

编译原理 Complier Principles

Lecture2 Lexical Analysis: NFA&DFA

赵帅

计算机学院 中山大学

Finite Automata[有穷自动机]

- REs is only a language specification[只是定义了语言]
 - ◆ to construct a token recognizer for languages given by regular expressions
- How do we go from specification to implementation?
 - Regular expressions can be implemented using finite automata
 - There are two types of automata
 - □ NFAs (nondeterministic finite automata) [非确定的有穷自动机]
 - □ DFAs (deterministic finite automata) [确定的有穷自动机]

Finite Automata(FA) [有穷自动机]

Transition Diagram[转换图]

- Node[节点]: state
 - ◆ Each state represents a condition that may occur in the process
 - ◆ Initial state (Start): only one, circle marked with 'start'
 - ◆ Final state (Accepting): may have multiple, double circle

- Edge[边]: transition. directed, labeled with the symbol(s)
 - ◆ From one state to another on the input

Finite Automata[有穷自动机]

- Regular Expression = specification[正则表达是定义]
- Finite Automata = implementation[自动机是实现]

- Automaton (pl. automata): a machine or program
- Finite automaton (FA): a program with a finite number of states

- Finite Automata are similar to transition diagrams
 - ◆ They have states and labelled edges
 - ◆ There are one unique start state and one or more than one final states

FA: Language

- An FA is a program for classifying strings (return: accept, reject)
 - ◆ In other words, a program for recognizing a language
 - ◆ For a given string 'x', if there is a transition sequence for 'x' to move from the start state to a certain accepting state, then we say 'x' is accepted by the FA. Otherwise, rejected
- Language of FA = set of strings accepted by that FA
 - $L(FA) \equiv L(RE)$

Example

- Are the following strings acceptable?
 - ♦ 0 √
 - ↑ 1 ×
 - ◆ 11110 √
 - + 11101 ×
 - ♦ 11100 ×
 - ◆ 11111110 √

- What language does the state graph recognize? $\Sigma = \{0, 1\}$
 - Any number of '1's followed by a single 0

DFA and **NFA**

- Deterministic Finite Automata (DFA): the machine can exist in only one state at any given time[确定的有限状态机]
 - ◆ One transition per input per state
 - No ε-moves
 - ◆ Takes only one path through the state graph
- Nondeterministic Finite Automata (NFA): the machine can exist in multiple states at the same time[非确定的有限状态机]
 - ◆ Can have multiple transitions for one input in a given state
 - Can have ε-moves
 - Can choose which path to take
 - An NFA accepts if some of these paths lead to accepting state at the end of input

State Graph

- 5 components (\sum, S, n, F, δ)
 - ◆ An input alphabet ∑
 - ◆ A set of states S

◆ A start state n ∈ S

A set of accepting states F ⊆ S

♦ A set of transitions δ: $S_a \xrightarrow{Input} S_b$

Comparison of NFA and DFA

 There are many possible moves: to accept a string, we only need one sequence of moves that lead to a final state

- Input string: aabb

- Successful sequence: $0 \stackrel{a}{\rightarrow} 0 \stackrel{a}{\rightarrow} 1 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 3$

- Unsuccessful sequence: $0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 0 \xrightarrow{b} 0$

Comparison of NFA and DFA

 There is only one possible sequence of moves, either lead to a final state and accept or the input string is rejected

- Input string: aabb

- Successful sequence: $0 \stackrel{a}{\rightarrow} 1 \stackrel{a}{\rightarrow} 1 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 3$

Transition Table

• FA can also be represented using transition table

STATE	a	b	ϵ
0	$\{0,1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

- Advantage
 - ◆ We can easily find the transitions on a given state and input.
- Disadvantage
 - ♦ It takes a lot of space, when the input alphabet is large, yet most states do not have any moves on most of the input symbols.

Conversion Flow[转换流程]

- **1** Converting REs to NFAs
- **②** Converting NFAs to DFAs
- 3 Converting DFAs to table-driven implementations

Construct NFA for RE

(Thompson算法)

Basic: processing atomic REs

• NFA for ε

• NFA for single character a

Construct NFA for RE

Inductive: processing compound Res

R=AB

R=A*

Example

Convert "(a|b)*abb" to NFA

Example

Convert "(a|b)*abb" to NFA

Conversion Flow[转换流程]

- Converting REs to NFAs
- Converting NFAs to DFAs
- Converting DFAs to table-driven implementations

NFA and DFA are equivalent

- Theorem: $L(NFA) \equiv L(DFA)$
 - ◆ Both recognize regular languages L(RE)
 - ♦ Will show L(NFA) \subseteq L(DFA) by construction (NFA \rightarrow DFA)
- Resulting DFA consumes more memory than NFA
 - ◆ Potentially larger transition table as shown later
- But DFAs are faster to execute
 - ◆ For DFAs, number of transitions == length of input
 - ◆ For NFAs, number of potential transitions can be larger
 - ◆ NFA → DFA conversion is needed because the speed of DFA far outweighs its extra memory consumption

- Recall DFA
 - ◆ Every state must have exactly one transition defined for every letter
 - ε-moves are not allowed
 - NFAs have multiple transition, while DFAs can only have one transition in one time
- Subset construction[子集构造法]
 - ◆ Each state of the constructed DFA corresponds to a set of NFA states
 - \square After reading input $a_1a_2 \dots a_n$, the DFA is in that state which corresponds to the set of states that the NFA can reach, from its start state, following paths labeled $a_1a_2 \dots a_n$,

- Two problem need to solve
 - Eliminate ε-transition
 - ◆ Eliminate multiple transitions from a state on a single character

• The ε-closure of a set of states

- The set of all states reachable by a series of zero or more ε-transitions from the set of states
- ◆ That is, about a set I

$$\varepsilon$$
 -closure(I) = I \cup {S1,S2}

From NFA to DFA: Algorithm

Notion in the algorithm

- ε-closure(s)

 The set of all states reachable by a series of zero or more ε-transitions from state s
- ε-closure(T)
 The set of all states reachable by a series of zero or more ε-transitions from the set of states T
- $move(T, a) = \{t | s \in T \text{ and } s \xrightarrow{a} t\}$ Set of NFA states to which there is a transition on input symbol a from some state s in T

```
initially, \epsilon-closure(s<sub>0</sub>) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) { mark T; for ( each input symbol a ) { U = \epsilon-closure(move(T, a)); if ( U is not in Dstates ) add U as an unmarked state to Dstates; Dtran[T, a] = U; }
```

Then, we will give a simple explanation by using the following symbols

I is a set of states, a is a character in the alphabet

```
move(I, a) = \{t | s \in I \text{ and } s \xrightarrow{a} t\}

I_a = \varepsilon\text{-closure}(move(I, a))
```

Example

a

b

- Step1: Start by constructing ε-closure of the start state
 - ◆ I = ε-closure(s0) = {0, 1, 3}
- Step2: Keep getting ε-closure(move(I, x)) for each character x in Σ
 - I_a = ϵ -closure(move(I,a))={2,4}
 - $I_b = \varepsilon$ -closure(move(I,b)) = {4}
- Stop, when there are no more new states
- Mark as accepting for those states that contain an accepting state

I	I_a	I_b	Accept
{0, 1, 3} mark T0	{2, 4} mark T1	{4} mark T2	TO No
{2, 4} T1		{1, 3} mark T3	T1 Yes
{4} T2			T2 Yes
{1,3} T3	{2,4} T1	{4} T2	T3 No

start

Example

Construct DFA

I	I_a	I_b	Accept
{0, 1, 3} mark T0	{2, 4} mark T1	{4} mark T2	No
{2, 4} T1		{1, 3} mark T3	Yes
{4} T2			Yes
{1,3} T3	{2,4} T1	{4} T2	No

• Is the DFA minimal?

Minimizing DFA

• **Theory:** Given any DFA, there is an equivalent DFA containing a minimum number of states, and this minimum-state DFA is unique

Equivalent States

If s and t are two states, they are equivalent if and only if:

- 1 s and t are both accepting states or both non-accepting states.
- 2 For each character $x \in \Sigma$, s and t have transitions on x to the equivalent states

Simple Example for Minimizing DFA

• Step 1: Divide the states into two sets

Initial sets: {non-accepting states}, {accepting states}
Initial: {A}, {BC, AC}

For {BC, AC}

BC on '0' \rightarrow AC, AC on '0' \rightarrow AC

BC on '1' \rightarrow BC, AC on '1' \rightarrow BC

No way to distinguish BC from AC on any string starting with '0' or '1'

Final: {A}, {BCAC}

Minimization Algorithm

The algorithm

Partitioning the states of a DFA into groups of states that cannot be distinguished (i.e., equivalent)

- 1 First, split the set of states into two sets, one consists of all accepting states and the other consists of all nonaccepting states.
- Consider the transitions on each character 'x' of the alphabet for each subset, and determine whether all the states in the subset are equivalent, or the subset should be split.
- 3 Continue this process until no further splitting of sets occurs

Example: Minimization

h

- **1 Initial** {S, A, B} and {C, D, E, F}
- 2 Check the transitions

For $I_1 = \{C, D, E, F\}$

Move(I_1 , a) = {C, F} and {C, F} is the subset of {C,D,E,F}. Move(I_1 , b) = {D, E} and {D, E} is the subset of {C,D,E,F}. {C, D, E, F} are equivalent

For $I_2 = \{S, A, B\}$

Move($\{S, B\}$, a) = $\{A\}$, Move($\{A\}$, a) = $\{C\}$ no eq So splitting $\{S, A, B\} \rightarrow \{S, B\}$, $\{A\}$ Check $\{S, B\}$, Move($\{S\}$, b) = $\{B\}$, Move($\{B\}$, b) = $\{D\}$ So splitting $\{S, B\} \rightarrow \{S\}$, $\{B\}$

(3) Finally, get the subsets and draw min DFA {C, D, E, F}, {S}, {A}, {B} {C, D, E, F} denotes {C}

Example

• Is the DFA minimal?

Result: $\{0, 3\} \{1\} \{2\}$ For $I_1 = \{0,3\}$ Move(I_1 , a) = $\{1\}$ Move(I_1 , b) = $\{2\}$.

0 and 3 are equivalent states

NFA → DFA: Space Complexity[复杂度]

- NFA may be in many states at any time
- How many different possible states in DFA?
 - ◆ If there are N states in NFA, the DFA must be in some subset of those N states
 - ◆ How many non-empty subsets are there?

$$-2^{N}-1$$

- The resulting DFA has $O(2^N)$ space complexity, where N is number of original states in NFA
 - ◆ For real languages, the NFA and DFA have about same number of states

NFA → DFA: Time Complexity[复杂度]

- DFA execution
 - ◆ Requires O(|X|) steps, where |X| is the input length
 - ◆ Each step takes constant time
 □ If current state is S and input is c, then read T[S, c]
 □ Update current state to state T[S, c]
 - ◆ Time complexity = O(|X|)
- NFA execution
 - ◆ Requires O(|X|) steps, where |X| is the input length
 - \bullet Each step takes $O(N^2)$ time, where N is the number of states
 - Current state is a set of potential states, up to N
 - □ On input c, must union all T[Spotential, c], up to N times
 - Each union operation takes O(N) time
 - ♦ Time complexity = $O(|X| * N^2)$

Implementation in Practice[实际实现]

- Lex[词法分析器]: RE → NFA → DFA → Table
 - ◆ Converts regular expressions to NFA
 - ◆ Converts NFA to DFA
 - ◆ Performs DFA state minimization to reduce space
 - ◆ Generate the transition table from DFA
 - ◆ Performs table compression to further reduce space
- Most other automated lexers also choose DFA over NFA
 - ◆ Trade off space for speed

Lexical Analyzer Generated by Lex

- A Lex program is turned into a transition table and actions, which are used by a FA simulator
- Automaton need to recognize lexemes matching any of the patterns in a program

Lex: Example

• Three patterns, three NFAs

a {action₁} abb {action₂} a*b+ {action₃}

Combine three NFAs into a single NFA

Add start state 0 and ϵ -transitions

Any one is possible, if you haven't read any input symbol

Lex: Example

- Input: aaba
 - \bullet ϵ -closure(0) = {0, 1, 3, 7}
 - Empty states after reading the fourth input symbol
 - There are no transitions out of state 8

Back up, looking for a set of states that include an accepting state

- ◆ State 8: a*b+ has been matched
- ◆ Select aab as the lexeme, execute action₃
 - Return to parser indicating that token with pattern a*b+ has been found

Lex: Example

- DFA's for lexical analyzer
- Input: abba
 - ♦ Sequence of states entered: $0137 \rightarrow 247 \rightarrow 58 \rightarrow 68$
 - ◆ At the final a, there is no transition out of state 68
 68 itself is an accepting state that reports pattern abb

How Much Should We Match?[匹配多少]

- In general, find the longest match possible
 - We have seen examples
 - ◆ One more example: input string aabbb ...
 - Have many prefixes that match the third pattern
 - Continue reading b's until another a is met
 - Report the lexeme to be the initial a's followed by as many b's as there are
- If same length, appearing first takes precedence[先出现的优先]
 - String abb matches both the second and third pattern
 - ◆ We consider it as a lexeme for pattern2, since that pattern listed first

1	а	{action ₁ }
2	abb	{action ₂ }
3	a*b+	{action₃}

How to Match Keywords?[匹配关键字]

- Example: to recognize the following tokens
 - Identifiers: letter(letter | digit)*
 - ♦ Keywords: if, then, else
- **Approach 1**: make REs for keywords and place them before REs for identifiers so that they will take precedence
 - ◆ Will result in a more bloated finite state machine
- Approach 2: recognize keywords and identifiers using the same RE but differentiate using special keyword table
 - ◆ Will result in more streamlined finite state machine
 - ◆ But extra table lookup is required
- Usually approach 2 is more efficient than 1, but you can implement approach 1 in your projects for simplicity

The Limits of Regular Languages

- For ∑={a, b}
- The set of strings S over this alphabet consisting of a single b surrounded by **the same number** of a.

```
S = {b, aba, aabaa, aaabaaa, ...}
L = {a^nba^n | n ≥ 0}
```

the regular expression is?

This set cannot be described by a regular expression

The Limits of Regular Languages

- L = $\{a^nba^n \mid n \ge 0\}$ is not a Regular Language
 - ◆ FA does not have any memory (FA cannot count)
 □ The above L requires to keep count of a's before seeing b's

- Matching parenthesis is not a RL[括号匹配不是正则语言]
- Any language with nested structure is not a RL if ... if ... else ... else
- Regular Languages
 - ◆ Weakest formal languages that are widely used [最弱的形式语言]
- We need a more powerful formalism

Beyond Regular Language

- Regular languages are expressive enough for tokens
 - ◆ Can express identifiers, strings, comments, etc.
- However, it is the weakest (least expressive) language
 - Many languages are not regular
 - ◆ C programming language is not□ The language matching braces "{{{...}}}" is also not
 - ◆ FA does not have any memory (FA cannot count)

$$\Box L = \{a^n b^n | n \ge 1\}$$

- Crucial for analyzing languages with nested structures[嵌套结构] (e.g. nested for loop in C language)
- We need a more powerful language for parsing
 - ◆ Later, we will discuss context-free languages (CFGs)

Summary

Transition Flow:

1. Converting REs to NFA

Thompson Algorithm(Inductive method)

2. Converting NFA to DFA

• Subset-Construction Algorithm[子集构造法]

3. Minimizing DFA

• Partition Algorithm[分割法]

Further Reading

- Dragon Book
 - ◆Comprehensive Reading:
 - Section Section 3.6–3.7, 3.9.6 for finite automata and related transformation.
 - ◆Skip Reading:
 - Section 3.9.1–3.9.5 for regular expressions directly to DFAs.

