선형 회귀 분석 (Linear Regression)

회귀 분석의 개념

사례 1

나는 큰 신발회사의 CEO이다. 많은 지점들을 가지고 있다. 그리고 이번에 새로운 지점을 내고 싶다. 어느 지역에 내야 될까?

내가 새로운 지점을 내고 싶어하는 지역들의 예상 수익만 파악할 수 있으면 큰 도움이 될 것인데!

내가 가지고 있는 자료(data)는 각 지점의 수익(profits)과 각 지점이 있는 지역의 인구수(populations)이다.

이것을 통하여, 새로운 지역의 인구수를 알게 될 경우, 그 지역의 예상 수익을 구할 수 있을까?

사례 2

나는 지금 Pittsburgh로 이사를 왔다

나는 가장 합리적인 가격의 아파트를 얻기 원한다.

그리고 다음의 조건들은 내가 집을 사기 위해 고려하는 것들이다.

square-ft²(평방미터), 침실의 수, 학교 까지의 거리...

내가 원하는 크기와 침실의 수를 가지고 있는 집의 가격은 과연 얼마일까?

또한 방의 크기와 침실의 수가 집의 가격과 관련이 있을까?

Living area(ft²)	# of bedroom	Rent(\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
•••	•••	•••
150	1.5	?

예측가능?

문제 제기

신발 판매 지점이 위치한 지역의 인구 수와 해당 판매 지점의 수익

회귀 (Regression)

- ① Given an input x we would like to compute an output y. (내가 원하는 집의 크기와, 방의 개수를 입력했을 때, 집 가격의 예측 값을 계산)
- ② For example
 - 1) Predict height from age (height = y, age = x)
 - 2) Predict Google's price from Yahoo's price (Google's price = y, Yahoo's price = x)

즉, <u>기존의 data들에서</u> learning, training <u>직선($y = \theta_0 + \theta_1 x$)을 찾아내면</u>, <u>새로운 값 x_{new} 가 주어졌을 때</u>, 해당하는 y의 값을 예측할 수 prediction

회귀 (Regression)

Input : 집의 크기(x_1), 방의 개수(x_2), 학교까지의 거리(x_3),.....

$$(x_1, x_2, ..., x_n)$$
: 특성 벡터 feature vector

training set을 통하여 학습(learning)

단순 선형 회귀 모형 (Simple Linear Regression)

최소 제곱 법 (LSM)

i번째 관찰점 (y_i, x_i) 가 주어졌을 때 단순 회귀 모형은 다음과 같다.

$$y_i = \theta_0 + \theta_1 x_i + \varepsilon_i$$

종속 변수 설명 변수, 독립 변수

우리는 **오류의 합을 가장 작게 만드는 직선**을 찾고 싶다. 즉 그렇게 만드는 <u>θ₀와 θ₁을 추정</u>하고 싶다!

How!! 최소 제곱 법! (Least Squares Method)

$$min\sum_{i}\{y_i-(\theta_0+\theta_1x_i)\}^2=min\sum_{i}\epsilon_i^2$$
실제 관측 값 회귀 직선의 값(예측 값)

 ϵ_i : i번째 관찰점에서 우리가 구하고자 하는 회귀직선과 실제 관찰된 y_i 의 차이 (error)

최소 제곱법 (LSM)

$$\min\sum_i \{y_i - (\theta_0 + \theta_1 x_i)\}^2 = \min\sum_i \epsilon_i^2$$
실제 관측 값 회귀 직선의 값(예측 값)

위의 식을 최대한 만족 시키는 θ_0, θ_1 을 추정하는 방법은 무엇일까? (이러한 θ_1, θ_2 를 $\hat{\theta}_1, \hat{\theta}_2$ 라고 하자.)

- Normal Equation
- Steepest Gradient Descent

What is normal equation?

극대 값, 극소 값을 구할 때, 주어진 식을 미분한 후에, 미분한 식을 0으로 만드는 값을 찾는다.

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2$$

먼저, θ_0 에 대하여 미분하자. $\frac{\partial}{\partial \theta_0} \sum_i \{y_i - (\theta_0 + \theta_1 x_i)\}^2 = -\sum_i \{y_i - (\theta_0 + \theta_1 x_i)\} = 0$

다음으로,
$$\theta_1$$
에 대하여 미분하자.
$$\frac{\partial}{\partial \theta_1} \sum_i \{y_i - (\theta_0 + \theta_1 x_i)\}^2 = -\sum_i \{y_i - (\theta_0 + \theta_1 x_i)\}x_i = 0$$

위 의 두 식을 0으로 만족시키는 θ_0, θ_1 를 찾으면 된다. 이처럼 2개의 미지수에 대하여, 2개의 방정식(system)이 있을 때, 우리는 이 system을 normal equation(정규방정식)이라 부른다.

The normal equation form

 $y_n = \theta_0 + \theta_1 x_n + \epsilon_n$

$$\mathbf{x}_i = (1, x_i)^T$$
, $\mathbf{\Theta} = (\theta_0, \theta_1)^T$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$, $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$, $\mathbf{e} = (\epsilon_1, \dots, \epsilon_n)$ 라고 하자.

n개의 관측 값 (x_i, y_i) 은 아래와 같은 회귀 모형을 가진다고 가정하자.

$$y_{1} = \theta_{0} + \theta_{1}x_{1} + \epsilon_{1}$$

$$y_{2} = \theta_{0} + \theta_{1}x_{2} + \epsilon_{2}$$

$$\dots$$

$$y_{n-1} = \theta_{0} + \theta_{1}x_{n-1} + \epsilon_{n-1}$$

$$y_{1} = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \dots \\ y_{n} \end{pmatrix} = \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3} \\ \dots & \dots \\ 1 & x_{n} \end{pmatrix} \begin{pmatrix} \theta_{0} \\ \theta_{1} \end{pmatrix} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \dots \\ \epsilon_{n} \end{pmatrix}$$

$$y = X\Theta + \mathbb{C}$$

$$y = X\Theta + e$$
 $e = y - X\Theta$

Minimize
$$\sum_{j=1}^{n} \epsilon_{j}^{2}$$

$$\sum_{j=1}^{n} \epsilon_{j}^{2} = \mathbb{e}^{T} \mathbb{e} = (\mathbb{y} - X\Theta)^{T} (\mathbb{y} - X\Theta)$$
 1 by 1 행렬이므로 전치행렬의 값이 같다!
$$= \mathbb{y}^{T} \mathbb{y} - \Theta^{T} X^{T} \mathbb{y} - \mathbb{y}^{T} X\Theta + \Theta^{T} X^{T} X\Theta$$

$$= \mathbb{y}^{T} \mathbb{y} - 2\Theta^{T} X^{T} \mathbb{y} + \Theta^{T} X^{T} X\Theta$$

$$\frac{\partial(\mathbb{e}^T\mathbb{e})}{\partial\Theta} = \mathbf{0} \qquad \longrightarrow \qquad \frac{\partial(\mathbb{e}^T\mathbb{e})}{\partial\Theta} = -2X^T\mathbb{y} + 2X^TX\Theta = \mathbf{0}$$

$$\hat{\mathbf{\Theta}} = (X^T X)^{-1} X^T \mathbf{y}$$
 정규방정식

machine learning에서는 매개 변수(parameter, 선형회귀에서는 θ_0, θ_1)가 수십~수백 차원의 벡터인 경우가 대부분이다. 또한 목적 함수(선형회귀에서는 $\Sigma \epsilon_i^2$)가 모든 구간에서 미분 가능하다는 보장이 항상 있는 것도 아니다.

따라서 한 번의 수식 전개로 해를 구할 수 없는 상황이 적지 않게 있다.

이런 경우에는 초기 해에서 시작하여 해를 반복적으로 개선해 나가는 수치적 방법을 사용한다. (미분이 사용 됨)

Gradient Descent

현재 위치에서 경사가 가장 급하게 하강하는 방향을 찾고,

그 방향으로 약간 이동하여 새로운 위치를 잡는다.

이러한 과정을 반복함으로써 가장 낮은 지점(즉 최저 점)을 찾아 간다.

Gradient Ascent

현재 위치에서 경사가 가장 급하게 상승하는 방향을 찾고,

그 방향으로 약간 이동하여 새로운 위치를 잡는다.

이러한 과정을 반복함으로써 가장 높은 지점(즉 최대 점)을 찾아 간다.

$$J = 목적함수$$

$$\frac{\partial J}{\partial \alpha} \Big|_{\alpha_t} : \alpha_t \text{에서의 도함수 } \frac{\partial J}{\partial \alpha} \text{의 값}$$

$$\alpha_{t+1} = \alpha_t - \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

 α_t 에서의 미분값은 음수이다.

그래서 $\frac{\partial J}{\partial \alpha}\Big|_{\alpha_t}$ 를 더하게 되면 왼쪽으로 이동하게 된다. 그러면 목적함수의 값이 증가하는 방향으로 이동하게 된다.

 $\frac{|\Gamma|}{|\rho|}$ 를 빼준다. 그리고 적당한 ρ 를 곱해주어서 조금만 이동하게 한다.

J = 목적함수 $\left. \frac{\partial J}{\partial \alpha} \right|_{\alpha_t} : \alpha_t \text{에서의 도함수 } \frac{\partial J}{\partial \alpha} \text{의 값}$

Gradient Descent

$$\alpha_{t+1} = \alpha_t - \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

Gradient Ascent

$$\alpha_{t+1} = \alpha_t + \rho \frac{\partial J}{\partial \alpha} \bigg|_{\alpha_t}$$

Gradient Descent, Gradient Ascent는 전형적인 Greedy algorithm이다. <u>과거 또는 미래를 고려하지 않고 현재 상황에서 가장 유리한 다음 위치를 찾아</u> Local optimal point로 끝날 가능성을 가진 알고리즘이다.

Gradient descent를 중지하는

미분할 때 이용.

$$\mathbf{x}_i = (1, x_i)^T$$
, $\mathbf{\Theta} = (\theta_0, \theta_1)^T$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$, $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$, $\mathbf{e} = (\epsilon_1, \dots, \epsilon_n)$ 라고 하자.

- The Cost Function

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{n} (\theta_0 + \theta_1 x_i - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\Theta^T \mathbf{x}_i - y_i)^2$$

- Consider a gradient descent algorithm

$$\theta_0^{t+1} = \theta_0^t - \alpha \frac{\partial}{\partial \theta_0} J(\Theta)_t$$
 \longleftarrow $J(\Theta) = \theta_0$ 으로 미분한 식에다가 대입. 그 후에, 이 값을 θ_0 에서 빼 줌.
$$\theta_1^{t+1} = \theta_1^t - \alpha \frac{\partial}{\partial \theta_1} J(\Theta)_t$$

$$\mathbf{x}_i = (1, x_i)^T$$
, $\mathbf{\Theta} = (\theta_0, \theta_1)^T$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$, $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$, $\mathbf{e} = (\epsilon_1, \dots, \epsilon_n)$ 라고 하자.

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{n} (\theta_0 + \theta_1 x_i - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\Theta^T x_i - y_i)^2$$

$$\nabla J(\Theta) = \left[\frac{\partial}{\partial \theta_0} J(\Theta), \frac{\partial}{\partial \theta_1} J(\Theta)\right]^T = \sum_{i=1}^n (\Theta^T \mathbf{x}_i - y_i) \mathbf{x}_i$$
 Gradient of $J(\Theta)$

$$\frac{\partial}{\partial \theta_0} J(\theta) = \sum_{i=1}^n (\Theta^T \mathbf{x}_i - y_i) \mathbf{1} \qquad \frac{\partial}{\partial \theta_1} J(\theta) = \sum_{i=1}^n (\Theta^T \mathbf{x}_i - y_i) \mathbf{x}_i$$

$$\mathbf{x}_i = (1, x_i)^T$$
, $\mathbf{\Theta} = (\theta_0, \theta_1)^T$, $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$, $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$, $\mathbf{e} = (\epsilon_1, \dots, \epsilon_n)$ 라고 하자.

$$heta_0^{t+1} = heta_0^t - lpha \sum_{i=1}^n (\Theta_t^T \mathbf{x}_i - y_i) \mathbf{1}$$
 단, 이 때의 Θ 자리에는 t 번째에 얻어진 Θ 값을 대입해야 한다. $\Theta_1^{t+1} = heta_1^t - lpha \sum_{i=1}^n (\Theta^T \mathbf{x}_i - y_i) x_i$

최소 제곱법 (LSM)

Normal Equations

장점: a single-shot algorithm! Easiest to implement.

단점: need to compute pseudo-inverse $(X^TX)^{-1}$, expensive, numerical issues (e.g., matrix is singular..), although there are ways to get around this ...

$$\hat{\mathbf{e}} = (X^T X)^{-1} X^T \mathbf{y}$$

Steepest Descent

장점: easy to implement, conceptually clean, guaranteed convergence

단점: often slow converging

$$\Theta^{t+1} = \Theta^t - \alpha \sum_{i=1}^n \{(\Theta^t)^T \mathbf{x}_i - y_i\} \mathbf{x}_i$$

다중 선형 회귀 모델 (Multivariate Linear Regression)

Multi Linear Regression

단순 선형 회귀 분석은, input 변수가 1.

다중 선형 회귀 분석은, input 변수가 2개 이상.

Multi Linear Regression

예를 들어, 아래와 같은 식을 선형으로 생각하여 풀 수 있는가?

$$y = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^4 + \epsilon$$

물론, input 변수가 polynomial(다항식)의 형태이지만, coefficients θ_i 가 선형(linear)이므로 선형 회귀 분석의 해법으로 풀 수 있다.

$$\hat{\mathbf{\Theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

$$(\theta_0, \theta_1, \dots, \theta_n)^T$$

모델의 성능 측정

일반화 (generalization)

- 성능이 좋은 모델
 - 훈련 데이터로 모델의 학습을 끝낸 후, 훈련 데이터와 같은 특성을 가진 새로운 데이터가 주어졌을 때, 정확하게 예측할 수 있는 모델
- 일반화 (generalization)
 - 훈련 데이터에 의해 학습이 완료된 모델이, 새로운 데이터에 대해 그 값을 정확하게 예측할 수 있는 것

ex) 지역 주민수(X) 와 신발가게 매출(Y) 데이터로 모델을 학습하였다. 새로운 데이터 x_{new} 가 주어졌을 때, 신발가게 매출을 정확히 예측할 수 있을까? 즉 y_{new} 과 \hat{y} 가 같을까?

모델의 복잡성

고객 성별, 자녀 수, 직장 데이터, 구매 데이터

학습 (training)

고객이 맥북을 구매할 것인지를 예측하는 모델

간단한 모델

20대~40대 남성의 고객들은 맥북을 구매할 것이다. 복잡한 모델

20살~40살 남성이고, 자녀가 없고, 분당에 살고, 컴퓨터 회사에 다니는 고객들은 맥북을 구매할 것이다.

?

new client! (41살, 1 아들, 컴퓨터 회사)

과적합 1

트레이닝 데이터에서 발생한 오차와 테스트 데이터에서 발생한 오차 사이에 아주 심각한 차이가 있다는 것이다.

- 과대적합 (Overfitting)
 - 주로 복잡한 모델에서 발생
 - 모델이 훈련 세트의 각 샘플에 너무 가깝게 맞춰져서 새로운 데이터에 일반화되기
 어려운 경우
 - Training set에 대한 오차가 Test set에 대한 오차보다 심각하게 작은 경우 발생한다.
- 과소적합 (Underfitting)
 - 주로 간단한 모델에서 발생
 - 데이터의 면면과 다양성을 잡아내지 못하며 훈련 세트에도 잘 맞지 않은 경우
- Bias-Variance Trade off
 - Bias가 크면, 과소적합의 경향성이 크다.
 - Variance가 크면, 과대적합의 경향성이 크다.

성능 측정 Metric 1

- MSE (Mean Square Error)
 - target과 예측값의 차이의 제곱의 평균

$$\circ \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

- MAE (Mean Absolute Error)
 - 。 target과 예측값의 차이의 절대값의 평균

$$\circ \ \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

- RMSE (Root Mean Square Error)
 - MSE에 root를 사용한 값

성능 측정 Metric 2

- *R*² (결정계수)
 - 모델이 주어진 데이터에 얼마나 적합한지 알아볼 수 있는 척도
 - 。 종속 변수의 총 변화량 중 모델이 잡아낼 수 있는 변화량
 - 。 재조정된(정규화 된) MSE

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \mu_{y})} = 1 - \frac{MSE}{Var(y)}$$

규제 (Regularization)

규제 (Regularization)

● 모델의 복잡도를 통제하고, 과적합을 피하기 위해, 가중치의 절대값을 최소 화 하는 것

$$\mathbf{x}_i = (1, x_i)^T$$
, $\mathbf{\Theta} = (\theta_0, \theta_1)^T$

Linear Regression

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2$$

• Ridge Regression

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2 + \alpha \sum_{i} \theta_i^2$$

Lasso Regression

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2 + \alpha \sum_{i} \theta_i$$

ElasticNet

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2 + l_1 \alpha \sum_{i} \theta_i + \frac{1}{2} (1 - l_1) \alpha \sum_{i} \theta_i^2$$

L²-Regularization

L¹-Regularization

Ridge Regression

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2 + \alpha \sum_{i} \theta_i^2$$

- ullet 계수(heta)의 값을 작게 하여, 과대적합을 방지하는 것이 목적
- 패널티 항 : L₂ Regularization
- *α*가 0이면 Linear regression과 동일하다.
- *α*가 커질수록
 - \circ 계수(θ)의 값은 작아지며, 모델의 복잡도가 낮아진다.
 - 과적합을 막아주며, Test set에서의 성능은 상대적으로 좋아진다.
- α의 최적값은 데이터셋에 따라서 달라진다.
- 데이터가 충분히 많을 경우
 - 과대적합하기 어려워, Training set에 대한 회귀 모형의 성능이 떨어진다.
 - Linear regression의 성능 또한 Ridge regression의 성능과 비슷해진다.

Lasso Regression

$$\min \sum_{i} \{y_i - (\theta_0 + \theta_1 x_i)\}^2 + \alpha \sum_{i} |\theta_i|$$

- \bullet 계수(θ)의 값을 작게 하여, 과대적합을 방지하는 것이 목적
- ullet 패널티 항 : L_1 Regularization
- *α*가 커질수록
 - \circ 가중치(θ)의 값은 작아지며, 모델의 복잡도가 낮아진다.
 - 과적합을 막아주며, Test set에서의 성능은 상대적으로 좋아진다.
- Lasso를 사용하는 경우,
 - 0이 되는 계수가 발생할 수 있다.
 - 모델에서 완전히 제외되는 특성(feature)가 발생할 수 있다.
 - 특성 선택(feature selection)이 자동으로 이루어진다.