

Cours d'Electronique

Le transistor JFET (Junction Field Effect Transistor)

©Fabrice Sincère; version 1.1.0

http://perso.orange.fr/fabrice.sincere

Sommaire

- 1- Transistor JFET canal N et canal P
- 2- Caractéristiques électriques du transistor JFET canal N
 - 2-1- Montage source commune
 - 2-2- Tensions et courants
 - 2-3- Jonction Grille Canal
 - 2-4- Caractéristiques de transfert et de sortie
 - 2-5- Zone de blocage
 - 2-6- Zone ohmique
 - 2-7- Source de courant
- 3- Caractéristiques électriques du transistor JFET canal P
- **4- Applications**
 - 4-1- Résistance commandée en tension
 - 4-2- Interrupteur électronique
 - 4-3- Amplificateur de tension
- **5- Remarques**

Bibliographie

1- Transistor JFET à canal N et à canal P

Le transistor JFET fait parti de la famille des transistors à effet de champ (FET : Field Effect Transistor).

Le transistor MOSFET appartient également à cette famille.

Un transistor JFET possède trois bornes:

- ➤ la grille (g)
- > le drain (d)
- > la source (s)

Il existe deux types de transistors JFET:

• à canal N

• à canal P

2- Caractéristiques électriques du transistor JFET à canal N

2-1- Montage « source commune »

Ce montage nécessite deux sources de tension :

N.B. La source de tension E_g est négative.

2-2- Tensions et courants

Le transistor possédant trois bornes, il faut définir trois courants et trois tensions :

Pour un JFET à canal N en fonctionnement normal :

- la tension v _{DS} est **positive**
- la tension v_{GS} est négative ou faiblement positive (< 0,6 V)
- le courant de grille est quasiment nul $i_G = 0$
- le courant entre dans le transistor par le drain (i _D)
- le courant sort du transistor par la source (i _S)
- Loi des nœuds : $i_S = i_D$

2-3- Jonction Grille – Canal

La jonction grille - canal est une jonction PN normalement **polarisée en inverse** :

⇒ Le courant de grille est alors négligeable (impédance d'entrée très importante)

 \Rightarrow La tension v _{GS} est inférieure à 0,6 V (généralement, on utilise une tension négative ou nulle)

Le transistor JFET est commandé par la jonction grille -canal, autrement dit par la tension de grille v $_{\rm GS}$.

N.B. pour un transistor bipolaire (NPN ou PNP), la grandeur de commande est un courant (le courant de base).

2-4- Caractéristiques de transfert et de sortie

Exemple: Transistor BF245C (Philips Semiconductors, Fairchild...)

Fig. 1 : Caractéristique de transfert $I_D(V_{GS})$ à V_{DS} constante

Fig. 2 : Caractéristique de sortie I_D (V_{DS}) à V _{GS} constante

Fig. 1

2-5- Zone de blocage

Fig. 1:

La tension V_{GS} règle le courant qui circule dans le transistor (I_D).

- I_D est maximal ($I_{DSS} = 17$ mA typique) pour $V_{GS} = 0$ V
- I_D diminue quand |V_{GS}| augmente.
- Pour $V_{GS} < V_{GS \text{ off}}$, on peut considérer que le courant I_D est nul (< 10 nA): le transistor est bloqué (off).

2-6 – Zone ohmique

Reprenons la figure 2 :

Pour de faibles niveaux de la tension V_{DS} , la caractéristique de sortie est linéaire : **le transistor se comporte comme une résistance** ($R_{DS \text{ on}}$).

Par exemple, pour $V_{GS} = -2 \text{ V}$: $R_{DS \text{ on}} = 200 \Omega$ typique

2-7- Source de courant

Pour $V_{DS} > 4$ V environ, la caractéristique de sortie est quasiment horizontale : le transistor se comporte comme une source de courant.

Par exemple, pour $V_{GS} = -2 \text{ V}$: $I_D = 9 \text{ mA}$ (valeur que l'on trouve directement sur la caractéristique de transfert de la figure 1).

11

• Exemple de schéma

$$V_{GS} = -R I_{D}$$

La résistance R permet de régler le courant.

Pour
$$R = 0 \Omega$$
:

$$V_{GS} = 0 V$$
, $I = I_D = I_{DSS}$.

• Exercice

On désire alimenter une LED à courant constant (10 mA) avec une source de tension (Vcc) qui peut évoluer entre 12 et 24 V. Pour cela, on utilise un transistor JFET BF245C ($I_{DSS} = 17$ mA, ce qui est suffisant pour fournir 10 mA) fonctionnant en source de courant :

- 1) Calculer la valeur de la résistance R.
- 2) Calculer la tension Vcc minimale qui permet d'avoir un courant de 10 mA (on tolère une variation de 1 mA).

 On donne : Tension aux bornes de la LED : 2,0 V pour 10 mA
- 3) Le data sheet du transistor indique que : P = 300 mW (max). Vérifier qu'il n'y a pas de problèmes d'échauffement du transistor.

Correction

1) D'après la figure 1:

$$I_D = 10 \text{ mA} \implies V_{GS} = -1.6 \text{ V} \implies R = -V_{GS} / I_D = 160 \Omega (1/4 \text{ W})$$

2) D'après la figure 2

$$V_{DS} > 4 V = Vcc > 4 + 1.6 + 2.0 = 7.6 V (environ)$$

3)
$$P = V_{DS} I_D = (Vcc - 1, 6 - 2, 0) \cdot 0,010$$

P = 200 mW pour Vcc = 24 V donc pas de problèmes d'échauffement.

• Complément : résultats expérimentaux

 $R = 100 \Omega$, au lieu de 160 Ω typique.

L'écart traduit la dispersion des caractéristiques du transistor.

3- Caractéristiques électriques du transistor JFET à canal P

Par rapport au transistor JFET à canal N, le sens des courants et le signe des tensions sont inversés.

Le montage source commune devient :

Pour un JFET à canal P en fonctionnement normal :

- la tension v _{DS} est **négative**
- la tension v _{GS} est **positive ou faiblement négative (> 0,6 V**)
- le courant de grille est quasiment nul $i_G = 0$
- le courant entre dans le transistor par la source (i s)
- le courant sort du transistor par le drain (i _D)
- Loi des nœuds : $\mathbf{i}_{\mathbf{S}} = \mathbf{i}_{\mathbf{D}}$

4- Applications

4-1- Résistance commandée en tension

Fig. 3

Le transistor est utilisé dans la zone ohmique.

Pour rester dans la zone de linéarité, la tension V_{DS} doit être proche de 0 V (au plus quelques centaines de mV). V_{DS} peut même être légèrement négative (car dans ces conditions, la jonction grille - canal est encore polarisée en inverse). En définitive, il est possible que la tension V_{DS} soit alternative, et donc d'avoir un **courant I_D alternatif**.

Vu entre le drain et la source, le transistor se comporte comme une résistance (R _{DS on}).

 $R_{DS on}$ est réglable par la tension de grille V_{GS} (figure 3).

- R $_{DS \text{ on}}$ est minimale pour V $_{GS} = 0 \text{ V}$
- \bullet R $_{DS\;on}$ augmente quand $|V\>_{GS}|$ augmente

• Courbe expérimentale $V_{DS}(I_D)$ à V_{GS} = constante

Axe des ordonnées: voie 2 (V_{DS})

Axe des abscisses : voie 1 (I_D : 1 V = 1 mA)

 $V_{GS} = -1.0 \text{ V}$

Pente à l'origine : R $_{DS \text{ on}} = 170 \Omega$

• Oscillogramme

 V_{DS} est une tension sinusoïdale alternative de petite amplitude (1 kHz, amplitude \pm 270 mV).

I _D est également sinusoïdal alternatif : le transistor fonctionne en régime linéaire.

$$R_{DS \text{ on}} = V_{DS} / I_{D} = 270 \text{ mV} / 1,6 \text{ mA} = 170 \Omega$$

(pour $V_{GS} = -1,0 \text{ V}$).

4-2- Interrupteur électronique

Le transistor fonctionne en commutation (2 états).

1) Interrupteur ouvert :

$$V_{GS} \le V_{GS \text{ off}}$$

Le transistor est bloqué ($I_D = 0$).

ou:

2) Interrupteur fermé:

$$V_{GS} = 0 V$$

Le transistor fonctionne dans la zone ohmique, et se comporte comme une résistance ($R_{DS \text{ on}}$).

• Considérons le transistor **J108** (JFET canal N, spécialement conçu pour les applications de commutation) :

$$R_{DS \text{ on}} = 8 \Omega \text{ (pour V}_{GS} = 0 \text{ V)}$$

$$I_{DSS} = 80 \text{ mA}$$

$$V_{GS \text{ off}} = -10 \text{ V}$$

La commande du transistor est simple : On applique une tension V _{GS} binaire,

> 0 V > -12 V

Remarque:

En interrupteur fermé, le courant est limité à 80 mA : c'est peu. Pour travailler avec des courants beaucoup plus importants, il faut utiliser des transistors MOSFET de puissance.

4-3- Amplificateur de tension

• Définition de la transconductance g fs

 $\mathbf{g}_{\mathbf{fs}}$ est la pente de la caractéristique de transfert I_{D} (V_{GS}).

$$g_{fs}(I_{D}) = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

Fig. 4

La transconductance $\mathbf{g}_{\mathbf{f}\mathbf{s}}$ augmente quand I $_{\mathbf{D}}$ augmente.

D'après la figure 4:

$$\mathbf{g}_{\mathbf{fs}} = 6 \text{ mA/V (ou } 6 \text{ mS) pour I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{D} \mathbf{SS}} = 17 \text{ mA}$$

• Amplificateur de tension

Schéma de principe:

• Oscillogramme

 u_E (= v_{GS}) est une tension sinusoïdale négative de petite amplitude (fréquence 1 kHz, amplitude ± 230 mV, valeur moyenne – 3,0 V). u_S est également sinusoïdale (amplitude ± 2,2 V, valeur moyenne + 6,1 V) : le transistor fonctionne en régime linéaire.

Amplification en tension = -2.2 V / 230 mV = -9.6

• Courbe expérimentale u_S (u_E)

Axe des ordonnées : voie 2 (composante alternative de u_S) Axe des abscisses : voie 1 (composante alternative de u_E)

Pente à l'origine : - 9,5

• Valeur théorique de l'amplification en tension

Loi des branches: $E = R \cdot I_D + U_S$

$$\Rightarrow \Delta U_S = -R \cdot \Delta I_D$$

(Le symbole Δ représente l'écart avec la valeur moyenne)

$$g_{fs} = \frac{\Delta I_{D}}{\Delta V_{GS}} = \frac{\Delta I_{D}}{\Delta U_{E}}$$

$$\Rightarrow \text{Amplification en tension:} \qquad A = \frac{\Delta U_S}{\Delta U_E} = -g_{fs} \cdot R$$

Application numérique :

 $v_{GS} = -3.0 \text{ V (en valeur moyenne)} \Rightarrow i_D = 5.5 \text{ mA (figure 1)}$ \Rightarrow **g**_{fs} = 3,7 mS (figure 4).

 $A = -4700 \times 0.0037 = -17$ (valeur typique).

Expérimentalement, on a mesuré -9,6.

L'écart est dû à la dispersion des caractéristiques du transistor.

5- Remarques

- Il n'existe pas de transistor JFET de puissance (I_{DSS} est limité à quelques dizaines de mA).
- Les transistors JFET ont un faible bruit électrique (inférieur à celui des transistors bipolaires).
- Les transistors JFET sont couramment utilisés dans les amplificateurs à hautes fréquences (plusieurs centaines de MHz).
- Certains transistors JFET ont les broches de drain et de source interchangeables (c'est le cas du BF245C et du J108).

- Certains amplificateurs opérationnels ont un étage d'entrée à transistors JFET (par exemple le TL071) :

Bibliographie

- ✓ Site web de Philips Semiconductors
- ✓ Site web de Texas Instruments
- ✓ Site web de Fairchild
- ✓ Horowitz & Hill, Traité de l'Électronique (Volume 1)