```
positioning
[program=makeindex,columns=2,intoc=true,options=-s../../general/pyro.ist] first-
pagestyle=empty, othercode=
todolistitemize2 [todolist]label=
-[[Require library for Lua library]] require("lualibs.lua")
function tableMerge(t1, t2) for k,v in pairs(t2) do if type(v) == "table" then if
type(t1[k] \text{ or false}) == "table" \text{ then } tableMerge(t1[k] \text{ or }, t2[k] \text{ or }) \text{ else } t1[k] =
v end else t1[k] = v end end return t1 end
-[[Opens the two metadata file]] local specificFile = io.open('metadata.json') lo-
cal folderFile = io.open('../metadata.json') local genericFile = io.open('../../meta-
data.json')
-[[Reads the files]] local specificJsonString = specificFile:read('*a') local folderJ-
sonString = folderFile:read('*a') local generalJsonString = genericFile:read('*a')
-[[Closes the files]] specificFile.close() folderFile.close() genericFile.close()
-[[Convert the Json strings in Lua dictionaries]] local specific Json = utilities.json.tolua(speci-
ficJsonString) local folderJson = utilities.json.tolua(folderJsonString) local gen-
eralJson = utilities.json.tolua(generalJsonString)
-[[Merge top layer of dictionaries, so that the specific one overrides the generic
one.]]
metadata = tableMerge(tableMerge(generalJson, folderJson), specificJson)
if true then tex.print("
input
main/../../general/italian.tex") else tex.print("
input
main/../../general/english.tex") end
folFOLFirst Order Logic
-[[Load data into variables to simplify code afterwards]] title = metadata["title"] cfu = metadata["cfu"] year = meta-
data["year"] degree = metadata["degree"] university = metadata["university"] notesType = metadata["notesType"]
professors = metadata["professors"] authors = metadata["authors"]
```

```
tex.print("\\MakeUppercase\\textbf\\large"..title.."") for key, value in pairs(professors) do tex.print('Prof. '..value["name"] .. " " .. value["surname"].." ") end if cfu > 0 then tex.print(cfu.." CFU ") end for key, value in pairs(authors) do tex.print('textbf'..value["name"] .. " " .. value["surname"].." ") end
```


tex.print(degree.."

") tex.print(university.."

") Italy
October 16, 2017

TITLEPAGE NOT RENDERED! RECOMPILE WITH LUATEX!

Contents

1	Intr	roduzione			
	1.1	Libri adottati			
	1.2	Risorse extra			
	1.3	Di cosa si occupa la Ricerca Operativa			
	1.4	Programmazione matematica			
		1.4.1 Risoluzione di un problema di programmazione matematica			
2	Modelli di programmazione lineare e programmazione lineare intera				
	2.1	Problema di assegnamento			
		2.1.1 Modello			
	2.2	Problema del mix produttivo			
		2.2.1 Modello			
		2.2.2 Esempio 1			

Chapter 1

Introduzione

1.1 Libri adottati

- 1. Lezioni di ricerca operativa (M. Fischetti)
- 2. 120 esercizi di ricerca operativa (M. Dell'Amico)

1.2 Risorse extra

È possibile ottenere le video lezione all'indirizzo https://vc.di.unimi.it/?courseid=57.

1.3 Di cosa si occupa la Ricerca Operativa

Vengono realizzati **modelli prescrittivi**, cioè modelli di problemi di ottimizzazione che ci suggeriscono cosa fare. La ricerca operativa affronta la risoluzione di processi decisionali complessi tramite modelli matematici ed algoritmi.

1.4 Programmazione matematica

Significa ottimizzare una funzione di più variabili, spesso soggette ad un insieme di vincoli $\min f(x_1, ..., x_n)$ s.t. $\boldsymbol{x} \in X$.

1.4.1 Risoluzione di un problema di programmazione matematica

- 1. Analisi del problema e scrittura di un modello matematico.
- 2. Definizione ed applicazione di un metodo di soluzione.

A seconda del tipo di modello si utilizzano tipi di programmazione distinti (in grassetto quelle prese in considerazione in questo corso):

- 1. Programmazione lineare continua
- 2. Programmazione lineare intera
- 3. Programmazione booleana
- 4. Programmazione non lineare
- 5. Programmazione stocastica

Chapter 2

Modelli di programmazione lineare e programmazione lineare intera

In questo capitolo vedremo una serie di modelli che vengono risolto utilizzando la **programmazione lineare** (PL) e la **programmazione lineare intera**.

2.1 Problema di assegnamento

Dati n lavoratori, n attività e considerando maggiore o uguale di zero il tempo impiegato dal lavoratore i per svolgere l'attività j ($t_{ij} > 0$), assegnare a ciascun lavoratore una ed una sola attività in modo che tutte le attività vengano svolte.

Obbiettivo: minimizzare la somma dei tempi impiegati per svolgere le attività.

Variabili: utilizzo solo una variabile booleana per indicare se il lavoro i-esimo è svolto dal lavoratore j-esimo:

$$x_{ij} = \begin{cases} 1 & \text{se il lavoro } i \text{ è svolto da } j \\ 0 & \text{altrimenti} \end{cases}$$

2.1.1 Modello

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij}$$

Figure 2.1: Funzione di cui calcolare il minimo, pari alla somma dei tempi per eseguire ogni azione

$$\sum_{i=1}^{n} x_i j = 1 \forall j = 1...n$$

$$\sum_{j=1}^{n} x_i j = 1 \forall j = 1...n$$

Figure 2.2: Ogni attività viene svolta da un lavoratore.

Figure 2.3: Ogni lavoratore svolge un'attività.

2.2 Problema del mix produttivo

Dato un sistema produttivo caratterizzato da:

- 1. m risorse produttive limitate.
- 2. b_j , con i = 1...m quantità massima della risorsa i.
- $3. \ n$ diversi prodotti che ottengo dalle risorse.
- 4. a_{ij} assorbimento unitario di risorsa i per il prodotto j (quantità di risorsa i che utilizzo per produrre un'unità di j).
- 5. c_j profitto unitario per il prodotto j.

Sia data inoltre l'ipotesi aggiuntiva che tutta la produzione venga venduta e non sono costretto a produrre tutti i prodotti. Si chiede di determinare quali prodotti produrre e in quali quantità.

Obbiettivo: massimizzare il profitto complessivo.

Variabili: definisco una variabile intera che rappresenta il numero di unità di prodotte di un determinato prodotto.

$$X_j \ge 0$$

2.2.1 Modello

$$\max \sum_{i=1}^{n} x_j c_i \qquad \sum_{j=1}^{n} x_j a_{ij} \le b_i \forall i = 1...m$$

Figure 2.4: Funzione da massimizzare.

Figure 2.5: Numero di unità per ogni prodotto.

2.2.2 Esempio 1

	Modello light	Modello plus	Ore uomo
Profitto unitario	30	20	#
Assemblaggio	8	4	640
Finitura	4	6	540
Controllo qualità	1	1	100