Regla de la Cadena

Teorema

Si f(u) es diferenciable en el punto u = g(x), y g(x) es diferenciable en x, entonces la composición

$$(f \circ g)(x) = f(g(x))$$

es diferenciable en x y

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Con la notación de Leibniz, si y = f(u) y u = g(x), entonces

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

donde $\frac{dy}{du}$ se evalua en u = g(x).

Regla de la Cadena

Ejemplo 1. Hallar la derivada de las siguientes funciones:

1.
$$y = \sqrt{x^2 + 1}$$

2.
$$g(t) = \tan(5 - \sin 2t)$$

Diferenciación Implícita

Ejemplo 2. Hallar $\frac{dy}{dx}$ si:

$$2y = x^2 + \sin y$$

Ejemplo 3 (uso de la diferenciación implícita Para hallar derivadas de orden superior) Hallar $\frac{d^2y}{dx^2}$ si

$$2x^3 - 3y^2 = 7$$

Aplicaciones de la Derivada

Teorema.

Si f es continua en todo punto de un intervalo cerrado I, entonces f alcanza un valor máximo absoluto M y un valor mínimo m en puntos de I. Es decir, existen números x_1 y x_2 en I con $f(x_1) = m$, $f(x_2) = M$ y $m \le f(x) \le M$ para cualquier x en I.

Máximo y mínimo en puntos interiores

Máximo en un punto interior, mínimo en un extremo

Mínimo en un punto interior, máximo en un extremo

Aplicaciones de la derivada

Ejemplo 4.

En $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $f(x) = \cos x$ alcanza un valor máximo de 1 (una vez) y un valor mínimo de 0 (dos veces). En ese mismo intervalo la función $g(x) = \sin x$ alcanza un valor máximo de 1 (una vez) y un valor mínimo de -1(una vez).

Ejemplo 5. La función

$$y = \begin{cases} x+1, & -1 \le x < 0 \\ 0, & x = 0 \\ x-1, & 0 < x \le 1 \end{cases}$$

es continua en todo punto de [-1,1], excepto en x=0, y su grafica sobre [-1,1] no tiene un Punto mas alto ni un punto mas bajo

Valores Extremos

Definición. (Valores extremos absolutos) Sea *f* una función con dominio D. Se dice que *f* tiene un valor maximo absoluto en D, en el punto c, si:

$$f(x) \leq f(c)$$
 para todo x en D

y un mínimo absoluto en D en el punto c, si:

$$f(x) \ge f(c)$$
 para todo x en D

Ejemplo 6.

Función	Dominio (D)	Valores extremos abs.
$y = x^2$	$(-\infty,\infty)$	No hay max. abs. Min. Abs. 0 en <i>x=0</i>
$y = x^2$	[0, 2]	Max. Abs. 4 en x=2 Min. Abs. 0 en <i>x</i> =0
$y = x^2$	(0, 2]	Max. Abs. 4 en <i>x</i> =2 Sin min. Abs.
$y = x^2$	(0, 2)	Sin valores extremos abs.

Valores Extremos

Definición. (Valores extremos locales) Una función f tiene un valor máximo local en Un punto interior de su dominio, si $f(x) \le f(c)$ Para todo x en algún intervalo abierto que contenga a c.

y un valor mínimo local en el punto c, si: $f(x) \ge f(c)$ Para todo x en algún intervalo abierto que contenga a c.

Valores Extremos

Teorema. (Criterio de la primera derivada) Si f tiene un máximo o un mínimo local en un punto interior de c de su dominio y si f esta bien definida en c, entonces f'(c)=0

Definición. Un punto interior de una función *f* donde *f*' sea cero o no este definida es llamado **punto critico** de *f*.

Resumen. Los únicos puntos del dominio en los cuales una función f puede tomar valores extremos son los Puntos críticos y los puntos extremos.

Ejemplo 7. Hallar los valores extremos

absolutos de: $f(x) = x^2 \text{ en } [-2, 1]$

Ejemplo 8. Hallar los valores extremos absolutos de: $g(t) = 8t - t^4$ en [-2, 1]

Ejemplo 9. Hallar los valores extremos

absolutos de: $h(x) = x^{2/3}$ en [-2, 3]

Ejemplo 10. $f(x) = x^{1/3}$ no tiene un valor Extremo en x = 0, a pesar de que $f'(x) = (1/3)x^{-2/3}$ No esta definida en x = 0

Ejemplo 11. $g(x) = x^3$ no tiene valores extremos en x = 0 aunque $g'(x) = 3x^2$ es cero en x = 0

Teorema de Rolle

Teorema. Supongamos que la funcion y=f(x) Es continua en todo punto del intervalo cerrado [a,b] y diferenciable en todo punto de su Interior (a,b). Si

$$f(a)=f(b)=0$$

entonces existe al menos un numero c en (a,b) en el cual

$$f'(c)=0$$

$$f(x) = \frac{1}{3}x^3 - 3x$$

Funciones Crecientes y Decrecientes

Definición. Sea f una función definida en un intervalo I. Se dice que

f crece en / si

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$
 para todo x_1, x_2 en I

f decrece en l si

$$x_1 < x_2 \Rightarrow f(x_2) < f(x_1)$$
 para todo x_1, x_2 en I

Corolario. (Criterio de la primera derivada Para el crecimiento de funciones) Supongamos que *f* continua en [a,b] y diferenciable en (a,b).

- Si f'>0 en cada punto de (a,b) entonces f es creciente en [a,b]
- Si f'<0 en cada punto de (a,b) entonces f es decreciente en [a,b]

Ejemplo 12. Determinar los intervalos de Crecimiento y de decrecimiento de la función $y=x^2$

La primera derivada de una función indica donde asciende y donde desciende la grafica de la función.

Criterio de la primera derivada para valores extremos locales

En un punto critico c,

 Si f' cambia de positiva a negativa en c (f'>0 para x<c y f'<0 para x>c), entonces f tiene un valor máximo local en c.

2. Si *f'* cambia de negativa a positiva en c (*f'*<0 para *x*<*c y f'*>0 para x>*c*), entonces *f* tiene un mínimo local en c

3. Si *f'* no cambia de signo en c (f tiene el mismo signo a ambos lados de c), entonces f no tiene un valor extremo local en c

En un extremo izquierdo a, Si *f'<0 (f'>0) para* x>a, entonces f tiene un valor máximo (mínimo) local en a

En un extremo derecho b, Si f'<0 (f'>0) para x<b, entonces f tiene un Valor mínimo (máximo) local en b.

Ejemplo 13. Hallar los puntos críticos de

$$f(x) = x^{1/3}(x - 4) = x^{4/3} - 4x^{1/3}$$

Identificar los intervalos en los cuales *f* crece o decrece Hallar los valores extremos absolutos y locales.

Ejemplo 14. Hallar el intervalo en el que

$$g(x) = -x^3 + 12x + 5, \qquad -3 \le x \le 3$$

Crece o decrece. Donde alcanza la función sus valores extremos y cuales son estos?

Concavidad

Definición. La grafica de una función diferenciable y=f(x) es **cóncava hacia arriba** en el intervalo donde y' es creciente, y **cóncava hacia abajo**, donde y' es decreciente.

Ejemplo 15.

La gráfica de la función $y = x^3$ es cóncava hacia abajo en $(-\infty, 0)$, donde y'' = 6x < 0 y cóncava hacia arriba en $(0, \infty)$ donde y'' = 6x > 0

Ejemplo 17.

La gráfica de la función $y = x^2$ (parábola) es cóncava hacia arriba en todos los intervalos de la recta real, puesto que y'' = 2 > 0

Puntos de Inflexión

Definición. Un punto donde la grafica de una Función tiene una recta tangente y donde la Concavidad cambia, se llama punto de inflexión.

Observación. En la grafica de una función dos veces diferenciable, y''=0 en todo punto de inflexión.

Ejemplo 18.

La gráfica de la función $s(t)=2+\cos t,\ t\geq 0$ cambia de concavidad en $t=\pi/2,3\pi/2,5\pi/2,...$, donde la aceleración $s''(t)=-\cos t$ es cero.

Ejemplo 19. Un punto de inflexión donde y" no existe.

La curva $y = x^{1/3}$, tiene un punto de inflexión en x = 0, pero y''(0) no existe:

$$y'' = \frac{d^2}{dx^2}(x^{1/3}) = \frac{d}{dx}(\frac{1}{3}x^{-2/3}) = -\frac{2}{9}x^{-5/3}$$

Ejemplo 20. y"=0, sin punto de inflexión.

 $y = x^4$ no tiene punto inflexión en x = 0, aún cuando $y'' = 12x^2$ no cambia de signo en ese punto, con y''(0) = 0

Criterio de la segunda derivada para extremos locales

- Si f'(c)=0, y f''(c)<0, entonces f tiene un máximo local en x=c
- Si f'(c)=0, y f''(c)>0, entonces f tiene un mínimo local en x=c

Graficas de Funciones

Ejemplo 21. Dibujar la grafica de:

$$y = x^4 - 4x^3 + 10$$

Estrategia

- 1. Hallar *y'*, *y''*
- 2. Determinar el ascenso y descenso de la curva.
- 3. Determinar la concavidad de la curva.
- 4. Resume la información y muestra la forma de la curva.
- 5. Marca puntos específicos y traza la curva.

Ejemplo 22. Dibuja la grafica de:

$$y = x^{5/3} - 5x^{2/3}$$

