EECS 376: Foundations of Computer Science

Seth Pettie Lecture 16

Today's Agenda

- * Recap: Cook-Levin Theorem and Satisfiability
- * 3-CNF Satisfiability
- * Clique
- * Vertex-Cover

Recap

- * P is the class of efficiently decidable languages
- * NP is the class of efficiently verifiable languages
- * $L \in \mathbf{NP}$ if there exists a polynomial time in |x| algorithm V(x,c) such that:
 - * $x \in L \Longrightarrow V(x,c)$ accepts for at least one c
 - * $x \notin L \Longrightarrow V(x,c)$ rejects for every c

Intuitively: If I somehow "knew" a valid c, I could convince anyone (who can do poly-time computations) that $x \in L$.

Recap

- * **Satisfiability problem** (SAT): Given a Boolean formula, is there some satisfying assignment (that makes it true)
 - * $L_{SAT} = \{ \Phi \mid \Phi \text{ is satisfiable } \}$ (also just denoted SAT)
- * Example 1: $\phi(x,y) = \neg x \wedge y$
- * Example 2: $\phi(x,y,z) = (\neg x \lor y) \land (\neg x \lor z) \land (y \lor z) \land (x \lor \neg z)$
- * Informal Definition: L is called NP-Hard if $L \in P$ implies that NP = P.
- * In other words: A poly-time algorithm for L can be converted to yield poly-time algorithms for all efficiently verifiable languages! That is, for every language in NP.

Two Amazing Works (Given Turing Awards)

Cook-Levin (1971): SAT is "NP-hard." In particular: If SAT is in P, then all of NP is in P, i.e., P=NP. (Also: if SAT is not in P, then $P\neq NP$.)

So, to resolve P vs. NP, we "just" need to determine the status of SAT!

Karp (1972): TSP, Ham-Cycle, Subset Sum, ... all of these are "equivalent" to SAT.

Either all of them are in P (so P=NP), or none are (so P \neq NP).

Cook-Levin Outline

Theorem [Cook-Levin]: If SAT \in P, then NP \subseteq P.

Proof outline:

- * Let D_{SAT} be an efficient decider for SAT.
- * Let L ∈ NP, so L has an efficient verifier V.
- * Goal: Build an efficient decider D_L that uses D_{SAT} and V.
- * $D_L(x)$:
 - * Efficiently construct a poly-size Boolean formula $\phi_{V,x}$ so that:
 - * $x \in L \iff \phi_{V,x}$ is satisfiable.
 - * Output $D_{SAT}(\phi_{V,x})$.

3-CNF Satisfiability Problem

- * SAT formulas can be complicated.
- * Question: Can we make them all simpler?
- * **Definition:** A *clause* is a disjunction (OR) of 3 *literals* (x $\lor \neg y \lor z$) **Definition:** A **3-CNF formula** (CNF = conjunctive normal form) is a conjunction (AND) of clauses E.g., (x $\lor \neg y \lor z$) $\land (\neg x \lor z \lor w) \land ...$
- * Can show: $\phi_{V,x}$ can be computed using a 3-CNF formula (proof in the notes)
- * Conclusion: $3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3-CNF formula} \}$ is **NP-Hard**.

Q: To prove some L is NP-Hard, must we redo Cook-Levin?

Reductions, Then and Now

* Recall:

- * We proved that $L_{\rm BARBER}$ is **undecidable** by an ingenious ad-hoc argument.
- * We proved that many other languages ($L_{\rm HALT}, L_{\rm EQ}, ...$) are undecidable via **Turing reductions.** E.g., $L_{\rm ACC} \leq_T L_{\rm HALT}$ shows that $L_{\rm HALT}$ is also undecidable.

* Now:

- * We proved that SAT (and 3SAT) is "NP-hard" by an ingenious ad-hoc argument.
- * We will prove that other languages are **NP**-hard by a special kind of reduction: **polynomial-time mapping reduction**.

Poly-Time Mapping Reductions

- * Theorem [Cook-Levin]: For any $L \in \mathbb{NP}$, there is a poly-time algorithm f such that $x \in L \iff f(x) \in SAT$.
- * **Definition:** Language A is **polynomial-time mapping reducible** to language B, written $A \leq_p B$, if there is a poly-time algorithm f such that:

$$x \in A \Leftrightarrow f(x) \in B$$
.

- * Recall: If $A \leq_T B$ and B is decidable then so is A.
- * Theorem: If $A \leq_p B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.
- * Proof: Construct efficient decider for A: given x,
 - 1. Compute f(x)
 - 2. Run B-decider on f(x).

$A \leq_{p} B$

* Remark: f need not be injective nor surjective!

NP-Completeness

- * Theorem [Cook-Levin]: For every $A \in \mathbb{NP}$, $A \leq_p SAT$.
- * **Definition:** Language B is **NP-Hard** if $A \leq_p B$ for all $A \in \mathbf{NP}$.
- * **Definition:** Language *B* is **NP-Complete** if:
 - 1. $B \in \mathbf{NP}$
 - 2. B is **NP**-Hard

* We saw:

- * SAT ∈ **NP**
- * SAT is NP-Hard
- * Thus, SAT is **NP**-Complete.

NP-Hard and -Complete

Showing NP-Completeness

- * To show that a language B is **NP**-Complete:
 - 1. Show that $B \in \mathbf{NP}$.
 - * Write a verifier *V* for *B*, show that it is correct and efficient.
 - 2. Show that $A \leq_p B$ for some <u>known</u> **NP**-Complete A.
 - * Write a procedure *f* mapping instances of *A* to instances of *B*, show that it is efficient and correct:
 - * $x \in A \iff f(x) \in B$ (both directions!)
 - * Does <u>NOT</u> require converting instances of \underline{B} to instances of \underline{A} ! Typically, many valid instances of \underline{B} will not be output by \underline{f} . (I.e., \underline{f} is not surjective.)

Example: Clique Problem

Given a group of people, are there *k* people that are <u>mutual</u> friends?

- * Formally: Given a graph G and integer $k \ge 0$, is there a clique of size k in G?
 - * CLIQUE = $\{\langle G, k \rangle \mid G \text{ is a graph with a clique of size } k\}$

Clique seems hard

- * Verifying is easy: We know that CLIQUE ∈ NP (see last lecture)
- * **Deciding seems hard:** The naive algorithm for the clique problem (try all subsets of size k) runs in $\Omega \binom{n}{k}$ time, where n=# vertices
 - * If $k = \Theta(n)$, then runtime is exponential $2^{\Theta(n)}$ in size of input

But maybe there is a smarter algorithm out there?

- * Idea: We'll show that given a (hypothetical) <u>efficient</u> program clique for CLIQUE, we could build an <u>efficient</u> program for 3SAT
- * Formally: We will show that $3SAT \leq_p CLIQUE$
- * Conclusion: Since 3SAT is NP-Complete and CLIQUE ∈ NP, then CLIQUE must also be NP-Complete

$3SAT \leq_p CLIQUE$

- * Need to "translate" a 3SAT formula φ into $(G_{\varphi}, k_{\varphi})$ such that:
 - * φ is satisfiable $\Rightarrow G_{\varphi}$ has k_{φ} -clique (clique: "yes")
 - * φ is not satisfiable \Rightarrow G_{φ} doesn't have k_{φ} -clique (clique: "no")
- * Proof outline for showing 3SAT \leq_p CLIQUE:
 - * Define an f that converts a formula ϕ to some $\left(\mathit{G}_{\varphi},k_{\varphi}\right)$
 - * Show that f is correct: $\phi \in 3SAT \iff (G_{\varphi}, k_{\varphi}) \in CLIQUE$.
 - * Show that *f* is efficient.

Example

Goal: "translate" 3CNF formula φ into $(G_{\varphi}, k_{\varphi})$ such that:

- φ satisfiable $\Rightarrow G_{\varphi}$ has k_{φ} -clique (clique: "yes")
- φ not satisfiable \Rightarrow G_{φ} doesn't have k_{φ} -clique (clique: "no")
- * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$
- * Q: How can we satisfy clause $(x \lor y \lor z)$?
- * **Q:** What about clause $(\neg x \lor y \lor \neg z)$?
- * Observation: We can satisfy a clause by picking any literal (e.g., x) and making it true.
 - * We <u>can't</u> use the underlying variable (e.g., x) to satisfy any clause in which it appears differently (e.g., $\neg x$)
- * Idea: ... Maybe k_{φ} -clique \equiv a satisfying assignment?

Example

Goal: "translate" 3CNF formula φ into $(G_{\varphi}, k_{\varphi})$ such that:

- φ satisfiable \Rightarrow G_{φ} has k_{φ} -clique (clique: "yes")
- φ not satisfiable \Rightarrow G_{φ} doesn't have k_{φ} -clique (clique: "no")
- * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$ with 3 clauses
- * Idea for G_{φ} : make each literal a vertex; add an edge between two literals in different clauses only if they're "compatible"

(refer to different variables **or** they're the same)

Observations:

- 1) Any clique can have at most one vertex from a clause $(k_{\varphi} \leq 3)$
- 2) A clique can have several x or $\neg x$, but not both

Will show: This graph has a clique of size 3 if and only if φ is satisfiable

Correctness Analysis (1/2)

Build graph G_{φ} as follows:

- Make a vertex for each literal of each clause
- Add an edge between two literals in <u>different</u> clauses only if they are "compatible" (refer to different variables or they're the same)

- * Suppose that $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ has m clauses
- * Claim: φ is satisfiable $\Rightarrow G_{\varphi}$ has an m-clique (i.e. use $k_{\varphi} = m$).
- * Consider any satisfying assignment A of φ
- * Since φ is satisfied by A, for $1 \le i \le m$, each C_i (e.g., $x \lor y \lor z$) has a literal ℓ_i (pick any if several choices) that evaluates to true under A
- * We claim that $\{\ell_1, \ell_2, ..., \ell_m\}$ is an m-clique in G_{φ}
 - * Consider any two literals ℓ_i and ℓ_j , $i \neq j$
 - * If $\ell_i = \ell_j$, then there's an edge between them in G_{φ} .
 - * Otherwise, ℓ_i and ℓ_j must refer to <u>different variables!</u> (why?)
 - * Hence, they also have an edge between them.

Correctness Analysis (2/2)

Build graph G_{φ} as follows:

- Make a vertex for each literal of each clause
- Add an edge between two literals in <u>different</u> clauses only if they are "compatible" (refer to different variables **or** they're the same)

- * Suppose that $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ has m clauses
- * Claim: φ is not satisfiable $\Rightarrow G_{\varphi}$ doesn't have an m-clique.
- * Equivalently: G_{φ} has an m-clique $\Rightarrow \varphi$ is satisfiable
- * Suppose that $\{\ell_1, \ell_2, ..., \ell_m\}$ is an m-clique in G_{φ} (one literal per clause)
- * Define an assignment A of φ by taking each literal ℓ_i and setting the underlying variable so that ℓ_i is true (if any variables are unset at the end, set them arbitrarily)
- * By construction of G_{φ} , since $\{\ell_1, \ell_2, ..., \ell_m\}$ is a clique in G_{φ} , there are no conflicts in setting the variables this way
- * Since A satisfies each clause of φ , it satisfies φ !

Runtime Analysis

Build graph G_{φ} as follows:

- Make a vertex for each literal of each clause
- Add an edge between two literals in <u>different</u> clauses only if they are "compatible" (refer to different variables or they're the same)
- * Claim: We can build graph G_{φ} efficiently (poly-time in size of φ)
- * Suppose φ has m clauses. $|\langle \varphi \rangle| = O(m)$
- * There are 3m literals in φ
- * The graph G_{φ} has 3m vertices and $O((3m)^2) = O(m^2)$ edges
 - * Takes $O(m^2)$ time to build and $\left|\left\langle G_{\varphi},k_{\varphi}\right\rangle\right|=O(m^2)$
- * Conclusion: Given a hypothetical efficient program clique($\langle G_{\varphi}, k_{\varphi} \rangle$), we can build an efficient program for 3SAT,

i.e. 3SAT \leq_p CLIQUE, so CLIQUE is NP-Complete

Vertex-Cover Problem

(Starbucks Problem)

- * Given a city, is it possible to build stores on *k* street corners so that *every* street is "covered" by some store?
- * (pick vertices to cover at least one end point of each edge)
- * **Problem:** Given a graph G and integer $k \ge 0$, is there a **vertex-cover** of G of size k?

VERTEX-COVER = $\{\langle G, k \rangle \mid G \text{ is a graph w/ a vertex-cover of size } k \}$

$3SAT \leq_{p} VERTEX-COVER$

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat $\Rightarrow G_{\varphi}$ has some k_{φ} -VC
- φ unsat $\Rightarrow G_{\varphi}$ has no k_{φ} -VC
- * Claim: $3SAT \leq_p VERTEX-COVER$
- * Proof idea:
 - * Given a 3CNF formula ϕ with n variables, m clauses:
 - Make subgraphs ("gadgets") that represent variables and clauses.
 - * Connect the gadgets together in the right way.

$3SAT \leq_{p} VERTEX-COVER$

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat $\Rightarrow G_{\varphi}$ has some k_{φ} -VC
- φ unsat $\Rightarrow G_{\varphi}$ has no k_{φ} -VC
- * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$
- * Construction of G_{φ} : build variable gadgets and clause gadgets; add edge $\{u, v\}$ if u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> and u and u are <u>labeled the same</u>
- * Set k_{φ} to n+2m (n number of variables, m number of clauses)

ϕ satisfiable $\Rightarrow (n + 2m)$ -VC

- * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$
- * A = (1,0,0) is a satisfying assignment
- * For every variable gadget: put x in vertex-cover if $A_x = 1$ and $\neg x$ otherwise
- * Pick 2 vertices per clause gadget to cover other edges

(n + 2m)-VC $\Rightarrow \phi$ satisfiable

- * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$
- * Claim: In a (n+2m)-VC of G_{φ} , each variable/clause gadget has exactly one/two vertices in cover.
- * For each variable x, set $A_x = 1$ if x is in cover; 0 o/w
- * A is a satisfying assignment!

