detect_lines: Just call cv2.Canny and cv2.HoughLinesP directly with given parameters.

get_pairwise_intersections: Use two for loop to get two pair of line. For each pair, compute the intersection point. After that, remove the item with z = 0.

get_support_mtx: Use two for loop to loop though each element of $support_mtx$. Calculate the distance between correspondence point and line. Then set the element to be 1 if the distance is smaller than the distance threshold.

get_vanishing_pts: Directly sum up the row vector of $support_mtx$ and get the index of maximum row sum. That index indicate the vanishing point from list of intersections.

get_vanishing_line: From give two point a and b, return $a \times b$

get_target_height:

- 1. Get $\boldsymbol{u} = (\boldsymbol{b}_2 \times \boldsymbol{b}_1) \times \boldsymbol{l}$, where \boldsymbol{l} is horizontal vanishing line
- 2. $\boldsymbol{l}_2 = \boldsymbol{v} \times \boldsymbol{b}_1$
- 3. $\boldsymbol{t} = (\boldsymbol{t}_2 \times \boldsymbol{u}) \times \boldsymbol{l}_2$
- 4. Calculate the distance v, t_1 , t which is the distance between point \boldsymbol{b}_1 and \boldsymbol{v} , \boldsymbol{t}_1 , \boldsymbol{t} respectively
- 5. $h = d_1 \cdot \frac{t}{t_1} \cdot \frac{v t_1}{v t}$