Device Placement Optimization with Reinforcement Learning

Google Brain ICML 2017

Background

- Neural networks
 - Image classification, speech recognition, machine translation
- Training and inference with neural networks
 - A growth in size and computational requirements
- Heterogeneous distributed environment
 - A mixture of hardware devices, CPUs and GPUs
- Placing certain operations of the neural models on devices

Challenges

- When the network has many branches
- When the mini batches get larger
- Dynamic environment with many interferences

Overview

- Which parts of the model should be placed on which device
- How to arrange the computations to optimize the communication
- Reward signal: execution time

Method

- A TensorFlow computational graph G
- M operations $\{o_1, o_2, ..., o_M\}$
- D available devices
- Placement $P = \{p_1, p_2, ..., p_M\}$ is an assignment of an operation o_i to a device p_i
- r(P) is the time to perform a complete execution of G under the placement P
- Goal: minimize the execution time r(P)

Method

- Noisy measurements of r(P) in the beginning of the training process
 - The bad placements sampled
 - Inappropriate learning signals
- RL model gradually converges
 - The sampled placements become more similar to each other
 - Less distinguishable training signals
- Empirically use the square root of running time $R(p) = \sqrt{r(P)}$

Method

- Train a stochastic policy $\pi(P|G;\theta)$ to minimize the objective $J(\theta) = E_{P \sim \pi(P|G;\theta)}[R(P)|G]$
- Policy gradient
 - Optimize parametrized policies with respect to the expected return by gradient descent
 - Learn network parameters
- $\nabla_{\theta} J(\theta) = E_{P \sim \pi(P|G;\theta)}[R(P) \cdot \nabla_{\theta} \log_{p}(P|G;\theta)]$
- Estimate $\nabla_{\theta}J(\theta)$ by drawing some placement samples
- $\nabla_{\theta} J(\theta) = \frac{1}{K} \sum_{i=1}^{K} (R(P_i) B) \cdot \nabla_{\theta} \log_p(P_i | G; \theta)$

LSTM (Long Short Term Memory)

- Learn long-term dependencies
- What information to throw away from the cell state
- What information to store in the cell state
 - Which value to update
 - Create a vector of new candidates values
- Decide what information to output
 - A filtered version based on cell state

Long Short-term Memory (LSTM)

Sequence-to-sequence model

- Deep neural networks require the dimensionality of the inputs and outputs is known and fixed
- Can not map sequences to sequences
- Encoder: process the input
- Decoder: generate the output

Content-based attention mechanism

Allow the decoder more direct access to the input

Allow the decoder to peek into the input at every

decoding step

Architecture Details

Architecture Details

- Input:
- The sequence of operations of the input graph
- Encoder:
- Collect the types of its operations
- Concatenate the size of each operation's list into a fixed-sized, zero-padded list, i.e., output shape
- Take the one-hot encoding vector that represents the adjacency information

Architecture Details

- Decoder:
- An attentional LSTM
- A fixed number of steps
 - Equal to the number of operations
- Output the device of the operator at the same encoder time step

Co-locating Operations

- TensorFlow computational graphs have thousands of operations
- Reduce the number of objects to place on different devices
 - Manually forcing several operations to be located on the same device
- E.g., the output of an operation X is consumed only by another operation Y → operations X and Y are co-located
- E.g., initialization operations

Distributed Training

- Asynchronous distributed training
- Each controller execute the current policy
 - Defined by the model Save state, only hold the Parameter Server controllers' parameters Training Controller 2 Controller 1 Controller K Placement Runtime worker worker worker worker worker worker Generate data

First Phase

- Each worker receives a signal
 - Indicate that it should wait for placements from its controller
- Each controller receives a signal
 - Indicate it should sample K placements
- Each controller then independently sends the placements to their workers

Second Phase

- Each worker executes the placement and measures the running time
- Each controller waits for all of its workers
 - Finish executing their assigned placements
 - Return their running times
- The controller scales the gradients to asynchronously update the controller parameters

Benchmarks

- Recurrent Neural Network Language Model
 - Grid structure
 - Parallel executions
- Neural Machine Translation with attention mechanism
 - large number of hidden states due to the source and target sentences
 - Require model parallelism
- Inception-V3
 - Image recognition and visual feature extraction
 - Sequential processing

Baselines

- Single-CPU
- Single-GPU
- Scotch
 - Estimate the computational costs, amount of flow data
- MinCut
 - Run on GPU if no CPU implementation
- Expert-designed
 - Put each layer on a device
 - Partition the model into contiguous parts with roughly the same number of layers

Single-Step Runtime Efficiency

- Only information
 - Running times of the placement
 - The number of available devices
- Learn subtle tradeoffs
 - Performance gain by parallelism
 - The costs induced by inter-device communications

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	0.0% 0.0%
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	2 4	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

End-to-End Runtime Efficiency

Analysis of Found Placements

- Per-device computational load
 - Load-balancing

Analysis of Found Placements

Memory copy time

Summary

- Weakness
 - No data parallelism
 - Overhead (hundreds of machines, one day)
 - Not general
- Use reinforcement learning to optimize placement in the machine learning system
 - Combine with theory work (bandit)
- Model parallelism
 - Complementary to current work