Práctica 4: Lenguajes Regulares

Lothar Soto Palma DNI:49079173W

November 2014

Ejercicio 1:

Dados los alfabetos $A = \{0, 1, 2, 3\}$ y $B = \{0, 1\}$ y el homomorfismo f de A^* a B^* dado por: f(0) = 00, f(1) = 01, f(2) = 10, f(3) = 11. Resolver las siguientes cuestiones:

- a) Sea L_1 el conjunto de palabras de B^* tales que acaban con la subcadena 11. Construir un autómata finito determinista que acepte $f^{-1}(L_1)$.
- b) Sea L_3 el conjunto de palabras de A^* definido como $L_3=\{2^k3^k:1<=k<=100\}$. Construir una expresión regular que represente a $f(L_3)$.

Solución:

a) Obtenemos la solución para para $L_1 \in B^*$:

Ahora tan solo nos tenemos que fijar en que conjuntos de A^* cumple que acaben en 3:

Minimizando obtenemos:

b) $L_3 \in A^*$ tiene como expresión regular $2(\epsilon + (2(\epsilon + (2(...)3))3))3$ hasta llegar a 100 veces, por lo que la expresión regular del conjunto $f(L_3)$ seria la siguiente: $10(\epsilon + (10(\epsilon + (10(...)11))11))11$. De esta manera hay el mismo número de 10 y 11 hasta llegar a 100. (No pongo la expresión completa porque es ilegible).

Ejercicio 2:

Construir un autómata finito determinista que acepte el lenguaje $L_2 = \{0^i 1^j : i >= j\}.$

Solución:

Probaremos que L_2 no es un lenguaje regular haciendo uso del lema del bombeo: $\forall n \in \mathbb{N}, \exists z \in L_2 \text{ con } |z| \leq n, \ z = 0^i 1^j \text{ con } j \leq i \leq n \text{ tal que para toda descomposición } z = uvw \text{ se tiene que:}$

- $|uv| \leq n$
- $|v| \geq 1$

Entonces podemos tomar dos casos:

- $u=0^i1^{j-l-k}, v=1^l, w=1^k$ y $\exists m\in\mathbb{N}$ tal que $uv^mw\not\in L_2$. Tomando $m=2, uv^2w=0^i1^{j+l}\not\in L_2$.
- $u=0^{i-s}, v=0^s1^l, w=1^{j-l}$ y $\exists m\in\mathbb{N}$ tal que $uv^mw\not\in L_2$. Tomando $m=2, uv^2w=0^{i+s}1^{j+l}\not\in L_2$.

Por tanto al ser un lenguaje no regular no se puede construir un autómata finito determinista que lo acepte.

Ejercicio 3:

Minimizar si es posible el siguiente autómata usando el algoritmo visto en clase:

Solución:

Comenzamos con el algoritmo, primero eliminamos los estados inaccesibles, en este caso no tenemos, ahora vemos para las parejas de estados cual de ellos tienen un camino accesible y uno de ellos es final para ello usamos esta tabla:

В				
С				
D				
E				
	A	В	С	D

Ahora comenzamos a examinar las parejas no marcadas y calculamos el estado siguiente que se podría producir si uno de ellos está marcado lo marcamos también:

В				
С	X	X		
D			X	
Е	X	X		X
	A	В	С	D

Tomamos la pareja B,A y miramos que estados generan:

	0	1
В	С	E
A	В	В

Ya que B, C y B, E están marcados, marcamos B, A:

В	X			
С	X	X		
D			X	
E	X	X		X
	Α	В	С	D

Ahora repetimos el mismo proceso con el resto de parejas de estados sin marcar:

	0	1		0	1		0	1
D	В	В	D	В	В	E	D	D
Α	В	В	В	С	Е	С	D	A

Por último obtenemos lo siguiente:

В	X			
С	X	X		
D		X	X	
E	X	X		X
	A	В	С	D

Y por tanto se obtiene que $A \equiv D$ y $C \equiv E$:

