AAKASH GHOSH (19MS129)

ANALYSIS-5

Contents

1 Signed Measure 5

Bibliography 7

1 Signed Measure

1.1 Introduction

Definition 1 (Signed Measure). Given a measurable space (X, \mathcal{M}) , a signed measure is a function $v : \mathcal{M} \to [-\infty, \infty]$ with the following properties:

- 1. $\nu(\phi) = 0$
- 2. ν can assume either ∞ or $-\infty$ but not both
- 3. If $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\sum_{i=1}^{\infty} \nu(E_i) = \nu\left(\bigcup_{i=1}^{\infty} E_i\right)$

1.2 Upper and lower continuity

Theorem 1 (Uppercontinuity). Let $\{E_i\}$ be a countable collection of measurable set with $E_i \subseteq E_{i+1}$. Then:

$$\lim_{i \to \infty} \nu(E_i) = \nu\left(\bigcup_{i=1}^{\infty} E_i\right) \tag{1.1}$$

Theorem 2 (Lowercontinuity). Let $\{E_i\}$ be a countable collection of measurable set with $E_{i+1} \subseteq E_i$. Then:

$$\lim_{i \to \infty} \nu(E_i) = \nu\left(\bigcap_{i=1}^{\infty} E_i\right) \tag{1.2}$$

Proof. Same as what we do for unsigned measure

1.3 Positive, Negetive and Null Set

Definition 2 (Positive set). A set whose every mesurable subset E satisfies $\nu(E) \ge 0$ is called a positive set.

In a similar fashion we define:

Definition 3 (Negetive set). A set whose every mesurable subset E satisfies $\nu(E) \leq 0$ is called a positive set.

One should note that normal measures are also signed measure, the only difference is the extension of the range of the measure function to cover almost all of \mathbb{R} .

Definition 4 (Null set). A set whose every mesurable subset E satisfies v(E) = 0 is called a positive set.

We consider an example. Let μ be an unsigned measure and let f be a measurable L^1 function . Let us define a measure nu as:

$$\nu(E) = \int_{E} f d\mu \tag{1.3}$$

Then ν is a signed measure. If E is a set such that $f \ge 0$ $\mu.a.e$ on E then E is a positive set. Similarly we can find negetive and null sets.

Lemma 3. 1. Subsets of positive sets are positive

2. Countable¹ union of positive sets are positive Similar results are also valid for null and negetive sets.

The next lemma will be required for the proof of **Hahn Decomposition Theorem** in the next section.

Lemma 4. Let v be a signed measure which doesn't attain ∞ . A set with a positive measure has a positive subset.

¹ A countable union is needed as in case of uncountable union, there will be a chance that the union will not belong to the sigma algebra; a sigma algebra is closed in countable union and not under arbitary union

4 Hanh Decomposition

Theorem 5 (Hanh Decompositiopn Theorem). *If* v *is a signed measure* on (X, \mathcal{M}) , there exist a positive set P and a negative set N for v such that $P \cup N = X$ and $P \cap N = \phi$ Moreover if P', N' is another such pair, then $P\Delta P' (= N\Delta N')$ is null in v.

Proof Outline:

- 1. Define $m = \sup_{\text{positive sets}} v(P)$
- 2. Take a sequence $\{p_i\}$ such that $\lim_{i\to\infty} \nu(p_i) = m$
- 3. Show if $P = \bigcup p_i$ then $\nu(P) = m$
- 4. Show if $N = P^c$ and if N has a set with positive measure, then by lemma 4, there is contradiction.
- 5. If $E \subseteq P\Delta P'$ and $\nu(E) \neq 0$. Without loss of generality assume $E \subseteq P$. Then $E \subseteq P'^c = N'$ which contradicts negetivity of N'

Bibliography