

A Level · OCR · Physics

? 1 question

Structured Questions

Photons & Wave-Particle Duality

The Photon / The Electronvolt / Determining the Planck Constant / Electron Diffraction / The de Broglie Equation

Scan here to return to the course

or visit savemyexams.com

Total Marks

/11

1 (a) The Planck constant h is an important fundamental constant in quantum physics.

Determine the S.I. base units for *h*.

base units =

(2 marks)

(b) A researcher is investigating the de Broglie wavelength of charged particles.

The charged particles are accelerated through a potential difference V. The de Broglie wavelength λ of these particles is then determined by the researcher.

Each particle has mass m and charge q.

i) Show that the de Broglie wavelength λ is given by the expression $\lambda^2 = \frac{h^2}{2ma} \times \frac{1}{V}$

[2]

ii) The researcher plots data points on a λ^2 against $\frac{1}{V}$ grid, as shown below.

1. Calculate the percentage uncertainty in λ for the data point circled on the grid.

percentage uncertainty = % [2]

2. Draw a straight line of best fit through the data points.

[1]

3. The charge q on the particle is 2e, where e is the elementary charge.

Use your best fit straight line to show that the mass m of the particle is about 10^{-26} kg.

[4]

(9 marks)

