Lecture 1&2 Asymtotic Notation

Algorithm Analysis

- Primary interest
 - Time Complexity
 - Big O Notation
 - Gives an upper bound on the growth rate of a function
- Secondary interest
 - Space Complexity
 - A measure of the amount of working storage an algorithm needs
 - How much memory the algorithm needs

Primitive Operations

- Single addition
- Multiplication
- Comparison

Common Functions

- Constant
 - O (1)
- Logarithmic
 - O (log n)
- Linear
 - O (n)
- Log-linear
- O (n log n)
- Quadratic
 - O (n^2)
- Cubic
 - O (n^3)
- Polynomial
 - O (n^k)
- Exponential
- O (a^n), a > 1
- Factorial
 - O (n!)

Big Omega and Theta Notation

- ▼ Big O
 - f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- ▼ Big Omega
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- Big Theta
 - f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)