2$.
- 3. Преобразуйте выражение в многочлен стандартного вида:

$$2(5-y^2)(y^2+5)+(y^2-3)^2-(y^2+y-1)(4-y^2)$$
.

K-3 Вариант II

1. Преобразуйте выражение в многочлен стандартного вида:

a)
$$(n-2)^2$$
;

6)
$$(2a+3b)^2$$
;

B)
$$(x-5)(x+5)$$
;

r)
$$(4x-y)(y+4x)$$
.

2. Разложите на множители:

a)
$$(a+3b)^2-(3a-b)^2$$
; 6) $a-b^2-b+a^2$.

$$5) \ a - b^2 - b + a^2.$$

3. Преобразуйте выражение в многочлен стандартного вида:

$$3(2-x)^2-(2x^2+x-5)(x^2-2)+(x^2+4)(4-x^2)$$

K-3 Вариант III

1. Преобразуйте выражение в многочлен стандартного вида:

a)
$$(x^2 - 3y)^2$$
;

6)
$$\left(2a^2+\frac{1}{3}b^3\right)^2$$
;

B)
$$(x^2-2y)(x^2+2y)$$
;

F)
$$(3x-y)(y+3x)$$
.

- 2. Разложите на множители:
 - a) $(3a^2 + 2b)^2 (3a^2 b)^2$:
- 6) $0.25a^4 3a^2b^2 + 9b^4$:

B) $x^2 - 6x + 5$:

- r) $x^2 + 4xy 5y^2$.
- 3. Преобразуйте выражение в многочлен стандартного вила:

$$4(4-y^2)(y^2+4)-(5-y^3)^2+(y^4+4y^2+16)(y^2-4).$$

Вычислите значение выражения при каждом значении х: (x-1)(x-2)(x+3)-(x+1)(x+2)(x-3)

K--3 Вариант IV

- 1. Преобразуйте выражение в многочлен стандартного вида:
 - a) $(n^2 2m)^2$:

- 6) $\left(3a^3 + \frac{1}{2}b^2\right)^2$;
- B) $(x^3-2u)(x^3+2u)$:
- F) $\left(2x^2 \frac{1}{3}y\right)\left(2x^2 + \frac{1}{3}y\right)$
- 2. Разложите на множители:
 - a) $(2a^3-3b^2)^2-(2a^3+b^2)^2$; 6) $\frac{1}{4}a^4+2a^2b^2+4b^4$;

B) $x^2 - 5x + 4$:

- r) $x^2 + 6xy + 8y^2$.
- 3. Преобразуйте выражение в многочлен стандартного вида:

$$3(3-x^2)^2-(9-3x^2+x^4)(x^2+3)-3(x^2-x)(x^2+x).$$

4. Вычислите значение выражения при каждом значении х: (x-1)(x-3)(x+4)-(x+1)(x+3)(x-4).

K-4 Вариант І

- 1. Сократите дробь:
 - a) $\frac{18x^3y}{24x^2y^4}$;
- 6) $\frac{15a^2-10ab}{8b^2-12ab}$.
- 2. Выполните действия:
 - a) $\frac{1}{25} + \frac{5}{2}$;
- 6) $\frac{1}{a-1} \frac{1}{a+1}$;
- B) $\frac{a}{a^2} \cdot 6b$;
- $\mathbf{r}) \; \; \frac{7m^2n}{8r} : \frac{21m}{20r^2n}.$
- 3. Упростите выражение:
 - a) $\left(\frac{m}{m-n} \frac{m}{m+n}\right)$; $\frac{16m^3n}{m^2-n^2}$;
 - 6) $\left(\frac{1}{4x^2} \frac{1}{xu} + \frac{1}{u^2}\right) \cdot \left(\frac{1}{2x u} \frac{1}{u 2x}\right) \frac{1}{xu^2}$

- Сократите дробь:
 - a) $\frac{24ab^2}{4a^2+3}$;
- 6) $\frac{10x^2-15xy}{12x^2-9xy}$.
- 2. Выполните действия:
 - a) $\frac{7}{4} + \frac{1}{4}$;
- 6) $\frac{1}{\pi} \frac{1}{\pi}$;
- B) $3a \cdot \frac{5b}{3a^2}$; r) $\frac{3xy^2}{4a} : \frac{13y}{24a^2b}$.
- 3. Упростите выражение:
 - a) $\frac{8x^2y^2}{x^2-y^2}:\left(\frac{x}{x-y}-\frac{x}{x+y}\right)$;
 - 6) $\frac{1}{2\pi u^2} \left(\frac{x}{x-u} \frac{x}{u-x}\right) \cdot \left(\frac{1}{x^2} \frac{2}{xy} + \frac{1}{y^2}\right)$

Вариант III

- 1. Сократите дробь:
 - a) $\frac{10x^3 15ax^2}{21ax^3 14x^4}$; 6) $\frac{x^2 4x + 4}{5x^2 10x}$.
- 2. Выполните действия:

 - a) $\frac{5}{2\pi} + \frac{2}{7\pi}$; 6) $\frac{1}{\pi} = \frac{1}{2\pi + 3}$;

 - B) $7a^3 \cdot \frac{3b}{14a^2}$; Γ) $\frac{12xy^2}{5a^3} : \frac{24y}{25a^2b}$.
- 3. Упростите выражение:

 - a) $\left(x^2 + \frac{6-x^4}{x^2-1}\right) \cdot \frac{1+x}{6-x^2}$; 6) $\left(\frac{x+4}{3x+3} \frac{1}{x+1}\right) : \frac{1+x}{3} \frac{2}{1-x^2}$.

$$\frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+2)(x+3)} + \frac{1}{(x+3)(x+4)} = \frac{4}{x(x+4)}.$$

При каких значениях x определены обе части данного тождества?

K-4 Bapuaum IV

- 1. Сократите дробы:
 - a) $\frac{12a^3x 16a^2x^2}{20ax^3 + 15a^2x^2}$;
- 6) $\frac{x^2-6x+9}{9x^2-27x}$.

2. Выполните действия:

a)
$$\frac{2}{5x} + \frac{5}{9x}$$
;

6)
$$\frac{1}{x-4} - \frac{1}{x+4}$$
;

B)
$$13a^2 \cdot \frac{5b}{26a^3}$$

B)
$$13a^2 \cdot \frac{5b}{26a^3}$$
; r) $\frac{16\pi^2 y}{7a^3} : \frac{18y}{35a^2b}$.

3. Упростите выражение:

a)
$$\left(x + \frac{6-x^2}{1+x}\right) : \frac{6+x}{x^2-1}$$
;

a)
$$\left(x + \frac{6-x^2}{1+x}\right)$$
: $\frac{6+x}{x^2-1}$; 6) $\frac{1}{x-2} + \frac{4x}{4-x^2} \cdot \left(\frac{1}{x-1} - \frac{1}{x^2-x}\right)$.

4. Докажите тождество

$$\frac{1}{(x-4)(x-3)} + \frac{1}{(x-3)(x-2)} + \frac{1}{(x-2)(x-1)} + \frac{1}{(x-1)x} = \frac{4}{x(x-4)}.$$

При каких значениях х определены обе части данного тождества?

K—5 Вариант І

1. Вычислите:

a)
$$3^{-3} \cdot 3^{5}$$
;

6)
$$5^{-2}:5^{-3}$$
.

2. Упростите выражение:

a)
$$\frac{a^5 \cdot a^{-2}}{a^{-3}}$$
;

6)
$$(x^2)^{-3} \cdot x^4$$
.

3. Вычислите: $\frac{6^{-3} \cdot 2^{-4}}{10^{-2}}$.

Найдите значение выражения

$$(a^{-1}+b^{-1})^2-4a^{-1}b^{-1}$$

при
$$a = \frac{1}{2000}$$
, $b = \frac{1}{1999}$.

5. Упростите выражение

$$\left(\frac{x+y}{x-y}-\frac{x-y}{x+y}\right)^{-1}:\left(\frac{x-y}{2y}\cdot(2x)^{-1}\right).$$

K-5 Вариант II

1. Вычислите:

a)
$$2^{-4} \cdot 2^{6}$$
;

6)
$$3^{-2}:3^{-4}$$
.

2. Упростите выражение:

a)
$$\frac{a^6 \cdot a^{-4}}{a^{-2}}$$
;

6)
$$(x^4)^{-2} \cdot x^5$$
.

3. Вычислите: $\frac{6^{-4} \cdot 2^{-1}}{12^{-3}}$.

4. Найдите значение выражения

$$(a^{-1}-b^{-1})^2+4a^{-1}b^{-1}$$
 при $a=\frac{1}{2000},\ b=-\frac{1}{1999}.$

5. Упростите выражение

$$\left((ab)^{-1}\cdot\frac{(2ab)^2}{a^2-b^2}\right)\cdot\left(\frac{a-b}{a+b}-\frac{a+b}{a-b}\right)^{-1}.$$

K-5 Вариант III

1. Вычислите:

- a) $5^{-8} \cdot 5^{6}$:
- б) 8⁻⁷: 8⁻⁸: в) 25⁻⁴: 5⁻⁸.

2. Упростите выражение:

- a) $(a^{-5})^3 \cdot a^{14} \ (a \neq 0);$
- 6) $\frac{a^{-5}-a^{-6}}{a^{-4}-a^{-6}}$.
- 3. Вычислите: $\frac{81 \cdot 6^{-4} \cdot 21^{-6}}{14^{-5}}$.

4. Найдите значение выражения

$$\frac{a^{-3} + b^{-3}}{a^{-2} - a^{-1}b^{-1} + b^{-2}} + \frac{a^{-2} - b^{-2}}{a^{-1} + b^{-1}}$$

при a=2, b=1999.

5. Упростите выражение

$$\left((ab)^{-2} \cdot \frac{(2ab)^8}{4a^2 - b^2}\right) \cdot \left(\frac{2a - b}{2a + b} - \frac{2a + b}{2a - b}\right)^{-1}.$$

K-5 Bapuanm IV

1. Вычислите:

a)
$$9^8 \cdot 9^{-10}$$
:

6)
$$7^{-9}$$
; 7^{-7} ; B) 9^{-6} : 3^{-12} .

2. Упростите выражение:

a)
$$(x^{-6})^3 \cdot x^{17} (x \neq 0)$$
;

6)
$$\frac{x^{-5}-x^{-4}}{x^{-4}-x^{-8}}$$
.

3. Вычислите: $\frac{64 \cdot 26^{-3} \cdot 14^{-7}}{9\pi^{-6}}$.

4. Найдите значение выражения

$$\frac{a^{-3}-b^{-3}}{a^{-2}+a^{-1}b^{-1}+b^{-2}}+\frac{a^{-2}-b^{-2}}{a^{-1}-b^{-1}}$$

при a = 3, b = 2000.

Упростите выражение

$$\left(\frac{x+2y}{x-2y}-\frac{x-2y}{x+2y}\right)^{-1}:\left(\frac{x-2y}{(2xy)^3}:(xy)^{-2}\right).$$

К-6 Вариант І

1. Решите уравнение

$$3x + 5 = 2x - 1$$
.

- 2. В треугольнике ABC угол A в 2 раза больше угла B, а угол C в 3 раза больше угла A. Вычислите величины углов треугольника ABC.
- 3. Решите систему уравнений:

a)
$$\begin{cases} x - y = 4, \\ x + y = 2; \end{cases}$$

$$\begin{cases}
3x - 2y = 4, \\
2x + 3y = 7.
\end{cases}$$

4. На двух полках стояло 210 книг. Если с первой полки убрать половину книг, а на второй увеличить их число вдвое, то на двух полках будет 180 книг. Сколько книг стояло на каждой полке первоначально?

К-6 Вариант II

1. Решите уравнение

$$4x-3=3x+7.$$

- 2. В треугольнике ABC угол A в 3 раза больше угла B, а угол C в 2 раза больше угла A. Вычислите величины углов треугольника ABC.
- 3. Решите систему уравнений:

a)
$$\begin{cases} x-y=1, \\ x+y=3; \end{cases}$$

6)
$$\begin{cases} 2x - 3y = 3, \\ 3x + 2y = 11. \end{cases}$$

4. В двух коробках лежало 210 карандашей. Если в первой коробке число карандашей уменьшить вдвое, а во второй их число увеличить в 2 раза, то в двух коробках станет 240 карандашей. Сколько карандашей было в каждой коробке первоначально?

K-6 Bapuanm III

1. Решите уравнение

$$3(x-2)-5(x+1)=-8x.$$

- 2. В треугольнике ABC угол A на 30° больше угла B, а угол C в 2 раза меньше угла A. Вычислите величины углов треугольника ABC.
- 3. Решите систему уравнений:

a)
$$\begin{cases} 2x + 3y = -1, \\ 3x - 2y = 5; \end{cases}$$

6)
$$\begin{cases} x + 2y + 3z = 4, \\ 3x - 2y - z = -6, \\ 2x - 3y + 2z = -3. \end{cases}$$

4. Если раздать детям по 3 яблока, то 7 яблок останется, а чтобы раздать каждому по 5 яблок, не хватит 3 яблок. Сколько было детей?

K-6 Вариант IV

1. Решите уравнение

$$5(x-1)-3(x+2)=-5x.$$

- 2. В треугольнике ABC угол A на 50° больше угла C. а угол В в 2 раза меньше угла А. Вычислите величины углов треугольника *ABC*.
- 3. Решите систему уравнений:

a)
$$\begin{cases} 3x - 4y = -7, \\ 2x + 5y = 3; \end{cases}$$
6)
$$\begin{cases} x - 2y - 3z = 0, \\ 3x + 2y + z = 2, \\ 2x + 2y - 5z = -5. \end{cases}$$

4. Если раздать детям по 5 конфет, то 13 конфет останется, а чтобы раздать каждому по 8 конфет, не хватит 5 конфет. Сколько было детей?

K-7 Вариант І

1. Вычислите:

$$\frac{3,\!17^2-2\cdot 3,\!17\cdot 1,\!17+1,\!17^2}{6,\!75^2-3,\!25^2}.$$

2. Упростите выражение:

a)
$$(a-1)(a+3)-(a+1)^2$$
; 6) $(x-y)(x+y)(x^2+y^2)$.

6)
$$(x-y)(x+y)(x^2+y^2)$$

3. Упростите выражение

$$\frac{x-2y}{x-3y}\cdot\left(\frac{x}{3x-6y}+\frac{y}{2y-x}\right).$$

4. Решите уравнение

$$(8x-3)(2x+1)=(4x-1)^2$$
.

5. Сумма трёх чисел равна 90. Известно, что первое число на 10 меньше второго, а второе в 2 раза больше третьего. Найдите эти числа.

K-7 Вариант II

1. Вычислите:

$$\frac{5,15^2-2\cdot 5,15\cdot 3,15+3,15^2}{7,25^2-2,75^2}.$$

2. Упростите выражение:

a)
$$(x+1)^2 - (x-2)(x+4)$$
; 6) $(a+b)(a-b)(a^2+b^2)$.

3. Упростите выражение

$$\left(\frac{5}{2x-4y}-\frac{1}{2y-x}\right):\frac{3}{x-2y}.$$

4. Решите уравнение

$$(4x-5)(x+3)=(2x-3)^2.$$

 Сумма трёх чисел равна 120. Известно, что второе число в 2 раза меньше первого, а третье на 20 больше второго. Найдите эти числа.

K-7 Bapuanm III

1. Вычислите:

$$\frac{3,25^2+6,5\cdot 1,75+1,75^2}{6.33^2-6.83\cdot 2.66+1.33^2}.$$

2. При каком значении a значение выражения (x-a)(x+8)-(x+4)(x-1)

не зависит от x?

3. Упростите выражение

$$\frac{x^3+y^3}{x+y}:(x^2-y^2)+\frac{2y}{x+y}-\frac{xy}{x^2-y^2}.$$

4. При каком значении d система уравнений

$$\begin{cases} 2x - 5y = 8, \\ 8x + dy = 10 \end{cases}$$

не имеет решений?

K-7 Bapuanm IV

1. Вычислите:

$$\frac{2,45^2+4,9\cdot 3,55+3,55^2}{4,23^2-4,23\cdot 2,46+1,23^2}.$$

2. При каком значении a значение выражения (x+a)(x-3)-(x-5)(x+3)

не зависит от x?

3. Упростите выражение

$$\frac{x^3-y^3}{x-y}:(x^2-y^2)-\frac{2x}{x-y}+\frac{xy}{x^2-y^2}.$$

4. При каком значении к система уравнений

$$\begin{cases}
x + 2y = 5, \\
5x + 10y = k
\end{cases}$$

имеет бесконечно много решений?

Дополнительные задачи к контрольным работам

K-1

- 1. У Алёши марок в 4 раза больше, чем у Бори, у которого на 36 марок меньше, чем у Алёши. Сколько марок у каждого?
- 2. У Ани открыток в 3 раза меньше, чем у Веры, у которой на 24 открытки больше, чем у Ани. Сколько открыток у каждой?
- 3. У Алёши марок в *n* раз больше, чем у Бори, у которого на *m* марок меньше, чем у Алёши. Сколько марок у каждого?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при n = 4, m = 450.
- 4. У Ани открыток в p раз меньше, чем у Веры, у которой на q открыток больше, чем у Ани. Сколько открыток у каждой?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при p = 3, q = 60.

K-2

- 5. На двух полках 40 книг. Если с первой полки переставить на вторую 4 книги, то книг на полках станет поровну. Сколько книг на каждой полке?
- 6. В двух классах 56 учащихся. Если 3 ученика перейдут из одного класса в другой, то учащихся в этих классах станет поровну. Сколько учащихся в каждом классе?
- 7. На двух полках а книг. Если с первой полки переставить на вторую л книг, то на второй полке станет в 2 раза больше книг, чем на первой. Сколько книг на каждой полке?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 60, n = 6.
- 8. В двух бригадах *а* рабочих. Если *п* рабочих перейдут из первой бригады во вторую, то в первой бригаде станет в 2 раза больше рабочих, чем во второй. Сколько рабочих в каждой бригаде?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 48, n = 6.

K-3

9. Брат старше сестры на 2 года, а через 3 года сумма их возрастов будет равна 34. Сколько лет каждому сейчас?

- 10. Сестра старше брата на 3 года, а 2 года назад сумма их возрастов была равна 25. Сколько лет каждому сейчас?
- 11. Брат старше сестры в n раз, а через a лет он будет старше сестры в (n-1) раз. Сколько лет каждому сейчас?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 4, n = 3.
- 12. Сейчас отец в n раз старше сына, а через a лет он будет старше сына в (n-2) раз. Сколько лет отцу сейчас?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 7, n = 5.

K-4

- 13. Имеющегося сырья хватит первому цеху на 12 дней работы или второму цеху на 24 дня работы. Хватит ли этого сырья на 9 дней их совместной работы?
- 14. Имеющегося сырья хватит первому цеху на 14 дней работы или второму цеху на 21 день работы. Хватит ли этого сырья на 8 дней их совместной работы?
- 15. Имеющегося сырья хватит первому цеху на a дней работы, или второму цеху на b дней работы, или третьему цеху на c дней работы. На сколько дней хватит этого сырья для совместной работы трёх цехов?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 21, b = 24, c = 28.
- 16. Бассейн наполняется через первую трубу за a ч, через вторую трубу за b ч, через третью трубу за c ч. За сколько часов наполнится бассейн через три трубы при их совместной работе?
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 9, b = 12, c = 18.

K-5

- 17. Имеется два куска сплава олова и свинца. Первый, массой 2 кг, содержит 60 % олова, а второй, массой 3 кг, содержит 40 % олова. Сколько процентов олова будет содержать сплав, полученный сплавлением этих двух кусков?
- 18. Имеется два куска сплава меди и серебра. Первый, массой 3 кг, содержит 60 % серебра, а второй, массой 2 кг, содержит 40 % серебра. Сколько процентов серебра будет содержать сплав, полученный сплавлением этих двух кусков?
- 19. Имеется два куска сплава олова и свинца. Первый, массой 2 кг, содержит 60 % олова, а второй содержит 40 % олова. Сколько килограммов второго сплава надо добавить к первому, чтобы получить сплав, содержащий 45 % олова?

20. Имеется два куска сплава олова и свинца. Первый, массой 3 кг, содержит 40 % олова, а второй содержит 60 % олова. Сколько килограммов второго сплава надо добавить к первому, чтобы получить сплав, содержащий 45 % олова?

K-6

- 21. Число увеличили на 20 %, полученный результат увеличили ещё на 20 %. На сколько процентов увеличили число за два раза?
- 22. Число уменьшили на 20 %, полученный результат уменьшили ещё на 20 %. На сколько процентов уменьшили число за два раза?
- 23. Число увеличили на 20 %, а полученный результат уменьшили на 20 %. Увеличилось или уменьшилось число после этих двух изменений? На сколько процентов?
- 24. Число уменьшили на 20 %, а полученный результат увеличили на 20 %. Увеличилось или уменьшилось число после этих двух изменений? На сколько процентов?

K-7

- 25. Два путника одновременно вышли навстречу друг другу из пунктов A и B и встретились через 3 ч. Через 2 ч после встречи первый путник пришёл в пункт B. Через сколько часов после встречи второй путник нришёл в пункт A?
- 26. Велосипедист и пешеход одновременно отправились навстречу друг другу из пунктов A и B и встретились через 2 ч. Через 1 ч после встречи велосипедист прибыл в пункт B. Через сколько часов после встречи пешеход пришёл в пункт A?
- 27. Задумали два числа, сумма которых равна а. Если первое число увеличить в 3 раза, а второе уменьшить в 4 раза, то сумма полученных чисел станет равна b. Найдите задуманные числа.
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 60, b = 70.
- 28. Задумали два числа, сумма которых равна a. Если первое число увеличить в 4 раза, а второе уменьшить в 3 раза, то сумма полученных чисел станет равна b. Найдите задуманные числа.
 - а) Решите задачу в общем виде.
 - б) Получите ответ при a = 50, b = 90.

ОТВЕТЫ

Контрольные работы

K-1

- 1. a) $2^2 \cdot 97$; 6) $2^3 \cdot 3^2 \cdot 5 \cdot 7$. 2. a) 3,4; 6) 1,4(3).
- 3. $0.3 < 0.(322) < 0.(32) < \frac{1}{2}$. 4. a) 4.1; 6) 0.82; b) -4.
- B. II. 1. a) $2^3 \cdot 47$; 6) $2^4 \cdot 3 \cdot 5 \cdot 11$. 2. a) 3,25; 3. $0,6 < \frac{2}{3} < 0,(67) < 0,(677)$. 4. a) 5,1; 6) $1\frac{7}{30}$; b) 12.
- **B. III.** 1. a) $2^3 \cdot 3^2 \cdot 5 \cdot 13$; 6) $2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 17$; B) 11^4 . 2. a) 2,125;
- 6) 2,(307692). 3. a) $\frac{7}{9}$; 6) $\frac{17}{99}$; B) $\frac{5}{111}$; r) $3\frac{611}{990}$. 4. a) $\frac{11}{18}$; 6) 17. 5. 12.
- B. IV. 1. a) $2^2 \cdot 3^3 \cdot 5 \cdot 13$; 6) $2^4 \cdot 5 \cdot 13 \cdot 17$; B) 13^4 , 2. a) 3,25;
- 6) 1,(48780). 3. a) $\frac{8}{9}$; 6) $\frac{43}{99}$; b) $\frac{1}{37}$; r) $5\frac{12}{55}$. 4. a) $-\frac{8}{9}$; 6) 15. 5. 12.

- **B. I. 1.** a) $18a^3b^2c^2$; 6) $\frac{2}{6}b^4c^5$. 2. a) -6a; 6) $4a-b^2$; B) 4x-2a.
- 3. a) 6(2x-y); 6) 2b(a-3c); B) $3x^2(3-4y^3)$. 4. a) $2x^3-6x^2y$; 5) $4x^2-9y^2$; B) $a^3-ab^2+a^2b-b^3$. 5. a) (n-3)(m+2); 6) (x-2y)(1+a).
- **B. II. 1.** a) $12a^4b^3c^2$; 6) $\frac{3}{a}b^5c^4$. 2. a) -7b; 6) $7x + 6y^2$; b) 21b 3a.
- 3. a) 3(5a+b); 6) 14y(x-2a); B) $5b^3(4a^5-3b)$. 4. a) 6a-3ab;
- 6) $-25a^2 + 60ab 36b^2$; B) $x^3 x^2y xy^2 + y^3$. 5. a) (a+7)(5-b);
- 5) (7a-4b)(1+y).
- **B. III.** 1. a) $-5.4a^4b^3c^4$; 6) $\frac{6}{5}b^5c^5$. 2. 24. 3. a) $x^4 9y^2$; 6) $a^8 b^8$.
- **4.** a) 6xy(2x-3y); b) $5a^3b^3(3a-5b)$; b) (m+2)(n-3); r) $(x+y) \times$ $\times (x-2y)$.
- **B. IV.** 1. a) $-5.6a^4b^4c^3$; 6) $\frac{2}{3}b^6c^6$. 2. 12. 3. a) a^6-4b^2 ; 6) x^6+y^8 .
- 4. a) $4ab^2(4b-5a)$; 6) $6x^4y^2(3-2xy)$; B) (n-2)(m+4); r) $(x+4y) \times$ $\times (x-y)$.

K-3

- **B.** I. 1. a) $x^2 6x + 9$; b) $4a^2 + 20ab + 25b^2$; b) $a^2 4$; c) $9x^2 y^2$,
- 2. a) 2ab(3b-a)(3b+a); b) $(a^2+3b)^2$. 3. $y^3-11y^2-4y+63$.
- B. II. 1. a) $n^2 4n + 4$; 6) $4a^2 + 12ab + 9b^2$; B) $x^2 25$;
- r) $16x^2 y^2$. 2. a) 4(2a + b)(2b a); 6) (a b)(a + b + 1). 3. $-3x^4 x^3 + 3x^4 x^3 + x^4 x^3 + x^4 x^3 + x^4 x^2 + x^2 +$ $+12x^2-10x+18$.
- **B. III.** 1. a) $x^4 6x^2y + 9y^2$; 6) $4a^4 + \frac{4}{3}a^2b^3 + \frac{1}{6}b^6$; B) $x^4 4y^2$;
- r) $9x^2-y^2$. 2. a) $3b(6a^2+b)$; 6) $(0.5a^2-3b^2)^2$; B) (x-1)(x-5);
- r) (x+5y)(x-y). 3. $-4y^4+10y^3-25$. 4. 12.
- B. IV. 1. a) $n^4 4n^2m + 4m^2$; 6) $9a^6 + 3a^3b^2 + \frac{1}{4}b^4$; B) $x^6 4y^2$;
- r) $4x^4 \frac{1}{9}y^2$. 2. a) $8b^2(b^2 2a^3)$; 6) $\left(\frac{1}{2}a^2 + 2b^2\right)^c$; B) (x-1)(x-4);
- r) (x+4y)(x+2y). 3. $-x^6-15x^2$. 4. 24.

K-4

B. I. 1. a)
$$\frac{3x}{4y^3}$$
; 6) $-\frac{5a}{4b}$. 2. a) $\frac{16}{3c}$; 6) $\frac{2}{a^2-1}$; B) $\frac{3a}{b}$; r) $\frac{5mnxy}{6}$.

3. a)
$$\frac{1}{8m^2}$$
; 6) $-\frac{1}{2x^2y}$.

B. II. 1. a)
$$\frac{4}{3a^3}$$
; 6) $\frac{-5}{4y}$. 2. a) $\frac{29}{4x}$; 6) $\frac{4}{x^2-4}$; B) $\frac{5b}{a}$; r) $\frac{18abxy}{13}$.

3. a)
$$4xy$$
; 6) $\frac{1-4x+4y}{2xy^2}$

B. III. 1. a)
$$-\frac{5}{7x}$$
; 6) $\frac{x-2}{5x}$. 2. a) $\frac{41}{21x}$; 6) $\frac{6}{x^2-9}$; B) $\frac{3ab}{2}$; r) $\frac{5bxy}{2a}$. 3. a) $\frac{1}{x-1}$; 6) $\frac{1}{x-1}$. B. IV. 1. a) $-\frac{4a}{5x}$; 6) $\frac{x-3}{9x}$. 2. a) $\frac{43}{45x}$; 6) $\frac{8}{x^2-16}$; B) $\frac{5b}{2a}$; r) $\frac{25bx^2}{6a}$.

3. a)
$$\frac{1}{x-1}$$
; 6) $\frac{1}{x-1}$

B. IV. 1. a)
$$-\frac{\sqrt{4a}}{5x}$$
; 6) $\frac{x-3}{9x}$. 2. a) $\frac{43}{45x}$; 6) $\frac{8}{x^2-18}$; a) $\frac{5b}{2a}$; r) $\frac{25bx^2}{6a}$.

3. a)
$$x - 1$$
; 6) $\frac{1}{x+2}$.

K-5

B. I. 1. a) 9; 6) 5. 2. a)
$$a^6$$
; 6) x^{-2} , 3. $\frac{3}{32}$, 4. 1. 5. 1.

B. II. 1. a) 4; 6) 9. 2. a)
$$a^4$$
; 6) x^{-8} . 3. $\frac{2}{3}$. 4. 1. 5. -1.

B. III. 1. a)
$$\frac{1}{25}$$
; 6) 64; B) 1. 2. a) $\frac{1}{a}$; 6) $\frac{1}{a}$. 3. $\frac{2}{243}$. 4. 1. 5. -1.

B. IV. 1. a)
$$\frac{1}{81}$$
; 6) $\frac{1}{49}$; n) 1. 2. a) $\frac{1}{x}$; 6) $\frac{1}{x}$. 3. $\frac{1}{14}$. 4. $\frac{2}{3}$. 5. 1. $\Re -6$

В. III. 1.
$$\frac{11}{6}$$
. 2. 84°, 54°, 42°. 3. а) (1; -1); б) (-1; 1; 1). 4. 5 детей.

B. IV. 1.
$$\frac{11}{7}$$
. 2. 92°, 46°, 42°. 3. a) (-1; 1); 6) (1; -1; 1). 4. 6 детей.

K-7

B. I. 1.
$$\frac{4}{35}$$
. **2.** a) -4; b) $x^4 - y^4$. 3. $\frac{1}{3}$. **4.** 0,4. **5.** 30, 40, 20.

B. II. 1.
$$\frac{4}{45}$$
. 2. a) 9; 6) $a^4 - b^4$. 3. $\frac{7}{6}$. 4. $\frac{24}{19}$. 5. 50, 25, 45.

В. ІП. 1. 1. 2. При
$$a = 5$$
. 3. 1. 4. При $d = -20$.

B. IV. 1. 4. 2.
$$\Pi_{\text{PM}} \alpha = 1$$
. 3. -1. 4. $\Pi_{\text{PM}} k = 25$.

Дополнительные задачи к контрольным работам

1. 48 и 12 марок. 2. 12 и 36 открыток. 3. a) $\frac{mn}{n-1}$ и $\frac{m}{n-1}$; 5) 600 и 150 марок. 4. а) $\frac{q}{p-1}$ и $\frac{pq}{p-1}$; б) 30 и 90 открыток. 5. 24 и 16 книг.

6. 31 и 25 учащихся. 7. а)
$$\frac{a}{3} + n$$
 и $\frac{2a}{3} - n$; 6) 26 и 34 книги.

8. а)
$$\frac{2a}{3} + n$$
 и $\frac{a}{3} - n$; б) 38 и 10 рабочих. 9. 15 и 13 лет. 10. 16 и 13 лет. 11. а) $an(n-2)$ и $a(n-2)$; б) 12 лет и 4 года. 12. а) $\frac{a(n^2-3n)}{2}$

и $\frac{a(n-3)}{2}$; 6) 35 и 7 лет. 13. Нет. 14. Да. 15. a) $\frac{abc}{ab+bc+ac}$; 6) н	
8 дней. 16. а) $\frac{abc}{ab+bc+ac}$; 6) за 4 ч. 17. 48%. 18. 52%. 19. 6 кг 20. 1 кг. 21. На 44%. 22. На 36%. 23. Уменьшилось на 4%	г.
24. Уменьшилось на 4%. 25. Через 4,5 ч. 26. Через 4 ч. 27. а) $\frac{4b-11}{11}$	4
и $\frac{12a-4b}{11}$; б) 20 и 40. 28. а) $\frac{3b-a}{11}$ и $\frac{12a-3b}{11}$; б) 20 и 30.	

Содержание