Structure of the port-Hamiltonian system dlc

The $PyPHS^*$ development $team^1$

 1 Project-team S3 $^{\dagger},$ STMS, IRCAM-CNRS-UPMC (UMR 9912), 1 Place Igor-Stravinsky, 75004 Paris, France

November 17, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
$\overline{\ell_1}$	in	electronics.source	('ref', 'n1')	{ type voltage
				(v0 ('v0', 0.026)
ℓ_2	D	electronics.diodepn	('n1', 'n2')	mu ('mu', 1.7)
				Is ('Is', 2e-09)
				R ('Rd', 0.5)
ℓ_3	L	electronics.inductor	('n2', 'n3')	(L ('L', 0.05)
ℓ_4	С	electronics.capacitor	('n3', 'ref')	{ C ('C', 2e-06)

 $[\]begin{aligned} \dim(\mathbf{x}) &= n_{\mathbf{x}} = 2; \\ \dim(\mathbf{w}) &= n_{\mathbf{w}} = 2; \\ \dim(\mathbf{y}) &= n_{\mathbf{y}} = 1; \\ \dim(\mathbf{p}) &= n_{\mathbf{p}} = 0; \end{aligned}$

^{*}https://github.com/A-Falaize/pyphs

[†]http://s3.ircam.fr

Figure 1: Graph of system dlc.

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{pmatrix}$$
;

Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\mathrm{DR}} \\ w_{\mathrm{D}} \end{pmatrix}$;

Input $\mathbf{u} = \begin{pmatrix} u_{\mathrm{in}} \end{pmatrix}$;

Output $\mathbf{y} = \begin{pmatrix} y_{\mathrm{in}} \end{pmatrix}$;

3 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \mathbf{H}(\mathbf{x}) = \frac{0.5}{L} \cdot x_L^2 + \frac{0.5}{C} \cdot x_C^2; \\ & \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \left(\begin{array}{c} \frac{1.0}{L} \cdot x_L \\ \frac{1.0}{C} \cdot x_C \end{array} \right); \\ & \text{Dissipation function } \mathbf{z}(\mathbf{w}) = \left(\begin{array}{c} \mathrm{Rd} \cdot w_{\mathrm{DR}} \\ \mathrm{mu} \cdot \mathrm{v0} \cdot \log \left(1 + \frac{w_{\mathrm{D}}}{\mathrm{Is}} \right) \end{array} \right); \\ & \text{Jacobian of dissipation function } \mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \left(\begin{array}{c} \mathrm{Rd} & 0 \\ 0 & \frac{\mathrm{mu} \cdot \mathrm{v0}}{\mathrm{Is} \cdot \left(1 + \frac{w_{\mathrm{D}}}{\mathrm{Is}} \right)} \end{array} \right); \end{split}$$

4 System parameters

4.1 Constant

parameter	value (SI)
mu:	1.7
C:	2e-06
L:	0.05
v0:	0.026
Is:	2e-09
Rd:	0.5

5 System structure

$$\mathbf{M} = \begin{pmatrix} 0 & -1.0 & -1.0 & -1.0 & -1.0 \\ 1.0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{xx}} = \begin{pmatrix} 0 & -1.0 \\ 1.0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{xw}} = \begin{pmatrix} -1.0 & -1.0 \\ 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{xy}} = \begin{pmatrix} -1.0 & 0 \\ 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{wx}} = \begin{pmatrix} 1.0 & 0 \\ 1.0 & 0 \end{pmatrix};$$

$$\begin{split} \mathbf{M_{wy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{M_{yx}} &= \left(\begin{array}{c} 1.0 & 0 \end{array} \right); \\ \mathbf{M_{yx}} &= \left(\begin{array}{c} 1.0 & 0 \end{array} \right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 & 0 \end{array} \right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 & 0 \end{array} \right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 \end{array} \right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 \end{array} \right); \\ \mathbf{M_{yy}} &= \left(\begin{array}{c} 0 \end{array} \right); \\ \mathbf{J_{0}} &= \left(\begin{array}{c} 0 & -1.0 & -1.0 & -1.0 & -1.0 \\ 1.0 & 0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 & 0 \end{array} \right); \\ \mathbf{J_{xy}} &= \left(\begin{array}{c} -1.0 & -1.0 \\ 0 & 0 \end{array} \right); \\ \mathbf{J_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{J_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{xx}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{xx}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{xy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right); \\ \mathbf{R_{yy}} &= \left(\begin{array}{c} 0 &$$