(19) 世界知的所有権機関 国際事務局

1 | 1886 \$1110 BB | 11 | 618 BB | 1701 | 68 BB | 618 BB | 618 BB | 11 | 11 | 11 | 12 | 13 | 14 | 15 | 15 | 15 |

(43) 国際公開日 2005 年5 月6 日 (06.05.2005)

PCT

(10) 国際公開番号 WO 2005/041285 A1

(51) 国際特許分類?:

(72) 発明者; および

(21) 国際出願番号:

PCT/JP2004/015716

(22) 国際出願日:

2004年10月22日(22.10.2004)

H01L 21/31, C23C 16/455

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-363448

2003年10月23日(23.10.2003) JF

(71) 出願人(米国を除く全ての指定国について): 東京エレクトロン株式会社 (TOKYO ELECTRON LIMITED) [JP/JP]; 〒1078481 東京都港区赤坂五丁目3番6号 Tokyo (JP).

- (75) 発明者/出願人 (米国についてのみ): 網倉 学 (AMIKURA, Manabu) [JP/JP]: 〒4070192 山梨県韮 崎市穂坂町三ツ沢 6 5 0 番地 東京エレクトロン
- 沢650番地 東京エレクトロンAT株式会社内 Yamanashi (JP).(74) 代理人: 吉武賢次、外(YOSHITAKE, Kenji et al.); 〒1000005 東京都千代田区丸の内三丁目2番3号富士

ビル323号協和特許法律事務所 Tokyo (JP).

AT株式会社内 Yamanashi (JP). 岩田 輝夫 (IWATA,

Teruo) [JP/JP]; 〒4070192 山梨県韮崎市穂坂町三ツ

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,

[続葉有]

- (54) Title: SHOWER HEAD AND FILM-FORMING DEVICE USING THE SAME
- (54) 発明の名称: シャワーヘッド及びこれを用いた成膜装置

(57) Abstract: A shower head for supplying a raw material gas and a support gas for film formation into the treatment container of a film-forming device, comprising a shower head body with a gas injection surface (8). A first diffusion chamber (60) receiving and diffusing the raw material gas and second diffusion chambers (62) receiving and diffusing the support gas are formed in the shower head body. Raw material gas injection ports (10A) communicating with the first diffusion chamber and first support gas injection ports (10B) communicating with the second diffusion chambers are formed in the gas injection surface. Each of the first support gas injection ports (10B) is formed in a ring shape surrounding each of the raw material gas injection ports (10A) in proximity to each other.