Scilab Textbook Companion for Fiber Optics Communication by H. Kolimbiris¹

Created by
Gaurav Pandey
B.tech
Electronics Engineering
Shri Mata Vaishno Devi University,Katra,J&K
College Teacher
None
Cross-Checked by
Spandana

June 12, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fiber Optics Communication

Author: H. Kolimbiris

Publisher: Pearson Education, New Delhi

Edition: 1

Year: 2001

ISBN: 9788131715888

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Elements of Optics And Quantum Physics	9
2	Fundamental of Semi Conductor Theory	21
3	Optical Sources	28
4	Optical Detectors	34
5	Optical Amplifiers	36
6	Optical Transmittor	38
7	Optical Receivers	51
9	Optical Fibers	53
10	Optical Modulation	71
11	Multiplexing	73
12	Optical Systems	75
13	Networks	106

List of Scilab Codes

Exa 1.1	Arrival time difference between two monochromatic op-
	tical beams
Exa 1.2	Calculate angle of refraction velocity wavelength
Exa 1.3	Angle of refration and Deviation
Exa 1.4	Find optical Path and angle phi
Exa 1.5	Find Phase velocity
Exa 1.6	find wavelength
Exa 1.7	Find wavelength of Light
Exa 1.8	Ratio of input output intensity
Exa 1.9	Compute length of Tube
Exa 1.10	Degree of polarisation
Exa 1.11	Number of refractive Plates
Exa 1.12	Ratio of Optical Ray
Exa 1.13	Angle between polariser and analyzer
Exa 1.14	find time difference and phase difference
Exa 1.15	Find wavelength
Exa 1.16	Compute the constant phi
Exa 1.17	Voltage required to accelerate an electron
Exa 1.18	Compute uncertainity in electron velocity
Exa 2.1	maximum number of electron
Exa 2.2	Find band gap energy
Exa 2.3	Find carrier velocity and current density
Exa 2.4	Find electron density and type of semi conductor and
	extrensic semiconductivity
Exa 2.5	Find barrier voltage
Exa 2.6	Calculate current
Exa 2.7	compute saturation current
Exa 2.8	calculate radiative minority

Exa 3.1	Determine the power coupled into fiber
Exa 3.2	Power Coupled into fiber
Exa 3.3	Bandwidth of Led Source
Exa 3.4	Coupling efficiency of an optical source
Exa 3.5	Coupling efficiency
Exa 3.6	MTBF of LED source
Exa 3.7	Calculate MTBF
Exa 4.1	Response time of PIN photodetector
Exa 4.2	MTBF of photodetector
Exa 4.3	Photon Lifetime
Exa 5.1	Input power
Exa 5.2	Compute pseudo random binary sequence
Exa 6.1	Determine whether heat sink or not
Exa 6.2	determine whether or not heat sink
Exa 6.3	Determine wheather heat sink
Exa 6.4	Find Junction Temperature
Exa 6.5	calculate value of r1 r2 r3 and c1
Exa 6.6	Compute required reference current 41
Exa 6.7	Find bandwidth for optical one and zero 42
Exa 6.8	compute external resistance and alarm current 43
Exa 6.9	Total power dissipation
Exa 6.10	find maximum power dissipation 45
Exa 6.11	Calculate differential and common mode impedance . 46
Exa 6.12	Compute differential mode and common mode impedance 46
Exa 6.13	Compute intermediate frequency
Exa 6.14	Allowed parasitic cable inductance
Exa 6.15	Calculate high frequency component
Exa 6.16	compute low frequency component 48
Exa 6.17	Calculate noise bandwidth 48
Exa 6.18	Calculate effective hight frequency component 49
Exa 6.19	Calculate the effective low frequency component 49
Exa 7.1	PWD of optical receiver
Exa 7.2	Value of Radj
Exa 7.3	Reference voltage and reference resistor
Exa 9.1	Compute angle of acceptance critical angle and NA 53
Exa 9.2	Fiber Attenuation
Exa 9.3	Maximum length of optical fibre
Exa 9 4	Rayleigh attenuation of an optical fibre 54

Exa 9.5	SBS threshold optical power	56
Exa 9.6	SBS threshold optical power	56
Exa 9.7	SBS threshold optical power	57
Exa 9.8	SBS threshold optical power	58
Exa 9.9	SBS threshold optical power	58
Exa 9.10	Raman scattering threshold power	59
Exa 9.11	Raman scattering threshold power	59
Exa 9.12	Raman sscattering threshold power	60
Exa 9.13	Maximum modal number	61
Exa 9.14	Maximum operating bandwidth	61
Exa 9.15	Maximum operating bandwidth	62
Exa 9.16	Maximum operating bandwidth	62
Exa 9.17	RMS pulse chirping	63
Exa 9.18	RMS pulse broadening	64
Exa 9.19	Channel capacity	64
Exa 9.20	Channel capacity	65
Exa 9.21	Total chromatic dispersion	65
Exa 9.22	Compute optical attenuation	66
Exa 9.23	Compute total attenuation	66
Exa 9.24	Compute the insertion loss	67
Exa 9.25	Compute insertion loss	67
Exa 9.26	Compute insertion loss	68
Exa 9.27	Compute total insertion loss	69
Exa 9.28	Compute insertion loss at the joint	69
Exa 10.1	Required Biasing voltage	71
Exa 10.2	Biasing range	71
Exa 11.1	Cross talk in refrence to the number of channel	73
Exa 11.2	Capacitor value of PLL section	73
Exa 11.3	Value of damping coefficient	74
Exa 12.1	Compute power margin	75
Exa 12.2	Compute power margin	75
Exa 12.3	Calculate level of additional power launched	76
Exa 12.4	Compute link power budget	76
Exa 12.5	Calculate PIN diode required operating power and total	
	power budget	77
Exa 12.6	Calculate maximum link distance	78
Exa 12.7	Compute chromatic dispersion	78
Exa 12.8	Compute maximum bit rate	78

Exa 12.9	Compute Maximum link span	79
Exa 12.10	Calculate chromatic dispersion	80
Exa 12.11	Calculate dispersion penalty	80
Exa 12.12	Calculate maximum length	81
Exa 12.13	Calculate the maximum length of optical link	81
Exa 12.14	Calculate maximum dispersion mean link margin sigma	
	link margin	82
Exa 12.15	Compute maximum dispersion and nominal distribution	83
Exa 12.16	Calculate maximum dispersion and maximum distance	84
Exa 12.17	Calculate the CSO distortion	86
Exa 12.18	Calculate the required AM modulation	86
Exa 12.19	Compute the CTO distortion	87
Exa 12.20	Calculate the CSO and CTO	87
Exa 12.21	Calculate the CNR	88
Exa 12.22	Calculate the RIN	89
Exa 12.23	Calculate the required optical power	89
Exa 12.24	Calculate the percentage of optical power reflected back	90
Exa 12.25	Calculate the output voltage of an optical receiver	90
Exa 12.26	Determine the optical receiver responsivity	91
Exa 12.27	Calculate the modulation depth	91
Exa 12.28	Calculate the CNR	92
Exa 12.29	Total fiber span attenuation	92
Exa 12.30	Calculate the SNR	93
Exa 12.31	Calculate the optical power in fiber	94
Exa 12.32	Compute the transmission length	94
Exa 12.33	Compute the maximum bit rate	95
Exa 12.34	Compute the solition characteristic length	95
Exa 12.35	Determine maximum dispersion	96
Exa 12.36	Calculate the solition pulse width	96
Exa 12.37	Calculate the solition peak pulse	97
Exa 12.38	Compute the standard deviation	98
Exa 12.39	Calculate the system BER	98
Exa 12.40	Compute the standard deviation	99
Exa 12.41	Calculate the collision length	99
Exa 12.42	Calculate the half channel length	100
Exa 12.43	Calculate the minimum number of soliton	100
Exa 12.44	Compute the maximum number of soliton	101
Exa 12 45		102

Exa 12.46	Calculate the channel spacing	102
Exa 12.47	Compute the bit period	103
Exa 12.48	Calculate the maximum modulator spacing	103
Exa 12.49	Calculate the length of dispersion	104
Exa 12.50	Calculate the collision length	104
Exa 12.51	Compute the soliton collision length	105
Exa 13.1	Calculate R9 R7 R8 C4	106
Exa 13.2	Calculate Led If R3 C4	107
Exa 13.3	Characteristic impedance and propagation delay	108

Chapter 1

Elements of Optics And Quantum Physics

Scilab code Exa 1.1 Arrival time difference between two monochromatic optical beams

```
1
2
3
4
  // Example 1-1
7 // Given
8 clc;
9 clear all;
10 printf("(i) t1=d/c \ \ n");
11 printf(" (ii) t2 = [(d-5)/c] + [5/v2] \setminus n");
12 printf("
            v2=c/n2 \n");
13 printf("
                  t2 = (d+2.5) / c n");
14 printf (" (iii) delta_t=t2-t1=(d+2.5-d)/c n");
15 c=3*10^8; //Speed of light in m/s
16 delta_t=2.5*10^-2/c;
                                    //converted 2.5 cm
     into meters
17 printf('The time difference %e s", delta_t );
```

Scilab code Exa 1.2 Calculate angle of refraction velocity wavelength

```
1
2
3
4
5
  //given
7 //page no 5
8 clc;
9 clear;
10 //Applying Snell's law
11 a=1*sin(428)/1.333;//a=sin(w2)
12 printf ("Angle of refraction is \%0.1 \,\mathrm{f} \,\mathrm{n}",a)
13 printf("\n Angle of refraction is %0.0f degree \n ",
      asin(a)*57.27)
14 c = 3*10^8;
                          //speed of light in m/s
                          //refractive index of 2nd medium
15 n2=1.333;
16 \text{ v2=c/n2};
                          //velocity in second medium in m
      /s
                          //refractive index of 1st medium
17 n1=1;
                          //in nm wavelength
18 11=620;
19 printf("\n Velocity of optical ray through medium
      second \%0.02 \text{ f}*10^8 \text{ m/s/n}, v2/10^8);
20 	 12 = (n1*11)/n2;
                          //wavelength in 2nd medium in nm
21 printf ("\n Wavelenght of optical ray through medium
                                     //Result
      second \%0.1 \, \text{f nm}, 12);
```

Scilab code Exa 1.3 Angle of refration and Deviation

```
1
2
3
4
5
6 //given
7 //page no 5
8 clc;
9 clear;
                              //refractive index of air
10 n1=1;
11 \quad n2=1.56;
                              //refractive index of medium
12 \text{ w1=60};
                //in deg C
13 //using snell's law
14 a = n1*sind(w1)/n2;
                                      //a=\sin(w1)
                                      //in degree
15 \text{ w2=asind(a)};
16 printf("Angle of refraction is %0.2f degree\n", w2);
17 B = w1 - w2;
                                        //in degree
18 printf("Angle of deviation is %0.1f degree\n ",B)
19 // The answer doesn't match because of priting
      errorsin calculation as sin(608)
```

Scilab code Exa 1.4 Find optical Path and angle phi

```
1 //given
2 //page no 6
3 clc;
4 disp('Solution (i)');
5 w=5/12.5; // tan(w)=5/12.5;
6 printf("\n The value of tan(w2) is %0.1 f \n",w);
7 w2=atan(w)*180/%pi;
8 //w2=atan(w)*180/%pi
9 printf("\n The value of w2 is %0.1 f degree\n",w2);
10 printf("\n The value of sin(w2) is %0.2 f \n",sin(w2*%pi/180));
11 disp('Solution (ii)');
```

```
12 // Applying snell's law
13 n1=1.05;
14 n2=1.5;
15 w1=(n2*sin(w2*%pi/180))/n1; //a=sin(w1)
16 printf("\n The value of sin(w1) is %0.2 f \n",w1);
17 printf("\n The value of w1 is %0.0 f degree \n",asin (w1)*180/%pi);
18 //value of w1
19 //tan(w1)=(p-x)12.5;
20 k=0.62*12.5;
21 d=1.05*[(12.5)^2+(k)^2]^0.5 +1.5*(12.5^2+5^2)^0.5; //d=1.05[(h1)^2+(k)^2]^0.5 +n2(h2^2+x^2)^0.5;
22 printf("\n the optical distance is %0.2 f cm\n",d);
```

Scilab code Exa 1.5 Find Phase velocity

```
1 / Ex1_{-5}
2 //given
3 //page no 11
4 clc;
5 clear;
6 c=3*10^8;
7 disp('Solution (i) is ');
8 ri=1.5; //refractive index
9 u = 830 // in nm
10 l=u/ri;
                  //in nm
11 printf("\n Wavelength is \%0.0 \, \text{f nm } \ \text{n}",1);
12 disp('Solution (ii) is ');
13 l=round(1);
                                    // rounding to nearest
      integer
14 f=c/(1*10^-9)*10^-12;
                                    //in THz
15 printf("\n frequency is \%0.0 \, \text{f THz} \, \text{n}",f);
16 disp('Solution (iii) is ');
17 f=round(f);
                                    // rounding to nearest
      integer
```

Scilab code Exa 1.6 find wavelength

```
1 / Ex1_6
2 //given
3 //page no 12
4 clc;
5 clear;
6 disp('Solution (i) is ');
7 1=720; //wavelength in nm
8 n=1.5;
                  //refractive index
9 lm=1/n;
10 disp('nm', lm, 'Wavelenth is'); //result
11 disp('Solution (ii) is ');
12 c=3*10^8;
                      //in m/s speed of light
13 u=c/n;
14 disp('m/s',u,'Velocity is');
                                      //result
```

Scilab code Exa 1.7 Find wavelength of Light

Scilab code Exa 1.8 Ratio of input output intensity

```
1
2
3
4
6 / Ex1_8
7 //given
8 // page no 12
9 clc;
10 clear;
11 / k = aa + as = 6.3;
12 // Given values from research
13 k=6.3;
                //combined attenuation due to absorption
       and scattering
14 d=25;
               //in cm
15 disp('Solution (ii)');
16 //Io/Ii = \exp(-(ao + ai) * d); d in m
17 j = \exp(-(k)*d/100); //Io/Ii ratio
                                                   //result
18 printf("\n Io is \%0.3 f of Ii \n",j);
```

Scilab code Exa 1.9 Compute length of Tube

```
1 / Ex1_{-9}
```

Scilab code Exa 1.10 Degree of polarisation

Scilab code Exa 1.11 Number of refractive Plates

```
1 //Example no 1-11
2 //page no. 26
3 clc;
4 clear;
5 //m= p*{m+[2*n/(1-n)^2]^2};
6
```

Scilab code Exa 1.12 Ratio of Optical Ray

Scilab code Exa 1.13 Angle between polariser and analyzer

```
1 //Example no 1-13
2 //page no. 27
3 clc;
4 clear;
5 //I1/I0=cos(w)^2
6 //Given I1/I0=0.55
```

```
8 k=sqrt(0.55); //from above formulae
9 printf("\n cos w is %0.2 f ",k);
10 printf("\n The angle bw polarizer and analyser , w
    is %0.0 f degree",acos(k)*180/%pi);//Result
```

Scilab code Exa 1.14 find time difference and phase difference

```
1 / \text{Example no } 1-14
2 //page no. 29
3 clc;
4 clear;
5 disp('Solution (i) is ');
6 ne=1.4; //refractive index
7 no=1.25;
                         //refractive index
8 c=3*10^8;
                                 //in m/s
9 T=2*10^-5; //in m
          //in nm
10 \quad 1 = 740;
                        //time difference
11 t=[ne-no]*T/c;
12 printf("\n Time difference, t is \%0.2 \,\mathrm{f} ps", t*10^12);
      // result
13 disp('Solution (ii) is ');
14 le=1/ne;
15 lo=1/no;
16 fi=2*\%pi*T*(1/le-1/lo)*10^9;
17 printf("\n Phase difference is %0.1 f rad",fi);//
      result
18 // Answer misprinted in book
```

Scilab code Exa 1.15 Find wavelength

```
1
2
3 // page no. 31
```

Scilab code Exa 1.16 Compute the constant phi

```
2 //page no. 31
\frac{3}{2} //Example no 1-16
4 clc;
5 clear;
6 disp('Solution (i) is ');
7 1 = 670 / / in nm
8 h=6.63*10^-34; // plank constant in J/s
9 c=3*10^17//speed of light in nm/sec
10 Ek = 0.75 / In eV
11 phi = (h*c/1)/(1.6*10^-19) -Ek;
12 phi=round(phi*10)/10;
                                         //round to 1 decimal
       point
13 printf("\n Characteristic of material = \%0.1 \, \text{f eV} \setminus \text{n}",
      phi);//result
14 disp('Solution (ii) is ');
15 fc=phi*1.6*10^-19/h*10^-12; // frequency in THz//
      result
16 fc=round(fc);
17 printf("\n Cuttoff frequency is = \%0.0 \, \text{f THz} \, \text{n}",fc);
      //result
```

Scilab code Exa 1.17 Voltage required to accelerate an electron

```
1
2
3 //page no. 31
4 //Example no 1-17
5 clc;
6 clear all;
7 disp('Solution (i) is ');
8 1=0.045; //wavelength in nm
9 h=6.63*10^-34;
                       //planks constant in J/s
                   //speed of light in m/s
10 c=3*10^8;
11 E=h*c/1/10^-9; //energy of photon in eV
12 mprintf("\n E = %e J",E);
13 E1=E/(1.6*10^-19); // energy in joule
14 mprintf("\n E = \%e eV", E1);
15 e=1.6*10^-19; // charge of electron
16 disp('Solution (ii) is ');
17 V=E/e;
18 printf("\n Required voltage is = \%0.2 \text{ f KV}", V/1000);
     // result
19
  // Value of wavelenght in problem is .45 but in the
      solution is .045
21 //the value considered above is .045
```

Scilab code Exa 1.18 Compute uncertainty in electron velocity

```
1 / page no. 36
```

```
2 //Example no 1-18
3 clc;
4 clear;
5
6 disp('Solution (i) is ');
7 x=620// difference in particle momentum In nm
8 h=6.63*10^-34// planks constant In J/s
9 //p=h/(4*%pi*x);
10 //m*v=h/(4*%pi*x);
11 m=9.11*10^-31 //In kg // mass of electron
12 v=h /(4*%pi* x *10^-9*m);// electron velocity
13 printf("\n The uncertanity in electron velocity is %0.0 f m/s \n",v);// result
```

Chapter 2

Fundamental of Semi Conductor Theory

Scilab code Exa 2.1 maximum number of electron

```
1 //Chapter 2
2 //page no 43
3 //given
4 clc;
5 clear;
6 n=1;
7 Ne=2*n^2;
8 printf("\n Maximum number of electron in 1st shell is %.0 f\n ",Ne);//Result
9 n2=2;// shell no
10 Ne2=2*n2^2;// shell no
11 printf("\n Maximum number of electron in 2nd shell is %.0 f ",Ne2);//Result
```

Scilab code Exa 2.2 Find band gap energy

```
1 //Chapter 2
2 //page no 45
3 //given
4 clc;
5 clear;
6 //Given for silicon for temp 0-400K
7 Eg0_Si=1.17; //in eV
8 A=4.73*10^-4; //in eV/K
9 B = 636;
10 for i=1:8
11 T=50*i;
                //degree/Kelvin
12 Eg_Si = Eg_0Si - (A*T^2)/(B+T);
13 printf("\n Band gap energy of silicon at %.0 f K is %
      .3 f eV ",T,Eg_Si);//result
14 end
15 //Given for Germanium for temp 0-400K
16 disp("");
17 Eg0_Ge=0.7437; //in eV
18 A_Ge=4.774*10^-4; //in eV/K
19 B_Ge = 235;
20 for i=1:8
                //degree/Kelvin
21 T=50*i;
22 Eg_Ge = EgO_Ge - (A_Ge * T^2) / (B_Ge + T);
23 printf("\n Band gap energy of germanium at %.0 f K is
      \%.3 \text{ f eV} ",T,Eg_Ge);//result
24 end
25
\frac{26}{\text{Given}} for GaAs for temp 0-400\text{K}
27 disp("");
30 B_Ga = 204;
31 \text{ for } i=1:8
32 T = 50 * i;
               //degree/Kelvin
33 Eg_Ga=EgO_Ga-(A_Ga*T^2)/(B_Ga+T);
34 printf("\n Band gap energy of GaAs at %.0 f K is %.3 f
      eV ",T,Eg_Ga);//result
35 end
```

Scilab code Exa 2.3 Find carrier velocity and current density

```
1 //Chapter 2
 2 //page no 52
 3 //given
4 clc;
 5 clear;
 6 1=10*10^-3;
                        //in m
                         //in m
 7 \quad w = 2 * 10^{-3};
8 h=2*10^-3;
                         //in m
9 V = 12;
                     //in V
                       //in m*m/V*s
10 u_n=0.14;
//in columbs
15 \quad n_i = 2.4 * 10^19;
16 E=V/1;
17 v_n = E * u_n;
18 \quad v_p = E * u_p;
19 J_n=n_i*q_n*v_n;
20 J_p = p_i * q_p * v_p;
21 J = J_n + J_p;
22 printf("\n Electron velocity :vn is \%.0 \,\mathrm{f} \,\mathrm{m/s}",v_n)
      ;//result
23 printf("\n Hole velocity :vp is \%.3 \text{ f km/s}",v_p
      /1000); // result
24 printf("\n Current density : Jn \%0.2 \text{ f A/m}^2", J);
                    //Result
25 \quad A = 88 * 10^{-6};
26 I_T = J * A;
27 printf("\n Total current :I_T is %.0 f mA",I_T
      *1000);
                  //Result
```

Scilab code Exa 2.4 Find electron density and type of semi conductor and extrensic semiconductivity

Scilab code Exa 2.5 Find barrier voltage

Scilab code Exa 2.6 Calculate current

```
1
2
3
4
5
6 //Chapter 2
7 //page no 56
8 //given
9 clc;
10 clear;
11 Is=0.12;
                      //in pAmp
                   //in V
12 V = 0.6;
                   //in Kelvin
13 T = 293;
                       //Boltzmann's Constant in J/K
14 k=1.38*10^-23;
                   // charge of electron in C
15 q=1.6*10^-19;
16 Vt=k*T/q; //thermal voltage
17 printf("\n VT(20 deg Cel) is \%0.5 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}", Vt);//
      result in book is misprint
                         //in Kelvin
18 T1=373;
19 n=1.25;
20 Vt1=k*T1/q; //thermal voltage
21 printf("\n VT(100 deg Cel) is \%0.5 \,\mathrm{f} V\n",Vt1);
```

Scilab code Exa 2.7 compute saturation current

Scilab code Exa 2.8 calculate radiative minority

```
12 Br_Ge=5.25*10^-14;
                                    //Recombination
      coefficient for Ge
                                      //Recombination
13 Br_GeAs=7.21*10^-10;
      coefficient for GeAs
14 Br_InAs = 8.5*10^-11;
                                     //Recombination
      coefficient for InAs
                          //per cubic cm
15 P_N = 2 * 10^20;
16 T_Ge=1/Br_Ge/P_N; // radiative minority carrier
      lifetime
17 printf("\n T_Ge is \%0.3 \, \text{f micro-s } \n", T_Ge/10^-6);//
      result
18 T_Si=1/Br_Si/P_N; // radiative minority carrier
      lifetime
19 printf("\n T_Si is \%0.2 \, \text{f micro-s } \n", T_Si/10^-6); //
      result
20 T_InAs=1/Br_InAs/P_N; // radiative minority carrier
      lifetime
21 printf("\n T_InAs is \%0.0 \,\mathrm{f} ps \n", T_InAs/10^-12);//
      result
22 T_GeAs=1/Br_GeAs/P_N; // radiative minority carrier
      lifetime
23 printf("\n T_GeAs is \%0.0 \,\mathrm{f} ps \n", T_GeAs/10^-12);//
      result
```

Chapter 3

Optical Sources

Scilab code Exa 3.1 Determine the power coupled into fiber

```
1 //Chapter 3
2 //page no 67
3 //given
4 clc;
5 clear all;
6 Pin=1; //microW
7 W = 15;
                    //in degree
8 NA = \sin(W * \% pi / 180);
                          //NA=0.2588190 which is rounded
9 \text{ NAA=0.26};
      off
10 C_c = (NAA)^2;
11 printf("\n Coupling coefficient is \%0.4 \,\mathrm{f} \n",C_c);
12 Pf = C_c * Pin;
13 printf("\n Power coupled into fiber \%0.1 \,\mathrm{f} nW\n",Pf
      *1000);
```

Scilab code Exa 3.2 Power Coupled into fiber

```
1 //Chapter 3
2 //page no 67
3 //given
4 clc;
5 clear all;
                        //in percentage
6 n=0.02;
7 W = 20;
                        //in degree
8 \text{ Vf} = 1.5;
                        //in Volts
9 \text{ If} = 20;
                        //in mAmps
10 Pin=If*Vf;
11 printf("\n Power coupled into fiber, Pin = \%0.0 f mW
       \n", Pin);
12 Po=n*Pin;
13 printf("\n Output Power of the optical source is
       \%0.1 \text{ f } \text{mW} \text{n}", Po);
14 ///from nc=20 degree
15 C_c = (sin(W*\%pi/180))^2;
16 \text{ Pf} = C_c * Po
17 printf("\n Optical power coupled into fibre is Pf = 17
        \%0.0 \text{ f} \quad \text{microW} \setminus \text{n}, Pf *1000);
```

Scilab code Exa 3.3 Bandwidth of Led Source

Scilab code Exa 3.4 Coupling efficiency of an optical source

```
1 //Chapter 3
2 //page no 70
3 //given
4 clc;
5 clear all;
6 \text{ T=1}; //Air
7 \text{ NA} = 0.3;
8 n0=1;
9 / x=y;
10 disp("for step index :A=infinite");
11 //for infinite alpha
12 / nc = T*(NA/n0)^2*(x/y)^2*(A/(A+2))
                                       // A/(A+2)=1 \text{ for } A=
13 nc=T*(NA/n0)^2*(1)^2*1;
      infinite
14 printf("\n Coupling Coefficient, nc = \%0.0 f percent \
      n \ n", nc*100);
15
16 disp("for graded index :A=2");
17 A = 2;
18 // n_c = (T*(NA/n0)^2*[A+[1-(y/x)^2]]/(A+2))
19 n_c = (T*(NA/n0)^2*[A+[1-(1)^2]]/(A+2))
                                                     //x/y=1
20 printf("\n Coupling Coefficient, nc = \%0.1 f percent \
      n", n_c *100);
```

Scilab code Exa 3.5 Coupling efficiency

```
1 //Chapter 3
2 //page no 71
3 //given
4 clc;
```

```
5 clear all;
6 \text{ T=1}; //Air
7 \text{ NA} = 0.3;
8 n0=1;
9 \quad A = 2;
10 //y = 0.75x;
11 disp("for step index :");
12 //for infinite alpha
13 // \text{nc} = T * (NA/n0)^2 * (x/y)^2 * (A/(A+2))
14 nc=T*(NA/n0)^2*(1/0.75)^2*A/(A+2);
                                                      // y/
      x = 0.75
15 printf("\n Coupling Coefficient, nc = \%0.0 f percent \
      n \ n", nc*100);
16
17 disp("for graded index :A=2");
19 // n_c = (T*(NA/n0)^2*[A+[1-(y/x)^2]]/(A+2))
20 n_c = (T*(NA/n0)^2*[A+[1-(0.75)^2]]/(A+2))
                                                          //y/x
      =0.75
21 printf("\n Coupling Coefficient, nc = \%0.1 f percent \
      n", n_c *100);
```

Scilab code Exa 3.6 MTBF of LED source

```
12 Pd=If*Vf;
13 Tj = Ta + W * Pd / 1000;
14 printf("\n Value of Tj is \%0.1 f deg C\n", Tj);
15 TF=8.01*10^12 *%e^-(8111/(Tj+273));
16 printf("\n Value of TF is \%0.0 \, \text{f deg C} \setminus \text{n}", TF);
17 //calculate RF
18 BF=6.5*10^-4;
                                      //from table
                                      //from table
19 QF = 0.5;
                                      //from table
20 EF=1;
21 RF = BF * TF * EF * QF * 1/10^6;
22 disp(RF, "Value of RF")
23 printf("\n Value of MTBF is \%0.0\,\mathrm{f}*10^6 hours \n",1/
      RF/10<sup>6</sup>);//Answer in book is misprint in last
       line
```

Scilab code Exa 3.7 Calculate MTBF

```
1 //Chapter 3
2 //page no 74
3 //given
4 clc;
5 clear all;
6 //calculate Tf
7 	ext{ If = 120};
                      //in mAmps
                     //in Volts
8 Vf=1.8;
9 \text{ Ta} = 80;
                      //in deg C
10 //calculate Tj
11 W = 150;
                     //in C/W for hermetric led
12 Pd = 0.5 * If * Vf;
13 Tj = 75 + W * Pd / 1000;
14 printf("\n Value of Tj is %0.1f degree cel \n",Tj);
15 TF=8.01*10^12 *%e^-(8111/(Tj+273));
16 printf("\n Value of TF is %0.0 f \n", TF);
17 //calculate RF
18 BF=6.5*10^-4;
                                   //from table
```

Chapter 4

Optical Detectors

Scilab code Exa 4.1 Response time of PIN photodetector

Scilab code Exa 4.2 MTBF of photodetector

```
//in deg C
8 \text{ TA} = 25;
9 theta_JA=200;
                               //in C/W for hermetric led
10 TJ=TA+theta_JA*Pd/10^3;
11 TF=8.01*10^12 *%e^-(8111/(TJ+273));
12 printf("\n Value of TJ is \%0.2 f \deg C \in TJ);
13 printf("\n Value of TF is \%0.2 \text{ f deg C} \setminus \text{n}", TF);
14 //calculate RF
15 BF=1.1*10^-3;
                                     //from table
16 QF=0.5;
                                     //from table
17 EF=1;
                                     //from table
18 RF=BF*TF*EF*QF*1/10^6;
19 disp(RF, "Value of RF");
20 printf("\n Value of MTBF is \%0.0\,\mathrm{f*10^{\hat{}}}6 hours \n",1/
      RF/10<sup>6</sup>);
```

Scilab code Exa 4.3 Photon Lifetime

```
1 //Chapter 4
2 //page no 114
3 //given
4 clc;
5 R1 = 0.7;
6 R2 = 0.99;
7 \text{ ad} = 0.1;
8 //compute Ld
9 Ld=1-R1*R2*%e^-(2*ad);
10 printf("\n Decay Loss \%0.4 \, \text{f} \, \text{n}", Ld);
11 trt = 40; //fs
12 tph=trt/Ld;
13 printf("\n Photon lifetime \%0.2 \, \text{f fs} \, \text{n}", tph);
14 BW=1/tph;
15 printf("\n Bandwidth %0.1 f Thz\n", BW*1000); // Answer
      in Thz
```

Chapter 5

Optical Amplifiers

Scilab code Exa 5.1 Input power

```
1 // Chapter 5
2 // page no 128
3 // given
4 clc;
5 Vrms=0.3; // in V
6 CF=0.75; // in V/mW
7 Pi=Vrms/CF;
8 printf("\n input power %0.1 f mW\n", Pi);
```

Scilab code Exa 5.2 Compute pseudo random binary sequence

```
8 x=log(sl+1)/log(2); // equation is made to pick value of x 
9 printf("\n PRBS =2^\%0.0 f -1 \n",x);
```

Chapter 6

Optical Transmittor

Scilab code Exa 6.1 Determine whether heat sink or not

```
1 //Chapter 6
2 //page no 139
3 //Given
4 clear;
5 clc;
//n degree celsius
9 RthJ_a =34;
                      //in k/w(Assumption)
10 Rth=(Tj-Tamp)/Pt;
11 printf("\n Rth = \%0.0 \text{ f K/W}', Rth);
12 if Rth>RthJ_a then
      printf("\n No Heat sink is required");
13
14 else
      printf("\n Yes, Heat sink is required");
15
16 \text{ end};
```

Scilab code Exa 6.2 determine whether or not heat sink

```
1 //Chapter 6
2 //page no 140
3 // Given
4
5 clear;
6 clc;
7 Tj=120; //in degree celsius
8 Tamp=80; //n degree celsius
9 Pt=2.1; // in W
10 RthJ_a = 34;
                         //in k/w(Assumption)
11 Rth=(Tj-Tamp)/Pt;
12 printf ("Rth = \%0.0 \text{ f K/W}", Rth);
13 if Rth>RthJ_a then
       printf("\n No Heat sink is required");
14
15 else
       printf("\n Yes, Heat sink is required");
16
17 \text{ end};
```

Scilab code Exa 6.3 Determine wheather heat sink

```
1 //chapter6
2 //page no 140
3 // \text{example } 6-3
4 //given
5 clear;
6 clc;
7 //data insufficient
                            // Rth assumed minimum
8 \text{ Rth} = 17.70;
9 Rthc_H=0.65;
                           //k/w
10 Rthj_a=33;
                           //k/w
11 Rthj_c=3;
                           //k/w
12 RthH_a=1/(1/Rth-1/Rthj_a)-Rthj_c-Rthc_H;
13 printf("RthH-a \leq \%0.1 \, \text{f K/W}", RthH_a);
14 // disp (RthH<sub>a</sub>," heat sink thermal resistance");
```

Scilab code Exa 6.4 Find Junction Temperature

```
1 //chapter6
2 //page no 148
3 //example 6-4
4 //given
5 clear; clc;
6 Vcc=5; //in volt
7 Icc=24; //in mA
8 Vset=0.65; //in volt
9 Vf=1.5; //in volt
10 IMOD=15; //in mA
11 TA=25; //in degree celsius
12 Pdynamic = (Vcc - Vf - Vset) * Icc;
13 disp ("mW", Pdynamic, "Power dissipation under dynamic
      condition")
14 Pstatic=(Vcc*Icc);
15 disp("mW", Pstatic, "power dissipation under static
      condition")
16 PD=Pdynamic+Pstatic;
17 disp("mW", PD, "total power dissipation")
18 //Tj=TA+PD*wj_a;
19 TA=25; //in degree cel
20 wj_a=84;//degree cel/w
21 PD=188.4;
                     / \text{mW}
22 Tj = TA + PD * 10^{-3} * wj_a;
23 printf("\n Temp. of junction temp \%0.0\,\mathrm{f} degree C", Tj
      )
```

Scilab code Exa 6.5 calculate value of r1 r2 r3 and c1

```
1 //chapter 6
```

```
2 //page no150
3 / \exp 6.5 \text{Ex} 6.5
4 //given
5 clc;
6 clear;
                                 //in mA
7 Ifon=120;
                  //in V
8 \text{ Vcc}=5;
                       //in V
9 Vfon=2;
10 R3=(Vcc-Vfon)/Ifon/10^-3 +3.2*(Vcc-Vfon-1.4)/Ifon
      /10^-3;
11 printf("\n R3= \%0.0 \text{ f ohm}", R3);
12 R0=(R3-32)/3.2;
13 printf("\n R0= \%0.0 \text{ f ohm}", R0);
14 R1=(R0+10)/2;
15 printf("\n R1= \%0.0 \text{ f ohm}", R1);
16 R2 = R1 - 10;
17 printf ("\n R2= \%0.0 \, \text{f ohm}", R2);
18 C1 = 2 * 10^{-9} / R1;
19 printf("\n C1= \%0.0 \, \text{f pF}", C1*10^12);
                                                          //answer
        in book is approximately written
```

Scilab code Exa 6.6 Compute required reference current

Scilab code Exa 6.7 Find bandwidth for optical one and zero

```
1 //chapter 6
2 //page no157
3 / Ex 6_{-7}
4 //given
5 clear;
6 clc;
7 R = 400;
                      //in mA
8 \text{ nEO} = 25;
                      //in mW
9 nlaser=nE0*10^-3*R*10^-3;
10 printf("\n nlaser = \%0.2 \, f ",nlaser);
    Tone = (40*10^-12)*(80*10^3) /nlaser;
11
12 printf("\n Tone = \%0.0 \,\mathrm{f} micros ", Tone * 10^6);
   BWone=1/(2*\%pi*Tone);
14 printf("\n BWone = \%0.0 \, \text{f} Hz ", BWone);
15 Tzero=(40*10^-12)*80*10^3/nlaser;
16 BWzero=1/2/%pi/Tzero;
17 printf("\n BWzero = \%0.0 \, \text{f Hz}", BWzero);
18 //answer misprinted
```

Scilab code Exa 6.8 compute external resistance and alarm current

```
1 //chapter 6
2 //page no159
3 // exa 6_8
4 //given
5 clear; clc;
                //in mA
6 iol =5;
7 ioh=80;
                   //bias current in mA
8 ralarmH=(1.5*1500)/ioh/10^-3;
9 printf("\n Alarm resistor RalarmH is %0.0 f kOhm",
     ralarmH/1000);
10 ralarmL=(1.5*300)/iol/10^-3;
11 printf("\n Alarm resistor RalarmL is %0.0 f kOhm",
     ralarmL/1000);
12 ialarmh=80*10^-3;
13 ialarmH=ioh*10^-3/1500;
14 printf("\n Alarm current IalarmH is %0.0f microA",
     ialarmH*10^6); //unit of anwer misprinted in
     book
15 ialarml=5*10^-3;
16 ialarmL=iol*10^-3/300;
17 printf("\n Alarm current
                            IalarmL is %0.0 f microA",
     ialarmL*10^6);
```

Scilab code Exa 6.9 Total power dissipation

```
1 //chapter 6
2 //page no160
3 //exa 6_9
4 //given
5 clear; clc;
```

```
//in mA assumption
6 Ibias=15;
                     //in mA
7 Ild=35;
8 Rld=50;
                     //in ohm
                      //in mA
9 Ildi=100;
                      //in mA
10 Ilde=50;
11 Imod=(Ildi+Ilde)/Ildi*35;
                                 / \text{/mA}
12 printf("Total modulation current is \nImod=\%.2 f mA\n
      ", Imod);
13 Ildq=1.2/100*10<sup>3</sup>;
                                     //in mA
14 printf ("The current complementary output is \nIldq=%
      .1 f mA\n", Ildq);
15 Vld=-1.2-Rld*(Ibias+Ild)*10^-3;
                                              //optical high
16 printf ("The laser voltage for optical high is \nVld=
      \%.2 \text{ f V}n, Vld);
17 Vld=-1.2-Rld*(Ibias)*10^-3;
                                              //optical dark
18 printf("The laser voltage for optical dark is \nVld=
      \%.2 \text{ f V} \text{ n}", Vld);
19 Vldq=-Ild*10^-3*Rld;
20 printf ("The laser voltage at complimentary o/p is \
      nVldq=\%.2 f V n, Vldq;
                          //in Ohm
21 \text{ Rchock=5};
22 Vchock=-Rchock*Ibias*10^-3;
23 printf("\nVchock=\%.3 f V\n", Vchock);
24 \text{ Vbias} = 0.5*(-3.7+\text{Vld})+\text{Vchock};
25 printf("\nVbias=\%.1 f V\n", Vbias);
26
27 //(i) Pdvee1
28 \text{ Pdvcc} = 5 * 2.5;
                          //in mW
29 printf("\nPdvcc=\%.1 f mW\n", Pdvcc);
30 \text{ Pdvee1} = 4.5 * 80;
                            //in mW
31 printf("\nPdvee1=\%.0 f mWn", Pdvee1);
32 //(ii) Pdvee2
33 \text{ Pdvee2=6*160};
                          //in mW
34 printf("\nPdvee2=\%.0 f mW\n", Pdvee2);
35 //(iii) PdLD
36 PdLD=0.5*(3.75*50); //in mW
37 printf("\nPdLD=\%.2 f mW\n", PdLD);
38 //(iv) PdLQ
```

Scilab code Exa 6.10 find maximum power dissipation

```
1
2 //chapter 6
3 //page no161
4 // exa 6 - 10
5 //given
6 clear;
7 clc;
8 \text{ vcc} = -5;
                         //in v
                         //in mA
9 imod=35;
                         //in mA
10 ibias=18;
                         //in v
11 vbias=-2;
12 vout = 2;
                         //in v
13 \text{ tj} = 30;
                       //degree cel
14 icc=140;
                         //in mA
15 Pt=(-vcc*icc*10^-3)+(-vcc-vout)*imod*10^-3+(-vcc+vout)
      vbias)*ibias*10^-3;
16 printf("Pt= \%0.0 f mW", Pt*1000);
17 Tj=30;//in degree
18 Tj_a=Tj*Pt;
19 Tcase=125-Tj_a;//in degree
20 printf("\n Tcase(max)= \%0.0 f degree Cel", Tcase);
```

Scilab code Exa 6.11 Calculate differential and common mode impedance

```
1 / chapter 6
2 //page no-174
3 / Ex6_11
4 //given
5 clear; clc;
                         //in ohm
6 z11=49.95;
                        //in ohm
7 z12=0.15;
                        //in ohm
8 z21=0.15;
                        //in ohm
9 z22=49.95;
10 zdiff=2*(z11-z12);
11 printf("\n Zdiff= %0.1f ohm",zdiff);
                                                 //answer
      misprinted
12 zcm=z11+z12;
13 printf("\n Zcm= %0.1 f ohm",zcm);
```

Scilab code Exa 6.12 Compute differential mode and common mode impedance

```
1 //chapter 6
2 //page no174
3 //Ex6_11
4 //given
5 clear; clc;
6 z11=65.4; //in ohm
7 z12=8.2; //in ohm
8 z21=8.2; //in ohm
9 z22=65.4; //in ohm
10 zdiff=2*(z11-z12);
11 printf("\n Zdiff= %0.1 f ohm", zdiff);
12 zcm=z11+z12;
13 printf("\n Zcm= %0.1 f ohm", zcm);
```

Scilab code Exa 6.13 Compute intermediate frequency

Scilab code Exa 6.14 Allowed parasitic cable inductance

Scilab code Exa 6.15 Calculate high frequency component

Scilab code Exa 6.16 compute low frequency component

```
1 // chapter 6
2 //page no182
3 / Ex6_16
4 //given
5 clear;
6 clc;
                           //in mV
7 \text{ dV} = 50;
8 \text{ di} = 2.5;
                         //in Amp
9 Cbypas=220;
                            //in microF
10 fL=di/(dV*10^-3*2*\%pi*Cbypas*10^-6);
11 printf("fLnoise = \%0.0 \, \text{f kHz}", fL/1000);
                                                             //
      Result
```

Scilab code Exa 6.17 Calculate noise bandwidth

```
1 //chapter 6
2 //page no182
3 //Ex6_17
4 //given
```

```
5 clear;
6 clc;
                           //in mV
7 \text{ dV} = 50;
8 \text{ di} = 4;
                     //in Amp
9 Cbypas = 200;
                            //in microF
                            //in nH
10 Lbypas = 0.2;
11 fL=di/(dV*10^-3*2*\%pi*Cbypas*10^-6);
12 printf("\n fLnoise = \%0.0 \, \text{f kHz} \cdot \text{n}",fL/1000);
                 //Result misprinted
13 fH=dV*10^-3/di/2/%pi/Lbypas/10^-9;
14 printf("\n fHnoise = \%0.0 f MHz\n ",fH/10^6);
15 Bw=fH-fL;
16 printf("\n Bwnoise = \%0.2 \text{ f MHZ}", Bw/10^6);
                                                                //
       Result miscalculated
```

Scilab code Exa 6.18 Calculate effective hight frequency component

```
1 //chapter 6
2 //page no184
3 / Ex6_18
4 //given
5 clear;
6 clc;
                          //in mV
7 \text{ dV} = 40;
                     //in Amp
8 \text{ di} = 3;
                        //in nH
9 LT = 0.05;
10 fH=dV*10^-3/di/2/\%pi/LT/10^-9;
11 printf("\n fCdecoupling(high) = \%0.1 f MHz\n ",fH
      /10^6);
                         //Result
```

Scilab code Exa 6.19 Calculate the effective low frequency component

```
1 //chapter 6
```

```
2 //page no184
3 / Ex6_19
4 //given
5 clear;
6 clc;
                            //in mV
7 \text{ dV} = 45;
                          //in Amp
8 \text{ di} = 2.5;
                         //in microF
9 \text{ CT} = 2.2;
                          //in nH
10 LT=0.05;
11 fCL=di/(dV*10^-3*2*\%pi*CT*10^-6);
12 printf("\n fLnoise = \%0.0 \text{ f MHz} \cdot \text{n}",fCL/10^6);
                  //Result
                             //in MHz taken from last
13 fCH=42.3;
       question i.e. 6.18
14 printf("\n fHnoise (from last question i.e. 6.18)=
      \%0.1\,\mathrm{f} MHz\backslash\mathrm{n} ",fCH);
15 printf("\n %0.0fMHz <= B.W.noise <= %0.2fMHZ",fCL
       /10<sup>6</sup>,fCH);
                                //Result
```

Chapter 7

Optical Receivers

Scilab code Exa 7.1 PWD of optical receiver

Scilab code Exa 7.2 Value of Radj

```
1 //Chapter 7
2 //page no 214
3 //given
4 clc;
5 clear all;
6 //Vc=Vdin-Vdinq
```

Scilab code Exa 7.3 Reference voltage and reference resistor

```
1 //Chapter 7
2 //page no 223
3 //given
4 clc;
5 clear all;
7 R1 = 50;
                  //in Ohm
                   //in Ohm
8 \text{ Ro} = 100;
9 Vos = 450;
                             //in mV
10 Vref = (R1+Ro)/R1*Vos/2;
11 printf("\n Vref= \%0.0 \, \text{f mV}", Vref);
12 Vee=3.3;
                            //in V
                        //in Ohm
13 R1=500;
14 R2 = 16000;
                              //in Ohm
15 // \text{Rref} = (\text{Vee}/\text{Vref}/10^3 - 1) * \text{R1}/[1 - {\text{R1/R2}}*(\text{Vee}/\text{Vref})]
       /10^3-1)
16 Rref={(Vee/Vref/10^-3-1)*R1}/[1-R1/R2*(Vee/Vref
       /10^-3-1)]
17 printf("\n Rref= \%0.0 \, \text{f kohm}", Rref);
18 printf("\n Approx. Rref= \%0.1 \, f \, kohm", Rref*10^-3);
```

Chapter 9

Optical Fibers

Scilab code Exa 9.1 Compute angle of acceptance critical angle and NA

```
1 //Chapter 9
2 //page no 296
3 //given
4 clc;
5 clear all;
                          //refractive index
6 n2=1.35;
                        //refractive index
7 n1=1.4;
                                   //in radians
8 \text{ Wo=asind(n2/n1)};
9 printf("\n Critical Angle, Wo = \%0.2 \, \text{f degree} \, \text{n}", Wo);
10 NA=sqrt(n1^2-n2^2);
11 printf("\n Numerical Aperture, NA = \%0.2 f \ n", NA);
12 Wa=asind(NA);
                                    //in radians
13 printf("\n Angle of acceptance, Wa = \%0.2 f degree \n",
      Wa);
```

Scilab code Exa 9.2 Fiber Attenuation

```
1 //Chapter 9
```

Scilab code Exa 9.3 Maximum length of optical fibre

```
1 //Chapter 9
2 //page no 300
3 //given
4 clc;
5 clear all;
                      //in mW
6 Po=10;
                          //in mW
7 \text{ Pi} = 150;
8 Alpha=0.8;
                          //in dB/km
9 TA = -10 * log 10 (Po/Pi);
10 printf("\n Total fibre Attenuation, L = \%0.2 f dB \n",
      TA);
11 l=TA/Alpha;
12 printf("\n maximum length is, l = \%0.2 f \text{ km} n",1);
13 //Round off Variations appear
```

Scilab code Exa 9.4 Rayleigh attenuation of an optical fibre

```
1 //Chapter 9
```

```
2 //page no 302
3 //given
4 clc;
5 clear all;
6 B=92*10^-12;
                                //in m^2/N
7 \text{ Tf} = 1550;
                      //in K
8 n=1.46;
                          //refractive index
9 p=0.29;
10 K=1.38*10^-23;
                                //in J/K
11 1=1;
                      //in km
12 L1 = 630;
                      //in nm
13 L2=1330;
                       //in nm
14 L3=1550;
                       //in nm
15 disp("Rayleight scattering coefficient");
16 \text{ Y1=8*\%pi^3*n^8*p^2*B*K*Tf/3/(L1*10^-9)^4};
17 Y2=8*\%pi^3*n^8*p^2*B*K*Tf/3/(L2*10^-9)^4;
18 Y3=8*\%pi^3*n^8*p^2*B*K*Tf/3/(L3*10^-9)^4;
19 mprintf(" for L1= 630nm, is %e", Y1);
20 mprintf("\n for L2= 1330nm, is %e", Y2);
21 mprintf("\n for L3= 1550nm, is %e", Y3);
22 // Misprinted answer
23
24 disp("Rayleight scattering attenuation factor");
25 \text{ Fr1} = \% \text{ e}^- (Y1*1*10^3);
26 \text{ Fr2=\%e^-(Y2*1*10^3)};
27 \text{ Fr3}=\%e^-(Y3*1*10^3);
28 printf(" \n for Y1= 0.00179 is \%0.2 f", Fr1);
29 printf(" \n for Y2= 0.00009 is \%0.2 \, \text{f}", Fr2);
30 printf(" \n for Y3= 0.0000182 is \%0.2 \text{ f} \n", Fr3);
31 //
32
33 disp("Rayleight scattering attenuation");
34 \text{ Ar1}=10*\frac{\log 10}{(Fr1^-1)};
35 \text{ Ar2}=10*\log 10 (\text{Fr2}^-1);
36 \text{ Ar3}=10*\frac{\log 10}{(\text{Fr3}^-1)};
37 printf(" \n for Ar1= 0.17 is \%0.2 \text{ f dB/km}", Ar1);
38 printf(" \n for Ar2= 0.91 is \%0.2 f dB/km", Ar2);
39 printf(" \n for Ar3= 0.98 is \%0.3 f dB/km", Ar3);
```

```
40 //For L3 answers in book are misprinted
41 //Rounding off errors in answer
```

Scilab code Exa 9.5 SBS threshold optical power

```
1
2
3
4
5
6 //Chapter 9
7 //page no 304
8 //given
9 clc;
10 clear all;
11 L=850;
                    //in nm
12 L1=0.850;
                        //converted L in micrometer for
      using in given formula
13 A = 0.5;
                   //in dB/km
               //in micrometer
14 d=5;
15 Bw=1;
                    //in Gz
16 Po=4.4*10^-3*A*Bw*L1^2*d^2;
17 printf(" \ln Po(Th) = \%0.3 f W, Po);
18 printf(" \n Therefore, Po(Th) = \%0.0 \text{ f mW}", Po*1000);
```

Scilab code Exa 9.6 SBS threshold optical power

```
1
2
3
4
5
6 //Chapter 9
```

```
7 //page no 304
8 //given
9 clc;
10 clear all;
11 L=1330;
                      //in nm
12 L1=1.330;
                         //converted L in micrometer for
      using in given formula
                     //in dB/km
13 A = 0.5;
                //in micrometer
14 d=5;
15 Bw=1;
                    //in Gz
16 Po=4.4*10^-3*A*Bw*L1^2*d^2;
17 printf(" \setminus Po(Th) = \%0.3 f W", Po);
18 printf(" \n Therefore, Po(Th) = \%0.0 \text{ f mW}, Po*1000);
```

Scilab code Exa 9.7 SBS threshold optical power

```
1
2
3
4
6 //Chapter 9
7 / \text{page no } 304
8 //given
9 clc;
10 clear all;
11 L=1550;
                       //in nm
12 L1=1.550;
                           //converted L in micrometer for
      using in given formula
                      //in dB/km
13 A = 0.5;
14 d=5;
                 //in micrometer
15 Bw=1;
                      //in Gz
16 Po=4.4*10^-3*A*Bw*L1^2*d^2;
17 printf(" \ \ \text{Po(Th)} = \ \%0.3 \, \text{f W', Po)};
18 printf(" \n Therefore, Po(Th) = \%0.0 \text{ f mW}", Po*1000);
```

Scilab code Exa 9.8 SBS threshold optical power

```
1
2
3
4
5
  //Chapter 9
  //page no 304
8 //given
9 clc;
10 clear all;
                    //in nm
11 L=850;
12 L1=0.850;
                        //converted L in micrometer for
      using in given formula
                    //in dB/km
13 A = 0.5;
               //in micrometer
14 d=8;
15 Bw=1;
                    //in Gz
16 Po=4.4*10^-3*A*Bw*L1^2*d^2;
17 printf(" \ln Po(Th) = \%0.3 f W, Po);
18 printf(" \n Therefore, Po(Th) = \%0.0 \text{ f mW}, Po*1000);
      //answer is slightly different due to rounding
      off
```

Scilab code Exa 9.9 SBS threshold optical power

```
6 //Chapter 9
7 //page no 304
8 //given
9 clc;
10 clear all;
11 L=850;
                    //in nm
12 L1=0.850;
                        //converted L in micrometer for
      using in given formula
13 A = 0.5;
                    //in dB/km
                //in micrometer
14 d=10;
15 Bw=1;
                    //in Gz
16 Po=4.4*10^-3*A*Bw*L1^2*d^2;
17 printf(" \ln Po(Th) = \%0.3 f W, Po);
18 printf(" \n Therefore, Po(Th) = \%0.0 \text{ f mW}, Po*1000);
```

Scilab code Exa 9.10 Raman scattering threshold power

```
1 //Chapter 9
2 //page no 305
3 //given
4 clc;
5 clear all;
                     //in nm
6 L = 850;
7 L1=L/1000;
                          //converted L in micrometer for
       using in given formula
8 \quad A = 0.4;
                    //in dB/km
               //in micrometer
9 d=5;
10 Po=5.9*10^-2*A*L1*d^2;
11 printf(" \ln Po(Th) = \%0.0 \text{ f mW}", Po*1000);
                                                         //
      rounding off error
```

Scilab code Exa 9.11 Raman scattering threshold power

```
1 //Chapter 9
2 //page no 305
3 //given
4 clc;
5 clear all;
                     //in nm
6 L=1330;
                         //converted L in micrometer for
7 L1=L/1000;
       using in given formula
                    //in dB/km
8 \quad A = 0.4;
               //in micrometer
9 d=5;
10 Po=5.9*10^-2*A*L1*d^2;
11 printf(" n Po(Th) = \%0.0 f mW", Po*1000);
                                                      //
      unit in book is wrong
```

Scilab code Exa 9.12 Raman sscattering threshold power

```
1
2
3
4
6 //Chapter 9
7 //page no 305
8 //given
9 clc;
10 clear all;
11 L=1550;
                     //in nm
                         //converted L in micrometer for
12 L1=L/1000;
       using in given formula
                   //in dB/km
13 A = 0.4;
               //in micrometer
14 d=5;
15 Po=5.9*10^-2*A*L1*d^2;
16 printf(" n Po(Th) = \%0.0 f mW", Po*1000);
                                                      //
      unit in book is wrong
```

Scilab code Exa 9.13 Maximum modal number

```
1 //Chapter 9
2 //page no 310
3 //given
4 clc;
5 clear all;
6 R=25; //in nm
7 R1=25*10^-6;
8 L=1000:
                              //in m
8 L=1000;
                              //in nm
                          //in m
9 L1=10^-6;
10 NA=0.2;
11 V=2*\%pi/L1*R1*NA;
12 printf(" \n Normalised frequency(V) = \%0.1 \, \text{f} ",V);
                          //for parabolic
13 y=2;
14 Mmax=y/(y+2)*(V^2)/2;
15 printf(" \n Maximum number of modes is equal to =
      \%0.0 \, \text{f} ", Mmax); //answer in book is wrong
```

Scilab code Exa 9.14 Maximum operating bandwidth

Scilab code Exa 9.15 Maximum operating bandwidth

```
1 //Chapter 9
2 //page no 314
3 //given
4 clc;
5 clear all;
                    //in microsec
6 \text{ Tp=2};
7 fB=0.529/Tp/10^-6; //channel bit rate
                         //channel bandwidth = channel
8 	ext{ fBw=fB};
      bitrate when zero ISI and RZ input data is
      modulated
9 printf(" \n Maximum operating bandwidth = \%0.2 f MHz
      ",fBw*10^-6);
                    //in km
10 L=50;
11 D=Tp*10^-6/L; // Dispersion
12 printf(" \n Dispersion = \%0.0 \,\mathrm{f} \,\mathrm{ns/km}", D*10^9);
      //unit in book is wrong
13 fBwL = fBw * 10^- - 6 * L;
                                //bandwidth length product
14 printf("\n Bandwidth length product(fBw*L) = \%0.0 f
       MHz/km", fBwL);
```

Scilab code Exa 9.16 Maximum operating bandwidth

```
1 //Chapter 9
2 //page no 314
3 //given
4 clc;
5 clear all;
6 Tp=5;
                    //in microsec
7 fB=0.529/Tp/10<sup>-6</sup>; //channel bit rate
                         //channel bandwidth = channel
8 	ext{ fBw=fB};
      bitrate when zero ISI and RZ input data is
      modulated
9 printf(" \n Maximum operating bandwidth = %0.3 f MHz
      ",fB*10^-6);
10 L=50;
                     //in km
11 D=Tp*10^-6/L; // Dispersion
12 printf(" \n Dispersion = \%0.1 \,\mathrm{f} micro sec/km", D
      *10^6);
13 fBwL = fBw * 10^- - 6 * L;
                               //bandwidth length product
14 printf(" \setminus n \ Bandwidth \ length \ product(fBw*L) = \%0.1 f
       MHz/km", fBwL);
```

Scilab code Exa 9.17 RMS pulse chirping

```
1 //Chapter 9
2 //page no 315
3 //given
4 clc;
5 clear all;
                 //in nm
6 Slw=25;
                 //in nm
7 L=850;
                               given
                  //in km/s
8 c=3*10^5;
9 \text{ ofmd} = 0.02;
                      //optical fiber material
     dispersion
10 Mdp=1/L/c*ofmd; //answer mismatch due to
     differnt value chosen for calculation
11 printf (" \n Material Dispersion parameter Mdp = \%0
```

Scilab code Exa 9.18 RMS pulse broadening

```
1 //Chapter 9
2 //page no 315
3 //given
4 clc;
5 clear all;
                  //in nm
6 Slw=2;
                  //in nm
7 L=850;
                                    given
8 c=3*10^5;
                    //in km/s
9 ofmd=0.02;
                        //optical fiber material
      dispersion
10 Mdp=1/L/c*ofmd; //answer mismatch due to differnt
      value chosen for calculation
11 printf(" \n Material Dispersion parameter Mdp = %0
      .0 f ps/nm.km, Mdp*10^12);
                    //in km
12 1=1;
13 dmd=Slw*l*Mdp;
14 printf(" \n pulse chirping dmd = \%0.3 \,\mathrm{f} \,\mathrm{ns/km}", dmd
      *10^9);
```

Scilab code Exa 9.19 Channel capacity

```
1 //Chapter 9
2 //page no 325
3 //given
4 clc;
```

Scilab code Exa 9.20 Channel capacity

Scilab code Exa 9.21 Total chromatic dispersion

```
10 printf("\n or ,dTL = \%0.1 f ns/nm.km", dTL/10^3);
```

Scilab code Exa 9.22 Compute optical attenuation

Scilab code Exa 9.23 Compute total attenuation

```
1 //Chapter 9
2 //page no 335
3 / given
4 clc;
5 clear all;
                     //refractive index
6 no=1;
                       //refractive index
7 n1=1.55;
8 Po=[(n1-no)/(n1+no)]^2; //fresnal reflection
9 printf("\n Fresnel reflective coefficient, Po(refl)=
     \%0.5 \text{ f} \text{ n}", Po);
10 Lrefl=-10*log10(1-Po); //attenuation loss
11 printf("\n Attenuation based on Fresnel reflective
      coefficient, L(refl) = \%0.1 f dB \ n", Lrefl);
12 Ltot=5*Lrefl;
```

```
13 printf("\n Total link attenuation on Fresnel reflections, Ltotal = \%0.1 \, f \, dB", Ltot);
```

Scilab code Exa 9.24 Compute the insertion loss

```
1 //Chapter 9
2 //page no 336
3 //given
4 clc;
5 clear all;
6 n1=1;
7 n2=1.5;
                    //in micrometer
8 a = 25;
                 //in micrometer
9 y = 3;
10 Csim=16*(n1/n2)^2/\%pi/[1+(n1/n2)]^4*[2*acos(y/2/a)-(
      y/a)*[1-(y/2/a)^2]^0.5];
11 //lateral coupling coefficient
12 a=2*acos(y/2/a)-(y/a)*sqrt(1-(y/2/a)^2);
13 b=16*(n1/n2)^2/\%pi/[1+(n1/n2)]^4;
14 printf("\n Lateral coupling coefficient, Csim= \%0.2 f
      \n", Csim);
15 Lsim = -10 * log 10 (1 - Csim);
16 printf("\n Insertion Loss, Lsim= \%0.1 \, f \, dB \n", Lsim);
17 //Answer wrong in book
```

Scilab code Exa 9.25 Compute insertion loss

```
1 // Chapter 9
2 // page no 337
3 // given
4 clc;
5 clear all;
6 Alpha=2;
```

Scilab code Exa 9.26 Compute insertion loss

```
1 //Chapter 9
2 //page no 339
3 //given
4 clc;
5 clear all;
                       //refractive index
6 n1=1.5;
7 n2=1.5;
                       //refractive index
8 W = 2.5;
                //in degree
9 \text{ NA1=0.3};
10 NA2=0.4;
11 Csim1=16*(n1/n2)^2/[1+(n1/n2)^4]*[1-n2*W/(180*NA1)];
         //angular coupling coefficient
12 //Answer wrong in book
13 printf("\n Csim= \%0.3 f \n", Csim1);
14 Lsim1=-10*\log 10 (Csim1);
15 printf("\n Insertion Loss, Lsim= \%0.3 f dB\n", Lsim1);
16 Csim2=16*(n1/n2)^2/[1+(n1/n2)^4]*[1-n2*W/(180*NA2)];
       //angular coupling coefficient
17 //Answer wrong in book
18 printf("\n Csim= \%0.3 f\n", Csim2);
19 Lsim2=-10*log10(Csim2);
20 printf("\n Insertion Loss, Lsim= \%0.2 \text{ f dB} \n", Lsim2);
```

Scilab code Exa 9.27 Compute total insertion loss

```
1 //Chapter 9
2 //page no 340
3 / given
4 clc;
5 clear all;
                     //in micrometer
6 a=4;
7 V = 2.4;
8 \text{ aw=1};
                     //in degree
9 \text{ NA1=0.2};
10 n1=1.45;
                          //refractive index
                     //in micrometer
11 y = 1;
omega=a*[0.65+1.62*V^-1.5+2.88*V^-6]/sqrt(2);
13 printf("\n Normalised spot view (w)= \%0.2 \,\mathrm{f}
      micrometer", omega);
14 Lsml=2.17*(y/omega)^2;
15 printf("\n Insertion loss due to lateral, Lsm=
                                                          \%0.2 \text{ f}
       dB", Lsml); //answer is wrong in book
16 Lsmg=2.17*(aw*\%pi/180*omega*n1*V/a/NA1)^2;
17 printf("\n Insertion loss due to angular, Lsm=
                                                         \%0.2 \text{ f}
       \mathrm{d}\mathrm{B}", Lsmg);
18
19 printf("\n Total Insertion loss, Lsmtotal= \%0.2 f dB"
      ,Lsml+Lsmg);
```

Scilab code Exa 9.28 Compute insertion loss at the joint

```
8 V = 2.1;
                   //in degree
9 \text{ aw=1};
10 NA=0.2;
11 n1=1.45;
12 y=1;
                   //in micrometer
13 w1=a1*[0.65+1.62*V^-0.5+2.88*V^-6]/sqrt(2);
                                                      //
      insertion loss
14 printf("\n Wol= %0.1 f ", w1);
15 w2=a2*[0.65+1.62*V^-0.5+2.88*V^-6]/sqrt(2);
      insertion loss
16 printf("\n Wo2= %0.1 f ", w2);
17 Lintr=-10*log10(4*[(w1/w2+w2/w1)^-2]);
      toatl insertion loss at joint
18 printf("\n Lintr= %0.2 f dB", Lintr);
                                                  //Answer
       wrong in book
```

Chapter 10

Optical Modulation

Scilab code Exa 10.1 Required Biasing voltage

```
1 // Chapter 10
2 //page no 354
3 //given
4 clc;
5 clear all;
                   //Assumed 1 because we can not use a
6 Vpi=1;
      variable on RHS
7 //Vpi is Violtage swing
                    //chirping
8 \quad A = 0.25;
9 //V1 = (AV1p+Vp)/2
10 V1=(A*Vpi+Vpi)/2;
11 printf ("\n V1= %0.3 f Vpi", V1)
12 V2 = V1 - Vpi;
13 printf("\n V2= %0.3 f Vpi", V2)
```

Scilab code Exa 10.2 Biasing range

```
1 // Chapter 10
```

```
2 //page no 354
3 //given
4 clc;
5 clear all;
6 Vpi=1;
                      //Assumed 1 because we can not use a
       variable on RHS
7 //Vpi is Violtage swing
8 disp("for alpha=0.3");
9 \quad A = 0.3;
                      //chirping
10 //V1 = (AV1p+Vp)/2
11 V1 = (A * Vpi + Vpi)/2;
12 printf ("\n V1= %0.2 f Vpi", V1)
13 \quad V2 = V1 - Vpie;
14 printf("\n V2= \%0.2 \text{ f Vpi} \setminus \text{n}", V2)
15 disp("for alpha=0.8");
16 \quad A = 0.8;
                      //chirping
17 /V1 = (AV1p+Vp)/2
18 V1x = (A*Vpi+Vpi)/2;
19 printf("\n V1= %0.1 f Vpi", V1x)
20 V2x = V1x - Vpi;
21 printf("\n V2= \%0.1 \text{ f Vpi}", V2x)
22 printf("\n Biasing range is \%0.2 \,\mathrm{f} Vpi <= V1 <= \%0.2 \,\mathrm{f}
        Vpi", V1, V1x)
23 printf("\n Biasing range is \%0.1 \, \text{f} Vpi <= V2 <= \%0.2 \, \text{f}
        Vpi", V2x, V2)
```

Chapter 11

Multiplexing

Scilab code Exa 11.1 Cross talk in refrence to the number of channel

```
1 //Chapter 11
2 //page no 386
3 //given
4 clc;
5 clear all;
6 q=4.9*10^-18;
                  //in m/W.GHz raman gain
      slope
7 f = 100;
                             //in GHz
                             //cross sectional area in
8 A = 50 * 10^{-6};
      micro meter square
                      //in mW
9 P0=3.5;
10 Le=10*10^3;
11 G=q*f*10^6/2/A;
12 N = 20;
13 mprintf("\n G = \%e",G);
14 CT = N * (N-1) * (P0 * 10^- 3 * G * Le) / 2;
15 printf("\n CT(L) = %0.2 f ",CT);
```

Scilab code Exa 11.2 Capacitor value of PLL section

```
1 // Chapter 11
2 //page no 410
3 //given
4 clc;
5 clear all;
6 \text{ KO} = 2 * \% \text{pi} * 625;
                                 //in MHz/V
                            //in mA
7 Ip=0.6;
8 N = 64;
9 \quad w = 2.44;
                             //in Mhz
10 Z=5;
11 Vout = 5;
                       //in V
12 C = (4*K0*10^6*Ip*10^-3*Z)/(2*\%pi*N*w*w*10^12);
13 printf("\n The value of capacitance is \%0.0 \, \mathrm{f} nF",C
       *10^9)
```

Scilab code Exa 11.3 Value of damping coefficient

```
1 //Chapter 11
2 //page no 410
3 //given
4 clc;
5 clear all;
                            //in MHz/V
6 K0=2*%pi*625;
                        //in mA
7 Ip=0.35;
8 N = 64;
9 w = 2.44; //in MHz
10 Z=5;
11 Vout = 4;
                   //in V
                   //in nF
12 C=22;
13 Z=sqrt((2*\%pi*N*w^2*C)/(4*Ip*K0*0.25))
14 printf("\n Zeta is = \%0.0 \, f", Z)
```

Chapter 12

Optical Systems

Scilab code Exa 12.1 Compute power margin

```
1 // Chapter 12
2 //page no 431
3 //given
4 clc;
5 clear all;
                        //in microW
6 Pt = 10;
7 \text{ Pr=1};
                       //in microW
8 PtdBm=10*log10 (Pt*10^-6/10^-3)
                                                              //
      in dBm
9 printf("\n Transmitter Power = \%0.0 \, \text{f dBm}", PtdBm);
10 PrdBm = 10 * log 10 (Pr * 10^-6/10^-3)
      in dBm
11 printf("\n Receiver Power = \%0.0 \, \text{f dBm}", PrdBm);
12 Pm=PtdBm-PrdBm;
13 printf("\n Power margin= \%0.0 \, f \, dBm", Pm);
      misprint in book
```

Scilab code Exa 12.2 Compute power margin

Scilab code Exa 12.3 Calculate level of additional power launched

Scilab code Exa 12.4 Compute link power budget

```
1 //Chapter 12
2 //page no 432
3 //given
4 clc;
5 clear all;
```

Scilab code Exa 12.5 Calculate PIN diode required operating power and total power budget

```
1
2
3
5 // Chapter 12
6 //page no 433
7 //given
8 clc;
9 clear all;
10 Is=0.5;
                     //in A/W
11 Ir=1.5;
                     //in microA
12 Xw=Ir/Is;
13 printf("\n Electrical power required by PIN diode is
       = \%0.0 \, \text{f microW}", Xw);
14 Pxw=10*log10(Xw/10^3);
15 printf("\n Therefore, Electrical power required by
      PIN diode is = \%0.1 \,\mathrm{f}\,\mathrm{dBm}", Pxw);
16
                      //in dB for safety margin
17 Ps=3;
18 Tp=5;
                     //in dB
19 Pt=Tp+Ps+Pxw;
20 printf("\n Total Power Required = \%0.1 f dBm", Pt);
```

Scilab code Exa 12.6 Calculate maximum link distance

Scilab code Exa 12.7 Compute chromatic dispersion

Scilab code Exa 12.8 Compute maximum bit rate

Scilab code Exa 12.9 Compute Maximum link span

```
1 // Chapter 12
2 //page no 443
3 //given
4 clc;
5 clear all;
                         //channel1
6 c1=4;
7 c2=8;
                         //channel2
8 c3=16;
                          //channel3
                        //in Gb/s
9 	ext{ fb=2.5};
10 Lmax1=6.1*10^3/(c1*fb)^2;
11 printf("\n Maximum Link span for %0.0f channel, Lmax
       = \%0.0 \, \text{f km } \ \text{n",c1,Lmax1};
12 Lmax2=6.1*10^3/(c2*fb)^2;
13 printf("\n Maximum Link span for %0.0f channel, Lmax
       = %0.2 f km \n",c2,Lmax2);
14 Lmax3=6.1*10^3/(c3*fb)^2;
15 printf("\n Maximum Link span for %0.0f channel, Lmax
       = %0.1 f km \n",c3,Lmax3);
```

Scilab code Exa 12.10 Calculate chromatic dispersion

```
1 // Chapter 12
2 //page no 444
3 //given
4 clc;
5 clear all;
6 L = 200;
                 //in km
7 \text{ dL} = 1550;
                              //in nm
                        //in Gb/s
8 R = 10;
                        //in ps/nm-km
9 \text{ Cd} = 17;
                        //Assused bandwidth
10 \quad w = 0.1;
11 Cd200=Cd*L;
12 printf("\n Dispersion by 200km ofc = \%0.1 \text{ f}*10^3 \text{ ps/}
       nm", Cd200/10<sup>3</sup>);
13 TCd=w*Cd200;
14 printf ("\n total chromatic dispersion = \%0.2 \text{ f}*10^3
       ps", TCd/10<sup>3</sup>);
```

Scilab code Exa 12.11 Calculate dispersion penalty

```
1 // Chapter 12
2 //page no 480
3 //given
4 clc;
5 clear all;
                       //in km
6 L=1.5;
7 Ls=L/3;
                       //in km
8 \text{ BwF} = 600;
                                 //in MHz
                            //in Gbps
9 \text{ fb=1};
10 Bdlaser=0.71*BwF*L^-0.7*Ls^-0.25;
11 printf("Laser bandwidth is \%0.0 \, \text{f MHz}", Bdlaser);
      //Answer in book is approx
12 mD=0.85*(fb*10^3/Bdlaser)^2;
13 printf("\n Mean dispersion penalty is \%0.1 \, \mathrm{f} \, \mathrm{dB}", mD);
```

Scilab code Exa 12.12 Calculate maximum length

```
1 // Chapter 12
2 //page no 481
3 //given
4 clc;
5 clear all;
                          //from table 12-11 for 2dB
6 E=0.182;
      dispersion penalty
7 fb = 622;
                     //in Mb/s
                     //in nm
8 dl = 4;
9 ofdisp=3;
                     //in ps/km-nm
10 Dmax=E/(10^-6*fb*d1);
11 printf("\n Dmax is \%0.1 \, \text{f ps/nm}", Dmax);
12 Lmax=Dmax/ofdisp;
13 printf("\n Maximum link distance is \%0.1 \, \text{f km}", Lmax);
14 //Answer in the book is rounded
```

Scilab code Exa 12.13 Calculate the maximum length of optical link

```
printf("\n Dmax is %0.1 f ps/nm", Dmax);
lmax=Dmax/ofdisp;
printf("\n Maximum link distance is %0.1 f km", Lmax);
```

Scilab code Exa 12.14 Calculate maximum dispersion mean link margin sigma link margin

```
1 // Chapter 12
 2 //page no 481
 3 //given
4 clc;
 5 clear all;
                          //in dB
 6 \text{ mc} = 0.4;
 7 \text{ sc} = 0.0;
                          //in dB
8 \, \text{dmax} = 2.8;
                          //in dB
9 mt = -4.9;
                         //in dBm
                        //in dBm
10 \text{ st} = 0.5;
                         //in dBm
11 mr = -38.1;
                           //in dBm
12 \text{ sr} = 0.48;
                           //in dB
13 \text{ mco} = 0.35;
                          //in dB
14 \, \text{sco=} 0.20;
15 \text{ ms} = 0.2;
                        //in dB
                        //in dB
16 \text{ ss} = 0.1;
17 E=0.182;
                                 //from table 12-11 for 2dB
        dispersion penalty
18 fb=156;
                        //in Mb/s
                           //in nm
19 dl = 4;
20 \text{ ofdisp=} 2.8;
                                //in ps/nm-km
21 \text{ Nco=7};
22 \text{ mD}=2;
23 \text{ sD=0.1};
24 \text{ sH=2};
25 \text{ sCR} = 0.25;
26 \text{ Ns} = 4;
27 \quad mH=0;
```

```
28 mCR=0.5;
29 L=50;
30 Ls=10;
31 Dmax=E/(10^-6*fb*dl);
32 printf("\n Dmax is %0.0 f ps/nm\n",Dmax);
33 Lmax=Dmax/ofdisp;
34 printf("\n Maximum link distance is %0.0 f km\n",Lmax
);
35 mM=mt-mr-(mc*L+mco*Nco+ms*Ns+mD+mH+mCR);
36 printf("\n Mean link margin is %0.2 f dB\n",mM);
37 sM=sqrt(st^2+sr^2+sc^2*L*Ls+sco^2*Nco+sD^2*sH^2+sCR^2);
38 printf("\n Sigma link margin is %0.3 f dB\n",sM);
```

Scilab code Exa 12.15 Compute maximum dispersion and nominal distribution

```
1 // Chapter 12
2 //page no 483
3 //given
4 clc;
5 clear all;
6 E=0.115;
                     //in Mb/s
7 fb=622;
                       //in nm
8 dl = 4;
                  //in dBm
9 \text{ mt} = 0.1;
                    //in dBm
//in dB
10 mr = -31.5;
11 \text{ mc} = 0.41;
12 L=25;
                    //in dB
13 \text{ mco} = 0.12;
14 Nco=2;
                     //in dB
15 \text{ ms} = 0.15;
16 Ns=4;
17 mD = 1;
18 mH = 0;
```

```
19 \text{ mCR=0};
20
                      //in dB
21 \text{ sc=0.0};
22 \text{ st} = -0.15;
                         //in dBm
23 \text{ sr} = 0.3;
                      //in dBm
24 \text{ sco} = 0.08;
                         //in dB
                       //in dB
25 \text{ ss} = 0.1;
                               //in ps/nm-km
26 \text{ ofdisp=} 2.8;
27 \text{ sD=2};
28 \text{ sH=0};
29 \text{ sCR} = 0.0;
30 \text{ Ls} = 12;
31
32 \text{ Dmax=E/(10^-6*fb*dl)};
33 printf("\n Dmax is \%0.2 \, \text{f ps/nm\n}", Dmax);
34 Lmax=Dmax/ofdisp;
35 printf("\n Maximum link distance is \%0.1 \text{ f km} \ n", Lmax
              //in book 4 is misprint for solving
36 \text{ mM=mt-mr-(mc*L+mco*Nco+ms*Ns+mD+mH+mCR)};
37 printf("\n Mean link margin is \%0.1 \text{ f dB} \setminus \text{n}", mM);
                  //wrong in book
38 L=60;
39 \text{ Ls} = 12;
40 sM=sqrt(st^2+sr^2+sc^2*L*Ls+sco^2*Nco+ss^2*Ns+sD^2*
       sH^2+sCR^2;
41 printf("\n Sigma link margin is \%0.2 \text{ f dB} \setminus \text{n}", sM);
42 spm = mM - 2 * sM - 1;
43 printf("\n System power margin is \%0.2 \text{ f dB} \setminus \text{n}", spm);
          //answer is slighty different due to mM=19.5
```

Scilab code Exa 12.16 Calculate maximum dispersion and maximum distance

```
1 //Chapter 12
2 //page no 484
```

```
3 //given
4 clc;
5 clear all;
6 E=0.115;
7 \text{ fb} = 1062;
                          //in Mb/s
8 dl = 6;
                         //in nm
                    //in dBm
9 \text{ mt} = -8;
10 \text{ mr} = 28.7;
                         //in dBm
                         //in dB
11 mc = 0.4;
12 L=5;
                         //in dB
13 \text{ mco} = 0.12;
14 Nco=8;
15 \text{ ms} = 0.2;
                      //in dB
16 Ns=4;
17 mD = 1;
18 mH=0;
19 mCR=1;
20
                         //in dB
21 \text{ sc} = 0.0;
22 \text{ st=0.6};
                      //in dBm
                      //in dBm
23 \text{ sr} = 0.75;
24 \text{ sco=0.08};
                       //in dB
                      //in dB
25 \text{ ss} = 0.1;
26 \text{ ofdisp=} 2.8;
                               //in ps/nm-km
27 \text{ sD} = 2;
28 \text{ sH=0};
29 \text{ sCR} = 0.25;
30 \text{ Ls} = 12;
31
32 Dmax = round(E/(10^-6*fb*d1));
                                                    //taking to
       nearest integer in ps/nm
33 printf("\n Dmax is \%0.0 \, \text{f ps/nm\n}", Dmax);
34 Lmax=Dmax/ofdisp;
35 printf("\n Maximum link distance is \%0.2 \text{ f km} \ n",Lmax
36 mM=mt+mr-(mc*L+mco*Nco+ms*Ns+mD+mH+mCR);
37 printf("\n Mean link margin is \%0.1 \text{ f dB} \setminus \text{n}", mM);
38 L=60;
```

Scilab code Exa 12.17 Calculate the CSO distortion

```
1 //Chapter 12
2 //page no 486
3 //given
4 clc;
5 clear all;
6 Ncso=50;
7 a=3.6*10^-3;
8 m=0.05;
9 CSO=10*log10(Ncso*(a*m)^2);
10 printf("\n CSO distortion for 50 channel optical system = %0.1 f dB\n", CSO);
```

Scilab code Exa 12.18 Calculate the required AM modulation

```
1 //Chapter 12
2 //page no 486
3 //given
4 clc;
5 clear all;
6 CSO=-59.8; //in dB
```

```
7 y=10^(CSO/10);
8 mprintf("AM modulation depth (m) = %e\n",y);
9 asq=3.6*10^-3;
10 Ncso=50;
11 msq=(y/Ncso/asq/asq);
12 mprintf("\n m^2 = %e\n",msq);
13 printf("\n Decrease of AM modulation depth decrease the CSO distortion by = %0.0 f percent",sqrt(msq) *100);
```

Scilab code Exa 12.19 Compute the CTO distortion

```
// Chapter 12
// page no 486
// given
clear all;
Ncto=50;
b=1.07*10^-2;
m=0.05;
CTO=10*log10(Ncto*(1.5*b*m)^2);
printf("\n CTO distortion for 50 channel optical system = %0.1 f dB\n", CTO);
// Answer in the book is misprinted
// The solution in the book is calculated without multipication of Ncto
```

Scilab code Exa 12.20 Calculate the CSO and CTO

```
1 //Chapter 12
2 //page no 487
3 //given
4 clc;
```

```
5 clear all;
6 Ncso=80;
7 a=2.43*10^{-3};
8 b=4.65*10^{-3};
9 m = 0.05;
10 // Part (i)
11 CSO=10*log10(Ncso*(a*m)^2);
12 printf("\n CSO distortion for 50 channel optical
      system for m = 5 percent \n CSOdB = \%0.1 f dB n,
     CSO);
13 // Part (ii)
14 CT0=10*log10(Ncso*(1.5*b*m)^2);
15 printf("\n CTO distortion for 50 channel optical
      system for m = 5 percent n CTOdB = 0.1 f dB/n,
     CTO);
16 // Part (iii)
17 m = 0.03;
18
19 CSO = 10 * log 10 (Ncso * (a*m)^2);
20 // Value of a in the book is considered 2.4 instead
      of 2.43
21 printf("\n CSO distortion for 50 channel optical
     system for m = 3 percent \n CSOdB = \%0.1 f dB n,
     CSO);
22
23 // Part (iv)
24 CT0=10*log10(Ncso*(1.5*b*m)^2);
25 printf("\n CTO distortion for 50 channel optical
     system for m = 3 percent \n CTOdB = \%0.1 f dB n,
     CTO);
```

Scilab code Exa 12.21 Calculate the CNR

```
1 //Chapter 12
2 //page no 487
```

Scilab code Exa 12.22 Calculate the RIN

```
1
2
3
4
5
6 //Chapter 12
7 // page no 488
8 //given
9 clc;
10 clear all;
                       //in dB
11 CNR = 50;
12 Bch=4*10^6;
13 m = 0.03;
14 RIN=m^2/2/Bch/10^(CNR/10)
15 mprintf("\n RIN = %e ",RIN);
16 // Miscalculated answer in the book
17 RINdB=10*log10(RIN);
18 printf("\nRIN in Db is \%.2 \, \mathrm{f}", RINdB)
```

Scilab code Exa 12.23 Calculate the required optical power

```
1 // Chapter 12
```

Scilab code Exa 12.24 Calculate the percentage of optical power reflected back

Scilab code Exa 12.25 Calculate the output voltage of an optical receiver

```
1 //Chapter 12
2 //page no 493
3 //given
4 clc;
5 clear all;
6 R=800; //in V/W
```

Scilab code Exa 12.26 Determine the optical receiver responsivity

Scilab code Exa 12.27 Calculate the modulation depth

Scilab code Exa 12.28 Calculate the CNR

```
1 // Chapter 12
2 //page no 495
3 //given
4 clc;
5 clear all;
                          //in mA
6 Ipd=1.2;
7 m = 0.04;
8 \text{ RINd} = -160;
                                //in dB/Hz
9 e=1.6*10^-19;
10 nth=8;
                     //in pA/Hz
                     //in MHz
11 BW=4;
12 Rin=10^(RINd/10);
                                   //in
13
14 CNR = [0.5*(m*Ipd*10^-3)^2]/[(2*e*Ipd*10^-3)+(Rin*Ipd*10^-3)]
      *10^-3)^2+((nth*10^-12)^2)*BW/10^6];
15 printf("Value of CNR=%e", CNR)
16 \quad \text{CNRdB} = 10 * \log 10 \text{ (CNR)}
17 printf("\nValue of CNR in dB=\%.2f dB", CNRdB)
18 //Answer in the book is misprinted or wrong
      calculation performed in the book
```

Scilab code Exa 12.29 Total fiber span attenuation

```
1 //Chapter 12
2 //page no 509
```

```
3 //given
4 clc;
5 clear all;
                    //in km
6 L1 = 40;
                     //in km
7 L2=100;
8 \quad A = 0.2;
                 //in dB/Km
9 TFA1=A*L1;
10
11 printf("\n Total fibre span attenuation %0.0 f dB\n",
      TFA1);
12 TFA2=A*L2;
13 printf("\n Total fibre span attenuation \%0.0 \,\mathrm{f}\,\mathrm{dB}\n",
      TFA2);
14 \, \text{nsd=TFA2-TFA1};
15 printf("\n Noise spectral density = \%0.0 \, \text{f dB}", nsd);
16 nsd_abs=10^(nsd/10)
17 printf("\n\n Absolute value of noise spectral
      density = \%0.0 f dB ", nsd_abs);
```

Scilab code Exa 12.30 Calculate the SNR

```
1
2
3
4
5
6 // Chapter 12
7 //page no 510
8 //given
9 clc;
10 clear;
                        //in mW
11 P1=2.75;
                    //in dB
12 NFd=5;
13 bw=5;
                    //in GHz
14 G=10;
                  //in dB
```

Scilab code Exa 12.31 Calculate the optical power in fiber

```
1 // Chapter 12
2 //page no 510
3 //given
4 clc;
5 clear all;
                         //in dB
6 \text{ SNRdB} = 40;
                    //in dB
7 \text{ NFd=6};
8 \text{ bw} = 4;
                    //in GHz
9 Gd=8;
                  //in dB
10 hv=1.6*10^-19; //photon energy in J
11 N=8; //no of amplifiers
12 SNR=10^(SNRdB/10);
13 NF=10^(NFd/10);
                        //amplifier noise figure
14 G=10^{(Gd/10)};
                            //amplifer gain
15 P1=10*(SNR/10)*[G*hv*bw*10^9*N*NF]/10^-3;
      optical power launched into fibre
16 printf("\n Optical power required , Pl = \%0.1 f mW",
      P1);
           //Result
```

Scilab code Exa 12.32 Compute the transmission length

1 2

```
3
4
6 // Chapter 12
7 //page no 518
8 //given
9 clc;
10 clear all;
                //wavelength in nm
11 1=1550;
                 //system bit rate Gb/s
12 fb=10;
                 //fiber dispersion in ps/nm-km
13 Df = 17;
14 L=10<sup>5</sup>/Df/fb<sup>2</sup>;
                       //fiber length in km
15 printf("\n Transmission length is \%0.1 \text{ f km}",L);
                   //system bit rate Gb/s
16 \text{ fb2=2.5};
17 disp("for fb = 2.5 Gb/s")
18 L2=10<sup>5</sup>/Df/fb2<sup>2</sup>;
                              //fiber length in km
19 printf(" Transmission length is %0.0 f km", L2);//
      result misprint in book
```

Scilab code Exa 12.33 Compute the maximum bit rate

```
1 //Chapter 12
2 //page no 518
3 //given
4 clc;
5 clear all;
6 lembda=1550; //wavelength in nm
7 Df=17; //fiber dispersion in ps/nm-km
8 L=80 //fiber length in km
9 fb=sqrt(10^5/Df/L)
10 printf("\n Maximum bit rate fb = %.1 f Mb/s",fb);
```

Scilab code Exa 12.34 Compute the solition characteristic length

Scilab code Exa 12.35 Determine maximum dispersion

```
1 // Chapter 12
2 //page no 530
3 //given
4 clc;
5 clear all;
6 lembda=1550;
7 c=3*10^5;
                          //wavelength in nm
                         //speed of light in km/s
8 \text{ Zs} = 600;
                                  //in km
9 Tfwhm=20;
                                    //in ps
10 D=1/1.763^2*[2*\%pi*c*Tfwhm^2/(lembda^2*Zs)];
      dispersion constant
11 printf("\n dispersion constant, D = \%0.2 f \text{ ps/nm/km}",
               //result
```

Scilab code Exa 12.36 Calculate the solition pulse width

1 2 3

```
4
5
6 // Chapter 12
7 //page no 530
8 //given
9 clc;
10 clear all;
                   //wavelength in nm
11 1=1557;
                         //speed of light in km/s
12 c=3*10^5;
13 Zs = 550;
                                   //in km
14 D=0.25;
                                  //in ps/nm/km
15 Tfwhm=sqrt(1.763^2*1^2*D*Zs/(2*\%pi*c)); // Soliton
      pulse width
16 printf("\n Tfwhm = \%0.0 \, \text{f ps}", Tfwhm);
                                                 //Result
```

Scilab code Exa 12.37 Calculate the solition peak pulse

```
1 // Chapter 12
2 //page no 531
3 //given
4 clc;
5 clear;
                        //in sq micrometer
6 \text{ Aeff} = 55;
                   //wavelength in nm
7 1 = 1557;
                       //speed of light in km/s
8 c=3*10^5;
9 n2=2.6*10^-16;
                            //in cm^2/W
                                 // Dispersion constant in
10 D=0.20;
       ps/nm/km
                           //in ps
11 Tfwhm=30;
12 Zs = [2*\%pi*c*Tfwhm^2/1^2/D]/(1.763)^2 ; //
      charecteristic length
13 printf("\n Zs = \%0.0 \, \text{f km}", Zs);
                                          //result
14 Ps=(Aeff*10^-12*1*10^-9)/(2*%pi*n2*10^-4*Zs*10^3);//
      Peak pulse power
15 // Miscalculation in the book
```

```
16 printf("\n Ps = \%0.2 \text{ f mW}', Ps*1000); //Result
```

Scilab code Exa 12.38 Compute the standard deviation

```
1
2 // Chapter 12
3 //page no 533
4 // given
5 clc;
6 clear all;
                          //in mm
7 Z = 10;
                          //in ps
8 \text{ Tfwhm}=22;
                          //ps/nm/km
9 D=0.5;
                          //in microm^2
10 Aeff=55;
             //in km^-1
//spontaneous emission
//ampl;f:
11 A = 0.05;
12 \text{ nsp=1.5};
                    //amplifier noise
13 F=2;
14 s=3.6*10^3*nsp*F*A*D*Z^3/(Aeff*Tfwhm);
15 printf("\n sigma = \%0.0 \, \text{f ps}",s); //Result
16
17 //answer in book is misprint
```

Scilab code Exa 12.39 Calculate the system BER

Scilab code Exa 12.40 Compute the standard deviation

```
1 // Chapter 12
2 //page no 534
3 //given
4 clc;
5 clear all;
                         //Dispersion constant ps/nm/km
6 D = 0.5;
7 \text{ Ts} = 22;
                         //Pulse width in ps
8 \text{ fb=10};
                         //system transmission rate in Gb
     / s
                          //System total length Mm
9 \quad Z1=1;
                           //System total length Mm
10 \quad Z2=10;
11 sa1=8.6*D*D*Z1*Z1*sqrt(fb-0.99)/22/2;
      standard deviation based on accoustic effect
12 sa2=8.6*D*D*Z2*Z2*sqrt(fb-0.99)/22/2;
      standard deviation based on accoustic effect
13 printf("\n For Z=1000km , sigma acoustic = \%0.2 \,\mathrm{f} ps
     ",sa1);
               //Result
14 printf("\n For Z=10000km , sigma acoustic = \%0.0 \,\mathrm{f} ps
       ", sa2); //Result
```

Scilab code Exa 12.41 Calculate the collision length

```
1 //Chapter 12
2 //page no 535
3 //given
```

Scilab code Exa 12.42 Calculate the half channel length

```
1 // Chapter 12
2 //page no 537
3 //given
4 clc;
5 clear all;
6 	ext{ f=70};
                    //Maximum frequencyshift in Ghz
7 Ts = 22;
                    //Pulse width in ps
8 CS=1.783*f*10^9*Ts*10^-12;
                                      //half channel
      seperation
9 printf("\n The half channel separation \%0.2\,\mathrm{f} ",CS);
10 df = 0.105/f/10^9/Ts/Ts/10^-24;
                                           //maximum
      frequency shift
11 printf("\n The maximum frequency shift %0.0 f GHz", df
      /10^9);
12 dt=0.1786/f/10^9/f/10^9/Ts/10^-12; //time
      displacement
13 printf("\n The time displacement \%0.2 \,\mathrm{f} ps", dt*10^12)
```

Scilab code Exa 12.43 Calculate the minimum number of soliton

```
1 // Chapter 12
2 //page no 538
3 //given
4 clc;
5 clear;
6 M = 1;
                    //no of collision
7 N = 1;
8 S1=4;
                    //soliton colllision
9 S2=5;
               //soliton colllision
10 Nc=S1*S1/4*[M*S1/2-M+N];
                                     //minimum no of
      collision
11 printf("\n Ncollision for S=4, is %0.0 f", Nc);
12 Nc2=(S2*S2-1)/4*[M*S2/2-M+N];
                                          //minimum no of
       collision
13 printf("\n Ncollision for S=5, is \%0.0 f", Nc2);
```

Scilab code Exa 12.44 Compute the maximum number of soliton

```
1 // Chapter 12
2 //page no 539
3 //given
4 clc;
5 clear;
6 S = 4;
7 n=5;
8 printf("\n Maximum number of solition Collisions\n")
9 \quad for \quad M = 1:n
10 N = M;
11 Nc=S*[M*S*S/3+S*(N/2-M)-N/2+2*M/3]; //minimum
      no of collision
12 printf("\n M=%0.0 f
                                        S=\%0.0 f , is
                                                           \%0
                         N=\%0.0 f
      .0 f", M, N, S, Nc); // result
13
14
```

Scilab code Exa 12.45 Compute the number of collision

```
1 // Chapter 12
2 //page no 539
3 //given
4 clc;
5 clear all;
6 M=1;
                 //number of solition Collisions
7 N=1;
                // number of solition Collisions
8 x = 2;
9 y=1/2;
10 p=3;
11 p2=4;
12 Tb = 100;
                    //ps
13 1=1;
                    //difference in wavelength in nm
14 D=7*10^-2;
                    // ps/nm^2*km
15 Zr = y * y * (Tb/1/1/D);
                             //regeration spacing in km
16 printf("\n Zr = \%0.0 \text{ f km} \cdot \text{n}", Zr);
17 P=(p-1)*N+(p-2)*(p-1)*M/2;
18 printf("\n P(\%0.0 f) = \%0.0 f",p,P); //result
      number of Collisions
19 P2=(p2-1)*N+(p2-2)*(p2-1)*M/2;
20 printf("\n P(\%0.0 f) = \%0.0 f", p2, P2);
                                          //result
      number of Collisions
```

Scilab code Exa 12.46 Calculate the channel spacing

```
1 //chapter 12
2 //page no 540
3 //exa 12_46
4 //given
```

Scilab code Exa 12.47 Compute the bit period

Scilab code Exa 12.48 Calculate the maximum modulator spacing

```
10 Zr=Tb/(D*1); //Modulator spacing in km  
11 printf("\n Maximum modulator spacing Zr = \%0.2 \, f km", Zr);
```

Scilab code Exa 12.49 Calculate the length of dispersion

```
1 // chapter 12
2 //page no 541
3 / \exp 12.49
4 //given
5 clear;
6 clc;
                  //in \ km
7 \text{ Zd} = 100;
                   //in ps/nm^2
8 \text{ Do} = 0.07;
             //in ps/nm^2
9 \quad D1 = -0.3;
                                   //length of dispersion
10 Ldsf = (Zd*Do)/(Do-D1);
      compensation fiber in km
11 printf("\n Length of Dispersion compensation fiber,
      Ldsf = \%0.0 f \text{ km}", Ldsf); // Result
```

Scilab code Exa 12.50 Calculate the collision length

```
1 //chapter 12
2 //page no 542
3 //ex 12_50
4 //given
5 clear;
6 clc;
7 m=3;
8 n=1;
9 Tb=100; //ps
10 l=1; //mm
11 D=0.07; //ps/nm^2*km
```

Scilab code Exa 12.51 Compute the soliton collision length

```
1 // chapter 12
2 //page no 542
3 // ex 12.51
4 //given
5 clear;
6 clc;
7 \text{ Zr} = 200;
                      //in km
8 S = 4;
9 Ltot1=2*Zr*(S-1);
                               //total solition collion
      length in km
10 printf("\n Total solition Collisions length With DSC
        , Ltotal = \%0.0 \, \text{f km} \, \text{n}", Ltot1); // Result
                                    //total solition
11 Ltot2=(2/5)*Zr*(S-1);
      collion length in km
12 printf("\n Total solition Collisions length With non
      -DSC, Ltotal = \%0.0 \text{ f km/n}, Ltot2); // \text{result}
```

Chapter 13

Networks

Scilab code Exa 13.1 Calculate R9 R7 R8 C4

```
1 // Chapter 13
2 //page no 568
3 //given
4 clc;
5 clear all;
                               //in V
6 Vcc=5;
                          //in V
7 Vf=1.5;
                          //in mA
8 If=60;
9 B=3.97;
10 N = 3;
11 R9=(Vcc-Vf)*(B+1)/If/10^-3;
12 printf("\n R9 = \%0.0 \text{ f ohm} \n", R9);
13 R7 = R9/2/B-3/N;
14 printf("\n R7 = \%0.1 \text{ f ohm} \n", R7);
15 R8=R9/2/B;
16 printf("\n R8 = \%0.1 \text{ f ohm} \n", R8);
17 C4=2*10^-9/R8;
18 printf("\n C4 = %0.0 f pF", C4*10^12);
```

Scilab code Exa 13.2 Calculate Led If R3 C4

```
1 // Chapter 13
2 //page no 569
3 //given
4 clc;
5 clear all;
                             //in V
6 Vu3=1.24;
                             //in V
7 Vbeq3=0.7;
                             //in V
8 \ Vbeq4=0.7;
                             //in Ohm
9 R5=17.5;
                             //in Ohm
10 R6 = 17.5;
11 Voh = 5;
                        //in V
                        //in V
12 Vol = 0;
13 If = (Vu3 - Vbeq3)/R5 + (Vu3 - Vbeq4)/R6;
14 printf("\n If= \%0.1 \text{ f mA} \n", If *1000);
15 R3=(Voh-Vol)/If;
16 printf("\n R3= \%0.0 \, \text{f ohm} \n", R3);
17 C4 = 2 * 10^{-9} / R3;
18 printf("\n C4= %0.0 f pF\n", C4*10^12);
19 // Chapter 13
20 //page no 581
21 //given
22 disp ("Page number 581 again Example 13-2 (numbering
        mistake)")
23 \text{ Er} = 4.9;
24 h = 5;
                             //in mils
                              //in mils
25 \text{ w} = 10;
26 t=0.5;
                               //in mils
27 \text{ Z}=60/\text{sqrt}(0.475*\text{Er}+0.67)*\log(4*\text{h}/0.67/(0.8*\text{w}+\text{t}));
28 printf("\n Z = \%0.1 \text{ f ohm} \n",Z);
29 tpd=1.017*sqrt(0.475*Er+0.67);
30 printf("\n tpd = \%0.2 \, \text{f ns/ft} \, \text{n}", tpd);
31 Tpd=tpd*1000/12; //converted into ps/in
32 printf("\n tpd = \%0.2 \,\mathrm{f} \,\mathrm{ps/in} \,\mathrm{n}", Tpd);
33 Co=Tpd/Z;
34 printf("\n Co = \%0.1 \,\mathrm{f} pF/in\n",Co);
```

Scilab code Exa 13.3 Characteristic impedance and propagation delay

```
1 // Chapter 13
2 //page no 583
3 //given
4 clc;
5 clear all;
 6 Er = 4.7;
                             //in mils
 7 b=10;
 8 \quad w = 4;
                            //in mils
                              //in mils
9 t=0.5;
10 Z=60/sqrt(Er)*log(4*b/0.67/%pi/(0.8*w+t));
11 printf("\n Z = \%0.2 \text{ f ohm} \n",Z);
12 tpd=1.017*sqrt(Er);
13 printf("\n tpd = \%0.1 \, \text{f ns/ft} \, \text{n}", tpd);
14 Tpd=tpd*1000/12;
                                   //converted into ps/in
15 printf("\n Also, tpd = \%0.0 \,\mathrm{f}\,\mathrm{ps/in}\,\mathrm{n}", Tpd); //answer
       is slightly different due to rounding off
```