

Doutorado e Mestrado em Ciência da Computação

Instituto de Informática

Programação Paralela e Distribuída

Prof. Dr. Sérgio T. Carvalho

Algoritmos de Eleição

Marcos Alves Vieira

Goiânia, 07 de maio de 2019

Introdução

- Algoritmo de eleição
 - Algoritmo para escolher um único processo para desempenhar uma determinada função
- Aspectos importantes
 - Todos os processos devem concordar com a escolha
 - Se o processo coordenador falhar, outra eleição será realizada para escolher um substituto
 - Um determinado processo só pode convocar uma única eleição por vez
 - A escolha do processo eleito deve ser única, mesmo que vários processos convoquem eleições concorrentemente

Introdução

Processo

- Identificador
 - Pode ser qualquer valor, desde que os identificadores sejam exclusivos e totalmente ordenados

Eleição

 Conterá o valor participante ou não participante, caso o processo esteja ou não esteja participando de uma eleição

Eleito

- Variável que conterá o identificador do processo coordenador
- Possui valor especial ⊥, quando o processo participa pela primeira vez de uma eleição, indicando que seu valor ainda não está definido

Introdução

- Requisitos a serem cumpridos pelo algoritmo de eleição, ao final de sua execução
 - E1 (segurança)
 - Um processo participante tem eleito = ⊥ ou eleito = P, onde P é o processo não defeituoso com o maior identificador
 - E2 (subsistência)
 - ► Todos os processos participam e configuram eleito ≠ ⊥ ou falham

- Conjunto de processos organizados em um anel lógico
 - Cada processo tem um canal de comunicação para o processo seguinte no anel
 - Todas as mensagens são enviadas no sentido horário em torno do anel
 - Supõe-se que não ocorrem falhas e que o sistema é assíncrono
 - Possui dois tipos de mensagem: eleição e eleito
- Objetivo
 - Eleger um único processo, chamado de coordenador, que é aquele com o maior identificador

Chang e Roberts [1979]

Iniciar uma eleição

- O processo marca a si mesmo como participante
- Coloca seu identificador em uma mensagem de eleição
- 3. Envia a mensagem para seu vizinho no sentido horário

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- 1. O processo marca a si mesmo como **participante**
- Compara o identificador da mensagem com o seu próprio:
 - id_msg > id_proc
 encaminha a mensagem para
 seu vizinho
 - id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
 - id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- 1. O processo marca a si mesmo como **participante**
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

24

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mes
 como não participante e envia
 uma mensagem de eleito com
 seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho

ELEIÇÃO

- id_msg < id_proc
 substitui o identificador da
 mensagem pelo seu próprio
 identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificado ELEIÇÃO mensagem com o seu 28
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

ELEIÇÃO

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- 1. O processo marca a si mesmo como **participante**
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- O processo marca a si mesmo como participante
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

Chang e Roberts [1979]

Recebimento de mensagem de eleição

- 1. O processo marca a si mesmo como **participante**
- Compara o identificador da mensagem com o seu próprio:
- id_msg > id_proc encaminha a mensagem para seu vizinho
- id_msg < id_proc substitui o identificador da mensagem pelo seu próprio identificador e a encaminha
- id_msg == id_proc
 O processo marca a si mesmo como não participante e envia uma mensagem de eleito com seu id

28

- Considerações sobre o algoritmo
 - Algoritmo útil, pois atende às propriedades de eleição
 - É limitado, pois não tolera falhas
 - Com um detector de falhas confiável, é possível reconstruir o anel quando um processo falha

Garcia-Molina [1982]

- Permite que seus processos falhem durante uma eleição
- Presume que a distribuição de mensagens entre processos é confiável e síncrona
 - Usa tempos limites para detectar uma falha de processo
- Presume que cada processo sabe quais processos têm identificadores mais altos e que pode se comunicar com todos esses processos
- Possui três tipos de mensagem
 - Eleição: convoca uma eleição
 - Resposta: resposta à uma mensagem de eleição
 - Coordenador: anuncia a identidade de um coordenador eleito

Garcia-Molina [1982]

- Início do processo de eleição
 - Um processo inicia o a eleição quando percebe que o coordenador atual falhou, com base nos tempos limites

$$T = 2T_t + T_p$$

 Por ser um sistema síncrono, vários processos podem perceber a falha do coordenador simultaneamente

Garcia-Molina [1982]

- Processo de eleição
 - O processo que sabe que possui o identificador mais alto pode eleger a si mesmo como coordenador
 - Envia uma mensagem de coordenador para todos os processos com identificadores mais baixos

Garcia-Molina [1982]

- Processo de eleição
 - Um processo com um identificador mais baixo inicia uma eleição:
 - Enviando uma mensagem de eleição para os processos que têm identificador mais alto e esperando uma mensagem de resposta
 - Se nenhuma mensagem de resposta chegar dentro do tempo T
 - O processo se considerará o coordenador e enviará uma mensagem de coordenador para todos os processos com identificadores mais baixos
 - Se chegar uma mensagem de resposta, o processo esperará, por mais um período T, que chegue uma mensagem de coordenador do novo coordenador
 - Se a mensagem de coordenador não chegar, ele iniciará outra eleição
 - Se a mensagem de coordenador chegar, ele configura sua variável eleito com o identificador do coordenador contido na mensagem

Garcia-Molina [1982]

- O processo p₁ detecta a falha do coordenador p₄ e anuncia uma eleição
- Os processos p₂ e p₃ enviam mensagens de resposta para p₁ e iniciam suas próprias eleições

- p₃ envia uma mensagem de resposta para p₂, mas p₃ não recebe nenhuma mensagem de resposta do processo falho p₄
- Estágio 2

 p₃ decide que é o coordenador, mas antes que possa enviar a mensagem de coordenador, ele também falha

- Quando o período do tempo limite de p₁ expira, ele deduz a ausência de uma mensagem de coordenador e inicia outra eleição.
- Finalmente, p₂ é eleito coordenador

Garcia-Molina [1982]

- Origem do termo "valentão"
 - Quando um processo para substituir um processo falho é iniciado, ele inicia uma eleição
 - Se tiver o identificador de processo mais alto que os demais, decidirá que é o coordenador e anunciará isso para os outros processos
 - Ele se tornará o coordenador, mesmo que o coordenador corrente esteja funcionando

Garcia-Molina [1982]

- Considerações sobre o algoritmo
 - Condição de subsistência (E2)
 - Satisfaz, pois supõe o envio de mensagem confiável
 - Condição de segurança (E1)
 - Satisfaz, caso nenhum processo seja substituído com mesmo id
 - É impossível dois processos decidirem simultaneamente que são o coordenador
 - O processo com o identificador mais baixo descobrirá que o outro existe e o acatará
 - Não é garantido que o algoritmo satisfaça, caso processos que tenham falhado sejam substituídos por processos com o mesmo id
 - Um processo que substitui um processo falho p pode decidir que tem o identificador mais alto, assim como outro processo (que detectou a falha de p) decidiu que possui o identificador mais alto
 - Os dois processos se anunciarão como coordenadores, simultaneamente

Dúvidas?

Referências

COULOURIS, George et al. **Sistemas Distribuídos**: Conceitos e Projeto. Bookman Editora, 2013.