Semaine n° 17 : du 22 janvier au 26 janvier

Lundi 22 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 2.5: Décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.
 - Partie 3 : Polynôme dérivé; opérations; formule de Leibniz.

Mardi 23 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 3 : Formule de Taylor Mac-Laurin ; formule de Taylor ; caractérisation de la multiplicité d'une racine par les polynômes dérivés successifs.
 - Partie 4.1 : Lemme d'Euclide; plus grands diviseurs communs de deux polynômes; existence et unicité du PGCD unitaire de deux polynômes non tous deux nuls.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercices 1 et 2.

Jeudi 25 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.1 : Propriétés des PGCD de deux polynômes ; relations de Bézout.
 - Partie 4.2 : Polynômes premiers en eux; théorème de Bézout; théorème de Gauss; unicité de la décomposition en produit de polynômes irréductibles.
 - $Partie\ 4.3$: PGCD de n polynômes; polynômes premiers entre eux dans leur ensemble; théorème de Bézout.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercices 5 et 7.

Vendredi 26 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.4 : Plus petits communs multiples de deux polynômes. Unicité du PPCM unitaire ou nul de deux polynômes; propriétés.
 - Partie 5 : Formule d'interpolation de Lagrange.

Échauffements

Mardi 23 janvier

s [[[• ([[[Cocher toutes les assertions vraies : Laquelle des conditions suivantes est suffisante pour que f soit continue en 0 ? $ f(x) \leq x $ pour tout x dans $[-1,1]$ $ f(x) \leq x$ pour tout x dans $[-1,1]$ $ f(x) \leq x$ pour tout x dans $[-1,1]$ $ f(x) \leq x$ pour tout x dans $[-1,1]$ $ f(x) \leq x$ pour tout x dans $[-1,1]$ Cocher toutes les assertions vraies : Soit x et x deux polynômes. $ f(x) \leq x$ deg x alors deg x deg
Jeudi :	25 janvier
d • • ()]]]]	Soit $P = X^6 - 3X^5 - 6X^4 + 6X^3 + 9X^2 - 6X + 1$ Calculez $P(4)$ et donnez le quotient et le reste le la division euclidienne de P par $(X - 4)$. Cocher toutes les assertions vraies : Soit I un intervalle et $f: I \to \mathbb{R}$, et $a, b \in I$ tels que $a < b$. \square Si f est croissante, $f([a,b]) = [f(a), f(b)]$. \square Si f est décroissante et continue, f admet une limite à gauche en b . \square Si f est décroissante et continue, $f([a,b]) = [f(a), \lim_{b \to a} f[a]$. \square Si f est décroissante et continue, $f([a,b]) = \lim_{b \to a} f(a)$.
Vendre	edi 26 janvier
]]] •]	Cocher toutes les assertions vraies : Soit f la fonction définie sur \mathbb{R} par $f(x) = 2^{(x-1)^2+2}$ \square f est définie et continue sur \mathbb{R} . \square f est injective sur \mathbb{R} . \square f admet un minimum sur \mathbb{R} en 1 qui vaut 4. \square f est dérivable sur \mathbb{R}_+ . Cocher toutes les assertions vraies : Soit P un polynôme. \square Si r_1, \dots, r_n sont les racines de P , et qu'elles sont de multiplicité m_1, \dots, m_n , alors deg $P = \sum_{i=1}^n m_i$. \square Si λ est une racine de P de multiplicité m , alors λ est une racine de P' de multiplicité $m+1$. \square Si λ est une racine de P' de multiplicité m , alors λ est une racine de P de multiplicité $m+1$.