	баллы	Входит в норму
Домашняя работа	0-2	+
Работа у доски	0-2	
Диктант	0-3	+
Контрольная работа	0-10	+
РГР, задача	0-3	+
Лабораторная работа	0-5	
Доказательства теорем	0-10	
Присутствие на практике	1	+

Отлично:

- 1)Посещение не менее 75%
- 2)Балл не менее 85% от нормы
- 3) Контрольные работы не менее 7 баллов за каждую
- 4)Сумма баллов за контрольные сроки не менее 3

Хорошо:

- 1)Посещение не менее 70%
- 2)Балл не менее 70% от нормы
- 3) Контрольные работы не менее 6 баллов за каждую
- 4) За контрольные сроки нет нулей

Глава 1. Элементы теории множеств

- 1.1 Множества и их спецификация
- 1.1.1 Элементы и множества
- 1.1.2 Способы задания множеств
- 1) Перечислением элементов множества.
- 2) Указанием свойств элементов множества, или заданием т.н. *характеристического* предиката: D = {x | P(x)}.
- 3) Порождающей процедурой: E = {y | y:=f(x)}.

- 1.2 Операции над множествами.
- 1.2.1 Сравнение множеств.
- Совокупность всех подмножеств множества *М* называется *булеаном* и обозначается *Р* (*M*)

1.2.2 Операции над множествами. Диаграммы Венна

- -Объединение (или сумма)
- -Пересечение (или произведение)
- -Разность
- -Симметрическая разность
- -Дополнение

1.2.3 Разбиения и покрытия

- Пусть $\check{E} = \{E_i\}$ для $i \in I$ некоторое семейство непустых подмножеств множества M, $E_i \subseteq M$. Тогда семейство $oldsymbol{\check{E}}$ называется покрытием множества М, если каждый элемент множества М принадлежит хотя бы одному из E_i :
 - $M \subseteq \Leftrightarrow \forall x \in M \exists i \in I \mid x \in E_i$.
- Семейство **Ě** называется дизъюнктным, если элементы этого семейства попарно не пересекаются, т.е. каждый элемент множества М принадлежит не более чем одному из множеств $E_i: \forall i,j \in I, i \neq j \Rightarrow E_i \cap E_i = \emptyset.$
- Дизъюнктное покрытие $\check{\pmb{E}}$ называется разбиением множества M.

1.2.4 Свойства операций над множествами

Пусть задан универсум U. Тогда $\forall A$, B, $C \subset U$ выполняются свойства:

Идемпотентность $A \cup A = A$, $A \cap A = A$ Коммутативность $A \cup B = B \cup A$, $A \cap B = B \cap A$ Ассоциативность

- $A \cup (B \cup C) = (A \cup B) \cup C$
- $A \cap (B \cap C) = (A \cap B) \cap C$

Дистрибутивность

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Операции с пустым множеством

- $A \cup \emptyset = A$
- $A \cap \emptyset = \emptyset$

Операции с универсальным множеством

- $A \cup U = U$
- $A \cap U = A$

Свойства дополнения

$$A \cup A = U$$
 $A \cap A = \emptyset$ $\overline{A} = A$

$$A \cap A = \emptyset$$

$$\overline{A} = A$$

Поглощение

- $(A \cap B) \cup A = A$
- $(A \cup B) \cap A = A$

Двойственность (законы де Моргана)

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Выражение для разности

$$A \setminus B = A \cap B$$