Accuracy Enhancements of the 802.11 Model and EDCA QoS Extensions in ns-3

Completion Talk

Timo Bingmann

Decentralized Systems and Network Services Research Group Institute of Telematics, University of Karlsruhe

June 26, 2009

Roadmap

- 1 Thesis Objectives
- 2 Enhancements
 - Propagation Loss Models
 - Reception Criteria
 - Frame Capture Effect
 - EDCA Implementation
- 3 Speed Comparison
- 4 Conclusion

Objectives

- Compare 802.11 implementations of new ns-3 network simulator with ns-2.
- Transfer extended ns-2 features added by the DSN to new ns-3 design.
- Implement EDCA extensions in ns-3.
- Evaluate performance gain of switching to ns-3.

Constraints

- All features must be thoroughly tested, evaluated and documented.
- Integrate cleanly into ns-3 design, which uses state-of-the-art software engineering methods.
- Researchers must be able to use them without detailed lower-layer knowledge.

Feature Comparison: ns-3.3 vs. ns-2.33

PHY Layer:

- No probabilistic Nakagami propagation model.
- Lacks modeling of frame capture effect.
- + BER/PER reception criterion for 802.11a. Results unequal to ns-2's SINR criterion.

MAC Layer:

- Support for EDCA extensions missing.
- + Overall good software design.

Nakagami Propagation Loss Model in ns-3

Ported Nakagami propagation loss model to ns-3.

Extensively verified against ns-2 and the analytic probability density function.

Reception Criteria: SINR

Implemented ns-2's SINR reception criterion in ns-3 as Ns2ExtWifiPhy.

Discussion of SINR and BER/PER

Detailed explanation of existing BER/PER reception in ns-3. Discussion and comparison against SINR.

Packet Error Rate (PER)

Free-space Reception Range

Frame Capture Effect

Added frame capture effect to Ns2ExtWifiPhy. Evaluated against ns-2.

Packet delay Δt (µs)

Frame Capture Effect

Added frame capture effect to Ns2ExtWifiPhy. Evaluated against ns-2.

EDCA Implementation

- Extended ns-3 with EDCA capabilities.
- Builds up on the well designed DCF classes.
- Added TXOP limits and burst sequences.
- Tested individual maximum throughput against analytical reference values.
- Experiment with differently prioritized traffic streams shows relative QoS.

Maximum Throughput Experiment

Without ACK

With ACK

TXOP burst without ACKs

TXOP burst with ACKs

Maximum Throughput Experiment

Reference value in B/s and relative difference of experimental result with $99\,\%$ error margin for $54\,\text{Mb/s}$ data rate.

	80 B - noACK	80 B - ACK	2304 B - ACK
DCF	$\begin{array}{c} 4522908 \\ 0.01\pm 0.11\% \end{array}$	$3176179\\0.01\pm0.10\%$	$34810198\\0.01\pm0.04\%$
AC_VO 802.11p/D4.02	$\begin{array}{c} 7314286 \\ 0.03\pm 0.05\% \end{array}$	$\begin{array}{c} 4338983 \\ 0.01\pm0.02\% \end{array}$	$38763407\\0.01\pm0.01\%$
AC_BK 802.11p/D4.02	$3129584\\ -0.06\pm0.1\%$	$\begin{array}{c} 2419660 \\ 0.02\pm0.09\% \end{array}$	$31108861\\0.01\pm0.04\%$

Tested 216 configurations.

Maximum relative difference was $0.85 \pm 0.11 \%$.

EDCA Traffic Streams Experiment

Each node sends four 160 Kb/s streams with different ACs. As the number of nodes increases the medium is saturated.

Speed Comparison – Highway Scenario

- Modeled identically in both ns-2 and ns-3.
- Made possible with newly added components.

Speed Comparison – Results

Speed Comparison – Results

Speed Comparison – Results

- Slowest configuration: ns-3 in debug mode.
- ns-3 optimized mode gives 76.3±0.5% reduction.
- ns-3 optimized with static linking yields further reduction of $42.6\pm1.2\%$.
- Compilation without -fPIC yielded a reduction of only 1.1±0.3%.
- icc vs. gcc: no improvement, even slight speed decrease $(1.9\pm0.4\%)$.
- Speed increase of ns-3 over identical ns-2 simulation: 58.6±1.8%.
- Enabling Nakagami propagation increases run time by 8.1±1.0% in ns-3 and 3.8±0.4% in ns-2.

Conclusion

- Extended ns-3 802.11 PHY layer to show equivalent behavior as ns-2.
- Improved MAC layer with EDCA extensions.
- All enhancements thoroughly verified.
- Speed test of ns-3 shows up to 59 % execution time reduction over ns-2.

Thank you for your attention.

Appendix

- **5** Enlarged Plots and Figures
 - Propagation Loss Models
 - Reception Criteria
 - Frame Capture Effect
 - EDCA Implementation

ns-2 Nakagami Reception Power

ns-2 Nakagami (defaults) ——

ns-3 NakagamiPropagationLossModel

Nakagami (default m = 0.75) ——

ns-3 ThreeLogDistance and Nakagami

ThreeLogDistance + Nakagami (default m = 0.75)
ThreeLogDistance

PER for Different Modes

Two Nodes Experiment Scenario

ns-2 Two Nodes Reception Range

ns-3 Two Nodes Reception Range

ns-3 Mixed PHY Models Free-Space

ns-3 Mixed PHY Models Nakagami

ns-3 Mixed PHY Models Nakagami m=1

Three Nodes Capture Experiment

ns-2 Three Nodes Capture

ns-3 Three Nodes Capture

ns-3 Three Nodes Capture Nakagami

Maximum Throughput Experiment

Reference value and difference of experimental result in B/s with 99% error margin for $54\,\text{Mb/s}$ data rate.

	80 B - noACK	80 B - ACK	2304 B - ACK
DCF	$\begin{array}{c} 4522908 \\ 46\pm514 \end{array}$	$3176179 \\ 23\pm317$	$34810198 \\ 474\pm1377$
AC_VO 802.11p/D4.02	$7314286 \\ 212\pm392$	$\begin{array}{c} 4338983 \\ 39\pm101 \end{array}$	$38763407 \\ 249 \pm 390$
AC_BK 802.11p/D4.02	$3129584 \ -182\pm302$	$\begin{array}{c} 2419660 \\ 48\pm223 \end{array}$	$31108861\\191\pm1196$

Tested 216 configurations. Maximum difference was 701 B/s \pm 1 661.

EDCA Traffic Streams – no ACK

EDCA Traffic Streams – with ACK

