

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

INDEX.

Baker's Elliptic Functions,	•			•		20
Bôcher, Maxime, On Bessel's Functions of	the Sec	ond K	Cind,			85
- Pockels on the Differential Equatio	n 4u +	$k^2u =$	· 0,			91
— On a Nine Point Conic,	•					132
— On Some Applications of Bessel's F	unctions	s with	Pur	e Ima	ginary	
Index,						137
- Note on the Nine Point Conic, .				•		178
BOYD, JAS. H., An Application of Elliptic	e Functi	ons t	o a	Prob	lem in	
Geometry,						98
- Note on "An Application of Ellipt						
Geometry,"	•					168
Brown, W. V., The Cartesian Oval and Rel						
Anchor Ring,						161
Davis's Logic of Algebra,				•		98
Echols, W. H., On Certain Determinant Fo						105
Equivalence, On the Permanence of,						
Exercises,						
FISKE, THOS. S., On Certain Space and Surf						61
<u> → Note,</u>						131
— Weierstrass's Elliptic Integral, .						7
GORTON, W. C. L., On Centres and Lines of						38
HALL, ASAPH, Jr., Tisserand on the Theory	of the I	Ioon,		•		126
HARRIS, ROLLIN A., Note on Isogonal Tr	ansform	ation	: Par	rticula	ırly on	
Obtaining Certain Systems of Curve						
Polynomials,						77
HEAL WM E. The Bitangential of the Qui	ntic					64

Hussey, W. J., On the Partial Derivatives of the Potential Function in	
the Problem of n Bodies,	12
Kummell, Chas. H., Symmetries of the Cubic and Methods of Treating	
the Irreducible Case,	179
LOUD, F. H., A Theorem in Plane Cubics,	5
Ludlow's Trigonometry,	7 6
NEWSON, H. B., On Salmon's and MacCullagh's Methods of Generating	
Quadric Surfaces.	198
SAYRE, H. A., On the Depression of an Algebraic Equation when a Pair of	!
its Roots are connected by a Given Linear Equation,	45
Sawin, A. M., Lagrange's Sextic,	1
— The Algebraic Solution of Equations,	169
Solutions of Exercises,	, 199
SWAIN, GEO. F., Eddy's Solution of a Problem in Graphical Statics, .	47
WOODWARD, R. S., Tisserand's Mécanique Céleste,	49
ZIWET, ALEXANDER, Two New Works on Grassman's Geometrical Calculus,	14

ERRATA.

Page 59, line 3, for

$$=rac{1}{3^{rac{4}{5}}}rac{V}{4g}\int^{\sqrt{3}}(an^{rac{5}{6}} heta+ an^{rac{1}{3}} heta)\,d an heta=rac{44\sqrt{3}}{153}rac{V}{g}\,.$$

read

$$= \frac{1}{3^{\frac{1}{8}}} \frac{V}{4g} \int\limits_{0}^{\sqrt{3}} (\tan^{\frac{\pi}{4}}\theta + \tan^{-\frac{\pi}{4}}\theta) \ d \tan \theta = \frac{4}{3} \frac{V}{g} \ .$$

Page 75, line 10, for $\pi = \theta$ read $\pi = 2\theta$.