НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ Кафедра обчислювальної техніки

KYPCOBA POSOTA

з дисципліни "Комп" ютерна логіка"

Виконав Лисенко Дмитро Вадимович

Факультет <u>IOT</u> Група <u>IO-61</u> Залікова книжка № <u>6116</u>

Допущений до захисту	
_	

Опис альбому

Ν⁰ ρядка	формат	Позначення	Найменування		Кількість	Примітка
1			<u>Документація загал</u>	<u>ЛЬНО</u>		
2						
3			<u>розроблена занов</u>	<u> </u>		
4						
5						
6	A4	IAЛЦ.463626.001 0A	Κυρεοδα ροδοπα	7	1	
7			Опис альбому			
8						
9	A4	IAЛЦ.463626.002 ТЗ	Курсова робота	!	5	
10			Технічне завданн	Я		
11						
12	A2	IAЛЦ.463626.003 E2	Курсова робота	7	1	
13			Автомат керуючи	JŪ		
14			Схема електричн	П		
<i>15</i>			функціональна			
16						
17	A4	<i>IAЛЦ.463626.004 ПЗ</i>	Κυρεοδα ροδοπο		18	
18			Пояснювальна запи	CKO		
19						
20						
21						
22						
23						
24						
25						
26						
3m. Ap	nk	№докум. Підпис Дата	IA/ILI.463626	.001	0A	
Розро Перевір Н. конп Затв.	ηδ. /Jul ip. Bep πp.	тенко Д.В. Não O.A.	урсова робота Опис альбому			и Аркушів 1 П " ФЮТ 10–61

Технічне завдання

Зміст

1. Призначення розроблюваного об 'єкта	•••••••••••	2
2. Вхідні дані для розробки	2	
3. Склад пристроїв	3	
4. Етапи проектування	4	
5. Перелік текстової і графічної документації		5

					IA/IЦ.463626.002 ТЗ				
Зм.	Арк.	№докум.	Підпис	Дата	•				
Po	эроб.	Лисенко Д.В.				/lim.	Аркуш	Аркушів	
Пер	ревір.	Верба. О.А.			Κυρςοβα ροδοπα		1	5	
					, , , , , , , , , , , , , , , , , , ,	НТУУ "КПР" ФЮТ		t diot	
Н. к	сонтр.				Технічне завдання				
<i>3a</i> /	πβ.	Жабін В.І.			TEXTIL IIIE JUUUUIIII/I	/	- рупа 10-	-61	

1. Призначення розроблюваного об'єкта

Автомат керуючий— це електрична схема для эберігання і перетворення двійкових эмінних за заданим алгоритмом. Комбінаційні схеми эдійснюють відображення визначеної множини вхідних логічних змінних у вихідні.

2. Вхідні дані

Варіант завдання визначається дев'ятьма молодшими розрядами залікової книжки, представленої у двійковій системі числення.

<u> Умови для синтезу автомата</u>

Таблиця 2.1 – Варіант в двійковій системі

h ₉	$h_{\!\scriptscriptstyleeta}$	h_7	h_6	h_5	h_4	h₃	h_2	h_1
1	1	1	1	0	0	1	0	0

Порядок з'єднання елементів (h_8 h_4 h_2 = 100):

3, 1, 4.

Логічні цмови (h_8 h_7 h_3 = 111):

not X_1 , not X_2 , not X_3

Послідовність керуючих сигналів (h_9 h_4 h_1 = 100):

Y, Y, Y, Y, Y, Y,

Сигнал тривалістю 2t (h_6 h_2 = 10):

 Y_3

Тригер (h₉ h₄ = 10):

ЈК-тригер.

Логічні елементи (h_3 h_2 h_1 =100):

2A50-HE, 41.

Тип автомата ($h_1 = 0$):

Мілі.

Зм.	Арк.	№ докум.	Підп.	Дата

Система з чотирьох перемикальних функцій задана таблицею 2.2. Таблиця 2.2 — Таблиця істинності функцій

<i>X</i> ₄	X_3	<i>X</i> ₂	<i>X</i> ₁	f_1	f_2	f_3	f_4
0	0	0	0	1	1	1	0
0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	1
0	0	1	1	0	0	0	0
0	1	0	0	-	0	1	0
0	1	0	1	0	0	0	0
0	1	1	0	1	ı	-	0
0	1	1	1	1	1	1	1
1	0	0	0	1	0	1	1
1	0	0	1	0	0	1	1
1	0	1	0	0	0	1	1
1	0	1	1	0	0	0	0
1	1	0	0	1	-	1	1
1	1	0	1	0	0	0	1
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	1

Необхідно виконати сумісну мінімізацію функцій f_1 , f_2 , f_3 . Отримати операторні представлення для реалізації системи функцій на програмувальних логічних матрицях.

Функцію f_4 необхідно представити в канонічних формах алгебри Буля, Жегалкіна, Пірса та Шеффера. Визначити приналежність даної функції до п'яти чудових класів. Виконати мінімізацію функції методами:

- невизначених коефіцієнтів;
- Квайна (Квайна-Мак-Класкі);
- діаграм Вейча.

Зм.	Απκ	№ доким.	Підп	Пптп

3. Склад пристроїв

Автомат керуючий

Автомат керуючий складається з комбінаційної схеми і пам'яті на тригерах. Тип тригерів і елементний базис задані в технічному завданні.

Програмувальна логічна матриця

П/ІМ складається із двох (кон 'юктивної і диз 'юнктивної) матриць, де виходи першої приєднуються до входів другої і дозволяють реалізувати комбінаційну схему в базисі {I/A50, I/A60-HE}.

4. Етапи проектування

- Синтез автомата
 - 1) Побудова графічної схеми алгоритму і розмітка станів автомата
 - 2) Побудова графу автомата
 - 3) Побудова таблиці переходів
 - 4) Побудова структурної таблиці автомата
 - 5) Синтез комбінаційних схем для функцій эбудження тригерів та вихідних сигналів
 - 6) Побудова схеми автомата в заданому базисі
- Синтез комбінаційних схем
 - 1) Представлення функції f_4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна
 - 2) Визначення належності функції f_4 до п'яти чудових класів
 - 3) Мінімізація функції f_4
 - 4) Спільна мінімізація функцій f_1 , f_2 , f_3
 - 5) Одержання операторних форм для реалізації на ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

5. Перелік текстової і графічної документації

- 1) Титульний аркуш
- 2) Опис альбому
- 3) Технічне завдання
- 4) Автомат керуючий схема електрична функціональна
- 5) Пояснювальна записка .

Зм.	Арк.	№докум.	Підп.	Дата

Автомат керуючий. Схема електрична функціональна

Пояснювальна записка

Зміст

1. Bcmyn	
2. Синтез автомата	2
2.1 Побудова графічної схеми алгоритму і розмітка станів	
автомата	2
2.2. Побудова графу автомата	3
2.3. Побудова таблиці переходів	3
2.4. Побудова структурної таблиці автомата	4
2.5. Синтез комбінаційних схем для функцій збудження	
тригерів та вихідних сигналів	4
2.6. Побудова схеми автомата в заданому базисі	<i>.</i>
3. Синтез комбінаційних схем	8
3.1. Представлення функції $f_{_4}$ в канонічних формах алгебр	
Буля, Шеффера, Пірса та Жегалкіна	<i>8</i>
3.2. Визначення належності функції f4 до п'яти чудових	
KNACiB	<i>9</i>
3.3. Мінімізація функції f ₄	<i>9</i>
3.4. Спільна мінімізація функцій f, f ₂ , f ₃	10
3.5. Одержання операторних форм для реалізації на ПЛМ	•••••••••••
4. Висновок	17
5. Список літератури	18

					l
					l
3M.	Адк.	№докум.	Підпис	Дата	
Po.	зроб.	Лисенко Д.В.			
Перевір.		Верба О.А.			
Н. к	онтр.				
<i>3a</i> ,	тв.	Жабін В.І.			

IAЛЦ.463626.004 ПЗ

Курсова робота Пояснювальна записка

/lim.	Аркуш	Аркушів
	1	18
	''Y "ΚΠΙ" Τουρα IΩ:	

1. Вступ

У даній курсовій роботі необхідно виконати синтез автомата і синтез комбінаційних схем. Розробка виконується на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ».

2. Синтез автомата

2.1. Побудова графічної схеми алгоритму і розмітка станів автомата

Відповідно до «Технічного завдання ІАЛЦ.463626.002 ТЗ» складаємо графічну схему алгоритму з урахуванням тривалості сигналів і виконуємо розмітку станів автомата (рисунок 4.1).

Рисунок 4.1 – Графічна схема алгоритму з розміченими станами

3m. Af	7K.	№ докум.	Підп.	Дата

2.2. Побудова графу автомата

Згідно з графічною схемою алгоритму побудуємо граф автомата і виконаємо кодування станів автомата (рисунок 4.2).

Рисунок 4.2 – Граф автомата з закодованими вершинами

2.3. Побудова таблиці переходів

Для синтезу логічної схеми автомату необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 5. Кількість тригерів знайдемо за формулою $llog_2Nl = llog_25l = 3$. Так як для побудови даного автомата необхідно використовувати JK-тригери, запишемо таблицю переходів цього типу тригерів (рисунок 4.3).

Рисунок 4.3 – Таблиця переходів ЈК-тригера

					14 711 / 63 / 60 / 50	Арк.
Зм.	Арк.	№ докум.	Підп.	Дата	<i>1</i> Л/1Ц.40J0Z0.004 11J	3

2.4. Синтез комбінаційних схем для функцій эбудження пригерів та вихідних сигналів

Використовуючи дані з рисунку 4.2, заповнимо структурну таблицю автомата (таблиця 4.1).

Таблиця 4.1 – Структурна таблиця автомата

Перехід	Старий	Новий	Вхідні	Вихідні	Функції тригерів		
	стан	стан	СИЗНОЛИ	СИЗНОЛИ	J ₃ K ₃	J_2K_2	JK ₁
	$Q_3Q_2Q_1$	$Q_3Q_2Q_1$	X_1X_2	Y4Y3Y2Y1	3 3	2 2	, ,
$Z_1 \rightarrow Z_2$	000	001	0-	0100	0-	0-	1-
$Z_1 \rightarrow Z_3$	000	010	1-	0001	0-	1-	0-
$Z_2 \rightarrow Z_3$	001	010		0100	0-	1-	-1
$Z_3 \rightarrow Z_4$	010	110		0010	1-	-0	0-
$Z_4 \rightarrow Z_4$	110	110	-1	0010	-0	-0	0-
$Z_4 \rightarrow Z_5$	110	100	-0	1000	-0	-1	0-
$Z_5 \rightarrow Z_5$	100	100	1-	0001	-0	0-	0-
$Z_5 \rightarrow Z_1$	100	000	0-	0010	-1	0-	0-

2.5. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

На основі структурної таблиці автомата (таблиці 4.1) виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів та вихідних сигналів є коди станів та вхідні сигнали. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи заданий елементний базис (2A50–HE, 4I) мінімізувати функцію будемо за ДКНФ.

Зм.	Арк.	№ докум.	Підп.	Дата

	ІАЛЦ.	463	<i>626.</i>	004	//3
--	-------	-----	-------------	-----	-----

Зм.	Арк.	№ докум.	Підп.	Дата

2.6. Побудова схеми автомата в заданому базисі

Отриманих після мінімізації даних достатньо для побудови комбінаційних схем функцій эбудження тригерів і функцій сигналів виходів, таким чином, і всієї комбінаційної схеми. Автомат будуємо на ЈК-тригерах. Автомат є синхронним, так як його роботу синхронізує генератор, а ЈК-тригер керований перепадом сигналу.

Зм.	Арк.	№ докум.	Підп.	Дата

3. Синтез комбінаційних схем

3.1. Представлення функції f_4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

<u>Алгебра Буля (I, АБО, НЕ)</u>

 $f_{4\Pi\Pi H\Phi} = (\overline{X_4} \, \overline{X_3} \, \overline{X_2} X_1 / V (\overline{X_4} \, \overline{X_3} X_2 \overline{X_1} / V (\overline{X_4} X_3 X_2 X_1 / V (X_4 \overline{X_3} \, \overline{X_2} \, \overline{X_1}) X_1))$

 $f_{4I\!IKH\Phi} = (x_4 v x_3 v x_2 v x_1)(x_4 v x_3 v \overline{x_2} v \overline{x_1})(x_4 v \overline{x_3} v x_2 v x_1)(x_4 v \overline{x_3} v x_2 v \overline{x_1}) & \\ & & (x_4 v \overline{x_3} v \overline{x_2} v x_1)(\overline{x_4} v x_3 v \overline{x_2} v \overline{x_1})(\overline{x_4} v \overline{x_3} v \overline{x_2} v x_1).$

<u>Алгебра Шеффера {I-HE}</u>

 $f_{4} = (|x_{4}/X_{4}|/|x_{3}/X_{3}|/|x_{2}/X_{2}|/x_{4}|/|x_{4}|/|x_{3}/X_{3}|/x_{2}/|x_{4}|/|x_{4}|/|x_{4}|/|x_{3}/x_{3}|/|x_{2}/|x_{4}|/|x_{4}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}/|x_{2}|/|x_{4}|/|x_{3}|/|x_{2}|/|x_{4}|/|x_{4}|/|x_{3}|/|x_{2}|/|x_{4}|/|x_{4}|/|x_{3}|/|x_{2}|/|x_{4}|/|x_{4}|/|x_{3}|/|x_{2}|/|x_{4}|/|$

 $f_{4} = (x_{4} \uparrow x_{3} \uparrow x_{2} \uparrow x_{1}) \uparrow (x_{4} \uparrow x_{3} \uparrow (x_{2} \uparrow x_{2}) \uparrow (x_{1} \uparrow x_{1})) \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow x_{2} \uparrow x_{1}) \uparrow \\ \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow x_{2} \uparrow (x_{1} \uparrow x_{1})) \uparrow (x_{4} \uparrow (x_{3} \uparrow x_{3}) \uparrow (x_{2} \uparrow x_{2}) \uparrow x_{1}) \uparrow \\ \uparrow ((x_{4} \uparrow x_{4}) \uparrow x_{3} \uparrow (x_{2} \uparrow x_{2}) \uparrow (x_{1} \uparrow x_{1})) \uparrow ((x_{4} \uparrow x_{4}) \uparrow (x_{3} \uparrow x_{3}) \uparrow (x_{2} \uparrow x_{2}) \uparrow x_{1}).$

<u>Алгебра Жегалкіна {ВИК/110ЧНЕ АБО, I, const 1}</u>

 $f_4 = X_1 \oplus X_2 \oplus X_3 X_1 \oplus X_3 X_2 \oplus X_3 X_2 X_1 \oplus X_4 \oplus X_4 X_1 \oplus X_4 X_2 \oplus X_4 X_2 X_1 \oplus X_4 X_3 X_1 \oplus X_4 X_3 X_2 X_1.$

3.2. Визначення належності функції f_4 до п 3 яти чудових класів

- f(1111) = 1 => функція зберігає одиницю;
- f(0000) = 0 => функція зберігає нуль;
- f(0011) ≠ f(1100) => функція не само двоїста;
- f(0010) > f(0011) => функція не монотонна;
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний .

3M.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004 ПЗ

3.3. Мінімізація функції f_{4}

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (К°), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4)

Рисунок 4.4 – Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 -Таблиця покриття

	0001	0010	1000	1001	1010	1100	0111	1101	1111
X001	+			+					
X010		+			+				
10X0			+		+				
X111							+		+
11X1								+	+
1XOX			+	+		+		+	

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X001; X010; 1X0X; X111}

Оскільки ядро повністю покриває функцію, то в МДНФ входять тільки терми ядра.

$$f_{4MH,II,\phi} = \overline{(X_3 X_2 X_1)} v \overline{(X_3 X_2 X_1)} v (X_4 \overline{X_2}) v (X_3 X_2 X_1)$$

Зм.	Арк.	№ докум.	Підп.	Дата

Метод невизначених коефіцієнтів

Таблиця 4.4 – Метод невизначених коефіцієнтів

<i>X</i> ₄	<i>X</i> ₃	χ_2	<i>X</i> ₁	X_4X_7	X_4X_2	X_4X_1	$X_{3}X_{2}$	X_3X_1	X_2X_1	$X_4X_7X_2$	$X_4X_7X_1$	$X_4X_2X_1$	$X_3X_2X_1$	$X_4X_3X_2X_1$	f_4
Ð	Ð	Đ	Ð	00	00	00	00	00	00	000	-000	-000	-000	0000	Û
О	Ф	Ф	1	00	00	<i>01</i>	00	01	0 1	000	<i>-001</i>	<i>-001</i>	001	0001	1
Ә	Ф	1	Ф	00	<i>01</i>	00	<i>01</i>	θθ	10	<i>-001</i>	<i>000</i>	<i>010</i>	010	0010	1
Ә	Ф	1	1	00	01	01	01	0 1	-11	- 001	<i>001</i>	011	011	<i>0011</i>	Ә
Ә	1	₽	Ф	01	00	θθ	10	10	00	<i>-010</i>	<i>010</i>	<i>-000</i>	-100	<i>0100</i>	Đ
θ	1	Ф	-1	01	00	01	10	-1 1	0 1	010	011	001	101	0101	Ф
Ә	1	1	Ф	01	01	θθ	-1 1	10	10	011	<i>010</i>	010	-110	0110	Ф
Ә	1	1	1	-01	<i>01</i>	<i>01</i>	-1 1	-1 1	-1 1	011	011	011	111	0111	1
1	Ә	Ф	Ф	10	10	10	00	00	00	100	100	100	000	1000	1
1	Ф	Ф	1	10	10	-1 1	00	01	<i>01</i>	100	101	101	001	1001	1
1	Ф	1	Ф	10	-1 1	10	<i>01</i>	θθ	10	-101	100	-110	010	1010	1
1	Ә	1	1	10	1 1	-1 1	<i>01</i>	01	-11	101	101	-111	011	1011	Ә
1	1	Ф	Ә	-1 1	10	10	10	10	00	110	-110	100	100	1100	1
1	1	Ф	1	-11	10	-11	10	1 1	01	110	111	101	101	1101	1
4	1	1	Ф	-1 1	-11	10	-1 1	10	10	-111	-110	-110	-110	-1110	Ф
4	1	1	1	-1 1	-11	-1 1	-1 1	-11	1 1	-111	111	-111	111	1111	1

Ідея цього методу полягає у відшуканні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується викреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках. 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

4. ІІПІЛІКАНІІО, ЩО ЗАЛОШОЛОСЯ, ПОГЛОНАЮНІВ ІІПІЛІКАНІІО СПРАОА ОЮ НОХ

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканти.

Ядро = {X001; X010; 1X0X; X111}

Оскільки ядро повністю покриває функцію, то в МДНФ входять тільки терми ядра.

$$f_{4MHJI} = (x_4 \overline{x_2}) \sqrt{x_3} \overline{x_2} x_1 \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3} x_2 \overline{x_1} / \sqrt{x_3} x_2 x_1 / \sqrt{x_3}$$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність зберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^{*} елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.5 – Метод діаграм Вейча

$$f_{4MH/I} = (X_4 \overline{X_2}) V(\overline{X_3} \overline{X_2} X_1) V(\overline{X_3} X_2 \overline{X_1}) V(X_3 X_2 X_1).$$

3.4. Спільна мінімізація функцій f_1, f_2, f_3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

, J K⁰	K	\mathcal{K}^2
0000 {1,2,3}	000X {1,2}	<i>OXXO {1,3}</i>
0001 {1,2}	00X0 {1,2,3}	X0X0 {3}
0010 {1,2,3}	0X00 {1,3}	OXXO {1,3}
0100 {1*,3}	X000 {1,3}	XX00 {1,3}
-1000 {1,3}	OX10 {1,2,3}	X0X0 {3}
0110 {1,2*,3*}	X010 {3}	XX00 {1,3}
-1001 {3}	01X0 {1,3}	X1X0 {1}
-1010-{3}	X100 {1,3}	X1X0 {1}
1100 {1,2*,3}	100X {3}	X11X {1,2}
0111 {1*,2*,3}		X11X {1,2}
-1110 {1,2}	-1X00-{1,3}	
1111 {1,2,3}	011X {1,2*,3}	-
	X110 {1,2}	
	11X0 {1,2}	
	X111 {1,2,3}	-
	-111X {1,2}	

Рисунок 4.6 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 – Таблиця покриття системи

	f_1									f_2								f_3				
	0000	0001	0000	0110	1000	1100	1110	1111	0000	0001	0100	1110	1111	0000	0000	0100	0111	1000	1001	1010	1100	1111
1100 {1,2*,3}						+															+	
000X {1,2}	+	+							+	+												
00X0 {1,2,3}	+		+						+		+			+	+							
OX10 {1,2,3}			+	+							+				+							
100X {3}																		+	+			
011X {1,2*,3}				+													+					
11X0 {1,2}						+	+					+										
X111 {1,2,3}								+					+				+					+
111X {1,2}							+	+				+	+									
OXXO {1,3}	+		+	+										+	+	+						
X0X0 {3}														+	+			+		+		
XX00 {1,3}	+				+	+				•				+		+		+			+	
X1X0 {1}				+		+	+															
X11X {1,2}				+			+	+				+	+									

Після мінімізації визначили кожну з функцій в формі І/АБО.

$$f_{1MIIH\phi} = (X_4 X_3 X_2) v (X_4 X_2 X_1) v (X_2 X_1) v (X_3 X_2);$$

$$f_{2MIIH\Phi} = (X_4 X_3 X_2) V(X_4 X_2 X_1) V(X_3 X_2);$$

$$f_{3M\Pi H\phi} = (x_3 x_2 x_1) v(x_4 \overline{x_3} \overline{x_2}) v(\overline{x_3} \overline{x_1}) v(\overline{x_2} \overline{x_1}).$$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДКНФ. Запишемо ДКНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

 K_{Ω} K₁
(Xv0v0v1 {3*} K_2 *0v0v0v1 {3}* 1v0vXvX {2} 1v0v0v0 {1*,2*} 1v0v0vX {2*} 1v0vXvX {2} Ov1vXvX {2} 0v0v1v0 {1,2,3} 1v0vXv0 {1,2} Ov1vXvX {2} 1v0v0v1 {2*,3*} | Xv1v0v0 {1,2,3} Xv0v1vX {2} 0v1vXv0 {1,2} **OvXv1vX {2}** 1v1v0v0 {1,2,3} 1v0v1v0 {1.2.3} 0v1v0vX {1,2} XvOv1vX {2} Xv0v1v0 {1,2,3} OvXv1vX {2} *0v1v1v0 [1,2]* Ov1v0v1 {1.2} OvXv1v0 {1.2} 0v0v1vX {2} 0v0v1v1 {2*} 1v0v1v1 {1*.2} 1v0vXv1 {2} 1v1vXv0 {3} *0v1v1v1 {2}* 1v0v1vX {1,2} 1v1v1v0 {3} *[1vXv1v0 {3}*] *0v1v1vX {2} 0v1vXv1 {2}* Xv0v1v1 {2} OvXv1v1 {2}

Рисунок 4.7 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

IA/IЦ.463626.004	13
------------------	----

Таблиця 4.6 – Таблиця покриття системи

	f_1									i	, 2				f_3					
	1111010	11/01/10	011110	0v1v0v1	0v1v0v0	01/1010	1111010	1404141	11/01/10	011111	011110	0v1v0v1	0111010	0v0v1v0	111110	1111010	1404140	0v1v0v0	0v0v1v0	OvOv0v1
Xv0v0v1 {3}																				+
1vXv0v0 {1,2}	+						+													
1v0vXv0 {1,2}		+							+											
Xv1v0v0 {1,2,3}	+				+		+						+			+		+		
0v1vXv0 {1,2}			+		+						+		+							
0v1v0vX {1,2}				+	+							+	+							
Xv0v1v0 {1,2,3}		+				+			+					+			+		+	
0vXv1v0 {1,2}			+			+					+			+						
1v1vXv0 {3}															+	+				
1v0v1vX {1,2}		+						+	+											
1vXv1v0 {3}															+		+			
1v0vXvX {2}								+	+											
0v1vXvX {2}										+	+	+	+							
Xv0v1vX {2}								+	+					+						
0vXv1vX {2}										+	+			+						

Після мінімізації випишемо кожну з функцій в формі І/АБО-НЕ.

$$f_{1M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{1})V(X_{4}X_{3}X_{2})V(X_{3}X_{2}X_{1})};$$

$$f_{2M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{2})V(X_{3}X_{2})V(X_{4}X_{2})};$$

$$f_{3M\Pi H \phi} = \overline{(X_{3}X_{2}X_{1})V(X_{3}X_{2}X_{1})V(X_{3}X_{2}X_{1})V(X_{4}X_{3}X_{1})}.$$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальні форми I/AБО, I/AБО–НЕ. Оскільки у формі I/AБО менше термів(7<8), то розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

Зм.	Арк.	№ докум.	Підп.	Дата

Позначимо терми системи:

$$P_1 = \overline{X_4} \overline{X_3} \overline{X_{2i}}$$

$$P_2 = \overline{X_4} \overline{X_2} \overline{X_1}$$

$$P_3 = \overline{X_2X_1}$$

$$P_4 = x_3 x_2$$

$$P_5 = X_3 X_2 X_{1}$$

$$P_6 = X_4 \overline{X_3 X_2}$$

$$P_7 = \overline{X_3} \overline{X_1}.$$

Тоді функції виходів описуються системою:

$$f_1 = (\overline{X_4} \overline{X_3} \overline{X_2}) v(\overline{X_4} \overline{X_2} \overline{X_1}) v(\overline{X_2} \overline{X_1}) v(\overline{X_3} \overline{X_2}) = P_1 v P_2 v P_3 v P_4$$

$$f_2 = (\overline{x_4} \overline{x_3} \overline{x_2}) v(\overline{x_4} x_2 \overline{x_1}) v(x_3 x_2) = P_1 v P_2 v P_4$$

$$f_3 = (x_3 x_2 x_1 / v / (x_4 x_3 x_2 / v / (x_3 x_1 / v / (x_2 x_1 / v / x_3 x_2 / v / x_3 x_2 / v / x_3 x_1 / v / (x_2 x_1 / v / x_3 x_2 / v / x_3 x_2 / v / x_3 x_1 /$$

Визначимо параметри ПЛМ:

п = 4— число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 7— число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3— число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему П/ІМ(4,10,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4, 7,3) (таблиця 4.7).

Таблиця 4.7 – Карта програмування ПЛМ

Nº		Вхи	оди	Виходи					
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	f1	<i>f2</i>	f3		
P1	0	0	0	ı	1	1	0		
<i>P2</i>	0	-	1	0	1	1	0		
<i>P3</i>	-	-	0	0	1	0	1		
P4	-	1	1	-	1	1	0		
P5	-	1	1	1	0	0	1		
<i>P6</i>	1	0	0	-	0	0	1		
<i>P7</i>	-	0	-	0	0	0	1		

Зйм.	Арк.	№ докум.	Підп.	Дата

Покажемо умовне графічне позначення даної ПЛМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

<i>IA/ILI.463626.004</i>	ПЗ
" " ' '' '' 	

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Автомат керуючий. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2016р.

	·			
Зм.	Арк.	№ докум.	Підп.	Дата