- 15.1) В результате эксперимента получены данные, записанные в виде статистического ряда. Требуется:
 - а) записать значения результатов эксперимента в виде вариационного ряда;
 - б) найти размах варьирования и разбить его на 9 интервалов;
- в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
 - г) найти числовые характеристики выборки: \bar{x} , D_6 ;
- д) приняв в качестве нулевой гипотезу $\hat{H_0}$: генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение, проверить ее,

http://idzпользуясь критерием/Пирсона при уровнезначимости ок от 0,025 http://idz-ryabushko.ru/ е) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при надежности $\gamma = 0.9$.

	0,86	1,04	1,45	1,31	1,22	1,09	0,73	1,11	0,95	0,84	
	0,96	0,78	1,23	1,13	1,04	1,44	1,32	1,29	0,68	0,86	
	1,33	1,08	0,87	0,67	1,28	0,97	1,14	0,83	1,33	1,40	
	1,24	1,43	0,98	1,34	0,81	0,88	1,10	0,70	1,15	1,23	
	1,34	1,09	0,80	1,16	1,24	0,75	0,99	1,41	0,88	0,79	
	1,36	1,25	0,89	1,26	1,42	1,35	0,80	1,17	0,90	1,00	
	1,11	0,69	1,18	0,82	1,01	0,90	1,36	1,25	0,67	0,91	
	1,37	1,02	0,92	1,27	1,19	1,38	1,46	0,93	1,27	0,83	
	1,04	1,11	1,47	1,07	0,72	0,93	1,26	0,77	1,20	1,28	
http://id	$_{z}$ -0,77 $_{us}$	1,10	0,95//10	$1.05_{\rm us}$	hk1,08	h 1,1 1,1/id	$_{\rm Z-1}$, $10_{\rm HS}$	1,48	h4,07/id	z-10,92 _{1sh} ko	o.ru/

Решение: Запишем значения результатов эксперимента в виде вариационного ряда, разместив значения в порядке возрастания.

	№ п/п	x_i]								
	1	0,67	21	0,86	41	1,02	61	1,15	81	1,31	
	2	0,67	22	0,87	42	1,04	62	1,16	82	1,32	
	3	0,68	23	0,88	43	1,04	63	1,17	83	1,33	
	4	0,69	24	0,88	44	1,04	64	1,18	84	1,33	
	5	0,70	25	0,89	45	1,05	65	1,19	85	1,34	
	6	0,72	26	0,90	46	1,07	66	1,20	86	1,34	
	7	0,73	27	0,90	47	1,07	67	1,22	87	1,35	
	8	0,75	28	0,91	48	1,08	68	1,23	88	1,36	
	9	0,77	29	0,92	49	1,08	69	1,23	89	1,36	
/idz	10	0,77	30	0,92	50	1,09	70	1,24	90	1,37	ko.ru/
	11	0,78	31	0,93	51	1,09	71	1,24	91	1,38	
	12	0,79	32	0,93	52	1,10	72	1,25	92	1,40	
	13	0,80	33	0,95	53	1,10	73	1,25	93	1,41	
	14	0,80	34	0,95	54	1,10	74	1,26	94	1,42	
	15	0,81	35	0,96	55	1,11	75	1,26	95	1,43	
	16	0,82	36	0,97	56	1,11	76	1,27	96	1,44	

http://i

17	0,83	37	0,98	57	1,11	77	1,27	97	1,45
18	0,83	38	0,99	58	1,11	78	1,28	98	1,46
19	0,84	39	1,00	59	1,13	79	1,28	99	1,47
20	0,86	40	1,01	60	1,14	80	1,29	100	1,48

Найдем размах варьирования. По данным задачи: $x_{min} = 0.67$; $x_{max} = 1.48$.

$$R = x_{max} - x_{min} = 1,48 - 0,67 = 0,081.$$

Составим интервальный статистический ряд распределения случайной величины, разбив размах варьирования на 9 интервалов.

http://idzВединину интервада найдем по формуле $h_{\overline{p}}$://idz-0,081sh90 $\overline{=}$ 0,09http://idz-ryabushko.ru/

[0,67; 0,67+0,09] = [0,67; 0,76],Первый интервал будет таким: второй интервал: [0,76; 0,76+0,09] = [0,76; 0,85] и т.д.

Подсчитаем количество вариантов признака в каждом интервале. Вычислим середины интервалов, сложив начало и конец интервала и разделив результат на 2. Относительные частоты найдем, разделив частоты интервалов на общую сумму частот.

Получим следующий интервальный ряд распределения случайной величины.

	Интервал	0,67-0,76	0,76-0,85	0,85-0,94	0,94-1,03	1,03-1,12	1,12-1,21	1,21-1,30	1,30-1,39	1,39-1,48	Сумма	
http://ida	Частота в интервале, t n _i ://id	z-r 8 ab	ushko.	ru[3	htt 9: //	id 4-7 ya	ıbu 8 hk	о.44/	http:	//i % z-r	ya †00 hl	ko.ru
	Относительная частота	0,08	0,11	0,13	0,09	0,17	0,08	0,14	0,11	0,09		
	Накопленная частота	0,08	0,19	0,32	0,41	0,58	0,66	0,80	0,91	1,00		
	Середина интервала, x_i	0,715	0,805	0,895	0,985	1,075	1,165	1,255	1,345	1,435		

Построим полигон частот. Для этого по горизонтальной оси отложим середины интервалов, а по вертикальной – частоты интервала.

Построим гистограмму относительных частот. Для этого по горизонтальной оси отложим интервалы изменения признака, а по вертикальной – относительные частоты интервала.

Запишем эмпирическую функцию распределения и построим ее график.

$$F^*(x) = \begin{cases} 0, \text{если } x < 0,67; \\ 0,08, \text{если } 0,67 \leq x < 0,76; \\ 0.19, \text{если } 0.76 \leq x < 0,85; / \text{ http://idz-ryabushko.ru/} \end{cases}$$

$$F^*(x) = \begin{cases} 0, \text{если } 0.76 \leq x < 0,85; / \text{ http://idz-ryabushko.ru/} \\ 0,32, \text{если } 0,85 \leq x < 0,94; \\ 0,41, \text{если } 0,94 \leq x < 1,03; \\ 0,58, \text{если } 1,03 \leq x < 1,12; \\ 0,66, \text{если } 1,12 \leq x < 1,21; \\ 0,80, \text{если } 1,21 \leq x < 1,30; \\ 0,91, \text{если } 1,30 \leq x < 1,39; \\ 1, \text{ если } x \geq 1,39. \end{cases}$$

Получим следующий график.

http://idz-ryabushko.ru/ http://idz-ryabushko.ru/ http://idz-ryabushko.ru/ http://idz-ryabushko.ru/

Найдем выборочную среднюю, выборочную дисперсию и выборочное среднее квадратическое отклонение. Выборочную среднюю найдем по формуле:

 $\overline{x} = \frac{\sum_{i=1}^{m} y_i \cdot n_i}{n}$, где n - объем выборки, m - количество интервалов, y_i - середина интервала.

http://idz-ryabushko.ru/ выборочную дисперсию найдем по формуле. $D_s = \frac{1}{n-1} \sum_{i=1}^m (y_i - \overline{x})^2 \cdot n_i$

Составим расчетную таблицу:

Интервал	0,67-0,76	0,76-0,85	0,85-0,94	0,94-1,03	1,03-1,12	1,12-1,21	1,21-1,30	1,30-1,39	1,39-1,48	Сумма
Середина интервала, y_i	0,715	0,805	0,895	0,985	1,075	1,165	1,255	1,345	1,435	
$y_i \cdot n_i$	5,720	8,855	11,635	8,865	18,275	9,320	17,570	14,795	12,915	107,950
$(y_i - \overline{x})^2 \cdot n_i$	1,0658	0,8319	0,4449	0,0812	0,0004	0,0578	0,4287	0,7725	1,1342	4,8174

Получаем: $\bar{x} = 107.95 : 100 \approx 1.08$; $D_{e} = 4.8174 : (100 - 1) = 0.0487$.

Вычислим среднее квадратическое отклонение $\sigma = \sqrt{D_s} = \sqrt{0.0487} = 0.2207$ /idz-ryabushko.ru/ http://idz-ryabushko.ru/ http://idz-ryabushko.ru/

Примем в качестве нулевой гипотезу H_0 : генеральная совокупность, из которой извлечена выборка, имеет *нормальное распределение*

Проверим ее, пользуясь критерием Пирсона при уровне значимости $\alpha = 0.025$. Теоретические частоты нормального закона распределения найдем по формуле: $n' = \frac{n \cdot h}{\sigma} \cdot \phi(u_i)$. Значения функции $\phi(x)$ будем находить по таблицам стандартной нормальной функции распределения.

Проверим гипотезу о нормальном распределении исследуемой случайной величины с помощью критерия Пирсона.

$$\chi^2 = \sum_{i=1}^n \frac{(n_i - n_i')^2}{n_i'}$$
, где n_i – эмпирические частоты, n_i' - теоретические частоты нор-

мального закона распределения, которые будем находить по формуле:

Все расчеты представим в таблице:

http

							_
	n_{i}	\mathcal{Y}_i	$u_i = \frac{y_i - \overline{x}}{\sigma}$	$\phi(u_i)$	n_i'	$\frac{(n_i - n_i')^2}{n_i'}$	
	8	0,715	-1,6538	0,1016	4	4,000	
p://idz-rya	bushkolru/	ht Q,805 z-ry	abush k,246 0 ht	tp:/0 ,1 836.bu	shko.rī/ h	ttp:// 2 d28 6 abu	shko.ru/
	13	0,895	-0,8382	0,2808	11	0,364	
	9	0,985	-0,4304	0,3637	15	2,400	
	17	1,075	-0,0227	0,3988	16	0,063	
	8	1,165	0,3851	0,3704	15	3,267	
	14	1,255	0,7929	0,2913	12	0,333	
	11	1,345	1,2007	0,1940	8	1,125	
	9	1,435	1,6085	0,1094	4	6,250	
	100				92	20,088	

Итак, $\chi^2_{{}_{\it Had\delta 1}}=20{,}088$. Найдем число степеней свободы: 9-1-2=6.

По таблице критических точек распределения χ^2 по уровню значимости, равному 0,025 и числу степеней свободы, равному 6 найдем $\chi^2_{\text{кр/m}} = 14,449$.

Поскольку наблюдаемое значение критерия больше критического значения, то степень расхождения теоретических и эмпирических частот значима и гипотезу о нормальном распределении случайной величины следует отвергнуть.

Найдем доверительный интервал для математического ожидания для нормального распределения и неизвестной дисперсии. Воспользуемся формулой:

$$\bar{x}_s - \frac{1}{\sqrt{n}} \cdot t_{\gamma;n} \cdot s < M(X) < \bar{x}_s + \frac{1}{\sqrt{n}} \cdot t_{\gamma;n} \cdot s$$
, где $\bar{x} = 1,08$, $n = 100$, $s = 0,2207$.

Значение $t(\alpha;k)$ найдем по таблицам t—распределения Стьюдента.

$$\alpha = 1 - \gamma = 1 - 0.9 = 0.1 \text{ M}$$
 $k = 100 - 1 = 99.$

Получим:
$$t_{\frac{\alpha}{2};\nu} = t_{0,05;99} = 1,984.$$

$$http://idz + \Delta \hat{y} = \frac{1}{\sqrt{100}} \cdot 1.984 \cdot 0.2220 / id\hat{z} - 0.04 \cdot 0.0220 / id\hat{z} - 0.0220 / id\hat{z} - 0.0220 / id\hat{$$

Получим: 1,08 - 0,04 < M(x) < 1,08 + 0,04 или 1,04 < M(x) < 1,12.

Построим доверительный интервал для среднего квадратического отклонения.

Применим формулу:
$$\frac{n-1}{\chi^2_{\frac{\alpha}{2};\nu}} \cdot s < \sigma < \frac{n-1}{\chi^2_{\frac{1-\alpha}{2};\nu}} \cdot s$$
, где $\nu = n-1 = 100-1 = 99$.

$$\frac{100-1}{\chi^2_{\frac{0,1}{2};99}} \cdot 0,2207 < \sigma < \frac{100-1}{\chi^2_{\frac{1-0,1}{2};99}} \cdot 0,2207 \Longrightarrow \frac{99}{123,23} \cdot 0,2207 < \sigma < \frac{99}{77,05} \cdot 0,2207$$

Получим: $0,1978 \le \sigma \le 0,2502$.

http://idz-ryabushko.ru/	http://idz-ryabushko.ru/	http://idz-ryabushko.ru/	http://idz-ryabushko.ru/
http://idz-ryabushko.ru/	http://idz-ryabushko.ru/	http://idz-ryabushko.ru/	http://idz-ryabushko.ru/
1. 0	1	1 0	Α

http://idz-ryabushko.ru/ http://idz-ryabushko.ru/ http://idz-ryabushko.ru/ http://idz-ryabushko.ru/