Digitaltechnik Intensivkurs

KV-Diagramme

Schaltungssynthese

Latches, FlipFlops

Gliederung

- KV-Minimierung
 - KPI
 - API
 - REPI
- Schaltungssynthese
- Latches
- FlipFlops

Wichtige Symbole

Achtung! Häufige Fehlerquelle!

Sollte auf euren Formelzettel

Digitaltechnik Intensivkurs

X	у	q_1
0	0	0
0	1	1
1	0	1
1	1	0

Х	у	q ₁
0	0	0
0	1	1
1	0	1
1	1	0

X	у	q ₂
0	0	0
0	1	0
1	0	1
1	1	1

X	у	q ₂
0	0	0
0	1	0
1	0	1
1	1	1

- Kernprimimplikant KPI (essentieller Primterm): Primimplikant, der zur Realisierung einer Funktion unbedingt erforderlich ist. Die Minterme aus denen er entstand, können nicht anders überdeckt werden. Diese werden zur Minimierung zwingend benötigt!
- Absolut eliminierbarer Primimplikant API: Primimplikant, dessen Minterme (Maxterme) alle von Kernprimimplikanten überdeckt werden. Diese können zur Minimierung weggelassen werden.
- Alle weiteren Primimplikanten sind relativ eliminierbare Primimplikanten (REPI). Hier muss zur Minimierung eine Auszahl erfolgen!

- Kernprimimplikant KPI:
 - Primimplikant, der zur
 Realisierung einer Funktion unbedingt erforderlich ist
 - Die Minterme aus denen er entstand, können nicht anders überdeckt werden
 - KPI werden immer maximal groß gehalten

- Absolut eliminierbarer Primimplikant API:
 - Primimplikant, dessen Minterme (Maxterme) alle von Kernprimimplikanten überdeckt werden
 - Können zur Minimierung weggelassen werden

- Relativ eliminierbarer Primimplikant REPI:
 - Kann auf mehrere Weisen realisiert werden
 - Wenn sich für eine Variante entschieden wird, kann die andere ignoriert werden

- Ein REPI steht niemals allein

Vorlesungsaufgabe

Finde den Fehler

Finde den Fehler

Digitaltechnik Intensivkurs

Schaltungssynthese

Schaltungssynthese

- Richtung ist dabei egal, aus Erfahrung ist aber von hinten nach vorne leichter
- Achtet auf Negationen, meist auf der Klausur sehr klein gedruckt
- Teilt die Schaltung in kleinere Teile auf

Vorlesungsaufgabe

Vorlesungsaufgabe

$$AB + \overline{C}(\overline{A} + \overline{B}) + CD$$

Digitaltechnik Intensivkurs

Latches

Zustandsübergänge:

- Rückkopplung in der Schaltung sorgt dafür, dass die Ausgabe vom aktuellen Zustand q^t abhängt
- Ausgabe kann nur vom Zustand abhängen (Moore) oder zusätzlich von der Eingabe (Mealy)
- Aufteilung in Zustandsübergangsfunktion (ZÜF) und Ausgangsfunktions (AF)

MEALY Automat:

MOORE Automat:

- Zustandsübergänge:
 - Hier nutzen wir y^{t+τ} um Zeitpunkt zu kennzeichnen, der eine kleine Zeiteinheit nach dem Umschalten stattfindet
 - Zustände sind stabil, wenn es keinen Zustandswechsel gibt

y^t	X	$y^{t+\tau}$	
0	0	0	← Ausgang bleibt stabil: $y^{t+\tau} = y^t = 0$
0	1	1	← Ausgang wechselt von 0 auf 1
1	0	1	← Ausgang bleibt stabil: $y^{t+\tau} = y^t = 1$
1	1	0	← Ausgang wechselt von 1 auf 0
			Vorlesung 8 – Latches und FlinFlons

• Wichtige Latches:

RS-Latch

r	5	$q^{t+ au}$	•
0	0	q^t	speichern
0	1	1	setzen
1	0	0	rücksetzen
1	1	_	nicht zulässig

D-Latch

$$\begin{array}{c|c} d & q^{t+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array}$$

- Taktpegelsteuerung:
 - Latches
 - Wechseln, solange der Takt 1 ist
- Taktflankensteuerung:
 - FlipFlops
 - Wechseln nur an der Vorder- bzw.
 Rückflanke des Takts

Digitaltechnik Intensivkurs

FlipFlops

Aufbau:

- Aus einem RS-Latch machen wir einen RS-Latch mit Taktpegelsteuerung
- Aus einem RS-Latch mit Takt machen wir einen D-Latch
- Aus zwei D-Latches machen wir einen D-FlipFlop

Livedemo

- Wichtige Eigenschaften:
 - Ausgang wechselt nur an der Taktflanke
 - Speichert den aktuell anliegenden Zustand bei jedem Takt
 - → einfache Art von Speicher
 - Im Gegensatz zum Latch stabil

Beispiel-Timing:

Vorlesung 8 – Latches und FlipFlops

Wichtige FlipFlops:

