Lab2 Report

2-1. A one bit full adder

Design Specification

Input: x,y,cin
Output: s,cout
s+cout=x+y+cin

Design Implementation

1. Logic function:

s 是 sum; cout 則是表示進位與否。

利用 \oplus (XOR)的特性,要有奇數個"1",結果才會是1,來表示 S。 利用相乘的特性,要 input 都是1,結果才會是1,來表示 cout。

2. Logic equations:

S=x⊕y⊕cin cout=xy+xcin+ycin

	x	y	C	ih	CO	42	5
	0	0	,	0	1	2	D
	0	C)	1		>	1
	0			0	0		1
	0			1	1		D
)	c	,	0	t	>	1
	1	0		ſ			ט
	1	1		D			0
4))	l			J

3. Login diagram:

Stimulation

		0.003 ns								
Name	Value	L 15 .	110 ns .	a) ns	30 ns .	40 ns .	90 ns .	150 ns .	70 ns .	80 ns .
U ₁ S	0						51551111111			
Un COUT	0									
™ X	0									
l⊕ Y	0				1000					
™ CIN	0									

Reference

參照講義

另外還可以用 half adder 來表示 full adder

1. Logic equations:

Cout=xy+xin+ycin

=xy+cin(x+y)

=xy+cin(xy+xy'+x'y+xy)

=xy+xycin+xy'cin+x'ycin

=xy+cin(xy'+x'y)

2. Logic diagram:

Discussion

- 1. 測試出來的結果跟原本預期的一樣。
- 2. 因為要打這個結報而意外學會很多打其他符號的方式,像是 XOR 的符號 ⊕,可以利用快捷鍵先打 2295 再同時按 Alt+x 即可。
- 3. 基本上跟 labl_1 一樣,只要打上全加器的方程式再分別把輸出跟出入 連接到板子上的位置設定即可。

2-2. BCD to 7-segment display decoder

Design Specification

1. **Input**: i[3:0];

2. **Output**: D_ssd[7:0],d[3:0],a[3:0];

(i 是 binary number, D_ssd 是 7-segment display, d 是為了同時控制 4 個七段

顯示器、a 是 output 為了用 LED 監控 input)

Design Implementation

8'b10011111 represent 1

8'b00100101 represent 2

8'b00001101 represent 3

8'b10011001 represent 4

8'b01000001 represent 6

8'b00011111 represent 7

8'b00001001 represent 9

當輸入的 i[3:0]轉為十進位後,分別產生下列輸出(0~9以外輸出F)

0:8'b00000011

1: 8'b10011111

2: 8'b00100101

4: 8'b10011001

5: 8'b01001001

6: 8'b01000001

7: 8'b00011111

8: 8'b00000001

9: 8'b00001001

8'b00000011 represent 0

8'b01001001 represent 5

8'b00000001 represent 8

3: 8'b00001101

Default: 8'b01110001

↓以下是對應 FPGA 板的接腳

I/O	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]
Pin	W7	W6	U8	V8	U5	V5	U7	V7

1/0	i[3]	i[2]	i[1]	i[0]	d[3]	d[2]	d[1]	d[0]
Pin	W4	V4	U4	U2	W17	W16	V16	V17

I/O	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]
Pin	W7	W6	U8	V8	U5	V5	U7	V7

Stimulation

此題已在演習課 demo 過 FPGA 板。

Discussion

- 1. 經過這個實驗學會了如何使七段顯示器顯示出我們所想要的樣子,不過目前 只能四個都顯示一樣的,如果要寫是不同數字的話,要用短暫時間的 delay(人眼的視覺暫留)來表示。
- 2. 因為不可以將同一個 output,同時接到兩個 FPGA 的 LED 跟七段顯示器上面,所以除了原本的 D_ssd 之外還需要另外設一個 d 來控制 LED 以監控input。
- 3. 學會 case 的用法,也是一種可以表示 if velse 的方式,不過要記得設定 default 值。

2-3. Binary to 7-segment display decoder

Design Specification

1. Input: i[3:0];

2. **Output**: D_ssd[7:0],d[3:0], a[3:0];

(i 是 binary number, D_ssd 是 7-segment display, d 是為了同時控制 4 個七段顯示器、a 是 output 為了用 LED 監控 input)

Design Implementation

設計大略與 2-2 相同 不同的地方在於為 16 進位 8'b00000101 represent A 8'b11000001 represent B 8'b11100101 represent C 8'b10000101 represent D 8'b00100001 represent E

8'b01110001 represent F

另外 case 中 default 的值改為 segs= 8`b00000000;

↓以下是對應 FPGA 板的接腳

I/O	i[3]	i[2]	i[1]	i[0]	d[3]	d[2]	d[1]	d[0]
Pin	W4	V4	U4	U2	W4	V4	U4	U2

I/O	a[3]	a[2]	a[1]	a[0]
Pin	V19	U19	E19	U16

1/0	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]
Pin	W7	W6	U8	V8	U5	V5	U7	V7

Stimulation

此題已在演習課 demo 過 FPGA 板。

Discussion

1. 這個實驗跟 2-2 實驗幾乎一樣,唯一學到的就是怎麼用自己的想像力用七段顯示器寫出 A~F。

2-4. Four Bits Comparator

Design Specification

1. Input: [3:0]A \ [3:0]B;

2. Output:[3:0]M \ [3:0]N \ X;

(M用來連接 Input A, N則用來連接 Input

B,來顯示 LED 燈; Output 則用來連接另外

一個 LED 燈以表示 A、B的大小,若 A 比 B 大則亮燈,反之則不亮)

3. If(a<=b), x=0 If(a>b), x=1

● Design Implementation

logic function
If(A<=B)

X=0

else

X=1

a>b,out=

↑2.Logic diagram

↓以下是對應 FPGA 板的接腳

I/O	A[3]	A[2]	A[1]	A[0]	B[3]	B[2]	B[1]	B[0]	
Pin	W17	W16	V16	V17	W13	W14	V15	W15	
I/O	M[3]	M[2]	M[1]	M[0]	N[3]	N[2]	N[1]	N[0]	
Pin	V19	U19	E19	U16	V14	U14	U15	W18	
I/O	X								
Pin	L1								

Stimulation

此題已在演習課 demo 過 FPGA 板。

Discussion

- 1. 我對這題的問題跟 pre-lab3 一樣,就是在 verilog 上的程式碼中只要簡單 打說如果 A 大於 B 的敘述就可以操作了,但是在之前學的邏輯設計中需要利 用⊕(XOR)分別來比較每個位數的大小,所以不太清楚在結報上要如何表 示,但為了確保正確,我這幾次的報告兩種都有附上,會在之後上課詢問助 教或教授解惑。
- 2. 其他就是更熟悉對於 FPGA 板子的操作了,已經可以不用看之前的講義來逐步模仿,就可以把自己寫的程式碼在板子上成功模擬了。

Conclusion

這次的實驗讓我第一次了解到邏輯設計實驗的威力,大約整整花了兩天才 搞清楚加上弄完全部相關的作業,手拙的我常常會在奇怪的地方把變數打成大 寫或是打錯,但是自己都看不出來,這些小小的錯誤就大大造成我的困擾,常 常幾個小時就這樣悄悄溜走了。不過最後能夠順利地在板子上面模擬真的還蠻 酷炫的,有種終於可以把自己所學運用出來的感覺(雖然大部分還是從講義或是 網路上面來的 QAQ),不過拿著這個板子感覺就很潮,有種好像是電資院或是二 專有修相關的人才會拿的到的!我會更加努力學習 VERILOG 的!