Basi di dati

Progettazione logica

Requisiti della base di dati

Progettazione concettuale

Schema concettuale

Progettazione logica

Schema logico

Progettazione fisica

Schema fisico

Obiettivo della progettazione logica

 "tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati in maniera corretta ed efficiente

Dati di ingresso e uscita

- Ingresso:
 - schema concettuale
 - informazioni sul carico applicativo
 - modello logico
- Uscita:
 - schema logico
 - documentazione associata

Non si tratta di una pura e semplice traduzione

- alcuni aspetti non sono direttamente rappresentabili
- è necessario considerare le prestazioni

Carico applicativo

Schema concettuale E-R

Ristrutturazione dello schema E-R

Modello logico

Schema E-R ristrutturato

Traduzione nel modello logico

Schema logico

Ristrutturazione schema E-R

- Motivazioni:
 - semplificare la traduzione
 - "ottimizzare" le prestazioni
- Osservazione:
 - uno schema E-R ristrutturato non è (più) uno schema concettuale nel senso stretto del termine

Prestazioni?

- Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello
- Ma:
 - le prestazioni non sono valutabili con precisione su uno schema concettuale!

Prestazioni, approssimate

- Consideriamo:
 - "indicatori" dei parametri che regolano le prestazioni
- spazio:
 - numero di occorrenze previste
- tempo:
 - numero di occorrenze (di entità e relationship)
 visitate durante un' operazione

Tavola dei volumi

Concetto	Tipo	Volume
Sede	ш	10
Dipartimento	ш	80
Impiegato	ш	2000
Progetto	Ш	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Esempio di valutazione di costo

- Operazione:
 - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su uno schema di navigazione

Tavola degli accessi

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	L
Afferenza	Relationship	1	L
Dipartimento	Entità	1	L
Partecipazione	Relationship	3	L
Progetto	Entità	3	L

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Analisi delle ridondanze

 Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre

 in questa fase si decide se eliminare le ridondanze eventualmente presenti o mantenerle (o anche di introdurne di nuove)

Ridondanze

- Vantaggi
 - semplificazione delle interrogazioni
- Svantaggi
 - · appesantimento degli aggiornamenti
 - maggiore occupazione di spazio

Forme di ridondanza in uno schema E-R

- attributi derivabili:
 - da altri attributi della stessa entità (o relationship)
 - da attributi di altre entità (o relationship)
- relationship derivabili dalla composizione di altre (più in generale: cicli di relationship)

Attributo derivabile

Attributo derivabile da altra entità

Analisi di una ridondanza

Concetto	Tipo	Volume
Città	ш	200
Persona	Е	1000000
Residenza	R	1000000

- Operazione 1: memorizza una nuova persona con la relativa città di residenza (500 volte al giorno)
- Operazione 2: stampa tutti i dati di una città (incluso il numero di abitanti) (2 volte al giorno)

Presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

Assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Relazione	5000	L

Presenza di ridondanza

- Costi:
 - Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
 - Operazione 2: trascurabile.
- Contiamo doppi gli accessi in scrittura
 - Totale di 3500 accessi al giorno

Assenza di ridondanza

- Costi:
 - Operazione 1: 1000 accessi in scrittura
 - Operazione 2: 10000 accessi in lettura al giorno
- Contiamo doppi gli accessi in scrittura
 - Totale di 12000 accessi al giorno

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Eliminazione delle gerarchie

- il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e relationship sono invece direttamente rappresentabili
 - si eliminano perciò le gerarchie, sostituendole con entità e relationship

Tre possibilità

- 1. accorpamento delle figlie della generalizzazione nel genitore
- 2. accorpamento del genitore della generalizzazione nelle figlie
- 3. sostituzione della generalizzazione con relationship

Osservazioni (1)

 la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi)

 è possibile seguire alcune semplici regole generali

Osservazioni (2)

- 1. conviene se gli accessi al padre e alle figlie sono contestuali
- 2. conviene se gli accessi alle figlie sono distinti
- 3. conviene se gli accessi alle entità figlie sono separati dagli accessi al padre
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base a un semplice principio
- Gli accessi si riducono:
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme

Ristrutturazioni, casi principali

- partizionamento verticale di entità
- partizionamento orizzontale di relationship
- eliminazione di attributi multivalore
- accorpamento di entità/relationship

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori principali

Scelta degli identificatori principali (1)

- operazione indispensabile per la traduzione nel modello relazionale
- Criteri
 - assenza di opzionalità
 - semplicità
 - utilizzo nelle operazioni più frequenti o importanti

Scelta degli identificatori principali (2)

Se nessuno degli identificatori soddisfa i requisiti visti?

Si introducono nuovi attributi (codici) contenenti valori speciali generati appositamente per questo scopo

Traduzione verso il modello relazionale

idea di base:

- le entità diventano relazioni sugli stessi attributi
- le relationship diventano relazioni sugli identificatori delle entità coinvolte (più gli attributi propri)

Entità e relationship molti a molti

Impiegato(Matricola, Cognome, Stipendio)

Progetto(Codice, Nome, Budget)

Partecipazione(Matricola, Codice, Datalnizio)

Entità e relationship molti a molti

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(<u>Codice</u>, Nome, Budget)
Partecipazione(<u>Matricola</u>, <u>Codice</u>, DataInizio)

- con vincoli di integrità referenziale fra
 - Matricola in Partecipazione e (la chiave di) Impiegato
 - Codice in Partecipazione e (la chiave di) Progetto

Nomi più espressivi per gli attributi della chiave della relazione che rappresenta la relationship

Impiegato(Matricola, Cognome, Stipendio)

Progetto(Codice, Nome, Budget)

Partecipazione(Matricola, Codice, Datalnizio)

Partecipazione(Impiegato, Progetto, DataInizio)

Nota

 La traduzione non riesce a tener conto delle cardinalità minime delle relationship molti a molti (se non con vincoli di CHECK complessi e poco usati)

Relationship ricorsive

Prodotto(<u>Codice</u>, Nome, Costo)
Composizione(<u>Composto</u>, <u>Componente</u>, Quantità)

Relationship n-arie

Fornitore(<u>PartitalVA</u>, Nome)
Prodotto(<u>Codice</u>, Genere)
Dipartimento(<u>Nome</u>, Telefono)
Fornitura(<u>Fornitore</u>, <u>Prodotto</u>, <u>Dipartimento</u>, Quantità)

Relationship uno a molti

Giocatore(<u>Cognome, DataNascita</u>, Ruolo)
Contratto(<u>CognGiocatore, DataNascG, Squadra</u>, Ingaggio)
Squadra(<u>Nome</u>, Città, ColoriSociali)

corretto?

Soluzione più compatta

Giocatore(<u>Cognome, DataNascita</u>, Ruolo)
Contratto(<u>CognGiocatore, DataNascG, Squadra, Ingaggio)</u>
Squadra(<u>Nome</u>, Città, ColoriSociali)

Giocatore(<u>Cognome, DataNasc</u>, Ruolo, Squadra, Ingaggio) Squadra(<u>Nome</u>, Città, ColoriSociali)

- con vincolo di integrità referenziale fra Squadra in Giocatore e la chiave di Squadra
- se la cardinalità minima della relationship è 0, allora Squadra in Giocatore deve ammettere valore nullo

Nota

- La traduzione riesce a rappresentare efficacemente la cardinalità minima della partecipazione che ha 1 come cardinalità massima:
 - 0 : valore nullo ammesso
 - 1 : valore nullo non ammesso

Entità con identificazione esterna

Studente(<u>Matricola</u>, <u>Università</u>, Cognome, AnnoDiCorso) Università(<u>Nome</u>, Città, Indirizzo)

 con vincolo: ogni studente è scritto esattamente e solo ad una università

Relationship uno a uno

- varie possibilità:
 - fondere da una parte o dall'altra la relazione
 - fondere tutto

Una possibilità privilegiata

Impiegato (Codice, Cognome, Stipendio)

Dipartimento (Nome, Sede, Telefono, Direttore, InizioD)

· con vincolo di integrità referenziale, senza valori nulli

Un altro caso

Impiegato (Codice, Cognome, Stipendio)

Dipartimento (Nome, Sede, Telefono)

Direzione (Direttore, Dipartimento, DatalnizioD)

con due vincoli di integrità referenziale, senza valori nulli

Schema finale

Impiegato(<u>Codice</u>, Cognome, Dipartimento, Sede, Data*)

Dipartimento(Nome, Città, Telefono, Direttore*)

Sede(Città, Via, CAP)

Progetto(Nome, Budget)

Partecipazione(Impiegato, Progetto)

Attenzione

 Differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

Secondo schema finale

Impiegato(<u>Codice</u>, Cognome, Dipartimento, Sede, Data*)

Dipartimento(Nome, Città, Telefono, Direttore*)

Sede(Città, Dipartimento, Via, CAP)

Progetto(Nome, Budget)

Partecipazione(Impiegato, Progetto)

Strumenti di supporto

 Esistono sul mercato prodotti CASE che forniscono un supporto a tutte le fasi della progettazione di basi di dati

