CSE/ECE 848 Introduction to Evolutionary Computation

Module 3, Lecture 13, Part 1

Metaheuristics and Automatically
Tuned EC Methods

Kalyanmoy Deb, ECE
Koenig Endowed Chair Professor

Content of Three Parts

- ➤ Part 1:
 - Popular Metaheuristics
- ➤ Part 2:
 - > Self-adaptive EC Methods
 - > Automatic Parameter Tuning in EC Methods
- ➤ Part 3:
 - > irace: Automatic Algorithm Configuration Method

Popular Metaheuristics

- EC: Mimics natural evolution in arriving at increasingly efficient population of solutions in generations
- Metaheuristics: High-level problem-independent strategies to develop heuristics-based algorithms
 - > Heuristics: Problem-dependent algorithms
- Many (>100) metaheuristics based on natureinspired or metaphor-based phenomena
 - Usually, population-based approaches
 - Nature-inspired, metaphor-based
- Memetic algorithms: Hybrid local search and population-based metaheuristics

Reference: Moscato, P. (2012). Metaheuristic optimization frameworks: A survey and benchmarking. *Soft Computing 16*(3): 527–561.

Ant Colony Optimization (ACO)

- > Ants find the shortest path to arrive at food
- \triangleright By "pheromone" release and tracking (τ)
- > Initialize random pheromone level
- > Multiple ants (pop) move in iterations
- \triangleright In a TSP, choose an edge (ij) for k-th ant with

$$p_{ij}^k = \left\{ \begin{array}{l} \frac{\tau_{ij}^\alpha \eta_{ij}^\beta}{\sum_{l \in C_k} \tau_{ij}^\alpha \eta_{ij}^\beta}, & \text{if } j \in C_k, \\ 0, & \text{otherwise}, \end{array} \right. \\ \eta_{ij} \colon 1/d_{ij}, \, \alpha \geq 0, \beta \geq 1, C_k \colon \text{allowed paths} \\ \tau_{ij} = (1-\rho)\tau_{ij} + \rho \sum_{k=1}^m \Delta \tau_{ij}^k \right]^{\text{Reinfording Shortest Tr}}$$

Phermone evaporates with coeff. ρ

$$au_{ij}$$
 . If u_{ij} , $u \geq 0$, $ho \geq 1$, c_k . Allowed $au_{ij} = (1-
ho) au_{ij} +
ho\sum_{k=1}^m \Delta au_{ij}^k$

$$\Delta \tau_{ij}^k = \begin{cases} \frac{Q}{L_k}, & \text{if ant } k \text{ used the edge } ij \text{ in its tour,} \\ 0, & \text{otherwise.} \end{cases}$$
 otherwise. Q : const., L_k : cost fn.

> Population of ants settle on the shortest path

Reference: M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput., 1(1):53, 1997.

ACO Versions and Applications

- Ant System (AS): First ACO algorithm (Dorigo, 1996)
- Ant Colony System (ACS): Local-global pheromone update, select shorter edges with larger phermone
- Elitist Ant System: Best ant always deposit phermone
- Max-min Ant System: Controlled pheromone limit
- Rank-based Ant System: Only best ranked ants deposit
- Cont. Orthogonal Any colony (COAC): Orthogonal array based search by collaborative ants
- Recursive Ant Colony: Subdomain based AS
- Applications: Scheduling, Vehicle routing, Assignment, Set covering, Device sizing, image processing, classification and machine learning problems

- Mimics Bee's strategy of foraging for nectar
- \triangleright Initialize N food sources in n-dim space randomly
- \blacktriangleright Three types of Bees: $v_{e,i} = x_{m,i} + \phi_i \left(x_{m,i} x_i^{(k)} \right) \phi_i \in [-1,1]$
 - \triangleright Employed Bees (N): A new food source v_e is created by using its own food location x_m . Better of v_e and x_m in nectar content (f) is kept in memory. (Mutation+Selection)
 - \triangleright Onlooker Bees (0.5N): Chooses a new food source v_e based on its nectar content (f). v_e is then modified to obtain v_0 . Better of v_e and v_0 is kept in memory. (Global Selection)
 - Scout Bees (1): Chooses a random food source location. If an Employed Bee is not performing well, it is converted to a Scout Bee. (Restart)
- Numerical problems, combinatorial problems, multiobjective optimization

Reference: D. Karaboga and B. Basturk, (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, *Journal of global optimization*, 39(3). 459–471, 2007..

Other Metaheuristics

- Harmony Search
- Bacterial Foraging
- Gene Expression Programming
- Firefly Algorithms
- Gravitational Search Algorithm
- Cuckoo Search
- Shuffled Frog Leaping Algorithm
- Bees Algorithms
- Bee Colony Optimization
- Bat Algorithms
- Invasive Weed Optimization
- Grammatical Evolution
- Charged System Search
- Groundwater flow algorithm

- Big Bang-Big Crunch Optimization
- Honey-Bee Mating Optimization
- Krill Herd Algorithm
- Bee-Hive Algorithm
- Glowworm Swarm Optimization
- Intelligent Water Droplet Algorithm
- Stochastic Diffusion Search
- Cat Swarm Optimization
- Central Force Optimization
- Artificial Fish Swarm Optimization
- Black Hole Optimization
- Monkey Search

Reference: Sunith Bandaru and Kalyanmoy Deb. Metaheuristic techniques. *Decision Sciences*. CRC Press, 2016. 693-750. CSE/ECE 848 Introduction to

Simulated Annealing Method

- Mimics controlled cooling of molten metal to achieve equilibrium state – Annealing process
- > Start with a random point $x^{(0)}$, T(0), t=0
- \triangleright Perturb in the neighborhood to create $x^{(t+1)}$
- > Choose $x^{(t+1)}$ using prob = min[1, $e^{(f(x^{(t)})-f(x^{(t+1)})/T(t)}]$
- \triangleright Temp T is reduced with iteration t
- Asymptotic convergence proof for infinitesimally small change in T
- Combinatorial problems, numerical optimization problems
- > SA as a mutation within a GA (SAGA)

References: 1. Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). Optimization by Simulated Annealing. *Science*, 220 (4598): 671–680.

2. H. Esbensen and P. Mazumder, "SAGA: a unification of the genetic algorithm with simulated annealing and its application to macro-cell placement," Proceedings of 7th International Conference on VLSI Design, Calcutta, India, 1994, pp. 211-214.

Tabu Search Method

- > Start with a single random solution s^t , a Tabu list T, med-term memory M and long-term memory L
- \succ Create N neighbors of s^t , making sure they do not exist in T (avoid repeats and cycles)
- Find best s'^t of N. If $f(s'^t) < f(s^t)$, select s'^t and add it to T. Set $s^t = s'^t$
- Delete oldest solution of T
- For intensification, modify s^t to have common properties of elements in M. Update M.
- \triangleright For diversification, modify s^t to have least common properties of elements in L. Update L.
- Go back to Second Line
- Combinatorial problems, vehicle routing, etc.

Reference: F. Glover and E. Taillard. (1993). A user's guide to tabu search, *Annals of operations* research, 41 (1), 1–28.

CSE/ECE 848 Introduction to

Algorithmic Equivalence

- Certain metaheuristics methods have internal similarity or one can be expressed as another
- Consider a modified GA:

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + w\left(\mathbf{x}_{i}^{t} - \mathbf{x}_{i}^{t-1}\right)$$
$$+ c_{1}r_{1}\left(\mathbf{p}_{l,i}^{t} - \mathbf{x}_{i}^{t}\right) + c_{2}r_{2}\left(\mathbf{p}_{g}^{t} - \mathbf{x}_{i}^{t}\right)$$

- Update GA Pop and an Archive in each iteration
- > Is it not same as PSO?
- > At the core, they are interchangeable

Reference: Deb, K. and Padhye, N. (2014). Enhancing Performance of Particle Swarm Optimization Through an Algorithmic Link with Genetic Algorithms. *Computational Optimization and Applications*, *57*(3), Springer, 761–794.

End of Module 3, Lecture 13, Part 1

- Metaheuristics methods are discussed
- About 100+ methods exist
- Which one to use? Any automated way to choose?
- At the core, they may have similarities, which are worth exploring for improving one with the other
- ➤ Part 2:
 - > Self-adaptive EC methods
 - > Automatic parameter tuning in EC
- ➤ Part 3:
 - > irace method