ESTRUCTURAS DE CONTROL

Introducción

Como se puede observar, los problemas que se han presentado hasta el momento no implican cuestionamientos como: "qué pasa si no le gusta con azúcar", o bien, "qué pasa si le gusta más caliente", esto en el algoritmo de preparar una taza de café, donde se puede seguir haciendo muchos cuestionamientos que conducen a tomar una decisión. Por consiguiente, los algoritmos, en determinados momentos, requieren ser selectivos en lo que respecta a las acciones que deben seguir, basándose en una respuesta de un determinado cuestionamiento que se formuló para la solución del problema planteado.

De aquí que las estructuras selectivas para los algoritmos sean tan importantes, de modo que en la mayoría de los problemas se tiene presente una estructura selectiva, que implica seguir o no un determinado flujo de secuencia del problema en cuestión.

Estructuras selectivas

En los algoritmos para la solución de problemas donde se utilizan estructuras selectivas se emplean frases que están estructuradas de forma adecuada dentro del pseudocódigo. En el caso del diagrama de flujo, también se estructura de una forma semejante. Ambos casos se muestran en la figura 3.1. En el caso del diagrama N/S con estructuras selectivas, se representa como se muestra en la figura 3.2.

Figura 3.1 Forma de representar el algoritmo de una estructura selectiva.

Realice un algoritmo para determinar si un número es positivo o negativo. Represéntelo en pseudocódigo, diagrama de flujo y diagrama N/S.

Como ya se mencionó anteriormente, para resolver cualquier problema se debe partir de la primicia de conocer qué variables son necesarias para resolverlo, sobre todo en aquéllos que no requieren de muchos identificadores en el proceso de solución, cuando esto sucede se puede proceder a generar primeramente la tabla de variables, aunque es posible establecerla al final o paralelamente al momento de la solución del problema, ya que a medida que se avanza con la solución surge la necesidad de utilizar nuevas variables.

Para este caso, la tabla 3.2 muestra las variables que se requieren en la solución del problema.

Nombre de la variable	Descripción	Tipo
NÚM	Valor para determinar su signo	Entero
R	Resultado del signo del valor	String

Tabla 3.2 Variables utilizadas para determinar si un número es positivo o negativo.

Ejemplo 3.4

Almacenes "El harapiento distinguido" tiene una promoción: a todos los trajes que tienen un precio superior a \$2500.00 se les aplicará un descuento de 15 %, a todos los demás se les aplicará sólo 8 %. Realice un algoritmo para determinar el precio final que debe pagar una persona por comprar un traje y de cuánto es el descuento que obtendrá. Represéntelo mediante el pseudocódigo, el diagrama de flujo y el diagrama N/S.

El pseudocódigo 3.4 representa el algoritmo para determinar el descuento y el precio final que tendrá un determinado traje.

Ejemplo 3.5

Se requiere determinar cuál de tres cantidades proporcionadas es la mayor. Realizar su respectivo algoritmo y representarlo mediante un diagrama de flujo, pseudocódigo y diagrama N/S.

Las variables que intervienen en la solución de este problema se muestran en la tabla 3.5.

Nombre de la variable	Descripción	Tipo
A	Primer valor	Entero o real
В	Segundo valor	Entero o real
С	Tercer valor	Entero o real
M	Valor mayor	Entero o real

Tabla 3.5 Variables utilizadas para determinar cuál de tres cantidades es la mayor.

"La langosta ahumada" es una empresa dedicada a ofrecer banquetes; sus tarifas son las siguientes: el costo de platillo por persona es de \$95.00, pero si el número de personas es mayor a 200 pero menor o igual a 300, el costo es de \$85.00. Para más de 300 personas el costo por platillo es de \$75.00. Se requiere un algoritmo que ayude a determinar el presupuesto que se debe presentar a los clientes que deseen realizar un evento. Mediante pseudocódigo, diagrama de flujo y un diagrama N/S represente su solución.

Para la solución del problema se requiere saber el número de personas que se presupuestarán para el banquete, y con base en éstas determinar el costo del platillo que en cierta forma es constante, con éste se determinará cuánto debe pagar el cliente en total, de aquí que la tabla 3.6 muestre las variables que se utilizarán para la solución del problema. El pseudocódigo 3.6 presenta el algoritmo de solución de este problema.

Nombre de la variable	Descripción	Tipo
NP	Número de personas	Entero
TOT	Total que se va a pagar por el banquete	Real

Tabla 3.6 Variables utilizadas para determinar el presupuesto de un banquete.

La política de la compañía telefónica "chimefón" es: "Chismea + x -". Cuando se realiza una llamada, el cobro es por el tiempo que ésta dura, de tal forma que los primeros cinco minutos cuestan \$ $1.00 \, \text{c/u}$, los siguientes tres, $80 \, \text{c/u}$, los siguientes dos minutos, $70 \, \text{c/u}$, y a partir del décimo minuto, $50 \, \text{c/u}$.

Además, se carga un impuesto de 3 % cuando es domingo, y si es día hábil, en turno matutino, 15 %, y en turno vespertino, 10 %. Realice un algoritmo para determinar cuánto debe pagar por cada concepto una persona que realiza una llamada. Represéntelo en diagrama de flujo, en pseudocódigo y en diagrama N/S.

Al analizar el problema se puede identificar que será necesario conocer como datos la duración de la llamada, así como el día y turno en que se realiza. Con base en esto se podrá determinar cuál será el pago que se efectuará por el tiempo que dura la llamada y el impuesto que deberá pagar en función del día y del turno en que se realiza. La tabla 3.9 muestra las variables que se van a utilizar.

Nombre de la variable	Descripción	Tipo
П	Tiempo	Entero
Df	Tipo de día	String
τυ	Turno	String
PAG	Pago por el tiempo	Real
IMP	Impuesto	Real
TOT	Total que se va a pagar	Real

Tabla 3.9 Variables utilizadas para determinar el costo de una llamada telefónica.

Una compañía de viajes cuenta con tres tipos de autobuses (A, B y C), cada uno tiene un precio por kilómetro recorrido por persona, los costos respectivos son \$2.0, \$2.5 y \$3.0. Se requiere determinar el costo total y por persona del viaje considerando que cuando éste se presupuesta debe haber un mínimo de 20 personas, de lo contrario el cobro se realiza con base en este número límite.

Con la información correspondiente se puede establecer las variables que se van a utilizar, las cuales se muestran en la tabla 3.10.

Nombre de la variable	Descripción	Tipo
'n	Tipo autobús	String
KM	Kilómetros por recorrer	Entero
NPR	Número de personas real	Entero
CK	Costo por kilómetro	Real
NP	Número de personas para presupuestar	Entero
CP	Costo por persona	Real
TO	Costo total del viaje	Real

Tabla 3.10 Variables utilizadas para determinar el costo del viaje individual y colectivo.

"El náufrago satisfecho" ofrece hamburguesas sencillas, dobles y triples, las cuales tienen un costo de \$20.00, \$25.00 y \$28.00 respectivamente. La empresa acepta tarjetas de crédito con un cargo de 5 % sobre la compra. Suponiendo que los clientes adquieren sólo un tipo de hamburguesa, realice un algoritmo para determinar cuánto debe pagar una persona por N hamburguesas. Representelo mediante diagrama de flujo, pseudocódigo y diagrama N/S.

En la tabla 3.11 se muestran las variables que se requieren utilizar en el algoritmo para la solución del problema. El diagrama de flujo 3.14 presenta de forma gráfica ese algoritmo.

Nombre de la variable	Descripción	Tipo
TI	Tipo de hamburguesa	String
N	Número de hamburguesas	Entero
TP	Tipo de pago	String
PA	Precio de la hamburguesa	Real
CA	Cargo por el uso de tarjeta	Real
TO	Total sin cargo	Real
TOT	Total con cargo	Real

Tabla 3.11 Variables utilizadas para determinar el pago por N hamburguesas.

El consultorio del Dr. Lorenzo T. Mata Lozano tiene como política cobrar la consulta con base en el número de cita, de la siguiente forma:

- Las tres primeras citas a \$200.00 c/u.
- Las siguientes dos citas a \$150.00 c/u.
- Las tres siguientes citas a \$100.00 c/u.
- Las restantes a \$50.00 c/u, mientras dure el tratamiento.

Se requiere un algoritmo para determinar:

- a) Cuánto pagará el paciente por la cita.
- b) El monto de lo que ha pagado el paciente por el tratamiento.

Para la solución de este problema se requiere saber qué número de cita se efectuará, con el cual se podrá determinar el costo que tendrá la consulta y cuánto se ha gastado en el tratamiento. Con este análisis se puede determinar que las variables que se van a utilizar son las que se muestran en la tabla 3.12.

Nombre de la variable	Descripción	Tipo
NC	Número de consulta	Entero
СС	Costo de la cita	Real
TOT	Costo del tratamiento	Real

Fábricas "El cometa" produce artículos con claves (1, 2, 3, 4, 5 y 6). Se requiere un algoritmo para calcular los precios de venta, para esto hay que considerar lo siguiente:

Costo de producción = materia prima + mano de obra + gastos de fabricación.

Precio de venta = costo de producción + 45 % de costo de producción.

El costo de la mano de obra se obtiene de la siguiente forma: para los productos con clave 3 o 4 se carga 75 % del costo de la materia prima; para los que tienen clave 1 y 5 se carga 80 %, y para los que tienen clave 2 o 6, 85 %.

Para calcular el gasto de fabricación se considera que si el artículo que se va a producir tiene claves 2 o 5, este gasto representa 30 % sobre el costo de la materia prima; si las claves son 3 o 6, representa 35 %; si las claves son 1 o 4, representa 28 %. La materia prima tiene el mismo costo para cualquier clave.

Represente mediante el diagrama de flujo, el pseudocódigo y el diagrama N/S la solución de este problema.

Con las consideraciones anteriores se puede establecer la tabla 3.13 de variables requeridas para el planteamiento del algoritmo correspondiente.

Nombre de la variable	Descripción	Tipo
С	Clave del artículo	Entero
MP	Costo de materia prima	Real
MO	Costo de mano de obra	Real
GF	Gastos de fabricación	Real
CP	Costo de producción	Real
PV	Precio de venta	Real

Tabla 3.13 Variables utilizadas para determinar el precio de venta de un artículo.

Problemas propuestos

- 3.1 Realice un algoritmo para determinar si una persona puede votar con base en su edad en las próximas elecciones. Construya el diagrama de flujo, el pseudocódigo y el diagrama N/S.
- 3.2 Realice un algoritmo para determinar el sueldo semanal de un trabajador con base en las horas trabajadas y el pago por hora, consi
 - derando que después de las 40 horas cada hora se considera como excedente y se paga el doble. Construya el diagrama de flujo, el pseudocódigo y el diagrama N/S.
- 3.3 El 14 de febrero una persona desea comprarle un regalo al ser querido que más aprecia en ese momento, su dilema radica en qué regalo puede hacerle, las alternativas que tiene son las siguientes:

Regalo	Costo
Tarjeta	\$10.00 o menos
Chocolates	\$11.00 a \$100.00
Flores	\$101.00 a \$250.00
Anillo	Más de \$251.00

Se requiere un diagrama de flujo con el algoritmo que ayude a determinar qué regalo se le puede comprar a ese ser tan especial por el día del amor y la amistad.

3.4 El dueño de un estacionamiento requiere un diagrama de flujo con el algoritmo que le permita determinar cuánto debe cobrar por el uso del estacionamiento a sus clientes. Las tarifas que se tienen son las siguientes:

Las dos primeras horas a \$5.00 c/u.

Las siguientes tres a \$4.00 c/u.

Las cinco siguientes a \$3.00 c/u.

Después de diez horas el costo por cada una es de dos pesos.