

DS 861- Final Project | Spring 2024

Predicting Credit Card Approvals

Ananyaa Shahi and Vivid Liu

Introduction

Commercial banks receive numerous credit card applications.

- What factors matter? Age, income, credit score, credit history, etc.
- Common reasons application gets denied: high loan balances, low-income levels, or excessive inquiries on the applicant's credit report.
- Manual reviewing process can be tedious, prone to errors, and time-consuming.
- With Machine Learning, the **process can be** automated.

Objective

In this project, we will use a credit card dataset containing information such as individual's total income, job title, family and marital status to develop a machine learning model that predicts whether an applicant is a 'good' or 'bad' client for issuing a credit card.

About Dataset

Contains 25128 rows and 21 columns:

#	Column	Non-Null Count	Dtype
0	Applicant_ID	25128 non-null	int64
1	Applicant_Gender	25128 non-null	object
2	Owned_Car	25128 non-null	int64
3	Owned_Realty	25128 non-null	int64
4	Total_Children	25128 non-null	int64
5	Total_Income	25128 non-null	int64
6	Income_Type	25128 non-null	object
7	Education_Type	25128 non-null	object
8	Family_Status	25128 non-null	object
9	Housing_Type	25128 non-null	object
10	Owned_Mobile_Phone	25128 non-null	int64
11	Owned_Work_Phone	25128 non-null	int64
12	Owned_Phone	25128 non-null	int64
13	Owned_Email	25128 non-null	int64
14	Job_Title	25128 non-null	object
15	Total_Family_Members	25128 non-null	int64
16	Applicant_Age	25128 non-null	int64
17	Years_of_Working	25128 non-null	int64
18	Total_Bad_Debt	25128 non-null	int64
19	Total_Good_Debt	25128 non-null	int64
20	Status	25128 non-null	int64

Sourced from Kaggle

Why we picked it?

- Importance of Credit Scoring: Accurate credit scoring is vital for reducing default risks and improving lending decisions in the financial industry.
- Imbalanced Data Challenges: The dataset likely has more 'good' than 'bad' clients (or vice versa), needing techniques to avoid model bias.
- Use of Machine Learning: It involves using methods like correlation metrics, logistic regression, and random forest, offering practical experience with real-world data and binary classification models.

Literature Overview

A few studies have utilized this particular dataset and utilized different machine learning techniques to predict credit card approvals.

PyCaret	Light Gradient Boosting Machine
K-Means Clustering	Hyperparameters
Random Forest	AUC Curve
Naive Bayes	Confusion Matrix

Model Development Process

Aspects Explored

		Data Exploration
	Step 1	Inspected the dataset for missing values, duplicates, unique values, and the distribution of features.
	Step 2	Data Preprocessing
		Cleaned the dataset by handling outliers, converting categorical variables to numerical, and dropping constant or irrelevant features.
	Step 3	Feature Engineering
		Created new categorical features by grouping job titles into broader categories.
	Step 4	Imbalanced Data Handling
		Addressed class imbalance using Synthetic Minority Over-sampling Technique (SMOTE).
	Step 5	Model Building and Evaluation
		Built and evaluated logistic regression and random forest models to classify the target variable.

Techniques Used

Performed Exploratory Data Analysis and Data Cleaning

Identifying Outliers Using Box Plot

Utilized **box plots** to detect outliers and filtered out extreme values using **percentile-based benchmarks**.

One-Hot Encoding

Converted categorical variables into numerical using pd.get_dummies.

Class Imbalance Handling

Applied **SMOTE** to balance the classes in the target variable during the training phase.

Modeling Techniques

Logistic Regression: Implemented to find the best hyperparameters. **Random Forest Classifier:** Tuned to optimize model performance.

Logistic Regression

Defined the pipeline with standard scaling and logistic regression. Fitted GridSearchCV object on resampled training data.

• Best Hyperparameters:

o C: 44668.35921509626

class_weight: 'balanced'

o max_iter: 100

o penalty: 'l2'

o solver: 'liblinear'

• F1-Score on Test Set: 1.0

• Precision: 1.0

• Recall: 1.0

• Accuracy: 1.0

Top 10 Important Features

Top 10 Important Features

Random Forest

Utilized Random Forest Classifier to extract the best hyperparameters and GridSearchCV to find the best estimator.

• Best Hyperparameters:

max_depth: 20

max_features: 'sqrt'

min_samples_split: 2

n_estimators: 200

• F1-Score on Test Set: 1.0

• Precision: 1.0

• **Recall:** 1.0

• Accuracy: 1.0

ROC Curves

Logistic Regression

Random Forest

- The ROC curves for both models showed excellent separation, indicating **high model performance**.
- Confusion Matrix for both models showed high true positive rates and low false positive rates.

Learnings

- The exploration and preprocessing stages were crucial in identifying and handling data imbalance and feature importance.
- Both models performed exceedingly well, with Logistic regression & Random Forest achieving a perfect score across all metrics on the test set.
- However, the class imbalance presented challenges in interpreting these results, suggesting that more balanced datasets could be beneficial.

What else would we have done?

- Try and test other methods for handling data imbalance.
- Try other machine learning models on our dataset.
- Conduct more in depth feature engineering.

Thank you!

Do you have any questions?

