UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class:	СР	E100L - 1002		Semester:	Spring 2020
Points		Document author:	Kristy Nguyer	1	
		Author's email:	nguyek20@uı	nlv.nevada.ed	du
			•		
		Document topic:	Prelab 7		
Instructor's	com	nments:			

Introduction / Theory of operation

Lab 7 is about 2-bit ALU and 7-segment display, where we design 1-bit and 2-bit arithmetic logic units and implement the circuits on the DE2 board. We will also learn how to use DE2's 7-segment display.

Prelab main content

1) 7-segment display truth table:

	Inputs				Outputs					
A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0

K-map for a:

Y		AB					
		00	01	11	10		
	00	1	0	1	1		
CD	01	0	1	1	1		
CD	11	X	X	X	X		
	01	1	1	X	X		

$$a = A + C + BD + B'D'$$

K-map for b:

V	V		AB					
ĭ		00	01	11	10			
	00	1	1	1	1			
CD	01	1	0	1	0			
CD	11	X	X	X	X			
	01	1	1	X	X			

$$b = B' + C'D' + CD$$

K-map for c:

v	,	AB					
I		00	01	11	10		
	00	1	1	1	0		
CD	01	1	1	1	1		
CD	11	X	X	X	X		
	01	1	1	X	X		

$$c = B + C' + D$$

K-map for d:

v	N/		AB					
Y		00	01	11	10			
	00	1	0	1	1			
CD	01	0	1	0	1			
СБ	11	X	X	X	X			
	01	1	1	X	X			

$$d = B'D' + CD' + BC'D + B'C + A$$

K-map for e:

v	r		A	В	
I		00	01	11	10
	00	1	0	0	1
CD	01	0	0	0	1
CD	11	X	X	X	X
	01	1	0	X	X

$$e = B'D' + CD'$$

K-map for f:

Y		AB					
		00	01	11	10		
	00	1	0	0	0		
CD	01	1	1	0	1		
CD	11	X	X	X	X		
	01	1	1	X	X		

$$f = A + C'D' + BC' + BD'$$

K-map for g:

Y		AB					
		00	01	11	10		
	00	0	0	1	1		
CD	01	1	1	0	1		
	11	X	X	X	X		
	01	1	1	X	X		

$$g = A + BC' + B'C + CD'$$

2) Schematics of 1-bit ALU created in Quartus

3) 1-bit ALU simulation waveform generated by Quartus

4) Schematics of 2-bit ALU created in Quartus

5) 2-bit ALU simulation waveform generated by Quartus

6) A bitwise operation operates on one or more bit patterns at the level of their individual bits. It is a simple and fast action that is supported by the processor and is used to manipulate values. An example is bitwise AND where the result of 6 & 3 is 2.