પ્રશ્ન 1(અ) [3 ગુણ]

AVR સ્ટેટસ રજિસ્ટર દોરો.

જવાબ:

AVR સ્ટેટસ રજિસ્ટર (SREG) એરિથમેટિક ઓપરેશન્સના પરિણામની માહિતી ધરાવે છે અને ઇન્ટરપ્ટ્સને નિયંત્રિત કરે છે.

ડાયાગ્રામ:

++	++	+	_+	·+					
I T 1	H S	V N	Z	C					
++	++-	+	-+	++					
7 6	5 4	3 2	1	0					

- 1 (બિટ 7): ગ્લોબલ ઇન્ટરપ્ટ એનેબલ
- T (બિટ 6): બિટ કોપી સ્ટોરેજ
- H (બિટ 5): હાફ કેરી ફ્લેગ
- **ડ (બિટ 4)**: સાઇન ફ્લેંગ (S = N⊕V)
- **V (બિટ 3)**: ટુ'સ કોમ્પલિમેન્ટ ઓવરફ્લો
- N (બિટ 2): નેગેટિવ ફ્લેંગ
- **Z (બિટ 1)**: ઝીરો ફ્લેગ
- C (બિટ 0): કેરી ફ્લેગ

મેમરી ટ્રીક: "ઈ ટેક હેલ્થ સીરિયસલી, વેરી નાઈસ ઝીરો કેરી"

પ્રશ્ન 1(બ) [4 ગુણ]

AVR માં હાર્વર્ડ આર્કિટેક્ચર સમજાવો.

જવાબ:

AVR માં હાર્વર્ડ આર્કિટેક્ચર પ્રોગ્રામ અને ડેટા મેમરી અલગ રાખે છે, જેનાથી બંને પર એક સાથે એક્સેસ કરી શકાય છે.

• Program Memory: Flash મેમરીમાં ઇન્સ્ટ્રક્શન્સ સ્ટોર કરે છે

• Data Memory: SRAM, રજિસ્ટર્સ અને I/O રજિસ્ટર્સ ધરાવે છે

• અલગ બસ: પ્રોગ્રામ અને ડેટા માટે અલગ બસ

• પેરેલલ એક્સેસ: એક સાથે ઇન્સ્ટ્રક્શન ફેચ અને ડેટા એક્સેસ કરી શકાય છે

મેમરી ટ્રીક: "ડેટા અને પ્રોગ્રામ માટે અલગ જગ્યા"

પ્રશ્ન 1(ક) [7 ગુણ]

રીયલ ટાઇમ ઓપરેટિંગ સિસ્ટમ ચર્ચો.

જવાબ:

રીયલ-ટાઇમ ઓપરેટિંગ સિસ્ટમ (RTOS) ચુસ્ત ટાઇમિંગ જરૂરિયાતો ધરાવતા ટાસ્ક્સનું મેનેજમેન્ટ કરે છે, અને નિશ્ચિત રિસ્પોન્સ ટાઇમ સુનિશ્ચિત કરે છે.

કોષ્ટક: RTOS ની મુખ્ય વિશેષતાઓ

વિશેષતા	વર્ણન
ટાસ્ક શેડ્યુલિંગ	તાત્કાલિકતાના આધારે ટાસ્ક્સને પ્રાધાન્ય આપે છે
નિશ્ચિત	ઘટનાઓ માટે ગેરંટેડ રિસ્પોન્સ ટાઇમ
પ્રિએમ્પ્ટિવ	િક્કટિકલ ટાસ્ક ઓછા પ્રાધાન્યવાળા ટાસ્કને ઇન્ટરપ્ટ કરી શકે છે
મેમરી મેનેજમેન્ટ	ફ્રેગમેન્ટેશન વગર કાર્યક્ષમ મેમરી ફાળવણી
ઓછો લેટન્સી	ઘટના અને પ્રતિક્રિયા વચ્ચે ન્યૂનતમ વિલંબ
મલ્ટીટાસ્કિંગ	એકસાથે અનેક ટાસ્ક હેન્ડલ કરે છે

• **ટાસ્ક-બેઝ્ડ**: પ્રોગ્રામને સ્વતંત્ર ટાસ્ક્સમાં વિભાજિત કરે છે

• **ઇન્ટરપ્ટ હેન્ડલિંગ**: બાહ્ય ઘટનાઓ માટે ઝડપી પ્રતિક્રિયા

• **સિંકોનાઇઝેશન**: ટાસ્ક કોઓર્ડિનેશન માટે સેમાફોર અને મ્યુટેક્સ પૂરા પાડે છે

• રિસોર્સ મેનેજમેન્ટ: રિસોર્સ કોન્ફિલક્ટ્સ અટકાવે છે

• નાનો ફૂટપ્રિન્ટ: મર્યાદિત હાર્ડવેર રિસોર્સ માટે ઓપ્ટિમાઇઝ કરેલ છે

મેમરી ટ્રીક: "ટાસ્ક ચલાવે ચુસ્ત સમય પર"

પ્રશ્ન 1(ક OR) [7 ગુણ]

એમ્બેડેડ સિસ્ટમ માટે માઇક્રોકન્ટ્રોલર પસંદ કરવા માટેના ક્રાઈટેરીયા ચર્ચો.

જવાબ:

યોગ્ય માઇક્રોકન્ટ્રોલર પસંદ કરવા માટે એપ્લિકેશન જરૂરિયાતોને મેચ કરવા અનેક મુખ્ય પરિબળોનું મૂલ્યાંકન કરવું જરૂરી છે.

કોષ્ટક: માઇક્રોકન્ટોલર પસંદગી માપદંડ

ม เนธ์ร	વિચારણાઓ
પ્રોસેસિંગ પાવર	CPU સ્પીડ, બિટ વિડ્થ (8/16/32-બિટ)
મેમરી	Flash, RAM, EEPROM સાઇઝ
પાવર કન્ઝમ્પશન	સ્લીપ મોડ, ઓપરેટિંગ વોલ્ટેજ
I/O કેપેબિલિટીઝ	પોર્ટ્સની સંખ્યા, સ્પેશિયલ ફંક્શન્સ
પેરિફેરલ્સ	ટાઇમર, ADC, કમ્યુનિકેશન ઇન્ટરફેસ
કોસ્ટ	યુનિટ પ્રાઇસ, ડેવલપમેન્ટ ટૂલ્સ કોસ્ટ
ડેવલપમેન્ટ સપોર્ટ	ટૂલ્સ, ડોક્યુમેન્ટેશન, કમ્યુનિટી

• એપ્લિકેશન નીડ્સ: કન્ટ્રોલરને ટાસ્કની જટિલતા સાથે મેચ કરવો

• રીયલ-ટાઇમ રિક્વાયરમેન્ટ: રિસ્પોન્સ ટાઇમની મર્યાદાઓ

• એન્વાયર્નમેન્ટલ ફેક્ટર્સ: તાપમાન, નોઇઝ, વાઇબ્રેશન

• ફોર્મ ફેક્ટર: ભૌતિક આકાર અને પેકેજિંગ

• ભવિષ્યની એક્સ્પાન્શન: ફીચર ગ્રોથ માટે જગ્યા

મેમરી ટ્રીક: "પાવર, મેમરી, I/O, પેરિફેરલ્સ, કોસ્ટ"

પ્રશ્ન 2(અ) [3 ગુણ]

એમ્બેડેડ સિસ્ટમ વ્યાખ્યાયીત કરો અને તેનો જનરલ બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

એમ્બેડેડ સિસ્ટમ એ એક ડેડિકેટેડ કમ્પ્યુટર સિસ્ટમ છે જે મોટી મિકેનિકલ કે ઇલેક્ટ્રિકલ સિસ્ટમમાં ચોક્કસ કાર્યો માટે ડિઝાઇન કરેલ છે.

• પ્રોસેસિંગ યુનિટ: માઇક્રોકન્ટ્રોલર/માઇક્રોપ્રોસેસર

• મેમરી: પ્રોગ્રામ અને ડેટા સ્ટોર કરે છે

• ઇનપુટ/આઉટપુટ: બાહ્ય દુનિયા સાથે ઇન્ટરફેસ

મેમરી ટ્રીક: "પ્રોસેસિંગ મેમરી I/O પાવર"

પ્રશ્ન 2(બ) [4 ગુણ]

દરેક પોર્ટ સાથે સંકળાયેલ I/O રજીસ્ટરની યાદી બનાવો.

જવાબ:

AVR માઇક્રોકન્ટ્રોલર દરેક I/O પોર્ટ કંટ્રોલ કરવા માટે ત્રણ મુખ્ય રજિસ્ટર ધરાવે છે.

કોષ્ટક: I/O પોર્ટ રજિસ્ટર્સ

રજિસ્ટર	ફંક્શન	นต์า
PORTx	ડેટા રજિસ્ટર	આઉટપુટ વેલ્યુ અથવા પુલ-અપ સેટ કરે છે
DDRx	ડેટા ડિરેક્શન રજિસ્ટર	પિન ડિરેક્શન સેટ કરે છે (1=આઉટપુટ, 0=ઇનપુટ)
PINx	પોર્ટ ઇનપુટ પિન્સ	વાસ્તવિક પિન સ્ટેટસ વાંચે છે

• **x દર્શાવે છે**: A, B, C, D (પોર્ટનો અક્ષર)

• **વધારાનાં સ્પેશિયલ**: કેટલાક પોર્ટ્સ PCMSK (પિન ચેન્જ માસ્ક) રજિસ્ટર ધરાવે છે

મેમરી ટ્રીક: "ડિરેક્શન, ડેટા, પિન રીડિંગ"

પ્રશ્ન 2(ક) [7 ગુણ]

AVR માટેની ક્લોક અને રીસેટ સકીટ સમજાવો.

જવાબ:

ક્લોક અને રીસેટ સર્કિટ્સ AVR ઓપરેશન્સના યોગ્ય ઇનિશિયલાઇઝેશન અને ટાઇમિંગ સુનિશ્ચિત કરે છે.

ક્લોક સર્કિટ ડાયાગ્રામ:

રીસેટ સર્કિટ:

- **કલોક સોર્સ**: એક્સરર્નલ ક્રિસ્ટલ, RC ઓસિલેટર, અથવા ઇન્ટરનલ ઓસિલેટર
- ક્રિસ્ટલ: યોક્કસ ટાઇમિંગ પૂરું પાડે છે (1-16 MHz)
- રીસેટ પિન: સિસ્ટમ રીસ્ટાર્ટ માટે એક્ટિવ-લો ઇનપુટ
- પાવર-ઓન રીસેટ: પાવર આપતી વખતે ઓટોમેટિક રીસેટ
- બ્રાઉન-આઉટ ડિટેક્શન: જો વોલ્ટેજ નિશ્ચિત થ્રેશોલ્ડથી નીચે જાય તો રીસેટ

મેમરી ટ્રીક: "ક્રિસ્ટલ ઓસિલેટ કરે, રીસેટ શરૂઆત કરાવે"

પ્રશ્ન 2(અ OR) [3 ગુણ]

એમ્બેડેડ સિસ્ટમની લાક્ષણિકતાઓ લખો.

જવાબ:

એમ્બેડેડ સિસ્ટમની અનન્ય લાક્ષણિકતાઓ તેને જનરલ-પરપઝ કમ્પ્યુટરથી અલગ પાડે છે.

કોષ્ટક: એમ્બેડેડ સિસ્ટમની લાક્ષણિકતાઓ

લાક્ષણિકતા	વર્ણન
સિંગલ-ફંક્શન	થોક્કસ ટાસ્ક માટે સમર્પિત
રીયલ-ટાઇમ	અનુમાનિત પ્રતિક્રિયા સમય
રિસોર્સ-કન્સ્ટ્રેઇન્ડ	મર્યાદિત મેમરી, પાવર, પ્રોસેસિંગ
વિશ્વસનીયતા	નિષ્ફળતા વગર સતત ચાલવું જોઈએ
રીએક્ટિવ	પર્યાવરણીય ફેરફારોને પ્રતિસાદ આપે છે

• લાંબું આયુષ્ય: ઘણીવાર વર્ષો સુધી હસ્તક્ષેપ વિના કામ કરે છે

• ઘણીવાર છુપાયેલ: મોટી સિસ્ટમમાં એકીકૃત

મેમરી ટ્રીક: "સિંગલ, રીયલ-ટાઇમ, રિસોર્સ-મર્યાદિત, વિશ્વસનીય"

પ્રશ્ન 2(બ OR) [4 ગુણ]

ડેટા આઉટપુટ અને ઇનપુટ કરવામાં DDRx રજીસ્ટરની ભૂમિકાની ચર્ચા કરો.

જવાબ:

DDRx (ડેટા ડાઇરેક્શન રજિસ્ટર) પોર્ટ x ના દરેક પિનને ઇનપુટ કે આઉટપુટ તરીકે કન્ફિગર કરે છે.

કોષ્ટક: I/O ઓપરેશન્સમાં DDRx ની ભૂમિકા

DDRx વેલ્યુ	PORTx વેલ્યુ	મોડ	ફંક્શન
0	0	ઇનપુટ	હાઇ-ઇમ્પીડન્સ મોડ
0	1	ઇનપુટ	પુલ-અપ એનેબલ્ડ
1	0	આઉટપુટ	આઉટપુટ લો (0V)
1	1	આઉટપુટ	આઉટપુટ હાઇ (VCC)

• ડિરેક્શન કંટ્રોલ: 1 = આઉટપુટ, 0 = ઇનપુટ

• **પિન-સ્પેસિફિક**: દરેક બિટ વ્યક્તિગત પિન નિયંત્રિત કરે છે

• **ઇનિશિયલ સ્ટેટ**: ડિફોલ્ટ ઇનપુટ (બધા 0s) છે

મેમરી ટ્રીક: "ડિરેક્શન નક્કી કરે ડેટા ફ્લો"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ATmega32નો પીન ડાયાગ્રામ દોરી સમજાવો.

જવાબ:

ATmega32 એ 40 પિન ધરાવતો લોકપ્રિય 8-બિટ AVR માઇક્રોકન્ટ્રોલર છે જે વિવિધ કાર્યક્ષમતા પ્રદાન કરે છે.

```
+----+
   (XCK) PB0 - | 1 40 | - PA0 (ADC0)
        PB1 - 2 39 - PA1 (ADC1)
(INT2/AIN0)PB2-|3 38|- PA2 (ADC2)
SS PB4 -|5| 36 -|-- PA4 (ADC4)
    MOSI PB5 - 6 35 - PA5 (ADC5)
    MISO PB6 -|7| 34 -|7| PA6 (ADC6)
     SCK PB7 - 8 33 - PA7 (ADC7)
      RESET - | 9 32 | - AREF
        VCC - | 10 31 | - GND
        GND - | 11 30 | - AVCC
      XTAL2 - | 12 29 | - PC7 (TOSC2)
      XTAL1 - | 13 28 | - PC6 (TOSC1)
  (RXD) PD0 - | 14 27 | - PC5
  (TXD) PD1 - 15 26 - PC4
 (INTO) PD2 - 16 25 - PC3
 (INT1) PD3 - | 17 24 | - PC2
 (OC1B) PD4 - 18 23 - PC1
 (OC1A) PD5 - | 19 22 | - PC0
  (ICP) PD6 -|20|21|-PD7 (OC2)
              +----+
```

- **પોર્ટ A (PAO-PA7)**: 8-બિટ બાયડાયરેક્શનલ પોર્ટ ADC ઇનપુટ સાથે
- **પોર્ટ B (PB0-PB7)**: 8-બિટ પોર્ટ SPI, ટાઇમર્સ, અને એક્સટર્નલ ઇન્ટરપ્ટ સાથે
- **પોર્ટ C (PCO-PC7)**: 8-બિટ બાયડાયરેક્શનલ પોર્ટ TWI સપોર્ટ સાથે
- **પોર્ટ D (PD0-PD7)**: 8-બિટ પોર્ટ USART, એક્સટર્નલ ઇન્ટરપ્ટ, અને PWM સાથે
- นเตะ/ฆเติ-ร: VCC, GND, AVCC, AREF
- **કલોક**: XTAL1/XTAL2 એક્સટર્નલ ઓસિલેટર માટે
- રીસેટ: એક્ટિવ-લો રીસેટ ઇનપુટ

મેમરી ટ્રીક: "ABCD પોર્ટ્સ, પાવર, ક્લોક, રીસેટની ચારે બાજુ"

પ્રશ્ન 3(અ) [3 ગુણ]

ATmega32 માટે પ્રોગ્રામ કાઉન્ટર (PC) રજિસ્ટર સમજાવો.

જવાબ:

પ્રોગ્રામ કાઉન્ટર (PC) એ 16-બિટ રજિસ્ટર છે જે એક્ઝિક્યુટ કરવા માટેના આગામી ઇન્સ્ટ્રક્શનના એડ્રેસને ટ્રેક કરે છે.

```
+-----+
| PC High | PC Low |
+-----+
15:8 7:0
```

- ફંક્શન: પ્રોગ્રામ મેમરીમાં આગામી ઇન્સ્ટ્રક્શન તરફ પોઇન્ટ કરે છે
- **સાઇઝ**: 16-બિટ (64K શબ્દો સુધી એડ્રેસ કરી શકાય)
- ઓટો-ઇન્ક્રિમેન્ટ: ઇન્સ્ટ્રક્શન ફેચ પછી આપોઆપ વધે છે
- જમ્મ કંટ્રોલ: બ્રાન્ચ અને જમ્પ ઇન્સ્ટ્રક્શન્સ દ્વારા મોડિફાય થાય છે

મેમરી ટ્રીક: "કોડ એક્ઝિક્યુશન તરફ પોઇન્ટ કરે"

પ્રશ્ન 3(બ) [4 ગુણ]

EEPROM ના 0x005F લોકેશન પરથી ડેટા રીડ કરી PORTB પર મોકલવા માટે AVR C પ્રોગ્રામ લખો.

જવાબ:

```
#include <avr/io.h>
#include <avr/eeprom.h>

int main(void)
{

// PORTB i bulgeye dels in sell bulgeye dels in sell bulgeye dels in sell bulgeye sel
```

- DDRB = 0xFF: બધા PORTB પિન્સને આઉટપુટ તરીકે કન્ફિગર કરે છે
- eeprom_read_byte(): EEPROM વાંચવા માટે AVR લાઇબ્રેરી ફંક્શન
- while(1): આઉટપુટ જાળવવા માટે અનંત લૂપ

મેમરી ટ્રીક: "ડિરેક્શન, EEPROM વાંચો, પોર્ટ પર આઉટપુટ"

પ્રશ્ન 3(ક) [7 ગુણ]

TCCR0 રજિસ્ટર દોરી વિગતવાર સમજાવો.

જવાબ:

ટાઇમર/કાઉન્ટર કંટ્રોલ રજિસ્ટર 0 (TCCR0) ટાઇમર/કાઉન્ટર0ના ઓપરેશનને કંટ્રોલ કરે છે.

+	-+	_+	+	+	+	+	++
· ·	·	·	·		•	·	01 CS00
+	-+	_+	+	+	+	+	++
7	6	5	4	3	2	1	0

કોષ્ટક: TCCR0 બિટ્સ ફંક્શન

બિટ(સ)	નામ	ફંક્શન
7	FOC0	ફોર્સ આઉટપુટ કમ્પેર
6,3	WGM01:0	વેવફોર્મ જનરેશન મોડ
5,4	COM01:0	કમ્પેર મેથ આઉટપુટ મોડ
2,1,0	CS02:0	ક્લોક સિલેક્ટ

• **WGM01:0**: નોર્મલ, CTC, અથવા PWM મોડ પસંદ કરે છે

• COM01:0: કમ્પેર મેચ પર OCO પિન વર્તણૂક વ્યાખ્યાયિત કરે છે

• **CS02:0**: ક્લોક સોર્સ અને પ્રીસ્કેલર સેટ કરે છે (1, 8, 64, 256, 1024)

મેમરી ટ્રીક: "ફોર્સિંગ વેવફોર્મ્સ, કમ્પેરિંગ, સિલેક્ટિંગ ક્લોક"

પ્રશ્ન 3(અ OR) [3 ગુણ]

AVR ડેટા મેમરી સમજાવો.

જવાબ:

AVR ડેટા મેમરીમાં વિવિધ પ્રકારના ડેટા સ્ટોરેજ માટે અનેક સેક્શન્સ હોય છે.

ડાયાગ્રામ:

• **રજિસ્ટર્સ**: 32 જનરલ-પરપઝ રજિસ્ટર્સ (R0-R31)

• 1/0 મેમરી: પેરિફેરલ્સ માટે સ્પેશિયલ ફંક્શન રજિસ્ટર્સ

• **SRAM**: વેરિએબલ્સ માટે ઇન્ટરનલ RAM (વોલેટાઇલ)

• **EEPROM**: સાતત્થપૂર્ણ ડેટા માટે નોન-વોલેટાઇલ મેમરી

મેમરી ટીક: "રજિસ્ટર્સ I/O SRAM EEPROM"

પ્રશ્ન 3(બ OR) [4 ગુણ]

EEPROM ના 0x005F લોકેશન પર 'G' સ્ટોર કરવા માટે AVR C પ્રોગ્રામ લખો.

જવાબ:

```
#include <avr/io.h>
#include <avr/eeprom.h>

int main(void)
{
    // 'G' sessed EEPROM Gised 0x005F us esisted eeprom_write_byte((uint8_t*)0x005F, 'G');

    while(1) {
        // you qu
    }
    return 0;
}
```

- eeprom_write_byte(): EEPROM માં લખવા માટે AVR લાઇબ્રેરી ફંક્શન
- '**G**': ASCII વેલ્યુ 71 (0x47) EEPROM માં સ્ટોર થાય છે
- **0x005F**: ટાર્ગેટ EEPROM એડ્રેસ
- while(1): લખ્યા પછી અનંત લૂપ

મેમરી ટ્રીક: "એક વાર લખો, હંમેશા માટે ચાદ રાખો"

પ્રશ્ન 3(ક OR) [7 ગુણ]

TIFR રજિસ્ટર દોરી વિગતવાર સમજાવો.

જવાબ:

ટાઇમર/કાઉન્ટર ઇન્ટરપ્ટ ફ્લેંગ રજિસ્ટર (TIFR) ટાઇમર ઇવેન્ટ્સ સૂચવતા ફ્લેંગ ધરાવે છે.

ડાયાગ્રામ:

```
+----+
| - | - | - | - | - | OCF2 | TOV2 | TOV0 |
+----+
7 6 5 4 3 2 1 0
```

કોષ્ટક: TIFR બિટ્સ ફંક્શન

બિટ	નામ	ફંક્શન
0	TOV0	ટાઇમર/કાઉન્ટર0 ઓવરફ્લો ફ્લેગ
1	TOV2	ટાઇમર/કાઉન્ટર2 ઓવરફ્લો ફ્લેગ
2	OCF2	આઉટપુટ કમ્પેર ફ્લેગ 2
3-7	-	રિઝર્વ્ડ બિટ્સ

• TOVO: ટાઇમર0 ઓવરફલો થતાં સેટ થાય છે, ISR એક્ઝિક્યુટ થતાં ક્લિયર થાય છે

• TOV2: ટાઇમર2 ઓવરફ્લો થતાં સેટ થાય છે

• OCF2: ટાઇમર2 કમ્પેર મેચ થતાં સેટ થાય છે

• ફ્લેગ ક્લિયરિંગ: ફ્લેગ ક્લિયર કરવા બિટને '1' લખો

મેમરી ટ્રીક: "ટાઇમર્સ ઓવરફલો, કમ્પેરિઝન ફલેગ"

પ્રશ્ન 4(અ) [3 ગુણ]

AVRમાં ટાઇમ ડીલે જનરેટ કરવાની વિવિધ રીતો લખો.

જવાબ:

AVR માઇક્રોકન્ટ્રોલર્સ ટાઇમ ડિલે જનરેટ કરવા માટે અનેક પદ્ધતિઓ ઓફર કરે છે.

કોષ્ટક: ડિલે જનરેશન પદ્ધતિઓ

પદ્ધતિ	વર્ણન	પ્રિસિઝન
સોફ્ટવેર લૂપ્સ	CPU સાયકલ્સ કાઉન્ટિંગ	ઓછી
ટાઇમર ઇન્ટરપ્ટ્સ	ISR સાથે હાર્ડવેર ટાઇમર્સ	ઉચ્ચ
ટાઇમર પોલિંગ	ફ્લેગ ચેકિંગ સાથે હાર્ડવેર ટાઇમર્સ	મધ્યમ
ડિલે ફંક્શન્સ	લાઇબ્રેરી ફંક્શન્સ (<i>delay_ms</i> /delay_us)	મધ્યમ

• સોફ્ટવેર: સરળ પરંતુ ઓપ્ટિમાઇઝેશન્સથી અસર પામે

• **હાર્ડવેર**: વધુ ચોક્કસ પરંતુ ટાઇમર સેટઅપની જરૂર

• લાઇબ્રેરી: સુવિધાજનક પરંતુ કોન્સ્ટન્ટ વેલ્યુ સુધી મર્યાદિત

મેમરી ટ્રીક: "લૂપ્સ, ઇન્ટરપ્ટ્સ, પોલિંગ, ફંક્શન્સ"

પ્રશ્ન 4(બ) [4 ગુણ]

LM35નુ ATmega32 સાથે ઇન્ટરફેસિંગ દોરો અને સમજાવો.

જવાબ:

LM35 એ તાપમાનના પ્રમાણસર એનાલોગ વોલ્ટેજ આઉટપુટ આપતો તાપમાન સેન્સર છે.

સર્કિટ ડાયાગ્રામ:

- કનેક્શન: LM35 આઉટપુટ ATmega32 ના ADC0 (PA0) પર
- **સ્કેલિંગ**: 10mV/°C આઉટપુટ (0°C = 0V, 25°C = 250mV)
- ADC સેટઅપ: ADC0 પસંદ કરવા ADMUX કન્ફિગર કરો
- ગણતરી: તાપમાન = (ADC_value * 5 * 100) / 1024

મેમરી ટ્રીક: "એનાલોગ વોલ્ટેજ તાપમાન બદલે"

પ્રશ્ન 4(ક) [7 ગુણ]

MAX7221નુ ATmega32 સાથે ઇન્ટરફેસિંગ વિગતવાર સમજાવો.

જવાબ:

MAX7221 એ SPI કમ્યુનિકેશન દ્વારા AVR સાથે જોડાતી LED ડિસ્પ્લે ડ્રાઇવર IC છે.

સર્કિટ ડાયાગ્રામ:

કોષ્ટક: કનેક્શન્સ અને ફંક્શનાલિટી

ATmega32 પિન	MAX7221 นิ - เ	ફંક્શન
PB7 (SCK)	CLK	સીરિયલ ક્લોક
PB5 (MOSI)	DIN	કેટા ઇનપુટ
PB4 (SS)	LOAD	ચિપ સિલેક્ટ

• SPI મોડ: માસ્ટર મોડ, MSB ફર્સ્ટ

• ઇનિશિયલાઇઝેશન: ડિકોડ મોડ, ઇન્ટેન્સિટી, સ્કેન લિમિટ સેટ કરે

• ડેટા ટ્રાન્સફર: એડ્રેસ બાય્ટ પછી ડેટા બાય્ટ મોકલે

• મલ્ટિપ્લેક્સિંગ: 8 ડિજિટ્સ સુધી ડ્રાઇવ કરી શકે

• **બ્રાઇટનેસ કંટ્રોલ**: ઇન્ટેન્સિટી રજિસ્ટર દ્વારા 16 લેવલ

મેમરી ટીક: "ક્લોક ડેટા લોડ ડિસ્પ્લે મોકલો"

પ્રશ્ન 4(અ OR) [3 ગુણ]

MAX232 લાઈન ડ્રાઈવર સમજાવો.

જવાબ:

MAX232 એ TTL/CMOS લોજિક લેવલ્સને RS-232 વોલ્ટેજ લેવલ્સમાં સીરિયલ કમ્યુનિકેશન માટે કન્વર્ટ કરતી IC છે.

ડાયાગ્રામ:

• **વોલ્ટેજ કન્વર્ઝન**: TTL (0/5V) થી RS-232 (±12V)

• **યાર્જ પમ્પ્સ**: જરૂરી વોલ્ટેજ જનરેટ કરવા કેપેસિટર્સ વાપરે છે

• **એપ્લિકેશન્સ**: PC, મોડેમ સાથે સીરિયલ કમ્યુનિકેશન

• **બાયડાયરેક્શનલ**: ટ્રાન્સમિટ અને રિસીવ બંને સિગ્નલ હેન્ડલ કરે છે

મેમરી ટ્રીક: "TTL થી RS-232 કન્વર્ઝન"

પ્રશ્ન 4(બ OR) [4 ગુણ]

ADMUX રજીસ્ટર સમજાવો.

જવાબ:

ADC મલ્ટિપ્લેક્સર સિલેક્શન રજિસ્ટર (ADMUX) એનાલોગ ઇનપુટ ચેનલ સિલેક્શન અને રિઝલ્ટ ફોર્મેટ કંટ્રોલ કરે છે.

ડાયાગ્રામ:

++	+	+	h _	+	+	+	++
							MUX0
++		·		•			
7	6	5	4	3	2	1	0

કોષ્ટક: ADMUX બિટ ફંક્શન્સ

બિટ્સ	નામ	ફંક્શન
7:6	REFS1:0	રેફરન્સ સિલેક્શન
5	ADLAR	ADC લેફ્ટ એડજસ્ટ રિઝલ્ટ
3:0	MUX3:0	એનાલોગ ચેનલ સિલેક્શન

• **REFS1:0**: વોલ્ટેજ રેફરન્સ (AREF, AVCC, ઇન્ટરનલ) પસંદ કરે

• ADLAR: ADC રજિસ્ટર્સમાં રિઝલ્ટ એલાઇનમેન્ટ

• MUX3:0: ઇનપુટ ચેનલ (ADC0-ADC7) પસંદ કરે

મેમરી ટ્રીક: "રેફરન્સ, એલાઇનમેન્ટ, મલ્ટિપ્લેક્સર"

પ્રશ્ન 4(ક OR) [7 ગુણ]

AVRની Two Wire serial Interface (TWI)ની ચર્ચા કરો.

જવાબ:

ટુ વાયર ઇન્ટરફેસ (TWI) એ પેરિફેરલ ડિવાઇસ સાથે કમ્યુનિકેશન માટે AVRનો I²C પ્રોટોકોલનો અમલ છે.

ડાયાગ્રામ:

કોષ્ટક: TWI લાક્ષણિકતાઓ

ફીચર	વર્ણન
પિન્સ	SCL (સીરિયલ ક્લોક) અને SDA (સીરિયલ ડેટા)
સ્પીડ	સ્ટાન્ડર્ડ (100kHz), ફાસ્ટ (400kHz)
એડ્રેસિંગ	7-બિટ અથવા 10-બિટ ડિવાઇસ એડ્રેસિંગ
ઓપરેશન	માસ્ટર અથવા સ્લેવ મોડ
બસ સ્ટ્રક્ચર	મલ્ટી-માસ્ટર, મલ્ટી-સ્લેવ

• **બાયડાયરેક્શનલ**: બંને ડિવાઇસ ટ્રાન્સમિટ અને રિસીવ કરી શકે

• રજિસ્ટર્સ: TWBR, TWCR, TWSR, TWDR, TWAR

• ACK/NACK: વિશ્વસનીય ટ્રાન્સફર માટે એક્નોલેજમેન્ટ

• સ્ટાર્ટ/સ્ટોપ: ટ્રાન્સમિશન શરૂ/સમાપ્ત કરવા માટે ખાસ કન્ડિશન્સ

• **સામાન્ય ઉપયોગ**: EEPROM, RTC, સેન્સર્સ, ડિસ્પ્લે

મેમરી ટ્રીક: "સીરિયલ ક્લોક અને ડેટા ટ્રાન્સફર"

પ્રશ્ન 5(અ) [3 ગુણ]

L293D મોટર ડ્રાઇવરનો ઉપયોગ કરી DC મોટરને ATmega32 સાથે ઇન્ટરફેસ કરવા માટે સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

L293D માઇક્રોકન્ટ્રોલર્સ સાથે DC મોટર કંટ્રોલ કરવા માટે બાયડાયરેક્શનલ ડ્રાઇવ કરંટ પ્રદાન કરે છે.

સર્કિટ ડાયાગ્રામ:

• **કંટ્રોલ પિન્સ**: PD0, PD1 મોટર દિશા નિયંત્રિત કરે છે

• ડ્રાઇવર પાવર: લોજિક અને મોટર માટે અલગ

• H-બ્રિજ: ફોરવર્ડ/રિવર્સ ઓપરેશન સક્ષમ કરે છે

• **એનેબલ પિન**: PWM સ્પીડ કંટ્રોલ માટે વાપરી શકાય

મેમરી ટ્રીક: "બ્રિજ દ્વારા દિશા નિયંત્રણ"

પ્રશ્ન 5(બ) [4 ગુણ]

ATmega32 માં ઓન ચિપ ADCની લાક્ષણિકતા લખો.

જવાબ:

ATmega32 એનાલોગ સિગ્નલ્સ માપવા માટે વર્સેટાઇલ એનાલોગ-ટુ-ડિજિટલ કન્વર્ટર ધરાવે છે.

કોષ્ટક: ATmega32 ADC ફીચર્સ

ફીચર	સ્પેસિફિકેશન
રેઝોલ્યુશન	10-બિટ
ચેનલ્સ	8 સિંગલ-એન્ડેડ ઇનપુટ્સ
કન્વર્ઝન ટાઇમ	65-260 μs
રેફરન્સ વોલ્ટેજ	AREF, AVCC, અથવા 2.56V ઇન્ટરનલ
એક્યુરસી	±2 LSB
કન્વર્ઝન મોડ્સ	સિંગલ અને ફ્રી રનિંગ
ઇનપુટ રેન્જ	0V ଥୀ VREF

• સક્સેસિવ એપ્રોક્સિમેશન: કન્વર્ઝન ટેકનિક

• મલ્ટિપ્લેક્સર: 8 ઇનપુટ ચેનત્સ વચ્ચે પસંદ કરે છે

• ઇન્ટરપ્ટ: પૂર્ણ થયા પર વૈકલ્પિક ઇન્ટરપ્ટ

• **સેમ્પલિંગ રેટ**: મહત્તમ રેઝોલ્યુશન પર 15 KSPS સુધી

મેમરી ટ્રીક: "મલ્ટિપલ ચેનલ્સ, ટેન-બિટ રેઝોલ્યુશન"

પ્રશ્ન 5(ક) [7 ગુણ]

સ્માર્ટ ઇરીગેશન સિસ્ટમ સમજાવો.

જવાબ:

સ્માર્ટ ઇરીગેશન સિસ્ટમ માઇક્રોકન્ટ્રોલર ટેકનોલોજીનો ઉપયોગ કરીને પર્યાવરણીય પરિસ્થિતિઓના આધારે વોટરિંગને ઓટોમેટ કરે છે.

કોષ્ટક: સિસ્ટમ કોમ્પોનન્ટ્સ

કોમ્પોનન્ટ	ફંક્શન
સોઇલ મોઇસ્થર સેન્સર	માટીમાં પાણીની માત્રા માપે છે
તાપમાન/ભેજ	પર્યાવરણીય પરિસ્થિતિનું મોનિટરિંગ કરે છે
વોટર પમ્પ	જરૂર પડે ત્યારે પાણી આપે છે
વાલ્વ્સ	વિવિધ ઝોન્સમાં પાણી ફ્લોને નિયંત્રિત કરે છે
LCD ડિસ્પ્લે	સિસ્ટમ સ્ટેટસ બતાવે છે
RTC મોક્યુલ	શેક્યૂલ્ડ ઇરીગેશન માટે સમય ટ્રેક કરે છે

- એડેપ્ટિવ કંટ્રોલ: પરિસ્થિતિઓના આધારે વોટરિંગ એડજસ્ટ કરે છે
- **વોટર કન્ઝર્વેશન**: માત્ર જરૂરી પ્રમાણમાં પાણીનો ઉપયોગ કરે છે
- **રિમોટ મોનિટરિંગ**: વૈકલ્પિક WiFi/GSM કનેક્ટિવિટી
- ડેટા લોગિંગ: ભેજના સ્તર અને વોટરિંગ ઇવેન્ટ્સની નોંધ રાખે છે
- બેટરી બેકઅપ: પાવર આઉટેજ દરમિયાન ઓપરેશન સુનિશ્ચિત કરે છે

મેમરી ટ્રીક: "ભેજ સેન્સ કરો, પાણી ઓટોમેટિક કંટ્રોલ કરો"

પ્રશ્ન 5(અ OR) [3 ગુણ]

L293D મોટર ડાઇવર IC નો પિન ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

L293D એ મોટર્સ અને અન્ય ઇન્ડક્ટિવ લોડ્સ કંટ્રોલ કરવા માટે વપરાતી ક્વાડ્રુપલ હાફ-H ડ્રાઇવર IC છે.

```
+----+
    | 1 16 |
EN1- -VCC1
IN1-
          -IN4
          -OUT4
OUT1-
GND-| L293D|-GND
GND-
          -GND
          -OUT3
OUT2-
          -IN3
IN2-
VCC2-
          -EN2
```

- VCC1 (પિન 16): લોજિક સપ્લાય વોલ્ટેજ (5V)
- **VCC2 (પિન 8)**: મોટર સપ્લાય વોલ્ટેજ (4.5V-36V)
- EN1/EN2: એનેબલ ઇનપુટ્સ (સ્પીડ કંટ્રોલ માટે PWM થઈ શકે)
- IN1-IN4: દિશા નિયંત્રિત કરવા માટે લોજિક ઇનપુટ્સ
- OUT1-OUT4: મોટર્સ કનેક્ટ કરવા માટે આઉટપુટ્સ
- GND: ગ્રાઉન્ડ કનેક્શન્સ

મેમરી ટ્રીક: "એનેબલ, ઇનપુટ, આઉટપુટ, પાવર"

પ્રશ્ન 5(બ OR) [4 ગુણ]

AVR માં ADC સાથે સંકળાયેલ રજીસ્ટરોની યાદી બનાવો.

જવાબ:

AVRની ADC સિસ્ટમ તેના ઓપરેશન કંટ્રોલ કરવા અને પરિણામો સ્ટોર કરવા માટે અનેક રજિસ્ટર્સનો ઉપયોગ કરે છે.

કોષ્ટક: ADC રજિસ્ટર્સ

રજિસ્ટર	ફંક્શન	વર્ણન
ADMUX	મલ્ટિપ્લેક્સર	ચેનલ સિલેક્શન અને રેફરન્સ ઓપ્શન્સ
ADCSRA	કંટ્રોલ & સ્ટેટસ	કંટ્રોલ બિટ્સ અને ફ્લેગ્સ
ADCH	ડેટા હાઇ	કન્વર્ઝન રિઝલ્ટનો હાઇ બાઇટ
ADCL	ડેટા લો	કન્વર્ઝન રિઝલ્ટનો લો બાઇટ
SFIOR	સ્પેશિયલ ફંક્શન	ADC ટ્રિગર સોર્સ સિલેક્શન

• ADMUX: ચેનલ અને રેફરન્સ સિલેક્શન

• ADCSRA: ADC એનેબલ, કન્વર્ઝન સ્ટાર્ટ, પ્રીસ્કેલર

• ADCH/ADCL: રિઝલ્ટ રજિસ્ટર્સ (10-બિટ વેલ્યુ)

• SFIOR: ઓટો-ટ્રિગર સોર્સ (ટાઇમર, એક્સટર્નલ)

મેમરી ટ્રીક: "મલ્ટિપ્લેક્સર કંટ્રોલ કરે અને રિઝલ્ટ મેળવે"

પ્રશ્ન 5(ક OR) [7 ગુણ]

IoT આદ્યારિત હોમ ઓટોમેશન સિસ્ટમ સમજાવો.

જવાબ:

IoT હોમ ઓટોમેશન ઘરના ઉપકરણોને રિમોટ મોનિટરિંગ અને કંટ્રોલ માટે ઇન્ટરનેટ સાથે જોડે છે.

ડાયાગ્રામ:

કોષ્ટક: સિસ્ટમ કોમ્પોનન્ટ્સ

કોમ્પોનન્ટ	ફંક્શન
કંટ્રોલર	સેન્સર ડેટા અને કમાન્ડ્સ પ્રોસેસ કરે છે
સેન્સર્સ	પર્યાવરણીય પરિસ્થિતિઓનું મોનિટરિંગ કરે છે
એક્ચ્યુએટર્સ	ઉપકરણો અને સિસ્ટમ્સ કંટ્રોલ કરે છે
કમ્યુનિકેશન	WiFi/ઇથરનેટ/બ્લુટુથ કનેક્ટિવિટી
ગેટવે	લોકલ નેટવર્કને ઇન્ટરનેટ સાથે જોડે છે
મોબાઇલ એપ	રિમોટ કંટ્રોલ માટે યુઝર ઇન્ટરફેસ

- રિમોટ એક્સેસ: ગમે ત્યાંથી ઘર કંટ્રોલ કરો
- શેક્યુલિંગ: સમય આધારિત ડિવાઇસ ઓપરેશન ઓટોમેટ કરો
- **વોઇસ કંટ્રોલ**: ડિજિટલ આસિસ્ટન્ટ સાથે એકીકરણ
- એનર્જી મોનિટરિંગ: પાવર કન્ઝમ્પશન ટ્રેક કરો
- સિક્યુરિટી: અસામાન્ય પ્રવૃત્તિઓ માટે એલર્ટ
- સીન સેટિંગ: અનેક ડિવાઇસનું વન-ટથ કંટ્રોલ

મેમરી ટ્રીક: "કનેક્ટ, કંટ્રોલ, ઓટોમેટ, મોનિટર"