Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Algorytmy Geometryczne

Laboratorium nr 1

Tomasz Smyda 28 października 2023

Spis treści

1	$\mathbf{W}\mathbf{st}$	ęp	2
	1.1	Opis ćwiczenia	2
	1.2	Biblioteki	2
	1.3	Specyfikacja	2
2	Rea	lizacja ćwiczenia	3
	2.1	Wygenerowanie zbiorów punktów	3
	2.2	Metody obliczania wartości wyznacznika	4
	2.3	Tolerancja oraz precyzja	4
	2.4	Kategoryzacja punktów	4
	2.5	Wizualizacje klasyfikacji - float64	4
		2.5.1 Zbiór A	4
		2.5.2 Zbiór B	5
		2.5.3 Zbiór C	6
		2.5.4 Zbiór D	7
	2.6	Wizualizacje klasyfikacji - float32	9
		2.6.1 Zbiory A i C	9
		2.6.2 Zbiór B	10
		2.6.3 Zbiór D	11
	2.7	Różnice w kwalifikacji punktów dla precyzji float64	12
	2.8	Porównanie czasu działania funkcji	14
3	Wni	ioski	14

1 Wstęp

1.1 Opis ćwiczenia

Ćwiczenie polegało na określeniu po której stronie prostej znajduje się punkt wykorzystując wyznaczniki:

$$\det(a, b, c) = \det \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} \qquad \text{lub} \qquad \det(a, b, c) = \det \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Gdzie a,b,c to punkty, wśród których c jest punktem dla którego określamy położenie względem prostej, którą wyznaczają punkty a i b. Jeżeli wartość wyznacznika jest dodatnia to badany punkt znajduje się po lewej stronie, analogicznie, gdy wartość jest ujemna - po prawej stronie, natomiast gdy wartość jest równa 0 to badany punkt należy do zadanej prostej.

Wartości wyznaczników mogą się nieznacznie różnić w zaleźności od tego w jaki sposób jest on liczony oraz w jaki sposób komputer przechowuje liczby zmiennoprzecinkowe.

1.2 Biblioteki

Ćwiczenie zostało wykonane przy użyciu narzędzia Jupyter Notebook z wykorzystaniem języka Python w wersji 3.9.18. Do obliczeń, generowania liczb pseudolosowych, rysowania wykresów i generowania tabelek zostały wykorzystane biblioteki: Numpy, Random, Pandas oraz Matplotlib.

1.3 Specyfikacja

Wszystkie obliczenia były prowadzone na komputerze Lenovo Legion 5 Pro z systemem operacyjnym Windows 11 Home w wersji 22H2, procesorem Intel Core i7-11800H.

2 Realizacja ćwiczenia

2.1 Wygenerowanie zbiorów punktów

Do wylosowania punktów wykorzystano funkcję random. Wygenerowane zbiory:

- **Zbiór A**: 10^5 losowych punktów (x, y), takich że $x, y \in [-10^3; 10^3]^2$
- **Zbiór B**: 10^5 losowych punktów (x, y), takich że $x, y \in [-10^{14}; 10^{14}]^2$
- **Zbiór C**: 10^3 losowych punktów (x,y) leżących na okręgu o środku w punkcie O=(0,0) i promieniu równym R=100
- **Zbiór D**: 10^3 losowych punktów (x,y) leżących na prostej wyznaczonej przez wektor \vec{ab} , gdzie a=(-1;0) oraz b=(1;0,1) takich że $x\in[-10^3;10^3]$

Wizualizacja zbiorów została przeprowadzona z wykorzystaniem biblioteki matplotlib. Do wygenerowania punktów na okręgu użyłem wzoru parametrycznego z wykorzystaniem funkcji trygonometrycznych sinus oraz cosinus, natomiast do wygenerowania punktów na prostej użyłem wzoru w postaci kierunkowej.

2.2 Metody obliczania wartości wyznacznika

Do obliczenia wartości wyznacznika wykorzystano funkcję z biblioteki numpy: np.linalg.det() oraz własne zaimplementowane funkcje oparte na poniższych wzorach:

$$\det(a, b, c) = \det \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} \qquad \det(a, b, c) = \det \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Gdzie c jest punktem, dla którego określamy położenie względem prostej wyznaczonej przez punkty a i b. Do zaimplementowania funkcji obliczającej wyznacznik 3x3 wykorzystałem schemat Sarrusa.

2.3 Tolerancja oraz precyzja

Dla zera wykorzystano następujące tolerancje: $0, 10^{-14}, 10^{-12}, 10^{-10}, 10^{-8}$. Wykorzystane precyzje: float64 oraz float32 z biblioteki numpy

2.4 Kategoryzacja punktów

Do wykonania zadania wykorzystana została funkcja, która dla każdego punktu z danego zbioru, z zadanej metody obliczania wyznacznika oraz zadanej tolerancji klasyfikuje punkt po odpowiedniej stronie prostej. Oznaczono je kolorami:

- Kolor zielony punkt znajduje się po lewej stronie prostej
- Kolor fioletowy punkt należy do prostej
- Kolor pomarańczowy punkt znajduje się po prawej stronie prostej

2.5 Wizualizacje klasyfikacji - float64

2.5.1 Zbiór A

Dla zbioru A wszystkie punkty zostały skwalifikowane tak samo dla wszystkich sposobów liczenia wyznacznika i wszystkich dobranych tolerancji dla zera.

Rysunek 5: Wykres klasyfikacji puntków zbioru A dla metod obliczania wyznacznika i przyjętych tolerancji zera

Wyznacznik 2x2	własnej implementacji	Wyznacznik 2x2 z	z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49668	0	50332	$0.00 \mathrm{e} {+00}$	49668	0	50332	
1.00 e-14	49668	0	50332	1.00e-14	49668	0	50332	
1.00 e-12	49668	0	50332	1.00e-12	49668	0	50332	
1.00e-10	49668	0	50332	1.00e-10	49668	0	50332	
1.00 e-08	49668	0	50332	1.00e-08	49668	0	50332	

Tabela 1: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 2: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki numpy

Wyznacznik 3x3 własnej implementacji Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49668	0	50332	$0.00 \mathrm{e}{+00}$	49668	0	50332	
1.00e-14	49668	0	50332	1.00e-14	49668	0	50332	
1.00e-12	49668	0	50332	1.00e-12	49668	0	50332	
1.00e-10	49668	0	50332	1.00e-10	49668	0	50332	
1.00e-08	49668	0	50332	1.00e-08	49668	0	50332	

Tabela 3: Liczba punktów na pozycjach względem Tabela 4: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 własnej implementacji prostej dla wyznacznika 3x3 z biblioteki numpy

2.5.2Zbiór B

Dla punktów ze zbioru B możemy zaobserwować pewne różnice w wynikach: wyznaczniki 2x2 sklasyfikowały kilka punktów jako znajdujące się na prostej, natomiast wyznaczniki 3x3 stwierdziły, że takich puntków nie ma. Dobrana tolerancja dla zera nie zmieniła tutaj wyników.

Rysunek 6: Wykres klasyfikacji puntków zbioru B dla własnej funkcji obliczania wyznacznika 2x2

Rysunek 7: Wykres klasyfikacji puntków zbioru B dla funkcji numpy obliczania wyznacznika 2x2

Wyznacznik 2x2	własnej implementacji	Wyznacznik 2x2 z	z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49960	8	50032	$0.00 \mathrm{e} {+00}$	49960	6	50034	
1.00 e-14	49960	8	50032	1.00e-14	49960	6	50034	
1.00 e-12	49960	8	50032	1.00e-12	49960	6	50034	
1.00e-10	49960	8	50032	1.00e-10	49960	6	50034	
1.00 e-08	49960	8	50032	1.00e-08	49960	6	50034	

Tabela 5: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 6: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki numpy

Wyznacznik 3x3 własnej implementacji Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49962	0	50038	$0.00 \mathrm{e} {+00}$	49962	0	50038	
1.00e-14	49962	0	50038	1.00e-14	49962	0	50038	
1.00e-12	49962	0	50038	1.00e-12	49962	0	50038	
1.00e-10	49962	0	50038	1.00e-10	49962	0	50038	
1.00e-08	49962	0	50038	1.00e-08	49962	0	50038	

prostej dla wyznacznika 3x3 własnej implementacji prostej dla wyznacznika 3x3 z biblioteki numpy

Tabela 7: Liczba punktów na pozycjach względem Tabela 8: Liczba punktów na pozycjach względem

Zbiór C 2.5.3

Dla zbioru C, wyniki były analogiczne jak dla zbioru A - wszystkie punkty skwalifikowane tak samo, niezależnie od przyjętej metody liczenia wyznacznika oraz przyjętej tolerancji zera.

Rysunek 8: Wykres klasyfikacji puntków zbioru C dla metod obliczania wyznacznika i przyjętych tolerancji zera

Wyznacznik 2x2 własnej implementacji Wyznacznik 2x2 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}\!+\!00$	499	0	501	$0.00 \mathrm{e} {+00}$	499	0	501	
1.00 e-14	499	0	501	1.00e-14	499	0	501	
1.00 e-12	499	0	501	1.00e-12	499	0	501	
1.00e-10	499	0	501	1.00e-10	499	0	501	
1.00 e-08	499	0	501	1.00e-08	499	0	501	

Tabela 9: Liczba punktów na pozycjach względem danej prostej dla wyznacznika 2x2 własnej implementacji

Tabela 10: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki num-

Wyznacznik 3x3 własnej implementacji

Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej
$0.00\mathrm{e}\!+\!00$	499	0	501	$0.00 \mathrm{e} {+00}$	499	0	501
1.00 e-14	499	0	501	1.00e-14	499	0	501
1.00 e-12	499	0	501	1.00e-12	499	0	501
1.00e-10	499	0	501	1.00e-10	499	0	501
1.00 e-08	499	0	501	1.00e-08	499	0	501

tacji

Tabela 11: Liczba punktów na pozycjach wzgle- Tabela 12: Liczba punktów na pozycjach wzgledem prostej dla wyznacznika 3x3 własnej implemen- dem prostej dla wyznacznika 3x3 z biblioteki num-

2.5.4Zbiór D

Dla punktów ze zbioru D wyniki klasyfikacji różnią się od siebie. Dla tolerancji zera równej 10^{-10} oraz 10^{-8} wszystkie punkty zostały zakwalifikowane jako należące do prostej dla każdej z metod obliczania wyznacznika. Dla wyznaczników 2x2 niektóre punkty zostały zakwalifikowane jako niewspółliniowe dla tolerancji $0, 10^{-14}$ oraz 10^{-12} , lepiej poradziły sobie funkcje wyznacznika 3x3, gdyż kwalifikacja punktów jako nienależące do prostej jest dla tolerancji 0 oraz 10^{-14} .

Wyznacznik 2x2 z biblioteki numpy Wyznacznik 2x2 własnej implementacji

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej
$0.00\mathrm{e}{+00}$	151	724	125	$0.00 \mathrm{e}{+00}$	166	680	154
1.00e-14	141	739	120	1.00e-14	157	700	143
1.00e-12	74	859	67	1.00e-12	109	795	96
1.00e-10	0	1000	0	1.00e-10	0	1000	0
1.00e-08	0	1000	0	1.00e-08	0	1000	0

Tabela 13: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 14: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki numру

T T 7	• 1	0 0		•	1 1
W	vznacznik	3 X 3	Własnei	ımn	lementacji
	y ZIIGCZIIIIX	0 110	Widomo	1111	iciiiciicacji

	Wyznacznik	3x3	\mathbf{z}	biblioteki	numpy
--	------------	-----	--------------	------------	-------

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00 \mathrm{e} \! + \! 00$	126	576	298	$0.00 \mathrm{e} {+00}$	354	307	339	
$1.00\mathrm{e}\text{-}14$	0	807	193	1.00e-14	18	891	91	
$1.00\mathrm{e}\text{-}12$	0	1000	0	1.00e-12	0	1000	0	
$1.00\mathrm{e}\text{-}10$	0	1000	0	1.00e-10	0	1000	0	
1.00 e-08	0	1000	0	1.00e-08	0	1000	0	

Tabela 15: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 własnej implementacji

Tabela 16: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

 ${\bf Rysunek~9:}$ Wykres klasyfikacji puntków zbioru D dla własnej funkcji obliczania wyznacznika 2x2 oraz tolerancji 0

Rysunek 10: Wykres klasyfikacji puntków zbioru D dla funkcji własnej obliczania wyznacznika 3x3 oraz tolerancji 0

Rysunek 11: Wykres klasyfikacji puntków zbioru D dla funkcji obliczania wyznacznika 2x2 z biblioteki numpy oraz tolerancji 10^{-12}

Rysunek 12: Wykres klasyfikacji puntków zbioru D dla funkcji obliczania wyznacznika 3x3 z biblioteki numpy oraz tolerancji 0

Wizualizacje klasyfikacji - float32

Zbiory A i C 2.6.1

Otrzymane wyniki dla precyzji float32 niczym się nie różnią od wyników otrzymanych dla precyzji float64.

100 75 50 25 -25 -50 -75 -100-100 -75 100

Rysunek 13: Wykres klasyfikacji puntków zbioru A dla wszystkich funckji wyznacznika oraz tolerancji zera

Rysunek 14: Wykres klasyfikacji puntków zbioru C dla wszystkich funckji wyznacznika oraz tolerancji zera

Wyznacznik 2x2 własnej implementacji

Wyznacznik 2x2 z biblioteki numpy

To	olerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej
0	$.00\mathrm{e}{+00}$	49668	0	50332	$0.00 \mathrm{e} {+00}$	49668	0	50332
1	.00e-14	49668	0	50332	1.00e-14	49668	0	50332
1	.00e-12	49668	0	50332	1.00e-12	49668	0	50332
1	.00e-10	49668	0	50332	1.00e-10	49668	0	50332
1	00e-08	49668	0	50332	1.00e-08	49668	0	50332

Tabela 17: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 18: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki numру

Wyznacznik 3x3 własnej implementacji

Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej
$0.00 \mathrm{e}{+00}$	49668	0	50332	$0.00 \mathrm{e}{+00}$	49668	0	50332
1.00e-14	49668	0	50332	1.00e-14	49668	0	50332
1.00e-12	49668	0	50332	1.00e-12	49668	0	50332
1.00e-10	49668	0	50332	1.00e-10	49668	0	50332
1.00e-08	49668	0	50332	1.00e-08	49668	0	50332

dem prostej dla wyznacznika 3x3 własnej implementacji

Tabela 19: Liczba punktów na pozycjach wzglę- Tabela 20: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 z biblioteki numру

Wyznacznik 2x2	2 własnej implementacji	Wyznacznik 2x2 z	biblioteki numpy
•	J F	<i>•</i>	1 2

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00 \mathrm{e} \! + \! 00$	49668	0	50332	$0.00 \mathrm{e} {+00}$	49668	0	50332	
$1.00\mathrm{e}\text{-}14$	49668	0	50332	1.00e-14	49668	0	50332	
$1.00\mathrm{e}\text{-}12$	49668	0	50332	1.00e-12	49668	0	50332	
1.00 e-10	49668	0	50332	1.00e-10	49668	0	50332	
1.00 e-08	49668	0	50332	1.00e-08	49668	0	50332	

Tabela 21: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 22: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki num-

Wyznacznik 3x3 własnej implementacji

Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49668	0	50332	$0.00 \mathrm{e}{+00}$	49668	0	50332	
1.00 e-14	49668	0	50332	1.00e-14	49668	0	50332	
1.00 e-12	49668	0	50332	1.00e-12	49668	0	50332	
1.00e-10	49668	0	50332	1.00e-10	49668	0	50332	
1.00 e-08	49668	0	50332	1.00e-08	49668	0	50332	

tacji

Tabela 23: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 własnej implemendem prostej dla wyznacznika 3x3 z biblioteki num-

2.6.2Zbiór B

Dla zbioru B z precyzją float32 wyniki dotyczące metod wyznaczników 3x3 pokrywają się, natomiast wyniki metod z zastosowaniem wyznacznika 2x2 różnią się od siebie. Dla każdej metody liczenia wyznacznika widzimy, że wynik był taki sam niezależnie od tolerancji zera.

Rysunek 15: Wykres klasyfikacji puntków zbioru B dla własnej funkcji obliczania wyznacznika 2x2

Rysunek 16: Wykres klasyfikacji puntków zbioru B dla funkcji numpy obliczania wyznacznika 2x2

Wyznacznik 2x2 własnej implementacji Wyznacznik 2x2 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}\!+\!00$	49958	11	50031	$0.00 \mathrm{e} {+00}$	49957	9	50034	
1.00 e-14	49958	11	50031	1.00e-14	49957	9	50034	
$1.00\mathrm{e}\text{-}12$	49958	11	50031	1.00e-12	49957	9	50034	
1.00e-10	49958	11	50031	1.00e-10	49957	9	50034	
1.00 e-08	49958	11	50031	1.00e-08	49957	9	50034	

Tabela 25: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 26: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki num-

Wyznacznik 3x3 własnej implementacji

Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}{+00}$	49962	0	50038	$0.00 \mathrm{e} {+00}$	49962	0	50038	
1.00 e-14	49962	0	50038	1.00e-14	49962	0	50038	
1.00 e-12	49962	0	50038	1.00e-12	49962	0	50038	
1.00e-10	49962	0	50038	1.00e-10	49962	0	50038	
1.00 e-08	49962	0	50038	1.00e-08	49962	0	50038	

tacji

Tabela 27: Liczba punktów na pozycjach wzglę- Tabela 28: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 własnej implemen- dem prostej dla wyznacznika 3x3 z biblioteki num-

2.6.3Zbiór D

Dla zbioru D z precyzją float 32 żadna metoda wyliczania wyznacznika, nawet przy największej tolerancji (10⁻⁸) nie zakwalifikowała wszystkich puntków jako należące do prostej.

Rysunek 17: Wykres klasyfikacji puntków zbioru D dla własnej funkcji obliczania wyznacznika 2x2 oraz tolerancji 10^{-8}

Rysunek 18: Wykres klasyfikacji puntków zbioru D dla funkcji numpy obliczania wyznacznika 2x2 oraz tolerancji 10^{-8}

40 20 0 -20 -40 -750 -500 1000

Rysunek 19: Wykres klasyfikacji puntków zbioru D dla własnej funkcji obliczania wyznacznika 3x3 oraz tolerancji 10^{-8}

Rysunek 20: Wykres klasyfikacji puntków zbioru D dla funkcji numpy obliczania wyznacznika 3x3 oraz tolerancji 10^{-8}

Wyznacznik 2x2 własnej implementacji

Wyznacznik 2x2 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej
$0.00 \mathrm{e} {+00}$	427	139	434	$0.00 \mathrm{e}{+00}$	445	101	454
1.00e-14	426	141	433	1.00e-14	444	104	452
1.00e-12	415	159	426	1.00e-12	434	119	447
1.00e-10	415	159	426	1.00e-10	415	159	426
1.00e-08	415	161	424	1.00e-08	415	161	424

Tabela 29: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 własnej implementacji

Tabela 30: Liczba punktów na pozycjach względem prostej dla wyznacznika 2x2 z biblioteki num-

Wyznacznik 3x3 własnej implementacji

Wyznacznik 3x3 z biblioteki numpy

Tolerancja	Po lewej	Na prostej	Po prawej	Tolerancja	Po lewej	Na prostej	Po prawej	
$0.00\mathrm{e}\!+\!00$	429	101	470	$0.00 \mathrm{e} {+00}$	475	51	474	
1.00 e-14	415	135	450	1.00e-14	419	148	433	
1.00 e-12	415	159	426	1.00e-12	415	159	426	
1.00 e-10	415	159	426	1.00e-10	415	159	426	
1.00 e-08	415	161	424	1.00e-08	415	161	424	

tacji

Tabela 31: Liczba punktów na pozycjach wzglę- Tabela 32: Liczba punktów na pozycjach względem prostej dla wyznacznika 3x3 własnej implemen- dem prostej dla wyznacznika 3x3 z biblioteki num-

2.7 Różnice w kwalifikacji punktów dla precyzji float64

Wykorzystano funkcję, która dla danego zbioru punktów oraz wybranych metod obliczania wyznacznika wyznacza oraz wizualizuje punkty, które zostały różnie zakwalifikowane.

Dla zbiorów A oraz C nie wykryto żadnych różnic w kwalifikacji. Dla zbioru B wykryto różnice dla metod obliczania wyznacznika 2x2.

Rysunek 21: Różnice w klasyfikacji punktów ze zbioru B dla wyznaczników 2x2

Dla zbioru D wykryto różnice w kwalifikacji zarówno dla metod wyznaczników 2x2 oraz 3x3.

Rysunek 22: Różnice w klasyfikacji punktów ze zbioru D dla wyznaczników 2x2

Rysunek 23: Różnice w klasyfikacji punktów ze zbioru D dla wyznaczników 3x3

2.8 Porównanie czasu działania funkcji

Wykorzystano funkcję, która dla danego zestawu danych mierzy czas, w którym dana funckja obliczyła wyznacznik. Do testu wygenerowano 10^5 zestawów punktów a, b oraz c. Bibliotecznym funkcjom obliczania wyznacznika zajęło to o wiele więcej czasu niż funkcjom własnej implementacji.

```
Czas obliczeń dla wyznacznika 2x2 własnej implementacji to: 00.027612 s
Czas obliczeń dla wyznacznika 2x2 z biblioteki numpy to: 00.406808 s
Czas obliczeń dla wyznacznika 3x3 własnej implementacji to: 00.026132 s
Czas obliczeń dla wyznacznika 3x3 z biblioteki numpy to: 00.456546 s
```

3 Wnioski

Na podstawie obliczonych oraz zaprezentowanych danych można stwierdzić, że wyniki klasyfikacji punktów względem danej prostej w zależności od przyjętej precyzji, metody obliczania wyznaczników oraz przyjętej tolerancji są znaczące. O ile dla punktów ze zbioru A oraz C nie było większych różnic, to dla zbiorów B oraz D te różnice były i to niemałe. W przypadku zbioru B współrzędne punktów były generowane z przedziału [-10^{14} ; 10^{14}], zatem miały duże wartości, natomiast klasyfikacja punktów wymaga dobrej dokładności, która tutaj jest tracona z powodu w jaki komputer przechowuje liczby w postaci zmiennoprzecinkowej. Ten sam powód tłumaczy dlaczego wyniki uzyskane dla precyzji float32 jeszcze bardziej się od siebie różnią. Widzimy również, że funkcje biblioteczne sprawdzały się gorzej od tych zaimplementowanych własnoręcznie oraz osiągały o wiele gorsze czasy. Dzieje się tak prawdopodobnie daltego, że biblioteki wykorzystują dużo niepotrzebnych funkcji, co za tym idzie wykonując proste obliczenia lepiej użyć funkcji własnej implementacji.