

ANNÉE UNIVERSITAIRE 2007 / 2008 PREMIÈRE SESSION D'AUTOMNE

ETAPE: L2

UE MHT302

Épreuve Analyse 2 *Date :* 4 Janvier 2008

Heure: .. Heures

Durée : 3 Heures

Épreuve de Monsieur: Charpentier Philippe

Tous Documents Interdits

Barême indicatif:

Exercice I

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x, y) = \frac{x^2 + \sin(y^2)}{\sqrt{x^2 + y^2}}$ si $(x, y) \neq (0, 0)$ et f(0, 0) = 0.
 - (a) Montrer que f est continue.
 - (b) f admet-elle des dérivées partielles en (0,0)? Est-elle différentiable en (0,0)?
- 2. Soit $g: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $g(x, y) = \frac{x^3 + \sin(y^3)}{\sqrt{x^2 + y^2}}$ si $(x, y) \neq (0, 0)$ et g(0, 0) = 0.
 - (a) Montrer que g est différentiable en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$ et déterminer sa différentielle dg(x,y) en tout point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.
 - (b) Montrer que g est différentiable en (0,0) et déterminer dg(0,0).
 - (c) g est-elle de classe \mathscr{C}^1 sur \mathbb{R}^2 .
 - (d) Soit $h: \mathbb{R}^2 \to \mathbb{R}$ définie par $h(x, y) = g(x, y) + \sin x + \sin y$.
 - i. Montrer que h est différentiable sur \mathbb{R}^2 .
 - ii. Exprimer dh(0,0).
 - iii. Calculer ||dh(0,0)|| (norme opérateur, \mathbb{R}^2 étant muni de la norme euclidienne).

Exercice II

Soit Ω un ouvert de \mathbb{R}^2 et soient $u:\Omega\to]0,+\infty[$ et $f:]0,+\infty[\to\mathbb{R}$ deux fonctions de classe \mathscr{C}^2 .

- I. Justifier que $F = f \circ u$ est une fonction de classe \mathscr{C}^2 .
- 2. Calculer $\frac{\partial F}{\partial x}$ et $\frac{\partial F}{\partial y}$ puis $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$, le laplacien de F, en fonction des dérivées de f et des dérivées partielles de u.
- 3. On suppose, dans cette question que Ω est convexe, que $f''(t) \neq 0$, $\forall t \in]0, +\infty[$ et que Δu est identiquement nulle. Montrer que ΔF est identiquement nulle si et seulement si u est une fonction constante.
- 4. On suppose dans cette question que $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$ et que $u(x,y) = \sqrt{x^2 + y^2} = \|(x,y)\|$ (norme euclidienne).
 - (a) Exprimer la différentielle de u en tout point de Ω et vérifier que u est de classe \mathscr{C}^2 .
 - (b) Montrer que, pour tout $(x, y) \in \Omega$, $\Delta F(x, y) = f''(\|(x, y)\|) + \frac{1}{\|(x, y)\|}f'(\|(x, y)\|)$.
 - (c) On suppose $\triangle F$ identiquement nulle. Déduire de la question précédente une expression simple de F (indication : on rappelle que si $g:]0,+\infty[\rightarrow \mathbb{R}$ est dérivable et vérifie, $\forall t>0$, $g'(t)+\frac{1}{t}g(t)=0$ alors il existe une constante C telle que $g(t)=\frac{C}{t}$).

Exercice III

Soit $\varphi:]0, +\infty[\times]0, +\infty[\to]0, +\infty[\times]0, +\infty[$ définie par $\varphi(u, v) = (\frac{u}{v}, u + v).$

- 1. Montrer que φ est bijective, déterminer φ^{-1} et montrer que φ et φ^{-1} sont de classe \mathscr{C}^1 .
- 2. Soit $f:]0, +\infty[\times]0, +\infty[\to \mathbb{R}$ une fonction de classe \mathscr{C}^1 . On pose $F = f \circ \varphi$.
 - (a) Exprimer les dérivées partielles $\frac{\partial F}{\partial u}$ et $\frac{\partial F}{\partial v}$ de F en fonction des dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial v}$ de f.
 - (b) On suppose que $(1+x)\frac{\partial f}{\partial x}(x,y)+y\frac{\partial f}{\partial y}(x,y)=0$ pour tout $(x,y)\in]0,+\infty[\times]0,+\infty[$. Déduire de la question précédente qu'il existe une fonction $\psi:]0,+\infty[\to\mathbb{R}$ telle que $f(x,y)=\psi\left(\frac{y}{1+x}\right), (x,y)\in]0,+\infty[\times]0,+\infty[$.

Exercice IV

Pour $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ dans \mathbb{R}^n , on note $B(x, y) = \langle x, y \rangle = \sum_{i=1}^n x_i y_i$ le produit scalaire euclidien des vecteurs x et y et ||x|| la norme euclidienne de x.

- 1. Montrer que *B* est différentiable en tout point de $\mathbb{R}^n \times \mathbb{R}^n$ et exprimer sa différentielle au point (x, y).
- 2. Soient u et v deux fonctions différentiables de \mathbb{R}^n dans \mathbb{R}^n . Montrer que $f: x \to \langle u(x), v(x) \rangle$ est différentiable sur \mathbb{R}^n et exprimer sa différentielle au point (x, y).
- 3. Soit u une fonction différentiable de \mathbb{R}^n dans \mathbb{R}^n et $g: x \to ||u(x)||^2$.
 - (a) Montrer que g est différentiable sur \mathbb{R}^n et que $dg(x) \cdot h = 2 \langle u(x), du(x) \cdot h \rangle$.
 - (b) On suppose de plus maintenant que g admet un extremum local en un point x_0 .
 - i. Que peut-on dire de $dg(x_0)$?
 - ii. Montrer que si $du(x_0)$ est injective alors $u(x_0) = 0$.

FIN