Computer Algebra and Technical Computing (MTH1006)

B. Vorselaars bvorselaars@lincoln.ac.uk

School of Mathematics and Physics, University of Lincoln

Module structure

- Contents:
 - ► MATLAB (Technical Computing): 1st term
 - ► MAPLE (Computer Algebra): 2nd term.
- ▶ Total credits 15: on average 150 hours in total. This implies on average per week:
 - ► 2 hours lectures/practicals
 - ▶ 4 hours 15 min time outside scheduled hours.
- Grading
 - ► 20% logbook
 - 80% coursework (one assignment, one in-class test per term).

Any issues

If there are any issues:

- ► Contact the lecturer (me): bvorselaars@lincoln.ac.uk
- Or contact your course rep

Marks MATLAB logbook and in-class test

The marks for the MATLAB logbook and the MATLAB in-class test can be found online, including feedback.

Assessment dates - MAPLE

- Assessment dates
 - ► 28-2-2024: coursework handed-out
 - ► 13-3-2024: hand-in coursework
 - ► 24-4-2024: hand-in logbook
 - ► 1-5-2024: Final in-class test
- They can also be found on blackboard (heading Assessments)
- Add them to your diary/calendar!

Aim module part 2: Computer Algebra with MAPLE

Usage of MAPLE (outline syllabus):

- Numerical calculations, built in functions & constants, basic algebraic operations, naming and evaluating expressions, defining and evaluating functions
- Plotting graphs (Cartesian, polar and parametric, 3D, contour, surfaces)
- ▶ Differentiation, 1st and 2nd derivatives, integration, approximating integrals, area, solids of revolution, partial differentiation.
- Polynomial arithmetic, manipulating polynomials, factorisation of polynomials
- Limits, sequence and series, convergence tests, Taylor & Maclaurin series
- ► Simple differential equations
- ► Matrices, matrix operations, inverse, determinant. Linear systems of equations, row operations, eigenvalues and eigenvectors

MAPLE

What is MAPLE used for?

- ► Symbolic manipulations (integration, differentiation, ...), linear algebra (Matrix calculations)
- Numerical mathematics and computation
- Programming
- Plotting and processing data

More information on MAPLE

- ► E-book: Maple by example Abell and Braselton,
 https://library.lincoln.ac.uk/items/135577?query=
 Abell+and+Braselton&resultsUri=items%3Fquery%3D%
 2BAbell%2Band%2BBraselton%26target%3Dcatalogue%
 26facet%255B0%255D%3Dfulltext%253Ayes&facet%5B0%
 5D=fulltext%3Ayes&target=catalogue (unlimited number of e-books)
- ▶ User manual: https://www.maplesoft.com/ documentation_center/maple2020/UserManual.pdf
- ► Programming guide: https://www.maplesoft.com/documentation_center/ maple2020/ProgrammingGuide.pdf
- Various tutorials within MAPLE (see exercises)
- Googling

MAPLE alternatives

A license is needed. The university has a license for on-campus and online off-campus. There is also a student version available to buy. No entirely compatible alternatives as with Matlab. Programs with similar functionality:

- ► Mathematica: also not free. Very powerful, slightly less intuitive. See also http://www.wolframalpha.com and http://sandbox.open.wolframcloud.com/ for online versions
- ► MuPAD: another computer algebra system; part of MATLAB since 2008.
- ► REDUCE: another free computer algebra system, started in 1963 (http://reduce-algebra.sourceforge.net/)
- ► SymPy: a free computer algebra library, used within Python (http://www.sympy.org). Much weaker than Maple, in terms of capabilities, but basic functionality is available.

MAPLE alternatives

```
The previous list is not complete, and there are other alternatives (e.g., the free Maxima (http://maxima.sourceforge.net) or Xcas (https://www-fourier.ujf-grenoble.fr/~parisse/giac.html)), and many more online tools. However, most of the times they are not as powerful as MAPLE.
```

Accessing Maple

The full version of MAPLE can be accessed:

- ▶ In the computer lab INB2305. This is open 24/7 and you can enter outside of lecture hours, and if the lecturer allows it also inside lectures of other modules.
- ► From home using the Cloud Desktop. For this, go to https://client.wvd.microsoft.com/arm/webclient/ index.html and log in. See https://ict.lincoln.ac.uk/?p=17583 for connection instructions. See Blackboard -> module content -> Accessing Matlab and Maple for more detailed information.
- ► In the library (24/7 open), on the 1st floor: some of the Windows workspaces 22–25 next to room UL108 have Maple installed. See https:

//findapc.lincoln.ac.uk/?building=ul&tab=first for the layout and availability

If any of the PCs do not work, send an email to Digital Technologies (ict@lincoln.ac.uk) and cc me in a second sec

Accessing limited versions of MAPLE

Some functionality of MAPLE is for free:

- ► The freely available MAPLE player can be installed on a home computer, for reading MAPLE documents and worksheets. See https:
 - //www.maplesoft.com/products/maple/mapleplayer.
- ► Some simple commands can be entered online. See https://www.maplesoft.com/products/StudentApps/index.aspx. In particular, see https://maplecloud.maplesoft.com/application.jsp?appId=16155001. Simple commands can be entered and some of them may be executable by this web interface.

Accessing full versions of MAPLE

In case you can't be on the university *and* your internet connection is really bad

You can download a student trial for Maple. This trial is valid for approximately 2 weeks, and if needed adviced to do this only two weeks before the test so that you can complete the logbook and still practise for the in-classs test. See https:

```
//www.maplesoft.com/products/maple/free-trial/
```

Comparison with MATLAB

Following slides show a comparison between the two packages. MAPLE commands presented here will be discussed in more detail later in the module.

Overlap in packages

Script for n! (normal factorial)

Maple	MATLAB
n:=5:	n=5;
product(k, k = 1 n)	prod(1:n)

Function for n! (normal factorial)

Maple

```
my_factorial := proc (n)
product(k, k = 1 .. n)
end proc
```

MATLAB

```
function fac=my_factorial(n)
fac=prod(1:n);
end
```

Function for n!! (double factorial)

```
Maple
my_double_factorial := proc (n)
local dfac, k;
dfac := 1;
for k from n by -2 to 1 do
    dfac := dfac*k
end do;
end proc;

MATLAB
function dfac=my_double_factorial(n)
dfac=my_double_factorial(n)
dfac=n;
for k=n:-2:1
    dfac=dfac*k;
end
end
end
```

Calling the functions

Maple

my_factorial(5)

my_factorial(6)

my_double_factorial(5)

my_double_factorial(6)

MATLAB

my_factorial(5)

my_factorial(6)

my_double_factorial(5)

my_double_factorial(6)

Testing the factorial function for large values

Maple	MATLAB	
factorial(100)	>> factorial(100)	
9332621544394415268169923	ans =	
8856266700490715968264381		
6214685929638952175999932	9.3326e+157	
2991560894146397615651828	3.332061137	
6253697920827223758251185		
2109168640000000000000000		
0000000		

MATLAB: approximate solution (fits within a floating point number)
Maple: exact solution

Testing the factorial function for large values

Maple

factorial(200)

MATLAB

>> factorial(200)

ans =

Inf

MATLAB: 'overflow' of number (does not fit within a floating point number)

Maple: exact solution

Exercise with double loop

Maple

```
S1 := proc (N)
local S, d, n, m;
S := 0;
for n to N do
for m to N do
if n = m then
d:=1
else
d:=0
end if;
S := S+d*n
end do;
end do;
end proc;
```

MATLAB

Running S1(2000) takes 0.055 seconds with MATLAB and 4.4 seconds with Maple.

→MATLAB is 80 times quicker

Comparison

Maple

Really good with symbolic calculations: exact

MATLAB

Really good with numerical calculations: fast

MTH1006M - Computer Algebra and Technical Computing by B. Vorselaars

Comparison of Maple and Matlab syntax

	Maple	Matlan
	+	+
	^	•
	:	
	Pi	pi
	1	1
	n! or factorial(n)	factorial(n)
	n!! or doublefactorial(n)	N/A
	7 log	help log
	not	~
	or	1
	and	a.
	restart	clear
	a:='a'	clear a
	a2:=5	a2+5
	$v:=\langle 1,2,3\rangle$	v=[1; 2; 3]
	(1 2 3)	[1, 2, 3]
	$\langle\langle 1 2 3\rangle, \langle 4, 5, 6\rangle\rangle$ or $\langle\langle 1, 4\rangle (2, 5) \langle 3, 6\rangle\rangle$	[1, 2, 3; 4, 5, 6]
	A.B	A+3
	A+~B	A.+B
	A^{+}	A.1
	b:=readstat("Give a number")	b=input('Give a number')
Access 2nd row, 3rd column of matrix A	A[2,3]	A(2,3)

MTH1006M - Computer Algebra and Technical Computing by B. Vorselaars

Access 2nd till 3rd row, 1st and second column of matrix A	A[23,12]	A(2:3,1:2)
Access 2nd till end row, 1st and second column of matrix A	A[2,12] or A[21,12]	A(2:end,1:2)

Maple code of a previous line can be converted to Matlan within Maple by $\label{eq:codeGeneration} \mbox{(Matlab) (X)}$

Note on Maple vs Matlab

Maple can do numerical calculations, and Matlab can do symbolic calculations. However, Matlab is better in numerical and Maple in symbolic.

Two modes

- Worksheet mode (basic)
- Document mode: similar to a word document, but then with active elements such as equations. Could be used as a logbook.

Basics

- ▶ Palette: hover over symbol to see the MAPLE command.
- keyboard shortcut CTRL-L: to refer to another equation.
- ► Imaginary number i: I (notice: capital I)
- ▶ The number $\pi = 3.141...$: Pi (notice: capital P)
- ▶ Differentiate an expression: diff, e.g. diff(x^2,x)
- Integrate an expression: int, e.g., int(x^2,x=a..b)
- Obtain numerical value: evalf, e.g., evalf(Pi)
- Difference light-blue background (Math mode) and white background (text mode)
- Context Panel

Exercise/homework for this session

- ▶ Open the *Getting Started*, then *Tutorial: Talking to Maple* tutorial and complete this. To do this, open a new blank document by clicking on the menu bar *File*→ *New* → *Document Mode*. Store your .mw file on your OneDrive for your logbook.
- ► Do the same for the second tutorial, *Tutorial: Putting Ideas Together*.