プロセッサ設計演習

ウン クアン イー 九州大学 工学部 電気情報工学科 4 年

2021年07月05日

1 はじめに

マイクロプロセッサの動作原理を理解することを目的とし、命令パイプライン構造を持つプロセッサを設計・実装した. プロセッサの設計・実装は、Verilog-HDL というハードウェア記述言語を用いて行った. 更に、プロセッサの最小動作クロック周期を削減するために、分岐予測を導入して、クリティカルパスの短縮を試みた. 分岐予測の導入により、テストプログラムの実行クロックサイクル数が平均的に20.59% 減少した. クリティカルパスの短縮により、ボトルネックとなるステージの処理が他のステージに行われるようにすることで、最小動作クロック周期が前より33.33%減少した.

本稿では、第2章でプロセッサの仕様について述べる。第3章で、プロセッサの機能検証の方法について説明し、第4章で、プロセッサの性能評価と論理合成の結果を示す。第5章で、プロセッサの性能改善方法として、分岐予測とクリティカルパスの短縮について述べる。最後に、第6章でまとめを行う。付録 Aに設計したプロセッサの設計図を載せている。プロセッサのソースコードは $GitHub^1$ 上に置いてある。

2 プロセッサの仕様

2.1 外部インタフェース

図1にプロセッサの外部インタフェースを示す. 信号線名の後ろに#が記述されている信号線は負論 理であり,#が記述されていない信号線は正論理で あることを示している.

図 1: プロセッサの外部インタフェース

図1にあるそれぞれの信号線の説明は以下の通りである.

- IAD (Instruction ADdress Bus) 命令メモリへの 32[bit] のアクセスアドレス パス.
- IDT (Instruction DaTa Bus) 命令メモリからの 32[bit] のデータパス.
- ACKI# (ACKnowledge from Instruction memory)
 命令メモリへのアクセスに対するアクノリッジ信号.命令メモリにアクセスして,この信号がインアクティブであれば,読み出し・書き込みが完了していないことを意味する.
- RESET# リセット信号.
- OINT# 外部からの割り込みを示す信号. 外部からの

¹https://github.com/kuanyi-ng/rv32i-processor

割り込みがあった時に、対応するビットがアクティブになる.

• IACK# (Interruption ACKnowledge) 外部の割り込みを処理している時にアクティブになる信号.

• CLK (CLocK) クロック信号

DAD (Data ADdress bus) データメモリへの 32[bit] のアクセスアドレスパス.

DDT (Data DaTa bu) データメモリからの 32[bit] のデータパス.

• MREQ

データメモリに対するアクセス (読み出し・書き込み) をリクエストするための信号. データメモリヘアクセスする前にリクエスト信号をアクティブにする必要がある.

• WRITE

データメモリへの書き込みをリクエストする 信号. データメモリにデータを書き込む時に この信号をアクティブにする必要がある.

• SIZE

データメモリへのアクセスサイズを示す.

- word アクセス: SIZE = 00
- halfword アクセス: SIZE = 01
- byte アクセス: SIZE = 10

ACKD# (ACKnowledge from Data memory) データメモリへのアクセスに対するアクノリッジ信号. データメモリにアクセスして,この信号がインアクティブであれば,読み出し・書き込みが完了していないことを意味する.

命令メモリとデータメモリはシミュレーション環境で用意されているため、プロセッサの中に実装しない、メモリはリトルエンディアン方式を採用する、メモリのアドレスは 1[byte] ごとに振り分けられ、1 つのアドレスに 32[bit] のデータを保持することができる.

また、シミュレーション環境において、外部からの割り込みが発生しないため、OINT 入力信号の処理と、IACK 出力信号の生成を行わない。

2.2 特権モードと CSR レジスタ

このプロセッサはマーシンモードのみをサポートしている. そのため, 例外処理から戻る mret, sret, と uret, 3 つ命令のうち, mret 命令だけをサポートする. また, マーシンモードに合わせて使える CSRレジスタの一覧 [3] [4] を表 1 にまとめる.

CSR レジスタ名	内容
mvendorid	ベンダー ID
marchid	アーキテクチャ ID
mimpid	実装 ID
mhartid	ハードウェアスレッド ID
mstatus	マシンステータスレジスタ
misa	ISA と拡張機能
mie	マシン割り込み有効化
mtvec	マシン・トラップ・ベクトル
mcounteren	マシンカウント有効化
mscratch	マシン・スクラッチ
mepc	マシン例外 PC
mcause	マシン例外原因
mtval	マシン・トラップ値
mip	マシン割込処理待ち

表 1: マシンモードの CSR レジスタ

2.3 命令セット

設計したプロセッサがサポートしている命令の一覧は表 2 に示している. この命令セットは, RISC-V 32I 命令セットの一部である. RISC-V 32I にあり、このプロセッサがサポートしていない命令は, fence, fence.i, sfence.vma, ebreak, uret, sret, wfi である. 機能検証と性能評価のプログラムでは, フェンスを使うことがないので, fence, fence.i, sfence.vma を実装しない. また, 今回のプロセッサは, デバグ, ユーザモード, スーパーバイザモード, 外部割り込みをサポートしていないため, ebreak, uret, sret, wfi を実装しない.

2.4 例外・割り込み処理

このプロセッサが対応している例外・割り込み処理を優先順位の高い順に以下に示す.

1. リセット

命令	内容	形式
lui	load upper immediate	U
auipc	add upper immediate to pc	U
jal	jump and link	J
jalr	jump and link register	J
beq	branch equal	В
bne	branch not equal	В
blt	branch less than	В
bge	branch greater than or equal	В
bltu	branch less than unsigned	В
bgeu	branch greater than or equal unsigned	В
lb	load byte	I
lh	load halfword	I
lw	load word	I
lbu	load byte unsigned	I
lhu	load halfword unsigned	I
sb	store byte	S
sh	store halfword	S
sw	store word	S
addi	add immediate	I
slti	set less than immediate	I
sltiu	set less than immediate unsigned	I
xori	exclusive or immediate	I
ori	or immediate	I
andi	and immediate	I
slli	shift left logical immediate	I
srli	shift right logical immediate	I
srai	shift right arithmetic immediate	I

命令	内容	形式
add	add	R
sub	sub	R
sll	shift left logical	R
slt	set less than	R
sltu	set less than unsigned	R
xor	exclusive or	R
srl	shift right logical	R
sra	shift right arithmetic	R
or	or	R
and	and	R
ecall	environment call	I
csrrw	csr read and write	I
csrrs	csr read and set	I
csrrc	csr read and clear	I
csrrwi	csr read and write immediate	I
csrrsi	csr read and set immediate	I
csrrci	csr read and clear immediate	I
mret	machine-mode exception return	R

表 2: 命令セット

- 2. 不正命令
- 3. 命令アクセス・ミスアライメント
- 4. ECALL 命令

2.5 パイプライン処理

今回設計したプロセッサは、1つの命令を5つのパイプラインステージに分けて、実行される. それぞれのステージの名前と役割は以下の通りである.

1. IF ステージ 次に実行する命令を命令メモリから読み出す.

- ID ステージ 命令を解読して, EX ステージで行われる演算 に必要な入力を用意する.
- 3. EX ステージ 命令で必要な演算を行う.
- MEM ステージ データメモリへのアクセス (読み出し・書き込 み) を行う.
- WB ステージ 汎用レジスタヘデータを書き込む.

命令のパイプライン処理では、それぞれのステージにおいて、どのように命令を実行するかを指定す

る制御信号が必要である. 例えば, EX ステージで ALU を使ってどんな演算を行うか, MEM ステージ でメモリにアクセスするかどうか, WB ステージで 汎用レジスタに値を書き込むかなどの制御信号がある. 講義では, これらの制御信号を ID ステージで生成し, パイプラインレジスタを介して後続のステージに伝播していく設計を学んだ. しかし, 後続のステージの処理までの制御信号の生成を考えることが 難しかったため, 各々のステージに必要な制御信号 はそのステージで生成するような設計にした.

2.6 データハザードとその解決法

パイプライン処理では、異なるステージにおいて、 異なる命令が実行されている。これにより、パイプラ イン処理をしない場合と異なる結果が得られること がある。その原因の1つはデータハザードである。こ の章では、データハザードの1種である RAW (Read After Write) ハザードについて説明してから、今回の プロセッサ設計に採用された解決法について述べる。

2つの命令の間にデータ依存性が存在する時に,先に実行される命令が汎用レジスタを更新する前に,後で実行される命令が同じレジスタの古い値を読み出してしまうことがある.これによって,正確な演算結果を得ることができない.この現象を,RAW (Read After Write) ハザードという.以下,RAW ハザードが発生する状況を記述する.

- 1. 命令 m はレジスタ xn を更新し、命令 m+1 はレジスタ xn の値を用いた演算を行う時.
- 2. 命令 m はレジスタ xn を更新し、命令 m+2 はレジスタ xn の値を用いた演算を行う時.

RAW ハザードを解決するために, データフォワーディングとパイプラインストールの2つの方法がある. RAW ハザードが発生する状況とその解決法を表3にまとめる.

2.6.1 データフォワーディング

データフォワーディングとは、EX (または、MEM) ステージにある命令 m の演算結果を ID (または、EX) ステージにある命令 m+1 (または、命令 m+2) に渡し、命令 m+1 (または、命令 m+2) の EX (または、MEM) ステージで使用する方法である. この

時に、命令m+1(または、命令m+2)はレジスタxnの最新値を用いて演算を行うため、正確な結果が得られる。

データフォワーディングにより、上記の RAW ハザードが発生する状況の中で、命令mがロード命令以外の状況の対処ができる。命令mがロード命令の場合は、パイプラインストールを用いる。

2.6.2 パイプラインストール

パイプラインストールとは、パイプラインの各ステージにある命令を次のステージに進まないようにする方法である。データフォワーディングに必要なデータが生成されるまでに、パイプラインをストールすれば、データフォワーディングで解決できる状況が作られるため、RAW ハザードが解決できる.

2.7 制御ハザードとその解決法

パイプライン処理が、パイプライン処理をしない場合と異なる結果が得られる原因のもう1つは制御ハザードである。この章では、分岐命令による制御ハザードについて説明してから、今回のプロセッサの設計で採用した解決法について述べる。

分岐命令が存在する時に、その命令の分岐方向によって次に実行する命令が決まる.パイプライン処理をしない場合、分岐命令の実行を注意する必要はないが、今回の5段パイプライン処理では、分岐命令の分岐方向がEXステージにならないと判明されない。それに、分岐命令の後に続く命令がすでにパイプラインのIFステージとIDステージにおいて実行されている。分岐方向が「分岐しない」ならば、問題なく命令の実行を続くことができる。しかし、分岐方向が「分岐する」ならば、IFステージとIDステージにある命令は実行してはいけない。IFステージとIDステージにある命令は実行してはいけない。IFステージとIDステージにある命令は実行してはいけない。IFステージとIDステージにある命令は実行してはいけない。IFステージとIDステージの命令を実行してしまったら、プログラムの実行結果が正しくなくなる。

2.7.1 パイプラインストール

パイプライン処理で、分岐命令がある時に、IF ステージと ID ステージにある命令を実行しない方法の1つとしてパイプラインストールがある. 分岐命令の分岐方向が判明されるまでに、分岐命令の後に続く命令がパイプラインに入らないように、パイプ

レジスタ xn を更新する命令	レジスタ xn を用いる命令	解決法
ロード命令以外	ストア命令	データフォワーディング
1. IIII 117X\\	V 1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(EX または MEM → ID)
ロード命令以外	ストア命令以外	データフォワーディング
口一下脚刀以外	7 1 7 HI 1125/14	(EX または MEM → ID)
ロード命令	ストア命令	データフォワーディング
T 1, th) 1)	V 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$(MEM \rightarrow EX)$
ロード命令	ストア命令以外	パイプラインストール

表 3: RAW ハザードに関わる命令とその解決法

ラインをストールする方法である. そして, 分岐方向が分かってから, パイプラインストールを解除し, 分岐方向を元に次の命令をフェッチする. しかし, パイプラインストールを採用すれば, 分岐命令がある度に, 2 つのクロックサイクルが無駄になってしまう.

2.7.2 パイプラインフラッシュ

パイプラインストールの他に、パイプラインフラッシュによって制御ハザードを解決する方法がある. 分岐命令に続く命令がプロセッサの内部状態 (メモリと汎用レジスタ) に対する変更を無効化することを「パイプラインをフラッシュする」という. 例えば、分岐命令の分岐方向が「分岐する」場合でも、内部状態の更新に関連する制御信号を無効化したまま、IFステージと ID ステージにある命令の実行を続ける.

その結果、分岐方向が「分岐しない」場合では、クロックサイクルの無駄なく、分岐命令に続く命令がそのまま実行されていく、そして、分岐結果が「分岐する」場合では、2つのクロックサイクルが無駄になってしまう、パイプラインストールと比べたら、分岐によるクロックサイクル数のペナルティが少ないため、今回の設計にパイプラインフラッシュを採用した。

2.8 プロセッサの名前

3 プロセッサの機能検証

用意されたプログラム (表 4) を用いてプロセッサの機能検証を行う. 機能検証は Verilog-HDL で記述したプロセッサに対し, 論理シミュレーター xmverilog と波形ツール SimVision を用いてシミュレー

ションを行った. テストプログラムが正しく実行され、正確な出力が得られたことを確認した.

4 プロセッサの性能評価と論理合成

設計したプロセッサの性能を, プログラム実行の クロックサイクル数, 最小動作クロック周期, 面積, と消費電力という面で評価する.

4.1 評価方法

MiBench ベンチマークプログラム [1] の一部を用い、プログラム実行のクロックサイクル数を求めた. 今回の性能評価に使われたプログラムの一覧を表 5 にまとめる.

次に、論理合成ツール Design Compiler を用いて 論理合成を行い、最小動作クロック周期、面積、と消 費電力を測定した.

最小動作クロック周期の求め方について説明する.

- 1. タイミング制約を 10[ns] と設定して論理合成を行い、論理合成の結果にある slack (与えたタイミング制約と最大遅延時間との差) が正であることを確認する.
- 2. タイミング制約を 9[ns], 8[ns], ... のように 1[ns] ずつ下げ, slack が負になるタイミング制約を見つける.

例えば、タイミング制約を 5[ns] に設定した時に slack が負になったら、作成したプロセッサの最小動作クロック周期は 6[ns] になる.

テストプログラム	言語	プログラム内容
load	アセンブリ	ロード命令の動作検証
store	アセンブリ	ストア命令の動作検証
p2	アセンブリ	演算と分岐命令の動作検証
trap	アセンブリ	命令の動作検証
hello	С	Hello World! をコンソールに表示するプログラム
napier	С	Napier's Constant, e の値を 64 桁の精度で計算するプログラム
pi	С	pi の値を 64 桁の精度で計算するプログラム
prime	С	2 を含め, 40 個の素数を昇順に見つけるプログラム
bubblesort	С	100 個の整数を Bubble Sort でソートするプログラム
insertsort	С	100 個の整数を Insert Sort でソートするプログラム
quicksort	С	100 個の整数を Quick Sort でソートするプログラム

表 4: 機能検証用プログラム

テストプログラム	言語	プログラム内容
bitents	C	7つの方法で与えられた数字の
onents		ビット数を求めるプログラム
stringsearch	C	ケース・インセンシティブ方式で
sunigsearch		文字の検索するプログラム
diiketre	C	ダイクストラアルゴリズムで与えられた
dijkstra		グラフのノード間の最短距離を求めるプログラム

表 5: 性能評価用プログラム

4.2 評価結果

各ベンチマークのプログラムの実行に必要なクロックサイクル数を表 6 に示す. また, プロセッサの最小動作クロック周期, 面積, と消費電力の測定結果を表 7 に示す.

ベンチマークプログラム	クロックサイクル数
stringsearch	10594
bitents	56040
dijkstra	4079473

表 6: ベンチマークプログラムの実行クロックサイクル数 (改善前)

最小動作クロック周期 [ns]	面積 [μm²]	消費電力 [mW]
6	357534.7228	7.5732

表 7: 論理合成の結果 (改善前)

5 プロセッサの性能改善方法と評価

プロセッサの速度性能面を向上する方法の1つは、 プログラムの実行時間を短くすること. プログラム の実行時間は式1で求められる. 式1より、プログ ラムの実行クロックサイクル数、または、プログラム の動作クロック周期、または、両方も減らしたら、プログラムの実行時間が短くなることが分かる.

プログラムの実行時間

=プログラムの実行クロックサイクル数 (1) × プロセッサの動作クロック周期

今回設計したプロセッサのプログラムの実行クロックサイクル数を減少させるために,動的分岐予測を導入した.動的分岐予測の詳細については,5.1章で述べる.

分岐予測を実装した後, プログラムの実行クロックサイクル数を, 平均的に 20.59% 倍で減らすことができたが, プロセッサの最小動作クロック周期が

図 2: 予測器の参照テーブル

6[ns] から 9[ns] までに増えてしまった. 分岐予測実装前と実装後のプロセッサを比較した時に, 分岐予測を実装する前のプロセッサの方が, プログラムの実行時間が短いことが分かった. そこで, 論理合成の結果を元に, クリティカルパスの短縮を試みた. クリティカルパスの短縮方法については, 5.2 章で述べる.

5.1 動的分岐予測

プロセッサが動的分岐予測機能をもっているなら、 分岐する時に失われるクロックサイクル数を減らす ことができる.この章では、今回の設計において動 的分岐予測の実装方法と評価結果について述べる.

5.1.1 分岐予測の対象命令

分岐予測の対象命令を,無条件分岐命令と条件付き分岐命令(それぞれ表2にあるJ形式とB形式の命令)とする.無条件分岐命令は必ず分岐するので,条件付き分岐命令よりも予測しやすいため,分岐予測の対象に含めることにした.

5.1.2 分岐方向と分岐アドレスの予測方法

無条件分岐命令と条件付き分岐命令の予測しやすさに違いがあるため、命令ごとに予測できるローカル予測器を採用した [2]. 実装では、エントリー数が 32 の参照テーブル (図 2) を用意した。命令のアドレスの下位 2 ビットは常に 00 であるため、参照テーブルのエントリーは、対象命令のアドレスの 6 ビット目から 2 ビット目までの値で指定する。そして、1 つのエントリーに 2[bit] の状態信号と 32[bit] の分岐先アドレスを保持する、状態信号の値と分岐方向の予測を表 8 に示す。

状態信号	分岐方向の予測
00 (STRONG_NOT_TAKE)	分岐しない
01 (WEAK_NOT_TAKE)	分岐しない
10 (WEAK_TAKE)	分岐する
11 (STRONG_TAKE)	分岐する

表 8: 予測器の状態信号と分岐方向の予測

命令メモリからフェッチした命令が予測の対象命令である時に、参照テーブルのエントリーの状態信号と分岐先アドレスを元に、分岐方向と分岐先アドレスを予測する. なお、予測の対象命令ではない時に、「分岐しない」と予測する.

5.1.3 予測期の参照テーブルの更新

分岐方向、または分岐先アドレスの結果が判明されたら、予測が成功したかどうかを元に、予測器の参照テーブルの更新を行う。参照テーブルの該当エントリーに対し、状態信号を図3のように更新し、分岐先アドレスを ALU で計算された分岐先アドレスへ更新する。

5.1.4 分岐予測の評価と論理合成

エントリー数が 32 個の参照テーブルをもつ分岐 予測器を, MiBench ベンチマークプログラムで実行 クロックサイクル数とミス率を測定してから, 論理 合成を行った. 実行クロックサイクル数の結果を表 9 に, ミス率の結果を表 10 に, 論理合成の結果を表 11 にまとめる.

参照テーブルのエントリー数を変化させて同じ項目で評価を行ったが、32個以上の参照テーブルをもつ場合の論理合成にかかる時間が長かったため、32個のエントリーを選んだ.

5.1.5 更に改善できる点

今回の分岐予測の参照テーブルの実装方法であれば、シミュレーション上でしか、正確な結果、または、報告した通りの性能向上が出せない可能性がある。シミュレーションの環境において、あるエントリーの状態信号が初期化されていない時、その信号は 00,01,10,11 のどれでもなく、xx である。ここで、Verilog-HDL で 2[bit] の条件文をもつ case 分を使えば、default で xx の信号に対する処理がで

図 3: 2[bit] 予測器: 状態遷移図

きる. 今回の実装において, 状態信号が xx の場合, 予測を WEAK_NOT_TAKEN と出力するように記述している. しかし, 実機では xx の信号が存在しないため, この実装が実機上どんな動作をするかがわからない. また, エントリー数が 32 個以上の参照テーブルを実装すれば, 参照テーブルがメモリとして論理合成される. プロセッサのリセット時に全てのエントリーを 0 にリセットすることが現実的ではない. そのため, 参照テーブルの実装方法を変えるか, 参照テーブルを使わない実装方法に変える必要がある.

5.2 クリティカルパスの短縮

論理合成の結果から, クリティカルパスが EX ステージにあることが分かった. そのクリティカルパ

スは以下の通りである.

- 1.ID/EX パイプラインレジスタ
- →2.ALU のオペランドと制御信号の生成
- $\rightarrow 3.ALU$ における演算
- →4. 分岐予測の答え合わせと分岐の判断
- $\rightarrow 5.ID$ ステージのフラッシュ
- $\rightarrow 6.ID/EX$ パイプラインレジスタ

上記のクリティカルパスを短縮するために,以下 のことを行った.

- 1. ALU のオペランドの生成を ID ステージで行う (5.2.1 章)
- 2. パイプラインフラッシュをパイプラインレジ スタで行う (5.2.2 章)

ベンチマークプログラム	クロックサイクル数	クロックサイクル数
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(分岐予測実装前)	(分岐予測実装後)
stringsearch	10594	6966
bitents	56040	44680
dijkstra	4079473	3048011

表 9: 分岐予測実装前後のプログラム実行クロックサイクル数

ベンチマークプログラム	分岐予測対象命令数	予測失敗命令数	予測失敗率 [%]
stringsearch	2113	131	6.20
bitents	9930	690	6.95
dijkstra	869932	12886	1.48

表 10: 分岐予測の予測失敗率

5.2.1 ALU のオペランドの生成を ID ステージで 行う

EX ステージで演算を行う前に, 以下のオペランドと制御信号を用意する必要がある.

1. オペランド

- (a) ALU の演算のオペランド
- (b) 比較専用 ALU の演算のオペランド

2. 制御信号

- (a) ALU に対して演算の種類を指定する制 御信号
- (b) 比較専用 ALU に対して比較の種類を指 定する制御信号

倫理合成の結果から, 信号が生成されるまでに必要な時間から, 演算のオペランド (1a と 1b) の生成がボトルネックになっていた. これを改善するために, 演算のオペランドの生成回路を ID ステージに移動させた.

その結果、クリティカルパスの2である「ALUのオペランドと制御信号の生成」が「ALUの制御信号の生成」になり、プロセッサの最小動作クロック周期を9[ns]から8[ns]まで減らすことができた。それでも、プログラムの実行時間が、まだ分岐予測を導入する前より長いため、次の改善を実施した。

5.2.2 パイプラインフラッシュをパイプラインレジ スタで行う

実装していたパイプラインフラッシュの回路では、プログラムの実行の中で分岐が起きた時に、パイプラインレジスタではなく、IF ステージと ID ステージのフラッシュをステージ内で行っていた (図 4a). これにより、ID ステージの命令がデータメモリと汎用レジスタに対する書き込み信号の生成タイミングは分岐結果が出た後のタイミングになってしまう. 分岐結果が分かるまでに ID ステージは待たないといけないため、無駄な時間が生じてしまう.

これを改善するために、パイプラインのフラッシュをステージ内ではなく、パイプラインレジスタで行うようにした (図 4b). 改善後の回路では、例えば ID ステージで「データメモリに対して書き込む」信号が生成されても、EX ステージの分岐結果が「分岐する」なら、その信号が ID/EX パイプラインレジスタ

に保存される前に、「データメモリに対して書き込まない」へと無効化される.

この改善によってクリティカルパスが以下のように短くなった.

1.ID/EX パイプラインレジスタ

- →2.ALU のオペランドと制御信号の生成
- $\rightarrow 3.ALU$ における演算
- →4. 分岐予測の答え合わせと分岐の判断
- $\rightarrow 5.EX/MEM$ パイプラインレジスタ

そして、プロセッサの最小動作クロック周期を 8[ns] から 5[ns] まで減らすことができた。 改善によって得られたクロック周期は分岐予測導入前の 6[ns] よりも短くなったので、分岐予測機能を今回のプロセッサの設計に導入してもいいと判断した。

5.2.3 クリティカルパスの短縮後の論理合成

クリティカルパスの短縮を行った後の性能評価の結果を表 11 にまとめた. クリティカルパスの短縮により, 分岐予測の実装によって 9[ns] までに増えたクロック周期を 5[ns] へと減少させることができた.

5.2.4 更に改善できる点

後二週間があれば、1つのステージ内の処理を細分化して複数個のステージで行うように、パイプラインのステージを増やすことをやってみたかった.1つのステージ内の処理負担が減少すれば、クリティカルパスも短くなるだろう.それによってプロセッサのクロック周期を更に短くできるのではないかと考えている.

6 まとめ

今回のプロセッサ設計演習では、5段のパイプライン処理、例外処理と分岐予測機能をもつプロセッサを設計した.テストプログラムを用いてプロセッサの動作確認を行い、プロセッサが正しく動作することを確認した.そして、MiBenchベンチマークプログラムを用いてプロセッサの性能評価を行い、論理合成も行った.実際にプロセッサを設計するにあたり、細かいところまで考慮しなければ、思い通りの動作が出ないことを痛感した.この演習を通じて、講

図 4: パイプラインフラッシュ処理の回路とクリティカルパス

義で習ったプロセッサの動作原理をより深く理解することができたと思う. また, 困難なことをやろうとする時に, それを複数個の実現可能なタスクに分解して行っていくことで, モチベーションを保ちながら続けられることを学ぶことができた.

謝辞

プロセッサの設計環境 woodblock を維持して くれている先輩と教員たちに、テストプログラムの 用意と質問への対応をしてくれた先輩に、一緒に悩 んで考えてくれた同期に感謝を伝えたい.

- 参考文献
- [1] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown. Mibench: A free, commercially representative embedded benchmark suite. In *Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538)*, pp. 3–14, 2001.
- [2] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative Approach. Katey Birtcher, 6 edition, 2019.

- [3] David Patterson and Andrew Waterman. RISC-V 原典オープン・アーキテクチャのススメ. 安達功, 11 2018.
- [4] Andrew Waterman, Krste Asanovic, and SiFive Inc. *The RISC-V Instruction Set Manual Volume II: Privileged Architecture*, 6 2019. Document Version 20190608-Priv-MSU-Ratified.

プロセッサ	最小動作クロック周期 [ns]	面積 [μm²]	消費電力 [mW]
分岐予測実装前	6	357534.7228	7.5732
分岐予測実装後	9	936675.8334	10.6318
クリティカルパス短縮後	5	764805.1213	15.3567

表 11: 性能改善前後の論理合成の結果

付録 A プロセッサのブロック図

図 5: プロセッサのブロック図