a) Compare the following systems A and B in terms of availability

System A fails 3 times per hour for 30 seconds

$$t_{up(A)} = 60 \text{m} - 3 * 30 \text{s} =$$
 58,5 minutes
 $t_{sum(A)} =$ 60 minutes
availability_A = $t_{up(A)} / t_{sum(A)} \rightarrow 58,5 \text{m}/60 \text{m} =$ 97,5 %

System B fails 30 times per hour for 3 seconds

$$t_{up(B)} = 60 \text{m} - 30 * 3s =$$
 58,5 minutes
 $t_{sum(B)} =$ 60 minutes

availability_A = $t_{up(B)}/t_{sum(B)} \rightarrow 58,5m/60m = 97,5 \%$

b) How many redundant systems A do you need to achieve availability of 99.9% per hour?

goal_failure_rate_A = 1 - 0,999 = 0,001
failure_rate_A = 1 - availability_A = 1 - 0,975 = 0,025

$$x = amount of redundant systems$$