WHAT IS CLAIMED IS:

1	1. A method for enhancing delivery of a compound into and across an
2	animal ocular tissue, the method comprising:
3	administering to the ocular tissue a conjugate comprising the compound and a
4	delivery-enhancing transporter,
5	wherein:
6	i. the compound is attached to the delivery-enhancing transporter
7	through a linker, and
8	ii. the delivery-enhancing transporter comprises fewer than 50 subunits
9	and comprises at least 5 guanidino or amidino moieties, thereby increasing delivery of the
10	conjugate into the ocular tissue compared to delivery of the compound in the absence of the
11	delivery-enhancing transporter.
1	2. The method of claim 1, wherein delivery of the conjugate into the
2	ocular tissue is increased at least two-fold compared to delivery of the compound in the
3	absence of the delivery-enhancing transporter.
1	3. The method of claim 1, wherein delivery of the conjugate into the
2	ocular tissue is increased at least ten-fold compared to delivery of the compound in the
3	absence of the delivery-enhancing transporter.
1	4. The method of claim 1, wherein the ocular tissue is one or more layers
2	of epithelial or endothelial tissue.
1	
1	5. The method of claim 1, wherein the ocular tissue is the retina.
1	6. The method of claim 1, wherein the ocular tissue is the optic nerve.
1	7. The method of claim 1, wherein the linker is a releasable linker.
1	8. The method of claim 7, wherein the linker is stable in a saline solution a
2	pH 7 but is cleaved when transported into a cell.

1

- 9. The method of claim 1, wherein the subunits are amino acids.
- 1 10. The method of claim 1, wherein the conjugate has a structure selected
- 2 from the group consisting of structures 3, 4, or 5, as follows:

$$R^{1}$$
— X —— $(CH_{2})_{k}$ — A — C — $(CH_{2})_{m}$ — N — $(CH_{2})_{n}$ — Y — R^{3}

3 $R^{1}-X---(CH_{2})_{k}-R^{4}-(CH_{2})_{m}-CH-Y-R^{3}$

4

$$R^{1}$$
 $X-(CH_{2})_{k}$
 R^{1}
 $CH-Y-R^{3}$

5

7 wherein:

8 R¹ comprises the compound;

Y is a linkage formed between a functional group on the biologically active compound and a terminal functional group on the linking moiety;

Y is a linkage formed from a functional group on the transport moiety and a functional group on the linking moiety;

13 A is N or CH;

14 R² is hydrogen, alkyl, aryl, acyl, or allyl;

15 R³ comprises the delivery-enhancing transporter;

16 R^4 is S, O, NR^6 or CR^7R^8 ;

17 R^5 is H, OH, SH or NHR₆;

18 R⁶ is hydrogen, alkyl, aryl, acyl or allyl;

7

8 9

19	k and m are each independently selected from 1 and 2; and
20	n is 1 to 10.
1	11. The method of claim 10, wherein X is selected from the group
2	consisting of -C(O)O-, -C(O)NH-, -OC(O)NH-, -S-S-, -C(S)O-, -C(S)NH-, -NHC(O)NH-,
3	-SO ₂ NH-, -SONH-, phosphate, phosphonate phosphinate, and CR ⁷ R ⁸ , wherein R ⁷ and R ⁸ are
4	each independently selected from the group consisting of H and alkyl.
1	12. The method of claim 10, wherein the conjugate comprises structure 3, Y
2	is N, and R ² is methyl, ethyl, propyl, butyl, allyl, benzyl or phenyl.
1	13. The method of claim 10, wherein R ² is benzyl; k, m, and n are each 1,
2	and X is -OC(O)
1	14. The method of claim 10, wherein the conjugate comprises structure 4;
2	R ⁴ is S; R ⁵ is NHR ⁶ ; and R ⁶ is hydrogen, methyl, allyl, butyl or phenyl.
1	15. The method of claim 10, wherein the conjugate comprises structure 4;
2	R ⁵ is NHR ⁶ ; R ⁶ is hydrogen, methyl, allyl, butyl or phenyl; and k and m are each 1.
1	16. The method of claim 1, wherein the conjugate comprises structure 6 as
2	follows:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3	6
4	wherein:
5	R ¹ comprises the compound;
6	X is a linkage formed between a functional group on the biologically

Y is a linkage formed from a functional group on the transport moiety

active compound and a terminal functional group on the linking moiety;

and a functional group on the linking moiety;

10	Ar is an aryl group having the attached radicals arranged in an ortho or
11	para configuration, which aryl group can be substituted or unsubstituted;
12	R ³ comprises the delivery-enhancing transporter;
13	R^4 is S, O, NR^6 or CR^7R^8 ;
14	R ⁵ is H, OH, SH or NHR ₆ ;
15	R^6 is hydrogen, alkyl, aryl, arylalkyl, acyl or allyl;
16	R ⁷ and R ⁸ are independently selected from hydrogen or alkyl; and
17	k and m are each independently selected from 1 and 2.
1	17. The method of claim 16, wherein X is selected from the group
2	consisting of -C(O)O-, -C(O)NH-, -OC(O)NH-, -S-S-, -C(S)O-, -C(S)NH-, -NHC(O)NH-,
. 3	-SO ₂ NH-, -SONH-, phosphate, phosphonate phosphinate, and CR ⁷ R ⁸ , wherein R ⁷ and R ⁸ are
4	each independently selected from the group consisting of H and alkyl.
1	18. The method of claim 16, wherein R ₄ is S; R ⁵ is NHR ⁶ ; and R ⁶ is
2	hydrogen, methyl, allyl, butyl or phenyl.
1	19. The method of claim 1, wherein the conjugate comprises at least two
2	delivery-enhancing transporters.
1	20. The method of claim 1, wherein the conjugate is administered as an eye
2	drop.
1	21. The method of claim 1, wherein the conjugate is administered as an
2	injection.
1	22. The method of claim 1, wherein the delivery-enhancing transporter
2	comprises a non-peptide backbone.
1	23. The method of claim 1, wherein the delivery-enhancing transporter is
2	not attached to an amino acid sequence to which the delivery enhancing transporter molecule
3	is attached in a naturally occurring protein.

1	24. The method of claim 1, wherein the delivery-enhancing transporter
2	comprises from 5 to 25 guanidino or amidino moieties.
1	25. The method of claim 24, wherein the delivery-enhancing transporter
2	comprises between 7 and 15 guanidino moieties.
1	26. The method of claim 24, wherein the delivery-enhancing transporter
2	comprises at least 6 contiguous guanidino and/or amidino moieties.
1	27. The method of claim 1, wherein the delivery-enhancing transporter
2	consists essentially of 5 to 50 amino acids, at least 50 percent of which amino acids are
3	arginines or analogs thereof.
1	28. The method of claim 27, wherein the delivery-enhancing transporter
2	comprises 5 to 25 arginine residues or analogs thereof.
1	29. The method of claim 28, wherein at least one arginine is a D-arginine.
1	30. The method of claim 29, wherein all of the arginines are D-arginines.
1	31. The method of claim 27, wherein at least 70 percent of the amino acids
2	that comprise the delivery-enhancing transporter are arginines or arginine analogs.
1	32. The method of claim 27, wherein the delivery-enhancing transporter is
2	seven contiguous D-arginines.
1	33. The method of claim 1, wherein the compound is a therapeutic for a
2	disease selected from the group consisting of bacterial infections, viral infections, fungal
3	infections, glaucoma, anterior, intermediate, and posterior uveitis, optic neuritis, Leber's
4	neuroretinitis, retinitis, psudotumor/myositis, orbital myositis, hemangioma/lymphangioma
5	toxocariasis, behcet's panuveitis, inflammatory chorisretinopathies, vasculitis, dry eye
6	syndrome (Sjogren's syndrome), corneal edema, accommodative esotropia, cycloplegia,
7	mydriasis, reverse mydriasis, and macular degeneracy.

blood-brain barrier.

1	34. The method of claim 1, wherein the compound is selected from the
2	group consisting of anti-bacterial compounds, anti-viral compounds, anti-fungal compounds,
3	anti-protozoan compounds, anti-histamines, compounds that dialate the pupil, anethstetic
4	compounds, steroidal antiinflammatory agents, antiinflammatory analgesics,
5	chemotherapeutic agents, hormones, anticataract agents, neovascularization inhibitors,
6	immunosuppressants, protease inhibitors, aldose reductase inhibitors, corticoid steroids,
7	immunosuppressives, cholinergic agents, anticholinesterase agents, ,muscaric antagonists,
8	sympathomimetic agents, α and β adrenergic antagonists, and anti-angiogenic factors.
_	
1	35. The method of claim 34, wherein the compound is selected from the
2	group consisting of acyclovir and cyclosporins.
1	36. The method of claim 1, wherein the compound is transported acrosss the