Agenda

- Wireless Basics
- MAC
- Modulation
- Auto Rate Adaptation
- MIMO
- Multi-User MIMO
- CoMP and Networked MIMO
- OFDM
- mmWave and Beamforming

Network System Capstone @cs.Nctu

Lecture 1: Basics

Instructor: Kate Ching-Ju Lin (林靖茹)

Wireless Signal

• Sine wave $e^{ix} = \cos x + j \sin x$

phase change due to propagation delay
$$h = \alpha e^{-2j\pi f_c(t+\theta)}$$
 amplitude

What is channel? Signal variation (amplitude and phase) over the air

Orthogonal Signals

 Wireless signals are typically sent using sin() and cos() (orthogonal waves)

Constellation Diagram

Signal can be described as a sine wave

$$x(t) = A(t)\cos(\omega t + \theta(t))$$

$$= A(t)\frac{e^{j(\omega t + \theta(t))} + e^{-j(\omega t + \theta(t))}}{2}$$

$$= \text{Re}[A(t)e^{-j(\omega t + \theta(t))}]$$

$$= \text{Re}[A(t)e^{-j\theta(t)}e^{-j\omega t}]$$

$$= \text{Re}[\tilde{x}(t)e^{-j\omega t}]$$

$$= \text{Re}[(I(t) + jQ(t))e^{-j\omega t}]$$

$$= I(t)\cos(\omega t) + Q(t)\sin(\omega t)$$

Rearranged as inphase and quadrature

Constellation Diagram

$$x(t) = A(t)\cos(\omega t + \theta(t))$$

$$= I(t)\cos(\omega t) + Q(t)\sin(\omega t)$$

$$= I(t) + jQ(t)$$

- Represent a wireless signal as a complex number
 - Sine carrier: image part
 - Cosine carrier: real part
- Why complex value?
 - Sine and Cosine are orthogonal with each other
 - Two carriers on the same frequency → rate

Signal Power

- Watt vs. Decibel (dBm or dB_{mW})
 - dBm is usually used in radio
 - Converted from milliwatt
 - Able to express both very large and very small values in a short form $P_{dBm} = 10 \log_{10}(1000 P_W)$

$$P_W = \frac{10^{P_{dBm}/10}}{1000}$$

- dB: difference between two dBm values
 - ratio of two power = difference between two dBm

$$\begin{aligned} \mathsf{P1toP2}_{dB} &= 10 \log_{10}(\frac{P_1}{P_2}) \\ &= 10 \log_{10}(P_1) - 10 \log_{10}(P_2) \\ &= P_{1,dBm} - P_{2,dBm} \end{aligned}$$

SNR

Signal-to-Noise Ratio
 Decoding SNR

$$\frac{S}{N}$$

In dB

$$10\log_{10}\frac{S}{N}$$

From equation (ratio)

$$y = hx + n$$

$$SNR = \frac{|h|^2}{\mathbb{E}[|n|^2]}$$

- Sent s=1+0i but receive s'= a+bi
- Signal power $= s^2 = |1 + 0i|^2$
- Noise power = | s-s' | 2 $= |(a+bi) - (1+0i)|^2$ $= |(a-1)+bi|^2$

sample SNR

$$SNR = \frac{|1 + 0i|^2}{|(a - 1) + bi|^2}$$

$$\frac{\text{average SNR}}{SNR} = \frac{s^2}{\text{mean}(n^2)}$$

Power vs. dB

 Because of the log operation, double the power produces 3dB gain

$$SNR_{dB} = 10\log_{10}SNR$$

$$P_{1} = 2 * P_{2}$$

$$\implies 10 \log_{10} \frac{P_{1}}{N} = 10 \log_{10} \frac{2 * P_{2}}{N}$$

$$P_{1,dB} = P_{2,dB} + 10 \log_{10} 2 = P_{2,dB} + 3.0103 \text{ (dB)}$$

Path Loss •

- Attenuation reduction as the signal propagates through the air
- Friis Transmission Formula

$$\frac{P_r}{P_t} = D_t D_r \left(\frac{\lambda}{4\pi d}\right)^2 \quad \text{(in Watt)}$$

$$P_r - P_t = D_t + D_r + 20 \log_{10} \left(\frac{\lambda}{4\pi d}\right) \text{ (in dB)}$$

- λ: signal wavelength
- Pt/Pr: transmitting/receiving power
- Dt/Dr: directivity of transmitting/receiving antenna

Shannon Capacity

The tight upper bound on the data rate

$$C = B \log_2 \left(1 + \frac{S}{N} \right) = B \log_2 \left(1 + SNR \right)$$

- B: bandwidth (Hz), e.g., WiFi with 20MHz
- S and N is in Watt (SNR is power ratio, not in dB)
- Example: SNR=25dB, what is the capacity of 20MHz WiFi?

$$SNR_{dB} = 10 * \log_{10} SNR \Rightarrow SNR = 10^{SNR_{dB}/10} = 316.2278$$

 $C = 20 * 10^6 * \log_2(1 + 316.2278) = 166.1875 \text{(Mbps)}$

Shannon Capacity

- In low SNR regime, increasing SNR can increase the rate significantly
- In high SNR regime, the increase in rate from SNR gain is relatively small
- $4dB \rightarrow 7dB$
 - SNR: $2.5119 \rightarrow 5.0119$
 - Capacity: $1.8123 \rightarrow 2.5878$ (1.43x) big enhancement
- 30dB → 33dB
 - SNR: 1000 → 1.9953e+03
 - Capacity: 9.9672 → 10.9631 (1.0999x) small enhancement

Equalization

- Reversal of distortion incurred by a signal transmitted through a channel
- Equalizer: recover the transmitted signal from the received signal
 - Also known as <u>decoding</u>
- Solution: MMSE, Zero-forcing, etc.
- Example

$$y = hx + n \Rightarrow x' = \frac{y}{h} = x + \frac{n}{h}$$

Coherence Time

- The time over which a propagating wave may be considered coherent (i.e., <u>staying</u> <u>constant</u>)
- Why this is important?
 - To decode the signal, we need to estimate the channel h within the coherence time
 - The time interval between consecutive channel estimation should be shorter than coherence time
 - What if we don't re-learn the channel after coherence time?
 - decoding can be erroneous due to incorrect channel h

Transmitter

Receiver