Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

PSB Singapore

Choose certainty.

Add value.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH

FCC Part 15B: 2008 (CLASS B)

OF A

WIRELESS BRIDGING ROUTER [Model : IC-RTR100-00] [FCC ID : W63-RWW023]

TEST FACILITY TÜV SÜD PSB Pte Ltd,

Electrical & Electronics Centre (EEC), Product Services,

1 Science Park Drive, Singapore 118221

FCC REG. NO. 90937 (3m & 10m OATS)

99142 (10m Semi-Anechoic Chamber) 871638 (3m Semi-Anechoic Chamber) 325572 (10m Semi-Anechoic Chamber)

IND. CANADA REG. NO. 2932I-1 (3m and 10m Semi-Anechoic Chambers)

PREPARED FOR CEEDTec Sdn. Bhd.

303-4-5, 303-4-6, Krystal Point Corporation Park,

Jin Sultan Azlan Shah,

11900 Bayan Lepas, Penang, Malaysia

Tel: +60 4 643 4573 Fax: +60 4 644 4679

QUOTATION NUMBER Q09EEC00499

JOB NUMBER S09EEC00456

PREPARED BY

Quek Keng Huat

Associate Engineer

TEST PERIOD 04 Mar 2009 – 11 Mar 2009

APPROVED BY

full

Lim Cher Hwee Assistant Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. Testing Services No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0380-A-1 LA-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0385-E LA-2007-0386-C

The results reported herein have been performed in accordance with the laboratorys terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accreditation" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

ANNEX A - EUT PHOTOGRAPHS / DIAGRAMS

ANNEX B - FCC LABEL & POSITION

ANNEX C - USER MANUAL, TECHNICAL

DESCRIPTION, BLOCK & CIRCUIT

DIAGRAMS

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
FCC Part 15B : 2008		
15.107	Conducted Emissions (Class B)	Pass
15.109	Radiated Emissions (Class B)	Pass

Notes

- 1. All test measurement procedures are according to ANSI C63.4: 2003.
- 2. The EUT contains a certified FCC RF module which bears the FCC ID: MK8CPX-05-WLM54G. The RF module was integrated into the EUT without modifications. As such, only the emissions of non-RF portion (digital portion) were evaluated.

Modifications

The Wireless Bridging Router (EUT) was brought to compliance to Radiated Emissions by following modifications: (See modification photo)

- Add metallic coating.
- 2. LED cable twisted.
- 3. Add an ferrite bead part number (Fair-Rite 28B0686-2) was added to the DC jack end of the AC/DC power adaptor used.

PRODUCT DESCRIPTION

Description : The Equipment Under Test is a WIRELESS BRIDGING ROUTER.

It supports both the wireless WIFI 802.11b/g and Ethernet

10/100Mbps interface.

Manufacturer : CEEDTec Sdn. Bhd.

303-4-5, 303-4-6, Krystal Point Corporation Park,

Jin Sultan Azlan Shah,

11900 Bayan Lepas, Penang, Malaysia

Model Number : IC-RTR100-00

Generic Part Name : CT-RWW023-00

Serial Number : Nil

Microprocessor : Refer to manufacturer

Operating Frequency : 32MHz (highest operating frequency on digital circuit)

Clock / Oscillator Frequency : 32MHz (highest operating frequency on digital circuit)

Port / Connectors : USB mini type B connector & 10/100 Ethernet RJ45 port

Rated Input Power : 110V 60Hz

Accessories : UEC Switching AC/DC Power Adapter

Model GFP121U-1210

Input 100V-240V, 0.3A, 50Hz/60Hz

Output 12Vdc, 1.0A

SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description	Model, Serial & FCC ID Number	Cable Description
(Including Brand Name)		(List Length, Type & Purpose)
Fujitsu Laptop	M/N: LBS6130-AH051E0B0	2.00m unshielded power cable
	S/N: R3Z02446	2.00m RJ45 LAN cable
	FCC ID: Nil	
Fujitsu Power Adapter	M/N: UJ8	2.00m unshielded power cable
(Laptop)	S/N: 0529371286	
	FCC ID: Nil	
Dell Laptop	M/N: Latitude D510	2.00m unshielded power cable
	S/N: CN-0N8719-4863-625-0036	2.00m RJ45 LAN cable
	FCC ID: Nil	
JET Power Adapter	M/N: PA-1650-05DM	2.00m unshielded power cable
(Laptop)	S/N: CN-0FF171-71675-0FE9	
	FCC ID: Nil	

EUT OPERATING CONDITIONS

FCC Part 15B

- 1. Conducted Emissions
- 2. Radiated Emissions

The Wireless Bridging Router (EUT) was exercising "Pinging" via the following modes:

- Wi-Fi and LAN mode
- Wi-Fi mode

CONDUCTED EMISSION TEST

FCC Part 15.107 Conducted Emission Limits (Class B)

AC Port

Frequency Range	Limit Values (dBµV)				
(MHz)	Quasi-peak (QP) Average (AV)				
0.15 - 0.5	66 – 56 *	56 – 46 *			
0.5 - 5.0	56	46			
5.0 - 30.0	60	50			
* Decreasing linearly with the logarithm of the frequency					

FCC 15.107 Conducted Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver – ESI1	ESI40	100010	06 Oct 2009
Agilent EMC Analyzer-SA7	E7403A	US41160167	20 May 2009
Schaffner LISN – LISN10 (for EUT)	NNB42	04/10055	03 Jul 2009
EMCO LISN (for supporting) – LISN6	3825/2	9309-2127	03 Jul 2009
Britz-Link AC Power Adapter	Nil	Nil	05 Nov 2009

CONDUCTED EMISSION TEST

AC Port

FCC 15.107 Conducted Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipment were powered separately from another LISN.

FCC 15.107 Conducted Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10kHz. Both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line.

Sample Calculation Example

At 20 MHz

Q-P limit (Class B) = 1000 μ V = 60.0 dB μ V

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.2 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dBμV

(Calibrated for system losses)

Therefore, Q-P margin = 40.0 - 60.0 = -20.0

i.e. 20.0 dB below Q-P limit

CONDUCTED EMISSION TEST

Conducted Emissions Test Setup (Front View)

Conducted Emissions Test Setup (Rear View)

CONDUCTED EMISSION TEST

FCC 15.107 Conducted Emission Results

Operating Mode	Wi-Fi and LAN Mode (worst mode)	Temperature	21°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Line Under Test	AC Mains	Atmospheric Pressure	1030mbar
Class	В	Tested By	Zhou Cheng Wen

Frequency (MHz)	Q-P Value (dBμV)	Q-P Margin (dB)	AV Value (dBμV)	AV Margin (dB)	Line
0.1940	48.4	-15.5	45.8	-8.1	Live
0.3895	42.9	-15.2	40.3	-7.8	Neutral
0.9733	38.8	-17.2	29.4	-16.6	Live
1.1601	43.4	-12.6	32.4	-13.6	Neutral
1.3594	39.2	-16.8	28.0	-18.0	Neutral
1.9418	42.5	-13.5	29.3	-16.7	Neutral

Notes

- 1. All possible modes of operation were investigated from 150kHz to 30MHz. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings: 150kHz - 30MHz

RBW: 10kHz VBW: 30kHz

4. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 9kHz - 30MHz is $\pm 3.0dB$.

RADIATED EMISSION TEST

FCC Part 15.109 Radiated Emission Limits (Class B)

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m		
30 - 88	40.0		
88 - 216	43.5		
216 - 960	46.0		
Above 960	54.0*		
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.			

FCC Part 15.109 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz –26.5GHz) –	ESMI	849182/003	21 Aug 2009
ESMI1		848926/007	
(Ref)			
Schaffner Preamplifier (9kHz-2GHz) –PA13	CPA9231A	3422	13 Feb 2010
Schaffner Bilog Antenna – BL3 (Ref)	CBL6112B	2549	18 Dec 2009

RADIATED EMISSION TEST

FCC Part 15.109 Radiated Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

FCC Part 15.109 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which
- is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions. The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna 3. polarization, and adjusting the antenna height in the following manner:
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - The EUT was then rotated to the direction that gave the maximum emission.
 - Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were 4. carried out.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points 5. were measured.
- The frequency range covered was from 30MHz to 5th harmonic of the highest frequency used or 6. generated by the EUT, using the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $70.8 \mu V/m = 37.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 31.0 dBuV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 31.0 - 37.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

FCC Part 15.109 Radiated Emission Results

Operating Mode	Wi-Fi and LAN Mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Lucas Beh

Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
45.4530	28.7	-11.3	193	100	V
800.1930	24.7	-21.3	144	100	Н
809.8260	34.5	-11.5	221	100	Н
832.4660	15.8	-30.2	22	236	Н
897.0220	37.4	-8.6	160	100	Н
929.2300	35.7	-10.3	282	100	Н

Operating Mode	Wi-Fi Mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Lucas Beh

Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
46.1230	34.6	-5.4	115	103	V
62.7420	30.5	-9.5	35	124	V
202.6960	33.1	-10.4	76	152	Н
408.5600	20.0	-26.0	145	100	V
801.4440	15.9	-30.1	238	159	V
832.5150	19.2	-26.8	149	100	V

Notes

- All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30 MHz - 25.0 GHz is $\pm 4.6 \text{dB}$.

This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- 2. Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "quarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
- 6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 10. Unless otherwise stated, the tests are carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

January 2008

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Front View

Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Bottom View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Internal View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

S09EEC00456

Main-Board PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Main-Board PCB Trace Side

S09EEC00456

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

LED Board PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Power Adapter Front View

Power Adapter Rear View

FCC LABEL & POSITION

ANNEX B

ANNEX B FCC LABEL & POSITION

FCC LABEL & POSITION

ANNEX B

Labeling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

Physical Location of FCC Label on EUT

USER MANUAL TECHNICAL DESCRIPTION & BLOCK & CIRCUIT DIAGRAMS

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)