"概率论与数理统计"自测题

	一 、单项选择题 (每小题 2 <i>5</i>	分,共 20 分)。		
1.	. 设随机事件 $A 与 B$ 互不相容	,且 $P(A) > 0$, $P(B) > 0$,则()。		
	(A) P(A) = 1 - P(B)	(B) $P(AB) = P(A)P(B)$		
	(C) $P(A \cup B) = 1$	(D) $P(\overline{AB}) = 1$		
2.	. 设 A , B 为随机事件, $P(A)$	A > 0, $P(A B) = 1$, 则必有()。		
	(A) $P(A \cup B) = P(A)$ (C) $P(A) = P(B)$	(B) $A \subset B$		
3.		筒中,则未向前面两个邮筒投信的概率为()		
	(A) $\frac{2^2}{4^2}$ (B) $\frac{C_2^1}{C_4^2}$	(C) $\frac{2!}{P_4^2}$ (D) $\frac{2!}{4!}$		
4.	. 某人连续向一目标射击,每	次命中目标的概率为 $\frac{3}{4}$,他连续射击直到命中为		
	止,则射击次数为3的概率			
	(A) $(\frac{3}{4})^3$ (B) $(\frac{3}{4})^2 \times \frac{1}{4}$	(C) $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$ (D) $C_4^2 \left(\frac{1}{4}\right)^2 \frac{3}{4}$		
5.	. 设连续型随机变量 X 的概率	密度为 $f(x)$,分布函数为 $F(x)$,则下列选项中		
	正确的是()	(D) D(V) A F(A)		
	(A) $0 \le f(x) \le 1$ (C) $P(X = x) = f(x)$	P(X = x) = F(x) $P(X = x) < F(x)$		
6.	, , ,	$(D) P(X = X) \le P(X)$		
٠.		$(x \cdot a \le x \le b)$		
$f(x) = \begin{cases} x, & a \le x \le b \\ 0, & x < a = x \ge b \end{cases}$				
	是某连续随机变量 X 的概率	密度,则区间 $[a,b]$ 可以是()。		
	(A) $[0,1]$ (B) $[0,2]$ (C) $\left[0,\sqrt{2}\right]$ (D) $\left[1,2\right]$		
7.	. 下列各函数中()是某	随机变量的分布函数。		
	1	$\begin{cases} 0, & x \leq 0; \end{cases}$		
(,	(A) $F_1(x) = \frac{1}{1+x^2}, -\infty < x < -\frac{1}{1+x^2}$	+ ∞ (B) $F_2(x) = \begin{cases} 0, & x \le 0; \\ \frac{x}{1+x}, & x > 0. \end{cases}$		
((C) $F_3(x) = e^{-x}, -\infty < x < +\infty$	(D) $F_4(x) = \frac{3}{4} + \frac{1}{2\pi} \arctan x, -\infty < x < +\infty$		

8. 设二维随机向量(X,Y)的联合分布列为(

Y	0	1	2
0	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{2}{12}$
1	$\frac{1}{12}$	$\frac{1}{12}$	0
2	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{2}{12}$

则P(X=0)= ()

- (A) $\frac{1}{12}$ (B) $\frac{2}{12}$ (C) $\frac{4}{12}$ (D) $\frac{5}{12}$

9. 已知随机变量 X 和 Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从 均匀分布,则E(XY) = ()

- (A) 3 (B) 6 (C) 10 (D) 12

10. 设 $\Phi(x)$ 为标准正态分布函数, $X_i = \begin{cases} 1, 事件A发生; \\ 0, 事件A不发生, \end{cases}$ $i = 1, 2, \cdots, 100$,且

P(A) = 0.8 , X_1, X_2, \dots, X_{100} 相互独立。 令 $Y = \sum_{i=1}^{100} X_i$, 则由中心极限定 理知Y的分布函数F(y)近似于(

- (A) $\Phi(y)$
- (B) $\Phi(\frac{y-80}{4})$ (C) $\Phi(16y+80)$ (D) $\Phi(4y+80)$

二、填空题 (每小题 2 分, 共 20 分)

- 11. 袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一 红一黑的概率是
- 12. 已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} e^{x}/3, & x < 0\\ (x+1)/3, & 0 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

设X的概率密度为f(x),则当x < 0时,f(x) = .

13. 设随机变量 X 服从参数为 2 的普阿松分布,则 $E(X^2)$ =

- 14. 设随机变量 X 与 Y 相互独立,且 D(X) = 1, D(Y) = 2,则 $D(X Y) = ____.$
- 15. 设随机变量 $X \sim U[0,1]$, 由切比雪夫不等式可得 $P(|X \frac{1}{2}| \ge \frac{1}{\sqrt{3}}) \le _____.$
- 16. 设总体 $X\sim N(\mu,\sigma^2)$, (X_1,X_2,\cdots,X_n) 为来自总体 X 的样本, \overline{X} 为样本均值,则 $P(\overline{X}<\mu)=$ _____.
- 17. 设 (X_1, X_2, \dots, X_n) 为来自总体 χ^2 (10)的样本,则统计量 $Y = \sum_{i=1}^n X_i$ 服从分布
- 18. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$,其中 μ 未知, (X_1, X_2, \cdots, X_n) 为其样本。 若假设检验问题为 $H_0: \sigma^2 = 1$,则采用的检验统计量应为_______.
- 19. 设某个假设检验问题的拒绝域为 F,且当原假设 H_0 成立时,样本值 (x_1, x_2, \cdots, x_n) 落入 F 的概率为 0.15,则犯第一类错误的概率为_____。
- 20. 设 样 本 (X_1, X_2, \dots, X_n) 来 自 正 态 总 体 $N(\mu, 1)$, 假 设 检 验 问 题 为 : $H_0: \mu = 0$,则在 H_0 成立的条件下,对显著水平 α ,拒绝域 F 应 为______.

三、证明题(8分)

21. 设A,B为两个随机事件,0 < P(B) < 1,且 $P(A|B) = P(A|\overline{B})$,证明事件 A 与 B相互独立。

四、计算题(8分)

- 22. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} cx^{\alpha}, 0 < x < 1 \\ 0 \end{cases}$,且 E(X) = 0.75,求常数 c 和 α .
- 五、综合题 (每小题 12分, 共 24分)

- 23. 设二维随机向量(*X*,*Y*)的联合概率密度为 $f(x,y) = \begin{cases} e^{-y}, 0 < x < y \\ 0, 其它 \end{cases}$
 - (1) 求(X,Y)分别关于X和Y的边缘概率密度 $f_X(x)$ 和 $f_Y(y)$,并判断X与Y是否相互独立:
 - (2) 计算概率 $P(X+Y) \leq 1$)。
- 24. 设随机变量 X_1 与 X_2 相互独立,且 $X_1 \sim N(\mu, \sigma^2)$, $X_2 \sim N(\mu, \sigma^2)$,令 $X = X_1 + X_2, \quad Y = X_1 X_2,$

求: (1) D(X), D(Y);

(2) X 与Y 的相关系数 ρ_{xy} .

六、应用题(共20分)

- 25. 某医院从 2001 年的新生儿中随机抽出 20 个,测得其平均体重为 3160 克,样本标准差为 300 克,而根据 2000 年资料,新生儿平均体重为 3140 克,问 2001 年与 2000 年新生儿体重均值有无显著差异? (设体重服从正态分布,取 $\alpha=0.05$, $t_{0.025}(19)=2.09$)
- 26. 从二种羊毛织品中分别抽取容量为 $n_1 = 4$, $n_2 = 6$ 的样本,测得其强度如下,并算得其样本均值和样本方差:

第一类型: 138, 127, 134, 125, $\overline{X}=131$, $S_X^2=27.5$ 第二类型: 134, 137, 135, 140, 130, 134, $\overline{Y}=135$, $S_Y^2=9.33$ 又设羊毛织品的强度服从正分布。试问:

- (1) 是否可以认为这二类羊毛织品的强度方差无显著性差异($\alpha = 0.05$)
- (2) 是否可以认为这二类羊毛织品的强度无显著性差异? ($\alpha = 0.05$) (t(8;0.025) = 2.306; F(3,5;0.025) = 7.7636, F(5,3;0.025) = 14.885)

"概率论与数理统计"自测题参考答案

一、选择题

1. D 2. A 3. A 4. C 5. D 6. C 7. B 8. D 9. A 10. B

二、填空题

11. 0.6 12. $\frac{1}{3}e^x$ 13. 6 14. 3 15. $\frac{1}{4}$ 16. $\frac{1}{2}$ 17. $\chi^2(10n)$

18.
$$(n-1)S^2$$
或 $\sum_{i=1}^n (X_i - \overline{X})^2$ 19. 0.15 20. $\{U \mid > Z_{\alpha/2}\}$, 其中 $U = \overline{X}\sqrt{n}$

三、证明题

21. 证: 由题设及条件概率定义得

$$\frac{P(AB)}{P(B)} = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{1 - P(B)} \implies P(AB) = P(A)P(B) ,$$

即 A, B 相互独立。

四、计算题

22. **解**: 由
$$\begin{cases} \int_0^1 cx^{\alpha} dx = 1, \\ \int_0^1 cx^{\alpha+1} dx = 0.75, \end{cases}$$
 可得
$$\begin{cases} \frac{c}{\alpha+1} = 1, \\ \frac{c}{\alpha+2} = 0.75, \end{cases}$$
 解得 $\alpha = 2, c = 3.$

五、综合题

23. 解: (1) 边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \begin{cases} \int_x^{+\infty} e^{-y} \, dy = e^{-x}, x > 0 \\ 0, & x \le 0 \end{cases}$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx = \begin{cases} \int_x^y e^{-y} \, dx = y e^{-y}, y > 0 \\ 0, & y \le 0 \end{cases}$$

由于 $f(x,y) \neq f_X(x) \cdot f_Y(y)$,故X与Y不独立;

(3)
$$P\{X + Y \le 1\} = \iint_{x+y \le 1} f(x,y) dxdy = \int_0^{\frac{1}{2}} dx \int_x^{1-x} e^{-y} dy = 1 + e^{-1} - 2e^{-\frac{1}{2}}.$$

24. **M**:
$$D(X) = D(X_1 + X_2) = D(X_1) + D(X_2) = 2\sigma^2$$
,

概率论与数理统计自测题 第5页共6页

$$D(Y) = D(X_1 - X_2) = D(X_1) + D(X_2) = 2\sigma^2,$$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$= E(X_1^2) - E(X_2^2) - [E(X_1) + E(X_2)] \cdot [E(X_1) - E(X_2)]$$

$$= E(X_1^2) - [E(X_1]^2 - (E(X_2^2) - [E(X_2]^2))$$

$$= D(X_1) - D(X_2) = 0,$$

$$\therefore \rho_{XY} = \frac{cov(X,Y)}{\sqrt{D(X_1)}\sqrt{D(Y_1)}} = 0$$

六、应用题

25. **M**:
$$H_0$$
: $\mu = 3140$

检验量
$$t = \frac{\overline{X} - 3140}{S/\sqrt{n-1}} \sim t(19)$$

$$|t| = 0.291 < t_{0.025}(19) = 2.09$$

:: 不否定 H_0 , 即均值无显著差异。

26. **解**: (1)
$$H_0$$
: $\sigma_1 = \sigma_2$

检验量
$$F = \frac{S_X^{*2}}{S_V^{*2}} \sim F(n_1 - 1, n_2 - 1)$$

$$F = \frac{S_X^2}{S_Y^2} = \frac{27.5}{9.33} = 2.947$$

F(3,5;0.025) = 7.7636, F(5,3;0.025) = 14.885

$$\therefore 1/14.885 < F < 7.7636$$

: 不否定 H_0 ,即方差无明显差异。

(2)
$$H_0: \mu_1 = \mu_2$$

检验量
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{(n_1 - 1)S_v^2 + (n_2 - 1)S_v^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \sim t(n_1 + n_2 - 2)$$

$$|T| = 1.54$$

$$t(8;0.025) = 2.306$$

|T| < 2.306, :. 不否定 H_0 ,即两者的期望差异不明显。