MA 102 (Mathematics II) Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 8 March 14, 2016

Surface integrals, Stokes' Theorem, Divergence Theorem

- (1) Let $R \subset \mathbb{R}^2$ be simply connected with positively oriented boundary ∂R and w be a C^2 scalar field on an open set containg R. Also let n be the unit outward normal field to the boundary ∂R . Then prove the following identities:

 - $\begin{array}{ll} \text{(a)} & \iint_R \nabla^2 w(x,y) \, dA = \int_{\partial R} \frac{\partial w}{\partial \mathbf{n}} \, ds. \\ \text{(b)} & \iint_R \left(w \nabla^2 w + \nabla w \cdot \nabla w \right) \, dA = \int_{\partial R} w \frac{\partial w}{\partial \mathbf{n}} \, ds. \\ \text{(c)} & \int_{\partial R} \left(v \frac{\partial w}{\partial \mathbf{n}} w \frac{\partial v}{\partial \mathbf{n}} \right) \, ds = \iint_R \left(v \nabla^2 w w \nabla^2 v \right) \, dA. \end{array}$
- (2) Evaluate $\iiint_V f(x,y,z)dV$ for f and V specified below.
 - (a) $f(x,y,z) = \sqrt{x^2 + z^2}$ and V is the solid region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.
 - (b) f(x,y,z)=z and V is the solid tetrahedron bounded by the coordinate planes and the plane x + y + z = 1. Also find the volume of V.
 - (c) $f(x,y,z) = \sqrt{x^2 + y^2}$ and V is the solid region within the cylinder $x^2 + y^2 = 1$ bounded above by z = 4 and below by $z = 1 - x^2 - y^2$.
- (3) Consider the change of variable $x = u^2 v^2$, y = 2uv to evaluate the integral $\iint_D y dA$ where D is the region bounded by the parabolas $y^2 = 4 - 4x$ and $y^2 = 4 + 4x$, and the x-axis.
- (4) Let $D \subset \mathbb{R}^2$ be simply connected with positively oriented boundary ∂D . Let F and G be C^1 vector fields on an open set containing D such that

$$\operatorname{curl} F = \operatorname{curl} G$$
, $\operatorname{div} F = \operatorname{div} G$ on $D \cup \partial D$

and $F \cdot \mathbf{n} = G \cdot \mathbf{n}$ on ∂D , where **n** is the unit outward normal to the curve ∂D . Show that F = G on D.

(5) Let $C \subset \mathbb{R}^2$ be a positively oriented closed curve with unit outward normal field **n**. Evaluate

$$\oint_C \nabla(x^2 - y^2) \cdot \mathbf{n} \ ds.$$

- (6) Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ be a parametrization of a smooth surface S. Find the parametric equation of the tangent plane to S at $\Phi(u_0, v_0)$. In particular, consider $\Phi(u, v) := (u^2, v^2, u + 2v)$ and find the equation of tangent at $\Phi(u_0, v_0)$.
- (7) Find a parametrization $\Phi(u,v)$ and the normal vector $\Phi_u \times \Phi_v$ for the following surfaces:
 - (a) The plane x y + 2z + 4 = 0.
 - (b) The right circular cylinder $y^2 + z^2 = a^2$.
 - (c) The right circular cylinder of radius 1 whose axis is along the line x = y = z.

(8) Let $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 . Consider the surface S = Graph(f). Show that the surface area of S is given

$$Area(S) = \iint_D \sqrt{1 + \|\nabla f\|^2} \ dA.$$

Find the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

(9) Let $g: D \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 . Consider the surface S = Graph(g) with outward normal field \mathbf{n} . Let F = (P, Q, R) be a continuous vector field on D. Then show that

$$\iint_{S} F \bullet \mathbf{n} dS = \iint_{D} (R - Pg_x - Qg_y) dA.$$

- (10) Compute the surface area of the portion of the paraboloid $x^2 + z^2 = 2ay$ which is between the planes y = 0, y = a.
- (11) A fluid flow has flux density vector $F(x, y, z) = x\mathbf{i} + (2x + y)\mathbf{j} + z\mathbf{k}$. Let S denote the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$, and \mathbf{n} be the unit outward normal field on S. Then calculate the mass of the fluid flowing though S in unit time in the direction of \mathbf{n} .
- (12) Let R be a region bounded by a piecewise smooth closed surface S with outward unit normal $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$. Let $(u, v) : R \to \mathbb{R}$ be C^1 functions. Show that

$$\iiint_R u \frac{\partial v}{\partial x} \ dV = -\iiint_R v \frac{\partial u}{\partial x} \ dV + \iint_{\partial R} uv n_1 \ dS.$$

- (13) Let C be the curve obtained by intersecting the plane y+z=2 with the cylinder $x^2+y^2=1$. (Orient the curve counterclockwise when viewed from the above.) Use Stokes' theorem to evaluate the line integral $\int_C F \cdot d\mathbf{r}$, where $F(x,y,z)=-y^2\mathbf{i}+x\mathbf{j}+z^2\mathbf{k}$.
- (14) Use Stokes' Theorem to compute the integral $\iint_S \operatorname{curl} F \cdot \mathbf{n} dS$, where $F(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.
- (15) Use Divergence theorem to evaluate $\iint_S F \bullet d\mathbf{S}$, where $F = (xy, y^2 + e^{xz^2}, \sin(xy))$ and S is the boundary of the solid region V bounded by the parabolic cylinder $z = 1 x^2$ and the planes z = 0, y = 0 and y + z = 2.

**** End ****