11. Set Identities

☐ building new sets out of old:						
\square power set of a set A :	\square power set of a set A : $\mathcal{P}(A)$					
\Box Cartesian product of	\Box Cartesian product of sets A and B $A \times B$					
\Box generalization of Car	\square generalization of Cartesian product $A_1 \times A_2 \times \cdots \times A_n$					
\square set operations:						
union $A \cup B$	intersection $A \cap B$	complement \overline{A}				
set difference $A - B$	symmetric difference	$A \oplus B$				
\square verifying set identities:						
using a membership table	with a rigorous proof					

USING THE TABLE OF SET IDENTITIES

Example 11.1. Let A, B, and C be subsets of the universal set \mathcal{U} .

Using set identities, prove that $\overline{(B \cup C) - A} = (\overline{C} \cap \overline{B}) \cup A$

LS =
$$(BUC) - A$$

= $(BUC) \cap \overline{A}$ (Difference Law)
= $(BUC) \cup \overline{A}$ (De Morgan's Law)
= $(\overline{B} \cap \overline{C}) \cup \overline{A}$ (De Morgan's Law)
= $(\overline{B} \cap \overline{C}) \cup A$ (Double) Complementation Law)
= $(\overline{C} \cap \overline{B}) \cup A$ (Commutative Law)
= RS : $C \cap B \cap A$

^{*} These notes are solely for the personal use of students registered in MAT1348.

Table of Important Set Identities

1. 2.	$A \cup \emptyset = A$ $A \cap \mathcal{U} = A$	Identity Laws	
3. 4.	$A \cup \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$	Domination Laws	
5. 6.	$A \cup A = A$ $A \cap A = A$	Idempotent Laws	
7.	$\overline{\left(\overline{A} ight)} = A$	(Double) Complementation Law	
8. 9.	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws	
10. 11.	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative Laws	
12. 13.	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws	
14. 15.	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's Laws	
16. 17.	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Laws	
18. 19.	$A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$	Complement Laws	
20.	$A - B = A \cap \overline{B}$	Difference Law	
21. 22.	$A \oplus B = (A - B) \cup (B - A)$ $A \oplus B = (A \cup B) - (A \cap B)$	Symmetric Difference Laws	

PROOFS INVOLVING SETS

Example 11.2. Prove the following theorem:

Theorem 11.2. Let *A* and *B* be subsets of the universal set.

Then
$$\overline{A} \subseteq \overline{B}$$
 if and only if $B \subseteq A$.

Note: P says "for all xeU, (xeĀ) → (xeB)"

Equivalently (contrapos.): (X单方)→(X垂瓦) ****

Q says "for all $x \in \mathcal{U}$, $(x \in \mathcal{B}) \rightarrow (x \in \mathcal{A})''$

Equivalently (contrapos.): $(x \notin A) \rightarrow (x \notin B)$

Proof of Theorem 11.2 (using a proof of equivalence)

(⇒) We will prove P→Q with a direct proof.

Assume P is True, ie Assume ACB. (goal is to prove Q is True, ie BCA). Let xe U.

Assume X∈B. Then X≠B since X∈B.

⇒ x \(\bar{A} \) since we assumed \(\bar{A} \sigma \bar{B} \). ****

⇒xeA

Thus, we proved (x∈B) → (x∈A) % BSA (ie QisTrue).

Overall, we proved $(\overline{A} \subseteq \overline{B}) \rightarrow (B \subseteq A)$

(←) We will prove Q→P with a direct proof.

Assume Q is True. ie Assume BGA (goal is to prove P is True, ie AGB).

Let xe U.

Assume X∈ A. Then x ∉ A sinc x ∈ A

⇒ x \neq B since we assumed B \subseteq A.

>> xer

Thus, we proved $(x \in \overline{A}) \rightarrow (x \in \overline{B})$. $\overline{A} \subseteq \overline{B}$ (ie PisTrue).

Overall, we proved $(B \subseteq A) \rightarrow (\overline{A} \subseteq \overline{B})$

We proved $P \rightarrow Q$ and $Q \rightarrow P$. : we proved $P \leftrightarrow Q$ is true.

Let $2 = \{1,2,3,4,5\}$ and let A and B be the following two sets:

Then A = {4,5} B = {1,2}

and so $\overline{A} \not\subseteq \overline{B}$.

Why doesn't this example contradict Theorem 11.2?

Theorem 11.2 does not say that ASB for all sets AB.

Theorem 11.2 says $\overline{A} \subseteq \overline{B}$ if and only if $B \subseteq A$.

It means: (1) If ASB, then BSA and (2) If BSA, then ASB

In our example, B was not a subset of A so the premise of @ was not fulfilled.

STUDY GUIDE								
Basic terms and concepts of Set \square set \square element \square sub S $x \in S$ $T \subseteq S$	set 🔲 propei	r subset □ e	quality \Box can	rdinality $ S $				
Some important sets:								
\square empty set \square universal set \varnothing \mathscr{U}	□ naturals N	\square integers \mathbb{Z} $\mathbb{Z}^ \mathbb{Z}^+$	\square rationals \mathbb{Q} $\mathbb{Q}^ \mathbb{Q}^+$	\square reals \mathbb{R} $\mathbb{R}^ \mathbb{R}^+$				
Building new sets from old: \square power set of S \square Cartesian product of two (or more) sets $\mathcal{P}(S)$ $S \times T$ $S_1 \times S_2 \times \cdots \times S_t$								
Set Operations: \square union \square intersection $S \cup T$ $S \cap T$				c difference				
Set identities:								
\square verify using membership tables \square verify using a rigorous proof								
\square prove other identities using the laws from the Table of Important Set Identities								
Exercises			ıp.Ex. §4 # 1, 2, 3 osen §2.2 # 14, 15					