COMS20011 – Data-Driven Computer Science

February 2022 Majid Mirmehdi

Some slides in this lecture are adapted from those authored by **Dima Damen** and **Andrew Calway**

Lecture Video #1

COMS20011 Unit

- This is a "new" unit that started in the 2020-21 academic year
- Replaced the 20CP COMS20212 (SPS) unit
- Exam materials can be used for revision BUT...
- Use SPS materials with caution...depth, breadth & requirements may differ.

What is Data?

- Data comes in many forms, e.g. symbols, patterns and signals!
- Data: Structured and Unstructured
 - Numeric (measurements, finance spreadsheets, ...)
 - > Textual (emails, social media, web pages, medical records, ...)
 - Visual (images, video, graphics, animations)
 - Auditory (speech, audio)
 - Signals (GPS signals, accelerometer, heart rate, ...)
 - Many others...

This Unit (adapted from COMS20212: Symbols, Patterns and Symbols)

- This unit is about doing things with data... but not
 - storing, shuffling, searching (Algorithms I & II)
 - sending (Computer Systems)
 - compressing or encrypting (Cryptology)
- This unit is about:
 - extracting knowledge from data
 - generating data and making predictions
 - making decisions based on data
 - Often referred to as:

Data is the new Oil

The Largest Companies By Market Cap

COMS20011 - DDCS

6

Data Science & Analytics

But it's not about the data – it's about the science

Tracking and predicting [disease,mortality,floods,fires, and fun etc.] by Twitter!

This Unit

Why is it important for Computer Science?

- Fundamental to many application areas:
 - Artificial Intelligence, Machine Learning, Deep Learning
 - > Image Processing and Pattern Recognition
 - Graphics, Animation and Virtual Reality
 - Computer Vision and Robotics
 - Speech and Audio Processing.
 - With growing applications in: neuroscience, literature, agriculture, etc.
- ➤ Hence, preparation for application units in years 3 and 4.

Ex1. A Fishy Problem

Data: images of fish

Aim: distinguish between sea bass and salmon

Ex1. A Fishy Problem

11

Steps:

- 1. Pre-processing
- 2. Feature Selection
- 3. Classification

12

Steps:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. Measure length
- 3. Classification e.g. Find a threshold

Steps:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. Measure length or lightness
- 3. Classification e.g. Find a threshold

Multiple features could be selected, resulting in a multi-dimensional feature vector.

Complex decision model

Typical Data Analysis Problem

Steps:

- 1. Pre-processing [Unit Part 1] → Majid Mirmehdi (~10%)
- 2. Feature Selection [Unit Part 3] → Majid Mirmehdi (~40%)
- 3. Modelling & Classification [Unit Part 2] → Laurence Aitchison [UD] (~50%)

Next Video

More example applications...