武汉大学 2018-2019 学年第二学期期末考试

高等数学B2 (A卷答题卡)

	1 1 X N 1	
姓名:	条形码粘贴区	1、答题前,考生先核对条形码上的信息是否正确,并在规定区域内粘贴好条形码。2、请将答案书写在制定的答题区域内,超出答题
	1. (10 分) 求曲面 $x^2 + y^2 + z^2 - 3x = 0$ 在	点 <i>M(</i> 1.1.1) 处 的切平面方程, 并求该曲面与平面
2x-3y+5z-4=0的交线在点 $M(1,1,1)$ 的切线方程.	XX. 1//	
	2x-3y+5z-4=0的交线在点 $M(1,1,1)$)的切线方程.
	1-11	
		22
	1-11	
XXXY/		

- XX 1//	
2. (8分)设函数 z = f(u,v) 具有二阶连续偏导数, u = x + y,v =	$=x\sin y$,计算 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial y \partial x}$.
	函数 (无需求出条件极值).
3.	(9 分) 设函数 $f(x,y) = 2x^2 - 6xy + 5y^2 - 2x + 2y + 3$, 1) 求函数 $f(x,y)$ 的极值; 2) 写出 $f(x,y)$ 在条件 $x^2 + y^2 = 1$ 下的极值问题的拉格朗日

6. (8分)计算第一类曲线积分 $\int_{\Gamma} (x^2 + 2y^2) ds$, 其中 Γ 为圆周 $x^2 + y^2 + z^2 = R^2$, x + y + z = 0.

- 5. $(9 \, \beta)$ 计算三重积分 $\iiint_{\Omega} \min\{z,1\} dx dy dz$, 其中 $\Omega \, \beta z = 2 (x^2 + y^2)$ 与 z = 0 所围成的区域.
- 7. (9 分) 计算积分 $I = \int_{0}^{\infty} 2x(y + \cos y) dx x^{2} \sin y dy$, 其中 $L: y = \sqrt{2x x^{2}}$ 从 (0,0) 到 (2,0).

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!

武汉大学 2018-2019 学年第二学期期末考试

高等数学B2 (A卷答题卡)

条形码粘贴区

注意事项:

- 1、答题前,考生先核对条形码上的信息是否正确,并在规定区域内粘贴好条形码。
- 2、请将答案书写在制定的答题区域内,超出答题 区域或附加纸张作答均无效。

学号:

姓名:

8. (9 分) 计算积分 $I = \iint_S x^2 \, dy \, dz + 2y \, dz \, dx + z \, dx \, dy$, S 为半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 取上侧.

9. $(9 \, f)$ 将函数 $f(x) = \frac{3x}{(2-x)(2x-1)}$ 展开成 x 的幂级数,并写出该幂级数的收敛域.

10. (10 分) 已知 $|\vec{a}|=1$, $|\vec{b}|=2$, $(\vec{a},\vec{b})=\frac{\pi}{3}$, $\vec{c}=\vec{a}\times\vec{b}$, 计算 $\vec{a}\cdot\vec{b}$ 以及 $(\vec{a}\times\vec{c})\cdot\vec{b}$.

三整数时 $(2n)!! = 2 \cdot 4 \cdot \cdots \cdot (2n-2) \cdot 2n$,

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!