Vlastnosti optických vláken a WDM přenos

Přístroje:

- Osciloskop Tektronix TDS 3032B
- Blok Rx přijímač obsahující fotodiody a vyhodnocovací obvody
- Blok Tx generátor signálu a zdroj záření

Úkoly měření:

- 1) Změřit závislost útlumu na:
 - a. Podélném vychýlení optických konektorů
 - b. Úhlovém vychýlení optických konektorů
 - c. Příčném vychýlení optických konektorů
 - d. Ohnutí optického vlákna
- 2) Zdůvodnit užití střídavého signálu u výše zmíněných měření
- 3) Změřit spektrální závislost útlumu optických vláken

Schéma:

Teorie:

Numerická apertura je vyjádřena sinem úhlu $\alpha_{\rm mez}$, což je maximální velikost úhlu, který může svírat paprsek s osou optického vlákna, aby při dopadu na jeho čelní plochu byl navázán do vlákna a pokračoval jím. Při praktickém měření se NA určí z úhlu natočení vláken, kdy je pokles přeneseného výkonu na 5 % původní hodnoty. Pro numerickou aperturu NA optického vlákna platí vztah $NA = \sqrt{n_1^2 - n_2^2}$, kde n_2 je index lomu jádra a n_1 je index lomu pláště.

Naměřené hodnoty:

1) Závislost útlumu na podélném vychýlení optických konektorů

Vzdálenost (mm)	Výkon (dBm) [výpočtem]	Výkon (μW)
0	-8.70	36.8
1	-9.85	30.3
2	-10.40 [-16.00]	25.1
3	-13.10	12.7
4	-15.12	8.0
5	-16.78	5.4
6	-18.20	3.9
7	-19.29	3.1
8	-20.26 [-26.10]	2.45
9	-21.32	1.42
10	-22.21	1.56
15	-25.65	0.70
20	-28.19	0.39
25	-29.92 [-35.85]	0.26
30	-31.50	0.184
35	-32.85	0.135

 $P_{(dBm)} = 10 * log(1000 * P_{(W)})$ - Pozorujeme, že naměřený výkon v dBm se liší přibližně o 6 dBm oproti hodnotě vypočítané z Wattů. Platnost tak zjevně mezi převodem není.

Závislost útlumu na podélném vychýlení

2)	Závislost útlumu na	úhlovém	vvchýlení	í optický	ích konektorů
_,					

Úhel ve stupních	Výkon (nW)	Úhel ve stupních	Výkon (nW)
-25	1230	5	3100
-20	2080	10	2710
-15	2620	15	2050
-10	3100	20	1420
-5	3400	25	600
0	3500		

3) Závislost útlumu na příčném vychýlení optických konektorů

Příčné vychýlení	Výkon (dBm)	Výkon (dBm)
(mm)	(vzdálenost 5 mm)	(vzdálenost 10 mm)
-5.0	-38.47	-30.50
-4.5	-34.40	-29.30
-4.0	-30.70	-28.50
-3.5	-29.20	-27.84
-3.0	-27.05	-27.39
-2.5	-25.40	-26.87
-2.0	-24.54	-26.50
-1.5	-23.90	-26.12
-1.0	-23.06	-25.80
-0.5	-22.72	-25.70
0	-22.48	-25.70
0.5	-22.58	-25.90
1.0	-22.86	-26.18
1.5	-23.56	-26.50
2.0	-24.33	-27.18
2.5	-25.48	-27.70

3.0	-26.73	-28.44
3.5	-28.20	-29.16
4.0	-29.44	-29.90
4.5	-31.75	-30.42
5.0	-36.40	-31.30

4) Závislost útlumu na ohnutí optického vlákna

Poloměr (cm)	Výkon (dBm)
2,5	4.1
2,0	5,1

Závěr:

Na cvičení jsme vyšetřili základní vlastnosti optického vlákna a přenosu světelného signálu. Vypozorovali jsme, že útlum razantně stoupá při vychylování optického vlákna. K těmto měřením jsme používali střídavý signál. Bez použití střídavého signálu by se nám nepodařilo rozpoznat náš generující signál, jelikož do vlákna vstupují i paprsky z vnějšího prostředí, a tak je třeba tento náš paprsek rozpoznat na základě frekvence. Další vliv na sílu a kvalitu signálu má ohyb, který jsme z praktických důvodů nestihli doměřit se všemi poloměry válců. Při příliš malém poloměru může dojít i k mechanickému poškození a vlákno tak již nebude použitelné, čemuž jsme se snažili vyvarovat.