HOTEL RESERVATION CANCELLATION PREDICTION

Data Description

The online hotel reservation channels have dramatically changed booking possibilities and customers' behavior. A significant number of hotel reservations are called-off due to cancellations or no-shows. The typical reasons for cancellations include change of plans, scheduling conflicts, etc. This is often made easier by the option to do so free of charge or preferably at a low cost which is beneficial to hotel guests but it is a less desirable and possibly revenue-diminishing factor for hotels to deal with.

The Goal

Predicting if the customer is going to honor the reservation or cancel it

SOURCE OF DATA

The dataset used for this project is taken from Kaggle with the name 'Hotel Reservations Dataset' which can be accessed through this link:

https://www.kaggle.com/datasets/ahsan81/hotelreservations-classification-dataset

IMPORTING PACKAGES AND DATASET

```
In [1]: import numpy as np
import pandas as pd

In [2]: import matplotlib.pyplot as plt
import seaborn as sns
```

PACKAGES USED

```
data = pd.read_csv('Hotel Reservations.csv')
data.head()
```

	Booking_ID	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	type_of_meal_plan	requ
0	INN00001	2	0	1	2	Meal Plan 1	0
1	INN00002	2	0	2	3	Not Selected	0
2	INN00003	1	0	2	1	Meal Plan 1	0
3	INN00004	2	0	0	2	Meal Plan 1	0
4	INN00005	2	0	1	1	Not Selected	0

DATA PROFILING

```
data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 36275 entries, 0 to 36274
 Data columns (total 19 columns):
  # Column
                                          Non-Null Count Dtype
     Booking ID
     no_of_adults
                                          36275 non-null int64
      no of children
                                          36275 non-null int64
     no of weekend nights
                                          36275 non-null int64
     no of week nights
                                          36275 non-null int64
      type of meal plan
                                          36275 non-null object
     required car parking space
      room type reserved
                                          36275 non-null object
    lead time
                                          36275 non-null int64
     arrival vear
  10 arrival month
                                          36275 non-null int64
  11 arrival date
                                          36275 non-null
  12 market segment type
                                                         object
  13 repeated guest
                                          36275 non-null int64
  14 no_of_previous_cancellations
                                          36275 non-null int64
  15 no_of_previous_bookings_not_canceled 36275 non-null int64
  16 avg_price_per_room
                                          36275 non-null float64
  17 no_of_special_requests
                                          36275 non-null int64
  18 booking status
                                          36275 non-null object
 dtypes: float64(1), int64(13), object(5)
 memory usage: 5.3+ MB
```

This dataset consists of 36275 rows and 19 columns.

```
data.isnull().sum()
 Booking ID
 no of adults
 no of children
 no of weekend nights
 no of week nights
 type_of_meal_plan
 required car parking space
 room type reserved
 lead time
 arrival year
 arrival month
 arrival date
 market_segment_type
 repeated guest
 no of previous cancellations
 no of previous bookings not canceled
 avg price per room
 no_of_special_requests
 booking status
 dtype: int64
```

There are no missing values in this dataset.

```
# Distribution of each features
data.hist()
plt.show()
```


	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	required_car_parking_space	lead_time	arrival_year	arrival_month	arrival_date	repeated_guest	no_of_previous_cancellations
count	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000	36275.000000
mean	1.844962	0.105279	0.810724	2.204300	0.030986	85.232557	2017.820427	7.423653	15.596995	0.025637	0.023349
std	0.518715	0.402648	0.870644	1.410905	0.173281	85.930817	0.383836	3.069894	8.740447	0.158053	0.368331
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2017.000000	1.000000	1.000000	0.000000	0.000000
25%	2.000000	0.000000	0.000000	1.000000	0.000000	17.000000	2018.000000	5.000000	8.000000	0.000000	0.000000
50%	2.000000	0.000000	1.000000	2.000000	0.000000	57.000000	2018.000000	8.000000	16.000000	0.000000	0.000000
75%	2.000000	0.000000	2.000000	3.000000	0.000000	126.000000	2018.000000	10.000000	23.000000	0.000000	0.000000
max	4.000000	10.000000	7.000000	17.000000	1.000000	443.000000	2018.000000	12.000000	31.000000	1.000000	13.000000

A hotel will not rent out their rooms for free, unless there is a special offer in place.

However, there is no indication that the hotels are giving special offers, thus making this number impossible. Therefore, 0 in average price per room will be treated as missing value.

no_of_previous_bookings_not_canceled	avg_price_per_room	no_of_special_requests
36275.000000	36275.000000	36275.000000
0.153411	103.423539	0.619655
1.754171	35.089424	0.786236
0.000000	0.000000	0.000000
0.000000	80.300000	0.000000
0.000000	99.450000	0.000000
0.000000	120.000000	1.000000
58.000000	540.000000	5.000000

```
# Finding and treating missing values

data.loc[data['avg_price_per_room']==0] 545 rows × 19 columns
```

```
Treatment:
data['avg price per room'] = data['avg price per room'].replace([0],data['avg price per room'].median())
   data['avg_price_per_room'].describe()
            36275.000000
    count
    mean
             104.917688
    std
             32.688889
               0.500000
    min
    25%
             81.000000
    50%
              99.450000
    75%
             120,000000
    max
             540.000000
    Name: avg price per room, dtype: float64
```

#Object data profiling
data.describe(include='0')

	Booking_ID	type_of_meal_plan	room_type_reserved	market_segment_type	booking_status
count	36275	36275	36275	36275	36275
unique	36275	4	7	5	2
top	INN00001	Meal Plan 1	Room_Type 1	Online	Not_Canceled
freq	1	27835	28130	23214	24390

CHECKING DUPLICATED DATA

data[data.duplicated()]

 $Booking_ID \quad no_of_adults \quad no_of_children \quad no_of_weekend_nights \quad no_of_week_nights \quad type_of_meal_plan \quad required_car_parking_space \quad room_type_reserved$

There is no duplicated entry.

CHECKING THE DATA BALANCE

```
data.groupby('booking_status').size()
 booking status
 Canceled
                11885
 Not Canceled
                24390
 dtype: int64
data['booking_status'].value_counts(normalize=True)
 Not Canceled
                0.672364
 Canceled
                0.327636
 Name: booking_status, dtype: float64
```

The data is not balance. 67% did not cancel, and 33% canceled.

SIMPLIFYING FEATURES NAME

```
data.rename(columns={'no of adults':'adults'},inplace=True)
data.rename(columns={'no of children':'children'},inplace=True)
data.rename(columns={'no_of_weekend_nights':'weekend_nights'},inplace=True)
data.rename(columns={'no of week nights':'weekday nights'},inplace=True)
data.rename(columns={'type of meal plan':'meal plan'},inplace=True)
data.rename(columns={'no_of_weekend_nights':'weekend_nights'},inplace=True)
data.rename(columns={'no_of_special_requests':'special_requests'},inplace=True)
data.rename(columns={'market segment type':'market type'},inplace=True)
data.rename(columns={'special_requests':'request_num'},inplace=True)
data.rename(columns={'required car parking space':'parking space'},inplace=True)
data.rename(columns={'room_type_reserved':'room_type'},inplace=True)
data.rename(columns={'avg price per room':'avg room price'},inplace=True)
```

SIMPLIFYING FEATURES NAME

```
Column
    Booking ID
    no of adults
    no_of_children
    no_of_weekend_nights
    no of week nights
    type_of_meal_plan
    required car parking space
    room_type_reserved
    lead time
    arrival year
   arrival month
    arrival date
    market segment type
    repeated guest
   no of previous cancellations
15 no of previous bookings not canceled
16 avg_price_per_room
   no of special requests
   booking status
```

Before vs After

```
Column
 Booking ID
 adults
 children
 weekend_nights
 weekday nights
 meal plan
 parking space
 room type
 lead time
 arrival year
arrival month
arrival date
 market type
 repeated guest
no_of_previous_cancellations
no_of_previous_bookings_not_canceled
avg room price
 request num
booking_status
```

CHANGING THE TARGET INTO NUMERIC

data['booking_status'] = data['booking_status'].replace(['Not_Canceled','Canceled'],[0,1])

FEATURE SCALLING AND ENCODING

```
#Importing Scaler and Encoder

from sklearn.preprocessing import RobustScaler

from sklearn.preprocessing import OneHotEncoder
```

Robust Scaler is used as we leave the outliers in the data. One Hot Encoder itself is used because all the categorical feature only serve as category without hierarchy.

```
rscaler = RobustScaler()

ohc = OneHotEncoder(handle_unknown = 'ignore')
```

FEATURE SCALLING AND ENCODING

```
data.drop(columns=['Booking_ID'], axis=1, inplace=True)
```

Booking ID is dropped as it will not be used in Machine Learning.

```
# Copying the dataset for scalling
data_scaled = data.copy()
```

da	<pre>data_scaled.head()</pre>											
	adults	children	weekend_nights	weekday_nights	meal_plan	parking_space	room_type	lead_time				
0	2	0	1	2	Meal Plan 1	0	Room_Type 1	224				
1	2	0	2	3	Not Selected	0	Room_Type 1	5				
2	1	0	2	1,	Meal Plan 1	0	Room_Type 1	1				
3	2	0	0	2	Meal Plan 1	0	Room_Type 1	211				
4	2	0	1	1	Not Selected	0	Room_Type 1	48				

FEATURE SCALLING

```
# SCalling the numerical features
data_scaled['adults'] = rscaler.fit_transform(data_scaled[['adults']])
data_scaled['children'] = rscaler.fit_transform(data_scaled[['children']])
data_scaled['weekend_nights'] = rscaler.fit_transform(data_scaled[['weekend_nights']])
data_scaled['weekday_nights'] = rscaler.fit_transform(data_scaled[['weekday_nights']])
data_scaled['lead_time'] = rscaler.fit_transform(data_scaled[['lead_time']])
data_scaled['no_of_previous_cancellations'] = rscaler.fit_transform(data_scaled[['no_of_previous_cancellations']])
data_scaled['no_of_previous_bookings_not_canceled'] = rscaler.fit_transform(data_scaled[['no_of_previous_bookings_not_canceled']])
data_scaled['avg_room_price'] = rscaler.fit_transform(data_scaled[['avg_room_price']])
data_scaled['request_num'] = rscaler.fit_transform(data_scaled[['request_num']])
```

da	ata_scaled.head()										
	adults	children	weekend_nights	weekday_nights	meal_plan	parking_space	room_type	lead_time			
0	0.0	0.0	0.0	0.0	Meal Plan 1	0	Room_Type 1	1.532110			
1	0.0	0.0	0.5	0.5	Not Selected	0	Room_Type 1	-0.477064			
2	-1.0	0.0	0.5	-0.5	Meal Plan 1	0	Room_Type 1	-0.513761			
3	0.0	0.0	-0.5	0.0	Meal Plan 1	0	Room_Type 1	1.412844			
4	0.0	0.0	0.0	-0.5	Not Selected	0	Room_Type 1	-0.082569			

FEATURE ENCODING

```
col = sorted(data['meal_plan'].unique().tolist()) + sorted(data['room_type'].unique().tolist()) + sorted(data['market_type'].unique().tolist())
#Encoding
enc_df = pd.DataFrame(ohc.fit_transform(data_scaled[['meal_plan', 'room_type', 'market_type']]).toarray(), columns=col)
```

enc_df.head()

	Meal Plan 1	Meal Plan 2	Meal Plan 3		Room_Type 1	Room_Type 2	Room_Type 3	Room_Type 4	Room_Type 5	Room_Type 6	Room_Type 7	Aviation	Complementary	Corporate	Offline	Online
0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
2	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
3	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
4	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0

FEATURE SCALLING AND ENCODING

#Joining the scaled dataframe with encoded dataframe
data_scaled = data_scaled.join(enc_df)
data_scaled.head()

	adults	children	weekend_nights	weekday_nights	meal_plan	parking_space	room_type	lead_time	arrival_year	arrival_month	Room_Type 3	Room_Type 4	Room_Type 5	Room_Type 6	Room_Type 7	Aviation
0	0.0	0.0	0.0	0.0	Meal Plan 1		Room_Type 1	1.532110	2017	10	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.5	0.5	Not Selected		Room_Type 1	-0.477064	2018	11	0.0	0.0	0.0	0.0	0.0	0.0
2	-1.0	0.0	0.5	-0.5	Meal Plan 1		Room_Type 1	-0.513761	2018	2	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	-0.5	0.0	Meal Plan 1	0	Room_Type 1	1.412844	2018	5	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	-0.5	Not Selected		Room_Type 1	-0.082569	2018	4	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 34 columns

FEATURE SCALLING AND ENCODING

```
data_scaled.drop(columns=['meal_plan','room_type','market_type', 'arrival_year','arrival_month','arrival_date'],axis=1,inplace=True)
         final data=data scaled.copy()
0 adults
                                     36275 non-null float64
   children
                                     36275 non-null float64
   weekend nights
                                     36275 non-null float64
   weekday_nights
                                     36275 non-null float64
   parking space
                                     36275 non-null int64
   lead time
                                     36275 non-null float64
   repeated guest
                                     36275 non-null int64
   no of previous cancellations
                                     36275 non-null float64
   no_of_previous_bookings_not_canceled 36275 non-null float64
   avg room price
                                     36275 non-null float64
10 request num
                                     36275 non-null float64
                                                                       All the features is either integer or float.
11 booking status
                                     36275 non-null int64
12 Meal Plan 1
                                     36275 non-null float64
13 Meal Plan 2
                                     36275 non-null float64
14 Meal Plan 3
                                     36275 non-null float64
15 Not Selected
                                     36275 non-null float64
16 Room Type 1
                                     36275 non-null float64
                                     36275 non-null float64
17 Room Type 2
18 Room_Type 3
                                     36275 non-null float64
19 Room Type 4
                                     36275 non-null
                                                   float64
20 Room Type 5
                                     36275 non-null float64
21 Room Type 6
                                     36275 non-null float64
22 Room Type 7
                                     36275 non-null float64
23 Aviation
                                     36275 non-null float64
24 Complementary
                                     36275 non-null float64
25 Corporate
                                     36275 non-null float64
26 Offline
                                     36275 non-null float64
27 Online
                                     36275 non-null float64
```

TRAIN TEST SPLIT

```
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from collections import Counter

#Splitting X and Y
X = final_data.drop(columns=['booking_status'],axis=1)
y = final_data['booking_status']
```

```
#split train-rest data
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=0)
```

X_train.shape (27206, 28)

y_train.shape (27206,)

BALANCING DATA

```
print('Before Oversampling: ',Counter(y_train))
#defining smote
SMOTE = SMOTE(random state=0)
#fit and apply the transform
X train smote, y train smote = SMOTE.fit resample(X train, y train)
#summarize class distribution
print('After Oversampling: ',Counter(y train smote))
 Before Oversampling: Counter({0: 18328, 1: 8878})
 After Oversampling: Counter({0: 18328, 1: 18328})
```

MACHINE LEARNING MODELING

(Decision Tree Classifier)

```
# Decision Tree without resampling
dt = DecisionTreeClassifier(random_state=0)
dt.fit(X_train, y_train)
```

DecisionTreeClassifier

DecisionTreeClassifier(random_
state=0)

Decision Tree with resampling
dt2 = DecisionTreeClassifier(random_state=0)
dt2.fit(X_train_smote, y_train_smote)

DecisionTreeClassifier

DecisionTreeClassifier(random_
state=0)

y_pred_dt2 = dt2.predict(X_test)
print(classification_report(y_test, y_pred_dt2))

precision	recall	f1-score	support	
0.89	θ.87	0.88	6062	
0.75	θ.78	θ.77	3007	
1		0.84	9069	
θ.82	0.83	0.83	9069	
0.85	0.84	0.84	9069	
	0.89 0.75 7 9 0.82	0 0.89 0.87 0 0.75 0.78 0 0.82 0.83	0 0.89 0.87 0.88 1 0.75 0.78 0.77 7 0.84 2 0.82 0.83 0.83	0 0.89 0.87 0.88 6062 0 0.75 0.78 0.77 3007 0 0.84 9069 0 0.82 0.83 0.83 9069

MACHINE LEARNING MODELING

(Random Forest Classifier)

Random Forest without resampling
rf1 = RandomForestClassifier(random_state=0)
rf1.fit(X_train,y_train)

RandomForestClassifier

RandomForestClassifier(random_

state=0)

Random Forest with resampling
rf2 = RandomForestClassifier(random_state=0)
rf2.fit(X_train_smote,y_train_smote)

RandomForestClassifier
RandomForestClassifier(random_
state=0)

MACHINE LEARNING MODELING (KNN)

```
# KNN without resampling
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
```

KNeighborsClassifier
KNeighborsClassifi
er()

KNN with resampling
knn2 = KNeighborsClassifier()
knn2.fit(X_train_smote, y_train_smote)

KNeighborsClassifier
KNeighborsClassifi
er()

y_pred_knn = knn.predict(X_test)
print(classification_report(y_test, y_pred_knn))

	precision	recall	f1-score	support	
Θ	0.88	0.91	0.89	6062	
1	0.80	0.74	θ.77	3007	
accuracy			0.85	9069	
macro avg	0.84	0.82	0.83	9069	
weighted avg	0.85	0.85	0.85	9069	

y_pred_knn2 = knn2.predict(X_test)
print(classification_report(y_test, y_pred_knn2))

	precision	recall	f1-score	support
Θ	0.90	0.85	0.87	6062
1	0.72	0.81	0.76	3007
accuracy			θ.83	9069
macro avg	0.81	0.83	0.82	9069
weighted avg	0.84	0.83	0.84	9069

MACHINE LEARNING MODELING (Support Vector Classifier, Linear Kernel)

```
# SVCL without resampling
svc = SVC(kernel='linear',random state=0)
svc.fit(X train,y train)
                  SVC
SVC(kernel='linear', random s
tate=0)
# SVCL with resampling
svc2 = SVC(kernel='linear',random state=0)
svc2.fit(X train smote,y train smote)
                  SVC
```

SVC(kernel='linear', random s

tate=0)

<pre>y_pred_svc = svc.predict(X_test) print(classification_report(y_test, y_pred_svc))</pre>									
	precision	recall	f1-score	support					
θ	0.82	0.90	0.86	6962					
1	θ.75	0.59	0.66	30 <mark>07</mark>					
accuracy			0.80	9069					
macro avg	0.78	0.75	0.76	9069					
weighted avg	0.79	0.80	0.79	9069					
y_pred_svc2	= svc2.pre	dict(X_t	est)						
<pre>print(classi</pre>	fication_r	eport(y_	test, y_p	ored_svc2))					
	precision	recall	f1-score	support					
θ	0.87	θ.77	0.82	6062					
1	0.63	θ.77	0.69	3007					
accuracy			θ.77	9069					
macro avg	0.75	0.77	0.76	9069					
weighted avg	0.79	0.77	0.78	9069					

MACHINE LEARNING MODELING

(Support Vector Classifier, RBF Kernel)

macro avg

0.83

weighted avg

y_pred_svc3		·		
print(classi	fication_re	port(y_te	est, y_pr	ed_svc3))
	precision	recall f	f1-score	support
θ	0.83	0.94	0.88	6062
1	0.82	0.61	0.70	3007
accuracy			0.83	9069
macro avg	0.83	θ.77	0.79	9069
weighted avg	θ.83	0.83	θ.82	9069
y_pred_svc4	= svc4.pre	dict(X_t	est)	
print(classi	fication_r	eport(y_	test, y_	pred_svc4)
	precision	recall	f1-score	support
Θ	0.89	0.83	0.86	6062
1	0.69	0.80	0.74	3007
accuracy			0.82	9069
,				

0.82

0.82

9069

9069

MACHINE LEARNING MODELING

(Best Performing Model)

```
v pred rf1 = rf1.predict(X test)
print(classification_report(y_test, y_pred_rf1))
              precision
                           recall f1-score
                                             support
                   0.89
                             0.94
                                      0.92
                                                6062
            Θ
                             0.78
                   0.86
                                      0.82
                                                3007
                                      0.88
                                                9069
     accuracy
                             0.86
                                      0.87
    macro avg
                   0.88
                                                9069
 weighted avg
                   0.88
                             0.88
                                      0.88
                                                9069
```

Random Forest Classifier without resampling

CHECKING FEATURE IMPORTANCE

In the model earlier, it still uses a lot of features. I aim to check the importance of each features so I can reduce it thus making the model work more efficiently.

CHECKING FEATURE IMPORTANCE

```
# Checking Feature Importance
features = X.columns
importances = rf1.feature_importances_
indices = np.argsort(importances)[-15:]
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('Relative Importance')
nlt.show()
```

CHECKING FEATURE IMPORTANCE

RETRAINING AFTER CHECKING FEATURE IMPORTANCE

RETRAINING AFTER CHECKING FEATURE IMPORTANCE

<pre>y_pred_rf1 = rf1.predict(X_test) print(classification_report(y_test, y_pred_rf1))</pre>					
	precision	ı recall	f1-score	support	
	0 0.89		0.92	6062	
	1 0.86	θ.78	0.82	3007	
accurac	у		0.88	9069	
macro av	g 0.88	0.86	0.87	9069	
weighted av	g 0.88	θ.88	0.88	9069	
RFFORF					

<pre>y_pred_rf3 = rf3.predict(X_test) print(classification_report(y_test, y_pred_rf3))</pre>					
	precision	recall	f1-score	support	
	0.89	0.93 0.76	0.91 0.80	6062 3007	
accurac			0.88	9069	
macro av	-	0.85	0.86	9069	
weighted av	g 0.87	0.88	0.87	9069	
		AFTED			

AFTER

There is not much difference after we reduce the number of features used. This performance can be improved with hyperparameter tuning. In this project, I am using the Grid Search CV.

HYPERPARAMETER TUNING

from sklearn.model_selection import GridSearchCV

```
# Define the parameter grid to search over
param_grid = {
    'n_estimators': [10, 50, 100, 200],
    'max depth': [None, 5, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min samples leaf': [1, 2, 4],
grid search = GridSearchCV(rf3, param grid=param grid, cv=5)
# Fit the GridSearchCV object to the data
grid_search.fit(X, y)
print("Best hyperparameters:", grid search.best params )
print("Best score:", grid search.best score )
 Best hyperparameters: {'max depth': 20, 'min samples leaf': 1, 'min samples split': 2, 'n estimators': 200}
 Best score: 0.8831426602343211
```

HYPERPARAMETER TUNING

```
grid_search.best_params_
 {'max_depth': 20,
  'min samples leaf': 1,
  'min_samples_split': 2,
  'n_estimators': 200}
grid search.best_estimator
                              RandomForestClassifier
RandomForestClassifier(max_depth=20, n_estimators=200, r
andom_state=0)
```

HYPERPARAMETER TUNING RESULT

<pre>y_pred_rf3 = rf3.predict(X_test) print(classification_report(y_test, y_pred_rf3))</pre>					
	precision	recall	f1-score	support	
0	0.89	0.93	0.91	6062	
1	0.85	0.76	0.80	3007	
accuracy			0.88	9069	
macro avg	0.87	0.85	0.86	9069	
weighted avg	0.87	0.88	0.87	9069	
		BEFORE			

<pre>best_grid = grid_search.best_estimator_</pre>						
<pre>y_pred_grid = best_grid.predict(X_test) print(classification_report(y_test, y_pred_grid))</pre>						
	precision	recall	f1-score	support		
θ	0.96	0.99	0.97	6062		
1	0.97	0.92	0.95	3007		
accuracy			0.97	9069		
macro avg	0.97	0.95	0.96	9069		
weighted avg	0.97	0.97	0.97	9069		

AFTER

After tuning, we can see that the performance of the model is significantly improved.

THANK YOU