物联网网关 通讯协议 V1.6

目 录

1、	网关支持Modbus TCP查询应答式的通讯协议	1
	1.1 网关支持的Modbus TCP协议的功能码	1
	1.1.1 Modbus TCP报文格式	1
	1.1.2 0x01 功能码: 读取设备在线状态	1
	1.1.3 0x03 功能码: 读取保持寄存器	2
	1.1.4 0x10 功能码: 写保持寄存器	3
	1.2 网关地址规范	4
	1.2.1 网关内部参数地址规范(只读)	4
	1.2.2 功能码: 读线圈 0x01	5
	1.2.3 功能码: 读保持寄存器 0x03	6
	1.2.4 功能码: 写保持寄存器 0x10	8
	1.2.5 读取通道值解析	10
	1.3 通道值解析实例	
	1.3.1 读取传感器的在线状态	
	1.3.2 读取传感器值	13
	1.3.3 控制开关量输出	
	1.4 接口编程指南	
	1.4.1 网关做服务器	
	1.4.2 网关做客户端	
2、	网关支持ModbusRtu查询应答式的通讯协议	
	2.1 通讯接口定义	
	2.2 寄存器地址分配	
	2.2.1 读取传感器的值	
	2.2.2 读取传感器的节点序列号	
	2.2.3 读取传感器的在线状态	
	2.3 Modbus RTU通讯协议解析	
	2.3.1 03 功能码: 读取传感器的值和序列号	
	2.3.2 01 功能码: 读取传感器状态	20

1、网关支持 Modbus TCP 查询应答式的通讯协议

1.1 网关支持的 Modbus TCP 协议的功能码

1.1.1 Modbus TCP 报文格式

	Modbus TCP 报文包格式												
			功能码	数据									
事务元	标识符	协议标	示识符	长	度	单元标识符							
2 与	≥节	2 字节		2 字节		1 字节	1字节						
15	01	00	00										

1.1.2 0x01 功能码: 读取设备在线状态

请求包格式:

1147 CH24											
Modbus TCP 0x01 功能码请求包											
			MBAP	报文头		功能码	起始	地址	传感器	节点数量	
事务元标识 协议标识符 长度 单元标识					单元标识符						
2 字节		2 与	2节	2 字节		1 字节	1字节	2 🗦	字节	2 4	字节
15	01	00	00			设备地址	0x01				

响应包格式:

	Modbus TCP 0x01 功能码响应包											
			MBAP	报文头	功能码	字节数	传感器节点状态					
	元标识 夺	协议标	示识符	长	度	单元标识符						
2 学	2 字节		2节	2 字节		1字节	1字节	1 字节	字节数个字节			
15	01	00	00			设备地址	0x01					

错误包格式:

	Modbus TCP 0x01 功能码响应包											
			MBAP ‡	差错码	异常码							
	事务元标识 协议标识符				度	单元标识符						
2 学	2节	2 学	2节	2 学	Z节	1字节	1 字节	1 字节				
15	01 00 00		00	03	设备地址	0x81	0x01/0x02/0x03/0x04/0x0C/0 x0D/0x0E/0x0F					

注: 异常码的含义:

- 1) 0x01 功能码错误
- 2) 0x02 起始地址错误
- 3) 0x03 寄存器数量错误
- 4) 0x04 从站设备故障(如设备不在线)
- 5) 0x0C 协议标识符错误
- 6) 0x0D 请求包长度错误
- 7) 0x0E 设备地址错误
- 8) 0x0F 请求包的寄存器内容错误

1.1.3 0x03 功能码: 读取保持寄存器

请求包格式:

	Modbus TCP 0x03 功能码请求包											
			MBAP	报文头	功能码	起始地址	上	寄存器	器数量			
事务标记			议 只符	长度 単元 标识符								
2 学	字节 2字节		2 字节		1 字节	1字节	2 字节		2 与	≥节		
15	01	00	00			设备地址	0x03					

响应包格式:

	Modbus TCP 0x03 功能码响应包											
			MBAP 3	报文头	功能码	字节数	寄存器值					
	事务元 协议 长度 单元 标识符 标识符 标识符											
2 =	2 字节		Z 节	2 与	字节	1 字节	1字节	1 字节	字节数个字节			
15	01	00	00			设备地址	0x03					

错误包格式:

	Modbus TCP 0x03 功能码响应包											
			MBAP ‡	差错码	异常码							
	事务元 协议 长度 单元 标识符 标识符											
2 学	Z节	2 学	Z节	2 字节 1 字		1字节	1字节	1字节				
15	01 00 00 00 03		设备地址	0x83	0x01/0x02/0x03/0x04/ 0x0C/0x0D/0x0E/0x0F							

注: 异常码的含义:

- 1) 0x01 功能码错误
- 2) 0x02 起始地址错误
- 3) 0x03 寄存器数量错误
- 4) 0x04 从站设备故障(如设备不在线)
- 5) 0x0C 协议标识符错误
- 6) 0x0D 请求包长度错误
- 7) 0x0E 设备地址错误
- 8) 0x0F 请求包的寄存器内容错误

1.1.4 0x10 功能码: 写保持寄存器

请求包格式:

	ModbusTcp 0x10 功能码请求包											
		MI	BAP 排	及文头	;		功能码	起始地址	寄存器 数量	字节数	寄存器值	
事务元标 符	示识	协议标识 符		长	度	单元标识 符						
2 字=	古	2 字	z节	2 学	Z节	1字节	1字 节	2 字节	2 字节	1 个 字节	字节数个 字节	
15	15 01 00 00 设备地址		0x10									

响应包格式:

142 CII 7 (1											
ModbusTcp 0x10 功能码响应包											
		ľ	MBAP 排	及文头	功能码	起始地址	寄存器数量				
事务元符	事务元标识 协议标识符			长	:度	单元标识 符					
2 字节		2 -	字节	2 与	字节	1字节	1字节	2 字节	2 字节		
15	01	00	00			设备地址	0x10				

错误包格式:

_	/												
		ModbusTcp 0x10 功能码响应包											
				MBA	P 报	文头	差错码	3	异常码				
	事	务元	协议标识		长度		单元标	识符					
	标识符		符										
Ī	2 =	字节	2 与	2字节 2字节		字节	1字	节	1 字节	ĵ	1 字节		
	15	01	00	00			设备均	也址	0x90	•	0x01/0x02/0x03/0x04/		
											0x0C/0x0D/0x0E/0x0F		

注: 异常码的含义:

- 1) 0x01 功能码错误
- 2) 0x02 起始地址错误
- 3) 0x03 寄存器数量错误
- 4) 0x04 从站设备故障(如设备不在线)
- 5) 0x0C 协议标识符错误
- 6) 0x0D 请求包长度错误
- 7) 0x0E 设备地址错误
- 8) 0x0F 请求包的寄存器内容错误

1.2 网关地址规范

1.2.1 网关内部参数地址规范(只读)

网关的设备地址为 0xFF(255)。

		0x03 功能码	
网关参数	起始地址(2bytes)	寄存器个数 (2bytes)	存储格式
网关 IP 地址 (r)	0x0000	0x0008	字符格式: "192.168.0.222"
子网掩码 (r)	0x0008	0x0008	字符格式: "255.255.255.0"
网关 IP(r)	0x0010	0x0008	字符格式: "192.168.0.1"
网关 DNS(r)	0x0018	0x0008	字符格式: "192.168.0.1"
MAC 地址 (r)	0x0020	0x0009	字符格式: "AA:CD:EF:12:34:03"
网关序列号 (r)	0x0029	0x0008	字符格式: "11112222333334444"
		0x01 功能码	
网关参数	起始地址(2bytes)	线圈个数(2bytes)	存储格式
节点状态 (r)	0x5555	0x0040	1=在线,0=不在线

示例

读取网关 IP 地址,网关地址为 192.168.0.111,网关设备地址=0xFF,功能码 =0x03,起始地址=0x0000,寄存器数量=0x0008。 查询命令

15 01 00 00 00 06 FF 03 00 00 00 08

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	FF	03	00 00	00 08
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	读线圈起始地址	读取8个保持寄存器

返回数据

15 01 00 00 00 13 FF 03 10 31 39 32 2E 31 36 38 2E 30 2E 31 31 31 0D 00 00

第 字节	1-2	3-4	5-6	7	8	9	10
内容	15 01	00 00	00 13	FF	03	10	31
名称	事物元标识符	协议 标识符	从第七字 节之后所 有数据的 字节数	单元标 识符(设 备地址)	功能码	读取所 有通道 的字节 数	ASSIC码表 示为"1"

第 字节	11	12	13	14	15	16	17
内容	39	32	2E	31	36	38	2E
	ASSIC	ASSIC码	ASSIC码	ASSIC码	ASSIC码	ASSIC码	ASSIC码
名称	码表示	表示为	表示为	表示为	表示为	表示为	表示为
	为"9"	"2"	<i>""</i>	"1"	"6"	"8"	<i>""</i>

第 字节	19	20	21	22	23	24	25	26
内容	30	2E	31	31	31	0D	00	00
							多	多
	ASSIC码	ASSIC码	ASSIC码	ASSIC码	ASSIC码	ASSIC码	余	余
h 1h							位	位
名称	表示为	表示为 ""	表示为	表示为	表示为	表示回车	数	数
	"0"	•	"1"	"1"	"1"	符	补	补
							零	零

由示例可看出,IP 地址 192.168.0.111,在返回数据中表示为十六进制 ASSIC 码,当读取全部 IP 地址后,以一个回车符结束,如果后面还有空位,则补零。如果 IP 地址为 192.168.200.111,在返回数据中占 15 位,加回车符,占满 16 位,则后面不用补零。

1.2.2 功能码: 读线圈 0x01

网关地址为 0xFF, 读线圈功能码: 0x01, 可读取网关下挂 64 个节点在线状态。查询命令

15 01 00 00 00 06 FF 01 55 55 00 40

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	FF	01	55 55	00 40
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	读线圈起始地址	线圈数量,64 个线圈,64个 节点在线状态

返回数据

15 01 00 00 00 0B FF 01 08 FF 7F FF FF FF FF FF FF

第 字节	1-2	3-4	5-6	7	8	9	10
内容	15 01	00 00	00 0B	FF	01	08	FF
名称	事物元标识符	协议 标识符	从第七字 节之后所 有数据的 字节数	单元标 识符(设 备地址)	功能码	读取所有 通道的字 节数	第1-8个节点 在线状态,按 照从低位到 高位顺序排 列

第 字 节	11	12	13	14	15	16	17
内容	7F	FF	FF	FF	FF	FF	FF
名称	第9-16个 节点在线 状态,按 照从低位 到高位的 顺序排列	第17-24 个节点在 线状态, 按照从低 位到高位 的顺序排 列	第25-32 个节点在 线状态, 按照从低 位到高位 的顺序排 列	第33-40 个节点在 线状态, 按照从低 位到高位 的顺序排 列	第41-48 个节点在 线状态, 按照从低 位到高位 的顺序排 列	第49-56 个节点在 线状态, 按照从低 位到高位 的顺序排 列	第57-64 个节点在 线状态, 按照从低 位到高位 的顺序排 列

注: 1 代表在线, 0 代表不在线

Modbus TCP 错误响应包: 15 01 00 00 00 03 FF 81 01 (02/03/04/0C/0D/0E/0F) 注: 0x01 功能码,详细可参照标准 Modbus TCP 通讯协议。

1.2.3 功能码: 读保持寄存器 0x03

网关最大可与 64 个节点进行组网(通过用户配置的节点的设备地址进行区分),每个节点支持 32 个通道,每个通道占 2 个寄存器 (4 个字节)。

节点设备地址	通道	起始地址	寄存器个数
	第1个通道	0x0000	0x02
用户配置的节点的	第2个通道	0x0002	0x02
设备地址	第3个通道	0x0004	0x02
$(0x01\sim0x40)$			
	第32个通道	0x003e	0x02

示例:

(1) 读取设备地址为 0x40 的节点的所有 32 个通道的值设备地址=0x40,起始地址=0x0000,寄存器个数=0x40(每个节点有 32 个通道,每个通道 4 个字节,所以每个节点的通道值共 128 个字节,64 个寄存器)查询命令

15 01 00 00 00 06 40 03 00 00 00 40

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	40	03	00 00	00 40
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

返回数据

第 字节	1-2	3-4	5-6	7	8	9	10-13
内容	15 01	00 00	00 83	40	03	80	A1 40 00 00
名称	事物元标识符	协议标识 符	从第七字 节之后所 有数据的 字节数	单元标识 符(设备 地址)	功能码	读 所 通 的 节	第1通道的标识符和通道数值,前两字节为标识符, 后两字节为

第 字 节	14-17	18-21	22-25	26-29	32-35	 38-41
内容	A2 40 00 00	A3 40 00 00	A4 40 00 00	00 00	00 00	 00 00
名称	第2通道的标识符和通道数值,前两字节为标识符,后两字节为通道	第3通道的标 识符和通道 数值,前两字 节为标识符, 后两字节为 通道值	第4通道的标 识符和通道 数值,前两字 节为标识符, 后两字节为 通道值	第5 通的识和道值	第6通 道的标 识符和 通道 值	 第32通道 的标识符 和通道数 值

Modbus TCP 错误响应包: 15 01 00 00 00 03 40 83 01 (02/03/04/0C/0D/0E/0F)

(2)读取第7个节点的第3个通道值 设备地址=0x07,起始地址=0x0004,寄存器个数=2 查询命令

15 01 00 00 00 06 07 03 0004 0002

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	07	03	00 04	00 02
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

返回数据

15 01 00 00 00 07 07 03 04 A3 40 FF FF

第 字节	1-2	3-4	5-6	7	8	9	10-13
内容	15 01	00 00	00 07	07	03	04	A1 40 FF FF
名称	事物元标识符	协议标识 符	从第七 字节之 后 好 方 新 数 字 节 数 字 节 数	单元标识 符(设备 地址)	功能码	读取所 有通道 的字节 数	第1通道的标 识符和通道数 值,前两字节 为标识符,后 两字节为通道 值

Modbus TCP 错误响应包: 15 01 00 00 00 03 07 83 01 (02/03/04/0C/0D/0E/0F)

1.2.4 功能码: 写保持寄存器 0x10

本指令控制开关量的输出只针对昆仑海岸传感技术有限公司的 JZH-2 控制系列产品使用。

JZH-2 控制系列产品的每路控制量占一个通道,4 路开关量控制即占 4 个通道,通道值为 0xFFFF 表示开,0x0000 表示关。

节点设备地址	通道	起始地址	寄存器个	寄存器值
			数	
用户配置的节点的设备	第1路	0x0000	0x02	开: A140 FFFF 关:
地址				A140 0000
$(0x01\sim0x40)$	第2路	0x0002	0x02	开: A240 FFFF 关:
				A240 0000
	第3路	0x0004	0x02	开: A340 FFFF 关:
				A340 0000
	第N路	0x003E	0x02	开: AN40 FFFF 关:
				AN40 0000

示例:

(1) 对设备地址为 0x02 的 4 路开关量控制节点下发控制指令, 打开第一路开关

设备地址=0x02, 起始地址=0x0000, 寄存器个数=2

控制指令15 01 00 00 00 0B 02 10 00 00 00 02 04 A1 40 FF FF

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 0B	02	10	00 00	00 02
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

第 字 节	13	14-17
内容	04	A1 40 FF FF
名称	字节数	写入数据

正确返回: 15 01 00 00 00 04 02 10 00 02

第 字节	1-2	3-4	5-6	7	8	9-10
内容	15 01	00 00	00 04	02	10	00 02
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	寄存器个数

Modbus TCP 错误响应包: 15 01 00 00 00 03 02 90 01 (02/03/04/0C/0D/0E/0F)

(2) 对设备地址为 0x02 的 4 路开关量控制节点下发控制指令,关闭第二路开关

设备地址=0x02, 起始地址=0x0002, 寄存器个数=2

控制指令 15 01 00 00 00 0B 02 10 00 02 00 02 04 A2 40 00 00

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 0B	02	10	00 02	00 02
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

第 字 节	13	14-17
内容	04	A2 40 00 00
名称	字节数	写入数据

正确返回: 15 01 00 00 00 04 02 10 00 02

第 字节	1-2	3-4	5-6	7	8	9-10
内容	15 01	00 00	00 04	02	10	00 02
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	寄存器个数

Modbus TCP 错误响应包: 15 01 00 00 00 03 02 90 01 (02/03/04/0C/0D/0E/0F)

1.2.5 读取通道值解析

以下数据解析的内容的详细资料参见昆仑海岸物联网无线通讯协议 http://www.klha.cn/upload/file/1468480490.pdf

网关读取了通道值,如 A1 40 FF FF、01 81 01 18,通道值的解析遵循昆仑海岸物联网无线通讯协议。

	牧据组 0 名称及格式 (2 个字节)		数据组 0 数值 (2 个字节)		数据组 M 名称 及格式 (2 个字节)	
名称	格式	高位	低位		名称	格式
1-255 0-无效	XX	XX	XX		1-255 0-无效	XX

数据名称及格式: 数据名称,1个字节,每个数值的名称代码,详细名称见表

数据格式: 1 个字节,根据该格式,可以将无符号整型数转化为具体的实际值。 定义数值的正负特性,数值量或开关量,是否为长整型数的一部 分,此数据转换为小数的小数位数,格式如下:

位地址	Bit7	Bit 6	Bit 5	Bit 4
含义	0: 无符号数	数值类型	长整型数值标识	四字节数字节标识
	1: 有符号数	0 数值	0 双字节	0 低 2 字节
		1 开关量	1 四字节	1 高 2 字节

位地址	3	2	1	0	
含义	保留	小数点位置: 0-	7		
		0 无小数			
		1 一位小数			
		2 两位小数			

举例

帧	01 81 FF68	02 01 0118	03 00 0258	04 81 00BD	05 03 01FA	F2 02 014A
含	01 温度;	02 湿度;	03 照度,	04 土壤温度	05 土壤水分	F2: 电量;
义	81 有符号,	01 无符号,	00 无符号,	81 有符号,	03 无符号	02: 无符号 2
	1 位小数;	1 位小数;	无小数	1 位小数;	3 位小数	位小数
	FF68 转化十进	0118 转化十	0258 转化十	00BD 转化十	01FA 转化十	014A 转化十
	制数-152;	进制数 280;	进制数 600	进制数 189;	进制数 506	进制数 330
	温度: -15.2℃	湿度: 28.0%RH	照度: 6001ux	温度: 18.9℃	土壤水分:	电量: 3.30V
	(8字节)	(4字节)	(4字节)	(4字节)	0. 506V	(4字节)
					注: 查土壤水	
					分含量表可知	
					(4 字节)	

帧	01 81 00FA	02 01 0115	F2 02 014A
含	01 温度;	02 湿度;	F2: 电量;
义	81 有符号, 1 位小数;	01 无符号, 1 位小数;	02: 无符号 2 位小数
	00FA 转化十进制数 250;	0115 转化十进制数 277;	014A 转化十进制数 330
	温度: 25.0℃(8字节)	湿度: 27.7%RH(4字节)	电量: 3.30V(4字节)

帧	A140FFFF	A2400000	A340FFFF	A4400000
含	A1 开关量 1	A2 开关量 2	A3 开关量 3	A4 开关量 4
义	40 开关量	40 开关量	40 开关量	40 开关量
	FFFF 启动	FFFF 启动	FFFF 启动	FFFF 启动
	0000 停止	0000 停止	0000 停止	0000 停止

表一

数据代码	数据名称	数据代码	数据名称
01	温度	2A	温度 6
02	湿度	•••	
03	照度	30	风速
04	土壤温度	31	风向
05	土壤水分	32	雨量
06	大气压力	•••	
07	压力/液位	80	压力液位 Pa
08	流量	81	压力液位 kPa
09	超声波	82	压力液位 MPa
OA	雷达	83	压力液位 Bar
0B	单界面	84	压力液位 m
0C	双界面	85	压力液位 (预留)
OD	浸水	•••	
0E	感烟器	A1	开关量1(输出)
0F	明火探测器	A2	开关量2(输出)
10	红外探测器	A3	开关量3(输出)
11	射频物位开关	A4	开关量4(输出)
12	浮球开关	A5	开关量5(输出)
13	音叉物位开关	A6	开关量6(输出)
14	C02	A7	开关量7(输出)
15	粉尘	A8	开关量8(输出)
16	空气质量等级	•••	
17	CO	B1	开关量1(输入)
18	H2	B2	开关量2(输入)
19	H2S	В3	开关量3(输入)

1A	02	B4	开关量4(输入)
1B	S02	B5	开关量 5 (输入)
1C	CL2	B6	开关量6(输入)
1D	NH3	B7	开关量7(输入)
	СНЗОН	B8	开关量8(输入)
1E	СНЗСН2ОН		八大里 0 (棚八)
1F 20	СН3СН2ОН	CO	模拟量1 (mA)
21	露点	C1	模拟量 2 (mA)
22	水浸报警状态	C2	模拟量 3 (mA)
23	水浸报警数据	C3	模拟量 4 (mA)
24	EC 值(dS/m)	C4	模拟量 5 (mA)
25	温度 1	C5	模拟量 6 (mA)
26	温度 2	C6	模拟量 7 (mA)
27	温度 3	C7	模拟量 8 (mA)
28	温度 4	C8	模拟量1(V)
29	温度 5	C9	模拟量 2 (V)
CA	模拟量 3 (V)		
СВ	模拟量 4 (V)		
CC	模拟量 5 (V)		
CD	模拟量 6 (V)		
CE	模拟量 7 (V)		
CF	模拟量 8 (V)		
•••	•••		
E0	数据传输		
E1	传感器 1 ID 号		
E2	传感器 2 ID 号		
E3	传感器 3 ID 号		
F0	设备名称		
F1	设备版本		
F2	设备电量		
F3	时间(年、月)		
F4	时间(日、时)		
F5	时间(分、秒)		
F6	主动上报时间		
FD	传感器工作作态		
FE	网关工作状态		
FF	路由心跳		
<u> </u>	ļ		

1.3 通道值解析实例

实例背景:

KL-H1100 物联网网关下挂载着三只传感器,分别为节点型温度传感器 JZH-001-D(设备地址=01);路由型温湿照度传感器 JZH-010-12(设备地址=02); JZH-201 无线控制模块(设备地址=03)。

1.3.1 读取传感器的在线状态

查询命令: 15 01 00 00 00 06 FF 01 55 55 00 08 指令解析:

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	FF	01	55 55	00 08
名称	事物元标识符	协议标 识符	长度	网关设备 地址	功能码	读传感器 状态起始 地址	读取传感器

返回指令: 15 01 00 00 00 0B FF 01 01 07

第 字节	1-2	3-4	5-6	7	8	9	10
内容	15 01	00 00	00 03	FF	01	01	07
名称	事物元标识符	协议 标识 符	从第七 字节之 后所有 数字节数 字节数	网关设 备地址	功能码	读取所 有通道 的字节 数	第1-8个节点在线状态, 按照从低位到高位的顺 序排列,0x07转换成二 进制为00000111,可知 节点1、2、3全部在线

1.3.2 读取传感器值

1.读取节点型温湿度传感器的值。

由背景可知,节点型温湿度传感器设备地址为0x01,可读取三个物理量:温度、湿度、设备电量。功能码=0x03,起始地址=0x0000,寄存器数量=0x06。查询命令: 15 01 00 00 00 06 01 03 00 00 06

指令解析:

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	01	03	00 00	00 06
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

返回指令: 15 01 00 00 00 0F 01 03 0C 01 81 FF 68 02 01 00 FD F2 01 00 1E

第 字节	1-2	3-4	5-6	7	8	9
内容	15 01	00 00	00 0F	01	03	0C
名称	事物元标识符	协议标识 符	从第七字节 之后所有数 据的字节数	单元标识符 (设备地 址)	功能码	读取所有通道 的字节数

第 字节	10-13	14-17	18-21
内容	01 81 FF 68	02 01 00 FD	F2 01 00 1E
名称	01 代表温度; 81 代表 有符号,一位小数; FF68 为温度值,转化 成十进制-152; 温度: -15.2℃(4 字 节)	02 代表湿度; 01 代表无符号, 一位小数; 00FD 为湿度值, 转化成十进制是253; 湿度: 25.3%RH(4 字节)	F2 代表电量; 01 代表无符号,一位小数; 001E 为电量值,转化成十进制是30; 电量: 3.0V(4字节)

说明:由上表可得,JZH-001-D 传感器的的当前温度是-15.2℃,湿度是 25.3%RH,设备电量是 3.0V。

2.读取路由型温度湿度照度传感器的值

由背景可知,路由型传感器的设备地址为 0x02,含有温度湿度和照度三个物理量。功能码=0x03,寄存器起始地址=0x0000,寄存器数量=0x0006。

查询命令: 15 01 00 00 00 06 02 03 00 00 00 06 指令解析:

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 06	01	03	00 00	00 06
名称	事物元标识符	协议标 识符	长度	单元标识 符(设备 地址)	功能码	保持寄存 器起始地 址	保持寄存 器数量

返回数据 1: 15 01 00 00 00 0F 01 03 0C 01 81 01 02 02 01 00 F9 03 00 00 80

第 字节	1-2	3-4	5-6	7	8	9
内容	15 01	00 00	00 0F	01	03	0C
名称	事物元标识符	协议标识 符	从第七字节 之后所有数 据的字节数	单元标识符 (设备地 址)	功能码	读取所有通道 的字节数

第 字节	10-13	14-17	18-21
内容	01 81 01 02	02 01 00 F9	03 00 00 80
名称	01 代表温度; 81 代表有符号,一位小数; 0×0102为温度值,转化成十进制是 258; 温度: 25.8℃(4字节)	02 代表湿度; 01 代表无符号,一位小数; 0x00F9为湿度值,转化成十进制是 249;湿度: 24.9%RH(4字节)	03 代表照度; 00 代表无符号,一位小数; 0×0080为照度值,转化成十进制是 128; 照度: 128Lx(4字节)

说明:由上表可得, JZH-010-12 传感器的当前温度值为 25.8℃,湿度值为 24.9%RH,照度值为 128Lx。

※在有的环境下,照度值有时会超过 0xFFFF,即 65535Lx,此时 2 个寄存器已不能满足数值要求,例如 123456Lx,这时就需要用 4 个寄存器保存。返回数据 2: 15 01 00 00 00 10 01 81 01 02 02 01 00 F9 03 20 E2 40 03 30 00 01

照度值解析						
数据	03 20 E2 40	03 30 00 01				
	03 代表照度; 20 代表四字节, 低 2 字节;	03 代表照度; 30 代表四字节, 高 2 字节;				
解析	0xE240 是照度值的低 4 位	0x0001 是照度值的高 4 位				
	照度值: 0x0001E240 转换成十进制为 123456Lx					

说明:根据 1.2.5 读取通道值解析可知,按位解析数据组 03 20 E2 40,其中代表数据格式的 "20"转换成二进制是 00100000,第 5 位为 "1",代表此数据是四字节,第 4 位为 "0",代表此数据组中 E240 是照度值的低 2 字节;按位解析数据组 03 30 00 01,其中 "30"转换成二进制是 00110000,第 5 为的 "1"代表此数据是四字节,第 4 位的 "1"表示此数据族中 0001 是照度值的高 2 字节,所以两个数据组的数据值组合起来就是 0x0001E240,转换成十进制就是当前的照度值 123456Lx。

1.3.3 控制开关量输出

控制 JZH-201 无线控制模块的开关量输出,打开第一路和第二路通道,关闭第三路和第四路通道。

控制模块设备地址=0x03,功能码=0x10,起始地址=0x0000,寄存器个数=0x08。

控制指令: 15 01 00 00 00 17 03 10 00 00 00 08 10 A1 40 FF FF A2 40 FF FF A3 40 00 00 A4 40 00 00

指令解析:

第 字节	1-2	3-4	5-6	7	8	9-10	11-12
内容	15 01	00 00	00 17	03	10	00 00	00 08
名称	事物元标识符	协议标 识符	从第七字 节之后所 有数据的 字节数	单元标识符(设备地址)	功能码	寄存器起始地址	保持寄存器 个数

第 字节	13	14-17	18-21	22-25	26-29
内容	10	A1 40 FF FF	A2 40 FF FF	A3 40 00 00	A4 40 00 00
名称	数据长度	A1: 开关量 1 40: 开关量 FFFF: 开	A2: 开关量 2 40: 开关量 FFFF: 开	A3: 开关量 3 40: 开关量 0000: 关	A4: 开关量 4 40: 开关量 0000: 关

返回数据: 15 01 00 00 00 04 03 10 00 08

数据解析:

第 字节	1-2	3-4	5-6	7	8	9-10
内容	15 01	00 00	00 04	03	10	00 08
名称	事物元	协议标	从第七字节之后所	单元标识符	T-1-45L T-17	保持寄存
	标识符	识符	有数据的字节数	(设备地址)	功能码	器个数

1.4 接口编程指南

1.4.1 网关做服务器

注: 按照功能分, Modbus Tcp 的请求包分 3 种:

- (1) 读取网关采集节点的通道值包
- (2) 读取网关采集节点和控制节点的状态值包
- (3) 对控制节点下发控制指令包

网关工作于服务器模式,客户计算机作为客户端,主动向网关建立 TCP 连接,建立成功之后,发送 Modbus Tcp 请求包,请求相关数据,网关返回相应的响应包。需要注意的是,如果客户和网关服务器建立连接后 30 分钟没有数据请求,则网关自动断开此连接

1.4.2 网关做客户端

握手包: 15 01 22 22 00 10 + 网关序列号"2222333344445555"

响应包: 15 01 22 22 00 01 80 错误包: 15 01 22 22 00 01 01

注:按照功能分, Modbus TCP的请求包分3种:

- (1) 读取网关采集节点的通道值
- (2) 读取网关采集节点的状态值
- (3) 对控制节点下发控制指令包

网关工作于客户端模式,主动向客户端服务器发起 TCP 连接,建立 TCP 连接成功后,网关发送握手包,服务器收到握手包之后返回响应包,之后握手过程结束,然后服务器向网关发送 Modbus TCP 请求包,网关给予相关响应。其中,握手过程中如果服务器没有返回握手响应包或者返回错误包,客户端断掉本连接,重新建立新的连接。通讯过程中,出现任何异常,客户端不会退出,始终在尝试进行与服务器的重连,如服务器因为异常退出后,网关客户端启动重连机制,一直在尝试重连,直到服务器恢复正常。

2、网关支持 ModbusRtu 查询应答式的通讯协议

2.1 通讯接口定义

数据传输格式: ModbusRtu 格式, CRC 校验;

通讯格式: 8个数据位, 无校验, 1个停止位(默认);

通讯波特率: 9600bps, 19200bps, 38400bps, 115200bps(默认);

数据接口: RS232 或者 RS485 接口。

2.2 寄存器地址分配

2.2.1 读取传感器的值

0x03 功能码,每个传感器占 64 个寄存器,一个网关最多挂载 64 个传感器。

功能码: 0x03 (读多个)					
寄存器地址 寄存器个数 功能描述					
0x0000~0x003F	0x40	第1路传感器采集值			
0x0040~0x007F	0x40	第2路传感器采集值			
0x0080~0x00BF	0x40	第 3 路传感器采集值			
0x0FC0~0x0FFF	0x40	第 64 路传感器采集值			

2.2.2 读取传感器的节点序列号

0x03 功能码,每个传感器的节点序列号占 4 个寄存器。

功能码: 0x03 (读多个)				
寄存器地址 寄存器个数 功能描述				
0x1000~0x1003	0x04	第1路传感器节点序列号		
0x1004~0x1007	0x04	第2路传感器节点序列号		
0x1008~0x100B		第3路传感器节点序列号		
•••••	•••••			
0x10FC~0x10FF	0x04	第 64 路传感器节点序列号		

2.2.3 读取传感器的在线状态

0x01 功能码,读取 1 至 64 个传感器的在线离线状态,从 0 开始寻址,因此寻址传感器 1-64 为 0-63。指令响应报文中的数据域的每个比特表示一个传感器的状态,一个字节为 8 个比特,表示 8 个传感器的状态,1 为在线,0 为离线。如果返回的输出数量不是 8 的倍数 (即不够一个字节),将用 0 填充最后数据字节中的剩余比特。

功能码: 0x01(读多个)					
寄存器地址 功能描述 备注					
0x0001	01 节点传感器的在线状态	1 代表在线, 0 代表不在线			
0x0001	02 节点传感器的在线状态	1 代表在线, 0 代表不在线			
0x0002	03 节点传感器的在线状态	1 代表在线, 0 代表不在线			

•••••		•••••
0x003F	64 节点传感器的在线状态	1 代表在线, 0 代表不在线

2.3 Modbus RTU 通讯协议解析

2.3.1 03 功能码: 读取传感器的值和序列号

1、读取网关下挂的第一个传感器的值

查询指令(Hex): 01 03 00 00 00 40 44 3A

指令格式解析							
指令	01	03	00 00	00 40	44	3A	
内容	设备地址	功能码	起始地址	寄存器个数	CRC 校验		

	返回数据解析									
数据	01	03	80	01 81 FF 68	02 01 00 FD	F2 01 00 1E				
	设备	功	128	第1通道采集值,01代	第2通道采集值,02代表	第3通道采集值,F2代表				
	地址	能	个	表温度;81代表有符号,	湿度;01代表无符号,一	电量;01代表无符号,一				
内容		码	字	一位小数; FF68 为温度	位小数;00FD 为湿度值,	位小数;001E 为电量值,				
			节	值,转化成十进制-152;	转化成十进制是 253;	转化成十进制是30;				
				温度: -15.2℃(4 字节)	湿度: 25.3%RH(4 字节)	电量: 3.0V (4 字节)				

数据	00 00 00 00	•••••	00 00 00 00	4C 7C
内容	第4通道采集值,因该传感器 共包含3种采集值,故其余通 道全为0。		同第 4 通道	CRC 校验

以上数据解析的内容的详细资料参见昆仑海岸物联网无线通讯协议

 $\underline{http://www.klha.cn/upload/file/1468480490.pdf}$

2、读取网关下挂的第一个传感器的序列号 查询指令(Hex): 01 03 10 00 00 04 40 C9

指令格式解析							
指令	01	03	10 00	00 04	40	C9	
内容	设备地址	功能码	起始地址	寄存器个数	CRC 校验		

返回数据(Hex): 01 03 08 01 1F 01 01 19 24 00 32 40 49

返回数据解析							
数据	§ 01 03		08	01 1F 01 01 19 24 00 32	40 49		
内容	设备地址	功能码 32 个字节		传感器序列号	校验码		

2.3.2 01 功能码: 读取传感器状态

读取网关下挂的 1-64 个传感器的状态 查询指令(Hex): 01 01 00 00 00 40 3D FA

指令格式解析								
指令	01	01	00 00	00 40	3D	FA		
内容	设备地址	功能码	起始地址	输入寄存器个数	CRC 校验			

返回数据(Hex): 01 01 08 00 01 00 00 00 00 00 00 24 DD

返回数据解析								
数据	01	01	08	00	01	•••••	00	24 DD
内容	设备地址	功能码	32 个字节	第 1~8 个节点 在线状 态	第9~16个节点在线状态, 9在低位,16在高位,及 第9节点为在线状态,其 余为离线状态。		第 57~64 个节点在 线状态	CRC 校验