Correction

Partie I

- 1.a Il est clair que $\forall P \in \mathbb{R}\big[X\big], \Delta(P) \in \mathbb{R}\big[X\big]$ donc $\Delta : \mathbb{R}\big[X\big] \to \mathbb{R}\big[X\big]$. De plus, soit $\lambda, \mu \in \mathbb{R}$ et $P, Q \in \mathbb{R}\big[X\big]$: $\Delta(\lambda P + \mu Q) = (\lambda P + \mu Q)(X+1) (\lambda P + \mu Q)(X) \\ = \lambda(P(X+1) P(X)) + \mu(Q(X+1) Q(X)) = \lambda \Delta(P) + \mu \Delta(Q)$ donc Δ est linéaire et par suite $\Delta \in \mathcal{L}(\mathbb{R}\big[X\big])$.
- 1.b Si P est constant égal à $\lambda \in \mathbb{R}$ alors $\Delta(P) = \lambda \lambda = 0$. Si $\deg P \geq 1$ alors, en posant $p = \deg P$, on peut écrire $P = a_p X^p + \ldots + a_1 X + a_0$ avec $a_p \neq 0$. $\Delta(P) = a_p ((X+1)^p - X^p) + a_{p-1} ((X+1)^{p-1} - X^p) + \ldots + a_1 ((X+1) - X)$ Or $(X+1)^k - X^k = \binom{k}{1} X^{k-1} + \binom{k}{2} X^{k-2} + \cdots + \binom{k}{k}$ est de degré k-1, donc $\deg(a_p ((X+1)^p - X^p)) = p-1 \text{ et } \deg((a_{p-1} ((X+1)^{p-1} - X^{p-1}) + \ldots + a_1 ((X+1) - X)) < p-1 \text{ .}$ Par degré, d'une somme de polynômes de degrés distincts, $\deg \Delta(P) = p-1 = \deg P-1$.
- 2.a De part la question précédente : $\forall P \in \mathbb{R}\big[X\big]$, on a $\deg(\Delta(P)) \leq \deg P 1$. Par suite $\forall P \in \mathbb{R}\big[X\big]$, $\deg \Delta(P) < n$ donc $\Delta_n(P) = \Delta(P) \in \mathbb{R}_n\big[X\big]$. Ainsi $\Delta_n : \mathbb{R}_n\big[X\big] \to \mathbb{R}_n\big[X\big]$. De plus Δ_n est linéaire, car Δ l'est. Ainsi $\Delta_n \in \mathcal{L}(\mathbb{R}_n\big[X\big])$.
- 2.b Soit $P \in \mathbb{R}_n[X]$. Si $\deg P \leq 0$ alors $\Delta_n(P) = \Delta(P) = 0$ donc $P \in \ker \Delta_n$. Si $\deg P \geq 1$ alors $\deg(\Delta_n(P)) = \deg P - 1$ donc $\Delta_n(P) \neq 0$ puis $P \notin \ker \Delta_n$. Finalement $\ker \Delta_n = \mathbb{R}_0[X]$.
- $\begin{aligned} \text{2.c} & \quad \text{Par le th\'eor\`eme du rang}: \ \text{rg}(\Delta_n) = \dim \mathbb{R}_n\big[X\big] \dim \mathbb{R}_0\big[X\big] = n + 1 1 = n \ . \\ & \quad \text{Puisque} \ \ \forall P \in \mathbb{R}_n\big[X\big], \deg \Delta_n(P) \leq \deg P 1 \leq n 1 \ \text{ on a } \ \Delta_n(P) \in \mathcal{R}_{n-1}[X] \ \text{ puis } \ \text{Im} \ \Delta_n \subset \mathbb{R}_{n-1}\big[X\big] \ . \\ & \quad \text{Par inclusion et \'egalit\'e des dimensions}: \ \text{Im} \ \Delta_n = \mathbb{R}_{n-1}\big[X\big] \ . \end{aligned}$
- 3.a Soit $P\in\mathbb{R}\big[X\big]$ et $n\in\mathbb{N}$ tel que $n-1\geq \deg P$. On a $P\in\mathbb{R}_{n-1}\big[X\big]=\mathrm{Im}\,\Delta_n$ donc $\exists\,Q\in\mathbb{R}_n\big[X\big]$ tel que $\Delta_n(Q)=P$ i.e. : $\Delta(Q)=P$. Ainsi Δ est surjectif.
- 3.b Existence : Soit $P \in \mathbb{R}[X]$, par la surjectivité de Δ , $\exists R \in \mathbb{R}[X]$ tel que $\Delta(R) = P$. Posons $\lambda = R(0)$ et $Q = R \lambda$. On a Q(0) = C C = 0 et $\Delta(Q) = \Delta(R) \Delta(\lambda) = P$. Unicité :

Soit Q, \hat{Q} deux solutions du problème.

On a $\Delta(Q-\hat{Q})=\Delta(Q)-\Delta(\hat{Q})=P-P=0$ donc $Q-\hat{Q}$ est un polynôme constant en vertu de 1.b Puisque $(Q-\hat{Q})(0)=Q(0)-\hat{Q}(0)=0$, on conclut $Q-\hat{Q}=0$ puis $Q=\hat{Q}$.

3.c On a $\nabla : \mathbb{R}[X] \to \mathbb{R}[X]$. Soit $\lambda, \mu \in \mathbb{R}$ et $P, Q \in \mathbb{R}[X]$ $\Delta(\lambda \nabla (P) + \mu \nabla (Q)) = \lambda \Delta(\nabla (P)) + \mu \Delta(\nabla (Q)) = \lambda P + \mu Q \text{ et}$ $(\lambda \nabla (P) + \mu \nabla (Q))(0) = \lambda \nabla (P)(0) + \mu \nabla (Q)(0) = 0 \text{ donc on reconnaît } \lambda \nabla (P) + \mu \nabla (Q) = \nabla (\lambda P + \mu Q).$ Ainsi $\nabla \in \mathcal{L}(\mathbb{R}[X])$.

3.d Posons $Q = \nabla(P)$ de sorte que $\Delta(Q) = P$.

$$\sum_{i=0}^{p} P(i) = \sum_{i=0}^{p} \Delta(Q)(i) = \sum_{i=0}^{p} Q(i+1) - Q(i) = Q(p+1) - Q(0) = Q(p+1)$$

Partie II

1.a
$$\Delta(P_0) = 0 \ .$$

$$\Delta(P_m) = \frac{1}{m!} [(X+1)X...(X-m+2) - X(X-1)...(X-m+1)]$$
 donne
$$\Delta(P_m) = \frac{1}{m!} X(X-1)...(X-m+2) [X+1-(X-m+1)] = P_{m-1} \ .$$

- 1.b Si $k \le m$ alors $\Delta^k(P_m) = P_{m-k}$ et si k > m alors $\Delta^k(P_m) = 0$.
- 1.c Puisque $P_0(0)=1$ et $P_m(0)=0$, on a $\Delta^k(P_m)(0)=1$ si k=m et $\Delta^k(P_m)(0)=0$ sinon.
- 2.a $\deg P_m=m$. La famille $\mathcal{B}=(P_0,P_1,\ldots,P_n)$ est une famille de polynômes de degrés étagés, c'est donc une base de $\mathbb{R}_n[X]$.
- 2.b Soit $P \in \mathbb{R}_n[X]$, puisque \mathcal{B} est une base, $\exists \lambda_0, \lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que $P = \sum_{m=0}^n \lambda_m P_m$. $\forall k \in \left\{0, ..., m\right\}, \Delta^k(P) = \sum_{m=0}^n \lambda_k \Delta^k(P_m) \text{ puis } \Delta^k(P)(0) = \sum_{m=0}^n \lambda_k \Delta^k(P_m)(0) = \lambda_k \text{ .}$ Par suite $P = \sum_{k=0}^n \Delta^k(P)(0) P_k$.
- 2.c Puisque $\Delta(P_{m+1})=P_m$ et $P_{m+1}(0)=0$, on a $\nabla(P_m)=P_{m+1}$. Par suite $\nabla(P)=\sum_{m=0}^n\Delta^m(P)(0)P_{m+1}$.
- 3.a $\Delta^0(X^3) = X^3, \Delta(X^3) = 3X^2 + 3X + 1, \Delta^2(X^3) = 6X + 6 \text{ et } \Delta^3(X^3) = 6$ donc $\Delta^0(X^3)(0) = 0, \Delta(X^3)(0) = 1, \Delta^2(X^3)(0) = 6 \text{ et } \Delta^3(X^3)(0) = 6$. Par suite $\nabla(X^3) = \frac{X(X-1)}{2} + X(X-1)(X-2) + \frac{X(X-1)(X-2)(X-3)}{4}$ puis $\nabla(X^3) = \frac{X(X-1)}{4}(2 + 4X - 8 + X^2 - 5X + 6) = \frac{X^2(X-1)^2}{4}$.
- 3.b $\sum_{i=0}^{m} i^3 = \frac{m^2(m+1)^2}{4}.$