STATISTICS

A PDF VERSION OF EXCEL EXERCISE SOLUTIONS
THAT DON'T VISUALIZE PROPERLY

Categorical variables - Visualization techniques

(appears in '2.3.Categorical-variables. Visualization-techniques-exercise-solution.xlsx')

Categorical variables. Visualization techniques

Ice cream shop

Background You have a frequency distribution table with all the sales. You also have the relative frequency from the pie chart problem.

Task 1 Order the table by frequency.

Task 2 Create a bar (column) chart representing the ordered data.

Task 3 In a new column, calculate the cumulative frequency of the data.

Task 4 On a second axis in the same chart, represent the cumulative frequency of the data.

Solution:

Ordered	Frequency	Relative frequency	Cumulative frequency
San Francisco	19,923	40%	40%
LA	17,129	35%	75%
New York	12,327	25%	100%
Total	49,379	100%	

Adding a second axis is not so straightforward in Excel.

This may be done in various ways. Here is a link to Microsoft's article on the topic.

For the purposes of statistics, you need to understand the application of the cumulative frequency line.

Drawing it in Excel is not top priority for this course.

Categorical variables - Visualization techniques

(appears in '2.3.Categorical-variables. Visualization-techniques-exercise-solution.xlsx')

Categorical variables. Visualization techniques

Ice cream shop

Background You have a frequency distribution table with all the sales. You also have the relative frequency from the pie chart problem.

Task 1 Order the table by frequency.

Task 2 Create a bar (column) chart representing the ordered data.

Task 3 In a new column, calculate the cumulative frequency of the data.

Task 4 On a second axis in the same chart, represent the cumulative frequency of the data.

Solution:

Ordered	Frequency	Relative frequency	Cumulative frequency
San Francisco	19,923	40%	40%
LA	17,129	35%	75%
New York	12,327	25%	100%
Total	49,379	100%	

Adding a second axis is not so straightforward in Excel.

This may be done in various ways. Here is a link to Microsoft's article on the topic.

For the purposes of statistics, you need to understand the application of the cumulative frequency line.

Drawing it in Excel is not top priority for this course.

The Histogram (Part I)

(appears in '2.5.The-Histogram-exercise-solution.xlsx')

The histogram

892

899 936

Background You are given a dataset.

Task 1 Construct a frequency distribution table.

Note: Go to the next sheet if you wish to skip this part.

Task 2 Create a histogram with 10 intervals, based on your dataset.

Solution:

Dataset	Frequency dis	Frequency distribution table. Exact width				Frequ	Frequency distribution table. Rounded up width			
13										
68	Intervals	10				Interva	ls	10		
165	Interval width	92.3				Interva	l width	93		
193										
216	Interval start li	nterval end Abs	solute frequency Rela	ative frequency		Inte	val start Inte	rval end Absol	ute frequency Relativ	e frequency
228	13	105.3	2	0.10	2		13	106	2	0.10
361	105.3	197.6	2	0.10			106	199	2	0.10
470	197.6	289.9	2	0.10			199	292	2	0.10
500	289.9	382.2	1	0.05			292	385	1	0.05
529	382.2	474.5	1	0.05			385	478	1	0.05
544	474.5	566.8	3	0.15			478	571	3	0.15
602	566.8	659.1	2	0.10			571	664	2	0.10
647	659.1	751.4	3	0.15			664	757	3	0.15
692	751.4	843.7	1	0.05			757	850	1	0.05
696	843.7	936	3	0.15			850	943	3	0.15
699			20	1.00					20	1.00
809										

In Excel, the histogram is a special type of chart. In the latest versions of Excel, you should only select your dataset and insert a type of chart, called Histogram. Alternatively, there is a special histogram tool in the Analysis Toolpak that Excel supports.

Other software will only let you create a histogram, once you have created a frequency distribution table. This is also the skill that you should acquire.

The intervals in the excel histogram are called 'bins'. You can specify the number of bins or the width of the bins.

The Histogram (Part II)

(appears in '2.5.The-Histogram-exercise-solution.xlsx')

Skewness (appears in '2.8.Skewness-exercise-solution.xlsx')

Skewness

Background You are given two datasets

Task 1 Identify the skewness of dataset 1. You may use the formula from the lesson, the skewness formula in excel (=SKEW) or you can plot it on a graph Identify the skewness of dataset 2. You may use the formula from the lesson, the skewness formula in excel (=SKEW) or you can plot it on a graph

Solution:

Practical Example - Descriptive Statistics

(appears in '2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx')

365 DataScience RE California Database

Histograms. Graphing numerical data

- Task 2: Create a frequency distribution graph (that is a histogram with the highest possible number of bins 272). Use data on all properties, no matter if sold or not.
- Task 3: Create a histogram which represents the Price variable. Choose interval width (bins) of length \$100,000. If you don't know how to do that, refer to the Course notes on descriptive statistics provided with the first lecture in this section. Use the data on all properties, no matter if sold or not.

Task 4: Interpret the results.

Solution:

Task 4: The histograms point to similar insights - most of the properties' prices are concentrated in the interval (\$217,564.07 to 317,564.07)

Standard Normal Distribution

(appears in '3.4.Standard-normal-distribution-exercise-solution.xlsx')

Standard normal distribution

 Background
 You are given an approximately normally distributed dataset

 Task 1
 Calculate the mean and standard deviation of the dataset

Task 2 Standardize the dataset

Task 3 Plot the data on a graph to see the change

Solution:

0.00

Mean

You can see that the difference in the graphs is almost unnoticeable However, the mean (center of the graph) and the standard deviation (the spread) of the graph are completely different.