# Применение метода суперкомпиляции для специализации реляционных программ

## Куклина Мария Дмитриевна

#### Университет ИТМО

Научный руководитель: к.ф.-м.н. Близнец Иван Александрович Научный консультант: Вербицкая Екатерина Андреевна

2020 г.



# Реляционное программирование

## Реляционное программирование

Вид декларативного программирования, в котором программы представляются как набор математических отношений.

Пример запросов для отношения "меньше или равно"  $\mathsf{leq}^o \subseteq \mathsf{Int} \times \mathsf{Int}$ :

- $\mathsf{leq}^o(1, 2)$  проверить, что отношение  $1 \leq 2$  выполняется.
- $\mathsf{leq}^o(\mathsf{X},\,\mathsf{Y})$  поиск всех значений  $\mathsf{X}$  и  $\mathsf{Y},\,\mathsf{такиx}$  что  $\mathsf{X} \leq \mathsf{Y}.$

## miniKanren

#### miniKanren

Встраиваемый предметно-ориентированный язык реляционного программирования, представленный как набор операторов, которые нужно реализовать в хостовом языке $^1$ .

## Преимущества

- Одно отношение можно применять для решения связанных задач.
- Реализует полный поиск: гарантируется, что каждый ответ будет со временем найден.

<sup>&</sup>lt;sup>1</sup> "Relational Programming in miniKanren: Techniques, Applications, and Implementations", Byrd, 2009

# Постановка проблемы

- Реализовывать эффективные программы сложно.
- Производительность запроса сильно зависит от того, значения каких компонент отношения нужно найти.

## Специализация

## Определение

Автоматизированная техника оптимизации программ, при которой из программы удаляются избыточные вычисления, зависимые от частично известного входа $^2$ .

- Частичная дедукция класс методов специализации для логический языков, в частности, для Prolog.<sup>3</sup>
- Специализация miniKanren на основе конъюнктивной частичной дедукции (CPD)<sup>4</sup>:
  - даёт нестабильные результаты;
  - предоставляет библиотеку для построения специализаторов.

<sup>&</sup>lt;sup>2</sup> Partial evaluation and automatic program generation, Jones, Gomard и Sestoft, 1993

<sup>&</sup>lt;sup>3</sup> Advanced Techniques for Logic Program Specialisation, Leuschel, 1997

<sup>&</sup>lt;sup>4</sup> "Relational Interpreters for Search Problems", Lozov, Verbitskaia и Boulytchev, 2019

# Суперкомпиляция

## Определение

Техника автоматической трансформации и анализа программ, при которой программа символьно исполняется с сохранением истории вычислений, на основе которой принимаются решения об оптимизации.

- Суперкомпиляторы применяются во основном для функциональных языков<sup>5</sup>.
- Существует полуавтоматическая суперкомпиляция для Prolog<sup>6</sup>.
- Имеются теоретические доводы в пользу автоматической суперкомпиляции для Prolog<sup>7</sup>.

<sup>&</sup>lt;sup>5</sup> "Introduction to Supercompilation", Sørensen и Glück, 1998

<sup>&</sup>lt;sup>6</sup> A Prolog Positive Supercompiler, Diehl, 1997

<sup>&</sup>lt;sup>7</sup> Turchin's Supercompiler Revisited - An operational theory of positive information propagation, Sørensen, 1996

## Цели и задачи

## Цель

Улучшение результатов специализации реляционных программ путём применения метода суперкомпиляции.

## Задачи

- Реализовать суперкомпилятор для miniKanren.
- Рассмотреть возможные методы улучшения получившегося суперкомпилятора.
- Протестировать суперкомпилированные программы и сравнить их с получившимися в результате применения CPD и с оригинальными.

# Суперкомпиляция для miniKanren



Рис. 1: Схема алгоритма суперкомпиляции

— библиотека по специализации miniKanren с дополнениями
— собственная разработка

# Особенности miniKanren для реализации развёртки

**Развёртка** определяет шаг символьного вычисления, на котором порождается множество возможных состояний программы.

#### Значимые особенности

- Существует несколько возможных способов реализации развёртки.
- Допускается переупорядочивание элементов выражения.

## Результаты задачи

- Реализован базовый алгоритм суперкомпиляции.
- Разработан и реализован алгоритм построения оптимизированной программы по графу суперкомпиляции.

# Улучшение суперкомпиляции для miniKanren

## Проблемы

- Стратегия свёртки приводит к повторению символьных вычислений.
- Классическое использование обобщения может приводить к избыточным вычислениям.
- Тривиальная стратегия вычисления порождает слишком много ветвей исполнения.
- Реализованный суперкомпилятор поддерживает лишь базовый набор операторов miniKanren; поддержка расширений может потребовать более сложный алгоритм.

## Результаты задачи

- Применены подходы по улучшению алгоритма суперкомпиляции.
  - Добавлено кэширование.
  - Реализованы модификации обобщения.
  - Проанализированы и реализованы допустимые стратегии вычисления.
- Библиотека расширена оператором неравенства: это наиболее полезное расширение miniKanren<sup>8</sup>.
- Реализовано расширение суперкомпилятора, учитывающее информацию о неравенствах термов.

<sup>&</sup>lt;sup>8</sup> "Certified Semantics for Disequality Constraints", Rozplokhas и Boulytchev, 2020

## Тестирование

Реализация miniKanren: проект OCanren<sup>9</sup>

Реализация CPD для miniKanren: проект uKanren\_transformations<sup>10</sup>

Реализация CPD для Prolog: проект ECCE<sup>11</sup>

Платформа: Intel Core i5-6200U CPU, 2.30GHz, DDR4, 12GiB.

## Сценарий

- Суперкомпиляция тестовой программы.
- Трансляция остаточной программы в OCanren.
- 3 Замер времени исполнения.
- 4 Сравнение времени исполнения с оригинальной программой и результатами применения CPD.

https://github.com/JetBrains-Research/OCanren

<sup>10</sup> https://github.com/kajigor/uKanren\_transformations/

<sup>11</sup> https://github.com/leuschel/ecce

# Программы для тестирования

- sort Алгоритм реляционной сортировки.

  Запрос: сортировка случайного списка длины 50.
- isPath Проверка принадлежности пути графу.
  Запрос: поиск произвольного пути длины 10,
  принадлежащих графу с 21 вершиной и 50 рёбрами.
- logint Реляционный интерпретатор формул логики высказываний.
  Запрос: поиск 1000 истинных формул в данной
  - подстановке.
  - lam Реляционный интерпретатор лямбда-выражений.
    Запрос: поиск п термов, редуцирующиеся к указанной форме.

# Сравнение улучшений

- Были рассмотрены 5 модификаций базового алгоритма с 8 стратегиями развертки:
  - 1 модификация описана в статьях;
  - 4 модификации предложены мной.
- Все модификации улучшают работу оригинального суперкомпилятора.
- Систематически модификация, описанная в статьях, давала результат лучше или не сильно хуже, чем остальные модификации.
- По результатам исследования была выявлена лучшая стратегия развёртки.

# Сравнение суперкомпиляторов с существующими решениями

| Параметр        | Оригинал                             | ECCE  | CPD  | Б.С.  | M.C.  |  |  |  |
|-----------------|--------------------------------------|-------|------|-------|-------|--|--|--|
| sort            | случайный список фиксированной длины |       |      |       |       |  |  |  |
| 50              | 8.42                                 | 12.28 | 13.2 | 0.239 | 0.242 |  |  |  |
| isPath          | поиск 10 путей                       |       |      |       |       |  |  |  |
| граф 3          | > 300                                | 1.03  | 1.19 | 2.43  | 1.81  |  |  |  |
| isPath          | произвольный путь длины 10           |       |      |       |       |  |  |  |
| граф 1          | 12.51                                | 1.01  | 1.20 | 1.28  | 0.48  |  |  |  |
| граф 2          | > 300s                               | 1.73  | 2.09 | 0.85  | 0.48  |  |  |  |
| logint          | генерация логических формул          |       |      |       |       |  |  |  |
| без переменных  | > 300                                | 0.17  | 2.7  | _     | 0.11  |  |  |  |
| одна переменная |                                      | 0.09  | 1.7  | _     | 0.07  |  |  |  |
| lam             | термы в нормальной форме             |       |      |       |       |  |  |  |
| 50 термов       | > 300                                | 2.98  | 0.08 | 0.08  | 0.04  |  |  |  |

Рис. 2: Время исполнения программ для данных специализаторов, секунды

# Результаты работы

- Реализован и протестирован суперкомпилятор.
- Применены подходы по улучшению качества суперкомпиляции.
- Добавлены неравенства в библиотеку для специализации.
- Исправлены баги библиотеки для специализации.
- Работа была представлена на воркшопе по трендам логического программирования TEASE-LP'20.
- Ссылка на репозиторий: https://github.com/RehMaar/uKanren-spec

Дополнительные слайды

# Пример сравнения модификаций суперкомпилятора

|              | Вариации суперкомпиляторов |       |       |       |       |       |  |  |
|--------------|----------------------------|-------|-------|-------|-------|-------|--|--|
| Стратегии    | Б.С.                       | M.1   | M.2   | M.3   | M.4   | M.5   |  |  |
| развёртки    |                            |       |       |       |       |       |  |  |
| Full         | -                          | -     | 0.078 | 0.062 | -     | -     |  |  |
| Full-non-rec | 0.137                      | 0.040 | 0.093 | 0.042 | 0.069 | 0.040 |  |  |
| Seq          | 0.086                      | 0.082 | 0.066 | 0.049 | 0.050 | 0.041 |  |  |
| Non-rec      | 0.043                      | 0.031 | 0.063 | 0.044 | 0.055 | 0.046 |  |  |
| Rec          | 0.037                      | 0.034 | 0.045 | 0.040 | 0.051 | 0.049 |  |  |
| Min          | 0.037                      | 0.039 | 0.049 | 0.041 | 0.054 | 0.045 |  |  |
| Max          | 0.068                      | 0.070 | 0.067 | 0.036 | 0.062 | 0.071 |  |  |
| First        | 0.104                      | 0.100 | 0.110 | 0.095 | 0.137 | 0.073 |  |  |

Рис. 3: Время исполнения запроса к logint для генерации формул с двумя переменными, секунды.

## Условные обозначения для стратегий развёртывания:

- Full и Full-non-rec обозначают полную стратегию и полную стратегию развёртывания с приоритетом на нерекурсивные вызовы соответственно;
- Seq обозначает последовательную стратегию развёртывания;
- Non-rec и Rec обозначают нерекурсивную и рекурсивную стратегии соответственно;
- Min и Max обозначают минимальную и максимальную стратегии соответственно;
- First обозначает стратегию, при которой всегда развёртывается первый конъюнкт.

## Условные обозначения для модификаций:

- *Б.С.* обозначает базовый суперкомпилятор с обобщением вниз на предков;
- *М.1* обозначает модификацию, при которой происходит запрет на обобщение сразу после обобщения;
- *M.2* обозначает модификацию, при которой обобщение происходит на все ранее вычисленные вершины;
- M.3 обозначает модификацию, при которой происходит обобщение вверх на родительские вершины;
- M.4 обозначает модификацию, при которой происходит обобщение вверх на родительские вершины, кроме корневой.
- М.5 обозначает модификацию, при которой происходит обобщение вверх на родительские вершины, а также запрет обобщения после обобщения.

# Граф конфигураций для программы конкатенации трёх списков doubleAppend

