

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе допущен
Студенты Ми	хайличенко Г. Б.	Кочубеев Н.С. Работа выполнена
Преподавате	пь Шоев В.	1. Отчет принят

Рабочий протокол и отчет по моделированию №1

1. Цель работы.

Получить "картинку на экране" от звезды, свет которой проходит около массивного тела.

2. Формулы и расчеты.

Эффект гравитационной линзы возникает из-за гравитационного поля вокруг массивных объектов, изменяющего направление распространения электромагнитного излучения.

Для моделирования источника света используется Гауссова функция, которая в наиболее общей форме определяется следующим образом::

$$f(x,y) = A \exp \left(-\left(a(x-x_0)^2 + 2b(x-x_0)(y-y_0) + c(y-y_0)^2
ight)
ight)$$

Где А – амплитуда, х0 и у0 – координаты пика функции, матрица: - положительно определена

Искажение света происходит следующим образом:

 $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$

Радиус результирующего эффекта линзирования называется радиусом Эйнштейна и

рассчитывается в радианах по следующей формуле:

$$heta_1 = \sqrt{rac{4GM}{c^2}} \; rac{D_{LS}}{D_S D_L}$$

Где G — гравитационная постоянная,

М — масса линзирующего объекта,

с — скорость света,

DL — угловое расстояние до линзы,

DS — угловое расстояние до источника

DLS — угловое расстояние между линзой и источником.

3. Примеры работы программы:

(Симуляция объекта приближенного к LRG-3-757)

4. Выводы и анализ результатов работы.

В ходе выполнения моделирования мы построили градиент при помощи гауссову функцию для моделирования света, затем смоделировали искажение изображения при различных параметрах.