

Verschnittoptimierung für 2D-Laserschneidmaschinen mit Methoden des maschinellen Lernens

Dr. Johannes Riesterer, Yiran Huang, Yexu Zhou.

INSTITUTE OF TELEMATICS, CHAIR FOR PERVASIVE COMPUTING SYSTEMS / TECO

Gegeben: Nester N, der eine geordnete Schablonenkonfiguration $D = (S_1, ..., S_n)$ mit dem Bottom-Left-Algorithmus anordnet und mit Kipp-Codierung (2 = stabil, 3 = unsicher, 4 = kippt, 5 = fällt) bewertet.

Gesucht: Für gegebene Konfiguration D eine Permutation $\sigma(D) := (S_{\sigma(1)}, ..., S_{\sigma(n)})$ der Schablonen, so dass eine Bewertungsfunktion $L(N(\sigma(D)))$ minimal wird.

Höhe

"Klassisches" Optimierungsproblem:

Optimierungsverfahren $O(D) \rightarrow \min_{\sigma} L(N(\sigma(D)))$.

Zum Beispiel 0:=genetischer Algorithmus - "kleine Variationen der Eingabe".

Problem: Lange Rechenzeiten bei jeder neuen Konfiguration D.

Modellgestützte Optimierung:

- Trainiere Modell M_k für den Konfigurationsraum $K \coloneqq \{\sigma(D)\}_{(\sigma,D)}$, welches für Eingabe $\sigma(D)$ Bewertung $M_K(\sigma(D)) \coloneqq f(L(N(\sigma(D)))$ ausgibt. $|K| \sim (44 \cdot 2)^{50}$ (Anzahl versch. Schablonen, Rotation, Nesting)
- Ziehe zufällig 100 Permutationen $\{\sigma_i(D)\}_{i=1,100}$ aufsteigend sortiert nach Bewertung $M_K(\sigma_i(D))$. Definiere $O_{M_k}(D) \coloneqq \sigma_1(D)$.
- **Hypothese**: Modellgestützte Optimierung O_{M_k} liefert bessere Resultate als zufällig gezogene Permutation.

Bauteile

48 neue Bauteile + 6 vorhandene Bauteile

Innerhalb (Mindestfläche von 6 Bauteile, Maximale Fläche von 6 Bauteile)

Skalar : Zufällig erzeugt

Feature Engineering

Flächengröße: 7228.38

Länge des Umfangs : 901.58

Anzahl der Ecken : 53

Lange geteilt durch Breite : 1.19

Fläche geteilt durch Umfang : 8.02

 Fläche geteilt durch die Fläche von Bounding box : 0.57

Convex Fläche : 10236.16

- Flächengröße
- Länge des Umfangs
- Bounding box

Convex Flächengröße

Feature Engineering

- Fläche geteilt durch Convex Fläche : 0.71
- Convex Fläche geteilt durch die Fläche von Bounding box : 0.8
- Convex Fläche geteilt durch die Fläche von Bounding box : 0.8
- Fläche durch Convex Fläche: 0.71
- Ist Rotation gleich 0: 0/1
- Ist Rotation gleich 90: 0/1

- Flächengröße
- Länge des Umfangs
- Bounding box

Convex Flächengröße

Bewertung

Breit

SCORE= Mean_score + 0.5 * Höhe + Flächenverhältnis

 $L(N(S_1, S_2, \dots, S_n)) = (Score(S_1), Score(S_1, S_2), \dots, Score(S_1, \dots S_n))$

		Stabil	Unsicher	Kippt	Fällt
	Metric4	2	3	4	5
	Score	0	3.5	4	0.5

- Höhe
- Flächenverhältnis

$$1 - \frac{Gesamtfläche\ der\ 50\ Bauteile}{Breit\ *H\"{o}he}$$

Höhe

Modell

- Wir benötigen den Prädiktor, um für Eingabestrings mit variabler Länge zu arbeiten
- Korreliert mit wahrer Leistung: Wir müssen nicht unbedingt einen kleiner mean squared error erreichen, aber wir wollen, dass der Prädiktor die Konfigurationen etwa in der gleichen Reihenfolge einordnet wie ihre wahren Leistungswerte.

SEQ2SEQ:

Input: 1x13 1x13 • • • 1x13 1x13 Output: $Score(S_1, S_2)$ • • • $Score(S_1, ..., S_{n-1})$ $Score(S_1, ..., S_n)$

Loss: | 1

Hyper-parameter:

Von **SMAC** optimierte **seq2seq** Struktur :

LSTM: (13, 64, num_layers=2)

MLP:

(0): Linear(in_features=64, out_features=16, bias=True)

(1): Dropout(p=0.5)

(2): ReLU()

(3): Linear(in_features=16, out_features=1, bias=True)

Die Platzierung der Bauteile ist stark von den Gewichtungen der Packungsdichte,
 Verkippen, Steg-Beschädigung beeinflusst.

Gewichtung	1: 1: 1	1: 8: 1	8: 1: 1
------------	---------	---------	---------

- Die Leistung des Modells sollte getestet werden, wenn es neue unbekannte Bauteile gibt.
 - Insgesamt 54 Bauteile, 44 für Training.
- Metric: Beste Test-Konfiguration ist in top 5 der Vorhersage
 Datenmenge = 15000 Batches = 130--150 Batch size = 100

Experiment 1

Setup: Gewichtung ist 1: 1: 1

Anzahle der Bauteile für Training: 54

Anzahle der Bauteile für Test: 54

Metric: Beste Test-Konfiguration ist in top 5 der Vorhersage

Result: 84%

Experiment 2

Setup: Gewichtung ist 1: 8: 1

Anzahle der Bauteile für Training: 44

6 verschiedene Datensatz:

(1) 10 neue Bauteile

(2) 10 neue Bauteile + 10 benutzte Bauteile

(3) 10 neue Bauteile + 20 benutzte Bauteile

(4) 10 neue Bauteile + 30 benutzte Bauteile

(5) 10 neue Bauteile + 44 benutzte Bauteile

(6) 44 benutzte Bauteile

Metric: Beste Test-Konfiguration ist in top 5 der Vorhersage

Result:

Experiment 3

Setup: Gewichtung ist 8: 1: 1

Anzahle der Bauteile fuer Training: 44

6 verschiedene Datensatz:

(1) 10 neue Bauteile

(2) 10 neue Bauteile + 10 benutzte Bauteile

(3) 10 neue Bauteile + 20 benutzte Bauteile

(4) 10 neue Bauteile + 30 benutzte Bauteile

(5) 10 neue Bauteile + 44 benutzte Bauteile

(6) 44 benutzte Bauteile

Result:

