An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE|T068] Guided by:

Asst.Prof. SAFEER BABU T

INTRODUCTIO

LOSSLESS

COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION

CONCLUSION

REFERENCES

AN INNOVATIVE LOSSLESS COMPRESSION METHOD FOR DISCRETE COLOR IMAGES

Presented by:
NAIR SREEJA VENUGOPALAN[EPALEIT068]
Guided by:
Asst Prof. SAFFER BABU T

Department Of Information Technology

GEC Sreekrishnapuram

February 27, 2015

An Innovative Lossless Compression Method for Discrete-color Images

Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE]T068]

GOPALAN[EPALE Guided by: Asst.Prof. SAFEER BABU T

INTRODUCTION

LOSSLESS

COMPRESSIOI METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

- INTRODUCTION
- LITERATURE SURVEY
- S LOSSLESS COMPRESSION METHOD
- **4** IMPLEMENTATION METHOD
- **5** EVALUATION METRICS
- 6 CONCLUSION
- ♠ REFERENCES

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA

- INTRODUCTION
- LITERATURE SURVEY

GOPALAN[EPALE|T068]

- INTRODUCTION

IMPLEMENTATION

- A LOSSLESS COMPRESSION METHOD
- **4** IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- CONCLUSION
- REFERENCES

INTRODUCTION

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE|T068] Guided by: Asst.Prof. SAFEER BABU T

INTRODUCTION

SURVEY

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

- Compression is a way to reduce the number of bits in a frame without degrading it.
- Image compression is the application of data compression on digital images.
- The objective is to reduce redundancy of the image data in order to store or transmit data in an efficient form.

Why compression is needed?

- To preserve the storage space.
- To reduce transmission cost/latency/bandwidth.
- To avoid redundancy.
- Compression ratio is the ratio of original data rate to the encoded data rate.

INTRODUCTION continued..

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE|T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTION

LITERATURE

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

Compression are of two types:

Lossless

- Preserves all information.
- Exploits redundancy in data.
- Applied to general data.

Lossy

- May lose some information.
- Exploits redundancy and human perception.
- Applied to audio, image, video.

An Innovative Lossless Compression Method for Discrete-color Images

- INTRODUCTION
 - LITERATURE SURVEY

GOPALAN[EPALE|T068]

NAIR SREEJA

LITERATURE

SURVEY

IMPLEMENTATION

A LOSSLESS COMPRESSION METHOD

4 IMPLEMENTATION METHOD

6 EVALUATION METRICS

CONCLUSION

LITERATURE SURVEY

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTION

SURVEY
LOSSLESS
COMPRESSION

IMPLEMENTATION

EVALUATION METRICS

CONCLUSIO

REFERENCES

Hybrid compression method based on block encoding[1]

- Hierarchical block coding is used.
- Predictive modeling has been employed to construct an error image.
- It is the difference between the predicted and original pixel values.
- Then, the error image is compressed using Huffman coding of bit patterns.

LITERATURE SURVEY

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst. Prof.
SAFEER BABU
T

INTRODUCTION

SURVEY LOSSLESS COMPRESSIO

IMPLEMENTATION

EVALUATION METRICS

CONCLUSIO

REFERENCES

Hierarchical Prediction and Context Adaptive Coding for Lossless Color Image Compression [2]

- It is based on the hierarchical prediction and context-adaptive arithmetic coding.
- The input color image is first transformed into color space using color transform method.
- After the color transformation, the luminance channel Y is compressed by a conventional lossless image coder.
- Pixels in chrominance channels are predicted.
- Here arithmetic coding is applied to the error signal.

LITERATURE SURVEY

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE|T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTIO

SURVEY

LOSSLESS

COMPRESSION

COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATIO METRICS

CONCLUSION

REFERENCES

A New Efficient Algorithm for Lossless Binary Image Compression[3]

- It is based on Direct Redundancy Elimination and Improved Arithmetic Coding.
- The Adaptive Arithmetic Coder updates the probabilities immediately after each symbol is encoded.
- The Context Modeling is used to calculate the probability for each incoming symbol resides in.
- It improves the efficiency.

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA

- INTRODUCTION
- LITERATURE SURVEY

VENU-GOPALAN[EPALE|T068] Guided by: Asst.Prof.

- Asst.Prof. SAFEER BABU T
- INTRODUCTION
- LOSSLESS COMPRESSION
- METHOD

 IMPLEMENTATION
- METHOD
- EVALUATION METRICS
- CONCLUSIO
- REFERENCES

- LOSSLESS COMPRESSION METHOD
- IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- 6 CONCLUSION
- REFERENCES

LOSSLESS COMPRESSION METHOD

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA
VENUGOPALAN[EPAI
Guided by:
Asst.Prof.
SAFEER BABU

INTRODUCTIO

LITERATURE

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

CONCLUSION

Guided by: There are three components in this method.

- Preprocessing
- 2 A universal Huffman codebook
- 3 The Row-Column Reduction Coding

DIAGRAM OF THE COMPRESSION METHOD

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE|T068]
Guided by:
Asst.Prof.
SAFEER BBU
T

INTRODUCTIO

LITERATURE SURVEY

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

General diagram of the proposed compression technique

PREPROCESSING

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTIO

LOSSLESS COMPRESSION

METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSIO

- The first phase is trimming the margins.
- Removes redundant background frame.
- It avoids biasing distribution of 0-valued or 1-valued 8x8 bocks.
- The second phase is modifying the dimensions of image divisible by 8.

THE CODEBOOK MODEL

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE|T068] Guided by: Asst.Prof. SAFEER BABU

INTRODUCTIO

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

- The data sample of 120 images are selected.
- Perform a frequency analysis on 8x8 blocks.
- The blocks that occur more than once are selected.
- For unique blocks, calculate entropy value.
- Build correct Huffman codes for the most frequent blocks.
- The resulting codebook is a fixed-to-variable dictionary containing 6952 entries.

How is the codebook employed?

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE|T068] Guided by: Asst.Prof. SAFEER BABU

INTRODUCTION

LOSSLESS

COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

- Search the codebook for each 8x8 block of a given source image.
- The X-by-Y image is partitioned into XY/64 8x8 blocks.
- If the block exists in the codebook, compress using the corresponding Huffman code.

An example of the codebook structure:

	8:	κ8	В	loc	k			Probability	Huffman Code
0000000	0000000	0 0 0 0 0 0	0000000	0000000	0000000	0000000	0 0 0 0 0 0 0	50.37%	0
0	0	0	0	0	0	0	0		
1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	26.33%	10
1 1 1 1 1 1 1 1	00000000	0000000	00000000	00000000	00000000	00000000	0 0 0 0 0 0 0	0.30%	11101101

The codebook entropy

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE T068] Guided by: Asst.Prof. SAFEER BABU

INTRODUCTION

LITEDATURE

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

This table shows the effect of block dimensions on entropy and the expected sample size

Block	Alphabet Size	Entropy	% Max. Compression	E[T]
2x2	16	1.36	66.00	55
4x4	65536	2.12	86.74	764647
8×8	2 ⁶⁴	4.09	93.60	10^{20}
12x12	2144	7.89	94.52	1045
16x16	2 ²⁵⁶	9.72	96.20	10^{79}

• The average Huffman code length is calculated as:

$$L = \sum_{i=1}^{N} q_i \log_2 \frac{1}{q_i}$$

- The average Huffman code length is 4.094.
- Thus, the compression limit is (64 4.09)/64 = 93.60

The ROW-COLUMN REDUCTION CODING (RCRC)

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUJ
GOPALAN[EPALE|T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTIO

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

It operates on 8x8 blocks.

Uses two reference vectors

- The Row Reference Vector (RRV).
- 2 The Column Reference Vector (CRV).
- It is used to remove the redundancy in the blocks.
- Checks whether the two consecutive row vectors are identical.
- If rows are identical, one is eliminated and the block is reduced by one row.
- If not, the next two consecutive row vectors are compared.
- The row reduction operation continues until the end of the block.

The ROW-COLUMN REDUCTION CODING continued..

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE | T068]
Guided by:
Asst. Prof.
SAFEER BABU
T

INTRODUCTIO

LOSSLESS

COMPRESSION METHOD

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSIO

- The column reduction operation is similar and elimination operations are stored in the CRV.
- The output of RCRC is a bit stream containing the RRV, CRV, and the reduced block
- It is Concatenated as S = RRV + CRV + RB
- Minimum length of S = 17 bits.

The ROW-COLUMN REDUCTION CODING continued..

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst. Prof.
SAFEER BABU
T

INTRODUCTIO

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION

EVALUATION METRICS

CONCLUSION

REFERENCES

RCRC EXAMPLE..

Row elimination is performed on the block:

- Row 1 eliminates row 2.
- Row 3 eliminates all other rows.
 Column elimination is performed on the row-reduced block:

 The compressed bit stream for this example is: 10100000100000101011.

The ROW-COLUMN REDUCTION CODING continued..

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE T068] Guided by: Asst.Prof. SAFEER BABU

INTRODUCTION

LOSSLESS COMPRESSION METHOD

IMPLEMENTATION

EVALUATIO

CONCLUSION

REFERENCES

Reconstruction of the original block

Column reconstruction based on CRV

Row reconstruction based on RRV

An Innovative Lossless Compression Method for Discrete-color Images

- INTRODUCTION
- LITERATURE SURVEY
- GOPALAN[EPALE|T068]

NAIR SREEJA

- **IMPLEMENTATIO** METHOD

- A LOSSLESS COMPRESSION METHOD
- **4** IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- CONCLUSION
- REFERENCES

IMPLEMENTATION METHOD

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE TO
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTION

LITERATURE

LOSSLESS COMPRESSIO

IMPLEMENTATIO METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

The implementation coding scheme is shown in the table.

		Block encoding bits	Description	
68]	Case 1a	'11'	For the block with the shortest Huffman code in the codebook	
	Case 1b	'00' + 5 bits + Huffman Code	For other blocks found in the codebook	
	Case 2	'01' + RRV + CRV + RB	For blocks compressed by RCRC	
	Case 3	'10' + 64 bits	For uncompressed blocks	

Table: The Coding Process

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA

- INTRODUCTION
- LITERATURE SURVEY

GOPALAN[EPALEIT068] Guided by:

Asst.Prof. SAFEER BABU

INTRODUCTION

INTRODUCTION

LOSSLESS

METHOD

IMPLEMENTATION

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSIO

- **3** LOSSLESS COMPRESSION METHOD
- IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- 6 CONCLUSION
- 6 CONCLUSION
- REFERENCES

EVALUATION METRICS

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst.Prof.
SAFEER BABU
T

INTRODUCTION

LOSSLESS

COMPRESSION METHOD IMPLEMENTATION

EVALUATION METRICS

CONCLUSIO

REFERENCES

Analytical Time Complexity

- The codebook contains fixed entries.
- RCRC is executed on fixed, 8x8 blocks.
- The variable input is the source image size.
- Time complexity is O(XY), where X and Y are the image dimensions.

An Innovative Lossless Compression Method for Discrete-color Images

Presented by: NAIR SREEJA VENU-GOPALAN[EPALE|T068] Guided by: Asst. Prof. SAFEER BABU

INTRODUCTIO

LOSSLESS

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION

REFERENCES

Set of binary image samples used for testing:

An Innovative Lossless Compression Method for Discrete-color Images

GOPALAN[EPALE|T068]

IMPLEMENTATION

EVALUATION METRICS

This table shows empirical results for 15 solid binary images.

Image	Dimensions	T.	r*	AC	JBIG2
		E_p	E_p^*		
059	200x329	88.99	93.72	94.58	88.58
071	545x393	90.72	93.75	94.22	89.82
074	203x247	86.9	92.66	93.16	87.68
075	790x480	92.78	96.5	96.25	94.8
076	245x226	86.24	92.75	93.41	86.82
077	450x295	88.47	95.65	95.38	94.83
079	245x158	85.35	91.42	91.96	84.91
080	491x449	91.86	95.71	95.86	92.17
081	245x248	89.2	92.84	93.3	86.69
082	491x526	92.21	96.33	96.08	94.31
083	354x260	88.93	95.29	95.48	92.24
085	167x405	86.9	92.55	93.62	87.7
086	335x500	91.12	95.88	95.62	94.97
087	447x459	89.89	96.2	95.73	93.86
090	350x357	86.68	95.02	94.8	92.18
	Average	90.36	95.26	95.27	92.43

An Innovative Lossless Compression Method for Discrete-color Images

This table shows the percentage of blocks compressed by the proposed method.

NAIR SREEJA GOPALAN[EPALE|T068]

IMPLEMENTATION

EVALUATION METRICS

Image	Codebook	RCRC	Incompressible
059	96.7	3.3	0
071	95.48	4.32	0.2
074	95.04	4.47	0.5
075	98.53	1.46	0.02
076	95.44	4.56	0
077	98.62	1.23	0.14
079	94.19	5.65	0.16
080	98.73	1.25	0.03
081	94.96	4.84	0.2
082	98.9	1.03	0.07
083	98.52	1.28	0.2
085	95.42	4.39	0.19
086	98.49	1.4	0.11
087	99.38	0.52	0.09
090	98.08	1.87	0.05

Map 3

An Innovative Lossless Compression Method for Discrete-color Images

GOPALAN[EPALE|T068]

IMPLEMENTATION

EVALUATION METRICS

This figure shows the topographic maps used for testing.

An Innovative Lossless Compression Method for Discrete-color Images

GOPALAN[EPALE|T068]

IMPLEMENTATION

EVALUATION METRICS

This figure shows the layer separation of a topographic map.

4 different colors

Laver 3: Rivers

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA GOPALAN[EPALE|T068]

IMPLEMENTATION

EVALUATION METRICS

This table shows the description of selected topographic map images.

Map	Dimensions	Size (KB)
1	2200	1700
2	5776	13056
3	5112	11600
	Total Size	406708

This table shows the compression results for map images using the proposed method.

Map	Compressed	Compression	JBIG2
	Size (KB)	Ratio (bpp)	(bpp)
1	210.77	0.019	0.029
2	7489.27	0.034	0.052
3	6626.27	0.038	0.055
Total	14326.42	0.035	0.053

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA

- rete-color mages 1 INTRODUCTION
 - LITERATURE SURVEY

GOPALAN[EPALEIT068] Guided by:

- Asst.Prof. SAFEER BABU
- INTRODUCTION
- III I KODOCI I OII
- LOSSLESS
- IMPLEMENTATION
- EVALUATION
- CONCLUSIO
- CONCLUSION
- REFERENCES

- 1 0001 500 001 1005
- 3 LOSSLESS COMPRESSION METHOD
- 4 IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- 6 CONCLUSION
- REFERENCES

An Innovative Lossless Compression Method for Discrete-color Images

Presented by:
NAIR SREEJA
VENUGOPALAN[EPALE T068]
Guided by:
Asst. Prof.
SAFEER BABU
T

INTRODUCTION

SURVEY

LOSSLESS COMPRESSIO METHOD

IMPLEMENTATION METHOD

EVALUATIO METRICS

CONCLUSION

REFERENCE:

- An innovative method for lossless compression is introduced.
- It has Low-complexity.
- Provides high-efficiency.

This method has been successfully implemented on two major image categories.

- Images that consist of a predetermined number of discrete colors such as digital maps, graphs.
- Binary images.

The results of a large number of test images show that this method has greater compression ratio.

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREEJA

- INTRODUCTION
- LITERATURE SURVEY

GOPALAN[EPALE|T068]

IMPLEMENTATION

- A LOSSLESS COMPRESSION METHOD
- **4** IMPLEMENTATION METHOD
- **6** EVALUATION METRICS
- **a** CONCLUSION
- REFERENCES

REFERENCES

An Innovative Lossless Compression Method for Discrete-color Images

NAIR SREE IA

IMPLEMENTATION

- [1] P. Franti and O. Nevalainen, "Compression of binary images by composite methods based on block coding," J. Vis. Commun. Image Represent., vol. 6, no. 4, pp. 366-377, 1995.
- [2] Seyun Kim and Nam Ik Cho, "Hierarchical Prediction and Context GOPALANIEPALE TOOS Adaptive Coding for Lossless Color Image Compression," IEEE Trans. Image Process., vol. 23, no. 1, pp. 445-449, Jan. 2014.
 - [3] L. Zhou and S. Zahir, "A New Efficient Algorithm for Lossless Binary Image Compression," Signal Process., Image Commun., vol. 6, no. 1, pp. 69-76, Mar. 1994.
 - [4] S. Zahir and A. Borici, "A fast lossless compression scheme for digital map images using color separation," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Mar. 2010, pp. 1318-1321.
 - [5] X. Wu and N. Memon, "Context-based, adaptive, lossless image coding," IEEE Trans. Commun., vol. 45, no. 4, pp. 437-444, Apr. 1997

Lossless
Compression
Method for
Discrete-color
Images
Presented by:
NAIR SREEJA
VENUGOPALANIEPALE TO68

An Innovative

THANK YOU...:)

INTRODUCTIO

SURVEY

LOSSLESS COMPRESSION

IMPLEMENTATION METHOD

EVALUATION METRICS

CONCLUSION