Université de Bordeaux 4TIN604U Mcdèles de la Programmation et du Calcul

2016-2017 Licence 3 Informatique

Examen durée 1h30

Une feuille A4 recto-verso est autorisée comme unique document. Les réponses aux exercices doivent être justifiées.

Exercice 1

Soit l'automate (A,Q,I,F,δ) où $A=\{a,b\},\ Q=\{1,2,3\},\ I=F=\{1\}$ et $\delta=\{(1,a,1),(1,a,3),(1,b,3),(3,b,1),(3,a,2),(3,b,2),(2,a,2),(2,b,2),(1,a,2),(2,a,1),(2,b,1)\}.$

- 1. Représenter cet automate sous la forme d'un graphe orienté étiqueté.
- 2. L'automate est-il déterministe? Si il ne l'est pas, déterminisez-le.
- 3. Minimiser l'automate.
- 4. Calculer une expression rationnelle représentant le langage reconnu par cet automate.

Exercice 2

Donner une grammaire algébrique pour chacun des langages suivants:

- 1. $L_1 = \{a^n b^m | n \ge m \ge 0\}$
- 2. $L_2 = \{a^n b^m c^k | n \ge m \ge 0 \text{ et } k > 1\}$
- 3. $L_3 = \{a^{n_1}b^{m_1}a^{n_2}b^{m_2}\dots a^{n_k}b^{m_k}c^k | k>1 \text{ et } \forall i\in\{1,\dots,k\}: n_i\geq m_i\geq 0\}$

Montrer que le langage L_1 ci-dessus n'est pas régulier.

Exercice 3

On considère deux alphabets $A = \{a, b\}$ et $C = \{c, d\}$. On considère la fonction $h: A \to C$ suivante:

$$\begin{array}{cccc} h: & A & \rightarrow & C \\ & a & \mapsto & cd \\ & b & \mapsto & dde \end{array}$$

La fonction h s'étend à une fonction $h: A^* \to C^*$ en mettant $h(a_1 \cdots a_n) = h(a_1) \cdots h(a_n)$ (par exemple h(abba) = h(a)h(b)h(b)h(a) = cddcddcdd).

1. On considère un langage régulier $L \subseteq A^*$ et son image $h(L) \subseteq C^*$:

$$h(L) = \{h(w) \mid w \in \mathcal{A}'\}$$

Montrer que h(L) est régulier.

2. On considère maintenant un langage régulier $K \subseteq C^*$ et son image inverse $h^{-1}(K) \subseteq A^*$:

$$h^{-1}(K) = \{ w \in A^* \mid h(w) \in K \}.$$

Montrer que $h^{-1}(K)$ est régulier.

Indication: construisez un automate pour $h^{-1}(K)$ à partir d'un automate pour K.

Exercice 4

On fixe un nombre entier quelconque $n \ge 1$ et on utilise un alphabet de n lettres $A = \{a_1, \ldots, a_n\}$. Pour tout mot $w \in A^*$, on notera alph(w) l'ensemble des lettres contenues dans w (par exemple alph $(a_2a_2a_4a_2a_5) = \{a_2, a_4, a_5\}$). On considère le langage suivant:

$$L = \{ w \in A^* \mid \mathbf{alph}(w) = A \}$$

Autrement dit L est le langage des mots qui contiennent toutes les lettres de l'alphabet A. Le but de l'exercice est de montrer qu'un automate (déterministe ou non) qui reconnaît L a au moins 2^n états alors qu'il suffit de n états pour reconnaître le complément de L. On commence par le complément de L.

1. Soit $1 \leq i \leq n$ fixe. Construisez un automate (déterministe) pour le langage

$$L_i = \{ w \in A^* \mid \operatorname{alph}(w) \subseteq A \setminus \{a_i\} \}$$

2. Construisez un automate non-déterministe à n états qui reconnaît le langage $\bigcup_{i=1}^{n} L_i$ (le complément de L).

On veut maintenant montrer qu'un automate (non-déterministe) qui reconnaît L a au moins 2^n états. On prend donc un automate $\mathcal{A} = (Q, I, F, \delta)$ qui reconnaît L (Q est l'ensemble des états, I les états initiaux, F les états finaux et $\delta \subseteq Q \times A \times Q$ les transitions). Notre objectif est de prouver que Q contient plus de 2^n états ($|Q| \ge 2^n$).

- (a) On considère un mot quelconque $w \in A^*$. Montrer qu'il existe un état $q_w \in Q$ qui satisfait les propriétés suivantes:
 - i. Il existe un calcul dans A pour le mot w qui arrive dans l'état q_w .
 - ii. Pour tout mot $v \in A^*$ pour lequel il existe un calcul dans \mathcal{A} qui arrive dans l'état q_w , on a alph(v) = alph(w) (v a le même ensemble de lettres que w).

Indication : C'est ici qu'il faut utiliser le fait que l'automate \mathcal{A} reconnaît L. On pourra réfléchir à ce qu'il faut ajouter à w pour obtenir un mot de L.

- 4. Montrer que pour tous mots $w, w' \in A^*$, si $alph(w) \neq alph(w')$ alors $q_w \neq q_{w'}$.
- 5. En déduire que $|Q| \ge 2^n$.