

A study on different neural network structure for eatable and poisonous mushroom classification

Big Data and Deep Learning 2018 April 16th, 2018

3117999011 | PUTTAPIRAT Pargorn 3117999104 | CHAN MIN WAI 3117999241 | HUE Lee

*All members has equal contribution, name order is based on student ID

Overview

- Dataset
- Model
- Results & Discussion

The Mushroom Dataset by Jeff Schlimmer

Details of the dataset

# of Sample	8124 [48.20% positive 51.80% negative]
# of Attribute/Feature	22 [21 is used]
Classification Category	binary classification

The Mushroom Dataset by Jeff Schlimmer Preprocessing

cap-shape

gill-spacing

gill-size

stalk-root

cap-surface

bruises?

ring-number

gill-color

odor

stalk-surface-below-ring

cap-color

Attribute

stalk-color-below-ring

stalk-shape

ring-type

gill-attachment

population

veil-color

stalk-color-above-ring

habitat

stalk-surface-above-ring

spore-print-color

The Mushroom Dataset by Jeff Schlimmer **Preprocessing**

stalk-color-above-ring

habitat

stalk-surface-above-ring

spore-print-color

The Mushroom Dataset by Jeff Schlimmer **Preprocessing**

stalk-color-above-ring

habitat

stalk-surface-above-ring

spore-print-color

Network Structure

Network Structure

Network Structure

Network type	Fully connected network
# of layers	3 [1 Input 1 Hidden 1 Output]

Hyperparameters

Train-Test	80% / 20%	
Batch size	25 samples	
Iterations	<3000	
Learning Rate	0.01	
Optimizer	Adamax	
Loss function	MSE	

Activation function: tanh()

$$y = f(Wx + b)$$

Training and Testing

	Training Set	Test Set
Accuracy	100%	100%
Error	0%	0%

*number of nodes ≥3

Training and Testing

	Training Set	Test Set
Accuracy	100%	100%
Error	0%	0%

Which model is the best?

- Number of parameters
- Speed of convergence

Performance of the network

Usual training accuracy and loss [10 10 1]

Performance of the network

Performance of the network

- The simplest network structure that can generalize is [3 3 1] (82 parameters).
 - Overfitting can be seen in [2 2 1].
- Reducing number of features can reduce complexity of the network.
- Some features can be transformed into one-hot feature vector.

THANKS ...

