Amortized analysis, Fibonacci heaps

CS240

Rui Fan

Spring 2023

Amortized analysis

- Suppose we want to bound the amount of time to perform n (possibly different) operations on a data structure.
- If max amount of time for each operation is f(n), $n \cdot f(n)$ is upper bound on the time for all the operations.
- But some operations might take more time than others.
 - □ Even the same operation can take different amounts of time each time it's executed.
 - \square So $n \cdot f(n)$ may overestimate actual amount of time taken.
 - □ The bound isn't tight.
- Amortized analysis looks at the average amount of time for each operation over all the operations.
 - □ The average is taken over the worst case execution, i.e. a sequence of operations with the highest average cost for the data structure.

Potential method

- To keep track of the true total cost of a sequence of operations, we use a potential function $\Phi: D \to \mathbb{R}$, where D is the set of states of the data structure.
- Let D_i be the state of the data structure after applying the i'th operation, and c_i be the cost of the i'th operation.
- Def The amortized cost for the i'th operation is $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$.
- Using the amortized cost, we sometimes overcharge and sometimes undercharge for operations.
 - □ I.e. when $\hat{c_i} > c_i$, we overcharge, and when $\hat{c_i} < c_i$ we undercharge.
- However, the total amortized cost is at least the total actual cost, i.e. $\sum_i \widehat{c_i} \ge \sum_i c_i$.
 - So total amortized cost is an upper bound on total actual cost.
- If we design the right potential function, we can keep track of the total cost by tracking the amortized costs.
 - The amortized cost is sometimes easier to analyze than directly keeping track of actual costs.
 - ☐ This leads to tight bounds for many data structures.

100

Potential method

- When we overcharge, i.e. $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) > c_i$, Φ increases.
 - \Box We "store" the extra amortized cost $\widehat{c_i} c_i$ we charged the i'th operation in Φ
 - \Box Φ is also called "credit" or "potential" (energy).
- When we undercharge, i.e. $\hat{c_i} < c_i$, Φ decreases.
 - □ We use some of the stored credit to pay for the $c_i \hat{c_i}$ amount of actual cost that the amortized cost doesn't account for.
- Lemma Suppose $\Phi(D_n) \ge \Phi(D_0)$. Then $\sum_{i=1}^n \widehat{c_i} \ge \sum_{i=1}^n c_i$.
- Proof

$$\sum_{i=1}^{n} \widehat{c_i} = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = (\sum_{i=1}^{n} c_i) + \Phi(D_n) - \Phi(D_0) \ge \sum_{i=1}^{n} c_i.$$

- □ The second equality follows because all the terms except $\Phi(D_n)$, $\Phi(D_0)$ telescope away.
- A simple way to ensure $\Phi(D_n) \ge \Phi(D_0)$ is to design Φ so that $\Phi(D_0) = 0$, and $\Phi(D_i) \ge 0$ for all i.

Example: Binary counter

- Consider a k-digit binary counter. When we increment the counter, we flip some bits.
 - □ Suppose each bit flip costs 1 unit.
- What is the total cost for incrementing the counter n times, starting from 0?
- Since there are k digits, a trivial upper bound is O(nk).
- However, the actual number of bit flips is much less, because most increments only flip a few bits.
- We use the potential method to show the total cost is O(n).
 - □ In fact, it's at most 2n.

Counter value	AT	M6	MS	MA	M3	MZ	MI	MOI	Total cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

b/A

Example: Binary counter

- Let $\Phi(D_i) = b_i$, where D_i is the state of the counter after i increments, and b_i is the number of 1's in D_i .
- Suppose the i'th operation sets t_i bits from 1 to 0.
 - \square Then the actual cost is $c_i = t_i + 1$.
 - \square This sets t_i bits from 1 to 0, and one bit from 0 to 1 for the carry.
- If $b_i = 0$, then the i'th operation reset all the bits.
 - \square Also, all the bits were set in D_{i-1} .
 - \Box So $t_i = b_{i-1} = k$.
- If $b_i > 0$, then $b_i = b_{i-1} t_i + 1$.
 - \Box t_i bits went from 1 to 0, and one carry bit went from 0 to 1.
- In both cases, $b_i \leq b_{i-1} t_i + 1$.

Ŋ.

Example: Binary counter

- Since $b_i \le b_{i-1} t_i + 1$, then $\Phi(D_i) \Phi(D_{i-1}) = b_i b_{i-1} \le 1 t_i$.
- So the amortized cost $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) \le (t_i + 1) + (1 t_i) = 2$.
- Finally, $\Phi(D_0) = 0$, since the counter is initially 0, and $\Phi(D_n) \ge 0$.
- Thus, by the lemma the total cost for all n increments is $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \widehat{c_i} \leq 2n$.

- A Fibonacci heap is a type of heap that implements certain operations faster than a binary heap, in amortized time.
 - The time complexities of the circled operations are amortized. The rest are worst case.
- It can be used to speed up a number of graph algorithms asymptotically.
- Both Dijkstra's and Prim's algorithms take O((V+E) log V) time with a binary heap, and O(E + V log V) time with a Fibonacci heap.
 - Both algorithms decrease the key value heap items O(E) times.
 - This takes O(E log V) time on a binary heap, and O(E) time on a Fibonacci heap.
- Fibonacci heaps are more complicated than binary heaps, and often don't perform better in practice.
- When decreasing or deleting a key, assume we have a pointer to the node with the key.
 - Otherwise finding the node takes O(n) time, where n is the number of items.

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$
DELETE	$\Theta(\lg n)$	$O(\lg n)$

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)

RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

```
MST-PRIM(G, w, r)

1 for each u \in G.V

2 u.key = \infty

3 u.\pi = \text{NIL}

4 r.key = 0

5 Q = G.V

6 while Q \neq \emptyset

7 u = \text{EXTRACT-MIN}(Q)

8 for each v \in G.Adj[u]

9 if v \in Q and w(u, v) < v.key

10

v.\pi = u

11

v.key = w(u, v)
```


Structure of Fibonacci heap

- A Fibonacci heap H consists of a set of rooted trees.
- Each tree satisfies the min heap property, i.e. each node's key is less than those of all its children.
- The trees are linked in a doubly-linked root list.
 - These roots are connected by the dashed line in the top figure.
- The minimum node is a root, and is pointed to by H.min.
- H.n stores the total number of nodes in all trees.
- Within each tree, the nodes at each level are also linked in a doubly-linked list.
- The two figures show the same Fibonacci heap, but the top figure avoids showing the linked list for clarity.

Potential function

- Some nodes are marked.
 - □ These are shown in black.
- Marks are only used during decrease key and deletion operations, and are described later.
 - They help ensure each node has a large number of children.
 - This ensures each tree is not too tall, and so each operation is fast.
- Suppose H has t(H) root nodes and m(H) marked nodes.
- The potential of H is

$$\Phi(H) = t(H) + 2m(H)$$

Basic operations

- Let H and H' denote the heap before and after an operation.
- Make-Heap
 - □ Make an empty heap. Set H'.n=0, H'.min=NIL.
 - \square Cost = O(1).
 - □ Amortized cost = O(1), since $\Phi(H) = \Phi(H') = 0$.
- Insert a node
 - Add the new node to the root list, left of the min node.
 - Change H.min if new node's key is smaller.
 - \square Cost = O(1).
 - \square Amortized cost = O(1).
 - Number of roots increases by 1.
 - So $\Phi(H') \Phi(H) = (t(H) + 1 + 2m(H)) (t(H) + 2m(H)) = 0(1).$

FIB-HEAP-INSERT (H, x)

1
$$x.degree = 0$$

$$2 \quad x.p = NIL$$

$$3 \quad x.child = NIL$$

4
$$x.mark = FALSE$$

5 **if**
$$H.min == NIL$$

$$7 H.min = x$$

8 **else** insert x into H's root list

9 **if**
$$x.key < H.min.key$$

$$0 H.min = x$$

11
$$H.n = H.n + 1$$

Basic operations

- Find the minimum
 - □ Return H.min.
 - \square Cost = amortized cost = O(1).
- Union of two heaps
 - \square Concatenate the root lists of the two heaps H_1 and H_2 .
 - \square Set H.min to min(H_1 , min, H_2 , min)
 - \square Cost = O(1).
 - Since new root list is the union of the two old root lists, the change in potential is $\Phi(H') (\Phi(H_1) + \Phi(H_2)) = t(H') + 2m(H') (t(H_1) + 2m(H_1) + t(H_2) + 2m(H_2)) = 0$.
 - \square Thus the amortized cost = O(1).

```
FIB-HEAP-UNION(H_1, H_2)

1 H = \text{MAKE-FIB-HEAP}()

2 H.min = H_1.min

3 concatenate the root list of H_2 with the root list of H_3

4 if (H_1.min == \text{NIL}) or (H_2.min \neq \text{NIL} and H_2.min.key < H_1.min.key)

5 H.min = H_2.min

6 H.n = H_1.n + H_2.n

7 return H_3
```


Extract min node

- First remove the H.min node.
- Then add each of its children (along with its subtree) to the root list.
 - □ There may now be many trees in the root list.
 - ☐ To find the new H.min, we need to iterate through the roots of all the trees, which may be slow.
 - □ So we want to decrease the number of trees in the root list.
- Def The degree of a node is its number of children.
- We merge some of the trees in the root list, so that none of the roots have the same degree.
 - □ The merging function is called CONSOLIDATE.

CONSOLIDATE

- Let D(H.n) be upper bound on the degree of any node in a Fibonacci heap with n nodes.
 - □ We show later $D(H.n) = O(\log n)$.
- Use an array A of size D(H.n)+1.
 - □ A[i] points to a tree in the root list with degree i.
- Iterate through all the trees in the root list.
 - □ If the current tree x we process has degree d, and $A[d] = y \neq NIL$, then there's already a tree y in the root list with degree d.
 - □ Since we don't want two trees in the root list with the same degree, we link the roots of x and y.
 - This creates a tree in the root list with degree d+1, and removes the tree with degree d.
 - The direction we link depends on which root has the smaller key.
 - ☐ Then set A[d]=NIL, and set A[d+1] to point to newly linked tree.
 - ☐ If the new root is marked, clear the mark.
- Finally, iterate through A array, and set H.min to the min root value.

Example: Extract min

Pseudocode for extract min

```
FIB-HEAP-EXTRACT-MIN(H)
                                                   CONSOLIDATE (H)
 1 z = H.min
                                                      let A[0..D(H.n)] be a new array
    if z \neq NIL
                                                       for i = 0 to D(H.n)
        for each child x of z
 3
                                                           A[i] = NIL
            add x to the root list of H
                                                       for each node w in the root list of H
 5
            x.p = NIL
                                                           x = w
 6
        remove z from the root list of H
                                                           d = x.degree
        if z == z.right
                                                           while A[d] \neq NIL
                                                               v = A[d]
            H.min = NIL
                                                                                // another node with the same degree as x
 9
        else H.min = z.right
                                                    9
                                                               if x.key > y.key
10
            Consolidate(H)
                                                   10
                                                                    exchange x with y
11
        H.n = H.n - 1
                                                               FIB-HEAP-LINK (H, y, x)
                                                   11
                                                   12
                                                                A[d] = NIL
    return z
                                                   13
                                                               d = d + 1
                                                   14
                                                           A[d] = x
                                                       H.min = NIL
                                                       for i = 0 to D(H.n)
FIB-HEAP-LINK (H, y, x)
                                                   17
                                                           if A[i] \neq NIL
 1 remove y from the root list of H
                                                   18
                                                                if H.min == NIL
 2 make y a child of x, incrementing x. degree
                                                   19
                                                                    create a root list for H containing just A[i]
   y.mark = FALSE
                                                   20
                                                                    H.min = A[i]
                                                   21
                                                               else insert A[i] into H's root list
                                                                    if A[i]. key < H.min.key
                                                   23
                                                                        H.min = A[i]
```

Complexity for extract min

- Let H denote the heap before the extract min.
- The real cost includes
 - \Box O(D(n)) for moving children of H.min to root list.
 - The for loop in lines 4-14 of CONSOLIDATE operate on a list of size at most D(n)+t(H)-1.
 - □ Every time through the while loop in lines 7-13, we link two of the trees in the root list.
 - Each tree can be linked (to a tree whose root has a smaller key) at most once.
 - So the total number of iterations of the while loop is at most the root list size, i.e. O(D(n)+t(H)).
 - \square So the real cost is O(D(n)+t(H)).
- For the amortized cost, the potential before the extract min is at most t(H)+2m(H).
- The potential after extract is $\leq (D(n)+1)+2m(H)$.
 - □ All trees in root list of H' have different degrees, and max degree is D(n).
 - □ No new nodes get marked during extract.
- So amortized cost is

$$O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) - (t(H) + 2m(H))$$

= $O(D(n)) + O(t(H)) - t(H) = O(D(n))$.

 \Box The last equality follows because we can scale up the units of the potential to cancel out the hidden constant in O(t(H)).

Decreasing key and marking

- To decrease a node x's key, check if the new key violates the heap property.
 - □ If not, we're done.
 - Otherwise, move x and its subtree to the root list.
 - We say we cut out x (and its subtree).
 - Unmark x, if it's marked.
- A node is marked if one of its children has been cut, since the last time it's been cut.
- The second time a node's children is cut out, we move the node (and its subtree) to the root list and unmark it.
- Let y be x's parent.
 - ☐ If y is not marked, mark y, since we cut one of its children.
 - ☐ If y is already marked, move y and its subtree to the root list, and then unmark y.
 - \Box Let z be y's parent.
 - ☐ If z is not marked, stop. Otherwise, cut z and move it to the root list, and repeat the previous steps for z's parent, etc.
- One decrease key can create a sequence of cascading cuts.

Example: decrease key

- (a) shows the original Fibonacci heap.
- (b) shows the heap after node 46 is decreased to 15.
- □ (c)-(e) show the cascading cuts after node 35 is decreased to 5.

Pseudocode for decrease key and delete

```
FIB-HEAP-DECREASE-KEY (H, x, k)
                                                   Cut(H, x, y)
1 if k > x. key
                                                      remove x from the child list of y, decrementing y.degree
       error "new key is greater than current key"
                                                      add x to the root list of H
  x.kev = k
                                                      x.p = NIL
                                                   4 x.mark = FALSE
  y = x.p
  if y \neq NIL and x.key < y.key
                                                   CASCADING-CUT(H, y)
       CUT(H, x, y)
       CASCADING-CUT(H, y)
                                                     z = y.p
                                                      if z \neq NIL
 if x.key < H.min.key
                                                          if y.mark == FALSE
       H.min = x
                                                              y.mark = TRUE
                                                          else Cut(H, v, z)
                                                              CASCADING-CUT(H, z)
```

```
FIB-HEAP-DELETE (H, x)

1 FIB-HEAP-DECREASE-KEY (H, x, -\infty)

2 FIB-HEAP-EXTRACT-MIN (H)
```

To delete a key, simply decrease its value to $-\infty$ and then do a extract-min.

Complexity for decrease key

- Let H denote the heap before the decrease key operation.
- Cutting out a node takes O(1) time.
- Suppose a decrease key operation creates c cascading cuts.
- Then the actual cost is O(c).
- For the amortized cost
 - Each cut creates one more tree in the root list.
 - □ It also removes one marked node.
 - ☐ After the decrease key, the root list contains t(H)+c trees.
 - □ It also contains $\leq m(H) c + 2$ marked nodes.
 - c-1 nodes were unmarked by cascading cuts, and the last call to CASCADING-CUT may have marked a node.
 - □ So the change in potential is (t(H)) + c + 2(m(H) c + 2) (t(H) + 2m(H)) = 4 c.
 - □ So the amortized cost is O(c) + 4 c = O(1) by scaling the hidden constant in the potential appropriately.

Bounding the max degree

- So far, all the operations have O(1) amortized cost, except extract-min (and delete, which calls extract-min).
- extract-min has amortized cost O(D(n)), where D(n) is the max degree of any node in the Fibonacci heap with n nodes.
- Def The golden ratio is $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618$.
 - ϕ is the positive solution to the equation $x^2 = x + 1$.
- Recall the Fibonacci F_n is defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.
 - □ The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- Fact 1 $F_n = \lfloor \frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \rfloor$.
 - □ For a proof, see section 3.2 of *Introduction to Algorithms*.
- Fact 2 $F_{n+2} = 1 + \sum_{i=0}^{n} F_i$.
- Fact 3 $F_{n+2} \ge \phi^n$.
- We show $D(n) \leq \lfloor \log_{\phi} n \rfloor$.
- Def For any node let x.deg denote its degree, and size(x) be the number of nodes in x's subtree (including x).

Bounding the max degree

- Lemma 1 Let x be a node in a Fibonacci heap, and suppose x. deg = k. Let $y_1, ..., y_k$ be the children of x, in the order they were linked to x, from earliest to latest. Then $y_1. deg \ge 0$, and $y_i. deg \ge i 2$ for i = 2, ..., k.
- Proof Obviously y_1 . $deg \ge 0$.
 - □ For $i \ge 2$, when y_i was linked to $x, y_1, ..., y_{i-1}$ were already children of x, and so x had degree $\ge i 1$.
 - \square y_i was linked to x during CONSOLIDATE.
 - So when y_i was linked, we had $y_i . deg = x . deg \ge i 1$.
 - \square Since y_i was linked to x, it could have lost at most one child.
 - As soon as y_i loses two children, it's cut and moved to the root list.
 - \square So y_i . $deg \ge i 2$.

Bounding the max degree

- Lemma 2 Let x be a node in a Fibonacci heap, and suppose x.deg = k. Then $size(x) \ge F_{k+2} \ge \phi^k$.
- Proof We use induction on k. The bound holds for k = 0, 1. For higher k, let $y_1, ..., y_k$ denote the children of x.
 - \square By Lemma 1, y_i . $deg \ge i 2$ for $i \ge 2$.
 - \square So by induction, $size(y_i) \ge F_i$, for $i \ge 2$.
 - Also, $size(y_0)$, $size(y_1) \ge 1$.
 - □ We have $size(x) \ge \sum_{i=0}^{k} size(y_i) \ge 2 + \sum_{i=2}^{k} size(y_i) \ge 2 + \sum_{i=2}^{k} F_i = 1 + \sum_{i=0}^{k} F_i = F_{k+2} \ge \phi^k$.
 - The last two equalities follow by Facts 2 and 3.
- Cor For any n node Fibonacci heap H, the max degree $D(n) = O(\log n)$.
- Proof Let x be any node in H, and let k = x. deg.
 - \square We have $n \ge size(x) \ge \phi^k$.
 - \square So $k \leq \lfloor \log_{\phi} n \rfloor$.