MATH 454: Final Exam Practise

McGill University (Fall 2023)

Jake R. Gameroff

Let $A \subseteq \mathbb{R}^d$ be measurable.

- 1. Let $f:A\to [0,\infty]$ be integrable. Then for every $\varepsilon>0$ there exists a $\delta>0$ such that for every measurable subset $E\subseteq A$ with $m(E)<\delta, \int_E f<\varepsilon$.
- 2. Let $E \subseteq \mathbb{R}^d$. Show that $m_*(E) = \inf\{m(\mathcal{O}) : E \subseteq \mathcal{O}, \mathcal{O} \text{ open}\}$. Use this result to show that $m_*(E) = \sup\{m(F) : F \subseteq E, F \text{ closed}\}$.
- 3. Let $f: A \to [0, \infty]$ be measurable. Let $\{E_k\}_{k \in \mathbb{N}}$ be a sequence of mutually disjoint measurable subsets of A whose union is E. Show that

$$\int_{E} f = \sum_{k \in \mathbb{N}} \int_{E_k} f.$$

4. Let $\{f_k\}_{k\in\mathbb{N}}$ be a sequence of non-negative, measurable functions on A. Show that $\sum_{k\in\mathbb{N}} f_k$ is measurable and

$$\int_{A} \sum_{k \in \mathbb{N}} f_k = \sum_{k \in \mathbb{N}} \int_{A} f_k.$$

- 5. Show that the conclusion of Egorov's theorem can fail if the domain of f has infinite measure.
- 6. Provide a counter-example for each of the following:
 - (a) Show that the bounded convergence theorem does not hold for the Reimann integral.
 - (b) Show that the bounded convergence theorem does not hold if $\{f_k\}_{k\in\mathbb{N}}$ is a sequence of functions such that for each $k\in\mathbb{N}$ there exists an $m_k\in\mathbb{N}$ such that $|f_k|\leq m_k$ (there is not one m for every k).
 - (c) Show that \leq can be strict in Fatou's lemma
 - (d) Let $E = E_1 \times E_2 \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ be measurable. Are E_1 and E_2 measurable?
- 7. State and prove Chebyshev's inequality. Show that $\int_A f = 0 \iff f = 0$ a.e. in A. Show that $\int_A f < \infty \implies f < \infty$ a.e. in A.
- 8. Let $f: A \to \mathbb{R}$ be bounded and measurable. Show that there exists a sequence of simple functions that converge uniformly to f in A.
- 9. Let $A \subseteq \mathbb{R}^{d-1}$ be measurable and $f: A \to [0, \infty]$ be a function. Show that f is measurable if and only if

$$\Gamma := \{(x,y) \in \mathbb{R}^{d-1} \times \mathbb{R} : 0 \le y \le f(x)\}$$

is measurable. Also, if f is measurable, show that $m(E)=\int_A f.$

- 10. Let $A \subseteq \mathbb{R}^d$ be measurable. Show that for almost every $y \in \mathbb{R}^{d_2}$, (a) A^y is measurable, (b) $y \mapsto m(A^y)$ is measurable, and (c) $\int_{\mathbb{R}^{d_2}} m(A^y) = m(A)$.
- 11. State the definition of Lipschitz continuity. Show that if $f:[a,b] \to \mathbb{R}$ is continuous and differentiable in (a,b), and f' is bounded, then f is of bounded variation on [a,b].
- 12. Show that $f:[a,b] \to \mathbb{R}$ is of bounded variation if and only if it can be written as the difference of two increasing functions.

1

13. State both the simple approximation lemma and simple approximation theorem. Show that the simple ap-