Clontz & Lewis

Module A

Section A.2 Section A.3 Section A.4

Module A: Algebraic properties of linear maps

Section A.2 Section A.3 Section A.4

How can we understand linear maps algebraically?

Section A.1 Section A.2 Section A.3 Section A.4 At the end of this module, students will be able to...

- **A1. Linear map verification.** ... determine if a map between vector spaces of polynomials is linear or not.
- **A2. Linear maps and matrices.** ... translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
- **A3. Injectivity and surjectivity.** ... determine if a given linear map is injective and/or surjective.
- **A4. Kernel and Image.** ... compute a basis for the kernel and a basis for the image of a linear map.

Section A.1 Section A.2 Section A.3 Section A.4

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- State the definition of a spanning set, and determine if a set of Euclidean vectors spans \mathbb{R}^n **V4**.
- State the definition of linear independence, and determine if a set of Euclidean vectors is linearly dependent or independent **S1**.
- State the definition of a basis, and determine if a set of Euclidean vectors is a basis S2,S3.
- Find a basis of the solution space to a homogeneous system of linear equations
 \$6.

Linear Algebra

Clontz & Lewis

Module A

Section A.1 Section A.2

Section A.3 Section A.4

Module A Section 1

Definition A.1.1

A linear transformation (also known as a linear map) is a map between vector spaces that preserves the vector space operations. More precisely, if V and W are vector spaces, a map $T:V\to W$ is called a linear transformation if

1
$$T(\vec{\mathbf{v}} + \vec{\mathbf{w}}) = T(\vec{\mathbf{v}}) + T(\vec{\mathbf{w}})$$
 for any $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in V$.

2
$$T(c\vec{\mathbf{v}}) = cT(\vec{\mathbf{v}})$$
 for any $c \in \mathbb{R}, \vec{\mathbf{v}} \in V$.

In other words, a map is linear when vector space operations can be applied before or after the transformation without affecting the result.

Definition A.1.2

Given a linear transformation $T: V \to W$, V is called the **domain** of T and W is called the **co-domain** of T.

Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$

Lewis

Section A.1

Example A.1.3

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix}$$

To show that T is linear, we must verify...

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = T\left(\begin{bmatrix} x+u \\ y+v \\ z+w \end{bmatrix}\right) = \begin{bmatrix} (x+u)-(z+w) \\ 3(y+v) \end{bmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) + T\left(\begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix} + \begin{bmatrix} u - w \\ 3v \end{bmatrix} = \begin{bmatrix} (x + u) - (z + w) \\ 3(y + v) \end{bmatrix}$$

And also...

$$T\left(c\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = T\left(\begin{bmatrix}cx\\cy\\cz\end{bmatrix}\right) = \begin{bmatrix}cx - cz\\3cy\end{bmatrix} \text{ and } cT\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = c\begin{bmatrix}x - z\\3y\end{bmatrix} = \begin{bmatrix}cx - cz\\3cy\end{bmatrix}$$

Therefore T is a linear transformation.

Section A.1

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2^x \end{bmatrix}$$

To show that T is not linear, we only need to find one counterexample.

$$T\left(\begin{bmatrix}0\\1\end{bmatrix} + \begin{bmatrix}2\\3\end{bmatrix}\right) = T\left(\begin{bmatrix}2\\4\end{bmatrix}\right) = \begin{bmatrix}6\\4\\7\\0\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)+T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)=\begin{bmatrix}1\\0\\4\\-1\end{bmatrix}+\begin{bmatrix}5\\4\\6\\-5\end{bmatrix}=\begin{bmatrix}6\\4\\10\\-6\end{bmatrix}$$

Since the resulting vectors are different, *T* is not a linear transformation.

Fact A.1.5

A map between Euclidean spaces $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when every component of the output is a linear combination of the variables of \mathbb{R}^n .

For example, the following map is definitely linear because x-z and 3y are linear combinations of x, y, z:

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix} = \begin{bmatrix} 1x + 0y - 1z \\ 0x + 3y + 0z \end{bmatrix}$$

But this map is not linear because x^2 , y+3, and $y-2^x$ are not linear combinations (even though x+y is):

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2^x \end{bmatrix}$$

Activity A.1.6 (\sim 5 min)

Recall the following rules from calculus, where $D: \mathcal{P} \to \mathcal{P}$ is the derivative map defined by D(f(x)) = f'(x) for each polynomial f.

$$D(f+g) = f'(x) + g'(x)$$
$$D(cf(x)) = cf'(x)$$

What can we conclude from these rules?

- a) \mathcal{P} is not a vector space
- b) D is a linear map
- c) D is not a linear map

Activity A.1.7 (\sim 10 min)

Let the polynomial maps $S:\mathcal{P}^4\to\mathcal{P}^3$ and $T:\mathcal{P}^4\to\mathcal{P}^3$ be defined by

$$S(f(x)) = 2f'(x) - f''(x)$$
 $T(f(x)) = f'(x) + x^3$

Compute $S(x^4 + x)$, $S(x^4) + S(x)$, $T(x^4 + x)$, and $T(x^4) + T(x)$. Which of these maps is definitely not linear?

Fact A.1.8

If $L: V \to W$ is linear, then $L(\vec{\mathbf{z}}) = L(0\vec{\mathbf{v}}) = 0L(\vec{\mathbf{v}}) = \vec{\mathbf{z}}$ where $\vec{\mathbf{z}}$ is the additive identity of the vector spaces V, W.

Put another way, an easy way to prove that a map like $T(f(x)) = f'(x) + x^3$ can't be linear is because

$$T(0) = \frac{d}{dx}[0] + x^3 = 0 + x^3 = x^3 \neq 0.$$

Observation A.1.9

Showing $L:V\to W$ is not a linear transformation can be done by finding an example for any one of the following.

- Show $L(\vec{z}) \neq \vec{z}$ (where \vec{z} is the additive identity of L and W).
- Find $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in V$ such that $L(\vec{\mathbf{v}} + \vec{\mathbf{w}}) \neq L(\vec{\mathbf{v}}) + L(\vec{\mathbf{w}})$.
- Find $\vec{\mathbf{v}} \in V$ and $c \in \mathbb{R}$ such that $L(c\vec{\mathbf{v}}) \neq cL(\vec{\mathbf{v}})$.

Otherwise, L can be shown to be linear by proving the following in general.

- For all $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in V$, $L(\vec{\mathbf{v}} + \vec{\mathbf{w}}) \neq L(\vec{\mathbf{v}}) + L(\vec{\mathbf{w}})$.
- For all $\vec{\mathbf{v}} \in V$ and $c \in \mathbb{R}$, $L(c\vec{\mathbf{v}}) \neq cL(\vec{\mathbf{v}})$.

Note the similarities between this process and showing that a subset of a vector space is/isn't a subspace.

Section A.1 Section A.2 Section A.3 Section A.4 Activity A.1.10 (\sim 15 min)

Continue to consider $\mathcal{S}:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Activity A.1.10 (\sim 15 min)

Continue to consider $\mathcal{S}:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Part 1: Verify that

$$S(f(x) + g(x)) = 2f'(x) + 2g'(x) - f''(x) - g''(x)$$

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Activity A.1.10 (\sim 15 min)

Continue to consider $S:\mathcal{P}^4\to\mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Part 1: Verify that

$$S(f(x) + g(x)) = 2f'(x) + 2g'(x) - f''(x) - g''(x)$$

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers c and polynomials f.

Activity A.1.10 (\sim 15 min)

Continue to consider $S:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Part 1: Verify that

$$S(f(x) + g(x)) = 2f'(x) + 2g'(x) - f''(x) - g''(x)$$

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers c and polynomials f.

Part 3: Is S linear?

Section A.1 Section A.3

Activity A.1.11 (\sim 20 min)

Let the polynomial maps $S: \mathcal{P} \to \mathcal{P}$ and $T: \mathcal{P} \to \mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

Activity A.1.11 (\sim 20 min)

Let the polynomial maps $S:\mathcal{P}\to\mathcal{P}$ and $T:\mathcal{P}\to\mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

Part 1: Note that S(0) = 0 and T(0) = 0. So instead, show that $S(x+1) \neq S(x) + S(1)$ to verify that S(0) = 0 is not linear.

Section A.1 Section A.2 Section A.3

Activity A.1.11 (\sim 20 min)

Let the polynomial maps $S: \mathcal{P} \to \mathcal{P}$ and $T: \mathcal{P} \to \mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

Part 1: Note that S(0) = 0 and T(0) = 0. So instead, show that $S(x+1) \neq S(x) + S(1)$ to verify that S(0) = 0 is not linear.

Part 2: Prove that T is linear by verifying that

$$T(f(x)+g(x))=T(f(x))+T(g(x)) \text{ and } T(cf(x))=cT(f(x)).$$

Clontz & Lewis

Module A
Section A.1
Section A.2
Section A.3
Section A.4

Module A Section 2

Remark A.2.1

Recall that a linear map $T: V \to W$ satisfies

$$T(\vec{\mathbf{v}} + \vec{\mathbf{w}}) = T(\vec{\mathbf{v}}) + T(\vec{\mathbf{w}}) \text{ for any } \vec{\mathbf{v}}, \vec{\mathbf{w}} \in V.$$

2
$$T(c\vec{\mathbf{v}}) = cT(\vec{\mathbf{v}})$$
 for any $c \in \mathbb{R}, \vec{\mathbf{v}} \in V$.

In other words, a map is linear when vector space operations can be applied before or after the transformation without affecting the result.

Activity A.2.2 (\sim 5 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}3\\0\\0\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -9 \\ 6 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 6 \\ -4 \end{bmatrix}$$

Module A Section A.1 Section A.2 Section A.3 Section A.4

Activity A.2.3 (\sim 5 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(c)
$$\begin{vmatrix} -1 \\ 3 \end{vmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Section A.2

Activity A.2.4 (\sim 5 min)

Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map, and you know $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}-2\\0\\-3\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(c)
$$\begin{vmatrix} -1 \\ 3 \end{vmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Activity A.2.5 (\sim 5 min)

Suppose $\mathcal{T}:\mathbb{R}^3 o\mathbb{R}^2$ is a linear map, and you know $\mathcal{T}\left(\left|\begin{matrix}1\\0\\0\end{matrix}\right|\right)=\left[\begin{matrix}2\\1\end{matrix}\right]$ and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}.$$

What piece of information would help you compute $T \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$?

- (a) The value of $T \left(\begin{bmatrix} 0 \\ -4 \\ 0 \end{bmatrix} \right)$.
- (b) The value of $T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$.

- (c) The value of $T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- (d) Any of the above.

Fact A.2.6

Consider any basis $\{\vec{\mathbf{b}}_1, \dots, \vec{\mathbf{b}}_n\}$ for V. Since every vector $\vec{\mathbf{v}}$ can be written as a linear combination of basis vectors, $x_1\vec{\mathbf{b}}_1 + \dots + x_n\vec{\mathbf{b}}_n$, we may compute $T(\vec{\mathbf{v}})$ as follows:

$$T(\overrightarrow{\mathbf{v}}) = T(x_1\overrightarrow{\mathbf{b}}_1 + \cdots + x_n\overrightarrow{\mathbf{b}}_n) = x_1T(\overrightarrow{\mathbf{b}}_1) + \cdots + x_nT(\overrightarrow{\mathbf{b}}_n).$$

Therefore any linear transformation $T: V \to W$ can be defined by just describing the values of $T(\vec{\mathbf{b}}_i)$.

Put another way, the images of the basis vectors **determine** the transformation T.

Definition A.2.7

Since linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is determined by the standard basis $\{\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n\}$, it's convenient to store this information in the $m \times n$ standard matrix $[T(\vec{\mathbf{e}}_1) \cdots T(\vec{\mathbf{e}}_n)]$.

For example, let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map determined by the following values for T applied to the standard basis of \mathbb{R}^3 .

$$\mathcal{T}\left(\vec{\mathbf{e}}_{1}\right) = \mathcal{T}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}3\\2\end{bmatrix} \qquad \mathcal{T}\left(\vec{\mathbf{e}}_{2}\right) = \mathcal{T}\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\4\end{bmatrix} \qquad \mathcal{T}\left(\vec{\mathbf{e}}_{3}\right) = \mathcal{T}\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\0\end{bmatrix}$$

Then the standard matrix corresponding to T is

$$\begin{bmatrix} T(\vec{\mathbf{e}}_1) & T(\vec{\mathbf{e}}_2) & T(\vec{\mathbf{e}}_3) \end{bmatrix} = \begin{bmatrix} 3 & -1 & 5 \\ 2 & 4 & 0 \end{bmatrix}.$$

Activity A.2.8 (\sim 3 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by

$$T(\vec{\mathbf{e}}_1) = \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix} \qquad T(\vec{\mathbf{e}}_2) = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \qquad T(\vec{\mathbf{e}}_3) = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix} \qquad T(\vec{\mathbf{e}}_4) = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

Write the standard matrix $[T(\vec{\mathbf{e}}_1) \cdots T(\vec{\mathbf{e}}_n)]$ for T.

Activity A.2.9 (\sim 5 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 3z \\ 2x - y - 4z \end{bmatrix}$$

Activity A.2.9 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 3z \\ 2x - y - 4z \end{bmatrix}$$

Part 1: Compute $T(\vec{e}_1)$, $T(\vec{e}_2)$, and $T(\vec{e}_3)$.

Activity A.2.9 (\sim 5 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 3z \\ 2x - y - 4z \end{bmatrix}$$

Part 1: Compute $T(\vec{e}_1)$, $T(\vec{e}_2)$, and $T(\vec{e}_3)$.

Part 2: Find the standard matrix for T.

Fact A.2.10

Because every linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ has a linear combination of the variables in each component, and thus $T(\vec{\mathbf{e}}_i)$ yields exactly the coefficients of x_i , the standard matrix for T is simply an ordered list of the coefficients of the x_i :

$$T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = \begin{bmatrix} ax + by + cz + dw \\ ex + fy + gz + hw \end{bmatrix} \qquad A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \end{bmatrix}$$

Activity A.2.11 (\sim 5 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

Activity A.2.11 (\sim 5 min)

Let $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

Part 1: Compute
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Module A Section A.1 Section A.2 Section A.3 Section A.4

Activity A.2.11 (\sim 5 min)

Let $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

Part 1: Compute
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Part 2: Compute
$$T\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
.

Linear Algebra Clontz &

Lewis

Section A.2

r Algebra Fact A.2.12

To quickly compute $T(\vec{\mathbf{v}})$ from its standard matrix A, multiply and add the entries of each row of A with the vector $\vec{\mathbf{v}}$. For example, if T has the standard matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix}$$

then for
$$\vec{\mathbf{v}} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 we will write

$$T(\vec{\mathbf{v}}) = A\vec{\mathbf{v}} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1x + 2y + 3z \\ 0x + 1y - 2z \\ 2x - 1y + 0z \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
us will write

and for
$$\vec{\mathbf{v}} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$$
 we will write

$$\begin{bmatrix}
-2
\end{bmatrix}$$

$$T(\vec{\mathbf{v}}) = A\vec{\mathbf{v}} = \begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & -2 \\
2 & -1 & 0
\end{bmatrix} \begin{bmatrix}
3 \\
0 \\
-2
\end{bmatrix} = \begin{bmatrix}
1(3) + 2(0) + 3(-2) \\
0(3) + 1(0) - 2(-2) \\
2(3) - 1(0) + 0(-2)
\end{bmatrix} = \begin{bmatrix}
-3 \\
4 \\
6
\end{bmatrix}.$$

Activity A.2.13 (~15 min)

Compute the following linear transformations of vectors given their standard matrices.

$$T_1\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$$
 for the standard matrix $A_1=\begin{bmatrix}4&3\\0&-1\\1&1\\3&0\end{bmatrix}$

$$T_2\left(\left|\begin{array}{c}1\\1\\0\\-3\end{array}\right|\right)$$
 for the standard matrix $A_2=\left[\begin{array}{cccc}4&3&0&-1\\1&1&3&0\end{array}\right]$

$$T_3\left(\begin{bmatrix}0\\-2\\0\end{bmatrix}\right)$$
 for the standard matrix $A_3=\begin{bmatrix}4&3&0\\0&-1&3\\5&1&1\\3&0&0\end{bmatrix}$

Clontz & Lewis

Module A Section A.1

Section A.3 Section A.4

Module A Section 3

Definition A.3.1

Let $T:V\to W$ be a linear transformation. T is called **injective** or **one-to-one** if T does not map two distinct vectors to the same place. More precisely, T is injective if $T(\vec{\mathbf{v}})\neq T(\vec{\mathbf{w}})$ whenever $\vec{\mathbf{v}}\neq \vec{\mathbf{w}}$.

Activity A.3.2 (\sim 3 min)

Let $T:\mathbb{R}^3 o \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Show that T is not injective by finding two different vectors $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^3$ such that $T(\vec{\mathbf{v}}) = T(\vec{\mathbf{w}})$.

Activity A.3.3 (\sim 2 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Is T injective? If not, find two different vectors $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^3$ such that $T(\vec{\mathbf{v}}) = T(\vec{\mathbf{w}})$.

Definition A.3.4

Let $T: V \to W$ be a linear transformation. T is called **surjective** or **onto** if every element of W is mapped to by an element of V. More precisely, for every $\vec{\mathbf{w}} \in W$, there is some $\vec{\mathbf{v}} \in V$ with $T(\vec{\mathbf{v}}) = \vec{\mathbf{w}}$.

Activity A.3.5 (\sim 3 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Show that T is not surjective by finding a vector in \mathbb{R}^3 that $T\begin{pmatrix} x \\ y \end{pmatrix}$ can never equal.

Activity A.3.6 (\sim 2 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Is T surjective? If not, find a vector in \mathbb{R}^2 that $T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ can never equal.

Observation A.3.7

As we will see, it's no coincidence that the RREF of the injective map's standard matrix

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

has all pivot columns. Similarly, the RREF of the surjective map's standard matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

has a pivot in each row.

Module A Section A.1 Section A.2 Section A.3 Section A.4

Definition A.3.8

Let $T:V\to W$ be a linear transformation. The **kernel** of T is an important subspace of V defined by

$$\ker T = \left\{ \overrightarrow{\mathbf{v}} \in V \mid T(\overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{z}} \right\}$$

Activity A.3.9 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Which of these subspaces of \mathbb{R}^2 describes ker T, the set of all vectors that transform into **0**?

$$\mathsf{a})\ \left\{ \begin{bmatrix} \mathsf{a} \\ \mathsf{a} \end{bmatrix} \ \middle|\ \mathsf{a} \in \mathbb{R} \right\}$$

b)
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

c)
$$\mathbb{R}^2$$

Activity A.3.10 (\sim 5 min) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^3 describes ker \mathcal{T} , the set of all vectors that transform into $\vec{0}$?

$$\mathsf{a})\ \left\{ \begin{bmatrix} 0\\0\\a\end{bmatrix} \,\middle|\, a\in\mathbb{R}\right\}$$

b)
$$\left\{ \begin{bmatrix} a \\ a \\ 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

$$\mathsf{c}) \ \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

d)
$$\mathbb{R}^3$$

Module A Section A.1 Section A.2 Section A.3 Section A.4

Activity A.3.11 (~10 min)

Let $T:\mathbb{R}^3 o \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Activity A.3.11 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Set
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} ? + ? + ? \\ ? + ? + ? \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 to find a linear system of equations

whose solution set is the kernel.

Activity A.3.11 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Set
$$T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} ? + ? + ? \\ ? + ? + ? \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 to find a linear system of equations

whose solution set is the kernel.

Part 2: Use RREF(A) to solve this homogeneous system of equations and find a basis for the kernel of T.

Definition A.3.12

Let $T:V\to W$ be a linear transformation. The **image** of T is an important subspace of W defined by

$$\mathsf{Im}\; T = \left\{ \vec{\mathbf{w}} \in W \;\middle|\; \mathsf{there}\; \mathsf{is}\; \mathsf{some}\; \vec{\mathbf{v}} \in V \;\mathsf{with}\; T(\vec{\mathbf{v}}) = \vec{\mathbf{w}} \right\}$$

In the examples below, the left example's image is all of \mathbb{R}^2 , but the right example's image is a planar subspace of \mathbb{R}^3 .

Section A.3

Activity A.3.13 (\sim 5 min) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^3 describes Im T, the set of all vectors that are the result of using T to transform \mathbb{R}^2 vectors?

$$\mathsf{a)} \ \left\{ \begin{bmatrix} \mathsf{0} \\ \mathsf{0} \\ \mathsf{a} \end{bmatrix} \, \middle| \, \mathsf{a} \in \mathbb{R} \right\}$$

b)
$$\left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

c)
$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

d)
$$\mathbb{R}^3$$

Activity A.3.14 (\sim 5 min) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^2 describes Im T, the set of all vectors that are the result of using T to transform \mathbb{R}^3 vectors?

$$\mathsf{a)} \ \left\{ \begin{bmatrix} \mathsf{a} \\ \mathsf{a} \end{bmatrix} \,\middle|\, \mathsf{a} \in \mathbb{R} \right\}$$

b)
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

c)
$$\mathbb{R}^2$$

Activity A.3.15 (\sim 5 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & 7 & 1 \\ -1 & 1 & 0 & 2 \\ 2 & 1 & 3 & -1 \end{bmatrix} = \begin{bmatrix} T(\vec{\mathbf{e}}_1) & T(\vec{\mathbf{e}}_2) & T(\vec{\mathbf{e}}_3) & T(\vec{\mathbf{e}}_4) \end{bmatrix}.$$

Since $T(\vec{\mathbf{v}}) = T(x_1\vec{\mathbf{e}}_1 + x_2\vec{\mathbf{e}}_2 + x_3\vec{\mathbf{e}}_3 + x_4\vec{\mathbf{e}}_4)$, the set of vectors

$$\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 4\\1\\1 \end{bmatrix}, \begin{bmatrix} 7\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \right\}$$

- a) spans Im T
- b) is a linearly independent subset of Im T
- c) is a basis for Im T

Observation A.3.16

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & 7 & 1 \\ -1 & 1 & 0 & 2 \\ 2 & 1 & 3 & -1 \end{bmatrix}.$$

Since the set
$$\left\{ \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \right\}$$
 spans Im T , we can obtain a basis for Im T by finding RREF $A = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and only using the vectors

corresponding to pivot columns:

$$\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 4\\1\\1 \end{bmatrix} \right\}$$

Fact A.3.17

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A.

- The kernel of T is the solution set of the homogeneous system given by the augmented matrix $\begin{bmatrix} A & \vec{0} \end{bmatrix}$. Use the coefficients of its free variables to get a basis for the kernel.
- The image of *T* is the span of the columns of *A*. Remove the vectors creating non-pivot columns in RREF *A* to get a basis for the image.

Activity A.3.18 (\sim 10 min)

Let $T:\mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & -6 & 0 \\ 0 & 0 & 1 \\ -1 & 3 & 1 \end{bmatrix}.$$

Find a basis for the kernel and a basis for the image of T.

Clontz & Lewis

Module A
Section A.1
Section A.2
Section A.3
Section A.4

Module A Section 4

Observation A.4.1

Let $T: V \to W$. We have previously defined the following terms.

- T is called injective or one-to-one if T always maps distinct vectors to different places.
- T is called surjective or onto if every element of W is mapped to by some element of V.
- The **kernel** of T is the set of all vectors in V that are mapped to $\vec{z} \in W$. It is a subspace of V.
- The **image** of T is the set of all vectors in W that are mapped to by something in V. It is a subspace of W.

Activity A.4.2 (\sim 5 min)

Let $T:V\to W$ be a linear transformation where ker T contains multiple vectors. What can you conclude?

- (a) T is injective
- (b) T is not injective
- (c) T is surjective
- (d) T is not surjective

Fact A.4.3

A linear transformation T is injective **if and only if** ker $T = \{\overline{\mathbf{0}}\}$. Put another way, an injective linear transformation may be recognized by its **trivial** kernel.

Activity A.4.4 (\sim 5 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^5$ be a linear transformation where Im T is spanned by four vectors. What can you conclude?

- (a) T is injective
- (b) T is not injective
- (c) T is surjective
- (d) T is not surjective

Fact A.4.5

A linear transformation $T:V\to W$ is surjective **if and only if** Im T=W. Put another way, a surjective linear transformation may be recognized by its identical codomain and image.

not surjective, Im $T \neq \mathbb{R}^3$

Activity A.4.6 (\sim 15 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Sort the following claims into two groups of *equivalent* statements: one group that means T is **injective**, and one group that means T is **surjective**.

- (a) The kernel of T is trivial: $\ker T = \{\vec{\mathbf{0}}\}.$
- (b) The columns of A span \mathbb{R}^m .
- (c) The columns of A are linearly independent.
- (d) Every column of RREF(A) has a pivot.
- (e) Every row of RREF(A) has a pivot.

- (f) The image of T equals its codomain, i.e. Im $T = \mathbb{R}^m$.
- (g) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \vec{\mathbf{b}} \end{bmatrix}$ has a solution for all $\vec{\mathbf{b}} \in \mathbb{R}^m$.
- (h) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \vec{0} \end{bmatrix}$ has exactly one solution.

Observation A.4.7

The easiest way to show that the linear map with standard matrix A is injective is to show that RREF(A) has a pivot in each column.

The easiest way to show that the linear map with standard matrix A is surjective is to show that RREF(A) has a pivot in each row.

Activity A.4.8 (\sim 3 min)

What can you immediately conclude (i.e. without computing a RREF) about the

linear map
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 with standard matrix $\begin{bmatrix} 2 & 3 \\ 1 & -1 \\ -3 & 3 \end{bmatrix}$?

- a) Its standard matrix has more columns than rows, so T is not injective.
- b) Its standard matrix has more columns than rows, so T is injective.
- c) Its standard matrix has more rows than columns, so T is not surjective.
- d) Its standard matrix has more rows than columns, so T is surjective.

Activity A.4.9 (\sim 2 min)

What can you immediately conclude (i.e. without computing a RREF) about the linear map $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^2$ with standard matrix $\begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 4 \end{bmatrix}$?

- a) Its standard matrix has more columns than rows, so T is not injective.
- b) Its standard matrix has more columns than rows, so T is injective.
- c) Its standard matrix has more rows than columns, so T is not surjective.
- d) Its standard matrix has more rows than columns, so T is surjective.

Fact A.4.10

The following are true for any linear map $T: V \to W$:

- If $\dim(V) > \dim(W)$, then T is not injective.
- If $\dim(V) < \dim(W)$, then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing vectors into each other, and a linear transformation cannot increase the dimension of its image.

not surjective, 2 < 3

But dimension arguments **cannot** be used to prove a map **is** injective or surjective.

Clontz & Lewis

Section A.1 Section A.2 Section A.3 Section A.4

Activity A.4.11 (\sim 5 min)

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is both injective and surjective (we call such maps **bijective**).

Section A.1 Section A.2 Section A.3 Section A.4

Activity A.4.11 (\sim 5 min)

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is both injective and surjective (we call such maps **bijective**).

Part 1: How many pivot columns must A have?

Clontz & Lewis

Section A.1 Section A.2 Section A.3 Section A.4

Activity A.4.11 (\sim 5 min)

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is both injective and surjective (we call such maps **bijective**).

Part 1: How many pivot columns must A have?

Part 2: How many pivot rows must A have?

Activity A.4.11 (\sim 5 min)

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is both injective and surjective (we call such maps **bijective**).

Part 1: How many pivot columns must A have?

Part 2: How many pivot rows must A have?

Part 3: What can you conclude about m and n?

Activity A.4.12 (\sim 5 min)

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a bijective linear map with standard matrix A. Label each of the following as true or false.

- (a) The columns of A form a basis for \mathbb{R}^n
- (b) RREF(A) is the identity matrix.
- (c) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \vec{\mathbf{b}} \end{bmatrix}$ has exactly one solution for each $\vec{\mathbf{b}} \in \mathbb{R}^n$.

Clontz & Lewis

Section A.1 Section A.2 Section A.3 Section A.4

Observation A.4.13

The easiest way to show that the linear map with standard matrix A is bijective is to show that RREF(A) is the identity matrix.

Activity A.4.14 (\sim 3 min)

Let $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^3$ be given by the standard matrix

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 4 & 1 & 1 \\ 6 & 2 & 1 \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.15 (\sim 3 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \\ 6x + 2y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.16 (\sim 3 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x + 3y \\ x - y \\ x + 3y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.17 (\sim 3 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.