Segundo Relatório de Medidas Eletromagneticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

4 Conclusoes

1	Introdução					
	1.1	Analise preliminar				
2						
	2.1	Resistor				
	2.2	Capacitor				
3	Medicoes no Laboratorio					
	3.1	Tabela de medicoes				
		3.1.1 Resistores				
	3.2	Graficos dos dados				
		3.2.1 Erro absoluto por frequencia				
	3.3	Analise da onda dente de serra				

1 Introdução

Neste relatório, vamos medir os valores de resistencia Ω e capacitancia F de resistores e capacitores, e calcularemos alguns de seus parametros estatisticos.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/labcircuitos

1.1 Analise preliminar

Utilizaremos um multimetro para medir as propriedades de alguns componentes.

Faremos 20 medicoes em cada componente, e calcularemos a media, desvio padrao, tendencia, e correcao de cada um deles.

Apos isto discutiremos os nossos achados.

2 Resultados esperados

2.1 Resistor

Esperamos resultados consistentes entre as medidas, porem, tambem esperamos que a resistencia seja diferente da resistencia de fabrica.

Isto ocorrera por desgaste dos componentes devido a seu uso de laboratorio, e tambem pela qualidade dos componentes.

Muito provavelmente estamos fora dos padroes de confiabilidades de fabrica. Mas precisariamos ver o datasheet dos resistores em específico para confirmar isto.

2.2 Capacitor

Tudo que falamos a cima se aplica aos capacitores, mas com dois diferenciais.

O primeiro en que estes sao mais sensiveis ao uso, logo esperaremos discrepancias maiores entre os valores de fabrica e os de fato.

E tambem que durante as medidas, os carregaremos e os descarregaremos, que implicara tambem em um erro sistematico adicional.

3 Medicoes no Laboratorio

Utilizando um multimetro, mediremos resistencias de resistores, e capacitancias de capacitores.

Para reduzir erros sistematicos, os encaixaremos todos componentes em um protoboard.

E antes de fazer as medidas dos capacitores, vamos criar um circuito com um capacitor e um resistor em serie para descarregalos. Apos alguns segundos com este circuito formado, desconectaremos o circuito e faremos a medicao de fato.

3.1 Tabela de medicoes

3.1.1 Resistores

Mediremos tres resistores, com valores de fabrica respectivamente de: $R_1 = 10k\Omega$, $R_2 = 22k\Omega$, $R_3 = 15k\Omega$.

$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 15k\Omega$
10037Ω	21932Ω	$14848 \ \Omega$
10037Ω	21932Ω	14849Ω
10038Ω	21932Ω	$14850 \ \Omega$
10038Ω	21932Ω	14849Ω
10038Ω	21932Ω	$14850 \ \Omega$
10037Ω	21933Ω	14849Ω
10037Ω	21933Ω	14849Ω
10037Ω	$21931~\Omega$	$14850 \ \Omega$
10037Ω	21931 Ω	$14850 \ \Omega$
10037Ω	$21930~\Omega$	$14848 \ \Omega$
10036Ω	$21932~\Omega$	14849Ω
10037Ω	21932Ω	14849Ω
10037Ω	$21932~\Omega$	14849Ω
10037Ω	21932Ω	14849Ω
10038Ω	$21934~\Omega$	14849Ω
10036Ω	$21934~\Omega$	$14850 \ \Omega$
10036Ω	21934 Ω	14849Ω
10037Ω	21933 Ω	14849Ω
10036Ω	21934 Ω	14849Ω
10036Ω	21932Ω	14848Ω

$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 15k\Omega$
10037	21932	14848
10037	21932	14849
10038	21932	14850
10038	21932	14849
10038	21932	14850
10037	21933	14849
10037	21933	14849
10037	21931	14850
10037	21931	14850
10037	21930	14848
10036	21932	14849
10037	21932	14849
10037	21932	14849
10037	21932	14849
10038	21934	14849
10036	21934	14850
10036	21934	14849
10037	21933	14849
10036	21934	14849
10036	21932	14848

3.2 Graficos dos dados

3.2.1 Erro absoluto por frequencia

3.3 Analise da onda dente de serra

Quando analisamos este tipo de onda vimos erros distribuidos ao longo de toda banda de testes. Isto ocorreu por que a funcao dente de serra pode ser decomposta em senoides, e estas multiplas senoides, obedecerem o erro de acordo com os graficos acima na secao 3.2.

Logo as senoides decompostas de alta frequencia e baixa nos deram um certo erro consideravel, porem distribuido em toda banda de testes.

4 Conclusoes

Vemos que o multimetro tem bastante confianca em uma faixa intermediaria, mas fora desta a confianca eh reduzida significantemente.

Precisamos levar em consideracao tambem o formato da onda de entrada e sua decomposicao por serie de Fourier.

Outro ponto que nao abordamos nesta pratica foi o aspecto da calibracao do multimetro. Esta pode afetar tanto a banda de frequencia de confianca quanto a confianca em todos pontos da banda.