

Problem

Prediction of NBA shots results

Data

ProBasketballAPI.com

NBA API FOR NBA STATISTICS, DRAFTKINGS NBA DATA, AND SPORTSVU DATA

>400,000 shot data from 2 seasons collected into one dataset:

	action_type	minutes_remaining	period	seconds_remaining	shot_distance	shot_made_flag	shot_zone_area	loc_x	loc_y	shot_zone_basic	shot_zone_range	shot_type	position	season	is_home
51643	Driving Finger Roll Layup Shot	2	2	20	3	1	Center(C)	37	9	Restricted Area	lLess Than 8 ff	2PT Field Goal	Guard	2014	0
149572	Layup Shot	6	2	41	2	1	Center(C)	20	11	Restricted Area	II ess Than 8 ft	2PT Field Goal	Guard	2014	1
149573	Jump Shot	6	2	1	3	0	Center(C)	32	12	Restricted Area	II ess Than 8 ft	2PT Field Goal	Guard	2014	1
149574	Jump Shot	4	2	44	24	0	Left Side Center(LC)	-218	116	Above the Break	124+ ff.	3PT Field Goal	Guard	2014	1
149575	Jump Shot	2	2	31	20	0	Center(C)	39	197	Mid-Range	l 16-24 ft.	2PT Field Goal	Guard	2014	1

Preprocess Bayes

Binning

Cropping

Binarizing

	label	distance	field_area action_type		numpos	time_interval	period	season	is_home
0	1	4.0	0.0	Alley Oop Dunk Shot	50	8.0	1	2014	0
1	1	4.0	0.0	Layup Shot	50	11.5	3	2014	0
2	1	20.0	-2.0	Jump Shot	42	2.0	1	2014	0
3	1	12.0	2.0	Jump Shot	42	1.0	1	2014	0
4	0	12.0	0.0	Jump Shot	42	11.0	2	2014	0

per	iod
1	26.119432
2	24.909347
3	24.574799
4	23.621421
5	0.642255
6	0.105660
7	0.022206
8	0.004880

Naïve Bayes

$$P(H) = \frac{\#(made_shots)}{\#(total_shots)} \approx 0.45$$

$$P(E|H) = \frac{\#(made_shots \cap Evidence)}{\#(made_shots)}$$

$$P(H|E) = \frac{P(Evidence|Made_{shot}) * P(Made_{shot})}{P(Evidence)}$$

$$P(H|\overline{E}) = P(Made_shot) * \prod_{i} \frac{P(E_i|Made_shot)}{P(E_i)}$$

Bayes Results

	distance	angle	numpos	time_interval	period	season	is_home	Prediction	TIG	TENERS OF THE PROPERTY OF THE PROPERTY OF THE	Classification Distance
label											
0	17.023524	0.029804	28.911082	5.768318	2.491930	2015	0.494541	0.420556	0.137418	0.655516	0.420556
1	13.013198	-0.001095	30.510206	5.871841	2.464734	2015	0.508843	0.584432	0.229281	0.564494	0.415568

NN preprocess

ReScaling

Categories -> Binary / Ordinal

Words -> One/Two/Three Hot

Neural Network

- Activation Function Sigmoid
- Error Function Quadratic
- Gradient SGD (>400,000 samples)
- Learning rate Search Optimized

NN Results and Sensitivity

- Better Performance (AUC ~ 0.7)
- Low alpha values are better

	TrainAUC	ValAUC
alpha		
0.001	0.691078	0.686941
0.010	0.681293	0.676275
0.100	0.622076	0.620140
1.000	0.557134	0.557724

NN optimization

Genetic Algorithm to find best parameters set

• Target value – AIC $\underset{\theta}{\operatorname{argmin}}\{-Z*lan(ValidationAUC) + 2*K\}$

Best : {34}, 50, 35 , [17, 8], {1} - AUC = 0.692
Input Optional Output

Curiosity – Problem Definition

 Given a period of game we have 5 players with different roles in different position to shoot.

Implementation

- Bayes Learner will use only 3 key features (Location, Position, Action type)
- Features were reduced to small option space
- Beta Distribution was used, to improve Expected Information Gain (and Entropy) calculations:

Loop

Actor - Critic

Critic calculated expected value of each action:

$$Q(S_t, a_i) = \lambda * EIG(a_i, S_t) + (1 - \lambda) * Pr(Shot|a_i, S_t)$$

 Actor makes weighted (Thompson sampling) decision, proportianally to the expected value

Comparison

Different λ:

• Greedy player ($\lambda = 0$)

• Balanced player ($\lambda = 0.1$)

• Curious player ($\lambda = 1$)

Results

Starting with zero knowledge and playing 2000 rounds we got:

Greedy is going for the point

Curious is going for the knowledge

Results

Brain

Action anticipation in in elite basketball players

- Visual (Abstract and Detailed) and Motor (Mirroring) brain areas were more active among experts
- The 'Surprise' effect was noticed when experts were wrong

From noob to pro

