

Les PRNG permettent de générer des échantillons i.i.d $X_1, \ldots, X_n \sim \mathcal{U}([0,1])$.

Algorithmes de simulation

Qu'en est-il de $X_1, \ldots, X_n \sim \mathcal{U}([a, b])$?

$$X_1, \ldots, X_n \sim \mathcal{B}(p)$$
?

 $X_1, \ldots, X_n \sim Bin(p, n)$?

$$X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$
?

 $X_1, \dots, X_n \sim \mathcal{E}xp(\lambda)$?

$$X_1, \dots, X_n \sim \operatorname{Gamma}(k, \theta) \ k \in \mathbb{N}_{\star} ?$$

$$X_1, \ldots, X_n \sim \frac{f}{\int f}$$
?

 $X_1,\ldots,X_n\sim \propto g$?

Résultats théorie des probabilités (au tableau / Python)

Box-Muller, Marsaglia, Ziggurat

Rejection sampling

Algorithmes MCMC (Markov-Chain Monte-Carlo)

Basés sur des échantillons i.i.d Basés sur des échantillons non i.i.d

Algorithmes de simulation

Les PRNG permettent de générer des échantillons i.i.d $X_1, \ldots, X_n \sim \mathcal{U}([0,1])$.

Qu'en est-il de $X_1, \ldots, X_n \sim \mathcal{U}([a,b])$?

$$X_1, \ldots, X_n \sim \mathcal{B}(p)$$
?

$$X_1, \ldots, X_n \sim Bin(p, n)$$
?

$$X_1, \dots, X_n \sim \mathcal{E}xp(\lambda)$$
?

$$X_1, \ldots, X_n \sim \operatorname{Gamma}(k, \theta) \ k \in \mathbb{N}_{\star} ?$$

Résultats théorie des probabilités (au tableau / Python)

 $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$? Box-Muller, Marsaglia, Ziggurat

 $X_1, \ldots, X_n \sim \frac{f}{ff}$? Rejection sampling

Basés sur des

Basés sur des

échantillons i.i.d

échantillons non i.i.d $X_1,\dots,X_n\sim \propto g$? Algorithmes MCMC (Markov-Chain Monte-Carlo) ,

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Les PRNG permettent de générer des échantillons i.i.d $X_1, \ldots, X_n \sim \mathcal{U}([0, 1])$.

