BACKGROUND 0000	Paradox 0000	LET'S GO PROBABLISTIC 00000	DIAGNOSIS 00000	Conclusion 00	BACKGROUND •000	Paradox 0000	LET'S GO PROBABILISTIC 00000	Diagnosis 00000	CONCLUSION OO			
						C	OUTLINE OF THE TAI	LK				
How Serious is the Paradox of Serious Possibility? Simone Duca University of Bristol FEW 2010, Konstanz						Belief change and modalities The paradox of serious possibility A possible way of defusing the paradox (This is based on a joint paper with Hannes Leitgeb, which is currently under review.)						
BACKGROUND 0000	Paradox 0000	LET'S GO PROBABLISTIC 00000	DIAGNOSIS 00000	Conclusion	BACKGROUND OO®O	Paradox 0000	LET'S GO PROBABILISTIC 00000	Diagnosis 00000	CONCLUSION			
RATIONAL AGENTS AND REVISED BELIEF SETS Standard AGM assumes that • an agent is <i>rational</i> iff she obeys certain rationality postulates on her belief sets and her revision operator *. • a <i>belief set K</i> is a logically closed set of sentences of an underlying object language <i>L</i> , representing the propositions that a rational agent currently believes. • provided that <i>A</i> is consistent with <i>K</i> , the <i>revised</i> belief set <i>K*A</i> is defined as the deductive closure of <i>K</i> ∪ [<i>A</i>]; otherwise, principles of minimal mutilation are in operation (more on this later).					Let our object language \mathcal{L} include the following modal operators (\mathcal{L} does not need to be fully closed under them, since we are not directly concerned with iterated modalities): • $\Box A \Leftrightarrow$ "It is believed that A " • $\Diamond A \Leftrightarrow$ "It is not believed that $\neg A$ " For any given belief set K , let $Poss(K)$ be the <i>set of serious possibilities</i> with respect to K , satisfying: (a) $\forall A : A \in K \rightarrow \Box A \in Poss(K)$ (b) $\forall A : A \notin K \rightarrow \nabla A \in Poss(K)$ (c) $Poss(K)$ is the smallest set satisfying conditions (A)-(B).							

BACKGROUND 0000	Paradox 0000	LET'S GO PROBABILISTIC 00000	Diagnosis 00000	CONCLUSION	BACKGROUND 0000	Paradox 0000	LET'S GO PROBABILISTIC OOOOO	Diagnosis 00000	CONCLUSION		
WHAT'S NEXT? Prove a probabilistic version of the paradox. Show why one should not accept the original formulation of (Poss). Make (Poss) syntactically more precise by specifying the context of each doxastic operator, via the introduction of indices.						TRANSLATION MANUAL Before moving to the probabilistic counterpart of the paradox, we need a suitable "translation" of certain expressions. • $\lceil A \in K \rceil \approx \lceil P(A) = 1 \rceil$ • $\lceil B \in K^*A \rceil \approx \lceil P_A(B) = 1 \rceil$, where $P_A(B) = P(B A)$ • $\lceil CA \rceil \approx \lceil CA/A \rceil = 1 \rceil$					
of (T) co • Fii	each doxastic op his move may be nditionals).	erator, via the introduce akin to Lindström (19 both the qualitative and	etion of <i>indices</i> . 96)'s in the conte	ext of	• $\lceil \phi_A \rceil \approx \lceil Cr(A) > 0 \rceil$ Notice that $P(B A) = \frac{P(A \wedge B)}{P(A)}$, when $P(A) > 0$. The credence function $\sup_{A \in A} S_A = P(A) = 0$. The credence function $\sup_{A \in A} S_A = 0$. It is the object-linguistic counterpart of belief function signs in the metalanguage. So, for instance, in order to express the agent's belief that she believes A with degree 1 , i.e. that $P(A) = 1$ is the case, we write $P(Cr(A) = 1) = 1$.						
BACKGROUND 0000	Paradox 0000	Let's go probabilistic 00000	Diagnosis 00000	Conclusion	BACKGROUND 0000	Paradox 0000	LET'S GO PROBABILISTIC COGCO	Diagnosis 00000	CONCLUSION		
Probabilistic postulates						THE PARADOX REPHRASED					
PROBABILISTIC POSTULATES $(IC^{\dagger}) \exists P, \exists A: 0 < P(A) < 1$ $(P^{\dagger}) \forall P, \forall A: P(A) > 0 \rightarrow \forall B[P(B) = 1 \rightarrow P_A(B) = 1]$ $(Poss^{\dagger}) (A) \forall P, \forall A: P(A) > 0 \rightarrow \forall B[P(B) = 1] = 1$ $(B) \forall P, \forall A: P(A) > 1 \rightarrow P[Cr(A) = 1] = 1$ $(C^{\dagger}) \forall P, \forall A: P(A) > 0 \rightarrow P_A(A) = 1$ $(C^{\dagger}) \forall P, \forall A: P \neq \Lambda, \forall \neg A \rightarrow P_A \neq \Lambda$ $(PC^{\dagger}) \forall P, \forall A: P(Cr(A) = 1) = 1, P(Cr(A) < 1) = 1 \rightarrow P = \Lambda$ • Similarly to the qualitative case, P ranges over all possible belief functions (which are all probability measures, except for one "trivial" function). Also, the class of belief functions is assumed to be closed under conditionalization. • Λ is the "trivial" belief function defined by $\Lambda(A) = 1$ for all A . • A ranges over all factual, i.e. non-modal formulae again.				THE PARADOX REPHRASED THEOREM (2) No subjective probability function can satisfy all of the postulates (IC^{\dagger}), (P^{\dagger}), (P							

BACKGROUND 0000	Paradox 0000	LET'S GO PROBABLISTIC 00000	Diagnosis 00000	CONCLUSION	BACKGROUND 0000	Paradox 0000	LET'S GO PROBABILISTIC	Diagnosis 00000	Conclusion 00	
Proof	of Theorem 2.				Proof o	of Theorem 2.				
PROOF OF 1HEOREM 2. (1) $P(A) < 1$, $from (\mathbb{C}^{\dagger})$ (2) $P(A) > 0$, $from (\mathbb{C}^{\dagger})$ (3) $P(Cr(A) < 1) = 1$, $from (1)$ and $(Poss-b^{\dagger})$ (4) $\forall B P(B) = 1 \rightarrow P_A(B) = 1 $, $from (2)$ and (P^{\dagger}) (5) $P_A(Cr(A) < 1) = 1$, $from (3)$ and (4) (6) $P_A(A) = 1$, $from (2)$ and (S^{\dagger}) (7) $P_A(Cr(A) < 1) = 1$, $fow (6)$ and $(Poss-a^{\dagger})$ (8) $P_A = \lambda$, $from (2)$ and (7) $with (PC^{\dagger})$ (9) $v \sim A$, $from (2)$ (10) $P \neq \Lambda$, $from (1)$ (11) $P_A \neq \Lambda$, $from (9)$, (10) and (C^{\dagger}) (12) $Contradiction!$ $from (8)$ and (11)					PROOF OF THEOREM 2. (1) $P(A) < 1$, $from (IC^{\dagger})$ (2) $P(A) > 0$, $from (IC^{\dagger})$ (2) $P(A) > 0$, $from (IC^{\dagger})$ (3) $P(Cr(A) < 1) = 1$, $from (1)$ and $(Poss-b^{\dagger})$ (4) $\forall B[P(B) = 1 \rightarrow P_A(B) = 1]$, $from (2)$ and (P^{\dagger}) (5) $P_A(Cr(A) < 1) = 1$, $from (3)$ and (4) (6) $P_A(A) = 1$, $from (2)$ and (S^{\dagger}) (1!!(7) $P_A(Cr(A) = 1) = 1$, $by (6)$ and $(Poss-a^{\dagger})$ (8) $P_A = \Lambda$, $from (5)$ and (7) with (PC^{\dagger}) (9) $\nu = \Lambda$, $from (2)$ (10) $P \ne \Lambda$, $from (1)$ (11) $P_A \ne \Lambda$, $from (9)$, (10) and (C^{\dagger}) (12) $Contradiction!$ $from (8)$ and (11)					
Background	Paradox	LET'S GO PROBABLISTIC	Discousses	13/21 Conclusion	Background	Paradox	LET'S GO PROBABILISTIC	Diagnosis	14/21 Concension	
0000	0000	00000	00000	00	0000	0000	00000	00000	00	
_		O QUALITATIVE POST	TULATES			PROOF OF THE	OREM 1.			
	$X, \exists A : \neg (A \in K \lor \cdot X)$ $X, \forall A : \neg A \notin K \rightarrow X$				(1) A ∉ K, from (\overline{\text{IC}}) (2) ¬A ∉ K, from (\overline{\text{IC}})					
	$\forall K, \forall A : \neg A \notin K \rightarrow A $	_				$\neg A \in K$, from (
(1	(1055) (A) $\forall A, \forall A : A \in K \rightarrow \bigcup_{K} A \in K$ (B) $\forall K, \forall A : A \notin K \rightarrow \Diamond_{K} \neg A \in K$					$: B \in K \rightarrow B \in K$ $\neg A \in K * A, from$	$K *A$, by (\overline{P}) and def. or	$of \subseteq$		
$(\overline{S}) \ \forall K, \forall A : A \in K^*A$					(6) A ∈	$K*A$, by $(\overline{\overline{S}})$				
$(\overline{C}) \forall K, \forall A : K \neq \Lambda \text{ and } F \neg A \rightarrow K^*A \neq \Lambda$ $(\overline{DC}) \forall K, \forall A : \Box_K A \in K \text{ and } \diamondsuit_K \neg A \in K \rightarrow K = \Lambda$					(7) □ _{K*A} A ∈ K * A, by (6) and (Poss-a)					
• We ter sin pa	e introduced the not ms \mathcal{T} or names for nultaneously with the per).	tation " \Box_t ", where t is a belief sets, whose inductive set of formulae \mathcal{L} (as lax, so, for instance, I wiperator expressing mem	member of the set o tive definition is give we do in detail in the	ven he ler to	(8) K* (9) \(\nu \) \(\nu \) (10) K \(\neq \) (11) K*	$A = \Lambda$, from (5) A, from (2) $E \Lambda$, from (1) $A \neq \Lambda$, from (9) intradiction! from				

P(A) < 1, from (IC[†])

- (2) P(A) > 0, from (IC[†])
- (3) $P(Cr_P(A) < 1) = 1$, from (1) and (Poss-b[†]
- (4) $\forall B[P(B) = 1 \rightarrow P_A(B) = 1]$, from (2) and $(\overline{P^{\dagger}})$
- (5) $P_A(Cr_P(A) < 1) = 1$, from (3) and (4)

- (6) $P_A(A) = 1$, from (2) and (S[†])
- (7) $P_A(Cr_{P_A}(A) = 1) = 1$, by (6) and (Poss-a[†])
- (8) $P_A = \Lambda$, from (5) and (7) with $(\overline{PC^{\dagger}})$
- (9) ¥ ¬A, from (2)
- (10) $P \neq \Lambda$, from (1)
- (11) $P_A \neq \Lambda$, from (9), (10) and (C^{\dagger})
- (12) Contradiction! from (8) and (11)

assumptions of the paradox, i.e. (Poss). · We suggested a possible way of getting rid of the ambiguity and

for belief sets/belief functions.

possibility.

· We highlighted an important ambiguity in one of the

gave two sets (one qualitative and one probabilistic) of amended

axioms from which the paradox cannot be derived.

· Furthermore, in our paper, we prove the amended axioms jointly

consistent by providing a model, in which the agent is able to

"keep track" of her introspective beliefs by a system of indices

· We gave a probabilistic version of the paradox of serious

Thank you

