

531, 973
Rec'd PCT TO 28 APR 2005

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年5月13日 (13.05.2004)

PCT

(10) 国際公開番号
WO 2004/039981 A1

(51) 国際特許分類⁷: C12N 15/12, 1/15,
1/19, 1/21, 5/00, C07K 14/705, 16/28, C12P 21/02, G01N
33/15, 33/50, A61K 39/395, A61P 37/08

場市 駒門1丁目135番地 中外製薬株式会社内
Shizuoka (JP).

(21) 国際出願番号: PCT/JP2003/013921

(74) 代理人: 清水 初志, 外(SHIMIZU,Hatsushi et al.); 〒
300-0847 茨城県 土浦市 郡町1-1-1 関鉄つくばビル
6階 Ibaraki (JP).

(22) 国際出願日: 2003年10月30日 (30.10.2003)

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(25) 国際出願の言語: 日本語

(84) 指定国(広域): ARIGO 特許 (BW, GH, GM, KE, LS,
MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特
許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッ
パ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(26) 国際公開の言語: 日本語

添付公開書類:
— 国際調査報告書

(30) 優先権データ:
特願2002-316680

2002年10月30日 (30.10.2002) JP
特願2002-354165 2002年12月5日 (05.12.2002) JP

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイドスノート」を参照。

(71) 出願人(米国を除く全ての指定国について): 中
外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI
KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間5丁
目5番1号 Tokyo (JP).

(71) 出願人および

(72) 発明者: 北村 俊雄 (KITAMURA,Toshio) [JP/JP]; 〒108-
0072 東京都 港区 白金 6-16-20-406 Tokyo
(JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 熊谷 英敏 (KU-
MAGAI,Hidetoshi) [JP/JP]; 〒412-8513 静岡県 御殿

WO 2004/039981 A1

(54) Title: MEMBRANE PROTEIN ORIGINATING IN MAST CELLS

(54) 発明の名称: マスト細胞由来の膜タンパク質

(57) Abstract: Using an originally developed effective signal sequence trapping method, a mouse bone marrow-origin cultured mast cell cDNA library is screened. As a result, a gene encoding a I type membrane protein, having an immunoglobulin domain as an extracellular domain and having a motif transmitting regulatory signal into cells is successfully isolated.

(57) 要約: 独自に開発した効率的なシグナル配列トラップ法を用い、マウス骨髄由来培養マスト細胞cDNAライブラリのスクリーニングを行なった結果、I型の膜蛋白質をコードし、細胞外ドメインに一つのイムノグロブリンドメインを有し、細胞内に抑制性シグナルを伝達するモチーフを有する遺伝子を同定することに成功した。

- 1 -

明細書

マスト細胞由来の膜タンパク質

5 技術分野

本発明は、マスト細胞に由来する、新規な膜蛋白質およびその遺伝子、並びにそれらの製造および用途に関する。

背景技術

10 マスト細胞は、アトピー性皮膚炎、鼻炎、喘息などのアレルギー疾患において、抗原刺激によりヒスタミン等の炎症関連物質を放出するエフェクター細胞として働くことが知られている。現在、これらのアレルギー疾患の治療薬としては、抗ヒスタミン剤やステロイドなどのマスト細胞からの炎症関連物質の生成あるいは遊離を抑制する薬剤、あるいはその作用に拮抗する薬剤が使用されているが、より選択性の高い有効な薬剤の出現が望まれている。

これまでマスト細胞のシグナル伝達経路の制御に関する膜タンパクの候補として、Fc γ RIIB、gp49B、SIRP α 等が知られているが、アレルギー疾患に関する抗原刺激応答を制御するメカニズムの全体像は明らかにされていない。

20 発明の開示

本発明は、マスト細胞に由来し、マスト細胞のシグナル伝達経路の制御に関与すると考えられる新規な膜タンパク質およびその遺伝子、並びにそれらの製造および用途を提供する。本膜タンパク質は、マスト細胞における抗原刺激応答あるいは生存・増殖シグナル伝達の制御メカニズムの解明に利用可能である。

25 本発明者等は、上記課題を解決するために、マスト細胞に関してよく特徴付けられたモデルであるマウス骨髄由来培養マスト細胞からcDNAライブラリを調製し、

- 2 -

レトロウイルス媒介発現クローニングシステム (Kitamura, T. et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9146-9150) を用いて独自に開発した効率的なシグナル配列トラップ法 (SST-REX法) (Kojima, T. and Kitamura, T. (1999) Nature Biotechnol. 17, 487-490) を用い、シグナルペプチド (von Heijne, (1985) J. Mol. Biol. 184, 99-105) を有する分子のスクリーニングを行なった。SST-REX法では恒常的活性型サイトカインレセプターMPLとの融合蛋白質を発現するライブライマーをスクリーニングすることによって、MPLを細胞表面に発現させることができる蛋白質をコードするcDNAを探索する。この方法では、MPLの細胞表面への発現による、IL-3依存性の細胞株への自律増殖能の賦与を指標とするため、簡便に目的のクローンを選別できる。

本発明者等は、 2.0×10^6 のクローンをスクリーニングした結果、I型の膜蛋白質をコードし、細胞外ドメインに一つのイムノグロブリンドメインを有し、細胞内に抑制性シグナルを伝達するモチーフを有する遺伝子を同定した。それをMC-PIR1と命名した（その後LMIR1と改名）。また、MC-PIR1のイムノグロブリンドメインとアミノ酸レベルでおよそ90%相同性を有する分子も同じ遺伝子ライプラリーから見出し、MC-PIR2と命名した（その後LMIR2と改名）。

これらの遺伝子は、マスト細胞に特異的な発現分布を示した。また、MC-PIR1は、架橋することによりリン酸化を受け、シグナル伝達経路の制御に関するアダプタータンパクであるホスホチロシン脱リン酸化酵素SHP-1およびSHP-2、およびホスホイノシチド脱リン酸化酵素SHIPとの結合性を示した。また、MC-PIR2は、ITAMを有するシグナル伝達分子DAP10、DAP12、FcR γ と会合した。従って、これらのタンパク質はマスト細胞のシグナル伝達経路の制御に関する膜タンパクであると考えられる。

MC-PIR1およびMC-PIR2はマウス由来の遺伝子であるが、これらの塩基配列を基に遺伝子検索を行った結果、これらと相同性を示すヒト遺伝子CMRF-35H、IRp60、及びCMRF-35Aの存在が明らかになった。これらのヒト遺伝子がマスト細胞のシグ

ナル伝達経路の制御に関与することは知られておらず、MC-PIR1およびMC-PIR2を利用して得られた知見は、これらのヒト遺伝子産物の新たな利用方法を提供する。

MC-PIR1、MC-PIR2、及びこれらのヒトホモログの天然リガンドは不明であるが、これらの遺伝子発現産物を利用すればその天然リガンドの発見が可能である。ま

た、同様に天然リガンドの作用をミックする化合物あるいは抗体のスクリーニングにも利用可能である。このスクリーニングの結果得られる化合物もしくは抗体は、肥満細胞の活性化シグナル伝達を阻害し、新規な作用メカニズムをもった抗アレルギー剤となる可能性が考えられる。

本発明は、マスト細胞に由来する膜タンパク質、その遺伝子、およびそれらと

機能的に同等な分子、並びにそれらの製造および用途に関し、より具体的には、

(1) 下記 (a) から (d) のいずれかに記載のDNA、

(a) 配列番号：2または4に記載のアミノ酸配列からなる蛋白質をコードするDNA。

(b) 配列番号：1または3に記載の塩基配列のコード領域を含むDNA。

(c) 配列番号：2または4に記載のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列を有する蛋白質をコードするDNA。

(d) 配列番号：1または3に記載の塩基配列からなるDNAとストリンジエントな条件下でハイブリダイズするDNA。

(2) SHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DAP10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質からなる群より選択される蛋白質と結合する蛋白質をコードする、(1)に記載のDNA、

(3) (1)に記載のDNAによりコードされる蛋白質、

(4) (1)に記載のDNAが挿入されたベクター、

(5) (1)に記載のDNAまたは(4)に記載のベクターを保持する宿主細胞、

(6) (5)に記載の宿主細胞を培養し、該宿主細胞またはその培養上清から

発現させた蛋白質を回収する工程を含む、(3)に記載の蛋白質の製造方法、

(7) (3)に記載の蛋白質に結合する抗体、

(8) 配列番号：1または3に記載の塩基配列からなるDNAまたはその相補鎖
5 に相補的な少なくとも15ヌクレオチドを含むポリヌクレオチド、

(9) (3)に記載の蛋白質に結合する化合物のスクリーニング方法であって、

(a) 該蛋白質に被検試料を接触させる工程、

(b) 該蛋白質と被検試料との結合活性を検出する工程、

(c) 該蛋白質に結合する活性を有する化合物を選択する工程、

10 を含む方法、

(10) (3)に記載の蛋白質とSHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DA
P10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質からなる群より選択され
る蛋白質との結合を阻害する化合物のスクリーニング方法であって、

(a) 被検試料の存在下で(3)に記載の蛋白質とSHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DAP10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質からなる群より選択される蛋白質とを接触させる工程、

(b) これら蛋白質の結合活性を検出する工程、

(c) 被検試料非存在下で検出した場合と比較して、これら蛋白質の結合活性を低下させる化合物を選択する工程、

20 を含む方法。

(11) 抗アレルギー剤の製造方法であって、(7)に記載の抗体または

(9)若しくは(10)に記載の方法により得られた化合物と薬理学上
許容される担体若しくは媒体とを混合することを含む方法、

を提供するものである。

25 本発明は、マスト細胞に由来し、マスト細胞のシグナル伝達経路の制御に関与
すると考えられる新規な膜タンパク質をコードする遺伝子を提供する。

本発明者等は、マウス骨髄由来培養マスト細胞から調製したcDNAライブラリを、最近確立された新規シグナル配列トラップ法（SST-REX法）によって検索することにより、I型の膜蛋白質をコードし、細胞外ドメインに一つのイムノグロブリンドメインを有し、細胞内に抑制性シグナルを伝達するモチーフを有する2つの遺伝子を同定した。⁵ MC-PIR1と命名した遺伝子の塩基配列を配列番号：1に、該遺伝子がコードする蛋白質のアミノ酸配列を配列番号：2に示す。また、MC-PIR1のイムノグロブリンドメインとアミノ酸レベルでおよそ90%相同性を有する、MC-PIR2と命名した遺伝子の塩基配列を配列番号：3に、該遺伝子がコードする蛋白質のアミノ酸配列を配列番号：4に示す。これらの遺伝子は、マスト細胞に特¹⁰異的な発現分布を示した。また、MC-PIR1は、抗原刺激によりリン酸化を受け、シグナル伝達経路の制御に関与するアダプタータンパクであるホスホチロシン脱リン酸化酵素SHP-1およびSHP-2、およびホスホイノシチド脱リン酸化酵素SHIPとの結合性を示した。また、MC-PIR2は、ITAMを有するシグナル伝達分子DAP10、DA¹⁵P12、FcR γ と会合した。これらのタンパク質はマスト細胞のシグナル伝達経路の制御に関与する膜タンパクであると考えられ、例えば、肥満細胞の活性化シグナル伝達を阻害する新規な作用メカニズムをもった抗アレルギー剤の開発などへの利用が期待される。

本発明は、また、MC-PIR1、MC-PIR2蛋白質をコードするDNA（配列番号：1または3に記載の塩基配列からなるDNA）と機能的に同等な蛋白質を包含する。²⁰ このような蛋白質には、例えば、これら蛋白質の変異体、マウス以外の生物のホモログ等が含まれる。ここで「機能的に同等」とは、対象となる蛋白質がMC-PIR1、MC-PIR2蛋白質と同様の生物学的あるいは生化学的活性を有することを指す。このような活性としては、例えば、抗原刺激によりリン酸化を受け、シグナル伝達経路の制御に関与するアダプタータンパクであるホスホチロシン脱リン酸化酵素²⁵ SHP-1およびSHP-2、およびホスホイノシチド脱リン酸化酵素SHIPと結合する活性や、ITAMを有するシグナル伝達分子DAP10、DAP12、FcR γ と結合する活性を例示

することができる。

ある蛋白質と機能的に同等な蛋白質を調製するための、当業者によく知られた方法としては、蛋白質に変異を導入する方法が知られている。例えば、当業者であれば、部位特異的変異誘発法 (Hashimoto-Gotoh, T. et al. (1995) Gene 152, 5 271-275、Zoller, MJ, and Smith, M. (1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ (1987) Methods. Enzymol. 154, 350-367、Kunkel, TA (1985) Proc Natl Acad Sci USA 82, 488-492、Kunkel (1988) Methods Enzymol. 85, 2763-276
6)などを用いて、MC-PIR1蛋白質やMC-PIR2蛋白質（配列番号：2または4に記載のアミノ酸配列からなる蛋白質）のアミノ酸に適宜変異を導入することにより、該蛋白質と機能的に同等な蛋白質を調製することができる。また、アミノ酸の変異は自然界においても生じうる。このように、MC-PIR1蛋白質やMC-PIR2蛋白質のアミノ酸配列において1もしくは複数のアミノ酸が変異したアミノ酸配列を有し、該蛋白質と機能的に同等な蛋白質もまた本発明の蛋白質に含まれる。このような
10 变異体における、変異するアミノ酸数は、通常、50アミノ酸以内であり、好ましくは30アミノ酸以内であり、さらに好ましくは10アミノ酸以内（例えば、5アミノ酸以内）であると考えられる。
15

変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸 (A、I、L、M、F、P、W、Y、V) 、親水性アミノ酸 (R、D、N、C、E、Q、G、H、K、S、T) 、脂肪族側鎖を有するアミノ酸 (G、A、V、L、I、P) 、水酸基含有側鎖を有するアミノ酸 (S、T、Y) 、硫黄原子含有側鎖を有するアミノ酸 (C、M) 、カルボン酸及びアミド含有側鎖を有するアミノ酸 (D、N、E、Q) 、塩基含有側鎖を有するアミノ酸 (R、K、H) 、芳香族含有側鎖を有するアミノ酸 (H、F、Y、W) を挙げることができる（括弧内はいずれもアミノ酸の一文字標記を表す）。

あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び／又は他のアミノ酸による置換により修飾されたアミノ酸配列を有する蛋白質がその生物学的活性を維持することはすでに知られている (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666 , Zoller, M. J. & Smith, M. N. 5 Nucleic Acids Research (1982) 10, 6487-6500 , Wang, A. et al., Science 224, 1431-1433 , Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413) 。

MC-PIR1蛋白質やMC-PIR2蛋白質のアミノ酸配列に複数個のアミノ酸残基が付加された蛋白質には、これら蛋白質を含む融合蛋白質が含まれる。融合蛋白質は、
10 これら蛋白質と他のペプチド又は蛋白質とが融合したものであり、本発明に含まれる。融合蛋白質を作製する方法は、MC-PIR1蛋白質やMC-PIR2蛋白質（配列番号：2または4に記載のアミノ酸配列からなる蛋白質）をコードするDNAと他のペプチド又は蛋白質をコードするDNAをフレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させればよく、当業者に公知の手法を用いる
15 ことができる。本発明の蛋白質との融合に付される他のペプチド又は蛋白質としては、特に限定されない。

本発明の蛋白質との融合に付される他のペプチドとしては、例えば、FLAG (Ho pp, T. P. et al., BioTechnology (1988) 6, 1204-1210) 、6個のHis (ヒスチジン) 残基からなる6×His、10×His、インフルエンザ凝集素 (HA) 、ヒトc-myc 20 の断片、VSV-GPの断片、p18HIVの断片、T7-tag、HSV-tag、E-tag、SV40T 抗原の断片、lck tag、 α -tubulinの断片、B-tag、Protein C の断片等の公知のペプチドを使用することができる。また、本発明の蛋白質との融合に付される他の蛋白質としては、例えば、GST (グルタチオン-S-トランスフェラーゼ) 、HA 25 (インフルエンザ凝集素) 、イムノグロブリン定常領域、 β -ガラクトシダーゼ、MBP (マルトース結合蛋白質) 等が挙げられる。市販されているこれらペプチドまたは蛋白質をコードするDNAを本発明の蛋白質をコードするDNAと融合させ、こ

れにより調製された融合DNAを発現させることにより、融合蛋白質を調製することができる。

また、ある蛋白質と機能的に同等な蛋白質を調製する当業者によく知られた他の方法としては、ハイブリダイゼーション技術 (Sambrook, J et al., Molecular Cloning 2nd ed., 9. 47-9. 58, Cold Spring Harbor Lab. press, 1989) を利用する方法が挙げられる。即ち、当業者であれば、MC-PIR1蛋白質やMC-PIR2蛋白質をコードするDNA配列（配列番号：1と3）もしくはその一部を基に、これと相同意の高いDNAを単離して、該DNAからMC-PIR1蛋白質やMC-PIR2蛋白質と機能的に同等な蛋白質を単離することも通常行いうことである。

本発明には、MC-PIR1蛋白質やMC-PIR2蛋白質をコードするDNAとハイブリダイズするDNAがコードし、MC-PIR1蛋白質やMC-PIR2蛋白質と機能的に同等な蛋白質が含まれる。このような蛋白質としては、例えば、マウスおよび他の哺乳動物のホモログ（例えば、ヒト、ラット、ウサギ、ウシなどがコードする蛋白質）が挙げられる。

MC-PIR1蛋白質やMC-PIR2蛋白質と機能的に同等な蛋白質をコードするDNAを単離するためのハイブリダイゼーションの条件は、当業者であれば適宜選択することができる。ハイブリダイゼーションの条件としては、例えば、低ストリンジエントな条件が挙げられる。低ストリンジエントな条件とは、ハイブリダイゼーション後の洗浄において、例えば42°C、0.1×SSC、0.1%SDSの条件であり、好みは50°C、0.1×SSC、0.1%SDSの条件である。より好みらしいハイブリダイゼーションの条件としては、高ストリンジエントな条件が挙げられる。高ストリンジエントな条件とは、例えば65°C、5×SSC及び0.1%SDSの条件である。これらの条件において、温度を上げる程に高い相同意を有するDNAが効率的に得られることができ期待できる。但し、ハイブリダイゼーションのストリンジエンシーに影響する要素としては温度や塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジエンシーを実現することが可能である。

また、ハイブリダイゼーションにかえて、MC-PIR1蛋白質やMC-PIR2蛋白質をコードするDNA（配列番号：1と3）の配列情報を基に合成したプライマーを用いる遺伝子増幅法、例えば、ポリメラーゼ連鎖反応（PCR）法を利用して単離することも可能である。

5 これらハイブリダイゼーション技術や遺伝子増幅技術により単離されるDNAがコードする、MC-PIR1蛋白質やMC-PIR2蛋白質と機能的に同等な蛋白質は、通常、これら蛋白質（配列番号：2または4に記載のアミノ酸配列からなる蛋白質）とアミノ酸配列において高い相同意を有する。本発明の蛋白質にはMC-PIR1蛋白質やMC-PIR2蛋白質と機能的に同等であり、かつ該蛋白質のアミノ酸配列と高い相
10 同意を有する蛋白質も含まれる。高い相同意とは、アミノ酸レベルにおいて、通常、少なくとも50%以上の同一性、好ましくは75%以上の同一性、さらに好ましくは85%以上の同一性、さらに好ましくは95%以上（96%以上、97%以上、98%以上、99%以上）の同一性を指す。蛋白質の相同意を決定するには、文献（Wilb
ur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-73
15 0）に記載のアルゴリズムにしたがえばよい。

本発明の蛋白質は、後述するそれを產生する細胞や宿主あるいは精製方法により、アミノ酸配列、分子量、等電点又は糖鎖の有無や形態などが異なり得る。しかしながら、得られた蛋白質が、MC-PIR1蛋白質やMC-PIR2蛋白質と同等の機能を有している限り、本発明に含まれる。例えば、本発明の蛋白質を原核細胞、例え
20 ば大腸菌で発現させた場合、本来の蛋白質のアミノ酸配列のN末端にメチオニン残基が付加される。本発明の蛋白質はこのような蛋白質も包含する。

本発明の蛋白質は、当業者に公知の方法により、組み換え蛋白質として、また天然の蛋白質として調製することが可能である。組み換え蛋白質であれば、本発明の蛋白質をコードするDNA（例えば、配列番号：1または3に記載の塩基配列を
25 有するDNA）を、適当な発現ベクターに組み込み、これを適当な宿主細胞に導入して得た形質転換体を回収し、抽出物を得た後、イオン交換、逆相、ゲル濾過など

のクロマトグラフィー、あるいは本発明の蛋白質に対する抗体をカラムに固定したアフィニティーコロマトグラフィーにかけることにより、または、さらにこれらのカラムを複数組み合わせることにより精製し、調製することが可能である。

また、本発明の蛋白質をグルタチオン-S-トランスフェラーゼ蛋白質との融合蛋白質として、あるいはヒスチジンを複数付加させた組み換え蛋白質として宿主細胞（例えば、動物細胞や大腸菌など）内で発現させた場合には、発現させた組み換え蛋白質はグルタチオンカラムあるいはニッケルカラムを用いて精製することができる。融合蛋白質の精製後、必要に応じて融合蛋白質のうち、目的の蛋白質以外の領域を、トロンビンまたはファクターXaなどにより切断し、除去することも可能である。

天然の蛋白質であれば、当業者に周知の方法、例えば、本発明の蛋白質を発現している組織や細胞の抽出物に対し、後述する本発明の蛋白質に結合する抗体が結合したアフィニティーカラムを作用させて精製することにより単離することができる。抗体はポリクローナル抗体であってもモノクローナル抗体であってよい。

本発明は、また、本発明の蛋白質の部分ペプチドを包含する。本発明の部分ペプチドは、少なくとも7アミノ酸以上、好ましくは8アミノ酸以上、さらに好ましくは9アミノ酸以上のアミノ酸配列からなる。該部分ペプチドは、例えば、本発明の蛋白質に対する抗体の作製、本発明の蛋白質に結合する化合物のスクリーニングや、本発明の蛋白質の促進剤や阻害剤のスクリーニングに利用し得る。また、本発明の蛋白質のアンタゴニストや競合阻害剤になり得る。本発明の部分ペプチドは、遺伝子工学的手法、公知のペプチド合成法、あるいは本発明の蛋白質を適切なペプチダーゼで切断することによって製造することができる。ペプチドの合成は、例えば、固相合成法、液相合成法のいずれによってもよい。

本発明の蛋白質をコードするDNAは、上述したような本発明の蛋白質の *in vivo* や *in vitro* における生産に利用される他、例えば、本発明の蛋白質をコードする

- 11 -

遺伝子の異常に起因する疾患や本発明の蛋白質により治療可能な疾患の遺伝子治療、あるいは遺伝子診断などへの応用も考えられる。本発明のDNAは、本発明の蛋白質をコードしうるものであればいかなる形態でもよい。即ち、mRNAから合成されたcDNAであるか、ゲノムDNAであるか、化学合成DNAであるかなどを問わない。

5 また、本発明の蛋白質をコードしうる限り、遺伝暗号の縮重に基づく任意の塩基配列を有するDNAが含まれる。

本発明のDNAは、当業者に公知の方法により調製することができる。例えば、本発明の蛋白質を発現している細胞よりcDNAライブラリーを作製し、本発明のDNAの配列（例えば、配列番号：1または3）の一部をプローブにしてハイブリダイゼーションを行うことにより調製できる。cDNAライブラリーは、例えば、文献（Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press (1989)）に記載の方法により調製してもよいし、市販のDNAライブラリーを用いてもよい。また、本発明の蛋白質を発現している細胞よりRNAを調製し、逆転写酵素によりcDNAを合成した後、本発明のDNAの配列（例えば、配列番号：1または3）に基づいてオリゴDNAを合成し、これをプライマーとして用いてPCR反応を行い、本発明の蛋白質をコードするcDNAを増幅させることにより調製することも可能である。

また、得られたcDNAの塩基配列を決定することにより、それがコードする翻訳領域を決定でき、本発明の蛋白質のアミノ酸配列を得ることができる。また、得られたcDNAをプローブとしてゲノムDNAライブラリーをスクリーニングすることにより、ゲノムDNAを単離することができる。

具体的には、次のようにすればよい。まず、本発明の蛋白質を発現する細胞、組織、臓器（例えば、マスト細胞や本実施例におけるRT-PCRにより発現が認められた組織）から、mRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法 (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299)、AGPC法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-1

- 12 -

59) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia) 等を使用して全RNAからmRNAを精製する。また、QuickPrep mRNA Purification Kit (Pharmacia) を用いることによりmRNAを直接調製することもできる。

得られたmRNAから逆転写酵素を用いてcDNAを合成する。cDNAの合成は、AMV R
5 everse Transcriptase First-strand cDNA Synthesis Kit (生化学工業) 等を用いて行うこともできる。また、本明細書に記載されたプライマー等を用いて、5'-Ampli FINDER RACE Kit (Clontech製) およびポリメラーゼ連鎖反応 (polymerase chain reaction ; PCR) を用いた5'-RACE法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. U. S. A. (1988) 85, 8998-9002 ; Belyavsky, A. et al., Nucl. 10 eic Acids Res. (1989) 17, 2919-2932) に従い、cDNAの合成および増幅を行うことができる。

得られたPCR産物から目的とするDNA断片を調製し、ベクターDNAと連結する。さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択して所望の組換えベクターを調製する。目的とするDNAの塩基配列は、公知の方
15 法、例えば、ジデオキシヌクレオチドチェインターミネーション法により確認することができる。

また、本発明のDNAにおいては、発現に使用する宿主のコドン使用頻度を考慮して、より発現効率の高い塩基配列を設計することができる (Grantham, R. et al., Nucleic Acids Research (1981) 9, 43-74)。また、本発明のDNAは、市販のキットや公知の方法によって改変することができる。改変としては、例えば、制限酵素による消化、合成オリゴヌクレオチドや適当なDNAフラグメントの挿入、リンカーの付加、開始コドン (ATG) 及び／又は終止コドン (TAA, TGA, 又はTAG) の挿入等が挙げられる。

本発明のDNAは、具体的には、配列番号：1の塩基配列において148位の塩基aから1101位の塩基gまでの塩基配列からなるDNA、配列番号：3の塩基配列において1位の塩基aから684位の塩基gまでの塩基配列からなるDNAを包含する。

本発明のDNAはまた、配列番号：1または3に示す塩基配列からなるDNAとハイブリダイズするDNAであり、且つ上記本発明の蛋白質と機能的に同等な蛋白質をコードするDNAを含む。ハイブリダイゼーションにおける条件は当業者であれば適宜選択することができるが、具体的には上記した条件を用いることができる。

5 これらの条件において、温度を上げる程に高い相同意を有するDNAを得ることができる。上記のハイブリダイズするDNAは、好ましくは天然由来のDNA、例えばcDNA又は染色体DNAである。

本発明は、また、本発明のDNAが挿入されたベクターを提供する。本発明のベクターとしては、宿主細胞内において本発明のDNAを保持したり、本発明の蛋白

10 質を発現させるために有用である。

ベクターとしては、例えば、大腸菌を宿主とする場合には、ベクターを大腸菌（例えば、JM109、DH5 α 、HB101、XL1Blue）などで大量に増幅させ大量調製するために、大腸菌で増幅されるための「ori」をもち、さらに形質転換された大腸菌の選抜遺伝子（例えば、なんらかの薬剤（アンピシリンやテトラサイクリン、

15 カナマイシン、クロラムフェニコール）により判別できるような薬剤耐性遺伝子）を有すれば特に制限はない。ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などが挙げられる。本発明の蛋白質を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌で増幅されるような上記特徴を持つほかに、宿主をJM109、DH5 α 、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター（Wardら、Nature (1989) 341, 544-546；

20 FASEB J. (1992) 6, 2422-2427）、araBプロモーター（Betterら、Science (1988) 240, 1041-1043）、またはT7プロモーターなどを持っていることが不可欠で

ある。このようなベクターとしては、上記ベクターの他にpGEX-5X-1（ファルマシア社製）、「QIAexpress system」（キアゲン社製）、pEGFP、またはpET（この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい）などが挙げられる。

5 また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。蛋白質分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、peI8シグナル配列 (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379) を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシウム法、エレクトロポレーション法を用いて行うことができる。

10 大腸菌以外にも、例えば、本発明の蛋白質を製造するためのベクターとしては、哺乳動物由来の発現ベクター（例えば、pcDNA3（インビトロゲン社製）や、pEGF-BOS (Nucleic Acids. Res. 1990, 18(17), p5322)、pEF、pCDM8）、昆虫細胞由来の発現ベクター（例えば「Bac-to-BAC baculovirus expression system」（ギブコBRL社製）、pBacPAK8）、植物由来の発現ベクター（例えばpMH1、pMH2）、動物ウィルス由来の発現ベクター（例えば、pHSV、pMV、pAdexLcw）、レトロウィルス由来の発現ベクター（例えば、pZIPneo）、酵母由来の発現ベクター（例えば、「Pichia Expression Kit」（インビトロゲン社製）、pNV11、SP-Q01）、枯草菌由来の発現ベクター（例えば、pPL608、pKTH50）が挙げられる。

CHO細胞、COS細胞、NIH3T3細胞等の動物細胞での発現を目的とした場合には、
20 細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター (Mu11
iganら, Nature (1979) 277, 108)、MMLV-LTRプロモーター、EF1 α プロモーター
（Mizushimaら, Nucleic Acids Res. (1990) 18, 5322）、CMVプロモーターなどを持っていますが不可欠であり、細胞への形質転換を選抜するための遺伝子
（例えば、薬剤（ネオマイシン、G418など）により判別できるような薬剤耐性遺
25 伝子）を有すればさらに好ましい。このような特性を有するベクターとしては、
例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。

- 15 -

さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHF R遺伝子を有するベクター（例えば、pCHOIなど）を導入し、メトトレキセート（MTX）により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター（pcDなど）で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス（BPV）等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ（APH）遺伝子、チミジンキナーゼ（TK）遺伝子、大腸菌キサンチングアミニホスホリボシルトランスフェラーゼ（Ecogpt）遺伝子、ジヒドロ葉酸還元酵素（dhfr）遺伝子等を含むことができる。

一方、動物の生体内で本発明のDNAを発現させる方法としては、本発明のDNAを適当なベクターに組み込み、例えば、レトロウイルス法、リポソーム法、カチオニックリポソーム法、アデノウイルス法などにより生体内に導入する方法などが挙げられる。これにより、本発明の蛋白質コードする遺伝子の変異に起因する疾患に対する遺伝子治療を行うことが可能である。用いられるベクターとしては、例えば、アデノウイルスベクター（例えばpAdex1cw）やレトロウイルスベクター（例えばpZIPneo）などが挙げられるが、これらに制限はない。ベクターへの本発明のDNAの挿入などの一般的な遺伝子操作は、常法に従って行うことが可能である（Molecular Cloning , 5. 61-5. 63）。生体内への投与は、*ex vivo*法であっても、*in vivo*法であってもよい。

また、本発明は、本発明のベクターが導入された宿主細胞を提供する。本発明のベクターが導入される宿主細胞としては特に制限はなく、例えば、大腸菌や種々の動物細胞などを用いることが可能である。本発明の宿主細胞は、例えば、本発明の蛋白質の製造や発現のための產生系として使用することができる。蛋白

- 16 -

質製造のための產生系は、*in vitro*および*in vivo*の產生系がある。*in vitro*の產生系としては、真核細胞を使用する產生系や原核細胞を使用する產生系が挙げられる。

真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用いることができる。動物細胞としては、哺乳類細胞、例えば、CHO (J. Exp. Med. 5 (1995) 108, 945)、COS、3T3、ミエローマ、BHK (baby hamster kidney)、He La、Vero、両生類細胞、例えばアフリカツメガエル卵母細胞 (Valle, et al., Nature 10 (1981) 291, 358-340)、あるいは昆虫細胞、例えば、Sf9、Sf21、Tn5が知られている。CHO細胞としては、特に、DHFR遺伝子を欠損したCHO細胞であるdh fr-CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) やCHO K-1 (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) を好適に使用することができる。動物細胞において、大量発現を目的とする場合には特にCHO細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン酸カルシウム法、DEAEデキストラン法、カチオニックリポソームDOTAP (ペーリンガーマンハイム社製) を用いた方法、15 エレクトロポーレーション法、リポフェクションなどの方法で行うことが可能である。

植物細胞としては、例えば、ニコチアナ・タバコ (*Nicotiana tabacum*) 由来の細胞が蛋白質生産系として知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス (*Saccharomyces*) 属、例えば、20 サッカロミセス・セレビシエ (*Saccharomyces cerevisiae*)、糸状菌、例えば、アスペルギルス (*Aspergillus*) 属、例えば、アスペルギルス・ニガー (*Aspergillus niger*) が知られている。

原核細胞を使用する場合、細菌細胞を用いる產生系がある。細菌細胞としては、大腸菌 (*E. coli*)、例えば、JM109、DH5 α 、HB101等が挙げられ、その他、枯草25 菌が知られている。

これらの細胞を目的とするDNAにより形質転換し、形質転換された細胞を*in vi*

*tro*で培養することにより蛋白質が得られる。培養は、公知の方法に従い行うことができる。例えば、動物細胞の培養液として、例えば、DMEM、MEM、RPMI1640、IMDMを使用することができる。その際、牛胎児血清（FCS）等の血清補液を併用することもできるし、無血清培養してもよい。培養時のpHは、約6～8であるのが好ましい。培養は、通常、約30～40℃で約15～200時間行い、必要に応じて培地の交換、通気、攪拌を加える。

一方、*in vivo*で蛋白質を產生させる系としては、例えば、動物を使用する產生系や植物を使用する產生系が挙げられる。これらの動物又は植物に目的とするDNAを導入し、動物又は植物の体内で蛋白質を產生させ、回収する。本発明における「宿主」とは、これらの動物、植物を包含する。

動物を使用する場合、哺乳類動物、昆虫を用いる產生系がある。哺乳類動物としては、ヤギ、ブタ、ヒツジ、マウス、ウシを用いることができる（Vicki Glaser, SPECTRUM Biotechnology Applications, 1993）。また、哺乳類動物を用いる場合、トランスジェニック動物を用いることができる。

例えば、目的とするDNAを、ヤギβカゼインのような乳汁中に固有に產生される蛋白質をコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝子を含むDNA断片をヤギの胚へ注入し、この胚を雌のヤギへ移植する。胚を受容したヤギから生まれるトランスジェニックヤギ又はその子孫が產生する乳汁から、目的の蛋白質を得ることができる。トランスジェニックヤギから產生される蛋白質を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい（Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702）。

また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、目的の蛋白質をコードするDNAを挿入したバキュロウィルスをカイコに感染させることにより、このカイコの体液から目的の蛋白質を得ることができる（Suzumu, M. et al., Nature (1985) 315, 592-594）。

さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを用いる場合、目的とする蛋白質をコードするDNAを植物発現用ベクター、例えばpMON 530に挿入し、このベクターをアグロバクテリウム・ツメファシエンス (*Agronomobacterium tumefaciens*) のようなバクテリアに導入する。このバクテリアをタバコ、例えば、ニコチアナ・タバカム (*Nicotiana tabacum*) に感染させ、本タバコの葉より所望のポリペプチドを得ることができる (Julian K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138)。

これにより得られた本発明の蛋白質は、宿主細胞内または細胞外（培地など）から単離し、実質的に純粋で均一な蛋白質として精製することができる。蛋白質の分離、精製は、通常の蛋白質の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせれば蛋白質を分離、精製することができる。

クロマトグラフィーとしては、例えばアフィニティーコロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。本発明は、これらの精製方法を用い、高度に精製された蛋白質も包含する。

なお、蛋白質を精製前又は精製後に適当な蛋白質修飾酵素を作用させることにより、任意に修飾を加えたり部分的にペプチドを除去することもできる。蛋白質修飾酵素としては、例えば、トリプシン、キモトリプシン、リシリエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。

本発明は、また、本発明の蛋白質と結合する抗体を提供する。本発明の抗体の形態には、特に制限はなく、ポリクローナル抗体の他、モノクローナル抗体も含まれる。また、ウサギなどの免疫動物に本発明の蛋白質を免疫して得た抗血清、すべてのクラスのポリクローナル抗体およびモノクローナル抗体、さらにヒト抗体や遺伝子組み換えによるヒト型化抗体も含まれる。

抗体取得の感作抗原として使用される本発明の蛋白質は、その由来となる動物種に制限されないが哺乳動物、例えばヒト、マウス又はラット由来の蛋白質が好ましく、特にヒト由来の蛋白質が好ましい。ヒト由来の蛋白質は、本明細書に開示される遺伝子配列又はアミノ酸配列を用いて得ることができる。

本発明において、感作抗原として使用される蛋白質は、完全な蛋白質であってもよいし、また、蛋白質の部分ペプチドであってもよい。蛋白質の部分ペプチドとしては、例えば、蛋白質のアミノ基 (N) 末端断片やカルボキシ (C) 末端断片が挙げられる。本明細書で述べる「抗体」とは蛋白質の全長又は断片に反応する抗体を意味する。

本発明の蛋白質又はその断片をコードする遺伝子を公知の発現ベクター系に挿入し、該ベクターで本明細書で述べた宿主細胞を形質転換させ、該宿主細胞内外から目的の蛋白質又はその断片を公知の方法で得て、これらを感作抗原として用いればよい。また、蛋白質を発現する細胞又はその溶解物あるいは化学的に合成した本発明の蛋白質を感作抗原として使用してもよい。短いペプチドは、キーホールリンペットヘモシアニン、ウシ血清アルブミン、卵白アルブミンなどのキャリア蛋白質と適宜結合させて抗原とすることが好ましい。

感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的には、げっ歯目、ウサギ目、靈長目の動物が使用される。

げっ歯目の動物としては、例えば、マウス、ラット、ハムスター等が使用される。ウサギ目の動物としては、例えば、ウサギが使用される。靈長目の動物とし

ては、例えば、サルが使用される。サルとしては、狭鼻下目のサル（旧世界ザル）、例えば、カニクイザル、アカゲザル、マントヒヒ、チンパンジー等が使用される。

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。一般的の方
5 法としては、感作抗原を哺乳動物の腹腔内又は皮下に注射する。具体的には、感
作抗原をPBS (Phosphate-Buffered Saline) や生理食塩水等で適当量に希釈、懸濁
したものに対し、所望により通常のアジュvant、例えば、フロイント完全アジ
ュvantを適量混合し、乳化後、哺乳動物に投与する。さらに、その後、フロイ
ント不完全アジュvantに適量混合した感作抗原を、4~21日毎に数回投与する
10 ことが好ましい。また、感作抗原免疫時に適当な担体を使用することができる。
このように免疫し、血清中に所望の抗体レベルが上昇するのを常法により確認す
る。

ここで、本発明の蛋白質に対するポリクローナル抗体を得るには、血清中の所
望の抗体レベルが上昇したことを確認した後、抗原を感作した哺乳動物の血液を
15 取り出す。この血液から公知の方法により血清を分離する。ポリクローナル抗体
としては、ポリクローナル抗体を含む血清を使用してもよいし、必要に応じこの
血清からポリクローナル抗体を含む画分をさらに単離して、これを使用してもよ
い。例えば、本発明の蛋白質をカップリングさせたアフィニティーカラムを用い
て、本発明の蛋白質のみを認識する画分を得て、さらにこの画分をプロテインA
20 あるいはプロテインGカラムを利用して精製することにより、免疫グロブリンGあ
るいはMを調製することができる。

モノクローナル抗体を得るには、上記抗原を感作した哺乳動物の血清中に所望
の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞を取り出し、
細胞融合に付せばよい。この際、細胞融合に使用される好ましい免疫細胞として、
25 特に脾細胞が挙げられる。前記免疫細胞と融合される他方の親細胞としては、好
ましくは哺乳動物のミエローマ細胞、より好ましくは、薬剤による融合細胞選別

- 21 -

のための特性を獲得したミエローマ細胞が挙げられる。

前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、例えば、ミルステインらの方法 (Galfre, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) 等に準じて行うことができる。

5 細胞融合により得られたハイブリドーマは、通常の選択培養液、例えば、HAT 培養液（ヒポキサンチン、アミノブテリンおよびチミジンを含む培養液）で培養することにより選択される。当該HAT培養液での培養は、目的とするハイブリドーマ以外の細胞（非融合細胞）が死滅するのに十分な時間、通常、数日～数週間継続して行う。次いで、通常の限界希釈法を実施し、目的とする抗体を產生する
10 ハイブリドーマのスクリーニングおよびクローニングを行う。

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球、例えばEBウィルスに感染したヒトリンパ球を *in vitro* で蛋白質、蛋白質発現細胞又はその溶解物で感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞、例えばU266と融合させ、蛋白質への結合活性を有する所望のヒト抗体を產生するハイブリドーマを得ることもできる（特開昭63-17688号公報）。

次いで、得られたハイブリドーマをマウス腹腔内に移植し、同マウスより腹水を回収し、得られたモノクローナル抗体を、例えば、硫酸沈殿、プロテインA、プロテインGカラム、DEAEイオン交換クロマトグラフィー、本発明の蛋白質をカッピングしたアフィニティーカラムなどにより精製することで調製することが可能である。本発明の抗体は、本発明の蛋白質の精製、検出に用いられる他、本発明の蛋白質のアゴニストやアンタゴニストの候補になる。また、この抗体を本発明の蛋白質が関与する疾患の抗体治療へ応用することも考えられる。得られた抗体を人体に投与する目的（抗体治療）で使用する場合には、免疫原性を低下させるため、ヒト抗体やヒト型抗体が好ましい。
20
25

例えば、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物に抗

- 22 -

原となる蛋白質、蛋白質発現細胞又はその溶解物を免疫して抗体産生細胞を取得し、これをミエローマ細胞と融合させたハイブリドーマを用いて蛋白質に対するヒト抗体を取得することができる（国際公開番号W092-03918、W093-2227、W094-02602、W094-25585、W096-33735およびW096-34096参照）。

5 ハイブリドーマを用いて抗体を產生する以外に、抗体を產生する感作リンパ球等の免疫細胞を癌遺伝子 (oncogene) により不死化させた細胞を用いてもよい。

このように得られたモノクローナル抗体はまた、遺伝子組換え技術を用いて產生させた組換え型抗体として得ることができる（例えば、Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990 参照）。組換え型抗体は、それをコードするDNAをハイブリドーマ又は抗体を產生する感作リンパ球等の免疫細胞からクローニングし、適当なベクターに組み込んで、これを宿主に導入し產生させる。本発明は、この組換え型抗体を包含する。

さらに、本発明の抗体は、本発明の蛋白質に結合する限り、その抗体断片や抗体修飾物であってよい。例えば、抗体断片としては、Fab、F(ab')₂、Fv又はH鎖とL鎖のFvを適當なリンカーで連結させたシングルチェインFv (scFv) (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883) が挙げられる。具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適當な宿主細胞で発現させる（例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976 ; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496 ; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515 ; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663 ; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137 参照）。

抗体修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。本発明の「抗体」にはこれらの抗体修飾物も含まれる。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。これら的方法はこの分野において既に確立されている。

5 また、本発明の抗体は、公知の技術を使用して非ヒト抗体由来の可変領域とヒト抗体由来の定常領域からなるキメラ抗体又は非ヒト抗体由来のCDR(相補性決定領域)とヒト抗体由来のFR(フレームワーク領域)及び定常領域からなるヒト型化抗体として得ることができる。

前記のように得られた抗体は、均一にまで精製することができる。本発明で使用される抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDSポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる(Antibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988)が、これらに限定されるものではない。上記で得られた抗体の濃度測定は吸光度の測定又は酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay ; ELISA)等により行うことができる。

アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。例えば、プロテインAカラムを用いたカラムとして、Hyper D, POROS, Sepharose F. F. (Pharmacia)等が挙げられる。

アフィニティークロマトグラフィー以外のクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization : A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーはHPLC、FPLC等の液相クロマトグラフィーを用いて

行うことができる。

また、本発明の抗体の抗原結合活性を測定する方法として、例えば、吸光度の測定、酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay; ELISA)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)あるいは蛍光抗体法を用いること 5 ができる。ELISAを用いる場合、本発明の抗体を固相化したプレートに本発明の蛋白質を添加し、次いで目的の抗体を含む試料、例えば、抗体産生細胞の培養上清や精製抗体を加える。酵素、例えば、アルカリリフォスファターゼ等で標識した抗体を認識する二次抗体を添加し、プレートをインキュベーションし、次いで洗浄した後、p-ニトロフェニル磷酸などの酵素基質を加えて吸光度を測定するこ 10 とで抗原結合活性を評価することができる。蛋白質として蛋白質の断片、例えばそのC末端からなる断片を使用してもよい。本発明の抗体の活性評価には、BIACore(Pharmacia製)を使用することができる。

これらの手法を用いることにより、本発明の抗体と試料中に含まれる本発明の蛋白質が含まれると予想される試料とを接触せしめ、該抗体と該蛋白質との免疫 15 複合体を検出又は測定することからなる、本発明の蛋白質の検出又は測定方法を実施することができる。本発明の蛋白質の検出又は測定方法は、蛋白質を特異的に検出又は測定することができるため、蛋白質を用いた種々の実験等に有用である。

本発明はまた、MC-PIR1蛋白質やMC-PIR2蛋白質をコードするDNA(配列番号: 20 1または3に記載の塩基配列からなるDNA)またはその相補鎖に相補的な少なくとも15ヌクレオチドを含むポリヌクレオチドを提供する。

ここで「相補鎖」とは、A:T(ただしRNAの場合はU)、G:Cの塩基対からなる2本鎖核酸の一方の鎖に対する他方の鎖を指す。また、「相補的」とは、少なくとも15個の連続したヌクレオチド領域で完全に相補配列である場合に限られず、少なくとも70%、好ましくは少なくとも80%、より好ましくは90%、さらに好ましくは95%以上の塩基配列上の相同性を有すればよい。相同性を決定するためのア

- 25 -

ルゴリズムは本明細書に記載したものを使用すればよい。

このような核酸には、本発明の蛋白質をコードするDNAの検出や増幅に用いるプローブやプライマー、該DNAの発現を検出するためのプローブやプライマー、本発明の蛋白質の発現を制御するためのヌクレオチド又はヌクレオチド誘導体

5 (例えば、アンチセンスオリゴヌクレオチドやリボザイム、またはこれらをコードするDNA等) が含まれる。また、このような核酸は、DNAチップの作製に利用することもできる。

プライマーとして用いる場合、3'側の領域は相補的とし、5'側には制限酵素認識配列やタグなどを付加することができる。

10 アンチセンスオリゴヌクレオチドとしては、例えば、配列番号：1または3の塩基配列中のいずれかの箇所にハイブリダイズするアンチセンスオリゴヌクレオチドが含まれる。このアンチセンスオリゴヌクレオチドは、好ましくは配列番号：1または3の塩基配列中の連続する少なくとも15個以上のヌクレオチドに対するアンチセンスオリゴヌクレオチドである。さらに好ましくは、連続する少なくとも15個以上のヌクレオチドが翻訳開始コドンを含むアンチセンスオリゴヌクレオチドである。

15 アンチセンスオリゴヌクレオチドとしては、それらの誘導体や修飾体を使用することができる。修飾体として、例えばメチルホスホネート型又はエチルホスホネート型のような低級アルキルホスホネート修飾体、ホスホロチオエート修飾体
20 又はホスホロアミデート修飾体等が挙げられる。

25 アンチセンスオリゴヌクレオチドは、DNA又はmRNAの所定の領域を構成するヌクレオチドに対応するヌクレオチドが全て相補配列であるもののみならず、DNAまたはmRNAとオリゴヌクレオチドとが配列番号：1または3に示される塩基配列に特異的にハイブリダイズできる限り、1又は複数個のヌクレオチドのミスマッチが存在しているものも含まれる。

本発明のアンチセンスオリゴヌクレオチド誘導体は、本発明の蛋白質の產生細

胞に作用して、該蛋白質をコードするDNA又はmRNAに結合することにより、その転写又は翻訳を阻害したり、mRNAの分解を促進したりして、本発明の蛋白質の発現を抑制することにより、結果的に本発明の蛋白質の作用を抑制する効果を有する。

5 本発明のアンチセンスオリゴヌクレオチド誘導体は、それらに対して不活性な適当な基剤と混和して塗布剤、パップ剤等の外用剤とすることができます。

また、必要に応じて、賦形剤、等張化剤、溶解補助剤、安定化剤、防腐剤、無痛化剤等を加えて錠剤、散財、顆粒剤、カプセル剤、リポソームカプセル剤、注射剤、液剤、点鼻剤など、さらに凍結乾燥剤とすることができる。これらは常法
10 にしたがって調製することができる。

本発明のアンチセンスオリゴヌクレオチド誘導体は患者の患部に直接適用するか、又は血管内に投与するなどして結果的に患部に到達し得るように患者に適用する。さらには、持続性、膜透過性を高めるアンチセンス封入素材を用いることもできる。例えば、リポソーム、ポリ-L-リジン、リピッド、コレステロール、
15 リポフェクチン又はこれらの誘導体が挙げられる。

本発明のアンチセンスオリゴヌクレオチド誘導体の投与量は、患者の状態に応じて適宜調整し、好ましい量を用いることができる。例えば、0.1～100mg/kg、好ましくは0.1～50mg/kgの範囲で投与することができる。

本発明のアンチセンスオリゴヌクレオチドは本発明の蛋白質の発現を阻害し、
20 従って本発明の蛋白質の生物学的活性を抑制することにおいて有用である。また、本発明のアンチセンスオリゴヌクレオチドを含有する発現阻害剤は、本発明の蛋白質の生物学的活性を抑制することが可能である点で有用である。

本発明の蛋白質は、これに結合する化合物のスクリーニングに有用である。すなわち、本発明の蛋白質と、該蛋白質に結合する化合物を含むと予想される被検
25 試料とを接触せしめ、そして本発明の蛋白質に結合する活性を有する化合物を選択する、ことからなる本発明の蛋白質に結合する化合物をスクリーニングする方

法において使用される。

スクリーニングに用いられる本発明の蛋白質は組換え蛋白質であっても、天然由来の蛋白質であってもよい。また部分ペプチドであってもよい。また細胞表面に発現させた形態、または膜画分としての形態であってもよい。被検試料としては特に制限はなく、例えば、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、精製若しくは粗精製蛋白質、ペプチド、非ペプチド性化合物、合成低分子化合物、天然化合物が挙げられる。被検試料を接触させる本発明の蛋白質は、例えば、精製した蛋白質として、可溶型蛋白質として、担体に結合させた形態として、他の蛋白質との融合蛋白質として、細胞膜上に発現させた形態として、膜画分として被検試料に接触させることができる。

本発明の蛋白質を用いて、例えば該蛋白質に結合する蛋白質をスクリーニングする方法としては、当業者に公知の多くの方法を用いることが可能である。このようなスクリーニングは、例えば、免疫沈降法により行うことができる。具体的には、以下のように行うことができる。本発明の蛋白質をコードする遺伝子を、
15 pSV2neo, pcDNA I, pCD8 などの外来遺伝子発現用のベクターに挿入することで動物細胞などで当該遺伝子を発現させる。発現に用いるプロモーターとしては SV40 early promoter (Rigby In Williamson (ed.), Genetic Engineering, Vol. 3. Academic Press, London, p. 83-141 (1982)), EF-1 α promoter (Kimら Gene 91, p. 217-223 (1990)), CAG promoter (Niwa et al. Gene 108, p. 193-200 (1
20 991)), RSV LTR promoter (Cullen Methods in Enzymology 152, p. 684-704 (1987)), SR α promoter (Takebe et al. Mol. Cell. Biol. 8, p. 466 (1988)), CM V immediate early promoter (Seed and Aruffo Proc. Natl. Acad. Sci. USA 84, p. 3365-3369 (1987)), SV40 late promoter (Gheysen and Fiers J. Mol. Appl. Genet. 1, p. 385-394 (1982)), Adenovirus late promoter (Kaufman et al.
25 Mol. Cell. Biol. 9, p. 946 (1989)), HSV TK promoter 等の一般的に使用できるプロモーターであれば何を用いてもよい。

動物細胞に遺伝子を導入することで外来遺伝子を発現させるためには、エレクトロポレーション法 (Chu, G. et al. Nucl. Acids Res. 15, 1311-1326 (1987))、リン酸カルシウム法 (Chen, C and Okayama, H. Mol. Cell. Biol. 7, 2745-2752 (1987))、DEAEデキストラン法 (Lopata, M. A. et al. Nucl. Acids Res. 12, 5707-5717 (1984); Sussman, D. J. and Milman, G. Mol. Cell. Biol. 4, 1642-1643 (1985))、リポフェクチン法 (Derijard, B. Cell 7, 1025-1037 (1994); Lamb, B. T. et al. Nature Genetics 5, 22-30 (1993); Rabindran, S. K. et al. Science 259, 230-234 (1993)) 等の方法があるが、いずれの方法によつてもよい。

特異性の明らかとなっているモノクローナル抗体の認識部位（エピトープ）を本発明の蛋白質のN末またはC末に導入することにより、モノクローナル抗体の認識部位を有する融合蛋白質として本発明の蛋白質を発現させることができる。用いるエピトープー抗体体系としては市販されているものを利用することができる（実験医学 13, 85-90 (1995)）。マルチクローニングサイトを介して、 β -ガラクトシダーゼ、マルトース結合蛋白質、グルタチオン-S-トランスフェラーゼ、緑色蛍光蛋白質（GFP）などとの融合蛋白質を発現することができるベクターが市販されている。

融合蛋白質にすることにより本発明の蛋白質の性質をできるだけ変化させないようにするために数個から十数個のアミノ酸からなる小さなエピトープ部分のみを導入して、融合蛋白質を調製する方法も報告されている。例えば、ポリヒスチジン（His-tag）、インフルエンザ凝集素 HA、ヒトc-myc、FLAG、Vesicular stomatitis ウイルス糖蛋白質（VSV-GP）、T7 gene10 蛋白質（T7-tag）、ヒト単純ヘルペスウイルス糖蛋白質（HSV-tag）、E-tag（モノクローナルファージ上のエピトープ）などのエピトープとそれを認識するモノクローナル抗体を、本発明の蛋白質に結合する蛋白質のスクリーニングのためのエピトープー抗体体系として利用できる（実験医学 13, 85-90 (1995)）。

免疫沈降においては、これらの抗体を、適当な界面活性剤を利用して調製した細胞溶解液に添加することにより免疫複合体を形成させる。この免疫複合体は本発明の蛋白質、それと結合能を有する蛋白質、および抗体からなる。上記エピトープに対する抗体を用いる以外に、本発明の蛋白質に対する抗体を利用して免疫沈降を行うことも可能である。本発明の蛋白質に対する抗体は、例えば、本発明の蛋白質をコードする遺伝子を適当な大腸菌発現ベクターに導入して大腸菌内で発現させ、発現させた蛋白質を精製し、これをウサギやマウス、ラット、ヤギ、ニワトリなどに免疫することで調製することができる。また、合成した本発明の蛋白質の部分ペプチドを上記の動物に免疫することによって調製することもでき
5 10 る。

免疫複合体は、例えば、抗体がマウス IgG 抗体であれば、Protein A SepharoseやProtein G Sepharoseを用いて沈降させることができる。また、本発明の蛋白質を、例えば、GSTなどのエピトープとの融合蛋白質として調製した場合には、グルタチオン-Sepharose 4Bなどのこれらエピトープに特異的に結合する物質を
15 利用して、本発明の蛋白質の抗体を利用した場合と同様に、免疫複合体を形成させることができる。

免疫沈降の一般的な方法については、例えば、文献 (Harlow, E. and Lane, D. : Antibodies, pp. 511-552, Cold Spring Harbor Laboratory publications, New York (1988)) 記載の方法に従って、または準じて行えばよい。

20 免疫沈降された蛋白質の解析にはSDS-PAGEが一般的であり、適当な濃度のゲルを用いることで蛋白質の分子量により結合していた蛋白質を解析することができる。また、この際、一般的には本発明の蛋白質に結合した蛋白質は、クマシ染色や銀染色といった蛋白質の通常の染色法では検出することは困難であるので、放射性同位元素である³⁵S-メチオニンや³⁵S-システインを含んだ培養液で細胞を
25 培養し、該細胞内の蛋白質を標識して、これを検出することで検出感度を向上させることができる。蛋白質の分子量が判明すれば直接SDS-ポリアクリルアミドゲ

ルから目的の蛋白質を精製し、その配列を決定することもできる。

また、本発明の蛋白質を用いて、該蛋白質に結合する蛋白質を単離する方法としては、例えば、ウエストウエスタンプロッティング法 (Skolnik, E. Y. et al., Cell (1991) 65, 83-90) を用いて行うことができる。すなわち、本発明の蛋白質と結合する蛋白質を発現していることが予想される細胞、組織、臓器(例え

5 ば、脂肪細胞や実施例におけるノザンプロッティングにより発現が認められた組織) よりファージベクター (λ gt11, ZAPなど) を用いたcDNAライブラリーを作製し、これをLB-アガロース上で発現させフィルターに発現させた蛋白質を固定し、精製して標識した本発明の蛋白質と上記フィルターとを反応させ、本発明の蛋白質と結合した蛋白質を発現するブラークを標識により検出すればよい。本発明の蛋白質を標識する方法としては、ビオチンとアビジンの結合性を利用する方法、本発明の蛋白質又は本発明の蛋白質に融合したペプチド又はポリペプチド(例えばGSTなど) に特異的に結合する抗体を利用する方法、ラジオアイソトープを利用する方法又は蛍光を利用する方法等が挙げられる。

15 また、本発明のスクリーニング方法の他の態様としては、細胞を用いた2-ハイブリッドシステム (Fields, S., and Sternglanz, R., Trends. Genet. (1994) 1 0, 286-292, Dalton S, and Treisman R (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68, 597-612、「MATCHMAKER Two-Hybrid System」, 「Mammalian

20 MATCHMAKER Two-Hybrid Assay Kit」, 「MATCHMAKER One-Hybrid System」(いずれもクロントック社製)、「HybriZAP Two-Hybrid Vector System」(ストラタジーン社製)) を用いて行う方法が挙げられる。2-ハイブリッドシステムにおいては、本発明の蛋白質またはその部分ペプチドをSRF DNA結合領域またはGAL4 DNA結合領域と融合させて酵母細胞の中で発現させ、本発明の蛋白質と結合する蛋白質を発現していることが予想される細胞より、VP16またはGAL4転写活性化領域と融合する形で発現するようなcDNAライブラリーを作製し、これを上記酵母細胞に

25

- 31 -

導入し、検出された陽性クローンからライプラリー由来cDNAを単離する（酵母細胞内で本発明の蛋白質と結合する蛋白質が発現すると、両者の結合によりレポーター遺伝子が活性化され、陽性のクローンが確認できる）。単離したcDNAを大腸菌に導入して発現させることにより、該cDNAがコードする蛋白質を得ることができる。
5 これにより本発明の蛋白質に結合する蛋白質またはその遺伝子を調製することが可能である。2-ハイブリッドシステムにおいて用いられるレポーター遺伝子としては、例えば、HIS3遺伝子の他、Ade2遺伝子、LacZ遺伝子、CAT遺伝子、ルシフェラーゼ遺伝子、PAI-1 (Plasminogen activator inhibitor type1) 遺伝子等が挙げられるが、これらに制限されない。2-ハイブリッド法によるスクリーニングは、酵母の他、哺乳動物細胞などを使って行うこともできる。
10

本発明の蛋白質と結合する化合物のスクリーニングは、アフィニティクロマトグラフィーを用いて行うこともできる。例えば、本発明の蛋白質をアフィニティカラムの担体に固定し、ここに本発明の蛋白質と結合する蛋白質を発現していることが予想される被検試料を適用する。この場合の被検試料としては、例えば
15 細胞抽出物、細胞溶解物等が挙げられる。被検試料を適用した後、カラムを洗浄し、本発明の蛋白質に結合した蛋白質を調製することができる。

得られた蛋白質は、そのアミノ酸配列を分析し、それを基にオリゴDNAを合成し、該DNAをプローブとしてcDNAライブラリーをスクリーニングすることにより、該蛋白質をコードするDNAを得ることができる。

20 本発明において、結合した化合物を検出又は測定する手段として表面プラズモン共鳴現象を利用したバイオセンサーを使用することもできる。表面プラズモン共鳴現象を利用したバイオセンサーは、本発明の蛋白質と被検化合物との間の相互作用を微量の蛋白質を用いてかつ標識することなく、表面プラズモン共鳴シグナルとしてリアルタイムに観察することが可能である（例えばBIAcore、Pharmac
25 ia製）。したがって、BIAcore等のバイオセンサーを用いることにより本発明の蛋白質と被検化合物との結合を評価することが可能である。

また、蛋白質に限らず、本発明の蛋白質に結合する化合物（アゴニストおよびアンタゴニストを含む）を単離する方法としては、例えば、固定した本発明の蛋白質に、合成化合物、天然物バンク、もしくはランダムファージペプチドディスプレイライブラリーを作用させ、本発明の蛋白質に結合する分子をスクリーニングする方法や、コンピナトリアルケミストリー技術によるハイスループットを用いたスクリーニング方法 (Wrighton NC; Farrell FX; Chang R; Kashyap AK; Barbone FP; Mulcahy LS; Johnson DL; Barrett RW; Jolliffe LK; Dower WJ., *Small peptides as potent mimetics of the protein hormone erythropoietin*, Science (UNITED STATES) Jul 26 1996, 273 p458-64, Verdine GL., *The combinatorial chemistry of nature*. Nature (ENGLAND) Nov 7 1996, 384 p11-13, Hogan JC Jr., *Directed combinatorial chemistry*. Nature (ENGLAND) Nov 7 1996, 384 p17-9) が当業者に公知である。

また、本発明者らにより、本発明の蛋白質が、SHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DAP10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質と結合することが示された。従って、上記免疫沈降や2-ハイブリッドシステムなどを利用して、被検試料の存在下における、本発明の蛋白質と、SHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DAP10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質との結合能を検出し、これら結合能を低下させるような化合物を選択することにより、医薬品候補化合物をスクリーニングすることも可能である。すなわち、本発明は、また、被検試料の存在下で本発明の蛋白質とSHP-1蛋白質、SHP-2蛋白質、またはSHIP蛋白質からなる群より選択される蛋白質とを接触させ、これら蛋白質の結合活性を検出し、被検試料非存在下で検出した場合と比較して、これら蛋白質の結合活性を低下させる化合物を選択することを含む、スクリーニング方法をも提供するものである。

本発明のスクリーニングにより単離しうる化合物は、本発明の蛋白質の活性を調節するための薬剤の候補となり、本発明の蛋白質の発現異常や機能異常などに起因する疾患や本発明の蛋白質の活性を制御することにより治療可能な疾患の治

療への応用が考えられる。このような疾患としては、マスト細胞のシグナル伝達に関係する疾患、例えば、アトピー性皮膚炎、鼻炎、喘息などのアレルギー疾患を例示することができる。本発明のスクリーニング方法を用いて単離しうる化合物の構造の一部を、付加、欠失及び／又は置換により変換される物質も、本発明
5 の蛋白質に結合する化合物に含まれる。

本発明の蛋白質、または本発明のスクリーニングにより単離しうる化合物をヒトや哺乳動物、例えばマウス、ラット、モルモット、ウサギ、ニワトリ、ネコ、イヌ、ヒツジ、ブタ、ウシ、サル、マントヒヒ、チンパンジーの医薬として使用する場合には、蛋白質や単離された化合物自体を直接患者に投与する以外に、
10 公知の製剤学的方法により製剤化して投与を行うことも可能である。例えば、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤として経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、
15 懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

錠剤、カプセル剤に混和することができる添加剤としては、例えばゼラチン、
20 コーンスター、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスター、ゼラチン、アルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤が用いられる。
調剤単位形態がカプセルである場合には、上記の材料にさらに油脂のような液状
25 担体を含有することができる。注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。

注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80 (TM) 、HCO-50と併用してもよい。

5 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された
10 注射液は通常、適当なアンプルに充填させる。

患者への投与は、例えば、動脈内注射、静脈内注射、皮下注射などのほか、鼻腔内的、経気管支的、筋内的、経皮的、または経口的に当業者に公知の方法により行いうる。投与量は、患者の体重や年齢、投与方法などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能である。また、該化合物が
15 DNAによりコードされうるものであれば、該DNAを遺伝子治療用ベクターに組込み、遺伝子治療を行うことも考えられる。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。

本発明の蛋白質の投与量は、その1回投与量は投与対象、対象臓器、症状、投与方法によっても異なるが、例えば注射剤の形では通常成人（体重60kgとして）
20においては、1日あたり約100 μ gから20mgであると考えられる。

本発明の蛋白質と結合する化合物や本発明の蛋白質の活性を調節する化合物の投与量は、症状により差異はあるが、経口投与の場合、一般的に成人（体重60kgとして）においては、1日あたり約0.1から100mg、好ましくは約1.0から50mg、より好ましくは約1.0から20mgであると考えられる。

25 非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法によっても異なるが、例えば注射剤の形では通常成人（体重60kgとして）

においては、通常、1日当り約0.01から30mg、好ましくは約0.1から20mg、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好都合であると考えられる。他の動物の場合も、体重60kg当たりに換算した量、あるいは体表面積あたりに換算した量を投与することができる。

5

図面の簡単な説明

図1は、MC-PIR1のcDNA配列と翻訳されるアミノ酸配列を示す図である。DNA配列の下線点線はSST-REXで回収されたDNA断片である。ポリAシグナルを下線で示す。シグナル配列は小文字で示す。太い下線は膜貫通ドメインを示す。二重下線はITIM配列を示す。SS結合をするシステインをボックスで示す。アスパラギン結合糖鎖の結合配列をボックスで示す。

図2は、MC-PIR2のオープソリーディングフレームを示す図である。シグナル配列は小文字で示す。太い下線は膜貫通ドメインを示す。ITAM配列を有する他の共役分子との結合に重要な膜貫通ドメイン中のリジンをボックスで示す。SS結合をするシステインをボックスで示す。アスパラギン結合糖鎖の結合配列をボックスで示す。

図3は、各種臓器におけるMC-PIR1およびMC-PIR2のPCRによる発現解析の結果を示す電気泳動写真である。コントロールとしてGAPDHを用いた。

図4は、各種細胞におけるMC-PIR1およびMC-PIR2のRT-PCRによる発現解析の結果を示す電気泳動写真である。コントロールとしてGAPDHを用いた。

図5は、MC-PIR1及びMC-PIR2がマスト細胞表面に存在することを示すFACSによる解析結果を示す図である。

図6は、キメラタンパク質の抗マウスIgG抗体の架橋によるチロシンリン酸化の結果を示す電気泳動写真である。

図7は、ホスホチロシン脱リン酸化酵素、SHP-1およびSHP-2およびホスホイノシチド脱リン酸化酵素、SHIPとの会合についての結果を示す電気泳動写真である。

- 3 6 -

図8は、MC-PIR2がITAMを有するシグナル伝達分子DAP10、DAP12、あるいはFcR γ と会合することを示す電気泳動写真である。

図9は、Fc ϵ RIのシグナル伝達とMC-PIR1の抑制作用について示す図である。

5 発明を実施するための最良の形態

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。

[実施例1] cDNAライプラリの構築およびスクリーニング

レトロウイルスペクターpMX-SST (Kojima, T. and Kitamura, T. (1999) Nature Biotechnol. 17, 487-490) を用いて、cDNAライプラリ構築および発現を行なった。

ファスト・トラック2.0 mRNA単離キット（インビトロゲン社、カリフォルニア州カールスバッド）を用いて、製造元のプロトコールに従って、抗原刺激をしたマウス骨髄由来マスト細胞からポリ(A)+RNAを抽出した。

スーパースクリプト・チョイス・システム（インビトロゲン社）を用いて、cDNAをランダムヘキサマーによってポリ(A)+RNAから合成し、BstXIアダプターを用いてpMX-SSTベクターのBstXI部位に挿入した（インビトロゲン社）。SST-REXライプラリーを構築するために、ライゲーションしたDNAをDH10B細胞（エレクトロマックス、インビトロゲン社）で増幅して、キアゲン・プラスミドキット（キアゲン・インク、バレンシア、カリフォルニア州）を用いて、ライプラリーDNAを調製した。cDNAライプラリーの規模は 2.0×10^6 クローンであった。

SST-REXライプラリーを提示する高力価レトロウイルスを、パッケージングした細胞株Plat-E (Morita, S. et al. (2000) Gene Therapy, 7, 1063-1066) を用いて產生し、記述のようにBa/F3細胞に感染させた。1日感染させた後、細胞を3回洗浄し、96ウェルマルチタイタープレート（ 10^3 個/ウェル）を用いてIL-3の非存在下でクローンを選択した。

12日後、ゲノムDNAを因子非依存的Ba/F3クローンから抽出し、ゲノムPCRに供

- 37 -

し、ベクタープライマーを用いて、組み入れられたcDNAを回収した (GGGGGTGGAC
CATCCTCTA／配列番号：5、およびCGCCAGCTGTAAACGGTAG／配列番号：6)。ジ
ンアンプPCRシステム480 (パーキン・エルマー、ノーウォーク、コネチカット
州) およびLA Taqポリメラーゼ (タカラ、京都、日本) を用いて、PCRを30サイ
5 クル (98°Cで変性20秒、68°Cでアニーリングおよび伸長2分) 行った。得られた
PCR断片を、Taqダイターミネーター・サイクルシークエンシングキット (アブラ
イド・バイオシステムズ・インク、フォスター・シティ、カリフォルニア州) を用
いてシークエンシングして、自動シークエンサー (377 遺伝子アナライザー、ア
プライド・バイオシステムズ・インク) によって分析した。

10 なお、実験に用いた分化したマウス骨髄由来培養マスト細胞は、以下のように
して調製した。CBA/JNマウスの大脛骨から調製した骨髄細胞を、10%FCS、100単
位/mlペニシリン、100 μg/ml streptomycin、および10 ng/mlマウス IL-
3を含むRPMI1640中で5 %CO₂において37°Cで培養した。数日おきに5×10⁵細胞の
密度で継代培養し、4週間維持し、細胞を分化させた。マウスIL-3依存的前B細
15 胞株であるBa/F3を10%FCSおよび1 ng/mlマウスIL-3 (R&Dシステムズ) を含むR
PMI 1640培地で培養した。

マスト細胞の抗原による刺激は、以下のように行った (Kawakami, T. et al.
(1992) J. Immunol. 148, 3513-3519)。マスト細胞を0.5 μg/mlの抗DNP-IgE抗
体 (シグマ) で一晩感作し、翌日に100ng/mlのDNP-BSA (コスモバイオ社) で2時
20 間刺激した。

[実施例2] 単離されたcDNAクローンの分析

cDNAクローンの中でのシグナル配列を含み、一つのイムノグロブリンドメイン
をコードする遺伝子断片を単離した。

オリゴd-Tプライマーを用いたcDNAライブラリーを構築した。スーパースクリ
25 プト・チョイス・システム (インビトロゲン社) を用いて、cDNAをオリゴd-Tプ
ライマーによってポリ(A)+RNAから合成し、BstXIアダプターを用いてpME18Sベク

ターのBstXI部位に挿入した（インピトロゲン社）。オリゴd-Tライブラリーを構築するために、ライゲーションしたDNAをDH10B細胞に増幅して、プラスミド精製キット（キアゲン・インク、バレンシア、カリフォルニア州）を用いてライブラリーDNAを調製した。cDNAライブラリーの規模は 1.5×10^8 クローンであった。

5 RecA（第一化学薬品（株）、東京、日本）を用いたハイブリダイゼーションにより全長cDNAを単離した。先に単離したcDNA断片を鋳型にしてPCR反応を行い、ビオチン21-dUTP（クローンテック社）を取り込ませたおよそ500bpのプローブを合成した。このプローブをRecA存在下にオリゴd-TcDNAライブラリーとハイブリダイゼーションさせた。ストレプトアビジン-マグネチックビーズ（プロメガ社）で回収したDNAをDH10B細胞で増幅して（エレクトロマックス、インピトロゲン社）大腸菌クローンを得た。得られた大腸菌クローンを大量培養し、キアゲン・プラスミドキット（キアゲン・インク）を用いてDNAを調製した。Taqダイターミネーター・サイクルシークエンシングキット（アプライド・バイオシステムズ・インク、フォスター・シティ、カリフォルニア州）を用いてシークエンシングして、15自動シークエンサー（377 遺伝子アナライザー、アプライド・バイオシステムズ・インク）によって分析した。

得られたcDNAは全長1752塩基対であり、957残基がオープンリーディングフレームであった。3'側は648残基であり、ポリA付加シグナルを有していた。翻訳されたアミノ酸配列は318残基であり、27残基のシグナルシークエンス、156残基の細胞外ドメイン、23残基の細胞膜貫通ドメイン、112残基の細胞内ドメインであった。また、細胞外ドメインはバリアルタイプのイムノグロブリンドメインを一つ有していた。細胞内ドメインは4個のITIM様配列を有していた（図1）。この遺伝子をMC-PIR1と命名した。

このマウス由来の新規遺伝子に相同性を示す遺伝子として、CMRF-35-H9 (CMRF-35H) (Green, B. J. et al., Int. Immunol. 10, 891-899, 1998, アクセションNo. AF020314) およびIRp60 (Cantoni, C. et al., Eur. J. Immunol. 29,

- 3 9 -

3148-3159, 1999、アクセションNo. AJ224864) が存在する。しかしながら、CMRF-35HおよびIRp60がマスト細胞に発現することは知られていない。これらの遺伝子は、構造上の類似性からMC-PIR1のヒトホモログと考えられる。

MC-PIR1の配列を元に、EMBL/GenBank/DDBJ遺伝子データーバンクを調べたところ 5 MC-PIR1のイムノグロブリンドメインとおよそ90%の相同性を有する遺伝子配列が得られた（アクセション#BC006801）。得られた配列情報を元にプライマーを作製した。マスト細胞から調製した全RNAを用いてRT-PCR法を行い、同様の遺伝子産物の発現が認められた。更に、DNA断片を回収して配列を調べた。

遺伝子データーバンクに登録されている配列とほぼ同じ遺伝子（アクセション 10 No. BC006801と2ヶ所の塩基が異なり、2個のアミノ酸置換が見られる）が得られ、 MC-PIR2と命名した（図2）。その後、MC-PIR2はDIgR1 (Luo, K. et al., Bioch em. Biophys. Res. Commun. 287, 35-41, 2001; アクセションNo. AY048685) と全く同じタンパク質をコードすることが明らかになった。また、このマウス由来の遺伝子に相同性を示すヒト遺伝子として、CMRF-35A (Clark, G. J. et al., T 15 issue Antigens 57, 415-423, 2001、アクセションNo. BC022279) が存在する。 しかしながら、DIgR1あるいはCMRF-35Aがマスト細胞に発現することは知られておらず、その機能も不明である。

[実施例3] MC-PIR1及びMC-PIR2の発現分布

PCR法により遺伝子発現パターンを解析した。マウスの各種臓器由来のmRNAが 20 予めcDNA化されたDNA（クロントック社）を鋳型にして、PCR法により遺伝子断片を増幅した。また、各種血球系細胞株から全RNAをトリゾール試薬（インビトロゲン社）を用いて抽出した。得られた全RNAをリバーストランスクリプターゼ（キアゲン社）を用いてcDNA化したものを鋳型にして、PCR法により遺伝子断片を増幅した。増幅されたDNA断片を1%アガロース寒天により分離した。

MC-PIR1およびMC-PIR2の発現は両者とも脾臓および肝臓で多くの発現が見られ 25 た。両者とも特異的なDNA断片の増幅は、マウス骨髄由来培養マスト細胞（BMM

- 4 0 -

C) で見られた。MC-PIR1ではその他の細胞株、Ba/F3、A20、EL4、CTLL-2、FDC-P1、L-G、32Dcl3、J774.1、P815では増幅は見られなかった。MC-PIR2はJ774.1、FDC-P1でも発現が見られた（図3、図4）。以上の実験事実はMC-PIR1およびMC-PIR2はマスト細胞の機能調節に密接に関与していることを示唆している。

5 [実施例4] マウス骨髄由来マスト細胞におけるMC-PIR1及びMC-PIR2の細胞表面における発現

実施例1で示した方法で調製したマスト細胞をPE標識抗CD117モノクローナル抗体（BDファーミンジェン）と反応後、抗MC-PIR1マウスモノクローナル抗体（R&Dシステムズに委託して作製）あるいは抗MC-PIR2ウサギポリクローナル抗体（シグマジエノシスに委託して作製）と反応させた。細胞を洗浄後、それぞれの細胞を、FITC標識抗マウスイムノグロブリン抗体（BDファーミンジェン）あるいはFITC標識抗ウサギイムノグロブリン抗体（BDファーミンジェン）と反応させた。細胞を洗浄後、FACSCalibur（ベクトンデッキンソン）で解析した。

調製した細胞のおよそ90%から95%がCD117陽性細胞であり、ほぼ全ての細胞がマスト細胞に誘導されていた。CD117陽性細胞の内、90%の細胞がMC-PIR1陽性であり、25%がMC-PIR2陽性であった（図5）。これらの結果は、MC-PIR1及びMC-PIR2がマスト細胞表面上に存在することを示すものである。

[実施例5] MC-PIR1の細胞内ドメインの解析

Fc γ RIIBとMC-PIR1のキメラ遺伝子を作製した。Fc γ RIIBの細胞外ドメインおよび膜貫通ドメインをコードする遺伝子断片をPCR法にて増幅した。同様にMC-PIR1の細胞内ドメインをコードする遺伝子断片をPCR法にて増幅した。両遺伝子断片を混合したものを鋳型にし、再度PCR法にて遺伝子断片を増幅しキメラ遺伝子を作製した。その後、キメラ遺伝子断片をEcoRIおよびNotIにて消化し、pMX-IRES-puroベクターに挿入し、pMX-IRES-puro-Fc-PIR1を作製した。

25 pMX-IRES-puro-Fc-PIR1を提示する高力価レトロウイルスを、パッケージング細胞株Plat-Eを用いて産生し、記述のようにFc γ RIIB欠損細胞であるIIA1.6細胞

- 41 -

(Jones, B. et al. (1986) J. Immunol., 136, 348-356) に感染させた。感染1日後、 $1\mu\text{g}/\text{ml}$ のピューロマイシン（クロンテック社）を培地に添加し、更に1週間培養してキメラ遺伝子発現細胞株を得た。

キメラ遺伝子発現細胞株の細胞表面に発現しているB細胞受容体、およびキメ

5 ラ遺伝子を抗マウスIgG抗体（ザイメッド社）で架橋した細胞を経時に採取し、細胞溶解緩衝液で溶解した。細胞溶解液に2.4Gモノクローナル抗体（ベクトンデッキンソン）および抗ラットIgG抗体-セファロースを添加し、免疫複合体を沈降させた。得られた沈降物をペプチドN-グリコシダーゼF（第一化学薬品（株））で消化し、10%ポリアクリルアミド電気泳動に供した。

10 ポリアクリルアミド電気泳動で分離した免疫複合体をイモビロン-Pメンプラン（ミリポア社）に電気的に転写した。メンプランを10%FCSを含む緩衝液でプロックした後、4G10モノクローナル抗体（アップステートバイオテクノロジー社）続いてHRP結合抗マウスイムノグロブリン抗体（シグマ）とインキュベーションした。その後ケミルミネッセンス試薬（ファルマシア社）で検出した。

15 キメラ遺伝子発現細胞株を同様に架橋後、以下同様にメンプランを調製した。メンプランを抗SHP-1抗体（サンタクルーズ社）、抗SHP-2抗体（サンタクルーズ社）、あるいは抗SHIP抗体と反応させた。その後の検出は同様に行った。

キメラタンパク質は架橋後、0.5分でチロシンのリン酸化が検出された。また、キメラタンパク質を含む免疫複合体中にはSHP-1、SHP-2、SHIPが含まれていた。

20 これらの会合はキメラタンパク質のチロシンのリン酸化に依存して生じていた（図6、図7）。

[実施例6] MC-PIR2とITAMを有するシグナル伝達分子との会合

25 C末端側にHAタグを付加したプライマーを用いて、PCR法によりMC-PIR2を増幅した。得られた遺伝子断片をEcoRIおよびNotIにて消化後、pMKITベクターに挿入し、pMKIT-MC-PIR2-HAを作製した。

ITAM配列を有するDAP10、DAP12およびFcR γ の成熟型タンパク質をコードする

- 4 2 -

遺伝子断片をPCR法により増幅した。得られた遺伝子断片をHindIIIおよびNotIで消化し、pMKIT-FLAGベクターのFLAGタグ下流に挿入した。

pMKIT-MC-PIR2-HAおよびpMKITモックベクター、あるいはFLAG-DAP10ベクター、あるいはFLAG-DAP12ベクター、あるいはFLAG-FcR γ ベクターをCOS1細胞にトラン
5 スフェクションをした。2日後に細胞を回収し、細胞溶解緩衝液で溶解した。細胞溶解液に抗HAモノクローナル抗体（12CA5、ロシュダイアグノスティックス）およびプロテインAセファロースを添加し、免疫複合体を沈降させた。得られた沈降物を15%ポリアクリルアミド電気泳動に供した。ポリアクリルアミド電気泳動で分離した免疫複合体をイモビロン-Pメンプラン（ミリポア社）に電気的に転
10 写した。メンプランを10%FCSを含む緩衝液でブロックした後、抗FLAG-M2モノクローナル抗体（シグマ）、続いてHRP結合抗マウスイムノグロブリン抗体（シグマ）とインキュベーションした。その後ケミルミネッセンス試薬（ファルマシア社）で検出した。

MC-PIR2とpMKITモックベクターを導入した場合には抗FLAG抗体で検出されるバ
ンドは見られなかった。MC-PIR2とFLAG-DAP10、あるいはFLAG-DAP12、あるいはF
LAG-FcR γ を導入した場合には、それぞれ抗FLAG抗体でバンドが検出された。従
って、MC-PIR2は、ITAMを有するシグナル伝達分子DAP10 (Wu, J. et al. (1999),
Science 285, 730-732)、DAP12 (Lanier, L. L. et al. (1998), Nature 391,
703-707)、あるいはFcR γ (Vivier, E. et al. (1992), Int. Immunol. 4, 13
20 13-1323) と会合することが示された（図8）。これらの結果は、MC-PIR2が活性化シグナル伝達の制御に関与することを示す。

産業上の利用の可能性

本発明により、マスト細胞に由来し、マスト細胞のシグナル伝達経路の制御に
25 関与すると考えられる新規な膜タンパク質をコードする遺伝子が提供された。これら
の遺伝子産物の発現特性及びシグナル伝達に関与するタンパク質への結合性

- 4 3 -

から、これらは以下の作業仮説により、マスト細胞の抗原刺激後のシグナル伝達を抑制もしくは活性化すると考えられる。

即ち、マスト細胞がIgEと抗原によりFc ϵ RIが架橋をされると、細胞内でプロテインキナーゼ活性の上昇に引き続き、ホスファチジルイノシトールの代謝回転が亢進され、細胞内カルシウム濃度の上昇および脱顆粒が引き起こされる。また、PI3Kも活性化されることから細胞膜上ではPIP3の上昇を引き起こし、Btkなどが活性化される (Kawakami, Y. et al. (1994) Mol. Cell. Biol., 14, 5108-5113)

5 5. 一般に抑制性のシグナル伝達経路としてはFc γ RIIBなどに見られる、SHIP依存性経路 (Muta, T. et al. (1994) Nature, 368, 70-73) と、チロシン脱リン酸化酵素により伝達されるSHPに依存する経路 (Binstadt, B. A. et al. (1996) Immunity, 5, 629-638) が知られているが、MC-PIR1では両経路を同時に活性化できるため、Fc ϵ RIからのシグナルをより強く抑制できると考えられる（図9）。

一方、MC-PIR2はITAMを有するシグナル伝達分子DAP10、DAP12及びFcR γ と会合することから、SrcファミリーキナーゼあるいはPI3キナーゼ等のリン酸化酵素を通じて活性化を引き起こすと考えられる (Wu, J. et al. (1999), Science 285, 15 730-732、Lanier, L. L. et al. (1998), Nature 391, 703-707、Vivier, E. et al. (1992), Int. Immunol. 4, 1313-1323)。従って、例えばMC-PIR2とこれらのITAMを有するシグナル伝達分子との会合を阻害すれば、活性化シグナル伝達を抑制することができるものと期待される。即ち、MC-PIR2自身がマスト細胞の活性化シグナル伝達抑制物質の標的分子となる可能性が考えられる。

20 MC-PIR1、MC-PIR2、及びこれらのヒトホモログの遺伝子発現産物は天然リガンド、その作用をミミックする化合物、あるいは抗体のスクリーニングに利用可能である。これらの発現産物を利用したスクリーニングによって得られたリガンド、化合物もしくは抗体は、マスト細胞の活性化シグナル伝達を阻害し、新規な作用25 メカニズムをもった抗アレルギー剤となる可能性が考えられる。

請求の範囲

1. 下記 (a) から (d) のいずれかに記載のDNA。

(a) 配列番号 : 2 または 4 に記載のアミノ酸配列からなる蛋白質をコードするDNA。
5

(b) 配列番号 : 1 または 3 に記載の塩基配列のコード領域を含むDNA。

(c) 配列番号 : 2 または 4 に記載のアミノ酸配列において 1 若しくは複数のアミノ酸が置換、欠失、挿入、および／または付加したアミノ酸配列を有する蛋白質をコードするDNA。

10 (d) 配列番号 : 1 または 3 に記載の塩基配列からなるDNAとストリンジメントな条件下でハイブリダイズするDNA。

2. SHP-1蛋白質、SHP-2蛋白質、SHIP蛋白質、DAP10蛋白質、DAP12蛋白質、またはFcR γ 蛋白質からなる群より選択される蛋白質と結合する蛋白質をコードする、請求項 1 に記載のDNA。

15 3. 請求項 1 に記載のDNAによりコードされる蛋白質。

4. 請求項 1 に記載のDNAが挿入されたベクター。

5. 請求項 1 に記載のDNAまたは請求項 4 に記載のベクターを保持する宿主細胞。

20 6. 請求項 5 に記載の宿主細胞を培養し、該宿主細胞またはその培養上清から発現させた蛋白質を回収する工程を含む、請求項 3 に記載の蛋白質の製造方法。

7. 請求項 3 に記載の蛋白質に結合する抗体。

8. 配列番号 : 1 または 3 に記載の塩基配列からなるDNAまたはその相補鎖に相補的な少なくとも15ヌクレオチドを含むポリヌクレオチド。

25 9. 請求項 3 に記載の蛋白質に結合する化合物のスクリーニング方法であって、(a) 該蛋白質に被検試料を接触させる工程、

- 45 -

- (b) 該蛋白質と被検試料との結合活性を検出する工程、
- (c) 該蛋白質に結合する活性を有する化合物を選択する工程、
を含む方法。

10. 請求項 3 に記載の蛋白質と SHP-1 蛋白質、 SHP-2 蛋白質、 SHIP 蛋白質、 DA

5 P10 蛋白質、 DAP12 蛋白質、または FcR γ 蛋白質からなる群より選択される
蛋白質との結合を阻害する化合物のスクリーニング方法であって、

- (a) 被検試料の存在下で請求項 3 に記載の蛋白質と SHP-1 蛋白質、 SHP-2 蛋
白質、 SHIP 蛋白質、 DAP10 蛋白質、 DAP12 蛋白質、または FcR γ 蛋白質
からなる群より選択される蛋白質とを接触させる工程、
- (b) これら蛋白質の結合活性を検出する工程、
- (c) 被検試料非存在下で検出した場合と比較して、これら蛋白質の結合活
性を低下させる化合物を選択する工程、
を含む方法。

11. 抗アレルギー剤の製造方法であって、請求項 7 に記載の抗体または請求

15 項 9 若しくは 10 に記載の方法により得られた化合物と薬理学上許容され
る担体若しくは媒体とを混合することを含む方法。

1 / 9

图 1

1	ACAGAAGCTGAGGAAGTCAAGAACAGCTAGACACAAGAAAGCAGAAGTGGGGCTGTCTCAGAGACTGGCCGTCCCCCTAGGGAA	m t q l a s a v w i p
9	CIGAACCGTGGGTGGGGTGGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCGCTGCG	
181	ACGGCTGTTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG	
12	t i i i f w i p g c v p l h g p s t m t g s v g q s	
271	CTAGATGTCGTCAGTATGAGGAGAAATTAAAGACTAAGGACAAATTAAGCTGGAGAGGTGACCTAACCTCACCTCACAGTGACCTATGAG	
42	L S V S C Q Y E E K F K T K D K Y W C R G S L K V L C K D I	
361	GTCAGAACCGAGGAGGCTCAGAACAGCTAGGAGTGGCAGAGTGGACCATCAGGGACCATCCAGACAGACACCTCACCTCACAGTGACCTATGAG	
72	V K T S S S E A R S G R V T I R D H P D N L T F T V T Y E	
451	AGCCCTACCCCTGGATGATGCCAGAACCTAACATGTTGGGGATAACCATTTCATGTCGAGTCAAGTTCATGTCGAGTCAAGTTCATGTCGAG	
102	S L T L D D A D T Y M C A V D I P F F N A P L G L D K Y F K	
541	ATTGAAATGTCGTCAGGTCAGGACCCAGTTCAACTTCAGGACCAACACTAGAGACACCCTGGGTGTCACCAGTGTGCTTAC	
132	I E L S V V P S E D P V S S P G P T L E T P V V S T S L P T	
631	AAGGGGTCGGCGCGCTCTAGGATCCAACACAGAGGACCCGCGCTGAGCATGACTATTCCCAGGGCTTGAGGCTCCAGGGCTGTTGTCGTTA	
162	K G P A L G S N T E D R R E H D Y S Q G L R L P A L L S V L	
721	GCTCTCCCTGCTGTTCTGTTGGGGACATCTCTGCTGGCTGGAGGATGTTCCAGGAAGCGGGCTGGCTCAAAGCTGATAGGCATCCAGAG	
192	A L L F L L V G T S L L A W R H F Q K R L V K A D R H P E	
811	CTGTCGAGAACCTCAGACAGGCTCTGAGGAGAAATGAGTGGCAGTATGTAATTTGGCTGCAACAGTGGCTCTGAGGGAAAGGCCG	
222	L S Q N L R Q A S E Q N E C Q Y V N L Q L H T W S L R E E P	
901	GTGGCTACCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAACTATTCCATCGTGGCATTCAACTCC	
252	V L P S Q V E V E Y S T L A L P Q E E L H Y S S V A F N S	
991	CAGGGCAAGGATTCTACGCCAATGGAGATTCTCTCATCAACCTCAGGACCCAGAAAGCAGAGTCACTGTGAGATCCAGAAGGCCAGAAA	
282	Q R Q D S H A N G D S L H Q P Q D Q K A E Y S E I Q K P R K	
1081	GGACTCTGTGACCTTACCTGTGACTCTCTGACCTGATCCCTCTCAGTGGTCACTAAACCAACTCTCATCTCAGAGTCAAGCTGAGACTACAAAGGAGG	
312	G L S D L Y L *	
1171	TCAATGTCATGAGCCCTCAGTGGCTTCACTAAAGATGAGCAGGAGCCAGGGCTCTGGGGCACAGTCTCATCCCACTGGCTCTCTCTCT	
1261	AGCCTGTATTTGGTCTGGCTCTGGGTGGAAAGACATCGATGCTGCTCTGGGTCTGGGATTTGACATGGTCTGATAGMACGGT	
1351	ACTTGTGTTAGTTAGCTTGTAGTGTAGCTCAGTCCAGGAAGAACATCTGTTGTCATCTCAGAGAGAAAACCTAAGCTGAGACTACAAAGGAGG	
1440	GGAGTCATGGAGGTACTAAACCAACTCTCATCTCAGAGAGAAAACCTAAGCTGAGACTACAAAGCTGAGACTACAAAGCTGAGACTACAAAGGAGG	
1531	GGTCAAGGGCAAAATCCCTCTGGACTCATTTTATTTTGTGAGACAGGGTCTCTGTAGCTTGGCTCTGGCTCTGGCTCTGGCTCTGG	
1621	ACTCACTCTGTAACCAAGAATGGCCTCAACTGAGCTACAAAGACTGAGCTGGCTCCAAAGGTGTGTCACAAATGCCTGGCTCTGGCTCTGG	
1711	GAATTCTTAAGTAAAGATGAAIAAAGTTATAATATCTT	

2 / 9

図 2

1	ATGATTCCCAAGAGTAATAAGATTGTGGCTGCCTTCAGGCTCTGTCCCCACTGCATGGCCCCAGCACT
1	m i p r v i r i w i p s a i f i s q v p g c v p l h g p s t
91	ATCACAGGCCGCTGTTGGGAATCGCTCAGTGTGTCAATGTCAAATCGAGGAGAAATTCAAGGACAAATTCTGGTGCAGAGGGTCA
31	i T G A V G E S L S V S [Q Y E E K F K T K D K F W C R G S
181	CTGAAGGTACTCTGTAAAGATAATTGTCAGAACAGCCAGCTCAGAAGAAGTTAGGAATGGCCCGAGTGACCATCAGGGACCATCGAGACAAC
61	L K V L C K D I V K T S S E E V R N G R V T I R D H P D [N
271	CTCACCTTCACAGTGACCTATGAGGGCTCACCTGGAGGATGCAGACACCTACATGTGGGGTGGATAATCACTTTTGATGGCTCC
91	[T] F T V T Y E S L T L E D A D T Y M [Q A V D I S L F D G S
361	TIGGGGTTICGATAAAGTACTTCAGATTGAGTTGCTGTGGTTCAAGTGGAGGCCAGTCACAGGTGAGGCTTGAGAGTTGGTAGAGAT
121	L G F D K Y F K I E L S V V P S E D P V T G S S L E S G R D
451	ATCCTGGAAATCCCCCACATCTCAGTGGGCACACTCATCCCAGTGTGACCCACAGATGACACAAATTCCCTGGCTCCCTAGGCCTCGGG
151	i L E S P T S S V G H T H P S V T T D D T I P A P C P Q P R
541	TCTCTGGAGGAGCCCTIACCTCTGGGTCTGGTGTCTGAAGTTGTTCTGAGCATGCTTGGTCTGCTGCTGGTGAAC
181	S L R S S L Y F W V L V S L [K L F L S M L G A V L W V N
631	AGGCCCTCAGAGGGTGCCTGGGGAAAGCAGGCACTAGGCCCTGTTATGAGAACAGTGA
211	R P Q R C S G G S S T Q P C Y E N Q *

図 3

4 / 9

図 4

5 / 9

図 5

6 / 9

図 6

7 / 9

図 7

	$Fc\gamma RIIb$			$Fc-PIR1$		
α マウス IgG, F(ab') ₂	-	+	-	-	+	-
α マウス IgG, インタクト	-	-	+	-	-	+

プロット: α SHP-1

	$Fc\gamma RIIb$			$Fc-PIR1$		
α マウス IgG, F(ab') ₂	-	+	-	-	+	-
α マウス IgG, インタクト	-	-	+	-	-	+

プロット: α SHP-2

	$Fc\gamma RIIb$			$Fc-PIR1$		
α マウス IgG, F(ab') ₂	-	+	-	-	+	-
α マウス IgG, インタクト	-	-	+	-	-	+

プロット: α SHIP

図 8

免疫沈降： α HA

	MC-PIR2-HA			
モック	+	-	-	-
FLAG-DAP10	-	+	-	-
FLAG-DAP12	-	-	+	-
FLAG-FcR γ	-	-	-	+

ウエスタンブロット
: α FLAG

9 / 9

図 9

1 / 1 4

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

Kitamura, Toshio

<120> Mast cell membrane proteins.

<130> C1-A0229Y1P

<150> JP 2002-316680

<151> 2002-10-30

<150> JP 2002-354165

<151> 2002-12-05

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 1752

<212> DNA

<213> Mus musculus

<220>

<221> CDS

2 / 1 4

<222> (148).. (1104)

<223>

<400> 1

acagaactga ggaaagttag aagcaaaaca gcttagacaca aagaaaagca gaagtggc 60

gtctcagaga ctggccgtcc cctagcgga ctgaaccgtg gagcgtccag ccgtggcctg 120

cctgccggtg acccggtgtg gggagaa atg acc caa ctg gcc tca gct gtg tgg 174

Met Thr Gln Leu Ala Ser Ala Val Trp

1 5

ctg ccc acg ctg ttg ctg ctg ctg ctt ttt tgg ctt cca ggc tgt 222

Leu Pro Thr Leu Leu Leu Leu Leu Phe Trp Leu Pro Gly Cys

10 15 20 25

gtc cct ctg cat ggt ccc agc acc atg aca gga agt gtg ggt caa tcc 270

Val Pro Leu His Gly Pro Ser Thr Met Thr Gly Ser Val Gly Gln Ser

30 35 40

ctg agt gtg tcg tgt cag tat gag gag aaa ttt aag act aag gac aaa 318

Leu Ser Val Ser Cys Gln Tyr Glu Glu Lys Phe Lys Thr Lys Asp Lys

45 50 55

tac tgg tgc aga ggg tca ctt aag gta ctg tgc aaa gat att gtc aag 366

Tyr Trp Cys Arg Gly Ser Leu Lys Val Leu Cys Lys Asp Ile Val Lys

3 / 1 4

60

65

70

acc agc agc tca gaa gaa gct agg agt ggc aga gtg acc atc agg gac 414
Thr Ser Ser Ser Glu Glu Ala Arg Ser Gly Arg Val Thr Ile Arg Asp
75 80 85

cat cca gac aac ctc acc ttc aca gtg acc tat gag agc ctc acc ctg 462
His Pro Asp Asn Leu Thr Phe Thr Val Thr Tyr Glu Ser Leu Thr Leu
90 95 100 105

gat gat gca gac acc tac atg tgt gcg gtg gat ata cca ttt ttc aat 510
Asp Asp Ala Asp Thr Tyr Met Cys Ala Val Asp Ile Pro Phe Phe Asn
110 115 120

gcc ccc ttg ggg ctc gat aag tac ttc aag att gaa ttg tct gtg gtt 558
Ala Pro Leu Gly Leu Asp Lys Tyr Phe Lys Ile Glu Leu Ser Val Val
125 130 135

cca agt gag gac cca gtt tca tct cca gga cca aca cta gag aca cct 606
Pro Ser Glu Asp Pro Val Ser Ser Pro Gly Pro Thr Leu Glu Thr Pro
140 145 150

gtg gtg tcc acc agt ctg cct acc aag ggt ccc gcc cta gga tcc aac 654
Val Val Ser Thr Ser Leu Pro Thr Lys Gly Pro Ala Leu Gly Ser Asn
155 160 165

4 / 14

aca gag gac cgc cgt gag cat gac tat tcc cag ggc ttg agg ctc cca 702

Thr Glu Asp Arg Arg Glu His Asp Tyr Ser Gln Gly Leu Arg Leu Pro

170 175 180 185

gcg ctg ttg tct gtg tta gct ctc ctg ctg ttt ctg ttg gtg ggg aca 750

Ala Leu Leu Ser Val Leu Ala Leu Leu Phe Leu Leu Val Gly Thr

190 195 200

tct ctg ctg gcc tgg agg atg ttc cag aag cgg ctg gtc aaa gct gat 798

Ser Leu Leu Ala Trp Arg Met Phe Gln Lys Arg Leu Val Lys Ala Asp

205 210 215

agg cat cca gag ctg tcc cag aac ctc aga cag gct tct gag cag aat 846

Arg His Pro Glu Leu Ser Gln Asn Leu Arg Gln Ala Ser Glu Gln Asn

220 225 230

gag tgc cag tat gtg aat ttg cag ctg cac acg tgg tct ctg agg gaa 894

Glu Cys Gln Tyr Val Asn Leu Gln Leu His Thr Trp Ser Leu Arg Glu

235 240 245

gac ccg gtg cta cca agt cag gta gaa gtg gtg gaa tat agc aca ttg 942

Glu Pro Val Leu Pro Ser Gln Val Glu Val Val Glu Tyr Ser Thr Leu

250 255 260 265

gca tta ccc cag gaa gag ctt cac tat tca tcc gtg gca ttc aac tcc 990

Ala Leu Pro Gln Glu Glu Leu His Tyr Ser Ser Val Ala Phe Asn Ser

5 / 1 4

270

275

280

cag agg cag gat tct cac gcc aat gga gat tct ctt cat caa cct cag 1038
Gln Arg Gln Asp Ser His Ala Asn Gly Asp Ser Leu His Gln Pro Gln

285

290

295

gac cag aaa gca gag tac agt gag atc cag aag ccc aga aaa gga ctc 1086
Asp Gln Lys Ala Glu Tyr Ser Glu Ile Gln Lys Pro Arg Lys Gly Leu

300

305

310

tct gac ctt tac ctg tga ctccctgtca cctgatcctc tcagtggta 1134
Ser Asp Leu Tyr Leu

315

ctaccagggtt ccaaggctcc ctgctggctg ctgccctcaa tgtcatgagc cttagtggct 1194

tcaactaaaga tgagcaggag ccagggctct gtgggcacag tctcatccca ctggctctct 1254

cctcttagcc tgtattttgt tctgcctctg ggtgtggaag acatcgatgc tgctctttg 1314

gggctctggg aattgacatg gttcgatag aacggtaactt gtgttagtta gctttgttagt 1374

gtcagtccag gaagaacatc tgtggtaactt gggaaagtgg gggacccatg agactacaaa 1434

ggaaggggag tcatggaggt actaaacacc aactccttca tctcacagag aaaaaaacct 1494

6 / 1 4

aagctctgag gacaaaagcc tggcccgtag caccaaggtc aggggcaaat tcctctggac 1554

tcattttat ttttattttt tgtttttga gacagggtct ctctgtgttag ctttggctgt 1614

cctggaactc actctgtaaa ccagaatggc ctcagactca caaagatctg cctgcctctg 1674

cctccaaagg tgtgtgccac aatgcctggc ttctctgaat tctaagtaa aagatgaaat 1734

aaagtttata atatctt 1752

<210> 2

<211> 318

<212> PRT

<213> Mus musculus

<400> 2

Met Thr Gln Leu Ala Ser Ala Val Trp Leu Pro Thr Leu Leu Leu

1

5

10

15

Leu Leu Leu Phe Trp Leu Pro Gly Cys Val Pro Leu His Gly Pro Ser

20

25

30

Thr Met Thr Gly Ser Val Gly Gln Ser Leu Ser Val Ser Cys Gln Tyr

35

40

45

7 / 1 4

Glu Glu Lys Phe Lys Thr Lys Asp Lys Tyr Trp Cys Arg Gly Ser Leu

50 55 60

Lys Val Leu Cys Lys Asp Ile Val Lys Thr Ser Ser Ser Glu Glu Ala

65 70 75 80

Arg Ser Gly Arg Val Thr Ile Arg Asp His Pro Asp Asn Leu Thr Phe

85 90 95

Thr Val Thr Tyr Glu Ser Leu Thr Leu Asp Asp Ala Asp Thr Tyr Met

100 105 110

Cys Ala Val Asp Ile Pro Phe Phe Asn Ala Pro Leu Gly Leu Asp Lys

115 120 125

Tyr Phe Lys Ile Glu Leu Ser Val Val Pro Ser Glu Asp Pro Val Ser

130 135 140

Ser Pro Gly Pro Thr Leu Glu Thr Pro Val Val Ser Thr Ser Leu Pro

145 150 155 160

Thr Lys Gly Pro Ala Leu Gly Ser Asn Thr Glu Asp Arg Arg Glu His

165 170 175

Asp Tyr Ser Gln Gly Leu Arg Leu Pro Ala Leu Leu Ser Val Leu Ala

180 185 190

8 / 1 4

Leu Leu Leu Phe Leu Leu Val Gly Thr Ser Leu Leu Ala Trp Arg Met

195

200

205

Phe Gln Lys Arg Leu Val Lys Ala Asp Arg His Pro Glu Leu Ser Gln

210

215

220

Asn Leu Arg Gln Ala Ser Glu Gln Asn Glu Cys Gln Tyr Val Asn Leu

225

230

235

240

Gln Leu His Thr Trp Ser Leu Arg Glu Glu Pro Val Leu Pro Ser Gln

245

250

255

Val Glu Val Val Glu Tyr Ser Thr Leu Ala Leu Pro Gln Glu Glu Leu

260

265

270

His Tyr Ser Ser Val Ala Phe Asn Ser Gln Arg Gln Asp Ser His Ala

275

280

285

Asn Gly Asp Ser Leu His Gln Pro Gln Asp Gln Lys Ala Glu Tyr Ser

290

295

300

Glu Ile Gln Lys Pro Arg Lys Gly Leu Ser Asp Leu Tyr Leu

305

310

315

9 / 1 4

<210> 3
<211> 687
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (1).. (687)
<223>

<400> 3
atg att ccc aga gta ata aga ttg tgg ctg cct tca gct ctg ttc ctc 48
Met Ile Pro Arg Val Ile Arg Leu Trp Leu Pro Ser Ala Leu Phe Leu
1 5 10 15

tct cag gtc cca ggc tgt gtc cca ctg cat ggc ccc agc act atc aca 96
Ser Gln Val Pro Gly Cys Val Pro Leu His Gly Pro Ser Thr Ile Thr
20 25 30

ggc gct gtt ggg gaa tcg ctc agt gtg tca tgt caa tac gag gag aaa 144
Gly Ala Val Gly Glu Ser Leu Ser Val Ser Cys Gln Tyr Glu Glu Lys
35 40 45

ttc aag act aag gac aaa ttc tgg tgc aga ggg tca ctg aag gta ctc 192
Phe Lys Thr Lys Asp Lys Phe Trp Cys Arg Gly Ser Leu Lys Val Leu
50 55 60

1 0 / 1 4

tgt aaa gat att gtc aag acc agc agc tca gaa gaa gtt agg aat ggc 240
Cys Lys Asp Ile Val Lys Thr Ser Ser Ser Glu Glu Val Arg Asn Gly
65 70 75 80

cga gtg acc atc agg gac cat cca gac aac ctc acc ttc aca gtg acc 288
Arg Val Thr Ile Arg Asp His Pro Asp Asn Leu Thr Phe Thr Val Thr
85 90 95

tat gag agc ctc acc ctg gag gat gca gac acc tac atg tgt gcg gtg 336
Tyr Glu Ser Leu Thr Leu Glu Asp Ala Asp Thr Tyr Met Cys Ala Val
100 105 110

gat ata tca ctt ttt gat ggc tcc ttg ggg ttc gat aag tac ttc aag 384
Asp Ile Ser Leu Phe Asp Gly Ser Leu Gly Phe Asp Lys Tyr Phe Lys
115 120 125

att gag ttg tct gtg gtt cca agt gag gac cca gtc aca ggt tcg agc 432
Ile Glu Leu Ser Val Val Pro Ser Glu Asp Pro Val Thr Gly Ser Ser
130 135 140

ctt gag agt ggt aga gat atc ctg gaa tcc ccc aca tcc tca gtt ggg 480
Leu Glu Ser Gly Arg Asp Ile Leu Glu Ser Pro Thr Ser Ser Val Gly
145 150 155 160

cac act cat ccc agt gtg acc aca gat gac aca att cct gct ccc tgc 528

1 1 / 1 4

His Thr His Pro Ser Val Thr Thr Asp Asp Thr Ile Pro Ala Pro Cys

165

170

175

cct cag cct cgg tct ctt cgg agc agc ctc tac ttc tgg gtc ctg gtg 576

Pro Gln Pro Arg Ser Leu Arg Ser Ser Leu Tyr Phe Trp Val Leu Val

180

185

190

tct ctg aag ttg ttc ctg ttc ctg agc atg ctt ggt gct gtc ctc tgg 624

Ser Leu Lys Leu Phe Leu Phe Leu Ser Met Leu Gly Ala Val Leu Trp

195

200

205

gtg aac agg cct cag agg tgc tct ggg gga agc agc act cag ccc tgt 672

Val Asn Arg Pro Gln Arg Cys Ser Gly Gly Ser Ser Thr Gln Pro Cys

210

215

220

tat gag aac cag tga 687

Tyr Glu Asn Gln

225

<210> 4

<211> 228

<212> PRT

<213> Mus musculus

<400> 4

12/14

Met Ile Pro Arg Val Ile Arg Leu Trp Leu Pro Ser Ala Leu Phe Leu

1

5

10

15

Ser Gln Val Pro Gly Cys Val Pro Leu His Gly Pro Ser Thr Ile Thr

20

25

30

Gly Ala Val Gly Glu Ser Leu Ser Val Ser Cys Gln Tyr Glu Glu Lys

35

40

45

Phe Lys Thr Lys Asp Lys Phe Trp Cys Arg Gly Ser Leu Lys Val Leu

50

55

60

Cys Lys Asp Ile Val Lys Thr Ser Ser Glu Glu Val Arg Asn Gly

65

70

75

80

Arg Val Thr Ile Arg Asp His Pro Asp Asn Leu Thr Phe Thr Val Thr

85

90

95

Tyr Glu Ser Leu Thr Leu Glu Asp Ala Asp Thr Tyr Met Cys Ala Val

100

105

110

Asp Ile Ser Leu Phe Asp Gly Ser Leu Gly Phe Asp Lys Tyr Phe Lys

115

120

125

Ile Glu Leu Ser Val Val Pro Ser Glu Asp Pro Val Thr Gly Ser Ser

130

135

140

1 3 / 1 4

Leu Glu Ser Gly Arg Asp Ile Leu Glu Ser Pro Thr Ser Ser Val Gly
145 150 155 160

His Thr His Pro Ser Val Thr Thr Asp Asp Thr Ile Pro Ala Pro Cys
165 170 175

Pro Gln Pro Arg Ser Leu Arg Ser Ser Leu Tyr Phe Trp Val Leu Val
180 185 190

Ser Leu Lys Leu Phe Leu Phe Leu Ser Met Leu Gly Ala Val Leu Trp
195 200 205

Val Asn Arg Pro Gln Arg Cys Ser Gly Gly Ser Ser Thr Gln Pro Cys
210 215 220

Tyr Glu Asn Gln
225

<210> 5

<211> 19

<212> DNA

<213> Artificial

<220>

1 4 / 1 4

<223> Artificially Synthesized Primer Sequence

<400> 5

gggggtggac catcctcta

19

<210> 6

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 6

cgcgcagctg taaacggtag

20

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13921

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C12N15/12, 1/15, 1/19, 1/21, 5/00, C07K14/705, 16/28,
C12P21/02, G01N33/15, 33/50, A61K39/395

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/12, 1/15, 1/19, 1/21, 5/00, C07K14/705, 16/28,
C12P21/02, G01N33/15, 33/50, A61K39/395

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
SwissProt/PIR/GeneSeq, GenBank/EMBL/DDBJ/GeneSeq, BIOSIS/WPI (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X/Y/A	LUO K. et al., DlgR1, a novel membrane receptor of the immunoglobulin gene superfamily, is preferentially expressed by antigen-presenting cells., Biochem.Biophys.Res.Commun., 2001, 287(1), pages 35 to 41	1-9/10/11
X/ A	MU X. et al., Gene expression in the developing mouse retina by EST sequencing and microarray analysis., Nucleic Acids Res., 2001, 29(24), p.4983-93	1, 3-9/ 2, 10-11
Y/A	WU J. et al., DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells., J.Exp.Med., 2000, 192(7), p.1059-68	10/1-9, 11

Further documents are listed in the continuation of Box C. See patent family annex.

"A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 28 January, 2004 (28.01.04)	Date of mailing of the international search report 10 February, 2004 (10.02.04)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Faxsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13921

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y/A	TOMASELLO E. et al., Association of signal-regulatory proteins beta with KARAP/DAP-12., Eur.J.Immunol., 2000, 30(8), p.2147-56	10/1-9,11
Y/A	LANIER L.L. et al., The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function., Immunol.Today, 2000, pages 21(12), p.611-4	10/1-9,11
A	BILLADEAU D.D. et al., ITAMs versus ITIMs: striking a balance during cell regulation., J.Clin.Invest., 2002 January, 109(2), p.161-8	1-11
A	SAMUELSSON A. et al., Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor., Science, 2001, 291(5503), p.484-6	1-11
A	MALBEC O. et al., Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation., J.Immunol., 1998, 160(4), p.1647-58	1-11
A	SMITH K.G. et al., Inhibition of the B cell by CD22: a requirement for Lyn., J.Exp.Med., 1998, 187(5), p.807-11	1-11
P,X	YOTSUMOTO K. et al., Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation., J.Exp.Med., 21 July 2003 (21.07.03), 198 (2), p.223-33	1-11
P,X	KUMAGAI H. et al., Identification and characterization of a new pair of immunoglobulin-like receptors LMIR1 and 2 derived from murine bone marrow-derived mast cells., Biochem.Biophys.Res.Commun., 01 August, 2003 (01.08.03), 307(3), p.719-29	1-11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13921

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
(See extra sheet.)

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13921

Continuation of Box No. II of continuation of first sheet(1)**<Subject of search>**

The "compound" as set forth in claim 11 is specified by "obtained by a method according to claim 9 or 10" and thus involves any compounds obtained by a method according to claim 9 or 10 (a screening method).

However, the description presents no specific compound obtained by the screening method. Thus, claim 11 is neither supported by the description nor disclosed therein. Even though the common technical knowledge at the point of the application is taken into consideration, it is completely unknown what specific compounds are involved and what are not. Thus, claim 11 is described in an extremely unclear manner.

Such being the case, no meaningful search can be made on the parts relating to the compound obtained by a method according to claim 9 or 10 in the invention as set forth in claim 11.

Therefore, the search was made on the part relating to the antibody according to claim 7 in the invention according to claim 11.

<Unity of invention>

It is recognized that the matter common to the inventions according to claims 1 to 11 resides in DNA comprising a base sequence of SEQ ID NO:1 or 3 in the present case which has an immunoglobulin domain as an extracellular domain, has a motif transmitting signal into cells and encodes a mouse-origin membrane protein.

However, the above common matter is found out as not novel, since Biochem. Biophys. Res. Commun., 2001, 287(1), p.35-41 discloses a mouse-origin DNA which has an immunoglobulin domain as an extracellular domain, has a motif transmitting signal into cells, encodes a mouse-origin membrane protein and is substantially the same as the DNA comprising the base sequence of SEQ ID NO:3 in the present case.

That is, the above common matter falls within the scope of prior art and, therefore, cannot be considered as a special technical feature in the meaning within the second sentence in PCT Rule 13.2.

Thus, there is no matter common to all claims. Since there is no common matter seemingly being a special technical feature in the meaning within the second sentence in PCT Rule 13.2, no technical relevancy can be found out in the meaning according to PCT Rule 13 among these inventions differing from each other.

Such being the case, it is obvious that claims 1 to 11 do not comply with the requirement of unity of invention.

Therefore, the claims have the following 2 groups of inventions:

(1) in the inventions according to claims 1 to 11, the parts relating to DNA comprising the base sequence of SEQ ID NO:1 in the present case; and

(2) in the inventions according to claims 1 to 11, the parts relating to DNA comprising the base sequence of SEQ ID NO:3 in the present case.

国際調査報告

国際出願番号 PCT/JP03/13921

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C12N15/12, 1/15, 1/19, 1/21, 5/00, C07K14/705, 16/28, C12P21/02, G01N33/15, 33/50, A61K39/395, A61P37/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N15/12, 1/15, 1/19, 1/21, 5/00, C07K14/705, 16/28, C12P21/02; G01N33/15, 33/50, A61K39/395, A61P37/08

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

SwissProt/PIR/GeneSeq

GenBank/EMBL/DDBJ/GeneSeq

BIOSIS/WPI(DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X/Y/A	LUO K. et al., DlgR1, a novel membrane receptor of the immunoglobulin gene superfamily, is preferentially expressed by antigen-presenting cells. Biochem. Biophys. Res. Commun., 2001, 287(1), p. 35-41	1-9/10/11
X/A	MU X. et al., Gene expression in the developing mouse retina by EST sequencing and microarray analysis. Nucleic Acids Res., 2001, 29(24), p. 4983-93	1, 3-9/ 2, 10-11

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 28. 01. 2004	国際調査報告の発送日 10. 2. 2004	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 上條 隆	4B 3131

電話番号 03-3581-1101 内線 3448

国際調査報告

国際出願番号 PCT/JP03/13921

C(読み)	関連すると認められる文献	関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y/A	WU J. et al., DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J. Exp. Med., 2000, 192(7), p. 1059-68	10/1-9, 11
Y/A	TOMASELLO E. et al., Association of signal-regulatory proteins beta with KARAP/DAP-12. Eur. J. Immunol., 2000, 30(8), p. 2147-56	10/1-9, 11
Y/A	LANIER L. L. et al., The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today, 2000, p. 21(12), p. 611-4	10/1-9, 11
A	BILLADEAU D. D. et al., ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest., 2002 Jan, 109(2), p. 161-8	1-11
A	SAMUELSSON A. et al., Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science, 2001, 291(5503), p. 484-6	1-11
A	MALBEC O. et al., Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J. Immunol., 1998, 160(4), p. 1647-58	1-11
A	SMITH K. G. et al., Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med., 1998, 187(5), p. 807-11	1-11
PX	YOTSUMOTO K. et al., Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J. Exp. Med., 2003 Jul 21, 198(2), p. 223-33	1-11
PX	KUMAGAI H. et al., Identification and characterization of a new pair of immunoglobulin-like receptors LMIR1 and 2 derived from murine bone marrow-derived mast cells. Biochem. Biophys. Res. Commun., 2003 Aug 1, 307(3), p. 719-29	1-11

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 _____ は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
2. 請求の範囲 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

特別ページ参照。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

追加調査手数料の納付と共に出願人から異議申立てがあつた。
 追加調査手数料の納付と共に出願人から異議申立てがなかつた。

〈調査の対象について〉

請求の範囲11に記載の「化合物」は、「請求項9若しくは10に記載の方法により得られる」ことによって特定されており、請求項9若しくは10に記載の方法（スクリーニング方法である。）で得られるあらゆる化合物を包含するものである。

しかしながら、明細書には、当該スクリーニング方法で得られる化合物としての具体的なものが一切記載されていないから、請求の範囲11は明細書による裏付けを欠き、開示も欠いている。また、出願時の技術常識を勘案しても具体的にどのような化合物が包含され、どのような化合物が包含されないのかが全く不明であって、請求の範囲11の記載は著しく不明確である。

したがって、請求の範囲11に記載された発明のうち、請求項9若しくは10に記載の方法により得られた化合物に係る部分について有意義な調査をすることができない。

よって、調査は請求の範囲11に記載された発明のうち、請求項7に記載の抗体に係る部分について行った。

〈発明の単一性について〉

請求の範囲1-11に係る発明に共通の事項は、細胞外ドメインに一つのイムノグロブリンドメインを有し、細胞内にシグナルを伝達するモチーフを有するマウス由来の膜蛋白質をコードする、本願配列番号:1または3に記載の塩基配列からなるDNAおよびそれに関するものであると認められる。

しかしながら、Biochem. Biophys. Res. Commun., 2001, 287(1), p. 35-41には、細胞外ドメインに一つのイムノグロブリンドメインを有し、細胞内にシグナルを伝達するモチーフを有するマウス由来の膜蛋白質をコードし、本願配列番号:3に記載の塩基配列からなるDNAと実質的に同一であるマウス由来のDNAが記載されているので、上記共通事項は新規でないことが明らかとなった。

即ち、上記共通事項は先行技術の域を出ないので、PCT規則13.2の第2文の意味における特別な技術的特徴ではない。

それ故、請求の範囲全てに共通の事項はない。PCT規則13.2の第2文の意味において特別な技術的特徴と考えられる他の共通の事項は存在しないので、それらの相違する発明の間にPCT規則13の意味における技術的な関連を見いだすことはできない。

よって、請求の範囲1-11は単一性の要件を満たしていないことは明らかである。

したがって、請求の範囲には、

- ①請求の範囲1-11に係る発明のうち、本願配列番号:1に記載の塩基配列からなるDNAに係る部分
- ②請求の範囲1-11に係る発明のうち、本願配列番号:3に記載の塩基配列からなるDNAに係る部分の2考証が記載されている。