| ID     | NUMBER    | PRIMARY KEY |
|--------|-----------|-------------|
| CITY   | CHAR (20) |             |
| STATE  | CHAR(2)   |             |
| LAT_N  | NUMBER    |             |
| LONG_W | NUMBER    |             |

```
SQL Worksheet

SQL Worksheet

CREATE TABLE STATION (

I CREATE TABLE STATION (

I INT PRIMARY KEY,

STATE CHAR (20),

4 STATE CHAR (2),

5 LATA NUMERIC,

6 LONG IN NUMERIC

7 );

Table created.
```

### 2. INSERT THE FOLLOWING RECORDS INTO THE TABLE.

| ID | CITY    | STATE | LAT_N | LONG_W |
|----|---------|-------|-------|--------|
| 13 | PHOENIX | AZ    | 33    | 112    |
| 44 | DENVER  | СО    | 40    | 105    |
| 66 | CARIBOU | ME    | 47    | 68     |

```
1 INSERT INTO STATION VALUES (13, 'PHONEX', 'AZ', 33, 112);
```

- 2 INSERT INTO STATION VALUES (44, 'DENVER', 'CO', 40, 105);
- INSERT INTO STATION VALUES (66, 'CARIBOU', 'ME', 47, 68);

3. EXECUTE A QUERY TO LOOK AT TABLE STATION IN UNFINED ORDER.



4. EXECUTE A QUERY TO SELECT NORTHERN STATION (NORTHERN LATITUDE>39.7).



5. CREATE ANOTHER TABLE, STATS, TO STORE NORMALIZED TEMPRATURE AND PARTIATION DATA.

| COLUMN | DATA TYPE | REMARK                 |
|--------|-----------|------------------------|
| ID     | NUMBER    | MUST MATCH SOME        |
|        |           | STATION TABLE ID (SO   |
|        |           | NAME AND LOCATION WILL |
|        |           | BE KNOWN)              |

| MONTH  | NUMBER | RANGE BETWEEN 1<br>AND 12 |
|--------|--------|---------------------------|
| TEMP_F | NUMBER | IN FARANHIT               |
|        |        | DEGREES,RANGE             |
|        |        | BETWEEN, -80 TO 150       |
| RAIN_I | NUMBER | IN INCHES,RANGE           |
|        |        | BETWEEN O AND 100         |

### **SQL** Worksheet

```
1 CREATE TABLE STATS
2 (ID NUMBER,
3 MONTH NUMBER CHECK(MONTH BETWEEN 1 AND 12),
4 TEMP_F NUMBER CHECK(TEMP_F BETWEEN -80 AND 150),
5 RAIN_I NUMBER CHECK(RAIN_I BETWEEN 0 AND 100),
6 FOREIGN KEY (ID) REFERENCES STATION (ID)
7 );
```

Table created.

## 6. POPULATE THE TABLE STATS WITH SOME STATISTIC FOR JANUARY AND JULY

| ID | MONTH | TEMP_F | RAIN-I |
|----|-------|--------|--------|
| 13 | 1     | 57.4   | .31    |
| 13 | 7     | 91.7   | 5.15   |
| 44 | 1     | 27.3   | .18    |
| 44 | 7     | 74.8   | 2.11   |
| 66 | 1     | 6.7    | 2.1    |
| 66 | 7     | 65.8   | 4.52   |

# Insert into stats values (13,1,57.4,.31) Insert into stats values (13,7,91.7,5.15) Insert into stats values (44,1,77.3,.18) Insert into stats values (44,7,74.8,2.11) Insert into stats values (66,1,6.7,2.1) Insert into stats values (66,7,65.8,4.52) I row(s) inserted.

# 7. EXECUTE A QUERY TO DISPLAY TEMPRATURE STATS (FROM STATS TABLE)FOR EACH (FROM STATION TABLE



# 8. EXECUTE A QUERY TO LOOK AT THE TABLE STATS ORDERD BY MONTH AND GRATEST RAINFALL, WITH COLUMS REARRANGED . IT SHOULD ALSO SHOW THE CORSSPONDING CITIES

# SQL Worksheet

- 1 SELECT MONTH, CITY, RAIN\_I
  2 FROM STATS, STATION
  3 ORDER BY MONTH;

| MONTH | CITY    | RAIN_I |
|-------|---------|--------|
| 1     | PHONEX  | .18    |
| 1     | PHONEX  | .31    |
| 1     | DENVER  | .31    |
| 1     | PHONEX  | 2.1    |
| 1     | DENVER  | .18    |
| 1     | CARIBOU | 2.1    |
| 1     | CARIBOU | .18    |
| 1     | CARIBOU | .31    |
| 1     | DENVER  | 2.1    |
| 7     | PHONEX  | 4.52   |
| 7     | PHONEX  | 2.11   |
| 7     | PHONEX  | 5.15   |
| 7     | CARIBOU | 4.52   |
| 7     | CARIBOU | 2.11   |
| 7     | CARIBOU | 5.15   |
| 7     | DENVER  | 4.52   |
| 7     | DENVER  | 5.15   |
| 7     | DENVER  | 2.11   |

# 9. EXECUTE A QUERY TO LOOK AT TEMPRATURE FOR JULY FROM TABLE STATS, LOWEST TEMPRATURE FIRST, PICKING UP CITY NAME AND LATITUDE

SELECT LAT\_N,CITY,TEMP\_F
FROM STATS, STATION
WHERE MONTH = 7
AND STATS.ID = STATION.ID
ORDER BY TEMP\_F

| LAT_N | CITY    | TEMP_F |
|-------|---------|--------|
| 47    | CARIBOU | 65.8   |
| 40    | DENVER  | 74.8   |
| 33    | PHONEX  | 91.7   |

Download CSV

3 rows selected.

# 10. EXECUTE A QUERY TO SHOW MAX AND MIN TEMPRATURE AS WELL AS AVRAGE RAINFALL FOR EACH CITY .

SELECT MAX (TEMP\_F),MIN(TEMP\_F),
AVG(RAIN\_I), ID
FROM STATS
GROUP BY ID

| MAX(TEMP_F) | MIN(TEMP_F) | AVG(RAIN_I) | ID |
|-------------|-------------|-------------|----|
| 74.8        | 27.3        | 1.145       | 44 |
| 65.8        | 6.7         | 3.31        | 66 |
| 91.7        | 57.4        | 2.73        | 13 |

11. EXECUTE A QUERY TO DISPLAY EACH CITY'S MONTHLY TEMPRATURE IN CELCIUS AND RAINFALL IN CENTIMETER.

```
1 CREATE VIEW METRIC_STATS (ID,
2 MONTH, TEMP_C, RAIN_C) AS
3 SELECT ID,
4 MONTH,
5 (TEMP_F - 32)*5/9,
6 RAIN_I*0.3937
7 FROM STATS;
```

View created.

# 12. UPDATE ALL ROWS OF TABLE STATS TO COMPENSATE FOR FAULTY RAIN GAUGES KNOWN TO READ 0.01 INCHES LOW



| ID | MONTH | TEMP_F | RAIN_I |
|----|-------|--------|--------|
| 13 | 1     | 57.4   | .4     |
| 13 | 7     | 91.7   | 5.24   |
| 44 | 1     | 27.3   | .27    |
| 44 | 7     | 74.9   | 2.2    |
| 66 | 1     | 6.7    | 2.19   |
| 66 | 7     | 65.8   | 4.61   |

### 13 UPDATE DENVERTS JULY TEMPRATURE READING AS 74.9.



5 row(s) updated.

### SQL Worksheet

| ID | MONTH | TEMP_F | RAIN_I |
|----|-------|--------|--------|
| 13 | 7     | 91.7   | 5.26   |
| 44 | 7     | 74.9   | 2.22   |
| 66 | 7     | 65.8   | 4.63   |
| 13 | 1     | 57.4   | .42    |
| 44 | 1     | 27.3   | .29    |
| 66 | 1     | 6.7    | 2.21   |