3 mortes For perfect, 2 maks for correct bad form, I for attempt that stocks correct proof.

Question 1: Proofs

Prove the following statements true or false. Do not use the amount of space as an indication to the length of the answers. [2] marks each, no marks for completely wrong reasoning]

a) Suppose x and y are integers. If xy > 0, then x + y > 0.

False. Suppose
$$z = -1 & y = -2$$
.
Notice $zy = (-1)(-2) = 2 > 0$
but $(-1) + (-2) = -3 \neq 0$
Thus, false.

Note: Suppose a and b are integers. If a | b, then b = ka for some integer k. The converse is also true: If b = ka for some integers a,b, and k, then obviously a | b. b) Suppose u, w and z are integers. If w | u and w | z, then w | (u + z).

True.

If
$$w|u$$
, then $\exists h \in \mathbb{Z}$ such that $kw = u$ \emptyset

Also $w|z$, so $\exists m \in \mathbb{Z}$ such that $mw = z$ \emptyset

Add $0 + \emptyset = kw + mw = u + z$
 $\Rightarrow w(k+m) = u + z$

Since $k+m$ is an integer, $w|(u+z)$

I much