Лабораторная работа №1

Операции с математическими выражениями и функциями в Maple.

Власенко Тимофей, 153505

Вариант №7

# Задание1

$$\frac{\left(\frac{x^3 + 6 \cdot x^2 + 12 \cdot x + 8}{x^2 + 3 \cdot x - 4}\right)}{\left(\frac{9 \cdot x^5 + 36 \cdot x^4 + 9 \cdot x^3 - 90 \cdot x^2 - 36 \cdot x + 72}{x^4 + x^3 - 9 \cdot x^2 + 11 \cdot x - 4}\right)}$$

$$\frac{\left(x^3 + 6 \cdot x^2 + 12 \cdot x + 8\right) \left(x^4 + x^3 - 9 \cdot x^2 + 11 \cdot x - 4\right)}{\left(x^2 + 3 \cdot x - 4\right) \left(9 \cdot x^5 + 36 \cdot x^4 + 9 \cdot x^3 - 90 \cdot x^2 - 36 \cdot x + 72\right)}$$

$$\boxed{$$
 Для упрощения используем команду simplify (1.1)

Для упрощения используем команду simplify

$$\frac{1}{9}$$
 (1.2)

$$105 x^4 - 27 x^3 + 86 x^2 - 36 x - 72 (2.2)$$

$$(x+4)(x+3)(x^2+9)$$
 (3.2)

# Задание4



## **7** Задание5

$$\frac{(2 \cdot x^4 + 5 \cdot x^3 + 3 \cdot x - 1)}{(x^2 + 1) \cdot (x - 2)^2 \cdot (x^2 - 9)}$$

$$\frac{2 x^4 + 5 x^3 + 3 x - 1}{(x^2 + 1) (x - 2)^2 (x^2 - 9)}$$
(5.1)

#### Используем команду convert с параметром parfrac

## ′ Задание6

> 
$$eq := (\ln(x+2))^2 = -2 \cdot \cos(2 \cdot x) - 1$$
:  
 $plot([(\ln(x+2))^2, -2 \cdot \cos(2 \cdot x) - 1], x = -2 ..2, color = [red, green], legend = ['y = (\ln(x+2))^2', 'y = -2 \cdot \cos(2 \cdot x) - 1']);$ 



\_Присвоим Digits значение 6 для задания необходимой точности

> 
$$Digits := 6:$$
  
 $fsolve(eq, x = -2..-1.25);$   
 $fsolve(eq, x = -1.25..0);$ 

$$-1.62956$$
 $-1.04789$  (6.1)

# Задание7

> 
$$a := n \to \frac{7 \cdot n + 3}{3 \cdot n + 5};$$

 $assume(n \in \mathbb{N});$ 

 $limit\_of\_a := \lim_{n \to \infty} (a(n));$ 

$$solve \left( abs \left( \frac{7 \cdot n + 3}{3 \cdot n + 5} - \frac{7}{3} \right) < 0.1 \right) assuming(n \in \mathbb{N});$$

$$a := n \mapsto \frac{7 \cdot n + 3}{3 \cdot n + 5}$$

$$limit\_of\_a := \frac{7}{3}$$

$$(-\infty, -1.66667), (27.2213, \infty)$$
 (7.1)

> sequence := pointplot( $\{seq([n, a(n)], n=28..500)\}$ ):

line :=  $plot\left(\left[\frac{7}{3}-0.1, \frac{7}{3}, \frac{7}{3}+0.1\right], x=-100..600, linestyle=dash, color=red, thickness=2\right)$ :

display([sequence, line]);



# Задание 8

> sequence 
$$l := \sqrt{n^2 - 3 \cdot n + 2} - n$$
;  
 $limit1_is := \lim_{n \to \infty} (sequence 1)$ ;

sequence 
$$l := \sqrt{n^2 - 3 n^2 + 2} - n^2$$

$$limit l_i s := -\frac{3}{2}$$
(8.1)

> sequence2 := 
$$\left(\frac{7 \cdot n^2 + 18 \cdot n - 15}{7 \cdot n^2 + 11 \cdot n + 15}\right)^{n+2}$$
;  

$$\lim_{n \to \infty} (sequence2);$$

sequence2 := 
$$\left(\frac{7 \, n^{2} + 18 \, n^{2} - 15}{7 \, n^{2} + 11 \, n^{2} + 15}\right)^{n^{2} + 2}$$
  
 $limit2_{is} := e$  (8.2)

## Задание9

Для задания кусочно-непрерывной функции используем команду piecewise

$$f := x \to piecewise \left( x < -\text{Pi}, 2 \cdot \sin(2 \cdot x), x \ge -\text{Pi}, 4 \cdot e^{-\frac{2}{10} \cdot x} \right)$$

$$f := x \mapsto \begin{cases} 2 \cdot \sin(2 \cdot x) & x < -\pi \\ -\frac{x}{5} & -\pi \le x \end{cases}$$
 (9.1)

>  $plot(f(x), x, discont = [showremovable], x = -4 \cdot Pi ... 4 \cdot Pi);$ 



$$\rightarrow limit(2 \cdot \sin(2 \cdot x), x = -Pi);$$

| limit 
$$(2 \cdot \sin(2 \cdot x), x = -\text{Pi});$$
  
 $limit \left( 4 \cdot e^{-\frac{2}{10} \cdot x}, x = -\text{Pi} \right);$   
 $limit \left( 4 \cdot e^{-\frac{2}{10} \cdot x}, x = \infty \right);$   
 $limit \left( 2 \cdot \sin(2 \cdot x), x = \infty \right);$ 

 $limit(2 \cdot \sin(2 \cdot x), x = -\infty); \#$ `предел синуса на бесконечности не существует.

(9.2)

## **\_Найдем производную и неопределенный интеграл**

> derivative := diff(f(x), x);integral := int(f(x), x);

$$derivative := \begin{cases} 4\cos(2x) & x < -\pi \\ undefined & x = -\pi \end{cases}$$

$$-\frac{4e^{-\frac{x}{5}}}{5} & -\pi < x$$

integral := 
$$\begin{cases} -\cos(2x) & x \le -\pi \\ -\frac{x}{5} & \frac{\pi}{5} \\ -20 e^{-\frac{x}{5}} - 1 + 20 e^{\frac{\pi}{5}} & -\pi < x \end{cases}$$
 (9.3)

> plot([f(x), derivative, integral], x, color = [red, green, blue], discont = [showremovable], legend = [f, 'derivative', 'integral']);



> with(plots):

implicitplot([y=f(x), x=1, x=5, y=0], x=0..10, y=-10..10);



> S := int(f(x), x = 1..5, numeric = true);

S := 9.01703 (9.4)

\_Площадь криволинейной трапеции нашел с помощью определенного интеграла.

# Задание10

**>** #1

$$curvel := \frac{7}{10} \cdot e^{-\frac{3}{10} \cdot x} \cdot \sin(7 \cdot x + 2) :$$

$$plot(curvel);$$



>  $curve2 := 4 \cdot x^2 - 12 \cdot x \cdot y + 9 \cdot y^2 - 20 \cdot x + 30 \cdot y + 16 = 0 :$  with(plots) :implicit plot(curve2, x = -20 ...20, y = -20 ...20);



>  $plot([2 \cdot \sin(2 \cdot (t)), 4 \cdot \cos(t)^2, t = -5..5]);$ 





\_Приведем кривую второго порядка (curve2) к каноническому виду:

> 
$$M := Matrix([[4,-6], [-6,9]]);$$

$$M := \begin{bmatrix} 4 & -6 \\ -6 & 9 \end{bmatrix}$$
 (10.1)

[Найдем собственные значение и векторы матрицы М

ightharpoonup v := LinearAlgebra[Eigenvectors](M);

$$v := \begin{bmatrix} 0 \\ 13 \end{bmatrix}, \begin{bmatrix} \frac{3}{2} & -\frac{2}{3} \\ 1 & 1 \end{bmatrix}$$
 (10.2)

#### \_Нормируем собственные векторы

> with(LinearAlgebra):

e1 := Normalize(Column(v[2], [1]), Euclidean);

e2 := Normalize(Column(v[2], [2]), Euclidean);

$$el \coloneqq \begin{bmatrix} \frac{3\sqrt{13}}{13} \\ \frac{2\sqrt{13}}{13} \end{bmatrix}$$

$$e2 := \begin{bmatrix} -\frac{2\sqrt{13}}{13} \\ \frac{3\sqrt{13}}{13} \end{bmatrix}$$
 (10.3)

#### \_Выполним подстановку

>  $subs(x = e1[1] \cdot x1 + e2[1] \cdot y1, y = e1[2] \cdot x1 + e2[2] \cdot y1, curve2) : expr := simplify(%);$ 

$$expr := 13 yl^2 + 10 yl \sqrt{13} + 16 = 0$$
 (10.4)

= = = expr1 := Student[Precalculus][CompleteSquare](expr);

$$expr1 := 13 \left( yl + \frac{5\sqrt{13}}{13} \right)^2 - 9 = 0$$
 (10.5)

> canonical :=  $subs\left(xI = x2 - \frac{5\sqrt{13}}{13}, yI = y2 - \frac{5\sqrt{13}}{13}, exprI\right);$ canonical :=  $13y2^2 - 9 = 0$  (10.6)

> plots[implicit plot](canonical, x2 = -5 ...5, y2 = -10 ...10)

