CSE331 Practice Sheet for DFA

ATONU ROY CHOWDHURY

Summer 2025

1 DFA Construction

For each of the following languages, construct a DFA that recognizes the language.

- 1. $L = \{w \in \{0,1\}^* : w \text{ does not contain three consecutive 0s} \}.$
- 2. $L = \{w \in \{a, b, c\}^* : w \text{ contains bbac as a subsequence}\}.$
- 3. $L = \{w \in \{a, b\}^* : w \text{ starts and ends with different symbols}\}.$
- 4. $L = \{w \in \{a, b\}^* : w \text{ starts and ends with the same symbol}\}.$
- 5. $L = \{w \in \{0, 1\}^* : w \text{ ends with the substring 0101}\}.$
- 6. $L = \{w \in \{x, y\}^* : w \text{ ends with the substring } yxxy\}.$
- 7. $L = \{w \in \{0, 1\}^* : |w| \equiv 2 \pmod{4}\}.$
- 8. $L = \{w \in \{0, 1\}^* : \#1s \text{ in } w \equiv 2 \pmod{4}\}.$
- 9. $L = \{w \in \{0,1\}^* : w \text{ (interpreted as a binary number) is divisible by 5}\}.$
- 10. $L = \{w \in \{0, 1, \#\}^* : \# \notin w \text{ and the number of 0s is not divisible by 3}\}$. You can also do it by showing $L = L_1 \cap L_2$, where:

$$L_1 = \{ w \in \{0, 1, \#\}^* : \# \notin w \}, \quad L_2 = \{ w \in \{0, 1\}^* : \# 0s \not\equiv 0 \pmod{3} \};$$

and then performing the cross-product construction for intersection.

- 11. $L = \{w \in \{a, b, c\}^* : ba \text{ is not a substring and } w \text{ ends with } cb\}.$
- 12. $L = \{w \in \{0,1\}^* : w \text{ contains at least three 0s or exactly two 1s.} \}$
- 13. $L = \{w \in \{a, b\}^* : \text{the second last symbol of } w \text{ is } a\}.$
- 14. $L = \{w \in \{0, 1\}^* : \text{the third last symbol of } w \text{ is } 1\}.$
- 15. $L = \{w \in \{a,b\}^* : \text{the last letter appears at least twice in } w\}.$

2 More DFA

For each of the following languages, construct a DFA that recognizes the language.

- 1. $L = \{w \in \{0, 1\}^* : \#0 \#1 \equiv 0 \pmod{3}\}.$
- 2. $L = \{w \in \{0,1\}^* : \text{every third symbol of } w \text{ is } 1\}$
- 3. $L = \{w \in \{0, 1\}^* : \text{every symbol at an even index of } w \text{ is } 0\}$
- 4. $L = \{w \in \{a, b\}^* : w \text{ contains exactly one occurrence of the substring } ab\}$
- 5. $L = \{w \in \{a, b\}^* : w \text{ contains exactly two occurrences of the substring ab}\}$
- 6. $L = \{w \in \{0,1\}^* : w \text{ contains at least two occurrences of the substring 00}\}$
- 7. $L = \{w \in \{0,1\}^* : w \text{ contains exactly two occurrences of the substring 00}\}$
- 8. $L = \{w \in \{0,1\}^* : w \text{ contains at most two occurrences of the substring 00}\}$
- 9. $L = \{w \in \{0,1\}^* : \text{an even number of 0s follow the last 1 in } w\}$
- 10. $L = \{w \in \{a, b\}^* : \text{every b in } w \text{ is followed by at least one a} \}$
- 11. $L = \{w \in \{0,1\}^* : \text{the number of 0s between any two successive 1s is even}\}$
- 12. $L = \{w \in \{0,1\}^* : 00 \text{ does not occur as a substring before the first 11}\}.$
- 13. $L = \{w \in \{0,1\}^* : 00 \text{ does not occur as a subsequence before the first 11}\}.$
- 14. $L = \{w \in \{0,1\}^* : w \text{ contains the substring } 01^m 0, \ m \equiv 0 \pmod{3} \},$
- 15. $L = \{w \in \{0,1\}^* : w \text{ contains the substring } 01^m 0, \ m \equiv 2 \pmod{3} \}.$
- 16. $L = \{w = 0^m 1^n : m, n \text{ are odd}\},\$
- 17. $L = \{w = 0^m 1^n : m, n \text{ are even}\}$. Alternatively, prove $L = L_1 \circ L_2$ is regular, where:

$$L_1 = \{0^m : m \text{ even}\}, L_2 = \{1^n : n \text{ even}\}.$$

3 Further DFA

Problem 1. Let $\Sigma = \{0, 1\}$, and define:

$$L_1 = \{\mathbf{1}^m : m \text{ is odd}\}\$$

 $L_2 = \{w \in \Sigma^* : \text{no substring of } w \text{ belongs to } L_1\}$

- (a) Give a length-6 string that belongs to L_2 .
- (b) Draw the state diagram of a DFA that accepts L_1 .
- (c) Draw the state diagram of a DFA that accepts L_2 .
- (d) Draw a DFA that accepts $L_1 \cap L_2$ (you may use product construction or simplify).

Problem 2. Define the symmetric difference:

$$L_1 \triangle L_2 = (L_1 \cup L_2) \setminus (L_1 \cap L_2)$$

Let $\Sigma = \{0, 1\}$ and define:

$$A = \{w \in \Sigma^* : 3 \le |w| \le 5\}$$

$$B = \{w \in \Sigma^* : 2 \le |w| \le 4\}$$

$$C = \{w \in \Sigma^* : |w| \text{ is odd}\}$$

- (a) Construct a DFA for A.
- (b) Construct a DFA for B.
- (c) Construct a DFA for $A \triangle B$.
- (d) Using product construction, how many states does the DFA for $(A\triangle B) \cup C$ have?
- (e) Give a 5-state DFA that recognizes $(A \triangle B) \cup C$.

Problem 3. Let $\Sigma = \{0, 1\}$ and define:

$$L_1 = \{ w \in \Sigma^* : \text{every second symbol is 0} \}$$

 $L_2 = \{ w \in \Sigma^* : \text{every third symbol is 1} \}$

- (a) Give a length-5 string in $L_1 \cap L_2$.
- (b) Construct a DFA for L_1 .
- (c) Construct a DFA for L_2 .
- (d) Construct a DFA for $L_1 \cap L_2$.

Problem 4. Let $\Sigma = \{0, 1\}$ and define:

$$L_1 = \{0, 10\}$$

 $L_2 = L_1^*$
 $L_3 = \{w \in \Sigma^* : |w| = 4\}$

- (a) List all strings in $L_2 \cap L_3$.
- (b) Draw a DFA for L_1 .
- (c) Draw a DFA for L_2 .