Master in Computational Logics & Mestrado em Engenharia Informática Universidade Nova de Lisboa

Knowledge Representation and Reasoning First Test – Closed book – 1h30m 10th November 2012

Group 1

- 1) Reduce the following sentences to clausal form:
 - **S1** $\forall x \forall y (R(x,y) \supset (R(y,x) \land Q(y)))$
 - **S2** $\forall x \exists y \forall z (P(x, y, z) \supset \exists u R(x, u, z))$
 - **S3** $\forall x (\neg \exists y P(x, y) \land \neg (Q(x) \land \neg R(x)))$
- 2) Derive, by resolution, an empty clause from the following clauses.
 - **C1** $[\neg P(x_1), Q(x_1)]$
 - **C2** $[P(x_2), \neg Q(x_2)]$
 - **C3** $[\neg Q(x_3), Q(f(x_3))]$
 - **C4** $[\neg P(x_4), \neg P(f(x_4))]$
 - C5 [P(a)] where a is a constant.
- 3) Use resolution with answer extraction to prove that **S4** below follows from **S1 S3** and to extract the answer (a substitution for x which makes $Like(anne, x) \wedge Student(x)$ true).:
 - **S1** $\forall x \forall y (Friend(x,y) \supset Like(x,y))$
 - S2 Friend (anne, ben)
 - **S3** Student (ben)
 - **S4** $\exists x (Like (anne, x) \land Student (x))$

Group 2

Contrast, in a clear and concise manner, First Order Entailment, Entailment with the Closed World Assumption, and Minimal Entailment (aka. Circunscription), illustrating with concrete examples.

Group 3

Hitori is played with a grid of squares or cells, and each cell contains a number. The objective is to eliminate numbers by filling in the cells such that the remaining unfilled cells do not contain numbers that appear more than once in either a given row or column. Filled-in cells cannot be horizontally or vertically adjacent, although they can be diagonally adjacent. The remaining unfilled cells must form a single component connected horizontally and vertically i.e. every unfilled cell must be reachable from every other unfilled cell (considering horizontal and vertical adjacency only).

4	8	1	6	3	2	5	7
3	6	7	2	1	6	5	4
2	3	4	8	2	8	6	1
4	1	6	5	7	7	3	5
7	2	3	1	8	5	1	2
3	5	6	7	3	1	8	4
6	4	2	3	5	4	7	8
8	7	1	4	2	3	5	6

	8		6	3	2		7
3	6	7	2	1		5	4
	3	4		2	8	6	1
4	1		5	7		3	
7		3		8	5	1	2
	5	6	7		1	8	
6		2	3	5	4	7	8
8							

Figure 2: One solution

Input Format: A particular instance of this problem is described by facts of the form state(X,Y,N) to express that the cell in column X and row Y contains number N.

Output Format: The output is a filling of cells encoded through the predicate fill(X,Y) indicating that the cell in column X and row Y is filled.

Write an Answer Set Program whose answer-sets correspond to the solutions of the problem.