Tolerance And Prediction Intervals

Prediction Interval for a Future Observation

In some problem situations, we may be interested in predicting a future observation of a variable. This is a different problem than estimating the mean of that variable, so a confidence is not appropriate.

Suppose that $X_1, X_2,..., X_3$ is a random sample from a normal population. We wish to predict the value X_{n+1} , a single future observation. A point prediction of X_{n+1} is \overline{X} , the sample mean.

- The prediction error is $X_{n+1} \overline{X}$
- The expected value of the prediction error is $E(X_{n+1} \overline{X}) = \mu \mu = 0$
- The variance of the prediction error is

$$V(X_{n+1} - \overline{X}) = \sigma^2 + \frac{\sigma^2}{n} = \sigma^2 \left(1 + \frac{1}{n} \right)$$

• Because of the future observation X_{n+1} is independent of the mean of the current sample \overline{X} . The prediction error $X_{n+1} - \overline{X}$ is normally distributed. Therefore

$$Z = \frac{X_{n+1} - \overline{X}}{\sigma \sqrt{\left(1 + \frac{1}{n}\right)}}$$

has a standard normal distribution.

• Replacing σ with S results in

$$T = \frac{X_{n+1} - \overline{X}}{S\sqrt{\left(1 + \frac{1}{n}\right)}}$$

which has a t distribution with n-1 degrees of freedom.

Prediction Interval

Manipulating T as we have done previously in the development of a CI leads to a prediction interval on the future observation X_{n+1} .

A $100(1-\alpha)\%$ prediction interval on a single future observation from a normal distribution is given by

$$\overline{X} - t_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \overline{X} + t_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}}$$

The prediction interval for x_{n+1} will always be longer than the confidence interval for μ because there is more variability associated with the prediction error than with the error of estimation.

Example:

```
MTB > random 20 c1;
SUBC> normal 15 3.
MTB > print c1
```

Data Display

```
C1

9.0680 18.6516 14.0500 20.3649 11.8317 17.9297 13.7635
11.8171 15.0659 16.3931 12.0878 10.6404 12.9046 16.0074
8.2335 17.9648 12.5913 14.0011 12.6949 11.9322
```

Find a 95% CI on the mean.

Find a 95% prediction interval for the next observation.

Descriptive Statistics: C1

Variable Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
C1	20	0	13.900	0.717	3.205	8.233	11.857	13.334	16.297
Variable	Maximum								
C1	20	.365							

MTB > tint 95 c1

One-Sample T: C1

Variable Variable	N	Mean	StDev	SE Mean	95% CI
C1	20	13.900	3.205	0.717	(12.400:15.400)

 $12.40 \le \mu \le 15.4$

Prediction interval

$$\overline{X} - t_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \overline{X} + t_{\alpha/2, n-1} S \sqrt{1 + \frac{1}{n}}$$

$$13.9 - 2.09(3.205)\sqrt{1 + \frac{1}{20}} \le X_{21} \le 13.9 + 2.09(3.205)\sqrt{1 + \frac{1}{20}}$$

$$7.036 \le X_{21} \le 20.763$$

Compare with the following

$$12.40 \le \mu \le 15.4$$

MTB > random 1 c2; SUBC> normaL 15 3. MTB > print c2

Data Display

C2 12.4073