1 Метод на Фурие за уравнението на струната.

където a>0 е константа, $\varphi(x)\in C^2[0,L],\ \psi(x)\in C^1[0,L]$ и са изпълнени условията за съгласуване $\varphi(0)=\varphi''(0)=\psi(0)=0,\ \varphi(L)=\varphi''(L)=\psi(L)=0.$

В сила е следната

Теорема 1.1 При така напарвените предположения задачта (1) притежава единствено решение $u \in C^2(\bar{G})$, където $G := \{(x,t): 0 < x < L, t > 0\}.$

Ще скицираме доказателството на съществуване на решение. В тривиалният случай на нулеви начални данни $u(x,t)\equiv 0$ е решение на тази задача. В останилте случаи, ще намерим ненулево решение $u(x,t)\not\equiv 0$ на задача (1) с помощта на метода на Фурие, познат още като метод на разделяне на променливите.

Търсим решение от вида

$$u(x,t) = X(x)T(t). (2)$$

Заместваме в уравнението на струната от задача (1) и получаваме

$$X(x)T''(t) = a^{2}X''(x)T(t)$$
(3)

за $(x,t) \in G$.

В точките от G, в които $X(x)T(t) \neq 0$ имаме

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda. \tag{4}$$

Като фиксираме x и оставим t да се мени, заключаваме, че λ не зависи от t. Като фиксираме t и оставим x да се мени, заключаваме, че λ не зависи от x. Следователно λ е константа. Така получаваме следните две обикновени диференциални уравнения от втори ред

$$X''(x) + \lambda X(x) = 0, (5)$$

$$T''(t) + \lambda a^2 T(t) = 0, \tag{6}$$

Ще покажем, че уравненията (5) и (6) са изпълнение и в точките от G, в които X(x)T(t) се анулира. Тъй като $u(x,t)\not\equiv 0$, то съществува точка $(x_0,t_0)\in G$, такава че $u(x_0,t_0)=X(x_0)T(t_0)\not\equiv 0$. Тогава при $t=t_0$ от (3) получаваме

$$X''(x) = \frac{T''(t_0)}{a^2 T(t_0)} X(x) = \mu X(x).$$

По същия начин при $x = x_0$ получаваме

$$T''(t) = a^2 \frac{X''(x_0)}{X(x_0)} T(t) = \nu T(t).$$

Сега (4) при $x = x_0$ и $t = t_0$ ни дава, че $\mu = \nu = \lambda$.

От граничните условия в (1) получаваме

$$u(0,t) = X(0)T(t) = 0$$
 и $u(L,t) = X(L)T(t) = 0$ за $t \ge 0$.

Следователно

$$X(0) = 0, \ X(L) = 0. \tag{7}$$

JLZO: T(+) +0

По този начин достигнахме до следната задача на Щурм - Лиувил (5), (7) за функцията X(x):

 $\left\{ \begin{array}{c} X \times \\ \left(A^2 + \lambda \right) \right\} \left\{ \begin{array}{c} X''(x) + \lambda X(x) = 0, \ 0 < x < L, \\ X(0) = 0, \ X(L) = 0. \end{array} \right.$ (8)

Р/ 🗸) С Це търсим ненулеви решения на тази задача. Уравнението (5) е линейно и има характеристичен полином

 $P(lpha)=lpha^2+\lambda.$ Ще разгледаме три случая:

і.) Ако $\lambda < 0$, то $P(\alpha)$ има два различни реални корена $\alpha_1 = -\sqrt{-\lambda}$ и $\alpha_2 = \sqrt{-\lambda}$. Следователно фундаментална система от решения (ФСР) на (5) е

$$\Phi$$
CP : $\left\{ e^{-\sqrt{-\lambda}x}, e^{\sqrt{-\lambda}x} \right\}$.

Общото решение на (5) в този случай е

$$X(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x},$$

където C_1 и C_2 са произволни реални константи.

Сега условията (7) ни дават

$$X(0) = C_1 + C_2 = 0, \ X(L) = C_1 e^{\sqrt{-\lambda}L} + C_2 e^{-\sqrt{-\lambda}L} = 0.$$

Следователно $C_2=-C_1$ и $C_1\left(e^{\sqrt{-\lambda}L}-e^{-\sqrt{-\lambda}L}\right)=0$. Така получаваме $C_1=C_2=0$ и задачата на Щурм-Лиувил в този случай има само тривиално решение $X(x)\equiv 0$.

ii.) Ако $\lambda = 0$, то $P(\alpha)$ има двоен корен реални корена $\alpha_1 = \alpha_2 = 0$. Следователно фундаментална система от решения на (5) е

$$\Phi CP : \{1, x\}.$$

Общото решение на (5) в този случай е

$$X(x) = C_1 + C_2 x,$$

където C_1 и C_2 са произволни реални константи.

Сега условията (7) ни дават

$$X(0) = C_1 = 0, \ X(L) = C_1 + C_2 L = 0.$$

Следователно $C_1 = C_2 = 0$ и задачата на Щурм-Лиувил в този случай има само тривиално решение $X(x) \equiv 0$.

iii.) Ако $\lambda > 0$, то $P(\alpha)$ има два комплексни корена $\alpha_1 = -i\sqrt{\lambda}$ и $\alpha_2 = i\sqrt{\lambda}$. Следователно фундаментална система от решения (ФСР) на (5) е

$$\Phi$$
CP: $\left\{\cos\left(\sqrt{\lambda}x\right), \sin\left(\sqrt{\lambda}x\right)\right\}$.

Общото решение на (5) в този случай е

$$X(x) = C_1 \cos\left(\sqrt{\lambda}x\right) + C_2 \sin\left(\sqrt{\lambda}x\right),$$

където C_1 и C_2 са произволни реални константи.

Сега условията (7) ни дават

$$X(0) = C_1 = 0, \ X(L) = C_1 \cos\left(\sqrt{\lambda}L\right) + C_2 \sin\left(\sqrt{\lambda}L\right) = 0.$$

Следователно

$$C_2 \sin\left(\sqrt{\lambda}L\right) = 0.$$

Има две възможност

iii.1.) $\sin\left(\sqrt{\lambda}\,L\right)\neq 0$. Тогава $C_2=0$ и отново получаваме тривиалното решение

iii.2.) $\sin\left(\sqrt{\lambda}\,L\right)=0$. Това е възможно, ако $\lambda>0$ е такова, че $\sqrt{\lambda}\,L=k\pi,\;k=0$ $1, 2, \ldots$, т.е. ако λ е някоя от константите

$$\lambda_k := \left(\underline{k\pi}\right)^2, \ k = 1, 2, \dots$$

Тогава задачата на Щрум Лиувил има нетривиално решение $cX_k(x)$, където c е произволна константа, а

$$X_k(x) := \sin\left(\frac{k\pi}{L}x\right), \ k = 1, 2, \dots$$

Функциите $X_k(x)$ се наричат собствени функции, а λ_k - собствени стойности на задачата на Щурм-Лиувил.

Ще решим уравнението (6) при $\lambda = \lambda_k$. То е линейното и има характеристичен $T'' + \lambda_{k} \omega^{2} T = 0$ полином

$$Q(\alpha) = \alpha^2 + \lambda_k a^2,$$

който има корени $\alpha_{1,2}=\pm \frac{ak\pi}{L}$. Следователно общото решение на уравнението (6) е

$$T_k(x) = A_k \cos\left(\frac{ak\pi}{L}t\right) + B_k \sin\left(\frac{ak\pi}{L}t\right), \ k = 1, 2, ...,$$
(9)

където A_k и B_k са произволни реални константи.

По този начин намерихме функциите

$$u_k(x,t) = X_k(x)T_k(t)$$

$$= \left\{ A_k \cos\left(\frac{ak\pi}{L}t\right) + B_k \sin\left(\frac{ak\pi}{L}t\right) \right\} \sin\left(\frac{k\pi}{L}x\right), \ k = 1, 2, ...,$$
(10)

които удовлетворяват уравнението и граничните условия в изходната задача (1). Те обаче не удовлетворяват началните условия, освен в случаите на много специален избор на $\varphi(x)$ и $\psi(x)$. Например равенството

$$u_k(x,0) = A_k \sin\left(\frac{k\pi}{L}x\right) = \underline{\varphi(x)}$$

е възможно само, ако $\varphi(x) = A_k X_k(x)$.

По тази причина ще търсим решението на задачата (1) в следния вид

$$\underbrace{u(x,t)} = \sum_{k=1}^{\infty} u_k(x,t)
= \left(\sum_{k=1}^{\infty} \left\{ A_k \cos\left(\frac{ak\pi}{L}t\right) + B_k \sin\left(\frac{ak\pi}{L}t\right) \right\} \sin\left(\frac{k\pi}{L}x\right). \tag{11}$$

От първото начално условие получаваме

словие получаваме
$$u(x,0)=\varphi(x)=\sum_{k=1}^{\infty}A_k\sin\left(\frac{k\pi}{L}x\right).$$
 k = 1

 $\{\sin\left(\frac{k\pi}{L}x\right)\}_{k=1}^\infty$ е пълна и ортогонална система в $L_2(0,L)$. Скаларното произведение = $\sin\left(\frac{k\pi}{L}x\right)$ в $L_2(0,L)$ се дефинира с

Лесно можем да проверим, че

$$(X_n(x), X_m(x)) = \left(\sin\left(\frac{n\pi}{L}x\right), \sin\left(\frac{m\pi}{L}x\right)\right) = \begin{cases} 0, & n \neq m; \\ \frac{L}{2}, & n = m. \end{cases}$$

Наистина

$$(X_n(x), X_n(x)) = \int_0^L \sin^2\left(\frac{n\pi}{L}x\right) dx$$

$$= \frac{1}{2} \int_0^L \left[1 - \cos\left(\frac{2n\pi}{L}x\right)\right] dx$$

$$= \frac{1}{2} \left[x - \frac{L}{2n\pi} \sin\left(\frac{2n\pi}{L}x\right)\right] \Big|_0^L$$

$$= \frac{L}{2}.$$

При $n \neq m$ получаваме

$$(X_m(x), X_n(x)) = \int_0^L \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{n\pi}{L}x\right) dx$$

$$= \frac{1}{2} \int_0^L \left[\cos\left(\frac{(m-n)\pi}{L}x\right) - \cos\left(\frac{(m+n)\pi}{L}x\right)\right] dx$$

$$= \frac{1}{2} \left[\frac{L}{(m-n)\pi} \sin\left(\frac{(m-n)\pi}{L}x\right) - \frac{L}{(m+n)\pi} \sin\left(\frac{(m+n)\pi}{L}x\right)\right] \Big|_0^L$$

$$= 0.$$

Да фиксираме едно k и да умножим равенствоту

$$\sum_{s=1}^{\infty} A_s \sin\left(-\frac{\mathbf{\xi} \cdot \pi}{2L}x\right) = \varphi(x)$$

с $X_k(x)$. След това да интегрираме от 0 до L. Ще получим

$$\sum_{s=0}^{\infty} A_s \int_0^L X_s(x) X_k(x) dx = \int_0^L \varphi(x) X_k(x) dx.$$

$$\frac{L}{2} A_k = (\varphi(x), X_k(x)).$$

Редът

Следователно

$$\sum_{k=1}^{\infty} (\varphi(x), X_k(x)) X_k(x)$$

се нарича ред на Фурие на функцията $\varphi(x)$ по системата $\{X_k(x)\}_{k=1}^{\infty}$. Така получихме, че

$$A_k = \frac{2}{L}(\varphi(x), X_k(x)) = \frac{2}{L} \int_0^L \varphi(x) \sin\left(\frac{k\pi}{L}x\right) dx.$$

За да удовлетворим второто начално условие първо ще пресметнем

$$u_t(x,t) = \sum_{k=1}^{\infty} \frac{ak\pi}{L} \left\{ -A_k \sin\left(\frac{ak\pi}{L}t\right) + B_k \cos\left(\frac{ak\pi}{L}t\right) \right\} \sin\left(\frac{k\pi}{L}x\right).$$

Следователно

$$u_t(x,0) = \sum_{k=1}^{\infty} \frac{ak\pi}{L} B_k \sin\left(\frac{k\pi}{L}x\right) = \psi(x).$$

По налогичен начин както при определянето на A_k намираме

$$B_k = \frac{2}{ak\pi} \int_0^L \underline{\psi(x)} \sin\left(\frac{k\pi}{L}x\right) dx. \tag{12}$$

С тези изрази за A_k и B_k редът (11), както и получените от него редове с почленно диференциране един и два пъти по x и t са равномерно сходящи в ивицата \bar{G} . Следователно за сумата нареда (11) ще имаме $u(x,t) \in C^2(\bar{G})$. Може ад се покаже, че u(x,t) е решение на изходната задача.

Пример 1.2 (Стоящи вълни.) Ще разгледаме движението на струната, когато функцията $\varphi(x)$ съвпада с някоя от собствените функции на задачата на Щурм – Луивил, а началната скорост е нула. Нека трептенето на ограничена струна със закрепени краища в точките x=0 и $x=L=5\pi$ се моделира със следната смесена задача:

Както знаем собствените стойности и собствените функции на задачата на Щурм - Лиувил (5), (7) са съответно

$$\lambda_k = \frac{k^2}{25}, X_k(x) = \sin\frac{kx}{5}, k = 1, 2, \dots$$
 (14)

(15)

Следователно функцията в началното условие е $\varphi(x) = X_5(x)$ и ако използваме метода на Фурие и търсим решението във вид на ред, то в този ред ще има само едно ненулево събираемо. Наистина, от

$$A_k = \frac{2}{L}(\varphi(x), X_k(x)) = \frac{2}{5\pi}(X_5(x), X_k(x)) = \begin{cases} 1, & k = 5\\ 0, & k \neq 5 \end{cases}$$

И

$$B_k = \frac{2}{ak\pi}(\psi(x), X_k(x)) = \frac{2}{ak\pi}(0, X_k(x)) = 0, \ k = 1, 2, \dots$$

намираме, че решението на задачата е

$$u(x,t) = u_5(x,t) = \sin x \cos t.$$

Получихме вълна, която осцилира във времето, но точките от струната с абсциси $x=0,\,x=\pi,\,x=2\pi,\,x=3\pi,\,x=4\pi$ и $x=5\pi$ не се движат (амплитудата в тях е винаги нула, u=0). Те се наричат възли (nodes). Точките с абсциси $x=\frac{\pi}{2},\,x=\frac{3\pi}{2},\,x=\frac{5\pi}{2},\,x=\frac{7\pi}{2}$ и $x=\frac{9\pi}{2}$ се наричат анти-възли (anti-nodes) – в тях амплитудата е максимална. Такива вълни се наричат стоящи вълни.

$$Y = X_{5}$$
 $Y = 0$
 $Y = X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 0$
 $Y = 1 \times_{3} + X_{5}$
 $Y = 1 \times_{3}$