

NEMA, Suite 1752 1300 North 17th Street Rosslyn, VA 22209 Ph: (703) 841-3285 http://dicom.nema.org

DICOM (for MRI images)

David Atkinson

D.Atkinson@ucl.ac.uk

References

David Clunie's web site and links

http://www.dclunie.com/

Reference data and presentations

http://dicom.nema.org/

ftp://medical.nema.org/medical/Dicom/Multiframe/

Figure 5-1 General Communication Model

DICOM File Structure

PatientName

ImageOrientationPatient

ImagePositionPatient

PixelSpacing

. . .

PrivateFields

DICOM old vs enhanced

Old style

- one file per slice huge numbers of files.
- Important parameters e.g. diffusion weighting hidden in non-standard Private Fields.

Enhanced DICOM

- multi-frame,
- better information about 3D and time,
- many more parameters in Public Fields (was 2, now 94)
- raw data archive possible.

Enhanced MR SOP Class attribute types

- Separate gradient and RF echo train lengths
- Out-of-plane phase encoding steps
- Flow compensation
- Spectrally selective excitation & suppression
- Blood signal nulling

- Tagging
- Diffusion values and direction
- Spatial saturation slabs
- Velocity encoding
- Chemical shift imaging (metabolite maps)

Geometry Information in DICOM

- DICOM uses a right handed LPH coordinate system.
- Relates to patient, not scanner.
- Origin is arbitrary (not isocentre) but fixed.
- Nifti uses RAH (also right handed)
- Analyze uses LAH (left handed!!)

 DICOM provides public fields that relate a 2D image to 3D patient space.

DICOM definitions

PixelSpacing and ImagePositionPatient are in mm ImageOrientationPatient are two unit vectors (direction cosines)

Height and Width give number of rows and columns.

Computational Aspects of MRI

Quiz.

 What is the ImageOrientationPatient vector for these images?

Finding an Image Pixel Coordinate in LPH

Computational Aspects of MRI

IPP = ImagePositionPatient IOP = ImageOrientationPatient

Computational Aspects of MRI

Stacking Slices

- Problem: Multiple 2D slices, each as a separate DICOM file how do you assemble into a 3D matrix?
- Do not rely on file naming.
- Find the through slice direction using the vector product n = IOP(1:3) x IOP(4:6)
- For each file, compute the component of IPP in this through slice direction (n.IPP) and sort.

Organizational Features

- Multi-frame pixel data
- Shared and per-frame functional groups
 - Each functional group contains attributes that likely vary as a group, e.g. Pixel Measures, Plane Orientation, Velocity Encoding, etc.
 - Compact & makes explicit what doesn't change
- Dimensions
 - a priori hints as to how the frames are organized
 - Specify intended order of traversal, such as space, then time (e.g., for cardiac cine loops)
- Stacks
 - Groups of spatially-related slices, repeatable
- Temporal positions

Organization of Data

- Goal is to reduce the work that the receiving application has to do to "figure out"
 - How the data is organized
 - Why it is organized that way
- Without preventing use of the data in unanticipated ways
 - E.g. 3D on a dataset not intended as a volume
- Two levels
 - The detailed shared & per-frame attributes
 - The overall dimensions, stacks and temporal positions

Dimensions

Start with a dimension of space.

A set of contiguous slices through the heart.

Dimension features

- Description of dimensions separate from their indices
 - Dimensions are described once
 - Indices within dimensions are encoded per-frame
- May be multiple sets of dimensions in one object
 - E.g., Set 1: space then time, Set 2: time then space
- Receiving application only needs to follow the index values
 - Does NOT need to select or sort by attribute value
 - Dimensions can be entire functional groups
 - Dimensions can be private attributes or functional groups

Dimension applications

- Selection of sort order for simple viewing
- Partitioning of frames for hanging
- Selection of frames that constitute a
 - volume in space
 - temporal sequence
 - contrast administration phase
 - physiological parameter, e.g. diffusion b value

From Single-frame to MultiFrame

N Objects, N Headers

[SPIE 2003]

The multiframe header Digital Imaging and Communication

Functional Group Macros A, B, C, etc. are examples to illustrate the Multi-frame Functional Groups. The ual Functional Group Sequences are defined elsewhere.

Geometry Fields in Multi-frame DICOM

ImageOrientationPatient

SharedFunctionalGroupsSequence.Item_1.PlaneOrientationSequence.Item_1.ImageOrientationPatient

ImagePositionPatient

PerFrameFunctionalGroupsSequence.Item_168.PlanePositionSequence.Item_1.ImagePositionPatient

(ignore specific Item numbers here)

Direction Cosines

$$\hat{\mathbf{r}} = \cos(\theta_{\mathbf{x}})\hat{\mathbf{x}} + \cos(\theta_{\mathbf{y}})\hat{\mathbf{y}}$$

The components of a unit vector are the cosines of the angles the vector makes with the basis directions

Direction Cosines

Direction Cosines and DICOM

Image to Patient Transform: direction cosines as matrix columns

$$\hat{\mathbf{r}} = [a \ b]$$

$$\hat{\mathbf{c}} = [-b \ a]$$

$$\hat{\mathbf{r}} : \begin{bmatrix} a \\ b \end{bmatrix}_{LP} = \begin{bmatrix} a & \cdot \\ b & \cdot \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{xy}$$

$$\hat{\mathbf{c}} : \begin{bmatrix} -b \\ a \end{bmatrix}_{LP} = \begin{bmatrix} \cdot & -b \\ \cdot & a \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{xy}$$

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = [\hat{\mathbf{r}} : \hat{\mathbf{c}} :]$$

Computational Aspects of MRI

Direction Cosines in 3D with homogeneous coordinates

[See http://www.electromagnetics.biz/DirectionCosines.htm]

Putting it all together

- ImageOrientationPatient
 - rotation
- ImagePositionPatient
 - translation
- PixelSpacing
 - scaling

Composing the overall transform

Applying the transform to multiple coordinates "at once"

$$\begin{bmatrix} l_1 & l_2 & \cdots \\ p_1 & p_2 & \cdots \\ h_1 & h_2 & \cdots \\ 1 & 1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} x_1 & x_2 & \cdots \\ y_1 & y_2 & \cdots \\ z_1 & z_2 & \cdots \\ 1 & 1 \end{bmatrix}$$

MATLAB Default Image Coordinates

Image coordinates in [row column] order

Displaying a 2D image in 3D using surf(X,Y,Z,img)

- 2D matrices X,Y and Z contain patient coordinates of the vertices of the patches.
- 2D matrix img contains patch "colours".
- Sizes of X,Y and Z are one greater than img in each dimension

 $\mathbf{Y}(3,1)$ $\stackrel{\mathsf{Cor}}{\longrightarrow}$

Computational Aspects of MRI

```
>>
\gg img = [0.1 1; 0.7 0.5]
imq =
   0.1000000000000000
                        1.0000000000000000
   0.7000000000000000
                        0.5000000000000000
>> [X,Y,Z] = meshgrid([0:2]+0.5, [0:2]+0.5, 1)
X =
   0.5000000000000000
                        1.5000000000000000
                                              2.5000000000000000
   0.500000000000000
                        1.5000000000000000
                                              2.5000000000000000
   0.500000000000000
                        1.5000000000000000
                                              2.5000000000000000
Y =
   0.5000000000000000
                        0.5000000000000000
                                              0.5000000000000000
   1.5000000000000000
                        1.5000000000000000
                                              1.5000000000000000
   2.5000000000000000
                        2.5000000000000000
                                              2.5000000000000000
Z =
     1
                  1
           1
     1
>> surf(X,Y,Z,img,'EdgeColor','None')
>> colormap gray
```

>> xlabel('x'), ylabel('y'), zlabel('z')

>>

Allows interactive spinning of 3D plots. (Camera toolbar)