LDPC error floor estimation using Importance Sampling

Student: Uglovskii Artem

girafe ai

Agenda

- Introduction to LDPC codes
- Problem formulation
- Importance Sampling
- Quality metrics
- Numerical results
- Conclusion

Intro to coding theory

Simple codes

1010 −−−→ 10100

parity bit

Parity check codes

Parity check codes

$$\begin{cases} x_1 + x_3 + x_4 + x_5 = 0 \\ x_2 + x_4 + x_6 = 0 \end{cases} H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

LDPC codes

LDPC codes

$$H_c = [-P_{m \times (n-m)} | E_{m \times m}]$$

$$G_c = [E_{(n-m) \times (n-m)} | P_{(n-m) \times m}]$$

A block code C with parity check matrix H can be defined in two ways:

1)
$$C = \{ c \in \{0; 1\}^n \mid c * H^T = 0 \}$$

1)
$$C = \{ u * G \text{ for every } u \in \{0; 1\}^{n-m} \}$$

Decoding of LDPC codes

AWGN channel: noise ~ $N(0, \sigma)$

$$y = \pm 1 + noise$$

$$L_j = log [Pr(x_j=0 | y_j) / Pr(x_j=1 | y_j)] = 2y_j / \sigma^2$$

Decoding of LDPC codes: MinSum

$$R_{j,i} = \prod_{k \in N(j) \setminus i} sign(Q_{k,j}) * \min_{k \in N(j) \setminus i} |Q_{k,j}|$$

$$Q_{i} = L_{i} + \sum_{k \in N(i)} R_{k,i}$$

$$Q_{i,j} = L_i + \sum_{\substack{k \in N(i) \setminus i}} R_{k,i}$$

Trapping Sets

TS, denoted as **(a, b)**, is the set of **a** variable nodes and adjacent check nodes, **b** of which have an odd number of occurrences in the given TS.

Trapping Sets

TS, denoted as **(a, b)**, is the set of **a** variable nodes and adjacent check nodes, **b** of which have an odd number of occurrences in the given TS.

Error floor

Problem Statement

- Very low probability can hardly be estimated with Monte Carlo method.
- There is a need in the fast and accurate error floor estimation for LDPC code construction.
- There can be several different estimations, which one is better?
 There is a need in the universal criterion.

Importance Sampling

Let X be a random variable from R^n with pdf ρ and let Y be a random variable with pdf ρ^* , such that $\rho^* \neq 0$, then

$$\mathbb{E}_{\rho} f(X) = \int_{\mathbb{R}^n} f(\vec{x}) \rho(\vec{x}) d\vec{x} = \int_{\mathbb{R}^n} f(\vec{y}) \frac{\rho(\vec{y})}{\rho^*(\vec{y})} \rho^*(\vec{y}) d\vec{y} = \mathbb{E}_{\rho^*} f(Y) w(Y)$$

Importance Sampling

Let X be a random variable from R^n with pdf ρ and let Y be a random variable with pdf ρ^* , such that $\rho^* \neq 0$, then

$$\mathbb{E}_{\rho} f(X) = \int_{\mathbb{R}^n} f(\vec{x}) \rho(\vec{x}) d\vec{x} = \int_{\mathbb{R}^n} f(\vec{y}) \frac{\rho(\vec{y})}{\rho^*(\vec{y})} \rho^*(\vec{y}) d\vec{y} = \mathbb{E}_{\rho^*} f(Y) w(Y)$$

Goals and Tasks

Goal:

Develop a criterion for comparing the results of different estimates of the LDPC code error floor and compare the IS estimates with uniform and shifted normal distributions.

Tasks:

- 1. Identify the limitations of the existing criteria.
- 2. Develop a new criterion that eliminates these limitations.
- 3. Compare the estimates of IS with uniformly distribution and with the mean shifted normal one.

Novelty

Most of paper use Mean-Shift IS (MS-IS) and the only criterion, which has no need in the MC values is gamma-criterion:

- M. Zhu, M. Jiang, and C. Zhao, "Error floor estimation of qc-ldpc coded modulation with importance sampling," IEEE Communications Letters, vol. 25, no. 1, pp. 28–32, 2021
- Neshaastegaran, Peyman, Amir H. Banihashemi и Ramy H. Gohary (май 2021). "Error Floor Estimation of LDPC Coded Modulation Systems Using Importance Sampling". B: IEEE Transactions on Communications 69.5, c. 2784—2799. doi: 10.1109/TCOMM.2021.3057625

IS applied to LDPC codes

• $f(\vec{x})=\mathbb{I}_{\mathbb{A}}(\vec{x})$, where A is a set of inputs causing the decoder failure $\Pr(\vec{x}\in\mathbb{A})\ll 1$

 $\rho^*(\vec{y})$ should satisfy both:

• $\Pr(\vec{y} \in \mathbb{A}) \sim 1$ $\mathbb{E} \, \mathbb{I}^2_{\mathbb{A}}(Y) w^2(Y) \quad \text{is small enough}$

Error floor estimation

Searching & choosing the Trapping Sets Choosing the distribution parameters Importance Sampling modulation

Choosing Trapping Sets

Searching all the possible TSs:

- Find all the cycles in Tanner graph
- Find unions of cycles

Choosing the dangerous ones:

- Apply Mean Shift IS with shifting E
- Choose those, which Bit Error Rate (BER) > ber threshold

Choosing the Distribution parameters

For each Signal-to-Noise Ratio (SNR) and each pdf:

- Iterate through distribution parameters
- Choose the first one, which satisfy the condition: $\Pr(\vec{y} \in \mathbb{A}) > \theta$ where θ is some predefined parameter ϵ (0, 1).

Importance Sampling Modulation

$$\rho^*(\vec{y}) = \frac{1}{|T|} \sum_{t \in T} \prod_{i \in t} p_{IS}(\vec{y}_i) \prod_{j \notin t} p_{MC}(\vec{y}_j)$$

T - set of chosen TSs.

 p_{lS} – sampling pdf (shifted normal or uniform).

 p_{MC} – pdf of AWGN channel.

i, j – indexes of variable nodes.

Uniform vs Normal

If shifted normal pdf is used for sampling, then weight function ω has log-normal distribution with large variance. It yields a slow convergence.

Uniform vs Normal

For unlimited domain (e.g. normal pdf):

$$\mathbb{E}_{\rho^*}w(Y) = 1 \iff \widehat{\mathbb{E}}_{\rho^*} \mathbb{I}_{\mathbb{A}}(X) = \sum_{i=1}^N \mathbb{I}_{\mathbb{A}}(\vec{y_i})w(\vec{y_i})$$

For limited domain (e.g. uniform pdf):

For limited domain (e.g. uniform pdf):
$$\mathbb{E}_{\rho^*}w(Y) < 1 \implies \widetilde{\mathbb{E}}_{\rho^*}\mathbb{I}_{\mathbb{A}}(X) = \frac{\sum\limits_{i=1}^N \mathbb{I}_{\mathbb{A}}(\vec{y_i})w(\vec{y_i})}{\sum\limits_{i=1}^N w(\vec{y_i})}$$

Metrics: MSE

$$MSE = \sum_{SNR} \left(\log \mathbb{E}_{\rho^*}^{IS} \mathbb{I}_{\mathbb{A}}(X) - \log \mathbb{E}_{\rho}^{MC} \mathbb{I}_{\mathbb{A}}(X) \right)^2$$

Pros:

+ independence from the estimator

Cons:

- need to calculate MC values

Metrics: gamma

$$\gamma(\rho^*) = \frac{1}{N} \left(\frac{\widehat{\mathbb{E}}_{\rho^*} \, \mathbb{I}^2(X)}{\widehat{\mathbb{E}}_{\rho^*}^2 \, \mathbb{I}(X)} - 1 \right)$$

Pros:

+ no need to calculate MC values

Cons:

dependence from the estimator

$$\mathbb{E}_{\rho}f(X) \in \left(\widehat{\mathbb{E}}_{\rho}f(X) - \frac{C}{\sqrt{N}}, \widehat{\mathbb{E}}_{\rho}f(X) + \frac{C}{\sqrt{N}}\right)$$

New criterion

Most of the confidence intervals are as follows:

$$(p - CN^{-\alpha}, p + CN^{-\alpha})$$

C > 0,

 $\alpha > 0$,

p – predicted value

N - number of trials

New criterion

Suppose, we have two independent estimations of N variables F and F', than

$$\alpha = -\frac{\ln |F - F'|}{\ln N}$$

$$r = \frac{\alpha(\text{uniform pdf})}{\alpha(\text{normal pdf})}$$

New criterion

Suppose, we have two independent estimations of N variables F and F', than

$$\alpha = -\frac{\ln |F - F'|}{\ln N}$$

$$\alpha = -\frac{\ln|F - F'|}{\ln N}$$
 $r = \frac{\alpha(\text{uniform pdf})}{\alpha(\text{normal pdf})}$

P.S.: Actually, F must satisfy the following condition

$$N^{\alpha}(F(X_1,\ldots,X_N)-p) \xrightarrow[N\to\infty]{d} \eta$$

Numerical Results: matrix (96, 48)

MSE: matrix (96, 48)

Estimation	$MS-IS, N = 25 \cdot 10^3$	IS-U, $N = 25 \cdot 10^3$	$MS-IS, N = 5 \cdot 10^5$	IS-U, $N = 5 \cdot 10^5$
MSE from 0.5 dB	9.15	3.83	3.56	0.87
MSE from 1.3 dB	6.37	2.92	0.78	0.64

Gamma: matrix (96, 48)

New criterion: matrix (96, 48)

Numerical Results: matrix (17k, 3k)

Conclusion

- The comparison showed that IS-U provide more accurate estimations than MS-IS
- New criterion allows us to compare estimations without MC values and regardless of the estimator's structure

Q/A

