Data-driven Comparison of Plague Models Senior Project

Luke Mattfeld

Eastern Washington University

Fall, 2020

Outline

Background

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Patterns

Pattern Formation

Patterns

Background

Pattern Formation

Patterns in Nature:

Background 0.0

Pattern Formation

Background 0.0

Pattern Formation

Morphogenesis

Morphogenesis

Morphogens related to cell growth

Background

Morphogenesis

- Morphogens related to cell growth
- Chemical that react

Background

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Background

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Background

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Preliminary Models 00000

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

A, B Concentration of Chemical Morphogens

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A , D_B Diffusion coefficients

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

General Model

$$\frac{\partial A}{\partial t} = F(A, B) + D_A \nabla A$$
$$\frac{\partial B}{\partial t} = G(A, B) + D_B \nabla B$$

- A, B Concentration of Chemical Morphogens
- F, G Chemical Reaction Equations
- D_A, D_B Diffusion coefficients
- ∇A , ∇B Diffusion

Turing-specific models

• Reaction Diffusion is very general

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Keeling-Gilligan Rat Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Keeling-Gilligan Rat Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Keeling-Gilligan Rat Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Keeling-Gilligan Rat Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Keeling-Gilligan Rat Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

• Reaction Diffusion is very general

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Human-Ectoparasite Model

Turing-specific models

• Reaction Diffusion is very general

Human-Ectoparasite Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Human-Ectoparasite Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Human-Ectoparasite Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Human-Ectoparasite Model

Turing-specific models

- Reaction Diffusion is very general
- Most RD equations don't form patterns

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Markov Chains

Markov Chains

Patterns in Nature:

Markov Chains

• Patterns in Nature:

Markov Chains

• Patterns in Nature:

Monte Carlo Method

Monte Carlo Method

Morphogens related to cell growth

Monte Carlo Method

- Morphogens related to cell growth
- Chemical that react

Monte Carlo Method

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Monte Carlo Method

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Monte Carlo Method

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

MCMC

Patterns in Nature:

MCMC

• Patterns in Nature:

MCMC

• Patterns in Nature:

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Pattern Formation

Pattern Formation

Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Pattern Formation

Pattern Formation

Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Morphogenesis

Morphogenesis

Morphogens related to cell growth

Morphogenesis

- Morphogens related to cell growth
- Chemical that react

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Morphogenesis

- Morphogens related to cell growth
- Chemical that react
- Chemicals that diffuse?

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Results
- 6 Future Work

Pattern Formation

Pattern Formation

Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Pattern Formation

Pattern Formation

Patterns in Nature:

Pattern Formation

• Patterns in Nature:

Pattern Formation

• Patterns in Nature:

