TD nº 3 – Espaces quotients et revêtements universels

Intégration sur les espaces quotients

On rappelle le résultat suivant du cours : si T est un espace topologique muni d'une mesure borélienne μ , et Γ est un groupe discret agissant sur T en préservant μ , alors pour toute fonction χ positive à décroissance rapide vérifiant

$$\sum_{g \in \Gamma} \chi(g \cdot x) = 1, \quad \forall x \in T,$$

on définit l'intégrale d'une fonction f Γ -invariante par

$$\int_{\Gamma \setminus T} f(x) d\mu(x) = \int_T f(x) \chi(x) d\mu(x).$$

Exercice 1. Intégration sur le cercle unité

- 1. Montrer qu'il existe un difféomorphisme $\phi: S^1 \to \mathbb{R}/2\pi\mathbb{Z}$ entre le cercle unité $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ et le quotient $\mathbb{R}/2\pi\mathbb{Z}$.
- 2. En déduire, pour toute fonction $f: S^1 \to \mathbb{C}$ continue, une expression de

$$\int_{S^1} f(z) d\mu(z),$$

où $d\mu$ désigne la mesure uniforme sur S^1 (appelée aussi mesure de Haar dans ce contexte).

3. Montrer que l'image de $d\mu$ par la transformation de Cayley $\varphi: \mathbb{C} \setminus \{-1\} \to \mathbb{C} \setminus \{-1\}$ définie par

$$\varphi(z) = \frac{1-z}{1+z},$$

est la mesure de Cauchy:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\varphi(e^{i\theta})) d\theta = \frac{1}{\pi} \int_{-\infty}^{\infty} f(it) \frac{dt}{1+t^2}.$$

4. On pose, pour tout $k \in \mathbb{Z}$, $\phi_k : \mathbb{C}^* \to \mathbb{C}^*, z \mapsto z^k$. En utilisant la théorie des séries de Fourier, démontrer que toute fonction $f \in L^2(d\mu)$ admet un développement sous la forme

$$f(z) = \sum_{k \in \mathbb{Z}} \langle f, \phi_k \rangle_{L^2(d\mu)} \phi_k(z), \quad \forall z \in S^1.$$

Relèvements de chemins

Soit $\Sigma_g = \Gamma \backslash \mathbb{H}^2$ une surface hyperbolique compacte de genre $g \geq 2$. On rappelle que deux chemins $\gamma_1, \gamma_2 : [0,1] \to \Sigma_g$ sont homotopes s'il existe une application continue $\phi : [0,1]^2 \to \Sigma_g$ telle que $\phi(t,0) = \gamma_1(t)$ et $\phi(t,1) = \gamma_2(t)$ pour tout $t \in [0,1]$ (autrement dit si on peut déformer continûment γ_1 en γ_2 en préservant l'orientation). Un lacet de base $x \in \Sigma_g$ est un chemin $\gamma : [0,1] \to \Sigma_g$ tel que $\gamma(0) = \gamma(1) = x$. Un lacet est contractile (ou d'homotopie triviale) s'il est homotope à un point.

Le groupe fondamental de Σ_g base x est le groupe des classes d'équivalence d'homotopie des lacets de base x, pour la loi de produit

$$[\gamma_1][\gamma_2] = [\gamma_1 \cdot \gamma_2],$$

en notant $\gamma_1 \cdot \gamma_2$ la concaténation des lacets γ_1 et γ_2 .

On admet les résultats suivants :

- (propriété de relèvement) pour tout chemin $\gamma:[0,1]\to\Sigma_g$ d'origine x, il existe un unique chemin $\tilde{\gamma}:[0,1]\to\mathbb{H}^2$ d'origine \tilde{x} tel que $\gamma=\pi(\tilde{\gamma})$ (où $\pi:\mathbb{H}^2\to\Gamma\backslash\mathbb{H}^2$ désigne la projection sur le quotient). On appelle relèvement de γ de base \tilde{x} le chemin $\tilde{\gamma}$.
- Deux chemins $\gamma_1, \gamma_2 : [0,1] \to \Sigma_g$ d'origine x sont homotopes si et seulement si $\tilde{\gamma}_1$ et $\tilde{\gamma}_2$ d'origine $\tilde{x} \in \mathbb{H}^2$ sont homotopes.
- Deux chemins de mêmes extrémités dans \mathbb{H}^2 sont homotopes (on dit que \mathbb{H}^2 est simplement connexe).

Exercice 2. Homotopie et relèvement

1. Si γ est un chemin dans Σ_g d'origine x et si $\tilde{\gamma}$ est son unique relèvement d'origine \tilde{x} , on définit l'application $\Phi: \pi_1(\Sigma_g) \to \mathbb{H}^2$ par

$$\Phi: [\gamma] \mapsto \tilde{\gamma}(1).$$

Montrer que Φ est une bijection entre les classes d'homotopie d'origine x et les points de \mathbb{H}^2 .

2. Montrer que si $\Sigma_g = \Gamma \backslash \mathbb{H}^2$, alors $\pi_1(\Sigma_g) \simeq \Gamma$. Indication : montrer qu'on a une bijection entre Γ et $\pi_1(\Sigma_g)$ en utilisant la question précédente, et vérifier que c'est bien un morphisme de groupes.

Exercice 3. Homotopie libre et géodésiques

L'objectif de cet exercice est de démontrer que toute classe d'homotopie libre (c'est-à-dire en ne fixant plus le point de base dans le groupe fondamental) de Σ_g pour $g \geq 2$ admet un unique représentant géodésique. Pour cela, on introduit pour toute isométrie hyperbolique $g \in \mathrm{PSL}(2,\mathbb{R})$ son axe, à savoir l'unique géodésique qui passe par ses deux points fixes (lesquels sont toujours sur $\partial \mathbb{H}^2$).

- 1. Soit $\gamma:[0,1]\to \Sigma_g$ un lacet de base x. Montrer qu'on peut déformer son relevé $\tilde{\gamma}$ issu de \tilde{x} en un segment de la courbe qui passe par \tilde{x} et $[\gamma]\cdot \tilde{x}$ dont tous les points sont équidistants de l'axe de $[\gamma]$.
- 2. Montrer qu'on peut déplacer ce segment par translations successives pour le faire arriver sur l'axe de γ , et en déduire que le résultat γ^* est bien un représentant géodésique de la classe d'homotopie libre de γ .
- 3. Soit γ' une autre courbe de la même classe d'homotopie libre que γ^* . Montrer que ce n'est pas une géodésique. Indice : utiliser le fait que $[\gamma]$ agit par translation sur le disque ou le demi-plan, et appliquer cette translation aux chemins qui représentent l'homotopie entre γ^* et γ' .
- 4. Trouver une géodésique sur Σ_2 qui a la forme d'un 8 (autrement dit, qui est fermée et possède un point d'auto-intersection).