Introduction to Linear Algebra (MTH 113M)

Assignment 1, Jan 7, 2025

Only problems 2, 3, 5, 6, 7 will be discussed in the tutorial.

1. Given $A \in M_n(F)$, show that A can be written uniquely as

$$A = B + C$$

where B is a symmetric matrix and C is a skew-symmetric matrix.

- **2.** Let $A \in M_{m,n}(F)$, $B \in M_{n,p}(F)$, $C \in M_{p,q}(F)$. Show that
 - (AB)C = A(BC),
 - $(AB)^T = B^T A^T$ and $(AB)^* = B^* A^*$.
- **3.** Let $A, B \in M_{m,n}(\mathbb{R})$ such that Ax = Bx for all $x \in \mathbb{R}^n$. Then prove that A = B.
- **4.** Let A be an upper-triangular matrix. If $A^*A = AA^*$ then prove that A is a diagonal matrix. A similar result holds if A is a lower-triangular matrix.
- **5.** A square matrix $A \in M_n(F)$ is said to be nilpotent if $A^k = 0$ for some natural number k.
 - Give example of non-zero nilpotent matrices,
 - Prove that if A is nilpotent then $A + \mathbb{I}_n$ is an invertible matrix, where \mathbb{I}_n is the identity matrix of order n.
- **6.** Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix i.e. $A^* = A$.
 - Then the diagonal entries of A are necessarily real numbers.
 - For each $B \in M_n(\mathbb{C})$ prove that B^*AB is a Hermitian matrix.
 - Further if $A^2 = 0$ then show that A = 0.
 - Then x^*Ax is a real number, for any $x \in M_{n,1}(\mathbb{C})$.
- 7. Given a square matrix $A \in M_n(F)$, the *trace* of A denoted by Tr(A), is defined to be the sum of all diagonal entries, i.e.,

$$\operatorname{Tr}(A) := \sum_{i=1}^{n} a_{i,i}.$$

1

- Let $B \in M_n(F)$, then show that Tr(AB) = Tr(BA)
- Show that if A is invertible then $Tr(ABA^{-1}) = Tr(B)$.