RECUYE TRANSITORIO (SI CONSIDERA SOLO LA RISPOSTA A CRADINO)

1° ORDINE

$$F(S) = \frac{1}{S+P}$$

$$F(S) = \frac{1}{S+P}$$
 $\rho > 0$ $\Rightarrow y_{\alpha}(t) = F_{\alpha}(0) = \frac{1}{P}$

$$T_s = \frac{\log 9}{\rho} \approx \frac{2.2}{\rho}$$

TEMPO DI ASSESTAMENTO:
$$T_{\alpha} = log(\frac{100}{m}) \cdot \frac{1}{\rho}$$

$$a = \log \left(\frac{100}{m}\right)$$

$$\log\left(\frac{100}{m}\right) \cdot \frac{1}{\rho}$$

LA PERCENTUALE PER CUI SI PUO DEFINIRE ASSESTATA LA RISPOSTA A REGIME PERMANENTE

Parametri Laratteristici

Ts: Tempo di Saliba	Tempo necessario per passone de 10% -90% del volore di regime, ovvero "Primo obsente di Tempo in con a visquista assume i vibordo i algine"
Tie: Tempo di Assestamento.	Prima istante ali Tempo in cui la vispussa diferensee di un value é: na 14al, me [2,5], prefissala ropedo al ralare di Regine
S: Sorra chnyazione.	Definito come la differenza tra il valore massimo della risposta ad il valore di regime, Normaciazzato rispetto al valore di regime.

2° ORDINE

$$F(S) = \frac{1}{(S+P_2)(S+P_2)} \qquad p_2 > 0 \qquad p_4 > 0 \qquad \Rightarrow \quad y_0(t) = F_0(0) = \frac{1}{p_4 \cdot p_4}$$

$$\Rightarrow y_{R}(t) = F_{0}(0) - \frac{1}{\rho_{L} \cdot \rho_{0}}$$

$$T_6 = \frac{\log(9)}{(P_4)} \cong \frac{2,1}{P_3}$$

POLI COMPLESSI CONTUGATI

$$F(S) = \frac{1}{S^2 + 2Z\omega_n S + \omega_n^2}$$

$$F(S) = \frac{1}{S^2 + 2.7 \omega_n S + \omega_n^2}$$
 $0 < 7 < 1$ = $0 < \gamma_R(t) = F(0) = \frac{1}{\omega_n^2}$

RADICI:
$$\lambda_{1,2} = \alpha \pm JW$$
 con $\alpha = - ZWn$ $\omega = Wn \sqrt{1 - Z^2}$ $Wn = \sqrt{\alpha^2 + W^2}$

$$W_{N} = \sqrt{\alpha^{2} + W^{2}}$$

$$T_{\delta} = \frac{\Pi - \varphi}{\omega_n \sqrt{1 - \chi^2}}$$

SOVRAELONGAZIONE : \$ = e 1/1-12

Simon las