INTERNATIONAL STANDARD

ISO/IEC 13157-4

First edition 2016-06-15

Information technology —
Telecommunications and information
exchange between systems — NFC
Security —

Part 4:

NFC-SEC entity authentication and key agreement using asymmetric cryptography

 $\label{eq:theorem} \textit{Technologies de l'information} \ -- \ \textit{Télécommunications et échange} \\ \textit{d'information entre systèmes} \ -- \ \textit{Sécurité NFC} \ --$

Partie 4: Authentification d'entité NFC-SEC et accord de clés utilisant une cryptographie asymétrique

COPYRIGHT PROTECTED DOCUMENT

 $\, @ \,$ ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Page

Foreword			
Introdu	Introductionv		
1	Scope	1	
2	Conformance	1	
3	Normative references		
-	Terms and definitions		
4			
5	Conventions and notations		
6	Acronyms		
7	General	4	
8	Fields and PDUs for NEAU-A		
8.1	Protocol Identifier (PID)		
8.2 8.3	NFC-SEC-PDUs		
8.3.1	TTP involvingTTP policy and field		
8.3.2	TTP policy and neid		
8.4	Entity identifiers		
8.5	Cert field		
8.6	Res field		
9	Primitives		
9.1	General requirements		
9.2	Entity authentication		
9.2.1	Mechanisms		
9.2.2	EC curve		
9.2.3	ECDSA		
9.2.4	Certificate validation		
9.3	Key agreement		
9.4	Key confirmation		
9.5	Key Derivation Function (KDF)		
10	NEAU-A mechanism		
10.1	Entity authentication involving a TTP		
	Protocol overview		
	Preparation		
	Sender (A) transformation		
	Recipient (B) transformation		
	TTP transformation	17	
10.2	Entity authentication without involving a TTP	17	
10.2.1	Protocol overview	17	
	Preparation		
	Sender (A) transformation		
10.2.4	Recipient (B) transformation		
10.3	Key derivation		
	Sender (A)		
10.3.2	Recipient (B)	20	
11	Data Authenticated Encryption in SCH	20	
Annex	A (normative) UDP Port 5111 and TAEP	21	
	UDP and nort 5111	21	

A.1.1	UDP	21
A.1.2	Port 5111	21
A.2	TAEP	22
	TAEP packet format	
	TAEP_REQ and TAEP_RES format	
Annex	R B (informative) ECDSA test vectors	24
Biblio	graphygraphy	27

iν

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

ISO/IEC 13157-4 was prepared by Ecma International (as ECMA-410) and was adopted, under a special "fast-track procedure", by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of ISO and IEC.

ISO/IEC 13157 consists of the following parts, under the general title *Information technology* — *Telecommunications and information exchange between systems* — *NFC Security:*

- Part 1: NFC-SEC NFCIP-1 security services and protocol
- Part 2: NFC-SEC cryptography standard using ECDH and AES
- Part 3: NFC-SEC cryptography standard using ECDH-256 and AES-GCM
- Part 4: NFC-SEC entity authentication and key agreement using asymmetric cryptography
- Part 5: NFC-SEC entity authentication and key agreement using symmetric cryptography.

Introduction

The NFC Security series of standards comprise a common services and protocol Standard and NFC-SEC cryptography standards.

This NFC-SEC cryptography Standard specifies an NFC Entity Authentication (NEAU) mechanism that uses the asymmetric cryptography algorithm (NEAU-A) for mutual authentication of two NFC entities.

This International Standard addresses entity authentication of two NFC entities possessing certificates and private keys during key agreement and key confirmation for the Shared Secret Service (SSE) and Secure Channel Service (SCH).

This International Standard adds entity authentication to the services provided by ISO/IEC 13157-3 (ECMA-409) NFC-SEC-02.

This International Standard refers to the latest standards.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world

In this respect, the statements of the holders of these patent rights are registered with ISO and IEC.

Information on the declared patents may be obtained from:

Patent Holder: China IWNCOMM Co., Ltd.

Address: A201, QinFengGe, Xi'an Software Park, No. 68, Keji 2nd Road, Xi'an Hi-Tech Industrial,

Development Zone, Xi'an, Shaanxi, P. R. China 710075

Information technology — Telecommunications and information exchange between systems — NFC Security —

Part 4:

NFC-SEC entity authentication and key agreement using asymmetric cryptography

1 Scope

This International Standard specifies the message contents and the cryptographic mechanisms for PID 03.

This International Standard specifies key agreement and confirmation mechanisms providing mutual authentication, using asymmetric cryptography, and the transport protocol requirements for the exchange between Sender and TTP.

NOTE This International Standard adds entity authentication to the services provided by ISO/IEC 13157-3 (ECMA-409) NFC-SEC-02.

2 Conformance

Conformant NFC-SEC entities employ the security mechanisms and the transport protocol requirements specified in this NFC-SEC cryptography Standard (identified by PID 03) and conform to ISO/IEC 13157-1 (ECMA-385).

Conformant TTP implementations employ the security mechanisms and the transport protocol requirements specified in this NFC-SEC cryptography Standard (identified by PID 03).

The NFC-SEC security services shall be established through the protocol specified in ISO/IEC 13157-1 (ECMA-385) and the mechanisms specified in this International Standard.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 7498-1:1994, Information technology -- Open Systems Interconnection -- Basic Reference Model: The Basic Model

ISO/IEC 9798-1:2010, Information technology -- Security techniques -- Entity authentication -- Part 1: General

ISO/IEC 9798-3, Information technology -- Security techniques -- Entity authentication -- Part 3: Mechanisms using digital signature techniques

ISO/IEC 10118-3:2004, Information technology -- Security techniques -- Hash-functions -- Part 3: Dedicated hash-functions

ISO/IEC 11770-3, Information technology -- Security techniques -- Key management -- Part 3: Mechanisms using asymmetric techniques

ISO/IEC 13157-1, Information technology -- Telecommunications and information exchange between systems -- NFC Security -- Part 1: NFC-SEC NFCIP-1 security services and protocol (ECMA-385)

ISO/IEC 13157-2, Information technology -- Telecommunications and information exchange between systems -- NFC Security -- Part 2: NFC-SEC cryptography standard using ECDH and AES (ECMA-386)

ISO/IEC 13157-3, Information technology -- Telecommunications and information exchange between systems -- NFC Security -- Part 3: NFC-SEC cryptography standard using ECDH-256 and AES-GCM (ECMA-409)

ISO/IEC 14443-3, Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision

ISO/IEC 14888-3:2006, Information technology -- Security techniques -- Digital signatures with appendix -- Part 3: Discrete logarithm based mechanisms

ISO/IEC 18031:2011, Information technology -- Security techniques -- Random bit generation

ISO/IEC 18031:2011/Cor.1:2014, Information technology -- Security techniques -- Random bit generation -- Technical Corrigendum 1

ISO/IEC 18092, Information technology -- Telecommunications and information exchange between systems -- Near Field Communication -- Interface and Protocol (NFCIP-1) (ECMA-340)

ITU-T Recommendation X.509, ISO/IEC 9594-8, Information technology -- Open Systems Interconnection -- The Directory: Public-key and attribute certificate frameworks.

4 Terms and definitions

For the purposes of this document, the terms and definitions given in Clause 4 of ISO/IEC 13157-3 (ECMA-409) and the following apply.

4.1

asymmetric cryptography (asymmetric cryptographic technique)

cryptographic technique that uses two related transformations: a public transformation (defined by the public key) and a private transformation (defined by the private key)

NOTE The two transformations have the property that, given the public transformation, it is computationally infeasible to derive the private transformation.

[ISO/IEC 9798-1: 2010]

4.2

certificate

public key information of an entity signed by the certification authority and thereby rendered unforgeable

[ISO/IEC 9798-1: 2010]

4.3

digital signature (signature)

data appended to, or a cryptographic transformation of, a data unit that allows the recipient of the data unit to prove the source and integrity of the data unit and protect against forgery, e.g. by the recipient

[ISO/IEC 9798-1: 2010]

4.4

entity authentication

corroboration that an entity is the one claimed

[ISO/IEC 9798-1: 2010]

4.5

n-entity-title

a name that is used to identify unambiguously an n-entity

[ISO/IEC 7498-1: 1994]

4.6

trusted third party

security authority or its agent, trusted by other entities with respect to security related activities

[ISO/IEC 9798-1: 2010]

NOTE In this International Standard, a trusted third party is trusted by a Sender and Recipient for the purposes of certificate validation.

5 Conventions and notations

Clause 5 of ISO/IEC 13157-3 (ECMA-409) applies.

For any message field "F", F denotes the value placed in the field upon sending, F' the value upon receipt.

6 Acronyms

Clause 6 of ISO/IEC 13157-3 (ECMA-409) applies. Additionally, the following acronyms apply.

CertA Certificate of A
CertB Certificate of B
CertTTP Certificate of TTP

CPA Public Key of Certificate of A
CPB Public Key of Certificate of B
CPTTP Public Key of Certificate of TTP

CSA Private Key corresponding to Certificate of A
CSB Private Key corresponding to Certificate of B
CSTTP Private Key corresponding to Certificate of TTP

ECDSA Elliptic Curve Digital Signature Algorithm

IP Internet Protocol

k Fresh random value in ECDSA
NEAU NFC Entity Authentication

NEAU-A NEAU using Asymmetric Cryptography

OCSP Online Certificate Status Protocol

q 224-bit prime number of a divisor of the curve order in ECDSA

r, s Digital Signature value of ECDSA

ResA Validation result of A
ResB Validation result of B
SHA Secure Hash Algorithm

SigA Digital Signature generated by A
SigB Digital Signature generated by B
SigTTP Digital Signature generated by TTP
TTP PolicyX TTP policy of entity X [see 8.3]

TLV Type-length-value

UDP User Datagram Protocol

UID Unique Identifier [ISO/IEC 14443-3]

TAEP Tri-element Authentication Extensible Protocol

TAEP_REQ TAEP Request PDU
TAEP RES TAEP Response PDU

TTP Trusted Third Party involved in the authentication

7 General

This International Standard specifies the NFC Entity Authentication using Asymmetric cryptography (NEAU-A), using the key agreement and confirmation protocol of ISO/IEC 13157-1 (ECMA-385). NEAU-A specifies negotiation of authentication either involving a TTP per 6.2 of ISO/IEC 9798-3 or without TTP per 5.2.2 of ISO/IEC 9798-3.

Authentication credentials shall be Public Key Certificates conforming to ISO/IEC 9594-8 / ITU X.509.

NOTE It is outside the scope of this International Standard how the certificates and the related private keys are issued and established.

The relationship between NEAU-A and ISO/IEC 13157-1 (ECMA-385) is shown in Figure 1.

Figure 1 — The use of the NFC-SEC protocol by NEAU-A

8 Fields and PDUs for NEAU-A

8.1 Protocol Identifier (PID)

This International Standard shall use the one octet protocol identifier PID with value 3.

8.2 NFC-SEC-PDUs

Peer NFC-SEC entities shall establish a shared secret Z using ACT_REQ, ACT_RES, VFY_REQ and VFY_RES according to the NEAU-A mechanism.

8.3 TTP involving

8.3.1 TTP policy and field

TTP Policy_X specifies the entity policy regarding the involvement of the TTP in NEAU-A. The payload of ACT REQ and ACT RES shall contain the 1-octect TTP field encoding the TTP Policy_X as follows:

- a) 0: TTP to be involved;
- b) 1: TTP not to be involved;
- c) 2: No preference;
- d) All other values are RFU.

8.3.2 TTP policy negotiation

The NEAU-A mechanism provides a method for TTP policy negotiation. Peer NFC-SEC entities shall negotiate whether or not to involve the TTP, in accordance with their TTP Policy_X.

The Sender (A) shall include a TTP field in the ACT_REQ with the value (0, 1 or 2) according to its TTP Policy_A. If the TTP is unavailable (see 10.1.2) then the values 0 and 2 are prohibited. The value 2 shall be replaced by 1, and if the value is 0 then 'PDU content valid' shall be set to false.

Upon receiving the ACT-REQ, the Recipient (B) shall perform policy negotiation as specified in Table 1; if the Result is False then the Recipient shall set 'PDU content valid' to false, for the Result of 0 or 1, the Recipient (B) shall set the TTP field in the ACT-RES to the Result and shall continue with step 3 of 10.1.4 or step 4 of 10.2.4 respectively.

The Sender (A) shall validate the TTP field in the ACT-RES:

• If it equals 2, then set 'PDU content valid' to false;

Otherwise, evaluate Table 1; if the Result is False then set 'PDU content valid' to false, for the Result of 0 or 1 continue with step 6 of 10.1.3 or 10.2.3 respectively.

Table 1 — Results of the TTP policy negotiation

TTP Field	TTP Policy	Result
0	TTP to be involved	0
0	TTP not to be involved	False
0	No preference	0
1	TTP to be involved	False
1	TTP not to be involved	1
1	No preference	1
2	TTP to be involved	0
2	TTP not to be involved	1
2	No preference	0

8.4 Entity identifiers

The n-entity-title of the Sender's and Recipient's n-entity shall be used as ID_S and ID_R , respectively. Figure 2 specifies the encoding of ID_S and ID_R in the TLV format.

Figure 2 — ID format

- The Type subfield specifies the type of the ID and shall be 1 octet in length. The values are:
 - a) 1: Value subfield contains Sender (A) identification number, IDs;
 - b) 2: Value subfield contains Recipient (B) identification number, ID_R;
 - c) All other values are RFU.
- The 2-octet Length subfield contains the length in number of octets of the Value subfield, in the range of 1 to 65535.

8.5 Cert field

Figure 3 specifies the encoding of Cert_A, Cert_B and Cert_{TTP} in the TLV format.

Figure 3 — Cert format

- 1. The Cert Type subfield specifies the type of the certificate and shall be 1 octet in length. The values are:
 - a) 0: Value subfield contains certificate of Sender (A), Cert_A;
 - b) 1: Value subfield contains certificate of Recipient (B), Cert_B;
 - c) 2: Value subfield contains certificate of TTP, Cert_{TTP};
 - d) All other values are RFU.
- 2. The 2-octet Cert Length subfield contains the length in number of octets of the Value subfield, in the range of 1 to 65535.

8.6 Res field

Figure 4 specifies the encoding of Res_A and Res_B in the TLV format.

Figure 4 — Res format

- 1. The Res Type subfield identifies the entity and shall be 1 octet in length. The values are:
 - a) 0: result of Sender (A);
 - b) 1: result of Recipient (B);
 - c) All other values are RFU.
- 2. The 2-octet Res Length subfield contains the length in number of octets of the Certificate subfield of the Value subfield, in the range of 1 to 65535.
- 3. Figure 5 specifies the Value subfield.

	Flag	Certificate
Octets:	1	variable

Figure 5 — Value format

- a) The Flag subfield contains the certificate validation result, the values are:
 - i. 0: positive;
 - ii. 1: negative;
 - iii. All other values are RFU.
- b) The Certificate subfield contains the certificate verified by the TTP.

9 Primitives

9.1 General requirements

Clause 9 specifies the cryptographic primitives of NEAU-A. Clause 10 specifies the use of these primitives. Table 2 specifies the size and description of parameters.

Table 2 — NEAU-A parameters

Parameter	Field Size	Description
Cert _A	Variable	The certificate of A. See 8.5.
Cert _B	Variable	The certificate of B. See 8.5.
Cert _{⊞P}	Variable	The certificate of TTP. See 8.5.
CP _A	512 bits	Public key of certificate of A.
СРв	512 bits	Public key of certificate of B.
CP _{TTP}	512 bits	Public key of certificate of TTP.
CS _A	256 bits	Private key corresponding to certificate of A.
CS _B	256 bits	Private key corresponding to certificate of B.

Parameter	Field Size	Description
CS _{TTP}	256 bits	Private key corresponding to certificate of TTP.
TTP	8 bits	This field specifies whether or not the TTP is involved.
Sig _A	512 bits	Digital signature generated by A.
Sig _B	512 bits	Digital signature generated by B.
Sig _{TTP}	512 bits	Digital signature generated by TTP.
Res _A	Variable	This field specifies the authenticate result of A. See 8.6.
Res _B	Variable	This field specifies the authenticate result of B. See 8.6.
IDs	Variable	The Sender (A) identification number. See 8.4.
ID_R	Variable	The Recipient (B) identification number. See 8.4.
NA	128 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
NB	128 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
dа	256 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
d в	256 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
QA	512 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
Qв	512 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
QA	264 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
QB	264bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
Z	512 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
мк	128 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).
К	128 bits	See Clause 6 of ISO/IEC 13157-2 (ECMA-386).

ISO/IEC 18031 shall be used to generate the random nonces and keys, with the exception of Dual_EC_DRBG.

9.2 Entity authentication

9.2.1 Mechanisms

This International Standard specifies two entity authentication options: entity authentication involving a TTP and entity authentication without involving a TTP. Which option to use is negotiated as specified in 8.3.2.

Peer NFC-SEC entities achieve mutual authentication between Sender (A) and Recipient (B) involving a TTP per 6.2 of ISO/IEC 9798-3, Five pass authentication (initiated by A), where the Sender acts as entity A. The entity authentication mechanism requires the two entities, Sender (A) and Recipient (B), to validate each other's certificates using a TTP. To verify the signature of the TTP, the entities Sender (A) and Recipient (B) shall possess a copy of the TTP's certificate.

Peer NFC-SEC entities achieve mutual authentication between Sender (A) and Recipient (B) without involving a TTP per 5.2.2 of ISO/IEC 9798-3, Three pass authentication.

Implementations of this entity authentication mechanism shall use the digital signature scheme Elliptic Curve Digital Signature Algorithm (ECDSA) and control the uniqueness/timeliness by generating and checking a random number (see ISO/IEC 9798-1 and ISO/IEC 18031).

9.2.2 EC curve

EC curve P-256 per ISO/IEC 13157-3 (ECMA-409) shall be used for ECDSA and Elliptic Curves Diffie-Hellman (ECDH).

9.2.3 ECDSA

9.2.3.1 Overview

The digital signature scheme ECDSA used in the entity authentication mechanism shall conform to 6.4 of ISO/IEC 14888-3. The public verification keys used in the ECDSA shall be Public key of certificate of Sender CPA, Public key of certificate of Recipient CPB and Public key of certificate of TTP CPTTP respectively. The secret signature keys used in the ECDSA shall be Private key corresponding to certificate of Sender CSA, Private key of certificate corresponding to Recipient CSB and Private key corresponding to certificate of TTP CSTTP, respectively.

9.2.3.2 Digital signature generation

9.2.3.2.1 Digital signature generation of SigA in VFY_REQ

The ECDSA digital signature Sig_A in VFY_REQ shall be generated per 6.4.3 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of A,
- 2. The secret signature key CSA,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for signing: ID_s || ID_R || NA || NB' || QA, and
- The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.2.2 Digital signature generation of SigB in ACT_RES

The ECDSA digital signature Sig_B in ACT RES shall be generated per 6.4.3 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of B,
- 2. The secret signature key CSB,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for signing: ID_R || ID_S || TTP || NB || NA' || QB, and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.2.3 Digital signature generation of SigTTP in TAEP RES

In the case of entity authentication involving a TTP, the ECDSA digital signature Sig_{TTP} in TAEP_RES shall be generated per 6.4.3 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of TTP,
- 2. The secret signature key CSTTP,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for signing: NA' | NB' | Res_A | Res_B, and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.3 Digital signature verification

9.2.3.3.1 Digital signature verification of Sig_A in VFY_REQ

The ECDSA digital signature Sig_A in VFY_REQ shall be verified per 6.4.4 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of A,
- 2. The public verification key CPA which shall be retrieved from the CertA in the payload of the ACT_REQ,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for verification: ID_S || ID_R || NA' || NB || QA', and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.3.2 Digital signature verification of Sig_B in ACT_RES

The ECDSA digital signature Sig_B in ACT_RES shall be verified per 6.4.4 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of B,
- The public verification key CP_B which shall be retrieved from the Cert_B in the payload of the ACT_RES,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for verification: ID_R || ID_S || TTP' || NB' || NA || QB', and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.3.3 Digital signature verification of Sig_{TTP} in TAEP_RES

In the case of entity authentication involving a TTP, the ECDSA digital signature Sig_{TTP} in TAEP_RES shall be verified per 6.4.4 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of TTP,
- 2. The public verification key CS_{TTP} which shall be retrieved from the Cert_{TTP},
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for signing: NA || NB' || Res_A' || Res_B', and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.3.3.4 Digital signature verification of Sig_{TTP} in VFY _REQ

In the case of entity authentication involving a TTP, the ECDSA digital signature Sig_{TTP} in VFY_REQ shall be verified per 6.4.4 of ISO/IEC 14888-3, using:

- 1. Domain parameters according to the certificate of TTP,
- 2. The public verification key CSTTP which shall be retrieved from the CertTTP,
- 3. A random value per ISO/IEC 18031, with the exception of Dual_EC_DRBG,
- 4. The message for signing: NA' || NB || Res_A' || Res_B', and
- 5. The Secure Hash Algorithm (SHA-256) per ISO/IEC 10118-3.

9.2.4 Certificate validation

9.2.4.1 TTP involved

9.2.4.1.1 Certificate validation process

Certificate validation shall be performed by the TTP and include verification of the certificate's authenticity, expiration status and revocation status. Additional rules of validation may be required by the security policy of the security domain the TTP belongs to. For example, presence or absence of extensions, whether the subject name has the right format, whether the subject is granted access to the security domain, etc. The security policy and any additional rules are out of scope of this International Standard.

During the certificate validation, if any check fails, then 'PDU content valid' shall be set to false.

9.2.4.1.2 Res_x generation

The certificate validation result of Sender (A) and Recipient (B), Res_A and Res_B, in TAEP_RES shall be generated per 8.6.

9.2.4.1.3 Res_x verification

9.2.4.1.3.1 Res_x verification of Sender (A) in VFY_REQ

The Recipient (B) shall check the certificate validation result of Sender (A), Res_A', in VFY_REQ as follows:

- a) check if the value of the Res Type subfield received from the Sender (A) in the Res_A' of the payload of the VFY REQ equals to 0.
- b) check if the value of the Flag subfield received from the Sender (A) in the Res_A ' of the payload of the VFY_REQ equals to 0.
- c) check if the Cert_A' received from the Sender (A) in the ACT_REQ is same as received in the Certificate subfield of Res_A' of the payload of the VFY_REQ.

9.2.4.1.3.2 Res_x verification of Recipient (B) in TAEP_RES

The Sender (A) shall check the certificate validation result of Recipient (B), Res_B', in TAEP RES as follows:

a) check if the value of the Res Type subfield received from the TTP in the Res_B' of the payload of the TAEP_RES equals to 1.

- b) check if the value of the Flag subfield received from the TTP in the Res_B' of the payload of the TAEP_RES equals to 0.
- c) check if the Cert_B' sent to the TTP in the payload of the TAEP_REQ is the same as received in the Certificate subfield of Res_B' of the payload of the TAEP_RES.

9.2.4.2 TTP not involved

Certificate validation shall include verification of the certificate's authenticity and expiration status, see ISO/IEC 9594-8. The validation of certificate revocation status is optional and may be performed by checking against a certificate revocation list or by contacting an OCSP responder.

9.3 Key agreement

The ECDH shall be used for key agreement. Peer NFC-SEC entities shall agree on a shared secret using Key agreement mechanism 4 from ISO/IEC 11770-3 and the ECDH primitives including EC Key Pair Generation primitive, EC Public key validation and ECDH secret value derivation Primitive per 9.1 of ISO/IEC 13157-3 (ECMA-409).

9.4 Key confirmation

This key confirmation mechanism is according to Clause 9 of ISO/IEC 11770-3. Key confirmation tag generation and verification per 11.4 of ISO/IEC 13157-2 (ECMA-386) shall be used after the key agreement mechanism.

9.5 Key Derivation Function (KDF)

After successful NEAU-A completion, the KDF per 9.2 of ISO/IEC 13157-3 (ECMA-409) shall be used to generate the shared secret Z and keys of SSE and SCH.

10 NEAU-A mechanism

10.1 Entity authentication involving a TTP

10.1.1 Protocol overview

NEAU-A mechanism involving a TTP is illustrated in Figure 6. During the NEAU-A, if any check fails, then 'PDU content valid' shall be set to false.

Figure 6 — NEAU-A mechanism involving a TTP overview

10.1.2 Preparation

Before starting the NEAU-A mechanism, the following shall be available to each NFC-SEC entity:

- Its own certificate conforming to ISO/IEC 9594-8/ITU X.509 and its own private key.
- TTP's certificate conforming to ISO/IEC 9594-8/ITU X.509.
- Each NFC-SEC entity shall be in possession of the n-entity-title of both peer-n-entities of the underlying n-layer.
- Each NFC-SEC entity knows the value of its TTP Policyx.
- The Sender (A) shall know if the TTP is available.

NOTE The TTP shall have a capability to validate the Sender's and Receiver's certificates according to the security policy of the security domain the TTP belongs to. The specification of the security policy and the TTP's validation capability is out of scope of this International Standard.

NOTE The NFCIP-1-entity-title is the nfcid3 per ISO/IEC 18092, the 14443-3-entity-title is the UID.

10.1.3 Sender (A) transformation

- Set the value of TTP field per 8.3.2.
- 2. Generate a nonce NA per 9.1.5 of ISO/IEC 13157-3 (ECMA-409).
- 3. Send TTP || NA || Cert_A as the payload of the ACT_REQ.

- 4. Receive TTP' || NB' || NA || Cert_B' || QB' || Sig_B' from the payload of the ACT_RES.
- 5. Evaluate the value of TTP' field per 8.3.2.
- 6. If the verification of step a) is 'invalid', set the 'PDU content valid' to false in the protocol machine:
 - a) check if the random number NA sent to the Recipient (B) in the payload of the ACT_REQ is the same as received in the ACT_RES.
- 7. Send NA || NB' || Cert_A || Cert_B' as the payload of the TAEP_REQ to the TTP according to ISO/IEC 9798-3.
- 8. Receive NA || NB' || Res_A' || Res_B' || Sig_{TTP}' as the payload of the TAEP_RES from TTP.
- 9. Perform the following:
 - a) check if the random number NA send to the TTP in the payload of the TAEP_REQ is the same as received in the TAEP_RES;
 - b) check if the random number NB' send to the TTP in the payload of the TAEP_REQ are the same as received in the TAEP_RES and ACT_RES, respectively;
 - c) check Sig_{TTP}' per 9.2.3.3.3;
 - d) check Res_B' per 9.2.4.1.3.2;
 - e) check Sig_B' per 9.2.3.3.2.
- 10. Ensure QA equals the octet string of Q_A per 10.3 of ISO/IEC 13157-2 (ECMA-386).
- 11. Compute Sig_A per 9.2.3.2.1.
- 12. Reconstruct Q_B' from QB' per 10.4 of ISO/IEC 13157-2 (ECMA-386). If the public EC keys have already been received, the previously calculated and stored value QB' may be reused and step 13, 14 and 15 may be skipped.
- 13. Verify that QB' is a valid key for the EC parameters per 9.1.3 of ISO/IEC 13157-3 (ECMA-409).
- 14. Use the Diffie-Hellman primitive in 9.1.4 of ISO/IEC 13157-3 (ECMA-409). If its output z is 'invalid', set the 'PDU content valid' to false in the protocol machine.
- 15. Convert z to octet string Z using the convention per 10.1 of ISO/IEC 13157-2 (ECMA-386).
- 16. Compute the MK and MacTag_A per 9.2 and 9.4.1 of ISO/IEC 13157-3 (ECMA-409) for key confirmation, respectively.
- 17. Send NA || NB' || QA || Res_A' || Res_B' || Sig_{TTP}' || Sig_A || MacTag_A as payload of the VFY_REQ.
- 18. Receive MacTag_B' from the payload of the VFY_RES.
- 19. Check the key confirmation tag received from Recipient (B): MacTag_B'(MK) per 11.4.1 of ISO/IEC 13157-2 (ECMA-386).

20. Set the 'PDU content valid' to true, use MK as the Shared Secret of SSE and link key of SCH respectively.

10.1.4 Recipient (B) transformation

- Receive TTP' || NA' || Cert_A' from the payload of the ACT_REQ.
- 2. Evaluate the value of the TTP' field and set the value of the TTP field per 8.3.2.
- Generate a nonce NB per 9.1.5 of ISO/IEC 13157-3 (ECMA-409).
- Ensure QB equals the octet string of Q_B per 10.3 of ISO/IEC 13157-2 (ECMA-386).
- Compute Sig_B per 9.2.3.2.2.
- 6. Send TTP || NB || NA' || Cert_B || QB || Sig_B as the payload of the ACT_RES.
- Receive NA' | NB | QA | Res_A | Res_B | Sig_{TTP} | Sig_A from the payload of the VFY_REQ.
- 8. Perform the following:
 - a) check if the random number NA' received from the Sender (A) in the payload of the ACT_REQ is the same as received in the VFY_REQ;
 - b) check if the random number NB sent to the Sender (A) in the payload of the ACT_RES is the same as received in the VFY REQ;
 - c) check Sig_A' per 9.2.3.3.1;
 - d) check Sig_{TTP}' per 9.2.3.3.4;
 - e) check Res_A' per 9.2.4.1.3.1.
- Reconstruct Q_A' from QA' per 10.4 of ISO/IEC 13157-2 (ECMA-386). If the public EC keys have already been received, the previously calculated and stored value Q_A' may be reused and step 10, 11 and 12 may be skipped.
- 10. Verify that QA' is a valid key for the EC parameters per 9.1.3 of ISO/IEC 13157-3 (ECMA-409).
- 11. Use the Diffie-Hellman primitive in 9.1.4 of ISO/IEC 13157-3 (ECMA-409). If its output z is 'invalid', set the 'PDU content valid' to false in the protocol machine.
- 12. Convert z to octet string Z using the convention per 10.1 of ISO/IEC 13157-2 (ECMA-386).
- 13. Compute the MK per 9.2 of ISO/IEC 13157-3 (ECMA-409).
- 14. Check the key confirmation tag received from Sender (A): MacTag_A'(MK) per 11.4.2 of ISO/IEC 13157-2 (ECMA-386).
- 15. Compute MacTag_B per 9.4.1 of ISO/IEC 13157-3 (ECMA-409) and send it as the payload of the VFY REQ.
- 16. Set the 'PDU content valid' to true, use MK as the Shared Secret of SSE and link key of SCH respectively.

10.1.5 TTP transformation

If the field of TTP is set to 1 and the TTP is not involved, TTP transformation shall be skipped. However, the capability of involving a TTP is mandatory in this International Standard. The PDUs exchanges between TTP and the Sender (A) are transmitted by the other channel and based on the UDP segment with Port 5111 and TAEP encapsulation. See Annex A for more details about UDP Port 5111 and TAEP.

- Receive NA' | NB' | Cert_A' | Cert_B' from the payload of the TAEP_REQ.
- 2. Validate Cert_A' and Cert_B' per 9.2.4.1.1.
- 3. Generate Res_A and Res_B per 9.2.4.1.2.
- 4. Compute Sig_{TTP} per 9.2.3.2.3.
- 5. Send NA' | NB' | Res_A | Res_B | Sig_{TTP} as the payload of the TAEP_RES.

10.2 Entity authentication without involving a TTP

10.2.1 Protocol overview

NEAU-A mechanism without involving a TTP is illustrated in Figure 7. During the NEAU-A, if any check fails, then 'PDU content valid' shall be set to false.

Figure 7 — NEAU-A mechanism without involving a TTP overview

10.2.2 Preparation

Before starting the NEAU-A mechanism, the following shall be available on each NFC-SEC entity:

- Its own certificate conforming to ISO/IEC 9594-8/ITU X.509 and its own private key.
- The capability to validate the peer's certificate.

- Each NFC-SEC entity shall be in possession of the n-entity-title of both peer-n-entities of the underlying n-layer.
- Each NFC-SEC entity knows the value of its TTP Policy_x.
- The Sender (A) shall know if the TTP is available.

10.2.3 Sender (A) transformation

- Set the value of TTP field per 8.3.2.
- Generate a nonce NA per 9.1.5 of ISO/IEC 13157-3 (ECMA-409).
- Send TTP || NA || Cert_A as the payload of the ACT_REQ.
- 4. Receive TTP' || NB' || NA || Cert_B' || QB' || Sig_B' from the payload of the ACT_RES.
- 5. Evaluate the value of TTP' field per 8.3.2.
- 6. Perform the following:
 - a) check if the random number NA sent to the Recipient (B) in the payload of the ACT_REQ is the same as received in the ACT_RES;
 - b) Check Cert_B' per 9.2.4.2;
 - c) Check Sig_B' per 9.2.3.3.2.
- 7. Ensure QA equals the octet string of Q_A per 10.3 of ISO/IEC 13157-2 (ECMA-386).
- 8. Compute Sig_A per 9.2.3.2.1.
- Reconstruct QB' from QB' per 10.4 of ISO/IEC 13157-2 (ECMA-386). If the public EC keys have already been received, the previously calculated and stored value QB' may be reused and step 10, 11 and 12 may be skipped.
- 10. Verify that QB' is a valid key for the EC parameters per 9.1.3 of ISO/IEC 13157-3 (ECMA-409).
- 11. Use the Diffie-Hellman primitive in 9.1.4 of ISO/IEC 13157-3 (ECMA-409). If its output z is 'invalid', set the 'PDU content valid' to false in the protocol machine.
- 12. Convert z to octet string Z using the convention per 10.1 of ISO/IEC 13157-2 (ECMA-386).
- 13. Compute the MK and MacTag_A per 9.2 and 9.4.1 of ISO/IEC 13157-3 (ECMA-409) for key confirmation, respectively.
- 14. Send NA || NB' || QA || Sig_A || MacTag_A as the payload of the VFY_REQ.
- 15. Receive MacTag_B' from the payload of the VFY_RES.
- 16. Check the key confirmation tag received from Recipient (B): MacTag_B'(MK) per 11.4.1 of ISO/IEC 13157-2 (ECMA-386).
- 17. Set the 'PDU content valid' to true, use MK as the Shared Secret of SSE and link key of SCH respectively.

10.2.4 Recipient (B) transformation

- 1. Receive TTP' || NA' || Cert_A' from the payload of the ACT_REQ.
- 2. Check Cert_A' per 9.2.4.2.
- 3. Evaluate the value of TTP' field and set the TTP field per 8.3.2.
- 4. Generate a nonce NB per 9.1.5 of ISO/IEC 13157-3 (ECMA-409).
- 5. Ensure QB equals the octet string of Q_B per 10.3 of ISO/IEC 13157-2 (ECMA-386).
- 6. Compute Sig_B per 9.2.3.2.2.
- 7. Send TTP || NB || NA' || Cert_B || QB || Sig_B as the payload of the ACT_RES.
- 8. Receive NA' || NB || QA' || Sig_A' || MacTag_A' from the payload of the VFY_REQ.
- 9. Perform the following:
 - a) check if the random number NA' received from the Sender (A) in the payload of the ACT_REQ is the same as received in the VFY_REQ;
 - b) check if the random number NB sent to the Sender (A) in the payload of the ACT_RES is the same as received in the VFY_REQ;
 - c) check Sig_A' per 9.2.3.3.1.
- 10. Reconstruct Q_A' from QA' per 10.4 of ISO/IEC 13157-2 (ECMA-386). If the public EC keys have already been received, the previously calculated and stored value Q_A' may be reused and step 11, 12 and 13 may be skipped.
- 11. Verify that QA' is a valid key for the EC parameters per 9.1.3 of ISO/IEC 13157-3 (ECMA-409).
- 12. Use the Diffie-Hellman primitive in 9.1.4 of ISO/IEC 13157-3 (ECMA-409). If its output z is 'invalid', set the 'PDU content valid' to false in the protocol machine.
- 13. Convert z to octet string Z using the convention per 10.1 of ISO/IEC 13157-2 (ECMA-386).
- 14. Compute the MK per 9.2 of ISO/IEC 13157-3 (ECMA-409).
- 15. Check the key confirmation tag received from Sender (A): MacTag_A'(MK) per 11.4.2 of ISO/IEC 13157-2 (ECMA-386).
- 16. Compute MacTag_B per 9.4.1 of ISO/IEC 13157-3 (ECMA-409) and send it as the payload of the VFY_REQ.
- 17. Set the 'PDU content valid' to true, use MK as the Shared Secret of SSE and link key of SCH respectively.

10.3 Key derivation

10.3.1 Sender (A)

Sender (A)'s private EC key d_A shall be obtained from a random or pseudo-random generation process conforming to ISO/IEC 18031. Sender (A)'s public EC key $Q_A = d_A \cdot G$.

Based on the ECDH protocol, $z = dA \cdot QB = dB \cdot QA$.

Convert z to octet string Z per 10.1 of ISO/IEC 13157-2 (ECMA-386).

For the SSE service, derive $MK_{SSE} = KDF\text{-}SSE$ (NA, NB', ID_S , ID_R , Z) per 9.2.1 of ISO/IEC 13157-3 (ECMA-409).

10.3.2 Recipient (B)

Recipient (B)'s private EC key d_B shall be obtained from a random or pseudo-random generation process conforming to ISO/IEC 18031. Recipient (B)'s public EC key $Q_B = d_B \cdot G$.

Based on the ECDH protocol, $z = d_B \cdot Q_A = d_A \cdot Q_B$.

Convert z to octet string Z per 10.1 of ISO/IEC 13157-2 (ECMA-386).

For the SSE service, derive MKssE = KDF-SSE (NA', NB, IDs, IDs, IDR, Z) per 9.2.1 of ISO/IEC 13157-3 (ECMA-409).

For the SCH service, derive {MKscH, KscH} = KDF-SCH (NA', NB, IDs, IDs, IDR, Z) per 9.2.2 of ISO/IEC 13157-3 (ECMA-409).

11 Data Authenticated Encryption in SCH

Clause 12 of ISO/IEC 13157-3 (ECMA-409) applies.

Annex A (normative)

UDP Port 5111 and TAEP

A.1 UDP and port 5111

A.1.1 UDP

The User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network without prior communications to set up special transmission channels or data paths. UDP is a minimal message-oriented Transport Layer protocol. Figure A.1 shows the UDP segment format. See RFC 768 for more details.

Figure A.1 — UDP segment format

- 1. Source port: See RFC 768 for the definition of Source port field and Annex A.1.2 for more details of the number of Source port in NEAU-A mechanism.
- 2. Destination port: See RFC 768 for the definition of Destination port field and Annex A.1.2 for more details of the number of Destination port in NEAU-A mechanism.
- 3. Length: See RFC 768 for the definition of Length field.
- 4. Checksum: See RFC 768 for the definition of Checksum field.
- 5. Data: See RFC 768 for the definition of Data field. TEAP packets shall be encapsulated in this field in NEAU-A mechanism (See Annex A.2).

A.1.2 Port 5111

In this International Standard, the PDU exchange between TTP and the Sender (A) is based on the UDP segment with Port 5111.

Sender (A) shall send the UDP segment with an ephemeral Source port number and 5111 Destination port number.

TTP shall answer sender (A) by send the UDP segment with 5111 Source port number. The value of Destination port number is the same as the value of Source port number send by Sender (A).

NOTE The UDP port 5111 has been assigned by Internet Assigned Numbers Authority for TAEP authentication service.

A.2 TAEP

A.2.1 TAEP packet format

Tri-element Authentication Extensible Protocol (TAEP) is worked with UDP port 5111 to provide the entity authentication service. TEAP packets shall be encapsulated in the Date field of PDU segment in NEAU-A mechanism Figure A.2 specifies the TAEP packet format.

Figure A.2 — TAEP packet format

- Code: The Code field shall be 1 octet and identifies the Type of TEAP packet. TEAP Codes are assigned as follows:
 - a) Request (TAEP_REQ)
 - b) Response (TAEP_RES)
 - c) In this International Standard, the Code values 3-255 are reserved.
- Identifier: The Identifier field shall be 1 octet and aids in matching Responses with Requests. In this
 International Standard, the Identifier field shall be changed on each TAEP_REQ. TAEP_RES shall match
 the Identifier field from the corresponding TAEP_REQ.
- 3. Length: The Length field shall be 2 octets and specifies the length in octets of the TAEP header and TAEP data. The minimum length is 4 octets since that's the length of the header. Octets outside the range of the Length field shall be ignored upon reception. A message with the Length field set to a value larger than the number of received octets shall be silently discarded.
- 4. Data: The Data field is zero or more octets and consists of the encapsulated message per A.2.2.

A.2.2 TAEP_REQ and TAEP_RES format

A summary of the TAEP_REQ and TAEP_RES formats is specified in Figure A.3.

In this International Standard,

- 1. The Type value in TAEP_REQ and TAEP_RES shall be set to 5.
- 2. Sender (A) shall use TAEP_REQ to encapsulate message NA || NB' || Cert_A || Cert_B' into the Data field.
- 3. TTP shall use TAEP_RES to encapsulate message NA' || NB' || Res_A || Res_B || Sig_{TTP} into the Data field.

Figure A.3 — TAEP_REQ and TAEP_RES format

Annex B (informative)

ECDSA test vectors

The test vectors in the annex may be used to verify implementations of ECDSA using curve P-256.

Key pair: (qlen = 256 bits)

d =17D5BE4BC2368948C5B376F38A12B5E2D266B951E034A325E394E2D0BAB3628D public key: a point on EC, PK = d·G

PKx = F77E59501B5CE6A85783702E79EF3EA38E415E5F3E5E09EFCFF9117E8457711C

PKy = 16431599C76D48D49A933123997EA06D95E5F334158A06C894D6FAF2181E7367

Signatures:

With SHA-256, message = "NFC-SEC":

- k = DEC8F06306B78F6E1784EF851687E3935049A39F90AFB5A7ACF9363BE185FA82 Signature (r, s):
- r = 7E20D307AF54DFBED17E37A064B72FF5E6A2B832F93EF37B2BB2D8B8124EC143
- s = F53777F606FB448228702EBB0AC584B96684AD13D6412CCAD052747C637539CD With SHA-256, message = "NEAU":
- k = CDB85E97D49902C66FFAB0A1200A01A3A1A155C3B2F565B69EE5B08B470B91D5 Signature (r, s):
- r = DE6BE243414FD55053C4634179757FBBC2D01313B4FEA163E5C5C18AA0FAFAA2
- s = F0E1B19EC105C9DA38A439A0E0A3CEAE1210184F21FD985CC401AEC17F37B127

Bibliography

- [1] Internet Assigned Numbers Authority http://www.iana.org/
- [2] RFC 768, User Datagram Protocol
- [3] RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
- [4] RFC 6960, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol OCSP.