Inżynieria Oprogramowania

Modelowanie Systemu Informatycznego

prezentacja 3

Modelowanie wymagań – diagram wymagań i diagram przypadków użycia

wersja 1.0

dr inż. Paweł Głuchowski

Wydział Informatyki i Telekomunikacji, Politechnika Wrocławska

Treść prezentacji

- 1. Diagram wymagań
- 2. Diagram przypadków użycia
- 3. Modelowanie wymagań i przypadków użycia
- 4. Przykłady

1

Diagram wymagań

Diagram wymagań /requirement diagram/

- Modeluje wymagania funkcjonalne i niefunkcjonalne stawiane systemowi:
 - warunki lub cele do spełnienia lub spełniania,
 - relacje między nimi.
- Wymaganie /requirement/ to NIE proces realizacji jakiegoś celu, ale sam <u>cel</u>.
- Opracowany na podstawie słownej specyfikacji wymagań i (czasami) przypadków użycia.
- W języku zrozumiałym przez klienta i użytkownika systemu.

Wymaganie funkcjonalne

- Opisuje zadanie, które system musi wykonać lub wykonywać
 - co system ma osiągnąć lub w jakim być stanie;
 - co system ma robić, aby zautomatyzować działania jego użytkowników.

Wymaganie niefunkcjonalne

- Opisuje jakościowe kryteria efektywności zadań systemowych
 - jak lub w jakich warunkach system ma to osiągnąć
 (przy jakich ograniczeniach sprzętowych, organizacyjnych, prawnych...);
 - jakie zastosować <u>rozwiązania technologiczne</u> m.in. w zakresie: bezpieczeństwa, niezawodności, skalowalności i wydajności, <u>aby spełnić oczekiwania użytkownika/klienta</u>.

Formułowanie wymagań systemu

Perspektywa obserwatora:

- bezosobowo <u>mówi obserwator</u> systemu,
- deklaratywnie <u>stwierdzenie faktu</u>,
- przykłady:
 - "Kontroler bezpieczeństwa <u>sprawdza</u> sprawność systemu alarmowego…"
 - "Kontroler bezpieczeństwa <u>może sprawdzać</u> sprawność systemu alarmowego…"

Perspektywa użytkownika:

- w 1. osobie <u>mówi użytkownik systemu</u>:
 - analityk/projektant wchodzi w punkt widzenia użytkownika;
- życzeniowo <u>stwierdzenie oczekiwania</u>;
- przykład:
 - "Jako kontroler bezpieczeństwa chcę móc sprawdzać sprawność systemu alarmowego…"

Przypadek testowania *«testCase»*

- Opisuje sposób sprawdzenia, czy wymaganie zostało spełnione.
- Modeluje: test realizacji przypadku użycia, test systemu (np. funkcjonalny), test metody klasy (jednostkowy) i inne.
- Zakłada stan początkowy przedmiotu testu.
- Zawiera scenariusz testowania w postaci tekstowej (pseudokod) lub graficznej (powiązany z nim diagram czynności).
- Zakłada uzyskanie określonego artefaktu lub stanu końcowego.

Relacje powstałe w analizie wymagań

- Relacja kompozycji /composition/ łączy wymagania w związek całość-część (grot ♦ jest przy "całości").
- Relacja wyprowadzenia «derive» wyprowadzenie wskazywanego wymagania ze wskazującego (uszczegóławianego) wymagania.
- Relacja śladu «trace» słabsze uzależnienie (<u>uwarunkowanie</u>) wskazującego wymagania przez wskazane wymaganie, będące:
 - ograniczeniem spełnienia wskazującego wymagania,
 - wcześniej spełnionym wymaganiem dla wskazującego wymagania.

Relacje powstałe w analizie wymagań

- Relacja kopii «copy» utworzenie wskazującego wymagania jako kopii (aliasu) wskazanego wymagania.
 - Kopia ma inną nazwę, ale ten sam opis.
 - Kopię można zmienić tylko przez zmianę oryginału.
- Relacja spełnienia «satisfy» spełnienie wskazywanego wymagania przez wskazujący przypadek użycia.
- Relacja sprawdzenia «verify» sprawdzenie spełnienia wskazywanego wymagania przez wskazujący przypadek testowania.

Przykład relacji kompozycji, śladu i wyprowadzenia

- Zarządzanie książką to (kompozycja) jej wypożyczenie lub zwrócenie.
- Zarządzanie książką prowadzi do (*«trace»*) rejestracji jej stanu.
- Wypożyczenie książki wynika z («derive») jej dostępności.
- Zwrócenie książki wymaga («trace») zachowania czasu jej wypożyczenia.
- Czas wypożyczenia książki wynika z («derive») zachowania jej dostępności.

Przykład relacji śladu i wyprowadzenia

- Wersje wypłaty gotówki («derive») to: wypłata w euro i wypłata w złotych.
- Wypłata gotówki wymaga (*«trace»*) sprawdzenia stanu konta.
- Wypłata w euro i wypłata w złotych wymaga («trace») sprawdzenia stanu kasy bankomatu, które wymaga («trace») sprawdzenia kursu walut.

2

Diagram przypadków użycia

Diagram przypadków użycia /use case diagram/

- Modeluje <u>przypadki użycia</u> i <u>aktorów</u> systemu oraz jego podział na <u>podsystemy</u>.
- Modeluje <u>związki</u> między przypadkami użycia i między przypadkami użycia a aktorami.
- NIE modeluje następstwa (kolejności) realizacji przypadków użycia.
- Opracowany na podstawie tekstowego opisu specyfikacji wymagań oraz diagramów wymagań.
- W języku zrozumiałym przez klienta i użytkownika systemu.
- Modeluje zewnętrzną strukturę systemu z jej funkcjonalnością i ogólną koncepcją architektury.

Przypadek użycia /use case/

- Proces biznesowy spełniający wymagania funkcjonalne.
- Zdefiniowany ogólnie, a NIE jako składowa czynność procesu biznesowego.
- Modeluje <u>działania i oczekiwania aktorów</u> w stosunku do systemu:
 - "funkcje" systemu udostępniane aktorom.
- Przypadki użycia można grupowane w pakiety.

Przypadek użycia

- Może mieć warunki wstępne («localPrecondition») spełnienie którego wymagania lub wykonanie którego przypadku użycia pozwala rozpocząć wykonanie tego przypadku użycia.
- Może mieć warunki końcowe («localPostcondition») spełnienie którego wymagania lub wykonanie którego przypadku użycia pozwala zakończyć wykonanie tego przypadku użycia.

Aktor /actor/

- Rola użytkownika systemu (człowiek lub inny system).
 - Aktor-system może (nie musi) być modelowany innym "obrazkiem".
- Ma bezpośredni lub pośredni udział w wykonaniu przypadku użycia.
- Ma pasywny lub aktywny (inicjujący) udział w wykonaniu przypadku użycia.

System /system/

- Modelowany system lub jego podsystem (część innego systemu).
 - Podsystem ma stereotyp «subsystem» nad swoją nazwą.
- NIE zawiera innego systemu i NIE zawiera aktorów.
 - Modułową budowę systemu można pokazać na diagramie wdrożenia.
- Obejmuje przypadki użycia modelowanego systemu i ich pakiety.

- Relacja uogólnienia /generalization/ (ciągła linia z grotem Δ).
 - Łączy przypadki użycia lub aktorów w związek wersja podstawowa (ogólna)-wersja pochodna (szczególna).
 - Grot ∆ wskazuje na "wersję podstawową".

- Relacja asocjacji /association/ (ciągła linia z otwartym grotem lub bez).
 - Łączy <u>aktora z przypadkiem użycia</u>, gdy aktor inicjuje wykonanie przypadku lub przypadek bezpośrednio komunikuje się z aktorem.
 - Łączy <u>aktorów ze sobą</u>, gdy komunikują się ze sobą poza systemem.
 - Pokazuje kierunek komunikacji, gdy jest skierowana.
 - Może wyrażać stosunek ilościowy między połączonymi elementami.

- Relacja zawierania «include».
 - Łączy przypadki użycia w związek zależna całość-obowiązkowa część.
 - Wskazuje na <u>część</u>.
 - Wskazany przypadek użycia <u>obowiązkowo</u> zachodzi w ramach wskazującego przypadku.

- Relacja rozszerzania «extend».
 - Łączy przypadki użycia w związek <u>niezależna całość-opcjonalna część</u>.
 - Wskazuje na <u>całość</u>.
 - Wskazujący przypadek użycia <u>opcjonalnie lub alternatywnie z innym</u> zachodzi w ramach wskazanego przypadku.
 - Warunek i moment rozszerzenia można podać w notatce i w scenariuszu realizacji rozszerzanego przypadku.

- Relacja realizacji /realization/ (przerywana linia z grotem Δ).
 - Łączy przypadek użycia ze współdziałaniem w celu jego realizacji.
 - Współdziałanie można pokazać np. na diagramie klas, gdzie będzie zawierać klasy uczestniczące w <u>realizacji zadań tego przypadku użycia</u>.
 - Grot ∆ wskazuje na przypadek użycia.

Przykład dekompozycji przypadków użycia

- Modelowany jest system Bankomat.
- Pakiety Klient i Bankomat grupują przypadki użycia na podstawie udziału w nich aktorów.
- Klient jest powiązany tylko z przypadkami użycia, które inicjuje.
- Bank jest powiązany tylko z przypadkami użycia, które inicjują z nim komunikację (wymianę informacji).

Przykład dekompozycji przypadków użycia

- Klient inicjuje PU Sprawdzenie kodu PIN.
- Następnie (<u>diagram nie może pokazać następstwa</u>) Klient inicjuje
 PU Wybór czynności, w którym może (*«extend»*) przejść do wykonania
 PU Zmiana kodu PIN lub PU Wypłata gotówki.
- Wykonanie PU Wypłata gotówki to (uogólnienie) wykonanie
 PU Wypłata gotówki w złotych lub PU Wypłata gotówki w euro.

Przykład dekompozycji przypadków użycia

- Wykonanie PU Wypłata gotówki w euro zawiera («include») wykonanie PU Sprawdzenie kursu walut z udziałem Banku.
- Wykonanie PU Wypłata gotówki zawiera («include»)
 wykonanie PU Sprawdzenie stanu kasy i PU Sprawdzenie stanu konta klienta z udziałem Banku.
- Wykonanie PU Wypłata gotówki może zawierać («extend») wykonanie PU Odrzucenie operacji z udziałem Banku.

Dokumentacja przypadku użycia

- Typowy skład słownego opisu przypadku użycia (PU):
 - numer PU;
 - nazwa PU krótka, w formie wykonywanej operacji, a NIE obiektu;
 - cel PU dłuższe wyjaśnienie (jeśli nazwa nie jest dość precyzyjna);
 - warunki wstępne PU wymagania i przypadki użycia pozwalające rozpocząć wykonanie PU;
 - warunki końcowe PU wymagania i przypadki użycia pozwalające zakończyć wykonanie PU (po czym poznać, że wykonał się prawidłowo);
 - przypadki testowania testy sprawdzające wykonanie PU;
 - scenariusz PU przepływ zdarzeń, które składają się na wykonanie PU (algorytm wykonania PU).
- Scenariusz jest najważniejszy i obowiązkowy!

Scenariusz realizacji przypadku użycia

- Przepływ zdarzeń, które składają się na wykonanie przypadku użycia w modelowanym systemie.
- Uwzględnia:
 - aktorów,
 - artefakty (<u>przepływ obiektów</u>),
 - zdarzenia czynności wykonywane w przez aktorów w modelowanym systemie lub przez modelowany system (przepływ sterowania).
- Może być tekstowy (pseudokod) lub graficzny (diagram czynności).
- Oprócz głównego scenariusza mogą być alternatywne scenariusze.
- Pokazuje, w którym momencie następuje rozszerzenie PU przez inny przypadek użycia, będący z nim w relacji «include».
- Pokazuje, w którym momencie i pod jakim warunkiem lub alternatywnie z jakim innym przypadkiem użycia następuje rozszerzenie PU przez inny przypadek użycia, będący z nim w relacji «extend».

Przykład dokumentacji przypadku użycia

Opis sytuacji:

- PU1 zawiera w sobie PU3 i PU4 (relacje «include»).
- PU1 jest rozszerzany przez PU5 (lub PU6) lub alternatywnie przez PU7 (relacje «extend»).
- PU2 zawiera w sobie PU3 (relacja «include»).
- PU2 może być rozszerzany przez PU7 (relacja «extend»).

Przykład dokumentacji przypadku użycia

Dokumentacja PU1:

numer: PU1

nazwa: Przypadek z udziałem aktora A

- cel: Aktor A bierze udział w wykonaniu PU1, aby otrzymać pewną informację.
- warunki wstępne: W roli Aktora A nie występuje Aktor B.
- warunki końcowe: Wykonano PU5/PU6 i Aktor A dostał informację lub PU7.
- scenariusz:
 - (1) Aktor A inicjuje wykonanie PU1.
 - (2) System przygotowuje wstępną treść informacji.
 - (3) Wykonanie PU3 w celu uzupełnienia tej informacji.
 - (4) Wykonanie PU4 w celu sprawdzenia tej informacji.
 - (5) System przedstawia Aktorowi A tę informację do zatwierdzenia.
 - (6) Wykonanie PU5, jeśli Aktor A chce zatwierdzić tę informację, lub wykonanie PU7, jeśli Aktor A chce ją odrzucić. Zamiast PU5 można wykonać PU6, jeśli Aktor C ma wiedzieć o zatwierdzeniu tej informacji.

Przykład dokumentacji przypadku użycia

Dokumentacja PU2:

- numer: PU2

nazwa: Przypadek z udziałem aktora B

cel: Aktor B bierze udział w wykonaniu PU2, aby odrzucić błędną informację.

- warunki wstępne: Aktor A wykonał PU1 razem z PU5 lub wykonał PU6 i utworzył informację.
- warunki końcowe: Dla błędnej informacji wykonano PU7 i odrzucono ją.
- scenariusz PU:
 - (1) Aktor B inicjuje wykonanie PU2.
 - (2) System przedstawia treść informacji.
 - (3) Wykonanie PU4 w celu sprawdzenia tej informacji.
 - (4) System przedstawia Aktorowi B tę informację do zatwierdzenia.
 - (5) Wykonanie PU7, jeśli ta informacja jest błędna i Aktor B chce ją odrzucić.
- Co robi system i co robią aktorzy w ramach wykonania PU3–PU7?
 To pokazują ICH dokumentacje.

3

Modelowanie wymagań i przypadków użycia

Wymagania funkcjonalne a przypadki użycia

Wymagania funkcjonalne:

- są szczegółowe,
- skupiają się na <u>funkcjonalności, celach i zachowaniu systemu,</u>
- pomagają zdefiniować <u>zadania</u> projektu programistycznego,
- są podstawą modelowania i testowania systemu,

Przypadki użycia:

- są <u>ogólne</u>,
- skupiają się na zadaniach i potrzebach użytkowników,
- pomagają zdefiniować <u>przepływy sterowania i danych</u> w projekcie programistycznym,
- są podstawą <u>weryfikacji</u> (zgodność ze specyfikacją)
 i <u>walidacji</u> (zgodność z oczekiwaniami klienta) działania systemu,
- pomagają zaprojektować interfejs użytkownika systemu.

Wymagania funkcjonalne a przypadki użycia

- Wymagania funkcjonalne pomagają zdefiniować przypadki użycia:
 - wymaganie funkcjonalne opisuje cele systemu,
 - przypadek użycia opisuje drogę do celu,
 - klient i analityk myślą <u>celowo</u>.
- Przypadki użycia pomagają zdefiniować wymagania funkcjonalne:
 - przypadek użycia opisuje proces biznesowy,
 - wymaganie funkcjonalne opisuje cele systemu,
 - klient i analityk myślą zadaniowo.

Elementy modelowania wymagań

na podst. UML Przewodnik użytkownika, G. Booch, J. Rumbaugh, I. Jacobson; wyd. WNT

1. Wyznacz granice systemu w jego środowisku:

- Zdefiniuj aktorów związanych z systemem:
 - są to użytkownicy korzystający z jego usług, zarządzający nim, pielęgnujący go itp.;
 - nazwa aktora rodzaj użytkownika systemu;
 - stereotyp aktora (np. «database») rodzaj aktora.
- Wykonaj <u>analizę wspólności i zmienności</u> aktorów:
 - utwórz <u>ogólniejszego</u> aktora dla aktorów, których część powiązań z systemem jest identyczna;
 - powiąż aktorów <u>relacją uogólnienia</u>, jeśli jeden z nich jest ogólniejszą wersją drugiego.
- Powiąż aktorów z <u>dotyczącymi ich</u> przypadkami użycia:
 - ale nie wiąż aktora z przypadkiem użycia, jeśli ogólniejsza wersja tego aktora już jest powiązana z tym przypadkiem użycia.

Elementy modelowania wymagań

na podst. UML Przewodnik użytkownika, G. Booch, J. Rumbaugh, I. Jacobson; wyd. WNT

2. Zdefiniuj wymagania systemu:

- Zdefiniuj otoczenie systemu, czyli jego aktorów.
- Zdefiniuj przypadki użycia:
 - są to działania, które aktorzy oczekują od systemu;
 - nazwa przypadku użycia opis działania.
- Dodaj do przypadku użycia notatkę o <u>dotyczących go wymaganiach</u> <u>niefunkcjonalnych</u>.
- Wykonaj <u>analizę wspólności i zmienności</u> przypadków użycia:
 - utwórz <u>ogólniejszy</u> przypadek użycia dla przypadków użycia, których działanie jest prawie identyczne;
 - powiąż przypadki użycia <u>relacją uogólnienia</u>, jeśli jeden z nich jest ogólniejszą wersją drugiego.

Elementy modelowania wymagań

na podst. UML Przewodnik użytkownika, G. Booch, J. Rumbaugh, I. Jacobson; wyd. WNT

2. Zdefiniuj wymagania systemu (c.d.):

- Wykonaj <u>analizę wspólności i zmienności</u> przypadków użycia (c.d.):
 - Utwórz nowy przypadek użycia dla działania:
 - które jest wspólną częścią działania różnych przypadków użycia,
 - lub które jest częścią działania któregoś przypadku użycia, ale może też być samodzielna;
 - nowy, wydzielony przypadek użycia połącz z jego źródłowym przypadkiem użycia <u>relacją zawierania</u> («include»).
 - Utwórz nowy przypadek użycia dla działania:
 - które jest <u>opcjonalną częścią</u> działania któregoś przypadku użycia,
 - lub które jest <u>alternatywną (względem innej) częścią</u> działania któregoś przypadku użycia;
 - nowy, wydzielony przypadek użycia połącz z jego źródłowym przypadkiem użycia <u>relacją rozszerzania</u> («extend»).

Elementy modelowania wymagań

na podst. UML Przewodnik użytkownika, G. Booch, J. Rumbaugh, I. Jacobson; wyd. WNT

3. Opisz każdy przypadek użycia:

- Opisz <u>cel</u> jego realizacji uzasadnienie.
- Opisz <u>warunki początkowe i końcowe</u> jego realizacji.
- Opisz główny i alternatywne scenariusze jego realizacji sekwencje zdarzeń w jego działaniu:
 - przepływ czynności aktorów i systemu,
 - przepływ danych między aktorami a systemem,
 - <u>tekstowo</u> (w języku naturalnym)
 <u>i / lub graficznie</u> (diagramem czynności).

Elementy modelowania wymagań

na podst. UML Przewodnik użytkownika, G. Booch, J. Rumbaugh, I. Jacobson; wyd. WNT

3. Opisz każdy przypadek użycia (c.d.):

- Zdefiniuj <u>przypadki jego testowania</u> testy systemu:
 - wdrożeniowy czy przypadek użycia został prawidłowo wdrożony;
 - <u>akceptacyjny</u> czy jego implementacja zadowala klienta;
 - <u>funkcjonalny</u> czy jego implementacja jest zgodna z jego opisem;
 - w odniesieniu do jednego, związanego z nim aktora;
 - określ stan początkowy systemu i dane wejściowe testu;
 - określ pożądany stan końcowy systemu i dane wyjściowe testu.

Proces identyfikacji wymagań

na podst. Inżynieria Oprogramowania, Z. Kruczkiewicz, PWr

Produkty wejściowe - czynności	Produkty wyjściowe	Opis produktu wyjściowego
lista kandydujących wymagań	Lista znamionowa status, szacowany koszt, priorytety, poziom ryzyka implementacji itp.	
zrozumienie kontekstu systemu (wykład 3)	Model dziedziny)* (domain model)-najważniejsze obiekty systemu: "rzeczy" lub zdarzenia podawane przez ekspertów	diagram najważniejszych klas dziedziny (domain classes) z niewielką ilością operacji-metod (około 10-50 w notacji UML), reszta przewidywanych klas w glosariuszu (glossary);
	Model biznesowy* (business model) - wewnętrzny model procesu biznesowego organizacji, wyszczególniany przez stronę zamawiającą systemu (customers)	"business use case": a) Opis przypadków użycia ("uses cases") i aktorów ("actors") odpowiadających procesowi biznesowemu oraz klientom procesu biznesowego b) biznesowy model obiektowy (business object model) składający się z wykonawców (workers), encji biznesowych (business entities), jednostek pracy (work units) z "use case"

Proces specyfikacji wymagań

na podst. Inżynieria Oprogramowania, Z. Kruczkiewicz, PWr

funkcjonalne	Model	Proces reprezentowania wymagań jako przypadków użycia
wymagania przypadków użycia (identyfikac przypadków użycia z moc	przypadków	UML oraz innych produktów:
	użycia (identyfikacja przypadków użycia z modelu biznesowego)	1. opis tekstowy realizujących zachowanie systemu przy działaniu poszczególnych przypadków użycia - czyli opis sekwencji akcji odpowiednich do modyfikacji, przeglądu,
		2. model przypadków użycia zawierający aktorów i przypadki użycia oraz powiązania (np. dziedziczenia) między nimi oraz: dodatkowo diagram czynności modelujący scenariusz przypadku użycia – wykład 3
		3. opis architektury przypadków użycia
		4. glosariusz - definicje ważnych pojęć wyprowadzanych z modelu dziedziny lub modelu biznesowego,
		5. prototyp interfejsu użytkownika - interakcje między aktorami - ludźmi i oprogramowaniem
niefunkcjonalne	uzupełniające	1. specjalne wymagania zawierające niefunkcjonalne
wymagania	wymagania lub	wymagania w postaci opisu tekstowego
	indywidualne	2. ograniczenia środowiska i implementacji (np. typ
	wymagania	komputera, typ plików, rodzaj systemu operacyjnego, typ
		oprogramowania Internetu), zależności, konserwacja,
	1	zdolność do poszerzania,

Uwaga!

- Definiowanie wymagania i przypadku użycia musi być zrozumiałe, ustandaryzowane i wewnętrznie spójne.
 - ułatwia to współpracę z klientem
 - oraz komunikację wewnątrz zespołu projektowego (analitycy, projektanci, programiści, testerzy...).
- Definicja wymagania i przypadku użycia powinna być możliwie jak najprostsza:
 - zwłaszcza w ocenie użytkowników systemu.
- Definicja wymagania i przypadku użycia z perspektywy użytkownika jest lepsza niż z perspektywy systemu.
- Przypadki użycia NIE definiują:
 - wyglądu interfejsu użytkownika systemu,
 - danych przetwarzanych przez system.
- Diagram przypadków użycia NIE pokazuje kolejności realizacji przypadków użycia.

4

Przykłady

Przykłady

Przykłady

zobacz: Inżynieria Oprogramowania, Z. Kruczkiewicz, PWr, wykład 2

- 1. Identyfikacja przypadków użycia na diagramie przypadków użycia na podstawie zdefiniowanych wymagań... (strony 32—38).
- 2. Identyfikacja i specyfikacja przypadków użycia na diagramie przypadków użycia. System sporządzania rachunków. (strony 39—53).
- 3. Identyfikacja i specyfikacja przypadków użycia na diagramie przypadków użycia. Biblioteka. (strony 55—71).
- 4. Identyfikacja i specyfikacja przypadków użycia na diagramie przypadków użycia. Wypożyczalnia książek. (strony 72—79).

Temat następnej prezentacji

Modelowanie zachowania – diagram czynności