Multilingual FrameNet

Vancouver BC Meeting après ACL 2017 Aug 5, 2017

Outline

Aligning FrameNet Projects

- Current status
 - ICSI FN vs. the others
 - degree of overlap
 - graph matching algorithm
 - manual vs. automatic correction of alignment
- Practical aspects
 - Tools
 - Restructuring
 - Versioning
 - Maintenance and growth of MLFN

The current state: Matching Frames

Stats:

- The rosy picture: relative coverage
 - That is, ratio of frames covered in the various FN projects (w.r.t. Berkeley FN)
 - It might seem that there's a relatively good overlap, in general
 - Exceptions: SALSA and FN Br/Copa

Matching Frames

The current state: Relative Sizes

Stats:

- Here instead the size ratios, still w.r.t.
 Berkeley FN
 - Some projects cover only a few percent of the frames in BFN

Chart title

FN Projects

The current state: Compare and Contrast

Stats:

- Under the surface
 - Some projects include only a small part of the frames contained in BFN
- More importantly:
 - considerable differences
 - In terms of **LU**s
 - And in terms of annotated data

Matching Frames and Relative Sizes

- We can divide the non-English FrameNets in two coarse "classes"
 - The ones directly derived from some version of EnFN, but only extended Frames/FEs in a (relatively) limited way
 - These used EnFN Frames as "templates"
 - and filled in LUs and Annotations
 - SpaFN
 - JFN
 - o BrFN(Copa)
 - The ones that diverged a lot more,
 - creating a number of new (Proto)Frames
 - SALSA
 - SweFN

Which seems to create two different sets problems:

- In the first case:
 - We can rely on BFN's elements and IDs, and,
 - for each pair of (BFN, xFN):
 - Compare the single Lexical Units for each Frame
 - Compare Frames, FEs, SemTypes and Relations
 - Come up with a metric to assess the similarity
 - Along the lines of the Jaccard Index
- In the second, we cannot; so we either
 - Assume no overlap with any Frame in BFN
 - Or find in BNF the closest matching Frame
 - Which assumes that we already have a reliable mapping among all the overlapping frames

- Further problem:
 - The different projects branched off from different versions of BFN
 - Some from FN 1.5 (Spanish, Korean), some from even earlier versions (FN 1.2)
- Thus, even if we limit ourselves to the first class,
 - we now have two subproblems:
 - Find a mapping from the current BNF to the BNF version used by the project at hand (let's call it xFN)
 - Find a mapping from the earlier BNF version to xFN
- Finally, compose the two mappings

- Interaction of BFN with other languages:
 - From the history of some projects (e.g. SALSA) we know that:
 - Project xFN starts annotating, and adds Frames
 - Some of which, later, in parallel, get added to BFN
 - Not exactly the same Frames, just very similar
 - Those BFN Frames then get altered to accommodate differences
 - Some other xFN Frames prompt creation of new BFN Frames
- BFN's geography has been shifting
 - Which is true of the other FN Projects' as well
 - And so will MLFN's arguably to a greater extent
- Bottom line:

We need the ability to track restructuring as this tectonic shift takes place

The Current State: FN as a Graph

Which brings us to the first step:

- We've settled for a graph DB
 - Some projects (BrFN) have taken relations to the next level
 - Restructuring is easier
- FN matching as graph matching
 - We want to exploit a host of graph algorithms
 - Much easier to implement than on a relational DB

The Current State: the General Strategy

- We start by matching projects
 - Pairwise, i.e. we compare each project with BFN, and
 - For each matching pair, we evaluate the overlap
 - O But how?
 - Now we have a new problem

We might find hints to a solution by looking at the BRM™

The Current State: the General Strategy — BRM™

- The Berkeley Recommended Method, or BRM™
 - Accurate time of genesis unknown (to me), but plausibly around the SALSA project era
 - Used (or recommended) to avoid duplicate frame creation in other languages
 - In practice:
 - For each Frame in project xFN
 - Make a list of words in it.
 - Translate them
 - And make sure that no BFN Frame contains them
- **Q**: Can we operationalize this and scale it
 - out? (to more xFNs)
 - up? (to more data)?

The Current State: the General Strategy — BRM™

- Q: Can we operationalize this and scale it
 - out? (to more xFNs)
 - up? (to more data)?
- A: Most likely, yes!
 - o In different ways, with different degrees of sophistication
- A simple one: dictionaries?
 - We can use one of the many lexical resources available
 - Including Open Multilingual Wordnet (and similar)
 - We could try to include hypernyms and, if we're careful, synonyms
- But we are FrameNetters
 - Se we care about the syntactic and semantic environments in which WFs are used
- Q: Can we do better than that?

The Current State: the General Strategy — Problems

- Q: Can we *try* to include syntactic and semantic environments?
- A: Well, sort of.

We could try to use (some form of) distributional word representation

- Which take word embeddings into consideration, and
 - map those onto linear spaces (Word2vec, GloVe)
 - These methods look at word windows of a few words
 - Syntactic relations do not matter
- There are more sophisticated methods that do look at them
 - (Pado and Lapata 2007)
- But all these leave us with another subtask
 - Now we have to <u>align vector representations!</u>

The Current State: the General Strategy — Problems

- Q: Can we *try* to include syntactic and semantic environments *while aligning vector representations*?
- A: Well, sort of.
 - To avoid the subtask of aligning vectors, we could try to use (some form of) MT techniques
 - specifically, word alignment
 - Virtually all the statistical word alignment algorithms take context into some consideration
 - Although most of them do not look at syntactic relations
 - Chiang (2010) does
 - Some try to align at the phrasal level
- All these methods require us to train each language pair individually
 - Which might imply nontrivial effort we need lots of data to get reliable results!

The Current State: the General Strategy — Solution?

- Q: Can we *try* to include syntactic and semantic environments
 - While aligning vector representations?
 - Without training for each pair of languages?
 - A: Well, yes!
 - Joint-space word embeddings! (Hermann and Blunsom 2014)
 - Vector representation
 - In a shared space for all languages
 - Trained on parallel text
 - Captures a semantic representation of the shared meaning
 - The composition functions (f and g) can include syntactic information

The Current State: the General Strategy — Solution?

- Joint-space embeddings will allow us
 - To train once with all the languages we need
 - We need a parallel corpus containing the ones we need (the paper uses the TED talks)
 - To implement BRM[™] automatically in a relatively accurate way
 - To test properties of vector semantic spaces
 - Do FrameNet Frames partition the "semantic space" in a different way than the algorithm itself?
 - That is: are projections of a Frame's LUs "close together" or not?

Practicalities: Graph Alignment and Restructuring

Going back to the graph alignment problem:

- What history has taught us:
 - xFNs branching off at different times
 - Parallel creation of frames in BFN and other xFNs
 - Adaptation of BNF Frames to similar Frames in other xFNs
 - "Backporting" of Frames from xFNs to BFN

Practicalities: Graph Alignment and Restructuring

How to learn from history (and ease the pain)

- We need a tool able to do the kind of restructuring previously outlined
 - Based on *formal methods* (se we can trust it 100%)
- Also: wouldn't a versioned database be nice?
 - Able to to go back to any tagged version
 - And anything in between
 - Like Git, Mercurial, Svn, CVS, Darcs, ...
 - But able to deal with FN elements (Frames, FEs, LUs, Annotations)
 at that level
- And how about Constructions?
 - And the further restructuring that's going to be needed?

Practicalities: Maintenance and Growth

- Q: How do we go from a snapshot alignment to continuously aligned MLFN?
 - That is, how do we manage the growth in time of the new resource?
 - More practically: who's doing what?
 - Is ICSI supposed to deliver an infrastructure that the other projects can exploit?
 - Or should some data exchange format be defined?
 - Or anything in between?
- I hope we can discuss these issues and others later today
 - Feedback very much appreciated!
- Thank you!