

崇新学堂

2023-2024 学年第一学期

实验报告

课程名称:

** *				<u> </u>
		_		
专	业	班	级	崇新学堂 21 级
学	生	姓	名	刘浩
个	人	学	号	202120120312
实	验	名	称	HomeWork 6

信息基础 II

HomeWork 6

-, HomeWork6.1 Bayes Net

(a) Please draw the directed graph corresponding to the following distribution: P(A,B,C,D,E,F) = P(A)P(B)P(C)P(D|A)P(E|A)P(F|B,D)P(G|D,E)

Answer:

图 1 Answer (a)

(b) Please write down the factored joint distribution represented by the graph below.

Figure 1: Bayes net for question parts (b) and (c).

Answer:

$$P(A,B,C,D,E,F) = P(A)P(B)P(C|A,B)P(D|B)P(E|C,D)P(F|E)$$

(c) Assume the random variables in the graph shown above are Boolean. How many parameters are needed in total to fully specify this Bayesian network? Justify your answer.

Answer:

总共需要14个参数,证明如下:

对于有M个父节点的节点而言,其需要的参数个数为 2^{M} 个

例如对于 C 节点而言, 在本题中随机变量为布尔类型, 因此其条件分布表如下:

	C_0	C_1
A_0B_0	$P(C_0 A_0B_0)$	$P(C_1 A_0B_0)$
A_0B_1	$P(C_0 A_0B_1)$	$P(C_1 A_0B_1)$
A_1B_0	$P(C_0 A_1B_0)$	$P(C_1 A_1B_0)$
A_1B_1	$P(C_0 A_1B_1)$	$P(C_1 A_1B_1)$

而由于变量是布尔类型因此 $P(C_0|A_0B_0)+P(C_1|A_0B_0)=1$ 我们只需要知道其中一个参数即可,因此 C 需要的参数是 4 个。

依次类推,A 需要的参数为 1 个,B 需要的参数为 1 个,C 需要的参数为 4 个,D 需要的参数为 2 个,E 需要的参数为 4 个,F 需要的参数为 2 个

因此总共需要的参数为: 1+1+4+2+4+2 = 14

(d) Based on the graph shown in part(b), state wether the following are true or false **Answer:**

完成这道题的思路我主要采用 PPT 中在 D-Separation 中讲的画线法 i. $A \perp \!\!\! \perp B$ True

首先保留 AB 及其 ancestors 得:

因此 AB 之间没有连线, 故为 True

ii. $A \perp \!\!\! \perp B \mid C$ False

首先保留 A、B、C 及其 ancestors 得:

去掉方向性得:

去掉已知的 C 得:

A,B 之间有连线,故为 False

iii. C⊥LD False

首先保留 C、D 及其 ancestors 得:

去掉方向性和已知的节点得:

C, D之间仍然存在连线, 因此为 False

iv. $C \perp \!\!\!\perp D | E$ False

首先保留 C、D、E 及其 ancestors 得

去掉方向性得:

去掉已知的节点 E 得:

C、D 之间存在连线, 故为 False

v. $C \perp \!\!\!\perp D|B,F$ False

首先保留 C、D、B、F 及其 ancestors 得

去掉方向性得到:

去除已知的节点得:

C,D 之间存在连线, 故为 False

vi. $F \perp \!\!\!\perp B$ False

首先保留 B、F 及其 ancestors 得

去掉方向性和已知的节点得:

B,F 之间仍有连线,故为 False vii. $F \perp \!\!\! \perp B \mid \!\!\! C$ False 只需要在 vi 的基础上去除 C 即可:

B,F 之间仍存在连线, 所以为 False

viii. $F \perp\!\!\!\perp B \mid C,D$ True

在 vii 的基础上再把 D 去掉即可:

B,F 之间没有连线,因此为 True

ix. $F \perp \!\!\! \perp B | E$ True

在 vi 的基础上去掉 E 即可:

B,F 之间没有连线, 所以为 True

x. $A \perp \!\!\!\perp F$ False

首先保留 A、F 及其 ancestors 得

去掉方向性得:

A,F 之间存在连线, 故为 False

xi. $A \perp \!\!\!\perp F | C$

在 x.的基础上去除 C 即可:

A,F 之间仍有连线, 故为 False

xii. $A \perp \!\!\!\perp F | D$ False

在 xi 的基础上去掉 D 即可:

A,F 之间仍有连线, 故为 False

二、HomeWork6.2 Gibbs Sampling

给定 x1, x2 的一个高斯分布:

$$\mathcal{N}\!\!\left(0, \left[egin{smallmatrix} a & b \\ b & a \end{smallmatrix}
ight]
ight)$$

条件概率分布为:

$$egin{aligned} x_1^{t+1} \, | \, x_2^t &\sim \mathcal{N} \Big\{ rac{b}{a} \, x_2^t, a - rac{b^2}{a} \Big\} \ & x_2^{t+1} \, | \, x_1^{t+1} &\sim \mathcal{N} \Big\{ rac{b}{a} \, x_1^{t+1}, a - rac{b^2}{a} \Big\} \end{aligned}$$

请根据上述条件概率分布通过 Gibbs Sampling 生成

$$\mathcal{N}\!\!\left(\!0, \begin{bmatrix} 100 & 99 \\ 99 & 100 \end{bmatrix}\!\right)$$

请生成 50 个点(每个点迭代 100 次)

Answer:

Gibbs Sampling 思路: 首先初始化 x,y,然后分别在确定 x 的条件下依概率 $P(x^{(1)}|y^{(0)})$ 选择下一个 x,再依概率 $P(y^{(1)}|x^{(1)})$ 选择下一个 y,每个点迭代 100 次确定 为最终的点,按照这个思路生成 50 个点即可

代码基于以上思路编写:

```
# 迭代次数
iterations = 100
x_list = []
y_list = []
for _ in range(50):
    x = np.random.randn()
    y = np.random.randn()
    for _ in range(iterations):
        x = np.random.normal(b * y / a, a - b ** 2 / a)
        y = np.random.normal(b * x / a, a - b ** 2 / a)
        x_list.append(x)
    y_list.append(y)
```

得到的结果如下,右侧是我采用 numpy 内置的生成标准的高斯分布用于对比:

图 2 Gibbs 采样结果

三、HomeWork6.3

W=w	W=s
0.9	0.1

	R=w	R=s
W=w	0.8	0.2
W=s	0.3	0.7

	I=w	I=s	
R=w	0.8	0.2	R
R=s	0.3	0.7	R

	K=w	K=s
R=w	0.8	0.2
R=s	0.3	0.7

给定一个简单的BayesNet,条件概率入上图所示

给定K=w, 计算W=w的条件概率 P(W=w|K=w)

$$\begin{split} P(W = w | K = w) &= \frac{P(W = w, K = w)}{P(K = w)} \\ P(W = w, K = w) &= \sum_{I} \sum_{R} P(W) P(R|W) P(I|R) P(K|R) \\ &= 0.9 \times 0.8 \times 0.8 + 0.9 \times 0.2 \times 0.3 \\ &= 0.63 \\ P(K = w) &= \sum_{I} \sum_{R} \sum_{W} P(W) P(R|W) P(I|R) P(K|R) \\ &= 0.9 \times 0.8 \times 0.8 + 0.1 \times 0.3 \times 0.8 + 0.9 \times 0.2 \times 0.3 + 0.1 \times 0.7 \times 0.3 \\ &= 0.675 \end{split}$$

因此:
$$P(W=w|K=w) = \frac{0.63}{0.675} = 0.933333$$