GEMEINSAMES MASTERSTUDIUM AN DER UNIVERSITÄT WIEN UND DER TECHNISCHEN UNIVERSITÄT WIEN Studium: Chemie und Technologie der Materialien

§ 1 Grundlage und Geltungsbereich

Der Senat der Universität Wien hat in seiner Sitzung am 16.06.2011 das von der gemäß § 25 Abs. 8 Z. 3 und Abs. 10 des Universitätsgesetzes 2002 eingerichteten entscheidungsbefugten Curricularkommission vom 06.06.2011 beschlossene Curriculum für das Masterstudium "Chemie und Technologie der Materialien", das gemeinsam von der Universität Wien und der Technischen Universität Wien angeboten wird, in der nachfolgenden Fassung genehmigt. Gleicherweise hat der Senat der Technischen Universität Wien das vorliegende Curriculum in seiner Sitzung am 27.06.2011 auf der Basis des Beschlusses der fachlich zuständigen Studienkommission "Technische Chemie" vom 12.04.2011 genehmigt.

Es basiert auf dem Universitätsgesetz 2002 BGBl. I Nr. 120/2002 (UG) und dem jeweiligen Satzungsteil "Studienrechtliche Bestimmungen" der Universität Wien und der Technischen Universität Wien in der jeweils geltenden Fassung. Die Struktur und Ausgestaltung des Studiums orientieren sich am Qualifikationsprofil gemäß §2.

§ 2 Qualifikationsprofil

Das Masterstudium "Chemie und Technologie der Materialien" vermittelt eine vertiefte, wissenschaftlich und methodisch hochwertige, auf dauerhaftes Wissen ausgerichtete Bildung, welche die Absolventinnen und Absolventen sowohl dazu befähigt, sich im Rahmen einer facheinschlägigen Doktoratsstudiums weiter zu vertiefen, als auch eine Beschäftigung in Tätigkeitsbereichen an der Schnittstelle zwischen Chemie und Technologie der Materialien aufzunehmen und sie international konkurrenzfähig macht.

AbsolventInnen des Studiengangs haben ein breites, auf chemischen und physikalischen Grundlagen aufgebautes Verständnis der Beziehungen zwischen Zusammensetzung, Struktur und Morphologie von Materialien einerseits und deren chemischen und physikalischen Eigenschaften andererseits. Ihre chemische Kompetenz versetzt sie in die Lage, Materialien für unterschiedliche Anforderungen zu synthetisieren, zu modifizieren und zu charakterisieren.

Die während des Studiums erworbenen theoretischen und praktischen Fähigkeiten versetzen sie in die Lage, die entsprechenden Synthese-, Verarbeitungs- und Charakterisierungsmethoden problem- und zielorientiert anzuwenden, sowie eine dem Anwendungszweck angemessene Materialauswahl zu treffen.

AbsolventInnen des Studiengangs sind in der Lage, sowohl selbständig als auch im Team mit Ingenieuren, Physikern, Werkstoffwissenschaftlern und anderen Naturwissenschaftlern Lösungsansätze für materialchemische Fragestellungen zu erarbeiten, die für die Gesellschaft des 21. Jahrhunderts von Bedeutung sind.

§ 3 Dauer und Umfang

Der Arbeitsaufwand für das Masterstudium "Chemie und Technologie der Materialien" beträgt 120 ECTS-Punkte. Dies entspricht einer vorgesehenen Studiendauer von vier Semestern als Vollzeitstudium.

§ 4 Zulassungsvoraussetzungen

Die Zulassung zu einem Masterstudium setzt den Abschluss eines fachlich in Frage kommenden Bachelorstudiums oder Fachhochschul-Bachelorstudienganges oder eines anderen gleichwertigen Studiums an einer anerkannten in- oder ausländischen postsekundären Bildungseinrichtung voraus.

Fachlich in Frage kommend sind jedenfalls das Bachelorstudium "*Technische Chemie"* an der Technischen Universität Wien und das Bachelorstudium "*Chemie"* an der Universität Wien.

Wenn die Gleichwertigkeit grundsätzlich gegeben ist und nur einzelne Ergänzungen auf die volle Gleichwertigkeit fehlen, können zur Erlangung der vollen Gleichwertigkeit alternative oder zusätzliche Lehrveranstaltungen und Prüfungen im Ausmaß von maximal 30 ECTS-Punkten vorgeschrieben werden, die im Laufe des Masterstudiums zu absolvieren sind.

Personen, deren Muttersprache nicht Deutsch ist, haben die Kenntnis der deutschen Sprache nachzuweisen. Für einen erfolgreichen Studienfortgang werden Deutschkenntnisse nach Referenzniveau B2 des Gemeinsamen Europäischen Referenzrahmens für Sprachen (GER) empfohlen.

§ 5 Aufbau - Module mit ECTS-Punktezuweisung

- (1) Die Inhalte und Qualifikationen des Studiums werden durch *Module* vermittelt. Ein Modul ist eine Lehr- und Lerneinheit, welche durch Eingangs- und Ausgangsqualifikationen, Inhalt, Lehr- und Lernform, den Regel-Arbeitsaufwand sowie die Leistungsbeurteilung gekennzeichnet ist. Die Absolvierung von Modulen erfolgt in Form einzelner oder mehrerer inhaltlich zusammenhängender *Lehrveranstaltungen*.
- (2) Das Masterstudium "Chemie und Technologie der Materialien" besteht aus
 - einem Block mit Grundlagen- und Ängleichungs-Lehrveranstaltungen (30 ECTS),
 - einem Block der gebundenen Wahl, in dem fünf Module zu jeweils 10 ECTS aus der unten angeführten Liste von Modulen gewählt werden müssen,
 - einem Block mit 10 ECTS der freien Wahl,
 - der Diplomarbeit inklusive kommissioneller Abschlussprüfung (30 ECTS).
- (3) Ziel des Grund- und Angleichungsblocks ist es, die fachlichen Grundlagen für die nachfolgenden Module der gebundenen Wahl zu legen, sowie unterschiedliche Vorkenntnisse der Absolventinnen und Absolventen an den beiden Partner-Universitäten anzugleichen.
 - a) Der Grundlagen- und Angleichungsblock umfasst folgende Pflicht-Lehrveranstaltungen im Umfang von 25 ECTS-Punkten:
 - Materialsynthese (VO, 5 SWS, 7,5 ECTS)
 - Keramische und metallische Werkstoffe (VO, 4 SWS, 6,0 ECTS)
 - Chemische Bindung und Materialeigenschaften (VO, 3 SWS, 4,5 ECTS)
 - Charakterisierung von Materialien (VO, 3 SWS, 5,0 ECTS)
 - Seminar Chemie und Technologie der Materialien (SE, 2 SWS, 2 ECTS)
 - b) Absolventinnen und Absolventen des Bachelorstudiums *Chemie* an der Universität Wien haben zusätzlich zu den Lehrveranstaltungen des Grundlagenblocks verpflichtend noch folgende Lehrveranstaltungen zu absolvieren:
 - VO Chemische Technologie Anorganischer Stoffe (3 ECTS)
 - VO Chemische Technologie Organischer Stoffe (2 ECTS)
 - c) Absolventinnen und Absolventen des Bachelorstudiums *Technische Chemie* an der Technischen Universität Wien haben zusätzlich zu den Lehrveranstaltungen des Grundlagenblocks verpflichtend noch folgende Lehrveranstaltung zu absolvieren:

- VO Theoretische Chemie für Studierende von Chemie und Technologie der Materialien (5 ECTS)
- (4) Für die gebundenen Wahlfächer des Masterstudiums "*Chemie und Technologie der Materialien"* sind aus der folgenden Liste fünf Module im Umfang von je 10 ECTS auszuwählen, wobei entweder zwei Module an der Universität Wien (Uni) und drei Module an der Technischen Universität Wien (TU) oder umgekehrt zu absolvieren sind:
- (5) Weiters sind diese fünf Wahlpflichtmodule aus zumindest drei der unten angeführten Wahlmodulgruppen zu wählen.

Wahlmodulgruppe A: "Charakterisierung von Materialien"

- A.1 Anorganische Materialien und ihre Charakterisierung (Uni)
- A.2 Charakterisierung fester Stoffe (TU)
- A.3 Grenzflächenchemie und Oberflächenanalytik (TU)
- A.4 Materialchemie der Festkörper und der Grenzflächen (Uni)
- A.5 Sensor- und Nanotechnologie in der Analytik (Uni)

Wahlmodulgruppe B: "Funktions- und Strukturmaterialien und ihre Anwendungen"

- B.1 Energiespeicherung und –umwandlung (TU)
- B.2 Funktionelle Materialien (Uni)
- B.3 Nanotechnologie der Grenzflächen (Uni)
- B.4 Strukturwerkstoffe (TU)

Wahlmodulgruppe C: "Materialklassen und Synthese"

- C.1 Biomaterialien (TU)
- C.2 Metallische Werkstoffe (TU)
- C.3 Nanochemie (TU)
- C.4 Polymerchemie (TU)

Wahlmodulgruppe D: "Theorie und Grundlagen von Materialien und ihre Eigenschaften"

- D.1 Experimentelle Methoden in der Physikalischen Chemie (Uni)
- D.2 Festkörperchemie (Uni)
- D.3 Komputative Materialchemie (Uni)
- D.4 Komputative Physikalische Chemie (Uni)
- D.5 Theoretische Materialchemie (TU)

Wahlmodulgruppe E: "Werkstoffmechanik und Werkstoffverarbeitung"

- E.1 Mechanik von Biomaterialien (TU)
- E.2 Polymertechnologie (TU)
- E.3 Schadensanalyse (TU)
- E.4 Werkstoffmechanik (TU)
- E.5 Werkstoffverarbeitung (TU)

Eine Beschreibung der einzelnen Module findet sich im Anhang.

(6) Der Block mit 10 ECTS der freien Wahl kann aus Lehrveranstaltungen gewählt werden, die in einem sinnvollen Zusammenhang mit dem Curriculum des Masterstudiums "*Chemie und Technologie der Materialien"* stehen.

§ 6 Einteilung der Lehrveranstaltungen

- (1) Die Lehrveranstaltungen, die zur Erreichung der Lernziele der im Curriculum festgehaltenen Module geeignet sind, werden in einem jährlich erscheinenden "kommentierten Vorlesungsverzeichnis" angeführt. Dort werden auch entsprechende eventuelle zusätzliche Zugangsvoraussetzungen für die einzelnen Lehrveranstaltungen definiert.
- (2) Im Masterstudium "*Chemie und Technologie der Materialien* werden" Vorlesungen (VO), die nicht-prüfungsimmanenten Charakter haben, sowie Lehrveranstaltungen mit prüfungsimmanenten Charakter angeboten.
- (3) Lehrveranstaltungen des Typs VO (Vorlesung) werden aufgrund einer abschließenden mündlichen und/oder schriftlichen Prüfung beurteilt. Alle anderen Lehrveranstaltungen besitzen immanenten Prüfungscharakter, d.h. die Beurteilung erfolgt laufend durch eine begleitende Erfolgskontrolle sowie optional durch eine zusätzliche abschließende Teilprüfung.
- (4) Die genannten Lehrveranstaltungstypen werden, soweit möglich, durch E-Learning unterstützt.

§ 7 Prüfungsordnung

- (1) Den Abschluss des Masterstudiums bildet die Diplomprüfung. Sie setzt voraus die erfolgreiche Absolvierung
 - des Grundlagen- und Angleichungsblocks,
 - aller im Curriculum vorgeschriebenen Module, wobei ein Modul als positiv absolviert gilt, wenn die ihm zuzurechnenden Lehrveranstaltungen gemäß Modulbeschreibung positiv absolviert wurden,
 - des Blocks mit 10 ECTS der freien Wahl
 - sowie die Abfassung einer positiv beurteilten Diplomarbeit.

Die Diplomprüfung ist eine kommissionelle Abschlussprüfung in Form einer *Defensio*; diese erfolgt mündlich vor einem Prüfungssenat gem. §12 Satzungsteil "Studienrechtliche Bestimmungen" der Technischen Universität Wien bzw. gem. § 9 des Studienrechtlichen Teils der Satzung der Universität Wien und dient der Präsentation und Verteidigung der Diplomarbeit und dem Nachweis der Beherrschung des wissenschaftlichen Umfeldes. Dabei ist vor allem auf Verständnis und Überblickswissen Bedacht zu nehmen.

- (2) Das Abschlusszeugnis beinhaltet
- a. den Basis- und Angleichungsblock mit Gesamtnote,
- b. die Titel der gewählten Module mit ihrem jeweiligen Umfang in ECTS-Punkten und ihren Noten,
- c. die Note für den Block mit den 10 ECTS der freien Wahl,
- d. das Thema und die Beurteilung der Diplomarbeit,
- e. die Note der Diplomprüfung und
- f. eine auf den unter a., b., c. und d. angeführten Noten basierende Gesamtbeurteilung gemäß § 73 Abs. 3 UG 2002, sowie die Gesamtnote.
- (3) Die Note eines Moduls ergibt sich durch Mittelung der Noten jener Lehrveranstaltungen, die dem Prüfungsfach über die darin enthaltenen Module zuzuordnen sind, wobei die Noten mit dem ECTS-Umfang der Lehrveranstaltungen gewichtet werden. Bei einem Nachkommateil größer als 0,5 wird aufgerundet, andernfalls wird abgerundet. Die Gesamtnote ergibt sich analog zu den Modulnoten durch gewichtete Mittelung der Noten aller dem Studium zuzuordnenden Lehrveranstaltungen sowie der Noten der Diplomarbeit und der Abschlussprüfung.

(4) Der positive Erfolg von Prüfungen ist mit "sehr gut" (1), "gut" (2), "befriedigend" (3) oder "genügend" (4), der negative Erfolg ist mit "nicht genügend" (5) zu beurteilen. Lehrveranstaltungen mit prüfungsimmanentem Charakter können auch mit "mit Erfolg teilgenommen" bzw. "ohne Erfolg teilgenommen" beurteilt werden.

§ 8 Studierbarkeit und Mobilität

- (1) Studierende im Masterstudium "*Chemie und Technologie der Materialien"* sollen ihr Studium mit angemessenem Aufwand in der dafür vorgesehenen Zeit abschließen können.
- (2) Die Anerkennung von im Ausland absolvierten Studienleistungen erfolgt durch das studienrechtliche Organ.
- (3) Für Lehrveranstaltungen mit prüfungsimmanentem Charakter gelten, falls dies auf Grund beschränkter Raum-, Personal- oder Finanzressourcen und/oder anderer logistischer Rahmenbedingungen notwendig ist, Teilnahmebeschränkungen. Diese sind im jeweiligen Vorlesungsverzeichnis entsprechend zu kennzeichnen.
- (4) Die Festsetzung von Teilnahmebeschränkungen erfolgt durch das zuständige akademische Organ auf Antrag der verantwortlichen Lehrveranstaltungsleiter und Lehrveranstaltungsleiterinnen.
- (5) Wenn bei Lehrveranstaltungen mit beschränkter Teilnehmerinnen- und Teilnehmerzahl die Zahl der Anmeldungen die Zahl der vorhandenen Plätze übersteigt, erfolgt die Aufnahme nach den folgenden Kriterien in der nachstehend angegebenen Reihenfolge:
 - (i) Nach der höheren Anzahl der für das gegenständliche Curriculum erforderlichen und bereits absolvierten ECTS-Punkten;
 - (ii) Nach der jeweiligen kürzeren Studiendauer;
 - (iii) Die Notwendigkeit der Teilnahme zur Erfüllung des gegenständlichen Curriculums ist zu berücksichtigen
- (6) Die Lehrveranstaltungsleiterinnen und Lehrveranstaltungsleiter sind berechtigt, für ihre Lehrveranstaltungen Ausnahmen von der Teilnahmebeschränkung zuzulassen.

§ 9 Diplomarbeit und kommissionelle Abschlussprüfung

- (1) Die Diplomarbeit ist eine wissenschaftliche Arbeit, die dem Nachweis der Befähigung dient, ein wissenschaftliches Thema selbstständig inhaltlich und methodisch vertretbar zu bearbeiten.
- (2) Das Thema der Diplomarbeit ist von der oder dem Studierenden frei wählbar und muss im Einklang mit dem Qualifikationsprofil stehen. Die Diplomarbeit kann, unabhängig von der Universität, an der der oder die Studierende immatrikuliert ist, an der Universität Wien oder der Technischen Universität Wien durchgeführt werden.
- (3) Die Diplomarbeit hat einen Umfang von 25 ECTS Punkten.
- (4) Voraussetzung für die Zulassung zur Diplomprüfung ist die positive Absolvierung aller vorgeschriebenen Module und Prüfungen sowie die positive Beurteilung der Diplomarbeit.
- (5) Dem Prüfungssenat der Diplomprüfung hat jedenfalls die Betreuerin / der Betreuer der Diplomarbeit, sowie je eine Prüferin / ein Prüfer von den beiden Partneruniversitäten anzugehören.

- (6) Die Diplomprüfung hat einen Umfang von 5 ECTS-Punkten.
- (7) Die Diplomprüfung selbst wird an der Herkunftsuniversität abgelegt, diese stellt auch das Diplomzeugnis aus. Dieses bestätigt die Teilnahme an dem gemeinsamen Masterstudium "Chemie und Technologie der Materialien" zwischen Universität Wien und Technischer Universität Wien.

§ 10 Akademischer Grad

Den Absolventinnen und Absolventen des Masterstudiums "*Chemie und Technologie der Materialen"* wird der akademische Grad "Diplom-Ingenieur"/"Diplom-Ingenieuri" – abgekürzt "Dipl.-Ing." oder "DI"- verliehen (englische Übersetzung "Master of Science", abgekürzt "MSc").

§ 11 Integriertes Qualitätsmanagement

Durch das integrierte Qualitätsmanagement wird gewährleistet, dass das Curriculum des Masterstudiums "*Chemie und Technologie der Materialen*" konsistent konzipiert ist, effizient abgewickelt und regelmäßig überprüft bzw. kontrolliert wird. Geeignete Maßnahmen stellen die Relevanz und Aktualität des Curriculums sowie der einzelnen Lehrveranstaltungen im Zeitablauf sicher; für deren Festlegung und Überwachung sind die jeweiligen Studienrechtlichen Organe bzw. die zuständige Studienkommission bzw. Curricularkommission zuständig.

Eine periodische Lehrveranstaltungsbewertung entsprechen den Satzungen der beiden Universitäten liefert, ebenso wie individuelle Rückmeldungen zum Studienbetrieb an das Studienrechtliche Organ, ein Gesamtbild für alle Beteiligten über die Abwicklung des Curriculums. Insbesondere können somit kritische Lehrveranstaltungen identifiziert und geeignete Anpassungsmaßnahmen abgeleitet und umgesetzt werden.

§ 12 Inkrafttreten

Dieses Curriculum tritt am 1. Oktober 2011 in Kraft.

§ 13 Übergangsbestimmungen

Allfällige Übergangsbestimmungen werden gesondert in den Mitteilungsblättern der Universität Wien und der TU Wien verlautbart und liegen in den Rechtsabteilungen der beiden Partneruniversitäten auf.

Anhänge:

- Auflistung aller Module
- Modul-Beschreibungen

Anhang

Beschreibung der einzelnen Module

Nr.	Name	ECTS	ECTS (PI*)	ECTS (NPI*)		
A.1	Anorganische Materialien und ihre Charakterisierung (Inorganic Materials and their Characterization)	10	5	5		
Keine Te	ilnahmevoraussetzungen			•		
von anor Sie erleri	ierenden erwerben vertiefendes Wissen über die Herstoganischen Materialien und werden in die Benutzung men den notwendigen theoretischen Hintergrund und vonisse von Messungen zu interpretieren und in entspre	oderner G verden in o	eräte eing lie Lage ve	eführt. ersetzt,		
Leistung	snachweis durch Abschluss aller Lehrveranstaltungen					
Vorgeseh	ene Dauer: ein Semester					
Verantwo	ortliche Universität: Universität Wien					
A.2	Charakterisierung fester Stoffe (Characterization of Solid Materials)	10 5,5		4,5		
Keine Te	ilnahmevoraussetzungen	1	1			
durch Ko punkt ste Rahmen elektroni	lierenden werden grundlegende Kenntnisse zur Charak Imbination von Spektroskopie, Diffraktion und Mikros Ihen die Komplementarität der Methoden und deren St einer Laborübung wird dieses Konzept illustriert, inde sch), Morphologie und Zusammensetzung ausgewählte lenen Methoden ermittelt werden.	kopie vern ärken und m die Stru	nittelt. Im l Limitieru ktur (aton	Mittel- ingen. Im iar,		
Leistung	snachweis durch Abschluss aller Lehrveranstaltungen					
Vorgeseh	nene Dauer: ein Semester					
Verantwo	ortliche Universität: Technische Universität Wien					
A.3	Grenzflächenchemie und Oberflächenanalytik (Chemistry of Interfaces and Analysis of Surfaces) 6					
Keine Te	ilnahmevoraussetzungen		_1			

Den Studierenden werden grundlegende Kenntnisse zur Chemie und Physik an Grenzflächen vermittelt, sowie moderne Methoden der Oberflächencharakterisierung vorgestellt. Besonderes Augenmerk liegt auf dem Verständnis und der Untersuchung von Oberflächenprozessen an Nanostrukturen, wie sie beispielsweise in der heterogenen Katalyse vorkommen (vom Modellsystem zur industriellen Anwendung). Die theoretischen Kenntnisse werden im Rahmen einer Laborübung vertieft und experimentell angewandt. Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Technische Universität Wien **A.4** Materialchemie der Festkörper und Grenzflächen 10 4 6 (Materials Chemistry of Solids and Interfaces) Keine Teilnahmevoraussetzungen Die Studierenden erwerben vertiefendes Wissen über der Materialchemie der Festkörper und Grenzflächen, werden in die Benutzung moderner Techniken (z.B. laser-optischer Systeme) eingeführt und erhalten vertiefende Kompetenzen in der Strukturaufklärung von Festkörpern (z.B. mit Röntgenmethoden). Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Universität Wien 6 **A.5** Sensor- und Nanotechnologie in der Analytik 10 4 (Sensors and Nanotechnologies in Analytics) Keine Teilnahmevoraussetzungen Den Studierenden werden die modernen Strategien der Sensor- und Nanotechnologie in der Analytischen Chemie vermittelt. Hierbei spielen miniaturisierte Mess-Systeme eine besondere Rolle. Zur chemischen Erkennung werden klassische Phänomene, sowohl chemische, supramolekulare als auch von biologischer Natur herangezogen. Die Dimensionen erstrecken sich bis hinunter zur Nanotechnologie und der molekularen Ebene, die instrumentell auch unmittelbar erfassbar sind. Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Universität Wien

B.1	Energiespeicherung und –umwandlung (Energy storage and conversion) 10 4 6								
Keine Teili	nahmevoraussetzungen								
Energieum elektroche Einsatz in	Moduls ist die Vermittlung der Grundlagen zu Mater wandlung und Energiespeicherung. Ein Schwerpunk mischen Aspekten und deren Bezug zur Materialcher Batterien, Brennstoffzellen oder Elektrolysezellen. Zu n für andere Energiewandler wie Solarzellen oder Pie	t liegt hier nie und –te ır Sprache	bei auf echnologie kommen a						
Leistungsn	achweis durch Abschluss aller Lehrveranstaltungen								
Vorgesehe	ne Dauer: ein Semester								
Verantwor	tliche Universität: Technische Universität Wien								
B.2	Funktionelle Materialien (Functional Materials)	10	5	5					
Keine Teilı	nahmevoraussetzungen			1					
Charakteri praktische Festkörper	Moduls ist die Vermittlung der wichtigsten Eigensch sierung, Darstellung sowie Anwendung als Werkstof Vertiefung wird angeboten auf dem Gebiet der Physi und deren Strukturaufklärung (z.B. durch Röntgenr	fe. Theoreti kalischen (ische und						
Leistungsn	achweis durch Abschluss aller Lehrveranstaltungen								
Vorgesehe	ne Dauer: ein Semester								
Verantwor	tliche Universität: Universität Wien								
B.3	Nanotechnologien der Grenzflächen (Nanotechnology of Interfaces)	10	5	5					
Keine Teilı	nahmevoraussetzungen		1	1					
experimen beinhalten dem Bereic Prozesse m Rastersond situ-Prozes Studierend vermitteln	Moduls ist die Vermittlung und Umsetzung der theoretellen Grundlagen nanostrukturierter Grenzflächen. Vertiefungen in aktuellen Forschungsgebieten der Poch der Nanotechnologie. In der modernen Physikalischit einer örtlichen Auflösung von wenigen Nanometer denverfahren, etc.), die nicht nur der Topologieaufkläss-Untersuchung und der in-situ-Manipulation diener die notwendigen Kenntnisse auf diesem Gebiet the die eine Qualifizierung für eine Masterarbeit bzw. ein Gebiet darstellen.	Die Verans hysikalisch chen Chem rn (10 ⁻⁹ m) irung sonde n. Ziel ist e leoretisch u	taltungen en Chemid ie werden ermöglich ern auch d es, die und praktis	t (z.B. er <i>in</i> sch zu					

Leistungsı	nachweis durch Abschluss aller Lehrverans	taltungen						
Vorgesehe	ene Dauer: ein Semester							
Verantwoi	rtliche Universität: Universität Wien							
B.4	Strukturwerkstoffe (Structural Materials) 5 5							
Keine Teil	nahmevoraussetzungen	1	·					
Gemeinsa Polymerer von Konst Anwendur Fertigungs	prüfung mit zerstörenden und zerstörungsf mkeiten und Unterschiede bei der Prüfung n. Übertragung der Bauteilfunktionsanforde ruktionswerkstoffen. An einem Werkstoffen ngen können die erworbenen Kenntnisse un skette und des Produktlebenszyklus umgese	von Metallen, Kera erungen auf Gebrau insatzbeispiel für m nter Berücksichtigu etzt werden.	miken un uchseigens naschinenl	d schaften				
Leistungsı	nachweis durch Abschluss aller Lehrverans	taltungen						
Vorgesehe	ene Dauer: ein Semester							
Verantwo	rtliche Universität: Technische Universität	Wien						
C.1	Biomaterialien (Biomaterials)	10	6	4				
Keine Teil	nahmevoraussetzungen			•				
Studierend und Desig	ng von Kenntnissen über den Einsatz von V den werden die Biomaterialien und ihre Str nstrategien vorgestellt. Selbstständiges Arb nischen Technik in aktuellen Forschungspr	ruktur, mechanisch beiten auf dem Gebi	en Eigenso					
Leistungsı	nachweis durch Abschluss aller Lehrverans	taltungen						
Vorgesehe	ene Dauer: ein Semester							
Verantwoi	rtliche Universität: Technische Universität	Wien						
C.2	Metallische Werkstoffe	10	5,5	4,5				
	(Metallic Materials)							

Die Studierenden werden mit den wichtigsten metallischen Werkstoffen vertraut gemacht, mit ihrer Herstellung, Formgebung und mit Nachbearbeitungsschritten wie Wärme- und Oberflächenbehandlung sowie den wichtigsten Anwendungen. Sie lernen, metallische Werkstoffe anhand von Anforderungsprofilen zu bewerten. In der Laborpraxis stellen sie metallische Sonderwerkstoffe selbst her und charakterisieren sie. Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Technische Universität Wien **C.3** Nanochemie 10 4 6 (Nanochemisrty) Keine Teilnahmevoraussetzungen Die Lehrveranstaltungen des Moduls vermitteln grundlegende Kennnisse zur Chemie und Physik nanostruktuierter Materialien sowie deren potenziellen Anwendungen. Ein Schwerpunkt liegt bei der Synthese von Nanostrukturen durch chemische Prozesse, z.B. durch Selbstorganisation oder ausgehend von molekularen Vorstufen. Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Technische Universität Wien **C.4** 10 4 6 Polymerchemie (Polymer Chemistry) Keine Teilnahmevoraussetzungen Dieses Modul beschäftigt sich mit modernen Synthese- und Charakterisierungsmethoden in der Polymerchemie. Schwerpunkte sind hierbei Mechanismen von Polymerisationsreaktionen; Katalysator-Entwicklung, lebende Polymerisationsmethoden, Methoden der Molekulargewichtsbestimmung, Strukturaufklärung und thermomechanischer Charakterisierung wobei in den praktischen Übungen dieses Wissen weiter vertieft wird. Leistungsnachweis durch Abschluss aller Lehrveranstaltungen Vorgesehene Dauer: ein Semester Verantwortliche Universität: Technische Universität Wien

D.1	Experimentelle Methoden in der physikalischen Chemie (Experimental Methods in Physical Chemistry) 5 5								
Keine Teilr	ahmevoraussetzungen								
der physika modernen wenigen Fe werden (z.1 Mikroskop chemische	Moduls ist die Vermittlung und Umsetzung moderner alischen Chemie, insbesondere zur Untersuchung ultre Physikalischen Chemie können Prozesse mit einer zeismtosekunden (10 ⁻¹⁵ s) bis in den Stunden-Bereich ver B. fs-Puls-Puls Fluoreszenz Korrelationsmessungen, rie, Kurzpuls-Laser-Grenzflächenbearbeitung, etc.). De Methoden Anwendung, die spezifische Bereiche und elektiv hervorheben (z.B. die in-situ-IR-Spektroskopiowaage).	akurzer Pl itlichen Au rfolgt aber nichtlinear aneben fin Eigenscha	nänomene. iflösung vo auch ausg e Laser- den physik ften von re	In der on elöst co-					
Leistungsn	achweis durch Abschluss aller Lehrveranstaltungen								
Vorgeseher	ne Dauer: ein Semester								
Verantwort	liche Universität: Universität Wien								
D.2	Festkörperchemie (Solid State Chemistry)	10	6	4					
Keine Teilr	ahmevoraussetzungen			l					
(insbesond nichtkrista Methoden Festkörper	renden erwerben vertiefendes Wissen aus dem Bereic ere Strukturen anorganischer Festkörper, Gitterdefek lline Festkörper und Elektronen in Festkörpern). Klas der Synthese, sowie Methoden zur Analyse und Chara n werden umfassend behandelt. In Laborübungen wi wissenschaftlichen Geräten umgesetzt.	ate und Nic ssische und akterisieru	chtstöchio d moderne ng von	metrie,					
Leistungsn	achweis durch Abschluss aller Lehrveranstaltungen								
Vorgesehei	ne Dauer: ein Semester								
Verantwort	liche Universität: Universität Wien								
D.3	Komputative Materialchemie (Computational Materials Chemistry)	10	6	4					
Keine Teilr	ahmevoraussetzungen								
<i>initio</i> -Meth Festkörper theoretisch	lul führt in die theoretische Festkörperchemie (z.B. d noden, die Dichte-Funktional-Theorie) und deren Anv und Grenzflächen ein. Die Absolventen des Moduls b en Grundlagen zur Beschreibung der Eigenschaften d en Überblick über moderne Methoden zu deren Berec	vendung fi eherrsche ler Materio	ür Molekül n die	le,					

Leistungsr	achweis durch Abschluss aller Lehrveranstaltungen						
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Universität Wien						
D.4	Komputative Physikalische Chemie (Computational Physical Chemistry) 5 5						
Keine Teil	nahmevoraussetzungen			I			
die Umsetz Dabei wird	Moduls ist die Vermittlung der Grundlagen numerisc zung physikalisch-chemischer Problemstellungen mit I Augenmerk z.B. auf das Modellieren von makromole omistischer und mesoskaler Simulationstechniken gel	komputat kularen Sy	iven Metho	oden.			
Leistungsr	achweis durch Abschluss aller Lehrveranstaltungen						
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Universität Wien						
D.5	Theoretische Materialchemie (Theoretical Materials Chemistry)	10	4	6			
Keine Teil	nahmevoraussetzungen						
Die Studierenden erwerben theoretische und praktische Kenntnisse über die quantenmechanische Beschreibung von Festkörpern. Methoden zur Lösung der Schrödingergleichung im Festkörper sowie Konzepte wie Blochfunktion, Bandstruktur, Zustandsdichte, chemische Bindung in Festkörpern, Relation zwischen Struktur und Eigenschaften, Magnetismus und Spin-Bahnwechselwirkung, theoretische Spektroskopie (STM, XPS, UPS, XES, PES, IR, Mössbauer, NMR), endliche Temperaturen und Phononen werden erläutert und in praktischen Übungen vertieft.							
Leistungsnachweis durch Abschluss aller Lehrveranstaltungen							
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Technische Universität Wien						

E.1 Mechanik von Biomaterialien (Mechanics of Biomaterials) 10 5,5 4,5									
Keine Teil	Inahmevoraussetzungen		1	,					
principles at underst	tle is based on an introduction to biomechanics that a of kinematics, dynamics and energetics relevant for b tanding the biomechanical function of the musculo-sk y systems.	iomechan	ical prob	lems and					
tissues are from digit with the fi	ional tools for quantifying the structural properties of then presented, where students learn how to general al images, apply material properties, apply boundary inite element method and interpret the obtained resul e is put into practice in the frame of a project in tissue	e computa conditions ts. Finally,	ntional m s, analyze the acqu	odels them iired					
Leistungs	nachweis durch Abschluss aller Lehrveranstaltungen								
Vorgesehe	ene Dauer: ein Semester								
Verantwo	rtliche Universität: Technische Universität Wien								
E.2	Polymertechnologie (Polymer Technology)	10	6	4					
Keine Teil	lnahmevoraussetzungen								
Standard- Einsatzge werkstoffe maßgeblic	odul beschäftigt sich mit der Verarbeitung und Verwei Thermoplasten, Duromeren und Elastomeren und ihr biete als Konstruktionswerkstoffe, Folien, Fasern, Bes en. Neben den Matrixmaterialien haben aber auch Fül chen Einfluss auf die Lagerstabilität, Verarbeitung und ssen der Polymeradditive und Formulierungen wird in tieft.	re typische chichtung lstoffe und l die Anwe	en industr en und K d Additiv endung. S	riellen omposit- e einen Speziell					
Leistungs	nachweis durch Abschluss aller Lehrveranstaltungen								
Vorgesehe	ene Dauer: ein Semester								
Verantwo	rtliche Universität: Technische Universität Wien								
E.3	Schadensanalyse (Failure Analysis) 10 5,5 4,5								
Keine Teil	nahmevoraussetzungen	-1	•						
Anhand ty	erenden wird Einblick in einzelne Methoden der Wer pischer Schäden an Werkstoffen und Bauteilen werde sformen von Werkstoffen / Bauteilen vermittelt. Darü	en Kenntn	isse typis	cher					

	len Methoden zur Ermittlung der Schadensursachen ng der Schädigung kennen.	und Maßı	nahmen z	ur			
Leistungsr	nachweis durch Abschluss aller Lehrveranstaltungen						
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Technische Universität Wien						
E.4	Werkstoffmechanik (Mechanics of Materials) 10 4,5 5,5						
Keine Teili	nahmevoraussetzungen	•					
wie Spann und bruch mikrostrul	ng von Kenntnissen der Werkstoffmechanik. Nach Ei ung, Dehnung, Elastizität oder Festigkeit, werden me mechanische Methoden vorgestellt, mit denen genau kturelle Informationen in mechanische Eigenschafte ersetzt werden können.	oderne mi ere chemi	kromecha sche und	nische			
Leistungsr	nachweis durch Abschluss aller Lehrveranstaltungen						
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Technische Universität Wien						
E.5	Werkstoffverarbeitung (Processing of Materials)	10	5,5	4,5			
Keine Teilı	nahmevoraussetzungen						
Vorstellun übermittel	erenden werden die üblichen Verfahren der Kunststo g der derzeit kommerziell verfügbaren generativen F t. Selbstständiges Arbeiten auf dem Gebiet der Werk charakterisierung in aktuellen Forschungsprojekten (ertigungs [.] stoffverar	verfahren beitung u	nd			
Leistungsn	achweis durch Abschluss aller Lehrveranstaltungen						
Vorgesehe	ne Dauer: ein Semester						
Verantwor	tliche Universität: Technische Universität Wien						

• PI = prüfungsimmanent; NPI = nicht prüfungsimmanent

Zuordnung d	or I VAs für d	as gemeinsame Masterstudium		T	T	T	
		der Materialien"					
(E066 658)	recimologie	dei Materialien					
(2000 030)							
Grundlagen-	und Angloich	nungsblock (25 ECTS-Punkte):					
	Typ	Titel	Semester	sws	ECTS	Vortragender / LVA-Lei	tor
		(O, 5 SWS, 7,5 ECTS)	Semester	3443	LC13	Voitiagender / LVA-Lei	tei
165.092		Anorganische Materialchemie	W	3.0	4.5	SCHUBERT	
163.059		Polymerchemie	S	2.0	3.0	LISKA	
103.039	VO	r diymerchemie	3	2.0	3.0	LISKA	
& Koram	ische und me	etallische Werkstoffe (VO, 4 SWS, 6,0 ECTS)					
164.164		Hochleistungskeramik	W	3.0	4.5	FLEIG	
		der Materialchemie (1.5 ECTS) als Teil von:	VV	3.0	4.5	I LLIG	
270.121 (Uni)		Phasendiagramme in der Materialchemie	W	1.0	2.0	IPSER (Uni)	
270.121 (0111)	VO	Traseridiagramme in der Materialchemie	•	1.0	2.0	II SER (OIII)	
& Chomi	ischo Bindun	g und Materialeigenschaften (VO, 3 SWS, 4,5 EC	2781				
164.161		Werkstoffwissenschaften	W	2.0	3.0	DANNINGER et al.	
	VO	Chemische Bindung und Materialeigenschaften	VV	1.0	1.5	PODLUCKY (Uni)	
INLO (OINI)	VO	Chemische bindding did Materialeigenschaften		1.0	1.5	FODEOCKT (OIII)	
& Chara	ktoricioruna v	von Materialien (VO, 3 SWS, 5,0 ECTS)					
NEU / UNI+TU		Charakterisierung von Materialien		3.3	5.0	RUPPRECHTER / KAUT	TEK (Upi)
INLO / OINITI	VO	Charaktensierung von Materialien		3.3	5.0	ROFFRECITER/ RAO	I LK (OIII)
& Comin	ar Chamia ur	l nd Technologie der Materialien (SE, 2 SWS, 2 EC	TCI				
NEU / UNI+TU		Chemie und Technologie der Materialien	W oder S	2.0	2.0	KAUTEK + N.N. (TU)	wird abwechselnd an der
INEO / OINI+10	SE	Chemie und rechnologie der Materialien	w oder 3	2.0	2.0	KAUTER + N.N. (10)	UNI und der TU
							angekündigt
							angekundigi
Sowie alterna	tiv:						
		∟ chelor-Studiums "Chemie" an der Universität Wien	oder veraleid	chharer Studien			
		hnologie Anorganischer Stoffe (3 ECTS)	oder vergiere	Tibarer Gladierr			
164,211		Chemische Technologie anorganischer Stoffe für	S	2.0	3.0	DANNINGER H. et al.	
104.211	VO	VT	J	2.0	5.0	Britinio Eren. et al.	
8 VO Ch	emische Tec	hnologie Organischer Stoffe (2 ECTS)					
Chemische Te	echnologien o	ganischer Stoffe (2.0 ECTS) als Teil von:	1				
163.133		Chemische Technologie organischer Stoffe für Ve	S	2.0	3.0	GRUBER	
100.100	· · ·	Chemical realinologic organisation otomeral ve		2.0	5.0	ONOBLIN	
- für Ahsolven	tinnen des Ra	□ chelor-Studiums "Technische Chemie" an der Tecl	nnischen I Iniv	versität Wien oo	ler veraleichha	arer Studien	
		nemie für Studierende von Chemie und Technol				aror otadion	
	VO	Theoretische Chemie für Studierende von Chemie			5.0	N.N.	
IALO (OIAI)	VO	Theoretisone Chemie fur Studierende von Chemie	did reciiilo	0.0	0.0	1 V.1 V.	
					1	1	

Wahlmadula	runno A. Ch	avaktariajarung yan Matarialian"				
		arakterisierung von Materialien"				
		Materialien und ihre Charakterisierung (Uni)	W	4.0	0.0	NINI
	VO	tba	• •	1.0	2.0	N.N.
270.131 (Uni)		Prakt. zur Charakt. Anorg. Mater Therm. und Thermodyn. Methoden	W	6.0	5.0	RICHTER et al.
270.153 (Uni)	VO	Charakterisierung anorganischer Materialien - Methoden und Modelle	W	2.0	3.0	RICHTER
§ A.2 Ch	arakterisieru	ng fester Stoffe (TU)				
165.104		Spektroskopie, Diffraktion und Mikroskopie fester Stoffe	W	3.0	4.5	RUPPRECHTER
+ Wahlübunge	en Grenzfläche	en und Oberflächen (5.5 ECTS) als Teil von:				
165.034	LU	Wahlübungen, chemisch (physikalische Chemie)	W oder S	6.0	6.0	RUPPRECHTER
§ A.3 Gr	enzflächench	 nemie und Oberflächenanalytik (TU)				
165.102	VO	Chemie und Physik der Grenzflächen	W	2.0	3.0	RUPPRECHTER
165.103	VO	Kinetik und Katalyse	S	2.0	3.0	FÖTTINGER
165.033	LU	Wahlübungen, chemisch (Oberflächenchemie und -analytik)	W oder S	4.0	4.0	RUPPRECHTER et al.
δ A.4 Ma	nterialchemie	der Festkörper und der Grenzflächen (Uni)				
270.266 (Uni)		Moderne Methoden zur Chrarakterisierung von Materialien	W	3.0	4.0	ROGL / KAUTEK
270.267 (Uni)		Moderne Methoden in der Materialchemie - Festkörper und Grenzflächen	W	4.0	4.0	KAUTEK et al.
270.265 (Uni)	SE	Materialwissenschaften	W	2.0	2.0	KAUTEK / ROGL
		notechnologie in der Analytik (Uni)				
270.277 (Uni)		Supramolekulare Nachweisstrategien	W	1.0	1.0	
270.239 (Uni)	VO	Chemische Sensoren - Anwendungen	W	1.0	1.5	DICKERT
270.090 (Uni)	VO	Grenzflächenspektroskopie	W	1.0	1.5	DICKERT
270.084 (Uni)		Tunnelmikroskopie	W	3.0	3.0	DICKERT et al.
270.106 (Uni)	UE	Chemosensorik	W	3.0	3.0	DICKERT et al.
270.104 (Uni)	SE	Seminar für Wahlfach Analytische Chemie	W	1.0	1.0	Dickert / LINDNER Wahllehrveranstaltung !

Wahlmodula	ruppo B. Eur	nktions- und Strukturmaterialien und ihre Anwei	ndungon"			
		rung und –umwandlung (TU)	iuuriyeri			
164.176			SS	2.0	3.0	FLEIG
164.197	VO		SS	2.0	3.0	FAFILEK / KRONBERGER
164.157	LU	Wahlübung technologisch (Festkörperelektrochem	SS oder WS	4.0	4.0	FLEIG
§ B.2 Fu	nktionelle Ma	terialien (Uni)				
270.262 (Uni)	VO	Physikalisch Chemische Festkörpereigenschaften	W	3.0	3.5	ROGL
270.263 (Uni)		Moderne Methoden zur Charakterisierung von Materialien	W	3.0	3.5	ROGL et al.
270.264 (Uni)	SE	Fortschritte in der Physikalischen Chemie	W	3.0	3.0	ROGL et al.
§ B.3 Na	notechnologi	ie der Grenzflächen (Uni)				
270.258 (Uni)		5	W	2.0	2.5	
270.260 (Uni)	UE	Forschungsbeispiel Nanotechnologie - "Phys. Chem. und Nanotechnologie"	W	5.0	5.0	
270.259 (Uni)			W	2.0	2.5	
§ B.4 Sti	rukturwerksto	offe (TU)				
308.135	VO	Werkstoffauswahl	W	2.0	3.0	REQUENA / RODRIGUEZ-HORTALA
308.128	VU	Werkstoffprüfung	W	4.0	4.0	KOCH / DANNINGER A.
308.094	SE	Werkstoffe für den Maschinenbau	W oder S	2.0	3.0	KOZESCHNIK / REQUENA / ARCHODOULAKI

Wahlmodula	runne C: Ma	terialklassen und Synthese"				
	omaterialien					
308.106		Biokompatible Werkstoffe	W	2.0	3.0	ARCHODODULAKI
308.119	VO	Biomaterials	S	2.0	3.0	LICHTENEGGER
+ Biomateriali	en und Biome	chanik (4.0 ECTS) als Teil von:				
317.045	PA	Wahlpflicht-Projekt: Biomaterialien und Biomechanik	W oder S	6.0	6.0	HELLMICH et al.
		Diomechanik				
§ C.2 Me	etallische We	rkstoffe (TU)				
164.162		Metallurgie und Werkstoffverarbeitung	W	3.0	4.5	SCHUBERT W.D. et al.
+ Wahlübung	en Chemische	Technologien (5.5) als Teil von:				
164.008	LU	Wahlübungen anorganische Technologie	W oder S	6.0	6.0	SCHUBERT W.D. / HAUBNER
oder:						
164.096	LU	Wahlübungen Chemische Technologie	W oder S	6.0	6.0	DANNINGER H. / EDTMAIER / GIERL
§ C.3 Na	nochemie (T	U)				
165.088	VO	Chemie der Nanomaterialien	S	2.0	3.0	SCHUBERT U.
164.167	VO	Technologie nanostrukturierter Materialien	S	2.0	3.0	EDTMAIER / MAUSCHITZ
oder						
165.093	VO	Molekulare und selbstorganisierte Materialien	S	2.0	3.0	BARTH
165.042	LU	Wahlübungen, chemisch (angewandte anorganische Chemie)	W oder S	4.0	4.0	SCHUBERT U. / NEOUZE
§ C.4 Pc	olymerchemie					
163.067		Spezielle Synthesemethoden für Polymere	W	2.0	3.0	GRUBER
163.110	VO	Polymercharakterisierung	W	2.0	3.0	KNAUS / ALLMAIER
163.075	LU	Angewandte Makromolekulare Chemie	W oder S	4.0	4.0	LISKA / KNAUS / GRUBER
					1	

Wahlmodulo	runne D. The	eorie und Grundlagen von Materialien und ihre l	Figenschafte	en"		
		Methoden in der Physikalischen Chemie (Uni)				
270.295 (Uni)			S	1.0	1.5	
270.026 (Uni)	SE	Physchem. Methoden im Femtosekunden- und Nonometerbereich	S	1.0	1.0	
270.294 (Uni)	UE	Forschungsbeispiel Femto- und Nanosekunden	S	4.0	4.0	
270.031 (Uni)	VO	Physikalisch-chemische Spektroskopie	W	2.0	3.0	
oder						
270.271 (Uni)	VO	Femtochemie	S	2.0	3.0	
	estkörperchen					
270.121 (Uni)		Festkörperchemie	S	5.0	5.0	IPSER et al.
270.208 (Uni)		Festkörperchemie	S	2.0	3.0	IPSER / TERZIEFF
270.088 (Uni)	VO	Synthesemethoden in der Festkörperchemie	S	1.0	2.0	FLANDORFER
		l aterialchemie (Uni)				
270.165 (Uni)	PR	Forschgsbeisp. aus theor. und komputat. Materialch. und Polymerch.	S	6.0	6.0	ZIFFERER et al.
270.234 (Uni)	UE+VO	Computer in der Materialchemie - UNIX (LINUX),	S	3.0	3.0	HERZIG / PODLUCKY
270.067 (Uni)	VO+UE	Einsatz der EDV in der Physikalischen Chemie	S	3.0	3.0	N.N.
270.182 (Uni)	VO	Grundlagen moderner Polymermaterialien	S	2.0	3.0	N.N.
270.180 (Uni)	SE	Seminar aus theoret. und komputativer Materialchemie und Polymerchemie	S	1.0	1.0	HERZIG et al.
δ D.4 Kα	omputative Pl	hysikalische Chemie (Uni)				
270.093 (Uni)		Eigenschaften fester Materie - Simulation	W	3.0	3.5	HERZIG et al.
270.067 (Uni)		Einsatz der EDV in der Physikalischen Chemie	W	3.0	3.5	ZIFFERER / FRÖHLICH
270.250 (Uni)		PCs zur Messwerterfassung in der Chemie	W	3.0	3.0	N.N.
§ D.5 Th	neoretische M	 aterialchemie (TU)				
165.089		Physikalische und theoretische Festkörperchemie	S	3.5	4.5	BLAHA
165.090		Simulation von Festkörpern	W	2.0	2.5	SCHWARZ
		he Chemie (3) als Teil von:				
165.036	LU	Wahlübungen chemisch (theoretische Chemie)	W oder S	4.0	4.0	BLAHA

Wa			erkstoffmechanik und Werkstoffverarbeitung"	1				
§			Biomaterialien (TU)					
	202.064 \		Computational Biomaterials and Biomechanics	W	2.0	3.0	HELLMICH / PAHR	
	317.043 \		Introduction to Biomechanics	W	2.0	3.0	PAHR / GROSS	
	317.033 F	PA	Tissue Biomechanics	W	4.0	4.0	ZYSSET / PAHR	
§	E.2 Pol	ymertechnol	logie (TU)					
	163.109 \		Polymerwerkstoffe	S	2.0	3.0	GRUBER	
	163.066 \	/O	Kunststoffverbundsysteme und Lacktechnologie	W	1.0	1.5	LISKA	
+ V	Vahlübungei	n Polymertec	hnologie (5.5 ECTS) als Teil von:					
	163.076 L	Angewandte Makromolekulare Chemie		W oder S	6.0	6.0	LISKA / KNAUS / GRUBER	
§	E.3 Sch	E.3 Schadensanalyse (TU)						
	308.105 \	/ O	Werkstoffdiagnostik	S	2.0	3.0	KOCH	Abhaltung nur alle 2
								Jahre!
	308.109 F			W oder S	4.0	4.0	KOZESCHNIK / ARCHODOULAKI / REQUENA	
	308.130 \	/U	Schadensanalyse	W oder S	2.0	3.0	KOZESCHNIK / ZARUB	Ą
§	E.4 Wei	E.4 Werkstoffmechanik (TU)						
	202.051 \	/O	Adanced Macro- & Micromechanics of Materials	S	2.5	4.0	HELLMICH	
	202.052 l	JE	Adanced Macro- & Micromechanics of Materials	S	1.0	1.0	FRITSCH	
	202.054 \	/U	Computational Material Modelling	W	2.5	3.0	EBERHARDSTEINER	
	308.120 L	_U	Bruchmechanik	W	2.0	2.0	STAMPFL / KOCH	
§	E.5 Wei	E.5 Werkstoffverarbeitung (TU)						
	308.117 \		Kunststofftechnik	W	2.0	3.0	ARCHODOULAKI	
	308.122 \	/U	Solid Free Forming	W	2.0	3.0	STAMPFL	
	308.124 F	PA	Werkstoffverarbeitung	W oder S	4.0	4.0	ARCHODOULAKI / STA	MPFL