Does $\sum_{n=2}^{\infty} \frac{1}{n^2 + 1}$ diverge, converge absolutely, or converge conditionally?

Solution 1

The function $f(x) = \frac{1}{x^2+1}$ is continuous, positive, and decreasing on $[2, \infty)$.

$$\int_{2}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x^{2}+1} dx$$
$$= \lim_{t \to \infty} (\arctan t - \arctan 2)$$
$$= \frac{\pi}{2} - \arctan 2.$$

Since the integral $\int_2^\infty \frac{1}{x^2+1} dx$ converges, the series $\sum_{n=2}^\infty \frac{1}{n^2+1}$ converges by the Integral Test.

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=2}^{\infty} \frac{1}{n^2 + 1}$ converges absolutely.

Solution 2

Since $\frac{1}{n^2+1} \le \frac{1}{n^2}$ and since the series $\sum \frac{1}{n^2}$ converges by the *p*-test, the series $\sum \frac{1}{n^2+1}$ converges by the Direct Comparison Test.

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=2}^{\infty} \frac{1}{n^2 + 1}$ converges absolutely.

Solution 3

The series $\sum \frac{1}{n^2}$ converges by the *p*-test. Let $a_n = \frac{1}{n^2+1}$ and $b_n = \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1}$$

$$= \lim_{n \to \infty} \frac{2n}{2n} \text{ by l'hopital}$$

$$= \lim_{n \to \infty} \frac{1}{1} \text{ by algebra}$$

$$= 1$$

The Limit Comparison Test applies, since this limit was a positive, finite number. Therefore, the series $\sum \frac{1}{n^2+1}$ converges by the Limit Comparison Test.

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=2}^{\infty} \frac{1}{n^2 + 1}$ converges absolutely.