# Impactos Econômicos da Bioeletricidade no Setor Sucroalcooleiro Brasileiro

Evidências a partir de Diferenças-em-Diferenças com Múltiplos Períodos

Daniel Cavalli

Instituto de Economia Universidade Federal do Rio de Janeiro

Orientador: Prof. Dr. Nome do Orientador

Janeiro de 2025



# Motivação

- Brasil: líder mundial em bioeletricidade da cana
- Setor sucroenergético: 2% do PIB nacional
- Potencial desperdiçado: apenas 15% das usinas
- Gap na literatura sobre impactos econômicos locais

### Pergunta de Pesquisa:

Qual o impacto da adoção de bioeletricidade sobre o PIB agropecuário local?



Figura: Evolução do PIB Agropecuário

# Por que Cana-de-Açúcar?

### Vantagens Técnicas:

- Alta eficiência fotossintética (C4)
- Bagaço: 30% do peso da cana
- Cogeração integrada ao processo
- Complementaridade sazonal com hidrelétricas

### Contexto Brasileiro:

- 10 milhões de hectares plantados
- 365 usinas em operação
- R\$ 110 bilhões de faturamento (2023)
- Potencial: 30 GW (= 3 Itaipus)

### Oportunidade

Transição energética + desenvolvimento regional sustentável

# **Objetivos**

### Objetivo Geral

Avaliar o impacto econômico da adoção de bioeletricidade pelas usinas sucroalcooleiras sobre o PIB agropecuário das microrregiões brasileiras.

### **Objetivos Específicos:**

- Quantificar o efeito médio do tratamento (ATT)
- Analisar a dinâmica temporal dos impactos
- Investigar heterogeneidade regional
- Validar os pressupostos de identificação

### Contribuições:

- Primeira aplicação de Callaway & Sant'Anna (2021) neste contexto
- Base de dados inédita integrando múltiplas fontes
- Evidência causal robusta para políticas públicas

# Literatura e Contribuição

### Literatura Internacional:

- goldemberg2008: bioenergia e desenvolvimento
- creutzig2015: nexo energia-água-alimentos
- moraes2015: spillovers econômicos

### Literatura Nacional:

- castro2018: viabilidade econômica
- dantas2013: barreiras regulatórias
- silva2019: benefícios ambientais

### **Gap Identificado:**

- Falta de evidência causal robusta
- Ausência de estudos com DiD moderno
- Impactos locais pouco explorados

### Nossa Contribuição:

- Metodologia state-of-the-art
- Identificação causal rigorosa
- Foco em spillovers regionais

### O Problema do DiD Tradicional

### Two-Way Fixed Effects (TWFE) tradicional:

$$Y_{it} = \alpha_i + \lambda_t + \beta D_{it} + \varepsilon_{it} \tag{1}$$

### Problemas com tratamento escalonado:

- Unidades já tratadas servem como controle
- "Forbidden comparisons" geram viés
- Pesos negativos em algumas comparações
- Heterogeneidade nos efeitos do tratamento

### Literatura recente:

- goodman2021: demonstração do viés
- dechaisemartin2020: pesos negativos
- sun2021: contaminação do grupo controle

# A Solução: Callaway & Sant'Anna (2021)

### Estratégia de Identificação:

- **1** Comparações 2x2 por coorte (g) e período (t)
- Apenas unidades "ainda não tratadas" como controle
- Agregação dos efeitos com pesos apropriados

### ATT grupo-tempo:

$$ATT(g,t) = E[Y_t(g) - Y_t(0)|G_g = 1]$$
(2)

### Agregação ponderada:

$$ATT^{overall} = \sum_{g \in \mathcal{G}} \sum_{t=g}^{\mathcal{T}} w(g, t) \cdot ATT(g, t)$$
(3)

onde 
$$w(g,t) = \frac{N_g}{\sum_{g \in \mathcal{G}} N_g \cdot (T-g+1)}$$

# Estratégia de Identificação

### Tratamento

Microrregião com ao menos uma usina gerando bioeletricidade acima de 5MW

### **Pressupostos:**

- Tendências Paralelas: Condicional nas covariadas
- Sem Antecipação: Efeito apenas após tratamento
- SUTVA: Sem interferência entre unidades

### Especificação Doubly Robust:

- Combina regression adjustment + IPW
- Robusta a má especificação parcial
- Covariadas: PIB defasado, população, precipitação

### Grupos de comparação:

- Never-treated: 61% das unidades
- Not-yet-treated: validação adicional

# Construção do Dataset

### Fontes de Dados:

INMET: 610 estações meteorológicas

• IBGE: PIB municipal e população

PAM-IBGE: produção de cana-de-açúcar

Google BigQuery: integração via SQL

• Período: 2003-2023

### Unidade de Análise:

- Microrregiões (490 produtoras)
- Agregação de dados municipais
- Painel balanceado: 10.290 obs



Figura: Distribuição Temporal do Tratamento

### Composição:

- 191 tratadas (39%)
- 299 controle (61%)
- Coortes: 2005-2019

# Resultado Principal

# ATT = 0.082 (8,2%)

EP = 0.032, p = 0.0103 IC 95%: [0.0194; 0.1448]

# Interpretação:

- Aumento de 8,2% no PIB agropecuário
- Equivalente a 2+ anos de crescimento típico
- Robusto a diferentes especificações
- Economicamente significativo

### Magnitude em R\$:

- R\$ 18,9 milhões por microrregião/ano
- R\$ 3,6 bilhões no agregado nacional

#### Especificação ATT P-valor **Doubly Robust** 0.082 0.010 **IPW** 0.094 0.003 Regression 0.066 0.030 Sem covariáveis 0.110 0.000 Never-treated 0.080 0.026

# **Event Study**



Figura: Dinâmica Temporal dos Efeitos do Tratamento

### Pré-tratamento:

• Ausência de tendências

### Pós-tratamento:

Efeitos positivos persistentes

Daniel Cavalli

# Validação: Teste Placebo



Figura: Distribuição dos Efeitos Placebo

### Teste no PIB Não-Agropecuário:

- ATT = -0.005 (p = 0.741)
- Distribuição centrada em zero
- Evidência de que o efeito é específico ao setor agropecuário

### **Testes Adicionais:**

- Permutação aleatória: p = 0,012
- 500 simulações bootstrap
- Apenas 1,2% com ATT > observado

### Conclusão

Forte evidência de efeito causal específico ao setor agropecuário

# Heterogeneidade Regional



### Análise de Robustez



Figura: Testes de Robustez

### Especificações testadas:

- Diferentes limiares (1-10MW)
- Exclusão de outliers
- Janelas temporais alternativas
- Transformações da variável dependente
- Bootstrap clustered

### Resultado:

ATT varia entre 6,5% e 9,8% Sempre significativo a 5%

### Robustez Confirmada

Efeito se mantém sob múltiplas especificações e testes de sensibilidade

### Mecanismos Econômicos

### **Canais Diretos:**

- Diversificação de receita
  - Redução do risco de mercado
  - Fluxo de caixa mais estável
- Investimentos complementares
  - Modernização industrial
  - Eficiência produtiva
- Economias de escopo
  - Aproveitamento integral da biomassa
  - Otimização de recursos

### **Spillovers Regionais:**

- Empregos qualificados (+15%)
- Atração de indústrias auxiliares
- Melhoria da infraestrutura local
- Capacitação técnica regional

### **Evidências Complementares:**

- Correlação com investimento privado
- Aumento da arrecadação municipal
- Redução da sazonalidade econômica

### Multiplicador Regional

Cada R\$ 1 investido em bioeletricidade gera R\$ 2,4 na economia local

### Conclusões

### Principais Achados

- Impacto robusto de 8,2% no PIB agropecuário local
- ② Efeitos persistentes e crescentes no tempo
- Heterogeneidade regional importante
- Validação rigorosa dos pressupostos causais

### Implicações para Políticas Públicas:

- Justifica incentivos à bioeletricidade
- Potencial de desenvolvimento regional sustentável
- Sinergia com metas climáticas (NDC brasileira)
- Modelo replicável para outros países

### Contribuições Acadêmicas:

- Primeira aplicação de C&S neste contexto
- Base de dados inovadora e pública
- Framework para futuras pesquisas

# Limitações e Pesquisas Futuras

### Limitações do Estudo:

- SUTVA: possíveis spillovers não capturados
- Heterogeneidade não observada nas usinas
- Mecanismos exatos requerem dados micro
- Período pós-2019 afetado por choques externos

### Agenda de Pesquisa:

- Análise de equilíbrio geral
  - Efeitos sobre preços e mercados
- Impactos ambientais
  - Redução de emissões de GEE
  - Uso sustentável do solo
- Microdados de usinas
  - Decisões de investimento
  - Barreiras à adoção
- Comparação internacional
  - Índia, China, África do Sul

# Obrigado!

Daniel Cavalli daniel.cavalli@ie.ufrj.br

Código disponível em: github.com/danielcavalli/tcc-ie-ufrj-2024

# Backup: Análise de Poder Estatístico



- Poder de 93% para detectar efeito de 5%
- Tamanho da amostra adequado

# Backup: Estatísticas Descritivas Completas

| Variável                 | Média  | DP     | Mín  | Máx     |
|--------------------------|--------|--------|------|---------|
| PIB Agropecuário (log)   | 12,45  | 1,23   | 8,91 | 16,34   |
| População (log)          | 11,87  | 0,89   | 9,21 | 14,76   |
| Precipitação (mm)        | 1.428  | 456    | 234  | 3.891   |
| Área Cana (ha)           | 12.456 | 18.234 | 0    | 145.678 |
| Tratadas (%)             | 39,0   | -      | -    | -       |
| Período médio tratamento | 2012   | 3,4    | 2005 | 2019    |

# Backup: Validação de Tendências Paralelas



# Backup: Detalhes Metodológicos

### Especificação Doubly Robust:

$$\widehat{ATT}^{dr}(g,t) = \frac{1}{N_g} \sum_{i:G_i = g} [\omega_i \cdot (Y_{it} - Y_{ig-1}) - \hat{m}(X_i)]$$
 (4)

onde:

- $\omega_i$  = pesos do propensity score
- $\hat{m}(X_i)$  = outcome regression
- $X_i = \text{covariadas pré-tratamento}$

### **Bootstrap Multiplicador:**

- 999 replicações
- Cluster ao nível de microrregião
- Inferência uniforme para event study