תרגילים: רדוקציה

הגדרה. בהינתן פוקנציה

מתקיים: $x\in \Sigma^*$ אומרים כי מ"ט M מחשבת את את $f:\Sigma^*\to \Sigma^*$

- x פגיעה ל- acc בסוף החישוב על M
- f(x) על סרט הפלט של M כתוב את (2

הערה. פ"ט שפחשבת פונקציה עוצרת על כל קלט.

הגדרה. בהינתן שתי שפות L_1 ו- L_2 , אומרים כי L_1 ניתנת לרזוקציה ל- L_2 (נסמן L_1) אם E פונקציה להגדרה. בהינתן שתי שפות E_1 והערים כי E_1 אומרים באים:

- חשיבה. f (1
- לכל Σ^* מתקיים $x\in \Sigma^*$

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

הגדרה.

$$R = ig\{ L \subseteq \Sigma^* \mid L$$
 קייומת מ"ט המכריעה את

הגדרה.

$$RE = \left\{ L \subseteq \Sigma^* \; \middle| \; L$$
 קייפת מ"ט המקבלת את

משפט (משפט הרדוקציה). לכל שתי שפות L_1 ו- L_2 אז לכל אז לכל

- $.L_{1}\in R$ in $L_{2}\in R$ dh (1
- $.L_{1}\in RE$ in $L_{2}\in RE$ dh (2
 - $L_2 \notin R$ in $L_1 \notin R$ on (3
- $L_2 \notin RE$ in $L_1 \notin RE$ dh (4

לסיכום:

$$L_{2} \in R$$
 \Rightarrow $L_{1} \in R$
 $L_{2} \in RE$ \Rightarrow $L_{1} \in RE$
 $L_{2} \notin R$ \Leftarrow $L_{1} \notin R$
 $L_{2} \notin RE$ \Leftarrow $L_{1} \notin RE$

שאלה 1 נתונה השפה

$$L = \{P | L(P) \neq \emptyset\}$$

או במילים אחרות

$$L = \{ \langle M \rangle \, | L(M) \neq \emptyset \}$$

- L השפה את המקבלת הטיניסטית הטורינג איורינג מכונת תארו (א
- L תארו מכונת טיורינג אי-דטרמיניסטית המקבלת את השפה ב

- ג) הוכיחו שהשפה L לא כריעה (על ידי רדוקציה).
 - $L \leq ar{L}$ הוכיחו שלא קיימת רדוקציה (ד

שאלה 2 הוכיחו כי התנאים הבאים שקולים:

$$A \leq_m B$$
 (x

$$ar{A} \leq_m B$$
 (ء

$$ar{A} \leq_m ar{B}$$
 (x

$$A \leq_m ar{B}$$
 (ে

שאלה 3 תהי L השפה

$$L = \left\{ \langle M, w \rangle \, \middle| \, L(M) = L(D)$$
 ו- DFA הוא D - מ"ט ו- M

הוכיחו כי $ar{L}$ לא כריעה.

שאלה 4 תהי L הפשה

$$L = \{ \langle M \rangle \mid w \in L(M) \Leftrightarrow |w| < 50 \}$$

.50-מ מקבלת הק מילים באורך פחות מM כלומר לא קבילה. לא קבילה ליטור כי L

שאלה 5 תהי A שפה. הוכיחו:

$$A \leq_m A$$
.

שאלה 6 תהי A שפה.

הוכיחו או הפריכו:

$$A \leq_m \bar{A}$$
.

שאלה 7 תהי

$$EQ_{TM} = \left\{ \langle M_1, M_2 \rangle \left| L(M_1) = L(M_2) \right\} \right.$$

:הוכיחו

$$A_{\mathrm{TM}} \leq_m EQ_{\mathrm{TM}}$$
 (x

$$A_{ ext{TM}} \leq_m ar{E}Q_{ ext{TM}}$$
 (2

תשובות

שאלה 1

א) הרעיון

. בהינתן קלט M - מילה ש מילה לבדוק נרצה לבדוק $x = \langle M \rangle$ מקבלת בהינתן קלט

לשם כך נרצה לסמלץ את M על כל המילים האפשרייות ב- Σ^* ואם נמצא מילה שמתקבלת ע"י M על כל M את לסמלץ לשם כך נרצה לשם כל $L(M) \neq \emptyset$.

הבעיה

יתכן שנסמלץ את M על מילה ו- M לא תעצור עליה, למרות שקיימת מילה אחרת ש- M מקבלת. במקרה זה המכונה לא תעצור על $\langle M \rangle$ למרות ש- $M \rangle$.

הפתרון

 $:M_L$ נבנה מ"ט

- . על כל מילה אפשרית למשך מספר מילה על צעדים בכל פעם. M על את תסמלץ את M_L
 - על כל המילים באורך 0 במשך M על כל המילים באורך \bullet
 - .אחד. צעד את במשך במשך את n < 1 במשך את M על כל המילים באורך n < 1
 - . אח"כ נריץ את M על כל המילים באורך $n \leq 2$ במשך $n \leq 2$ צעד אחד.
 - ...ים, אמשך i במשך באורך על כל המילים את נריץ את M את נריץ את המילים באורך $\dots ullet$
 - . $\langle M
 angle$ בכל שלב, אם נמצאה מילה ש- M קיבלה, נפסיק את הריצה ונקבל את •

. לשמך tלשמל מילה על מילה הקלט את ריצת לסמלץ כדי לסמל כדי לשמך U_t לשם כך נשתמש כדי לשם לש

תזכורת:

$$L\left(U_{t}
ight)=\left\{ \left\langle M,w,t
ight
angle \;\;|\;\;$$
מקבלת את w תוך t צעדים M

:x על קלט M_L על קלט

- (האם x קידוד חוקי של מ"ט). בודקת אם x מהצורה $x \in M$ בודקת אם $M_L \notin M$ דוחה את $M_L \notin M$
 - $.t \leftarrow 0$ (2
- (M,w) על הקלט U_t את מריצה ו $w|\leq t$ -ש כך ער $w\in \Sigma^*$ מילה (3) אם $M_L \Leftarrow U_t$ אם על על אם U_t
 - $.t \leftarrow t + 1$ (4
 - **.(3** חוזרת לשלב 3).

$:M_L$ הוכחת הנכונת המכונה

 $L = L\left(M_L
ight)$ יש להוכיח כי אכן מתקיים לשם כך נוכיח כי מתקיים

$$x\in L \quad \Rightarrow \quad x\in L\left(M_L\right) \; ,$$

$$x\notin L \quad \Rightarrow \quad x\notin L\left(M_L\right) \; , \qquad \text{(x עוצרת על x)} \; .$$

 $x \in L \Rightarrow x \in L\left(M_L\right)$

- $L(M) = \emptyset$ -1 $x = \langle M \rangle \Leftarrow x \in L$ •
- $w\in L(M)$ כך ש- $w\in \Sigma^*$ קיימת $w\in \Sigma^*$ בפרט המילה של מתקבלת ע"י מספר סופי של צעדים.
- Mיהי M מספר הצעדים עד לקבלת w ב- M. לפי פעולת M_L , אם תריץ $U_t\left(\langle M,w,t\rangle\right)$ עבור $U_t\left(\langle M,w,t\rangle\right)$ תקבל את M תקבל את M ולכן לבסוף גם M תקבל את M ולפי שלב M של התיואר של M).
 - $.x = \langle M
 angle$ את מקבלת $M_L \Leftarrow ullet$
 - $x \in L(M_L) \Leftarrow \bullet$

 $x \in L \Rightarrow x \in L(M_L)$

:שני מקרים $\Leftarrow x \notin L$

"מבצ בידו חוקי של $x\neq \langle M \rangle$ מבצ ממנט. $x\neq \langle M \rangle$ מבצ

 $x \notin L\left(M_L
ight) \Leftarrow$ (1 לפי שלב) x את תדחה M_L

$.L(M)=\emptyset$ -ו $x=\langle M angle$ (2 מבצ

- . M במקרה המתקבלת ע"י w (בכל אורך שהוא) במקרה המתקבלת ע"י w לא קיימת מילה אי"א לכל הא לע לא מתקבלת בשום מספר טופי של צעדים ולכן w לא מתקבלת בשום מספר לאף w לא מתקבלת w לאף w לאף w לאף w
 - x אוצרת על 3 בשלב הלולאה x
 - .x לא עוצרת על $M_L \Leftarrow ullet$
 - $x \notin L\left(M_L\right)$ לכן x את מקבלת את M_L לכן •

ב) הריעון

נבנה מ"ט אי-דטרמיניסטית N_L שבהינתן קלט $x=\langle M \rangle$ תנחש שבהינתן שבהינתן את ריצתה של $w\in \Sigma^*$ תנחש מילה $w\in \Sigma^*$ אל M

x אם N_L אם M מקבלת את מקבלת מקבלת או אם M

x על קלט N_L תיאור פעולת

- עם מיט). בודקת אם x מהצורה (האם x מהצורה מ"ט). בודקת אם א N_L (1 אם אם $N_L \leftarrow N_L \leftarrow N_L$ אם לא
 - $.w \in \Sigma^*$ מנחשת מילה N_L (2
 - w על M על מסמלצת מסמלצת את N_L (3
 - . מקבלת N_L אם M עצרה וקיבלה את w אז M מקבלת.
 - בוחה. N_L אם M עצרה ודחתה אז M

$:N_L$ הוכחת נכונות המכונה

 $L=L\left(N_{L}
ight)$ יש להוכיח כי אכן מתקיים לשם כך נוכיח כי מתקיים

 $x\in L \quad \Rightarrow \quad x\in L\left(N_L\right) \; ,$ $x\notin L \quad \Rightarrow \quad x\notin L\left(N_L\right) \; , \qquad \text{(1)} \; x \notin L \; \Rightarrow \; x\notin L\left(N_L\right) \; ,$

$x \in L \Rightarrow x \in L(N_L)$

- $.L(M)
 eq \emptyset$ -1 $x = \langle M \rangle \Leftarrow x \in L$ ullet
- $.w \in L(M)$ -ע כך ש
- $w \in \Sigma^*$ קיימת $\Leftarrow \bullet$
- לפי $x=\langle M \rangle$ שך את תקבל את w, ולכן w, תקבל את על $w \in \Sigma^*$ שך שבריצה $w \in \Sigma^*$ שלב 3.
 - $x=\langle M
 angle$ את המקבל את של של של N_L איים חישוב $\Leftarrow ullet$
 - $x \in L(N_L) \Leftarrow \bullet$

$x \notin L \Rightarrow x \notin L(N_L)$

שני מקרים אפשריים. $\Leftarrow x \notin L$

מצב 1) מצב, כלומר x אינה קידוד חוקי של מ"ט. $x \neq \langle M \rangle$

 $x \notin L\left(N_L\right) \Leftarrow$ (לפי שלב 1) את דוחה את $N_L \Leftarrow$

$$.L\left(M
ight) =\emptyset$$
 -ו $x=\langle M
angle$ (2 מצב

- M במקרה המתקבלת ע"י (בכל אורך שהוא) המתקבלת ע"י ullet
 - M ז"א M ניחוש של $w\in \Sigma^*$ המתקבלת ע"י Φ
 - w את מקבלת את M לא $w\in \Sigma^*$ לכל $\Leftrightarrow ullet$
 - .(3 אם את את דוחה את א*

x אם N_L לא עוצרת על w הסימולציה לא מסתיימת הסימולציה על א אם א אוצרת אוצרת אוצרת אוצרת א אם

 $x \notin L(N_L) \Leftarrow x$ את מקבלת אל N_L לכן •

שאלה 2

$$A \leq_m B$$
 -נניח ש- 1) \Rightarrow 2)

ז"א

- $2) \Rightarrow 3)$
- $3) \Rightarrow 4)$
- $4) \Rightarrow 1)$

שאלה 3 נוכיח כי

 $A_{TM} \leq_m L$.

 A_L את שמכריעה שמכריעה מ"ט B_L נניח בשלילה מ"ט א שמכריעה את נבנה מ"ט מבנה מ"ט א

 $:\langle M,w
angle$ על הקלט " =R

. בונים קידוד של מ"ט חדשה $\langle M'
angle$ כמפורט להלן. ullet

x על הקלט " M'

- .rej $\leftarrow x \neq w$ אם *
- w על M מריצים x=w אם *
- . אם M מקבלת אז M מקבלת -
 - ".חרת M' דוחה. -
- $L(D) = L(w) = \{w\}$ כך ש- CFA חדשה סFA בונים קידוד של
 - $".M_L$ של את ומחזירים את ומחזירים (M',D
 angle על של מריצים •

w אז M מקבלת את w אז M מקבלת את $M,w \in A_{TM}$ לכן M' מקבלת את M' ודוחה כל מילה אחרת. $L(M')=\{w\}$ לכן L(M')=L(D) לכן L(M')=L(D) מקבלת M', M' מקבלת את M' אז M לא מקבלת את M'. אם M' אז M לא מקבלת את M'.

w אז M לא מקבלת את $M,w
otin A_{TM}$ לכן $L(M')=\emptyset$ לכן $L(M')=\{w\}$ מסיבה לכך ש- $L(M')
otin L(D)=\{w\}$

 $(B)=\{a\}$ לכן $(B)=\{a\}$ דוחה את (A',D) ולכן (B)

שאלה 4 רמז:

 $E_{TM} \leq_m L$.

שאלה 6 הטענה לא נכונה.