Computabilidad y Complejidad

Práctica 1

- 1) Probar la siguiente ley distributiva $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 2) Probar la siguiente ley de De Morgan: El Complemento de A unión B es igual al complemento de A intersección el complemento de B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 3) Probar que el doble complemento de A es igual a A,
 $\overline{\overline{A}}=A$
- 4) Sea A el conjunto de los números naturales tales que si son mayores que 5 o bien terminan en 5, entonces contienen algún dígito 1 ó 2
 - a) Cuáles de los siguientes números pertenecen a A:

- b) Expresar el enunciado como una fórmula proposicional donde ${\bf m}$ significa "mayores que 5", ${\bf t}$ es "terminan en 5", ${\bf u}$ es "contiene algún dígito 1" y ${\bf d}$ es "contiene algún dígito 2".
- c) Transformar la fórmula del inciso anterior de manera que no tenga una implicación y aplicar una ley de De Morgan al resultado. Expresarlo en una frase.
- 5) Sean:

$$X = \{x / x \mid N, x \text{ es impar}\}\$$

$$Y = \{y / y \mid N, y \text{ es primo}\}$$

$$Z = \{z / z \ N, z \text{ es múltiplo de } 3\}$$

Describir cada uno de los siguientes conjuntos:

- a) $X \cap Y$
- b) $X \cap Z$
- c) $Y \cap Z$
- d) Z Y
- e) $X (Y \cap Z)$
- $f) (Y \cap Z) X$
- g) $X \cup Y$
- 6) Calcular los conjuntos de partes en los siguientes casos: a) \emptyset
 - b) {a, b, c}
 - c) {∅}
 - $\mathbf{d}) \left\{ \emptyset, \left\{ \emptyset \right\} \right\}$
 - e) {a, {b, c}}

- 7) Presentar una lista con todos los elementos en cada uno de los siguientes conjuntos:
 - a) $\{x, y\} x \{a, b, c\}$
 - b) $\{a, b, c\} \times \{x, y\}$
 - c) $\{x, y\} x \{y, x\}$

 - d) $\{x, y\}^2 \times \{\}$ e) $\{\}^{10} \times \{2, 3, 4\}^{20}$
 - f) 1⁵
 - g) $\{1, 2\} \times \{a\} \times \{a, b\}$
 - h) ¿Cuál es el cardinal de $A \times B$ si $|A| = n \times |B| = m$?
- 8) Demostrar por inducción que si A es un conjunto finito $|A| = n \Rightarrow |\rho(A)| = 2^n$
- 9) Mostrar que $|N \times N| = |N^+|$
- 10) Mostrar que $|Q^+| \le |N|$, siendo Q^+ el conjunto de los números racionales positivos
- 11) Mostrar que la cardinalidad del conjunto de todas las funciones de R a
- {0, 1} es menor o igual a la del conjunto de todas las funciones que van:
 - a) de R a N
 - b) de R a {a, b, c}
- 12) Dar un ejemplo de 2 conjuntos disjuntos no vacíos, A y B tales que:
 - a) $|A| < |B| < |A \cup B|$
 - b) $|A| < |B| = |A \cup B|$
 - c) $|A| = |B| = |A \cup B|$
- 13) Mostrar que $|N \{7, 9, 15, 34, 21, 344, 990\}| = |N|$
- 14) ¿El conjunto de todas las frases en el idioma español es contable o incontable? Justificar.
- 15) Dar ejemplos para mostrar que la intersección de 2 conjuntos incontables puede ser
 - a) finita
 - b) infinita contable
 - c) incontable
- 16) Muestre que si X es un conjunto incontable e Y es un conjunto contable, entonces X-Y debe ser incontable.
- 17) Mostrar que la unión de 2 conjuntos contables es contable.
- 18) Mostrar que un conjunto puede tener la misma cardinalidad que un subconjunto de sí mismo.