

Course > Topic 4... > 4.8 Sta... > Stars a...

Stars and Bars Video

4.8 Stars and Bars

POLL

In how many different ways can you write 11 as a sum of 3 **positive** integers if order matters?

- **28**
- **36**
- **45**
- None of the above

Submit

1

0 points possible (ungraded)

If a+b+c+d=10 how many ordered integer solutions (a,b,c,d) are there, when all elements are

• non-negative,

5

X Answer: 286

5

Explanation

- $\binom{13}{3}$, follows from the lecture.
 - positive?

X Answer: 84

 $\binom{9}{3}$, follows from the lecture.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

2

2/3 points (graded)

In how many ways can we place 10 idential red balls and 10 identical blue balls into 4distinct urns if:

there are no constraints,

81796

✓ Answer: 81796

81796

Explanation

 $\binom{13}{3} \cdot \binom{13}{3}$, by combining stars and bars for both balls evaluated separately.

ullet the first urn has at least 1 red ball and at least 2 blue balls,

X Answer: 36300

Explanation

First place 1 red ball and 2 blue balls in the first urn, and then repeat the above part with 9 red balls and 8 blue balls, resulting in $\binom{12}{3} \cdot \binom{11}{3}$.

• each urn has at least 1 ball? Hint: use complement and inclusion exclusion?

65094

✓ Answer: 65094

65094

Explanation

There are $\binom{12}{2}^2$ ways to place the balls so that urn 1 is empty, $\binom{11}{1}^2$ ways so that urns 1 and 2 are empty and $\binom{10}{0}^2=1$ so that urns 1 2 and 3 are empty. By inclusion exclusion, there are $\binom{4}{1}\binom{12}{2}^2 - \binom{4}{2}\binom{11}{1}^2 + \binom{4}{3}\binom{10}{0}^2$ placements where at least one urn is empty. And by the complement rule, the answer is $\binom{13}{3}^2 - \binom{4}{1}\binom{12}{2}^2 + \binom{4}{2}\binom{11}{1}^2 - \binom{4}{3}\binom{10}{0}^2 = 65,094$

$$\left(\frac{13}{3}\right)^2 - \left(\frac{4}{1}\right)\left(\frac{12}{2}\right)^2 + \left(\frac{4}{2}\right)\left(\frac{11}{1}\right)^2 - \left(\frac{4}{3}\right)\left(\frac{10}{0}\right)^2 = 65,094$$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3

2.0/4.0 points (graded)

How many 6-digit sequences are:

• strictly ascending, as 024579 or 135789, but not 011234,

Explanation

Every six-digit strictly asending sequence corresponts to 6 distinct digits. There are $\binom{10}{6}=210$ ways to choose them.

• ascending (not necessarily strictly), as 023689, 033588, or 222222.

Explanation

Every six-digit (not necessarily striclty) assending sequence corresponds to a collection of 6 digits, possibly with repetition. Let x_i denote the number of times digit i is included in the number. Using stars and bars, the number of ways of assigning $x_0+x_1+\cdots+x_9=6$ is $\binom{6+10-1}{6}=5005$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

How many terms are there in the expansion of $(x+y+z)^{10}$?

16 **X** Answer: 66

Explanation

Any coefficient corresponds to a term of the form $x^{a_1}y^{a_2}z^{a_3}$ with $a_1+a_2+a_3=10$ such that $a_i\geq 0$. The number of possible solutions to this problem is given by $\binom{12}{2}=66$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 4 / Stars and Bars

Add a Post

Show all posts ▼ by recent act	ivity ▼
Problem 2 Questions and comments regarding problem 2. 2 new ≜ Staff	<u>/</u> 8
Second part of question Hello, I am confused with "the first urn has at least one red ball and at least two blue balls" Are we co	2
 General Comments Questions and comments regarding this section. Staff 	5
 Problem 3 Questions and comments regarding problem 3. Staff 	3
 Problem 1 Questions and comments regarding problem 1. Staff 	3
 Problem 4 Questions and comments regarding problem 4. Staff 	1

© All Rights Reserved