East West University

Department of Computer Science and Engineering Course: CSE246 (Algorithm)

Course: CSE246 (Algorithm)
Section:11
Lab Test Examination

1.

Input	Output
Write a program to perform Breadth-First Search on the following graph:	BFS Traversal: [1, 2, 3, 4, 5, 6]
1 3 6 1 2 6	
Starting Node: 1	

Input	Output
Write a program to perform Depth-First Search on the following graph: Starting Node: A	DFS Traversal: [A B D E F C]
A C F	

3.

Input	Output
Write a program to compute a valid topological ordering of the vertices in the following Directed Acyclic Graph (DAG):	Output Topological Order: [5, 4, 3, 2, 1, 0]
9)	

4.

Input	Output
Write a program to implement the Binary Search algorithm. Use the following input:	Index of Target: 3
Array: [1, 3, 5, 7, 9, 11, 13] Target: 7	

5.

Input	Output
Write a program to implement the Quick Sort algorithm on the following array:	Sorted Array: [0, 1, 2, 3, 7, 8, 10]
Array: [8, 3, 1, 7, 0, 10, 2]	

Input	Output
Write a program to implement the Merge Sort algorithm on the following array:	Sorted Array: [5, 6, 7, 11, 12, 13]
Array: [12, 11, 13, 5, 6, 7]	

7.

Input	Output
Implement the 0/1 Knapsack algorithm to solve the following problem:	Maximum Value: 7
 Weights: [2, 3, 4, 5] Values: [3, 4, 5, 6] Knapsack Capacity: 5 Your program should calculate the maximum value that can be achieved. 	

8

Input	Output
Write a program to find the length of the Longest Common Subsequence (LCS) for the following strings:	LCS Length: 4
String 1: "AGGTAB"String 2: "GXTXAYB"	
Output the length of the LCS.	

Input	Output
Write a program to solve the Coin Change problem using Dynamic Programming . Use the following inputs:	Minimum Coins: 3 (e.g., [5, 5, 1])
 Coin Denominations: [1, 2, 5] Target Amount: 11 Your program should calculate the minimum number of coins needed to make the target amount. Display the coins used in the solution. 	

Input	Output
Write a program to implement Dijkstra's algorithm for finding the shortest path in the	Shortest distances: {0: 0, 1: 3, 2: 1, 3: 4}
Graph: { 0: [(1, 4), (2, 1)], 1: [(3, 1)], 2: [(1, 2), (3, 5)], 3: [] }	
Source Node: 0	

Input	Output
Write a program to solve the Coin Change problem using the Greedy method. Use the following inputs: • Coin Denominations: [1, 2, 5] • Target Amount: 11	Coins Used: [5, 5, 1]
Your program should output the coins used to make the target amount.	