FRA222 Microcontroller Interface

09

ARM CMSIS DSP LIBRARY

DSP – Digital signal Processing library

- ช่วยในการคำนวณ ข้อมูลสัญญา ในรูปแบบ ดิจิตอล เช่น lowpass filter FFT PID etc.
- เสริมฟังก์ชันการทำงานทางคณิตศาสตร์ ให้กับระบบ
- เพิ่มความเร็วการคำนวณทางเมทริก(บางส่วน)

การติดตั้งมีสองวิธี

- 1. ติดตั้งโดยในระบบอัตโนมัติ สำหรับ lib version เก่า
- 2. เพิ่มsource ด้วยมือ สำหรับ lib version ใหม่

การติดตั้ง (version 5.6.0 ลงไป)

การติดตั้ง

การติดตั้ง

https://github.com/ARM-software/CMSIS_5

การติดตั้ง

การติดตั้ง (cmsis 5.7.0++ \ DSP 1.14.4)

https://github.com/ARM-software/CMSIS-DSP/releases/tag/v1.14.4

ในfolder "Source" ในแต่ละsub folder ให้เลือก .c ไฟล์ที่ชื่อตรงกับ โฟลเดอร์ และทำการ exclude ออกจาก project


```
17 */
18 /* USER CODE END Header */
19 /* Includes -------*/
20 #include "main.h"
21
22 /* Private includes ------*/
23 /* USER CODE BEGIN Includes */
24 #include "arm_math.h"
25 /* USER CODE END Includes */
26
```

```
while (1)
{
   /* USER CODE END WHILE */

   /* USER CODE BEGIN 3 */
   arm_sin_f32(0);
}
```

Variable

- arm_rfft_instance_q31 : struct
- arm_status : enum
- float32_t:float
- float64_t: double
- q15_t:int16_t
- q31_t:int32_t
- 1 q63_t: int64_t
- 1 q7_t:int8_t
- O arm_abs_f32(const float32_t*, float32_t*, uint32_t): void
- O arm_abs_q15(const q15_t*, q15_t*, uint32_t) : void
- O arm_abs_q31(const q31_t*, q31_t*, uint32_t) : void
- O arm_abs_q7(const q7_t*, q7_t*, uint32_t): void
- O arm_add_f32(const float32_t*, const float32_t*, float32_t*, uint32_
- O arm_add_q15(const q15_t*, const q15_t*, q15_t*, uint32_t): void
- O arm_add_q31(const q31_t*, const q31_t*, q31_t*, uint32_t): void
- O arm_add_q7(const q7_t*, const q7_t*, q7_t*, uint32_t): void

- 1. $fxx f32 f64 \rightarrow float32_t, float64_t = Floating point$
- Just a totally normal Floating point
- $2.qxx q7,q15,q31,q63 \rightarrow$ Fixed point
- not a normal integer

FIXED Point?

0000 0000 0000 0000 0000 0000 0000 0000

32bit

1Sign 8exponent

23fraction

float32_t

0000 0000 0000 0000 0000 0000 0000 0000

2^23 = 8,388,608 step

 $ext{value} = (-1)^{ ext{sign}} imes 2^{(E-127)} imes \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}
ight).$

Number of decimal digits : 6-7 digits , range +- $3.4028234664 \times 10^38$

1Sign

31decimal

int32 t

0000 0000 0000 0000 0000 0000 0000 0000

2³¹= 2,147,483,648 step

Number of decimal digits: 9 - 10 digits range -2,147,483,648 to 2,147,483,647

FIXED Point?

Q Format Qm.n

Range =
$$-(2^{m-1})$$
 to $2^{m-1} - 2^{-n}$
Resolution : 2^{-n}

$$-(2^{32-1}) = -2147483648$$

$$-2^{1-1} = -1$$

int32_t (Q32.0 Format)

$$2^{32-1} - 2^{-0} = 2147483647$$

$$2^{1-1} - 2^{-31} =$$

0.9999999953433871269226 07421875

why? use Qformat in DSP

- -Better Number of decimal digits , in same size of storage float32 (6-7 digit) | q31(9-10 digit)
- -Faster Calculation*
- -Easy to convert in microcontroller
- -Cost effective in Hardware design

*When use with optimization and in right situation

แล้ว...เราต้องใช้Q format ใหม? ในตอนนี้

- 1. float32_t vs q31_t อันไหนก็ได้
- o 1. STM32F4 มี FPU ระดับ single point ซึ่งช่วยเร่งความเร็วในการคำนวน Float อยู่แล้ว รวมๆ performance ไม่ต่างกันมาก
- o 2.cost ที่เพิ่มมาจากการใช้ float ส่วนมากมาจากการแปลง ไปๆ กลับๆ ระหว่าง float กับ int ซึ่งเกิดบ่อย เวลา ใช้กับ peripheral ต่างๆ เช่น ADC TIM
- 3.q31 เป็น implementation เพราะฉะนั้น คำนวนโดยใช้การ +-*/แบบปกติไม่ได้ ต้องใช้ฟังก์ชั่นเฉพาะ (ซึ่งเป็นเหตุผลให้ ข้อ1 ที่รวมๆแล้ว ใช้แบบไหน ก็ได้)
- 2.float64 t vs q63 t q63 t
- 1. STM32F4 มี FPU ระดับ single point มันเร่ง double ไม่ได้มาก ทำให้เกิดความแตกต่างกันอย่างมีนัยยะ

อย่างไรก็ตาม การ implement Qformat ค่อนข้างต้องใช้ความเข้าในทางคณิตศาสตร์และคอมพิวเตอร์สูง (เพราะทุกอย่างคำนวนใน range +-1) ต้องscale ตัวแปรและค่าคงที่ให้ถูกต้องด้วยจึงจะใช้งานได้

DSP Library

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

Vector Al	bsolute Value
Vector A	ddition
Vector bi	twise AND
Vector D	ot Product
Vector M	ultiplication
Vector N	egate
Vector bi	twise NOT
Vector O	ffset
Vector bi	twise inclusive OR
Vector Se	cale
Vector SI	nift
Vector Si	ubtraction
Vector bi	twise exclusive OR
Fast Math F	unctions
Square R	oot
Cosine	
Sine	
Complex M	ath Functions
Complex	Conjugate
Complex	Dot Product
Complex	Magnitude
Complex	Magnitude Squared
Complex	-by-Complex Multiplication
Complex	-by-Real Multiplication
Filtering Fu	nctions
High Pre	cision Q31 Biquad Cascade Filter
Biquad C	ascade IIR Filters Using Direct Form I Structure
Biguad C	ascade IIR Filters Using a Direct Form II Transposed Structure

Partial Convolution	
Correlation	
Finite Impulse Response (FIR) Decimator	
Finite Impulse Response (FIR) Filters	
Finite Impulse Response (FIR) Lattice Filters	
Finite Impulse Response (FIR) Sparse Filters	
Infinite Impulse Response (IIR) Lattice Filters	
Least Mean Square (LMS) Filters	
Normalized LMS Filters	
Finite Impulse Response (FIR) Interpolator	
▼ Matrix Functions	
Matrix Addition	
Complex Matrix Multiplication	
Matrix Initialization	
Matrix Inverse	
Matrix Multiplication	
Matrix Scale	
Matrix Subtraction	
Matrix Transpose	
▼ Transform Functions	
Complex FFT Functions	
DCT Type IV Functions	
Real FFT Functions	
▼ Controller Functions	
PID Motor Control	
Vector Clarke Transform	
Vector Inverse Clarke Transform	
Vector Park Transform	

Vector Inverse Park transform
Sine Cosine
▼ Statistics Functions
Maximum
Mean
Minimum
Power
Root mean square (RMS)
Standard deviation
Variance
▼ Support Functions
Vector sorting algorithms
Vector Copy
Vector Fill
Convert 32-bit floating point value
Convert 16-bit Integer value
Convert 32-bit Integer value
Convert 8-bit Integer value
Cubic Spline Interpolation
▼ Interpolation Functions
Linear Interpolation
Bilinear Interpolation

vector (basic math function)

Content

Vector	r Absolute Value
Vector	r Addition
Vector	r bitwise AND
Vector	r Dot Product
Vector	r Multiplication
Vector	r Negate
Vector	r bitwise NOT
Vector	r Offset
Vector	r bitwise inclusive OR
Vector	r Scale
Vector	Shift
Vector	r Subtraction
Vector	r bitwise exclusive OR

Fast math function

square root

sine

cosine

matrix

```
float32_t A_MAT_BUFF[8]={0};
arm_matrix_instance_f32 A;
arm_mat_init_f32(&A, 2, 4, A_MAT_BUFF);

//NOW A is matrix size 2*4
```

and more