

# **National Semiconductor**

TTL DATA BOOK

Section 1 - 54/74 SSI DEVICES

Connection Diagrams • Electrical Tables

Section 2 - 54/74 MSI DEVICES

Section 3 - National Semiconductor PROPRIETARY DEVICES

**Section 4 - National Semiconductor ADDITIONAL DEVICES** 





| 77 11        | L Data B        | OOK       |        |                  |            | Alpna           | -Numeric        | ai index  |
|--------------|-----------------|-----------|--------|------------------|------------|-----------------|-----------------|-----------|
| DE           | VICE            | PAGE NO.  | DE     | VICE             | PAGE NO.   | DEV             | /ICE            | PAGE N    |
| MIL          | COML            | PAGE NO.  | MIL    | COML             | PAGE NO.   | MIL             | COML            | PAGE IN   |
| ,            | 930             | 4-1       | 5410   | 7410             | 1-4, 1-36  | 5446A           | 7446A           | 2-8       |
|              | 932             | 4-1       | 54H10  | 74H10            | 1-4, 1-36  | 5447A           | 7447A           | 2-8       |
|              | 933             | 4-1       | 54L10  | 74L10            | 1-4, 1-36  | 54LS47          | 74LS47          | 2-8       |
|              | 935             | 4-1       | 54LS10 | 74LS10           | 1-4 1-36   | 5448            | 7448            | 2-8       |
|              | 936             | 4-1       |        | 74S10            | 1-4, 1-36  | 54LS48          | 74LS48          | 2-8       |
|              | 937             | 4-1       | 5411   | 7411             | 1-5, 1-44  | 54LS49          | 74LS49          | 2-8       |
|              | 944             | 4-1       | 54H11  | 74H11            | 1-5, 1-44  | 5450            | 7450            | 1-11, 1-5 |
|              | 945             | 4-1       | 54L11  | 74L11            | 1-5, 1-44  | 54H50           | 74H50           | 1-11, 1-5 |
|              | 946             | 4-1       | 54LS11 | 74LS11           | 1-5, 1-44  | 5451            | 7451            | 1-12, 1-5 |
|              | 948             | 4-1       |        | 74S11            | 1-5, 1-44  | 54H51           | 74H51           | 1-12, 1-5 |
|              | 949             | 4-1       | 54LS12 | 74LS12           | 1-5, 1-38  | 54L51           | 74L51           | 1-12, 1-5 |
|              | 957             | 4-1       | 5413   | 7413             | 1-5, 1-48  | 54LS51          | 74LS51          | 1-12, 1-5 |
|              | 958             | 4-1       | 54LS13 | 74LS13           | 1-5, 1-48  | 342331          | 74851           | 1-12, 1-5 |
|              | 961             | 4-1       | 5414   | 7414             | 1-6, 1-48  | 54H52           | 74551<br>74H52  | 1-13, 1-5 |
|              | 962             | 4-1       | 54LS14 | 74LS14           | 1-6, 1-48  | 5453            | 741132          | 1-13, 1-5 |
|              | 963             | 4-1       | 54LS14 | 74LS14<br>74LS15 | . 1        | 5453<br>54H53   | 7453<br>74H53   |           |
|              |                 |           | 041315 |                  | 1-6, 1-46  |                 |                 | 1-13, 1-5 |
|              | 1800            | 4-1       | F440   | 74S15            | 1-6, 1-46  | 5454            | 7454            | 1-14, 1-5 |
| 0500         | 1801            | 4-1       | 5416   | 7416             | 1-6, 1-42  | 54H54           | 74H54           | 1-14, 1-5 |
| 2502         | 2502C           | 4-6       | 5417   | 7417             | 1-7, 1-42  | 54L54           | 74L54           | 1-14, 1-5 |
| 2503         | 2503C           | 4-6       | 5420   | 7420             | 1-7, 1-36  | 54LS54          | 74LS54          | 1-14, 1-5 |
| 2504         | 2504C           | 4-6       | 54H20  | 74H20            | 1-7, 1-36  | 54H55           | 74H55           | 1-15, 1-5 |
| 5400         | 7400            | 1-1, 1-36 | 54L20  | 74L20            | 1-7, 1-36  | 54L55           | 74L55           | 1-15, 1-5 |
| 54H00        | 74H00           | 1-1, 1-36 | 54LS20 | 74LS20           | 1-7, 1-36  | 54LS55          | 74LS55          | 1-15, 1-5 |
| 54L00        | 74L00           | 1-1, 1-36 |        | 74S20            | 1-7, 1-36  | 5460            | 7460            | 1-15, 1-5 |
| 54LS00       | 74LS00          | 1-1, 1-36 | 54H21  | 74H21            | 1-7, 1-44  | 54H60           | 74H60           | 1-15, 1-5 |
|              | 74S00           | 1-1, 1-36 | 54LS21 | 74LS21           | 1-7, 1-44  | 54H61           | 74H61           | 1-16, 1-6 |
| 5401 ·       | 7401            | 1-1, 1-38 | 54H22  | 74H22            | 1-8, 1-38  | 54H62           | 74H62           | 1-16, 1-5 |
| 54H01        | 74H01           | 1-1, 1-38 | 54LS22 | 74LS22           | 1-8, 1-38  |                 | 74S64           | 1-16, 1-5 |
| 54L01        | 74L01           | 1-1, 1-38 |        | 74S22            | 1-8, 1-38  |                 | 74S65           | 1-17, 1-6 |
| 54LS01       | 74LS01          | 1-1, 1-38 | 5423   | 7423             | 1-8, 1-50  | 5470            | 7470            | 1-18, 1-6 |
| 5402         | 7402            | 1-2, 1-40 | 5425   | 7425             | 1-8, 1-40  | 54H71           | 74H71           | 1-18, 1-6 |
| 54L02        | 74L02           | 1-2, 1-40 | 5426   | 7426             | 1-9, 1-42  | 54L71           | 74L71           | 1-19, 1-6 |
| 54LS02       | 74LS02          | 1-2, 1-40 | 54L26  | 74L26            | 1-9, 1-42  | 5472            | 7472            | 1-19, 1-6 |
|              | 74S02           | 1-2, 1-40 | 54LS26 | 74LS26           | 1-9, 1-42  | 54H72           | 74H72           | 1-19, 1-6 |
| 5403         | 7403            | 1-2, 1-38 | 5427   | 7427             | 1-9, 1-40  | 54L72           | 74L72           | 1-19, 1-6 |
| 54L03        | 74L03           | 1-2, 1-38 | 54LS27 | 74LS27           | 1-9, 1-40  | 5473            | 7473            | 1-20, 1-6 |
| 54LS03       | 74LS03          | 1-2, 1-38 | 5430   | 7430             | 1-9, 1-36  | 54H73           | 74H73           | 1-20, 1-6 |
|              | 74S03           | 1-2, 1-38 | 54H30  | 74H30            | 1-9, 1-36  | 54L73           | 74L73           | 1-20, 1-6 |
| 5404         | 7404            | 1-2, 1-36 | 54L30  | 74L30            | 1-9, 1-36  | 54LS73          | 74LS73          | 1-20, 1-6 |
| 54H04        | 74H04           | 1-2, 1-36 | 54LS30 | 74LS30           | 1-9, 1-36  | 5474            | 7474            | 1-20, 1-6 |
| 54L04        | 74L04           | 1-2, 1-36 |        | 74S30            | 1-9, 1-36  | 54H74           | 74H74           | 1-20, 1-6 |
| 54LS04       | 74LS04          | 1-2, 1-36 | 5432   | 7432             | 1-10, 1-52 | 54L74           | 74L74           | 1-20, 1-6 |
|              | 74504           | 1-2, 1-36 | 54L32  | 74L32            | 1-10, 1-52 | 54L74<br>54LS74 | 74L74<br>74LS74 | 1-20, 1-6 |
| 5405         | 7405            | 1-3, 1-38 | 54LS32 | 74LS32           | 1-10, 1-52 | J4E3/4          | 74E374<br>74S74 | 1-20, 1-0 |
| 54H05        | 74H05           | 1-3, 1-38 | 5437   | 742332           | 1-10, 1-54 | 5475            | 74374<br>7475   | 2-14      |
| 54L05        | 741105<br>74L05 | 1-3, 1-38 | 54LS37 | 74LS37           | 1-10, 1-54 | 5475<br>54L75A  | 7475<br>74L75A  | 2-14      |
| 54LS05       | 74LS05          | 1-3, 1-38 | 5438   | 742337           | 1-10, 1-54 |                 |                 | 2-14      |
|              | 74E305          | 1-3, 1-38 | 54LS38 | 7438<br>74LS38   | 1-10, 1-42 | 54LS75          | 74LS75 `        |           |
| 5406         | 74305           | 1-3, 1-36 | 5440   | 74L336<br>7440   | i          | 5476<br>54U76   | 7476            | 1-21, 1-6 |
| 5400<br>5407 | 7407            | 1-3, 1-42 |        |                  | 1-11, 1-54 | 54H76           | 74H76           | 1-21, 1-6 |
| 5407<br>5408 | 7407<br>7408    | 1-3, 1-42 | 54H40  | 74H40            | 1-11, 1-54 | 54LS76          | 74LS76          | 1-21, 1-6 |
|              |                 |           | 54LS40 | 74LS40           | 1-11, 1-54 | 54LS77          | 74LS77          | 2-14      |
| 54H08        | 74H08           | 1-4, 1-44 | E4444  | 74S40            | 1-11, 1-54 | 54H78           | 74H78           | 1-21, 1-6 |
| 54L08        | 74L08           | 1-4, 1-44 | 5441A  | 7441A            | 2-1        | 54L78           | 74L78           | 1-21, 1-6 |
| 54LS08       | 74LS08          | 1-4, 1-44 | 5442   | 7442             | 2-3        | 54LS78          | 74LS78          | 1-21, 1-6 |
| 5409         | 7409            | 1-4, 1-46 | 54L42A | 74L42A           | 2-3        | 5483            | 7483            | 2-17      |
| 54L09        | 74L09           | 1-4, 1-46 | 54LS42 | 74LS42           | 2-3        | 54LS83A         | 74LS83A         | 2-17      |
| 54LS09       | 74LS09          | 1-4, 1-46 | 5445   | 7445             | 2-6        | 5485            | 7485            | 2-21      |

| 111 M   | . Data Bo | ook<br>                 |         |          |            | Alpha-Numerical Index |          |            |
|---------|-----------|-------------------------|---------|----------|------------|-----------------------|----------|------------|
| DEVICE  |           | PAGE NO. DEVICE         |         | PAGE NO. | DEVICE     |                       | PAGE NO. |            |
| MIL     | COML      | FAGE NO.                | MIL     | COML     | FAGE NO.   | MIL                   | COML     | FAGENC     |
| 54L85   | 74L85     | 2-21                    | 54LS139 | 74LS139  | 2-46       | 54182                 | 74182    | 2-11,3     |
| 54LS85  | 74LS85    | 2-21                    |         | 74S139   | 2-46       |                       | 74S182   | 2-113      |
| 5486    | 7486      | 1-22, 1-72              |         | 74S140   | 1-29, 1-54 | 54184                 | 74184    | 2-116      |
| 54L86   | 74L86     | 1-22, 1-72              | 54141   | 74141    | 2-1        | 54185A                | 74185A   | 2-116      |
| 54LS86  | 74LS86    | 1-22, 1-72              | 54145   | 74145    | 2-6        | 54187                 | 74187    | 2-122      |
|         | 74S86     | 1-22, 1-72              | 54147   | 74147    | 2-49       | 54L187A               | 74L187A  | 2-122      |
| 5488    | 7488      | 2-25                    | 54148   | 74148    | 2-49       | 54S189                | 74S189   | 2-125      |
| 5489    | 7489      | 2-28                    | 54150   | 74150    | 2-53       | 54190                 | 74190    | 2-128      |
| 54L89A  | 74L89A    | 2-89                    | 54151A  | 74151A   | 2-53       | 54LS190               | 74LS190  | 2-128      |
| 5490A   | 7490A     | 2-30                    | 54LS151 | 74LS151  | 2-53       | 54191                 | 74191    | 2-128      |
| 54L90   | 74L90     | 2-30                    |         | 74S151   | 2-53       | 54LS191               | 74LS191  | 2-128      |
| 54LS90  | 74LS90    | 2-30                    | 54153   | 74153    | 2-57       | 54192                 | 74192    | 2-133      |
| 5491A   | 7491A     | 2-34                    | 54LS153 | 74LS153  | 2-57       | 54L192                | 74L192   | 2-133      |
| 54L91   | 74L91     | 2-34                    |         | 74S153   | 2-57       | 54LS192               | 74LS192  | 2-133      |
| 5492A   | 7492A     | 2-30                    | 54154   | 74154    | 2-60       | 54193                 | 74193    | 2-133      |
| 54LS92  | 74LS92    | 2-30                    | 54L154A | 74L154A  | 2-60       | 54L193                | 74L193   | 2-133      |
| 5493A   | 7493A     | 2-30                    | 54LS154 | 74LS154  | 2-60       | 54LS193               | 74LS193  | 2-133      |
| 54L93   | 74L93     | 2-30                    | 54155   | 74155    | 2-63       | 54194                 | 74194    | 2-140      |
| 54LS93  | 74LS93    | 2-30                    | 54LS155 | 74LS155  | 2-63       | 54LS194A              | 74LS194A | 2-140      |
| 5495    | 7495      | 2-36                    | 54156   | 74156    | 2-63       |                       | 74S194   | 2-140      |
| 54L95   | 74L95     | 2-36                    | 54LS156 | 74LS156  | 2-63       | 54195                 | 74195    | 2-144      |
| 54LS95B | 74LS95B   | 2-36                    | 54157   | 74157    | 2-66       | 54LS195A              | 74LS195A | 2-144      |
| 5496    | 7496      | 2-39                    | 54L157A | 74L157A  | 2-66       |                       | 74S195   | 2-144      |
| 54LS96  | 74LS96    | 2-39                    | 54LS157 | 74LS157  | 2-66       | 54196                 | 74196    | 2-101      |
| 54L98   | 74L98     | 2-42                    |         | 74S157   | 2-66       | 54LS196               | 74LS196  | 2-101      |
| 54H103  | 74H103    | 1-23, 1-74              | 54LS158 | 74LS158  | 2-66       | 54197                 | 74197    | 2-101      |
| 54H106  | 74H106    | 1-23, 1-74              |         | 74S158   | 2-66       | 54LS197               | 74LS197  | 2-101      |
| 54107   | 74107     | 1-23, 1-62              | 54160A  | 74160A   | 2-70       | 54198                 | 74198    | 2-148      |
| 54LS107 | 74LS107   | 1-23, 1-68              | 54LS160 | 74LS160  | 2-70       | 54199                 | 74199    | 2-148      |
| 54H108  | 74H108    | 1-24, 1-74              | 54161A  | 74161A   | 2-70       | 54S200                | 74S200   | 2-154      |
| 54109   | 74109     | 1-24, 1-62              | 54LS161 | 74LS161  | 2-70       | 54S206                | 74S206   | 2-157      |
| 54LS109 | 74LS109   | 1-24, 1-68              | 54162A  | 74162A   | 2-70       | 54LS221               | 74LS221  | 1-30, 1-76 |
| 54LS112 | 74LS112   | 1-24, 1-68              | 54LS162 | 74LS162  | 2-70       | 54251                 | 74251    | 2-160      |
|         | 74S112    | 1-24, 1-70              | 54163A  | 74163A   | 2-70       | 54LS251               | 74LS251  | 2-160      |
| 54LS113 | 74LS113   | 1-25, 1-68              | 54LS163 | 74LS163  | 2-70       |                       | 74S251   | 2-160      |
|         | 74S113    | 1 <sub>7</sub> 25, 1-70 | 54164   | 74164    | 2-76       | 54LS253               | 74LS253  | 2-163      |
| 54LS114 | 74LS114   | 1-25, 1-68              | 54L164A | 74L164A  | 2-76       |                       | 74S253   | 2-163      |
|         | 74S114    | 1-25, 1-70              | 54LS164 | 74LS164  | 2-76       | 54LS257               | 74LS257  | 2-165      |
| 54121   | 74121     | 1-26, 1-76              | 54165   | 74165    | 2-79       |                       | 74S257   | 2-165      |
| 54LS122 | 74LS122   | 1-26, 1-78              | 54L165A | 74L165A  | 2-79       | 54LS258               | 74LS258  | 2-165      |
| 54123   | 74123     | 1-26, 1-78              | 54166   | 74166    | 2-82       |                       | 74S258   | 2-165      |
| 54L123A | 74L123A   | 1-26, 1-78              | 54LS168 | 74LS168  | 2-85       |                       | 74S260   | 1-31, 1-40 |
| 54LS123 | 74LS123   | 1-26, 1-78              | 54LS169 | 74LS169  | 2-85       | 54LS266               | 74LS266  | 1-31, 1-84 |
| 54LS124 | 74LS124   | 2-44                    |         | 74170    | 2-91       | 54LS279               | 74LS279  | 2-168      |
| 54125   | 74125     | 1-27, 1-80              | 54LS170 | 74LS170  | 2-91       |                       | 74S280   | 2-170      |
| 54LS125 | 74LS125   | 1-27, 1-80              | 54173   | 74173    | 2-96       |                       | 74S281   | 2-173      |
| 54126   | 74126     | 1-27, 1-80              | 54LS173 | 74LS173  | 2-96       | 54LS283               | 74LS283  | 2-17       |
| 54LS126 | 74LS126   | 1-27, 1-80              | 54174   | 74174    | 2-98       | 54S287                | 74S287   | 2-177      |
| 54132   | 74132     | 1-27, 1-48              | 54LS174 | 74LS174  | 2-98       | 54S289                | 74S289   | 2-179      |
| 54LS132 | 74LS132   | 1-27, 1-48              |         | 74S174   | 2-98       | 54LS295A              | 74LS295A | 2-182      |
|         | 74S133    | 1-28, 1-36              | 54175   | 74175    | 2-98       | 54LS298               | 74LS298  | 2-184      |
|         | 74S134    | 1-28, 1-80              | 54LS175 | 74LS175  | 2-98       | 54365                 | 74365    | 1-32, 1-86 |
|         | 74S135    | 1-28, 1-82              |         | 74S175   | 2-98       | 54LS365               | 74LS365  | 1-32, 1-86 |
| 54LS136 | .74LS136  | 1-29, 1-84              | 54176   | 74176    | 2-101      | 54366                 | 74366    | 1-32, 1-86 |
|         | 74S136    | 1-29, 1-84              | 54177   | 74177    | 2-101      | 54LS366               | 74LS366  | 1-32, 1-86 |
| 54LS138 | 74LS138   | 2-46                    | 54180   | 74.180   | 2-105      | 54367                 | 74367    | 1-32, 1-86 |
|         | 74S138    | 2-46                    | 54181   | 74181    | 2-107      | 54LS367               | 74LS367  | 1-32, 1-86 |

iv

| TTL Data Book Alpha-Numerical Inde |               |              |              |              | rical Index    |      |       |          |
|------------------------------------|---------------|--------------|--------------|--------------|----------------|------|-------|----------|
| DEVICE                             |               | DACE NO.     | DE           | VICE         | DACE NO        | DE   | /ICE  | DAGE NO  |
| MIL                                | COML          | PAGE NO.     | MIL          | COML         | PAGE NO.       | MIL  | COML  | PAGE NO. |
| 54368                              | 74368         | 1-33, 1-86   | 7551         | 8551         | 3-62           |      | 9006C | 4-15     |
| 54LS368                            | 74LS368       | 1-33, 1-86   | 75L51        | 85L51        | 3-62           |      | 9008C | 4-15     |
| 54LS374                            | 74LS374       | 2-187        | 7552         | 8552         | 3-64           |      | 9009C | 4-15     |
| 54LS386                            | 74LS386       | 1-34, 1-72   | 75L52        | 85L52        | 3-64           | •    | 9012C | 4-15     |
| 54S387                             | 74S387        | 2-177        | 7553         | 8553         | 3-70           |      | 9016C | 4-15     |
| 54LS395                            | 74LS395       | 2-189        | 7554         | 8554         | 3-64           | 9024 | 8024  | 4-17     |
| 54LS670                            | 74LS670       | 2-191        | 75L54        | 85L54        | 3-64           |      | 9093  | 4-1      |
|                                    | 80L06         | 3-1          | 7555         | 8555         | 3-72           |      | 9094  | 4-1      |
| 7090                               | 8090          | 3-3          | 7556         | 8556         | 3-72           |      | 9097  | 4-1      |
| 7091                               | 8091          | 3-3          | 7560         | 8560         | 3-76           |      | 9099  | 4-1      |
| 7092                               | 8092          | 3-3          | 75L60        | 85L60        | 3-76           | 9300 | 8300  | 4-19     |
| 7093                               | 8093          | 3-5          | 7563         | 8563         | 3-76           | 9301 | 8301  | 4-22     |
| 7094                               | 8094          | 3-5          | 75L63        | 85L63        | 3-76           | 9309 | 8309  | 4-24     |
| 7095                               | 8095          | 3-7          | 75S68        | 85S68        | 3-82           | 9310 | 8310  | 4-27     |
| 70L95                              | 80L95         | 3-7          | 7570         | 8570         | 3-86           | 9311 | 8311  | 4-33     |
| 7096                               | 8096          | 3-7          | 7573         | 8573         | 3-89           | 9312 | 8312  | 4-24     |
| 70L96                              | 80L96         | 3-7          | 7574         | 8574         | 3-92           | 9316 | 8316  | 4-27     |
| 7097                               | 8097          | 3-7          | 7575         | 8575         | 3-95           | 9318 | 8318  | 4-36     |
| 70L97                              | 80L97         | 3-7          | 7576         | 8576         | 3-95           | 9322 | 8322  | 4-38     |
| 7098                               | 8098          | . 3-7        | 7577         | 8577         | 3-101          | 9334 | 8334  | 4-40     |
| 70L98                              | 80L98         | 3-7          | 7578         | 8578         | 3-104          | 9601 | 8601  | 4-43     |
| 7099                               | 8099          | 3-9          | 7500         | 8581         | 3-107          | 9602 | 8602  | 4-46     |
| 7121                               | 8121          | 3-11         | 7590         | 8590         | 3-110          |      |       |          |
| 71L22                              | 81L22         | 3-13         | 7595<br>7596 | 8595<br>8596 | 3-113<br>3-116 | ļ    |       |          |
| 7123                               | 8123          | 3-13         | 7596<br>7597 | 8597         | 3-116<br>3-119 |      |       |          |
| 71L23<br>7130                      | 81L23<br>8130 | 3-13<br>3-17 | 7598         | 8598         | 3-119          |      |       |          |
| 7130                               | 8131          | 3-17         | 7599         | 8599         | 3-127          |      |       |          |
| 7136                               | 8136          | 3-19         | 7613         | 8613         | 3-40           |      |       |          |
| 7160                               | 8160          | 3-13         | 76L13        | 86L13        | 3-40           |      |       |          |
| 71LS95                             | 81LS95        | 3-21         | 76L13        | 86L24        | 3-131          |      |       |          |
| 71LS96                             | 81LS96        | 3-21         | 76L25        | 86L25        | 3-134          |      |       |          |
| 71LS97                             | 81LS97        | 3-21         | 76L70        | 86L70        | 3-86           |      |       |          |
| 71LS98                             | 81LS98        | 3-21         | 76L75        | 86L75        | 3-137          | į    |       |          |
| 7200                               | 8200          | 3-23         | 76L76        | 86L76        | 3-137          |      |       |          |
| 7210                               | 8210          | 3-25         | 7678         | 8678         | 3-140          |      |       |          |
| 7211                               | 8211          | 3-25         | 7679         | 8679         | 3-140          |      |       |          |
| 7214                               | 8214          | 3-28         | 76L90        | 86L90        | 3-110          |      |       |          |
| 7219                               | 8219          | 3-28         | 76L93        | 86L93        | 3-142          |      |       |          |
| 7220                               | 8220          | 3-32         | 76L97        | 86L97        | 3-144          |      |       |          |
| 7223                               | 8223          | 3-35         | 76L99        | 86L99        | 3-148          |      |       |          |
| 7230                               | 8230          | 3-37         | 7795         | 8795         | 3-113          |      |       |          |
| 7280                               | 8280          | 4-11         | 7796         | 8796         | 3-116          |      |       |          |
| 7281                               | 8281          | 4-11         | 7853         | 8853         | 3-151          |      |       |          |
| 7288                               | 8288          | 4-11         | 7875A        | 8875A        | 3-154          |      |       |          |
| 7290                               | 8290          | 4-11         | 7875B        | 8875B        | 3-154          |      |       |          |
| 7291                               | 8291          | 4-11         |              | 8898         | 3-156          |      |       |          |
| 7511                               | 8511          | 3-40         |              | 8899         | 3-156          |      |       |          |
| 75L11                              | 85L11         | 3-40         | 7280         | 8280         | 4-11           |      |       |          |
| 7512                               | 8512          | 3-40         | 7281         | 8281         | 4-11           |      |       |          |
| 75L12                              | 85L12         | 3-40         | 7288         | 8288         | 4-11           |      |       |          |
| 7520                               | 8520          | 3-44         | 7290         | 8290         | 4-11           |      |       |          |
|                                    | 8531          | 3-49         | 7291         | 8291         | 4-11           |      |       |          |
| 7542                               | 8542          | 3-52         |              | 9002C        | 4-15           |      |       | · ×      |
| 7544                               | 8544          | 3-54         |              | 9003C        | 4-15           |      |       |          |
| 7546                               | 8546          | 3-56         |              | 9004C        | 4-15           |      |       |          |
|                                    | 85S50         | 3-60         |              | 9005C        | 4-15           | 1    |       |          |



| TTL Data Book                                                           | Table of Contents                     |
|-------------------------------------------------------------------------|---------------------------------------|
| Alpha-Numerical Index. TRI-STATE Selection Guide                        |                                       |
| TTL Families Comparison Guide                                           |                                       |
| Industry Cross Reference Guide                                          |                                       |
| Functional Index/Selection Guides                                       |                                       |
| Packages                                                                |                                       |
| 54/74 SSI—SECTION 1                                                     |                                       |
|                                                                         |                                       |
| DM5400/DM7400 Quad 2-Input NAND Gates                                   |                                       |
| DM54H00/DM74H00 Quad 2-Input NAND Gates                                 |                                       |
| DM54L00/DM74L00                                                         | · · · · · · · · · · · · · · · · · · · |
| DM74S00 Quad 2-Input NAND Gates                                         |                                       |
| DM5401/DM7401 Quad 2-Input NAND Gates with Open-Collector Outputs       |                                       |
| DM54H01/DM74H01 Quad 2-Input NAND Gates with Open-Collector Outputs     |                                       |
| DM54L01/DM74L01 Quad 2-Input NAND Gates with Open-Collector Outputs     |                                       |
| DM54LS01/DM74LS01 Quad 2-Input NAND Gates with Open-Collector Outputs   |                                       |
| DM5402/DM7402 Quad 2-Input NOR Gates                                    |                                       |
| DM54L02/DM74L02 Quad 2-Input NOR Gates                                  | 1-2, 1-40                             |
| DM54LS02/DM74LS02 Quad 2-Input NOR Gates                                | 1-2, 1-40                             |
| DM74S02 Quad 2-Input NOR Gates                                          | 1-2, 1-40                             |
| DM5403/DM7403 Quad 2-Input NAND Gates with Open-Collector Outputs       | •                                     |
| DM54L03/DM74L03 Quad 2-Input NAND Gates with Open-Collector Outputs     | · ·                                   |
| DM54LS03/DM74LS03 Quad 2-Input NAND Gates with Open-Collector Outputs   | •                                     |
| DM74S03 Quad 2-Input NAND Gates with Open-Collector Outputs             |                                       |
| DM5404/DM7404 Hex inverters                                             | ·                                     |
| DM54H04/DM74H04 Hex Inverters                                           | •                                     |
| DM54L04/DM74L04 Hex Inverters                                           | •                                     |
| DM74S04 Hex Inverters.                                                  | ·                                     |
| DM5405/DM7405 Hex Inverters with Open-Collector Outputs                 | •                                     |
| DM54H05/DM74H05 Hex Inverters with Open-Collector Outputs               | •                                     |
| DM54L05/DM74L05 Hex Inverters with Open-Collector Outputs               |                                       |
| DM54LS05/DM74LS05 Hex Inverters with Open-Collector Outputs             |                                       |
| DM74S05 Hex Inverters with Open-Collector Outputs                       | 1-3, 1-38                             |
| DM5406/DM7406 Hex Buffers with Open-Collector High-Voltage Outputs      | 1-3, 1-42                             |
| DM5407/DM7407 Hex Buffers with Open-Collector High-Voltage Outputs      | 1-3, 1-42                             |
| DM5408/DM7408 Quad 2-Input AND Gates                                    |                                       |
| DM54H08/DM74H08 Quad 2-Input AND Gates                                  |                                       |
| DM54L08/DM74L08 Quad 2-Input AND Gates                                  |                                       |
| DM54LS08/DM74LS08 Quad 2-Input AND Gates                                | -                                     |
| DM5409/DM7409 Quad 2-Input AND Gates with Open-Collector Outputs        |                                       |
| DM54L09/DM74L09 Quad 2-Input AND Gates with Open-Collector Outputs      |                                       |
| DM5410/DM7410 Triple 3-Input NAND Gates                                 | ·                                     |
| DM54H10/DM74H10 Triple 3-Input NAND Gates                               |                                       |
| DM54L10/DM74L10 Triple 3-Input NAND Gates                               |                                       |
| DM54LS10/DM74LS10 Triple 3-Input NAND Gates                             |                                       |
| DM74S10 Triple 3-Input NAND Gates                                       |                                       |
| DM5411/DM7411 Triple 3-Input AND Gates                                  | 1-5, 1-44                             |
| DM54H11/DM74H11 Triple 3-Input AND Gates                                | 1-5, 1-44                             |
| DM54L11/DM74L11 Triple 3-Input AND Gates                                | 1-5, 1-44                             |
| DM54LS11/DM74LS11 Triple 3-Input AND Gates                              |                                       |
| DM74S11 Triple 3-Input AND Gates                                        |                                       |
| DM54LS12/DM74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs | •                                     |
| DM5413/DM7413 Dual 4-Input NAND Schmitt Triggers                        | •                                     |
| DM54LS13/DM74LS13 Dual 4-Input NAND Schmitt Triggers                    | •                                     |
| DM5414/DM7414 Hex Schmitt Triggers                                      | 1-6, 1-48                             |

| ★ TTL Data Book                                                         | Table of Contents                     |
|-------------------------------------------------------------------------|---------------------------------------|
| DM54LS14/DM74LS14 Hex Schmitt Triggers                                  | 1-6, 1-48                             |
| DM54LS15/DM74LS15 Triple 3-Input AND Gates with Open-Collector Outputs  | 1-6, 1-46                             |
| DM74S15 Triple 3-Input AND Gates with Open-Collector Outputs            | 1-6, 1-46                             |
| DM5416/DM7416 Hex Buffers with Open-Collector High-Voltage Outputs      | 1-6, 1-42                             |
| DM5417/DM7417 Hex Buffers with Open-Collector High-Voltage Outputs      |                                       |
| DM5420/DM7420 Dual 4-Input NAND Gates                                   |                                       |
| DM54H20/DM74H20 Dual 4-Input NAND Gates                                 |                                       |
| DM54L20/DM74L20 Dual 4-Input NAND Gates                                 | •                                     |
| DM54LS20/DM74LS20 Dual 4-Input NAND Gates                               | •                                     |
| DM74S20 Dual 4-Input NAND Gates                                         | •                                     |
| DM54H21/DM74H21 Dual 4-Input AND Gates                                  | •                                     |
| DM54LS21/DM74LS21 Dual 4-Input AND Gates                                | •                                     |
| DM54H22/DM74H22 Dual 4-Input NAND Gates with Open-Collector Outputs     |                                       |
| DM54LS22/DM74LS22 Dual 4-Input NAND Gates with Open-Collector Outputs   | 1-8, 1-38                             |
| DM74S22 Dual 4-Input NAND Gates with Open-Collector Outputs             | 1-8, 1-38                             |
| DM5423/DM7423 Expandable Dual 4-Input NOR Gates                         |                                       |
| DM5425/DM7425 Dual 4-Input NOR Gates                                    |                                       |
| DM5426/DM7426 Quad 2-Input High-Voltage NAND Gates                      | •                                     |
| DM54L26/DM74L26 Quad 2-Input High-Voltage NAND Gates                    | ·                                     |
| DM54LS26/DM74LS26 Quad 2-Input High-Voltage NAND Gates                  |                                       |
| DM5427/DM7427 Triple 3-Input NOR Gates.                                 | · · · · · · · · · · · · · · · · · · · |
| DM54LS27/DM74LS27 Triple 3-Input NOR Gates                              | •                                     |
| DM54H30/DM74H30 8-Input NAND Gates.                                     |                                       |
| DM54L30/DM74L30 8-Input NAND Gates.                                     |                                       |
| DM54LS30/DM74LS30 8-Input NAND Gates                                    | •                                     |
| DM74S30 8-Input NAND Gates                                              |                                       |
| DM5432/DM7432 Quad 2-Input OR Gates                                     | · · · · · · · · · · · · · · · · · · · |
| DM54L32/DM74L32 Quad 2-Input OR Gates                                   |                                       |
| DM54LS32/DM74LS32 Quad 2-Input OR Gates                                 |                                       |
| DM5437/DM7437 Quad 2-Input NAND Buffers.                                |                                       |
| DM54LS37/DM74LS37 Quad 2-Input NAND Buffers                             |                                       |
| DM5438/DM7438 Quad 2-Input NAND Buffers with Open-Collector Outputs     | 1-10, 1-42                            |
| DM54LS38/DM74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs | 1-10, 1-42                            |
| DM5440/DM7440 Dual 4-Input NAND Buffers                                 | 1-11, 1-54                            |
| DM54H40/DM74H40 Dual 4-Input NAND Buffers                               | 1-11, 1-54                            |
| DM54LS40/DM74LS40 Dual 4-Input NAND Buffers                             |                                       |
| DM74S40 Dual 4-Input NAND Buffers                                       |                                       |
| DM5450/DM7450 Dual 2-Wide 2-Input AND-OR-INVERT Gates                   |                                       |
| DM54H50/DM74H50 Dual 2-Wide 2-Input AND-OR-INVERT Gates                 | •                                     |
| DM5451/DM7451 Dual 2-Wide 2-Input AND-OR-INVERT Gates                   | •                                     |
| DM54H51/DM74H51 Dual 2-Wide 2-Input AND-OR-INVERT Gates                 |                                       |
| DM54L51/DM74L51 Dual 2-Wide 2-Input AND-OR-INVERT Gates                 |                                       |
| DM54LS51/DM74LS51 Dual 2-Wide 2-Input AND-OR-INVERT Gates               |                                       |
| DM54H52/DM74H52 Expandable 4-Wide AND-OR Gates                          |                                       |
| DM5453/DM7453 Expandable 4-Wide AND-OR Gates                            |                                       |
| DM54H53/DM74H53 Expandable 4-Wide AND-OR-INVERT Gates                   |                                       |
| DM5454/DM7454 4-Wide AND-OR-INVERT Gates                                | •                                     |
| DM54H54/DM74H54 4-Wide AND-OR-INVERT Gates                              |                                       |
| DM54L54/DM74L54 4-Wide AND-OR-INVERT Gates                              |                                       |
| DM54LS54/DM74LS54 4-Wide AND-OR-INVERT Gates.                           |                                       |
| DM54H55/DM74H55 2-Wide 4-Input AND-OR-INVERT Gates.                     | -                                     |
| DM54L55/DM74L55 2-Wide 4-Input AND-OR-INVERT Gates                      |                                       |
| DM54LS55/DM74LS55 2-Wide 4-Input AND-OR-INVERT Gates                    |                                       |
| DM5460/DM7460 Dual 4-Input Expanders                                    |                                       |
| DM54H60/DM74H60 Dual 4-Input Expanders.                                 |                                       |
| DM54H61/DM74H61 Triple 3-Input Expanders                                |                                       |
| DM54H62/DM74H62 4-Wide AND-OR Expanders                                 |                                       |
|                                                                         |                                       |

# TTL Data Book

## **Table of Contents**

| DM74S64 4-Wide AND-OR-INVERT Gates                                                                                                               |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| DM74S65 4-Wide AND-OR-INVERT Gates with Open-Collector Outputs                                                                                   | 1-17, 1-61   |
| DM5470/DM7470 AND-Gated J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                             | 1-18, 1-62   |
| DM54H71/DM74H71 AND-OR-Gated J-K Master-Slave Flip-Flops with Preset                                                                             | 1-18, 1-64   |
| DM54L71/DM74L71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear                                                                      | 1-19, 1-66   |
| DM5472/DM7472 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear                                                                        | 1-19, 1-62   |
| DM54H72/DM74H72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear                                                                      |              |
| DM54L72/DM74L72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear                                                                      | 1-19, 1-66   |
| DM5473/DM7473 Dual J-K Flip-Flops with Clear                                                                                                     |              |
| DM54H73/DM74H73 Dual J-K Flip-Flops with Clear                                                                                                   |              |
| DM54L73/DM74L73 Dual J-K Flip-Flops with Clear                                                                                                   |              |
| DM54LS73/DM74LS73 Dual J-K Flip-Flops with Clear                                                                                                 |              |
| DM5474/DM7474 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                    |              |
| DM54H74/DM74H74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                  | ·            |
| DM54L74/DM74L74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                  |              |
| DM54LS74/DM74LS74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                |              |
| DM74S74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                          |              |
| DM5476/DM7476 Dual J-K Flip-Flops with Preset and Clear                                                                                          |              |
| DM54H76/DM74H76 Dual J-K Flip-Flops with Preset and Clear                                                                                        | ·            |
| DM54LS76/DM74LS76 Dual J-K Flip-Flops with Preset and Clear.                                                                                     |              |
| DM54H78/DM74H78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock                                                                   |              |
| DM54L78/DM74L78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock                                                                   |              |
| DM54LS78/DM74LS78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock                                                                 |              |
| DM5486/DM7486 Quad EXCLUSIVE-OR Gates                                                                                                            | · ·          |
| DM54L86/DM74L86 Quad EXCLUSIVE-OR Gates                                                                                                          | •            |
| DM54LS86/DM74LS86 Quad EXCLUSIVE-OR Gates                                                                                                        | •            |
| DM54H103/DM74H103 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear                                                                         |              |
|                                                                                                                                                  | ·            |
| DM54H106/DM74H106 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear  DM54107/DM74107 Dual J-K Master-Slave Flip-Flops with Clear |              |
| DM54LS107/DM74LS107 Dual J-K Master-Slave Flip-Flops with Clear                                                                                  |              |
| DM54H108/DM74H108 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,                                                         | 1-23, 1-00   |
| and Common Clock                                                                                                                                 | 1.24 1.74    |
| DM54109/DM74109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                                | ·            |
| DM54LS109/DM74LS109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear                                                            | · ·          |
| DM54LS112/DM74LS112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear                                                            |              |
| DM74S112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear                                                                       |              |
| DM54LS113/DM74LS113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset                                                                      |              |
| DM74S113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset                                                                                 |              |
| DM54LS114/DM74LS114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,                                                       |              |
| and Common Clock                                                                                                                                 | 1-25, 1-68   |
| DM74S114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Cloc                                                  | k 1-25, 1-70 |
| DM54121/DM74121 One Shots                                                                                                                        | 1-26, 1-76   |
| DM54LS122/DM74LS122 Retriggerable One Shots with Clear                                                                                           | 1-26, 1-78   |
| DM54123/DM74123 Dual Retriggerable One Shots with Clear                                                                                          |              |
| DM54L123A/DM74L123A Dual Retriggerable One Shots with Clear                                                                                      | 1-26, 1-78   |
| DM54LS123/DM74LS123 Dual Retriggerable One Shots with Clear                                                                                      |              |
| DM54125/DM74125 TRI-STATE Quad Buffers                                                                                                           | 1-27, 1-80   |
| DM54LS125/DM74LS125 TRI-STATE Quad Buffers                                                                                                       | 1-27, 1-80   |
| DM54126/DM74126 TRI-STATE Quad Buffers                                                                                                           |              |
| DM54LS126/DM74LS126 TRI-STATE Quad Buffers                                                                                                       |              |
| DM54132/DM74132 Quad 2-Input NAND Schmitt Triggers                                                                                               |              |
| DM54LS132/DM74LS132 Quad 2-Input NAND Schmitt Triggers                                                                                           |              |
| DM74S133 13-Input NAND Gates                                                                                                                     | ·            |
| DM74S134 TRI-STATE 12-Input NAND Gates                                                                                                           |              |
| DM74S135 Quad EXCLUSIVE-OR/NOR Gates                                                                                                             | •            |
| DM54LS136/DM74LS136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs                                                                          | · ·          |
| DM74S136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs                                                                                     |              |
| DM74S140 Dual 50-Ohm Line Drivers                                                                                                                | 1-29, 1-54   |

| TTL Data Book                                                                        | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DM54LS221/DM74LS221 Dual One Shots with Schmitt-Trigger Inputs                       | 1-30, 1-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM74S260 Dual 5-Input NOR Gates                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS266/DM74LS266 Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs             | 1-31, 1-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM54365/DM74365 TRI-STATE Hex Buffers                                                | 1-32, 1-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM54LS365/DM74LS365 TRI-STATE Hex Buffers                                            | 1-32, 1-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM54366/DM74366 TRI-STATE Hex Buffers                                                | 1-32, 1-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM54LS366/DM74LS366 TRI-STATE Hex Buffers                                            | 1-32, 1-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DM54367/DM74367 TRI-STATE Hex Buffers                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DM54LS367/DM74LS367 TRI-STATE Hex Buffers                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54368/DM74368 TRI-STATE Hex Buffers.                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DM54LS368/DM74LS368 TRI-STATE Hex Buffers                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS386/DM74LS386 Quad EXCLUSIVE-OR Gates                                          | 1-34, 1-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 54/74 MSI—SECTION 2                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5441A/DM7441A BCD/Decimal Decoders/Drivers                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5442/DM7442 BCD/Decimal Decoders                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L42A/DM74L42A BCD/Decimal Decoders                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS42/DM74LS42 BCD/Decimal Decoders.  DM5445/DM7445 BCD/Decimal Decoders/Drivers. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5446A/DM7446A BCD/7-Segment Decoders/Drivers                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5447A/DM7447A BCD/7-Segment Decoders/Drivers                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS47/DM74LS47 BCD/7-Segment Decoders/Drivers                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5448/DM7448 BCD/7-Segment Decoders/Drivers                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS48/DM74LS48 BCD/7-Segment Decoders/Drivers.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS49/DM74LS49 BCD/7-Segment Decoders/Drivers                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5475/DM7475 Quad Latches                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L75A/DM74L75A Quad Latches.                                                      | 2-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM54LS75/DM74LS75 Quad Latches                                                       | 2-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM54LS77/DM74LS77 Quad Latches                                                       | 2-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM5483/DM7483 4-Bit Binary Adders with Fast Carry                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS83A/DM74LS83A 4-Bit Binary Adders with Fast Carry                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5485/DM7485 4-Bit Magnitude Comparators                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L85/DM74L85 4-Bit Magnitude Comparators                                          | S. Carlotte and C. Carlotte an |
| DM54LS85/DM74LS85 4-Bit Magnitude Comparators                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5488/DM7488 256-Bit Read Only Memories.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5489/DM7489 64-Bit Read/Write Memories                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L89A/DM74L89A 64-Bit Read/Write Memories                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5490A/DM7490A Decade, Divide by 12, and Binary Counters                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS90/DM74LS90 Decade, Divide by 12, and Binary Counters                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5491A/DM7491A 8-Bit Serial Shift Registers                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L91/DM74L91 8-Bit Serial Shift Registers                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5492A/DM7492A Decade, Divide by 12, and Binary Counters                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS92/DM74LS92 Decade, Divide by 12, and Binary Counters                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5493A/DM7493A Decade, Divide by 12, and Binary Counters                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L93/DM74L93 Decade, Divide by 12, and Binary Counters                            | 2-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM54LS93/DM74LS93 Decade, Divide by 12, and Binary Counters                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5495/DM7495 4-Bit Parallel Access Shift Registers                                  | 2-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM54L95/DM74L95 4-Bit Parallel Access Shift Registers                                | 2-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DM54LS95B/DM74LS95B 4-Bit Parallel Access Shift Registers                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM5496/DM7496 5-Bit Shift Registers.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS96/DM74LS96 5-Bit Shift Registers                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54L98/DM74L98 4-Bit Storage Registers                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS124/DM74LS124 Dual Voltage Controlled Oscillators                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM54LS138/DM74LS138 Decoders/Demultiplexers                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM74S138 Decoders/Demultiplexers                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DM74S139 Decoders/Demultiplexers                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>Divi743138 Decoders/Demontplexers                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# TTL Data Book

# **Table of Contents**

| DM54141/DM74141 BCD/Decimal Decoders/Drivers                                                                                                                                          | 2-1   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| DM54145/DM74145 BCD/Decimal Decoders/Drivers                                                                                                                                          | 2-6   |
| DM54147/DM74147 Priority Encoders                                                                                                                                                     | 2-49  |
| DM54148/DM74148 Priority Encoders                                                                                                                                                     | 2-49  |
| DM54150/DM74150 Data Selectors/Multiplexers                                                                                                                                           | 2-53  |
| DM54151A/DM74151A Data Selectors/Multiplexers                                                                                                                                         | 2-53  |
| DM54LS151/DM74LS151 Data Selectors/Multiplexers                                                                                                                                       |       |
| DM74S151 Data Selectors/Multiplexers                                                                                                                                                  | 2-53  |
| DM54153/DM74153 Dual 4-Line to 1-Line Data Selectors/Multiplexers                                                                                                                     | 2-57  |
| DM54LS153/DM74LS153 Dual 4-Line to 1-Line Data Selectors/Multiplexers                                                                                                                 | 2-57  |
| DM74S153 Dual 4-Line to 1-Line Data Selectors/Multiplexers                                                                                                                            | 2-57  |
| DM54154/DM74154 4-Line to 16-Line Decoders/Demultiplexers                                                                                                                             | 2-60  |
| DM54L154A/DM74L154A 4-Line to 16-Line Decoders/Demultiplexers                                                                                                                         | 2-60  |
| DM54LS154/DM74LS154 4-Line to 16-Line Decoders/Demultiplexers                                                                                                                         | 2-60  |
| DM54155/DM74155 Dual 2-Line to 4-Line Decoders/Demultiplexers                                                                                                                         | 2-63  |
| DM54LS155/DM74LS155 Dual 2-Line to 4-Line Decoders/Demultiplexers                                                                                                                     | 2-63  |
| DM54156/DM74156 Dual 2-Line to 4-Line Decoders/Demultiplexers                                                                                                                         | 2-63  |
| DM54LS156/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers                                                                                                                     |       |
| DM54157/DM74157 Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                     |       |
| DM54L157A/DM74L157A Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                 |       |
| DM54LS157/DM74LS157 Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                 | 2-66  |
| DM74S157 Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                            | 2-66  |
| DM54LS158/DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                 | 2-66  |
| DM74S158 Quad 2-Line to 1-Line Data Selectors/Multiplexers                                                                                                                            | 2-66  |
| DM54160A/DM74160A Synchronous 4-Bit Counters                                                                                                                                          | 2-70  |
| DM54LS160/DM74LS160 Synchronous 4-Bit Counters                                                                                                                                        | 2-70  |
| DM54161A/DM74161A Synchronous 4-Bit Counters                                                                                                                                          | 2-70  |
| DM54LS161/DM74LS161 Synchronous 4-Bit Counters.                                                                                                                                       | 2-70  |
| DM54162A/DM74162A Synchronous 4-Bit Counters                                                                                                                                          | 2-70  |
| DM54LS162/DM74LS162 Synchronous 4-Bit Counters                                                                                                                                        | 2-70  |
| DM54163A/DM74163A Synchronous 4-Bit Counters                                                                                                                                          |       |
| DM54LS163/DM74LS163 Synchronous 4-Bit Counters                                                                                                                                        |       |
| DM54164/DM74164 8-Bit Serial In/Parallel Out Shift Registers                                                                                                                          |       |
| DM54L164A/DM74L164A 8-Bit Serial In/Parallel Out Shift Registers                                                                                                                      | 2-76  |
| DM54LS164/DM74LS164 8-Bit Serial In/Parallel Out Shift Registers                                                                                                                      | 2-76  |
| DM54165/DM74165 8-Bit Parallel In/Serial Out Shift Registers                                                                                                                          | 2-79  |
| DM54L165A/DM74L165A 8-Bit Parallel In/Serial Out Shift Registers                                                                                                                      | 2-79  |
| DM54166/DM74166 8-Bit Parallel In/Serial Out Shift Registers                                                                                                                          | 2-82  |
| DM54LS168/DM74LS168 Synchronous 4-Bit Up/Down Counters.                                                                                                                               | 2-85  |
| DM54LS169/DM74LS169 Synchronous 4-Bit Up/Down Counters                                                                                                                                | 2-85  |
| DM74170 4 by 4 Register Files.                                                                                                                                                        | 2-91  |
| DM54LS170/DM74LS170 4 by 4 Register Files                                                                                                                                             | 2-91  |
| DM54173/DM74173 TRI-STATE Quad D Registers                                                                                                                                            | 2-96  |
| DM54LS173/DM74LS173 TRI-STATE Quad D Registers                                                                                                                                        | 2-96  |
| DM54174/DM74174 Hex/Quad D Flip-Flops with Clear                                                                                                                                      |       |
| DM54LS174/DM74LS174 Hex/Quad D Flip-Flops with Clear                                                                                                                                  |       |
| DM74S174 Hex/Quad D Flip-Flops with Clear                                                                                                                                             |       |
| DM54175/DM74175 Hex/Quad D Flip-Flops with Clear                                                                                                                                      |       |
| DM54LS175/DM74LS175 Hex/Quad D Flip-Flops with Clear.                                                                                                                                 | 2-98  |
| DM74S175 Hex/Quad D Flip-Flops with Clear                                                                                                                                             | 2-98  |
| DM54176/DM74176 Presettable Decade and Binary Counters.                                                                                                                               |       |
| DM54177/DM74177 Presettable Decade and Binary Counters                                                                                                                                |       |
| DM54180/DM74180 9-Bit Parity Generators/Checkers                                                                                                                                      |       |
|                                                                                                                                                                                       |       |
| DM74S182/DM74182 Look-Ahead Carry Generators                                                                                                                                          |       |
| DM74S182 Look-Ahead Carry Generators                                                                                                                                                  |       |
| DM54185A/DM74185A BCD-to-Binary and Binary-to-BCD Converters.                                                                                                                         |       |
| DM54187/DM74185A BCD-to-Binary and Binary-to-BCD Converters  DM54187/DM74185A BCD-to-Binary and Binary-to-BCD Converters  DM54187/DM74185A BCD-to-Binary and Binary-to-BCD Converters |       |
| PRIOTION PRIOTION TO THE THE HEAD ONLY INTERNOTION                                                                                                                                    | 2.122 |

| ★ TTL Data Book                                                           | Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DM54L187A/DM74L187A 1024-Bit Read Only Memories                           | 2-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54S189/DM74S189 TRI-STATE 64-Bit Read/Write Memories                    | 2-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54190/DM74190 Synchronous Up/Down Counters with Mode Control            | 2-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54LS190/DM74LS190 Synchronous Up/Down Counters with Mode Control        | 2-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54191/DM74191 Synchronous Up/Down Counters with Mode Control            | 2-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54LS191/DM74LS191 Synchronous Up/Down Counters with Mode Control        | 2-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54192/DM74192 Synchronous Up/Down Counters with Dual Clock              | 2-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54L192/DM74L192 Synchronous Up/Down Counters with Dual Clock            | 2-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54LS192/DM74LS192 Synchronous Up/Down Counters with Dual Clock          | 2-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54193/DM74193 Synchronous Up/Down Counters with Dual Clock              | 2-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54L193/DM74L193 Synchronous Up/Down Counters with Dual Clock            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS193/DM74LS193 Synchronous Up/Down Counters with Dual Clock          | , , , 2-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DM54194/DM74194 4-Bit Bidirectional Universal Shift Registers             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS194A/DM74LS194A 4-Bit Bidirectional Universal Shift Registers       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S194 4-Bit Bidirectional Universal Shift Registers                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54195/DM74195 4-Bit Parallel Access Shift Registers                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS195A/DM74LS195A 4-Bit Parallel Access Shift Registers               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S195 4-Bit Parallel Access Shift Registers                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54196/DM74196 Presettable Decade and Binary Counters                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS196/DM74LS196 Presettable Decade and Binary Counters                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54197/DM74197 Presettable Decade and Binary Counters                    | 2-101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DM54LS197/DM74LS197 Presettable Decade and Binary Counters                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54198/DM74198 8-Bit Shift Registers                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DM54199/DM74199 8-Bit Shift Registers                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54S200/DM74S200 TRI-STATE 256-Bit Read/Write Memories                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54S206/DM74S206 256-Bit Read/Write Memories with Open-Collector Outputs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54251/DM74251 TRI-STATE Data Selectors/Multiplexers                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS251/DM74LS251 TRI-STATE Data Selectors/Multiplexers.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S251 TRI-STATE Data Selectors/Multiplexers                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS253/DM74LS253 TRI-STATE Data Selectors/Multiplexers                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S253 TRI-STATE Data Selectors/Multiplexers                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS257/DM74LS257 TRI-STATE Quad 2-Data Selectors/Multiplexers          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S257 TRI-STATE Quad 2-Data Selectors/Multiplexers                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S258 TRI-STATE Quad 2-Data Selectors/Multiplexers                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS279/DM74LS279 Quad S-R Latches.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S280 9-Bit Parity Generators/Checkers.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM74S281 4-Bit Parallel Binary Accumulators.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS283/DM74LS283 4-Bit Binary Adders with Fast Carry                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54S287/DM74S287 TRI-STATE 1024-Bit Programmable Read Only Memories.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54S289/DM74S289 64-Bit Read/Write Memories with Open-Collector Outputs  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS295A/DM74LS295A TRI-STATE 4-Bit Parallel Access Shift Registers     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS298/DM74LS298 Quad 2-Multiplexers with Storage                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS374/DM74LS374 TRI-STATE Octal D Flip-Flops.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54S387/DM74S387 1024-Bit Programmable Read Only Memories                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS395/DM74LS395 TRI-STATE 4-Bit Cascadable Shift Registers            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM54LS670/DM74LS670 TRI-STATE 4 by 4 Register Files                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PROPRIETARY—SECTION 3                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           | A commence of the contract of |
| DM80L06 Quad 2-Input NAND Gates with Resistive Pull-Ups                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7090/DM8090 Quad Inverters plus Dual 2-Input NAND Gates                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7091/DM8091 Quad 2-Input NAND Buffers                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7092/DM8092 Dual 5-Input NAND Gates                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7093/DM8093 TRI-STATE Quad Buffers                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7094/DM8094 TRI-STATE Quad Buffers                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7095/DM8095 TRI-STATE Hex Buffers                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM70L95/DM80L95 TRI-STATE Hex Buffers                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DM7096/DM8096 TRI-STATE Hex Buffers                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



# **Table of Contents**

| DM70L96/DM80L96 TRI-STATE Hex Buffers                                  | 3-7          |
|------------------------------------------------------------------------|--------------|
| DM7097/DM8097 TRI-STATE Hex Buffers,                                   | 3-7          |
| DM70L97/DM80L97 TRI-STATE Hex Buffers                                  | 3-7          |
| DM7098/DM8098 TRI-STATE Hex Buffers                                    | 3-7          |
| DM70L98/DM80L98 TRI-STATE Hex Buffers                                  | 3-7          |
| DM7099/DM8099 TRI-STATE Quad 2-Input NAND Buffers                      | 3-9          |
| DM7121/DM8121 TRI-STATE Data Selectors/Multiplexers                    | 3-11         |
| DM71L22/DM81L22 Quad 2-Input Data Selectors/Multiplexers               | 3-13         |
| DM7123/DM8123 TRI-STATE Quad 2-Input Data Selectors/Multiplexers.      | 3-13         |
| DM71L23/DM81L23 TRI-STATE Quad 2-Input Data Selectors/Multiplexers.    | 3-13         |
| DM7130/DM8130 10-Bit Magnitude Comparators                             | 3-17         |
| DM7131/DM8131 6-Bit Unified Bus Comparators                            | 3-19         |
| DM7136/DM8136 6-Bit Unified Bus Comparators                            | 3-19         |
| DM7160/DM8160 6-Bit Magnitude Comparators                              | 3-17         |
| DM71LS95/DM81LS95 TRI-STATE Octal Buffers                              | 3-21         |
| DM71LS96/DM81LS96 TRI-STATE Octal Buffers                              | 3-21         |
| DM71LS97/DM81LS97 TRI-STATE Octal Buffers                              |              |
| DM71LS98/DM81LS98 TRI-STATE Octal Buffers                              |              |
| DM7200/DM8200 4-Bit Magnitude Comparators                              |              |
| DM7210/DM8210 8-Line Data Selectors/Multiplexers                       |              |
| DM7211/DM8211 8-Line Data Selectors/Multiplexers                       |              |
| DM7214/DM8214 TRI-STATE Data Selectors/Multiplexers                    | 3-28         |
| DM7219/DM8219 TRI-STATE Data Selectors/Multiplexers                    | 3-28         |
| ·                                                                      | 3-20         |
| DM7220/DM8220 9-Bit Parity Generators/Checkers                         | 3-32<br>3-35 |
| DM7223/DM8223 1-Line to 8-Line Demultiplexers.                         |              |
| DM7230/DM8230 TRI-STATE Dual 2/4 Demultiplexers                        | 3-37         |
| DM7511/DM8511 Dual Gated Flip-Flops                                    |              |
| DM75L11/DM85L11 Dual Gated Flip-Flops                                  |              |
| DM7512/DM8512 Dual Gated Flip-Flops                                    |              |
| DM75L12/DM85L12 Dual Gated Flip-Flops                                  |              |
| DM7520/DM8520 Modulo-N Dividers                                        | 3-44         |
| DM8531 TRI-STATE 16k Read Only Memories                                | 3-49         |
| DM7542/DM8542 TRI-STATE Quad I/O Registers                             | 3-52         |
| DM7544/DM8544 TRI-STATE Quad Switch Debouncers                         | 3-54         |
| DM7546/DM8546 TRI-STATE 8-Bit Universal I/O Shift Reigsters            | 3-56         |
| DM85S50 6-Bit Shift Registers                                          | 3-60         |
| DM7551/DM8551 TRI-STATE 4-Bit D Type Registers                         | 3-62         |
| DM75L51/DM85L51 TRI-STATE 4-Bit D Type Registers                       | 3-62         |
| DM7552/DM8552 TRI-STATE Synchronous Counters/Latches.                  | 3-64         |
| DM75L52/DM85L52 TRI-STATE Synchronous Counters/Latches                 | 3-64         |
| DM7553/DM8553 TRI-STATE 8-Bit Latches.                                 | 3-70         |
| DM7554/DM8554 TRI-STATE Synchronous Counters/Latches.                  | 3-64         |
| DM75L54/DM85L54 TRI-STATE Synchronous Counters/Latches.                | 3-64         |
| DM7555/DM8555 TRI-STATE Programmable Decade Counters                   |              |
| DM7556/DM8556 TRI-STATE Programmable Binary Counters.                  | 3-72         |
| DM7560/DM8560 Synchronous 4-Bit Up/Down Decade Counters                |              |
| DM75L60/DM85L60 Synchronous 4-Bit Up/Down Decade Counters.             |              |
| DM7563/DM8563 Synchronous 4-Bit Up/Down Binary Counters                | 3-76         |
| DM75L63/DM85L63 Synchronous 4-Bit Up/Down Binary Counters              |              |
| DM75S68/DM85S68 64-Bit Edge-Triggered Registers                        | 3-82         |
| DM7570/DM8570 8-Bit Serial In/Parallel Out Shift Registers             | 3-86         |
| DM7573/DM8573 1024-Bit Field Programmable Read Only Memories.          | 3-89         |
| DM7574/DM8574 TRI-STATE 1024-Bit Field Programmable Read Only Memories | 3-92         |
| DM7575/DM8575 Programmable Logic Arrays                                | 3-95         |
| DM7576/DM8576 Programmable Logic Arrays                                | 3-95         |
| DM7577/DM8577 256-Bit Programmable Read Only Memories                  | 3-101        |
| DM7577/DM8577 250-Bit Programmable Read Only Memories                  | 3-101        |
| DM8581 TRI-STATE 256-bit Programmable Read Only Memories               |              |
| DM7590/DM8590 8-Bit Parallel In/Serial Out Shift Registers             |              |
| DWD 330/ DWG 330 O'DIT Faraller III/3erial Out 3iiit negisters         | 3-110        |

| ★ TTL Data Book                                                       | Table of Contents |
|-----------------------------------------------------------------------|-------------------|
| DM7595/DM8595 4096-Bit Read Only Memories                             | 3-113             |
| DM7596/DM8596 TRI-STATE 4096 <sub>1</sub> Bit Read Only Memories      | 3-116             |
| DM7597/DM8597 TRI-STATE 1024-Bit Read Only Memories                   | 3-119             |
| DM7598/DM8598 TRI-STATE 256-Bit Read Only Memories                    | 3-122             |
| DM7599/DM8599 TRI-STATE 64-Bit Random Access Memories                 | 3-127             |
| DM7613/DM8613 Quad Gated Flip-Flops                                   |                   |
| DM76L13/DM86L13 Quad Gated Flip-Flops                                 |                   |
| DM76L24/DM86L24 TRI-STATE Magnitude Comparators with A Almost Equal B | 3-131             |
| DM76L25/DM86L25 TRI-STATE 7-Segment to BCD Decoders                   |                   |
| DM76L70/DM86L70 8-Bit Serial In/Parallel Out Shift Registers          |                   |
| DM76L75/DM86L75 Presettable Decade Counters                           |                   |
| DM76L76/DM86L76 Presettable Binary Counters                           |                   |
| DM7678/DM8678 7 by 9 Character Generators                             |                   |
| DM7679/DM8679 7 by 9 Character Generators                             |                   |
| DM76L90/DM86L90 8-Bit Parallel In/Serial Out Shift Registers          |                   |
| DM76L93/DM86L93 Binary Counters                                       |                   |
| DM76L97/DM86L97 TRI-STATE 1024-Bit Read Only Memories                 |                   |
| DM76L99/DM86L99 TRI-STATE 64-Bit Random Access Memories               |                   |
| DM7795/DM8795 4096-Bit Read Only Memories.                            |                   |
| DM7796/DM8796 TRI-STATE 4096-Bit Read Only Memories                   |                   |
| DM7853/DM8853 Dual Retriggerable Resettable Monostable Multivibrators |                   |
| DM7875A/DM8875A TRI-STATE 4-Bit Parallel Binary Multipliers           |                   |
| DM7875B/DM8875B TRI-STATE 4-Bit Parallel Binary Multipliers           |                   |
| DM8898 TRI-STATE BCD to Binary Converters                             |                   |
| DM8899 TRI-STATE Binary to BCD Converters                             |                   |
| ADDITIONAL DEVICES-SECTION 4                                          | · · · ·           |
| ,                                                                     |                   |
| DM930 Dual 4-Input Gates with Expanders                               |                   |
| DM932 Dual 4-Input Buffers with Expanders.                            |                   |
| DM933 Dual 4-Input Extenders                                          |                   |
| DM935 Hex Inverters                                                   |                   |
| DM936 Hex Inverters DM937 Hex Inverters                               |                   |
| DM944 Dual 4-Input Power Gates with Expanders                         |                   |
| DM945 R-S Flip-Flops.                                                 |                   |
| DM946 Quad 2-input Gates                                              |                   |
| DM948 R-S Flip-Flops.                                                 |                   |
| DM949 Quad 2-Input Gates                                              |                   |
| DM957 Quad 2-Input Buffers                                            |                   |
| DM958 Quad 2-Input Power Gates.                                       |                   |
| DM961 Dual 4-Input Gates with Expanders.                              |                   |
| DM962 Triple 3-Input Gates.                                           |                   |
| DM963 Triple 3-Input Gates                                            |                   |
| DM1800 Dual 5-Input Gates                                             |                   |
| DM1801 Dual 5-Input Gates                                             | 4-1               |
| DM2502/DM2502C Successive Approximation Registers                     | 4-6               |
| DM2503/DM2503C Successive Approximation Registers                     |                   |
| DM2504/DM2504C Successive Approximation Registers                     | 4-6               |
| DM7280/DM8280 Presettable Decade Counters                             | 4-11              |
| DM7281/DM8281 Presettable Binary Counters                             |                   |
| DM7288/DM8288 Presettable Divide by 12 Counters                       | 4-11              |
| DM7290/DM8290 Presettable Decade Counters                             | 4-11              |
| DM7291/DM8291 Presettable Binary Counters                             | 4-11              |
| DM9002C Quad 2-Input NAND Gates                                       | 4-15              |
| DM9003C Triple 3-Input NAND Gates                                     | 4-15              |
| DM9004C Dual 4-Input NAND Gates                                       | 4-15              |
| DM9005C Expandable Dual 2-Input AND-OR-INVERT Gates                   |                   |
| DM9006C Dual 4-Input Expanders                                        | 4-15 '            |

| TTL Data Book Table of Content                                  | ts  |
|-----------------------------------------------------------------|-----|
| DM9008C Expandable 4-Wide AND-OR-INVERT Gates                   | 15  |
| DM9009C Dual 4-Input NAND Buffers                               | 15  |
| DM9012C Quad 2-Input NAND Gates with Open-Collector Outputs     | 15  |
| DM9016C Hex Inverters                                           | 15  |
| DM9024/DM8024 Dual J-K Flip-Flops with Preset and Clear         | 17  |
| DM9093 Dual J-K Flip-Flops                                      | -1  |
| DM9094 Dual J-K Flip-Flops                                      | -1  |
| DM9097 Dual J-K Flip-Flops                                      | l-1 |
| DM9099 Dual J-K Flip-Flops                                      | l-1 |
| DM9300/DM8300 4-Bit Parallel-Access Shift Registers             | 19  |
| DM9301/DM8301 1 of 10 Decoders                                  | 22  |
| DM9309/DM8309 Dual 4-Line to 1-Line Data Selectors/Multiplexers | 24  |
| DM9310/DM8310 Synchronous 4-Bit Decade Counters                 | 27  |
| DM9311/DM8311 4-Line to 16-Line Decoders/Demultiplexers         | 33  |
| DM9312/DM8312 8-Line to 1-Line Data Selectors/Multiplexers      | 24  |
| DM9316/DM8316 Synchronous 4-Bit Binary Counters                 | 27  |
| DM9318/DM8318 Priority Encoders                                 | 36  |
| DM9322/DM8322 Quad 2-Line to 1-Line Data Selectors/Multiplexers | 38  |
| DM9334/DM8334 8-Bit Addressable Latches                         | 40  |
| DM9601/DM8601 Retriggerable One Shots                           | 43  |
| DM9602/DM8602 Dual Retriggerable, Resettable, One Shots         | 46  |

# **TRI-STATE** Selection Guide

| A Committee of the Comm |                                                    | PAGE         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|
| DEVICE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESCRIPTION                                        | NO.          |
| DM54125/DM74125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Quad Buffers.                            | 1-80         |
| DM54LS125/DM74LS125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Quad Buffers.                            | 1-80         |
| DM54126/DM74126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Quad Buffers                             | 1-80         |
| DM54LS126/DM74LS126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Quad Buffers.                            | 1-80         |
| DM74S134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRI-STATE 12-Input NAND Gates.                     | 1-80         |
| DM54173/DM74173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Quad D Registers                         | 2-96         |
| DM54LS173/DM74LS173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Quad D Registers                         | 2-96         |
| DM54S189/DM74S189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE 64-Bit Read/Write Memories               | 2-125        |
| DM54S200/DM74S200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE 256-Bit Read/Write Memories              | 2-154        |
| DM54251/DM74251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Data Selectors/Multiplexers              | 2-160        |
| DM54LS251/DM74LS251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Data Selectors/Multiplexers              | 2-160        |
| DM74S251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRI-STATE Data Selectors/Multiplexers              | 2-160        |
| DM54LS253/DM74LS253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Data Selectors/Multiplexers              | 2-163        |
| DM74S253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRI-STATE Data Selectors/Multiplexers              | 2-163        |
| DM54LS257/DM74LS257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Quad 2-Data Selectors/Multiplexers       | 2-165        |
| DM74S257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRI-STATE Quad 2-Data Selectors/Multiplexers       | 2-165        |
| DM54LS258/DM74LS258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Quad 2-Data Selectors/Multiplexers       | 2-165        |
| DM74S258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRI-STATE Quad 2-Data Selectors/Multiplexers       | 2-165        |
| DM54S287/DM74S287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE 1024-Bit Programmable Read Only Memories |              |
| DM54LS295A/DM74LS295A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRI-STATE 4-Bit Parallel Access Shift Registers    | 2-182        |
| DM54365/DM74365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 1-86         |
| DM54LS365/DM74LS365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Hex Buffers.                             | 1-86         |
| DM54366/DM74366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 1-86         |
| DM54LS366/DM74LS366<br>DM54367/DM74367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRI-STATE How Buffers                              | 1-86<br>1-86 |
| DM54LS367/DM74LS367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Hex Buffers                              | 1-86         |
| DM54368/DM74368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers.                             | 1-86         |
| DM54LS368/DM74LS368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Hex Buffers.                             | 1-86         |
| DM54LS374/DM74LS374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE Octal D Flip-Flops                       | 2-187        |
| DM54LS395/DM74LS395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE 4-Bit Cascadable Shift Registers         | 2-189        |
| DM54LS670/DM74LS670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRI-STATE 4 By 4 Register Files                    | 2-191        |
| DM7093/DM8093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad Buffers                             | 3-5          |
| DM7094/DM8094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad Buffers                             | 3-5          |
| DM7095/DM8095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Hex Buffers                              | 3-7          |
| DM70L95/DM80L95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 3-7          |
| DM7096/DM8096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Hex Buffers                              | 3-7          |
| DM70L96/DM80L96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 3-7          |
| DM7097/DM8097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Hex Buffers                              | 3-7          |
| DM70L97/DM80L97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 3-7          |
| DM7098/DM8098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Hex Buffers                              | 3-7          |
| DM70L98/DM80L98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Hex Buffers                              | 3-7          |
| DM7099/DM8099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad 2-Input NAND Buffers                | 3-9          |
| DM7121/DM8121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Data Selectors/Multiplexers              | 3-11         |
| DM7123/DM8123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad 2-Input Data Selectors/Multiplexers | 3-13         |
| DM71L23/DM81L23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE Quad 2-Input Data Selectors/Multiplexers | 3-13         |
| DM71LS95/DM81LS95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE Octal Buffers                            | 3-21         |
| DM71LS96/DM81LS96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE Octal Buffers                            | 3-21         |
| DM71LS97/DM81LS97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE Octal Buffers.                           | 3-21<br>3-21 |
| DM71LS98/DM81LS98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRI-STATE Octal Buffers                            | 3-21         |
| DM7214/DM8214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Data Selectors/Multiplexers              | 3-28         |
| DM7219/DM8219<br>DM7230/DM8230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRI-STATE Data Selectors/Multiplexers              | 3-26         |
| DM8531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRI-STATE Dual 2/4 Demotiplexers                   | 3-49         |
| DM7542/DM8542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad I/O Registers                       | 3-52         |
| DM7544/DM8544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Quad Switch Debouncer                    | 3-54         |
| DM7546/DM8546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE 8-Bit Universal I/O Shift Registers      | 3-56         |
| DM7551/DM8551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE 4-Bit D Type Registers                   | 3-62         |
| DM75L51/DM85L51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRI-STATE 4-Bit D Type Registers                   | 3-62         |
| DM7552/DM8552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRI-STATE Synchronous Counters/Latches             | 3-64         |



# TRI-STATE Selection Guide

| DEVICE NO.      | DESCRIPTION                                              | PAGE<br>NO. |
|-----------------|----------------------------------------------------------|-------------|
| DM75L52/DM85L52 | TRI-STATE Synchronous Counters/Latches                   | 3-64        |
| DM7553/DM8553   | TRI-STATE 8-Bit Latches                                  | 3-70        |
| DM7554/DM8554   | TRI-STATE Synchronous Counters/Latches                   | 3-64        |
| DM75L54/DM85L54 | TRI-STATE Synchronous Counters/Latches                   | 3-64        |
| DM7555/DM8555   | TRI-STATE Programmable Decode Counters                   | 3-72        |
| DM7556/DM8556   | TRI-STATE Programmable Binary Counters                   | 3-72        |
| DM7574/DM8574   | TRI-STATE 1024-Bit Field Programmable Read Only Memories | 3-92        |
| DM7578/DM8578   | TRI-STATE 256-Bit Programmable Read Only Memories        | 3-104       |
| DM8581          | TRI-STATE 16k Read Only Memories                         | 3-107       |
| DM7596/DM8596   | TRI-STATE 4096-Bit Read Only Memories                    | 3-116       |
| DM7597/DM8597   | TRI-STATE 1024-Bit Read Only Memories                    | 3-119       |
| DM7598/DM8598   | TRI-STATE 256-Bit Read Only Memories                     | 3-122       |
| DM7599/DM8599   | TRI-STATE 64-Bit Random Access Memories                  | 3-127       |
| DM76L24/DM86L24 | TRI-STATE Magnitude Comparators with A Almost Equal B    | 3-131       |
| DM76L25/DM86L25 | TRI-STATE 7-Segment to BCD Decoders                      | 3-134       |
| DM76L97/DM86L97 | TRI-STATE 1024-Bit Read Only Memories                    | 3-144       |
| DM76L99/DM86L99 | TRI-STATE 64-Bit Random Access Memories                  | 3-148       |
| DM7796/DM8796   | TRI-STATE 4096-Bit Read Only Memories                    | 3-116       |
| DM7875A/DM8875A | TRI-STATE 4-Bit Parallel Binary Multipliers              | 3-154       |
| DM7875B/DM8875B | TRI-STATE 4-Bit Parallel Binary Multipliers              | 3-154       |
| DM8898          | TRI-STATE BCD to Binary Converters                       | 3-156       |
| DM8899          | TRI-STATE BCD to Binary to BCD Converters                | 3-156       |

|                  | PARAMETER(1)                         |         | D                   | M54/7 | 4              | DM             | 154H/7 | 4H             | DN             | 154L/7 | 4L              | DM!            | 54LS/7 | 4LS             | D               | M54S/ | 74S            |       |
|------------------|--------------------------------------|---------|---------------------|-------|----------------|----------------|--------|----------------|----------------|--------|-----------------|----------------|--------|-----------------|-----------------|-------|----------------|-------|
|                  |                                      |         | PARAMETER(1) 00 H00 |       | L00            |                | LS00   |                |                | 800    |                 |                | UNITS  |                 |                 |       |                |       |
|                  |                                      |         | MIN                 | TYP   | MAX            | MIN            | TYP    | MAX            | MIN            | TYP    | MAX             | MIN            | TYP    | MAX             | MIN             | TYP   | MAX            |       |
| Іон              | High Level Output C                  | urrent  |                     |       | -400           |                |        | -500           |                |        | -200            |                |        | -400            |                 | •     | -1000          | μА    |
| νон              | High Level Output<br>Voltage         | DM54    | 2.4 @<br>400µA      |       |                | 2.4 @<br>500μA |        | ,              | 2.4 @<br>200μA |        |                 | 2.5 @<br>400μA | 1      |                 | 2.5 @<br>1000μA |       |                | v     |
|                  |                                      | DM74    | 2.4 @<br>400μA      |       |                | 2.4 @<br>500μA |        |                | 2.4 @<br>200μA |        |                 | 2.7 @<br>400μA |        |                 | 2.7 @<br>1000μA |       |                | ,<br> |
| loL              | Low Level Output                     | DM54    |                     |       | 16             |                |        | 20             |                |        | 2               |                |        | 4               |                 |       | 20             | mA    |
|                  | Current                              | DM74    |                     |       | 16             |                |        | 20             | ,              |        | 3.6             |                |        | 8               |                 |       | 20             | '''`  |
| VoL              | Low Level Output<br>Voltage          | DM54    |                     |       | 0.4 @<br>16 mA |                |        | 0.4 @<br>20 mA | 1              |        | 0.3 @<br>2 mA   |                |        | 0.4 @<br>4 mA   |                 | ,     | 0.5 @<br>20 mA |       |
|                  | Vortage                              |         |                     |       | 0.4 @          | <b></b>        |        | 0.4 @          | <del> </del>   |        | 0.4 @           |                |        | 0.5@            | <u> </u>        |       | 0.5@           | ٧ .   |
|                  |                                      | DM74    |                     |       | 16 mA          | ·              |        | 20 mA          |                |        | 3.6 mA          |                |        | 8 mA            |                 |       | 20 mA          |       |
| I <sub>IH</sub>  | High Level Input Cur                 | rent    |                     |       | 40 @<br>2.4V   |                |        | 50 @<br>2.4 V  |                | •      | 10 @<br>2.4V    |                |        | 20 @<br>2.7V    |                 |       | 50 @<br>2.7V   | μА    |
| lin.             | Low Level Input Cur                  | rent    |                     |       | -1.6 @<br>0.4V |                |        | −2.0 @<br>0.4V |                | ,      | −0.18 @<br>0.3V |                |        | -0.36 @<br>0.4V |                 |       | −2.0 @<br>0.5V | mA    |
| los              | Short Circuit Output                 | Current | -20                 |       | -55            | -40            |        | -100           | -3             |        | ~15 ,           | -30            |        | -130            | -40             |       | -100           | mA    |
| Іссн             | Supply Current<br>(Average per Gate) |         | ,                   | 1.0   |                |                | 2.5    |                |                | 0.11   |                 |                | 0.2    |                 |                 | 2.5   |                | mA    |
| tPHL             | Turn "ON" Time                       |         |                     | 7     | 15             |                | 6.2    | 10             |                | 31     | 60              | ,              | 10     | 15              |                 | 3     | 5              | ns    |
| t <sub>PLH</sub> | Turn "OFF" Time                      |         |                     | 11    | 22             |                | 5.9    | 10             |                | 35     | 60              | -              | 9      | 15              |                 | 3     | 4.5            | ns    |

#### Notes

- (1) The 00 gate parameters were used in all cases.
- (2) The product families below will drive the indicated number of loads of each of the above products.

|                        | DM54/74 | DM54H/74H | DM54L/74L | DM54LS/74LS | DM54S/74S |
|------------------------|---------|-----------|-----------|-------------|-----------|
| FANOUT CAPABILITIES(2) | 00      | H00       | L00       | LS00        | S00       |
|                        | MIN     | MIN       | MIN       | MIN         | MIN       |
| Series DM54/74         | 10      | . 8       | 40        | . 20        | 8         |
| Series DM54H/74H       | 12      | 10        | 50        | 25          | 10        |
| Series DM54L/74L       | 2       | 1 .       | 20        | 10          | 1 ,       |
| Series DM54LS/74LS     | 5       | 4         | 40        | 20          | 4         |
| Series DM54S/74S       | 12      | 10        | 100       | 50          | 10        |



This list is intended to give National replacements for competitors' parts not using the 54/74 numbering system.

Only the basic circuit numbers are cross referenced. As the pin-out sometimes varies between a flat package part and the equivalent DIP part, it is recommended that the manufacturer's specifications be consulted prior to specifying a direct replacement. Other than parts offered only in a flat package, the dual-in-line pin-outs were used as a guide in preparing the following cross references.

Direct Replacements were selected as pin-for-pin equivalent circuits based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in any particular application is not necessarily guaranteed. Before using a substitute, the user should compare the specifications of the substitute device with the detailed specifications of the original device.

National Semiconductor makes no warranty as to the information furnished, and buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

| DEVICE<br>TYPE | NATIONAL DIRECT<br>REPLACEMENT | DEVICE<br>TYPE    | NATIONAL DIRECT<br>REPLACEMENT |
|----------------|--------------------------------|-------------------|--------------------------------|
| AMD            |                                | Fairchild (con't) |                                |
| AM2502         | DM2502/2502C                   | 933               | DM933                          |
| AM25L02        | DM2502/2502C                   | 935               | DM935                          |
| AM2503         | DM2503/2503C                   | 936               | DM936                          |
| AM25L03        | DM2503/2503C                   | 937               | DM937                          |
| AM2504         | DM2504/2504C                   | 944               | DM944                          |
| AM25L04        | DM2504/2504C                   | 945               | DM945                          |
| AM25LS138      | DM54LS138/74LS138              | 946               | DM946                          |
| AM25LS139      | DM54LS139/74LS139              | 948               | DM948                          |
| AM25LS151      | DM54LS151/74LS151              | 949               | DM949                          |
| AM25LS153      | DM54LS153/74LS153              | 961               | DM961                          |
| AM25LS157      | DM54LS157/74LS157              | 962               | DM962                          |
| AM25LS158      | DM54LS158/74LS158              | 963               | DM963                          |
| AM25LS160      | DM54LS160/74LS160              |                   | Bill Coc                       |
| AM25LS161      | DM54LS161/74LS161              | 9002              | DM9002C                        |
| AM25LS162      | DM54LS162/74LS162              | 9003              | DM9003C                        |
| AM25LS163      | DM54LS163/74LS163              | 9004              | DM9004C                        |
| AM25LS164      | DM54LS164/74LS164              | 9005              | DM9005C                        |
| AM25LS174      | DM54LS174/74LS174              | 9006              | DM9006C                        |
| AM25LS175      | DM54LS175/74LS175              | 9008              | DM9008C                        |
| AM25LS181      | DM54181/74181                  | 9009              | DM9009C                        |
| AM25LS190      | DM54LS190/74LS190              | 9012              | DM9012C                        |
| AM25LS191      | DM54LS191/74LS191              | 9016              | DM9012C                        |
| AM25LS192      | DM54LS192/74LS192              | 9024              | DM9024/8024                    |
| AM25LS193      | DM54LS193/74LS193              | 9093              | DM9093                         |
| AM25LS194A     | DM54LS194A/74LS194A            | 9094              | DM9093                         |
| AM25LS195A     | DM54LS195A/74LS195A            | 9097              | DM9097                         |
| AM25LS251      | DM54LS251/74LS251              | 9099              | DM9099                         |
| AM25LS253      | DM54LS253/74LS253              | 9099              | Divisoss                       |
| AM25LS257      | DM54LS257/74LS257              | 9135              | DM935                          |
| AM25LS258      | DM54LS258/74LS258              | 9157              | DM957                          |
| AM2602         | DM9602/8602                    | 9158              | DM958                          |
| AM26L02        | DM9602/8602                    | 9158              | DINIA28                        |
| AM26S02        | DM9602/8602                    | 9300              | DM9300/8300                    |
| AM26123        | DM54123/74123                  | 9300              | DM9301/8301                    |
| AM26L123       | DM54L123A/74L123A              | 9307              | DM5448/7448                    |
| AM93L60        | DM75L60/85L60                  | 9309              | DM9309/8309                    |
| AM93L66        | DM75L63/85L63                  | 9310              | DM9310/8310                    |
|                |                                | 9310              | DM9310/8310<br>DM9311/8311     |
| Fairchild      |                                | 9311              | DM9311/8311<br>DM9312/8312     |
| 930            | DM030                          | 1                 |                                |
| 930            | DM930                          | 9315              | DM5441A/7441A                  |
| 332            | DM932                          | 9316              | DM9316/8316                    |

| DEVICE            | NATIONAL DIRECT                | DEVICE            | NATIONAL DIRECT                   |  |  |
|-------------------|--------------------------------|-------------------|-----------------------------------|--|--|
| TYPE              | REPLACEMENT                    | TYPE              | REPLACEMENT                       |  |  |
| Fairchild (con't) |                                | Fairchild (con't) |                                   |  |  |
| 9317B             | DM5447A/7447A                  | 93197             | DM54197/74197                     |  |  |
| 9317C             | DM5446A/7446A                  | 93198             | DM54198/74198                     |  |  |
| 9318              | DM9318/8318                    | 93199             | DM54199/74199                     |  |  |
| 9321              | DM54LS139/74LS139              |                   | •                                 |  |  |
| 9322              | DM9322/8322                    | 9H00              | DM54H00/74H00                     |  |  |
| 9325              | DM54141/74141                  | 9H01              | DM54H01/74H01                     |  |  |
| 9341              | DM54181/74181                  | 9H04              | DM54H04/74H04                     |  |  |
| 9342              | DM54182/74182                  | 9H05              | DM54H05/74H05                     |  |  |
| 9345              | DM5445/7445                    | 9H08              | DM54H08/74H08                     |  |  |
| 9352              | DM5442/7442                    | 9H10              | DM54H10/74H10                     |  |  |
| 9357A             | DM5446A/7446A                  | 9H11              | DM54H11/74H11                     |  |  |
| 9357B             | DM5447A/7447A                  | 9H20              | DM54H20/74H20                     |  |  |
| 9358              | DM5448/7448                    | 9H21              | DM54H21/74H21                     |  |  |
| 9360              | DM54192/74192                  | 9H22              | DM54H22/74H22                     |  |  |
| 9366              | DM54193/74193                  | 9H30              | DM54H30/74H30                     |  |  |
| 9375              | DM5475/7475                    | 9H40              | DM54H40/74H40                     |  |  |
| 9377              | DM54LS77/74LS77                | 9H50              | DM54H50/74H50                     |  |  |
| 9383              | DM5483/7483                    | 9H51              | DM54H51/74H51                     |  |  |
| 9385              | DM5485/7485                    | 9H52              | DM54H52/74H52                     |  |  |
| 9390              | DM5490/7490                    | 9H53              | DM54H53/74H53                     |  |  |
| 9391              | DM5491A/7491A                  | 9H54              | DM54H54/74H54                     |  |  |
| 9392              | DM5492/7492                    | 9H55              | DM54H55/74H55                     |  |  |
| 9393              | DM5493/7493                    | 9H60              | DM54H60/74H60                     |  |  |
| 9395              | DM5495/7495                    | 9H61              | DM54H61/74H61                     |  |  |
| 9396              | DM5496/7496                    | 9H62              | DM54H62/74H62                     |  |  |
|                   |                                | 9H71              | DM54H71/74H71                     |  |  |
| 9601              | DM9601/8601                    | 9H72              | DM54H72/74H72                     |  |  |
| 9602              | DM9602/8602                    | 9H73              | DM54H73/74H73                     |  |  |
| 9603              | DM54121/74121                  | 9H74              | DM54H74/74H74                     |  |  |
|                   | 5                              | 9H76              | DM54H76/74H76                     |  |  |
| 93141             | DM54141/74141                  | 9H78              | DM54H78/74H78                     |  |  |
| 93145             | DM54145/74145                  | 9H103             | DM54H103/74H103                   |  |  |
| 93150             | DM54150/74150                  | 9H106             | DM54H106/74H106                   |  |  |
| 93151             | DM54151A/74151A                | 9H108             | DM54H108/74H108                   |  |  |
| 93153             | DM54153/74153                  | 311100            | B.1100,711100                     |  |  |
| 93155             | DM54155/74155                  | 93H00             | DM54LS195A/74LS195                |  |  |
| 93156             | DM54156/74156                  | 931100            | DIVID4E3195A/74E3195              |  |  |
| 93157             | DM54157/74157                  | 01.00*            | DM54L00/74L00                     |  |  |
| 93160             | DM54160A/74160A                | 9L00*<br>9L04*    |                                   |  |  |
| 93161             | DM54161A/74161A                | 9L04<br>9L24*     | DM54L04/74L04                     |  |  |
| 93162             | DM54162A/74162A                | 9L24<br>9L54*     | DM9024/8024<br>DM54L54/74L54      |  |  |
| 93163             | DM54163A/74163A                | 9L86*             | DM5486/7486                       |  |  |
| 93164             | DM54164/74164                  | 9L00              | DW0400/7480                       |  |  |
| 93165             | DM54165/74165                  | 93L00*            | DMEAL \$105 \ /7/1 \$105          |  |  |
| 93166             | DM54166/74166                  | 93L00<br>93L01*   | DM54LS195A/74LS195<br>DM9301/8301 |  |  |
| 93170             | DM74170                        | 93L09*            |                                   |  |  |
| 93174             | DM54174                        | 93L10*            | DM9309/8309<br>DM76L75/86L75      |  |  |
| 93175             | DM54174/74174<br>DM54175/74175 | 93L11*            |                                   |  |  |
| 93176             | DM54176/74176                  | 93L12*            | DM54L154A/74L154A<br>DM9312/8312  |  |  |
|                   |                                |                   |                                   |  |  |
| 93177             | DM54177/74177                  | 93L16*            | DM76L76/86L76                     |  |  |
| 93180             | DM54180/74180                  | 93L18*            | DM9318/8318                       |  |  |
| 93190             | DM54190/74190                  | 93L22*            | DM54L157A/74L157A                 |  |  |
| 93191             | DM54191/74191                  | 93L34*            | DM9334/8334                       |  |  |
| 93194             | DM54194/74194                  | 93L41*            | DM54181/74181                     |  |  |
| 93195             | DM54195/74195                  |                   | D14000C/0555                      |  |  |
| 93196             | DM54196/74196                  | 96L02*            | DM9602/8602                       |  |  |

| ★ TTL Data Box    | ook                                  | Industry Cross Reference Guide |                                       |  |  |  |  |
|-------------------|--------------------------------------|--------------------------------|---------------------------------------|--|--|--|--|
| DEVICE<br>TYPE    | NATIONAL DIRECT<br>REPLACEMENT       | DEVICE<br>TYPE                 | NATIONAL DIRECT<br>REPLACEMENT        |  |  |  |  |
| Fairchild (con't) |                                      | Fairchild (con't)              |                                       |  |  |  |  |
| 9LS00             | DM54LS00/74LS00                      | 9LS175                         | DM54LS175/74LS175                     |  |  |  |  |
| 9LS02             | DM54LS02/74LS02                      | 9LS181                         | DM54181/74181                         |  |  |  |  |
| 9LS03             | DM54LS03/74LS03                      | 9LS190                         | DM54LS190/74LS190                     |  |  |  |  |
| 9LS04             | DM54LS04/74LS04                      | 9LS191                         | DM54LS191/74LS191                     |  |  |  |  |
| 9LS05             | DM54LS05/74LS05                      | 9LS192                         | DM54LS192/74LS192                     |  |  |  |  |
| 9LS08             | DM54LS08/74LS08                      | 9LS193                         | DM54LS193/74LS193                     |  |  |  |  |
| 9LS09             | DM54LS09/74LS09                      | 9LS194                         | DM54LS194A/74LS194A                   |  |  |  |  |
| 9LS10 .           | DM54LS10/74LS10                      | 9LS195                         | DM54LS195A/74LS195A                   |  |  |  |  |
| 9LS11             | DM54LS11/74LS11                      | 9LS196                         | DM54LS196/74LS196                     |  |  |  |  |
| 9LS14             | DM54LS14/74LS14                      | 9LS197                         | <ul> <li>DM54LS197/74LS197</li> </ul> |  |  |  |  |
| 9LS15             | DM54LS15/74LS15                      | 9LS251                         | DM54LS251/74LS251                     |  |  |  |  |
| 9LS20             | DM54LS20/74LS20                      | 9LS253                         | DM54LS253/74LS253                     |  |  |  |  |
| 9LS21             | DM54LS21/74LS21                      | 9LS257                         | DM54LS257/74LS257                     |  |  |  |  |
| 9LS22             | DM54LS22/74LS22                      | 9LS258                         | DM54LS258/74LS258                     |  |  |  |  |
| 9LS27             | DM54LS27/74LS27                      | 9LS259                         | DM9334/8334                           |  |  |  |  |
| 9LS30             | DM54LS30/74LS30                      | 9LS266                         | DM54LS266/74LS266                     |  |  |  |  |
| 9LS32             | DM54LS32/74LS32                      | 9LS279                         | DM54LS279/74LS279                     |  |  |  |  |
| 9LS37             | DM54LS37/74LS37                      | 9LS283                         | DM54LS283/74LS283                     |  |  |  |  |
| 9LS38             | DM54LS38/74LS38                      | 9LS295                         | DM54LS295A/74LS295A                   |  |  |  |  |
| 9LS40             | DM54LS40/74LS40                      | 9LS298                         | DM54LS298/74LS298                     |  |  |  |  |
| 9LS42             | DM54LS42/74LS42                      | 9LS365                         | DM54LS365/74LS365                     |  |  |  |  |
| 9LS51             | DM54LS51/74LS51                      | 9LS366                         | DM54LS366/74LS366                     |  |  |  |  |
| 9LS54             | DM54LS54/74LS54                      | 9LS367                         | DM54LS367/74LS367                     |  |  |  |  |
| 9LS55             | DM54LS55/74LS55                      | 9LS368                         | DM54LS368/74LS368                     |  |  |  |  |
| 9LS73             | DM54LS73/74LS73                      | 9LS670                         | DM54LS670/74LS670                     |  |  |  |  |
| 9LS74             | DM54LS74/74LS74                      |                                |                                       |  |  |  |  |
| 9LS83             | DM54LS83A/74LS83A                    | 9N00                           | DM5400/7400                           |  |  |  |  |
| 9LS86             | DM54LS86/74LS86                      | 9N01                           | DM5401/7401                           |  |  |  |  |
| 9LS90             | DM54LS90/74LS90                      | 9N02                           | DM5402/7402                           |  |  |  |  |
| 9LS92             | DM54LS92/74LS92                      | 9N03                           | DM5403/7403                           |  |  |  |  |
| 9LS93             | DM54LS93/74LS93                      | 9N04                           | DM5404/7404                           |  |  |  |  |
| 9LS95             | DM54LS95B/74LS95B                    | 9N05                           | DM5405/7405                           |  |  |  |  |
| 9LS109            | DM54LS109/74LS109                    | 9N06                           | DM5406/7406                           |  |  |  |  |
| 9LS112            | DM54LS112/74LS112                    | 9N07                           | DM5407/7407                           |  |  |  |  |
| 9LS113            | DM54LS113/74LS113                    | 9N08                           | DM5408/7408                           |  |  |  |  |
| 9LS114            | DM54LS114/74LS114                    | 9N09                           | DM5409/7409                           |  |  |  |  |
| 9LS125            | DM54LS125/74LS125                    | 9N10                           | DM5410/7410                           |  |  |  |  |
| 9LS126            | DM54LS126/74LS126                    | 9N11                           | DM5411/7411                           |  |  |  |  |
| 9LS132            | DM54LS132/74LS132                    | 9N12                           | DM54LS12/74LS12                       |  |  |  |  |
| 9LS133            | DM74S133                             | 9N13                           | DM5413/7413                           |  |  |  |  |
| 9LS136            | DM54LS136/74LS136                    | 9N14                           | DM5414/7414                           |  |  |  |  |
| 9LS138            | DM54LS138/74LS138                    | 9N16                           | DM5416/7416                           |  |  |  |  |
| 9LS139            | DM54LS139/74LS139                    | 9N17                           | DM5417/7417                           |  |  |  |  |
| 9LS151            | DM54LS151/74LS151                    | 9N20                           | DM5420/7420                           |  |  |  |  |
| 9LS153            | DM54LS153/74LS153                    | 9N21                           | DM54LS21/74LS21                       |  |  |  |  |
| 9LS155            | DM54LS155/74LS155                    | 9N23                           | DM5423/7423                           |  |  |  |  |
| 9LS156            | DM54LS156/74LS156                    | 9N25                           | DM5425/7425                           |  |  |  |  |
| 9LS157            | DM54LS157/74LS157                    | 9N26                           | DM5426/7426                           |  |  |  |  |
| 9LS158            | DM54LS158/74LS158                    | 9N27                           | DM5427/7427                           |  |  |  |  |
| 9LS160            | DM54LS160/74LS160                    | 9N30                           | DM5430/7430                           |  |  |  |  |
| 9LS161            | DM54LS160/74LS160  DM54LS161/74LS161 | 9N32                           | DM5432/7432                           |  |  |  |  |
| 9LS162            | DM54LS161/74LS161                    | 9N37                           | DM5432/7432                           |  |  |  |  |
| 9LS162<br>9LS163  | DM54LS162/74LS162                    | 9N38                           | DM5438/7438                           |  |  |  |  |
| 9LS163<br>9LS164  | DM54LS163/74LS163                    | 9N39                           | DM5401/7401                           |  |  |  |  |
| 9LS170            | DM54LS170/74LS170                    | 9N40                           | DM5440/7440                           |  |  |  |  |
| 3L31/U            | . 1                                  |                                | UNUTTO//T4U                           |  |  |  |  |
| 9LS174            | DM54LS174/74LS174                    | 9N50                           | DM5450/7450                           |  |  |  |  |

| DEVICE            | NATIONAL DIRECT                       | DEVICE            | NATIONAL DIRECT                                  |
|-------------------|---------------------------------------|-------------------|--------------------------------------------------|
| TYPE              | REPLACEMENT                           | TYPE              | REPLACEMENT                                      |
| Fairchild (con't) |                                       | Fairchild (con't) |                                                  |
| 9N51              | DM5451/7451                           | 93S138            | DM74S138                                         |
| 9N53              | DM5453/7453                           | 93S139            | DM74S139                                         |
| 9N54              | DM5454/7454                           | 93S151            | DM74S151                                         |
| 9N60              | DM5460/7460                           | 93S153            | DM74S153                                         |
| 9N70              |                                       |                   |                                                  |
|                   | DM5470/7470                           | 93S157            | DM74S157                                         |
| 9N72              | DM5472/7472                           | 93\$158           | DM74S158                                         |
| 9N73              | DM5473/7473                           | 93S174            | DM74S174                                         |
| 9N74              | DM5474/7474                           | 93S175            | DM74S175                                         |
| 9N76              | DM5476/7476                           | 93S194            | DM74S194                                         |
| 9N86              | DM5486/7486                           | 93S251            | DM74S251                                         |
| 9N107             | DM54107/74107                         | 93S253            | DM74S253                                         |
| 9N122             | DM54LS122/74LS122                     | 93S257            | DM74S257                                         |
| 9N123             | DM54123/74123                         | 93S258            | DM74S258                                         |
| 9N132             | 1                                     | 555255            | DW1740250                                        |
|                   | DM54132/74132                         | 06503             | DM0602/9602                                      |
| 9N279             | DM54LS279/74LS279                     | 96S02             | DM9602/8602                                      |
| 9800              | DM74S00                               | Motorola          |                                                  |
| 9S02              | DM74S02                               | MC830             | DM030                                            |
|                   | i i                                   | MC830             | DM930                                            |
| 9S03              | DM74S03                               | MC832             | DM932                                            |
| 9S04A             | DM74S04                               | MC833             | DM933                                            |
| 9S05A             | DM74S05                               | MC836             | DM936                                            |
| 9S08              | DM74LS08                              | MC837             | DM937                                            |
| 9S09              | DM74LS09                              | MC840             | DM935                                            |
| 9S10              | DM74S10                               | MC844             | DM944                                            |
| 9S11              | DM74S11                               | MC845             | DM945                                            |
| 9S15              | DM74S15                               | MC846             | DM946                                            |
| 9820              | · · · · · · · · · · · · · · · · · · · | MC848             | DM948                                            |
|                   | DM74S20                               |                   |                                                  |
| 9S22              | DM74S22                               | MC849             | DM949                                            |
| 9S30              | DM74S30                               | MC852             | DM9099                                           |
| 9S <u>3</u> 2     | DM74LS32                              | MC853             | DM9093                                           |
| 9\$40             | DM74S40                               | MC855             | DM9097                                           |
| 9S51              | DM74S51                               | MC856             | DM9094                                           |
| 9S64              | DM74S64                               | MC857             | DM957                                            |
| 9S65              | DM74S65                               | MC858             | DM958                                            |
| 9S74              | DM74S74                               | MC861             | DM961                                            |
|                   |                                       |                   |                                                  |
| 9S86              | DM74S86                               | MC862             | DM962                                            |
| 9S109             | DM74LS109                             | MC863             | DM963                                            |
| 9S112             | DM74S112                              | •                 |                                                  |
| 9S113             | DM74S113                              | MC1800            | DM1800                                           |
| 9S114             | DM74S114                              | MC1801            | DM1801                                           |
| 9S132             | DM54LS132/74LS132                     |                   | en german en |
| 9S133             | DM74S133                              | Signetics         |                                                  |
| 9S134             | DM74S134                              | 8230              | DM9312/8312                                      |
| 9S135             | DM743134<br>DM74S135                  |                   |                                                  |
|                   | į.                                    | 82S30             | DM9312/8312                                      |
| 9S140             | DM74S140                              | 8241              | DM54LS386/74LS386                                |
| 00000             | DM740465                              | 82S41             | DM54LS386/74LS386                                |
| 93S00             | DM74S195                              | 8252              | DM9301/8301                                      |
| 93\$10            | DM54LS160/74LS160                     | 82\$52            | DM9301/8301                                      |
| 93S12             | DM9312/8312                           | 8269              | DM7200/8200                                      |
| 93S16             | DM54LS161/74LS161                     | 8280              | DM7280/8280                                      |
| 93S21             | DM74S139                              | 82S80             | DM54LS196/74LS196                                |
| 93S22             | DM74S157                              | 8281              | DM7281/8281                                      |
| 93S41             | DM54181/74181                         |                   | DM54LS197/74LS197                                |
|                   |                                       | 82S81             |                                                  |
| 93\$42            | DM74S182                              | 8290              | DM7290/8290                                      |
| 93S46             | DM7160/8160                           | 82S90             | DM54LS196/74LS196                                |
| 93S47             | DM7160/8160                           | 8291              | DM7291/8291                                      |

| TTL Data Bo       | ook                        | Industry Cross Reference Guide |                 |  |  |  |  |
|-------------------|----------------------------|--------------------------------|-----------------|--|--|--|--|
| DEVICE            | NATIONAL DIRECT            | DEVICE                         | NATIONAL DIRECT |  |  |  |  |
| TYPE              | REPLACEMENT                | TYPE                           | REPLACEMENT     |  |  |  |  |
| Signetics (con't) |                            | TI (con't)                     |                 |  |  |  |  |
| 82S91             | DM54LS197/74LS197          | SN15848                        | DM948           |  |  |  |  |
| 8292              | DM54LS196/74LS196          | SN15849                        | DM949           |  |  |  |  |
| 8293              | DM54LS197/74LS197          | SN15857                        | DM957           |  |  |  |  |
| 82147             | DM54147/74147              | SN15858                        | DM958           |  |  |  |  |
| 82148             | DM54148/74148              | SN15861                        | DM961           |  |  |  |  |
| 82148             | DW34148/74148              | ı                              |                 |  |  |  |  |
| 0445              | D111000                    | SN15862                        | DM962           |  |  |  |  |
| 8415              | DM1800                     | SN15863                        | DM963           |  |  |  |  |
| 8455              | DM5440/7440                | SN151800                       | DM1800          |  |  |  |  |
| 8470              | DM5410/7410                | SN151801                       | DM1801          |  |  |  |  |
| 8471              | DM54LS12/74LS12            | SN158093                       | DM9093          |  |  |  |  |
| 8480              | DM5400/7400                | SN158094                       | DM9094          |  |  |  |  |
| 8481              | DM5403/7403                | SN158097                       | DM9097          |  |  |  |  |
| 8490              | DM5404/7404                | SN158099                       | DM9099          |  |  |  |  |
| 8806              | DM5460/7460                | SN29002                        | DM9002C         |  |  |  |  |
| 8808              | DM5430/7430                | SN29003                        | DM9003C         |  |  |  |  |
| 8815              | DM5425/7425                | CNOODA                         | DM9004C         |  |  |  |  |
| 8828              | DM5474/7474                | SN29005                        | DM9004C         |  |  |  |  |
| 8840              | DM5474/7474<br>DM5451/7451 | SN29005<br>SN29006             | DM9005C         |  |  |  |  |
|                   |                            |                                |                 |  |  |  |  |
| 8848              | DM54LS54/74LS54            | SN29008                        | DM9008C         |  |  |  |  |
| 8859              | DM5440/7440                | SN29009                        | DM9009C         |  |  |  |  |
| 8875              | DM5427/7427                | SN29012                        | DM9012C         |  |  |  |  |
| 8881              | DM5401/7401                | SN29016                        | DM9016C         |  |  |  |  |
| 8890              | DM5404/7404                | SN29024                        | DM8024          |  |  |  |  |
| 8891              | DM5405/7405                | SN29300                        | DM8300          |  |  |  |  |
| •                 |                            | SN29301                        | DM8301          |  |  |  |  |
| 8H16              | DM54H20/74H20              | SN29309                        | DM8309          |  |  |  |  |
| 8H70              | DM54H10/74H10              | SN29310                        | DM8310          |  |  |  |  |
| 8H80              | DM54H00/74H00              | SN29311                        | DM8311          |  |  |  |  |
| 8H90              | DM54H04/74H04              | SN29312                        | DM8312          |  |  |  |  |
| 01.00             | DW041104/741104            | SN29316                        | DM8316          |  |  |  |  |
| 8T10              | DM7551/8551                | SN29318                        |                 |  |  |  |  |
| 8T22              | DM9601/8601                |                                | DM8318          |  |  |  |  |
|                   |                            | SN29322                        | DM8322          |  |  |  |  |
| 8T54              | DM5448/7448                | SN29334                        | DM8334          |  |  |  |  |
| 8T95              | DM7095/8095                | SN29601                        | DM8601          |  |  |  |  |
| 8T96              | DM7096/8096                | SN29602                        | DM8602          |  |  |  |  |
| 8T97              | DM7097/8097                | 1                              |                 |  |  |  |  |
| 8T98              | DM7098/8098                | SN39024                        | DM9024          |  |  |  |  |
|                   |                            | SN39300                        | DM9300          |  |  |  |  |
|                   |                            | SN39301                        | DM9301          |  |  |  |  |
| TI                |                            | SN39309                        | DM9309          |  |  |  |  |
| SN15830           | DM930                      | SN39310                        | DM9310          |  |  |  |  |
| SN15832           | DM932                      | SN39311                        | DM9311          |  |  |  |  |
| SN15833           | DM933                      | SN39312                        | DM9312          |  |  |  |  |
| SN15835           | DM935                      | SN39316                        | DM9312          |  |  |  |  |
| SN15836           | DM936                      | SN39318                        | DM9318          |  |  |  |  |
| N 1               | DM937                      | 1                              |                 |  |  |  |  |
| SN15837           |                            | SN39322                        | DM9322          |  |  |  |  |
| SN15844           | DM944                      | SN39334                        | DM9334          |  |  |  |  |
| SN15845           | DM945                      | SN39601                        | DM9601          |  |  |  |  |
| SN15846           | DM946                      | SN39602                        | DM9602          |  |  |  |  |
|                   | •                          |                                |                 |  |  |  |  |
|                   |                            |                                |                 |  |  |  |  |
|                   |                            |                                |                 |  |  |  |  |
|                   |                            |                                |                 |  |  |  |  |







The following pages contain functional indexes and selection guides designed to simplify the choice of a particular function to fit a specific application. Essential characteristics of similar or like functions are grouped for comparative analysis, and the electrical specifications are referenced by page number. The following categories of functions are covered:

### SSI FUNCTIONS

| -AND Gates with Totem-Pole Outputs                     |        |
|--------------------------------------------------------|--------|
| AND Gates with Open-Collector Outputs                  | xxvi   |
| AND-OR-INVERT Gates with Totem-Pole Outputs            | xxvi   |
| AND-OR-INVERT Gates with Open-Collector Outputs.       |        |
| Buffers/Clock Drivers with Totem-Pole Outputs          |        |
|                                                        |        |
| Buffer and Interface Gates with Open-Collector Outputs |        |
| Bus Interface Gates with TRI-STATE Totem-Pole Outputs  | xxviii |
| Clock Generators.                                      | xxviii |
| Expandable Gates                                       | xxviii |
| Expanders                                              |        |
| Flip-Flops. Gated                                      | xxix   |
|                                                        |        |
| Flip-Flops, Single and Dual J-K Edge-Triggered         |        |
| Flip-Flops, Dual D-Type                                | XXX    |
| Flip-Flops, Single and Dual Pulse-Triggered            | XXX    |
| Latches, S-R                                           | xxxi   |
| Line Drivers, 50-Ohm/75-Ohm.                           | xxxi   |
| NAND Gates and Inverters with Open-Collector Outputs   | xxxi   |
| NAND Gates and Inverters with Totem-Pole Outputs.      | xxxii  |
| NOR Gates with Totem-Pole Outputs                      |        |
| ·                                                      |        |
| One Shots, Retriggerable.                              |        |
| One Shots with Schmitt-Trigger Inputs                  |        |
| OR Gates with Totem-Pole Outputs                       | xxxiii |
|                                                        |        |

Schmitt-Triggers with Totem-Pole Outputs.....xxxiii

#### **MSI FUNCTIONS**

| Accumulators, Arithmetic Logic Units, Look-Ahead Carry Generators. | xxxiv   |
|--------------------------------------------------------------------|---------|
| Arithmetic Operators                                               | xxxiv   |
| Code Converters                                                    | xxxiv   |
| Comparators                                                        | xxxv    |
| Counters, Asynchronous (Ripple Clock)—Negative-Edge Triggered      | xxxv    |
| Counters, Synchronous—Positive-Edge Triggered                      | xxxvi   |
| Data Selectors/Multiplexers                                        | xxxvii  |
| Decoders/Demultiplexers                                            | xxxviii |
| Display Decoders/Drivers, Open-Collector                           | xxxviii |
| Latches                                                            | xxxix   |
| Multipliers                                                        | xxxix   |
| Parity Generators/Checkers                                         | xxxix   |
| Priority Encoders                                                  |         |
| Register Files                                                     | xxxix   |
| Registers, Other                                                   |         |
| Registers Shift                                                    | хl      |



### AND GATES WITH TOTEM-POLE OUTPUTS

|                          | Тур.                      | Typ. Power              | D      | evice Type a | Connection | Electrical |                     |                 |
|--------------------------|---------------------------|-------------------------|--------|--------------|------------|------------|---------------------|-----------------|
| Description              | Propagation<br>Delay Time | Dissipation<br>Per Gate | Mil.   |              | Com        | ıl.        | Diagram<br>Page No. | Tables Page No. |
| Dual 4-Input AND Gates   | 8.2 ns                    | 40 mW                   | 54H21  | J,N          | 74H21      | J,N        | 1-7                 | 1-44            |
| •                        | 12 ns                     | 4.25 mW                 | 54LS21 | J,N,W        | 74LS21     | J,N        | 1-7                 | 1-44            |
| Triple 3-Input AND Gates | 4.75 ns                   | 31 mW                   |        |              | 74S11      | N          | 1-5                 | 1-44            |
|                          | 8.2 ns                    | 40 mW                   | 54H11  | J,N          | 74H11      | J,N        | 1-5                 | 1-44            |
| ,                        | 12 ns                     | 4.25 mW                 | 54LS11 | J,N,W        | 74LS11     | J,N        | 1-5                 | 1-44            |
| Quad 2-Input AND Gates   | 12 ns                     | 4.25 mW                 | 54LS08 | J,N,W        | 74LS08     | J,N        | 1-4                 | 1-44            |
|                          | 15 ns                     | 19 mW                   | 5408   | J,N,W        | 7408       | J,N        | 1-4                 | 1-44            |

### AND GATES WITH OPEN-COLLECTOR OUTPUTS

| Description              | Typ.<br>Propagation |                    |                | vice Type a | and Package     | Connection<br>Diagram | Electrical |                |  |
|--------------------------|---------------------|--------------------|----------------|-------------|-----------------|-----------------------|------------|----------------|--|
| Description              | Delay Time          | Per Gate           | Mi             | ii.         | Com             | ı.                    | Page No.   | Tables Page No |  |
| Triple 3-Input AND Gates | 6 ns<br>20 ns       | 28 mW<br>4.25 mW   | 54LS15         | J,N,W       | 74S15<br>74LS15 | J,N                   | 1-6<br>1-6 | 1-46<br>1-46   |  |
| Quad 2-Input AND Gates   | 18.5 ns<br>20 ns    | 19.4 mW<br>4.25 mW | 5409<br>54LS09 | M'N'r       | 7409<br>74LS09  | J,N                   | 1-4<br>1-4 | 1-46<br>1-46   |  |

### AND-OR-INVERT GATES WITH TOTEM-POLE OUTPUTS

| Description          | Typ.<br>Propagation | Typ. Power<br>Dissipation | De     | vice Type a | ınd Package |     | Connection<br>Diagram | Electrical      |  |
|----------------------|---------------------|---------------------------|--------|-------------|-------------|-----|-----------------------|-----------------|--|
| Description          | Delay Time          | Per Gate                  | Mi     | 1.          | Coml.       |     | Page No.              | Tables Page No. |  |
| 2-Wide 4-Input       | 12.5 ns             | 2.75 mW                   | 54LS55 | J,N,W       | 74LS55      | J,N | 1-15                  | 1-56            |  |
|                      | 43 ns               | 1.5 mW                    | 54L55  | J,N,W       | 74L55       | J,N | 1-15                  | 1-56            |  |
| Dual 2-Wide 2-Input  | 3.5 ns              | 28 mW                     |        |             | 74S51       | N   | 1-12                  | 1-56            |  |
|                      | 6.5 ns              | 29 mW                     | 54H51  | J,N         | 74H51       | J,N | 1-12                  | 1-56            |  |
|                      | 10.5 ns             | 14 mW                     | 5451   | J,N,W       | 7451        | J,N | 1-12                  | 1-56            |  |
|                      | 12.5 ns             | 2.75 mW                   | 54LS51 | J,N,W       | 74LS51      | J,N | 1-12                  | 1-56            |  |
|                      | 43 ns               | 1.5 mW                    | 54L51  | N,N,U       | 74L51       | J,N | 1-12                  | 1-56            |  |
| 4-Wide 4-2-3-2-Input | 3.5 ns              | 29 mW                     |        |             | 74864       | N   | 1-16                  | 1-56            |  |
| 4-Wide 2-2-3-2-Input | 6.6 ns              | 41 mW                     | 54H54  | J,N         | 74H54       | J,N | 1-14                  | 1-56            |  |
| 4-Wide 2-Input       | 10.5 ns             | 23 mW                     | 5454   | J,N,W       | 7454        | J,N | 1-14                  | 1-56            |  |
| 4-Wide 2-3-3-2-Input | 12.5 ns             | 4.5 mW                    | 54LS54 | J,N,W       | 74LS54      | J,N | 1-14                  | 1-56            |  |
| 4-Wide 2-3-3-2-Input | 43 ns               | 1.5 mW                    | 54L54  | J,N,W       | 74L54       | J,N | 1-14                  | 1-56            |  |



### AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS

| Description          | Typ. Typ. Power |          | Device Type | and Package |     | Connection<br>Diagram | Electrical      |  |
|----------------------|-----------------|----------|-------------|-------------|-----|-----------------------|-----------------|--|
|                      | Delay Time      | Per Gate | Mil.        | Con         | ıl. | Page No.              | Tables Page No. |  |
| 4-Wide 4-2-3-2-Input | 5.5 ns          | 36 mW    |             | 74S65 N     |     | 1-17                  | 1-61            |  |

# BUFFERS/CLOCK DRIVERS WITH TOTEM-POLE OUTPUTS (ALSO SEE CLOCK GENERATOR CIRCUITS)

| Description       | Low-Level<br>Output | High-Level<br>Output | Typ.<br>Delay | Typ. Power<br>Per | De     | vice Type | and Package |     | Connection          | Electrical<br>Tables |  |
|-------------------|---------------------|----------------------|---------------|-------------------|--------|-----------|-------------|-----|---------------------|----------------------|--|
| Description       | Current Current     |                      | Time Gate     |                   | Mil.   |           | Coml.       |     | Diagram<br>Page No. | Page No.             |  |
| Dual 4-Input NAND | 60 mA               | −3 mA                | 4 ns          | 44 mW             |        |           | 74S40       | N   | 1-11                | 1-54                 |  |
| Buffers           | 60 mA               | −1.5 mA              | 7.5 ns        | 44 mW             | 54H40  | J,N       | 74H40       | J,N | 1-11                | 1-54                 |  |
|                   | 48 mA               | −1.2 mA              | 10.5 ns       | 26 mW             | 5440   | J,N,W     | 7440        | J,N | 1-11                | 1-54                 |  |
|                   | 24 mA               | −1.2 mA              | 12 ns         | 4.3 mW            |        |           | 74LS40      | J,N | 1-11                | 1-54                 |  |
|                   | 12 mA               | −1.2 mA              | 12 ns         | 4.3 mW            | 54LS40 | J,N,W     |             |     | 1-11                | 1-54                 |  |
| Quad 2-Input NAND | 48 mA               | −1.2 mA              | 10 ns         | 25 mW             | 7091   | J,N,W     | 8091        | J,N | 3-3                 | 3-4                  |  |
| Buffers           | 48 mA               | −1.2 mA              | 10.5 ns       | 27 mW             | 5437   | J,N,W     | 7437        | J,N | 1-10                | 1-54                 |  |
|                   | 24 mA               | −1.2 mA              | 12 ns         | 4.3 mW            |        |           | 74LS37      | J,N | 1-10                | 1-54                 |  |
|                   | 12 mA               | −1.2 mA              | 12 ns         | 4.3 mW            | 54LS37 | J,N,W     |             |     | 1-10                | 1-54                 |  |

### BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS

| Description           | High-Level<br>Output | Low-Level | Typ.<br>Delay | Typ. Power<br>Per | De     | vice Type | and Package |     | Connection<br>Diagram | Electrical<br>Tables |
|-----------------------|----------------------|-----------|---------------|-------------------|--------|-----------|-------------|-----|-----------------------|----------------------|
| Description           | Voltage              | Current   | Time          | Gate              | Mi     | 1.        | Com         | ıl. | Page No.              | Page No.             |
| Quad 2-Input NAND     | 15V                  | 16 mA     | 13.5 ns       | 10 mW             | 5426   | J,N       | 7426        | J,N | 1-9                   | 1-42                 |
| Buffers               | 15V                  | 8 mA      | 16 ns         | 2 mW              |        |           | 74LS26      | J,N | 1-9                   | 1-42                 |
|                       | 15V                  | 4 mA      | 16 ns         | 2 mW              | 54LS26 | J,N,W     |             |     | 1-9                   | 1-42                 |
| 7                     | 5.5V                 | 48 mA     | 12.5 ns       | 24.4 mW           | 5438   | J,N,W     | 7438        | J,N | 1-10                  | 1-42                 |
|                       | 5.5V                 | 24 mA     | 19 ns         | 4.3 mW            |        |           | 74LS38      | J,N | 1-10                  | 1-42                 |
|                       | 5.5V                 | 12 mA     | 19 ns         | 4.3 mW            | 54LS38 | J,N,W     |             |     | 1-10                  | 1-42                 |
| Hex Buffers/Drivers   | 30V                  | 40 mA     | 13 ns         | 21 mW             |        |           | 7407        | J,N | 1-3                   | 1-42                 |
|                       | 30V                  | 30 mA     | 13 ns         | 21 mW             | 5407   | J,N,W     |             |     | 1-3                   | 1-42                 |
|                       | 15V                  | 40 mA     | 13 ns         | 21 mW             |        |           | 7417        | J,N | 1-7                   | 1-42                 |
| *                     | 15V                  | 30 mA     | 13 ns         | 21 mW             | 5417   | J,N,W     | ,           |     | 1-7                   | .1-42                |
| Hex Inverter Buffers/ | 30V                  | 40 mA     | 12.5 ns       | 26 mW             |        |           | 7406        | J,N | 1-3                   | 1-42                 |
| Drivers               | 30∨                  | 30 mA     | 12.5 ns       | 26 mW             | 5406   | J,N,W     |             |     | 1-3                   | 1-42                 |
|                       | 15V                  | 40 mA     | 12.5 ns       | 26 mW             |        |           | 7416        | J,N | 1-6                   | 1-42                 |
| 1                     | 15V                  | 30 mA     | 12.5 ns       | 26 mW             | 5416   | J,N,W     |             |     | 1-6                   | 1-42                 |



### BUS INTERFACE GATES WITH TRI-STATE TOTEM-POLE OUTPUTS

| Barrier Military         | Тур.                      | Typ. Power              | D      | evice Type a | nd Package |       | Connection          | Electrical Table |
|--------------------------|---------------------------|-------------------------|--------|--------------|------------|-------|---------------------|------------------|
| Description              | Propagation<br>Delay Time | Dissipation<br>Per Gate | M      | il.          | Com        | l.    | Diagram<br>Page No. | Page No.         |
| Quad Bus Buffers         | 10 ns                     | 40 mW                   | 54125  | J,N,W        | 74125      | J,N   | 1-27                | 1-80             |
| <u>.</u>                 | 10 ns                     | 45 mW                   | 54126  | J,N,W        | 74126      | J,N   | 1-27                | 1-80             |
|                          | 10 ns                     | 40 mW                   | 7093   | J,N,W        | 8093       | J,N   | 3-5                 | 3-6              |
|                          | 10 ns                     | 45 mW                   | 7094   | J,N,W        | 8094       | J,N   | 3-5                 | 3-6              |
|                          | . 9 ns                    | 30 mW                   | 7099   | J,N,W        | 8099       | J,N   | 3-9                 | 3-10             |
| Hex Bus Drivers          | 12 ns                     | 54 mW                   | 54365  | J,W          | 74365      | J,N   | 1-32                | 1-86             |
|                          | 12 ns                     | 54 mW                   | 54367  | J,W .        | 74367      | J,N   | 1-32                | 1-86             |
|                          | 12 ns                     | 54 mW                   | 7095   | J,W          | 8095       | J,N   | 3-7                 | 3-8              |
|                          | 12 ns                     | 54 mW                   | 7097   | J,W          | 8097       | J,N   | 3-7                 | 38               |
|                          | 33 ns                     | 3.3 mW                  | 70L95  | W,N,L        | 80L95      | · J,N | 3-7                 | 3-8              |
|                          | 33 ns                     | 3.3 mW                  | 70L97  | J,N,W        | 80L97      | J,N   | 3-7                 | 3-8              |
| Hex Inverter Bus Drivers | 11 ns                     | 49 mW                   | 54366  | J,W          | 74366      | J,N   | 1-32                | 1-86             |
|                          | 11 ns                     | 49 mW                   | 54368  | J,W          | 74368      | J,N   | 1-33                | 1-86             |
|                          | 11 ns                     | 49 mW                   | 7096   | J,W          | 8096       | J,N   | 3-7                 | 3-8              |
|                          | 11 ns                     | 49 mW                   | 7098   | J,W          | 8098       | J,N   | 3-7                 | 3-8              |
|                          | 30 ns                     | 2.5 mW                  | 70L96  | J,N,W        | 80L96      | J,N   | 3-7                 | 3-8              |
|                          | 30 ns                     | 2.5 mW.                 | 70L98  | J,N,W        | 80L98      | J,N   | 3-7                 | 3-8              |
| Octal Drivers            | 13 ns                     | 10 mW                   | 71LS95 | N.           | 81LS95     | N     | 3-21                | 3-22             |
| •                        | 13 ns                     | 10 mW                   | 71LS97 | N            | 81LS97     | N     | 3-21                | 3-22             |
| Octal Inverter Drivers   | 9.5 ns                    | 8 mW                    | 71LS96 | N            | 81LS96     | N     | 3-21                | - 3-22           |
|                          | 9.5 ns                    | 8 mW                    | 71LS98 | N            | 81LS98     | N     | 3-21                | 3-22             |
| 12-Input NAND Gates      | 4.5 ns                    | 45 mW                   |        |              | 74S134     | N     | 1-28                | 1-80             |

### **CLOCK GENERATORS**

| Description                         | Typ. Total<br>Power | ,       | Device Type a | ınd Package |     | Connection          | Electrical<br>Tables |
|-------------------------------------|---------------------|---------|---------------|-------------|-----|---------------------|----------------------|
| Description                         | Dissipation         | Mil     | ı <b>.</b>    | Coml.       |     | Diagram<br>Page No. | Page No.             |
| Dual Voltage-Controlled Oscillators | 90 mW               | 54LS124 | J,N,W         | 74LS124     | J,N | 2-44                | 2-45                 |

#### **EXPANDABLE GATES**

| Description                        | Typ. Typ. Power Propagation Dissipation |                | De            | vice Type a  | Connection     | Electrical |                     |                    |  |
|------------------------------------|-----------------------------------------|----------------|---------------|--------------|----------------|------------|---------------------|--------------------|--|
| Description                        | Delay Time                              | Per Gate       | Mil.          |              | Coml.          |            | Diagram<br>Page No. | Tables<br>Page No. |  |
| 2-Wide AND-OR-INVERT Gates         | 6.8 ns                                  | 30 mW          | 54H55         | J,N          | 74H55          | J,N        | 1-15                | 1-50               |  |
| Dual 2-Wide AND-OR-INVERT Gates    | 6.5 ns<br>10.5 ns                       | 29 mW<br>14 mW | 54H50<br>5450 | J,N,W        | 74H50<br>7450. | J,N<br>J,N | 1-11<br>- 1-11      | 1-50<br>1-50       |  |
| 4-Wide AND-OR Gates                | 9.9 ns                                  | 88 mW          | 54H52         | J,N          | 74H52          | J,N        | 1-13                | 1-50               |  |
| 4-Wide AND-OR-INVERT Gates         | 6.6 ns<br>10.5 ns                       | 41 mW<br>23 mW | 54H53<br>5453 | J,N,W<br>J,N | 74H53<br>7453  | J,N<br>J,N | 1-13<br>1-13        | 1-50<br>1-50       |  |
| Dual 4-Input NOR Gates With Strobe | 10.5 ns                                 | 23 mW          | 5423          | J,N,W        | 7423           | J,N        | 1-8                 | 1-50               |  |

### **EXPANDERS**

|                                | Typ. Power              |               | Device Type a | nd Package    |       | Connection          | Electrical Tables |
|--------------------------------|-------------------------|---------------|---------------|---------------|-------|---------------------|-------------------|
| Description                    | Dissipation<br>Per Gate | M             | iil.          | Com           | nļ.   | Diagram<br>Page No. | Page No.          |
| Dual 4-Input Expanders         | 4 mW<br>6 mW            | 5460<br>54H60 | N,U,U         | 7460<br>74H60 | J,N   | 1-15<br>1-15        | 1-58<br>1-59      |
| 3-2-2-3-Input AND-OR Expanders | 25 mW                   | 54H62         | J,N           | 74H62         | Ú,μ   | 1-16                | 1-59              |
| Triple 3-Input Expanders       | 13 mW                   | 54H61         | J,N           | 74H61         | J,N . | 1-16                | 1-60              |

#### FLIP-FLOPS, GATED

| Typ. Ch                   | aracteristics   | Data <sup>*</sup> | Times        | }     | Device Type a | and Package |     | Connection          | Electrical Tables |
|---------------------------|-----------------|-------------------|--------------|-------|---------------|-------------|-----|---------------------|-------------------|
| <sup>f</sup> MAX<br>(MHz) | Pwr/F-F<br>(mW) | Setup<br>(ns)     | Hold<br>(ns) | M     | iil.          | Com         | 1.  | Diagram<br>Page No. | Page No.          |
| 45                        | 105             | 15                | 0            | 7511  | J,N,W         | 8511        | J,N | 3-40                | 3-41              |
| 30                        | 73              | 24                | 0            | 7613  | J,N,W         | 8613        | J,N | 3-40                | 3-41              |
| 28                        | 110             | 15                | 0            | 7512  | J,N,W         | 8512        | J,N | 3-40                | 3-41              |
| 10                        | 8.0             | 110               | 0            | 75L12 | N,N,L         | 85L12       | J,N | 3-40                | 3-41              |
| 9                         | 9.3             | 80                | 0            | 75L11 | J,N,W         | 85L11       | J,N | 3-40                | 3-41              |
| 7                         | 7.3             | 100               | 0            | 76L13 | J,N,W         | 86L13       | J,N | 3-40                | 3-41              |

### FLIP-FLOPS, SINGLE AND DUAL J-K EDGE TRIGGERED

| _            | Typ. Cha      | racteristics    | Data          | Times        | ı       | Device Type a | and Package |     | Connection          | Electrical         |
|--------------|---------------|-----------------|---------------|--------------|---------|---------------|-------------|-----|---------------------|--------------------|
| Dwg.<br>Ref. | fMAX<br>(MHz) | Pwr/F-F<br>(mW) | Setup<br>(ns) | Hold<br>(ns) | Mil     |               | Comi        | l.  | Diagram<br>Page No. | Tables<br>Page No. |
| Α            | 125           | 75              | 6↓            | 01           |         |               | 74S112      | N   | 1-24                | 1-70               |
|              | 50            | 100             | 13↓           | <b>O</b> ↓   | 54H106  | J,N           | 74H106      | J,N | 1-23                | 1 74               |
|              | 45            | 10              | 20↓           | 01           | 54LS76  | J,N,W         | 74LS76      | N   | 1-21                | 1-68               |
|              | 45            | 10              | 20↓           | <b>O</b> †   | 54LS112 | J,N,W         | 74LS112     | J,N | 1-24                | 1-68               |
| В            | 125           | 75              | 6↓            | 01           |         |               | 745114      | N   | 1-25                | 1-70               |
|              | 50            | 100             | 13↓           | 0↓           | 54H108  | J,N           | 74H108      | J,N | 1-24                | 1-74               |
|              | 45            | 10              | 20↓           | 01           | 54LS78  | J,N,W         | 74LS78      | J,N | 1-21                | 1-68               |
|              | 45            | 10              | 20↓           | 0↓           | 54LS114 | J,N,W         | 74LS114     | J,N | 1-25                | 1-68               |
| C            | 125           | 75              | 6↓            | 0‡           |         |               | 74S113      | N   | 1-25                | 1-70               |
|              | 45            | 10              | 20↓           | 01           | 54LS113 | J,N,W         | 74LS113     | J,N | 1.25                | 1-68               |
| . D          | 50            | 100             | 13↓           | 01           | 54H103  | J,N           | 74H103      | J,N | 1-23                | 1-74               |
|              | 45            | 10              | 201           | <b>O</b> ↓   | 54LS73  | J,N,W         | 74LS73      | J,N | 1-20                | 1-68               |
|              | 45            | 10              | 20↓.          | Ot           | 54LS107 | J,N           | 74LS107     | J,N | 1-23                | 1-68               |
| E            | 40            | 45              | 15↑           | 101          | 9024    | J,N,W         | 8024        | J,N | 4-17                | 4-17               |
|              | 33            | 10              | 20↑           | 51           | 54LS109 | J,N,W         | 74LS109     | J,N | 1-24                | 1-68               |
|              | 33            | 45              | 10 ๋↑         | 6↑           | 54109   | J,N,W         | 74109       | J,N | 1-24                | 1-62               |
| F            | 35            | 65              | 20↑           | 5↑           | 5470    | J,N,W         | 7470        | J,N | 1-18                | 1-62               |

<sup>↑↓</sup>The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge, ↓ for the falling edge.



### FLIP-FLOPS, DUAL D-TYPE

|              | Typ. Cha                                                    | racteristics | s Data Times |       | `:     | Device Type | Connection          | Electrical         |      |      |
|--------------|-------------------------------------------------------------|--------------|--------------|-------|--------|-------------|---------------------|--------------------|------|------|
| Dwg.<br>Ref. | f <sub>MAX</sub> Pwr/F-F Setup Hold<br>(MHz) (mW) (ns) (ns) |              | Mil.         |       | Coml.  |             | Diagram<br>Page No. | Tables<br>Page No. |      |      |
| . G          | 110 75 31 21                                                |              |              |       | 74874  | N           | 1-20                | 1-70               |      |      |
|              | 43                                                          | 75           | . 15↑        | 5↑    | 54H74  | J,N         | 74H74               | J,N                | 1-20 | 1-64 |
|              | 33                                                          | 10           | 25↑          | 5↑    | 54LS74 | J,N,W       | 74LS74              | J,N                | 1-20 | 1-68 |
|              | 25                                                          | 43           | 20↑          | 5↑    | 5474   | J,N,W       | 7474                | J,N                | 1-20 | 1-62 |
|              | 6                                                           | 4            | 50↑          | 15↑ . | 54L74  | J,N,W       | 74L74               | J,N                | 1-20 | 1-66 |

<sup>↑↓</sup>The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge, ↓ for the falling edge.



### FLIP-FLOPS, SINGLE AND DUAL PULSE-TRIGGERED

| _            | Typ. Cha      | racteristics    | Data          | Times        |         | Device Type | and Package |      | Connection          | Electrical         |
|--------------|---------------|-----------------|---------------|--------------|---------|-------------|-------------|------|---------------------|--------------------|
| Dwg.<br>Ref. | fMAX<br>(MHz) | Pwr/F-F<br>(mW) | Setup<br>(ns) | Hold<br>(ns) | Mi      | l.          | Com         | l. , | Diagram<br>Page No. | Tables<br>Page No. |
| Н            | 30            | 80              | 0↑            | . 0↑         | 54H73   | J,N -       | 74H73       | JN   | 1-20                | 1-64               |
|              | 20            | 50              | 0↑            | <b>0</b> ↓   | 5473    | J,N,W       | 7473        | J,N  | 1-20                | 1-62               |
|              | 20            | 50              | 0↑.           | 0.           | 54107   | J,N:        | 74107       | J,N  | 1-23                | 1-62               |
|              | 6             | 3.8             | 0↑            | Oţ           | 54L73   | J,N,W       | 74L73       | J,N  | 1-20                | 1-66               |
| ŀ            | . 30          | 80              | 01            | 01           | - 54H76 | J,N         | 74H76       | J,N  | 1-21                | 1-64               |
|              | 20            | 50              | O† .          | <b>O</b> ↓   | 5476    | J,N,W       | 7476        | J,N  | 1-21                | 1-62               |
| J            | 30            | 80              | 01            | 0.           | 54H78   | J,N         | 74H78       | J,N  | 1-21                | 1-64               |
|              | 6             | 3.8             | 01            | <b>0</b> ↓   | 54L78   | J,N,W       | 74L78       | J,N  | 1-21                | 1-66               |
| Ķ            | 30            | 80              | 01            | 0↓           | 54H71   | J,N         | 74H71       | J,N  | 1-18                | 1-64               |
| L            | 30            | 80              | 01            | 01           | 54H72   | J,N         | 74H72       | J,N  | 1-19                | 1-64               |
|              | ` 20          | 50              | 0↑            | 0↓           | 5472    | J,N,W       | 7472        | J,N  | 1-19                | 1-62               |
|              | 6             | 3.8             | 01            | <b>O</b> ‡   | 54L72   | J,N,W       | 74L72       | J,N  | 1-19                | 1-66               |
| M            | 6             | 3.8             | 01            | 01           | 54L71   | J,N,W       | 74L71       | J;N  | 1-19                | 1-66               |





# LATCHES, S-R

| Description      | Typ. Typ. Total Propagation Power |             | I.      | Device Type | and Package |     | Connection<br>Diagram | Electrical<br>Tables |  |
|------------------|-----------------------------------|-------------|---------|-------------|-------------|-----|-----------------------|----------------------|--|
| Doscription      | Delay Time                        | Dissipation | Mil.    |             | Coml.       |     | Page No.              | Page No.             |  |
| Quad S-R Latches | 12 ns                             | 19 mW       | 54LS279 | W,W,L       | 74LS279     | J,N | 2-168                 | 2-169                |  |

### LINE DRIVERS, 50-OHM/75-OHM

| Description                       | Low-Level         | High-Level<br>Output | Typ.<br>Delay<br>Time | Typ. Power<br>Per<br>Gate | Device Typ | e and Packa | ge * | Connection Diagram Page No. | Electrical<br>Tables<br>Page No. |
|-----------------------------------|-------------------|----------------------|-----------------------|---------------------------|------------|-------------|------|-----------------------------|----------------------------------|
| Description                       | Output<br>Current | Current              |                       |                           | Mil,       | Com         | ıl.  |                             |                                  |
| Dual 4-Input NAND Line<br>Drivers | 60 mA             | −40 mA               | 4 ns                  | 44 mW                     |            | 74S140      | N    | 1-29                        | 1-54                             |

### NAND GATES AND INVERTERS WITH OPEN-COLLECTOR OUTPUTS

| Dii                       | Typ.                      | Typ. Power              | D      | evice Type ar | nd Package |     | Connection<br>Diagram | Electrical<br>Tables |  |
|---------------------------|---------------------------|-------------------------|--------|---------------|------------|-----|-----------------------|----------------------|--|
| Description               | Propagation<br>Delay Time | Dissipation<br>Per Gate | . Mil  |               | Com        | l.  | Page No.              | Page No.             |  |
| Dual 4-Input NAND Gates   | 5 ns                      | 17.5 mW                 |        |               | 74S22      | N   | 1-8                   | 1-38                 |  |
|                           | 8 ns                      | 22 mW                   | 54H22  | J,N           | 74H22      | J,N | 1-8                   | 1-38                 |  |
|                           | 16 ns                     | 2 mW                    | 54LS22 | J,N,W         | 74LS22     | J,N | 1-8                   | 1-38                 |  |
| Triple 3-Input NAND Gates | 16 ns                     | 2 mW                    | 54LS12 | J,N,W         | 74LS12     | J,N | 1-5                   | 1-38                 |  |
| Quad 2-Input NAND Gates   | 5 ns                      | 17.5 mW                 |        |               | 74503      | N   | 1-2                   | 1-38                 |  |
|                           | 8 ns                      | 22 mW                   | 54H01  | J,N /         | 74H01      | J,N | 1-1                   | 1-38                 |  |
|                           | 16 ns                     | 2 mW                    | 54LS01 | J,N,W         | 74LS01     | J,N | 1-1                   | 1-38                 |  |
|                           | 16 ns                     | 2 mW                    | 54LS03 | J,N,W         | 74LS03     | J,N | 1-2                   | 1-38                 |  |
|                           | 22 ns                     | 10 mW                   | 5401   | J,N,W         | 7401       | J,N | 1-1                   | 1-38                 |  |
|                           | 22 ns                     | 10 mW                   | 5403   | J,N           | 7403       | J,N | . 1-2                 | 1-38                 |  |
|                           | 41 ns                     | 1 mW                    | 54L01  | w             | 74L01      | w   | 1-1                   | 1-38                 |  |
|                           | 41 ns                     | .1 mW                   | 54L03  | J,N           | 74L03      | J,N | 1-2                   | 1-38                 |  |
|                           | 115 ns                    | 1.8 mW                  |        |               | 80L06      | N   | 3-1                   | 3-2                  |  |
| Hex Inverters             | 5 ns                      | 17.5 mW                 |        |               | 74805      | N   | 1-3                   | 1-38                 |  |
|                           | 8 ns                      | 22 mW                   | 54H05  | J,N           | 74H05      | J,N | 1-3                   | 1-38                 |  |
|                           | 16 ns                     | 2 mW                    | 54LS05 | J,N,W         | 74LS05     | J,N | 1-3                   | 1-38                 |  |
|                           | 22 ns                     | 10 mW                   | 5405   | J,N,W         | 7405       | J,N | 1-3                   | 1-38                 |  |



### NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS

| Description               | Typ.<br>Propagation | Typ. Power Dissipation | D       | evice Type an | d Package |     | Connection<br>Diagram | Electrica<br>Tables |
|---------------------------|---------------------|------------------------|---------|---------------|-----------|-----|-----------------------|---------------------|
| Boscinption               | Delay Time          | Per Gate               | Mil     | •             | Com       | ١.  | Page No.              | Page No             |
| Dual 4-Input NAND Gates   | 3 ns                | 19 mW                  |         |               | 74S20     | J,N | 1-7                   | 1-36                |
| _                         | 6 ns                | 22 mW                  | 54H20   | J;N           | 74H20     | J,N | 1-7                   | 1-36                |
| •                         | 9.5 ns              | '2 mW.                 | 54LS20  | J,N,W         | 74LS20    | J,N | 1-7                   | 1-36                |
|                           | 10 ns               | 10 mW                  | 5420    | J,N,W         | 7420      | J,N | 1-7                   | 1-36                |
|                           | 33 ns               | 1 mW                   | 54L20   | J,N,W         | 74L20     | J,N | 1-7                   | 1-36                |
| Dual 5-Input NAND Gates   | 10 ns               | 20 mW                  | 7092    | J,N,W         | 8092      | J,N | 3-3                   | 3-4                 |
| Triple 3-Input NAND Gates | 3 ns                | 19 mW                  |         |               | 74S10     | J,N | 1-4                   | 1-36                |
|                           | 6 ns                | 22 mW                  | 54H10   | J,N           | 74H10     | J,N | 1-4                   | 1-36                |
|                           | 9.5 ns              | 2 mW                   | 54LS10  | J,N,W         | 74LS10    | J,N | 1-4                   | 1-36                |
|                           | 10 ns               | 10 mW                  | 5410    | J,N,W         | 7410      | J,N | 1-4                   | 1-36                |
| , , ,                     | 33 ns               | 1 mW                   | 54L10   | J,N,W         | 74L10     | J,N | 1-4                   | 1-36                |
| Quad 2-Input NAND Gates   | 3 ns                | 19 mW                  |         |               | 74800     | N   | · 1-1                 | 1-36                |
|                           | 6 ns                | 22 mW                  | 54H00   | J,N           | 74H00     | J,N | 1-1                   | 1-36                |
|                           | 9.5 ns              | 2 mW                   | 54LS00  | J,N,W         | 74LS00    | J,N | 1-1                   | 1-36                |
|                           | 10 ns               | 10 mW                  | 5400    | J,N,W         | 7400      | J,N | 1-1                   | 1-36                |
|                           | 33 ns               | 1 mW                   | 54L00   | J,N,W         | 74L00     | J,N | 1-1                   | 1-36                |
| Hex Inverters             | . 3 ns              | 19 mW                  |         |               | 74S04     | N   | 1-2                   | 1-36                |
| _                         | . 6 ns              | 22 mW                  | 54H04   | J,N           | 74H04     | J,N | 1-2                   | 1-36                |
| •                         | 9.5 ns              | 2 mW                   | 54L\$04 | J,N,W         | 74LS04    | J,N | 1-2                   | 1-36                |
|                           | 10 ns               | 10 mW                  | 5404 -  | J,N,W         | 7404      | J,N | 1-2                   | 1-36                |
|                           | 11 ns               | 18.mW                  | 7090    | J,N,W         | 8090      | J,N | 3-3                   | 3-4                 |
|                           | 33 ns               | 1 mW                   | 54L04   | J,N,W         | 74L04     | J,N | 1-2                   | 1-36                |
| 8-Input NAND Gates        | 3 ns                | 19 mW                  |         |               | 74830     | J,N | 1-9                   | 1-36                |
|                           | 6 ns.               | 22 mW <sup>-</sup>     | 54H30   | J,N           | 74H30     | J,N | 1-9                   | 1-36                |
|                           | 10 ns               | 10 mW                  | 5430    | J,N,W         | 7430      | J,N | 1-9                   | 1-36                |
|                           | 17 ns               | 2.4 mW                 | 54LS30  | J,N,W         | 74LS30    | J,N | 1-9                   | 1-36                |
|                           | 33 ns               | 1 mW                   | 54L30   | J,N,W         | 7.4L30    | J,N | 1-9                   | 1-36                |
| 13-Input NAND Gates       | 3 ns                | 19 mW                  |         |               | 74S133    | N   | 1-28                  | 1-36                |

### NOR GATES WITH TOTEM-POLE OUTPUTS

| Dossainsion                        | Тур.                              | Typ. Power                          | Dev                     | ice Type a     | nd Package                       |                   | Connection               | Electrical Tables<br>Page No. |  |
|------------------------------------|-----------------------------------|-------------------------------------|-------------------------|----------------|----------------------------------|-------------------|--------------------------|-------------------------------|--|
| Description                        | Propagation<br>Delay Time         | Dissipation<br>Per Gate             | . М                     | il.            | Com                              | ı.                | Diagram<br>Page No.      |                               |  |
| Dual 4-Input NOR Gates With Strobe | 10.5 ns                           | 23 mW                               | 5425                    | J,N,W          | 7425                             | J,N               | 1-8                      | 1-40                          |  |
| Dual 5-Input NOR Gates             | 4 ns                              | 54 mW                               |                         |                | 74S260                           | N                 | 1-31                     | 1-40                          |  |
| Triple 3-Input NOR Gates           | 8.5 ns<br>10 ns                   | 22 mW<br>4.5 mW                     | 5427<br>54LS27          | J,N,W          | 7427<br>74LS27                   | J,N               | 1-9<br>1-9               | 1-40<br>1-40                  |  |
| Quad 2-Input NOR Gates             | 3.5 ns<br>10 ns<br>10 ns<br>33 ns | 29 mW<br>2.75 mW<br>14 mW<br>1.5 mW | 54LS02<br>5402<br>54L02 | M,N,L<br>W,N,L | 74S02<br>74LS02<br>7402<br>74L02 | 1'N<br>1'N<br>1'N | 1-2<br>1-2<br>1-2<br>1-2 | 1-40<br>1-40<br>1-40<br>1-40  |  |



### ONE SHOTS, RETRIGGERABLE

|               | No. of   | Inputs   | Direct Output |                | Тур.           | Dev     | ice Type a |         | Connection | Electrical<br>Tables |          |
|---------------|----------|----------|---------------|----------------|----------------|---------|------------|---------|------------|----------------------|----------|
| Description , | Positive | Negative | Clear         | Pulse<br>Range | Total<br>Power | Mi      | l.         | Coml    |            | Diagram<br>Page No.  | Page No. |
| Single        | 2        | 2        | Yes           | 45 ns-∞        | 30 mW          | 54LS122 | J,N,W      | 74LS122 | J,N        | 1-26                 | 1-78     |
|               | 2        | 2        | Yes           | 50 ns∞         | 90 mW          | 9601    | J,N,W      | 8601    | J,N        | 4-43                 | 4-44     |
| Dual          | 1        | 1        | Yes           | 45 ns-∞        | 230 mW         | 54123   | J,N,W      | 74123   | J,N        | 1-26                 | 1-78     |
|               | 1        | 1        | Yes           | 90 ns-∞        | 25 mW          | 54L123A | J,N,W      | 74L123A | J,N        | 1-26                 | 1-78     |
|               | 1        | 1        | Yes           | 45 ns-∞        | 60 mW          | 54LS123 | J,N,W      | 74LS123 | J,N        | 1-26                 | 1-78     |
|               | 1        | 1        | Yes           | 72 ns-∞        | 195 mW         | 9602    | J,N,W      | 8602    | J,N        | 4-46                 | 4-47     |
|               | 2        | 2        | Yes           | 72 ns∞         | 275 mW         | 7853    | J,N,W      | 8853    | J,N        | 3-151                | 3-152    |

### ONE SHOTS WITH SCHMITT-TRIGGER INPUTS

|             | No. of Inputs |          | Output                   | Output Typ. Total |         | vice Type a | nd Package |     | Connection<br>Diagram | Electrical<br>Tables |  |
|-------------|---------------|----------|--------------------------|-------------------|---------|-------------|------------|-----|-----------------------|----------------------|--|
| Description | Positive      | Negative | Range                    | Dissipation       | Mil.    |             | Coml.      |     | Page No.              | Page No.             |  |
| Single      | 1             | 2        | 40 ns-28 s               | 90 mW             | 54121   | J,N,W       | 74121      | J,N | 1-26                  | 1-76                 |  |
| Dual        | 1<br>1        | 1        | 20 ns-70 s<br>20 ns-49 s | 23 mW<br>23 mW    | 54LS221 | J,N,W       | 74LS221    | J,N | 1-30<br>1-30          | 1-76<br>1-76         |  |

### OR GATES WITH TOTEM-POLE OUTPUTS

| Description           | Typ.<br>Propagation | Typ. Power<br>Dissipation | ı              | Device Type a  | nd Package     |            | Connection<br>Diagram | Electrical<br>Tables |
|-----------------------|---------------------|---------------------------|----------------|----------------|----------------|------------|-----------------------|----------------------|
|                       | Delay Time          | Per Gate                  | Mi             | í,             | Com            | l.         | Page No.              | Page No.             |
| Quad 2-Input OR Gates | 12 ns<br>12 ns      | 24 mW<br>5 mW             | 5432<br>54LS32 | W,N,L<br>W,N,L | 7432<br>74LS32 | J,N<br>J,N | 1-10<br>1-10          | 1-52<br>1-52         |

### SCHMITT-TRIGGERS WITH TOTEM-POLE OUTPUTS

|                               | Typ.       | Тур.          | De      | evice Type a | nd Package |     | Connection          | Electrical         |  |
|-------------------------------|------------|---------------|---------|--------------|------------|-----|---------------------|--------------------|--|
| Description                   | Hysteresis | Delay<br>Time | Mil.    |              | Coml.      |     | Diagram<br>Page No. | Tables<br>Page No. |  |
| Dual 4-Input NAND             | 0.8V       | 16.5 ns       | 5413    | J,N,W        | 7413       | J,N | 1-5                 | 1-48               |  |
| Schmitt Triggers              | 0.8V       | 16.5 ns       | 54LS13  | J,N,W        | 74LS13     | U,L | 1-5                 | 1-48               |  |
| Quad 2-Input NAND             | 0.8V       | 15 ns         | 54132   | J,N,W        | 74132      | J,N | 1-27                | 1-48               |  |
| Schmitt Triggers              | 0.8V       | 15 ns         | 54LS132 | J,N,W        | 74LS132    | J,N | 1-27                | 1-48               |  |
| Hex Schmitt Trigger Inverters | 0.8V       | 15 ns         | 5414    | J,N,W        | 7414       | J,N | 1-6                 | 1-48               |  |
|                               | 0.8V       | 15 ns         | 54LS14  | J,N,W        | 74LS14     | J,N | 1-6                 | 1-48               |  |



### **ADDERS**

| Description              | Тур.                   | Typ.  | Typ. Power | Typ. Power Device Type and |       |         |     | Connection          | Electrical         |  |
|--------------------------|------------------------|-------|------------|----------------------------|-------|---------|-----|---------------------|--------------------|--|
| Description              | Carry Add<br>Time Time |       | Per Bit    | Mil.                       |       | Coml.   |     | Diagram<br>Page No. | Tables<br>Page No. |  |
| Single 4-Bit Full Adders | 10 ns                  | 15 ns | 24 mW      | 54LS83A                    | J,N,W | 74LS83A | J,N | 2-17                | 2-18               |  |
|                          | 10 ns                  | 15 ns | 24 mW      | 54LS283                    | J,N,W | 74LS283 | J,N | 2-17                | 2-18               |  |
| Α                        | 10 ns                  | 16 ns | 76 mW      | 5483                       | J,W   | 7483    | J,N | 2-17                | 2-18               |  |

### ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS

| Description                                          | Typ.<br>Carry | Typ.<br>Add | Typ. Total<br>Power | 0     | evice Type | and Package     |     | Connection<br>Diagram | Electrical<br>Tables |  |
|------------------------------------------------------|---------------|-------------|---------------------|-------|------------|-----------------|-----|-----------------------|----------------------|--|
| Description                                          | Time          | Time        | Dissipation         | N     | til.       | Coml.           |     | Page No.              | Page No.             |  |
| 4-Bit Arithmetic Logic Units/<br>Function Generators | 12.5 ns       | 24 ns       | 455 mW              | 54181 | j          | 74181           | J,N | 2-107                 | 2-109                |  |
| 4-Bit Parallel Binary Accumulators                   | 10 ns         | 20 ns       | 720 mW              |       |            | 74S281          | N , | 2-173                 | 2-174                |  |
| Look-Ahead Carry Generators                          | 7 ns<br>13 ns |             | 260 mW<br>180 mW    | 54182 | J          | 74S182<br>74182 | N,L | 2-113<br>2-113        | 2-114<br>2-114       |  |

### **ARITHMETIC OPERATORS**

| Description                                                 | Typ.<br>Delay<br>Time                    | Typ. Total<br>Power<br>Dissipation<br>40 mW | Device Type and Package            |                         |                                             |                        | Connection                           | Electrical                           |
|-------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------|-------------------------|---------------------------------------------|------------------------|--------------------------------------|--------------------------------------|
|                                                             |                                          |                                             | Mil.                               |                         | Coml.                                       |                        | Diagram<br>Page No.                  | Tables<br>Page No.                   |
| Quad 2-Input EXCLUSIVE-NOR<br>Gates                         |                                          |                                             | 54LS266                            | J,N,W                   | 74LS266                                     | J,N                    | 1-31                                 | 1-84                                 |
| Quad 2-Input EXCLUSIVE-OR Gates With Open Collector Outputs | 18 ns                                    | 30 mW                                       | 54LS136                            | J,N,W                   | 74LS136                                     | J,N                    | 1-29                                 | 1-84                                 |
| Quad 2-Input EXCLUSIVE-OR<br>Gates with Totem-Pole Outputs  | 7 ns<br>10 ns<br>10 ns<br>14 ns<br>29 ns | 250 mW<br>30 mW<br>30 mW<br>150 mW<br>15 mW | 54LS86<br>54LS386<br>5486<br>54L86 | W,N,L<br>W,N,L<br>W,N,L | 74S86<br>74LS86<br>74LS386<br>7486<br>74L86 | N,L<br>N,L<br>N,L<br>N | 1-22<br>1-22<br>1-34<br>1-22<br>1-22 | 1-72<br>1-72<br>1-72<br>1-72<br>1-72 |
| Quad EXCLUSIVE-OR/NOR Gates                                 | 8 ns                                     | 325 mW                                      |                                    |                         | 74\$135                                     | N                      | 1-28                                 | 1-82                                 |

### CODE CONVERTERS

| Description                                                                        | Typ.<br>Delay Time<br>Per Package<br>Level | Typ. Total<br>Power<br>Dissipation | Device Type and Package |     |                 |          | Connection          | Electrical         |
|------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------|-----|-----------------|----------|---------------------|--------------------|
|                                                                                    |                                            |                                    | Mil.                    |     | Coml.           |          | Diagram<br>Page No. | Tables<br>Page No. |
| 6-Bit Binary to 6-Bit BCD Converters                                               | 25 ns<br>31 ns                             | 280 mW<br>350 mW                   | 54185A                  | J,W | ,74185A<br>8899 | Й,L<br>И | 2-116<br>3-156      | 2-117<br>3-157     |
| 6-Line BCD to 6-Line Binary, or<br>4-Line to 4-Line BCD 9's/BCD 10's<br>Converters | 25 ns<br>31 ns                             | 280 mW<br>350 mW                   | 54184                   | J,W | 74184<br>8898   | N,L<br>N | 2-116<br>3-156      | 2-117<br>3-157     |



### **COMPARATORS**

| Description                  | Typ. Compare Time | Typ. Total Power Dissipation 175 mW | De    | evice Type a | Connection<br>Diagram<br>Page No. | Electrical<br>Tables<br>Page No. |       |       |
|------------------------------|-------------------|-------------------------------------|-------|--------------|-----------------------------------|----------------------------------|-------|-------|
|                              |                   |                                     | Mil.  |              |                                   |                                  | Coml. |       |
| 4-Bit Magnitude Comparators  |                   |                                     | 7200  | J,N,W        | 8200                              | J,N                              | 3-23  | 3-24  |
|                              | 21 ns             | 275 mW                              | 5485  | J,W          | 7485                              | J,N                              | 2-21  | 2-22  |
|                              | 70 ns             | 20 mW                               | 54L85 | J,N,W        | 74L85                             | J,N                              | 2-21  | 2-22  |
|                              | 70 ns             | 75 mW                               | 76L24 | J,N,W        | 86L24                             | J,N                              | 3-131 | 3-132 |
| 6-Bit Magnitude Comparators  | 20 ns             | 250 mW                              | 7131  | J,W          | 8131                              | J,N                              | 3-19  | 3-20  |
|                              | 20 ns             | 250 mW                              | 7136  | J,W          | 8136                              | J,N                              | 3-19  | 3-20  |
|                              | 21 ns             | 205 mW                              | 7160  | J,W          | 8160                              | J,N                              | 3-17  | 3-18  |
| 10-Bit Magnitude Comparators | 21 ns             | 240 mW                              | 7130  | J,F          | 8130                              | J,N                              | 3-17  | 3-18  |

### COUNTERS, ASYNCHRONOUS (RIPPLE CLOCK) - NEGATIVE-EDGE TRIGGERED

| Description 4-Bit Binary                           | Count<br>Freq. | Parallel<br>Load<br>Yes | Clear<br>Low | Typ. Total<br>Power<br>Dissipation<br>240 mW | Device Type and Package |       |         |     | Connection          | Electrical         |
|----------------------------------------------------|----------------|-------------------------|--------------|----------------------------------------------|-------------------------|-------|---------|-----|---------------------|--------------------|
|                                                    |                |                         |              |                                              | Mil.                    |       | Coml.   |     | Diagram<br>Page No. | Tables<br>Page No. |
|                                                    |                |                         |              |                                              | 54197                   | J,N   | 74197   | J,N | 2-101               | 2-102              |
|                                                    | 40 MHz         | Yes                     | Low          | 150 mW                                       | 7291                    | J,N,W | 8291    | J,N | 4-11                | 4-12               |
|                                                    | 35 MHz         | Yes                     | Low          | 150 mW                                       | 54177                   | J     | 74177   | J,N | 2-101               | 2-102              |
|                                                    | 35 MHz         | Yes                     | Low          | 150 mW                                       | 7281                    | J,W   | 8281    | J,N | 4-11                | 4-12               |
|                                                    | 32 MHz         | None                    | High         | 39 mW                                        | 54LS93                  | J,N,W | 74LS93  | J,N | 2-30                | 2-31               |
|                                                    | 32 MHz         | None                    | High         | 160 mW                                       | 5493A                   | J,W   | 7493A   | J,N | 2-30                | 2-31               |
|                                                    | 30 MHz         | Yes                     | Low          | .60 mW                                       | 54LS197                 | J,N,W | 74LS197 | J,N | 2-101               | 2-102              |
|                                                    | 6 MHz          | None                    | High         | 20 mW                                        | 54L93                   | J,N,W | 74L93   | J,N | 2-30                | 2-31               |
|                                                    | 6 MHz          | None                    | High         | 20 mW                                        | 76L93                   | J,N,W | 86L93   | J,N | 3-142               | 3-143              |
| 40 MH<br>35 MH<br>35 MH<br>32 MH<br>32 MH<br>30 MH | 50 MHz         | Yes                     | Low          | 240 mW                                       | 54196                   | J,N · | 74196   | J,N | 2-101               | 2-102              |
|                                                    | 40 MHz         | Yes                     | Low          | 150 mW                                       | 7290                    | J,N,W | 8290    | J,N | 4-11                | 4-12               |
|                                                    | 35 MHz         | Yes                     | Low          | 150 mW                                       | 54176                   | J.    | 74176   | J,N | 2-101               | 2-102              |
|                                                    | 35 MHz         | Yes                     | Low          | 150 mW                                       | 7280                    | J,W   | 8280    | J,N | 4-11                | 4-12               |
|                                                    | 32 MHz         | Set-to-9                | High         | 40 mW                                        | 54LS90                  | J,N,W | 74LS90  | J,N | 2-30                | 2-31               |
|                                                    | 32 MHz         | Set-to-9                | High         | 160 mW                                       | 5490A                   | J,W   | 7490A   | J,N | 2-30                | 2-31               |
|                                                    | 30 MHz         | Yes                     | Low          | 60 mW                                        | 54LS196                 | J,N,W | 74LS196 | J,N | 2-101               | 2-102              |
|                                                    | 6 MHz          | Set-to-9                | High         | 20 mW                                        | 54L90                   | J,N,W | 74L90   | J,N | 2-30                | 2-31               |
| Divide by 12                                       | 35 MHz         | Yes                     | Low          | 150 mW                                       | 7288                    | J,W   | 8288    | J,N | 4-11                | 4-12               |
|                                                    | 32 MHz         | None                    | High         | 39 mW                                        | 54LS92                  | J,N,W | 74LS92  | J,N | 2-30                | 2-31               |
|                                                    | 32 MHz         | None                    | High         | 160 mW                                       | 5492A                   | J,W   | 7492A   | J,N | 2-30                | 2-31               |



# Functional Index/Selection Guides

#### COUNTERS, SYNCHRONOUS-POSITIVE-EDGE TRIGGERED

|                     | Count  | Parallel |           | Typ. Total<br>Power | Dev     | ice Type a | nd Package |       | Connection          | Electrica         |
|---------------------|--------|----------|-----------|---------------------|---------|------------|------------|-------|---------------------|-------------------|
| Description         | Freq.  | Load     | Clear     | Dissipation         | Mil.    |            | Coml       |       | Diagram<br>Page No. | Tables<br>Page No |
| 4-Bit Binary        | 25 MHz | Sync     | Sync-L    | 93 mW               | 54LS163 | N'N'r      | 74LS163    | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | - Async-L | 93 mW               | 54LS161 | J,N,W      | 74LS161    | J,Ņ   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Sync-L    | 305 mW              | 54163A  | J,W        | 74163A     | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Async-L   | 305 mW              | 54161A  | J,W        | 74161A     | . J,N | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Async-L   | 305 mW              | 9316    | J,W        | 8316       | J,N   | 4-27                | 4-28              |
|                     | 25 MHz | Sync     | Sync-L    | 375 mW              | 7556    | J,W        | 8556       | J,N   | 3-72                | 3-73              |
|                     | 6 MHz  | Sync     | Async-L.  | 33 mW               | 76L76   | J,N,W      | 86L76      | J,N   | 3-137               | 3-138             |
| 4-Bit Binary        | 25 MHz | Sync     | None      | 100 mW              | 54LS169 | J,N,W      | 74LS169    | J,N   | 2-85                | 2- 86             |
| Up/Down             | 25 MHz | Async    | Async-H   | 85 mW               | 54LS193 | J,N,W      | 74LS193    | J,N   | 2-133               | 2-134             |
|                     | 20 MHz | Async    | Async-H   | 325 mW              | 54193   | J,W        | 74193      | J,N   | 2-133               | 2-134             |
|                     | 20 MHz | Async    | Async-H   | 325 mW              | 7563    | J,W        | 8563       | J,N   | 3-76                | 3-77              |
|                     | 20 MHz | Async    | None      | 90 mW               | 54LS191 | J,N,W      | 74LS191    | J,N   | 2-128               | 2-129             |
|                     | 20 MHz | Async    | None      | 325 mW              | 54191   | J,N,W      | 74191      | J,N   | 2-128               | 2-129             |
|                     | 6 MHz  | Async    | Async-H   | 40 mW               | 54L193  | J,N,W      | 74L193     | J,N   | , 2-133             | 2-134             |
|                     | 6 MHz  | Async    | Async-H   | 40 mW               | 75L63   | J,N,W      | 85L63      | J,N   | 3-76                | 3-77              |
| Decade              | 25 MHz | Sync     | Sync-L    | 93 mW               | 54LS162 | J,N,W      | 74LS162    | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Async-L   | 93 mW               | 54LS160 | J,N,W      | 74LS160    | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Sync-L    | 305 mW              | 54162A  | J,W        | 74162A     | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Async-L   | 305 mW              | 54160A  | J,W        | 74160A     | J,N   | 2-70                | 2-71              |
|                     | 25 MHz | Sync     | Async-L   | 305 mW              | 9310    | J,W        | 8310       | J,N   | 4-27                | 4-28              |
|                     | 25 MHz | Sync     | Sync-L    | 400 mW              | 7555    | J,W        | 8555       | J,W   | 3-72                | 3-73              |
|                     | 6 MHz  | Sync     | Async-L   | 33 mW               | 76L75   | J,N,W      | 86L75      | J,N   | 3-137               | 3-138             |
| Decade              | 25 MHz | Sync -   | None      | 100 mW              | 54LS168 | J,N,W      | 74LS168    | J,N   | 2-85                | 2-86              |
| Up/Down             | 25 MHz | Async    | Async-H   | 85 mW               | 54LS192 | J,N,W      | 74LS192    | * J,N | 2-133               | 2-134             |
|                     | 20 MHz | Async    | Async-H   | 325 mW              | 54192   | J,W .      | 74192      | И,L   | 2-133               | 2-134             |
|                     | 20 MHz | Async    | None      | 100 mW              | 54LS190 | J,N,W      | 74LS190    | J,N   | 2-128               | 2-129             |
|                     | 20 MHz | Async    | None      | 325 mW              | 54190   | J,N,W      | 74190      | J,N   | 2-128               | 2-129             |
|                     | 20 MHz | .Async   | Async-H   | 325 mW              | 7560    | J,W        | 8560       | J,N   | 3-76                | 3-77              |
|                     | 6 MHz  | Async    | Async-H   | 40 mW               | 54L192  | J,N,W      | 74L192     | J,N   | 2-133               | 2-134             |
|                     | 6 MHz  | Async    | Async-H   | 40 mW               | 75L60   | J,N,W      | 85L60      | J,N   | 3-76                | 3-77              |
| Modulo-N<br>Divider | 15 MHz | Sync     | None      | 250 mW              | 7520    | J,W        | 8520       | J,N   | 3-44                | 3-47              |



#### DATA SELECTORS/MULTIPLEXERS

|                      | Туре          | Data to        | p. Delay T         |                | Typ. Total           | Devic   | е Туре а | nd Package |          | Connection          | Electrica         |
|----------------------|---------------|----------------|--------------------|----------------|----------------------|---------|----------|------------|----------|---------------------|-------------------|
| Description          | of<br>Output  | Inv.<br>Output | Non-Inv.<br>Output | From<br>Enable | Power<br>Dissipation | Mil.    |          | Coml.      |          | Diagram<br>Page No. | Tables<br>Page No |
| Quad 2-Line to       | TRI-          | 4 ns           |                    | 14 ns          | 280 mW               |         |          | 74S258     | N        | 2-165               | 2-166             |
| 1-Line               | STATE         |                |                    |                |                      |         |          |            |          |                     |                   |
|                      | TRI-<br>STATE |                | 5 ns               | 14-ns          | 320 mW               |         |          | 74S257     | Ν -      | 2-165               | 2-166             |
|                      | Standard      | 4 ns           |                    | 7 ns           | 195 mW               |         | ļ        | 74S158     | N        | 2-66                | 2-67              |
|                      | Standard      | 4 113          | 5 ns               | 8 ns           | 250 mW               |         |          | 745157     | N        | 2-66                | 2-67              |
|                      | TRI-          |                | 3 113              | 0 113          | 2501111              |         |          | 743137     | '`       | 2.00                | 20,               |
|                      | STATE         | 12 ns          |                    | 20 ns          | 35 mW                | 54LS258 | J,N,W    | 74LS258    | J,N      | 2-1 <b>6</b> 5      | 2-166             |
|                      | TRI-          |                |                    |                |                      |         |          |            |          |                     |                   |
|                      | STATE         |                | 12 ns              | 20 ns          | 50 mW                | 54LS257 | J,N,W    | 74LS257    | J,N      | 2-165               | 2-166             |
|                      | Standard      | 7 ns           |                    | 12 ns          | 24 mW                | 54LS158 | J,N,W    | 74LS158    | J,N      | 2-66                | 2-67              |
|                      | Standard      |                | 9 ns               | 14 ns          | 49 mW                | 54LS157 | J,N,W    | 74LS157    | J.N      | 2-66                | 2-67              |
|                      | Standard      |                | 9 ns               | 14 ns          | 150 mW               | 54157   | J,W      | 74157      | J,N      | 2-66                | 2-67              |
|                      | Standard      |                | 40 ns              | 60 ns          | 15 mW                | 54L157A | J,N,W    | 74L157A    | J,N      | 2-66                | 2-67              |
|                      | Standard      |                | 9 ns               | 14 ns          | 150 mW               | 9322    | J,W      | 8322       | J,N      | 4-38                | 4-39              |
|                      | Standard      |                | 40 ns              | 60 ns          | 15 mW                | 71L22   | J,N,W    | 81L22      | J,N      | 3-13                | 3-14              |
|                      | TRI-          |                |                    |                |                      |         |          | 1          |          |                     |                   |
|                      | STATE         |                | 9.5 ns             | N/A            | 200 mW               | 7123    | J,W      | 8123       | J,N      | 3-13                | 3-14              |
|                      | TRI-          |                |                    |                |                      |         |          |            |          |                     |                   |
|                      | STATE         |                | 40 ns              | N/A            | 20 mW                | 71L23   | J,N,W    | 81L23      | J,N      | 3-13                | 3-14              |
| Quad 2-Line to       | Ctondord      |                | 20                 |                | GE\A/                | 54LS298 | J,N,W    | 74LS298    | J,N      | 2-184               | 2-185             |
| 1-Line With          | Standard      |                | 20 ns<br>from      |                | 65 mW                | 54L5296 | 3,14,00  | /4L3296    | 3,14     | 2-104               | 2-100             |
| Storage              |               |                | clock              |                |                      |         |          |            |          |                     |                   |
|                      |               |                | CIOCK              |                |                      |         |          |            |          |                     |                   |
| Dual 4-Line to       | TRI-          |                | 12 ns              | 16 ns          | 35 mW                | 54LS253 | J,N,W    | 74LS253    | J,N      | 2-163               | 2-164             |
| 1-Line               | STATE         |                |                    |                |                      |         |          |            |          |                     |                   |
|                      | Standard      |                | 6 ns               | 9.5 ns         | 225 mW               |         |          | 74S153     | N        | 2-57                | 2-58              |
|                      | Standard      |                | 14 ns              | 17 ns          | 180 mW               | 54153   | J,W      | 74153      | J,N      | 2-57                | 2-58              |
|                      | Standard      |                | 14 ns              | 17 ns          | 31 mW                | 54LS153 | J,N,W    | 74LS153    | J,N      | 2-57                | 2-58              |
|                      | Standard      | 12 ns          | 20 ns              | 20 ns          | 135 mW               | 9309    | J,W      | 8309       | J,N      | 4-24                | 4-25              |
|                      | TRI-<br>STATE |                | 13.5 ns            | 20 ns          | 170 mW               | 7214    | J,W      | 8214       | J,N      | 3-28                | 3-29              |
| 8-Line to 1-Line     | TRI-<br>STATE | 4.5 ns         | 8 ns               | 14 ns          | 275 mW               |         |          | 74S251     | N        | 2-160               | 2-161             |
|                      | TRI-          |                | , 1                |                |                      |         |          |            |          |                     |                   |
|                      | STATE         | 11 ns          | 18 ns              | 17 ns          | 155 mW               | 54251   | J,W      | 74251      | J,N      | 2-160               | 2-161             |
|                      | TRI-          |                |                    |                |                      |         | l        |            |          |                     |                   |
|                      | STATE         | 17 ns          | 21 ns              | 21 ns          | 35 mW                | 54LS251 | J,N,W    | 74LS251    | J,N      | 2-160               | 2-161             |
|                      | Standard      | 4.5 ns         | 8 ns               | 9 ns           | 225 mW               |         |          | 74S151     | N        | 2-53                | 2-54              |
|                      | Standard      | 8 ns           | 16 ns              | 22 ns          | 145 mW               | 54151A  | J,W      | 74151A     | J,N      | 2-53                | 2-54              |
|                      | Standard      | 11 ns          | 18 ns              | 27 ns          | 30 mW                | 54LS151 | J,N,W    | 74LS151    | J,N      | 2-53                | 2-54              |
|                      | Standard      | 9 ns           | 16 ns              | 17 ns          | 135 mW               | 9312    | J,W      | 8312       | J,N      | 4-24                | 4-25              |
|                      | Standard      | 11 ns          | 18 ns              | 17 ns          | 155 mW               | 7121    | J,W      | 8121       | J,N      | 3-11                | 3-12              |
|                      | Standard      | 22 ns          |                    | N/A            | 100 mW               | 7210    | J,W      | 8210       | J,N      | 3-25                | 3-26              |
|                      | Standard      | 22 ns          |                    | 20 ns          | 100 mW               | 7211    | J,W      | 8211       | J,N      | 3-25                | 3-26              |
| 16 1 in a 4 - 4 1 !! | <b> </b>      |                |                    |                |                      |         | ļ. ·     |            | <u> </u> | <u> </u>            | <u> </u>          |
| 16-Line to 1-Line    | Standard      | 11 ns          |                    | 18 ns          | 200 mW               | 54150   | J,F      | 74150      | J,N      | 2-53                | 2-54              |
|                      | TRI-          |                |                    |                |                      |         |          |            |          |                     |                   |

# Functional Index/Selection Guides

#### DECODERS/DEMULTIPLEXERS

|                                       | Type of        | Тур.           | Тур.           | Typ. Total           | Dev     | rice Type a | and Package |     | Connection          | Electrica          |  |
|---------------------------------------|----------------|----------------|----------------|----------------------|---------|-------------|-------------|-----|---------------------|--------------------|--|
| Description                           | Output         | Select<br>Time | Enable<br>Time | Power<br>Dissipation | Mil.    |             | Comi        |     | Diagram<br>Page No. | Tables<br>Page No. |  |
| Dual 2-Line to                        | Totem-Pole     | 7.5 ns         | 6 ns           | 300 mW               |         |             | 74S139      | N   | 2-46                | 2-47               |  |
| 4-Line                                | Totem-Pole     | 18 ns          | 15 ns          | 30 mW                | 54LS155 | J,N,W.      | 74LS155     | J,N | 2-63                | 2-64               |  |
| · · · · · · · · · · · · · · · · · · · | TRI-<br>STATE  | 20 ns          | 15 ns          | 240 mW               | 7230    | J;W         | 8230        | J,N | 3-37                | 3-38               |  |
|                                       | Totem-Pole     | 21 ns          | 16 ns          | 250 mW               | 54155   | J,W         | 74155       | J,N | 2-63                | 2-64               |  |
| ,                                     | Totem-Pole     | 22 ns          | 19 ns          | 34 mW                | 54LS139 | J,N,W       | 74LS139     | J,N | 2-46                | 2-47               |  |
|                                       | Open-Collector | 23 ns          | 18 ns          | 250 mW               | 54156   | J,W         | 74156       | J,N | 2-63                | 2-64               |  |
| ٠                                     | Open-Collector | 33 ns          | 26 ns          | 31 mW                | 54LS156 | J,N,W       | 74LS156     | J,N | 2-63                | 2-64               |  |
| 3-Line to 8-Line                      | Totem-Pole     | 8 ns           | 7 ns           | 225 mW               |         |             | 74\$138     | N   | 2-46                | 2-47               |  |
|                                       | Totem-Pole     | 22 ns          | 21 ns          | 31 mW                | 54LS138 | J,N,W       | 74LS138     | J,N | 2-46                | 2-47               |  |
|                                       | Totem-Pole     | 25 ns          | 1              | 140 mW               | 7223    | J           | 8223        | J,N | 3-35                | 3-36               |  |
| 4-Line to 10-Line,                    | Totem-Pole     | 17 ns          |                | 35 mW                | 54LS42  | J,N,W       | 74LS42      | J,N | 2-3                 | 2-4                |  |
| BCD to Decimal                        | Totem-Pole     | 17 ns          |                | 140 mW               | 5442    | J,W         | 7442        | J,N | 2-3                 | 2-4                |  |
|                                       | Totem-Pole     | 20 ns          | ļ              | 125 mW               | 9301    | J,W         | 8301        | J,N | 4-22                | 4-23               |  |
|                                       | Totem-Pole     | 67 ns          |                | 15 mW                | 54L42A  | J,N,W       | 74L42A      | J,N | 2-3                 | 2-4                |  |
| 4-Line to 16-Line                     | Totem-Pole     | 19.5 ns        | 17.5 ns        | 170 mW               | 54154   | J,F         | 74154       | J,N | 2-60                | 2-61               |  |
| - 1                                   | Totem-Pole     | 19.5 ns        | 17.5 ns        | 170 mW               | 9311    | J,F         | 8311        | J,N | 4-33                | 4-34               |  |
|                                       | Totem-Pole     | · 23 ns        | 19 ns          | 45 mW                | 54LS154 | J,N,W       | 74LS154     | J,N | 2-60                | 2-61               |  |
|                                       | Totem-Pole     | 55 ns          | 45 ns          | 24 mW                | 54L154A | F,J,N       | 74L154A     | J,N | 2-60                | 2-61               |  |

#### DISPLAY DECODERS/DRIVERS, OPEN-COLLECTOR

|                  | Output          | Off-State         | Typ. Total           |               | De     | vice Type | and Package |     | Connection          | Electrical         |  |
|------------------|-----------------|-------------------|----------------------|---------------|--------|-----------|-------------|-----|---------------------|--------------------|--|
| Description      | Sink<br>Current | Output<br>Voltage | Power<br>Dissipation | Blanking      | Mi     | l.        | Com         | ı.  | Diagram<br>Page No. | Tables<br>Page No. |  |
| BCD to 7-        | -40 mA          | 30V               | 320 mW               | Ripple        | 5446A  | J,N,W     | 7446A       | J,N | 2-8                 | 2-9                |  |
| Segment          | 40 mA           | 15V               | 320 mW               | Ripple        | 5447A  | J,N,W     | 7447A       | J,N | 2-8                 | 2-9                |  |
| Decoders/Drivers | 24 mA           | 15V               | 35 mW                | Ripple        |        |           | 74LS47      | J,N | 2-8                 | 2-9                |  |
|                  | 12 mA           | 15∨               | 35 mW                | Ripple        | 54LS47 | J,N,W     |             |     | 2-8                 | 2-9                |  |
|                  | 6.4 mA          | .5.5V             | 265 mW               | Ripple        | 5448   | J,N,W     | 7448        | J,N | 2-8                 | 2-9                |  |
|                  | 6 mA            | 5.5V              | 125 mW               | Ripple        |        |           | 74LS48      | J,N | 2-8                 | 2-9                |  |
|                  | 4 mA            | 5.5V              | 40 mW                | Direct        | 54LS49 | J,N,W     | 74LS49      | J,N | 2-8                 | 2-9                |  |
|                  | 2·mA            | 5.5V              | 125 mW               | Ripple        | 54LS48 | J,N,W     |             |     | 2-8                 | 2-9                |  |
| BCD to Decimal   | 80 mA           | 30V               | 215 mW               | Invalid Codes | 5445   | J,W       | 7445        | J,N | 2-6                 | 2-7                |  |
| Decoders/Drivers | 80 mA           | ′ 15V             | 215 mW               | Invalid Codes | 54145  | J,W       | 74145       | J,N | 2-6                 | 2-7                |  |
|                  | 7 mA            | 60∨               | 80 mW                | Invalid Codes | 54141  | J,W       | 74141       | J,N | 2-1                 | 2-2                |  |
| 7-Segment to     |                 |                   |                      |               |        |           | ,           |     |                     |                    |  |
| BCD              | 3.6 mA          | 2.4V              | 75 mW                | Direct        | 76L25  | J,N,W     | 86L25       | J,N | 3-134               | 3-135              |  |
| Decoders/Drivers |                 |                   |                      | ·             |        |           |             | l   | l                   |                    |  |

**RESULTANT DISPLAYS USING 46A, 47A, 48, LS47, LS48, LS49** 





#### LATCHES

| Description          | No.<br>of | Clear | Outputs | Typ.<br>Delav | Typ. Total<br>Power | Devi    | се Туре а | nd Package |       | Connection<br>Diagram | Electrical<br>Tables |  |
|----------------------|-----------|-------|---------|---------------|---------------------|---------|-----------|------------|-------|-----------------------|----------------------|--|
| Doz. (priori         | Bits      | O.Cu. | Cutputs | Time          | Dissipation         | Mil,    |           | Coml       | •     | Page No.              | Page No              |  |
| Addressable Latches  | 8         | Low   | Q       | 21 ns         | 280 mW              | 9334    | J,W       | 8334       | J,N   | 4-40                  | 4-41                 |  |
| DG (Clocked) Latches | 4         | None  | a, a    | 11 ns         | 32 mW               | 54LS75  | W,W,L     | 74LS75     | J,N   | 2-14                  | 2-15                 |  |
|                      | 4         | None  | Q       | 10 ns         | 35 mW               | 54LS77  | w         |            |       | 2-14                  | 2-15                 |  |
|                      | 4         | None  | a, ā    | 15 ns         | 160 mW              | 5475    | J,N,W     | 7475       | J,N   | 2-14                  | 2-15                 |  |
|                      | 4         | None  | a, ā    | 52 ns         | 17.5 mW             | 54L75A  | J,N,W     | 74L75A     | J,N   | 2-14                  | 2-15                 |  |
| S-R Latches          | 4         | None  | a       | 12 ns         | 19 mW               | 54LS279 | J,N,W     | 74LS279    | J,N   | 2-168                 | 2-169                |  |
| ·                    | 4         | None  | Q       | 19 ns         | 180 mW              | 7544    | J,N,W     | 8544       | J,N   | 3-54                  | 3-55                 |  |
| TRI-STATE            | 4         | High  | Q       | 28 ns         | 330 mW              | 7552    | J,W       | 8552       | J,N   | 3-64                  | 3-65                 |  |
| Counters/Latches     | 4         | High  | Q       | 95 ns         | 38 mW               | 75L52   | J,N,W     | 85L52      | J,N   | 3-64                  | 3-65                 |  |
|                      | 4         | High  | a       | 28 ns         | 330 mW              | 7554    | J,W       | 8554       | J,N   | 3-64                  | 3-65                 |  |
|                      | 4         | High  | Q       | 95 ns         | 38 mW               | 75L54   | J,N,W     | 85L54      | J,N ´ | 3-64                  | 3-65                 |  |
|                      | 8         | High  | a       | 21 ns         | 330 mW              | 7553    | J,W       | 8553       | J,N   | 3-70                  | 3-71                 |  |

#### • MULTIPLIERS

| Paradia Aira                               |       | Device Typ | e and Package |     | Connection          | Electrical<br>Tables |  |
|--------------------------------------------|-------|------------|---------------|-----|---------------------|----------------------|--|
| Description                                | Mil.  |            | Com           | ıl. | Diagram<br>Page No. | Page No.             |  |
| 4-Bit by 4-Bit Parallel Binary Multipliers | 7875A | J          | 8875A         | J,N | 3-154               | 3-155                |  |
|                                            | 7875B | j          | 8875B         | J,N | 3-154               | 3-155                |  |

#### PARITY GENERATORS/CHECKERS

|                                              | Тур.                         | Typ. Total           |       | Device Type | and Package          |     | Connection          | Electrical Tables |  |
|----------------------------------------------|------------------------------|----------------------|-------|-------------|----------------------|-----|---------------------|-------------------|--|
| Description                                  | Delay<br>Time                | Power<br>Dissipation | M     | iil.        | Com                  | nl. | Diagram<br>Page No. | Page No.          |  |
| 8-Bit Odd/Even Parity<br>Generators/Checkers | 35 ns                        | 170 mW               | 54180 | W,L         | 74180 J,N            |     | 2-105               | 2-106             |  |
| 9-Bit Odd/Even Parity<br>Generators/Checkers | 13 ns 335 mW<br>34 ns 130 mW |                      | 7220  | J,N,W       | 74S280 N<br>8220 J,N |     | 2-170<br>3-32       | 2-171<br>3-33     |  |

# PRIORITY ENCODERS

|                               | Тур.                      | Typ. Total           | D     | evice Type | and Package |     | Connection          | Electrical         |  |
|-------------------------------|---------------------------|----------------------|-------|------------|-------------|-----|---------------------|--------------------|--|
| Description                   | Propagation<br>Delay Time | Power<br>Dissipation | Mi    | 1.         | Con         | ni. | Diagram<br>Page No. | Tables<br>Page No. |  |
| Cascadable Octal Priority     | 12 ns                     | 190 mW               | 54148 | W,L        | 74148       | J,N | 2-49                | 2-50               |  |
| Encoders                      | 12 ns                     | 190 mW               | 9318  | W,L        | 8318        | J,N | 4-36                | 4-37               |  |
| Full BCD Priority<br>Encoders | 10 ns                     | 225 mW               | 54147 | J,W        | 74147       | J,N | 2-49                | 2-50               |  |

#### REGISTER FILES

| Description                           | Typ.           | Typ. Read<br>Enable | Data<br>Input    | Typ. Total<br>Power | Dev             | ice Type     | and Package     |            | Connection<br>Diagram | Electrical<br>Tables |  |
|---------------------------------------|----------------|---------------------|------------------|---------------------|-----------------|--------------|-----------------|------------|-----------------------|----------------------|--|
| Description                           | Time           | Time                | Rate             | Dissipation         | Mil.            |              | Coml.           |            | Page No.              | Page No.             |  |
| 4 Words of 4-Bits                     | 27 ns          | 15 ns               | 20 MHz           | 125 mW              | 54LS170         | J,N,W        | 74LS170         | J,N        | 2-91                  | 2-92                 |  |
| 1                                     | 30 ns          | 15 ns               | 20 MHz           | 635 mW              |                 |              | 74170           | J,N        | 2-91                  | 2-92                 |  |
| 4 Words of 4-Bits (TRI-STATE Outputs) | 24 ns<br>24 ns | 19 ns<br>19 ns      | 20 MHz<br>30 MHz | 135 mW<br>400 mW    | 54LS670<br>7542 | 1'Μ<br>1'W'M | 74LS670<br>8542 | J,N<br>U,L | 2-191<br>3-52         | 2-192<br>3-53        |  |



# Functional Index/Selection Guides

### REGISTERS, OTHER

| <u> </u>                                   |        | Async. | Typ. Total           | Devi    | ce Type ar | nd Package |       | Connection          | Electrical         |
|--------------------------------------------|--------|--------|----------------------|---------|------------|------------|-------|---------------------|--------------------|
| Description                                | Freq.  | Clear  | Power<br>Dissipation | Mil.    |            | Coml.      |       | Diagram<br>Page No. | Tables<br>Page No. |
| Quad Bus-Buffer Registers                  | 25 MHz | High   | 250 mW               | 54173   | J,W        | 74173      | J,N   | 2-96                | 2-97               |
|                                            | 25 MHz | High   | 250 mW               | 7551    | J,W        | 8551       | J,N   | 3-62                | 3-63               |
|                                            | 6 MHz  | High   | 28 mW                | 75L51   | J,N,W      | 85L51      | J,N   | 3-62                | 3-63               |
| Quad D-Type Registers                      | 75 MHz | Low    | 300 mW               |         |            | 74S175     | N     | 2-98                | 2-99               |
|                                            | 30 MHz | Low    | 55 mW                | 54LS175 | J,N,W      | 74LS175    | J,N   | 2-98                | 2-99               |
|                                            | 25 MHz | Low    | 150 mW               | 54175   | J,W        | 74175      | J,N   | 2-98                | 2-99               |
| Quad Multiplexers With Storage             | 25 MHz | None   | 65 mW                | 54LS298 | J,N,W      | 74LS298    | J,N ` | 2-184               | 2-185              |
| Hex D-Type Registers                       | 75 MHz | Low    | 450 mW               |         | ,          | 74S174     | N     | 2-98                | 2-99               |
|                                            | 30 MHz | Low    | 80 mW                | 54LS174 | J,N,W      | 74LS174    | J,Ņ   | 2-98                | 2-99               |
|                                            | 25 MHz | Low    | 225 mW               | 54174   | J,W        | 74174      | J,N   | 2-98                | 2-99               |
| 8-Bit Universal Shift/Storage<br>Registers | 15 MHz | None   | 400 mW               | 7546    | J,W        | 8546       | J,N   | 3-56                | 3-57               |
| Octal D-Type Registers                     | 25 MHz | None   | 175 mW               | 54LS374 | J,N,W      | 74LS374    | J,N   | 2-187               | 2-188              |

#### REGISTERS, SHIFT

|                 | No.        | Shift  | Serial        | Async. | *    | Mo   | des  | _    | Typ. Total           | Device Type and P |       | nd Package |     | Connection          | Electrical |
|-----------------|------------|--------|---------------|--------|------|------|------|------|----------------------|-------------------|-------|------------|-----|---------------------|------------|
| Description     | of<br>Bits | Freq.  | Data<br>Input | Clear  | S-R* | S-L* | Load | Hold | Power<br>Dissipation | Mil.              |       | Coml       |     | Diagram<br>Page No. | Page No.   |
| Parallel-In,    | 8          | 25 MHz | D             | Low    | х    | x    | х    | х    | 360 mW               | 54198             | J     | 74198      | J,N | 2-148               | 2-149      |
| Parallel-Out    | 4          | 70 MHz | D             | Low    | X    | x    | ×    | x    | 450 mW               |                   |       | 74S194     | N   | 2-140               | 2-141      |
| (Bidirectional) | 4          | 25 MHz | D             | Low    | X    | x    | ×    | х    | 75 mW                | 54LS194A          | J,N,W | 74LS194A   | J,Ņ | 2-140               | 2-141      |
| •               | 4          | 25 MHz | . D           | Low    | ×    | ×    | х    | ×    | 195 mW               | 54194             | J,W   | 74194      | J,N | 2-140               | 2-141      |
| Parallel-In,    | 8          | 25 MHz | J-K           | Low    | ×    | Г    | x    | x    | 360 mW               | 54199             | J     | 74199      | J,N | 2-148               | 2-149      |
| Parallel-Out    | 5          | 10 MHz | D             | Low    | ×    |      | ×    | l    | 60 mW                | 54LS96            | J,N,W | 74LS96     | J,N | , 2-39              | 2-40       |
|                 | 5          | 10 MHz | D             | Low    | x    |      | ×    |      | 240 mW               | 5496              | J,W   | 7496       | J,N | 2-39                | 2-40       |
|                 | 4          | 70 MHz | J-K           | Low    | ×    |      | ×    | Ī    | 375 mW               |                   |       | 74S195     | N   | 2-144               | 2-145      |
|                 | 4          | 30 MHz | J-K           | Low    | X    |      | ×    | ١.   | 195 mW               | 54195             | J,W   | 74195      | J,N | 2-144               | 2-145      |
|                 | 4          | 30 MHz | J-K           | Low    | ×    |      | ×    | ĺ    | 300 mW               | 9300              | J,N,W | 8300       | J,N | 4-19                | 4-20       |
|                 | 4          | 30 MHz | J-K           | Low    | ×    | l    | ×    | l    | 70 mW                | 54LS195A          | J,N,W | 74LS195A   | J,N | 2-144               | 2-145      |
|                 | 4          | 25 MHz | D             | Low    | ×    |      | ×    |      | 75 mW                | 54LS395           | J,N,W | 74LS395    | J,N | 2-189               | 2-190      |
|                 | 4          | 25 MHz | D             | None   | X    |      | ×    | l    | 195 mW               | 5495              | J,W   | 7495       | J,N | 2-36                | 2-37       |
|                 | 4          | 25 MHz | D             | None   | X    |      | ×    | 1    | 65 mW                | 54LS95B           | J,N,W | 74LS95B    | J'M | 2-36                | . 2-37     |
|                 | 4          | 6 MHz  | D             | None   | ×    |      | Х    |      | 24 mW                | 54L95             | J,N,W | 74L95      | J,N | 2-36                | 2-37       |
| Serial-In,      | 8          | 25 MHz | Gated D       | Ĺow    | ×    |      |      |      | 80 mW                | 54LS164           | J,N,W | 74LS164    | J,N | 2-76                | 2-77       |
| Parallel-Out    | 8          | 25 MHz | Gated D       | Low    | ×    |      |      |      | .175 mW              | 54164             | J,W   | 74164      | J,N | 2-76                | 2-77       |
|                 | 8          | 25 MHz | Gated D       | Low    | X    |      |      | 1    | 175 mW               | 7570              | J,W   | 8570       | J,N | 3-86                | 3-87       |
|                 | 8          | 6 MHz  | Gated D       | Low    | X    | 1    |      | l    | 30 mW                | 54L164A           | W,N,L | 74L164A    | J,N | 2-76                | 2-77       |
|                 | 8          | 6 MHz  | Gated D       | Low    | ×    |      |      | ļ    | 30 mW                | 76L70             | J,N,W | 86L70      | J,N | 3-86                | 3-87       |
| Parallel-In,    | 8          | 25 MHz | D             | None   | ×    |      | x    | х    | 200 mW               | 54165             | J,W   | 74165      | J,N | 2-79                | . 2-80     |
| Serial-Out      | 8          | 20 MHz | D             | Low    | ×    |      | ×    | ×    | 360 mW               | 54166             | J     | 74166      | J,N | 2-82                | 2-83       |
|                 | 8          | 14 MHz | D             | None   | ×    | 1    | ×    | ×    | _200 mW              | 7590              | J'M   | 8590       | J'M | 3-110               | 3-111      |
|                 | 8          | 6 MHz  | D             | None   | ×    |      | х    | x    | 30 mW                | 76L90             | J,N,W | 86L90      | J,N | 3-110               | 3-111      |
| Serial-In,      | 8          | 10 MHz | Gated D       | None   | x    |      |      |      | 175 mW               | 5491A             | J,W   | 7491A      | J,N | 2-34                | 2-35       |
| Serial-Out .    | 8          | 4 MHz  | Gated D       | None   | x    |      | 1    | 1    | 17.5 mW              | 54L91             | J,N,W | 74L91      | J,N | 2-34                | 2-35       |

<sup>\*</sup> S-R  $\equiv$  shift right, S-L  $\equiv$  shift left.

#### **DUAL-IN-LINE PACKAGES**

- (N) All devices ordered with the "N" suffix are supplied in either the 14-pin, 16-pin, 20-pin, or 24-pin molded dual-in-line package. Molding material is EPOXY B, a highly reliable compound suitable for military as well as commercial temperature range applications. Lead material is Alloy 42 with a hot solder dipped surface to allow for ease of solderability.
- (J) All devices ordered with the "J" suffix are supplied in either the 14-pin, 16-pin, or 24-pin ceramic dual-in-line package. The body of the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the package. Lead material is tin-plated kovar.

#### **FLAT PACKAGES**

- (W) All devices ordered with the "W" suffix are supplied in either the 14-pin or 16-pin ceramic flat package. The body of the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the package. Lead material is tin-plated koyar.
- (F) All devices ordered with the "F" suffix are supplied in the 24-pin glass/metal flat package. The top and bottom of the package are gold-plated kovar as are the leads. The side walls are glass, through which the leads extend forming a hermetic seal.

Four combinations of bottom insulator and formed leads are supplied for the W or F packages. Suffix coding is as follows:

| Suffix                | Bottom Insulator | Formed Leads |
|-----------------------|------------------|--------------|
| -00 (Ex: DM54L00W-00) | No               | No           |
| -01                   | Yes              | Yes          |
| -06                   | Yes              | No           |
| -07                   | No               | Yes          |

If no suffix is added, parts will be supplied as if the -00 suffix had been ordered.



Standard Flat Pack Lead Form



### **Packages**









14-Pin Ceramic Dual-In-Line Package (J)

16-Pin Ceramic Dual-In-Line Package (J)





24-Pin Ceramic Dual-In-Line Package (J)





20-Pin Molded Dual-In-Line Package (N)



24-Pin Molded Dual-In-Line Package (N)





| INC    | INCHES TO MILLIMETERS CONVERSION TABLE |        |       |        |       |  |  |  |  |  |  |
|--------|----------------------------------------|--------|-------|--------|-------|--|--|--|--|--|--|
| INCHES | MM                                     | INCHES | MM    | INCHES | MM    |  |  |  |  |  |  |
| 0.001  | 0.0254                                 | 0.010  | 0.254 | 0.100  | 2.54  |  |  |  |  |  |  |
| 0.002  | 0.0508                                 | 0.020  | 0.508 | 0.200  | 5.08  |  |  |  |  |  |  |
| 0.003  | 0.0762                                 | 0.030  | 0.762 | 0.300  | 7.62  |  |  |  |  |  |  |
| 0.004  | 0.1016                                 | 0.040  | 1.016 | 0.400  | 10.16 |  |  |  |  |  |  |
| 0.005  | 0.1270                                 | 0.050  | 1.270 | 0.500  | 12.70 |  |  |  |  |  |  |
| 0.006  | 0.1524                                 | 0.060  | 1.524 | 0.600  | 15.24 |  |  |  |  |  |  |
| 0.007  | 0.1778                                 | 0.070  | 1.778 | 0.700  | 17.78 |  |  |  |  |  |  |
| 0.008  | 0.2032                                 | 0.080  | 2.032 | 0.800  | 20.32 |  |  |  |  |  |  |
| 0.009  | 0,2286                                 | 0.090  | 2.286 | 0.900  | 22.86 |  |  |  |  |  |  |

# National Semiconductor 54/74 SSI DEVICES Section 1



| <b>€</b> 54/74 SSI | M | 54/7 | 4 SSI |  |
|--------------------|---|------|-------|--|
|--------------------|---|------|-------|--|

# **Table of Contents**

| Device No.                                          | Description                       | Conn.<br>Diag.    | Elec.<br>Char.       | <u> </u> | J.       | Pa  | ckage<br>N | <del>, ,</del> | w          |
|-----------------------------------------------------|-----------------------------------|-------------------|----------------------|----------|----------|-----|------------|----------------|------------|
| Device No.                                          | Description                       |                   | Pg. No.              | Mil      | Coml     | Mil | Coml       | Mil            | Coml       |
| DM5400/DM7400                                       | Quad 2-Input NAND Gates           | 1-1               | 1-36                 | •        | •        | •   |            |                |            |
| DM54H00/DM74H00                                     | Quad 2-Input NAND Gates           | 1.1               | 1-36                 |          | •        |     | •          | N/             | Δ          |
| DM54L00/DM74L00                                     | Quad 2-Input NAND Gates           | 1.1               | 1-36                 |          | •        |     |            |                | · ·        |
| DM54LS00/DM74LS0                                    |                                   | 1-1               | 1-36                 |          |          |     |            |                | •          |
| DM74S00                                             | Quad 2-Input NAND Gates           | 1-1               | 1-36                 | N/       | /Δ       |     | •          | N/A            | ^          |
| DM5401/DM7401                                       | Quad 2-Input NAND Gates with      | 1-1               | 1-38                 |          | `        |     |            | 14/1           | ^ •        |
| DINOTO 1/ DINI/ TO 1                                | Open-Collector Outputs            | '-'               | 1-30                 |          | . •      | "   | •          |                |            |
| DM54H01/DM74H01                                     | Quad 2-Input NAND Gates with      | 1-1               | 1-38                 |          |          |     |            | N/             |            |
| DIVIDALIO 1/DIVI/41101                              | Open-Collector Outputs            | 1-1               | 1-36                 | •        | •        |     | •          | 14/            | A          |
| DM54L01/DM74L01                                     | Quad 2-Input NAND Gates with      | 1                 | 1.00                 |          | / ^      | ١.  | 1/4 "      |                | _          |
| DIVIDAFO1/DIVI/4F01                                 | 1                                 | 1-1               | 1-38                 | N,       | A        | ·   | I/A        | •              | •          |
| DMEALCOA/DMZALC                                     | Open-Collector Outputs            |                   | 4.00                 |          | _        | _   | _          |                |            |
| DM54LS01/DM74LS0                                    |                                   | 1-1               | 1-38                 | •        | •        | •   | •          | •              | •          |
| DME402/DM7402                                       | Open-Collector Outputs            |                   |                      | _        |          |     |            |                |            |
| DM5402/DM7402                                       | Quad 2-Input NOR Gates            | 1-2               | 1-40                 | •        | •        | •   | • 4        | •              | •          |
| DM54L02/DM74L02                                     | Quad 2-Input NOR Gates            | 1-2               | 1-40                 | •        | . •      | •   | •          | •              | •          |
| DM54LS02/DM74LS0                                    |                                   | 1-2               | 1-40                 | •        | •        | •   | •          | •              | . •        |
| DM74S02                                             | Quad 2-Input NOR Gates            | 1-2               | 1-40                 | N/       | /Α       | 1   | •          | N/             |            |
| DM5403/DM7403                                       | Quad 2-Input NAND Gates with      | 1-2               | 1-38                 | •        | •        | •   | . •        | N/             | Α          |
|                                                     | Open-Collector Outputs            | .                 | ŀ                    |          |          |     |            |                |            |
| DM54L03/DM74L03                                     | Quad 2-Input NAND Gates with      | 1-2               | 1-38                 | •        | •        | •   | •:         | N/             | Α          |
|                                                     | Open-Collector Outputs            |                   | l                    |          |          |     |            |                |            |
| DM54LS03/DM74LS0                                    | 3 Quad 2-Input NAND Gates with    | 1-2               | 1-38                 |          | •        | •   | • 5        | •              | •          |
|                                                     | Open-Collector Outputs            | '                 |                      | ŀ        |          |     |            |                |            |
| DM74S03                                             | Quad 2-Input NAND Gates with      | 1-2               | 1-38                 | N/       | /A       |     |            | N/             | Α          |
|                                                     | Open-Collector Outputs            | 1                 |                      | l        | 1        |     |            |                |            |
| DM5404/DM7404                                       | Hex Inverters                     | 1-2               | 1-36                 | •        |          |     | •          | •              | •          |
| DM54H04/DM74H04                                     | Hex Inverters                     | 1-2               | 1-36                 | •        | •        | •   | •          | N/             | Α          |
| DM54L04/DM74L04                                     | Hex Inverters                     | 1-2               | 1-36                 | •        | •        |     | •          | •              |            |
| DM54LS04/DM74LS0                                    | 1                                 | 1-2               | 1-36                 |          | •        |     | •          |                | . •        |
| DM74S04                                             | Hex Inverters                     | 1-2               | 1-36                 | N,       | /Δ       |     |            | N/             | Δ          |
| DM5405/DM7405                                       | Hex Inverters with Open-Collector | 1.3               | 1-38                 |          | <u> </u> |     |            | 147            | ^ <b>_</b> |
| , ,                                                 | Outputs                           | 1-3               | 1.30                 |          |          |     |            |                | •          |
| DM54H05/DM74H05                                     | Hex Inverters with Open-Collector | 1-3               | 1-38                 | •        | •        | •   | • .        | N/             | Α          |
| DME41 05 (DM234) 05                                 | Outputs                           | 1                 |                      | Ι΄.      | **       |     |            |                |            |
| DM54L05/DM74L05                                     | Hex Inverters with Open-Collector | 1-3               | 1-38                 | •        | •        | •   | •          | 1.             | •          |
|                                                     | Outputs                           |                   |                      |          |          |     |            | 1              |            |
| DM54LS05/DM74LS0                                    | •                                 | 1-3               | 1-38                 | •        | •        | •   | •          | •              | •          |
|                                                     | Outputs                           | 111               |                      |          |          |     |            | 1              |            |
| DM74S05                                             | Hex Inverters with Open-Collector | 1-3               | 1-38                 | N,       | /A '     |     | •          | N/             | Α          |
|                                                     | Outputs                           |                   | · ·                  |          | ă.       |     |            |                |            |
| DM5406/DM7406                                       | Hex Buffers with Open-Collector   | 1-3               | 1-42                 | •        | •        | •   | •          | •              | •          |
|                                                     | High-Voltage Outputs              |                   |                      |          |          |     |            |                |            |
| DM5407/DM7407                                       | Hex Buffers with Open-Collector   | 1-3               | 1-42                 | . •      | •        | •   | •          | •              | •          |
|                                                     | High-Voltage Outputs              | İ                 | .ax                  |          |          |     |            | İ              |            |
| DM5408/DM7408                                       | Quad 2-Input AND Gates            | 1-4               | 1-44                 | •        | • • •    | •   | •          |                | . •        |
| DM54H08/DM74H08                                     | Quad 2-Input AND Gates            | 1-4               | 1-44                 | •        |          | •   | •          | N/             | A          |
| DM54L08/DM74L08                                     | Quad 2-Input AND Gates            | 1-4               | 1-44                 | •        | •        | •   | •          | •              | •          |
| DM54LS08/DM74LS0                                    | 1                                 | 1-4               | 1-44                 | •        | •        | •   | • •        |                |            |
| DM5409/DM7409                                       | Quad 2-Input AND Gates with       | 1-4               | 1-46                 | •        | •        | •   | • .        |                | •          |
| ··- · · # / · · · · · · · · · · · · · · · · ·       | Open-Collector Outputs            |                   | ' ' "                |          |          |     | -          |                |            |
| DM54L09/DM74L09                                     | Quad 2-Input AND Gates with       | 1-4               | 1-46                 | •        | •        | •   | . C.       |                |            |
| 2.1101200/DW/7209                                   | Open-Collector Outputs            | "                 | ""                   | •        | •        | 1   | _          |                |            |
| DM54LS09/DM74LS0                                    |                                   | 1-4               | 1.46                 |          |          |     |            |                | _          |
| レバリファレングラ/レババイとう                                    | Open-Collector Outputs            | 1 - 1 - 4         | 1-46                 | •        | •        | •   | •          |                | , •        |
|                                                     | Den-Collector Outputs             | 1 .               | I                    | 1        |          | 1   |            | 1 .            |            |
| DM5410/DM7410                                       |                                   | 1.4               | 1 1 00               |          |          |     |            |                | -          |
| DM5410/DM7410                                       | Triple 3-Input NAND Gates         | 1-4               | 1.36                 | •        | •        | • . | *. ● ·     | •              | •          |
| DM5410/DM7410<br>DM54H10/DM74H10<br>DM54L10/DM74L10 |                                   | 1-4<br>1-4<br>1-4 | 1 36<br>1 36<br>1 36 | •        | •        | •   |            | N/             | Α -        |

| <u> </u>            |                                                         | ·       |         |          |          |        |
|---------------------|---------------------------------------------------------|---------|---------|----------|----------|--------|
|                     |                                                         | Conn.   | Elec.   |          | Package  |        |
| Device No.          | Description                                             | Diag.   | Char.   | J        | N        | W      |
|                     |                                                         | Pg. No. | Pg. No. | Mil Coml | Mil Coml | Mil Co |
| DM54LS10/DM74LS10   | Triple 3-Input NAND Gates                               | 1-4     | 1-36    | • •      | • •      | •      |
| DM74S10             | Triple 3-Input NAND Gates                               | 1-4     | 1-36    | N/A      | . •      | N/A    |
| DM5411/DM7411       | Triple 3-Input AND Gates                                | 1-5     | 1-44    | • •      | • •      | N/A    |
| DM54H11/DM74H11     | Triple 3-Input AND Gates                                | 1-5     | 1-44    | • •.     | • •      | N/A    |
| DM54L11/DM74L11     | Triple 3-Input AND Gates                                | 1-5     | 1-44    | • '•     | • •      | •      |
| DM54LS11/DM74LS11   | Triple 3-Input AND Gates                                | 1-5     | 1-44    |          |          |        |
| DM74S11             | Triple 3-Input AND Gates                                | 1-5     | 1-44    | N/A      |          | N/A    |
| DM54LS12/DM74LS12   | Triple 3-Input AND Gates Triple 3-Input NAND Gates with | 1-5     | 1-38    | 10/2     |          |        |
| JW104E312/DW174E312 | Open-Collector Outputs                                  | 1 ,-3   | 1-36    |          | •        |        |
| DME412/DM7412       |                                                         | 1.5     | 1.40    |          |          |        |
| DM5413/DM7413       | Dual 4-Input NAND Schmitt Triggers                      | 1-5     | 1-48    |          |          |        |
| DM54LS13/DM74LS13   | Dual 4-Input NAND Schmitt Triggers                      | 1-5     | 1-48    |          |          |        |
| DM5414/DM7414       | Hex Schmitt Triggers                                    | 1-6     | 1-48    | •        |          | •      |
| DM54LS14/DM74LS14   | Hex Schmitt Triggers                                    | 1-6     | 1-48    | • •      | •        |        |
| DM54LS15/DM74LS15   | Triple 3-Input AND Gates with                           | 1-6     | 1-46    | • •      | • •      | •      |
|                     | Open-Collector Outputs                                  | 1 .     |         |          |          |        |
| DM74S15             | Triple 3-Input AND Gates with                           | 1-6     | 1-46    | N/A      | •        | N/A    |
|                     | Open-Collector Outputs                                  |         |         |          |          |        |
| DM5416/DM7416       | Hex Buffers with Open-Collector                         | 1-6     | 1-42    | • •      | • •      | •      |
|                     | High-Voltage Outputs                                    |         |         |          | ,        |        |
| DM5417/DM7417       | Hex Buffers with Open-Collector                         | 1-7     | 1-42    |          | • •      | •      |
| S 1177 B.1177 4177  | High-Voltage Outputs                                    | ' '     | ' '     |          |          |        |
| DM5420/DM7420       | Dual 4-Input NAND Gates                                 | 1-7     | 1-36    |          |          |        |
| DM54H20/DM74H20     | Dual 4-Input NAND Gates                                 | 1-7     | 1.36    |          |          | N/A    |
|                     | •                                                       | 1       |         |          |          | 1      |
| DM54L20/DM74L20     | Dual 4-Input NAND Gates                                 | 1-7     | 1-36    |          |          |        |
| DM54LS20/DM74LS20   | Dual 4-Input NAND Gates                                 | 1-7     | 1-36    | N1/A     |          | 21/2   |
| DM74S20             | Dual 4-Input NAND Gates                                 | 1-7     | 1-36    | N/A      | •        | N/A    |
| DM54H21/DM74H21     | Dual 4-Input AND Gates                                  | 1-7     | 1-44    | •        | • •      | N/A    |
| DM54LS21/DM74LS21   | Dual 4-Input AND Gates                                  | 1-7     | 1-44    | •        | •        | •      |
| DM54H22/DM74H22     | Dual 4-Input NAND Gates with                            | 1-8     | 1-38    | • •      | • •      | N/A    |
|                     | Open-Collector Outputs                                  |         |         |          | ,        |        |
| DM54LS22/DM74LS22   | Dual 4-Input NAND Gates with                            | 1-8     | 1-38    | • •      | • •      | •      |
|                     | Open-Collector Outputs                                  | 1       |         |          |          |        |
| DM74S22             | Dual 4-Input NAND Gates with                            | 1-8     | 1-38    | N/A      | •        | N/A    |
|                     | Open-Collector Outputs                                  |         |         |          |          |        |
| DM5423/DM7423       | Expandable Dual 4-Input NOR Gates                       | 1-8     | 1-50    | • •      | • •      | •      |
| DM5425/DM7425       | Dual 4-Input NOR Gates                                  | 1-8     | 1-40    | •        | • •      |        |
| DM5426/DM7426       | Quad 2-Input High-Voltage NAND                          | 1-9     | 1-42    |          |          | N/A    |
| DIVID420/ DIVI7420  |                                                         | ' "     | 1 72    | ,        |          |        |
| DMEAL OC/DMZAL OC   | Gates                                                   | 1-9     | 1-42    |          |          | N/A    |
| DM54L26/DM74L26     | Quad 2-Input High-Voltage NAND                          | 1-9     | 1-42    |          |          | 1 14/2 |
|                     | Gates                                                   | 4.0     |         |          |          | 1      |
| DM54LS26/DM74LS26   | Quad 2-Input High-Voltage NAND                          | 1-9     | 1-42    | •        | •        |        |
|                     | Gates                                                   | 1       |         |          |          | l      |
| DM5427/DM7427       | Triple 3-Input NOR Gates                                | 1-9     | 1-40    | • •      | •        | •      |
| DM54LS27/DM74LS27   | Triple 3-Input NOR Gates                                | 1-9     | 1-40    | • •      | • •      | •      |
| DM5430/DM7430       | 8-Input NAND Gates                                      | 1-9     | 1-36    | .• •     | • •      | •      |
| DM54H30/DM74H30     | 8-Input NAND Gates                                      | 1-9     | 1-36    | • •      | • •      | N/A    |
| DM54L30/DM74L30     | 8-Input NAND Gates                                      | 1-9     | 1-36    | • •      | • •      | •      |
| DM54LS30/DM74LS30   | 8-Input NAND Gates                                      | 1-9     | 1-36    | • •      | • •      | •      |
| DM74S30             | 8-Input NAND Gates                                      | 1-9     | 1-36    | N/A      | •        | N/A    |
| DM5432/DM7432       | Quad 2-Input OR Gates                                   | 1-10    | 1.52    | • •      |          | •      |
|                     |                                                         | 1-10    | 1-52    |          |          |        |
| DM54L32/DM74L32     | Quad 2-Input OR Gates                                   | 1       | 1       |          |          |        |
| DM54LS32/DM74LS32   | Quad 2-Input OR Gates                                   | 1-10    | 1-52    |          | -        |        |
| DM5437/DM7437       | Quad 2-Input NAND Buffers                               | 1-10    | 1-54    | •        | •        |        |
| DM54LS37/DM74LS37   | Quad 2-Input NAND Buffers                               | 1-10    | 1-54    | •        | •        |        |
| DM5438/DM7438       | Quad 2-Input NAND Buffers with                          | 1-10    | 1-42    | • •      | • •      | •      |
|                     | Open-Collector Outputs                                  |         |         |          |          |        |
| DM54LS38/DM74LS38   | Quad 2-Input NAND Buffers with                          | 1-10    | 1-42    | • •      | • •      | •      |
|                     | Open-Collector Outputs                                  | ı       | 1       | ı        | 1        | •      |

| 1 | - 4 | /   |     |  |
|---|-----|-----|-----|--|
|   | 54  | /74 | 551 |  |

# **Table of Contents**

| Daviss N.         | n y                                                                | Conn.            | Elec.            |               |     | ckage     |          |
|-------------------|--------------------------------------------------------------------|------------------|------------------|---------------|-----|-----------|----------|
| Device No.        | Description                                                        | Diag.<br>Pg. No. | Char.<br>Pg. No. | J<br>Mil Coml | Mil | N<br>Coml | Mil Coml |
| DM5440/DM7440     | Dual 4-Input NAND Buffers                                          | 1-11             | 1-54             |               | •   | •         |          |
| DM54H40/DM74H40   | •                                                                  |                  |                  |               |     |           |          |
|                   | Dual 4-Input NAND Buffers                                          | 1-11             | 1-54             |               |     | •         | N/A      |
| DM54LS40/DM74LS40 | Dual 4-Input NAND Buffers                                          | 1-11             | 1-54             | -             | . • | •         |          |
| DM74S40           | Dual 4-Input NAND Buffers                                          | 1-11             | 1-54             | N/A           |     | •         | N/A      |
| DM5450/DM7450     | Dual 2-Wide 2-Input AND-OR-INVERT<br>Gates                         | 1-11             | 1-50             |               | •   | •         |          |
| DM54H50/DM74H50   | Dual 2-Wide 2-Input AND-OR-INVERT Gates                            | 1-11             | . 1-50           |               | •   | •         | N/A      |
| DM5451/DM7451     | Dual 2-Wide 2-Input AND-OR-INVERT<br>Gates                         | 1-12             | 1-56             | • •           | •   | •         | •        |
| DM54H51/DM74H51   | Dual 2-Wide 2-Input AND-OR-INVERT Gates                            | 1-12             | 1-56             | • • •         | , • | •         | N/A      |
| DM54L51/DM74L51   | Dual 2-Wide 2-Input AND-OR-INVERT<br>Gates                         | 1-12             | 1-56             | • •           | •   | •         | •        |
| DM54LS51/DM74LS51 | Dual 2-Wide 2-Input AND-OR-INVERT Gates                            | 1-12             | 1-56             | • •           | •   | •         | • •      |
| DM74S51           | Dual 2-Wide 2-Input AND-OR-INVERT Gates                            | 1-12             | 1-56             | N/A           |     | •         | N/A      |
| DM54H52/DM74H52   | Expandable 4-Wide AND-OR Gates                                     | 1-13             | 1-50             | • •           | •   | •         | N/A      |
| DM5453/DM7453     | Expandable 4-Wide AND-OR INVERT Gates                              | 1-13             | 1-50             | • •           | • • | •         | • •      |
| DM54H53/DM74H53   | Expandable 4-Wide AND-OR-<br>INVERT Gates                          | 1-13             | 1-50             | • , •         | •   | •         | N/A      |
| DM5454/DM7454     | 4-Wide AND-OR-INVERT Gates                                         | 1-14             | 1-56             | • •           | •   | •         | • •      |
| DM54H54/DM74H54   | 4-Wide AND-OR-INVERT Gates                                         | 1-14             | 1-56             | • • `         | •   | •         | N/A      |
| DM54L54/DM74L54   | 4-Wide AND-OR-INVERT Gates                                         | 1-14             | 1-56             | • •           | •   | •         | •        |
| DM54LS54/DM74LS54 | 4-Wide AND-OR-INVERT Gates                                         | 1-14             | 1-56             | • •           | •   | • `       |          |
| DM54H55/DM74H55   | 2-Wide 4-Input AND-OR-<br>INVERT Gates                             | 1-15             | 1-50             | • •           | •   | •         | N/A      |
| DM54L55/DM74L55   | 2-Wide 4-Input AND-OR-<br>INVERT Gates                             | 1-15             | 1-56             | •             | •   | •         | •        |
| DM54LS55/DM74LS55 | 2-Wide 4-Input AND-OR-<br>INVERT Gates                             | 1-15             | 1-56             | • •           | •   | •         | . •      |
| DM5460/DM7460     | Dual 4-Input Expanders                                             | 1-15             | 1-58             | • •           | •   | •         | • •      |
| DM54H60/DM74H60   | Dual 4-Input Expanders                                             | 1-15             | 1-59             | • •           | •   | •         | N/A      |
| DM54H61/DM74H61   | Triple 3-Input Expanders                                           | 1-16             | 1-60             | • •           | •   | • .       | N/A      |
| DM54H62/DM74H62   | 4-Wide AND-OR Expanders                                            | 1-16             | 1-59             | • •           | •   | •         | N/A      |
| DM74S64           | 4-Wide AND-OR-INVERT Gates                                         | 1-16             | 1-56             | N/A           |     |           | N/A      |
| DM74S65           | 4-Wide AND-OR-INVERT Gates                                         | 1-17             | 1-61             | N/A           |     |           | N/A      |
| DM5470/DM7470     | with Open-Collector Outputs  AND-Gated J-K Positive-Edge Triggered | 1-18             | 1-62             | IN/A          |     |           | IN/A     |
| DM54H71/DM74H71   | Flip-Flops with Preset and Clear AND-OR-Gated J-K Master-Slave     | 1-18             | 1-64             |               |     |           | N/A      |
| DM54L71/DM74L71   | Flip-Flops with Preset AND-Gated R-S Master-Slave                  | 1-10             | 1-66             |               |     |           | N/A      |
|                   | Flip-Flops with Preset and Clear                                   |                  |                  |               |     |           |          |
| DM5472/DM74172    | AND Gated J.K Master-Slave Flip-Flops with Preset and Clear        | 1-19             | 1-62             |               |     | •         | N1/A     |
| DM54H72/DM74H72   | AND Gated J.K Master-Slave Flip-Flops with Preset and Clear        | 1-19             | 1-64             |               | •   |           | N/A      |
| DM54L72/DM74L72   | AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear        | 1-19             | 1-66             | •             | •   | •         | •        |
| DM5473/DM7473     | Dual J-K Flip-Flops with Clear                                     | 1-20             | 1-62             | • •           | •   | •         | •        |
| DM54H73/DM74H73   | Dual J-K Flip-Flops with Clear                                     | 1-20             | 1-64             | • . •         | •   | •         | N/A      |
| DM54L73/DM74L73   | Dual J-K Flip-Flops with Clear                                     | 1-20             | 1-66             | • . •         | •   | •         | • •      |
| DM54LS73/DM74LS73 | Dual J-K Flip-Flops with Clear                                     | 1-20             | 1 68             | • •           |     | •         |          |

|                                         | 1                                            | Conn.   | Elec.        | Package  |          |          |  |  |
|-----------------------------------------|----------------------------------------------|---------|--------------|----------|----------|----------|--|--|
| Device No.                              | Description                                  | Diag.   | Char.        | J        | N        | w        |  |  |
|                                         |                                              | Pg. No. | Pg. No.      | Mil Coml | Mil Coml | Mil Coml |  |  |
| DM5474/DM7474                           | Dual D Positive-Edge-Triggered               | 1-20    | 1-62         | • •      | • •      | • •      |  |  |
|                                         | Flip-Flops with Preset and Clear             | j       |              |          |          |          |  |  |
| DM54H74/DM74H74                         | Dual D Positive-Edge-Triggered               | 1-20    | 1-64         | • •      | • •      | N/A      |  |  |
|                                         | Flip-Flops with Preset and Clear             | ł       |              |          |          |          |  |  |
| DM54L74/DM74L74                         | Dual D Positive-Edge-Triggered               | 1-20    | 1-66         | • •      | • •      | • •      |  |  |
|                                         | Flip-Flops with Preset and Clear             |         |              |          |          |          |  |  |
| DM54LS74/DM74LS74                       | Dual D Positive-Edge-Triggered               | 1-20    | 1-68         | . •      | • •      | •        |  |  |
| DM74C74                                 | Flip-Flops with Preset and Clear             | 1.00    | 1 70         | N1/A     | _        | 21/2     |  |  |
| DM74S74                                 | Dual D Positive-Edge-Triggered               | 1-20    | 1-70         | N/A      | •        | N/A      |  |  |
| DM5476/DM7476                           | Flip-Flops with Preset and Clear             | 1-21    | 1-62         |          |          | 1        |  |  |
| JIVI5470/DIVI7470                       | Dual J-K Flip-Flops with Preset and Clear    | 1-21    | 1-02         |          | •        |          |  |  |
| DM54H76/DM74H76                         | Dual J-K Flip-Flops with Preset and          | 1-21    | 1-64         |          |          | N/A      |  |  |
| סייודי לייות מייטים איידי פווייכ        | Clear                                        | 1 2     | 1 04         |          |          | 17/2     |  |  |
| DM54LS76/DM74LS76                       | Dual J-K Flip-Flops with Preset and          | 1-21    | 1-68         |          |          |          |  |  |
|                                         | Clear                                        |         | , 55         |          |          |          |  |  |
| DM54H78/DM74H78                         | Dual J-K Flip-Flops with Preset,             | 1-21    | 1-64         | • •      |          | N/A      |  |  |
|                                         | Common Clear and Common Clock                |         |              |          |          |          |  |  |
| DM54L78/DM74L78                         | Dual J-K Flip-Flops with Preset,             | 1-21    | 1-66         | • •      | • •      | • •      |  |  |
|                                         | Common Clear and Common Clock                |         |              |          |          | 1        |  |  |
| DM54LS78/DM74LS78                       | Dual J-K Flip-Flops with Preset,             | 1-21    | 1-68         | • •      | • •      |          |  |  |
|                                         | Common Clear and Common Clock                | İ       |              |          |          |          |  |  |
| DM5486/DM7486                           | Quad EXCLUSIVE-OR Gates                      | 1-22    | 1-72         | • •      | • •      | • •      |  |  |
| DM54L86/DM74L86                         | Quad EXCLUSIVE-OR Gates                      | 1-22    | 1-72         | • •      | • •      | • •      |  |  |
| DM54LS86/DM74LS86                       | Quad EXCLUSIVE-OR Gates                      | 1-22    | 1-72         | • •      | • •      | • •      |  |  |
| DM74S86                                 | Quad EXCLUSIVE-OR Gates                      | 1-22    | 1-72         | N/A      | •        | N/A      |  |  |
| DM54H103/DM74H103                       | Dual J-K Negative-Edge-Triggered             | 1-23    | 1-74         | •, •     | •        | N/A      |  |  |
|                                         | Flip-Flops with Clear                        |         |              |          |          |          |  |  |
| DM54H106/DM74H106                       | Dual J-K Negative-Edge-Triggered             | 1-23    | 1-74         | • •      | • •      | N/A      |  |  |
|                                         | Flip-Flops with Preset and Clear             |         |              |          |          |          |  |  |
| DM54107/DM74107                         | Dual J-K Master-Slave Flip-Flops with        | 1-23    | 1-62         | • . •    | •        | N/A      |  |  |
| NAE 41 C107/DN4741 C107                 | Clear                                        | 1.00    | 1.00         |          | _        | 1        |  |  |
| DM54LS107/DM74LS107                     | Dual J-K Master-Slave Flip-Flops with Clear  | 1-23    | 1-68         | •        | • . •    |          |  |  |
| M54H108/DM74H108                        | Dual J-K Negative-Euge-Triggered             | 1-24    | 1-74         |          |          | N/A      |  |  |
| JW15411106/DW17411106                   | Flip-Flops with Preset, Common               | 1-24    | 1-74         |          |          | 11/4     |  |  |
|                                         | Clear, and Common Clock                      |         |              |          |          | 1        |  |  |
| M54109/DM74109                          | Dual J-K Positive-Edge-Triggered             | 1-24    | 1-62         |          |          |          |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Flip-Flops with Preset and Clear             | ·       | , 02         |          |          |          |  |  |
| M54LS109/DM74LS109                      |                                              | 1-24    | 1-68         | • •      | • •      |          |  |  |
|                                         | Flip-Flops with Preset and Clear             |         |              |          |          | 1        |  |  |
| M54LS112/DM74LS112                      | Dual J-K Negative-Edge-Triggered             | 1-24    | 1-68         | • •      | • •      | • •      |  |  |
|                                         | Flip-Flops with Preset and Clear             |         |              |          |          |          |  |  |
| DM74S112                                | Dual J-K Negative-Edge-Triggered             | 1-24    | 1-70         | N/A      | •        | N/A      |  |  |
|                                         | Flip-Flops with Preset and Clear             | 1       |              |          |          |          |  |  |
| M54LS113/DM74LS113                      | Dual J-K Negative-Edge-Triggered             | 1-25    | 1-68         | • •      | • •      | • •      |  |  |
|                                         | Flip-Flops with Preset                       | j       |              |          |          |          |  |  |
| M74S113                                 | Dual J-K Negative-Edge-Triggered             | 1-25    | 1-70         | N/A      | , •      | N/A      |  |  |
|                                         | Flip-Flops with Preset                       |         |              |          |          |          |  |  |
| )M54LS114/DM74LS114                     | 3 33                                         | 1-25    | 1-68         | • •      | • •      | •        |  |  |
|                                         | Flip-Flops with Preset, Common               |         |              | İ        |          |          |  |  |
| NA740444                                | Clear, and Common Clock                      |         | 4            |          | _        |          |  |  |
| DM74S114                                | Dual J-K Negative-Edge-Triggered             | 1-25    | 1-70         | N/A      | •        | N/A      |  |  |
|                                         | Flip-Flops with Preset, Common               |         |              |          |          |          |  |  |
| MAEA121/DM74121                         | Clear, and Common Clock                      | 1.00    | 1.76         |          |          |          |  |  |
| DM54121/DM74121<br>DM54LS122/DM74LS122  | One Shots Retriggerable One Shots with Clear | 1-26    | 1-76         |          |          |          |  |  |
| DM5413122/DM7415122<br>DM54123/DM74123  | Dual Retriggerable One Shots with Clear      | 1       | 1-78<br>1-78 |          |          | •        |  |  |

| <b>%</b> 54/74 SSI  |                                                      |         | '       |          | Table of | Contents |
|---------------------|------------------------------------------------------|---------|---------|----------|----------|----------|
|                     | 14                                                   | Conn.   |         |          | Package  |          |
| Device No.          | Description                                          | Diag.   | Char.   | J        | ``N      | W        |
|                     |                                                      | Pg. No. | Pg. No. | Mil Coml | Mil Coml | Mil Com  |
| DM54L123A/DM74L123A | Dual Retriggerable One Shots<br>with Clear           | 1-26    | 1-78    | •        | • •      | • •      |
| DM54LS123/DM74LS123 | Dual Retriggerable One Shots with Clear              | 1-26    | 1-78    | • •      | • •      | •        |
| DM54125/DM74125     | TRI-STATE Quad Buffers                               | 1-27    | 1-80    | • •      | • •      | •        |
| DM54LS125/DM74LS125 | TRI-STATE Quad Buffers                               | 1-27    | 1-80    | • •      | • •      | •        |
| DM54126/DM74126     | TRI-STATE Quad Buffers                               | 1-27    | 1-80    | • •      | • •      | . •      |
| DM54LS126/DM74LS126 | TRI-STATE Quad Buffers                               | 1-27    | 1-80    | • • •    | • •      | •        |
| DM54132/DM74132     | Quad 2-Input NAND Schmitt<br>Triggers                | 1-27    | 1-48    | • •      | • •      | • .      |
| DM54LS132/DM74LS132 | Quad 2-Input NAND Schmitt<br>Triggers                | 1-27    | 1-48    | • •      | • •      | •        |
| DM74S133            | 13-Input NAND Gates                                  | 1-28    | 1-36    | N/A      | •        | N/A      |
| DM74S134            | TRI-STATE 12-Input NAND Gates                        | 1-28    | 1-80    | N/A      | •        | N/A      |
| DM74S135            | Quad EXCLUSIVE-OR/NOR Gates                          | 1-28    | 1-82    | N/A      | . •      | N/A      |
| DM54LS136/DM74LS136 | Quad EXCLUSIVE-OR Gates with Open-Collector Outputs  | 1-29    | 1-84    | • •      | •        | •        |
| DM74S136            | Quad EXCLUSIVE-OR Gates with Open-Collector Outputs  | 1-29    | 1-84    | N/A      | . •      | N/A      |
| DM74S140            | Dual 50-Ohm Line Drivers                             | 1-29    | 1-54    | N/A      | •        | N/A      |
| DM54LS221/DM74LS221 | Dual One Shots with Schmitt-<br>Trigger Inputs       | 1-30    | 1-76    | • •      | •        | • •      |
| DM74S260            | Dual 5-Input NOR Gates                               | 1-31    | 1-40    | N/A      | •        | N/A      |
| DM54LS266/DM74LS266 | Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs | 1-31    | 1-84    | •        | •        | •        |
| DM54365/DM74365     | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | •        | • •      |
| DM54LS365/DM74LS365 | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | • •      | •        |
| DM54366/DM74366     | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | •        | •        |
| DM54LS366/DM74LS366 | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | • •      | •        |
| DM54367/DM74367     | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | •        | •        |
| DM54LS367/DM74LS367 | TRI-STATE Hex Buffers                                | 1-32    | 1-86    | • •      | • •      | •        |
| DM54368/DM74368     | TRI-STATE Hex Buffers                                | 1-33    | 1-86    | • •      | •        | •        |
| DM54LS368/DM74LS368 | TRI-STATE Hex Buffers                                | 1-33    | 1-86    | • •      | • •      | •        |
| DM54LS386/DM74LS386 | Quad EXCLUSIVE-OR Gates                              | 1-34    | 1-72    | • •      | •        | •        |

# National Semiconductor 54/74 SSI DEVICES Connection Diagrams Section 1



 $Y = \overline{AB}$ 

 $Y = \overline{AB}$ 

### 00 Quad 2-Input NAND Gates

V<sub>CC</sub> B4 AA Y4 B3 A3 Y3 14 13 12 11 10 9 8 A1 B1 Y1 A2 B2 Y2 GNO



5400/7400(J), (N); 54H00/74H00(J), (N); 54L00/74L00(J), (N); 54LS00/74LS00(J),(N),(W); 74S00(N)

5400/7400(W); 54L00/74L00(W)

See page 1-36 for electrical tables.

# 01 Quad 2-Input NAND Gates with Open-Collector Outputs



5401/7401(J), (N); 54LS01/74LS01(J), (N), (W)

5401/7401(W); 54L01/74L01(W)



54H01/74H01(J), (N)

See page 1-38 for electrical tables.

### 02 Quad 2-Input NOR Gates

 $Y = \overline{A+B}$ 



5402/7402(J), (N); 54L02/74L02(J), (N); 54LS02/74LS02(J), (N), (W); 74S02(N)

5402/7402(W); 54L02/74L02(W)

See page 1-40 for electrical tables.

#### 03 Quad 2-Input NAND Gates with Open-Collector Outputs

 $Y = \overline{AB}$ 



5403/7403(J), (N); 54L03/74L03(J), (N); 54LS03/74LS03(J), (N), (W); 74S03(N)

See page 1-38 for electrical tables.

#### **04** Hex Inverters

 $Y = \overline{A}$ 



5404/7404(J), (N); 54H04/74H04(J), (N); 54L04/74L04(J), (N); 54LS04/74LS04(J), (N), (W); 74S04(N)



5404/7404(W); 54L04/74L04(W)

See page 1-36 for electrical tables.

 $Y = \overline{A}$ 

# 05 Hex Inverters with Open-Collector Outputs



5405/7405(J), (N); 54H05/74H05(J), (N); 54L05/74L05(J), (N); 54LS05/74LS05(J), (N), (W); 74S05(N) 5405/7405(W); 54L05/74L05(W)

See page 1-38 for electrical tables.

# 06 Hex Buffers with Open-Collector High-Voltage Outputs

V = Δ



See page 1-42 for electrical tables.

# 07 Hex Buffers with Open-Collector High-Voltage Outputs

V = Δ



5407/7407(J), (N), (W)

See page 1-42 for electrical tables.

## 08 Quad 2-Input AND Gates

Y = AB



5408/7408(J), (N), (W); 54H08/74H08(J), (N); 54L08/74L08(J), (N), (W); 54LS08/74LS08(J), (N), (W)

See page 1-44 for electrical tables.

#### **09** Quad 2-Input AND Gates with Open-Collector Outputs

Y = AB



5409/7409(J), (N), (W); 54L09/74L09(J), (N), (W); 54LS09/74LS09(J), (N), (W)

See page 1-46 for electrical tables.

### 10 Triple 3-Input NAND Gates

Y = ABC



5410/7410(J), (N); 54H10/74H10(J), (N); 54L10/74L10(J), (N); 54LS10/74LS10(J), (N), (W); 74S10(N) 5410/7410(W); 54L10/74L10(W)

See page 1-36 for electrical tables.

### 11 Triple 3-Input AND Gates

Y = ABC



5411/7411(J), (N); 54H11/74H11(J), (N); 54L11/74L11(J), (N), (W); 54LS11/74LS11(J), (N), (W); 74S11(N)

See page 1-44 for electrical tables.

#### 12 Triple 3-Input NAND Gates with Open-Collector Outputs

 $Y = \overline{ABC}$ 



54LS12/74LS12(J), (N), (W)

See page 1-38 for electrical tables.

#### 13 Dual 4-Input NAND Schmitt Triggers

Y = ABCD



5413/7413(J),(N),(W); 54LS13/74LS13(J),(N),(W)

See page 1-48 for electrical tables.

### 14 Hex Schmitt Triggers





5414/7414(J),(N),(W); 54LS14/74LS14(J),(N),(W)

See page 1-48 for electrical tables.

# 15 Triple 3-Input AND Gates with Open-Collector Outputs

Y = ABC



54LS15/74LS15(J),(N),(W); 74S15(N)

See page 1-46 for electrical tables.

# 16 Hex Buffers with Open-Collector High-Voltage Outputs





5416/7416(J),(N),(W)

See page 1-42 for electrical tables.

# 17 Hex Buffers with Open-Collector High-Voltage Outputs





5417/7417(J),(N),(W)

See page 1-42 for electrical tables.

#### 20 Dual 4-Input NAND Gates



14 13 12 11 10 9 8
11 2 3 4 5 6 7
A1 V1 NC V<sub>CC</sub> NC A2 82

5420/7420(J),(N); 54H20/<sup>7</sup>4H20(J),(N); 54L20/74L20(J),(N); 54L820/74L820(J),(N),(W); 74S20(N)

5420/7420(W); 54L20/74L20(W)

See page 1-36 for electrical tables.

#### 21 Dual 4-Input AND Gates

Y = ABCD

Y = ABCD



54H21/74H21(J),(N);54LS21/74LS21(J),(N),(W)

See page 1-44 for electrical tables.

### 22 Dual 4-Input NAND Gates with Open Collector Outputs

Y = ABCD



54H22/74H22(J),(N); 54LS22/74LS22(J),(N),(W); 74S22(N)

See page 1-38 for electrical tables.

#### 23 Expandable Dual 4-Input NOR Gates with Strobe

 $Y1 = \overline{G1 (A1+B1+C1+D1)+X}$  $Y2 = \overline{G2 (A2+B2+C2+D2)}$ 

X = output of 5460/7460



5423/7423(J),(N),(W)

See page 1-50 for electrical tables.

### 25 Dual 4-Input NOR Gates with Strobe

 $Y = \overline{G(A+B+C+D)}$ 



5425/7425(J),(N),(W)

See page 1-40 for electrical tables.

### 26 Quad 2-Input High-Voltage NAND Gates

 $Y = \overline{AB}$ 



5426/7426(J),(N);54L26/74L26(J),(N); 54LS26/74LS26(J),(N),(W)

See page 1-42 for electrical tables.

#### 27 Triple 3-Input NOR Gates

 $Y = \overline{A+B+C}$ 



5427/7427(J),(N),(W); 54LS27/74LS27(J),(N),(W)

See page 1-40 for electrical tables.

#### 30 8-Input NAND Gates

Y = ABCDEFGH



5430/7430(J),(N);54H30/74H30(J),(N); 54L30/74L30(J),(N);54LS30/74LS30(J),(N),(W) 74S30(N)



5430/7430(W); 54L30/74L30(W)

See page 1-36 for electrical tables.

# 32 Quad 2-Input OR Gates

. 3 km

Y = A + B



5432/7432(J),(N),(W);54L32/74L32(J),(N),(W);

54LS32/74LS32(J),(N),(W);54L32/74L32(J),(N)

See page 1-52 for electrical tables.

#### 37 Quad 2-Input NAND Buffers

V = AR



5437/7437(J),(N),(W);54LS37/74LS37(J),(N),(W)

See page 1-54 for electrical tables.

#### 38 Quad 2-Input NAND Buffers with Open-Collector Outputs

Y = AB



5438/7438(J),(N),(W);54LS38/74LS38(J),(N),(W)

See page 1-42 for electrical tables.

# 40 Dual 4-Input NAND Buffers

Y = ABCD



5440/7440(J), (N); 54H40/74H40(J), (N); 54LS40/74LS40(J), (N), (W); 74S40(N)

5440/7440(W)

See page 1-54 for electrical tables.

#### 50 Dual 2-Wide, 2-Input, AND-OR-INVERT Gates

 $Y = \overline{AB+CD+X}$ 

50: X = output of 5460/7460 H50: X = output of 54H60/74H60 or 54H62/74H62



5450/7450(J), (N); 54H50/74H50(J), (N)



5450/7450(W)

See page 1-50 for electrical tables.

51, H51, S51 Y = AB+CD

# 51 Dual 2-Wide, 2-Input AND-OR-INVERT Gates





5451/7451(J), (N); 54H51/74H51(J), (N); 74S51(N)

5451/7451(W)

L51, LS51 Y1 =  $\overline{(A1 \cdot B1 \cdot C1) + (D1 \cdot E1 \cdot F1)}$ Y2 =  $\overline{(A2 \cdot B2) + (C2 \cdot D2)}$ 





54L51/74L51(J),(N); 54LS51/74LS51(J),(N),(W)

54L51/74L51(W)

See page 1-56 for electrical tables.

# 52 Expandable 4-Wide AND-OR Gates

Y = AB+CDE+FG+HI+X X = output of 54H61/74H61



See page 1-50 for electrical tables.

### 53 Expandable 4-Wide AND-OR-INVERT Gates

E2

 $Y = \overline{AB+CD+EF+GH+X}$  X = output of 5460/7460



5453/7453(J), (N)



ue:

Y = AB+CD+EFG+HI+X X = output of 54H60/74H60 or 54H62/74H62



54H53/74H53(J), (N)

See page 1-50 for electrical tables.

# 54 4-Wide AND-OR-INVERT Gates

54

 $Y = \overline{AB+CD+EF+GH}$ 



5454/7454(J), (N)

5454/7454(W)

Y = AB+CD+EFG+HI

L54(J, N), LS54 Y = AB+CDE+FGH+IJ V<sub>CC</sub> B CONNECTION H Y 14 13 12 11 10 9 8 1 1 2 3 4 5 6 7 A C D E F G OND



54H54/74H54(J), (N)

54L54/74L54(J),(N); 54LS54/74LS54(J),(N),(W)

L54(W) Y = ABC+DE+FG+HIJ



54L54/74L54(W)

See page 1-56 for electrical tables.

# DM54/DM74 Connection Diagrams/Gates

# 55 2-Wide, 4-Input AND-OR-INVERT Gates

#### H55 (EXPANDABLE)

Y = ABCD+EFGH+X X = output of 54H60/74H60or 54H62/74H62

L55(J, N), LS55 Y = ABCD+EFGH





54L55/74L55(J),(N); 54LS55/74LS55(J),(N),(W)

L55(W)

Y = ABCD+EFGH



54L55/74L55(W)

See page 1-50 (H55), 1-56 (L55 and LS55) for electrical tables.

# 60 Dual 4-Input Expanders

X = ABCD when connected to X and X inputs of 5423/7423, 5450/7450 or 5453/7453

X = ABCD when connected to Xand  $\overline{X}$  inputs of 54H50/74H50, 54H53/74H53, or 54H55/74H55



5460/7460(J),(N); 54H60/74H60(J),(N)

5460/7460(W)

See page 1-58 (60), 1-59 (H60) for electrical tables.

### 61 Triple 3-Input Expanders

X = ABC when connected to X input of 54H52/74H52



54H61/74H61(J),(N)

See page 1-60 for electrical tables.

#### 62 4-Wide AND-OR Expander

X = AB + CDE + FGH + IJ when connected to X and X inputs of 54H50/74H50, 54H53/74H53 or 54H55/74H55



54H62/74H62(J),(N)

See page 1-59 for electrical tables.

#### 64 4 Wide AND-OR-INVERT Gates

 $Y = \overline{ABCD + EF + GHI + JK}$ 



74S64(N)

See page 1-56 for electrical tables.



# DM54/DM74 Connection Diagrams/Gates

# 65 4 Wide AND-OR-INVERT Gates with Open-Collector Outputs

Y = ABCD + EF + GHI + JK



See page 1-61 for electrical tables.

# 70 AND-Gated J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear

TRUTH TABLE

|    |     | OUT        | PUTS |    |        |    |
|----|-----|------------|------|----|--------|----|
| PR | CLR | CLK        | J    | К  | Q      | ā  |
| L  | н   | , L        | Х    | Х  | Н      | L  |
| H  | L   | L          | X    | X  | L      | Н  |
| L  | L   | X          | X.   | X  | н*     | H* |
| Н  | Н   | <b>†</b> . | L    | L  | 0.0    | ŌΩ |
| н  | н   | <b>↑</b>   | Н    | L. | н      | L  |
| Н  | Н   | <b>↑</b>   | L    | Н  | L      | Н  |
| ,H | Н   | 1          | Н    | Н  | TOGGLE |    |
| н  | н   | L '        | X    | Х  | 0.0    | Q0 |

J = J1 · J2 · J

 $K = K1 \cdot K2 \cdot \overline{K}$ 

If inputs  $\overline{J}$  and  $\overline{K}$  are not used, they must be grounded.

Preset or Clear function can occur only when clock input is low.



5470/7470(J),(N)



See page 1-62 for electrical tables.

#### H71 AND-OR-Gated J-K Master-Slave Flip-Flops with Preset

TRUTH TABLE

|          | INPU | OUTPUTS |   |     |            |
|----------|------|---------|---|-----|------------|
| PR       | CLK  | J       | К | Q   | ā          |
| L        | X    | Х       | Х | Н   | L          |
| н        | _√_  | L       | L | 00  | $\bar{Q}0$ |
| н        | Ĺ    | Н       | L | Н   | L          |
| н        |      | L       | н | L.  | Н          |
| <u> </u> | T    | Н       | н | TOG | GLE        |

 $J = (J1A \cdot J1B) + (J2A \cdot J2B)$  $K = (K1A \cdot K1B) + (K2A \cdot K2B)$  V<sub>CC</sub> CLK KB2 KA2 KB1 KA1 Q
18 13 12 11 10 9 8
11 12 13 12 11 10 9 8
11 13 12 11 10 9 8
11 13 12 11 10 9 8

54H71/74H71(J),(N)

See page 1-64 for electrical tables.

Notes: \_\_\_ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

### L71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear



|    | INPUTS |          |   |   |      |                  |  |
|----|--------|----------|---|---|------|------------------|--|
| PR | CLR    | CLK      | s | R | Q    | ā                |  |
| L  | н      | ×        | х | × | н    | <sup>1</sup> L   |  |
| н  | L      | ×        | X | Х | L    | Н                |  |
| L  | L      | ×        | X | Х | н*   | н*               |  |
| Н  | н      |          | L | L | QΟ   | $\bar{\Omega}$ 0 |  |
| Н  | н      | $\Gamma$ | Н | L | н    | L                |  |
| н  | Н      | <b>_</b> | L | Н | L    | Н                |  |
| н  | Н      |          | Н | Н | INDE | TER-             |  |
|    |        |          |   |   |      |                  |  |

 $R = R1 \cdot R2 \cdot R3$  $S = S1 \cdot S2 \cdot S3$ 



54L71/74L71(J),(N)



54L71/74L71(W)

See page 1-66 for electrical tables.

## 72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear

TRUTH TABLE

|    | IN  | OUTPUTS  |   |   |     |                  |
|----|-----|----------|---|---|-----|------------------|
| PR | CLR | CLK      | J | κ | Q   | ā                |
| L  | Н   | х        | Х | Х | н   | L                |
| н  | L   | ×        | Х | x | L   | н                |
| L  | L   | х        | х | X | Н*  | н*               |
| н  | н   | л        | L | L | Q0  | $\overline{Q}$ 0 |
| н  | н   | $\Gamma$ | Н | L | н   | L                |
| н  | н   | $\Gamma$ | L | н | L   | н                |
| Н  | н   | л        | н | н | TOG | GLE              |

 $J = J1 \cdot J2 \cdot J3$   $K = K1 \cdot K2 \cdot K3$ 



5472/7472(J),(N);54H72/74H72(J),(N); 54L72/74L72(J),(N)



5472/7472(W);54L72/74L72(W)

See page 1-62 (72), 1-64 (H72), 1-66 (L72) for electrical tables.

Notes: \_\_\_ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

# DM54/DM74 Connection Diagrams/Flip-Flops

#### 73 Dual J-K Flip-Flops with Clear

TRUTH TABLE 73, H73, L73

|     | INPUTS   | OUT | PUTS |     |                      |
|-----|----------|-----|------|-----|----------------------|
| CLR | CLK      | ĺ   | κ    | Q   | ā                    |
| L   | Х        | Х   | X    | L   | ŀН                   |
| Н   | ╨        | Ł   | L    | 0.0 | $\bar{\mathbf{Q}}$ 0 |
| н   |          | HA  | L    | Н   | L                    |
| Н   | $\Gamma$ | Ĺ   | Н    | L   | Н                    |
| H   |          | H   | Н    | TOG | GLE                  |

TRUTH TABLE LS73

|     | INPUTS   | OUT | PUTS |     |     |
|-----|----------|-----|------|-----|-----|
| CLR | CLK      | J   | к    | Q   | ā   |
| L   | Х        | X   | Х    | L   | Н   |
| H.  | <b>↓</b> | L   | L    | Ω0  | Ω0  |
| н   | 1        | н   | L    | н   | L   |
| н   | 1        | L   | Н    | L.  | Н   |
| н   | 1        | Н   | Н    | TOG | GLE |
| Н   | H        | Х   | Х    | Q0  | ŌΟ  |



5473/7473(J), (N), (W); 54H73/74H73(J), (N); 54L73/74L73 (J), (N), (W); 54LS73/74LS73(J), (N), (W)

See page 1-62 (73), 1-64 (H73), 1-66 (L73), 1-68 (LS73) for electrical tables.

## 74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear



5474/7474(J),(N); 54H74/74H74(J),(N); 54L74/74L74(J),(N); 54LS74/74LS74(J),(N),(W); 74S74(N)





5474/7474(W), 54L74/74L74(W)

See page 1-62 (74), 1-64 (H74), 1-66 (L74), 1-68 (LS74), 1-70 (S74) for electrical tables.

Notes: \_\_\_ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

# DM54/DM74 Connection Diagrams/Flip-Flops

## 76 Dual J-K Flip-Flops with Preset and Clear

TRUTH TABLE 76, H76

|    | Ir  | OUT    | UTS |   |     |                      |
|----|-----|--------|-----|---|-----|----------------------|
| PR | CLR | CLK    | J   | κ | Q   | ā                    |
| L  | Н   | Х      | Х   | Х | Н   | L                    |
| Н  | L   | Х      | Х   | Х | L   | н                    |
| L  | L   | Х      | Х   | X | н*  | н*                   |
| Н  | Н   | $\Box$ | L   | L | QO  | $\overline{\Omega}0$ |
| н  | Н   | л      | Н   | L | Н   | L                    |
| н  | н   | л      | L   | н | L   | н                    |
| н  | Н   | ℷ      | Н   | н | TOG | GLE                  |

TRUTH TABLE LS76

|    | INPUTS |          |   |   |     | PUTS |
|----|--------|----------|---|---|-----|------|
| PR | CLR    | CLK      | J | к | a   | ā    |
| L  | Н      | Х        | Х | Х | Н   | L    |
| н  | L      | Х        | Х | Х | L   | Н    |
| L  | L      | Х        | Х | Х | н*  | н*   |
| н  | н      | +        | L | L | 00  | ŌΟ   |
| н  | н      | <b>+</b> | Н | L | н   | L    |
| н  | н      | 1        | L | Н | L   | Н    |
| н  | н      | <b>+</b> | Н | Н | TOG | GLE  |
| н  | Н      | _ н      | Х | Х | Ω0  | QΩ   |



5476/7476(J), (N), (W); 54H76/74H76(J), (N); 54LS76/74LS76(J), (N), (W)

See page 1-62 (76), 1-64 (H76), 1-68 (LS76) for electrical tables.

# 78 Dual J-K Flip-Flops with Preset, Common Clear, and Common Clock

TRUTH TABLE H78, L78

|    | INPUTS |          |   |   |     | PUTS |
|----|--------|----------|---|---|-----|------|
| PR | CLR    | CLK      | J | K | Q   | ā    |
| L  | н      | Х        | Х | Х | Н   | L    |
| н  | L      | X        | X | X | L   | Н    |
| L  | · L    | ×        | Х | Х | н*  | н*   |
| н  | н.     | $\Gamma$ | L | L | QO  | ŌΟ   |
| н  | Н      | л        | Н | L | Н   | L    |
| Н  | н      | л        | L | Н | L   | Н    |
| Н  | н      |          | н | Н | TOG | GLE  |



54H78/74H78(J),(N)

TRUTH TABLE

|    | INPUTS |            |   |   |     | UTS              |
|----|--------|------------|---|---|-----|------------------|
| PR | CLR    | CLK        | J | К | Q   | ā                |
| L  | Н      | Х          | Х | Х | н   | L                |
| н  | L      | X          | X | X | L   | Н                |
| L  | L      | X          | Х | Х | н*  | н*               |
| н  | н      | <b>↓</b> . | L | L | QO  | $\bar{\alpha}_0$ |
| н  | н      | <b>↓</b>   | Н | L | н   | L                |
| н  | н      | . 1        | L | Н | L   | Н                |
| н  | н      | <b>↓</b>   | Н | Н | TOG | GLE              |
| Н  | н      | н          | Х | X | Q0  | Ō٥.              |

See page 1-64 (H78), 1-66 (L78), 1-68 (LS78) for electrical tables.



54L78/74L78(J), (N), (W); 54LS78/74LS78(J), (N), (W)

Notes: \_\_\_ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

# 86 Quad 2-Input EXCLUSIVE-OR Gates



5486/7486(J), (N), (W); 54LS86/74LS86(J), (N), (W); 74S86(N)

TRUTH TABLE (86, L86, LS86, S86)

| _ | -    |     |        |
|---|------|-----|--------|
|   | INPL | JTS | OUTPUT |
|   | Α    | В   | Υ      |
|   | L    | L   | L      |
| ١ | L    | Η:  | н      |
| ı | Н    | L   | н      |
| 1 | Н    | н   | L.     |
|   |      |     |        |

 $Y = A \oplus B = \overline{A}B + A\overline{B}$ 



54L86/74L86(J),(N)



54L86/74L86(W)

See page 1-72 for electrical tables.

# DM54/DM74 Connection Diagrams/Flip-Flops

# 103 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear

TRUTH TABLE

|     | INP      | OUTF | UTS |     |                 |
|-----|----------|------|-----|-----|-----------------|
| CLR | CLK      | J    | K   | Q   | ā               |
| L   | Х        | Х    | Х   | L   | Н               |
| н   | 1        | L    | L   | Q0  | ŌΟ              |
| н   | <b>↓</b> | н    | L   | н   | L               |
| н   | <b>↓</b> | L    | Н   | L   | Н               |
| н   | 1        | Н    | Н   | TOG | GLE             |
| н   | н        | Х    | Х   | 00  | $\overline{Q}0$ |



54H103/74H103(J),(N)

See page 1-74 for electrical tables.

#### 106 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

TRUTH TABLE

|    | INPUTS |          |   |   |     | PUTS            |
|----|--------|----------|---|---|-----|-----------------|
| PR | CLR    | CLK      | J | К | Q   | ā               |
| L  | н      | Х        | X | X | н   | L               |
| Н  | L      | X        | Х | Х | L   | Н               |
| L  | L      | X        | X | Х | Н*  | н*              |
| Н  | Н      | <b>↓</b> | L | L | Ω0  | $\overline{Q}0$ |
| н  | . H    | <b>↓</b> | Н | L | н   | L               |
| н  | Н      | <b>+</b> | L | Н | L   | Н               |
| н  | Н      | <b>↓</b> | Н | н | TOG | GLE             |
| н  | н      | н        | X | Х | Q0  | Q0              |



54H106/74H106(J), (N)

See page 1-74 for electrical tables.

#### 107 Dual J-K Master-Slave Flip-Flops with Clear

TRUTH TABLE

|     | INPUTS   | OUT | PUTS |     |     |
|-----|----------|-----|------|-----|-----|
| CLR | CLK      | j   | К    | Q   | ā   |
| L   | ×        | X   | х    | L   | Н   |
| н   | $\Gamma$ | L   | L    | Q0  | ŌΟ  |
| Н   | $\Gamma$ | Н   | L    | Н   | L   |
| н   | $\Gamma$ | L   | н    | L   | Н   |
| Н   | ЛĹ       | Н   | н    | TOG | GLE |

V<sub>CC</sub> CLR 1 CLK 1 K2 CLR 2 CLR 2 J2 14 15 6 7 J1 G1 C1 K1 C2 G2 GND

54107/74107(J),(N); 54LS107/74LS107(J), (N), (W)

See page 1-62 (107), 1-68 (LS107) for electrical tables.

Notes: \_\_\_ = high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the pulse.

Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their mactive (high) level.

# DM54/DM74 Connection Diagrams/Flip-Flops

## 108 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock

**TRUTH TABLE** 

| INPUTS |     |          |     |   | OUTF | UTS |
|--------|-----|----------|-----|---|------|-----|
| PR     | CLR | CLK      | J   | K | Q    | ā   |
| L      | н   | Х        | х   | х | Ή    | L   |
| Н      | L   | X        | Х   | Х | L    | Н   |
| L      | L   | X        | Х   | Х | н*   | н*  |
| Н      | н   | <b>↓</b> | - L | L | 00   | ŌΟ  |
| Н      | Н   | Į.       | н   | L | н    | L   |
| н      | н   | 1        | L   | н | L    | н   |
| Н      | н   | 1        | Н   | Н | TOG  | GLE |
| Н      | Н   | Н        | X   | Х | QO   | Q0  |

V<sub>CC</sub> PR 1 CLR J2 PR 2 CLK K2

14 13 12 11 10 9 6

1 2 3 4 5 6 7

K1 01 01 01 J1 02 02 GND

54H108/74H108(J), (N)

See page 1-74 for electrical tables.

# 109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear

TRUTH TABLE

|    | INPUTS |         |   |   |     | PUTS |
|----|--------|---------|---|---|-----|------|
| PR | CĻR    | CLK     | j | ĸ | Q   | ā    |
| L  | н      | Х       | Х | Х | н   | L    |
| -Η | Ĺ      | X       | Х | Х | L   | н    |
| L  | L      | X       | Х | × | н*  | н*   |
| Н  | н      | 1       | L | L | L   | Н    |
| Н  | Н      | 1       | н | L | TOG | GLE  |
| Н  | н      | <u></u> | L | н | Q0  | ŌΟ   |
| Н  | н      | 1       | Н | н | н   | L    |
| Н  | н      | L       | Х | Х | 00  | ŌΟ   |

See page 1-62 (109), 1-68 (LS109) for electrical tables.



54109/74109(J), (N), (W); 54LS109/74LS109(J), (N), (W)

#### 112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear

TRUTH TABLE

|     | INPUTS |          |   |   |     |     |
|-----|--------|----------|---|---|-----|-----|
| PR  | CLR    | CLK      | J | K | Q   | ā   |
| L   | Н      | Х        | х | Х | Н   | L   |
| н   | L      | х        | Х | Х | L   | н   |
| L   | L      | X        | Х | Х | н*  | н*  |
| н   | H,     | 1        | L | L | QO  | ŌΟ  |
| . н | н      | 1        | Н | L | н   | L   |
| тн  | н      | <b>↓</b> | L | Н | L   | н   |
| н   | н      | 4        | Н | Н | TOG | GLE |
| н   | н      | Н        | Х | х | 0.0 | Ō0  |

See page 1-68 (LS112), 1-70 (S112) for electrical tables.



54LS112/74LS112(J), (N), (W); 74S112(N)

Notes: Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

# 113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset

TRUTH TABLE

|     | INPUTS | 3 |   | OUT | PUTS            |
|-----|--------|---|---|-----|-----------------|
| PR  | CLK    | J | ĸ | Q   | ā               |
| L   | ×      | × | X | н   | L               |
| Н   | 1      | L | L | 00  | $\bar{Q}0$      |
| ` Н | 1      | Н | L | н   | L               |
| н   | . 1    | L | Н | L   | Н               |
| Н   | 1      | н | Н | TOG | GLE             |
| Н   | Н      | Х | Х | QO  | $\overline{Q}0$ |



54LS113/74LS113(J), (N), (W); 74S113(N)

See page 1-68 (LS113), 1-70 (S113) for electrical tables.

#### 114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock

TRUTH TABLE

|    | INPUTS |          |     |   | OUT  | PUTS |
|----|--------|----------|-----|---|------|------|
| PR | CLR    | CLK      | J   | ĸ | Q    | ā    |
| L  | н      | . X      | Х   | х | H    | L    |
| Н  | L      | ×        | X   | X | L    | Н    |
| L  | L      | ×        | Х   | Х | Н*   | н*   |
| Н  | н      | .↓       | L   | L | . 00 | Q0   |
| Н  | H ·    | 1        | Н   | L | Н    | L    |
| Н  | Н      | <b>↓</b> | L   | Н | L    | Н    |
| Н  | н      | 1        | · H | Н | TOG  | GLE  |
| Н  | Н      | . н      | . X | X | Ω0   | ŌΟ   |



54LS114/74LS114(J), (N), (W); 74S114(N)

See page 1-68 (LS114), 1-70 (S114) for electrical tables.

Notes: Q0 = the level of Q before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.

\*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

#### 121 One Shots

TRUTH TABLE

|     | INPUTS |   |     | UTS |
|-----|--------|---|-----|-----|
| A1  | A2     | В | Q   | ā   |
| L   | ×      | Ĥ | L   | Н   |
| ×   | L      | н | L i | н   |
| ×   | X      | L | L.  | н   |
| н   | н      | × | L   | н   |
| Н   | 1      | н |     | 7   |
| ↓ ↓ | н      | Н | 77  | 7.  |
| ↓ ↓ | 1      | Н | 77  | J   |
| L   | X      | 1 | J   | 7.  |
| ×   | L      | 1 | 1   | 7.  |

See page 1-76 for electrical tables.



#### 122 Retriggerable One Shots with Clear

TRUTH TABLE

|        | INP | UTS |    |    | оит | PUTS          |
|--------|-----|-----|----|----|-----|---------------|
| CLEAR  | A1  | A2  | B1 | B2 | Q   | ā             |
| L      | X   | X   | х  | X. | L   | н             |
| Х      | Н   | Н   | Х  | Х  | L   | Н             |
| . X    | ×   | Х   | L  | Х  | L   | н             |
| X<br>X | ×   | X   | Х  | ·L | L   | H             |
| x      | L   | X   | Н  | Н  | L   | Н             |
| Н      | L   | Х   | 1  | Н  | 工   |               |
| Н      | L   | X   | н  | 1  |     | $\neg \Gamma$ |
| Н      | X   | L   | н  | Н  | L   | Н             |
| н      | Х   | L   | †  | Н  |     | Ţ             |
| н      | ×   | L   | н  | †  |     | 7_            |
| н      | Н   | 1   | Н  | Н  |     |               |
| Н      | 1   | 1   | н  | Η. | 7   | ᅩ             |
| н      | · . | H   | н  | H  | 7   | ┰             |
| 1      | L   | , X | н  | н  | 1   | Ţ             |
| †      | ×   | L   | Н  | Н  |     | . ٦           |



54LS122(J), (W); 74LS122(J), (N)

See page 1-78 for electrical tables.

#### 123,123A Dual Retriggerable One Shots with Clear

TRUTH TABLE

|   | INPUTS   |     |   | PUTS |
|---|----------|-----|---|------|
| Α | В        | CLR | Q | ā    |
| Н | ×        | н   | L | Н    |
| × | L        | . Н | L | Н    |
| L | <b>↑</b> | н   |   | 7_   |
| ↓ | Н        | Н   | 1 | 7_   |
| Х | Х        | L   | L | Н    |

See page 1-78 for electrical tables.



54123/74123(J), (N), (W); 54L123A/74L123A(J), (N), (W); 54LS123/74LS123(J), (N), (W)

Notes: \_\_\_ = one high-level pulse, \_\_\_ = one low-level pulse.

To use the internal timing resistor of 54121/74121, connect  $R_{\mbox{\footnotesize{INT}}}$  to  $V_{\mbox{\footnotesize{CC}}}.$ 

An external timing capacitor may be connected between  $C_{\mbox{EXT}}$  and  $R_{\mbox{EXT}}/C_{\mbox{EXT}}$  (positive).

For accurate repeatable pulse widths, connect an external resistor between R<sub>EXT</sub>/C<sub>EXT</sub> and V<sub>CC</sub> with R<sub>INT</sub> open-circuited.

To obtain variable pulse widths, connect external variable resistance between RINT or REXT/CEXT and VCC.

#### 125 TRI-STATE Quad Buffers

TRUTH TABLE

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Α   | С   | ٧      |
| Н   | L   | н      |
| L   | L   | L      |
| ×   | Н   | Hi-Z   |

Y = A



54125/74125(J), (N), (W); 54LS125/74LS125(J), (N), (W)

See page 1-80 for electrical tables.

#### 126 TRI-STATE Quad Buffers

TRUTH TABLE

| INF | UTS | OUTPUT |
|-----|-----|--------|
| Α   | С   | Y      |
| Н   | н   | н      |
| L   | Н   | L      |
| ×   | L   | Hi-Z   |

Y = A



54126/74126(J), (N), (W); 54LS126/74LS126(J), (N), (W)

See page 1-80 for electrical tables.

#### 132 Quad 2-Input NAND Schmitt Triggers

 $Y = \overline{AB}$ 



54132/74132(J), (N), (W); 54LS132/74LS132(J), (N), (W)

See page 1-48 for electrical tables.



# DM54/DM74 Connection Diagrams/Gates

# 133 13-Input NAND Gates

Y = ABCDEFGHIJKLM



See page 1-36 for electrical tables.

#### 134 TRI-STATE 12-Input NAND Gates

Y = ABCDEFGHIJKL

Output is off (disabled) when output control is high.



See page 1-80 for electrical tables.

# 135 Quad EXCLUSIVE-OR/NOR Gates

## TRUTH TABLE

|   | INDUITO |        | OUTDUT |
|---|---------|--------|--------|
|   | INPUTS  | OUTPUT |        |
| Α | В       | С      | Υ      |
| L | L       | L      | , L    |
| L | н       | L      | H H    |
| н | L.      | L      | н      |
| н | н       | L      | L      |
| L | L       | н      | н.     |
| L | Н       | Н      | L      |
| Н | Ļ       | Н      | L.     |
| н | Н       | Н      | н      |

 $Y = (A \oplus B) \oplus C =$   $A\overline{BC} + \overline{ABC} + \overline{ABC} + ABC$ 

See page 1-82 for electrical tables.



74S135(N)

# 136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs

TRUTH TABLE

| INPL | JTS | OUTPUT |
|------|-----|--------|
| Α    | В   | Y      |
| L    | L   | L      |
| L    | Н   | н      |
| н    | L   | н      |
| Н    | Н   | L      |

$$Y = A \oplus B = \overline{A}B + A\overline{B}$$

V<sub>CC</sub> B4 A4 Y4 B3 A3 Y3 14 13 12 11 10 9 8 1 1 2 3 4 5 6 77 A1 B1 Y1 A2 B2 Y2 GND

> 54LS136/74LS136(J), (N), (W) 74S136(N)

See page 1-84 for electrical tables.

## 140 Dual 50-Ohm Line Drivers

Y = ABCD



74S140(N)

See page 1-54 for electrical tables.

# 221 Dual One Shots with Schmitt-Trigger Inputs

TRUTH TABLE

| INPUTS |   |   | OUT           | PUTS |
|--------|---|---|---------------|------|
| CLEAR  | Α | В | α             | ā    |
| - L    | х | X | L             | н    |
| ×      | н | × | L             | Н    |
| ×      | X | L | L             | Н    |
| н      | L | 1 | л             | Ţ    |
| н      | 1 | н | $\neg \Gamma$ | J    |



54LS221/74LS221(J), (N), (W)

See page 1-76 for electrical tables.

Notes: \_\_\_ = one high-level pulse, \_\_\_ = one low-level pulse.

An external timing capacitor may be connected between  $C_{EXT}$  and  $R_{EXT}/C_{EXT}$  (positive). For accurate repeatable pulse widths, connect an external resistor between  $R_{EXT}/C_{EXT}$  and  $V_{CC}$ . To obtain variable pulse widths, connect external variable resistance between  $R_{EXT}/C_{EXT}$  and  $V_{CC}$ .

# 260 Dual 5-Input NOR Gates

 $Y = \overline{A+B+C+D+E}$ 



See page 1-40 for electrical tables.

# 266 Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs

#### TRUTH TABLE

| INP | UTS<br>B | OUTPUT<br>Y |
|-----|----------|-------------|
| L   | L        | Н           |
| L   | Н        | L           |
| н   | L        | L           |
| н   | Н        | • н         |

$$Y = \overline{A + B} = AB + \overline{AB}$$

54LS266/74LS266(J), (N), (W)

See page 1-84 for electrical tables.

#### 365 TRI-STATE Hex Buffers

TRUTH TABLE

| 1  | NPUT | OUTPUT |   |
|----|------|--------|---|
| Ğ1 | Ğ2   | Α      | Y |
| Н  | X    | Х      | Z |
| Х  | , H  | X      | z |
| L  | L    | Н      | н |
| L  | L    | L      | L |

54365(J), (W)/74365(J), (N), (W); 54LS365/74LS365(J), (N), (W)

See page 1-86 for electrical tables.

# 366 TRI-STATE Hex Buffers

TRUTH TABLE

| -  | NPUT | OUTPUT |   |
|----|------|--------|---|
| Ğ1 | Ĝ2   | A      | Y |
| Н  | X    | Х      | Z |
| X  | Н    | X      | Z |
| L  | L    | Н      | L |
| L  | L    | L.     | н |

54366(J), (W)/74366(J), (N), (W); 54LS366/74LS366(J), (N), (W)

See page 1-86 for electrical tables.

## **367** TRI-STATE Hex Buffers

#### TRUTH TABLE

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Ğ   | Α   | Y      |
| Н   | Х   | Z      |
| L   | н   | н      |
| L   | L   | L      |

54367(J), (W)/74367(J), (N), (W);
See page 1-86 for electrical tables.
5418367(J), (N), (W)





# DM54/DM74 Connection Diagrams/Buffers

#### 368 TRI-STATE Hex Buffers

TRUTH TABLE

| INP | UTS | OUTPUT |
|-----|-----|--------|
| G   | Α   | ٧      |
| н   | ×   | Z      |
| L   | Н   | L      |
| L   | L   | н      |



54368(J), (W)/74368(J), (N), (W); 54LS368/74LS368(J), (N), (W)

See page 1-86 for electrical tables.



# DM54/DM74 Connection Diagrams/Gates

# 386 Quad EXCLUSIVE-OR Gates

TRUTH TABLE

| INP | UTS | OUTPUT |  |  |  |  |
|-----|-----|--------|--|--|--|--|
| Α   | В   | OUTPUT |  |  |  |  |
| L   | L   | , L    |  |  |  |  |
| L   | Н   | н `    |  |  |  |  |
| Н   | L   | ļН     |  |  |  |  |
| Н   | Н   | L      |  |  |  |  |

$$Y = A \oplus B = \overline{A}B + A\overline{B}$$



54LS386/74LS386(J), (N), (W)

See page 1-72 for electrical tables.

# National Semiconductor 54/74 SSI DEVICES Electrical Tables Section 1

# Max Ratings/Operating Conditions

|                                                |    | 54/74        | 54H/74H  | 54L/74L | 54LS/74L        | S SERIES       | 545/745 |       |  |  |  |
|------------------------------------------------|----|--------------|----------|---------|-----------------|----------------|---------|-------|--|--|--|
| RATINGS                                        |    | SERIES       | SERIES   | SERIES  | DIODE<br>INPUTS | EMITTER INPUTS | SERIES  | UNITS |  |  |  |
| Maximum Allowable<br>Supply Voltage            |    | 7            | 7        | 8       | 7               | 7              | 7       | V     |  |  |  |
| Guaranteed Operating                           | 54 | 4.50 to 5.50 |          |         |                 |                |         |       |  |  |  |
| Supply Voltage Range                           | 74 | 4.75 to 5.25 |          |         |                 |                |         |       |  |  |  |
| Maximum Input Voltage                          |    | 5.5          | 5.5      | 5.5     | 7               | 5.5            | 5.5     | ٧     |  |  |  |
| Maximum Voltage to Open-<br>Collector Outputs* |    | 7            | 7.       | 8       | 7               | 7              | 7       | ٧     |  |  |  |
| Operating Free-Air                             | 54 |              |          | -55 to  | +125            |                |         | °C    |  |  |  |
| Temperature Range                              | 74 |              | 0 to +70 |         |                 |                |         |       |  |  |  |
| Storage Temperature Range                      |    | −65 to +150  |          |         |                 |                |         |       |  |  |  |

<sup>\*</sup>Except for selected high voltage types, as specified in electrical tables.

1-36

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

|                   |                           |                          | •                       |                      |               | DM54/74  |                        | D                                                | M54H/74 | 1H      |                                                  | DM54L/7  | 4L                             | DI           | M54LS/74 | 4LS                                    |                                                  | DM74S       |       |              |
|-------------------|---------------------------|--------------------------|-------------------------|----------------------|---------------|----------|------------------------|--------------------------------------------------|---------|---------|--------------------------------------------------|----------|--------------------------------|--------------|----------|----------------------------------------|--------------------------------------------------|-------------|-------|--------------|
|                   | PARAMETER CONDITIONS      |                          |                         | 00, 04<br>10, 20, 30 | )             |          | H00, H04<br>10, H20, H |                                                  | L       | L00, L0 |                                                  |          | LS00<br>LS04, LS1<br>LS20, LS3 |              |          | \$00, \$04<br>\$10, \$20<br>\$30, \$13 | 0                                                | UNITS       |       |              |
|                   |                           |                          |                         |                      | MIN           | TYP(1)   | MAX                    | MIN                                              | TYP(1)  | MAX     | MIN                                              | TYP(1)   | MAX                            | MIN          | TYP(1)   | MAX                                    | MIN                                              | TYP(1)      | MAX   | .,           |
| VIH               | High Level Input Voltage  |                          |                         |                      | 2             |          |                        | 2                                                |         |         | 2                                                |          |                                | 2            |          |                                        | 2                                                |             |       | • 'V'        |
| VIL               | Low Level Input Voltage   |                          |                         | DM54                 |               |          | 0.8                    |                                                  |         | 8.0     |                                                  |          | 0.7                            |              |          | 0.7                                    |                                                  |             | N/A   |              |
|                   |                           |                          |                         | `DM74                |               |          | 8.0                    |                                                  |         | 8.0     |                                                  |          | 0.7                            |              |          | 0.8                                    |                                                  |             | 0.8   | L.           |
| Vı                | İnput Clamp Voltage       |                          | I <sub>1</sub> = -8 mA  |                      |               |          |                        | <u> </u>                                         |         | -1.5    |                                                  |          | N/A                            |              |          |                                        |                                                  |             |       |              |
|                   | * .                       | V <sub>CC</sub> = Min    | I <sub>1</sub> = -12 mA |                      | <u> </u>      |          | -1.5                   |                                                  |         |         |                                                  |          | N/A                            |              |          |                                        |                                                  |             |       | V            |
|                   |                           |                          | I <sub>1</sub> = ~18 mA |                      | <u> </u>      |          |                        |                                                  |         |         |                                                  |          | N/A                            | <u> </u>     |          | -1.5                                   |                                                  | * -         | -1.2  |              |
| Іон               | High Level Output Current |                          |                         |                      |               |          | -400                   |                                                  |         | -500    |                                                  |          | -200                           |              |          | -400                                   |                                                  |             | -1000 | μΑ           |
| V <sub>OH</sub>   | High Level Output Voltage | V <sub>CC</sub> = Min, V | / <sub>IL</sub> = Max   | DM54                 | 2.4           | 3.4      |                        | 2.4                                              | 3.5     |         | 2.4                                              | 3.3      |                                | 2.5          | 3.4      |                                        | N/A                                              |             |       | V            |
|                   |                           | I <sub>OH</sub> = Max    |                         | DM74                 | 2.4           | 3.4      |                        | 2.4                                              | 3.5     |         | 2.4                                              | 3.2      |                                | 2.7          | 3.4      |                                        | 2.7                                              | 3.4         |       | ļ. ,         |
| I <sub>OL</sub>   | Low Level Output Current  |                          |                         | DM54                 | <u> </u>      |          | 16                     | ·                                                |         | 20      |                                                  |          | 2                              |              |          | 4                                      |                                                  |             | N/A   | mA.          |
|                   |                           |                          |                         |                      | <u> </u>      | ·        | 16                     | L                                                |         | 20      | <u> </u>                                         |          | 3.6                            | <u> </u>     |          | 8                                      | <u> </u>                                         |             | .20   | 1            |
| · V <sub>OL</sub> | Low Level Output Voltage  | V <sub>CC.</sub> = Min   | I <sub>OL</sub> = Max   | DM54                 |               | 0.2      | 0.4                    | <u> </u>                                         | 0.2     | 0.4     | <u> </u>                                         | 0.15     | 0.3                            | <u> </u>     | 0.25     | 0.4                                    | <u> </u>                                         |             | N/A   | 1 .          |
|                   |                           | V <sub>IH</sub> = 2V     |                         | DM74                 | —             | 0.2      | 0.4                    | <b></b>                                          | 0.2     | 0.4     | <b></b>                                          | 0.2      | 0.4                            |              | 0.35     | 0.5                                    | Ļ                                                |             | , 0.5 | V `          |
|                   |                           |                          | I <sub>OL</sub> = 4 mÅ  | DM74                 | <b>├</b>      |          |                        |                                                  |         |         | ↓                                                |          |                                | <u> </u>     |          | 0.4                                    | ļ                                                |             |       | <b></b>      |
| 11                | Input Current at Maximum  | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V   |                      | <u> </u>      |          | 1                      |                                                  |         | 11      | <u> </u>                                         |          | 0.1                            |              |          |                                        | <del> </del>                                     | <u>.</u>    | 1     | mÁ           |
| l ———             | Input Voltage             |                          | V <sub>1</sub> = 7V     |                      | <b>├</b> ──   |          |                        |                                                  |         |         | <b>↓</b>                                         |          |                                | <del> </del> |          | 0.1                                    | ├                                                |             | :     | -            |
| Чн                | High Level Input Current  | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V   |                      | ــــ          |          | 40                     |                                                  |         | 50      | —                                                |          | 10                             | <u> </u>     |          |                                        | —                                                | <del></del> |       | μΑ           |
|                   |                           | <u> </u>                 | V <sub>1</sub> = 2.7V   |                      | <del>  </del> |          |                        |                                                  |         |         | ├                                                |          |                                | <del> </del> |          | 20                                     | <u> </u>                                         |             | 50    | <del> </del> |
| իւ                | Low Level Input Current   |                          | V <sub>1</sub> = 0.3V   | LS30                 | <b>├</b>      |          |                        | <b></b>                                          |         |         | ├                                                |          | −0.18                          | ├            |          |                                        | <del> </del>                                     |             |       | l in the     |
|                   |                           | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.4V   | Others               | ├             |          | -1.6                   | <del>                                     </del> |         | -2      | ├─                                               |          |                                | ├            |          | -0.4<br>-0.36                          | <del> </del>                                     |             |       | mA           |
|                   | -                         |                          | V <sub>1</sub> = 0.5V   | Cuicis               | <del> </del>  | <u> </u> | -1.5                   | <b> </b>                                         |         |         | <del>                                     </del> |          |                                |              |          | 0.50                                   | <del>                                     </del> | 1           | -2    | · ` .        |
| los               | Short Circuit Output      |                          | L                       | DM54                 | -20           |          | -55                    | -40                                              |         | -100    | -3                                               |          | -15                            | -30          |          | -130                                   | <del> </del>                                     |             | N/A   |              |
| ا دن              | Current                   | V <sub>CC</sub> = Max(2  | !)                      | DM74                 | -18           |          | -55                    | -40                                              |         | -100    | -3                                               |          | -15                            | -30          |          | -130                                   | -40                                              | 3.          | -100  | mA           |
| Icc               | Supply Current            | V <sub>CC</sub> = Max    |                         | 1                    |               |          |                        |                                                  |         |         | <b></b>                                          | See Tabl | e                              | <u> </u>     |          |                                        | L                                                |             |       | <b></b>      |
|                   |                           |                          |                         |                      | <u> </u>      |          |                        |                                                  |         |         |                                                  |          |                                |              |          |                                        |                                                  |             |       | <u> </u>     |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
- (3) National Semiconductor temporarily reserves the right to ship DM54/DM74LS00, LS04, LS10, LS20, LS30 devices which have a minimum I<sub>OS</sub> = 5.0 mA.

# **Supply Currents**

| DEVICE |      | (mA)<br>Outputs High |      | (mA)<br>Outputs Low |  |  |
|--------|------|----------------------|------|---------------------|--|--|
|        | TYP  | MAX                  | TYP  | MAX                 |  |  |
| 00     | 4    | 8                    | 12   | 22                  |  |  |
| 04     | 6    | 12                   | 18   | 33                  |  |  |
| 10     | 3    | 6                    | 9    | 16.5                |  |  |
| 20     | 2    | 4                    | · 6  | 11                  |  |  |
| 30     | 1 .  | 2                    | 3    | 6                   |  |  |
| H00    | 10   | 16.8                 | 26   | 40                  |  |  |
| H04    | 16   | 26                   | 40   | 58°                 |  |  |
| H10    | 7.5  | 12.6                 | 19.5 | 30                  |  |  |
| H20    | 5    | 8.4                  | 13   | 20                  |  |  |
| H30    | 2.5  | 4.2                  | 6.5  | 10                  |  |  |
| L00    | 0.44 | 0.8                  | 1.16 | 2.04                |  |  |
| L04    | 0.66 | 1.2                  | 1.74 | 3.06                |  |  |
| L10    | 0.33 | 0.6                  | 0.87 | 1.53                |  |  |
| L20    | 0.22 | 0.4                  | 0.58 | 1.02                |  |  |
| L30    | 0.11 | 0.2                  | 0.29 | 0.51                |  |  |
| LS00   | 0.8  | 1.6                  | 2.4  | 4.4                 |  |  |
| LS04   | 1.2  | 2.4                  | 3.6  | 6.6                 |  |  |
| LS10   | 0.6  | 1.2                  | 1.8  | 3.3                 |  |  |
| LS20   | 0.4  | 0.8                  | 1.2  | 2.2                 |  |  |
| LS30   | 0.35 | 0.5                  | 0.6  | 1.1                 |  |  |
| S00    | 10   | 16                   | 20   | 36                  |  |  |
| S04    | 15   | 24                   | 30   | 54                  |  |  |
| S10    | 7.5  | 12                   | 15   | 27                  |  |  |
| S20    | 5    | 8                    | 10   | 18                  |  |  |
| S30    | 3    | 5                    | 5.5  | 10                  |  |  |
| S133   | 3    | 5                    | 5.5  | 10                  |  |  |

Switching Characteristics at  $V_{CC}$  = 5V,  $T_A$  = 25°C

| DEVICE                   | CONDITIONS                                     | Propaga | t <sub>PLH</sub> (ns)<br>tion Dela<br>High Lev |      | t <sub>PHL</sub> (ns)<br>Propagation Delay Time,<br>High-To-Low Level Output |     |     |  |  |
|--------------------------|------------------------------------------------|---------|------------------------------------------------|------|------------------------------------------------------------------------------|-----|-----|--|--|
|                          | ·                                              | MIN     | TYP                                            | MAX  | MIN                                                                          | TYP | MAX |  |  |
| 00, 10                   |                                                |         | 11                                             | 22   |                                                                              | 7   | 15  |  |  |
| 04, 20                   | $C_L = 15 \text{ pF}, R_L = 400\Omega$         |         | 12                                             | 22   |                                                                              | 8   | 15  |  |  |
| 30                       |                                                |         | 13                                             | 22   |                                                                              | 8   | 15  |  |  |
| H00                      |                                                |         | 5.9                                            | 10   |                                                                              | 6.2 | 10  |  |  |
| H04                      |                                                |         | 6                                              | 10   |                                                                              | 6.5 | 10  |  |  |
| H10                      | $C_L = 25 pF, R_L = 280\Omega$                 |         | 5.9                                            | 10   |                                                                              | 6.3 | 10  |  |  |
| H20                      |                                                |         | 6                                              | 10   |                                                                              | 7   | 10  |  |  |
| H30                      |                                                |         | 6.8                                            | 10   |                                                                              | 8.9 | 12  |  |  |
| L00, L04<br>L10, L20     | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |         | 35                                             | 60   |                                                                              | 31  | 60  |  |  |
| L30                      |                                                |         | 35                                             | 60 . |                                                                              | 70  | 100 |  |  |
| LS00, LS04<br>LS10, LS20 | $C_L = 15 pF, R_L = 2 k\Omega$                 |         | 9                                              | 15   |                                                                              | 10  | 15  |  |  |
| LS30                     |                                                |         | 9                                              | 15   |                                                                              | 15  | 20  |  |  |
| S00, S04                 | $C_L = 15 \text{ pF}, R_L = 280\Omega$         | 2       | 3                                              | 4.5  | 2                                                                            | 3   | 5   |  |  |
| S10, S20                 | $C_L = 50 \text{ pF}, R_L = 280\Omega$         |         | 4.5                                            | 7    |                                                                              | 5   | 8   |  |  |
| S30, S133                | $C_L = 15 \text{ pF}, R_L = 280\Omega$         | 2       | 4                                              | 6    | 2                                                                            | 4.5 | 7   |  |  |
| 330, 3133                | $C_L = 50 \text{ pF}, R_L = 280\Omega$         |         | 5.5                                            | 8    |                                                                              | 6.5 | 10  |  |  |

0.25

0.35

0.4

0.5

0.4

0.1

20

-0.36

mΑ

μΑ

mΑ

20

N/A

0.5

50

-2

Gates/Inverters

|                 | •                         |                        |                         |      |     | DM54/74 |      | D   | M54H/74I | 1    |          | M54L/74 | L                | DI  | M54LS/74 | LS - | ٠.    | DM74S  |      |     |
|-----------------|---------------------------|------------------------|-------------------------|------|-----|---------|------|-----|----------|------|----------|---------|------------------|-----|----------|------|-------|--------|------|-----|
|                 | PARAMETER                 | CONDITIONS             |                         |      |     | 01, 03  |      |     | H01      |      | L01, L03 |         | LS01, LS03       |     | 803      |      | UNITS |        |      |     |
|                 | .,,                       |                        |                         |      |     | 05      |      |     | H05, H22 |      | L05      |         | LS05, LS12, LS22 |     | S05, S22 |      | 0     |        |      |     |
|                 |                           |                        |                         |      | MIN | TYP(1)  | MAX  | MIN | TYP(1)   | MAX  | MIN      | TYP(1)  | MAX              | MIN | TYP(1)   | MAX  | MIN   | TYP(1) | MAX  |     |
| V <sub>IH</sub> | High Level Input Voltage  |                        |                         |      | 2   |         |      | 2   |          |      | 2        |         |                  | 2   |          |      | 2     |        |      | ٧   |
| VIL             | Low Level Input Voltage   |                        |                         | DM54 |     |         | 0.8  |     |          | 8.0  |          | -       | 0.6              |     |          | 0.7  |       |        | N/A  | V   |
|                 | , ,                       |                        |                         |      |     |         | 0.8  |     |          | 8.0  |          |         | 0.6              |     |          | 0.8  |       |        | 8.0  | V . |
| VI              | Input Clamp Voltage       | ,                      | I <sub>1</sub> = -8 mA  |      |     |         |      |     |          | -1.5 |          |         | N/A              |     |          |      |       |        |      |     |
|                 | •                         | V <sub>CC</sub> = Min  | I <sub>1</sub> = -12 m/ | 4    |     |         | -1.5 |     |          |      | -        |         | N/A              |     |          |      |       |        |      | V   |
|                 |                           |                        | I <sub>1</sub> = -18 mA |      |     |         |      |     | ,        |      |          |         | N/A              |     |          | -1.5 |       |        | -1.2 |     |
| Іон             | High Level Output Current | V <sub>CC</sub> = Min, | V <sub>IL</sub> = Max   |      |     |         | 250  |     |          | 250  |          |         | 50               |     |          | 100  |       |        | 250  |     |
|                 |                           | V <sub>OH</sub> = 5.5V |                         |      |     |         | 250  |     |          | 250  |          |         | 50               |     |          | 100  |       |        | 250  | μΑ  |
| V <sub>OH</sub> | High Level Output Voltage |                        |                         |      |     |         | 5.5  |     |          | 5.5  |          |         | 5.5              |     |          | 5.5  |       |        | 5.5  | ٧   |
| loi             | Low Level Output Current  |                        |                         | DM54 |     |         | 16   |     |          | 20   |          |         | 2                |     |          | 4    |       |        | N/A  |     |

20

0.4

0.4

1

50

-2

0.2

0.2

3.6

0.3

0.4

0.1

-0.18

0.15

0.2

See Table

16

0.4

0.4

1

40

-1.6

0.2

0.2

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

DM74

DM54

DM74

DM74

I<sub>OL</sub> = Max

I<sub>OL</sub> = 4 mA

 $V_1 = 5.5V$ 

 $V_1 = 2.4 \text{ V}$ 

 $V_1 = 2.7V$ 

 $V_1 = 0.3V$ 

V, = 0.5V

 $V_{CC} = Max V_1 = 0.4V$ 

# Icc Notes

IIL

 $V_{OL}$ 

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

Low Level Output Voltage

Input Current at Maximum

High Level Input Current

Low Level Input Current

Input Voltage

Supply Current

V<sub>CC</sub> = Min

V<sub>1H</sub> = 2V

V<sub>CC</sub> = Max

V<sub>CC</sub> = Max

Switching Characteristics at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C

| DEVICE                           | CONDITIONS                                                         | Propaga |     | )<br>ay Time,<br>el Output | t <sub>PHL</sub> (ns) Propagation Delay Time High-To-Low Level Outp |     |     |  |  |  |
|----------------------------------|--------------------------------------------------------------------|---------|-----|----------------------------|---------------------------------------------------------------------|-----|-----|--|--|--|
|                                  |                                                                    | MIN     | TYP | MAX                        | MIN                                                                 | TYP | MAX |  |  |  |
| 01, 03                           | C <sub>L</sub> = 15 pF                                             |         | 35  | 45                         |                                                                     | 8   | 15  |  |  |  |
| 05                               | $R_L = 4 k\Omega$ for $t_{PLH}$<br>$R_L = 400\Omega$ for $t_{PHL}$ |         | 40  | 55                         |                                                                     | 8   | 15  |  |  |  |
| H01, H05<br>H22                  | $C_L = 25 pF$ $R_L = 280\Omega$                                    |         | 10  | 15                         |                                                                     | 7.5 | 12  |  |  |  |
| L01, L03<br>L05                  | $C_L = 50 \text{ pF}$ $R_L = 4 \text{ k}\Omega$                    |         | 60  | 90                         |                                                                     | 33  | 60  |  |  |  |
| LS01, LS03<br>LS05, LS12<br>LS22 | $C_L = 15 pF$ $R_L = 2 k\Omega$                                    |         | 17  | 32                         |                                                                     | 15  | 28  |  |  |  |
| S03, S05                         | $C_L = 15 \text{ pF}$ $R_L = 280\Omega$                            | 2       | 5   | 7.5                        | 2                                                                   | 4.5 | 7   |  |  |  |
| S22                              | $C_L = 50 \text{ pF}$ $R_L = 280\Omega$                            |         | 7.5 | 11                         |                                                                     | 7   | 11  |  |  |  |

SSI

DM54/DM7401,03,05,LS12,22

Open Collector NAND

Gates/Inverters

| Electrical Characteristics | over recommended operating free-air temperature range (unless otherwise noted) | ١. |
|----------------------------|--------------------------------------------------------------------------------|----|
|----------------------------|--------------------------------------------------------------------------------|----|

|                 |                 |                          |                          |                                              |              |                                                  | DM54/74                   |             |     | OM54L/74 | L         | DI    | W54LS/74  | LS    |     | DM74S     |       |              |
|-----------------|-----------------|--------------------------|--------------------------|----------------------------------------------|--------------|--------------------------------------------------|---------------------------|-------------|-----|----------|-----------|-------|-----------|-------|-----|-----------|-------|--------------|
|                 | PARAMETE        | R                        | . с                      | ONDITIONS                                    |              |                                                  | 02, 25, 27                | 7           |     | L02      |           |       | _S02, LS2 | 7     |     | S02, S260 | ).    | UNITS        |
|                 |                 |                          |                          |                                              |              | MIN                                              | - T-YP(1)                 | MAX         | MIN | TYP(1)   | MAX       | MIN   | TYP(1)    | MAX   | MIN | TYP(1)    | MAX   | 1            |
| VIH             | High Level Inp  | ut Voltage               |                          |                                              |              | 2                                                |                           |             | 2   |          |           | 2     |           |       | 2   |           |       | V            |
| VIL             | Low Level Inp   | ut Voltage               |                          |                                              | DM54         |                                                  |                           | 0.8         |     |          | 0.7       |       |           | 0.7   |     |           | N/A   |              |
| 1               |                 |                          |                          |                                              | DM74         |                                                  |                           | 0.8         |     |          | 0.7       |       |           | 0.8   |     |           | 8.0   | · V          |
| Vı              | Input Clamp V   | 'oltage                  | )/ - Mi-                 | I <sub>1</sub> = -12 mA                      |              |                                                  |                           | -1.5        |     |          | N/A       |       |           |       |     |           |       | V            |
|                 |                 |                          | V <sub>CC</sub> = Min    | I <sub>1</sub> = -18 mA                      |              |                                                  |                           |             |     |          | N/A       |       |           | -1.5  |     |           | -1.2  | 1            |
| Гон             | High Level Ou   | tput Current             |                          |                                              | 25, 27       |                                                  |                           | -800        |     |          |           |       |           |       |     |           |       |              |
|                 |                 |                          |                          |                                              | Others       |                                                  |                           | -400        |     |          | -200      |       |           | -400  |     |           | -1000 | μΑ           |
| V <sub>OH</sub> | High Level Out  | tput Voltage             | V <sub>CC</sub> = Min    | LS27                                         |              |                                                  |                           |             |     |          |           | 2.4   |           |       |     |           |       |              |
|                 |                 |                          | V <sub>IL</sub> = Max    | Others                                       | DM54         | 2.4                                              | 3.4                       |             | 2.4 | 3.3      |           | 2.5   | 3.4       |       | N/A |           |       | \ \ \        |
|                 |                 |                          | I <sub>OH</sub> = Max    |                                              | DM74         | 2.4                                              | 3.4                       |             | 2.4 | 3.2      |           | 2.7   | 3.4       |       | 2.7 | 3.4       |       |              |
| loL             | Low Level Out   | put Current              |                          |                                              | DM54         | ļ                                                | ************************* | 16          | ļ   |          | 2         |       |           | 4     |     |           | N/A   | mA           |
|                 |                 | ·                        |                          |                                              | DM74         | ļ                                                |                           | 16          |     | ·        | 3.6       |       |           | 8     |     |           | 20    |              |
| VoL             | Low Level Out   | put Voltage              | V <sub>CC.</sub> = Min   | I <sub>OL</sub> = Max                        | DM54         | ļ                                                | 0.2                       | 0.4         | ļ   | 0.15     | 0.3       |       | 0.25      | 0.4   |     |           | N/A   | 4            |
|                 |                 |                          | V <sub>IH</sub> = 2V     |                                              | DM74         | ļ                                                | 0.2                       | 0.4         | ļ   | 0.2      | 0.4       |       | 0.35      | 0.5   |     |           | 0.5   | \ \ \        |
|                 |                 |                          |                          | I <sub>OL</sub> = 4 mA                       | DM74         | <u> </u>                                         |                           |             | ļ   |          |           |       |           | 0.4   |     |           |       | <del> </del> |
| l <sub>1</sub>  | Input Current   | at Maximum               | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V<br>V <sub>1</sub> = 7V |              | <del> </del>                                     |                           | 1           |     |          | 0.1       |       |           |       |     |           | 1     | mA           |
| l               | Input Voltage   | r                        |                          | V <sub>1</sub> = /V                          |              | ļ                                                |                           |             |     |          |           |       |           | 0.1   |     |           |       | ļ            |
| IIH             | High Level      | Data Inputs Strobe of 25 | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V                        | /            |                                                  |                           | 160         |     |          | 10<br>N/A |       |           |       |     |           |       | 1            |
| 1               | Input Current   | All Inputs               | VCC - Wax                | V <sub>1</sub> = 2.7V                        | <del> </del> | <del> </del>                                     | <del></del>               | 160         |     |          | IV/A      |       |           | 20    |     |           | 50    | μΑ           |
|                 |                 | All Inputs               | •                        | V <sub>1</sub> = 0.3V                        |              | <del>                                     </del> |                           | <del></del> |     |          | -0.18     |       |           |       |     |           |       | <del> </del> |
| IIL             | Low Level       | Data Inputs              |                          |                                              |              | <del> </del>                                     |                           | -1.6        |     |          | 0.10      |       |           | -0.36 |     |           |       | 1            |
| 'IL             | Input Current   | Strobe of 25             | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.4V                        | •            |                                                  |                           | -6.4        |     |          |           |       |           | N/A   |     |           |       | mA           |
|                 |                 | All Inputs               |                          | V <sub>1</sub> = 0.5V                        |              |                                                  |                           |             |     |          | ٠,        |       |           |       |     |           | -2    |              |
| los             | Short Circuit C | Output                   | \/ - NA : ''             |                                              | DM54         | -20                                              |                           | -55         | -3  |          | -15       | -30   | -         | -130  |     |           | N/A   |              |
|                 | Current         |                          | V <sub>CC</sub> = Max (2 | <u> </u>                                     | DM74         | -18                                              |                           | -55         | -3  |          | -15       | -30   |           | -130  | -40 |           | -100  | mA           |
| Icc             | Supply Curren   | t `                      | V <sub>CC</sub> = Max    |                                              |              |                                                  |                           |             |     |          | See       | Table |           |       |     |           |       |              |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
- (3) National Semiconductor temporarily reserves the right to ship DM54/DM74LS02, LS27 devices which have a minimum  $I_{OS} = 5.0$  mA.

DM54/DM7402,25,27,S260 NOR Gates

# **Supply Currents**

| DEVICE           |     | (mA)<br>Outputs High |     | (mA)<br>Outputs Low |
|------------------|-----|----------------------|-----|---------------------|
|                  | TYP | MAX                  | TYP | MAX                 |
| 02               | 8   | 16                   | 14  | 27                  |
| 25               | 8   | 16                   | 10  | 19                  |
| 27               | 10  | 16                   | 16  | 26                  |
| L02              | 0.8 | 1.6                  | 1.4 | 2.6                 |
| LS02             | 1.6 | 3.2                  | 2.8 | 5.4                 |
| LS27             | 2.0 | 4                    | 3.4 | 6.8                 |
| S02 <sub>.</sub> | 17  | 29                   | 26  | 45                  |
| S260             | 17  | 29                   | 26  | 45                  |

# Switching Characteristics at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

| DEVICE     | CONDITIONS                                     |     | -   | s)<br>ay Time,<br>vel Output | Propaga |                  | )<br>ay Time,<br>el Output |
|------------|------------------------------------------------|-----|-----|------------------------------|---------|------------------|----------------------------|
|            |                                                | MIN | TYP | MAX                          | MIN     | TYP              | MAX                        |
| 02         |                                                |     | 12  | 22                           |         | 8                | 15                         |
| 25         | $C_{L} = 15 pF, R_{L} = 400\Omega$             |     | 13  | 22                           |         | 8                | 15                         |
| 27         |                                                |     | 7   | 11                           |         | 10               | 15                         |
| L02        | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |     | 31  | 60                           |         | 35               | 60                         |
| LS02, LS27 | $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$ |     | 10  | 15                           |         | 10               | 15                         |
| S02        | $C_{L} = 15  pF,  R_{L} = 280 \Omega$          |     | 3.5 | 5.5                          |         | <sup>°</sup> 3.5 | 5.5                        |
|            | $C_{L} = 50 \text{ pF}, R_{L} = 280\Omega$     |     | 5   | 7.5                          |         | 5                | 7.5                        |
| S260       | $C_L$ = 15 pF, $R_L$ = 280 $\Omega$            |     | 4   | 5.5                          |         | 4                | 6                          |

| Electrical Characteristics | over recommended operating free-air temperature range (unless otherwise noted). |
|----------------------------|---------------------------------------------------------------------------------|
|----------------------------|---------------------------------------------------------------------------------|

|                 |                           |                       | _                       |              |          |           |      |              | DM54/74                                 |      |     |              |           |       | M54L/74 | L     |     |        | DM54L | S/74LS   |        |               |       |
|-----------------|---------------------------|-----------------------|-------------------------|--------------|----------|-----------|------|--------------|-----------------------------------------|------|-----|--------------|-----------|-------|---------|-------|-----|--------|-------|----------|--------|---------------|-------|
|                 | PARAMETER                 | c                     | CONDITIONS              |              | 06       | , 07, 16, | 17   |              | 26                                      |      |     | 38           |           |       | L26     |       |     | LS26   |       |          | LS38   |               |       |
| l               |                           |                       |                         |              | MIN      | TYP(1)    | MAX  | MIN          | TYP(1)                                  | MAX  | MIN | TYP(1)       | MAX       | MIN   | TYP(1)  | MAX   | MIN | TYP(1) | MAX   | MIN      | TYP(1) | MAX           | UNITS |
| V <sub>IH</sub> | High Level Input Voltage  |                       |                         |              | 2        |           |      | 2            |                                         |      | 2   |              |           | 2     |         |       | 2   |        |       | 2        | -      |               | V     |
| VIL             | Low Level Input Voltage   |                       |                         | DM54         |          |           | 0.8  |              |                                         | 0.8  |     |              | 8.0       |       |         | 0.7   |     |        | 0.7   |          |        | 0.7           | v     |
|                 |                           |                       |                         | DM74         |          |           | 8.0  |              |                                         | 0.8  |     |              | 0.8       |       |         | 0.7   |     |        | 8.0   |          |        | 0.8           | L.    |
| Vı              | Input Clamp Voltage       | V <sub>CC</sub> = Min | I <sub>1</sub> = -12 mA |              |          |           | -1.5 |              |                                         | -1.5 |     |              | -1.5      |       |         | N/A   |     |        | , N/A |          |        |               | v     |
|                 |                           |                       | I <sub>1</sub> = -18 mA |              |          |           |      |              |                                         |      |     |              |           |       |         | N/A   |     |        | -1.5  |          |        | -1.5          |       |
| I <sub>QH</sub> | High Level Output Current | V <sub>CC</sub> = Min | V <sub>OH</sub> = 12V   |              | ,        |           |      |              |                                         | 50   |     |              |           |       |         | 200   |     |        | 50    |          |        |               | μΑ    |
|                 |                           | V <sub>1</sub> = (2)  | V <sub>OH</sub> = Max   |              |          |           | 250  |              |                                         | 1000 |     |              | 250       |       |         |       |     |        | 1000  |          |        | 250           |       |
| V <sub>OH</sub> | High Level Output Voltage |                       |                         | 06, 07       |          |           | 30   |              |                                         |      |     |              |           |       |         |       |     |        |       |          |        |               |       |
|                 |                           |                       |                         | 16, 17       |          |           | 15   |              |                                         |      |     |              |           | ļ     |         |       |     |        |       |          |        | <del></del> . | ٧     |
|                 |                           |                       |                         | Others       |          |           |      |              |                                         | 15   |     | <del> </del> | 5.5       |       |         | 15    |     |        | 15    |          |        | 5.5           |       |
| lor             | Low Level Output Current  |                       |                         | DM54         | <u> </u> |           | 30   |              |                                         | 16   |     | ·            | 48        |       |         | 2     |     |        | 4     |          |        | 12            | mA    |
|                 |                           |                       |                         | DM74         | <u> </u> |           | 40   |              |                                         | 16   |     |              | 48        |       |         | 3.6   |     |        | 8     |          |        | 24            | ļ     |
| VOL             | Low Level Output Voltage  |                       | I <sub>OL</sub> = Max   | DM54         | <u> </u> |           | 0.7  | <u> </u>     |                                         | 0.4  |     |              | 0.4       |       | 0.15    | 0.3   |     | 0.25   | 0.4   |          |        | 0.4           |       |
|                 |                           | V <sub>CC</sub> = Min | I <sub>OL</sub> = 4 mA  | DM74<br>DM74 | <u> </u> |           | 0.7  | <del> </del> |                                         | 0.4  |     |              | 0.4       |       |         | 0.4   |     | 0.35   | 0.5   | <u> </u> |        | 0.5           | - v   |
|                 | ,                         | V <sub>1</sub> = (2)  | I <sub>OL</sub> = 12 mA | DM74         |          |           |      |              |                                         |      |     |              |           |       |         |       |     | 0.25   | 0.4   |          |        | 0.4           | ľ     |
|                 |                           |                       | I <sub>OL</sub> = 16 mA |              |          |           | 0.4  |              | *************************************** |      |     |              |           |       |         |       |     |        |       |          |        |               |       |
| 1,              | Input Current at          |                       | V, = 5.5V               | ·            |          |           | 1    |              |                                         | 1    |     |              | <b>_1</b> |       |         | 0.1   |     |        |       |          |        |               |       |
| '               | Maximum Input Voltage     | V <sub>CC</sub> = Max | V, = 7V                 |              |          |           |      |              |                                         |      |     |              | · ·       |       |         |       |     |        | 0.1   |          |        | 0.1           | mA    |
| 1 <sub>H</sub>  | High Level Input Current  |                       | V <sub>1</sub> = 2.4V   |              |          |           | 40   |              |                                         | 40   |     |              | 40        |       | •       | 10    |     |        |       |          |        |               | ٠.    |
|                 |                           | V <sub>CC</sub> = Max | V <sub>1</sub> = 2.7V   |              |          |           | `    |              |                                         |      |     |              |           |       |         |       |     |        | 20    |          |        | 20            | μΑ    |
| IIL             | Low Level Input Current   | \/ - NA               | V <sub>1</sub> = 0.3V   |              |          |           |      |              |                                         |      |     |              | ,         |       |         | -0.18 |     |        |       |          |        |               |       |
|                 |                           | V <sub>CC</sub> = Max | V <sub>1</sub> = 0.4V   |              |          |           | -1.6 |              |                                         | -1.6 |     |              | -1.6      |       |         |       |     |        | -0.36 |          |        | -0.36         | mA    |
| Icc             | Supply Current            | V <sub>CC</sub> = Max |                         |              |          |           |      | ,            |                                         |      |     |              | See       | Table |         |       |     |        |       |          |        |               |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) The input voltage is  $V_{IH} = 2V$  or  $V_{IL} = max$ , as appropriate.

LS38 To Be Announced In 1976

| DEVICE |      | <sub>l</sub> (mA)<br>Outputs High |      | (mA)<br>Outputs Low |
|--------|------|-----------------------------------|------|---------------------|
|        | TYP  | MAX                               | TYP  | MAX                 |
| 06, 16 | 30   | 42                                | 27   | 38                  |
| 07, 17 | 29   | 41                                | 21   | 30                  |
| 26     | 4    | 8                                 | 12   | 22                  |
| 38     | 5    | 8.5                               | 34 , | 54                  |
| L26    | 0.48 | 0.8                               | 1.32 | 2.04                |
| LS26   | 0.8  | 1.6                               | 2.4  | 4.4                 |
| LS38   | 0.9  | 2                                 | 6    | 12                  |

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_{\Delta} = 25^{\circ}C$ 

| DEVICE | CONDITIONS                              | Propaga |     | )<br>ay Time,<br>el Output | Propaga | t <sub>PHL</sub> (ns<br>tion Dela<br>Low Lev |     |
|--------|-----------------------------------------|---------|-----|----------------------------|---------|----------------------------------------------|-----|
|        |                                         | MIN     | TYP | MAX                        | MIN     | TYP                                          | MAX |
| 06, 16 | C <sub>L</sub> = 15 pF                  |         | 10  | 15                         |         | 15                                           | 23  |
| 07, 17 | $R_L = 110\Omega$                       |         | 6   | 10                         |         | 20                                           | 30  |
| 26     | $C_L = 15 pF$<br>$R_L = 1 k\Omega$      |         | 16  | 24                         |         | 11                                           | 17  |
| 38     | $C_L = 45 \text{ pF}$ $R_L = 133\Omega$ |         | 14  | 22                         |         | 11                                           | 18  |
| L26    | $C_L = 15 pF$<br>$R_L = 4 k\Omega$      |         | 40  | 90                         |         | 25                                           | 60  |
| LS26   | $C_L = 15 pF$<br>$R_L = 2 k\Omega$      |         | 17  | 32                         |         | 15                                           | 28  |
| LS38   | $C_L = 45 \text{ pF}$ $R_L = 667\Omega$ |         | 20  | 32                         |         | 18                                           | 28  |

DM54/DM7406,07,16,17,26,38 Open Collector, Hi-Voltage Buffers

|                 | ,                         |                          |                         |      |           | DM54/74 |      | D   | M54H/74   | Н    |     | M54L/74   | IL    | DN  | /154LS/74 | LS    |     | DM74S  |       |          |
|-----------------|---------------------------|--------------------------|-------------------------|------|-----------|---------|------|-----|-----------|------|-----|-----------|-------|-----|-----------|-------|-----|--------|-------|----------|
|                 | PARAMETER                 | c                        | ONDITIONS               |      |           | 08, 11  |      | Н   | 8, H11, H | 121  |     | L08, L11  |       | LS0 | 8, LS11,  | LS21  |     | S11    |       | UNIT     |
|                 |                           |                          | ,                       |      | MIN       | TYP(1)  | MAX  | MIN | TYP(1)    | MAX  | MIN | TYP(1)    | MAX   | MIN | TYP(1)    | MAX   | MIN | TYP(1) | MAX   |          |
| ViH             | High Level Input Voltage  |                          |                         |      | 2         |         |      | 2   |           |      | 2   |           |       | 2   |           |       | 2   |        |       | V        |
| VIL             | Low Level Input Voltage   |                          |                         | DM54 |           |         | 0.8  |     |           | 0.8  |     |           | 0.7   |     |           | 0.7   |     |        | N/A   | Ι,       |
|                 | •                         |                          |                         | DM74 |           |         | 8.0  |     |           | 0.8  | •   |           | 0.7   |     |           | 0.8   |     |        | 0.8   | ١. ١     |
| Vı              | Input Clamp Voltage       |                          | I <sub>1</sub> = -8 mA  |      |           |         |      |     |           | -1.5 |     |           | N/A   |     |           |       |     |        |       |          |
|                 |                           | V <sub>CC</sub> = Min    | I <sub>1</sub> = -12 mA |      | L         |         | -1.5 |     |           |      |     |           | N/A   |     |           |       |     |        |       | ·        |
|                 |                           |                          | I <sub>I</sub> = -18 mA |      | <u> </u>  |         |      |     |           |      |     | ,         | N/A   |     | •         | −1.5  |     |        | -1.2  |          |
| Іон             | High Level Output Current |                          |                         |      |           |         | -800 |     |           | -500 |     |           | -200  |     |           | -400  |     |        | -1000 | μ        |
| $v_{\text{OH}}$ | High Level Output         | V <sub>CC</sub> = Min, V | <sub>IH</sub> = 2V      | DM54 | 2.4       | 3.4     |      | 2.4 | 3.4       |      | 2.4 | 3.3       |       | 2.5 | 3.4       |       | N/A |        | •     | ١,       |
|                 | Voltage                   | I <sub>OH</sub> = Max    |                         | DM74 | 2.4       | 3.4     |      | 2.4 | 3.4       |      | 2.4 | 3.2       |       | 2.7 | 3.4       |       | 2.7 | 3.4    | •     | <u> </u> |
| loL             | Low Level Output          |                          |                         | DM54 |           |         | 16   |     | ١         | 20   | ,   |           | 2     |     |           | 4     |     |        | N/A   | m/       |
|                 | Current                   |                          |                         | DM74 |           |         | 16   |     |           | 20   |     |           | 3.6   |     |           | 8     |     |        | 20    | m        |
| $V_{OL}$        | Low Level Output          | V <sub>CC</sub> = Min    | I <sub>OL</sub> = Max   | DM54 |           | 0.2     | 0.4  |     | 0.2       | 0.4  |     | 0.15      | 0.3   |     | 0.25      | 0.4   |     |        | N/A   |          |
|                 | Voltage                   | V <sub>IL</sub> = Max    | L                       | DM74 |           | 0.2     | 0.4  |     | 0.2       | 0.4  |     | 0.2       | 0.4   |     | 0.35      | 0.5   | • . |        | 0.5   | ١ ١      |
|                 |                           | A IT IAIRY               | I <sub>OL</sub> = 4 mA  | DM74 | <u> </u>  |         |      |     |           |      |     |           |       |     |           | 0.4   |     |        |       | L        |
| i,              | Input Current at          | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V   |      | <u> </u>  |         | 1    |     |           | 1    |     |           | 0.1   |     |           |       |     |        | 1     | · m/     |
|                 | Maximum Input Voltage     | ACC - IMBX               | V <sub>1</sub> = 7V     |      | <u> L</u> |         |      |     |           |      |     |           |       |     |           | 0.1   |     |        |       |          |
| IIH             | High Level Input Current  | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V   |      |           |         | 40   |     |           | 50   |     |           | 10    |     |           |       |     |        | ``    | μ,       |
|                 |                           | A CC - INIAX             | V <sub>I</sub> = 2.7V   |      |           |         |      |     |           |      |     |           |       |     |           | 20    |     |        | 50    | μ,       |
| IIL             | Low Level Input Current   |                          | V <sub>I</sub> = 0.3V   |      | į .       |         |      |     |           |      |     |           | -0.18 |     |           |       |     |        |       | l        |
|                 |                           | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.4V   |      | L         |         | -1.6 |     |           | -2   |     |           |       |     | -         | -0.36 |     |        |       | m/       |
|                 | *                         |                          | V <sub>I</sub> = 0.5V   |      | <u> </u>  |         |      |     |           |      |     |           |       |     |           |       |     |        | -2    | L        |
| los             | Short Circuit Output      | V <sub>CC</sub> = Max(2) |                         | DM54 | -20       |         | -55  | -40 |           | -100 | -3  |           | -15   | -30 |           | -130  |     |        | N/A   | · m/     |
|                 | Current                   | VCC - IVIAX(2)           |                         | DM74 | -18       |         | 55   | -40 |           | -100 | -3  |           | -15   | -30 |           | -130  | -40 |        | -100  |          |
| Icc             | Supply Current            | V <sub>CC</sub> = Max    |                         |      |           |         |      |     |           |      |     | See Table |       |     |           |       |     |        |       |          |

(1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
 (2) Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

LS11, LS21 To Be Announced in 1976

| DEVICE | 1    | <sub>l</sub> (mA)<br>Outputs High |     | (mA)<br>Outputs Low |
|--------|------|-----------------------------------|-----|---------------------|
|        | TYP  | MAX                               | TYP | MAX                 |
| 08     | 11   | 21                                | 20  | 33                  |
| 11     | 8    | 15                                | 14  | 22                  |
| H08    | 28   | 40                                | 42  | 64                  |
| H11    | 18   | 30                                | 30  | 48                  |
| H21    | 12   | 20                                | 20  | 32                  |
| L08    | 1.1  | 2.1                               | 2.0 | 3.3                 |
| L11    | 1.0  | 1.5                               | 1.6 | 2.2                 |
| LS08   | 2.4  | 4.8                               | 4.4 | 8.8                 |
| LS11   | 1.8  | 3.6                               | 3.3 | 6.6                 |
| LS21   | 1.2  | 2.4                               | 2.2 | 4.4                 |
| S11    | 13.5 | 24                                | 24  | 42                  |

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

| DEVICE             | CONDITIONS                              | Propaga | t <sub>PLH</sub> (ns<br>ition Dela<br>High Lev |     | Propaga |     | y Time,<br>el Output |
|--------------------|-----------------------------------------|---------|------------------------------------------------|-----|---------|-----|----------------------|
|                    |                                         | MIN     | TYP                                            | MAX | MIN     | TYP | MAX                  |
| 08,11              | $C_L = 15 \text{ pF}$ $R_L = 400\Omega$ |         | 17.5                                           | 27  |         | 12  | 19                   |
| H08, H11<br>H21    | $C_L = 25 \text{ pF}$ $R_L = 280\Omega$ |         | 7.6                                            | 12  |         | 8.8 | 12                   |
| L08                | C <sub>L</sub> = 50 pF                  |         | 45                                             | 90  |         | 45  | 90                   |
| L11                | $R_L = 4 k\Omega$                       |         | 40                                             | 80  |         | 45  | 90                   |
| LS08, LS11<br>LS21 | $C_L = 15 pF$<br>$R_L = 2 k\Omega$      |         | 10                                             | 15  |         | 12  | 20                   |
| S11                | $C_L = 15 pF$<br>$R_L = 280\Omega$      | 2.5     | 4.5                                            | 7   | 2.5     | 5   | 7.5                  |
|                    | $C_L = 50 pF$<br>$R_L = 280\Omega$      |         | 6                                              | 9   |         | 7.5 | 11                   |

Gates

mΑ

| 1               |                                        | 1                        |                                         |      | 1   |        |      |     |        |       |     |          |      |     |        |      | 1          |
|-----------------|----------------------------------------|--------------------------|-----------------------------------------|------|-----|--------|------|-----|--------|-------|-----|----------|------|-----|--------|------|------------|
| ļ               | PARAMETER                              |                          | CONDITIONS                              |      |     | 09     |      |     | L09    |       | ı   | LS09, LS | 15   |     | S15    |      | UNITS      |
|                 | •                                      | İ                        |                                         |      | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX   | MIN | TYP(1)   | MAX  | MIN | TYP(1) | MAX  |            |
| V <sub>IH</sub> | High Level Input Voltage               |                          | ,                                       |      | 2   |        |      | 2   |        |       | 2   |          |      | 2   |        | -    | V          |
| VIL             | Low Level Input Voltage                |                          |                                         | DM54 |     |        | 0.8  |     |        | 0.7   |     |          | 0.7  |     |        | N/A  | V          |
|                 |                                        |                          |                                         | DM74 |     |        | 8.0  |     |        | 0.7   |     |          | 0.8  |     |        | 0.8  | \ \        |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min    | I <sub>1</sub> = -12 mA                 |      |     |        | -1.5 |     |        | N/A   |     |          |      |     |        |      | V          |
|                 |                                        | V CC - WIIII             | I <sub>1</sub> = -18 mA                 |      |     |        |      |     |        | N/A   |     |          | -1.5 |     |        | -1.2 | _ <u> </u> |
| I <sub>OH</sub> | High Level Output Current              | V <sub>CC</sub> = Min, \ | V <sub>IH</sub> = 2V, V <sub>OH</sub> = | 5.5V |     | -      | 250  |     |        | 50    |     |          | 100  |     |        | 250  | μΑ         |
| V <sub>OH</sub> | High Level Output Voltage              |                          |                                         |      |     |        | 5.5  |     |        | 5.5   |     |          | 5.5  |     |        | 5.5  | V          |
| loL             | Low Level Output Current               |                          |                                         | DM54 |     |        | 16   |     |        | 2     |     |          | ٠ 4  |     |        | N/A  | mA         |
|                 |                                        |                          |                                         | DM74 |     |        | 16   |     |        | 3.6   |     |          | 8    |     |        | 20   | l IIIA     |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min    | I <sub>OL</sub> = Max                   | DM54 |     | 0.2    | 0.4  |     | 0.15   | 0.3   |     | 0.25     | 0.4  |     |        | N/A  |            |
| ·               |                                        | V <sub>IL</sub> = Max    | IOL WAY                                 | DM74 |     | 0.2    | 0.4  |     | 0.2    | 0.4   |     | 0.35     | 0.5  |     |        | 0.5  | V          |
|                 |                                        | VIL Max                  | I <sub>OL</sub> = 4 mA                  | DM74 |     |        |      |     |        |       |     |          | 0.4  |     |        |      |            |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V                   |      |     |        | 1    |     |        | 0.1   |     |          |      |     |        | 1    | mA         |
|                 |                                        | V <sub>CC</sub> - Wax    | V <sub>1</sub> = 7V                     |      |     |        |      |     |        |       |     |          | 0.1  |     |        |      | IIIA       |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V                   |      |     |        | 40   |     |        | 10    |     |          |      |     |        |      |            |
|                 |                                        | VCC - Wax                | V <sub>1</sub> = 2.7V                   |      |     |        |      |     |        |       |     |          | 20   |     |        | 50   | μΑ         |
| IIL             | Low Level Input Current                |                          | V <sub>I</sub> = 0.3V                   |      |     |        |      |     |        | -0.18 |     |          |      |     |        |      |            |
|                 |                                        |                          |                                         |      |     |        |      |     |        |       |     |          |      |     |        |      |            |

-1.6

DM54/74

DM54L/DM74L

DM54LS/DM74LS

-0.36

See Table

DM74S

**Electrical Characteristics** over recommended operating free-air temperature range (unless otherwise noted).

V<sub>CC</sub> = Max

V<sub>CC</sub> = Max

V<sub>1</sub> = 0.4V

V<sub>1</sub> = 0.5V

# I<sub>CC</sub>

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

LS15 To Be Announced In 1976

Supply Current

| DEVICE |      | (mA)<br>Outputs High |     | (mA)<br>Outputs Low |
|--------|------|----------------------|-----|---------------------|
|        | TYP  | MAX                  | TYP | MAX                 |
| 09     | 11   | 21                   | 20  | 33                  |
| L09    | 1.1  | 2.1                  | 2   | 3.3                 |
| LS09   | 2.4  | 4.8                  | 4.4 | 8.8                 |
| LS15   | 1.8  | 3.6                  | 3.3 | 6.6                 |
| S15    | 10.5 | 19.5                 | 24  | 42                  |

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

| DEVICE     | CONDITIONS                                 | Propaga |     | )<br>ay Time,<br>el Output | Propaga | )<br>ay Time,<br>el Output |     |
|------------|--------------------------------------------|---------|-----|----------------------------|---------|----------------------------|-----|
|            |                                            | MIN     | TYP | MAX                        | MIN     | TYP                        | MAX |
| 09         | $C_L = 15 \text{ pF}$<br>$R_L = 400\Omega$ |         | 21  | 32                         |         | 16                         | 24  |
| L09        | $C_L = 15 pF$<br>$R_L = 4 k\Omega$         |         | 50  | 110                        |         | 50                         | 110 |
| LS09, LS15 | $C_L = 15 pF$ $R_L = 2 k\Omega$            |         | 20  | 35                         |         | 20                         | 35  |
| S15        | $C_L = 15 pF$<br>$R_L = 280\Omega$         | 2.5     | 5.5 | 8.5                        | 2.5     | 6                          | 9   |
|            | $C_L = 50 \text{ pF}$<br>$R_L = 280\Omega$ |         | 8.5 | 13                         |         | 8                          | 12  |

| Electrical Characteristics | over recommended operating free-air temperature range (unless otherwise noted). |
|----------------------------|---------------------------------------------------------------------------------|
|                            |                                                                                 |

|                  |                               |                            |                                       |                                                                          |              |                                                  |        |      | DM54/74 |        |      |                                                  |          | DM54LS/74LS |       |            |                  |       |
|------------------|-------------------------------|----------------------------|---------------------------------------|--------------------------------------------------------------------------|--------------|--------------------------------------------------|--------|------|---------|--------|------|--------------------------------------------------|----------|-------------|-------|------------|------------------|-------|
| I                | PAR                           | AMETER                     | 1                                     | CONDITIONS                                                               |              |                                                  | 13     |      |         | 14     |      |                                                  | 132      |             | LS1   | 3, LS14, I | LS132            | UNITS |
|                  |                               |                            |                                       |                                                                          |              | MIN                                              | TYP(1) | MAX  | MIN     | TYP(1) | MAX  | MIN                                              | TYP(1)   | MAX         | MIN   | TYP(1)     | MAX              |       |
| VT               | Positive-Going                | hreshold Voltage           | V <sub>CC</sub> = 5V                  |                                                                          |              | 1.5                                              | 1.7    | 2    | 1.5     | 1.7    | 2    | 1.5                                              | 1.7      | 2           | 1.4   | 1.6        | 1.9              | V     |
| VT               | Negative-Going                | Threshold Voltage          | V <sub>CC</sub> = 5V                  |                                                                          |              | 0.6                                              | 0.9    | 1.1  | 0.6     | 0.9    | 1.1  | 0.6                                              | 0.9      | 1.1         | 0.5   | 0.8        | 1.0              | V     |
| V <sub>T</sub> . | Hyetorocic                    | ,                          | V <sub>CC</sub> = 5V                  | V <sub>CC</sub> = 5V                                                     |              | 0.4                                              | 0.8    |      | 0.4     | 0.8    |      | 0.4                                              | 0.8      |             | 0.4   | 0.8        |                  | V     |
| Vı               | Input Clamp Vo                | ltage                      | V <sub>CC</sub> = Min                 | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$ $I_1 = -18 \text{ mA}$             |              |                                                  |        | -1.5 |         |        | -1.5 |                                                  |          | -1.5        |       |            | -1.5             | V     |
| lot              | High Level Out                | out Current                |                                       |                                                                          |              |                                                  |        | -800 |         |        | -800 |                                                  |          | -800        |       |            | -400             | μΑ    |
| Vo               | VoH High Level Output Voltage |                            | V <sub>CC</sub> = Min, \              | V <sub>I</sub> = V <sub>T</sub> Min                                      | DM54         | 2.4                                              | 3.4    |      | 2.4     | 3.4    |      | 2.4                                              | 3.4      |             | 2.5   | 3.4        |                  | V     |
|                  |                               |                            | I <sub>OH</sub> = Max                 |                                                                          | DM74         | 2.4                                              | 3.4    |      | 2.4     | 3.4    |      | 2.4                                              | 3.4      |             | 2.7   | 3.4        |                  | · ·   |
| lor              | Low Level Outr                | out Current                |                                       |                                                                          | DM54         |                                                  |        | 16   |         |        | 16   |                                                  |          | 16          |       |            | 4                | m^    |
|                  |                               |                            |                                       |                                                                          | DM74         |                                                  |        | 16   |         |        | 16   |                                                  |          | 16          |       |            | . 8              | mA    |
| Vo               | Low Level Outp                | ut Voltage                 | V = Min                               | I <sub>OL</sub> = 4 mA                                                   | •            |                                                  |        |      |         | -      |      |                                                  |          |             |       | 0.25       | 0.4              |       |
|                  | •                             |                            | V.=V Max                              | $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$ $I_{OL} = 16 \text{ mA}$ | DM74         |                                                  |        |      |         |        |      |                                                  |          |             |       | 0.35       | 0.5              | V     |
|                  |                               |                            | •   •   +   +   +   +   +   +   +   + | I <sub>OL</sub> = 16 mA                                                  |              |                                                  | 0.2    | 0.4  |         | 0.2    | 0.4  |                                                  | 0.2      | 0.4         |       |            |                  |       |
| I <sub>T+</sub>  | Input Current a               | t Positive-Going Threshold | $V_{CC} = 5V, V_1 = V_{T+}$           |                                                                          |              | -0.65                                            |        |      | -0.43   |        | L    | -0.43                                            |          | -           | -0.14 |            | m <sub>i</sub> A |       |
| l <sub>T</sub> _ | Input Current a               | t Negative-Going Threshold | V <sub>CC</sub> = 5V, V               | ı ≃ V <sub>T</sub> -                                                     |              |                                                  | -0.85  |      |         | -0.56  |      |                                                  | -0.56    |             |       | ~0.18      |                  | mA    |
| l <sub>1</sub>   | Input Current a               | t Maximum Input Voltage    | V <sub>CC</sub> = Max                 | V <sub>i</sub> = 5.5V                                                    |              |                                                  |        | 1    |         |        | 1    |                                                  |          | 1           |       |            |                  | mA    |
| 1                |                               |                            | A C.C. IVIOX                          | V <sub>1</sub> = 7.0V                                                    |              |                                                  |        |      |         |        |      |                                                  |          |             |       |            | 0.1              |       |
| I <sub>IH</sub>  | High Level Inpu               | t Current                  | V <sub>CC</sub> = Max                 | V <sub>1</sub> = 2.4V                                                    |              |                                                  |        | 40   |         |        | 40   |                                                  |          | 40          |       |            |                  | μA    |
|                  |                               |                            | VCC Max                               | V <sub>1</sub> = 2.7V                                                    |              |                                                  |        |      |         |        |      |                                                  |          |             |       |            | 20               |       |
| IIL              | Low Level Inpu                | t Current                  | V <sub>CC</sub> = Max,                | V <sub>1</sub> = 0.4V                                                    |              |                                                  | -1.0   | -1.6 |         | -0.8   | -1.2 | <u> </u>                                         | -0.8     | -1.2        |       |            | <b>−0.4</b>      | · mA  |
| los              | Short Circuit O               | utput Current              | V <sub>CC</sub> = Max (               | 2)                                                                       |              | -18                                              |        | -55  | -18     |        | -55  | -18                                              |          | -55         | -30   |            | -130             | mA    |
| Icc              | Supply Current                |                            |                                       |                                                                          | LS13         |                                                  |        |      |         |        |      |                                                  |          |             |       | 2.9        | 6                |       |
|                  | 1                             | Total Output High          |                                       | V, = 0V                                                                  | LS14         |                                                  |        |      |         |        |      |                                                  |          |             |       | 8.6        | 16               |       |
|                  |                               |                            |                                       | 1 1 - 00                                                                 | LS132        |                                                  |        |      |         |        |      |                                                  |          |             |       | 5.9        | 11               |       |
|                  |                               |                            | V <sub>CC</sub> = Max                 |                                                                          | Others       | <u> </u>                                         | 14     | 23   | ·       | 22     | 36   |                                                  | 15       | 24          |       |            | 7                | mA    |
|                  | Total Output Low              |                            |                                       |                                                                          | LS13<br>LS14 | ├                                                |        |      | -       |        |      | <u> </u>                                         | <u> </u> |             |       | 4.1        | 21               | 4     |
|                  |                               | Total Output Low           |                                       | V <sub>1</sub> = 4.5V                                                    | LS132        | <del>                                     </del> |        |      |         |        |      | <b></b>                                          |          |             |       | 8.2        | 14               | ĺ     |
|                  |                               |                            |                                       |                                                                          | Others       | $\vdash$                                         | 20     | 32   |         | 39     | 60   | <del>                                     </del> | 26       | 40          |       |            |                  | 1     |
|                  | Otne                          |                            |                                       | <b></b>                                                                  |              |                                                  |        |      |         | L      |      |                                                  | ـــــب   |             |       | <u> </u>   |                  |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/DM74LS, duration of short circuit should not exceed one second.
- LS13, LS14, LS132 To Be Announced In 1976

| u        |
|----------|
| _        |
|          |
| €        |
| _        |
| /8       |
| o        |
| -        |
| _        |
| _        |
| •        |
| •        |
|          |
| u        |
| _        |
| 7        |
| •        |
| 3        |
| _        |
| _        |
| 4        |
| _        |
| _        |
|          |
| w        |
| •        |
| • .      |
| _        |
| _        |
| -        |
| _        |
| ٠.       |
| _        |
| ω        |
| w        |
|          |
| N        |
|          |
|          |
| "        |
| u        |
| č        |
| 7        |
|          |
| -3       |
| =        |
|          |
| -3       |
| _        |
|          |
| _        |
| -        |
| • •      |
| -        |
|          |
| _        |
| $\dashv$ |
| ╛        |
| 크        |
| ₫        |
| Trig     |
| Trig     |
| Trigg    |
| Trigg    |

| DEVICE      | CONDITIONS                                     | Propagation | <sub>H</sub> (ns)<br>n Delay Time,<br>h Level Output | Propagation | L (ns)<br>n Delay Time,<br>v Level Output |
|-------------|------------------------------------------------|-------------|------------------------------------------------------|-------------|-------------------------------------------|
|             |                                                | TYP         | MAX                                                  | TYP         | MAX                                       |
| 13          | C = 15 = 5 = 4000                              | 18          | 27                                                   | 15          | 22                                        |
| 14, 132     | $C_L = 15 \text{ pF}, R_L = 400\Omega$         | 15          | 22                                                   | 15          | 22                                        |
| LS13        | $C_1 = 15 \text{ pF}, R_1 = 2 \text{ k}\Omega$ | 15          | 22                                                   | 18          | 27                                        |
| LS14, LS132 | C <sub>L</sub> = 15 pr, R <sub>L</sub> = 2 k32 | 15          | 22                                                   | 15          | 22                                        |

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

| -        |                                          |                                        |                                              |                        |     |     | DM5       | 4/74            |                 |          | C    | M54H/74              | Н    | 4     |
|----------|------------------------------------------|----------------------------------------|----------------------------------------------|------------------------|-----|-----|-----------|-----------------|-----------------|----------|------|----------------------|------|-------|
|          |                                          | PARAMETER                              | CONDITIO                                     | ONS                    |     | 23  |           |                 | 50, 53          |          |      | H50, H52<br>H53, H55 |      | UNITS |
|          |                                          |                                        |                                              |                        |     |     | YP(1) MAX |                 | MIN TYP(1)      |          | MIN  | TYP(1)               | MAX  |       |
| -        | V <sub>IH</sub>                          | High Level Input Voltage               |                                              | -                      | 2   |     |           | 2               |                 |          | 2    |                      |      | ٧     |
| -        | V <sub>IL</sub>                          | Low Level Input Voltage                |                                              |                        |     | 0.8 |           |                 | 0.8             |          |      | 8.0                  | ٧    |       |
| -        | Vı                                       | Input Clamp Voltage                    | V = Min                                      | $V_{CC} = Min$         |     |     |           |                 |                 |          |      |                      | -1.5 | v     |
| _        |                                          | ,                                      | V CC - Will                                  | $I_1 = -12 \text{ mA}$ |     |     | -1.5      |                 | 717             | -1.5     |      |                      |      |       |
|          | Іон                                      | High Level Output Current              |                                              |                        |     |     | -800      |                 |                 | -400     |      |                      | -500 | μΑ    |
|          | V <sub>OH</sub>                          | High Level Output Voltage              | $V_{CC} = Min, V_1 = (2),$                   | 2.4                    | 3.4 |     | 2.4       | 3.4             |                 | 2.4      | 3.4  |                      | V    |       |
| -        | l <sub>OL</sub>                          | Low Level Output Current               |                                              |                        |     |     | 16        |                 | •               | 16       |      |                      | 20   | mA    |
|          | V <sub>OL</sub>                          | Low Level Output Voltage               | $V_{CC} = Min, V_1 = (2),$                   | I <sub>OL</sub> = Max  |     | 0.2 | 0.4       |                 | 0.2             | 0.4      |      | 0.2                  | 0.4  | V     |
| .        | l <sub>l</sub>                           | Input Current at Maximum Input Voltage | $V_{CC} = Max, V_1 = 5.5$                    | v ,                    |     |     | 1         |                 |                 | 1        |      |                      | 1    | mA    |
| ۱        | l <sub>IH</sub>                          | High Level Input Current Data Inputs   | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4  | V                      |     |     | 40        |                 |                 | 40       |      |                      | 50   | μΑ    |
| <u> </u> | -                                        | Strobe of 23                           | VCC - WIAX, V1 - 2.4                         | · ·                    | ·   |     | 160       |                 |                 | N/A      |      |                      | N/A  | μΛ    |
|          | l <sub>IL</sub>                          | Low Level Input Current Data Inputs    | $V_{CC} = Max, V_1 = 0.4$                    | V = Max V = 0.4V       |     |     | -1.6      |                 |                 | -1.6     |      |                      | -2   | mA    |
|          |                                          | Strobe of 23                           | V <sub>CC</sub> - Max, V <sub>1</sub> - 0.4V |                        |     |     | -6.4      |                 | ` `             | N/A      |      |                      | N/A  |       |
|          | los Short Circuit Output Current         |                                        | V <sub>CC</sub> = Max (3)                    | DM54                   | -20 |     | -55       | -20             |                 | 55       | -40  |                      | -100 | mA    |
| 1_       | DM74                                     | DM74                                   | -18                                          |                        | -55 | -18 |           | <del>-</del> 55 | <del>-4</del> 0 |          | -100 |                      |      |       |
|          | Icc Supply Current V <sub>CC</sub> = Max |                                        |                                              |                        |     |     |           |                 | See Table       | <b>!</b> |      |                      |      |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) The input voltage is  $V_{IH} = 2V$  or  $V_{IL} = V_{IL}$  max, as appropriate.
- (3) Not more than one output should be shorted at a time, and for the DM54H/DM74H, duration of short circuit should not exceed one second.

| DEVICE                        |                                                                    | I⊼ (mA)<br>I <sub>X</sub> for H5<br>pander Cur | 2)     |                      | Base-Em                                                                                    | BE(Q) (\<br>itter Vo<br>t Transis | Itage of |     |                                                                               | V <sub>OH</sub> (V<br>el Outpi | )<br>ut Voltage |     |                                                                                  | V <sub>OL</sub> (V)<br>Low Level Output Voltage |        |     |  |  |
|-------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------|----------------------|--------------------------------------------------------------------------------------------|-----------------------------------|----------|-----|-------------------------------------------------------------------------------|--------------------------------|-----------------|-----|----------------------------------------------------------------------------------|-------------------------------------------------|--------|-----|--|--|
|                               | CONDITIONS                                                         | MIN                                            | TYP(1) | MAX                  | CONDITIONS                                                                                 | MIN                               | TYP(1)   | MAX | CONDITIONS                                                                    | MIN                            | TYP(1)          | MAX | CONDITIONS                                                                       | MIN                                             | TYP(1) | MAX |  |  |
| DM5423<br>DM5450<br>DM5453    | V <sub>XX</sub> = 0.4V<br>I <sub>OL</sub> = 16 mA                  |                                                |        | -3.5<br>-2.9<br>-2.9 | $I_X + I_X^- = 410\mu A$<br>$R_{XX}^- = 0$<br>$I_{OL}^- = 16 \text{ mA}$                   |                                   |          | 1.1 | I <sub>X</sub> = 150μΑ<br>I <sub>X</sub> = -150μΑ<br>I <sub>OH</sub> = -400μΑ | 2.4                            | 3.4             |     | $I_X + I_X^- = 300\mu A$<br>$R_{XX}^- = 138\Omega$<br>$I_{OL}^- = 16 \text{ mA}$ |                                                 | 0.2    | 0.4 |  |  |
| DM7423<br>DM7450<br>DM7453    | $V_{XX}^{-} = 0.4V$ $I_{OL} = 16 \text{ mA}$                       |                                                |        | -3.5<br>-3.1<br>-3.1 | $I_X + I_{\overline{X}} = 620\mu A$<br>$R_{\overline{X}X} = 0$<br>$I_{OL} = 16 \text{ mA}$ |                                   |          | 1.0 | I <sub>X</sub> = 270μΑ<br>I <sub>X</sub> = -270μΑ<br>I <sub>OH</sub> = -400μΑ | 2.4                            | 3.4             |     | $I_X + I_X^- = 430\mu A$<br>$R_{XX}^- = 130\Omega$<br>$I_{OL} = 16 \text{ mA}$   |                                                 | 0.2    | 0.4 |  |  |
| DM54H50<br>DM54H53<br>DM54H55 | V <sub>X</sub> = 1.4V<br>I <sub>X</sub> = 0<br>I <sub>OL</sub> = 0 |                                                |        | -5.85                | $I_X + I_X^- = 700\mu A$<br>$R_{XX}^- = 0$<br>$I_{OL} = 20 \text{ mA}$                     |                                   |          | 1.1 | I <sub>X</sub> = 320μA<br>I <sub>X</sub> = -320μA<br>I <sub>OH</sub> = -500μA | 2.4                            | 3.4             |     | $I_X + I_X^- = 470\mu A$<br>$R_{XX}^- = 68\Omega$<br>$I_{OL} = 20 \text{ mA}$    |                                                 | 0.2    | 0.4 |  |  |
| DM74H50<br>DM74H53<br>DM74H55 | V <sub>X</sub> = 1.4V<br>I <sub>X</sub> = 0<br>I <sub>OL</sub> = 0 |                                                |        | -6.3                 | $I_X + I_X^- = 1.1 \text{ mA}$<br>$R_{XX}^- = 0$<br>$I_{OL} = 20 \text{ mA}$               |                                   |          | 1.0 | I <sub>X</sub> = 570μA<br>I <sub>X</sub> = -570μA<br>I <sub>OH</sub> = -500μA | 2.4                            | 3.4             |     | $I_X + I_X^- = 600\mu A$<br>$R_{XX}^- = 63\Omega$<br>$I_{OL}^- = 20 \text{ mA}$  |                                                 | 0.2    | 0.4 |  |  |
| DM54H52<br>DM74H52            | V <sub>X</sub> = 1V<br>I <sub>OH</sub> = -500μA                    | -2.7                                           |        | -4.5                 |                                                                                            |                                   |          |     | V <sub>X</sub> = 1V<br>I <sub>OH</sub> = -500μA                               | 2.4                            | 3.4             |     | I <sub>X</sub> = -300μΑ<br>I <sub>OL</sub> = 20 mA<br>T <sub>A</sub> = Max       |                                                 | 0.2    | 0.4 |  |  |

1-51

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (4) The 23, 50, and 53 are designed for use with up to four 60 expanders.
- (5) The H50, H53, and H55 are designed for use with up to four H60 expanders or one H62 expander.
- (6) The H52 is designed for use with up to six H61 expanders.

#### **Supply Currents**

| DEVICE |     | <sub>l</sub> (mA)<br>Outputs High |      | (mA)<br>Outputs Low |
|--------|-----|-----------------------------------|------|---------------------|
|        | TYP | MAX                               | TYP  | MAX                 |
| 23     | 8   | 16                                | 10   | 19                  |
| 50     | 4   | 8                                 | 7.4  | 14                  |
| 53     | 4   | 8                                 | 5.1  | 9.5                 |
| H50    | 8.2 | 12.8                              | 15.2 | 24                  |
| H52    | 20  | 31                                | 15.2 | 24                  |
| H53    | 7.1 | 11                                | 9.4  | 14                  |
| H55    | 4.5 | 6.4                               | 7.5  | 12                  |

# Switching Characteristics at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

| DEVICE     | CONDITIONS                                                       | Propagation | (ns)<br>Delay Time,<br>Level Output | t <sub>PHL</sub> (ns) Propagation Delay Time High-To-Low Level Outp |     |  |  |
|------------|------------------------------------------------------------------|-------------|-------------------------------------|---------------------------------------------------------------------|-----|--|--|
|            | •                                                                | TYP         | MAX                                 | TYP                                                                 | MAX |  |  |
| 23, 50, 53 | $C_L = 15 \text{ pF}, R_L = 400\Omega$<br>Expander Pins Open     | 13          | 22                                  | 8                                                                   | 15  |  |  |
| 50         | $C_L$ = 15 pF, $R_L$ = 400 $\Omega$<br>From Input of 60 Expander | 15          | 30                                  | 10                                                                  | 20  |  |  |
| H50        |                                                                  | 6.8         | 11                                  | 6.2                                                                 | 11  |  |  |
| H52        | $C_{L} = 25 \text{ pF}, R_{L} = 280\Omega$                       | 10.6        | 15                                  | 9.2                                                                 | 15  |  |  |
| H53        | Expander Pins Open                                               | 7           | 11                                  | 6.2                                                                 | 11  |  |  |
| H55        |                                                                  | 7           | 11                                  | 6.5                                                                 | 11  |  |  |
| H50        | $C_{L} = 25 \text{ pF}, R_{L} = 280\Omega$                       | 11          |                                     | 7.4                                                                 |     |  |  |
| H52        | $C = 15 pF$ , (GND to $\overline{X}$ of                          | 14.8        | •                                   | 9.8                                                                 |     |  |  |
| H53        | H50, H53, or H55; or                                             | 11.4        |                                     | 7.4                                                                 |     |  |  |
| H55        | to X of H52)                                                     | 11.4        |                                     | 7.7                                                                 |     |  |  |

|                 |                   |                       |                          |                                                                    |                        |      |         | DM54/74                               |          | <b>.</b>       | M54L/74              | L                 | DI   | VI54 LS/74   | LS    |              |
|-----------------|-------------------|-----------------------|--------------------------|--------------------------------------------------------------------|------------------------|------|---------|---------------------------------------|----------|----------------|----------------------|-------------------|------|--------------|-------|--------------|
|                 | PARAM             | ETER                  |                          | CONDIT                                                             | IONS                   |      | 32      |                                       |          | L32            |                      |                   | LS32 |              |       | UNITS        |
|                 | •                 |                       |                          |                                                                    |                        |      | MIN     | TYP(1)                                | MAX      | MIN            | TYP(1)               | MAX               | MIN  | TYP(1)       | MAX   |              |
| V <sub>IH</sub> | High Level Input  | Voltage               |                          |                                                                    |                        |      | 2       |                                       |          | 2              |                      |                   | 2    |              |       | V            |
| V <sub>IL</sub> | Low Level Input   | Voltage               |                          |                                                                    |                        | DM54 |         |                                       | 8.0      |                |                      | 0.7               |      |              | 0.7   | · v          |
|                 |                   |                       | -                        | -                                                                  |                        | DM74 |         |                                       | 8.0      |                |                      | 0.7               |      |              | 0.8   | L v          |
| Vı              | Input Clamp Volt  | tage                  | Voc = Min                | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$                              |                        |      |         |                                       | -1.5     |                |                      | N/A               |      |              |       | V            |
|                 |                   |                       | • ()                     | I <sub>1</sub> = -18 mA                                            |                        |      |         |                                       |          |                |                      | N/A               |      |              | -1.5  | ` `          |
| loH             | High Level Outpu  | ıt Current            |                          |                                                                    |                        |      |         |                                       | -800     |                |                      | -200              |      |              | -400  | μΔ           |
| V <sub>OH</sub> | High Level Outpu  | ıt Voltage            | V = Min \                | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V, I <sub>OH</sub> = Max |                        |      | 2.4     | 3.4                                   |          | 2.4            | 2.8                  |                   | 2.5  | 3.4          |       | <b>↓</b> ∨   |
|                 |                   |                       | VCC WIIII,               | · CC mm, vih 2v, oh mux                                            |                        | DM74 | 2.4     | 3.4                                   |          | 2.4            | 2.8                  |                   | 2.7  | 3.4          |       |              |
| I <sub>OL</sub> | Low Level Outpu   | t Current             |                          |                                                                    |                        | DM54 |         |                                       | 16       |                |                      | 2                 |      |              | 4     | m.A          |
|                 |                   |                       |                          | •                                                                  |                        | DM74 |         |                                       | 16       |                |                      | 3.6               |      |              | 8     | 4            |
| VOL             | Low Level Outpu   | t Voltage             | ,                        |                                                                    | I <sub>OL</sub> = Max  | DM54 |         | 0.2                                   | 0.4      |                | 0.15                 | 0.3               |      | 0.25         | 0.4   | 1            |
|                 |                   |                       | V <sub>CC</sub> = Min, \ | IL = Max                                                           |                        | DM74 |         | 0.2                                   | 0.4      | ·              |                      | 0.4               |      | 0.35         | 0.5   | _            |
|                 |                   |                       |                          |                                                                    | I <sub>OL</sub> = 4 mA | DM74 |         |                                       |          |                |                      |                   |      |              | 0.4   |              |
| lı .            | Input Current at  | Maximum Input Voltage | V <sub>CC</sub> = Max    | $V_1 = 5.5V$ $V_1 = 7V$                                            |                        |      |         |                                       | 1        |                |                      | 0.1               |      | <del>,</del> | 0.1   | mA           |
|                 |                   |                       |                          |                                                                    |                        |      |         |                                       |          |                |                      |                   |      |              | 0.1   | -            |
| ІІН             | High Level Input  | Current               | V <sub>CC</sub> = Max    | $V_1 = 2.4V$<br>$V_1 = 2.7V$                                       |                        |      |         |                                       | 40       |                |                      | 10                |      |              | 20    | μΑ           |
|                 |                   | <u> </u>              |                          |                                                                    |                        |      |         |                                       |          |                | 0.10                 | 0.10              | -    |              |       | ├            |
| I <sub>IL</sub> | Low Level Input   | Current               | V <sub>CC</sub> = Max    | $V_1 = 0.3V$ $V_1 = 0.4V$                                          |                        |      |         |                                       | -1.6     |                | -0.12                | <del>-</del> 0.18 |      |              | -0.36 | m/           |
|                 | Short Circuit Out |                       |                          |                                                                    | DM54                   | -20  |         | -55                                   | -3       | <del>-</del> 9 | -15                  | -30               |      | -130         | _     |              |
| los             | Short Circuit Out | put Current           | V <sub>CC</sub> = Max (2 | 2)                                                                 |                        | DM74 | -18     | · · · · · · · · · · · · · · · · · · · | 55<br>55 | -3             | _ <del>9</del><br>_9 | -15<br>-15        | -30  |              | -130  | —I mΔ        |
|                 | Supply Current    | Total, Outputs High   |                          |                                                                    |                        | 12 1 |         | 15                                    | 22       | <u> </u>       | 1.5                  | 2.2               |      | 3.1          | 6.2   | <del> </del> |
| Icc             | Supply Current    | Total, Outputs Fign   | V <sub>CC</sub> = Max    |                                                                    |                        |      | <b></b> | 23                                    | 38       |                | 2.3                  | 3.8               |      | 4.9          | 9.8   | m.A          |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/DM74LS, duration of short circuit should not exceed one second.

| Switching | Characteristics                                 | at V <sub>CC</sub> | = 5V, T <sub>A</sub> | = 25°C                     |         |     |                            |
|-----------|-------------------------------------------------|--------------------|----------------------|----------------------------|---------|-----|----------------------------|
| DEVICE    | CONDITIONS                                      | Propaga            |                      | )<br>ay Time,<br>el Output | Propaga |     | )<br>ay Time,<br>el Output |
|           |                                                 | MIN                | TYP                  | MAX                        | MIN     | TYP | MAX                        |
| 32        | $C_L = 15 pF$<br>$R_L = 400\Omega$              |                    | 10                   | 15                         |         | 14  | . 22                       |
| L32       | $C_L = 50 \text{ pF}$ $R_L = 4 \text{ k}\Omega$ |                    | 40                   | 80                         | -       | 50  | 100                        |
| LS32      | $C_L = 15 pF$ $R_L = 2 k\Omega$                 |                    | 14                   | 22                         |         | 14  | 22                         |

| Electrical Characteristics | over recommended operating free-air temperature range (unless otherwise noted). |
|----------------------------|---------------------------------------------------------------------------------|
|                            |                                                                                 |

| PARAMETER                               |                                         | CONDITIONS                                       |                                                      |                      | DM54/74<br>37, 40 |        | DM54H/74H<br>H40 |      | DM54LS/74LS |      | DM74S - S40, S140 |        |       |      |        |       |     |      |
|-----------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------|-------------------|--------|------------------|------|-------------|------|-------------------|--------|-------|------|--------|-------|-----|------|
|                                         |                                         |                                                  |                                                      |                      |                   |        |                  |      | LS37, LS40  |      |                   |        | UNITS |      |        |       |     |      |
|                                         |                                         |                                                  |                                                      |                      | MIN .             | TYP(1) | MAX              | MIN  | TYP(1)      | MAX  | MIN               | TYP(1) | MAX   | MIN  | TYP(1) | MAX   | ]   |      |
| V <sub>IH</sub>                         | High Level Input Voltage                |                                                  |                                                      |                      |                   | 2      |                  |      | 2           |      |                   | 2      |       |      | ż      |       |     | , A  |
| V <sub>IL</sub> Low Level Input Voltage |                                         |                                                  |                                                      |                      | DM54              |        |                  | 0.8  |             |      | 0.8               |        |       | 0.7  |        |       | N/A | .,   |
|                                         |                                         | DM74                                             |                                                      |                      |                   |        | 0.8              |      |             | 0.8  |                   |        | 8.0   |      |        | 0.8   | - V |      |
| VI                                      | V <sub>I</sub> Input Clamp Voltage      |                                                  | I <sub>I</sub> = -8 mA                               |                      |                   |        |                  |      |             | -1.5 |                   |        |       |      |        |       |     |      |
|                                         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | V <sub>CC</sub> = Min                            | I <sub>1</sub> = -12 mA                              |                      |                   |        | -1.5             |      |             |      |                   |        |       | L    |        |       | V   |      |
|                                         |                                         |                                                  | I <sub>1</sub> = -18 mA                              |                      |                   |        |                  |      |             |      | ·                 |        | -1.5  |      |        | -1.2° |     |      |
| Іон                                     | High Level Output Current               |                                                  |                                                      | · Lo                 | Others            |        |                  | -1.2 | <u> </u>    |      | -1.5              |        |       | -1.2 |        |       | -3  | mA   |
|                                         | •                                       |                                                  |                                                      |                      | S140              |        |                  |      |             |      |                   |        |       |      |        |       | -40 | ""   |
| V <sub>ОН</sub>                         | High Level Output Voltage               | V <sub>CC</sub> = Min                            | V <sub>II</sub> = Max                                | I <sub>OH</sub> = Ma | x                 | 2.4    | 3.3              |      | 2.4         | 3.4  |                   | 2.7    | 3.4   |      |        |       |     | 4    |
|                                         |                                         |                                                  | I OH = -                                             |                      | mA                | ļ      |                  |      | ļ           |      |                   |        |       |      | 2.7    | 3.4   |     | V    |
|                                         |                                         |                                                  | $V_{IL} = 0.5V$ , $R_O = 50\Omega$ to GND, S140 Only |                      |                   |        |                  |      |             |      |                   |        | 2     |      |        |       |     |      |
| loL                                     | Low Level Output Current                |                                                  |                                                      |                      | DM54              |        |                  | 48   |             |      | 60                |        |       | 12   |        |       | N/A | mA   |
|                                         | ·                                       |                                                  |                                                      | E                    | DM74              |        |                  | 48   |             |      | 60                |        |       | 24   |        |       | 60  | IIIA |
| V <sub>OL</sub>                         | V                                       | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V    | lo. = Max                                            | <u> </u>             | DM54              |        | 0.2              | 0.4  |             | 0.2  | 0.4               |        | 0.25  | 0.4  |        |       | N/A |      |
|                                         |                                         |                                                  | TOL IIII                                             |                      | DM74              |        | 0.2              | 0.4  |             | 0.2  | 0.4               | ļ      | 0.35  | 0.5  |        |       | 0.5 | \ \  |
|                                         |                                         |                                                  |                                                      | , [                  | DM74              |        |                  |      |             |      |                   |        |       | 0.4  |        |       |     | L    |
| l <sub>1</sub>                          | Input Current at Maximum Input Voltage  | Voc = Max                                        | $V_{CC} = Max                                  $     |                      | <u> </u>          |        | 1                |      |             | 11   |                   |        |       |      |        | 1     | mA  |      |
|                                         |                                         | <del> </del>                                     |                                                      |                      |                   |        |                  |      |             |      |                   |        |       | 0.1  |        |       |     |      |
| I <sub>IH</sub>                         | 1                                       | V <sub>CC</sub> = Max                            | 1                                                    |                      |                   |        | 40               |      |             | 100  |                   |        |       |      |        |       | μΑ  |      |
|                                         |                                         |                                                  |                                                      |                      | L                 |        |                  |      |             |      |                   |        | 20    |      |        | 100   | μ   |      |
| l <sub>IL</sub>                         | Low Level Input Current                 | Voc = Max                                        | V <sub>I</sub> = 0.4V                                |                      |                   |        | -1.6             |      |             | -4   |                   |        | −0.36 |      |        |       | mA  |      |
|                                         |                                         | $V_{CC} = Max                                  $ |                                                      |                      |                   |        |                  |      |             |      |                   |        |       |      |        |       | -4  |      |
| los                                     | Short Circuit Output Current            | V-a = May (2)                                    |                                                      | DM54                 | -20               |        | -70              | -40  |             | -125 | -30               |        | -130  |      |        | N/A   | mA  |      |
|                                         |                                         |                                                  | DM74                                                 |                      | -18               |        | -70              | -40  |             | -125 | -30               |        | -130  | -50  |        | -225  |     |      |
| lcc                                     | Supply Current                          | V <sub>CC</sub> = Max                            |                                                      |                      | See Table         |        |                  |      |             |      |                   |        |       |      |        |       |     |      |

#### Note:

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second for 37, LS37, 40, H40 or LS40; or 100 milliseconds for S40 and S140.

LS37, LS40 To Be Announced In 1976

# **Supply Currents**

| DEVICE |      | (mA)<br>Outputs High | I <sub>CCL</sub> (mA) Total With Outputs Low |     |  |  |  |
|--------|------|----------------------|----------------------------------------------|-----|--|--|--|
|        | TYP  | MAX                  | TYP                                          | MAX |  |  |  |
| 37     | 9    | 15.5                 | 34                                           | 54  |  |  |  |
| 40     | 4    | 8                    | 17                                           | 27  |  |  |  |
| H40    | 10.4 | 16                   | 25                                           | 40  |  |  |  |
| LS37   | 0.9  | 2                    | 6                                            | 12  |  |  |  |
| LS40   | 0.45 | 1                    | 3                                            | 6   |  |  |  |
| S40    | 10   | 18                   | 25                                           | 44  |  |  |  |
| S140   | 10   | 18                   | 25                                           | 44  |  |  |  |

# Switching Characteristics at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

| DEVICE       | CONDITIONS                                 | Propaga |     | )<br>ay Time,<br>el Output | t <sub>PHL</sub> (ns) Propagation Delay Time, High-To-Low Level Output |     |     |  |
|--------------|--------------------------------------------|---------|-----|----------------------------|------------------------------------------------------------------------|-----|-----|--|
|              |                                            | MIN     | TYP | MAX                        | MIN                                                                    | TYP | MAX |  |
| 37           | $C_{L} = 45 \text{ pF}, R_{L} = 133\Omega$ |         | 13  | 22                         |                                                                        | 8   | 15  |  |
| 40           | $C_{L} = 15  pF,  R_{L} = 133 \Omega$      |         | 13  | 22                         |                                                                        | 8   | 15  |  |
| H40          | $C_L = 25 \text{ pF}, R_L = 93\Omega$      |         | 8.5 | 12                         |                                                                        | 6.5 | 12  |  |
| LS37<br>LS40 | $C_{L} = 45 \text{ pF}, R_{L} = 667\Omega$ |         | 12  | 24                         |                                                                        | 12  | 24  |  |
| S40°         | $C_L = 50 \text{ pF}, R_L = 93\Omega$      | 2       | 4   | 6.5                        | 2                                                                      | 4   | 6.5 |  |
| S140         | $C_L$ = 150 pF, $R_L$ = 93 $\Omega$        |         | 6   | 9                          |                                                                        | 6   | 9   |  |

|                   | · · · · · · · · · · · · · · · · · · ·  |                       |                         |        | Π       | DM54/74 |                 | C          | M54H/74  | Н                                       | 1   | M54L/74                | L     | DI  | M54LS/74                               | LS           | Γ   | DM74S       |            | ·     |
|-------------------|----------------------------------------|-----------------------|-------------------------|--------|---------|---------|-----------------|------------|----------|-----------------------------------------|-----|------------------------|-------|-----|----------------------------------------|--------------|-----|-------------|------------|-------|
|                   | PARAMETER                              | CON                   | DITIONS(1)              |        |         | 51, 54  |                 |            | H51, H54 |                                         |     | L51, L54<br>L55        |       | L   | .S51, LS5<br>LS55                      | 4            |     | S51, S64    |            | UNITS |
|                   | •                                      |                       |                         |        | MIN     | TYP(1)  | MAX             | MIN        | TYP(1)   | MAX                                     | MIN | TYP(1)                 | MAX   | MIN | TYP(1)                                 | MAX          | MIN | TYP(1)      | MAX        | ĺ     |
| VIH               | High Level Input Voltage               |                       |                         |        | 2       |         |                 | 2          |          |                                         | 2   |                        |       | 2 . |                                        |              | 2   | ,           |            | ٧     |
| VIL               | Low Level Input Voltage                |                       |                         | DM54   |         |         | 0.8             |            |          | 0.8                                     |     |                        | 0.7   |     |                                        | 0.7<br>0.8   |     |             | N/A<br>0.8 | V     |
| V <sub>I</sub>    | Input Clamp Voltage                    |                       | I <sub>1</sub> = -8 mA  | L      |         |         | 0.6             |            |          | -1.5                                    |     |                        | N/A   |     |                                        | U.6          |     |             | 0.8        |       |
|                   |                                        | V <sub>CC</sub> = Min | I <sub>1</sub> = -12 m/ |        |         |         | -1.5            |            |          |                                         |     |                        | N/A   |     |                                        |              |     |             |            | v     |
|                   |                                        |                       | I <sub>1</sub> = -18 m/ | 4      |         |         |                 |            |          |                                         |     |                        | N/A   |     |                                        | -1.5         |     |             | -1.2       |       |
| Іон               | High Level Output Current              |                       |                         |        |         |         | -400            |            |          | -500                                    |     | villa i ravas i santas | -200  |     |                                        | -400         |     |             | -1000      | μΑ    |
| V <sub>OH</sub>   | High Level Output Voltage              | V <sub>CC</sub> = Min | LS54                    |        |         |         |                 |            |          |                                         |     |                        |       | 2.4 |                                        |              |     |             |            |       |
|                   | ·                                      | V <sub>IL</sub> = Max | Others                  | DM54   | 2.4     | 3.4     |                 | 2.4        | 3.4      | *************************************** | 2.4 | 3.3                    |       | 2.5 | 3.4                                    |              | N/A |             |            | v     |
|                   |                                        | I <sub>OH</sub> = Max | <u> </u>                | DM74   | 2.4     | 3.4     |                 | 2.4        | 3.4      |                                         | 2.4 | 3.2                    |       | 2.7 | 3.4                                    |              | 2.7 | 3.4         |            |       |
| lor               | Low Level Output Current               |                       |                         | DM54   | L       |         | 16              |            |          | 20                                      |     |                        | 2     |     |                                        | 4            |     |             | N/A        | mA .  |
|                   |                                        |                       | <del></del>             | DM74   |         |         | 16              |            |          | 20                                      |     |                        | 3.6   |     |                                        | 8            |     |             | 20         |       |
| · V <sub>OL</sub> | Low Level Output Voltage               | Voc = Min             | I <sub>OL</sub> = Max   | DM54   |         | 0.2     | 0.4             |            | 0.2      | 0.4                                     |     | 0.15                   | 0.3   |     | 0.25                                   | 0.4          |     |             | N/A        |       |
|                   | *                                      | V <sub>IH</sub> = 2V  | I <sub>OL</sub> = 4 mA  | DM74   | ļ       | 0.2     | 0.4             |            | 0.2      | 0.4                                     | ļ   | 0.2                    | 0.4   |     | 0.35                                   | 0.5          |     |             | 0.5        | V     |
|                   |                                        |                       | <del></del>             | DIVI74 |         |         |                 |            |          |                                         |     |                        |       |     |                                        | 0.4          |     |             |            |       |
| 11                | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max | $V_1 = 5.5V$ $V_1 = 7V$ |        |         |         | 11              |            |          | 1                                       |     |                        | 0.1   |     |                                        | 0.1          |     |             | 1          | mA    |
| l <sub>IH</sub>   | High Level Input Current               |                       | <del> </del>            |        | <b></b> |         | 40              |            |          | 50                                      |     |                        | 10    |     |                                        |              |     |             |            |       |
| '111              | riigii Level iliput Cuireiit           | V <sub>CC</sub> = Max | $V_1 = 2.7V$            |        |         |         |                 |            |          |                                         |     |                        | 10    |     | ······································ | 20           |     | <del></del> | 50         | μΑ    |
| liL               | Low Level Input Current                |                       | V <sub>1</sub> = 0.3V   |        |         |         |                 |            |          |                                         |     |                        | -0.18 |     |                                        |              |     |             |            |       |
|                   |                                        | V <sub>CC</sub> = Max |                         |        |         |         | -1.6            |            |          | -2                                      |     |                        |       |     |                                        | <b>−0.36</b> |     |             |            | mA    |
|                   |                                        |                       | V <sub>1</sub> = 0.5V   |        |         |         |                 |            |          |                                         |     |                        |       |     |                                        |              |     | ··          | -2         |       |
| los               | Short Circuit Output                   | V <sub>CC</sub> = Max | (2)                     | DM54   | -20     |         | <del>-55</del>  | -40        |          | -100                                    | -3  |                        | -15   | -30 |                                        | -130         |     |             | N/A        | mA    |
|                   | Current                                |                       |                         | DM74   | -18     |         | <del>-5</del> 5 | <b>−40</b> |          | -100                                    | -3  |                        | 15    | -30 |                                        | -130         | -40 |             | -100       | ·<br> |
| Icc               | Supply Current                         | V <sub>CC</sub> = Max | ,                       |        |         |         |                 |            |          |                                         |     | See Table              |       |     |                                        |              |     |             |            |       |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration of the short circuit should not exceed one second.
- (3) National Semiconductor, temporarily reserves the right to ship DM54/DM74LS51, LS54, LS55 devices which have a minimum IOS = 5.0 mA.

74S51 To Be Announced in 1976

| DEVICE          | CONDITIONS                                     | Propaga | t <sub>PLH</sub> (ns)<br>tion Dela<br>High Lev |     | Propaga | t <sub>PHL</sub> (ns)<br>tion Dela<br>Low Leve |     |
|-----------------|------------------------------------------------|---------|------------------------------------------------|-----|---------|------------------------------------------------|-----|
|                 |                                                | MIN     | TYP                                            | MAX | MIN     | TYP                                            | MAX |
| 51, 54          | $C_L$ = 15 pF, $R_L$ = 400 $\Omega$            |         | 13                                             | 22  |         | 8                                              | 15  |
| H51             | $C_L$ = 25 pF, $R_L$ = 280 $\Omega$            |         | 6.8                                            | 11  |         | 6.2                                            | 11  |
| H54             | $C_L$ = 25 pF, $R_L$ = 280 $\Omega$            |         | 7                                              | 11  |         | 6.2                                            | 11  |
| L51, L54<br>L55 | $C_L = 50 \text{ pF, R}_L = 4 \text{ k}\Omega$ |         | 50                                             | 90  |         | 35                                             | 60  |
| LS51, LS55      | $C_L = 15 pF, R_L = 2 k\Omega$                 |         | 12                                             | 20  |         | 12.5                                           | 20  |
| LS54            | $C_L = 15 pF, R_L = 2 k\Omega$                 |         | 16                                             | 20  |         | 12.5                                           | 20  |
| S51, S64        | $C_L$ = 15 pF, $R_L$ = 280 $\Omega$            | 2       | 3.5                                            | 5.5 | 2       | 3.5                                            | 5.5 |
|                 | $C_L$ = 50 pF, $R_L$ = 280 $\Omega$            |         | 5                                              | 8   |         | 5.5                                            | 8   |
|                 | <u> </u>                                       | L       |                                                |     | L       |                                                |     |

|                      | ,                                            | DM                                                                                                                 | 154  |        |      | DM                                                                                                                | 74    |        |      |            |
|----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|--------|------|-------------------------------------------------------------------------------------------------------------------|-------|--------|------|------------|
|                      | PARAMETER                                    | 6                                                                                                                  | 0    |        |      |                                                                                                                   | 60    |        |      | UNITS      |
|                      |                                              | CONDITIONS                                                                                                         | MIN  | TYP(1) | MAX  | CONDITIONS                                                                                                        | MIN   | TYP(1) | MAX  |            |
| V <sub>IH</sub>      | High Level Input Voltage                     |                                                                                                                    | 2    |        |      |                                                                                                                   | 2     |        |      | V          |
| V <sub>IL</sub>      | Low Level Input Voltage                      |                                                                                                                    |      |        | 8.0  |                                                                                                                   |       |        | 8.0  | V          |
| V <sub>X</sub> X(ON) | On-State Voltage Between<br>Expander Outputs | $V_{CC} = 4.5V, V_{IH} = 2V$ $V_{X} = 1.1V, I_{X} = 3.5 \text{ mA}$ $T_{A} = -55^{\circ}\text{C}$                  |      |        | 0.4  | $V_{CC} = 4.75V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 3.5 \text{ mA}$ $T_{A} = 0^{\circ}\text{C}$                    |       |        | 0.4  | , <b>v</b> |
| I <sub>X</sub> (ON)  | On-State Expander Current                    | $V_{CC} = 4.5V, V_{IH} = 2V$ $V_{X} = 1.1V, I_{X} = 0$ $T_{A} = -55^{\circ}C$                                      | -0.3 |        |      | $V_{CC} = 4.75V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 0$ $T_{A} = 0^{\circ}C$                                        | -0.43 |        |      | mA         |
| IX(OFF)              | Off-State Expander Current                   | $V_{CC} = 4.5V, V_{IL} = 0.8V$<br>$V_{X}^{-} = 4.5V, R_{X} = 1.2 \text{ k}\Omega$<br>$T_{A} = -55^{\circ}\text{C}$ |      | -      | 150  | $V_{CC} = 4.75V, V_{IL} = 0.8V$<br>$V_{X}^{-} = 4.5V, R_{X} = 1.2 \text{ k}\Omega$<br>$T_{A} = 0^{\circ}\text{C}$ |       |        | 270  | μΑ         |
| 3 4                  | Input Current at Maximum Input Voltage       | $V_{CC} = 5.5V, V_1 = 5.5V$                                                                                        |      |        | 1    | $V_{CC} = 5.25V, V_1 = 5.5V$                                                                                      |       |        | 1    | mA         |
| I <sub>IH</sub>      | High Level Input Current                     | $V_{CC} = 5.5V, V_1 = 2.4V$                                                                                        |      |        | 40   | V <sub>CC</sub> = 5.25V, V <sub>1</sub> = 2.4V                                                                    |       |        | 40   | μΑ         |
| liL                  | Low Level Input Current                      | $V_{CC} = 5.5V, V_1 = 0.4V$                                                                                        |      |        | -1.6 | V <sub>CC</sub> = 5.25V, V <sub>1</sub> = 0.4V                                                                    |       |        | -1.6 | mA         |
| ICC(ON)              | Supply Current, Expander On                  | $V_{CC} = 5.5V, V_1 = 4.5V$<br>$V_X = 0.85V, I_X^- = 0$                                                            |      | 1.2    | 2.5  | $V_{CC} = 5.25V, V_1 = 4.5V$<br>$V_X = 0.85V, I_{\overline{X}} = 0$                                               |       | 1.2    | 2.5  | mA         |
| I <sub>CC(OFF)</sub> | Supply Current, Expander Off                 | $V_{CC} = 5.5V, V_{I} = 0$<br>$V_{X} = 0.85V, I_{X} = 0$                                                           |      | 2      | 4    | $V_{CC} = 5.25V, V_{I} = 0$<br>$V_{X} = 0.85V, I_{X} = 0$                                                         |       | 2      | . 4  | mA         |

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

|                      |                                |              | DMS                                                                                                      | 54H   |            |          | DM74                                                                                            | 4H   |            |          |                 |
|----------------------|--------------------------------|--------------|----------------------------------------------------------------------------------------------------------|-------|------------|----------|-------------------------------------------------------------------------------------------------|------|------------|----------|-----------------|
|                      | PARAMETER                      |              | Н60,                                                                                                     | H62   |            |          | H60,                                                                                            | H62  |            |          | UNITS           |
|                      |                                |              | CONDITIONS                                                                                               | MIN T | YP(1)      | MAX      | CONDITIONS                                                                                      | MIN  | TYP(1)     | MAX      |                 |
| V <sub>IH</sub>      | High Level Input Voltage       |              |                                                                                                          | 2     |            |          |                                                                                                 | 2    |            |          | V               |
| V <sub>IL</sub>      | Low Level Input Voltage        |              |                                                                                                          |       |            | 0.8      |                                                                                                 |      |            | 0.8      | V               |
| V <sub>XX</sub> (ON) | On-State Voltage Between Expar | nder Outputs | $V_{CC} = 4.5V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 5.85 \text{ mA}$ $T_{A} = -55^{\circ}\text{C}$         |       |            | 0.4      | $V_{CC} = 4.75V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 6.3 \text{ mA}$ $T_{A} = 0^{\circ}\text{C}$  |      |            | 0.4      | V               |
| -                    |                                |              | $V_{CC} = 5.5V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 7.85 \text{ mA}$ $T_{A} = 125^{\circ}\text{C}$         |       |            | 0.4      | $V_{CC} = 5.25V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 7.4 \text{ mA}$ $T_{A} = 70^{\circ}\text{C}$ |      |            | 0.4      |                 |
| I <sub>X(ON)</sub>   | On-State Expander Current      | ,            | $V_{CC} = 4.5V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 0$ $T_{A} = -55^{\circ}C$                              | -470  |            |          | $V_{CC} = 4.75V, V_{IH} = 2V$ $V_{X} = 1V, I_{X} = 0$ $T_{A} = 0^{\circ}C$                      | -600 |            |          | μΑ              |
| I≅(OĘF)              | Off-State Expander Current     |              | $V_{CC} = 4.5V, V_{IL} = 0.8V$<br>$V_{\overline{X}} = 4.5V, R_{X} = 575\Omega$<br>$T_{A} = -55^{\circ}C$ |       |            | 320      | $V_{CC} = 4.75V, V_{IL} = 0.8V$ $V_{X}^{-} = 4.5V, R_{X} = 575\Omega$ $T_{A} = 0^{\circ}C$      |      |            | 570      | μΑ              |
| I,                   | Input Current at Maximum Inpu  | ıt Voltage   | $V_{CC} = 5.5V, V_1 = 5.5V$                                                                              |       |            | 1        | V <sub>CC</sub> = 5.25V, V <sub>1</sub> = 5.5V                                                  |      |            | 1        | mA              |
| I <sub>IH</sub>      | High Level Input Current       |              | $V_{CC} = 5.5V, V_1 = 2.4V$                                                                              |       | ,          | 50       | $V_{CC} = 5.25V, V_1 = 2.4V$                                                                    |      |            | 50       | μΑ              |
| IIL                  | Low Level Input Current        |              | $V_{CC} = 5.5V, V_1 = 0.4V$                                                                              |       |            | -2       | V <sub>CC</sub> = 5.25V, V <sub>I</sub> = 0.4V                                                  |      |            | -2       | mA              |
| I <sub>CC(ON)</sub>  | Supply Current, Expander On    | H60<br>H62   | $V_{CC} = 5.5V, V_1 = 4.5V$<br>$V_X = 0.85V, I_X^- = 0$                                                  |       | 1.9<br>3.8 | 3.5<br>7 | $V_{CC} = 5.25V, V_1 = 4.5V$<br>$V_{X} = 0.85V, I_{X} = 0$                                      |      | 1.9<br>3.8 | 3.5<br>7 | mA <sub>.</sub> |
| I <sub>CC(OFF)</sub> | Supply Current, Expander Off   | H60<br>H62   | $V_{CC} = 5.5V, V_1 = 0$<br>$V_X = 0.85V, I_X^- = 0$                                                     |       | 3<br>6     | 4.5<br>9 | $V_{CC} = 5.25V, V_1 = 0$<br>$V_{X} = 0.85, I_{X} = 0$                                          |      | 3          | 4.5<br>9 | mA              |
| CX                   | Expander Output Capacitance    | H60<br>H62   | V <sub>CC</sub> , Inputs, and X<br>Open; f = 1 MHz                                                       |       | 5.4<br>6.0 |          | V <sub>CC</sub> , Inputs, and X Open; f = 1 MHz                                                 |      | 5.4<br>6.0 |          | pF              |

## Notes

(1) All typical values are at  $V_{CC} = 5V$  (except  $C_X^-$ ),  $T_A = 25^{\circ}C$ .

|                      | •                                      | DM54H/74H                                                                                         |     |        |     |       |
|----------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|-----|--------|-----|-------|
|                      | PARAMETER                              | H61                                                                                               |     |        |     | UNITS |
|                      |                                        | CONDITIONS                                                                                        | MIN | TYP(1) | MAX |       |
| V <sub>IH</sub>      | High Level Input Voltage               |                                                                                                   | 2   | ,      |     | · v   |
| V <sub>IL</sub>      | Low Level Input Voltage                |                                                                                                   |     | •      | 8.0 | · v   |
| V <sub>X(ON)</sub>   | On-State Expander Output Voltage       | $V_{CC}$ = Min, $V_{IH}$ = 2V, $I_{X}$ = 4.5 mA for DM54H61<br>5.35 mA for DM74H61, $T_{A}$ = Min |     |        | 1 . | · V   |
| I <sub>X(OFF)</sub>  | Off-State Expander Current             | V <sub>CC</sub> = Min, V <sub>IL</sub> = 0.8V, V <sub>X</sub> = 2.2V, T <sub>A</sub> = Max        |     |        | 50  | μΑ    |
| 11                   | Input Current at Maximum Input Voltage | V <sub>CC</sub> = 5.5V, V <sub>I</sub> = 5.5V                                                     |     |        | 1   | mA    |
| ել                   | High Level Input Current               | V <sub>CC</sub> = 5.5V, V <sub>I</sub> = 2.4V                                                     |     |        | 50  | μΑ    |
| I <sub>IL</sub>      | Low Level Input Current                | V <sub>CC</sub> = 5.5V, V <sub>1</sub> = 0.4V                                                     |     |        | -2  | mA    |
| I <sub>CC(ON)</sub>  | Supply Current, Expander On            | V <sub>CC</sub> = 5.5V, V <sub>1</sub> = 4.5V                                                     |     | 11     | 16  | mA    |
| I <sub>CC(OFF)</sub> | Supply Current, Expander Off           | V <sub>CC</sub> = 5.5V, V <sub>I</sub> = 0                                                        |     | 5      | 7   | mA    |
| c <sub>x</sub>       | Expander Output Capacitance            | V <sub>CC</sub> and Inputs Open, f = 1 MHz                                                        |     | 5.4    |     | pF    |

- (1) All typical values are at  $V_{CC}$  = 5V (except  $C_X$ ),  $T_A$  = 25°C. (2) The H52 is designed for use with up to six H61 expanders.

|                 |                                        |                                                                         |     | DM74S       |       |       |
|-----------------|----------------------------------------|-------------------------------------------------------------------------|-----|-------------|-------|-------|
|                 | PARAMETER                              | CONDITIONS                                                              |     | <b>S</b> 65 |       | UNITS |
|                 |                                        |                                                                         | MIN | TYP(1)      | MAX   |       |
| V <sub>IH</sub> | High Level Input Voltage               | ·                                                                       | 2   |             |       | V     |
| V <sub>IL</sub> | Low Level Input Voltage                |                                                                         |     |             | 0.8   | V     |
| V <sub>I</sub>  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>I</sub> = -18 mA                          |     |             | -1.2  | ٧     |
| Іон             | High Level Output Current              | V <sub>CC</sub> = Min, V <sub>IL</sub> = 0.8V<br>V <sub>OH</sub> = 5.5V |     |             | 250   | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              |                                                                         |     |             | 5.5 · | ٧     |
| l <sub>OL</sub> | Low Level Output Current               | ·                                                                       |     |             | 20    | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V,I <sub>OL</sub> = 20 mA     |     |             | 0.5   | V     |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                            |     |             | 1     | mA    |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.7V                            |     |             | 50    | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.5V                            |     |             | -2    | mA    |
| Іссн            | Supply Current, Output High            | V <sub>CC</sub> = Max                                                   |     | 6           | 11    | mA    |
| ICCL            | Supply Current, Output Low             | V <sub>CC</sub> = Max                                                   |     | 8.5         | 16    | mA    |

### Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  |                                                  |                                            |     | DM74S |     |       |  |  |
|------------------|--------------------------------------------------|--------------------------------------------|-----|-------|-----|-------|--|--|
| -                | PARAMETER                                        | CONDITIONS                                 |     | \$65  |     | UNITS |  |  |
|                  |                                                  |                                            | MIN | TYP   | MAX | 1     |  |  |
| t <sub>PLH</sub> | Propagation Delay Time, Low-To-High Level Output | $C_{L} = 15 \text{ pF}, R_{L} = 280\Omega$ | 2   | 5     | 7.5 | ns    |  |  |
|                  |                                                  | $C_L = 50 \text{ pF}, R_L = 280\Omega$     |     | 8     | 12  | ns    |  |  |
| t <sub>PHL</sub> | Propagation Delay Time, High-To-Low Level Output | $C_L = 15 \text{ pF}, R_L = 280\Omega$     | 2   | 5.5   | 8.5 | ns    |  |  |
|                  |                                                  | $C_L = 50 \text{ pF}, R_L = 280\Omega$     |     | 6.5   | 10  | ns    |  |  |

DM74S65 Open Collector AND-OR-Invert Gates

|                 |                           |                            |                                                                                   |          |     |        |                   |     |             | DM54 | /74 |        |                 |     |        |       |        |
|-----------------|---------------------------|----------------------------|-----------------------------------------------------------------------------------|----------|-----|--------|-------------------|-----|-------------|------|-----|--------|-----------------|-----|--------|-------|--------|
|                 | PARAMETER                 |                            | CONDITI                                                                           | ONS      |     | 70     |                   | 72  | , 73, 76, 1 | 107  |     | 74     |                 |     | 109    |       | UNITS  |
|                 |                           | •                          |                                                                                   |          | MIN | TYP(1) | MAX               | MIN | TYP(1)      | MAX  | MIN | TYP(1) | MAX             | MIN | TYP(1) | MAX   | ]      |
| V <sub>IH</sub> | High Level Input Voltage  |                            |                                                                                   |          | 2   |        |                   | 2   |             |      | . 2 |        |                 | 2   |        |       | V      |
| VIL             | Low Level Input Voltage   |                            |                                                                                   |          |     |        | 8.0               |     |             | 0.8  |     |        | 8.0             |     |        | 0.8   | ٧      |
| Vi              | Input Clamp Voltage       |                            | V <sub>CC</sub> = Min, I <sub>1</sub> =                                           | = -12 mA |     |        | -1.5              |     |             | -1.5 |     |        | -1.5            |     |        | -1.5  | V      |
| Іон             | High Level Output Curren  | t                          |                                                                                   |          |     |        | -400              |     |             | -400 |     |        | -400            |     |        | -1200 | μΑ     |
| V <sub>OH</sub> | High Level Output Voltage | e ·                        | $V_{CC} = Min, V_{IH}$ $V_{IL} = 0.8V, I_{OI}$                                    |          | 2.4 | 3.4    |                   | 2.4 | 3.4         |      | 2.4 | 3.4    |                 | 2.4 |        |       | V      |
| loL             | Low Level Output Current  | t                          |                                                                                   |          |     |        | 16                |     |             | 16   |     |        | 16              |     |        | 16    | mA     |
| V <sub>OL</sub> | Low Level Output Voltage  |                            | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OI</sub> |          |     | 0.2    | 0.4               |     | 0.2         | 0.4  |     | 0.2    | 0.4             |     | 0.2    | 0.4   | V      |
| l <sub>l</sub>  | Input Current at Maximun  | n Input Voltage            | V <sub>CC</sub> = Max, V <sub>1</sub>                                             | = 5.5V   |     |        | 1                 |     |             | 1    |     |        | 1               |     |        | 1     | mA     |
| I <sub>IH</sub> | High Level Input Current  | D, J, K, or $\overline{K}$ |                                                                                   |          |     |        | 40                |     |             | 40   |     |        | 40              |     |        | 40    |        |
|                 | ,                         | Clear                      | V <sub>CC</sub> = Max, V <sub>1</sub>                                             | - 2 41/  |     |        | 80                |     |             | 80   |     |        | 120             |     |        | 160   | μΑ     |
|                 |                           | Preset                     | VCC - Wax, VI                                                                     | - 2.4 V  |     |        | 80                |     |             | 80   |     |        | 40              | -   |        | - 80  | ] #    |
|                 |                           | Clock                      |                                                                                   |          |     |        | 40                |     |             | 80   |     |        | 80              |     |        | 80    |        |
| IIL             | Low Level Input Current   | D, J, K, or K              |                                                                                   |          |     |        | -1.6              |     |             | -1.6 |     | -      | -1.6            |     |        | -1.6  |        |
|                 |                           | Clear                      | M V                                                                               | - 0.41/  |     |        | -3.2              |     |             | -3.2 |     |        | -3.2            |     |        | -4.8  | l      |
|                 | ,                         | Preset                     | $V_{CC} = Max, V_1$                                                               | - U.4 V  |     |        | -3.2              |     |             | -3.2 |     |        | -1.6            |     |        | -3.2  | mA     |
|                 |                           | Clock                      |                                                                                   |          |     |        | -1.6              |     |             | -3.2 |     |        | -3.2            |     |        | -3.2  | 1      |
| los             | Short Circuit Output      |                            | V <sub>CC</sub> = Max(2)                                                          | DM54     | -20 |        | ´ <del>-</del> 57 | 20  |             | -55  | -20 |        | -55             | -30 | -55    | -85   | mA     |
| -               | Current                   |                            | VCC - IVIdX(2)                                                                    | DM74     | -18 | -      | 57                | -18 |             | -55  | -18 |        | <del>-</del> 55 | -30 | -55    | -85   | _ '''A |
| Icc             | Supply Current (Average p | er Flip-Flop)              | $V_{CC} = Max(3)$                                                                 |          |     | 13     | 26                |     | 9           | 17   |     | 8.5    | 15              |     | 10     | 15    | mA     |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is at 4.5V for the 70, and is grounded for all the others.

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    | •                            |                             |                 |                              |                                        |     |     |     |     |         | DM54 | /74 |     |     |     |     |     |       |
|--------------------|------------------------------|-----------------------------|-----------------|------------------------------|----------------------------------------|-----|-----|-----|-----|---------|------|-----|-----|-----|-----|-----|-----|-------|
| ,                  | PARAMI                       | ETER                        | FROM<br>(INPUT) | TO<br>(OUTPUT)               | CONDITIONS                             |     | 70  |     | 72, | 73, 76, | 107  |     | 74  |     |     | 109 |     | UNITS |
|                    |                              |                             |                 | (00.1.01)                    |                                        | MIN | TYP | MAX | MIN | TYP     | MAX  | MIN | TYP | MAX | MIN | TYP | MAX |       |
| f <sub>MAX</sub>   | Maximum Cl                   | ock Frequency               | ,               |                              |                                        | 20  | 35  |     | 15  | 20      |      | 20  | 25  |     | 30  | 40  |     | MHz   |
| tpLH               | Propagation<br>Low-to-High   | Delay Time,<br>Level Output | Preset          | Q                            |                                        |     |     | 50  |     | 16      | 25   |     | ,   | 25  |     | 9   | 14  | ns    |
| t <sub>PHL</sub>   | Propagation<br>High-to-Low   | Delay Time,<br>Level Output | (as applicable) | ā                            |                                        |     |     | 50  |     | 25      | 40   |     |     | 40  |     | 18  | 29  | 715   |
| t <sub>PLH</sub>   | Propagation<br>Low-to-High   | Delay Time,<br>Level Output | Clear           | ā                            | $C_L = 15 \text{ pF}, R_L = 400\Omega$ |     |     | 50  |     | 16      | 25   |     |     | 25  |     | 9   | 14  | ns    |
| tpHL               | Propagation<br>High-to-Low   | Delay Time,<br>Level Output | (as applicable) | Q                            |                                        |     |     | 50  |     | 25      | 40   |     |     | 40  |     | 17  | 25  | 115   |
| t <sub>PLH</sub>   | Propagation<br>Low-to-High   | Delay Time,<br>Level Output | Clock           | Q or $\overline{\mathbb{Q}}$ |                                        |     | 27  | 50  |     | 16      | 25   |     | 14  | 25  |     | 12  | 18  | ns    |
| tpHL               | Propagation  <br>High-to-Low | Delay Time,<br>Level Output | CIOCK           | 4014                         |                                        |     | 18  | 50  |     | 25      | 40   |     | 20  | 40  |     | 19  | 28  | 113   |
| tw                 | Pulse Width                  | Clock High                  | •               | ,                            |                                        | 20  |     |     | 20  |         |      | 30  |     |     | 20  |     |     |       |
|                    |                              | Clock Low                   |                 |                              |                                        | 30  |     |     | 47  |         |      | 37  |     |     | 20  |     |     | ns    |
|                    | ·                            | Preset or Clear Low         |                 |                              |                                        | 25  |     |     | 25  |         |      | 30  |     |     | 20  |     |     |       |
| <sup>t</sup> SETUP | Input Setup                  | Time(4)                     |                 |                              |                                        | 20↑ |     |     | 01  |         |      | 20↑ |     |     | 15↑ |     |     | ns    |
| tHOLD              | Input Hold T                 | ime(4)                      |                 |                              |                                        | 5↑  |     |     | 0∤  |         |      | 5↑  |     |     | 10↑ |     |     | ns    |

### Notes

(4) ↑ The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge, ↓ for the falling edge.

|                 |                            |                                         |                                                                                   |         |     |        |      |     |                                         | DM54 | H/74H |        |               | ,   |        |      |       |
|-----------------|----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|---------|-----|--------|------|-----|-----------------------------------------|------|-------|--------|---------------|-----|--------|------|-------|
|                 | PARAMETER                  |                                         | CONDITI                                                                           | ONS     |     | H71    |      | H7  | 2, H73, F                               | 176  |       | H74    |               |     | H78    |      | UNITS |
|                 |                            |                                         |                                                                                   |         | MIN | TYP(1) | MAX  | MIN | TYP(1)                                  | MAX  | MIN   | TYP(1) | MAX           | MIN | TYP(1) | MAX  |       |
| VIH             | High Level Input Voltage   |                                         |                                                                                   |         | 2   |        |      | 2   |                                         |      | 2     |        |               | 2   |        |      | V     |
| VIL             | Low Level Input Voltage    |                                         |                                                                                   |         |     |        | 0.8  |     | *************************************** | 0.8  |       |        | 0.8           | `   |        | 8.0  | V     |
| VI              | Input Clamp Voltage        | *************************************** | V <sub>CC</sub> = Min, I <sub>1</sub> =                                           | -8 mA   |     |        | -1.5 |     |                                         | -1.5 |       |        | -1.5          |     |        | -1.5 | V     |
| Іон             | High Level Output Current  | <u> </u>                                |                                                                                   |         |     |        | -500 |     |                                         | -500 |       |        | -1000         |     |        | -500 | μА    |
| V <sub>OH</sub> | High Level Output Voltage  | ?                                       | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> |         | 2.4 | 3.4    |      | 2.4 | 3.4                                     |      | 2.4   | 3.4    |               | 2.4 | 3.4    |      | V     |
| loL             | Low Level Output Current   | :                                       |                                                                                   |         |     |        | 20   |     |                                         | 20   |       | -      | 20            |     |        | 20   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage   | ,                                       | V <sub>CC</sub> = Min, V <sub>I</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OI</sub>  | -       |     | 0.2    | 0.4  |     | 0.2                                     | 0.4  |       | 0.2    | 0.4           |     | 0.2    | 0.4  | v     |
| l <sub>1</sub>  | Input Current at Maximun   | Input Voltage                           | V <sub>CC</sub> = Max, V <sub>I</sub>                                             | = 5.5V  |     |        | 1    |     |                                         | 1    |       |        | 1             |     |        | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current   | D, J, or K                              |                                                                                   |         |     |        | - 50 |     |                                         | 50   |       |        | 50            |     |        | 50   |       |
|                 |                            | Clear                                   | V <sub>CC</sub> = Max, V <sub>L</sub>                                             | - 2 41/ |     |        | N/A  |     |                                         | 100  |       | ,      | 150           |     |        | 200  | μA    |
|                 | ¥                          | Preset                                  | VCC - Wax, VI                                                                     | ~ 2.4 V |     |        | 150  |     |                                         | 100  |       |        | 100           |     |        | 100  | μΑ.   |
|                 | ·                          | Clock                                   |                                                                                   |         |     |        | 100  |     |                                         | 50   |       |        | 100           |     |        | 100  |       |
| IIL             | Low Level Input Current    | D, J, or K                              |                                                                                   |         |     |        | -2   |     |                                         | -2   |       |        | -2            |     |        | -2   |       |
|                 |                            | Clear                                   | $V_{CC} = Max, V_1$                                                               | - 0.41/ |     |        | N/A  |     |                                         | -4   |       |        | . <b>–4</b> , |     | -      | -8   |       |
|                 |                            | Preset                                  | VCC - Wax, VI                                                                     | - 0.4 V |     |        | -6   |     |                                         | -4   |       |        | -2            |     |        | -4   | mA    |
|                 |                            | Clock                                   |                                                                                   |         |     |        | -4   |     |                                         | -2   | -     |        | -4            |     |        | -4   |       |
| los             | Short Circuit Output Curre | ent                                     | V <sub>CC</sub> = Max(2)                                                          |         | -40 |        | -100 | -40 |                                         | -100 | 40    |        | -100          | -40 |        | -100 | mA    |
| Icc             | Supply Current (Average p  | er Flip-Flop)                           | V = M = (0)                                                                       | DM54    |     | 19     | 30   |     | 16                                      | 25   |       | 15     | 21            |     | 16     | 25   |       |
|                 |                            |                                         | $V_{CC} = Max(3)$                                                                 | DM74    |     | 19     | 30   |     | 16                                      | 25   |       | 15     | 25            |     | 16     | 25   | mA    |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
- (3) With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

| Ž                                  |  |
|------------------------------------|--|
| $\approx$                          |  |
| Ž.                                 |  |
| ₹                                  |  |
| Ö                                  |  |
| ž                                  |  |
| 3                                  |  |
| 7                                  |  |
| Ŧ                                  |  |
| ⋾                                  |  |
| تے                                 |  |
| Ì                                  |  |
| J                                  |  |
| 1                                  |  |
| Ť                                  |  |
| J                                  |  |
| ω                                  |  |
| DM54/DM74H71,H72,H73,H74,H76,H78 F |  |
| t                                  |  |
| 4                                  |  |
| <u>.</u>                           |  |
| $\pm$                              |  |
| 6                                  |  |
| Ξ                                  |  |
| 工                                  |  |
| 8                                  |  |
| •                                  |  |
| П                                  |  |
| Flip-Flops                         |  |
| Y                                  |  |
| П                                  |  |
| ♂                                  |  |
| Ö                                  |  |
| S                                  |  |

|                  |                                     |                     |                        |                |                                     |     |                      | DM54i | 1/74H |     |     |       |
|------------------|-------------------------------------|---------------------|------------------------|----------------|-------------------------------------|-----|----------------------|-------|-------|-----|-----|-------|
|                  | PARAMET                             | ER , ' '            | FROM<br>(INPUT)        | TO<br>(OUTPUT) | CONDITIONS                          | 1   | H71, H7<br>3, H76, I |       |       | H74 |     | UNITS |
|                  |                                     |                     |                        |                |                                     | MIN | TYP                  | MAX   | MIN   | TYP | MAX |       |
| f <sub>MAX</sub> | Maximum Clock                       | Frequency.          |                        |                |                                     | 25  | 30                   |       | 35    | 43  |     | MHz   |
| <sup>t</sup> PLH | Propagation Dela<br>Low-to-High Lev |                     | B                      | Q              |                                     |     | 6                    | 13    |       |     | 20  |       |
| tPHL             | Propagation Dela<br>High-to-Low Lev |                     | Preset (as applicable) | , ā            |                                     |     | 12                   | 24    |       |     | 30  | ns    |
| t <sub>PLH</sub> | Propagation Dela<br>Low-to-High Lev |                     |                        | ā              | $C_L$ = 25 pF, $R_L$ = 280 $\Omega$ |     | 6                    | 13    |       |     | 20  |       |
| t <sub>PHL</sub> | Propagation Dela<br>High-to-Low Lev |                     | Clear (as applicable)  | Q              |                                     |     | 12                   | 24    |       |     | 30  | ns    |
| t <sub>PLH</sub> | Propagation Dela<br>Low-to-High Lev |                     | Clark                  | 0              |                                     |     | 14                   | 21    |       | 8.5 | 15  |       |
| t <sub>PHL</sub> | Propagation Dela<br>High-to-Low Lev |                     | Clock                  | Q or Q         | •                                   |     | 22                   | 27    |       | 13  | 20  | ns    |
| t <sub>w</sub>   | Pulse Width                         | Clock High          |                        |                |                                     | 12  |                      |       | 15    |     |     |       |
|                  |                                     | Clock Low           |                        |                |                                     | 28  |                      |       | 13.5  |     |     | ns    |
|                  |                                     | Clear or Preset Low |                        |                |                                     | 16  |                      |       | 25    |     |     |       |
| tSETUP           | Setup Time(4)                       | High Level Data     |                        |                |                                     | 01  |                      |       | 10↑   |     |     |       |
|                  |                                     | Low Level Data      |                        |                |                                     | 01  |                      |       | 15↑   |     |     | ns    |
| tHOLD            | Hold Time(4)                        |                     |                        |                |                                     | 01  |                      |       | 5↑    |     |     | ns    |

(4) \(\psi\) The arrow indicates the edge of the clock pulse used for reference; \(\phi\) for the rising edge, \(\psi\) for the falling edge.

|                |                            |                  |                                              |                                                    |              |             |            | ,            |        | DM54  | L/74L |        |          |          |          |          |              |
|----------------|----------------------------|------------------|----------------------------------------------|----------------------------------------------------|--------------|-------------|------------|--------------|--------|-------|-------|--------|----------|----------|----------|----------|--------------|
|                | PARAMETER                  |                  | CONDITIONS                                   | ;                                                  |              | L71, L7     | '2         |              | L73    |       |       | L74    |          |          | L78      |          | UNITS        |
|                |                            |                  |                                              |                                                    | MIN          | TYP(1)      | MAX        | MIN          | TYP(1) | MAX   | MIN   | TYP(1) | MAX      | MIN      | TYP(1)   | MAX      | <u></u>      |
| VIH            | High Level Input Voltage   |                  |                                              |                                                    | 2            |             |            | 2            |        |       | 2     |        |          | 2        |          |          | V            |
| VIL            | Low Level Input Voltage    | Clock Input      |                                              |                                                    |              |             | 0.6        |              |        | 0.6   |       |        | 0.7      |          |          | 0.6      | V            |
|                | `                          | All Other Inputs | ·                                            |                                                    |              |             | 0.7        |              |        | 0.7   |       |        | 0.7      |          |          | 0.7      | L            |
| Іон            | High Level Output Current  |                  |                                              |                                                    |              |             | -200       |              |        | -200  |       |        | -200     |          |          | -200     | μΑ           |
| VoH            | High Level Output Voltage  |                  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V  | DM54L                                              | 2.4          | 3.3         |            | 2.4          | 3.3    |       | 2.4   | 3.3    |          | 2.4      | 3.3      |          | V            |
|                |                            |                  | V <sub>IL</sub> = Max, I <sub>OH</sub> = Max | DM74L                                              | 2.4          | 3.2         |            | 2.4          | 3.2    |       | 2.4   | 3.2    |          | 2.4      | 3.2      |          |              |
| loL            | Low Level Output Curren    | t                |                                              | DM54                                               |              |             | 2          |              |        | 2     |       |        | 2        |          |          | 2        | mA           |
|                |                            |                  |                                              | DM74                                               | L            |             | 3.6        |              |        | 3.6   |       |        | 3.6      |          |          | 3.6      | 111/2        |
| VOL            | Low Level Output Voltage   |                  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V  | DM54L                                              |              | 0.15        | 0.3        |              | 0.15   | 0.3   | `     | 0.15   | 0.3      |          | 0.15     | 0.3      | V            |
|                | ,                          |                  | $V_{IL} = Max, I_{OL} = Max$                 | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max DM74L |              |             | 0.4        |              | 0.2    | 0.4   |       | 0.2    | 0.4      |          | 0.2      | 0.4      |              |
| l <sub>1</sub> | Input Current at           | R, S, J, K, or D | -                                            |                                                    |              |             | 100        |              |        | 100   |       |        | 100      |          |          | 100      |              |
|                | Maximum Input Voltage      | Clear            | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V |                                                    |              |             | 200        |              |        | 200   |       |        | 300      |          |          | 400      | μΑ           |
|                |                            | Preset           |                                              |                                                    | ļ            |             | 200        |              |        | 200   |       |        | 200      |          |          | 200      | 1            |
| ·              |                            | Clock            |                                              | ,                                                  |              |             | 200        |              |        | 200   |       |        | 200      |          |          | 400      | ļ            |
| Чн             | High Level Input Current   | R, S, J, K, or D |                                              |                                                    |              |             | 10         |              |        | 10    |       |        | 10       |          |          | 10       | 1            |
|                |                            | Clear            | $V_{CC} = Max, V_1 = 2.4V$                   |                                                    |              |             | 20         |              |        | 20    |       |        | 30<br>20 |          |          | 40<br>20 | μΑ           |
|                | ,                          | Preset<br>Clock  |                                              |                                                    |              |             | 20<br>-200 |              |        | -200  |       |        | 20       |          | <u> </u> | -400     | 1            |
| l <del></del>  |                            |                  |                                              |                                                    | <del> </del> | <del></del> | -0.18      | <del> </del> |        | -0.18 |       |        | -0.18    | <u> </u> |          | -0.18    | <del> </del> |
| HL             | Low Level Input Current    | R, S, J, K, or D |                                              |                                                    | <b> </b>     |             | -0.18      | ļ            |        | -0.18 |       |        | -0.18    | <b> </b> |          | -0.18    | 1            |
| l              |                            | Preset           | $V_{CC} = Max, V_1 = 0.3V$                   |                                                    | -            |             | -0.36      |              |        | -0.36 |       |        | -0.18    | <b></b>  |          | -0.36    | mA           |
|                | , .                        | Clock            |                                              |                                                    |              |             | -0.36      |              |        | -0.36 |       |        | -0.36    |          |          | -0.72    | 1            |
| los            | Short Circuit Output Curre | nt               | V <sub>CC</sub> = Max                        | V <sub>CC</sub> = Max                              |              | -9          | -15        | -3           | -9     | -15   | -3    | -9     | -15      | -3       | -9       | -15      | mA           |
| Icc            | Supply Current             |                  | V <sub>CC</sub> = Max(2)                     |                                                    |              |             | 1.44       |              | 1.52   | 2.88  |       | 1,6    | 3.0      |          | 1.52     | 2.88     | mA           |

<sup>(1)</sup> All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

<sup>(2)</sup> With all outputs open, ICC is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

| Switching Characteristics | at $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ |
|---------------------------|----------------------------------------|
|---------------------------|----------------------------------------|

|                  |                                                                           |                             |                 |              |                                |                                                |      |          | DM54L  | /74L |     |     |       |
|------------------|---------------------------------------------------------------------------|-----------------------------|-----------------|--------------|--------------------------------|------------------------------------------------|------|----------|--------|------|-----|-----|-------|
|                  | PARAM                                                                     | IETER                       | FRC<br>(INPL    |              | TO<br>(OUTPUT)                 | CONDITIONS                                     | L71, | L72, L73 | 3, L78 |      | L74 |     | UNITS |
|                  |                                                                           |                             | ,,,,,,          | ,            | ,0001,                         |                                                | MIN  | TYP      | MAX    | MIN  | TYP | MAX |       |
| f <sub>MAX</sub> | Maximum Cl                                                                | ock Frequency               |                 |              |                                |                                                | 6    | 11       | ,      | 6    | 11  |     | MHz   |
| tPLH             | Propagation (<br>Low-to-High                                              | Delay Time,<br>Level Output | Preset or Clear |              | Q or $\overline{\mathbb{Q}}$   |                                                |      | 35       | 75     |      | 40  | 60  | ns    |
| tpHL             | Propagation (                                                             | Delay Time,                 | Preset or Clear | (Clock High) | Ω or Ω                         |                                                |      | 60       | 150    |      | 60  | 120 | ns    |
|                  | High-to-Low Level Output Propagation Delay Time, Low-to-High Level Output |                             | Troset or Groun | (Clock Low)  | 20, 2                          | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |      |          | 150    |      | 60  | 120 | 113   |
| t <sub>PLH</sub> |                                                                           |                             | Clock           |              | Q or $\overline{\overline{Q}}$ |                                                | 10   | 35       | 75     | 10   | 50  | 90  |       |
| t <sub>PHL</sub> | Propagation [<br>High-to-Low                                              | Delay Time,<br>Level Output | CIOCK           |              | 2012                           |                                                | 10   | 60       | 150    | 10   | 60  | 120 | ns    |
| tw               | Pulse Width                                                               | Clock High                  |                 |              |                                |                                                | 100  |          |        | 75   |     |     |       |
|                  |                                                                           | Clock Low                   |                 |              |                                | ,                                              | 100  |          |        | 75   |     |     | ns    |
|                  |                                                                           | Clear or Preset Low         |                 |              |                                |                                                | 100  |          |        | 75   |     |     |       |
| tSETUP           | Setup Time(3                                                              | 3)                          |                 |              |                                |                                                | 01   |          |        | 50↑  |     |     | ns    |
| tHOLD            | Hold Time(3)                                                              | ,                           |                 |              |                                |                                                | 0↓   |          |        | 15↑  |     |     | ns    |

(3) ↑↓ The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge ↓ for the falling edge.

|                                         | ,                                      |               |                          |                                                           | DM54LS/74LS |     |                         |          |                                                  |        |          |     |           |           |          |             |             |       |
|-----------------------------------------|----------------------------------------|---------------|--------------------------|-----------------------------------------------------------|-------------|-----|-------------------------|----------|--------------------------------------------------|--------|----------|-----|-----------|-----------|----------|-------------|-------------|-------|
|                                         | PARAMETER                              |               |                          | CONDITIONS                                                |             |     | 3, LS76, I<br>S112, LS1 |          |                                                  | LS74   | ,        | L   | S78, LS11 | 14        |          | LS109       |             | UNITS |
|                                         |                                        |               |                          |                                                           |             | MIN | TYP(1)                  | MAX      | MIN                                              | TYP(1) | MAX      | MIN | TYP(1)    | MAX       | MIN      | TYP(1)      | MAX         |       |
| V <sub>IH</sub>                         | High Level Input Voltage               |               |                          |                                                           |             | 2   |                         |          | 2                                                |        |          | 2 . |           |           | 2        |             |             | ٧     |
| VIL                                     | Low Level Input Voltage                |               |                          |                                                           | DM54        |     |                         | 0.7      |                                                  |        | 0.7      |     |           | 0.7       |          |             | 0.7         | V     |
|                                         |                                        |               |                          |                                                           | DM74        |     |                         | 8.0      |                                                  |        | 0.8      |     |           | 8.0       | <u></u>  |             | 8.0         |       |
| Vı                                      | Input Clamp Voltage                    |               | V <sub>CC</sub> = Min,   | / <sub>CC</sub> = Min, I <sub>1</sub> = -18 mA            |             |     |                         | -1.5     |                                                  |        | -1.5     |     |           | -1.5      |          |             | -1.5        | ٧     |
| I <sub>OH</sub>                         | High Level Output Current              |               |                          |                                                           |             |     |                         | -400     |                                                  |        | -400     |     |           | -400      |          |             | -400        | μΑ    |
| V <sub>OH</sub>                         | High Level Output Voltage              |               | V <sub>CC</sub> = Min,   |                                                           | DM54        | 2.5 | 3.4                     |          | 2.5                                              | 3.4    |          | 2.5 | 3.4       |           | -2.5     | 3.4         |             | v     |
| لــــــــــــــــــــــــــــــــــــــ |                                        |               | V <sub>IL</sub> = Max, I | $I_{IL} = Max, I_{OH} = -400\mu A$ DM74                   |             |     |                         |          | 2.7                                              | 3.4    |          | 2.7 | 3.4       |           | 2.7      | 3.4         |             |       |
| loL                                     | Low Level Output Current               |               |                          | DM54                                                      |             |     |                         | 4        |                                                  |        | 4        |     |           | 4         |          |             | 4           | mA    |
|                                         |                                        |               |                          | DM74                                                      |             |     |                         | 8        |                                                  |        | 8        |     |           | 8         |          |             | 8           |       |
| VOL                                     | Low Level Output Voltage               |               | V <sub>CC</sub> = Min    | I <sub>OL</sub> = Max                                     | DM54        |     | 0.25                    | 0.4      |                                                  | 0.25   | 0.4      |     | 0.25      | 0.4       | ļ        | 0.25        | 0.4         | ١.,   |
|                                         |                                        |               |                          | / <sub>IH</sub> = 2V                                      |             |     |                         | 0.5      | -                                                | 0.35   | 0.5      |     | 0.35      | 0.5       |          | 0.35        | 0.5         | V.    |
|                                         |                                        | In. 14 E      | VIL - Max                | / <sub>IL</sub> = Max                                     |             |     |                         | 0.4      |                                                  |        |          |     |           | 0.4       |          |             |             |       |
| h                                       | Input Current at Maximum Input Voltage | D, J, K, or K |                          | V <sub>1</sub> = 5.5V<br>V <sub>1</sub> = 7V              |             |     |                         | 0.1      | <del> </del>                                     |        | 0.1      |     |           | 0.1       | <u> </u> |             | 0.1         |       |
|                                         | mput Voltage                           | Clear         |                          | V <sub>1</sub> = 5.5V                                     |             |     |                         | 0.1      | <del>                                     </del> |        | 0.3      |     |           |           |          |             | 0.4         |       |
| 1                                       |                                        |               |                          | V <sub>1</sub> = 7V                                       |             |     |                         | 0.3      |                                                  |        |          |     |           | 0.6       |          |             |             |       |
|                                         |                                        | Preset        | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V                                     |             |     |                         |          |                                                  |        | 0.2      |     |           |           |          |             | 0.2         | mA    |
| 1                                       |                                        |               | ·                        | V <sub>1</sub> = 7V                                       |             | ļ   |                         | 0.3      |                                                  |        |          |     |           | 0.3       |          |             |             |       |
| - 1                                     | •                                      | Clock         |                          | V <sub>1</sub> = 5.5V <sub>.</sub><br>V <sub>1</sub> = 7V | <del></del> | ļ   |                         | 0.4      | <u> </u>                                         |        | 0.2      |     |           | 0.8       |          |             | 0.2         |       |
|                                         |                                        |               |                          | V <sub>1</sub> = 7V                                       |             |     |                         | 0.4      | <del> </del>                                     |        |          |     |           |           |          |             |             |       |
| ин                                      | High Level Input Current               | D,J,K or K    |                          |                                                           |             |     |                         | 20<br>60 | <b> </b>                                         |        | 20<br>60 |     |           | 20<br>120 |          |             | 20<br>80    |       |
| 1                                       |                                        | Preset        | V <sub>CC</sub> = Max,   | V <sub>1</sub> = 2.7V                                     | ~           |     |                         | 60       | <b></b> -                                        |        | 40       |     |           | 60        |          |             | 40          | μΑ    |
|                                         |                                        | Clock         |                          | *,                                                        |             |     |                         | 80       |                                                  |        | 40       |     |           | 160       |          |             | 40          |       |
| I <sub>IL</sub>                         | Low Level Input Current                | D,J,K or K    |                          |                                                           |             |     |                         | -0.36    |                                                  |        | -0.4     |     |           | -0.36     |          |             | <b>−0.4</b> |       |
|                                         |                                        | Clear         |                          | v                                                         |             |     |                         | -0.8     |                                                  |        | -1.2     |     |           | -1.6      |          | <del></del> | -1.6        |       |
|                                         |                                        | Preset        | V <sub>CC</sub> = IVIax, | $V_{CC} = Max, V_1 = 0.4V$                                |             |     |                         | -0.8     |                                                  |        | -0.8     |     |           | -0.8      |          |             | -0.8        | mA    |
|                                         |                                        | Clock         |                          |                                                           |             |     |                         | -0.72    |                                                  |        | -0.8     |     |           | -1.44     |          | ,           | -0.8        |       |
| los                                     | Short Circuit Output<br>Current        |               | V <sub>CC</sub> = Max(   | V <sub>CC</sub> = Max(2)                                  |             |     |                         | -130     | -30                                              |        | -130     | -30 |           | -130      | -30      |             | -130        | mA    |
| lcc                                     | Supply Current                         |               | V <sub>CC</sub> = Max(3  | 'cc = Max(3)                                              |             |     |                         | 8        |                                                  | 4      | 8 -      |     | 4         | 8         |          | 4           | 8           | mA    |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
- (2) Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
- With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.
- (4) National Semiconductor temporarily reserves the right to ship DM54/DM74LS73, LS74, LS76, LS78, LS107, LS109, LS112, LS113, LS114 devices which have a minimum IOS = 5.0 mA.

| 4                                                         | Į |
|-----------------------------------------------------------|---|
| ÷                                                         | 1 |
| 'n                                                        | ł |
| ٣.                                                        | ١ |
| a                                                         | 1 |
| $\subseteq$                                               | ١ |
| ~                                                         | ĺ |
| J                                                         | Į |
| 2                                                         | ١ |
| Ξ                                                         | l |
| 'n                                                        | I |
| Zí.                                                       |   |
|                                                           | J |
| Š                                                         | ١ |
| Ž                                                         | I |
| 4                                                         | Ì |
| Ù                                                         | 1 |
| ര്                                                        | } |
| ₹.                                                        | ١ |
| $\simeq$                                                  | ١ |
| œ                                                         | l |
| ٽــَ                                                      | ł |
| Q                                                         | j |
| 7                                                         | ١ |
| <u>``</u>                                                 | ١ |
| 0                                                         | ١ |
| ၑ                                                         | I |
| `~                                                        | 1 |
| $\overline{}$                                             | 1 |
| N                                                         | 1 |
| بـ`                                                       | 1 |
| $\overline{}$                                             | 1 |
| Ţ                                                         | ı |
| $\rightarrow$                                             | l |
| $\mathbf{z}$                                              | 1 |
| _                                                         | Į |
|                                                           | l |
| $\simeq$                                                  | Ì |
| 5                                                         | ļ |
| =                                                         | 1 |
|                                                           | ١ |
|                                                           | l |
| ╼.                                                        | 1 |
| 7                                                         | ĺ |
| П                                                         | 1 |
| $\overline{c}$                                            | ١ |
| 4LS/DM74LS73,74,76,78,107,109,112,113,114 Dual Flip-Flops | 1 |
| š                                                         |   |
| ••                                                        | 1 |

|                    | PARAMETER                         |                     |                         |                                |                                |     |                          |     | DA  | //54LS/74 | LS  |     |       |     |       | 1 |
|--------------------|-----------------------------------|---------------------|-------------------------|--------------------------------|--------------------------------|-----|--------------------------|-----|-----|-----------|-----|-----|-------|-----|-------|---|
|                    | PARAMET                           | rer -               | FROM<br>(INPUT)         | TO<br>(OUTPUT)                 | CONDITIONS                     |     | S76, LS78<br>2, LS113, I |     |     | LS74      |     |     | LS109 |     | UNITS |   |
|                    |                                   |                     |                         | •                              |                                | MIN | TYP                      | MAX | MIN | TYP       | MAX | MIN | TYP   | MAX |       |   |
| f <sub>MAX</sub>   | Maximum Clock                     | Frequency           |                         |                                |                                | 30  | 45                       |     | 25  | 33        |     | 25  | 33    |     | MHz   |   |
| t <sub>PLH</sub>   | Propagation Del<br>Low-to-High Le | '                   | Clear, Preset, or Clock | Q or $\overline{\overline{Q}}$ | $C_L = 15 pF, R_L = 2 k\Omega$ |     | 11                       | 20  |     | 13        | 25  |     | 13    | 25  | ns    |   |
| <sup>t</sup> PHL   |                                   |                     | (as appropriate)        | Q or Q                         |                                |     | 15                       | 30  |     | 25        | 40  |     | 25    | 40  | ns    |   |
| t <sub>W</sub>     | Pulse Width                       | Clock High          |                         |                                |                                | 20  |                          |     | 25  |           |     | 25  |       |     |       |   |
|                    |                                   | Preset or Clear Low | •                       |                                |                                | 25  |                          |     | 25  |           |     | 25  |       |     | ns    |   |
| t <sub>SETUP</sub> | Setup Time(5)                     | High Level Data     |                         |                                |                                | 20↓ |                          |     | 251 |           |     | 20↑ |       |     |       |   |
|                    |                                   | Low Level Data      |                         |                                |                                | 20↓ |                          |     | 201 |           |     | 201 |       |     | ns    |   |
| tHOLD              | Hold Time(5)                      |                     |                         |                                |                                | 01  |                          |     | 51  |           |     | 51  |       |     | ns    |   |

### Note

(5) ↑↓ The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge, ↓ for the falling edge.

-14

-7

-8

30

-100

50

mΑ

mΑ

mΑ

|                  |                                        |                                                                        |     |        |      |     | -      | DM   | 748 |        |      |     |        |      |       |
|------------------|----------------------------------------|------------------------------------------------------------------------|-----|--------|------|-----|--------|------|-----|--------|------|-----|--------|------|-------|
|                  | PARAMETER                              | CONDITIONS                                                             |     | \$74   |      |     | S112   |      |     | \$113  |      |     | S114   |      | UNITS |
|                  |                                        |                                                                        | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  |       |
| VIH              | High Level Input Voltage               |                                                                        | 2   |        |      | 2   |        |      | 2   |        |      | 2   |        |      | V     |
| VIL              | Low Level Input Voltage                |                                                                        |     |        | 0.8  |     |        | 8.0  |     |        | 0.8  |     |        | 0.8  | V     |
| Vı               | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 mA                         |     |        | -1.2 |     |        | -1.2 |     |        | -1.2 |     |        | -1.2 | V     |
| Гон              | High Level Output Current              |                                                                        |     |        | -1   |     |        | -1   |     |        | -1   |     |        | -1   | mA    |
| V <sub>OH</sub>  | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -1 \text{ mA}$ | 2.7 | 3.4    |      | 2.7 | 3.4    |      | 2.7 | 3.4    |      | 2.7 | 3.4    |      | V     |
| loL              | Low Level Output Current               |                                                                        | ~   |        | 20   |     |        | 20   |     |        | 20   |     |        | 20   | mA    |
| V <sub>OL</sub>  | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 20 \text{ mA}$ |     |        | 0.5  |     |        | 0.5  |     |        | 0.5  |     |        | 0.5  | V     |
| - 11             | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                           |     |        | 1    |     |        | 1    |     |        | 1    |     |        | 1    | mA    |
| ·I <sub>IH</sub> | High Level Input Current J, K, or D    |                                                                        |     |        | 50   |     |        | 50   |     |        | 50   |     |        | 50   |       |
|                  | Clear                                  | $V_{CC} = Max, V_1 = 2.7V$                                             |     |        | 150  |     |        | 100  |     |        | N/A  |     |        | 200  | μΑ    |
|                  | Preset                                 | 1 20                                                                   |     |        | 100  |     |        | 100  |     |        | 100  | L   |        | 100  | , ·   |
|                  | Clock                                  |                                                                        |     |        | 100  |     |        | 100  |     |        | .100 |     |        | 200  |       |

-2

-6

-4

-4

30

-100

50

-40

-40

-1.6

-7

-7

-4

30

-100

50

-1.6

-7

-4

30

-100

50

-40

N/A

# I<sub>CC</sub>

los

TIL

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Short Circuit Output Current

Supply Current

Low Level Input Current

J, K, or D

Clear

Preset

Clock

(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

 $\{3\}$  With all outputs open,  $I_{CC}$  is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

 $V_{CC} = Max, V_1 = 0.5V$ 

 $V_{CC} = Max(2)$ 

 $V_{CC} = Max(3)$ 

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

DM74S74,S112,S113,S114

Dual Flip-Flops

|                  | PARAMETER                  |                                                                           |                 |              |                                                    |                                | ·             |     | DM:       | 74S           |          |      |       |
|------------------|----------------------------|---------------------------------------------------------------------------|-----------------|--------------|----------------------------------------------------|--------------------------------|---------------|-----|-----------|---------------|----------|------|-------|
|                  | PARAM                      | METER                                                                     | FRO<br>(INPL    |              | (OUTPUT)                                           | CONDITIONS                     |               | S74 |           | S112          | 2, S113, | S114 | UNITS |
|                  |                            |                                                                           | (,,,,,          |              | (0011017                                           |                                | MIN           | TYP | MAX       | MIN           | TYP      | MAX  |       |
| f <sub>MAX</sub> | Maximum CI                 | ock Frequency                                                             | ,               |              |                                                    |                                | 75            | 110 |           | 80            | 125      |      | MHz   |
| t <sub>PLH</sub> | Propagation<br>Low-to-High | Delay Time,<br>Level Output                                               | Preset or Clear |              | Q or Q                                             |                                |               | 4   | 6         | 2             | 4        | 7    | ns    |
| (tPHL            | Propagation<br>High-to-Low | •                                                                         | Preset or Clear | (Clock High) | $\overline{\overline{\mathbf{Q}}}$ or $\mathbf{Q}$ | $C_1 = 15 pF, R_1 = 280\Omega$ |               | 9   | 13.5<br>8 | 2             | 5<br>5   | 7    | ns    |
| t <sub>PLH</sub> | 1                          | High-to-Low Level Output Propagation Delay Time, Low-to-High Level Output |                 | Clark        |                                                    |                                |               | 6   | 9         | 2             | 4        | 7    |       |
| t <sub>PHL</sub> | Propagation<br>High-to-Low | Delay Time,<br>Level Output                                               | Clock           |              | Q or Q                                             |                                |               | 6   | 9         | 2             | 5        | 7    | ns    |
| t <sub>W</sub>   | Pulse Width                | Clock High Clock Low Clear or Preset Low                                  |                 |              |                                                    |                                | 6<br>7.3<br>7 |     |           | 6<br>6.5<br>8 |          |      | ns    |
| tSETUP           | Input Setup<br>Time(4)     | High Level Data Low Level Data                                            |                 |              |                                                    | ,                              | 3↑<br>3↑      |     |           | 3↓            |          |      | ns    |
| tHOLD            | Input Hold T               | ime(4)                                                                    |                 |              |                                                    |                                | 2↑            |     |           | 0↓            |          |      | ns    |

### Notes

(4) 1 The arrow indicates the edge of the clock pulse used for reference: 1 for the rising edge, 1 for the falling edge.

| Electrical Characteristics ove | ver recommended operating free-air temperature range (unless otherwise noted). |
|--------------------------------|--------------------------------------------------------------------------------|
|--------------------------------|--------------------------------------------------------------------------------|

|                 |                                       |                          |                                                  |              |                                                  | DM54/74 |            |              | M54L/74 | L          | DI  | /154LS/74 | LS          |     | DM74S     |      |              |
|-----------------|---------------------------------------|--------------------------|--------------------------------------------------|--------------|--------------------------------------------------|---------|------------|--------------|---------|------------|-----|-----------|-------------|-----|-----------|------|--------------|
| 1               | PARAMETER                             |                          | CONDITION                                        | s            |                                                  | 86      |            |              | L86     |            | L   | S86, LS38 | 36          |     | S86       |      | UNITS        |
|                 |                                       |                          |                                                  |              | MIN                                              | TYP(1)  | MAX        | MIN          | TYP(1)  | MAX        | MIN | TYP(1)    | MAX         | MIŅ | TYP(1)    | MAX  |              |
| VIH             | High Level Input Voltage              |                          |                                                  |              | 2                                                |         |            | 2            |         |            | 2   |           |             | 2   |           |      | V            |
| VIL             | Low Level Input Voltage               |                          |                                                  | DM54         |                                                  |         | 0.8        |              |         | 0.7        |     |           | 0.7         |     |           | N/A  | V            |
|                 |                                       |                          |                                                  | DM74         |                                                  |         | 0.8        | 4            |         | 0.7        |     |           | 0.8         |     |           | 0.8  | ľ            |
| Vı              | Input Clamp Voltage                   | V - Min                  | CC = Min I <sub>1</sub> = -8 mA                  |              |                                                  |         | -1.5       |              | N/A     |            |     |           |             |     |           |      | V            |
|                 |                                       | V CC - WIIII             | I <sub>1</sub> = -18 mA                          |              |                                                  |         |            |              | N/A     |            |     |           | -1.5        |     |           | -1.2 |              |
| Іон             | High Level Output Current             |                          | · · · · · · · · · · · · · · · · · · ·            |              |                                                  |         | -800       |              |         | -200       |     |           | -400        |     |           | 1000 | μΑ           |
| V <sub>OH</sub> | High Level Output Voltage             | V <sub>CC</sub> = Min, \ | / <sub>CC</sub> = Min, V <sub>IH</sub> = 2V DM54 |              | 2.4                                              | 3.4     |            | 2.4          | 3.3     |            | 2.5 | 3.4       |             |     | N/A       |      | V            |
|                 |                                       | V <sub>IL</sub> = Max, I |                                                  |              | 2.4                                              | 3.4     | ٧          | 2.4          | 3.2     |            | 2.7 | 3.4       |             | 2.7 | 3.4       |      | L v          |
| loL             | Low Level Output Current              |                          | ,                                                | DM54         |                                                  |         | 16         |              |         | 2          |     |           | 4           |     |           | N/A  | mA           |
|                 | -                                     |                          | <u> </u>                                         | DM74         |                                                  |         | 16         |              |         | 3.6        |     |           | 8           |     |           | 20   | IIIA         |
| V <sub>OL</sub> | Low Level Output Voltage              | V <sub>CC</sub> = Min    | I <sub>OL</sub> = Max                            | DM54         |                                                  | 0.2     | 0.4        |              | 0.15    | 0.3        |     | 0.25      | 0.4         |     |           | N/A  |              |
|                 | 1                                     | V <sub>IH</sub> = 2V     |                                                  | DM74         | ļ                                                | 0.2     | 0.4        |              | 0.2     | 0.4        |     | 0.35      | 0.5         |     |           | 0.5  | V            |
|                 |                                       | V <sub>IL</sub> = Max    | I <sub>OL</sub> = 4 mA                           | DM74         |                                                  |         |            |              |         |            |     |           | 0.4         |     |           |      |              |
| l <sub>1</sub>  | Input Current at Maximum              | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V                            |              |                                                  |         | 1          | <u></u>      |         | 0.2        |     |           |             |     |           | . 1  | mA           |
| l               | Input Voltage                         |                          | V <sub>1</sub> = 7V                              |              |                                                  |         |            | ļ            |         |            |     |           | 0.2         |     |           |      |              |
| I <sub>IH</sub> | High Level Input Current              | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V                            |              | <u> </u>                                         |         | 40         |              |         | 20         |     |           |             |     |           |      | μΑ           |
|                 |                                       |                          | V <sub>1</sub> = 2.7V                            |              | L                                                |         |            |              |         | -          |     |           | 40          |     |           | 50   |              |
| I <sub>IL</sub> | Low Level Input Current               |                          | V <sub>1</sub> = 0.3V                            |              |                                                  |         |            | ļ            |         | -0.36      |     |           |             |     |           |      |              |
| 1               |                                       | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.4V                            |              | <b> </b>                                         |         | -1.6       | ļ            |         |            |     |           | -0.6        |     |           |      | mA -         |
|                 | · · · · · · · · · · · · · · · · · · · | ļ                        | V <sub>1</sub> = 0.5V                            | r            | <u> </u>                                         |         |            | ļ            |         |            |     |           |             |     |           | -2   | ļ            |
| los             | Short Circuit Output Current          | $V_{CC} = Max(2)$        | CC                                               |              | -20<br>-18                                       |         | -55<br>-55 | -3           |         | -15<br>-15 | -30 |           | -130<br>130 | ~40 | N/A       | -100 | mA           |
| I               | 0 1 0 1 1 1 1 1 1                     | <b> </b>                 |                                                  |              | 16                                               |         |            |              |         |            | -30 |           |             | -40 |           | -100 | <del> </del> |
| Іссн            | Supply Current, All Outputs High      | V <sub>CC</sub> = Max(3  | 3)                                               | DM54<br>DM74 |                                                  | 30      | 43<br>50   | <del> </del> | 2.2     | 4.4        |     | 6.1       | 10          |     | N/A<br>50 | 75   | mA           |
| I               | Supply Current, All Outputs Low       | V - May/A                | 1)                                               | 1 5          | <del>                                     </del> | 36      | 57         |              | 3.8     | 6.68       |     |           |             |     |           | -/3  | mA -         |
| ICCL            | Supply Current, All Outputs Low       | V <sub>CC</sub> = Wax(4  | = Max(4)                                         |              | L                                                |         |            | L            | 3.0     | 0.00       | L   |           |             | L   |           |      | L IIIA       |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) Not more than one output should be shorted at a time, and for DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
- (3) I<sub>CCH</sub> is measured with all outputs open, one input of each gate at 4.5V, and the other inputs grounded.
- (4) I<sub>CCL</sub> is measured with all outputs open and all inputs at 4.5V.

| =             |  |
|---------------|--|
| S             |  |
| (5)           |  |
| K             |  |
| ₹             |  |
| $\sim$        |  |
| O             |  |
| 7             |  |
| -             |  |
| Z             |  |
| 42            |  |
| $\infty$      |  |
| Ö             |  |
| ς.            |  |
| $\overline{}$ |  |
| S             |  |
| w             |  |
| 8             |  |
| ~             |  |
| 0             |  |
| _             |  |
| U             |  |
| ×             |  |
|               |  |
| ï             |  |
| <u>`</u>      |  |
| 7             |  |
| G.            |  |
| 7             |  |
| _             |  |
| П             |  |
| ۵             |  |
| C             |  |
| 1             |  |
| _             |  |
| Ω             |  |
|               |  |
| <u> </u>      |  |
| Ö             |  |
|               |  |

| DEVICE | 1                      | NDITIONS<br>NPUT A OR B) | 1   | (ns)<br>Delay Time,<br>Level Output | t <sub>PHL</sub> (ns) Propagation Delay Time, High-to-Low Level Outpu |     |  |  |
|--------|------------------------|--------------------------|-----|-------------------------------------|-----------------------------------------------------------------------|-----|--|--|
|        |                        | £                        | TYP | MAX                                 | TYP                                                                   | MAX |  |  |
| 86     | C <sub>L</sub> = 15 pF | Other Input Low          | 15  | 23                                  | 11                                                                    | 17  |  |  |
|        | $R_L = 400\Omega$      | Other Input High         | 18  | 30                                  | 13                                                                    | 22  |  |  |
| L86    | C <sub>L</sub> = 50 pF | Other Input Low          | 37  | 60                                  | 21                                                                    | 60  |  |  |
|        | $R_L = 4k\Omega$       | Other Input High         | 25  | 60                                  | 35                                                                    | 60  |  |  |
| LS86   | C <sub>L</sub> = 15 pF | Other Input Low          | 12  | 23                                  | 10                                                                    | 17  |  |  |
| I •    | $R_L = 2k\Omega$       | Other Input High         | 18  | 30                                  | 13                                                                    | 22  |  |  |
| LS386  | C <sub>L</sub> = 15 pF | Other Input Low          | 12  | 23                                  | 10                                                                    | 17  |  |  |
|        | $R_L = 2k\Omega$       | Other Input High         | 18  | 30                                  | 13 .                                                                  | 22  |  |  |
| S86    | C <sub>L</sub> = 15 pF | Other Input Low          | 7   | 10.5                                | 6.5                                                                   | 10  |  |  |
|        | $R_L = 280\Omega$      | Other Input High         | 7   | 10.5                                | 6.5                                                                   | 10  |  |  |

| Electrical Characteristics | over recommended operating free-air temperature range (unless otherwise noted). |  |
|----------------------------|---------------------------------------------------------------------------------|--|
|                            |                                                                                 |  |

|   |                   |                            |                 |                                                                                                 |          |        |      | D   | M54H/74 | Н    |     |        |      |       |
|---|-------------------|----------------------------|-----------------|-------------------------------------------------------------------------------------------------|----------|--------|------|-----|---------|------|-----|--------|------|-------|
|   |                   | PARAMETER                  |                 | CONDITIONS                                                                                      |          | H103   |      |     | H106    |      |     | H108   |      | UNITS |
|   |                   |                            |                 |                                                                                                 | MIN      | TYP(1) | MAX  | MIN | TYP(1)  | MAX  | MIN | TYP(1) | MAX  |       |
|   | V <sub>IH</sub>   | High Level Input Voltage   |                 |                                                                                                 | 2        |        |      | 2   |         |      | 2   |        | -    | ٧     |
| - | VIL               | Low Level Input Voltage    |                 |                                                                                                 |          |        | 8.0  |     |         | 0.8  |     |        | 0.8  | V     |
| - | Vı                | Input Clamp Voltage        |                 | $V_{CC} = Min, I_1 = -8 \text{ mA}$                                                             |          |        | -1.5 |     |         | -1.5 |     |        | -1.5 | V     |
|   | Іон               | High Level Output Curren   | t               |                                                                                                 |          | •      | -500 |     |         | -500 |     |        | -500 | μΑ    |
|   | V <sub>ОН</sub>   | High Level Output Voltage  | •               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = -500μA | 2.4      | 3.4    |      | 2.4 | 3.4     |      | 2.4 | 3.4    |      | ٧     |
|   | l <sub>OL</sub>   | Low Level Output Current   | t               |                                                                                                 |          |        | 20   |     |         | 20   |     |        | 20   | mA    |
|   | V <sub>OL</sub>   | Low Level Output Voltage   |                 | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 20 mA  |          | 0.2    | 0.4  |     | 0.2     | 0.4  |     | 0.2    | 0.4  | ٧     |
| - | I <sub>1</sub>    | Input Current at Maximun   | n Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                    |          |        | 1    |     | 2.2.7   | 1    |     |        | -1   | mA    |
| - | I <sub>IH</sub> . | High Level Input Current.  | Any J or K      |                                                                                                 |          |        | 50   |     |         | 50   |     |        | 50   |       |
|   |                   |                            | Clear           | $V_{CC} = Max, V_1 = 2.4V$                                                                      |          |        | 100  |     |         | 100  |     |        | 200  | μΑ    |
|   |                   |                            | Preset          | , , , , , , , , , , , , , , , , , , , ,                                                         | <b></b>  |        | N/A  |     |         | 100  |     |        | 100  |       |
| _ |                   |                            | Clock           |                                                                                                 | 0        |        | -1   | 0   |         | -1   | 0   |        | -1   | mA    |
|   | I <sub>IL</sub>   | Low Level Input Current    | Any J or K      |                                                                                                 |          | -1     | -2   |     | -1      | -2   |     | -1     | -2   |       |
|   |                   |                            | Clear           | $V_{CC} = Max, V_1 = 0.4V$                                                                      |          | -1     | -2   |     | -1      | -2   |     | -2     | -4   | mA    |
|   | . ]               |                            | Preset          | Vec max, vi ouv                                                                                 | <u> </u> |        | N/A  |     | 1       | -2   |     | -1     | -2   |       |
| _ |                   |                            | Clock           | -                                                                                               |          | -3     | -4.8 |     | -3      | -4.8 |     | -6     | -9.6 |       |
|   | los               | Short Circuit Output Curre | ent             | V <sub>CC</sub> = Max(2)                                                                        | -40      |        | -100 | -40 |         | -100 | -40 |        | -100 | mA    |
|   | Icc               | Supply Current             | 1               | V <sub>CC</sub> = Max, (3)                                                                      | <u> </u> | 40     | 76   |     | 40      | 76   |     | 40     | 76   | mA    |

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) With all outputs open, ICC is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

|                    | PARAM                                               | ETER                        | FROI<br>(INPU   |            | TO<br>(OUTPUT)                 | CONDITIONS                                 | MIN | TYP | MAX | UNITS |
|--------------------|-----------------------------------------------------|-----------------------------|-----------------|------------|--------------------------------|--------------------------------------------|-----|-----|-----|-------|
| f <sub>MAX</sub>   | Maximum Cl                                          | ock Frequency               |                 |            |                                |                                            | 40  | 50  |     | MHz   |
| t <sub>PLH</sub>   | Propagation I<br>Low-to-High                        | Delay Time,<br>Level Output | Preset or Clear |            | Q or $\overline{\overline{Q}}$ |                                            |     | 8   | 12  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output |                             | Preset or Clear | Clock High | Q or Q                         |                                            |     | 15  | 20  | ns    |
|                    | High-to-Low                                         | Level Output                | Freset of Clear | Clock Low  | 2010                           | $C_{L} = 25 \text{ pF}, R_{L} = 280\Omega$ |     | 23  | 35  | lis   |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output    |                             |                 |            | O or $\overline{\Omega}$       |                                            |     | 10  | 15  |       |
| t <sub>PHL</sub>   | Propagation I                                       | ·                           | Clock           |            | Q or Q                         |                                            |     | 16  | 20  | ns    |
| tw                 | Pulse Width                                         | Clock High                  |                 |            | <del></del>                    |                                            | 10  |     |     |       |
|                    |                                                     | Clock Low                   | ] '             |            |                                |                                            | 15  |     |     | ns    |
|                    |                                                     | Clear or Preset Low         |                 |            |                                |                                            | 16  |     |     |       |
| <sup>†</sup> SETUP | Setup Time(4                                        | ) High Level Data           |                 |            |                                |                                            | 10↓ |     |     | ns    |
|                    |                                                     | Low Level Data              |                 |            |                                |                                            | 13↓ |     |     | 115   |
| tHOLD              | Hold Time(4)                                        |                             | 1               |            |                                |                                            | 0↓  |     |     | ns    |

<sup>(4) \( \</sup>psi\$ The arrow indicates that the falling edge of the clock pulse is used for reference.

|                    |                                             |                         |                                                              |              |              | DM54/74       |             | ]   | DM54LS/74L                              | S              |       |
|--------------------|---------------------------------------------|-------------------------|--------------------------------------------------------------|--------------|--------------|---------------|-------------|-----|-----------------------------------------|----------------|-------|
|                    | PARAMETER                                   |                         | CONDITIONS                                                   |              | MIN          | 121<br>TYP(1) | MAX         | MIN | LS221<br>TYP(1)                         | MAX            | UNITS |
| V <sub>T</sub>     | Positive-Going Threshold Voltage at A Input | V <sub>CC</sub> = Min   |                                                              |              |              | 1.4           | 2           |     | 1.0                                     | 2              | V     |
| V <sub>T</sub> .   |                                             |                         |                                                              | DM54         | 0.8          | 1.4           | ,           | 0.7 | 1.0                                     |                |       |
| - 1                |                                             | V <sub>CC</sub> = Min   |                                                              | DM74         | 0.8          | 1.4           | -           | 0.8 | 1.0                                     |                | V     |
| V <sub>T</sub>     | Positive-Going Threshold Voltage at B Input | V <sub>CC</sub> = Min   |                                                              | 1            |              | 1.55          | 2           |     | 1.0                                     | 2              | V     |
| · V <sub>T</sub> . | Negative-Going Threshold Voltage at B Input | <b></b>                 |                                                              | DM54         | 0.8          | 1.35          |             | 0.7 | 0.9                                     | ·              |       |
|                    |                                             | V <sub>CC</sub> = Min   |                                                              | DM74         | 0.8          | 1.35          |             | 0.8 | 0.9                                     |                | V     |
| Vı                 | Input Clamp Voltage                         | 1                       | I <sub>1</sub> = -12 mA                                      |              |              | •             | -1.5        |     |                                         |                | .,    |
|                    |                                             | V <sub>CC</sub> = IVIII | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$ $I_1 = -18 \text{ mA}$ |              |              |               |             |     |                                         | -1.5           | V     |
| lot                | High Level Output Current                   |                         | V <sub>CC</sub> = Min                                        |              |              |               | -400        |     |                                         | -400           | μΑ    |
| Vo                 | H High Level Output Voltage                 | V <sub>CC</sub> = Min   |                                                              |              | 2.4          | 3.4           |             | 2.5 | 3.5                                     |                |       |
|                    |                                             | I <sub>OH</sub> = -400  | μΑ                                                           | DM74         | 2.4          | 3.4           |             | 2.7 | 3.5                                     |                | V     |
| l <sub>OL</sub>    | Low Level Output Current                    |                         |                                                              | DM54         |              |               | 16          |     |                                         | 4              |       |
|                    |                                             |                         |                                                              | DM74         |              |               | 16          |     |                                         | 8              | mA    |
| Vo                 | L Low Level Output Voltage                  |                         | I <sub>OL</sub> = 4 mA                                       | -            |              |               |             |     | 0.25                                    | 0.4            |       |
|                    |                                             | V <sub>CC</sub> = Min   | I <sub>OL</sub> = 8 mA                                       | DM74         |              |               |             |     | 0.35                                    | 0.5            | · V   |
|                    |                                             |                         | I <sub>OL</sub> ≈ 16 mA                                      |              |              | 0.2           | 0.4         |     |                                         |                |       |
| l <sub>l</sub>     | Input Current at Maximum Input Voltage      | V <sub>CC</sub> = Max   | $V_1 = 5.5V$                                                 |              |              |               | 1           |     |                                         |                | mA    |
|                    |                                             | •((                     | V <sub>1</sub> = 7V                                          |              |              |               |             |     |                                         | 0.1            |       |
| Iн                 | High Level Input Current                    |                         | V <sub>1</sub> = 2.4V                                        | A1 or A2     |              |               | 40          |     |                                         |                |       |
|                    |                                             | V <sub>CC</sub> = Max   |                                                              | В            | ļ            |               | 80          |     |                                         |                | μА    |
|                    |                                             |                         | V <sub>1</sub> = 2.7V                                        | All          | ļ            |               |             |     |                                         | 20             |       |
| IIL                | Low Level Input Current                     |                         |                                                              | A1 or A2     | ļ            |               | -1.6        |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -0.36          |       |
|                    |                                             | $V_{CC} = Max$          | ° ' '                                                        |              | ļ            |               | -3.2<br>N/A |     | ,                                       | -0.44<br>-0.54 | mA    |
|                    | 1                                           | -                       |                                                              | Clear        |              |               |             |     |                                         |                |       |
| los                | Short Circuit Output Current                | V <sub>CC</sub> = Max   | (2)                                                          | DM54<br>DM74 | -20<br>-18   |               | -55<br>-55  | -30 |                                         | -150<br>-150   | mA    |
|                    | Control                                     |                         |                                                              |              | 10           | 10            |             | -30 |                                         |                |       |
| Icc                | Supply Current                              | V <sub>CC</sub> = Max   |                                                              | Quiescent    | <del> </del> | 13<br>23      | 25<br>40    |     | 4.7<br>19                               | 11             | mA    |
|                    |                                             |                         |                                                              | Triggered    | L            | 23            | 40          |     | 19                                      | 27             |       |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS221/DM74LS221, duration of short circuit should not exceed one second.

LS221 To Be Announced in 1976

| Switching Characteristics | at $V_{CC}$ = 5V, $T_A$ = $25^{\circ}C$ |
|---------------------------|-----------------------------------------|
|---------------------------|-----------------------------------------|

|                    |                        |                               | FROM        | то       |                        | DM54/74                                              |     |     |      |                        | DM54LS/74                                                    | LS  |     |      | 1     |
|--------------------|------------------------|-------------------------------|-------------|----------|------------------------|------------------------------------------------------|-----|-----|------|------------------------|--------------------------------------------------------------|-----|-----|------|-------|
|                    | PARAM                  | ETER                          | (INPUT)     | (OUTPUT) |                        | 121                                                  |     |     |      |                        | LS221                                                        | ,   |     |      | UNITS |
|                    |                        |                               |             |          | COND                   | ITIONS                                               | MIN | TYP | MAX  | CONE                   | DITIONS                                                      | MIN | TYP | MAX  |       |
| tpLH               | Propagation Delay T    | ime, Low-to-High Level Output | A1 or A2    | Q        |                        |                                                      |     | 45  | 70   |                        |                                                              |     | 45  | 70   | ns    |
| t <sub>PL</sub> H  | Propagation Delay T    | ime, Low-to-High Level Output | В           | Q        |                        |                                                      |     | 35  | 55   |                        |                                                              |     | 35  | 55   | ns    |
| t <sub>PLH</sub>   | Propagation Delay T    | ime, Low-to-High Level Output | Clear       | ā        |                        | C <sub>T</sub> = 80 pF                               |     |     | N/A  |                        | C <sub>T</sub> = 80 pF                                       |     |     | 65   | ns    |
| t <sub>PHL</sub>   | Propagation Delay T    | ime, High-to-Low Level Output | A1 or A2    | ā        |                        | R <sub>INT</sub> to V <sub>CC</sub>                  |     | 50  | 80   |                        | $R_T = 2 k\Omega$                                            |     | 50  | .80  | ns    |
| t <sub>PHL</sub>   | Propagation Delay T    | ime, High-to-Low Level Output | В           | ā        |                        |                                                      |     | 40  | 65   |                        |                                                              |     | 40  | 65   | ns    |
| t <sub>PHL</sub>   | Propagation Delay Ti   | ime, High-to-Low Lével Output | Clear       | Q        | C <sub>1</sub> = 15 pF | -                                                    |     |     | N/A  | C <sub>1</sub> = 15 pF |                                                              |     |     | 55   | ns    |
| tw(out)            | Output Pulse Width     | Internal Timing Resistor      |             |          | R <sub>L</sub> = 400Ω  | $C_T = 80 \text{ pF}$ $R_{INT} \text{ to } V_{CC}$   | 70  | 110 | 150  | R <sub>L</sub> = 2 kΩ  | C <sub>EXT</sub> = 80 pF<br>R <sub>EXT</sub> = 2 kΩ          | 70  | 120 | 150  |       |
|                    |                        | Zero-Timing Capacitance       | A1, A2 or B | Q or Q   |                        | $C_T = 0$<br>$R_{INT}$ to $V_{CC}$                   |     | 30  | 50   |                        | $C_{E \times T} = 0$<br>$R_{E \times T} = 2 \text{ k}\Omega$ | 20  | 47  | 70   | ns    |
|                    |                        | External Timing Resistor      |             | Q 01 Q   |                        | $C_T = 100 \text{ pF}$<br>$R_T = 10 \text{ k}\Omega$ | 600 | 700 | 800  |                        | $C_T = 100 \text{ pF}$<br>$R_T = 10 \text{ k}\Omega$         | 600 | 670 | 750  |       |
| ,                  |                        |                               |             |          |                        | $C_T = 1\mu F$<br>$R_T = 10 \text{ k}\Omega$         | 6   | 7   | 8    |                        | $C_T = 1\mu F$<br>$R_T = 10 k\Omega$                         | 6   | 6 7 | 7.5  | ms    |
| t <sub>W(IN)</sub> | Input Pulse Width      |                               |             |          |                        |                                                      | 50  |     |      |                        |                                                              | 40  |     |      | ns    |
| tw(CLEAR)          | Clear Pulse Width      |                               | 1           |          | ,                      |                                                      | N/A |     |      |                        |                                                              | 40  |     |      | ns    |
| dv/dt              | Rate of Rise or Fall   | Schmitt Input, B              |             |          |                        |                                                      | 1   |     |      |                        |                                                              | 1   |     |      | V/s   |
|                    | of Input Pulse         | Logic Input, A                | ]           |          |                        |                                                      | 1   | ,   |      |                        |                                                              | 1   |     |      | V/μs  |
| R <sub>EXT</sub>   | External Timing Res    | istance                       |             |          |                        | DM54                                                 | 1.4 |     | 30   |                        | DM54                                                         | 1.4 |     | 70   | kΩ    |
|                    |                        |                               | 1           |          |                        | DM74                                                 | 1.4 |     | 40   |                        | DM74                                                         | 1.4 |     | 100  |       |
| CEXT               | External Timing Cap    | acitance                      |             |          |                        |                                                      | 0   |     | 1000 |                        |                                                              | 0   |     | 1000 | μF    |
| †SETUP             | Clear-Inactive State S | Setup Time                    | ]           |          |                        |                                                      |     | N/A |      |                        |                                                              | 15  |     |      | ns    |
|                    | Duty Cycle             |                               |             |          |                        | $R_T = 2 k\Omega$                                    |     |     | 67   |                        | R <sub>T</sub> = 2 kΩ                                        |     |     | 67   | %     |
| -                  |                        |                               |             |          |                        | $R_T = Max$ $R_{E \times T}$                         |     |     | 90   |                        | R <sub>T</sub> = Max R <sub>T</sub>                          |     |     | 90   |       |

|                 |                           |                 | -                         |                                                  |          |             | DM54/74                               |                |      | M54L/74 | L     | DI  | /I54LS/74 | LS   |          |
|-----------------|---------------------------|-----------------|---------------------------|--------------------------------------------------|----------|-------------|---------------------------------------|----------------|------|---------|-------|-----|-----------|------|----------|
|                 | PARAMETER                 |                 | C                         | ONDITIONS                                        |          |             | 123                                   |                | ,    | L123A   |       | LS  | S122, LS1 | 123  | UNIT     |
|                 |                           |                 |                           | ,                                                |          | MIN         | TYP(1)                                | MAX            | MIN  | TYP(1)  | MAX   | MIN | TYP(1)    | MAX  |          |
| V <sub>IH</sub> | High Level Input Voltage  |                 |                           |                                                  |          | 2           |                                       |                | 2    |         |       | 2   |           |      | V        |
| VIL             | Low Level Input Voltage   |                 | -                         |                                                  | DM54     |             |                                       | 0.8            |      |         | 0.7   |     |           | 0.7  | V        |
|                 | :                         |                 |                           |                                                  | DM74     |             |                                       | 8.0            |      |         | 0.8   |     |           | 8.0  | \<br>    |
| V <sub>I</sub>  | Input Clamp Voltage       |                 | V - Min                   | I <sub>1</sub> = -12 mA                          |          |             |                                       | -1.5           |      |         | -N/A  |     |           |      | Ι,       |
|                 |                           |                 | V <sub>CC</sub> = Min     | $I_1 = -12 \text{ mA}$<br>$I_1 = -18 \text{ mA}$ |          |             |                                       |                |      |         |       |     |           | -1.5 | \        |
| он              | High Level Output Curren  | t               |                           |                                                  |          |             |                                       | -800           |      |         | -200  |     |           | -400 | μ        |
| √он             | High Level Output Voltage | )               | Na:-                      |                                                  | DM54     | 2.4         | 3.4                                   |                | 2.4  | 3.4     |       | 2.5 | 3.5       |      | Ι.,      |
|                 |                           |                 | V <sub>CC</sub> = Wilh,   | $I_{OH} = Max(3)$                                | DM74     | 2.4         | 3.4                                   |                | 2.4  | 3.4     |       | 2.7 | 3.5       |      | ' '      |
| OL              | Low Level Output Current  |                 |                           |                                                  | DM54     |             |                                       | 16             |      |         | 2.0   |     | •         | 4    |          |
|                 | ,                         |                 |                           | •                                                | DM74     |             |                                       | 16             |      |         | 3.6   |     |           | 8    | m        |
| VOL             | Low Level Output Voltage  |                 | V - Min                   | I - May                                          | DM54     |             | 0.2                                   | 0.4            |      | 0.22    | 0.3   | ,   | 0.25      | 0.4  |          |
|                 | *                         |                 | V <sub>CC</sub> = Min (3) | IOL - IVIAX                                      | DM74     | ,           | 0.2                                   | 0.4            |      |         | 0.4   |     | 0.35      | 0.5  |          |
|                 |                           |                 |                           | I <sub>OL</sub> = 4 mA                           | DM74     |             |                                       |                |      |         |       |     | 0.25      | 0.4  |          |
| ı               | Input Current at Maximun  | n Input Voltage | V <sub>CC</sub> = Max     | V <sub>1</sub> = 5.5V                            |          |             |                                       | 1              |      |         | 0.1   |     |           |      | m        |
|                 |                           |                 | A CC - May                | V <sub>1</sub> = 7V                              |          |             |                                       |                |      |         |       |     |           | 0.1  | 111      |
| Í <sub>IH</sub> | High Level Input Current  | Data Inputs     |                           | V <sub>1</sub> = 2.4V                            |          |             |                                       | 40             |      |         | 10    |     |           |      |          |
|                 |                           | Data Inputs     | V <sub>CC</sub> = Max     | $V_1 = 2.7V$                                     |          |             |                                       |                |      |         |       |     |           | 20   | μ,       |
|                 |                           | Clear Input     |                           | V <sub>1</sub> - 2.4 V                           |          | <del></del> | · · · · · · · · · · · · · · · · · · · | 80             |      |         | 10    |     |           |      |          |
|                 |                           |                 |                           | V <sub>1</sub> = 2.7V                            |          | -           |                                       |                | -    |         |       |     |           | 20   |          |
| IL              | Low Level Input Current   | Data Inputs     | V <sub>CC</sub> = Max,    | V <sub>1</sub> = 0.4V                            |          |             | ,                                     | -1.6           |      |         | -0.18 |     |           | -0.4 | m.       |
|                 |                           | Clear Input     |                           |                                                  |          |             |                                       | -1.6           |      |         | -0.18 |     |           | -0.4 | <u> </u> |
| os              | Short Circuit Output Curr | ent             | V <sub>CC</sub> = Max(    | 2)(3)                                            | <b>.</b> | -10         |                                       | <del>-40</del> | -2.5 |         | -12   | -30 |           | -150 | m.       |
| CC              | Supply Current (Quiescent | or Triggered)   | V <sub>CC</sub> = Max(    | 4)(5)(6)                                         | LS122    |             |                                       |                |      |         |       |     | 6         | 11   | m,       |
|                 |                           |                 | 1                         |                                                  | Others   |             | 46                                    | 66             |      | 5       | 7.5   |     | 12        | 20   |          |

|                   |                                    |                |      | FROM            | TO                 | DN                                     | 154/74 |          |      | DMS                                             | 4L/74L |          |       | DM54                                   | LS/74L  | S        |      |       |
|-------------------|------------------------------------|----------------|------|-----------------|--------------------|----------------------------------------|--------|----------|------|-------------------------------------------------|--------|----------|-------|----------------------------------------|---------|----------|------|-------|
|                   | PARAN                              | IETER          |      | FROM<br>(INPUT) | TO<br>(OUTPUT)     |                                        | 123    |          |      | L                                               | 123A   |          |       | L\$122                                 | , LS123 |          |      | UNITS |
|                   | `                                  |                |      |                 | ,                  | CONDITIONS                             | MIN    | TYP      | MAX  | CONDITIONS                                      | MIN    | TYP      | MAX   | CONDITIONS                             | MIN     | TYP      | MAX  |       |
| t <sub>PLH</sub>  | Propagation                        | Delay Time,    |      | Α               | Q                  |                                        |        | 22       | 33   |                                                 |        | 120      | 175   |                                        |         | 22       | 33   | ns    |
|                   | Low-to-High                        | Level Output   |      | В               |                    |                                        |        | 19       | 28   |                                                 |        | 86       | 135   |                                        | L       | 29       | 44   | 115   |
| t <sub>PHL</sub>  | Propagation I                      | Delay Time,    |      | Α               | ā                  |                                        |        | 30       | 40   |                                                 |        | 120      | 180   |                                        |         | 30       | 45   | ns    |
|                   | High-to-Low                        | Level Output   |      | В,              | Q .                | C <sub>EXT</sub> = 0                   |        | 27       | 36   | C <sub>EXT</sub> = 0                            |        | 86       | 135   | C <sub>EXT</sub> = 0                   |         | 37       | 56   | 115   |
| t <sub>PHL</sub>  | Propagation I                      | Delay Time,    |      |                 | Ω                  | $R_{EXT} = 5 k\Omega$<br>$C_L = 15 pF$ |        | 18       | 27   | $R_{EXT} = 32 k\Omega$<br>$C_1 = 50 \text{ pF}$ |        | 45       | 65    | $R_{EXT} = 5 k\Omega$<br>$C_1 = 15 pF$ |         | 18       | 27   |       |
|                   | High-to-Low                        | Level Output   |      | Clear           | Q                  | $R_L = 400\Omega$                      |        | 10       | 21   | $R_L = 4 k\Omega$                               |        | 40       | 00    | $R_L = 2 k\Omega$                      |         | 10       | 21   |       |
| t <sub>PLH</sub>  | Propagation                        | Delay Time,    |      | Clear           | $\bar{\mathbf{Q}}$ | 10000                                  |        | 30       | 40   | 116 4 100                                       |        | 95       | 140   | 11, 2,100                              |         | 30       | 45   | ns    |
|                   | Low-to-High                        | Level Output   |      |                 | ū                  |                                        |        | 30       | 40   |                                                 |        | 90       | . 140 |                                        |         | 30       | 40   |       |
| two(MIN)          | Minimum Wi                         | dth of Pulse   |      | A or B          | Q                  |                                        |        | 45       | 65   |                                                 |        | 220      | 330   |                                        |         | 116      | 200  | ns    |
|                   | at Output Q                        |                |      | AUIB            | · ·                |                                        |        | 45       | 65   |                                                 |        | 220      | 330   |                                        |         | 110      | 200  | 115   |
| two               | Width of Puls                      | e at Output Q  |      |                 |                    | C <sub>EXT</sub> = 1000 pF             |        |          |      | C <sub>EXT</sub> = 1000 pF                      |        |          |       | C <sub>EXT</sub> = 1000 pF             |         |          |      |       |
|                   |                                    |                |      | A or B          | 0                  | $R_{EXT}$ = 10 k $\Omega$              | 2.76   | - 3.03   | 3.37 | $R_{EXT} = 100 \text{ k}\Omega$                 | 30.6   | 34.0     | 37.4  | $R_{EXT} = 10 \text{ k}\Omega$         | 4       | 4.5      | 5    | ns    |
|                   |                                    |                |      | 7.0.2           | _                  | C <sub>L</sub> = 15 pF                 | 20     | 0.00     | 0.07 | C <sub>L</sub> = 50 pF                          | 00.0   | 54.0     | 07.4  | C <sub>t.</sub> = 15 pF                | '       | 1.0      |      |       |
|                   |                                    |                |      |                 |                    | $R_L = 400\Omega$                      |        |          |      | $R_L = 4 k\Omega$                               |        |          |       | $R_L = 2 k\Omega$                      |         |          |      |       |
| tw                | Pulse Width                        | A or B Inputs  |      |                 |                    |                                        | 40     |          |      |                                                 | 130    |          |       |                                        | 40      |          |      |       |
|                   |                                    | A or B Inputs  | Low  |                 |                    |                                        | 40     |          |      |                                                 | 130    |          |       | ·                                      | 40      |          |      | ns    |
|                   |                                    | Clear Low      |      |                 |                    |                                        | 40     |          |      |                                                 | 130    |          |       |                                        | 40      |          |      |       |
| R <sub>EXT</sub>  | External Tim                       | ing Resistance | DM54 |                 |                    |                                        | 5      |          | 25   |                                                 | 5      |          | 200   |                                        | 5       |          | 225  | ·kΩ   |
|                   |                                    |                | DM74 |                 |                    |                                        | 5      |          | 50   |                                                 | 5      |          | 400   |                                        | 5       |          | 360  |       |
| CEXT              | External Cap                       | acitance       |      |                 |                    |                                        | No     | Restrict | ion  |                                                 | No     | Restrict | ion   |                                        | No      | Restrict | tion |       |
| C <sub>WIRE</sub> | Wiring Capac                       | itanċe at      | DM54 |                 |                    |                                        |        |          | 50   |                                                 |        |          | 40    |                                        |         |          | 50   | pF    |
| WIRE              | R <sub>EXT</sub> /C <sub>EXT</sub> | Terminal       | DM74 |                 |                    |                                        |        |          | 50   |                                                 |        |          | 50    |                                        |         |          | 50   | þr    |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) Ground CEXT to measure VOH at Q, VOL at Q, or IOS at Q. CEXT is open to measure VOH at Q, VOL at Q, or IOS at Q.
- (4) Quiescent I<sub>CC</sub> is measured (after clearing) with 2.4V applied to all clear and A inputs, B inputs grounded, all outputs open, C<sub>EXT</sub> = 0.02μF, and R<sub>EXT</sub> = 25 kΩ.
- (5) I<sub>CC</sub> is measured in the triggered state with 2.4V applied to all clear and B inputs. A inputs grounded, all outputs open, C<sub>EXT</sub> = 0.02μF, and R<sub>EXT</sub> = 25 kΩ.
- (6) With all outputs open and 4.5V applied to all data and clear inputs, I<sub>CC</sub> is measured after a momentary ground, then 4.5V, is applied to clock. (LS122, LS123)

LS122, LS123 To Be Announced in 1976

|                 | •                                      |                         | •                                                  |                           |              | DM54/74  |                                       | Di  | VI54LS/74 | LS   |          | DM74S  |       |       |
|-----------------|----------------------------------------|-------------------------|----------------------------------------------------|---------------------------|--------------|----------|---------------------------------------|-----|-----------|------|----------|--------|-------|-------|
|                 | PARAMETER                              |                         | CONDITIONS                                         |                           |              | 125, 126 | i                                     | LS  | 125, LS1  | 26   |          | S134   | . `   | UNITS |
|                 | ·                                      |                         |                                                    |                           | MIN          | TYP(1)   | MAX                                   | MIN | TYP(1)    | MAX  | MIN      | TYP(1) | MAX   | 1     |
| V <sub>IH</sub> | High Level Input Voltage               | `                       |                                                    |                           | 2            |          |                                       | 2   |           |      | 2        |        |       | V     |
| V <sub>IL</sub> | Low Level Input Voltage                |                         |                                                    | DM54                      |              |          | 0.8                                   |     |           | 0.7  |          |        | N/A   | .,    |
| ,               | · ·                                    |                         |                                                    | DM74                      |              |          | 0.8                                   |     |           | 8.0  |          |        | 0.8   | V     |
| VI              | Input Clamp Voltage                    | V <sub>CC</sub> = Min   | I <sub>I</sub> = -12 mA<br>I <sub>I</sub> = -18 mA |                           |              |          | -1.5                                  |     |           |      | -        |        |       | · v   |
|                 | ·                                      | VCC - WIII              | I <sub>1</sub> = -18 mA                            |                           |              |          |                                       |     |           | -1.5 |          |        | -1.2  | 1 · V |
| I <sub>ОН</sub> | High Level Output Current              |                         |                                                    | DM54                      |              |          | -2.0                                  |     |           | -1.0 |          |        | N/A   |       |
|                 |                                        | ·                       | ,                                                  | DM74                      |              |          | -5.2                                  |     |           | -2.6 |          |        | -6.5  | mA    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min,  | V <sub>IH</sub> = 2V                               | DM54                      | 2.4          | 3.3      |                                       | 2.4 | 3.4       |      |          | N/A    |       | V     |
| , -             |                                        | V <sub>IL</sub> = Max,  | I <sub>OH</sub> = Max                              | DM74                      | 2.4          | 3.1      |                                       | 2.4 | 3.1       |      | 2.4      | 3.2    |       | L v   |
| loL             | Low Level Output Current               |                         |                                                    | DM54                      |              |          | 16                                    |     |           | 8    | ,        |        | N/A   | mA    |
|                 | ,                                      |                         | <b>Y</b> HO                                        | DM74                      |              | -        | 16                                    |     |           | 16   |          |        | 20    | """   |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min   | I <sub>OL</sub> = Max                              | DM54                      |              |          | 0.4                                   |     |           | 0.4  |          |        | N•/A  |       |
| l               | · · · · · · · · · · · · · · · · · · ·  | $V_{1H} = 2V$           |                                                    | DM74                      |              |          | 0.4                                   |     |           | 0.5  |          |        | 0.5   | V     |
| ,               |                                        | V <sub>IL</sub> = Max   | I <sub>OL</sub> = 4 mA                             | DM74                      | ļ            |          |                                       |     |           | 0.4  |          | ·      |       |       |
| O(OFF)          | Off-State (High Impedance State)       |                         | V <sub>IL</sub> = 0.7V                             | V <sub>O</sub> = 0.4V     | <u> </u>     |          |                                       |     |           | -20  |          |        |       |       |
|                 | Output Current                         | V <sub>CC</sub> = Max   |                                                    | $V_0 = 2.7V$              | <u> </u>     |          |                                       |     |           | 20   |          |        |       | ١.    |
|                 |                                        | V <sub>IH</sub> = 2V    | V <sub>II</sub> = 0.8V                             | $V_O = 0.4V$ $V_O = 0.5V$ |              |          | -40                                   |     |           |      |          |        | -50   | μΑ    |
|                 |                                        |                         | VIL 0.01                                           | $V_0 = 0.3V$              |              | ~        | 40                                    |     |           |      |          |        | 50    |       |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage |                         | V <sub>1</sub> = 5.5V                              |                           | <del> </del> |          | 1                                     |     |           |      |          |        | 1     |       |
| •               |                                        | V <sub>CC</sub> = Max   | V <sub>1</sub> = 7.0V                              |                           | <b> </b>     |          | · · · · · · · · · · · · · · · · · · · |     |           | 0.1  |          |        | · · · | mA    |
| I <sub>IH</sub> | High Level Input Current               | -                       | V <sub>1</sub> = 2.4V                              |                           |              |          | 40                                    |     |           |      | <u> </u> |        |       |       |
| ,               |                                        | $V_{CC} = Max$          | V <sub>1</sub> = 2.7V                              |                           |              | ,        |                                       |     |           | 20   |          |        | 50    | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                |                         | V <sub>1</sub> = 0.4V                              |                           |              |          | -1.6                                  |     |           | -0.4 |          |        |       |       |
| ŀ               |                                        | $V_{CC} = Max$          | V <sub>I</sub> = 0.5V                              |                           |              |          | ,                                     |     |           |      |          |        | -2    | mA    |
| los             | Short Circuit Output Current           | \\\\ = 0.0 \( \tau \)   |                                                    | DM54                      | -30          |          | -70                                   | -30 |           | -130 |          | N/A    |       |       |
|                 |                                        | V <sub>CC</sub> = Max(2 | <u> </u>                                           | DM74                      | -28          |          | -70                                   | -30 |           | -130 | -40      |        | -100  | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max   |                                                    |                           |              |          |                                       | ,   | See Table |      | -        |        |       |       |

### Note

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
- ,(2) Not more than one output should be shorted at a time, and for DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
- (3) Data for DM54LS/74LS125, 126 is preliminary.
- LS125, LS126 To Be Announced In 1976

# DM54/DM74125,126,S134 TRI-STATE Buffers

# **Supply Currents**

|        | CON            | DITIONS            |     | I <sub>CC</sub> (mA) |     |
|--------|----------------|--------------------|-----|----------------------|-----|
| DEVICE | DATA<br>INPUTS | OUTPUT<br>CONTROLS | MIN | TYP(1)               | MAX |
| 125    | 0V             | 4.5V               |     | 32                   | 54  |
| 126    | 0V             | 0V                 |     | 36                   | 62  |
| LS125  | 0V             | 4.5V               |     | 11                   | 18  |
| LS126  | 0V             | 0V                 |     | 12                   | 21  |
| S134   | 0V             | 0V                 |     | 7                    | 13  |
|        | 5V             | 0V                 |     | 9                    | 16  |
|        | 5V             | 5V                 |     | 14                   | 25  |

**Switching Characteristics** at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  |                                        |                                    |     |     | DM! | 54/74 |     |     |     | _     | DM54 | LS/74LS | 3     |     | DM74                                       | S   |              |      | l     |
|------------------|----------------------------------------|------------------------------------|-----|-----|-----|-------|-----|-----|-----|-------|------|---------|-------|-----|--------------------------------------------|-----|--------------|------|-------|
|                  | PARAMETER                              | CONDITIONS                         |     | 125 |     |       | 126 |     |     | LS125 |      |         | LS126 |     |                                            |     | <b>\$134</b> |      | UNITS |
|                  |                                        |                                    | MIN | TYP | MAX | MIN   | TYP | MAX | MIN | TYP   | MAX  | MIN     | TYP   | MAX | CONDITIONS                                 | MIN | TYP          | MAX  | 1     |
| tpLH             | Propagation Delay Time,                |                                    |     |     |     |       | 40  | 45  |     | 40    | 45   |         | 40    | 45  | $C_L = 15  pF, R_L = 280 \Omega$           |     | 4            | 6    |       |
|                  | Low-to-High Level Output               |                                    |     | 10  | 15  |       | 10  | 15  |     | 10    | 15   |         | 10    | 15  | $C_{L} = 50 \text{ pF}, R_{L} = 280\Omega$ |     | 5.5          | 9    | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,                |                                    |     | 12  | 18  |       | 10  | 10  |     | 40    | 40   |         | 40    | 18  | $C_{L} = 15 \text{ pF}, R_{L} = 280\Omega$ |     | 5            | 7.5  |       |
|                  | High-to-Low Level Output               | $C_L = 50 pF$<br>$R_L = 400\Omega$ |     | 12  | 18  |       | 12  | 18  |     | 12    | 18   |         | 12    | 18  | $C_L = 50 \text{ pF}, R_L = 280\Omega$     |     | 7            | 11   | ns    |
| <sup>t</sup> ZH  | Output Enable Time<br>to High Level    | $R_L = 2 k\Omega (LS)$             |     | 12  | 18  |       | 13  | 19  |     | 12    | 18   |         | 13    | 19  |                                            |     | 13           | 19.5 | ns    |
| tzL              | Output Enable Time<br>to Low Level     |                                    |     | 16  | 25  |       | 16  | 25  |     | 16    | 25   |         | 16    | 25  | $C_L = 50 \text{ pF}, R_L = 280\Omega$     |     | 14           | 21   | ns    |
| t <sub>HZ</sub>  | Output Disable Time<br>From High Level | $C_L = 5 pF$ $R_L = 400\Omega$     |     | 5   | 8   |       | 10  | 16  |     | 5     | 8    |         | 10    | 16  | C - F - F D - 2000                         |     | 5.5          | 8.5  | ns    |
| t <sub>LZ</sub>  | Output Disable Time<br>From Low Level  | $R_L = 2 k\Omega \text{ (LS)}$     |     | 9   | 14  |       | 14  | 20  |     | 9     | 14   |         | 14    | 20  | $C_L = 5 pF, R_L = 280\Omega$              |     | 9            | 14   | ns    |

|                 | PARAMETER                              | CONDITIONS                                                                                   |     | DM74S<br>S135 |             | UNITS |
|-----------------|----------------------------------------|----------------------------------------------------------------------------------------------|-----|---------------|-------------|-------|
|                 | FARAIVIETER                            | CONDITIONS                                                                                   | MIN | TYP(1)        | MAX         | UNITS |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                                              | 2   |               |             | V     |
| V <sub>IL</sub> | Low Level Input Voltage                |                                                                                              | -   | -             | 0.8         | V     |
| VI              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 mA                                               |     |               | -1.2        | · V   |
| Іон             | High Level Output Current              | ,                                                                                            | -   |               | -1          | mA    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V, V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = -1 mA | 2.7 | 3.4           |             | V     |
| l <sub>OL</sub> | Low Level Output Current               |                                                                                              |     |               | 20          | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC}$ = Min, $V_{IH}$ = 2V, $V_{IL}$ = 0.8V, $I_{OL}$ = 20 mA                             |     |               | 0.5         | V     |
| 11.             | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                                                |     |               | 1           | mA -  |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                                                 |     | · ·           | 50          | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.5V                                                 |     |               | <b>-2</b> , | mA    |
| Ios             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                     | -40 | ,             | . –100      | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                                                                     |     | 65            | 99          | mA    |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25° C.
   (2) Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the inputs grounded and the outputs open.

|                  |                                                  | T            |                     |                                        |     | DM74S |      |       |
|------------------|--------------------------------------------------|--------------|---------------------|----------------------------------------|-----|-------|------|-------|
|                  | PARAMETER(4)                                     | FROM (INPUT) | CON                 | DITIONS                                |     | \$135 |      | UNITS |
|                  |                                                  |              |                     |                                        | MIN | TYP   | MAX  |       |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | A or B       | B or A = L, C = L   |                                        |     | 8.5   | 13   |       |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | 1 7018       | B 01 A - L, C - L   | -                                      |     | 11    | 15   | ns    |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | A or B       | B or A = H, C = L   |                                        |     | 8     | 12   |       |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | AOIB         | B OF A - H, C - L   |                                        |     | 9     | 13.5 | ns    |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | A or B       | B or A = L, C = H   |                                        |     | 10    | 15   |       |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | 1 700        | B 01 A - L, C - H   | $C_1 = 15 \text{ pF}, R_1 = 280\Omega$ |     | 6.5   | 10   | ns    |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | A or B       | B or A = H, C = H   | CL - 15 pr, nt - 20032                 |     | 8.5   | 12   | ns    |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | 1 40'8       | B 01 A - 11, C - 11 |                                        |     | 7     | · 11 | ris   |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-High Level Output | С            | A = B               |                                        |     | 8     | 12   |       |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | ]            | A - D               |                                        |     | 9.5   | 14.5 | ns    |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | С            |                     |                                        |     | 7.5   | 11.5 |       |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | 1            | A ≠ B               | ,                                      |     | 8     | 12   | ns    |

Switching Characteristics at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

OR-NOR

Gates

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).

|                 |                                        |                                                      |                        |        |     | M54LS/74L    | S    |     | DM74S  |      |       |
|-----------------|----------------------------------------|------------------------------------------------------|------------------------|--------|-----|--------------|------|-----|--------|------|-------|
|                 | PARAMETER                              | C                                                    | ONDITIONS              |        | ا   | -S136, LS266 | 6    |     | S136   |      | UNITS |
|                 | ·                                      |                                                      |                        | ,      | MIN | TYP(1)       | MAX  | MIN | TYP(1) | MAX  |       |
| V <sub>IH</sub> | High Level Input Voltage               |                                                      |                        |        | 2   |              |      | 2   |        |      | V     |
| VIL             | Low Level Input Voltage                | ,                                                    |                        | DM54   |     |              | 0.7  |     | ~      | N/A  | V     |
|                 |                                        |                                                      |                        | DM74   |     | ····         | 0.8  |     |        | 8.0  | V     |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I                             | <sub>I</sub> = -18 mA  |        |     |              | -1.5 |     | ,      | -1.2 | V     |
| Гон             | High Level Output Current              | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max, V |                        |        | *   |              | 100  |     |        | 250  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              |                                                      |                        |        |     |              | 5.5  |     |        | 5.5  | V     |
| loL             | Low Level Output Current               |                                                      |                        | DM54   |     |              | 4    |     |        | N/A  | mA    |
|                 |                                        |                                                      |                        | DM74   |     |              | 8    |     |        | 20   | 1110  |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min                                | I <sub>OL</sub> = Max  | DM54   |     | 0.25         | 0.4  |     |        | N/A  |       |
|                 |                                        | V <sub>IH</sub> = 2V                                 | IOE IIIUX              | DM74   |     | 0.35         | 0.5  |     |        | 0.5  | V     |
|                 |                                        | V <sub>IL.</sub> = Max                               | I <sub>OL</sub> = 4 mA | DM74   |     |              | 0.4  |     |        |      | -     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max                                | V <sub>1</sub> = 5.5V  |        |     |              |      |     |        | 1    | mA    |
|                 |                                        | A CC - Max                                           | V <sub>1</sub> = 7V    |        |     |              | 0.2  |     |        |      |       |
| Ін              | High Level Input Current               | V <sub>CC</sub> = Max,                               | V <sub>1</sub> = 2.7V  |        | ,   |              | 40   | -   | -      | 50   | μΑ    |
| ։ կլ            | Low Level Input Current                | V <sub>CC</sub> = Max                                | V <sub>1</sub> = 0.4V  |        |     |              | -0.6 |     |        | -    | mA    |
|                 |                                        | A CC - Max                                           | V <sub>I</sub> = 0.5V  |        |     |              |      |     |        | -2   |       |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(2                              | )\                     | LS136  |     | 6.1          | 10   |     |        |      | mA    |
|                 |                                        | ACC - Max/5                                          | -1                     | Others |     | 8            | 13   |     | 50     | 75   | IIIA  |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) I<sub>CC</sub> is measured with one input of each gate at 4.5V, the other inputs grounded, and the outputs open.

|                  | PARAMETER                                           | FROM<br>(INPUT) | COI               | NDITIONS                                                 |     | M54LS/74<br>S136, LS26 |     |     | DM74S<br>S136 |      | UNITS |
|------------------|-----------------------------------------------------|-----------------|-------------------|----------------------------------------------------------|-----|------------------------|-----|-----|---------------|------|-------|
|                  |                                                     | (INFOT)         |                   |                                                          | MIN | TYP                    | MAX | MIN | TYP           | MAX  |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | A D             | Other Land        |                                                          |     | 18                     | 30  |     | 8             | 12.5 | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | A or B          | · Other Input Low | C <sub>L</sub> = 15 pF                                   |     | 18                     | 30  |     | 7.5           | 12   | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | A B             |                   | $R_L = 2 k\Omega (54LS/74LS)$<br>$R_L = 280\Omega (74S)$ |     | 18                     | 30  |     | 8             | 12.5 | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | A or B          | Other Input High  |                                                          |     | 18                     | 30  |     | 7.5           | 12   | ns    |

DM54/DM74136,LS266

**Open Collector EXCLUSIVE** 

**OR-NOR Gates** 

|                 | ÷                          | •                       |                        |                                  |                      |          | DM54/74           | 1           | DI           | VI54LS/7             | 4LS         |                                                  |
|-----------------|----------------------------|-------------------------|------------------------|----------------------------------|----------------------|----------|-------------------|-------------|--------------|----------------------|-------------|--------------------------------------------------|
|                 | PARAMET                    | ΓER                     |                        | CONDITI                          | ONS                  | 365      | , 366, 367        | , 368       | I .          | 365, LS:<br>367, LS: |             | UNITS                                            |
| ,               |                            |                         |                        |                                  |                      | MIN      | TYP(1)            | MAX         | MIN          | TYP(1)               | MAX         |                                                  |
| V <sub>IH</sub> | High Level Input Voltage   |                         |                        | · ·                              |                      | 2        |                   |             | 2            |                      |             | ٧                                                |
| V <sub>IL</sub> | Low Level Input Voltage    |                         |                        |                                  | DM54                 |          |                   | 0.8         |              |                      | 0.7         | V                                                |
|                 |                            | -                       |                        |                                  | DM74                 |          |                   | 0.8         |              |                      | 0.8         |                                                  |
| VI              | Input Clamp Voltage        | *                       | V <sub>CC</sub> = Min  | I <sub>1</sub> = -12 m           | ıA `                 |          |                   | -1.5        |              |                      |             | V                                                |
|                 |                            | *                       |                        | I <sub>1</sub> = -18 m           | ıA                   |          |                   |             |              |                      | <b>−1.5</b> |                                                  |
| loH             | High Level Output Current  | t                       |                        |                                  | DM54                 |          |                   | -2.0        |              |                      | -1.0        | mA                                               |
|                 |                            |                         |                        | ······                           | DM74                 |          |                   | -5.2        |              |                      | -2.6        |                                                  |
| V <sub>OH</sub> | High Level Output Voltage  |                         | V <sub>CC</sub> = Min, |                                  | DM54                 | 2.4      | 3.1               |             | 2.4          | 3.4                  |             | l v                                              |
|                 |                            |                         | V <sub>IL</sub> = Max, | I <sub>OH</sub> = Max            | DM74                 | 2.4      | 3.1               |             | 2.4          | 3.1                  |             | ļ                                                |
| IOL             | Low Level Output Current   | •                       |                        |                                  | DM54                 | <u> </u> |                   | 32          |              |                      | 8           | mA                                               |
|                 |                            |                         |                        | 1:                               | DM74                 |          |                   | 32          |              |                      | 16          |                                                  |
| V <sub>OL</sub> | Low Level Output Voltage   |                         | V <sub>CC</sub> = Min  | I <sub>OL</sub> = 8 m.           |                      |          |                   |             |              |                      | 0.4         | 1                                                |
|                 |                            |                         | V <sub>IH</sub> = 2V   | I <sub>OL</sub> = 16 n           |                      |          |                   | 0.4         |              |                      | 0.5         | V                                                |
|                 |                            |                         | V <sub>IL</sub> = Max  | I <sub>OL</sub> = 32 r           |                      |          |                   |             |              |                      |             |                                                  |
| O(OFF)          | Off-State (High Impedance  | e State) Output Current | V <sub>CC</sub> = Max  | $V_{O} = 0.4V$<br>$V_{O} = 2.4V$ |                      | +        |                   | -40         |              |                      | -20         |                                                  |
|                 |                            |                         | V <sub>1H</sub> = 2V   |                                  |                      |          |                   | 40          |              |                      |             | μΑ                                               |
|                 |                            |                         | <u> </u>               | $V_0 = 2.7V$                     |                      |          |                   |             |              |                      | 20          | ļ                                                |
| l <sub>l</sub>  | Input Current at Maximum   | n Input Voltage         | V <sub>CC</sub> = Max  | $V_1 = 5.5V$<br>$V_1 = 7.0V$     |                      |          |                   | 1           |              |                      |             | mA                                               |
|                 |                            |                         |                        | <del></del>                      |                      |          |                   |             | ļ            |                      | 0.1         |                                                  |
| III             | High Level Input Current   |                         | V <sub>CC</sub> = Max  | $V_1 = 2.4V$<br>$V_1 = 2.7V$     |                      | -        |                   | 40          |              |                      | 20          | μΑ                                               |
|                 |                            | <del>L', l'aller</del>  |                        |                                  |                      |          |                   |             |              |                      |             | <del>                                     </del> |
| l <sub>IL</sub> | Low Level Input Current    | A Input                 |                        |                                  | oth G Inputs at 2V   | -        |                   | -40<br>-1.6 |              |                      | -20<br>-0.4 | μΑ                                               |
|                 | ,                          | G Input                 | - VCC - Wax            | $V_1 = 0.4V, B$<br>$V_1 = 0.4V$  | oth G Inputs at 0.4V | +        | ~ <del>~~~~</del> | -1.6        | <del> </del> |                      | -0.4        | mA .                                             |
| Ios             | Short Circuit Output Curre | L                       | V <sub>CC</sub> = Max( | <u> </u>                         |                      | -40      |                   | -115        | -30          |                      | -130        | mA.                                              |
| Icc             | Supply Current             |                         | +                      | 365 1 536                        | 5, 367, LS367        | +        | 65                | 85          | <b></b>      | 22                   | 28          |                                                  |
| 100             | Cappiy Curiont             |                         | V <sub>CC</sub> = Max  |                                  | 6, 368, LS368        | +        | 59                | 77          | <del> </del> | 20                   | 26          | .mA                                              |

UNITS

ns

ns

ns

37

11

27

37

11

27

| Switc            | Switching Characteristics at V <sub>CC</sub> = 5V, T <sub>A</sub> = 25°C |                                        |      |       |          |     |                                |     |            |              |     |        |       |  |
|------------------|--------------------------------------------------------------------------|----------------------------------------|------|-------|----------|-----|--------------------------------|-----|------------|--------------|-----|--------|-------|--|
|                  |                                                                          |                                        | DM54 | /74   |          |     | DM54LS/74LS                    |     |            |              |     |        |       |  |
|                  | PARAMETER                                                                | CONDITIONS                             | 365  | , 367 | 366, 368 |     | 366, 368                       |     | CONDITIONS | LS365, LS367 |     | LS366, | LS368 |  |
|                  |                                                                          | 00110110110                            | TYP  | MAX   | TYP      | MAX | CONDITIONS                     | TYP | MAX        | TYP          | MAX |        |       |  |
| tPLH             | Propagation Delay Time, Low-to-High Level Output                         |                                        | 10   | 16    | 11       | 17  |                                |     | 16         |              | 17  | ſ      |       |  |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output                         | 0 50 5 0 4000                          | 14   | 22    | 10       | 16  |                                |     | 22         |              | 16  |        |       |  |
| tzH              | Output Enable Time to High Level                                         | $C_L = 50 \text{ pF}, R_L = 400\Omega$ | 21   | 35    | 21       | 35  | $C_L = 15 pF, R_L = 2 k\Omega$ |     | 35         |              | 35  | ſ      |       |  |

 $C_L$  = 5 pF,  $R_L$  = 400 $\Omega$ 

24

37

11

27

24

6

16

37

11

27

 $C_L$  = 5 pF,  $R_L$  = 2 k $\Omega$ 

# t<sub>LZ</sub>

tzL

tHZ

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Output Enable Time to Low Level

Output Disable Time From High Level

Output Disable Time From Low Level

- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) Data for DM54LS/74LS is preliminary.

LS365, LS366, LS367, LS368 To Be Announced In 1976



# National Semiconductor 54/74 MSI DEVICES Section 2



| RATINGS                                        |          | 54/74<br>SERIES | 54H/74H<br>SERIES | 54L/74L<br>SERIES | 54LS/74L<br>DIODE<br>INPUTS | S SERIES<br>EMITTER'<br>INPUTS | 54S/74S<br>SERIES | UNITS |
|------------------------------------------------|----------|-----------------|-------------------|-------------------|-----------------------------|--------------------------------|-------------------|-------|
| Maximum Allowable<br>Supply Voltage            |          | 7               | 7                 | 8                 | 7                           | 7                              | 7                 | V     |
| Guaranteed Operating Supply Voltage Range      | 54<br>74 |                 |                   |                   | o 5.50<br>o 5.25            |                                |                   | V     |
| Maximum Input Voltage                          |          | 5.5             | 5.5               | 5.5               | 7                           | 5.5                            | 5.5               | V     |
| Maximum Voltage to Open-<br>Collector Outputs* |          | -7              | 7                 | 8                 | .7                          | 7                              | 7                 | V     |
| Operating Free-Air                             | 54       | ·               |                   | −55 to            | o +125                      |                                |                   | °c    |
| Temperature Range                              | 74       |                 |                   | 0 to              | +70                         |                                |                   |       |
| Storage Temperature Range                      |          |                 |                   | -65 to            | +150                        |                                |                   | . °C  |

<sup>\*</sup>Except for selected high voltage types, as specified in electrical tables.

| 54/74 MSI           |                                                    | <del></del> | <u> </u> |                    |     |      | Cont |      |
|---------------------|----------------------------------------------------|-------------|----------|--------------------|-----|------|------|------|
| D N.                | December 2                                         | Page        |          |                    |     | cage |      |      |
| Device No.          | Description                                        | No.         | Mil      | J<br>Coml          | Mil | Coml | Mil  | Con  |
| DM5441A/DM7441A     | BCD/Decimal Decoders/Drivers                       | 2-1         | •        | •                  |     | •    | •    | •    |
| DM5442/DM7442       | BCD/Decimal Decoders                               | 2-3         | •        | •                  |     | •    | •    | •    |
| M54L42A/DM74L42A    | BCD/Decimal Decoders                               | 2-3         |          | •                  | •   | •    | •    | •    |
| DM54LS42/DM74LS42   | BCD/Decimal Decoders                               | 2-3         | •        | •                  | •   | •    | •    | •    |
| DM5445/DM7445       | BCD/Decimal Decoders/Drivers                       | 2-6         |          | •                  |     | •    | •    | •    |
| DM5446A/DM7446A     | BCD/7-Segment Decoders/Drivers                     | 2-8         |          | •                  | •   | •    | •    | •    |
| M5447A/DM7447A      | BCD/7-Segment Decoders/Drivers                     | 2-8         |          | •                  | •   | •    |      | •    |
| 0M54LS47/DM74LS47   | BCD/7-Segment Decoders/Drivers                     | 2-8         | •        | •                  | •   | •    |      | •    |
| 0M5448/DM7448       | BCD/7-Segment Decoders/Drivers                     | 2-8         |          | •                  | •   | •    | •    | •    |
| 0M54LS48/DM74LS48   | BCD/7-Segment Decoders/Drivers                     | 2-8         | •        | •                  | •   | •    |      | •    |
| DM54LS49/DM74LS49   | BCD/7-Segment Decoders/Drivers                     | 2-8         |          | •                  | •   | •    | •    |      |
| DM5475/DM7475       | Quad Latches                                       | 2-14        | •        | •                  | •   | •    | •    |      |
| DM54L75A/DM74L75A   | Quad Latches                                       | 2-14        |          | •                  | •   | •    |      |      |
| DM54LS75/DM74LS75   | Quad Latches                                       | 2-14        |          | •                  |     | •    |      |      |
| DM54LS77/DM74LS77   | Quad Latches                                       | 2-14        |          | •                  |     | •    |      |      |
| 0M5483/DM7483       | 4-Bit Binary Adders with Fast Carry                | 2-17        |          |                    |     | •    |      |      |
|                     |                                                    | 2-17        |          |                    |     | _    |      |      |
| 0M54LS83A/DM74LS83A | 4-Bit Binary Adders with Fast Carry                | 1           |          | •                  |     | •    |      |      |
| DM5485/DM7485       | 4-Bit Magnitude Comparators                        | 2-21        |          | •                  |     | •    |      |      |
| 0M54L85/DM74L85     | 4-Bit Magnitude Comparators                        | 2-21        |          | -                  |     | •    | •    | •    |
| DM54LS85/DM74LS85   | 4-Bit Magnitude Comparators                        | 2-21        | •        | •                  | •   | •    | •    | •    |
| M5488/DM7488        | 256-Bit Read Only Memories                         | 2-25        | •        | •                  |     | •    | • .  | •    |
| M5489/DM7489        | 64-Bit Read/Write Memories                         | 2-28        | •        | •                  |     | •    | ^    | I/A  |
| 0M54L89A/DM74L89A   | 64-Bit Read/Write Memories                         | 2-28        | •        | •                  | •   | •    | •    | •    |
| M5490A/DM7490A      | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| 0M54L90/DM74L90     | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| M54LS90/DM74LS90    | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| M5491A/DM7491A      | 8-Bit Serial Shift Registers                       | 2-34        | •        | •                  | •   | •    | •    | •    |
| 0M54L91/DM74L91     | 8-Bit Serial Shift Registers                       | 2-34        | •        | •                  | •   | •    | •    | •    |
| M5492A/DM7492A      | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| M54LS92/DM74LS92    | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| )M5493A/DM7493A     | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | · • | •    | •    | •    |
| M54L93/DM74L93      | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| M54LS93/DM74LS93    | Decade, Divide by 12, and Binary Counters          | 2-30        | •        | •                  | •   | •    | •    | •    |
| M5495/DM7495        | 4-Bit Parallel Access Shift Registers              | 2-36        | •        | •                  |     | •    | •    | •    |
| M54L95/DM74L95      | 4-Bit Parallel Access Shift Registers              | 2-36        | •        | •                  | •   | •    | •    | •    |
| M54LS95B/DM74LS95B  | 4-Bit Parallel Access Shift Registers              | 2-36        | •        | •                  | •   | •    | •    | •    |
| M5496/DM7496        | 5-Bit Shift Registers                              | 2-39        | •        | •                  |     | •    | •    | •    |
| M54LS96/DM74LS96    | 5-Bit Shift Registers                              | 2-39        | •        | •                  | •   | •    | •    | •    |
| M54L98/DM74L98      | 4-Bit Storage Registers                            | 2-42        | •        | •                  | •   | •    | •    | •    |
| 0M54LS124/DM74LS124 | Dual Voltage Controlled Oscillators                | 2-44        | •        | •                  | •   | •    | •    | •    |
| M54LS138/DM74LS138  | Decoders/Demultiplexers                            | 2-46        | •        | •                  | •   | •    | •    | •    |
| M74S138             | Decoders/Demultiplexers                            | 2-46        | 1        | N/A                |     | •    | N    | I/A  |
| M54LS139/DM74LS139  | Decoders/Demultiplexers                            | 2-46        | •        | •                  | •   | •    | •    | •    |
| M74S139             | Decoders/Demultiplexers                            | 2-46        | N        | /A                 | l   | •    | N    | I/A  |
| M54141/DM74141      | BCD/Decimal Decoders/Drivers                       | 2-1         | •        | •                  |     | •    | •    |      |
| M54145/DM74145      | BCD/Decimal Decoders/Drivers                       | 2-6         | •        | •                  |     | •    | •    | •    |
| 0M54147/DM74147     | Priority Encoders                                  | 2-49        | •        | •                  |     | •    | •    |      |
| M54148/DM74148      | Priority Encoders                                  | 2-49        |          |                    |     | •    | •    |      |
| 0M54150/DM74150     | Data Selectors/Multiplexers                        | 2.53        |          | •                  |     | •    |      |      |
| DM54151A/DM74151A   | Data Selectors/Multiplexers                        | 2-53        |          | •                  |     | •    |      | `    |
| DM54LS151/DM74LS151 | Data Selectors/Multiplexers                        | 2-53        |          | •                  | _   | -    |      | - 2  |
| DM74S151            | Data Selectors/Multiplexers                        | 2-53        |          | /A                 |     | -    | , .  | I/A  |
| DM54153/DM74153     | Dual 4-Line to 1-Line Data Selectors/              | 2-53        | •"       | v, <b>~</b><br>● . |     | •    | • "  | •/ ^ |
|                     | Multiplexers                                       | 23/         | •        | •                  |     | •    |      |      |
| DM54LS153/DM74LS153 | Dual 4-Line to 1-Line Data Selectors/ Multiplexers | 2-57        | •        | •                  | •   | •    | •    | •    |

| 14 | 54 | /74 | MS | ı |
|----|----|-----|----|---|

# **Table of Contents**

|                     |                                                       | Page  |               |       | kage        |         |          |
|---------------------|-------------------------------------------------------|-------|---------------|-------|-------------|---------|----------|
| Device No.          | Description                                           | No.   | J<br>Mil Coml | Mil   | V<br>Coml - | Mil     | V<br>Com |
|                     |                                                       | 0.57  |               | IVIII | Com         | <b></b> |          |
| DM74S153            | Dual 4-Line to 1-Line Data Selectors/<br>Multiplexers | 2-57  | N/A           |       | •           |         | 1/A      |
| M54154/DM74154      | 4-Line to 16-Line Decoders/Demultiplexers             | 2-60  | • • .         |       | •           | (F)     | (F)      |
| M54L154A/DM74L154A  | 4-Line to 16-Line Decoders/Demultiplexers             | 2-60  | • •           | •     | •           | (F)     | (F)      |
| DM54LS154/DM74LS154 | 4-Line to 16-Line Decoders/Demultiplexers             | 2-60  | • •           | •     | •           | (F)     | (F)      |
| M54155/DM74155      | Dual 2-Line to 4-Line Decoders/ Demultiplexers        | 2-63  | • /           |       | •           | •       | •        |
| M54LS155/DM74LS155  | Dual 2-Line to 4-Line Decoders/ Demultiplexers        | 2-63  | • •           | •     | •           | •       | •        |
| 0M54156/DM74156     | Dual 2-Line to 4-Line Decoders/<br>Demultiplexers     | 2-63  | • •           |       | •           | •       | •        |
| M54LS156/DM74LS156  | Dual 2-Line to 4-Line Decoders/ Demultiplexers        | 2-63  | • •           | •     | •           | •       | •        |
| DM54157/DM74157 .   | Quad 2-Line to 1-Line Data Selectors/<br>Multiplexers | 2-66  | • •           |       | •           | •       | •        |
| DM54L157A/DM74L157A | Quad 2-Line to 1-Line Data Selectors/<br>Multiplexers | 2-66  | • •           | •     | •           |         | •        |
| DM54LS157/DM74LS157 | Quad 2-Line to 1-Line Data Selectors/ Multiplexers    | 2-66  | • •           | •     | •           | •       | •        |
| DM74S157            | Quad 2-Line to 1-Line Data Selectors/ Multiplexers    | 2-66  | N/A           |       | •           | ١       | N/A      |
| DM54LS158/DM74LS158 | Quad 2-Line to 1-Line Data Selectors/ Multiplexers    | 2-66  | • •           | •     | •           | •       | •        |
| DM74S158            | Quad 2-Line to 1-Line Data Selectors/ Multiplexers    | 2-66  | N/A           | ·     | •           |         | N/A      |
| DM54160A/DM74160A   | Synchronous 4-Bit Counters                            | 2-70  |               |       | •           |         | •        |
| M54LS160/DM74LS160  | Synchronous 4-Bit Counters                            | 2-70  |               |       | •           | •       | •        |
| M54161A/DM74161A    | Synchronous 4-Bit Counters                            | 2-70  | • •           |       | •           | •       | •        |
| M54LS161/DM74LS161  | Synchronous 4-Bit Counters                            | 2-70  |               | •     | •           | •       |          |
| M54162A/DM74162A    | Synchronous 4-Bit Counters                            | 2-70  | • •           |       | • 1         | •       | •        |
| DM54LS162/DM74LS162 | Synchronous 4-Bit Counters                            | 2-70  | • •           | •     | •           | •       | •        |
| M54163A/DM74163A    | Synchronous 4-Bit Counters                            | 2-70  | • ' • .       |       | •           | •       | •        |
| DM54LS163/DM74LS163 | Synchronous 4-Bit Counters                            | 2-70  | • •           | •     | •           | •       | •        |
| M54164/DM74164      | 8-Bit Serial In/Parallel Out Shift Registers          | 2-76  | • •           |       | • ′         | •       | •        |
| M54L164A/DM74L164A  | 8-Bit Serial In/Parallel Out Shift Registers          | 2-76  | • •           | •     | •           | •       | •        |
| M54LS164/DM74LS164  | 8-Bit Serial In/Parallel Out Shift Registers          | 2-76  | • •           | •     | •           |         | •        |
| M54165/DM74165      | 8-Bit Parallel In/Serial Out Shift Registers          | 2-79  | •, •          |       | •           | •       | •        |
| M54L165A/DM74L165A  | 8-Bit Parallel In/Serial Out Shift Registers          | 2-79  | • •           | •     | •           |         |          |
| M54166/DM74166      | 8-Bit Parallel In/Serial Out Shift Registers          | 2-82  | • •           | •     | •           | ١ ١     | N/A      |
| M54LS168/DM74LS168  | Synchronous 4-Bit Up/Down Counters                    | 2-85  | • •           | •     | •           | •       | ·        |
| M54LS169/DM74LS169  | Synchronous 4-Bit Up/Down Counters                    | 2-85  | • •           | •     | •           | •       | •        |
| M74170              | 4 by 4 Register Files                                 | 2-91  | •             | 1     | •           | 1       | N/A      |
| M54LS170/DM74LS170  | 4 by 4 Register Files                                 | 2-91  | • •           | •     | •           | •       | •        |
| M54173/DM74173      | TRI-STATE Quad D Registers                            | 2-96  | • •           |       | •           | •       | •        |
| M54LS173/DM74LS173  | TRI-STATE Quad D Registers                            | 2-96  | • •           | •     | •           | •       | •        |
| M54174/DM74174      | Hex/Quad D Flip-Flops with Clear                      | 2-98  | • •           |       | •           | •       | •        |
| M54LS174/DM74LS174  | Hex/Quad D Flip-Flops with Clear                      | 2-98  | . • •         | •     | •           | •       | •        |
| M74S174             | Hex/Quad D Flip-Flops with Clear                      | 2-98  | N/A           |       | •           | 1       | N/A      |
| M54175/DM74175      | Hex/Quad D Flip-Flops with Clear                      | 2-98  | • •           |       | . •         | •       | •        |
| DM54LS175/DM74LS175 | Hex/Quad D Flip-Flops with Clear                      | 2-98  | • •           | •     | •           | •       | •        |
| DM74S175            | Hex/Quad D Flip-Flops with Clear                      | 2-98  | N/A           |       | •           | 1       | N/A      |
| DM54176/DM74176     | Presettable Decade and Binary Counters                | 2-101 | • •           |       | •           | 1       | N/A      |
| DM54177/DM74177     | Presettable Decade and Binary Counters                | 2-101 | • •           |       | •           | i .     | V/A      |
| DM54180/DM74180     | 9-Bit Parity Generators/Checkers                      | 2-105 | • •           |       | •           | •       | •        |
| DM54181/DM74181     | Arithmetic Logic Unit/Function Generators             | 2-107 | •             |       | • .         | r       | N/A      |
|                     | Look-Ahead Carry Generators                           | 2-113 |               | 1     |             | 1       | V/A      |

| ★ 54/74 MSI           |                                                             |                |              |      | Table | e of ( | Contents |
|-----------------------|-------------------------------------------------------------|----------------|--------------|------|-------|--------|----------|
|                       |                                                             | Page           |              |      | Pack  |        | +        |
| Device No.            | Description                                                 | No.            | J            |      | N     |        | W        |
| ·                     |                                                             |                | <del> </del> | Coml | Mil   | Coml   | Mil Coml |
| DM74S182              | Look-Ahead Carry Generators                                 | 2-113          | N/A          |      |       | •      | N/A      |
| DM54184/DM74184       | BCD-to-Binary and Binary-to-BCD Converters                  | 2-116          | •            | •    |       | •      |          |
| DM54185A/DM74185A     | BCD-to-Binary and Binary-to-BCD Converters                  | 2-116          | •            | •    | 1     | •      | N/A      |
| DM54187/DM74187       | 1024-Bit Read Only Memories                                 | 2-122          | •            | •    |       | •      | N/A      |
| DM54L187A/DM74L187A   | 1024-Bit Read Only Memories                                 | 2-122          |              | •    | •     |        | NI/A     |
| DM54S189/DM74S189     | TRI-STATE 64-Bit Read/Write Memories                        | 2-125<br>2-128 |              | •    | ۱ ـ   | •      | N/A      |
| DM54190/DM74190       | Synchronous Up/Down Counters with  Mode Control             | 2-128          | •            | •    | •     | •      |          |
| DM54LS190/DM74LS190   | Synchronous Up/Down Counters with · Mode Control            | 2-128          | •            | •    | •     | •      |          |
| DM54191/DM74191       | Synchronous Up/Down Counters with  Mode Control             | 2-128          | •            | •    | •     | •      | • •      |
| DM54LS191/DM74LS191   | Synchronous Up/Down Counters with  Mode Control             | 2-128          | •            | •    | •     | •      | • •      |
| DM54192/DM74192       | Synchronous Up/Down Counters with  Dual Clock               | 2-133          | •            | •    |       | •      | • •      |
| DM54L192/DM74L192     | Synchronous Up/Down Counters with  Dual Clock               | 2-133          | •            | •    | •     | •      | • •      |
| DM54LS192/DM74LS192   | Synchronous Up/Down Counters with  Dual Clock               | 2-133          | •            | •    | •     | •      | • •      |
| DM54193/DM74193       | Synchronous Up/Down Counters with  Dual Clock               | 2-133          | •            |      |       | •      | • •      |
| DM54L193/DM74L193     | Synchronous Up/Down Counters with  Dual Clock               | 2-133          | •            | •    | •     | •      | • •      |
| DM54LS193/DM74LS193   | Synchronous Up/Down Counters with Dual Clock                | 2-133          | •            | •    | •     | •      | • •      |
| DM54194/DM74194       | 4-Bit Bidirectional Universal Shift Registers               | 2-140          | •            | •    | İ     | •      | • •      |
| DM54LS194A/DM74LS194A | 4-Bit Bidirectional Universal Shift Registers               | 2-140          | •            | •    | •     | •      | • •      |
| DM74S194              | 4-Bit Bidirectional Universal Shift Registers               | 2-140          | N/A          | 4    | l     | •      | N/A      |
| DM54195/DM74195       | 4-Bit Parallel Access Shift Registers                       | 2-144          | •            | •    |       | •      | • •      |
| DM54LS195A/DM74LS195A | 4-Bit Parallel Access Shift Registers                       | 2-144          | •            | •    | •     | •      | •        |
| DM74S195              | 4-Bit Parallel Access Shift Registers                       | 2-144          | N/A          | 4    |       | •      | N/A      |
| DM54196/DM74196       | Presettable Decade and Binary Counters                      | 2-101          | •            | •    | •     | •      | N/A      |
| DM54LS196/DM74LS196   | Presettable Decade and Binary Counters                      | 2-101          | •            | •    | •     | •      | •        |
| DM54197/DM74197       | Presettable Decade and Binary Counters                      | 2-101          | •            | •    | •     | •      | N/A      |
| DM54LS197/DM74LS197   | Presettable Decade and Binary Counters                      | 2-101          | •            | •    | •     | •      | •        |
| DM54198/DM74198       | 8-Bit Shift Registers                                       | 2-148          | •            | •    | •     | •      | N/A      |
| DM54199/DM74199       | 8-Bit Shift Registers                                       | 2-148          | •            | •    | •     | •      | N/A      |
| DM54S200/DM74S200     | TRI-STATE 256-Bit Read/Write Memories                       | 2-154          | •            | •    |       | •      | •        |
| DM54S206/DM74S206     | 256-Bit Read/Write Memories with Open-<br>Collector Outputs | 2-157          | •            | •    |       | •      | •        |
| DM54251/DM74251       | TRI-STATE Data Selectors/Multiplexers                       | 2-160          | •            | •    | 1     | •      | •        |
| DM54LS251/DM74LS251   | TRI-STATE Data Selectors/Multiplexers                       | 2-160          | •            | •    | •     | •      | •        |
| DM74S251              | TRI-STATE Data Selectors/Multiplexers                       | 2-160          | N/A          | 4    |       | •      | N/A      |
| DM54LS253/DM74LS253   | TRI-STATE Data Selectors/Multiplexers                       | 2-163          | •            | •    | •     | •      | •        |
| DM74S253              | TRI-STATE Data Selectors/Multiplexers                       | 2-163          | N/A          | 7    | }     | •      | N/A      |
| DM54LS257/DM74LS257   | TRI-STATE Quad 2-Data Selectors/<br>Multiplexers            | 2-165          | •            | •    | •     | •      | •        |
| DM74S257              | TRI-STATE Quad 2-Data Selectors/ Multiplexers               | 2-165          | N/A          | 4    |       | . •    | N/A      |
| DM54LS258/DM74LS258   | TRI-STATE Quad 2-Data Selectors/<br>Multiplexers            | 2-165          | •            | •    | •     | •      | •        |
| DM74S258              | TRI-STATE Quad 2-Data Selectors/ Multiplexers               | 2-165          | N/A          | 4    |       | •      | N/A      |
| DM54LS279/DM74LS279   | Quad S-R Latches                                            | 2-168          | •            | •    | •     | •      | • •      |
| DM74S280              | 9-Bit Parity Generators/Checkers                            | 2-170          | N/A          | 4    |       | •      | N/A      |
| DINI /4528U           | 9-Bit Parity Generators/Checkers                            | 2-170          | N/A          | 4    |       |        | •        |

| <br> |     |     |
|------|-----|-----|
| 54   | /74 | MSI |

# **Table of Contents**

|                       |                                                            | Dana        | Package  |     |      |       |     |  |  |  |  |
|-----------------------|------------------------------------------------------------|-------------|----------|-----|------|-------|-----|--|--|--|--|
| Device No.            | Description                                                | Page<br>No. | J        | N   |      | W     |     |  |  |  |  |
| ,                     |                                                            | NO.         | Mil Coml | Mil | Coml | Mil ( | Com |  |  |  |  |
| DM74S281              | 4-Bit Parallel Binary Accumulators                         | 2-173       | N/A      |     | •    | N/A   | ١   |  |  |  |  |
| DM54LS283/DM74LS283   | 4-Bit Binary Adders with Fast Carry                        | 2-17        | • •      | •   | •    | •     | •   |  |  |  |  |
| DM54S287/DM74S287     | TRI-STATE 1024-Bit Programmable Read Only Memories         | 2-177       | N/A      |     | •    | · N/A | ٠.  |  |  |  |  |
| DM54S289/DM74S289     | 64-Bit Read/Write Memories with Open-<br>Collector Outputs | 2-179       | •        |     | •    | N/A   | ١.  |  |  |  |  |
| DM54LS295A/DM74LS295A | TRI-STATE 4-Bit Parallel Access Shift Registers            | 2-182       | •        | •   | •    | •     | •   |  |  |  |  |
| DM54LS298/DM74LS298   | Quad 2-Multiplexers with Storage                           | 2-184       | • •      | •   | •    | • .   | •   |  |  |  |  |
| DM54LS374/DM74LS374   | TRI-STATE Octal D Flip-Flops                               | 2-187       | • •      | •   | •    | •     | •   |  |  |  |  |
| DM54S387/DM74S387     | 1024-Bit Programmable Read Only Memories                   | 2-177       | N/A      |     | •    | N/A   |     |  |  |  |  |
| DM54LS395/DM74LS395   | TRI-STATE 4-Bit Cascadable Shift Registers                 | 2-189       | • •      | •   | •    | •     | •   |  |  |  |  |
| DM54LS670/DM74LS670   | TRI-STATE 4 by 4 Register Files                            | 2-191       | • •      | •   | •    | • ,   | •   |  |  |  |  |



# BCD/Decimal Decoders/Drivers General Description

The DM5441A/DM7441A is a BCD-to-decimal decoder designed to drive gas-filled NIXIE tubes. The device is also capable of driving other types of low-current lamps and relays.

An over-range decoding feature provides that if binary numbers between 10 and 15 are applied to the input, the least significant bit (0-5) will be decoded on the output.

The DM54141/DM74141 is a BCD-to-decimal decoder designed specifically to drive cold-cathode indicator tubes.

Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore the DM54141/DM74141, combined with

a minimum of external circuitry, can use these invalid codes in blanking leading- and/or trailing-edge zeros in a display.

Input clamp diodes are also provided to clamp negative-voltage transitions in order to minimize transmission-line effects.

#### **Features**

- Drive cold-cathode, numeric indicator tubes directly
- Fully decoded inputs
- Low leakage current DM54/7441A DM54/74141

1.8μA @ 50V 50μA @ 55V

Low power dissipation DM54/7441A DM54/74141

105 mW typical 55 mW typical

## Connection Diagram



5441A(J), (W); 7441A(J), (N), (W); 54141(J), (W); 74141(J), (N), (W)

#### **Truth Tables**

## 5441A/7441A

|     | INF | TU   |    | OUTPUT |
|-----|-----|------|----|--------|
| D   | С   | В    | Α  | ON*    |
| L   | L   | L    | L  | 0      |
| L   | L   | L    | н  | 1      |
|     | L   | н    | L  | 2      |
| L   | L   | н    | н  | . 3    |
| L.  | н   | L    | L  | 4      |
| L   | н   | L    | н  | 5      |
| L   | н   | Н    | L  | 6      |
| L   | н   | Н    | Н  | 7      |
| Н   | L   | L    | L  | 8      |
| Н   | L   | L    | н  | 9      |
| (0) | VER | RANG | E) |        |
| Н   | L   | Н    | L  | 0      |
| Н   | L   | н    | н  | 1      |
| н   | н   | L    | L  | 2      |
| н   | н   | · L  | н  | 3      |
| н   | н   | Н    | L  | 4      |
| Н   | Н   | Н    | Н  | 5      |

54141/74141

|     | INP   | UT   |     | OUTPUT |
|-----|-------|------|-----|--------|
| D   | С     | В    | Α   | ON*    |
| L   | L     | L    | L   | 0      |
| L   | L     | L    | н   | 1      |
| L   | L     | н    | L   | 2      |
| L   | L     | н    | н   | 3      |
| L   | н     | L    | L   | 4      |
| L.  | н     | L    | н   | 5      |
| L   | Н     | н    | L   | 6      |
| L   | н     | н    | н   | 7      |
| Н   | L     | L    | , L | 8      |
| Н   | L     | L    | Н   | 9      |
| (0) | VER F | RANG | E)  |        |
| Н   | L     | Н    | L   | NONE   |
| Н   | L     | Н -  | н   | NONE   |
| Н   | Н     | L    | L   | NONE   |
| н   | н     | L    | н   | NONE   |
| Н   | Н     | н    | L   | NONE   |
| Н   | н     | н    | Н   | NONE   |

H = High Level, L = Low Level

\*All other outputs are off



|                 |                                                  |                          |                                                           |                                                                                        | DM54/74 |              |                 |     |        |              |       |  |  |
|-----------------|--------------------------------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|---------|--------------|-----------------|-----|--------|--------------|-------|--|--|
|                 | PARAMETER                                        |                          | COND                                                      | ITIONS                                                                                 |         | 41A          |                 |     | 141    |              | UNITS |  |  |
|                 |                                                  |                          |                                                           | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                | MIN     | TYP(1)       | MAX             | MIN | TYP(1) | MAX          |       |  |  |
| VIH             | High Level Input Voltage                         |                          |                                                           |                                                                                        | 2       |              |                 | 2   |        |              | V     |  |  |
| VIL             | Low Level Input Voltage                          |                          |                                                           |                                                                                        |         |              | 0.8             |     |        | 0.8          | V     |  |  |
| Vı              | Input Clamp Voltage                              | V <sub>CC</sub> = Min, I | <sub>I</sub> = -12 mA                                     |                                                                                        |         |              | N/A             |     |        | -1.5         | V     |  |  |
| V <sub>OL</sub> | On-State Output Voltage                          | V <sub>CC</sub> = Min, I | o = 7 mA                                                  | −55°C to +70°C<br>125°C                                                                |         |              | 2.5<br>3.0      |     |        | 2.5<br>3.0   | V     |  |  |
| Іон             | Off-State Reverse Current                        | V <sub>CC</sub> = Max    | V <sub>O</sub> = 50V                                      | $T_A = 125^{\circ}C$ $T_A = 70^{\circ}C$ $T_A = -55^{\circ}C, 0^{\circ}C, 25^{\circ}C$ |         |              | 60<br>40<br>1.8 |     |        | 50           | μΑ    |  |  |
| іон             | Off-State Reverse Current for Input Counts 10-15 | V <sub>CC</sub> = Max,   | V <sub>O</sub> = 30V                                      | $T_A = 55^{\circ}C$ $T_A = 70^{\circ}C$                                                |         |              | N/A<br>N/A      |     |        | 5<br>15      | μΑ    |  |  |
| V <sub>OH</sub> | Off-State Output Voltage                         | V <sub>CC</sub> = Max    | 1 <sub>O</sub> = 0.5 m <sub>o</sub>                       | A<br>A                                                                                 | 70      |              |                 | 60  |        |              | V     |  |  |
| l <sub>1</sub>  | Input Current at Maximum<br>Input Voltage        | V <sub>CC</sub> = Max,   | V <sub>I</sub> = 5.5V                                     |                                                                                        |         |              | 1               |     |        | 1.0          | mA    |  |  |
| H               | High Level Input Current                         | V <sub>CC</sub> = Max,   | V <sub>I</sub> = 2.4V                                     | A Input<br>B, C, or D Input                                                            |         | 3            | 40<br>40        |     |        | 40<br>80     | μΑ    |  |  |
| I <sub>IL</sub> | Low Level Input Current                          | V <sub>CC</sub> = Max,   | C = Max, V <sub>1</sub> = 0.4V  A Input  B, C, or D Input |                                                                                        |         | -1.0<br>-1.0 | -1.6<br>-1.6    |     |        | -1.6<br>-3.2 | mA    |  |  |
| Icc             | Supply Current                                   | V <sub>CC</sub> = Max(2  | ?)                                                        |                                                                                        |         | 21           | 36              |     | 11     | 25           | mA    |  |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) I<sub>CC</sub> is measured with all inputs grounded and outputs open.

## Logic Diagrams

#### 5441A/7441A



#### 54141/74141





## **BCD/Decimal Decoders**

## **General Description**

These BCD-to-decimal decoders consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of input logic ensures that all outputs remain off for all invalid (10-15) input conditions.

#### **Features**

Diode clamped inputs

- Also for application as 4-line-to-16-line decoders; 3-line-to-8-line decoders
- All outputs are high for invalid input conditions

| TYPE | TYPICAL POWER DISSIPATION | TYPICAL PROPAGATION DELAY |
|------|---------------------------|---------------------------|
| 42   | 140 mW                    | 17 ns                     |
| L42A | 15 mW                     | 53 ns                     |
| LS42 | 35 mW                     | 17 ns                     |
|      |                           |                           |

#### **Connection Diagram**



5442(J), (W); 7442(J), (N), (W); 54L42A/74L42A(J), (N), (W); 54LS42/74LS42(J), (N), (W)

## Logic Diagram



## **Truth Table**

| NO.     | 42, L42A, LS42<br>BCD INPUT |   |   |    |   |   |    |    | OUT |   |   |     |   |    |
|---------|-----------------------------|---|---|----|---|---|----|----|-----|---|---|-----|---|----|
|         | D                           | С | В | Α  | 0 | 1 | 2  | 3  | 4   | 5 | 6 | 7   | 8 | 9  |
| 0       | L                           | L | L | L  | L | Н | Н  | Н  | Н   | Н | Н | Н   | Н | Н  |
| 1       | L                           | L | L | Н  | н | L | Н  | Н  | Н   | Н | Н | H   | Н | н  |
| 2       | L                           | L | Н | L  | Н | Н | L  | Н  | Н   | Н | Н | Н   | Н | H- |
| 3       | L                           | L | Н | Н  | н | Н | Н  | L  | Н   | H | Н | Н   | Н | Н  |
| 4       | L                           | Н | L | L  | Н | Н | Н  | Н  | L   | Н | H | Н   | Н | Н  |
| 5       | L                           | Н | L | Н  | Н | Н | Н  | Н  | Н   | L | Н | Н   | Н | Н  |
| 6       | L                           | Н | Н | L  | Н | Н | H. | Н  | Н   | Н | L | Н   | Н | н  |
| 7       | L                           | Н | Н | Н  | Н | Н | Н  | Н  | Н   | Н | Н | L   | Н | н  |
| 8       | н                           | L | L | L  | н | Н | Н  | Н  | Н   | Н | Н | Н   | L | н  |
| 9       | Н                           | L | L | Η. | Н | Н | Н  | Н  | Н   | H | Н | Н   | Н | L  |
|         | Н                           | L | Н | L  | Н | Н | Н  | Н  | Н   | Н | Н | Н   | Н | Н  |
|         | Н                           | L | H | Н  | н | Н | Н  | Н  | Н   | Н | Н | Н   | Н | н  |
| 1 7     | Н                           | Н | L | L  | н | Н | Н  | Н  | Н   | H | Н | Н   | Н | н  |
| INVALID | Н                           | H | L | Н  | н | Н | Н  | Н  | Н   | Н | Н | Н - | Н | н  |
| =       | Н                           | Н | Н | L  | Н | Н | Н  | H, | Н   | Н | Н | Н   | Н | Н  |
| 1       | н                           | Н | H | Н  | Н | Н | Н  | Н  | Н   | Н | Н | Н   | Н | н  |

H = High Level

L = Low Level

| Electrical Characteristics | over recommended operating for | ree-air temperature range | (unless otherwise noted) |
|----------------------------|--------------------------------|---------------------------|--------------------------|
|                            |                                |                           |                          |

|                 |                                        |                                               | ·                                           |              |              | DM54/74 |          |         | DM54L/74    | L          | DM54LS/74LS |        |              |       |
|-----------------|----------------------------------------|-----------------------------------------------|---------------------------------------------|--------------|--------------|---------|----------|---------|-------------|------------|-------------|--------|--------------|-------|
|                 | PARAMETER                              |                                               | CONDITIONS                                  |              |              | 42      |          |         | L42A        |            |             | LS42   |              | UNITS |
|                 | ,                                      |                                               |                                             |              | MIN          | TYP(1)  | MAX      | MIN     | TYP(1)      | MAX        | MIN         | TYP(1) | MAX          |       |
| VIH             | High Level Input Voltage               |                                               |                                             | :            | 2            |         |          | 2       |             |            | 2           |        |              | V     |
| VIL             | Low Level Input Voltage                |                                               |                                             | DM54         |              |         | 0.8      |         |             | .0.7       |             |        | 0.7          | V     |
|                 |                                        |                                               | ,                                           | DM74         |              | -       | 8.0      |         |             | 0.7        |             |        | 8.0          | V     |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min                         | I <sub>1</sub> = -12 mA.                    |              |              |         | -1.5     |         | N/A         |            |             |        |              | V     |
|                 |                                        | • CG WIIII                                    | I <sub>1</sub> = -18 mA                     |              |              |         |          |         | N/A         |            |             |        | -1.5         | ·     |
| I <sub>OH</sub> | High Level Output Current              |                                               |                                             |              |              |         | -800     |         |             | -200       |             | ř      | -400         | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min                         |                                             | DM54         | 2.4          | 3.4     | -        | 2.4     | 3.4         |            | 2.5         | 3.5    | -            |       |
|                 |                                        | V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max | I <sub>OH</sub> = Max                       | DM74         | 2.4          | 3.4     |          | 2.4     | 3.4         |            | 2.7         | 3.5    |              | V     |
| loL             | Low Level Output Current               |                                               |                                             | DM54         |              |         | 16       |         |             | 2          |             |        | 4            | mA    |
|                 | ·                                      | <u> </u>                                      |                                             | DM74         |              |         | 16       |         |             | 3.6        |             |        | 8 .          |       |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min                         | I <sub>OL</sub> = 4 mA                      | DM74         |              |         |          |         |             |            |             | 0.25   | 0.4          |       |
|                 |                                        | $V_{IH} = 2V$                                 | I <sub>OL</sub> = Max                       | DM54<br>DM74 | -            | 0.2     | 0.4      | <b></b> | 0.15        | 0.3        |             | 0.25   | 0.4          | V     |
|                 |                                        | V <sub>IL</sub> = Max                         | V - 5 5 V                                   | DIVI74       |              | 0.2     |          |         | 0.2         |            |             | 0.33   | 0.5          |       |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max                         | $V_1 = 5.5V$ $V_1 = 7V$                     |              | <u> </u>     |         | 1        |         |             | 0.1        |             |        | 0.1          | mA    |
| I <sub>IH</sub> | High Level Input Current               | <u> </u>                                      | V <sub>1</sub> = 2.4V                       |              | <del> </del> |         | 40       |         | <del></del> | 10         |             |        |              |       |
| •••             |                                        | V <sub>CC</sub> = Max                         | V <sub>1</sub> = 2.7V                       |              | <b>—</b>     |         |          |         |             |            |             |        | 20           | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                | V = Max                                       | V <sub>1</sub> = 0.3V for                   |              |              |         |          |         | •           | -0.18      |             |        |              | mA    |
|                 |                                        | V <sub>CC</sub> - Max                         | $V_{CC} = Max$ $V_1 = 0.4V \text{ for Oth}$ |              |              |         | -1.6     |         |             |            |             |        | <b>−</b> 0.4 |       |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2                       | 2)                                          | DM54         | -20          |         | -55      | -3      |             | -15        | -30         |        | -130         | · mA  |
|                 |                                        |                                               |                                             | DM74         | -18          |         | -55<br>  | -3      |             | -15        | 30          |        | -130         |       |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3                       | 3)                                          | DM54<br>DM74 |              | 28      | 41<br>56 | ļ       | 3.0         | 5.3<br>5.3 |             | 7      | 13<br>13     | mA    |
|                 |                                        |                                               |                                             | DIVI/4       | L            | 28      | <u> </u> | L       | J.U         | 5.3        |             |        | 13           | l     |

#### Notes:

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all outputs open and all inputs grounded.

|      |                                                                                                      | D                      | M54/74 | 1    |     | DN                     | 154 L/74 | IL. |     | DMS                    | 54LS/74 | LS  |     |       |
|------|------------------------------------------------------------------------------------------------------|------------------------|--------|------|-----|------------------------|----------|-----|-----|------------------------|---------|-----|-----|-------|
|      | PARAMETER                                                                                            |                        | 42     |      |     |                        | L42A     |     |     |                        | LS42    |     |     | UNITS |
|      |                                                                                                      | CONDITIONS             | MIN    | TYP  | MAX | CONDITIONS             | MIN      | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX |       |
| tpHL | Propagation Delay Time, High-to-Low Level<br>Output From A, B, C, or D Through 2<br>Levels of Logic  |                        |        | 14   | 25  |                        |          | 65  | 130 |                        |         | 14  | 25  | ns    |
| tPHL | Propagation Delay Time, High-to-Low Level<br>Output From A, B, C, or D Through 3<br>Levels of Logic  | C <sub>L</sub> = 15 pF |        | 17   | 30  | C <sub>L</sub> = 50 pF |          | 70  | 140 | C <sub>L</sub> = 15 pF |         | 17  | 30  | ns    |
| tPLH | Propagation Delay Time, Low-to-High Level<br>Output From A, B, C, and D Through 2<br>Levels of Logic | R <sub>L</sub> = 400Ω  |        | ` 10 | 25  | R <sub>L</sub> = 4 kΩ  |          | 30  | 60  | R <sub>L</sub> = 2 kΩ  |         | 10  | 25  | ns ·  |
| tPLH | Propagation Delay Time, Low-to-High Level<br>Output From A, B, C, and D Through 3<br>Levels of Logic |                        |        | 17   | 30  |                        |          | 35  | 70  |                        |         | 17  | 30  | ns    |



## **General Description**

These BCD-to-decimal decoders/drivers consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of BCD input logic ensures that all outputs remain off for all invalid (10-15) binary input conditions. These decoders feature high-performance, NPN output transistors designed for use as indicator/relay drivers, or as open-collector logic-circuit drivers. The high-breakdown output

## **BCD/Decimal Decoders/Drivers**

transistors are compatible for interfacing with most MOS integrated circuits.

#### **Features**

- Full decoding of input logic
- 80 mA sink-current capability
- All outputs are off for invalid BCD input conditions

#### **Connection Diagram**



5445(J), (W); 7445(J), (N), (W); 54145(J), (W); 74145(J), (W)

#### Logic Diagram



#### Truth Table

| NO.     |     | INP | UTS |   |   |   |     |    | OUT | PUTS |   |     |     |   |
|---------|-----|-----|-----|---|---|---|-----|----|-----|------|---|-----|-----|---|
| NO.     | D   | С   | В   | Α | 0 | 1 | 2   | 3  | 4   | 5    | 6 | 7   | - 8 | 9 |
| 0       | Ļ   | L   | L   | L | Ļ | Н | Н   | Н  | Н   | н    | Н | н   | Н   | Н |
| 1       | L   | L   | L   | Н | Н | L | Н   | Н  | Н   | Н    | Н | Н   | Н   | н |
| 2       | L   | L   | Н   | L | н | Н | L   | Н  | Н   | Н    | H | . н | Н   | н |
| 3       | L   | L   | ,H  | н | н | Н | Н   | L  | Н   | Н    | Н | H   | Н   | н |
| 4       | ٦   | Н   | L   | L | H | Н | Н   | н  | L   | Н    | Н | H,  | Н   | н |
| 5       | L   | Н   | L   | Н | Н | Н | Н   | Н  | Н   | L    | Н | Н   | Н   | Н |
| 6       | L   | Н   | Н   | L | Н | Н | Н   | Н  | Н   | Н    | L | Н   | Н   | н |
| 7       | L   | Н   | Н   | Н | Н | Н | Н   | Н  | Н   | Н    | Ĥ | L   | Н   | H |
| 8       | Н   | L   | L   | L | н | Н | Н   | Н  | Н   | Н    | Н | Н   | L   | н |
| 9       | Н   | L   | L   | Н | Н | Н | Н   | Н  | Н   | Н    | Н | Н   | Н   | L |
|         | Н   | L   | Н   | L | Н | Н | Н   | Η. | H.  | Н    | Н | Н   | Н   | Н |
| ا ہ ا   | Н   | L   | Н   | Н | н | H | · H | Н  | Н   | Н    | Н | Н   | Н   | н |
| ALI     | ·H  | Н   | L   | L | Н | Н | Н   | Н  | Н   | H    | Н | Н   | Н   | н |
| INVALID | Н   | Н   | L   | Н | Н | Н | Н   | Н  | Н   | H-   | Н | Н   | Н   | н |
| =       | н   | Н   | Н   | L | Н | н | Н   | Ĥ  | Н   | Н    | Н | Н   | Н   | н |
|         | . н | Н   | Н   | Н | H | Н | Н   | *H | Н   | Н    | Н | Н   | H   | н |

H = High Level (Off), L = Low Level (On)



|                     |                                        |                                                |      |                       |     | DM54/74 |      |       |
|---------------------|----------------------------------------|------------------------------------------------|------|-----------------------|-----|---------|------|-------|
|                     | PARAMETER                              | CONDITIO                                       | ONS  |                       |     | 45, 145 |      | UNITS |
|                     |                                        |                                                |      |                       | MIN | TYP(1)  | MAX  |       |
| V <sub>IH</sub>     | High Level Input Voltage               |                                                | ,    |                       | 2   |         |      | V     |
| VIL                 | Low Level Input Voltage                |                                                |      |                       |     |         | 0.8  | V     |
| VI                  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>I</sub> = -12 mA | `    |                       |     |         | -1.5 | ٧     |
| V <sub>O(ON)</sub>  | On-State Output Voltage                | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V    | 100  | <sub>N)</sub> = 80 mA |     | 0.5     | 0.9  | V     |
|                     |                                        | V <sub>IL</sub> = 0.8V                         | 100  | <sub>N)</sub> = 20 mA |     |         | 0.4  | ľ     |
| V <sub>O(OFF)</sub> | Off-State Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V    |      | 45                    | 30  |         |      | V     |
|                     |                                        | $V_{IL} = 0.8V, I_{O(OFF)} = 2$                | 50μΑ | 145                   | 15  |         |      | ľ     |
| l <sub>i</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V   |      | ,                     |     |         | 1    | mA    |
| I <sub>IH</sub>     | High Level Input Current               | $V_{CC} = Max, V_1 = 2.4V$                     |      |                       |     |         | 40   | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V   |      |                       |     |         | -1.6 | mA    |
| Icc                 | Supply Current                         | $V_{CC} = Max(2)$                              | DM5  | 54                    |     | 43      | 62   | mA    |
|                     | ,                                      | VCC - Wax(2)                                   | DM7  | '4                    |     | 43      | 70   | ,,,,, |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) ICC is measured with all inputs grounded and outputs open.

## Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  | ,                                                   |                        |     | M54/7   |     |       |
|------------------|-----------------------------------------------------|------------------------|-----|---------|-----|-------|
|                  | PARAMETER                                           | CONDITIONS             |     | 45, 145 |     | UNITS |
|                  | · ·                                                 |                        | MIN | TYP     | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | C <sub>L</sub> = 15 pF | ,   |         | 30  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | $R_L = 100\Omega$      |     |         | 30  | ns    |

## **BCD/7-Segment Decoders/Drivers**

## **General Description**

The 46A, 47A and LS47 feature active-low outputs designed for driving common-anode LED's or incandescent indicators directly; and the 48, LS48 and LS49 feature active-high outputs for driving lamp buffers or common-cathode LED's. All of the circuits except the LS49 have full ripple-blanking input/output controls and a lamp test input. The LS49 features a direct blanking input. Segment identification and resultant displays are shown on a following page. Display patterns for BCD input counts above nine are unique symbols to authenticate input conditions.

All of the circuits except the LS49 incorporate automatic leading and/or trailing-edge, zero-blanking control (RBI and RBO). Lamp test (LT) of these devices may be performed at any time when the BI/RBO node is at a high logic level. All types (including LS49) contain an overriding blanking input (BI) which can be used to control the lamp intensity (by pulsing), or to inhibit the outputs.

#### **Features**

All circuit types feature lamp intensity modulation capability

#### 5446A/7446A, 5447A/7447A, 54LS47/74LS47

- Open-collector outputs drive indicators directly
- Lamp-test provision
- Leading/trailing zero suppression

#### 5448/7448, 54LS48/74LS48

- Internal pull-ups eliminate need for external resistors
- Lamp-test provision
- Leading/trailing zero suppression

#### 54LS49/74LS49

- Open-collector outputs
- Blanking input

|          |                 | DRIVER OU               | TPUTS           |                | TYPICAL              |           |
|----------|-----------------|-------------------------|-----------------|----------------|----------------------|-----------|
| TYPE     | ACTIVE<br>LEVEL | OUTPUT<br>CONFIGURATION | SINK<br>CURRENT | MAX<br>VOLTAGE | POWER<br>DISSIPATION | PACKAGES  |
| DM5446A  | low             | open-collector          | 40 mA           | 30V            | 320 mW               | J, N, W   |
| DM5447A  | low             | open-collector          | 40 mA           | 15V            | 320 mW               | J, N, W   |
| DM5448   | high            | 2-kΩ pull-up            | 6.4 mA          | 5.5V           | 265 mW               | J, N, W   |
| DM54LS47 | low             | open-collector          | 12 mA           | 15V            | 35 mW                | J, N, W   |
| DM54LS48 | high            | 2 kΩ pull-up            | 2 mA            | 5.5V           | 125 mW               | J, N, W   |
| DM54LS49 | high            | open-collector          | 4 mA            | 5.5V           | 40 mW                | J, N, W   |
| DM7446A  | low             | open-collector          | 40 mA           | 30V            | 320 mW               | J, N, W   |
| DM7447A  | low             | open-collector          | 40 mA           | 15V            | 320 mW               | . J, N, W |
| DM7448.  | high .          | 2-kΩ pull-up            | 6.4 mA          | 5.5V           | 265 mW               | J, N, W   |
| DM74ES47 | low             | open-collector          | 24 mA           | 15V            | 35 mW                | J, N, W   |
| DM74LS48 | high            | 2 kΩ pull-up            | 6 mA            | 5.5V           | 125 mW               | J, N, W   |
| DM74LS49 | high            | open-collector          | 8 mA            | 5.5V           | 40 mW                | J, N, W   |

#### **Connection Diagrams**



5446A/7446A(J), (N), (W); 5447A/7447A(J), (N), (W); 54LS47/74LS47(J), (N), (W)



5448/7448(J), (N), (W); 54LS48/74LS48(J), (N), (W)



54LS49/74LS49(J), (N), (W)

| *                   |                                 |                       |                          |                                  |                           |                |              | DM5  | 4/74        |        |      |                                                  |        |       | DN           | 154LS/74 | LS    |              |        |       | 1        |
|---------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------|----------------|--------------|------|-------------|--------|------|--------------------------------------------------|--------|-------|--------------|----------|-------|--------------|--------|-------|----------|
|                     | PARAMETER                       |                       |                          | CONDITI                          | ONS                       | ļ              | 46A, 47A     |      |             | 48     |      |                                                  | LS47   |       |              | LS48     |       | L            | LS49   |       | UNITS    |
|                     | r                               |                       | <u> </u>                 |                                  |                           |                | TYP(1)       | MAX  |             | TYP(1) | MAX  |                                                  | TYP(1) | MAX   |              | TYP(1)   | MAX   | MIN          | TYP(1) | MAX   |          |
| V <sub>IH</sub>     | High Level Input                |                       | <u> </u>                 |                                  | Tomer                     | 2              |              | 0.0  | 2           |        | 0.0  | 2                                                |        | 0.7   | 2            | -        | 0.7   | 2            |        |       | V        |
| VIL                 | Low Level Input                 | vortage               |                          |                                  | DM54                      | <del> </del>   |              | 0.8  | <b></b>     |        | 8.0  |                                                  |        | 0.7   |              |          | 0.7   | ├            |        | 0.7   | V        |
|                     | Input Clamp Volt                | 200                   | <del> </del>             | I <sub>1</sub> = -12 m           |                           | <del> </del> - |              | -1.5 | <b></b>     |        | -1.5 |                                                  |        | 0.8   |              |          | 0.0   | $\vdash$     |        | 0.8   |          |
| ٧ı                  | Imput Clamp Voit                | aye                   | V <sub>CC</sub> = Min    | I <sub>1</sub> = -18 n           |                           |                |              | 1.5  | <b></b> -   |        | 1.5  | <del> </del>                                     |        | -1.5  |              |          | -1.5  |              |        | -1.5  | V        |
| Тон                 | High Level                      | a thru g              | V <sub>CC</sub> = Min, \ | 1                                |                           | <del> </del>   |              |      |             |        | -400 |                                                  |        |       | <u> </u>     |          | -100  |              |        |       | <b></b>  |
| 011                 | Output Current                  |                       | V <sub>IL</sub> = Max    |                                  |                           | <b></b>        |              | -200 | <u> </u>    |        | -200 |                                                  |        | -50   | <del> </del> |          | 50    | $\vdash$     |        |       | μΑ       |
|                     |                                 | BI/RBO                | V <sub>OH</sub> = 5.5V   |                                  |                           |                |              |      |             |        |      |                                                  |        |       |              |          |       |              |        | 250   | l        |
| V <sub>OH</sub>     | High Level                      | a thru g              | V <sub>CC</sub> = Min, \ |                                  |                           |                |              |      | 2.4         | 4.2    |      |                                                  | 1      |       | 2.4          | 4.2      |       |              |        | 5.5   | V        |
|                     | Output Voltage                  | BI/RBO                | V <sub>IL</sub> = Max, I | OH = Max                         |                           | 2.4            | 3.7          |      | 2.4         | 3.7    |      | 2.4                                              | 4.2    |       | 2.4          | 4.2      |       |              |        | N/A   | L        |
| IOL                 | Low Level                       | a thru g              |                          |                                  | DM54                      |                |              | 40   |             |        | 6.4  |                                                  |        | 12    |              |          | 2     |              |        | 4     |          |
|                     | Output Current                  |                       |                          |                                  | DM74                      | <u> </u>       |              | 40   | ļ           |        | 6.4  |                                                  |        | 24    |              |          | 6     | L            |        | 8     | mA       |
|                     |                                 | BI/RBO                |                          |                                  | DM54                      | ļ              |              | 8    |             |        | 8    |                                                  |        | 1.6   | <u> </u>     |          | 1.6   | <u> </u>     |        | N/A   |          |
|                     |                                 |                       |                          |                                  | DM74                      | <b>-</b>       |              | 8    | ļ           | 0.07   | 8    | <b> </b>                                         | 0.05   | 3.2   | ļ            | 0.05     | 3.2   | <u> </u>     | 0.05   | N/A   |          |
| $v_{ol}$            | Low Level                       | a thru g              |                          | I <sub>OL</sub> = Max            | DM54                      | ├              | 0.3          | 0.4  |             | 0.27   | 0.4  | ļ                                                | 0.25   | 0.4   | <b></b>      | 0.25     | 0.4   | <b></b>      | 0.25   | 0.4   |          |
|                     | Output Voltage                  |                       | 1                        | I <sub>OL</sub> = Max            |                           | ├              | 0.3          | 0.4  |             | 0.27   | 0.4  | <b> </b>                                         | 0.35   | 0.5   | <b>-</b>     | 0.35     | 0.5   |              | 0.35   | 0.5   |          |
|                     |                                 | V <sub>CC</sub> = Max | V <sub>IH</sub> = 2V     | DM74 On                          |                           |                | N/A          |      |             | N/A    |      | [                                                | 0.25   | 0.4   | [            | 0.25     | 0.4   |              | 0.25   | 0.4   |          |
|                     |                                 |                       | V <sub>IL</sub> = Max    |                                  | <del></del>               | <del> </del>   | 0.27         | 0.4  | <del></del> | 0.27   | 0.4  | <del> </del>                                     | 0.25   | 0.4   | ļ            | 0.25     | 0.4   |              |        |       | V        |
|                     |                                 | BI/RBO                | I III                    | I <sub>OL</sub> = Max            | DM74                      |                | 0.27         | 0.4  |             | 0.27   | 0.4  | <b></b>                                          | 0.35   | 0.5   | l            | 0.35     | 0.5   |              | N/A    |       |          |
|                     |                                 | V <sub>CC</sub> = Min | 1                        | I <sub>OL</sub> = Max<br>DM74 On | ×/2                       |                | N/A          |      |             | N/A    |      |                                                  | 0.25   | 0.4   |              | 0.25     | 0.4   |              | N/A    |       |          |
| I <sub>O(OFF)</sub> | Off-State Output                |                       | V <sub>CC</sub> = Max,   |                                  | V <sub>O(OFF)</sub> = Max | <del> </del> - |              | 0.25 |             |        |      |                                                  |        | 0.25  |              |          |       | <b> </b>     |        |       |          |
| · O(OFF)            | Current                         | a thru g              | V <sub>IL</sub> = Max    |                                  | V <sub>O</sub> . = 0.85V  | <del> </del>   |              |      | -1.3        | -2     |      |                                                  |        |       | -1.3         | -2       |       |              | N/A    |       | mA       |
| V <sub>O(OFF)</sub> | Off-State                       |                       |                          |                                  | 46A                       |                | , particular | 30   |             |        |      |                                                  |        |       |              |          |       |              |        |       | v        |
|                     | Output Voltage                  | a thru g              |                          |                                  | Others                    |                |              | 15   |             |        | 5.5  |                                                  |        | 15    |              |          | 5.5   |              |        | 5.5   | ľ        |
| I <sub>1</sub>      | Input Current                   | Any Input             |                          | V <sub>1</sub> = 5.5V            |                           |                |              | 1    |             |        | 1    |                                                  |        |       |              |          |       |              |        |       |          |
|                     | at Maximum                      | except                | V <sub>CC</sub> = Max    |                                  |                           | <del> </del>   |              |      | <u> </u>    |        |      |                                                  |        | 0.1   | <b></b>      |          | 0.1   |              |        | 1     | mA       |
|                     | Input Voltage                   | BI/RBO                | 1                        |                                  | ·                         | ļ              |              |      |             |        |      |                                                  |        |       |              |          |       | L            |        |       |          |
|                     | ļ                               | BI/RBO                |                          | V <sub>1</sub> = 7V              |                           | ļ              |              |      |             |        |      |                                                  |        | 0.1   |              |          |       |              |        | N/A   |          |
| I <sub>IH</sub>     | High Level                      | Any Input             |                          | V <sub>1</sub> = 2.4V            |                           |                |              | 40   |             |        | 40   |                                                  |        |       |              |          |       |              |        |       |          |
|                     | Input Current                   | Except<br>BI/RBO      | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.7V            |                           |                |              |      |             |        |      |                                                  |        | 20    |              |          | 20    |              |        | 20    | μΑ       |
|                     | 1                               | BI/RBO                | 1                        | V <sub>1</sub> = 2.7V            |                           | <del> </del>   |              |      |             |        |      |                                                  |        | 20    | <u> </u>     |          |       |              |        | N/A   |          |
| I <sub>IL</sub>     | Low Level                       | Any Input             | <del> </del>             | V1 - 2.7 V                       |                           | ┼              |              |      | <b></b>     |        |      |                                                  |        |       | ļ            |          |       | <del> </del> |        |       |          |
| *1L                 | Input Current                   | Except                | l                        |                                  |                           |                |              | -1.6 |             |        | -1.6 |                                                  |        | -0.36 |              |          | -0.36 |              |        | -0.36 |          |
| ,                   |                                 | BI/RBO                | V <sub>CC</sub> = Max,   | $V_1 = 0.4V$                     |                           |                |              |      |             |        |      |                                                  |        |       |              |          |       |              |        |       | mA       |
|                     |                                 | BI/RBO                | 1                        |                                  |                           |                |              | -4   |             |        | -4   |                                                  |        | -1    |              |          | -1    |              |        | N/A   |          |
| Ios                 | Short Circuit<br>Output Current | BI/RBO .              | V <sub>CC</sub> = Max    |                                  |                           |                |              | -4   |             |        | -4   | -0.3                                             |        | -2    | -0.3         |          | -2    |              |        | N/A   | mA       |
| Icc                 | Supply Current                  | · .                   | <del> </del>             |                                  | DM54                      | <b>†</b>       | 60           | 85   |             | 50     | 76   | <del>                                     </del> | 7      | 13    | l —          | 25       | 38    |              | 8      | 15    | <u> </u> |
| - 00                |                                 |                       | V <sub>CC</sub> = Max(2  | 21                               | DM74                      | <b></b>        | 60           | 103  |             |        |      |                                                  | 7      | 13    |              | 25       | 38    | <del></del>  | 8      | 15    | mA       |

| Switching C | Characteristics | $V_{CC} = 5V$ | $T_{A} = 25^{\circ}C$ |
|-------------|-----------------|---------------|-----------------------|
|             |                 | : 1           | to ⊔ and t            |

| DEVICE   | CONDITIONS                                     | Propaga | and t <sub>PH</sub><br>tion Del<br>om A In | ay Time | Propaga |     | L (ns)<br>lay Time<br>nput |
|----------|------------------------------------------------|---------|--------------------------------------------|---------|---------|-----|----------------------------|
|          |                                                | MIN     | TYP                                        | MAX     | MIN     | TYP | MAX                        |
| 46A, 47A | $C_L = 15 \text{ pF}, R_L = 120\Omega$         |         |                                            | 100     |         |     | 100                        |
| 48       | $C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$ |         |                                            | 100     | -       |     | 100                        |
| LS47     | $C_{L} = 15 \text{ pF}, R_{L} = 665\Omega$     |         |                                            | 100     |         |     | 100                        |
| LS48     | $C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega$ |         |                                            | 100     |         |     |                            |
|          | $C_L = 15 \text{ pF}, R_L = 6 \text{ k}\Omega$ |         |                                            |         |         |     | 100                        |
| LS49     | $C_L = 15  pF, R_L = 2  k\Omega$               | -       |                                            | 100     |         |     |                            |
|          | $C_L = 15 \text{ pF}, R_L = 6 \text{ k}\Omega$ |         |                                            |         |         |     | 100                        |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) I<sub>CC</sub> is measured with all outputs open and all inputs at 4.5V.

## DM54/DM7446A,47A,LS47,48,LS48,LS49

## **Output Display**

#### NUMERICAL DESIGNATIONS AND RESULTANT DISPLAYS

SEGMENT IDENTIFICATION





#### **Truth Tables**

46A, 47A, LS47

| DECIMAL        |    |     | INP | UTS |    | · |           |   |    | 01 | JTPU | TS ` |   |   |      |
|----------------|----|-----|-----|-----|----|---|-----------|---|----|----|------|------|---|---|------|
| OR<br>FUNCTION | LT | RBI | D   | С   | В  | Α | BI/RBO(1) | a | b  | С  | d    | е    | f | g | NOTE |
| 0              | Н  | Н   | L   | L   | L  | L | Н         | L | L  | L  | L    | L    | L | Н |      |
| 1              | Н  | х   | L   | L   | L  | Н | Н         | Н | L  | L  | Н    | Н    | Н | Н |      |
| 2              | Н  | Х   | L   | L   | Н  | L | Н         | L | L  | Н  | L    | L    | Н | L |      |
| 3              | Н  | Х   | L   | L   | Н  | Н | Н         | L | L  | L  | L    | Н    | Н | L |      |
| 4              | Н  | Х   | L   | Н   | L  | L | Н         | Н | L  | L  | Н    | Н    | L | L |      |
| 5              | Н  | Х   | L   | Н   | L  | Н | Н         | L | H  | L  | L    | Н    | L | L |      |
| 6              | Н  | Х   | L   | Н   | Н  | L | Н         | Н | Н  | L  | L    | L    | L | L |      |
| 7              | Ξ  | Х   | L   | Н   | Н  | Н | Н         | L | L  | L  | Н    | Н    | Н | Н |      |
| 8              | Н  | Х   | Н   | L   | L  | L | Н         | L | L. | L  | L    | L    | L | L | (2)  |
| 9              | Н  | Х   | Н   | L   | L  | Н | Н         | L | L  | L  | Н    | Н    | L | L |      |
| 10             | Ι  | Х   | Ι   | L   | Н  | L | Н         | Н | Н  | Н  | Ĺ    | L    | Н | L |      |
| 11             | Η  | Х   | Н   | L   | Н  | Н | Н         | Н | Н  | L  | L    | Н    | Н | L |      |
| 12             | Ι  | Х   | Н   | Н   | L. | L | Н         | Н | L  | Н  | Н    | Н    | L | L |      |
| 13             | H  | Х   | Н   | Н   | L  | Н | Н         | L | Н  | Н  | L    | Н    | L | L |      |
| 14             | Н  | Х   | Н   | Н   | Н  | L | Н         | Н | Н  | Н  | L    | L    | L | L |      |
| 15             | Н  | Х   | Н   | Н   | Н  | Н | н         | Н | Н  | Н  | Н    | Н    | Н | н |      |
| BI             | Х  | Х   | Х   | X   | Х  | X | L         | Н | Н  | Н  | Н    | Н    | Н | Н | (3)  |
| RBI            | Н  | L   | L   | L   | L  | L | L         | Н | Н  | Н  | Н    | Н    | Н | Н | (4)  |
| LT             | L  | Х   | Х   | Х   | X  | × | Н         | L | L  | L. | L    | L    | L | L | (5)  |

#### 48, LS48

| DECIMAL        |    | ,   | INP | UTS |   |   | DI/DDO(4) |   |   | Ol | JTPU | TS |   |   | NOTE |
|----------------|----|-----|-----|-----|---|---|-----------|---|---|----|------|----|---|---|------|
| OR<br>FUNCTION | LT | RBI | D   | С   | В | Α | BI/RBO(1) | а | b | С  | d    | e  | f | g | NOTE |
| 0              | Н  | Н   | L   | L   | L | L | Н         | Н | Н | Н  | Н    | Н  | Н | L |      |
| 1              | Н  | ×   | L   | L   | L | Н | н         | L | Н | Н  | L    | L  | L | L |      |
| 2              | Н  | Х   | L   | L   | Н | L | Н         | Н | Н | L  | Н    | Н  | L | Н |      |
| 3              | Н  | Х   | L   | L   | Н | H | Н         | Н | Н | Н  | Н    | L  | L | н |      |
| 4              | Н  | Х   | L   | Н   | L | L | Н         | L | H | Н  | L    | L  | Н | Н |      |
| 5              | Н  | X   | L   | Н   | L | Н | Н         | Н | L | Н  | Н    | L  | Н | Н |      |
| 6              | Н  | Х   | L   | Н   | Н | L | Н         | L | L | Н  | Н    | Н  | H | Н |      |
| 7              | Н  | X   | L   | . н | Н | Н | Н         | Н | Н | Н  | L    | L  | L | L | (2)  |
| 8              | Н  | X   | Н   | L   | L | L | Н         | н | Н | Н  | Н    | Н  | H | Н | (2)  |
| • 9            | Н  | Х   | Н   | L   | L | Н | н         | Н | Н | Н  | L    | L  | н | Н |      |
| 10             | Н  | Х   | Н   | L   | Н | L | н,        | L | L | L  | Н    | Ĥ  | L | Н |      |
| 11             | Н  | X   | Н   | L   | Н | Н | Н         | L | L | Н  | Н    | L  | L | Н |      |
| 12             | Н  | Х   | Н   | Н   | L | L | Н         | L | Н | L  | L    | L  | Н | Н |      |
| 13             | н  | X   | Н   | Н   | L | Н | Н         | Н | L | L  | Н    | L  | Н | Н |      |
| 14             | Н  | Х   | Н   | Н   | Н | L | Н         | L | L | L  | Н    | Н  | Н | Н |      |
| 15             | Н  | X   | Н,  | Н   | Н | Н | Н         | L | L | L  | L    | L  | L | L |      |
| BI             | Х  | Х   | Х   | Х   | Х | Х | L         | L | L | L  | L    | L  | L | L | (3)  |
| RBI            | Н  | L   | L   | L   | L | L | L         | L | L | L  | L    | L  | L | L | (4)  |
| LT `           | L  | Х   | Х   | Х   | Х | Х | H         | Н | Н | Н  | Н    | Н  | Н | Н | (5)  |

## Notes

- (1) BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
- (2) The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
- (3) When a low logic level is applied directly to the blanking input (BI), all segment outputs are H regardless of the level of any other input.
- (4) When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go H and the ripple-blanking output (RBO) goes to a low level (response condition).
- (5) When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are L.
- H = High Level, L = Low Level, X = Don't Care



## Truth Tables (Continued)

LS49

| DECIMAL<br>OR |   | . 1 | NPUT | s , |          |     |   | OI | JTPU | TS |    |     | NOTE. |
|---------------|---|-----|------|-----|----------|-----|---|----|------|----|----|-----|-------|
| FUNCTION      | D | С   | В    | Α   | ВІ       | а   | b | С  | d    | е  | f′ | g   |       |
| 0             | L | L   | L    | L   | . н      | Н   | Н | Н  | Н    | Н  | Н  | L   |       |
| 1             | L | L   | L    | Н   | Н        | L   | Н | Н  | L    | L  | L  | L   |       |
| 2             | L | L   | Н    | L   | Н        | Н   | Н | L  | Н    | Н  | L  | Н   |       |
| 3             | L | L   | Н    | H.  | <b>H</b> | Н   | Н | Н  | Н    | L  | L  | н   |       |
| . 4           | L | Н   | L    | L   | ·H       | L   | Н | Н  | L    | L  | Н  | Н   |       |
| 5             | L | Н   | L    | Н   | H.       | н   | L | Н  | Н    | Ĺ  | -H | Н   |       |
| 6             | L | Н   | Н    | L   | Н        | L   | L | Н  | ДH   | Н  | Н  | . Н |       |
| 7             | L | Н   | H    | ļН  | ' Н      | н   | Н | Н  | L    | L  | L  | L   | (1)   |
| 8             | Н | L   | L    | L   | Н        | Н   | Н | Н  | Н    | Н  | Н  | Н   | (1)   |
| 9             | Н | L   | l.   | Н   | H        | Н   | Н | Н  | L    | L  | Н  | Н   |       |
| . 10          | Н | L   | Н    | L   | .H       | L   | L | L  | Н    | Н  | L  | Н   |       |
| 11            | Н | L   | Н    | Н   | Н        | L   | Ŀ | Н  | Н    | L  | L  | Н   |       |
| 12            | Н | Н   | L    | L   | Н        | L   | Н | L  | L    | L  | Н  | Н   |       |
| 13            | Н | Н   | L    | Н   | Н        | Н   | L | L  | Н    | L  | Н  | Н   |       |
| 14            | Ή | Н   | Н    | L   | Н        | L   | L | L  | Н    | Н  | Н  | Н   |       |
| 15            | Н | H · | Η.   | Н   | Н        | L   | L | L  | L    | L  | L  | L   |       |
| BI            | Х | Х   | Х    | Х   | L        | , L | L | L  | L    | L  | L  | L   | (2)   |

#### Notos

- (1) The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired.
- (2) When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
- H = High Level, L = Low Level, X = Don't Care

## Logic Diagrams





# DM54/DM7446A,47A,LS47,48,LS48,LS49

## Logic Diagrams (Continued)







## **General Description**

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the  $\Omega$  output when the enable (G) is high, and the  $\Omega$  output will-follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the  $\Omega$  output until the enable is permitted to go high.

## **Quad Latches**

The DM5475/DM7475, DM54L75A/DM74L75A, and DM54LS75/DM74LS75 feature complementary Q and  $\overline{Q}$  outputs from a 4-bit latch, and are available in 16-pin packages. For higher component density applications, the DM54LS77/DM74LS77 4-bit latches are available in 14-pin flat packages (only).

## **Connection Diagrams**



5475/7475(J), (N), (W); 54L75A/74L75A(J), (N), (W); 54LS75/74LS75(J), (N), (W)



54LS77/74LS77(W)

## Truth Table (Each Latch)

| INP | UTS | OUT   | PUTS.            |
|-----|-----|-------|------------------|
| D   | G   | Q     | ā                |
| L   | Н   | L     | Н                |
| Н   | Н   | · H   | L,               |
| Х   | L   | $Q_0$ | $\overline{Q}_0$ |

H = High Level, L = Low Level, X = Don't Care  $Q_0$  = The Level of Q Before the High-to-Low Transition of G

## Logic Diagrams (Each Latch)







|                 |                                        |                                             |                                                               | -           |                    |              | DM54/74 | 1            |          | M54L/74 | 1 L            | DI       | M54 LS/74 | ∤LS          |          |
|-----------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------|--------------------|--------------|---------|--------------|----------|---------|----------------|----------|-----------|--------------|----------|
|                 | PARAMETER                              |                                             | CONE                                                          | DITIONS     |                    |              | 75      |              |          | L75A    |                | ı        | LS75, LS7 | 7            | ואט      |
|                 |                                        |                                             | *                                                             |             |                    | MIN          | TYP(1)  | MAX          | MIN      | TYP(1)  | MAX            | MIN      | TYP(1)    | MAX          | 1        |
| V <sub>IH</sub> | High Level Input Voltage               |                                             |                                                               |             |                    | 2            |         |              | 2        |         |                | 2        |           |              | ,        |
| VIL             | Low Level Input Voltage                |                                             |                                                               |             | DM54               |              |         | 0.8          |          |         | 0.7            |          |           | 0.7          |          |
|                 |                                        | ,                                           |                                                               |             | DM74               |              |         | 0.8          |          |         | 0.7            |          |           | 0.8          | † .'     |
| Vı              | Input Clamp Voltage                    | V = Min                                     | 1, = -12                                                      | mA          | <u> </u>           |              |         | -1.5         |          |         | -1.5           |          |           |              | Ι,       |
|                 |                                        | V <sub>CC</sub> = Min                       | I <sub>1</sub> = -18                                          | mA          |                    |              |         |              |          |         | ,              |          |           | -1.5         | 1        |
| Іон             | High Level Output Current              |                                             |                                                               |             |                    |              |         | -400         |          |         | -200           |          |           | -400         | μ        |
| VoH             | High Level Output Voltage              | V <sub>CC</sub> = Min, V                    | V <sub>IH</sub> = 2V                                          |             | DM54               | 2.4          | 3.4     |              | 2.4      | 3.4     |                | 2.5      | 3.5       |              | ,        |
|                 | , · ·                                  | V <sub>IL</sub> = Max, I                    | <sub>OH</sub> = Max                                           |             | DM74               | 2.4          | 3.4     |              | 2.4      | 3.4     |                | 2.7      | 3.5       |              |          |
| loL             | Low Level Output Current               |                                             |                                                               |             | DM54               |              |         | 16           |          |         | 2              |          |           | 4            | m,       |
|                 | -                                      |                                             |                                                               |             | DM74               |              |         | 16           |          |         | 3.6            |          |           | 8            | '''      |
| $V_{OL}$        | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>H</sub> = 2V, | DM74                                                          |             |                    |              |         |              |          |         | 0.25           | 0.4      |           |              |          |
| ,               | •                                      | $V_{LL} = Max$                              | $_{CC} = Min, V_{III} = 2V,$ $_{L} = Max$ $I_{OL} = Max$ $DN$ |             | DM54               | <b>ļ</b>     | 0.2     | 0.4          |          |         | 0.3            | ļ        | 0.25      | 0.4          | ļ '      |
|                 |                                        |                                             |                                                               |             | DM74               | <u></u>      | 0.2     | 0.4          |          | 0.2     | 0.4            |          | 0.35      | 0.5          |          |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage |                                             | V <sub>1</sub> = 5.5                                          | ١٧          | D Input            |              |         | 1            | ·        |         | 0.2            |          |           |              |          |
|                 |                                        | V <sub>CC</sub> = Max                       |                                                               |             | G Input            | ļ            |         | 1            | ļ        |         | 0.4            |          |           |              | m.       |
|                 |                                        |                                             | V <sub>1</sub> = 7V                                           |             | D Input<br>G Input | ļ            |         |              |          |         |                |          |           | 0.1          | 1        |
|                 |                                        |                                             |                                                               |             | ļ <u>-</u>         |              |         |              | ļ        |         |                | <u> </u> |           | 0.4          | ļ        |
| Ιн              | High Level Input Current               |                                             | V <sub>1</sub> = 2.4                                          | V           | D Input            |              |         | 80           |          |         | 20             | <u> </u> | -         | ·            | -        |
|                 |                                        | V <sub>CC</sub> = Max                       |                                                               |             | G Input D Input    |              |         | 80           |          |         | 40             |          |           | 20           | μ        |
|                 | •                                      |                                             | V <sub>1</sub> ≈ 2.7                                          | 'V          | G Input            | <del> </del> |         |              | <u> </u> |         |                |          |           | 80           | ł        |
|                 | · · · · · · · · · · · · · · · · · · ·  |                                             |                                                               |             |                    | <b> </b>     |         |              |          |         |                |          |           |              | <b> </b> |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max                       |                                                               | 3V, 54L/74L | D Input<br>G Input | <del> </del> |         | -3.2<br>-3.2 |          |         | -0.36<br>-0.72 |          |           | -0.4<br>-1.6 | m.       |
|                 |                                        |                                             | $V_{CC} = Wax$ $V_1 = 0.4V$ , Oth                             | T           | G input            | <b> </b>     |         |              |          |         |                |          |           |              | <u> </u> |
| los             | Short Circuit Output Current           | $V_{CC} = Max(2)$                           | DM54                                                          | `           | -20                |              | -55     | -3           | -9       | -15     | -30            |          | -130      | m            |          |
|                 |                                        |                                             |                                                               | DM74        |                    | -18          |         | -55<br>      | -3       | -9      | -15<br>        | -30      |           | -130         |          |
| lcc             | Supply Current                         | DM54 Oth                                    | DM54                                                          | LS75        |                    |              | 40      |              | 0.5      |         |                | 6.3      | 12        | -            |          |
|                 |                                        |                                             | Others                                                        | <u> </u>    | 32                 | 46           |         | 3.5          | . 5.0    |         | 6.9            | 13       | m.        |              |          |
|                 |                                        |                                             | DM74 LS75 Others                                              | L5/5        | 1                  |              |         | l            |          |         | l              | 6.3      | 12        | ↓ '''′       |          |

0

|                  |                                                     |                 | DM54/74        |                                                 |              |     |     |                        |          |     |                        |     |       |        |     |      |     | -     |
|------------------|-----------------------------------------------------|-----------------|----------------|-------------------------------------------------|--------------|-----|-----|------------------------|----------|-----|------------------------|-----|-------|--------|-----|------|-----|-------|
|                  | -                                                   |                 |                | D                                               | M54/74       |     | ì   | DM                     | 154L/74L |     |                        |     | OM54L | S/74LS |     |      |     |       |
|                  | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT) |                                                 | 75           |     |     |                        | L75A     |     | CONDITIONS             |     | LS75  |        |     | LS77 |     | UNITS |
|                  | •                                                   | (1141 017       | (0011017       | CONDITIONS                                      | MIN          | TYP | MAX | CONDITIONS             | MIN TYP  | MAX | CONDITIONS             | MIN | TYP   | MAX    | MIN | TYP  | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | D               | a              |                                                 |              | 16  | 30  |                        | 55       | 100 | -                      |     | 15    | 27     |     | 11   | 19  |       |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | . b             |                |                                                 |              | 14  | 25  |                        | 50       | 100 |                        |     | 9 .   | 17     |     | 9    | 17  | ns .  |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | D               | ā              | C <sub>L</sub> = 15 pF<br>R <sub>L</sub> = 400Ω |              | 24  | 40  |                        | 75       | 120 | ٠.                     |     | 12    | 20     |     |      | N/A | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output |                 | ų.             |                                                 |              | 7   | 15  | C <sub>L</sub> = 50 pF | 32       | 80  | C <sub>L</sub> = 15 pF |     | 7 -   | 15     |     |      | N/A |       |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | G               | Q              |                                                 | Ω 16 30 7 15 | 16  | 30  | $R_L = 4 k\Omega$      | - 50     | 100 | $R_L = 2 k\Omega$      | **. | 15    | 27     |     | 10   | 18  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | 9               |                |                                                 |              |     | 32  | 80                     |          |     | 14 ,                   | 25  |       | 10     | 18  | 113  |     |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                 | ō              |                                                 |              | 16  | 30  | ,                      | . 48     | 100 |                        |     | 16    | 30     |     |      | N/A | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | U               | G Q            |                                                 |              | 7   | 15  | ,                      | 38       | 80  |                        |     | 7     | 15     |     |      | N/A | 115   |
|                  |                                                     |                 |                |                                                 |              |     |     |                        |          |     |                        |     |       |        |     |      |     |       |

#### Note

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Width of Enabling Pulse

tSETUP Setup Time

tHOLD Hold Time

- (2) Not more than one output should be shorted at a time, and for the DM54LS/74LS duration of short circuit should not exceed one second.
- (3) ICC is tested with all inputs grounded and all outputs open.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 



## 4-Bit Binary Adders with Fast Carry

#### **General Description**

These full adders perform the addition of two 4-bit binary numbers. The sum  $(\Sigma)$  outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

#### **Features**

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry

| TYPE  | TYPICAL A<br>TWO<br>8-BIT<br>WORDS | TWO<br>16-BIT<br>WORDS | TYPICAL POWER DISSIPATION PER 4-BIT ADDER |
|-------|------------------------------------|------------------------|-------------------------------------------|
| 83    | 23 ns                              | 43 ns                  | 290 mW                                    |
| LS83A | 25 ns                              | 45 ns                  | 95 mW                                     |
| LS283 | 25 ns                              | 45 ns                  | 95 mW                                     |

#### Connection Diagrams and Truth Table



5483(J), (W); 7483(J), (N), (W); 54LS83A/74LS83A(J), (N), (W)



|       |          |       |          |                |     | ОИТ  | PUT            |       |       |
|-------|----------|-------|----------|----------------|-----|------|----------------|-------|-------|
|       | INF      | HIT   |          | WHEN<br>C0 = L | _   |      | WHEN<br>C0 = H | _     |       |
|       |          | •     |          | C0 - L         | WI  | -IEN | C0 - 11        | WI    | 1EN   |
| 1 .   |          |       |          |                |     | = L  |                |       | = H   |
| A1 A3 | B1<br>B3 | A2 A4 | B2<br>B4 | Σ1 Σ3          | -r  |      | Σ1 Σ3          | Σ2 Σ4 | C2 C4 |
| L     | L        | L     | L        | L              | L L |      | Н              | L     | L     |
| Н     | L        | L     | L        | н              | L   |      | L              | н.    | L     |
| L     | Н        | L     | L        | н              | L   | L    |                | н     | L     |
| Н     | Н        | L     | L        | L              | н   | L    | Н              | Н     | L     |
| - L   | L        | Н     | L        | L              | Н   | L    | н              | Н     | L     |
| H.    | L        | н     | L        | н              | H   | L    | L              | L     | н     |
| L     | Н        | Н     | L        | н              | н   | L    | L              | L     | н     |
| Н     | Н        | Н     | L        | L              | L   | н    | н              | L     | н     |
| L     | L        | L     | н        | L.             | Н   | L    | н              | н     | L     |
| Н     | L        | L     | н        | н              | н   | L    | L              | L     | н     |
| L     | Н        | L     | н        | н              | , Н | L    | L              | L     | н.    |
| Н     | H -      | L     | н        | L              | L   | н    | н              | L     | н     |
| L,    | L        | н     | н        | L              | L   | . н  | н              | L     | н     |
| Н     | L        | Н     | н        | н              | L   | Н    | L              | н     | н     |
| L     | Н        | • н   | н        | н              | L   | н    | L              | н     | н     |
| Н     | Н        | Н     | Н        | L              | Н   | Н    | н              | Н     | Н     |

H = High Level, L = Low Level

Note: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs  $\Sigma$ 1 and  $\Sigma$ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs  $\Sigma$ 3,  $\Sigma$ 4, and C4.

## DM54/DM7483,LS83A,LS283

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 | ,                         |                                         |                                      |                                                    |                               |              | DM54/7 | 4            | Di           | VI54LS/7    | 4LS          | l        |
|-----------------|---------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------|--------------|--------|--------------|--------------|-------------|--------------|----------|
|                 | PARAMET                   | TER                                     | C                                    | ONDITIONS                                          |                               |              | 83     |              |              | 83A, LS     |              | UNITS    |
|                 |                           |                                         | <b></b>                              |                                                    |                               | MIN          | TYP(1) | MAX          |              | TYP(1)      | MAX          |          |
| VIH             | High Level Input Voltage  |                                         |                                      |                                                    |                               | 2            |        |              | 2            |             |              | V        |
| $V_{IL}$        | Low Level Input Voltage   |                                         |                                      |                                                    | DM54                          |              |        | 0.8          |              |             | 0.7          | v        |
|                 |                           |                                         |                                      |                                                    | DM74                          |              |        | 0.8          | <u> </u>     |             | 0.8          |          |
| Vi              | Input Clamp Voltage       |                                         | V <sub>CC</sub> = Min                | I <sub>1</sub> = -12 mA<br>I <sub>1</sub> = -18 mA |                               |              |        | -1.5         | <u> </u>     |             |              | V        |
|                 |                           | T                                       |                                      | I <sub>1</sub> = -18 mA                            | the William and All Woman are |              |        |              |              | 1           | -1.5         | <u> </u> |
| юн              | High Level Output Current |                                         |                                      |                                                    |                               | -            |        | -800<br>-400 | <b> </b>     |             | -400<br>-400 | μΑ       |
|                 |                           | Output C4                               |                                      |                                                    | ή                             | <del> </del> |        | -400         | ļ            |             | -400.        | <u> </u> |
| VOH             | High Level Output Voltage |                                         | V <sub>CC</sub> = Min, \             |                                                    | DM54<br>DM74                  |              | 3.4    |              | 2.5          | 3.4         |              | v        |
|                 |                           |                                         | V <sub>IL</sub> = Max, I             | OH - Max                                           | <del> </del>                  | 2.4          | 3.4    |              | 2.7          | 3.4         |              | <b> </b> |
| lor             | Low Level Output Current  | Any Output Except C4                    |                                      |                                                    | DM54                          |              |        | 16<br>16     | ļ            | <del></del> | 8            |          |
|                 |                           | Output C4                               | 1                                    |                                                    | DM54                          | -            |        | 8            | <u> </u>     |             | 4            | mA       |
|                 |                           | output o                                |                                      |                                                    | DM74                          | <del> </del> |        | 8            |              |             | 8            |          |
| VOL             | Low Level Output Voltage  | L                                       | V <sub>CC</sub> = Min                | I <sub>OL</sub> = 4 mA                             |                               | +            |        |              | <b>-</b>     | 0.25        | 0.4          | <u> </u> |
| - OL            | 2011 2010 Output Fortuge  |                                         | V <sub>IH</sub> = 2V                 | I <sub>OL</sub> = 8 mA                             | DM74                          | <del> </del> |        |              | <del> </del> | 0.35        | 0.5          | v        |
|                 |                           |                                         | V <sub>IL</sub> = Max                | I <sub>OL</sub> = Max                              | <del></del>                   |              | 0.2    | 0.4          |              |             |              |          |
| I <sub>1</sub>  | Input Current at          |                                         |                                      | V <sub>1</sub> = 5.5V                              |                               |              |        | 1            |              |             |              |          |
|                 | Maximum Input Voltage     | Any A or B                              | V <sub>CC</sub> = Max                | V, = 7V                                            |                               | 1.           |        |              |              |             | 0.2          | mA       |
|                 |                           |                                         | VCC IVIAN                            | V <sub>1</sub> = 5.5V                              |                               |              |        | 1            |              |             |              | ""       |
|                 |                           |                                         |                                      | V <sub>1</sub> = 7V                                |                               | \            |        |              | L            |             | 0.1          |          |
| Ήн              | High Level Input Current  | Any A or B                              |                                      | V <sub>1</sub> = 2.4V                              |                               |              |        | 80           |              |             |              |          |
|                 |                           | CO                                      | V <sub>CC</sub> = Max                | $V_1 = 2.7V$ $V_1 = 2.4V$                          |                               | <del> </del> |        | 80           |              |             | 40           | μΑ       |
|                 |                           | 0                                       |                                      | $V_1 = 2.7V$                                       |                               | -            |        | 00           |              |             | 20           |          |
| l <sub>IL</sub> | Low Level Input Current   | Any A or B                              |                                      | l                                                  |                               | +            |        | -3.2         |              |             | -0.8         |          |
| -11             | LOW LEVEL IMPUT SUITER    | CO                                      | V <sub>CC</sub> = Max,               | $V_1 = 0.4V$                                       |                               | -            |        | -3.2         |              |             | -0.4         | mA       |
| los             | Short Circuit Output      | Any Output Except C4                    | <b> </b>                             |                                                    | DM54                          | -20          |        | -55          | -30          |             | -130         | -        |
| -00             | Current                   | , , , , , , , , , , , , , , , , , , , , |                                      | .,                                                 | DM74                          | -18          |        | -55          | -30          |             | -130         | ١.       |
|                 |                           | Output C4                               | V <sub>CC</sub> = Max(2              | :)                                                 | DM54                          | -20          |        | -70          | -30          |             | -130         | mA       |
|                 |                           |                                         |                                      |                                                    | DM74                          | -18          |        | -70          | -30          |             | -130         |          |
| Icc ·           | Supply Current            |                                         |                                      | All Inputs                                         |                               |              |        |              |              | 22          | 39           |          |
|                 |                           |                                         |                                      | Grounded                                           | 0.1                           |              | ·      |              |              |             |              |          |
|                 |                           |                                         | V <sub>CC</sub> = Max<br>Outputs Ope | All B Low,                                         |                               |              |        |              |              | 19          | 34           | mΑ       |
|                 |                           |                                         | Juipuis Ope                          | All Inputs                                         |                               | +            |        |              |              |             |              |          |
|                 |                           |                                         | 1                                    | 4.5V                                               |                               | 1            | 58     | 79           |              | 19          | 34           |          |

#### Notes

<sup>(1)</sup> All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

<sup>(2)</sup> Only one output should be shorted at a time, and for 54LS/74LS duration of short circuit should not exceed one second.





Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  | ,                                                   |                                  |                           | Di                     | M54/74 |     |     | DM5                    | 4LS/741 | LS  |     |       |
|------------------|-----------------------------------------------------|----------------------------------|---------------------------|------------------------|--------|-----|-----|------------------------|---------|-----|-----|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT)                  | TO<br>(OUTPUT)            |                        | 83     |     |     | L\$83                  | A, LS2  | 33  |     | UNITS |
| ,                | Low-to-High Level Output  Propagation Delay Time,   | \                                | 10011017                  | CONDITIONS             | MIN    | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                                  |                           |                        |        | 22  | 32  |                        |         | 16  | 24  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | C0                               | $\Sigma_1$ or $\Sigma_2$  |                        |        | 20  | 32  |                        |         | 15  | 24  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | CO                               |                           |                        |        | 28  | 47  |                        |         | 16  | 24  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output |                                  | $\Sigma_3$ $\Sigma_4$     | C <sub>L</sub> = 15 pF |        | 22  | 38  |                        |         | 15  | 24  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | 60                               |                           | R <sub>L.</sub> = 400Ω | 28     | 28  | 47  |                        |         | 16  | 24  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | CO Or P                          | -4                        |                        |        | 28  | 47  | C <sub>L</sub> = 15 pF |         | 15  | 24  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                                  | $A_i$ or $B_i$ $\Sigma_i$ |                        |        |     | 38  | R <sub>L</sub> = 2 kΩ  |         | 15  | 24  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | A <sub>i</sub> or B <sub>i</sub> |                           |                        |        |     | 33  |                        |         | 15  | 24  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | t C0 C4                          |                           |                        | 12     | 19  |     |                        | 11      | 17  | ns  |       |
| <sup>‡</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output |                                  | C4                        | C <sub>L</sub> = 15 pF |        | 12  | 19  |                        |         | 11  | 17  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                                  | B, C4                     | R <sub>L</sub> = 780Ω  |        | 12  | 19  |                        |         | 11  | 17  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | A <sub>i</sub> or B <sub>i</sub> |                           |                        |        | 12  | 19  |                        |         | 12  | 17  | ns    |

## Logic Diagrams





Logic Diagrams (Continued)

LS83A, LS283



Note: Pin numbers shown in parenthesis are for LS283



#### **General Description**

These four-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The  $A>B,\ A< B,\ and\ A=B$  outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A=B input and in addition for the L85, low-level voltages applied to the

## 4-Bit Magnitude Cómparators

A > B and A < B inputs. The cascading paths of the 85, and LS85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words.

#### **Features**

|      | TYPICAL     | TYPICAL       |
|------|-------------|---------------|
| TYPE | POWER       | DELAY         |
|      | DISSIPATION | (4-BIT WORDS) |
| 85   | 275 mW      | 23 ns         |
| L85  | 20 mW       | 55 ns         |
| LS85 | 52 mW       | 24 ns         |

#### **Connection Diagrams**



5485(J), (W); 7485(J), (N), (W); 54LS85/74LS85(J), (N), (W)



54L85/74L85(J), (N), (W)

#### **Truth Tables**

|         | COMP    |         | C       | ASCADIN<br>INPUTS | -     | C     | OUTPUT | s     |       |
|---------|---------|---------|---------|-------------------|-------|-------|--------|-------|-------|
| A3, B3  | A2, B2  | A1, B1  | A0, B0  | A > B             | A < B | A = B | A>B    | A < B | A = B |
| A3 > B3 | Х       | X X     |         | ×                 | X     | X     | Н      | L     | L     |
| A3 < B3 | х       | X       | X       | Х                 | X     | X     | L      | Н     | L     |
| A3 = B3 | A2 > B2 | X.      | ×       | ×                 | X     | X     | н      | L     | L     |
| A3 = B3 | A2 < B2 | X       | X       | Х                 | X     | Х     | , L    | Н     | L     |
| A3 = B2 | A2 = B2 | A1 > B1 | Х       | Х                 | X     | Х     | н      | L     | L     |
| A3 = B3 | A2 = B2 | A1 < B1 | X       | ×                 | X     | х     | L      | Н     | L     |
| A3 = B3 | A2 = B2 | A1 = B1 | A0 > B0 | ×                 | ×     | Х     | н      | L     | L     |
| A3 = B3 | A2 = B2 | A1 = B1 | A0 < B0 | ×                 | X     | х     | L      | н     | L     |
| A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | н                 | L     | L     | н      | L     | L     |
| A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | L                 | Н     | L     | L      | Н     | L     |
| A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | . L               | L     | н     | L      | L     | Н     |

## 85, LS85

| I | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | Х | × | Ë | L | L | Н |
|---|---------|---------|---------|---------|---|---|---|---|---|---|
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | H | н | L | L | L | L |
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | L | L | L | н | Н | L |

#### L85

| İ | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | L   | Н | Н | L | Н | Н |
|---|---------|---------|---------|---------|-----|---|---|---|---|---|
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | н   | L | н | Н | L | н |
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | н   | н | н | н | Н | н |
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | н   | Н | L | н | Н | L |
|   | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | l L | L | L | L | L | L |

H = High Level, L = Low Level, X = Don't Care

|                  |                              |                                               | Γ                                                    |                                                    |        | T                                                | DM54/74     |      |      | OM54L/74 |            | Di           | W54LS/74                              | 11 6 | I                                      |    |
|------------------|------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------|--------------------------------------------------|-------------|------|------|----------|------------|--------------|---------------------------------------|------|----------------------------------------|----|
|                  | DADAMETE                     | n                                             |                                                      | CONDITIONS                                         |        |                                                  | 85          |      |      | L85      | -          | Di           | LS85                                  | LS   | UNITS                                  |    |
|                  | PARAMETEI                    |                                               |                                                      | CONDITIONS                                         |        | MIN                                              | TYP(1)      | MAX  | MIN  |          | MAX        | MIN          | TYP(1)                                | MAX  | UNITS                                  | ٠, |
| V <sub>IH</sub>  | High Level Input Voltage     | <del></del>                                   |                                                      |                                                    |        | 2                                                |             |      | 2    | 1.3      |            | 2            |                                       |      | v                                      | _  |
| VIL              | Low Level Input Voltage      |                                               |                                                      |                                                    | DM54   |                                                  |             | 0.8  |      | 1.3      | 0.7        |              | ,                                     | 0.7  | v                                      |    |
|                  |                              |                                               |                                                      |                                                    | DM74   |                                                  |             | 0.8  |      | 1.3      | 0.7        |              |                                       | 8.0  |                                        |    |
| Vı               | Input Clamp Voltage          |                                               | V <sub>CC</sub> = Min                                | I <sub>I</sub> = -12 mA<br>I <sub>I</sub> = -18 mA |        |                                                  |             | -1.5 |      |          | N/A<br>N/A |              |                                       | -1.5 | v                                      |    |
| Тон              | High Level Output Current    | 1                                             | _                                                    |                                                    |        |                                                  |             | -800 |      |          | -200       |              |                                       | -400 | μΑ                                     | -  |
| V <sub>OH</sub>  | High Level Output Voltage    |                                               | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max, I |                                                    |        | 2.4                                              |             |      | 2.4  |          | 7          | 2.4          | 3.4                                   |      | V                                      | ~  |
| loL              | Low Level Output Current     | -                                             |                                                      |                                                    | DM54   |                                                  |             | 16   |      |          | 2          |              |                                       | 4    | mA                                     | _  |
|                  |                              |                                               |                                                      |                                                    | DM74   |                                                  |             | 16   |      |          | 3.6        |              |                                       | 8    | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |    |
| VoL              | VoL Low Level Output Voltage | V <sub>CC</sub> = Min                         | I <sub>OL</sub> = Max                                | DM54                                               |        |                                                  | 0.4         |      | 0.15 | 0.3      |            | 0.25         | 0.4                                   |      |                                        |    |
|                  |                              | V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max | I <sub>OL</sub> = 4 mA                               | DM74                                               | -      |                                                  | 0.4         | ļ    | 0.2  | 0.4      | ļ          | 0.35         | 0.5                                   | , V  |                                        |    |
| - I <sub>1</sub> | Input Current at Maximum     | Δ< R Δ> R                                     | VIE MAN                                              | V <sub>1</sub> = 5.5V                              | 1 2    |                                                  |             | 1.0  |      |          | 0.1        | <del> </del> |                                       | -0.4 |                                        |    |
| •                | Input Voltage                | or A = B (5)                                  | -                                                    | V <sub>1</sub> = 7V                                |        | <del>                                     </del> |             | 1.0  |      |          |            | <del> </del> |                                       | 0.1  |                                        |    |
|                  |                              | All Other Industr                             | V <sub>CC</sub> = Max                                | V <sub>I</sub> = 5.5V                              |        | <del> </del>                                     |             | 1.0  |      |          | 0.3        |              |                                       |      | mΑ                                     |    |
|                  |                              | All Other Inputs                              |                                                      | V <sub>1</sub> = 7V                                |        |                                                  |             |      |      | -        |            |              |                                       | 0.3  | 1                                      |    |
| I <sub>IH</sub>  | High Level Input Current     | A < B, A > B,                                 |                                                      | V <sub>1</sub> = 2.4V                              |        |                                                  |             | 40   |      |          | 10         |              | -                                     |      |                                        |    |
|                  |                              | or A = B (5)                                  | V <sub>CC</sub> = Max                                | V <sub>I</sub> = 2.7V                              |        |                                                  |             |      |      |          |            |              |                                       | 20   | μА                                     |    |
|                  |                              | All Other Inputs                              |                                                      | V <sub>1</sub> = 2.4V                              | ······ |                                                  |             | 120  |      |          | 30         |              |                                       |      | ,                                      |    |
|                  |                              |                                               | ļ                                                    | V <sub>1</sub> = 2.7V                              |        | ļ                                                |             |      |      |          |            | <u> </u>     |                                       | 60   | <u> </u>                               | _  |
| IIL              | Low Level Input Current      | A < B, A > B,                                 |                                                      | V <sub>I</sub> = 0.3V                              |        |                                                  |             |      |      |          | -0.18      | ļ            |                                       |      |                                        |    |
|                  |                              | or A = B (5)                                  | V <sub>CC</sub> = Max                                | V <sub>1</sub> = 0.4V                              |        | <u> </u>                                         |             | -1.6 |      |          | 0.54       |              |                                       | -0.4 | mA                                     |    |
|                  |                              | All Other Inputs                              |                                                      | V <sub>1</sub> = 0.3V<br>V <sub>1</sub> = 0.4V     |        | <del> </del>                                     |             | -4.8 | ļ    |          | -0.54      |              |                                       | -1.2 |                                        |    |
| Ios              | Short Circuit Output Currer  | <u></u>                                       |                                                      | <u>'</u>                                           | DM54   | -20                                              |             | -55  | -3   |          | -15        | 30           |                                       | -130 | <b></b>                                | -  |
| · 'US            | Short Gireart Gutput Gurrer  |                                               | V <sub>CC</sub> = Max(2                              | 2)                                                 | DM74   | -18                                              |             | -55  | -3   |          | -15        | -30          |                                       | -130 | mA                                     |    |
| Icc              | Supply Current               | 1 2                                           | ·                                                    | Condition A                                        | 1 (0)  | <b> </b>                                         | <del></del> |      |      | ··.      | 6.6        | <u> </u>     | · · · · · · · · · · · · · · · · · · · |      |                                        | -  |
|                  |                              |                                               | V <sub>CC</sub> = Max                                | Condition B                                        | (3)    |                                                  |             |      |      |          | 7.0        |              |                                       |      | mA                                     |    |
|                  |                              |                                               | ŀ                                                    |                                                    | (4)    |                                                  | 55          | 88   |      |          |            |              | 10.4                                  | 20   | l                                      |    |

# Switching Characteristics V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C

|                  |                                                     | FROM           | то           | NUMBER OF                                                                   |            | VI54/74 |     |     | DM                     | 54L/74I | L   |     | DM5                    | 4LS/74L | .s  |     |       |   |
|------------------|-----------------------------------------------------|----------------|--------------|-----------------------------------------------------------------------------|------------|---------|-----|-----|------------------------|---------|-----|-----|------------------------|---------|-----|-----|-------|---|
|                  | PARAMETER                                           | INPUT          | OUTPUT       | GATE LEVELS                                                                 |            | 85      |     |     |                        | L85     |     |     |                        | LS85    |     |     | UNITS |   |
|                  |                                                     |                |              |                                                                             | CONDITIONS | MIN     | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX |       | _ |
| tpLH             | Propagation Delay Time,                             |                |              | 1                                                                           |            |         | 7   |     |                        |         | 70  | 115 |                        |         | 14  |     |       | - |
|                  | Low-to-High Level Output                            | Any A or B     | A < B, A > B | 2                                                                           |            |         | 12  |     |                        |         | 70  | 115 |                        |         | 19  |     | ns    |   |
|                  | •                                                   | Data Input     |              | 3                                                                           |            |         | 17  | 26  |                        |         | 70  | 115 |                        |         | 24  | 36  | 115   |   |
|                  |                                                     | ]              | A = B        | 4 .                                                                         |            | 1       | 23  | 35  |                        | ļ       | 70  | 115 |                        |         | 23  | 40  |       |   |
| tPHL             | Propagation Delay Time,                             |                |              | 1                                                                           |            |         | 11  |     |                        |         | 55  | 90  |                        |         | 11  |     | ,     | - |
|                  | High-to-Low Level Output                            | Any A or B     | A < B, A > B | 2                                                                           |            |         | 15  |     |                        |         | 55  | 90  |                        |         | 15  |     | 1     |   |
|                  |                                                     | Data Input     |              | 3                                                                           |            |         | 20  | 30  |                        |         | 55  | 90  |                        |         | 20  | 30  | ns    |   |
|                  |                                                     |                | A = B        | > B 1 C <sub>L</sub> = 15 pF R <sub>L</sub> = 400Ω  > B 1 = B 2 = B 2 < B 1 |            | 20      | 30  |     |                        | 55      | 90  |     |                        | 20      | 30  |     |       |   |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | A < B or A = B | A > B        |                                                                             |            |         | 7   | 11  | C <sub>L</sub> = 50 pF |         | 55  | 100 | C <sub>L</sub> = 15 pF |         | 14  | 22  | ns    | - |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | A < B or A = B | A > B        |                                                                             |            |         | 11  | 17  | R <sub>L</sub> = 4 kΩ  |         | 40  | 65  | R <sub>L</sub> = 2 kΩ  |         | 11  | 17  | ns    | - |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | A = B          | A = B        |                                                                             |            | 13      | 20  |     |                        | 55      | 100 |     |                        | 13      | 20  | ns  | -     |   |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | A = B          | A = B        |                                                                             |            | 11      | 17  |     |                        | 40      | 65  |     |                        | 11      | 17  | ns  | •     |   |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | A > B or A = B | A < B        |                                                                             |            | 7       | 11  |     |                        | 55      | 100 |     |                        | 14      | 22  | ns  | -     |   |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | A > B or A = B | A < B        |                                                                             | 11         | 17      | 7   |     | 40                     | 65      |     |     | 11                     | 17      | ns  | -   |       |   |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) With all outputs open, ICC is measured for Condition A with all inputs at 4.5V, and for Condition B with all inputs grounded.
- (4) ICC is measured with outputs open, A = B grounded, and all other inputs at 4.5V.
- (5) The condition A = B applies to L85 values only. For DM5485/DM7485 and LS85 use the values for "All Other Inputs."





#### **General Description**

These custom-programmed, 256-bit, read-only memories are organized as 32 words of eight bits each. Each 32-word memory array is addressed in straight 5-bit binary with full on-chip decoding. An overriding memory-enable input is provided which, when taken high, will inhibit the 32 address gates and cause all eight outputs to remain high (off). Data, as specified by the customer, are permanently programmed into the monolithic structure for the 256-bit locations. This organization is expandable to n-words of N-bit length.

The address of an eight-bit word is accomplished through the buffered, binary select inputs which are decoded by the 32, five-input address gates. When the memory-enable input is high, all 32 gate outputs are low, turning off the eight output buffers.

Data are programmed into the memory at the 32, eight-emitter transistors. The programming process involves connecting or not connecting each of the 256 emitters. If an emitter is connected, a low-level voltage is read out of that bit location when its decoding gate is addressed. If the emitter is not connected, a high-level voltage is read when addressed. Those decoding-gate output emitters which are used are connected to their respective bit lines to drive the eight output buffers. Since

## 256-Bit Read Only Memories

only one decoding gate is addressed at a time, only one of the 32 transistors can supply current to the output buffers at a time.

Input buffers lower the fan-in requirement to only one normalized DM54/74 load for all inputs including enable (G). The open-collector outputs are capable of sinking 12 milliamperes of current and may be wire-AND connected to increase the number of words available. An external pull-up resistor from each output to the supply line (V $_{\rm CC}$ ) is required to define the high-level output voltage. Where multiple devices are used in a memory system, the enable input allows easy decoding of additional address bits.

#### **Features**

Typical access time: 20 ns

■ Typical power dissipation: 240 mW

Applications in computer subroutines

Useful in display systems and readouts

Memory organized as 32 words of 8 bits each

Input clamping diodes simplify system design

Open-collector outputs permit wire-AND capability

#### Connection and Schematic Diagrams



5488(J), (W); 7488(J), (N), (W)





|                 | PARAMETER                              | CONDITIONS                                                             |     | . 88   |      |      |  |
|-----------------|----------------------------------------|------------------------------------------------------------------------|-----|--------|------|------|--|
|                 |                                        | ,                                                                      | MIN | TYP(1) | MAX  |      |  |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                        | 2   |        |      | V    |  |
| VIL             | Low Level Input Voltage                | '                                                                      |     |        | 0.8  | V    |  |
| V <sub>I</sub>  | Input Clamp Voltage                    | $V_{CC} = Min, I_1 = -12 \text{ mA}$                                   |     |        | -1.5 | V    |  |
| Іон             | High Level Output Current              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, V_{OH} = 5.5V$          |     |        | 40   | μΑ   |  |
| lor             | Low Level Output Current               |                                                                        |     |        | 12   | mA   |  |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 12 \text{ mA}$ |     | 0.2    | 0.4  | ٧    |  |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                           |     |        | 1    | mA   |  |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                          |     |        | 25   | μΑ   |  |
| 1 <sub>1L</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                           |     |        | -1   | · mA |  |
| Іссн            | Supply Current, All Outputs High       | V = Mov/2)                                                             | ,   | 37     | 65   |      |  |
| ICCL            | Supply Current, All Outputs Low        | $V_{CC} = Max(2)$                                                      |     | 48     | 80   | mA   |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) All 32 words are addressed separately to ensure that the supply current does not exceed the stated maximum. The typical value shown is for the worst-case condition of all eight outputs driven low at one time.

## Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                   |                                                     | FROM    |          |                                                | E   | M54/7 | 4   |       |
|-------------------|-----------------------------------------------------|---------|----------|------------------------------------------------|-----|-------|-----|-------|
|                   | PARAMETER                                           |         | (OUTPUT) | CONDITIONS                                     |     | . 88  |     | UNITS |
|                   |                                                     | (INPUT) | 100017   |                                                | MIN | TYP   | MAX |       |
| t <sub>PL</sub> H | Propagation Delay Time,<br>Low-to-High Level Output | Enable  | Any      |                                                |     | 19    | 35  | ns    |
| t <sub>PHL</sub>  | Propagation Delay Time,<br>High-to-Low Level Output | Enable  | Any      | $C_L = 30 \text{ pF}$<br>$R_{1.1} = 400\Omega$ |     | 18    | 35  | ns    |
| tpLH              | Propagation Delay Time,<br>Low-to-High Level Output | Select  | Any      | $R_{L2} = 600\Omega$                           |     | 21    | 35  | ns    |
| tpHL              | Propagation Delay Time,<br>High-to-Low Level Output | Select  | Any      |                                                |     | 17    | 35  | ns    |

## **Ordering Instructions**

Programming instructions for the DM5488 or DM7488 are solicited in the form of a sequenced deck of 32 standard 80-column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table of the requested part. This function table, showing output conditions for each of the 32 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the word specified and describes the levels at the eight outputs for that word. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

#### Supplementary Ordering Data

Submit the following information with the data cards:

- a. Customer's name and address
- b. Customer's purchase order number
- c. Customer's drawing number



#### Data Card Format

Column

1-2 Punch a right-justified integer representing the positive-logic binary input address (00-31) for the word described on the card.

3-4 Blank

Punch "H," "L," or "X" for output Y8.
H = high-voltage-level output, L = low-voltage-level output, X = output irrelevant.

6-9 Blank

10 Punch "H," "L," or "X" for output Y7.

11-14 Blank

15 Punch "H," "L," or "X" for output Y6.

16-19 Blank

20 Punch "H," "L," or "X" for output Y5.

21-24 Blank

25 Punch "H," "L," or "X" for output Y4.

26-29 Blank

30 Punch "H," "L," or "X" for output Y3.

31-34 Blank

35 Punch "H," "L," or "X" for output Y2.

36-39 Blank

40 Punch "H," "L," or "X" for output Y1.

41-49 Blank

50-51 Punch a right-justified integer representing the current calendar day of the month.

52 Blank

53-55 Punch an alphabetic abbreviation representing the current month.

56 Blank

57-58 Punch the last two digits of the current year.

59 Blank

60-61 Punch "DM"

62-65 Punch the National Semiconductor part number 5488 or 7488.

66-70 Blank



#### Word Select Table

| WORD |   | ı  | NPUT | S  |   |
|------|---|----|------|----|---|
| WORD | E | D  | С    | В  | A |
| 0    | L | L  | L    | L  | L |
| 1    | L | L  | L    | L  | Н |
| 2    | L | L  | L.   | Н  | L |
| 3    | L | L  | L    | Н  | Н |
| 4    | L | L  | Н    | L  | L |
| 5    | L | L  | Н    | L  | Н |
| . 6  | L | L  | Н    | Н  | L |
| 7    | L | L  | Н    | Н  | Н |
| 8    | L | Н  | L    | L  | L |
| 9    | L | Н  | L    | L  | Н |
| 10   | L | Н  | L    | Н  | L |
| 11   | L | Н  | L    | Н  | Н |
| 12   | L | Н  | Н    | L  | L |
| 13   | L | Н  | Н    | L  | Н |
| 14   | L | Н  | Н    | Н  | L |
| 15   | L | Н  | Н    | Н  | Н |
| 16   | H | L  | L    | L  | L |
| 17   | н | L  | Ĺ    | .L | Н |
| 18   | н | L  | L    | Н  | L |
| 19   | Н | L  | L    | 4  | н |
| 20   | Н | L  | Н    | L  | L |
| 21   | н | L  | Н    | L  | Н |
| .22  | Н | Ľ  | Н    | Н  | L |
| 23   | Н | L. | Н    | Н  | н |
| 24   | Н | Н  | L    | L  | L |
| 25   | н | Н  | L    | L  | Н |
| 26   | н | Н  | L    | Н  | L |
| 27   | н | н  | L    | Н  | Н |
| 28   | Н | Н  | Н    | L  | L |
| 29   | н | Н  | Н    | L  | н |
| 30   | Н | Н  | Н    | Н  | L |
| 31   | Н | Н  | Н    | Н  | н |

H = High Level, L = Low Level



#### **General Description**

The DM5489/DM7489, DM54L89A/DM74L89A are fully decoded 64-bit RAMs organized as 16, 4-bit words. The memory is addressed by applying a binary number to the four Address inputs. After addressing, information may be either written into or read from the memory. To write, both the Memory Enable and the Write Enable inputs must be in the logical "0" state. Information applied to the four Write inputs will then be written into the addressed location. To read information from the memory the Memory Enable input must be in the logical "0" state and the Write Enable input in the logical "1" state. Information will be read as the complement of what was written into the memory. When the Memory Enable input is in the logical "1" state, the outputs will go to the logical "1" state.

The "A" suffix on the low power versions is used to

## 64-Bit Read/Write Memories

denote that full "tenth-power" technology has been employed in building this RAM.

#### **Features**

- For application as a "scratch pad" memory with nondestructive read-out
- Fully decoded memory organized as 16 words of four bits each

Fast access time

DM54/74-35 ns typical DM54L/74L-110 ns

- Diode-clamped, buffered inputs
- Open-collector outputs provide wire-OR capability
- Typical power dissipation

DM54/74-400 mW DM54L/74L-75 mW

Pin compatible with 3101, MM5501

## Connection Diagram



5489(J); 7489(J), (N); 54L89A/74L89A(J), (N), (W)

## Truth Table

| MEMORY<br>ENABLE | WRITE<br>ENABLE | OPERATION | OUTPUTS            |
|------------------|-----------------|-----------|--------------------|
| 0                | 0               | Write     | Logical "1" State  |
| 0                | 1               | Read      | Complement of Data |
|                  |                 |           | Stored in Memory   |
| 1                | Х               | Hold      | Logical "1" State  |

#### Logic Diagram





|                 |                                           |                          |                                |      |     | DM54/74 |      |     | OM54L/74L |       |       |
|-----------------|-------------------------------------------|--------------------------|--------------------------------|------|-----|---------|------|-----|-----------|-------|-------|
|                 | PARAMETER                                 |                          | CONDITIONS                     |      |     | 89      |      |     | L89A      |       | UNITS |
|                 |                                           |                          |                                |      | MIN | TYP(1)  | MAX  | MIN | TYP(1)    | MAX   |       |
| V <sub>IH</sub> | High Level Input Voltage                  |                          |                                |      | 2   |         |      | 2   |           |       | V     |
| VIL             | Low Level Input Voltage                   |                          |                                |      |     |         | 8.0  |     |           | 0.7   | V     |
| Vi              | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I | i, = -12 mA                    |      |     |         | -1.5 |     |           | 1.5   | V     |
| I <sub>OH</sub> | High Level Output Current                 | V <sub>CC</sub> = Min, V | V <sub>IH</sub> = 2V           | DM54 |     |         | 100  |     |           | 50    | μΑ    |
|                 |                                           | V <sub>IL</sub> = Max, \ | V <sub>OH</sub> = 5.5V         | DM74 |     |         | 20   |     |           | 50    | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage                 |                          |                                |      |     |         | 5.5  |     |           | 5.5   | V     |
| l <sub>OL</sub> | Low Level Output Current                  |                          |                                | DM54 |     |         | 12   |     |           | 2.0   | A     |
|                 |                                           |                          |                                | DM74 |     |         | 12   |     |           | 3.6   | ,mA   |
| VoL             | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V | V <sub>IH</sub> = 2V           | DM54 |     |         | 0.4  |     |           | 0.3   | V     |
|                 |                                           | V <sub>IL</sub> = Max, I | OL = Max                       | DM74 |     |         | 0.4  |     |           | 0.4   | V .   |
| lı              | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max,   | V <sub>1</sub> = 5.5V          |      |     |         | 1    |     |           | 0.1   | mA    |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max,   | V <sub>1</sub> = 2.4V          |      |     |         | 40   |     |           | 10    | μΑ    |
| liL             | Low Level Input Current                   | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.3V          |      |     |         |      |     |           | -0.18 | mA    |
|                 |                                           | V <sub>CC</sub> = IVIAX  | V, = 0.4V                      |      |     |         | -1.6 |     |           |       | mA    |
| lcc             | Supply Current                            | V <sub>CC</sub> = Max(2  | 2)                             |      |     | 80      | 120  |     | 15        | 19    | , mA  |
| co              | Off-State Output Capacitance              | V <sub>CC</sub> = 5V, V  | <sub>O</sub> = 2.0V, f = 1 MH; | 2    |     | 6       |      |     | N/A       | •     | ρF    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) I<sub>CC</sub> is measured with all inputs grounded.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                                                        |                                              | ı   | DM54/74 | 1   |                                                 | C   | M54L/74 | L   |       |
|--------------------|------------------------------------------------------------------------|----------------------------------------------|-----|---------|-----|-------------------------------------------------|-----|---------|-----|-------|
|                    | PARAMETER                                                              | CONDITIONS                                   |     | 89      |     | CONDITIONS                                      |     | L89A    |     | UNITS |
|                    |                                                                        |                                              | MIN | TYP     | MAX |                                                 | MIN | TYP     | MAX |       |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High<br>Level Output From Memory Enable |                                              |     | 23      | 35  |                                                 |     | 64      | 90  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low<br>Level Output From Memory Enable | C <sub>L</sub> = 30 pF                       |     | 23      | 35  |                                                 |     | 33      | 60  | ùs    |
| tpLH               | Propagation Delay Time, Low-to-High<br>Level Output From Select        | $R_{L1} = 300\Omega$<br>$R_{L2} = 600\Omega$ |     | 34      | 50  | $C_L = 50 \text{ pF}$ $R_L = 4 \text{ k}\Omega$ |     | 90      | 150 | ns    |
| tPHL               | Propagation Delay Time, High-to-Low<br>Level Output From Select        | ·                                            |     | 35      | 50  |                                                 |     | 78      | 150 | ns    |
| tsR                | Sense Recovery Time After Writing                                      |                                              |     | 35      | 50  |                                                 |     | 110     | 165 | ns    |
| tw                 | Width of Write-Enable Pulse                                            |                                              | 40  |         |     |                                                 | 50  |         |     | ns    |
| <sup>†</sup> SETUP | Setup Time, Data Input With Respect to<br>Write Enable                 | ,                                            | 0   |         |     |                                                 | 0   |         |     | ns    |
| <sup>t</sup> SETUP | Select Input Setup Time With Respect to<br>Write Enable                |                                              | 0   |         |     |                                                 | 0   |         |     | ns    |
| tHOLD              | Hold Time, Data Input With Respect to<br>Write Enable                  |                                              | 0   |         | ,   |                                                 | 0   |         |     | ns    |
| tHOLD              | Select Input Hold Time after Writing                                   |                                              | 5   |         |     |                                                 | 0   |         |     | ns.   |

## Decade, Divide by 12, and Binary Counters

#### **General Description**

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 90A, L90, and LS90, divide-by-six for the 92A and LS92, and divide-by-eight for the 93A, L93, and LS93.

All of these counters have a gated zero reset and the 90A, L90, and LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary, the B input is connected to the  $\Omega_A$  output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be

obtained from the 90A, L90, or LS90 counters by connecting the  $Q_D$  output to the A input and applying the input count to the B input which gives a divide-byten square wave at output  $Q_\Delta$ .

#### **Features**

| TYPE       | TYPICAL POWER DISSIPATION | COUNT<br>FREQUENCY |
|------------|---------------------------|--------------------|
| 90A        | 145 mW                    | 42 MHz             |
| L90        | 20 mW                     | 11 MHz             |
| LS90       | . 45 mW                   | 42 MHz             |
| 92A, 93A   | 130 <sup>°</sup> mW       | 42 MHz             |
| LS92, LS93 | 45 mW                     | 42 MHz             |
| L93        | 16 mW                     | 15 MHz             |

#### **Connection Diagrams**



5490A/7490A(J), (N), (W); 54L90/74L90(J), (N), (W); 54LS90/74LS90(J), (N), (W)



5492A/7492A(J), (N), (W); 54LS92/74LS92(J), (N), (W)



5493A/7493A(J), (N), (W); 54LS93/74LS93(J), (N), (W)



54L93/74L93(J), (N), (W)

|                 |                             |                                       |                          |                                                                                  |        |                                                  | DM54/74   |          |     | DM54L/74 | L        | DI                                               | M54LS/74   | LS          |       |
|-----------------|-----------------------------|---------------------------------------|--------------------------|----------------------------------------------------------------------------------|--------|--------------------------------------------------|-----------|----------|-----|----------|----------|--------------------------------------------------|------------|-------------|-------|
|                 | PARAMETER                   |                                       |                          | CONDITIONS                                                                       |        | 90                                               | A, 92A, 9 | 3A       |     | L90, L93 |          | LS9                                              | 0, LS92, L | <b>S</b> 93 | UNITS |
|                 |                             |                                       | . `                      |                                                                                  |        | MIN                                              | TYP(1)    | MAX      | MIN | TYP(1)   | MAX      | MIN                                              | .TYP(1)    | MAX         |       |
| VIH             | High Level Input Voltage    |                                       |                          |                                                                                  |        | 2                                                |           |          | 2   |          |          | 2                                                |            |             | V     |
| $V_{IL}$        | Low Level Input Voltage     |                                       |                          |                                                                                  | DM54   |                                                  |           | 8.0      |     |          | 0.7      |                                                  |            | 0.7         | V     |
|                 |                             |                                       |                          |                                                                                  | DM74   |                                                  |           | 0.8      |     |          | 0.7      |                                                  |            | 0.8         |       |
| $V_{I}$         | Input Clamp Voltage         | ,                                     | V <sub>CC</sub> = Min    | I <sub>1</sub> = -12 mA<br>I <sub>1</sub> = -18 mA                               |        |                                                  |           | -1.5     |     | N/A      |          |                                                  |            |             | l v   |
|                 |                             | · · · · · · · · · · · · · · · · · · · |                          | I <sub>1</sub> =18 mA                                                            |        | <u> </u>                                         | ·         |          |     | N/A      |          |                                                  |            | -1.5        |       |
| Іон             | High Level Output Current   |                                       | •                        |                                                                                  |        |                                                  |           | -800     |     |          | -200     |                                                  |            | -400        | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage   |                                       | V <sub>CC</sub> = Min,   | V <sub>IH</sub> = 2V                                                             | DM54   | 2.4                                              | 3.4       |          | 2.4 |          |          | 2.5                                              | 3.4        |             | V     |
|                 |                             |                                       | V <sub>IL</sub> = Max, I | OH = Max                                                                         | . DM74 | 2.4                                              | 3.4       |          | 2.4 |          |          | 2.7                                              | 3.4        |             |       |
| loL             | Low Level Output Current    |                                       |                          |                                                                                  | DM54   |                                                  |           | 16       |     |          | 2        |                                                  |            | 4           | mA    |
|                 |                             |                                       |                          |                                                                                  | DM74   |                                                  |           | 16       |     |          | 3.6      |                                                  |            | 8           | ""^   |
| VOL             | Low Level Output Voltage    |                                       | V <sub>CC</sub> = Min    | t <sub>oL</sub> = Max (3)                                                        | DM54   |                                                  | 0.2       | 0.4      |     | 0.15     | 0.3      |                                                  | 0.25       | 0.4         | :     |
|                 |                             |                                       | V <sub>IH</sub> = 2V     | V <sub>IH</sub> = 2V                                                             |        |                                                  | 0.2       | 0.4      |     | 0.2      | 0.4      |                                                  | 0.35       | 0.5         | \ \   |
|                 |                             |                                       | V <sub>IL</sub> = Max    | I <sub>OL</sub> = 4 mA                                                           | DM74   |                                                  |           |          |     |          |          |                                                  | 0.25       | 0.4         |       |
| l <sub>i</sub>  | Input Current at Maximum    | Any Reset                             |                          | V <sub>1</sub> = 5.5V .                                                          |        |                                                  |           | 1        |     |          | 0.1      |                                                  |            |             | ]     |
|                 | Input Voltage               |                                       |                          | V <sub>1</sub> = 7V                                                              |        |                                                  |           |          |     |          |          |                                                  |            | 0.1         |       |
|                 |                             | A Input                               | V <sub>CC</sub> = Min    | V <sub>1</sub> = 5.5V                                                            |        | <b></b>                                          |           | 1        |     |          | 0.2      |                                                  |            | 0.4         | mA    |
|                 |                             | B Input                               |                          | V <sub>1</sub> = 5.5V                                                            | L90    | <b></b>                                          |           | . 1      |     |          | 0.4      | -                                                |            | 0.8         | 1     |
|                 |                             |                                       |                          |                                                                                  | Others | <del> </del>                                     |           |          |     |          |          |                                                  |            |             | ļ     |
| ΉΗ              | High Level Input Current    | Any Reset                             |                          | V 07V ( 10                                                                       |        |                                                  |           | 40<br>80 |     |          | 10<br>20 | ļ                                                |            | 20<br>120   | 1     |
|                 |                             | A Input                               | V <sub>CC</sub> = Max    | $V_1 = 2.7V$ for LS<br>$V_1 = 2.4V$ for Others                                   | 93     | <del> </del>                                     |           | 80       |     |          | 20       |                                                  |            | 40          | μΑ    |
|                 |                             | B Input                               |                          | V  2.17 101 Others                                                               | Others | <del> </del>                                     |           | 120      |     |          | 40       | <del>                                     </del> |            | 80          | 1     |
| l <sub>IL</sub> | Low Level Input Current     | Any Reset                             |                          |                                                                                  |        | <del>                                     </del> |           | -1.6     |     |          | -0.18    |                                                  |            | 0.4         |       |
|                 |                             | A Input                               |                          | V <sub>1</sub> = 0.3V for L                                                      |        |                                                  |           | -3.2     |     |          | -0.36    |                                                  |            | -2.4        | 1.    |
|                 |                             | B Input                               | V <sub>CC</sub> = Max    | $V_{CC}^{-} = Max$ $V_1 = 0.3V \text{ for L}$<br>$V_1 = 0.4V \text{ for Others}$ |        |                                                  |           | -3.2     |     |          | -0.36    |                                                  |            | -1.6        | mA    |
|                 |                             | Бтірис                                |                          |                                                                                  | Others |                                                  |           | -4.8     |     |          | −0.72    |                                                  |            | -3.2        |       |
| los             | Short Circuit Output Curren | t                                     | V <sub>CC</sub> = Max(2) |                                                                                  | DM54   | -20                                              |           | -57      | -3  | -9       | -15      | -30                                              |            | -130        | mA    |
|                 |                             |                                       | VCC - IVIAX (            | ۷.                                                                               | DM74   | -18                                              |           | -57      | -3  | -9       | -15      | -30                                              | ,          | -130        | IIIA  |
| Icc             | Supply Current              |                                       | V - = May/               | 4)                                                                               | 90A    |                                                  | 29        | 42       |     |          |          |                                                  |            |             | mA    |
|                 | $V_{CC} = Max(4)$           | Others                                |                          | 26                                                                               | 39     |                                                  |           | 5.5      |     | 9        | 15       | IIIA                                             |            |             |       |

|                  |                                                     | 50014           |                                 |                                           |      |        |        | D   | M54/7   | 4   |     |         |     |     |     | DM54 | 1L/74L |     |     |       |
|------------------|-----------------------------------------------------|-----------------|---------------------------------|-------------------------------------------|------|--------|--------|-----|---------|-----|-----|---------|-----|-----|-----|------|--------|-----|-----|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | (OUTPUT)                        | CONDITIONS                                |      | A, LS9 |        | 92  | 2A, LSS |     |     | 3A, LSS |     |     | L90 |      |        | L93 |     | UNITS |
|                  |                                                     | ļ               |                                 |                                           | MIN  | TYP    | MAX    | MIN | TYP     | MAX | MIN | TYP     | MAX | MIN | TYP | MAX  | MIN    | TYP | MAX |       |
| $f_{\text{max}}$ | Maximum Count Frequency                             | Α.              | Q <sub>A</sub>                  |                                           | . 32 | 42     | •      | 32  | 42      |     | 32  | 42      |     | 6   | 11  |      | 6      | 15  |     | MHz   |
|                  |                                                     | В               | O <sub>B</sub>                  |                                           | 16   |        |        | 16  |         |     | 16  |         |     |     |     |      |        |     |     |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | A               | Q <sub>A</sub>                  | ,                                         |      | 10     | 16     | ·   | 10      | 16  |     | 10      | 16  |     |     |      |        |     |     | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output |                 | U <sub>A</sub>                  |                                           |      | 12     | 18     |     | 12      | 18  |     | 12      | 18  |     |     |      |        |     |     | ris   |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                 | _                               | C <sub>L</sub> = 50 pF<br>For L90 and L93 |      | 32     | 48     |     | 32      | 48  |     | 46      | 70  |     | 175 | 300  |        | 210 | 400 |       |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | A '             | Q <sub>D</sub>                  | C <sub>L</sub> = 15 pF                    |      | 34     | 50     |     | 34      | 50  |     | 46      | 70  |     | 190 | 300  |        | 230 | 400 | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | ,               |                                 | For All Others                            |      | 10     | 16     |     | 10      | 16  |     | 10      | 16  |     |     |      |        |     |     |       |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | В               | Q <sub>B</sub>                  | R <sub>L</sub> = 400Ω<br>For 90A, 92A     |      | 14     | 21     |     | 14      | 21  |     | 14      | 21  |     |     |      |        |     |     | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                 |                                 | and 93A $R_{L} = 2 k\Omega$               |      | 21     | 32     |     | 10      | 16  |     | 21      | 32  |     |     |      |        |     |     | -     |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | В               | , Q <sub>C</sub>                | For LS90, LS92<br>and LS93                |      | 23     | 35     |     | 14      | 21  |     | 23      | 35  |     |     |      |        |     | ,   | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                 |                                 | $R_L = 4 k\Omega$                         |      | 21     | 32 ⋅ ् |     | 21      | 32  |     | 34      | -51 | -   |     |      |        |     |     |       |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | 8               | Q <sub>D</sub>                  | For L90 and L93                           |      | 23     | 35     |     | 23      | 35  |     | 34      | 51  |     |     | ,    |        |     |     | . ns  |
| teHL             | Propagation Delay Time,<br>High-to-Low Level Output | Set-to-0        | Any                             | - :                                       |      | 26     | 40     | ,   | 26      | 40  |     | 26      | 40  |     |     |      |        | .,  |     | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output |                 | Ω <sub>A</sub> , Ω <sub>D</sub> |                                           |      | 20     | 30     | ,   |         |     |     | -       |     |     |     |      |        |     | , • |       |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Set-to-9        | Q <sub>B</sub> , Q <sub>C</sub> | -                                         |      | 26     | 40     |     |         |     |     |         |     |     |     |      |        |     |     | ns    |
| tw               | Pulse Width A Input                                 |                 |                                 |                                           | 15   |        |        | 15  |         |     | 15  |         |     | 90  |     |      | 90     |     |     |       |
|                  | B Input                                             |                 |                                 |                                           | 30   |        |        | 30  |         |     | 30  |         |     | 90  |     |      | 90     |     |     | ns    |
|                  | Reset Input                                         | 1               |                                 |                                           | 15   |        |        | 15  |         |     | 15  |         |     | 200 |     |      | 200    |     |     |       |
| tSETUP           | Reset Inactive State Setup Time                     |                 | *                               |                                           | 25   |        |        | 25  |         |     | 25  |         |     | 200 |     |      | 200    |     |     | ns    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) QA outputs are tested at IOL = max plus the limit value for IIL for the B input. This permits driving the B input while maintaining full fan-out capability.
- (4) ICC is measured with all outputs open, both R<sub>0</sub> inputs grounded following momentary connection to 4.5V and all other inputs grounded.

## DM54/DM7490A,L90,LS90,92A,LS92,93A,L93,LS93

#### **Truth Tables**

90A, L90, LS90 BCD COUNT SEQUENCE (See Note A)

| (See Note A) |              |              |     |         |  |  |  |  |  |  |  |  |
|--------------|--------------|--------------|-----|---------|--|--|--|--|--|--|--|--|
| COUNT        |              | OUT          | PUT |         |  |  |  |  |  |  |  |  |
| COOKI        | $\sigma_{D}$ | $\alpha_{c}$ | ОВ  | $Q_{A}$ |  |  |  |  |  |  |  |  |
| 0            | L            | L            | L   | L       |  |  |  |  |  |  |  |  |
| 1            | L            | L            | L   | Н       |  |  |  |  |  |  |  |  |
| 2            | L            | L            | Н   | L       |  |  |  |  |  |  |  |  |
| 3            | L            | L            | Н   | Н       |  |  |  |  |  |  |  |  |
| 4            | L            | Н            | L   | L       |  |  |  |  |  |  |  |  |
| 5            | L            | Н            | L   | Н       |  |  |  |  |  |  |  |  |
| 6            | L            | Н            | Н   | L       |  |  |  |  |  |  |  |  |
| 7            | L            | Н            | Н   | Н       |  |  |  |  |  |  |  |  |
| 8            | н            | L            | L   | L       |  |  |  |  |  |  |  |  |
| 9 `          | Н            | L            | L   | Н       |  |  |  |  |  |  |  |  |

90A, L90, LS90 BI-QUINARY (5-2) (See Note B)

| . (   | (See Note B) |        |                  |    |  |  |  |  |  |  |  |  |  |
|-------|--------------|--------|------------------|----|--|--|--|--|--|--|--|--|--|
| COUNT |              | OUTPUT |                  |    |  |  |  |  |  |  |  |  |  |
| COONT | QA           | $Q_D$  | $\alpha_{\rm c}$ | ΩB |  |  |  |  |  |  |  |  |  |
| 0 .   | L            | L      | L                | L  |  |  |  |  |  |  |  |  |  |
| 1     | L            | L      | L                | н  |  |  |  |  |  |  |  |  |  |
| 2     | L            | L      | Н                | L  |  |  |  |  |  |  |  |  |  |
| 3     | L            | L      | Н                | Н  |  |  |  |  |  |  |  |  |  |
| 4     | L            | Н      | L                | L  |  |  |  |  |  |  |  |  |  |
| 5     | H            | L      | L                | L  |  |  |  |  |  |  |  |  |  |
| 6     | H            | L      | L                | н  |  |  |  |  |  |  |  |  |  |
| 7     | Н            | L      | Н                | L  |  |  |  |  |  |  |  |  |  |
| 8     | Н            | L      | Н                | н  |  |  |  |  |  |  |  |  |  |
| 9     | Н            | Н      | L                | L  |  |  |  |  |  |  |  |  |  |

92A, LS92 COUNT SEQUENCE (See Note C)

| COUNT |              | OUT | PUT |    |
|-------|--------------|-----|-----|----|
| COUNT | $\alpha_{D}$ | Qς  | Ωв  | QA |
| 0     | , L          | L   | L   | L  |
| 1     | L            | L   | L   | Н  |
| 2     | L            | L   | Н   | L  |
| 3     | L            | L   | Н   | H  |
| 4     | L            | Н   | L   | L  |
| 5     | L            | Н   | L   | Н  |
| 6     | н            | L   | L   | L  |
| 7     | Н            | L   | L   | Н  |
| 8     | н            | L   | Н   | L  |
| 9     | н            | L   | Н   | Н  |
| 10    | ′н           | Н   | L   | L  |
| 11    | Н            | Н   | L   | Н  |

93A, L93, LS93 COUNT SEQUENCE (See Note C)

| COUNT | OUTPUT  |              |    |    |  |  |
|-------|---------|--------------|----|----|--|--|
|       | $a_{D}$ | $\alpha_{c}$ | ΟB | QA |  |  |
| 0     | L       | L            | L  | L  |  |  |
| 1 1   | L       | L            | L  | Н  |  |  |
| 2     | L       | L            | Н  | L  |  |  |
| 3     | L       | L            | Н  | Н  |  |  |
| 4     | L       | Н            | L  | L  |  |  |
| 5     | L       | Н            | L  | н  |  |  |
| 6     | L       | Н            | Н  | L  |  |  |
| 7     | L       | Н            | Н  | Н  |  |  |
| 8     | н       | L            | L  | L  |  |  |
| 9     | н       | L            | L  | Н  |  |  |
| 10    | н       | L            | Н  | L  |  |  |
| 11    | Н       | L            | Н  | Н  |  |  |
| 12    | н       | Н            | L  | L  |  |  |
| 13    | Н       | Н            | L  | H  |  |  |
| 14    | Н       | Н            | Н  | L  |  |  |
| 15    | н       | н            | н  | Н  |  |  |

90A, L90, LS90 RESET/COUNT TRUTH TABLE

| RESET INPUTS |       |       | OUTPUT |       |              |     |    |
|--------------|-------|-------|--------|-------|--------------|-----|----|
| R0(1)        | R0(2) | R9(1) | R9(2)  | $Q_D$ | $\alpha_{c}$ | QΒ  | Q, |
| Н            | Н     | L     | Х      | L     | L            | L   | L  |
| Н            | Н     | X     | L      | L     | L            | L   | L  |
| ×            | X     | Н     | H      | Н     | L            | L   | Н  |
| ×            | L     | X     | L      | COUNT |              |     |    |
| L            | X     | L     | Х      | COUNT |              |     |    |
| L            | X     | ×     | L      | COUNT |              |     |    |
| ×            | L     | . L   | Х      |       | CO           | UNT |    |

92A, LS92, 93A, L93, LS93 RESET/COUNT TRUTH TABLE

| RESET INPUTS |       |       | OUTPUT |              |    |    |
|--------------|-------|-------|--------|--------------|----|----|
|              | R0(1) | R0(2) | $Q_D$  | $\alpha_{c}$ | QΒ | QA |
|              | Н     | н     | L      | L            | L  | L  |
|              | L     | X     | COUNT  |              |    |    |
|              | ×     | L     | COUNT  |              |    |    |

# Don't Care. Logic Diagrams

BCD count.

bi-quinary count.

90A, L90, LS90

(A) Output QA is connected to input B for

(B) Output  $Q_D$  is connected to input A for

(C) Output  $Q_A$  is connected to input B. (D) H = High Level, L = Low Level, X =







The J and K inputs shown without connection are for reference only and are functionally at a high level.



# 8-Bit Serial Shift Registers

### **General Description**

These serial-in, serial-out 8-bit shift registers are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift-register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

### **Features**

 
 TYPE
 TYPICAL CLOCK FREQUENCY
 TYPICAL POWER DISSIPATION

 91A L91
 22 MHz 8 MHz
 175 mW 17.5 mW

### **Connection Diagrams**





#### Truth Table

| INP<br>AT | UTS<br>t <sub>n</sub> | OUTPUTS<br>AT t <sub>n+8</sub> |      |  |  |  |  |  |  |
|-----------|-----------------------|--------------------------------|------|--|--|--|--|--|--|
| Α         | В                     | QΗ                             | α̈́н |  |  |  |  |  |  |
| Н         | Н                     | Н                              | ٦    |  |  |  |  |  |  |
| L         | Х                     | L                              | н    |  |  |  |  |  |  |
| X         | L                     | L.                             | Н    |  |  |  |  |  |  |

H = High, L = Low,

X = Don't Care

t<sub>n</sub> = Reference bit time, clock low,

t<sub>n+8</sub> = Bit time after 8 low-to-high clock transitions.

### Logic Diagram





|                 |                                        |                                                                                             |              |          | DM54/74  |          | C        | M54L/74  | L        |       |
|-----------------|----------------------------------------|---------------------------------------------------------------------------------------------|--------------|----------|----------|----------|----------|----------|----------|-------|
|                 | PARAMETER                              | CONDITIONS                                                                                  |              | L        | 91A      |          |          | L91      |          | UNITS |
|                 |                                        |                                                                                             |              | MIN      | TYP(1)   | MAX      | MIN      | TYP(1)   | MAX      |       |
| ViH             | High Level Input Voltage               |                                                                                             |              | 2        |          |          | 2        |          |          | V     |
| VIL             | Low Level Input Voltage                |                                                                                             |              |          |          | 8.0      |          |          | 0.7      | V     |
| Іон             | High Level Output Current              |                                                                                             |              |          |          | -800     |          |          | -200     | μА    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max, I <sub>OH</sub> = Max |              | 2.4      | 3.5      |          | 2.4      | 2.8      |          | ٧     |
| l <sub>OL</sub> | Low Level Output Current               |                                                                                             | DM54<br>DM74 |          |          | 16<br>16 |          |          | 3.6      | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = Max, I_{OL} = Max$                                 | DM54<br>DM74 |          | 0.22     | 0.4      |          | 0.15     | 0.3      | V     |
| I,              | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                |              |          |          | 1        |          |          | 0.1      | mA    |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                |              |          |          | 40       |          |          | 10       | μА    |
| IIL             | Low Level Input Current                | $V_{CC} = Max$ $V_1 = 0.3V$ $V_1 = 0.4V$                                                    |              |          |          | -1.6     |          |          | -0.18    | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                    | DM54<br>DM74 | 20<br>18 |          | 57<br>57 | -3<br>-3 | -8<br>-8 | 15<br>15 | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                                                                    | DM54<br>DM74 |          | 35<br>35 | 50<br>58 |          | 3.5      | 6.6      | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) ICC is measured after the eighth clock pulse with the output open and A and B inputs grounded.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                                  |                                    | C   | M54/7 | 4   |                                    | DI  | V154 L/7 |     |       |
|--------------------|--------------------------------------------------|------------------------------------|-----|-------|-----|------------------------------------|-----|----------|-----|-------|
|                    | PARAMETER                                        | CONDITIONS                         |     | 91A   |     | CONDITIONS                         |     | L91      |     | UNITS |
|                    |                                                  |                                    | MIN | TYP   | MAX |                                    | MIN | TYP      | MAX |       |
| f <sub>max</sub>   | Maximum Clock Frequency                          |                                    | 10  | 22    |     |                                    | 4   | 8        |     | MHz   |
| <sup>t</sup> PLH   | Propagation Delay Time, Low-to-High Level Output | $C_L = 15 pF$<br>$R_1 = 400\Omega$ |     | 18    | 40  | $C_L = 50 pF$<br>$R_1 = 4 k\Omega$ |     | 40       | 80  | ns    |
| tpHL               | Propagation Delay Time, High-to-Low Level Output |                                    |     | 27    | 40  | - ,                                |     | 65       | 130 | ns    |
| tw(CLOCK)          | Width of Clock Input Pulse                       | ,                                  | 25  |       |     |                                    | 120 |          |     | ns    |
| <sup>†</sup> SETUP | Setup Time                                       |                                    | 25  |       |     |                                    | 120 |          |     | ńs    |
| <sup>t</sup> HOLD  | Hold Time                                        |                                    | 0   |       |     |                                    | 0   |          |     | ns    |



### **General Description**

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation.

Parallel (broadside) load Shift right (the direction  $Q_A$  toward  $Q_D$ ) Shift left (the direction  $Q_D$  toward  $Q_A$ )

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2

## 4-Bit Parallel Access Shift Registers

when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop ( $Q_D$  to input C, etc.) and serial data is entered at input D. The clock input may be applied simultaneously to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the truth table will also ensure that register contents are protected.

#### **Features**

| TYPE  | TYPICAL MAXIMUM CLOCK FREQUENCY | TYPICAL POWER DISSIPATION |
|-------|---------------------------------|---------------------------|
| 95    | 36 MHz                          | 250 mW                    |
| L95   | 14 MHz                          | 24 mW                     |
| LS95B | 36 MHz                          | 65 mW                     |

### **Connection Diagrams**



5495(J), (W); 7495(J), (N), (W); 54LS95B/74LS95B(J), (N), (W)



54L95/74L95(J), (N), (W)

### Logic Diagram



|                 |                             |                        |                           |                                                    |      |              | DM54/74 |              | 1   | DM54L/74     | L     | Di      | M54LS/74 | LS           |       |
|-----------------|-----------------------------|------------------------|---------------------------|----------------------------------------------------|------|--------------|---------|--------------|-----|--------------|-------|---------|----------|--------------|-------|
|                 | PARAMETE                    | ₹                      |                           | CONDITIONS                                         |      |              | 95      |              |     | L95          |       |         | LS95B    |              | UNITS |
| 1               |                             | 4                      |                           |                                                    |      | WiN          | TÝP(1)  | MAX          | MIN | TYP(1)       | MAX   | MIN     | TYP(1)   | MAX          | ľ     |
| V <sub>IH</sub> | High Level Input Voltage    |                        |                           |                                                    |      | 2            |         |              | 2   |              |       | 2       |          |              | ٧     |
| VIL             | Low Level Input Voltage     |                        |                           |                                                    | DM54 |              |         | 0.8          |     |              | 0.7   |         | -        | 0.7          | V     |
|                 |                             |                        | ,                         | ,                                                  | DM74 |              |         | 8.0          |     |              | 0.7   |         |          | 8.0          | ] '   |
| Vı              | Input Clamp Voltage         |                        | V <sub>CC</sub> = Min     | I <sub>1</sub> = -12 mA<br>I <sub>1</sub> = -18 mA |      |              |         | -1.5         |     | N/A          |       |         |          |              | V     |
|                 | ·                           |                        | V CC - WIIII              | I <sub>1</sub> = -18 mA                            |      |              |         |              |     | N/A          | ,     |         |          | -1.5         | l '   |
| I <sub>OH</sub> | High Level Output Current   |                        |                           |                                                    |      |              |         | -800         |     |              | -200  |         |          | -400         | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage   |                        | V <sub>CC</sub> = Min,    | V <sub>IH</sub> = 2V                               | DM54 | 2.4          | 3.4     |              | 2.4 | 3.1          |       | 2.5     | 3.4      |              | .,    |
|                 |                             |                        | V <sub>I,L</sub> = Max, I | OH = Max                                           | DM74 | 2.4          | 3.4     |              | 2.4 | 3.1          |       | 2.7     | 3.4      |              | \ \   |
| loL             | Low Level Output Current    |                        |                           |                                                    | DM54 |              |         | 16           |     |              | 2     |         |          | 4            | mA    |
|                 |                             |                        |                           | •                                                  | DM74 |              |         | 16           |     |              | 3.6   |         |          | 8            | mA .  |
| V <sub>OL</sub> | Low Level Output Voltage    |                        | V <sub>CC</sub> = Min     | I <sub>OL</sub> = Max                              | DM54 |              | 0.2     | 0.4          |     | 0.13         | 0.3   |         | 0.25     | 0.4          |       |
| 1               |                             |                        | V <sub>IH</sub> = 2V      |                                                    | DM74 |              | 0.2     | 0.4          |     | 0.2          | 0.4   |         | 0.35     | 0.5          | V     |
| .               |                             | <del></del>            | V <sub>IL</sub> = Max     | I <sub>OL</sub> = 4 mA                             | DM74 |              |         |              |     |              |       |         | 0.25     | 0.4          |       |
| l <sub>1</sub>  | Input Current at Maximum    | Mode Control           |                           | V, = 5.5V                                          |      |              |         | 1            |     |              | 0.2   |         |          |              |       |
|                 | Input Voltage               | Others                 | V <sub>CC</sub> = Max     |                                                    |      |              |         | 1            |     |              | 0.1   |         |          |              | mA    |
|                 | ,                           | Clock Inputs           |                           | V <sub>1</sub> = 7V                                |      |              |         |              |     |              |       |         |          | 0.2          |       |
|                 |                             | Others                 |                           |                                                    |      |              |         |              |     |              |       |         |          | 0.1          |       |
| Чн              | High Level Input Current    | Mode Control           |                           | V, = 2.4V                                          |      |              |         | 80           |     |              | 20    |         |          |              |       |
|                 |                             | Others                 | V <sub>CC</sub> = Max     | ļ                                                  | ·    |              |         | 40           |     |              | 10    |         |          |              | μΑ    |
|                 |                             | Clock Inputs Others    |                           | V <sub>1</sub> = 2.7V                              |      | <u></u>      |         |              |     | <del> </del> |       |         |          | 40           |       |
|                 |                             |                        |                           |                                                    |      |              |         |              | ļ   |              |       |         |          | 20           |       |
| lir             | Low Level Input Current     | Mode Control           |                           | V <sub>1</sub> = 0.3V                              |      |              |         |              |     |              | -0.36 |         |          |              |       |
|                 |                             | Others                 | V - 14                    |                                                    |      |              |         |              |     |              | -0.18 |         |          |              |       |
|                 | ,                           | Mode Control<br>Clocks | V <sub>CC</sub> = Max     | V, = 0.4V                                          |      |              |         | -3.2<br>-1.6 |     |              |       |         |          | -0.4<br>-0.8 | mA    |
|                 |                             | Others                 |                           | V 1 - 0.4V                                         |      | <del> </del> |         | -1.6         |     |              |       | <b></b> |          | -0.8         | 1     |
| los             | Short Circuit Output Currer | L                      | V <sub>CC</sub> = Max(    | 2)                                                 |      | -18          |         | -57          | -3  | <u>-9</u>    | -15   | -30     |          | -130         | mA    |
| Icc             | Supply Current              | ·                      | V <sub>CC</sub> = Max(    |                                                    | ×    |              | 50      | 75           | -   | 4.8          | 8     |         | 13       | 21           | mA    |
|                 | L                           |                        |                           | <del></del>                                        |      | L            |         |              | L   |              |       | L       |          |              | L     |

#### Notes

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                                   |                                         | DM54/74 |     |     | DI                                              | M54L/74 | L   |     | DM                                                    | 154LS/74 | LS   |     |       |
|------------------|-------------------------------------------------------------------|-----------------------------------------|---------|-----|-----|-------------------------------------------------|---------|-----|-----|-------------------------------------------------------|----------|------|-----|-------|
|                  | PARAMETER                                                         |                                         | 95      |     |     |                                                 | L95     |     |     |                                                       | LS95B    |      |     | UNITS |
|                  |                                                                   | CONDITIONS                              | MIN     | TYP | MAX | CONDITIONS                                      | MIN     | TYP | MAX | CONDITIONS                                            | MIN      | TYP. | MAX |       |
| f <sub>max</sub> | Maximum Clock Frequency                                           |                                         | 25      | 36  |     |                                                 | 6       | 14  |     |                                                       | 25       | 36   |     | . MHz |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output<br>From Clock | $C_L = 15 \text{ pF}$ $R_L = 400\Omega$ |         | 25  | 35  | $C_L = 50 \text{ pF}$ $R_L = 4 \text{ k}\Omega$ |         | 42  | 90  | $C_L \approx 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$ |          | 18   | 27  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output<br>From Clock | ,                                       |         | 25  | 35  |                                                 |         | 48  | 90  |                                                       |          | 21   | 32  | ns    |
| tw(CLOCK)        | Width of Clock Pulse                                              | ,                                       | 15      |     | 7   |                                                 | 90      |     | _   |                                                       | 25       |      |     | ns    |
| tSETUP           | Setup Time, High-Level Data                                       |                                         | 20      | 10  |     |                                                 | 50      |     |     |                                                       | 20       |      |     | ns    |
| tSETUP           | Setup Time, Low-Level Data                                        |                                         | 20      | 10  |     |                                                 | 50      |     |     |                                                       | 20       |      |     | nș    |
| tHOLD            | Hold Time, High-Level or Low-Level Data                           |                                         | 0       | -10 | -   |                                                 | 0       |     |     |                                                       | 10       |      |     | ns    |
| tenable 1        | Time to Enable Clock 1                                            |                                         | 20      |     |     |                                                 | 120     |     |     |                                                       | 20       |      |     | ns )  |
| tenable 2        | Time to Enable Clock 2                                            |                                         | 15      |     |     | 1                                               | 100     |     |     |                                                       | 20       |      |     | ns    |
| tinhibit 1       | Time to Inhibit Clock 1                                           | ·                                       | 10      |     |     |                                                 | _ 0     |     |     |                                                       | 20       |      |     | ns    |
| tinhiBiT2        | Time to Inhibit Clock 2                                           |                                         | 10      | ,   |     |                                                 | 0       |     |     | **                                                    | 20.      |      |     | ns    |

### Truth Table

|   |            |       | INP      | UTS    |     |         |                 |   |                 | OUT             | PUTS     |                 |
|---|------------|-------|----------|--------|-----|---------|-----------------|---|-----------------|-----------------|----------|-----------------|
|   | MODE       | CLO   | CKS      | SERIAL |     | PARA    | LLEL            |   |                 | ^               | ^        | _               |
| 1 | CONTROL    | 2 (L) | 1 (R)    | SENIAL | Α   | В       | С               | D | QA              | ΩB              | $o_c$    | $\sigma_{D}$    |
| I | . н        | Н     | Χ        | Χ .    | ×   | X       | Х               | X | Q <sub>A0</sub> | O <sub>BO</sub> | Qco      | Q <sub>D0</sub> |
| 1 | Н          | . ↓   | Х        | х      | a   | b       | c               | d | a               | b               | c        | d               |
| ١ | • н        | 1     | X        | X      | Qġt | $Q_C t$ | $Q_D^{\dagger}$ | d | Q <sub>Bn</sub> | $Q_{Cn}$        | $Q_{Dn}$ | - d             |
| 1 | L.         | L     | н        | Х      | X   | X       | Х               | X | Q <sub>A0</sub> | $O^{80}$        | $Q_{CO}$ | $\sigma^{D0}$   |
|   | L          | X     | . ↑      | Н      | Х   | Х       | Х               | Х | н               | $Q_{An}$        | $Q_{Bn}$ | $Q_{Cn}$        |
| 1 | L          | X     | <b>.</b> | L      | Х   | X       | X               | X | L               | $Q_{An}$        | $Q_{Bn}$ | $Q_{Cn}$        |
| ١ | 1          | L     | L        | Х      | Х   | Х       | Х               | X | Q <sub>AO</sub> | $O^{BO}$        | $Q_{CO}$ | $Q_{D0}$        |
| 1 | <b>↓</b>   | L     | L        | X      | Х   | X       | Х               | Х | Q <sub>A0</sub> | $O^{80}$        | $Q_{CO}$ | Q <sub>D0</sub> |
| 1 | ↓          | L ·   | н        | Х      | X   | Х       | X               | X | Q <sub>AO</sub> | O <sub>BO</sub> | $Q_{CO}$ | $\Omega_{D0}$   |
| . | <b>†</b> . | Н -   | L        | Х      | ×   | X       | Х               | X | Q <sub>AÖ</sub> | O <sub>BO</sub> | $Q_{CO}$ | OD0             |
| 1 | 1          | н     | Н        | х      | ×   | X       | X               | Х | Q <sub>AO</sub> | $O^{BO}$        | $Q_{CO}$ | $Q^{D0}$        |

 $^\dagger \text{Shifting left}$  requires external connection of QB to A, QC to B, QD to C. Serial data is entered at input D.

H = High Level (Steady State), L = Low Level (Steady State), X = Don't Care (Any input, including transitions)

↓= Transition from high to low level, ↑ = Transition from low to high level

a, b, c, d = The level of steady state input at inputs A, B, C, or D, respectively.

 $\rm Q_{AO},~Q_{BO},~Q_{CO},~Q_{DO}$  = The level of  $\rm Q_{A},~Q_{B},~Q_{C},$  or  $\rm Q_{D},$  respectively, before the indicated steady state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$ ,  $Q_{Dn}$  = The level of  $Q_{A}$ ,  $Q_{B}$ ,  $Q_{C}$ , or  $Q_{D}$ , respectively, before the most recent  $\downarrow$  transition of the clock.



## 5-Bit Shift Registers

#### General Description

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may also be performed.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input while the preset is low. Clearing is independent of the level of the clock input.

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting is also independent of the level of the clock input.

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

#### **Features**

- N-bit serial-to-parallel converter
- N-bit parallel-to-serial converter
- N-bit storage register

### **Connection Diagram**



5496(J), (W); 7496(J), (N), (W); 54LS96/74LS96(J), (N), (W)

#### Truth Table

|       |        |   | 1 | NPUT | s   |   |       |        | _               | . (      | OUTPUT        | s              |                 |
|-------|--------|---|---|------|-----|---|-------|--------|-----------------|----------|---------------|----------------|-----------------|
| CLEAR | PRESET |   | Р | RESE | Т   |   | СГОСК | SERIAL |                 | .0       | 0             | 0              | 0               |
| CLEAR | ENABLE | Α | В | С    | D   | E | CLOCK | SERIAL | QA              | ,OB      | αc            | α <sub>D</sub> | ΩE              |
| L     | L      | × | X | X    | X.  | Х | Х     | Х      | . L             | - L      | L             | , L            | L               |
| L     | Х      | L | L | L    | L   | L | ×     | Х      | L               | L        | L             | L              | L               |
| н     | Н      | Н | Н | Н    | Н   | Н | ×     | X      | н               | Н        | н             | H              | н               |
| н     | н      | L | L | L    | L   | L | L     | Х      | Q <sub>AO</sub> | $Q_{BO}$ | $Q_{C0}$      | $Q_{DO}$       | O <sub>EO</sub> |
| Н     | н      | Н | L | Н    | L   | Н | L     | ×      | н               | $Q_{BO}$ | н             | $Q_{D0}$       | н               |
| н     | L      | × | X | X    | . X | X | L     | ×      | Q <sub>A0</sub> | $Q_{BO}$ | $\Omega_{CO}$ | $Q_{DO}$       | O <sub>EO</sub> |
| н     | L      | x | X | X    | Х   | Х | . 1   | н ·    | н               | $Q_{An}$ | $Q_{Bn}$      | $Q_{Cn}$       | Q <sub>Dn</sub> |
| Н     | L      | × | × | ×    | ×   | X | 1     | L      | L               | $Q_{An}$ | $Q_{Bn}$      | $Q_{Cn}$       | Q <sub>Dn</sub> |

H = high level (steady state), L = low level (steady state)

X = don't care (any input, including transitions)

<sup>↑ =</sup> transition from low to high level

 $Q_{A0}$ ,  $Q_{B0}$ , etc. = the level of  $Q_A$ ,  $Q_B$ , etc., respectively before the indicated steady state input conditions were established.  $Q_{A0}$ ,  $Q_{B0}$ , etc. = the level of  $Q_A$ ,  $Q_B$ , etc., respectively before the most recent  $\uparrow$  transition of the clock.



|                 |                           |                  |                                       |                         | ,    |          | DM54/74 |      | DI  | VI54LS/74 | LS   |       |
|-----------------|---------------------------|------------------|---------------------------------------|-------------------------|------|----------|---------|------|-----|-----------|------|-------|
|                 | PARAMETER                 | ,                |                                       | CONDITIONS              |      |          | 96      |      |     | LS96      |      | UNITS |
|                 |                           |                  |                                       | *.                      |      | MIN      | .TYP(1) | MAX  | MIN | TYP(1)    | MAX  |       |
| V <sub>IH</sub> | High Level Input Voltage  |                  |                                       |                         |      | 2        |         |      | 2   |           |      | ٧     |
| VIL             | Low Level Input Voltage   |                  |                                       |                         | DM54 |          |         | 0.8  | 21  |           | 0.7  | .,    |
|                 |                           |                  |                                       |                         | DM74 |          |         | 0.8  |     |           | 8.0  | ٧     |
| V <sub>I</sub>  | Input Clamp Voltage       |                  | V <sub>CC</sub> = Min                 | t <sub>i</sub> = -12 mA |      |          |         | -1.5 |     |           |      | V     |
|                 |                           |                  | V <sub>CC</sub> = Willi               | I <sub>1</sub> = -18 mA |      |          |         |      |     |           | -1.5 | v     |
| Іон             | High Level Output Curren  | t                |                                       |                         |      |          |         | -400 |     |           | -400 | μΑ    |
| VoH             | High Level Output Voltage |                  | V <sub>CC</sub> = Min, V              | <sub>H</sub> = 2V       | DM54 | 2.4      | 3.4     |      | 2.5 | 3.5       |      | v     |
|                 |                           |                  | V <sub>IL</sub> = Max, I <sub>Q</sub> | <sub>H</sub> = -400μA   | DM74 | 2.4      | 3.4     |      | 2.7 | 3.5       |      | V     |
| loL             | Low Level Output Current  |                  |                                       |                         | DM54 |          |         | 16   |     |           | 4    |       |
|                 |                           |                  |                                       | -                       | DM74 |          |         | 16   |     |           | 8 .  | · mA  |
| Vol             | Low Level Output Voltage  |                  | V <sub>CC</sub> = Min                 |                         | DM54 |          | 0.2     | 0.4  |     | 0.25      | 0.4  |       |
|                 |                           |                  | V <sub>IH</sub> = 2V                  | I <sub>OL</sub> = Max   | DM74 |          | 0.2     | 0.4  |     | 0.35      | 0.5  | V     |
|                 |                           |                  | V <sub>iL</sub> = Max                 | I <sub>OL</sub> = 4 mA  | DM74 |          |         |      |     | 0.25      | 0.4  |       |
| l <sub>i</sub>  | Input Current at Maximun  | n Input Voltage  | V <sub>CC</sub> = Max                 | V <sub>1</sub> = 5.5V   |      |          |         | 1    |     |           |      | mA    |
|                 |                           |                  | VCC - IVIAX                           | V, = 7V                 |      |          |         |      |     |           | 0.1  |       |
| ш               | High Level Input Current  | Any Input Except |                                       | V <sub>1</sub> = 2.4V   |      |          |         | 40   |     |           |      |       |
|                 |                           | Preset Enable    | V <sub>CC</sub> = Max                 | V <sub>1</sub> = 2.7V   |      |          |         |      |     |           | 20   | μΑ    |
|                 |                           | Preset Enable    | 1 4 GC 14107                          | V <sub>1</sub> = 2.4V   |      |          |         | 200  | ļ   |           |      |       |
|                 |                           |                  |                                       | V <sub>1</sub> = 2.7V   |      |          |         |      |     |           | 20   |       |
| կլ              | Low Level Input Current   | Any Input Except |                                       |                         |      |          | *       | -1.6 |     |           | -0.4 |       |
|                 |                           | Preset Enable    | V <sub>CC</sub> = Max, V              | <sub>i</sub> = 0.4V     |      |          |         |      |     |           |      | mA    |
|                 |                           | Preset Enable    |                                       |                         | ·    | <u> </u> |         | 8    |     |           | -2   |       |
| los             | Short Circuit Output Curr | ent              | V <sub>CC</sub> = Max(2)              |                         | DM54 |          |         | -57  | -30 |           | -130 | mA    |
|                 |                           |                  | + CC 1414×(2)                         |                         | DM74 | -18      |         | -57  | -30 |           | -130 | 1117  |
| Icc             | Supply Current            |                  | V <sub>CC</sub> = Max(3)              |                         | DM54 |          | 48      | 68   |     | 12        | 20   | mA    |
|                 |                           |                  | VCC - Wax(3)                          |                         | DM74 |          | 48      | 79   | 1   | 12        | 20   | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the clear input grounded and all other inputs and outputs open.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                                                                      | DM54)                                  | 74          | DM54LS                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|--------------------|--------------------------------------------------------------------------------------|----------------------------------------|-------------|-----------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    | PARAMETER                                                                            | 96                                     |             | LSS                                           | 96  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNITS |
|                    |                                                                                      | CONDITIONS                             | MIN TYP MAX | CONDITIONS                                    | MIN | TYP MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | त     |
| f <sub>max</sub>   | Maximum Shift Frequency                                                              |                                        | 10          |                                               | 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz   |
| <sup>t</sup> PLH   | Propagation Delay Time, Low-to-<br>High Level Output From Clock                      |                                        | 25 40       |                                               |     | 25 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-<br>Low Level Output From Clock                      |                                        | 25 40       |                                               |     | 25 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns    |
| tpLH               | Propagation Delay Time, Low-to-<br>High Level Output From Preset<br>or Preset Enable | $C_L = 15 \text{ pF}, R_L = 400\Omega$ | 25 35       | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 2 kΩ |     | 28 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns    |
| tPHL               | Propagation Delay Time, High-to-<br>Low Level Output From Clear                      | \<br>,                                 |             |                                               |     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns    |
| tw(CLOCK)          | Width of Clock Input Pulse                                                           |                                        | 35          |                                               | 35  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns    |
| tw                 | Width of Preset and Clear Input Pulse                                                |                                        | 30          |                                               | 30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns    |
| <sup>t</sup> SETUP | Serial Input Setup Time                                                              |                                        | 30          |                                               | 30  | a Artino de Calendo de Artino de Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calendo Calen | ns    |
| tHOLD              | Serial Input Hold Time                                                               |                                        | 0           |                                               | 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns    |



# DM54/DM7496,LS96

Logic Diagram



### **Timing Diagram**

TYPICAL CLEAR, SHIFT, PRESET, AND SHIFT SEQUENCES





### **General Description**

These data selectors/storage registers are composed of four S-R master-slave flip-flops, four AND-OR INVERT gates, one buffer, and six inverter/drivers.

When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high level input to

# **4-Bit Storage Registers**

word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is shifted to the output terminals on the negative-going edge of the clock pulse.

Typical clock frequency is 12 MHz.

### **Connection Diagram**



Word select low for word 1, ward select high for word 2, see description 54L98/74L98(J), (N), (W)

### Logic Diagram





|                 |                                        |                                                                    |              | 1   | DM54L/741 | -        |       |
|-----------------|----------------------------------------|--------------------------------------------------------------------|--------------|-----|-----------|----------|-------|
|                 | PARAMETER                              | CONDITIONS                                                         |              |     | L98       |          | UNITS |
| 1               |                                        |                                                                    |              | MIN | TYP(1)    | MAX      |       |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                    |              | 2   |           |          | V     |
| VIL             | Low Level Input Voltage                |                                                                    |              |     |           | 0.7      | ٧     |
| Іон             | High Level Output Current              |                                                                    |              |     |           | -200     | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OH} = -200\mu$   | ιA           | 2.4 |           |          | ٧     |
| I <sub>OL</sub> | Low Level Output Current               |                                                                    | DM54<br>DM74 |     |           | 2<br>3.6 | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.7V$ , $I_{OL} = Max$ | DM54<br>DM74 |     | 0.15      | 0.3      | ٧     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                      |              |     |           | 100      | μΑ    |
| l <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                      |              |     |           | 10       | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.3V$                                      | ,            |     |           | -0.18    | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max                                              |              | -3  | -9        | -15      | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(2)                                           |              |     | 6         | 8        | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) I<sub>CC</sub> is measured with all inputs grounded and all outputs open.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                       |                                                              |                              |                                                |            | OM54L/74 | L   | ,     |
|-----------------------|--------------------------------------------------------------|------------------------------|------------------------------------------------|------------|----------|-----|-------|
|                       | PARAMETER                                                    |                              | CONDITIONS                                     |            | L98      |     | UNITS |
|                       | ,                                                            |                              |                                                | MIN        | TYP      | MAX |       |
| f <sub>max</sub>      | Maximum Clock Frequency                                      |                              |                                                | 6          | 12       |     | MHz   |
| <sup>t</sup> PLH      | Propagation Delay Time, Low-to-H<br>Level Output From Clock  | igh<br>,                     | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |            | 40       | 80  | ns    |
| t <sub>PHL</sub>      | Propagation Delay Time, High-to-L<br>Level Output From Clock | ow                           |                                                |            | 65       | 100 | ns    |
| tw(CLOCK)             | Width of Clock Pulse                                         |                              | ·                                              | 100        | 65       |     | ns    |
| t <sub>SETUP(H)</sub> | Setup Time for High-Level Data                               | A, B, C, or D<br>Word Select |                                                | 100<br>150 |          |     | ns    |
| <sup>t</sup> SETUP(L) | Setup Time for Low-Level Data                                | A, B, C, or D<br>Word Select |                                                | 120<br>100 |          |     | ns    |



## **Dual Voltage Controlled Oscillators**

### **General Description**

The DM54LS124/DM74LS124 features two fully independent voltage-controlled oscillators (VCO's) in a single monolithic chip. The output frequency of each is established by a single external component, either a capacitor or a crystal, in combination with two voltage-sensitive inputs, one for frequency range and one for frequency control. An enable input is provided that can be used to start or stop the output pulses when it is low or high, respectively. The internal oscillator runs continuously, even while the output is disabled. A pulse synchronizer ensures that the first output pulse is neither clipped nor extended. Duty cycle of the output pulses is fixed at approximately 50 percent.

The highly stable oscillator can be set to operate at any frequency between 0.12 Hz and 50 MHz typically. The output frequency can be approximated as follows:

$$f_{O} = \frac{500}{C_{EXT}}$$

where:  $f_O$  = output frequency in MHz  $C_{EXT}$  = external capacitance in pF

The enable input and the buffered output operate at standard Schottky-clamped TTL levels. The enable input is one standard load in each series. Although these devices can operate from a single 5-volt supply, separate supply-voltage and ground pins are provided for the digital logic and for the oscillator/range control circuits so that effective isolation can be accomplished in the system.

#### **Features**

- Two fully independent VCO's in a 16-pin package
- Output frequency set by single external component:
   Crystal for high-stability fixed-frequency operation
   Capacitor for fixed- or variable-frequency operation
- Separate supply voltage pins for isolation of inputs and oscillators from logic circuitry
- Stable operation over specified temperature and/or supply voltage ranges

#### **Connection Diagram**



Note: While the enable input is low, the output is enabled. While the enable input is high, the output is high.

54LS124/74LS124(J), (N), (W)



|                 |                                                      | *************************************** |                                                                  |                         |     | DM54   |      |     | DM74   |      |       |
|-----------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|-------------------------|-----|--------|------|-----|--------|------|-------|
|                 | PARAMETER                                            |                                         | CONDITIONS                                                       |                         |     | LS124  |      |     | LS124  |      | UNITS |
|                 |                                                      |                                         |                                                                  |                         | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  |       |
| VIH             | High Level Input Voltage at Enab                     | le                                      |                                                                  |                         | 2   |        |      | 2   |        |      | V     |
| VIL             | Low Level Input Voltage at Enab                      | le                                      |                                                                  |                         |     |        | 0.7  |     |        | 0.8  | V     |
| VI              | Input Clamp Voltage at Enable                        |                                         | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 mA                   |                         |     |        | -1.5 |     |        | -1.5 | V     |
| Іон             | High Level Output Current                            |                                         |                                                                  |                         |     |        | -1.2 |     |        | -1.2 | mA    |
| V <sub>OH</sub> | High Level Output Voltage                            |                                         | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V, I <sub>OH</sub> = - | -1.2 mA                 | 2.5 | 3.4    |      | 2.7 | 3.4    |      | V     |
| loL             | Low Level Output Current                             |                                         |                                                                  |                         |     |        | 12   |     |        | 24   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                             |                                         | V <sub>CC</sub> = Min, V <sub>ENABLE</sub> = V <sub>IL</sub>     | I <sub>OL</sub> = 12 mA |     | 0.25   | 0.4  |     | 0.25   | 0.4  | V     |
|                 |                                                      | -                                       | Pins 4 and 13 = $V_{CC}$ (Min)-2V                                | I <sub>OL</sub> = 24 mA |     |        |      |     | 0.35   | 0.5  |       |
| h               | Input Current                                        | Freq Control                            | V <sub>CC</sub> = Max                                            | V <sub>1</sub> = 5V     |     | 50     | 250  |     | 50     | 250  | μΑ    |
|                 |                                                      | or range                                | VCC - WIAX                                                       | V <sub>1</sub> = 1V     |     | 10     | 50   |     | 10     | 50   | μΑ    |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage               | Enable                                  | V <sub>CC</sub> = Max, V <sub>i</sub> = 7V                       |                         |     |        | 0.1  |     |        | 0.1  | mA    |
| I <sub>tH</sub> | High Level Input Current                             | Enable                                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.7V                     |                         |     |        | 20   |     |        | 20   | μΑ    |
| l <sub>IL</sub> | Low Level Input Current                              | Enable                                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.5V                     |                         |     |        | -0.4 |     |        | -0.4 | mA    |
| los             | Short Circuit Output Current                         |                                         | V <sub>CC</sub> = Max, V <sub>ENABLE</sub> = 4.5V                | (2)                     | -30 |        | -150 | -30 |        | -150 | mA    |
| Icc             | Supply Current, Total into<br>Pins 15 and 16         |                                         | V <sub>CC</sub> = Max(3)                                         |                         |     | 22     | 37   |     | 22     | 37   | mA    |
| Vı              | Input Voltage at Frequency<br>Control or Range Input |                                         |                                                                  |                         | 0   |        | 5    | 0   |        | 5    | ٧     |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the outputs disabled and open.

Switching Characteristics  $V_{CC}$  = 5V,  $R_L$  = 667 $\Omega$ ,  $C_L$  = 45 pF,  $T_A$  = 25 $^{\circ}C$ 

| 1            | PARAMETER                                                       |                           | CONDITIONS                                                                       | MIN | TYP    | MAX | UNITS  |
|--------------|-----------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------|-----|--------|-----|--------|
| fo           | Output Frequency                                                | C- = 2 pE                 | $V_{I(FREQ)} = 5V$ , $V_{I(RNG)} = 0V$<br>$V_{I(FREQ)} = 0V$ , $V_{I(RNG)} = 5V$ | 35  | 50     |     | MHz    |
| İ            | , , , , , , , , , , , , , , , , , , , ,                         | SEXT - 2 pi               | $V_{I(FREQ)} = 0V$ , $V_{I(RNG)} = 5V$                                           | 11  | 20     |     | IVITIZ |
|              | Output Duty Cycle                                               | C <sub>EXT</sub> = 8.3 pl | F to 500μF                                                                       |     | 50%    |     |        |
| <b>t</b> PHL | Propagation Delay Time, High-to-Low Level<br>Output From Enable | f <sub>o</sub> ≥ 1 Hz     |                                                                                  |     | 30+(4) |     | ns     |

### Notes

(4) The delay will typically be 30 ns plus up to one half the period of one cycle (i.e. 30 ns to 30 ns + 5 x 10<sup>8</sup>/f<sub>o(Hz)</sub>) depending upon the timing of the enable pulse with respect to the signal generated by the internal oscillator.



### General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is nealigible.

The LS138 and S138 decode one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The LS139 and S139 comprise two separate two-line-tofour-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

## Decoders/Demultiplexers

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

#### **Features**

- Designed specifically for high-speed:
   Memory decoders
   Data transmission systems
- S138 and LS138 3-to-8-line decoders incorporate 3 enable inputs to simplify cascading and/or data reception
- S139 and LS139 contain two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance

| TYPE  | TYPICAL PROPAGATION DELAY (3 LEVELS OF LOGIC) | TYPICAL POWER DISSIPATION |
|-------|-----------------------------------------------|---------------------------|
| LS138 | 21 ns                                         | 32 mW                     |
| S138  | 8 ns                                          | 245 mW                    |
| LS139 | 21 ns                                         | 34 mW                     |
| S139  | 7.5 ns                                        | 300 mW                    |

#### Connection and Logic Diagrams



54LS138/74LS138(J), (N), (W); 74S138(N)



54LS139/74LS139(J), (N), (W); 74S139(N)





50

-2

N/A

-100

74

60

μΑ

mΑ

mΑ

20

-0.36

-130

-130

10

11

6.8

-40

|                 | PARAMETER                 | ,                                                                                 |        | CONDITIONS |      | 1    | //54LS/74<br>138, LS1 |            | S   | DM74S<br>3138, S13 | 9     | UNITS |
|-----------------|---------------------------|-----------------------------------------------------------------------------------|--------|------------|------|------|-----------------------|------------|-----|--------------------|-------|-------|
|                 |                           |                                                                                   |        |            |      | MIN  | TYP(1)                | MAX        | MIN | TYP(1)             | MAX   |       |
| $V_{IH}$        | High Level Input Voltage  |                                                                                   |        |            | ,    | 2    |                       |            | 2   |                    |       | ٧     |
| VIL             | Low Level Input Voltage   | . •                                                                               |        |            | DM54 |      |                       | 0.7        |     |                    | N/A   | V     |
|                 |                           | -                                                                                 |        |            | DM74 |      |                       | 0.8        |     |                    | 0.8   | 1 °   |
| V <sub>I</sub>  | Input Clamp Voltage       | V <sub>CC</sub> = Min, I <sub>1</sub> = -                                         | -18 mA |            |      |      |                       | -1.5       |     |                    | -1.2  | V     |
| Іон             | High Level Output Current |                                                                                   |        |            | -    |      |                       | -400       |     |                    | -1000 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage | V <sub>CC</sub> = Min, V <sub>IH</sub> =                                          | = 2V   |            | DM54 | 2.5  | 3.4                   |            | N/A |                    |       | V     |
|                 |                           | V <sub>IL</sub> = Max, I <sub>OH</sub> =                                          | = Max  |            | DM74 | 2.7  | 3.4                   |            | 2.7 | 3.4                |       | ]     |
| loL             | Low Level Output Current  |                                                                                   |        |            | DM54 |      |                       | 4          |     |                    | N/A   | ^     |
|                 | ,                         |                                                                                   |        | *          | DM74 |      |                       | 8          |     |                    | 20    | mA    |
| VOL             | Low Level Output Voltage  | \/ - Min \/ -                                                                     | - 217  | I - May    | DM54 |      | 0.25                  | 25 0.4 N/A |     | N/A                |       |       |
|                 |                           | $V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = Max$ $I_{OL} = Max$ $I_{OL} = 4 \text{ mA}$ |        | DM74       |      | 0.35 | 0.5                   |            |     | 0.5                | ] v   |       |
|                 |                           |                                                                                   |        | DM74       |      |      | 0.4                   |            |     |                    |       |       |

DM54

DM74

LS138, S138

LS139, S139

-30

-30

#### Notes

Ιн

1<sub>1L</sub>

los

Icc

Supply Current

High Level Input Current

Low Level Input Current

Short Circuit Output Current

 $V_{CC} = Max$ 

V<sub>CC</sub> = Max

 $V_{CC} = Max$ 

 $V_{CC} = Max(2)$ 

Outputs Enabled and Open

V<sub>CC</sub> = Max

 $V_{i} = 2.7V$ 

 $V_1 = 0.4V$ 

 $V_1 = 0.5V$ 

<sup>(1)</sup> All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

<sup>(2)</sup> Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

| Switch           | ing Characteristics                                 | V <sub>CC</sub> = 5V | , T <sub>A</sub> = 25°C |                    |                        |     |        | ,   |     |        |     |                        |     |       |      |     |       |     |       |
|------------------|-----------------------------------------------------|----------------------|-------------------------|--------------------|------------------------|-----|--------|-----|-----|--------|-----|------------------------|-----|-------|------|-----|-------|-----|-------|
|                  |                                                     |                      |                         |                    |                        | DM  | 54LS/7 | 4LS | DN  | 54LS/7 | 4LS |                        |     | DM74S |      |     | DM74S |     |       |
|                  | PARAMETER                                           | FROM<br>(INPUT)      | TO<br>(OUTPUT)          | LEVELS<br>OF DELAY | CONDITIONS             |     | LS138  |     |     | LS139  |     | CONDITIONS             |     | S138  |      |     | S139  |     | UNITS |
|                  | •                                                   |                      | (551) 5.17              |                    |                        | MIN | TYP    | MAX | MIN | TYP    | MAX |                        | MIN | TYP   | MAX  | MIN | TYP   | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                      |                         | 2                  |                        |     | 13     | 20  |     | 13     | 20  |                        |     | 4.5   | 7    |     | 5     | 7.5 | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Binary               |                         | 2                  |                        |     | 27     | 41  |     | 22     | 33  |                        |     | 7     | 10.5 |     | 6.5   | 10  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Select               | Any                     | 3                  |                        |     | 18     | 27  |     | 18     | 29  |                        |     | 7.5   | 12   |     | .7    | 12  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output |                      |                         | 3                  | C <sub>L</sub> = 15 pF |     | 26     | 39  |     | 25     | 38  | C <sub>L</sub> = 15 pF |     | 8     | 12   |     | 8     | 12  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                      | -                       | 2                  | R <sub>L</sub> = 2 kΩ  |     | 12     | 18  |     | . 16   | 24  | R <sub>L</sub> = 280Ω  |     | 5 .   | 8    |     | 5     | 8   | ns .  |
| t <sub>PHL</sub> | Propagation Delay Time,                             |                      |                         |                    |                        |     | 21     | 32  |     | 21     | 32  |                        |     | 7     | 11   |     | 65    | 10  | ns ns |

21

17 , 26

25 38

N/A

N/A

### **Truth Tables**

2:48

High-to-Low Level Output

Propagation Delay Time,

Low-to-High Level Output

Propagation Delay Time,

High-to-Low Level Output

LS138, S138

3

|     | 11  | NPUT       | s     |   |     |    |    | OUT | DIITE      |            |    |    |
|-----|-----|------------|-------|---|-----|----|----|-----|------------|------------|----|----|
| EN/ | BLE | S          | ELEC. | Т |     |    |    | 001 | -013       |            |    |    |
| G1  | G2* | . <b>C</b> | В     | Α | Y0  | Y1 | Y2 | Y3  | Y4         | <b>Y</b> 5 | Y6 | Y7 |
| X   | Н   | Х          | X     | Х | Н   | Н  | Н  | Н   | Н          | Н          | Н  | Н  |
| L   | Х   | х          | Х     | х | н : | Н  | Н  | · H | Н          | H          | Н  | Н  |
| Н   | L   | L          | L     | L | L   | Н  | Н  | H   | . <b>H</b> | н          | Н  | Н  |
| н   | Ļ   | L          | L     | н | н   | L  | Н  | Н   | Н          | н -        | Н  | Н  |
| Н   | L   | L          | Н     | L | Н   | H  | L  | H   | Н          | Н          | Н  | Н  |
| H   | L:  | L          | Н     | н | н   | Н  | Н  | L   | Н          | Η.         | Н  | Н  |
| Н   | L   | н          | L     | L | н   | Н  | Н  | Н   | . L        | Н          | Н  | H  |
| н   | L   | н          | L     | н | н   | Н  | Н  | Н   | Н          | L          | Н  | Н  |
| Н   | L   | н          | Н     | L | н   | Н  | Н  | Н   | Н          | Н          | L  | Н  |
| Н   | L · | н          | Н     | Н | Н   | Н  | н  | Н   | Н          | Н          | Н  | Ŀ  |

\*G2 = G2A + G2B

Enable

Any

H = High level, L = low level, X = don't care

LS139, S139

7 11

6.5

N/A

N/A

| INP    | UTS |     |    | <u>.</u> |       |            |
|--------|-----|-----|----|----------|-------|------------|
| ENABLE | SEL | ECT |    | OUT      | PUTS  |            |
| G      | В   | Α   | Y0 | Y1       | Y2    | <b>Y</b> 3 |
| H      | Х   | Х   | Н  | Н        | Н     | Н          |
| L      | L   | L   | L  | Н        | Н     | Н          |
| L      | L   | н   | н  | , L      | . н . | Н          |
| 1 L    | н   | L   | н  | Н        | L     | н          |
| L      | Н   | Н   | Н  | Н        | Н     | L          |

H = high level, L = low level, X = don't care



## **Priority Encoders**

### **General Description**

These TTL encoders feature priority decoding of the input data to ensure that only the highest-order data line is encoded. The DM54147 and DM74147 encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. All inputs are buffered to represent one normalized Series 54/74 load. The DM54148 and DM74148 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input EI and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level.

### Features

#### DM54147, DM74147

- Encodes 10-line decimal to 4-line BCD
- Applications include:

Keyboard encoding Range selection

Typical data delay

10 ns

■ Typical power dissipation

225 mW

### DM54148, DM74148

- Encodes 8 data lines to 3-line binary (octal)
- Applications include:

N-bit encoding

Code converters and generators

Typical data delay

10 ns

■ Typical power dissipation

190 mW

### **Connection Diagrams**



54147(J), (W); 74147(J), (N), (W)



54148(J), (W); 74148(J), (N), (W)

### **Truth Tables**

54147/74147

|   |     |    | ĺ | NPUT | s   |   |   |   | OUTPUTS |   |   |   |  |  |  |
|---|-----|----|---|------|-----|---|---|---|---------|---|---|---|--|--|--|
| 1 | 2   | 3  | 4 | 5    | 6   | 7 | 8 | 9 | D       | С | В | Α |  |  |  |
| Н | Н   | Н  | Н | Н    | Н   | Н | Н | Н | Н       | Н | Н | Н |  |  |  |
| Х | Х   | X  | Χ | X    | X   | X | X | L | L       | Н | Н | L |  |  |  |
| Х | Х   | Х  | Х | Х    | X   | X | L | н | L       | Н | Н | Н |  |  |  |
| Х | . X | Χ  | Х | X    | X   | L | Н | н | Н       | L | L | L |  |  |  |
| Х | X   | X  | Х | X    | L   | Н | Н | Н | Н       | L | L | Н |  |  |  |
| Х | Х   | X. | Х | L    | Н   | Н | H | Н | н       | L | Н | L |  |  |  |
| Х | X   | Х  | L | Н    | Н   | Н | Н | Н | Н       | L | Н | Н |  |  |  |
| X | Х   | L  | Н | Н    | Н   | Н | Н | Н | Н       | Н | L | L |  |  |  |
| Х | L   | Н  | Н | Н    | • н | Н | Н | Н | Н       | Н | L | Н |  |  |  |
| L | Н   | Н  | Н | Н    | Н   | Н | Н | н | Н       | Н | Н | L |  |  |  |

#### 54148/74148

|    |     |   | ı | NPUT |   | OUTPUTS |   |   |    |    |    |    |    |
|----|-----|---|---|------|---|---------|---|---|----|----|----|----|----|
| EI | 0   | 1 | 2 | 3    | 4 | 5       | 6 | 7 | A2 | Α1 | Α0 | GS | EO |
| Н  | Х   | Х | Х | Х    | Х | Х       | Х | X | Н  | Н  | Н  | Н  | Н  |
| L  | Н   | Н | Н | Н    | Н | Н       | Н | Н | н  | Н  | Н  | Н  | L  |
| L  | X 、 | X | Χ | Х    | X | Х       | Х | L | L  | L  | L  | L  | Н  |
| L  | ×   | X | X | Χ    | Χ | Χ       | L | Н | L. | L  | Н  | L  | Н  |
| L  | ×   | X | Х | Х    | Х | L       | Н | Н | L  | Н  | L  | L  | Η, |
| L  | ×   | X | Х | Х    | L | Н       | Н | Н | L  | Н  | Н  | L  | Н  |
| L  | ×   | X | X | L    | Н | Н       | Н | Н | н  | L  | L  | `L | Н  |
| L  | ×   | X | L | Н    | Н | Н       | Н | Н | н  | L  | н  | L  | Н  |
| L  | ×   | L | Н | Н    | Н | Н       | Н | Н | Н  | Н  | L  | L  | Н  |
| L  | L   | Н | Н | Н    | Н | Н       | Н | Н | Н  | Н  | Н  | L  | Н  |

H = High Logic Level, L = Low Logic Level, X = Don't Care



|                   |                            |               | CONDITIONS                                        |                                                   |     |        | DM5  | 4/74 |        |      | `     |
|-------------------|----------------------------|---------------|---------------------------------------------------|---------------------------------------------------|-----|--------|------|------|--------|------|-------|
|                   | PARAMETER                  |               | CON                                               | DITIONS                                           |     | 147    |      |      | 148    |      | UNITS |
|                   | •                          |               |                                                   | ·                                                 | MIN | TYP(1) | MAX  | MIN  | TYP(1) | MAX  |       |
| · V <sub>IH</sub> | High Level Input Voltage   |               |                                                   |                                                   | 2   |        |      | 2    |        |      | ٧.    |
| V <sub>IL</sub>   | Low Level Input Voltage    |               |                                                   | 4                                                 |     |        | 0.8  |      |        | 8.0  | ٧.    |
| Vı                | Input Clamp Voltage        |               | V <sub>CC</sub> = Min, I                          | <sub>I</sub> = -12 mA                             |     |        | -1.5 |      |        | -1.5 | V     |
| I <sub>OH</sub>   | High Level Output Current  |               |                                                   |                                                   |     |        | -800 |      |        | -800 | μΑ    |
| V <sub>OH</sub>   | High Level Output Voltage  |               | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>1H</sub> = 2V<br>I <sub>OH</sub> = -800μA  | 2.4 |        |      | 2.4  |        |      | V     |
| loL               | Low Level Output Current   |               |                                                   |                                                   |     |        | 16   |      |        | 16   | · mA  |
| V <sub>OL</sub>   | Low Level Output Voltage   | ·             | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V .<br>I <sub>OL</sub> = 16 mA |     |        | 0.4  |      |        | 0.4  | ٧     |
| l <sub>1</sub>    | Input Current at Maximum   | Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                             |     | ,      | 1    |      | ,      | 1    | mA.   |
| I <sub>IH</sub>   | High Level Input Current   | 0 Input       | V <sub>CC</sub> = Max,                            | V = 2.4V                                          |     |        | N/A  |      |        | 40   | μΑ    |
|                   |                            | Others        | VCC ~ IVIAX,                                      | V <sub>1</sub> = 2.4 V                            |     |        | 40   |      |        | 80   | μΑ    |
| 11L               | Low Level Input Current    | 0 Input       | V <sub>CC</sub> = Max,                            | V = 0.4V                                          |     |        | N/A  |      |        | -1.6 | mA    |
|                   |                            | Others        | VCC - IVIAX,                                      | V1 - 0.4V                                         |     |        | -1.6 |      |        | -3.2 | IIIA  |
| los               | Short Circuit Output Curre | nt            | V <sub>CC</sub> = Max(2                           | ?)                                                | -35 |        | -85  | -35  |        | 85   | mA    |
| Icc               | Supply Current .           |               | V <sub>CC</sub> = Max                             | Condition 1                                       |     | 50     | 70   |      | 40     | 60   | mA    |
|                   | ,                          |               | (3)                                               | Condition 2                                       |     | 42     | 62   |      | 35     | 55   | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) For DM54147/DM74147, I<sub>CC</sub> (condition 1) is measured with input 7 grounded, other inputs and outputs open; I<sub>CC</sub> (condition 2) is measured with all inputs and outputs open. For DM54148/DM74148, I<sub>CC</sub> (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I<sub>CC</sub> (condition 2) is measured with all inputs and outputs open.



# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                      |                 |                |                     |                        |         | DM! | 54/74   |     |       |
|------------------|------------------------------------------------------|-----------------|----------------|---------------------|------------------------|---------|-----|---------|-----|-------|
|                  | PARAMETER                                            | FROM<br>(INPUT) | TO<br>(OUTPUT) | WAVEFORM            | CONDITIONS             | 147     |     | 148     |     | UNITS |
|                  |                                                      |                 |                |                     |                        | MIN TYP | MAX | MIN TYP | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output | 0 thru 9        | A, B, C, D     | In-Phase Output     |                        | 9       | 14  | 10      | 15  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-<br>Low Level Output | O thru 9        | А, В, С, В     | in-rhase Output     |                        | 7       | 11  | 9       | 14  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output | 0 thru 9        | A, B, C, D     | 0                   |                        | 13      | 19  | 13      | 19  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-<br>Low Level Output | O thru 9        | А, В, С, В     | Out-of-Phase Output |                        | 12      | 19  | 12      | 19  | ns    |
| tpLH             | Propagation Delay Time, Low-to-<br>High Level Output | 0.457           | 50             | 0                   | !                      | N/A     |     | 6       | 10  | ns    |
| tpHL             | Propagation Delay Time, High-to-<br>Low Level Output | 0 thru 7        | EO             | Out-of-Phase Output |                        | N/A     |     | 14      | 25  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output |                 |                |                     | C <sub>1</sub> = 15 pF | N/A     |     | 18      | 30  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-<br>Low Level Output | 0 thru 7        | GS             | In-Phase Output     | R <sub>L</sub> = 400Ω  | N/A     |     | 14      | 25  | ns    |
| tpLH             | Propagation Delay Time, Low-to-<br>High Level Output | Εl              | 40.44.40       |                     |                        | N/A     |     | . 10    | 15  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-<br>Low Level Output | EI              | A0, A1, or A2  | In-Phase Output     |                        | N/A     |     | 10      | 15  | ns    |
| tpLH             | Propagation Delay Time, Low-to-<br>High Level Output | EI              | 66             |                     |                        | N/A     |     | 8       | 12  | ns    |
| †PHL             | Propagation Delay Time, High-to-<br>Low Level Output | EI              | GS             | In-Phase Output     |                        | N/A     |     | 10      | 15  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output | EI              | F0             |                     |                        | N/A     |     | 10      | 15  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-<br>Low Level Output | EI              | EO             | In-Phase Output     |                        | N/A     |     | 17      | 30  | ns    |



(15) E0 √<u>(14)</u>GS



## Data Selectors/Multiplexers

### **General Description**

These data selectors/multiplexers contain full on-chip decoding to select the desired data source. The 150 selects one-of-sixteen data sources; the 151A, LS151, and S151 select one-of-eight data sources. The 150, 151A, LS151, and S151 have a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output (as applicable) low.

The 151A, LS151, and S151 feature complementary W and Y outputs whereas the 150 has an inverted (W) output only.

The 151A incorporates address buffers which have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the 151A outputs are enabled (i.e., strobe low).

#### **Features**

- 150 selects one-of-sixteen data lines
- Others select one-of-eight data lines
- Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator

|       | TYPICAL AVERAGE        | TYPICAL     |
|-------|------------------------|-------------|
| TYPE  | PROPAGATION DELAY TIME | POWER       |
|       | DATA INPUT TO W OUTPUT | DISSIPATION |
| 150   | 11 ns                  | 200 mW      |
| 151A  | 9 ns                   | 135 mW      |
| LS151 | 12.5 ns                | 30 mW       |
| S151  | 4.5 ns                 | 225 mW      |

#### **Connection Diagrams**





54151A(J), (W); 74151A(J), (N), (W);

54LS151/74LS151(J), (N), (W); 74S151(N)

### **Truth Tables**

### 54150/74150

|   |     | INP | UTS |        | OUTPUT |
|---|-----|-----|-----|--------|--------|
|   | SEL | ECT |     | STROBE | W      |
| D | С   | В   | Α   | s      |        |
| Х | Х   | х   | х   | н      | н      |
| L | L   | L   | L   | L      | EO     |
| L | L   | L   | н   | L      | E1     |
| L | L   | Н   | L   | L      | E2     |
| L | L   | н   | н   | L      | E3     |
| L | н   | L   | L   | L      | E4     |
| L | н   | L   | н   | L      | E5     |
| L | н   | Н   | L   | L      | E6     |
| L | н   | н   | н   | L      | E7     |
| Н | L   | L   | L   | L      | E8     |
| Н | L   | L   | н   | L      | E9     |
| Н | L   | н   | L   | L      | E10    |
| н | L   | Н   | н   | L      | E11    |
| н | Н   | L   | L   | L      | E12    |
| н | н   | L   | н   | L      | E13    |
| н | н   | н   | L   | L      | E14    |
| н | Н   | · H | Н   | L      | E15    |

#### 54151A/74151A, 54LS151/74LS151, 74S151

|   |      | INPUT | s      | OUT | PUTS |
|---|------|-------|--------|-----|------|
|   | SELE | СТ    | STROBE | · · | w    |
| С | В    | Α     | s      | ¥   | vv   |
| × | ×    | X     | н      | L   | Н    |
| L | L    | L     | L      | D0  | D0   |
| L | L    | н     | L      | D1  | D1   |
| L | н    | L     | L      | D2  | D2   |
| L | н    | н     | L      | D3  | D3   |
| Н | L    | L     | L      | D4  | D4   |
| н | L    | Н     | L '    | D5  | D5   |
| Н | Н    | L     | L      | D6  | D6   |
| Н | Н    | Н     | L      | D7  | D7   |

H=High Level, L=Low Level, X=Don't Care  $\overline{E0}, \overline{E1}\dots \overline{E15}=$  the complement of the level of the respective E input

| ,               | -                            |                          |                         |                                       |        |     | DM54/74           |      |          | DM54/74 |      |     | DM74S  |       |       |
|-----------------|------------------------------|--------------------------|-------------------------|---------------------------------------|--------|-----|-------------------|------|----------|---------|------|-----|--------|-------|-------|
|                 | PARAMETER                    |                          | CONDIT                  | TIONS                                 |        |     | 150, 151 <i>A</i> | ١    | <u> </u> | LS151   |      |     | S151   |       | UNIT  |
|                 |                              |                          |                         |                                       |        | MIN | TYP(1)            | MAX  | MIN      | TYP(1)  | MAX  | MIN | TYP(1) | MAX   |       |
| VIH             | High Level Input Voltage     |                          |                         | ,                                     | -      | 2   |                   |      | ,2       |         |      | 2   |        |       | V     |
| VIL             | Low Level Input Voltage      |                          |                         |                                       | DM54   |     |                   | 0.8  |          |         | 0.7  |     |        | N/A   | v     |
|                 |                              |                          |                         |                                       | DM74   |     |                   | 8.0  |          |         | 0.8  |     |        | 8.0   | ľ     |
| Vı              | Input Clamp Voltage          | V <sub>CC</sub> = Min    | I <sub>1</sub> = -12 mA | \                                     |        |     |                   | -1.5 |          |         |      |     |        |       | v     |
|                 |                              | VCC - jviiii             | I <sub>1</sub> = -18 mA | ,                                     | *      |     |                   |      |          |         | -1.5 |     |        | -1.2  | `     |
| юн              | High Level Output Current    |                          | -                       |                                       |        |     |                   | -800 |          |         | -400 |     |        | -1000 | μΑ    |
| VoH             | High Level Output Voltage    | V <sub>CC</sub> = Min, V | V <sub>IH</sub> = 2V    |                                       | DM54   | 2.4 |                   |      | 2.5      | 3.4     |      | N/A |        |       |       |
|                 |                              | V <sub>IL</sub> = Max, I | OH = Max                |                                       | DM74   | 2.4 |                   |      | 2.7      | 3.4     |      | 2.7 | 3.4    |       | \ . · |
| loL             | Low Level Output Current     | ,                        |                         |                                       | DM54   |     |                   | 16   |          |         | . 4. |     |        | N/A   | m.A   |
|                 |                              |                          |                         |                                       | DM74   |     |                   | 16   |          |         | 8    |     |        | 20    | 1117- |
| V <sub>OL</sub> | Low Level Output Voltage     | V <sub>CC</sub> = Min, V | / = 2\/                 | I <sub>OL</sub> = Max                 | DM54   |     |                   | 0.4  | ·        | 0.25    | 0.4  |     | ,      | N/A   |       |
|                 | •                            | $V_{IL} = Max$           | VIH ZV                  |                                       | DM74   |     |                   | 0.4  |          | 0.35    | 0.5  |     |        | 0.5   | \     |
|                 | `.                           | 10                       |                         | $I_{OL} = 4 \text{ mA}$               | DM74   |     |                   |      |          |         | 0.4  |     |        |       |       |
| l <sub>l</sub>  | Input Current at Maximum     | V <sub>CC</sub> = Max    | V <sub>1</sub> = 5.5V   |                                       |        |     |                   | 1    |          |         |      |     |        | 1     | m.A   |
|                 | Input Voltage                | 100 ,                    | V <sub>1</sub> = 7V     |                                       | -      |     |                   |      |          |         | 0.1  |     | ٠.     |       |       |
| ин              | High Level Input Current     | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.4V   |                                       |        |     |                   | 40   |          |         | ,    |     |        |       | μΑ    |
|                 |                              | • 66                     | V <sub>I</sub> = 2.7V   | · · · · · · · · · · · · · · · · · · · |        |     |                   |      |          |         | 20   |     |        | 50    | , ,,, |
| IIL             | Low Level Input Current      | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.4V   | -                                     |        |     |                   | -1.6 |          |         | -0.4 |     |        |       | m.A   |
|                 |                              | , CC                     | $V_1 = 0.5V$            |                                       |        |     |                   |      |          |         |      |     |        | -2    | ,,,,  |
| los             | Short Circuit Output Current | V <sub>CC</sub> = Max(2  | 2)                      |                                       | DM54   | -20 |                   | -55  | -30      |         | -130 |     |        | N/A   | m.A   |
|                 |                              | VCC WINA                 | -1                      |                                       | DM74   | -18 |                   | -55  | -30      |         | -130 | -40 |        | -100  |       |
| Icc             | Supply Current               | -                        |                         | :                                     | 150    |     | 40                | 68   |          |         |      |     |        |       |       |
| Ì               |                              | $V_{CC} = Max(3)$        | 3)                      |                                       | 151A   |     | 27                | 48   |          | -       | ···· |     |        |       | mΆ    |
|                 |                              |                          | · ·                     |                                       | Others |     |                   |      |          | 6 -     | 10   |     | 45     | 70    |       |

#### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the strobe and data select inputs at 4.5V, all other inputs and outputs open.
- (4) National Semiconductor temporarily reserves the right to ship DM54LS/DM74LS151 devices which have a minimum I<sub>OS</sub> = 5.0 mA.

|                  |                                                     | FROM             | то       |                        |         | DM  | 54/74        |     |      |                        | DM! | 54LS/7 | 4LS |                        | D   | M74S |      | 1    |
|------------------|-----------------------------------------------------|------------------|----------|------------------------|---------|-----|--------------|-----|------|------------------------|-----|--------|-----|------------------------|-----|------|------|------|
|                  | PARAMETER                                           | (INPUT)          | (OUTPUT) | CONDITIONS             | 150     |     | <del> </del> | 51A |      | CONDITIONS             |     | LS151  |     | CONDITIONS             |     | S151 |      | UNIT |
|                  | · · · · · · · · · · · · · · · · · · ·               |                  |          |                        | MIN TYP | MAX | MIN T        | TYP | MAX  |                        | MIN | TYP    | MAX |                        | MIN | TYP  | MAX  |      |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Select           | Y        |                        | Ń/A     |     |              | 23  | 38   |                        |     | 27     | 43  |                        |     | 12   | 18   | ns   |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | (4 levels)       | ,        | ·                      | N/A     |     |              | 23  | . 30 |                        |     | 18     | 30  |                        |     | 12   | 18   | ns   |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Select           |          |                        | 21      | 35  |              | 16  | 26   |                        |     | 14     | 23  |                        |     | 10   | 15   | ns   |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | (3 levels)       | · W      |                        | 22      | 33  |              | 16  | 30   |                        |     | 20     | 32  |                        |     | 9    | 13.5 | ns   |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Strobe           | ,<br>Y   |                        | N/A     |     |              | 25  | 33   |                        |     | 26     | 42  |                        |     | 11   | 16.5 | ns   |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Strobe           | ,        | C <sub>L</sub> = 15 pF | N/A     |     |              | 19  | 30   | C <sub>L</sub> = 15 pF |     | 20     | 32  | C <sub>L</sub> = 15 pF |     | 12   | 18   | ns   |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Strobe           | w        | R <sub>L</sub> = 400Ω  | 15.5    | 24  |              | 11  | .21  | $R_L = 2 k\Omega$      |     | 15     | 24  | R <sub>L</sub> = 280Ω  |     | 9    | 13   | ns   |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Strobe           | VV       |                        | 21      | 30  |              | 17  | 25   |                        |     | 18     | 30  |                        |     | 8.5  | 12   | ns   |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | D0 thru D7       | Y        |                        | N/A     |     |              | 17  | 24   |                        |     | 20     | 32  | •                      |     | 8    | 12   | ns   |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Do una D7        | ,        |                        | N/A     |     |              | 18  | 24   |                        |     | 16     | 26  |                        |     | 8    | 12   | ns   |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | E0 thru E15      | 10/      |                        | 13      | 20  |              | 10  | 14   |                        |     | 13     | 21  | -                      |     | 4.5  | 7    | ns   |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | or<br>D0 thru D7 | W        |                        | 8.5     | 14  |              | 8   | 14   |                        |     | 12     | 20  |                        |     | 4.5  | 7    | ns   |

ISW WSI

DM54/DM74150,151A,LS151,S151



## Dual 4-Line to 1-Line Data Selectors/Multiplexers

### **General Description**

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

### Features

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion

- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low-impedance, totem-pole outputs

| TYPE  |       | PICAL AVER<br>SATION DEL<br>FROM<br>STROBE |       | TYPICAL<br>POWER<br>DISSIPATION |
|-------|-------|--------------------------------------------|-------|---------------------------------|
| 153   | 11 ns | 18 ns                                      | 20 ns | 170 mW                          |
| LS153 | 14 ns | 19 ns                                      | 22 ns | 31 mW                           |
| S153  | 6 ns  | 9.5 ns                                     | 12 ns | 225 mW                          |

### **Connection Diagram**



54153(J), (W); 74153(J), (N), (W); 54LS153/74LS153(J), (N), (W); 74S153(N)

### Truth Table

| 1 | ECT | D   | ATA             | INPU | TS  | STROBE | ОИТРИТ |
|---|-----|-----|-----------------|------|-----|--------|--------|
| В | Α   | CO  | C1              | C2   | СЗ  | G      | Υ      |
| × | Х   | ×   | Х               | Х    | · x | Н      | L      |
| L | L   | .L  | Х               | Х    | Х   | L      | L      |
| L | L   | н   | Х               | X    | Х   | L      | н      |
| L | Н   | ×   | L               | Х    | Х   | L      | L      |
| L | Н   | ×   | н               | Х    | Х   | L      | н      |
| Н | L   | ×   | Х               | L    | Х   | L      | L      |
| н | L   | х   | Х               | н    | Х   | L      | Н      |
| н | н   | x   | $x \mid x \mid$ |      | L   | L      | L      |
| н | Н   | x x |                 | ×    | Н   | L      | Н      |

Select inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care

### Logic Diagram



| Electrical Characteristics over recommended operating free-air tem | nperature range (unless otherwise noted) |
|--------------------------------------------------------------------|------------------------------------------|
|--------------------------------------------------------------------|------------------------------------------|

|       |                 |                              |                                               |                         |        |     | DM54/74     |         | DI       | <b>//54LS/74</b> | LS    |          | DM74S       |            |                                    |
|-------|-----------------|------------------------------|-----------------------------------------------|-------------------------|--------|-----|-------------|---------|----------|------------------|-------|----------|-------------|------------|------------------------------------|
|       |                 | PARAMETER                    | C                                             | CONDITIONS              |        |     | 153         |         |          | LS153            |       |          | \$153       |            | UNITS                              |
|       |                 |                              |                                               |                         |        | MIN | TYP(1)      | MAX     | MIN      | TYP(1)           | MAX   | MIN      | TYP(1)      | MAX        |                                    |
|       | V <sub>IH</sub> | High Level Input Voltage     |                                               |                         |        | 2   |             |         | 2        |                  |       | 2        |             |            | V                                  |
| -     | VIL             | Low Level Input Voltage      |                                               |                         | DM54   |     |             | 0.8     |          |                  | 0.7   |          |             | N/A        |                                    |
| -     |                 |                              |                                               |                         | DM74   |     |             | 8.0     |          |                  | 8.0   |          |             | 0.8        | V                                  |
|       | VI              | Input Clamp Voltage          | V <sub>CC</sub> = Min                         | I <sub>1</sub> = -12 mA | -      |     |             | -1.5    |          |                  |       | ·        |             |            | . V                                |
| .   - |                 |                              | 1                                             | I <sub>1</sub> = -18 mA |        |     |             |         |          |                  | -1.5  | ļ        |             | -1.2       |                                    |
| -     | Іон             | High Level Output Current    | 1.                                            |                         |        |     |             | -800    |          |                  | -400  |          |             | -1000      | μΑ                                 |
|       | V <sub>ОН</sub> | High Level Output Voltage    | V <sub>CC</sub> = Min, V                      |                         | DM54   | 2.4 | 3.2         |         | 2.5      | 3.4              |       | N/A      |             |            | V                                  |
| -     |                 |                              | V <sub>IL</sub> = Max, I <sub>O</sub>         | H = Max                 | DM74   | 2.4 | 3.2         |         | 2.7      | 3.4              |       | 2.7      | 3.4         |            |                                    |
|       | lor             | Low Level Output Current     |                                               |                         | DM54   |     | <del></del> | 16      | <u> </u> |                  | 4     |          |             | N/A        | mA                                 |
| -     |                 |                              | ļ                                             | T ·                     | DM74   |     |             | 16      |          | 0.05             | 8     |          |             | 20         |                                    |
| ,     | VOL             | Low Level Output Voltage     | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V | I <sub>OL</sub> = Max   | DM54   |     | 0.2         | 0.4     | <b></b>  | 0.25             | 0.4   | <b>_</b> |             | N/A<br>0.5 | V                                  |
| 3     |                 |                              | V <sub>IL</sub> = Max                         | I <sub>OL</sub> = 4 mA  | DM74LS |     | 0.2         |         | <b></b>  | 0.55             | 0.4   |          | <del></del> | 0.5        | V                                  |
| -     | 1,              | Input Current at Maximum     |                                               | V <sub>1</sub> = 5.5V   | ·      |     |             | 1       |          |                  |       |          |             | 1          |                                    |
|       |                 | Input Voltage                | V <sub>CC</sub> ≈ Max                         | V <sub>1</sub> = 7V     |        |     |             |         |          |                  | 0.1   |          |             |            | mA ,                               |
|       | I <sub>IH</sub> | High Level Input Current     | V <sub>CC</sub> = Max                         | V <sub>1</sub> = 2.4V   | ,      |     |             | 40      |          |                  |       |          |             |            | μΑ                                 |
|       |                 | •                            | VCC WAX                                       | V <sub>1</sub> = 2.7V   |        |     | •           |         |          |                  | 20    |          |             | 50         | μΛ                                 |
|       | I <sub>IL</sub> | Low Level Input Current      | V <sub>CC</sub> = Max                         | V <sub>1</sub> = 0.4V   |        |     |             | -1.6    |          |                  | -0.36 |          |             |            | mA                                 |
| -     |                 |                              |                                               | V <sub>1</sub> = 0.5V   |        |     |             |         |          |                  |       |          |             | -2         |                                    |
|       | los             | Short Circuit Output Current | $V_{CC} = Max(2)$                             | ·<br>) ·                | DM54   | -20 |             | -55     | -30      |                  | -130  |          |             | N/A        | mA                                 |
| -     |                 |                              |                                               |                         | DM74   | 18  |             | -57<br> | -30      |                  | -130  | -40      |             | -100       | decrease the self-mark consequents |
|       | Icc             | Supply Current               | $V_{CC} = Max(3)$                             |                         | DM54   |     | 34          | 52      | ļ        | 6.2              | 10    | ļ        |             | N/A        | mΑ                                 |
| -     |                 |                              | <u> </u>                                      |                         | DM74   |     | 34          | 60      | <u> </u> | 6.2              | 10    | <u></u>  | 45          | 70         |                                    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
- (3) I<sub>CCL</sub> is measured with the outputs open and all inputs grounded.
- (4) National Semiconductor temporarily reserves the right to ship DM54LS/DM74LS153 devices which have a minimum IOS = 5.0 mA.

|                  |                                                     |                 |                | Di                     | VI54/74 |     |         | DM5                    | 4LS/74 | LS  |     | D                      | M74S |      |      |       |
|------------------|-----------------------------------------------------|-----------------|----------------|------------------------|---------|-----|---------|------------------------|--------|-----|-----|------------------------|------|------|------|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT) |                        | 153     |     | ******* | . 1                    | LS153  |     |     |                        | S153 |      |      | UNITS |
|                  |                                                     | (               | (0011017       | CONDITIONS             | MIN     | TYP | MAX     | CONDITIONS             | MIN    | TYP | MAX | CONDITIONS             | MIN  | TYP  | MAX  |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data            | Y              |                        |         | 11  | 18      | ,                      |        | 10  | 15  |                        |      | 6    | 9    | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data            | . Y            |                        |         | 10  | 23      |                        |        | 17  | 26  |                        |      | 6    | 9    | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Select          | Y              | C <sub>L</sub> = 30 pF |         | 20  | 34      | C <sub>L</sub> = 15 pF |        | 19  | 29  | C <sub>L</sub> = 15 pF |      | 11.5 | 18   | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Select          | Y              | $R_L = 400\Omega$      |         | 20  | 34      | R <sub>L</sub> = 2 kΩ  |        | 25  | 38  | R <sub>L</sub> = 280Ω  |      | 12   | 18   | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Strobe          | Υ              | ·                      |         | 19  | 30      |                        |        | 16  | 24  |                        |      | 10   | 15   | ùs    |
| <sup>t</sup> PHL | Propagation Delay Time,                             | Strobe          | Y              |                        |         | 17  | 23      |                        |        | 21  | 32  |                        |      | 9    | 13.5 | ns    |



### 4-Line to 16-Line Decoders/Demultiplexers

### **General Description**

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing, high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

#### **Features**

- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs

|       | TYPICAL           |        | TYPICAL     |
|-------|-------------------|--------|-------------|
| TYPE  | PROPAGATION D     | ELAY   | POWER       |
|       | 3 LEVELS OF LOGIC | STROBE | DISSIPATION |
| 154   | 19 ns             | 18 ns  | 170 mW      |
| L154A | 55 ns             | 45 ns  | 24 mW       |
| LS154 | 23 ns             | 19 ns  | 45 mW       |

### Connection and Logic Diagrams



54154(J), (F); 74154(J), (N), (F); 54L154A/74L154A(J), (N), (F); 54LS154/74LS154(J), (N), (F)



|                 |                                        |                                        |                        |        | <u> </u> | DM54/74 |      | C   | M54L/74     | ·L    | DI  | M54LS/74 | LS    |       |
|-----------------|----------------------------------------|----------------------------------------|------------------------|--------|----------|---------|------|-----|-------------|-------|-----|----------|-------|-------|
|                 | PARAMETER                              | CON                                    | DITIONS                |        |          | 154     |      |     | L154A       |       |     | LS154(4) |       | UNITS |
|                 |                                        |                                        |                        |        | MIN      | TYP(1)  | MAX  | MIN | TYP(1)      | MAX   | MIN | TYP(1)   | MAX   |       |
| VIH             | High Level Input Voltage               |                                        |                        |        | 2        |         |      | 2   |             |       | 2   |          |       | V     |
| VIL             | Low Level Input Voltage                |                                        |                        | DM54   |          |         | 0.8  |     |             | 0.7   |     |          | 0.7   | V     |
|                 |                                        |                                        |                        | DM74   |          |         | 0.8  |     |             | 0.7   |     |          | 0.8   | 1 °   |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min                  | I <sub>1</sub> = -12 r |        |          |         | -1.5 |     |             | N/A   |     |          |       | V     |
|                 | High Land Court Court                  |                                        | I <sub>1</sub> = -18 r | nA<br> | ļ        |         |      |     |             |       |     |          | -1.5  |       |
| Іон             | High Level Output Current              |                                        |                        |        |          |         | -800 |     |             | -200  |     |          | -400  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH}$                 |                        | DM54   | 2.4      | 3.4     |      | 2.4 | 2.8         |       | 2.5 | 3.5      |       | l v   |
|                 |                                        | V <sub>IL</sub> = Max, I <sub>OH</sub> | = Max                  | DM74   | 2.4      | 3.4     |      | 2.4 | 2.8         |       | 2.7 | 3.5      |       |       |
| loL             | Low Level Output Current               |                                        |                        | DM54   |          |         | 16   |     |             | 2     |     |          | 4     | mA    |
|                 |                                        |                                        |                        | DM74   | j        |         | 16   |     |             | 3.6   |     |          | 8     |       |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> | = 2V                   | DM54   |          | 0.25    | 0.4  |     | 0.15        | 0.3   |     | 0.25     | 0.4   | V     |
|                 |                                        | $V_{IL} = Max, I_{OL}$                 | = Max                  | DM74   |          | 0.25    | 0.4  |     | 0.20        | 0.4   |     | 0.35     | 0.5   |       |
| 1,              | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max                  | $V_1 = 5.5V$           |        |          |         | 1    |     |             | 0.1   |     |          |       | mA    |
|                 | -                                      |                                        | V <sub>1</sub> = 7V    |        |          |         |      |     |             |       |     |          | 0.1   |       |
| Чн              | High Level Input Current               | V <sub>CC</sub> = Max                  | V <sub>1</sub> = 2.4V  |        | L        |         | 40   |     | <del></del> | 10    |     |          |       | μΑ    |
|                 |                                        |                                        | V <sub>1</sub> = 2.7V  |        |          |         |      |     |             |       |     |          | 20    |       |
| IIL.            | Low Level Input Current                | V <sub>CC</sub> = Max                  | V <sub>1</sub> = 0.3V  |        |          |         |      |     |             | -0.18 |     |          |       | mA    |
|                 |                                        |                                        | V <sub>1</sub> = 0.4V  |        |          |         | -1.6 |     |             |       |     |          | -0.36 |       |
| los             | Short Circuit Output Current           | $V_{CC} = Max(2)$                      |                        | DM54   | -20      |         | -55  | -3  | -9          | -15   | -30 |          | -130  | mA    |
|                 |                                        | . (2)                                  |                        | DM74   | -18      |         | -57  | -3  | -9          | -15   | -30 |          | -130  |       |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)               |                        | DM54   |          | 34      | 49   |     | 4.8         | 6.0   |     | 9        | 14    | mA    |
|                 |                                        | AGC - May(2)                           |                        | DM74   |          | 34      | 56   |     | 4.8         | 6.0   |     | 9        | 14    | '''   |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all inputs grounded and all outputs open.
- (4) Tentative data.

DM54/DM74154,L154A,LS154

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

| ŀ                  | •                                                                                                           | Di                                              | M54/74 |     |     | DM                                              | 154L/74 | L   |     | DM                              | 54LS/74 | LS  |     |       |
|--------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|-----|-----|-------------------------------------------------|---------|-----|-----|---------------------------------|---------|-----|-----|-------|
|                    | PARAMETER                                                                                                   |                                                 | 154    | -   |     |                                                 | L154A   |     |     | L                               | S154(4  | )   |     | UNITS |
|                    |                                                                                                             | CONDITIONS                                      | MIN    | TYP | MAX | CONDITIONS                                      | MIN     | TYP | MAX | CONDITIONS                      | MIN     | TYP | MAX |       |
| tрLH               | Propagation Delay Time, Low-to-High<br>Level Output, From A, B, C, or D Inputs<br>Through 3 Levels of Logic |                                                 | -      | 18  | 36  |                                                 |         | 35  | 70  |                                 |         | 24  | 36  | ņs    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low<br>Level Output, From A, B, C, or D Inputs<br>Through 3 Levels of Logic | C <sub>L</sub> = 15 pF<br>R <sub>L</sub> = 400Ω |        | 21  | 33  | $C_L = 50 \text{ pF}$ $R_L = 4 \text{ k}\Omega$ |         | 75  | 150 | $C_L = 15 pF$ $R_L = 2 k\Omega$ |         | 22  | 33  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High<br>Level Output, From Either Strobe Input                               |                                                 |        | 17  | 30  |                                                 |         | 35  | 70  |                                 |         | 20  | 30  | ns    |
| , t <sub>PHL</sub> | Propagation Delay Time, High-to-Low<br>Level Output, From Either Strobe Input                               | ,                                               |        | 18  | 27  |                                                 |         | 55  | 110 |                                 |         | 18  | 27  | ns    |

### Truth Table

|    |    | INP | UTS |   |   |   |     |     |     |     |   |   | OUT | PUTS |    |     |    |    |    |     |    |
|----|----|-----|-----|---|---|---|-----|-----|-----|-----|---|---|-----|------|----|-----|----|----|----|-----|----|
| G1 | G2 | D   | С   | В | Α | 0 | 1   | 2   | 3   | 4   | 5 | 6 | 7   | 8    | 9  | 10  | 11 | 12 | 13 | 14  | 15 |
| L  | L  | L   | L   | L | L | L | Н   | Н   | Ή   | Н   | Н | Н | Н   | Н    | Н  | Н   | Н  | Н  | Η. | H   | Н  |
| L  | L  | L   | L   | L | Н | Н | L   | Н   | Н   | Н   | Н | Н | Н   | Н    | H٠ | Н   | Н  | Н  | Н  | Н   | Н  |
| L  | L  | L   | L   | Н | L | Н | Н   | L   | H-  | Н   | Н | Н | Н   | Н    | Н  | Н   | Н  | Н  | Н  | Н   | Н  |
| L  | L  | L   | L   | Н | Н | Н | . н | Н   | L.  | Н   | Н | H | Н   | Н    | Н  | Н   | Н  | Н  | H  | Н   | Н  |
| L  | L  | L   | Н   | L | L | Н | Н   | Н   | Н   | L   | Н | Н | Н   | Н    | Н  | Η.  | Η. | ·H | Н  | H.  | Н  |
| L  | L  | L   | Н   | L | н | Н | H   | Н   | Н   | Н   | L | Н | Н   | Н    | Н  | Н   | H  | Н  | Н  | Н   | Η, |
| L  | L  | L   | Н   | Н | L | Н | Н   | Н   | Н   | Н   | Н | L | Н   | Н    | Н  | Н   | Н  | Н  | Н  | Ή   | Н  |
| L  | L  | L   | Н   | Н | Н | Н | Н   | Н   | Н   | . Н | Н | Н | L   | Н    | Н  | Н   | Н  | Н  | Н  | · H | Н  |
| L  | L  | Н   | L   | L | L | Н | Н   | Н   | Н   | Н   | Н | Н | Ĥ   | L    | Н  | Н   | Н  | Н  | Н  | Н   | Н  |
| L  | L  | Н   | L   | L | Н | Н | H   | Н   | Н   | Н   | Н | Н | Н   | Η.   | L  | H   | H  | Н  | Н  | Н   | Н  |
| L  | L  | Н   | L   | Н | L | Н | Н   | Н   | Н   | Н   | Н | Н | Н   | Н    | Н  | L   | Н  | Н  | Н  | Н   | Н  |
| L  | L  | Н   | L   | Н | Н | Н | Н   | , H | Н   | Н   | Н | Н | Н   | Н    | Н  | Н   | L  | Н  | Н  | Н   | Н  |
| L  | L  | Н   | Н   | L | L | H | Ή   | Н   | Н   | Н   | Н | Н | Н   | Н    | Н  | Н   | Н  | L  | Н  | Н   | Н  |
| L  | L  | Н   | Н   | L | Н | Н | Н   | Н   | Н   | Н   | Н | Н | Н   | Н    | Н  | Н   | Н  | Н  | L  | Н   | Н  |
| L  | L  | Н   | Н   | H | L | Н | Н   | Н   | . н | Н   | Н | Н | Н   | · H- | Н  | Н   | Н  | Н  | Н  | L   | Н  |
| L  | L  | Н   | Н   | Н | Н | Н | Н   | Н   | Н   | Н   | Н | Н | Н   | H    | Н  | Н   | Н  | Н  | Н  | H.  | L  |
| L  | Н  | X   | X   | X | Х | Н | H.  | Н   | ·H  | Н   | Н | Н | Н   | Н    | Н  | Н   | Н  | Н  | Н  | Н   | Н  |
| Н  | L  | ×   | Х   | Х | Х | Н | Н   | Н   | Н   | Н   | H | Н | Н   | Н    | Н  | Н   | Н  | Ĥ  | Н  | Н   | н  |
| Н  | Η. | X   | Х   | Χ | X | Н | Н   | Н   | Н   | Н   | Н | Н | Н   | Н    | Н  | TH. | Н  | Н  | Н  | Н   | Н  |

H = High Level, L = Low Level, X = Don't Care



## Dual 2-Line to 4-Line Decoders/Demultiplexers

### General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C1 data input permits use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

#### **Features**

Applications:

Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder
1-to-8-line demultiplexer

- Individual strobes simplify cascading for decoding or demultiplexing larger words
- Input clamping diodes simplify system design
- Choice of outputs: Totem-pole (155, LS155)
   Open-collector (156, LS156)

### Connection Diagram



54155(J), (W); 74155(J), (N), (W); 54LS155/74LS155(J), (N), (W); 54156(J), (W); 74156(J), (N), (W); 54LS156/74LS156(J), (N), (W)

#### Truth Tables

# 2-LINE-TO-4-LINE DECODER OR 1-LINE-TO-4-LINE DEMULTIPLEXER

|    |       | INPUTS |      |     | OUT | PUTS |     |
|----|-------|--------|------|-----|-----|------|-----|
| SE | LECT  | STROBE | DATA | 1Y0 | 1Y1 | 1Y2  | 1Y3 |
| В  | Α     | G1     | C1   | 110 |     | 112  | 113 |
| Х  | Х     | Н      | ×    | Н   | Н   | Н    | Н   |
| L  | L     | L      | н    | L   | Н   | Н    | Н   |
| L  | Н     | L      | н    | н   | L   | Н    | н   |
| Н  | L     | L      | н    | н   | н   | L    | н   |
| Н  | н н ь |        | н    | Н   | Н   | Н    | , L |
| X  | Х     | ×      | L    | н   | Н   | Н    | Н   |

|     |     | INPUTS |      |      | OUT | PUTS |      |
|-----|-----|--------|------|------|-----|------|------|
| SEL | ECT | STROBE | DATA | 27/0 | 2Y1 | 21/2 | 2)/2 |
| В   | Α   | G2     | C2   | 2Y0  | 211 | 2Y2  | 2Y3  |
| Х   | Х   | н      | ×    | Н    | Н   | Н    | Н    |
| L   | L   | L      | L    | L    | Н   | н    | Н    |
| L   | Н   | L      | L    | н    | L   | Н    | Н    |
| Н   | L   | L      | L    | н    | Н   | L    | Н    |
| Н   | Н   | L      | L    | н    | Н   | Н    | L    |
| X   | X   | х      | н    | н    | н   | н    | Н    |

### Logic Diagram



# 3-LINE-TO-8-LINE DECODER OR 1-LINE-TO-8-LINE DEMULTIPLEXER

|                | ı    | NPU1 | rs                |     |     |     | OUT | PUTS |     |     |     |
|----------------|------|------|-------------------|-----|-----|-----|-----|------|-----|-----|-----|
| S              | ELEC | т    | STROBE<br>OR DATA | (0) | (1) | (2) | (3) | (4)  | (5) | (6) | (7) |
| C <sup>†</sup> |      |      | G‡                | 2Y0 | 2Y1 | 2Y2 | 2Y3 | 1Y0  | 1Y1 | 1Y2 | 1Y3 |
| Х              | Х    | Х    | н                 | Н   | Н   | Н   | Н   | Н    | Н   | Н   | н   |
| L              | L    | L    | L                 | L   | Н   | Н   | Н   | Н    | Н   | Н   | н   |
| L              | L    | н    | L                 | н   | L   | Н   | Н   | Н    | Н   | Н   | н   |
| L              | Н    | L    | L                 | н   | Н   | L   | Н   | Н    | Н   | Н   | H.  |
| L              | Н    | Н    | L                 | н   | Н   | Н   | L   | Н    | Н   | H   | H   |
| н              | L    | L    | L                 | н   | Н   | Н   | Н   | L    | Н   | Н   | н   |
| н              | L    | Н    | L                 | н   | Н   | Н   | H   | Н    | L   | Н   | н   |
| н              | Н    | L    | L                 | Н,  | Н   | Н   | Н   | Н    | Н   | L   | н   |
| Н              | Н    | Н    | L                 | Н   | Н   | Н   | Н   | Н    | Н   | Н   | L   |

<sup>†</sup>C = inputs C1 and C2 connected together <sup>‡</sup>G = inputs G1 and G2 connected together H = high level, L = low level, X = don't care

|                   |                              |                                                                         |                               |              |               | DM       | 54/74 |          |          |                                                  |        | DM54L | _S/74LS        |             |            |          |
|-------------------|------------------------------|-------------------------------------------------------------------------|-------------------------------|--------------|---------------|----------|-------|----------|----------|--------------------------------------------------|--------|-------|----------------|-------------|------------|----------|
|                   | PARAMETER                    | CONDIT                                                                  | IONS                          | L            | 155           |          |       | 156      |          |                                                  | LS155  |       | <u>.</u>       | LS156       |            | UNITS    |
|                   |                              | , ,                                                                     | ·                             | MIN          | TYP(1)        | MAX      | MIN   | TYP(1)   | MAX      | MIN                                              | TYP(1) | MAX   | MIN            | TYP(1)      | MAX        |          |
| V <sub>IH</sub>   | High Level Input Voltage     | ·                                                                       |                               | 2            | •             |          | 2     |          |          | 2                                                |        |       | 2              |             |            | V        |
| VIL               | Low Level Input Voltage      |                                                                         | DM54                          |              |               | 0.8      |       |          | 0.8      |                                                  |        | 0.7   |                |             | 0.7<br>0.8 | V        |
|                   |                              | T. 10. A                                                                | DIVI74                        | -            | ,             |          |       |          | -1.5     |                                                  |        | 0.0   |                |             |            | <b> </b> |
| V <sub>I</sub>    | Input Clamp Voltage          | $V_{CC} = Min \qquad \frac{I_1 = -12 \text{ mA}}{I_1 = -18 \text{ mA}}$ |                               | +            | ,             | -1.5     | -     |          | -1.5     |                                                  |        | -1.5  |                |             | -1.5       | V        |
| Іон               | High Level Output Current    | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V, V <sub>IL</sub> =          | = Max, V <sub>OH</sub> = 5.5V |              |               |          |       |          | 250      |                                                  |        |       |                |             | 100        | μΑ       |
|                   |                              |                                                                         |                               | -            |               | -800     |       |          |          |                                                  |        | -400  |                |             |            |          |
| V <sub>OH</sub>   | High Level Output Voltage    | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = Max, I_{OH} = Max$             | DM54                          | 2.4          |               |          |       |          |          | 2.5                                              | 3.4    |       |                |             |            | V        |
|                   | 0.00                         | 112                                                                     |                               | <b>†</b>     |               |          |       |          | 5.5      | <b>†</b>                                         |        |       | -              | <del></del> | 5.5        |          |
| loL               | Low Level Output Current     |                                                                         | DM54                          |              |               | 16       |       |          | 16       |                                                  |        | 4     |                |             | 4          | mA       |
|                   |                              |                                                                         | DM74                          |              |               | 16       |       |          | 16       |                                                  |        | 8     |                |             | 8 .        |          |
| $V_{OL}$          | Low Level Output Voltage     | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                             | I <sub>OL</sub> = 4 mA        |              |               |          |       |          |          |                                                  | 0.25   | 0.4   |                | 0.25        | 0.4        |          |
|                   |                              | V <sub>1L</sub> = 0.8V                                                  | I <sub>OL</sub> = 8 mA, DM74  |              |               | 0.4      |       |          | 0.4      |                                                  | 0.35   | 0.5   |                | 0.35        | 0.5        | \        |
| I <sub>1</sub>    | Input Current at Maximum     | $V_{CC} = Max$ $V_1 = 5.5V$                                             |                               |              |               | 1        |       |          | 1        |                                                  |        | 0.1   |                |             | 0.1        | mΑ       |
|                   | Input Voltage                | V <sub>1</sub> - /V                                                     |                               | <del> </del> |               |          | ,     |          |          | ļ                                                |        | 0.1   | <u> </u>       |             | 0.1        |          |
| t <sub>iH</sub> . | High Level Input Current     | $V_{CC} = Max$ $V_1 = 2.4V$<br>$V_1 = 2.7V$                             | <u> </u>                      | <del> </del> | <del></del> - | 40       |       |          | 40       |                                                  |        | 20    |                | <del></del> | 20         | μΑ       |
| lil               | Low Level Input Current      | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                            |                               | <b>†</b>     |               | -1.6     |       |          | -1.6     | <del>                                     </del> |        | -0.36 | <b></b>        | ,           | -0.36      | mA       |
| Ios               | Short Circuit Output Current | V <sub>CC</sub> = Max(2)                                                | DM54                          | -20          | -32           | 55       |       | N/A      |          | -30                                              |        | -130  |                | * N/A       |            | mA       |
|                   |                              | . ,                                                                     | DM74                          | -18          | -32           | -55      |       | *****    |          | -30                                              |        | -130  |                |             |            |          |
| Icc               | Supply Current               | $V_{CC} = Max(3)$                                                       | DM54                          | -            | 25<br>25      | 35<br>40 | ļ     | 25<br>25 | 35<br>40 | -                                                | 6.1    | 10    | <del>  -</del> | 6.1         | 10         | mA.      |
|                   |                              |                                                                         | DM74                          | <u></u>      | 25            | 40       |       |          | 40       |                                                  | 0.1    | 10    | <u></u>        | 0.1         | 10         | <u> </u> |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with outputs open, A, B, and C1 inputs at 4.5V, and C2, G1 and G2 inputs grounded.

|                  |                                                             |                      |                |          |                                 |     | DM5 | 4/74 |     |     |     |                                 |     | DM541 | LS/74LS |     |       |     |         |
|------------------|-------------------------------------------------------------|----------------------|----------------|----------|---------------------------------|-----|-----|------|-----|-----|-----|---------------------------------|-----|-------|---------|-----|-------|-----|---------|
| P                | ARAMETER                                                    | FROM<br>(INPUT)      | TO<br>(OUTPUT) | LEVELS   |                                 | ŀ   | 155 | ·    | Γ   | 156 |     |                                 |     | LS155 |         | Ι   | LS156 |     | UNITS   |
|                  |                                                             | (1141-01)            | (001101)       | OF LOGIC | CONDITIONS                      | MIN | TYP | MAX  | MIN | TYP | MAX | CONDITIONS                      | MIN | TYP   | MAX     | MIN | TYP   | MAX |         |
| <sup>†</sup> PLH | , Propagation<br>Delay Time,<br>Low-to-High<br>Level Output | A, B, C2<br>G1 or G2 | Y              | 2        |                                 |     | 13  | 20   |     | 15  | 23  |                                 | ,   | 10    | 15      |     | 25    | 40  | ns      |
| †PHL             | Propagation<br>Delay Time,<br>High-to-Low<br>Level Output   | A, B, C2<br>G1 or G2 | Y              | 2        |                                 |     | 18  | 27   |     | 19  | 30  |                                 |     | 19    | 30      |     | 34    | 51  | ns      |
| t <sub>PLH</sub> | Propagation<br>Delay Time,<br>Low-to-High<br>Level Output   | A or B               | Y              | 3        | $C_L = 15 pF$ $R_L = 400\Omega$ |     | 18  | 27   |     | 21  | 32  | $C_L = 15 pF$ $R_L = 2 k\Omega$ |     | 17    | 26      |     | 31    | 46  | ns      |
| <sup>†</sup> PHL | Propagation<br>Delay Time,<br>High-to-Low<br>Level Output   | A or B               | Y              | 3        | N <sub>L</sub> - 40032          |     | 17  | 26   |     | 18  | 27  | 11L - 2 KS2                     |     | 19    | 30      |     | 34    | 51  | ns      |
| t <sub>PLH</sub> | Propagation<br>Delay Time,<br>Low-to-High<br>Level Output   | C1                   | <b>Y</b>       | 3        |                                 |     | 17  | 24   | *   | 19  | 27  |                                 |     | 18    | 27      |     | 32    | 48  | ns<br>- |
| t <sub>PHL</sub> | Propagation<br>Delay Time,<br>High-to-Low<br>Level Output   | C1                   | Y              | 3        |                                 |     | 17  | 26   |     | 18  | 27  |                                 |     | 18    | 27      |     | 32    | 48  | ns      |

DM54/DM74155,LS155,156,LS156

# Quad 2-Line to 1-Line Data Selectors/Multiplexers

### **General Description**

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The 157, L157A, LS157, and S157 present true data whereas the LS158 and S158 present inverted data to minimize propagation delay time.

### **Applications**

- Expand any data input point
- Multiplex dual data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

### Features

- Buffered inputs and outputs
- Three speed/power ranges available

| TYPE  | TYPICAL .<br>PROPAGATION<br>TIME | TYPICAL<br>POWER<br>DISSIPATION |
|-------|----------------------------------|---------------------------------|
| 157   | 9 ns                             | 150 mW                          |
| L157A | 40 ns                            | 15 mW                           |
| LS157 | 9 ns                             | 49 mW                           |
| S157  | 5 ns                             | 250 mW                          |
| LS158 | 7 ns                             | 24 mW                           |
| S158  | 4 ns                             | 195 mW                          |
|       |                                  |                                 |

### **Connection Diagrams**



54157(J), (W); 74157(J), (N), (W); 54L157A/74L157A(J), (N), (W); 54LS157/74LS157(J), (N), (W); 74S157(N)

High level at S selects B inputs



Low level at S selects A inputs High level at S selects B inputs

54LS158/74LS158(J), (N), (W); 74S158(N)

### **Truth Table**

|        | INPUTS |    | • | OUTPUT                    | Y             |
|--------|--------|----|---|---------------------------|---------------|
| STROBE | SELECT | Α  | В | 157, L157A<br>LS157, S157 | LS158<br>S158 |
| н      | Х      | х  | Х | L                         | н             |
| L      | L      | L  | Х | Ĺ                         | н             |
| L      | L      | н  | Х | Н                         | L.            |
| L      | н      | х  | L | L                         | н             |
| L      | н      | Χ. | H | н -                       | L             |

H = High Level, L = Low Level, X = Don't Care

|                 |                            |                              |                          |                          |                                        |              | DM54/74 |      |           | M54L/74 | I L  | DI       | M54LS/74  | LS   |              | DM74S     |       |         |
|-----------------|----------------------------|------------------------------|--------------------------|--------------------------|----------------------------------------|--------------|---------|------|-----------|---------|------|----------|-----------|------|--------------|-----------|-------|---------|
|                 | PARAMETER                  |                              |                          | CONDITIONS               |                                        |              | 157     |      |           | L157A   |      | LS       | S157, LS1 | 58   | S            | 157, \$15 | 8     | UNITS   |
|                 |                            |                              |                          |                          |                                        | MIN          | TYP(1)  | MAX  | MIN       | TYP(1)  | MAX  | MIN      | TYP(1)    | MAX  | MIN          | TYP(1)    | MAX   |         |
| ViH             | High Level Input Voltage   |                              |                          |                          |                                        | 2            |         |      | 2         |         |      | 2        |           |      | 2            |           |       | V       |
| VIL             | Low Level Input Voltage    |                              |                          |                          | DM54                                   |              |         | 0.8  |           |         | 0.7  |          |           | 0.7  |              |           | N/A   | V       |
|                 |                            |                              |                          |                          | DM74                                   |              |         | 8.0  |           |         | 0.7  |          |           | 0.8  |              |           | 8.0   |         |
| V <sub>I</sub>  | Input Clamp Voltage        |                              | V <sub>CC</sub> ≃ Min    | I <sub>1</sub> = -12 mA  |                                        |              |         | -1.5 |           |         | N/A  |          |           |      |              |           |       | v .     |
|                 |                            |                              | • ((                     | I <sub>1</sub> = ,-18 mA |                                        | <u> </u>     |         |      |           |         |      |          |           | -1.5 |              |           | -1.2  |         |
| Іон             | High Level Output Current  |                              |                          |                          |                                        |              |         | 800  |           |         | -200 |          |           | -400 |              |           | -1000 | μΑ      |
| V <sub>OH</sub> | High Level Output Voltage  | :                            | V <sub>CC</sub> = Min, V |                          | DM54                                   | 2.4          | 3.4     |      | 2.4       |         |      | 2.5      | 3.4       |      | N/A          |           |       | v       |
|                 |                            |                              | V <sub>IL</sub> = Max, I | OH = Max                 | DM74                                   | 2.4          | 3.4     |      | 2.4       |         |      | 2.7      | 3.4       | ,    | 2.7          | 3.4       |       | ·       |
| lor             | Low Level Output Current   |                              |                          |                          | DM54                                   | <u> </u>     |         | 16   |           |         | 2    |          |           | 4    |              |           | N/A   | mA      |
|                 |                            |                              |                          |                          | DM74                                   | ļ            |         | 16   |           |         | 3.6  |          |           | 8    |              |           | 20    |         |
| Voi             | Low Level Output Voltage   |                              | V <sub>CC</sub> = Min    | I <sub>OL</sub> = 4 mA   | DM74                                   |              |         |      |           |         |      |          | 0.25      | 0.4  |              |           |       |         |
|                 |                            |                              | V <sub>IH</sub> = 2V     | I <sub>OL</sub> = Max    | DM54                                   |              |         | 0.4  |           |         | 0.3  |          | 0.25      | 0.4  |              |           | N/A   | V       |
|                 |                            |                              | V <sub>IL</sub> = Max    |                          | DM74                                   | ļ            |         | 0.4  |           |         | 0.4  |          | 0.35      | 0.5  | <u> </u>     |           | 0.5   |         |
|                 | Input Current at           | Any Input                    | ) / - NA                 | V <sub>1</sub> = 5.5V    | ······································ | <b></b>      |         | 1    |           |         | 0.1  | <u> </u> |           | 0.2  | <del> </del> |           |       |         |
|                 | Maximum Input Voltage      | S or G Input<br>A or B Input | V <sub>CC</sub> = Max    | V <sub>1</sub> = 7V      |                                        | -            |         |      |           |         |      |          |           | 0.2  |              |           |       | mA      |
|                 | High Level Input Current   | Any Input                    |                          | V <sub>1</sub> = 2.4V    |                                        | <del> </del> |         | 40   |           |         | 10   |          |           |      | <del> </del> |           |       | <b></b> |
| 11Н             | nigh Level Input Current   | S or G Input                 | V <sub>CC</sub> ≃ Max    |                          |                                        | -            |         | 40   | <b></b> - |         | - 10 |          |           | 40   |              |           | 50    | μΑ      |
|                 |                            | A or B Input                 | TCC IIIA                 | V <sub>1</sub> = 2.7V    |                                        | <u></u>      |         |      |           |         |      |          |           | 20   |              |           | 50    | · · ·   |
| 1,,             | Low Level Input Current    | Any Input                    | <u> </u>                 | V <sub>1</sub> = 0.3V    | · · · · · · · · · · · · · · · · · · ·  | <b>†</b>     |         |      |           |         | 0.18 | <b></b>  |           |      | <u> </u>     |           |       |         |
| -               | ·                          | S or G Input                 | \/ - M                   | V <sub>1</sub> = 0.4V    |                                        |              |         | -1.6 |           |         |      |          |           | ~0.8 |              |           |       | mA      |
|                 |                            | A or B Input                 | V <sub>CC</sub> = Max    |                          |                                        |              |         | -1.6 |           |         |      |          |           | -0.4 |              |           |       | 11112   |
|                 |                            | Any Input                    |                          | V <sub>1</sub> = 0.5V    | ·                                      | <u> </u>     |         |      |           |         |      |          |           |      |              |           | -2    |         |
| los             | Short Circuit Output Curre | ent                          | V <sub>CC</sub> = Max(   | 2)                       | DM54                                   | -20          |         | -55  | -3        | -9      | -15  | -30      |           | -130 |              | N/A       |       | mA      |
|                 |                            |                              |                          |                          | DM74                                   | -18          |         | -55  | -3        | -9      | -15  | -30      |           | -130 | 40           |           | -100  |         |
| Icc             | Supply Current             |                              | V <sub>CC</sub> = Max(   | 3)                       | 157                                    | ļ            | 30      | 48   |           | 3       | 4    |          | 9.7       | 16   |              | 50        | 78    | mA      |
|                 |                            |                              | L                        |                          | 158                                    |              | N/A     |      | L         | N/A     |      | <u> </u> | 4.8       | 8    | <u> </u>     | 39        | 61    |         |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for the DM54LS/74LS or DM74S duration of the short circuit should not exceed one second.
- (3)  $I_{CC}$  is measured with 4.5V applied to all inputs and all outputs open.

|                  | ,                    |            | FROM    | Di                     | M54/74     |     | DM                     | 154L/74L  |      | DM5                    | 4LS/741  | LS         |          |                        | DM74S    |            |          |       |
|------------------|----------------------|------------|---------|------------------------|------------|-----|------------------------|-----------|------|------------------------|----------|------------|----------|------------------------|----------|------------|----------|-------|
|                  | PARAMETER            | 1          | (INPUT) |                        | 157        |     |                        | L157A     |      | LS1                    | 57, LS15 | 58         |          | S1!                    | 57, S158 |            |          | UNITS |
|                  |                      |            |         | CONDITIONS             | MIN TYP    | MAX | CONDITIONS             | MIN TY    | MAX  | CONDITIONS             | MIN      | TYP        | MAX      | CONDITIONS             | MIN      | TYP        | MAX      |       |
| t <sub>PLH</sub> | Time Lowete High     | 157<br>158 |         | ·                      | 8 ·<br>N/A | 14  |                        | 40<br>N/A | 80   |                        |          | 9          | 14       |                        | •        | 5          | 7.5<br>6 | ns    |
| t <sub>PHL</sub> |                      | 157<br>158 | Data    |                        | 10<br>N/A  | 14  |                        | 40<br>N/A | 80 - |                        |          | 12<br>8    | 19<br>13 |                        |          | 4.5<br>4   | 6.5<br>6 | ns    |
| t <sub>PLH</sub> | Time I ow-to-High I- | 157<br>158 | Strobe  | C <sub>L</sub> = 15 pF | 13<br>N/A  | 20  | C <sub>L</sub> = 50 pF | 60<br>N/A | 120  | C <sub>L</sub> = 15 pF |          | 16<br>14   | 25<br>25 | C <sub>L</sub> = 15 pF |          | 8.5<br>6.5 | 12.5     | ns    |
| t <sub>PHL</sub> | Time High-to-Low I-  | 157<br>158 | Strobe  | R <sub>L</sub> = 400Ω  | 14<br>N/A  | 21  | R <sub>L</sub> = 4 kΩ  | 60<br>N/A | 120  | R <sub>L</sub> = 2 kΩ  |          | 17<br>16   | 27<br>27 | R <sub>L</sub> = 280Ω  |          | 7.5<br>7   | 12       | ns    |
| t <sub>PLH</sub> | Time Low-to-High L   | 157<br>158 | Calcat  |                        | 15<br>N/A  | 23  | -                      | 70<br>N/A | 140  |                        |          | 16.5<br>13 | 26<br>20 | -                      |          | 9.5        | 15       | ns    |
| <sup>t</sup> PHL | Time High-to-Low L   | 157<br>158 | Select  |                        | 17<br>N/A  | 27  | -                      | 50<br>N/A | 100  |                        |          | 19<br>16   | 30<br>24 |                        |          | 9.5        | 15<br>12 | ns    |



# DM54/DM74157,L157A,LS157,S157,LS158,S158

### Logic Diagrams











# **Synchronous 4-Bit Counters**

#### General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 160A, 162A, LS160, LS162, are decade counters and the 161A, 163A, LS161, LS163 are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the load input of the 160A through 163A or LS160 through LS163 are perfectly acceptable, regardless of the logic levels on the clock or enable inputs. The clear function for the 160A, 161A, LS160, and LS161 is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the 162A, 163A, LS162, LS163, is synchronous; and a

low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs. Low-to-high transitions at the clear input of the 162A and 163A are also permissible regardless of the logic levels on the clock, enable, or load inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the  $Q_{\Delta}$ output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-tolow-level transitions at the enable P or T inputs of the 160A through 163A or LS160 through LS163, may occur regardless of the logic level on the clock.

LS160 through LS163 feature a fully independent clock circuit. Changes made to control inputs (enable P or T. load or clear) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

#### Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs

| TYPE |  |
|------|--|

160 thru 163

LS160 thru LS163

#### TYPICAL PROPAGATION TIME, CLOCK TO Q OUTPUT 14 ns

14 ns

#### **POWER** CLOCK FREQUENCY 35 MHz

TYPICAL

32 MHz

# DISSIPATION 315 mW

TYPICAL

93 mW

#### Connection Diagram



54160A(J), (W); 74160A(J), (N), (W); 54LS160/74LS160(J), (N), (W); 54161A(J), (W); 74161A(J), (N), (W); 54LS161/74LS161(J), (N), (W); 54162A(J), (W); 74162A(J), (N,), (W); 54LS162/74LS162(J), (N), (W); 54163A(J), (W); 74163A(J), (N), (W); 54LS163/74LS163(J), (N), (W)



Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                               |                               |                                     | DM54/74 DM54LS/74L<br>160A, 161A LS160, LS16 |                     |                |            |              |                |              |              |       |    |
|-----------------|-------------------------------|-------------------------------|-------------------------------------|----------------------------------------------|---------------------|----------------|------------|--------------|----------------|--------------|--------------|-------|----|
|                 | PARAMETE                      | R                             | C                                   | ONDITIONS                                    |                     |                | 2A, 16     |              | LS162, LS163   |              |              | UNITS |    |
|                 |                               |                               |                                     |                                              |                     | MIN TYP(1) MAX |            |              | MIN TYP(1) MAX |              |              |       |    |
| VIH             | High Level Input Voltage      |                               |                                     |                                              |                     | 2              |            |              | 2              |              |              | V     |    |
| VIL             | Low Level Input Voltage       |                               | DM54                                |                                              |                     |                |            | 0.8          |                |              | 0.7          |       |    |
|                 |                               |                               |                                     |                                              | DM74                |                |            | 0.8          |                |              | 8.0          | V     |    |
| Vı              | Input Clamp Voltage           |                               |                                     | I <sub>1</sub> = -12 mA                      |                     |                |            | -1.5         | Γ.,            |              |              | V     |    |
|                 |                               |                               | V <sub>CC</sub> = Min               | I <sub>1</sub> = -18 mA                      |                     |                |            |              |                |              | -1.5         | V     |    |
| Іон             | High Level Output Current     |                               |                                     |                                              |                     |                |            | -800         |                |              | -400         | μΑ    |    |
| V <sub>OH</sub> | High Level Output Voltage     | - W                           | V <sub>CC</sub> = Min, V            | / <sub>IH</sub> = 2V                         | DM54                | 2.4            | 3.4        |              | 2.5            | 3.4          |              | V     |    |
|                 |                               |                               | V <sub>IL</sub> = Max, I            | <sub>OH</sub> = Max                          | DM74                | 2.4            | 3.4        |              | 2.7            | 3.4          |              | v     |    |
| loL             | Low Level Output Current      |                               |                                     |                                              | DM54                |                |            | 16           |                |              | 4            | 0     |    |
|                 |                               |                               |                                     |                                              | DM74                |                |            | 16           |                |              | 8            | mA    |    |
| VOL             | Low Level Output Voltage      |                               | V <sub>CC</sub> = Min               |                                              | DM54                |                | 0.2        | 0.4          |                | 0.25         | 0.4          |       |    |
|                 |                               |                               | V <sub>IH</sub> = 2V                | I <sub>OL</sub> = Max                        | DM74                |                | 0.2        | 0.4          |                | 0.35         | 0.5          | V     |    |
|                 |                               |                               | V <sub>IL</sub> = Max               | I <sub>OL</sub> = 4 mA                       | DM74                |                |            |              |                | 0.25         | 0.4          |       |    |
| l <sub>1</sub>  | Input Current ax Maximum      | All                           |                                     | V <sub>1</sub> = 5.5V                        |                     |                |            | 1            |                |              |              |       |    |
|                 | Input Voltage                 | Data or Enable P              |                                     |                                              |                     |                |            |              |                |              | 0.1          |       |    |
|                 | 1                             | Load, Clock, or Enable T      | V <sub>CC</sub> = Max               | V <sub>CC</sub> = Max                        | V <sub>1</sub> = 7V |                |            |              |                |              |              | 0.2   | mA |
|                 |                               | Clear (LS160, LS161)          | 1 00                                |                                              |                     |                |            |              |                |              | 0.1          |       |    |
|                 |                               | Clear (LS162, LS163)          |                                     |                                              |                     |                |            |              |                |              | 0.2          |       |    |
| i <sub>IH</sub> | High Level Input Current      | Load                          |                                     |                                              |                     |                |            | 40           |                |              | 40           |       |    |
|                 | ,                             | Clock, Enable T               | V <sub>CC</sub> = Max               |                                              |                     |                |            | 80           |                |              | 40           |       |    |
|                 | •                             | Data                          | . V <sub>1</sub> = 2.4V (1          | 60A-163A)                                    |                     |                |            | 40           | <u> </u>       |              | 20           | μΑ    |    |
|                 |                               | Enable P                      | V <sub>1</sub> = 2.7V (LS160-LS163) |                                              |                     |                |            | 40           | ļ              |              | 20           | '     |    |
|                 |                               | Clear (160, 161)              | 4                                   |                                              |                     |                |            | 40           | ļ              |              | 20           |       |    |
|                 |                               | Clear (162, 163)              |                                     |                                              |                     |                |            | 40           | <b> </b>       |              | 40           |       |    |
| lin.            | Low Level Input Current       | Data, Enable P                |                                     |                                              |                     |                |            | -1.6         | ļ              |              | -0.4         |       |    |
|                 |                               | Clock                         |                                     |                                              |                     |                |            | -3.2<br>-1.6 |                |              | -1.2<br>-0.8 |       |    |
|                 |                               | Load<br>Enable T              | V <sub>CC</sub> = Max               | $V_1 = 0.4V$                                 |                     |                |            | -3.2         | <del> </del>   |              | -0.8         | mA    |    |
|                 |                               | Clear (160, 161)              | ļ                                   | r                                            |                     |                |            | -1.6         | <del> </del>   |              | -0.4         |       |    |
|                 |                               | Clear (162, 163)              |                                     |                                              |                     |                |            | -1.6         | ļ              |              | -0.8         |       |    |
|                 | 0 10 10 10                    | L                             | <u> </u>                            |                                              | I DME4              | 20             |            |              | 20             |              |              |       |    |
| los             | Short Circuit Output Currer   | V <sub>CC</sub> = Max(2       | ?)                                  | DM54<br>DM74                                 | -20<br>-18          |                | -57<br>-57 | -30<br>-30   |                | -130<br>-130 | mA           |       |    |
|                 | 6 t- 0 All 0                  |                               |                                     | ļ                                            |                     | E0.            |            |              | 18             |              |              |       |    |
| Іссн            | Supply Current, All Outputs   | $V_{CC} = Max(3)$ DM54        |                                     |                                              |                     | 59<br>59       | 85<br>94   |              | 18             | 31           | mA           |       |    |
|                 |                               |                               | DIV                                 |                                              |                     |                |            |              | ļ              | 19           |              |       |    |
| 1cct            | - Supply Current, All Outputs | V <sub>CC</sub> = Max(4) DM54 |                                     |                                              |                     | 63             | 91         |              | 19             | 32           | mA           |       |    |

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
- (4) ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.



Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    |                                                     |                   |                | DN                       | 154/74         |                                       |     | DM5                    | UNITS          |     |     |           |
|--------------------|-----------------------------------------------------|-------------------|----------------|--------------------------|----------------|---------------------------------------|-----|------------------------|----------------|-----|-----|-----------|
|                    | PARAMETER                                           | FROM<br>(INPUT)   | TO<br>(OUTPUT) | 160A, 161                | A, 162         | A, 163                                | A   | LS160, LS16            |                |     |     |           |
|                    |                                                     | ( 017             | (001/01/       | CONDITIONS               | MIN            | TYP                                   | MAX | CONDITIONS             | MIN            | TYP | MAX |           |
| fmAx               | Maximum Clock Frequency                             |                   | 3.5            |                          | 25             | 35                                    |     | *                      | 25             | 32  |     | MHz       |
| tpLH               | Propagation Delay Time,<br>Low-to-High Level Output |                   | Ripple         |                          |                | 18                                    | 27  | ` `.                   |                | 23  | 35  | ns        |
| tpHL               | Propagation Delay Time,<br>High-to-Low Level Output | Clock             | carry          |                          |                | 16                                    | 24  |                        |                | 23  | 35  | ns        |
| tpLH               | Propagation Delay Time,<br>Low-to-High Level Output | Clock             | A= O           | ,                        |                | 14                                    | 20  |                        |                | 16  | 24  | ns        |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | (Load Input High) | Any Q          | C <sub>L</sub> ≈ 15 pF   |                | 16                                    | 23  | C <sub>L</sub> = 15 pF |                | 18  | 27  | ns        |
| tPLH               | Propagation Delay Time,<br>Low-to-High Level Output | Clock             | Any Q          | R <sub>L</sub> . = 400Ω. |                | 14                                    | 21  | R <sub>L</sub> = 2 kΩ  |                | 17  | 25  | ns        |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | (Load Input Low)  | Ally C         |                          |                | 18                                    | 25  |                        |                | 19  | 29  | ns        |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | Enable T          | Ripple         |                          |                | 10.                                   | 15  |                        |                | 15  | 23  | ns        |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output | Enable 1          | carry          |                          |                | . 12                                  | 16  |                        |                | 15  | 23  | ns        |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output | Clear (5)         | Any Q          |                          |                | 24                                    | 36  |                        |                | 26  | 38  | ns        |
| tw(CLOCK)          | Width of Clock Pulse                                |                   |                |                          | 25             |                                       |     |                        | 25             |     |     | ns        |
| tw(CLEAR)          | Width of Clear Pulse                                |                   |                |                          | 20             |                                       |     |                        | 20             |     |     | ns        |
| <sup>t</sup> SETUP | Setup Time Data Inputs<br>A, B, C, D                |                   |                |                          | 20             |                                       |     |                        | 20             |     |     |           |
| ,                  | Enable P Load Clear(6)                              |                   | ,              |                          | 20<br>25<br>20 |                                       |     |                        | 25<br>25<br>25 |     |     | ns<br>• . |
| tHOLD              | Hold Time at Any Input                              |                   |                |                          | 0              | · · · · · · · · · · · · · · · · · · · |     |                        | 0              |     |     | . ns      |

- (5) Propagation delay for clearing is measured from the clear input for the 160A, LS160, 161A and LS161 or from the clock input transition for the 162A, LS162, 163A and LS163.
- (6) This applies only for 162, 163, LS162 and LS163, which have synchronous clear inputs.



# Logic Diagrams





#### **Timing Diagrams**

160, 162, LS160, LS162 SYNCHRONOUS DECADE COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES



#### Sequence:

- (1) Clear outputs to zero
- (2) Preset to BCD seven
- (3) Count to eight, nine, zero, one, two, and three
- (4) Inhibit

# 161, LS161, 163, LS163 SYNCHRONOUS BINARY COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES



#### Sequence:

- (1) Clear outputs to zero
- (2) Preset to binary twelve
- (3) Count to thirteen, fourteen, fifteen, zero, one, and two
- (4) Inhibit

#### **Parameter Measurement Information**

#### SWITCHING TIME WAVEFORMS



#### Notes:

- (A) The input pulses are supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, duty cycle  $\leq$  50%,  $Z_{OUT} \approx$  50 $\Omega$ , for 160A through 163A,  $t_r \leq$  10 ns,  $t_f \leq$  10 ns; for LS160 through LS163,  $t_r \leq$  15 ns,  $t_f \leq$  6 ns. Vary PRR to measure  $t_{MAX}$ .
- (B) Outputs Q<sub>D</sub> and carry are tested at t<sub>n+10</sub> for 160A, 162A, LS160, LS162, and at t<sub>n+16</sub> for 161A, 163A, LS161, LS163, where t<sub>n</sub> is the bit time when all outputs are low.
- (C) For 160A through 163A,  $V_{REF} = 1.5V$ ; for LS160 through LS163,  $V_{REF} = 1.3V$ .

#### SWITCHING TIME WAVEFORMS



- (A) The input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, duty cycle  $\leq$  50%,  $Z_{OUT} \approx 50\Omega$ . For 160A through 163A,  $t_r \leq$  10 ns,  $t_f \leq$  10 ns, and for LS160 through LS163,  $t_r \leq$  15 ns,  $t_f \leq$  6 ns.
- (B) Enable P and enable T setup times are measured at  $t_{n+0}$ .
- (C) For 160A through 163A, VREF = 1.5V; for LS160 through LS163, VREF = 1.3V.



# 8-Bit Serial In/Parallel Out Shift Registers

#### **General Description**

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

#### **Features**

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear

| TYPE  | TYPICAL<br>CLOCK FREQUENCY | TYPICAL<br>POWER DISSIPATION |
|-------|----------------------------|------------------------------|
| 164   | 36 MHz                     | 185 mW                       |
| L164A | 14 MHz                     | 30 mW                        |
| LS164 | 36 MHz                     | , 80 mW                      |
|       |                            |                              |

#### **Connection Diagram**

# 

54164(J), (W); 74164(J), (N), (W); 54L164A/74L164A(J), (N), (W); 54LS164/74LS164(J), (N), (W)

#### Timing Diagram



#### Logic Diagram



# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                              | F                                       |                                                    |       |          |                |       | DANEAL (7.4)   |         |       |                |        |      |       |
|-----------------|------------------------------|-----------------------------------------|----------------------------------------------------|-------|----------|----------------|-------|----------------|---------|-------|----------------|--------|------|-------|
|                 |                              |                                         |                                                    |       |          | DM54/74        |       | [              | M54L/74 | L     | DI             |        |      |       |
|                 | PARAMETER                    |                                         | CONDITIONS                                         |       |          | 164            |       |                | L164A   |       |                | LS164  |      | UNITS |
|                 |                              |                                         |                                                    |       | MIN      | MIN TYP(1) MAX |       | MIN TYP(1) MAX |         | MAX   | MIN TYP(1) MAX |        |      |       |
| V <sub>IH</sub> | High Level Input Voltage     |                                         |                                                    |       | 2        |                |       | 2              |         |       | 2              |        |      | V     |
| VIL             | Low Level Input Voltage      |                                         |                                                    | DM54  |          |                | 0.8   |                |         | 0.7   |                |        | 0.7  | V     |
|                 |                              | •                                       |                                                    | DM74  |          |                | 0.8   |                |         | 0.7   |                |        | 0.8  | V     |
| VI              | Input Clamp Voltage          | V = Min                                 | I <sub>1</sub> = -12 mA<br>I <sub>1</sub> = -18 mA |       |          |                | -1.5  |                |         | N/A   |                |        |      | V     |
|                 |                              | V <sub>CC</sub> = Min                   | I <sub>1</sub> = -18 mA                            |       |          |                |       |                |         |       |                |        | -1.5 | ·     |
| Іон             | High Level Output Current    |                                         |                                                    |       |          |                | -400  |                |         | -200  |                |        | -400 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage    | V <sub>CC</sub> = Min, V                | ' <sub>IH</sub> = 2V                               | DM54  | 2.4      | 3.2            |       | 2.4            |         |       | 2.5            | 3.5    |      | V     |
| ,               |                              | $V_{IL} = Max, I_{C}$                   | <sub>DH</sub> = Max                                | DM74  | 2.4      | 3.2            |       | 2.4            |         |       | 2.7            | 3.5    |      | •     |
| loL             | Low Level Output Current     |                                         |                                                    |       |          |                | 8     |                |         | 2     |                |        | 4    | mA    |
|                 |                              | *************************************** |                                                    | DM74  |          |                | .8    |                |         | 3.6   |                |        | . 8  |       |
| $V_{OL}$        | Low Level Output Voltage     | V <sub>CC</sub> = Min                   | I <sub>OL</sub> = Max                              | DM54  |          | 0.2            | 0.4   |                |         | 0.3   |                | 0.25   | 0.4  |       |
|                 |                              | V <sub>IH</sub> = 2V                    | 1                                                  | DM74  | ļ        | 0.2            | 0.4   |                |         | 0.4   |                | - 0.35 | 0.5  | V     |
|                 |                              | V <sub>IL</sub> = Max                   | I <sub>OL</sub> = 4 mA                             | DM74  |          |                |       |                |         |       |                | 0.25   | 0.4  |       |
| l <sub>l</sub>  | Input Current at Maximum     |                                         | V <sub>1</sub> = 5.5V                              | Clear | <u> </u> |                | 1     |                |         | 0.2   |                |        |      |       |
| ×               | Input Voltage                | V <sub>CC</sub> = Max                   |                                                    | Other |          |                | 1     |                |         | 0.1   |                |        |      | mA    |
|                 |                              |                                         | V <sub>1</sub> = 7V                                | All   |          |                |       |                |         |       |                |        | 0.1  |       |
| I <sub>IH</sub> | High Level Input Current     |                                         | V <sub>1</sub> = 2.4V                              | Clear |          |                | 40    |                |         | 20    |                |        |      |       |
|                 |                              | V <sub>CC</sub> = Max                   |                                                    | Other | ļ        |                | 40    |                |         | 10    |                |        |      | μА    |
|                 |                              |                                         | V <sub>1</sub> = 2.7V                              | All   |          |                |       |                |         |       |                |        | 20   |       |
| HL              | Low Level Input Current      | V <sub>CC</sub> = Max                   | V <sub>1</sub> = 0.3V, L164A                       | Clear |          |                | -1.6  |                |         | -0.36 |                |        | -0.4 | mA    |
|                 |                              | • 66ax                                  | $V_1 = 0.4V$ , Others                              | Other |          |                | -1.6  |                |         | -0.18 |                |        | -0.4 |       |
| los             | Short Circuit Output Current | V = Max(2)                              |                                                    | DM54  | -10      |                | -27.5 | -3             | 9       | -15   | -30            |        | -130 | mA    |
|                 |                              | VCC Max(2                               | $V_{CC} = Max(2)$                                  |       | -9       |                | -27.5 | -3             | -9      | -15   | -30            |        | -130 | IIIA  |
| Icc             | Supply Current               | V <sub>CC</sub> = Max(3                 | 3)                                                 |       |          | 37             | 54    |                | 6       | 9     |                | 16     | 27   | mA    |

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4V, and a momentary ground, then 4.5V, applied to clear.

| Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

|                    |                                                                              |                                         |                                                  |          | DM54/74  | ļ ,      |      | M54L/7 | 4L  | D۱    | 154LS/7 | 4LS |     |
|--------------------|------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------|----------|----------|------|--------|-----|-------|---------|-----|-----|
|                    | PARAMETER                                                                    | CONDITIONS                              |                                                  | 164      |          | L164A    |      |        |     | UNITS |         |     |     |
|                    |                                                                              |                                         |                                                  | MIN      | TYP      | MAX      | MIN  | TYP    | MAX | MIN   | TYP     | MAX |     |
| f <sub>MAX</sub>   | Maximum Clock Frequency                                                      |                                         | C <sub>L</sub> = 15 pF                           | 25       | 36       |          | 6    | 14     |     | 25    | 36      |     | MHz |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Outputs<br>From Clear Input     | $R_L = 800\Omega$ for the 164           | C <sub>L</sub> = 15 pF<br>C <sub>L</sub> = 50 pF |          | 24       | 36<br>42 |      | 75     | 120 |       | 24      | 36  | ns  |
| t <sub>PLH</sub>   | Propagation Delay Time,<br>Low-to-High Level Outputs<br>From Clock Input     | $R_L = 4 \text{ k}\Omega$ for the L164A | $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$      | 8        | 17<br>20 | 27       |      | 50     | 85  |       | 17      | 27  | ns  |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Outputs<br>From the Clock Input | $R_L = 2 k\Omega$ for the LS164         | C <sub>L</sub> = 15 pF<br>C <sub>L</sub> = 50 pF | 10<br>10 | 21<br>25 | 32<br>37 |      | 90     | 135 | ,     | 21      | 32  | ns  |
| t <sub>W</sub>     | Width of Clock or Clear<br>Input Pulse                                       |                                         |                                                  | 20       |          |          | 60   | 40     |     | 20°   |         |     | ns  |
| <sup>t</sup> SETUP | Data Setup Time                                                              | ·                                       |                                                  | 15       |          |          | . 40 | 20     |     | 15    |         |     | ns  |
| tHOLD              | Data Hold Time                                                               |                                         | ,                                                | 5        | -        | _        | 20   | -5     |     | 5     |         | ,   | ns  |

## **Truth Table**

|       | INPUTS | OUTPUTS |   |                 |                   |  |                 |  |
|-------|--------|---------|---|-----------------|-------------------|--|-----------------|--|
| CLEAR | CLOCK  | Α       | В | QA              | OB .              |  | OH.             |  |
| L     | X.     | Χ,      | х | L               | L                 |  | L               |  |
| н     | L      | х       | Х | Q <sub>A0</sub> | $Q_{B0}$          |  | QHO             |  |
| Н     | 1      | Н       | Н | Н               | $\mathtt{Q}_{An}$ |  | $Q_{Gn}$        |  |
| н     | ↑′     | L       | Х | L.              | $Q_{An}$          |  | $Q_{Gn}$        |  |
| Н     | 1      | Х       | L | L               | $\mathbf{Q}_{An}$ |  | Q <sub>Gn</sub> |  |

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

 $\uparrow$  = Transition from low to high level

 $Q_{AO},\ Q_{BO},\ Q_{HO}$  = The level of  $Q_A,\ Q_B,$  or  $Q_H,$  respectively, before the indicated steady-state input conditions were established.

 $Q_{An},~Q_{Gn}$  = The level of  $Q_A$  or  $Q_G$  before the most recent  $\uparrow$  transition of the clock; indicates a one-bit shift.



# 8-Bit Pararallel In/Serial Out Shift Registers

#### **General Description**

These are 8-bit serial shift registers which shift the data in the direction of  $\Omega_A$  toward  $\Omega_H$  when clocked. Parallelin access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.

Clocking is accomplished through a 2-input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high. Data at the

parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

#### **Features**

- Complementary outputs
- Direct overriding load (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion

PE TYPICAL FREQUENCY TYPICAL
POWER DISSIPATION

165 L165A 20 MHz 14 MHz 200 mW

30 mW

#### Connection Diagram



54165(J), (W); 74165(J), (N), (W); 54L165A/74L165A(J), (N), (W)

# Truth Table

|        |         | INPUT  | INTE   | OUTDUT   |                  |                 |                          |
|--------|---------|--------|--------|----------|------------------|-----------------|--------------------------|
| SHIFT/ | CLOCK   | 01.001 | 055141 | PARALLEL | OUT              | PUTS            | OUTPUT<br>Q <sub>H</sub> |
| LOAD   | INHIBIT | CLOCK  | SERIAL | A H      | QA               | ΟB              | чн                       |
| L      | Х       | Х      | Х      | ah       | a                | b               | h                        |
| н      | L       | L.     | Х      | X        | Q <sub>A0</sub>  | Q <sub>BO</sub> | Q <sub>H0</sub>          |
| н      | L       | 1      | н      | ×        | н                | Q <sub>An</sub> | $Q_{Gn}$                 |
| Н      | L       | 1      | L      | X        | L                | $Q_{An}$        | $Q_{Gn}$                 |
| н      | Н       | 1      | Х      | ×        | Q <sub>A</sub> 0 | $Q_{B0}$        | Q <sub>H0</sub>          |

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

<sup>↑ =</sup> Transition from low-to-high level

a ... h = The level of steady-state input at inputs A through H, respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{H0}$  = The level of  $Q_A$ ,  $Q_B$ , or  $Q_H$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Gn}$  = The level of  $Q_{A}$  or  $Q_{G}$ , respectively, before the most recent  $\uparrow$  transition of the clock.



# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                            |                            |                                                  |                          |              |          | DM54/74 |              | DM54L/74L |          |                |       |
|-----------------|----------------------------|----------------------------|--------------------------------------------------|--------------------------|--------------|----------|---------|--------------|-----------|----------|----------------|-------|
|                 | PARAMETER                  |                            | co                                               | ONDITIONS                |              | 165      |         |              | L165A     |          |                | UNITS |
|                 |                            |                            |                                                  |                          |              | MIN      | TYP(1)  | MAX          | MIN       | TÝP(1)   | MAX            |       |
| ViH             | High Level Input Voltage   |                            |                                                  |                          |              | 2        |         |              | 2         |          |                | ٧     |
| VIL             | Low Level Input Voltage    |                            |                                                  |                          |              |          | *,      | 0.8          |           |          | 0.7            | V     |
| Vı              | Input Clamp Voltage        |                            | V <sub>CC</sub> = Min,                           | I <sub>1</sub> ≈ −12 mA  |              |          |         | -1.5         |           |          | N/A            | V     |
| Іон             | High Level Output Current  |                            |                                                  |                          |              |          |         | -800         |           |          | -200           | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage  |                            | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = Max, |                          |              | 2.4      |         |              | 2.4       |          | ,              | ٧     |
| lor             | Low Level Output Current   |                            |                                                  |                          | DM54<br>DM74 |          |         | 16<br>16     |           |          | 2<br>3.6       | mA    |
| V <sub>OL</sub> | Low Level Output Voltage   |                            | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = Max, |                          | DM54<br>DM74 | ,        | 0.2     | 0.4          |           |          | 0.3            | ٧     |
| I <sub>1</sub>  | Input Current at Maximum   | Input Voltage              | V <sub>CC</sub> = Max,                           | V <sub>1</sub> = 5.5V    |              |          |         | 1            |           |          | 0.1            | mA    |
| I <sub>IH</sub> | High Level Input Current   | Load Input<br>Other Inputs | V <sub>CC</sub> = Max,                           | V <sub>i</sub> = 2.4V    |              |          |         | 80<br>40     |           |          | 30<br>10       | μΑ    |
| I <sub>IL</sub> | Low Level Input Current    | Load Input<br>Other Inputs | V <sub>CC</sub> = Max,                           | V <sub>1</sub> = 0.3V fo |              |          |         | -3.2<br>-1.6 |           |          | -0.54<br>-0.18 | mA    |
| los             | Short Circuit Output Curre | nt                         | V <sub>CC</sub> = Max(2)                         |                          | DM54<br>DM74 | 20<br>18 |         | 55<br>55     | -3<br>-3  | -9<br>-9 | -15<br>-15     | mA    |
| Icc             | Supply Current             |                            | V <sub>CC</sub> = Max(3                          | 3)                       |              |          | 40      | 63           |           |          | 9.5            | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With the outputs open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the clock input, I<sub>CC</sub> is measured first with the parallel inputs at 4.5V, then with the parallel inputs grounded.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                                     |                 |                         |                        |                   | DM54 | 1   |                        |                   |     |     |       |     |    |
|--------------------|-----------------------------------------------------|-----------------|-------------------------|------------------------|-------------------|------|-----|------------------------|-------------------|-----|-----|-------|-----|----|
|                    | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT)          |                        | 165               |      | ,   | L16                    | 65A               |     |     | UNITS |     |    |
|                    |                                                     | ( 5.7           | (001.01)                | CONDITIONS             | MIN               | TYP  | MAX | CONDITIONS             | MIN               | TYP | MAX |       |     |    |
| fMAX               | Maximum Clock Frequency                             |                 |                         |                        | 14                | 20   |     |                        | 6                 | 14  |     | MHz   |     |    |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output |                 | Any                     | **** · ·               |                   | 34   | 50  |                        |                   | 44  | 88  | ns    |     |    |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | Load            |                         |                        | ,                 |      |     | 42                     | 60                |     | -   | 62    | 124 | ns |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | Clock           |                         | C <sub>L</sub> = 15 pF | ,                 | 26   | 40  | C <sub>L</sub> = 50 pF |                   |     | 35  | 70    | ns  |    |
| tpHL               | Propagation Delay Time,<br>High-to-Low Level Output | CIOCK           | Any                     |                        |                   | 35   | 50  |                        |                   | 50  | 100 | ns    |     |    |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | н               | 0                       | Q <sub>H</sub>         | $R_L = 400\Omega$ |      | 25  | 40                     | $R_L = 4 k\Omega$ |     | 33  | 66    | ns  |    |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | П               | Чη                      |                        |                   | 36   | 50  |                        |                   | 56  | 112 | ns    |     |    |
| t <sub>PLH</sub>   | Propagation Delay Time,<br>Low-to-High Level Output | н               | $\overline{\Omega}_{H}$ |                        |                   | 25   | 40  |                        |                   | 33  | 66  | ns    |     |    |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | "               | Ωн                      |                        |                   | 36   | 50  |                        |                   | 56  | 112 | ns    |     |    |
| tw(CLOCK)          | Width of Clock Input Pulse                          |                 |                         |                        | 35                | 25   |     | ,                      | 100               |     |     | ns    |     |    |
| tw(LOAD)           | Width of Load Input Pulse                           |                 |                         |                        | 35                | 24   | ,   |                        | 100               |     |     | ns    |     |    |
| <sup>t</sup> SETUP | Parallel Input Setup Time                           | `               |                         |                        | 25                | 10   |     |                        | 44                | 22  |     | ns    |     |    |
| <sup>t</sup> SETUP | Serial Input Setup Time                             |                 |                         |                        | 40                | 23   |     |                        | .44               | 22  |     | ns    |     |    |
| tHOLD              | Hold Time at Any Input                              |                 |                         |                        | 5                 |      |     |                        | 10                |     |     | ns    |     |    |



# Logic Diagram



# **Timing Diagram**

#### TYPICAL SHIFT, LOAD, AND INHIBIT SEQUENCES





#### General Description

These parallel-in or serial-in, serial-out shift registers feature gated clock inputs and an overriding clear input. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes minimize switching transients to simplify system design. The load mode is established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-

# 8-Bit Parallel In/Serial Out Shift Registers

high-level edge of the clock pulse through a two-input NOR gate, permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free-running, and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

#### Connection Diagram



54166/74166(J), (N)

## **Truth Table**

|       |        |         | INTER | RNAL   | OUTDUT   |                  |                  |                          |
|-------|--------|---------|-------|--------|----------|------------------|------------------|--------------------------|
| CLEAR | SHIFT/ | СГОСК   | CLOCK | SERIAL | PARALLEL | OUTF             | UTS              | OUTPUT<br>Q <sub>H</sub> |
| CLEAN | LOAD   | INHIBIT | CLOCK | SENIAL | A Ħ      | . Q <sub>A</sub> | . Q <sub>B</sub> | ЧΗ                       |
| L     | Х      | Х       | Х     | Х      | ×        | L                | ٦                | L                        |
| H     | ×      | L       | L     | Х      | ×        | Q <sub>A0</sub>  | OB0              | Q <sub>H0</sub>          |
| Н     | L      | L       | 1     | Х      | a:h      | a                | b                | h                        |
| Н     | н      | L       | 1     | H      | ×        | н                | $Q_{An}$         | Q <sub>Gn</sub>          |
| н     | н      | L       | 1     | L      | ×        | L                | $Q_{An}$         | Q <sub>Gn</sub>          |
| н .   | Χ,     | Н       | 1     | X      | Х        | Q <sub>A0</sub>  | O <sup>BO</sup>  | Q <sub>H0</sub>          |

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

↑ = Transition from low to high level

a...h = The level of steady-state input at inputs A through H, respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{H0}$  = The level of  $Q_A$ ,  $Q_B$  or  $Q_H$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Gn}$  = The level of  $Q_A$  or  $Q_G$ , respectively, before the most recent ↑ transition of the clock

#### Logic Diagram



1



Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                           |                                                                          |              |            | DM54/74  |            |       |
|-----------------|-------------------------------------------|--------------------------------------------------------------------------|--------------|------------|----------|------------|-------|
|                 | PARAMETER                                 | CONDITIONS                                                               |              |            | 166      |            | UNITS |
|                 |                                           |                                                                          |              | MIN        | TYP(1)   | MAX        |       |
| VIH             | High Level Input Voltage                  |                                                                          |              | 2          |          |            | V     |
| VIL             | Low Level Input Voltage                   |                                                                          |              |            |          | 8.0        | V     |
| Vı              | Input Clamp Voltage                       | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$                                  |              |            |          | -1.5       | V     |
| Іон             | High Level Output Current                 |                                                                          |              |            |          | -800       | μΑ    |
| V <sub>OH</sub> | High Level Output Voltagé                 | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OH} = -800\mu A$ |              | 2.4        |          |            | V     |
| l <sub>OL</sub> | Low Level Output Current                  |                                                                          |              |            |          | 16         | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$   |              |            |          | 0.4        | V     |
| l <sub>1</sub>  | Input Current at Maximum<br>Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                            |              |            |          | 1          | mA    |
| l <sub>iH</sub> | High Level Input Current                  | $V_{CC} = Max$ , $V_1 = 2.4V$                                            |              |            |          | 40         | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                   | $V_{CC} = Max$ , $V_1 = 0.4V$                                            |              |            |          | -1.6       | mA    |
| los             | Short Circuit Output Current              | V <sub>CC</sub> = Max(2)                                                 | DM54<br>DM74 | -20<br>-18 | -        | 57<br>57   | mA    |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max(3)                                                 | DM54<br>DM74 |            | 72<br>72 | 104<br>116 | mA    |

## Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With all outputs open, 4.5V applied to the serial input, all other inputs except the clock grounded, I<sub>CC</sub> is measured after a momentary ground, then 4.5V, is applied to clock.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  |                                                                |                                        |         | DM54/74 |     |       |  |
|------------------|----------------------------------------------------------------|----------------------------------------|---------|---------|-----|-------|--|
|                  | PARAMETER                                                      | CONDITIONS                             |         | 166     |     | UNITS |  |
|                  |                                                                |                                        | MIN TYP |         | MAX |       |  |
| f <sub>MAX</sub> | Maximum Clock Frequency                                        |                                        | 25      | 35      |     | MHz   |  |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low<br>Level Output From Clear |                                        |         | 23      | 35  | ns    |  |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low<br>Level Output From Clock | $C_L = 15 \text{ pF}, R_L = 400\Omega$ | 8       | 20      | 30  | ns    |  |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-High<br>Level Output From Clock |                                        | 8       | 17      | 26  | ns    |  |
| t <sub>W</sub>   | Width of Clock or Clear Pulse                                  | ************************************** | 20      |         |     | ns    |  |
| tSETUP           | Mode Control Setup Time                                        |                                        | - 30    |         |     | ns    |  |
| tSETUP           | Data Setup Time                                                |                                        | 20      |         |     | ns    |  |
| tHOLD            | Hold Time at Any Input                                         |                                        | 0       |         |     | ns    |  |

# Timing Diagram

#### TYPICAL CLEAR, SHIFT, LOAD, INHIBIT, AND SHIFT SEQUENCES



#### **Parameter Measurement Information**

#### **VOLTAGE WAVEFORMS**



#### Notes

- (A) The clock pulse has the following characteristics:  $t_{W(clock)} \ge 20$  ns and PRR = 1 MHz. The clear pulse has the following characteristics:  $t_{W(clear)} \ge 20$  ns and  $t_{HOLD} = 0$  ns. When testing  $t_{MAX}$ , vary the clock PRR.
- (B)  $C_L$  includes probe and jig capacitance.
- (C) All diodes are 1N3064.
- (D) A clear pulse is applied prior to each test.
- (E) Propagation delay times (tp<sub>LH</sub> and tp<sub>HL</sub>) are measured at  $t_{n+1}$ . Proper shifting of data is verified at  $t_{n+8}$  with a functional test.
- (F)  $t_n$  = bit time before clocking transition  $t_{n+1}$  = bit time after one clocking transition

tn+8 = bit time after eight clocking transitions

# TEST TABLE FOR SYNCHRONOUS INPUTS

| DATA INPUT<br>FOR TEST | SHIFT/LOAD | OUTPUT TESTED<br>(SEE NOTE E)      |
|------------------------|------------|------------------------------------|
| H                      | 0V         | Q <sub>H</sub> at t <sub>n+1</sub> |
| Serial Input           | 4.5V       | Q <sub>H</sub> at t <sub>n+8</sub> |



#### **General Description**

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs all change at the same time when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising edge of the clock waveform.

These counters are fully programmable; that is, the outputs may each be preset either high or low. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry permits cascading counters for n-bit synchronous applications without additional gating. Both count-enable inputs  $(\overline{P} \text{ and } \overline{T})$  must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input  $\overline{T}$  is fed forward to enable the carry output. The carry

# Synchronous 4-Bit Up/Down Counters

output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the  $\Omega_A$  output when counting up, and approximately equal to the low portion of the  $\Omega_A$  output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable  $\overline{P}$  or  $\overline{T}$  inputs are allowed regardless of the level of the clock input. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (enable  $\overline{P}$ , enable  $\overline{T}$ , load, up/down), which modify the operating mode, have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

#### **Features**

- Fully synchronous operation for counting and programming
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Fully independent clock circuit

#### **Connection Diagram**



54LS168/74LS168(J), (N), (W); 54LS169/74LS169(J), (N), (W)



Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                            |                    |                                               | ONDITIONS               |      | DM54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ILS/74LS168, L | S169            | UNITS    |
|-----------------|----------------------------|--------------------|-----------------------------------------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------|
|                 | PARAMETER                  |                    |                                               | JINDITTONS              |      | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYP(1)         | MAX             | UNITS    |
| VIH             | High Level Input Voltage   |                    |                                               |                         | -    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 | ٧        |
| VIL             | Low Level Input Voltage    |                    |                                               |                         | DM54 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.7             | V        |
|                 |                            |                    | 1                                             |                         | DM74 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.8             | <u> </u> |
| V,              | Input Clamp Voltage        |                    | V <sub>CC</sub> = Min, I                      | <sub>1</sub> = -18 mA   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -1,5            | V        |
| Іон             | High Level Output Current  |                    |                                               |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -400            | μΑ       |
| V <sub>OH</sub> | High Level Output Voltage  |                    | V <sub>CC</sub> = Min,                        | V <sub>IH</sub> = 2V    | DM54 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4            |                 |          |
|                 |                            |                    | V <sub>IL</sub> = Max, I                      | <sub>OH</sub> =400μA    | DM74 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4            |                 | <b>v</b> |
| loL             | Low Level Output Current   | *                  |                                               |                         | DM54 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 4               | mA       |
|                 |                            | ·                  | ·                                             |                         | DM74 | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 8               |          |
| $v_{ol}$        | Low Level Output Voltage   |                    | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V | 1 <sub>OL</sub> = 4 mA  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25           | 0.4             | V        |
|                 |                            |                    | V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max | I <sub>OL</sub> = 8 mA, | DM74 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35           | 0.5             | · ·      |
| I <sub>1</sub>  | Input Current at           | A, B, C, D, P, U/D |                                               |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.1             |          |
|                 | Maximum Input Voltage      | Clock, T           | V <sub>CC</sub> = Max,                        | $V_t = 7V$              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.2             | mA       |
|                 |                            | Load               | ļ                                             |                         |      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0.3             |          |
| I <sub>IH</sub> | High Level Input Current   | A; B, C, D, P, U/D | 1                                             |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 20              |          |
|                 |                            | Clock, T           | V <sub>CC</sub> = Max,                        | V <sub>1</sub> = 2.7V   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 40<br>60        | μΑ       |
|                 |                            |                    | <del> </del>                                  |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |          |
| IL              | Low Level Input Current    | A, B, C, D, P, U/D | V <sub>CC</sub> = Max,                        | V. = 0.4V               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -0.4<br>-0.8    | mA       |
|                 |                            | Load , Clock       | - CC - Max,                                   |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -1.2            |          |
| Ios             | Short Circuit Output Curre | ent                | V <sub>CC</sub> = Max(2)                      |                         | -30  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | -130           | mA <sup>-</sup> |          |
| lcc             | Supply Current             |                    | V <sub>CC</sub> = Max(                        | 3)                      |      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20             | 34              | mA       |

Notes (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

(3) I<sub>CC</sub> is measured after applying a momentary 4.5V, then ground, to the clock input with all other inputs grounded and the outputs open.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                 |                                                                        | FROM        | то           | CONDITIONS                            | DM54L                | S/74LS16 | 3, LS169 | UNITS |
|--------------------|---------------------------------|------------------------------------------------------------------------|-------------|--------------|---------------------------------------|----------------------|----------|----------|-------|
|                    | PARAMET                         | EK                                                                     | (INPUT)     | (OUTPUT)     | CONDITIONS                            | MIN                  | TYP      | MAX      | UNITS |
| fMAX               | Maximum Cloc                    | k Frequency                                                            |             |              |                                       | 25                   | 32       |          | MHz   |
| t <sub>PLH</sub>   | Propagation De<br>Low-to-High L |                                                                        | Ob. In      | 20,          |                                       |                      | 23       | 35       | ns    |
| t <sub>PHL</sub>   | Propagation De<br>High-to-Low L |                                                                        | Clock       | Ripple Carry | ·                                     |                      | 23       | 35       | ns    |
| t <sub>PLH</sub>   | Propagation De<br>Low-to-High L |                                                                        |             |              |                                       |                      | 13       | 20       | ns    |
| <sup>t</sup> PHL   | Propagation De<br>High-to-Low L | ' '                                                                    | Clock       | Any Q        | $C_L$ = 15 pF, $R_L$ = 2 k $\Omega$ , |                      | 15       | 23       | ns    |
| <sup>t</sup> PLH   | Propagation De<br>Low-to-High L |                                                                        | Enable T    |              |                                       |                      | 10       | 15       | ns    |
| t <sub>PHL</sub>   |                                 | ow-to-High Level Output ropagation Delay Time, igh-to-Low Level Output |             | Ripple Carry |                                       |                      | 16       | 23       | ns    |
| t <sub>PLH</sub>   | Propagation Do                  |                                                                        |             |              |                                       |                      | 17       | 25       | ns    |
| t <sub>PHL</sub>   | Propagation Di<br>High-to-Low L |                                                                        | Up/Down (4) | Ripple Carry |                                       |                      | 19       | 29       | ns    |
| tw(CLOCK)          | Width of Clock                  | Pulse (High or Low)                                                    | •           |              |                                       | 25                   |          |          | ns    |
| <sup>†</sup> SETUP | Setup Time                      | Data Inputs A, B, C, D Enable P or T Load Up/Down                      |             |              | ,                                     | 20<br>25<br>25<br>30 |          |          | ns    |
| <sup>t</sup> HOLD  | Hold Time                       | Data Inputs A, B, C, D Enable P or T Load, Up/Down                     |             |              | ,                                     | 0 0                  |          |          | ns    |

Notes (4) Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count.

As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for LS168 or 15 for LS169), the ripple carry output will be out of phase.







# **Timing Diagrams**

# LS168 DECADE COUNTERS TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES



# Sequence:

- (1) Load (preset) to BCD seven
- (2) Count up to eight, nine, zero, one and two
- (3) Inhibit
- (4) Count down to one, zero, nine, eight and seven

# Timing Diagrams (Continued)

# LS169 BINARY COUNTERS TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES



#### Sequence

- (1) Load (preset) to binary thirteen
- (2) Count up to fourteen, fifteen, zero, one and two
- (3) Inhibit
- (4) Count down to one, zero, fifteen, fourteen and thirteen



#### **General Description**

These 16-bit TTL register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addessing the four word locations to either write-in or retrieve data. This permits writing into one location and reading from another word location, simultaneously.

Four data inputs are available to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B, in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input,  $G_{\rm W}$ , is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input,  $G_{\rm R}$ , is high, the data outputs are inhibited and remain high.

The individual address lines permit direct reading of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement—data entry addressing separate from data-read addressing and individual sense line—eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 ns

# 4 by 4 Register Files

typical) and the read time (25 ns typical). The register file has a nondestructive readout in that data is not lost when addressed.

All 170 inputs and all inputs except the read enable and write enable of the LS170 are buffered to lower the drive requirements to one standard load. Input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length.

#### **Features**

- Separate addressing permits simultaneous reading and writing
- Fast access times

typically 20 ns

- Organized as 4 words of 4 bits
- Expandable to 1024 words of n-bits
- For use as:
  - Scratch-pad memory Buffer storage between processors Bit storage in fast multiplication designs
- Open-collector outputs with low maximum off-state current:

170 LS170 30μΑ 20μΑ

DM54LS670 and DM74LS670 are similar but have TRI-STATE outputs

#### Connection Diagram



74170(J), (N); 54LS170/74LS170(J), (N), (W)

# **Truth Tables**

#### WRITE TRUTH TABLE (SEE NOTES A, B, AND C)

| WR | ITE INP | JTS            | WORD  |                |       |       |  |  |  |  |
|----|---------|----------------|-------|----------------|-------|-------|--|--|--|--|
| WB | WA      | G <sub>W</sub> | 0     | 1              | 2     | 3     |  |  |  |  |
| L  | L       | L              | Q = D | O <sub>o</sub> | Qo    | Qo    |  |  |  |  |
| L  | Н       | . r            | $Q_0$ | $\sigma = D$   | $Q_0$ | $Q_0$ |  |  |  |  |
| Н  | L       | L              | $Q_0$ | $Q_0$          | O = D | Oo    |  |  |  |  |
| Н  | Н       | L              | $Q_0$ | $Q_0$          | $Q_0$ | O = D |  |  |  |  |
| ×  | X       | н              | $Q_0$ | $Q_0$          | $Q_0$ | $Q_0$ |  |  |  |  |

#### READ TRUTH TABLE (SEE NOTES A AND D)

| RE | AD INPL | JTS     |      | OUT  | PUTS |      |
|----|---------|---------|------|------|------|------|
| RB | RA      | $G_{R}$ | Q1   | 02   | Q3   | Q4   |
| L  | L       | L       | W0B1 | W0B2 | W0B3 | W0B4 |
| L  | Н       | . L     | W1B1 | W1B2 | W1B3 | W1B4 |
| н  | L       | L       | W2B1 | W2B2 | W2B3 | W2B4 |
| н  | Н       | L       | W3B1 | W3B2 | W3B3 | W3B4 |
| Х  | ×       | н       | н    | Н    | Н    | Н    |

- (A) H = High Level, L = Low Level, X = Don't Care
- (B) (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
- (C)  $Q_0$  = The level of Q before the indicated input conditions were established.
- (D) W0B1 = The first bit of word 0, etc.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     |                 | PARAMETER                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COND                    | ITIONS                     |        |     | DM74<br>170 |      | C   | DM54LS/74L<br>LS170                     | .s   | UNITS                                   |
|-----|-----------------|---------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|--------|-----|-------------|------|-----|-----------------------------------------|------|-----------------------------------------|
|     |                 |                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.10                   |                            |        | MIN | TYP(1)      | MAX  | MIN | TYP(1)                                  | MAX  | Oillis                                  |
| ,   | V <sub>IH</sub> | High Level Input Voltage  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            |        | 2   |             | -    | 2   |                                         |      | · v                                     |
| ,   | VIL             | Low Level Input Voltage   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -                          | DM54   |     |             | N/A  |     |                                         | 0.7  | · V                                     |
|     |                 |                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            | DM74   |     |             | 0.8  | ·   |                                         | 0.8  | V                                       |
| ,   | v,              | Input Clamp Voltage       | ,                                | V <sub>CC</sub> = Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>1</sub> = -12    | mA <sub>.</sub>            |        |     |             | -1.5 |     |                                         |      | - · · · · · · · · · · · · · · · · · · · |
|     |                 | ,                         |                                  | A CC (AIII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>1</sub> = -18    | mA · ·                     | ·      | ,   |             |      |     |                                         | 1.5  |                                         |
| 1   | он .            | High Level Output Current |                                  | V <sub>CC</sub> = Min, \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / <sub>IH</sub> = 2V, \ | IL. = Max, V <sub>OH</sub> | = 5.5V |     |             | 30   |     |                                         | 20   | μΑ                                      |
| ,   | V <sub>ОН</sub> | High Level Output Voltage |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            |        |     |             | 5.5  |     |                                         | 5.5  | · V                                     |
| 1   | loL             | Low Level Output Current  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            | DM54   |     |             | N/A  |     | , , , , , , , , , , , , , , , , , , , , | 4    | . mA                                    |
|     |                 |                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            | DM74   |     |             | 16   |     |                                         | 8    | IIIA                                    |
| ,   | VOL             | Low Level Output Voltage  |                                  | V <sub>CC</sub> = Min, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / = 2V                  | I <sub>OL</sub> = 4 mA     | DM74   |     |             |      | `   | 0.25                                    | 0.4  |                                         |
|     | .               |                           |                                  | V <sub>IL</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | I <sub>OL</sub> = Max      | DM54   |     |             | N/A  |     | 0.25                                    | 0.4  | V                                       |
|     |                 |                           | T                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            | DM74   |     | 0.2         | 0.4  |     | 0.35                                    | 0.5  |                                         |
|     | 1,              | Input Current at          | Any                              | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | V <sub>1</sub> = 5.5    | <b>V</b>                   |        |     |             | 11   |     |                                         |      | ,                                       |
|     |                 | Maximum Input Voltage     | Any D, R, or W                   | V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>1</sub> = 7V     |                            |        |     |             |      |     | <u> </u>                                | 0.1  | mA                                      |
|     |                 | 4                         | G <sub>R</sub> or G <sub>W</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *                          |        |     |             |      |     |                                         | 0.2  |                                         |
| , 1 | ин              | High Level Input Current  | Any .                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_1 = 2.4$             | V .                        |        |     |             | 40   |     |                                         |      | ,                                       |
|     |                 |                           | Any D, R, or W                   | V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>1</sub> = 2.7    | v                          |        |     |             |      |     |                                         | 20   | μΑ                                      |
|     |                 |                           | G <sub>R</sub> or G <sub>W</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                            |        |     |             |      |     |                                         | 40   |                                         |
|     | IIL             | Low Level Input Current   | Any D, R, or W                   | V <sub>CC</sub> = Max,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V. = 0.4V               | •                          |        |     |             | -1.6 |     |                                         | -0.4 | ^                                       |
|     |                 |                           | G <sub>R</sub> or G <sub>W</sub> | YCC - IVIAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v   = 0.4V              |                            |        |     |             | 1.6. |     |                                         | −0.8 | · mA                                    |
|     | lcc             | Supply Current            |                                  | V <sub>CC</sub> = Max(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2)                      |                            |        |     | 127         | 150  |     | 25                                      | 40   | mA                                      |

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) ICC is measured under the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

|                    |                                            | •                                                                   | FROM         | то       |                        | OM74 |     |     | DM5                    | 4LS/74L | S   |     |       |
|--------------------|--------------------------------------------|---------------------------------------------------------------------|--------------|----------|------------------------|------|-----|-----|------------------------|---------|-----|-----|-------|
|                    | PARAN                                      | METER                                                               | (INPUT)      | (OUTPUT) |                        | 170  |     |     |                        | LS170   |     |     | UNITS |
|                    |                                            |                                                                     |              |          | CONDITIONS             | MIN  | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX |       |
| t <sub>PLH</sub>   | Propagation Delay Time,                    | Low-to-High Level Output                                            | Read Enable  | Any Q    |                        |      | 10  | 15  |                        |         | 20  | 30  |       |
| t <sub>PHL</sub>   | Propagation Delay Time,                    | High-to-Low Level Output                                            | nead Enable  | Ally Q   |                        |      | 20  | 30  |                        |         | 20  | 30  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time,                    | Low-to-High Level Output                                            | Read Select  | A O      |                        |      | 23  | 35  |                        |         | 25  | 40  |       |
| t <sub>PHL</sub>   | Propagation Delay Time,                    | High-to-Low Level Output                                            | Head Select  | Any Q    | C <sub>L</sub> = 15 pF |      | 30  | 40  | C <sub>L</sub> = 15 pF |         | 24  | 40  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time,                    | Low-to-High Level Output                                            | Write Enable | Any Q    | $R_L = 400\Omega$      |      | 25  | 40  | R <sub>L</sub> = 2 kΩ  |         | 30  | 45  |       |
| tpHL               | Propagation Delay Time,                    | High-to-Low Level Output                                            | Write Enable | Any Q    |                        |      | 34  | 45  |                        |         | 26  | 40  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time,                    | Low-to-High Level Output                                            | Data         | A O      |                        |      | 20  | 30  |                        |         | 30  | 45  |       |
| t <sub>PHL</sub>   | Propagation Delay Time,                    | High-to-Low Level Output                                            | Data         | Any Q    |                        |      | 30  | 45  |                        |         | 22  | 35  | ns    |
| t <sub>W</sub>     | Width of Write-Enable or                   | Read-Enable Pulse                                                   |              |          |                        | 25   |     |     |                        | 25      |     |     | ns    |
| <sup>t</sup> SETUP | Setup Times, High- or<br>Low-Level Data(3) | Data Input With Respect to<br>Write Enable, t <sub>SETUP(D)</sub>   |              |          |                        | 10   |     |     |                        | 10      |     |     | ns    |
|                    |                                            | Write Select With Respect to<br>Write Enable, t <sub>SETUP(W)</sub> | · ·          |          |                        | 15   |     |     |                        | 15      |     |     | ns    |
| <sup>t</sup> HOLD  | Hold Times, High- or<br>Low-Level Data(3)  | Data Input With Respect to<br>Write Enable, t <sub>HOLD(D)</sub>    | •            |          |                        | 15   |     |     |                        | 15      |     |     | ns    |
|                    |                                            | Write Select With Respect to<br>Write Enable, t <sub>HOLD(W)</sub>  |              |          |                        | 5    |     |     |                        | 5       |     |     | ns    |
| t <sub>LATCH</sub> | Latch Time for New Data                    | a(4)                                                                |              |          |                        | 25   |     |     |                        | 25      |     |     | ns    |

#### Note

- (3) Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, tsetup(W) can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thought in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
- (4) Latch time is the time allowed for the internal output of the latch to assume the state of new data. This is important only when attempting to read from a location immediately after that location has received new data.

Logic Diagrams

. 170





Logic Diagrams (Continued)

LS170





# **General Description**

These four-bit registers contain D-type flip-flops with totem-pole TRI-STATE outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.

Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels,

# TRI-STATE Quad D Registers

the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

#### **Features**

- TRI-STATE outputs interface directly with system bus
- Gated output control lines for enabling or disabling the outputs
- Fully independent clock eliminates restrictions for operating in one of two modes:
  - Parallel load
  - Do nothing (hold)
- For application as bus buffer registers

| TYPE  | TYPICAL<br>PROPAGATION<br>DELAY | TYPICAL<br>FREQUENCY | TYPICAL<br>POWER<br>DISSIPATION |
|-------|---------------------------------|----------------------|---------------------------------|
| 173   | 18 ns                           | 30 MHz               | 250 mW                          |
| LS173 | 18 ns                           | 30 MHz               | 85 mW                           |



54173(J), (W); 74173(J), (N), (W); 54LS173/74LS173(J), (N), (W)

#### Truth Table

| -      |       | INPUT | S                |   | OUTPUT         |  |
|--------|-------|-------|------------------|---|----------------|--|
| OL FAD | СГОСК | DATA  | DATA ENABLE DATA |   |                |  |
| CLEAR  | CLUCK | G1    | G2               | D | u              |  |
| н      | Х     | ×     | х                | Х | L              |  |
| L      | L     | ×     | Х                | × | O <sub>O</sub> |  |
| L      | 1.    | н     | X                | × | $Q_0$          |  |
| L      | 1     | χ.    | н                | × | $Q_0$          |  |
| L      | 1     | L     | L                | L | L              |  |
| L      | 1     | L     | L                | н | Н              |  |

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

- H = high level (steady state)
- L = low level (steady state)
- ↑ = low-to-high level transition
- X = don't care (any input including transitions)
- Q<sub>0</sub> = the level of Q before the indicated steady state input conditions were established

## Logic Diagram





# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                  |                        |                         |      |         | DM54/74 |      | Dr  | VI54LS/74I | _S               |                |
|-----------------|----------------------------------|------------------------|-------------------------|------|---------|---------|------|-----|------------|------------------|----------------|
|                 | PARAMETER                        |                        | CONDITION               | s    |         | 173     |      |     | LS173(4)   |                  | UNITS          |
|                 |                                  |                        |                         |      | MIN     | TYP(1)  | MAX  | MIN | TYP(1)     | MAX              |                |
| $V_{IH}$        | High Level Input Voltage         |                        |                         |      | 2       |         |      | 2   |            |                  | ٧              |
| VIL             | Low Level Input Voltage          |                        |                         | DM54 |         |         | 0.8  |     |            | 0.7              | V              |
|                 |                                  |                        |                         | DM74 |         |         | 8.0  |     |            | 0.8              |                |
| VI              | Input Clamp Voltage .            | V <sub>CC</sub> = Min  | I <sub>1</sub> = -12 mA |      |         |         | -1.5 |     |            |                  | V              |
|                 |                                  |                        | I <sub>1</sub> = 18 mA  |      | ļ       |         |      |     |            | -1.5             |                |
| Гон             | High Level Output Current        |                        |                         | DM54 |         |         | -2   |     |            | 1.0              | mA             |
|                 |                                  |                        |                         | DM74 |         |         | 5.2  |     |            | -2.6             |                |
| $v_{oh}$        | High Level Output Voltage        | V <sub>CC</sub> = Min, | V <sub>1H</sub> = 2V    | DM54 | 2.4     |         |      | 2.5 |            |                  | \ <sub>\</sub> |
|                 |                                  | $V_{IL} = 0.8V$ ,      | I <sub>OH</sub> ≃ Max   | DM74 | 2.4     |         |      | 2.7 |            |                  | · ·            |
| IOL             | Low Level Output Current         |                        |                         | DM54 |         |         | 16   |     |            | 4                | mA             |
|                 |                                  |                        |                         | DM74 |         |         | 16   |     |            | 8                | liiA           |
| VOL             | Low Level Output Voltage         | V <sub>CC</sub> = Min  | I <sub>OL</sub> = Max   | DM54 |         |         | 0.4  |     |            | 0.4              |                |
|                 |                                  | V <sub>IH</sub> = 2V   |                         | DM74 |         |         | 0.4  |     |            | 0.5              | V              |
|                 |                                  | V <sub>1L</sub> = 0.8V | I <sub>OL</sub> = 4 mA  | DM74 |         |         |      |     |            | 0.4              |                |
| IO(OFF)         | Off-State (High-Impedance State) | V <sub>CC</sub> = Max  | V <sub>0</sub> = 0.4V   |      |         |         | -40  |     |            | -20              |                |
|                 | Output Current                   | V <sub>1H</sub> = 2V   | VO - 2.4V               |      |         |         | 40   |     |            |                  | μΑ             |
|                 |                                  | 100                    | V <sub>O</sub> = 2.7V   |      |         |         |      |     |            | 20               |                |
| l <sub>i</sub>  | Input Current at Maximum Input   | V <sub>CC</sub> = Max  | V <sub>1</sub> = 5.5V   |      |         |         | 1    |     |            |                  | mA             |
|                 | Voltage                          |                        | V <sub>1</sub> = 7.0V   |      |         |         |      |     |            | 0.1              |                |
| Чн              | High Level Input Current         | V <sub>CC</sub> = Max  | V <sub>1</sub> = 2.4V   |      | <b></b> |         | 40   |     |            |                  | μΑ             |
|                 |                                  |                        | V <sub>1</sub> = 2.7V   |      |         |         |      |     |            | 20               |                |
| I <sub>IL</sub> | Low Level Input Current          | V <sub>CC</sub> = Max  | V <sub>1</sub> = 0.4V   |      |         |         | -1.6 |     |            | <del>-</del> 0.4 | mA             |
| los             | Short Circuit Output Current     | V <sub>CC</sub> = Max( | 2)                      |      | -30     |         | -70  | -30 |            | -130             | mA             |
| Icc             | Supply Current                   | V <sub>CC</sub> = Max( | 3)                      |      |         | 50      | 72   |     | 17         | 24               | mA             |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all outputs open; clear grounded following momentary connection to 4.5V; N, G1, G2, and all data inputs grounded; and the clock input and M at 4.5V.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |               |                                                  |                        | DM54 | /74 | ,   | DM                      | 54LS/ | 74LS  |     |       |
|------------------|---------------|--------------------------------------------------|------------------------|------|-----|-----|-------------------------|-------|-------|-----|-------|
|                  |               | PARAMETER                                        | CONDITIONS             |      | 173 | 1   | CONDITIONS              | L     | S173( | 4)  | UNITS |
|                  |               | ·                                                |                        | MIN  | TYP | MAX |                         | MIN   | TYP   | MAX |       |
| fMAX             | Maximum GI    | ock Frequency                                    |                        | 25   | 30  |     |                         | 25    | 30    |     | MHz   |
| t <sub>PHL</sub> | Propagation   | Delay Time, High-to-Low Level Output From Clear  |                        |      | 18  | 27  |                         |       | 18    | 27  | ns    |
| tPLH             | Propagation   | Delay Time, Low-to-High Level Output From Clock  | C <sub>L</sub> = 50 pF | -,   | 16  | 25  | C <sub>L</sub> = 15 pF  |       | 16    | 25  | ns    |
| t <sub>PHL</sub> | Propagation I | Delay, Time, High-to-Low Level Output From Clock | R <sub>L</sub> = 400Ω  |      | 20  | 28  | R <sub>L</sub> = 2 kΩ   |       | 20    | 28  | ns    |
| tzH              | Output Enab   | le Time to High Level                            |                        | 7    | 16  | 30  |                         | 7     | 16    | 30  | ns    |
| <sup>†</sup> ZL  | Output Enab   | le Time to Low Level                             | ,                      | 7    | 21  | .30 |                         | 7     | 21    | 30  | ns    |
| tHZ              | Output Disab  | lle Time From High Level                         | C <sub>L</sub> = 5 pF  | 3    | 5   | 14  | C <sub>L</sub> = 5 pF   | 3     | 5     | 14  | _ ns  |
| t <sub>LZ</sub>  | Output Disab  | le Time From Low Level                           | R <sub>L</sub> = 400Ω  | 3    | 11  | 20  | · R <sub>L</sub> = 2 kΩ | 3     | 11    | 20  | ns    |
| tw               | Width of Clo  | ck or Clear Pulse                                |                        | 20   |     |     |                         | 20    |       |     | ns .  |
| tSETUP           | Setup Time    | Data Enable                                      |                        | 17   |     | ,   |                         | 17    |       |     |       |
|                  |               | Data                                             |                        | 10   |     |     |                         | 10    |       |     | ns    |
|                  |               | Clear Inactive State                             |                        | 10   |     |     |                         | 10    |       |     |       |
| tHOLD            | Hold Tirne    | Data Enable                                      |                        | 2    |     |     |                         | 2     |       |     | ns    |
|                  | Data          |                                                  |                        | 10   |     |     |                         | 10    |       |     | 115   |



#### **General Description**

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

# Hex/Quad D Flip-Flops with Clear

#### **Features**

- 174, LS174, S174 contain six flip-flops with singlerail outputs
- 175, LS175, S175 contain four flip-flops with doublerail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers Shift registers Pattern generators

|              | TVDIOAL                    | TYPICAL           |
|--------------|----------------------------|-------------------|
| TYPE         | TYPICAL<br>CLOCK FREQUENCY | POWER DISSIPATION |
|              | CLUCK PREQUENCY            | PER FLIP-FLOP     |
| 174, 175     | 40 MHz                     | 38 mW             |
| LS174, LS175 | 40 MHz                     | 14 mW             |
| S174. S175   | 110 MHz                    | . 75 mW           |

## Connection Diagrams

# V<sub>CC</sub> 06 D6 D5 D5 D4 Q4 CLOCK 16 15 14 13 12 11 10 9 9 1 10 1 D2 Q2 Q3 Q3 Q3 GNO

54174(J), (W); 74174(J), (N), (W); 54LS174/74LS174(J), (N), (W); 74S174(N)



54175(J), (W); 74175(J), (N), (W); 54LS175/74LS175(J), (N), (W); 74S175(N)

#### Logic Diagrams



|                                         | PARAMETER                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        |      | 1       | D        |      |          |          |               |          | DM74S    |                   |       |
|-----------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------|------|---------|----------|------|----------|----------|---------------|----------|----------|-------------------|-------|
|                                         | PARAMETER                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        |      | DM54/74 |          | Dr   | 154LS/74 | LS       |               |          |          |                   |       |
|                                         | PARAMETER                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | COND                                      | TIONS                  |      |         | 174, 175 |      |          | 174, LS1 |               |          | 174, S17 |                   | UNITS |
|                                         |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                           |                        |      | MIN     | TYP(1)   | MAX  | MIN      | TYP(1)   | MAX           | MIN      | TYP(1)   | MAX               |       |
| ViH                                     | High Level Input Voltage  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                           | -                      |      | 2       |          |      | 2        |          |               | 2        |          |                   | V     |
| VIL                                     | Low Level Input Voltage   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        | DM54 |         |          | 8.0  |          |          | 0.7           |          |          | N/A               | V     |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        | DM74 |         |          | 8.0  |          |          | 0.8           |          |          | 0.8               | •     |
| Vı                                      | Input Clamp Voltage       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$ $I_1 = -18 \text{ mA}$ |                                           |                        |      |         | -1.5     |      |          |          |               |          |          | V                 |       |
|                                         |                           | - Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Comm |                                                              | I <sub>1</sub> = -18 mA                   |                        |      |         |          |      |          |          | -1.5          | <u> </u> |          | -1.2              |       |
| Гон                                     | High Level Output Curren  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        |      |         |          | -800 |          |          | -400          |          |          | -1000             | μΑ    |
| V <sub>OH</sub>                         | High Level Output Voltage | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> = Min, \                                     |                                           |                        | DM54 | 2.4     |          |      | 2.5      | 3.5      |               |          | N/A      |                   | V     |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>IL</sub> = Max, I                                     | <sub>OH</sub> = Max                       |                        | DM74 | 2.4     |          |      | 2.7      | 3.5      |               | 2.7      | 3.4      |                   |       |
| loL                                     | Low Level Output Current  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           |                        | DM54 |         |          | 16   |          |          | 4             |          |          | N/A               | mA    |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                           | DM74                   |      |         | 16       |      |          | 8        |               |          | 20       | ""                |       |
| VOL                                     | Low Level Output Voltage  | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N M N 01                                                     |                                           | 1 ~ 00                 | DM54 |         |          | 0.4  |          | 0.25     | 0.4           |          |          | N/A               |       |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = Min, V_{IL} = Max$                                 | $_{OC} = Min, V_{IH} = 2V$ $I_{OL} = Max$ |                        | DM74 |         |          | 0.4  |          | 0.35     | 0.5           |          |          | 0.5               | V     |
| *************************************** |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · IL Max                                                     |                                           | 1 <sub>OL</sub> = 4 mA | DM74 |         |          |      |          |          | 0.4           |          |          |                   |       |
| 11                                      | Input Current at Maximun  | n Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> = Max                                        | V <sub>1</sub> = 5.5V                     |                        |      |         |          | 11   |          |          |               |          |          | 1                 | mA    |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • ((                                                         | V <sub>1</sub> = 7V                       |                        |      |         |          |      |          |          | 0.1           |          |          |                   | 11171 |
| Iн                                      | High Level Input Current  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> = Max                                        | V <sub>1</sub> = 2.4V                     |                        |      |         |          | 40   |          |          |               |          |          |                   | μA    |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 66                                                         | V <sub>1</sub> = 2.7V                     |                        |      |         |          |      |          |          | 20            |          |          | 50                |       |
| , կլ                                    | Low Level Input Current   | Clock, Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                           |                        |      |         |          | -1.6 |          |          | -0.4          |          |          |                   |       |
|                                         | ,                         | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>CC</sub> = Max                                        | V <sub>1</sub> = 0.4V                     |                        |      |         |          | -1.6 |          |          | <b>−</b> 0.36 |          |          |                   | mA    |
|                                         |                           | Any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | V <sub>1</sub> = 0.5V                     |                        |      |         |          |      |          |          |               |          |          | <sub>,</sub> –2 · |       |
| los                                     | Short Circuit Output Curr | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CC</sub> = Max(2                                      |                                           |                        | DM54 | -20     |          | -57  | -30      |          | -130          |          | N/A      |                   | mA    |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V CC - IVIAX (2                                              | .1                                        |                        | DM74 | -18     |          | -57  | -30      |          | -130          | -40      |          | -100              | IIIA  |
| Icc                                     | Supply Current            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V = May 13                                                   | 174, LS1                                  |                        |      |         | 45       | 65   |          | 16       | 26            |          | 90       | 144               | mA    |
|                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> = Max(3) 175, LS175, S175                    |                                           | / = M2×(3)             |      |         | 30       | 45   |          | 11       | 18            |          | 60       | 96                | 1110  |

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS and DM74S duration of short circuit should not exceed one second.
- (3) With all outputs open and 4.5V applied to all data and clear inputs, I<sub>CC</sub> is measured after a momentary ground, then 4.5V applied to clock.
- (4) National Semiconductor temporarily reserves the right to ship DM54LS/DM74LS174, LS175 devices which have a minimum  $I_{OS} = 5.0 \text{ mA}$ .

|                    |                                              | DI                                       | VI54/74                                    |          |     | DM5 | 4LS/74                                          | LS       |     |     |                                         |          |      |     |       |
|--------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|----------|-----|-----|-------------------------------------------------|----------|-----|-----|-----------------------------------------|----------|------|-----|-------|
|                    | PARAM                                        | ETER                                     | 17                                         | 74, 175  |     |     | LS1                                             | 74, LS1  | 75  |     | \$17                                    | 74, S175 | j    |     | UNITS |
|                    |                                              |                                          | CONDITIONS                                 | MIN      | TYP | MAX | CONDITIONS                                      | MIN      | TYP | MAX | CONDITIONS                              | MIN      | TYP  | MAX |       |
| f <sub>MAX</sub>   | Maximum Cl                                   | ock Frequency                            |                                            | 30       | 40  |     | •                                               | 30       | 40  |     |                                         | 75       | 110  |     | MHz   |
| tpLH               | Propagation I<br>Low-to-High<br>From Clear ( | Level Output                             | ·                                          |          | 14  | 25  |                                                 |          | 16  | 25  |                                         |          | 10   | 15  | ns    |
| tPHL               | 1                                            | Delay Time, High-to-<br>utput From Clear | $C_L = 15 \text{ pF}$<br>$R_L = 400\Omega$ |          | 20  | 30  | $C_L = 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$ |          | 23  | 35  | $C_L = 15 \text{ pF}$ $R_L = 280\Omega$ |          | 13   | 22  | ns    |
| tpLH               |                                              | Delay Time, Low-to-<br>utput From Clock  | ٠.                                         |          | 14  | 25  | ·                                               |          | 20  | 30  |                                         |          | 8    | 12  | ns    |
| tpHL               | 1                                            | Delay Time, High-to-<br>utput From Clock |                                            |          | 17  | 25  |                                                 |          | 23  | 35  |                                         |          | 11.5 | 17  | ns    |
| tw                 | Pulse Width                                  | Clock<br>Clear                           |                                            | 20<br>20 |     |     |                                                 | 20<br>20 |     |     |                                         | 7<br>10  |      |     | ns    |
| <sup>‡</sup> SETUP |                                              |                                          | 20<br>30                                   |          |     |     | 20<br>25                                        |          |     |     | 5<br>5                                  |          |      | ns  |       |
| tHOLD              | Data Hold Ti                                 | me                                       |                                            | 0 `      |     |     |                                                 | 5        |     |     |                                         | 3        |      |     | ns    |

Truth Table (Each Flip-Flop)

| 1     | INPUTS |   |       |                              |  |  |  |  |
|-------|--------|---|-------|------------------------------|--|--|--|--|
| CLEAR | CLOCK  | D | Q     | $\bar{\mathbf{Q}}^{\dagger}$ |  |  |  |  |
| L     | X      | Х | L     | Н                            |  |  |  |  |
| н     | 1      | Н | н     | L                            |  |  |  |  |
| н     | 1      | L | L.    | Н                            |  |  |  |  |
| Н     | L      | Х | $Q_0$ | $\bar{Q}_0$                  |  |  |  |  |

H = High Level (steady state)

L = Low Level (steady state)

X = Don't Care

 $\uparrow$  = Transition from low to high level

 $\mathbf{Q}_{\mathbf{Q}}$  = The level of  $\mathbf{Q}$  before the indicated steady-state input conditions were established.

t = 175, LS175, and S175 only



#### General Description

These high-speed counters consist of four d-c coupled, master-slave flip-flops which are internally interconnected to provide either a divide-by-two and a divide-by-five counter (176, 196) or a divide-by-two and a divide-by-eight counter (177, 197). These counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which, when taken low, sets all outputs low regardless of the state of the clocks.

These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

#### TYPICAL COUNT CONFIGURATIONS 176, 196 AND LS196

The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes:

- When used as a BCD decade counter, the clock-2 input must be externally connected to the Q<sub>A</sub> output. The clock-1 input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table.
- 2. If a symmetrical divide-by-ten count is desired for frequency synthesizers (or other applications requiring division of a binary count by a power of ten), the  $\Omega_D$  output must be externally connected to the clock-1 input. The input count is then applied at the clock-2 input and a divide-by-ten square wave is obtained at output  $\Omega_A$  in accordance with the bi-quinary truth table.
- For operation as a divide-by-two counter and a divide-by-five counter, no external interconnections

# Presettable Decade and Binary Counters

are required. Flip-flop A is used as a binary element for the divide-by-two function. The clock-2 input is used to obtain binary divide-by-five operation at the  $Q_B$ ,  $Q_C$ , and  $Q_D$  outputs. In this mode, the two counters operate independently; however, all four flip-flops are loaded and cleared simultaneously.

#### 177, 197 AND LS197

The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore the counter may be operated in two independent modes:

- 1. When used as a high-speed 4-bit ripple-through counter, output  $\Omega_A$  must be externally connected to the clock-2 input. The input count pulses are applied to the clock-1 input. Simultaneous divisions by 2, 4, 8, and 16 are performed at the  $\Omega_A$ ,  $\Omega_B$ ,  $\Omega_C$ , and  $\Omega_D$  outputs as shown in the truth table.
- 2. When used as a 3-bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2, 4, and 8 are available at the  $O_B$ ,  $O_C$ , and  $O_D$  outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3-bit ripple-through counter.

#### **Features**

- Performs BCD, bi-quinary, or binary counting
- Fully programmable
- Fully independent clear input
- Output Q<sub>A</sub> maintains full fan-out capability in addition to driving clock-2 input

| TYPE         |         | ICAL<br>REQUENCY | TYPICAL<br>POWER |
|--------------|---------|------------------|------------------|
|              | CLOCK 1 | CLOCK 2          | DISSIPATION      |
| 176, 177     | 50 MHz  | 25 MHz           | 150 mW           |
| 196, 197     | 50 MHz  | 25 MHz           | 240 mW           |
| LS196, LS197 | 40 MHz  | 20 MHz           | 80 mW            |



54176(J); 74176(J), (N); 54177(J); 74177(J), (N); 54196/74196(J), (N); 54LS196/74LS196(J), (N), (W); 54197/74197(J), (N); 54LS197/74LS197(J), (N), (W)

| Electrical Characteristic | s over recon | nmended operating | free-air | temperature rar | ige (unless otherwise no | ted) |
|---------------------------|--------------|-------------------|----------|-----------------|--------------------------|------|
|---------------------------|--------------|-------------------|----------|-----------------|--------------------------|------|

|                  |                           |                  | `                                           |                          |                      |           |        | DM5          | 4/74       |                      |                  | D         |        |                   |       |
|------------------|---------------------------|------------------|---------------------------------------------|--------------------------|----------------------|-----------|--------|--------------|------------|----------------------|------------------|-----------|--------|-------------------|-------|
| 1                | PARAMETER                 |                  | CONDITIONS                                  |                          | Ŀ                    | 176, 177  |        |              | 196, 197   |                      | L                | 5196, LS1 | 97     | UNITS             |       |
|                  |                           |                  |                                             |                          | -                    | MIN       | TYP(1) | MAX          | MIN        | TYP(1)               | MAX              | MIN       | TYP(1) | MAX               |       |
| ViH              | High Level Input Voltage  |                  |                                             |                          |                      | 2 .       |        |              | 2          |                      |                  | 2         |        |                   | V     |
| VIL              | Low Level Input Voltage   |                  |                                             |                          | DM54                 |           |        | 0.8          |            |                      | 0.8              |           |        | 0.7               |       |
| -                |                           |                  |                                             |                          | DM74                 | T         |        | 0.8          |            | Marie Anna Anna Anna | 0.8              |           |        | 0.8               | V     |
| · VI             | Input Clamp Voltage       |                  | V <sub>CC</sub> = Min                       | I <sub>1</sub> = -12 mA  |                      |           |        | -1.5         |            |                      | -1.5             |           | 14     |                   | v     |
|                  |                           |                  | V <sub>CC</sub> = WIII                      |                          |                      |           |        |              |            |                      |                  |           |        | -1.5              | ľ     |
| Іон              | High Level Output Curren  | t                |                                             |                          |                      |           |        | -800         |            |                      | -800             |           |        | -400              | μΑ    |
| Vol              | High Level Output Voltage | 9                | V <sub>CC</sub> = Min, V <sub>II</sub>      | - = 2V                   | DM54                 | 2.4       | 3.4    |              | 2.4        | 3.4                  |                  | 2.5       | 3.4    |                   | .,    |
|                  |                           |                  | V <sub>IL</sub> = Max, I <sub>OF</sub>      | H = Max                  | DM74                 | 2.4       | 3.4    |              | 2.4        | 3.4                  |                  | 2.7       | 3.4    |                   | V     |
| loL              | Low Level Output Current  | t                |                                             |                          | DM54                 |           |        | 16           |            |                      | 16               |           |        | 4                 | mA    |
|                  |                           |                  | -                                           |                          | DM74                 |           |        | 16           |            |                      | - 16             |           |        | 8                 | mA    |
| Vol              | Low Level Output Voltage  |                  | V <sub>CC</sub> = Min                       | I <sub>OL</sub> = 4 mA . |                      |           |        |              |            | -                    |                  |           |        | 0.4               |       |
| 1                |                           |                  | $V_{IH} = 2V$ $I_{OL} = 8 \text{ mA, DM74}$ |                          |                      |           |        |              |            | · · · ·              |                  |           | 0.5    | V                 |       |
|                  |                           |                  | V <sub>IL</sub> = Max(3)                    | I <sub>OL</sub> = 16 mA  |                      |           | 0.2    | 0.4          |            | 0.2                  | 0.4              |           |        |                   |       |
| - I <sub>1</sub> | Input Current at          | Data, Count/Load |                                             |                          |                      |           |        | 1            |            |                      | 1                |           |        | 0.1               |       |
|                  | Maximum Input Voltage     | Clear, Clock 1   | V <sub>CC</sub> = Max, V <sub>1</sub>       | = 5 5V                   | -                    |           |        | 1            |            |                      | 1                |           |        | 0.2               | mA    |
|                  |                           | Clock 2          | 1 100                                       |                          | 176, 196             | ļ         |        | 1            |            |                      | 1                |           |        | 0.4               |       |
|                  |                           |                  |                                             |                          | 177, 197             | <u> </u>  |        | . 1          |            |                      | 1                |           |        | 0.2               |       |
| I <sub>1H</sub>  | High Level Input Current  | Data, Count/Load |                                             | •                        |                      |           |        | 40           |            |                      | 40               |           |        | 20                |       |
| 1                |                           | Clear, Clock 1   | $V_{CC} = Max, V_1$                         |                          |                      |           |        | 80           |            |                      | 80               |           |        | 40                | μΑ    |
|                  |                           | Clock 2          | $V_1 = 2.7V \text{ (LS1)}$                  | 196, LS197)              | 176, 196             | 1         | ·      | 120          |            |                      | 120              |           |        | 80                | , ,,, |
|                  |                           | Oldon 2          |                                             |                          | 177, 197             |           |        | 80           |            |                      | 80               |           |        | 40                |       |
| IIL              | Low Level Input Current   | Data, Count/Load | ]                                           |                          |                      |           | -      | -1.6         |            |                      | -1.6             |           |        | <del>-</del> 0.36 |       |
|                  |                           | Clear            |                                             |                          |                      |           |        | -3.2         |            |                      | <del>-</del> 3.2 |           |        | -0.72             |       |
|                  |                           | Clock 1          | $V_{CC} = Max, V_1$                         | = 0.4V                   |                      | ļ         |        | <b>−4.8</b>  |            |                      | -4.8             |           |        | -2.4              | mA    |
|                  |                           | Clock 2          |                                             |                          | 176, 196<br>177, 197 | ļ         |        | -4.8<br>-3.2 |            |                      | -6.4<br>-3.2     |           |        | -2.8<br>-1.3      |       |
|                  |                           |                  | ļ,                                          |                          |                      | ļ         |        |              |            |                      |                  | ļ         |        |                   | ļ     |
| los              | Short Circuit Output Curr | ent              | V = = May(2)                                |                          | DM54                 | -20<br>18 |        | -57<br>-57   | -20<br>-18 |                      | -57<br>-57       | -30       |        | -130              | mA    |
|                  |                           |                  | DW/4                                        |                          | 1 18                 |           |        | -18          |            |                      | -30              |           | -130   | <u> </u>          |       |
| lec              | Supply Current            |                  | V <sub>CC</sub> = Max(4)                    |                          | 1                    | 30        | 48     |              | 39         | 54                   |                  | 16 .      | 27     | mA                |       |

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) QA outputs are tested at specified IOL plus the limit value of IIL for the clock-2 input. This permits driving the clock-2 input while maintaining full fan-out capability.
- (4) I<sub>CC</sub> is measured with all inputs grounded and all outputs open.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

| MAX   Maximum lapar Court Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                 |               |            |                      |                        |     | DM5     | 4/74 |     |         |     | DM54LS/74LS            |     |       |              |     |       |     |       |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|---------------|------------|----------------------|------------------------|-----|---------|------|-----|---------|-----|------------------------|-----|-------|--------------|-----|-------|-----|-------|--|----|----|----|--|----------|--|--|--|--|--|--|--|--|--|--|---|
| Max   Maximum inpat Court Frequency   Clock 1   QA     35   50     40   50       30   40     30   40   40   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | PARAMETER       |               | FROM       | TO (OUTPUT)          | · ·                    |     | 176, 17 | ,    | 19  | 96, 197 | ,   |                        |     | LS196 |              |     | LS197 |     | UNITS |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Princh   Propagation Delay Time   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Clock   Princh   Princh   Clock   Princh   Clock   Princh   Clock   Pri  |     |                 |               | (INPOT)    | (001201)             | CONDITIONS             | MIN | TYP     | MAX  | MIN | TYP     | MAX | CONDITIONS             | MIN | TYP   | MAX          | MIN | TYP   | MAX | 1     |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Color to High Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ma  | aximum Input Co | unt Frequency | Clock 1    | · Q <sub>A</sub>     |                        | 35  | 50      |      | 40  | 50      |     |                        | 30  | 40    |              | 30  | 40    |     | MHz   |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Propagation Delay Time,   Propagation Delay Time,   Low to High Level Output     Propagation Delay Time,   Low to High Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Low Level Output     Propagation Delay Time,   High-to-Lo   | 1   |                 |               | Clock 1    | 0.                   |                        |     | _ 9     | 13   |     | 9       | 13  |                        |     | 8     | 15           |     | 8     | 15  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Control High Level Output   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2   Paper   Clock 2    | 1   |                 |               | CIOCK      | Q <sub>A</sub>       |                        |     | 11      | 17   |     | 11      | 16  |                        |     | 13    | 20           |     | 14    | 21  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Feh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |                 |               | Clock 2    | 0                    |                        |     | 12      | 18   |     | 12      | 18  |                        |     | 16    | 24           |     | 12    | 19  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Low-to-High Level Output   Propagation Delay Time, High-to-Low Level Output   High-to-Low Level Output   High-to-Low Level Output   High-to-Low Level Output   Load Low-to-High Level Output   Load Low-to-High Level Output   Load Low-to-High Level Output   Load Low-to-High Level Output   Load Low-to-High Level Output   Load Low-to-High-to-Low Level Output   Load Low-to-High-to-Low Level Output   Load Low-to-High-to-Low Level Output   Load Low-Low-Low-Low-Low-Low-Low-Low-Low-Low-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |                 |               | CIOCK 2    | U <sub>B</sub>       |                        |     | 14      | 21   |     | 14      | 21  |                        |     | 22    | 33           |     | 23    | 35  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Table   Propagation Delay Time,   High-to-Low Level Output   Propagation Delay Time,   Low-to-High Level Output   Low Level Output   Low to High Level Output   Low Level Output   Low to High Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Output   Low Level Out  | 1   |                 |               | Clock 2    | 0                    |                        |     | 27      | 41   |     | 24      | 36  |                        |     | 38    | 57           |     | 34    | 51  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Low-to-High Level Output   Clock 2   Qo   177, 197   176, 196   176, 196   177, 197   176, 196   176, 196   177, 197   176, 196   177, 197   176, 196   176, 196   177, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 196   180, 197, 197   180, 197, 197   180, 197, 197   180, 197, 197   180, 197, 197   180, 197, 197   180, 197, 197   180, 197, 197, 197   180, 197, 197, 197   180, 197, 197, 197   180, 197, 197, 197   180, 197, 197, 197   180, 197, 197, 197, 197, 197, 197, 197, 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3   |                 |               | Glock 2    | u <sub>c</sub>       | C <sub>L</sub> = 15 pF |     | 34      | 51   |     | 28      | 42  | C <sub>L</sub> = 15 pF |     | 41    | 62           |     | 42    | 63  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| tFHL         Propagation Delay Time,<br>High-to-Low Level Output         Clock 2<br>177, 197         Qo<br>176, 196<br>177, 197         17 26 16 23<br>50 75 42 63         30 45         30 45           tpLH         Propagation Delay Time,<br>Low-to-High Level Output         A, B, C, D         Q <sub>A</sub> , Q <sub>B</sub> , Q <sub>C</sub> , Q <sub>D</sub> 19 29 16 24         20 30 18           tpLH         Propagation Delay Time,<br>High-to-Low Level Output         A, B, C, D         Q <sub>A</sub> , Q <sub>B</sub> , Q <sub>C</sub> , Q <sub>D</sub> 29 43 22 33         22 33         27 41 26           tpHL         Propagation Delay Time,<br>Low-to-High Level Output         Load         Any         29 43 22 33         22 33         27 41 26           tpHL         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32 48 24 36         30 45 30         30 45           tw         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32 48 25 37         37 34 51 34         34 51 34           tw         Propagation Delay Time,<br>High-to-Low Level Output         14 14 20 20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20         20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pro | opagation Delay | ime,          |            | 176, 196             | $R_L = 400\Omega$      |     | 13      | 20   |     | 14      | 21  | $R_L = 2 k\Omega(5)$   |     | 12    | 18           |     |       | ,   | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| thH.         Propagation Delay Time,<br>High-to-Low Level Output         176, 196<br>[177, 197]         176, 196<br>50         17 26<br>75         16 23<br>42         30 45         63           tpLH         Propagation Delay Time,<br>High-to-Low Level Output         A, B, C, D         Q <sub>A</sub> , Q <sub>B</sub> , Q <sub>C</sub> , Q <sub>D</sub> 19 29         16 24         20 30         18           tpLH         Propagation Delay Time,<br>High-to-Low Level Output         A, B, C, D         Q <sub>A</sub> , Q <sub>B</sub> , Q <sub>C</sub> , Q <sub>D</sub> 31 46         25 38         29 44         29           tpLH         Propagation Delay Time,<br>High-to-Low Level Output         Load         Any         32 48         24 36         30 45         30           tpHL         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32 48         24 36         30 45         30           tpHL         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32 48         25 37         34 51         34           tw         Pulse Width         Clock-1 Input         Clear         Any         32 48         25 37         34 51         34           tw         20 20         20 20         20         20         20         20         20           tw         20 20         20 20         20 20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lov | w-to-High Level | Dutput        | Clock 2    | 177, 197             |                        |     | 44      | 66   |     | 36      | 54  |                        |     |       |              |     | 55    | 78  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Teph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |                 |               | G.OC., Z   | 176, 196             |                        |     |         |      | -   |         |     |                        |     |       |              |     | ļ     | 30  | 45    |  | 63 | 95 | ns |  |          |  |  |  |  |  |  |  |  |  |  |   |
| tpHL         Propagation Delay Time,<br>High-to-Low Level Output         31         46         25         38         29         44         29           tpHL         Propagation Delay Time,<br>Low-to-High Level Output         Load         Any         29         43         22         33         27         41         26           tpHL         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32         48         24         36         30         45         30           tpHL         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32         48         25         37         34         51         34           tw         Pulse Width         Clock-1 Input         14         14         20         20         20           28         28         28         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 <td>Pro</td> <td>opagation Delay</td> <td>ime,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>30</td> <td></td> <td></td> <td>27</td> <td>ns</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pro | opagation Delay | ime,          |            |                      |                        |     |         |      |     |         |     |                        |     | 20    | 30           |     |       | 27  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Low-to-High Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |                 |               | A, B, C, D | $Q_A, Q_B, Q_C, Q_D$ |                        |     | 31      | 46   |     | 25      | 38  |                        |     | 29    | 44           |     | 29    | 44  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| tyhl         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32         48         24         36         30         45         30           tyhl         Propagation Delay Time,<br>High-to-Low Level Output         Clear         Any         32         48         25         37         34         51         34           tw         Pulse Width<br>Clock-2 Input<br>Clear<br>Clear<br>Load         Clock-1 Input<br>Clear<br>Load         14         14         20         20         20           28         28         28         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                 |               | lugad      | Anu                  |                        |     | 29      | 43   |     | 22      | 33  |                        |     | 27    | 41           |     | 26    | 39  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| High-to-Low Level Output   Clear   Any   32 48   25 37   34 51   34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |                 |               | Lload      | Any                  |                        |     | 32      | 48   |     | 24      | 36  |                        | ·   | 30    | 45           |     | 30    | 45  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Clock-2 Input   28   28   30   30   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   |                 |               | Clear      | Any                  |                        |     | 32      | 48   |     | 25      | 37  |                        |     | 34    | 51           |     | 34    | 51  | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Clear   25   25   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pul | lse Width       | Clock-1 Input |            |                      |                        | 14  |         |      | 14  |         |     |                        | 20  |       |              | 20  |       |     |       |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Clear   25   25   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                 |               | 4          |                      |                        |     |         |      |     |         |     |                        |     |       |              |     |       |     |       |  | ns |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| thOLD         Input Hold Time Low-Level Data         High-Level Data Low-Level Data         tw(LOAD)         tw(LOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | •               |               | 4          |                      |                        |     | -       |      |     |         |     |                        | 1 - | 1 1   |              |     |       |     |       |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  | 1 |
| Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low-Level Data   Low- |     |                 | 4             |            |                      |                        |     |         |      |     |         |     | <b> </b>               |     |       | <del> </del> |     |       |     |       |  |    | 20 |    |  | <b> </b> |  |  |  |  |  |  |  |  |  |  |   |
| t <sub>SETUP</sub> Input Setup Time         High-Level Data         15         10         10         10           Low-Level Data         20         15         15         15         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inp | out Hold Time   |               | 4          |                      |                        |     |         |      |     |         |     |                        |     |       |              |     |       |     | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| Low-Level Data 20 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +   |                 |               | 1          |                      | ļ                      |     | AD)     |      |     | (D)     |     |                        |     | AD)   |              |     | AD)   |     | ļ     |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inp | out Setup Time  |               | 4          |                      |                        |     |         |      |     |         |     |                        |     |       |              |     |       |     | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
| tenable   Count Enable Time(6)       25   30     20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   |                 |               | -          |                      | ļ                      |     |         |      |     |         |     |                        |     |       |              |     |       |     | ļ     |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cou | unt Enable Time | 6)            | <u> </u>   |                      | l                      | 25  |         |      | 30  |         |     | L                      | 20  |       |              | 20  |       |     | ns    |  |    |    |    |  |          |  |  |  |  |  |  |  |  |  |  |   |

- (5) Load circuit, input conditions, and voltage waveforms are the same as those for the 176, 177 except that for the LS196, LS197  $t_T \le 15$  ns,  $t_f \le 6$  ns, and  $V_{REF} = 1.3V$  (as opposed to 1.5V).
- (6) Count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.



#### **Truth Tables**

176, 196, LS196 DECADE (BCD) (See Note A)

| COUNT |       | OUTPUT |    |       |  |  |  |  |  |  |  |  |
|-------|-------|--------|----|-------|--|--|--|--|--|--|--|--|
| COUNT | $Q_D$ | αc     | QB | $Q_A$ |  |  |  |  |  |  |  |  |
| 0.    | L     | L      | L  | L     |  |  |  |  |  |  |  |  |
| 1     | 'L    | L      | L  | н     |  |  |  |  |  |  |  |  |
| 2     | L     | L      | Н  | L     |  |  |  |  |  |  |  |  |
| 3     | L     | L      | Н  | н :   |  |  |  |  |  |  |  |  |
| 4     | L     | Н      | L  | L     |  |  |  |  |  |  |  |  |
| 5     | L     | Н      | L  | н     |  |  |  |  |  |  |  |  |
| 6 .   | L     | Н      | Н  | L     |  |  |  |  |  |  |  |  |
| 7     | L     | Н      | Н  | н     |  |  |  |  |  |  |  |  |
| 8     | Н     | L      | L  | L     |  |  |  |  |  |  |  |  |
| 9     | Н     | L      | L  | , н   |  |  |  |  |  |  |  |  |

176, 196, LS196 BI-QUINARY (5-2) (See Note B)

| COUNT | OUTPUT  |              |       |         |  |  |  |  |  |  |
|-------|---------|--------------|-------|---------|--|--|--|--|--|--|
| COONT | $Q_{A}$ | $\Omega_{D}$ | $o_c$ | $Q_{B}$ |  |  |  |  |  |  |
| 0 .   | L       | Ļ            | . L   | L       |  |  |  |  |  |  |
| 1     | L       | L            | L     | Н       |  |  |  |  |  |  |
| 2     | L       | L            | Н     | L       |  |  |  |  |  |  |
| 3     | L       | L            | Н     | Н       |  |  |  |  |  |  |
| 4     | L.      | , H          | L     | L       |  |  |  |  |  |  |
| 5     | н       | L            | L     | L       |  |  |  |  |  |  |
| .6    | н       | L            | L     | Н       |  |  |  |  |  |  |
| 7     | Н       | L            | Н     | L       |  |  |  |  |  |  |
| 8     | н       | L            | Н     | Н       |  |  |  |  |  |  |
| . 9   | н       | Н            | L     | L       |  |  |  |  |  |  |

177, 197, LS197 (See Note A)

| COUNT |         | OUT          | PUT |    |
|-------|---------|--------------|-----|----|
| COONT | $Q_{D}$ | $\sigma_{c}$ | QΒ  | QA |
| 0     | L       | L            | L   | Ĺ  |
| 1     | Ĺ       | Ļ            | L   | Н  |
| 2     | L,      | Ĺ            | Н   | L. |
| 3     | L       | L            | Н   | н  |
| 4     | L,      | .Н           | L   | L  |
| 5     | L       | Н            | L   | н  |
| 6     | L       | H.           | Η.  | L  |
| . 2   | L       | Н            | Н   | н  |
| 8     | Н       | L            | L   | L  |
| 9     | Н       | L            | L   | н  |
| 10    | н       | L            | Н   | L  |
| 11    | н       | L            | Н   | н  |
| 12    | н       | Н            | oL. | L  |
| 13    | Н       | •Н           | L   | н  |
| 14    | Н       | н            | н   | L  |
| 15 -  | Н -     | ~ H          | Н   | н  |
|       |         |              |     |    |

H = High Level, L = Low Level

#### Notes:

- (A) Output  $Q_A$  connected to clock-2 input.
- (B) Output QD connected to clock-1 input.

# Logic Diagrams



197, LS197





# 9-Bit Parity Generators/Checkers

#### **General Description**

These universal 9-bit (8 data bits plus 1 parity bit) parity generators/checkers feature odd/even outputs and control inputs to facilitate operation in either odd or even parity applications. Depending on whether even or odd parity is being generated or checked, the even or odd inputs can be utilized as the parity or 9th-bit input. The word-length capability is easily expanded by cascading.

Input buffers are provided so that each data input represents only one normalized series 54/74 load. A full fan-out to 10 normalized series 54/74 loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs

#### **Connection Diagram**



54180(J), (W); 74180(J), (N), (W)

#### **Truth Table**

| INPUTS |                     | OUTPUTS                  |                                                                                                                                                                 |
|--------|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVEN   | ODD                 | Σ<br>EVEN                | Σ<br>ODD                                                                                                                                                        |
| н      | L                   | Н                        | , L                                                                                                                                                             |
| Н      | L                   | L                        | Н                                                                                                                                                               |
| L      | Н                   | L                        | Н                                                                                                                                                               |
| L      | Н                   | Н                        | L                                                                                                                                                               |
| Н      | Н                   | L                        | L                                                                                                                                                               |
| L      | , L                 | Н                        | H-                                                                                                                                                              |
|        | EVEN<br>H<br>H<br>L | EVEN ODD H L H L L H L H | EVEN         ODD         Σ EVEN           Η         L         H           H         L         L           L         H         L           L         H         H |

H = High Level, L = Low Level, X = Don't Care

#### Logic Diagram





# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                            |                                     |                                                                                               |              |            | DM54/74                                                                                                        |              |            |
|-----------------|----------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|--------------|------------|----------------------------------------------------------------------------------------------------------------|--------------|------------|
|                 | PARAMETER                  |                                     | CONDITION                                                                                     | s            |            | 180                                                                                                            |              | UNITS      |
|                 |                            |                                     |                                                                                               |              | MIN        | TYP(1)                                                                                                         | MAX          | * * .      |
| VIH             | High Level Input Voltage   |                                     |                                                                                               |              | 2          |                                                                                                                |              | V          |
| VIL             | Low Level Input Voltage    | `                                   |                                                                                               |              |            | 0.8                                                                                                            | ٧            |            |
| Vı              | Input Clamp Voltage        |                                     | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                | \            |            | anna de Palance anna de mario de carbo de la carbo de la carbo de la carbo de la carbo de la carbo de la carbo | -1.5         | V          |
| Іон             | High Level Output Current  |                                     |                                                                                               |              |            |                                                                                                                | 800          | μА         |
| V <sub>OH</sub> | High Level Output Voltage  | ,                                   | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = -800 | )μ <b>A</b>  | 2.4        |                                                                                                                |              | . <b>v</b> |
| loL             | Low Level Output Current   | ,                                   |                                                                                               |              |            |                                                                                                                | 16           | mA         |
| V <sub>OL</sub> | Low Level Output Voltage   |                                     | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 m | Α΄           |            |                                                                                                                | 0.4 -        | ٧.         |
| 1,              | Input Current at Maximum   | Input Voltage                       | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                  |              |            |                                                                                                                | 1            | mA         |
| Чн              | High Level Input Current   | Any Data Input Even or Odd Input    | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                  |              |            |                                                                                                                | 40<br>. 80   | μΑ         |
| ItL             | Low Level Input Current    | Any Data Input<br>Even or Odd Input | $V_{CC} = Max, V_1 = 0.4V$                                                                    |              |            |                                                                                                                | -1.6<br>-3.2 | mA         |
| los             | Short Circuit Output Curre | nt                                  | V <sub>CC</sub> = Max(2)                                                                      | DM54<br>DM74 | -20<br>-18 |                                                                                                                | -55<br>-55   | mA         |
| Icc             | Supply Current             |                                     | V <sub>CC</sub> = Max(3) DM54                                                                 |              |            | 34                                                                                                             | 49           | mA         |
|                 |                            |                                     |                                                                                               | DM74         | 1          | 34                                                                                                             | 56           |            |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with even and odd inputs at 4.5V, all other inputs and outputs open.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     |                 |                 |                                               |     | DM54/74 |     |       |
|------------------|-----------------------------------------------------|-----------------|-----------------|-----------------------------------------------|-----|---------|-----|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT)  | CONDITIONS                                    |     | 180     |     | UNITS |
|                  |                                                     | ( 017           | (551.51)        |                                               | MIN | TYP     | MAX |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Data            | $\Sigma$ Even   |                                               |     | 40      | 60  | . ns  |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | , Data          | 2 Even          | $C_L = 15 \text{ pF, } R_L = 400\Omega$       |     | 45      | 68  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Data            | $\Sigma$ Odd    | Odd Input Grounded                            |     | 32      | 48  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data            | . 2 Odd         |                                               | ,   | 25      | 38  | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Data            | Σ Even          | `                                             |     | 32      | 48  | nş    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data            | 2 Even          | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 400Ω | ,   | 25      | 38  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data            | Σ Odd           | Even Input Grounded                           |     | 40      | 60  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data            | 2 Oud           | ,                                             |     | 45      | 68  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Even or Odd     | Σ Even or Σ Odd | $C_1 = 15 pF, R_1 = 400\Omega$                |     | 13      | 20  | , ns  |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Even of Odd     | 2 Even of 2 Odd | ο <u>ι</u> - 13 με, τις « 40032               |     | 7       | 10  | nș    |



# **Arithmetic Logic Unit/Function Generators**

## **General Description**

These arithmetic logic units (ALU)/function generators perform 16 binary arithmetic operations on two 4-bit words, as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is available in these devices for fast, simultaneous carry generation by means of two cascadeoutputs (P and G) for the four bits in the package. When used in conjunction with the DM54182/DM74182 full carry look-ahead circuits, high-speed arithmetic operations can be performed. The typical addition times shown below illustrate how little time is required for addition of longer words, when full carry look-ahead is employed. The method of cascading 182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the DM54182/DM74182. (Continued)

#### **Features**

Arithmetic operating modes:

Addition
Subtraction
Shift operand A one position
Magnitude comparison
Plus twelve other arithmetic operations

Logic function modes:

EXCLUSIVE-OR
Comparator
AND, NAND, OR, NOR
Plus ten other logic operations

Full look-ahead for high-speed operations on long words

# **Connection Diagram**



54181(J); 74181(J), (N)

## Pin Designations

| DESIGNATION      | PIN NOS.      | FUNCTION                   |
|------------------|---------------|----------------------------|
| A3, A2, A1, A0   | 19, 21, 23, 2 | WORD A INPUTS              |
| B3, B2, B1, B0   | 18, 20, 22, 1 | WORD B INPUTS              |
| S3, S2, S1, S0   | 3, 4, 5, 6    | FUNCTION-SELECT<br>INPUTS  |
| C <sub>n</sub>   | 7             | INV. CARRY INPUT           |
| М                | 8             | MODE CONTROL<br>INPUT      |
| F3, F2, F1, F0   | 13, 11, 10, 9 | FUNCTION OUTPUTS           |
| A = B            | 14            | COMPARATOR OUTPUT          |
| Р                | 15            | CARRY PROPAGATE<br>OUTPUT, |
| C <sub>n+4</sub> | 16            | INV. CARRY OUTPUT          |
| G                | 17            | CARRY GENERATE<br>OUTPUT   |
| V <sub>cc</sub>  | 24            | SUPPLY VOLTAGE             |
| GND              | 12            | GROUND                     |

| NUMBER   | -                      | PAC         | PACKAGE COUNT    |                 |  |  |  |
|----------|------------------------|-------------|------------------|-----------------|--|--|--|
| OF       | TYPICAL ADDITION TIMES | ARITHMETIC/ | LOOK AHEAD       | BETWEEN         |  |  |  |
| BITS     |                        | LOGIC UNITS | CARRY GENERATORS | ALU's           |  |  |  |
| 1 to 4   | 20 ns                  | 1           | 0                | NONE            |  |  |  |
| 5 to 8   | 30 ns                  | 2           | 0                | RIPPLE          |  |  |  |
| 9 to 16  | 30 ns                  | 3 or 4      | 1                | FULL LOOK-AHEAD |  |  |  |
| 17 to 64 | 50 ns                  | 5 to 16     | 2 to 5           | FULL LOOK-AHEAD |  |  |  |



# General Description (Continued)

If high speed is not important, a ripple-carry input  $(C_n)$  and a ripple-carry output  $(C_{n+4})$  are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These circuits will accommodate active-high or active-low data, if the pin designations are interpreted as shown below.

Subtraction is accomplished by 1's complement addition where the 1's complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.

The 181 can also be utilized as a comparator. The A=B output is internally decoded from the function outputs (F0, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A=B). The ALU should be in the subtract mode with  $C_n=H$  when performing this comparison. The A=B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output ( $C_{n+4}$ ) can also be used to supply relative magnitude

information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (SO, S1, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusive-OR, NAND, AND, NOR, and OR functions.

#### ALU SIGNAL DESIGNATIONS

The DM54181/DM74181 can be used with the signal designations of either Figure 1 or Figure 2.

The logic functions and arithmetic operations obtained with signal designations as in *Figure 1* are given in Table 1; those obtained with the signal designations of *Figure 2* are given in Table 2.

| PIN NUMBER                 | 2  | 1  | 23 | 22 | 21 | 20 | 19 | 18 | 9  | 10 | 11 | 13 | 7                | 16                   | 15 | 17 |
|----------------------------|----|----|----|----|----|----|----|----|----|----|----|----|------------------|----------------------|----|----|
| Active-High Data (Table I) | A0 | В0 | A1 | В1 | A2 | В2 | А3 | В3 | F0 | F1 | F2 | F3 | $\overline{C}_n$ | $\overline{C}_{n+4}$ | Х  | Y  |
| Active-Low Data (Table II) | Ā0 | ВO | Ā1 | B1 | Ā2 | B2 | Āз | B3 | F0 | F1 | F2 | F3 | Cn               | C <sub>n+4</sub>     | P  | Ğ  |

| INPUT | C <sub>n</sub> | оитрит с | n+4 | ACTIVE-HIGH DATA<br>(FIGURE 1) | ACTIVE-LOW DATA<br>(FIGURE 2) |
|-------|----------------|----------|-----|--------------------------------|-------------------------------|
| Н     | T              | Н        |     | $A \leq B$                     | $A \ge B$                     |
| Н     |                | L        |     | A > B                          | A < B                         |
| L     |                | Н        |     | A < B                          | A > B                         |
| L     |                | L        |     | $A \ge B$                      | A ≤ B                         |

TABLE 1



FIGURE 1

|    |      |       |     | ACTIVE HIGH DATA       |                                  |                                         |  |  |  |  |  |  |
|----|------|-------|-----|------------------------|----------------------------------|-----------------------------------------|--|--|--|--|--|--|
|    | SELE | CTION | J   | M = H                  | M = L; ARITHN                    | IETIC OPERATIONS                        |  |  |  |  |  |  |
| S3 | S2   | S1    | so  | LOGIC<br>FUNCTIONS     | C <sub>n</sub> = H (no carry)    | C <sub>n</sub> = L (with carry)         |  |  |  |  |  |  |
| L  | L    | L     | L   | F = A                  | F = A                            | F = A PLUS 1                            |  |  |  |  |  |  |
| L  | L    | L     | Н   | $F = \overline{A + B}$ | F = A + B                        | F = (A + B) PLUS 1                      |  |  |  |  |  |  |
| L  | L    | Н     | Ł   | F = AB                 | F = A + B                        | F = (A + B) PLUS 1                      |  |  |  |  |  |  |
| L  | L    | Н     | н   | F = 0                  | F = MINUS 1 (2's COMPL)          | F = ZERO                                |  |  |  |  |  |  |
| L  | Н    | L     | L   | F = AB                 | F = A PLUS AB                    | F = A PLUS AB PLUS 1                    |  |  |  |  |  |  |
| L  | Н    | L     | н   | F = B                  | F = (A + B) PLUS AB              | F = (A + B) PLUS AB PLUS 1              |  |  |  |  |  |  |
| L  | Н    | Н     | L   | F = A 🕀 B              | F = A MINUS B MINUS 1            | F = A MINUS B                           |  |  |  |  |  |  |
| L  | Н    | Н     | . н | F = AB                 | F = AB MINUS 1                   | F = AB                                  |  |  |  |  |  |  |
| Н  | L    | L     | L   | $F = \overline{A} + B$ | F = A PLUS AB                    | F = A PLUS AB PLUS 1                    |  |  |  |  |  |  |
| Н  | L    | L     | Н   | F = A + B              | F = A PLUS B                     | F = A PLUS B PLUS 1                     |  |  |  |  |  |  |
| Н  | L    | Н     | L   | F = B                  | $F = (A + \overline{B}) PLUS AB$ | $F = (A + \overline{B})$ PLUS AB PLUS 1 |  |  |  |  |  |  |
| H  | L    | Н     | Н   | F = AB                 | F = AB MINUS 1                   | F = AB                                  |  |  |  |  |  |  |
| Н  | Н    | L     | L.  | F = 1                  | F = A PLUS A*                    | F = A PLUS A PLUS 1                     |  |  |  |  |  |  |
| Н  | Н    | L     | · H | $F = A + \overline{B}$ | F = (A + B) PLUS A               | F = (A + B) PLUS A PLUS 1               |  |  |  |  |  |  |
| Н  | H:   | Н     | L   | F = A + B              | F = (A + B) PLUS A               | F = (A + B) PLUS A PLUS 1               |  |  |  |  |  |  |
| Н  | Н    | Н     | Н   | F=A                    | F = A MINUS 1                    | F=A                                     |  |  |  |  |  |  |

<sup>\*</sup>Each bit is shifted to the next more significant position.



# **General Description (Continued)**



## TABLE 2

|    |           |       |    |                        | ACTIVE LOW DA                 | ATA                             |  |  |  |  |
|----|-----------|-------|----|------------------------|-------------------------------|---------------------------------|--|--|--|--|
|    | SELE      | CTION | J  | M = H                  | M = L; ARITHMETIC OPERATIONS  |                                 |  |  |  |  |
| S3 | <b>S2</b> | S1    | S0 | LOGIC<br>FUNCTIONS     | C <sub>n</sub> = L (no carry) | C <sub>n</sub> = H (with carry) |  |  |  |  |
| L  | L         | L     | L  | F = A                  | F = A MINUS 1                 | F = A                           |  |  |  |  |
| L  | L         | L     | Н  | F = AB                 | F = AB MINUS 1                | F = AB                          |  |  |  |  |
| L  | L         | Н     | L  | $F = \overline{A} + B$ | F = AB MINUS 1                | F = AB                          |  |  |  |  |
| L  | L         | Н     | Н  | F = 1                  | F = MINUS 1 (2's COMP)        | F = ZERO                        |  |  |  |  |
| L  | н         | L     | L  | $F = \overline{A + B}$ | F = A PLUS (A + B)            | F = A PLUS (A + B) PLUS 1       |  |  |  |  |
| L  | Н         | L     | Н  | F = B                  | F = AB PLUS (A + B)           | F = AB PLUS (A + B) PLUS 1      |  |  |  |  |
| L  | Н         | Н     | L  | F = A + B              | F = A MINUS B MINUS 1         | F = A MINUS B                   |  |  |  |  |
| L  | н         | Н     | Н  | $F = A + \overline{B}$ | F = A + B                     | F = (A + B) PLUS 1              |  |  |  |  |
| н  | L         | L     | L  | F = AB                 | F = A PLUS (A + B)            | F = A PLUS (A + B) PLUS 1       |  |  |  |  |
| Н  | L         | L     | Н  | F = A + B              | F = A PLUS B                  | F = A PLUS B PLUS 1             |  |  |  |  |
| н  | L         | Н     | L  | F≈B                    | F = AB PLUS (A + B)           | F = AB PLUS (A + B) PLUS 1      |  |  |  |  |
| Н  | L         | Н     | Н  | F = A + B              | F = A + B                     | F = (A + B) PLUS 1              |  |  |  |  |
| Н  | Н         | L     | L  | F = 0                  | F = A PLUS A*                 | F = A PLUS A PLUS 1             |  |  |  |  |
| Н  | Н         | L     | Н  | $F = A\overline{B}$    | F = AB PLUS A                 | F = AB PLUS A PLUS 1            |  |  |  |  |
| Н  | Н         | Н     | L  | F = AB                 | F = AB PLUS A                 | F = AB PLUS A PLUS 1            |  |  |  |  |
| Н  | Н         | Н     | н  | F = A                  | F=A                           | F = A PLUS 1                    |  |  |  |  |

<sup>\*</sup>Each bit is shifted to the next more significant position.

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                                         |                                                     |                                                                                 |             |                              |            | DM54/74              |                              |       |
|-----------------|---------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|-------------|------------------------------|------------|----------------------|------------------------------|-------|
|                 | PARAMETER                                               |                                                     | со                                                                              | NDITIONS    |                              |            | 181                  |                              | UNITS |
|                 | ±                                                       |                                                     |                                                                                 |             |                              | MIN        | TYP(1)               | MAX                          |       |
| V <sub>IH</sub> | High Level Input Voltage                                |                                                     |                                                                                 |             |                              | 2          |                      |                              | V     |
| VIL             | Low Level Input Voltage                                 |                                                     |                                                                                 |             |                              |            | J                    | 0.8                          | ٧     |
| Vı              | Input Clamp Voltage                                     |                                                     | V <sub>CC</sub> = Min, I <sub>1</sub> =                                         | = -12 mA    |                              |            |                      | -1.5                         | V     |
| Гон             | High Level Output Current (Any Output Except A = B      | )                                                   |                                                                                 |             |                              |            |                      | -800                         | μΑ    |
| Іон             | High Level Output Current<br>(A = B Output Only)        |                                                     | V <sub>CC</sub> = Min, V <sub>I</sub><br>V <sub>IL</sub> = 0.8V, V <sub>O</sub> | •           |                              |            |                      | 250                          | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage<br>(Any Output Except A = B   |                                                     | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -800\mu A$              |             |                              | 2.4        |                      |                              | ٧     |
| IOL             | Low Level Output Current                                |                                                     |                                                                                 |             |                              |            |                      | 16                           | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                                |                                                     | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OL} = 16 \text{ mA}$          |             |                              |            |                      | 0.4                          | V     |
| l <sub>1</sub>  | Input Current at Maximum                                | Input Voltage                                       | V <sub>CC</sub> = Max, V <sub>I</sub>                                           | = 5.5V      |                              |            |                      | 1                            | mA    |
| 1 <sub>IH</sub> | High Level Input Current                                | Mode Input Any A or B Input Any S Input Carry Input | V <sub>CC</sub> = Max, V <sub>i</sub> = 2.4V                                    |             |                              |            |                      | 40<br>120<br>160<br>200      | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                                 | Mode Input Any A or B Input Any S Input Carry Input | V <sub>CC</sub> = Max, V <sub>I</sub>                                           | = 0.4V      |                              |            |                      | -1.6<br>-4.8<br>-6.4<br>-8.0 | mA    |
| ios             | Short Circuit Output Curre<br>(Any Output Except A = B) |                                                     | V <sub>CC</sub> = Max(2)                                                        |             | DM54<br>DM74                 | -20<br>-18 |                      | -55<br>-57                   | mA    |
| Icc             | Supply Current                                          |                                                     | V <sub>CC</sub> = Max(3)                                                        | Condition A | DM54<br>DM74<br>DM54<br>DM74 |            | 88<br>88<br>92<br>92 | 127<br>140<br>135<br>150     | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With outputs open,  $I_{\hbox{\scriptsize CC}}$  is measured for the following conditions:
  - A. S0 through S3, M, and A inputs are at 4.5V, all other inputs are grounded.
  - B. S0 through S3 and M are at 4.5V, all other inputs are grounded.



# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                  |                                  |                  |                            | DM54/7  | 4   |       |
|------------------|--------------------------------------------------|----------------------------------|------------------|----------------------------|---------|-----|-------|
|                  | PARAMETER                                        | FROM (INPUT)                     | TO<br>(OUTPUT)   | CONDITIONS                 | , 181   |     | UNITS |
|                  |                                                  | · · ·                            |                  |                            | MIN TYP | MAX |       |
| ФLН              | Propagation Delay Time, Low-to-High Level Output | C <sub>n</sub>                   | C <sub>n+4</sub> | , ,                        | 9       | 18  | ns    |
| tPHL             | Propagation Delay Time, High-to-Low Level Output | 3 <sub>n</sub>                   | 9n+4             |                            | 13      | 19  | ,,,,  |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | Any A or B                       | C <sub>n+4</sub> | M = 0V, S0 = S3 = 4.5V     | 20      | 30  | ns    |
| tPHL             | Propagation Delay Time, High-to-Low Level Output | Ally A of B                      | O <sub>n+4</sub> | S1 = S2 = 0V (SUM mode)    | 22      | 33  | 113   |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output |                                  |                  | M = 0V, S0 = S3 = 0V       | 20      | 30  |       |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | Any A or B                       | C <sub>n+4</sub> | S1 = S2 = 4.5V (DIFF mode) | 22      | 33  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output |                                  | ۸ ۲              | M = 0V                     | 11      | 19  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | C <sub>n</sub>                   | Any F            | (SUM or DIFF mode)         | 12      | 18  | 115   |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | A                                |                  | M = 0V, S0 = S3 = 4.5V     | 13      | 19  |       |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | Any A or B                       | G                | S1 = S2 = 0V (SUM mode)    | 14      | 19  | ns    |
| tPLH             | Propagation Delay Time, Low-to-High Level Output | Anv A or B                       | G                | M = 0V, S0 = S3 = 0V       | 12      | 20  | . ns  |
| tPHL             | Propagation Delay Time, High-to-Low Level Output | Any A or B                       | G                | S1 = S2 = 4.5V (DIFF mode) | . 15    | 25  | . 115 |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | A A B                            | Р                | M = 0V, S0 = S3 = 4.5V     | 12      | 19  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | Any A or B                       | r                | S1 = S2 = 0V (SUM mode)    | 17      | 25  | 115   |
| tPLH             | Propagation Delay Time, Low-to-High Level Output | Any A or B                       | P                | M = 0V, S0 = S3 = 0V       | 14      | 25  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | Any A or B                       | r                | S1 = S2 = 4.5V (DIFF mode) | 17      | 25  | 115   |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | A B                              | _                | M = 0V, S0 = S3 = 4.5V     | 18      | 30  | ns    |
| tPHL             | Propagation Delay Time, High-to-Low Level Output | A <sub>i</sub> or B <sub>i</sub> | F <sub>i</sub>   | S1 = S2 = OV (SUM mode)    | 19      | 30  | 113   |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | A == B                           | F                | M = 0V, S0 = S3 = 0V       | 14      | 24  | ne.   |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | A <sub>i</sub> or B <sub>i</sub> | F <sub>i</sub>   | S1 = S2 = 4.5V (DIFF mode) | 14      | 24  | ns    |
| tpLH             | Propagation Delay Time, Low-to-High Level Output | A or B                           | Е                | M = 4.5V (logic mode)      | 17      | 28  | ne    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low Level Output | A <sub>i</sub> or B <sub>i</sub> | F <sub>i</sub>   | IVI = 4.5 V (logic mode)   | 19      | 30  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | Any A or B                       | A = B            | M = 0V, S0 = S3 = 0V       | 26      | 40  | ns    |
| tpHL             | Propagation Delay Time, High-to-Low Level Output | Ally A OI B                      | M-D              | S1 = S2 = 4.5V (DIFF mode) | 25      | 40  | ""    |

# **Parameter Measurement Information**

# LOGIC MODE TEST TABLE FUNCTION INPUTS: S1 = S2 = M = 4.5V, S0 = S3 = 0V

| PARAMETER        | INPUT          | OTHER INPUT<br>SAME BIT |              | OTHER D       | ATA INPUTS                           | OUTPUT           | OUTPUT       |  |
|------------------|----------------|-------------------------|--------------|---------------|--------------------------------------|------------------|--------------|--|
| PARAMETER        | UNDER<br>TEST  | APPLY<br>4.5V           | APPLY<br>GND | APPLY<br>4.5V | APPLY<br>GND                         | UNDER<br>TEST    | WAVEFORM     |  |
| t <sub>PLH</sub> | Ai             | Bi                      | None         | None          | Remaining<br>A and B, C <sub>n</sub> | F <sub>i</sub>   | Out-of-Phase |  |
| t <sub>PLH</sub> | B <sub>i</sub> | A <sub>i</sub>          | None         | None          | Remaining<br>A and B, C <sub>n</sub> | , F <sub>i</sub> | Out-of-Phase |  |



# Parameter Measurement Information (Continued)

# SUM MODE TEST TABLE FUNCTION INPUTS: S0 = S3 = 4.5V, S1 = S2 = M = 0V

| PARAMETER        | INPUT                |               | R INPUT<br>E BIT | OTHER DA      | TA INPUTS               | OUTPUT              | OUTPUT<br>WAVEFORM |  |
|------------------|----------------------|---------------|------------------|---------------|-------------------------|---------------------|--------------------|--|
| PARAMETER        | TEST                 | APPLY<br>4.5V | APPLY<br>GND     | APPLY<br>4.5V | APPLY<br>GND            | TEST                |                    |  |
| t <sub>PLH</sub> | Α,                   | В,            | None             | Remaining     | C <sub>n</sub>          | F,                  | In-Phase           |  |
| t <sub>PHL</sub> | / 1                  | 5             | 140110           | A and B       | O <sub>n</sub>          | _                   | 71111030           |  |
| t <sub>PLH</sub> | В,                   | A,            | None             | Remaining     | C <sub>n</sub>          | F,                  | In-Phase           |  |
| t <sub>PHL</sub> | J 5,                 | Α,            | None             | A and B       | C <sub>n</sub>          | ' '                 | iiiiiasc           |  |
| t <sub>PLH</sub> | A,                   | В,            | None             | None          | Remaining               | Р                   | In-Phase           |  |
| t <sub>PHL</sub> | \ \frac{\cappa_1}{1} | υ,            | 140110           | None          | A and B, C <sub>n</sub> | , ,                 | iii-i iiase        |  |
| t <sub>PLH</sub> | В,                   | А,            | None             | None          | Remaining               | Р                   | In-Phase           |  |
| t <sub>PHL</sub> | , i                  | Α,            |                  | None          | A and B, C <sub>n</sub> | '                   | mirmase            |  |
| t <sub>PLH</sub> | A,                   | None          | В,               | Remaining     | Remaining               | G                   | In-Phase           |  |
| t <sub>PHL</sub> | ] ~                  | None          | ь,               | В             | A, C <sub>n</sub>       | ,                   | mi-mase            |  |
| t <sub>PLH</sub> | В,                   | None          | Α,               | Remaining     | Remaining               | G                   | In-Phase           |  |
| t <sub>PHL</sub> | D,                   | INOILE        | Α,               | В             | A, C <sub>n</sub>       | 9                   | HITTIASC           |  |
| t <sub>PLH</sub> |                      | None          | None             | All           | All                     | Any F               | In-Phase           |  |
| t <sub>PHL</sub> | C <sub>n</sub>       | INOTIE        | INOTIE           | А             | В                       | or C <sub>n+4</sub> | iii-r nase         |  |
| t <sub>PLH</sub> | A,                   | None          | В,               | Remaining     | Remaining               | C <sub>n+4</sub>    | Out-of-Phase       |  |
| t <sub>PHL</sub> | 1 ~                  | ivone         | ъ,               | В             | A, C <sub>n</sub>       | On+4                | Out-of-Phase       |  |
| t <sub>PLH</sub> | В,                   | None          | ^                | Remaining     | Remaining               | C                   | Out of Phase       |  |
| t <sub>PHL</sub> | , D,                 | None          | Α,               | В             | A, C <sub>n</sub>       | C <sub>n+4</sub>    | Out-of-Phase       |  |

# DIFF MODE TEST TABLE FUNCTION INPUTS: S1 = S2 = 4.5V, S0 = S3 = M = 0V

| PARAMETER          | INPUT<br>UNDER          |                                    | R INPUT<br>E BIT | OTHER DA       | TA INPUTS               | OUTPUT           | ОИТРИТ        |
|--------------------|-------------------------|------------------------------------|------------------|----------------|-------------------------|------------------|---------------|
| FARAMETER          | TEST                    | APPLY APPLY APPLY<br>4.5V GND 4.5V |                  | APPLY<br>4.5V  | APPLY<br>GND            | TEST             | WAVEFORM      |
| t <sub>PLH</sub>   | A                       | None                               | В,               | Remaining      | Remaining               | F,               | In-Phase      |
| t <sub>PHL</sub>   | , 1                     |                                    |                  | A <sup>r</sup> | B, C <sub>n</sub>       | . 1              |               |
| t <sub>PLH</sub>   | B;                      | A,                                 | None             | Remaining      | Remaining               | F,               | Out-of-Phase  |
| t <sub>PHL</sub>   | 0                       | , vi                               |                  | Α              | B, C <sub>n</sub>       | . ''             | Out of Fridae |
| t <sub>PLH</sub>   | Ai                      | None                               | В,               | None           | Remaining               | Р                | In-Phase      |
| t <sub>PHL</sub>   |                         | 140110                             | 5                | TVOTIC         | A and B, C <sub>n</sub> |                  | 111 1 11830   |
| t <sub>PLH</sub>   | B;                      | Α,                                 | None             | None           | Remaining               | Р                | Out-of-Phase  |
| t <sub>PHL</sub>   | 5,                      | Λ,                                 | None             | None           | A and B, C <sub>n</sub> | '                | Out-of-filase |
| t <sub>PLH</sub>   | Ai                      | B;                                 | None             | None           | Remaining               | G                | In-Phase      |
| t <sub>PHL</sub>   |                         | D <sub>i</sub>                     | IVOITE           | None           | A and B, C <sub>n</sub> | J                | iii-i iiase   |
| t <sub>PLH</sub>   | В,                      | None                               | A <sub>i</sub>   | None           | Remaining               | G                | Out-of-Phase  |
| t <sub>PHL</sub>   | υ,                      | IVOIIC                             | A <sub>i</sub>   | None           | A and B, C <sub>n</sub> | 3                | Out-or-mase   |
| t <sub>PLH</sub>   | Ai                      | None                               | . В.             | Remaining      | Remaining               | A = B            | In-Phase      |
| t <sub>PHL</sub>   | ~                       | 140110                             | 5                | Α              | B, C <sub>n</sub>       |                  | minasc        |
| t <sub>PLH</sub>   | B,                      | A <sub>i</sub>                     | None             | Remaining      | Remaining               | A = B            | Out-of-Phase  |
| t <sub>PHL</sub>   | D <sub>1</sub>          | 71                                 | INOTIC           | А              | B, C <sub>n</sub>       | ^ B              | Out-or-mase   |
| t <sub>PLH</sub>   | Cn                      | None                               | None             | All            | None                    | C <sub>n+4</sub> | In-Phase      |
| t <sub>PHL</sub>   | O <sub>n</sub>          | INOTIE                             | INOTIE           | A and B        | IVOITE                  | or any F         | mer mase      |
| t <sub>PL.H</sub>  | A,                      | В,                                 | None             | None           | Remaining               | C <sub>n+4</sub> | Out-of-Phase  |
| t <sub>PHL</sub>   | <i>ب</i> ر <sub>ا</sub> | υ,                                 | None             | None           | A, B, C <sub>n</sub>    | On14             | Out-or-Filase |
| t <sub>PLH</sub> . | B;                      | None                               | Α,               | None           | Remaining               | C <sub>n+4</sub> | In-Phase      |
| t <sub>PHL</sub>   | D;                      | 140116                             | ر.               | TVOITE         | A, B, C <sub>n</sub>    | 9n14             | iii i iiase   |





# **Look-Ahead Carry Generators**

# **General Description**

These circuits are high-speed, look-ahead carry generators, capable of anticipating a carry across four binary adders or groups of adders. They are cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propagate-carry functions are provided as shown in the pin designation table.

When used in conjunction with the 181 arithmetic logic unit, these generators provide high-speed carry look-ahead capability for any word length. Each 182 or S182 generates the look-ahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. The method of cascading circuits to perform multi-level look-ahead is illustrated under typical application data.

Carry input and output of the ALU's are in their true form, and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs, generate, and propagate) of the look-ahead

generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions, as explained on the 181 data sheet are also applicable to and compatible with the look-ahead generator. Positive logic equations for the 182 and S182 are:

$$\begin{split} &C_{n+x} = \overline{G}0 + \overline{P}0 \ C_n \\ &C_{n+y} = \overline{G}1 + \overline{P}1 \ \overline{G}0 + \overline{P}1 \ \overline{P}0 \ C_n \\ &C_{n+z} = \overline{G}2 + \overline{P}2 \ \overline{G}1 + \overline{P}2 \ \overline{P}1 \ \overline{G}0 + \overline{P}2 \ \overline{P}1 \ \overline{P}0 \ C_n \\ &\overline{G} = \overline{G}3 \ (\overline{P}3 + \overline{G}2) \ (\overline{P}3 + \overline{P}2 + \overline{G}1) \ (\overline{P}3 + \overline{P}2 + \overline{P}1 + \overline{G}0) \\ &\overline{P} = \overline{P}3 \ \overline{P}2 \ \overline{P}1 \ \overline{P}0 \end{split}$$

#### Features

| TYPE | TYPICAL PROPAGATION DELAY TIME | TYPICAL POWER DISSIPATION |
|------|--------------------------------|---------------------------|
| 182  | 12 ns                          | 180 mW                    |
| S182 | 7 ns ,                         | 260 mW                    |

## Connection Diagram



54182(J); 74182(J), (N); 74S182(N)

## Pin Designations

| DESIGNATION                                               | PIN NOS.    | FUNCTION                             |
|-----------------------------------------------------------|-------------|--------------------------------------|
| G0, G1, G2, G3                                            | 3, 1, 14, 5 | ACTIVE LOW<br>CARRY GENERATE INPUTS  |
| P0, P1, P2, P3                                            | 4, 2, 15, 6 | ACTIVE LOW<br>CARRY PROPAGATE INPUTS |
| C <sub>n</sub>                                            | 13          | CARRY INPUT                          |
| C <sub>n+x</sub> , C <sub>n+y</sub> ,<br>C <sub>n+z</sub> | 12, 11, 9   | CARRY OUTPUTS                        |
| G                                                         | 10          | ACTIVE LOW<br>CARRY GENERATE OUTPUT  |
| Р                                                         | 7           | ACTIVE LOW<br>CARRY PROPAGATE OUTPUT |
| Vcc                                                       | 16          | SUPPLY VOLTAGE                       |
| GND                                                       | 8           | GROUND                               |



# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                  |                                                            |                                                                                              |                 |          | DM54/74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |     | DM74S      |                         |       |
|-----------------|----------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|------------|-------------------------|-------|
|                 | PARAMETER                        | ₹                                                          | CONDITIONS                                                                                   |                 |          | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |     | S182       |                         | UNITS |
|                 |                                  |                                                            |                                                                                              |                 | MIN      | TYP(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX                      | MIN | TYP(1)     | MAX                     |       |
| ViH             | High Level Input Voltage         |                                                            | . '                                                                                          |                 | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 2   | ,          |                         | V     |
| VIL             | Low Level Input Voltage          | -                                                          | , in the second                                                                              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0                      |     |            | 8.0                     | V     |
| .v <sub>i</sub> | Input Clamp Voltage              |                                                            | $V_{CC} = M_{10}$ $I_1 = -12 \text{ m}.$ $I_1 = -18 \text{ m}.$                              | 4               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1.5                    |     |            | 1.2                     | ٧     |
| Іон             | High Level Output Curren         | t .                                                        |                                                                                              |                 | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800                      |     |            | -1000                   | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage        | ,                                                          | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max | DM54<br>DM74    | 2.4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 2.7 | N/A<br>3.4 |                         | ٧     |
| loL             | Low Level Output Current         |                                                            |                                                                                              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 -                     |     |            | 20                      | mA    |
| VOL             | Low Level Output Voltage         |                                                            | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = Max$                                 |                 |          | Alle Second and an Assessment and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second and a Second a | 0.4                      |     |            | 0.5                     | V     |
| l <sub>1</sub>  | Input Current at Maximun         | Input Voltage                                              | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                 |                 |          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                        |     | ,          | 1 ,                     | , mA  |
| l <sub>IH</sub> | High Level Input Current         | C <sub>n</sub> Input P3 Input P2 Input P0, P1, or G3 Input | V <sub>CC</sub> = Max                                                                        |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80<br>120<br>160<br>200  |     |            | 50<br>100<br>150<br>200 | μΑ    |
|                 |                                  | G0 or G2 Input<br>G1 Input                                 |                                                                                              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360<br>400               |     |            | 350<br>400              |       |
| l <sub>IL</sub> | Low Level Input Current          | C <sub>n</sub> Input P3 Input P2 Input P0, P1, or G3 Input | $V_{CC} = Max$ $V_{1} = 0.4V$ $V_{1} = 0.5V$                                                 | (182)<br>(S182) |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2<br>4.8<br>6.4<br>8.0 |     |            | 2<br>4<br>6<br>8        | mA    |
|                 |                                  | G0 or G2 Input<br>G1 Input                                 | . 1                                                                                          | , /             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4<br>16               |     |            | 14<br>16                |       |
| los             | Short Circuit Output Curre       | ent                                                        | V <sub>CC</sub> = Max(2)                                                                     |                 | -40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                     | 40  |            | -100                    | mA    |
| Icch            | Supply Current, All Outputs High |                                                            | V <sub>CC</sub> = 5V(3)                                                                      |                 |          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |     | 35         |                         | mA    |
| ICCL            | Supply Current, All Outputs Low  |                                                            | V <sub>CC</sub> = Max(4)                                                                     | DM54<br>DM74    |          | 45 -<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65<br>.72                |     | N/A<br>69  | 109                     | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- (3) I<sub>CCH</sub> is measured with all outputs open, inputs P3 and G3 at 4.5V, and all other inputs grounded.
- (4) I<sub>CCL</sub> is measured with all outputs open; inputs G0, G1, and G2 at 4.5V, and all other inputs grounded.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     |                   |                                                              |                                                 | D   | M54/7 | 4    |       | DM749 |      | ·     |
|------------------|-----------------------------------------------------|-------------------|--------------------------------------------------------------|-------------------------------------------------|-----|-------|------|-------|-------|------|-------|
|                  | PARAMETER                                           | FROM (INPUT)      | TO<br>(OUTPUT)                                               | CONDITIONS                                      | 182 |       |      | \$182 |       |      | UNITS |
|                  |                                                     |                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                      |                                                 | MIN | TYP   | MAX  | MIN   | TYP   | MAX  |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | G0, G1, G2, G3,   | $C_{n+x}, C_{n+y},$                                          |                                                 |     | 11    | 17   |       | 4.5   | .7   | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | P0, P1, P2, or P3 | or C <sub>n+z</sub>                                          | R <sub>L</sub> = 400Ω<br>C <sub>L</sub> = 15 pF |     | 13    | 22   |       | 4.5   | 7    | 115   |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | G0, G1, G2, G3,   | G                                                            | (182)                                           |     | 11.   | . 17 |       | 5     | 7.5  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | P1, P2, or P3     |                                                              |                                                 |     | .13   | 22   |       | . 7   | 10.5 |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | P0, P1, P2, or P3 | P,                                                           |                                                 |     | 11    | 17   |       | 4.5   | 6.5  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | F0, F1, F2, 01 F3 |                                                              | $R_L = 280\Omega$                               |     | 13    | 22   |       | 6.5   | 10   | 115   |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | C <sub>n</sub>    | C <sub>n+x</sub> , C <sub>n+y</sub> ,<br>or C <sub>n+z</sub> | C <sub>L</sub> = 15 pF<br>(S182)                |     | 11    | 17   |       | .6.5  | 10   |       |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | On .              | or C <sub>n+z</sub>                                          |                                                 |     | 13    | 22   |       | 7     | 10.5 | ns    |



# Logic Diagram



# **Typical Application**

# 64-BIT ALU, FULL-CARRY LOOK AHEAD IN THREE LEVELS



A and B inputs, and F outputs of 181 are not shown.



# BCD-to-Binary and Binary-to-BCD Converters

# General Description

These monolithic converters are derived from the 256-bit read only memories, DM5488 and DM7488. Emitter connections are made to provide direct read-out of converted codes at outputs Y8 through Y1, as shown in the truth tables. These converters demonstrate the versatility of a read only memory in that an unlimited number of reference tables or conversion tables may be built into a system. Both of these converters comprehend that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter as illustrated in the typical applications. This means that a 6-bit converter is produced in each case. Both devices are cascadable to N bits.

An overriding enable input is provided on each converter which when taken high inhibits the function, causing all outputs to go high. For this reason, and to minimize power consumption, unused outputs Y7 and Y8 of the 185A and all "don't care" conditions of the 184 are programmed high. The outputs are of the open-collector type.

# DM54184 AND DM74184 BCD-TO-BINARY CONVERTERS

The 6-bit BCD-to-binary function of the DM54184 and DM74184 is analogous to the algorithm:

 a. Shift BCD number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.  Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros.

In addition to BCD-to-binary conversion, the DM54184 and DM74184 are programmed to generate BCD 9's complement or BCD 10's complement. Again, in each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs Y6, Y7, and Y8 are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the truth table when the devices are connected as shown.

# DM54185A AND DM74185A BINARY-TO-BCD CONVERTERS

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:

- a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit.
- b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
- c. Repeat step b until the least-significant binary bit is in the least-significant BCD location.

(Continued)

#### Connection Diagram



54184(J), (W); 74184(J), (N), (W); 54185A(J), (W); 74185A(J), (N)

# DM54/DM74184,185A

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                            |                                                                                               |     | DM54/74   |      | UNITS |  |
|-----------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|-----|-----------|------|-------|--|
|                 | PARAMETER                                  | CONDITIONS                                                                                    |     | 184, 185A |      |       |  |
|                 |                                            |                                                                                               | MIN | TYP(1)    | MAX  |       |  |
| V <sub>IH</sub> | High Level Input Voltage                   |                                                                                               | 2   |           |      | V     |  |
| VIL             | Low Level Input Voltage                    |                                                                                               |     |           | 0.8  | V     |  |
| Vı              | Input Clamp Voltage                        | V <sub>CC</sub> = Min, I <sub>I</sub> = -12 mA                                                |     |           | -1.5 | V     |  |
| Іон             | High Level Output Current                  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, V <sub>OH</sub> = 5.5V |     |           | 100  | μΑ    |  |
| loL             | Low Level Output Current                   | ,                                                                                             | ,   |           | 12   | mA    |  |
| V <sub>OL</sub> | Low Level Output Voltage                   | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 12 \text{ mA}$                        | ,   | ,         | 0.4  | V     |  |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage     | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                  | ,   |           | 1    | mA    |  |
| I <sub>IH</sub> | High Level Input Current                   | $V_{CC} = Max$ , $V_1 = 2.4V$                                                                 |     |           | 25   | μΑ    |  |
| l <sub>IL</sub> | Low Level Input Current                    | $V_{CC} = Max$ , $V_1 = 0.4V$                                                                 |     |           | -1   | mA    |  |
| Іссн            | Supply Current, All Outputs High           | V <sub>CC</sub> = Max                                                                         |     | 40 .      | 65   | mA    |  |
| ICCL            | Supply Current, All Programmed Outputs Low | V <sub>CC</sub> = Max                                                                         |     | 50        | 80   | mA    |  |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  | PARAMETER                                                           | CONDITIONS                                | MIN | TYP | MAX | UNITS |
|------------------|---------------------------------------------------------------------|-------------------------------------------|-----|-----|-----|-------|
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-High Level Output From Enable G      |                                           |     | 20  | 35  | ns    |
| tPHL             | Propagation Delay Time, High-to-Low Level Output From Enable G      | $C_L = 15 \text{ pF}, R_{L1} = 400\Omega$ |     | 20  | 35  | ns    |
| tpLH             | Propagation Delay Time, Low-to-High Level Output From Binary Select | $R_{L2} = 600\Omega$                      |     | 20  | 35  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-Low Level Output From Binary Select |                                           |     | 20  | 35  | ns    |



# General Description (Continued)

# DM54184 AND DM74184 BCD-TO-BINARY

TABLE I
PACKAGE COUNT AND DELAY TIMES
FOR BCD-TO-BINARY CONVERSION

| - | INPUT     |                 |     |     |  |  |  |  |
|---|-----------|-----------------|-----|-----|--|--|--|--|
|   | (DECADES) | REQUIRED        | TYP | MAX |  |  |  |  |
|   | 2         | 2               | 56  | 80  |  |  |  |  |
|   | 3         | 6               | 140 | 200 |  |  |  |  |
|   | 4         | <sup>1</sup> 11 | 196 | 280 |  |  |  |  |
|   | 5         | 19              | 280 | 400 |  |  |  |  |
|   | 6         | 28              | 364 | 520 |  |  |  |  |
|   |           |                 |     |     |  |  |  |  |

**6-BIT CONVERTER** 



BCD 9'S COMPLEMENT CONVERTER



BCD 10'S COMPLEMENT CONVERTER



**Truth Tables** 

#### BCD-TO-BINARY CONVERTER

| BCD   |   |   | INP<br>See N |    | ı)  |   |    |    | JTPU'<br>e Note |    |      |
|-------|---|---|--------------|----|-----|---|----|----|-----------------|----|------|
| WORDS | E | D | С            | В  | Α . | G | Y5 | Y4 | Y3              | Y2 | Y1   |
| 0 1   | L | L | L            | L  | ٦   | L | L  | L  | L               | L  | ٦    |
| 2 3   | L | L | L            | L  | н   | L | L  | L  | L               | L  | Н    |
| 4 5   | L | L | L            | Н  | L   | L | L  | L  | L               | H, | L    |
| 6 7   | L | Ľ | L            | Н  | Н   | L | L  | L  | L               | Н  | . H: |
| 8 9   | L | L | Н            | L  | · L | L | L  | L, | Н               | L  | L    |
| 10 11 | L | Н | L            | L  | L   | L | L  | L  | Н               | L  | Н    |
| 12 13 | L | Н | L            | L  | н   | L | L  | L  | Н               | Н  | L    |
| 14 15 | L | Н | L            | Н  | L   | L | L  | L  | Н               | Н  | Н    |
| 16 17 | L | н | L            | Н  | н   | L | L  | Н  | Ĺ               | L  | L    |
| 18 19 | L | Н | Н            | L  | L   | L | L  | Н  | L               | L  | Н    |
| 20 21 | Н | L | L            | L  | ٦   | L | L  | Н  | L               | Н  | L    |
| 22 23 | Н | L | L            | L  | Н   | L | L  | Н  | L               | Н  | Н    |
| 24 25 | Н | L | L            | Н  | L   | L | L  | Н  | Н               | L  | L    |
| 26 27 | Н | L | L            | Н  | н   | L | L  | Н  | Н               | L  | Н    |
| 28 29 | Н | L | Н            | L  | L   | L | L  | Н  | Н               | Н  | L    |
| 30 31 | Н | Н | L            | L  | L   | L | L  | Н  | Η -             | Н  | Н    |
| 32 33 | н | Н | L            | Γ. | Н   | L | Н  | L  | L               | L  | L    |
| 34 35 | н | Н | L            | Н  | L   | L | Н  | L  | L               | L  | Н    |
| 36 37 | Н | Н | L            | Н  | Н   | L | н  | L  | L               | Н  | L    |
| 38 39 | Н | Н | Н            | L  | L   | L | Н  | L  | L               | Н  | H    |
| ANY   | Х | X | Х            | X  | Х   | Н | Н  | Н  | Н               | Н  | Н    |

BCD 9'S OR BCD 10'S COMPLEMENT CONVERTER

| BCD  |                |     |    | JTPU<br>e Not |     |    |    |    |     |
|------|----------------|-----|----|---------------|-----|----|----|----|-----|
| WORD | Ε <sup>†</sup> | D   | С  | В             | Α   | G  | Y8 | Y7 | Y6  |
| 0    | L              | L   | L. | L             | L   | L  | Н  | L  | Н   |
| 1 -  | L              | L   | L  | L             | н   | L  | H  | L  | L.  |
| 2    | L              | L   | L  | Н             | L   | L  | L  | Н  | Н   |
| 3    | L              | L   | L  | Н             | Н,  | L  | L  | Н  | L   |
| 4.   | L              | L   | Н  | L             | L   | L  | L  | Н  | Н   |
| 5    | L              | L   | Н  | L             | Н   | L  | L  | Н  | L   |
| 6    | L              | L   | Н  | Н             | L   | L. | L  | L  | Н   |
| 7    | L              | L   | Н  | Н             | Н   | L  | L  | L  | L   |
| 8    | L              | Н   | L  | L             | L   | L  | L  | L  | Н   |
| 9    | L              | H   | L  | L             | н., | L  | L  | L. | L   |
| 0    | H.             | L   | L  | L             | L   | L  | L  | L  | L   |
| 1    | Н              | . L | L  | L             | Н   | L  | Н  | L  | L   |
| 2    | Н              | L   | L  | Н             | Ľ   | L  | H  | L  | L   |
| 3    | н              | L   | L  | H             | Н   | L  | L  | Н  | Н   |
| 4    | Н              | L   | Н  | L             | L   | L  | L  | Н  | Н   |
| 5    | Н              | Ļ   | Н  | L             | Н   | L  | L  | Н  | L   |
| 6    | Н              | L   | Н  | Н             | L   | L  | L  | Н  | + L |
| 7    | H              | L   | Н  | H             | H·· | L  | L  | L  | Н   |
| 8    | Н              | Н   | L  | L             | L   | L  | L  | L  | Н   |
| 9    | Н              | Н   | L  | L             | Н   | L  | L  | L  | L   |
| ANY  | X              | Х   | X  | X             | Х   | Н  | Н  | Н  | Н   |

H = High Level, L = Low Level, X = Don't Care

#### Notes:

- (A) Input conditions other than those shown produce highs at outputs Y1 through Y5.
- (B) Output Y6, Y7, and Y8 are not used for BCD-to-binary conversion.
- (C) Input conditions other than those shown produce highs at outputs Y6, Y7, and Y8.
- (D) Outputs Y1 through Y5 are not used for BCD 9's or BCD 10's complement conversion.

<sup>†</sup>When these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.



# General Description (Continued)

# DM54185A AND DM74185A BINARY-TO-BCD

TABLE II
PACKAGE COUNT AND DELAY TIMES
FOR BINARY-TO-BCD CONVERSION

| FOR BINAR 1-10-BCD CONVERSION |          |           |              |  |  |  |  |  |  |  |  |  |
|-------------------------------|----------|-----------|--------------|--|--|--|--|--|--|--|--|--|
| INPUT                         | PACKAGES | TOTAL DEL | AY TIME (ns) |  |  |  |  |  |  |  |  |  |
| (BITS)                        | REQUIRED | TYP       | MAX          |  |  |  |  |  |  |  |  |  |
| 4 to 6                        | 1        | 25        | 40           |  |  |  |  |  |  |  |  |  |
| 7 or 8                        | 3        | 50        | 80           |  |  |  |  |  |  |  |  |  |
| 9                             | 4        | 75        | 120          |  |  |  |  |  |  |  |  |  |
| 10                            | 6        | 100       | 160          |  |  |  |  |  |  |  |  |  |
| 11                            | 7        | 125       | 200          |  |  |  |  |  |  |  |  |  |
| 12                            | 8        | 125       | 200          |  |  |  |  |  |  |  |  |  |
| 13                            | 10       | 150       | 240          |  |  |  |  |  |  |  |  |  |
| 14                            | 12       | 175       | 280          |  |  |  |  |  |  |  |  |  |
| 15                            | . 14     | 175       | 280          |  |  |  |  |  |  |  |  |  |
| 16                            | 16       | 200       | 320          |  |  |  |  |  |  |  |  |  |
| 17                            | 19       | 225       | 360          |  |  |  |  |  |  |  |  |  |
| 18                            | 21       | 225       | 360          |  |  |  |  |  |  |  |  |  |
| 19                            | 24       | 250       | 400          |  |  |  |  |  |  |  |  |  |
| 20                            | 27       | 275       | 440          |  |  |  |  |  |  |  |  |  |



# **Truth Tables (Continued)**

| BINARY |    |      | I  | NPUT | s |        |    |    |    | оиті | PUTS |    |    |     |
|--------|----|------|----|------|---|--------|----|----|----|------|------|----|----|-----|
| WORDS  |    | BINA |    |      |   | ENABLE |    |    |    |      |      |    |    |     |
|        | E  | D    | С  | В    | Α | G      | Y8 | Y7 | Y6 | Y5   | Y4   | Y3 | Y2 | Y1  |
| 0 1    | L. | L    | L  | L    | L | L.     | Н  | H  | L  | L    | L    | L  | L  | L   |
| 2 3    | L  | L    | L  | L    | н | L      | Н  | Н  | L  | L    | Ĺ    | L  | L  | Н   |
| 4.5    | L  | Ĺ    | L  | Н    | L | L      | н  | Н  | L  | L    | L    | L  | Н  | L   |
| 6 7    | L  | L    | L  | Н    | Н | L      | Ι  | Н  | L  | L    | L    | L  | Н  | Н   |
| 8 9    | L  | L    | Н  | L    | L | L      | Н  | Н  | L  | L    | L    | Н  | L  | L   |
| 10, 11 | L  | L    | Н  | L    | Н | L      | н  | Н  | L  | L    | Н    | L  | L. | , L |
| 12 13  | L  | L    | Н  | Н    | L | L.     | Н  | Н  | L  | L    | Н    | L  | L  | Н   |
| 14 15  | L  | L    | Н  | Н    | Н | L      | Н  | Н  | L  | L    | Н    | L  | Η. | L   |
| 16 17  | L  | Н    | L. | L    | L | Ŀ      | Η  | Н  | L  | L    | Н    | L  | Н  | Н   |
| 18 19  | L  | Н    | L  | L    | Н | · L    | Н  | Н  | L  | L    | Н    | Н  | L  | L   |
| 20 21  | L  | Н    | L  | Н    | L | L      | Н  | Н  | L  | Н    | L    | L  | L  | L   |
| 22 23  | L  | Н    | Ł  | Н    | Н | L      | Н  | Н  | L  | Н    | L    | L  | L  | Н   |
| 24 25  | L  | Н    | Н  | L    | L | L      | I  | Н  | L  | Н    | L    | L  | Н  | L   |
| 26 27  | L  | Н    | H  | L    | Н | L      | Н  | Н  | L  | Н    | L    | L  | Н  | н   |
| 28 29  | L  | Н    | Н  | Н    | L | L      | н  | Н  | L  | Н    | L    | Н  | L  | L   |
| 30 31  | L  | Н    | Н  | Н    | Н | L      | Н  | Н  | L  | Н    | Н    | L  | L  | L   |
| 32 33  | Н  | L    | L  | L    | L | L      | Н  | Н  | L  | Н    | Н    | L  | L  | Н   |
| 34 35  | Н  | L.   | L  | L    | H | L      | Н  | Н  | L  | Н    | Н    | ·L | Н  | L   |
| 36 37  | Н  | L    | L  | Н    | L | L      | Н  | Н  | L  | Η `  | Н    | Ĺ  | Н  | H   |
| 38 39  | Н  | L    | L  | Н    | Н | L      | н  | Н  | L  | Н    | Н    | Н  | L  | L   |
| 40 41  | Н  | L    | Н  | L    | L | L      | Н  | Н  | Н  | L    | L    | L  | L. | L   |
| 42 43  | Н  | L    | Н  | L    | Н | L.     | Н  | Н  | Н  | L    | L    | L  | L  | H-  |
| 44 45  | Н  | L    | H  | н    | L | L      | Н  | Н  | Н  | L    | L    | L  | Н  | L   |
| 46 47  | н  | L    | Н  | Н    | Н | L,     | Н  | Н  | Н  | L    | L    | L  | Н  | Н   |
| 48 49  | Н  | Н    | L  | L    | L | L;     | Н  | Н  | Н  | L    | L    | Н  | L  | L   |
| 50 51  | Н  | Н    | L  | L    | Н | F      | Н  | Н  | Н  | L    | Н    | L  | L  | L   |
| 52 53  | Н  | Н    | L  | Н    | L | L      | н  | Н  | Н  | L    | Н    | L  | L  | Н   |
| 54 55  | н  | Н    | L  | Н    | Н | L      | Н  | Н  | Н  | L    | Н    | L  | Н  | L   |
| 56 57  | Н  | Н    | Н  | L    | L | , L,   | Н  | Н  | Н  | L    | Н    | L  | Н  | Н   |
| 58 59  | н  | Н    | Н  | L    | Н | L      | Н  | Н  | Н  | L    | Н    | Н  | L  | L   |
| 60 61  | н  | Н    | Н  | Н    | L | L      | Н  | Н  | Н  | Н    | L    | L  | L  | L   |
| 62 63  | н  | Н    | Н  | Н    | Н | L      | н  | Н  | Н  | Н    | L    | L  | L  | Н   |
| ALL    | X  | X    | X  | Х    | X | Н      | Н  | Н  | Н  | Н    | Н    | Н  | Н  | Н   |

H = High Level, L = Low Level, X = Don't Care



# **Typical Applications**



FIGURE 1: BCD-TO-BINARY CONVERTER FOR TWO BCD DECADES



FIGURE 2: BCD-TO-BINARY CONVERTER FOR THREE BCD DECADES

 $\begin{aligned} & \mathsf{MSD} - \mathsf{Most} \ \mathsf{significant} \ \mathsf{decade} \\ & \mathsf{LSD} - \mathsf{Least} \ \mathsf{significant} \ \mathsf{decade} \end{aligned}$ 

Each rectangle represents a DM54184 or DM74184



FIGURE 3: BCD-TO-BINARY CONVERTER FOR SIX BCD DECADES



# Typical Applications (Continued)



FIGURE 4: 6-BIT BINARY-TO-BCD CONVERTER



FIGURE 5: 8-BIT BINARY-TO-BCD CONVERTER



FIGURE 6: 9-BIT BINARY-TO-BCD CONVERTER

MSD — Most significant decade LSD — Least significant decade

#### Notes

(A). Each rectangle represents a DM54185A or a DM74185A.

(B) All unused E inputs are grounded.



FIGURE 7: 12-BIT BINARY-TO-BCD CONVERTER (SEE NOTE B)



FIGURE 8: 16-BIT BINARY-TO-BCD CONVERTER (SEE NOTE B)



# **General Description**

These circuits are custom-programmed, 1024-bit read only memories organized as 256 words of four bits each. These high-speed TTL memory arrays are addressed in straight eight-bit binary, with full on-chip decoding. Two overriding memory-enable inputs are provided which, when either one or both are taken high, will inhibit the function causing all four outputs to remain high (off). Data, as specified by the customer, are permanently programmed into the 1024-bit locations. This organization is expandable to 41,472 words of n-bits, with no additional output buffering.

The address of a four-bit word is accomplished through the buffered binary select inputs, with low-level voltages at both enable inputs. The most significant binary select inputs, D through H, are decoded internally in the X plane to select one-of-32 lines, and the least significant bits, A, B, and C, are internally decoded in the Y plane to accomplish one-of-eight decoding to drive the four output buffers. Where multiple devices are used in a memory system, the enable input allows easy decoding of additional address bits.

Data are programmed into the memory cell at the emitters of a 32-by-32 matrix of transistors. In the X plane each of the 32 address decoding gate outputs supply common base drive to 32 transistors. In the Y plane the 32 transistors are arranged into four groups of eight. This permits each of the bit lines to be terminated in four one-of-eight decoders, which achieves the four-bit word length.

The open-collector outputs are capable of sinking 16 milliamperes of current and may be wire-AND connected to increase the number of words available. An external pull-up resistor is recommended for definition of the high (off) level output voltage.

# 1024-Bit Read Only Memories

The customer can specify the output logic level desired at each of the 1024 bit locations by completing the supplementary ordering data and a set of data cards, punched in accordance with the data format shown under ordering instructions. It is important that the customer specify not only the output levels desired at all 1024 bit locations, but also the other information requested.

#### WORD SELECTION

Word selection is accomplished in a conventional 8-bit positive-logic binary code with the A select input being the least-significant bit progressing alphabetically through the select inputs to H which is the most-significant bit.

#### Features

- Organized as 256 words by 4 bits
- Ideal for microprogramming, reference tables and code converters
- Easily expandable
- Fully decoded, buffered inputs
- Diode-clamped inputs
- Full fan-out, open-collector outputs

| TYPE  | TYPICAL<br>ACCESS TIME | TYPICAL POWER DISSIPATION |
|-------|------------------------|---------------------------|
| 187   | 37 ns                  | 0.36 mW/Bit               |
| L187A | 90 ns                  | 0.09 mW/Bit               |
|       |                        |                           |

#### **Connection Diagram**



54187(J); 74187(J), (N); 54L187A/74L187A(J), (N), (W)

# Logic Diagram





# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                        |                                                                  |      |     | DM54/74 | 1   | DM54L/74L |        |       |       |  |
|-----------------|----------------------------------------|------------------------------------------------------------------|------|-----|---------|-----|-----------|--------|-------|-------|--|
|                 | PARAMETER                              | CONDITIONS                                                       |      |     | 187     |     |           | L187A  |       | UNITS |  |
|                 |                                        |                                                                  |      | MIN | TYP(1)  | MAX | MIN       | TYP(1) | MAX   |       |  |
| VIH             | High Level Input Voltage               |                                                                  |      | 2   |         |     | 2         |        |       | ٧     |  |
| VIL             | Low Level Input Voltage                |                                                                  |      |     |         | 0.8 |           |        | 0.7   | V     |  |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                   |      |     |         | 1.5 |           |        | -1.5  | V     |  |
| Іон             | High Level Output Current              | $V_{CC}$ = Min, $V_{IH}$ = 2V<br>$V_{II}$ = Max, $V_{OH}$ = 5.5V |      |     |         | 40  |           |        | 50    | μΑ    |  |
| V <sub>он</sub> | High Level Output Voltage              |                                                                  |      |     |         | 5.5 |           |        | 5.5   | V     |  |
| loL             | Low Level Output Current               |                                                                  | DM54 |     |         | 16  |           |        | 2.0   | mA    |  |
|                 |                                        |                                                                  | DM74 |     |         | 16  |           |        | 3.6   |       |  |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                      | DM54 |     |         | 0.4 |           |        | 0.3   | V     |  |
|                 |                                        | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max                     | DM74 |     |         | 0.4 |           |        | 0.4   | ·     |  |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max, V_1 = 5.5V$                                       |      |     |         | 1   |           |        | 0.1   | mA    |  |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                     |      |     |         | 40  |           |        | 10    | μΑ    |  |
| l <sub>IL</sub> | Low Level Input Current                | $V_{CC} = Max V_1 = 0.3V$                                        |      |     |         |     |           |        | -0.18 | mA    |  |
|                 |                                        | V <sub>1</sub> = 0.4V                                            |      | -1  |         |     |           |        |       |       |  |
| lcc             | Supply Current                         | V <sub>CC</sub> = Max(2)                                         |      |     | 75      | 110 |           | 18     | 25    | mA    |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) With outputs open and both ME inputs grounded, I<sub>CC</sub> is measured first by selecting a word which contains the maximum number of programmed high level outputs, then by selecting a word which contains the maximum number of programmed low level outputs.

# Switching Characteristics $_{\text{CC}} = 5V$ , $T_{\text{A}} = 25^{\circ}C$

|                  |                                                                 | DM54/74                                                                                 |     |     |     | DM54                              |                 |     |     |       |
|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|-----|-----|-----------------------------------|-----------------|-----|-----|-------|
| PARAMETER        |                                                                 | 18                                                                                      | 187 |     |     |                                   | 87A             |     |     | UNITS |
|                  |                                                                 | CONDITIONS                                                                              | MIN | TYP | MAX | CONDITIONS                        | TIONS MIN TYP M |     | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-High<br>Level Output From Enable |                                                                                         |     | 20  | 30  |                                   |                 | 85  | 130 | ns    |
| tpHL             | Propagation Delay Time, High-to-Low<br>Level Output From Enable | $C_L$ = 30 pF to GND $R_{L1}$ = 300 $\Omega$ to $V_{CC}$ $R_{L2}$ = 600 $\Omega$ to GND |     | 20  | 30  | $C_L = 15  pF$ $R_L = 2  k\Omega$ |                 | 46  | 70  | ns    |
| tpLH             | Propagation Delay Time, Low-to-High<br>Level Output From Select |                                                                                         |     | 36  | 60  |                                   |                 | 120 | 180 | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-Low<br>Level Output From Select |                                                                                         |     | 37  | 60  |                                   |                 | 65  | 98  | ns    |

## **Ordering Instructions**

Programming instructions for the 187 or L187A are solicited in the form of a sequenced deck of 32 standard 80 column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete truth table of the requested part. This truth table, showing output conditions for each of the 256 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the truth table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the eight words specified and describes the levels at the four outputs for each of the eight words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

#### SUPPLEMENTARY ORDERING DATA

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number.



# **Ordering Instructions (Continued)**

#### DATA CARD FORMAT

| Col | lum | n |
|-----|-----|---|
|     |     |   |

- 1- 3 Punch a right-justified integer representing the binary input address (000-248) for the first set of outputs described on the card.
  - 4 Punch a "-" (Minus sign)
- 5- 7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card.
- 8- 9 Blank
- 10-13 Punch "H," "L," or "X" for bits four, three, two, and one (outputs Y4, Y3, Y2, and Y1 in that order) for the first set of outputs specified on the card. H = high voltage level output, L = low voltage level output, X = don't care.
  - 14 · Blank
- 15-18 Punch "H," "L," or "X" for the second set of outputs.
  - 19 Blank
- 20-23 Punch "H," "L," or "X" for the third set of outputs.
  - 24 Blank
- 25-28 Punch "H," "L," or "X" for the fourth set of outputs.
  - 29 Blank
- 30-33 Punch "H," "L," or "X" for the fifth set of outputs.

- 34 Blank
- 35-38 Punch "H," "L," or "X" for the sixth set of outputs.
  - 39 Blank
- 40-43 Punch "H," "L," or "X" for the seventh set of outputs.
  - 44 Blank
- 45-48 Punch "H," "L," or "X" for the eighth set of outputs.
  - 49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
  - 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
  - 56 Blank
- 57-58 Punch the last two digits of the current year.
  - 59 Blank
- 60-61 Punch "DM"
- 62-66 Punch a left-justified integer representing the National Semiconductor part number, 54187, 54L187A, 74187, or 74L187A.
- 67-70 Blank



## **General Description**

These 64-bit active-element memories are monolithic Schottky-clamped transistor-transistor logic (TTL) arrays organized as 16 words of four-bits each. They are fully decoded and feature a chip-enable input to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors that reduce the low level input current requirement to a maximum of -0.25 mA, only one-eighth that of a DM54S/DM74S standard load factor. The chip-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

The TRI-STATE output combines the convenience of open-collector with the speed of a totem-pole output. It can be bus-connected to other similar outputs, yet it retains the fast-rise-time characteristics of the TTL totem-pole output. Systems utilizing data-bus lines with a defined pull-up impedance can employ the open-collector DM54S289/DM74S289.

Write Cycle: The complement of the information at the data input is written into the selected location when both the chip-enable input and the read/write input are low. While the read/write input is low, the outputs are in the high-impedance state. When a number of these outputs are bus-connected, the high-impedance state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

# TRI-STATE 64-Bit Read/Write Memories

Read Cycle: The stored information (complement of information applied at the data inputs during the write cycle) is available at the outputs when the read/write input is high and the chip-enable is low. When the chip-enable input is high, the outputs will be in the high-impedance state.

The fast access time of the DM54S189 makes it particularly attractive for implementing high-performance memory functions requiring access times on the order of 25 ns. The high capacitive-drive capability of the outputs permits expansion without additional output buffering. The unique functional capability of the DM54S189 outputs being at a high impedance during writing, combined with the data inputs being inhibited during reading, means that both data inputs and outputs can be connected to the data lines of a bus-organized system without the need for interface circuits.

#### **Features**

Logic Diagram

INPUTS

c (14)

(13)

Schottky-clamped for high-speed applications:
 access from chip-enable input
 12

access from address inputs

12 ns typ 25 ns typ

- TRI-STATE outputs drive bus-organized systems and/or high capacitive loads
- DM54S289/DM74S289 are functionally equivalent, have open-collector outputs, and are compatible with Intel 3101A in most applications
- Chip-enable input simplifies system decoding

#### Connection Diagram



#### Truth Table

|                            | INPL           | JTS            |                |
|----------------------------|----------------|----------------|----------------|
| FUNCTION                   | CHIP<br>ENABLE | READ/<br>WRITE | OUTPUT         |
| Write                      | L              | L              | High Impedance |
| (Store Complement of Data) |                |                |                |
| . Read                     | L              | Н              | Stored Data    |
| Inhibit -                  | Η              | Х              | High Impedance |

H = High Level

L = Low Level

X = Don't Care







# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 | . D. D. METER                                   | CONDITIONS                                                                                     |     | DM54S18                                 | 9     | l   | DM74S18  | 9     | UNITS |
|-----------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|-----|-----------------------------------------|-------|-----|----------|-------|-------|
|                 | PARAMETER                                       | CONDITIONS                                                                                     | MIN | TYP(1)                                  | MAX   | MIN | TYP(1)   | MAX   | UNITS |
| V <sub>IH</sub> | High Level Input Voltage                        |                                                                                                | . 2 |                                         |       | 2   |          |       | ٧.    |
| VIL             | Low Level Input Voltage                         |                                                                                                |     |                                         | 0.8   |     |          | 0.8   | V     |
| Vi              | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>I</sub> = -18 mA                                                 |     |                                         | -1,2  |     |          | -1.2  | V     |
| Гон             | High Level Output Current                       |                                                                                                |     |                                         | -2.0  |     | ,        | -6.5  | mA    |
| V <sub>OH</sub> | High Level Output Voltage                       | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max   | 2.4 | 3.4                                     |       | 2.4 | 3.2      |       | · v   |
| loL             | Low Level Output Current                        |                                                                                                |     |                                         | 16    |     |          | 16    | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>1H</sub> = 2V<br>V <sub>1L</sub> = 0.8V, I <sub>OL</sub> = 16 mA |     |                                         | 0.50  |     |          | 0.45  | v     |
| lo(OFF)         | Off State (High Impedance State) Output Current | $V_{CC} = Max$ $V_{IH} = 2V$ $V_{IL} = 0.8V$ $V_{O} = 0.45V$ $V_{O} = 2.4V$                    |     | 50<br>50                                | ,     |     | 50<br>50 |       | μΑ    |
| !i, ~           | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = iviax, V <sub>1</sub> = 5.5V                                                 |     |                                         | 1.0   |     |          | 1.0   | mA    |
| I <sub>IH</sub> | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                                                   |     |                                         | 25    |     |          | 25    | μΑ    |
| IIL             | Low Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.45V                                                  |     | *************************************** | -0.25 |     |          | -0.25 | mA    |
| los             | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                                       | -30 |                                         | -100  | -30 |          | -100  | mA    |
| I <sub>CC</sub> | Supply Current                                  | V <sub>CC</sub> = Max                                                                          |     | 75                                      | 110   |     | 75       | 110   | mA    |

(1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
 (2) Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    | DADAMETED                                               | activities:            | DM54S189 |     |      |              | UNITS |      |       |
|--------------------|---------------------------------------------------------|------------------------|----------|-----|------|--------------|-------|------|-------|
|                    | PARAMETER                                               | CONDITIONS             | MIN      | TYP | MAX  | MIN          | TYP   | MAX  | UNITS |
| t <sub>AA</sub>    | Access Time From Address                                |                        |          | 25  | 50   |              | 25    | 35   | ns    |
| tczh               | Output Enable Time to<br>High Level from Chip Enable    |                        |          | 12  | 25   |              | 12    | 17   | ns    |
| , t <sub>WZH</sub> | Output Enable Time to<br>High Level from Read/Write     | C <sub>L</sub> = 30 pF |          | 22  | - 40 |              | 22    | 35   | ns    |
| t <sub>CZL</sub>   | Output Enable Time to<br>Low Level from Chip Enable     | R <sub>L</sub> = 280Ω  |          | 22  | 40   |              | 22    | 35   | ns    |
| t <sub>WZL</sub>   | Output Enable Time to<br>Low Level from Read/Write      |                        |          | 22  | 40   |              | 22    | 35   | ns    |
| tcHZ               | Output Disable Time from<br>High Level from Chip Enable |                        |          | 12  | 25   |              | 12    | 17   | ns    |
| t <sub>WHZ</sub>   | Output Disable Time from<br>High Level from Read/Write  | C <sub>L</sub> = 5 pF  |          | 12  |      |              | 12    |      | ns    |
| t <sub>CLZ</sub>   | Output Disable Time from<br>Low Level from Chip Enable  | R <sub>L</sub> = 280Ω  | ŕ        | 12  | 25 ^ |              | 12    | . 17 | ns    |
| twLZ               | Output Disable Time from<br>Low Level from Read/Write   |                        |          | 12  | ,    |              | 12    |      | ns    |
| t <sub>WP</sub>    | Width of Write-Enable Pulse                             |                        | 25       |     |      | 25           |       |      | ns    |
| t <sub>ASW</sub>   | Setup Time Address Chip Enable Data                     |                        | 0 0      |     |      | 0<br>0<br>25 |       |      | ns    |
| t <sub>AHW</sub>   | Hold Time Address Chip Enable Data                      |                        | 0 0      |     |      | 0            |       |      | ns    |



## Parameter Measurement Information

#### LOAD CIRCUIT



 $C_{\rm L}$  includes probe and  $\mu g$  capacitance All drodes are 1N3064.

## **ENABLE AND DISABLE TIME FROM CHIP ENABLE**



#### ACCESS TIME FROM ADDRESS INPUTS



#### WRITE CYCLE



#### Notes

- (1) Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
- (2) When measuring delay times from address inputs, the chip enable input is low and the read/write input is high.
- (3) When measuring delay times from chip enable input, the address inputs are steady-state and the read/write input is high.
- (4) Input waveforms are supplied by pulse generators having the following characteristics:  $t_r \le 2.5$  ns,  $t_f \le 2.5$  ns, PRR  $\le 1$  MHz, and  $Z_{OUT} \approx 50\Omega$ .



# Synchronous Up/Down Counters with Mode Control

## **General Description**

These circuits are synchronous, reversible, up/down counters. The 191 and LS191 are 4-bit binary counters and the 190 and LS190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

#### **Features**

- Counts 8-4-2-1 BCD or binary
- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications

|              | AVERAGE     | TYPICAL   | TYPICAL     |
|--------------|-------------|-----------|-------------|
| TYPE         | PROPAGATION | CLOCK     | POWER       |
|              | DELAY       | FREQUENCY | DISSIPATION |
| 190, 191     | 20 ns       | 25 MHz    | 325 mW      |
| LS190, LS191 | 20 ns       | 25 MHz    | 100 mW      |

#### Connection Diagram



Asynchronous inputs: Low input to load sets  $Q_A = A$ ,  $Q_B = B$ ,  $Q_C = C$ , and  $Q_D = D$ 

54190/74190(J), (N), (W); 54LS190/74LS190(J), (N), (W); 54191/74191(J), (N), (W); 54LS191/74LS191(J), (N), (W)

# DM54/DM74190,LS190,191,LS191

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                             |        |                                            |                                          | DM54/74                |      | D            | M54LS/74 | LS    |         |            |                  |        |  |
|-----------------|-----------------------------|--------|--------------------------------------------|------------------------------------------|------------------------|------|--------------|----------|-------|---------|------------|------------------|--------|--|
|                 | PARAMETER                   |        |                                            | COND                                     | ITIONS                 |      |              | 190, 191 |       | L       | S190, LS19 | 91               | UNITS  |  |
|                 |                             |        |                                            |                                          |                        |      | MIN          | TYP(1)   | MAX   | MIN     | TYP(1)     | MAX              |        |  |
| V <sub>IH</sub> | High Level Input Voltage .  |        |                                            |                                          |                        | 2    |              |          | 2     |         |            | V                |        |  |
| VIL             | Low Level Input Voltage     |        |                                            | DMS                                      |                        | DM54 |              |          | 0.8   |         |            | 0.7              | V      |  |
|                 |                             |        |                                            |                                          |                        | DM74 |              |          | 0.8   |         |            | 0.8              |        |  |
| ٧į              | Input Clamp Voltage         |        | V <sub>CC</sub> = Min                      | I <sub>1</sub> = -12                     | 2 mA                   |      |              |          | -1.5  |         |            |                  | V      |  |
|                 |                             |        | • (, (                                     | I <sub>1</sub> = -18                     | 3 mA                   |      |              |          |       |         |            | -1.5             |        |  |
| Іон             | High Level Output Current   |        |                                            |                                          |                        |      |              |          | -800  |         |            | -400             | μΑ     |  |
| VoH             | High Level Output Voltage   |        |                                            | CC , III                                 |                        | DM54 | 2.4          | 3.4      |       | 2.5     | 3.4        |                  | v      |  |
|                 |                             |        | V <sub>IL</sub> = Max, I                   |                                          |                        | DM74 | 2.4          | 3.4      |       | 2.7     | 3.4        |                  |        |  |
| IOL             | Low Level Output Current    |        |                                            | , <u>L</u>                               |                        | DM54 |              |          | 16    |         |            | 4                | mA     |  |
|                 |                             |        | `                                          |                                          | DM74                   |      |              | 16       |       |         | 8          |                  |        |  |
| Vol             | Low Level Output Voltage    |        | $V_{CC} = Min, V_{IH} = 2V$ $I_{OL} = Max$ |                                          | DM54                   |      | 0.2          | 0.4      |       | 0.25    | 0.4        |                  |        |  |
|                 |                             |        |                                            |                                          | DM74                   |      | 0.2          | 0.4      |       | 0.35    | 0.5        | V                |        |  |
|                 |                             |        | - 10                                       |                                          | I <sub>OL</sub> = 4 mA | DM74 |              |          |       |         |            | 0.4              |        |  |
| 11              | Input Current at Maximum    | Enable |                                            | $V_1 = 5.5$<br>$V_1 = 70$<br>$V_1 = 5.5$ | ōV                     |      |              |          | 1     | ļ       |            |                  |        |  |
|                 | Input Voltage               | ļ      | V <sub>CC</sub> = Max                      | V = 70                                   | /<br>=\/               |      |              |          | 1     | <b></b> |            | 0.3              | mA     |  |
|                 |                             | Others |                                            | $V_1 = 7V$                               |                        |      |              |          | 1     |         |            | 0.1              |        |  |
| I <sub>IH</sub> | High Level Input Current    |        |                                            | V <sub>1</sub> = 2.4                     |                        |      | <del> </del> |          | 120   |         |            |                  |        |  |
| -10             | mgn zoro mpat carron        | Enable |                                            |                                          |                        |      |              |          | 120   |         |            | 60               |        |  |
|                 |                             | Others | V <sub>CC</sub> = Max                      | V <sub>1</sub> = 2.7                     | 4V                     |      |              |          | 40    |         |            |                  | μΑ     |  |
|                 |                             | Others |                                            | V <sub>1</sub> = 2.7                     | 7 V                    |      |              |          |       |         |            | 20               |        |  |
| I <sub>IL</sub> | Low Level Input Current     | Enable | V <sub>CC</sub> = Max,                     | V = 0.4V                                 |                        |      |              |          | -4.8  |         |            | -1.08            | m ^    |  |
|                 |                             | Others | VCC WIAX,                                  | v j ·· 0.4 v                             |                        |      |              |          | - 1.6 |         |            | <del>-</del> 0.4 | mA     |  |
| los             | Short Circuit Output Curren | t      | V <sub>CC</sub> = Max(2                    | 2)                                       |                        | DM54 | -20          |          | -65   | -30     |            | -130             | mA     |  |
|                 |                             |        | *CC 1010×12                                | VCC - IVIdX(Z)                           |                        | DM74 | -18          |          | -65   | -30     |            | -130             | 1 11/4 |  |
| Icc             | Supply Current              |        | V <sub>CC</sub> = Max(3                    | 3)                                       |                        | DM54 |              | 65       | 99    |         | 20         | 35               | mA     |  |
|                 |                             |        |                                            | CC = IVIAX(3)                            |                        | DM74 | L            | 65       | 105   |         | 20         | 35               | mA     |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all inputs grounded and all outputs open.



Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                      |                                                     | FROM            | то                   |                           |     | DM54/74                            | !        | DM  | 54LS/74  | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
|----------------------|-----------------------------------------------------|-----------------|----------------------|---------------------------|-----|------------------------------------|----------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|
|                      | PARAMETER                                           | (INPUT)         | (OUTPUT)             | CONDITIONS                |     | 190, 191                           |          | LS  | 190, LS1 | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UNIT |    |  |
|                      |                                                     | (               | (00),                |                           | MIN | TYP                                | MAX      | MIN | TYP      | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |  |
| f <sub>MAX</sub>     | Maximum Clock<br>Frequency                          |                 |                      |                           | 20  | 25                                 |          | 20  | 25       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | мн   |    |  |
| t <sub>PLH</sub>     | Propagation Delay Time,<br>Low-to-High Level Output |                 |                      |                           |     | 22                                 | 33       |     | 22       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n    |    |  |
| t <sub>PHL</sub>     | Propagation Delay Time,<br>High-to-Low Level Output | Load            | $Q_A, Q_B, Q_C, Q_D$ |                           |     | 33                                 | 50       |     | 33       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . "  |    |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Data A, B, C, D | 0. 0- 0- 0-          | ·                         |     | 14                                 | 22       |     | 14       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n    |    |  |
| <sup>t</sup> PHL     | Propagation Delay Time,<br>High-to-Low Level Output | Data A, B, C, B | $Q_A, Q_B, Q_C, Q_D$ |                           |     | 35                                 | 50       |     | 35       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Clock           | Ripple Clock         |                           |     | 13                                 | 20       |     | 13       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,    |    |  |
| t <sub>PHL</sub>     | Propagation Delay Time,<br>High-to-Low Level Output |                 |                      |                           |     | 16                                 | 24       |     | 16       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Clock           | $Q_A, Q_B, Q_C, Q_D$ |                           |     | 16                                 | 24       |     | 16       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,    |    |  |
| <sup>t</sup> PHL     | Propagation Delay Time,<br>High-to-Low Level Output |                 | ,                    | C <sub>L</sub> = 15 pF,   |     | 24                                 | 36       |     | 24       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Clock           | Max/Min              | $R_L = 400\Omega$ (54/74) |     | 28                                 | 42       |     | 28       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| tPHL                 | Propagation Delay Time,<br>High-to-Low Level Output |                 |                      |                           |     | $C_L = 15 pF$<br>$R_L = 2 k\Omega$ | <u>.</u> | 37  | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,7  | 52 |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Down/Up         | Ripple Clock         | (54LS/74LS)               |     | 30                                 | 45       |     | 30       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,  |    |  |
| <sup>t</sup> PHL     | Propagation Delay Time,<br>High-to-Low Level Output |                 |                      |                           |     |                                    | 30       | 45  |          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45   |    |  |
| t <sub>PLH</sub>     | Propagation Delay Time,<br>Low-to-High Level Output | Down/Up         | Max/Min              |                           |     | 21                                 | - 33     |     | 21       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PHL     | Propagation Delay Time,<br>High-to-Low Level Output |                 |                      |                           |     | 22                                 | 33       |     | 22       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PLH     | Propagation Delay Time,<br>Low-to-High Level Output | Enable          | Ripple Clock         |                           |     |                                    |          |     | 21       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |  |
| <sup>t</sup> PHL     | Propagation Delay Time,<br>High-to-Low Level Output |                 |                      |                           |     | . 2                                |          | 22  | 33       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |  |
| tw(CLOCK)            | Width of Clock Input Pulse                          |                 |                      |                           | 25  |                                    |          | 25  |          | Historia de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa del la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa del la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della completa della comp | . '  |    |  |
| <sup>t</sup> W(LOAD) | Width of Load Input Pulse                           |                 |                      |                           | 35  |                                    |          | 35  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ    |    |  |
| <sup>†</sup> SETUP   | Data Setup Time                                     |                 |                      |                           | 20  | -                                  |          | 20  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |  |
| t <sub>HOLD</sub>    | Data Hold Time                                      |                 |                      |                           | 0   |                                    |          | 0   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |  |
| tenable .            | Enable Time to Clock                                | (               |                      |                           |     |                                    |          | 30  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r    |    |  |



# Logic Diagrams

190, LS190 DECADE COUNTERS



# **Timing Diagrams**

# 190, LS190 DECADE COUNTERS TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES



#### Samuanaa:

- (1) Load (preset) to BCD seven
- (2) Count up to eight, nine, zero, one, and two
- (3) Inhibit
- (4) Count down to one, zero, nine, eight, and seven

# Logic Diagrams (Continued)

191, LS191 BINARY COUNTERS



# Timing Diagrams (Continued)

191, LS191 DECODE COUNTERS
TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES



# Sequence:

- (1) Load (preset) to binary thirteen
- (2) Count up to fourteen, fifteen, zero, one, and two
- (3) Inhibit
- (4) Count down to one, zero, fifteen, fourteen, and thirteen



# Synchronous Up/Down Counters with Dual Clock

# **General Description**

These circuits are synchronous up/down counters; the 192, L192 and LS192 circuits are BCD counters and the 193, L193 and LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed, while the other count input is held high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up and down counting functions. The borrow output produces a pulse equal in width to the count down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count down and count up inputs respectively of the succeeding counter.

#### **Features**

- Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset each flip-flop

| TYPE         | TYPICAL<br>COUNT<br>FREQUENCY | TYPICAL<br>POWER<br>DISSIPATION |
|--------------|-------------------------------|---------------------------------|
| 192, 193     | 25 MHz                        | 325 mW                          |
| L192, L193   | 12 MHz                        | 40 mW                           |
| LS192, LS193 | 32 MHz                        | 95 mW                           |

# Connection Diagram



Note: Low input to load sets  $Q_A = A$ ,  $Q_B = B$ ,  $Q_C = C$ , and  $Q_D = D$ .

54192(J), (W); 74192(J), (N), (W); 54L192/74L192(J), (N), (W); 54LS192/74LS192(J), (N), (W); 54193(J), (W); 74193(J), (N), (W); 54L193/74L193(J), (N), (W); 54LS193/74LS193(J), (N), (W)

| Electrical Characteristics | over recommended | l operating free-air | temperature range | (unless otherwise noted) |
|----------------------------|------------------|----------------------|-------------------|--------------------------|
|----------------------------|------------------|----------------------|-------------------|--------------------------|

|                 |                                        | CONDITIONS                                                   |              |              |                      | DM54/74<br>192, 193 |          |            | DM54L/74L |            |            | DM54LS/74LS                           |              |                   |          |  |
|-----------------|----------------------------------------|--------------------------------------------------------------|--------------|--------------|----------------------|---------------------|----------|------------|-----------|------------|------------|---------------------------------------|--------------|-------------------|----------|--|
|                 | PARAMETER                              |                                                              |              |              |                      |                     |          |            | 1         | L192, L19  | 3          | LS                                    | 5192, LS1    | 93                | UNITS    |  |
|                 |                                        | ,                                                            |              |              |                      |                     | TYP(1)   | MAX        | MIN       | TYP(1)     | MAX        | MIN                                   | TYP(1)       | MAX               | <u> </u> |  |
| VIH             | High Level Input Voltage               |                                                              |              | 2            |                      |                     | 2        |            |           | 2          |            |                                       | V            |                   |          |  |
| V <sub>IL</sub> | Low Level Input Voltage                |                                                              |              |              | DM54<br>DM74         |                     |          | 0.8<br>0.8 |           |            | 0.7        |                                       |              | 0.7               | V ,      |  |
| V <sub>I</sub>  | Input Clamp Voltage                    | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$ $I_1 = -18 \text{ mA}$ |              |              |                      |                     |          | -1.5       |           |            | -1.5       |                                       |              | -1.5              | ٧        |  |
| Іон             | High Level Output Current              |                                                              |              |              |                      | -400                |          |            | -200      |            |            | -400                                  | μΑ           |                   |          |  |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = Max,             | DM54<br>DM74 | 2.4<br>2.4   |                      |                     | 2.4      |            |           | 2.5<br>2.7 | 3.4<br>3.4 |                                       | V            |                   |          |  |
| lor             | Low Level Output Current               |                                                              |              | DM54<br>DM74 |                      |                     | 16<br>16 |            |           | 3.6        |            |                                       | 8            | mA.               |          |  |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                  |              |              | DM54<br>DM74<br>DM74 |                     |          | 0.4        |           | 0.15       | 0.3        | · · · · · · · · · · · · · · · · · · · | 0.25<br>0.35 | 0.4<br>0.5<br>0.4 | V        |  |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage |                                                              |              |              |                      |                     |          | 1          |           |            | 0.1        |                                       |              | 0.1               | mA       |  |
| ľін             | High Level Input Current               | $V_{CC} = Max$ $V_{I} = 2.4V$ $V_{I} = 2.7V$                 |              |              |                      |                     |          | 40         | ·         | <1         | 10         |                                       |              | 20                | μΑ       |  |
| IIL             | Low Level Input Current                | $V_{CC} = Max                                  $             |              |              |                      |                     |          | -1.6       |           | -0.10      | -0.18      |                                       |              | -0.4              | mA       |  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                     |              |              |                      | -20<br>-18          |          | -55<br>-55 | -3        | 9<br>9     | -15<br>-15 | -30                                   |              | -130<br>-130      | mA       |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                                     |              |              |                      |                     | 65<br>65 | 89<br>102  |           | 8          | 13<br>13   |                                       | 19<br>19     | 34<br>34          | mA       |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5V.







3

# **Timing Diagrams**

# 192, L192, LS192 DECADE COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES



#### Sequence:

- (1) Clear outputs to zero.
- (2) Load (preset) to BCD seven.
- (3) Count up to eight, nine, carry, zero, one, and two.
- (4) Count down to one, zero, borrow, nine, eight, and seven.

#### Notes:

- (A) Clear overrides load, data, and count inputs.
- (B) When counting up, count-down input must be high; when counting down, count-up input must be high.



# Timing Diagrams (Continued)

# 193, L193, LS193 BINARY COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES



#### Sequence:

- (1) Clear outputs to zero.
- (2) Load (preset) to binary thirteen.
- (3) Count up to fourteen, fifteen, carry, zero, one, and two.
- (4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

#### Notes:

- (A) Clear overrides load, data, and count inputs.
- (B) When counting up, count-down input must be high; when counting down, count-up input must be high.



# 4-Bit Bidirectional Universal Shift Registers

#### **General Description**

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load Shift right (in the direction  $Q_A$  toward  $Q_D$ ) Shift left (in the direction  $Q_D$  toward  $Q_A$ ) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data

shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls of the DM54194/DM74194 should be changed only while the clock input is high.

#### **Features**

- Parallel inputs and outputs
- Four operating modes:
   Synchronous parallel load
   Right shift
   Left shift
   Do nothing
- Positive edge-triggered clocking
- Direct overriding clear

| TYPE   | TYPICAL CLOCK FREQUENCY | TYPICAL POWER DISSIPATION |
|--------|-------------------------|---------------------------|
| 194    | 36 MHz                  | 195 mW                    |
| LS194A | 36 MHz                  | 75 mW                     |
| S194   | 105 MHz                 | 425 mW                    |

## Connection Diagram



54194(J), (W); 74194(J), (N), (W); 54LS194A/74LS194A(J), (N), (W); 74S194(N)

#### Truth Table

| INPUTS |      |    |          |      |          |   |     |     |   | OUTPUTS         |                      |                      |                      |  |
|--------|------|----|----------|------|----------|---|-----|-----|---|-----------------|----------------------|----------------------|----------------------|--|
| CLEAR  | MODE |    | СГОСК    | SEI  | PARALLEL |   |     |     |   | 0-              | ^                    | _                    |                      |  |
|        | S1   | SO | CLOCK    | LEFT | RIGHT    | Α | В   | С   | D | QA              | ΩB                   | o <sub>c</sub>       | α <sub>D</sub>       |  |
| L      | х    | Х  | ×        | ×    | X        | Х | Х   | Х   | х | L               | L                    | L                    | L                    |  |
| н      | ×    | х  | L        | ×    | X        | X | Х   | Х   | X | Q <sub>A0</sub> | $Q_{B0}$             | $\sigma_{\text{CO}}$ | $\sigma_{\text{D0}}$ |  |
| н      | Н    | н  | <b>†</b> | x    | X        | a | b   | c   | d | a               | b.                   | С                    | d                    |  |
| Н      | L    | Н  | 1        | х    | Н        | × | Х   | X   | Х | H-              | $\mathtt{Q}_{An}$    | $Q_{Bn}$             | $Q_{Cn}$             |  |
| Н      | L    | н  | 1        | ×    | L        | × | · X | X   | Х | L.              | $\mathtt{Q}_{An}$    | $Q_{Bn}$             | $Q_{Cn}$             |  |
| Н      | Н    | L  | 1        | н    | ′. X     | × | X   | Х   | X | QBn             | $\mathtt{Q}_{Cn}$    | $\mathtt{Q}_{Dn}$    | Н                    |  |
| н      | Н    | L  | 1        | L    | X        | Х | Х   | · X | Х | Q <sub>Bn</sub> | $\mathtt{Q}_{Cn}$    | $\mathtt{Q}_{Dn}$    | L                    |  |
| Н      | L    | L  | X        | ×    | Χ.       | х | X   | Х   | Х | QAO             | $\sigma_{\text{B0}}$ | $\alpha_{\text{co}}$ | $\sigma_{D0}$        |  |

H = High Level(steady state), L = Low Level(steady state), X = Don't Care(any input, including transitions)

a, b, c, d = The level of steady state input at inputs A, B, C, or D, respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = The level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , or  $Q_D$ , respectively, before the indicated steady state input conditions were established.  $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = The level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , respectively, before the most recent † transition of the clock.

<sup>↑ =</sup> Transition from low to high level

|                 |                                        |                                     |                                                    |                        |      | DM54/74 |        |      | DI       | VI54LS/74     | LS   | DM74S |        |          | 4     |  |
|-----------------|----------------------------------------|-------------------------------------|----------------------------------------------------|------------------------|------|---------|--------|------|----------|---------------|------|-------|--------|----------|-------|--|
| PARAMETER       |                                        | CONDITIONS                          |                                                    |                        |      | 194     |        |      | LS194A   |               |      | S194  |        |          | UNITS |  |
|                 |                                        |                                     |                                                    |                        |      |         | TYP(1) | MAX  | MIN      | TYP(1)        | MAX  | MIN   | TYP(1) | MAX      |       |  |
| VIH             | High Level Input Voltage               |                                     |                                                    |                        |      | 2       |        |      | 2        |               |      | 2     | -      |          | ٧     |  |
| VIL             | Low Level Input Voltage                |                                     |                                                    |                        | DM54 |         |        | 8.0  |          |               | 0.7  |       |        | N/A      | V     |  |
|                 |                                        |                                     |                                                    |                        | DM74 |         |        | 8.0  |          |               | 8.0  |       |        | 0.8      | V     |  |
| $V_1$           | Input Clamp Voltage                    | V <sub>CC</sub> = Min               | I <sub>1</sub> = -12 mA<br>I <sub>1</sub> = -18 mA |                        |      |         |        | -1.5 |          |               |      |       |        |          | V     |  |
|                 |                                        | VCC WIIII                           |                                                    |                        |      |         |        |      |          | -1.5          |      |       | -1.2   | <u> </u> |       |  |
| I <sub>OH</sub> | High Level Output Current              |                                     |                                                    | ,                      |      | -800    |        |      | -400     |               |      | -1000 | μΑ     |          |       |  |
| V <sub>OH</sub> | High Level Output Voltage              | Voltage $V_{CC} = Min, V_{IH} = 2V$ |                                                    |                        |      | 2.4     | 3.4    |      | 2.5      | 3.5           |      |       | N/A    |          | J     |  |
|                 |                                        | V <sub>IL</sub> = Max, I            | DM74                                               | 2.4                    | 3.4  |         | 2.7    | 3.5  |          | 2.7           | 3.4  |       |        |          |       |  |
| IOL             | Low Level Output Current               |                                     |                                                    |                        | DM54 |         |        | 16   |          |               | 4    |       |        | N/A      | mA    |  |
|                 |                                        |                                     |                                                    |                        | DM74 |         |        | 16   |          |               | 8    |       |        | 20       |       |  |
| Vol             | Low Level Output Voltage               | \ / = Max                           |                                                    | I <sub>OL</sub> = Max  | DM54 |         | 0.2    | 0.4  |          | 0.25          | 0.4  |       |        | N/A      | _     |  |
|                 |                                        |                                     |                                                    | <u> </u>               | DM74 |         | 0.2    | 0.4  |          | 0.35          | 0.5  |       |        | 0.5      | V     |  |
|                 |                                        |                                     |                                                    | I <sub>OL</sub> = 4 mA | DM74 |         |        |      |          | 0.25          | 0.4  |       |        |          |       |  |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max               | V <sub>1</sub> = 5.5V<br>V <sub>1</sub> = 7V       |                        |      |         | 1      |      |          |               |      |       | 1      | mA       |       |  |
|                 |                                        |                                     |                                                    |                        |      | ļ       |        |      | <u> </u> |               | 0.1  |       |        |          |       |  |
| 1111            | High Level Input Current               | V <sub>CC</sub> = Max               | V <sub>1</sub> = 2.4V                              |                        |      |         |        | 40   |          |               |      |       |        | 50       | μΑ    |  |
|                 |                                        |                                     | V <sub>1</sub> = 2.7V                              |                        |      |         |        |      |          |               | 20   |       |        |          |       |  |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max               | V <sub>1</sub> = 0.4V                              |                        |      |         |        | -1.6 |          |               | -0.4 |       |        | -2       | mA    |  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)            |                                                    | DM54                   | -20  |         | -57    | -30  |          | -130          |      | N/A   |        | mA       |       |  |
|                 |                                        |                                     |                                                    | DM74                   | -18  |         | -57    | -30  |          | - <u>1</u> 30 | -40  |       | -100   |          |       |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3             | 3)                                                 |                        |      | 39      | 63     |      | 15       | 23            |      | 85    | 135    | mA       |       |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

(3) With all outputs open, inputs A through D grounded, and 4.5V applied to S0, S1, clear, and the serial inputs, ICC is tested with a momentary GND, then 4.5V applied to clock.

|                                       |                               |                                       | Dr                                         | VI54/74 |     |     | DM5                                                | 4LS/74 | LS  |      |                                            | M74S |      |      | İ     |
|---------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------|---------|-----|-----|----------------------------------------------------|--------|-----|------|--------------------------------------------|------|------|------|-------|
|                                       | PARAM                         | ETER                                  |                                            | 194     |     |     | L                                                  | S194A  |     |      | S194                                       |      |      |      | UNITS |
| · · · · · · · · · · · · · · · · · · · |                               |                                       | CONDITIONS                                 | MIN     | TYP | MAX | CONDITIONS                                         | MIN    | TYP | MÀX  | CONDITIONS                                 | MIN  | TYP  | MAX  |       |
| f <sub>MAX</sub>                      | Maximum Clo                   | ock Frequency                         |                                            | 25      | 36  |     |                                                    | 25     | 36  |      | ,                                          | 70   | 105  |      | MHz   |
| <sup>t</sup> PHL                      | Propagation D<br>Level Output | Delay Time, High-to-Low<br>From Clear | - 15:55                                    |         | 19  | 30  | 0 15 5                                             |        | 19  | 30   | 0 15 5                                     |      | 12.5 | 18.5 | ns    |
| <sup>t</sup> PLH                      | Propagation D<br>Level Output | Delay Time, Low-to-High<br>From Clock | $C_L = 15^{\circ} pF$<br>$R_L = 400\Omega$ |         | 14  | 22  | $C_L = 15 \text{ pF}$<br>$R_L = 2 \text{ k}\Omega$ |        | 14  | 22   | $C_L = 15 \text{ pF}$<br>$R_L = 280\Omega$ | 4    | 8    | 12   | ns    |
| tpHL                                  | Propagation E<br>Level Output | Delay Time, High-to-Low<br>From Clock |                                            |         | 14  | 22  |                                                    | ,      | 17  | . 22 | -                                          | 4    | 11 . | 16.5 | ns    |
| tw(CLOCK)                             | Width of Cloc                 | k Pulse                               |                                            | 20      |     |     |                                                    | 20     |     |      |                                            | 7    |      |      | · ns  |
| tw(CLEAR)                             | Width of Clea                 | r Pulse                               | ÷                                          | 20      |     |     | •                                                  | 20     |     |      |                                            | 12   |      |      | ns    |
| t <sub>SETUP</sub>                    | Setup Time                    | Mode Control                          |                                            | 30      |     |     | -                                                  | 30     |     |      |                                            | 11   |      |      |       |
|                                       |                               | Serial and Parallel Data              |                                            | 20      |     |     |                                                    | 20     |     |      | !                                          | 5    |      |      | . ns  |
|                                       |                               | Clear Inactive State                  |                                            | 25      |     |     | ·                                                  | 25     |     |      |                                            | 9    |      | _    |       |
| tHOLD                                 | Hold Time at Any Input        |                                       |                                            | 0       |     |     |                                                    | 0      |     |      |                                            | 3    | ,    |      | ns    |





These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load Shift (in the direction  $\mathbf{Q}_{\mathbf{A}}$  toward  $\mathbf{Q}_{\mathbf{D}}$ )

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/ load control input is high. Serial data for this mode is entered at the J- $\overline{K}$  inputs. These inputs permit the first stage to perform as a J- $\overline{K}$ , D, or T-type flip-flop as shown in the truth table.

The high-performance S195, with a 105 MHz typical shift frequency, is particularly attractive for very high-

# 4-Bit Parallel Access Shift Registers

speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottky-clamped shift register.

## **Features**

- Synchronous parallel load
- Positive-edge-triggered clocking
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and K inputs to first stage
- Complementary outputs from last stage
- For use in high-performance: accumulators/processors serial-to-parallel, parallel-to-serial converters

| TYPE   | TYPICAL CLOCK<br>FREQUENCY | TYPICAL POWER DISSIPATION |
|--------|----------------------------|---------------------------|
| 195    | 39 MHz                     | 195 mW                    |
| LS195A | 39 MHz                     | 70 mW                     |
| S195   | 105 MHz                    | 350 mW                    |

# Connection Diagram



54195(J), (W); 74195(J), (N), (W); 54LS195A/74LS195A(J), (N), (W); 74S195(N)

# Truth Table

|       | INPUTS |       |     |     |   |      |      |   |                      |                   | OUTPUTS           |                   |                                 |  |  |  |
|-------|--------|-------|-----|-----|---|------|------|---|----------------------|-------------------|-------------------|-------------------|---------------------------------|--|--|--|
| CLEAR | SHIFT/ | CLOCK | SER | IAL |   | PARA | LLEL |   | 0                    | ο.                |                   | QD                | $\bar{\mathbf{q}}_{\mathbf{p}}$ |  |  |  |
| CLEAN | LOAD - | CLOCK | J   | ĸ   | Α | В    | С    | D | QA                   | ΩB                | αc                | սը<br>—           | Чb                              |  |  |  |
| L     | Х      | Х     | Х   | X   | Х | Х    | Х    | Х | L                    | L                 | · L               | L,                | H                               |  |  |  |
| н     | L      | ↑ ;   | Х   | Х   | a | b    | С    | d | a                    | b                 | Ċ                 | d                 | d                               |  |  |  |
| н     | н      | L     | ×   | X   | × | Х    | X    | X | QAO                  | $Q_{B0}$          | $Q_{CO}$          | $Q_{D0}$          | $\bar{Q}_{D0}$                  |  |  |  |
| Н     | н      | 1.    | L   | · H | × | Х    | X    | Х | QAO                  | $\mathtt{Q}_{A0}$ | $\mathbf{Q}_{Bn}$ | $\mathbf{Q}_{Cn}$ | $\overline{Q}_{Cn}$             |  |  |  |
| н     | Н      | 1.    | L   | · L | × | Х    | X    | X | L                    | $\mathbf{Q}_{An}$ | $Q_{Bn}$          | $\mathbf{Q}_{Cn}$ | $\bar{Q}_{Cn}$                  |  |  |  |
| н     | H      | 1     | н   | , н | Х | Х    | X    | Х | н                    | $\mathbf{Q}_{An}$ | $\mathbf{Q}_{Bn}$ | $\mathbf{Q}_{Cn}$ | $\widetilde{Q}_{Cn}$            |  |  |  |
| Н     | н      | 1     | H'  | L   | Х | X    | Х    | Х | $\widetilde{Q}_{An}$ | $\mathbf{Q}_{An}$ | $Q_{Bn}$          |                   | $\widetilde{\mathbf{Q}}_{Cn}$   |  |  |  |

H = High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions)

<sup>↑ =</sup> Transition from low to high level

a, b, c, d = The level of steady state input at A, B, C, or D, respectively.

 $Q_{AO}$ ,  $Q_{BO}$ ,  $Q_{CO}$ ,  $Q_{DO}$  = The level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , or  $Q_D$ , respectively, before the indicated steady state input conditions were established.  $Q_{AO}$ ,  $Q_{BO}$ ,  $Q_{CO}$  = The level of  $Q_A$ ,  $Q_B$ , or  $Q_C$ , respectively, before the most recent transition of the clock.

|                |                                        |                          |                                                              |                        |      |     | DM54/74 |      | DI  | M54LS/74 | LS              |     |        |       |       |
|----------------|----------------------------------------|--------------------------|--------------------------------------------------------------|------------------------|------|-----|---------|------|-----|----------|-----------------|-----|--------|-------|-------|
|                | PARAMETER                              |                          | COND                                                         | TIONS                  |      |     | 195     |      |     | LS195A   |                 |     | S195   |       | UNITS |
|                |                                        |                          |                                                              |                        |      | MIN | TYP(1)  | MAX  | MIN | TYP(1)   | MAX             | MIN | TYP(1) | MAX   |       |
| VI             | High Level Input Voltage               |                          |                                                              |                        |      | 2   |         |      | 2   |          |                 | 2   |        |       | ٧     |
| Vı             | Low Level Input Voltage                |                          |                                                              |                        | DM54 |     |         | 0.8  |     |          | 0.7             |     |        | N/A   | V     |
|                |                                        |                          |                                                              |                        | DM74 |     |         | 0.8  |     |          | 0.8             |     |        | 0.8   | ]     |
| Vi             | Input Clamp Voltage                    | V <sub>CC</sub> = Min    | $V_{CC} = Min$ $I_1 = -12 \text{ mA}$ $I_2 = -18 \text{ mA}$ |                        |      |     |         | -1.5 |     |          | -1.5            |     |        | -1.2  | V     |
|                |                                        | <b></b>                  | 1 <sub>1</sub> = -18 m/                                      | \<br>                  |      | ļ   |         |      | ļ   |          |                 | ļ   |        |       |       |
| lo             | High Level Output Current              |                          |                                                              |                        |      |     |         | -800 |     |          | <sup>-400</sup> |     |        | -1000 | μΑ    |
| Vo             | H High Level Output Voltage            | V <sub>CC</sub> = Min,   |                                                              |                        | DM54 | 2.4 | 3.4     |      | 2.5 | 3.4      |                 |     | N/A    |       | V     |
|                |                                        | V <sub>IL</sub> = Max, I | I <sub>OH</sub> = Max                                        |                        | DM74 | 2.4 | 3.4     |      | 2.7 | 3.4      |                 | 2.7 | 3.4    |       |       |
| Io             | Low Level Output Current               |                          |                                                              |                        | DM54 |     |         | 16   |     |          | 4               |     |        | N/A   |       |
|                |                                        |                          |                                                              |                        | DM74 |     |         | 16   |     |          | 8               |     |        | 20    | mA    |
| Vc             | L Low Level Output Voltage             |                          |                                                              |                        | DM54 |     | 0.2     | 0.4  |     | 0.25     | 0.4             |     |        | N/A   |       |
|                |                                        | V <sub>CC</sub> = Min, V | V <sub>IH</sub> = 2V                                         | I <sub>OL</sub> = Max  | DM74 |     | 0.2     | 0.4  |     | 0.35     | 0.5             |     |        | 0.5   | V     |
|                |                                        | V <sub>IL</sub> = Max    |                                                              | I <sub>OL</sub> = 4 mA | DM74 |     |         |      |     | 0.25     | 0.4             |     |        |       |       |
| l <sub>1</sub> | Input Current at Maximum Input Voltage | \/ - \M                  | V <sub>I</sub> = 5.5V                                        |                        |      |     |         | 1    |     |          |                 |     |        | 1     |       |
|                |                                        | V <sub>CC</sub> = Max    | V <sub>1</sub> = 7V                                          |                        |      |     |         |      |     |          | 0.1             |     |        |       | mA    |
| In             | High Level Input Current               | 1,,                      | $V_1 = 2.4\dot{V}$                                           | <u> </u>               |      |     |         | 40   |     |          |                 |     |        |       |       |
|                |                                        | V <sub>CC</sub> = Max    | V <sub>1</sub> = 2.7V                                        |                        |      |     |         |      |     |          | 20              |     |        | 50    | μΑ    |
| IIL            | Low Level Input Current                |                          | V <sub>1</sub> = 0.4V                                        |                        |      |     |         | -1.6 |     |          | -0.4            |     |        |       |       |
|                |                                        | V <sub>CC</sub> = Max    | V <sub>1</sub> = 0.5V                                        |                        |      |     |         |      |     |          |                 |     |        | -2    | mA    |
| los            | Short Circuit Output Current           | V - M/                   | 2)                                                           | -                      | DM54 | -20 |         | -57  | -30 |          | -130            |     | N/A    |       |       |
|                |                                        | $V_{CC} = Max(2)$        |                                                              | DM74                   | -18  |     | 57      | -30  |     | -130     | -40·            |     | -100   | mA    |       |
| Ico            | : Supply Current                       | V <sub>CC</sub> = Max(   | V <sub>CC</sub> = Max(3)                                     |                        |      |     | 39      | 63   |     | 14       | 21              |     | 70     | 109   | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
- (3) With all outputs open, shift/load grounded, and 4.5V applied to the J, K, and data inputs, I<sub>CC</sub> is measured by applying a momentary ground, followed by 4.5V, to clear and then applying a momentary ground, followed by 4.5V, to clock.

|                      |                                                                |                                       | DI                     | M54/74 |     |     | DM5                    | 4LS/74 | LS . |     |                        | M74S          |      |      |       |
|----------------------|----------------------------------------------------------------|---------------------------------------|------------------------|--------|-----|-----|------------------------|--------|------|-----|------------------------|---------------|------|------|-------|
|                      | PARAME                                                         | TER                                   |                        | 195    |     |     | L                      | S195   |      |     |                        | S1 <b>9</b> 5 |      |      | UNITS |
|                      |                                                                |                                       | CONDITIONS             | MIN    | TYP | MAX | CONDITIONS             | MIN    | TYP  | MAX | CONDITIONS             | MIN           | TYP  | MAX  | ·     |
| fMAX                 | Maximum Clo                                                    | ock Frequency                         | ***                    | 30     | 39  |     |                        | 30     | 39   |     |                        | 70            | 105  |      | MHz   |
| t <sub>PHL</sub>     | Propagation [<br>Level Output                                  | Delay Time, High-to-Low<br>From Clear | C <sub>1</sub> = 15 pF |        | 19  | 30  | C <sub>L</sub> = 15 pF |        | 19   | 30  | C <sub>L</sub> = 15 pF |               | 12.5 | 18.5 | ns    |
| tpLH                 | Propagation Delay Time, Low-to-High<br>Level Output From Clock |                                       | $R_L = 400\Omega$      |        | 14  | 22  | $R_L = 2 k\Omega$      |        | 14   | 22  | $R_L = 280\Omega$      |               | 8    | 12   | ns    |
| t <sub>PHL</sub>     | Propagation L<br>Level Output                                  | Delay Time, High-to-Low<br>From Clock |                        |        | 17  | 26  |                        |        | 17   | 26  |                        | ,             | 11   | 16.5 | ns    |
| tw(CLOCK)            | Width of Clo                                                   | k Input Pulse                         | ·                      | 16     |     |     | -                      | 16     |      |     |                        | 7             |      |      | ns    |
| tw(CLEAR)            | Width of Clea                                                  | r Input Pulse                         |                        | 12     |     |     |                        | 12     |      |     |                        | 12            |      |      | ns    |
| <sup>t</sup> SETUP   | Setup Time                                                     | Shift/Load                            |                        | 25     |     |     |                        | 25     |      |     |                        | 11            |      |      |       |
|                      |                                                                | Serial and Parallel Data              |                        | 15     |     |     |                        | 15     |      |     |                        | 5             |      |      | ns    |
|                      |                                                                | Clear Inactive-State                  |                        | 25     |     |     |                        | 25     |      |     |                        | 9             |      |      |       |
| <sup>t</sup> RELEASE | Shift/Load Release Time                                        |                                       |                        |        |     | 10  |                        |        |      | 10  |                        |               |      | 6    | . ns  |
| tHOLD                | Serial and Par                                                 | allel Data Hold Time                  |                        | 0      |     |     |                        | 0      | -    |     |                        | 3             |      |      | ns    |



# Logic Diagram



<sup>&</sup>lt;sup>†</sup>This connection is made on 195 only.

# **Timing Diagram**

# TYPICAL CLEAR, SHIFT, AND LOAD SEQUENCES





# 8-Bit Shift Registers

# **General Description**

These 8-bit shift registers feature buffered inputs to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes to minimize switching transients and simplify system design. Maximum input clock frequency is typically 35 MHz and power dissipation is typically 360 mW.

# DM54198/DM74198

These bidirectional registers are designed to incorporate virtually all of the features a system designer may want in a shift register. They feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating mode control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load Shift right (in the direction  $Q_A$  toward  $Q_H$ ) Shift left (in the direction  $Q_H$  toward  $Q_A$ ) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the eight bits of data and taking both mode control inputs, SO and S1 high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

### DM54199/DM74199

These registers feature parallel inputs, parallel outputs,  $J \cdot \overline{K}$  serial inputs, shift/load control input, a direct overriding clear line, and gated clock inputs. The register has three modes of operation:

Parallel (broadside) load Shift (in the direction  $Q_A$  toward  $Q_H$ ) Inhibit clock (do nothing)

Parallel loading is accomplished by applying the eight bits of data and taking the shift/load control input low when the clock input is not inhibited. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when shift/load is high and the clock input is not inhibited. Serial data for this mode is entered at the J-K inputs. See the truth table for levels required to enter serial data into the first flip-flop.

Both of the clock inputs are identical in function and may be used interchangeably to serve as clock or clock-inhibit inputs. Holding either clock input high inhibits clocking; but when one is held low, a clock input applied to the other input is passed to the eight flip-flops of the register. The clock-inhibit input should be changed to the high level only while the clock input is high.

# Connection Diagrams





54199/74199(J), (N)



|                 | PARAMETER                              | CONDITIONS                                                                  |              |     | DM54/74<br>198, 199 |             | UNITS |
|-----------------|----------------------------------------|-----------------------------------------------------------------------------|--------------|-----|---------------------|-------------|-------|
|                 |                                        |                                                                             |              | MIN | TYP(1)              | MAX         | 0.00  |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                             |              | 2   |                     |             | ٧     |
| VIL             | Low Level Input Voltage                |                                                                             |              |     |                     | 0.8         | ٧     |
| Vi              | Input Clamp Voltage                    | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$                                     |              |     |                     | -1.5        | V     |
| Іон             | High Level Output Current              |                                                                             |              |     |                     | -800        | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OH} = -800\mu A$    |              | 2.4 |                     |             | ٧     |
| loL             | Low Level Output Current               | _                                                                           |              |     |                     | 16          | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V_{IL}$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$ |              |     |                     | 0.4         | >     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                               |              |     |                     | 1           | mA    |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                               |              |     |                     | 40          | μΑ    |
| IIL             | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.4V$                                               |              |     |                     | -1.6        | mΑ    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                    | DM54         | -20 |                     | -57         | mA    |
|                 |                                        |                                                                             | DM74         | -18 |                     | <i>−</i> 57 |       |
| Icc             | Supply Current                         | $V_{CC}$ = Max<br>(See Conditions for $I_{CC}$ Table)                       | DM54<br>DM74 |     | 72<br>72            | 104<br>116  | mA    |

# Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.
- (2) Not more than one output should be shorted at a time.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    |                                                                |                                        |     | DM54/74  | ı   |       |  |
|--------------------|----------------------------------------------------------------|----------------------------------------|-----|----------|-----|-------|--|
|                    | PARAMETER                                                      | CONDITIONS                             |     | 198, 199 |     |       |  |
|                    |                                                                |                                        | MIN | TYP      | MAX | UNITS |  |
| f <sub>MAX</sub>   | Maximum Input Count Frequency                                  |                                        | 25  | 35       |     | MHz   |  |
| <sup>t</sup> PHL   | Propagation Delay Time, High-to-Low<br>Level Output From Clear |                                        |     | 23       | 35  | ns    |  |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low<br>Level Output From Clock | $C_L = 15 \text{ pF}, R_L = 400\Omega$ |     | 20       | 30  | ns    |  |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High<br>Level Output From Clock |                                        |     | 17       | 26  | ns    |  |
| t <sub>W</sub>     | Width of Clock or Clear Pulse                                  |                                        | 20  |          |     | ns    |  |
| <sup>t</sup> SETUP | Mode-Control Setup Time                                        |                                        | 30  |          |     | ns    |  |
| t <sub>SETUP</sub> | Data Setup Time                                                | •                                      | 20  |          |     | ns    |  |
| tHOLD              | Hold Time at Any Input                                         |                                        | 0   |          |     | ns    |  |

# Conditions for $I_{CC}$ (All outputs are open)

| TYPE       | APPLY 4.5V                                               | FIRST GROUND,<br>THEN APPLY 4.5V | GROUND                                                     |
|------------|----------------------------------------------------------|----------------------------------|------------------------------------------------------------|
| 198<br>199 | Serial Input, S0, S1 J, $\overline{K}$ , Inputs A thru H | Clock<br>Clock                   | Clear, Inputs A thru H<br>Clock Inhibit, Clear, Shift/Load |



# **Truth Tables**

198

|       | INPUTS |    |        |      |       |          |                 |                   | OUTPUTS |                   |          |  |  |  |  |
|-------|--------|----|--------|------|-------|----------|-----------------|-------------------|---------|-------------------|----------|--|--|--|--|
| CLEAR | МС     | DE | OI OOK | SEF  | RIAL  | PARALLEL | _               |                   |         |                   |          |  |  |  |  |
| CLEAR | S1     | S0 | CLOCK  | LEFT | RIGHT | АН       | ΩΑ              | QB                |         | $\alpha_{G}$      | QH       |  |  |  |  |
| · L   | Х      | Х  | Х      | х    | X     | ×        | L               | L                 |         | L                 | L        |  |  |  |  |
| н     | х      | х  | L      | х    | X     | x        | QAO             | $Q_{B0}$          |         | $Q_{GO}$          | $Q_{HO}$ |  |  |  |  |
| • н   | н      | н  | 1      | Х    | X     | ah       | a               | b                 |         | g                 | h        |  |  |  |  |
| н     | L      | н  | 1      | Х    | Н     | ×        | Н               | $Q_{An}$          |         | $Q_{Fn}$          | $Q_{Gn}$ |  |  |  |  |
| н     | I.L.   | н  | 1      | х    | L     | ×        | L               | $\mathbf{Q}_{An}$ |         | $\mathbf{Q}_{Fn}$ | $Q_{Gn}$ |  |  |  |  |
| Н     | н      | L  | 1      | н    | X     | ×        | Q <sub>Bn</sub> | $Q_{Cn}$          |         | $\mathbf{Q}_{Hn}$ | H        |  |  |  |  |
| Н     | н      | L  | 1      | L    | X     | ×        | Q <sub>Bn</sub> | $\mathbf{Q}_{Cn}$ |         | $\mathbf{Q}_{Hn}$ | L        |  |  |  |  |
| н     | L      | L  | Х      | х    | Х     | ×        | QAO             | $Q_{B0}$          |         | $Q_{G0}$          | $Q_{H0}$ |  |  |  |  |

H = High Level (steady state), L = Low Level (steady state)

X = Don't care (any input, including transitions)

↑ = Transition from low to high level

a . . . h = The level of steady state input at inputs A thru H, respectively.

QA0. QB0, QG0, QH0 = The level of QA, QB, QG, or QH, respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ , etc. = The level of  $Q_A$ ,  $Q_B$ , etc., respectively, before the most-recent  $\uparrow$  transition of the clock.

199

|        | h-/    | 1       | NPUTS  |     |     |          | OUTPUTS             |                      |                   |         |                |  |
|--------|--------|---------|--------|-----|-----|----------|---------------------|----------------------|-------------------|---------|----------------|--|
| OL FAD | SHIFT/ | CLOCK   | 01.001 | SER | IAL | PARALLEL |                     | _                    |                   |         |                |  |
| CLEAR  | LOAD   | INHIBIT | CLOCK  | J   | ĸ   | A H      | QA                  | QB                   | . oc              | • • • • | Q <sub>H</sub> |  |
| ,L     | х      | х       | х      | х   | х   | х        | L                   | L                    | L                 |         | L              |  |
| Н.     | х      | L       | L      | х   | Х   | x        | $Q_{A0}$            | $Q_{BO}$             | $Q_{C0}$          |         | $Q_{HO}$       |  |
| н      | L      | L       | 1      | х   | ·X  | ah       | а                   | b                    | c                 |         | h              |  |
| н      | н      | L       | 1      | L   | н   | ×        | Q <sub>A0</sub>     | $Q_{A0}$             | $Q_{B0}$          |         | $Q_{Gn}$       |  |
| Н      | н      | L       | 1      | L   | L   | ×        | L                   | $\mathbf{Q}_{An}$    | $Q_{Bn}$          |         | $Q_{Gn}$       |  |
| н      | н      | L       | 1      | н   | н   | ×        | н                   | $\mathbf{Q}_{An}$    | $Q_{Bn}$          |         | $Q_{Gn}$       |  |
| . н    | н      | L       | 1      | н   | L   | x        | $\overline{Q}_{An}$ | $\mathbf{Q}_{An}$    | $Q_{Bn}$          |         | $\Omega_{Gn}$  |  |
| Н      | х      | н       | 1      | Х   | Х   | x        |                     | $\sigma^{\text{B0}}$ | $\sigma_{\rm B0}$ |         | $Q_{HO}$       |  |

H = High Level (steady state), L = Low Level (steady state)

X = Don't care (any input, including transitions)

1 = Transition from low to high level

a...h = The level of steady state input at inputs A thru H, respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ...  $Q_{H0}$  = The level of  $Q_A$ ,  $Q_B$ , or  $Q_C$  thru  $Q_H$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ ...  $Q_{Gn}$  = The level of  $Q_A$  or  $Q_B$  thru  $Q_G$ , respectively, before the most-recent transition of the clock.



# Logic Diagrams

198









# Parameter Measurement Information

198
TEST TABLE FOR SYNCHRONOUS INPUTS

| DATA INPUT<br>FOR TEST | S <sub>1</sub> | S <sub>0</sub> | OUTPUT TESTED<br>(SEE NOTE E)        |
|------------------------|----------------|----------------|--------------------------------------|
| Α                      | 4.5V           | 4.5V           | Q <sub>A</sub> at t <sub>n+1</sub> . |
| В                      | 4.5V           | 4.5∨           | Ω <sub>B</sub> at t <sub>n+1</sub>   |
| С                      | 4.5V           | 4.5V           | Q <sub>C</sub> at t <sub>n+1</sub>   |
| , D                    | 4.5V           | 4.5V           | O <sub>D</sub> at t <sub>n+1</sub>   |
| E                      | 4.5∨           | 4.5V           | O <sub>E</sub> at t <sub>n+1</sub>   |
| F                      | 4.5V           | 4.5V           | Q <sub>F</sub> at t <sub>n+1</sub>   |
| G                      | 4.5V           | 4.5V           | Q <sub>G</sub> at t <sub>n+1</sub>   |
| н                      | 4.5V           | 4.5V           | Q <sub>H</sub> at t <sub>n+1</sub>   |
| L Serial Input         | 4.5V           | 0V             | Q <sub>A</sub> at t <sub>n+8</sub>   |
| R Serial Input         | ٥٧             | 4.5V           | O <sub>H</sub> at t <sub>n+8</sub>   |

199
TEST TABLE FOR SYNCHRONOUS INPUTS

| DATA INPUT<br>FOR TEST | SHIFT/LOAD | OUTPUT TESTED<br>(SEE NOTE E)      |
|------------------------|------------|------------------------------------|
| A                      | 0∨         | Q <sub>A</sub> at t <sub>n+1</sub> |
| В                      | 0V         | O <sub>B</sub> at t <sub>n+1</sub> |
| C                      | 0∨         | Q <sub>C</sub> at t <sub>n+1</sub> |
| D                      | ٥v         | Q <sub>D</sub> at t <sub>n+1</sub> |
| E                      | 0V         | Q <sub>E</sub> at t <sub>n+1</sub> |
| F                      | 0V         | O <sub>F</sub> at t <sub>n+1</sub> |
| G                      | 0V         | Q <sub>G</sub> at t <sub>n+1</sub> |
| н.                     | 0V         | Q <sub>H</sub> at t <sub>n+1</sub> |
| J and K                | 4.5V       | Q <sub>H</sub> at t <sub>n+8</sub> |

### LOAD FOR OUTPUT UNDER TEST



# SWITCHING TIME WAVEFORMS



# Notes

- (A) The clock pulse has the following characteristics:  $t_W(clock) \geq 20$  ns and PRR = 1 MHz. The clear pulse has the following characteristics:  $t_W(clear) \geq 20$  ns and  $t_{HOLD} = 0$  ns. When testing  $f_{MAX}$ , vary the clock PRR.
- (B) C<sub>1</sub> includes probe and jig capacitance.
- (C) All diodes are 1N3064.
- (D) A clear pulse is applied prior to each test.
- (E) Propagation delay times (tpLH and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+8 with a functional test.
- (F) t<sub>n</sub> = bit time before clocking transition.

  t<sub>n+1</sub> = bit time after one clocking transition
  t<sub>n+8</sub> = bit time after clocking transitions



The DM54S200/DM74S200 256-bit active-element memories are monolithic transistor-transistor logic (TTL) integrated circuits organized as 256 words of one bit each. They are fully decoded and have three gated memory-enable inputs to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors which reduce the low-level input current requirement to a maximum of -0.25 mA, only one-eighth that of a normal Series 54S/74S load factor. The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

The TRI-STATE output combines the convenience of an open-collector with the speed of a totem-pole output; it can be bus-connected to other similar outputs, yet it retains the fast rise time characteristics of the TTL totem-pole output.

Write Cycle: The complement of the information at the data input is written into the selected location when all memory-enable inputs and the write-enable input are low. While the write-enable input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will

# TRI-STATE 256-Bit Read/Write Memories

neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

Read Cycle: The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three memory-enable inputs are low. When any one of the memory enable inputs is high, the output will be in the high-impedance state.

### **Features**

Logic Diagram

- Schottky-clamped for high-speed memory systems:
   Access from memory-enable inputs 20 ns typ
   Access from address inputs 31 ns typ
   Power dissipation 1.7 mW/bit typ
- TRI-STATE output for driving bus-organized systems and/or highly capacitive loads
- Fully decoded, organized as 256 words of one bit each
- Compatible with most TTL and DTL logic circuits
- Multiple memory-enable inputs to minimize external decoding

# 

54S200(J), (W); 74S200(J), (N), (W)

# ADDRESS (611) WE (12) DATA (13) ADDRESS (611) WE (12) ADDRESS (611) A-TO-16-LINE DECODER ADDRESS (611) A-TO-16-LINE DECODER MATRIX ORGANIZED 16-BY-16 OUTPUT

# Truth Table

|                                        | INPL                          | JTS             |                |
|----------------------------------------|-------------------------------|-----------------|----------------|
| FUNCTION                               | MEMORY<br>ENABLE <sup>†</sup> | WRITE<br>ENABLE | OUTPUT         |
| Write (Store<br>Complement<br>of Data) | L                             | L .             | High Impedance |
| Read                                   | L                             | Н               | Stored Data    |
| Inhibit                                | Н                             | Х               | High Impedance |

H = High Level, L = Low Level, X = irrelevant

<sup>† =</sup> For memory enable; L = All ME inputs low

H = One or more ME inputs high



|                     |                                                 |                                                                    | DM54S/74S      |       |
|---------------------|-------------------------------------------------|--------------------------------------------------------------------|----------------|-------|
|                     | PARAMETER                                       | CONDITIONS                                                         | \$200          | UNITS |
|                     |                                                 |                                                                    | MIN TYP(1) MAX |       |
| V <sub>IH</sub>     | High Level Input Voltage                        |                                                                    | 2.0            | V     |
| VIL                 | Low Lexel Input Voltage                         |                                                                    | 0.8            | V     |
| Vı                  | Input Clamp Voltage                             | $V_{CC} = Min, 1_1 = -18 \text{ mA}$                               | -1.2           | V     |
| Іон                 | High Level Output Current                       | DM54                                                               | -2.0           | mA    |
|                     |                                                 | DM74                                                               | -5.2           | mA.   |
| V <sub>OH</sub>     | High Level Output Voltage                       | $V_{CC} = Min$ , $V_{fH} = 2V$<br>$V_{1L} = 0.8V$ , $I_{OH} = Max$ | 2.4            | V     |
| loL                 | Low Level Output Current                        |                                                                    | 16             | mA    |
| VoL                 | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V DM54                   | 0.5            | V     |
|                     |                                                 | V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 mA DM74               | 0.45           | 1 °   |
| I <sub>O(OFF)</sub> | Off-State (High Impedance State) Output Current | V <sub>CC</sub> = Max V <sub>O</sub> = 0.45V                       | 50             |       |
|                     |                                                 | $V_{1H} = 2.0V$ $V_{O} = 2.4V$                                     | 50             | μΑ    |
| 1,                  | Input Current at Maximum Input Voltage          | $V_{CC} = Max$ , $V_1 = 5.5V$                                      | 1.0            | mA    |
| 1 <sub>tH</sub>     | High Level Input Current                        | $V_{CC} = Max$ , $V_1 = 2.7V$                                      | 25             | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                         | $V_{CC} = Max$ , $V_1 = 0.45V$                                     | 250            | μΑ    |
| los                 | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                           | -30 -100       | mA    |
| Icc                 | Supply Current                                  | V <sub>CC</sub> = Max(3)                                           | 87 130         | mA    |

## Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) ICC is measured with the write enable and memory enable grounded, all other inputs at 4.5V and the output open.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                   |                                                                                                                                                  |                             |                                    |                                         |     |         | DM54 | s/74s |        |     |       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------------------|-----|---------|------|-------|--------|-----|-------|
|                   |                                                                                                                                                  | PARAMETER                   |                                    | CONDITIONS                              |     | 54\$200 |      |       | 74S200 |     | UNITS |
|                   |                                                                                                                                                  |                             |                                    |                                         | MiN | TYP     | MAX  | MIN   | TYP    | MAX |       |
| tрLН              | , •                                                                                                                                              | Delay Time,<br>Level Output | Access Time From<br>Address        |                                         |     | 33      | 70   |       | 33     | 50  | ns    |
| t <sub>PHL</sub>  |                                                                                                                                                  | Delay Time,<br>Level Output | Access Time From<br>Address        |                                         |     | 29      | 70   |       | 29     | 50  | ns    |
| <sup>t</sup> zH   | Output Enat<br>High Level                                                                                                                        | ole Time To                 | Access Time From<br>Memory Enable  |                                         |     | 21      | 45   |       | 21     | 35  | ns    |
| <sup>t</sup> ZL   | Output Enat                                                                                                                                      | ole Time To                 | Access Time From<br>Memory Enable  | $C_L = 15 \text{ pF}, R_L = 280\Omega$  |     | 10      | 30   |       | 10     | 20  | ns    |
| <sup>t</sup> zH   | Output Enable Time To High Level  Output Enable Time To Sense Recovery Time From Write Enable  Output Enable Time To Low Level From Write Enable |                             |                                    |                                         |     | 24      | 50   |       | 24     | 40  | ns    |
| <sup>t</sup> ZL   |                                                                                                                                                  |                             |                                    |                                         | 12  | 50      |      | 12    | 40.    | ns  |       |
| ŧ <sub>H</sub> z  | Output Disal<br>High Level                                                                                                                       | ble Time From               | Disable Time From<br>Memory Enable |                                         |     | 7.0     | 30   |       | 7.0    | 20  | ns    |
| t <sub>LZ</sub>   | Output Disal<br>Low Level                                                                                                                        | ble Time From               | Disable Time From<br>Memory Enable | 0 50 50 0000                            |     | 20      | 45   |       | 20     | 35  | ns    |
| tHZ               | Output Disal<br>High Level                                                                                                                       | ble Time From               | Disable Time From<br>Write Enable  | $C_L = 5.0 \text{ pF}, R_L = 280\Omega$ |     | 13      | 40   |       | 13     | 30  | ns    |
| tLZ               | Output Disa<br>Low Level                                                                                                                         | ble Time From               | Disable Time From<br>Write Enable  |                                         |     | 16      | 40   |       | 16     | 30  | ns    |
| tw                | Width of Wr                                                                                                                                      | ite Enable Pulse            |                                    |                                         | 50  |         |      | 40    |        |     | ns    |
| †SETUP            | Setup Time                                                                                                                                       | Address to Wri              | te Enable                          |                                         | 0   |         |      | 0     |        |     |       |
|                   |                                                                                                                                                  | Data to Write Enable        |                                    | 0                                       |     |         | 0    |       |        | ns  |       |
|                   |                                                                                                                                                  | Memory Enabl                | e to Write Enable                  | Alle de                                 | 0   |         |      | 0     |        |     |       |
| t <sub>HOLD</sub> | Hold Time                                                                                                                                        | Address From                | Write Enable                       | . 17                                    | 10  |         |      | 10    |        |     |       |
|                   |                                                                                                                                                  | Data From Wri               |                                    | Na - N                                  | 10  |         |      | 10    |        | ~~~ | ns    |
|                   |                                                                                                                                                  | Memory Enabl                | e to Write Enable                  | <u> </u>                                | 0   |         |      | 0     |        |     | ł     |



# **AC Test Circuit**



# **Switching Time Waveforms**







# Notes:

- (A) Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
- (B) When measuring delay times from address inputs, the memory enable inputs are low and the write enable input is high.
- (C) When measuring delay times from memory enable inputs, the address inputs are steady-state and the write enable input is high.
- (D) Input waveforms are supplied by pulse generators having the following characteristics:  $t_r \le 7$  ns,  $t_f \le 7$  ns, PRR  $\le 1.0$  MHz, and  $Z_{OUT} \approx 50\Omega$ .



# 256-Bit Read/Write Memories with Open Collector Outputs

# General Description

The DM54S206/DM74S206 256-bit active-element memories are monolithic transistor-transistor logic (TTL) integrated circuits organized as 256 words of one bit each. They are fully decoded and have three gated memory-enable inputs to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors which reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a normal Series 54S/74S load fáctor. The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

Write Cycle: The complement of the information at the data input is written into the selected location when all memory-enable inputs and the write-enable input are low. While the write-enable input is low, the output is off.

Read Cycle: The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three memory-enable inputs are low. When any one of the memory enable inputs is high, the output will be off.

# **Features**

- Schottky-clamped for high-speed memory systems:
   Access from memory-enable inputs
   Access from address inputs
   Power dissipation
   1.4 mW/bit typ
- Open-collector output for word expansion
- Fully decoded, organized as 256 words of one bit each
- Compatible with most TTL and DTL logic circuits
- Multiple memory-enable inputs to minimize external decoding

### Connection Diagram Logic Diagram ADDRESS INPUTS ADDRESS ADDRESS INPUTS INPUTS WRITE INPUT ENABLE WE (12) 4-TO-16-LINE DECODER DATA (13) (10) 4-TO-16 256-BIT MEMORY ADDRESS E (9) LINE MATRIX ORGANIZED INPINTS DECODER 16-BY-16 ر<sub>(7)</sub> ADDRESS 54S206(J), (W); 74S206(J), (N), (W) OUTPUT

## Truth Table

|                                        | INP                           | UTS             |             |
|----------------------------------------|-------------------------------|-----------------|-------------|
| FUNCTION                               | MEMORY<br>ENABLE <sup>†</sup> | WRITE<br>ENABLE | OUTPUT      |
| Write (Store<br>Complement<br>of Data) | L                             | L               | Hi-Z        |
| Read                                   | L                             | Н               | Stored Data |
| Inhibit                                | н                             | Х               | Hi-Z        |

H = high level, L = low level, X = irrelevant

<sup>&</sup>lt;sup>†</sup>For memory enable: L = all ME inputs low;

H = one or more ME inputs high.



|                 |                                        |                                                |                        |      | DM54S/74                                | S     |      |
|-----------------|----------------------------------------|------------------------------------------------|------------------------|------|-----------------------------------------|-------|------|
|                 | PARAMETER                              | CONDITIONS                                     |                        | S206 |                                         | UNITS |      |
|                 |                                        |                                                |                        | MIN  | TYP(1)                                  | MAX   |      |
| V <sub>IH</sub> | High Level Input Voltage               |                                                |                        | 2    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | ٧ .  |
| VIL             | Low Level Input Voltage                |                                                |                        |      |                                         | 0.8   | , V  |
| VI              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>I</sub> = -18 mA |                        |      |                                         | -1.2  | V    |
| I <sub>OH</sub> | High Level Output Current              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V    | V <sub>OH</sub> = 2.4V |      |                                         | 40    |      |
|                 |                                        | V <sub>IL</sub> = 0.8V                         | $V_{OH} = 5.5V$        |      |                                         | 100   | ,μΑ  |
| l <sub>OL</sub> | Low-Level Output Current               |                                                |                        |      |                                         | 16    | mA   |
| VoL             | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V    | DM54                   |      |                                         | 0.5   | V    |
|                 |                                        | $V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$        | DM74                   |      |                                         | 0.45  |      |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max, V_1 = 5.5V$                     |                        |      | v                                       | 1     | mA   |
| l <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V   |                        |      |                                         | 25    | , μΑ |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.45V  |                        |      |                                         | -250  | μΑ   |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(2)                       |                        |      | 70                                      | 130   | mA   |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) I<sub>CC</sub> is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                              |                               |                                    |                                    |       |     | DM54 | IS/74S |     |       |    |
|------------------|------------------------------|-------------------------------|------------------------------------|------------------------------------|-------|-----|------|--------|-----|-------|----|
|                  |                              | :R` ,                         | CONDITIONS                         |                                    | 54820 | 16  |      | 74S20  | 6   | UNITS |    |
|                  |                              |                               |                                    |                                    | MIN   | TYP | MAX  | MIN    | TYP | MAX   |    |
| t <sub>PLH</sub> | Propagation [<br>Low-to-High | Delay Time,<br>Level Output   | Access Times from Address          |                                    |       | 38  | 80   |        | 38  | 60    | ns |
| tpHL             | Propagation I<br>High-to-Low | Delay Time,<br>Level Output   | Access Times from Address          |                                    |       | 32  | 80   |        | 32  | 60    | ns |
| tpLH             | Propagation I<br>Low-to-High | Delay Time,<br>Level Output   | Disable Time from<br>Memory Enable | $C_L = 15 pF$<br>$R_1 = 300\Omega$ |       | 21  | 45   |        | 21  | 35    | ns |
| tPHL             | Propagation (<br>High-to-Low | Delay Time,<br>Level Output   | Enable Time from<br>Memory Enable  |                                    | 4     | 13  | 35   |        | 13  | 25    | ns |
| t <sub>PLH</sub> | Propagation I<br>Low-to-High | Delay Time,<br>Level Output   | Disable Time from<br>Write Enable  |                                    |       | 20  | 50   |        | 20  | 40    | ns |
| tsR              | Sense Recove                 | ery Time                      |                                    |                                    |       | 14  | 50   |        | 14  | 40    | ns |
| t <sub>W</sub>   | Width of Wri                 | te Enable Pulse               |                                    |                                    | 50    |     |      | 40     |     |       | ns |
| tSETUP           | Setup Time                   | Address to W                  | rite Enable                        |                                    | 0     |     | ,    | 0      |     |       |    |
|                  | ţ                            | Data to Write Enable          |                                    |                                    | 0,    |     |      | 0      |     |       | ns |
|                  |                              | Memory Enable to Write Enable |                                    |                                    | 0     |     |      | 0      |     |       |    |
| tHOLD            | Hold Time                    | Address from                  | Write Enable                       |                                    | 10    |     |      | 10     |     |       |    |
|                  |                              | Data from Write Enable        |                                    | ]                                  | 10    |     |      | 10     |     |       | ns |
|                  |                              | Memory Enal                   | ble to Write Enable                |                                    | 0     |     |      | 0      |     |       |    |



# **AC Test Circuit**



 $\mathbf{C}_{\mathbf{L}}$  includes probe and jig capacitance.

# **Switching Time Waveforms**

## WRITE CYCLE



# ACCESS (ENABLE) TIME AND DISABLE TIME FROM MEMORY ENABLE



# ACCESS TIME FROM ADDRESS INPUTS



### Notes:

- (A) Waveform shown is for the output with internal conditions such that the output is low except when disabled.
- (B) When measuring delay times from address inputs, the memory-enable inputs are low and the write-enable input is high.
- (C) When measuring delay times from memory-enable inputs, the address inputs are steady-state and the write-enable input is high.
- (D) Input waveforms are supplied by pulse generators having the following characteristics:  $t_r \le 2.5$  ns,  $t_f \le 2.5$  ns, PRR  $\le 1$  MHz, and  $Z_{OUT} \approx 50\Omega$ .



These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

# TRI-STATE Data Selectors/Multiplexers

# **Features**

- TRI-STATE versions of 151, LS151, S151
- Interface directly with system bus
- Perform parallel-to-serial conversion
- Permit multiplexing from N-lines to one line
- Complementary outputs provide true and inverted

| TYPE    | MAX NO. OF<br>COMMON<br>OUTPUTS | TYPICAL<br>PROP DELAY<br>TIME<br>(D TO Y) | TYPICAL<br>POWER<br>DISSIPATION |
|---------|---------------------------------|-------------------------------------------|---------------------------------|
| 54251   | 49                              | 17 ns                                     | 155. mW                         |
| 74251   | 129                             | 17 ns                                     | 155 mW                          |
| 54LS251 | 49                              | 17 ns                                     | 35 mW                           |
| 74LS251 | 129                             | 17 ns                                     | 35 mW                           |
| 74S251  | 129                             | 8 ns                                      | 275 mW                          |

# Connection Diagram



54251(J), (W); 74251(J), (N), (W); 54LS251/74LS251(J), (N), (W); 74S251(N)

# **Truth Table**

|     | ı    | OUT | PUTS   |    |    |
|-----|------|-----|--------|----|----|
|     | ELEC | Т   | STROBE |    | w  |
| Ċ   | В    | Α   | s      | •  | 77 |
| ×   | X    | . X | Н      | Z  | Z  |
| L   | L    | L   | L      | DO | DO |
| L   | , L  | Н   | L      | D1 | D1 |
| L   | Н    | L   | L      | D2 | D2 |
| L   | Н    | Н   | L      | D3 | D3 |
| • н | L    | L   | L      | D4 | D4 |
| Н   | L    | Н   | L      | D5 | D5 |
| Н   | н    | · L | L.     | D6 | D6 |
| Н   | н    | Н   | L      | D7 | D7 |

H = High Logic Level, L = Low Logic Level
X = Don't Care, Z = High Impedance (Off)
D0, D1...D7 = The level of the respective D input.

# Logic Diagram



|                 |                              |                                                   |                         |                         |       |     | DM54/74 |      | DI       | M54LS/74 | LS   |     | DM74S  |           |          |
|-----------------|------------------------------|---------------------------------------------------|-------------------------|-------------------------|-------|-----|---------|------|----------|----------|------|-----|--------|-----------|----------|
|                 | PARAMETER                    |                                                   | CONDIT                  | IONS                    |       |     | 251     |      |          | LS251    |      |     | S251   |           | UNITS    |
|                 |                              |                                                   |                         |                         |       | MIN | TYP(1)  | MAX  | MIN      | TYP(1)   | MAX  | MIN | TYP(1) | MAX       |          |
| V <sub>IH</sub> | High Level Input Voltage     |                                                   |                         |                         |       | 2   |         |      | 2        |          |      | 2   |        |           | V        |
| VIL             | Low Level Input Voltage      |                                                   |                         |                         | DM54  |     |         | 8.0  |          |          | 0.7  |     |        | N/A       | v        |
|                 |                              |                                                   |                         |                         | DM74  |     |         | 0.8  |          |          | 8.0  |     |        | 8.0       | 1 *      |
| VI              | Input Clamp Voltage          | V <sub>CC</sub> = Min                             | I <sub>I</sub> = -12 mA |                         |       |     |         | -1.5 |          |          |      |     |        |           | V        |
|                 |                              | A CC (A)(1)                                       | $I_1 = -18 \text{ mA}$  | ,                       |       |     |         |      |          |          | -1.5 |     |        | -1.2      | ]        |
| Іон             | High Level Output Current    |                                                   |                         | ,                       | DM54  |     |         | -2   | a a      |          | -1   |     |        | N/A       | mA       |
|                 |                              |                                                   | -                       |                         | DM74  |     |         | -5.2 |          |          | -2.6 |     |        | -6.5      | IIIA     |
| V <sub>OH</sub> | High Level Output Voltage    | V <sub>CC</sub> = Min,                            | V <sub>1H</sub> = 2V    |                         | DM54  | 2.4 |         |      | 2.4      |          |      |     | N/A    |           | v        |
|                 |                              | V <sub>IL</sub> = Max, I                          | OH = Max                |                         | DM74  | 2.4 |         |      | 2.4      |          |      | 2.4 | 3.2    |           | 1 °      |
| loL             | Low Level Output Current     |                                                   |                         |                         | DM54  |     |         | 16   |          |          | 4    |     |        | N/A       |          |
| ·               | ,                            |                                                   |                         |                         | DM74  |     |         | 16   |          |          | 8    |     |        | 20        | mA       |
| V <sub>OL</sub> | Low Level Output Voltage     | .,                                                | , 0,,                   |                         | DM54  |     |         | 0.4  | <b>†</b> | 0.25     | 0.4  |     |        | N/A       | <u> </u> |
|                 |                              | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max | v <sub>IH</sub> = 2v    | I <sub>OL</sub> = Max   | DM74  |     |         | 0.4  |          | 0.35     | 0.5  |     |        | 0.5       | V        |
|                 |                              | VIL INIAX                                         |                         | $I_{OL} = 4 \text{ mA}$ | DM74  |     |         |      |          |          | 0.4  |     |        | -         |          |
| lo(OFF)         | Off-State (High Impedance    |                                                   | V <sub>O</sub> = 0.4V   |                         |       |     |         | -40  |          |          | -20  |     |        |           |          |
|                 | State) Output Current        | V <sub>IH</sub> = 2V                              |                         |                         |       |     |         |      |          |          |      |     |        | -50       | μΑ       |
|                 |                              | V <sub>IL</sub> = Max                             | V <sub>O</sub> = 2.4V   |                         |       |     |         | 40   |          |          | 20   |     |        | 50        |          |
| l <sub>l</sub>  | Input Current at Maximum     | V <sub>CC</sub> = Max                             | V <sub>1</sub> = 5.5V   |                         |       |     |         | 1    |          |          |      |     |        | 1         | mA       |
|                 | Input Voltage                | vec max                                           | V <sub>1</sub> = 7V     |                         |       |     |         |      |          |          | 0.1  |     |        |           | ] ""     |
| I <sub>IH</sub> | High Level Input Current     | V <sub>CC</sub> = Max                             | V <sub>I</sub> = 2.4V   |                         |       |     |         | 40   |          |          |      |     |        |           | μΑ       |
|                 |                              | LI                                                |                         |                         |       |     |         |      |          |          | 20   |     |        | 50        | ] "^     |
| IIL             | Low Level Input Current      | V <sub>CC</sub> = Max                             | V <sub>1</sub> = 0.4V   |                         |       |     |         | -1.6 |          |          | -0.4 |     |        |           | mA       |
|                 | ,                            | • CC IVIAX                                        | $V_1 = 0.5V$            |                         |       |     |         |      |          |          |      |     |        | <b>−2</b> | IIIA     |
| l <sub>QS</sub> | Short Circuit Output Current | V <sub>CC</sub> = Max(2                           | 2)                      |                         |       | -18 |         | -55  | -30      |          | -130 | -40 |        | -100      | mΑ       |
| Icc             | Supply Current               | V - M/                                            | 21                      | Strobe Grou             | ınded |     | 31      | 51   |          | 6.1      | 10   |     | 55     | 85        | mA       |
|                 |                              | V <sub>CC</sub> = Max(3                           | )                       | Strobe at 4.            | 5V    |     | - 31    | 51   |          | 7.1      | 12   |     | 55     | 85        | 1 mA     |

# Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
- (3) All outputs open, all inputs at 4.5V.

|                  |                                                     | EDOM:           | то             | D                      | M54/74 |     |     | DM5                    | 4LS/741 | _S  |     |                                    | M74S |     |      |                 | MO                             |
|------------------|-----------------------------------------------------|-----------------|----------------|------------------------|--------|-----|-----|------------------------|---------|-----|-----|------------------------------------|------|-----|------|-----------------|--------------------------------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | (OUTPUT)       | `                      | 251    |     |     |                        | LS251   |     |     |                                    | S251 |     |      | UNITS           | 1                              |
|                  |                                                     |                 |                | CONDITIONS             | MIN    | TYP | MAX | CONDITIONS             | MIN     | TYP | MAX | CONDITIONS                         | MIN  | TYP | MAX  |                 | -                              |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | A, B, or C      | Y              |                        |        | 22  | 36  |                        |         | 29  | 45  |                                    |      | 12  | 18   | ns              |                                |
| <sup>‡</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | (4 levels)      |                |                        |        | 23  | 36  |                        |         | 28  | 45  |                                    |      | 13  | 19.5 | ns              |                                |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | A, B, or C      |                | :                      |        | 18  | 29  |                        |         | 20  | 33  |                                    |      | 10  | 15   | ns <sup>-</sup> |                                |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | (3 levels)      | W              | -                      |        | 16  | 27  |                        |         | 21  | 33  | C <sub>L</sub> = 15 pF             |      | 9   | 13.5 | - ns            |                                |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Any D           | · <sub>Y</sub> |                        |        | 17  | 28  |                        |         | 17  | 28  | R <sub>L</sub> = 280Ω              |      | - 8 | 12   | ns              |                                |
| tрнL             | Propagation Delay Time,<br>High-to-Low Level Output | ANY D           | •              | C <sub>L</sub> = 50 pF |        | 18  | 28  | C <sub>L</sub> = 15 pF |         | 18  | 28  |                                    |      | 8   | . 12 | ns              |                                |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Any D           | w              | R <sub>L</sub> = 400Ω  |        | 11  | 15  | $R_L = 2 k\Omega$      |         | 10  | 15  |                                    |      | 4.5 | 7    | ns              |                                |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Any D           | VV             | -                      |        | 10  | 15  |                        |         | 9   | 15  |                                    |      | 4.5 | 7    | ns              |                                |
| <sup>t</sup> ZH  | Output Enable Time to<br>High Level                 | Strobe          | Y              |                        |        | 15  | 27  |                        |         | 30  | 45  |                                    |      | 13  | 19.5 | ns              |                                |
| tzL              | Output Enable Time to<br>Low Level                  | Strope          | 1              |                        |        | 18  | 36  |                        |         | 26  | 40  | C <sub>L</sub> = 50 pF             |      | 14  | 21   | ns              | 2                              |
| tzH              | Output Enable Time to<br>High Level                 | Strobe          | w              |                        |        | 15  | 27  |                        |         | 17  | 27  | R <sub>L</sub> = 280Ω              |      | 13  | 19.5 | ns .            | DIVIS#/ DIVI/4251, LS251, S251 |
| tzL              | Output Enable Time to<br>Low Level                  | Strope          | VV             |                        | -      | 19  | 38  |                        |         | 24  | 40  |                                    |      | 14  | 21   | ns              | DIAI.                          |
| tHZ              | Output Disable Time from<br>High Level              | Strobe          | Y              |                        |        | 4   | 8   | ·                      | -       | 30  | 45  |                                    |      | 5.5 | 8.5  | ns              | 674                            |
| tLZ              | Output Disable Time from<br>Low Level               | Strobe          |                | C <sub>L</sub> = 5 pF  |        | 14  | 23  | C <sub>L.</sub> = 5 pF |         | 15  | 25  | C <sub>L</sub> = 5 pF .            |      | 9 . | 14   | ns              | ,132                           |
| tHZ              | Output Disable Time from<br>High Level              | Strobe          | w              | R <sub>L</sub> = 400Ω  |        | 4   | 8   | R <sub>L</sub> = 2 kΩ  |         | 37  | 55  | <sub>.</sub> R <sub>L</sub> = 280Ω |      | 5.5 | 8.5  | ns              | 01,0                           |
| tLZ              | Output Disable Time from<br>Low Level               | Strone          | ·              |                        |        | 15  | 23  |                        |         | 15  | 25  |                                    |      | 9   | 14   | nsį             | 107                            |

TVDICAL



# TRI-STATE Data Selectors/Multiplexers

# **General Description**

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.

The TRI-STATE outputs can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

### **Features**

- TRI-STATE version of LS153, S153 with same pin-out
- Schottky-diode-clamped transistors

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion
- Strobe/output control
- High fan-out totem-pole outputs

| TYPE  | TYPICAL PROPAGATION | ON DELAY | POWER<br>DISSIPATION |
|-------|---------------------|----------|----------------------|
| LS253 | Data to Output      | 12 ns    | 35 mW                |
| L3233 | Select to Output    | 21 ns    | 35 mvv               |
| S253  | Data to Output      | 6 ns     | 275 mW               |
| 3233  | Select to Output    | 12 ns    | 2/3 mw               |

# Connection Diagram



54LS253/74LS253(J), (N), (W); 74S253(N)

# **Truth Table**

| SEL |   | D  | ATA I | NPUT | s  | OUTPUT<br>CONTROL | OUTPUT |
|-----|---|----|-------|------|----|-------------------|--------|
| В   | Α | CO | C1    | C2   | СЗ | G                 | Υ      |
| X   | Х | Х  | ×     | ×    | Х  | н                 | Z      |
| L   | L | L  | Х     | X    | X  | L                 | L      |
| L   | L | Н  | Х     | Х    | X  | Ĺ                 | н      |
| L   | н | х  | L     | Х    | Х  | L                 | L      |
| L   | н | Х  | н     | Х    | X  | L                 | н      |
| н   | L | х  | Х     | L    | X  | L                 | L      |
| н   | L | х  | Х     | Н    | X  | L                 | н      |
| Н   | н | ×  | Х     | X    | L  | L                 | L      |
| Н   | н | ×  | X     | X    | Н  | L                 | н      |

Address inputs A and B are common to both sections.

H = High Level, L = Low Level, X = Don't Care,
Z = High Impedance

# Logic Diagram





|                 | PARAMETER                        |                                          | CONDI. | TIONS                  |              | DI       | M54 LS/74<br>LS253 | LS            |              | DM74<br>\$253 |            | UNITS       |
|-----------------|----------------------------------|------------------------------------------|--------|------------------------|--------------|----------|--------------------|---------------|--------------|---------------|------------|-------------|
|                 | \$                               |                                          |        |                        |              | MIN      | TYP(1)             | MAX           | MIN          | TYP(1)        | MAX        | ,           |
| VIH             | High Level Input Voltage         |                                          |        |                        |              | 2        |                    |               | 2            |               |            | · V         |
| VIL             | Low Level Input Voltage          |                                          |        |                        | DM54         |          |                    | 0.7           |              |               | N/A        | V           |
|                 |                                  |                                          |        |                        | DM74         |          |                    | 0.8           |              | η             | 0.8        |             |
| VI              | Input Clamp Voltage              | V <sub>CC</sub> = Min, I <sub>1</sub> =  | -18 m  | Α                      |              |          | ,                  | -1.5          |              |               | -1.2       | · V         |
| 1 <sub>OH</sub> | High Level Output Current        |                                          |        |                        | DM54         |          |                    | -1            |              |               | N/A        | mA          |
|                 |                                  |                                          |        |                        | DM74         |          |                    | -2.6          |              |               | -6.5       |             |
| V <sub>OH</sub> | High Level Output Voltage        | V <sub>CC</sub> = Min, V <sub>IH</sub>   |        |                        | DM54         | 2.4      | 3.4                |               |              | N/A           |            | V           |
|                 |                                  | V <sub>IL</sub> = Max, I <sub>OH</sub>   | = Max  |                        | DM74         | 2.4      | 3.1                |               | 2.7          | 3.2           |            |             |
| I <sub>OL</sub> | Low Level Output Current         |                                          |        |                        | DM54<br>DM74 | <b> </b> |                    | <u>4</u><br>8 | ļ            |               | N/A<br>20  | mA .        |
|                 |                                  |                                          | ·      |                        |              | ļ        |                    |               |              |               |            |             |
| VOL             | Low Level Output Voltage         | V <sub>CC</sub> = Min, V <sub>IH</sub>   | = 2V   | I <sub>OL</sub> = Max  | DM54<br>DM74 | <u> </u> |                    | 0.4           | <del> </del> |               | N/A<br>0.5 | V           |
|                 |                                  | V <sub>IL</sub> = Max                    |        | I <sub>OL</sub> = 4 mA |              | <b></b>  |                    | 0.3           | <b></b>      |               | 0.5        |             |
| lo(OFF)         | Off-State (High-Impedance State) |                                          |        | V <sub>O</sub> = 0.4V  | ` `          |          |                    | -20           |              |               |            | <del></del> |
|                 | Output Current                   | $V_{CC} = Max, V_{II}$<br>$V_{II} = Max$ | 4 = 2V | V <sub>O</sub> = 0.5V  |              |          |                    |               |              |               | -50        | μΑ          |
|                 |                                  | VIL - Wax                                |        | V <sub>O</sub> = 2.4V  |              |          |                    | 20            |              |               | 50         |             |
| l <sub>i</sub>  | Input Current at Maximum         | V <sub>CC</sub> = Max                    |        | V <sub>1</sub> = 5.5V  |              |          |                    |               |              |               | 1.0        | mA          |
|                 | Input Voltage                    | VCC - IVIAX                              |        | V <sub>1</sub> = 7V    |              |          |                    | 0.1           |              |               |            | (1175       |
| I <sub>IH</sub> | High Level Input Current         | V <sub>CC</sub> = Max, V <sub>i</sub>    | = 2.7V |                        |              |          |                    | 20            |              |               | 50         | μΑ          |
| I <sub>IL</sub> | Low Level Input Current          | V <sub>CC</sub> = Max                    |        | V <sub>1</sub> = 0.4V  |              |          |                    | -0.36         |              |               |            | mA          |
|                 |                                  | A CC - INIBY                             |        | V <sub>1</sub> = 0.5V  |              |          |                    |               |              |               | -2         |             |
| los             | Short Circuit Output Current     | $V_{CC} = Max(2)$                        |        |                        |              | -30      |                    | -130          | -40          |               | -100       | mÁ          |
| Icc             | Supply Current                   |                                          | Conc   | dition A               |              |          | 7                  | 12            |              |               |            |             |
|                 |                                  | $V_{CC} = Max(3)$                        |        |                        |              | <u> </u> | 8.5                | 14            |              |               |            | mA          |
|                 |                                  |                                          | All C  | Outputs Open           |              |          |                    |               |              | 55            | 70         |             |

# Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25$ °C.
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the outputs open under the following conditions:

  - A. All inputs grounded.B. Output control at 4.5V, all inputs grounded.
- (4) National Semiconductor temporarily reserves the right to ship DM54/DM74LS253 devices which have a minimum IOS = 5.0 mA.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     | FROM    | то       | DM5               | 4LS/74                 | LS                    |       |                        | OM74                  |                       |      |       |    |
|------------------|-----------------------------------------------------|---------|----------|-------------------|------------------------|-----------------------|-------|------------------------|-----------------------|-----------------------|------|-------|----|
|                  | PARAMETER                                           | (INPUT) | (OUTPUT) | LS253             |                        |                       |       |                        | S253                  |                       |      | UNITS |    |
|                  |                                                     |         |          | CONDITIONS        | MIN                    | TYP                   | MAX . | CONDITIONS             | MIN                   | TYP                   | MAX  |       |    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Data    | Y        |                   |                        | 17                    | 25    |                        |                       | 6                     | 9    | ns    |    |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Data    | Y        |                   |                        | 13                    | 20    | C <sub>L</sub> = 15 pF |                       | 6                     | 9    | nş    |    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Select  | ' - Y    |                   | C <sub>L</sub> = 15 pF |                       | 30    | 45                     | R <sub>L</sub> = 280Ω |                       | 11.5 | 18    | ńs |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Select  |          | $R_L = 2 k\Omega$ |                        | 21                    | 32    |                        |                       | 12                    | 18   | ns    |    |
| tzH              | Output Enable Time<br>to High Level                 | Output  | Y        |                   |                        | 15                    | 23    | C <sub>L</sub> = 50 pF |                       | 13                    | 19.5 | ns    |    |
| tzL              | Output Enable Time<br>to Low Level                  | Control | *        |                   |                        | 1,5                   | 23    | R <sub>L</sub> = 280Ω  |                       | 14                    | 21   | ns    |    |
| tHZ              | Output Disable Time<br>From High Level              | Output  | Y        | Y                 | C <sub>L</sub> = 5 pF  |                       | 27    | 41                     | C <sub>L</sub> = 5 pF |                       | 5.5  | 8.5   | ns |
| tLZ              | Output Disable Time<br>From Low Level               | Control |          |                   | Y                      | R <sub>L</sub> ≈ 2 kΩ |       | 18                     | 27                    | R <sub>L</sub> = 280Ω |      | 9     | 14 |



# TRI-STATE Quad 2-Data Selectors/Multiplexers

# **General Description**

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.

This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

### **Features**

- TRI-STATE versions LS157, S157, LS158, S158, with same pin-outs
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in highperformance systems

| TYPE   | AVERAGE PROPAGATION DELAY FROM DATA INPUT | TÝPICAL<br>POWER<br>DISSIPATION |
|--------|-------------------------------------------|---------------------------------|
| LS257  | 12 ns                                     | 50 mW                           |
| L\$258 | 12 ns                                     | 35 mW                           |
| S257   | 4.8 ns                                    | 320 mW                          |
| S258   | 4 ns                                      | 280 mW                          |

# Connection and Logic Diagrams



54LS257/74LS257(J), (N), (W); 74S257(N)



54LS258/74LS258(J), (N), (W); 74S258(N)





|   | -               | PARAMETER                  | · .              |                                                    | CONDITIO                    | ONS                    |              | L            | M54LS/74<br>S257, LS2<br>TYP(1) | 258           |              | DM74S<br>S257, S258<br>MIN TYP(1) MAX   |             |                                       |  |  | UNITS |  |
|---|-----------------|----------------------------|------------------|----------------------------------------------------|-----------------------------|------------------------|--------------|--------------|---------------------------------|---------------|--------------|-----------------------------------------|-------------|---------------------------------------|--|--|-------|--|
|   | .,              | High Level Input Voltage   |                  |                                                    |                             |                        |              | 2            | 1 1 1 (1)                       | IVIAX         | 2            |                                         | IVIAA       | V                                     |  |  |       |  |
|   | V <sub>IH</sub> |                            |                  |                                                    |                             |                        |              | 2            |                                 |               |              |                                         | ····        | · · · · · · · · · · · · · · · · · · · |  |  |       |  |
|   | V <sub>IL</sub> | Low Level Input Voltage    |                  |                                                    |                             |                        | DM54<br>DM74 | <u> </u>     |                                 | 0.7           | <del> </del> |                                         | N/A<br>0.8  | V .                                   |  |  |       |  |
|   |                 | Input Clamp Voltage        |                  | V = Min                                            | ι = -19 Δ                   |                        | DIVI74       | <del> </del> | ****                            | -1.5          | <del> </del> | -                                       | -1.2        | V                                     |  |  |       |  |
|   | V <sub>I</sub>  |                            |                  | V <sub>CC</sub> = Min,                             | I <sub>1</sub> = -18/MA     |                        | T =          |              |                                 |               | <u> </u>     |                                         |             | . v                                   |  |  |       |  |
| ı | ОН              | High Level Output Current  |                  |                                                    |                             |                        | DM54<br>DM74 | <u> </u>     |                                 | -1.0<br>-2.6  | <del> </del> |                                         | N/A<br>-6.5 | mA                                    |  |  |       |  |
|   |                 | High Land Organis Valence  |                  |                                                    |                             |                        | <del> </del> |              | 2.4                             | 2.0           | -            |                                         | 0.5         | <u> </u>                              |  |  |       |  |
|   | V <sup>OH</sup> | High Level Output Voltage  |                  | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = Max, I |                             |                        | DM54<br>DM74 | 2.4          | 3.4                             |               | N/A<br>2.4   | 3.2                                     |             | V ·                                   |  |  |       |  |
|   |                 | Law Lavel Output Com       |                  | - IL Wax,                                          | OH WINA                     |                        | +            | 2.1          |                                 |               |              | 7.2                                     | NI/C        |                                       |  |  |       |  |
|   | OL /            | Low Level Output Current   |                  |                                                    |                             |                        | DM54<br>DM74 | <del> </del> |                                 | <u>4</u><br>8 | <del></del>  |                                         | N/A<br>20   | mA                                    |  |  |       |  |
|   |                 |                            |                  |                                                    |                             | Ti.                    | -            | ļ            |                                 |               | <del> </del> |                                         |             | <u> </u>                              |  |  |       |  |
|   | V <sub>OL</sub> | Low Level Output Voltage   | *                | V <sub>CC</sub> = Min,                             | Min, V <sub>IH</sub> = 2V   | I <sub>OL</sub> = Max  | DM54<br>DM74 | <u> </u>     | 0.25                            | 0.4           | -            |                                         | N/A         | v                                     |  |  |       |  |
|   |                 |                            |                  | V <sub>IL</sub> = Max                              | W                           | I <sub>OL</sub> = 4 mA | DM74         | <u> </u>     | 0.35                            | 0.5           | <del></del>  |                                         | 0.5         | V                                     |  |  |       |  |
|   |                 | Off State (High Impedance  | State) Output    | V = Max                                            | $V_{CC} = Max$ $V_O = 0.4V$ |                        |              | -            | 0.20                            | -20           |              |                                         |             |                                       |  |  |       |  |
| , | O(OFF)          | Current                    | State/ Output    | $V_{IH} = 2V$                                      | $V_0 = 0.5V$                |                        |              |              |                                 |               | <del> </del> |                                         | -50         | μΑ                                    |  |  |       |  |
|   |                 | ,                          |                  | V <sub>IL</sub> = Max                              | V <sub>O</sub> = 2.4V       | ,                      | ,            |              |                                 | 20            |              | *************************************** | 50          | . "                                   |  |  |       |  |
|   |                 | Input Current at           |                  |                                                    | V <sub>1</sub> = 5.5V       | . ,                    | :            | <u> </u>     |                                 |               |              | · · ·                                   | 1           |                                       |  |  |       |  |
|   |                 | Maximum Input Voltage      | S Input          |                                                    | V <sub>1</sub> = 7V         |                        | ,            | <u> </u>     |                                 | 0.2           | <u> </u>     |                                         |             |                                       |  |  |       |  |
|   |                 |                            | Any Other        | V <sub>CÇ</sub> = Max                              | V <sub>I</sub> = 5.5V       |                        |              |              |                                 |               |              |                                         | 1           | ·mA                                   |  |  |       |  |
|   |                 |                            | , any Garler     |                                                    | V <sub>1</sub> = 7V         |                        |              | 0.1          |                                 | . 0.1         |              |                                         |             |                                       |  |  |       |  |
| ı | IH              | High Level Input Current   | S Input          | V <sub>CC</sub> = Max,                             | V. ≈ 2.7V                   |                        |              |              |                                 | 40            |              |                                         | 50          | μ <b>Α</b>                            |  |  |       |  |
|   |                 |                            | Any Other        | 100                                                |                             |                        |              |              |                                 | 20            | ļ            |                                         | . 50        |                                       |  |  |       |  |
| 1 | IL              | Low Level Input Current    | S Input          |                                                    | V <sub>1</sub> = 0.4V       |                        |              | ļ            |                                 | -0.8          |              |                                         |             |                                       |  |  |       |  |
|   |                 |                            | ,                | V <sub>CC</sub> = Max                              | V <sub>1</sub> = 0.5V       |                        |              |              |                                 |               | <u> </u>     |                                         | -2          | . mA-                                 |  |  |       |  |
|   | -               |                            | Any Other        |                                                    | $V_1 = 0.4V$ $V_1 = 0.5V$   |                        |              | <del> </del> |                                 | -0.4          | <b></b>      | <del></del>                             | 2           | ٠.                                    |  |  |       |  |
|   |                 | Short Circuit Output Curre | <u> </u>         | V <sub>CC</sub> = Max(                             | L                           |                        |              | -30          | -                               | -130          | -40          |                                         | -100        | m ^                                   |  |  |       |  |
|   |                 |                            | All Outputs High | ACC - MAX                                          |                             | .1                     |              | 30           | 5.9                             |               |              |                                         |             | mA                                    |  |  |       |  |
| 1 | cc              | Supply Current             | All Outputs High |                                                    |                             | LS257, S257            |              | -            | 9.2                             | 10            | <del> </del> | 60                                      | 93          |                                       |  |  |       |  |
|   |                 |                            | All Outputs Off  |                                                    |                             | 20201, 3201            |              |              | 10                              | 17            |              | 64                                      | 99          |                                       |  |  |       |  |
|   |                 | • ,                        | All Outputs High | V <sub>CC</sub> = Max(3                            | 3)                          |                        |              |              | 4.1                             | 7             |              | 36                                      | 56          | mA                                    |  |  |       |  |
|   | All Outputs Low |                            |                  | 6.2                                                | 11                          |                        | 52           | 81           | 1                               |               |              |                                         |             |                                       |  |  |       |  |

| Switch           | ning Characteristics V <sub>CC</sub>                | = bV, T <sub>A,</sub> = 1 | 25°C |                                                 |             |      |      |                        |     |      |     |       |      |     | r     |      |
|------------------|-----------------------------------------------------|---------------------------|------|-------------------------------------------------|-------------|------|------|------------------------|-----|------|-----|-------|------|-----|-------|------|
|                  | •                                                   | FROM                      |      | DM5                                             | DM54LS/74LS |      |      | DM74S                  |     |      |     |       |      |     | _     |      |
|                  | PARAMETER                                           | (INPUT)                   | 1    | TO LS2                                          | 257, LS258  |      |      |                        |     | S257 |     | \$258 |      |     | UNITS |      |
|                  |                                                     | (                         |      | CONDITIONS                                      | MIN         | TYP  | MAX  | CONDITIONS.            | MIN | TYP  | MAX | MIN   | TYP  | MAX |       |      |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data                      | Any  |                                                 |             | 12   | 18   |                        |     | 5    | 7.5 |       | 4    | 6   | ns    |      |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data                      | Any  |                                                 |             | . 12 | 18   |                        |     | 4.5  | 6.5 |       | 4    | 6   | ns    |      |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Select                    | Any  | $C_L = 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$ |             | 14   | 21   | C <sub>L</sub> = 15 pF |     | 8.5  | 15  |       | 8    | 12  | ns    |      |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Select                    |      |                                                 |             | 14   | 21   | $R_{L} = 280\Omega$    |     | 8.5  | 15  |       | 7.5  | 12  | ns    |      |
| t <sub>ZH</sub>  | Output Enable Time to<br>High Level                 | Output                    | Any  |                                                 |             |      |      | 20                     | 30  |      |     | 13    | 19.5 |     | 13    | 19.5 |
| t <sub>ZL</sub>  | Output Enable Time to<br>Low Level                  | Control                   | Ally |                                                 | 20          | 20   | 30   |                        |     | - 14 | 21  |       | 14   | 21  | ns    |      |
| t <sub>HZ</sub>  | Output Disable Time<br>From High Level              | Output                    | A    | C <sub>L</sub> = 5 pF                           |             | 20   | 30   | C <sub>L</sub> = 5 pF  |     | 5.5  | 8.5 |       | 5.5  | 8.5 | ns    |      |
| t <sub>LZ</sub>  | Output Disable Time<br>From Low Level               | Control                   |      | Any $R_L = 2 k\Omega$                           |             | 17   | . 25 | $R_L = 280\Omega$      |     | 9    | 14  |       | 9    | 14  | ns    |      |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
- (3) ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

# Truth Table

|                   | INPUTS |   |     | OUTP          | UT Y          |
|-------------------|--------|---|-----|---------------|---------------|
| OUTPUT<br>CONTROL | SELECT | А | - B | LS257<br>S257 | LS258<br>S258 |
| Н                 | Х      | X | Х   | Z             | Z             |
| L                 | L      | L | Х   | L             | н             |
| L                 | L      | Н | Х   | Н             | L             |
| L                 | Н      | × | L   | L             | н             |
| L                 | н      | × | Н   | Н             | L             |

H = High Level, L = Low Level, X = Don't Care, Z = High Impedance (off)



These latches are ideally suited for use as temporary storage of binary information between processing units and I/O units. When either one of the data inputs is at a low logic level, the output will follow the level of the  $\overline{R}$  input. When both data inputs are high, the output will remain latched in its previous state. When both inputs are low, the output will go high. However, this high level may not persist when either one of the data inputs returns to the high state.

# Features

Quad S-R Latches

- For more advanced design S-R latches, see DM7544/8544
- Typical power dissipation

19 mW

Typical propagation delay

12 ns

# **Connection Diagram**



54LS279/74LS279(J), (N), (W)

# Truth Table

| INPL | JTS | OUTPUT     |
|------|-----|------------|
| S↑   | R   | Q          |
| Н    | Н   | $\alpha_0$ |
| L    | Н   | н          |
| Н    | , F | L          |
| L    | L   | н*         |

H = High Level

L = Low Level

† For latches with double S inputs:

 $H = both \overline{S} inputs high$ 

L =one or both  $\overline{S}$  inputs low

 $<sup>\</sup>Omega_0$  = The level of  $\Omega$  before the indicated input conditions were established.

<sup>\*</sup> This output level is pseudo stable: that is, it may not persist when the S and R inputs return to their inactive (high) level.



|                 |                                        |                                               |                           |          | DI         | M54LS/74 | LS           |       |  |
|-----------------|----------------------------------------|-----------------------------------------------|---------------------------|----------|------------|----------|--------------|-------|--|
|                 | PARAMETER                              |                                               | CONDITIONS                |          |            | LS279    |              | UNITS |  |
|                 |                                        |                                               |                           | MIN      | MIN TYP(1) |          |              |       |  |
| VIH             | High Level Input Voltage               |                                               |                           |          | 2          |          |              | V     |  |
| VIL             | Low Level Input Voltage                |                                               |                           | DM54     |            |          | 0.7          | V     |  |
|                 |                                        |                                               |                           | DM74     |            |          | 0.8          |       |  |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub>         |                           |          |            | -1.5     | V            |       |  |
| i <sub>OH</sub> | High Level Output Current              |                                               |                           | <u> </u> |            |          | -400         | μΑ    |  |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V                      | <sub>IH</sub> = 2V        | DM54     | 2.5        | 3.5      |              | V     |  |
|                 |                                        | V <sub>IL</sub> = Max, I <sub>C</sub>         | $_{\rm OH}$ = $-400\mu$ A | DM74     | 2.7        | 3.5      |              | 1     |  |
| loL             | Low Level Output Current               |                                               |                           | DM54     |            |          | 4            | mA    |  |
|                 |                                        |                                               |                           | DM74     |            |          | 8            | 1112  |  |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V | I <sub>OL</sub> = 4 mA    |          |            | 0.25     | 0.4          | V     |  |
|                 |                                        | V <sub>IL</sub> = Max                         | I <sub>OL</sub> = 8 mA    | DM74     |            | 0.35     | 0.5          |       |  |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V                      | ' <sub>1</sub> = 7V       |          |            | -        | 0.1          | mA    |  |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V                      | ' <sub>1</sub> = 2.7V     |          |            |          | 20           | μΑ    |  |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V                      | ' <sub>1</sub> = 0.4V     |          |            |          | <b>−</b> 0.4 | mA    |  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                      |                           |          | -30        |          | -130         | mA    |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max (3)                     |                           |          |            | 3.8      | 7            | mA    |  |

# Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all  $\overline{R}$  inputs grounded, all  $\overline{S}$  inputs at 4.5V, and all outputs open.

# Switching Characteristics $V_{CC} = 5V, T_A = 25^{\circ}C$

|                  | PARAMETER                                                           | CONDITIONS                                         | MIN | TYP | MAX | UNITS |
|------------------|---------------------------------------------------------------------|----------------------------------------------------|-----|-----|-----|-------|
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level<br>Output From S Input |                                                    |     | 12  | 22  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level<br>Output From S Input | $C_L = 15 \text{ pF}$<br>$R_L = 2 \text{ k}\Omega$ |     | 9   | 15  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level<br>Output From R Input |                                                    |     | 15  | 27  | ns    |



These universal, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry, and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is easily expanded by cascading.

The S280 can be used to upgrade the performance of most systems utilizing the DM74180 parity generator/checker. Although the S280 is implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4, and no internal connection at pin 3. This permits the S280 to be substituted for the 180 in existing designs to produce an identical function, even if S280's are mixed with existing 180's.

# 9-Bit Parity Generators/Checkers

Input buffers are provided so that each input represents only one normal 74S load, and full fan out to 10 normal Series 74S loads is available from each of the outputs at low logic levels. A fan-out to 20 normal Series 74S loads is provided at high logic levels, to facilitate connection of unused inputs to used inputs.

# **Features**

- Generates either odd or even parity for nine data lines
- Cascadable for n-bits
- Can be used to upgrade existing systems using MSI parity circuits
- Typical data-to-output delay—14 ns

# **Connection Diagram**



# Truth Table

| NUMBER OF INPUTS (A   | OUTPUTS       |      |  |  |  |  |
|-----------------------|---------------|------|--|--|--|--|
| THRU I) THAT ARE HIGH | $\Sigma$ EVEN | ΣODD |  |  |  |  |
| 0, 2, 4, 6, 8         | н             | L    |  |  |  |  |
| 1, 3, 5, 7, 9         | L             | Н    |  |  |  |  |

# Logic Diagram





|                 |                                        |                                                   |                                                             |      | DM74S  |      |       |
|-----------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------------------|------|--------|------|-------|
|                 | PARAMETER                              | CONDI                                             | TIONS                                                       |      | \$280  |      | UNITS |
|                 | ,                                      |                                                   |                                                             | MIN  | TYP(1) | MAX  |       |
| ViH             | High Level Input Voltage               |                                                   |                                                             | 2    |        |      | ٧     |
| VIL             | Low Level Input Voltage                |                                                   |                                                             |      |        | 0.8  | V     |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min,                            | I <sub>1</sub> = -18 mA                                     |      |        | -1.2 | ٧     |
| Іон             | High Level Output Current              |                                                   | taga paga atau ay ana da taga taga taga taga taga taga taga |      |        | -1   | mA    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OH</sub> = -1 mA             | 2.7  | 3.4    |      | V     |
| loL             | Low Level Output Current               | ,                                                 |                                                             |      |        | 20   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OL</sub> = 20 mA             |      | ,      | 0.5  | ٧     |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                                       |      |        | 1    | mA    |
| i <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 2.7V                                       |      |        | 50   | μΑ    |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 0.5V                                       |      |        | -2   | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                          | ·                                                           | -4.0 |        | -100 | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                          |                                                             | 1    | 67     | 105  | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
- (3) ICC is measured with all inputs grounded and all outputs open.

Switching Characteristics  $V_{CC} = 5V, T_A = 25^{\circ}C$ 

|                  |                                                     |                 |          |                                        |       | DM748 |     |       |
|------------------|-----------------------------------------------------|-----------------|----------|----------------------------------------|-------|-------|-----|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | (OUTPUT) | CONDITIONS                             | \$280 |       |     | UNITS |
|                  |                                                     | (               | (001/01/ |                                        | MIN   | TYP   | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High<br>Level Output | - Data<br>Data  | Σ Even   |                                        |       | 14    | 21  | ns `  |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low<br>Level Output |                 |          | $C_L = 15 \text{ pF, R}_L = 180\Omega$ | 11.   | 11.5  | 18  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High<br>Level Output |                 | Σ Odd    |                                        |       | 14    | 21  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-Low<br>Level Output |                 |          |                                        |       | 11.5  | 18  | ns    |



# **Typical Applications**

Three S280's can be used to implement a 25-line parity generator/checker. This arrangement will provide parity in typically 25 ns. (See *Figure 1*.)

As an alternative, the outputs of two or three parity generators/checkers can be decoded with a 2-input

(\$86) or 3-input (\$135) exclusive-OR gate for 18 or 27-line parity applications.

Longer word lengths can be implemented by cascading S280's. As shown in *Figure 2*, parity can be generated for word lengths up to 81 bits in typically 25 ns.



FIGURE 1: 25-LINE PARITY/GENERATOR CHECKER

FIGURE 2: 81-LINE PARITY/GENERATOR CHECKER



These Schottky-clamped four-bit accumulators integrate high-performance versions of an arithmetic logic unit/ function generator, and a shift/storage matrix in a single circuit. The arithmetic logic unit (ALU) portion provides the capability of 16 arithmetic/logic type operations, as detailed in Table I. The accumulator includes an exchange of subtract operands by which either A-B or B-A can be accomplished directly. The ALU is controlled by three function-select inputs (ASO, AS1, AS2) and a mode-control input (M). When the mode-control input is high, the ALU may perform any of seven logic functions on two binary variables, as detailed in Table II. Full carry look-ahead is provided for fast, simultaneous carry generation. The carry input (Cn) and propagate and generate outputs (P, G) are implemented for direct use with the DM74S182 look-ahead/carry generators. This permits systems to be implemented with the added advantage of full look-ahead across any word length to minimize the accumulator delay times. Once data is loaded into the accumulator, the typical add time with full look-ahead is 29 nanoseconds for 16-bit words.

The shift/storage matrix has capabilities similar to the DM74S194 universal bidirectional shift register, with the added advantage of multiplexed input/output (I/O) cascading lines which comprehend arithmetic shift functions having a sign bit, such as 2's complements. The matrix can be used to perform either logic or arithmetic shifts in either direction (left or right), parallel load,

# **4-Bit Parallel Binary Accumulators**

or hold. Control of the register is accomplished with three inputs: register control (RC) and register selection (RSO, RS1). The cascading input/output lines incorporate TRI-STATE outputs multiplexed with an input. The least-significant cascading bit is combined with the AO/FO circuitry to provide the shift-right input and the shift-left output (RI/LO), and the most significant bit is coupled with the A3/F3 circuitry to provide the shift-left input and the shift-right output (LI/RO).

### **Features**

- Logic mode operation provides seven Boolean functions of the two variables
- Full shifting capabilities:

Logic shift (left or right)

Arithmetic shift (left or right) for sign bit protection Hold

Parallel load

- Expandable to handle n-bit words with full carry look-ahead
- 15 arithmetic/logic operations:

Add

Subtract (B-A or A-B)

Complement

Increment

Transfer

Plus 10 other functions

■ Full 4-bit binary accumulator in a single package

Mode Control (M) = Low

# **Connection Diagram**



74S281(N)

# Truth Tables Notes Shown on Following Page TABLE I—ARITHMETIC FUNCTIONS

| ALU       |     |     | ACTIVE HIGH DATA         |                                   |  |  |  |  |
|-----------|-----|-----|--------------------------|-----------------------------------|--|--|--|--|
| SELECTION |     |     | C <sub>n</sub> = H       | C <sub>n</sub> = L                |  |  |  |  |
| AS2       | AS1 | AS0 | (with carry)             | (no carry)                        |  |  |  |  |
| L         | L   | L   | F0 = L, F1 = F2 = F3 = H | F <sub>n</sub> = H                |  |  |  |  |
| L         | L   | н   | F = B MINUS A            | F = B MINUS A MINUS 1             |  |  |  |  |
| L         | Н   | L   | F = A MINUS B            | F = A MINUS B MINUS 1             |  |  |  |  |
| L         | Н   | н   | F = A PLUS B PLUS 1      | F = A PLUS B                      |  |  |  |  |
| Н         | L   | L   | F = B PLUS 1             | $F_n = B_n$                       |  |  |  |  |
| Н         | L   | н   | F = B PLUS 1             | $\overline{F}_n = \overline{B}_n$ |  |  |  |  |
| Н         | н   | L   | F = A PLUS 1             | $F_n = A_n$                       |  |  |  |  |
| Н         | Н   | н   | F = A PLUS 1             | $F_n = \overline{A}_n$            |  |  |  |  |

# TABLE II-LOGIC FUNCTIONS Mode Control (M) = High Carry Input (Cn) = X (Don't Care)

| SEI | ALU<br>LECTI | ON  | ACTIVE-HIGH                       |  |  |  |  |  |
|-----|--------------|-----|-----------------------------------|--|--|--|--|--|
| AS2 | AS1          | AS0 | DATA FUNCTION                     |  |  |  |  |  |
| L   | L            | L   | F <sub>n</sub> = L                |  |  |  |  |  |
| Ĺ   | X            | н   | $F_n = A_n \oplus B_n$            |  |  |  |  |  |
| L   | Н            | L   | $F_n = \overline{A_n \oplus B_n}$ |  |  |  |  |  |
| Н   | L            | L   | $F_n = A_n B_n$                   |  |  |  |  |  |
| Н   | L            | Н   | $F_n = \overline{A_n + B_n}$      |  |  |  |  |  |
| н   | Н            | L   | $F_n = \overline{A_n B_n}$        |  |  |  |  |  |
| Н   | н            | Н   | $F_n = A_n + B_n$                 |  |  |  |  |  |



# **Truth Tables (Continued)**

# TABLE III—SHIFT MODE FUNCTIONS C<sub>n</sub> = M = S0 = S1 = Low, and S2 = High

| REGISTER<br>SELECTION |     | REGISTER<br>CONTROL | SHIFT-MATRIX INPUTS |          |               | CLOCK           | INPUT/<br>OUTPUT | SHIFT-MATRIX OUTPUTS<br>(INTERNAL) |                 |          |          | INPUT/<br>OUTPUT |                 |
|-----------------------|-----|---------------------|---------------------|----------|---------------|-----------------|------------------|------------------------------------|-----------------|----------|----------|------------------|-----------------|
| RS1                   | RS0 | INPUT               | FQ                  | F1       | F2            | F3              | INPUI            | RI/LO                              | QA              | QΒ       | αc       | $Q_D$            | LI/RO           |
| L.                    | L   | х                   | f0                  | f1       | f2            | f3              | 1                | Z                                  | f0              | f1       | f2       | f3               | Z               |
| L                     | н   | L                   | Q <sub>Bn</sub>     | $Q_{Cn}$ | $\Omega_{Dn}$ | 1i              | 1                | $Q_{Bn}$                           | Q <sub>Bn</sub> | $Q_{Cn}$ | $Q_{Dn}$ | li               | Hi.,            |
| L                     | н   | Н                   | Q <sub>A0</sub>     | $Q_{Cn}$ | $Q_{Dn}$      | li              | 1                | Q <sub>Bn</sub>                    | Q <sub>Bn</sub> | $Q_{Cn}$ | li       | $\sigma^{D0}$    | , li            |
| н                     | L   | L '                 | ri                  | $Q_{An}$ | $Q_{Bn}$      | $Q_{Cn}$        | 1                | ri                                 | ri              | $Q_{An}$ | $Q_{Bn}$ | Q <sub>Cn</sub>  | Q <sub>Cn</sub> |
| н                     | L   | Н                   | ri                  | $Q_{An}$ | $Q_{Bn}$      | Q <sub>D0</sub> | 1                | ri                                 | ri              | $Q_{An}$ | $Q_{Bn}$ | $Q_{D0}$         | Q <sub>Cn</sub> |
| , н                   | н   | ×                   | Q <sub>A0</sub>     | $Q_{BO}$ | $Q_{CO}$      | Q <sub>D0</sub> | 1                | Z                                  | Q <sub>A0</sub> | $Q_{BO}$ | $Q_{C0}$ | $Q_{D0}$         | z               |
| Х                     | Х   | ×                   | Q <sub>A0</sub>     | $Q_{BO}$ | $Q_{C0}$      | $Q_{D0}$        | L                | х                                  | Q <sub>A0</sub> | $Q_{B0}$ | $Q_{C0}$ | $Q_{D0}$         | ×               |

H = High Level (steady state)

L = Low Level (steady state)

X = Don't Care (any input, including transitions)

Z = High Impedance (output off)

↑ = Transition from low to high level

f0, f1, f2, f3, ri, li = The level of steady-state conditions at F0, F1, F2, F3, RI/LO or LI/RO respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = The level of  $Q_{A}$ ,  $Q_{B}$ ,  $Q_{C}$ , or  $Q_{D}$ , respectively, before the indicated steady state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$ ,  $Q_{Dn}$  = The level of  $Q_{A}$ ,  $Q_{B}$ ,  $Q_{C}$ , or  $Q_{D}$ , respectively, before the most recent transition of the clock.

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                             | ,                                                    |                                                                    |     |        |                         |              |  |
|-----------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----|--------|-------------------------|--------------|--|
|                 | PAR                         | AMETER .                                             | CONDITIONS                                                         |     |        | UNITS                   |              |  |
|                 |                             |                                                      | ,                                                                  | MIN | TYP(1) | MAX                     |              |  |
| VIH             | High Level Input Voltage    |                                                      |                                                                    | 2   |        |                         | V            |  |
| VIL             | Low Level Input Voltage     |                                                      |                                                                    |     |        | 0.8                     | V            |  |
| VI              | Input Clamp Voltage         | Any Input Except LI/RO and RI/LO                     | V <sub>CC</sub> ≠ Min, I <sub>1</sub> = −18 mA                     |     | ,      | -1.2                    | V            |  |
| Іон             | High Level Output Current   | Any Output Except LI/RO and RI/LO<br>LI/RO and RI/LO |                                                                    |     | ,      | -1<br>-2                | mA           |  |
| V <sub>OH</sub> | High Level Output Voltage   | Any Output Except LI/RO and RI/LO<br>LI/RO, RI/LO    | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OH} = Max$ | 2.7 | 3.4    |                         | ٧            |  |
| l <sub>OL</sub> | Low Level Output Current    | Any Output Except LI/RO and RI/LO LI/RO and RI/LO    |                                                                    |     |        | 20<br>10                | mA           |  |
| V <sub>OL</sub> | Low Level Output Voltage    |                                                      | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OL} = Max$ |     |        | 0.5                     | ٧            |  |
| I <sub>1</sub>  | Input Current at Maximum I  | nput Voltage(3)                                      | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                       |     |        | 1                       | mA           |  |
| I <sub>IH</sub> | High Level Input Current    | RSO, RS1<br>M, Clock<br>LI/RO, RI/LO(3)<br>AS2       | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.7V                       |     |        | 50<br>150<br>200<br>300 | μ <b>A</b> . |  |
|                 |                             | Others                                               |                                                                    |     |        | 250                     |              |  |
| I <sub>IL</sub> | Low Level Input Current     | RS0, RS1, LI/RO(3) RI/LO M, Clock                    | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.5V                       |     |        | -2<br>-3<br>-4          | mA           |  |
|                 |                             | ASO, AS1<br>Others                                   |                                                                    |     |        | -6<br>-8                |              |  |
| los             | Short Circuit Output Curren | t                                                    | V <sub>CC</sub> = Max(2)                                           | -40 |        | -110                    | mA           |  |
| Icc             | Supply Current              |                                                      | V <sub>CC</sub> = Max                                              |     | 144    | 230                     | mA           |  |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) When testing input current at the RI/LO or LI/RO terminals, the output under test must be in the high-impedance (off) state.



# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                    |                                                    |                |                                 |                                                                                           | DM74S  |      |     |       |
|--------------------|----------------------------------------------------|----------------|---------------------------------|-------------------------------------------------------------------------------------------|--------|------|-----|-------|
|                    | PARAMETER                                          | FROM (INPUT)   | (OUTPUT)                        | CONDITIONS                                                                                |        | S281 |     | UNITS |
|                    |                                                    | (1141 017      | (001101)                        |                                                                                           | MIN    | TYP  | MAX |       |
| fMAX               | Clock Frequency (For Shifting)                     |                |                                 |                                                                                           |        |      |     | MHz   |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | C <sub>n</sub> | C <sub>n+4</sub>                |                                                                                           |        | 10   | 20  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | O <sub>n</sub> |                                 |                                                                                           |        | 10   | 20  | ns    |
| tpLH               | Propagation Delay Time, Low-to-High Level Output   |                | C <sub>n+4</sub>                |                                                                                           |        | 18   | 30  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output . | Any A          |                                 |                                                                                           |        | 18   | 30  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | _              | Any F                           | `                                                                                         |        | 10   | 20  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | C <sub>n</sub> |                                 |                                                                                           |        | 10   | 20  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | 0              |                                 |                                                                                           |        | 14   | 24  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | Any A          | G                               |                                                                                           |        | 14   | 24  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | 0.000          | Р                               |                                                                                           |        | 12   | 20  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | Any A          |                                 |                                                                                           |        | 12   | 20  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | Ai             | F <sub>i</sub>                  |                                                                                           |        | 20   | 35  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   |                |                                 |                                                                                           |        | 20   | 35  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   |                | RI/LO                           |                                                                                           |        | 30   | 45  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | A <sub>0</sub> |                                 | $C_L$ = 15 pF<br>1/O Outputs: $R_L$ = 560 $\Omega$<br>Other Outputs: $R_L$ = 280 $\Omega$ |        | 30   | 45  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | _              | LI/RO                           |                                                                                           |        | 30   | 45  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | A <sub>3</sub> |                                 |                                                                                           |        | 30   | 45  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | F <sub>o</sub> | RI/LO                           |                                                                                           |        | 7    | 11  | ns    |
| <sup>t</sup> PHL   | Propagation Delay Time, High-to-Low Level Output   | '0             |                                 |                                                                                           |        | 7    | 11  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | F <sub>3</sub> | LI/RO Any F or C <sub>n+4</sub> |                                                                                           |        | 7    | 11  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | '3             |                                 |                                                                                           |        | 7    | 11  | ns    |
| <sup>t</sup> PLH   | Propagation Delay Time, Low-to-High Level Output   | Anv AS         |                                 |                                                                                           |        | 28   | 45  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | 7.11, 7.10     |                                 |                                                                                           |        | 28   | 45  | ns    |
| tpLH               | Propagation Delay Time, Low-to-High Level Output   | Any AS         | P or G                          |                                                                                           |        | 20   | 33  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | Any Ao         | 1 01 0                          |                                                                                           |        | 20   | 33  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | Clock          | Any F                           |                                                                                           |        | 30   | 45  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output   | Olock          | Zuiy i                          |                                                                                           |        | 30   | 45  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output   | Clock          | RI/LO or<br>LI/RO               |                                                                                           |        | 35   | 55  | ns    |
| tpHL               | Propagation Delay Time, High-to-Low Level Output   | Joek           |                                 |                                                                                           |        | 35   | 55  | ns    |
| tw(CLOCK)          | Width of Clock Pulse                               |                |                                 |                                                                                           | 8      |      |     | ns    |
| <sup>t</sup> SETUP | Data Setup Time With Respect to Clock              |                |                                 |                                                                                           | 01 (5  | )    |     | ns    |
| <sup>t</sup> HOLD  | Data Hold Time With Respect to Clock               |                |                                 |                                                                                           | 18† (5 | )    |     | ns    |

### Notes

(5) ↑ The arrow indicates that the rising edge of the clock pulse is used for reference.

# Typical Applications



41734V

Enter and store time: 38 ns typ
Each successive addition to stored data: 44 ns typ

FIGURE A: 16-BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS IN RIPPLE-CARRY MODE



Enter and store time: 37 ns typ
Each successive addition to stored data: 29 ns typ

FIGURE B: 16-BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS AND ONE DM74S182 FOR FULL CARRY LOOK-AHEAD



Enter and store time: 42 ns typ
Each successive addition to stored data: 34 ns typ

FIGURE C: 64-BIT BINARY ACCUMULATOR USING 16 DM74S281 CIRCUITS AND FIVE DM74S182 CIRCUITS FOR FULL CARRY LOOK-AHEAD



# 1024-Bit Programmable Read Only Memories

# **General Description**

These circuits are field-programmable, 1024-bit, read-only memories organized as 256 words of four bits each. This high-speed, Schottky-clamped, TTL memory array is addressed in 8-bit binary with full on-chip decoding. Two overriding chip-select inputs are provided which, when either one or both are high, cause all four outputs to be off (high Z state for S287). This memory features PNP input transistors, which reduce the low level input current requirement to a maximum of −0.25 mA, only one-eighth that of a standard Series 74S load. The organization is expandable with no additional output buffering.

The address of a 4-bit word is accomplished through the buffered binary select inputs, with a low level at both chip-select inputs. Where multiple devices are used in a memory system, the chip-select inputs allow easy decoding of additional address bits.

Data can be electronically programmed at any of the 1024-bit locations. Prior to programming, the memory contains a low logic level output condition at all bit locations. The programming procedure open-circuits metal links, which results in a high logic level output at the selected locations. The procedure is irreversible; once altered, the output for that bit is permanently programmed to provide a high logic level. Outputs never having been altered may later be programmed to supply a high level output. Operation of the device with-

in the recommended operating conditions will not alter the memory content.

These programmable memories can be used to replace the DM74187, as they are functionally and mechanically identical

### **Features**

- Fully decoded, low-current PNP inputs
- S387 has open-collector outputs for easy word expansion
- S287 is functionally equivalent but has TRI-STATE outputs
- Provides the versatility of custom designs virtually "off the shelf"
- "off the shelf"

  Applications include:
  - Microprogramming

    Look-up tables for any fixed program

Parallel Code Converters

Parallel Code Converters

Sequence, routine, and subroutine generators Random logic function generator

- Interchangeable with most other 256 words by 4-bit TTL PROMs/ROMs
- Fully compatible with most TTL and other saturated low level logic families
- Schottky-clamped for high performance:

Chip-select access time Address access time

15 ns typ

# **Connection Diagram**



54S287(J); 74S287(J), (N); 54S387(J); 74S387(J), (N)



|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                        |     |            | DM54 | S/74S        |     |      |        |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|-----|------------|------|--------------|-----|------|--------|
|                     | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONDITIO                                                                                    | NS .                   |     | S287       |      | \$387        |     |      | UNITS  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                        | MIN | MIN TYP(1) |      | X MIN TYP(1) |     | MAX  |        |
| V <sub>IH</sub> .   | High Level Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                        | 2   |            |      | 2            |     | * +  | V      |
| V <sub>IL</sub>     | Low Level Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |                        |     |            | 0.8  |              | :   | 8.0  | V      |
| Vi                  | Input Clamp Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 m                                               | A                      |     |            | 1.2  |              |     | -1.2 | V      |
| Іон                 | High Level Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | V <sub>OH</sub> = 2.4V |     |            | N/A  |              |     | 50   | μΑ     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                                               | V <sub>OH</sub> = 5.5V |     |            | N/A  |              |     | 100  | μΑ     |
|                     | A contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of | V <sub>IL</sub> = 0.8V                                                                      | DM54                   |     |            | -2.0 |              |     | N/A  | mA     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 .                                                                                         | DM74                   |     |            | -6.5 |              |     | N/A  | l IIIA |
| V <sub>OH</sub>     | High Level Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Ma | ×                      | 2.4 | 3.2        |      |              |     | 5.5  | ٧      |
| loL                 | Low Level Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                        |     |            | 16   |              |     | 16   | mA     |
| V <sub>OL</sub>     | Low Level Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 | mA                     |     | •          | 0.5  |              |     | 0.5  | ٧      |
| I <sub>O(OFF)</sub> | Off-State (High Impedance State)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                 | V <sub>O</sub> = 0.5V  |     |            | ~50  |              |     | N/A  |        |
|                     | Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VCC - Milax, VIH - 2V                                                                       | V <sub>O</sub> = 2.4V  |     |            | 50   |              |     | N/A  | μΑ     |
| 11                  | Input Current at Maximum Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                |                        |     |            | 1    |              |     | 1    | mA     |
| I <sub>IH</sub>     | High Level Input Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                                                |                        |     |            | 25   |              |     | 25   | μΑ     |
| I <sub>IL</sub>     | Low Level Input Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{CC} = Max, V_1 = 0.45$                                                                  | V                      |     |            | -250 |              |     | -250 | μΑ     |
| los                 | Short Circuit Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>CC</sub> = Max(2)                                                                    |                        | -30 |            | -100 |              | N/A |      | mA     |
| Icc                 | Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CC</sub> = Max(3)                                                                    |                        |     | 100        | 135  |              | 100 | 135  | mA     |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
- (3) ICC is measured with outputs open and both CS inputs grounded.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     |                 |                |                        | DM54        | S/74S                                          |         |       |
|------------------|-----------------------------------------------------|-----------------|----------------|------------------------|-------------|------------------------------------------------|---------|-------|
|                  | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT) |                        | S287        |                                                | UNITS   |       |
|                  |                                                     | (               | (0001)         | CONDITIONS             | MIN TYP MAX | CONDITIONS                                     | MIN TYP | VIAX  |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                 |                |                        | 30          |                                                | 35      | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Address         | Any            |                        | 30 .        |                                                | 35      | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Chip            |                | C <sub>L</sub> = 30 pF | N/A         | C, = 30 pF                                     | 15 ,    | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Select          | Any            | $R_L = 400\Omega$      | N/A         | to GND<br>R <sub>L1</sub> = 400Ω               | 15      | ns    |
| tzH              | Output Enable Time to<br>High Level                 | Chip            |                |                        | 15          | to V <sub>CC</sub> .<br>R <sub>L2</sub> = 600Ω | N/A     | ns    |
| tzL              | Output Enable Time to<br>Low Level                  | Select          | Any            |                        | 15          | to GND                                         | N/A     | ns    |
| tHZ              | Output Disable Time<br>From High Level              | Chip            |                | C <sub>L</sub> = 5 pF  | 12          |                                                | N/A     | í, ns |
| t <sub>LZ</sub>  | Output Disable Time<br>From Low Level               | Select          | Any            | R <sub>L</sub> = 400Ω  | 12          | 1                                              | N/A     | ns    |

### Notes

<sup>(4)</sup> When measuring times from address inputs, both CS1 and CS2 are low. When measuring times from chip-select inputs, the address inputs are held steady.



# 64-Bit Read/Write Memories with Open Collector Outputs

# General Description

These 64-bit active element memories are Schottky-clamped TTL arrays organized as 16 words of four bits each. They are fully decoded and feature a chip-enable input to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors that reduce the low level input current requirement to a maximum of -0.25 mA, only one-eighth that of a (standard) Series 54S/74S load factor. The chip-enable circuitry is implemented with minimal delay times to compensate for added system decoding.

Write Cycle: The complement of the information at the data input is written into the selected location when both the chip-enable input and the read/write input are low. While the read/write input is low, the outputs are at a high logic level (off).

Read Cycle: The stored information (complement of information applied at the data inputs during the write cycle) is available at the outputs when the read/write input is high and the chip-enable input is low. When the chip-enable input is high, the outputs are high (off).

The fast access time of the S289 makes it particularly attractive for implementing high performance memory functions requiring access times on the order of 25 ns. The unique functional capability of the S289 outputs being high during writing, combined with the data inputs being inhibited during reading, means that both data inputs and outputs can be connected to the data lines of a bus organized system without the need for interface circuits.

### **Features**

- Schottky-clamped for high-speed applications:
  - Access from chip-enable inputs 12 ns typ
    Access from address inputs 25 ns typ
- Open-collector outputs for controlled-impedance bus lines
- DM54S189/DM74S189 are functionally equivalent but have TRI-STATE outputs
- Chip-enable input simplifies system decoding
- Compatible with Intel 3101A in most applications

# Connection Diagram



54S289(J); 74S289(J), (W)

# Logic Diagram



# Truth Table

|                                     | INP            | UTS            |             |
|-------------------------------------|----------------|----------------|-------------|
| FUNCTION                            | CHIP<br>ENABLE | READ/<br>WRITE | OUTPUT      |
| Write<br>(Store Complement of Data) | L              | L              | . н         |
| Read                                | L              | Н              | Stored Data |
| Inhibit                             | Н              | Х              | Н           |

H = High Level, L = Low Level, X = Don't Care



|                 |                           | ,                                                                  |            |   | DM54S/74S |      |          |
|-----------------|---------------------------|--------------------------------------------------------------------|------------|---|-----------|------|----------|
|                 | PARAMETER                 | CONDITIONS                                                         |            |   | S289      |      | UNITS    |
|                 |                           |                                                                    | MIN TYP(1) |   | MAX       |      |          |
| VIH             | High Level Input Voltage  |                                                                    |            | 2 |           |      | <b>v</b> |
| V <sub>IL</sub> | Low Level Input Voltage   |                                                                    |            |   |           | 0.8  | <b>v</b> |
| ٧ı              | Input Clamp Voltage       | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 mA                     |            |   |           | -1.2 | ٧        |
| Іон             | High Level Output Current | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V V <sub>OH</sub> = 2.4V |            |   |           | 40   | μΑ       |
|                 |                           | $V_{1L} = 0.8V$ $V_{OH} = 5.5V$                                    |            |   |           | 100  | μΛ.      |
| V <sub>OH</sub> | High Level Output Voltage | ,                                                                  |            |   | -         | 5.5  | · V      |
| l <sub>OL</sub> | Low Level Output Current  |                                                                    |            |   |           | 16   | , mA     |
| $V_{OL}$        | Low Level Output Voltage  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                        | DM54       |   |           | 0.5  | V        |
|                 |                           | $V_{1L} = 0.8V, I_{OL} = 16 \text{ mA}$                            | DM74       |   |           | 0.45 | V        |
| l <sub>1</sub>  | Input Current at Maximum  | · V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                     |            |   |           | 1    | mA       |
|                 | Input Voltage             |                                                                    |            |   |           |      |          |
| I <sub>IH</sub> | High Level Input Current  | $V_{CC} = Max, V_1 = 2.7V$                                         |            |   |           | 25   | μΑ       |
| IIL             | Low Level Input Current   | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.45V                      |            |   |           | -250 | μΑ       |
| Icc             | Supply Current            | V <sub>CC</sub> = Max(2)                                           |            |   | 75        | 105  | mA       |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) ICC is measured with all inputs grounded, and the outputs open.

# Switching Characteristics over recommended operating ranges of $V_{CC}$ and $T_A$ (unless otherwise noted)

| ,                | P             | ARAMETER                                     | CONDITIONS                                   |         | DM54S<br>\$289            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | DM74S<br>\$289 |     | UNITS    |
|------------------|---------------|----------------------------------------------|----------------------------------------------|---------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-----|----------|
|                  | ,             |                                              |                                              | MIN     | TYP                       | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN     | TYP            | MAX |          |
| tAA              | Access Times  | From Address                                 |                                              |         | 25                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 25             | 35  | ns       |
| <sup>t</sup> CLH | Disable Time  | From Chip Enable                             | C <sub>L</sub> = 30 pF                       |         | 12                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 12             | 17  | ns       |
| tCHL             | Enable Time   | From Chip Enable                             | $R_{L1} = 300\Omega$<br>$R_{L2} = 600\Omega$ |         | 12                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 12             | 17  | ns       |
| twHL             | Sense-Recove  | ry Time From Read/Write                      |                                              |         | 22                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 22             | 35  | ns       |
| t <sub>WP</sub>  | Width of Writ | e-Enable Pulse (Read/Write Low)              |                                              | 25      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      |                |     | ns       |
| tASW             | Setup Time    | Address to Read/Write                        | ,                                            | 0       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | ~~~~           |     |          |
| t <sub>DSW</sub> |               | Data to Read/Write Chip Enable to Read/Write |                                              | 25<br>0 | tip & contact of the same | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 25<br>0 |                |     | ns       |
| tAHW             | Hold Time     | Address From Read/Write                      |                                              | 0       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       |                |     |          |
| tDHW             |               | Data From Read/Write                         |                                              | 0       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       |                |     | ns       |
| tCHW             |               | Chip Enable From Read/Write                  | -                                            | 0       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | -              |     | <u> </u> |



# **Parameter Measurement Information**

### LOAD CIRCUIT

14,600



# **ENABLE AND DISABLE TIME FROM CHIP ENABLE**



### ACCESS TIME FROM ADDRESS INPUTS



# WRITE CYCLE



### Notes

- (1) Waveform 1 is for the output with internal conditions such that the output is low except when disabled.
- (2) When measuring delay times from address inputs, the chip enable input is low and the read/write input is high.
- (3) When measuring delay times from chip enable input, the address inputs are steady state and the read/write input is high.
- (4) Input waveforms are supplied by pulse generators having the following characteristics:  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns,  $t_f \le 2.5$  ns, t



# TRI-STATE 4-Bit Parallel Access Shift Registers

# General Description

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, mode, and output control inputs. The registers have three modes of operation:

Parallel (broadside) load Shift right (the direction  $Q_A$  toward  $Q_D$ ) Shift left (the direction  $Q_D$  toward  $Q_A$ )

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high to low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop ( $Q_D$  to input C, etc.) and serial data is entered at input D.

When the output control is high, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the register is not affected.

# **Features**

- TRI-STATE versions of DM54LS95B/DM74LS95B
- Schottky diode clamped transistors
- Low power dissipation (enabled)

70 mW typical

Applications:

N-bit serial-to-parallel converter N-bit parallel-to-serial converter N-bit storage register

### Connection Diagram



54LS295A/74LS295A(J), (N), (W)

# Logic Diagram



### Truth Table

| Ì |         | INPUTS   |        |                             |                 |                 |    |                 |                   | OUTPUTS           |                 |  |  |
|---|---------|----------|--------|-----------------------------|-----------------|-----------------|----|-----------------|-------------------|-------------------|-----------------|--|--|
|   | MODE    | CLOCK    | SERIAL |                             | PARA            | LLEL            |    |                 |                   | _                 | ^               |  |  |
|   | CONTROL | CEOCK    | SERIAL | Α                           | В               | С               | D  | QA              | QB                | αc                | QD              |  |  |
|   | Н       | Н        | X ·    | Х                           | Х               | Х               | Х  | Q <sub>A0</sub> | Q <sub>BO</sub>   | Qco               | $Q_{DQ}$        |  |  |
|   | Н       | ↓        | ×      | , a                         | ь               | С               | d  | a               | b                 | С                 | d               |  |  |
|   | . н     | <b>+</b> | X      | Q <sub>B</sub> <sup>†</sup> | $Q_C^{\dagger}$ | $Q_D^{\dagger}$ | d  | Q <sub>Bn</sub> | $\mathbf{Q}_{Cn}$ | $\mathbf{Q}_{Dn}$ | d               |  |  |
|   | L       | Н        | Х      | Х                           | Χ               | X               | Х  | Q <sub>A0</sub> | $Q_{BO}$          | $\sigma_{\!co}$   | $Q_{D0}$        |  |  |
| İ | L       | <b>↓</b> | H      | ×                           | $^{\prime}$ X   | X               | X, | Н               | $\mathtt{Q}_{An}$ | $\mathbf{Q}_{Bn}$ | $Q_{Cn}$        |  |  |
|   | L       | 1        | L      | X                           | Х               | Х               | Х  | L               | Q <sub>An</sub>   | Q <sub>Bn</sub>   | Q <sub>Cn</sub> |  |  |

When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected.

H = High Level (steady-state), L = Low Level (steady-state), X = Don't Care (any input including transitions)

↓ = Transition from high to low level

a, b, c, d = The level of steady-state input at inputs A, B, C, or D, respectively.

 $Q_{AO}$ ,  $Q_{BO}$ ,  $Q_{CO}$ ,  $Q_{DO}$  = The level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , or  $Q_D$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An},\,Q_{Bn},\,Q_{Cn},\,Q_{Dn}$  = The level of  $Q_A,\,Q_B,\,Q_C,\,or$   $Q_D,\,$  respectively, before the most recent  $\downarrow$  transition of the clock.

†Shifting left requires external connection of  $Q_B$  to A,  $Q_C$  to B, and  $Q_D$  to C. Serial data is entered at input D.



|                     | PARAMETER                                       | CONDITIO                                                                                    | NS                           |     | DM54LS<br>LS295A |           |     | DM74LS<br>LS295A |           | UNITS |
|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|-----|------------------|-----------|-----|------------------|-----------|-------|
|                     |                                                 |                                                                                             |                              | MIN | TYP(1)           | MAX       | MIN | TYP(1)           | MAX       |       |
| V <sub>IH</sub>     | High Level Input Voltage                        |                                                                                             |                              | 2   |                  |           | 2   |                  |           | V     |
| VIL                 | Low Level Input Voltage                         |                                                                                             | 1                            |     |                  | 0.7       |     |                  | 0.8       | V     |
| Vı                  | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 m/                                              | 4                            |     |                  | -1.5      |     |                  | - 1.5     | V     |
| Іон                 | High Level Output Current                       |                                                                                             |                              |     |                  | 1         |     |                  | 2.6       | mA    |
| V <sub>OH</sub>     | High Level Output Voltage                       | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max, I <sub>OH</sub> = Max |                              | 2.4 | 3.4              |           | 2.4 | 3.1              |           | ٧     |
| I <sub>OL</sub>     | Low Level Output Current                        |                                                                                             |                              |     |                  | 4         |     |                  | 8         | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max                        | I <sub>OL</sub> = 4 mA       |     | 0.25             | 0.4       |     | 0.25             | 0.4       | V     |
| l <sub>O(OFF)</sub> | Off-State (High Impedance State) Output Current | $V_{CC} = Max, V_{IH} = 2V$ $V_{IL} = Max$                                                  | $V_O = 0.4V$<br>$V_O = 2.7V$ |     |                  | -20<br>20 |     |                  | -20<br>20 | μΑ    |
| I <sub>1</sub>      | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = Max, V <sub>1</sub> = 7V                                                  | <u> </u>                     |     |                  | 0.1       |     |                  | 0.1       | mA    |
| I <sub>IH</sub>     | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.7V                                                |                              |     |                  | 20        |     |                  | 20        | μА    |
| I <sub>IL</sub>     | Low Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                |                              |     |                  | -0.4      |     |                  | -0.4      | mA    |
| Ios                 | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                                    |                              | -30 |                  | 130       | -30 |                  | -130      | mA    |
| Icc                 | Supply Current                                  | V <sub>CC</sub> = Max(3)                                                                    | Condition A<br>Condition B   |     | 14<br>15         | 23<br>25  |     | 14<br>15         | 23<br>25  | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions:
  - A. Output control at 4.5V and a momentary 3V, then ground, applied to clock input.
  - B. Output control and clock input grounded.

|                    |                                                  |                                        | C    | M54LS/74L | S    |       |
|--------------------|--------------------------------------------------|----------------------------------------|------|-----------|------|-------|
|                    | PARAMETER                                        | CONDITIONS                             |      | LS295A    |      | UNITS |
|                    |                                                  |                                        | MIN  | TYP       | MAX  |       |
| fMAX               | Maximum Clock Frequency                          |                                        | 20 . | 28        |      | MHz   |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output |                                        |      | 40        | 60   | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output | $C_L = 15  pF$ .<br>$R_1 = 400 \Omega$ |      | 47        | 70   | ns    |
| <sup>t</sup> zH    | Output Enable Time to High Level                 |                                        |      | 15        | 25   | ns    |
| t <sub>ZL</sub>    | Output Enable Time to Low Level                  |                                        |      | , 21      | 30   | ns    |
| t <sub>HZ</sub>    | Output Disable Time From High Level              | C <sub>L</sub> = 5 pF                  |      | 39        | 60   | ns    |
| t <sub>LZ</sub>    | Output Disable Time From Low Level               | R <sub>L</sub> = 400Ω                  |      | 32        | 50 . | ns    |
| tw(clock)          | Width of Clock Pulse                             | ,                                      | 25   |           |      | ns    |
| <sup>t</sup> SETUP | Setup Time, High Level or Low Level Data         |                                        | 20   |           |      | ns    |
| t <sub>HOLD</sub>  | Hold Time, High Level or Low Level Data          |                                        | 20   |           |      | ns    |



# Quad 2-Multiplexers with Storage

# **General Description**

These integrated circuits provide essentially the equivalent functional capabilities of two separate MSI functions (DM54157/DM74157 or DM54LS157/DM74LS157 and DM54175/DM74175 or DM54LS175/DM74LS175) in a single 16-pin package.

When the word-select input is low, word 1 (A1, B1, C1, D1) is entered into the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is then clocked to the output terminals on the negative-going edge of the clock pulse.

### **Features**

- Selects one of two 4-bit data sources and stores data synchronously with system clock
- Applications:

Dual source for operands and constants in arithmetic processor; can release processor register files for acquiring new data

Implement separate registers capable of parallel exchange of contents, yet retain external load capability

Universal type register for implementing various shift patterns; even has compound left-right capabilities

# Connection Diagram



54LS298/74LS298(J), (N), (W)

# Truth Table

| INP            | UTS        | OUTPUTS         |          |               |                |  |  |  |
|----------------|------------|-----------------|----------|---------------|----------------|--|--|--|
| WORD<br>SELECT | сгоск      | QA              | QΒ       | οc            | α <sub>D</sub> |  |  |  |
| L              | . 1        | a1              | b1       | c1            | d1             |  |  |  |
| н              | . ↓        | a2              | b2       | c2            | d2             |  |  |  |
| ×              | , <b>H</b> | Q <sub>A0</sub> | $Q_{BO}$ | $\sigma^{co}$ | $Q^{D0}$       |  |  |  |

H = High Level (steady state)

L = Low Level (steady state)

X = Don't Care (any input, including transitions)

↓ = Transition from high to low level

a1, a2, etc. = The level of steady-state input at A1, A2, etc.

 $Q_{AO},~Q_{BO},$  etc. = The level of  $Q_A,~Q_B,$  etc. entered on the most recent  $\downarrow$  transition of the clock input.

# Logic Diagram





|                 |                                        |                                               |                        |      |     | DM54LS/74L | S    |          |
|-----------------|----------------------------------------|-----------------------------------------------|------------------------|------|-----|------------|------|----------|
|                 | PARAMETER                              | COND                                          | TIONS                  |      |     | LS298      |      | UNITS    |
|                 |                                        |                                               |                        |      | MIN | TYP(1)     | MAX  |          |
| ViH             | High Level Input Voltage               |                                               |                        |      | 2   |            |      | ٧        |
| VIL             | Low Level Input Voltage                |                                               |                        | DM54 |     |            | 0.7  | V        |
|                 |                                        |                                               |                        | DM74 |     |            | 0.8  | <b>V</b> |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>i</sub> = -18 m | nA .                   |      |     |            | -1.5 | V        |
| Іон             | High Level Output Current              |                                               |                        |      |     |            | -400 | μΑ       |
| VoH             | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V   |                        | DM54 | 2.5 | 3.4        |      | V        |
|                 |                                        | V <sub>IL</sub> = Max, I <sub>OH</sub> = -40  | 0μΑ                    | DM74 | 2.7 | 3.4        |      | V        |
| loL             | Low Level Output Current               |                                               |                        | DM54 |     |            | 4    | mA       |
|                 |                                        |                                               |                        | DM74 |     |            | 8    | mA       |
| VOL             | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V   | I <sub>OL</sub> = 4 mA |      |     | 0.25       | 0.4  | V        |
|                 |                                        | V <sub>IL</sub> = Max                         | I <sub>OL</sub> = 8 mA | DM74 |     | 0.35       | 0.5  |          |
| i <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 7V    |                        |      |     |            | 0.1  | mA       |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.7V  |                        |      |     |            | 20   | μΑ       |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V  | '                      |      |     |            | -0.4 | mA       |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                      |                        |      | -30 |            | -130 | mA       |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                      |                        |      |     | 13         | 21   | mA       |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) With all outputs open and all inputs except clock low, I<sub>CC</sub> is measured after applying a momentary 4.5V, followed by ground, to the clock input.

|                    |               |                                     |                                                |     | M54LS/74L | .S  |     |
|--------------------|---------------|-------------------------------------|------------------------------------------------|-----|-----------|-----|-----|
|                    |               | PARAMETER                           | CONDITIONS                                     |     | UNITS     |     |     |
|                    |               |                                     |                                                | MIN | TYP       | MAX |     |
| <sup>'t</sup> PLH  | Propagation D | elay Time, Low-to-High Level Output | C = 15 = 5 B = 2 kO                            |     | 18        | 27  | ns  |
| <sup>t</sup> PHL   | Propagation D | elay Time, High-to-Low Level Output | $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$ |     | 21        | 32  | ns  |
| tw                 | Width of Cloc | k Pulse, High or Low Level          |                                                | 20  |           |     | ns  |
| <sup>†</sup> SETUP | Setup Time    | Data                                | ,                                              | 15  |           |     |     |
|                    | ,             | Word Select                         |                                                | 25  |           | ,   | ns  |
| <sup>t</sup> HOLD  | Hold Time     | Data                                | *                                              | 5   |           |     | ns  |
|                    | Word Select   |                                     |                                                | 0   |           |     | 115 |



# **Typical Applications**

Figure 1 illustrates a BCD shift register that will shift an entire 4-bit BCD digit in one clock pulse.

When the word select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2, etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered into the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the LS298 is a register that can be designed specifically for supporting multiplier or division operations. *Figure 2* is an example of a one place/two place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.



FIGURE 1



FIGURE 2



# TRI-STATE Octal D Flip-Flops

# **General Description**

These 8-bit registers contain D-type flip-flops with totem-pole TRI-STATE outputs capable of driving highly-capacitive or low-impedance loads. When the output control is taken to a high logic level, the outputs go into the high impedance state. When a low logic level is applied to the output control, data at the D inputs are loaded into their respective flip-flops on the next positive-going transition of the clock, Clocked flip-flops provide fully synchronous operation and, in addition, these devices come in the new 20-pin dual-in-line packages with the 0.3" centers.

# **Features**

- TRI-STATE bus driving outputs
- Parallel access for loading and reading
- Many applications
  - Holding/working registers
  - I/O register port
  - Buffer registers
  - Register files
- Typical propagation delay

19 ns

# **Connection Diagram**



54LS374/74LS374(N)

# Truth Table

| OUTPUT<br>CONTROL | сьоск | D | оитрит |
|-------------------|-------|---|--------|
| L                 | 1     | Н | н      |
| L                 | 1     | L | L      |
| L.                | L     | х | Ω0     |
| н.                | Х     | х | Z      |

# Logic Diagram



# Typical Application





|                     |                                                 |                                               |                            |     | DM54        |      | DM74 |        |      | 1     |  |
|---------------------|-------------------------------------------------|-----------------------------------------------|----------------------------|-----|-------------|------|------|--------|------|-------|--|
|                     | PARAMETER                                       | CONI                                          | DITIONS                    |     | LS374       |      | L    | LS374  |      | UNITS |  |
|                     |                                                 |                                               |                            | MIN | TYP(1)      | MAX  | MIN  | TYP(1) | MAX  |       |  |
| V <sub>IH</sub>     | High Level Input Voltage                        |                                               |                            | 2   |             |      | 2    |        |      | V     |  |
| VIL                 | Low Level Input Voltage                         |                                               |                            |     |             | 0.7  |      |        | 8.0  | V     |  |
| VI                  | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I                      | <sub>i</sub> = -18 mA      |     |             | -1.5 |      |        | -1.5 | >     |  |
| Гон                 | High Level Output Current                       |                                               |                            |     | ,           | -1.0 |      |        | -5.0 | mA    |  |
| VoH                 | High Level Output Voltage                       | V <sub>CC</sub> = Min                         | I <sub>OH</sub> = -1 mA    | 2.5 |             |      |      |        |      |       |  |
| l                   |                                                 | V <sub>IH</sub> = 2V                          | $I_{OH} = -2.6 \text{ mA}$ |     |             | 1.5  | 2.7  |        |      | V     |  |
|                     |                                                 | V <sub>IL</sub> = Max                         | I <sub>OH</sub> = -5 mA    |     |             |      | 2.4  |        |      |       |  |
| loL                 | Low Level Output Current                        |                                               |                            |     |             | 4    |      |        | 8    | mA    |  |
| V <sub>QL</sub>     | Low Level Output Voltage                        | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V | I <sub>OL</sub> = 4 mA     |     |             | 0.4  |      |        | 0.4  | · v   |  |
| `                   |                                                 | V <sub>IL</sub> = Max                         | I <sub>OL</sub> = 8 mA     |     |             |      |      |        | 0.5  |       |  |
| I <sub>O(OFF)</sub> | Off State (High Impedance State) Output Current | V <sub>CC</sub> = Max<br>V <sub>IH</sub> = 2V | V <sub>O</sub> = 0.4V      |     |             | -20  |      |        | -20  | μΑ    |  |
|                     | Output Current                                  | V <sub>IL</sub> = Max                         | V <sub>O</sub> = 2.7V      |     |             | ` 20 |      |        | 20   |       |  |
| l <sub>i</sub>      | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = Max,                        | V <sub>1</sub> = 7V        |     |             | 0.1  |      |        | 0.1  | mA    |  |
| I <sub>IH</sub>     | High Level Input Current                        | V <sub>CC</sub> = Max, V                      | V <sub>1</sub> = 2.7V      |     |             | 20   |      |        | 20   | μΑ    |  |
| I <sub>IL</sub>     | Low Level Input Current                         | V <sub>CC</sub> = Max, \                      | V <sub>1</sub> = 0.4V      |     |             | -0.4 |      |        | -0.4 | mA    |  |
| los                 | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2                       | ")                         | -30 |             | -130 | -30  |        | -130 | mA    |  |
| Icc                 | Supply Current                                  | V <sub>CC</sub> = Max                         |                            |     | <del></del> | 50   |      |        | 50   | mA    |  |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

|        |                            |                             |       | I      |                                                |          | OM54LS/74L | S                                     |       |
|--------|----------------------------|-----------------------------|-------|--------|------------------------------------------------|----------|------------|---------------------------------------|-------|
|        | PARAMET                    | ER .                        | FROM  | то     | CONDITIONS                                     |          | LS374      |                                       | UNITS |
|        |                            |                             |       | *      |                                                | MIN      | TYP        | MAX                                   |       |
| fMAX   | Maximum Cl                 | ock Frequency               | ·     |        | ·                                              | 25       | 30         |                                       | MHz   |
| tPLH   | Propagation<br>Low-to-High | Delay Time,<br>Level Output | Clock | Output |                                                |          | 18         | 30                                    | ns    |
| tpHL   | Propagation<br>High-to-Low | Delay Time,<br>Level Output | Clock | Output | $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$ |          | 20         | 30                                    | ns    |
| tzH    | Output Enab<br>High Level  | le Time to                  | ,     |        |                                                |          | 15         | 20                                    | ns    |
| tzL    | Output Enab<br>Low Level   | le Time to                  | ,     |        | `                                              |          | 10         | 20                                    | ns    |
| tHZ    | Output Disal<br>High Level | ole Time from               |       |        | $C_L = 5 pF, R_L = 2 k\Omega$                  |          | 13         | 20                                    | ns    |
| tLZ    | Output Disal<br>Low Level  | ole Time from               |       |        | C 5 pr , N 2 k32                               |          | 15         | 20                                    | ns    |
| tSETUP | Setup Time                 | Data<br>Output Control      |       |        | ·                                              | 10<br>20 |            |                                       | ns    |
| tHOLD  | Hold Time                  | Data<br>Output Control      | ]     |        |                                                | 10       |            | · · · · · · · · · · · · · · · · · · · | ns    |



# General Description

# TRI-STATE 4-Bit Cascadable Shift Registers

These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, load/shift, output control and direct overriding clear inputs.

Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data is loaded into the associated flipflops and appears at the outputs after the high to low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output

control input. The outputs then present a high impedance, and neither load nor drive the bus line; however, sequential operation of the registers is not affected. During the high-impedance mode, the output at  $Q_D{}'$  is still available for cascading.

### Features

- Applications:
  - N-bit serial-to-parallel converter N-bit parallel-to-serial converter N-bit storage register
- TRI-STATE, 4-bit, cascadable, parallel-in, parallel-out registers
- Schottky diode clamped transistors
- Low power dissipation (enabled)

75 mW typical

# **Connection Diagram**



54LS395/74LS395(J), (N), (W)

# Logic Diagram





### Truth Table

|       | INPUTS -               |       |        |   |   |     |   | TRI-S           | TATE              | CASCADE              |                   |                            |
|-------|------------------------|-------|--------|---|---|-----|---|-----------------|-------------------|----------------------|-------------------|----------------------------|
| CLEAR | L'OAD/SHIFT<br>CONTROL | сьоск | SERIAL | - |   | LLI |   | QA              | QB                | αc                   | QD                | OUTPUT<br>Q <sub>D</sub> ' |
|       | CONTROL                |       |        | Α | В | c   | D |                 |                   |                      |                   |                            |
| L     | × .                    | ×     | Х      | х | X | Х   | Х | L               | L                 | L                    | L                 | L                          |
| н     | н                      | н     | ×      | X | Х | Х   | Х | Q <sub>A0</sub> | $Q_{BQ}$          | $\mathtt{Q}_{C0}$    | $\mathtt{Q}_{D0}$ | O <sub>D0</sub>            |
| н     | н                      | ↓     | ×      | а | b | c   | d | a               | b                 | С                    | d                 | d                          |
| н     | L                      | Ĥ     | ×      | × | Х | Х   | X | Q <sub>A0</sub> | $O_{BO}$          | $\sigma_{\!co}$      | QDO               | Q <sub>D0</sub>            |
| н     | L                      | ↓     | н      | × | Х | Х   | Х | Н               | $\mathbf{Q}_{An}$ | $\Omega_{\text{Bn}}$ | Q <sub>Cn</sub>   | Q <sub>Cn</sub>            |
| H,    | L                      | ↓ ,   | L      | × | Χ | Χ   | Χ | L               | $\mathbf{Q}_{An}$ | $Q_{Bn}$             | $\mathbf{Q}_{Cn}$ | Q <sub>Cn</sub>            |

H = High Level (steady state), L = Low Level (steady state),

X = Don't Care (any input including transitions)

↓ = Transition from high to low level.

Q<sub>AO</sub>, Q<sub>BO</sub>, Q<sub>CO</sub>, Q<sub>DO</sub> = The level of Q<sub>A</sub>, Q<sub>B</sub>, Q<sub>C</sub>, or Q<sub>D</sub>, respectively, before the indicated steady state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$ ,  $Q_{Dn}$ , = The level of  $Q_{A}$ ,  $Q_{B}$ ,  $Q_{C}$ , or  $Q_{D}$ , respectively, before the more recent  $\downarrow$  transition of the clock.

When the output control is high, the TRI-STATE outputs are disabled to the high-impedance state; however, sequential operation of the registers and the output at  $\Omega p'$  are not affected.

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                     | ,                                      | 5 1                                                         |                        | 1   | DM54LS |      |     | DM74LS |      |       |
|---------------------|----------------------------------------|-------------------------------------------------------------|------------------------|-----|--------|------|-----|--------|------|-------|
|                     | PARAMETER                              | CONDITIO                                                    | vs                     |     | LS395  |      |     | LS395  |      | UNITS |
|                     |                                        |                                                             |                        | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  |       |
| VIH                 | High Level Input Voltage               |                                                             |                        | 2   |        |      | 2   |        |      | V     |
| VIL                 | Low Level Input Voltage                |                                                             |                        |     |        | 0.7  |     |        | 0.8  | V     |
| Vi                  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 m               | Α                      |     |        | -1.5 |     |        | -1.5 | ٧     |
| I <sub>OH</sub>     | High Level Output Current              |                                                             |                        |     |        | -1   |     |        | -2.6 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = Max, I_{OH} = Max$ |                        | 2.4 | 3.4    |      | 2.4 | 3.1    |      | ٧     |
| I <sub>OL</sub>     | Low Level Output Current               |                                                             |                        |     |        | 4    |     |        | 8    | mA    |
| VOL                 | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                 | I <sub>OL</sub> = 4 mA |     | 0.25   | 0.4  |     | 0.25   | 0.4  | V     |
|                     |                                        | V <sub>IL</sub> = Max                                       | I <sub>OL</sub> = 8 mA |     |        |      |     | 0.35   | 0.5  | ·     |
| I <sub>O(OFF)</sub> | Off-State (High Impedance State)       | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                 | $V_{O} = 0.4V$         |     |        | -20  |     |        | -20  |       |
|                     | Output Current                         | V <sub>IL</sub> = Max                                       | V <sub>O</sub> = 2.7V  |     | ,      | 20   |     |        | 20   | 'μA   |
| i,                  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>i</sub> = 7V                  |                        |     |        | 0.1  |     |        | 0.1  | mA    |
| I <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                |                        |     |        | 20   |     |        | 20   | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                | ,                      |     |        | -0.4 |     |        | -0.4 | mA    |
| los                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                    |                        | -30 |        | -130 | -30 |        | -130 | mA    |
| Icc                 | Supply Current                         | V <sub>CC</sub> = Max(3)                                    | Condition A            |     | 18     | 29   |     | 18     | 29   | mΛ    |
|                     |                                        | VCC - IVIAX(3)                                              | Condition B            |     | 15     | 25   |     | 15     | 25   | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions:

  A. Output control at 4.5V and a momentary 3V, then ground, applied to clock input.
  - B. Output control and clock input grounded.

|                    |                                                  |                                    |     | DM54LS/74LS | <b>3</b> |       |
|--------------------|--------------------------------------------------|------------------------------------|-----|-------------|----------|-------|
|                    | PARAMETER                                        | CONDITIONS                         |     | LS395       |          | UNITS |
|                    |                                                  |                                    | MIN | TYP         | MAX      | 1     |
| fMAX               | Maximum Clock Frequency                          |                                    | 25  | 35          |          | MHz   |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output |                                    |     | 18          | 27       | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output | $C_L = 15 pF$<br>$R_1 = 400\Omega$ |     | 21          | 32       | ns    |
| t <sub>ZH</sub>    | Output Enable Time to High Level                 | 11[ - 40032                        |     | . 15        | 25       | ns    |
| tzL                | Output Enable Time to Low Level                  |                                    |     | 20          | 30       | ns    |
| t <sub>HZ</sub>    | Output Disable Time From High Level              | C <sub>1</sub> = 5 pF              |     | 30          | 50       | ns    |
| t <sub>LZ</sub>    | Output Disable Time From Low Level               | R <sub>L</sub> = 400Ω              |     | . 30        | 50.      | ns    |
| tw(CLOCK)          | Width of Clock Pulse                             | . ,                                | 25  |             | . 1      | ns    |
| <sup>t</sup> SETUP | Setup Time, High Level or Low Level Data         | · ·                                | 20  |             |          | ns    |
| tHOLD              | Hold Time, High Level or Low Level Data          |                                    | 10  | ,           |          | ns    |



# **General Description**

These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits writing into one location, and reading from another word location, simultaneously.

Four data inputs are available to supply the word to be stored. Location of the word is determined by the write select inputs A and B, in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, Gw, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input,  $G_R$ , is high, the data outputs are inhibited and go into the high impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-data entry addressing separate from data read addressing and individual sense line-eliminates

# TRI-STATE 4 by 4 Register Files

recovery times, permits simultaneous reading and writing. and is limited in speed only by the write time (27 ns typical) and the read time (24 ns typical). The register file has a non-volatile readout in that data is not lost when addressed.

All inputs (except read enable and write enable) are buffered to lower the drive requirements to one normal Series 54LS/74LS load, and input clamping diodes minimize switching transients to simplify system design. High speed, double ended AND-OR-INVERT gates are employed for the read-address function and have high sink current, TRI-STATE outputs. Up to 128 of these outputs may be wire-AND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

### Features

- For use as:
  - Scratch pad memory
  - Buffer storage between processors
  - Bit storage in fast multiplication designs
- Separate read/write addressing permits simultaneous reading and writing
- Organized as 4 words of 4 bits
- Expandable to 512 words of n-bits
- TRI-STATE versions of DM54LS170/DM74LS170
- Fast access times

20 ns typ

# Connection Diagram



54LS670/74LS670(J), (N), (W)

### Truth Tables

# WRITE TABLE (SEE NOTES A. B. AND C)

| WRI                                          | TE IN | PUTS |       | WORD  |       |       |  |  |  |  |  |
|----------------------------------------------|-------|------|-------|-------|-------|-------|--|--|--|--|--|
| W <sub>B</sub> W <sub>A</sub> G <sub>W</sub> |       |      | 0     | 1     | 2     | 3     |  |  |  |  |  |
| L                                            | L     | · L  | Q = D | $Q_0$ | Qo    | Qo    |  |  |  |  |  |
| L                                            | Н     | L    | $Q_0$ | Q = D | $Q_0$ | $Q_0$ |  |  |  |  |  |
| Н                                            | L     | L    | $Q_0$ | $Q_0$ | Q = D | $Q_0$ |  |  |  |  |  |
| Н                                            | Н     | L    | $Q_0$ | $Q_0$ | $Q_0$ | Q = D |  |  |  |  |  |
| Х                                            | Х     | Н    | Qo    | $Q_0$ | $Q_0$ | $Q_0$ |  |  |  |  |  |

### READ TABLE (SEE NOTES A AND D)

| RE | AD IN                                        | PUTS | OUTPUTS |      |      |      |  |  |  |  |
|----|----------------------------------------------|------|---------|------|------|------|--|--|--|--|
| RB | R <sub>B</sub> R <sub>A</sub> G <sub>R</sub> |      | 01      | Q2   | O3   | Q4   |  |  |  |  |
| L  | L                                            | L    | W0B1    | W0B2 | W0B3 | W0B4 |  |  |  |  |
| L  | Н                                            | L    | W1B1    | W1B2 | W1B3 | W1B4 |  |  |  |  |
| н  | L                                            | L    | W2B1    | W2B2 | W2B3 | W2B4 |  |  |  |  |
| Н  | Н                                            | L    | W3B1    | W3B2 | W3B3 | W3B4 |  |  |  |  |
| ×  | Х                                            | Н    | Ż       | Z    | Z    | Z    |  |  |  |  |

### Notes:

- (A) H = High Level, L = Low Level, X = Don't Care, Z = HighImpedance (Off)
- (B) (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
- (C) Qn = The level of Q before the indicated input conditions were established.
- (D) W0B1 = The first bit of word 0, etc.



|                 |                                        | 1.<br>1. 1819 - N                                                    |                                                  |     | DM54LS |             |          |             |      |          |
|-----------------|----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----|--------|-------------|----------|-------------|------|----------|
|                 | PARAMETER                              | CONDITIO                                                             | ONS                                              |     | LS670  | - 57        |          | LS670       |      | UNITS    |
|                 |                                        |                                                                      |                                                  | MIN | TYP(1) | MAX         | MIN      | TYP(1)      | MAX  |          |
| VIH             | High Level Input Voltage               |                                                                      |                                                  | 2   |        |             | 2        |             | *    | - v      |
| VIL             | Low Level Input Voltage                | ,                                                                    |                                                  |     | ,      | 0.7         |          | ,           | 0.8  | V        |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -18 m/                       | ۹ .                                              |     |        | -1.5        |          |             | -1.5 | V        |
| Іон             | High Level Output Current              | 1                                                                    |                                                  |     |        | -1.0        | ٠.       |             | -2.6 | mA       |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = Max, I_{OH} = Max$          |                                                  | 2.5 | 3.4    |             | 2.7      | 3.4         |      | V        |
| loL             | Low Level Output Current               |                                                                      |                                                  |     |        | 4           |          |             | 8    | mA       |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = Max | I <sub>OL</sub> = 4 mA<br>I <sub>OL</sub> = 8 mA |     | 0.25   | 0.4         |          | 0.25        | 0.4  | V        |
| lovorry         | Off-State (High Impedance State)       | $V_{CC} = Max, V_{IH} = 2V$                                          | V <sub>O</sub> = 0.4V                            |     |        | -20         | <u> </u> |             | -20  | <u> </u> |
| ·0(0FF)         | Output Current                         | V <sub>IL</sub> = Max                                                | V <sub>O</sub> = 2.7V                            |     |        | 20          |          |             | 20   | μΑ       |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage |                                                                      | Any D, R, or W                                   |     |        | 0.1         |          | <del></del> | 0.1  |          |
|                 |                                        | $V_{CC} = Max, V_1 = 7V$                                             | Gw                                               |     |        | 0.2         |          |             | 0.2  | mA       |
|                 |                                        |                                                                      | G <sub>R</sub>                                   |     |        | 0.3         |          |             | 0.3  |          |
| I <sub>IH</sub> | High Level Input Current               |                                                                      | Any D, R, or W                                   |     |        | 20          |          |             | 20   |          |
|                 |                                        | $V_{CC} = Max, V_1 = 2.7V$                                           | G <sub>W</sub>                                   |     |        | 40          |          |             | 40   | μΑ       |
|                 |                                        |                                                                      | GR                                               |     |        | 60          |          |             | 60   |          |
| İ <sub>IL</sub> | Low Level Input Current                | 1                                                                    | Any D, R, or W                                   |     |        | <b>−0.4</b> |          |             | -0.4 |          |
|                 | i '                                    | $V_{CC} = Max, V_1 = 0.4V$                                           | G <sub>W</sub>                                   |     |        | -0.8        |          |             | -0.8 | mA       |
|                 |                                        |                                                                      | G <sub>R</sub>                                   | l   |        | -1.2        |          |             | -1.2 |          |
| Ios             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                             | -                                                | -30 |        | -130        | -30      |             | -130 | mA       |
| lcc             | Supply Current                         | V <sub>CC</sub> = Max(3)                                             |                                                  |     | 30     | 50          |          | 30          | 50   | mÄ       |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
- (3) Maximum I<sub>CC</sub> is guaranteed for the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.



Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    | •                                         |                                                                     |                 |                                    | DM541                 |       |     |     |       |
|--------------------|-------------------------------------------|---------------------------------------------------------------------|-----------------|------------------------------------|-----------------------|-------|-----|-----|-------|
|                    | PARAMETER                                 |                                                                     | FROM<br>(INPUT) | TO<br>(OUTPUT)                     | LS                    | 670   |     |     | UNITS |
|                    |                                           |                                                                     | ( 0.7           | (0011017                           | CONDITIONS            | MIN T | ГΥР | MAX |       |
| tpLH               | Propagation Delay Time, Low-to-High Leve  | el Output                                                           | Read Select     |                                    |                       |       | 23  | 40  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Leve  | el Output                                                           | Read Select     | Any Q                              |                       |       | 25  | 45  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Leve  | Miles Freshle                                                       |                 | 0 - 15 - 5                         |                       | 26    | 45  | ns  |       |
| tpHL               | Propagation Delay Time, High-to-Low Leve  | Write Enable                                                        | Any Q           | $C_L = 15 pF$<br>$R_L = 2 k\Omega$ |                       | 28    | 50  | ns  |       |
| tpLH               | Propagation Delay Time, Low-to-High Leve  | Data                                                                | A= 0            |                                    |                       | 25    | 45  | ns  |       |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Leve  | el Output                                                           | Data            | Any Q                              |                       |       | 23  | 40  | ns    |
| tzH                | Output Enable Time to High Level          |                                                                     | Read Enable     | Any Q,                             |                       |       | 15  | 35  | ns    |
| tzL                | Output Enable Time to Low Level           | Output Enable Time to Low Level                                     |                 |                                    | C <sub>L</sub> = 5 pF |       | 22  | 40  | ns    |
| t <sub>HZ</sub>    | Output Disable Time From High Level       |                                                                     | Read Enable     | A O                                | R <sub>L</sub> = 2 kΩ |       | 30  | 50  | ns    |
| tLZ                | Output Disable Time From Low Level        |                                                                     | nead Enable     | Any Q                              |                       |       | 16  | 35  | ns    |
| t <sub>W</sub>     | Width of Write-Enable or Read-Enable Puls | e                                                                   |                 |                                    |                       | 25    |     |     | ns    |
| <sup>t</sup> SETUP | Setup Times, High or Low Level Data(4)    | Data Input With Respect to Write-Enable, t <sub>SETUP(D)</sub>      |                 |                                    |                       | 10    |     |     | ns    |
|                    |                                           | Write-Select With Respect to<br>Write-Enable, t <sub>SETUP(W)</sub> |                 |                                    |                       | 15    |     |     | ns    |
| <sup>t</sup> HOLD  | Hold Times, High or Low Level Data(4)     | Data Input With Respect to<br>Write-Enable, t <sub>HOLD(D)</sub>    |                 |                                    |                       | 15    |     |     | ns    |
| 3                  |                                           | Write-Select With Respect to<br>Write-Enable, t <sub>HOLD(W)</sub>  |                 |                                    |                       | 5     |     |     | ns    |
| tLATCH             | Latch Time for New Data(5)                |                                                                     |                 |                                    |                       | 25    |     |     | ns    |

### Notes

- (4) Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, tgETUP(W) can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during tHOLD(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.
- (5) Latch time is the time allowed for the internal output of the latch to assume the state of new data. This is important only when attempting to read from a location immediately after that location has received new data.



# National Semiconductor PROPRIETARY DEVICES Section 3





| ne de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |      | 7X/8X  | 7XL/8XL      | 71LS            | S/81LS            | 75S/85S |       |  |  |
|----------------------------------------------------------------------------------------------------------------|------|--------|--------------|-----------------|-------------------|---------|-------|--|--|
| RATINGS                                                                                                        |      | SERIES | SERIES       | DIODE<br>INPUTS | EMITTER<br>INPUTS | SERIES  | UNITS |  |  |
| Maximum Allowable<br>Supply Voltage                                                                            | 7    | 8      | 7            | 7               | 7                 | V       |       |  |  |
| Guaranteed Operating                                                                                           | Mil  |        | 4.50 to 5.50 |                 |                   |         |       |  |  |
| Supply Voltage Range                                                                                           | Coml |        | 4.75 to 5.25 |                 |                   |         |       |  |  |
| Maximum Input Voltage                                                                                          | 1    | 5.5    | 5.5          | 7 .             | 5.5               | 5.5     | V     |  |  |
| Maximum Voltage to Open-<br>Collector Outputs*                                                                 |      | 7      | 8            | 7               | 7                 | 7       | V     |  |  |
| Operating Free-Air                                                                                             | Mil  |        | -55 to +125  |                 |                   |         |       |  |  |
| Temperature Range                                                                                              | Comi |        | 0 to +70     |                 |                   |         |       |  |  |
| Storage Temperature Range -65 to +150                                                                          |      |        |              |                 | °c                |         |       |  |  |

| Proprietary                    |                                                                               |      |     |      | Tabl | e of  | Content | ts |
|--------------------------------|-------------------------------------------------------------------------------|------|-----|------|------|-------|---------|----|
|                                |                                                                               | Page |     |      | Pac  | ckage |         | _  |
| Device No.                     | Description                                                                   | No.  |     | J    |      | V     | W       | _  |
|                                |                                                                               |      | Mil | Comi | Mil  | Coml  | Mil Cor | m  |
| DM80L06                        | Quad 2-Input NAND Gates with Resistive                                        | 3-1  | N   | I/A  |      | •     | N/A     |    |
|                                | Pull-Ups                                                                      | 1    | ł   |      |      | •     |         |    |
| DM7090/DM8090                  | Quad Inverters plus Dual 2-Input NAND                                         | 3-3  | •   | • .  | •    | •     | •       | •  |
| DM7001/DM0001                  | Gates                                                                         | 3-3  | ١.  | _    |      |       |         | _  |
| DM7091/DM8091<br>DM7092/DM8092 | Quad 2-Input NAND Buffers Dual 5-Input NAND Gates                             | 3-3  |     |      |      | •     |         | -  |
| DM7093/DM8093                  | TRI-STATE Quad Buffers                                                        | 3-5  |     | •    |      | •     |         | •  |
| DM7094/DM8094                  | TRI-STATE Quad Buffers                                                        | 3-5  |     | •    | •    | •     |         | •  |
| DM7095/DM8095                  | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    |      | •     |         | •  |
| DM70L95/DM80L95                | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    | •    | •     |         | •  |
| DM7096/DM8096                  | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    |      | •     | • •     | •  |
| DM70L96/DM80L96                | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    | •    | •     | • •     | •  |
| DM7097/DM8097                  | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    |      | •     | •       | •  |
| DM70L97/DM80L97                | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    | •    | •     | • •     | •  |
| DM7098/DM8098                  | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    |      | •     | • •     | •  |
| DM70L98/DM80L98                | TRI-STATE Hex Buffers                                                         | 3-7  | •   | •    | •    | •     | • •     | •  |
| DM7099/DM8099                  | TRI-STATE Quad 2-Input NAND Buffers                                           | 3-9  | •   | •    | •    | •     | • •     | •  |
| DM7121/DM8121                  | TRI-STATE Data Selectors/Multiplexers                                         | 3-11 | •   | •    |      | •     | • •     | •  |
| DM71L22/DM81L22                | Quad 2-Input Data Selectors/Multiplexers                                      | 3-13 | •   | •    | •    | •     | • , •   | •  |
| DM7123/DM8123                  | TRI-STATE Quad 2-Input Data Selectors/                                        | 3-13 | •   | •    |      | •     | • •     | •  |
|                                | Multiplexers                                                                  |      |     |      |      |       |         |    |
| DM71L23/DM81L23                | TRI-STATE Quad 2-Input Data Selectors/                                        | 3-13 | •   | •    | •    | •     | • •     | •  |
|                                | Multiplexers                                                                  |      |     |      |      |       |         |    |
| DM7130/DM8130                  | 10-Bit Magnitude Comparators                                                  | 3-17 | •   | •    |      | •     | (F) (F  | F) |
| DM7131/DM8131                  | 6-Bit Unified Bus Comparators                                                 | 3-19 | •   | •    |      | •     | • • •   | •  |
| DM7136/DM8136                  | 6-Bit Unified Bus Comparators                                                 | 3-19 | •   | •    |      | •     | • •     | •  |
| DM7160/DM8160                  | 6-Bit Magnitude Comparators                                                   | 3-17 | •   | •    |      | •     | .• •    | •  |
| DM71LS95/DM81LS95              | TRI-STATE Octal Buffers                                                       | 3-21 | •   | •    | •    | •     | • •     | •  |
| DM71LS96/DM81LS96              | TRI-STATE Octal Buffers                                                       | 3-21 | •   | •    | •    | •     | • •     | •  |
| DM71LS97/DM81LS97              | TRI-STATE Octal Buffers                                                       | 3-21 | •   | •    | •    | •     | • •     | •  |
| DM71LS98/DM81LS98              | TRI-STATE Octal Buffers                                                       | 3-21 | •   | •    | •    | •     | •       | •  |
| DM7200/DM8200                  | 4-Bit Magnitude Comparators                                                   | 3-23 | •   | •    | •    | •     | • •     | •  |
| DM7210/DM8210                  | 8-Line Data Selectors/Multiplexers                                            | 3-25 | •   | •    |      | •     | •       | •  |
| DM7211/DM8211                  | 8-Line Data Selectors/Multiplexers                                            | 3-25 | •   | •    |      | •     | • •     | •  |
| DM7214/DM8214                  | TRI-STATE Data Selectors/Multiplexers                                         | 3-28 | •   | •    |      | •     | •       | •  |
| DM7219/DM8219                  | TRI-STATE Data Selectors/Multiplexers                                         | 3-28 | •   | •    |      | •     | (F) (F  | F) |
| DM7220/DM8220                  | 9-Bit Parity Generators/Checkers                                              | 3-32 | •   | •    | •    | •     |         | •  |
| DM7223/DM8223                  | 1-Line to 8-Line Demultiplexers                                               | 3-35 | •   | •    |      | •     | N/A     | _  |
| DM7230/DM8230                  | TRI-STATE Dual 2/4 Demultiplexers                                             | 3-37 | •   | •    |      | •     |         | •  |
| DM7511/DM8511                  | Dual Gated Flip-Flops                                                         | 3-40 | •   | •    | •    | •     |         |    |
| DM75L11/DM85L11                | Dual Gated Flip-Flops                                                         | 3-40 | •   | •    | •    | •     |         | •  |
| DM7512/DM8512                  | Dual Gated Flip-Flops                                                         | 3-40 | •   | •    | •    | •     |         | _  |
| DM75L12/DM85L12                | Dual Gated Flip-Flops                                                         | 3-40 |     |      | •    |       |         | _  |
| DM7520/DM8520                  | Modulo-N Dividers                                                             | 3-44 | •   |      |      |       | NI/A    | •  |
| DM8531<br>DM7542/DM8542        | TRI-STATE 16k Read Only Memories TRI-STATE Quad I/O Registers                 | 3-49 |     |      |      | •     | N/A     |    |
| DM7544/DM8544                  | TRI-STATE Quad 1/O Registers TRI-STATE Quad Switch Debouncers                 | 3-52 |     |      |      |       |         |    |
| DM7546/DM8546                  | TRI-STATE Quad Switch Debouncers TRI-STATE 8-Bit Universal I/O Shift          | 3-54 |     |      | •    |       |         |    |
| DW/940/DW8946                  | • *                                                                           | 3-56 |     |      |      | •     |         | •  |
| DM85S50                        | Registers 6-Bit Shift Registers                                               | 3-60 | N.  | /A   |      | _     | N/A     |    |
| DM7551/DM8551                  | TRI-STATE 4-Bit D Type Registers                                              | 3-60 | • " | /A   |      | _     | 1N/A    |    |
| DM75L51/DM85L51                | TRI-STATE 4-Bit D Type Registers TRI-STATE 4-Bit D Type Registers             | 3-62 |     |      | _    | -     |         |    |
| DM7552/DM8552                  | TRI-STATE 4-Bit D Type Registers  TRI-STATE Synchronous Counters/Latches      | 3-64 |     |      | •    | -     |         | •  |
| DM75L52/DM85L52                | TRI-STATE Synchronous Counters/Latches                                        | 3-64 |     |      | _    | _     |         | •  |
| DM7553/DM8553                  | TRI-STATE Synchronous Counters/ Latches TRI-STATE 8-Bit Latches               | 3-04 |     |      | •    | -     |         | •  |
| DM7554/DM8554                  | TRI-STATE Synchronous Counters/Latches                                        | 3-70 | _   |      |      | -     |         | _  |
| DM75L54/DM85L54                | TRI-STATE Synchronous Counters/Latches TRI-STATE Synchronous Counters/Latches | 3-64 |     |      | •    | -     |         |    |
| DITTI DEUT/ DIVIOUEUT          | Times in the Symonionous Counters/ Editines                                   | 3-04 |     | •    | _    | •     |         | -  |

| Proprietary     |                                                          |       |     |      | Tab | e of  | Contents |  |  |
|-----------------|----------------------------------------------------------|-------|-----|------|-----|-------|----------|--|--|
|                 | 1                                                        |       |     | ı    | Pac | ckage |          |  |  |
| Device No.      | Description                                              | Page  |     | J    | N   |       | W        |  |  |
|                 |                                                          | No.   | Mil | Coml | Mil | Coml  | Mil Coml |  |  |
| DM7555/DM8555   | TRI-STATE Programmable Decade Counters                   | 3-72  | •   | •    |     | •     | • = ' •  |  |  |
| DM7556/DM8556   | TRI-STATE Programmable Binary Counters                   | 3-72  | •   | •    | 1   | •     | • •      |  |  |
| DM7560/DM8560   | Synchronous 4-Bit Up/Down Decade Counters                | 3-76  | •   | •    | ,   | •     | • •      |  |  |
| DM75L60/DM85L60 | Synchronous 4-Bit Up/Down Decade Counters                | 3-76  | •   | •    | •   | •     | • •      |  |  |
| DM7563/DM8563   | Synchronous 4-Bit Up/Down Binary Counters                | 3-76  | •   | •    |     | • "   | • •      |  |  |
| DM75L63/DM85L63 | Synchronous 4-Bit Up/Down Binary Counters                | 3-76  | •   | •    | •   | •     | • •      |  |  |
| DM75S68/DM85S68 | 64-Bit Edge-Triggered Registers                          | 3-82  | D   | D    | 1   | • 1   | N/A      |  |  |
| DM7570/DM8570   | 8-Bit Serial In/Parallel Out Shift Registers             | 3-86  | •   | •    | 1   | •     | • •      |  |  |
| DM7573/DM8573   | 1024-Bit Field Programmable Read Only<br>Memories        | 3-89  | •   | •    |     | •     | N/A      |  |  |
| DM7574/DM8574   | TRI-STATE 1024-Bit Field Programmable Read Only Memories | 3-92  | •   | •    |     | •     | N/A      |  |  |
| DM7575/DM8575   | Programmable Logic Arrays                                | 3-95  | •   | •    |     | •     | N/A      |  |  |
| DM7576/DM8576   | Programmable Logic Arrays                                | 3-95  | •   | •    |     | •     | N/A      |  |  |
| DM7577/DM8577   | 256-Bit Programmable Read Only Memories                  | 3-101 | •   | •    |     | •     | N/A      |  |  |
| DM7578/DM8578   | TRI-STATE 256-Bit Programmable Read Only Memories        | 3-104 | •.  | •    |     | •     | N/A      |  |  |
| DM8581          | TRI-STATE 16k Read Only Memories                         | 3-107 | l   | D    |     | •     | N/A      |  |  |
| DM7590/DM8590   | 8-Bit Parallel In/Serial Out Shift Registers             | 3-110 | •   | •    |     | •     | • •      |  |  |
| DM7595/DM8595   | 4096-Bit Read Only Memories                              | 3-113 | •   | •    |     | •     | N/A      |  |  |
| DM7596/DM8596   | TRI-STATE 4096-Bit Read Only Memories                    | 3-116 | •   | ,●   |     | •,    | N/A      |  |  |
| DM7597/DM8597   | TRI-STATE 1024-Bit Read Only Memories                    | 3-119 | •   | •    |     | •     | N/A      |  |  |
| DM7598/DM8598   | TRI-STATE 256-Bit Read Only Memories                     | 3-122 | •   | •    |     | • .   | N/A      |  |  |
| DM7599/DM8599   | TRI-STATE 64-Bit Random Access Memories                  | 3-127 | •   | •    |     | • •   | N/A      |  |  |
| DM7613/DM8613   | Quad Gated Flip-Flops                                    | 3-40  | •   | •    | •   | •     | •        |  |  |
| DM76L13/DM86L13 | Quad Gated Flip-Flops                                    | 3-40  | •   | •    | •   | •     | • •      |  |  |
| DM76L24/DM86L24 | TRI-STATE Magnitude Comparators with A Almost Equal B    | 3-131 | •   | •    | •   | . •   | •        |  |  |
| DM76L25/DM86L25 | TRI-STATE 7-Segment to BCD Decoders                      | 3-134 | •   | •    | •   | •     | • •      |  |  |
| DM76L70/DM86L70 | 8-Bit Serial In/Parallel Out Shift Registers             | 3-86  | . 1 | I/A  | N   | /A    | • •      |  |  |
| DM76L75/DM86L75 | Presettable Decade Counters                              | 3-137 | •   | •    | •   | •     | • •      |  |  |
| DM76L76/DM86L76 | Presettable Binary Counters                              | 3-137 | •   | . •  | •   | •     | • •      |  |  |
| DM7678/DM8678   | 7 by 9 Character Generators                              | 3-140 | •   | • .  |     | •     | N/A      |  |  |
| DM7679/DM8679   | 7 by 9 Character Generators                              | 3-140 | •   | •    |     | •     | N/A      |  |  |
| DM76L90/DM86L90 | 8-Bit Parallel In/Serial Out Shift Registers             | 3-110 | •   |      | •   | •     | •        |  |  |
| DM76L93/DM86L93 | Binary Counters                                          | 3-142 | •   | •    | •   | . •   | •        |  |  |
| DM76L97/DM86L97 | TRI-STATE 1024-Bit Read Only Memories                    | 3-144 | •   | •    | •   | • .   | •        |  |  |
| DM76L99/DM86L99 | TRI-STATE 64-Bit Random Access Memories                  | 3-148 | •   | •    | •   | •     |          |  |  |
| DM7795/DM8795   | 4096-Bit Read Only Memories                              | 3-113 | •   | •    | l   |       | N/A      |  |  |
| DM7796/DM8796   | TRI-STATE 4096-Bit Read Only Memories                    | 3-116 | •   | •    | _   | •     | N/A      |  |  |

Dual Retriggerable Resettable Monostable

TRI-STATE 4-Bit Parallel Binary Multipliers

TRI-STATE 4-Bit Parallel Binary Multipliers

TRI-STATE BCD to Binary Converters

TRI-STATE Binary to BCD Converters

Multivibrators

DM7853/DM8853

DM7875A/DM8875A

DM7875B/DM8875B

DM8898

DM8899

3-151

3-154

3-154

3-156

3-156

N/A

N/A

N/A

N/A

N/A

N/A

# Quad 2-Input NAND Gates with Resistive Pull Up

# **General Description**

# **Features**

These quad two-input NAND gates feature internally-connected,  $20~k\Omega$  pull-up resistors on the outputs. The pinout is the same as the very popular DM54L03/ DM74L03, and these devices provide the same "one-tenth-power technology" as well.

■ Typical power dissipation

12 mW

Typical propagation delay

115 ns

# Connection Diagram



80L06(N)



|                 |                                          | A SANTAL CONTRACTOR                                                |       | DM80L  |       | _     |  |
|-----------------|------------------------------------------|--------------------------------------------------------------------|-------|--------|-------|-------|--|
|                 | PARAMETER                                | CONDITIONS                                                         |       | L06    |       | UNITS |  |
|                 |                                          |                                                                    | MIN   | TYP(1) | MAX   |       |  |
| V <sub>IH</sub> | High Level Input Voltage                 |                                                                    | 2     |        |       | V     |  |
| VIL             | Low Level Input Voltage                  |                                                                    |       | ,      | 0.7   | ٧     |  |
| Іон             | High Level Output Current                |                                                                    |       | . 14   | 200   | . μΑ  |  |
| VoH             | High Level Output Voltage                | $V_{CC} = 5.0V, V_{IL} = 0.7V, I_{OH} = 100\mu A$                  | 2.0   | 2.5    |       | V     |  |
| loL             | Low Level Output Current                 |                                                                    |       |        | 3.6   | mA    |  |
| VOL             | Low Level Output Voltage                 | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max, V <sub>IH</sub> = 2V |       |        | 0.4   | ٧     |  |
| 1,              | Input Current at Maximum Input Voltage   | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                       |       |        | 100   | μΑ    |  |
| LiH             | High Level Input Current                 | $V_{CC} = Max, V_1 = 2.4V$                                         |       | <1     | 10    | μΑ    |  |
| IIL             | Low Level Input Current                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.3V                       |       | -0.12  | -0.18 | mA    |  |
| los             | Short Circuit Output Current             | V <sub>CC</sub> = Max                                              | -0.17 | -0.25  | -0.33 | ,mA   |  |
| Іссн            | Supply Current (Total with Outputs High) | V <sub>CC</sub> = Max, V <sub>I</sub> = 0                          |       | 0.48   | 0.8   | mA    |  |
| ICCL            | Supply Current (Total with Outputs Low)  | V <sub>CC</sub> = Max, V <sub>I</sub> = 5V                         |       | 2.38   | 3.68  | mA    |  |

# Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

|                  |                                                  |       |        |                        |     | DM80L |     |       |
|------------------|--------------------------------------------------|-------|--------|------------------------|-----|-------|-----|-------|
| PARAMETER        |                                                  | FROM  | то     | CONDITIONS             |     | L06   |     | UNITS |
|                  |                                                  |       |        |                        | MIN | TYP   | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High Level Output | Input | Output | C <sub>L</sub> = 15 pF |     | 193   | 290 | ns    |
| tPHL             | Propagation Delay Time, High-to-Low Level Output | Input | Output | $R_L = 4 k\Omega$      |     | 37    | 56  | ns    |



# DM7090/8090 Quad Inverter plus Dual 2-Input NAND Gates DM7091/8091 Quad 2-Input NAND Buffers DM7092/8092 Dual 5-Input NAND Gates

# **General Description**

### DM7090/DM8090

These devices optimize the flexible utilization of the popular 16-pin package by providing two, 2-input NAND gates plus four inverters in the same package. The electrical specifications are completely compatible with all series 54/74 devices.

### DM7091/DM8091

These devices provide four, 2-input NAND buffers in the same package, each with a fan-out of 30 standard TTL loads. These devices are very similar to the popular DM5437/DM7437; however, the DIP pinout is the same as the 5401/7401, whereas the DIP pinout of the 5437/7437 is the same as the 5400/7400.

### DM7092/DM8092

These devices provide two, 5-input NAND gates in the same package. Their primary advantage is that they fill a product void in the popular DM5400/DM7400 family. The electrical specifications are completely compatible with the series 54/74 devices.

# **Features**

Typical propagation delay

DM7092/DM8092

11 ns

Typical power dissipation
DM7090/DM8090
DM7091/DM8091

115 mW 155 mW 35 mW

# **Connection Diagrams**









|                 |                                             |                                                                       |     |        |      |     | DM70/80 | )     |     |        |      |       |
|-----------------|---------------------------------------------|-----------------------------------------------------------------------|-----|--------|------|-----|---------|-------|-----|--------|------|-------|
|                 | PARAMETER                                   | CONDITIONS                                                            |     | 90     |      |     | 91      |       |     | 92     |      | UNITS |
|                 |                                             |                                                                       | MIN | TYP(1) | MAX  | MIN | TYP(1)  | MAX   | MIN | TYP(1) | MAX  |       |
| ViH             | High Level Input Voltage                    |                                                                       | 2   |        |      | 2   |         |       | 2   |        |      | V     |
| VIL             | Low Level Input Voltage                     |                                                                       |     |        | 8.0  |     |         | 0.8   |     | ,      | 8.0  | V     |
| V <sub>i</sub>  | Input Clamp Voltage                         | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA, T <sub>A</sub> = 25°C |     |        | 1.5  |     |         | -1.5  |     | ,      | -1.5 | ٧     |
| Іон             | High Level Output Current                   |                                                                       |     |        | -400 |     |         | -1200 |     |        | -400 | μΑ    |
| VoH             | High Level Output Voltage                   | V <sub>CC</sub> = Min, V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max  | 2.4 |        |      | 2.4 |         |       | 2.4 |        |      | V     |
| IOL             | Low Level Output Current                    |                                                                       |     |        | 16   |     |         | 48    |     |        | 16   | mA    |
| VOL             | Low Level Output Voltage                    | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2.0V, I <sub>OL</sub> = Max  |     |        | 0.4  |     |         | 0.4   |     |        | 0.4  | ٧     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage      | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                          |     |        | . 1  |     |         | 1     |     |        | 1    | mA    |
| l <sub>iH</sub> | High Level Input Current                    | V <sub>CC</sub> = Max, V <sub>i</sub> = 2.4V                          |     |        | 40   |     |         | 40    |     |        | 40   | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                     | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                          |     |        | -1.6 |     |         | -1.6  |     |        | -1.6 | mA    |
| los             | Short Circuit Output Current                | V <sub>CC</sub> = Max(2)                                              | -18 |        | -55  | -18 |         | 70    | -18 |        | -55  | mA    |
| Іссн            | Supply Current<br>(Total with Outputs High) | V <sub>CC</sub> = Max, V <sub>1</sub> = 0                             |     |        | 11   |     |         | 15    |     |        | 3.6  | mA    |
| Icci            | Supply Current<br>(Total with Outputs Low)  | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.0V                          |     |        | 31   |     |         | 46    |     |        | 10.2 | mA    |

### Moto

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|      |                                                     |       |        |                        | DM70/80 |      |     |     |     |     |     | *************************************** |      |       |
|------|-----------------------------------------------------|-------|--------|------------------------|---------|------|-----|-----|-----|-----|-----|-----------------------------------------|------|-------|
|      | PARAMETER                                           | FROM  | то     | CONDITIONS             |         | 90   |     |     | 91  |     |     | 92                                      |      | UNITS |
| 1    |                                                     |       |        |                        | MIN     | TYP  | MAX | MIN | TYP | MAX | MIN | TYP                                     | MAX  |       |
| tPLH | Propagation Delay Time,<br>Low-to-High Level Output | Input | Output | C <sub>L</sub> = 15 pF | -       | , 13 | 25  |     | 13  | 22  |     | 13                                      | 25   | ns    |
| tPHL | Propagation Delay Time,<br>High-to-Low Level Output | Input | Output | R <sub>L</sub> = 400Ω  |         | 9    | 15  |     | 8   | 15  |     | 8                                       | . 15 | ns    |



# **TRI-STATE Quad Buffers**

# **General Description**

The DM7093/DM8093 and DM7094/DM8094 are quad two-input buffers which accept normal TTL or DTL input levels; and have outputs which provide either normal low-impedance TTL characteristics, or a high-impedance third logic state. One of the two inputs to each buffer is used as a control line to gate the output into the high-impedance state. The other input simply passes the non-inverted data through the buffer. The DM7093/DM8093 provides the high-impedance state when a high logic level is applied to the control input, the DM7094/DM8094 when a low logic level is applied to the control input. The low output impedance of these devices provides good capacitive-drive capability and rapid transition from the low to the high logic levels, thus assuring both speed and waveform

integrity. It is possible to connect as many as 128 devices to a common bus line, and still have adequate drive capability.

### **Features**

- Pin equivalent to DM54125/74125 (7093/8093) and DM54126/74126 (7094/8094)
- Up to 128 devices can be connected to a common bus line
- High capacitive-drive capability
- Independent control of each buffer
- Typical propagation delay-12 ns

# **Connection Diagrams**



7093/8093(J), (N), (W)



7094/8094(J), (N), (W)

### Truth Tables

### DM7093/DM8093

| DATA | CONTROL | OUTPUT |
|------|---------|--------|
| Н    | L       | Н      |
| L    | L       | L      |
| ×    | н       | Hi-Z   |

### DM7094/DM8094

| DATA | CONTROL | OUTPUT |
|------|---------|--------|
| Н    | Н       | Н      |
| L    | Н       | L      |
| ×    | L       | Hi-Z   |



|                     |                                        |                                                                                               |                       |     | DM70   |      |     | DM80   |                                         | l'    |
|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-----|--------|------|-----|--------|-----------------------------------------|-------|
|                     | PARAMETER                              | CONDITIO                                                                                      | NS .                  |     | 93, 94 |      |     | 93, 94 |                                         | UNITS |
|                     |                                        |                                                                                               |                       | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX                                     | l     |
| ViH                 | High Level Input Voltage               | ***************************************                                                       |                       | . 2 |        |      | 2   |        | *************************************** | ٧     |
| VIL                 | Low Level Input Voltage                |                                                                                               |                       |     |        | 0.8  |     |        | 0.8                                     | V     |
| V <sub>i</sub>      | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 m.                                                | Α .                   |     |        | -1.5 |     |        | -1.5                                    | V     |
| I <sub>OH</sub>     | High Level Output Current              |                                                                                               | o                     |     |        | -2.0 |     |        | -5.2                                    | mA    |
| V <sub>OH</sub>     | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max  |                       | 2.4 | 3.4    |      | 2.4 | 3.1    |                                         | v     |
| loL                 | Low Level Output Current               |                                                                                               | ,                     |     |        | 16   |     |        | 16                                      | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 n | nA                    |     |        | 0.4  |     |        | 0.4                                     | v     |
| I <sub>O(OFF)</sub> | Off-State (High-Impedance State)       | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                   | V <sub>O</sub> = 0.4V |     |        | -40  |     |        | -40                                     | μΑ    |
|                     | Output Current                         | V <sub>1L</sub> = 0.8V                                                                        | $V_0 = 2.4V$          |     |        | 40   |     |        | 40                                      |       |
| l <sub>1</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                  |                       |     |        | 1    |     |        | 1                                       | mA    |
| I <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>i</sub> = 2.4V                                                  |                       |     |        | 40   |     |        | 40                                      | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                                                  |                       |     |        | -1.6 |     |        | -1.6                                    | mA    |
| los                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                      |                       | -30 | -      | -70  | -28 |        | -70                                     | mA    |
| Іссн                | Supply Current (Total, Outputs High)   | V <sub>CC</sub> = Max                                                                         |                       |     | 32     | 54   |     | 32     | 54                                      | mA    |
| ICCL                | Supply Current (Total, Outputs Low)    | V <sub>CC</sub> = Max                                                                         |                       |     | 36     | 62   |     | 36     | 62                                      | mA ·  |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                  |                                                     |                                        | •   | DM70/80 |     |     | DM70/80 |     |       |
|------------------|-----------------------------------------------------|----------------------------------------|-----|---------|-----|-----|---------|-----|-------|
|                  | PARAMETER                                           | CONDITIONS                             | 93  |         |     | 94  |         |     | UNITS |
|                  |                                                     | -                                      | MIN | TYP     | MAX | MIN | TYP     | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output |                                        |     | 10      | 15  |     | 10      | 15  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | $C_L = 50 \text{ pF, R}_L = 400\Omega$ |     | 12 .    | 18  |     | 12      | 18  | ns    |
| tzH              | Output Enable Time to High Level                    |                                        |     | 12      | 18  |     | 13 °    | 19  | ns    |
| tzL              | Output Enable Time to Low Level                     |                                        |     | 16      | 25  | -   | 16      | 25  | ns    |
| tHZ              | Output Disable Time from High Level                 | C - 5 o F P - 4000                     |     | 5       | 8   |     | 10      | 16  | ns    |
| tLZ              | Output Disable Time from Low Level                  | $C_L = 5 pF, R_L = 400\Omega$          | _   | 9       | 14  |     | 14      | 20  | ns    |



# TRI-STATE Hex Buffers

# **General Description**

These devices provide six, two-input buffers in each package. Both the standard (7400 compatible) TTL technology, and the "true tenth-power" (74L compatible) low power versions are available for each of the four types. One of the two inputs to each buffer is used as a control line to gate the output into the high-impedance state, while the other input passes the data through the buffer. The 95 and 97 present the true data at the outputs, while the 96 and 98 are inverting. On the 95 and 96 versions, all six control lines for TRI-STATE enable are common in a single line. On the 97 and 98 versions, four buffers are enabled from a common line, and the other two buffers from a separate common line. In all cases, the outputs are placed in the TRI-STATE condition by applying a high logic level to

the control pins. With either the standard TTL or the low power versions of these circuits, it is possible to connect over 100 like devices to a common bus line and still have adequate drive capability.

# **Features**

| TYPE     | TYPICAL POWER DISSIPATION | TYPICAL PROPAGATION<br>DELAY |
|----------|---------------------------|------------------------------|
| 95,97    | 325 mW                    | 12 ns                        |
| L95, L97 | 20 mW                     | 34 ns                        |
| 96, 98   | 295 mW                    | 11 ns                        |
| L96, L98 | 15 mW                     | 31 ns                        |

 Pin equivalent to DM54365 (95), DM54366 (96), DM54367 (97), DM54368 (98)

### Connection Diagrams







Truth Tables (Each Driver)

95, L95

| 11 | IPUTS | ОИТРИТ |      |
|----|-------|--------|------|
| Ğ1 | Ĝ2    | Α      | Υ    |
| Н  | Х     | Х      | Hi-Z |
| х  | H.    | Х      | Hi-Z |
| L  | L     | Н      | н    |
| L  | L     | L      | L    |

96, L96

| ١ | IN   | PUTS | OUTPUT |      |
|---|------|------|--------|------|
|   | Ğ1   | Ğ2   | A      | Υ    |
|   | , н. | Х    | х      | Hi-Z |
| 1 | Х    | Н    | Х      | Hi-Z |
| 1 | L    | L    | н      | L    |
|   | Ł    | L    | L      | н    |

97, L97

| INP | UTS | ОИТРИТ |
|-----|-----|--------|
| Ĝ   | Α   | Y      |
| Н   | Χ.  | Hi-Z   |
| L   | н   | н      |
| L   | L   | L      |

98, L98

| INP | 015 | 001701 |
|-----|-----|--------|
| Ğ   | Α   | Y      |
| Н   | Х   | Hi-Z   |
| L   | н   | L      |
| L   | L   | н      |



# DM70/DM8095,L95,96,L96,97,L97,98,L98

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                           |         | · ·                                                                                   | 7                                            |                           | DM70/80  |              |           | DM70L/80     | <u> </u>     |       |       |  |
|-----------------|---------------------------|---------|---------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|----------|--------------|-----------|--------------|--------------|-------|-------|--|
|                 | PARAMETER                 | ,       |                                                                                       | CONDITIONS                                   |                           | 9        | 5, 96, 97, 9 | 98        | L95          | , L96, L97   | L98   | UNITS |  |
|                 |                           |         |                                                                                       |                                              |                           | MIN      | TYP(1)       | MAX       | MIN          | TYP(1)       | MAX   |       |  |
| ViH             | High Level Input Voltage  |         |                                                                                       |                                              |                           | 2        |              |           | 2            |              |       | V     |  |
| VIL             | Low Level Input Voltage   |         |                                                                                       |                                              |                           |          |              | 0.8       | ,            |              | 0.7   | V     |  |
| Vi              | Input Clamp Voltage       |         | V <sub>CC</sub> = Min,                                                                | I <sub>I</sub> = -12 mA                      |                           |          |              | -1.5      |              |              | -1.5  | V     |  |
| Гон             | High Level Output Curren  | t       |                                                                                       |                                              | DM70                      |          |              | -2.0      |              |              | -1.0  | mA    |  |
|                 |                           |         |                                                                                       |                                              | DM80                      |          |              | -5.2      |              |              | -1.0  | 1111  |  |
| V <sub>OH</sub> | High Level Output Voltag  | е       | V <sub>CC</sub> = Min,                                                                |                                              |                           | 2.4      | 3.1          |           | 2.4          |              |       | V     |  |
|                 |                           |         | V <sub>IL</sub> = Max,                                                                | L = Max, I <sub>OH</sub> = Max               |                           |          |              |           |              |              |       |       |  |
| loL             | Low Level Output Curren   | t       |                                                                                       |                                              | DM70<br>DM80              |          |              | 32        |              |              | 2.0   | mA    |  |
|                 |                           |         |                                                                                       |                                              |                           | <u> </u> |              | 32        |              |              | 3.6   |       |  |
| VOL             | Low Level Output Voltage  | Э       | V <sub>CC</sub> = Min,                                                                |                                              | DM70<br>DM80              | ļ        |              | 0.4       |              | <del>,</del> | 0.3   | v     |  |
|                 |                           |         |                                                                                       | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max |                           |          |              | 0.4       |              |              | 0.4   |       |  |
| lo(OFF)         | ł                         | е       |                                                                                       | V <sub>O</sub> = 0.3V                        |                           | ļ        |              |           | ļ            |              | -10   | ١.    |  |
|                 | State) Output Current     |         | $\begin{vmatrix} V_{1H} = 2V & V_O = 0.4V \\ V_{1L} = Max & V_O = 2.4V \end{vmatrix}$ |                                              |                           | <b></b>  |              | -40<br>40 | <del> </del> |              | 10    | μΑ    |  |
| 1.              | Input Current at Maximur  |         | AIF - Max                                                                             | VO - 2.4V                                    |                           |          |              |           |              |              |       |       |  |
| l <sub>l</sub>  | Input Voltage             | n       | V <sub>CC</sub> = Max                                                                 | $V_1 = 5.5V$                                 |                           |          |              | 1         |              |              | 1 .   | mA    |  |
| I <sub>IH</sub> | High Level Input Current  |         | V <sub>CC</sub> = Max                                                                 | V <sub>1</sub> = 2.4V                        |                           |          |              | 40        |              |              | 10    | μΑ    |  |
| I <sub>IL</sub> | Low Level Input Current   |         |                                                                                       | Both G Inputs at 2V                          | V <sub>1</sub> = 0.3V     |          |              |           |              |              | -10   | μΑ    |  |
|                 |                           | A Input |                                                                                       | Both G inputs at 2V                          | $V_1 = 0.5V$              |          |              | -40       |              |              |       |       |  |
|                 |                           |         | V <sub>CC</sub> = Max                                                                 | Both G Inputs at 0.4V                        | V <sub>1</sub> = 0.3V     | ļ        |              |           | <u> </u>     |              | -0.18 | ļ     |  |
|                 |                           | ļ       |                                                                                       |                                              | $V_1 = 0.4V$ $V_1 = 0.3V$ |          |              | -1.6      |              |              | -0.18 | mA    |  |
|                 |                           | G Input |                                                                                       |                                              | $V_1 = 0.4V$              | <u> </u> |              | -1.6      |              |              | 0.10  | 1     |  |
| Ios             | Short Circuit Output Curr | ent     | V <sub>CC</sub> = Max                                                                 | (2)                                          | 1                         | -40      | /            | -115      | -3           |              | -15   | mA    |  |
| Icc             | Supply Current            |         | \/ - M                                                                                |                                              | 95, 97                    |          | 65           | 85        |              | 4.0          | 5.8   |       |  |
|                 | *                         |         | Voc = Max                                                                             |                                              | 96, 98                    | T        | 59           | 77        |              | 3.0          | 4.5   | mA    |  |

### Notos

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for the DM70/DM8095, 96, 97, 98 duration of short circuit should not exceed one second.

|                  |                                                     |                        | CONDITIONS            |                       | DM70/80 |     |     |      | DM70L/80L |       |      |     |       |
|------------------|-----------------------------------------------------|------------------------|-----------------------|-----------------------|---------|-----|-----|------|-----------|-------|------|-----|-------|
|                  | PARAMETER                                           |                        | CONDITIONS            | •                     | 95,     | 97  | 96  | , 98 | L95       | , L97 | L96, | L98 | UNITS |
| TANAMETER        |                                                     | вотн                   | STD.                  | LOW<br>POWER          | TYP     | MAX | TYP | MAX  | TYP       | MAX   | TYP  | MAX | OWITS |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                        |                       |                       | 10      | 16  | 11  | 17   | 30        | 60    | 26   | 48  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | C <sub>1</sub> = 50 pF |                       |                       | 14      | 22  | 10  | 16   | 37        | 75    | 35   | 53  | ns    |
| tzH              | Output Enable Time to<br>High Level                 | CL - 50 pr             | R <sub>L</sub> = 400Ω | R <sub>1</sub> = 4 kΩ | 21      | 35  | 21  | 35   | 47        | 96    | 42   | 90  | ns    |
| tzL              | Output Enable Time to<br>Low Level                  |                        |                       | 11 - 4 K22            | 24      | 37  | 24  | 37   | 21        | 45    | 42   | 75  | ns    |
| t <sub>HZ</sub>  | Output Disable Time<br>from High Level              | C <sub>1</sub> = 5 pF  |                       |                       | 6       | 11  | 6   | 11   | 47        | 90    | 25   | 43  | ns    |
| tLZ              | Output Disable Time<br>from Low Level               | or - abu               |                       |                       | 16      | 27  | 16  | 27   | 30        | 63    | 34   | 63  | ns    |



# TRI-STATE Quad 2-Input NAND Buffers

# **General Description**

These devices provide four, two-input NAND buffers in each package. They accept normal TTL or DTL input levels, and have outputs which provide either normal low-impedance TTL characteristics, or a high-impedance third logic state. There are two independent disable lines, each of which controls two gates. When the disable input is taken to a high logic level, the outputs go into the high-impedance state. The low output impedance of these devices provides good capacitive-drive capability and rapid transition from the low to the high logic levels, thus assuring both speed and waveform integrity.

# **Features**

- Combines logic gating with TRI-STATE outputs
- Typical propagation delay

9 ns

- High capacitive-drive capability
- Up to 128 devices can be connected to a common bus line

# **Connection Diagram**



7099/8099(J), (N), (W)

# Truth Table

| DISABLE | INPUTS |   | OUTPUT |
|---------|--------|---|--------|
| Ğ       | Α      | В | Υ      |
| L       | L      | Н | н      |
| L       | н      | L | н      |
| L       | L      | L | н      |
| L       | н      | Н | L      |
| Н       | Х      | Х | Hi-Z   |



| ,                   |                            |                   |                                                                                                |                       |                       | DM70     |        | DM80 |     |         |      |       |
|---------------------|----------------------------|-------------------|------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------|--------|------|-----|---------|------|-------|
|                     | PARAMETER                  |                   |                                                                                                | CONDITIONS            |                       |          | 99     |      |     | 99      |      | UNITS |
|                     |                            |                   |                                                                                                |                       |                       | MIN      | TYP(1) | MAX  | MIN | .TYP(1) | MAX  |       |
| V <sub>IH</sub>     | High Level Input Voltage   |                   |                                                                                                |                       |                       | 2        |        |      | 2   |         |      | V     |
| V <sub>IL</sub>     | Low Level Input Voltage    |                   |                                                                                                |                       |                       |          |        | 0.8  |     |         | 8.0  | V     |
| VI                  | Input Clamp Voltage        |                   | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                 |                       |                       | ,        | -1.5   |      |     | -1.5    | V    |       |
| Јон                 | High Level Output Current  | t j               |                                                                                                |                       | -2.0                  |          | -2.0   |      |     | -5.2    | mA   |       |
| V <sub>OH</sub>     | High Level Output Voltage  | )                 | V <sub>CC</sub> = Min, \ V <sub>IL</sub> = 0.8V,                                               |                       |                       | 2.4      | ,      | v    | 2.4 |         |      | ٧     |
| loL                 | Low Level Output Current   |                   |                                                                                                |                       |                       |          | 16     |      |     | 16      | mA   |       |
| V <sub>OL</sub>     | Low Level Output Voltage   |                   | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 mA |                       |                       |          | 0.4    |      |     | 0.4     | V    |       |
| I <sub>O(OFF)</sub> | Off-State (High-Impedance  | State)            | V <sub>CC</sub> = Max,                                                                         | V <sub>IH</sub> = 2V  | V <sub>O</sub> = 0.4V |          |        | -40  |     |         | -40  | μΑ    |
|                     | Output Current             | ,                 | V <sub>IL</sub> = 0.8V                                                                         |                       | V <sub>O</sub> = 2.4V |          |        | 40   |     |         | 40   |       |
| i <sub>l</sub>      | Input Current at Maximum   | Input Voltage     | V <sub>CC</sub> = Max,                                                                         | V <sub>1</sub> = 5.5V |                       |          |        | 1    |     |         | 1    | mA    |
| liH                 | High Level Input Current   |                   | V <sub>CC</sub> = Max,                                                                         | V <sub>1</sub> = 2.4V |                       |          |        | 40   |     |         | 40   | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current    | Either Data Input |                                                                                                | G Input at 2          | $V, V_1 = 0.4 $       |          |        | -40  |     |         | -40  | μΑ    |
|                     |                            |                   | V <sub>CC</sub> ≈ Max                                                                          | G Input at 0.4        |                       |          |        | -1.6 |     |         | -1.6 | mA    |
|                     |                            | G Input           |                                                                                                |                       | V <sub>1</sub> = 0.4V | <u> </u> |        | -1.6 |     |         | -1.6 |       |
| los                 | Short Circuit Output Curre | ent               | V <sub>CC</sub> = Max(2)                                                                       |                       |                       | -2570    |        | -70  | −25 |         | -70  | mA 、  |
| Icc                 | Supply Current             |                   | V <sub>CC</sub> = Max                                                                          |                       |                       |          |        | 35   |     |         | 35   | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                 | ,                                                |                                        |     |       | }    |    |
|-----------------|--------------------------------------------------|----------------------------------------|-----|-------|------|----|
| ľ               | PARAMETER                                        | CONDITIONS                             |     | UNITS |      |    |
|                 |                                                  | , , ,                                  | MIN | TYP   | MAX  |    |
| · tpLH          | Propagation Delay Time, Low-to-High Level Output |                                        |     | - 10  | 15   | ns |
| tpHL            | Propagation Delay Time, High-to-Low Level Output | $C_1 = 50 \text{ pF}, R_1 = 400\Omega$ |     | 8     | . 15 | ns |
| t <sub>ZH</sub> | Output Enable Time to High Level                 | CL = 50 pr, NL - 40032                 |     | 13    | 20   | ns |
| tzL             | Output Enable Time to Low Level                  |                                        |     | 13    | 20   | ns |
| t <sub>HZ</sub> | Output Disable Time from High Level              | $C_1 = 5 \text{ pF}, R_1 = 400\Omega$  |     | 4     | 7    | ns |
| tLZ             | Output Disable Time from Low Level               | CL = 5 pr., NL = 40032                 |     | 11    | 17   | ns |



# **General Description**

These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

# TRI-STATE Data Selectors/Multiplexers

### Feature

- TRI-STATE versions of DM54/74151
- Interface directly with system bus
- Perform parallel-to-serial conversion
- Permit multiplexing from N-lines to one line
- Complementary outputs provide true and inverted data
- Pin equivalent DM54251/DM74251

| TYPE   | MAX NO.<br>OF COMMON<br>OUTPUTS | TYPICAL<br>PROP<br>DELAY TIME<br>(D TO Y) | TYPICAL<br>POWER<br>DISSIPATION |
|--------|---------------------------------|-------------------------------------------|---------------------------------|
| DM7121 | 49                              | 17 ns                                     | 155 mW                          |
| DM8121 | 129                             | 17 ns                                     | 155 mW                          |

# **Connection Diagram**



7121(J), (W); 8121(J), (N), (W)

### Truth Table

|    | ı    | NPUT | S      | OUTPUTS |    |  |
|----|------|------|--------|---------|----|--|
| s  | ELEC | т    | STROBE | ~       | w  |  |
| С  | В    | Α    | S      |         | VV |  |
| Х  | Х    | X    | н      | Z       | Z  |  |
| L  | L    | L    | L      | D0      | D0 |  |
| L. | L    | Н    | L      | D1      | D1 |  |
| L  | Н    | L    | L      | D2      | D2 |  |
| L  | Н    | н    | Ł      | D3      | D3 |  |
| Н  | L    | L    | L      | D4      | D4 |  |
| Н  | L    | Н    | L      | D5      | D5 |  |
| н  | Н    | ,L   | L      | D6      | D6 |  |
| ļН | Н    | Н    | L      | D7      | D7 |  |

H = High Logic Level, L = Low Logic Level
X = Don't Care, Z = High Impedance (Off)
D0, D1...D7 = The level of the respective D input.

# Logic Diagram





|                 |                                                  | ,                                                                      |              |                                                  | DM71/81          |                                                  |       |  |
|-----------------|--------------------------------------------------|------------------------------------------------------------------------|--------------|--------------------------------------------------|------------------|--------------------------------------------------|-------|--|
|                 | PARAMETER                                        | CONDITIONS                                                             | w            | MIN                                              | 21<br>MIN TYP(1) |                                                  | UNITS |  |
| V <sub>IH</sub> | High Level Input Voltage                         |                                                                        |              | 2                                                | 111(1)           | MAX <sup>′</sup>                                 | - V   |  |
| VIL             | Low Level Input Voltage                          |                                                                        |              | <del> </del>                                     |                  | 0.8                                              | V     |  |
| V <sub>I</sub>  | Input Clamp Voltage                              | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                         |              | <del>                                     </del> |                  | -1.5                                             | - v   |  |
| Іон             | High Level Output Current                        | ·                                                                      | DM54<br>DM74 |                                                  |                  | -2<br>-5.2                                       | mA    |  |
| V <sub>OH</sub> | High Level Output Voltage                        | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OH} = Max$     | I            | 2.4                                              |                  | na an dha an an tall ann aidh aitair ag allan da | v     |  |
| loL             | Low Level Output Current                         |                                                                        |              | 1                                                |                  | 16                                               | mA    |  |
| V <sub>OL</sub> | Low Level Output Voltage                         | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$ |              |                                                  |                  | 0.4                                              | v     |  |
| lo(off)         | Off-State (High-Impedance State)  Output Current | $V_{CC} = Max$ $V_{O} = 0.4V$<br>$V_{IH} = 2V$ $V_{O} = 2.4V$          |              |                                                  |                  | -40<br>40                                        | μΑ    |  |
| 4               | Input Current at Maximum Input Voltage           | V <sub>CC</sub> = Max, V <sub>i</sub> = 5.5V                           |              |                                                  |                  | 1                                                | mA    |  |
| l <sub>IH</sub> | High Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                           |              |                                                  |                  | 40                                               | μΑ    |  |
| I <sub>IL</sub> | Low Level Input Current                          | $V_{CC} = Max$ , $V_1 = 0.4V$                                          |              | ,                                                |                  | -1.6                                             | mA    |  |
| Ios             | Short Circuit Output Current                     | V <sub>CC</sub> = Max(2)                                               |              | -18                                              |                  | -55                                              | mA    |  |
| lcc             | Supply Current                                   | V <sub>CC</sub> = Max(3)                                               |              |                                                  | 31               | 51                                               | mA    |  |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) All inputs at 4.5V and all outputs open.

|                  |                                                     |                 |             |                       |                                         | DM71/81 |      |       |    |
|------------------|-----------------------------------------------------|-----------------|-------------|-----------------------|-----------------------------------------|---------|------|-------|----|
|                  | PARAMETER                                           | FROM<br>(INPUT) | TO (OUTPUT) | CONDITIONS            |                                         | 21      |      | UNITS |    |
|                  |                                                     | (INPUT)         | (OUTEUT)    |                       | MIN                                     | TYP     | MAX  | 1     |    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | A, B, or C      | Y           |                       |                                         |         | 22   | 36    | ns |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | (4 levels)      |             |                       |                                         | 23      | 36   | ns    |    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | A, B, or C      | 14/         | ]                     |                                         | .18     | 29   | ns    |    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | (3 levels)      | . W '       |                       |                                         | 16      | 27   | · ns  |    |
| tpLH             | Propagation Delay Time,<br>Lów-to-High Level Output |                 |             |                       |                                         | 17      | 28   | ns    |    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Any D           |             | , <b>Y</b>            | $C_L = 50 \text{ pF}$ $R_L = 400\Omega$ |         | · 18 | .28   | ns |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output |                 |             |                       |                                         | 11      | 15   | ns    |    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output |                 | W           |                       |                                         | 10      | 15   | ns    |    |
| tzH              | Output Enable Time to High Level                    |                 |             | 1                     |                                         | 15      | 27   | ns    |    |
| tzL              | Output Enable Time to Low Level                     | 1 .             | Y           |                       |                                         | . 18    | 36   | ns    |    |
| tzH              | Output Enable Time to High Level                    | 1               |             | 1                     |                                         | 15      | 27   | ns    |    |
| tzL              | Output Enable Time to Low Level                     | 1               | W           |                       |                                         | 19      | 38   | ns    |    |
| t <sub>HZ</sub>  | Output Disable Time from High Level                 | Strobe          |             |                       | 1                                       | 4       | 8    | ns    |    |
| tLZ              | Output Disable Time from Low Level                  | 1               | Y           | C <sub>L</sub> = 5 pF |                                         | 14      | 23   | ns    |    |
| tHZ              | Output Disable Time from High Level                 | 1               |             | R <sub>L</sub> = 400Ω |                                         | 4       | 8    | ns    |    |
| tLZ              | Output Disable Time from Low Level                  | 1               | w           |                       |                                         | 15      | 23   | ns    |    |



# Quad 2-Input Data Selectors/Multiplexers

### General Description

These devices contain four, two-input multiplexers with common input select logic and common output disable circuitry. The DM71L22/81L22 provides conventional totem-pole output TTL construction, whereas the DM7123/8123 and the DM71L23/81L23 provide both conventional TTL outputs and TRI-STATE outputs. When the enable/strobe input is at a low logic level, the outputs of all devices are conventional TTL. However, when the enable/strobe input is raised to a high logic level, the outputs of the DM71L22/81L22 go to the low logic state, and the outputs of the DM7123/8123 and DM71L23/81L23 go to the high-impedance third state. These devices provide the designer with TRI-STATE and/or low power pin/pin replacements for the popular 9322 and 54/74157 multiplexers.

### **Features**

- Pin equivalents popular 9322 and 54/74157 multiplexers
- Both conventional TTL and TRI-STATE outputs available
- Both conventional TTL and "one-tenth-power technology" available

| ТҮРЕ        | TYPICAL PROPAGATION DELAY | TYPICAL<br>POWER<br>DISSIPATION |
|-------------|---------------------------|---------------------------------|
| 7123/8123   | 9.5 ns                    | 200 mW                          |
| 71L22/81L22 | 40 ns                     | 15 mW                           |
| 71L23/81L23 | 40 ns                     | 20 mW                           |

# **Connection Diagram**



71L22/81L22(J), (N), (W); 7123(J), (W); 8123(J), (N), (W); 71L23/81L23(J), (N), (W)

# **Truth Tables**

L22

| STROBE | CELECT         | INP | UTS | OUTPUT |
|--------|----------------|-----|-----|--------|
| STROBE | SELECT         | Α   | В   | Y      |
| L      | L              | L   | Х   | L      |
| L      | L              | н   | ×   | н      |
| L      | н              | ×   | L   | L      |
| L      | <sup>'</sup> H | х   | н   | н      |
| н      | Х              | Х   | Х   | L      |

23, L23

| ENABLE | SELECT | INP | UTS | ОПТРИТ |  |  |
|--------|--------|-----|-----|--------|--|--|
| ENABLE | SELECT | Α   | В   | Y      |  |  |
| L      | L      | Ļ   | Х   | L      |  |  |
| L      | L      | н   | Х   | Н      |  |  |
| L      | Н      | х   | L   | L      |  |  |
| L      | н      | х   | н   | Н      |  |  |
| н      | Х      | х   | Х   | Hi-Z   |  |  |

|                 |                                           |                                                      |                         |                         | DM71/81 |        |      | DM71L/81L |        |      |     |        |                  |         |
|-----------------|-------------------------------------------|------------------------------------------------------|-------------------------|-------------------------|---------|--------|------|-----------|--------|------|-----|--------|------------------|---------|
|                 | PARAMETER                                 |                                                      | CONDITIONS              |                         |         | 23     |      | L22       |        |      | L23 |        |                  | UNITS   |
|                 |                                           |                                                      |                         |                         | MIN     | TYP(1) | MAX  | MIN       | TYP(1) | MAX  | MIN | TYP(1) | MAX              |         |
| V <sub>IH</sub> | High Level Input Voltage                  |                                                      |                         |                         |         |        |      | 2         |        |      | 2   |        |                  | ٧       |
| V <sub>IL</sub> | Low Level Input Voltage                   |                                                      |                         |                         |         |        | 8.0  |           |        | 0.7  |     |        | 0.7              | V       |
| VI              | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I                             | I <sub>I</sub> = -12 mA | , T <sub>A</sub> = 25°C |         |        | -1.5 |           |        | N/A  |     |        | N/A              | V       |
| loн             | High Level Output Current                 |                                                      |                         | DM71                    |         |        | -2.0 |           |        | -0.2 |     | ,      | -0.2             | .mA     |
|                 |                                           |                                                      |                         | DM81                    |         |        | -5.2 |           |        | -0.2 |     |        | <del>−</del> 0.2 | - 111/4 |
| V <sub>OH</sub> | High Level Output Voltage                 | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max, I |                         |                         | 2.4     |        |      | 2.4       | 2.8    |      | 2.4 | 2.8    |                  | V       |
| loL             | Low Level Output Current                  |                                                      |                         | DM71                    |         |        | 16   |           | · ·    | 2.0  |     |        | 2.0              |         |
|                 |                                           |                                                      |                         | DM81                    |         |        | 16   |           |        | 3.6  |     | -      | 3.6              | mA      |
| VOL             | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V                             | V <sub>IH</sub> = 2V    | DM71                    |         |        | 0.4  |           | 0.15   | 0.3  |     | 0.15   | 0.3              | v       |
|                 |                                           | V <sub>IL</sub> = Max, I                             | OL = Max                | DM81                    |         |        | 0.4  |           | 0.20   | 0.4  |     | 0.20   | 0.4              | ľ       |
| lo(OFF)         | Off-State (High-Impedance                 | V <sub>CC</sub> = Max                                |                         |                         | i       |        |      |           |        | N/A  |     |        | -40              | -       |
|                 | State) Output Current                     | V <sub>IH</sub> = 2V                                 |                         |                         |         |        | -40  |           |        | N/A  |     |        |                  | μΑ      |
|                 | <u></u>                                   | V <sub>IL</sub> = Max                                | $V_0 = 2.4$             | V                       |         |        | 40   |           |        | N/A  |     |        | 20               |         |
| Ú.              | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max,                               | V <sub>1</sub> = 5.5V   |                         |         |        | 1.0  |           |        | 0.1  |     |        | 0.1              | mA      |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max,                               | V <sub>1</sub> = 2.4V   |                         |         |        | 40   |           |        | . 10 |     |        | 10               | μΑ      |
| I <sub>IL</sub> | Low Level Input Current                   | $V_{CC} = Max                                  $     |                         |                         |         | ,      |      |           | -0.18  |      |     | -0.18  | mA               |         |
|                 |                                           |                                                      |                         |                         | -1.0    | -1.6   |      |           |        |      |     |        | I IIIA           |         |
| Ios             | Short Circuit Output Current              | V <sub>CC</sub> = Max(2                              | 2)                      |                         | -30     | -50    | -70  | -3        | -9     | -15  | -3  | -9     | -15 `            | mA      |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max(3                              | 3)                      |                         | 1       | 40     | 51   |           | 3      | 4    |     | 4      | 5.3              | mA      |

### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with all inputs grounded, and all outputs open.

from Low Level

# Logic Diagrams





23



L23





### **Magnitude Comparators**

### **General Description**

These devices offer comparisons to determine equality between two binary words. The DM7130/DM8130 compares two ten-bit words, and the DM7160/DM8160 compares two six-bit words. A strobe override is provided on both devices. When the strobe is taken to a high logic level, the output is forced to a high logic level. The devices also feature open collector outputs for expansion.

#### **Features**

■ Typical propagation delay

21 ns

Typical power dissipation

DM7130/8130 DM7160/8160 240 mW 205 mW

Open-collector outputs for expansion

### **Connection Diagrams**



7130(J), (F); §130(J), (N), (F)



7160(J), (W); 8160(J), (N), (W)

### Truth Table

| CONDITION         | STROBE<br>S | OUTPUT<br>Y |
|-------------------|-------------|-------------|
| $A = B, A \neq B$ | Н           | Н           |
| A = B             | L           | н           |
| A≠B               | L           | L           |



|                 |                                           |                                                                       |     |            | DM7  | 1/81      |     | fr.  |       |  |
|-----------------|-------------------------------------------|-----------------------------------------------------------------------|-----|------------|------|-----------|-----|------|-------|--|
|                 | PARAMETER                                 | CONDITIONS                                                            |     | 30         | ,    |           | 60  |      | UNITS |  |
|                 |                                           |                                                                       | MIN | MIN TYP(1) |      | MIN TYP(1 |     | MAX  |       |  |
| VIH             | High Level Input Voltage                  |                                                                       | 2   |            |      | 2         |     |      | V     |  |
| V <sub>IL</sub> | Low Level Input Voltage                   |                                                                       |     |            | 0.8  |           | ,   | 0.8  | V     |  |
| Vı              | Input Clamp Voltage                       | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$ |     |            | -1.5 |           |     | -1.5 | V     |  |
| ГОН             | High Level Output Current                 | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{OH} = 5.5V$                     |     |            | 100  |           |     | 100  | μΑ    |  |
| VoH             | High Level Output Voltage                 | ·                                                                     |     |            | 5.5  |           |     | 5.5  | - V   |  |
| loL             | Low Level Output Current                  |                                                                       |     |            | 16   |           |     | 16   | · mA  |  |
| V <sub>OL</sub> | Low Level Output Voltage                  | $V_{CC} = Min$ , $V_{IL} = 0.8V$<br>$I_{OL} = 16 \text{ mA}$          |     | 0.2        | 0.4  |           | 0.2 | 0.4  | v     |  |
| l <sub>1</sub>  | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                          |     |            | 1 .  |           |     | 1    | mA    |  |
| I <sub>IH</sub> | High Level Input Current                  | $V_{CC} = Max$ , $V_1 = 2.4V$                                         |     |            | 40   |           |     | 40   | μΑ    |  |
| l <sub>IL</sub> | Low Level Input Current                   | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                          |     |            | -1.6 |           |     | -1.6 | mA    |  |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max                                                 |     | 48         | 70   |           | 41  | 60   | mA    |  |

#### Notes

(1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.

|                  |                                                     |        | DM71/81 |                                          |     |     |      |     |     |     |       |
|------------------|-----------------------------------------------------|--------|---------|------------------------------------------|-----|-----|------|-----|-----|-----|-------|
|                  | PARAMETER                                           | FROM   | то      | CONDITIONS                               | 30  |     |      |     | 60  |     | UNITS |
|                  |                                                     |        |         |                                          | MIN | TYP | MAX  | MIN | TYP | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data   | Output  | ,                                        |     | 15  | 25   |     | 15  | 25  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Output  | 0 45 5 8 4000                            |     | 27  | 40   |     | 27  | 40  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Strobe | Output  | $C_L = 15  \text{pF},  R_L = 400 \Omega$ |     | 9   | - 18 |     | 9   | 18  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Strobe | Output  | 1                                        |     | 20  | 30   |     | 20  | 30  | ns    |



#### General Description

The DM7131/DM8131, DM7136/DM8136 compare two binary words of two-to-six-bits in length, and indicates matching (bit-for-bit) of the two words. Inputs for one word are 54/74 series-compatible TTL inputs, whereas those of the second word are high-impedance receivers driven by a terminated data bus. These bus inputs include 0.65V typical hysteresis, which provides 1.4V noise immunity. The DM7131/DM8131 has active pull-up outputs and goes to the low state upon equality. The DM7136/DM8136 has open-collector outputs which go to the high state upon equality, and is expandable to n bits by collector-ORing. Both devices have an output latch which is strobe controlled.

The transfer of information to the output occurs when the STROBE input goes from a logic "1" to a logic

# 6-Bit Unified Bus Comparators

"0" state. Inputs may be changed while the STROBE is at the logic "1" level, without affecting the state of the output. These devices are useful as address comparators in computer systems utilizing unified data bus organization.

#### **Features**

Low bus input current

15μΑ typ

High bus input noise immunity

1.4 tvp

- Bus inputs comply with IEEE 488-1975
- TTL-compatible output
- Output latch provision

### Connection Diagram



7131(J), (W); 8131(J), (N), (W); 7136(J), (W); 8136(J), (N), (W)

### Truth Table

| 1 | CONDITION    | CTROPE | OUTPUT             |                      |  |  |  |  |  |
|---|--------------|--------|--------------------|----------------------|--|--|--|--|--|
|   | CONDITION    | SINUBE | DM71/8131          | DM71/8136            |  |  |  |  |  |
|   | T = B, T ≠ B | н      | Q <sub>N-1</sub> * | Q <sub>N-1</sub> * . |  |  |  |  |  |
|   | , T = B      | L      | L                  | H                    |  |  |  |  |  |
|   | T≠B          | L      | н                  | L                    |  |  |  |  |  |

<sup>\*</sup>Latched in previous state

### Logic Diagram





|                   | · • • • • • • • • • • • • • • • • • • • |                                                   |                                                                |              |              | DM7          | 1/81         |              |              |              |      |
|-------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
|                   | PARAMETER                               | CONF                                              | DITIONS                                                        |              |              | 31           |              |              | 36           |              | UNIT |
|                   |                                         |                                                   |                                                                |              | MIN          | TYP(1)       | MAX          | MIN          | TYP(1)       | MAX          | 1    |
| VIH               | High Level Input Voltage                | (Exc. Bus Inpu                                    | uts)                                                           |              | 2            |              |              | 2            |              |              | V    |
| VIL               | Low Level Input Voltage                 | (Exc. Bus Inpu                                    | uts)                                                           |              |              |              | 0.8          |              |              | 8.0          | V    |
| V <sub>T+</sub>   | Positive Going Threshold Voltage        | V <sub>CC</sub> = 5V, Bus                         | s Inputs                                                       | DM71<br>DM81 | 1.40<br>1.45 | 1.75<br>1.75 | 2.0<br>1.95  | 1.40<br>1.45 | 1.75<br>1.75 | 2.0<br>1.95  | \    |
| V <sub>T-</sub>   | Negative Going Threshold Voltage        | V <sub>CC</sub> = 5V, Bus                         | cc = 5V, Bus Inputs DM71 DM81                                  |              | 0.90<br>0.95 | 1.10         | 1.35<br>1.30 | 0.90         | 1.10         | 1.35         | \    |
| v <sub>i</sub>    | Input Clamp Voltage                     | V <sub>CC</sub> = Min,<br>T <sub>A</sub> = 25°C   | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$<br>$T_A = 25^{\circ}C$ |              |              |              | -1.5         |              |              | -1.5         | ,    |
| Гон               | High Level Output Current               | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V     | <sub>CC</sub> = Min V <sub>OH</sub> = 5.5V                     |              |              |              | -400         |              |              | 250          | μ    |
| Voн               | High Level Output Voltage               | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, |                                                                |              | 2.4          |              |              |              |              | 5.5          |      |
| loL               | Low Level Output Current                |                                                   |                                                                |              |              |              | 16           |              | 4            | 16           | , m. |
| VoL               | Low Level Output Voltage                | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, |                                                                |              |              |              | 0.4          |              |              | 0.4          |      |
| 1,                | Input Current at Maximum Input Voltage  | V <sub>CC</sub> = Max<br>V <sub>I</sub> = 5.5V    | TTL Ir<br>Strobe                                               |              |              |              | 1 2          |              |              | 1 2          | m    |
| liH               | High Level Input Current                | V <sub>CC</sub> = Max<br>V <sub>1</sub> = 2.4V    | TTL Ir                                                         |              |              |              | 40<br>80     |              |              | 40<br>80     | μ    |
| I <sub>IL</sub> . | Low Level Input Current                 | V <sub>CC</sub> = Max<br>V <sub>I</sub> = 0.4V    | TTL Ir<br>Strobe                                               |              |              |              | -1.6<br>-2.4 |              |              | -1.6<br>-2.4 | m    |
| IN                | Bus Input Current                       | V <sub>1</sub> = 4V                               | V <sub>cc</sub> =                                              |              |              | 15<br>1      | 50<br>50     |              | 15<br>1      | 50<br>50     | μ    |
| los               | Short Circuit Output Current            | V <sub>CC</sub> = Max(2)                          |                                                                |              | -18          | ,            | -55          |              | N/A          |              | . m  |
| lcc               | Supply Current                          | V <sub>CC</sub> = Max                             |                                                                |              |              | 50           | 74           |              | 50           | 74           | m.   |

All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
 Not more than one output should be shorted at a time.

|      |                                                     |                 |                | ,                                       |  |     | DM7 | 1/81 |     |     | ]     |  |
|------|-----------------------------------------------------|-----------------|----------------|-----------------------------------------|--|-----|-----|------|-----|-----|-------|--|
|      | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT) | CONDITIONS                              |  | 31  |     | 36   |     |     | UNITS |  |
|      |                                                     | (, 01)          |                | 1                                       |  | TYP | MAX | MIN  | TYP | MAX |       |  |
| tpLH | Propagation Delay Time,<br>Low-to-High Level Output | TTL .<br>Input  | Output         |                                         |  | 20  | 30  |      | 20  | 30  | ns    |  |
| tpHL | Propagation Delay Time,<br>High-to-Low Level Output | TTL<br>Input    | Output         |                                         |  | 20  | 30  |      | 20  | 30  | ns    |  |
| tpLH | Propagation Delay Time,<br>Low-to-High Level Output | Bus<br>Input    | Output         | $C_L = 15 \text{ pF}$ $R_L = 400\Omega$ |  | 30  | 45  |      | 30  | 45  | ns    |  |
| tpHL | Propagation Delay Time,<br>High-to-Low Level Output | Bus<br>Input    | Output         |                                         |  | 30  | 45  |      | 30  | 45  | ns    |  |
| tpLH | Propagation Delay Time,<br>Low-to-High Level Output | Strobe<br>Input | Output         |                                         |  | 20  | 30  |      | 20  | 30  | ns    |  |
| tpHL | Propagation Delay Time,<br>High-to-Low Level Output | Strobe<br>Input | Output         |                                         |  | 20  | 30  |      | 20  | 30  | ns    |  |

# TRI-STATE Octal Buffers

### **General Description**

These devices provide eight, two-input buffers in each package. All employ the newest low power-Schottky TTL technology. One of the two inputs to each buffer is used as a control line to gate the output into the highimpedance state, while the other input passes the data through the buffer. The 95 and 97 present true data at the outputs, while the 96 and 98 are inverting. On the 95 and 96 versions, all eight TRI-STATE enable lines are common, with access through a 2-input NOR gate. On the 97 and 98 versions, four buffers are enabled from one common line, and the other four buffers are enabled from another common line. In all cases the outputs are placed in the TRI-STATE condition by applying a high logic level to the enable pins. These devices represent octal, low power-Schottky versions of the very popular DM70/8095, 96, 97, and 98 TRI-STATE hex buffers.

#### **Features**

 Octal versions of popular DM8095, 8096, 8097, 8098

Typical power dissipation

LS95, LS97 LS96, LS98 80 mW 65 mW

Typical propagation delay

LS95, LS97 LS96, LS98 13 ns 10 ns

■ Low power-Schottky, TRI-STATE technology

### **Connection Diagrams**



71LS97/81LS97(N)







### **Truth Tables**

LS95

| ı  | NPUT | OUTPUT |   |  |  |  |
|----|------|--------|---|--|--|--|
| Ğ1 | Ğ2   | Α      | Y |  |  |  |
| Н  | Х    | Х      | Z |  |  |  |
| х  | Н    | X      | Z |  |  |  |
| L  | L    | Н      | н |  |  |  |
| L  | L    | L      | L |  |  |  |

LS96

| 1  | NPUT | s | OUTPUT |
|----|------|---|--------|
| Ğ1 | Ğ2   | Α | Y      |
| Н  | Х    | Х | Z      |
| ×  | Н    | X | Z      |
| L  | L    | н | L      |
| L  | L    | L | н      |

LS97

|   | INP | UTS | OUTPUT |
|---|-----|-----|--------|
|   | Ğ   | Α   | Y      |
| 1 | Н   | X   | Z      |
|   | L   | н   | н      |
|   | L   | L   | L      |

LS98

| INP | UIS | ן וטיווטט ן |
|-----|-----|-------------|
| Ğ   | Α   | Y           |
| Н   | Х   | Z           |
| L   | Н   | L           |
| L   | L   | н           |

# DM71/DM81LS95,LS96,LS97,LS98

## Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 | · ·                                       |                                                                    |                          |                        |                       |       | DM71LS    |         |          | DM81LS    |         |       |
|-----------------|-------------------------------------------|--------------------------------------------------------------------|--------------------------|------------------------|-----------------------|-------|-----------|---------|----------|-----------|---------|-------|
|                 | PARAMETER                                 | 1                                                                  | COND                     | ITIONS                 |                       | LS95, | LS96, LS9 | 7, LS98 | LS95,    | LS96, LS9 | 7, LS98 | UNITS |
|                 |                                           |                                                                    |                          |                        |                       | MIN   | TYP(1)    | MAX     | MIN      | TYP(1)    | MAX     | ĺ     |
| VIH             | High Level Input Voltage                  |                                                                    | ,                        |                        |                       | 2     |           |         | 2        |           |         | V     |
| VIL             | Low Level Input Voltage                   |                                                                    |                          |                        |                       |       |           | 8.0     |          |           | 0.8     | V     |
| Vı              | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub>                              | = -18 mA                 |                        |                       |       |           | -1.5    |          |           | -1.5    | V     |
| Іон             | High Level Output Current                 |                                                                    |                          |                        |                       |       |           | -1.0    |          | ,         | -2.6    | mA    |
| V <sub>OH</sub> | High Level Output Voltage                 | V <sub>CC</sub> = Min, V                                           | <sub>IH</sub> = 2V       | I <sub>OH</sub> = Max  |                       | 2.5   |           |         | 2.7      |           |         | V     |
|                 |                                           | V <sub>IL</sub> = 0.8V                                             |                          | I <sub>OH</sub> = -5 m | nΑ                    |       | N/A       |         | 2.4      |           |         | · •   |
| loL             | Low Level Output Current                  |                                                                    |                          |                        |                       |       |           | 8       |          |           | 16      | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = 0.8V, I <sub>C</sub> |                          |                        |                       |       |           | 0.4     |          |           | 0.5     | V     |
| lo(OFF)         | Off-State (High-Impedance                 | V <sub>CC</sub> = Max, V                                           | <sub>IH</sub> = 2V       | V <sub>O</sub> = 0.4V  |                       |       |           | -20     |          |           | -20     | μΑ    |
|                 | State) Output Current                     | V <sub>IL</sub> = 0.8V                                             |                          | V <sub>O</sub> = 2.4V  |                       |       |           | 20      |          |           | 20      | μΑ    |
| l <sub>i</sub>  | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V                                           | ' <sub>1</sub> = 7V      |                        |                       |       | ١         | 0.1     |          |           | 0.1     | mA    |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max, V                                           | ' <sub>1</sub> = 2.7V    |                        |                       |       |           | 20      |          |           | 20      | μΑ    |
| I <sub>IL</sub> | Low Level Input Current A Inpu            |                                                                    | Both G Ir                | nputs at 2V            | V <sub>1</sub> = 0.5V |       |           | -20     |          |           | -20     | μΑ    |
|                 |                                           | V <sub>CC</sub> = Max                                              | Both G ir                | nputs at 0.4V          |                       | ļ     |           | -0.36   |          |           | -0.36   | mA    |
|                 | G Inpu                                    | +                                                                  |                          |                        | $V_1 = 0.4V$          | -     |           | -0.36   |          |           | -0.36   |       |
| los             | Short Circuit Output Current              | $V_{CC} = Max(2)$                                                  | V <sub>CC</sub> = Max(2) |                        |                       | -30   | -60       | -130    | -30      | -60       | -130    | mA    |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max                                              |                          |                        | 95, 97                |       | 16        | 26      | <u>'</u> | 16        | 26      | mA    |
|                 | <u> </u>                                  |                                                                    |                          |                        | 96, 98                | L     | 13        | 21      |          | -13       | 21      |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

|                  |                                                     |                                               |     | DM71LS/81LS |     |            |     |     |       |  |
|------------------|-----------------------------------------------------|-----------------------------------------------|-----|-------------|-----|------------|-----|-----|-------|--|
|                  | PARAMETER                                           | CONDITIONS                                    |     | LS95, LS9   | 7   | LS96, LS98 |     |     | UNITS |  |
|                  |                                                     | State P. V.                                   | MIN | TYP         | MAX | MIN        | TYP | MAX |       |  |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | , ,                                           |     | 11          | 16  |            | 6   | 10  | ns    |  |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | $C_L = 15 pF, R_L = 2 k\Omega$                |     | 15          | 22  | •          | 13  | 17  | ns    |  |
| <sup>t</sup> zH  | Output Enable Time to High Level                    |                                               |     | 16          | 25  |            | 17  | 27  | ns    |  |
| tZL              | Output Enable Time to Low Level                     |                                               |     | 13          | 20  |            | 16  | 25  | ns    |  |
| t <sub>HZ</sub>  | Output Disable Time from High Level                 | $C_L = 5 \text{ pF}, R_L = 2 \text{ k}\Omega$ |     | 13          | 20. |            | 13  | 20  | ns    |  |
| tLZ              | Output Disable Time from Low Level                  | - CL - 5 Pr, NL = 2 K12                       |     | 19          | 27  |            | 18  | 27  | ns    |  |

# 4-Bit Magnitude Comparators

### **General Description**

These devices compare two binary words of four bits in length; and the outputs indicate 1) word A > word B, 2) word A < word B, or 3) word A = word B. A strobe input overrides all other inputs, and when taken to a high logic level, places both outputs in the low state. Comparison of words longer than four bits each may be accomplished through the use of additional DM7200/DM8200 devices.

### **Features**

Typical power dissipation

175 mW

Typical propagation delay

20 ns

#### **Connection Diagram**



7200/8200(J), (N), (W)

### **Truth Table**

| INPUT      | S | OUTPUT |   |  |  |  |  |
|------------|---|--------|---|--|--|--|--|
| CONDITION  |   |        |   |  |  |  |  |
| DON'T CARE | Н | L      | L |  |  |  |  |
| A > B      | L | н      | L |  |  |  |  |
| A < B      | L | L      | н |  |  |  |  |
| A = B      | L | н      | Н |  |  |  |  |



|                 |                                        |                                                                        |     | DM72/8 | 2    |       |
|-----------------|----------------------------------------|------------------------------------------------------------------------|-----|--------|------|-------|
|                 | PARAMETER                              | CONDITIONS                                                             |     | 00     |      | UNITS |
|                 | ·                                      |                                                                        | MIN | TYP(1) | MAX  | ,     |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                        | 2   |        |      | V     |
| VIL             | Low Level Input Voltage                | ·                                                                      | ,   |        | 0.8  | V     |
| V <sub>I</sub>  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                         |     |        | -1.5 | V     |
| Іон             | High Level Output Current              |                                                                        |     |        | -400 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -400\mu A$     | 2.4 |        |      | · V   |
| loL             | Low Level Output Current               |                                                                        |     |        | 16   | mA .  |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$ |     |        | 0.4  | V     |
| 11              | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                          |     |        | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                          |     |        | 80   | μΑ    |
| lıL             | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.4V$                                          |     |        | -3.2 | mA    |
| Ios             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                               | -18 |        | -55  | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                  |     | 35     | 53   | mA    |

#### Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_{A}$  = 25°C.
- (2) Not more than one output should be shorted at a time.

| !                  |                                                  |        |                | •                      | С   | M72/ |     |       |
|--------------------|--------------------------------------------------|--------|----------------|------------------------|-----|------|-----|-------|
|                    | PARAMETER                                        | FROM   | TO<br>(OUTPUT) | CONDITIONS             |     | 00   |     | UNITS |
|                    | •                                                |        | (0011017       |                        | MIN | TYP  | MAX |       |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output | Data   | Output         | ,                      |     | 24   | 40  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output | Data   | Output         | C <sub>L</sub> = 15 pF |     | 17   | 30  | ns    |
| t <sub>PLH</sub>   | Propagation Delay Time, Low-to-High Level Output | Strobe | Output         | $R_L = 400\Omega$      |     | 15   | 27  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time, High-to-Low Level Output | Strobe | Output         |                        |     | 8    | 18  | ns    |
| t <sub>SETUP</sub> | Setup Time                                       |        |                |                        | 10  | 0    |     | ns ·  |
| tHOLD              | Hold Time                                        |        |                |                        | 0   | -10  |     | ns    |



### **General Description**

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired one of eight data sources. The DM7211/8211 have a strobe input, which must be at a low logic level to enable these devices. A high logic level on the strobe latches the output in a high logic state, regardless of the conditions on the other inputs. Depending upon the 3-bit binary number applied to the select lines, the non-inverted data present on the selected input is passed to the output. The circuit can also be used to convert parallel input data to serial output data. If 8 bits of parallel information are applied to the inputs, and if the binary numbers 000 through 111 are sequenced on the select lines, the output will provide a serial presentation of the input bits.

### 8-Line Data Selectors/Multiplexers

#### Features

- Full on-chip decoding
- Series 54/74 compatible
- Converts parallel data to serial data
- One volt typical noise immunity
- Typical propagation delay

22 ns

Typical power dissipation

100 mW

### Connection Diagrams





7210(J), (W); 8210(J), (N), (W)

7211(J), (W); 8211(J), (N), (W)

### Truth Table

|    | ELEC<br>NPUT |   | STROBE<br>(DM7211/DM8211 |   |   |   | ATA |     |   |   |   | ОИТРИТ |
|----|--------------|---|--------------------------|---|---|---|-----|-----|---|---|---|--------|
| С  | В            | А | ONLY)                    | 0 | 1 | 2 | 3   | 4   | 5 | 6 | 7 | 001101 |
| L  | L            | L | L                        | L | X | Х | Х   | Х   | X | Х | Х | L      |
| L  | L            | L | L                        | Н | Х | Х | X   | Х   | Х | Х | Х | н      |
| L  | L            | н | L                        | Х | L | Χ | X   | . X | Х | X | Х | L      |
| L  | L            | Н | L                        | Х | Н | Х | Х   | Х   | Х | Х | X | н      |
| L  | Н            | L | L                        | Х | Х | L | Χ   | Χ   | Χ | Х | Χ | L      |
| L  | Н            | L | L L                      | Х | Х | Н | Χ   | Х   | Х | Χ | Х | н      |
| L  | Н            | Н | L                        | Х | Х | X | L   | X   | Х | X | Χ | L      |
| L' | Н            | Н | L.                       | Х | Χ | Χ | Н   | Χ   | Χ | Х | X | н      |
| Н  | L            | L | L                        | Х | Χ | Χ | Χ   | L   | Χ | Χ | Χ | L      |
| н  | L            | L | L                        | × | X | X | X   | Н   | Χ | Х | Χ | Н      |
| Н  | L            | Н | L                        | Х | Χ | Χ | Χ   | Χ   | L | Χ | Χ | L      |
| Н  | L            | Н | L                        | Х | Х | Χ | Χ   | Χ   | Н | Χ | Χ | Н      |
| Н  | Н            | L | L                        | Х | Χ | Χ | Χ   | Χ   | Х | L | Χ | L      |
| Н  | Н            | L | L                        | × | X | X | X   | X   | X | Н | X | н      |
| Н  | Н            | Н | L                        | х | X | Х | Х   | Х   | Х | Х | L | L      |
| н  | Н            | Н | L,                       | × | X | X | X   | Х   | X | X | Н | н      |
| ×  | Х            | Х | н                        | × | Х | X | X   | X   | X | X | Χ | н      |

H = High Level L = Low Level

X = Don't Care



|                 |                                        |                                                                       |     |        | DM   | 72/82 |        |                                       |       |
|-----------------|----------------------------------------|-----------------------------------------------------------------------|-----|--------|------|-------|--------|---------------------------------------|-------|
|                 | PARAMETER                              | CONDITIONS                                                            |     | 10     |      |       | 11     |                                       | UNITS |
|                 |                                        | ·                                                                     | MIN | TYP(1) | MAX  | MIN   | TYP(1) | MAX                                   | 1     |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                       | 2   |        |      | 2.    | J. T   |                                       | V     |
| VIL             | Low Level Input Voltage                |                                                                       |     |        | 0.8  |       | ,      | 0.8                                   | V     |
| VI              | Input Clamp Voltage                    | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$ | ,   | ,      | -1.5 |       |        | -1.5                                  | V     |
| Іон             | High Level Output Current              |                                                                       |     |        | -400 |       |        | -400                                  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$I_{OH} = -400\mu A$                | 2.4 |        |      | 2.4   |        | Agency Advantage Company (An Agency ) | V     |
| loL             | Low Level Output Current               |                                                                       |     |        | 16   |       |        | 16                                    | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC}$ = Min, $V_{IL}$ = 0.8V<br>$I_{OL}$ = 16 mA                   |     |        | 0.4  |       |        | 0.4                                   | V     |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                          |     |        | 1    |       |        | 1                                     | mA    |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                         | ,   |        | 40   |       |        | 40                                    | μA    |
| I <sub>IL</sub> | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.4V$                                         |     |        | -1.6 |       |        | -1.6                                  | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                              | -18 |        | -55  | -18   |        | -55                                   | mA    |
| Icc             | Supply Current                         | $V_{CC} = Max(3)$                                                     |     | 20     | 33   |       | 20     | 33                                    | mA    |

#### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with all inputs grounded.

|                  | ·                                                   |        |        |                                          |     |     | DM7 | 2/82 |     |     |         |
|------------------|-----------------------------------------------------|--------|--------|------------------------------------------|-----|-----|-----|------|-----|-----|---------|
|                  | PARAMETER                                           | FROM   | то     | CONDITIONS                               |     | 10  |     |      | 11  |     | UNITS   |
|                  |                                                     |        |        |                                          | MIN | TYP | MAX | MIN  | TYP | MAX |         |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Data   | Output |                                          |     | 23  | 32  |      | 23  | 32  | ns      |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Output |                                          |     | 21  | 30  |      | 21  | 30  | ns      |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Strobe | Output | C - 15 - E B - 400 C                     |     | N/A |     |      | 21  | -30 | ns      |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Strobe | Output | $C_L = 15  \text{pF},  R_L = 400 \Omega$ |     | N/A |     |      | 19  | 27  | ns      |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Select | Output |                                          |     | 31  | 43  |      | 31  | 43  | ns<br>, |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Select | Output |                                          |     | 31  | 42  |      | 31  | 42  | ns      |





#### **General Description**

These devices are the TRI-STATE versions of the very popular DM54153 (DM7214) and DM54150 (DM7219) data selectors/multiplexers. They contain full on-chip decoding to select the desired data input. The DM7214/8214 is a dual, four-line multiplexer, while the DM7219/8219 selects one of sixteen input data lines, depending upon the binary number applied to the select inputs. The DM7214/8214 has common select lines, which therefore select the same input line of both multiplexers. However, the two outputs can be individually controlled by means of the separate enable lines; which, when taken to a high logic level, places the output in the high-impedance TRI-STATE condition. The data at the output of the DM7214/8214 is true, whereas the DM7219/8219 is inverted.

### TRI-STATE Data Selectors/Multiplexers

#### **Features**

TRI-STATE pin equivalents to popular 54/74 TTL devices

DM7214/8214 - 54153/74153 DM7219/8219 - 54150/74150

■ Typical propagation delay DM7214/8214 DM7219/8219

13.5 ns

Typical power dissipation DM7214/8214 DM7219/8219

170 mW 225 mW

■ Strobe/enable override

### **Connection Diagrams**



7214(J), (W); 8214(J), (N), (W)



7219(J), (F); 8219(J), (N), (F)



|                 |                                           |                                                   |                                                 |      |     |        | DM:  | 72/82 |        |      | UNITS |
|-----------------|-------------------------------------------|---------------------------------------------------|-------------------------------------------------|------|-----|--------|------|-------|--------|------|-------|
|                 | PARAMETER                                 | cc                                                | NDITIONS                                        |      |     | 14     |      |       | 19     |      |       |
|                 |                                           |                                                   |                                                 |      | MIN | TYP(1) | MAX  | MIN   | TYP(1) | MAX  |       |
| VIH             | High Level Input Voltage                  |                                                   |                                                 |      | 2   |        |      | 2     |        |      | V     |
| VIL             | Low Level Input Voltage                   |                                                   |                                                 |      |     |        | 0.8  |       |        | 0.8  | V     |
| Vı              | Input Clamp Voltage                       | V <sub>CC</sub> = Min,                            | I <sub>1</sub> = -12 mA                         |      |     |        | -1.5 |       |        | -1.5 | V     |
| I <sub>OH</sub> | High Level Output Current                 |                                                   |                                                 | DM72 |     |        | -2.0 |       |        | -2.0 | mA    |
|                 |                                           |                                                   |                                                 | DM82 |     |        | -5.2 |       |        | -5.2 | ""^   |
| V <sub>OH</sub> | High Level Output Voltage                 | $V_{CC} = Min$<br>$V_{1L} = 0.8V$ ,               |                                                 |      | 2.4 |        |      | 2.4   |        |      | ٧     |
| OL              | Low Level Output Current                  |                                                   |                                                 |      |     |        | 16   |       |        | 16   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                  | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OL</sub> = 16 mA |      |     |        | 0.4  |       |        | 0.4  | V     |
| lo(off)         | Off-State (High-Impedance State)          | V <sub>CC</sub> = Max                             | V <sub>O</sub> = 0.4V                           |      |     |        | -40  |       |        | -40  |       |
|                 | Output Current                            | $V_{1H} = 2V$<br>$V_{1L} = 0.8V$                  | $V_{\rm O} = 0.4V$ $V_{\rm O} = 2.4V$           |      |     |        | 40   |       |        | 40   | μΑ    |
| l <sub>1</sub>  | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                           |      |     |        | 1    |       |        | 1    | mΑ    |
| l <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max,                            | V <sub>i</sub> = 2.4V                           |      |     |        | 40   |       |        | 40   | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                   | V <sub>CC</sub> = Max,                            | V <sub>3</sub> = 0.4V                           |      |     |        | -1.6 |       |        | -1.6 | mΑ    |
| los             | Short Circuit Output Current              | V <sub>CC</sub> = Max(2                           | )                                               |      | -18 |        | -55  | -28   |        | -100 | mA    |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max(3                           | 3)                                              | DM72 |     | 34     | 56   |       | 45     | 68   | mA    |
|                 |                                           | · CC Wax(O                                        | C = Max(3)                                      |      |     | 34     | 65   |       | 45     | 68   |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for the DM7219/DM8219 duration of short circuit should not exceed one second.
- (3) I<sub>CC</sub> is measured with all inputs grounded.

# Switching Characteristics V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C

|                  |                                                     |        | 1      |                                  |     |     |     |     |                 |     |       |
|------------------|-----------------------------------------------------|--------|--------|----------------------------------|-----|-----|-----|-----|-----------------|-----|-------|
|                  | PARAMETER                                           | FROM   | то     | CONDITIONS                       |     | 14  |     |     | 19              |     | UNITS |
|                  |                                                     |        |        |                                  | MIN | TYP | MAX | MIN | TYP             | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data   | Output |                                  |     | 15  | 23  |     | 13 <sup>,</sup> | 20  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Output | .* .                             |     | 12  | 18  |     | 9               | 14  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Select | Output | C = 50 = F P = 4000              |     | 20  | 34  |     | 21              | 35  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Select | Output | $C_L = 50 pF, R_L = 400\Omega$   |     | 20  | 34  |     | 22              | 33  | ns    |
| <sup>t</sup> zH  | Output Enable Time to<br>High Level                 |        |        |                                  |     | 12  | 18  |     | 15              | 23  | ns    |
| tZL              | Output Enable Time to<br>Low Level                  |        |        | !                                |     | 14  | 21  |     | 17              | 27  | ns    |
| tHZ              | Output Disable Time from<br>High Level              |        |        | $C_1 = 5  pF,  R_L = 400 \Omega$ |     | 5   | 10  |     | 5               | 10  | . ns  |
| tLZ              | Output Disable Time from Low Level                  |        |        | CL - 5 pr, NL = 40012            |     | 15  | 23  |     | 21              | 30  | ns    |

Truth Tables

14

| SELECT | INPUTS | D  | ATA | INPUT | rs | ENABLE | OUTPUT |
|--------|--------|----|-----|-------|----|--------|--------|
| В      | Α      | C0 | C1  | C2    | СЗ | Ğ      | Y      |
| X      | X      | Х  | Х   | . X   | Х  | Н      | Hi-Z   |
| L      | L      | L  | Х   | Х     | Х  | L      | L      |
| L      | L      | Н  | Х   | X     | X  | L      | н      |
| L      | Н      | ×  | L   | X     | Х  | L      | L      |
| L      | н      | ×  | Н   | X     | Х  | L      | н      |
| Н      | L      | ×  | Χ   | L     | Х  | L      | L      |
| H-     | L      | ×  | Χ   | Н     | Х  | L      | н      |
| - н    | Н      | ×  | Х   | X     | L  | · L    | L      |
| Н      | Н      | Х  | Х   | X     | Н  | L      | Н      |

19

|     | SEL | ECT |     | ENABLE |    |      |    |    |     |    | D  | ATA  | INPUT | rs  |     |     |     |              |     |     | OUTPUT |
|-----|-----|-----|-----|--------|----|------|----|----|-----|----|----|------|-------|-----|-----|-----|-----|--------------|-----|-----|--------|
| D   | С   | В   | Α   | Ğ      | EO | E1 . | E2 | E3 | E4  | E5 | E6 | , E7 | E8    | E9  | E10 | E11 | E12 | E13          | E14 | E15 | Y      |
| X   | Х   | Х   | Х   | Н      | Х  | Х    | Х  | Х  | Х   | X  | Х  | Х    | X     | Х   | Х   | X   | Х   | Х            | _ X | Х   | Hi-Z   |
| L   | L   | L   | L   | L      | L  | Х    | Х  | Χ. | Х   | Х  | Х  | X    | Х     | Х   | Х   | X   | X   | Х            | Χ   | X   | н      |
| L   | L   | L   | L   | L      | Н  | Х    | Х  | Х  | Х   | Х  | Х  | X    | Х     | Х   | Х   | Х   | X   | Х            | X   | X   | L      |
| L   | L.  | L   | Н   | L      | X  | L    | Х  | Х  | Х   | X  | Χ. | Х    | Х     | Х   | X   | Х   | X   | Х            | Х   | Χ   | н      |
| L   | L   | L   | Н   | L      | Х  | Н    | X  | Х  | Χ   | Х  | Х  | X    | Х     | X   | X   | X   | X   | Х            | Х   | X   | L      |
| L   | L   | Н   | L   | L      | ×  | X    | L  | Х  | Х   | X  | Х  | Х    | Х     | Χ   | X   | Х   | X   | X            | Х   | X   | Н      |
| L   | L   | Н   | L   | L      | X  | Х    | Н  | Х  | Х   | Χ  | Х  | X    | Х     | , X | Х   | Х   | Х   | Х            | Х   | Х   | L      |
| L   | L   | Н   | Н   | L      | X  | Χ    | Х  | L  | Х   | Χ  | Х  | Х    | Χ     | Χ   | X   | Χ   | Х   | Х            | Х   | X   | н      |
| L   | L   | Н   | Н   | L      | X  | Х    | Х  | Н  | Χ   | X  | X  | Х    | Х     | X   | Х   | Χ   | X   | Х            | X   | X   | L      |
| l_  | Н   | L   | L   | L      | X  | Χ    | Х  | Х  | L   | Χ  | Х  | X    | Χ     | Χ   | Х   | Х   | X   | X            | X   | X   | н      |
| L   | Н   | L   | · L | , L    | X  | Χ    | Х  | Х  | Н   | Х  | Х  | X    | Х     | X   | Х   | X   | X   | , X          | Х   | Х   | L      |
| L   | н   | L   | Н   | L      | X  | Х    | Х  | X  | X   | L  | X. | X    | Χ     | X   | Х   | Х   | X   | Х            | X   | Х   | Н      |
| L   | , H | L   | н   | L      | Х  | Х    | X  | X  | Х   | Н  | Х  | X    | Χ     | Χ   | X   | Х   | X   | Х            | Χ   | Х   | L      |
| L   | Н   | Н   | L   | L      | ,x | X    | Х  | Х  | X   | Χ  | L  | X    | Х     | X   | X   | Х   | X   | Х            | X   | X   | н      |
| L   | Н   | Н   | L   | L      | X  | Х    | Х  | X  | X · | Х  | Н  | X    | X     | Χ   | X   | X   | X   | Х            | Χ   | X   | L      |
| L   | Н   | Н   | Н   | L      | X  | X    | Х  | X  | X   | Х  | X  | L    | Χ     | X   | Х   | X   | X   | Χ            | Χ   | X   | H·     |
| L   | Н   | Н   | Н   | L      | X  | X    | Х  | X  | Х   | Χ  | X  | Н    | X     | Χ   | X   | Χ   | X   | X            | X   | X   | L      |
| Н   | L   | L   | L   | L      | X  | X    | Х  | Х  | X   | Χ  | X  | X    | L     | X   | Х   | X   | X   | X            | X   | X   | н      |
| Н   | Ł   | Ł   | L   | L      | х  | Х    | Х  | X  | Х   | Χ  | Х  | X    | Н     | Х   | X   | Χ   | X   | Χ            | X   | Х   | L      |
| Н   | L   | L,  | Н   | £      | Х  | Х    | X  | X  | X   | Х  | Х  | X    | Х     | L   | . X | X   | X   | X            | X   | X   | Н      |
| Н   | L   | L   | Н   | · L    | ×  | Х    | Х  | X  | X   | Χ  | X  | X    | X     | н   | X   | Х   | X   | X            | X   | Х   | L      |
| Н   | L,  | Н   | L   | L      | X  | Χ    | Х  | X  | X   | X  | X  | Х    | X     | Х   | L   | X   | Х   | $^{\prime}X$ | X   | X   | Н      |
| Н   | L   | Н   | L   | L      | X  | Χ    | Х  | X  | Х   | Х  | X  | X    | X     | Х   | Н   | Χ   | X   | X            | Χ   | X   | L      |
| Н   | L   | Н   | н   | L      | X  | X    | Х  | Х  | X   | Χ  | X  | X    | X     | X   | X   | L   | Х   | X            | Χ,  | X   | Н      |
| Н   | L   | Н   | Н   | L      | Х  | Х    | Х  | X  | X   | Х  | X  | X    | Χ     | X   | ×   | Н   | X   | X            | . X | X   | L      |
| Н   | Н   | L   | L,  | L      | X  | Х    | Χ  | X  | Х   | Χ  | X  | X    | Х     | X   | X   | X   | L   | Х            | X   | : X | Н      |
| Н   | Н   | L   | L   | L.     | Х  | Х    | Х  | Х  | Х   | Х  | X  | X    | Х     | X   | Х   | X   | H   | Х            | X   | X   | L      |
| Н   | Н   | L   | Н   | L      | ×  | Х    | X  | X  | X   | X  | X  | Х    | X     | Х   | X   | X   | Х   | L            | X   | X   | Н      |
| н - | н   | L   | Н   | L      | ×  | X    | X  | ×  | X   | Χ  | X  | Χ    | Χ     | X   | X   | X   | X   | Н            | X   | X   | L      |
| Н   | н   | Н   | L   | L      | ×  | X    | X  | X  | X   | Х  | X  | X    | X     | X   | Х   | X   | X   | X            | L   | Х   | н      |
| Н   | Н   | Н   | L   | L      | ×  | Х    | X  | X  | X   | X  | X  | X    | X     | X   | X   | X   | X   | X            | Н   | Х   | L      |
| Н   | Н   | Н   | н   | L      | ×  | X    | Х  | X  | X   | Χ. | Х  | Х    | Х     | X   | X   | X   | X   | X            | Х   | L   | Н      |
| Н   | н   | Н   | Н   | L      | X  | Х    | Х  | Χ  | Χ   | X  | Х  | · X  | Х     | Х   | X   | Х   | X   | X            | X   | Н   | L      |



DM72/DM8214,19

Logic Diagrams











## 9-Bit Parity Generators/Checkers

#### **General Description**

These circuits can be used both to check for parity and to generate a parity bit. When the generation of a parity bit is desired, the eight data inputs are connected to the transmission lines. If a low logic level is then connected to the parity input, the circuit will generate odd parity. The succeeding parity checker will acknowledge an odd number of "1's" (odd parity) with a low logic level on its output. If a high logic level is connected to the parity

input of the first parity generator, the parity checker will acknowledge even parity with a high logic level on its output, although the output of the parity generator will be low.

#### Features

- Typical propagation delay
- 34 ns
- Typical power dissipation

### 130 mW

### **Connection Diagram**



#### 7220/8220(J), (N), (W)

### Truth Table

| PARITY<br>INPUT | OUTPUT* | INPUTS A THRU H                |
|-----------------|---------|--------------------------------|
| н               | L       | Even number of inputs are High |
| L .             | L       | Odd number of inputs are High  |

<sup>\*</sup>Single device

### Typical Application

If the control line is a logical "0" the parity generator will generate odd parity. The parity checker will acknowledge the presence of an odd number of "1's" (odd parity) with a logical "0" on its output.

If the control line is a logical "1" the parity generator will generate even parity. The parity checker will acknowledge the presence of an even number of "1's" (even parity) with a logical "1" on its output.





|                 |                                        | CONDITIONS                                                             |     | DM72   | ······································ | ,   | DM82   |      | UNITS |
|-----------------|----------------------------------------|------------------------------------------------------------------------|-----|--------|----------------------------------------|-----|--------|------|-------|
|                 | PARAMETER                              | CONDITIONS                                                             | MIN | TYP(1) | MAX                                    | MIN | TYP(1) | MAX  | UNITS |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                        | 2   |        |                                        | 2   |        |      | V     |
| V <sub>IL</sub> | Low Level Input Voltage                |                                                                        |     |        | 0.8                                    |     |        | 8.0  | V     |
| Vi              | Input Clamp Voltage                    | $V_{CC} = Min, I_1 = -12 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$     |     |        | -1.5                                   |     |        | -1.5 | V     |
| Гон             | High Level Output Current              |                                                                        |     |        | -400                                   |     |        | 400  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OH} = -400\mu A$     | 2.4 |        |                                        | 2.4 |        |      | V     |
| IOL             | Low Level Output Current               |                                                                        | ,   |        | 16                                     |     |        | 16   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$ |     |        | 0.4                                    |     |        | 0.4  | V     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                           |     |        | , 1                                    |     |        | 1    | mA    |
| Чн              | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                           |     |        | 40                                     |     |        | 40   | μА    |
| IzL             | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                           |     |        | -1.6                                   |     |        | -1.6 | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                               | 20  |        | -55                                    | -18 |        | 55   | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                  |     | 26     | 35                                     |     | 26     | 35   | mA    |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

(2) Not more than one output should be shorted at a time.

|                  |                                                     |              |        | ,                                | DI  | 32          |    |       |
|------------------|-----------------------------------------------------|--------------|--------|----------------------------------|-----|-------------|----|-------|
|                  | PARAMETER                                           | FROM         | то     | CONDITIONS                       |     | 20          |    | UNITS |
|                  |                                                     |              |        |                                  | MIN | MIN TYP MAX |    |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Data Inputs  | Output |                                  |     | 36          | 58 | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Data Inputs  | Output | G = 15 × 5 B = 4000              |     | 32          | 52 | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Parity Input | Output | $C_L = 15  pF, R_L = 400 \Omega$ |     | 21          | 35 | ns .  |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to Low Level Output | Parity Input | Output |                                  | -   | 14          | 25 | ns    |





# 1-Line to 8-Line Demultiplexers

### **General Description**

These circuits demultiplex a data train, and route the data to one of eight outputs. The binary code which is applied to three address lines determines which unique output receives the data. When the data input is at a logical "0," only the addressed output will be a logical "0." When the data input is at a logical "1," all outputs, and therefore the addressed output, will be at a logical "1."

#### **Features**

■ Typical power dissipation

140 mW

Typical propagation delay

25 ns

### **Connection Diagram**



\*Do not make connection to pins 10 or 11 7223(J); 8223(J), (N)

#### Truth Table

| DATA  | ADDRESS<br>INPUTS |     |   | OUTPUTS |   |    |   |   |   |   |    |
|-------|-------------------|-----|---|---------|---|----|---|---|---|---|----|
| INPUT | C                 | В   | Α | 0       | 1 | 2  | 3 | 4 | 5 | 6 | 7  |
| L.    | L                 | L   | L | L       | Н | Н  | Н | Н | Н | Н | Н  |
| L     | L                 | L   | Н | Н       | L | Н  | Н | Н | Н | Н | Н  |
| L     | L                 | H L |   | н       | Н | L  | Н | Н | Н | Н | Н  |
| L     | L                 | Н   | Н | н       | Ή | Н  | L | Н | Н | Н | Н  |
| L     | Н                 | L   | L | Н       | Н | Н  | Н | L | Н | Н | Н  |
| L     | Н                 | L   | Н | н       | Н | Н  | Н | Н | L | Н | Н  |
| L     | н                 | Н   | L | н       | Н | Η. | Н | Н | Н | L | н  |
| L     | Н                 | Н   | Н | н       | Н | Н  | Н | Н | Н | Н | L  |
| н     | Х                 | X   | Х | Н       | Н | Н  | Н | Н | Н | Н | н. |

X = Don't Care



|                 |                                        |                                                                                                |     | DM72                                              |      | DM82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | UNITS |
|-----------------|----------------------------------------|------------------------------------------------------------------------------------------------|-----|---------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|                 | PARAMETER                              | CONDITIONS                                                                                     |     | 23                                                |      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |
|                 |                                        | ,                                                                                              | MIN | TYP(1)                                            | MAX  | MIN TYP(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) MAX | ].    |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                                                | 2   |                                                   | 1411 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | V     |
| VIL             | Low Level Input Voltage                |                                                                                                |     |                                                   | 8.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8   | V     |
| ٧ı              | Input Clamp Voltage                    | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$                                                        | 1   |                                                   | -1.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.5  | V     |
| Іон             | High Level Output Current              |                                                                                                |     |                                                   | -400 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -400  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -400\mu A$                             | 2.4 | 1                                                 | ŕ    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | V     |
| loL             | Low Level Output Current               | ,                                                                                              | 1   |                                                   | 16   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16    | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 mA |     |                                                   | 0.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4   | V     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>i</sub> = 5.5V                                                   |     |                                                   | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | mÀ    |
| ин              | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                                                  |     |                                                   | 40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40    | μА    |
| l <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                   | 1   | Andrew (de comment 1997) (1991) (de comment 1997) | -1.6 | Market Market Control of the Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S | -1.6  | ' mA  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                       | -20 |                                                   | -55  | -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -57   | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                                          | 1   | 28                                                | 41   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41    | mA    |

#### Notes

(1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.

(2) Not more than one output should be shorted at a time.

|                  | PARAMETER                                           | CONDITIONS                              |     | UNITS |      |    |
|------------------|-----------------------------------------------------|-----------------------------------------|-----|-------|------|----|
|                  |                                                     |                                         | MIN | TYP   | MAX  | ,  |
| tpLH             | Propagation Delay Time, Low-to-High<br>Level Output | $C_1 = 15  \text{pF, R}_1 = 400 \Omega$ |     | 26    | 35   | ns |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-Low<br>Level Output | CL = 15 μ1 , N <sub>L</sub> = 40032     |     | . 24  | · 35 | ns |



# TRI-STATE Dual 2/4 Demultiplexers

#### **General Description**

These circuits route both a data input, as well as its complement, to two of four output lines, depending upon the binary code applied to the address lines. There are two separate data lines, separate address lines for each, as well as the complement of each data line. Which set of address lines is active depends upon which disable line has a low logic level applied. The disable inputs have the additional feature that when both have a high logic

level applied, the outputs go to the third (high-impedance) state .

#### **Features**

- Separate input disables
- Data complement capability
- Typical propagation delay

20 ns

■ Low output impedance — high drive capability

### **Connection Diagram**



7230(J), (W); 8230(J), (N), (W)

### Truth Table

| DATA<br>· A | COMP | DATA<br>B | COMP<br>B | ADDF<br>2 <sup>1</sup> | RESS A | ADDI<br>2 <sup>1</sup> | RESS B | DIS<br>A | DIS<br>B | OUT<br>0 | OUT<br>1 | OUT<br>2 | OUT<br>3 |
|-------------|------|-----------|-----------|------------------------|--------|------------------------|--------|----------|----------|----------|----------|----------|----------|
| L           | L    | Х         | Х         | L                      | L      | X                      | Х      | L        | Н        | L        | Н        | Н        | н        |
| L           | н    | х         | ×         | L                      | L      | Х                      | ×      | L        | н        | н        | Н        | н        | н        |
| н           | L    | ×         | ×         | L                      | L      | ×                      | Х      | L        | н        | н        | н        | н        | н        |
| н           | н    | х         | ×         | L                      | L      | ×                      | ×      | L        | н        | L        | Н        | н        | н        |
| L           | L    | ×         | ×         | L                      | н      | Х                      | ×      | L        | н        | Н        | L        | н        | н        |
| L           | н    | Х         | ×         | L                      | Н      | х                      | ×      | L        | Н        | н        | н        | н        | н        |
| ^ H         | L    | Х         | . ×       | L                      | Н      | Х                      | ×      | L        | н        | н        | Н        | н        | н        |
| Н           | н    | х         | ×         | L                      | Н      | X                      | Х      | L        | н        | Н        | L        | н        | н        |
| L           | L    | ×         | ×         | Н                      | L      | ×                      | Х      | .L       | н        | Н        | Н        | L        | н        |
| L           | н    | ·X        | ×         | н                      | L      | Х                      | Х      | L        | н        | Н        | н        | н        | н        |
| н           | L    | Х         | ×         | Н                      | L      | х                      | Х      | L        | н        | Н        | Н        | Н        | . н      |
| н           | н    | Х         | ×         | н                      | . F    | Х                      | Х      | L        | н        | Н        | Н        | L        | н        |
| L           | L    | ×         | ×         | Н                      | Н      | ×                      | ×      | L        | н        | Н        | н        | н        | L        |
| L           | н    | ×         | ×         | Н                      | н      | X                      | ×      | L        | Н        | Н        | н        | н        | н        |
| Н           | L    | Х         | ×         | Н                      | Н      | ×                      | ×      | L        | Н        | Н        | н        | н        | н        |
| Н           | н    | X         | ×         | Н                      | Н      | X                      | ×      | L        | Н        | Н        | Н        | н        | L        |
| ×           | ×    | L         | L         | Х                      | ×      | L                      | L      | Н        | L        | L        | Н        | н        | н        |
| ×           | Х    | L         | Н         | Х                      | ×      | L                      | L      | н        | L        | Н        | Н        | н        | н        |
| Х           | ×    | н         | L         | Х                      | ×      | L                      | L      | Н        | L        | Н        | Н        | Н        | Н        |
| ×           | Х    | н         | н         | Х                      | X      | L                      | L.     | Н        | L        | L        | Н        | Н        | н        |
| X           | ×    | L         | L         | Х                      | ×      | L                      | H      | Н        | L        | Н        | L        | Н        | н        |
| ×           | ×    | L         | н         | Х                      | Х      | L                      | H      | ,H       | L        | Н        | Н        | Н        | н        |
| X           | Х    | Н         | L         | Х                      | ×      | L                      | Н      | Н        | F.       | Н        | Н        | н        | Н        |
| X           | ×    | н         | н         | Х                      | ×      | L                      | н      | н        | L        | Н        | L        | н        | н        |
| ×           | ×    | L         | L         | Х                      | Х      | н                      | L      | н        | L        | Н        | Н        | L        | Н        |
| ×           | ×    | L         | H.        | ×                      | X      | Н                      | L      | Н        | L        | Н        | Н        | Н        | н        |
| Х           | ×    | н         | L         | ×                      | Х      | н                      | L      | н        | L        | н        | Н        | Н        | н        |
| ×           | ×    | н         | Н         | , X                    | Х      | Н                      | L      | н        | L        | Н        | Н        | L        | Н        |
| ×           | ×    | L         | L         | , X                    | Х      | н                      | Н      | н        | L        | н        | Н        | Н        | L        |
| ×           | ×    | L         | н         | Х                      | Х      | н                      | Н      | н        | L        | н        | Н        | Н        | н        |
| ×           | ×    | н         | L         | ×                      | Х      | Н                      | Н      | Н        | L        | Н        | Н        | Н        | н        |
| ×           | ×    | н         | н         | X                      | Х      | Н                      | Н      | н        | L        | Н        | Н        | Н        | L        |
| ×           | ×    | Х         | ×         | ×                      | X      | Х                      | ×      | Н        | Н        | Hi-Z     | Hi-Z     | Hi-Z     | Hi-Z     |



|                     |                                        |                                                                                               |                       | DM72 |        |      |     |        |      |        |
|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|------|--------|------|-----|--------|------|--------|
|                     | PARAMETER                              | CONDITION                                                                                     | S                     |      | 30     |      |     | 30     |      | UNITS  |
|                     |                                        |                                                                                               |                       | MIN  | TYP(1) | MAX  | MIN | TYP(1) | MAX  |        |
| ViH                 | High Level Input Voltage               |                                                                                               |                       | 2    |        |      | 2   |        |      | V      |
| V <sub>IL</sub>     | Low Level Input Voltage.               |                                                                                               |                       |      |        | 0.8  |     |        | 8.0  | ٧      |
| Vi                  | Input Clamp Voltage                    | $V_{CC} = Min, I_1 = -12 \text{ mA}$<br>$T_A = 25^{\circ}\text{C}$                            |                       |      |        | -1.5 |     |        | -1.5 | V ,    |
| loH                 | High Level Output Current              |                                                                                               |                       |      | 20000  | -2.0 |     |        | -5.2 | mA     |
| V <sub>OH</sub>     | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = Max$                                  | •                     | 2,4  | 3.5    |      | 2.4 | 3.5    |      | V      |
| loL                 | Low Level Output Current               |                                                                                               |                       |      |        | 16   |     |        | 16   | mA     |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 m | A                     |      | 0.2    | 0.4  |     | 0.2    | 0.4  | V      |
| I <sub>O(OFF)</sub> | Off-State (High-Impedance State)       | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                   | V <sub>O</sub> = 0.4V |      |        | 40   |     |        | -40  | μА     |
|                     | Output Current                         | V <sub>IL</sub> = 0.8V                                                                        | V <sub>O</sub> = 2.4V |      |        | 40   |     |        | 40   | "      |
| I <sub>I</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                  |                       |      |        | 1    |     |        | 1    | mA     |
| I <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                  | Disable               |      |        | 80   |     |        | 80   | μΑ     |
|                     |                                        | V <sub>CC</sub> - Max, V <sub>1</sub> - 2.4V                                                  | Other                 |      |        | 40   |     |        | 40   | "      |
| IIL                 | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                                                  | Disable               |      | -2.0   | -3.2 |     | -2.0   | -3.2 | mA     |
|                     |                                        | V <sub>CC</sub> - Max, V <sub>1</sub> - 0.4V                                                  | Other                 |      | -1.0   | -1.6 |     | -1.0   | -1.6 | l IIIA |
| los                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                      |                       | -30  |        | -70  | -28 |        | 70   | mA     |
| Icc                 | Supply Current                         | V <sub>CC</sub> = Max                                                                         |                       |      | 48     | 75   |     | 48     | 75   | mA     |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

(2) Not more than one output should be shorted at a time.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  |                                                     |             |        |                            | ٠                                      | • . | DM72/82  |          |       |
|------------------|-----------------------------------------------------|-------------|--------|----------------------------|----------------------------------------|-----|----------|----------|-------|
|                  | PARAMETER                                           | FROM        | то     | c                          | ONDITIONS                              |     | 30       |          | UNITS |
|                  |                                                     |             |        | ,                          |                                        | MIN | TYP      | MAX      |       |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Data        | Output | Inverting<br>Non-Inverting |                                        |     | 20<br>13 | 36<br>24 | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data        | Output | Inverting<br>Non-Inverting |                                        |     | 18<br>18 | 26<br>26 | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Address(3)  | Output |                            |                                        |     | 20       | 36       | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Address(3)  | Output |                            | $C_L = 50 \text{ pF}, R_L = 400\Omega$ |     | 20       | 30       | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Disable (4) | Output |                            | C_ = 50 pr, n_ = 40032                 |     | 13       | 25       | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Disable (4) | Output | ·                          |                                        |     | 16       | 25       | ns    |
| <sup>t</sup> ZH  | Output Enable Time to<br>High Level                 |             |        | ,                          |                                        |     | 15       | 23       | ns    |
| tzL              | Output Enable Time to<br>Low Level                  |             |        |                            |                                        |     | 18       | 27       | ns    |
| tHZ              | Output Disable Time from<br>High Level              | ·           |        |                            | 0 -5 -5 -5 - 4000                      | ,   | 7        | 14       | ns    |
| t <sub>LZ</sub>  | Output Disable Time from<br>Low Level               |             |        |                            | $C_L = 5 pF, R_L = 400\Omega$          |     | 15       | 27       | ns    |

#### Note

<sup>(3)</sup> The only conditions under which a tpHL from the Address inputs can be observed is when an output goes from being nonselected to being selected and the information being routed to that output is a logical "0." If the information had been a logical "1," no change would have occurred and no measurement could have been made. Similarly, the only time a tpLH from the Address inputs can be observed, is when an output goes from being selected to being nonselected and the information that had been routed to that output was a logical "0." If the information had been a logical "1," no change would have occurred and no measurement could have been made.

<sup>(4)</sup> Information in Note 3 concerning tp<sub>LH</sub> and tp<sub>LH</sub> from the address inputs are applicable here also.



Logic Diagram



# **Dual/Quad Gated Flip-Flops**

### **General Description**

The DM7511/8511 or the low-power versions DM75L11/85L11, are dual, gated, D-type flip-flops. Each flip-flop has its own clock, clear line, and two gated inputs. Both gate inputs must be low to enable data transfer to the output.

The DM7512/8512, and DM75L12/85L12 are dual, gated flip-flops which can operate in either a J-K mode, or as D-type flip-flops. They have a common clock and common, asynchronous clear, but have separate mode inputs such that one side can operate as J-K while the other side operates as a D-type flip-flop.

The DM7613/8613, and DM76L13/86L13 are quad, gated, D-type flip-flops with common clock; common clear, and gated input. When a high logic level is applied to the gated input, data entry to the flip-flop is inhibited.

#### **Features**

- Positive-edge triggered
- Do-nothing state
- Buffered inputs

| TYPE          | TYPICAL<br>TOGGLE RATE | TYPICAL POWER DISSIPATION |
|---------------|------------------------|---------------------------|
| DM7511/8511   | 45 MHz                 | 210 mW                    |
| DM75L11/85L11 | 9 MHz                  | 17.5 mW                   |
| DM7512/8512   | 28 MHz                 | 220 mW                    |
| DM75L12/85L12 | 10 MHz                 | 16.0 mW                   |
| DM7613/8613   | 30 MHz                 | 290 mW                    |
| DM76L13/86L13 | 7 MHz                  | 28.5 mW                   |

#### **Connection Diagrams**



7511/8511(J), (N), (W); 75L11/85L11(J), (N), (W)



7512/8512(J), (N), (W); 75L12/85L12(J), (N), (W)



7613/8613(J), (N), (W); 76L13/86L13(J), (N), (W)

| Propri       | _ | 4  |
|--------------|---|----|
| opri         |   | Pr |
| <b>1 2</b> . |   | 유  |
|              |   | Ì. |

|                  |                                        |                                                   |                              | -                      |     |        |          |     |                 |          |     |                       |             |       |
|------------------|----------------------------------------|---------------------------------------------------|------------------------------|------------------------|-----|--------|----------|-----|-----------------|----------|-----|-----------------------|-------------|-------|
|                  |                                        |                                                   |                              | DM75/85                | ·   |        | DM76/86  | 5   | DM75L/85L11, 12 |          |     |                       |             |       |
|                  | PARAMETER                              |                                                   | CONDITION                    | NS                     | L   | 11, 12 |          |     | 13              |          | DN  | M76L/86L              | .13         | UNITS |
|                  |                                        |                                                   |                              |                        | MIN | TYP(1) | MAX      | MIN | TYP(1)          | MAX      | MIN | TYP(1)                | MAX         |       |
| V <sub>IH</sub>  | High Level Input Voltage               |                                                   |                              |                        | 2   |        |          | 2   |                 |          | 2   |                       |             | V     |
| VIL              | Low Level Input Voltage                |                                                   |                              |                        |     |        | 8.0      |     |                 | 0.8      |     |                       | 0.7         | ٧.    |
| Vi               | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I                          | i = -12 mA                   |                        |     |        | -1.5     |     |                 | -1.5     |     |                       | N/A         | V     |
| Гон              | High Level Output Current              |                                                   |                              |                        |     |        | -800     |     |                 | -800     |     |                       | -200        | μΑ    |
| V <sub>OH</sub>  | High Level Output Voltage              | V <sub>CC</sub> = Min, \ V <sub>IL</sub> = Max, I |                              |                        | 2.4 |        |          | 2.4 |                 |          | 2.4 | and the second second |             | V     |
| l <sub>OL</sub>  | Low Level Output Current               |                                                   |                              | Military<br>Commercial |     |        | 16<br>16 |     |                 | 16<br>16 |     |                       | 2.0°<br>3.6 | mA    |
| V <sub>OL</sub>  | Low Level Output Voltage               | V <sub>CC</sub> = Min, \ V <sub>IL</sub> = Max, I |                              | Military<br>Commercial |     |        | 0.4      |     |                 | 0.4      |     |                       | 0.3         | V     |
| . I <sub>I</sub> | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V        |                        |     |        | 1.0      |     | -               | 1.0      |     |                       | 0.1         | mA    |
| I <sub>IH</sub>  | High Level Input Current               | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 2.4V        |                        |     |        | 40       |     |                 | 40       |     |                       | 10          | μΑ    |
| IIL              | Low Level Input Current                | V <sub>CC</sub> = Max                             | $V_1 = 0.3V$<br>$V_1 = 0.4V$ |                        |     |        | -1.6     |     |                 | -1.6     |     |                       | -0.18       | mA    |
| los              | Short Circuit Output Current           | V <sub>CC</sub> = Max(2                           | ?)                           |                        | -18 |        | -55      | -18 |                 | -55      | -3  | -9                    | -15         | mA    |
| Icc              | Supply Current                         | V <sub>CC</sub> = Max(3                           | 3)                           | 11, L11<br>12, L12     |     | 42     | 55<br>57 |     |                 |          |     | 3.5<br>3.2            | 4.9         | mA.   |
|                  |                                        |                                                   |                              | 13, L13                |     |        |          |     | 58              | 76       |     | 5.7                   | 7.9         | 1     |
|                  |                                        |                                                   |                              |                        |     |        |          |     |                 |          |     |                       |             |       |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) Supply current is measured with clear/clock at 3V, all other inputs at 0V.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

UNITS

|                    |                                          |                 | 1       | 1   | ,                                                     |     | T)/D | **** |     |      |      |     |         | **** | 1      |
|--------------------|------------------------------------------|-----------------|---------|-----|-------------------------------------------------------|-----|------|------|-----|------|------|-----|---------|------|--------|
|                    | ·                                        |                 |         | L   |                                                       | MIN | TYP  | MAX  | MIN | TYP  | MAX  | MIN | TYP     | MAX  |        |
| fMAX               | Maximum Clock Frequency                  |                 |         |     | ,                                                     | 30  | 45   |      | 20  | 28   |      | 20  | 30      |      | MHz    |
|                    | ./                                       |                 |         |     |                                                       | 6   | 9    |      | 6   | 10   |      | 5   | 7       |      | IVITIZ |
| tpLH.              | Propagation Delay Time,                  |                 | Clock   | a   |                                                       |     | 14   | 20   |     | 21   | 35   |     | 17      | 24   | ns     |
|                    | Low-to-High Level Output                 |                 | CIOCK   |     | $C_L = 15 \text{ pF}$ (Standard)<br>$R_L = 400\Omega$ |     | 55   | 95   |     | 35   | 70 . |     | 41      | 60   | 115    |
| t <sub>PHL</sub>   | Propagation Delay Time,                  |                 | Clock   | Q   | WE - 40022                                            |     | 19   | 30   |     | 26   | 40   |     | 22      | 33   |        |
|                    | High-to-Low Level Output                 |                 | CIOCK   | "   | C <sub>L</sub> = 50 pF                                |     | 75   | 125  |     | 60   | 120  |     | 70      | 100  | ns     |
| tpLH .             | Propagation Delay Time,                  | -               | Clear   | ā   | $R_L = 4 k\Omega$ (Low Power)                         |     | 14   | 20   |     | 22   | 35   |     | N/A     |      |        |
|                    | Low-to-High Level Output                 |                 | Clear   | ١   |                                                       |     | 55   | 95   |     | 32   | 65   |     | N/A     |      | . ns   |
| tpHL               | Propagation Delay Time,                  |                 | Classia | a   |                                                       |     | 19   | 30   | * - | 26   | 40   |     | · 21 ·· | 31   |        |
|                    | High-to-Low Level Output                 |                 | Clear   | l u | 1                                                     | ٠.  | 75   | 125  |     | 57   | 114  |     | - 68    | 100  | ns     |
| tw(clock)          | Width of Clock Pulse                     | `               |         |     |                                                       | 20  | 11   |      | 25  | - 15 | ٠.   | 24  | 16      |      |        |
|                    | . ,                                      |                 |         |     |                                                       | 100 | 30   |      | 100 | 30   |      | 100 | 50      |      | ns     |
| tw(CLEAR)          | Width of Clear Pulse                     |                 |         |     |                                                       | 20  | 10   |      | 25  | 13   |      | 27  | 18      | -    |        |
|                    |                                          |                 |         |     | 4                                                     | 100 | 30   |      | 100 | 30   |      | 100 | 50      |      | ns     |
| t <sub>SETUP</sub> | Setup Time                               |                 |         |     | · ·                                                   | 15  | 9    |      | 15  | 9    | ,    | 24  | 16      |      |        |
|                    |                                          | J, D Inputs     |         |     |                                                       | 80  | 40   |      | 110 | 55   |      | 100 | 55      |      | ns     |
|                    |                                          |                 |         |     |                                                       |     | ·N/A |      | 30  | 20   |      |     | N/A     |      |        |
|                    | A 10 10 10 10 10 10 10 10 10 10 10 10 10 | Mode Inputs     |         |     |                                                       |     | N/A  |      | 150 | 85   | . :  |     | N/A     | ;    | ns     |
| \$                 |                                          |                 |         | . , |                                                       |     | N/A  |      | 20  | 13   |      |     | N/A     | ,    |        |
|                    | ; •                                      | K Inputs        |         |     |                                                       |     | N/A  |      | 150 | 80   |      |     | N/A     | 77,  | ns     |
|                    | to the second                            | G1 or G2 Inputs | *       |     |                                                       | 30  | 21   |      | - : | N/A  |      | 30  | 21      | 7    |        |
|                    |                                          | G or GZ inputs  |         |     |                                                       | 120 | 60   |      |     | N/A  |      | 150 | 85      | 1.1  | ns     |
| tнош               | Hold Time                                | A.I.            |         |     |                                                       | 0   |      |      | . 0 |      |      | 0   |         |      |        |
|                    |                                          | All             |         |     |                                                       | 0   |      |      | 0   |      |      | 0   |         |      | ns     |

CONDITIONS

FROM TO

# **Truth Tables**

11, L11

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

PARAMETER

| D | G1  | G2 | CLR | Q <sub>n+1</sub> | $\overline{Q}_{n+1}$      |
|---|-----|----|-----|------------------|---------------------------|
| L | L   | L  | L   | L                | Н                         |
| н | L   | L  | L   | н                | L                         |
| Х | H-1 | ×  | L   | Q <sub>n</sub>   | $\overline{Q}_n$          |
| х | х   | н  | L   | Q <sub>n</sub>   | $\overline{\mathbf{Q}}_n$ |
| Х | ×   | ×  | Н   | L                | н*                        |

12, L12

| J  | к | М | CLEAR | Q <sub>n+1</sub> |
|----|---|---|-------|------------------|
| L  | L | Н | L ·   | Q <sub>n</sub>   |
| н  | L | Н | aL i  | H.               |
| Li | н | Н | L     | L                |
| н  | н | н | L     | $\overline{Q}_n$ |
| Х  | х | L | L     | D                |
| X  | х | × | Н     | L*               |

13, L13

DM75/85

11, L11

DM75/85

12, L12

DM76/86

13, L13

| D | G | CLR | Q <sub>n+1</sub> |
|---|---|-----|------------------|
| Н | L | L   | Н                |
| L | L | L   | L                |
| х | Н | L.  | Qn               |
| X | × | Н   | L*               |

\*Asynchronous Transition X = Don't Care



# DM75/DM8511,L11,12,L12,DM76/DM8613,L13

### Logic Diagrams



12, L12



13, L13





### Modulo-N Dividers

### **General Description**

Although extremely versatile in a number of applications, the primary uses of these circuits are in two areas:

#### 1. MODULO-N DIVIDER

A single DM7520/DM8520 can be programmed without external components to divide by any number from 2 to 15. Cascading of these dividers will provide division by any number from 2 to very large numbers.

### 2. SHIFT REGISTER

Since the basic organization of the logic is that of a

serial shift register, the device may be used where four-bit parallel-in-serial-out shifting is required.

(continued)

#### **Features**

- Fully programmable divider—any number from 2 to ∞
- Also functions as a four-bit parallel shift register
- Typical propagation delay

36 ns

Typical power dissipation

250 mW

#### Connection Diagram



7520(J), (W); 8520(J), (N), (W)

# Truth Table

#### TABLE FOR DIVISION BY N

|   |    | T   |    |  |    |    |     |
|---|----|-----|----|--|----|----|-----|
| S | ET | Til | NG |  |    | 1. | ÷BY |
| P | 2  | ļ   | 2  |  | P4 | L  |     |
| ł | Н  |     | Н  |  | L  | Γ  | 2   |
| į | Н  |     | L  |  | L  | ĺ  | 3   |
| 1 | L  |     | L  |  | L  | 1  | 4   |
| i | L. |     | L  |  | Н  | 1  | 5   |
| 1 | L  |     | H. |  | L  |    | 6   |
| ŧ | Н  |     | L  |  | L  |    | 7   |
| 1 | L  |     | L  |  | Н  |    | 8   |
| 1 | L  |     | H, |  | Н  |    | 9   |
| 1 | H  |     | Н  |  | L  |    | 10  |
| į | Н  |     | L  |  | Н  |    | 11  |
| 1 | L  |     | Н  |  | L  |    | 12  |
| 1 | Н  |     | L  |  | Н  |    | 13  |
| ı | L  |     | Н  |  | Н  |    | 14  |
| i | Н  |     | Н  |  | Н  |    | 15  |

#### Logic Diagram





#### General Description (Continued)

#### THEORY OF OPERATION

The basic operation of the DM7520/DM8520 is derived from the fact that when several outputs of a shift register are EXCLUSIVE OR'ed and the result fed back to the register's input, a unique progression of stable states results on the outputs of the flip-flops. Depending upon which outputs are EXCLUSIVE OR'ed, the number of different states can be varied. Even if optimum gating is provided the most states which can be obtained is 2<sup>n</sup>- 1, where n is equal to the number of flip-flops in the register. The all-zero state is precluded; and, therefore, the maximum number of states is always one less than the theoretical maximum number. Since the DM7520/ DM8520 contains four flip-flops, its maximum number of states is 15. Because the 1111 state occurs only once during a 15-state sequence this state is detected, and its output becomes the output of the divider.

To obtain frequency division by numbers other than the maximum, it is necessary to cause the register to "jump" immediately from its initial 1111 to the state which it would normally reach in 16-m (m = desired frequency division) pulses. For example, to divide by eleven it would be necessary to jump to the fifth state and then simply allow the register to normally progress forward to its original state. The output of the divider is also used as a control pulse. Since the 1111 state is detected and since the "jump-state" information is of interest only at the time that this state is reached, the OUTPUT is used to gate the parallel inputs, through the SERIAL/PARALLEL input, so that it recognizes this "jump-state" information only at this time. Subsequently as the states change, the parallel input information is locked from the divider.

Should the divider ever be accidentally set in the forbidden 0000 state, an output is provided to detect this state. If this output is in turn fed into the EXTERNAL EX-OR input, a 1 will be forced into the register at the next clock pulse, thus clearing the unallowed state.

A PRESET input is provided which when taken to a logical "1" level overrides all other inputs and sets the register to the 1111 state.

To summarize, the following connections should be made for operation of a single DM7520/DM8520.

Ex-Or Output to Serial Input 0000 Detect to External Ex-Or Input Output to Serial/Parallel Input Preset to Ground Ex-Or Control to Ground

To divide by numbers greater than 15, it is necessary to cascade DM7520/DM8520's. Both the OUTPUT and the 0000 DETECT output are capable of being connected directly to other like outputs, thus providing the "WIRED-OR" configuration. These outputs should be connected to the similar outputs on other dividers for proper operation. All SERIAL/PARALLEL inputs should be connected to the common OUTPUT.

Figure 1 indicates connections for 2 dividers or a maximum frequency division of 255.

To divide by numbers between 16 and 255, the table in  $Figure\ 2$  will apply.



FIGURE 1. CONNECTION FOR 2 DIVIDERS FOR MAXIMUM FREQUENCY DIVISION OF 255



| THEORY | OF OPERA: | TION (Continued) |
|--------|-----------|------------------|
|        |           |                  |

| THEORY OF OPERATION (Continued) |        |        |        |          |         |        |             |            |    |          |        |           |          |        |        |        |            |          |         |        |        |             |        |         |         |            |
|---------------------------------|--------|--------|--------|----------|---------|--------|-------------|------------|----|----------|--------|-----------|----------|--------|--------|--------|------------|----------|---------|--------|--------|-------------|--------|---------|---------|------------|
|                                 |        |        | SET    | TING     |         |        |             |            | ·  |          |        |           | TING     |        |        |        | т          | <u> </u> |         |        | SET    | TING        |        |         |         |            |
| <u> </u>                        | DIVIE  |        |        | ļ        | DIVIE   |        |             | BY         |    | DIVID    |        |           | -        | DIVIE  | DER 2  |        | BY         |          | DÍVID   | ER 1   |        |             | DIVID  | DER 2   |         | BY         |
| P1                              | P2     | P3     | P4     | P1       | P2      | Р3     | P4          |            | P1 | P2       | P3     | P4        | P1       | P2     | P3     | P4     | ļ .        | P1       | P2      | :P3    | P4     | P1          | P2     | Р3      | P4      |            |
| L                               | Н      | Н      | Η "    | Н        | Н       | . н    | Н           | 255        | Н  | Ĺ        | L      | L         | н        | L      | L      | . H    | 195        | L        | L       | Н      | Н      | Н           | L      | L       | Н       | 135        |
| Н .                             | L      | H      | Н      | H        | Н       | Н      | н           | 254        | H  | Н        | L      | L         | L        | Н      | L.     | L      | 194        | н        | L       | L      | Н      | Н           | Н      | L       | L       | 134        |
| L                               | Н      | L      | Н      | Н        | н       | · H    | Н           | 253        | Н. | Н        | Н      | L         | <u> </u> | L      | Н      | L      | 193        | L        | Н       | L.     | L      | H           | Н      | н       | L       | 133        |
| Н                               | L      | H<br>L | L<br>H | H        | Н       | H      | Н           | 252<br>251 | L  | , н      | Н      | H         | L        | L      | L<br>L | H<br>L | 192<br>191 | Н        | L       | Н      | H      | L           | Н      | н       | . Н     | 132        |
| "                               | Н      | L      | L      | Н        | H       | Н      | н           | 250        | L  | L        | H<br>L | Н         | Н.       | L<br>H | L      | L      | 190        | L        | H       | L<br>H | L      | H           | L<br>L | H<br>L  | Н.<br>Н | 131<br>130 |
| _                               | L      | н      | L      | L        | Н       | L      | н           | 249        | Н  | L        | L      | L         | н        | н      | Н      | L      | 189        | Н        | L       | н      | Н      | L           | Н      | · L     | L       | 129        |
| L                               | L      | L      | Н      | L        | L       | н      | L           | 248        | L  | Н        | L      | L         | L        | Н      | Ĥ      | Н      | 188        | L        | н       | L      | н      | Н           | L      | н       | L       | 128        |
| · L                             | L      | L      | L      | н        | L       | L      | н           | -247       | н  | E ·      | Н      | L         | L        | L      | н      | Н      | 187        | н        | L       | Н      | L      | н           | н      | L       | н       | 127        |
| L                               | , L    | L      | L      | L        | Н       | L      | L           | 246        | Н  | Н        | L/     | Ĥ         | L        | L      | L      | н      | 186        | L        | Н       | L      | Н      | L           | Н      | н       | L       | 126        |
| L                               | L      | L      | - L    | L        | L       | Н      | ۲           | 245        | L  | Н        | Н      | . L       | Н        | L      | L      | ,L     | 185        | L        | L       | Н      | L      | Н.          | L      | Н       | Н       | 125        |
| L                               | L      | L      | L      | L        | L       | L      | • Н         | 244        | L, | L        | Н      | Н         | L        | Н      | L      | L      | 184        | Н        | L       | . L    | Н      | L           | Н      | L       | Н       | 124        |
| Н                               | L      | L      | L      | L        | L       | L      | L           | 243        | Н  | L        | L      | Н         | Н        | L      | H      | L      | 183        | L        | Н       | L      | Ļ      | H           | L      | Н       | L       | 123        |
| H                               | Н      | L<br>H | L      | L.       | L       | L      | L           | 242        | L  | ⁻ H<br>L | · L    | L<br>L    | H        | H      | L      | H      | 182<br>181 | Н        | L<br>H  | H<br>L | L      | L           | . H    | L<br>H  | H<br>L  | 122<br>121 |
| L                               | н      | н      | L      | L        | L<br>L  | L      | L           | 241<br>240 | Н  | L        | L      | Н         | L        | L      | н      | Н      | 180        | Н        | н       | Н      | L      | H           | L      | L       | Н       | 120        |
| Н                               | L      | н      | Н      | Н        | L       | L      | . L         | 239        | L  | Н        | L      | L         | H        | L      | L      | Н      | 179        | Ľ        | н       | н      | Н      | <u> </u>    | Н      | L       | L       | 119        |
| н                               | Н      | L      | н      | н        | н       | L      | L           | 238        | L  | L        | Н      | L         | L        | Н      | L      | L      | 178        | Н        | L       | Н      | н      | Н           | L      | Н       | L       | 118        |
| L                               | н      | Н      | L      | Н        | Н       | Н      | L           | 237        | н  | L        | L.     | Н         | L        | L      | Н      | L      | 177        | Н        | Н       | L,     | Н      | Н           | Н      | L       | Н       | 117        |
| L                               | L      | Н      | Н      | L        | Н       | . Н    | Н           | - 236      | Н  | Н        | L      | L         | Н        | L      | L      | H      | 176        | Н        | н       | Н      | L      | н           | н      | н       | L       | 116        |
| L                               | L      | L      | Н      | Н        | Ľ.      | Н      | Н           | 235        | H  | Н        | Н      | L         | L        | Н      | L      | L      | 175        | Н        | Н       | Н      | Н      | L           | Н      | Η.      | Н       | 115        |
| L                               | L      | L      | L      | н        | Н       | L      | Н           | 234        | L  | Н        | Н      | Н         | L        | L      | Н      | L      | 174        | Н        | Н       | Н      | Н      | Н           | . L    | Н       | н       | 114        |
| L                               | L      | L      | L      | L        | Н       | Н      | L           | 233        | Н  | L,       | Н      | Н         | н        | L      | L      | Н      | 173        | L        | Н       | Н      | Н      | Н           | H.     | L       | Н       | 113        |
| L                               | L      | L      | L      | L        | L       | Н .    | Н           | 232        | L  | H        | L      | H         | Н        | Н      | L      | L<br>: | 172        | Н        | L       | H      | н      | Н           | Н      | Н       | L       | 112        |
| Н                               | L      | L      | L      | L        | L       | L      | Н           | 231        | н  | L        | Н.     | L         | Н .      | Н      | Н      | L      | 171        | Н        | Н       | L      | H      | H           | Н      | H       | H       | 111        |
| L                               | H      | H      | L      | L        | L.<br>L | L<br>L | L           | 230        | ·L | H ·      | L<br>H | ,H<br>L   | H        | Н      | Н      | H      | 170        | H        | H<br>H  | H      | H.     | L           | H      | .Н<br>Н | H       | 110<br>109 |
| н                               | L      | , L    | Н      | L        | L       | L      | L           | 228        | Н  | L        | Н      | Н         | L        | L<br>H | Ĺ      | Н      | 168        | L        | L       | Н      | Н      | Н           | L      | Н       | Н       | 108        |
| Н                               | Н      | L      | L      | Н        | L       | L      | L           | 227        | н  | Н        | L      | н         | Н        | Ĺ      | н      | L      | 167        | Н        | L       | L      | Н      | Н           | Н      | L       | н       | 107        |
| L                               | Н      | Н,     | L      | L        | Н       | L      | L           | 226        | L  | Н        | н      | L         | Н        | Н      | L      | Н      | 166        | н        | Н       | L      | L.     | Н           | н      | н       | L       | 106        |
| Н                               | L      | Н      | Н      | L        | L       | Н      | L           | 225        | Н  | L        | Н      | Н         | L        | Н      | Н      | L      | 165        | L        | Н       | Н      | Ļ      | L           | Н      | H       | Н       | 105        |
| , r                             | Н      | Ŀ      | Н      | Н        | L       | L      | н           | 224        | L  | Н        | L      | Н         | н        | L      | Н      | Н      | 164        | L        | L       | H      | Н      | L           | L      | Н       | Н       | 104        |
| L                               | L      | Н      | L      | н        | Н       | L      | L           | 223        | L  | L        | Н      | L         | н        | H      | L      | Н      | 163        | L        | L       | L      | Н      | н           | L      | L       | н       | 103        |
| L                               | L      | L      | Н      | L        | Н       | Н      | L           | 222        | Н  | . L      | L      | Н         | L        | Н      | Ĥ      | L      | 162        | L        | L       | L      | L      | н           | Н      | Ľ       | Ļ       | 102        |
| L                               | L      | L      | L      | H        | L       | н      | Н           | 221        | Н  | Н        | L      | L         | Н        | L.     | H      | Н      | 161        | Н        | L       | L .    | L      | L           | н.     | н       | L       | 101        |
| H                               | L      | L      | L      | L        | н       | L      | Η.          | 220        | Н  | Н        | Н      | L         |          | н      | L      | Н      | 160        | Н        | Н       | L      | L      | L           | L      | H       | Н       | 100        |
| . п                             | L      | L<br>L | L<br>L | L.       | L<br>L  | H      | L           | 219<br>218 | H  | H<br>H   | H      | H         | H        | L<br>L | H<br>L | H      | 159<br>158 | L        | H.<br>L | Н      | L<br>H | L           | L<br>L | L       | H       | - 99<br>98 |
| L                               | н      | Η.     | L      | L.       | L       | L      | L           | 217        | Н  | L        | Н      | Н         | H        | Н      | L      | L      | 157        | Н        | L       | L      | Н      | Н           | L      | L       | L       | 97         |
| н                               | L      | н      | Н      | Ī        | L       | L      | L           | 216        | н  | н        | L      | н         | н        | н      | Н      | -L     | 156        | L        | Н       | L      | L      | Н           | Н      | Ĺ       | L       | 96         |
| L                               | Н      | L      | Н      | Н        | L       | L      | L           | 215        | L  | Н        | Н      | L         | Н.       | Н      | Н      | Н      | 155        | Н        | L       | Н      | L      | L           | Н      | Н       | L       | 95         |
| н                               | L      | Н      | , L    | Н        | н       | L      | L           | 214        | н  | L.       | Н      | н         | L        | Н      | Н      | , н    | 154        | L        | Н       | L      | Ĥ      | L           | L      | н       | н       | 94         |
| Н                               | н      | L      | Н      | L        | Н       | Ĥ      | L           | 213        | H. | Н        | , L    | Н         | Н        | L      | Н      | Н      | 153        | ٠H       | L       | Н      | L      | Н           | L      | L       | н       | 93         |
| Н                               | Н      | Н      | L      | Н        | L       | H-     | Н           | 212        | Н  | Н        | Н      | L         | Н        | Н      | L      | Н      | 152        | L        | Н       | L      | Н      | L           | Н      | L       | L       | 92         |
| L                               | H      | н      | Н      | L        | Н.      | Ĺ      | Н.          | 211        | L  | Н        | Н      | Η :       | L        | H      | Н      | L      | 151        | L        | L       | Н .    | L      | H           | L      | H       | L       | 91         |
| L                               | L      | Н      | Н      | H        | L       | Н      | L           | 210        | Н  | L        | H      | Н         | Н        | L      | Н      | Н      | 150        | L        | L       | L      | Н      | L           | Н      | L       | H       | 90         |
| L                               | Ĺ      | L.     | H      | H        | H       | L<br>H | Н           | 209        | L  | Н        | L<br>H | Н         | H        | H      | L<br>H | H      | 149        | Н        | L<br>H  | L      | L      | Н           | L<br>H | H       | L<br>H  | 89<br>88   |
| Н                               | L      | L      | L.     | [        | Н       | Н      | Н           | 207        | L  | L        | L      | Н         | L        | H      | H      | Н      | 147        | Н        | L       | Н      | L      | L           | L      | Н       | L       | 87 .       |
| L                               | н      | L      | L      | L        | Ľ       | H      | н           | 206        | Н  | L        | L      | L         | Н        | L      | н      | Н      | 146        | L        | Н       | L.     | н      | L           | L      | Ľ       | Н       | 86         |
| Н                               | ,L     | Н      | L      | L        | L       | L.     | H           | 205        | Н  | Н        | L      | <u></u> _ | L        | Н      | L      | Н      | 145        | Н        | L       | Н      | Ŀ      | Н           | L      | L       | L       | 85         |
| н                               | Н      | L      | н      | L        | Ŀ       | L      | L           | 204        | L  | Н        | Н      | L         | L        | L      | Н      | L      | 144        | . н      | н       | L      | Н      | L           | Н      | L       | L       | 84         |
| н                               | Н      | Н      | L      | н        | ٠.٢     | L      | L           | 203        | Н  | L        | Н      | Н         | L        | L      | L      | Н      | 143        | н        | Н       | Н      | L      | н           | L      | Н       | L       | 83         |
| н                               | Н      | Н      | Н      | L        | Н       | L      | L           | 202        | н  | Н        | L      | Н :       | H        | L      | L,     | L      | 142        | н :      | Н       | Н      | Н      | L           | H      | L       | Н       | 82         |
| L                               | Н      | ·H     | Н      | н        | Ŀ       | Н      | L           | 201        | L  | . Н      | Н      | L         | Н        | Н      | L      | L      | 141        | Н        | Н       | Н      | Ή      | Н           | L      | Н       | L       | 81         |
| L                               | L      | H      | Н      | Н        | Н       | L      | Н           | 200        | L  | L        | H      | Н         | L        | H      | H      | L      | 140        | Н        | H       | Н      | Н      | Н           | Н      | L       | Н       | 80         |
| Н                               | L      | L      | Н      | H.       | Н       | Н      | , L         | 199        | н  | L        | L      | Н         | H        | L      | Н      | Н      | 139        | L.       | н       | Н      | Н      | Н           | н      | Н       | L       | 79         |
| L                               | н      | L      | L      | H        | Н       | Н      | Н           | 198        | Н  | Н        | L      | L         | H        | Н      | L      | Н      | 138        | L        | L       | H      | Н      | H           | Н      | Н       | Н       | 78         |
| , L                             | L<br>L | H      | L<br>H | L        | H<br>L' | H      | H           | 197<br>196 | H  | H        | H      | H         | L        | H<br>L | H      | L<br>H | 137        | Н        | H       | L      | H      | H           | H<br>H | н<br>н' | H       | 77<br>76   |
|                                 |        |        |        | <u> </u> |         |        |             |            |    |          |        |           |          |        |        |        |            |          |         |        |        | <del></del> |        |         | L .     | /0         |
|                                 |        | FI     | GUR    | E 2. I   | DM75    | 20/DI  | <b>1852</b> | 0 SHIF     | TF | REGIS    | TER    | DIVI      | DER      | INPU'  | T COL  | DING   | TAB        | LE (2    | PACI    | KAGE   | COL    | MBIN        | IATIO  | NS)     |         |            |



### THEORY OF OPERATION (Continued)

|     |            |          | SET      | TING |       |       |    |     |    |      |       | SET | TING |       |          |          |    |    |       |      | SET | TING     |      |       |    |      |
|-----|------------|----------|----------|------|-------|-------|----|-----|----|------|-------|-----|------|-------|----------|----------|----|----|-------|------|-----|----------|------|-------|----|------|
|     | DIVI       | DER 1    |          |      | DIVID | DER 2 |    | BY. |    | DIVI | DER 1 |     |      | DIVIE | DER 2    |          | вч |    | DIVIE | ER 1 |     |          | DIVI | DER 2 |    | BY   |
| P1  | P2         | Р3       | P4       | P1   | P2    | Р3    | P4 |     | P1 | P2   | Р3    | P4  | P1   | P2    | Р3       | P4       |    | P1 | P2    | Р3   | Р4  | P1       | P2   | Р3    | P4 |      |
| Н   | Н          | н        | L        | L    | Н     | Н     | Н  | 75  | L  | L    | Н     | H   | Н    | Н     | L        | L        | 50 | L  | Н     | Н    | L   | L        | Н    | Н     | L  | 25   |
| н   | Н          | н        | Н        | L    | L     | Н     | н  | 74  | L  | L    | L     | Н   | н    | Н     | Н        | L        | 49 | н  | L     | Н    | Н   | L        | Ł    | Н     | Н  | 24   |
| н   | Н          | Н        | Н        | Н    | L     | L     | н  | 73  | н  | L    | L     | L   | н    | Н     | Н        | Н        | 48 | Ή  | н     | L    | Н   | Н        | L    | L     | Н  | 23   |
| L.  | Н          | Н        | Н        | Н    | Н     | Ł     | L  | 72  | н  | Н    | L     | L   | L    | Н     | Н        | Н        | 47 | н  | Н     | Н    | L.  | н        | Н    | L     | L  | 22 . |
| L   | L          | Н        | Н        | н    | Н     | Н     | L  | 71  | L  | Н    | Н     | L   | L    | L     | Ĥ        | Н        | 46 | н  | Н     | Н    | Н   | L        | Н    | Н     | L  | 21   |
| L   | L          | L        | Н        | Н    | Н     | Н     | Н  | 70  | L  | L    | Н     | Н   | L    | L     | L        | Н        | 45 | L  | Н     | Н    | Н   | н        | L    | Н     | Н  | 20   |
| L   | L          | L        | L        | н    | Н     | Н     | Н  | 69  | L  | L    | L     | Н   | н    | L     | L        | L        | 44 | н  | L     | Н    | Н   | Н        | Н    | L.    | Н  | 19   |
| L   | L          | L        | L        | L    | Н     | Н     | Н  | 68  | Н  | L    | L     | L   | н    | Н     | L        | L        | 43 | L  | Н     | L    | Н   | Н        | Н    | Н     | L  | 18   |
| Н   | L          | L        | L        | L    | L     | Н     | Н  | 67  | L  | Н    | L     | L   | L    | Н     | Н        | L        | 42 | Н  | L     | Н    | L   | н        | н    | Н     | Н  | 17   |
| L   | Н          | L        | L        | L    | L     | L     | Н  | 66  | L  | L    | Н     | L   | L    | L.    | Н        | Н        | 41 | L  | Н     | L    | Н   | L        | Н    | Н     | Н  | 16   |
| H   | L          | Н        | L        | L    | L     | L     | L  | 65  | L  | L    | L     | Н   | Ĺ    | L     | L        | Н        | 40 | Н  | L     | Н    | L   | Н        | L    | Н     | Н  | 15   |
| L   | Н          | L        | Н        | L    | L     | L     | L  | 64  | Н  | L    | L     | L   | Н    | L     | L        | L        | 39 | L  | Н     | L    | Н   | L        | Н    | L     | Н  | 14   |
| L   | L          | Н        | L        | Н    | L     | L     | L  | 63  | L  | Н    | Ļ     | L   | L    | Н     | L        | L        | 38 | н  | L     | Н    | L   | н        | L    | Н     | Ĺ  | 13   |
| L   | L          | L        | Н        | Ļ    | Н     | L     | L  | 62  | L  | L    | Н     | L   | L    | L     | Н        | L        | 37 | н  | Н     | L    | Н   | L        | Н    | L     | Н  | 12   |
| L   | L          | L        | Ļ        | Н    | L     | Н     | L  | 61  | Н  | Ļ    | L     | Н   | L    | , L   | , L      | H        | 36 | L  | Н     | Н    | L   | н        | L    | Н     | L  | 11   |
| Н.  | L          | L        | L        | L    | Н     | L     | Н  | 60  | L  | H    | L     | L   | Н    | L     | L        | L        | 35 | L  | L     | Н    | Н   | L        | Н    | L     | Н  | 10   |
| L   | Н          | L        | L        | L    | L     | Н     | L  | 59  | Н  | L    | Н     | L   | L    | Н     | L        | L        | 34 | L  | L     | L    | Н   | Н        | Ĺ    | Н     | L  | 9    |
| L   | L          | Н        | L        | L    | L     | L     | Н  | 58  | L  | Н    | L     | Н   | L    | L     | Н        | L        | 33 | Н  | L     | L    | L.  | H        | Н    | L     | Н  | 8    |
| L   | L          | L        | Н        | L    | L     | L     | L  | 57  | L  | L    | Н     | L   | Н    | L     | L        | Н        | 32 | Н  | Н     | L    | L   | L        | Н    | Н     | L  | 7    |
| L   | <u>L</u> _ | <u> </u> | <u> </u> | H    | L.    | L     | L  | 56  | Н  | L.   | L     | Н.  | L    | Н     | <u>L</u> | <u> </u> | 31 | Н  | Н     | Н    | L   | L        | L    | Н     | Н_ | 6    |
| Н   | L          | L        | L        | L    | H     | L     | L  | 55  | Н. | Н    | L     | L   | H    | L     | H        | L        | 30 | Н  | н     | H    | Н   | L        | L .  | L     | H  | 5    |
| н   | Н          | L        | L        |      | L.    | Н     | L  | 54  | L  | Н    | н     | L   |      | Н     | L        | Н.       | 29 | Н  | Н     | Н    | н   | Н        | L    | L     | L  | 4    |
| н   | н          | Н        | L        | ]    | L     | L     | Н. | 53  | L  | L    | Н.    | Н   | L    | L     | н.       | L        | 28 | Н  | Н     | Н    | Н   | Н.       | Н    | L     | L  | 3    |
| Н . | Н          | Н        | Н        |      | L     | L     | L  | 52  | н  | L    | L     | н.  | Н    | L     | L        | Н        | 27 | н  | Н     | Н    | н   | Н        | Н    | Н     | L  | 2    |
| . L | Н          | Н        | H        | Н    | L     | L     | L  | 51  | Н  | Н    | L     | L   | Н    | Н     | L_       | L        | 26 | L  |       |      |     | <u> </u> |      |       |    |      |

FIGURE 2. DM7520/DM8520 SHIFT REGISTER DIVIDER INPUT CODING TABLE (2 PACKAGE COMBINATIONS) (CONTINUED)

### Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

|                 |                                        |                                                                |                       | ĺ   | DM75   |              |     | DM85                                    |              |       |  |
|-----------------|----------------------------------------|----------------------------------------------------------------|-----------------------|-----|--------|--------------|-----|-----------------------------------------|--------------|-------|--|
|                 | PARAMETER                              | CONDITIO                                                       | NS ·                  |     | 20     |              |     | 20                                      |              | UNITS |  |
| . :             | ·                                      |                                                                |                       | MIN | TYP(1) | MAX          | MIN | TYP(1)                                  | MAX          | L     |  |
| VIH             | High Level Input Voltage               |                                                                |                       | 2   |        |              | 2   |                                         |              | V     |  |
| VIL             | Low Level Input Voltage                |                                                                |                       |     |        | 0.8          |     |                                         | 0.8          | V     |  |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                 |                       |     |        | -1.5         |     |                                         | -1.5         | V     |  |
| Іон .           | High Level Output Current              |                                                                |                       |     |        | -400         |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -400         | μΑ    |  |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -400$  | uΑ                    | 2.4 |        | ,            | 2.4 |                                         |              | V     |  |
| l <sub>OL</sub> | Low Level Output Current               |                                                                |                       |     | ,      | 16           |     | · · · · · · · · · · · · · · · · · · ·   | 16           | mA    |  |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 m.$ | A                     |     |        | 0.4          |     | ,                                       | 0.4          | V     |  |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>i</sub> = 5.5V                   |                       |     |        | 1            |     |                                         | 1            | mA    |  |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.4V                   | Ex-Or Input<br>Others |     |        | 80<br>40     |     |                                         | 80<br>40     | μΑ    |  |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                   | Ex-Or Input<br>Others |     |        | -3.2<br>-1.6 |     |                                         | -3.2<br>-1.6 | mA    |  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                       | L                     | -20 |        | -55          | -18 |                                         | -55          | mΑ    |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                          |                       |     | 50     | 75           |     | 50                                      | 75           | mA    |  |

#### Note

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.



Switching Characteristics V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |     | DM75/85 |     |       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|---------|-----|-------|
|      | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONDITIONS                          |     | 20      |     | UNITS |
| 1.0  | in the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control |                                     | MIN | TYP     | MAX | ]     |
| fMAX | Maximum Clock Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 15  | 20      |     | MHz   |
| tpHL | Propagation Delay Time, High-to-Low Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_L$ = 15 pF, $R_L$ = 400 $\Omega$ |     | . 38    | 55  | ns    |
| tpLH | Propagation Delay Time, Low-to-High Level Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |     | 35      | 50  | ns    |



# TRI-STATE 16K Read Only Memories

### **General Description**

The DM8531 is a 16,384-bit bipolar, mask-programmable ROM organized as 2048, 8-bit words. Eleven address inputs select the desired one-of-2048 words. All eleven address inputs and one of the two enable inputs have a latch feature. The latch function is controlled by the

strobe input. The two enable lines are used to either enable or disable the circuit. TRI-STATE outputs allow for expansion to greater numbers of words without sacrifice in speed, as would be the case with open-collector outputs.

### Connection Diagram



### **Truth Table**

|    | t  |    |    |    |    | t + 1                |
|----|----|----|----|----|----|----------------------|
| CE | ĒÑ | ST | ĈĒ | ÉN | ST | OUTPUTS              |
| ×  | ×  | х  | L  | L  | Н  | Read stored data     |
| ×  | X  | X  | н  | X  | Н  | Hi-Z                 |
| ×  | X  | Х  | х  | н  | Н  | Hi-Z                 |
| L  | X  | н  | x  | L  | L  | Read stored data for |
|    |    |    |    |    |    | address inputs at t  |
| Н  | X  | н  | х  | X  | L  | Hi-Z                 |
| ×  | X  | ×  | ×  | н  | L  | Hi-Z                 |

### Logic Diagram





|                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |      | DM85    |           |       |  |
|---------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|---------|-----------|-------|--|
| •                   | PARAMETER                                          | CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DITIONS                   |      | 31      |           | UNITS |  |
|                     |                                                    | e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l |                           | MIN  | TYP(1)  | MAX       |       |  |
| $V_{IH}$            | High Level Input Voltage                           | V <sub>CC</sub> = Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 2    |         |           | V     |  |
| VIL                 | Low Level Input Voltage                            | V <sub>CC</sub> = Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.71                     |      |         | 0.8       | V     |  |
| VI                  | Input Clamp Voltage                                | V <sub>CC</sub> = Min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>1</sub> = −12 mA   |      |         | -1.5      | ٧     |  |
| Іон                 | High Level Output Current                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |      |         | -400      | μΑ    |  |
| V <sub>OH</sub>     | High Level Output Voltage                          | V <sub>CC</sub> = Min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>OH</sub> = -400μA  | 2.4  | . `.    |           | ٧     |  |
| I <sub>OL</sub>     | Low Level Output Current                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |      |         | 6         | mA    |  |
| V <sub>OL</sub>     | Low Level Output Voltage                           | V <sub>CC</sub> = Min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>OL</sub> = 6 mA    |      | . (5) % | 0.45      | V V   |  |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)<br>Output Current | V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_O = 0.4V$ $V_O = 2.4V$ |      |         | -40<br>40 | μΑ    |  |
| 1,                  | Input Current at Maximum<br>Input Voltage          | V <sub>CC</sub> = Max,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>I</sub> = 5.5V     | r v  |         | 1         | mA    |  |
| I <sub>IH</sub>     | High Level Input Current                           | V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>1</sub> = 2.4V     |      |         | 40        | ΄ μΑ  |  |
| I <sub>IL</sub>     | Low Level Input Current                            | V <sub>CC</sub> = Max,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>1</sub> = 0.4V     |      |         | -0.8      | . mA  |  |
| los                 | Short Circuit Output Current                       | V <sub>CC</sub> = Max(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2)                        | -15+ |         | -50       | mA    |  |
| Icc                 | Supply Current                                     | V <sub>CC</sub> = Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |      | 115     | 160       | mA    |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) Tentative data.

|                  |                                                     |         |        |                        |     | DM85 |     |       |
|------------------|-----------------------------------------------------|---------|--------|------------------------|-----|------|-----|-------|
|                  | PARAMETER                                           | FROM    | то     | CONDITIONS             |     | 31   | `   | UNITS |
|                  |                                                     |         |        |                        | MIN | TYP  | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output |                        |     | 200  | 450 | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | C <sub>1</sub> = 50 pF |     | 150  | 450 | ns    |
| tzH              | Output Enable Time to High Level                    |         |        | R <sub>L</sub> = 600Ω  |     | 40   | 80  | ns    |
| tzL              | Output Enable Time to Low Level                     |         | •      |                        |     | 70   | 165 | ns    |
| tS               | Address, Chip Enable (CE) Set-Up Time               | . "     |        |                        | 30  | 10   | 9   | . ns  |
| t <sub>H</sub>   | Address, Chip Enable (CE) Hold Time                 |         |        | • • • •                | 30  | 10   | 7   | ns    |
| tHZ              | Output Disable Time from High Level                 |         | *      | C <sub>L</sub> = 5 pF  |     | 20   | 50  | ns    |
| tLZ              | Output Disable Time from Low Level                  |         | -      | R <sub>L</sub> = 600Ω  |     | 40   | 60  | ns    |
| t <sub>W</sub>   | Minimum Strobe Pulse Width                          |         |        | Ĺ                      | 40  | 20   |     | ns    |
| tsт              | Strobe Access Time                                  |         |        | . *                    |     | 250  | 450 | ns    |



# AC Test Circuit



### **Switching Time Waveforms**











# TRI-STATE Quad I/O Registers

# General Description

These circuits are four-bit storage registers having two terminals per bit, which may be used as either inputs or outputs while tied to their individual bus lines. Storage capability is also provided by means of positive-edge triggered flip-flops having a common clock and asynchronous clear. Each I/O terminal can be forced into the high-impedance state by applying a high logic level to its disable control. The four A outputs are tied together on one disable control, while the four B outputs are tied together on a separate disable control.

# **Features**

■ TRI-STATE outputs

■ Typical clock frequency

40 MHz

Typical propagation delay

24 ns

Typical power dissipation

400 mW

# Connection Diagram



7542(J), (W); 8542(J), (N), (W)

### Truth Table

### MODES OF OPERATION

| DIS 1 | DIS 2 | Ē1 | Ē2 | A (1-4)        | B (1-4)        | COMMENTS                                       |
|-------|-------|----|----|----------------|----------------|------------------------------------------------|
| L     | . н   | Н  | Ι  | Q              | Hi-Z           | Output data to Bus A                           |
| Н     | L     | Н  | Н  | Hi-Z           | Ω              | Output data to Bus B                           |
| L     | L     | н  | Ĥ  | Q              | Q              | Output data to both buses                      |
| н     | н     | Н. | н  | Hi-Z           | Hi-Z           | Store data with output in high impedance state |
| ×     | L     | L  | Н  | Data           | Q <sub>n</sub> | Enter data from Bus A                          |
| х     | н     | L  | Н  | Data           | Hi-Z           | Enter data from Bus_A                          |
| L     | ×     | Н  | L  | Q <sub>n</sub> | Data           | Enter data from Bus B                          |
| Н     | ×     | н  | L  | Hi-Z           | Data           | Enter data from Bus B                          |
| ×     | ×     | L  | L  | Data           | Data           | Enter data from both buses                     |
|       |       |    |    | Ì              |                | (logical "1" on either will                    |
|       |       |    | L  |                |                | dominate)                                      |

Clear = Logical "1," puts all outputs to L state.

X = Don't Care

Qn = Data After Clock Transition

# Logic Diagram





|                 |                                                 |                                                                                                |                           |     | DM75   |           |     | DM85   |          |       |
|-----------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|-----|--------|-----------|-----|--------|----------|-------|
|                 | PARAMETER                                       | CONDITION                                                                                      | IS                        |     | 42     |           |     | 42     |          | UNITS |
|                 |                                                 |                                                                                                |                           | MIN | TYP(1) | MAX       | MIN | TYP(1) | MAX      |       |
| V <sub>IH</sub> | High Level Input Voltage                        |                                                                                                |                           | 2   |        |           | 2   |        |          | ٧     |
| VIL             | Low Level Input Voltage                         |                                                                                                |                           |     |        | 0.8       |     |        | 0.8      | ٧     |
| V <sub>I</sub>  | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                 |                           |     |        | -1.5      |     |        | -1.5     | ٧     |
| Іон             | High Level Output Current                       |                                                                                                |                           |     |        | -2.0      |     |        | -5.2     | mA    |
| V <sub>OH</sub> | High Level Output Voltage                       | $V_{CC}$ = Min, $V_{IH}$ = 2V<br>$V_{IL}$ = 0.8V, $I_{OH}$ = Max                               | ,                         | 2.4 |        |           | 2.4 |        |          | V     |
| loL             | Low Level Output Current                        |                                                                                                |                           |     |        | 16        |     |        | 16       | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 mA | 4                         |     |        | 0.4       |     |        | 0.4      | ٧     |
| lo(off)         | Off State (High Impedance State) Output Current | $V_{CC} = Max, V_{IH} = 2V$<br>$V_{IL} = 0.8V$                                                 | $V_O = 0.4V$ $V_O = 2.4V$ |     |        | -40<br>40 |     |        | 40<br>40 | μΑ    |
| 1,              | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                   |                           |     |        | 1         |     |        | 1        | mA    |
| I <sub>IH</sub> | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                   |                           |     |        | 40        |     |        | 40       | μА    |
| l <sub>IL</sub> | Low Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                   |                           |     | 1.0    | 1.6       |     | -1.0   | -1.6     | mA    |
| los             | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                                       |                           | -25 |        | 70        | -25 |        | -70      | mA    |
| Icc             | Supply Current                                  | V <sub>CC</sub> = Max                                                                          |                           |     | 80     | 120       |     | 80     | 120      | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                       |                                            |                         |       |        |                                                |           | DM75/85     |     |       |
|-----------------------|--------------------------------------------|-------------------------|-------|--------|------------------------------------------------|-----------|-------------|-----|-------|
|                       | PARAMETER                                  |                         | FROM  | то     | CONDITIONS                                     |           | 42          |     | UNITS |
|                       |                                            |                         |       |        |                                                | MIN       | TYP         | MAX |       |
| f <sub>MAX</sub>      | Maximum Clock Fre                          | equency                 |       |        |                                                | 30        | 40          |     | MHz   |
| <sup>†</sup> PLH      | Propagation Delay 1<br>Low-to-High Level ( |                         | Clock | Output |                                                |           | 25          | 38  | ns    |
| <sup>†</sup> PHL .    | Propagation Delay 1<br>High-to-Low Level ( |                         | Clock | Output | C 50 - 5 D - 400()                             |           | 23          | 35  | ns    |
| t <sub>PHL</sub>      | Propagation Delay 1<br>High-to-Low Level ( |                         | Clear | Output | C <sub>L</sub> = 50 pF, R <sub>L</sub> = 400ડն |           | 24          | 36  | ns    |
| t <sub>ZH</sub>       | Output Enable Time<br>High Level           | e to                    |       | ,      |                                                |           | 20          | 30  | ns    |
| <sup>t</sup> ZL       | Output Enable Time<br>Low Level            | e to                    |       | •      |                                                |           | 17          | 25  | ns    |
| <sup>t</sup> HZ       | Output Disable Tim<br>High Level           | e from                  |       |        | $C_{L} = 5 \text{ pF}, R_{L} = 400\Omega$      |           | 6           | 15  | ns    |
| t <sub>LZ</sub>       | Output Disable Tim<br>Low Level            | e from                  |       |        | C[ - 3 pi , h[ - 40022                         |           | 15          | 25  | ns    |
| <sup>†</sup> W(CLOCK) | Clock Pulse Width                          |                         |       |        |                                                | 20        |             |     | ns    |
| tw(CLEAR)             | Clear Pulse Width                          |                         | ,     |        | ·                                              | 20        |             |     | ns    |
| <sup>t</sup> SETUP    | Enable Setup Time                          | High Level<br>Low Level |       |        | $C_L \approx 50 \text{ pF, } R_L = 400\Omega$  | 20<br>20  | 12<br>13    |     | ns    |
| <sup>t</sup> SETUP    | Data Setup Time                            | High Level              |       |        |                                                | 5.0<br>10 | 4.0<br>4.5  |     | ns    |
| <sup>t</sup> HOLD     | Data Hold Time                             | High Level              |       |        |                                                | 5.0       | -3.5<br>4.5 |     | ns    |



# TRI-STATE Quad Switch Debouncers

### **General Description**

These circuits are for use in front panels, and similar applications where contact bounce must be eliminated. Within the single package, these circuits do the job of four R-S latches plus pull-up resistors. A strobe is also available which permits sampling of the switch information at a predetermined time. TRI-STATE outputs are also provided for direct connections to the switch line bus.

### **Features**

- Replaces SN54279/74279
- Eliminates push-button noise
- Allows clocked devices to be operated from switches
- Maximum power dissipation

250 mW

- Bus-line connectable
- TRI-STATE outputs
- Typical propagation delay

18 ns

# **Connection Diagram**



# Truth Table

| A1 | A2 | TRI-STATE<br>ENABLE | STROBE | Q <sub>A(t)</sub>   |
|----|----|---------------------|--------|---------------------|
| X  | Х  | Н                   | Х      | Hi-Z                |
| X  | ×  | Ł                   | Ŀ      | Q <sub>A(t-1)</sub> |
| L  | L  | L                   | `٦_    | Indeterminate       |
| L  | н  | L                   | H-     | L                   |
| н  | L  | L                   | н      | Н                   |
| ¹H | Н  | L                   | н      | Q <sub>A(t)</sub>   |

### Logic Diagram





|                     | PARAMETER                                       | CONDITIO                                                                                      | NS                                             | <u> </u> | DM75                          |           |     | DM85   |           | UNITS  |
|---------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|----------|-------------------------------|-----------|-----|--------|-----------|--------|
|                     | TOTOWETEN                                       | Johns                                                                                         |                                                | MIN      | TYP(1)                        | MAX       | MIN | TYP(1) | MAX       | 011110 |
| VIH                 | High Level Input Voltage                        |                                                                                               | ···                                            | 2 ·      | ····························· |           | 2   |        |           | V      |
| VIL                 | Low Level Input Voltage                         |                                                                                               |                                                |          |                               | 0.8       |     |        | 0.8       | V      |
| V <sub>I</sub>      | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                |                                                |          |                               | -1.5      |     |        | -1.5      | V      |
| Іон                 | High Level Output Current                       |                                                                                               |                                                |          |                               | -2.0      |     |        | -5.2      | mA     |
| V <sub>OH</sub>     | High Level Output Voltage                       | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max  |                                                | 2.4      |                               |           | 2.4 |        | ,         | V      |
| loL                 | Low Level Output Current                        | 1                                                                                             |                                                |          |                               | 16        |     |        | 16        | mA     |
| Vol                 | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 m | A                                              |          |                               | 0.4       |     |        | 0.4       | V      |
| l <sub>O(OFF)</sub> | Off State (High Impedance State) Output Current | $V_{CC} = Max, V_{IH} = 2V$<br>$V_{IL} = 0.8V$                                                | V <sub>O</sub> = 0.4V<br>V <sub>O</sub> = 2.4V | ļ ,      |                               | -40<br>40 |     |        | -40<br>40 | μΑ     |
| 1 <sub>1</sub>      | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                  |                                                |          |                               | 1         |     |        | 1         | mA     |
| I <sub>IH</sub>     | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                  |                                                |          |                               | 40        |     |        | 40        | μΑ     |
| 1 <sub>IL</sub>     | Low Level Input Current                         | V = M== V = 0.4V                                                                              | Strobe/Enable                                  |          |                               | -1.6      |     |        | -1.6      |        |
|                     | ,                                               | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                  | Data                                           |          |                               | -2.5      |     |        | -2.5      | mA     |
| los                 | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                                      |                                                | -18      | -30                           | -55       | -18 | -30    | 55        | mA     |
| Icc                 | Supply Current                                  | V <sub>CC</sub> = Max                                                                         |                                                |          |                               | 50        |     |        | 50        | mA     |

### Notes

(1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.

(2) Not more than one output should be shorted at a time.

|                  |                                                     |      |        | *                                            |       | DM75/85 |     |           |
|------------------|-----------------------------------------------------|------|--------|----------------------------------------------|-------|---------|-----|-----------|
|                  | PARAMETER                                           | FROM | то     | CONDITIONS                                   |       | . 44    |     |           |
|                  |                                                     |      |        |                                              | MIN · | TYP     | MAX |           |
| tрLН             | Propagation Delay Time,<br>Low-to-High Level Output | Data | Output |                                              |       | 20      | 36  | ns        |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Data | Output | $C_L = 50 \text{ pF, R}_L = 400\Omega$       |       | 17      | 30  | . ,<br>ns |
| <sup>t</sup> ZH  | Output Enable Time to<br>High Level                 |      |        | GE = 30 pr , NE = 40032                      |       | 15      | 25  | ns        |
| <sup>t</sup> ZL  | Output Enable Time to<br>Low Level                  |      |        | ,                                            |       | 12      | 24  | ns        |
| tHZ              | Output Disable Time from<br>High Level              | ].   |        | C = F = F D = 4000                           |       | 5       | 10  | ns        |
| t <sub>LZ</sub>  | Output Disable Time from<br>Low Level               | \ \  |        | C <sub>L</sub> = 5 pF, R <sub>L</sub> = 400Ω |       | 10      | 20  | ns        |



# TRI-STATE 8-Bit Universal I/O Shift Registers

# **General Description**

These circuits are TRI-STATE, 8-bit, edge-triggered, universal shift registers which are capable of operating in any of the following modes: shift left, shift right, parallel load, or inhibit. Since the clock is edge-triggered, the control lines which determine the mode of operation are completely independent of the logic level applied to the clock. Designed for bus-oriented systems, these circuits have their TRI-STATE inputs and outputs on the same pins.

# **Features**

- Positive-edge triggered clock
- "Do nothing" state without gating the clock
- Both parallel and serial data lines are TRI-STATE
- High impedance state does not impede shift mode with parallel outputs

# **Connection Diagram**



7546(J), (W); 8546(J), (N), (W)

# Truth Table

| OD | D C1 0 |     | MODE OF<br>OPERATION | STATE OF<br>PARALLEL I/O |                    | TE OF<br>AL I/O    |
|----|--------|-----|----------------------|--------------------------|--------------------|--------------------|
|    |        |     | OPERATION            | PARALLEL I/O             | RŠI/LSO            | LSI/RSO            |
| L  | Ξ      | Н   | Inhibit              | Q <sub>OUT</sub>         | Hi-Z*              | Hi-Z*              |
| н  | H      | н   | Inhibit              | Hi-Z*                    | Hi-Z*              | Hi-Z*              |
| x  | н      | L   | Parallel Load        | Data In                  | Hi-Z*              | Hi-Z*              |
| L  | L      | н   | Right Shift          | Q <sub>OUT</sub>         | Data In            | Q <sub>OUT 8</sub> |
| н  | L      | н   | Right Shift          | Hi-Z*                    | Data In            | Q <sub>OUT 8</sub> |
| L  | L      | . L | Left Shift           | Q <sub>OUT</sub>         | Q <sub>OUT 1</sub> | Data In            |
| Н  | L      | L   | Left Shift           | Hi-Z*                    | Q <sub>OUT 1</sub> | Data In            |

OD = Output Disable (C1, C2 = Mode Controls)

\*Both Input and Output of the I/O pin are in the high impedance state.

# Logic Diagram





|                     |                                        |                                                                                               |                                         |     | DM75                                  |      |     | DM85   |      | -     |
|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|-----|---------------------------------------|------|-----|--------|------|-------|
|                     | PARAMETER                              | CONDITIO                                                                                      | NS                                      |     | 46                                    | `    |     | 46     |      | UNITS |
|                     |                                        |                                                                                               |                                         | MIN | TYP(1)                                | MAX  | MIN | TYP(1) | MAX  |       |
| VIH                 | High Level Input Voltage               |                                                                                               |                                         | 2   |                                       |      | 2   |        |      | V     |
| VIL                 | Low Level Input Voltage                |                                                                                               |                                         |     |                                       | 0.8  |     |        | 0.8  | V     |
| V <sub>I</sub>      | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                | \                                       |     |                                       | -1.5 |     |        | -1.5 | V     |
| ГОН                 | High Level Output Current              |                                                                                               |                                         |     |                                       | -2.0 |     |        | -5.2 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max  |                                         | 2.4 |                                       |      | 2.4 |        |      | V     |
| loL                 | Low Level Output Current               |                                                                                               |                                         |     |                                       | 16   |     |        | 16   | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 m | Α                                       |     |                                       | 0.4  |     |        | 0.4  | V     |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)       | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                   | V <sub>O</sub> = 0.4V                   |     | indexequent acceptable and yellowed M | -40  |     |        | -40  |       |
|                     | Output Current                         | V <sub>IL</sub> = 0.8V                                                                        | V <sub>O</sub> = 2.4V                   |     |                                       | 40   |     |        | 40   | μΑ    |
| 11                  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                  |                                         |     |                                       | 1    |     |        | 1    | mA    |
| I <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                  | C2 Input                                |     |                                       | 80   |     |        | 80   |       |
|                     | •                                      | V <sub>CC</sub> - Wax, V <sub>1</sub> - 2.4V                                                  | Others                                  | Ι . |                                       | 40   |     |        | 40   | μΑ    |
| IIL                 | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                  | C2 Input                                |     |                                       | -3.2 |     |        | -3.2 |       |
|                     | <u> </u>                               | VCC = Wax, V1 = 0.4V                                                                          | Others                                  |     |                                       | -1.6 |     |        | -1.6 | mA    |
| I <sub>O\$</sub>    | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                                      | , , , , , , , , , , , , , , , , , , , , | -30 |                                       | -70  | -30 |        | -70  | mA    |
| lcc                 | Supply Current                         | V <sub>CC</sub> = Max                                                                         |                                         | T   | 80                                    | 115  |     | 80     | 125  | mA    |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) Not more than one output should be shorted at a time.

|                   |                                                                                                 |                                        |     | DM75/85 |     | 1       |
|-------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|-----|---------|-----|---------|
|                   | PARAMETER                                                                                       | CONDITIONS                             |     | 46      |     | UNITS   |
|                   |                                                                                                 |                                        | MIN | TYP     | MAX |         |
| f <sub>MAX</sub>  | Maximum Clock Frequency                                                                         |                                        | 15  | 22      |     | MHz     |
| tpLH              | Propagation Delay, Low-to-High Level,<br>From Clock to Output                                   |                                        |     | 16      | 24  | ,<br>ns |
| t <sub>PH</sub> L | Propagation Delay, High-to-Low Level,<br>From Clock to Output                                   |                                        |     | 27      | 40  | ns      |
| tzн               | Propagation Delay From High Impedance State to High Logic Level (From Output Disable)           | $C_L = 50 \text{ pF}, R_L = 400\Omega$ |     | 22      | 33  | ns      |
| <sup>t</sup> zн   | Propagation Delay From High Impedance State to High Logic Level (From Mode Control C1/C2)       |                                        |     | 13      | 20  | ns      |
| <sup>t</sup> ZL   | Propagation Delay From High Impedance State to Low Logic Level (From Output Disable)            |                                        |     | 18 .    | 27  | ns      |
| <sup>t</sup> ZL   | Propagation Delay From High Impedance State to Low Logic Level (From Mode Control C1/C2)        |                                        |     | 15      | 23  | ns      |
| <sup>t</sup> HZ   | Propagation Delay From High Logic Level to<br>High Impedance State (From Output Disable)        |                                        |     | 5       | 8   | ns      |
| t <sub>HZ</sub>   | Propagation Delay From High Logic Level to<br>High Impedance State (From Mode Control<br>C1/C2) | 0 5 5 0 4000                           |     | 9       | 14  | ns      |
| t <sub>LZ</sub>   | Propagation Delay From Low Logic Level to<br>High Impedance State (From Output Disable)         | $C_L = 5 pF, R_L = 400\Omega$          |     | 16      | 24  | ns      |
| t <sub>LZ</sub>   | Propagation Delay From Low Logic Level to<br>High Impedance State (From Mode Control<br>C1/C2)  | , .                                    |     | 17      | 26  | ns      |



Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    |                                        |                                         | 1            | DM75/85 |       |
|--------------------|----------------------------------------|-----------------------------------------|--------------|---------|-------|
|                    | PARAMETER                              | CONDITIONS                              |              | 46      | UNITS |
| · 1                |                                        |                                         | MIN          | TYP N   | 1AX   |
| tw(CLOCK)          | Clock Pulse Width                      |                                         | 18           | 12      | ns    |
| tSETUP (HIGH)      | Serial Data                            |                                         | 38           | 25      | ns    |
| tSETUP (HIGH)      | Parallel Data                          |                                         | 33           | 22      | ns    |
| tSETUP (LOW)       | Serial Data                            | *                                       | 21           | 14      | ns    |
| tSETUP (LOW)       | Parallel Data                          | $C_L = 50 \text{ pF}, R_L = 400\Omega$  | 18           | 12      | ns    |
| tHOLD (HIGH)       | Serial Data .                          | ·                                       | 0            | -11     | ns    |
| tHOLD (HIGH)       | Parallel Data                          |                                         | 0            | -11     | ns    |
| tHOLD (LOW)        | Serial Data                            | ,                                       | 0            | -22     | ns    |
| tHOLD (LOW)        | Parallel Data                          | 1                                       | 0            | -21     | ns    |
| SETUP AND H        | OLD TIMES BETWEEN CHANGES IN MODE CONT | ROL AND CLOCKING                        | <del>,</del> |         |       |
| <sup>t</sup> SETUP | Parallel Load to Right Shift           |                                         | 32           | 21      | ns    |
| <sup>t</sup> SETUP | Parallel Load to Left Shift            |                                         | 40           | 27      | ns    |
| <sup>t</sup> SETUP | Right Shift to Parallel Load           |                                         | 60           | 40      | ns    |
| <sup>t</sup> SETUP | Left Shift to Parallel Load            |                                         | 53           | 35      | ns    |
| t <sub>SETUP</sub> | Right Shift to Left Shift              |                                         | 33           | 21      | ns    |
| t <sub>SETUP</sub> | Left Shift to Right Shift              |                                         | 56           | 37      | ns    |
| t <sub>SETUP</sub> | Inhibit to Right Shift                 |                                         | 57           | 38      | ns    |
| <sup>t</sup> SETUP | Inhibit to Left Shift                  |                                         | 65           | 43      | ns    |
| <sup>t</sup> SETUP | Right Shift to Inhibit                 |                                         | 50           | 33      | ns    |
| <sup>t</sup> SETUP | Left Shift to Inhibit                  | $C_L = 50 \text{ pF, } R_L = 400\Omega$ | 50           | 32      | ns    |
| tHOLD              | Parallel Load to Right Shift           | CL - 50 pr, NL - 40032                  | 9            | 6       | ns    |
| <sup>t</sup> HOLD  | Parallel Load to Left Shift            |                                         | 6            | 4       | ns    |
| t <sub>HOLD</sub>  | Right Shift to Parallel Load           |                                         | .0           | -13     | ns    |
| t <sub>HOLD</sub>  | Left Shift to Parallel Load            |                                         | 0            | -46     | ns    |
| t <sub>HOLD</sub>  | Right Shift to Left Shift              |                                         | 0            | -10     | ns    |
| <sup>t</sup> HOLD  | Left Shift to Right Shift              |                                         | 0            | -23     | , ns  |
| <sup>t</sup> HOLD  | Inhibit to Right Shift                 |                                         | 0            | -18     | ns    |
| <sup>t</sup> HOLD  | Inhibit to Left Shift                  |                                         | 0            | -16     | ns    |
| tHOLD              | Right Shift to Inhibit                 |                                         | 0            | -12     | ns    |
| †HOLD              | Left Shift to Inhibit                  | 1                                       | 0            | -29     | ns    |

# **Typical Applications**

### CASCADING DEVICES





# DM75/DM8546

**Typical Applications (Continued)** 

### SERIAL DATA TRANSFER TO A FIRST IN-FIRST OUT STORAGE MEDIUM



# **Timing Diagram**

TYPICAL PARALLEL LOAD, RIGHT SHIFT, LEFT SHIFT AND INHIBIT SEQUENCES



# 6-Bit Shift Registers

# **General Description**

These 6-bit shift registers feature J-K serial inputs, parallel outputs, and a direct overriding clear. All inputs are buffered to lower the input drive requirements to one standard DM74S load. Furthermore, shifting is

synchronous, and occurs on the positive-going edge of the clock pulse. These shift registers are particularly well-suited for very high speed data processing systems.

# **Connection Diagram**



### Truth Table

|       | IN  | PUTS | 3  |   | OUTPUTS           |                 |                 |                 |                 |                 |  |  |
|-------|-----|------|----|---|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
|       | CLO | CKS  |    |   |                   |                 |                 |                 |                 | -               |  |  |
| CLEAR | 1   | 2    | J  | ĸ | Q1                | Q2              | Q3              | Q4              | Q5              | Q6              |  |  |
| L     | Х   | X    | Х  | Х | L.                | I.              | L               | L               | L               | L               |  |  |
| н     | L   | L    | Х  | X | Q1 <sub>0</sub>   | $\Omega 2_0$    | Q3 <sub>0</sub> | Q4 <sub>0</sub> | Q5 <sub>0</sub> | Q6 <sub>0</sub> |  |  |
| Н.    | L   | н    | Х  | Х | Q1 <sub>0</sub>   | O20             | Q3 <sub>0</sub> | Q4 <sub>0</sub> | Q5 <sub>o</sub> | Ω6 <sub>0</sub> |  |  |
| Н     | Н   | L    | X  | Χ | Q1 <sub>0</sub>   | $\Omega 2_0$    | $Q3_0$          | Q4 <sub>0</sub> | Q5 <sub>0</sub> | Q6 <sub>0</sub> |  |  |
| Н     | н   | н    | Х  | Х | Q1 <sub>0</sub>   | Ω2 <sub>0</sub> | Q3 <sub>0</sub> | Q4 <sub>0</sub> | Q5 <sub>0</sub> | Q6 <sub>0</sub> |  |  |
| н     | 1   | · L  | L. | L | L                 | Q1 <sub>N</sub> | Q2 <sub>N</sub> | O3 <sup>N</sup> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| Н     | 1   | L    | L  | Н | Q1 <sub>N</sub>   | Q1 <sub>N</sub> | 02 <sub>N</sub> | O3 <sup>N</sup> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| Н     | 1   | L    | Н  | L | Q1 <sub>N</sub>   | Q1 <sub>N</sub> | Q2 <sub>N</sub> | 03 <sup>N</sup> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| н     | 1   | L    | Н  | Н | н                 | Q1 <sub>N</sub> | Q2 <sub>N</sub> | G3 <sup>N</sup> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| н     | L   | 1    | L  | L | L                 | Q1 <sub>N</sub> | Q2 <sub>N</sub> | Q3 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| н     | L   | 1    | L  | Н | Q1 <sub>N</sub>   | Q1 <sub>N</sub> | Q2 <sub>N</sub> | Q3 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| Н     | L   | 1    | Н  | L | $\overline{Q1}_N$ | Q1 <sub>N</sub> | Q2 <sub>N</sub> | 03 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| н     | L   | 1    | Н  | Н | Н                 | Q1 <sub>N</sub> | Q2 <sub>N</sub> | Q3 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> |  |  |
| н     | 1   | н    | X  | Х | Q1 <sub>N</sub>   | Q2 <sub>N</sub> | Q3 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> | Q6 <sub>N</sub> |  |  |
| н     | Н   | 1,   | ×  | Х | Q1 <sub>N</sub>   | Q2 <sub>N</sub> | Q3 <sub>N</sub> | Q4 <sub>N</sub> | Q5 <sub>N</sub> | Q6 <sub>N</sub> |  |  |

 ${\rm Q1}_0,\,{\rm Q2}_0,\,{\rm etc.}$  = The level of Q1, Q2, etc. before the indicated steady-state input conditions were established.

 $\Omega_{1N}$ ,  $\Omega_{2N}$ , etc. = The level of  $\Omega_{1}$ ,  $\Omega_{2}$ , etc. before the most-recent 1 transition of the clock; indicates a 1-bit shift.

# Logic Diagram





|                 |                                        |                                                                        |     | DM858  |      |    |
|-----------------|----------------------------------------|------------------------------------------------------------------------|-----|--------|------|----|
|                 | PARAMETER                              | CONDITIONS                                                             | ,   | UNITS  |      |    |
|                 |                                        |                                                                        | MIN | TYP(1) | MAX  |    |
| VIH             | High Level Input Voltage               |                                                                        | 2   |        |      | V  |
| VIL             | Low Level Input Voltage                |                                                                        |     |        | 0.8  | V  |
| VI              | Input Clamp Voltage                    | $V_{CC} = Min$ , $I_1 = -18 \text{ mA}$                                |     |        | -1.2 | V  |
| Гон             | High Level Output Current              |                                                                        |     |        | -1.0 | mA |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OH} = -1 \text{ mA}$ | 2.7 | 3.4    |      | V  |
| loL             | Low Level Output Current               |                                                                        |     |        | 20   | mA |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 20 \text{ mA}$ |     |        | 0.5  | ٧  |
| 11              | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                          |     |        | 1    | mA |
| l <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.7V$                                          |     |        | 50   | μΑ |
| IIL             | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.5V$                                          |     |        | -2   | mA |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                               | -40 |        | -100 | mA |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                  |     | 90     | 150  | mA |

### Notes

(1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.

(2) Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

|                  |                                                     | PARAMETER FROM TO |                                 |                                               |     |       |      |     |
|------------------|-----------------------------------------------------|-------------------|---------------------------------|-----------------------------------------------|-----|-------|------|-----|
|                  | PARAMETER                                           |                   |                                 | CONDITIONS                                    |     | UNITS |      |     |
|                  |                                                     |                   |                                 |                                               | MIN | TYP   | MAX  |     |
| f <sub>MAX</sub> | Maximum Clock Frequency                             |                   |                                 |                                               | 75  | 110   |      | MHz |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Clock             | $\Omega$ or $\overline{\Omega}$ | i                                             |     | 8     | 12   | ns  |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Clock             | Q or $\overline{\mathbb{Q}}$    | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 280Ω |     | 12    | 18   | ns  |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Clear             | ā                               |                                               |     | 10    | . 15 | ns  |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Clear             | Ω                               |                                               |     | 13    | 20   | ns  |



# General Description

These four-bit registers contain D-type flip-flops with totem-pole TRI-STATE outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.

Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels,

# TRI-STATE 4-Bit D Type Registers

the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

### Features -

- TRI-STATE outputs interface directly with system bus
- Gated output control lines for enabling or disabling the outputs
- Fully independent clock eliminates restrictions for operating in one of two modes:

Parallel load

Do nothing (hold)

For application as bus buffer registers

| TYPE        | TYPICAL<br>PROPAGATION<br>DELAY | TYPICAL<br>FREQUENCY | TYPICAL<br>POWER<br>DISSIPATION |
|-------------|---------------------------------|----------------------|---------------------------------|
| 7551/8551   | 18 ns                           | 30 MHz               | 250 mW                          |
| 75L51/85L51 | 59 ns                           | 15 MHz               | 27.5 mW                         |



7551(J), (W); 8551(J), (N), (W); 75L51/85L51(J), (N), (W)

### Truth Table

|       |       | INPUT | S      |      |        |
|-------|-------|-------|--------|------|--------|
| CLEAD | СГОСК | DATA  | ENABLE | DATA | OUTPUT |
| CLEAR | CLOCK | G1    | G2     | D    | ū      |
| н     | ×     | ×     | X      | X    | L      |
| L.    | L     | ×     | ×      | ×    | $Q_0$  |
| L     | 1     | н     | X      | ×    | $Q_0$  |
| L     | 1     | ×     | н      | ×    | o₀ -   |
| L     | 1     | L     | L      | . L  | L      |
| L     |       | L     | L      | Н    | н      |

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

- H = high level (steady state)
- L = low level (steady state)
- ↑ = low-to-high level transition
- X = don't care (any input including transitions)
- $Q_0$  = the level of Q before the indicated steady state input conditions were established

# Logic Diagram





|                     | 0                                      |                                                             |      |          | DM75/85 |      |     | DM75L/85 | L     |       |
|---------------------|----------------------------------------|-------------------------------------------------------------|------|----------|---------|------|-----|----------|-------|-------|
|                     | PARAMETER                              | CONDITIONS                                                  |      |          | 51      |      |     | L51      |       | UNITS |
|                     |                                        |                                                             |      | MIN      | TYP(1)  | MAX  | MIN | TYP(1)   | MAX   |       |
| VIH                 | High Level Input Voltage               | -                                                           | -    | 2        |         |      | 2   |          |       | V     |
| V <sub>IL</sub>     | Low Level Input Voltage                |                                                             |      |          |         | 0.8  |     |          | 0.7   | ٧     |
| VI                  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>I</sub> = -12 mA              |      |          |         | -1.5 |     |          | N/A   | V     |
| Гон                 | High Level Output Current              |                                                             | DM75 |          |         | -2.0 |     |          | -1.0  | mA    |
|                     |                                        |                                                             | DM85 | <u> </u> |         | -5.2 |     |          | -1.0  | 100   |
| V <sub>OH</sub>     | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = Max, I_{OH} = Max$ |      | 2.4      |         |      | 2.4 |          |       | ٧     |
| IOL                 | Low Level Output Current               |                                                             | DM75 |          |         | 16   |     |          | 2.0   | mA    |
|                     |                                        |                                                             | DM85 |          |         | 16   |     |          | 3.6   | IIIA  |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                 | DM75 |          |         | 0.4  |     | 0.15     | 0.3   | V     |
|                     |                                        | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max                | DM85 |          |         | 0.4  |     | 0.2      | 0.4   |       |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)       | $V_{CC} = Max$ $V_O = 0.3$                                  |      |          |         |      |     |          | -40   |       |
|                     | Output Current                         | $V_{IH} = 2V$ $V_{O} = 0.4$                                 |      |          |         | -40  |     |          |       | μΑ    |
|                     |                                        | $V_{IL} = Max$ $V_O = 2.4$                                  | V    | <u> </u> |         | 40   |     |          | 20    |       |
| l <sub>l</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                |      |          |         | 1    |     | 0.01     | 0.1   | . mA  |
| Чн .                | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                |      |          |         | 40   |     | 1        | 10    | μΑ    |
| IIL                 | Low Level Input Current                | $V_{CC} = Max$ $V_1 = 0.3 $                                 | /    |          |         |      |     |          | -0.18 | mA    |
|                     |                                        | V <sub>1</sub> = 0.4\                                       | /    |          |         | -1.6 |     |          |       |       |
| los                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                    |      | -30      |         | -70  | -3  | -8       | -15   | mA    |
| Icc                 | Supply Current                         | V <sub>CC</sub> = Max(3)                                    |      |          | 50      | 72   |     | 5.5      | 9     | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with all outputs open; clear grounded following momentary connection to 4.5V; N, G1, G2, and all data inputs grounded; and the clock input and M at 4.5V.

|                    |                              |                             |       |        |                        | CONDITION              | ıs        | D   | M75/8 | 5   | DM75L/85L |     |       |       |
|--------------------|------------------------------|-----------------------------|-------|--------|------------------------|------------------------|-----------|-----|-------|-----|-----------|-----|-------|-------|
|                    | PARAN                        | IETER                       | FROM  | то     |                        |                        |           |     | 51    |     |           | L51 |       | UNITS |
|                    |                              | - 1                         | ,     |        | вотн                   | STD.                   | LOW POWER | MIN | TYP   | MAX | MIN       | TYP | 51 UN |       |
| f <sub>MAX</sub>   | Maximum Clo                  | ock Frequency               |       |        |                        |                        |           | 25  | 30    |     | 6         | 15  |       | MHz   |
| tpHL               | Propagation (<br>High-to-Low | Delay Time,<br>Level Output | Clear | Output |                        |                        |           |     | 18    | 27  |           | 72  | 110   | ns    |
| tPLH               | Propagation I<br>Low-to-High | Delay Time,<br>Level Output | Clock | Output |                        |                        |           |     | 16    | 25  |           | 39  | 70    | ns    |
| tpHL               | Propagation (<br>High-to-Low | Delay Time,<br>Level Output | Clock | Output | C <sub>L</sub> = 50 pF |                        |           |     | 20    | 28  |           | 77  | 120   | ns    |
| tzH                | Output Enab<br>High Level    |                             |       |        |                        | H <sub>L</sub> = 4 K52 | 7         | 16  | 30    |     | 28        | 55  | ⇒ns · |       |
| tZL                | Output Enab<br>Low Level     | le Time to                  |       |        |                        | -                      |           |     | 7 21  | 30  |           | 35  | 60    | ns    |
| t <sub>HZ</sub>    | Output Disab<br>High Level   | le Time from                |       |        | C <sub>L</sub> = 5 pF  |                        |           | 3   | 5     | 14  |           | 18  | 50    | ns    |
| t <sub>LZ</sub>    | Output Disab<br>Low Level    | ole Time from               |       |        |                        |                        |           | 3   | 11    | 20. |           | 32  | 75    | · ns  |
| t <sub>W</sub>     | Width of Clo                 | ck or Clear Pulse           |       |        |                        |                        |           | 20  |       |     | 100       |     |       | ns    |
| t <sub>SETUP</sub> | Setup Time                   | Data Enable                 |       |        |                        |                        |           | 17  |       |     | 45        |     |       | ,     |
|                    | '                            | Data                        |       |        |                        |                        | *         | 10  |       |     | 30        |     |       | ns    |
|                    | <u></u>                      | Clear Inactive State        |       |        |                        |                        |           | 10  |       |     | 30        |     |       |       |
| tHOLD              | Hold Time                    | Data Enable                 |       |        |                        |                        |           | 2   |       |     | 0         |     |       |       |
|                    |                              | Data                        |       |        |                        |                        |           | 10  |       |     | 10        |     |       | ns .  |



# **TRI-STATE Synchronous Counters/Latches**

# **General Description**

These circuits logically combine the functions of counters for frequency division, latches to store the data from the counters, and output buffer gates which provide both standard TTL outputs as well as high-impedance outputs for multiplexing of data. The counters are fully synchronous, and are made up of four edge-triggered JK flip-flops. To further facilitate operation, the Count Mode and Terminal Count outputs are also operable when the data outputs are in the high-impedance state or the latch mode.

# Features

DM7552/8552DM75L52/85L52

Decade counter/latch

DM7554/8554DM75L54/85L54

Binary counter/latch

TYPE

TYPICAL POWER DISSIPATION

TYPICAL CLOCK FREQUENCY

52, 54 L52, L54 330 mW 38 mW 23 MHz 11 MHz

### Connection Diagram



7552(J), (W); 8552(J), (N), (W); 75L52/85L52(J), (N), (W); 7554(J), (W); 8554(J), (N), (W); 75L54/85L54(J), (N), (W)

# Truth Table

|     |     |     | IN  | PUTS  |        |    | OUTPUTS |    |     |   |     |  |
|-----|-----|-----|-----|-------|--------|----|---------|----|-----|---|-----|--|
| QD1 | OD2 | CEP | CET | CLEAR | PRESET | TE | Α       | В  | С   | D | TC  |  |
| Н   | Х   | ×   | Х   | ×     | ×      | Х  | ″⊦      | *  |     |   |     |  |
| ×   | н   | X   | х   | ×     | ×      | ×  | "⊦      |    |     |   |     |  |
| L   | L   | ×   | ×   | н     | ×      | н  | L       | L  | L,  | L | 1 L |  |
| , L | L   | ×   | ×   | L     | Н      | н  | Н       | Н  | Н   | н |     |  |
| L   | L   | X   | Х   | ×     | X      | L  | LATCH   |    |     |   |     |  |
| L   | L   | Н   | Н   | L     | L      | Н  |         | CO | UNT |   |     |  |

<sup>\*</sup>Function of the count sequence.



|                     |                                                                                          |                  |                                                     |                          |         | DM75/85          |      | 1   | DM75L/85I | L     |          |  |
|---------------------|------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------|--------------------------|---------|------------------|------|-----|-----------|-------|----------|--|
|                     | PARAMET                                                                                  | ER               | CONDITIONS                                          | 5                        |         | 52, 54           |      |     | L52, L54  |       | UNITS    |  |
|                     | garante Pirice and the original and the Street of the American Association (association) |                  |                                                     |                          | MIN     | TYP(1)           | MAX  | MIN | TYP(1)    | MAX   |          |  |
| VIH                 | High Level Inpu                                                                          | t Voltage        |                                                     |                          | 2       |                  |      | 2   |           |       | V        |  |
| VIL                 | Low Level Inpu                                                                           | t Voltage        |                                                     |                          |         |                  | 0.8  |     |           | 0.7   | V        |  |
| V <sub>I</sub>      | Input Clamp Vo                                                                           | Itage            | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA      |                          |         |                  | -1.5 |     |           | N/A   | V        |  |
| Гон                 | High Level Outp                                                                          | out Current      |                                                     | DM75                     | <b></b> |                  | -2.0 |     |           | -1.0  | <u> </u> |  |
|                     |                                                                                          |                  |                                                     | DM85                     |         | annuture, annuum | -5.2 |     |           | -1.0  | mA       |  |
| VoH                 | High Level                                                                               | Terminal Count   | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V         | I <sub>OH</sub> = 0.2 mA |         |                  |      | 2.4 | 2.8       |       |          |  |
|                     | Output Voltage                                                                           | rerminal Count   | V <sub>IC</sub> = Max                               | I <sub>OH</sub> = 0.4 mA | 2.4     | 3.3              |      |     |           |       | V        |  |
|                     |                                                                                          | Others           | VIC WAX                                             | I <sub>OH</sub> = Max    | 2.4     | 3.3              |      | 2.4 | 2.7       |       |          |  |
| lor                 | Low Level Outp                                                                           | out Current      |                                                     | DM75                     |         |                  | 16   |     |           | 2.0   | m.A      |  |
|                     |                                                                                          |                  |                                                     | DM85                     |         |                  | 16   |     |           | 3.6   | ""       |  |
| V <sub>OL</sub>     | Low Level Outp                                                                           | ut Voltage       | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V         | DM75                     |         | 0.2              | 0.4  |     | 0.15      | 0.3   | ,        |  |
|                     |                                                                                          |                  | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max        | DM85                     |         | 0.2              | 0.4  |     | 0.2       | 0.4   | L . `    |  |
| l <sub>O(OFF)</sub> | Off State (High                                                                          | Impedance State) | V <sub>CC</sub> = Max, V <sub>1H</sub> = 2V         | V <sub>O</sub> = 0.3V    |         |                  |      |     |           | -40   |          |  |
|                     | Output Current                                                                           |                  | V <sub>IL</sub> = Max                               | V <sub>O</sub> = 0.4V    |         |                  | -40  |     |           |       | μΑ       |  |
|                     |                                                                                          |                  |                                                     | V <sub>O</sub> = 2.4V    |         |                  | 40   |     |           | 20    |          |  |
| կ                   | Input Current a                                                                          | t Maximum .      | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V        | CET Input                |         |                  | 2    |     | 0.02      | 0.2   | m/       |  |
|                     | Input Voltage                                                                            |                  | • CC Max, • 1 5.5 •                                 | Others                   |         |                  | 1    |     | 0.01      | 0.1   | 1 '''    |  |
| I <sub>IH</sub>     | High Level Inpu                                                                          | t Current        | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V        | CET Input                |         |                  | 80   |     | 2         | 20    | μΑ       |  |
|                     |                                                                                          |                  | VCC - Wax, V - 2.4V                                 | Others                   |         | ,                | 40   |     | 1         | 10    | μ,       |  |
| l <sub>IL</sub>     | Low Level Inpu                                                                           | t Current        | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V (Std.) | CET Input                |         | -2.0             | -3.2 |     | -0.24     | -0.36 | m.A      |  |
|                     |                                                                                          |                  | $V_1 = 0.3V (75L/85L)$                              | Others                   |         | -1.0             | -1.6 |     | -0.12     | -0.18 |          |  |
| los                 | Short Circuit Ou                                                                         | tput Current     | V <sub>CC</sub> = Max(2)                            | TC Output                | -20     |                  | -55  | -3  | -8        | -15   | m/       |  |
|                     |                                                                                          |                  | ACC - MIGK(7)                                       | Others                   | -30     |                  | -70  | -3  | -8        | -15   |          |  |
| Icc                 | Supply Current                                                                           |                  | V <sub>CC</sub> = Max                               |                          |         | 66               | 106  |     | 7.6       | 13    | m.A      |  |

# Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time, and for DM7552/8552 or DM7554/8554 duration of short circuit should not exceed one second.

|                  | ,                                                   | •               | CONDITIONS DM75/85 DM75L/85L |                        | CONDITIONS DM75L/85L DM75L/85L |                       |     |        | }   |     |          |      |       |
|------------------|-----------------------------------------------------|-----------------|------------------------------|------------------------|--------------------------------|-----------------------|-----|--------|-----|-----|----------|------|-------|
|                  | PARAMETER                                           | FROM            | то                           |                        | CONDITION                      | <b>ა</b>              |     | 52, 54 |     | 1   | L52, L54 | 1    | UNITS |
|                  |                                                     |                 |                              | вотн                   | STD.                           | LOW POWER             | MIN | TYP    | MAX | MIN | TYP      | MAX  |       |
| f <sub>MAX</sub> | Maximum Clock Frequency                             |                 |                              |                        |                                |                       | 15  | 23     |     | 6   | 11       |      | MHz   |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Clock           | Output                       | :                      |                                |                       |     | 34     | 70  |     | 115      | 220  | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Clock           | Output                       |                        |                                |                       |     | 23     | 45  |     | 75       | 150  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Transfer Enable | Output                       | C <sub>L</sub> = 50 pF |                                |                       |     | 26     | 50  |     | 90       | 160  | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Transfer Enable | Output                       |                        | R <sub>L</sub> = 400Ω          | R <sub>L</sub> = 4 kΩ |     | 26     | 50  |     | 90       | 160  | ns    |
| tzH              | Output Enable Time to<br>High Level                 |                 |                              |                        |                                |                       |     | 21     | 45  |     | 75       | 150  | ns    |
| <sup>†</sup> ZL  | Output Enable Time to<br>Low Level                  |                 |                              |                        |                                |                       |     | 25     | 50  |     | 90       | 150  | ns    |
| tHZ              | Output Disable Time<br>from High Level              |                 | ,                            | C = 5 n E              |                                |                       |     | 3      | 8   |     | 8        | 15 . | ns    |
| t <sub>LZ</sub>  | Output Disable Time<br>from Low Level               |                 |                              | C <sub>L</sub> = 5 pF  |                                |                       |     | 17     | 40  |     | 57       | 105  | ns    |



### Mode of Operation

When the Transfer Enable (TE) is at a logical "1" level, the data transfer paths between the counter outputs and the output buffer gates are maintained. When the Transfer Enable is at a logical "0" level, the data transfer paths are inhibited, and the state of the output buffer gates are locked in by the latches. The counter and Terminal Count (TC) output remain operable during this time.

Asynchronous Clear resets the counter to 0000.

Asynchronous Preset sets the counter to 1111. The 1111 state may be used in the 52 for blanking out leading zeroes in visual displays. The next clock pulse will advance the 52 to 0001 which denotes the first count of the blanked zero. The next clock pulse will advance the 54 to 0000.

The Terminal Count (TC) output is active high when the counters are at terminal count and the CET is high. The Terminal Count logic equations are:

(52) 
$$TC = CET \cdot A \cdot \overline{B} \cdot \overline{C} \cdot D$$

(54)  $TC = CET \cdot A \cdot B \cdot C \cdot D$ 

The following logic levels control the device:

- The counters change state on the positive-going transition of the clock.
- Clearing or presetting is enabled by taking the respective input to a logical "1" level.

- To enable the count mode both CET and CEP inputs must be at a logical "1" level.
- To latch the outputs the Transfer Enable (TE) input must be taken to the logical "0" level.
- To place the TRI-STATE outputs into the "thirdstate," either of the Output Disable (OD) inputs must be taken to the logical "1" level.

The clock input must be high during the high to low transition of CEP and/or CET for correct logic operation. The CEP and CET inputs may be used in a high speed look ahead technique.

Counter stages can be cascaded to provide multiple stage BCD or Binary synchronous counting by using the 52 or the 54 respectively. With a Terminal Count (TC) fan out of ten, eleven stages are able to operate at the maximum frequency equivalent to a two stage counter.

The characters displayed can be held with a low level on the strobe line while the counters can continue counting. The display can be updated at any time by applying a positive pulse to the strobe line.

### DM7552/DM8552 DM75L52/DM85L52 DECADE COUNT SEQUENCE

| COUNT       |    | 01 | JTPU | TS |     |
|-------------|----|----|------|----|-----|
| COON        | Α  | В  | С    | D  | TC  |
| 0           | L  | L  | L    | ٦. | L   |
| 1           | 1H | L  | L    | L  | .L  |
| . 2         | L  | H  | L    | L  | L   |
| 3           | н  | Ή  | L    | L  | L   |
| 4           | L  | L  | Н    | L  | L   |
| 5           | н  | L  | H    | L  | L.  |
| 6           | L  | Н  | Н    | "L | L   |
| 7           | Н  | Н  | Н    | L. | - L |
| 8 .         | L· | L  | L    | н  | L   |
| 9           | H  | Ł  | L    | н  | Н   |
| **If Preset |    |    |      |    |     |
| Applied     |    |    |      |    |     |
| Next        | н  | Н  | Н    | н  | L   |
| Count       | Н  | L  | L    | L  | L   |

<sup>\*\*</sup>The 1111 state may be used in conjunction with certain decoder/drivers (DM7446A, 7447A, 7448) for blanking leading zeroes.

### DM7554/DM8554 DM75L54/DM85L54 BINARY COUNT SEQUENCE

| COUNT |    | 01  | JTPU' | ΓS |      |
|-------|----|-----|-------|----|------|
| COUNT | Α  | В   | С     | D  | TC.  |
| . 0   | L  | L   | L     | L  | ٦    |
| 1     | н  | L   | L     | L  | L    |
| 2     | L  | Н   | L     | L  | L    |
| 3     | Н  | Н   | L     | L  | ,E., |
| 4     | L  | L   | Н     | L  | ,L   |
| 5     | ·H | L   | H'    | L  | L    |
| 6     | L  | Н   | Н     | L  | L    |
| 7     | Н  | Н   | Н     | ĻL | L.   |
| 8     | L  | L   | L     | н  | L    |
| 9     | н  | L   | L     | н  | L.   |
| 10    | L  | Н   | L.    | н  | L    |
| 11    | н  | JН  | Ļ     | H  | L    |
| .12   | L  | L   | Н     | Н  | L    |
| 13    | н  | : L | Н     | Н  | L    |
| 14    | L  | Н   | Н     | Н  | L    |
| 15    | Н  | Н   | Н     | H. | н    |





# DM75/DM8552,L52,54,L54

















# DM75/DM8552,L52,54,L54







<sup>t</sup>HZ



<sup>t</sup>zH



<sup>t</sup>LZ



<sup>t</sup>ZL





# **TRI-STATE 8-Bit Latches**

# **General Description**

By utilizing TRI-STATE circuitry on the outputs, the inputs and outputs can be accessed on the same pins, and these circuits provide eight separate R-S latches in the popular 16-pin package. While in the high-impedance state, the inputs and outputs are disabled and no information can be entered. When both WRITE inputs are brought to a low logic level, the outputs are disabled and new information may be entered at the inputs. When a low logic level is applied to both READ inputs, and a

high logic level to both WRITE inputs, the inputs are rendered inactive and data may be read from the outputs.

### **Features**

- TRI-STATE I/O pins
- 8 latches in popular 16-pin package
- Typical propagation delay-22 ns

# **Connection Diagram**

# VCC READ WRITE WRITE 8 7 7 6 5 5 16 15 14 13 12 11 10 9 9 1 1 2 3 4 GND DATA INPUTS/OUTPUTS

7553(J), (W); 8553(J), (N), (W)

# Truth Table

| CLEAR | ENABLE | READ*          | WRITE** | OPERATION  | STATE OF<br>BUS |
|-------|--------|----------------|---------|------------|-----------------|
| н     | L      | L              | н.      | Enter L    | L               |
| H     | L      | L              | L       | Enter L    | Hi-Z            |
| L     | Х      | H <sup>'</sup> | Н       | Do Nothing | Hi-Z            |
| L     | Н      | ×              | х       | Do Nothing | Hi-Z            |
| L     | L      | ×              | L       | Write      | H or L***       |
| L     | L      | · L            | н       | Read       | H or L***       |

- \*Both Read Inputs
- \*\*Both Write Inputs
- \*\*\*Depends on State of Latch

# Logic Diagram





|                     |                                           |                                                                                               |                       |     | DM75   |      | l   | :      |      |       |
|---------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-----|--------|------|-----|--------|------|-------|
|                     | PARAMETER .                               | CONDITION                                                                                     | IS                    | 53  |        |      |     | 53     |      | UNITS |
|                     |                                           | ,                                                                                             |                       | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  |       |
| VIH                 | High Level Input Voltage                  |                                                                                               |                       | 2   |        |      | 2   |        |      | V     |
| VIL                 | Low Level Input Voltage                   |                                                                                               |                       |     |        | 0.8  |     |        | 0.8  | V     |
| Vı                  | Input Clamp Voltage                       | V <sub>CC</sub> ' = Min, I <sub>1</sub> = -12 mA                                              | \                     |     |        | -1.5 |     |        | -1.5 | ٧     |
| Гон                 | High Level Output Current                 |                                                                                               |                       |     |        | -2 0 |     |        | -5.2 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage                 | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max  |                       | 2.4 |        |      | 2.4 |        |      | ٧     |
| IOL                 | Low Level Output Current                  |                                                                                               | ,                     |     |        | 16   |     |        | 16   | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 m | Α                     |     |        | 0.4  |     |        | 0.4  | V     |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)          | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                   | V <sub>O</sub> = 0.4V |     |        | 40   |     |        | -40  | μΑ    |
|                     | Output Current                            | V <sub>IL</sub> = 0.8V                                                                        | V <sub>O</sub> = 2.4V |     |        | 40   |     |        | 40   | μΑ    |
| 1,                  | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                  |                       |     |        | 1    |     | 4      | 1    | mA    |
| I <sub>IH</sub>     | High Level Input Current                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                  |                       |     |        | 40   |     |        | 40   | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                   | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                  |                       |     |        | -1.6 |     |        | -1.6 | mA    |
| Ios                 | Short Circuit Output Current              | V <sub>CC</sub> = Max(2)                                                                      |                       | -28 |        | -70  | -28 |        | -70  | mA    |
| Icc                 | Supply Current                            | V <sub>CC</sub> = Max                                                                         |                       |     | 66     | 93   |     | 66     | 93   | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$
- (2) Not more than one output should be shorted at a time.

|                    |                                                     |                         | -     |        |                                        |           | DM75/85    |     | ı     |
|--------------------|-----------------------------------------------------|-------------------------|-------|--------|----------------------------------------|-----------|------------|-----|-------|
|                    | PARAMETER                                           |                         | FROM  | то     | CONDITIONS                             |           | 53         |     | UNITS |
|                    |                                                     |                         |       |        |                                        | MIN       | TYP        | MAX |       |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output |                         | Clear | Output |                                        |           | 21         | 32  | ns    |
| t <sub>ZH</sub>    | Output Enable Time to<br>High Level                 |                         |       |        | $C_L = 50 \text{ pF}, R_L = 400\Omega$ |           | 22         | 33  | ns    |
| tZL                | Output Enable Time to Low Level                     |                         |       |        |                                        |           | 25         | 38  | ns    |
| t <sub>HZ</sub>    | Output Disable Time from<br>High Level              |                         |       |        |                                        |           | 7          | 12  | ns    |
| tLZ                | Output Disable Time from<br>Low Level               |                         |       | *      | $C_L = 5 \text{ pF}, R_L = 400\Omega$  |           | 20         | 30  | ns    |
| t <sub>W</sub>     | Minimum Pulse Width                                 | Clear                   |       |        |                                        | 15        | 10         |     |       |
|                    |                                                     | Write                   | ·     |        | ٠.                                     | 40        | 28         |     | ns    |
| <sup>t</sup> SETUP | Minimum Data Setup Time                             | High Level<br>Low Level |       | *      |                                        | 20<br>36  | 14<br>26   |     | ns    |
| tHOLD              | Minimum Data Hold Time                              | High Level              |       |        |                                        | -15<br>-8 | -26<br>-14 |     | ns    |



# TRI-STATE Programmable Decade/Binary Counters

# **General Description**

These circuits are synchronous, edge-sensitive, fully-programmable 4-bit counters. The counters feature both conventional totem-pole and TRI-STATE outputs; such that when the outputs are in the high-impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip-flops on the positive-going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input.

### **Features**

- DM7555/8555—Decade counter
- DM7556/8556-Binary counter
- Typical clock frequency

35 MHz

- TRI-STATE outputs
- Fully independent clear
- Synchronous loading
- Cascading circuitry provided internally

# Connection Diagram



7555(J), (W); 8555(J), (N), (W); 7556(J), (W); 8556(J), (N), (W)

# **Truth Table**

| J | к | М  | CLEAR | Q <sub>n+1</sub> |
|---|---|----|-------|------------------|
| 0 | 0 | 1  | 0     | Q <sub>n</sub>   |
| 1 | 0 | 1. | 0     | 1                |
| 0 | 1 | 1  | 0     | 0                |
| 1 | 1 | 1  | 0.    | Q,               |
| X | × | 0  | 0     | . D              |
| X | x | х  | 1     | 0*               |

\*Asynchronous Transition Note: See Timing Diagrams

# Logic Diagrams

55







|                 | DADAMETED                                       | CONT                                                                              | NITIONIC                                     |              | D    | M75/855 | 5            |     | M75/855 | 6          | UNITS |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|--------------|------|---------|--------------|-----|---------|------------|-------|
|                 | PARAMETER                                       | CONL                                                                              | DITIONS                                      |              | MIN  | TYP(1)  | MAX          | MIN | TYP(1)  | MAX        | UNITS |
| VIH             | High Level Input Voltage                        |                                                                                   |                                              |              | 2    |         |              | 2   |         |            | V     |
| VIL             | Low Level Input Voltage                         |                                                                                   |                                              |              |      |         | 0.8          |     |         | 0.8        | V     |
| VI              | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>1</sub> =                                           | -12 mA                                       |              |      |         | -1.5         |     |         | -1.5       | V     |
| Гон             | High Level Output Current                       |                                                                                   |                                              | DM75<br>DM85 |      |         | -2.0<br>-5.2 |     |         | 2.0<br>5.2 | mA    |
| V <sub>OH</sub> | High Level Output Voltage                       | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> |                                              |              | 2 4  |         |              | 2.4 |         |            | V     |
| IOL             | Low Level Output Current                        |                                                                                   |                                              |              |      |         | 16           |     |         | 16         | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                        | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>O</sub>  |                                              |              | 0.4  |         |              | 0.4 |         |            | V     |
| lo(OFF)         | Off State (High Impedance State) Output Current |                                                                                   | V <sub>O</sub> = 0.4<br>V <sub>O</sub> = 2.4 |              |      |         | -40<br>40    |     |         | 40<br>40   | μA    |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage          | V <sub>CC</sub> ≈ Max, V,                                                         | ≃ 5.5V                                       |              |      |         | 1            |     |         | 1          | mA    |
| I <sub>IH</sub> | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>I</sub>                                             | = 2.4V                                       |              |      |         | 40           |     |         | 40         | μΑ    |
| IIL             | Low Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub>                                             | = 0.4V                                       |              |      |         | 1.6          |     |         | -1.6       | mA    |
| Ios             | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                          |                                              |              | - 25 |         | -70          | -25 |         | -70        | mA    |
| l <sub>cc</sub> | Supply Current                                  | V <sub>CC</sub> = Max                                                             |                                              |              |      | 80      | 110          |     | 75      | 100        | mA    |

### Notes

(1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

(2) Not more than one output should be shorted at a time.

|                  | PARAMETER                                                                |                               | FROM   | то        | CONDITIONS                                 | DM  | 75/8555 | , 56 | UNITS |
|------------------|--------------------------------------------------------------------------|-------------------------------|--------|-----------|--------------------------------------------|-----|---------|------|-------|
|                  | FARAMETER                                                                |                               | PROW   | 10        | CONDITIONS                                 | MIN | TYP     | MAX  | UNITS |
| f <sub>MAX</sub> | Maximum Clock Frequency                                                  |                               |        |           |                                            | 25  | 35      |      | · MHz |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output                      |                               | .Clock | Output    |                                            |     | 15      | 22   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output                      |                               | Clock  | Output    |                                            |     | . 34    | 44   | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-High Level Output Propagation Delay Time, |                               | Clock  | Max Count | $C_{L} = 50 \text{ pF}, R_{L} = 400\Omega$ |     | 23      | 33   | ns .  |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output                      | -                             | Clock  | Max Count |                                            |     | 23      | 33   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output                      |                               | Clear  | Output    |                                            |     | 30      | 44   | ns    |
| <sup>t</sup> zH  | Öutput Enable Time to High Lev                                           | el                            |        |           | 7                                          |     | 13      | 20   | ns    |
| tzL              | Output Enable Time to Low Leve                                           | tput Enable Time to Low Level |        |           |                                            | ,   | 14      | 20   | ns    |
| <sup>t</sup> HZ  | Output Disable Time from High ,L                                         | _evel                         |        |           | 0 5 5 8 4000                               |     | 6       | 12   | ns    |
| t <sub>LZ</sub>  | Output Disable Time from Low L                                           | _evel                         | 1      |           | $C_L = 5 pF, R_L = 400\Omega$              |     | 12      | 20   | ns    |
| t <sub>W</sub>   | Minimum Pulse Width                                                      | Clock                         |        |           |                                            | 25  |         |      |       |
|                  |                                                                          | Clear                         | ]      |           |                                            | 20  |         |      | ns    |
|                  |                                                                          | Load                          |        |           |                                            | 30  |         |      |       |
| <sup>t</sup> CE  | Count Enable Time                                                        | Setup                         |        |           |                                            | 30  |         |      |       |
|                  | •                                                                        | Hold                          | 1      |           |                                            | -30 |         |      | ns    |
| tSETUP(1)        | Setup Time — High Logic Level                                            | Data                          |        |           |                                            | 25  |         |      |       |
|                  |                                                                          | Load                          | 1      |           |                                            | 30  |         |      | ns    |
| tHOLD(1)         | Hold Time — High Logic Level                                             | Data                          |        |           |                                            | 5   |         |      |       |
|                  |                                                                          | Load                          | 1      |           |                                            | -10 |         |      | ns    |
| tSETUP(0)        | Setup Time - Low Logic Level                                             | Data                          |        |           | 1                                          | 30  |         |      |       |
|                  |                                                                          | Load                          |        |           |                                            | 25  |         |      | ns    |
| tHOLD(0)         | Hold Time - Low Logic Level                                              | Data                          |        |           |                                            | 5   |         |      |       |
|                  | Load                                                                     | 1                             |        |           | -10                                        |     |         | ns   |       |



# DM75/DM8555,56

# **Timing Diagrams**





# Sequence

- (1) Clear to zero.
- (2) Load BCD five.
- (3) Count six, seven, eight, nine, zero,
- one, two, three, four.
  (4) Disable TRI-STATE outputs.
- (5) Disable counter.
- (6) Count to six.

# 56 TYPICAL CLEAR, PRESET, COUNT, INHIBIT SEQUENCE



# Sequence

- (1) Clear to zero.
- (2) Load binary five.
- (3) Count six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, zero.
- (4) Disable TRI-STATE outputs.
- (5) Disable counter.
- (6) Count to one.







# Synchronous 4-Bit Up/Down Decade Counters

### General Description

These circuits are synchronous up/down counters; the 60 and L60 circuits are BCD counters and the 63 and L63 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed, while the other count input is held high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent

of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

These circuits are synchronous up/down counters; the 60 and L60 circuits are BCD counters and the 63 and L63 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

### Features

- Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset each flip-flop

| TYPE     | TYPICAL COUNT<br>FREQUENCY | TYPICAL<br>POWER<br>DISSIPATION |
|----------|----------------------------|---------------------------------|
| 60, 63   | 25 MHz                     | 325 mW                          |
| L60, L63 | 12 MHz                     | 40 mW                           |

# Connection Diagram



7560(J), (W); 8560(J), (N), (W); 75L60/85L60(J), (N), (W); 7563(J), (W); 8563(J), (N), (W); 75L63/85L63(J), (N), (W)

# DM75/DM8560,L60,63,L63

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                        |                                                                   |                           |              |            | DM75/85 |          | C   | OM75L/85 | L          |       |
|-----------------|----------------------------------------|-------------------------------------------------------------------|---------------------------|--------------|------------|---------|----------|-----|----------|------------|-------|
|                 | PARAMETER                              |                                                                   | CONDITIONS                |              |            | 60, 63  |          |     | L60, L63 |            | UNITS |
|                 |                                        |                                                                   |                           |              | MIN        | TYP(1)  | MAX      | MIN | TYP(1)   | MAX        |       |
| ViH             | High Level Input Voltage               |                                                                   |                           |              | 2          |         |          | 2   |          |            | V     |
| VIL             | Low Level Input Voltage                |                                                                   |                           |              |            |         | 0.8      |     |          | 0.7        | . V   |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min                                             | i, = -12 mA               |              |            |         | -1.5     |     |          | -1.5       | ٧     |
| Іон             | High Level Output Current              |                                                                   |                           |              |            |         | -400     |     |          | -200       | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max, I <sub>C</sub> |                           |              | 2.4        |         |          | 2.4 |          |            | V     |
| loL             | Low Level Output Current               |                                                                   |                           | DM75<br>DM85 |            |         | 16<br>16 |     |          | 2.0<br>3.6 | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = Max, I <sub>C</sub> |                           | DM75<br>DM85 |            |         | 0.4      |     | 0.15     | 0.3        | V     |
| lı .            | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, \                                          | v <sub>1</sub> = 5.5V     |              |            |         | 1        |     |          | 0.1        | · mA  |
| 1 <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, \                                          | ' <sub>1</sub> = 2.4V     |              |            |         | 40       |     | <1       | 10         | μΑ    |
| l <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max                                             | $V_1 = 0.3V$ $V_1 = 0.4V$ |              |            |         | -1.6     |     | -0.10    | -0.18      | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2                                           |                           | DM75         | -20<br>-18 |         | 55<br>55 | -3  | -9<br>-9 | -15<br>-15 | mA    |
| lcc             | Supply Current                         | V <sub>CC</sub> = Max(3                                           | V <sub>CC</sub> = Max(3)  |              |            | 65      | 89       |     | 8        | 13         | mA    |
|                 |                                        | L                                                                 |                           | DM85         | <u> </u>   | 65      | 102      | L   | 8        | 13         |       |

### Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  =  $25^{\circ}$ C.
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5V.

|                  |                                                     |              |              | DN                      | <b>/175/85</b> |     |      | DM:                    | 75L/85  | iL. |     |       |
|------------------|-----------------------------------------------------|--------------|--------------|-------------------------|----------------|-----|------|------------------------|---------|-----|-----|-------|
|                  | PARAMETER                                           | FROM         | TO<br>OUTPUT | 6                       | 0, 63          |     |      | L6                     | 0, L63  |     |     | UNITS |
|                  |                                                     |              |              | CONDITIONS              | MIN            | TYP | MAX  | CONDITIONS             | MIN     | TYP | MAX |       |
| f <sub>MAX</sub> | Maximum Clock Frequency                             |              |              |                         | 20             | 25  |      |                        | 6       | 12  |     | MHz   |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | 6            | 0            | 9                       |                | 17  | 26   |                        |         | 30  | 60  | ns    |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Count up     | Carry        |                         |                | 16  | 24   |                        |         | 60  | 120 | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Count down   | Borrow       |                         |                | 16  | 24   |                        |         | 30  | 60  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Count down   | Borrow       |                         |                | 16  | 24   |                        |         | 50  | 100 | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Either Count | Q            | C <sub>L</sub> = 15 pF  |                | 25  | . 38 | C <sub>L</sub> = 50 pF | = 50 pF | 45  | 90  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Either Count | ų.           | R <sub>L</sub> = 400\$} |                | 31  | 47   | R <sub>L</sub> = 4 kΩ  |         | 75  | 150 | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output |              | ,<br>O       |                         |                | 27  | 40   |                        |         | 55  | 110 | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Load         | Q.           |                         |                | 29  | 40   |                        |         | 105 | 200 | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Clear        | Q            |                         |                | 22  | 35   |                        |         | 95  | 190 | ns    |
| tw               | Width of Any Input Pulse                            |              |              |                         | 25             |     |      |                        | 70      | .,  |     | ns    |
| tSETUP           | Data Setup Time                                     |              |              |                         | 20             |     |      |                        | 30      |     |     | ns    |
| tHOLD            | Data Hold Time                                      |              | •            |                         | 0              |     |      |                        | 0       |     |     | ns    |





**Timing Diagrams** 

# 60, L60 DECADE COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES



# Sequence:

- (1) Clear outputs to zero.
- (2) Load (preset) to BCD seven.
- (3) Count up to eight, nine, carry, zero, one, and two.
- (4) Count down to one, zero, borrow, nine, eight, and seven.

### Notes:

- (A) Clear overrides load, data, and count inputs.
- (B) When counting up, count-down input must be high; when counting down; count-up input must be high.



Timing Diagrams (Continued)

# 63, L63 BINARY COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES



# Sequence:

- (1) Clear outputs to zero.
- (2) Load (preset) to binary thirteen.
- (3) Count up to fourteen, fifteen, carry, zero, one, and two.
- (4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

### Notes:

- (A) Clear overrides load, data, and count inputs.
- (B) When counting up, count-down input must be high; when counting down, count-up input must be high.



# 64-Bit Edge Triggered Registers

# **General Description**

The DM75S68/DM85S68 is an addressable "D" register file. Any of its 16 four-bit words may be asynchronously read or may be written into on the next clock transition. An input terminal is provided to enable or disable the synchronous writing of the input data into the location specified by the address terminals. An output disable terminal operates only as a TRI-STATE output control terminal. The addressable register data may be latched at the outputs and retained as long as the output store terminal is held in a low state. This memory storage condition is independent of the state of the output disable terminal.

All input terminals are high impedance at all times, and all outputs have low impedance active drive logic states and the high impedance TRI-STATE condition.

### **Features**

- On chip output register
- Edge triggered write
- High speed

30 ns typ

- TRI-STATE outputs
- Optimized for register stack applications
- Typical power dissipation

350 mW

18-pin package





| •               | PARAMETER                                       |                                                | CONDITIONS                                            |              |     | S68    | s            | LIMITS |
|-----------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------------|--------------|-----|--------|--------------|--------|
|                 |                                                 |                                                |                                                       |              | MIN | TYP(1) | MAX          | UNITS  |
| V <sub>IH</sub> | High Level Input Voltage                        |                                                |                                                       |              | 2   |        |              | V      |
| V <sub>IL</sub> | Low Level Input Voltage                         |                                                |                                                       |              |     |        | 8.0          | V      |
| Vi              | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I                       | <sub>IN</sub> = -18 mA                                |              |     |        | -1.2         | V      |
| Гон             | High Level Output Current                       |                                                |                                                       | DM75<br>DM85 |     |        | -2.0<br>-5.2 | mA     |
| V <sub>OH</sub> | High Level Output Voltage                       | V <sub>CC</sub> = Min                          | $I_{OH} = -2.0 \text{ mA}$ $I_{OH} = -5.2 \text{ mA}$ | DM75<br>DM85 | 2.4 |        |              | V      |
| IOL             | Low Level Output Current                        |                                                |                                                       |              |     |        | 16           | mA     |
| V <sub>OL</sub> | Low Level Output Voltage                        | V <sub>CC</sub> = Min,                         | <sub>OL</sub> = 16 mA                                 | DM75<br>DM85 |     |        | 0.5<br>0.45  | V      |
| lo(OFF)         | Off-State (High Impedance State) Output Current | V <sub>CC</sub> = Max                          | $V_{O} = 0.5V$<br>$V_{O} = 2.4V$                      |              |     |        | -40<br>+40   | μΑ     |
| 1,              | Input Current at Maximum Voltage                | V <sub>CC</sub> = Max,                         | V <sub>1</sub> = 5.5V                                 |              |     |        | 1.0          | mA     |
| I <sub>IH</sub> | High Level Input Current                        | V <sub>CC</sub> = Max<br>V <sub>1</sub> = 2.4V | Clock Input<br>All Others                             |              |     |        | 50<br>25     | μΑ     |
| IIL             | Low Level Input Current                         | V <sub>CC</sub> = Max<br>V <sub>1</sub> = 0.5V | Clock Input<br>All Others                             |              |     |        | -500<br>-250 | μΑ     |
| Ios             | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                       |                                                       | -20          |     | -55    | mA           |        |
| Icc             | Supply Current                                  | V <sub>CC</sub> = Max                          |                                                       |              |     | 70     | 100          | mA     |

- (1) All typical values are at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C.
  (2) Not more than one output should be shorted at a time.

# **Switching Characteristics**

|                  | DAG                                 | AMETER                    | CONDITIONS             |     | DM75S |     |     | DM85S |     | 1141170 |
|------------------|-------------------------------------|---------------------------|------------------------|-----|-------|-----|-----|-------|-----|---------|
|                  | PAI                                 | RAMETER                   | CONDITIONS             | MIN | TYP   | MAX | MIN | TYP   | MAX | UNITS   |
| t <sub>AA</sub>  | Access Time                         | Address to Output         |                        |     | 30    | 55  |     | 30    | 40  |         |
| tosa             |                                     | Output Store to Output    |                        |     | 20    | 35  |     | 20    | 30  | ns      |
| tcA              |                                     | Clock to Output           | C <sub>L</sub> = 30 pF |     | 25    | 50  |     | 25    | 40  |         |
| <sup>t</sup> ZH  | Output Enabl                        | e to High Level           | $R_L = 400\Omega$      |     | 20    | 40  |     | 20    | 35  | ns      |
| tzL              | Output Enable to Low Level          |                           |                        |     | 14    | 30  |     | 14    | 24  | ns,     |
| t <sub>HZ</sub>  | Output Disable Time From High Level |                           | C <sub>L</sub> = 5 pF  |     | 10    | 18  |     | 10    | 15  | ns      |
| tLZ              | Output Disable Time From Low Level  |                           | R <sub>L</sub> = 400Ω  |     | 12    | 22  | ,   | 12    | 18  | ns      |
| tASC             | Set-Up Time                         | Address to Clock          |                        | 25  | 5     |     | 15  | 5     |     |         |
| tosc             |                                     | Data to Clock             |                        | 15  | 0     |     | 5   | 0     |     |         |
| tasos            |                                     | Address to Output Store   |                        | 40  | 15    |     | 30  | 15 .  |     | ns      |
| twesc            |                                     | Write Enable Set-Up Time  |                        | 10  | 0     |     | 5   | 0     |     |         |
| tossc            |                                     | Store Before Write        |                        | 15  | 0     |     | 10  | 0     |     |         |
| <sup>t</sup> AHC | Hold Time                           | Address From Clock        |                        | 15  | 5     |     | 10  | 5     |     |         |
| t <sub>DHC</sub> |                                     | Data From Clock           |                        | 20  | 5     |     | 15  | 5     |     | · ns    |
| taHOS            |                                     | Address From Output Store |                        | 10  | 0     |     | .5  | 0     |     |         |
| tWEHC            |                                     | Write Enable Hold Time    |                        | 20  | 5     | ,   | 15  | 5     |     |         |

# **Typical Applications**

The DM85S68 can enhance the dynamic performance of a TTL processor, since it may safely operate using single phase clocking instead of the multiphase clocking systems being used currently. This simple feature not only enhances the system's dynamic performance, since multiple levels of registers need not be activated, but also reduces component count by elimination of one set of buffer registers. For example, note the simplicity of the register file/ALU loop shown in Figure 1.

In a 4-bit slice with zero delay within the arithmetic logic unit, a level-triggered memory with buffering to prevent logic oscillation requires about 80 ns to make the loop whereas the DM85S68 does it in 35 ns. With a 30 ns delay in the ALU, the two compared system speeds are 110 ns and 65 ns, respectively.



FIGURE 1. 4-BIT REGISTER ALU

# Truth Table

| OD | WE | CLK. | ōs | MODE           | OUTPUTS                           |
|----|----|------|----|----------------|-----------------------------------|
| L  | X  | х    | L  | Output Store   | Data From Last Addressed Location |
| х  | L  | 7    | ×  | Write Data     | Dependent on State of OD and OS   |
| L  | X  | ×    | н  | Read Data      | Data Stored in Addressed Location |
| H. | X  | х    | L  | Output Store   | Hi-Z                              |
| Н  | X. | Х    | Н  | Output Disable | Hi-Z                              |

# **AC Test Circuit and Switching Time Waveforms**



ADDRESS

OUTPUTS

INPUT

WRITE CYCLE



FIGURE 2. CLOCK SET-UP AND HOLD TIME



FIGURE 4. ADDRESS TO OUTPUT ACCESS TIME

1.5V

**READ CYCLE** 



FIGURE 5. OUTPUT STORE ACCESS, SET-UP AND HOLD TIME



FIGURE 3. CLOCK TO OUTPUT ACCESS



FIGURE 6. OUTPUT DISABLE AND ENABLE TIME

Note: Input waveforms supplied by pulse generator having the following characteristics: V = 3.0V,  $t_R \leq 2.5$  ns, PRR  $\leq 1.0$  MHz, and  $Z_{OUT}$  = 50 M $\Omega$ .



# 8-Bit Serial In/Parallel Out Shift Registers

### **General Description**

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

### **Features**

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear

| TYPE | TYPICAL<br>CLOCK FREQUENCY | TYPICAL POWER DISSIPATION |
|------|----------------------------|---------------------------|
| 70   | 36 MHz                     | 185 mW                    |
| L70  | 14 MHz                     | 30 mW                     |

# **Connection Diagrams**



7570(J), (W); 8570(J), (N), (W)



76L70/86L70(W)

# Truth Table

|       | INPUTS   |   |   |     | OUT               | PUTS |          |
|-------|----------|---|---|-----|-------------------|------|----------|
| CLEAR | CLOCK    | Α | В | QA  | QΒ                |      | ОH       |
| L     | X        | Х | X | L   | L                 |      | L        |
| н     | L        | Х | X | QAO | $Q_{B0}$          |      | $Q_{H0}$ |
| н     | 1        | Н | H | н   | $\mathtt{Q}_{An}$ |      | $Q_{Gn}$ |
| н     | 1        | L | X | L   | $\mathtt{Q}_{An}$ |      | $Q_{Gn}$ |
| н     | <b>↑</b> | Х | L | L   | $Q_{An}$          |      | $Q_{Gn}$ |

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

 $\uparrow$  = Transition from low to high level

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{H0}$  = The level of  $Q_{A}$ ,  $Q_{B}$ , or  $Q_{H}$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Gn}$  = The level of  $Q_A$  or  $Q_G$  before the most recent  $\uparrow$  transition of the clock; indicates a one-bit shift.



# DM75/DM8570,DM76/DM86L70

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                            |                                            |                                                                  |           |     | DM75/85 |       |     | DM76L/86L |       |        |  |
|----------------------------|--------------------------------------------|------------------------------------------------------------------|-----------|-----|---------|-------|-----|-----------|-------|--------|--|
|                            | PARAMETER                                  | CONDITIONS                                                       |           | 70  |         |       | L70 |           |       | UNITS  |  |
| W. High Lavel Lave Voltage |                                            |                                                                  |           |     | TYP(1)  | MAX   | MIN | TYP(1)    | MAX   |        |  |
| V <sub>IH</sub>            | High Level Input Voltage                   |                                                                  |           | 2   |         |       | 2   |           |       | V      |  |
| VIL                        | Low Level Input Voltage                    | ,                                                                |           |     |         | 0.8   |     |           | 0.7   | V      |  |
| ٧ı                         | Input Clamp Voltage                        | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                   |           |     |         | -1.5  |     |           | N/A   | V      |  |
| Іон                        | High Level Output Current                  |                                                                  |           |     |         | -400  |     |           | -200  | μΑ     |  |
| V <sub>OH</sub>            | High Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = Max, I_{OH} = Max$         |           | 2.4 | 3.2     |       | 2.4 |           |       | V      |  |
| loL                        | Low Level Output Current                   | ·                                                                | DM75, 76L |     |         | 8     |     |           | 2     | mA V   |  |
|                            |                                            |                                                                  | DM85, 86L |     |         | 8     |     |           | 3.6   |        |  |
| Vol                        | Low Level Output Voltage V <sub>CC</sub> = | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V                      | DM75, 76L |     | 0.2     | 0.4   |     |           | 0.3   | V      |  |
|                            |                                            | V <sub>IL</sub> = Max, I <sub>OL</sub> = Max                     | DM85, 86L |     | 0.2     | 0.4   |     |           | 0.4   |        |  |
| 1,                         | Input Current at Maximum                   | $V_{CC} = Max, V_1 = 5.5V$                                       | Clear     |     |         | 1     |     |           | 0.2   |        |  |
|                            | Input Voltage                              | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5 V                    | Other     |     |         | 1     |     |           | 0.1   | mA     |  |
| l <sub>ін</sub>            | High Level Input Current                   | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                     | Clear     |     |         | 40    |     |           | 20    | μΑ     |  |
|                            |                                            | V <sub>CC</sub> = IVIAX, V <sub>1</sub> - 2.4V                   | Other     |     |         | 40    |     |           | 10    | ]      |  |
| IIL                        | Low Level Input Current                    | $V_{CC} = Max$ $V_1 = 0.3V (DM76L, 86L)$ $V_1 = 0.4V (DM75, 85)$ | Clear     |     |         | -1.6  |     |           | -0.36 | mA     |  |
|                            | ·                                          |                                                                  | Other     |     |         | -1.6  |     |           | -0.18 | l ma   |  |
| Ios                        | Short Circuit Output Current               | V <sub>CC</sub> = Max(2)                                         | DM75, 76L | -10 |         | -27.5 | -3  | -9        | -15   | mA     |  |
|                            |                                            |                                                                  | DM85, 86L | -9  |         | -27.5 | -3  | 9         | -15   | _ IIIA |  |
| Icc                        | Supply Current                             | V <sub>CC</sub> = Max(3)                                         |           |     | 37      | 54    |     | 6         | 9     | mA     |  |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4V, and a momentary ground, then 4.5V, applied to clear.

|                    |                                                                          |                                      |                                                  | DM75/85 |          |          | DM76L/86L |       |     |       |
|--------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|---------|----------|----------|-----------|-------|-----|-------|
| PARAMETER          |                                                                          | CONDITIONS                           |                                                  | 70      |          |          | L70       |       |     | UNITS |
|                    |                                                                          |                                      |                                                  | MIN     | TYP      | MAX      | MIN       | ' TYP | MAX |       |
| fMAX               | Maximum Clock Frequency                                                  |                                      | C <sub>L</sub> = 15 pF                           | 25      | 36       |          | 6         | 14    |     | MHz   |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Outputs                     |                                      | C <sub>L</sub> = 15 pF<br>C <sub>1</sub> = 50 pF |         | 24<br>28 | 36<br>42 |           | 75    | 120 | ns    |
|                    | From Clear Input                                                         | $R_L = 800\Omega \text{ (DM75, 85)}$ | or oob                                           |         |          |          |           |       |     |       |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Outputs<br>From Clock Input | $R_L = 4 k\Omega (DM76L, 86L)$       | C <sub>L</sub> = 15 pF                           | 8       | 17       | 27       |           |       |     | ns    |
|                    |                                                                          |                                      | C <sub>L</sub> = 50 pF                           | 10      | 20       | 30       |           | 50    | 85  |       |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Outputs                     | · · · · · ·                          | C <sub>L</sub> = 15 pF                           | 10      | 21       | 32       |           |       |     |       |
|                    | From the Clock Input                                                     | ·                                    | C <sub>L</sub> = 50 pF                           | 10 -    | 25       | 37       |           | 90    | 135 | , ns  |
| t <sub>W</sub>     | Width of Clock or Clear<br>Input Pulse                                   |                                      |                                                  | 20      |          |          | 60        | 40    |     | ns    |
| <sup>t</sup> SETUP | Data Setup Time                                                          | ,                                    |                                                  | 15      |          |          | 40        | 20    |     | ns    |
| tHOLD              | Data Hold Time                                                           |                                      |                                                  | 5       |          |          | 20        | -5    |     | ns    |

# Logic Diagram



# **Timing Diagram**

## TYPICAL CLEAR, SHIFT, AND CLEAR SEQUENCES





# 1024-Bit Field Programmable Read Only Memories

### **General Description**

The DM7573/DM8573 is a field-programmable readonly memory organized as 256 four-bit words. Selection of the proper word is accomplished through the eight address inputs. Two overriding memory enable inputs are provided; when either or both of the enable inputs are taken to a high state, all the outputs will be turned off. A logical "1" has been built into each bit location. A logical "0" can be programmed into any bit by selecting the proper word, disabling the chip, and applying a programming pulse to the proper output.

An additional feature of the DM7573/DM8573 is that its outputs can be tested in the logical "0" state without permanently programming the memory. In order to place

all outputs in the logical "0" state, a 10V level is applied to the most significant address input, Pin 15. This feature will allow a much more complete test to be made before a part is shipped, thus minimizing customer problems.

#### **Features**

- Pin-compatible with SN54187/SN74187
- Outputs can be fully tested before programming
- Typical power dissipation

400 mW

■ Propagation delay

60 ns

#### Connection Diagram



75/3(J); 85/3(

## Logic Diagram





|                 |                                        |                                                                                                |     | DM75/85 |      |       |
|-----------------|----------------------------------------|------------------------------------------------------------------------------------------------|-----|---------|------|-------|
|                 | PARAMETER                              | CONDITIONS                                                                                     | ,   | 73      |      | UNITS |
|                 |                                        |                                                                                                | MIN | TYP(1)  | MAX  | 1     |
| V <sub>IH</sub> | High Level Input Voltage               | V <sub>CC</sub> = Min                                                                          | 2   |         |      | V     |
| V <sub>IL</sub> | Low Level Input Voltage                | V <sub>CC</sub> = Min                                                                          |     |         | 0.8  | V     |
| V <sub>I</sub>  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                 |     |         | -1.5 | · v   |
| Гон             | High Level Output Current              | V <sub>CC</sub> = Max, V <sub>OH</sub> = 4.0V                                                  | ,   |         | 50   | μΑ    |
| loL             | Low Level Output Current               |                                                                                                |     | ,       | 16   | , mA  |
| V <sub>OL</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 16 mA |     |         | 0.4  | V     |
| l <sub>i</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                   |     |         | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max, V_1 = 2.4V$                                                                     |     |         | 40   | μΑ    |
| 1 <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                                                   | ,   |         | -1   | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                                          |     | 80      | 110  | mA    |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$  and  $T_{\Delta} = 25^{\circ}$ C.

|                  |                                                     |         |        |                                                   | ı   | OM75/85 |     |       |
|------------------|-----------------------------------------------------|---------|--------|---------------------------------------------------|-----|---------|-----|-------|
|                  | PARAMETER                                           | FROM    | то     | CONDITIONS                                        |     | 73      |     | UNITS |
|                  |                                                     |         |        |                                                   | MIN | TYP     | MAX |       |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output |                                                   |     | 60      | 80  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | $C_L = 30 \text{ pF}$ $R_{L1} = 600\Omega$ To Gnd |     | 60      | 80  | ns    |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Enable  | Output | $R_{L2} = 300\Omega$<br>To $V_{CC}$               |     | 28      | 40  | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Enable  | Output | . 4 444                                           |     | 28      | 40  | ns    |



## **Programming Procedure**

The DM7573/DM8573 is manufactured such that the outputs are high for all addresses. To program a logic zero (low output level), the following procedure should be followed:

- Apply a V<sub>CC</sub> voltage of 5.0V and select the word to be programmed using address inputs A7 – A0.
- 2. Apply a high level (logic 1) to either or both of the ENABLE inputs (Pins 13 and 14).
- 3. Apply a programming pulse to the output where a
- low level is desired. The voltage should be 23V to 25V; the current should be limited to 70 mA. Apply the pulse as shown in the diagram. A reduction in current of approximately 15 mA indicates the bit is programmed.
- 4. To verify that the bit has been programmed, apply a logic zero to both of the enable inputs and check for a low level on the programmed output.
- Advance to the next output and/or word, programming only one bit at a time.



#### PROGRAMMING CONNECTIONS



# **AC Test Circuit and Switching Time Waveforms**



C<sub>L</sub> includes probe and jig capacitance.



Input waveforms are supplied by pulse generators having the following characteristics:  $t_r \leq$  10 ns;  $t_f \leq$  10 ns, PRR = 1 MHz, PDC = 50%, Amplitude = 3.0V, and  $Z_0$  = 50%.



# TRI-STATE 1024-Bit Field Programmable Read Only Memories

## **General Description**

The DM7574/DM8574 is a field-programmable read-only memory organized as 256 four-bit words. Selection of the proper word is accomplished through the eight select inputs. Two overriding memory enable inputs are provided; when either or both of the enable inputs are taken to a high state, all the outputs go to the high impedance state. A logical "1" has been built into each bit location. A logical "0" can be programmed into any bit by selecting the proper word, disabling the chip, and applying a programming pulse to the proper output.

An additional feature of the DM7574/DM8574 is that its outputs can be tested in the logical "0" state without permanently programming the memory. In order to

place all outputs in the logical "0" state, a 10V level is applied to the most significant address input, Pin 15. This feature will allow a much more complete test to be made before a part is shipped, thus minimizing customer problems.

#### **Features**

- Pin compatible with SN54187/SN74187
- Outputs can be fully tested before programming
- Typical power dissipation

400 mW

Propagation delay

60 ns

## Connection Diagram



7574(J); 8574(J), (N)

## Logic Diagram





|                     |                                        |                                                   |                                                 |     | DM75/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |
|---------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|                     | PARAMETER                              | CONDI                                             | TIONS                                           |     | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | UNITS |
|                     |                                        |                                                   |                                                 | MIN | TYP(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX  |       |
| V <sub>IH</sub>     | High Level Input Voltage               | V <sub>CC</sub> = Min                             |                                                 | 2.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | V     |
| VIL                 | Low Level Input Voltage                | V <sub>CC</sub> = Min                             |                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0  | V     |
| Vį                  | Input Clamp Voltage                    | V <sub>CC</sub> = Min,                            | I <sub>I</sub> = -12 mA                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.5 | V     |
| Гон                 | High Level Output Current              |                                                   | DM75                                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.0 |       |
|                     |                                        |                                                   | DM85                                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.2 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage              | V <sub>CC</sub> = Max,<br>V <sub>IL</sub> = 0.8V, |                                                 | 2.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | v     |
| loL                 | Low Level Output Current               | ,                                                 |                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16   | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OL</sub> = 16 mA |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4  | V     |
| I <sub>O(OFF)</sub> | Off State (High Impedance              |                                                   | V <sub>O</sub> = 0.4V                           |     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -40  |       |
|                     | State) Output Current                  | V <sub>CC</sub> = Max                             | $V_O = 0.4V$ $V_O = 2.4V$                       |     | Andrew William Colonia Province Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Colonia Coloni | 40   | μΑ    |
| l <sub>1</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0  | mA    |
| I <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 2.4V                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40   | μΑ    |
| l <sub>IL</sub>     | Low Level Input Current                | V <sub>CC</sub> = Max,                            | V <sub>i</sub> = 0.4V                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.0 | mA    |
| Ios                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(                            | 2)                                              | -15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -70  | mA    |
| Icc                 | Supply Current                         | V <sub>CC</sub> = Max                             |                                                 |     | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110  | mA    |

## Notes

(1) All typical values are at  $V_{CC}$  = 5V and  $T_A$  = 25°C

(2) Not more than one output should be shorted at a time.

|      |                                                     |         |        | ,                                        | 1   | DM <b>7</b> 5/8 | 5   |       |
|------|-----------------------------------------------------|---------|--------|------------------------------------------|-----|-----------------|-----|-------|
|      | PARAMETER                                           | FROM    | то     | CONDITIONS                               |     | 74              |     | UNITS |
|      |                                                     |         |        |                                          | MIN | TYP             | MAX |       |
| tPLH | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output |                                          | -   | 60              | 80  | ns    |
| tPHL | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | $C_1 = 30  \text{pF},  R_1 = 600 \Omega$ |     | 60              | 80  | ns    |
| tpLH | Propagation Delay Time,<br>Low-to-High Level Output | Enable  | Output | G[ - 30 βi , H <sub>L</sub> - 00032      |     | 28              | 40  | ns    |
| tPHL | Propagation Delay Time,<br>High-to-Low Level Output | Enable  | Output |                                          |     | 28              | 40  | ns    |



## **Programming Procedure**

The DM7574/DM8574 is manufactured such that the outputs are high for all addresses. To program a logic zero (low output level), the following procedure should be followed:

- Apply a V<sub>CC</sub> voltage of 5.0V and select the word to be programmed using address inputs A7 – A0.
- 2. Apply a high level (logic 1) to either or both of the ENABLE inputs (Pins 13 and 14).
- 3. Apply a programming pulse to the output where a low level is desired. The voltage should be

23V to 25V; the current should be limited to 70 mA. Apply the pulse as shown in the diagram. A reduction in current of approximately 15 mA indicates the bit is programmed.

- 4. To verify that the bit has been programmed, apply a logic zero to both of the enable inputs and check for a low level on the programmed output.
- 5. Advance to the next output and/or word, programming only one bit at a time.

#### PROGRAMMING PULSE



#### PROGRAMMING CONNECTIONS





#### **General Description**

The DM7575/DM8575 and DM7576/DM8576 are mask-programmable logic arrays designed for use in applications where random logic is required. The devices have fourteen data inputs and eight outputs. Each output provides a sum of product terms where each product term can contain any combination of 14 variables or their complements. The total number of product terms which can be provided is 96. Any product term which is repeated is counted only once. Since some functions are more easily represented in their inverted form, an option is provided to allow for either the true or complement of the function on each output. The products are particularly useful in providing control

# **Programmable Logic Arrays**

logic for digital systems. The DM7575/DM8575 has a conventional totem-pole output whereas the DM7576/DM8576 is provided with a passive pullup output. This latter configuration is useful in expanding functions by connection of outputs of different packages.

#### **Features**

- A 2<sup>14</sup>-by-8 (128k) bit memory would be needed to provide equivalent function
- Typical delay

90 ns

Typical power dissipation

550 mW

# Connection Diagram



7575(J); 8575(J), (N); 7576(J); 8576(J), (N)

## Logic Diagram





|                 |                                           |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | DM75/85 |                 |        |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------------|--------|
|                 | PARAMETER                                 | CONDI                                                                               | TIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7   | 75, 76  |                 | UNITS  |
|                 |                                           |                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIN | TYP(1)  | MAX             |        |
| V <sub>IH</sub> | High Level Input Voltage                  | V <sub>CC</sub> = Min                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   |         |                 | V      |
| VIL             | Low Level Input Voltage                   | V <sub>CC</sub> = Min                                                               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |     |         | 0.8             | V      |
| V <sub>I</sub>  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -                                           | -12 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *   |         | -1.5            | V      |
| I <sub>OH</sub> | High Level Output Current                 |                                                                                     | DM75/8575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | -800            |        |
|                 |                                           | V <sub>OH</sub> = 5.5V                                                              | DM75/8576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | 100             | μΑ     |
| V <sub>OH</sub> | High Level Output Voltage                 | V <sub>CC</sub> = Min<br>V <sub>IH</sub> = 2V                                       | DM75/8575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4 |         |                 | v      |
|                 |                                           | V <sub>IL</sub> = 0.8V<br>I <sub>OH</sub> = Max                                     | DM75/8576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,   |         | 5.5             | v      |
| IOL             | Low Level Output Current                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         | 12              | mA     |
| V <sub>OL</sub> | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V <sub>IH</sub> :<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ,       | 0.4             | V      |
| 11              | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> =                                             | 5.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | ١       | 1               | mA     |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max, V <sub>i</sub> =                                             | 2.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,   |         | 40              | μΑ     |
| IIL             | Low Level Input Current                   | V <sub>CC</sub> = Max, V <sub>I</sub> =                                             | 0.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         | -1.0            | mA     |
| los             | Short Circuit Output                      | V = M-1/2)                                                                          | DM75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20 | \       | <del>-</del> 55 | mA     |
|                 | Current                                   | $V_{CC} = Max(2)$                                                                   | DM85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18 |         | -55             | , IIIA |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 110     | 170             | mA     |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}$  C.
- (2) Not more than one output should be shorted at a time.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                  |                                                     |        |        |                                        |      | M75/89 | 5   |       |
|------------------|-----------------------------------------------------|--------|--------|----------------------------------------|------|--------|-----|-------|
| ·                | PARAMETER                                           | FROM   | то     | CONDITIONS                             |      | 75, 76 | ,   | UNITS |
|                  |                                                     |        |        |                                        | MIN  | TYP    | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data , | Output | $C_1 = 50 \text{ pF}, R_1 = 400\Omega$ | ì    | 80     | 150 | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Output | CL = 50 pr, NL = 40032                 | i n, | 100    | 150 | ns    |

# **PLA Programming Information**

Information to program the PLA can be supplied in one of two formats:

- 1. Punched 80-column cards
- 2. The applicable section of this data sheet (manual entry of information).

## **PUNCHED CARDS**

CARD 1: (Used to determine whether outputs are presented in their true or inverted form. If this card is not used it is assumed that all eight outputs are true.)

**Col. 1-6:** DM7575 or DM8575 or DM7576 or DM8576.



#### PLA Programming Information (Continued)

Col. 7-9: (Blank)

Col 10-17: Output Data. Outputs are F8 (most significant) to F1 (least significant). All eight outputs must be specified.

A 'T' in an output location indicates that the output is true.

A 'C' in an output location indicates that the output is complemented (inverted).

Col. 18-39: (Blank)

Col. 40-75: This space is reserved for any unique letters/numbers desired by the customer (special part number, program number, etc.). However the exact combination of characters must appear on all cards, associated with that particular device.

Col. 76-78: (Blank) Col. 79-80: 00

CARDS 2-97: Term Data Cards. Used to specify the input and output conditions.

Col. 1-6: DM7575 or DM8575 or DM7576 or DM8576.

Col. 7-9: (Blank)

**Col. 10-17:** Output Connections. Outputs are F8, (most significant) to F1 (least significant). This field describes the outputs on which the product term appears.

A '+' in one of the eight output locations indicates that the term described by the card is one of the "OR" terms in that output.

A '(blank)' in one of the eight output locations indicates that the term described by the card is not one of the "OR" terms in that output.

(Care should be exercised in punching this particular field; since in most cases, unless a product term is repeated, this field will appear as one '+' and seven blanks.)

Col. 18: (Blank)

Col. 19: = (equal sign)

Col. 20: (Blank)

Col. 21-34: Input Data. Inputs are 113 (most significant) to 10 (least significant).

An 'H' in one of the fourteen locations indicates that input appears in the high state in the output term.

An 'L' in one of the fourteen input locations indicates that input appears in the low state in the output term.

An 'X' in one of the fourteen input locations indicates that input does not appear in the output term

Col. 35-39: (Blank)

Col. 40-75: This space is reserved for any unique letter/number desired by the customer (special part

number, program number, etc.). However the exact combination of characters must appear on all cards, associated with that particular device. The purpose of this section is to prevent mixing of cards.

Col. 76-78: (Blank)

Col. 79-80: Product Term Number 01 to 96. (All 96 cards need not be used.) Zero in column 79 may be suppressed

#### MANUAL ENTRY

The matrix-blank shown in this data sheet can be used in lieu of punched cards to submit information for programming the PLA.

#### INSTRUCTIONS

- Circle the appropriate part number. In the event a catalog part is not being purchased, circle the closest catalog part number. If an electrical screen is required between the military and commercial devices, the military designation should be circled.
- 2. Customer should write the name of his company.
- Enter the total number of unique product terms found in all eight outputs. Repeated terms count only once.
- 4. Output Inverter Option. Under the appropriate output designation specify a 'T' when the high (true) level is desired on the output for the given input conditions. Specify a 'C' if the complement is needed.
- 5. Matrix
  - a. Input data. This block is used to describe what comprises each of the 96 (maximum) product terms. In each row, opposite the appropriate Product Term number, information on the fourteen Input Data locations is entered. Information must be entered on all 14 inputs.
    - 1). Enter an "H" under the appropriate input designation if that particular input appears in the product term as a high (true) level.
    - Enter an "L" under the appropriate input designation if that particular input appears in the product term as a low (complemented) level.
    - Enter an "X" under the appropriate input designation if that particular input does not appear in the product term.

If less than 96 product terms are used leave all spaces for the unused terms blank.

- b. Output Data. This block is used to describe the outputs on which the product terms appear.
  - Enter a '+' under the appropriate output designation if the product term is contained in that output's expression.
  - 2). Leave a location blank if the product term is not contained in that output's expression.

**AC Test Circuit** 



# **Switching Time Waveforms**





## Truth Table/Order Blank

- 1. PART NO. (DM7575, DM8575, DM7576, DM8576)
- 2. CUSTOMER IDENTIFICATION -
- 3. TOTAL NO. OF UNIQUE PRODUCT TERMS USED (Repeated Terms Count Only Once)

| F8 | F7 | F6 | F5 | F4 | F3 | F2 | F1 |
|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |

- 4. OUTPUT INVERTER OPTION
- 5. MATRIX

| PRODUCT |                  |       |                                                  |          |                                                  | INP                                              | UT C                                             | DAT                                              | 4                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    | ΟL       | JTPL                                             | JT D                                             | ATA      |                                                  |                                                  |          |
|---------|------------------|-------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----|----------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|----------|
| TERM    | l <sub>1</sub> ; | 112   | 111                                              | 110      | lg                                               | 18                                               | 17                                               | 16                                               | 15                                               | 14                                               | 13                                               | 12                                               | 11                                               | 10                                               | F8                                               | F7 | F6       | F5                                               | F4                                               | F3       | F2                                               | F1                                               |          |
| 1       |                  | 1     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 2       |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 3       |                  | T     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 4       |                  | T     |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 5       |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 6       |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 7       |                  | T     |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  |          |
| 8       |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 9       |                  | T     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 10      |                  | T     |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 11      |                  |       |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 12      |                  | T     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 13      |                  | 1     |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 14      |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  |          |
| 15      |                  | 1     |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| - 16    |                  |       |                                                  |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 17      |                  |       |                                                  | 1        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 18      |                  | 1     |                                                  | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 19      |                  | 1     | T                                                |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  |          |
| 20      | $\neg \vdash$    | 1     | T                                                | T        |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | <b>!</b>                                         |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 21      |                  | T     | Г                                                |          |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 22      | _                | +-    | $\vdash$                                         | T        | _                                                |                                                  |                                                  |                                                  |                                                  | _                                                |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 23      |                  | †     |                                                  | †        | <del>                                     </del> |                                                  | -                                                | _                                                |                                                  |                                                  |                                                  | _                                                |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 24      |                  | +-    | 1                                                | 1        | <del>                                     </del> | _                                                | _                                                | _                                                | <u> </u>                                         | <u> </u>                                         | ,                                                | _                                                |                                                  |                                                  | _                                                |    |          |                                                  |                                                  |          |                                                  |                                                  | T        |
| 25      |                  | $t^-$ | T                                                | T        | -                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 26-     | +-               | f     | <del>                                     </del> | 1        | <del>                                     </del> | -                                                | <u> </u>                                         |                                                  | -                                                | -                                                | -                                                | -                                                | H                                                | -                                                |                                                  |    |          | _                                                | _                                                |          | _                                                |                                                  | r        |
| 27      | _                | +     | 1                                                | +        | _                                                | <b></b>                                          | -                                                | -                                                | _                                                | _                                                | <u> </u>                                         | _                                                | -                                                |                                                  | <del>                                     </del> |    |          |                                                  |                                                  |          |                                                  |                                                  | r        |
| 28      |                  | t     | $\vdash$                                         | +-       | $\vdash$                                         | _                                                |                                                  | _                                                |                                                  | <del>                                     </del> | -                                                | -                                                | -                                                | -                                                | <del> </del>                                     |    | -        | $\vdash$                                         | _                                                |          | _                                                |                                                  | r        |
| 29      |                  | T.    | 1                                                | t -      |                                                  | $\vdash$                                         | <del>                                     </del> | <u> </u>                                         |                                                  | $\vdash$                                         | $\vdash$                                         | _                                                | <del>                                     </del> | <u> </u>                                         | $\vdash$                                         |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 30      |                  | 1     | 1                                                | 1        |                                                  |                                                  | _                                                | <u> </u>                                         |                                                  |                                                  |                                                  |                                                  | <u> </u>                                         |                                                  | <u> </u>                                         |    |          |                                                  |                                                  |          |                                                  |                                                  | Γ        |
| 31      |                  | 1     | 1                                                | $t^{-}$  | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | $\vdash$                                         | <u> </u>                                         | _                                                |                                                  |                                                  |                                                  | -                                                | <del>                                     </del> |    |          | _                                                |                                                  |          |                                                  |                                                  | Г        |
| 32      |                  | +     | _                                                | +        | _                                                |                                                  |                                                  |                                                  |                                                  | <del>                                     </del> | -                                                | _                                                | <del> </del>                                     | $\vdash$                                         | $\vdash$                                         |    | <u> </u> | <del>                                     </del> | <u> </u>                                         | <u> </u> | -                                                | $\Box$                                           | Г        |
| 33      | $\neg$           | T     | 1                                                | T        |                                                  | <u> </u>                                         | _                                                |                                                  | <del>                                     </del> |                                                  |                                                  | _                                                |                                                  | _                                                |                                                  |    |          |                                                  |                                                  |          |                                                  |                                                  | Г        |
| 34      |                  | T     | <u> </u>                                         | t        | <del>                                     </del> | $\vdash$                                         | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | <del>                                     </del> | <del>                                     </del> | <u> </u>                                         | _                                                | <u> </u>                                         | <u> </u>                                         | -  |          |                                                  | <u> </u>                                         |          | <del>                                     </del> |                                                  | T        |
| 35      | $\dashv$         | +-    | +-                                               | $\vdash$ | <del>                                     </del> | <u> </u>                                         | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> |                                                  | <del>                                     </del> | <del>                                     </del> | _                                                | _                                                | _                                                | _  | -        | $\vdash$                                         | <u> </u>                                         | <u> </u> |                                                  |                                                  | H        |
| 36      | $\dashv$         | +-    | -                                                | +        | $\vdash$                                         | $\vdash$                                         | <del>                                     </del> | <del> </del>                                     | $\vdash$                                         | $\vdash$                                         | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | -  | -        | $\vdash$                                         | <del>                                     </del> | -        | -                                                |                                                  | H        |
| 37      | -                | +-    | †                                                | +-       | $\vdash$                                         | -                                                | <u> </u>                                         | $\vdash$                                         | +-                                               | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | -                                                | <del>                                     </del> | <del> </del>                                     |    | $\vdash$ | <del>                                     </del> | <del>                                     </del> | -        | -                                                |                                                  | +        |
| 38      | _                | +     | $\vdash$                                         | +-       | <del>                                     </del> | -                                                | <del> </del>                                     | -                                                | +-                                               | <del>                                     </del> |                                                  | _                                                | -                                                | <del>                                     </del> | <del>                                     </del> | -  |          | <del>                                     </del> | 1                                                | -        | <del> </del>                                     |                                                  | $\vdash$ |
| 39      |                  | +     | +                                                | +-       | <del> </del>                                     | <del>                                     </del> | -                                                | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | _                                                | -                                                | -                                                | <del>                                     </del> | <b>-</b>                                         | -  | -        | -                                                | -                                                | -        |                                                  | <u> </u>                                         | +        |
| 40      | -+               | +     | <del> </del>                                     | +        |                                                  | -                                                | <del>                                     </del> | -                                                |                                                  |                                                  | <del> </del>                                     |                                                  | -                                                | -                                                | -                                                | -  | -        | -                                                |                                                  |          |                                                  | <del>                                     </del> | -        |
| 41      | -+               | +-    | +-                                               | +-       | +                                                | -                                                | -                                                | -                                                | -                                                | -                                                | <del> </del>                                     | -                                                | <del> </del>                                     | -                                                | ├─                                               | -  | -        | <del>                                     </del> | -                                                | -        | <del> </del>                                     |                                                  | $\vdash$ |
| 42      | $\dashv$         | +     | ┼                                                | +-       |                                                  | -                                                | -                                                | <del>                                     </del> | -                                                | ├                                                | ├                                                |                                                  | <del> </del>                                     | ├-                                               | ├                                                | -  | Ι        | ├                                                | -                                                | -        |                                                  |                                                  | $\vdash$ |



# Truth Table/Order Blank (Continued)

| PRODUCT | Γ                                                |                                                  | *****                                            |                                                  |                                                  |                                                    | INP                                              |                                                  | ATA                                              | ١                                                |                                                  |                                                  |                                                  |                                                  |                                                    | <del></del>                                      |                                                  |                                                  | UTF                                              | UT                                                 | DAT                                              | A                                                |                                                  |                                                  |
|---------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| TERM    | <del> </del>                                     | 112                                              | 112                                              | 111                                              | 110                                              |                                                    | 18                                               |                                                  |                                                  |                                                  | 14                                               | 12                                               | la                                               | 11                                               | Io.                                                | F8                                               | F7                                               |                                                  |                                                  |                                                    | F3                                               |                                                  | F1                                               | Г                                                |
| 43      | -                                                | 13                                               | 12                                               |                                                  | . 10                                             | .9                                                 | -0                                               | /                                                | · 6                                              | 1.5                                              | 14                                               | 1.3                                              | .7                                               | <u> </u>                                         | .0                                                 | <u> </u>                                         |                                                  | Ť                                                | <del>-</del>                                     | <del>-</del>                                       | -                                                | -                                                |                                                  | اختا                                             |
| 44      | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                  |                                                  | -                                                | -                                                |                                                  |                                                  | <del> </del>                                     |                                                  |                                                  |                                                    | -                                                |                                                  | -                                                | <del> </del>                                     | -                                                  |                                                  | -                                                | $\vdash$                                         |                                                  |
| 45      | -                                                | -                                                | -                                                | <del> </del>                                     | -                                                |                                                    |                                                  |                                                  | -                                                | <del> </del>                                     | <del> </del>                                     | <u> </u>                                         |                                                  | -                                                | -                                                  |                                                  |                                                  | <del> </del>                                     | -                                                | -                                                  | -                                                | -                                                |                                                  |                                                  |
| 46      | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                  |                                                  |                                                  | -                                                | <del> </del>                                     |                                                  | -                                                |                                                  |                                                  | -                                                  | _                                                |                                                  | -                                                | -                                                | -                                                  | -                                                | -                                                |                                                  |                                                  |
| 47      | -                                                |                                                  | -                                                |                                                  | -                                                |                                                    | -                                                | -                                                | ├──                                              | <u> </u>                                         | -                                                | -                                                |                                                  | _                                                | -                                                  |                                                  |                                                  | -                                                | -                                                |                                                    | -                                                | -                                                |                                                  | $\vdash$                                         |
| 48      |                                                  | -                                                | -                                                |                                                  | -                                                | -                                                  | <del>  -</del>                                   | -                                                | <u> </u>                                         |                                                  | -                                                |                                                  | -                                                | -                                                | -                                                  | -                                                |                                                  | -                                                |                                                  | -                                                  | -                                                |                                                  | -                                                | -                                                |
| 49      | ├                                                | -                                                | -                                                |                                                  | -                                                |                                                    | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                |                                                  |                                                  | -                                                  | -                                                |                                                  | -                                                | -                                                |                                                    | -                                                |                                                  |                                                  |                                                  |
| 50      | ├                                                | $\vdash$                                         | -                                                | ├─                                               | -                                                |                                                    | -                                                |                                                  |                                                  |                                                  | -                                                |                                                  | -                                                | -                                                | -                                                  | -                                                |                                                  | -                                                | -                                                |                                                    | -                                                | -                                                |                                                  | <b>-</b>                                         |
| 51      | ├─                                               | -                                                |                                                  | <del> </del>                                     | -                                                | -                                                  |                                                  | -                                                | -                                                |                                                  | -                                                | -                                                |                                                  |                                                  | -                                                  | -                                                |                                                  | -                                                | -                                                | <u> </u>                                           | -                                                | -                                                |                                                  |                                                  |
| 52      | -                                                | -                                                | -                                                | -                                                | -                                                |                                                    | -                                                |                                                  | -                                                | -                                                | -                                                | -                                                |                                                  |                                                  | -                                                  |                                                  |                                                  | -                                                | -                                                |                                                    | -                                                |                                                  |                                                  |                                                  |
| 53      | <del> </del>                                     | -                                                | -                                                | -                                                |                                                  |                                                    |                                                  | -                                                | -                                                | <b></b> -                                        | -                                                |                                                  |                                                  |                                                  |                                                    |                                                  |                                                  | -                                                |                                                  | <del> </del>                                       |                                                  |                                                  |                                                  |                                                  |
| 54      | <del>  -</del>                                   |                                                  | -                                                |                                                  | $\vdash$                                         |                                                    | <u> </u>                                         | -                                                | ├                                                |                                                  | -                                                | -                                                |                                                  |                                                  | -                                                  | _                                                |                                                  |                                                  |                                                  | -                                                  | <b>-</b>                                         |                                                  |                                                  |                                                  |
| 55      | ├─                                               | -                                                | -                                                | <del> </del>                                     | -                                                |                                                    |                                                  | -                                                | <del> </del>                                     | -                                                | -                                                | -                                                |                                                  | _                                                | -                                                  | -                                                |                                                  | -                                                | -                                                | -                                                  |                                                  | -                                                |                                                  | _                                                |
| 56      |                                                  | -                                                | -                                                | -                                                |                                                  | -                                                  | <del> </del>                                     |                                                  | -                                                | -                                                | -                                                | -                                                |                                                  |                                                  |                                                    |                                                  |                                                  |                                                  |                                                  |                                                    | -                                                | -                                                |                                                  |                                                  |
| 57      | <del>                                     </del> | -                                                | -                                                | _                                                |                                                  |                                                    | <u> </u>                                         | -                                                | <del> </del>                                     | <del>                                     </del> | -                                                | -                                                |                                                  | -                                                |                                                    | -                                                |                                                  | -                                                | <del>                                     </del> | <del> </del>                                       | -                                                | -                                                |                                                  |                                                  |
| 58      | $\vdash$                                         | <del>                                     </del> | -                                                | <u> </u>                                         | -                                                |                                                    | <del> </del>                                     | -                                                | -                                                |                                                  | -                                                | -                                                |                                                  | -                                                | <b>-</b>                                           | -                                                |                                                  | -                                                | -                                                | <del> </del>                                       | -                                                | <del>                                     </del> |                                                  |                                                  |
| 59      | -                                                | $\vdash$                                         | -                                                | <u> </u>                                         |                                                  |                                                    | <u> </u>                                         |                                                  | -                                                | <u> </u>                                         | -                                                | 1                                                | -                                                |                                                  | -                                                  |                                                  | _                                                | <u> </u>                                         | <u> </u>                                         | <del>                                     </del>   | <del>                                     </del> | t                                                |                                                  | <u> </u>                                         |
| 60      | <del>                                     </del> | <del>                                     </del> | -                                                | <del> </del>                                     |                                                  |                                                    | $\vdash$                                         | -                                                | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |                                                  | -                                                | -                                                  | ┝─∸                                              |                                                  | <del> </del>                                     | $\vdash$                                         | <del> </del>                                       | -                                                | i –                                              |                                                  | <del>                                     </del> |
| 61      | $\vdash$                                         |                                                  |                                                  | -                                                |                                                  | -                                                  | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                  |                                                  | -                                                | <del>                                     </del> | <del>                                     </del> | -                                                  | <u> </u>                                         | -                                                |                                                  |                                                  |
| 62      | $\vdash$                                         | 1                                                | <del>                                     </del> | <del> </del>                                     | -                                                |                                                    | -                                                |                                                  | $\vdash$                                         | <del> </del>                                     | -                                                | <del>                                     </del> |                                                  | -                                                | <del> </del>                                       | -                                                |                                                  | <del>                                     </del> | <del>                                     </del> | -                                                  | <del>                                     </del> | <del>                                     </del> |                                                  |                                                  |
| 63      | <del>                                     </del> | $\vdash$                                         | -                                                | _                                                |                                                  |                                                    | <del> </del>                                     | -                                                | <del>                                     </del> | <del>                                     </del> | -                                                | <del>                                     </del> | -                                                | -                                                | <del>                                     </del>   | <del> </del>                                     | -                                                | <del>                                     </del> | $\vdash$                                         | <del> </del>                                       | <del>                                     </del> | <del> </del>                                     |                                                  | <del>                                     </del> |
| 64      | ┢                                                | -                                                | -                                                | -                                                | -                                                | -                                                  |                                                  | -                                                | -                                                | ├-                                               | -                                                | -                                                | -                                                | -                                                | -                                                  | -                                                | _                                                | <del> </del>                                     | -                                                | <del> </del>                                       | -                                                | -                                                | -                                                | <u> </u>                                         |
| 65      | -                                                | -                                                | -                                                |                                                  | -                                                |                                                    |                                                  |                                                  | -                                                | -                                                | ├                                                |                                                  | -                                                | -                                                | -                                                  | <del> </del>                                     |                                                  | -                                                | -                                                | -                                                  |                                                  | -                                                |                                                  |                                                  |
| 66      | ┢                                                | -                                                | -                                                | -                                                | -                                                |                                                    | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                |                                                  | -                                                | <del> </del>                                       | ┝                                                |                                                  | -                                                | <del> </del>                                     | -                                                  |                                                  | -                                                | -                                                |                                                  |
| 67      | -                                                | -                                                |                                                  | <del> </del>                                     | -                                                |                                                    | ├                                                | -                                                | ├                                                | -                                                | ├                                                | -                                                | -                                                | -                                                |                                                    |                                                  | -                                                |                                                  | -                                                |                                                    | -                                                |                                                  | -                                                | $\vdash$                                         |
| 68      | ┢─                                               |                                                  | -                                                | <del> </del>                                     |                                                  |                                                    | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | <del> </del>                                       | <del> </del>                                     |                                                  | -                                                | <del> </del>                                     | -                                                  | -                                                | -                                                | -                                                |                                                  |
| 69      | <del> </del>                                     | -                                                | -                                                | -                                                | -                                                |                                                    | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                  | <del> </del>                                     | -                                                | -                                                | <del> </del>                                     | -                                                  | -                                                | <del> </del>                                     | H                                                |                                                  |
| 70      | <del> </del>                                     | -                                                | -                                                | -                                                | -                                                |                                                    | -                                                |                                                  | -                                                | -                                                | -                                                |                                                  |                                                  | -                                                | -                                                  | -                                                | -                                                | <del> </del>                                     | -                                                | -                                                  | <del> </del>                                     | -                                                | $\vdash$                                         | <del>                                     </del> |
| 71      | ┢                                                | ├─                                               |                                                  | -                                                | -                                                | -                                                  |                                                  |                                                  | -                                                | -                                                | -                                                |                                                  | -                                                |                                                  | -                                                  | <u> </u>                                         | -                                                | -                                                | -                                                | -                                                  | -                                                |                                                  |                                                  | <u> </u>                                         |
| 72      | <del>                                     </del> | <del> </del>                                     | -                                                | -                                                | -                                                |                                                    |                                                  | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                |                                                  | -                                                  | -                                                | -                                                | -                                                | -                                                | _                                                  | <del> </del>                                     | -                                                |                                                  | <u> </u>                                         |
| 73      | <u> </u>                                         | <u> </u>                                         | -                                                | -                                                | -                                                |                                                    | ,                                                | -                                                | -                                                | _                                                | -                                                | -                                                | <del> </del>                                     | <del> </del>                                     | -                                                  |                                                  |                                                  |                                                  |                                                  | <del>                                     </del>   | <del>                                     </del> | -                                                |                                                  |                                                  |
| 74      | -                                                | $\vdash$                                         | -                                                |                                                  |                                                  |                                                    | <u> </u>                                         |                                                  | _                                                |                                                  | -                                                |                                                  | -                                                | _                                                | -                                                  | <del>                                     </del> | _                                                | -                                                | -                                                |                                                    | $\vdash$                                         | _                                                | $\vdash$                                         |                                                  |
| 75      | $\vdash$                                         |                                                  |                                                  | -                                                | -                                                |                                                    | <del> </del>                                     | -                                                | -                                                | -                                                | -                                                | -                                                |                                                  |                                                  | -                                                  | -                                                |                                                  | -                                                | -                                                | -                                                  |                                                  | -                                                | <del> </del>                                     | <del> </del>                                     |
| 76      | -                                                | <del> </del>                                     | -                                                | -                                                |                                                  |                                                    | -                                                | -                                                | -                                                | <del> </del>                                     | -                                                | <del>                                     </del> | -                                                | -                                                | -                                                  |                                                  | -                                                | -                                                | -                                                | -                                                  | <del> </del>                                     | -                                                |                                                  | <del> </del>                                     |
| 77      | <u> </u>                                         | <u> </u>                                         | _                                                | <del>                                     </del> | _                                                | -                                                  | _                                                | <u> </u>                                         | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                | -                                                  | -                                                | -                                                | -                                                | -                                                | -                                                  | 1                                                | <del>                                     </del> |                                                  |                                                  |
| 78      | 1                                                | <u> </u>                                         | -                                                | <del>                                     </del> | <del>                                     </del> |                                                    | -                                                | ļ. —                                             | -                                                | -                                                | -                                                | <u> </u>                                         | -                                                | -                                                | -                                                  | -                                                | -                                                |                                                  | -                                                | <del>  -                                    </del> | +                                                | $\vdash$                                         | $\vdash$                                         | $\overline{}$                                    |
| 79      | <u> </u>                                         | 1                                                | <u> </u>                                         | <del>                                     </del> | <del>                                     </del> |                                                    | <del> </del>                                     | $\vdash$                                         | -                                                | <u> </u>                                         | -                                                | <del> </del>                                     | -                                                |                                                  | _                                                  | $\vdash$                                         |                                                  | <del>                                     </del> | <del> </del>                                     | <del>                                     </del>   | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     |
| 80      | Ħ                                                | _                                                |                                                  | -                                                | <del>                                     </del> | <del> </del>                                       |                                                  |                                                  | <del> </del>                                     | <del>                                     </del> | <u> </u>                                         | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | _                                                  | <del> </del>                                     |                                                  | <del>                                     </del> | <u> </u>                                         | $\vdash$                                           | <del>                                     </del> | <u> </u>                                         |                                                  |                                                  |
| 81      | $\vdash$                                         | T                                                |                                                  |                                                  | <b>†</b>                                         |                                                    |                                                  | <del>                                     </del> | <del>                                     </del> | <u> </u>                                         | <u> </u>                                         | <del>                                     </del> |                                                  |                                                  | _                                                  | $t^-$                                            |                                                  | -                                                |                                                  | <u> </u>                                           | <del>                                     </del> | _                                                |                                                  |                                                  |
| 82      |                                                  | 1                                                |                                                  | $\vdash$                                         | <del>                                     </del> | $\vdash$                                           | T                                                | _                                                | <del>                                     </del> | T                                                | _                                                | <b>†</b>                                         | $\vdash$                                         | <u> </u>                                         |                                                    |                                                  | <del>                                     </del> |                                                  | <u> </u>                                         | $\vdash$                                           | $\vdash$                                         | <u> </u>                                         | <u> </u>                                         | 1                                                |
| 83      | Ė                                                | 1                                                |                                                  | <del>                                     </del> | <u> </u>                                         |                                                    |                                                  | _                                                | _                                                | <u> </u>                                         | <del>                                     </del> | t                                                | _                                                | <del></del>                                      |                                                    | <del>                                     </del> | $\vdash$                                         |                                                  |                                                  | <del>                                     </del>   | <del>                                     </del> | <del>                                     </del> | -                                                | $\vdash$                                         |
| 84      | <u> </u>                                         | $\vdash$                                         |                                                  | $\vdash$                                         |                                                  |                                                    |                                                  | <u> </u>                                         | $\vdash$                                         |                                                  | <del>                                     </del> | 1                                                |                                                  |                                                  | <u> </u>                                           | <u> </u>                                         | <u> </u>                                         | <del>                                     </del> | <del>                                     </del> | 1                                                  | T                                                | <del>                                     </del> |                                                  | <u> </u>                                         |
| 85      | $\vdash$                                         | 1                                                | 1                                                | 1                                                | <del>                                     </del> | <del>                                     </del>   | $\vdash$                                         |                                                  | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | $\vdash$                                         |                                                  | <u> </u>                                         | $\vdash$                                           | 1                                                |                                                  |                                                  | <u> </u>                                         | <del>                                     </del>   | 1                                                | $\vdash$                                         | _                                                | <u> </u>                                         |
| 86      | <del>                                     </del> | $\vdash$                                         |                                                  | $\vdash$                                         | t                                                | <del>                                     </del>   | 1                                                | <del>                                     </del> | <b>†</b>                                         | 1                                                | $t^{-}$                                          | $\vdash$                                         |                                                  | <u> </u>                                         | <u> </u>                                           | <del>                                     </del> | <del>                                     </del> | T                                                | <u> </u>                                         | 1                                                  | $t^-$                                            | <u> </u>                                         |                                                  | $\vdash$                                         |
| 87      | $t^-$                                            | t                                                | _                                                | 1                                                | $\vdash$                                         | <del>                                     </del>   | <del>                                     </del> | 1                                                | 1                                                | <del>                                     </del> | <del>                                     </del> | 1                                                |                                                  |                                                  | 1                                                  | $\vdash$                                         | _                                                | <u> </u>                                         | $\vdash$                                         | $\vdash$                                           | $\vdash$                                         | <del>                                     </del> | <u> </u>                                         | $\vdash$                                         |
| 88      | 1                                                |                                                  |                                                  | <del>                                     </del> | <del>                                     </del> |                                                    | 1                                                | T                                                | <del>                                     </del> | T                                                | 1                                                | T                                                |                                                  |                                                  | Ť                                                  | <del>                                     </del> | <u> </u>                                         | <u> </u>                                         | T                                                | T                                                  |                                                  | $\vdash$                                         |                                                  | _                                                |
| 89      | T                                                | T                                                | <u> </u>                                         | $\vdash$                                         | <b>†</b>                                         | <del>                                     </del>   | $\vdash$                                         | <u> </u>                                         | <del>                                     </del> | -                                                | <del>                                     </del> | $\vdash$                                         |                                                  |                                                  | $\vdash$                                           | T                                                | <del>                                     </del> | 1.                                               | <u> </u>                                         | T                                                  | T                                                | <u> </u>                                         | _                                                | $\vdash$                                         |
| 90      | $t^-$                                            |                                                  | Ė                                                | t                                                | <del>                                     </del> | -                                                  | $\vdash$                                         | <u> </u>                                         | <u> </u>                                         | 1                                                | t                                                | <u> </u>                                         | <u> </u>                                         | -                                                | <del>                                     </del>   | <del>                                     </del> | <b> </b>                                         | <del>i</del>                                     | <u> </u>                                         | $t^{-}$                                            | 1                                                | <del>                                     </del> | 1                                                | $\vdash$                                         |
| 91      | <del>                                     </del> | +                                                | -                                                | $\vdash$                                         | <del> </del>                                     | -                                                  | +-                                               | $\vdash$                                         | H                                                | +-                                               | <del> </del>                                     | <del>                                     </del> | <u> </u>                                         | <del> </del>                                     | $\vdash$                                           | <del>                                     </del> | -                                                | <del>  -  </del>                                 | <del>                                     </del> | <del>                                     </del>   | <u> </u>                                         | $t^-$                                            | Ϊ̀                                               | <del>                                     </del> |
| 92      | †                                                | <del>                                     </del> | 1-                                               | $t^-$                                            | $\vdash$                                         | <del>  -                                    </del> | <u> </u>                                         | $\vdash$                                         | $\vdash$                                         | +-                                               | $\vdash$                                         | $\vdash$                                         | $\vdash$                                         | <del> </del>                                     | $\vdash$                                           | <del> </del>                                     | <del>                                     </del> | $\vdash$                                         | $\vdash$                                         | $\vdash$                                           | 1                                                | $\vdash$                                         | <del>                                     </del> | <del>                                     </del> |
| 93      | t                                                | $t^{-}$                                          | <del> </del>                                     | $\vdash$                                         | $\vdash$                                         | -                                                  | ۲                                                | -                                                | $\vdash$                                         | t                                                | $\vdash$                                         | 1                                                | 1                                                | <del>                                     </del> | $\vdash$                                           | $\vdash$                                         | <del>                                     </del> | +-                                               | <del>                                     </del> | $\vdash$                                           | <del>                                     </del> | +-                                               | <u> </u>                                         | 1                                                |
| 94      | 1                                                | <del> </del>                                     | -                                                | +-                                               | <del> </del>                                     | -                                                  | $\vdash$                                         | -                                                | <del>                                     </del> | <del> </del>                                     | +-                                               | 1                                                | <del> </del>                                     | -                                                | <del>  -                                    </del> | <del> </del>                                     | -                                                | +                                                | $\vdash$                                         | 1                                                  | 1                                                | <del> </del>                                     | -                                                | 1                                                |
| 95      | +-                                               | $\vdash$                                         | +                                                | $\vdash$                                         | ╁                                                | -                                                  | +-                                               | <del>                                     </del> | $\vdash$                                         | +-                                               | $\vdash$                                         | +-                                               | -                                                | <del> </del>                                     | ├-                                                 | $\vdash$                                         | -                                                | +                                                | ╁                                                | -                                                  | <del> </del>                                     | +-                                               | ┢┈                                               | +-                                               |
| 96      | +-                                               | +                                                | ├                                                | +                                                | ├                                                |                                                    | +-                                               |                                                  | ├                                                | $\vdash$                                         | +                                                | ├                                                | -                                                | -                                                | ├                                                  | ├                                                | <del> </del>                                     | ├                                                | +-                                               | +                                                  | +-                                               | <del> </del>                                     | ├                                                | ┝∸                                               |
| 96      |                                                  |                                                  |                                                  | <u></u>                                          |                                                  | L                                                  |                                                  | Ц                                                |                                                  | <u> </u>                                         |                                                  |                                                  | <u> </u>                                         |                                                  |                                                    | ــــــــــــــــــــــــــــــــــــــ           | L                                                |                                                  | ا                                                |                                                    |                                                  | <u> </u>                                         |                                                  |                                                  |



# 256-Bit Programmable Read Only Memories

#### **General Description**

The DM7577/DM8577 is a field-programmable, 256-bit, read only memory organized as 32 words of 8 bits each. This monolithic, high-speed, transistor-transistor-logic (TTL) memory array is addressed in 5-bit binary with full on-chip decoding. An overriding memory-enable input is provided which, when taken high, will inhibit the function causing all eight outputs to remain high. The organization is expandable to 1,856 words of n-bits with no additional output buffering.

The address of an 8-bit word is accomplished through the buffered binary select inputs in coincidence with a low logic level at the enable input. Where multiple DM7577/DM8577 devices are used in a memory system, the enable input allows easy decoding of additional address bits.

Data can be electronically programmed, as desired, at any of the 256-bit locations of the DM7577/DM8577 in accordance with the programming procedure specified. Prior to programming, the memory contains a high-logic-level output condition at all 256 bit locations. The programming procedure open-circuits nichrome links which results in a low-logic-level output at selected locations. The procedure is irreversible and, once altered, the

output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered may later be programmed to supply a low-level output. Operation of the unit within the recommended operating conditions will not alter the memory content.

The mask-programmable DM5488/DM7488 can be used to replace the DM7577/DM8577 as they are functionally and mechanically identical.

#### **Features**

- Field programmable for custom or prototype memories
- Mask-programmable DM5488/DM7488 is a direct replacement for the DM7577/DM8577
- Typical access time

35 ns

- Organized as 32 words of 8-bits each
- Ideal for microprogramming and code converters
- Open-collector outputs are easily expanded
- Fully-decoded buffered inputs
- Fully compatible with most TTL and DTL circuits
- Pin compatible with SN74188A

#### Connection Diagram



7577(J); 8577(J), (N)



|                 |                                           |                                                                         |     | DM75/85 |      |       |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------|-----|---------|------|-------|
|                 | PARAMETER                                 | CONDITIONS                                                              |     | 77      |      | UNITS |
|                 |                                           |                                                                         | MIN | TYP(1)  | MAX  |       |
| V <sub>IH</sub> | High Level Input Voltage                  |                                                                         | 2   |         |      | V     |
| V <sub>IL</sub> | Low Level Input Voltage                   | :                                                                       |     |         | 0.8  | V     |
| V <sub>I</sub>  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                          |     |         | -1.5 | V     |
| Гон             | High Level Output Current                 | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, V_{OH} = 5.5V$           |     | -       | 100  | μΑ    |
| loL             | Low Level Output Current                  |                                                                         |     | ***     | 12   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V.$<br>$V_{IL} = 0.8V, I_{OL} = 12 \text{ mA}$ |     |         | 0.4  | V     |
| lı .            | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                            |     |         | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                            |     |         | 40   | μΑ    |
| I <sub>IL</sub> | Low Level Input Current                   | $V_{CC} = Max, V_1 = 0.4V$                                              |     |         | -1   | mA    |
| Іссн            | Supply Current, Outputs High              | V <sub>CC</sub> = Max(2)                                                |     | 50      | 80 , | mA    |
| ICCL            | Supply Current, Outputs Low               | V <sub>CC</sub> = Max(3)                                                |     | 82      | 110  | mΑ    |

## Notes

- (1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}$  C.
- (2) I<sub>CCH</sub> is measured with all inputs at 4.5V, all outputs open.
- (3) I<sub>CCL</sub> is measured with enable input grounded, all other inputs at 4.5V, and all outputs open. The typical value shown is for the worst-case condition of all eight outputs low at one time. This condition may not be possible after the device has been programmed.

|                  | A Comment                                           | ā.     |     | ,                                                               |     | DM75/8 | 5    |       |
|------------------|-----------------------------------------------------|--------|-----|-----------------------------------------------------------------|-----|--------|------|-------|
|                  | PARAMETER                                           | FROM   | то  | CONDITIONS                                                      | · · | 77     | 1.74 | UNITS |
|                  |                                                     |        |     |                                                                 | MIN | TYP    | MAX  |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Enable | Any | ,                                                               |     | 22     | 35   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Enable | Any | $C_L = 30 \text{ pF to GND}$                                    |     | 15     | 35   | ns    |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Select | Any | $R_{L1} = 400\Omega$ to $V_{CC}$<br>$R_{L2} = 600\Omega$ to GND |     | 35     | 50   | ns    |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Select | Any |                                                                 |     | 35     | 50   | ns    |



## **Programming Procedure**

- Apply steady-state supply voltage (V<sub>CC</sub> = 5.0V, GND = 0V) and address the word to be programmed with specified input voltages.
- 2. Disable the outputs by applying a high logic level to the enable input.
- Only one bit location is programmed at a time. Open circuit all outputs except the one to be programmed as a low logic level.
- 4. Apply the specified programming pulse to the output to be programmed. The recommended pulse width is 1.0 ms.

The bit programmed may be verified by checking the output for a low logic level after the enable input reaches a low logic level.

- 5. Repeat steps 2 through 4 for each output of this address to be programmed as a low level.
- Advance to next address location and repeat steps 2 through 5.

## **Recommended Conditions for Programming**

| CONDIT            | IONS            | MIN | TYP | MAX  | UNITS |
|-------------------|-----------------|-----|-----|------|-------|
| Supply Voltage, V | /cc             | 5.0 |     | 5.5  | ٧     |
| Input Voltage     | Low Level       | 0   |     | 0.5  | ٧     |
|                   | High Level      | 2.4 |     | 5.0  | V     |
| Programming Puls  | e Amplitude     | 20  |     | 22   | ٧     |
| Programming Puls  | e Rise Time     | 1.0 | 5.0 | 10   | μs    |
| Programming Puls  | e Current Limit | 100 |     | 200  | mA    |
| Programming Puls  | e Width         | 10  | 20  | 50 , | ms    |
| Case Temperature  |                 | 25  |     | 75   | °C    |
|                   |                 |     |     |      |       |

## AC Test Circuit and Switching Time Waveforms





Input waveforms are supplied by pulse generators having the following characteristics:  $t_f \leq 10$  ns,  $t_f \leq 10$  ns, PRR = 1 MHz, PDC = 50%, Amplitude = 3.0V, and  $Z_0$  = 50 $\Omega$ .



# TRI-STATE 256-Bit Programmable Read Only Memories

## General Description

The DM7578/DM8578 is a field-programmable, 256-bit, read only memory organized as 32 words of 8 bits each. This monolithic, high-speed, transistor-transistor-logic (TTL) memory array is addressed in 5-bit binary with full on-chip decoding. An overriding memory-enable input is provided which, when taken high, will inhibit the function causing all eight outputs to remain in the high impedance (Z) state.

The address of an 8-bit word is accomplished through the buffered binary select inputs in coincidence with a low logic level at the enable input. Where multiple DM7578/DM8578 devices are used in a memory system, the enable input allows easy decoding of additional address bits. The TRI-STATE outputs eliminate the need for external pull-up resistors, and provide good capacitance drive capability.

Data can be electronically programmed, as desired, at any of the 256-bit locations of the DM7578/DM8578 in accordance with the programming procedure specified. Prior to programming, the memory contains a high-logic-level output condition at all 256 bit locations. The programming procedure open-circuits nichrome links which results in a low-logic-level output at selected locations.

The procedure is irreversible and, once altered, the output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered may later be programmed to supply a low-level output. Operation of the unit within the recommended operating conditions will not alter the memory content.

The mask-programmable DM7598/DM8598 can be used to replace the DM7578/DM8578 as they are functionally and mechanically identical.

#### **Features**

- Field programmable for custom or prototype memories
- Mask-programmable DM7598/DM8598 is a direct replacement for the DM7578/DM8578.
- Typical access time

35 ns

- Organized as 32 words of 8-bits each
- Ideal for microprogramming and code converters
- TRI-STATE outputs are easily expanded
- Fully-decoded buffered inputs
- Fully compatible with most TTL and DTL circuits
- Pin compatible with SN74188A

### Connection Diagram



7578(J); 8578(J), (N)



|                     |                                           |                                                                        |     | DM75/85 |      |       |  |
|---------------------|-------------------------------------------|------------------------------------------------------------------------|-----|---------|------|-------|--|
|                     | PARAMETER                                 | CONDITIONS                                                             |     | 78      |      | UNITS |  |
|                     |                                           |                                                                        | MIN | TYP(1)  | MAX  |       |  |
| ·V <sub>IH</sub>    | High Level Input Voltage                  |                                                                        | 2   |         |      | V     |  |
| V <sub>IL</sub>     | Low Level Input Voltage                   |                                                                        |     | ,       | 0.8  | V     |  |
| ٧ı                  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                         |     |         | -1.5 | V     |  |
| Гон                 | High Level Output Current                 | DM75                                                                   |     |         | -2.0 | mA    |  |
|                     |                                           | DM85                                                                   |     |         | -5.2 |       |  |
| V <sub>OH</sub>     | High Level Output Voltage                 | $V_{CC}$ = Min, $V_{IH}$ = 2V<br>$V_{IL}$ = 0.8V, $I_{OH}$ = Max       | 2.4 |         |      | V     |  |
| loL                 | Low Level Output Current                  |                                                                        |     |         | 12   | mA    |  |
| V <sub>OL</sub>     | Low Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 12 \text{ mA}$ |     |         | 0.4  | V     |  |
| I <sub>O(OFF)</sub> | Off State (High Impedance                 | $V_{CC} = Max$ $V_O = 0.4V$                                            |     | -       | -40  | ^     |  |
|                     | State) Output Current                     | $V_{1H} = 2.0V$ $V_{O} = 2.4V$                                         |     |         | 40   | μΑ    |  |
| l <sub>i</sub>      | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                           |     |         | 1    | mA    |  |
| I <sub>IH</sub>     | High Level Input Current                  | $V_{CC} = Max, V_1 = 2.4V$                                             |     |         | 40   | μΑ    |  |
| I <sub>IL</sub>     | Low Level Input Current                   | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                           |     |         | -1   | mA    |  |
| Ios                 | Short Circuit Output Current              | V <sub>CC</sub> = Max(2)                                               | -30 |         | -70  | mA    |  |
| I <sub>CC</sub>     | Supply Current                            | $V_{CC} = Max(3)$                                                      |     | 82      | 110  | mA    |  |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}C$ .

(2) Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

(3) I<sub>CC</sub> is measured with all inputs at 4.5V, all outputs open.

|                  |                                                     |        |     |                        |     | DM75/85 |     |       |
|------------------|-----------------------------------------------------|--------|-----|------------------------|-----|---------|-----|-------|
|                  | PARAMETER                                           | FROM   | то  | CONDITIONS             |     | 78      |     | UNITS |
|                  |                                                     |        |     |                        | MIN | TYP     | MAX |       |
| tpLH             | Propagation Delay Time,<br>Low-to-High Level Output | Select | Any |                        |     | 35      | 50  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Select | Any | C <sub>L</sub> = 50 pF |     | 35      | 50  | ns    |
| <sup>t</sup> zH  | Output Enable Time to<br>High Level                 | Enable | Any | R <sub>L</sub> = 400Ω  |     | 19      | 35  | ns    |
| tZL              | Output Enable Time to Low Level                     | Enable | Any |                        |     | 17      | 35  | ns    |
| t <sub>HZ</sub>  | Output Disable Time from<br>High Level              | Enable | Any | C <sub>L</sub> = 5 pF  |     | 11      | 35  | ns    |
| t <sub>LZ</sub>  | Output Disable Time from<br>Low Level               | Enable | Any | $R_L = 400\Omega$      |     | 21      | 35  | ns    |



## **Programming Procedure**

- Apply steady-state supply voltage (V<sub>CC</sub> = 5.0V, GND = 0V) and address the word to be programmed with specified input voltages.
- 2. Disable the outputs by applying a high logic level to the enable input.
- Only one bit location is programmed at a time. Open circuit all outputs except the one to be programmed as a low logic level.
- 4. Apply the specified programming pulse to the output

to be programmed. The recommended pulse width is 1.0 ms.

The bit programmed may be verified by checking the output for a low logic level after the enable input reaches a low logic level.

- 5. Repeat steps 2 through 4 for each output of this address to be programmed as a low level.
- Advance to next address location and repeat steps 2 through 5.

## **Recommended Conditions for Programming**

| CONDITION                         | S          | MIN | TYP   | MAX | UNITS |
|-----------------------------------|------------|-----|-------|-----|-------|
| Supply Voltage (V <sub>CC</sub> ) | 5 .        |     | 5.5   | V   |       |
| I Weller                          | Low Level  | 0   |       | 0.5 | V     |
| Input Voltage                     | High Level | 2.4 |       | 5   | V     |
| Programming Pulse Amp             | olitude    | 20  | ** ** | 22  | V -   |
| Programming Pulse Rise            | Time       | 1   | 5     | 10  | μs    |
| Programming Pulse Curr            | ent Limit  | 100 | :     | 200 | mA    |
| Programming Pulse Wid             | th         | 10  | 1.0   | 50  | ms    |
| Case Temperature                  |            | 25  |       | 75  | °c    |

#### AC Test Circuit and Switching Time Waveforms





Input waveforms are supplied by pulse generators having the following characteristics:  $t_r \leq$  10 ns,  $t_f \leq$  10 ns, PRR = 1 MHz, PDC = 50%, Amplitude = 3.0V and  $Z_0$  = 50 $\Omega$ 



# **TRI-STATE 16K Read Only Memories**

## **General Description**

The DM8581 is a 16,384-bit, bipolar, mask-programmable ROM organized as 1024, 16-bit words. Ten address inputs select the desired one-of-1024 words. All ten address inputs, and two of the three enable inputs have a latch feature. The latch function is controlled by the strobe

input. The three enable lines are used to either enable or disable the circuit. TRI-STATE outputs allow for expansion to greater number of words without sacrifice in speed as would be the case with open-collector outputs.

## Connection Diagram



Truth Table

| CE 1 | CE 2 | ST<br>t | CE 1<br>t+1 | CE 2<br>t+1 | EN<br>t+1 | ST<br>t+1 | OUTPUT<br>t+1                          |
|------|------|---------|-------------|-------------|-----------|-----------|----------------------------------------|
| ×    | х    | ×       | L           | L           | L         | н         | Read stored data for add inputs at t+1 |
| ×    | X    | ×       | Н           | ×           | Х         | н         | Hi-Z                                   |
| ×    | ×    | Х       | х           | н           | Х         | н         | Hi-Z                                   |
| ×    | Х    | ×       | ×           | Х           | Н         | н         | Hi-Z                                   |
| L    | L    | н       | ×           | ×           | L         | L         | Read stored data for add               |
|      |      |         |             |             |           |           | inputs at t                            |
| н    | X    | н       | ×           | Х           | Х         | L         | Hi-Z                                   |
| ×    | н    | н       | ×           | Х           | Х         | L         | Hi-Z                                   |
| Х    | X    | Х       | х           | X           | Н         | L         | Hi-Z                                   |



|                     |                                                                 |                                                 | DM85       |           |       |
|---------------------|-----------------------------------------------------------------|-------------------------------------------------|------------|-----------|-------|
|                     | PARAMETER                                                       | CONDITIONS                                      | 81         |           | UNITS |
|                     | •                                                               | *                                               | MIN TYP(1) | MAX       |       |
| V <sub>IH</sub>     | High Level Input Voltage                                        | V <sub>CC</sub> = Min                           | 2          |           | V     |
| VIL                 | Low Level Input Voltage                                         | V <sub>CC</sub> = Min                           |            | 0.8       | ٧     |
| Vi                  | Input Clamp Voltage                                             | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA  |            | -1.5      | V     |
| Іон                 | High Level Output Current                                       | ,                                               |            | -400      | μΑ    |
| V <sub>OH</sub>     | High Level Output Voltage                                       | V <sub>CC</sub> = Min, I <sub>OH</sub> = -400μA | 2.4        |           | V     |
| loL                 | Low Level Output Current                                        | ,                                               |            | 6         | mA    |
| VOL                 | Low Level Output Voltage                                        | V <sub>CC</sub> = Min, I <sub>OL</sub> = 6 mA   |            | 0.45      | V     |
| l <sub>O(OFF)</sub> | Off State (High Impédance State) <sup>3</sup><br>Output Current | $V_{CC} = Max$ $V_O = 0.4V$ $V_O = 2.4V$        | ·          | -40<br>40 | μΑ    |
| l <sub>i</sub>      | Input Current at Maximum<br>Input Voltage                       | $V_{CC} = Max, V_1 = 5.5V$                      |            | 1         | mA    |
| l <sub>IH</sub>     | High Level Input Current                                        | $V_{CC} = Max V_1 = 2.4V$                       | ·          | 40        | μΑ    |
| IIL                 | Low Level Input Current                                         | $V_{CC} = Max, V_1 = 0.4V$                      | *          | -0.8      | mA    |
| los                 | Short Circuit Output Current                                    | V <sub>CC</sub> = Max(2)                        | -15        | -50       | mA    |
| Icc                 | Supply Current                                                  | V <sub>CC</sub> = Max                           | . 115      | 160       | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) Tentative data

# **Switching Characteristics**

|                  |                                                     |         |        |                        |     | DM85 |     |       |
|------------------|-----------------------------------------------------|---------|--------|------------------------|-----|------|-----|-------|
|                  | PARAMETER                                           | FROM    | то     | CONDITIONS             | 81  |      |     | UNITS |
|                  |                                                     |         |        |                        | MIN | TYP  | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output | ,                      |     | 200  | 450 | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | C <sub>1</sub> = 50 pF |     | 150  | 450 | ns    |
| tzH              | Output Enable Time to High Level                    |         |        | R <sub>L</sub> = 600Ω  |     | 40   | 80  | ns    |
| tzL              | Output Enable Time to Low Level                     |         |        |                        |     | 70   | 165 | ns    |
| ts               | Address, Chip Enable (CE) Set-Up Time               |         |        |                        | 30  | 10   | ,   | ns    |
| t <sub>H</sub>   | Address, Chip Enable (CE) Hold Time                 |         |        |                        | 30  | 10   |     | ns    |
| tHZ              | Output Disable Time from High Level                 |         |        | C <sub>L</sub> = 5 pF  |     | 20   | 50  | ns    |
| tLZ              | Output Disable Time from Low Level                  |         |        | $R_L = 600\Omega$      |     | 40   | 60  | ns    |
| t <sub>W</sub>   | Minimum Strobe Pulse Width                          |         |        |                        | 40  | 20   |     | ns    |
| t <sub>ST</sub>  | Strobe Access Time                                  |         |        |                        |     | 250  | 450 | ns    |





# 8-Bit Parallel In/Serial Out Shift Registers

# **General Description**

These are 8-bit serial shift registers which shift the data in the direction of  $\Omega_A$  toward  $\Omega_H$  when clocked. Parallelin access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.

Clocking is accomplished through a 2-input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high. Data at the

parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

#### **Features**

- Complementary outputs
- Direct overriding load (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion

TYPICAL FREQUENCY

TYPICAL POWER DISSIPATION

90 20 MHz L90 14 MHz 200 mW 30 mW

## Connection Diagram



7590(J), (W); 8590(J), (N), (W); 76L90/86L90(J), (N), (W)

# Truth Table

|                          | RNAL            | INTE    | INPUTS   |        |        |         |        |  |  |  |  |
|--------------------------|-----------------|---------|----------|--------|--------|---------|--------|--|--|--|--|
| OUTPUT<br>Q <sub>H</sub> | PUTS            | ОUТ     | PARALLEL | 050141 | 01.001 | CLOCK   | SHIFT/ |  |  |  |  |
| Ωн                       | ΩB              | $Q_{A}$ | АН       | SERIAL | CLOCK  | INHIBIT | LOAD   |  |  |  |  |
| h                        | b               | а       | a h      | Х      | Х      | Х       | L      |  |  |  |  |
| Оно                      | Qso             | QAO     | ×        | ×      | L      | - L     | н      |  |  |  |  |
| , Q <sub>Gn</sub>        | $Q_{An}$        | Н       | ×        | н      | 1      | L       | н      |  |  |  |  |
| Q <sub>Gn</sub>          | $Q_{An}$        | L       | , x      | L.     | 1      | L '     | Н      |  |  |  |  |
| QHO                      | Q <sub>BO</sub> | QAA     | ×        | Х      | 1      | Н       | н      |  |  |  |  |

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

↑ = Transition from low-to-high level

a...h = The level of steady-state input at inputs A through H, respectively.

 ${\rm Q}_{A0},\,{\rm Q}_{B0},\,{\rm Q}_{H0}$  = The level of  ${\rm Q}_A,\,{\rm Q}_B,\,{\rm or}\,\,{\rm Q}_H,\,{\rm respectively},$  before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Gn}$  = The level of  $Q_{A}$  or  $Q_{G}$ , respectively, before the most recent † transition of the clock.

## Logic Diagram



# DM75/DM8590,DM76/DM86L90

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                            |                            |                                                  |                              |                          |        | DM75/85 | *************************************** |          | M76L/86L | -              |       |
|-----------------|----------------------------|----------------------------|--------------------------------------------------|------------------------------|--------------------------|--------|---------|-----------------------------------------|----------|----------|----------------|-------|
|                 | PARAMETER                  |                            | со                                               | NDITIONS                     |                          |        | 90      |                                         |          | L90      |                | UNITS |
|                 |                            |                            |                                                  |                              | MIN                      | TYP(1) | MAX     | MIN                                     | TYP(1)   | MAX      |                |       |
| VIH             | High Level Input Voltage   |                            |                                                  |                              | 2                        |        |         | 2                                       |          |          | V              |       |
| VIL             | Low Level Input Voltage    |                            |                                                  |                              |                          |        |         | 8.0                                     | ,        |          | 0.7            | V     |
| VI              | Input Clamp Voltage        |                            | V <sub>CC</sub> = Min,                           | I <sub>1</sub> =12 m/        | A                        |        |         | -1.5                                    |          |          | N/A            | V     |
| Іон             | High Level Output Current  |                            |                                                  |                              |                          |        |         | -800                                    |          |          | -200           | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage  |                            | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = Max, |                              | ,                        | 2.4    |         |                                         | 2.4      |          |                | V     |
| loL             | Low Level Output Current   |                            |                                                  |                              | DM75, DM76<br>DM85, DM86 |        |         | 16<br>16                                |          |          | 3.6            | mA    |
| V <sub>OL</sub> | Low Level Output Voltage   |                            |                                                  |                              | DM75, DM76<br>DM85, DM86 |        | 0.2     | 0.4                                     |          |          | 0.3            | ٧     |
| l <sub>1</sub>  | Input Current at Maximum   | Input Voltage              | V <sub>CC</sub> = Max,                           | V <sub>1</sub> = 5.5V        |                          |        |         | 1                                       |          |          | 0.1            | mA    |
| I <sub>IH</sub> | High Level Input Current   | Load Input<br>Other Inputs | V <sub>CC</sub> = Max,                           | V <sub>1</sub> = 2.4V        |                          |        |         | 80<br>40                                |          |          | 30<br>10       | μΑ    |
| IIL             | Low Level Input Current    | Load Input<br>Other Inputs | V <sub>CC</sub> = Max,                           | $V_1 = 0.3V$<br>$V_1 = 0.4V$ | (DM76/86)<br>(DM75/85)   |        |         | -3.2<br>-1.6                            |          |          | -0.54<br>-0.18 | mA    |
| los             | Short Circuit Output Curre | nt                         | V <sub>CC</sub> = Max(2                          | )                            | DM75, DM76<br>DM85, DM86 |        |         | -55<br>-55                              | -3<br>-3 | -9<br>-9 | -15<br>-15     | mA    |
| Icc             | Supply Current             |                            | V <sub>CC</sub> = Max(3                          | ;)                           |                          |        | 40      | 63                                      |          |          | 9.5            | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With the outputs open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the clock input, I<sub>CC</sub> is measured first with the parallel inputs at 4.5V, then with the parallel inputs grounded.

|                      |                                                     |                 |                |                                                 | DM75/8 | 35  |     | DM76                   | L/86L |     |     |       |    |
|----------------------|-----------------------------------------------------|-----------------|----------------|-------------------------------------------------|--------|-----|-----|------------------------|-------|-----|-----|-------|----|
|                      | PARAMETER                                           | FROM<br>(INPUT) | TO<br>(OUTPUT) |                                                 | 90     |     |     | LS                     | 90    |     |     | UNITS |    |
|                      |                                                     | ,,,,,           | (001.01)       | CONDITIONS                                      | MIN    | TYP | MAX | CONDITIONS             | MIN   | TYP | MAX |       |    |
| fMAX                 | Maximum Clock Frequency                             |                 |                |                                                 | 14     | 20  |     |                        | 6     | 14  |     | MHz   |    |
| t <sub>PLH</sub>     | Propagation Delay Time,<br>Low-to-High Level Output | Load            | <b>^</b>       |                                                 |        | 34  | 50  |                        |       | 44  | 88  | ns    |    |
| t <sub>PHL</sub>     | Propagation Delay Time,<br>High-to-Low Level Output | Load            | Any            |                                                 |        | 42  | 60  |                        |       | 62  | 124 | ns    |    |
| t <sub>PLH</sub>     | Propagation Delay Time,<br>Low-to-High Level Output | Clock           | ۸              |                                                 |        | 26  | 40  |                        |       | 35  | 70  | ns    |    |
| t <sub>PHL</sub>     | Propagation Delay Time,<br>High-to-Low Level Output | CIOCK           | Any            |                                                 |        | 35  | 50  | C <sub>1</sub> = 50 pF |       | 50  | 100 | ns    |    |
| tpLH                 | Propagation Delay Time,<br>Low-to-High Level Output | н               | 0              | C <sub>L</sub> = 15 pF<br>R <sub>L</sub> = 400Ω |        | 25  | 40  | $R_L = 4 k\Omega$      | ,     | 33  | 66  | ns    |    |
| t <sub>PHL</sub>     | Propagation Delay Time,<br>High-to-Low Level Output |                 | Qн             |                                                 |        |     | 36  | . 50                   |       |     | 56  | 112   | ns |
| t <sub>PLH</sub>     | Propagation Delay Time,<br>Low-to-High Level Output | н               | $\bar{Q}_{H}$  |                                                 |        | 25  | 40  |                        |       | 33  | 66  | ns    |    |
| tpHL                 | Propagation Delay Time,<br>High-to-Low Level Output | - ".            | $\alpha_{H}$   |                                                 |        | 36  | 50  | :                      |       | 56  | 112 | ns    |    |
| tw(CLOCK)            | Width of Clock Input Pulse                          |                 |                |                                                 | 35     | 25  |     |                        | 100   |     |     | ns    |    |
| t <sub>W(LOAD)</sub> | Width of Load Input Pulse                           |                 |                | ,                                               | 35     | 24  | -   |                        | 100   |     |     | ns    |    |
| <sup>t</sup> SETUP   | Parallel Input Setup Time                           |                 |                |                                                 | 25     | 10  |     |                        | 44    | 22  |     | ns    |    |
| t <sub>SETUP</sub>   | Serial Input Setup Time                             |                 |                |                                                 | 40     | 23  |     | 1                      | 44    | 22  |     | ns    |    |
| tHOLD                | Hold Time at Any Input                              |                 | •              |                                                 | 5      |     |     |                        | 10    |     |     | ns    |    |

## **Timing Diagram**



# AC Test Circuit and Switching Time Waveforms





#### Notes

- The eight data inputs and the clock inhibit input are low. Results are monitored at output Q<sub>H</sub> at t<sub>n+7</sub>.
- (2) The input pulse generators have the following characteristics:  $t_r \leq 10 \text{ ns, } t_f \leq 10 \text{ ns, PRR} \leq 1 \text{ MHz, duty cycle} \leq 50\%, \\ Z_{OUT} \approx 50\Omega.$



#### Notes

- (1) The remaining six data inputs and the serial input are low.
- (2) Prior to test, high level data is loaded into H input.
- (3) The input pulse generators have the following characteristics:  $t_f \le 10$  ns,  $t_f \le 10$  ns, PRR  $\le 1$  MHz, duty cycle  $\le 50\%$ ,  $Z_{OUT} \approx 50\Omega$ . When testing  $f_{MAX}$ , vary clock PRR,



# 4096-Bit Read Only Memories

## **General Description**

The DM7595/DM8595 and DM7795/DM8795 are 4096-bit, bipolar, mask-programmable ROMs organized as 512 eight-bit words. Nine address inputs select the desired one-of-512 words. Four enable lines are used to either enable or disable the circuit. The two devices differ in the enable logic. Truth tables and logic diagrams for each device are shown below. Open collector outputs allow for expansion to a greater number of words.

#### **Features**

- Series 54/74 specification compatibility
- Pin compatible with Monolithic Memories 5240/6240
- Typical address time

80 ns

Open collector outputs

#### Connection Diagram



#### Logic Diagram



#### Logic Diagrams and Truth Tables for Enable Circuitry

#### DM7595/DM8595

7795(J); 8795(J), (N)



# DM7795/DM8795



#### DM7595/DM8595

| E1 | E2 | E3 | E4 | ОИТРИТ           |
|----|----|----|----|------------------|
| L  | L  | ٠L | L  | Read Stored Data |
| н  | ×  | ×  | х  | н .              |
| ×  | н  | ×  | ×  | Н                |
| ×  | ×  | Н  | Х  | Н                |
| X  | X  | X  | н  | н .              |

X = Don't Care $ENABLE = \overline{E1} \cdot \overline{E2} \cdot \overline{E3} \cdot \overline{E4}$ 

#### DM7795/DM8795

| E1 | E2 | E3 | E4 | OUTPUT           |
|----|----|----|----|------------------|
| L  | L  | Н  | Η  | Read Stored Data |
| н  | Х  | Х  | Х  | Н                |
| Х  | Н  | Х  | Х  | н                |
| X  | Х  | L  | х  | н                |
| Х  | Х  | Х  | L  | Н                |

X = Don't Care $ENABLE = \overline{E}1 \cdot \overline{E}2 \cdot E3 \cdot E4$ 



# DM75/DM8595,DM77/DM8795

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                           | ·                                              | DM75/85, DM7 | 7/87  |       |
|-----------------|-------------------------------------------|------------------------------------------------|--------------|-------|-------|
|                 | PARAMETER                                 | CONDITIONS                                     | 95           | UNITS |       |
|                 |                                           |                                                | MIN TYP(1)   | MAX   |       |
| V <sub>IH</sub> | High Level Input Voltage                  | V <sub>CC</sub> = Min                          | 2.0          |       | V     |
| VIL             | Low Level Input Voltage                   | V <sub>CC</sub> = Min                          |              | 0.8   | V     |
| V <sub>I</sub>  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA |              | -1.5  | V     |
| Гон             | High Level Output Current                 | $V_{CC} = Max, V_O = 5.5V$                     |              | 100   | μΑ    |
| loL             | Low Level Output Current                  | ,                                              |              | 12    | mA    |
| V <sub>OL</sub> | Low Level Output Voltage                  | V <sub>CC</sub> = Min, I <sub>O</sub> = 12 mA  |              | 0.4   | , v   |
| . 11            | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V   |              | 1     | mA    |
| I <sub>IH</sub> | High Level Input Current                  | $V_{CC} = Max, V_1 = 2.4V$                     |              | 40    | μΑ    |
| IIL             | Low Level Input Current                   | $V_{CC} = Max$ , $V_1 = 0.4V$                  |              | -1.0  | mA mA |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max                          | 103          | 158   | mA    |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$  at  $T_A = 25^{\circ}C$ .

|                  | PARAMETER                                           | PARAMETER                           | TEST                   | DM7 | 595,DM        | 7795 | DM8 | 8795        | UNITS |       |  |
|------------------|-----------------------------------------------------|-------------------------------------|------------------------|-----|---------------|------|-----|-------------|-------|-------|--|
|                  | FANAMETEN                                           | CONDITIONS                          | CONDITIONS             | MIN | MIN TYP MAX M |      | MIN | MIN TYP MAX |       | ONTIS |  |
| tpLH             | Propagation Delay Time,<br>Low to High Level Output | Access Time from<br>Address         |                        |     | 80            | 150  |     | 80          | 120   | ns    |  |
| tpHL             | Propagation Delay Time,<br>High to Low Level Output | Access Time from Address            | C <sub>L</sub> = 30 pF |     | 80            | 150  |     | 80          | 120   | ns    |  |
| t <sub>PLH</sub> | Output Disable Time to<br>High Level                | Disable Time from<br>Memory Enables | $R_L = 400\Omega$      | ,   | 60            | 120  |     | 60          | 90    | ns    |  |
| t <sub>PHL</sub> | Output Enable Time to<br>Low Level                  | Access Times from<br>Memory Enables |                        |     | 60            | 120  |     | 60          | 90    | ns    |  |



## 80-Column Card Program Data Format

**Col. 1-3:** 3 Character ID code (any 3 alpha-numeric characters). Must be the same on all cards associated with a particular pattern, but different for the ID code used on other patterns. The purpose of this code is to prevent mixing of cards.

Col. 4: (Blank)

Col. 5-12: Word Data. Order is 08 (most significant) to 01 (least significant). Note 1. Characters—For TTL high level are: H or 1. Characters—For TTL low are L or 0. "Don't Care" is X.

Col. 13: (Blank)

Col. 14-21: Word Data-same format as 5-12.

Col. 22: (Blank)

Col. 23-30: Word Data

Col. 31: (Blank)

Col. 32-39: Word Data

Col. 40: (Blank)

Col. 41-48: Word Data

Col. 49: (Blank)

Col. 50-57: Word Data

Col. 58: (Blank)

Col. 59-66: Word Data

Col. 67: (Blank)

Col. 67: (Blank)
Col. 68-75: Word Data

Col. 76-78: (Blank)

Col. 79-80: Card sequence number. 1 to 64. Leading

zeros may be punched or suppressed. (Note 2)

#### Notes

(1) The words are listed in sequence beginning on the first card with the word associated with address 0 and ending on the last card with the word associated with address 511. Address input A8 is the most significant; A0, the least significant.

(2) Card sequence numbers reference a specific group of 8 words, i.e.:

Card 01: Word address 0 to 7

Card 02: Word address 8 to 15

Card 03: Word address 16 to 23

Card 64: Word address 504 to 511.

#### **AC Test Circuit**



# Switching Time Waveforms



Input waveforms are supplied by pulse generators having the following characteristics:  $t \le 10$  ns,  $t_f \le 10$  ns, PRR = 1 MHz, Amplitude = 3.0V, PDC = 50%, and  $Z_O = 50\Omega$ .



# TRI-STATE 4096-Bit Read Only Memories

## **General Description**

The DM7596/DM8596 and DM7796/DM8796 are 4096-bit, bipolar, mask-programmable ROMs organized as 512 eight-bit words. Nine address inputs select the desired one-of-512 words. Four enable lines are used to either enable or disable the circuit. The two devices differ in the enable logic. Truth tables and logic diagrams for each device are shown below. TRI-STATE outputs allow for expansion to greater numbers of words without sacrifice in speed as would be the case with open-collector outputs.

#### **Features**

- Series 54/74 specification compatibility
- Pin compatible with Monolithic Memories MM5241/ MM6241
- Typical address time

80 ns

■ TRI-STATE outputs

## Connection Diagram



7596(J); 8596(J), (N); 7796(J); 8796(J), (N)

## Logic Diagram



## Logic Diagrams and Truth Tables for Enable Circuitry





#### DM7596/DM8596

|   | E1 | E2 | E3 | E4 | OUTPUT           |
|---|----|----|----|----|------------------|
|   | L  | i_ | L  | L  | Read Stored Data |
| ı | Н  | Х  | X  | Х  | Hi - Z           |
|   | Х  | н  | ×  | ×  | Hi - Z           |
|   | х  | ïΧ | н  | х  | Hi - Z           |
|   | Х  | Х  | ×  | H  | Hi - Z           |

X = Don't Care

ENABLE = E1 · E2 · E3 · E4

#### DM7796/DM8796

| E1 | E2 | E3 | E4 | OUTPUT           |
|----|----|----|----|------------------|
| L  | L  | Ι  | н  | Read Stored Data |
| н  | Х  | Х  | х  | Hi - Z           |
| Х  | н  | Х  | Х  | Hi - Z           |
| Х  | Х  | L  | Х  | Hi - Z           |
| Х  | х  | Х  | L  | Hi - Z           |

X = Don't Care

ENABLE = E1 · E2 · E3 · E4

# DM75/DM8596,DM77/DM8796

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                                        |                                                | DM  | 75/85, DM77/ | 75/85, DM77/87 |    |  |
|-----------------|----------------------------------------|------------------------------------------------|-----|--------------|----------------|----|--|
|                 | PARAMETER                              | CONDITIONS                                     |     | 96           |                |    |  |
|                 |                                        |                                                | MIN | TYP(1)       | MAX            |    |  |
| V <sub>IH</sub> | High Level Input Voltage               | V <sub>CC</sub> = Min                          | 2.0 |              |                | ٧  |  |
| VIL             | Low Level Input Voltage                | V <sub>CC</sub> = Min                          |     |              | 0.8            | V  |  |
| VI              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA |     |              | -1.5           | ٧  |  |
| Гон             | High Level Output Current              | •                                              |     |              | -2             | mA |  |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, I <sub>O</sub> = -2 mA  | 2.4 |              |                | ٧  |  |
| loL             | Low Level Output Current               |                                                |     |              | 12             | mA |  |
| V <sub>OL</sub> | Low Level Output Voltage               | V <sub>CC</sub> = Min, I <sub>O</sub> = 12 mA  |     |              | 0.4            | V  |  |
| lo(OFF)         | Off-State (High Impedance              | $V_{CC} = Max$ $V_O = 0.4V$ $V_O = 2.4V$       | ļ   |              | -40<br>40      | μΑ |  |
|                 | State) Output Current                  | V <sub>O</sub> = 2.4V                          |     |              | 40             |    |  |
| t <sub>t</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Min, V <sub>1</sub> = 5.5V   |     |              | , 1            | mA |  |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V   |     |              | 40             | μА |  |
| IIL             | Low Level Input Current                | $V_{CC} = Max, V_1 = 0.4V$                     |     |              | -1.0           | mA |  |
| los             | Output Short Circuit Current           | $V_{CC} = Max(2)$                              | -15 |              | -70            | mA |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max, Inputs Grounded         |     | 106          | 170            | mA |  |

- All typical values are at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C.
   Not more than one output should be shorted at a time.

|                  | PARAMETER                                           | PARAMETER                            | TEST                                      | DM7 | 596,DM      | 7796  | DM8         | 596,DM | 8796 | UNITS  |
|------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------------|-----|-------------|-------|-------------|--------|------|--------|
|                  | PARAWETER                                           | CONDITIONS                           | CONDITIONS                                | MIN | MIN TYP MAX |       | MIN TYP MAX |        | MAX  | JUNITS |
| tpLH             | Propagation Delay Time,<br>Low to High Level Output | Access Time from Address             |                                           |     | 80          | , 150 |             | 80     | 120  | ns     |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High to Low Level Output | Access Time from Address             | $C_L = 50 \text{ pF}$ $R_{L} = 400\Omega$ |     | 80          | 150   |             | 80     | 120  | ns     |
| <sup>t</sup> zH  | Output Enable Time to<br>High Level                 | Access Times from<br>Memory Enables  |                                           |     | 40          | 120   |             | 40     | 90   | ns     |
| <sup>t</sup> ZL  | Output Enable Time to Low Level                     | Access Times from<br>Memory Enables  |                                           |     | 60          | 120   |             | 60     | 90   | ns     |
| t <sub>HZ</sub>  | Output Disable Time from<br>High Level              | Disable Times from<br>Memory Enables | C <sub>L</sub> = 5.0 pF                   |     | 20          | 70    |             | 20     | 50   | ns     |
| tLZ              | Output Disable Time from<br>Low Level               | Disable Times from<br>Memory Enables | R <sub>L</sub> = 400Ω                     |     | 25          | 70    |             | 25     | 50   | ns     |

## 80-Column Card Program Data Format

Col. 1-3: 3 Character ID code (any 3 alpha-numeric characters). Must be the same on all cards associated with a particular pattern, but different for the ID code used on other patterns. The purpose of this code is to prevent mixing of cards.

Col. 4: (Blank)

Col. 5-12: Word Data. Order is 08 (most significant) to 01 (least significant). Note 1. Characters—For TTL high level are: H or 1. Characters—For TTL low are L or 0. "Don't Care" is X.

Col. 13: (Blank)

Col. 14-21: Word Data-same format as 5-12.

Col. 22: (Blank)

Col. 23-30: Word Data

Col. 31: (Blank)

Col. 32-39: Word Data

Col. 40: (Blank)

Col. 41-48: Word Data

Col. 49: (Blank)

Col. 50-57: Word Data

Col. 58: (Blank)

Col. 59-66: Word Data

Col. 67: (Blank)

Col. 68-75: Word Data

Col. 76-78: (Blank)

Col. 79-80: Card sequence number. 1 to 64. Leading

zeros may be punched or suppressed. (Note 2)

#### Notes

(1) The words are listed in sequence beginning on the first card with the word associated with address 0 and ending on the last card with the word associated with address 511. Address input A8 is the most significant; A0, the least significant.

(2) Card sequence numbers reference a specific group of 8 words, i.e.:

Card 01: Word address 0 to 7

Card 02: Word address 8 to 15

Card 03: Word address 16 to 23

Card 64: Word address 504 to 511

## AC Test Circuit and Switching Time Waveforms







Note 1: Input waveforms are supplied by pulse generators having the following characteristics:

 $t_r \leq$  10 ns,  $t_f \leq$  10 ns, PRR = 1 MHz, PDC = 50%, Amplitude = 3.0V , and  $Z_0 = 50\Omega$  .



#### General Description

The DM7597/DM8597 is a custom-programmed read only memory organized as 256 4-bit words. Selection of the proper word is accomplished through the eight select inputs. Two overriding memory enable inputs are provided, which when mask-programmed in one of three options described will cause all four outputs to either read the normal memory contents or go to the "high impedance" state. In this state both the upper and lower output transistors are turned "OFF." The outputs may therefore be paralleled to increase word capacity;

# TRI-STATE 1024-Bit Read Only Memories

since in the high-impedance state they present only a minimal load to the active output.

#### **Features**

- TRI-STATE outputs
- Pin compatible with DM54187/DM74187
- 35 ns typical delay from address to output
- Can be expanded to 32,768 4-bit words by simple paralleling of outputs
- Programmable memory enable inputs

#### **Connection Diagram**



7597(J); 8597(J), (N)

#### **Truth Table**

#### PROGRAMMABLE MEMORY ENABLE OPTIONS

| OPTION | ME 1 | ME2 | OUTPUTS |
|--------|------|-----|---------|
| 1      | L    | L   | Normal  |
|        | н    | ×   | Hi-Z    |
|        | ×    | н   | Hi-Z    |
| 2      | н    | н   | Normal  |
|        | L    | ×   | Hi-Z    |
|        | ×    | L   | Hi-Z    |
| 3      | Н    | L   | Normal  |
|        | ×    | н   | Hi-Z    |
|        | L    | ×   | Hi-Z    |

X = Don't Care

#### Logic Diagram





|                     |                                                    | •                                                                                            | DM75/85        |       |  |
|---------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|-------|--|
|                     | PARAMETER                                          | CONDITIONS                                                                                   | 97             | UNITS |  |
|                     |                                                    |                                                                                              | MIN TYP(1) MAX |       |  |
| V <sub>IH</sub>     | High Level Input Voltage                           | V <sub>CC</sub> = Min                                                                        | 2.0            | V     |  |
| V <sub>IL</sub>     | Low Level Input Voltage                            | V <sub>CC</sub> = Min                                                                        | 0.8            | V     |  |
| V <sub>I</sub>      | Input Clamp Voltage                                | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                               | -1.5           | V     |  |
| Гон                 | High Level Output Current                          | DM75<br>DM85                                                                                 | -2.0<br>-5.2   | mA    |  |
| V <sub>OH</sub>     | High Level Output Voltage                          | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OH</sub> = Max | 2.4            | · v   |  |
| loL                 | Low Level Output Current                           | ,                                                                                            | 16             | mA    |  |
| V <sub>OL</sub>     | Low Level Output Voltage                           | $V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = 0.8V, I_{OL} = Max$                                    | 0.4            | , V   |  |
| I <sub>O(OFF)</sub> | Off State (High Impedance<br>State) Output Current | $V_{CC} = Max                                  $                                             | -40<br>40      | μΑ    |  |
| l <sub>1</sub>      | Input Current at Maximum<br>Input Voltage          | V <sub>CC</sub> = Max, V <sub>I</sub> = 5.5V                                                 | 1.0            | · mA  |  |
| I <sub>IH</sub>     | High Level Input Current                           | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.4V                                                 | 40             | μΑ    |  |
| I <sub>IL</sub>     | Low Level Input Current                            | $V_{CC} = Max, V_1 = 0.4V$                                                                   | -1.0           | mA    |  |
| los                 | Short Circuit Output Current                       | V <sub>CC</sub> = Max(2)                                                                     | -20 -70        | mA    |  |
| Icc                 | Supply Current                                     | V <sub>CC</sub> = Max                                                                        | 75 110         | mA    |  |

#### Notes

(1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}$  C.

(2) Not more than one output should be shorted at a time.

| 1                |                                                     |         |        |                       |     | DM75/85 |     |         |
|------------------|-----------------------------------------------------|---------|--------|-----------------------|-----|---------|-----|---------|
|                  | PARAMETER                                           | FROM    | то     | CONDITIONS            |     | 97      |     | UNÌTS   |
|                  |                                                     |         |        | ·                     | MIN | TYP     | MAX |         |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output |                       |     | 31      | 60  | ns      |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | $C_L = 50 pF$         |     | 39      | 60  | ns      |
| tzH              | Output Enable Time to<br>High Level                 | Enable  | Any    | R <sub>L</sub> = 400Ω |     | 20      | 30  | ns      |
| tzL              | Output Enable Time to<br>Low Level                  | Enable  | Any    |                       |     | 20      | 30  | ns      |
| t <sub>HZ</sub>  | Output Disable Time from High Level                 | Enable  | Any    | C <sub>L</sub> = 5 pF |     | 20      | 30  | ns      |
| tLZ              | Output Disable Time from Low Level                  | Enable  | Any    | $R_L = 400\Omega$     |     | 20      | 30  | ns<br>* |



#### **Ordering Instructions**

Programming instructions for the DM7597 or DM8597 are solicited in the form of a sequenced deck of 32 standard 80-column data cards providing the information requested under data card format, accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete truth table of the requested part. This truth table, showing output conditions for each of the 256 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the truth table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the eight words specified and describes the conditions at the four outputs for each of the eight words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown

## Supplementary Ordering Data

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number

## **Data Card Format**

#### Column

- 1-3 Punch a right-justified integer representing the binary input address (00-248) for the first set of outputs described on the card.
- 4 Punch a "-" (minus sign)
- 5-7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card.
- 8-9 Blank
- 10-13 Punch "H," "L," or "X" for bits four, three, two and one (outputs Y4, Y3, Y2, and Y1 in that order) for the first set of outputs specified on the card. H = high level output, L = low level output, X = output irrelevant.
- 14 Blan
- 15-18 Punch "H," "L," or "X" for the second set of outputs.
- 19 Blank

- 20-23 Punch "H," "L," or "X" for the third set of outputs.
- 24 Blank
- 25-28 Punch "H," "L," or "X" for the fourth set of outputs.
- 29 Blank
- 30-33 Punch "H," "L," or "X" for the fifth set of outputs.
- 34 Blank
- 35-38 Punch "H," "L," or "X" for the sixth set of outputs.
- 39 Blank
- 40-43 Punch "H," "L," or "X" for the seventh set of outputs.
- 44 Blank
- 45-48 Punch "H," "L," or "X" for the eighth set of outputs.
- 49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
- 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
- 56 Blank
- 57-58 Punch the last two digits of the current year.
- 59 Blank
- 60-61 Punch "DM"
- 62-65 Punch 7597 or 8597
- 66-70 Blank
- 71 Punch 1, 2 or 3 for memory enable option desired (assumed 1 if not punched).

#### **AC Test Circuit**





# TRI-STATE 256-Bit Read Only Memories

## **General Description**

The DM7598/DM8598 is a mask-programmed 256-bit read only memory, organized as 32, 8-bit words. A 5-bit input code selects the appropriate word which then appears on the eight outputs. An enable input overrides the select inputs and blanks all outputs.

Although the DM7598/DM8598 can have its outputs tied together for word-expansion, the outputs are not open-collector, but rather the familiar totem-pole output with the capability of being placed in a "third-state." This unique TRI-STATE concept allows outputs to be tied together and then connected to a common bus line. Normal TTL outputs cannot be connected due to the low-impedance logical "1" output current which one device would have to sink from the other. If, however, on all but one of the connected devices both the upper and lower output transistors are turned "OFF," then the one remaining device in the normal low impedance state will have to supply to, or sink from, the other devices only a small amount of leakage current.

While it is true that in a TTL system open-collector gates could be used to perform the logic function of these

TRI-STATE elements, neither waveform integrity nor optimum speed would be achieved. The low output impedance of the DM7598/DM8598 provides good capacitance drive capability and rapid transition from the logical "0" to logical "1" level, thus assuring both speed and waveform integrity.

It is possible to connect as many as 128 DM8598s to a common bus line and still have adequate drive capability to allow fan-out from the bus.

#### **Features**

- TRI-STATE outputs
- Pin compatible with DM5488/DM7488
- Organized as 32 8-bit words
- Full internal decoding
- 26 ns typical access time
- 350 mW typical power dissipation
- Designed for bus-organized systems

#### Connection and Logic Diagrams



7598(J); 8598(J), (N)





|                     | PARAMETER                                          | CONDIT                                        | TONS                      |            | DM75/85 |                  | UNITS |
|---------------------|----------------------------------------------------|-----------------------------------------------|---------------------------|------------|---------|------------------|-------|
|                     |                                                    | `                                             |                           | MIN TYP(1) |         | MAX              |       |
| V <sub>IH</sub>     | High Level Input Voltage                           | V <sub>CC</sub> = Min                         |                           | 2          |         | **************** | V     |
| V <sub>1L</sub>     | Low Level Input Voltage                            | V <sub>CC</sub> = Min                         |                           |            |         | 0.8              | ٧     |
| V <sub>ľ</sub>      | Input Clamp Voltage                                | V <sub>CC</sub> = Min, I <sub>1</sub>         | = -12 mA                  |            |         | -1.5             | V     |
| Гон                 | High Level Output Current                          |                                               | DM75<br>DM85              |            |         | -2.0<br>-5.2     | mA    |
| V <sub>OH</sub>     | High Level Output Voltage                          | $V_{CC} = Min, V_{II}$ $V_{IL} = 0.8V, I_{O}$ | •                         | 2.4        | ė.      | ,                | V     |
| l <sub>OL</sub>     | Low Level Output Current                           |                                               |                           |            |         | 12               | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage                           | $V_{CC} = Min, V_1$ $V_{1L} = 0.8V, I_0$      |                           |            |         | 0.4              | V     |
| <sup>1</sup> 0(0FF) | Off-State (High Impedance State)<br>Output Current | V <sub>CC</sub> = Max                         | $V_O = 0.4V$ $V_O = 2.4V$ |            |         | -40<br>40        | μΑ    |
| 11                  | Input Current at Maximum Input<br>Voltage          | V <sub>CC</sub> = Min, V <sub>1</sub>         | = 5.5V                    |            |         | 1                | mA    |
| l <sub>IH</sub>     | High Level Input Current                           | V <sub>CC</sub> = Max, V <sub>1</sub>         | = 2.4V                    |            |         | 25               | μΑ    |
| I <sub>IL</sub>     | Low Level Input Current                            | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V  |                           |            |         | -1.0             | mA    |
| los                 | Output Short Circuit Current                       | $V_{CC} = Max(2)$                             |                           | -20        |         | -70              | mA    |
| lcc                 | Supply Current                                     | V <sub>CC</sub> = Max, Inputs<br>Grounded     |                           |            | 70      | 99               | mA    |

(1) All typical values are at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C.
(2) Not more than one output should be shorted at a time.

|                  | DADAMETED                                           | PARAMETER                          | CONDITIONS                                          |     | DM75 |     |     | DM85 |     | UNITS |    |
|------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------|-----|------|-----|-----|------|-----|-------|----|
|                  | PARAMETER                                           | CONDITIONS                         | CONDITIONS                                          | MIN | TYP  | MAX | MIN | TYP  | MAX | UNITS |    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low to High Level Output | Access Time from<br>Address        | $C_{\perp} = 50 \text{ pF}$ $R_{\perp} = 400\Omega$ |     | 23   | 65  |     | 23   | 50  | ns    |    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High to Low Level Output | Access Time from<br>Address        |                                                     |     |      | 29  | 65  |      | 29  | 50    | ns |
| tzH              | Output Enable Time to<br>High Level                 | Access Time from<br>Memory Enable  |                                                     |     |      | 16  | 40  |      | 16  | 30    | ns |
| tzL              | Output Enable Time to<br>Low Level                  | Access Time from<br>Memory Enable  |                                                     |     | 20   | 40  |     | 20   | 30  | ns    |    |
| t <sub>HZ</sub>  | Output Disable Time from High Level                 | Disable Time from<br>Memory Enable | $C_L = 5.0 \text{ pF}$ $R_L = 400\Omega$            |     | 10   | 30  |     | 10   | 20  | ns    |    |
| t <sub>LZ</sub>  | Output Disable Time from<br>Low Level               | Disable Timé from<br>Memory Enable |                                                     |     | 22   | 45  |     | 22   | 40  | ns    |    |



# **AC Test Circuit and Switching Time Waveforms**



C<sub>L</sub> includes probe and jig capacitance. All diodes are 1N3064.



Note: Input waveforms are supplied by pulse generators having the following characteristics:  $t_n \leq 10$  ns,  $t_S \leq 10$  ns, PRR  $\leq 1.0$  MHz and  $Z_{OLIT} \approx 50 \Omega.$ 

#### **Truth Table**

A special pattern has been generated for the DM7598/DM8598. The AA pattern provides a sine look up table. The 5-bit input code linearly devides 90° into 32 equal segments. Each 8-bit output is therefore the sine of the angle applied.

EXAMPLE: Input 11010 means 26/32 of  $90^{\circ}$ , or about  $73^{\circ}$ . The corresponding output 1110100 indicates (1/2 + 1/4 + 1/8 + 1/16 + 1/64) or about 0.95, which is close to the sine of  $73^{\circ}$ . Rounding-off has not been employed, since without rounding-off, it is possible to extend the accuracy with additional ROMs.

| INPUTS |    |      |       |      |    |        |      |      |      |            |      |      |      |      |
|--------|----|------|-------|------|----|--------|------|------|------|------------|------|------|------|------|
| WORD   |    | BINA | RY SE | LECT | -  | ENABLE | ,    |      | ,    | OUTP       | UIS  |      |      |      |
| WORD   | Е  | D    | С     | В    | Α  | ME     | Y8   | Y7   | Y6   | <b>Y</b> 5 | Y4   | Y3   | Y2   | ¥1   |
| 0      | L  | L    | L     | L    | L  | · L    | L    | L.   | L    | L          | L    | ٦    | L    | L    |
| 1      | L  | L    | L     | L    | Н  | L      | L    | L    | L    | L          | Н    | Н    | L    | L    |
| 2      | L  | L    | L     | Н    | L  | L      | L    | L    | L    | Н          | Н    | L    | L    | Н    |
| 3      | L  | L    | Ĺ     | Н    | Н  | L      | L    | L    | Н    | L          | L    | Н    | L.   | Н    |
| 4      | L  | L    | Н     | L    | L  | L      | L    | L    | Н    | Н          | L    | L.   | L    | Н    |
| 5      | L  | L    | Н     | Ĺ    | Н  | L      | L    | L    | Н    | Н          | Н    | Ė    | Н    | L    |
| 6      | L  | L    | Ĥ     | Η    | L  | · L    | L    | Н    | L    | L          | Ι    | L    | Ξ    | L    |
| 7      | L  | L    | Н     | Н    | Н  | L      | L    | Н    | L    | Н          | L    | Ť    | Н    | L    |
| 8      | L  | Ι    | L     | L    | L  | L      | L    | Ŧ    | Н    | L          | , L  | ٦    | L    | Н    |
| 9      | L  | Н    | L     | L    | Н  | L      | L    | Ξ    | Н    | L          | Н    | Н    | ٦.   | Н    |
| 10     | L  | Н    | Ľ     | Н    | L  | L      | L    | Н    | Н    | Н          | Н    | L    | L    | L    |
| 11     | L  | Н    | L     | .H   | Н  | L      | Н    | L    | L    | L          | L    | L    | Н    | Н    |
| 12     | L  | Н    | Н     | L    | L  | , L    | Н    | L    | L    | L          | Н    | Н    | Н    | L    |
| 13     | L  | Н    | Н     | L    | Н  | L      | Н    | L    | L    | Н          | Н    | L    | L    | L    |
| 14 .   | L  | Н    | Н     | Н    | L  | L      | Н    | L    | Н    | L          | L    | L    | Н    | L    |
| 15     | L  | Н    | Н     | Н    | Н  | L      | Н    | Ĺ    | Н    | L          | Н    | L,   | Н    | Н    |
| 16     | Н  | L    | L     | L    | L. | L      | Н    | L    | Н    | Н          | L    | Н    | L    | Н    |
| 17     | Н  | L    | L     | L    | Н  | L      | Н    | L    | Н    | H          | Н    | Н    | L    | Н    |
| 18     | Н  | L    | L     | Н    | L  | L      | Н    | Н    | L    | L.         | L    | Н    | L    | H    |
| . 19   | Н  | L    | L     | Н    | Н  | L      | Н    | Н    | L    | L          | Н    | Н    | L    | . н  |
| 20     | H: | L    | • H   | L.   | L  | , L    | Н    | Н    | L    | Н          | L    | Н    | L    | L    |
| 21     | Н  | L    | Н     | L    | Н  | L      | · H, | Н    | L    | Н          | Н    | L    | Н    | Н    |
| . 22   | Н  | ·L   | Η.    | Н    | L  | L      | Н    | Н    | Η.   | L          | L    | L    | ٦    | Н    |
| 23     | Н  | L    | Н     | Н    | Н  | L      | Н    | Н    | Н    | L          | L    | Н    | Ι    | Η    |
| . 24   | Н  | Н    | L     | L    | L  | L      | Н    | H    | Н    | L.         | Н    | Н    | L    | L    |
| 25     | H  | Н    | L     | L,   | Н  | L      | Н    | Н    | Н    | Н          | L    | L    | L    | Н    |
| 26     | Н  | Н    | L     | Н    | L  | , L    | Н    | Н    | Н    | Н          | L,   | Η.   | ·L   | L    |
| 27     | Н  | Н    | L.    | Н    | Н  | L      | Н    | Н    | Н    | Н          | Н    | L    | L    | L    |
| 28     | Н  | Н    | Н     | L    | L  | L      | Н    | Н    | Н    | Н          | Н    | L    | Н    | Н    |
| 29     | Н  | H.   | H     | L    | Н  | L      | Н    | Н    | Н    | Н          | Н    | Н    | L    | Н    |
| 30     | Н  | Н    | Н     | Н    | L  | L      | .H   | Н    | Н    | Н          | Н    | Н    | Н    | L    |
| 31     | Н  | Н    | Н     | Н    | H  | L      | Н    | Н    | Н    | Н          | Н    | Н    | Н    | Н    |
| · All  | X  | Х    | X     | Х    | Х  | Н      | Hi-Z | Hi-Z | Hi-Z | Hi-Z       | Hi-Z | Hi-Z | Hi-Z | Hi-Z |

X = Don't Ĉare



# Truth Table/Order Blank

The output levels are not shown on the truth table since the customer specifies the output condition he desires at each of the eight outputs for each of the 32 words (256 bits). The customer does this by filling out the Truth Table on this data sheet, and sending it in with his purchase order

|      | INPUTS |      |      |     |     |        |      |      |      |                   |      |      |      | *************************************** |
|------|--------|------|------|-----|-----|--------|------|------|------|-------------------|------|------|------|-----------------------------------------|
|      |        | BINA | RYSE | LEC | r - | ENABLE |      |      |      | OUTF              | 015  |      |      |                                         |
| WORD | E      | D    | С    | В   | Α   | ME     | Y8   | Y7   | Y6   | Y5                | Y4   | Y3   | Y2   | Y1                                      |
| 0    | L      | L    | L    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 1    | L      | L    | L    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 2    | L      | L    | L    | Н   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 3    | L      | L    | L    | Н   | H   | L      |      |      |      |                   |      |      |      |                                         |
| 4    | L      | L    | - н  | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 5    | L      | L    | Н    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 6    | L      | L    | Н    | Н   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 7    | L      | L    | Н    | Н   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 8    | L      | Н    | L    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 9    | L      | Н    | L    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 10   | L      | Н    | L    | Н   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 11   | L      | Н    | L    | Н   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 12   | L      | Н    | Н    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 13   | L      | Н    | Н    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 14   | L      | Н    | Н    | Н   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 15   | L      | Н    | Н    | Н   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 16   | Н      | L    | L    | L   | L.  | L      |      |      |      |                   |      |      |      |                                         |
| 17   | Н      | L    | L    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 18   | Н      | L    | L    | Н   | L.  | L      |      |      |      |                   |      |      |      |                                         |
| 19   | Н      | Ĺ    | L    | ' H | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 20   | Н      | L    | Н    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 21   | Н      | L    | Н    | Ļ   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 22   | Н      | L    | Н    | H'  | L   | L      |      |      |      |                   |      |      |      |                                         |
| 23   | Н      | L    | Н    | Н   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 24   | H.     | Н    | L    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 25   | Н      | Н    | L    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 26   | Н      | Н    | L    | Н   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 27   | Н      | Н    | L    | Н   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 28   | Н      | Н    | Н    | L   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 29   | Н      | Н    | Н    | L   | Н   | L      |      |      |      |                   |      |      |      |                                         |
| 3,0  | Н      | Н    | Н    | Η   | L   | L      |      |      |      |                   |      |      |      |                                         |
| 31   | Н      | Н    | Н    | Ħ   | Τ   | L      |      |      |      |                   |      |      |      |                                         |
| All  | Х      | Х    | Х    | Х   | Х   | Н      | Hi-Z | Hi-Z | Hi-Z | H <sub>I</sub> -Z | Hi-Z | Hi-Z | Hi-Z | Hi-Z                                    |

#### X = Don't Care

Notice: This sheet must be completed and signed by an authorized representative of the customer's company before an order can be entered.

| To be used by National only           | Authorized Rep | Date     |          |
|---------------------------------------|----------------|----------|----------|
| Part Number S.O. Number Date Received | Company        |          |          |
|                                       | Desired Part   | □ DM7598 | □ DM8598 |



#### Ordering Instructions

Programming instructions for the DM7598/DM8598 are solicited in the form of a sequenced deck of 32 standard 80-column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table of the requested part. This function table, showing output conditions for each of the 32 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the word specified and describes the levels at the eight outputs for that word. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

#### Supplementary Ordering Data

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number

The following information will be furnished to the customer:

- a) National's part number
- b) National's sales order number
- Date received

#### **Data Card Format**

Col. 1–2: Punch a right-justified integer representing the positive-logic binary input address (00–31) for the word described on the card.

Col. 3-4: Blank

Col. 5: Punch "H" or "L" for output Y8, H = high-voltage level output, L = low-voltage level output.

Col. 6-9: Blank

Col. 10: Punch "H" or "L" for output Y7.

Col. 11-14: Blank

Col. 15: Punch "H" or "L" for output Y6.

Col. 16-19: Blank

Col. 20: Punch "H" or "L" for output Y5.

Col. 21-24: Blank

Col. 25: Punch "H" or "L" for output Y4.

Col. 26-29: Blank

Col. 30: Punch "H" or "L" for output Y3.

Col. 31-34: Blank

Col. 35: Punch "H" or "L" for output Y2.

Col. 36-39: Blank

Col. 40: Punch "H" or "L" for output Y1.

Col. 41-49: Blank

Col. 50-51: Punch a right-justified integer representing the current calendar day of the month.

Col. 52: Blank

Col. 53-55: Punch an alphabetic abbreviation representing the current month.

Col. 56: Blank

Col. 57-58: Punch the last two digits of the current year.

Col. 59: Blank

Col. 60-61: Punch "DM,"

Col. 62-66: Punch "7598" or "8598."

Col. 67-68: Blank

**Col. 69–80:** These columns may be used for any customer information or identification.



# **TRI-STATE 64-Bit Random Access Memories**

# **General Description**

The DM7599/DM8599 is a fully decoded 64-bit RAM organized as 16 4-bit words. The memory is addressed by applying a binary number to the four address inputs. After addressing, information may be either written into or read from the memory. To write, both the memory enable and the write enable inputs must be in the logical "0" state. Information applied to the four write inputs will then be written into the addressed location. To read information from the memory the memory enable input must be in the logical. "O" state and the write enable input in the logical "1" state. Information will be read as the complement of what was written into the memory. When the memory enable input is in the logical "1" state, the outputs will go to the high-impedance state. This allows up to 128 memories to be connected to a common bus line without the use of pull-up resistors. All memories except one are gated into the high impedance state while the one selected memory exhibits the normal low impedance output characteristics of TTL.

#### **Features**

- TRI-STATE outputs
- Same pin-out as DM5489/DM7489
- Organized as 16, 4-bit words
- Expandable to 2048, 4-bit words without additional resistors (DM8599 only)
- Typical access from chip enable

20 ns

Typical access time

28 ns

# **Connection Diagram**



#### Truth Table

| MEMORY<br>ENABLE | WRITE<br>ENABLE | OPERATION | OUTPUTS            |
|------------------|-----------------|-----------|--------------------|
| L                | L               | Write     | Hi-Z               |
| L                | н               | Read      | Complement of Data |
|                  |                 |           | Stored in Memory   |
| н                | ×               | Hold      | Hi-Z               |

# Logic Diagram





|                 |                                                    |                                                                        | DM75/8     | 5         |       |  |
|-----------------|----------------------------------------------------|------------------------------------------------------------------------|------------|-----------|-------|--|
|                 | PARAMETER                                          | CONDITIONS                                                             | 99         |           | UNITS |  |
|                 | · · · ·                                            |                                                                        | MIN TYP(1) | MAX       |       |  |
| ViH             | High Level Input Voltage                           | V <sub>CC</sub> = Min                                                  | 2          |           | V     |  |
| VIL             | Low Level İnput Voltage                            | V <sub>CC</sub> = Min                                                  |            | 0.8       | · V   |  |
| V <sub>I</sub>  | Input Clamp Voltage                                | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                         |            | -1.5      | V     |  |
| Гон             | High Level Output Current                          | DM75                                                                   |            | -2.0      | mA    |  |
|                 | ,                                                  | DM85                                                                   |            | -5.2      | · ''' |  |
| V <sub>OH</sub> | High Level Output Voltage                          | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = Max$           |            | 2.4       | V     |  |
| lor             | Low Level Output Current                           |                                                                        |            | 12        | mA    |  |
| V <sub>OL</sub> | Low Level Output Voltage                           | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 12 \text{ mA}$ |            | 0.4       | V     |  |
| lo(OFF)         | Off State (High Impedance<br>State) Output Current | $V_{CC} = Max \qquad V_O = 0.4V$ $V_O = 2.4V$                          |            | -40<br>40 | μΑ    |  |
| I <sub>1</sub>  | Input Current at Maximum<br>Input Voltage          | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                           |            | 1         | mA    |  |
| I <sub>IH</sub> | High Level Input Current                           | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.4V                           |            | 40        | μΑ    |  |
| I <sub>IL</sub> | Low Level Input Current                            | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                           | -          | -1.6      | mA    |  |
| los             | Short Circuit Output Current                       | V <sub>CC</sub> = Max(2)                                               | -30        | -70       | mA    |  |
| lcc             | Supply Current                                     | V <sub>CC</sub> = Max                                                  | , 80       | 120       | mA    |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                  |                                     |                 |         |          |                                                 |     | DM75/85          |     |       |
|------------------|-------------------------------------|-----------------|---------|----------|-------------------------------------------------|-----|------------------|-----|-------|
|                  | PARAMET                             | ER              | FROM    | то       | CONDITIONS                                      |     | 99               |     | UNITS |
|                  |                                     |                 |         | <b>.</b> |                                                 | MIN | TYP              | MAX |       |
| <sup>t</sup> PLH | Propagation D<br>Low-to-High L      |                 | Address | Output   |                                                 |     | 27               | 45  | ns    |
| <sup>t</sup> PHL | Propagation D<br>High-to-Low L      |                 | Address | Output   | C <sub>L</sub> = 50 pF<br>R <sub>1</sub> = 400Ω |     | 28               | 45  | ns    |
| tzH              | Output Enable Time to<br>High Level |                 | ME      | Output   | 11 <sub>L</sub> = 40032                         |     | 14 1             | 20  | ns    |
| tzL              | Output Enable<br>Low Level          | Time to         | ME      | Output   |                                                 | ,   | 19               | 30  | ns    |
| t <sub>HZ</sub>  | Output Disabl<br>High Level         | e Time from     | ME      | Output   | C <sub>L</sub> = 5 pF                           |     | 12               | 20  | ns    |
| <sup>t</sup> LZ  | Output Disabl<br>Low Level          | e Time from     | ME      | Output   | R <sub>L</sub> = 400Ω                           |     | . 21             | 30  | ns    |
| †SETUP           | Setup Time                          | Address<br>Data | ı       | ,        |                                                 | 0   | -17<br>-15       |     | ns    |
| tHOLD            | Hold Time                           | Address<br>Data |         |          |                                                 | 5.  | <u>-7</u><br>-14 |     | ns    |
| t <sub>WP</sub>  | Write Enable Pulse Width            |                 |         |          | ,                                               | 40  | 23               |     | ns    |
| t <sub>SR</sub>  | Sense Recover                       | y Time          |         |          |                                                 |     | 42               | 60  | ns    |



#### **Typical Performance Curves**















LOGICAL "1" OUTPUT VOLTAGE VS SOURCE CURRENT



SENSE RECOVERY TIME



DELAY FROM ENABLE TO OUTPUT VS LOAD CAPACI-



# **Test Circuit**

#### TEST CIRCUIT FOR DELAY VS LOAD CAPACITANCE



Note: In a typical application the output of the TRI-STATE memories might be wired together and one would be switching to the low impedance state at the same time the circuit previously selected would be switching back into the high impedance state. The measurements of delay versus load capacitance were made under conditions which simulate actual operating conditions in an application. (See test circuit.)

# **AC Test Circuit**



# Switching Time Waveforms







Note: The pulse generator has the following characteristics: V = 3.0V,  $t_r$  = 15 ns,  $t_f$  = 5.0 ns, f = 500 kHz, duty cycle = 50%, Z<sub>OUT</sub> = 50 $\Omega$ , V<sub>t</sub> = 1.3V @ 25°C.



# TRI-STATE Magnitude Comparators with A almost equal B

#### **General Description**

These circuits are low power, 4-bit, magnitude comparators which provide both standard totem-pole TTL outputs as well as TRI-STATE outputs. A comparison of two, 4-bit words is performed, and the result indicated by the four outputs:  $A>B,\,A\leq B,\,A\equiv B,\,{\rm and}\,A\sim B.$  The  $A\sim B$  output is unique with this device, and is enabled only when Word A is within one binary count of Word B. The comparison is expandable to any number, without the need for external gates. The maximum speed method of cascading, and typical comparison times are shown in Figures 1 and 2.

#### Features

- TRI-STATE outputs
- May be cascaded to compare words of greater length
- Typical power dissipation

5 mW

- Four separate outputs
  - $A \equiv B$
  - $A \le B$
  - A > B $A \sim B$
- A almost equal to B (A  $\sim$  B) output permits lookahead and anticipation of a match (A  $\equiv$  B)

# **Connection Diagram**



# Logic Diagram



Truth Table

|          | COMPARI           | NG INPUTS |         |     | BLE |       | OUT  | PUTS | 4.       |
|----------|-------------------|-----------|---------|-----|-----|-------|------|------|----------|
| (MSB)    |                   |           | (LSB)   | INP | UTS |       |      |      | <u> </u> |
| A3 B3    | A2 B2             | A1 B1     | A0 B0   | E01 | E02 | A < B | A≡B  | A∼B  | A>B      |
| A3 > B3  | A2 > B2           | A1 > B1   | A0 > B0 | L   | L   | L     | L    | н    | н        |
| A3 < B3  | $A2 < B2^{\circ}$ | A1 < B1   | A0 < B0 | L   | L   | н -   | L    | Н    | L        |
| A3 = B3  | A2 > B2           | X         | Х       | L   | L   | L     | L    | L    | Н        |
| A3 = B3  | A2 < B2           | X         | Х       | L   | L   | • ,H  | L    | L    | L        |
| A3 = B3  | A2 = B2           | A1 > B1   | Х       | L   | L   | L     | L.   | - L  | Н        |
| A3 = B3  | A2 = B2           | A1 < B1   | Х       | L   | L   | Н     | L    | L    | L"       |
| A3 = B3* | A2 = B2           | A1.= B1   | A0 > B0 | L.  | L   | L     | · L. | н    | Н        |
| A3 = B3* | * A2 = B2         | A1 = B1   | A0 < B0 | L   | L.  | Н     | L    | Н    | L-       |
| A3 = B3  | A2 = B2           | A1 = B1   | A0 = B0 | L   | L.  | L     | н    | L    | L        |
| ×        | Х                 | X         | Х       | Н   | Х   | Hi-Z  | Hi-Z | Hi-Z | Hi-Z     |
| ×        | ×                 | ×         | Χ.      | х   | н   | Hi-Z  | Hi-Z | Hi-Z | Hi-Z     |

<sup>\*</sup>Word A > Word B By 1

<sup>\*\*</sup>Word A < Word B By 1

H = High Level, L = Low Level, X = Don't Care



|                     |                                           |                                                               |                       |     | DM76   |      |     | DM86              |                 |       |
|---------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------|-----|--------|------|-----|-------------------|-----------------|-------|
|                     | PARAMETER                                 | CONDITION                                                     | vs ·                  |     | L24    | . •  |     | L24               |                 | UNITS |
|                     |                                           |                                                               |                       | MIN | TYP(1) | MAX  | MIN | TYP(1)            | MAX             |       |
| VIH                 | High Level Input Voltage                  |                                                               |                       | 2   | •      |      | 2   | Acres (1) profits |                 | ٧     |
| VIL                 | Low Level Input Voltage                   |                                                               | ,                     |     |        | 0.7  |     |                   | 0.7             | ٧     |
| VI                  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                | 4                     |     | ,      | -1.5 |     |                   | -1.5            | ٧     |
| Іон                 | High Level Output Current                 | ·                                                             |                       |     |        | -1.0 |     |                   | -1.0            | mA    |
| V <sub>OH</sub>     | High Level Output Voltage                 | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OH} = -1.0$ | mA                    | 2.4 |        |      | 2.4 | •,                |                 | ٧     |
| loL                 | Low Level Output Current                  |                                                               |                       |     |        | 2.0  |     |                   | 3.6             | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OL} = Max$  | ,                     |     | 1      | 0.3  |     | ·                 | 0.4             | ٧     |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)          | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                   | V <sub>O</sub> = 0.3V |     |        | -40  |     |                   | <del>-4</del> 0 | μΑ    |
|                     | Output Current                            | V <sub>IL</sub> = 0.7V                                        | $V_0 = 2.4V$          |     |        | 40   |     |                   | 40              | μΛ    |
| I <sub>I</sub> '    | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                  |                       |     |        | 100  |     |                   | 100             | μΑ    |
| I <sub>IH</sub>     | High Level Input Current                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                  |                       |     |        | 10   |     |                   | 10              | μΑ    |
| l <sub>IL</sub>     | Low Level Input Current                   | $V_{CC} = Max, V_1 = 0.3V$                                    |                       |     | ,      | -180 |     |                   | -180            | μΑ    |
| los                 | Short Circuit Output Current              | V <sub>CC</sub> = Max(2)                                      |                       | -6  |        | -30  | -6  |                   | -30             | mA    |
| lcc                 | Supply Current                            | V <sub>CC</sub> = Max, V <sub>I</sub> = 0V                    |                       |     | 15     | 20   |     | 15                | 20              | mA    |

#### Motor

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                  |                                                     | DM76L/86L |        |                                                |         |     |     |       |  |
|------------------|-----------------------------------------------------|-----------|--------|------------------------------------------------|---------|-----|-----|-------|--|
|                  | PARAMETER                                           | FROM      | то     | CONDITIONS                                     |         | L24 |     | UNITS |  |
|                  |                                                     |           |        |                                                | MIN TYP |     | MAX |       |  |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Data      | Output |                                                |         | 86  | 130 | ns    |  |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data      | Output | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |         | 55  | 85  | ns    |  |
| tzH              | Output Enable Time to<br>High Level                 |           |        | C <sub>L</sub> = 50 pF, N <sub>L</sub> = 4 k22 |         | 34  | 51  | ns    |  |
| tzL              | Output Enable Time to<br>Low Level                  |           |        |                                                | u       | 47  | 70  | ns    |  |
| tHZ              | Output Disable Time from<br>High Level              |           |        | $C_1 = 5 pF, R_1 = 4 k\Omega$                  |         | 15  | 23  | ns    |  |
| t <sub>LZ</sub>  | Output Disable Time from<br>Low Level               |           |        |                                                |         | 57  | 86  | ns    |  |



# DM76/DM86L24

# **Typical Applications**



FIGURE 1. 16-BIT COMPARATOR, MAXIMUM LOGIC EXPANSION (NOT SUITABLE FOR A  $\sim$  B)



FIGURE 2. MAXIMUM SPEED EXPANSION (NOT SUITABLE FOR A  $\sim$  B)

| COMPARE<br>(FIGURE 2) | CIRCUIT DELAY | NUMBER<br>OF CIRCUITS |
|-----------------------|---------------|-----------------------|
| 1-4 BITS              | 1 DELAY       | 1                     |
| 5-7 BITS              | 2 DELAYS      | 2                     |
| 8-10 BITS             | 2 DELAYS      | 3                     |
| 11-13 BITS            | 2 DELAYS      | 4                     |
| 14-16 BITS            | 2 DELAYS      | 5                     |

# **AC Test Circuit and Switching Time Waveforms**









Note: The pulse generator has the following characteristics: V = 3.0V,  $t_r = 15$  ns,  $t_f = 5.0$  ns, f = 500 kHz, duty cycle = 50%,  $Z_{OUT} = 50\Omega$ .  $V_t = 1.3V @ 25^{\circ}C$ .

**OUTPUT ENABLE** 



# TRI-STATE 7-Segment to BCD Decoder

# **General Description**

These circuits are low power converters which accept 7-segment data on the inputs, and provide binary-coded decimal (BCD) data on the outputs. An input control line is also provided, in the event that the 7-segment input data is presented in inverted form. The BCD outputs are normally of the standard totem-pole TTL type, however they may also be converted to high-impedance (TRI-STATE) types by applying a high logic level to either of the two output enable pins.

#### **Features**

- TRI-STATE outputs
- Typical power dissipation

75 mW

■ Typical propagation delay

70 ns

# **Connection Diagram**



76L25/86L25(J), (N), (W)

## **Truth Table**

| DIG      | Т   | а          | b    | С      | d      | е      | f      | g      | CTL      | CS 1       | CS 2     | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|----------|-----|------------|------|--------|--------|--------|--------|--------|----------|------------|----------|----------------|----------------|----------------|----------------|
|          |     | Н          | Н    | Н      | Н      | Н      | Н      | · L    | Н        | L          | L        | L              | L              | - L            | L              |
| 1        | ١   | L.         | Н    | н      | Ĺ      | . L    | L      | L      | н        | L          | L        | L              | L              | L              | н              |
| 2        | - 1 | н          | Н    | L      | Н      | Н      | L      | H.     | н        | . L        | L        | L              | Ĺ              | Н              | L              |
|          |     | н          | Н    | н      | H      | L      | L      | Н      | н        | L          | L        | L              | L              | н              | Н              |
| 1 4      | - 1 | L          | Н    | н      | L      | L      | H'     | . н    | н        | L,         | L        | L              | Н              | L              | L              |
| 5.       | ]   | . <b>H</b> | L    | H      | Н      | L      | Н      | н      | н        | L          | L        | . F            | Н              | L              | н              |
| b<br>  6 | - 1 | L.         | L    | Н      | Н      | Н      | н      | Н      | н        | L          | - L      | Ĺ              | . Н            | н              | L              |
| 5        | - 1 | н          | L    | Н      | H,     | ·H     | H      | Н      | н        | L          | L        | Ł              | H              | Н              | L              |
| 7        | - 1 | Н          | Н    | Н      | L      | L      | L      | L      | н        | . <b>L</b> | L        | L              | Н              | Н              | Н              |
| B        | - 1 | Н          | Н    | Н      | Н      | Н      | Н      | Н      | 'Н       | L          | L        | Н              | L              | L              | L              |
| 9        |     | Н          | Н    | Н      | Ļ      | .F     | Н      | Н      | Н        | L          | L        | Н              | L              | L              | н              |
| 9        | - 1 | Н          | Н    | Н      | H      | L      | Н      | Н      | н        | Ł          | L        | Н              | L              | Ľ              | Н              |
| BLAN     | IK  | L          | L    | L      | L      | Ļ      | L      | L      | Н        | L          | L.       | Н              | Н              | Н              | Н              |
| \ L      | ı   | L          | L    | L      | Н      | Н      | Н      | L      | Н        | L          | L        | Н              | · H            | L              | Η.             |
| E        | - 1 | Н          | L    | L      | Н      | Н      | Н      | Н      | Н        | Ĺ          | L        | Н              | Н              | Н              | L.             |
| I A      | ļ   | Н          | Н    | Н      | ٠,٢    | Н      | Н      | Н      | н        | L          | L        | Н              | L              | Н              | L.             |
| P        | - [ | Н          | Н    | L      | L      | Н      | Н      | Н      | Н        | L          | L        | н              | L              | Н              | Н              |
| -        | - 1 | L          | L    | L      | L      | L      | L      | Н      | Н        | L          | L        | н              | н              | L              | Ļ              |
|          | .   | L          | L    | L      | L      | L      | L      | н      | L        | L          | L        | L              | L              | L              | L              |
| 1 /      | - 1 | Н          | L    | L      | Н      | Н      | Н      | Н      | L        | L          | L        | L              | L              | L              | Н              |
| E<br>E   | ĺ   | L          | L    | Н      | L      | L      | Н      | L      | L        | L          | L        | L              | L              | н              | L              |
| 1 =      |     | L          | L    | L      | L      | Н      | Н      | L      | L        | L          | L        | L              | L              | н              | Н              |
| 4        | - 1 | Н          | L    | L      | Н      | Н      | L      | L      | L        | L          | L        | L              | Н              | L              | L              |
| 5        |     | L          | H.   | L      | L      | Н      | L      | L      | L        | L          | L        | L              | Н              | L              | Н              |
| 6        | - 1 | Н          | Н    | L      | L      | L      | L      | L      | L        | L          | L        | L              | Н              | Н              | L              |
| 5        |     | L          | Н    | L      | L      | L      | L      | L      | L        | Γ.         | L        | L              | Н              | Н              | L              |
| 1 7      | - 1 | L          | L    | L      | Н      | Н      | Н      | Н      | L        | L          | L        | L              | Н              | Н              | Н              |
|          | - 1 | Ľ          | L    | L      | L      | L      | L      | L      | L        | L          | L        | Н              | L              | L              | L              |
| 9        |     | L          | L    | L      | Н      | Η,     | L      | L,     | L        | L.         | L        | Н              | L              | L              | Н              |
| 9        |     | Ľ          | L    | L      | L      | H      | Γ,     | L      | L'       | L          | L        | H              | L              | L              | H              |
| BLAN     | IK  | Н          | H    | Н      | H      | Ĥ (    | Η.     | Н      | L        | L          | L .<br>L | Н              | Н              | H.             | Н              |
| L<br>E   |     | Н          | Н    | Н      | L      | L      | L      | . н    | L.       | L          |          | H              | Н              | L              | н              |
| I A      | - 1 | L          | H    | H      | L<br>H |        | L      | L      | L.       | Ļ          | L.;      | Н              | ,H             | H              | L              |
| P        | - 1 |            | -L   | L      |        | L<br>L | E<br>L | L      | <u> </u> | L<br>L     | L        | Н              | L              | Н              | L              |
| 1 -      | - 1 | L.<br>H    | Н    | H      | H      | H      | H      | L      | ı.L      | Ľ          | . L      | , H            | L<br>H         | H              | . Н            |
| 1        |     | Х          | Х    | Х      | Х      | Х      | H<br>X | L<br>X | L<br>L   | H          | X ·      | H<br>Z         | H.             | L<br>Z         | L              |
| 1        |     | X          | X    | X      | X      | X      | X      | X      | X        | Х          | Н        | z              | Z              | Z              | Z              |
| -        | .   |            |      | r Inpu |        |        |        | ^      | ^        | Ĺ          | L        | H              | . д            | . Z            | Н              |
|          |     |            | Jule | . mpu  | . 0011 | winati | U113   |        | <u> </u> |            |          | <u> </u>       | - 11           | . "            | - 11           |

# Logic Diagram



# Segment Identification





|                     |                                           |                                                                                                 |                       |     | DM76L  |      |     |        |      |       |
|---------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|-----|--------|------|-----|--------|------|-------|
|                     | PARAMETER                                 | CONDITION                                                                                       | S                     |     | L25    |      |     | L25    |      | UNITS |
|                     |                                           |                                                                                                 | ١                     | MIN | TYP(1) | MAX  | MIN | TYP(1) | MAX  |       |
| V <sub>IH</sub>     | High Level Input Voltage                  |                                                                                                 |                       | 2   |        |      | 2   |        |      | ٧     |
| VIL                 | Low Level Input Voltage                   |                                                                                                 |                       |     |        | 0.7  |     |        | 0.7  | V     |
| Vi                  | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                  |                       |     |        | -1.5 |     |        | -1.5 | ٧     |
| Іон                 | High Level Output Current                 |                                                                                                 |                       |     |        | -1.0 |     |        | -1.0 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage                 | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.7V, I <sub>OH</sub> = -1.0 s | mA                    | 2.4 |        |      | 2.4 |        |      | ٧     |
| loL                 | Low Level Output Current                  |                                                                                                 |                       |     |        | 2.0  |     |        | 3.6  | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage                  | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OL} = Max$                                    |                       |     |        | 0.3  |     |        | 0.4  | ٧     |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)          | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                                                     | V <sub>O</sub> = 0.3V |     |        | 40   |     |        | -40  | μΑ    |
| -                   | Output Current                            | V <sub>IL</sub> = 0.7V                                                                          | $V_0 = 2.4V$          |     |        | 40   |     |        | 40   | μΛ    |
| l <sub>1</sub>      | Input Current at Maximum<br>Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                    |                       |     |        | 100  |     |        | 100  | μΑ    |
| l <sub>iH</sub>     | High Level Input Current                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                    |                       |     |        | 10   |     |        | 10   | μΑ    |
| l <sub>IL</sub>     | Low Level Input Current                   | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.3V                                                    |                       |     |        | -180 |     |        | -180 | μΑ    |
| los                 | Short Circuit Output Current              | V <sub>CC</sub> = Max(2)                                                                        |                       | -6  |        | -30  | -6  |        | -30  | mA    |
| Icc                 | Supply Current                            | . V <sub>CC</sub> = Max, V <sub>I</sub> = 0V                                                    |                       |     | 15     | 20   |     | 15     | 20   | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                             |                                                     |         |        |                                                |     | DM76L/86 | L   |       |
|-----------------------------|-----------------------------------------------------|---------|--------|------------------------------------------------|-----|----------|-----|-------|
|                             | PARAMETER                                           | FROM TO |        | CONDITIONS                                     | L25 |          |     | UNITS |
|                             |                                                     |         |        |                                                | MIN | TYP      | MAX |       |
| <sup>t</sup> PLH            | Propagation Delay Time,<br>Low-to-High Level Output | Data    | Output | e e e e e e e e e e e e e e e e e e e          |     | 86       | 130 | ns    |
| t <sub>PHL</sub>            | Propagation Delay Time,<br>High-to-Low Level Output | Data    | Output | C = 50 = 5 P = 4 kO                            |     | 55       | 85  | ns    |
| <sup>t</sup> z <sub>H</sub> | Output Enable Time to<br>High Level                 |         |        | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |     | 34       | 51  | ns    |
| tzL                         | Output Enable Time to<br>Low Level                  |         |        |                                                |     | 47       | 70  | ns    |
| <sup>t</sup> HZ             | Output Disable Time from<br>High Level              |         |        | $C_L = 5 pF, R_L = 4 k\Omega$                  |     | 15       | 23  | ns    |
| tLZ                         | Output Disable Time from<br>Low Level               |         |        | C <sub>L</sub> = 5 pr, n <sub>L</sub> = 4 k32  |     | 57       | 86  | ns    |



AC Test Circuit



# **Switching Time Waveforms**





Note: The pulse generator has the following characteristics: V = 3.0V,  $t_r$  = 15 ns,  $t_f$  = 5.0 ns, f = 500 kHz, duty cycle = 50%,  $Z_{OUT}$  = 50 $\Omega$ ,  $V_t$  = 1.3V @ 25°C.



# Presettable Decade/Binary Counters

#### **General Description**

These synchronous, presettable counters are true tenthpower versions of the popular DM54160A/DM74160A, DM54161A/DM74161A, DM9310, and DM9316 counters. They feature an internal carry/look ahead for high-speed cascading, and trigger on the positive-going transition of the clock pulse. The counters are fully programmable; and, since presetting is synchronous, applying a low logic level to the load input disables the counter and forces the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs. Low-to-high transitions at the load inputs are acceptable, regardless of the logic levels on the clock or enable inputs. The clear (reset) function is asynchronous, and a low level applied to the clear input sets all four outputs low regardless of the levels on the clock, load, or enable inputs. In high-speed cascading arrangements, both count-enable inputs (P, T) must be high to count, and input T is fed forward to enable the ripple carry output. This high-level overflow ripple carry pulse can be used to enable successive stages. High-to-low level transitions at the P or T enable inputs are permitted, regardless of the logic level on the clock.

#### **Features**

- Low power versions popular counters
  - DM76L75/DM86L75 = DM54160A/DM74160A,
    - DM9310 decade counter
  - DM76L76/DM86L76
- DM54161A/DM74161A,
   DM9316 binary counter
- Internal look-ahead for fast cascading
- Counters are fully synchronous and presettable
- Typical power dissipation

33 mW

## Connection Diagram



76L75/86L75(J), (N), (W); 76L76/86L76(J), (N), (W)



|                 | PARAMETER                              | CONDITION                                                     | c                   |     | DM76L | <u> </u>     |        | DM86L |              | UNITS |
|-----------------|----------------------------------------|---------------------------------------------------------------|---------------------|-----|-------|--------------|--------|-------|--------------|-------|
| ,               | ANAMETER                               | CONDITION                                                     | 3                   |     |       | MIN          | TYP(1) |       |              |       |
| V <sub>IH</sub> | High Level Input Voltage               | × .                                                           | 2                   |     |       | 2            |        |       | V            |       |
| V <sub>IL</sub> | Low Level Input Voltage                |                                                               |                     |     |       | 0.7          | ,      |       | 0.7          | V     |
| Гон             | High Level Output Current              |                                                               |                     |     |       | -200         |        |       | -200         | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OH} = -200$ | μΑ                  | 2.4 | 3.1   |              | 2.4    | 3.1   |              | V     |
| loL             | Low Level Output Current               |                                                               |                     |     |       | 2.0          |        |       | 3.6          | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OL} = Max$  | · t                 |     | 0.2   | 0.3          |        | 0.2   | 0.4          | ٧     |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                  | CET Input<br>Others |     |       | 200<br>100   |        |       | 200          | μΑ    |
| Чн              | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.4V                  | CET Input<br>Others |     |       | 20<br>10     | ,      |       | 20<br>10     | μΑ    |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.3V                  | CET Input<br>Others |     |       | -360<br>-180 |        |       | -360<br>-180 | μΑ    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max                                         | L                   | -3  | -9    | -15          | -3     | -9    | -15          | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                         |                     |     | 6.5   | 9            |        | 6.5   | 9            | · mA  |

#### Notes

(1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.

|                    |                            |                             |       | T         |                                                |     | W76L/8  | C1  | 1     |
|--------------------|----------------------------|-----------------------------|-------|-----------|------------------------------------------------|-----|---------|-----|-------|
|                    | PARAMETEI                  | ,                           | FROM  | то        | CONDITIONS                                     |     | -75, L7 |     | UNITS |
|                    | PARAMETE                   | 1                           | FROW  | 10        | COMPLICINS                                     | MIN | TYP     | MAX | UNITS |
| fMAX               | Maximum CI                 | ock Frequency               |       |           |                                                | 6   | - 13    |     | MHz   |
| t <sub>PLH</sub>   | Propagation<br>Low-to-High | Delay Time,<br>Level Output | Clock | Q Output  |                                                |     | 45      | 75  | ns    |
| <sup>t</sup> PHL   | Propagation<br>High-to-Low | Delay Time,<br>Level Output | Clock | Q Output  |                                                |     | 65      | 110 | ns    |
| tPLH               | Propagation<br>Low-to-High | Delay Time,<br>Level Output | Clock | TC Output | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |     | 70      | 115 | ns    |
| tpHL               | Propagation<br>High-to-Low | Delay Time,<br>Level Output | Clock | TC Output |                                                |     | 85      | 140 | ns    |
| <sup>t</sup> PLH   | Propagation<br>Low-to-High | Delay Time,<br>Level Output | CET   | TC Output |                                                |     | 35      | 60  | ns    |
| t <sub>PHL</sub>   | Propagation<br>High-to-Low | Delay Time,<br>Level Output | CET   | TC Output |                                                |     | 35      | 60  | ns    |
| tw(CLOCK)          | Minimum Pu                 | lse Width                   |       |           | ,                                              | 60  | 25      |     | ns    |
| tw(RESET)          | Minimum Pu                 | lse Width                   | 1     |           |                                                | 80  | 30      |     | ns    |
| <sup>t</sup> SETUP | Setup Time                 | CE                          | 1     |           |                                                | 65  | 40      |     |       |
|                    |                            | P Inputs                    |       |           |                                                | 30  | 15      |     | ns    |
| 1                  |                            | Parallel Entry              |       |           |                                                | 65  | 40      |     |       |
| <sup>t</sup> HOLD  | Hold Time                  | CE                          |       |           |                                                | 80  | 50      |     |       |
|                    |                            | P Inputs                    | ]     |           |                                                | 30  | 15      |     | ns    |
| 4                  |                            | Parallel Entry              |       |           | '                                              | 65  | 40      |     |       |



# Logic Diagrams

#### 76L75/86L75 (DECADE)



# 76L76/86L76 (BINARY)



V<sub>CC</sub> = (16 GND = (8)

# 7 by 9 Character Generators

## **General Description**

The DM7678/8678 and DM7679/DM8679 are bipolar character generators. A maximum of 64 characters can be displayed in a 7X9 dot matrix. Shifted characters can be generated by the on-chip subtractor. On-chip line counter and parallel-in-serial-out shift register reduce package pin-out.

The clear input and the load input are active low. Load is synchronous with the Dot Rate Clock. Both the line rate clock and the dot rate clock are positive triggered. When the strobe input receives a low signal, the character address will be held at the inputs.

#### **Features**

- TRI-STATE outputs
- On-chip input latches
- On-chip line counter
- On-chip shift register
- Serial output
- 20 MHz typical clock rate
- Shifted characters

## **Connection Diagram**



# Character Display Example



7678(J); 8678(J), (N); 7679(J); 8679(J), (N)

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                           | ,                                                                                                                  |                                                                                                                                                                                                                                                                       | DM76/86 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PARAMETER                 | CONDITIONS                                                                                                         |                                                                                                                                                                                                                                                                       | 78, 79  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |  |  |
|                           |                                                                                                                    | MIN                                                                                                                                                                                                                                                                   | TYP(1)  | MAX                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |  |  |
| High Level Output Voltage | V <sub>CC</sub> = Min, I <sub>OH</sub> = -2 mA                                                                     | 2.4                                                                                                                                                                                                                                                                   |         |                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                             |  |  |
| Low Level Output Voltage  | V <sub>CC</sub> = Min, I <sub>OL</sub> = 16 mA                                                                     |                                                                                                                                                                                                                                                                       | ,       | 0.4                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                             |  |  |
| High Level Input Current  | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                                       |                                                                                                                                                                                                                                                                       |         | 40                                                                                                                                                                                                                                                                             | μΑ .                                                                                                                                                                                                                                                                                          |  |  |
| Low Level Input Current   | $V_{CC} = Max, V_1 = 0.4V$                                                                                         |                                                                                                                                                                                                                                                                       | ,       | -0.8                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                            |  |  |
| Supply Current            | V <sub>CC</sub> = Max                                                                                              |                                                                                                                                                                                                                                                                       | 100     |                                                                                                                                                                                                                                                                                | mA                                                                                                                                                                                                                                                                                            |  |  |
| Maximum Clock Frequency   | $V_{CC} = 5V, T_A = 25^{\circ}C$                                                                                   |                                                                                                                                                                                                                                                                       | 20      |                                                                                                                                                                                                                                                                                | MHz                                                                                                                                                                                                                                                                                           |  |  |
|                           | High Level Output Voltage Low Level Output Voltage High Level Input Current Low Level Input Current Supply Current | High Level Output Voltage $V_{CC} = Min, I_{OH} = -2 \text{ mA}$ Low Level Output Voltage $V_{CC} = Min, I_{OL} = 16 \text{ mA}$ High Level Input Current $V_{CC} = Max, V_1 = 2.4V$ Low Level Input Current $V_{CC} = Max, V_1 = 0.4V$ Supply Current $V_{CC} = Max$ |         | High Level Output Voltage $V_{CC} = Min, I_{OH} = -2 \text{ mA}$ 2.4  Low Level Output Voltage $V_{CC} = Min, I_{OL} = 16 \text{ mA}$ High Level Input Current $V_{CC} = Max, V_1 = 2.4V$ Low Level Input Current $V_{CC} = Max, V_1 = 0.4V$ Supply Current $V_{CC} = Max$ 100 | High Level Output Voltage $V_{CC} = Min, I_{OH} = -2 \text{ mA}$ 2.4  Low Level Output Voltage $V_{CC} = Min, I_{OL} = 16 \text{ mA}$ 0.4  High Level Input Current $V_{CC} = Max, V_1 = 2.4V$ 40  Low Level Input Current $V_{CC} = Max, V_1 = 0.4V$ -0.8  Supply Current $V_{CC} = Max$ 100 |  |  |

#### Notes

(1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C





# **Binary Counters**

#### **General Description**

These circuits are full tenth-power versions of the popular DM5493A/DM7493A binary counters. The important feature is that they provide the same pinout as the DM5493A/DM7493A, whereas the DM54L93/DM74L93 has a completely different pinout. Otherwise

they offer the same features and electrical characteristics as the DM54L93/DM74L93. To employ the maximum count length, the B input is connected to the  $\Omega_{\rm A}$  output. The input count pulses are applied to the A input, and the outputs are as described below in the truth table.

#### **Connection Diagram**



# Logic Diagram



# **Truth Tables**

### RESET/COUNT TRUTH TABLE

| I | RESET | OUTPUT |              |              |     |       |
|---|-------|--------|--------------|--------------|-----|-------|
| 1 | R0(1) | R0(2)  | $\alpha_{D}$ | $\alpha_{c}$ | QΒ  | $Q_A$ |
| I | н     | Н      | L            | L            | L   | L     |
| 1 | L     | X      |              | COL          | JNT |       |
|   | X     | L      |              | COL          | JNT |       |

#### COUNT SEQUENCE TABLE

| COUNT |              | OUT   | PUT |    |
|-------|--------------|-------|-----|----|
| COUNT | $\alpha_{D}$ | $q_c$ | QΒ  | QA |
| 0     | L            | L     | L   | L  |
| 1     | , r          | L     | L   | Н  |
| 2     | L            | L     | H   | L  |
| 3     | L            | L     | Н   | Н  |
| 4     | L            | , н   | L   | L  |
| 5     | L            | H     | L   | Н  |
| 6     | L            | Н     | Н   | L  |
| 7     | L            | Н     | Н   | Н  |
| 8     | Н            | L     | L   | L  |
| 9     | н            | L     | L.  | Н  |
| 10    | н            | L     | Н   | L  |
| 11    | Н            | L     | Н   | Н  |
| 12    | Н            | Н     | L   | L  |
| 13    | Н            | Н     | L   | Н  |
| 14    | Н            | Н     | Н   | L  |
| 15    | Н            | Н     | H   | Н  |



|                 | PARAMETER                              | CONDITIONS                                                    |         |     | DM76L<br>L93 |      |     | DM86L<br>L93 |      | UNITS |
|-----------------|----------------------------------------|---------------------------------------------------------------|---------|-----|--------------|------|-----|--------------|------|-------|
|                 |                                        |                                                               |         | MIN | TYP(1)       | MAX  | MIN | TYP(1)       | MAX  |       |
| VIH             | High Level Input Voltage               |                                                               |         | 2   |              |      | 2   |              |      | V     |
| VIL             | Low Level Input Voltage                |                                                               |         |     |              | 0.7  |     |              | 0.7  | V     |
| Іон             | High Level Output Current              |                                                               |         |     |              | -200 |     |              | -200 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OH} = -200$ | μΑ      | 2.4 | 2.8          |      | 2.4 | 2.8          |      | V     |
| l <sub>OL</sub> | Low Level Output Current               |                                                               |         |     |              | 2.0  |     |              | 3.6  | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.7V, I_{OL} = Max$  |         |     | 0.15         | 0.3  |     | 0.2          | 0.4  | V     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage |                                                               | Reset   |     |              | 100  |     |              | 100  |       |
|                 |                                        | $V_{CC} = Max, V_1 = 5.5V$                                    | A Input |     |              | 200  |     |              | 200  | μΑ    |
|                 |                                        |                                                               | B Input |     |              | 200  |     |              | 200  |       |
| I <sub>IH</sub> | High Level Input Current               |                                                               | Reset   |     |              | 10   |     |              | 10   |       |
|                 |                                        | $V_{CC} = Max, V_1 = 2.4V$                                    | A Input |     |              | 20   |     |              | 20   | μΑ    |
|                 |                                        |                                                               | B Input |     |              | 20   |     |              | 20   |       |
| I <sub>IL</sub> | Low Level Input Current                |                                                               | Reset   |     |              | -180 |     |              | -180 |       |
|                 |                                        | $V_{CC} = Max, V_1 = 0.3V$                                    | A Input | ļ   |              | -360 |     |              | -360 | μΑ    |
|                 |                                        |                                                               | B Input |     |              | -360 |     |              | -360 |       |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max                                         |         | -3  | 9 ·          | -15  | -3  | -9           | -15  | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(2)                                      |         | ,   |              | 5.5  |     |              | 5.5  | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) I<sub>CC</sub> is measured with all outputs open, both R<sub>0</sub> inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

|                  | PARAMETER                                           |   |                 |                                                | DM76L/86L |       |     |     |
|------------------|-----------------------------------------------------|---|-----------------|------------------------------------------------|-----------|-------|-----|-----|
|                  |                                                     |   | то              | CONDITIONS                                     |           | UNITS |     |     |
|                  |                                                     |   |                 |                                                | MIN       | TYP   | MAX | 1   |
| f <sub>MAX</sub> | Maximum Clock Frequency                             |   |                 |                                                | 6         | 15    |     | MHz |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | А | Q <sub>D</sub>  | $C_L = 50 \text{ pF}, R_L = 4 \text{ k}\Omega$ |           | 210   | 400 | ns  |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | А | ·Q <sub>D</sub> |                                                |           | 230   | 400 | ns  |
| tw               | Pulse Width (All Inputs)                            |   | •               |                                                | 200       |       |     | ns  |
| tSETUP           | Reset Inactive State Setup Time                     |   |                 |                                                | 200       |       |     | ns  |



# TRI-STATE 1024-Bit Read Only Memories

## **General Description**

The DM76L97/DM86L97 is a custom-programmed Read Only Memory organized as 256 four-bit words. Selection of the proper word is accomplished through the eight select inputs.

Two overriding memory enable inputs are provided which when mask-programmed in one of the three options described will cause all four outputs to read either the normal memory contents or go to the high impedance state.

#### **Features**

- Full tenth-power technology
- Pin compatible with SN54187/SN74187
- Typical power dissipation

75 mW

■ Typical access time

- 70 ns
- Custom-programmed memory enable inputs
- TRI-STATE outputs

#### Connection Diagram



76L97/86L97(J), (N), (W)

## **Truth Table**

| OPTION | ME1 | ME2 | OUTPUTS        |
|--------|-----|-----|----------------|
| 1      | L   | L   | Normal         |
| h.,    | н   | ×   | High Impedance |
| İ      | х   | н   | High Impedance |
| 2      | Н   | Н   | Normal         |
|        | L   | ×   | High Impedance |
|        | Х   | L   | High Impedance |
| 3      | Н   | L   | Normal         |
|        | X   | Н   | High Impedance |
|        | L   | \ X | High Impedance |

X = Don't Care

# Logic Diagram





|                     | PARAMETER                              | CONDI                                        | TIONS                   |     | DM76L/861 | -    | UNITS |  |
|---------------------|----------------------------------------|----------------------------------------------|-------------------------|-----|-----------|------|-------|--|
|                     | 4                                      |                                              |                         | MIN | TYP(1)    | MAX  |       |  |
| V <sub>IH</sub>     | High Level Input Voltage               | V <sub>CC</sub> = Min                        |                         | 2   |           |      | ٧     |  |
| VIL                 | Low Level Input Voltage                | V <sub>CC</sub> = Min                        |                         |     |           | 0.7  | V     |  |
| VI                  | Input Clamp Voltage                    | V <sub>GC</sub> = Min, I                     | <sub>I</sub> = -12 mA   |     |           | -1.5 | V     |  |
| lо́н                | High Level Output Current              |                                              |                         |     |           | -1.0 | mA    |  |
| V <sub>OH</sub>     | High Level Output Voltage              | V <sub>CC</sub> = Min, I                     | <sub>OH</sub> = -1.0 mA | 2.4 |           |      | V     |  |
| I <sub>OL</sub>     | Low Level Output Current               | DM76                                         |                         |     |           | 2.0  | mA    |  |
|                     |                                        |                                              | DM86                    |     |           | 3.6  | IIIA  |  |
| V <sub>OL</sub>     | Low Level Output Voltage               | V <sub>CC</sub> = Min                        | DM76                    |     |           | 0.3  | V     |  |
|                     |                                        | I <sub>OL</sub> = Max                        | DM86                    | 0.4 |           |      |       |  |
| I <sub>O(OFF)</sub> | Off State (High Impedance              | V <sub>CC</sub> = Max                        | V <sub>O</sub> = 0.4V   |     |           | -40  | μА    |  |
|                     | State) Output Current                  | V CC - Wax                                   | V <sub>O</sub> = 2.4V   | 40  |           |      | ۳۸    |  |
| 1,                  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                       | V <sub>1</sub> = 5.5V   |     |           | 100  | μΑ    |  |
| l <sub>IH</sub>     | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V |                         |     |           | 10   | μΑ    |  |
| I <sub>IL</sub>     | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.3V |                         |     |           | -180 | μΑ    |  |
| Ios                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                     |                         | -6  |           | -30  | mA    |  |
| Icc .               | Supply Current                         | V <sub>CC</sub> = Max                        |                         |     | 15        | 20   | mA    |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$  and  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.

|                 |                                                     |         |        |                                               | DI  | M76L/8 | 6L  |       |
|-----------------|-----------------------------------------------------|---------|--------|-----------------------------------------------|-----|--------|-----|-------|
|                 | PARAMETER                                           | FROM TO |        | CONDITIONS                                    | L97 |        |     | UNITS |
|                 |                                                     |         |        | ,                                             | MIN | ŢΥΡ    | MAX |       |
| tPLH            | Propagation Delay Time,<br>Low-to-High Level Output | Address | Output |                                               |     | 86     | 130 | ns    |
| tPHL            | Propagation Delay Time,<br>High-to-Low Level Output | Address | Output | $C_1 = 50 \text{ pF}, R_1 = 4 \text{k}\Omega$ |     | 55     | 85  | ns    |
| <sup>t</sup> zH | Output Enable Time<br>to High Ļevel                 | Enable  | Any    | ου 50 pi , πε 4κα2                            |     | 34     | 51  | ns    |
| t <sub>ZL</sub> | Output Enable Time<br>to Low Level                  | Enable  | Any    |                                               |     | 47     | 70  | ns    |
| t <sub>HZ</sub> | Output Disable Time<br>from High Level              | Enable  | Any    | 0 50 5 0 410                                  |     | 15     | 23  | ns    |
| <sup>t</sup> LZ | Output Disable Time<br>from Low Level               | Enable  | Any    | $C_L = 5.0 \text{ pF}, R_L = 4k\Omega$        |     | 57     | 86  | ns    |



#### **Ordering Instructions**

Programming instructions for the DM76L97 or DM86L97 are solicited in the form of a sequenced deck of 32 standard 80-column data cards providing the information requested under data card format, accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete truth table of the requested part. This truth table, showing output conditions for each of the 256 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the truth table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the eight words specified and describes the conditions at the four outputs for each of the eight words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

### Supplementary Ordering Data

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number.

#### **Data Card Format**

#### Column

- 1- 3 Punch a right-justified integer representing the binary input address (000-248) for the first set of outputs described on the card.
  - 4 Punch a "-" (Minus sign)
- 5- 7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card.
- 8-9 Blank

- 10-13 Punch "H," "L," or "X" for bits four, three, two, and one (outputs Y4, Y3, Y2, and Y1 in that order) for the first set of outputs specified on the card. (H = high level output, L = low level output, X = don't care.)
  - 14 Blank
- 15-18 Punch "H," "L," or "X" for the second set of outputs.
  - 19 Blank
- 20-23 Punch "H," "L," or "X" for the third set of outputs.
  - 24 Blank
- 25-28 Punch "H," "L," or "X" for the fourth set of outputs.
  - 29 Blank
- 30-33 Punch "H," "L," or "X" for the fifth set of outputs.
  - 34 Blank
- 35-38 Punch "H," "L," or "X" for the sixth set of outputs.
  - 39 Blank
- 40-43 Punch "H," "L," or "X" for the seventh set of outputs.
  - 44 Blank
- 45-48 Punch "H," "L," or "X" for the eighth set of outputs.
  - 49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
  - 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
  - 56 Blank
- 57-58 Punch the last two digits of the current year.
  - 59 Blank
- 60-61 Punch "DM"
- 62-67 Punch the National Semiconductor part number DM76L97 or DM86L97.
- 68-70 Blank

# **AC Test Circuit**





# **Switching Time Waveforms**



#### MEMORY ENABLE



Note: The pulse generator has the following characteristics: V = 3.0V,  $t_f$  = 15 ns,  $t_f$  = 5.0 ns, f = 500 kHz, duty cycle = 50%, Z<sub>OUT</sub> = 50 $\Omega$ , V<sub>t</sub> = 1.3V @ 25°C.



# TRI-STATE 64-Bit Random Access Memories

# **General Description**

The DM76L99/DM86L99 is a fully decoded 64-bit RAM organized as 16 4-bit words. The memory is addressed by applying a binary number to the four Address inputs. After addressing, information may be either written into or read from the memory. To write, both the Memory Enable and the Write Enable inputs must be in the logical "0" state. Information applied to the four Write inputs will then be written into the addressed location. To read information from the memory, the Memory Enable input must be in the logical "0" state and the Write Enable input in the logical "1" state. Information will be read as the complement of what was written into the memory. When the Memory Enable input is in the logical "1" state, the outputs will go to the highimpedance state. This allows up to 75 memories to be connected to a common bus-line without the use of pull-up resistors. All memories except one are gated into the high-impedance state while the one selected memory exhibits the normal totem-pole, low impedance output characteristics of TTL.

#### **Features**

- Same pin-out as SN5489/SN7489, 3101, MM5501
- Organized as 16, 4-bit words
- Expandable to 1200, 4-bit words without additional resistors

■ Typical access from chip enable

50 ns

Typical access time

80 ns

■ Typical power dissipation

75 mW

#### Connection Diagram



# **Truth Table**

| MEMORY<br>ENABLE | WRITE<br>ENABLE | OPERATION | OUTPUTS            |
|------------------|-----------------|-----------|--------------------|
| L                | L               | Write     | Hi-Z               |
| L                | н               | Read      | Complement of Data |
|                  |                 |           | Stored in Memory   |
| н                | х               | Hold      | Hi-Z               |

# Logic Diagram





|                 | PARAMETER                              | CONDI                                        | TIONS                 |     | DM76L/86<br>L99 | L    | UNITS   |
|-----------------|----------------------------------------|----------------------------------------------|-----------------------|-----|-----------------|------|---------|
|                 |                                        |                                              |                       | MIN | TYP(1)          | MAX  |         |
| V <sub>IH</sub> | High Level Input Voltage               | V <sub>CC</sub> = Min                        |                       | 2   |                 |      | ٧       |
| V <sub>IL</sub> | Low Level Input Voltage                | V <sub>CC</sub> = Min                        |                       |     |                 | 0.7  | V       |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> =12    | ! mA                  |     |                 | -1.5 | V       |
| Гон             | High Level Output Current              |                                              |                       |     |                 | -1.0 | mA      |
| VoH             | High Level Output Voltage              | V <sub>CC</sub> = Min, I <sub>OH</sub> = -   | 1.0 mA                | 2.4 |                 |      | V       |
| I <sub>OL</sub> | Low Level Output Current               |                                              | DM76L                 |     |                 | 2.0  | mA      |
|                 | 1                                      |                                              | DM86L                 |     |                 | 3.6  |         |
| Vol             | Low Level Output Voltage               | V <sub>CC</sub> = Min                        | DM76L                 |     |                 | 0.3  | V       |
|                 |                                        | I <sub>OL</sub> = Max                        | DM86L                 |     |                 | 0.4  | \ \ \ \ |
| IO(OFF)         | Off State (High Impedance              |                                              | V <sub>O</sub> = 0.3V |     |                 | -40  |         |
|                 | State) Output Current                  | V <sub>CC</sub> = Max                        | V <sub>O</sub> = 2.4V |     |                 | 40   | μΑ      |
| 1 <sub>i</sub>  | Input Current at Maximum Input Voltage | · V <sub>CC</sub> = Max, V <sub>1</sub> = 5. | 5V                    |     |                 | 100  | μΑ      |
| I <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max, V_1 = 2.$                     | 4V                    |     |                 | 10   | μΑ      |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.   | 3V                    |     |                 | -180 | μΑ      |
| Ios             | Short Circuit Output<br>Current        | V <sub>CC</sub> = Max(2)                     |                       | -6  |                 | -30  | mΑ      |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                        |                       |     | 15              | 19   | mA      |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) Not more than one output should be shorted at a time.

| DARAMETER        |                                                         |                               |         |        |                                                |     | M76L/86 | L   |       |
|------------------|---------------------------------------------------------|-------------------------------|---------|--------|------------------------------------------------|-----|---------|-----|-------|
|                  | PARAMET                                                 | ER                            | FROM    | то     | CONDITIONS                                     |     | L99     |     | UNITS |
|                  |                                                         |                               |         |        |                                                | MIN | TYP     |     |       |
| tPLH             |                                                         | Delay Time, 1<br>Level Output | Address | Output |                                                |     | 51      | 120 | . ns  |
| <sup>t</sup> PHL | PHL Propagation Delay Time,<br>High-to-Low Level Output |                               | Address | Output |                                                |     | 77      | 150 | ns    |
| tEN              | Output Disab<br>from Write E                            |                               | WE      | Output | $C_1 = 50 \text{ pF, R}_1 = 4 \text{ k}\Omega$ |     | 73      | 110 | ns    |
| t <sub>SR</sub>  | Sense Recove<br>from Write E                            | •                             | WE      | Output | 0                                              |     | 110     | 165 | ns    |
| <sup>t</sup> zH  | Output Enab<br>to High Leve                             |                               | ME      | Output |                                                |     | 30      | 50  | ns    |
| tzL              | Output Enab<br>to Low Level                             |                               | ME      | Output |                                                |     | 29      | 43  | ns    |
| t <sub>HZ</sub>  | Output Disab<br>from High Le                            |                               | ME      | Output | $C_1 = 5 pF, R_1 = 4 k\Omega$                  |     | 18      | 27  | ns    |
| tLZ              | Output Disab<br>from Low Le                             |                               | ME      | Output | 6 - 5 pr, n <sub>L</sub> - 4 ksz               |     | 37      | 56  | ns    |
| tSETUP           | Setup Time                                              | Data                          |         |        |                                                | 0   |         |     |       |
|                  |                                                         | Address                       | ]       |        |                                                | 0   |         |     | ns    |
|                  |                                                         | ME                            |         |        |                                                | 0   |         |     |       |
| tHOLD            | Hold Time                                               | Data                          | ]       |        |                                                | 0   |         |     |       |
|                  |                                                         | Address                       | ]       |        |                                                | 0   |         |     | ns    |
|                  |                                                         | ME                            |         | *      |                                                | 0   |         |     |       |
| twp              | Write Enable                                            | Pulse Width                   | 1       |        |                                                | 50  | 30      |     | ns    |



# **AC Test Circuit**



# **Switching Time Waveforms**

# WRITE CYCLE





# MEMORY ENABLE





Note: The pulse generator has the following characteristics: V = 3.0V, t\_f = 15 ns, t\_f = 5.0 ns, f = 500 kHz, duty cycle = 50%, Z\_{OUT} = 50 $\Omega$ , V<sub>t</sub> = 1.3V @ 25°C.



#### **General Description**

The DM7853/DM8853 is a dual, retriggerable, resettable monostable multivibrator similar to the DM9602/DM8602 but with a unique input triggering logic.

This device has two trigger inputs—a standard input and a delayed input—which are Exclusive OR'ed together. In the dual-edge triggering mode, the two inputs are tied together. On either a positive or negative transition the Exclusive-OR logic is satisfied for a length of time equal to the delay on the delayed input—approximately 15 ns—thus triggering or retriggering the one-shot.

Once fired, the accuracy and performance of the DM7853/DM8853 is identical to that of the DM9602/DM8602.

# **Dual Retriggerable Resettable One Shots**

#### Features

- 72 ns to ∞ output width range
- Retriggerable 0 to 100% duty cycle
- TTL input gating—leading AND/OR trailing edge triggering
- Complementary TTL outputs
- Pulse width compensated for V<sub>CC</sub> and temperature variations
- Resettable

# **Connection Diagram**



7853/8853(J), (N), (W)

# Logic Diagrams



\*A non-inverting buffer with delay

#### Truth Tables

#### TRIGGERING TRUTH TABLE

| t   | Dt        | CD  | OPERATION |
|-----|-----------|-----|-----------|
| L→H | L         | Н   | Trigger   |
| н   | H→L       | н   | Trigger   |
| H→L | н         | н   | Trigger   |
| L   | L→H       | н   | Trigger   |
| H→L | Same as t | Н : | Trigger   |
| L→H | Same as t | н   | Trigger   |
| ×   | ×         | L   | Reset     |

#### LOADING RULES

| INPUTS              | LO     | AD     |
|---------------------|--------|--------|
| INPUTS              | HIGH   | LOW    |
| 3, 4, 5, 11, 12, 13 | 1 U.L. | 1 U.L. |

| OUTPUTS     | DRIVE   | ACTOR  |
|-------------|---------|--------|
| 0017015     | HIGH    | LOW    |
| 6, 7, 9, 10 | 16 U.L. | 8 U.L. |



|                 |                                        |                                                                           |     | DM78   | •    |     | DM88   |      |       |
|-----------------|----------------------------------------|---------------------------------------------------------------------------|-----|--------|------|-----|--------|------|-------|
|                 | PARAMETER                              | CONDITIONS(2)                                                             |     | 53     |      |     | 53 .   |      | UNITS |
| •               |                                        |                                                                           | MIN | TYP(1) | MAX  | MIN | ŢYP(1) | MAX  |       |
| $v_{\text{IH}}$ | High Level Input Voltage               |                                                                           | 2   |        |      | 2   |        |      | ٧     |
| VIL             | Low Level Input Voltage ,              |                                                                           |     |        | 0.8  |     |        | 8.0  | V     |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>I</sub> = -12 mA                            |     |        | -1.5 |     |        | -1.5 | V     |
| Іон             | High Level Output Current              | • •                                                                       |     |        | -800 |     |        | -800 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -800\mu A(3)$     | 2.4 | 3.3    |      | 2.4 | 3.4    |      | . V   |
| loL             | Low Level Output Current               |                                                                           |     |        | 16   |     |        | 16   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}(3)$ |     | 0.2    | 0.4  |     | 0.2    | 0.4  | V     |
| l <sub>l</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                              |     |        | 1    |     |        | 1    | mA    |
| l <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = 4.5V                              |     | 10     | 60   |     | 10     | 60   | μΑ    |
| IIL             | Low Level Input Current                | $V_{CC} = Max$ $V_{I} = 0.4V$<br>$V_{I} = 0.45V$                          |     | -1.1   | -1.6 |     |        |      | mA    |
|                 |                                        | V <sub>CC</sub> - Wax V <sub>I</sub> = 0.45V                              |     |        |      |     | 1.0    | -1.6 | 1112  |
| los             | Short Circuit Output Current           | $V_{CC} = Max, V_{OUT} = 1.0V(3)$                                         |     |        | 25   |     |        | -35  | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                                     | \   | 55     | 72   | . , | 55     | 72   | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Unless otherwise noted, 10  $k\Omega$  resistor placed between Rx and VCC for all tests.
- (3) Ground Pin 1 (15) for V<sub>OL</sub> on Pin 7 (9), or for V<sub>OH</sub> on Pin 6 (10), or for I<sub>OS</sub> on Pin 6 (10); also, apply momentary ground to Pin 4 (12). Open Pin 1 (15) for V<sub>OL</sub> on Pin 6 (10), or for V<sub>OH</sub> on Pin 7 (9), or for I<sub>OS</sub> on Pin 7 (9).

|                  |                                                     |                           |    | ·                                                           |      | DM78 |      |      | DM88 |      |       |
|------------------|-----------------------------------------------------|---------------------------|----|-------------------------------------------------------------|------|------|------|------|------|------|-------|
|                  | PARAMETER                                           | FROM                      | то | CONDITIONS                                                  |      | 53   |      |      | 53   |      | UNITS |
|                  |                                                     |                           |    | ,                                                           | MIN  | TYP  | MAX  | MIN  | TYP  | MAX  |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Standard Trigger<br>Input | Q  | ·                                                           |      | 25   | 35   |      | 25   | 40   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Standard Trigger<br>Input | ā  |                                                             | ,    | 29   | 43   |      | 29   | 48   | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Delayed Trigger<br>Input  | Ω  | $C_L = 15 \text{ pF}, R_X = 5 \text{ k}\Omega$<br>$C_X = 0$ |      | 40   | 53   |      | 40   | 58   | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Delayed Trigger<br>Input  | ā  |                                                             |      | 44   | 61   |      | 44   | 66   | ns    |
| tw(MIN)          | Minimum Possible Output Pulse Q                     |                           |    | ı                                                           |      | 72   | 90   |      | 72   | 100  |       |
|                  | ā                                                   |                           |    |                                                             |      | 78   | 100  |      | 78   | 110  | ns -  |
| t <sub>W</sub>   | Pulse Width Tolerance                               |                           |    | $C_X = 1000  pF, R_X = 10  k\Omega$                         | 3.08 | 3.42 | 3.76 | 3.08 | 3.42 | 3.76 | μs    |
| CSTRAY           | Maximum Allowable Wiring Capacitance                |                           |    | Pins (2) and (14) to GND                                    |      |      | 50   |      |      | 50   | pF    |
| R <sub>X</sub>   | Timing Resistor                                     | 7                         |    |                                                             | 5    |      | 25   | 5    |      | 50   | kΩ    |

# **Typical Performance Characteristics**



# **Switching Circuit**



# **Switching Time Waveforms**



$$\begin{split} &\text{INPUT PULSES} \\ &\text{$f \approx 100 \text{ kHz}$} \\ &\text{AMP} \approx 3.0 \text{V} \\ &\text{WIDTH} \approx 40 \text{ ns} \\ &\text{$t_r = t_f \leq 10 \text{ ns}$} \end{split}$$



# TRI-STATE 4-Bit Parallel Binary Multipliers

#### **General Description**

These circuits are capable of multiplying together two 4-bit binary numbers when used together in pairs. The DM7875A/8875A provides the most significant four bits, and the DM7875B/8875B provides the least significant four bits. Since the largest number that can be obtained by multiplying two 4-bit numbers is 225 (15 x 15), the eight output pins (four from each package) are sufficient to produce this number. Both the multiplier and the multiplicand must be connected to the eight input pins of each device. These devices are pin compatible with the SN54284/74284, and SN54285/74285; but have the advantage that these circuits provide either standard totem-pole TTL or TRI-STATE

outputs. A gated two-input strobe control is provided. When either one, or both, of the strobe inputs is raised to a high logic level the outputs are forced into the high-impedance state. Thus, multiple devices may be connected to a common bus line.

#### Features

- Pin compatible replacements for SN54284/74284 (DM7875A/8875A) SN54285/74285 (DM7875B/8875B)
- TRI-STATE outputs
- Typical propagation delay

35 ns

# **Connection Diagram**

# 

## Typical Application



#### **AC Test Circuit**





|                     | •                                      |                                                                         |                       |     | DM78     |       |     | DM88     |      |       |
|---------------------|----------------------------------------|-------------------------------------------------------------------------|-----------------------|-----|----------|-------|-----|----------|------|-------|
|                     | PARAMETER                              | CONDITION                                                               | 3                     |     | 75A, 75I | 3     |     | 75A, 75E | 3    | UNITS |
|                     |                                        |                                                                         |                       | MIN | TYP(1)   | MAX   | MIN | TYP(1)   | MAX  | ]     |
| ViH                 | High Level Input Voltage               |                                                                         |                       | 2   |          |       | 2   |          |      | V     |
| VIL                 | Low Level Input Voltage                |                                                                         |                       |     |          | 0.8   |     |          | 0.8  | V     |
| VI                  | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                          |                       |     |          | -1.5  |     |          | -1.5 | V     |
| Гон                 | High Level Output Current              |                                                                         |                       |     |          | -2.0  |     |          | -5.2 | mA    |
| V <sub>OH</sub>     | High Level Output Voltage              | $V_{CC}$ = Min, $V_{IH}$ = 2V<br>$V_{IL}$ = 0.8V, $I_{OH}$ = Max        |                       | 2.4 |          |       | 2.4 |          |      | ٧     |
| IOL                 | Low Level Output Current               |                                                                         |                       |     |          | 16    |     |          | 16   | mA    |
| V <sub>OL</sub>     | Low Level Output Voltage               | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OL} = 16 \text{ m/s}$ | 4                     |     |          | 0.4   |     |          | 0.4  | V     |
| I <sub>O(OFF)</sub> | Off State (High Impedance State)       | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V                             | V <sub>O</sub> = 0.4V |     |          | 40    |     |          | -40  | μА    |
|                     | Output Current                         | V <sub>IL</sub> = 0.8V                                                  | V <sub>O</sub> = 2.4V |     |          | 40    |     |          | 40   |       |
| I <sub>I</sub>      | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                            |                       |     |          | 1     |     |          | 1    | mA    |
| I <sub>IH</sub>     | High Level Input Current               | $V_{CC} = Max, V_1 = 2.4V$                                              |                       |     |          | 40    |     |          | 40   | μΑ    |
| I <sub>IL</sub>     | Low Lével Input Current                | $V_{CC} = Max, V_1 = 0.4V$                                              |                       |     |          | - 1.0 |     |          | -1.0 | mA    |
| los                 | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                |                       | -20 |          | -70   | -20 | - "      | -70  | mA    |
| Icc                 | Supply Current                         | V <sub>CC</sub> = Max(3)                                                |                       |     | 75       | 110   |     | 75       | 110  | mA    |

#### Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.
- (2) Not more than one output should be shorted at a time.
- (3)  $I_{CC}$  is measured with all inputs grounded.

# Switching Characteristics $V_{CC} = 5V/T_A = 25^{\circ}C$

|                  |                                                     |      |        |                                        |     | DM78/88  | .,  |       |
|------------------|-----------------------------------------------------|------|--------|----------------------------------------|-----|----------|-----|-------|
|                  | PARAMETER                                           | FROM | то     | CONDITIONS                             |     | 75A, 75B |     | UNITS |
|                  |                                                     |      |        |                                        | MIN | TYP      | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Data | Output |                                        |     | 35       | 60  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data | Output | $C_L = 50 \text{ pF}, R_L = 400\Omega$ |     | 35       | 60  | ns    |
| tzH              | Output Enable Time to High Level                    |      |        | ÷                                      |     | 20       | 30  | ns    |
| tzL              | Output Enable Time to Low Level                     |      |        |                                        |     | 20       | 30  | ns    |
| tHZ              | Output Disable Time from High Level                 |      |        | C = E = E D = 4000                     |     | 20       | 30  | ns    |
| tLZ              | Output Disable Time from Low Level                  |      |        | $C_L = 5 \text{ pF}, R_L = 400\Omega$  |     | 20       | 30  | ns    |

# **Switching Time Waveforms**





# TRI-STATE BCD to Binary/Binary to BCD Converters

# **General Description**

These circuits are the TRI-STATE versions of the popular BCD to binary and binary to BCD converters, DM74184 and DM74185A respectively. They are derived from the 256-bit ROM, DM8598. Emitter connections are made to provide direct read out of converted codes at outputs Y8 through Y1, as shown in the truth tables. Both converters comprehend the fact that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter. Thus a 6-bit converter is produced in each case, and both devices are cascadable.

An overriding enable input is provided on each converter which, when taken high, inhibits the function, causing all outputs to go into the high-impedance state. For this reason, and to minimize power consumption, unused outputs Y7 and Y8 of the 185A and all "don't care" conditions of the 184 are programmed high.

#### **DM8898 BCD-TO-BINARY CONVERTERS**

The 6-bit BCD-to-binary function of the DM8898 is analogous to the algorithm:

- a. Shift BCD number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.
- Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros.

In addition to BCD-to-binary conversion, the DM8898 is programmed to generate BCD 9's complement or BCD 10's complement. In each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs Y6, Y7, and Y8 are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the truth table when the devices are connected as shown.

#### **DM8899 BINARY-TO-BCD CONVERTERS**

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:

- Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit
- b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
- c. Repeat step b until the least-significant binary bit is in the least-significant BCD location.

#### **Features**

- TRI-STATE versions DM74184, DM74185A
- Typical propagation delay

30 ns

#### Connection Diagram



8898(N); 8899(N)



|                 | PARAMETER                                       | CONDITION                                                                                       | ıc                        |     | DM88<br>98, 99 |           | UNITS  |
|-----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----|----------------|-----------|--------|
|                 | TANAMETER                                       | CONDITION                                                                                       | 13                        | MIN | TYP(1)         | MAX       | 014173 |
| VIH             | High Level Input Voltage                        |                                                                                                 |                           | 2   |                |           | V      |
| VIL             | Low Level Input Voltage                         |                                                                                                 |                           |     |                | 0.8       | ٧      |
| Vi              | Input Clamp Voltage                             | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                                                  | \                         |     |                | -1.5      | V      |
| Іон             | High Level Output Current                       |                                                                                                 |                           |     |                | -5.2      | mA     |
| V <sub>OH</sub> | High Level Output Voltage                       | $V_{CC} = 4.75V, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -5.2$                                 |                           | 2.4 |                | *         | ٧      |
| I <sub>OL</sub> | Low Level Output Current                        |                                                                                                 |                           |     |                | 12        | mA     |
| VoL             | Low Level Output Voltage                        | V <sub>CC</sub> = 4.75V, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 12 m |                           |     |                | 0.4       | V      |
| lo(OFF)         | Off State (High Impedance State) Output Current | V <sub>CC</sub> = Max, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V                           | $V_O = 0.4V$ $V_O = 2.4V$ |     |                | -40<br>40 | μΑ     |
| 11              | Input Current at Maximum Input Voltage          | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                                                    | <u> </u>                  |     |                | 1         | mA     |
| liH             | High Level Input Current                        | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                                                    |                           |     |                | 40        | μΑ     |
| IIL             | Low Level Input Current                         | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                                                    |                           |     |                | -1.6      | mA     |
| los             | Short Circuit Output Current                    | V <sub>CC</sub> = Max(2)                                                                        |                           | -20 |                | -70       | mA     |
| Icc             | Supply Current                                  | V <sub>CC</sub> = Max, V <sub>1</sub> = 0V                                                      |                           |     | 70             | 99        | mA     |

#### Notes

|                  |                                                     |               |        |                                        |        | DM88 |     | 1     |
|------------------|-----------------------------------------------------|---------------|--------|----------------------------------------|--------|------|-----|-------|
|                  | PARAMETER                                           | FROM          | то     | CONDITIONS                             | 98, 99 |      |     | UNITS |
|                  |                                                     |               |        |                                        | MIN    | TYP  | MAX |       |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Binary Select | Output |                                        | -      | 29   | 50  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Binary Select | Output |                                        |        | 33   | 50  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Enable        | Output | $C_L = 50 \text{ pF}, R_L = 400\Omega$ |        | 23   | 40  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Enable        | Output |                                        |        | 29   | 40  | ns    |
| tzH              | Output Enable Time to High Level                    |               |        |                                        |        | 16   | 25  | ns    |
| tzL              | Output Enable Time to Low Level                     |               |        |                                        |        | 26   | 40  | ns    |
| tHZ              | Output Disable Time from<br>High Level              |               |        | 0 5 5 9 4000                           | -      | 13   | 20  | ns    |
| tLZ              | Output Disable Time from<br>Low Level               |               |        | $C_L = 5 pF, R_L = 400\Omega$          |        | 24   | 36  | ns    |

<sup>(1)</sup> All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

<sup>(2)</sup> Not more than one output should be shorted at a time.

# **Truth Tables**

#### BCD-TO-BINARY CONVERTER

| BCD<br>WORDS |     |     | INP<br>(See N | UTS<br>lote A | .)  |     | OUTPUTS<br>(See Note B) |     |     |    |    |
|--------------|-----|-----|---------------|---------------|-----|-----|-------------------------|-----|-----|----|----|
| WONDS        | E   | D   | С             | В             | Α   | ' G | Y5                      | Y4  | Y3  | Y2 | Y1 |
| 0 1          | , L | L   | L             | L             | L   | L   | L                       | L   | L   | L. | L  |
| 2 3          | L   | L   | L             | L             | Н   | L   | L                       | L   | L   | L  | Н  |
| 4 5          | L   | L   | L             | Н             | L   | L   | L                       | L   | - L | Н  | L  |
| 6.7          | L   | i.  | L             | Н             | H   | L   | L                       | L   | L   | Н  | Н  |
| 8 9          | L   | L   | Н             | L             | L   | L   | L                       | L   | Н   | .L | L  |
| 10 11        | L   | Н   | L             | L             | L   | L   | L                       | L   | Н   | L  | Н  |
| 12 13        | L   | Н   | L             | L             | Н   | L   | L                       | L   | Н   | Н  | L  |
| 14 15        | L   | Н   | L             | H             | L   | L   | L                       | L   | Н   | Н  | Н  |
| 16 17        | L   | н - | - L           | Н             | Н   | L   | Ļ                       | H   | L   | L  | L  |
| 18 19        | L   | Н   | Н             | L             | L   | L   | L                       | Н   | L   | L  | Н  |
| 20 21        | Н   | L   | L             | L             | · L | L   | L                       | Н   | L   | Н  | L  |
| 22 23        | н   | L   | L             | L             | Н   | L   | L                       | Н   | L   | Н  | Н  |
| 24 25        | Н   | L   | L             | Н             | L   | L   | L                       | Н   | Н   | L  | L  |
| 26 27        | Н   | L   | L             | Н             | Н   | L   | L                       | ` H | Н   | L  | Н  |
| 28 29        | Н   | L   | Н             | L             | L   | L   | L                       | Н   | Н   | Н  | L  |
| 30 31        | Н   | Н   | L             | L             | L   | L   | L                       | Н   | Н   | Н  | Н  |
| 32 33        | Н   | Н   | L             | L             | Н   | L   | Н                       | L   | L   | L  | L  |
| 34 35        | Н   | Н   | L             | Н             | L   | 'L  | Н                       | L   | L   | L  | Н  |
| 36 37        | Н   | Н   | L             | Н             | Н   | L   | Н                       | L   | L   | Н  | L  |
| 38 39        | Н   | Н   | Н             | L             | L   | L   | Н                       | L   | L   | Н  | Н  |
| ANY          | Х   | Х   | Х             | Х             | X   | Н   | Z                       | Z   | Z   | Z  | Z  |

H = High Level, L = Low Level,

X = Don't Care, Z = High Impedance

#### BCD 9's OR BCD 10's COMPLEMENT CONVERTER

|             |                |    |                         |    |    |     |      |     | · ·  |
|-------------|----------------|----|-------------------------|----|----|-----|------|-----|------|
| BCD<br>WORD |                |    | OUTPUTS<br>(See Note D) |    |    |     |      |     |      |
|             | -              |    | See N                   |    |    |     |      |     |      |
|             | E <sup>†</sup> | D  | С                       | В  | Α  | G   | Y8   | Y7  | Y6   |
| 0           | L              | L  | L                       | L  | L  | L   | Н    | L   | Н    |
| 1           | L              | L  | L                       | L  | Н  | L   | Н    | L   | L.   |
| 2           | L              | L  | L                       | Н  | L  | L   | L    | Н   | Н    |
| 3           | L              | L  | L                       | Н  | Н  | L   | L    | Н   | L    |
| 4           | · L            | L  | Н                       | L  | L  | L   | L    | Н   | Н    |
| 5           | L              | L  | Н                       | L  | Н  | L   | L    | Н   | L    |
| 6           | L              | L. | Н                       | Н  | L  | L   | L    | L   | Н    |
| 7           | L              | L  | Н                       | Н  | н  | L   | Ļ    | L   | L    |
| 8           | L              | Н  | L                       | L  | L. | L   | L    | L   | Н    |
| 9           | L              | Н  | L                       | L  | н  | l_  | L    | L   | L    |
| 0           | Н              | L  | L                       | L  | L  | L   | L    | L   | L    |
| 1           | Ή.             | L  | L                       | L  | Н  | L   | Н    | L   | L    |
| 2           | Н              | L  | L                       | Н  | L  | L   | Н    | L   | L    |
| 3           | Н              | L  | L                       | Η. | Н  | L   | L.   | ' H | Н    |
| 4           | Н              | L. | Н                       | L  | L  | L   | L    | Н   | Н    |
| 5           | Н              | L  | Н                       | L  | Н  | L   | L    | Н   | L    |
| 6           | Н              | L  | Н                       | Н  | L  | L   | L    | Н   | L    |
| 7           | Н              | L  | Н                       | Н  | Н  | ŢL. | , F. | Ľ   | `. н |
| 8           | Н              | Н  | L                       | L  | L  | L   | L    | L   | H    |
| 9           | Н              | H. | Ŀ                       | L  | Н  | L   | L    | L   | L    |
| ANY         | Х              | Х  | Х                       | X  | ×  | Н   | Z    | Z   | Z    |

H = High Level, L = Low Level,

X = Don't Care, Z = High Impedance

#### 6-BIT CONVERTER



# BCD 9's COMPLEMENT CONVERTER



# BCD 10's COMPLEMENT CONVERTER



#### Notes:

- (A) Input conditions other than those shown produce highs at outputs Y1 through Y5.
- (B) Outputs Y6, Y7, and Y8 are not used for BCD-to-binary conversion.
- (C) Input conditions other than those shown produce highs at outputs Y6, Y7, and Y8.
- (D) Outputs Y1 through Y5 are not used for BCD 9's or BCD 10's complement conversion.

†When these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.

# Truth Tables (Continued)

# BINARY-TO-BCD CONVERTER

| DINADY | INPUTS        |   |   |    |   |        | OUTPUTS |            |    |    |    |    |    |     |
|--------|---------------|---|---|----|---|--------|---------|------------|----|----|----|----|----|-----|
| BINARY | BINARY SELECT |   |   |    |   | ENABLE |         |            |    |    |    |    |    |     |
| WORDS  | Ε             | D | С | В  | Α | G      | Y8      | <b>Y</b> 7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1  |
| 0 1    | L             | L | L | L  | L | L      | Н       | Н          | L  | L  | L  | L  | L  | ٦   |
| 23     | L             | L | L | L  | н | L      | Н       | Н          | L  | L  | L  | L  | L  | н   |
| 4.5    | L             | Ĺ | L | Н  | L | L      | Н       | Н          | L  | L  | L  | L  | Н  | L   |
| 6 7    | L             | L | L | Н  | н | L      | н       | Н          | L  | L  | L  | L  | Н  | Η : |
| 8 9    | L             | L | Н | L  | L | L      | Н       | Н          | L  | L  | L  | Н  | L  | L   |
| 10 11  | L             | L | Н | L  | н | L      | Н       | н          | L  | L  | Н  | L  | L  | L   |
| 12 13  | L             | L | Н | Н  | L | L      | Н       | Н          | L  | L  | Н  | L. | L  | н   |
| 14 15  | L             | L | Н | н  | н | L      | н       | Н          | L  | L  | Н  | L  | н  | L   |
| 16 17  | L             | Н | L | L  | L | L      | Η.      | Н          | L  | L  | Н  | L  | Н  | Н   |
| 18 19  | L             | н | L | L  | н | L      | н       | Н          | L  | L  | Н  | Н  | L  | L   |
| 20 21  | L             | Н | L | н  | L | L      | н       | Н          | L  | Н  | L  | L  | L  | L   |
| 22 23  | L             | Н | L | Н  | н | L      | н       | Н          | L  | Н  | L  | L  | L  | н   |
| 24 25  | L             | Н | Н | L  | L | L      | Н       | Н          | L  | Н  | L  | L  | Н  | L   |
| 26 27  | L             | Н | Н | L  | Н | L      | Н       | Н          | L  | Н  | L  | L  | Н  | н   |
| 28 29  | L             | Н | Н | Н  | L | L      | н       | Н          | L  | Н  | L  | Н  | L  | L   |
| 30 31  | L             | Н | н | Н  | Н | L      | Н       | Н          | L  | Н  | Н  | L  | L  | L   |
| 32 33  | Н             | L | L | L  | L | L      | Н       | Н          | L  | Н  | Н  | L  | L  | Н   |
| 34 35  | Н             | L | L | L  | н | L      | Н       | Н          | L  | Н  | Н  | L  | Н  | L   |
| 36 37  | Н             | L | L | Н  | L | L      | н       | Н          | L  | Н  | Н  | L  | Н  | Η.  |
| 38 39  | Н             | L | L | Н  | н | L      | Н       | Н          | L  | Н  | Н  | Н  | L  | L   |
| 40 41  | Н             | L | Н | L  | L | L      | Н       | Н          | Н  | L  | L  | L  | L  | ٦   |
| 42 43  | н             | L | Н | L  | Н | L      | н       | Н          | Н  | L  | L  | L  | L  | н   |
| 44 45  | Н             | L | Н | Н  | L | L      | н       | Н          | Н  | L  | L  | L  | Н  | L   |
| 46 47  | Н             | L | н | н  | н | L      | Н       | Н          | н  | L  | L  | L  | н  | н   |
| 48 49  | Н             | Н | L | L  | ٦ | L      | Н       | Н          | Н  | L. | L  | Н  | L  | L   |
| 50 51  | н             | н | L | L. | н | Ł      | Н       | н          | Н  | L  | н  | L  | L  | L   |
| 52 53  | н             | Н | L | Н  | L | L      | Н       | н          | Н  | L  | Н  | Ĺ  | L  | н   |
| 54 55  | н             | Н | L | н  | Н | L      | H       | н          | Н  | L  | н  | L  | н  | L   |
| 56 57  | Н             | Н | Н | L  | L | L      | Н       | Н          | Н  | L  | Н  | L  | н  | Н   |
| 58 59  | н             | Н | Н | L  | н | L      | н       | н          | Н  | L  | Н  | Н  | L  | L   |
| 60 61  | н             | Н | Н | н  | L | L      | н       | Н          | н  | н  | L  | L  | L  | L   |
| 62 63  | н             | Н | Н | Н  | Н | L      | н       | Н          | н  | н  | L  | L  | L  | н   |
| ALL    | ×             | X | × | X  | Х | н      | Z       | Z          | Z  | Z  | Z  | Z  | Z  | Z   |

H = High Level, L = Low Level, X = Don't Care, Z = High Impedance

# 6-BIT CONVERTER





# National Semiconductor ADDITIONAL DEVICES Section 4





| RATINGS                                       |             | DTL      | 2502<br>SERIES | 72XX/<br>82XX | 9000C<br>SERIES     | 93XX/<br>83XX | 96XX/<br>86XX | UNITS |
|-----------------------------------------------|-------------|----------|----------------|---------------|---------------------|---------------|---------------|-------|
| Maximum Allowable<br>Supply Voltage           |             | 8        | 7              | 7             | 7                   | 7             | 7             | v     |
| Guaranteed Operating Mil                      |             | N/A      | 4.50 to 5.50   |               | N/A                 | 4.50 t        | to 5.50       | v     |
| Supply Voltage Range                          | Coml        | 5        | 4.75 t         | 5.25          | 4.75-5.25           | 4.75 to 5.25  |               | ]     |
| Maximum Input Voltage                         |             | 5.5      | 5.5            | 5.5           | 5.5                 | 5.5           | 5.5           | ٧     |
| Maximum Voltage to Open-<br>Collector Outputs |             | 8        | 7              | 7             | 7                   | 7             | 7             | V     |
| Operating Free-Air Mil                        |             | N/A      | -55 to +125    |               | -55 to +125 N/A -55 |               | o +125        | °C    |
| Temperature Range ComI                        |             | 0 to +75 | 0 to           | +70           | 0                   |               | 1             |       |
| Storage Temperature Range                     | −65 to +150 |          |                |               |                     |               |               |       |





# **DTL Circuits**

# **General Description**

The National Semiconductor family of DTL is a complete line of compatible monolithic integrated circuits designed to operate at medium speed with medium power dissipation and high fan-out. The DTL family is available in 14-pin epoxy B or ceramic dual-in-line packages for operation over the 0°C to +75°C temperature range.

The DTL line is composed of a variety of NAND gates that allow complete design flexibility. The gates are available with either 6k pull-up resistors for low power dissipation, or 2k pull-up resistors for increased speed. The gate outputs can be wired together to achieve the wired-OR function.

The NAND gates are complemented with the DM932 and DM957 buffers which provide higher fan-out; the DM944 and DM958 power gates which have an open collector, and the DM933 extender which allows increased fan-in for both buffers and DM930 and DM961 gates.

The flip-flops in this family are of the direct coupled master-slave type, with direct clear and direct set lines. The dual flip-flops include ones with either common or separate clocks.

The DM945 and DM948 are R-S flip-flops which can be externally cross coupled to perform in the JK mode. They are of the master-slave type with output buffers to provide isolation from the output load. These flip-flops feature both asynchronous set and clear lines. The DM945 has a 6k pull-up resistor and the DM948 has a 2k pull-up resistor.

The DM9093 and DM9094 are dual JK flip-flops of the DM945 and DM948 variety respectively. Both flip-flops have separate clocks and no asynchronous clear lines.

The DM9097 and DM9099 are dual JK flip-flops of the DM948 and DM945 variety respectively. Both flip-flops have common clocks and both asynchronous set and clear lines.

The DM930 series is directly compatible with the TTL devices manufactured by National and can be used in conjunction with them in those portions of a system where speed is not the main consideration.

#### Features

#### NAND Gates

DM930, DM961 - dual four input gates with expanders DM935, DM936, DM937 - hex inverters

DM946, DM949 - quad two input gates DM962, DM963 - triple three input gates DM1800, DM1801 - dual five input gates

#### Buffers/Extenders

DM932 - dual four input buffer with expander DM933 - dual four-input extender

DM944 - dual four input power gate with expander DM957 - guad two input buffer

DM958 - quad two input power gate

#### ■ Flip-Flops

DM945, DM948 - RS flip-flops DM9093, DM9094, DM9097, DM9099 - dual JK flip-flops

# **Truth Tables**

#### SYNCHRONOUS TRUTH TABLE

|             |             | t <sub>n</sub> |              | t <sub>n</sub> + 1 |
|-------------|-------------|----------------|--------------|--------------------|
| S1<br>Pin 3 | S2<br>Pin 4 | C1<br>Pin 12   | C2<br>Pin 11 | Q<br>Pin 6         |
| L           | Х           | L              | ×            | Q <sub>i1</sub>    |
| L           | ×           | ×              | L            | Ωn                 |
| ×           | L           | L              | ×            | $\alpha_{n}$       |
| ×           | L           | ×              | L            | Qη                 |
| L           | ×           | Н              | Н            | L                  |
| ×           | L           | н              | н            | L                  |
| н           | Н           | L              | х            | н                  |
| н           | н           | ×              | L            | н                  |
| н           | Н           | Н              | Н            | *                  |

\* - Indeterminate State

X — Don't Care

#### **ASYNCHRONOUS TRUTH TABLE**

| S <sub>D</sub><br>Pin 1 | C <sub>1</sub> | O Q<br>5 Pin | 0<br>6 Pin 9 |
|-------------------------|----------------|--------------|--------------|
| Н                       | Н              | NC           | NC           |
| L                       | Н              | Н            | L            |
| н                       | L              | L            | Н            |
| L                       | L              | ∙н           | Н            |

#### JK TRUTH TABLE

|             | t <sub>n</sub> | t <sub>n</sub> + 1 |
|-------------|----------------|--------------------|
| S1<br>Pin 3 | C1<br>Pin 12   | Q<br>Pin 6         |
| L           | L              | $Q_n$              |
| н           | L              | Η.                 |
| L           | н              | L,                 |
| Н           | н              | $\bar{Q}_n$        |

(Connect S2 to  $\overline{Q}$ , C2 to Q) Asynchronous inputs, direct set  $(S_D)$  and direct clear  $(C_D)$ , override the synchronous inputs, and are independent of all other inputs.

# **Connection and Logic Diagrams**





















Electrical Characteristics  $(V_{CC} = 5.0V)$ 

|                  |                              |                                                          |          |     |       |       | 1936, DM<br>, DM963, |     | 946<br>0, DM1801 |        |
|------------------|------------------------------|----------------------------------------------------------|----------|-----|-------|-------|----------------------|-----|------------------|--------|
|                  | PARAMETER                    | CONDITIONS                                               |          | 0   | °c    | 25    | °c                   | 7   | UNITS            |        |
|                  |                              |                                                          |          | MIN | MAX   | MIN   | MAX                  | MIN | MAX              | ]      |
| I <sub>CEX</sub> | Output Leakage Current       | V <sub>1</sub> = 0, V <sub>O</sub> = 5V                  | 2k Gates |     |       |       | 100                  |     |                  | μΑ     |
|                  |                              | V <sub>1</sub> = 0, V <sub>0</sub> = 5V                  | 6k Gates |     |       |       | 100                  |     |                  | ] #^   |
| V <sub>OH</sub>  | High Level Output Voltage(1) | V <sub>IL</sub> = Max, I <sub>OH</sub> = Max             |          | 2.6 |       | 2.6   |                      | 2.5 |                  | V      |
| VOL              | Low Level Output Voltage     | V <sub>I</sub> = V <sub>IH</sub> , I <sub>OL</sub> = Max |          |     | 0.45  |       | 0.45                 |     | 0.50             | V      |
| L <sub>IH</sub>  | High Level Input Current (1) | V <sub>i</sub> = V <sub>R</sub>                          |          | 5   |       | 5     |                      | 10  | μА               |        |
| I <sub>IL</sub>  | Low Level Input Current      | V <sub>1</sub> = V <sub>F</sub>                          |          |     | -1.40 |       | -1.40                | 1   | -1.33            | mA     |
| los              | Short Circuit Output Current | . V <sub>1</sub> = 0                                     | 2k Gates |     |       | -1.85 | -3.90                |     |                  | mA     |
|                  |                              | . V <sub>1</sub> = 0                                     | 6k Gates |     | 1.30  | -0.61 | -1.30                |     | -1.25            | ] ""A  |
| I <sub>CC1</sub> | Supply Current               | V <sub>CC</sub> = 5V, V <sub>1</sub> = V <sub>R</sub>    | 2k Gates |     |       |       | 5.9                  |     |                  | mA     |
|                  |                              |                                                          | 6k Gates |     |       |       | 4                    |     |                  | 1111/2 |
| I <sub>CC2</sub> | Supply Current               | $V_{CC} = 8V, V_1 = 0$                                   |          | 1   |       |       | 4                    |     |                  | mA     |
| t <sub>PLH</sub> | Propagation Delay Time,      | $C_1 = 30 \text{ pF}, R_1 = 3.9 \text{ k}\Omega$         | 2k Gates |     |       | 15    | 60                   |     |                  | ns     |
|                  | Low-to-High Level Output     | OL 30 P1, IIL 3.3 K11                                    | 6k Gates |     |       | 25    | 80                   |     |                  | '''    |
| t <sub>PHL</sub> | Propagation Delay Time,      | $C_1 = 50 \text{ pF}, R_1 = 400\Omega$                   | 2k Gates |     |       | 10    | 30                   |     |                  | ns     |
|                  | High-to-Low Level Output     | OL 30 pr , NL = 40032                                    | 6k Gates |     |       | 10    | 30                   |     |                  | 115    |

# Notes

(1) Applies to all gates except DM935.

# **Test Conditions**

# GATES

| ТЕМР. | V <sub>IH</sub><br>VOLTS | V <sub>IL</sub><br>VOLTS | V <sub>R</sub><br>VOLTS | V <sub>F</sub><br>VOLTS | V <sub>CEX</sub><br>VOLTS | (6k)<br>I <sub>OL</sub><br>(mA) | (2k)<br>I <sub>OL</sub><br>(mA) | (6k)<br>I <sub>OH</sub><br>(mA) | (2k)<br>l <sub>OH</sub><br>(mA) |
|-------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 0°C   | 2.0                      | 1.2                      | 4.0                     | 0.45                    | -                         | 12.0                            | 11.0                            | <b>−</b> 0.12                   | -0.5                            |
| +25°C | 1.9                      | 1.1                      | 4.0                     | 0.45                    | 5.0                       | 12.0                            | 11.0                            | -0.12                           | -0.5                            |
| +75°C | 1.8                      | 0.95                     | 4.0                     | 0.50                    |                           | 11.4                            | 10.4                            | -0.12                           | 0.5                             |



# Electrical Characteristics ( $V_{CC} = 5.0V$ )

|                  |                              | . 1                                                      |                   | DN   | 1932, DM | 933, DN | 944, DM | 957, DM | 958   |      |
|------------------|------------------------------|----------------------------------------------------------|-------------------|------|----------|---------|---------|---------|-------|------|
|                  | PARAMETER                    | CONDITIONS                                               | S                 | 0°   | С        | 25      | °C '    | 75      | °C -  | UNIT |
| 1.               |                              |                                                          |                   | MIN  | MAX      | MIN     | MAX     | MIN     | MAX   |      |
| VIL              | Low Level Input Voltage      | I <sub>IL</sub> = I <sub>FD</sub>                        | 933               | 0.75 | 0.90     | 0.68    | 0.82    | 0.60    | 0.75  | V    |
| I <sub>CEX</sub> | Output Leakage Current       |                                                          | 932, 957          |      |          |         | 100     |         |       |      |
|                  | 4.5                          | V <sub>1</sub> = 0, V <sub>O</sub> = 5V                  | 944, 958          |      | 25       |         | 100     |         | 200   | μΔ   |
| Vон              | High Level Output Voltage    | V <sub>I</sub> = V <sub>IL</sub> , I <sub>OH</sub> = Max | 932, 957          | 2.6  |          | 2.6     |         | 2.5     |       | V    |
| V <sub>OL</sub>  | Low Level Output Voltage     | V <sub>I</sub> = V <sub>IH</sub> , I <sub>OL</sub> = Max | All Except<br>933 |      | 0.45     |         | 0.45    |         | 0.50  | V    |
| I <sub>IH</sub>  | High Level Input Current     | ,                                                        | 933               |      | 5        |         | 5       |         | 10    |      |
|                  | •                            | V <sub>i</sub> = V <sub>R</sub>                          | Others            |      | 5        |         | 5       |         | 10    | μΑ   |
| I <sub>IL</sub>  | Low Level Input Current      | V <sub>I</sub> = V <sub>F</sub>                          | All Except<br>933 |      | 1.40     |         | -1.40   |         | -1.33 | m/   |
| los              | Short Circuit Output Current | V <sub>1</sub> = 0                                       | 932, 957          |      | -16      |         | 16      |         | -14   | m/   |
| I <sub>CC1</sub> | Supply Current               | ,                                                        | 932               |      |          |         | 30.0    |         |       |      |
|                  |                              | $V_{CC} = 5V, V_1 = V_B$                                 | 944               |      |          |         | 22.5    |         |       | m./  |
|                  |                              | V <sub>CC</sub> = 5V, V <sub>I</sub> = V <sub>R</sub>    | 957               |      |          |         | 60.0    |         | ,     | ] "" |
|                  |                              |                                                          | 958               |      |          |         | 4.5     |         |       |      |
| I <sub>CC2</sub> | Supply Current               | V <sub>CC</sub> = 8V, V <sub>1</sub> = 0                 | All Except<br>933 |      |          |         | 4       |         |       | m/   |
| t <sub>PLH</sub> | Propagation Delay Time,      | $C_L = 500 \text{ pF}, R_L = 510\Omega$                  | 932, 957          |      |          | 25      | 80      |         |       | n    |
|                  | Low-to-High Level Output     | $C_L = 20  pF, R_L = 510\Omega$                          | 944, 958          |      |          | 15      | 50      |         |       | ] "  |
| t <sub>PHL</sub> | Propagation Delay Time,      | $C_L = 500 \text{ pF}, R_L = 150\Omega$                  | 932, 957          |      |          | 15      | 40      |         |       | n    |
| i                | High-to-Low Level Output C   | $C_{L} = 100 \text{ pF}, R_{L} = 150\Omega$              | 944, 958          |      |          | 10      | 35      |         |       | ] "  |

# **Test Conditions**

# BUFFERS/EXTENDERS

| TEMP.    | V <sub>IH</sub> | VIL   | V <sub>R</sub> | V <sub>F</sub> | V <sub>CEX</sub> | İ <sub>FD</sub> | 932<br>957              | 944<br>958              | 932<br>957              |
|----------|-----------------|-------|----------------|----------------|------------------|-----------------|-------------------------|-------------------------|-------------------------|
| I EIVIP. | VOLTS           | VOLTS | VOLTS          | TS VOLTS VOLTS |                  | mA              | I <sub>OL</sub><br>(mA) | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) |
| - 0°C    | 2.0             | 1.2   | 4.0            | 0.45           | -                | -2              | 36                      | 40                      | -2.0                    |
| +25°C    | 1.9             | 1.1   | 4.0            | 0.45           | 5.0              | 2               | 36                      | 40                      | -2.5                    |
| +75°C    | 1.8             | 0.95  | 4.0            | 0.50           | -                | -2              | 34                      | · 36                    | -3.0                    |



# Electrical Characteristics $(V_{CC} = 5.0V)$

|                  |                                                     |                                                   |                                                         |                          |          | M945, E |       | DM9093 |       | 94     |       |
|------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--------------------------|----------|---------|-------|--------|-------|--------|-------|
|                  | PARAMETER                                           |                                                   | CONDITIONS                                              |                          | 0        | °C      | 25    | °C     | . 75  | i°C    | UNITS |
|                  |                                                     |                                                   |                                                         |                          | MIN      | MAX     | MIN   | MAX    | MIN   | MAX    |       |
| ICEX             | Output Leakage Current                              | V <sub>i</sub> = 0, V <sub>O</sub> =              | = 5V                                                    | 945, 948                 |          |         |       | 100    |       |        | μΑ    |
| VoH              | High Level Output Voltage                           |                                                   | Data                                                    | 945, 948                 | 2.6      |         | 2.6   |        | 2.5   |        |       |
| J                | , ,                                                 | Vi = ViL                                          | Set, Reset                                              | 945, 948                 | 2.6      |         | 2.6   |        | 2.6   |        | .,    |
|                  |                                                     | I <sub>OH</sub> = Max                             | All                                                     | 9093, 9094<br>9097, 9099 | 2.6      | -       | 2.6   |        | 2.5   |        | ٧     |
| V <sub>OL</sub>  | Low Level Output Voltage                            | V <sub>i</sub> = V <sub>IH</sub> , I <sub>C</sub> | o <sub>L</sub> = Max                                    | All                      |          | 0.45    |       | 0.45   |       | 0.50   | V     |
| Чн               | High Level Input Current                            |                                                   | Data                                                    | 945, 948                 |          | 5.0     |       | 5.0    |       | 10.0   |       |
|                  |                                                     |                                                   | Set, Reset                                              | 945, 948                 |          | 5.0     |       | 5.0    |       | 10.0   |       |
|                  |                                                     |                                                   |                                                         | 945, 948                 |          | 30      |       | 30     |       | 40     |       |
|                  |                                                     |                                                   | Clock                                                   | 9093, 9094               |          | 20      |       | 20     |       | 30     |       |
|                  |                                                     | V <sub>1</sub> = V <sub>R</sub>                   |                                                         | 9097, 9099               |          | 40      |       | 40     |       | 60     | μΑ    |
|                  | •                                                   |                                                   | Clear                                                   | 9097, 9099               |          | 10      |       | 10     |       | 20     |       |
|                  |                                                     |                                                   | All Except Clocks,<br>and Direct Clear<br>on 9097, 9099 | 9093, 9094<br>9097, 9099 |          | 5.0     |       | 5.0    |       | 10.0   |       |
| IIL              | Low Level Input Current                             |                                                   | Data                                                    | All                      |          | -0.95   |       | -0.95  |       | -0.90  | -     |
|                  |                                                     |                                                   | Set, Reset                                              | 945, 948                 |          | -2.8    |       | - 2.8  |       | -2.67  |       |
|                  |                                                     |                                                   | Direct Set                                              | 9093, 9094<br>9097, 9099 |          | -2.8    |       | -2.8   |       | -2.67  |       |
|                  |                                                     | V1 = VF                                           |                                                         | 945                      | 1        | -2.8    |       | -2.8   |       | -2.66  |       |
|                  |                                                     |                                                   | Clock                                                   | 948, 9093<br>9094        |          | -2.8    |       | -2.8   |       | - 2.67 | mA    |
|                  |                                                     |                                                   | Clock, Direct<br>Clear                                  | 9097, 9099               |          | -5 6    |       | -5.6   |       | 5.34   |       |
| los              | Short Circuit Output Current                        | V = 0                                             |                                                         | 2k                       | -1.77    | -4.2    | -1.77 | -4.2   | -1.60 | -40    |       |
|                  |                                                     | A <sup>1</sup> = 0                                |                                                         | 6k                       | 0.59     | -1.41   | -0.59 | -1.41  | -0.55 | -1.38  | mA    |
| I <sub>CC1</sub> | Supply Current                                      |                                                   |                                                         | 945                      |          |         |       | 14     |       |        |       |
|                  |                                                     |                                                   |                                                         | 948                      |          |         |       | 17     |       |        |       |
| - 1              |                                                     | V <sub>CC</sub> = 5V (I                           | nputs Open)                                             | 9093, 9099               | 1        |         |       | 28     |       |        | mA    |
|                  |                                                     | i                                                 |                                                         | 9094, 9097               |          |         |       | 34     |       |        |       |
| I <sub>CC2</sub> | Supply Current                                      |                                                   | · · · · · · · · · · · · · · · · · · ·                   | 945                      |          |         |       | 18     |       |        |       |
| 002              |                                                     |                                                   |                                                         | 948                      | 1        |         |       | 23     |       |        |       |
|                  | $V_{CC} = 8V, V_1 = 0$                              |                                                   | , = 0                                                   | 9093, 9099               |          |         |       | 36     |       |        | mA    |
|                  |                                                     | }                                                 |                                                         | 9094, 9097               |          | -       |       | 45     |       |        |       |
| tPLH             | Propagation Delay Time,                             |                                                   |                                                         | 2k                       | <b> </b> |         | 25    | 75     |       |        |       |
| THE              | Low-to-High Level Output                            | $C_L = 30 pF_4$                                   | $R_L = 2 k\Omega$                                       | 6k                       | <u> </u> |         | 25    | 100    |       |        | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | C <sub>L</sub> = 50 pF,                           | R <sub>L</sub> = 330Ω                                   |                          |          |         | 15    | 55     |       |        | ns    |

# **Test Conditions**

# FLIP-FLOPS

| ТЕМР. | V <sub>IH</sub><br>VOLTS | V <sub>IL</sub><br>VOLTS | V <sub>R</sub><br>VOLTS | V <sub>F</sub><br>VOLTS | V <sub>CEX</sub><br>VOLTS | 945<br>9093<br>9099<br>(6k)<br>V <sub>CPTH</sub><br>(VOLTS) | 948<br>9094<br>9097<br>(2k)<br>V <sub>CPTH</sub><br>(VOLTS) | 945<br>9093<br>9099<br>(6k)<br><sup>I</sup> OL<br>(mA) | 948<br>9094<br>9097<br>(2k)<br><sup>I</sup> OL<br>(mA) | 945<br>9093<br>9099<br>(6k)<br><sup>I</sup> OH<br>(mA) | 948<br>9094<br>9097<br>(2k)<br>I <sub>OH</sub><br>(mA) |
|-------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 0°C   | 2.0                      | 1.2                      | 4.0                     | 0.45                    | _                         | 1.15                                                        | 1.30                                                        | 16.8                                                   | 15.4                                                   | -0.12                                                  | -0.5                                                   |
| +25°C | 1.9                      | 1.1                      | 4.0                     | 0.45                    | 5.0                       | 0.95                                                        | 1.15                                                        | 16.8                                                   | 15.4                                                   | <b>0.12</b>                                            | -0.5                                                   |
| +75°C | 1.8                      | 0.95                     | 4.0                     | 0.50                    | _                         | 0.65 .                                                      | 0.85                                                        | 16.0                                                   | 14.6                                                   | -0.12                                                  | -0.5                                                   |



# **Successive Approximation Registers**

# **General Description**

The DM2502, DM2503 and DM2504 are 8-bit and 12-bit TTL registers designed for use in successive approximation A/D converters. These devices contain all the logic and control circuits necessary (in combination with a D/A converter) to perform successive approximation analog-to-digital conversions.

The DM2502 has 8 bits with serial capability and is not expandable.

The DM2503 has 8 bits and is expandable without serial capability.

The DM2504 has 12 bits with serial capability and expandability.

All three devices are available in ceramic DIP, ceramic flatpak, and molded Epoxy-B DIPs. The DM2502,

DM2503 and DM2504 operate over  $-55^{\circ}$ C to  $+125^{\circ}$ C; the DM2502C, DM2503C and DM2504C operate over  $0^{\circ}$ C to  $+70^{\circ}$ C.

# **Features**

- Complete logic for successive approximation A/D converters
- 8-bit and 12-bit registers
- Capable of short cycle or expanded operation
- Continuous or start-stop operation
- Compatible with D/A converters using any logic code
- Active low or active high logic outputs
- Use as general purpose serial-to-parallel converter or ring counter

# **Connection Diagrams**



2502(J), (W); 2502C(J), (N), (W); 2503(J), (W); 2503C(J), (N), (W)



2504(J), (F); 2504C(J), (N), (F)

### **Truth Table**

| TIME           |      | INPUTS | ,    |       |     |    |    | OUTP | UTS(1) |       | *************************************** |    |               |
|----------------|------|--------|------|-------|-----|----|----|------|--------|-------|-----------------------------------------|----|---------------|
| t <sub>n</sub> | D    | s      | E(2) | D0(3) | .07 | Q6 | Q5 | Q4   | Q3     | Q2    | Q1                                      | Q0 | $\alpha_{cc}$ |
| 0              | X    | L      | L    | Х     | Х   | Х  | X  | X    | X      | X     | X                                       | Х  | ×             |
| 1              | D7   | Н      | L    | . X   | L   | Н  | Н  | H    | Н      | Н     | Н                                       | Н  | Н             |
| 2              | D6   | Н      | L.   | D7    | D7  | L. | Н  | Н    | Н      | Н     | Н                                       | Н  | Н             |
| 3              | · D5 | Н      | L    | D6    | D7  | D6 | Ŀ  | Н    | H,     | Н     | Н                                       | Н  | . H           |
| 4              | D4   | Н      | L    | D5    | D7  | D6 | D5 | L    | Η.     | , H ′ | Н                                       | Н  | Н             |
| 5、             | D3   | Н      | L    | D4    | D7  | D6 | D5 | D4   | L      | Н     | Н                                       | Н  | Н             |
| 6              | D2   | Н      | L    | D3    | D7  | D6 | D5 | D4   | D3     | L     | . Н                                     | Н  | Н             |
| 7              | D1   | Н      | L    | D2    | D7  | D6 | D5 | D4   | D3     | D2    | L                                       | Н  | Н             |
| 8              | D0   | H      | L    | D1    | D7  | D6 | D5 | D4   | D3     | D2    | D1                                      | L  | Н             |
| 9              | Х    | Н      | L    | D0    | D7  | D6 | D5 | Đ4   | D3     | D2    | D1                                      | D0 | L             |
| 10             | Х    | X      | L    | ×     | D7  | D6 | D5 | D4   | D3     | D2    | D1                                      | D0 | L             |
|                | ×    | Х      | н    | х     | Н   | NC | NC | NC   | NC     | NC    | NC                                      | NC | , NC          |

#### Notes

- (1) Truth table for DM2504 is extended to include 12 outputs.
- (2) Truth table for DM2502 does not include E column or last line in truth table shown.
- (3) Truth table for DM2503 does not include D0 column.

H = High Level

L = Low Level

X = Don't Care

NC = No Change



|                 |                                           |                                                                                                 |                                                |     |         |      |     | DM25    |      |     |         |      |       |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----|---------|------|-----|---------|------|-----|---------|------|-------|
|                 | PARAMETER                                 | CONE                                                                                            | DITIONS                                        |     | 02, 02C |      |     | 03, 03C |      |     | 04, 04C |      | UNITS |
|                 |                                           |                                                                                                 |                                                | MIN | TYP(1)  | MAX  | MIN | TYP(1)  | MAX  | MIN | TYP(1)  | MAX  |       |
| VIH             | High Level Input Voltage                  |                                                                                                 |                                                | 2   |         |      | 2   |         |      | 2   |         |      | V     |
| VIL             | Low Level Input Voltage                   |                                                                                                 |                                                |     |         | 0.8  |     |         | 8.0  |     |         | 0.8  | V     |
| Vı              | Input Clamp Voltage                       | V <sub>CC</sub> = Min, I                                                                        | 1 =12 mA                                       |     |         | -1.5 |     |         | -1.5 |     |         | -1.5 | V     |
| Іон             | High Level Output Current                 |                                                                                                 |                                                |     |         | -480 |     |         | -480 |     |         | -480 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage                 | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = 0.8V, I                                           | / <sub>1H</sub> = 2V<br><sub>OH</sub> = -480μA | 2.4 | 3.6     |      | 2.4 | 3.6     |      | 2.4 | 3.6     |      | ٧     |
| loL             | Low Level Output Current                  |                                                                                                 |                                                |     | ,       | 9.6  |     |         | 9.6  |     |         | 9.6  | mA    |
| VoL             | Low Level Output Voltage                  | V <sub>CC</sub> = Min, V <sub>IH</sub> = 2V<br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> = 9.6 mA |                                                |     | 0.2     | 0.4  |     | 0.2     | 0.4  |     | 0.2     | 0.4  | ٧     |
| l <sub>i</sub>  | Input Current at<br>Maximum Input Voltage | V <sub>CC</sub> = Max, \                                                                        | V <sub>1</sub> = 5.5V                          |     |         | 1    |     |         | 1    |     |         | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current                  | V <sub>CC</sub> = Max                                                                           | CP Input                                       |     | 6       | 40   |     | 6       | 40   |     | 6       | 40   | μΑ    |
|                 |                                           | V <sub>1</sub> = 2.4V                                                                           | D, E, S Inputs                                 |     | 12      | 80   |     | 12      | 80   |     | 12      | 80   | μΛ    |
| l <sub>IL</sub> | Low Level Input Current .                 | V <sub>CC</sub> = Max                                                                           | CP, S Inputs                                   |     | -1.0    | -1.6 |     | -1.0    | -1.6 |     | -1.0    | -1.6 | mA    |
|                 |                                           | V <sub>1</sub> = 0.4V                                                                           | D, E Inputs                                    |     | 2.0     | -3.2 |     | -2.0    | -3.2 |     | -2.0    | -3.2 |       |
| los             | Short Circuit Output<br>Current           | V <sub>CC</sub> = Max(2)                                                                        |                                                | -10 | -20     | -45  | -10 | -20     | -45  | -10 | -20     | -45  | mA    |
| Icc             | Supply Current                            | V <sub>CC</sub> = Max                                                                           | Military                                       |     | 65      | 85   |     | 60      | 80   |     | 90      | 110  | mA    |
|                 |                                           | ACC - IAIGX                                                                                     | Commercial                                     |     | 65      | 95   |     | 60      | 90   |     | 90      | 124  | 111/4 |

(1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
 (2) Not more than one output should be shorted at a time.

# Switching Characteristics $V_{CC}$ = 5V, $T_A$ = 25 $^{\circ}C$

|                                                          |                                                                      |               | •     |                     | DM25                            |         |     | T       |     |         |     |       |     |    |     |
|----------------------------------------------------------|----------------------------------------------------------------------|---------------|-------|---------------------|---------------------------------|---------|-----|---------|-----|---------|-----|-------|-----|----|-----|
| PARAMETER                                                |                                                                      | FROM          | то    | CONDITIONS          |                                 | 02, 020 | ;   | 03, 03C |     | 04, 04C |     | UNITS |     |    |     |
|                                                          |                                                                      |               |       |                     | MIN                             | TYP     | MAX | MIN     | TYP | MAX     | MIN | TYP   | MAX |    |     |
| fMAX                                                     | Maximum Clo                                                          | ock Frequency |       |                     |                                 | 15      | 21  |         | 15  | 21      |     | 15    | 21  |    | MHz |
| <sup>t</sup> PLH                                         | Propagation E<br>Low-to-High                                         |               | -     |                     |                                 | 10      | 26  | 38      | 10  | 26      | 38  | 10    | 26  | 38 | ns  |
| . <sup>t</sup> PHL                                       | Propagation E<br>High-to-Low                                         |               | СР    | Output              | $C_L = 15 pF$ $R_L = 400\Omega$ | 10      | 18  | 28      | 10  | 18      | 28  | 10    | 18  | 28 | ns  |
| <sup>t</sup> PLH                                         | t <sub>PLH</sub> Propagation Delay Time,<br>Low-to-High Level Output |               | Ē     | Q7 (Q11)<br>CP High | _                               |         | N/A |         |     | 13      | 19  |       | 13  | 19 | ns  |
| tpHL Propagation Delay Time,<br>High-to-Low Level Output |                                                                      | E             | S Low |                     |                                 | N/A     |     |         | 16  | 24      |     | 16    | 24  | ns |     |
| tw                                                       | Width of                                                             | Low Level     |       |                     |                                 | 42      | 30  |         | 42  | 30      |     | 42    | 30  |    | ns  |
|                                                          | Clock Pulse                                                          | High Level    |       |                     |                                 | 24      | 17  |         | 24  | 17      |     | 24    | 17  |    |     |
| t <sub>SETUP</sub>                                       | Setup Time                                                           | S Input       |       |                     |                                 | 16      | 9   |         | 16  | 9       |     | 16    | 9   |    | ns  |
|                                                          | İ                                                                    | D Input       |       |                     |                                 | 8       | 4   |         | 8   | 4       |     | 8     | 4   |    | 3   |



# Application Information OPERATION

The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to-low transition and a set of slave latches that hold the register data and change on the input clock low-to-high transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to-high. There are no restrictions on the data input; it can change state at any time except during a short interval centered about the clock low-to-high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration.

The register is reset by holding the  $\overline{S}$  (Start) signal low during the clock low-to-high transition. The register synchronously resets to the state Q7 (11) low, and all the remaining register outputs high. The QCC (Conversion Complete) signal is also set high at this time. The S signal should not be brought back high until after the clock low-to-high transition in order to guarantee correct resetting. After the clock has gone high resetting the register; the S signal must be removed. On the next clock low-to-high transition the data on the D input is set into the Q7 (11) register bit and the Q6 (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to-high transition data enters the Q6 (10) register bit and Q5 (9) is set to a low. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Q0, the  $Q_{CC}$ signal goes low, and the register is inhibited from further change until reset by a Start signal.

The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide non-overlapping two-phase clock pulses (i.e., the clock waveforms intersect below the thresholds of the gates they drive). Thus, even at very slow dV/dt rates at the clock input (such as from relatively weak comparator outputs), improper logic operation will not result.

# LOGIC CODES

All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator 1/2 full range + 1/2 LSB and using the complement of the MSB  $(\overline{Q7}$  or  $\overline{Q11})$  with a binary D/A converter. Offset binary is used in the same manner but with the MSB  $(\overline{Q7}$  or  $\overline{Q11})$ . BCD D/A converters can be used with the addition of illegal code suppression logic.

# ACTIVE HIGH OR ACTIVE LOW LOGIC

The register can be used with either D/A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from the register is active low. That is, a logic "1" is represented as a low

voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic "1" is represented as a high voltage level.

#### **EXPANDED OPERATION**

An active low enable input,  $\overline{E}$ , on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D, and  $\overline{S}$  inputs in parallel and connecting the  $Q_{CC}$  output of one register to the  $\overline{E}$  input of the next less significant register. When the start signal resets the register, the  $\overline{E}$  signal goes high, forcing the Q7 (11) bit high and inhibiting the register from accepting data until the previous register is full and its  $Q_{CC}$  goes low. If only one register is used the  $\overline{E}$  input should be held at a low logic level.

#### SHORT CYCLE

If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather than the  $Q_{CC}$  signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This condition can be avoided by making the start input the OR function of  $Q_{CC}$  and the appropriate register output.

#### COMPARATOR BIAS

To minimize the digital error below  $\pm 1/2$  LSB, the comparator must be biased. If a D/A converter is used which requires a low voltage level to turn on, the comparator should be biased  $\pm 1/2$  LSB. If the D/A converter requires a high logic level to turn on, the comparator must be biased  $\pm 1/2$  LSB.

# Definition of Terms (See Timing Diagram)

CP: The clock input of the register.

D: The serial data input of the register.

DO: The serial data out. (The D input delayed one bit).

**Ē**: The register enable. This input is used to expand the length of the register and when high forces the Q7 (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground).

 $Q_i$  i = 7 (11) to 0: The outputs of the register.

**Q<sub>CC</sub>**: The conversion complete output. This output remains high during a conversion and goes low when a conversion is complete.

Q7 (11): The true output of the MSB of the register.

 $\overline{\mathbf{Q}}$ 7 (11): The complement output of the MSB of the register.

S: The start input. If the start input is held low for at least a clock period the register will be reset to Q7 (11) low and all the remaining outputs high. A start pulse that is low for a shorter period of time can be used if it meets the set-up time requirements of the S input.





# **Typical Applications**

# BCD ILLEGAL CODE SUPPRESSION





# HIGH SPEED 12-BIT A/D CONVERTER





# General Description

These high-speed counters consist of four dc-coupled, master-slave flip-flops which are internally interconnected to provide divide-by-two, divide-by-four, divide-by-five, divide-by-six, divide-by-eight, divide-by-ten, divide-by-twelve, or divide-by-sixteen operations. The counters are fully programmable; that is, the outputs may be preset to any number by placing a low logic level on the count/load input and entering the desired number at the data inputs. Transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters also feature a direct clear which, when placed at a low logic level, sets all outputs low regardless of the conditions on the clocks.

# Typical Count Configurations DM7280/DM8280, DM7290/DM8290

The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes:

- 1. When used as a binary-coded decimal decade counter, the clock-2 input must be externally connected to the  $\mathbf{Q}_{A}$  output. The clock-1 input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table.
- 2. If a symmetrical divide-by-ten count is desired for frequency synthesizers (or other applications requiring division of a binary count by a power of ten), the  $\Omega_D$  output must be externally connected to the clock-1 input. The input count is then applied at the clock-2 input and a divide-by-ten square wave is obtained at output  $\Omega_A$  in accordance with the bi-quinary truth table.
- 3. For operation as a divide-by-two counter and a divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The clock-2 input is used to obtain binary divide-by-five operation at the Q<sub>B</sub>, Q<sub>C</sub>, and Q<sub>D</sub> outputs. In this mode, the two counters operate independently; however, all four flip-flops are loaded and cleared simultaneously.

#### DM7281/DM8281, DM7291/DM8291

The output of flip-flop A is not internally connected to the succeeding flip-flops, therefore the counter may be

# **Presettable Counters**

operated in two independent modes:

- 1. When used as a high-speed 4-bit ripple-through counter, output  $Q_A$  must be externally connected to the clock-2 input. The input count pulses are applied to the clock-1 input. Simultaneous divisions by 2, 4, 8, and 16 are performed at the  $Q_A$ ,  $Q_B$ ,  $Q_C$ , and  $Q_D$  outputs as shown in the truth table for the DM7281/8281, DM7291/8291.
- 2. When used as a 3-bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2, 4, and 8 are available at the  $O_B$ ,  $O_C$ , and  $O_D$  outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3-bit ripple-through counter.

#### DM7288/DM8288

The 8288 divide-by-twelve counter is a four-bit subsystem consisting of divide-by-two and divide-by-six counters in a 14-pin package. For divide-by-twelve operation, output A is connected externally to the clock-2 input.

#### Features

- Direct replacements Signetics 8280, 8281, 8288, 8290, 8291
- Pin-for-pin with popular Series 54 counters:
   8280, 8290-54176, 54196
   8281, 8291-54177, 54197
- Fully programmable
- Independent clear input
- Performs BCD, bi-quinary, or quinary counting
- Output Q<sub>A</sub> maintains full fan-out while driving clock 2

| TYPE                                | TYPICAL<br>/PE CLOCK FREQUEN: |         | TYPICAL           |
|-------------------------------------|-------------------------------|---------|-------------------|
|                                     | CLOCK 1                       | CLOCK 2 | POWER DISSIPATION |
| 7280/8280<br>7281/8281<br>7288/8288 | 50 MHz                        | 25 MHz  | 150 mW            |
| 7290/8290<br>7291/8291              | 50 MHz                        | 25 MHz  | 150 mW            |

#### Connection Diagram



7280(J), (W); 8280(J), (N), (W); 7281(J), (W); 8281(J), (N), (W); 7288(J), (W); 8288(J), (N), (W); 7290/8290(J), (N), (W); 7291/8291(J), (N), (W)

| Electrical Characteristics over recommended operation | ng free-air temperature range (unless otherwise noted) |
|-------------------------------------------------------|--------------------------------------------------------|
|-------------------------------------------------------|--------------------------------------------------------|

|                 |                                        |                                                     |                                                  |        | DM72/82 |      |     |        |      | -        |        |      |      |
|-----------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------|---------|------|-----|--------|------|----------|--------|------|------|
|                 | PARAMETER                              |                                                     | CONDITIONS                                       | 80, 81 |         | 88   |     | 90, 91 |      |          | UNITS  |      |      |
|                 |                                        |                                                     |                                                  | MIN    | TYP(1)  | MAX  | MIN | TYP(1) | MAX  | MIN      | TYP(1) | MAX  |      |
| V <sub>IH</sub> | High Level Input Voltage               |                                                     |                                                  | 2      |         |      | 2   |        |      | 2        |        |      | V    |
| VIL             | Low Level Input Voltage                |                                                     | ,                                                |        |         | 0.8  |     | ,      | 8.0  |          |        | 8.0  | V    |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I                            | <sub>I</sub> = -12 mA                            |        |         | -1.5 |     |        | -1.5 |          |        | -1.5 | V    |
| Іон             | High Level Output Current              |                                                     | * .                                              |        |         | -800 |     |        | -800 |          |        | -800 | μΑ   |
| V <sub>OH</sub> | High Level Output Voltage              | V <sub>CC</sub> = Min, V<br>V <sub>IL</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OH</sub> = -800μΑ | 2.6    |         |      | 2.6 |        |      | 2.6      | -      | 1.   | · V  |
| loL             | Low Level Output Current               |                                                     |                                                  |        |         | 16   |     |        | 16   |          |        | 16   | mA   |
| Vol             | Low Level Output Voltage               | V <sub>CC</sub> = Min, \ V <sub>IL</sub> = 0.8V,    |                                                  |        |         | 0.4  |     |        | 0.4  | ·        | -      | 0.4  | V    |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                              | V <sub>I</sub> = 5.5V                            |        |         | 1    |     | ,      | 1    |          |        | 1 .  | mA   |
| . Чн            | High Level Input Current               | ,                                                   | Count/Load, Data                                 |        |         | 40   |     |        | 40   |          |        | 40   |      |
|                 |                                        | V <sub>CC</sub> = Max                               | Clear, Clock 1                                   |        |         | 80   |     |        | 80   |          |        | 80   | μΑ   |
|                 |                                        | V <sub>1</sub> = 4.5V                               | Clock 2 (8281, 8291)                             | ļ      |         | 40   |     |        | N/A  |          |        | 80   |      |
|                 |                                        |                                                     | Clock 2 (Others)                                 |        |         | 80   |     |        | 80   |          |        | 120  |      |
| I <sub>IL</sub> | Low Level Input Current                |                                                     | Count/Load                                       |        |         | -1.6 |     |        | -1.6 | <u> </u> | ·      | -1.6 |      |
|                 | , , , , , , , , , , , , , , , , , , ,  | V <sub>CC</sub> = Max                               | Data ·                                           |        |         | -1.2 |     |        | -1.2 |          |        | -1.2 |      |
|                 | ·                                      | $V_1 = 0.4V$                                        | Clear                                            |        |         | -3.2 |     |        | -3.2 | <u> </u> |        | 2.8  | mA   |
|                 | ·                                      | 0.40                                                | Clk 1, Clk 2 (8280, 8290)                        |        |         | -3.2 |     |        | -3.2 |          |        | -4.8 |      |
|                 |                                        |                                                     | Clock 2 (Others)                                 |        |         | -1.6 |     |        | -1.6 |          |        | -2.4 |      |
| Ios             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2                             | 2)                                               | -18    |         | -57  | -18 |        | 57   | -18      | -      | 57   | mA   |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                               |                                                  |        | 30      | 45   | ,   | 30     | 45   |          | 30     | 48   | _ mA |
|                 |                                        |                                                     |                                                  |        |         |      |     |        |      |          |        |      | ·    |

<sup>(1)</sup> All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

<sup>(2)</sup> Not more than one output should be shorted at a time.

Devices

| _  | - ( |
|----|-----|
| _  | - 1 |
| ᅭ  | - 1 |
| =  | - 1 |
| ٠. | - 1 |
| ~  | ı   |
|    |     |

| _          | - [ |
|------------|-----|
| ъ          | - 1 |
| _          | - ( |
| $^{\circ}$ | - } |
|            |     |

|   | $\triangleright$ |
|---|------------------|
|   | 5                |
| 1 | =                |

| Switching Characteristics | $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ |
|---------------------------|-------------------------------------|
|                           |                                     |

|                    | PARAMETER                                           | FROM           | то             |
|--------------------|-----------------------------------------------------|----------------|----------------|
| f <sub>MAX</sub>   | Maximum Clock<br>Frequency                          | Clock 1        | Q <sub>A</sub> |
| t <sub>PLH</sub>   | Propagation Delay Time,<br>Low-to-High Level Output | Clock 1        | Q <sub>A</sub> |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output | Clock 1        | Q <sub>A</sub> |
| tpLH               | Propagation Delay Time,<br>Low-to-High Level Output | Clock 2        | Ω <sub>B</sub> |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | Clock 2        | O <sub>B</sub> |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | Clock 2        | O <sub>C</sub> |
| tPHL               | Propagation Delay Time,<br>High-to-Low Level Output | Clock 2        | $Q_{\rm c}$    |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | Clock 2        | Ω <sub>D</sub> |
| <sup>t</sup> PHL   | Propagation Delay Time,<br>High-to-Low Level Output | Clock 2        | Ω <sub>D</sub> |
| <sup>t</sup> PLH   | Propagation Delay Time,<br>Low-to-High Level Output | Any Data Input | Any Output     |
| <sup>t</sup> PHL , | Propagation Delay Time,<br>High-to-Low Level Output | Any Data Input | Any Output     |
| t <sub>PLH</sub>   | Propagation Delay Time,<br>Low-to-High Level Output | Load           | Any Output     |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output | Load           | Any Output     |
| tPHL               | Propagation Delay Time,<br>High-to-Low Level Output | Clear          | Any Output     |
| · t <sub>W</sub>   | Pulse Width                                         |                |                |
|                    |                                                     |                |                |
| tHOLD              | Input Hold Time                                     |                |                |
| †SETUP             | Input Setup Time                                    |                |                |

tenable Time

8281, 8291

8281, 8291

DM72/82

# Additional Devices

Truth Tables

80, 90 DECADE (BCD) (See Note A)

| COUNT | OUTPUT |         |    |         |  |  |  |
|-------|--------|---------|----|---------|--|--|--|
| COOKI | $Q_D$  | $Q_{C}$ | ΟB | $Q_{A}$ |  |  |  |
| 0     | L      | L       | L  | L       |  |  |  |
| 1     | L      | L       | L  | н       |  |  |  |
| 2     | L      | L       | Н  | L       |  |  |  |
| 3     | L      | L       | Н  | н       |  |  |  |
| 4     | L      | Н       | L  | L       |  |  |  |
| 5     | L      | Н       | L  | "H      |  |  |  |
| 6     | L      | Н       | Н  | L       |  |  |  |
| 7     | L      | Н       | Н  | н       |  |  |  |
| 8     | н      | L       | L  | L       |  |  |  |
| 9     | н      | L       | L  | н       |  |  |  |
|       |        |         |    |         |  |  |  |

80, 90 BI-QUINARY (5-2) (See Note B)

| COUNT | OUTPUT           |                                   |              |    |  |  |  |
|-------|------------------|-----------------------------------|--------------|----|--|--|--|
| COUNT | $\mathbf{Q}_{A}$ | $\sigma_{\!\scriptscriptstyle D}$ | $\alpha_{c}$ | QΒ |  |  |  |
| 0.    | L                | L                                 | L            | L  |  |  |  |
| 1     | L                | L                                 | L            | Н  |  |  |  |
| 2     | L                | L                                 | Н            | L  |  |  |  |
| 3     | L                | L                                 | Н            | Н  |  |  |  |
| 4     | L                | Н                                 | L            | L  |  |  |  |
| 5     | н                | L                                 | L            | L  |  |  |  |
| 6 .   | н                | L                                 | L            | Н  |  |  |  |
| 7     | н                | L                                 | Н            | L  |  |  |  |
| 8     | н                | L                                 | Н            | Н  |  |  |  |
| 9     | н                | Н                                 | L            | L  |  |  |  |

81, 91 TRUTH TABLE (See Note A)

| COUNT | OUTPUT                     |              |    |                  |  |  |
|-------|----------------------------|--------------|----|------------------|--|--|
| COUNT | $\mathbf{Q}_{\mathbf{D}}.$ | $\alpha_{c}$ | QB | $\mathbf{Q}_{A}$ |  |  |
| 0     | L                          | L            | L  | L.               |  |  |
| 1     | L                          | L            | L  | н                |  |  |
| 2     | L                          | L            | Н  | L                |  |  |
| 3     | L                          | L            | Н  | н                |  |  |
| 4     | L                          | Н            | L  | L                |  |  |
| 5     | L                          | Н            | L  | Н                |  |  |
| , 6   | L                          | н            | Н  | L                |  |  |
| 7     | L                          | Н            | Н  | Н                |  |  |
| 8     | н                          | L            | L  | L                |  |  |
| 9     | н                          | L            | L  | н                |  |  |
| . 10  | Н                          | L            | Н  | L.               |  |  |
| 11    | Н                          | L            | Н  | Н                |  |  |
| 12    | н                          | Н            | L  | L                |  |  |
| 13    | н                          | Н            | L  | н                |  |  |
| 14    | н                          | Н            | Н  | L                |  |  |
| 15    | Н                          | н            | н  | Н                |  |  |

88 TRUTH TABLE

| COUNT |         | OUT                   | PUT |         |
|-------|---------|-----------------------|-----|---------|
| COUNT | $Q_{D}$ | $\sigma_{\mathbf{c}}$ | QΒ  | $Q_{A}$ |
| 0     | L       | L                     | L   | L       |
| 1     | L       | L                     | L   | Н       |
| 2     | L       | L                     | Н   | L       |
| 3     | L       | L                     | Ĥ   | H       |
| 4     | L       | Н                     | L   | L       |
| 5     | L       | Н                     | L   | Н       |
| 6     | L       | Н                     | Н   | L       |
| 7     | L       | Н                     | Н   | Н       |
| 8     | н       | L                     | L   | L       |
| 9     | н       | L                     | L   | н       |
| 10    | н       | L                     | Н   | L       |
| 11    | н       | L                     | н   | Н       |

H = High Level, L = Low Level

#### Notes:

- (A) Output QA connected to clock 2 input.
- (B) Output QD connected to clock 1 input.











# **General Description**

DM9000C series devices are designed to be used in existing systems as replacements for Fairchild 9000-type circuits. These DM9000C circuits offer several significant advantages over 9000 type circuits, some of which are:

- Input clamp diodes
- Output short-circuit current specified to guarantee the high-level impedance.
- Power dissipation of DM9000C circuits is in most cases lower than that for the equivalent 9000 type.

DM9000C circuits are characterized for operation over the industrial temperature range of 0°C to 75°C.

For new designs, the 54/74 families of TTL circuits offer the industry's broadest choice of high-performance digital circuits. Included are several families of compatible

# Gates/Inverters

TTL circuits offering a choice of specific performance ranges (see Sections 1 and 2); and are designed to serve any application from industrial numerical controllers or high-speed computers, to sophisticated high-reliability aerospace and defense systems. Series 54/74 pin-for-pin equivalents are available for the following SSI types:

| DM9000C SERIES | <b>EQUIVALENT SERIES 74</b> |
|----------------|-----------------------------|
| DM9002C        | DM7400                      |
| DM9003C        | DM7410                      |
| DM9004C        | DM7420                      |
| DM9005C        | DM7450                      |
| DM9006C        | DM74H60                     |
| DM9008C        | DM74H53                     |
| DM9009C        | DM7440                      |
| DM9012C        | DM7403                      |
| DM9016C        | DM7404                      |
| DM9024C        | DM74109                     |
|                |                             |

# Connection Diagrams



9002C(J), (N); 9012C(J), (N)



9003C(J), (N)



9004C(J), (N); 9009C(J), (N)



9005C(J), (N)



9006C(J), (N)



9008C(J), (N)



9016C(J), (N)



|                 |                                                                                                                               |                                                                                            |             |                      |                        |                                 | OM90 .        |               |               |             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|----------------------|------------------------|---------------------------------|---------------|---------------|---------------|-------------|
|                 | PARAMETER                                                                                                                     | CONDITIONS                                                                                 |             | 02C, 03C<br>04C, 16C | EXPAND<br>ABLE<br>GATE | NON-<br>EXPAND-<br>ABLE<br>GATE | 06C, 08C      | 09C           | 12C           | UNITS       |
|                 |                                                                                                                               |                                                                                            |             | MIN MAX              | MIN MAX                | MIN MAX                         | MIN MAX       | MIN MAX       | MIN MAX       |             |
| ViH             | High Level Input Voltage                                                                                                      | ·                                                                                          | 0°C<br>25°C | 1.9                  | 1.9                    | 1.9                             | 1.9           | 1.9           | 1.9           | ٧           |
| \ <u>``</u>     |                                                                                                                               |                                                                                            | 75°C.       | 1.6                  | 1.6                    | 1.6                             | 1.6           | 1.6           | 1.6           | <del></del> |
| VIL             | Low Level Input Voltage                                                                                                       |                                                                                            | _           | 0.85                 | 0.85                   | 0.85                            | 0.85          | 0.85          | 0.85          | V           |
| I <sub>OH</sub> | Input Clamp Voltage High Level Output Current                                                                                 | $V_{CC} = 4.75V, I_1 = -12 \text{ n}$ $V_{CC} = 4.75V, V_{IL} = 0.85$ $V_{OH} = 5.5V$      |             | -1.5<br>-1.2         | ~1.5<br>-1.2           | -1.5<br>-1.2                    | -1.5<br>-1.2  | -3.6          | -1.5<br>0.25  | mA          |
| V <sub>OH</sub> | High Level Output Voltage                                                                                                     | $V_{CC} = 4.75V$ $I_{OH} = -1$<br>$V_{IL} = 0.85V$ $I_{OH} = -3$                           |             | 2.4                  | 2.4                    | 2.4                             | 2.4           | 2.4           | N/A<br>N/A    | . v         |
| loL             | Low Level Output Current                                                                                                      |                                                                                            |             | 50                   | 50                     | 50                              | 50            | 100           | 50            | mA          |
| V <sub>OL</sub> | Low Level Output Voltage                                                                                                      | V <sub>CC</sub> = 5.25V I <sub>OL</sub> = 16<br>V <sub>IH</sub> = Min I <sub>OL</sub> = 48 |             | 0.45                 | 0.45                   | 0.45                            | 0.45          | 0.45          | 0.45          |             |
|                 |                                                                                                                               | $V_{CC} = 4.75V$ $I_{OL} = 14.$<br>$V_{IH} = Min$ $I_{OL} = 42.$                           | .1 mA       | 0.45                 | 0.45                   | 0.45                            | 0.45          | 0.45          | 0.45          | V           |
| liH             | High Level Input Current                                                                                                      | V <sub>CC</sub> = 5.25V, V <sub>1</sub> = 4.5V<br>Other Inputs at Ground                   |             | 60                   | 90                     | 60                              | 90            | 120           | 60            | μА          |
| 1 <sub>1L</sub> | Low Level Input Current                                                                                                       | $V_1 = 0.45V$ Other Inputs at 5.25V $V_{CC} = 5.25V$ $V_{CC} = 4.25V$                      |             | -1.6<br>-1.41        | -2.4<br>-2.12          | 1.6<br>-1.41                    | -2.4<br>-2.12 | -3.2<br>-2.82 | -1.6<br>-1.41 | mA          |
| los             | Short Circuit Output Current                                                                                                  | V <sub>CC</sub> = 5.25V(1)                                                                 |             | -18 -55              | -20 -70                | -20 -70                         | -40 -100      | -20 -70       | N/A           | mA          |
| Іссн            | Supply Current, All Outputs<br>High                                                                                           | V <sub>CC</sub> = 5V                                                                       |             | 1.7                  | 5.1                    | 3.4                             | 10.2          | 3.4           | 1.7           | mA ¹        |
| Iccl            | Supply Current, All Outputs<br>Low                                                                                            | V <sub>CC</sub> = 5V                                                                       |             | 6.1                  | 13.6                   | 7.7                             | 17.7          | 14.6          | 6.1           | mA          |
| △Іссн           | ΔSupply Current Additional Supply Current when one DM9006C Ex- tender is connected to a DM9005C Gate in the Logical "1" State | V <sub>CC</sub> = 5V                                                                       |             | N/A                  | 2.05                   | N/A                             | 2.05          | N/A           | N/A           | m <b>A</b>  |
| △Iccl           | Additional in the Logical "0" State                                                                                           | V <sub>CC</sub> = 5V                                                                       |             | N/A                  | 2.54                   | N/A                             | 2.54          | N/A           | N/A           | mA          |
| tpLH            | Propagation Delay Time,<br>Low-to-High Level Output                                                                           | $C_L = 15 \text{ pF}, R_L = 400\Omega$                                                     | (2)(3)      | 3 13                 | 3 15                   | 3 12                            | 3 15          | 3 17          | 3 45          |             |
| tPHL            | Propagation Delay Time,<br>High-to-Low Level Output                                                                           | V <sub>CC</sub> = 5V, T <sub>A</sub> = 25°C                                                |             | 3 15                 | 3 12                   | 3 14                            | 3 12          | 2 13          | 3 15          | ns          |

#### Notes

- (1) Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
- (2) For testing tpLH of DM9012C,  $R_L = 4 k\Omega$ .
- (3)  $t_{PLH}$  and  $t_{PHL}$  for DM9006C = 4 ns max. additional, as measured through the DM9005C.



# Dual J-K Flip-Flops with Preset and Clear

# **Connection Diagram**



Truth Table

24

|        | INP   | UTS   |    |   | OUTP | UTS |
|--------|-------|-------|----|---|------|-----|
| PRESET | CLEAR | CLOCK | J  | ĸ | Q    | ā   |
| L      | Н     | ×     | Х  | Х | н    | L   |
| н      | L     | ×     | X  | Х | L    | Н   |
| L      | L     | ×     | X  | Х | Н*   | H*  |
| н      | Н     | 1     | t_ | L | L    | Н   |
| Н      | H     | †     | Н  | L | TOG  | GLE |
| Н      | н     | 1     | L  | Н | Ω0   | Q0  |
| н      | Н     | †     | Н  | Н | Н    | L   |
| Н      | Н     | L     | Х  | X | 00   | ŌΟ  |

H = High Level (Steady State), L = Low Level (Steady State),

X = Don't Care

† = Transition from low to high level

 $\ensuremath{\text{Q0}}$  = The level of  $\ensuremath{\text{Q}}$  before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.

\*This configuration is nonstable. That is, it will not persist when preset and clear inputs return to their inactive (high) level.

# Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 | DADAMETED       |                                               |                                     |                                                                       |     |                                                                                   | DI    | 190   | DI    | 180   |                |
|-----------------|-----------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-------|-------|-------|-------|----------------|
|                 | PARAMET         | ER                                            |                                     | C                                                                     | ONI | DITIONS                                                                           | 2     | 24    | 2     | 24    | UNITS          |
|                 | ,               |                                               |                                     |                                                                       |     |                                                                                   | MIN   | MAX   | MIN   | MAX   |                |
| VIH             | High Level Inpu | ıt Voltage                                    |                                     |                                                                       | T   | ι = Min                                                                           | 2.0   |       | 1.9   |       |                |
|                 |                 |                                               |                                     |                                                                       | T   | <sub>λ</sub> = 25°C                                                               | 1.7   |       | 1.8   |       | V              |
|                 |                 |                                               |                                     |                                                                       | T   | λ = Max                                                                           | 1.4   |       | 1.6   |       |                |
| VIL             | Low Level Inpu  | ıt Voltage                                    |                                     |                                                                       | A   |                                                                                   |       | 0.9   |       | 0.85  | V              |
| VI              | Input Clamp V   | oltage                                        | V <sub>CC</sub> = Min,              | $V_{CC} = Min, I_i = -12 \text{ mA}$                                  |     |                                                                                   |       | -1.5  |       | -1.5  | V              |
| Тон             | High Level Out  | put Current                                   |                                     |                                                                       |     |                                                                                   |       | -1.2  |       | -1.2  | mA             |
| V <sub>OH</sub> | High Level Out  | put Voltage                                   |                                     | $V_{CC} = Min, V_{IH} = Min$ $V_{IL} = Max, I_{OH} = -1.2 \text{ mA}$ |     |                                                                                   |       |       | 2.4   |       | V              |
| I <sub>OL</sub> | Low Level Out   | put Current                                   |                                     |                                                                       |     | !                                                                                 |       | 12.4  |       | 14.1  | mA             |
| VoL             | Low Level Out   | put Voltage                                   | \/ - \A()-                          | \ _ N                                                                 |     | I <sub>OL</sub> = 12.4 mA                                                         |       | 0.40  |       |       |                |
|                 |                 |                                               | V <sub>IH</sub> = Win               | V <sub>CC</sub> - WI                                                  | In  | I <sub>OL</sub> = 14.1 mA                                                         |       |       |       | 0.45  | V              |
|                 |                 |                                               | V <sub>IL</sub> - IVIAX             | V <sub>CC</sub> = M                                                   | ax  | I <sub>OL</sub> = 12.4 mA<br>I <sub>OL</sub> = 14.1 mA<br>I <sub>OL</sub> = 16 mA |       | 0.40  |       | 0.45  |                |
| Iн              | High Level      | $J, K, \overline{J} \text{ or } \overline{K}$ | ]                                   |                                                                       |     |                                                                                   |       | 60    |       | 60    |                |
|                 | Input Current   | Clock                                         | V <sub>CC</sub> = Max               | , V <sub>1</sub> = 4.5V                                               | T   | $_{\lambda}$ = 25°C and 125°C (DM90)                                              |       | 120   |       | 120   | μΑ             |
|                 |                 | Preset                                        | Other Input                         | ts at Gnd                                                             | T   | $_{\lambda} = 25^{\circ} \text{C and } 75^{\circ} \text{C} \text{ (DM80)}$        |       | 120   |       | 120   | $\mu$ $\wedge$ |
|                 | ,               | Clear                                         |                                     |                                                                       |     |                                                                                   |       | 240   |       | 240   |                |
| IIL             | Low Level       | J, K, J or K                                  |                                     |                                                                       |     |                                                                                   |       | -1.6  |       | -1.6  |                |
|                 | Input Current   | Clock                                         |                                     |                                                                       |     | V <sub>CC</sub> = Max                                                             |       | -3.2  |       | -3.2  |                |
|                 |                 | Preset                                        | V <sub>1</sub> = 0.40V              | (DMQO)                                                                |     | ACC - Max                                                                         |       | -3.2  |       | -3.2  |                |
|                 |                 | Clear                                         | $V_1 = 0.45V$                       |                                                                       |     |                                                                                   |       | -4.8  |       | -4.8  | mA             |
|                 |                 | J, K, J or K                                  | Other Input                         |                                                                       |     |                                                                                   |       | -1.24 |       | -1.41 | 1117 (         |
| Ì               |                 | Clock                                         | Other Impu                          | V <sub>CC</sub> = Min                                                 |     |                                                                                   | -2.48 |       | -2.82 |       |                |
|                 |                 | Preset                                        | ]                                   |                                                                       |     | V CC - WITH                                                                       |       | -2.48 |       | -2.82 |                |
|                 |                 | Clear                                         |                                     |                                                                       |     |                                                                                   |       | -3.72 |       | -4.23 |                |
| los             | Short Circuit O | utput Current                                 | V <sub>CC</sub> = Max               | (1)                                                                   |     |                                                                                   | -30   | -85   | -30   | -85   | mA             |
| Icc             | Supply Current  |                                               | $V_{CC} = 5V, T_A = 25^{\circ}C(2)$ |                                                                       |     |                                                                                   | 28    |       | 28    | mA    |                |
| Notes           |                 |                                               | <del></del>                         |                                                                       |     |                                                                                   | L     |       |       |       |                |

# Notes

- (1) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
- (2) ICC is measured with all outputs open, first with preset at 4.5V and all other inputs grounded, then with clear at 4.5V and all other inputs grounded.



Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|                    |                            |                                                     | FROM      | то                           |                                |                | DM90/8 | 0   |       |    |      |
|--------------------|----------------------------|-----------------------------------------------------|-----------|------------------------------|--------------------------------|----------------|--------|-----|-------|----|------|
|                    | PARAME                     | TER                                                 | (INPUT)   | (OUTPUT)                     | CONDITIONS                     |                | 24     |     | UNITS |    |      |
|                    |                            | *                                                   | (1141 017 | (0001)                       |                                | MIN            | TYP    | MAX |       |    |      |
| f <sub>MAX</sub>   | Maximum Cl                 | ock Frequency                                       |           |                              |                                | 30             | 40     |     | MHz   |    |      |
| tpLH               | Propagation<br>Low-to-High | Delay Time,<br>Level Output                         | Preset    | Q                            |                                |                | 9      | 14  | ns    |    |      |
| <sup>t</sup> PHL   | Propagation<br>High-to-Low | Delay Time,<br>Level Output                         | Preset    | ā                            |                                |                |        |     | - 18  | 29 | 1. " |
| tPLH               | Propagation<br>Low-to-High | Delay Time,<br>Level Output                         | Clear     | ā                            | $C_L = 15 pF, R_L = 400\Omega$ |                | 9      | 14  | ns    |    |      |
| tPHL               |                            | Propagation Delay Time,<br>High-to-Low Level Output |           | Ω                            |                                |                | 17     | 25  | 1115  |    |      |
| tPLH               | Propagation<br>Low-to-High | Delay Time,<br>Level Output                         | Clock     | Q or $\overline{\mathbb{Q}}$ |                                |                | 12     | 18  | ns    |    |      |
| tpHL               |                            | Propagation Delay Time,<br>High-to-Low Level Output |           | 4014                         |                                |                | 19     | 28  | 1115  |    |      |
| t <sub>W</sub>     | Pulse Width                | ulse Width Clock High Clock Low Preset or Clear Low |           |                              |                                | 20<br>20<br>20 |        |     | ns    |    |      |
| <sup>†</sup> SETUP | Input Setup                |                                                     |           |                              | ·                              | 15↑            |        | ,   | ns    |    |      |
| tHOLD              | Input Hold T               | nput Hold Time(3)                                   |           |                              |                                | 101            |        |     | ns    |    |      |

#### Notes

(3) ↑ The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge.



# 4-Bit Parallel-Access Shift Registers

# **General Description**

These 4-bit registers feature parallel inputs, parallel outputs,  $J\bar{K}$  serial inputs, shift/load control input, and a direct overriding clear. The registers have two modes of operation: parallel (broadside) load and shift (in direction  $\Omega_{\Delta}$  toward  $\Omega_{D}$ ).

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flops, and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the  $J\overline{K}$  inputs. These inputs permit the first stage to perform as a  $J\overline{K}$ , D or T-type flip-flop as shown in the truth table.

These shift registers are fully compatible with most other TTL and DTL families. All inputs, including the clock, are buffered to lower the drive requirements to one normalized Series 54/74 load.

#### **Features**

- Direct replacement for Fairchild 9300
- Fully buffered inputs
- Direct overriding clear
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
- Positive edge-triggered clocking
- J and K inputs to first stage
- Typical shift frequency—39 MHz

### Connection Diagram



# Truth Table

|       |        |       | NPUTS |   |    |      |      |    |                     | C               | UTPUT             | s        |                     |
|-------|--------|-------|-------|---|----|------|------|----|---------------------|-----------------|-------------------|----------|---------------------|
| CLEAR | SHIFT/ | СГОСК | SER   |   |    | PARA | LLEL |    | 0.                  |                 | 0-                | 0-       | <u>-</u>            |
| CLEAR | LOAD   | CLUCK | J     | ĸ | P0 | P1   | P2   | Р3 | QΑ                  | σB              | αc                | αD       | $\bar{\alpha}_{D}$  |
| L     | X      | Х     | ×     | X | Х  | Х    | Х    | Х  | L                   | L               | L                 | L        | н                   |
| н     | L      | 1     | ×     | X | a  | b    | c    | d  | a                   | b               | С                 | d        | ď                   |
| н     | н      | L     | ×     | X | ×  | Х    | X    | ×  | Q <sub>A0</sub>     | Q <sub>B0</sub> | $\sigma^{C0}$     | $a_{D0}$ | $\bar{\alpha}_{D0}$ |
| н     | н      | 1     | L     | Н | Х  | X    | Х    | Х  | Q <sub>A0</sub>     | $Q_{A0}$        | $Q_{Bn}$          | $Q_{Cn}$ | ā <sub>Cn</sub>     |
| н     | H      | 1     | L     | L | ×  | Х    | Х    | х  | L                   | $Q_{An}$        | $Q_{Bn}$          | $Q_{Cn}$ | ā <sub>Cn</sub>     |
| Н     | н      | 1     | Н     | Н | ×  | Х    | X    | Х  | н                   | $Q_{An}$        | . Q <sub>Bn</sub> | $Q_{Cn}$ | $\bar{\alpha}_{Cn}$ |
| н     | , H    | 1     | Н     | L | X  | Χ    | ×    | Х  | $\bar{\alpha}_{An}$ | $Q_{An}$        | $Q_{Bn}$          | $Q_{Bn}$ | $\bar{\alpha}_{Cn}$ |

- H = High Level (Steady State)
- L = Low Level (Steady State)
- X = Don't Care
- ↑ = Transition from low-to-high level
- a, b, c, d = The level of steady state input at P0, P1, P2, or P3, respectively.
- $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = The level of  $Q_{A}$ ,  $Q_{B}$ ,  $Q_{C}$  or  $Q_{D}$ , respectively, before the indicated steady state input conditions were established.
- $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$  = The level of  $Q_A$ ,  $Q_B$  or  $Q_C$ , respectively, before the most recent 1 transition of the clock.



|                 |                                        |                                                             |              |     | DM93/83 | ,        |       |
|-----------------|----------------------------------------|-------------------------------------------------------------|--------------|-----|---------|----------|-------|
|                 | PARAMETER                              | CONDITION                                                   | s            | ,   | 00      |          | UNITS |
|                 |                                        |                                                             |              | MIN | TYP(1)  | MAX      |       |
| V <sub>IH</sub> | High Level Input Voltage               |                                                             |              | 2   |         |          | · V   |
| VIL             | Low Level Input Voltage                |                                                             |              |     |         | 0.8      | V     |
| Vi              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -                   | 12 mA        |     |         | -1.5     | ٧     |
| Гон             | High Level Output Current              |                                                             |              |     |         | 800      | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC}$ = Min, $V_{IH}$ = $V_{IL}$ = 0.8V, $I_{OH}$ =      |              | 2.4 |         |          | V     |
| loL             | Low Level Output Current               |                                                             |              |     |         | 16       | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min$ , $V_{IH} = V_{IL} = 0.8V$ , $I_{OL} = 0.8V$ |              | ·   | ,       | 0.4      | V     |
| I <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 1$                                  | 5.5V         |     |         | 1        | mA    |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>I</sub> = :                   | 2.4V         |     |         | 40       | μĄ    |
| IIL             | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0                   | 0.4V         |     |         | -1.6     | mA    |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                    |              | -18 |         | -55      | mA    |
| Icc             | Supply Current                         | $V_{CC} = Max(3)$                                           | 9300<br>8300 |     |         | 86<br>92 | mA    |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) With all outputs open, shift/load grounded, and 4.5V applied to the J, K, and data inputs, I<sub>CC</sub> is measured by applying a momentary ground, followed by 4.5V, to clear, and then applying a momentary ground, followed by 4.5V, to clock.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                      | , v                                            | •                                                              | ,          |     | M93/8 | 3   |       |
|----------------------|------------------------------------------------|----------------------------------------------------------------|------------|-----|-------|-----|-------|
|                      | PARAMETER                                      |                                                                | CONDITIONS |     | - 00  | ı   | UNITS |
|                      |                                                |                                                                |            | MIN | TYP   | MAX |       |
| f <sub>MAX</sub>     | Maximum Clock Frequence                        | cy                                                             |            | 30  | 39    |     | MHz   |
| <sup>t</sup> PHL     | Propagation Delay Time, I                      | High-to-Low Level                                              |            |     | 19    | 30  | ns    |
| tрLН                 | Propagation Delay Time,<br>Output from Clock   | Propagation Delay Time, Low-to-High Level<br>Output from Clock |            |     | 14    | 22  | ns    |
| t <sub>PHL</sub>     | Propagation Delay Time, I<br>Output from Clock | High-to-Low Level                                              |            |     | 17    | 26  | ns    |
| tw(CLOCK)            | Width of Clock Input Puls                      | e                                                              |            | 16  | 11    |     | ns    |
| tw(CLEAR)            | Width of Clear Input Pulse                     | 9                                                              | -<br>-     | 30  | 15    |     | ņs    |
| tSETUP               | Setup Time (4)                                 | Shift/Load                                                     |            | 30  | 13    |     |       |
|                      |                                                | Serial and Parallel Data                                       |            | 20  | 13    |     | ns    |
|                      | Clear Inactive-State                           |                                                                |            | 30  | 13    |     |       |
| <sup>t</sup> RELEASE | Shift/Load Release Time                        | (5)                                                            |            |     |       | 10  | · ns  |
| <sup>'t</sup> HOLD   | Serial and Parallel Data He                    | old Time                                                       |            | 0.  | -11   |     | ns    |

#### Notes

- (4) SET UP TIME: t<sub>SET UP</sub> is defined as the minimum time required for the logic level to be present at the logic input prior to the clock transition from low to high in order for the flip-flop(s) to respond.
- (5) RELEASE TIME: tRELEASE is defined as the maximum time allowed for the logic level to be present at the logic input prior to the clock transition from low to high in order for the flip-flop(s) not to respond.





# 1 of 10 Decoders

# **General Description**

These BCD-to-decimal decoders consist of eight inverters and ten 4-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain "OFF" for all invalid input conditions.

These circuits provide familiar TTL inputs and outputs which are compatible for use with other TTL and DTL circuits. DC noise margins are typically 1V and power dissipation is typically 125 mW. The diode-clamped, buffered inputs represent only one normalized Series 54/74 load.

#### Features

- Direct replacement for Fairchild 9301 and Signetics 8252
- Diode-clamped inputs
- All outputs are high for invalid BCD input conditions
- Typical power dissipation

125 mW

■ Typical propagation delay

20 ns

# **Connection Diagram**



9301(J), (W); 8301(J), (N), (W)

# Logic Diagram



# **Truth Table**

| NO.     |   | BCD I | NPUT |   |    |   |     | DEC            | IMAL | OUTP | UT  |    |     |    |
|---------|---|-------|------|---|----|---|-----|----------------|------|------|-----|----|-----|----|
| NO.     | D | С     | В    | Α | 0  | 1 | 2   | 3              | 4    | 5    | 6   | 7  | 8   | 9  |
| 0       | L | L     | L    | L | L  | Н | Н   | Н              | Н    | Н    | , н | Н  | Н   | Н  |
| 1       | L | L     | L    | Н | Н  | L | H.  | Н              | Н    | H    | H   | Н  | Н   | Н  |
| 2       | L | L     | Н    | L | Н  | Н | L   | Н              | Н    | Н    | Н   | ·H | Н   | Н  |
| 3       | Ŀ | L     | Н    | н | н  | Н | Н   | L              | Н    | Н    | Н   | Н  | н   | н  |
| 4       | L | Н     | L    | L | Н  | н | Н   | Н              | L    | Н    | Н   | Н  | Н   | Н  |
| 5       | L | Н     | L    | Н | Н  | Н | , н | . н            | H.   | L    | Н   | Н  | Н   | Н  |
| 6       | L | Н     | Н    | L | Н  | H | Н   | н              | . н  | Н    | L   | Н  | Н - | Н  |
| 7       | L | Н     | Н    | Н | н  | Н | Н   | Н              | · H  | Н    | Н   | L  | Н   | Н  |
| 8       | н | L     | L    | L | Н  | Н | Н   | Н              | Н    | Н    | Н   | Н  | L   | Н  |
| 9       | н | L     | L    | н | н  | Н | Н   | H.             | Н    | Н    | ·H  | н  | Н   | L  |
|         | Н | L     | Н    | L | Н  | Н | Н   | Н              | Н    | Н    | Н   | Н  | Н   | Н  |
|         | н | L     | Н    | Н | Н  | Н | Н   | Н              | Н    | Н    | . н | H  | Н   | Н  |
| F       | Н | Н     | L    | L | H. | Н | н : | H:             | Н    | н    | Н   | н  | Н   | Н  |
| INVALID | н | Н     | L    | Н | н  | Н | Н   | Н              | Н    | Н    | Н   | Н  | Н   | Н  |
| =       | н | Н     | Н    | L | н  | Н | Н   | Н              | Н    | H    | Н   | Н  | н   | H- |
| L       | н | Н     | Н    | Н | н  | Н | Н   | H <sup>*</sup> | Н    | Н    | н   | Н  | Н   | Н  |



|                 |                                        |                                                                          |     | DM93/83 |      |       |  |
|-----------------|----------------------------------------|--------------------------------------------------------------------------|-----|---------|------|-------|--|
|                 | PARAMETER                              | CONDITIONS                                                               |     | 01      |      | UNITS |  |
|                 |                                        |                                                                          | MIN | TYP(1)  | MAX  |       |  |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                          | 2   |         |      | ٧     |  |
| VIL             | Low Level Input Voltage                |                                                                          |     |         | 0.8  | V     |  |
| Vı              | Input Clamp Voltage                    | $V_{CC} = Min$ , $I_1 = -12 \text{ mA}$                                  |     |         | -1.5 | V     |  |
| I <sub>OH</sub> | High Level Output Current              |                                                                          |     |         | -800 | μΑ    |  |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min$ , $V_{IH} = 2V$<br>$V_{IL} = 0.8V$ , $I_{OH} = -800\mu A$ | 2.4 |         |      | V     |  |
| l <sub>OL</sub> | Low Level Output Current               |                                                                          |     | ,       | 16   | mA    |  |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$   |     |         | 0.4  | ٧     |  |
| I <sub>L</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max$ , $V_1 = 5.5V$                                            |     |         | 1    | mA    |  |
| l <sub>IH</sub> | High Level Input Current               | $V_{CC} = Max$ , $V_1 = 2.4V$                                            |     |         | 40   | μΑ    |  |
| IIL             | Low Level Input Current                | $V_{CC} = Max$ , $V_1 = 0.4V$                                            |     |         | -1.6 | mA    |  |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                                 | -20 |         | -55  | mA    |  |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max(3)                                                 |     | 25      | 41   | mA    |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ} C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with the outputs open and all inputs grounded.

Switching Characteristics  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ 

|      | PARAMETER                                                                   | CONDITIONS                             |     | UNITS |     |    |
|------|-----------------------------------------------------------------------------|----------------------------------------|-----|-------|-----|----|
|      |                                                                             |                                        | MIN | TYP   | MAX |    |
| tPHL | Propagation Delay Time, High-to-Low Level,<br>Any Output from A, B, C, or D | C = 15 = F B = 4000                    |     | 19    | 30  | ns |
| tpLH | Propagation Delay Time, Low-to-High Level, Any Output from A, B, C, or D    | $C_L = 15 \text{ pF}, R_L = 400\Omega$ |     | 20    | 30  | ns |

# Data Selectors/Multiplexers

# **General Description**

These data selectors/multiplexers contain inverter/drivers to supply full complementary, on-chip, binary decoded data selection to the AND-OR-INVERT gates.

The DM9309/8309 contains two separate 4-bit multiplexers with complementary Y and  $\overline{Y}$  outputs; however, the two sections have common address select inputs.

The DM9312/8312 is a single 8-bit multiplexer with complementary outputs and a strobe control. When the strobe is low, the function is enabled. When a high logic level is applied to the strobe, the outputs are latched.

# **Features**

#### DM9309/8309

- Direct replacement for Fairchild 9309
- Complementary outputs
- Dual one-of-four data selectors

#### DM9312/8312

- Direct replacement for Fairchild 9312
- Selects one-of-eight data sources
- Performs parallel to serial conversion
- Strobe controlled outputs
- Complementary outputs

# **Connection Diagrams**



9309(J), (W); 8309(J), (N), (W)



9312(J), (W); 8312(J), (N), (W)

#### **Truth Tables**

09

| INPUTS |     |    |    |    |    |   | PUTS |  |
|--------|-----|----|----|----|----|---|------|--|
| SELI   | ECT |    | DA | ., | Ÿ  |   |      |  |
| В      | Α   | C0 | C1 | C2 | СЗ | Y | Υ    |  |
| L      | L   | L  | х  | х  | х  | L | Н    |  |
| L      | L   | Н  | X  | Х  | Х  | Н | L    |  |
| L      | Н   | х  | L  | Х  | X  | L | Н    |  |
| L      | Н   | х  | н  | X  | X  | н | L    |  |
| Н      | L   | ×  | Х  | L  | Х  | L | Н    |  |
| Н      | L   | ×  | X  | Н  | X  | н | L    |  |
| Н      | Н   | ×  | X  | X  | L  | L | Н    |  |
| Н      | Н   | х  | Х  | Χ. | н  | Н | L    |  |

Select inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care. 12

|   | 1     | OUTPUTS |        |    |    |
|---|-------|---------|--------|----|----|
| S | ELEC1 |         | STROBE | v  | ⊽  |
| С | В     | Α       | G      | '  |    |
| × | Х     | х       | н      | Ľ  | Н  |
| L | L.    | L       | L      | D0 | D0 |
| L | L     | Н       | L      | D1 | D1 |
| L | Н     | L       | L      | D2 | D2 |
| L | Н     | Н       | L      | D3 | D3 |
| Н | L     | L       | L      | D4 | D4 |
| н | L     | Н       | L      | D5 | D5 |
| Н | Н     | L       | L      | D6 | D6 |
| н | Н     | Н       | L.     | D7 | D7 |

H = High Level, L = Low Level, X = Don't Care.
D0, D1 . . . D7 = The level of the respective D input.



|                  |                                        |                                                                        |     | DM93/83 |      |    |  |  |
|------------------|----------------------------------------|------------------------------------------------------------------------|-----|---------|------|----|--|--|
|                  | PARAMETER                              | CONDITIONS                                                             |     | 09, 12  |      |    |  |  |
|                  |                                        |                                                                        | MIN | TYP(1)  | MAX  |    |  |  |
| V <sub>IH</sub>  | High Level Input Voltage               |                                                                        | 2   |         |      | V  |  |  |
| VIL              | Low Level Input Voltage                |                                                                        |     |         | 0.8  | V  |  |  |
| V <sub>I</sub>   | Input Clamp Voltage                    | V <sub>CC</sub> = Min, I <sub>1</sub> = -12 mA                         |     |         | -1.5 | V  |  |  |
| ГОН              | High Level Output Current              | ,                                                                      |     |         | -800 | μΑ |  |  |
| V <sub>OH</sub>  | High Level Output Voltage              | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OH} = -800\mu A$     | 2.4 | 3.4     |      | ٧  |  |  |
| I <sub>OL</sub>  | Low Level Output Current               |                                                                        |     |         | 16   | mA |  |  |
| V <sub>OL</sub>  | Low Level Output Voltage               | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OL} = 16 \text{ mA}$ |     | 0.2     | 0.4  | ٧  |  |  |
| I <sub>I</sub> . | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                           |     |         | 1    | mA |  |  |
| I <sub>IH</sub>  | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                           |     |         | 40   | μΑ |  |  |
| l <sub>IL</sub>  | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                           |     |         | -1.6 | mA |  |  |
| los              | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                               | -30 |         | -85  | mA |  |  |
| Icc              | Supply Current                         | V <sub>CC</sub> = Max(3)                                               |     | 27      | 44   | mA |  |  |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with the outputs open and all inputs at 4.5V for the DM9309/8309, and with the strobe and data select inputs at 4.5V, all other inputs and outputs open for the DM9312/8312.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     |        |    |                        | DM93/83<br>09 |     |      | DM93/83 |     |     | UNITS |
|------------------|-----------------------------------------------------|--------|----|------------------------|---------------|-----|------|---------|-----|-----|-------|
| PARAMETER        |                                                     | FROM   | то | CONDITIONS             |               |     |      |         |     |     |       |
|                  |                                                     |        |    |                        | MIN           | TYP | MAX  | MIN     | TYP | MAX |       |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Select | Y  |                        |               | 27  | 40 ' |         | 22  | 33  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Select | Y  |                        |               | 23  | 36   |         | 23  | 35  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Select | Ÿ  |                        |               | 17  | 24   |         | 18  | 28  | ns    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High to Low Level Output | Select | Ÿ  |                        |               | 20  | 29   |         | 16  | 25  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Data   | Y  |                        |               | 18  | 27   |         | 16  | 23  | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Y  | C <sub>1</sub> = 15 pF |               | 23  | 34   |         | 17  | 25  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Data . | ₹  | R <sub>L</sub> = 400Ω  |               | 14  | 21   |         | 9   | 13  | ns    |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data   | Ÿ  |                        |               | 9   | 13   |         | 9   | 13  | ns    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Strobe | Y  |                        |               | N/A |      |         | 22  | 33  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Strobe | Y  |                        |               | N/A |      |         | 21  | 32  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | Strobe | Ÿ  |                        | ,             | N/A | ,    |         | 13  | 19  | ns    |
| <sup>†</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Strobe | Ÿ  |                        |               | N/A |      |         | 15  | 21  | ns    |

Logic Diagrams





# Synchronous 4-Bit Counters

### **General Description**

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The DM9310/DM8310 are decade counters and the DM9316/DM8316 are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the load input are perfectly acceptable regardless of the logic levels on the clock or enable inputs. The clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed-forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the  $\mathbf{Q}_{\mathbf{A}}$  output. This high-level overflow ripply carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur regardless of the logic level in the clock.

#### Features

- Direct replacement for Fairchild 9310, 9316
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical clock frequency

35 MHz

- Pin-for-pin replacements popular 54/74 counters
   9310 54160A/74160A (decade)
  - 9316 54161A/74161A (binary)

# **Connection Diagram**



9310(J), (W); 8310(J), (N), (W); 9316(J), (W); 8316(J), (N), (W)



|                 |                                                        |                                                                                   | •                                                                                 |        |       |         |                |      |
|-----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|-------|---------|----------------|------|
| *               | PARAMETER                                              | CONDITIO                                                                          | ONS                                                                               |        | UNITS |         |                |      |
|                 | ,                                                      |                                                                                   |                                                                                   |        | MIN   | _TYP(1) | MAX            |      |
| V <sub>IH</sub> | High Level Input Voltage                               |                                                                                   |                                                                                   |        | 2     |         |                | V    |
| V <sub>IL</sub> | Low Level Input Voltage                                |                                                                                   |                                                                                   |        |       |         | 0.8            | V    |
| Vı              | Input Clamp Voltage                                    |                                                                                   | V <sub>CC</sub> = Min, I <sub>1</sub> =                                           | -12 mA |       |         | -1.5           | V    |
| Іон             | High Level Output Current                              |                                                                                   |                                                                                   |        |       |         | -800           | μΑ   |
| V <sub>OH</sub> | High Level Output Voltage                              | -                                                                                 | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OF</sub> | 2.4    | 3.4   |         | V <sub>.</sub> |      |
| loL             | Low Level Output Current                               |                                                                                   |                                                                                   |        |       | - 16    | mΑ             |      |
| V <sub>OL</sub> | Low Level Output Voltage                               | V <sub>CC</sub> = Min, V <sub>IH</sub><br>V <sub>IL</sub> = 0.8V, I <sub>OL</sub> |                                                                                   | 0.2    | 0.4   | V       |                |      |
| l <sub>1</sub>  | Input Current at Maximum                               | Input Voltage                                                                     | V <sub>CC</sub> = Max, V <sub>1</sub>                                             |        |       | 1       | mA             |      |
| I <sub>IH</sub> | High Level Input Current                               | Clock or Enable T Other Inputs                                                    | $V_{CC} = Max, V_1 = 2.4V$                                                        |        |       |         | 80<br>40       | μΑ   |
| I <sub>IL</sub> | Low Level Input Current Clock or Enable T Other Inputs |                                                                                   | $V_{CC} = Max, V_1 = 0.4V$                                                        |        |       |         | −3.2<br>−1.6   | mA , |
| los             | Short Circuit Output Curre                             | nt                                                                                | $V_{CC} = Max(2)$                                                                 | DM93   | -20   |         | -57            | mA   |
|                 |                                                        |                                                                                   | V <sub>CC</sub> = Max(2)                                                          | DM83   | -18   |         | -57            | linA |
| Іссн            | Supply Current (High Leve                              | 1)                                                                                | $V_{CC} = Max(3)$                                                                 | DM93   |       | 59      | 85             | mA   |
|                 |                                                        |                                                                                   |                                                                                   | DM83   |       | 59      | 94             |      |
| ICCL            | Supply Current (Low Level                              | )                                                                                 | V <sub>CC</sub> = Max(4)                                                          | DM93   | · .   | 63      | 91             | mA   |
|                 |                                                        |                                                                                   |                                                                                   | DM83   |       | 63      | 101            |      |

#### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
- (4) ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.



Switching Characteristics  $V_{CC} = 5V, T_A = 25^{\circ}C$ 

|                    |                                                                                                   |                           |                   |                 |                                         |        | M93/8 | 3   |       |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------|-------------------|-----------------|-----------------------------------------|--------|-------|-----|-------|
|                    | PARAMET                                                                                           | ΓER                       | FROM<br>(INPUT)   | TO<br>(OUTPUT)  | CONDITIONS                              | 10, 16 |       |     | UNITS |
|                    |                                                                                                   |                           |                   | (0011017        |                                         | MIN    | TYP   | MAX |       |
| f <sub>MAX</sub>   | Maximum Clo                                                                                       | ock Frequency             |                   |                 |                                         | 25     | 35    |     | MHz   |
| t <sub>PLH</sub>   | Propagation E<br>Low-to-High                                                                      |                           | Cleate            | Ripple          |                                         |        | 18    | 27  | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output                                               |                           | Clock             | carry           |                                         |        | 16    | 24  | ns    |
| t <sub>PĻH</sub>   | Propagation Delay Time, Low-to-High Level Output Propagation Delay Time, High-to-Low Level Output |                           | Clock             | A 0             |                                         |        | 14    | 20  | ns    |
| t <sub>PHL</sub>   |                                                                                                   |                           | (Load Input High) | Any Q           | $C_L = 15 \text{ pF}$ $R_L = 400\Omega$ |        | 16    | 23  | ns    |
| tpLH               | Propagation Delay Time,<br>Low-to-High Level Output                                               |                           | Clock             | Any Q           |                                         |        | 14    | 21  | ns    |
| t <sub>PHL</sub>   | Propagation E<br>High-to-Low                                                                      |                           | (Load Input Low)  | Ally Q          |                                         |        | 18    | 25  | ns    |
| t <sub>PLH</sub>   | Propagation E<br>Low-to-High                                                                      |                           | Enable T          | Ripple<br>carry |                                         |        | 10    | 15  | ns    |
| t <sub>PHL</sub>   | Propagation E<br>High-to-Low                                                                      |                           | Enable I          |                 |                                         |        | 12    | 16  | ns    |
| t <sub>PHL</sub>   | Propagation E<br>High-to-Low                                                                      |                           | Clear             | Any Q           |                                         |        | 24    | 36  | ns    |
| tw(CLOCK)          | Width of Cloc                                                                                     | k Pulse                   |                   | <del></del>     |                                         | 25     |       |     | ns    |
| tw(CLEAR)          | Width of Clea                                                                                     | r Pulse                   |                   |                 |                                         | 20     |       |     | ns    |
| <sup>t</sup> SETUP | Setup Time                                                                                        | Data Inputs<br>A, B, C, D |                   |                 |                                         | 20     |       |     |       |
|                    |                                                                                                   | Enable P                  |                   |                 |                                         | 20     |       |     | ns    |
|                    |                                                                                                   | Load                      | -                 |                 |                                         | 25     |       |     | -     |
|                    |                                                                                                   | Clear                     | -                 |                 |                                         | 20     |       |     |       |
| <sup>t</sup> HOLD  | Hold Time at                                                                                      |                           |                   |                 |                                         | 0      |       |     | ns    |
|                    | Any Input (5)                                                                                     |                           |                   |                 |                                         |        |       |     |       |

# Notes

(5) The minimum hold time is as specified or as long as the clock input takes to rise from 0.8V to 2V, whichever is longer.





# **Timing Diagrams**

# 9310/8310 SYNCHRONOUS DECADE COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES



#### Sequence:

- (1) Clear outputs to zero
- (2) Preset to BCD seven
- (3) Count to eight, nine, zero, one, two, and three
- (4) Inhibit

# 9316/8316 SYNCHRONOUS BINARY COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES



# Sequence:

- (1) Clear outputs to zero
- (2) Preset to binary twelve
- (3) Count to thirteen, fourteen, fifteen, zero, one, and two
- (4) Inhibit

### Parameter Measurement Information

#### SWITCHING TIME WAVEFORMS



#### Notes:

- (A) The input pulses are supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, duty cycle  $\leq$  50%, Z<sub>OUT</sub>  $\approx$  50 $\Omega$ , t<sub>r</sub>  $\leq$  10 ns, t<sub>f</sub>  $\leq$  10 ns. Vary PRR to measure f<sub>MAX</sub>.
- (B) Outputs QD and carry are tested at t<sub>n+10</sub> for 9310/8310, and at t<sub>n+16</sub> for 9316/8316, where t<sub>n</sub> is the bit time when all outputs are low.
- (C)  $V_{RFF} = 1.5V$ .

### SWITCHING TIME WAVEFORMS



#### Note

- (A) The input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, duty cycle  $\leq$  50%, Z<sub>QUT</sub>  $\approx$  50 $\Omega$ , t<sub>r</sub>  $\leq$  10 ns, t<sub>f</sub>  $\leq$  10 ns.
- (B) Enable P and enable T setup times are measured at  $t_{n+0}$ .
- (C)  $V_{REF} = 1.5V$ .



# 4-Line to 16-Line Decoders/Demultiplexers

# **General Description**

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

### **Features**

- Direct replacement for Fairchild 9311
- Pin for pin with popular 54154/74154
- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs
- Typical propagation delay

19 ns

Typical power dissipation

170 mW

### **Connection Diagram**



9311(J), (F); 8311(J), (N), (F)

#### Truth Table

| Γ  |    | INP | UTS |   |   |   |   |   |     |   |   |    | OUT | PUTS |    |    |    |    |    |    |    |
|----|----|-----|-----|---|---|---|---|---|-----|---|---|----|-----|------|----|----|----|----|----|----|----|
| G1 | G2 | D   | С   | В | Α | 0 | 1 | 2 | 3   | 4 | 5 | 6  | 7   | 8    | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| L  | L  | L   | L   | L | L | L | Н | Н | Н   | Н | Н | Η. | Н   | Н    | Н  | Н  | Н  | Н  | н  | Н  | Н  |
| L  | L  | L   | L   | Ĺ | н | Н | L | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | н  | Н  | н  | Н  | Н  |
| L  | L  | L   | L   | Н | L | Н | Н | L | Н   | Н | Н | н  | Н   | Н    | Η, | н  | Н  | Н  | н  | Н  | Н  |
| L  | L  | L   | L   | Н | н | н | Н | Н | L   | Н | Н | Н  | . н | Н    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | L   | Н   | L | L | Н | Н | Н | Н   | L | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | L   | Н   | L | н | н | Н | Н | . н | Н | L | Н  | Н   | Ĥ    | Н  | Н  | н  | Н  | Н  | Н  | н  |
| L  | L  | L   | Н   | Н | L | Н | Н | Н | Н   | Н | Н | L  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | L   | Н   | Н | н | н | Н | Н | Н   | Н | Н | Н  | L   | Н    | H  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | н   | L   | L | L | н | Н | Н | Н   | Н | Н | Н  | Н   | L    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | н   | L   | L | н | н | Н | Н | Н   | Н | Н | H  | Н   | H    | L  | Н  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | н   | L   | Н | L | Н | H | Н | Н   | Н | Н | н  | Н   | H    | Н  | L  | Н  | Н  | Н  | Н  | Н  |
| L  | L  | Н   | L   | Н | н | Н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | L  | Н  | Н  | Н  | Н  |
| L  | L  | Н   | Н   | L | L | н | Н | Н | Н   | Н | Н | н  | н   | Н    | Н  | Н  | Н  | L  | Н  | Н  | Н  |
| L  | L  | Н   | Н   | L | н | н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | L  | Н  | Н  |
| L  | L  | н   | Н   | Н | L | н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | L  | Н  |
| L  | L  | н   | Н   | Н | Н | Н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | Н  | L  |
| L  | Н  | Х   | X   | Χ | Х | н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| н  | L  | х   | Х   | Х | Х | н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| н  | Н  | х   | ×   | X | х | Н | Н | Н | Н   | Н | Н | Н  | Н   | Н    | Н  | Н  | Н  | Н  | н  | Н  | Н  |

H = High Level, L = Low Level, X = Don't Care



| ,               |                                        |                                                                        | ·                                     |     | DM93/83 |      |       |
|-----------------|----------------------------------------|------------------------------------------------------------------------|---------------------------------------|-----|---------|------|-------|
|                 | PARAMETER                              | CONDITIONS                                                             |                                       |     | 11      |      | UNITS |
|                 |                                        |                                                                        |                                       | MIN | TYP(1)  | MAX  |       |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                        |                                       | 2   |         | -    | V .   |
| VIL             | Low Level Input Voltage                |                                                                        |                                       |     |         | 8.0  | V     |
| Vi              | Input Clamp Voltage                    | $V_{CC} = Min, I_1 = -12 \text{ mA}$                                   |                                       |     |         | -1.5 | V     |
| Гон             | High Level Output Current              |                                                                        |                                       |     |         | -800 | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OH} = -800\mu$       | Α                                     | 2.4 | 3.4     |      | V     |
| l <sub>OL</sub> | Low Level Output Current               |                                                                        |                                       |     | ,       | 16   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, I_{OL} = 16 \text{ mA}$ |                                       |     | 0.25    | 0.4  | V     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | $V_{CC} = Max, V_1 = 5.5V$                                             | · · · · · · · · · · · · · · · · · · · |     |         | 1    | mA    |
| LIH             | High Level Input Current               | $V_{CC} = Max, V_1 = 2.4V$                                             |                                       |     |         | 40   | μΑ    |
| լել             | Low Level Input Current                | $V_{CC} = Max, V_1 = 0.4V$                                             |                                       |     |         | -1.6 | mA    |
| Ios             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                               | DM93                                  | -20 |         | -55  | mA    |
|                 |                                        | * CC 100x(2)                                                           | DM83                                  | -18 |         | -57  | IIIA  |
| Icc             | Supply Current                         | $V_{CC} = Max(3)$                                                      | DM93                                  |     | 34      | 49   | mA    |
|                 |                                        | - (0(0)                                                                | DM83                                  |     | 34      | 56   |       |

- (1) All typical values are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.
   (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with all inputs grounded and all outputs open.

|                  |                                                                                                             |                                 |     | DM93/83 | 3   |       |  |
|------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|-----|---------|-----|-------|--|
|                  | PARAMETER                                                                                                   | CONDITIONS                      |     | 11      |     | UNITS |  |
|                  |                                                                                                             |                                 | MIN | TYP     | MAX |       |  |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High<br>Level Output, From A, B, C, or D Inputs<br>Through 3 Levels of Logic |                                 |     | 18      | 27  | ns .  |  |
| <sup>t</sup> PHL | Propagation Delay Time, High-to-Low<br>Level Output, From A, B, C, or D Inputs<br>Through 3 Levels of Logic | $C_L = 15 pF$ $R_L = 400\Omega$ |     | 21      | 30  | ns    |  |
| t <sub>PLH</sub> | Propagation Delay Time, Low-to-High<br>Level Output, From Either Strobe Input                               |                                 |     | 17      | 25  | ns    |  |
| tpHL             | Propagation Delay Time, High-to-Low<br>Level Output, From Either Strobe Input                               |                                 |     | 18      | 27  | ns    |  |



Logic Diagram



# **General Description**

These TTL encoders feature priority decoding of the input data to ensure that only the highest-order data line is encoded. All inputs are buffered to represent one normalized Series 54/74 load. The DM9318 and DM8318 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level.

#### **Features**

# **Priority Encoders**

- Direct replacement for Fairchild 9318
- Pin for pin with popular DM54148/74148
- Encodes 8 data lines to 3-line binary (octal)
- Applications include:

N-bit encoding

Code converters and generators

Typical data delay

10 ns

■ Typical power dissipation

190 mW

### Connection Diagram



9318(J), (W); 8318(J), (N), (W)

# Truth Table

|    |   | • | ı | NPUT | s |   |   |   |     | 01 | UTPU | rs |    |
|----|---|---|---|------|---|---|---|---|-----|----|------|----|----|
| EI | 0 | 1 | 2 | 3    | 4 | 5 | 6 | 7 | A2  | Α1 | A0   | GS | EO |
| н  | х | X | × | X    | X | × | X | х | н   | Н  | ·H   | Н  | Н  |
| L  | Н | Н | Н | H    | Н | Н | Н | Н | н   | Н  | Н    | н  | L  |
| L  | Х | Х | Х | Х    | X | X | Х | L | L   | L  | L    | L  | Н  |
| L  | Х | Х | × | X    | X | Х | L | H | L   | L  | Н    | L  | H. |
| L  | Х | Х | X | , X  | Χ | L | Н | н | L   | Н  | L    | L  | Н  |
| L  | х | X | Х | X    | L | Н | Н | Н | L   | Н  | Н    | L  | Н  |
| L  | х | Х | Х | L    | Н | Н | Н | Н | . Н | L  | L    | L  | Н  |
| L  | Х | Х | L | Н    | Н | Н | Н | Н | Н   | L  | Η,   | L  | Н  |
| L  | Х | L | Н | Н    | Н | Н | Н | Ĥ | Н   | Н  | L    | L  | Н  |
| L  | L | Н | Н | Н    | Н | Н | Н | Н | Н   | Н  | Н    | L  | Н  |

H = High Logic Level, L = Low Logic Level, X = Don't Care

# Logic Diagram





|                   | PARAMETER                  |                   | CON                                               | DITIONS                                          |     | DM93/83<br>18 |              | UNITS |
|-------------------|----------------------------|-------------------|---------------------------------------------------|--------------------------------------------------|-----|---------------|--------------|-------|
|                   |                            |                   |                                                   |                                                  | MIN | TYP(1)        | MAX          |       |
| VIH               | High Level Input Voltage   |                   |                                                   |                                                  | 2   |               |              | ٧     |
| VIL               | Low Level Input Voltage    |                   |                                                   |                                                  |     |               | 0.8          | V     |
| V <sub>1</sub>    | Input Clamp Voltage        |                   | V <sub>CC</sub> = Min,                            | <sub>1</sub> = -12 mA                            |     |               | -1.5         | V     |
| Гон               | High Level Output Current  |                   |                                                   |                                                  |     |               | -800         | μΑ    |
| V <sub>OH</sub>   | High Level Output Voltage  |                   | V <sub>CC</sub> = Min,<br>V <sub>II</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OH</sub> = -800μA | 2.4 |               |              | ٧     |
| IOL               | Low Level Output Current   |                   |                                                   |                                                  |     |               | 16           | mA    |
| V <sub>OL</sub>   | Low Level Output Voltage   |                   | V <sub>CC</sub> = Min,<br>V <sub>1L</sub> = 0.8V, | V <sub>IH</sub> = 2V<br>I <sub>OL</sub> = 16 mA  |     |               | 0.4          | ٧     |
| l <sub>1</sub>    | Input Current at Maximum   | Input Voltage     | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                            |     |               | 1            | mA    |
| I <sub>ІН</sub>   | High Level Input Current   | 0 Input<br>Others | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 2.4V                            |     |               | 40<br>80     | μΑ    |
| , <sup>1</sup> 1L | Low Level Input Current    | 0 Input<br>Others | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 0.4V                            |     |               | -1.6<br>-3.2 | mA    |
| Ios               | Short Circuit Output Curre | nt                | V <sub>CC</sub> = Max(2                           | ?)                                               | -35 |               | -85          | mA    |
| Icc               | Supply Current             |                   | V <sub>CC</sub> = Max                             | Condition 1                                      |     | 40            | 60           | mA    |
|                   |                            |                   | (3)                                               | Condition 2                                      |     | 35            | 55           | İ     |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ} C$ .
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> (condition 1) is measured with inputs 7 and E1 grounded, other inputs and outputs open; I<sub>CC</sub> (condition 2) is measured with all inputs and outputs open.

|                  |                                                      | FROM     | то            |                     |                        |     | DM93/83       |           |       |
|------------------|------------------------------------------------------|----------|---------------|---------------------|------------------------|-----|---------------|-----------|-------|
|                  | PARAMETER                                            | (INPUT)  | (OUTPUT)      | WAVEFORM            | CONDITIONS             |     | 18            | ****      | UNITS |
| tPLH             | Propagation Delay Time, Low-to-<br>High Level Output |          |               |                     |                        | MIN | <b>TYP</b> 10 | MAX<br>15 | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-<br>Low Level Output | 0 thru 7 | A, B, C, D    | In-Phase Output     |                        | ,   | 9             | 14        | ns    |
| tpLH             | Propagation Delay Time, Low-to-<br>High Level Output | 0 thru 7 | A 9 C D       | Out-of-Phase Output |                        |     | 13            | 19        | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-<br>Low Level Output | O thru 7 | A, B, C, D    | Out-or-Phase Output |                        |     | 12            | 19        | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output | 0.1. 7   | F-0           | 0 + 4 Pl - 0 + 4    |                        |     | 6             | 9         | ns    |
| tPHL             | Propagation Delay Time, High-to-<br>Low Level Output | 0 thru 7 | EO            | Out-of-Phase Output |                        |     | 14            | 21        | ns    |
| tpLH             | Propagation Delay Time, Low-to-<br>High Level Output |          |               |                     | C <sub>L</sub> = 15 pF |     | 18            | 27        | ns    |
| tpHL             | Propagation Delay Time, High-to-<br>Low Level Output | 0 thru 7 | GS            | In-Phase Output     | R <sub>L</sub> = 400Ω  |     | 14            | 21        | ns    |
| tPLH             | Propagation Delay Time, Low-to-<br>High Level Output |          |               |                     |                        |     | 10            | 15        | ns    |
| tPHL             | Propagation Delay Time, High-to-<br>Low Level Output | EI       | A0, A1, or A2 | In-Phase Output     |                        |     | 10            | 15        | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output |          |               |                     |                        |     | 8             | 12        | ns    |
| tpHL             | Propagation Delay Time, High-to-<br>Low Level Output | EI       | GS            | In-Phase Output     |                        |     | 10            | 15        | ns    |
| <sup>t</sup> PLH | Propagation Delay Time, Low-to-<br>High Level Output |          | 50            | - B                 |                        |     | 10            | 15        | ns    |
| t <sub>PHL</sub> | Propagation Delay Time, High-to-<br>Low Level Output | EI       | EO            | In-Phase Output     |                        |     | 17            | 26        | ns    |



# Quad 2-Line to 1-Line Data Selectors/Multiplexers

# **General Description**

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. True data is presented at the outputs.

#### **Features**

- Direct replacement for Fairchild 9322
- Pin-for-pin with popular DM54157/74157
- Buffered inputs and outputs

# **Applications**

- Expand any data input point
- Multiplex dual-data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

### Connection Diagram



9322(J), (W), 8322(J), (N), (W)

# Truth Table

|        | INPUTS |     |     | OUTPUT |
|--------|--------|-----|-----|--------|
| STROBE | SELECT | Α   | В   | Υ      |
| Н      | ×      | Х   | X   | L      |
| L      | · L    | , r | ×   | _ L `  |
| L      | L      | Н   | ×   | н      |
| L      | H      | X   | L   | Ĺ      |
| L      | н      | ×   | ' Н | . н    |

H = High Level, L = Low Level, X = Don't Care

# Logic Diagram





|                   |                                        |                                                   |                                                 |     | DM93     |      | <u> </u> |        |      |       |
|-------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------|-----|----------|------|----------|--------|------|-------|
|                   | PARAMETER                              | CONE                                              | DITIONS                                         |     | 22       |      |          | 22     |      | UNITS |
|                   |                                        |                                                   |                                                 | MIN | · TYP(1) | MAX  | MIN      | TYP(1) | MAX  |       |
| V <sub>IH</sub>   | High Level Input Voltage               |                                                   |                                                 | 2   |          |      | 2        |        |      | ٧     |
| , V <sub>IL</sub> | Low Level Input Voltage                |                                                   |                                                 |     |          | 0.8  |          |        | 8.0  | V     |
| Vı                | Input Clamp Voltage                    | V <sub>CC</sub> = Min,                            | t <sub>1</sub> = -12 mA                         |     |          | -1.5 |          |        | -1.5 | ٧     |
| Іон               | High Level Output Current              |                                                   |                                                 |     |          | -800 |          |        | -800 | μΑ    |
| V <sub>ОН</sub>   | High Level Output Voltage              | $V_{CC} = Min,$<br>$V_{iL} = 0.8V,$               | $V_{1H} = 2V$<br>$I_{OH} = -800\mu A$           | 2.4 | 3.4      |      | 2.4      | 3.4    |      | V     |
| loL               | Low Level Output Current               |                                                   |                                                 |     |          | 16   |          |        | 16   | mA    |
| V <sub>OL</sub>   | Low Level Output Voltage               | V <sub>CC</sub> = Min,<br>V <sub>IL</sub> = 0.8V, | V <sub>1H</sub> = 2V<br>I <sub>OL</sub> = 16 mA |     | 0.2      | 0.4  |          | 0.2    | 0.4  | V     |
| l <sub>1</sub>    | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 5.5V                           |     |          | 1    |          |        | .1   | mA    |
| l <sub>IH</sub>   | High Level Input Current               | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 2.4V                           |     |          | 40   |          |        | 40   | μΑ    |
| IIL               | Low Level Input Current                | V <sub>CC</sub> = Max,                            | V <sub>1</sub> = 0.4V                           |     |          | -1.6 |          |        | -1.6 | mA    |
| los               | Short Circuit Output Current           | V <sub>CC</sub> = Max(2                           | )                                               | -20 |          | -55  | 18       |        | -55  | mA    |
| Icc               | Supply Current                         | V <sub>CC</sub> = Max(3                           | )                                               |     | 30       | 48   |          | 30     | 48   | mA    |

#### Notes

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C.
- (2) Not more than one output should be shorted at a time.
- (3) I<sub>CC</sub> is measured with 4.5V applied to all inputs and all outputs open.

|                  |                                                     |              |                                        |          | DM93/83 |     |       |  |
|------------------|-----------------------------------------------------|--------------|----------------------------------------|----------|---------|-----|-------|--|
|                  | PARAMETER                                           | FROM (INPUT) | CONDITIONS                             |          | 22      |     | UNITS |  |
|                  |                                                     | ,            |                                        | MIN      | TYP     | MAX |       |  |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | D-4-         |                                        |          | 8       | 14  | ns    |  |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | Data         |                                        | 10<br>13 |         | 14  | ns    |  |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Strobe       | $C_1 = 15 \text{ pF}, R_1 = 400\Omega$ |          |         | 20  | ns    |  |
| tpHL             | Propagation Delay Time,<br>High-to-Low Level Output | Strope       | C_ = 15 pr , N_ = 40032                |          |         | 21  | ns    |  |
| tPLH             | Propagation Delay Time,<br>Low-to-High Level Output | Select       |                                        |          | , 15    | 23  | ns    |  |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Jelect       |                                        |          | 17      | 27  | ns    |  |



# 8-Bit Addressable Latches

#### **General Description**

The DM9334/DM8334 is a high speed 8-bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level high outputs. The device also incorporates an active level low common clear for resetting all latches, as well as an active level low enable.

The DM9334/DM8334 has four modes of operation which are shown in the mode selection table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other inputs in the low state. In the clear mode

all outputs are low and unaffected by the address and data inputs.

When operating the device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The truth table below summarizes the operation of the product.

#### **Features**

- Direct replacement for Fairchild 9334
- Common clear
- Easily expandable
- Random (addressable) data entry
- Serial to parallel capability
- 8 bits of storage/output of each bit available
- Active high demultiplexing/decoding capability

#### **Truth Tables**

| Ē        | Ē | MODE                                        |
|----------|---|---------------------------------------------|
| L        | Н | Addressable Latch                           |
| н        | н | Memory                                      |
| L        | L | Active High Eight-<br>Channel Demultiplexer |
| <b>Н</b> | L | Clear                                       |

X = Don't Care Condition

L = Low Voltage Level

H = High Voltage Level
Q<sub>N-1</sub> = Previous Output State

# **Connection Diagram**



|   |   | INP | UTS |    |     |                    |                  | PRES               | ENT OU             | TPUT ST | TATES      |                    |      | - 1                  |
|---|---|-----|-----|----|-----|--------------------|------------------|--------------------|--------------------|---------|------------|--------------------|------|----------------------|
| c | Ē | D.  | Α0  | A1 | A2  | Q0                 | Q1               | Q2                 | Q3                 | Q4      | <b>Q</b> 5 | Q6                 | Q7 ` | MODE                 |
| L | Η | Х   | х   | Х  | Х   | L                  | L                | L                  | L                  | L       | L          | L.                 | L    | CLEAR                |
| L | L | L   | L   | L  | , L | L                  | L                | L                  | L                  | L       | L          | L                  | L    |                      |
| L | L | н   | L   | L  | L   | Н                  | L                | L                  | L                  | L.      | L          | L                  | L    |                      |
| L | L | L   | н   | L  | L   | L                  | L                | L                  | L                  | L       | L          | L                  | Ł    |                      |
| L | L | н   | Н   | L  | L   | L                  | Н                | L                  | L                  | L       | L          | L                  | L    | D 5141 11 71 151 151 |
| • | • | •   |     | •  |     | 1                  |                  |                    | •                  |         |            |                    |      | DEMULTIPLEX          |
|   | • | •   |     | •  |     | 1                  |                  |                    | •                  |         |            |                    |      |                      |
|   | • | •   |     | •  |     |                    |                  |                    | •                  |         |            |                    |      |                      |
| L | L | Н   | Н   | Н  | Н   | L                  | L                | Ļ                  | L                  | L       | F.         | L                  | н    |                      |
| Н | Н | Х   | . X | Х  | Х   | Q <sub>N-1</sub> - |                  |                    |                    |         |            |                    |      | MEMORY               |
| Н | L | L   | · L | L  | L   | L                  | Q <sub>N-1</sub> | Q <sub>N-1</sub>   | Q <sub>N-1</sub> - |         |            |                    |      |                      |
| Н | L | н   | L   | L  | L   | Н                  | $Q_{N-1}$        | Q <sub>N-1</sub> - |                    |         |            |                    |      |                      |
| Н | L | L   | н   | L  | L   | Q <sub>N-1</sub>   | L                | Q <sub>N-1</sub> - |                    |         |            |                    |      |                      |
| Н | L | н   | Н.  | L  | L   | Q <sub>N-1</sub>   | Н                | Q <sub>N-1</sub> - |                    |         |            |                    |      | ADDRESSABLE          |
|   | • | •   |     | •  |     |                    |                  | ,•                 |                    |         |            |                    |      | LATCH                |
| • | • | •   |     | •  |     |                    |                  | •                  |                    |         |            |                    |      | 2,,,,,,,,            |
|   | • | •   |     |    |     |                    |                  | •                  |                    |         |            |                    |      | ,                    |
| Н | L | L   | н   | н  | Н   | Q <sub>N-1</sub>   |                  |                    |                    |         |            | - Q <sub>N-1</sub> | L    |                      |
| Н | L | н   | Н   | Н  | Н   | Q <sub>N-1</sub> - |                  |                    |                    |         |            | ~ Q <sub>N-1</sub> | Н    |                      |



|                 |                                        |                                                                |         |         | DM93/83 |      |       |
|-----------------|----------------------------------------|----------------------------------------------------------------|---------|---------|---------|------|-------|
|                 | PARAMETER                              | CONDITIONS                                                     | S       | <b></b> | 34      |      | UNITS |
|                 |                                        |                                                                |         | MIN     | TYP(1)  | MAX  |       |
| V <sub>IH</sub> | High Level Input Voltage               |                                                                |         | 2       |         |      | ٧     |
| VIL             | Low Level Input Voltage                |                                                                |         |         |         | 0.8  | V     |
| Vı              | Input Clamp Voltage                    | V <sub>CC</sub> = Min, t <sub>1</sub> = -12 mA                 |         |         |         | -1.5 | V     |
| Гон             | High Level Output Current              |                                                                |         |         |         | -800 | μА    |
| V <sub>OH</sub> | High Level Output Voltage              | $V_{CC} = Min, V_{1H} = 2V$<br>$V_{1L} = 0.8V, I_{OH} = -800$  | μΑ      | 2.4     | 3.6     |      | ٧     |
| lor             | Low Level Output Current               |                                                                |         |         |         | 16   | mA    |
| V <sub>OL</sub> | Low Level Output Voltage               | $V_{CC} = Min, V_{IH} = 2V$<br>$V_{IL} = 0.8V, V_{OL} = 16 mg$ | Δ       |         | 0.2     | 0.4  | V     |
| l <sub>1</sub>  | Input Current at Maximum Input Voltage | V <sub>CC</sub> = Max, V <sub>1</sub> = 5.5V                   |         |         |         | 1    | mA    |
| I <sub>IH</sub> | High Level Input Current               | V <sub>CC</sub> = Max, V <sub>1</sub> = 2.4V                   | E Input |         | 15      | 60   | μА    |
|                 |                                        | VCC - Max, V1 - 2.4V                                           | Others  |         | 10      | 40   | μ^    |
| I <sub>IL</sub> | Low Level Input Current                | V <sub>CC</sub> = Max, V <sub>1</sub> = 0.4V                   | E Input |         | -1.44   | -2.4 | mA    |
|                 |                                        | V <sub>CC</sub> = Wax, V <sub>1</sub> = 0.4V                   | Others  |         | ~0.96   | -1.6 |       |
| los             | Short Circuit Output Current           | V <sub>CC</sub> = Max(2)                                       |         | -30     | -65     | -100 | mA    |
| Icc             | Supply Current                         | V <sub>CC</sub> = Max                                          |         |         | 56      | 86   | mA    |

- (1) All typical values are at  $V_{CC}$  = 5V,  $T_A$  = 25°C. (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

# Switching Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

|                  |                                                     |         |                                      | ,                      |                       | DM93/83    |            |      |    |    |    |    |
|------------------|-----------------------------------------------------|---------|--------------------------------------|------------------------|-----------------------|------------|------------|------|----|----|----|----|
|                  | PARAMETER                                           | FROM    | то                                   | CONDITIONS             |                       | UNITS      |            |      |    |    |    |    |
|                  |                                                     |         |                                      |                        | MIN                   | TYP        | MAX        |      |    |    |    |    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output |         | Output                               |                        | -                     | 19         | 28         | ns , |    |    |    |    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Enable  | (Figure 1)                           |                        |                       | 18         | 27         | ns   |    |    |    |    |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | D-11-   | Output (Figure 2)  Output (Figure 3) | ]                      |                       | 24         | 35         | ns   |    |    |    |    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output | Data    |                                      | (Figure 2)             | (Figure 2)            | (Figure 2) | (Figure 2) |      |    | 19 | 28 | ns |
| <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | 0.4.4   |                                      | C <sub>L</sub> = 15 pF |                       | 23         | 35         | ns   |    |    |    |    |
| <sup>t</sup> PHL | Propagation Delay Time,<br>High-to-Low Level Output | Address |                                      | (Figure 3)             | R <sub>L</sub> = 400Ω |            | 21         | 35   | ns |    |    |    |
| tPHL             | Propagation Delay Time,<br>Low-to-High Level Output | Clear   | Output<br>(Figure 5)                 |                        |                       | 21         | 31         | ns   |    |    |    |    |
| tw               | Enable Pulse Width (Figure 1)                       |         |                                      |                        | 19                    | 13         |            | ns   |    |    |    |    |
| tSETUP           | High Data to Enable (Figure 4)                      |         |                                      |                        | 20                    | 13 .       |            |      |    |    |    |    |
|                  | Low Data to Enable (Figure 4)                       |         |                                      |                        | 20                    | 14         |            | ns   |    |    |    |    |
|                  | Address to Enable(3) (Figure 6)                     |         |                                      |                        | 10                    | 5          |            | ]    |    |    |    |    |
| tHOLD            | High Data to Enable (Figure 4)                      |         |                                      | }                      | 0                     | -10        |            | ns   |    |    |    |    |
|                  | Low Data to Enable (Figure 4)                       |         |                                      |                        | 0                     | -13        |            | ns   |    |    |    |    |

### Notes

(3) The Address to Enable Set-Up Time is the time before the High-to-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.



# Retriggerable One Shots

# **General Description**

These retriggerable one shots provide the designer with four inputs; two active high and two active low. This permits a choice of either leading-edge or trailing-edge triggering, independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge again. The retriggerable feature allows for output pulse widths to be expanded. In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. Retriggering may be inhibited by tying the  $\overline{\Omega}$  output to an active low input.

#### **Features**

- High speed operation—input repetition rate > 10 MHz
- Flexibility of operation—optional retriggering/lockout capability
- Output pulse width range—50 ns to ∞
- Leading or trailing edge triggering
- Complementary outputs/inputs
- Input clamping diodes
- DTL/TTL compatible logic levels

# **Connection Diagram**



# Truth Table

|    | INF      | PUTS |    | OUT | PUTS          |
|----|----------|------|----|-----|---------------|
| A1 | A2       | В1   | B2 | a   | ā             |
| Н  | Н        | X    | Х  | ٦   | Н             |
| ×  | X        | L    | X  | L   | Н             |
| ×  | Х        | X    | L  | L   | Н             |
| L  | X        | Н    | н  | L   | Н             |
| L  | X        | †    | H  | J   | 7_            |
| L  | X        | Н    | 1  | 7   | Ţ             |
| X  | L        | Н    | Н  | L   | Н             |
| X  | L        | Ť    | н  |     | 7             |
| x  | L        | н    | 1  | 77  | T             |
| н  | <b>↓</b> | Н    | н  | л∟  | $\neg \Gamma$ |
| 1  | <b>↓</b> | Н    | Н  |     | 7             |
| 1  | Н        | Н    | Н  |     | 7_            |

# Schematic Diagram





|                 |                              | ,                   |                              | DM96  |             |      |       | ,       |      |    |  |
|-----------------|------------------------------|---------------------|------------------------------|-------|-------------|------|-------|---------|------|----|--|
|                 | PARAMETER                    | cc                  | CONDITIONS                   |       | 01          |      |       | 01      |      |    |  |
|                 | -                            |                     |                              | MIN   | TYP(1)      | MAX  | MIN   | TYP(1). | MAX  |    |  |
| VIH             | High Level Input Voltage     |                     | T <sub>A</sub> = -55°C       | 2.0   |             |      |       |         |      |    |  |
|                 |                              |                     | T <sub>A</sub> = 0°C         |       |             |      | 1.9   |         |      | ĺ  |  |
|                 |                              |                     | $T_A = 25^{\circ}C$          | 1.7   |             |      | 1.8   |         |      | V  |  |
|                 |                              |                     | $T_A = 75^{\circ}C$          |       |             |      | 1.6   |         |      |    |  |
|                 |                              |                     | T <sub>A</sub> = 125°C       | 1.5   |             |      |       |         |      |    |  |
| $V_{IL}$        | Low Level Input Voltage      |                     | $T_A = -55^{\circ}C$         |       |             | 0.85 |       |         |      |    |  |
|                 | ,                            |                     | $T_A = 0^{\circ}C$           |       |             |      |       |         | 0.85 |    |  |
|                 |                              |                     | $T_A = 25^{\circ}C$          |       |             | 0.90 |       |         | 0.85 | V  |  |
|                 |                              |                     | $T_A = 75^{\circ}C$          |       |             |      |       |         | 0.85 |    |  |
|                 |                              | -                   | $T_A = 125^{\circ}C$         |       |             | 0.85 |       |         |      |    |  |
| V <sub>I</sub>  | Input Clamp Voltage          | V <sub>CC</sub> = M | lin, I <sub>I</sub> = -12 mA |       |             | -1.5 |       |         | -1.5 | ٧  |  |
| Іон             | High Level Output Current    |                     |                              |       |             | -720 |       |         | -960 | μΑ |  |
| V <sub>OH</sub> | High Level Output Voltage    | V <sub>CC</sub> = M | lin, I <sub>OH</sub> = Max   | 2.4   |             |      | 2.4   |         | ,    | V  |  |
| lor             | Low Level Output Current     |                     |                              |       |             | 10   |       |         | 12.8 | mA |  |
| V <sub>OL</sub> | Low Level Output Voltage     | V <sub>CC</sub> = M | lin, I <sub>OL</sub> = Max   |       |             | 0.40 |       |         | 0.45 | V  |  |
| I <sub>IH</sub> | High Level Input Current     | V <sub>CC</sub> = M | ax, V <sub>I</sub> = 4.5V    |       | 15          | 60   |       | 15      | 60   | μΑ |  |
| IIL             | Low Level Input Current      | .,                  | $V_1 = 0.40V$ $V_1 = 0.45V$  |       | <del></del> | -1.6 |       | `       |      |    |  |
|                 | ,                            | VCC - IV            | V <sub>1</sub> = 0.45V       |       |             |      |       |         | -1.6 | mA |  |
| los             | Short Circuit Output Current | V <sub>CC</sub> = M | lax(2)                       | · -10 |             | -40  | · -10 |         | -40  | mA |  |
| Icc             | Supply Current               | V <sub>CC</sub> = M | ax                           |       |             | 25   |       |         | 25   | mA |  |

# Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) Unless otherwise specified,  $R_X$  = 10 k $\Omega$  between Pin 13 and  $V_{CC}$  on all tests.
- (4) Ground Pin 11 for V<sub>OL</sub> test on Pin 6, V<sub>OH</sub> test on Pin 8 and I<sub>OS</sub> test on Pin 8. Open Pin 11 for V<sub>OL</sub> test on Pin 8, V<sub>OH</sub> test on Pin 6 and I<sub>OS</sub> test on Pin 6.

|                    |                                                     |                                             |                                                              |      | DM96 |      |      |      |      |       |
|--------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|------|------|------|------|------|------|-------|
|                    | PARAMETER                                           | No. 1                                       | CONDITIONS                                                   |      | 01   |      | 01   |      |      | UNITS |
|                    |                                                     |                                             | ·                                                            | MIN  | TYP  | MAX  | MIN  | TYP  | MAX  |       |
| . <sup>t</sup> PLH | Propagation Delay Time,<br>Low-to-High Level Output | Negative Trigger Input<br>to True Output    |                                                              |      | 25   | 40   |      | 25   | 40   | ns    |
| tPHL               | Propagation Delay Time,<br>High-to-Low Level Output | Negative Trigger Input to Complement Output | $C_L = 15 \text{ pF, } C_X = 0$<br>$R_X = 5 \text{ k}\Omega$ |      | 25   | 40   |      | 25   | 40   | ns    |
| tpw (MIN)          | Minimum True Output<br>Pulse Width                  |                                             |                                                              |      | 45   | 65   |      | 45   | 65   | ns    |
| tpW                | Pulse Width                                         |                                             | $R_X = 10 \text{ k}\Omega, C_X = 1000 \text{ pF}$            | 3.08 | 3.42 | 3.76 | 3.08 | 3.42 | 3.76 | μs    |
| CSTRAY             | Maximum Allowable Wiring Capacitance                |                                             | Pin 13 to GND                                                |      |      | 50   |      |      | 50   | pF    |
| R <sub>X</sub>     | External Timing<br>Resistor                         |                                             |                                                              | 5    |      | 25   | 5    |      | 50   | kΩ    |



### **Operating Rules**

- 1. An external resistor  $R_X$  and an external capacitor  $C_X$  are required for operation. The value of  $R_X$  can vary between the limits shown in switching characteristics. The value of  $C_X$  is optional and may be adjusted to achieve the required output pulse width.
- 2. Output pulse width tpw may be calculated as follows:

$$t_{PW} = 0.32 \; R_X C_X \; \left[ 1 + \; \frac{0.7}{R_X} \right] (for \; C_X \ge 10^3 \; pF)$$

 $R_X$  in  $k\Omega,\,C_X$  in pF and  $t_{PW}$  in ns. (For  $C_X \le 10^3$  pF, see curve.)

3. R<sub>X</sub> and C<sub>X</sub> must be kept as close as possible to the circuit in order to minimize stray capacitance and

- noise pickup. If remote trimming is required,  $R_X$  may be split up such that at least  $R_{X(MIN)}$  must be as close as possible to the circuit and the remote portion of the trimming resistor  $R < R_{X(MAX)} R_X$ .
- 4. Set-up time (t<sub>1</sub>) for input trigger pulse must be > 40 ns. (See *Figure 1*).

Release time  $(t_2)$  for input trigger pulse must be > 40 ns. (See *Figure 2*).

Retrigger pulse width (see Figure 3) is calculated as follows:

$$t_W = t_{PW} + t_{PLH} = 0.32 R_X C_X \left[ 1 + \frac{0.7}{R_X} \right] + t_{PLH}$$







FIGURE 3

Typical Performance Characteristics
OUTPUT PULSE WIDTH VS



TA - AMBIENT TEMPERATURE (°C)









# Dual Retriggerable, Resettable One Shots

#### **General Description**

These dual resettable, retriggerable one shots have two inputs per function; one which is active high, and one which is active low. This allows the designer to employ either leading-edge or trailing-edge triggering, which is independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is allowed to rapidly discharge and then charge again. The retriggerable feature permits output pulse widths to be extended. In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. The output pulse may then be terminated at any time by applying a low logic level to the RESET pin. Retriggering

may be inhibited by either connecting the Q output to an active high input, or the  $\overline{Q}$  output to an active low input.

#### **Features**

- 70 ns to ∞ output width range
- Resettable and retriggerable—0% to 100% duty cycle
- TTL input gating-leading or trailing edge triggering
- Complementary TTL outputs
- Optional retrigger lock-out capability
- Pulse width compensated for V<sub>CC</sub> and temperature variations

### **Connection Diagram**



#### Truth Table

|       | PIN NO'S | OPERATION |           |
|-------|----------|-----------|-----------|
| 5(11) | 4(12)    | 3(13)     | OPERATION |
| H→L   | L        | Н         | Trigger   |
| . н   | . L→H    | Н,        | Trigger   |
| Χ.    | ×        | L         | Reset     |

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

### Logic Diagrams







|                 |                                 |                                                     |                                            |     | DM96   |       |      | DM86   |       | UNITS |
|-----------------|---------------------------------|-----------------------------------------------------|--------------------------------------------|-----|--------|-------|------|--------|-------|-------|
|                 | PARAMETER                       | COND                                                | ITIONS                                     |     | 02     |       |      |        |       |       |
|                 |                                 |                                                     |                                            | MIN | TYP(1) | MAX   | MIN  | TYP(1) | MAX   |       |
| ViH             | High Level Input Voltage        |                                                     | $T_A = -55^{\circ}C$                       | 2.0 |        |       |      |        |       |       |
|                 | •                               |                                                     | $T_A = 0^{\circ}C$                         |     |        |       | 1.9  |        |       |       |
|                 |                                 | ! L                                                 | $T_A = 25^{\circ}C$<br>$T_A = 75^{\circ}C$ | 1.7 |        |       | 1.8  |        |       | V     |
|                 |                                 |                                                     |                                            |     |        |       | 1.65 |        |       |       |
|                 |                                 |                                                     | T <sub>A</sub> = 125°C                     | 1.5 |        |       |      | .,     |       |       |
| VIL             | Low Level Input Voltage         | l L                                                 | $T_A = -55^{\circ}C$                       |     |        | 0.85  |      |        |       |       |
|                 |                                 |                                                     | $T_A = 0^{\circ}C$                         |     |        |       |      |        | 0.85  |       |
|                 |                                 | -                                                   | T <sub>A</sub> = 25°C                      |     |        | 0.90  |      |        | 0.85  | V     |
|                 | ,                               | <del> </del>                                        | $T_A = 75^{\circ}C$ $T_A = 125^{\circ}C$   |     |        | 0.85  |      |        | 0.85  |       |
|                 |                                 |                                                     |                                            |     |        |       |      |        |       |       |
| Vı              | Input Clamp Voltage             | V <sub>CC</sub> = Min,                              | I <sub>I</sub> = -12 mA                    |     |        | -1.5  |      |        | -1.5  | V     |
| loH             | High Level Output Current       |                                                     |                                            |     |        | -800  |      |        | -800  | μΑ    |
| V <sub>OH</sub> | High Level Output Voltage       | V <sub>CC</sub> = Min,                              |                                            | 2.4 |        |       | 2.4  |        |       | ٧     |
| loL             | Low Level Output Current        | V <sub>IL</sub> = IVIax, I                          | $I_{OH} = -800\mu A$                       |     |        | 16    |      |        | 16    | mA    |
| Vol             | Low Level Output Voltage        | V <sub>CC</sub> = Min,                              | V - Min                                    |     |        |       |      |        |       |       |
| VOL             | Low Level Output Voltage        | V <sub>CC</sub> = Mill,<br>V <sub>IL</sub> = Max, I |                                            |     |        | 0.40  |      |        | 0.45  | V     |
| l <sub>IH</sub> | High Level Input Current        | V <sub>CC</sub> = Max,                              | V <sub>I</sub> = 4.5V                      |     | 10     | 60    |      | 10     | 60    | μΑ    |
| IIL             | Low Level Input Current         |                                                     | $V_1 = 0.40V$<br>$V_1 = 0.45V$             |     |        | -1.6  |      |        |       |       |
|                 |                                 | V <sub>CC</sub> = Max                               | V <sub>1</sub> = 0.45V                     |     |        |       |      |        | -1.6  | mA    |
|                 |                                 | V = Min                                             | $V_1 = 0.45V$ $V_1 = 0.45V$                |     |        | -1.24 |      |        |       |       |
|                 |                                 | Vcc - Willi                                         | V <sub>1</sub> = 0.45V                     |     |        |       |      |        | -1.41 |       |
| los             | Short Circuit Output<br>Current | V <sub>CC</sub> = Max(                              | 2)                                         |     |        | -25   |      |        | -35   | mA    |
| Icc             | Supply Current                  | V <sub>CC</sub> = Max                               |                                            |     | 39     | 45    |      | 39     | 50    | mA    |

### Notes

- (1) All typical values are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .
- (2) Not more than one output should be shorted at a time.
- (3) Unless otherwise noted,  $R_X = 10 \text{ k}\Omega$  for all tests.
- (4) Ground Pin 1 (15) for  $V_{OL}$  on Pin 7 (9), or for  $V_{OH}$  on Pin 6 (10), or for  $I_{OS}$  on Pins 6 (10); also, apply momentary ground to Pin 4 (12). Open Pin 1 (15) for  $V_{OL}$  on Pin 6 (10), or for  $V_{OH}$  on Pin 7 (9), or for  $I_{OS}$  on Pin 7 (9).

|                    | PARAMETER                                           |                                                |                                                                 | DM96 |         |      | DM86 |      |      |       |
|--------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------|---------|------|------|------|------|-------|
|                    |                                                     |                                                |                                                                 |      | 02      |      | . 02 |      |      | UNITS |
|                    |                                                     | *                                              |                                                                 | MIN  | TYP MAX |      | MIN  | TYP  | MAX  |       |
| t <sub>PLH</sub>   | Propagation Delay Time,<br>Low-to-High Level Output | Negative Trigger Input<br>to True Output       |                                                                 |      | 25      | 35   |      | 25   | 40   | ns    |
| t <sub>PHL</sub>   | Propagation Delay Time,<br>High-to-Low Level Output | Negative Trigger Input<br>To Complement Output | $C_{L} = 15 \text{ pF}$ $C_{X} = 0$ $R_{X} = 5 \text{ k}\Omega$ |      | 29      | 43   |      | 29   | 48   | ns    |
| tpw (MIN)          | Minimum True Output Pulse Width                     |                                                |                                                                 |      | 72      | 90   |      | 72   | 100  | ns    |
|                    | Minimum Complement Pulse Width                      |                                                |                                                                 |      | 78      | 100  |      | 78   | 110  | 115   |
| tpW                | Pulse Width                                         |                                                | $R_X = 10 \text{ k}\Omega;$<br>$C_X = 1000 \text{ pF}$          | 3.08 | 3.42    | 3.76 | 3.08 | 3.42 | 3.76 | μς    |
| C <sub>STRAY</sub> | Maximum Allowable Wiring<br>Capacitance             |                                                | Pins 2, 14 to GND                                               |      |         | 50   |      |      | 50   | pF    |
| R <sub>X</sub>     | External Timing Resistor                            |                                                |                                                                 | 5    |         | 25   | 5    |      | 50   | kΩ    |

# **Operating Rules**

- An external resistor (R<sub>X</sub>) and external capacitor (C<sub>X</sub>) are required as shown in the Logic Diagram.
- The value of C<sub>X</sub> may vary from 0 to any necessary value available. If, however, the capacitor has leakages approaching 3.0µA or if stray capacitance from either terminal to ground is more than 50 pF, the timing equations may not represent the pulse width obtained.
- 3. The output pulse with (t) is defined as follows:

$$t = 0.31 R_X C_X \left[ 1 + \frac{1}{R_X} \right]$$

where

 $R_X$  is in  $k\Omega$ ,  $C_X$  is in pF t is in ns for  $C_X \le 10^3$  pF, see Figure 1.

- 4. If electrolytic type capacitors are to be used, the following three configurations are recommended:
  - A. Use with low leakage capacitors:

The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0V is less than  $3\mu$ A, and the inverse capacitor leakage at 1.0V is less than  $5\mu$ A over the operational temperature range.



B. Use with high inverse leakage current electrolytic capacitors:

The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. The use of this configuration is not recommended with retriggerable operation.

$$t \approx 0.3 \; RC_{\times}$$



C. Use to obtain extended pulse widths:

This configuration can be used to obtain extended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used.

 ${\rm R} < {\rm R}_{\rm X}$  (0.7) (h<sub>FE</sub> Q1) or < 2.5 M $\Omega$ , whichever is the lesser

$$\rm R_X~(min)\,{<}\,R_Y\,{<}\,R_X~(max)$$
 (5 k $\Omega\,{<}\,R_Y\,{<}\,10$  k $\Omega$  is recommended)

Q1: NPN silicon transistor with  $h_{\text{FE}}$  requirements of above equations, such as 2N5961 or 2N5962.



This configuration is not recommended with retriggerable operation.

5. To obtain variable pulse width by remote trimming, the following circuit is recommended:



- Under any operating condition, C<sub>X</sub> and R<sub>X</sub> (min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
- 7. Input Trigger Pulse Rules (See Triggering Truth Table)



Input to Pin 5 (11), Pin 4 (12) = LOW (Pin 3 (13) = HIGH)

 $t_1$  ,  $t_3$  = Min. Positive Input Pulse Width > 40 ns  $t_2$  ,  $t_4$  = Min. Negative Input Pulse Width > 40 ns



8. The retriggerable pulse width is calculated as shown below:

$$t_W = t + t_{PLH} = 0.31 R_X C_X \left(1 + \frac{1}{R_X}\right) + t_{PLH}$$



# Operating Rules (Continued)

The retrigger pulse width is equal to the pulse width (t) plus a delay time. For pulse widths greater than 500 ns,  $t_W$  can be approximated as t. Retriggering will not occur if the retrigger pulse comes within  $\approx 0.3 \, C_X$  (ns) after the initial trigger pulse. (i.e., during the discharge cycle).

9. Reset Operation — An overriding clear (active LOW level) is provided on each one shot. By applying a LOW to the reset, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW.



10. V<sub>CC</sub> and Ground wiring should conform to good high frequency standards so that switching transients on V<sub>CC</sub> and Ground leads do not cause interaction between one shots. Use of a 0.01 to 0.1μF bypass capacitor between V<sub>CC</sub> and Ground located near the DM9602/DM8602 is recommended.

# **Typical Performance Characteristics**



FIGURE 1. OUTPUT PULSE WIDTH VS TIMING RESISTANCE AND CAPACITANCE FOR  $C_x < 10^3\,\mathrm{pF}$ 



FIGURE 2. NORMALIZED OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE



FIGURE 3. PULSE WIDTH VS TIMING RESISTOR



FIGURE 4. NORMALIZED OUTPUT PULSE WIDTH VS SUPPLY VOLTAGE



FIGURE 5. MINIMUM OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE

Notes

Notes



National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara, California 95051 (408) 737-5000 TWX: 910-339-9240

National Semiconductor GmbH 808 Fuerstenfeldbruck Industriestrasse 10 West Germany Telephone: (08141) 1371 Telex: 05-27649 NS Electronics SDN BHD Batu Berendam Free Trade Zone Malacca, Malaysia Telephone: 5171

Telex: NSELECT 519 MALACCA (c/o Kuala Lumpur)

National Semiconductor (UK) Ltd. Larkfield Industrial Estate Greenock, Scotland Telephone: GOUROCK 33251 Telex: 778 632 NS Electronics (PTE) Ltd. No. 1100 Lower Delta Rd. Singapore 3 Telephone: 630011 Telex: NATSEMI RS 21402