Comparison Tables: BBOB 2015 Function Testbed with BBOB 2009 as Reference (Expensive Setting)

The BBOBies
July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015 with a focus on benchmarking black-box algorithms for small function evaluation budgets ("expensive setting"), see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

i is larger one	an 1, wron 1	John Critoni C	office from Dy	one number	or motanees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	1.6e+1:1.2	4.0e+0:2.6	2.5e-2:6.2	1.0e-8:6.2	1.0e-8:6.2	15/15
BSifeg	1.6 (1)	2.2 (2)	1.7(0.2)	1.7(0.2)	1.7(0.3)	15/15
BSif	1.6 (1)	2.2(2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	15/15
BSqi	1.6(2)	2.2(2)	1.7(0.3)	1.7(0.2)	1.7(0.3)	15/15
BSrr	1.6(2)	2.2(2)	1.7(0.3)	1.7(0.2)	1.7(0.3)	15/15
CMA-CSA	3.1(5)	3.0(3)	11(6)	42(5)	42(6)	15/15
CMA-MSR	2.7 (1)	4.7(3)	16(11)	69(12)	69(9)	15/15
CMA-TPA	2.8 (4)	4.5(4)	12(7)	44(8)	44(13)	15/15
GP1-CMAES	2.4 (5)	2.5 (2)	6.5(2)	24(4)	24(5)	15/15
GP5-CMAES	3.3(3)	2.7 (2)	3.4(2)	31(14)	31(16)	15/15
IPOPCMAv3p	4.9(4)	4.6(5)	12(7)	43(9)	43(4)	15/15
LHD-10xDef	2.6 (2)	3.8(5)	10(0)	∞	∞ 100	0/15
LHD-2xDefa	2.4 (1)	2.8 (2)	3.3(0.8)	∞	∞ 100	0/15
RAND-2xDef	2.6 (2)	3.4(2)	3.5(0.9)	∞	∞ 100	0/15
RF1-CMAES	3.1(4)	4.2(4)	8.0(3)	86(85)	86(111)	10/15
RF5-CMAES	2.8 (3)	4.7(4)	60(38)	∞	∞ 502	0/15
Sifeg	1.6 (1)	2.2 (2)	2.3 (0.4)	6.3(0.5)	6.3(0.5)	15/15
Sif	1.6 (1)	2.2 (1)	2.4 (0.3)	6.2(0.6)	6.2(0.6)	15/15
Srr	1.6(1)	2.2(2)	2.3(0.2)	5.9(0.5)	5.9(0.5)	15/15

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	1.0e + 7:1.4	1.6e+6:2.7	1.0e + 5:6.1	6.3e-1:20	1.0e-8:30	15/15
BSifeg	1.7 (1)	3.1(1)	1.7(0.2)	1.2(0.3)	1.2(0.3)	15/15
BSif	1.7 (1)	3.1(0.4)	1.7(0.2)	1.1(0.3)	1.2(0.1)	15/15
BSqi	1.7 (1)	3.1(0.9)	1.7(0.2)	0.93 (0.1)	1.1(0.2)	15/15
BSrr	1.7 (1)	3.1(0)	1.7(0.3)	1.1(0.3)	1.3(0.2)	15/15
CMA-CSA	1.3(2)	2.8 (3)	3.2(2)	15(4)	19(2)	15/15
CMA-MSR	1.8(0.5)	2.6 (2)	2.8 (2)	16(3)	24(5)	15/15
CMA-TPA	1.5 (1)	1.2(0.5)	1.7(1)	12(5)	17(2)	15/15
GP1-CMAES	2.1(2)	2.3(2)	2.2 (2)	13(6)	19(2)	12/15
GP5-CMAES	2.2(2)	2.2(2)	1.5(1)	5.1(2)	9.2(6)	14/15
IPOPCMAv3p	2.3 (2)	3.0 (2)	3.0(2)	17(6)	$\infty 506$	0/15
LHD-10xDef	1.3 (1)	1.4(0.8)	2.6 (1)	∞	∞ 100	0/15
LHD-2xDefa	1.0(0.7)	1.2(1)	1.7(1)	∞	∞ 100	0/15
RAND-2xDef	1.3(2)	1.0(0.7)	1.3(1)	∞	∞ 100	0/15
RF1-CMAES	2.5 (3)	2.2(2)	2.8 (3)	168(242)	∞ 506	0/15
RF5-CMAES	1.8(1)	2.8 (2)	2.8 (2)	167(194)	∞ 502	0/15
Sifeg	1.7 (1)	3.2(2)	2.0 (0.3)	1.5(0.3)	1.8(0.2)	15/15
Sif	1.7 ₍₁₎	3.2(1)	2.0 (0.5)	1.4(0.3)	1.7(0.3)	15/15
Srr	1.7 (1)	3.2(0.4)	2.0 (0.5)	1.4(0.2)	1.9(0.1)	15/15

Table 4: 02-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger than 1, with Domerton correction by the number of instances.									
#FEs/D	0.5	1.2	3	10	50	#succ			
f3	1.0e + 2:1.4	4.0e+1:4.1	2.5e+1:6.6	6.3e + 0:26	2.5e+0:112	15/15			
BSifeg	2.2 (1)	1.8(1)	1.4(0.3)	0.79 (0.6)	0.30(0.2)	15/15			
BSif	2.2 (1)	1.8(0.7)	1.4(0.7)	0.77 (0.3)	0.30(0.2)	15/15			
BSqi	2.2 (1)	1.8 (1)	1.4(0.5)	0.76 (0.5)	0.30(0.2)	15/15			
BSrr	2.2 (0.7)	1.8 (1)	1.4(0.6)	0.74 (0.6)	0.28 (0.2)	15/15			
CMA-CSA	1.8(1)	2.4(2)	2.4(2)	2.2 (1)	2.9 (4)	15/15			
CMA-MSR	3.0(3)	2.9 (1)	2.6 (1)	3.3(2)	4.6(9)	15/15			
CMA-TPA	2.0 (3)	2.9 (3)	2.9 ₍₂₎	6.8(8)	5.5(4)	15/15			
GP1-CMAES	2.8 (3)	1.7(2)	2.6(2)	2.2 (1)	2.9 (4)	11/15			
GP5-CMAES	2.0 (1)	1.9 ₍₂₎	4.0(1)	5.8(7)	2.3 (2)	13/15			
IPOPCMAv3p	1.6 (0.9)	1.4(1.0)	1.6(0.8)	2.6 (1)	3.2(2)	10/15			
LHD-10xDef	1.9(3)	1.6(2)	1.7 ₍₁₎	3.0(2)	1.5(0.8)	8/15			
LHD-2xDefa	1.6(0.4)	1.2(1)	1.4 (1)	1.0(0.7)	0.67 (0.8)	11/15			
RAND-2xDef	1.8(2)	1.1(0.7)	1.9(1)	2.4 (1)	1.4(2)	7/15			
RF1-CMAES	1.7(2)	11(1)	7.2(2)	9.0(6)	5.6(6)	7/15			
RF5-CMAES	2.2 (3)	2.4(2)	14(2)	15(15)	6.5(8)	7/15			
Sifeg	2.2(2)	1.8 (1)	1.5(0.9)	1.1(0.5)	0.30(0.2)	15/15			
Sif	2.2(2)	1.8 (1)	1.5(0.7)	1.1(0.5)	0.34(0.2)	15/15			
Srr	2.2 (1)	1.8(1)	1.5 (1)	1.1(0.4)	0.31 (0.1)	15/15			

i is iaigei uiid	ı, wıuı L	omenom ee	niccion by	one number o	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f4	6.3e+1:2.4	4.0e+1:5.2	2.5e+1:8.5	1.0e + 1:22	2.5e+0:120	5/5
BSifeg	1.8 (1)	1.1(0.9)	1.1(0.3)	0.91 (0.4)	0.42 (0.3)	15/15
BSif	1.8(2)	1.1(0.8)	1.1(0.5)	0.91 (0.6)	0.42 (0.3)	15/15
BSqi	1.8(2)	1.1(0.9)	1.1(0.5)	0.98 (0.4)	0.45 (0.3)	15/15
BSrr	1.8(2)	1.1(1.0)	1.1(0.6)	0.93 (0.4)	0.42 (0.3)	15/15
CMA-CSA	1.9(2)	2.3 (2)	2.4 (1)	2.3 (2)	4.3(7)	15/15
CMA-MSR	3.2(2)	2.6 (2)	2.3 (2)	6.1(20)	11(13)	15/15
CMA-TPA	3.3(4)	1.9(0.7)	2.5 (2)	2.9 (4)	6.4(9)	15/15
GP1-CMAES	2.5(2)	1.9(2)	2.3 (2)	2.2 (1)	4.6(3)	8/15
GP5-CMAES	3.2(3)	2.1 (3)	10(15)	6.4(3)	3.8(3)	9/15
IPOPCMAv3p	2.9 (3)	2.2(2)	2.8 (3)	2.9 (3)	5.0(10)	8/15
LHD-10xDef	1.7(4)	1.7(1)	2.0 (3)	2.7 (3)	1.9(2)	6/15
LHD-2xDefa	1.5(1)	1.9 (1)	2.0 (1)	1.8 (1)	1.7(1)	6/15
RAND-2xDef	2.2 (1)	1.6(0.8)	1.2(0.8)	1.7(2)	2.1 (1.0)	5/15
RF1-CMAES	2.1(2)	2.3 (3)	2.1(2)	3.3(3)	28(27)	2/15
RF5-CMAES	17(2)	8.6(1)	12(16)	16(22)	28(26)	2/15
Sifeg	1.8(1)	1.2(1.0)	1.3(0.2)	0.96 (0.3)	0.50 (0.3)	15/15
Sif	1.8(2)	1.2(1)	1.3(0.9)	0.95 (0.1)	0.52 (0.3)	15/15
Srr	1.8(2)	1.2(1)	1.2(0.3)	0.96 (0.6)	0.51 (0.1)	15/15

10 101601 011	<u>.</u> , willi i	Joint City C	offection by	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f5	4.0e+1:1.4	1.6e+1:3.5	1.0e-8:4.4	1.0e-8:4.4	1.0e-8:4.4	15/15
BSifeg	2.9 (1)	1.8(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSif	2.9 (2)	1.8(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.1)	15/15
BSrr	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
CMA-CSA	4.2(4)	3.0 (3)	4.8(3)	4.8(4)	4.8(3)	15/15
CMA-MSR	4.0(5)	2.9 ₍₂₎	6.2(3)	6.2(2)	6.2(2)	15/15
CMA-TPA	3.3(4)	2.0(2)	4.0(1)	4.0(1)	4.0(2)	15/15
	3.5(4)	2.2 (1)	9.3(9)	9.3(14)	9.3(12)	15/15
GP5-CMAES	2.6 (4)	1.9(0.9)	4.4(2)	4.4(3)	4.4(2)	15/15
IPOPCMAv3p	5.0(3)	4.1(4)	13(8)	13(9)	13(16)	15/15
LHD-10xDef	2.6 (2)	2.2(2)	14(0.6)	14(0.3)	14(0.6)	15/15
LHD-2xDefa	1.4(0.7)	2.0 (1)	3.3(0.6)	3.3(0.6)	3.3(0.6)	15/15
RAND-2xDef	1.4(0.7)	1.9(2)	3.6(0.6)	3.6(0.6)	3.6(0.9)	15/15
RF1-CMAES	2.4 (3)	1.9(2)	22(26)	22(32)	22(26)	15/15
RF5-CMAES	3.7(5)	3.2(3)	61(75)	61(34)	61(76)	12/15
Sifeg	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	2.9 ₍₂₎	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	2.9(2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

 \neg 1

_	10 1011 601 0110	<u>.</u> , w	DomiciTom	correction by	one manner	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f6	6.3e+4:1.4	1.0e + 2:2.8	1.6e+1:10	1.0e+0:23	2.5e-6:103	15/15
	BSifeg	1.3 (1)	2.0 (3)	245(513)	416(421)	2668(4813)	1/15
	BSif	1.3 (1)	2.1 (3)	307(617)	442(1192)	∞ 2e4	0/15
	BSqi	1.3 (1)	2.0 (1)	355(776)	344(686)	2671(5134)	1/15
	BSrr	1.3 (1)	2.0 (1)	341(56)	403(547)	1293(1193)	2/15
	CMA-CSA	1.6 (2)	3.6(5)	3.1(2)	4.3 (4)	4.2(0.8)	15/15
	CMA-MSR	1.8(2)	2.3 (3)	2.4 (1)	5.3(3)	5.2(0.8)	15/15
	CMA-TPA	1.3(0.4)	1.2(1)	1.2(2)	3.6 (3)	3.8 (0.7)	15/15
	GP1-CMAES	2.4 (3)	3.1(5)	2.8 (2)	4.9(0.7)	∞ 506	0/15
	GP5-CMAES	1.1(0.4)	2.3 (7)	2.3 (2)	9.2(15)	∞ 506	0/15
	IPOPCMAv3p	1.5(2)	2.7 (2)	2.6 (5)	4.6(2)	4.8 (4)	13/15
	LHD-10xDef	1.3 (1)	1.5(2)	1.3 (1)	9.0(12)	∞ 100	0/15
	LHD-2xDefa	1.1(0)	1.9(2)	1.5(0.9)	12(16)	∞ 100	0/15
	RAND-2xDef	1.4(0.7)	1.9(2)	1.2(0.7)	6.3(8)	∞ 100	0/15
	RF1-CMAES	1.8(0.7)	2.3 (2)	5.5(14)	67(146)	$\infty 506$	0/15
	RF5-CMAES	1.5 (0.9)	3.2(5)	4.8(6)	40(35)	∞ 508	0/15
	Sifeg	1.3 (1)	2.3 (4)	333(47)	271(534)	2624(3800)	1/15
	Sif	1.3 (1)	2.3 (4)	355(1172)	318(750)	2659(2915)	1/15
	Srr	1.3(1)	2.1(3)	319(1229)	242(376)	1251(1158)	2/15

i is idigoi dire	our r, writin.	Domestion .	correction by	one manner	or mountees.	
$\#\widetilde{\mathrm{FEs}}/\mathrm{D}$	0.5	1.2	3	10	50	#succ
f7	4.0e + 2:1.6	1.0e+1:3.2	2.5e+0:14	1.6e + 0:21	1.6e-2:188	15/15
BSifeg	1.3(0.5)	1.7(1)	135(216)	376(318)	698(696)	2/15
BSif	1.3(0.6)	1.7(1)	173(395)	376(1149)	252(216)	5/15
BSqi	1.3(1)	1.7(1)	206(466)	256(513)	355(565)	4/15
BSrr	1.3 (1)	1.7 (1)	268(467)	543(2200)	331(424)	4/15
CMA-CSA	1.3(0.6)	4.0(3)	3.6(2)	3.5(10)	1.1(1)	15/15
CMA-MSR	1.7(2)	4.4(5)	2.0 (3)	1.6 (2)	1.0(0.3)	15/15
CMA-TPA	1.1(0.3)	3.7(3)	2.5(2)	1.9(2)	0.80 (0.8)	15/15
GP1-CMAES	1.4 (1)	4.2(1)	2.1 (0.9)	1.9(2)	1.0(0.4)	14/15
GP5-CMAES	0.67(0.2)	3.3(3)	2.0 (3)	2.0 (3)	0.98 (0.3)	14/15
IPOPCMAv3p	1.9 (0.9)	3.9(8)	2.5 (3)	3.6(4)	1.7 (1)	13/15
LHD-10xDef	1.2(1)	7.6(5)	3.0(2)	2.6 (2)	∞ 100	0/15
LHD-2xDefa	1(0.3)	3.0(2)	1.2(0.9)	1.0(0.8)	1.3(1)	5/15
RAND-2xDef	1.7(1)	3.8(1)	1.2(0.4)	1.2(1)	1.1(2)	6/15
RF1-CMAES	1.5(1)	4.1(1)	2.0(2)	2.7 (2)	2.2 (2)	11/15
RF5-CMAES	1.6(2)	3.8(4)	2.5(2)	3.5(2)	13(15)	3/15
Sifeg	1.3(0.3)	1.8(2)	68(180)	256(954)	444(405)	3/15
Sif	1.3(0.9)	1.8(2)	78(36)	204(440)	485(501)	3/15
Srr	1.3(0.6)	1.8(1)	135(144)	287(367)	473(349)	3/15

i is larger one	an 1, wron 1	Domerrom c	officenon by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f8	2.5e+3:1.2	1.0e+2:3.2	6.3e+0.7.0	1.6e-1:27	1.6e-6:100	15/15
BSifeg	1.9 (3)	1.9 (1)	4.0(3)	2208(3277)	∞ 2e4	0/15
BSif	1.9(0.4)	1.9 (1)	4.2(8)	2303(3150)	∞ 2e4	0/15
BSqi	1.9(2)	1.9 (1)	4.1(8)	1323(2706)	∞ 2e4	0/15
BSrr	1.9(2)	1.9 (1)	4.9(5)	2159(3507)	∞ 2e4	0/15
CMA-CSA	3.5(2)	3.8(3)	8.4(6)	12(11)	5.9 (3)	15/15
CMA-MSR	2.1 (0.6)	1.7 (0.9)	7.3(3)	10(8)	5.8 (2)	15/15
CMA-TPA	5.2(2)	4.6(3)	4.8(4)	6.9 (4)	4.0 (0.9)	15/15
GP1-CMAES	2.2 (2)	2.6 (5)	5.0(2)	9.1(6)	10(6)	7/15
GP5-CMAES	2.6 (2)	2.6 (2)	3.8 (6)	11(20)	6.6(6)	9/15
IPOPCMAv3p	3.6(3)	4.0(5)	5.1(4)	7.8 (12)	8.7(12)	8/15
LHD-10xDef	2.4(2)	3.9(8)	6.0(5)	13(12)	∞ 100	0/15
LHD-2xDefa	1.6 (2)	2.4 (2)	3.0 (2)	5.1 (2)	∞ 100	0/15
RAND-2xDef	2.4(2)	3.5(1)	3.2 (1)	10(6)	∞ 100	0/15
RF1-CMAES	3.2(3)	3.1(2)	9.1(19)	17(10)	$\infty 506$	0/15
RF5-CMAES	3.1(3)	22(82)	39(55)	78(92)	$\infty 506$	0/15
Sifeg	1.9(2)	2.0(2)	4.1(6)	933(701)	∞ 2e4	0/15
Sif	1.9(3)	2.0 (0.6)	4.3(5)	975(1446)	∞ 2e4	0/15
Srr	1.9(2)	2.0 (1)	3.8(0.4)	1348(1373)	∞ 2e4	0/15

i is larger one	ı, wıuı ı	John Crioth CC	niccion by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f9	6.3e+0:13	4.0e+0:15	2.5e+0:15	2.5e-1:21	1.0e-8:94	15/15
BSifeg	15(24)	14(12)	14(17)	210(120)	∞ 2e4	0/15
BSif	13(10)	12(19)	12(13)	193(218)	∞ 2e4	0/15
BSqi	13(14)	12(19)	12(13)	207(294)	∞ 2e4	0/15
BSrr	12(17)	12(20)	14(20)	241(104)	∞ 2e4	0/15
CMA-CSA	2.7 (1)	3.5(1)	4.1(5)	8.7(9)	6.0 (3)	15/15
CMA-MSR	2.4(2)	2.4(2)	4.6(2)	10(14)	7.0(3)	15/15
CMA-TPA	2.5 (2)	3.3(4)	4.6(7)	9.3(7)	6.0 (2)	15/15
GP1-CMAES	2.8 (2)	4.1(5)	6.8(17)	15(22)	26(44)	3/15
GP5-CMAES	1.7 ₍₁₎	1.5(0.2)	2.0(2)	6.0 (3)	5.8 (6)	10/15
IPOPCMAv3p	2.3 (2)	2.2(2)	2.5(2)	6.1(5)	11(10)	7/15
LHD-10xDef	2.8 (2)	3.4(2)	3.8(3)	16(15)	∞ 100	0/15
LHD-2xDefa	1.3(0.7)	1.2(0.8)	1.9 (1)	4.6 (3)	∞ 100	0/15
RAND-2xDef	1.6 (1)	1.6 (1)	2.0 (0.9)	6.0 (5)	∞ 100	0/15
RF1-CMAES	4.8(3)	6.6(35)	11(10)	26(40)	$\infty 506$	0/15
RF5-CMAES	21(28)	20(19)	21(31)	57(61)	∞ 504	0/15
Sifeg	2.6 (3)	2.8 (2)	4.0(5)	182(348)	∞ 2e4	0/15
Sif	2.5 (3)	5.0(3)	5.8(4)	259(407)	∞ 2e4	0/15
Srr	2.5 (3)	2.8 (2)	3.6(3)	232(223)	∞ 2e4	0/15

ig the star is	iaigei man	i i, with bo	merrom corr	ection by the	e number or i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f10	1.6e+6:2.0	4.0e + 5:3.2	6.3e+2:8.8	1.0e+1:30	2.5e-8:101	15/15
BSifeg	2.7 (2)	2.5(0.2)	1.5(0.5)	38(59)	∞ 5883	0/15
BSif	2.7 (2)	2.5 (0.7)	1.5(0.5)	71(116)	∞ 8444	0/15
BSqi	2.7 (2)	2.5 (2)	1.5(0.5)	135(10)	∞ 1e4	0/15
BSrr	2.7 (2)	2.5 (0.2)	1.5(0.5)	46(108)	∞ 6681	0/15
CMA-CSA	3.7(4)	3.3(4)	7.2(3)	7.5(4)	5.3 (0.9)	15/15
CMA-MSR	2.1(2)	2.3 (2)	7.0(5)	7.4(4)	6.8(0.6)	15/15
CMA-TPA	3.4(4)	2.8 (3)	5.9(5)	6.3 (3)	5.3(1)	15/15
GP1-CMAES	1.5(2)	1.5(0.5)	4.4(3)	4.6 (3)	5.2 (2)	12/15
GP5-CMAES	2.2(2)	2.2 (2)	2.2 (0.9)	1.6(0.6)	2.5 (0.9)	14/15
IPOPCMAv3p	2.6 (3)	2.7 (2)	6.8(3)	8.3(7)	$\infty 506$	0/15
LHD-10xDef	1.7 (1)	1.6 (2)	7.9(1)	16(9)	∞ 100	0/15
LHD-2xDefa	1.7(2)	2.2 (1)	3.8(2)	6.9(7)	∞ 100	0/15
RAND-2xDef	2.7 (3)	2.7 (2)	3.9(1)	10(9)	∞ 100	0/15
RF1-CMAES	2.3 (3)	2.2 (2)	4.2(1)	19(25)	$\infty 506$	0/15
RF5-CMAES	3.4(2)	2.9 (2)	8.7(6)	14(18)	∞ 502	0/15
Sifeg	2.7 (2)	2.8 (1)	1.9(0.3)	8.6(12)	∞ 2159	0/15
Sif	2.7 (2)	2.8 (2)	1.9(0.4)	12(17)	∞ 2178	0/15
Srr	2.7(2)	2.8 (1)	1.9(0.3)	7.9(0.1)	∞ 2193	0/15

ig uic star is	marger mar.	i i, with Doi	increoni corr	cenon by one	mumber of i	
#FEs/D	0.5	1.2	3	10	50	#succ
f11	1.0e + 7:1.1	1.6e+6:3.2	1.0e+4:6.6	4.0e+1:23	4.0e-8:100	15/15
BSifeg	1.2(0)	1.6 (1)	1.4(0.3)	47(49)	∞ 6926	0/15
BSif	1.2(0.5)	1.6 (1)	1.4(0.3)	39(23)	∞ 5430	0/15
BSqi	1.2(0)	1.6 (1)	1.4(0.3)	71(92)	$\infty 5998$	0/15
$_{\mathrm{BSrr}}$	1.2(0.5)	1.6 (1)	1.4(0.6)	40(109)	∞ 6000	0/15
CMA-CSA	1.6(0.2)	1.3 (1)	3.5(3)	4.7(5)	5.2(0.8)	15/15
CMA-MSR	1.1(0.9)	0.96 (1)	3.8(5)	5.3(0.8)	6.6(0.6)	15/15
CMA-TPA	1.9(2)	1.5(1)	4.2(3)	6.0(3)	5.3(0.4)	15/15
GP1-CMAES	2.2 (4)	1.6 (2)	3.4(3)	3.6 (3)	4.7(0.8)	14/15
GP5-CMAES	3.6(4)	1.8(2)	2.2 (0.9)	1.3(0.4)	2.4 (0.7)	15/15
IPOPCMAv3p	3.1(2)	1.9 (1)	3.7(1)	4.3(2)	$\infty 506$	0/15
LHD-10xDef	1.5(0.7)	1.3(0.8)	4.9(5)	11(7)	∞ 100	0/15
LHD-2xDefa	1.7 ₍₁₎	1.3(0.9)	2.5 (1)	5.6(8)	∞ 100	0/15
RAND-2xDef	1.8(1)	1.2(1)	2.7 (2)	3.0(0.5)	∞ 100	0/15
RF1-CMAES	2.7(4)	2.9 (5)	4.9(4)	5.5(7)	$\infty 506$	0/15
RF5-CMAES	1.7 (0.9)	2.2 (3)	3.8(3)	6.4(12)	$\infty 508$	0/15
Sifeg	1.2(1)	1.7 (1)	1.7(1.0)	10(6)	∞ 2391	0/15
Sif	1.2(1)	1.7 (1)	1.7(0.6)	10(29)	∞ 2405	0/15
Srr	1.2(0.5)	1.7(1)	1.7(0.8)	11(11)	∞ 2357	0/15

ig the star is	marger mai	i i, with Do	incrioni cor.	rection by the	ic number or .	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f12	2.5e+8:1.3	6.3e+6:2.7	6.3e + 5:6.3	4.0e+1:21	1.6e-3:101	15/15
BSifeg	0.85 (0.4)	1.2(1)	1.3(0.8)	12(28)	295(517)	5/15
BSif	0.85 (0.4)	1.2(1)	1.3(1.0)	29(3)	368(224)	4/15
BSqi	0.85(0.2)	1.2(1)	1.3(0.5)	23(5)	320(351)	4/15
BSrr	0.85(0.2)	1.2(1)	1.3(0.9)	19(0.4)	326(335)	4/15
CMA-CSA	1.4(2)	1.9(3)	1.4(2)	6.5(5)	8.5 ₍₁₇₎	15/15
CMA-MSR	1.3(0.8)	1.3(0.7)	0.87 (0.8)	9.1(7)	9.3(5)	15/15
CMA-TPA	1.4(2)	1.8(2)	1.8(2)	7.0(7)	6.8 (9)	15/15
GP1-CMAES	2.0(6)	1.5(2)	1.2(1)	3.6(1.0)	10(9)	7/15
GP5-CMAES	1.2(2)	1.6 (1)	1.3(2)	3.5 (6)	7.8 (5)	7/15
IPOPCMAv3p	1.7 (3)	1.8 (1)	1.7(2)	4.0(1)	14(26)	5/15
LHD-10xDef	0.90 (0.4)	1.2(0.7)	0.97(1)	24(19)	∞ 100	0/15
LHD-2xDefa	1(0.2)	0.78(0.6)	0.97 (0.9)	5.0(4)	∞ 100	0/15
RAND-2xDef	1.1(0.4)	0.95 (0.7)	1.1(0.8)	6.3(11)	∞ 100	0/15
RF1-CMAES	1.6 (4)	1.5(2)	1.4(0.8)	4.8(3)	$\infty 506$	0/15
RF5-CMAES	1.2(0.2)	1.9(3)	1.9(2)	11(6)	∞ 504	0/15
Sifeg	0.85(0)	1.2(1)	1.3 (1)	2.8 (6)	76(138)	5/15
Sif	0.85(0)	1.2(1)	1.4(0.6)	4.9(14)	83(92)	5/15
Srr	0.85(0.4)	1.2(1)	1.4(1)	3.4 (1)	124(113)	4/15

ig the star is	iaigei illai	iri, with De	unerrom con	ection by the	: number or i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f13	4.0e+2:1.6	2.5e+2:3.1	6.3e+1:8.7	1.0e+1:23	4.0e-6:100	15/15
BSifeg	2.3 (2)	1.6 (1)	184(1215)	541(602)	∞ 2e4	0/15
BSif	2.3(2)	1.6 (1)	224(780)	789(712)	∞ 2e4	0/15
BSqi	2.3(2)	1.6 (1)	252(879)	430(542)	∞ 2e4	0/15
BSrr	2.3(2)	1.6 (1)	184(0.7)	491(498)	∞ 2e4	0/15
CMA-CSA	2.5(2)	2.1 (1)	2.8 (3)	2.9 (3)	5.0 (0.5)	15/15
CMA-MSR	2.8 (5)	2.1(2)	4.1(4)	3.7(1)	6.2 (1)	15/15
CMA-TPA	2.8 (3)	2.5 (2)	3.5(5)	4.5(3)	5.3 (0.6)	15/15
GP1-CMAES	1.6(2)	1.4 (1)	1.9(2)	2.7 (2)	24(20)	3/15
GP5-CMAES	2.4 (3)	1.9(3)	5.5(1)	3.8(2)	11(4)	6/15
IPOPCMAv3p	2.2 (3)	1.8(2)	2.6 (2)	3.9(2)	$\infty 506$	0/15
LHD-10xDef	2.0 (1)	2.2 (2)	2.8(2)	2.9 (1)	∞ 100	0/15
LHD-2xDefa	1.7(2)	1.5(0.6)	1.4(0.7)	1.4(0.8)	∞ 100	0/15
RAND-2xDef	1.6 (1)	1.8(2)	1.7(0.8)	1.4(0.8)	∞ 100	0/15
RF1-CMAES	2.1 (0.9)	1.8 (3)	2.2(2)	7.9(7)	$\infty 506$	0/15
RF5-CMAES	2.6 (2)	2.1 (1)	1.9(3)	11(33)	$\infty 508$	0/15
Sifeg	2.3 (2)	1.6 (1)	178(899)	563(826)	∞ 2e4	0/15
Sif	2.3 (2)	1.6 (1)	258(1006)	410(561)	∞ 2e4	0/15
Srr	2.3 (2)	1.6 (1.0)	278(884)	428(499)	∞ 2e4	0/15

ig uiic suai is	iaigei mai	i i, with Doi	increom corre	colon by one	number of h	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	1.6e+1:1.4	2.5e+0:4.2	1.0e+0.7.4	2.5e-2:21	1.0e-8:101	15/15
BSifeg	2.0 (3)	12(11)	8.5(20)	7.3(22)	∞ 2e4	0/15
BSif	2.0 (3)	12(20)	8.7(11)	6.8(12)	∞ 2e4	0/15
BSqi	2.0 (3)	7.4(15)	5.7(7)	4.2(4)	∞ 2e4	0/15
BSrr	2.0(2)	11(24)	8.4(13)	6.2(6)	∞ 2e4	0/15
CMA-CSA	1.3(0.7)	1.7(1)	1.9(2)	4.1(2)	5.5(0.9)	15/15
CMA-MSR	2.1(2)	2.4 (1.0)	2.8 (2)	6.0(2)	6.5(0.7)	15/15
CMA-TPA	2.4 (1)	3.5(4)	3.5(2)	5.8(2)	5.8(0.8)	15/15
GP1-CMAES	0.95 (1)	2.2 (0.6)	1.9(2)	2.5 (0.7)	$\infty 506$	0/15
GP5-CMAES	1.9(3)	2.9(2)	2.3 (1)	1.7(0.8)	$\infty 506$	0/15
IPOPCMAv3p	1.2(0.7)	3.3(2)	3.1(2)	3.8(1)	$\infty 506$	0/15
LHD-10xDef	1.4(0.7)	1.2(1)	3.1(3)	8.2(9)	∞ 100	0/15
LHD-2xDefa	1.4(0.9)	1.6(2)	1.4 (1)	2.0 (1)	∞ 100	0/15
RAND-2xDef	1.1(1)	2.2 (1)	1.9 (1)	2.1 (0.9)	∞ 100	0/15
RF1-CMAES	1.4(2)	5.9(6)	6.3(9)	8.8(9)	$\infty 506$	0/15
RF5-CMAES	1.2(0.9)	44(46)	48(59)	79(74)	$\infty 506$	0/15
Sifeg	2.0 (1)	2.8 (1)	2.3 (1)	3.2(5)	∞ 2e4	0/15
Sif	2.0(2)	2.8 (3)	2.4(0.7)	4.1(4)	∞ 2e4	0/15
Srr	2.0(1)	2.6 (2)	2.1(0.7)	2.1 (3)	∞ 2e4	0/15

ig the star is	mager ma	n i, with bo	merrom corr	ccoon by on	c number of r	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:1.2	4.0e+1:4.7	2.5e+1:10	1.0e + 1:37	2.5e+0:118	5/5
BSifeg	1.4(0.4)	1.8(1.0)	2.2 (0.8)	27(5)	111(252)	10/15
BSif	1.4(1)	151(561)	70(257)	22(140)	118(120)	10/15
BSqi	1.4(2)	3.3(0.9)	4.0(9)	3.3(4)	62(119)	13/15
BSrr	1.4(0.4)	6.5(39)	6.4(0.1)	4.2(11)	59(91)	13/15
CMA-CSA	1.3(0)	1.0(1)	1.1(1)	1.1(0.5)	1.6 (3)	15/15
CMA-MSR	2.1(0.8)	1.3(2)	1.3(2)	0.86 (0.5)	2.2 (0.6)	15/15
CMA-TPA	1.8(2)	2.2 (5)	1.5(0.7)	1.5(1)	3.6(5)	15/15
GP1-CMAES	2.3(5)	1.6 (1)	1.3 (1.0)	1.3(1)	3.1(3)	10/15
GP5-CMAES	2.4(2)	2.1(2)	1.3(0.4)	0.75 (0.3)	1.6 (3)	14/15
IPOPCMAv3p	1.4 (0.4)	2.0(2)	1.4(0.5)	1.3(1)	4.8(5)	8/15
LHD-10xDef	2.5(2)	1.8(2)	1.6(2)	2.2 (1)	3.0 (2)	4/15
LHD-2xDefa	1.4 (1)	0.81 (1)	0.94 (0.7)	0.90 (0.8)	1.4(2)	7/15
RAND-2xDef	2.1(0.8)	1.6(2)	1.1(0.8)	1.4(1.0)	1.4(2)	7/15
RF1-CMAES	3.2(6)	1.8(0.8)	1.5(1)	1.9(0.7)	1.8(2)	12/15
RF5-CMAES	2.0 (1)	1.8 (1)	1.9(3)	6.1(1)	8.0(6)	6/15
Sifeg	1.4(2)	1.5(2)	1.8(0.7)	1.7(3)	50(103)	12/15
Sif	1.4 (1)	1.5(2)	1.9 (3)	1.7(0.4)	33(42)	13/15
Srr	1.4 (1)	1.5(1)	1.5(0.5)	1.6(3)	35(46)	15/15

ig the star is	iaigei mai	i i, with Do	meriom con	ection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f16	1.0e + 2:1.1	2.5e+1:3.9	1.6e + 1:6.5	4.0e+0:31	2.5e-1:127	5/5
BSifeg	1.8(1)	2.9 (5)	2.7 (3)	1.0(0.8)	12(29)	15/15
BSif	1.8(0.9)	2.9 (2)	2.9 (2)	1.1(1)	7.0(12)	15/15
BSqi	1.8(3)	3.9(1)	2.9 (5)	1.1(0.9)	17(14)	15/15
BSrr	1.8(3)	3.4(1)	3.8(4)	1.2(1)	20(54)	15/15
CMA-CSA	1.8(2)	3.3(3)	4.1(3)	6.1(9)	3.6(4)	15/15
CMA-MSR	1.5(0.9)	1.9(3)	2.3 (2)	6.7(0.9)	8.1(7)	15/15
CMA-TPA	1.8(2)	1.6(2)	2.1(2)	3.7(7)	3.0 (4)	15/15
GP1-CMAES	1.5(0.7)	1.8(0.6)	1.5(1)	2.3 (1)	4.6(7)	8/15
GP5-CMAES	1.6(2)	2.3 (2)	2.4(2)	11(15)	6.6(10)	7/15
IPOPCMAv3p	1.2(0.4)	1.6 (1)	1.7(2)	1.2(0.9)	2.5 (4)	11/15
LHD-10xDef	1.5(0.9)	1.8(0.8)	1.5(1)	1.5(1)	5.8(6)	2/15
LHD-2xDefa	1.5(0.9)	1.7 ₍₃₎	2.0(2)	1.4 (1)	2.6 (3)	4/15
RAND-2xDef	1.2(0.4)	1.7(2)	1.5(2)	1.0(1)	1.1 (1.0)	8/15
RF1-CMAES	1.8(2)	1.7 ₍₁₎	1.7(3)	3.6(5)	5.3(4)	7/15
RF5-CMAES	1.1(0)	1.3(1.0)	1.7(2)	6.1(8)	6.4(9)	6/15
Sifeg	1.8 (3)	2.4 (2)	2.1(0.7)	0.94 (0.6)	7.4(0.8)	15/15
Sif	1.8(3)	2.4 (2)	2.0 (1)	0.89 (0.2)	14(42)	15/15
Srr	1.8(3)	2.3(2)	2.0 (1)	0.91 (0.4)	12(29)	15/15

ig uic star it	marger ma	u i, with Do.	merrom corr	ccoon by one	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f17	4.0e+1:1.2	1.0e + 1:2.7	4.0e+0:10	2.5e+0:28	1.6e-1:119	5/5
BSifeg	1.2(1)	2.2 (2)	1.9(2)	6.6(22)	41(41)	14/15
BSif	1.2(1)	2.2 (2)	2.1 (3)	11(21)	40(48)	15/15
BSqi	1.2(0.8)	2.2 (2)	1.9(2)	32(0.8)	21(28)	15/15
BSrr	1.2(0.6)	2.2 (2)	1.9(2)	21(0.7)	40(57)	15/15
CMA-CSA	1.3(0.6)	3.1(10)	9.3(14)	3.5(11)	2.1(2)	15/15
CMA-MSR	1.7 (1)	20(59)	12(20)	5.8(1)	3.5(3)	15/15
CMA-TPA	1.4(0.8)	3.6(6)	3.3(6)	1.4 (1)	2.2 (0.3)	15/15
GP1-CMAES	2.2 (3)	3.8(9)	6.6(26)	4.1(10)	4.7(8)	8/15
GP5-CMAES	1.4 (0.6)	7.6(7)	17(29)	8.8(12)	5.7(4)	7/15
IPOPCMAv3p	$1.2_{(0.4)}$	2.5 (2)	1.8(2)	2.2 (0.4)	2.3 (3)	12/15
LHD-10xDef	1.4 (0.6)	1.8(2)	1.8(2)	1.6 (1.0)	4.1(5)	3/15
LHD-2xDefa	1.2(0.8)	1.5(2)	1.5 (1)	0.77 (0.6)	3.9(6)	3/15
RAND-2xDef	1.5(0.6)	1.9(2)	1.8 (1)	0.79 (0.3)	2.6 (4)	4/15
RF1-CMAES	1.3 (1)	2.6 (4)	5.6(1)	2.3 (0.7)	7.2(10)	6/15
RF5-CMAES	1.4(0)	50(50)	29(35)	16(15)	61(86)	1/15
Sifeg	1.2(0.6)	2.2 (2)	1.5(2)	1.4(2)	6.8(5)	15/15
Sif	1.2(0)	2.2 (1)	1.6 (2)	6.4(1)	8.5(11)	15/15
Srr	1.2(0.2)	2.2(2)	1.4(2)	1.9(4)	3.6(5)	15/15

ig uic suai is	ranger mar.	i i, with Do	incrioni corr	ccuon by un	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f18	4.0e+2:1.2	1.0e + 2:3.2	4.0e+1:7.2	6.3e+0:32	1.6e + 0:104	5/5
BSifeg	1.2(0)	1.2(1)	1.0(0.6)	10(2)	133(112)	10/15
BSif	1.2(1)	1.2(1)	1.0(0.7)	12(45)	126(193)	10/15
BSqi	1.2(0.6)	1.2(0.9)	1.0(0.6)	16(37)	119(162)	10/15
BSrr	1.2(0.6)	1.2(1)	1.0(0.5)	13(0.4)	98(172)	12/15
CMA-CSA	1(0.4)	2.0 (4)	1.8(2)	2.7 (6)	3.5(3)	15/15
CMA-MSR	1.3 (1)	1.8(1)	1.6(2)	6.1(6)	6.2(6)	15/15
CMA-TPA	0.94(0)	1.5(0.5)	1.2(0.3)	1.2(1)	3.0 (3)	15/15
GP1-CMAES	2.7 (3)	2.2 (2)	4.2(9)	2.0 (5)	4.3(4)	9/15
GP5-CMAES	14(0.6)	26(1)	17(53)	9.5(16)	6.5(10)	8/15
IPOPCMAv3p	2.4 (8)	1.9(0.6)	1.7(0.8)	1.1(0.9)	2.7 (10)	11/15
LHD-10xDef	1.2(1)	1.1(1)	1.2(0.8)	1.8(1)	2.3(2)	6/15
LHD-2xDefa	1.3 (1)	1.3(0.7)	0.80 (0.5)	1.0(0.9)	1.1(0.9)	9/15
RAND-2xDef	1.2(0.8)	1.1(1)	0.79 (0.8)	0.96 (0.6)	1.7(2)	7/15
RF1-CMAES	1.2(0.8)	1.9(2)	1.1(1)	1.3(0.6)	8.0(2)	6/15
RF5-CMAES	1.6(2)	3.9(8)	6.4(2)	5.0(12)	9.0(15)	6/15
Sifeg	1.2(0.6)	1.1(0.8)	1.0(0.7)	24(2)	52(98)	14/15
Sif	1.2(1)	1.1(1)	1.0(0.8)	19(1)	119(97)	11/15
Srr	1.2(1)	1.1(0.8)	1.0(0.7)	40(255)	129(97)	10/15

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig uiic suai is	ranger mar	i i, with Do	increom corr	ccoon by one	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:23	1.0e-1:26	6.3e-2:38	4.0e-2:40	1.0e-2:216	15/15
BSifeg	4.0 (3)	4.0 (3)	2.8 (2)	3.7 (4)	15(10)	15/15
BSif	4.2(3)	4.2(4)	3.0 (3)	3.7 (3)	33(77)	12/15
BSqi	3.6 (2)	3.7 (2)	2.6 (2)	4.2(5)	35(31)	14/15
BSrr	3.5 (2)	3.6 (2)	2.6 (3)	3.7 (4)	28(58)	13/15
CMA-CSA	13(4)	21(45)	18(20)	26(22)	13(8)	15/15
CMA-MSR	8.0(11)	12(10)	16(23)	26(43)	13(14)	15/15
CMA-TPA	7.0(3)	6.2(6)	14(15)	18(23)	6.2 (8)	15/15
GP1-CMAES	8.8(9)	11(15)	12(15)	12(17)	16(21)	2/15
GP5-CMAES	12(11)	17(20)	13(13)	15(14)	16(9)	2/15
IPOPCMAv3p	7.9(8)	14(24)	11(16)	12(8)	34(37)	1/15
LHD-10xDef	8.9(12)	18(15)	38(99)	36(28)	6.9 (11)	1/15
LHD-2xDefa	7.5(7)	8.3(18)	12(18)	37(45)	∞ 100	0/15
RAND-2xDef	5.6(6)	16(17)	11(13)	11(15)	6.6 (13)	1/15
RF1-CMAES	17(34)	19(11)	17(17)	28(27)	10(4)	3/15
RF5-CMAES	12(31)	12(10)	15(17)	20(40)	∞ 504	0/15
Sifeg	7.3(2)	6.8(6)	6.5(6)	7.2(5)	31(22)	14/15
Sif	6.5(5)	6.2(4)	6.7(5)	7.6(4)	25(22)	15/15
Srr	5.0(3)	5.1(4)	5.1(3)	6.3(4)	28(57)	14/15

ig uic suai is	larger mai	1 1, WIGH DO	merrom corr	colon by the	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f20	4.0e+3:1.9	2.5e+2:2.8	4.0e+0:6.3	2.5e+0:21	6.3e-1:139	15/15
BSifeg	2.1(2)	14(4)	17(32)	10(22)	28(47)	15/15
BSif	2.1(2)	13(3)	19(32)	8.0(3)	62(71)	12/15
BSqi	2.1(2)	12(1)	19(24)	8.1(14)	16(40)	15/15
BSrr	2.1(2)	14(5)	16(1)	8.3(9)	18(17)	15/15
CMA-CSA	2.4 (1)	3.0 (3)	2.4 (2)	1.6(2)	6.0 (7)	15/15
CMA-MSR	1.7(2)	1.9(2)	2.6 (4)	2.2 (0.9)	13(19)	15/15
CMA-TPA	3.2(3)	4.2(2)	4.0(5)	2.1(2)	11(13)	15/15
GP1-CMAES	1.9 ₍₃₎	2.3(2)	1.6(0.9)	1.6(0.8)	4.3 (4)	8/15
GP5-CMAES	2.0 (3)	2.0 (1)	2.2 (2)	2.0 (0.3)	8.1(8)	5/15
IPOPCMAv3p	2.3 (2)	2.5 (3)	2.3 (3)	1.5(2)	16(21)	3/15
LHD-10xDef	1.8(2)	4.0(3)	3.3(2)	2.1(2)	5.1 (4)	2/15
LHD-2xDefa	1.8(2)	2.0 (1)	2.1(0.8)	1.7(2)	11(14)	1/15
RAND-2xDef	1.3(0.7)	2.8 (2)	2.5 (1)	1.9(0.4)	11(10)	1/15
RF1-CMAES	2.1(2)	2.7 (3)	3.2(4)	3.5(2)	16(11)	3/15
RF5-CMAES	2.6 (3)	21(8)	27(23)	12(18)	26(33)	2/15
Sifeg	2.1 (1)	3.6(3)	3.6(0.9)	1.8(2)	17(12)	15/15
Sif	2.1(2)	3.7(2)	3.7(4)	1.9 ₍₁₎	20(28)	15/15
Srr	2.1(2)	3.5(3)	3.0(2)	1.8(2)	16(71)	15/15

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig one soar is	s ranger unai	i i, with Do	increon cor	iccolon by or	ic number or	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f21	1.0e+1:1.7	6.3e+0:2.6	2.5e+0:7.9	1.6e+0:30	4.0e-1:105	15/15
BSifeg	2.1 (1)	3.0 (2)	3.0(6)	2.2 (4)	42(163)	13/15
BSif	2.1(2)	2.9 (2)	3.0 (2)	2.9 (5)	62(180)	12/15
BSqi	2.1 (1)	2.5 (2)	3.4(8)	2.4 (4)	53(124)	13/15
BSrr	2.1(2)	2.9 (2)	3.4(4)	2.3 (4)	62(61)	12/15
CMA-CSA	1.5(1)	2.4 (4)	5.2(13)	4.0(14)	4.5(8)	15/15
CMA-MSR	1.9 (1)	2.6 (1)	1.7(2)	12(35)	156(985)	14/15
CMA-TPA	1.5(2)	2.7 (4)	2.5 (2)	5.2(12)	37(165)	15/15
GP1-CMAES	1.8(2)	2.1 (1)	1.6 (2)	10(12)	6.2(14)	7/15
GP5-CMAES	1.5(0.6)	2.5 (2)	3.8(1)	6.4(6)	8.9(8)	6/15
IPOPCMAv3p	1.6 (0.9)	2.0 (3)	1.9(0.9)	3.4(6)	3.7(9)	9/15
LHD-10xDef	1.4(2)	1.8(2)	1.2(2)	1.2(1)	0.74 (0.7)	12/15
LHD-2xDefa	1.4(2)	1.7(2)	1.3(0.8)	0.75 (0.5)	0.45 (0.5)	14/15
RAND-2xDef	1.5(0.9)	2.8 (3)	1.5(0.9)	0.90 (0.6)	0.49(0.2)	14/15
RF1-CMAES	1.2(0.6)	3.0 (4)	7.5(32)	13(26)	20(37)	3/15
RF5-CMAES	1.7(2)	2.1 (3)	1.2(0.9)	4.4(4)	11(6)	5/15
Sifeg	2.1 (1)	2.3 (2)	1.3(0.7)	32(2)	88(96)	12/15
Sif	2.1 (1)	2.3 (2)	1.3(0.7)	49(4)	98(79)	11/15
Srr	2.1(1)	2.3(2)	1.3(0.8)	21(1)	107(79)	11/15

ig the star is	larger mai	ii, widii De	increon con	icciion by u	ic number of	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	4.0e+1:1.3	1.6e+1:3.2	6.3e+0.9.3	1.6e + 0.25	1.0e-1:168	15/15
BSifeg	1.9 ₍₃₎	1.9(2)	3.9(2)	18(12)	94(77)	9/15
BSif	1.9 ₍₃₎	1.9(2)	3.6(7)	37(107)	80(115)	10/15
BSqi	1.9(2)	1.9(2)	4.8(5)	14(5)	91(161)	9/15
BSrr	1.9(2)	1.9(2)	5.5(9)	26(38)	85(90)	10/15
CMA-CSA	1.8(2)	1.9(3)	5.6(2)	17(34)	14(5)	15/15
CMA-MSR	1.9(2)	2.2 (3)	7.3(22)	22(11)	18(52)	15/15
CMA-TPA	1.7 (1)	1.4 (1)	1.9(2)	14(24)	7.6(5)	15/15
GP1-CMAES	1.3(0.4)	1.1(1)	10(14)	6.1(15)	6.8(8)	5/15
GP5-CMAES	1.6(2)	1.4 (1)	3.6(14)	4.1(6)	2.1(2)	11/15
IPOPCMAv3p	1.7 (0.8)	1.3 (1)	2.3 (4)	4.8(16)	4.2(6)	7/15
LHD-10xDef	1.3 (1.0)	1.2(0.9)	1.3(1)	1.8(1)	0.81(0.7)	9/15
LHD-2xDefa	1.3 (1)	1.9(2)	1.3(2)	1.5(1)	1.9(2)	4/15
RAND-2xDef	1.3 (0.6)	1.3 (1)	1.2(0.7)	1.3(1)	0.58 (0.8)	10/15
RF1-CMAES	1.6 (0.8)	1.3(2)	6.3(4)	12(15)	12(8)	3/15
RF5-CMAES	1.6 (1.0)	1.6(0.9)	8.5(26)	13(20)	12(11)	3/15
Sifeg	2.0 (4)	2.1 (3)	2.3 (0.5)	8.9(22)	84(96)	10/15
Sif	2.0(0)	2.3 (1)	2.3(2)	10(41)	103(119)	9/15
Srr	2.0(2)	2.0(2)	2.4 (4)	27(9)	89(149)	11/15

ig the star is	iaigei man	. I, with Doi	nerrom corre	colon by one	mumber of i	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f23	4.0e+1:1.5	2.5e+1:2.6	1.0e+1:7.8	4.0e+0.55	2.5e+0:103	5/5
BSifeg	2.0 (3)	1.6(2)	1.9 (1)	1.3(2)	0.91 (0.7)	15/15
BSif	2.0 (3)	1.6(2)	1.9(2)	1.3(2)	1.0(0.9)	15/15
BSqi	2.0(2)	1.6(2)	1.8(2)	1.6 (1)	1.3(1)	15/15
BSrr	2.0 (3)	1.6 (1)	2.1 (1)	1.5(1.0)	1.1(0.8)	15/15
CMA-CSA	1.3(2)	1.1(0.6)	3.2(2)	3.0 (2)	2.8 (6)	15/15
CMA-MSR	1.7 (1.0)	2.3 (3)	2.2 (3)	6.3(6)	4.8(6)	15/15
CMA-TPA	1.1(0.2)	1.2(1)	1.9(3)	3.2(4)	4.8(2)	15/15
GP1-CMAES	1.2(0.8)	1.6(2)	2.2 (3)	3.0(3)	4.4(8)	10/15
GP5-CMAES	1.7(2)	1.7(1.0)	2.0(2)	2.9 (5)	2.2(2)	13/15
IPOPCMAv3p	1.3(0.7)	1.0(0.6)	0.99(2)	1.8(1)	2.8 (3)	13/15
LHD-10xDef	1.6 (1.0)	1.1(0.7)	1.5(1.0)	1.7(2)	1.8 (1)	6/15
LHD-2xDefa	1.8(1)	2.1 (3)	2.4 (3)	1.6 (2)	4.5(7)	3/15
RAND-2xDef	1.0(1.0)	1.4 (1)	2.0(2)	1.5(0.9)	4.2(5)	3/15
RF1-CMAES	1.7 (1)	1.4 (1)	1.8 (3)	3.5(4)	2.4 (1)	14/15
RF5-CMAES	1.8(1)	1.4 (1)	1.5(2)	1.8 (3)	1.9(2)	14/15
Sifeg	1.9 (3)	1.5 (1)	1.9 (1)	1.9(2)	2.2 (2)	15/15
Sif	1.9(3)	1.5(2)	1.8(2)	1.8(2)	2.2(2)	15/15
Srr	1.9(2)	1.5(1)	1.9(1)	1.9(2)	2.3 (3)	15/15

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ng uic star is	iaigei man	i i, with Doi	increom corre	ccolon by one	o number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f24	4.0e+1:1.1	2.5e+1:2.7	1.6e+1:7.7	6.3e+0:44	2.5e+0:275	5/5
BSifeg	2.1 (3)	2.3 (2)	1.8 (3)	2.4 (1)	6.3(1.0)	14/15
BSif	2.1 (4)	2.3 (2)	1.6(2)	2.3 (2)	8.3(28)	15/15
BSqi	2.1 (0.9)	2.3 (0.8)	2.9 (0.5)	2.9 (3)	11(29)	14/15
BSrr	2.1 (4)	2.3 (2)	1.9(6)	2.6 (2)	6.4(18)	14/15
CMA-CSA	2.3 (3)	2.2(2)	1.8 (1)	1.2(1)	3.3(6)	15/15
CMA-MSR	3.1(4)	2.4(2)	1.6(2)	3.8(0.6)	5.6(7)	15/15
CMA-TPA	1.6(0.5)	2.2 (3)	1.3(1)	2.3 (5)	4.1(3)	15/15
GP1-CMAES	1.6 (1)	1.7(2)	1.9(3)	1.8 (6)	3.3 (2)	7/15
GP5-CMAES	1.8(0)	1.9(2)	1.4 (3)	3.4(6)	2.9 (4)	7/15
IPOPCMAv3p	1.6 (0.9)	2.1 (4)	1.5(1)	1.2(1)	3.9(6)	6/15
LHD-10xDef	1.9 ₍₁₎	1.4 (1)	1.5(2)	1.5(1)	∞ 100	0/15
LHD-2xDefa	1.8(1)	1.6(0.8)	2.0 (3)	2.6 (4)	∞ 100	0/15
RAND-2xDef	1.2(0.9)	2.4(2)	1.8 (1)	1.9(3)	2.5 (4)	2/15
RF1-CMAES	1.4(0.2)	1.8 (3)	1.3(1)	0.80 (0.6)	5.3(7)	4/15
RF5-CMAES	1.8(2)	1.2(0.5)	1.2(1)	2.5 (3)	13(20)	2/15
Sifeg	2.1 (3)	2.4 (2)	1.4(0.6)	2.3 (0.5)	4.9(2)	15/15
Sif	2.1 (3)	2.4 (3)	1.4(0.6)	2.1(2)	5.1(13)	15/15
Srr	2.1(2)	2.4(2)	1.4(0.8)	2.1(1)	7.4(4)	15/15

i is iaigei uic	ı, wıcıı ı	Joint Citom C	orrection by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	1.6e+1:3.0	1.0e+1:3.6	1.0e-8:8.0	1.0e-8:8.0	1.0e-8:8.0	15/15
BSifeg	1.7(2)	1.5(1)	2.1 (0.3)	2.1 (0.3)	2.1 (0.3)	15/15
BSif	1.7(2)	1.5(2)	2.1 (0.3)	2.1(0.3)	2.1(0.2)	15/15
BSqi	1.7 ₍₁₎	1.5(1)	2.1 (0.3)	2.1(0.2)	2.1(0.3)	15/15
BSrr	1.7 ₍₁₎	1.5(1)	2.1(0.2)	2.1(0.2)	2.1(0.3)	15/15
CMA-CSA	5.4(2)	5.6(5)	52(3)	52(4)	52(4)	15/15
CMA-MSR	2.1(2)	2.4 (3)	83(8)	83(9)	83(12)	15/15
CMA-TPA	2.9 ₍₂₎	3.4(3)	55(20)	55(14)	55(18)	15/15
GP1-CMAES	2.4(2)	3.2(2)	31(3)	31(5)	31(5)	15/15
GP5-CMAES	2.2 (2)	2.8 (2)	46(36)	46(29)	46(36)	15/15
IPOPCMAv3p	2.7(4)	2.8 (2)	52(7)	52(8)	52(6)	15/15
LHD-10xDef	2.1(2)	3.6(4)	∞	∞	∞ 150	0/15
LHD-2xDefa	2.1(2)	2.2 (2)	∞	∞	∞ 150	0/15
RAND-2xDef	1.8(2)	2.3 (2)	∞	∞	∞ 150	0/15
RF1-CMAES	2.4(2)	2.3 (1)	133(108)	133(106)	133(74)	9/15
RF5-CMAES	12(41)	11(2)	∞	∞	∞ 753	0/15
Sifeg	1.7(2)	1.5(1)	7.5(0.7)	7.5(1)	7.5(1)	15/15
Sif	1.7(2)	1.5(1.0)	7.5(1)	7.5(0.7)	7.5(0.8)	15/15
Srr	1.7(1)	1.5(1)	7.2(0.6)	7.2(0.8)	7.2(0.9)	15/15

is larger the	an 1, with i	Jonici Tom C	offection by	the number t	or motanees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f2	6.3e+6:1.5	6.3e+5:4.3	4.0e+4:10	1.0e + 2:32	1.0e-8:49	15/15
BSifeg	3.7(4)	2.8 (0.4)	1.4(0.2)	0.66 (0.3)	1.2(0.3)	15/15
BSif	3.7(4)	2.8 (0.9)	1.4(0.5)	0.68(0.2)	1.2(0.1)	15/15
BSqi	3.7(4)	2.8 (0.4)	1.4(0.2)	0.62 (0.1)	1.1(0.3)	15/15
BSrr	3.7(4)	2.8 (1)	1.4(0.5)	0.66 (0.0)	1.3(0.2)	15/15
CMA-CSA	1.5(0.3)	1.4(0.7)	3.5(4)	7.3(2)	18(2)	15/15
CMA-MSR	2.3 (1.0)	1.3(0.5)	3.1(5)	6.9(2)	22(3)	15/15
CMA-TPA	2.2 (1.0)	2.0 (3)	3.3(5)	7.2(2)	19(3)	15/15
GP1-CMAES	3.1(3)	2.5 (2)	2.4 (1)	5.4(1)	45(38)	5/15
GP5-CMAES	3.1(3)	1.9(0.9)	2.3 (1)	2.5 (1.0)	21(28)	8/15
IPOPCMAv3p	3.0 (4)	2.3 (2)	2.4 (3)	8.9(6)	∞ 751	0/15
LHD-10xDef	1.0(0.3)	1.2(1)	2.7 (3)	70(92)	∞ 150	0/15
LHD-2xDefa	1.2(1.0)	1.2(1)	1.3(1)	70(89)	∞ 150	0/15
RAND-2xDef	1.2(1.0)	1.0(1)	2.3 (1)	16(16)	∞ 150	0/15
RF1-CMAES	2.2(2)	1.3 (1)	15(2)	60(69)	∞ 751	0/15
RF5-CMAES	1.9(3)	1.4 (1)	7.0(1)	167(184)	∞ 760	0/15
Sifeg	3.7(4)	2.9 (2)	1.9(0.8)	1.1 (0.1)	1.7(0.3)	15/15
Sif	3.7(4)	2.9 (0.4)	1.9(0.8)	1.2(0.4)	1.6 (0.3)	15/15
Srr	3.7(4)	2.9 (0.2)	1.9(1)	1.0(0.1)	1.7(0.1)	15/15

Table 28: 03-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger one	an 1, wron 1	John Critoni CC	niccuon by	one number of	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f3	1.0e + 2:2.2	6.3e+1:6.1	4.0e+1:10	1.6e + 1:32	4.0e+0:319	15/15
BSifeg	3.1(3)	1.6 (1.0)	1.3(0.2)	0.64 (0.3)	0.18(0.1)	15/15
BSif	3.1(3)	1.6(1.0)	1.3(0.2)	0.64(0.4)	0.19 (0.1)	15/15
BSqi	3.1(2)	1.6(0.9)	1.3(0.2)	0.62 (0.2)	0.19(0.1)	15/15
BSrr	3.1(2)	1.6(0.9)	1.3(0.2)	0.60(0.2)	0.19(0.1)	15/15
CMA-CSA	3.5(4)	2.1(2)	2.5 (2)	3.2(2)	3.3(3)	15/15
CMA-MSR	3.0(3)	1.8(2)	2.5 (2)	5.2(2)	2.7 (3)	15/15
CMA-TPA	3.0 (0.9)	1.8(2)	2.3 (2)	2.3 (2)	2.6 (2)	15/15
GP1-CMAES	2.0 (3)	1.6(2)	1.9(2)	3.7(2)	1.1(0.9)	13/15
GP5-CMAES	1.9(2)	1.4 (1)	1.5(0.9)	1.4(0.6)	1.6(2)	11/15
IPOPCMAv3p	2.8 (3)	2.3 (3)	3.5(3)	2.9 (3)	1.9(3)	10/15
LHD-10xDef	2.9 (2)	1.7 ₍₁₎	4.1(2)	4.0(0.3)	3.5(4)	2/15
LHD-2xDefa	1.6 (0.9)	1.3 (1)	1.4 (1)	1.7(0.5)	1.2(1)	5/15
RAND-2xDef	1.7(1)	1.1(1)	1.6 (1.0)	1.6(1.0)	1.2(1)	5/15
RF1-CMAES	2.7 (2)	2.6 (2)	2.3 (0.6)	5.9(12)	6.8(13)	4/15
RF5-CMAES	2.4 (1)	8.2(1)	9.2(28)	14(26)	11(18)	3/15
Sifeg	3.1(3)	1.6 (0.6)	1.4(0.3)	0.72 (0.1)	0.21(0.0)	15/15
Sif	3.1(2)	1.6(0.2)	1.4(0.3)	0.72 (0.3)	0.22 (0.1)	15/15
Srr	3.1(3)	1.6 (1)	1.4(0.3)	0.69(0.5)	0.20(0.0)	15/15

-	15 101 501 0110	··· - · · · · · · · · · · · · · · · · ·	OHIOHOHI CO.	110001011 05 0	iic iidiiibci o	i ilibualicos.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f4	1.0e+2:5.4	6.3e+1:10	6.3e+1:10	2.5e+1:36	4.0e + 0.617	15/15
	BSifeg	2.3 (1)	2.0 (2)	2.0(2)	1.1(0.6)	0.16(0.1)	15/15
	BSif	2.2 (3)	2.1(2)	2.1(2)	1.1(0.6)	0.16(0.1)	15/15
	BSqi	2.2 (3)	2.0(2)	2.0 (1)	1.1(0.5)	0.17 (0.0)	15/15
	BSrr	2.3 (3)	2.0 (1)	2.0(2)	1.1(0.6)	0.16(0.1)	15/15
	CMA-CSA	1.9(3)	1.7(2)	1.7(0.8)	1.7 (1)	3.9(5)	15/15
	CMA-MSR	3.0 (0.6)	2.1(2)	2.1(1)	2.4 (0.9)	7.0(7)	15/15
	CMA-TPA	1.9(2)	2.1(2)	2.1(2)	2.7 (2)	4.0(4)	15/15
	GP1-CMAES	2.5 (3)	2.3 (1)	2.3 (2)	2.0 (0.6)	8.3(10)	2/15
	GP5-CMAES	3.1(0.9)	6.0(2)	6.0(5)	4.6(11)	5.5(5)	3/15
	IPOPCMAv3p	1.9 (1)	2.5 (2)	2.5(2)	3.5(1.0)	8.3(13)	2/15
	LHD-10xDef	1.0(0.9)	2.1 (1)	2.1 (4)	2.9 ₍₂₎	∞ 150	0/15
	LHD-2xDefa	1.2(2)	1.4(2)	1.4(2)	2.5 (3)	3.6(5)	1/15
	RAND-2xDef	1.2(0.7)	2.1(2)	2.1 (1)	2.1 (3)	∞ 150	0/15
	RF1-CMAES	1.4(2)	3.2(3)	3.2(3)	33(16)	∞ 751	0/15
	RF5-CMAES	19(0.3)	16(15)	16(28)	37(26)	∞ 753	0/15
	Sifeg	2.1(2)	1.7(0.9)	1.7(0.5)	0.81(0.5)	0.14(0.0)	15/15
	Sif	2.1(2)	1.8(0.5)	1.8 (1)	0.85 (0.2)	0.14(0.1)	15/15
	Srr	2.1 (2)	1.7 (1)	1.7 (1)	0.80 (0.3)	$0.14_{(0.1)}$	15/15

Table 30: 03-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	4.0e+1:2.2	2.5e+1:4.8	1.0e-8:6.6	1.0e-8:6.6	1.0e-8:6.6	15/15
BSifeg	3.5(1)	1.9(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSif	3.5(0.5)	1.9(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	3.5(0.9)	1.9(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSrr	3.5(0.7)	1.9(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
CMA-CSA	3.1(3)	2.4 (5)	5.5(2)	5.5(4)	5.5(3)	15/15
CMA-MSR	3.0(2)	2.0 (1)	4.9(2)	4.9(3)	4.9(3)	15/15
CMA-TPA	1.8(2)	1.9 (1)	3.9(2)	3.9(2)	3.9(2)	15/15
GP1-CMAES	3.7(3)	2.2 (1)	24(56)	24(6)	24(28)	14/15
GP5-CMAES	3.2(2)	2.4 (1)	4.7(3)	4.7(3)	4.7(4)	15/15
IPOPCMAv3p	4.3(4)	3.1(4)	10(13)	10(16)	10(13)	15/15
LHD-10xDef	1.5(2)	2.2 (2)	13(0.4)	13(0.4)	13(0.4)	15/15
LHD-2xDefa	1.8(1)	2.0(2)	3.1(0.8)	3.1(0.4)	3.1(0.4)	15/15
RAND-2xDef	2.2 (0.9)	2.2 (1)	3.1(0.4)	3.1(0.4)	3.1(0.4)	15/15
RF1-CMAES	3.7(5)	2.2 (2)	19(41)	19(22)	19(40)	15/15
RF5-CMAES	3.8(2)	11(32)	150(114)	150(263)	150(97)	7/15
Sifeg	3.5(0.6)	1.9(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.1)	15/15
Sif	3.5(0.7)	1.9(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	3.5(0.5)	1.9(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

i is larger one	an 1, with	Domerrom ,	correction by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f6	6.3e+4:1.8	6.3e + 3:3.7	4.0e+1:13	1.0e + 1:34	6.3e-4:159	15/15
BSifeg	1.9(3)	1.2(1)	79(273)	146(132)	1254(864)	2/15
BSif	1.9(2)	1.2(2)	99(184)	209(699)	∞ 3e4	0/15
BSqi	1.9(2)	1.2(0.7)	30(19)	231(9)	853(961)	3/15
BSrr	1.9(2)	1.2(1)	119(211)	114(178)	1324(805)	2/15
CMA-CSA	1.7(3)	1.3(0.3)	1.6(0.5)	1.5(2)	2.6 (0.7)	15/15
CMA-MSR	2.3 (6)	2.1 (10)	2.1(2)	2.8 (1)	3.6(0.5)	15/15
CMA-TPA	2.4 (4)	2.2(2)	3.0(2)	3.1(0.7)	3.0 (0.9)	15/15
GP1-CMAES	3.7(6)	2.9 (3)	1.6 (1)	2.7 (3)	∞ 751	0/15
GP5-CMAES	3.7(6)	3.3(4)	3.4(4)	2.5 (2)	∞ 760	0/15
IPOPCMAv3p	4.0(2)	3.8(3)	2.8 (4)	2.8 (2)	3.2 (0.7)	15/15
LHD-10xDef	0.81(0.8)	1.6(0.5)	2.0 (1)	4.2(6)	∞ 150	0/15
LHD-2xDefa	0.85 (0.3)	0.85 (0.5)	1.4(2)	4.8(6)	∞ 150	0/15
RAND-2xDef	0.96 (0.8)	1.1(0.5)	2.6 (3)	3.1(3)	∞ 150	0/15
RF1-CMAES	2.7 (4)	2.3 (2)	2.7 (1)	13(33)	∞ 751	0/15
RF5-CMAES	3.2(2)	34(103)	23(48)	42(54)	∞ 760	0/15
Sifeg	1.9(2)	1.2(1)	9.4(11)	81(244)	798(891)	3/15
Sif	1.9(3)	1.2(1)	25(75)	106(430)	∞ 3e4	0/15
Srr	1.9(2)	1.2(1)	35(25)	75(104)	543(577)	4/15

Table 32: 03-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

	,					
#FEs/D	0.5	1.2	3	10	50	#succ
f7	2.5e+2:1.5	6.3e+1:4.2	1.0e + 1:11	2.5e+0:38	4.0e-1:174	15/15
BSifeg	1.7 (1.0)	34(241)	49(133)	142(494)	119(208)	10/15
BSif	1.7(2)	34(241)	61(45)	235(400)	233(252)	7/15
BSqi	1.7 (3)	34(1)	167(178)	215(402)	131(196)	10/15
BSrr	1.7(2)	34(121)	131(443)	325(814)	158(233)	9/15
CMA-CSA	1.9 (1)	2.4(2)	2.8 (2)	1.9(1)	0.89(1)	15/15
CMA-MSR	2.2(2)	1.8(2)	3.5(3)	2.1(2)	1.3 (1)	15/15
CMA-TPA	3.0 (2)	1.8(2)	3.8(6)	2.7 (1)	1.4 (1)	15/15
GP1-CMAES	1.4(0.2)	1.3(0.7)	2.0 (2)	1.5(2)	0.56 (0.6)	15/15
GP5-CMAES	2.1 (3)	2.3 (2)	2.0 (1)	1.1(0.8)	0.63 (1)	15/15
IPOPCMAv3p	2.8 (2)	3.9(3)	4.9(5)	2.8 (3)	1.2(0.7)	15/15
LHD-10xDef	1.2(0.7)	1.8(2)	3.7(4)	2.1 (1)	1.9(2)	6/15
LHD-2xDefa	1.8 (1.0)	1.8(2)	1.9 (1)	1.5(2)	0.98 (0.8)	9/15
RAND-2xDef	1.7 (1)	1.2(1)	2.4 (2)	1.6(2)	0.90 (0.9)	10/15
RF1-CMAES	2.0(2)	3.3(1.0)	7.5(7)	3.8(6)	2.1(5)	12/15
RF5-CMAES	2.5 (3)	2.7(2)	10(24)	20(11)	31(36)	2/15
Sifeg	1.7 (0.5)	1.9(2)	37(45)	205(380)	122(76)	11/15
Sif	1.7(2)	2.0(2)	61(0.6)	234(188)	131(277)	10/15
Srr	1.7 (3)	1.9(2)	97(0.7)	297(543)	154(280)	9/15

10 101601 011	an 1, with	Domici Citi	office of officers	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f8	1.0e+4:1.8	1.6e + 3:4.0	1.0e + 2:15	6.3e+0:31	1.0e-1:152	15/15
BSifeg	1.7(2)	2.4 (1)	6.6(14)	7.3(14)	398(343)	6/15
BSif	1.7 ₍₁₎	2.4 (1)	6.0(10)	6.1(11)	266(223)	7/15
BSqi	1.7 ₍₁₎	2.4 (1)	4.8(10)	6.7(11)	789(1355)	3/15
BSrr	1.7(3)	2.4 (2)	4.2(12)	4.5(5)	595(363)	4/15
CMA-CSA	4.8(7)	4.1(5)	3.2(2)	3.1(1)	3.3 (1)	15/15
CMA-MSR	3.4(2)	3.2(4)	3.4(2)	4.0(3)	4.5(1)	15/15
CMA-TPA	2.6 (3)	2.5 (4)	2.9 (2)	3.5(2)	3.7 (1.0)	15/15
GP1-CMAES		2.6 (3)	2.7 (2)	2.9(2)	13(8)	5/15
GP5-CMAES	2.9 (2)	2.7 (3)	2.1 (1.0)	3.0(7)	4.4 (4)	10/15
IPOPCMAv3p	3.9(3)	3.3(2)	3.2(1)	3.2(1)	5.5(3)	10/15
LHD-10xDef	2.3 (1)	2.9 (2)	5.0(3)	10(8)	∞ 150	0/15
LHD-2xDefa	1.5(0.8)	2.0(2)	1.8(0.5)	3.3(3)	∞ 150	0/15
RAND-2xDef	2.0 (1)	2.2(2)	1.9 ₍₁₎	3.0(2)	∞ 150	0/15
RF1-CMAES	2.0 (0.8)	2.7 (3)	4.0(9)	13(20)	∞ 751	0/15
RF5-CMAES	2.6 (4)	1.9 (4)	19(22)	53(52)	∞ 753	0/15
Sifeg	1.7(2)	2.4 (0.8)	1.4(1)	1.8(2)	123(135)	11/15
Sif	1.7 ₍₁₎	2.4 (0.8)	1.3(0.2)	2.1 (3)	261(107)	7/15
Srr	1.7(1)	2.4(1)	1.3(2)	1.7(2)	211(359)	8/15

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f9	1.0e+1:21	6.3e+0:25	4.0e+0:32	2.5e+0:48	6.3e - 3:152	15/15
BSifeg	14(30)	12(25)	48(152)	107(222)	∞ 3e4	0/15
BSif	12(21)	11(6)	39(15)	179(220)	∞ 3e4	0/15
BSqi	8.5(14)	7.7(12)	50(13)	88(15)	1267(1585)	2/15
BSrr	8.0(15)	8.2(15)	41(9)	75(17)	∞ 3e4	0/15
CMA-CSA	3.8(0.9)	3.7(1)	3.2(2)	3.2 (4)	4.3 (3)	15/15
CMA-MSR	5.8(3)	6.9(13)	7.0(7)	7.3(7)	5.9 (3)	15/15
CMA-TPA	4.3(2)	4.6(2)	4.9(1)	6.0(6)	5.4 (2)	15/15
GP1-CMAES	3.5(1)	4.0(6)	5.5(1)	7.7(8)	35(40)	2/15
GP5-CMAES	2.4 (1.0)	2.5 (1)	3.2 (1)	4.0(0.9)	12(22)	5/15
IPOPCMAv3p	3.5(3)	3.5(2)	3.2 (2)	3.3 (4)	8.2(6)	8/15
LHD-10xDef	10(12)	16(14)	16(11)	22(28)	∞ 150	0/15
LHD-2xDefa	2.5 (2)	2.9 (2)	3.3(2)	5.8(3)	∞ 150	0/15
RAND-2xDef	2.6 (1)	3.3(3)	3.0 (1)	4.0 (4)	∞ 150	0/15
RF1-CMAES	8.1(20)	7.8(16)	9.1(24)	12(17)	∞ 751	0/15
RF5-CMAES	37(38)	34(52)	33(34)	32(31)	∞ 753	0/15
Sifeg	1.9(0.8)	1.8(2)	63(76)	73(209)	∞ 3e4	0/15
Sif	1.8(1)	1.7(2)	40(0.8)	87(211)	∞ 3e4	0/15
Srr	1.5(0.4)	1.4 (1)	101(184)	135(249)	∞ 2e4	0/15

ng unc suar is	raiger mai	i i, with De	microm co.	iiccolon by o	ne number or .	mount
#FEs/D	0.5	1.2	3	10	50	#succ
f10	6.3e+6:1.7	1.6e + 5:4.4	4.0e+4:12	4.0e+2:37	1.0e+0:152	15/15
BSifeg	1.0(0.3)	2.5 (1)	4.7(13)	411(417)	1211(992)	1/15
BSif	1.0(0.3)	2.5 (1)	5.7(0.2)	578(334)	1253(1696)	1/15
BSqi	1.0(0.3)	2.5 (1)	6.9(0.2)	304(351)	725(915)	2/15
BSrr	1.0(0.3)	2.5 (1)	5.4(0.3)	691(454)	1155(1570)	1/15
CMA-CSA	1.4(2)	2.3 (2)	2.8 (2)	4.8(2)	3.0 (1.0)	15/15
CMA-MSR	1.4(2)	3.0 (1)	2.0 (2)	4.0(2)	3.4(1)	15/15
CMA-TPA	1.2(0.9)	3.2(3)	1.9 (1)	3.2 (2)	3.1(0.9)	15/15
GP1-CMAES	2.6 (0.6)	2.7 (3)	2.4 (2)	4.3(2)	2.8 (1)	15/15
GP5-CMAES	1.3(0.4)	1.8 (3)	1.6 (1)	2.3 (1)	1.1(0.4)	15/15
IPOPCMAv3p	2.2 (3)	2.7 (4)	2.0 (1)	5.8(5)	4.4(6)	13/15
LHD-10xDef	1.4 (1)	2.4 (2)	2.9 (3)	14(16)	∞ 150	0/15
LHD-2xDefa	1.2(0.6)	3.0(2)	1.8 (1)	11(11)	∞ 150	0/15
RAND-2xDef	1.3(2)	3.0 (3)	2.1 (1)	8.4(12)	∞ 150	0/15
RF1-CMAES	1.5(2)	2.4 (2)	7.8(32)	34(55)	∞ 751	0/15
RF5-CMAES	2.0(2)	3.2(3)	1.5 (1)	49(79)	∞ 753	0/15
Sifeg	1.0 (1)	2.7 (1)	1.5(0.3)	173(211)	467(452)	1/15
Sif	1.0 (1)	2.7 (1)	1.5(0.4)	109(121)	482(552)	1/15
Srr	1.0(0.3)	2.7 (0.8)	1.5(0.4)	105(181)	194(326)	2/15

18 0110 5001 1	o iai goi tiia	11 1, WIUII D	OIIICII OIII CO	iiccoioii by	one mannoer or .	
#FEs/D	0.5	1.2	3	10	50	#succ
f11	2.5e+6:1.9	4.0e + 5:4.5	6.3e+4:9.4	2.5e+1:36	2.5e-1:174	15/15
BSifeg	1.6 (1)	2.0 (1)	1.2(0.7)	138(224)	1140(884)	1/15
BSif	1.6 (1)	2.0 (1.0)	1.2(0.7)	168(241)	365(243)	3/15
BSqi	1.6 (3)	2.0 (1)	1.2(0.2)	141(245)	∞ 2e4	0/15
BSrr	1.6 (1)	2.0 (1)	1.2(0.2)	126(274)	1061(1784)	1/15
CMA-CSA	1.0(0.8)	1.1(1)	1.3(2)	6.2 (4)	3.0(0.8)	15/15
CMA-MSR	2.0(2)	2.6 (2)	1.8(2)	10(5)	3.0 (0.5)	15/15
CMA-TPA	1.5(2)	1.5(1)	1.5(1)	7.8(5)	3.1(0.9)	15/15
GP1-CMAES	2.5 (3)	2.1 (2)	1.7 (1)	6.7 (6)	2.8 (0.6)	15/15
GP5-CMAES	2.3 (2)	1.9 ₍₁₎	1.9(0.6)	2.7 (1)	1.2(0.2)	15/15
IPOPCMAv3	p1.8(2)	2.3 (2)	1.9(2)	11(8)	13(9)	5/15
LHD-10xDef	1.9 (1)	2.4 (4)	2.4 (3)	30(44)	∞ 150	0/15
LHD-2xDefa	1.8(2)	2.1(2)	1.5(1)	11(16)	∞ 150	0/15
RAND-2xDef	1.4 (1)	1.4 (1)	1.4(0.9)	11(12)	∞ 150	0/15
RF1-CMAES	1.6(2)	1.3(1)	1.3(0.9)	34(48)	61(90)	1/15
RF5-CMAES	2.3 (2)	1.9 ₍₁₎	1.9 ₍₁₎	15(25)	∞ 753	0/15
Sifeg	1.7(2)	2.0(1)	1.4(0.9)	50(104)	∞ 7533	0/15
Sif	1.7 (1)	2.0(1)	1.4(0.3)	66(123)	∞ 7579	0/15
Srr	1.7(4)	2.0(1)	1.4(0.5)	60(177)	189(350)	3/15

ig uiic suai is	iaigei man	i, with Don	iiciioiii coiic	ction by the	number of n	instance
#FEs/D	0.5	1.2	3	10	50	#succ
f12	1.0e + 8:1.5	1.0e + 7:3.6	6.3e + 5:13	6.3e + 2:31	1.0e + 0:168	15/15
BSifeg	1.1(0.7)	1.3(1.0)	1.1(0.2)	10(7)	48(52)	11/15
BSif	1.1 (1.0)	1.3 (1)	1.1(0.3)	8.6(17)	80(72)	9/15
BSqi	1.1(2)	1.3(2)	1.1(0.4)	43(0.1)	71(83)	11/15
BSrr	1.1(0.7)	1.3(0.6)	1.1(0.4)	27(8)	46(128)	10/15
CMA-CSA	1.2(2)	2.2 (1)	1.6 (1)	5.1(2)	5.1(3)	15/15
CMA-MSR	1.7(2)	1.9(2)	3.2(2)	7.1(2)	6.7(14)	15/15
CMA-TPA	1.7(2)	2.5 (2)	3.1(2)	5.6(2)	5.0 (7)	15/15
GP1-CMAES	1.0(1)	1.7(2)	2.3 (2)	4.2 (3)	4.3 (3)	10/15
GP5-CMAES		2.5 (2)	2.3 (1)	5.6(1)	4.9 (10)	8/15
IPOPCMAv3p	1.4 (1)	2.6 (3)	2.9 (3)	5.3(2)	5.9(6)	8/15
LHD-10xDef	0.96 (1.0)	1.6 (2)	4.2(3)	∞	∞ 150	0/15
LHD-2xDefa	1.1(0.7)	1.8(2)	1.6(0.8)	4.7(3)	13(12)	1/15
RAND-2xDef	1(0.3)	1.5(0.9)	1.6 (0.9)	4.2(5)	∞ 150	0/15
RF1-CMAES	1.0(3)	1.6 (2)	2.4 (2)	5.1(2)	20(20)	3/15
RF5-CMAES	1.2(0.5)	10(34)	18(26)	65(104)	∞ 753	0/15
Sifeg	1.1(0)	1.3(2)	1.2(0.4)	2.9 (0.6)	20(18)	9/15
Sif	1.1 (1)	1.3(0.9)	1.4(0.3)	5.8(13)	20(26)	9/15
Srr	1.1(0)	1.3(1.0)	1.3(0.3)	3.4 (11)	19(33)	10/15

ig uiic suai is	mager mar	i i, with Do	incrioni cor.	rection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f13	1.0e + 3:1.6	4.0e+2:6.8	2.5e+2:11	4.0e+1:30	2.5e-3:182	15/15
BSifeg	1.7 (1)	1.6(0.7)	1.4(0.9)	89(513)	∞ 3e4	0/15
BSif	1.7(2)	1.6 (1)	1.4(0.5)	59(19)	∞ 3e4	0/15
BSqi	1.7(2)	1.6(0.7)	1.3(0.3)	26(68)	∞ 3e4	0/15
BSrr	1.7(3)	1.6(0.8)	1.4(0.7)	50(165)	∞ 2e4	0/15
CMA-CSA	3.0 (4)	2.2 (3)	1.8(2)	3.7(2)	3.4(0.5)	15/15
CMA-MSR	2.4 (3)	1.8(2)	2.0 (1)	4.2(2)	3.9(0.6)	15/15
CMA-TPA	1.8(0.9)	1.8(2)	2.6 (5)	3.5(2)	3.9(0.7)	15/15
GP1-CMAES	0.75 (0.3)	1.7 (1)	1.5(0.8)	2.0 (0.9)	19(16)	3/15
GP5-CMAES	2.0(2)	1.4(2)	1.2(0.9)	1.4(0.4)	3.2 (3)	11/15
IPOPCMAv3p	1.6 (3)	1.7(2)	1.9(0.8)	3.4(2)	12(7)	5/15
LHD-10xDef	1.6 (4)	1.5(0.6)	2.9 (3)	3.1(0.7)	∞ 150	0/15
LHD-2xDefa	1.2(0.8)	1.1(0.8)	1.3(0.8)	1.3(0.6)	∞ 150	0/15
RAND-2xDef	1.4(0.9)	0.99 (1)	1.1(0.9)	1.5(2)	∞ 150	0/15
RF1-CMAES	1.9(2)	1.6 (1)	1.8(2)	4.2(0.7)	∞ 751	0/15
RF5-CMAES	1.9(2)	2.0(2)	2.5 (5)	21(11)	∞ 760	0/15
Sifeg	1.7 (3)	1.5 (1)	1.3(0.3)	169(270)	∞ 2e4	0/15
Sif	1.7 (1)	1.5 (1)	1.3(0.4)	76(0.9)	∞ 2e4	0/15
Srr	1.7(1)	1.5(0.9)	1.3(0.2)	58(45)	∞ 2e4	0/15

ig uiic suai is	marger mai	i i, with Do	merrom corr	ccoon by on	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f14	1.0e+1:2.2	6.3e+0:4.2	2.5e+0:10	6.3e-2:31	2.5e-6:160	15/15
BSifeg	1.8 (1)	2.1 (3)	2.7 (1)	5.0(8)	∞ 3e4	0/15
BSif	1.8(2)	2.2 (1)	4.3(10)	5.5(7)	∞ 3e4	0/15
BSqi	1.8(2)	2.3 (2)	2.4(0.9)	4.2(6)	∞ 3e4	0/15
BSrr	1.8(2)	1.9(2)	2.5 (1)	5.6(9)	∞ 3e4	0/15
CMA-CSA	3.8(3)	3.1(1)	2.3(2)	4.1(0.7)	4.0(0.5)	15/15
CMA-MSR	2.5(2)	1.8(2)	2.4(2)	5.3(2)	4.4(0.9)	15/15
CMA-TPA	4.4(5)	3.7(3)	3.4(2)	4.5(2)	3.8 (0.5)	15/15
GP1-CMAES	3.9(5)	2.7 (3)	2.2 (1)	2.7 (0.8)	∞ 751	0/15
GP5-CMAES	3.3(4)	2.3 (2)	2.0 (1)	1.9(0.6)	68(40)	1/15
IPOPCMAv3p	2.2 (3)	2.3 (4)	2.7(2)	4.0(1)	23(38)	3/15
LHD-10xDef	1.5(2)	1.4 (3)	2.0(2)	4.0(0.4)	∞ 150	0/15
LHD-2xDefa	1.9 (1)	1.6 (1)	1.6(0.9)	1.8(0.9)	∞ 150	0/15
RAND-2xDef	2.3(2)	1.5(0.7)	1.5(1)	2.3 (1.0)	∞ 150	0/15
RF1-CMAES	2.9(5)	2.7 (4)	4.7(8)	16(30)	∞ 751	0/15
RF5-CMAES	1.9(2)	1.1(1.0)	20(57)	47(43)	∞ 753	0/15
Sifeg	1.8(2)	1.7(1)	2.0 (1)	2.6 (2)	∞ 3e4	0/15
Sif	1.8(2)	1.7(2)	2.0(2)	3.0 (3)	∞ 3e4	0/15
Srr	1.8(2)	1.7(1)	1.9(1)	1.9 (1)	∞ 3e4	0/15

ng une star is	larger man	1, with Don	ierrom corre	ction by the	number of it	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:1.6	6.3e+1:5.6	4.0e+1:12	1.6e + 1:68	6.3e+0:221	15/15
BSifeg	1.7(2)	1.7(0.9)	2.6 (0.4)	43(44)	72(50)	11/15
BSif	1.7 ₍₁₎	1.7(2)	1.9(4)	44(53)	59(104)	13/15
BSqi	1.7(2)	1.7 (1)	3.4(9)	51(119)	64(117)	12/15
BSrr	1.7(2)	1.7 (1)	3.3(10)	31(5)	56(96)	13/15
CMA-CSA	3.0 (4)	2.7 (3)	2.1(1)	1.3(0.5)	0.85 (0.5)	15/15
CMA-MSR	1.7 (1)	1.6(0.8)	1.4 (1)	1.4 (1)	3.7(3)	15/15
CMA-TPA	1.9 (1)	1.5(2)	2.2 (2)	1.4(0.8)	0.91 (0.5)	15/15
GP1-CMAES	4.4(3)	2.9 (2)	2.3 (1)	1.0(0.2)	1.9(2)	11/15
GP5-CMAES	2.8 (3)	2.0 (1)	1.7(0.7)	0.67 (0.8)	1.6 (2)	13/15
IPOPCMAv3p	4.2(11)	2.5 (3)	1.8(2)	1.4(0.4)	1.1(0.5)	14/15
LHD-10xDef	1.9 (1)	2.2 (2)	3.3(2)	2.0 (1)	3.3(4)	3/15
LHD-2xDefa	2.2 (2)	1.3 (1)	1.3(1)	0.68(0.4)	1.1(0.7)	7/15
RAND-2xDef	1.4 (0.9)	0.99 (0.8)	0.98 (0.5)	0.74(0.5)	0.57 (0.3)	12/15
RF1-CMAES	2.4 (3)	2.3 (3)	1.7(0.7)	0.79 (0.7)	2.0 (6)	11/15
RF5-CMAES	2.4 (2)	18(3)	13(2)	5.5(9)	11(14)	4/15
Sifeg	1.7(2)	1.6 (1)	0.97 (0.6)	17(0.3)	36(78)	13/15
Sif	1.7 (1)	1.6 (1)	0.97 (0.4)	23(83)	45(26)	13/15
Srr	1.7(2)	1.6(1.0)	0.95 (0.6)	11(0.3)	32(50)	15/15

ig the star is	iaigei man	i i, with Doi	increom com	cenon by an	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f16	6.3e+1:1.5	2.5e+1:8.2	1.6e+1:10	1.0e+1:41	2.5e+0:208	15/15
BSifeg	1.6 (1)	1.5(1)	1.9(1.0)	1.6 (2)	24(7)	14/15
BSif	1.6 (1)	1.5(1)	2.7 (7)	2.0 (1)	20(41)	15/15
BSqi	1.6 (1)	1.5(1)	1.8 (1)	2.0(2)	13(23)	15/15
BSrr	1.6 (1)	1.5 (1)	1.9 (1)	1.5 (1)	10(2)	15/15
CMA-CSA	2.8 (3)	1.5(1)	4.4(5)	1.7 ₍₁₎	3.0 (5)	15/15
CMA-MSR	1.7(1)	3.3(3)	7.7(4)	6.7(11)	4.1(5)	15/15
CMA-TPA	1.7(2)	1.8(2)	3.4(7)	3.2(4)	2.7 (4)	15/15
GP1-CMAES	2.0(2)	1.6 (2)	2.9 (2)	1.3 (1)	2.7 (6)	10/15
GP5-CMAES	2.1(2)	1.2(2)	1.4(2)	0.78 (0.9)	2.1 (4)	12/15
IPOPCMAv3p	1.5(1)	1.7(1)	2.2 (1)	1.6 (2)	1.9(2)	12/15
LHD-10xDef	1.7(1)	0.76 (0.8)	2.1 (4)	0.99 (0.9)	1.0(1.0)	8/15
LHD-2xDefa	1.3(0)	1.1(0.7)	2.6 (2)	1.0 (1)	0.53 (0.5)	11/15
RAND-2xDef	1.9(2)	1.6 (1)	1.8(2)	1.4(0.7)	1.0(0.4)	8/15
RF1-CMAES	2.5 (4)	1.8(2)	2.8 (3)	1.1(1)	2.6 (3)	10/15
RF5-CMAES	2.6 (2)	1.4(2)	6.4(35)	2.8 (0.4)	2.6 (4)	10/15
Sifeg	1.6 (1)	1.9(2)	2.7 (2)	1.1(0.6)	6.3(21)	15/15
Sif	1.6 (1)	1.8(2)	2.6 (1)	1.0(0.7)	3.6(4)	15/15
Srr	1.6(1)	1.9(2)	3.0(1)	1.2(0.7)	4.2(8)	15/15

ig uiic suai is	ranger man	i, with Doi	increoin corr	ccion by on	c number of i	mount
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f17	1.6e+1:1.8	1.0e+1:3.6	6.3e+0:14	2.5e+0:34	2.5e-1:189	5/5
BSifeg	4.3(11)	3.6(1)	1.4 (3)	30(105)	107(81)	10/15
BSif	3.3(11)	2.9 (2)	1.2(0.2)	18(65)	114(177)	10/15
BSqi	3.1(2)	3.0 (2)	1.2(1)	13(42)	82(80)	11/15
BSrr	4.1(2)	5.2(24)	2.9 (0.6)	2.7 (5)	112(70)	10/15
CMA-CSA	3.3(2)	2.3 (0.4)	1.3(0.4)	1.6 (1.0)	0.88 (0.3)	15/15
CMA-MSR	3.7(3)	3.1(5)	1.5(1)	1.9 (1)	2.4 (3)	15/15
CMA-TPA	3.8(5)	4.5(2)	1.8(2)	2.1 (1)	1.0(0.3)	15/15
GP1-CMAES	1.8(2)	2.3 (2)	1.2(1)	2.9 (6)	1.3(2)	13/15
GP5-CMAES	2.0(2)	3.2(5)	2.7 (7)	3.9(3)	3.1(5)	11/15
IPOPCMAv3p	4.9(4)	5.4(4)	2.8 (4)	2.5 (1)	1.1(0.5)	15/15
LHD-10xDef	2.9 ₍₂₎	2.8 (4)	1.6(2)	2.4 (1)	2.2 (2)	5/15
LHD-2xDefa	2.1(2)	2.4 (1)	1.1(0.7)	1.2(0.4)	5.7(13)	2/15
RAND-2xDef	3.3(3)	2.6 (1)	1.1(0.8)	1.0(0.4)	3.8(4)	3/15
RF1-CMAES	3.3(4)	4.1(4)	1.7(2)	7.5(16)	5.7(9)	7/15
RF5-CMAES	22(0.6)	22(37)	11(18)	13(11)	13(24)	4/15
Sifeg	4.5(3)	3.8(7)	1.9(3)	23(3)	33(27)	14/15
Sif	4.4(19)	4.7(11)	1.9 ₍₃₎	2.5 (1)	55(76)	13/15
Srr	4.0(2)	3.7(2)	1.6(2)	1.6(2)	31(26)	15/15

ig the star is	iaigei mai	i i, with bo	merrom corr	ection by th	e number or .	mstance
#FEs/D	0.5	1.2	3	10	50	#succ
f18	6.3e+1:1.8	4.0e+1:4.8	2.5e+1:13	1.0e + 1:40	6.3e-1:184	15/15
BSifeg	2.7 (2)	1.9(2)	1.5(2)	1.6(0.3)	334(420)	5/15
BSif	2.7 (3)	1.9 (1)	1.5(3)	1.3(2)	218(273)	7/15
BSqi	2.7 (2)	1.9(2)	1.5(2)	1.1(3)	158(197)	9/15
BSrr	2.7 (2)	1.9(2)	1.3(0.8)	17(60)	187(356)	7/15
CMA-CSA	3.9(4)	2.7 (2)	1.7(2)	1.4 (1)	3.6 (1)	15/15
CMA-MSR	4.6(5)	2.7 (4)	1.8(2)	1.4 (1.0)	4.7(17)	15/15
CMA-TPA	6.1(9)	3.7(5)	2.4 (1)	1.7(1)	3.8 (2)	15/15
GP1-CMAES	4.2(4)	2.2 (0.8)	1.7(2)	1.3(0.5)	3.8(7)	9/15
GP5-CMAES	5.8(4)	14(78)	14(21)	5.6(12)	2.7 (3)	11/15
IPOPCMAv3p	3.3(3)	4.2(4)	2.6 (1)	1.7 (3)	5.4(4)	8/15
LHD-10xDef	2.9 (4)	1.6 (2)	1.4(2)	2.1(0.2)	12(15)	1/15
LHD-2xDefa	2.6 (0.8)	1.8(1)	1.2(0.7)	0.93 (0.6)	3.9(5)	3/15
RAND-2xDef	3.4(3)	2.0(2)	1.3(1)	0.97(1)	6.0(7)	2/15
RF1-CMAES	4.4(9)	3.3(4)	5.6(2)	7.7(19)	17(16)	3/15
RF5-CMAES	3.5(3)	2.1(0.8)	1.1(1)	5.1(5)	58(77)	1/15
Sifeg	2.7 (3)	2.1(1)	1.8 (3)	1.5(1)	139(166)	10/15
Sif	2.7 (3)	2.1 (1)	4.8(15)	3.7(0.9)	153(143)	9/15
Srr	2.7 (3)	2.1(1)	1.7(1)	1.2(1)	94(119)	11/15

ig uic suai is	iaigei mai	i i, with Do	merrom corr	ccolon by one	mumber of h	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:81	1.0e-1:109	6.3e-2:109	4.0e-2:119	1.6e-2:1230	15/15
BSifeg	12 (18)	17 (46)	35 (50)	62 (61)	54(36)	5/15
BSif	19 (18)	36(58)	66(179)	139(103)	42(51)	6/15
BSqi	19(10)	45(15)	62(56)	99(193)	37 (64)	7/15
BSrr	23(24)	33(51)	78(127)	149(256)	115(55)	3/15
CMA-CSA	30(31)	39(48)	59(54)	59 (45)	12(14)	15/15
CMA-MSR	69(83)	96(148)	274(546)	677(1164)	131(193)	12/15
CMA-TPA	28(15)	41(49)	46 (68)	66 (55)	7.5 (4)	15/15
GP1-CMAES	43(31)	48(31)	48(21)	92(129)	∞ 753	0/15
GP5-CMAES	68(48)	104(86)	104(117)	∞	∞ 762	0/15
IPOPCMAv3p	28(47)	∞	∞	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	23(22)	24(13)	100(105)	93(87)	∞ 751	0/15
RF5-CMAES	44(61)	∞	∞	∞	∞ 755	0/15
Sifeg	22(25)	19 (33)	70(135)	176(205)	170(346)	2/15
Sif	20(51)	36(61)	54(96)	169(173)	48(76)	6/15
Srr	15 (23)	21 (35)	62(95)	133(119)	48(14)	6/15

ng unc suar is	iaigei mai	1 1, WIGH DO.	merrom corr	ccuon by the	mumber of h	instance
#FEs/D	0.5	1.2	3	10	50	#succ
f20	4.0e+3:3.5	2.5e+3:4.3	4.0e+0:13	1.6e + 0.41	1.0e+0:385	5/5
BSifeg	2.4 (2)	2.2(2)	4.4(0.2)	5.3(6)	13(24)	15/15
BSif	2.4(2)	2.2 (2)	4.0(9)	6.4(9)	17(13)	15/15
BSqi	2.4 (2)	2.2(2)	2.8 (5)	5.4(6)	11(16)	15/15
BSrr	2.4 (2)	2.2(2)	2.0 (1)	4.7(6)	14(27)	14/15
CMA-CSA	2.0(2)	1.6(2)	2.2 (1.0)	11(13)	4.5(2)	15/15
CMA-MSR	1.7(0.5)	1.7(2)	2.6 (2)	20(35)	13(16)	15/15
CMA-TPA	1.7 (1)	2.4(2)	2.9 (1)	10(10)	7.6(10)	15/15
GP1-CMAES	2.0 (3)	1.8(0.6)	2.4(2)	8.6(15)	3.7 (2)	6/15
GP5-CMAES	1.2(0.6)	1.2(2)	2.0 (1)	5.4(5)	2.0 (3)	9/15
IPOPCMAv3p	1.4 (1)	1.5(1)	2.8 (2)	12(18)	4.5(9)	5/15
LHD-10xDef	$0.79_{(0.5)}$	1.1(2)	4.3(3)	∞	∞ 150	0/15
LHD-2xDefa	1.4 (1)	1.3(0.9)	1.8 (1)	17(17)	∞ 150	0/15
RAND-2xDef	1.2(2)	1.4(2)	1.9 (1)	13(15)	∞ 150	0/15
RF1-CMAES	1.6(2)	1.7(0.9)	6.4(13)	17(9)	5.9(6)	4/15
RF5-CMAES	1.8(2)	2.0(2)	33(24)	63(42)	∞ 760	0/15
Sifeg	2.5 (2)	2.3(2)	2.0 (1.0)	3.3 (4)	7.3(9)	15/15
Sif	2.5 (2)	2.3 (2)	2.2 (3)	3.8 (3)	10(25)	15/15
Srr	2.5 (2)	2.3 (1.0)	1.9(0.7)	2.7 (0.9)	9.0(26)	15/15

u	ig uiic suai is	raiger ma	u i, wion D	omerion cor	rection by th	c number of i	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f21	1.6e+1:2.5	1.0e+1:5.9	6.3e+0:14	2.5e+0:41	1.6e + 0:167	15/15
	BSifeg	2.8 (3)	1.6 (1)	152(524)	117(70)	84(90)	12/15
	BSif	2.8 (3)	1.6 (1)	152(7)	249(439)	114(154)	10/15
	BSqi	2.8 (2)	1.6 (1)	152(521)	167(259)	150(139)	9/15
	BSrr	2.8 (3)	1.6 (1)	150(0.9)	113(46)	130(135)	10/15
	CMA-CSA	2.2 (3)	1.3 (1)	5.8(17)	5.1(1)	6.9(3)	15/15
	CMA-MSR	2.9 (5)	2.1 (2)	2.8 (5)	6.7(1.0)	5.9(8)	15/15
	CMA-TPA	2.7 (3)	1.6 (2)	2.3(4)	1.6(2)	1.9(3)	15/15
	GP1-CMAES	1.1(2)	0.93 (0.8)	4.9(28)	5.3(19)	7.1(8)	6/15
	GP5-CMAES	2.2 (2)	1.4(2)	1.3 (1)	1.2(0.5)	2.4 (2)	11/15
	IPOPCMAv3p	2.5 (3)	1.9 (1)	1.4(2)	1.6 (1)	2.5 (2)	11/15
	LHD-10xDef	1.2(0.8)	1.7(2)	1.3(2)	1.4(0.9)	0.66 (0.2)	14/15
	LHD-2xDefa	2.2 (2)	1.3(0.8)	1.6(2)	1.1(0.7)	0.89(1)	10/15
	RAND-2xDef	1.5(0.6)	1.2(2)	1.1(0.8)	1.1(1)	0.80 (0.8)	10/15
	RF1-CMAES	2.3(2)	2.1 (2)	1.9 (1)	2.5 (9)	4.4(8)	8/15
	RF5-CMAES	1.9(2)	1.9 (1)	5.8(0.7)	5.2(6)	7.3(11)	7/15
	Sifeg	2.8 (3)	1.9(2)	151(522)	92(561)	95(145)	11/15
	Sif	2.8 (3)	2.1 (2)	152(523)	101(1)	104(204)	10/15
	Srr	2.8 (3)	1.9(2)	151(522)	62(183)	142(147)	9/15

ig uic suai is	rarger man	. 1, with DO.	meriom con	ecolon by on	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	4.0e+1:2.9	2.5e+1:5.2	1.0e+1:18	6.3e+0:33	1.0e+0:170	5/5
BSifeg	3.0(2)	2.1 (3)	7.6(2)	79(214)	87(138)	11/15
BSif	2.6 (2)	2.0 (2)	10(30)	171(237)	219(410)	7/15
BSqi	3.1(3)	2.2 (3)	4.8(6)	85(265)	130(261)	10/15
BSrr	3.2(6)	2.2(5)	3.9(9)	87(180)	146(210)	9/15
CMA-CSA	1.8(2)	1.7(2)	1.4 (1)	3.0(7)	11(20)	15/15
CMA-MSR	2.0 (1)	2.3 (3)	2.0(2)	6.8(1)	5.9(25)	15/15
CMA-TPA	1.8(2)	2.0 (4)	1.8 (3)	1.5(2)	19(50)	15/15
GP1-CMAES	1.4(0.9)	2.0 (1)	1.7(2)	5.2(12)	3.8(9)	9/15
GP5-CMAES	1.5 ₍₁₎	1.5(3)	4.2(3)	6.4(6)	10(15)	5/15
IPOPCMAv3p	2.7 (3)	2.6 (3)	2.1(1)	1.8(0.9)	10(24)	5/15
LHD-10xDef	2.8 (2)	2.1 (1)	1.7 (1)	1.9(1)	0.88 (0.9)	11/15
LHD-2xDefa	1.4(1)	1.7(0.9)	1.4(0.7)	1.4(1.0)	2.2 (3)	5/15
RAND-2xDef	1.6(0.6)	2.2 (1)	0.97 (0.6)	1.3(1)	1.1 (1.0)	9/15
RF1-CMAES	1.1(1)	0.96 (0.5)	1.7 (1)	7.1(24)	5.5(8)	7/15
RF5-CMAES	12(1)	14(0.8)	6.9(19)	10(27)	11(11)	5/15
Sifeg	2.3 (3)	1.8(2)	1.8 (3)	31(3)	61(62)	13/15
Sif	2.3 (3)	1.8 (3)	3.2(8)	45(12)	67(162)	12/15
Srr	2.3 (2)	1.8(1)	1.5(4)	1.6(2)	66(172)	12/15

ng uic star is	iaigei man	i i, with Doi	increom com	ccolon by one	mumber of i	mount
#FEs/D	0.5	1.2	3	10	50	#succ
f23	1.0e+1:2.6	6.3e+0:16	4.0e+0:44	2.5e+0:79	1.6e+0:198	15/15
BSifeg	3.8(2)	1.4 (1)	1.2(1)	2.2 (4)	1.5(2)	15/15
BSif	3.8(2)	1.4 (1)	1.6 (2)	2.7 (3)	2.0(2)	15/15
BSqi	3.7(3)	1.2(1)	1.1(2)	1.8 (3)	1.4(1)	15/15
BSrr	3.9(3)	1.4 (1)	1.4 (1)	1.6 (1)	1.3(1)	15/15
CMA-CSA	3.3 (6)	1.5(2)	1.4(2)	2.8 (2)	8.5(9)	15/15
CMA-MSR	2.6 (2)	2.2 (1)	3.4(2)	5.6(4)	4.8(7)	15/15
CMA-TPA	4.2(6)	3.3(6)	7.6(3)	6.5(3)	4.2(2)	15/15
GP1-CMAES	3.3 (4)	1.7(0.7)	2.3 (2)	3.5(4)	4.3(6)	10/15
GP5-CMAES	5.7(7)	1.7(2)	2.1 (4)	2.1(2)	1.3(1)	14/15
IPOPCMAv3p	4.3(7)	1.5(2)	1.7(2)	3.1(4)	4.7(4)	9/15
LHD-10xDef	6.4(3)	2.0(2)	2.3 (1)	8.5(9)	11(20)	1/15
LHD-2xDefa	4.0(4)	1.3(0.8)	3.6(5)	3.5(6)	∞ 150	0/15
RAND-2xDef	4.5(4)	2.7 (4)	2.9 (3)	7.7(8)	11(14)	1/15
RF1-CMAES	5.1(3)	1.7(1)	1.9 ₍₁₎	2.5 (4)	6.9(5)	6/15
RF5-CMAES	3.5(2)	1.4 (1)	1.6 (1)	5.4(7)	7.9(6)	6/15
Sifeg	3.7(4)	1.9(2)	2.3 (2)	3.9(2)	2.9 (2)	15/15
Sif	3.7(2)	1.7 (3)	2.3 (2)	3.8(3)	2.8 (1)	15/15
Srr	3.7(4)	1.7(3)	2.2(2)	3.9(2)	2.3 (1)	15/15

ng unc suar is	ranger man	i, with Doi	merrom corr	ccolon by one	mumber of i	
#FEs/D	0.5	1.2	3	10	50	#succ
f24	4.0e+1:4.6	2.5e+1:13	1.6e + 1:47	1.6e + 1:47	6.3e+0:382	15/15
BSifeg	1.5 (1)	2.2 (0.5)	2.5 (4)	2.5 (4)	17(35)	14/15
BSif	1.6(0.5)	2.4 (1)	2.3 (1)	2.3 (2)	24(49)	12/15
BSqi	1.6 (1)	1.7 (1)	2.6 (3)	2.6 (1)	13(29)	14/15
BSrr	1.5 (1)	1.7(0.7)	2.5 (5)	2.5 (4)	8.1(21)	15/15
CMA-CSA	1.8(2)	2.1 (2)	1.5(0.5)	1.5(0.9)	2.0 (3)	15/15
CMA-MSR	1.7(0.8)	2.6 (2)	1.6(0.9)	1.6 (2)	3.4(4)	15/15
CMA-TPA	1.4 (1)	2.0 (1)	1.3(2)	1.3(0.3)	2.0 (0.7)	15/15
GP1-CMAES	2.2 (2)	2.2 (1)	1.7(0.8)	1.7(0.9)	2.0 (3)	9/15
GP5-CMAES	1.5(2)	2.4 (2)	1.2(1)	1.2(2)	2.3 (4)	8/15
IPOPCMAv3p	2.0(2)	2.3 (3)	1.8 (1)	1.8 (1)	1.5(0.9)	12/15
LHD-10xDef	2.1(2)	3.3(3)	3.0(4)	3.0(4)	5.8(5)	1/15
LHD-2xDefa	1.2(2)	2.2 (3)	1.7(0.7)	1.7(2)	5.6(9)	1/15
RAND-2xDef	0.93 (1)	2.3 (1)	2.2 (3)	2.2 (0.9)	5.7(8)	1/15
RF1-CMAES	1.9(4)	2.4 (2)	1.3(0.8)	1.3(0.7)	1.6 (1)	10/15
RF5-CMAES	1.2 (1)	1.3(0.8)	5.2(5)	5.2(11)	2.3 (3)	9/15
Sifeg	1.4 (2)	1.7(0.6)	1.3(0.9)	1.3 (1)	6.1(34)	14/15
Sif	1.4 (1)	1.6 (0.6)	1.4 (1)	1.4 (1)	6.2(3)	15/15
Srr	1.4(2)	1.8(1.0)	1.3(0.6)	1.3(0.6)	11(34)	14/15

Table 50: 05-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

. 15 161 601 611	I, WIUII	Domesti	correction by	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	2.5e+1:4.8	1.6e+1:7.6	1.0e-8:12	1.0e-8:12	1.0e-8:12	15/15
BSifeg	1.8(2)	1.7(0.8)	2.2 (0.1)	2.2 (0.1)	2.2 (0.1)	15/15
BSif	1.8(2)	1.7 (1)	2.2 (0.2)	2.2 (0.1)	2.2 (0.2)	15/15
BSqi	1.8(2)	1.7 ₍₁₎	2.2 (0.1)	2.2 (0.1)	2.2 (0.2)	15/15
BSrr	1.8(2)	1.7(0.9)	2.2 (0.0)	2.2 (0.2)	2.2 (0.2)	15/15
CMA-CSA	4.3(3)	3.6(2)	58(5)	58(2)	58(5)	15/15
CMA-MSR	3.0(2)	3.1(3)	90(7)	90(9)	90(9)	15/15
CMA-TPA	2.7 (4)	2.5 (3)	52(9)	52(4)	52(10)	15/15
GP1-CMAES	2.5 (2)	2.2 (2)	36(6)	36(5)	36(5)	15/15
GP5-CMAES	2.3 (2)	2.1 (1)	92(54)	92(86)	92(122)	11/15
IPOPCMAv3p	3.0(4)	2.9 (4)	59(5)	59(9)	59(7)	15/15
LHD-10xDef	2.8 (1)	3.8(6)	∞	∞	∞ 250	0/15
LHD-2xDefa	2.6 (2)	2.8 (1)	∞	∞	∞ 250	0/15
RAND-2xDef	2.0 (1)	2.2 (1)	∞	∞	∞ 250	0/15
RF1-CMAES	3.7(3)	3.0 (1)	1520(1031)	1520(2191)	1520(799)	1/15
RF5-CMAES	2.2 (3)	2.4 (1)	∞	∞	∞ 1252	0/15
Sifeg	1.8(2)	1.7 (1)	8.9(0.9)	8.9(1.0)	8.9(1)	15/15
Sif	1.8(2)	1.7(0.7)	8.7(1)	8.7(1)	8.7(0.9)	15/15
Srr	1.8(1)	1.7(1)	8.4(1)	8.4(1)	8.4(1)	15/15

. 15 101501 011	an 1, with 1	Joint City C	office droff by	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f2	1.6e+6:2.9	4.0e+5:11	4.0e+4:15	6.3e + 2:58	1.0e-8:95	15/15
BSifeg	6.0(3)	1.8 (1)	1.5(0.2)	0.52 (0.2)	1.1(0.1)	15/15
BSif	6.0(4)	1.8 (1)	1.5(0.2)	0.53 (0.3)	1.1(0.2)	15/15
BSqi	6.0(4)	1.8 (1)	1.5(0.2)	0.49 (0.1)	0.92 (0.2)	15/15
$_{\mathrm{BSrr}}$	6.0(2)	1.8 (1)	1.5(0.2)	0.52 (0.2)	1.1(0.2)	15/15
CMA-CSA	2.3 (2)	1.8(2)	6.1(4)	7.5(2)	18(0.9)	15/15
CMA-MSR	2.5 (2)	1.9(2)	5.9(4)	7.4(3)	21(1)	15/15
CMA-TPA	3.7(6)	2.1(2)	3.9(3)	7.7(3)	18(3)	15/15
GP1-CMAES	2.1 (1.0)	1.9(2)	4.0(3)	5.8(4)	∞ 1258	0/15
GP5-CMAES	2.5 (3)	1.7(2)	3.2(1)	2.7 (1)	94(92)	2/15
IPOPCMAv3p	3.1(4)	1.5(2)	5.6(3)	10(9)	∞ 1258	0/15
LHD-10xDef	1.1(0.7)	1.2(2)	8.4(6)	65(37)	∞ 250	0/15
LHD-2xDefa	1.3 (1)	0.79 (2)	4.3(2)	32(47)	∞ 250	0/15
RAND-2xDef	1.6 (1)	1.0(0.6)	3.3(2)	62(33)	∞ 250	0/15
RF1-CMAES	2.9 (4)	2.7 (2)	6.8(5)	51(50)	∞ 1258	0/15
RF5-CMAES	2.1 (1)	7.1(23)	25(29)	∞	∞ 1260	0/15
Sifeg	6.4(4)	2.0 (1)	2.1 (0.6)	0.84 (0.2)	1.4(0.1)	15/15
Sif	6.4(2)	2.0(0.2)	2.1 (0.6)	0.82 (0.1)	1.4(0.3)	15/15
Srr	6.4(3)	2.0(0.6)	2.1(0.5)	0.79(0.1)	1.5(0.2)	15/15

Table 52: 05-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger than 1, with Domerrom correction by the number of histances.									
#FEs/D	0.5	1.2	3	10	50	#succ			
f3	1.6e + 2:4.1	1.0e + 2:15	6.3e+1:23	2.5e+1:73	1.0e+1:716	15/15			
BSifeg	2.6 (2)	1.2(0.2)	0.98 (0.1)	0.46(0.1)	0.11(0.1)	15/15			
BSif	2.6 (2)	1.2(0.2)	0.98 (0.1)	0.46(0.1)	0.11 (0.0)	15/15			
BSqi	2.6 (2)	1.2(0.5)	0.98 (0.1)	0.46(0.1)	0.10 (0.1)	15/15			
BSrr	2.6 (2)	1.2(0.4)	0.98 (0.1)	0.46(0.1)	0.09(0.1)	15/15			
CMA-CSA	4.2(5)	2.4(2)	2.6 (2)	2.5 (1)	1.4(0.3)	15/15			
CMA-MSR	3.3(3)	2.4 (1)	3.4(2)	6.7(14)	1.7(2)	15/15			
CMA-TPA	3.5(7)	2.2 (1)	2.6 (2)	2.5 (1)	0.81(0.7)	15/15			
GP1-CMAES	2.8 (3)	1.5(2)	2.3 (0.7)	2.5 (5)	1.6 (1)	11/15			
GP5-CMAES	3.0(2)	1.3(0.9)	1.6 (1)	2.2 (0.5)	2.6 (3)	8/15			
IPOPCMAv3p	2.7 (2)	1.4(2)	2.5 (0.8)	3.1(1)	1.1(0.9)	12/15			
LHD-10xDef	2.1 (3)	2.8 (2)	3.7(2)	3.6(0.5)	1.0(0.8)	5/15			
LHD-2xDefa	2.1(2)	1.5 (1)	1.9 (1)	2.1 (3)	2.5 (4)	2/15			
RAND-2xDef	2.3(2)	1.4 (1)	1.6(0.4)	2.2(0.5)	0.58 (0.3)	7/15			
RF1-CMAES	1.9 (3)	1.6 (1)	2.2 (0.8)	2.4 (1)	3.0(3)	6/15			
RF5-CMAES	3.4(3)	1.6 (1)	4.6(19)	14(15)	6.1(7)	4/15			
Sifeg	2.6 (2)	1.2(0.5)	0.99 (0.1)	0.57 (0.4)	0.13(0.1)	15/15			
Sif	2.6 (2)	1.2(0.3)	0.99 (0.1)	0.57 (0.2)	0.13(0.1)	15/15			
Srr	2.6(2)	1.2(0.3)	0.99 (0.2)	0.56 (0.1)	0.12 (0.0)	15/15			

i is larger one	an 1, with 1	John Critonia Co	Jirccuon by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f4	2.5e+2:2.6	1.6e + 2:10	1.0e+2:19	4.0e+1:65	1.6e+1:434	15/15
BSifeg	2.1(2)	0.90 (0.8)	1.4(0.8)	1.0(0.6)	0.25 (0.1)	15/15
BSif	2.1 (3)	0.90 (0.7)	1.4(0.5)	1.1(0.5)	0.26 (0.1)	15/15
BSqi	2.1(2)	0.90 (1)	1.3(0.4)	1.3(0.8)	0.28 (0.2)	15/15
BSrr	2.1(2)	0.90 (0.9)	1.3(1.0)	1.1(0.4)	0.23 (0.1)	15/15
CMA-CSA	4.6(9)	2.9 (4)	3.0(2)	4.3(1)	2.3 (3)	15/15
CMA-MSR	4.2(6)	2.7 (4)	2.3 (1)	2.8 (2)	2.0 (3)	15/15
CMA-TPA	4.7(5)	2.5 (1)	3.4(2)	3.0 (2)	2.4 (2)	15/15
GP1-CMAES	2.7 (2)	2.4 (2)	2.6 (3)	5.1(8)	3.2(2)	9/15
GP5-CMAES	1.6 (1)	1.6 (1)	3.0 (2)	5.2(6)	7.5(7)	5/15
IPOPCMAv3p	2.3 (3)	1.5(1)	2.4 (1)	2.4 (1)	1.2(0.9)	14/15
LHD-10xDef	3.9(2)	3.2(3)	5.1(3)	8.3(6)	∞ 250	0/15
LHD-2xDefa	2.2 (3)	1.5(1)	3.0(2)	6.8(11)	∞ 250	0/15
RAND-2xDef	2.8 (3)	2.2 (2)	3.1(2)	4.2(3)	8.4(13)	1/15
RF1-CMAES	2.4 (3)	1.9(0.8)	2.5 (2)	7.9(10)	12(20)	3/15
RF5-CMAES	2.7 (4)	1.9 ₍₁₎	4.9(11)	31(26)	∞ 1252	0/15
Sifeg	2.1(2)	0.92 (1.0)	1.3(0.4)	0.85 (0.3)	0.21 (0.1)	15/15
Sif	2.1 (3)	0.92 (0.7)	1.3(0.5)	0.85 (0.3)	0.21 (0.1)	15/15
Srr	2.1(2)	0.92 (1)	1.3(0.8)	0.83(0.2)	0.20 (0.0)	15/15

Table 54: 05-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	6.3e+1:4.0	4.0e+1:10	1.0e-8:10	1.0e-8:10	1.0e-8:10	15/15
BSifeg	2.9 (0.7)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSif	2.9 (0.4)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSqi	2.9 (0.9)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSrr	2.9 (0.4)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
CMA-CSA	1.9(2)	1.8(0.7)	5.2(2)	5.2(2)	5.2(2)	15/15
CMA-MSR	2.2(2)	1.8 (1)	5.9(3)	5.9(2)	5.9(1)	15/15
CMA-TPA	2.6 (3)	1.9(2)	5.1(2)	5.1(2)	5.1(2)	15/15
GP1-CMAES	2.0(2)	1.5(1.0)	26(9)	26(20)	26(37)	15/15
GP5-CMAES	3.0(1)	1.7(0.1)	6.4(4)	6.4(4)	6.4(3)	15/15
IPOPCMAv3p	3.0(3)	2.2 (1)	21(12)	21(20)	21(14)	15/15
LHD-10xDef	3.2(5)	4.6(5)	13(0.2)	13(0.2)	13(0.2)	15/15
LHD-2xDefa	1.9 (1)	1.8 (1)	3.5(2)	3.5(2)	3.5(3)	15/15
RAND-2xDef	2.0(2)	2.0 (1.0)	3.1(0.2)	3.1(0.2)	3.1(0.2)	15/15
RF1-CMAES	2.3(2)	1.7(0.9)	45(26)	45(35)	45(26)	15/15
RF5-CMAES	2.8 (3)	1.9(2)	137(220)	137(56)	137(117)	10/15
Sifeg	2.9 (0.8)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Sif	2.9 (0.3)	1.4(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Srr	2.9 (0.8)	1.4(0.2)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15

Table 55: 05-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

i is larger one	an 1, with	Domerrom (JOIT COULDIT DY	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f6	1.0e + 5:3.0	2.5e+4:8.4	1.0e+2:16	2.5e+1:54	2.5e-1:254	15/15
BSifeg	1.2(0.9)	1.2(0.8)	2.3 (3)	66(371)	210(215)	9/15
BSif	1.2(1)	1.2(1.0)	2.9 (6)	79(83)	1315(1887)	2/15
BSqi	1.2(2)	1.2(0.8)	3.6(0.8)	71(214)	228(417)	8/15
BSrr	1.2(2)	1.2(1)	2.3 (1)	66(403)	226(149)	8/15
CMA-CSA	2.0(2)	1.6(0.9)	2.9 (1)	2.7 (2)	1.9(0.5)	15/15
CMA-MSR	3.2(3)	1.9 (1)	3.5(4)	3.3(1)	2.1(0.5)	15/15
CMA-TPA	2.9 (2)	2.0(2)	5.9(3)	3.5(2)	2.0 (0.2)	15/15
GP1-CMAES	2.2 (3)	1.4 (1)	2.3 (2)	2.2 (2)	74(77)	1/15
GP5-CMAES	3.0 (3)	1.8 (1)	2.8 (7)	3.7(7)	∞ 1260	0/15
IPOPCMAv3p	3.1(4)	1.8 (1)	3.3(3)	3.1 (3)	2.2 (0.6)	15/15
LHD-10xDef	1.6(2)	2.2 (4)	5.5(4)	3.6(3)	∞ 250	0/15
LHD-2xDefa	1.7(2)	1.3 (1)	3.2(5)	4.9(5)	∞ 250	0/15
RAND-2xDef	2.3(2)	1.8 (1)	2.8 (4)	9.0(8)	∞ 250	0/15
RF1-CMAES	3.0 (3)	2.0(2)	4.5(5)	8.5(4)	∞ 1258	0/15
RF5-CMAES	3.6(4)	2.4 (3)	19(54)	154(117)	∞ 1260	0/15
Sifeg	1.2(1)	1.2(0.9)	5.3(0.8)	36(10)	120(143)	12/15
Sif	1.2(2)	1.2(1.0)	8.2(26)	64(388)	458(237)	5/15
Srr	1.2(1)	1.2(1)	6.7(21)	34(112)	101(59)	11/15

#FEs/D	0.5	1.2	3	10	50	#succ
f7	1.6e + 2:4.2	1.0e + 2:6.2	2.5e+1:20	4.0e+0:54	1.0e + 0:324	15/15
BSifeg	34(249)	24(2)	55(128)	620(1442)	754(1633)	3/15
BSif	34(2)	24(85)	64(137)	600(462)	1037(1119)	2/15
BSqi	34(1)	24(2)	68(76)	488(365)	726(522)	3/15
BSrr	35(127)	46(168)	96(0.6)	669(912)	1050(649)	2/15
CMA-CSA	2.0(2)	2.8 (1)	3.6(3)	3.9(1.0)	1.3(1.0)	15/15
CMA-MSR	3.5(4)	3.7(3)	3.2(3)	4.5(8)	1.1(1.0)	15/15
CMA-TPA	2.5 (3)	2.3(2)	2.5 (2)	2.7 (1)	0.98 (0.1)	15/15
GP1-CMAES	1.7(1)	2.0 (1)	2.1 (1)	4.7(2)	1.4(1.0)	15/15
GP5-CMAES	2.2(2)	2.5 (2)	1.9(0.9)	$1.2(0.6)^{\star}$	0.82 (0.9)	15/15
IPOPCMAv3p	3.3(2)	3.4(4)	3.3(2)	3.5 (0.9)	1.5(0.7)	14/15
LHD-10xDef	1.5(1)	2.2 (3)	5.2(2)	4.8(3)	5.5(7)	2/15
LHD-2xDefa	1.4 (1)	2.0 (3)	1.8(2)	8.0(8)	11(11)	1/15
RAND-2xDef	1.3(1.0)	1.7(2)	2.5 (3)	9.3(7)	11(24)	1/15
RF1-CMAES	1.9(2)	2.6 (1)	2.7 (2)	15(15)	10(9)	5/15
RF5-CMAES	2.5 (3)	2.7 (2)	5.3(13)	33(23)	17(16)	3/15
Sifeg	1.6 (3)	2.0 (3)	1.5(2)	396(707)	276(160)	6/15
Sif	1.6(2)	2.0(2)	8.1(26)	296(420)	204(167)	8/15
Srr	1.6 (3)	2.1(2)	8.3(27)	317(429)	306(449)	6/15

i is larger one	an 1, with 1	John Critoni CC	Jiiccuon by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f8	1.0e+4:4.6	6.3e + 3:6.8	1.0e+3:18	6.3e+1:54	1.6e + 0.258	15/15
BSifeg	1.6 (0.3)	1.8 (1)	1.0(0.1)	13(30)	38(40)	15/15
BSif	1.6(2)	1.8 (1)	1.0(0.2)	34(73)	64(66)	14/15
BSqi	1.6(2)	1.8 (1)	1.0(0.4)	8.2(11)	35(49)	14/15
BSrr	1.6 (2)	1.8 (1)	1.0(0.1)	12(12)	37(37)	14/15
CMA-CSA	2.6 (1)	2.8 (1)	2.8 (1)	2.7 (1)	4.9 (1)	15/15
CMA-MSR	2.2 (3)	2.0 (4)	2.6 (3)	4.2(1)	3.4 (2)	15/15
CMA-TPA	3.4(6)	2.6 (6)	2.7 (2)	4.0(1)	5.8(5)	15/15
GP1-CMAES	2.8 (3)	2.2 (3)	2.3 (1)	2.1 (0.9)	7.2(11)	8/15
GP5-CMAES	2.1(1)	1.9(2)	1.9 (1)	2.5 (2)	70(35)	1/15
IPOPCMAv3p	3.1(3)	2.8 (2)	2.1 (1.0)	3.8(2)	4.9 (4)	11/15
LHD-10xDef	2.7 (3)	2.8 (2)	5.2(3)	12(8)	∞ 250	0/15
LHD-2xDefa	2.4 (1)	2.3 (2)	1.5(0.9)	3.6(9)	∞ 250	0/15
RAND-2xDef	3.1(2)	2.3 (2)	1.5(0.6)	3.1(2)	∞ 250	0/15
RF1-CMAES	2.6 (2)	2.3 (2)	3.1(2)	7.8(12)	36(38)	2/15
RF5-CMAES	2.3(2)	2.0 (1)	2.8 (3)	56(29)	∞ 1252	0/15
Sifeg	1.6 (2)	1.8 (1)	1.1(0.1)	2.2 (3)	17(22)	15/15
Sif	1.6(2)	1.8 (1)	1.1(0.5)	3.4(1)	48(43)	14/15
Srr	1.6(1)	1.8(1)	1.1(0.1)	1.7(1)	21(34)	15/15

Table 58: 05-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	2.5e+1:20	1.6e+1:26	1.0e + 1:35	4.0e+0:62	1.6e-2:256	15/15
BSifeg	19(58)	16(75)	14(16)	223(484)	∞ $5e4$	0/15
BSif	57(363)	45(279)	36(15)	416(392)	∞ 5e4	0/15
BSqi	15(6)	13(0.9)	11(28)	181(58)	∞ $5e4$	0/15
BSrr	17(13)	14(20)	15(14)	248(306)	∞ 4e4	0/15
CMA-CSA	7.5 (2)	6.7 (2)	5.7 (0.6)	6.6 (7)	7.1 (4)	15/15
CMA-MSR	10(4)	8.5(2)	7.2(1)	7.9(3)	6.9 (7)	15/15
CMA-TPA	7.8(3)	6.8 (3)	5.4 (2)	4.6 (2)	5.0 (1)	15/15
GP1-CMAES	12(10)	10(15)	8.2(7)	14(24)	∞ 1258	0/15
GP5-CMAES	15(5)	14(12)	13(19)	27(17)	70(55)	1/15
IPOPCMAv3p	10(3)	8.7(3)	7.5(2)	7.2 (10)	36(18)	2/15
LHD-10xDef	185(180)	144(128)	∞	∞	∞ 250	0/15
LHD-2xDefa	12(3)	12(7)	25(40)	∞	∞ 250	0/15
RAND-2xDef	11(5)	11(9)	20(3)	60(85)	∞ 250	0/15
RF1-CMAES	38(82)	36(51)	30(15)	48(42)	∞ 1258	0/15
RF5-CMAES	106(204)	126(50)	257(205)	∞	∞ 1252	0/15
Sifeg	7.5 (6)	6.9(14)	5.8(4)	102(220)	∞ 5e4	0/15
Sif	36(105)	28(93)	24(4)	221(505)	∞ 5e4	0/15
Srr	6.2 (2)	5.3 (6)	4.5(7)	95(237)	∞ 4e4	0/15

ng uic star is	ranger mai	i i, with Do	increom con	ccoon by one	number of n	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f10	2.5e+6:2.9	6.3e + 5:7.0	2.5e+5:17	6.3e + 3:54	2.5e+1:297	15/15
BSifeg	1.8(2)	2.1 (0.9)	12(41)	463(716)	∞ 3e4	0/15
BSif	1.8(2)	2.1 (1)	9.2(0.7)	481(550)	∞ 3e4	0/15
BSqi	1.8(2)	2.1 (1)	7.1(0.4)	325(448)	∞ 3e4	0/15
BSrr	1.8(1)	2.1 (1)	10(0.6)	529(749)	∞ 2e4	0/15
CMA-CSA	2.5 (2)	1.8 (1)	1.5(0.8)	4.0(1)	2.7 (0.6)	15/15
CMA-MSR	2.3 (1)	2.0 (3)	1.6 (1)	4.0(3)	2.9 (0.8)	15/15
CMA-TPA	1.9 (3)	2.3 (2)	1.4(2)	3.3 (2)	2.3 (1)	15/15
GP1-CMAES	1.2(2)	0.94 (1.0)	0.85 (0.6)	2.9 (2)	2.0(0.4)	15/15
GP5-CMAES	2.4 (3)	1.6 (1)	1.0(1)	1.6 (0.6)	0.95 (0.2)	15/15
IPOPCMAv3p	1.8(1)	2.2 (2)	1.6(2)	4.7(2)	4.4(5)	11/15
LHD-10xDef	1.5(2)	1.7(0.9)	1.4(2)	12(9)	∞ 250	0/15
LHD-2xDefa	1.9(2)	1.4 (1)	1.6 (1)	12(13)	∞ 250	0/15
RAND-2xDef	2.3(2)	2.1 (2)	1.5(0.9)	3.5(1)	∞ 250	0/15
RF1-CMAES	3.2(4)	2.3 (2)	1.6(0.8)	10(18)	63(90)	1/15
RF5-CMAES	2.7 (2)	1.7(2)	4.5(0.4)	43(28)	∞ 1260	0/15
Sifeg	1.8(2)	1.9 (1)	1.5(1)	76(134)	∞ 1e4	0/15
Sif	1.8(2)	1.9(2)	1.4 (1)	97(142)	∞ 1e4	0/15
Srr	1.8(2)	1.9(1)	1.4(1)	93(70)	∞ 1e4	0/15

ig the star is	rarger man	i i, with bo	merrom corr	rection by the	number of t	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f11	1.0e+6:3.0	6.3e+4:6.2	6.3e + 2:16	6.3e+1:74	6.3e-1:298	15/15
BSifeg	2.4 (3)	2.2 (1)	1.5(0.5)	116(123)	$\propto 3e4$	0/15
BSif	2.4 (1)	2.2 (1)	1.5(0.5)	93(86)	$\propto 3e4$	0/15
BSqi	2.4 (2)	2.2 (1)	1.5(0.6)	64(103)	∞ 4e4	0/15
BSrr	2.4 (1)	2.2 (1)	1.5(0.6)	85(79)	$\propto 3e4$	0/15
CMA-CSA	1.5(1)	2.0 (2)	3.8(2)	6.0(4)	3.0 (0.5)	15/15
CMA-MSR	3.2(4)	3.1(2)	6.6(2)	7.3(3)	3.5(0.5)	15/15
CMA-TPA	2.8 (7)	3.6(0.8)	4.4(2)	5.7(4)	3.2 (0.4)	15/15
GP1-CMAES	1.4 (0.9)	2.4 (3)	4.5(3)	2.3(2)	5.1(4)	11/15
GP5-CMAES	1.5 (1)	2.5 (2)	2.9 (2)	1.9 (1)	2.3 (5)	14/15
IPOPCMAv3p	2.5 (4)	2.9 (2)	5.1(3)	5.3(6)	∞ 1258	0/15
LHD-10xDef	1.7(2)	3.1(3)	6.1(6)	5.2(9)	∞ 250	0/15
LHD-2xDefa	1.5 (1)	3.0 (2)	4.1(3)	3.5(4)	∞ 250	0/15
RAND-2xDef	1.6 (0.6)	3.6(3)	5.8(4)	8.7(7)	∞ 250	0/15
RF1-CMAES	2.2 (1)	2.6 (2)	3.9(2)	5.1(12)	∞ 1258	0/15
RF5-CMAES	2.2 (3)	2.3 (3)	3.0 (2)	11(11)	∞ 1260	0/15
Sifeg	2.4 (2)	2.3 (2)	1.8(0.7)	11(10)	∞ 2e4	0/15
Sif	2.4(2)	2.3 (2)	1.8(0.5)	24(30)	∞ 2e4	0/15
Srr	2.4(2)	2.3 (1)	1.7(0.8)	23(0.2)	∞ 2e4	0/15

ig the star is	marger mai	ii, wim be		iccion by or	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f12	4.0e + 7:3.6	1.6e + 7:7.6	4.0e+6:19	1.6e+4:52	1.0e + 0.268	15/15
BSifeg	1.3 (1)	2.0 (1)	1.2(1)	8.1(5)	144(213)	6/15
BSif	1.3(1)	2.1 (1)	1.4(0.2)	11(9)	157(334)	6/15
BSqi	1.3(2)	2.0 (0.8)	1.1(0.4)	6.7(15)	42(34)	12/15
BSrr	1.3(2)	2.0 (1)	1.2(0.9)	14(8)	51(63)	10/15
CMA-CSA	3.5(3)	2.9 (3)	2.4 (2)	4.7(1)	7.1(3)	15/15
CMA-MSR	2.1(6)	3.1(4)	2.9 (2)	5.7(1)	5.4 (6)	15/15
CMA-TPA	2.8(2)	3.3(2)	4.0(4)	4.6(1)	6.1 (1)	15/15
GP1-CMAES	2.0(2)	2.5 (2)	1.9(0.6)	3.7 (2)	6.2 (6)	8/15
GP5-CMAES	3.1(2)	2.9 (2)	3.0 (2)	21(17)	8.5(15)	6/15
IPOPCMAv3p	1.9 (3)	2.9 (2)	3.0(3)	4.6(1.0)	10(12)	6/15
LHD-10xDef	1.1(1)	2.8 (3)	4.5(2)	8.2(4)	∞ 250	0/15
LHD-2xDefa	1.5 (1)	1.9 ₍₁₎	1.4(0.9)	3.0 (1)	$\infty 250$	0/15
RAND-2xDef	1.4 (3)	2.0 (2)	1.5(0.4)	2.9 (0.8)	∞ 250	0/15
RF1-CMAES	2.1 (1)	3.2(3)	3.2(1)	5.1(4)	22(12)	3/15
RF5-CMAES	1.9(2)	1.7(2)	5.6(2)	117(171)	∞ 1260	0/15
Sifeg	1.3 (1)	8.2(48)	5.1(0.4)	10(17)	50(69)	5/15
Sif	1.3 (0.9)	4.4(1)	2.0(0.4)	7.5(8)	56(58)	5/15
Srr	1.3(1)	6.9(20)	4.6(13)	11(22)	21(17)	9/15

ig the star is	larger ma	u i, with Di		riccion by	the number of	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f13	1.0e + 3:2.8	6.3e+2:8.4	4.0e+2:17	6.3e+1:52	6.3e-2:264	15/15
BSifeg	1.5(2)	1.5(0.9)	1.1(0.6)	223(318)	2385(2219)	1/15
BSif	1.5(3)	1.5(0.9)	1.1(0.7)	227(323)	∞ 4e4	0/15
BSqi	1.5(0.7)	1.5(0.9)	1.1(0.7)	208(285)	∞ 4e4	0/15
BSrr	1.5(3)	1.5(0.5)	1.1(1.0)	221(422)	1122(1443)	2/15
CMA-CSA	3.2(4)	3.1(3)	3.0 (2)	3.9(3)	4.0 (1)	15/15
CMA-MSR	3.8(3)	2.5 (2)	3.5(1)	4.5(2)	3.8 (0.5)	15/15
CMA-TPA	4.6(3)	2.9 (3)	3.5(2)	3.8(2)	4.3(2)	15/15
GP1-CMAES	2.3 (2)	1.6 (1)	2.0 (1)	2.3 (0.7)	70(92)	1/15
GP5-CMAES	3.2(3)	2.1(2)	1.6(0.5)	1.4(0.3)	11(14)	5/15
IPOPCMAv3p	3.0(4)	2.2 (3)	3.0(2)	3.9(0.6)	10(15)	7/15
LHD-10xDef	2.6 (1)	3.0 (3)	4.8(3)	2.9 (0.5)	∞ 250	0/15
LHD-2xDefa	2.1 (1)	2.0(1)	1.9(0.3)	1.8(0.4)	∞ 250	0/15
RAND-2xDef	2.0 (1)	1.8 (1)	1.8(0.9)	1.7(0.5)	∞ 250	0/15
RF1-CMAES	3.2(2)	2.0(1)	2.4 (1)	8.1(19)	69(82)	1/15
RF5-CMAES	3.5(2)	2.2(2)	2.1 (1)	35(21)	∞ 1252	0/15
Sifeg	1.5 (3)	1.5(0.8)	1.1(0.8)	83(183)	2257(3322)	1/15
Sif	1.5(3)	1.5(0.9)	1.1(0.8)	118(282)	∞ 4e4	0/15
Srr	1.5(1)	1.5(1.0)	1.1(0.7)	178(277)	1104(1218)	2/15

ig the star is	iaigei iliai.	i i, with Do	merrom corr	ection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	1.6e+1:3.0	1.0e+1:10	6.3e+0:15	2.5e-1:53	1.0e-5:251	15/15
BSifeg	3.0 (2)	1.5(0.7)	1.4(0.6)	8.7(7)	∞ 5e4	0/15
BSif	3.0 (3)	1.5(1.0)	1.4 (1)	10(11)	∞ $5e4$	0/15
BSqi	3.0 (3)	1.5(0.9)	1.4(0.8)	5.6(4)	∞ $5e4$	0/15
BSrr	3.0 (3)	1.5(0.8)	1.4 (1)	7.7(9)	∞ 5e4	0/15
CMA-CSA	4.1(4)	1.7(3)	2.6 (2)	3.2(1)	3.9 (0.6)	15/15
CMA-MSR	4.3(4)	2.5 (1)	2.5 (1)	4.2(0.9)	4.1 (0.6)	15/15
CMA-TPA	3.5(10)	2.1 (1)	2.7 (4)	3.6(1)	4.0(0.7)	15/15
GP1-CMAES	3.2(2)	1.6 (1.0)	1.9(2)	2.2 (0.9)	∞ 1258	0/15
GP5-CMAES	4.0(4)	1.8 (1)	1.5(2)	1.6(0.6)	∞ 1260	0/15
IPOPCMAv3p	4.8(3)	2.4 (3)	2.4 (2)	3.8(0.5)	24(23)	3/15
LHD-10xDef	2.0 (1)	1.2(1)	2.2(2)	3.2(0.4)	∞ 250	0/15
LHD-2xDefa	2.2 (3)	1.5(1)	1.4(0.6)	2.0 (0.9)	∞ 250	0/15
RAND-2xDef	3.0(2)	1.4(2)	1.7(0.9)	4.8(10)	∞ 250	0/15
RF1-CMAES	3.2(5)	2.1(2)	2.8 (4)	4.2(1)	∞ 1258	0/15
RF5-CMAES	2.8 (2)	1.2(1)	2.0 (3)	81(163)	∞ 1260	0/15
Sifeg	3.0 (3)	1.5(1)	1.4(0.7)	2.7 (3)	∞ $5e4$	0/15
Sif	3.0 (3)	1.5(1)	1.4(0.7)	2.8 (1)	∞ 5e4	0/15
Srr	3.0(3)	1.5(1)	1.4(0.9)	1.9(1)	∞ 5e4	0/15

ig uiic suai is	marger una	u i, with D	omenom cor	rection by th	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f15	1.6e + 2:3.0	1.0e + 2:13	6.3e+1:24	4.0e+1:55	1.6e+1:289	5/5
BSifeg	2.9(2)	3.1(8)	10(34)	70(255)	160(181)	9/15
BSif	2.9 (3)	1.8 (1)	27(7)	50(220)	228(268)	7/15
BSqi	2.9(2)	2.7 (12)	26(80)	52(43)	184(139)	8/15
BSrr	2.9 (3)	2.6 (6)	10(14)	104(142)	237(276)	7/15
CMA-CSA	4.5(5)	2.3 (1.0)	2.6 (1.0)	2.0 (1.0)	1.4(0.9)	15/15
CMA-MSR	5.1(6)	2.3 (3)	2.4 (2)	2.0 (1)	1.0(0.5)	15/15
CMA-TPA	7.8(14)	2.8 (3)	2.5 (1)	2.2 (0.8)	1.2(0.7)	15/15
GP1-CMAES	4.6(3)	1.9 (1)	1.9 ₍₁₎	1.4(0.5)	1.2(1)	15/15
GP5-CMAES	3.5(3)	1.6 (1)	1.6 (1)	1.1(0.4)	3.0(4)	11/15
IPOPCMAv3p	2.3 (2)	1.5(0.6)	1.6 (1.0)	1.8 (1)	1.3(0.8)	15/15
LHD-10xDef	4.4(5)	2.9 (3)	3.8(2)	2.7 (0.5)	1.3(2)	9/15
LHD-2xDefa	2.1(1)	1.5(0.8)	1.5(0.5)	1.5(0.4)	1.0(1)	9/15
RAND-2xDef	3.7(3)	1.6 (1)	1.3(0.6)	1.4(1.0)	1.2(2)	8/15
RF1-CMAES	5.4(4)	2.2 (1)	2.4 (1)	1.7(1)	1.3(2)	14/15
RF5-CMAES	3.5(5)	1.6(0.8)	2.4 (3)	7.0(9)	5.7(8)	8/15
Sifeg	2.9 (3)	1.2(1.0)	1.0(0.4)	0.90 (0.4)	52(63)	14/15
Sif	2.9 (3)	1.2(0.7)	1.0(0.3)	0.87 (0.7)	51(78)	13/15
Srr	2.9(2)	1.2(0.9)	1.0(0.2)	0.85(0.6)	39(56)	14/15

ng une star is	larger man	i i, with bo	merrom corr	ection by the	: number of t	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:4.8	2.5e+1:16	1.6e + 1:46	1.0e + 1:120	4.0e+0:334	15/15
BSifeg	1.7(2)	1.4(0.9)	0.85 (0.8)	1.3(2)	40(46)	15/15
BSif	1.7 (1)	1.4 (1.0)	1.0(1)	10(35)	32(25)	15/15
BSqi	1.7(2)	1.4(0.7)	1.1(0.4)	2.5 (6)	22(37)	15/15
BSrr	1.7(2)	1.4(0.7)	1.1(1)	1.4(0.8)	30(21)	15/15
CMA-CSA	3.7(4)	2.9 (5)	3.1(3)	2.2 (1)	1.5(0.7)	15/15
CMA-MSR	2.0 (1)	2.2 (2)	1.9(2)	5.9(11)	4.6(9)	15/15
CMA-TPA	2.3 (1)	2.9 (3)	3.0 (2)	1.7(2)	1.8(0.6)	15/15
GP1-CMAES	1.6 (1)	1.3 (1)	0.90 (0.8)	1.2(0.9)	1.4(2)	13/15
GP5-CMAES	2.0 (2)	1.5(0.4)	2.7 (4)	1.3(2)	1.9(2)	13/15
IPOPCMAv3p	1.4 (0.6)	1.2(0.9)	1.5(1)	2.4(2)	2.9 (3)	11/15
LHD-10xDef	1.4(0.7)	1.6 (1)	1.9(2)	1.5(0.5)	1.4(0.8)	7/15
LHD-2xDefa	2.5 (2)	1.4(0.6)	1.6 (1)	2.2(2)	11(19)	1/15
RAND-2xDef	1.3(0.6)	1.2(1)	1.8(2)	1.7(3)	1.3(1)	7/15
RF1-CMAES	1.3 (1)	0.90 (1)	1.3(2)	1.8(2)	2.1(2)	11/15
RF5-CMAES	2.5 (3)	1.3 (1)	1.1(1)	1.7(5)	3.2(5)	9/15
Sifeg	1.7 (1)	1.6(2)	0.89 (0.7)	0.62 (0.4)	7.2(6)	15/15
Sif	1.7 (1)	1.6 (1)	0.89 (0.4)	0.69 (0.5)	7.7(6)	15/15
Srr	1.7 (1)	1.6(1)	0.88(0.5)	0.68 (0.6)	3.4(10)	15/15

ig uiic suai is	raiger mai	n 1, with Do	merrom corr	ccuon by one	mumber of i	
#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.0e+1:5.2	6.3e+0:26	4.0e+0:57	2.5e+0:110	6.3e-1:412	15/15
BSifeg	6.3(21)	5.5(14)	174(222)	189(123)	268(547)	5/15
BSif	7.0(3)	298(478)	322(447)	188(116)	157(92)	7/15
BSqi	4.1(4)	139(944)	141(444)	160(229)	150(162)	7/15
BSrr	4.3(3)	6.4(7)	182(447)	137(183)	229(260)	6/15
CMA-CSA	4.2(5)	1.8 (1)	1.5(1.0)	1.0(0.4)	0.61(0.3)	15/15
CMA-MSR	4.2(2)	2.0(2)	1.5(0.6)	1.1(0.5)	0.60 (0.1)	15/15
CMA-TPA	24(72)	6.0(3)	3.5(1)	2.1 (0.7)	1.5(3)	15/15
GP1-CMAES	4.5(4)	1.6 (1)	1.1(0.6)	0.78 (0.1)	0.45 (0.3)	15/15
GP5-CMAES	3.6(6)	1.6(2)	1.6 (4)	1.8(0.1)	2.5 (3)	10/15
IPOPCMAv3p	4.1(4)	1.8(0.9)	1.3(0.9)	1.2(0.5)	0.81(0.9)	14/15
LHD-10xDef	2.1(1)	2.4 (2)	1.8 (1)	1.4(0.4)	4.4(5)	2/15
LHD-2xDefa	2.4(2)	1.4(0.6)	1.0(0.7)	1.1(2)	8.9(13)	1/15
RAND-2xDef	2.3 (3)	1.2(1)	1.4(0.8)	1.8(2)	4.3(4)	2/15
RF1-CMAES	3.0(3)	2.2 (2)	3.3(7)	3.9(11)	4.1(5)	7/15
RF5-CMAES	4.8(7)	8.6(2)	9.0(11)	10(8)	22(8)	2/15
Sifeg	3.9(2)	10(68)	76(84)	61(206)	109(171)	9/15
Sif	3.9(3)	1.4 (1)	132(428)	112(142)	112(80)	9/15
Srr	3.9(3)	1.5(1)	99(343)	121(360)	191(303)	6/15

ig uic star i	is larger tha	11 1, WIUII D	omerion coi	rection by th	c number of i	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f18	6.3e+1:3.4	4.0e+1:7.2	2.5e+1:20	1.6e + 1:58	1.6e + 0.318	15/15
BSifeg	1.5(3)	2.2 (2)	75(529)	114(282)	184(219)	8/15
BSif	1.5(0.9)	2.2 (3)	115(414)	120(119)	228(210)	7/15
BSqi	1.5(2)	2.3 (3)	91(3)	90(299)	302(205)	6/15
BSrr	1.5(3)	2.3(2)	8.4(26)	106(168)	204(290)	7/15
CMA-CSA	4.4(6)	3.9(1)	2.1 (1)	1.4(0.7)	2.1(2)	15/15
CMA-MSR	1.6 (1.0)	2.0 (2)	2.0 (1)	1.3(0.7)	4.1(12)	15/15
CMA-TPA	2.5 (1)	2.7 (3)	1.8(2)	1.1(0.8)	1.4(2)	15/15
GP1-CMAES	5 2.4 (4)	3.6(2)	2.1 (2)	1.2(0.5)	1.2(1)	14/15
GP5-CMAES	1.7 (0.9)	3.0 (3)	5.2(11)	2.1 (3)	5.8(6)	7/15
IPOPCMAv3	3p 1.2 (0.7)	1.2(2)	1.8(2)	1.3(1)	1.4(0.3)	14/15
LHD-10xDef	2.6 (5)	3.4(4)	3.3(3)	2.0 (0.8)	12(12)	1/15
LHD-2xDefa	1.3(2)	1.6(2)	2.2 (2)	1.3(0.6)	5.5(7)	2/15
RAND-2xDe	f 1.4 (1)	2.2 (2)	1.7(0.9)	1.5(1)	12(14)	1/15
RF1-CMAES	1.5 (3)	1.7(2)	1.3 (1)	0.89 (0.9)	2.2 (3)	11/15
RF5-CMAES	3 2.2(2)	3.0 (4)	9.5(22)	7.6(8)	29(28)	2/15
Sifeg	1.5 (3)	2.1 (1)	6.1(0.4)	29(19)	145(192)	9/15
Sif	1.5(2)	2.1(2)	63(232)	40(145)	118(135)	10/15
Srr	1.5(3)	2.2 (1)	3.6(10)	38(50)	67(191)	11/15

ig uic suai is	ranger man	i, with Don	iiciioiii coiic	cuon by the	number of n	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:172	1.0e-1:242	6.3e-2:675	4.0e-2:3078	2.5e-2:4946	15/15
BSifeg	917(1787)	909(830)	1077(864)	∞	∞ 5e4	0/15
BSif	732(937)	694(668)	∞	∞	∞ 5e4	0/15
BSqi	969(780)	1440(975)	∞	∞	∞ 5e4	0/15
BSrr	737(913)	925(869)	∞	∞	∞ 5e4	0/15
CMA-CSA	154 (83)	153 (146)	70 (55)	19 (26)	15 (16)	15/15
CMA-MSR	222 (95)	306 (76)	229 (559)	139 (167)	137 (100)	7/15
CMA-TPA	91(67)	84 (68)	39 (44)	18 (18)	14 (13)	15/15
GP1-CMAES	∞	∞	∞	∞	∞ 1260	0/15
GP5-CMAES	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞ 1262	0/15
Sifeg	437(515)	477(723)	1039(1787)	∞	∞ 5e4	0/15
Sif	521(333)	1385(2297)	1021(1558)	∞	∞ 5e4	0/15
Srr	670(770)	671(1338)	1042(946)	∞	∞ 5e4	0/15

18 0110 0001 11	marger one	, w.u D	JIIICI I OIII COI	.iccololi by 0.	iic iidiiibci oi i	TID COLLEC
#FEs/D	0.5	1.2	3	10	50	#succ
f20	6.3e+3:5.1	4.0e+3:8.4	4.0e+1:15	2.5e+0:69	1.0e + 0.851	15/15
BSifeg	3.0(2)	2.0 (1)	1.9 ₍₁₎	2.2 (3)	9.3(20)	14/15
BSif	3.0(2)	2.0 (1)	2.0 (0.5)	2.1(2)	23(35)	12/15
BSqi	3.0(1)	2.0 (0.7)	1.8 (1)	2.3 (1)	8.7(27)	15/15
BSrr	3.0(2)	2.0 (0.9)	1.8(2)	1.5(2)	11(30)	14/15
CMA-CSA	2.3 (3)	2.0 (1)	3.7(0.9)	2.5 (0.9)	9.2(5)	15/15
CMA-MSR	3.3(5)	2.4 (3)	4.9(2)	2.8 (0.8)	1666(1444)	4/15
CMA-TPA	2.8 (3)	2.3 (2)	3.8(1)	3.1(2)	17(19)	15/15
GP1-CMAES	1.9(2)	1.8 (1)	3.0 (2)	4.2(2)	11(4)	2/15
GP5-CMAES	2.5 (2)	1.8(2)	2.1 (0.9)	2.1 (1.0)	∞ 1260	0/15
IPOPCMAv3p	2.1 (3)	1.8 (1)	4.1(2)	3.3(2)	21(21)	1/15
LHD-10xDef	1.8(2)	1.4(0.8)	6.3(4)	11(8)	∞ 250	0/15
LHD-2xDefa	2.8 (2)	2.2 (1)	2.2 (0.8)	7.6(8)	∞ 250	0/15
RAND-2xDef	2.0(2)	2.1(2)	2.6 (1.0)	3.3(2)	∞ 250	0/15
RF1-CMAES	2.9 (5)	2.4 (3)	3.9(2)	5.6(9)	∞ 1258	0/15
RF5-CMAES	2.5(2)	1.8 (1)	25(26)	20(24)	∞ 1260	0/15
Sifeg	3.0(2)	2.1 (0.3)	1.8(0.6)	1.1(0.4)	3.1 (0.6)	15/15
Sif	3.0(2)	2.1 (1)	1.8(0.4)	1.2(0.3)	6.6 (21)	14/15
Srr	3.0(2)	2.1(0.9)	1.8(1)	0.83(0.5)	2.8(6)	15/15

ig uiic suai is	iaigei illa.	n 1, with D	omerrom cor	rection by th	c number of r	
#FEs/D	0.5	1.2	3	10	50	#succ
f21	4.0e+1:3.9	2.5e+1:11	1.6e + 1:31	6.3e+0.73	1.6e + 0:347	5/5
BSifeg	2.9 (3)	1.6(2)	11(0.4)	90(245)	141(232)	8/15
BSif	2.9 (2)	1.7 ₍₁₎	101(4)	183(253)	290(217)	5/15
BSqi	2.9 (2)	2.4 (0.9)	16(58)	85(226)	221(325)	6/15
BSrr	2.9 (3)	1.6(2)	14(50)	73(23)	137(142)	9/15
CMA-CSA	2.5(2)	1.9 (1)	1.7(2)	1.8 (1)	92(2)	14/15
CMA-MSR	3.2(6)	2.0(0.8)	1.7(1)	3.8(2)	249(589)	13/15
CMA-TPA	2.4(2)	2.1(2)	2.0 (0.9)	2.0(1.0)	45(148)	15/15
GP1-CMAES	1.1(1)	1.4(2)	0.99 (0.5)	4.7(22)	4.9(6)	7/15
GP5-CMAES	2.5(2)	1.7(1)	0.89 (0.4)	1.4(3)	4.7(10)	8/15
IPOPCMAv3p	1.8(2)	1.6 (1)	1.7(2)	10(18)	15(20)	3/15
LHD-10xDef	1.5(1)	1.7(2)	1.5(2)	2.2 (0.6)	2.0 (3)	5/15
LHD-2xDefa	1.7(2)	2.1(2)	1.3(0.7)	1.5(0.9)	1.7(1)	5/15
RAND-2xDef	1.4(2)	1.1(1)	1.3(1.0)	1.4(0.9)	3.3 (3)	3/15
RF1-CMAES	2.0(2)	1.8(0.9)	1.4(2)	4.1(5)	4.8(3)	7/15
RF5-CMAES	1.8(2)	2.6 (2)	2.9 (7)	7.5(8)	10(5)	5/15
Sifeg	2.9 (2)	1.4 (1)	0.82 (0.6)	110(0.4)	195(505)	7/15
Sif	2.9 (2)	1.6 (1)	0.93 (0.5)	158(341)	150(91)	8/15
Srr	2.9 (2)	1.4 (1)	0.84(0.5)	73(195)	179(411)	7/15

ig the star is	iaigei ilia.	n 1, with D	omerion coi	rection by th	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	6.3e+1:3.6	4.0e+1:15	2.5e+1:32	1.0e + 1:71	1.6e + 0:341	5/5
BSifeg	3.5(2)	7.4(46)	15(80)	34(14)	88(126)	10/15
BSif	3.5(4)	5.0(0.6)	114(1)	102(180)	217(183)	7/15
BSqi	3.5(4)	3.8(10)	12(9)	31(43)	59(178)	13/15
BSrr	3.5(2)	5.5(16)	13(0.4)	37(178)	100(155)	10/15
CMA-CSA	2.7 (2)	1.6 (1)	1.4(0.9)	4.1(6)	151(274)	14/15
CMA-MSR	4.3(6)	1.8(2)	5.2(15)	14(16)	113(136)	15/15
CMA-TPA	3.7(3)	1.9 (1)	1.2(0.6)	2.5 (0.7)	253(236)	12/15
GP1-CMAES	2.6 (3)	1.4 (1)	1.2(0.9)	3.6(0.1)	10(10)	4/15
GP5-CMAES	2.9 (2)	7.5(7)	4.6(3)	4.3(6)	11(17)	4/15
IPOPCMAv3p	2.8 (1)	2.2 (3)	1.7(1)	5.8(9)	6.3(9)	6/15
LHD-10xDef	2.2(2)	2.0 (0.8)	2.3 (2)	1.9(0.5)	2.5(2)	4/15
LHD-2xDefa	3.3(3)	1.8(2)	1.3(0.8)	1.4(2)	1.8(3)	5/15
RAND-2xDef	1.8(2)	1.5(0.9)	0.98(0.6)	0.79 (0.6)	2.4(6)	4/15
RF1-CMAES	3.1(5)	2.0(2)	1.3(1)	5.5(13)	3.2(5)	9/15
RF5-CMAES	2.1 (4)	4.7(27)	2.9 (2)	7.3(3)	24(16)	2/15
Sifeg	3.4(3)	1.8(2)	115(0.7)	123(212)	116(262)	9/15
Sif	3.4(3)	1.7 ₍₁₎	5.8(18)	117(379)	125(83)	9/15
Srr	3.4(2)	1.6 (1)	2.5 (0.8)	62(177)	75(98)	11/15

ig uiic suai is	marger mar	1 1, WIGH DO.	merrom con	ccolon by on	c number of i	nstanc
#FEs/D	0.5	1.2	3	10	50	#succ
f23	1.0e+1:3.0	6.3e+0.9.0	4.0e+0:33	2.5e+0:84	1.0e+0.518	15/15
BSifeg	2.6 (2)	2.5(2)	1.5(0.8)	1.7 (1.0)	4.3(5)	15/15
BSif	2.6 (3)	2.5 (1)	1.6(2)	1.9(3)	3.3(5)	15/15
BSqi	2.6 (2)	2.4(2)	1.9(3)	2.0(2)	6.6(6)	15/15
BSrr	2.6 (2)	2.5(2)	1.6 (1)	2.0(2)	3.7(6)	15/15
CMA-CSA	2.3(2)	3.2(3)	5.9(5)	8.9(8)	13(18)	15/15
CMA-MSR	2.5 (4)	3.7(10)	3.1(3)	6.0(3)	3.2(4)	15/15
CMA-TPA	3.2(2)	3.8(5)	3.4(3)	12(5)	16(12)	15/15
GP1-CMAES	1.9(3)	2.7 (2)	3.2(3)	6.5(4)	4.9(2)	6/15
GP5-CMAES	2.4(4)	2.0(2)	2.4 (2)	3.0(4)	2.2 (4)	11/15
IPOPCMAv3p	2.3 (4)	2.2 (3)	3.4(1)	3.8(3)	12(29)	3/15
LHD-10xDef	3.9(5)	3.4(3)	3.3(2)	4.3(8)	6.8(5)	1/15
LHD-2xDefa	3.1(4)	3.8(2)	3.8(3)	10(11)	∞ 250	0/15
RAND-2xDef	2.5 (1)	2.7 ₍₂₎	2.1(2)	4.6(4)	7.1(7)	1/15
RF1-CMAES	1.8(2)	2.0(2)	3.0 (2)	8.7(13)	∞ 1260	0/15
RF5-CMAES	2.4(2)	1.5(3)	3.3(2)	4.0(3)	∞ 1288	0/15
Sifeg	3.4(9)	2.9 (3)	1.7(1)	2.8 (2)	2.7 (2)	15/15
Sif	3.4(2)	3.2(3)	1.8(1)	3.0(3)	2.8 (3)	15/15
Srr	3.4(2)	3.2(3)	2.3 (3)	3.4(3)	2.5 (3)	15/15

ig uiic suai is	iaigei mai	i i, with Do	meriom con	ccuon by un	mumber of i	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f24	6.3e+1:15	4.0e+1:37	4.0e+1:37	2.5e+1:118	1.6e + 1:692	15/15
BSifeg	1.6(0.4)	3.8(2)	3.8(6)	32(14)	20(19)	14/15
BSif	1.6(0.9)	2.5(7)	2.5 (4)	37(52)	17(11)	14/15
BSqi	2.8 (0.3)	2.9 (3)	2.9 (7)	31(3)	18(18)	14/15
BSrr	1.5(0.6)	3.3(2)	3.3(0.6)	41(100)	32(77)	11/15
CMA-CSA	2.0 (1)	2.1(2)	2.1 (0.9)	1.5(2)	1.6(2)	15/15
CMA-MSR	2.2(2)	2.6 (0.6)	2.6 (1)	1.8(0.8)	0.93 (2)	15/15
CMA-TPA	1.9 (1)	1.9(0.8)	1.9 (1)	1.9(1.0)	1.4 (1)	15/15
GP1-CMAES	1.7 (1)	1.7(0.5)	1.7(0.9)	1.3(1.0)	1.1(1.0)	13/15
GP5-CMAES	1.5(1.0)	1.1(0.4)	1.1(0.4)	2.5 (2)	1.6(2)	9/15
IPOPCMAv3p	2.0 (1)	2.3(2)	2.3 (1)	1.6 (1)	1.1(0.7)	12/15
LHD-10xDef	2.7 (2)	6.5(2)	6.5(9)	4.8(3)	∞ 250	0/15
LHD-2xDefa	1.9(2)	3.4(4)	3.4(5)	∞	∞ 250	0/15
RAND-2xDef	1.7(2)	7.3(9)	7.3(6)	15(16)	∞ 250	0/15
RF1-CMAES	1.9 (1)	2.4 (3)	2.4 (3)	2.4 (4)	1.9(2)	9/15
RF5-CMAES	1.8(2)	3.6(6)	3.6(6)	4.1(4)	2.9 (2)	7/15
Sifeg	1.8(2)	1.7(2)	1.7(2)	13(2)	4.8(2)	15/15
Sif	1.7 (1)	1.7(3)	1.7(2)	2.9 (2)	4.8(11)	15/15
Srr	1.8(0.6)	1.6(1)	1.6(1)	7.3(3)	5.8(1.0)	15/15

. 15 101501 011	com i vitom	Domestom (JOIT COULDIN Dy	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	4.0e+1:8.0	2.5e+1:16	1.0e-8:23	1.0e-8:23	1.0e-8:23	15/15
BSifeg	3.2 (1.0)	2.0 (0.2)	2.4 (0.3)	2.4 (0.3)	2.4 (0.2)	15/15
BSif	3.2 (0.9)	2.0 (0.2)	2.4 (0.2)	2.4 (0.2)	2.4 (0.2)	15/15
BSqi	3.2 (0.8)	2.0 (0.2)	2.4 (0.2)	2.4 (0.3)	2.4 (0.2)	15/15
BSrr	3.2 (0.7)	2.0 (0.1)	2.4 (0.2)	2.4 (0.2)	2.4 (0.2)	15/15
CMA-CSA	5.2(4)	3.7(1)	63(5)	63(7)	63(5)	15/15
CMA-MSR	4.4(2)	5.2(2)	87(5)	87(10)	87(5)	15/15
CMA-TPA	7.5(6)	5.5(3)	51(5)	51(4)	51(6)	15/15
GP1-CMAES	3.6(3)	2.6(0.7)	43(7)	43(8)	43(8)	15/15
GP5-CMAES	3.0(2)	1.9(1.0)	404(275)	404(741)	404(248)	4/15
IPOPCMAv3p	5.0(4)	3.9(2)	65(4)	65(3)	65(2)	15/15
LHD-10xDef	9.4(9)	12(5)	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.0(2)	2.9 (1)	∞	∞	∞ 500	0/15
RAND-2xDef	4.2(2)	2.9 (1.0)	∞	∞	∞ 500	0/15
RF1-CMAES	4.3(2)	3.2(2)	522(508)	522(673)	522(761)	3/15
RF5-CMAES	3.9(2)	2.7 (1)	∞	∞	∞ 2514	0/15
Sifeg	3.2 (1)	2.0(0.2)	12(2)	12(2)	12(1)	15/15
Sif	3.2 (1)	2.0 (0.2)	11(2)	11(2)	11(2)	15/15
Srr	3.2 (0.9)	2.0 (0.5)	11(2)	11(2)	11(2)	15/15

i is larger one	an 1, with 1	Joint Citom C	orrection by	one number of	n motanees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f2	2.5e+6:5.6	1.0e+6:17	1.0e + 5:33	2.5e+3:118	1.0e-8:196	15/15
BSifeg	5.4(4)	2.4 (0.9)	1.5(0.3)	0.54 (0.2)	1.2(0.2)	15/15
BSif	5.4(2)	2.4 (1)	1.5(0.1)	0.56 (0.1)	1.2(0.3)	15/15
BSqi	5.4(4)	2.4 (0.9)	1.5(0.3)	0.51 (0.1)	1.2(0.2)	15/15
BSrr	5.4(4)	2.4 (1)	1.5(0.2)	0.54 (0.2)	1.2(0.2)	15/15
CMA-CSA	2.3 (2)	2.1 (3)	7.4(3)	8.5(4)	23(1.0)	15/15
CMA-MSR	3.2(2)	3.0 (2)	7.3(2)	8.7(4)	26(2)	15/15
CMA-TPA	1.8(2)	1.8 (1)	5.8(3)	7.4(2)	23(1)	15/15
GP1-CMAES	1.4 (1)	1.1(0.6)	4.8(3)	7.5(2)	∞ 2502	0/15
GP5-CMAES	2.8 (3)	1.9(2)	3.5(1)	3.2(0.8)	∞ 2502	0/15
IPOPCMAv3p	2.5 (3)	2.0 (3)	6.0(3)	10(3)	∞ 2502	0/15
LHD-10xDef	1.5(0.8)	1.2(0.8)	9.0(3)	∞	$\infty 500$	0/15
LHD-2xDefa	1.5(2)	1.5(1)	5.5(2)	∞	∞ 500	0/15
RAND-2xDef	1.8(2)	1.8 (1)	5.1(4)	∞	∞ 500	0/15
RF1-CMAES	2.3(2)	2.4 (2)	7.7(7)	58(30)	∞ 2502	0/15
RF5-CMAES	2.4 (3)	2.3 (1)	34(35)	317(661)	∞ 2504	0/15
Sifeg	5.5(4)	2.6 (0.5)	1.8(0.3)	0.69 (0.1)	1.7(0.2)	15/15
Sif	5.5(4)	2.6 (0.9)	1.8(0.3)	0.73 (0.1)	1.7(0.2)	15/15
Srr	5.5(4)	2.6 (0.9)	1.8(0.2)	0.68 (0.0)	1.7(0.2)	15/15

is larger the	is larger than 1, with Domerroin correction by the number of instances.								
#FEs/D	0.5	1.2	3	10	50	#succ			
f3	4.0e + 2:8.2	1.6e + 2:37	1.0e+2:69	6.3e+1:147	2.5e+1:1129	15/15			
BSifeg	2.9 (0.5)	1.1(0.1)	0.69(0.1)	0.41(0.1)	0.11 (0.0)	15/15			
BSif	2.9 (0.9)	1.1(0.1)	0.69(0.1)	0.43(0.2)	0.12(0.0)	15/15			
BSqi	2.9 (0.9)	1.1(0.1)	0.69(0.1)	0.41(0.1)	0.10 (0.0)	15/15			
BSrr	2.9 (0.8)	1.1(0.0)	0.69(0.1)	0.42(0.1)	0.09 (0.0)	15/15			
CMA-CSA	2.6 (2)	2.8 (2)	3.1(1)	2.8 (0.7)	1.4(1)	15/15			
CMA-MSR	2.3(2)	3.3(1)	3.1(1)	2.8 (0.6)	1.4(2)	15/15			
CMA-TPA	3.2(4)	3.3(2)	2.8 (0.7)	2.4 (1)	1.1(1)	15/15			
GP1-CMAES	1.8(2)	2.2 (0.8)	2.2 (0.7)	2.5 (1)	1.8 (3)	11/15			
GP5-CMAES	1.9(2)	1.7(0.6)	1.6(0.6)	6.6(7)	32(68)	1/15			
IPOPCMAv3p	2.8 (3)	2.7 (1)	3.1(2)	3.4(1)	1.3(0.3)	13/15			
LHD-10xDef	2.3 (3)	5.7(0.1)	3.7(0.4)	2.4 (0.2)	2.1(2)	3/15			
LHD-2xDefa	1.8(2)	2.2 (1)	2.5 (1)	3.4(4)	∞ 500	0/15			
RAND-2xDef	1.1(0.7)	1.8(0.4)	1.7(0.3)	1.8(0.7)	2.0(2)	3/15			
RF1-CMAES	1.7(2)	1.9 (1)	2.1(0.7)	2.1(0.7)	1.6(2)	10/15			
RF5-CMAES	2.5 (1)	4.6(0.7)	5.4(6)	8.5(8)	31(34)	1/15			
Sifeg	2.9 (0.9)	1.1(0.1)	0.74(0.1)	0.46(0.1)	0.14 (0.0)	15/15			
Sif	2.9 (0.5)	1.1(0.1)	0.74(0.1)	0.48(0.1)	0.14(0.0)	15/15			
Srr	2.9 (0.6)	1.1(0.1)	0.74(0.1)	0.46(0.1)	0.14(0.0)	15/15			

is larger than 1, with Domerrom correction by the number of instances.								
#FEs/D	0.5	1.2	3	10	50	#succ		
f4	2.5e+2:21	1.6e + 2:59	1.6e + 2:59	6.3e+1:139	4.0e+1:854	15/15		
BSifeg	1.6 (1)	0.86 (0.4)	0.86 (0.4)	0.89 (0.3)	0.20(0.1)	15/15		
BSif	1.6 (1)	0.86(0.2)	0.86(0.2)	0.97 (0.2)	0.20 (0.0)	15/15		
BSqi	1.6(0.9)	0.86 (0.3)	0.86(0.1)	0.92 (0.5)	0.23 (0.1)	15/15		
BSrr	1.6(0.6)	0.86 (0.4)	0.86(0.5)	0.85 (0.2)	0.20 (0.1)	15/15		
CMA-CSA	4.6(2)	2.9 (1)	2.9 (1)	4.3(2)	1.3 (3)	15/15		
CMA-MSR	5.3(3)	3.4(1)	3.4(0.9)	5.2(0.4)	2.2 (1)	15/15		
CMA-TPA	5.3(4)	3.0 (1)	3.0 (0.9)	5.4(0.7)	2.3 (2)	15/15		
GP1-CMAES	4.3(2)	3.5(1)	3.5(1)	11(6)	4.2(4)	8/15		
GP5-CMAES	3.8(3)	3.1(3)	3.1(3)	∞	∞ 2516	0/15		
IPOPCMAv3p	4.4(4)	3.2(1)	3.2(1)	5.2(3)	1.6(0.3)	13/15		
LHD-10xDef	12(4)	8.2(7)	8.2(6)	∞	$\infty 500$	0/15		
LHD-2xDefa	4.4(3)	3.8(2)	3.8(1)	53(72)	$\infty 500$	0/15		
RAND-2xDef	4.2(2)	3.2(2)	3.2(1)	12(29)	8.7(11)	1/15		
RF1-CMAES	4.8(2)	3.2(2)	3.2(2)	13(14)	42(111)	1/15		
RF5-CMAES	17(46)	24(17)	24(19)	267(238)	∞ 2504	0/15		
Sifeg	1.7(0.8)	0.94 (0.3)	0.94 (0.3)	0.82 (0.2)	0.17 (0.0)	15/15		
Sif	1.7 ₍₁₎	0.94 (0.2)	0.94 (0.4)	0.82 (0.3)	0.16(0.0)	15/15		
Srr	1.7(0.4)	0.95 (0.2)	0.95 (0.2)	0.79(0.1)	0.16(0.0)	15/15		

is larger on	an i, with	Domerrom (JOHN COMMING	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f5	1.0e+2:16	6.3e+1:19	1.0e-8:20	1.0e-8:20	1.0e-8:20	15/15
BSifeg	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.2)	1.4(0.2)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
$_{\mathrm{BSrr}}$	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	1.8(2)	2.4 (1)	6.1(1)	6.1(2)	6.1(1)	15/15
CMA-MSR	1.6 (1)	2.0 (1)	5.4(2)	5.4(1)	5.4(2)	15/15
CMA-TPA	1.3(0.8)	2.1 (1)	5.0(2)	5.0(2)	5.0(1)	15/15
GP1-CMAES	1.4(0.8)	1.9(0.3)	42(26)	42(39)	42(30)	15/15
GP5-CMAES	1.3(0.9)	1.6(0.5)	5.4(4)	5.4(3)	5.4(2)	15/15
IPOPCMAv3p	1.6 (1)	2.8 (0.6)	29(11)	29(9)	29(6)	15/15
LHD-10xDef	4.5(6)	11(1.0)	12(0.3)	12(0.4)	12(0.2)	15/15
LHD-2xDefa	2.4 (0.8)	2.3 (0.3)	3.0 (0.1)	3.0(0.2)	3.0(0.2)	15/15
RAND-2xDef	2.6 (0.2)	2.4 (0.1)	3.1(0.3)	3.1(0.2)	3.1(0.2)	15/15
RF1-CMAES	1.7 (0.9)	2.4 (1)	35(28)	35(19)	35(17)	15/15
RF5-CMAES	1.4 (1)	2.2 (0.9)	120(198)	120(86)	120(81)	10/15
Sifeg	1.5(0.3)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5(0.2)	1.4(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

i is larger one	ли т, wпои т	Joint Citom C	officenon by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f6	1.6e + 5:7.0	6.3e+4:16	4.0e+2:36	1.0e + 2:102	4.0e+0:504	15/15
BSifeg	1.6(2)	1.4 (1)	1.2(0.8)	38(23)	1260(1610)	2/15
BSif	1.6(2)	1.4(1.0)	1.4(0.4)	64(103)	862(1268)	3/15
BSqi	1.6 (1)	1.4(0.6)	1.2(0.8)	30(86)	255(280)	7/15
BSrr	1.6 (1)	1.4(0.9)	1.2(0.9)	42(24)	694(177)	3/15
CMA-CSA	1.6 (1)	1.5 ₍₁₎	1.8(2)	3.6(1)	1.8(0.3)	15/15
CMA-MSR	2.7 (4)	1.8 (3)	2.2 (1)	2.8 (0.7)	1.6 (0.4)	15/15
CMA-TPA	2.4 (3)	2.2 (1)	4.8(3)	3.8(1)	1.8(0.3)	15/15
GP1-CMAES	2.6 (2)	1.8 (1)	2.2 (1)	2.1(0.5)	4.8(4)	11/15
GP5-CMAES	2.4 (3)	1.5 ₍₁₎	1.3(0.3)	5.7(8)	∞ 2516	0/15
IPOPCMAv3p	2.7 (2)	1.9 (4)	2.8 (3)	3.0(2)	1.7(0.6)	15/15
LHD-10xDef	1.9 ₍₃₎	4.1(2)	5.8(0.3)	7.2(8)	∞ 500	0/15
LHD-2xDefa	2.1(2)	1.8 (1)	1.5(0.6)	6.3(9)	∞ 500	0/15
RAND-2xDef	2.0 (3)	1.8 (1)	1.5(0.2)	6.2(5)	$\infty 500$	0/15
RF1-CMAES	1.7(2)	1.4 (1)	1.9(0.9)	2.7 (2)	71(106)	1/15
RF5-CMAES	2.4(2)	1.7(3)	5.9(3)	39(47)	∞ 2518	0/15
Sifeg	1.6(2)	1.4 (1)	1.4(0.3)	5.9(7)	118(49)	11/15
Sif	1.6(2)	1.4(0.9)	1.4(0.2)	8.6(11)	300(388)	7/15
Srr	1.6 (1)	1.4(1)	1.3(0.3)	8.1(5)	110(53)	11/15

Table 80: 10-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger one	an 1, with	Domerrom	COLLECTION D	y one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f7	2.5e+2:9.2	1.6e+2:18	1.0e+2:33	1.0e + 1:172	4.0e + 0.678	15/15
BSifeg	2.2 (2)	1.5(0.9)	14(32)	1100(1642)	2095(2465)	1/15
BSif	2.2(2)	1.5(0.9)	14(16)	882(1047)	2193(1494)	1/15
BSqi	2.2(2)	1.5(1)	14(16)	931(1437)	1037(898)	2/15
BSrr	2.2 (2)	1.5(0.8)	14(31)	894(1247)	$\infty~1e5$	0/15
CMA-CSA	4.2(5)	3.3(2)	2.9 (1)	2.3 (0.8)	1.1(0.8)	15/15
CMA-MSR	3.5(2)	3.1(2)	3.2(1)	1.9(0.5)	0.83 (0.9)	15/15
CMA-TPA	2.8 (2)	2.8 (2)	2.7 (2)	1.7(0.6)	1.2(1.0)	15/15
GP1-CMAES	3.2(2)	2.3 (1)	2.1 (0.9)	1.6(0.7)	1.1(1)	15/15
GP5-CMAES	2.3(2)	1.7 ₍₁₎	1.4(0.6)	1.0(0.3)*	0.79 (0.4)	15/15
IPOPCMAv3p	2.8 (3)	3.0 (3)	2.5 (1)	2.6 (3)	0.85(1)	15/15
LHD-10xDef	2.4 (3)	4.5(4)	5.4(3)	10(5)	∞ 500	0/15
LHD-2xDefa	2.3 (3)	2.4 (2)	2.3 (0.3)	43(20)	∞ 500	0/15
RAND-2xDef	3.2(3)	3.0(1)	2.6 (1)	13(9)	∞ 500	0/15
RF1-CMAES	4.2(3)	3.6(3)	3.0(2)	13(26)	12(12)	4/15
RF5-CMAES	3.3(2)	2.9 (2)	3.2(5)	31(47)	28(21)	2/15
Sifeg	2.2(2)	1.6(0.9)	5.5(0.3)	281(354)	363(508)	5/15
Sif	2.2 (2)	1.6(0.9)	5.5(17)	166(150)	444(486)	4/15
Srr	2.2(2)	1.6 (1)	5.5(0.7)	217(540)	220(211)	7/15

L	is larger the	<u>.</u> , w ı	John Critoni CC	Jiiccolon by	one number	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f8	1.6e+4:15	1.0e+4:22	1.6e + 3:34	2.5e+2:103	4.0e+0:727	15/15
	BSifeg	1.9(0.1)	1.5(0.1)	1.2(0.1)	1.3(0.4)	51(29)	13/15
	BSif	1.9 (0.9)	1.5(0.9)	1.2(0.1)	0.93 (0.1)	123(268)	10/15
	BSqi	1.9 (0.9)	1.5(0.5)	1.2(0.1)	0.99 (2)	30(40)	15/15
	BSrr	1.9 (1)	1.5(0.4)	1.2(0.1)	0.68 (0.4)	35(44)	13/15
	CMA-CSA	4.2(5)	3.6(4)	5.0(3)	3.6(2)	4.9 (4)	15/15
	CMA-MSR	4.4(3)	3.9(3)	6.0(2)	3.3(1)	5.3 (12)	15/15
	CMA-TPA	3.8(4)	3.3(2)	4.0(1)	2.2 (0.8)	5.4(5)	15/15
	GP1-CMAES	2.9 (2)	2.5 (1)	3.1(0.4)	2.3 (1)	12(16)	4/15
	GP5-CMAES	2.3 (0.9)	1.7(0.7)	2.2 (0.7)	1.8(0.5)	∞ 2516	0/15
	IPOPCMAv3p	3.2(3)	3.0 (3)	4.4(2)	2.5 (0.6)	4.1 (2)	11/15
	LHD-10xDef	8.1(7)	7.1(4)	6.8(0.4)	3.2(0.5)	$\infty 500$	0/15
	LHD-2xDefa	3.3(0.3)	2.3 (0.4)	2.5 (0.4)	2.5 (0.6)	$\infty 500$	0/15
	RAND-2xDef	3.3(0.2)	2.5 (0.5)	2.6 (0.9)	2.4 (0.6)	$\infty 500$	0/15
	RF1-CMAES	4.1(2)	3.4(1)	4.3(2)	3.3(5)	∞ 2502	0/15
	RF5-CMAES	2.9 (2)	2.4 (1)	10(1)	15(18)	∞ 2514	0/15
	Sifeg	1.9 (1)	1.5(0.1)	1.3(0.1)	0.66 (0.2)	26(43)	15/15
	Sif	1.9 (1)	1.5(0.5)	1.3(0.1)	0.68 (0.3)	31(66)	14/15
	Srr	1.9 (1)	1.5(0.4)	1.3(0.1)	0.65(0.1)	39(125)	13/15

Table 82: 10-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	4.0e+1:125	2.5e+1:148	1.6e+1:180	1.0e + 1:200	1.6e+0:563	15/15
BSifeg	59(140)	53(131)	46(17)	47(169)	1100(1053)	2/15
BSif	239(371)	267(723)	239(393)	247(362)	2383(4152)	1/15
BSqi	47(120)	43(24)	38(81)	37(140)	1041(1197)	2/15
BSrr	47(38)	43(10)	37(24)	37(19)	1006(1142)	2/15
CMA-CSA	3.5(2)	3.4 (2)	3.1(0.4)	3.3(0.5)	5.2 (1)	15/15
CMA-MSR	4.5(2)	4.2(1.0)	3.8(1)	4.0(0.5)	5.8 (4)	15/15
CMA-TPA	4.6(7)	4.1 (4)	3.6 (8)	3.7 (2)	5.0 (3)	15/15
GP1-CMAES	4.3 (4)	4.2(0.6)	3.9(2)	4.3(1.0)	66(29)	1/15
GP5-CMAES	28(11)	71(76)	93(137)	84(139)	∞ 2526	0/15
IPOPCMAv3p	3.8(2)	3.5 (2)	3.2 (0.4)	3.5 (2)	33(101)	2/15
LHD-10xDef	19(16)	50(54)	42(31)	∞	$\infty 500$	0/15
LHD-2xDefa	11(9)	12(7)	∞	∞	∞ 500	0/15
RAND-2xDef	14(15)	25(54)	∞	∞	$\infty 500$	0/15
RF1-CMAES	14(13)	15(19)	13(14)	16(16)	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	69(179)	59(151)	49(126)	46(114)	2334(2673)	1/15
Sif	52(180)	45(151)	38(125)	37(3)	1159(1546)	2/15
Srr	33(53)	28(55)	24(47)	22(4)	2211(2228)	1/15

ig the star is	iaigei man	1, with D 0.	merrom corr	ection by the	number of n	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f10	2.5e+6:6.0	1.0e+6:21	4.0e+5:38	2.5e+4:104	6.3e + 2:512	15/15
BSifeg	1.9 (3)	1.2 (1)	7.7(50)	481(363)	∞ 7e4	0/15
BSif	1.9(2)	1.2(0.9)	7.5(25)	413(1203)	∞ 7e4	0/15
BSqi	1.9(2)	1.2(1)	4.5(26)	438(558)	∞ 8e4	0/15
BSrr	1.9(2)	1.2(1.0)	3.6(0.7)	334(281)	∞ 5e4	0/15
CMA-CSA	2.4(2)	1.1(0.7)	2.5 (3)	5.0(1)	2.8 (0.6)	15/15
CMA-MSR	2.8 (2)	1.6 (1)	2.2 (1)	3.5(0.9)	2.7 (0.3)	15/15
CMA-TPA	1.2(2)	1.4 (1)	1.9 ₍₁₎	3.5 (1.0)	2.4(0.7)	15/15
GP1-CMAES	2.0(2)	1.2(2)	1.2(0.9)	2.9 (2)	2.2 (0.6)	15/15
GP5-CMAES	3.2(3)	1.5(0.9)	1.2(0.9)	1.8(1)	1.0(0.5)	15/15
IPOPCMAv3p	1.9 (1)	1.2(2)	2.3 (2)	4.1(2)	3.1(0.7)	15/15
LHD-10xDef	2.4 (4)	1.6 (2)	3.7(2)	11(7)	∞ 500	0/15
LHD-2xDefa	2.1(2)	1.5(1)	1.9(0.9)	6.6(7)	∞ 500	0/15
RAND-2xDef	1.5 (1)	1.1(1)	1.4 (1)	12(22)	∞ 500	0/15
RF1-CMAES	1.4 (0.9)	1.3 (1)	1.7(2)	7.6(8)	∞ 2502	0/15
RF5-CMAES	2.2(2)	1.2(0.6)	2.3 (2)	61(79)	∞ 2504	0/15
Sifeg	1.9 (1)	1.1(0.9)	1.1(0.4)	117(244)	∞ 4e4	0/15
Sif	1.9 (3)	1.1(0.8)	1.1(0.4)	139(186)	∞ 4e4	0/15
Srr	1.9(3)	1.1(0.6)	1.1(0.4)	50(13)	∞ 3e4	0/15

ig uiic suai is	iaigei illa	11 1, WIUII L	omerom con	iccion by the	number of n	
#FEs/D	0.5	1.2	3	10	50	#succ
f11	4.0e+4:6.4	2.5e+3:15	6.3e+1:217	4.0e+1:244	2.5e+0:675	15/15
BSifeg	2.4 (1)	2.2 (0.9)	1105(1450)	∞	∞ 7e4	0/15
BSif	2.4(2)	2.2 (1)	339(361)	2153(1833)	∞ 8e4	0/15
BSqi	2.4 (1)	2.2 (1)	363(529)	1107(417)	∞ 8e4	0/15
BSrr	2.4 (1)	2.2 (0.9)	503(409)	1283(718)	∞ 4e4	0/15
CMA-CSA	1.5(1.0)	4.0(3)	7.1(1)	6.6(0.6)	2.9 (0.2)	15/15
CMA-MSR	3.8(4)	4.2(5)	6.5(0.9)	6.3 (1)	3.3 (0.2)	15/15
CMA-TPA	2.1(2)	3.1(2)	5.8 (2)	5.9 (1)	3.0 (0.4)	15/15
GP1-CMAES	3.1(3)	3.3(2)	6.4 (3)	7.8(1)	55(65)	1/15
GP5-CMAES	2.9 (2)	2.9 (2)	3.5 (2)	5.1 (1)	4.3(1)	11/15
IPOPCMAv3p	3.6(6)	4.1(3)	11(13)	18(10)	∞ 2502	0/15
LHD-10xDef	5.3(7)	5.3(4)	∞	∞	$\infty 500$	0/15
LHD-2xDefa	4.3(3)	3.7(3)	16(13)	∞	$\infty 500$	0/15
RAND-2xDef	3.6(4)	3.9(3)	33(49)	∞	$\infty 500$	0/15
RF1-CMAES	3.2(4)	4.3(3)	19(12)	153(192)	∞ 2502	0/15
RF5-CMAES	2.4 (3)	3.2(2)	55(32)	154(201)	∞ 2514	0/15
Sifeg	2.4 (2)	2.3 (1)	225(495)	1601(2467)	∞ $6e4$	0/15
Sif	2.4 (2)	2.3 (2)	244(228)	3570(4531)	∞ $6e4$	0/15
Srr	2.4(1)	2.3 (1)	208(235)	577(785)	∞ 3e4	0/15

ig uiic suai is	larger mai	i i, with bo	merrom con	ecolon by on	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f12	4.0e + 7:15	2.5e + 7:24	1.6e + 7:34	1.0e+6:103	1.0e+1:515	15/15
BSifeg	2.2 (0.7)	1.6(0.3)	1.3(0.2)	3.0 (11)	262(255)	5/15
BSif	2.2 (0.1)	1.6(0.3)	1.3(0.3)	3.3(7)	353(240)	4/15
BSqi	2.2 (0.6)	1.6(0.3)	1.3(0.1)	6.1(0.2)	42(61)	14/15
BSrr	2.2 (0.3)	1.6(0.3)	1.3(0.3)	2.8 (0.4)	62(108)	11/15
CMA-CSA	3.4(3)	3.3(2)	2.7 (1)	2.9 (1)	4.2(5)	15/15
CMA-MSR	3.9(3)	3.8(2)	3.7(1)	3.3(0.6)	4.9(4)	15/15
CMA-TPA	3.7(4)	4.2(3)	3.6(2)	2.5 (0.5)	3.6 (3)	15/15
GP1-CMAES	2.3 (2)	2.6 (1)	3.0(2)	2.9 (3)	2.9 (3)	13/15
GP5-CMAES	6.8(4)	13(9)	17(8)	28(34)	21(13)	3/15
IPOPCMAv3p	3.0(2)	3.2(2)	3.3(2)	2.8 (0.7)	2.8 (4)	13/15
LHD-10xDef	6.7(4)	8.6(2)	6.9(1)	6.2(8)	$\infty 500$	0/15
LHD-2xDefa	3.6(2)	2.8 (0.6)	2.4 (0.8)	2.6 (1)	∞ 500	0/15
RAND-2xDef	2.4 (2)	2.3 (0.7)	2.1(1)	2.2 (1)	$\infty 500$	0/15
RF1-CMAES	4.4(4)	3.9(2)	3.1(1)	2.5 (1)	4.2(3)	11/15
RF5-CMAES	3.5(4)	3.1(2)	3.2(3)	21(19)	∞ 2504	0/15
Sifeg	2.2 (0.4)	1.6 (0.1)	1.2(0.2)	7.3(17)	74(104)	5/15
Sif	2.2 (0.3)	1.6(0.2)	1.2(0.2)	4.1(6)	99(113)	4/15
Srr	2.2 (0.8)	1.6(0.3)	1.2(0.0)	3.6(4)	20(33)	10/15

ig uic suai is	ranger unar	ii, widii De	microm cor	rection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f13	1.0e + 3:12	6.3e + 2:32	4.0e+2:40	6.3e+1:154	2.5e+0:521	15/15
BSifeg	2.9 (0.8)	1.4(0.4)	3.4(0.1)	45(68)	163(104)	11/15
BSif	2.9 (0.5)	1.4(0.2)	1.6(0.2)	88(7)	∞ 9e4	0/15
BSqi	2.9 (0.7)	1.4(0.3)	1.6(0.2)	34(96)	207(193)	8/15
BSrr	2.9 (1.0)	1.4(0.1)	1.5(0.2)	35(52)	208(202)	8/15
CMA-CSA	4.5(2)	3.6(0.5)	4.6(2)	3.0 (0.3)	3.3 (2)	15/15
CMA-MSR	5.7(3)	4.3(2)	5.9(1)	3.4(0.8)	2.7 (0.4)	15/15
CMA-TPA	6.5(3)	4.0(1)	4.7(0.9)	2.7 (0.5)	3.6(2)	15/15
GP1-CMAES	3.7(1)	2.5 (0.6)	3.1(0.5)	1.9(0.5)	5.9(4)	8/15
GP5-CMAES	2.6 (1)	1.6(0.3)	1.7(0.4)	0.91 (0.1)	3.9(3)	10/15
IPOPCMAv3p	4.5(3)	3.5(3)	5.0(1)	3.2(0.6)	5.3(4)	9/15
LHD-10xDef	14(7)	7.0(0.2)	5.8(0.2)	2.2 (0.2)	∞ 500	0/15
LHD-2xDefa	3.7(1)	2.2 (0.7)	2.5 (0.8)	1.6(0.4)	3.4 (3)	4/15
RAND-2xDef	3.6(2)	2.1(0.5)	2.2 (0.6)	1.6(0.4)	7.2(13)	2/15
RF1-CMAES	3.4(1.0)	3.0(1)	3.5(0.9)	3.1(1)	16(20)	4/15
RF5-CMAES	3.8(2)	3.4(2)	11(16)	245(241)	∞ 2514	0/15
Sifeg	2.9 (0.5)	1.4(0.2)	1.4(0.3)	16(56)	75(153)	13/15
Sif	2.9 (1)	1.4(0.2)	1.4(0.1)	17(56)	97(132)	11/15
Srr	2.9 (1)	1.4(0.2)	1.4(0.1)	21(0.6)	76(103)	13/15

ig uic suai is	iaigei man	i i, with Do	merrom corr	cenon by on	c number of r	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	4.0e+1:7.7	1.6e + 1:27	1.0e + 1:37	6.3e-1:107	1.0e-4:505	15/15
BSifeg	1.3 (1)	1.2(0.2)	1.4 (1)	10(12)	$\infty~1e5$	0/15
BSif	1.3 (1)	1.2(0.4)	1.4(0.2)	33(91)	$\infty~1e5$	0/15
BSqi	1.3 (1)	1.2(0.4)	1.3(0.9)	5.9(3)	$\infty~1e5$	0/15
BSrr	1.3(2)	1.2(0.4)	1.3(0.2)	9.0(9)	$\infty~1e5$	0/15
CMA-CSA	2.6 (1)	2.3 (1)	2.7 (1)	3.3(0.6)	3.6 (0.3)	15/15
CMA-MSR	2.1(2)	2.1 (2)	3.1(1)	3.6(0.8)	3.6 (0.4)	15/15
CMA-TPA	2.2(2)	2.4 (2)	3.0(1)	3.1(0.7)	3.5(0.2)	15/15
GP1-CMAES	1.9(2)	1.6 (1.0)	2.0 (1)	2.3 (0.6)	25(36)	3/15
GP5-CMAES	1.7 (1)	1.5(0.4)	1.6(0.4)	1.7(0.3)	∞ 2526	0/15
IPOPCMAv3p	1.2(0.8)	2.2 (1.0)	2.4 (3)	3.2(1)	7.1(4)	10/15
LHD-10xDef	1.8(2)	3.8(4)	5.8(0.8)	4.0(0.5)	$\infty 500$	0/15
LHD-2xDefa	1.0(0.5)	1.8(0.8)	2.1 (1.0)	6.4(12)	$\infty 500$	0/15
RAND-2xDef	1.4(2)	1.8(0.5)	1.8(0.4)	4.1(4)	$\infty 500$	0/15
RF1-CMAES	1.6 (1)	1.7(2)	2.2 (1)	3.6(2)	∞ 2502	0/15
RF5-CMAES	1.5(1)	1.6 (1)	5.8(4)	42(41)	∞ 2504	0/15
Sifeg	1.3(2)	1.2(0.5)	1.3(0.2)	1.7(0.7)	$\infty~1e5$	0/15
Sif	1.3(2)	1.2(0.6)	1.3(0.3)	2.1 (3)	$\infty~1e5$	0/15
Srr	1.3(1)	1.2(0.7)	1.2(0.5)	1.5(0.6)	$\infty~1e5$	0/15

ig uic suai is	rarger mai	ii, with De	merrom cor	iccolon by or	ic number of i	
#FEs/D	0.5	1.2	3	10	50	#succ
f15	2.5e+2:9.0	1.6e + 2.72	1.0e+2:186	6.3e+1:450	4.0e+1:872	15/15
BSifeg	3.5(1)	88(161)	78(251)	267(366)	1489(1436)	1/15
BSif	3.5 (3)	72(0.8)	49(112)	198(356)	722(809)	2/15
BSqi	3.5(0.8)	83(300)	68(179)	277(480)	702(460)	2/15
BSrr	3.5(2)	46(12)	94(122)	163(100)	236(176)	5/15
CMA-CSA	4.9(2)	1.4(0.7)	0.95 (0.5)	1.1(0.5)	1.2(0.4)	15/15
CMA-MSR	5.6(2)	1.5(0.7)	1.2(0.2)	0.81(0.2)	0.57 (0.1)	15/15
CMA-TPA	6.9(4)	1.8(0.6)	1.1(0.3)	0.94 (0.3)	1.2(0.7)	15/15
GP1-CMAES	4.3(5)	1.1(0.2)	0.78 (0.3)	0.79 (0.5)	2.2 (2)	11/15
GP5-CMAES	3.4 (2)	0.75 (0.3)	0.70 (0.4)	3.0 (3)	41(65)	1/15
IPOPCMAv3p	3.9(3)	1.3(0.8)	0.94 (0.4)	0.92 (0.5)	1.3(2)	14/15
LHD-10xDef	10(10)	3.1(0.2)	1.5(0.2)	0.83 (0.2)	0.98 (0.6)	8/15
LHD-2xDefa	4.0(3)	0.97 (0.4)	0.71 (0.2)	0.75 (1)	0.97 (1)	7/15
RAND-2xDef	4.7(2)	0.98 (0.4)	0.71 (0.3)	0.91 (1)	1.9 (3)	4/15
RF1-CMAES	3.2(2)	1.0(0.5)	0.83 (0.1)	0.89 (0.4)	0.99 (0.3)	14/15
RF5-CMAES	5.6(4)	3.3(0.5)	3.2(6)	4.4(5)	20(22)	2/15
Sifeg	3.8(2)	61(233)	56(43)	51(37)	138(134)	8/15
Sif	3.8(1)	61(114)	59(92)	76(154)	195(181)	6/15
Srr	3.7(3)	59(221)	65(130)	102(134)	153(115)	7/15

ng unc suar is	ranger unan	i i, with Do	merrom corr	ccoon by one	mumber of i	
#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:12	2.5e+1:47	1.6e + 1:88	1.0e + 1:425	4.0e+0:989	15/15
BSifeg	1.9(2)	1.0(0.4)	13(33)	36(39)	105(92)	9/15
BSif	1.9(2)	1.1(0.7)	17(32)	38(45)	90(126)	9/15
BSqi	1.9(2)	1.1(0.6)	42(60)	60(96)	122(95)	8/15
BSrr	1.9(2)	1.1(0.6)	23(77)	18(27)	109(80)	8/15
CMA-CSA	1.8 (1)	4.6(3)	6.9(4)	1.8(0.6)	1.5(3)	15/15
CMA-MSR	2.5 (3)	2.7 (2)	6.3(14)	1.5(0.4)	2.5 (5)	15/15
CMA-TPA	4.5(5)	4.8(5)	10(8)	3.1(2)	2.6 (3)	15/15
GP1-CMAES	1.1(0.8)	2.4 (2)	3.2(3)	1.1(0.3)	1.5(2)	12/15
GP5-CMAES	1.4(2)	1.6 (1.0)	1.4(0.4)	0.39 (0.1)	0.89 (1)	13/15
IPOPCMAv3p	1.1 (1)	3.3(3)	7.7(3)	2.4 (0.9)	1.6 (1)	14/15
LHD-10xDef	1.7(2)	3.6(2)	3.7(3)	1.6 (1)	$\infty 500$	0/15
LHD-2xDefa	1.4 (1)	1.8(0.7)	6.9(7)	5.4(4)	$\infty 500$	0/15
RAND-2xDef	1.3(0.9)	2.6 (3)	3.6(4)	1.8(2)	7.3(6)	1/15
RF1-CMAES	1.6 (1)	3.1(2)	4.5(3)	1.3(0.8)	4.4(3)	6/15
RF5-CMAES	1.5(2)	2.0 (2)	2.4 (1)	3.6(6)	17(21)	2/15
Sifeg	2.0 (3)	1.5(0.8)	1.4(0.8)	5.9(18)	28(12)	15/15
Sif	2.0(2)	1.5 (1)	8.9(30)	4.2(4)	39(29)	14/15
Srr	2.0 (3)	1.5(0.9)	12(54)	4.5(6)	21(27)	15/15

Table 90: 10-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig uic suai is	marger und	шт, wип р	omerion cor	rection by th	c number of i	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.0e+1:26	6.3e+0.85	4.0e+0:155	2.5e+0:238	6.3e-1:585	15/15
BSifeg	1.4(1)	301(1177)	982(1814)	2734(4204)	$\infty~1e5$	0/15
BSif	1.4 (0.9)	237(464)	965(1440)	1182(1806)	$\infty~1e5$	0/15
BSqi	1.4(0.6)	205(661)	740(647)	1684(1788)	$\infty~1e5$	0/15
BSrr	1.4(0.7)	296(592)	761(1122)	1812(1492)	$\infty~1e5$	0/15
CMA-CSA	3.4(2)	2.1 (1.0)	1.7(0.7)	1.6(0.7)	1.7(3)	15/15
CMA-MSR	2.0 (0.9)	1.4(0.6)	1.2(0.7)	1.1(0.3)	2.8 (2)	15/15
CMA-TPA	2.4 (2)	1.4(0.3)	1.1(0.3)	1.0(0.4)	1.2(0.2)	15/15
GP1-CMAES	1.7(0.8)	1.0(0.6)	0.88 (0.3)	0.80 (0.3)	1.0(0.2)	14/15
GP5-CMAES	1.7 ₍₁₎	1.1(0.5)	0.99 (0.8)	2.4 (6)	18(26)	3/15
IPOPCMAv3p	2.4 (2)	1.4 (1)	1.4(0.4)	1.3(0.6)	1.0(0.2)	15/15
LHD-10xDef	3.5(4)	2.7 (0.4)	2.1 (0.6)	4.4(6)	$\infty 500$	0/15
LHD-2xDefa	1.6(0.8)	0.99 (0.6)	2.4 (2)	6.9(7)	$\infty 500$	0/15
RAND-2xDef	1.8(0.7)	1.2(0.8)	1.7(0.7)	3.7(3)	$\infty 500$	0/15
RF1-CMAES	1.7(2)	1.3(0.6)	1.2(0.4)	3.0 (0.7)	13(17)	4/15
RF5-CMAES	1.6(0.2)	2.6 (0.2)	5.0(6)	10(10)	64(29)	1/15
Sifeg	1.3(0.7)	208(202)	402(557)	440(736)	1223(2308)	2/15
Sif	1.3(0.8)	194(337)	490(1441)	834(1353)	$\infty~1e5$	0/15
Srr	1.3(0.4)	182(4)	429(1444)	487(629)	$\infty~1e5$	0/15

ig uic suai is	raiger urai.	i i, with Do	increom corr	ccolon by on	c number of i	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f18	4.0e+1:11	2.5e+1:56	1.6e + 1:172	1.6e + 1:172	2.5e+0:561	15/15
BSifeg	3.2(5)	382(511)	354(420)	354(544)	2408(1070)	1/15
BSif	3.5(7)	362(748)	317(415)	317(529)	$\infty~1e5$	0/15
BSqi	81(589)	223(397)	281(731)	281(287)	2341(1144)	1/15
BSrr	3.0 (2)	305(691)	528(814)	528(532)	∞ 9e4	0/15
CMA-CSA	6.7(6)	2.5 (0.5)	1.2(0.7)	1.2(0.4)	1.0(0.2)	15/15
CMA-MSR	4.9(4)	1.8(0.3)	0.99 (0.4)	0.99 (0.3)	1.9(4)	15/15
CMA-TPA	5.1(4)	2.1 (0.9)	1.1(0.3)	1.1(0.2)	1.5(0.3)	15/15
GP1-CMAES	4.4(5)	1.7(0.8)	0.85 (0.5)	0.85 (0.5)	1.6 (1)	13/15
GP5-CMAES	3.7(6)	1.3(0.5)	0.71 (0.2)	0.71 (0.4)	6.0(10)	7/15
IPOPCMAv3p	4.7(3)	2.1 (1)	1.2(0.6)	1.2(0.4)	1.5(0.3)	14/15
LHD-10xDef	8.2(9)	4.0(0.2)	2.0(2)	2.0 (0.4)	∞ 500	0/15
LHD-2xDefa	4.2(3)	1.8 (1)	1.8(2)	1.8(2)	$\infty 500$	0/15
RAND-2xDef	3.0(2)	1.5(0.6)	1.6 (2)	1.6 (3)	∞ 500	0/15
RF1-CMAES	2.8(2)	1.4(0.8)	0.95 (0.4)	0.95 (0.5)	3.2(2)	10/15
RF5-CMAES	4.0(2)	4.5(22)	3.8(10)	3.8(10)	66(54)	1/15
Sifeg	8.3(2)	83(7)	171(286)	171(236)	1179(1377)	2/15
Sif	320(3)	194(671)	223(324)	223(553)	$\infty~1e5$	0/15
Srr	6.7(2)	137(290)	184(432)	184(327)	∞ 9e4	0/15

ig uiic suai is	larger man	I, WIGH DOM	iciioni come	Culon by unc	number of n	Dimien
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:618	1.0e-1:10609	6.3e-2:10623	4.0e-2:10625	2.5e-2:10644	15/15
BSifeg	∞	∞	∞	∞	∞ 1e5	0/15
BSif	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	∞	∞	∞	∞	∞ 1e5	0/15
BSrr	∞	∞	∞	∞	∞ 1e5	0/15
CMA-CSA	171 (101)	12 (5)	19 (12)	23 (10)	26 (25)	15/15
CMA-MSR	237 (437)	21 (31)	35 (55)	62 (128)	290 (257)	4/15
CMA-TPA	156 (83)	12 (5)	18 (11)	24 (13)	34 (18)	15/15
GP1-CMAES	∞	∞	∞	∞	∞ 2504	0/15
GP5-CMAES	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	∞	∞	∞	∞	∞ 500	0/15
RAND-2xDef	∞	∞	∞	∞	∞ 500	0/15
RF1-CMAES	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞ 2516	0/15
Sifeg	∞	∞	∞	∞	∞ 1e5	0/15
Sif	∞	∞	∞	∞	∞ 1e5	0/15
Srr	∞	∞	∞	∞	$\infty~1e5$	0/15

ig und	orar ra	marger mar	i i, with De	microm con	cenon by the	mumber of it	Dimien
#I	FEs/D	0.5	1.2	3	10	50	#succ
	f20	1.0e+4:17	6.3e + 3:21	6.3e+1:30	2.5e+0:122	1.0e+0:15426	13/15
BSi	feg	1.9(0.6)	1.9(0.1)	1.7(0.8)	1.9(2)	3.2(4)	12/15
$_{\mathrm{BS}}$	if	1.9(0.1)	1.9(0.1)	1.8 (1)	1.8(2)	3.5(3)	12/15
BS	qi	1.9(0.1)	1.9(0.1)	1.7(0.5)	1.1(1)	3.4(7)	12/15
BS	rr	1.9 (1)	1.9(0.1)	1.7(0.4)	1.4(0.3)	2.8 (3)	13/15
CMA	A-CSA	2.3 (1)	2.4 (2)	5.2(1)	5.5(2)	1.8(0.9)	15/15
CMA	A-MSR	3.1(3)	3.5(2)	5.7(2)	23(2)	$\infty~1e6$	0/15
CMA	A-TPA	3.1(2)	3.2(2)	5.1(0.9)	3.0(1)	18(0.3)	14/15
GP1-	CMAES	1.9(2)	2.0 (1)	3.8(1.0)	8.3(9)	∞ 2502	0/15
GP5-	CMAES	2.1 (1.0)	1.9(0.8)	2.4 (0.6)	25(23)	∞ 2526	0/15
IPOP	CMAv3p	3.2(3)	3.3(2)	5.4(2)	5.1(3)	2.3 (5)	1/15
LHD.	-10xDef	3.6(6)	6.0(5)	7.7(0.3)	14(14)	$\infty 500$	0/15
LHD.	-2xDefa	2.9 (0.7)	2.9 (0.6)	2.9 (0.7)	6.2(5)	∞ 500	0/15
RAN	D-2xDef	1.8(2)	2.2 (0.5)	2.9 (2)	4.9(3)	$\infty 500$	0/15
RF1-	CMAES	2.6 (1)	3.0(2)	5.4(2)	4.4(2)	∞ 2502	0/15
RF5-	CMAES	2.4 (2)	2.5 (2)	21(32)	35(65)	∞ 2514	0/15
Sife	eg	1.9(1)	1.9(0.2)	2.0 (0.6)	0.72 (0.4)	1.4(2)	15/15
Sif	•	1.9(0.7)	1.9(0.1)	1.9(0.7)	0.76 (0.4)	0.87 (1)	15/15
Srı	r	1.9(0.7)	1.9(0.2)	1.9(0.4)	0.76(0.2)	1.9(3)	14/15

ig uic suai is	iaigei illa	m i, with De	microm con	cenon by the	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f21	4.0e+1:30	2.5e+1:46	1.6e + 1:56	1.0e+1:130	6.3e+0.639	15/15
BSifeg	2.3 (0.5)	263(547)	374(0.5)	171(317)	116(123)	10/15
BSif	5.7(0.7)	354(54)	520(656)	331(768)	226(279)	7/15
BSqi	2.5 (8)	217(557)	333(33)	151(29)	92(121)	11/15
BSrr	4.1(0.7)	222(762)	338(25)	159(282)	95(147)	11/15
CMA-CSA	4.7(3)	7.6(16)	11(25)	7.7(11)	5.0(10)	15/15
CMA-MSR	3.5(2)	3.7(3)	15(30)	10(13)	8.4(3)	15/15
CMA-TPA	3.3(1)	3.0(0.8)	8.4(12)	4.8(5)	1.4(2)	15/15
GP1-CMAES	2.1 (1)	2.1 (0.9)	2.0 (0.6)	2.4 (10)	1.2(3)	12/15
GP5-CMAES	1.8(0.5)	2.6 (4)	7.1(8)	3.7(13)	1.3(2)	13/15
IPOPCMAv3p	3.5(3)	8.1(15)	17(37)	10(10)	3.2(5)	9/15
LHD-10xDef	6.5(3)	4.7(0.2)	4.6(0.3)	2.7 (2)	1.0(2)	9/15
LHD-2xDefa	2.1(2)	1.8(0.3)	2.1 (0.8)	1.3 (1)	0.52 (0.2)	11/15
RAND-2xDef	2.0 (0.3)	1.7(0.4)	2.2 (0.3)	1.2(0.2)	0.39 (0.3)	12/15
RF1-CMAES	9.1(2)	7.5(15)	11(2)	9.1(11)	4.0(9)	8/15
RF5-CMAES	2.9 (2)	6.2(0.8)	6.9(12)	13(20)	12(14)	4/15
Sifeg	1.6 (0.9)	216(1297)	177(612)	79(385)	88(100)	11/15
Sif	1.6 (0.6)	256(1092)	210(284)	110(384)	109(150)	10/15
Srr	1.6(0.7)	197(0.8)	162(4)	78(78)	65(59)	12/15

ig uiic suai is	larger mai	i i, with Doi	nerrom corre	cuon by the	number of h	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	6.3e+1:18	4.0e+1:30	4.0e+1:30	6.3e+0:155	4.0e+0.631	14/15
BSifeg	404(1)	737(829)	737(1656)	530(487)	135(475)	9/15
BSif	404(1405)	1042(2485)	1042(2927)	813(798)	251(673)	6/15
BSqi	404(2810)	713(1339)	713(828)	434(647)	109(119)	10/15
BSrr	404(0.8)	802(3787)	802(1302)	469(416)	116(116)	10/15
CMA-CSA	3.3(4)	3.9(1)	3.9(1)	303(900)	183(249)	13/15
CMA-MSR	5.1(3)	11(25)	11(2)	428(2713)	349(1667)	12/15
CMA-TPA	4.7(3)	4.1(3)	4.1(3)	604(1968)	148(2)	13/15
GP1-CMAES	3.2(2)	3.1 (2)	3.1 (0.7)	3.9 (13)	1.3(2)	12/15
GP5-CMAES	2.9 (1)	4.0(1)	4.0(12)	12(14)	3.4(8)	9/15
IPOPCMAv3p	4.5(3)	4.7(2)	4.7(5)	17(21)	5.6(3)	7/15
LHD-10xDef	6.2(6)	7.7(0.1)	7.7(0.3)	5.7(4)	1.4(2)	7/15
LHD-2xDefa	3.4(1.0)	3.1 (2)	3.1 (2)	4.4 (6)	1.3(1)	7/15
RAND-2xDef	3.4(2)	2.8 (2)	2.8 (0.7)	4.6 (3)	1.4 (4)	7/15
RF1-CMAES	3.2 (3)	10(23)	10(65)	16(24)	8.3(8)	5/15
RF5-CMAES	3.9(3)	4.4(2)	4.4(2)	36(52)	9.0(12)	5/15
Sifeg	8.0(22)	442(1261)	442(699)	280(380)	83(125)	11/15
Sif	404(0.5)	772(1364)	772(1968)	611(835)	151(88)	8/15
Srr	404(1406)	672(1655)	672(1655)	389(317)	109(195)	10/15

ig uiic suai is	iaigei mai	i i, with Do	merrom corr	ccoon by one	number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f23	6.3e+0:10	4.0e+0.62	2.5e+0:162	2.5e+0:162	1.0e+0.915	15/15
BSifeg	2.9 (4)	1.5(0.7)	1.7(2)	1.7(2)	13(11)	15/15
BSif	2.9 ₍₂₎	1.2(0.9)	1.6(2)	1.6(2)	12(24)	15/15
BSqi	2.9 (4)	1.2(0.5)	1.1(2)	1.1(1)	13(10)	15/15
BSrr	2.9 (4)	1.2(1)	1.5(2)	1.5(2)	11(16)	15/15
CMA-CSA	6.3(5)	6.0(6)	18(14)	18(14)	23(16)	15/15
CMA-MSR	4.8(3)	3.2(3)	2.8 (2)	2.8 (0.8)	2.9 (4)	15/15
CMA-TPA	3.4(4)	3.9(2)	16(23)	16(19)	12(5)	15/15
GP1-CMAES	2.0 (3)	1.7(1)	5.3(4)	5.3(4)	2.7 (2)	10/15
GP5-CMAES	3.6(4)	1.7(2)	1.6 (0.3)	1.6 (4)	0.92 (0.4)	13/15
IPOPCMAv3p	2.3 (0.8)	2.8 (2)	4.4(3)	4.4(2)	∞ 2514	0/15
LHD-10xDef	2.1(2)	2.3 (2)	5.9(4)	5.9(2)	$\infty 500$	0/15
LHD-2xDefa	2.0 (1)	1.6 (2)	8.3(11)	8.3(17)	∞ 500	0/15
RAND-2xDef	2.0(2)	3.8(9)	10(13)	10(5)	$\infty 500$	0/15
RF1-CMAES	1.7 ₍₁₎	3.5(4)	7.1(5)	7.1(10)	∞ 2506	0/15
RF5-CMAES	1.6 (3)	3.1(3)	10(8)	10(7)	∞ 2548	0/15
Sifeg	2.5 (3)	1.9(2)	3.5(3)	3.5(4)	4.6(9)	15/15
Sif	2.5 (3)	1.9(2)	3.7(4)	3.7(4)	6.4(11)	15/15
Srr	2.5 (3)	1.9(2)	3.7(2)	3.7(2)	5.7(4)	15/15

ig uic suai is	ranger man	i i, with Doi	merrom corre	colon by the	number of it.	istanice
#FEs/D	0.5	1.2	3	10	50	#succ
f24	1.0e + 2:66	6.3e+1:596	4.0e+1:3181	2.5e+1:7668	1.6e+1:14353	15/15
BSifeg	22(16)	50(73)	34(31)	87(130)	∞ 9e4	0/15
BSif	37(13)	37(13)	72(62)	∞	∞ 9e4	0/15
BSqi	18(10)	71(104)	55(63)	174(352)	∞ 9e4	0/15
BSrr	19(18)	39(56)	41(40)	162(215)	∞ 8e4	0/15
CMA-CSA	2.6 (0.9)	1.1(1)	1.2(1)	0.62 (0.5)	1.2(0.9)	15/15
CMA-MSR	2.6 (1)	0.84(0.3)	0.45 (0.6)	0.50 (0.4)	0.83 (0.6)	15/15
CMA-TPA	2.6 (1)	1.0(0.5)	0.67 (0.2)	0.70 (0.8)	0.94 (0.6)	15/15
GP1-CMAES	1.7(0.8)	0.90 (0.5)	2.6 (3)	1.1(0.9)	∞ 2514	0/15
GP5-CMAES	1.2(0.3)	0.81 (0.9)	∞	∞	∞ 2528	0/15
IPOPCMAv3p	2.7 (1)	1.4(0.9)	2.7 (1)	4.8(4)	∞ 2504	0/15
LHD-10xDef	4.8(1)	2.9 (3)	2.4 (2)	∞	$\infty 500$	0/15
LHD-2xDefa	8.3(8)	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	4.8(2)	∞	∞	∞	∞ 500	0/15
RF1-CMAES	2.2 (0.9)	1.1(0.9)	1.2(2)	2.3 (2)	∞ 2502	0/15
RF5-CMAES	2.4 (1)	3.4(3)	∞	∞	∞ 2514	0/15
Sifeg	3.0(3)	5.9(13)	9.0(7)	26(33)	∞ 9e4	0/15
Sif	3.0(2)	10(16)	13(19)	35(33)	44(21)	2/15
Srr	2.8 (2)	1.5(2)	8.8(5)	22(27)	46(55)	2/15

i is larger one	ı, wıuı ı	John Children	niccolon by	one number o	n motances.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	6.3e+1:24	4.0e+1:42	1.0e-8:43	1.0e-8:43	1.0e-8:43	15/15
BSifeg	2.2 (1.0)	1.7(0.1)	2.5(0.2)	2.5(0.2)	2.5 (0.3)	15/15
BSif	2.2 (0.9)	1.7(0.1)	2.5 (0.3)	2.5 (0.2)	2.5 (0.3)	15/15
BSqi	2.2 (0.9)	1.7(0.1)	2.5 (0.2)	2.5 (0.3)	2.5(0.2)	15/15
BSrr	2.2 (0.4)	1.7(0.1)	2.5 (0.2)	2.5 (0.2)	2.5(0.2)	15/15
CMA-CSA	4.7(2)	4.4(1)	64(4)	64(3)	64(5)	15/15
CMA-MSR	6.0(2)	5.1(2)	75(4)	75(3)	75(3)	15/15
CMA-TPA	5.4(2)	4.0(0.9)	46(3)	46(4)	46(1)	15/15
GP1-CMAES	3.9(2)	3.1(0.6)	58(6)	58(10)	58(7)	15/15
GP5-CMAES	2.9 (0.9)	2.0 (0.2)	∞	∞	∞ 5034	0/15
IPOPCMAv3p	4.8(2)	4.6(1)	64(2)	64(2)	64(2)	15/15
LHD-10xDef	17(0.1)	10(0.1)	∞	∞	∞ 1000	0/15
LHD-2xDefa	3.9(0.2)	2.5 (0.2)	∞	∞	∞ 1000	0/15
RAND-2xDef	4.0(0.5)	2.8 (0.4)	∞	∞	∞ 1000	0/15
RF1-CMAES	3.9(1)	3.5(0.8)	73(20)	73(18)	73(18)	15/15
RF5-CMAES	3.7(2)	3.0(0.9)	∞	∞	$\infty 5006$	0/15
Sifeg	2.2 (0.6)	1.7(0.2)	16(0.9)	16(0.9)	16(1)	15/15
Sif	2.2 (0.7)	1.7(0.1)	16(1)	16(1)	16(2)	15/15
Srr	2.2(0.8)	1.7(0.1)	16(1)	16(1)	16(0.7)	15/15

Table 99: 20-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	4.0e+6:29	2.5e+6:42	1.0e + 5:65	1.0e+4:207	1.0e-8:412	15/15
BSifeg	2.3 (1.0)	1.8(0.2)	1.5(0.2)	0.54 (0.1)	1.2(0.1)	15/15
BSif	2.3 (1.0)	1.8(0.2)	1.5(0.0)	0.55 (0.1)	1.2(0.1)	15/15
BSqi	2.3 (0.0)	1.8(0.2)	1.5(0.1)	0.53 (0.1)	1.3(0.2)	15/15
BSrr	2.3 (1)	1.8(0.3)	1.5(0.1)	0.54 (0.1)	1.3(0.2)	15/15
CMA-CSA	1.2(0.6)	1.1(0.8)	14(3)	11(3)	33(1)	15/15
CMA-MSR	1.0(0.4)	1.6 (2)	11(5)	7.9(3)	38(3)	15/15
CMA-TPA	1.4 (1)	1.5(0.7)	11(4)	9.5(3)	36(2)	15/15
GP1-CMAES	1.5 (0.9)	1.6 (1)	8.9(5)	8.0(3)	$\infty 5006$	0/15
GP5-CMAES	0.90 (0.9)	1.3 (1)	5.4(2)	3.9(0.8)	$\infty 5006$	0/15
IPOPCMAv3p	0.93 (0.6)	1.4 (1)	14(4)	11(2)	$\infty 5006$	0/15
LHD-10xDef	1.6 (1)	4.1(4)	30(19)	∞	∞ 1000	0/15
LHD-2xDefa	1.1(0.8)	1.9(0.8)	8.5(5)	72(67)	∞ 1000	0/15
RAND-2xDef	1.3(2)	1.6 (2)	7.8(4)	70(116)	∞ 1000	0/15
RF1-CMAES	1.1(0.8)	1.2(1)	11(3)	29(27)	$\infty 5006$	0/15
RF5-CMAES	1.2(1)	1.3(0.9)	184(149)	∞	$\infty 5006$	0/15
Sifeg	2.3 (0.9)	1.9(0.3)	1.9(0.2)	0.77 (0.1)	2.2 (0.2)	15/15
Sif	2.3 (0.5)	1.9(0.5)	1.9(0.2)	0.82 (0.2)	2.2 (0.3)	15/15
Srr	2.3 (1)	1.9(0.5)	1.9(0.3)	0.76 (0.1)	2.2 (0.3)	15/15

larger man	i i, with bo	merrom corre	schon by the	number of n	istance
0.5	1.2	3	10	50	#succ
6.3e+2:33	4.0e+2:44	1.6e + 2:109	1.0e + 2:255	2.5e+1:3277	15/15
1.7(0.2)	1.6(0.2)	0.92 (0.1)	0.52 (0.0)	0.12(0.0)	15/15
1.7(0.2)	1.6(0.2)	0.92 (0.0)	0.52 (0.0)	0.12 (0.0)	15/15
1.7(0.2)	1.6(0.2)	0.92 (0.1)	0.52 (0.1)	0.11(0.0)	15/15
1.7(0.2)	1.6 (0.1)	0.92 (0.1)	0.52 (0.1)	0.11(0.0)	15/15
1.9(2)	4.0(0.5)	7.4(2)	7.0(3)	3.5(1.0)	15/15
2.9 (2)	4.5(0.8)	5.2(1.0)	3.0 (0.3)	3.5(1)	15/15
3.1(1)	4.0(1.0)	6.0(4)	4.4(1)	2.5 (1)	15/15
2.3 (1)	3.2(1.0)	5.9(1)	4.2(2)	22(34)	1/15
1.9 (0.9)	2.9 (1)	15(23)	43(50)	∞ 5034	0/15
1.9 (1)	3.6(2)	7.6(4)	7.0(2)	22(30)	1/15
9.1(4)	10(0.3)	8.7(0.7)	9.0(6)	∞ 1000	0/15
2.5 (0.5)	3.0(0.5)	8.6(7)	18(40)	∞ 1000	0/15
2.7 (0.3)	2.8 (0.4)	5.7(5)	10(24)	∞ 1000	0/15
2.0 (1)	3.7(0.9)	6.4(2)	4.0(0.8)	22(41)	1/15
1.7 (0.8)	2.6(0.5)	18(17)	82(128)	$\infty 5006$	0/15
1.7(0.2)	1.6 (0.1)	0.97 (0.1)	0.54 (0.1)	0.14(0.0)	15/15
1.7(0.4)	1.6(0.2)	0.97 (0.1)	0.55 (0.1)	0.15 (0.0)	15/15
1.7(0.2)	1.6(0.2)	0.97 (0.2)	0.54(0.1)	0.13 (0.0)	15/15
	$\begin{array}{c} 0.5 \\ 6.3e + 2:33 \\ 1.7(0.2) \\ 1.7(0.2) \\ 1.7(0.2) \\ 1.9(2) \\ 2.9(2) \\ 3.1(1) \\ 2.3(1) \\ 1.9(0.9) \\ 1.9(1) \\ 9.1(4) \\ 2.5(0.5) \\ 2.7(0.3) \\ 2.0(1) \\ 1.7(0.8) \\ 1.7(0.4) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ig uic suai is	rarger man	. 1, WIGH 100.	meriom corr	colon by one	number of n	
#FEs/D	0.5	1.2	3	10	50	#succ
f4	6.3e+2:22	4.0e+2:91	2.5e+2:250	1.6e + 2:332	6.3e+1:1927	15/15
BSifeg	2.8 (1)	0.98 (0.1)	0.58 (0.3)	0.66 (0.3)	0.20 (0.0)	15/15
BSif	2.8 (0.9)	0.98 (0.1)	0.59 (0.3)	0.68 (0.4)	0.21 (0.0)	15/15
BSqi	2.8 (1)	0.98 (0.2)	0.62 (0.5)	0.70 (0.3)	0.24 (0.0)	15/15
BSrr	2.8 (0.5)	0.98 (0.2)	0.60(0.3)	0.69 (0.3)	0.21 (0.0)	15/15
CMA-CSA	7.1(3)	3.1(0.4)	2.1(0.4)	3.7(1)	2.2 (1)	15/15
CMA-MSR	8.5(3)	3.3(0.8)	2.0 (0.8)	3.6(5)	5.4(6)	15/15
CMA-TPA	8.2(2)	2.9 (0.8)	1.9(0.5)	2.9 (0.6)	3.5(2)	15/15
GP1-CMAES	9.2(8)	4.5(2)	11(4)	42(88)	39(22)	1/15
GP5-CMAES	7.5(2)	5.5(9)	13(45)	215(159)	∞ 5022	0/15
IPOPCMAv3p	7.4(3)	3.3(1)	2.3 (0.6)	4.1(1)	2.4(2)	10/15
LHD-10xDef	22(10)	18(12)	∞	∞	∞ 1000	0/15
LHD-2xDefa	9.1(3)	6.8(1)	58(71)	∞	∞ 1000	0/15
RAND-2xDef	10(8)	8.4(8)	13(11)	∞	∞ 1000	0/15
RF1-CMAES	8.1(2)	3.4(1)	2.5 (0.6)	7.7(13)	$\infty 5006$	0/15
RF5-CMAES	8.9(3)	13(2)	57(110)	∞	$\infty 5006$	0/15
Sifeg	2.8 (0.8)	1.1(0.3)	0.56 (0.2)	0.60(0.1)	0.17(0.0)	15/15
Sif	2.8 (1)	1.1(0.2)	0.58 (0.1)	0.61(0.1)	0.17 (0.0)	15/15
Srr	2.8 (1)	1.1(0.2)	0.56 (0.1)	0.59(0.1)	0.16(9e-3)	15/15

Table 102: 20-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig the star is	marger una	arr, wrom D	omerrom cor	rection by th	c number of	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f5	2.5e+2:19	1.6e + 2:34	1.0e-8:41	1.0e-8:41	1.0e-8:41	15/15
BSifeg	2.1 (0.3)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	2.1 (0.3)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	2.1(0.2)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	2.1(0.2)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	1.5(0.7)	1.8(0.5)	6.0(0.8)	6.0(1)	6.0(1)	15/15
CMA-MSR	1.9(0.6)	1.9(0.7)	5.6(1)	5.6(1)	5.6(1)	15/15
CMA-TPA	1.3 (1)	1.4(0.4)	4.9(2)	4.9(1)	4.9(1)	15/15
GP1-CMAES	1.6 (0.8)	1.9(0.5)	92(115)	92(62)	92(85)	11/15
GP5-CMAES	1.7(0.9)	1.7(0.4)	4.8(0.7)	4.8(2)	4.8(1)	15/15
IPOPCMAv3p	2.0 (2)	2.0 (0.9)	36(13)	36(15)	36(19)	15/15
LHD-10xDef	8.1(9)	12(0.0)	11(0.4)	11(0.2)	11(0.3)	15/15
LHD-2xDefa	3.7(2)	2.5 (0.0)	3.0 (0.1)	3.0 (0.2)	3.0 (0.2)	15/15
RAND-2xDef	3.4(2)	2.6 (0.1)	3.4(2)	3.4(3)	3.4(3)	15/15
RF1-CMAES	1.8(1)	2.3 (0.8)	50(22)	50(26)	50(24)	15/15
RF5-CMAES	2.0 (0.9)	2.0 (0.6)	265(451)	265(361)	265(330)	6/15
Sifeg	2.1(0.2)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	2.1 (0.3)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	2.1(0.2)	1.5(0.1)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

ig uiic suai is	ranger unai	i i, with Do	incironi coi	rection by th	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f6	2.5e+5:16	6.3e+4:43	1.6e+4:62	1.6e + 2:353	1.6e+1:1078	15/15
BSifeg	2.3 (1)	1.3(0.8)	1.2(0.4)	39(42)	713(1132)	3/15
BSif	2.3 (2)	1.3(0.3)	1.2(0.5)	159(199)	2558(3325)	1/15
BSqi	1.9(2)	1.1(0.7)	1.1(0.3)	34(59)	419(453)	2/7
BSrr	2.3 (1)	1.3(0.7)	1.2(0.4)	36(47)	210(81)	8/15
CMA-CSA	3.6(2)	2.5 (1)	2.4 (1)	2.8 (0.8)	1.8(0.3)	15/15
CMA-MSR	3.6(2)	2.4 (0.6)	2.4 (0.9)	1.9(0.8)	1.5(0.6)	15/15
CMA-TPA	3.1(2)	2.2(2)	2.0(0.7)	2.3 (0.7)	1.6(0.5)	15/15
GP1-CMAES	2.8 (2)	2.0 (0.9)	2.0 (0.8)	1.7 (1)	4.2(4)	11/15
GP5-CMAES	2.6 (2)	1.6(0.5)	1.5(0.4)	19(24)	∞ 5024	0/15
IPOPCMAv3p	2.9 (2)	2.3 (1)	2.3 (2)	2.0(0.5)	1.5(0.2)	15/15
LHD-10xDef	17(12)	10(1)	7.1(0.2)	4.3(4)	∞ 1000	0/15
LHD-2xDefa	4.6(2)	2.3 (0.3)	1.9(0.4)	6.8(6)	∞ 1000	0/15
RAND-2xDef	4.8(0.2)	2.3 (0.3)	1.8(0.5)	5.7(9)	∞ 1000	0/15
RF1-CMAES	2.7 (2)	2.1(0.7)	2.3 (1)	2.9 (1)	66(118)	1/15
RF5-CMAES	2.1(2)	1.6 (0.6)	1.8(0.4)	32(28)	$\infty 5006$	0/15
Sifeg	2.3 (2)	1.2(0.5)	1.2(0.4)	7.4(9)	151(146)	10/15
Sif	2.3 (2)	1.2(0.7)	1.2(0.5)	37(71)	294(301)	7/15
Srr	2.3(2)	1.2(0.7)	1.2(0.3)	10(5)	94(67)	12/15

ig the star is	larger man	1, with Do	merrom corr	ection by the	number of n	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f7	1.0e+3:11	4.0e+2:39	2.5e+2:74	6.3e+1:319	1.0e+1:1351	15/15
BSifeg	1.4 (0.7)	1.5(0.5)	1.0(0.5)	187(162)	∞ 2e5	0/15
BSif	1.4(2)	1.5(0.5)	7.0(0.4)	258(349)	∞ 2e5	0/15
BSqi	1.4(2)	1.5(0.5)	1.0(0.4)	288(335)	∞ 2e5	0/15
BSrr	1.4 (1)	1.5(0.6)	1.0(0.5)	174(69)	∞ 2e5	0/15
CMA-CSA	2.7 (2)	3.5(2)	3.1(1)	1.7(0.4)	1.7(2)	15/15
CMA-MSR	3.5(2)	3.1(0.6)	2.7 (1.0)	1.4(0.4)	2.1 (1)	15/15
CMA-TPA	3.2(3)	3.7(1)	2.6(0.7)	1.3(0.3)	2.1 (1)	15/15
GP1-CMAES	2.1 (2)	2.2 (1)	1.7(0.7)	0.92 (0.4)	3.0(3)	10/15
GP5-CMAES	2.4 (2)	1.8(0.6)	1.3(0.1)	$0.58(0.0)^{*}$	1.6(0.8)	14/15
IPOPCMAv3p	1.3 (1)	2.2 (2)	2.5 (0.8)	1.6(0.2)	1.3(0.7)	15/15
LHD-10xDef	2.4 (2)	10(3)	5.7(0.8)	8.1(13)	∞ 1000	0/15
LHD-2xDefa	1.5 (1)	2.6 (0.3)	1.9(0.5)	8.1(4)	∞ 1000	0/15
RAND-2xDef	2.2 (3)	2.8 (2)	2.1(0.7)	6.4(6)	∞ 1000	0/15
RF1-CMAES	2.0 (1)	2.6 (2)	2.3 (0.9)	1.5(0.7)	54(73)	1/15
RF5-CMAES	1.8(2)	1.9(0.9)	1.8(0.4)	7.0(7)	∞ 5034	0/15
Sifeg	1.4 (2)	1.5(0.6)	3.0(0.4)	48(6)	∞ 2e5	0/15
Sif	1.4 (1)	1.5(0.5)	1.1(0.6)	21(40)	∞ 2e5	0/15
Srr	1.4(2)	1.5(0.7)	1.1(0.3)	12(4)	$\infty~2e5$	0/15

ig uic suai is	ranger man	i i, with Doi	incrioin corr	cenon by on	c number of i	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f8	4.0e+4:19	2.5e+4:35	4.0e+3:67	2.5e+2:231	1.6e+1:1470	15/15
BSifeg	3.3 (0.4)	2.0 (0.3)	1.2(0.1)	4.2(6)	65(107)	12/15
BSif	3.3 (0.7)	2.0(0.4)	1.2(0.1)	4.9(14)	518(422)	3/15
BSqi	3.1 (0.5)	1.9(0.4)	1.2(0.1)	1.6(2)	32(16)	7/8
BSrr	3.3 (1)	2.0 (0.3)	1.2(0.1)	3.7(0.2)	75(77)	10/15
CMA-CSA	7.3(5)	5.8(2)	4.9(1)	2.9 (0.5)	2.4 (0.7)	15/15
CMA-MSR	8.7(3)	5.9(1)	5.0(1.0)	2.9 (0.7)	2.5 (0.9)	15/15
CMA-TPA	7.2(2)	4.3(1)	3.8(0.8)	2.2 (0.5)	1.9(0.5)	15/15
GP1-CMAES	5.5(2)	3.4(0.7)	3.1(0.8)	2.3 (0.3)	3.0(2)	12/15
GP5-CMAES	4.4(0.6)	2.6 (0.2)	2.2 (0.4)	11(22)	8.2(9)	5/15
IPOPCMAv3p	6.3(3)	4.8(1.0)	4.4(0.3)	2.8 (1.0)	2.9 (2)	12/15
LHD-10xDef	23(0.2)	12(0.1)	6.7(0.4)	3.8(2)	∞ 1000	0/15
LHD-2xDefa	5.5(0.7)	3.2(0.6)	3.1(0.7)	2.8 (0.7)	∞ 1000	0/15
RAND-2xDef	5.4(0.5)	3.2(0.4)	2.8 (0.4)	2.5(0.7)	∞ 1000	0/15
RF1-CMAES	5.8(1)	4.0(0.6)	4.0(1)	2.7 (0.8)	25(19)	2/15
RF5-CMAES	5.8(2)	3.7(2)	4.2(2)	96(108)	$\infty 5006$	0/15
Sifeg	3.3(1)	2.0 (0.3)	1.2(0.1)	0.98 (0.6)	49(53)	14/15
Sif	3.3(0.6)	2.0 (0.1)	1.2(0.1)	1.1(0.8)	75(113)	12/15
Srr	3.3(0.7)	2.0(0.2)	1.2(0.1)	0.95 (0.2)	77(55)	10/15

107

Table 106: 20-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig the star is	larger than	i i, with bon	nerrom correc	ction by the	number of it	astance
#FEs/D	0.5	1.2	3	10	50	#succ
f9	1.0e + 2:357	6.3e+1:560	4.0e+1:684	2.5e+1:756	1.0e+1:1716	15/15
BSifeg	19(39)	66(100)	59(81)	57(78)	$\infty~2e5$	0/15
BSif	73(20)	115(91)	147(295)	181(258)	$\infty~2e5$	0/15
BSqi	7.4(3)	26(26)	25(45)	27(24)	$\infty~2e5$	0/5
BSrr	16(11)	65(100)	57(4)	55(107)	$\infty~2e5$	0/15
CMA-CSA	2.2 (1)	2.0(4)	1.8(2)	1.9(0.1)	3.8 (0.6)	15/15
CMA-MSR	2.0 (0.2)	2.4 (1)	2.1(4)	2.1 (1)	3.8 (0.9)	15/15
CMA-TPA	1.5(0.3)	1.0(0.3)	0.97 (0.2)	1.0(0.4)	3.8 (0.7)	15/15
GP1-CMAES	2.1(0.8)	1.6(0.5)	1.4(0.4)	1.5(0.4)	$\infty 5006$	0/15
GP5-CMAES	12(7)	12(14)	13(9)	12(24)	∞ 5020	0/15
IPOPCMAv3p	3.6(4)	3.6(0.9)	3.1(5)	3.0 (3)	$\infty 5006$	0/15
LHD-10xDef	8.0(4)	27(35)	∞	∞	∞ 1000	0/15
LHD-2xDefa	5.3(6)	13(8)	22(21)	∞	∞ 1000	0/15
RAND-2xDef	5.3(6)	13(23)	22(24)	∞	∞ 1000	0/15
RF1-CMAES	3.8(1)	5.8(8)	5.3(4)	5.8(4)	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	3.4(5)	19(28)	16(45)	15(6)	$\infty~2e5$	0/15
Sif	16(6)	29(76)	26(29)	25(45)	$\infty~2e5$	0/15
Srr	1.9 (3)	16(3)	14(27)	13(19)	$\infty 2e5$	0/15

larger mar	1 1, WIGH DO	merrom corr	есион бу ине	number of it	istance
0.5	1.2	3	10	50	#succ
1.6e+6:15	1.0e+6:27	4.0e+5:70	6.3e+4:231	4.0e+3:1015	15/15
2.4(2)	2.0 (0.9)	1.6 (1)	479(636)	∞ 2e5	0/15
2.4(2)	2.0 (1)	1.6(0.4)	494(497)	$\infty~2e5$	0/15
2.4(2)	2.0 (1)	1.5(0.6)	221(501)	∞ 2e5	0/15
2.4(2)	2.0 (1)	1.5(0.6)	204(583)	∞ 9e4	0/15
7.8(4)	8.3(8)	7.5(4)	5.8(1)	3.0(0.5)	15/15
8.1(4)	5.8(3)	4.0(2)	3.4 (1)	2.7 (0.7)	15/15
7.5(6)	6.5(2)	4.7(1)	3.3 (1)	2.6 (0.6)	15/15
5.4(4)	5.4(3)	4.2(0.8)	3.5(0.7)	2.3 (0.9)	15/15
4.8(1)	3.6(2)	3.1(0.7)	$2.0(0.4)^{\star}$	1.1(0.4)	15/15
4.8(5)	4.3(4)	5.1(2)	5.0(1.0)	3.2(0.7)	15/15
15(10)	12(8)	7.5(0.9)	21(19)	∞ 1000	0/15
6.7(4)	4.8(3)	3.3(2)	5.8(4)	∞ 1000	0/15
6.4(2)	4.6(3)	3.6(1)	6.9(9)	∞ 1000	0/15
5.9(3)	5.3(3)	4.1(0.9)	3.9(1)	74(110)	1/15
5.1(4)	5.2(3)	10(19)	145(184)	$\infty 5006$	0/15
2.5 (2)	2.0(2)	1.9 (1)	21(30)	$\infty~1e5$	0/15
2.5 (1.0)	2.0 (1)	1.7 ₍₁₎	32(15)	$\infty~1e5$	0/15
2.5(2)	2.0(2)	1.6(1.0)	14(18)	∞ 7e4	0/15
	$\begin{array}{c} 0.5 \\ 1.6e+6:15 \\ \textbf{2.4}(2) \\ \textbf{2.4}(2) \\ \textbf{2.4}(2) \\ \textbf{2.4}(2) \\ \textbf{2.4}(2) \\ \textbf{7.8}(4) \\ \textbf{8.1}(4) \\ \textbf{7.5}(6) \\ \textbf{5.4}(4) \\ \textbf{4.8}(1) \\ \textbf{4.8}(5) \\ \textbf{15}(10) \\ \textbf{6.7}(4) \\ \textbf{6.4}(2) \\ \textbf{5.9}(3) \\ \textbf{5.1}(4) \\ \textbf{2.5}(2) \\ \textbf{2.5}(1.0) \\ \end{array}$	$\begin{array}{c ccccc} & & 1.2 \\ \hline 1.6e+6:15 & 1.0e+6:27 \\ \hline 2.4(2) & 2.0(0.9) \\ \hline 2.4(2) & 2.0(1) \\ \hline 7.8(4) & 8.3(8) \\ \hline 8.1(4) & 5.8(3) \\ \hline 7.5(6) & 6.5(2) \\ \hline 5.4(4) & 5.4(3) \\ \hline 4.8(1) & 3.6(2) \\ \hline 4.8(5) & 4.3(4) \\ \hline 15(10) & 12(8) \\ \hline 6.7(4) & 4.8(3) \\ \hline 6.4(2) & 4.6(3) \\ \hline 5.9(3) & 5.3(3) \\ \hline 5.1(4) & 5.2(3) \\ \hline 2.5(2) & 2.0(2) \\ \hline 2.5(1.0) & 2.0(1) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline 0.5 & 1.2 & 3 & 10\\ \hline 1.6e+6:15 & 1.0e+6:27 & 4.0e+5:70 & 6.3e+4:231\\ \hline 2.4(2) & 2.0(0.9) & 1.6(1) & 479(636)\\ \hline 2.4(2) & 2.0(1) & 1.6(0.4) & 494(497)\\ \hline 2.4(2) & 2.0(1) & 1.5(0.6) & 221(501)\\ \hline 2.4(2) & 2.0(1) & 1.5(0.6) & 204(583)\\ \hline 7.8(4) & 8.3(8) & 7.5(4) & 5.8(1)\\ \hline 8.1(4) & 5.8(3) & 4.0(2) & 3.4(1)\\ \hline 7.5(6) & 6.5(2) & 4.7(1) & 3.3(1)\\ \hline 5.4(4) & 5.4(3) & 4.2(0.8) & 3.5(0.7)\\ \hline 4.8(1) & 3.6(2) & 3.1(0.7) & 2.0(0.4)^*\\ \hline 4.8(5) & 4.3(4) & 5.1(2) & 5.0(1.0)\\ \hline 15(10) & 12(8) & 7.5(0.9) & 21(19)\\ \hline 6.7(4) & 4.8(3) & 3.3(2) & 5.8(4)\\ \hline 6.4(2) & 4.6(3) & 3.6(1) & 6.9(9)\\ \hline 5.9(3) & 5.3(3) & 4.1(0.9) & 3.9(1)\\ \hline 5.1(4) & 5.2(3) & 10(19) & 145(184)\\ \hline 2.5(2) & 2.0(2) & 1.9(1) & 21(30)\\ \hline 2.5(1.0) & 2.0(1) & 1.7(1) & 32(15)\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ig uic suai is	iaigei ilia.	n 1, with D	omeriom con	cenon by the	number of h	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f11	4.0e+4:11	2.5e + 3:27	1.6e + 2:313	1.0e + 2:481	1.0e+1:1002	15/15
BSifeg	1.2(1.0)	1.3(0.5)	796(1249)	4369(6014)	$\infty~1e5$	0/15
BSif	1.2(1)	1.3(0.6)	1191(1314)	∞	$\infty~2e5$	0/15
BSqi	1.2(0.5)	1.3 (1)	462(666)	2574(3002)	∞ 2e5	0/15
BSrr	1.2(0.8)	1.3 (1)	1822(2282)	2506(3240)	∞ 8e4	0/15
CMA-CSA	2.2(2)	3.3(4)	12(1)	8.1(1.0)	4.6 (0.3)	15/15
CMA-MSR	2.0(2)	2.9 (2)	9.2(2)	6.9 (1)	4.7(0.5)	15/15
CMA-TPA	2.2(2)	2.5 (2)	10(1)	7.2 (0.8)	4.5(0.3)	15/15
GP1-CMAES	1.3 (1.0)	1.8 (3)	14(14)	15(5)	$\infty 5006$	0/15
GP5-CMAES	1.8(1)	2.3 (2)	5.2 (3)	17(12)	$\infty 5008$	0/15
IPOPCMAv3p	1.5 (0.9)	2.5 (2)	52(91)	74(55)	$\infty 5006$	0/15
LHD-10xDef	2.6 (2)	4.0(4)	22(30)	∞	∞ 1000	0/15
LHD-2xDefa	1.9 (1)	2.6 (3)	22(10)	∞	∞ 1000	0/15
RAND-2xDef	3.0(1)	2.5 (3)	∞	∞	∞ 1000	0/15
RF1-CMAES	1.5(0.6)	3.2(3)	8.6 (5)	12(7)	$\infty 5006$	0/15
RF5-CMAES	1.9(2)	2.8 (2)	105(152)	146(174)	$\infty 5008$	0/15
Sifeg	1.2(1)	1.3 (1)	478(717)	3784(2685)	$\infty~1e5$	0/15
Sif	1.2(1)	1.3(0.5)	668(1268)	∞	$\infty~1e5$	0/15
Srr	1.2(1)	1.3(1)	529(1045)	2003(2431)	∞ 7e4	0/15

Table 109: 20-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

18 0110 0001 10	Tanger ona	1 1, 111011 100.	incircin com	couldn't by the	o mannoor or n	
#FEs/D	0.5	1.2	3	10	50	#succ
f12	1.0e + 8:23	6.3e + 7:39	2.5e + 7:76	4.0e+6:209	1.0e+1:1042	15/15
BSifeg	3.5(0.9)	11(0.6)	16(38)	25(62)	$\infty~1e5$	0/15
BSif	3.4 (2)	9.3(28)	29(130)	39(27)	∞ 1e5	0/15
BSqi	3.2 (0.7)	12(36)	47(64)	63(231)	173(106)	9/15
BSrr	3.3 (2)	11(33)	89(48)	69(211)	677(608)	2/15
CMA-CSA	5.4(2)	4.5(2)	3.7 (0.7)	2.3 (0.4)	3.6 (3)	15/15
CMA-MSR	6.2(2)	4.9(2)	3.8(0.8)	2.5 (0.2)	3.7(3)	15/15
CMA-TPA	7.2(3)	5.2(1)	3.8(0.6)	2.0(0.5)	3.8(4)	15/15
GP1-CMAES	4.7(3)	3.9(3)	3.7(0.9)	2.8 (0.9)	2.4 (4)	13/15
GP5-CMAES	18(82)	22(40)	38(31)	74(142)	21(12)	3/15
IPOPCMAv3p	5.1(3)	4.7(0.4)	3.8(1)	2.5 (0.3)	3.8(2)	11/15
LHD-10xDef	17(7)	12(0.7)	8.9(4)	17(14)	$\infty 1000$	0/15
LHD-2xDefa	4.6(2)	4.1(0.7)	3.8(0.8)	3.2(1)	∞ 1000	0/15
RAND-2xDef	5.0(1)	4.0(2)	3.7 (1)	3.8(3)	∞ 1000	0/15
RF1-CMAES	3.9(2)	3.9(1)	3.1 (0.5)	1.8(0.1)	3.0(2)	12/15
RF5-CMAES	5.2(2)	4.6(1)	9.4(2)	39(108)	$\infty 5006$	0/15
Sifeg	3.7(0.6)	3.0 (0.3)	8.1(20)	26(19)	∞ 4e4	0/15
Sif	3.7(3)	3.2 (4)	12(37)	23(12)	∞ $5e4$	0/15
Srr	4.6(0.6)	3.8 (3)	28(19)	20(28)	∞ 4 e 4	0/15

ig the star is	larger mai.	i i, with De	unerrour cor	rection by th	e number of n	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f13	1.6e + 3:28	1.0e + 3:64	6.3e + 2:79	4.0e+1:211	2.5e+0:1724	15/15
BSifeg	2.2 (0.3)	1.3(0.1)	1.5(0.1)	125(442)	99(70)	11/15
BSif	2.2 (0.7)	1.3(0.2)	1.5(0.1)	1842(1760)	$\infty~2e5$	0/15
BSqi	2.2 (0.6)	1.3(0.2)	1.4(0.2)	71(9)	106(67)	9/15
BSrr	2.2 (0.5)	1.3(0.1)	1.4(0.2)	67(143)	88(62)	11/15
CMA-CSA	4.3(2)	3.6(0.7)	4.7(0.8)	5.4(0.4)	2.8 (2)	15/15
CMA-MSR	5.6(1)	4.3(1)	4.9(0.4)	6.1(0.3)	2.8 (1)	15/15
CMA-TPA	3.9(1.0)	3.0(0.9)	3.7(0.6)	5.3(0.3)	4.0 (3)	15/15
GP1-CMAES	2.5 (0.9)	2.4 (0.4)	2.9 (0.5)	49(26)	42(52)	1/15
GP5-CMAES	2.4 (0.4)	1.5(0.3)	1.6(0.3)	$2.9_{(0.8)}^{\star 2}$	4.5(14)	7/15
IPOPCMAv3p	3.3(2)	3.9(1)	5.5(0.8)	8.0(3)	9.1(7)	4/15
LHD-10xDef	15(0.1)	6.9(0.1)	6.3(0.2)	8.5(7)	∞ 1000	0/15
LHD-2xDefa	3.3(1)	2.2 (0.2)	2.8 (2)	9.4(9)	∞ 1000	0/15
RAND-2xDef	3.5(0.5)	2.2 (0.3)	2.9 (0.5)	7.1(6)	∞ 1000	0/15
RF1-CMAES	3.2(1)	3.0 (1)	3.9(1)	7.1(1)	7.3(5)	5/15
RF5-CMAES	3.4(2)	3.0(0.7)	4.2(1)	343(659)	$\infty 5006$	0/15
Sifeg	2.2 (0.7)	1.3(0.1)	1.4(0.1)	19(41)	43(29)	15/15
Sif	2.2 (0.8)	1.3(0.1)	1.4(0.1)	23(84)	81(59)	11/15
Srr	2.2 (0.6)	1.3(0.1)	1.4(0.1)	16(77)	64(111)	13/15

ig the star is	larger man	. 1, with Doi	merrom corr	ection by the	number of t	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	2.5e+1:15	1.6e + 1:42	1.0e + 1:75	1.6e+0:219	6.3e-4:1106	15/15
BSifeg	3.3(2)	1.7(0.4)	1.5(0.6)	10(9)	$\infty~2e5$	0/15
BSif	3.3(2)	1.7(0.7)	1.5(0.8)	9.1(10)	$\infty~2e5$	0/15
BSqi	3.9(1)	2.0 (0.3)	1.5(0.3)	4.7(3)	$\infty~2e5$	0/4
BSrr	3.3(2)	1.7(1.0)	1.4(0.6)	6.4(5)	∞ 2e5	0/15
CMA-CSA	9.1(7)	4.8(2)	4.2(1)	2.9 (0.3)	3.1(0.4)	15/15
CMA-MSR	8.7(2)	4.7(2)	4.2(0.8)	2.7 (0.4)	2.7 (0.2)	15/15
CMA-TPA	8.9(8)	4.8(3)	3.5(2)	2.4 (0.3)	2.6 (0.4)	15/15
GP1-CMAES	7.9(5)	3.9(1)	3.0 (0.7)	2.3 (0.6)	4.6(2)	13/15
GP5-CMAES	5.7(2)	2.6 (0.6)	2.1 (0.3)	1.7(0.5)	67(23)	1/15
IPOPCMAv3p	10(3)	4.6(1)	3.7(1)	2.9 (0.3)	3.9(0.4)	15/15
LHD-10xDef	25(7)	11(0.8)	6.9(0.4)	7.7(6)	∞ 1000	0/15
LHD-2xDefa	8.1(2)	3.7(1)	3.1(1)	3.8(3)	∞ 1000	0/15
RAND-2xDef	8.8(2)	4.1(0.8)	3.3(0.9)	7.3(6)	∞ 1000	0/15
RF1-CMAES	7.1(3)	4.4(2)	3.5(0.9)	3.1(0.9)	33(32)	2/15
RF5-CMAES	6.5(7)	3.9(2)	3.7(1)	153(104)	$\infty 5006$	0/15
Sifeg	3.3 (2)	1.8(0.5)	1.3(0.4)	1.4(0.7)	∞ 2e5	0/15
Sif	3.3 (2)	1.8(0.8)	1.3(0.4)	1.5(0.9)	$\infty~2e5$	0/15
Srr	3.3(2)	1.8(0.7)	1.3(0.5)	1.1(0.7)	$\infty~2e5$	0/15

ig uic suai is	raiger ma	n 1, with D	Jiiici toili coi.	icculon by un	c number of r	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f15	6.3e+2:15	4.0e+2:67	2.5e+2:292	1.6e + 2:846	1.0e + 2:1671	15/15
BSifeg	2.2(2)	18(0.6)	274(399)	525(570)	1563(1672)	1/15
BSif	2.2(2)	76(563)	296(322)	943(1318)	1581(3030)	1/15
BSqi	2.1 (1)	15(0.3)	224(291)	346(493)	∞ 2e5	0/11
BSrr	2.2 (1)	5.7(33)	272(279)	450(534)	1391(3523)	1/15
CMA-CSA	4.9(2)	2.5 (0.6)	1.1(0.2)	0.86(0.2)	1.5(0.6)	15/15
CMA-MSR	6.2(4)	2.8 (1)	1.1(0.3)	0.68(0.1)	$0.44_{(0.1)}$	15/15
CMA-TPA	6.1(3)	2.3 (0.4)	0.87 (0.3)	0.70 (0.2)	0.72 (0.1)	15/15
GP1-CMAES	3.6(2)	1.9(0.8)	0.81(0.2)	0.78 (0.4)	0.64(0.2)	15/15
GP5-CMAES	3.7(3)	1.5(0.3)	0.60(0.2)	2.2 (8)	3.9(3)	7/15
IPOPCMAv3p	4.5(3)	2.6 (1)	1.2(0.3)	1.2(0.4)	1.4(2)	14/15
LHD-10xDef	16(14)	6.4(0.1)	1.9(0.4)	1.1(0.2)	1.2(0.5)	7/15
LHD-2xDefa	5.5(2)	2.0 (0.9)	1.1(0.9)	1.5(1)	8.7(6)	1/15
RAND-2xDef	5.1(2)	1.9(0.5)	1.1(0.5)	1.6(0.4)	8.8(6)	1/15
RF1-CMAES	4.5(2)	2.2 (1)	0.93 (0.2)	0.92 (0.2)	0.70 (0.1)	15/15
RF5-CMAES	3.6(2)	1.9(0.4)	0.95 (0.5)	1.7(2)	6.5(6)	5/15
Sifeg	2.2 (1)	46(168)	49(91)	126(362)	774(620)	2/15
Sif	2.2(2)	52(0.5)	74(144)	170(170)	703(1812)	2/15
Srr	2.2(2)	52(190)	72(135)	100(124)	352(371)	4/15

ig uic suai is	larger mai	i i, with Do	merrom corr	ccuon by on	c number of n	istance
#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:26	2.5e+1:127	1.6e + 1:540	1.6e + 1:540	1.0e+1:1384	15/15
BSifeg	1.7 (1)	0.92 (0.2)	44(119)	44(89)	123(354)	9/15
BSif	1.7 (1)	0.92 (0.2)	42(89)	42(88)	178(188)	8/15
BSqi	1.7 (1)	0.93 (0.2)	21(42)	21(0.7)	98(223)	10/13
BSrr	1.7 (0.9)	0.93 (0.2)	40(46)	40(134)	119(89)	10/15
CMA-CSA	7.8(10)	16(6)	4.3(2)	4.3(1)	1.9(0.6)	15/15
CMA-MSR	5.2(2)	2.1 (0.4)	0.81 (0.3)	0.81(0.4)	0.80(1)	15/15
CMA-TPA	4.5(8)	8.4(6)	2.2 (1)	2.2 (1)	1.2(0.7)	15/15
GP1-CMAES	3.3(2)	4.3(2)	1.4(0.3)	1.4(0.2)	0.90 (0.1)	14/15
GP5-CMAES	3.4(3)	1.6 (0.6)	0.54 (0.2)	0.54(0.2)	0.57 (0.2)	15/15
IPOPCMAv3p	3.4(4)	10(4)	3.2(1)	3.2(1)	1.4(0.4)	15/15
LHD-10xDef	6.5(7)	5.4(2)	4.8(3)	4.8(3)	3.4(4)	3/15
LHD-2xDefa	3.2(3)	3.6(2)	2.6 (3)	2.6 (3)	5.1(8)	2/15
RAND-2xDef	3.8(3)	6.4(8)	5.0(8)	5.0(8)	11(16)	1/15
RF1-CMAES	2.8 (4)	4.6(3)	1.6(0.5)	1.6(0.4)	0.79 (0.2)	15/15
RF5-CMAES	4.2(4)	2.2(2)	0.83 (0.2)	0.83 (0.3)	1.0 (3)	13/15
Sifeg	1.9(2)	1.5(0.6)	10(9)	10(7)	15(22)	15/15
Sif	1.9(2)	1.6 (1)	6.1(6)	6.1(6)	12(12)	15/15
Srr	1.9(1)	1.8(3)	3.3(12)	3.3(0.9)	14(10)	15/15

ig uic suai is	iaigei ilia	n i, with Do	menom com	cuon by the	number of it	istance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f17	1.6e+1:11	1.0e+1:63	6.3e+0:305	4.0e+0:468	1.0e+0:1030	15/15
BSifeg	22(2)	493(0.8)	1042(852)	∞	∞ 2e5	0/15
BSif	35(3)	488(791)	2637(4581)	∞	∞ 2e5	0/15
BSqi	2.6 (1)	1.7 (0.6)	346(328)	∞	∞ 2e5	0/3
BSrr	27(3)	476(1)	1359(2006)	∞	∞ 2e5	0/15
CMA-CSA	7.5(5)	3.0 (2)	1.1(0.2)	1.0(0.2)	1.0(0.2)	15/15
CMA-MSR	7.9(3)	2.7 (0.6)	0.90 (0.2)	1.0(0.2)	6.5(3)	15/15
CMA-TPA	8.8(7)	2.7 (0.7)	0.93 (0.1)	0.95 (0.3)	1.4(0.4)	15/15
GP1-CMAES	2.4 (3)	1.4(0.8)	0.73 (0.3)	0.79 (0.3)	3.4(10)	10/15
GP5-CMAES	3.3(2)	1.6(0.8)	0.79 (0.4)	0.87 (0.6)	11(27)	5/15
IPOPCMAv3p	2.8 (2)	2.0(2)	0.89 (0.3)	0.95 (0.3)	0.99 (0.2)	15/15
LHD-10xDef	12(9)	7.3(2)	2.2 (0.4)	5.7(2)	$\infty 1000$	0/15
LHD-2xDefa	3.3(4)	2.6 (0.8)	1.4(2)	10(8)	$\infty 1000$	0/15
RAND-2xDef	5.0(4)	2.7 (2)	2.1 (2)	31(38)	∞ 1000	0/15
RF1-CMAES	3.1(3)	1.9(0.7)	0.78 (0.3)	0.83 (0.3)	4.2(10)	9/15
RF5-CMAES	4.0(2)	2.7 (0.8)	3.6(5)	17(13)	$\infty 5006$	0/15
Sifeg	3.8(6)	230(797)	797(1392)	5983(5449)	$\infty~2e5$	0/15
Sif	3.6(5)	7.1(18)	750(822)	5964(6604)	∞ 2e5	0/15
Srr	3.6(3)	3.8(6)	979(1795)	5963(5002)	$\infty~2e5$	0/15

ig the star is	rarger man	i i, with Doi	increoin corre	ction by the	number of it	istanice
#FEs/D	0.5	1.2	3	10	50	#succ
f18	4.0e+1:116	2.5e+1:252	1.6e + 1:430	1.0e+1:621	4.0e+0:1090	15/15
BSifeg	5.9(13)	468(752)	5872(6811)	∞	$\infty~2e5$	0/14
BSif	123(7)	758(760)	∞	∞	$\infty~2e5$	0/15
BSqi	0.80 (0.3)	368(889)	∞	∞	$\infty~2e5$	0/4
BSrr	26(0.2)	649(989)	∞	∞	∞ 2e5	0/15
CMA-CSA	1.3(0.3)	1.0(0.3)	0.96 (0.1)	0.96 (0.3)	0.96 (0.3)	15/15
CMA-MSR	1.3(0.5)	1.0(0.3)	0.97 (0.6)	2.8 (0.2)	4.8(13)	15/15
CMA-TPA	1.3(0.7)	1.0(0.7)	0.92 (0.3)	1.6 (3)	1.3(0.3)	15/15
GP1-CMAES	0.81 (0.3)	0.84(0.3)	0.85 (0.3)	0.93 (0.5)	5.2(6)	8/15
GP5-CMAES	0.95 (0.9)	0.85 (0.6)	1.7(3)	2.8 (4)	19(22)	3/15
IPOPCMAv3p	0.94 (0.7)	1.1(0.2)	1.1(0.4)	1.1(0.4)	1.1(0.2)	15/15
LHD-10xDef	3.5(0.5)	2.7 (0.8)	5.2(3)	∞	∞ 1000	0/15
LHD-2xDefa	1.00(0.6)	1.6(0.7)	11(6)	∞	$\infty 1000$	0/15
RAND-2xDef	0.99 (0.4)	1.6 (1)	16(11)	∞	∞ 1000	0/15
RF1-CMAES	0.87 (0.4)	0.82(0.2)	0.87 (0.2)	1.0(0.2)	10(9)	5/15
RF5-CMAES	1.3(0.4)	2.7 (1)	5.4(3)	53(99)	$\infty 5006$	0/15
Sifeg	48(9)	217(303)	1821(1148)	∞	∞ 2e5	0/15
Sif	91(59)	367(370)	1063(2314)	4564(4318)	∞ 2e5	0/15
Srr	30(8)	132(7)	801(1299)	∞	$\infty~2e5$	0/15

ng uic star is	ranger man	i, with Doi	merrom corre	colon by one	mumber of h	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:2.5e5	1.0e-1:3.4e5	6.3e-2:3.4e5	4.0e-2:3.4e5	2.5e - 2:3.4e5	3/15
BSifeg	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	$\infty~2e5$	0/8
BSrr	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	0.89 (0.5)	0.82 (0.5)	0.87 (0.5)	2.9 (2)	5.6 (4)	11/15
CMA-MSR	1.2(0.5)	1.2(0.4)	1.7(0.9)	3.0 (5)	15 (28)	5/15
CMA-TPA	1.3(0.6)	1.6(0.6)	2.3 (0.9)	3.4 (2)	7.9 (8)	9/15
GP1-CMAES	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	$\infty 5020$	0/15
IPOPCMAv3p	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	$\infty 5008$	0/15
RF5-CMAES	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	∞	∞	∞	∞	$\infty 2e5$	0/15
Sif	∞	∞	∞	∞	∞ 2e5	0/15
Srr	∞	∞	∞	∞	∞ 2e5	0/15

ig the star is	rarger mar	i i, with bo	merrom cor	iccion by or	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f20	1.6e+4:38	1.0e+4:42	2.5e + 2:62	2.5e+0:250	1.6e+0:2536	15/15
BSifeg	1.8(0.6)	1.8(0.6)	1.6 (0.6)	2.1 (4)	3.2(0.8)	15/15
BSif	1.8 (1)	1.8(0.3)	1.6(0.8)	1.6(0.8)	1.4 (1)	15/15
BSqi	1.1(1)	1.5(1)	1.5(0.5)	1.0(0.3)	1.3(0.3)	4/4
BSrr	1.8(0.5)	1.8 (1)	1.6(0.5)	1.1(0.5)	4.8(14)	15/15
CMA-CSA	3.2(1)	3.7(0.6)	5.5(2)	7.6(9)	18(13)	15/15
CMA-MSR	3.8(0.8)	4.2(1)	5.9(1)	3.2(0.5)	4477(3623)	2/15
CMA-TPA	3.4(0.7)	3.8(0.4)	4.3(0.9)	5.8(0.6)	432(576)	10/15
GP1-CMAES	2.8 (1)	3.2(1)	3.6(0.2)	4.0(2)	$\infty 5006$	0/15
GP5-CMAES	2.3 (0.5)	2.2 (0.2)	2.5 (0.4)	284(618)	∞ 5022	0/15
IPOPCMAv3p	3.5(1)	4.3(2)	6.1(0.9)	5.9(0.5)	6.2(6)	4/15
LHD-10xDef	11(2)	10(0.2)	8.7(0.5)	7.9(10)	∞ 1000	0/15
LHD-2xDefa	3.3(0.6)	3.3(0.6)	4.4(2)	2.8 (2)	5.7(4)	1/15
RAND-2xDef	3.1(0.6)	3.1(0.7)	4.8(3)	4.9(2)	∞ 1000	0/15
RF1-CMAES	3.5(0.7)	3.9(0.6)	5.2(1)	3.4(1)	6.1(7)	4/15
RF5-CMAES	2.6 (0.8)	2.9 (1)	6.6(4)	134(150)	$\infty 5006$	0/15
Sifeg	1.8(0.6)	1.8(0.3)	1.9(0.3)	0.75 (0.1)	0.55 (0.6)	15/15
Sif	1.8 (1)	1.8(0.6)	1.9(0.7)	0.82 (0.4)	0.64 (0.5)	15/15
Srr	1.8(0.6)	1.8(0.7)	1.9(0.4)	0.71 (0.1)	0.51(0.3)	15/15

ng unc suar is	ranger unan	i i, with Do	increom cor	rection by th	c number of h	instance
#FEs/D	0.5	1.2	3	10	50	#succ
f21	6.3e+1:36	4.0e+1:77	4.0e+1:77	1.6e+1:456	4.0e+0:1094	15/15
BSifeg	2.0 (0.1)	1.2(0.2)	1.2(0.2)	87(219)	98(149)	11/15
BSif	2.0 (0.3)	1.2(0.2)	1.2(0.2)	93(158)	146(109)	9/15
BSqi	2.1 (0.1)	1.4(0.5)	1.4(0.5)	187(401)	79(117)	3/4
BSrr	2.0 (0.1)	1.2(0.1)	1.2(0.6)	80(44)	162(230)	8/15
CMA-CSA	5.6(2)	3.4(0.9)	3.4(0.5)	2.5 (3)	99(520)	14/15
CMA-MSR	5.0(1)	3.1(0.8)	3.1(0.9)	1.6(0.2)	234(2)	13/15
CMA-TPA	4.9(2)	3.3(1)	3.3(1)	17(4)	198(577)	13/15
GP1-CMAES	3.8(2)	6.3(0.4)	6.3(0.6)	1.8(5)	3.4(1)	10/15
GP5-CMAES	3.2(1.0)	2.9 (0.4)	2.9 (8)	1.8(2)	7.7(10)	6/15
IPOPCMAv3p	5.8(5)	5.5(4)	5.5(2)	3.2(4)	7.8(7)	6/15
LHD-10xDef	13(0.8)	6.6(0.6)	6.6(0.9)	2.0(2)	2.4 (4)	5/15
LHD-2xDefa	3.6(0.6)	2.6 (1)	2.6 (3)	0.88 (0.3)	1.2(0.8)	9/15
RAND-2xDef	3.4(0.6)	1.9(0.4)	1.9(0.5)	0.46(0.1)	0.57 (0.5)	12/15
RF1-CMAES	5.2(2)	3.7(1)	3.7(1)	5.5(6)	8.0(10)	6/15
RF5-CMAES	7.6(2)	6.1(2)	6.1(1)	8.7(6)	14(7)	4/15
Sifeg	2.0 (0.3)	1.3(0.3)	1.3(0.5)	65(164)	87(267)	12/15
Sif	2.0 (0.5)	1.3(0.5)	1.3(0.1)	106(141)	136(259)	9/15
Srr	2.0 (0.3)	1.3(0.6)	1.3(0.3)	67(103)	160(92)	8/15

iaigei illai	i i, with bo	merrom con	есион бу и	ie number or n	ustance
0.5	1.2	3	10	50	#succ
6.3e+1:45	4.0e+1:68	4.0e+1:68	1.6e + 1:231	6.3e+0:1219	15/15
1.6(0.2)	4.4(24)	4.4(12)	166(86)	156(297)	8/15
1.6(0.3)	6.1(0.3)	6.1(0.1)	196(144)	225(246)	7/15
1.6(0.0)	6.6(14)	6.6(0.0)	228(445)	230(456)	2/5
1.6(0.3)	3.5(9)	3.5(9)	167(263)	117(123)	10/15
4.6(1)	9.1(2)	9.1(17)	38(98)	230(458)	12/15
5.8(1)	14(18)	14(35)	7.9(11)	206(329)	13/15
4.0(1)	6.8(1)	6.8(1)	327(0.8)	428(431)	10/15
12(29)	17(17)	17(20)	12(11)	2.7 (1)	10/15
2.5 (0.3)	3.6(6)	3.6(12)	4.8(8)	2.0 (7)	11/15
4.6(2)	10(2)	10(2)	6.7(6)	4.6(5)	8/15
10(0.4)	7.8(2)	7.8(2)	5.4(5)	2.1 (1)	5/15
3.4(0.6)	3.3(3)	3.3(2)	2.0 (3)	1.2(2)	8/15
3.3(0.6)	3.2(2)	3.2(0.3)	1.9(2)	1.1 (1)	8/15
4.6(3)	5.2(3)	5.2(1)	4.6 (6)	3.0 (0.4)	10/15
5.8(3)	11(38)	11(22)	11(17)	5.7(4)	7/15
1.6(0.4)	1.7(4)	1.7(0.2)	230(351)	159(287)	9/15
1.6(0.1)	1.9(6)	1.9(0.2)	118(156)	125(125)	10/15
1.6(0.4)	1.5(0.2)	1.5(3)	170(497)	133(101)	9/15
	$\begin{array}{c} 0.5 \\ \hline 6.3e+1:45 \\ \textbf{1.6}(0.2) \\ \textbf{1.6}(0.3) \\ \textbf{1.6}(0.0) \\ \textbf{1.6}(0.3) \\ \textbf{4.6}(1) \\ 5.8(1) \\ \textbf{4.0}(1) \\ \textbf{12}(29) \\ \textbf{2.5}(0.3) \\ \textbf{4.6}(2) \\ \textbf{10}(0.4) \\ \textbf{3.4}(0.6) \\ \textbf{3.3}(0.6) \\ \textbf{4.6}(3) \\ \textbf{5.8}(3) \\ \textbf{1.6}(0.4) \\ \textbf{1.6}(0.1) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline 0.5 & 1.2 & 3\\\hline 6.3e+I:45 & 4.0e+I:68 & 4.0e+I:68\\ \textbf{1.6}(0.2) & 4.4(24) & 4.4(12)\\ \textbf{1.6}(0.3) & 6.1(0.3) & 6.1(0.1)\\ \textbf{1.6}(0.0) & 6.6(14) & 6.6(0.0)\\ \textbf{1.6}(0.3) & 3.5(9) & 3.5(9)\\ 4.6(1) & 9.1(2) & 9.1(17)\\ 5.8(1) & 14(18) & 14(35)\\ 4.0(1) & 6.8(1) & 6.8(1)\\ 12(29) & 17(17) & 17(20)\\ \textbf{2.5}(0.3) & 3.6(6) & 3.6(12)\\ 4.6(2) & 10(2) & 10(2)\\ 10(0.4) & 7.8(2) & 7.8(2)\\ 3.4(0.6) & 3.3(3) & 3.3(2)\\ 3.3(0.6) & 3.2(2) & 3.2(0.3)\\ 4.6(3) & 5.2(3) & 5.2(1)\\ 5.8(3) & 11(38) & 11(22)\\ \textbf{1.6}(0.4) & \textbf{1.7}(4) & \textbf{1.7}(0.2)\\ \textbf{1.6}(0.1) & \textbf{1.9}(6) & \textbf{1.9}(0.2) \\ \end{array}$	$\begin{array}{ c c c c c c c c }\hline 0.5 & 1.2 & 3 & 10\\ \hline 6.3e+1:45 & 4.0e+1:68 & 4.0e+1:68 & 1.6e+1:231\\ \hline \textbf{1.6}(0.2) & 4.4(24) & 4.4(12) & 166(88)\\ \hline \textbf{1.6}(0.3) & 6.1(0.3) & 6.1(0.1) & 196(144)\\ \hline \textbf{1.6}(0.0) & 6.6(14) & 6.6(0.0) & 228(445)\\ \hline \textbf{1.6}(0.3) & 3.5(9) & 3.5(9) & 167(263)\\ \hline 4.6(1) & 9.1(2) & 9.1(17) & 38(98)\\ \hline 5.8(1) & 14(18) & 14(35) & 7.9(11)\\ \hline 4.0(1) & 6.8(1) & 6.8(1) & 327(0.8)\\ \hline 12(29) & 17(17) & 17(20) & 12(11)\\ \hline \textbf{2.5}(0.3) & 3.6(6) & 3.6(12) & 4.8(8)\\ \hline 4.6(2) & 10(2) & 10(2) & 6.7(6)\\ \hline 10(0.4) & 7.8(2) & 7.8(2) & 5.4(5)\\ \hline 3.4(0.6) & 3.3(3) & 3.3(2) & \textbf{2.0}(3)\\ \hline 3.3(0.6) & 3.2(2) & 3.2(0.3) & \textbf{1.9}(2)\\ \hline 4.6(3) & 5.2(3) & 5.2(1) & \textbf{4.6}(6)\\ \hline 5.8(3) & 11(38) & 11(22) & 11(17)\\ \hline \textbf{1.6}(0.4) & \textbf{1.7}(4) & \textbf{1.7}(0.2) & 230(351)\\ \hline \textbf{1.6}(0.1) & \textbf{1.9}(6) & \textbf{1.9}(0.2) & 118(156)\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f23	6.3e+0:29	4.0e+0:118	2.5e+0:306	2.5e+0:306	1.0e+0:1614	15/15
BSifeg	2.3(2)	1.4(0.4)	1.9(2)	1.9(2)	60(52)	14/15
BSif	2.3 (2)	1.4(0.4)	2.8 (10)	2.8 (5)	37(39)	15/15
BSrr	2.3(2)	1.4(0.5)	2.5(2)	2.5 (5)	54(25)	14/15
CMA-CSA	6.7(4)	8.1(5)	37(35)	37(45)	93(10)	15/15
CMA-MSR	4.1(3)	3.9(2)	4.3(0.6)	4.3(10)	2.0 (6)	15/15
CMA-TPA	5.2(3)	12(10)	34(47)	34(50)	23(38)	15/15
GP1-CMAES	2.1(2)	6.4(4)	5.8(5)	5.8(2)	1.6(0.9)	14/15
GP5-CMAES		2.9 (2)	1.9(4)	1.9(0.2)	0.84 (0.8)	15/15
IPOPCMAv3p	1.5(2)	6.7(4)	75(126)	75(72)	∞ 5020	0/15
LHD-10xDef	2.3 (3)	8.2(16)	48(43)	48(25)	∞ 1000	0/15
	1.6(2)	5.6(7)	23(20)	23(22)	∞ 1000	0/15
RAND-2xDef		6.2(5)	∞	∞	∞ 1000	0/15
RF1-CMAES	1.3(0.9)	3.4(6)	244(139)	244(275)	∞ 5010	0/15
RF5-CMAES	1.8(3)	4.5(6)	113(313)	113(144)	$\infty 5086$	0/15
Sifeg	2.3(2)	4.7(3)	4.2(3)	4.2(2)	6.5(5)	15/15
Sif	2.3(2)	4.7(2)	4.4(2)	4.4(2)	11(9)	15/15
Srr	2.3 (1)	4.8(3)	3.9(1)	3.9(2)	5.2(8)	15/15

#FEs/D	0.5	1.2	3	10	50	#succ
f24	2.5e+2:208	1.6e + 2:918	1.0e + 2:6628	6.3e+1:9885	4.0e+1:3162	9 15/15
BSifeg	61(21)	73(139)	56(58)	∞	$\infty~2e5$	0/15
BSif	76(70)	187(223)	196(301)	∞	$\infty~2e5$	0/15
BSrr	63(152)	78(66)	75(81)	∞	$\infty~2e5$	0/15
CMA-CSA	1.5(0.2)	1.4(0.2)	1.4(0.5)	0.99 (1)	0.87 (0.8)	15/15
CMA-MSR	1.3(0.3)	0.73 (0.1)	0.21 (0.3)	0.61 (0.4)	0.34(0.2)	15/15
CMA-TPA	1.2(0.3)	1.7 (1.0)	0.71 (0.3)	0.67 (0.3)	0.92 (0.3)	15/15
GP1-CMAES	0.83 (0.3)	0.84 (0.3)	0.20 (0.0)	0.24 (0.1)	0.38 (0.6)	5/15
GP5-CMAES	$0.51(0.1)^{\star}_{\downarrow 4}$	0.86 (0.2)	0.37 (0.2)	0.32 (0.3)	1.1(0.9)	2/15
IPOPCMAv3p	1.4(0.4)	1.7 (1)	5.5(3)	7.5(9)	$\infty 5008$	0/15
LHD-10xDef	3.0(3)	1.6(0.8)	0.74 (0.8)	∞	∞ 1000	0/15
LHD-2xDefa	7.5(3)	7.8(10)	∞	∞	∞ 1000	0/15
RAND-2xDef	9.3(12)	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	1.4(0.3)	2.5(2)	1.0(1)	2.4 (4)	2.3 (3)	1/15
RF5-CMAES	2.2 (1)	4.1(4)	11(21)	∞	∞ 5034	0/15
Sifeg	16(45)	19(27)	23(9)	258(219)	$\infty~2e5$	0/15
Sif	19(16)	20(30)	28(44)	∞	$\infty~2e5$	0/15
Srr	17(12)	12(11)	13(17)	∞	∞ 2e5	0/15

Table 122: 40-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f1	2.5e+2:48	1.6e + 2:82	1.0e-8:83	1.0e-8:83	1.0e-8:83	15/15
CMA-CSA	2.0 (0.5)	2.3(0.9)	64(4)	64(2)	64(4)	15/15
CMA-MSR	2.6(0.9)	2.8(0.7)	66(3)	66(3)	66(2)	15/15
CMA-TPA	2.5(0.7)	2.3 (0.4)	$43(1)^{*4}$	$43(2)^{*4}$	${\bf 43}{(2)}^{\star4}$	15/15

Table 123: 40-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

$^{\circ}$,				
	#FEs/D	0.5	1.2	3	10	50	#succ
	f2	1.0e + 7:39	6.3e+6:71	4.0e + 5:121	2.5e+4:499	1.0e-8:1188	15/15
(CMA-CSA	1.3(0.9)	1.9(0.9)	17(8)	12(1)	40 (1)*4	15/15
(CMA-MSR	2.0(1)	1.8 (1)	8.0(2)	8.2(2)	47(0.9)	15/15
(CMA-TPA	2.1(2)	2.2(0.8)	8.5(2)	8.9(3)	46(0.9)	15/15

Table 124: 40-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f3	1.6e+3:68	1.0e + 3:222	6.3e + 2:471	4.0e+2:662	6.3e+1:6332	15/15
CMA-CSA	1.8(1)	1.4(0.4)	1.1(0.2)	1.8(0.3)	3.6(1)	15/15
CMA-MSR	2.3(1)	1.3(0.5)	1.1(0.2)	1.3(0.2)	4.0(1)	15/15
CMA-TPA	2.3(1)	1.1(0.3)	$0.83(0.1)^{*}$	1.4(0.5)	2.7 (2)	15/15

Table 125: 40-D, running time excess ERT/ERT_{best 2009} on f_4 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

_	0						
	#FEs/D	0.5	1.2	3	10	50	#succ
	f4	1.0e + 3:439	6.3e + 2:670	4.0e+2:707	2.5e+2:735	1.0e + 2:5369	15/15
	CMA-CSA	1.2(0.4)	1.5(0.2)	3.3(0.8)	4.5(0.8)	3.6 (3)	15/15
	CMA-MSR	1.1(0.2)	1.2(0.3)	1.8(0.4)	12(8)	8.1(3)	15/15
	CMA-TPA	0.94 (0.2)	1.1(0.1)	2.0(0.4)	2.5 (0.4)	4.5(2)	15/15

Table 126: 40-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	4.0e+2:51	2.5e + 2:81	1.0e-1:120	1.0e-8:121	1.0e-8:121	15/15
CMA-CSA	1.7(0.5)	1.8(0.4)	4.4(0.5)	4.4(0.3)	4.4(0.4)	15/15
CMA-MSR	1.7(0.9)	1.8(0.3)	3.6(0.3)	3.6 (0.7)	3.6 (0.5)	15/15
CMA-TPA	1.2(0.5)*	$1.2(0.4)^{\star 2}$	3.5 (0.5)	3.6(0.4)	3.6(0.3)	15/15

Table 127: 40-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f6	6.3e+5:50	4.0e+5:82	4.0e+4:127	4.0e+2:734	6.3e+1:2121	15/15
CMA-CSA	,	1.4(0.7)	2.1(0.5)	2.9(0.2)	1.8(0.2)	15/15
CMA-MSR		1.6(0.7)	2.0 (0.5)	1.7(0.2)	1.7(0.9)	15/15
CMA-TPA	1.6(0.4)	1.9(0.5)	2.3(0.7)	1.9(0.3)	1.5(0.5)	15/15

Table 128: 40-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0		,				
#FEs/D	0.5	1.2	3	10	50	#succ
f7	1.6e+3:35	1.0e + 3:106	6.3e+2:165	2.5e + 2:489	2.5e+1:2987	15/15
CMA-CSA	2.9 (1)	2.4(0.8)	2.7(1)	1.7(0.3)	1.1(0.8)	15/15
CMA-MSR	3.5(2)	2.2(0.2)	2.1(0.5)	1.2(0.3)	6.7(4)	15/15
CMA-TPA	3.4(1)	2.0(0.2)	1.8(0.4)	1.1(0.2)	10(30)	15/15

Table 129: 40-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

_	0						
	#FEs/D	0.5	1.2	3	10	50	#succ
	f8	1.0e + 5:85	6.3e+4:111	4.0e+4:125	2.5e+3:430	6.3e+1:2106	15/15
	CMA-CSA	3.4(1)	3.2(0.3)	3.4(0.7)	1.9(0.2)	3.3(8)	15/15
	CMA-MSR	3.4(0.9)	3.1(0.8)	3.1(0.5)	1.7(0.2)	3.3(4)	15/15
	CMA-TPA	2.6 (0.6)	$2.2(0.5)^{*2}$	$2.3(0.3)^{\star 2}$	1.3(0.1)*3	1.4 (3)	15/15

Table 130: 40-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	2.5e+2:676	1.6e + 2:865	1.0e + 2:1397	6.3e+1:1896	4.0e+1:2180	15/15
CMA-CSA	2.1(0.3)	1.9(0.3)	1.6(0.4)	2.2(8)	2.2(4)	15/15
CMA-MSR	2.1(0.5)	1.9(0.5)	1.7(1)	2.5(5)	2.4(8)	15/15
CMA-TPA	1.5(0.6)*	1.5 (1)	1.1(0.6)	$0.91 {(0.5)}^{\star}$	$0.98_{(0.3)}^{\star}$	15/15

Table 131: 40-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f10	1.0e + 7:44	6.3e+6:80	2.5e+6:126	2.5e+5:408	6.3e + 3:2376	15/15
CMA-CSA	1.5(0.3)	1.7(0.9)	5.3(2)	6.1(1)	4.2(0.7)	15/15
CMA-MSR	1.8(2)	1.6(0.7)	2.3 (0.9)	3.2 (1)	3.2 (0.6)	15/15
CMA-TPA	1.4 (1)	2.0(1)	2.7(0.4)	3.3(0.9)	3.3(0.7)	15/15

Table 132: 40-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/	'D 0.5	1.2	3	10	50	#succ
f11	1.0e+4:22	2.5e+3:52	2.5e+2:432	1.6e + 2.887	1.6e+1:2204	15/15
CMA-C	SA 1.8(2)	1.8(3)	23(1)	12(0.8)	5.3(0.2)	15/15
CMA-N	ISR 1.0(1)	1.5(1.0)	15(2)*2	$8.5(0.4)^{*2}$	5.0(0.3)	15/15
CMA-T	PA 1.6(1)	1.3(0.9)	18(2)	9.5(0.7)	4.8(0.2)*	15/15

Table 133: 40-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

 0						
#FEs/D	0.5	1.2	3	10	50	#succ
f12	2.5e+8:54	1.6e + 8:218	1.0e + 8:284	1.0e + 7:424	4.0e+1:2479	15/15
CMA-CSA	4.7 (2)	1.7(0.4)	1.7(0.2)	2.2(0.1)	1.5(0.1)	15/15
CMA-MSR	5.6(2)	1.8(0.5)	1.7(0.5)	2.2(0.3)	2.2(2)	15/15
${\rm CMA\text{-}TPA}$	4.8(2)	1.5(0.5)	1.4(0.3)	$1.7_{(0.4)}^{\star 2}$	1.9(2)	15/15

Table 134: 40-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f13	2.5e+3:85	1.6e + 3:121	1.6e + 3:121	6.3e+1:429	1.0e+1:2029	15/15
CMA-CSA	2.3(0.6)	3.7(0.6)	3.7(0.3)	5.0(0.6)	2.5(2)	15/15
CMA-MSI	$\Re[2.4(0.8)]$	3.4(0.5)	3.4(0.5)	4.5(0.3)	2.8(3)	15/15
CMA-TPA	12.2 (0.5)	2.9 (0.5)	2.9 (0.6)	$3.8(0.4)^{*3}$	2.3 (3)	15/15

Table 135: 40-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f14	6.3e+1:34	4.0e+1:137	2.5e+1:176	4.0e+0:438	1.0e-3:2207	15/15
CMA-CSA	4.1 (1)	2.2(0.6)	3.0(0.4)	2.7(0.4)	3.6(0.2)	15/15
CMA-MSF	5.7(2)	2.3(0.5)	2.5(0.7)	2.2(0.4)	2.5 (0.3)	15/15
CMA-TPA	6.0(1)	2.1(0.6)	2.3 (0.6)	2.1(0.2)	2.6(0.1)	15/15

Table 136: 40-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

) #succ
2:3875 15/15
15/15
*4 15/15
15/15
2

Table 137: 40-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
4.0e+1:117	2.5e+1:297	1.6e+1:4010	1.6e+1:4010	1.0e+1:5244	15/15
A 25(17)	14(3)	1.2(0.3)	1.2(0.1)	1.0(0.5)	15/15
R 2.4(0.4)*4	$1.6(0.4)^{\star 4}$	$0.17_{(0.0)}^{*4}$	$0.17_{(0.0)}^{\star 4}$	$0.43(0.1)^{\star 2}$	15/15
A 11(4)	5.3(1)	0.48(0.1)	0.48(0.1)	1.3(1)	15/15
	$4.0e+1:117$ $25_{(17)}$ R $2.4_{(0.4)}^{\star 4}$	$4.0e+1:117$ $2.5e+1:297$ $125(17)$ $14(3)$ $1.6(0.4)^{*4}$ $1.6(0.4)^{*4}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 138: 40-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.6e+1:54	1.0e+1:399	6.3e+0.688	4.0e+0:1115	1.0e+0:4220	15/15
CMA-CSA	5.4(3)	1.3(0.6)	1.1(0.3)	1.0(0.3)	0.56 (0.1)	15/15
CMA-MSR	3.9(2)	0.96(0.3)	1.1(0.5)	9.1(4)	7.3(7)	15/15
CMA-TPA	3.8 (1)	0.93 (0.3)	0.99 (0.3)	1.0(0.4)	5.0(9)	15/15

Table 139: 40-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

// DD-/D	1 6	1.0	9	10	50	11
#FEs/D	0.5	1.2	3	10	50	#succ
f18	6.3e+1:55	4.0e+1:329	4.0e+1:329	2.5e+1:579	6.3e+0:2006	15/15
CMA-CSA	3.4(2)	1.2(0.4)	1.2(0.2)	1.2(0.3)	0.97 (0.4)	15/15
CMA-MSR	3.2(0.9)	0.99(0.4)	0.99(0.2)	1.00(0.6)	10(15)	15/15
CMA-TPA	2.7 (1)	0.89 (0.2)	0.89 (0.2)	0.86 (0.4)	1.6(3)	15/15

Table 140: 40-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:8.6e5	1.0e-1:1.4e6	6.3e-2:3.1e6	4.0e-2:5.2e6	2.5e-2:8.7e6	15/15
CMA-CSA	1.2(0.7)	1.0(0.6)	0.56 (0.4)	0.54(0.2)	0.66(0.7)	9/15
CMA-MSR	1.8(0.9)	1.4(0.7)	0.76(0.3)	0.75(0.9)	1.3(2)	5/15
CMA-TPA	1.2(0.6)	1.0(0.2)	0.60(0.2)	0.62(0.4)	0.74(0.4)	8/15

Table 141: 40-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f20	2.5e+4:83	1.6e+4:86	1.0e + 3:125	2.5e+0:515	1.6e+0.5582	15/15
CMA-CSA	4.4(0.8)	4.9(0.7)	5.6(0.9)	5.2(0.7)	$57_{(24)}^{\star 2}$	15/15
CMA-MSR	3.8(0.7)	4.2(0.7)	4.6(0.8)	2.6(0.2)	$\propto 3e6$	0/15
${\rm CMA\text{-}TPA}$	3.1 (0.4)*	$3.4(0.5)^{\star 2}$	$3.7_{(0.5)}^{\star 2}$	2.3 (0.2)	9480(1e4)	1/15

Table 142: 40-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0		,				
#FEs/D	0.5	1.2	3	10	50	#succ
f21	6.3e+1:160	4.0e+1:305	2.5e+1:380	1.6e + 1:784	6.3e+0:2510	30/30
CMA-CSA	2.8(0.5)	1.9(0.4)	1.8(0.5)	1.1(0.6)	2.4(3)	15/15
CMA-MSR	2.2(0.7)	1.5(0.4)	1.6(0.5)	2.9(0.1)	96(4)	14/15
CMA-TPA	2.0 (0.2)	1.4(0.2)	2.9(13)	2.2(3)	2.0 (4)	15/15

Table 143: 40-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0		,				
#FEs/D	0.5	1.2	3	10	50	#succ
f22	6.3e+1:160	4.0e+1:231	2.5e+1:687	1.6e+1:1392	1.0e+1:3090	15/15
CMA-CS	$A 2.9_{(1)}$	9.1(25)	4.2(9)	57(205)	87(211)	14/15
CMA-MS	R 5.8(12)	4.5 (0.9)	347(2415)	172(2)	77(0.8)	14/15
CMA-TP.	A 2.4(0.3)	7.2(0.3)	3.2 (3)	3.0 (7)	1.6 (1)	15/15

Table 144: 40-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f23	6.3e + 0.68	4.0e+0:292	2.5e+0:603	2.5e+0:603	1.6e+0:2487	15/15
CMA-CSA	12(6)	72(51)	108(79)	108(121)	27(11)	15/15
CMA-MSF	7.0 (3)	$2.5_{(0.2)}^{\star 4}$	$1.4(0.2)^{*4}$	1.4(0.2)*4	$0.41_{(0.1)}^{*4}$	15/15
CMA-TPA	12(6)	85(213)	86(205)	86(114)	27(51)	15/15

Table 145: 40-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D 0.5 1.2 3 10	50 #succ
f24 4.0e+2:1404 2.5e+2:17825 1.6e+2:18980 1.0e+2:38	6677 6.3e + 1:1.6e5 15/15
CMA-CSA 0.98(0.4)	0.80(0.6) 15/15
CMA-MSR $0.63(0.1)$ $0.07(4e-3)^{*4}$ $0.43(0.4)$ $0.47(0.2)$	0.31 (0.1) 15/15
CMA-TPA 0.76(0.4) $0.48(0.3)$ $0.48(0.3)$ $0.68(0.4)$	0.60(0.5) $15/15$

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.