Modelling Wizard für Kabelmodelle

4. Semester - Software Engineering Team 2

Gliederung

- 1. Teamübersicht
- 2. Vorstellung des Projektes
- 3. Produktübersicht
- 4. Architekturübersicht und Module
- 5. Vorgehensweise beim Testen
- 6. Live Demo
- 7. Lessons Learned
- 8. Fazit und Ausblick

1. Teamübersicht im 4. Semester

Kevin Pauer
Projektleiter
MtrkNr. 1199719
inf20003@lehre.dh
bw-stuttgart.de

Fabian Thomé
Entwickler
MtrkNr. 6316823
inf20190@lehre.dh
bw-stuttgart.de

Thorsten Rausch Systemarchitekt MtrkNr. 5895515 inf20082@lehre.dh bw-stuttgart.de

Leon Amtmann
Documentation
MtrkNr. 5156023
inf20071@lehre.dh
bw-stuttgart.de

Calvin Friedrich
Produktmanager
MtrkNr. 5775099
inf20185@lehre.dh
bw-stuttgart.de

2. Vorstellung des Projektes

- Master Use Case: AML Kabel Konfigurator mittels eines Angular Frontends
- Navigation und Durchsuchen einer Kabelbibliothek durch Bedienen eines nutzerfreundlichen GUI
- Ausgabeformat von Dateien nach den Regeln für AML-Komponentenmodelle
- **Zielgruppe:** Entwickler und Anwender, welche mit AML Dateien arbeiten

3. Produktübersicht

4. Architekturübersicht und Module

4.1. Graphical User Interface (GUI)

- Aufteilung in Komponenten
 - Bestehen jeweils aus HTML, SCSS, TS
 - Können andereKomponenten enthalten
- Globaler ApiService
 - Kommunikation mit Backend

4.2. Controller

- Gegenstück zur GUI
- Koordiniert Module
 - Erhält HTTP Requests von der GUI
 - Gibt Anweisungen an AML-Serializer
 - Erhält Daten vom AML-Serializer
 - Gibt Informationen an Logger
 - Gibt HTTP Responses an GUI

4.3. AML-Serializer

- Liest und schreibt AML-Dateien
 - Benutzt die Library AMLEngine2.1
- Liest, erstellt, bearbeitet und löscht Kabel
- Generiert AML-Dateien in CAEX 2.15 und CAEX 3.0

<AutomationML/>

4.4. Logger

- Notiert wichtige Ereignisse
- Verschiedene Schweregrade
 - o Info
 - > Warn
 - Error
 - Fatal
- Exakter Zeitpunkt des Ereignisses

5. Vorgehensweise beim Testen

- Anwendungsfallbasiert -> Black-Box-Tests
- 3 verschiedene Test Suites
 - Local installation
 - Overview and navigation
 - Cable Editing
- Problem:
 - Zeitplan -> Tests während laufender Entwicklung

5. Vorgehensweise beim Testen

Ergebnisse (Ausschnitt)

6. Live Demo

7. Lessons Learned

- 1. Rechtzeitig mit der Implementierung beginnen
- 2. Ausfall von Teammitgliedern berücksichtigen → neue Aufteilung
- 3. Fixe wöchentliche Termine für Teammeetings
- 4. Klare Fristen und bessere Kommunikation bei Problemen
- 5. Große Aufgaben in kleine Arbeitspakete aufteilen
- 6. Einarbeitung in neue Technologien dauert länger als erwartet
- 7. Nicht an einem Problem zu lange aufhalten
- 8. Nicht zu stark an Rollenverteilung im Team festhalten

8. Fazit und Ausblick

Fazit:

- MVP erfolgreich umgesetzt, mit allen im SRS vereinbarten Funktionen
- Erweiterung der Connector Library konnte zeitlich nicht mehr umgesetzt werden

Ausblick:

- Weiterentwicklung definitiv möglich
 - → separates Speicher von den Libraries und den Devices
 - → Bilder für Kabel hinzufügen
 - → Libraries hochladen