Chem 141 Exam 2a Fall 2006

Name:
Show all work to receive full credit. You must use the conversion factor method for all problems involving moles!
Q1. How many moles of aluminum are there in an aluminum can with a mass of 3.20 gr (6 pts.)

Q2. Calculate the percent composition by element of Gypsum ($CaSO_4 \cdot 2H_2O$), a mineral used in the manufacture of plaster. (8 pts.)

Q3. Balance the following equations using the lowest whole-number coefficients: (12 pts.)

a.
$$\underline{\hspace{1cm}}_{C_4}H_{10} + \underline{\hspace{1cm}}_{C_2} \rightarrow \underline{\hspace{1cm}}_{CO_2} + \underline{\hspace{1cm}}_{H_2}O$$

b.
$$\underline{\hspace{0.5cm}}$$
 NaNO₃ + $\underline{\hspace{0.5cm}}$ FeSO₄ \Rightarrow $\underline{\hspace{0.5cm}}$ Na₂SO₄ + $\underline{\hspace{0.5cm}}$ Fe(NO₃)₂

c. __AgNO₃ + __BaCl₂
$$\rightarrow$$
 __AgCl + __Ba(NO₃)₂

Q4. (a) How many grams of H_2O are formed from the complete combustion of 25.7 g of benzene, C_6H_6 in an excess of O_2 ? (8 pts.)

The unbalanced equation is: $C_6H_6 + O_2 \rightarrow CO_2 + H_2O$.

- (b) If 12.7 g of H₂O were formed, then what is the percent yield of this reaction? (2 pts.)
- Q5. Calculate the molar mass of: (6 pts.)
- (a) benzene, C₆H₆
- (b) water, H₂O
- (c) DDT, $C_{14}H_9Cl_5$

Q6. HCl reacts with Ba(OH) ₂ according to the equation:
$2HCl(aq) + Ba(OH)_2 \rightarrow BaCl_2(aq) + 2H_2O(l)$
Suppose you mix 5 moles of HCl with 4 moles of Ba(OH) ₂ . How many moles of BaCl ₂ are formed? Which species is the <i>limiting reagent?</i> (5 pts.)
Q7. A sample of white gold is formed from mixing 2.5 g of zinc with 56.2 g of gold. Identify the solute and the solvent. (4 pts.)
Q8. Give an example of an electrolyte, and a non-electrolyte. (4 pts.)
Electrolyte: Non-Electrolyte:
Q9. Write the <i>balanced</i> molecular, full ionic, and net ionic equations for the reaction between
aqueous lithium sulfate, Li ₂ SO ₄ (aq), and aqueous barium bicarbonate, Ba(HCO ₃) ₂ (aq). Be sure to include state symbols. (12 pts.)
aqueous lithium sulfate, Li ₂ SO ₄ (aq), and aqueous barium bicarbonate, Ba(HCO ₃) ₂ (aq). Be sure
aqueous lithium sulfate, Li ₂ SO ₄ (aq), and aqueous barium bicarbonate, Ba(HCO ₃) ₂ (aq). Be sure to include state symbols. (12 pts.)
aqueous lithium sulfate, Li ₂ SO ₄ (aq), and aqueous barium bicarbonate, Ba(HCO ₃) ₂ (aq). Be sure to include state symbols. (12 pts.) Molecular.
aqueous lithium sulfate, Li ₂ SO ₄ (aq), and aqueous barium bicarbonate, Ba(HCO ₃) ₂ (aq). Be sure to include state symbols. (12 pts.) Molecular.

Q10. Identify the Brønsted acid in the following reaction: (3 pts.)

$$H_3PO_4 + H_2SO_4 \rightarrow HSO_4^- + H_4PO_4^+$$

Q11. (a) Assign oxidation numbers to each atom in the following (unbalanced) redox reaction: (8 pts.)

$$MnO_2 + NO_2^- \rightarrow Mn^{2+} + NO_3^-$$

(b) Identify the reducing agent.

Q12. How many moles of $CO_2(g)$ are formed when 14.5 mL of 0.338 M HCl is added to an excess amount of chalk $CaCO_3(s)$? Start by writing a *balanced* chemical equation. (8 pts.)

Q13. How many moles of H ₂ SO ₄ are contained in 57.6 mL of a 12.3 M solution? (4 pts.)
Q14. Predict whether the following compounds will be soluble or insoluble in water: (5 pts.)
a) Lithium hydroxide b) Iron(III) carbonate c) Magnesium chlorate d) Copper(I) nitrate e) Ammonium sulfate
Q15. Explain how you could prepare 1.00-L of a 3.25 M HNO ₃ solution from a stock solution of 15.0 M HNO ₃ . (6 pts.)
Q16. BONUS. Explain the basic operation of a mass spectrometer. (5 pts.)

Useful Information

			Perio	dic T	able o	of the	Elem	ents									
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1 H]																He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Ве											В	c	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
	ſ	57	58	59	60	61	62	63	64	65		67	68	69	70	ī	
	*		Ce	Pr	Nd	Pm	Sm	Eu	Ğd	Τ̈́b	66 Dar		Er		Ϋ́b		
	-	La 138.91	140.12	140.91	NG 144.24	PM [145]	5M 150.36	EU 151.96	157.25	1 D 158.93	Dy 162.50	Ho 164.93	⊑Г 167.26	Tm 168.93	Y D 173.04		
	}	89	90	91	92	93	94	95	96	97	98	99	107.26	100.93	102		
	**	Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

TABLE 4.2 Solubility in Water	Rules for Common Ionic Compounds at 25°C							
Soluble Compounds	Exceptions							
Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²⁻)	Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+} Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}							
Insoluble Compounds	Exceptions							
Carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) , chromates (CrO_4^{2-}) , and sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion							
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion							

$$N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$$
 $M_{\rm i} V_{\rm i} = M_{\rm f} V_{\rm f}$