







## MATEMATICA SUPERIOR - 2<sup>do</sup> Parcial - 04/07/2019

Tema: 55

| 0,5 p | 1 p | 1 p | 1 p | 0.5 p | 1 p | 3     |     | 4     |       | 5     |     | MC   | Note Circl |  |
|-------|-----|-----|-----|-------|-----|-------|-----|-------|-------|-------|-----|------|------------|--|
| 12    | 67  | 0   | 10  |       |     | 0.5 p | 1 p | 0.5 p | 0.5 p | 0.5 p | 1 p | 1-10 | Nota Final |  |
|       | 1   |     | 1   | 12    | 15  | M     | 1   | 1     | A     | - CA  | 1 P | 1 P  | 0 = 0 =    |  |

Ejercicio I: Dada la función:  $f(x) = (x/2)^5 - x^2 - 3x + 1$ 

- a) Indique la cantidad de raíces reales y un intervalo [a ; a+1] con a ∈ Z para cada una de ellas. (sin calculadora)
- b) Justifique si la función de punto fijo  $g(x) = 2(x^2 + 3x 1)^{(1/5)}$  puede usarse para hallar alguna de las raíces.
- c) Analice si partiendo de  $x_0$ =0 en tres iteraciones por Newton Rapshon se obtiene una raiz con  $\epsilon \le 10^{-3}$

Ejercicio 2: Dada la tabla de valores

| X | 0 | 1 | 3 | 4  | 7  | 8 |
|---|---|---|---|----|----|---|
| y | 6 | 1 | 9 | 22 | 07 | L |

- a) Halle en forma normalizada el polinomio de menor grado que pasa por los cinco primeros puntos de la tabla.
- b) Si es posible halle un valor de k ∈ R para que por todos los puntos pase un polinomio de grado 4. Si no es posible, indique los grados que se pueden obtener con valores de w. Justifique
- c) Halle f ' (4) y f '(0) justificando la fórmula elegida

Ejercicio 3: Dado el problema de valor inicial:

$$y'(t) + e^t \operatorname{sen}(t) = y(t) \quad \operatorname{con} y(0) = 1$$

- a) Verifique la condición de Lipschitz
- b) Halle y(1) usando Runge-Kutta de 4º orden con h=1

**Ejercicio 4:** Dado el siguiente sistema:  $\begin{cases} 3x_1 + 5x_2 + x_3 = 8 \\ x_1 - 4x_2 + 6x_3 = 1 \\ 4x_1 + 7x_2 - 2x_3 = 5 \end{cases}$ 

Runge-Kutta de orden 4:  

$$w_0 = \alpha$$
  
 $k_1 = hf(t_i; w_i)$   
 $k_2 = hf(t_i + \frac{h}{2}; w_i + \frac{k_1}{2})$   
 $k_3 = hf(t_i + \frac{h}{2}; w_i + \frac{k_2}{2})$   
 $k_4 = hf(t_{i+1}; w_i + k_3)$   
 $w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ 

- a) Escriba la matriz de coeficientes e indique si es diagonal dominante o si puede serlo permutando filas. Si no es posible, analice si duplicando un único coeficiente se puede lograr, y cual es dicho coeficiente. Escriba la matriz que queda.
- b) Escriba las formulas iterativas del método de Jacobi.

Ejercicio 5: Dada la integral:  $I = \int_{0}^{0.6} e^{2x} \cos(x) dx$ 

- a) ¿Se puede resolver por Simpson con h = 0.075 ? Justifique.
- b) Halle la cantidad mínima de subintervalos para asegurar que al resolverla por Trapecios, el error sea menor que 0.001