Trees: part 1

Petr Kurapov

Fall 2024

Binary trees

- BST: maps & sets
- Binary tries (digital/prefix trees): high-bandwidth routing, dictionary for autocompletion
- Heaps: priority queues
- Huffman coding tree: compression (i.e. jpeg)
- B+/w trees: database indexing

- Binary tree
 - $\{y. key \le x. key, z. key \ge x. key\}$
 - Operator < defined on keys
- Most operations done in $O(T.hight) \sim O(\log n)$ mean for a random tree
- Dictionary/priority queue

- Binary tree
 - $\{y. key \le x. key, z. key \ge x. key\}$
 - Operator < defined on keys
- Most operations done in $O(T.hight) \sim O(\log n)$ mean for a random tree
- Dictionary/priority queue

- Binary tree
 - $\{y. key \le x. key, z. key \ge x. key\}$
 - Operator < defined on keys
- Most operations done in $O(T.hight) \sim O(\log n)$ mean for a random tree
- Dictionary/priority queue

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

Three possibilities:

- 1. No child nodes
 - Just remove it trivial
- 2. Single child node
 - Remove and relink to parent simple
- 3. Both children present
 - Replace with next
 - Same left subtree
 - Reminder of right subtree becomes new right subtree

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

Three possibilities:

- 1. No child nodes
 - Just remove it trivial
- 2. Single child node
 - Remove and relink to parent simple

3. Both children present

- Replace with *next*
- Same left subtree
- Reminder of right subtree becomes new right subtree

How do we get next?

Three possibilities:

- 1. No child nodes
 - Just remove it trivial
- 2. Single child node
 - Remove and relink to parent simple

3. Both children present

- Replace with *next*
- Same left subtree
- Reminder of right subtree becomes new right subtree

Three possibilities:

- 1. No child nodes
 - Just remove it trivial
- 2. Single child node
 - Remove and relink to parent simple

3. Both children present

- Replace with next
- Same left subtree
- Reminder of right subtree becomes new right subtree

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

Binary Search Tree (BST): summary

- Binary tree
 - $\{y. key \le x. key, z. key \ge x. key\}$
 - Operator < defined on keys
- Most operations done in $O(T.hight) \sim O(\log n)$ mean for a random tree worst case is still O(n)
- Dictionary/priority queue

Base operations:

- Search
- Insertion
- Min/max
- Deletion
- Traverse sorted

Idea: guarantee "dense" tree structure

Self-balancing trees

• Ensure tree height to be logarithmic – any O(T.height) operation becomes $O(\log n)$

- AVL, WAVL tree
- Red-black tree
- Splay tree
- B-tree
- T-tree
- •

AVL tree

- Adelson-Velsky and Landis (1962)
- Add balance factor to a node difference in height between right and left subtrees
- A tree is AVL whenever every node's balance factor $\in \{1, 0, -1\}$
- Changing tree structure (introducing new or removing elements) may disturb AVL invariant, so a rebalancing is required

AVL tree

- Adelson-Velsky and Landis
- Add balance factor to a node difference in height between right and left subtrees
- A tree is AVL whenever every node's balance factor $\in \{1, 0, -1\}$
- Changing tree structure (introducing new or removing elements) may disturb AVL invariant, so a rebalancing is required

AVL tree: Insertion

Idea: use BST algorithm, but rebalance the tree with rotations whenever needed

AVL tree: Insertion

Idea: use BST algorithm, but rebalance the tree with rotations whenever needed

- Insert as in BST
- Go up, updating weights and restoring AVL invariant

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node

- Insert as in BST
- Go up, updating weights and restoring AVL invariant
 - Rotate lowest unbalanced node
 - May require multiple rotations (how many?)

AVL tree: Deletion

~Same idea

- Delete a node as if it was a BST
- Go up, updating and rebalancing

AVL tree: Height

How tall is an AVL tree?

AVL tree: Height

How tall is an AVL tree?

• Worst case: all (internal) nodes have balance factor of ± 1

AVL tree: Height

$$N(1) = 1, N(2) = 2$$

How tall is an AVL tree?

- Worst case: all (internal) nodes have balance factor of +1
- Height h: $2^0 + 2^1 + \cdots + 2^h =$ $2^{h+1} - 1 (\ge n)$

N(h-1)

• $h \ge \log n$

18 0 17 20 0 N(h) = 1 + N(h-1) + N(h-2) $N(h) > 2^i N(h - 2i)$ $N(h) > 2^{\frac{h}{2}-1} \to \log(N(h)) > \frac{h}{2} - 1$ 50

AVL tree: Summary

- Guarantees logarithmic complexity
- Easy to implement

Red-black tree

- Additional bit for color: red or black
- Root & all leaf nodes are black
- Red node has only black children
- For each node, all simple paths to leaves have the same number of black nodes (bh – black height)
 - Height difference 2x max

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root is black
- Leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root is black
- Leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

- Root & leaves are black
- Red's children are black
- BH(left) == BH(right)

- Insert new node as in BST
- Paint it red
- Restore RB properties with rotations

No more than 2 adjustments

Red-black tree: deletion

 Based on BST's deletion procedure: replace with next node in the tree & restore RB properties (see [1])

- Root is black
- Leaves are black
- Red's children are black
- BH(left) == BH(right)

Red-black tree: Summary

- Guarantees log complexity despite relaxed height constraint
- Faster in practice* & requires much less memory (sometimes, no additional mem required)

Resources

- [1] Introduction to Algorithms, Thomas H. Cormen, chapters 12,13.
- [2] AVL tree visualization
- [3] Red-black tree visualization
- [4] Real systems balanced trees implementation comparison <u>study</u> by Ben Pfaff

BACKUP