Review Problems for Exam 1

(Note that all problems are odd-numbered problems from the textbook, so the answers are in the back of the book.)

1 Limits and continuity

Evaluate the following limits or show that they do not exist:

1.4.15
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

1.4.17
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$

1.4.21
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

1.4.49
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

1.4.33 If
$$4x - 9 \le f(x) \le x^2 - 4x + 7$$
 for $x \ge 0$, find $\lim_{x \to 4} f(x)$.

1.4.35 Show that
$$\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$$
.

1.5.31 Find the numbers at which the following function is discontinuous:

$$f(x) = \begin{cases} x+2 & \text{if } x < 0\\ 2x^2 & \text{if } 0 \le x \le 1\\ 2-x & \text{if } x > 1 \end{cases}$$

1.5.29 Show that the following function is continuous:

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ \sqrt{x} & \text{if } x \ge 1 \end{cases}.$$

1.5.39 Use the Intermediate Value Theorem to show that $f(x) = x^4 + x - 3$ has a root in the interval (1,2).

1.5.41 Use the Intermediate Value Theorem to show that $f(x) = \cos x - x$ has a root in the interval (0,1).

1.6.3 Sketch a graph of a function satisfying all the following criteria:

$$\lim_{x \to 0} f(x) = -\infty \qquad \lim_{x \to -\infty} f(x) = 5 \qquad \lim_{x \to \infty} f(x) = -5.$$

Find the following limits or say why they don't exist:

1.6.19
$$\lim_{x \to \infty} \frac{3x - 2}{2x + 1}$$

1.6.23
$$\lim_{x \to \infty} \frac{(2x^2+1)^2}{(x-1)^2(x^2+x)}$$

1.6.27
$$\lim_{x\to\infty}\cos x$$

2 Derivatives

Find the derivative of the following functions using the definition of the derivative, i.e., as a limit of something:

2.2.19
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$

2.2.23
$$g(x) = \sqrt{9-x}$$

2.2.25
$$G(t) = \frac{1-2t}{3+t}$$

Compute the derivatives of the following without using the definition of the derivative:

2.3.19
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

2.4.7
$$f(x) = \sin x + \frac{1}{2} \cot x$$

2.4.13
$$y = \frac{x^3}{1 - x^2}$$

2.4.17
$$f(t) = \frac{2t}{2 + \sqrt{t}}$$

2.5.5
$$y = \sqrt{\sin x}$$

2.5.9
$$F(x) = \sqrt{1-2x}$$

2.5.19
$$h(t) = (t+1)^{\frac{2}{3}} (2t^2-1)^3$$

2.5.29
$$f(x) = \sin(\tan 2x)$$

2.5.33
$$y = \left(\frac{1 - \cos 2x}{1 + \cos 2x}\right)^4$$

2.5.43 Find the second derivative of $y = \cos(x^2)$.

- **2.5.45** Find the second derivative of $H(t) = \tan 3t$.
- **2.3.27** Find the equation of the tangent line to $y = 6\cos x$ at the point $(\frac{\pi}{3}, 3)$.
- **2.4.27** Find the equation of the tangent line to $y = \frac{x^2 1}{x^2 + x + 1}$ at the point (1, 0).
- **2.3.37** For what values of x does the graph of $f(x) = x + 2\sin x$ have a horizontal tangent line?
- **2.3.39** Show that the curve $y = 6x^3 + 5x 3$ has no tangent line with a slope of 4.
- **2.5.55** (*Important!*) Here are some values of f, g, f', and g' at certain values of x:

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

Find $(f \circ g)'(1)$ and $(g \circ f)'(1)$.