PROPOSED MARKING GUIDE APPLIED MATHEMATICS

P425/2 2023

N O	SOLUTION	MK S	COMMEN T
1	Let X be the number of tails obtained		
	P(H) = 2P(T)		
	P(H) + P(T) = 1		
	2P(T) + P(T) = 1		
	3P(T)=1		
	$P(T) = \frac{1}{3}, P(H) = \frac{2}{3}$		
	$\Rightarrow n = 7, p = \frac{1}{3}, q = \frac{2}{3}$		
	$P(X=2) = {}^{7}C_{2} \cdot \left(\frac{1}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{5}$		
	$=\frac{224}{729}$ or 0.3073		
		05	
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

	45.44.7		
	= 15.44 J		
	∴ Loss in K. $E = 44 - 15.44 = 28.56 J$	0.5	
3	. 1	05	
3	$h = \frac{1}{2} - 0 = 0.5$		
	x $f(x)$		
	0 0.1003		
	0.5 0.0391		
	1 0.0801		
	1.5 0.0602 2 0.0649		
	2.5 0.0380		
	3 0.0327		
	Total 0.1330 0.2823		
	$\int_{0}^{3} f(x) dx \propto \frac{1}{2} \times \frac{1}{2} [0.1220 + 2(0.2022)]$		
	$\int_0^3 f(x) dx \approx \frac{1}{2} \times \frac{1}{2} [0.1330 + 2(0.2823)]$		
	≈ 0.1744		
	$\approx 0.174 (3 \text{dps})$	0.5	
4		05	
4	a.ms.		
	X ₁ R		
	1, R		
	gcos 30°		
	Perpendicular to the plane;		
	$R = g \cos 30^0 \dots (i)$		
	Parallel to the plane;		
	$g \sin 30^{\circ} - \frac{1}{4}R = a$ (ii)		
	Putting (i) into (ii);		
	$a = g \sin 30^{0} - \frac{1}{4} (g \cos 30^{0})$		
	$a = 9.8 \times \frac{1}{2} - \frac{1}{4} \times 9.8 \times \frac{\sqrt{3}}{2}$		
	$a = 2.7782 ms^{-2}$		
	From $v^2 = u^2 + 2as$		

		$v^2 = 0^2 +$	- 2 × 2.7782	2×4				
		$v^2 = 22.2$						
		$\therefore v = 4.71$	44 ms -					
							05	
5		Age (years)	f ('000)	c	f.d			
		0 - 10	15	10	1.5			
		10 - 20	19	10	1.9			
		20 - 30	16	10	1.6			
		30 – 40	18	10	1.8			
		40 – 60	30	20	1.5			
		60 - 80 80 - 90	6	20 10	0.3			
		00 – 90	1	10	0.1			
	a)							
		Frequency Density (1000)						
		(,000)						
		2.0	1 1 1 1 1 1 1 1 1 1					
		1.8-						
		1.6						
		1.4						
		1.2						
		1.0-						
		0.8-						
		0.4						
		0.7				-		
		0.2						
		0	20	40	60	80 100		
						Class boundaries		
	h)	Modal age =	16 years					
	0)	, 1110aui ugo —	<u> </u>				05	
6	x	= 6.45, y = 0	0.00215, z =	2.7				
		$e_x = 0.005, e_y$			0.05			
				2				
	W	$v_{min} = \frac{(x+z^3)_m}{(\sqrt{y})_{max}}$	χ.					
		$=\frac{6.445+(2.5)}{\sqrt{0.0021}}$	65) ³					
		$\sqrt{0.0021}$	55					

	= 539.7147		
	$(r \pm z^3)$		
	$w_{max} = \frac{(x+z^3)_{max}}{(\sqrt{y})_{min}}$		
	$=\frac{6.455+(2.75)^3}{\sqrt{0.002145}}$		
	$\sqrt{0.002145}$ = 588.4137		
	∴ Internal = $539.7147 \le w \le 588.4137$		
		05	
7	a) From $P(S' \cap R') = P(S') \cdot P(R')$		
	$P(S) = [1 - P(S)] \cdot P(R')$		
	$P(S) = \frac{1}{4} \left(1 - P(S) \right)$		
	$P(S) = \frac{1}{4} - \frac{1}{4}P(S)$		
	$\frac{5}{4}P(S) = \frac{1}{4}$		
	$\therefore P(S) = \frac{1}{5} \text{ or } 0.2$		
	b) $P(S' \cap R) = P(S') \cdot P(R)$		
	$=\frac{4}{5}\times\frac{3}{4}$		
	$=\frac{3}{5}$ or 0.6		
	5	05	
8	Let $K = \text{weight per unit are}$, $W = KA$		
	Area of square = $60 \times 60 = 3600 \text{ cm}^2$		
	Area of circle = $\pi r^2 = \pi \times 20^2 = 400\pi \ cm^2$		
	Remainder = $3600 - 400\pi$		
	Figure Area Weight Distance of C.O.G from AD		
	Square 3600 3600 K 30 Circle 400π 400π K 40		
	Remainder $3600-400\pi$ $(3600-400\pi)K$ \bar{x}		
	Taking moments about AD		
	$(3600 - 400\pi)K \times \bar{x} = 3600K \times 30 - 400\pi K \times 40$		
	$(3600 - 400\pi)\bar{x} = 108,000 - 16,000\pi$		
	$\bar{x} = \frac{108,000 - 16,000\pi}{3600 - 400\pi}$		
	$\bar{x} = 24.6375 \ cm \ from AD$		
	$\bar{x} = 24.6375 \ cm \text{ from AD}$	05	

$$\bar{x} = \frac{\sum x}{n} = \frac{653}{10} = 65.3$$

$$\bar{y} = \frac{\sum y}{n} = \frac{670}{10} = 67$$

$$\therefore M(\bar{x}, \bar{y}) = M(65.3, 67)$$

b) Let B = BIOLOGY E = ECONOMICS

В	Е	R_B	R_E	d	d^2
45	90	10	1	9	81
63	64	6	5	1	1
56	76	8	3	5	25
61	70	7	4	3	9
75	55	3	8	-5	25
83	53	1	9.5	-8.5	72.225
73	62	4	6.5	-2.5	6.25
50	85	9	2	7	49
77	53	2	9.5	-7.5	56.25
70	62	5	6.5	-1.5	2.225
653	670				$\sum d^2 = 327$

$$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$$
$$= 1 - \frac{6(327)}{10(10^2 - 1)}$$

	=-0.9818		
	Comment: It is significant at 5%		
	Or It is significant at 1%		
	Or It is very high negative correlation		
		12	
10	a)	12	
	Velocity ↑		
	(ms^{-1}) 25		
	V -		
	A 10 18 30 m		
	A 10 18 $\frac{30}{B}$ Time (s)		
	b)		
	(i) $526 = (25 \times 10) + \frac{1}{2} \times 8(25 + V) + (V \times 12)$		
	526 = 250 + 100 + 4V + 12V		
	526 = 350 + 16V 16V = 176		
	$V = 11 ms^{-1}$		
	(ii) From $v = u + at$		
	11 = 25 + 8a $8a = -14$		
	a = -1.75		
	∴ the deceleration is 1.75 ms^{-2}		
1.1		12	
11	a) (i) $f(1) = 1e^1 + 5(1) - 10 = -2.2817$		
	$f(2) = 2e^2 - 5(2) - 10 = 14.7781$		
	(ii) Since $f(1) \cdot f(2) < 0$, thus $1 < \text{root} < 2$		
	b)		
	$\begin{array}{c cccc} 1 & x_0 & 2 \\ \hline -2.2817 & 0 & 14.7781 \end{array}$		
	2.2017		

	$\frac{x_0-1}{x_0-1} = \frac{2-1}{x_0-1}$		
	0+2.2817		
	$x_0 = 1.1337$		
	$f(1.13337) = 1.13337e^{1.1337} + 5(1.1337) - 10$		
	=-0.8089		
	1.1337 x_1 2		
	-0.8089 0 14.7781		
	0.0007		
	$\frac{x_1 - 1.1337}{2} = \frac{2 - 1.13337}{2}$		
	0+0.8089 14.7781+0.8089		
	$x_1 = 1.1787$		
	∴ Root ≈ 1.179 (3dps)		
		12	
12	a) Testing		
	For $-1 \le x \le 0$;		
	=F(0)-F(-1)		
	$=\frac{1}{6}-0$		
	$=\frac{1}{6}<\frac{1}{2}$		
	6 2		
	For $0 \le x \le 2$;		
	=F(2)-F(0)		
	5 1		
	$=\frac{5}{6}-\frac{1}{6}$		
	$=\frac{2}{3}>\frac{1}{2}$		
	Let $m = \text{median}$		
	$F(m) = \frac{1}{2}$		
	$\frac{1+2m}{6} = \frac{1}{2}$		
	· -		
	1 + 2m = 3		
	2m = 2		
	$\therefore m = 1$		
	b) For $-1 \le x \le 0$; $f(x) = \frac{d}{dx} \left(\frac{1+x}{6} \right) = \frac{1}{6}$		
	For $0 \le x \le 2$; $f(x) = \frac{d}{dx} \left(\frac{1+2x}{6} \right) = \frac{1}{3}$		
	For $2 \le x \le \frac{8}{3}$; $f(x) = \frac{d}{dx} \left(\frac{4+3x}{12} \right) = \frac{1}{4}$		
	For $x \ge \frac{8}{3}$; $f(x) = \frac{d}{dx}(1) = 0$		
	$\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$		

	$\therefore f(x) = \begin{cases} \frac{1}{6}, -1 \le x \le 0 \\ \frac{1}{3}, 0 \le x \le 2 \\ \frac{1}{4}, 2 \le x \le \frac{8}{3} \\ 0, elsewhere \end{cases}$ $c) P(1 \le X \le 2.5) = \int_{1}^{2} \frac{1}{3} dx + \int_{2}^{2.5} \frac{1}{4} dx$ $= \left[\frac{1}{3} x \right]_{1}^{2} + \left[\frac{1}{4} x \right]_{2}^{2.5}$ $= \frac{1}{3} (2 - 1) + \frac{1}{4} (2.5 - 2)$ $= \frac{1}{3} + \frac{1}{8}$ $= \frac{11}{24} \text{ or } 0.4583$ $d) E(X) = \int_{-1}^{0} \frac{1}{6} x dx + \int_{0}^{2} \frac{1}{3} x dx + \int_{2}^{\frac{8}{3}} \frac{1}{4} x dx$ $= \frac{1}{6} \left[\frac{x^{2}}{2} \right]_{-1}^{0} + \frac{1}{3} \left[\frac{x^{2}}{2} \right]_{0}^{2} + \frac{1}{4} \left[\frac{x^{2}}{2} \right]_{2}^{\frac{8}{3}}$ $= \frac{1}{12} (0 - 1) + \frac{1}{6} (4 - 0) + \frac{1}{8} \left(\frac{64}{9} - 4 \right)$		
	12 6 6 7		
	$= -\frac{1}{12} + \frac{2}{3} + \frac{7}{18}$		
	$=\frac{35}{36}$ or 0.97222		
		12	
13	a) Let \mathbf{F}_R be the resultant force		
			L
	$\boldsymbol{F}_R = \boldsymbol{F}_1 + \boldsymbol{F}_2 + \boldsymbol{F}_3$		
	$\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ $= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$ $\therefore \mathbf{F}_R = \sqrt{5^2 + (-12)^2} = 13 N$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$ $\therefore F_R = \sqrt{5^2 + (-12)^2} = 13 N$ b) About the origin; $G = {2 \choose 2} {3 \choose 3} + {-2 \choose 5} {2 \choose 2} + {3 \choose -2} {-11}$ $= {-6 - 6} + {-4 - 15} + {-33 - 4}$ $= {-12 - 19 - 37}$ $= {-68} Nm$ Using $G - xF_y + yF_x = 0$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$ $\therefore \mathbf{F}_R = \sqrt{5^2 + (-12)^2} = 13 N$ b) About the origin; $G = {2 \choose 2} {3 \choose 3} + {-2 \choose 5} {2 \choose 2} + {3 \choose -2} {-21 \choose 1}$ $= (-6 - 6) + (-4 - 15) + (-33 - 4)$ $= -12 - 19 - 37$ $= -68 Nm$ Using $G - xF_y + yF_x = 0$ $-68 + 12x + 5y = 0$		
	$= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$ $\therefore F_R = \sqrt{5^2 + (-12)^2} = 13 N$ b) About the origin; $G = {2 \choose 2} {3 \choose 3} + {-2 \choose 5} {2 \choose 2} + {3 \choose -2} {-11}$ $= {-6 - 6} + {-4 - 15} + {-33 - 4}$ $= {-12 - 19 - 37}$ $= {-68} Nm$ Using $G - xF_y + yF_x = 0$		

	12x - 68 = 0		
	12x = 68		
	x = 5.6667 m from the origin.		
	E		
	d) Let $(ai + bj)$ be the force to be added to form a couple		
	For a couple the $\mathbf{F}_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$		
	$\Rightarrow {5 \choose -12} + {a \choose b} = {0 \choose 0}$		
	$5 + a = 0 \qquad \therefore a = -5$		
	$-12 + b = 0 \qquad \therefore b = 12$		
	$\therefore (-5\mathbf{i} + 12\mathbf{j}) \text{ N}$		
	·· (3t 12j) 1\	12	
4.4	1	14	
14	a) Let $x = N^{\frac{1}{k}}$		
	u) Let n 11		
	$x^k = N$		
	$x^k = N$		
	$x^k = N$ $x^k - N = 0$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$ $f'(x) = kx^{k-1}$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$ $f'(x) = kx^{k-1}$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$ $f'(x) = kx^{k-1}$ $x_{n+1} = x_{n} - \frac{x_{n}^{k} - N}{kx_{n}^{k-1}}$		
	$x^{k} = N$ $x^{k} - N = 0$ Let $f(x) = x^{k} - N$ $f'(x) = kx^{k-1}$ $x_{n+1} = x_{n} - \frac{x_{n}^{k} - N}{kx_{n}^{k-1}}$ $x_{n+1} = \frac{kx_{n}^{k} - x_{n}^{k} + N}{kx_{n}^{k-1}}$		

= 0.395		
(ii) $P \text{ (two or more)} = P \text{ (only two)} + P \text{(all)}$		
$P(\text{only two}) = P(A' \cap B \cap C) + P(A \cap B' \cap C) + P(A \cap B \cap C')$		
$= (0.7 \times 0.5 \times 0.7) + (0.3 \times 0.5 \times 0.7) + (0.3 \times 0.5 \times 0.3)$		
= 0.245 + 0.105 + 0.045		
= 0.395		
$P(All) = P(A \cap B \cap C)$		
$= 0.3 \times 0.5 \times 0.7$		
= 0.105		
\therefore P (two or more) = 0.395 + 0.105 = 0.5		
ALT:		
P (two or more) = 1 - [P(none) + P(only one)]		
$P (none) = P(A' \cap B' \cap C')$		
$=0.7\times0.5\times0.3$		
= 0.105		
\therefore P (two or more) = 1-[0.105 + 0.395]		
= 1 - 0.5		
= 0.5		
b) $P(P) = 0.6, P(L/P) = \frac{2}{3}$		
$P(Q) = 0.4, P(L/Q) = \frac{1}{3}$		
(i) $P(L) = \left(0.6 \times \frac{2}{3}\right) + \left(0.4 \times \frac{1}{3}\right)$		
$= \frac{8}{15} \text{ or } 0.5333$		
(ii) $P(P/L') = \frac{P(P \cap L')}{P(L')}$		
$\left(0.6\times\frac{1}{-}\right)$		
$=\frac{\left(0.6\times\frac{1}{3}\right)}{1-\frac{8}{15}}$		
$= \frac{3}{7} \text{ or } 0.4286$		
$= \frac{-}{7} \text{ or } 0.4280$		
	12	
Let a be the acceleration of the system, T and T_1 be the tensions in the		
strings		

a)

(i) For 12 kg mass:

$$T-12g=12a$$
(i)

For 9 kg mass:

$$T_1 + 9g - T = 9a$$
(ii)

For 7 kg mass:

$$7g - T_1 = 7a$$
(iii)

(i)+(ii)+(iii);

$$4g = 28a$$

$$a = \frac{4g}{28} = \frac{g}{7} = \frac{9.8}{7} = 1.4 \text{ ms}^{-2}$$

(ii) From (i);

$$T = 12a + 12g$$

$$T = 12 \times 1.4 + 12 \times 9.8$$

$$T = 16.8 + 117.6$$

$$= 134.4 \text{ N}$$

From (iii);

$$T_1 = 7g - 7a$$

$$= 7 \times 9.8 - 7 \times 1.4$$

$$= 68.6 - 9.8$$

$$= 58.8 N$$

b) Let the velocity be v

Using $v = u + at$	
$v = 0 + 1.4 \times 1.5$	
$v = 2.1 ms^{-1}$	