CFD Modeling of Pleated Filter Elements with the Experimental Validation using PIV

Seungkoo Kang, David Y. H. Pui, and Jacob Swanson

Particle Technology Laboratory
University of Minnesota

CFR 51st Review Meeting, Mechanical Engineering
University of Minnesota
May 5th, 2017

PIV Particle image velocimetry

- Measure fluid velocity vectors at many points in a flow field simultaneously
- From <u>mm/s</u> to <u>supersonic</u> velocity

Raffel et al. Particle Image Velocimetry (2007)

Application example of PIV measurement

PIV technique is applied to a wide range of possible applications:

Gas turbine combustor, Automotive, Aerospace, Propulsor hydrodynamics, Biomedical devices, Electronics, Airplanes, Helicopters, ...

Experimental setup of the **propelled ship model**

Velocity map of near-propeller wake

Application example of PIV measurement

Diffuser purging concept

Diffuser to purge out humid air using laminar flow.

Diffuser flow measurement using PIV

Objectives

- Measure flow profiles up/downstream: PIV system
- To conduct a CFD simulation
 Find a proper model for the effective CFD modeling of pleated filter
- To compare pressure drop and velocity profiles between the experiment and simulation

Last CFR meeting

- Preliminary data collection
- CFD mesh independence study

This presentation

- Velocity distribution comparison
- Pressure drop comparison

Filter orientation

0 Degree

30 Degree

45 Degree

Experimental setup

PIV setup

Experimental condition

Inclined angles	O			30			45					
Filter orientation	Horiz	ontal	Ver	tical	Horiz	ontal	Ver	tical	Horiz	ontal	Ver	tical
Flow rates	21	43	80	107	21	43	80	107	21	43	80	107
Measured plane	Pla	ne1	Pla	ne2	Pla	ne1	Pla	ne2	Pla	ne1	Pla	ne2

CFD modeling of pleated filter

- For computational fluid dynamics (CFD) modeling,
 Pleated filter media Porous domain
- Experimental <u>pressure</u> and <u>velocity data</u>
 - porous coefficients

Porous coefficient derivation

Porous coefficients (α, C_2) can be obtained experimentally

$$\Delta P = \frac{C_2 \rho \Delta n}{2} v^2 + \frac{\mu}{\alpha} \Delta n v,$$

$$C_2 = Inertial \ resistance \ factor, \qquad \frac{1}{\alpha} = viscous \ resistance \ factor$$
 $\alpha = permeability, \quad \Delta n = filter \ thickness$

Porous coefficient determination

Applying proper x, y, z tensor values is important for modeling pleated filter media

CFD simulation

- Fluent version: 16
- Physics model: k-ω SST
- Boundary conditions

Pressure drop

	Volumetric		Δр		
Inclined angle	flow rate	Experiment	CFD	Error	
(degree)	(CFM)	(Pa)	(Pa)	%	
	21	26	25	3%	
0	43	55	53	3%	
	80	109	108	1%	
	107	154	152	2%	
	21	25	25	0%	
30	43	53.5	52	2%	
\times	80	107	107	0%	
	107	150	149	0%	
	21	25	26	2%	
45	43	55	54	2%	
	80	108	110	2%	
	107	154	156	1%	

CFD data is in good agreement with experimental data

0 degree contour plot (21CFM)

Vertical arrangement

Horizontal arrangement

Velocity distribution comparison

Velocity u (m/s) vs Y (mm)

Velocity will be compared between CFD and PIV data after filter

Velocity distribution comparison (5cm)

Experimental data is averaged over 100 flow profiles

Velocity distribution comparison (15cm)

30 degree_107CFM_plane2

30degree

Horizontal vs Vertical arrangement

Velocity distribution comparison (15cm)

	Fluent_1	Fluent_2	Fluent_3
Coeff. in x	α_x , $C_{2,x}$	α_x , $C_{2,x}$	α_x , $C_{2,x}$
Coeff. in y	0	$0.5^*\alpha_x$, $0.5^*C_{2,x}$	100*α _x , 100*C _{2,x}
Coeff. in z	0	100*α _x , 100*C _{2,x}	$0.5^*\alpha_x$, $0.5^*C_{2,x}$

Velocity distribution comparison (15cm)

45 degree_107CFM_plane2

CFD simulation

PIV experiment

Vertical arrangement

Horizontal arrangement

45degree Horizontal vs Vertical arrangement

Velocity distribution comparison (15cm)

	Fluent_1	Fluent_2	Fluent_3
Coeff. in x	α_x , $C_{2,x}$	α_x , $C_{2,x}$	α_x , $C_{2,x}$
Coeff. in y	0	$0.5^*\alpha_x$, $0.5^*C_{2,x}$	100*α _x , 100*C _{2,x}
Coeff. in z	0	100*α _x , 100*C _{2,x}	$0.5^*\alpha_x$, $0.5^*C_{2,x}$

Velocity distribution comparison (15cm)

Summary

- CFD and PIV experimental results were compared
- 0 and 30 degree CFD models agree well with PIV experimental data

Future works

Verify the behavior of the flow with different pleated filter media

Thank you

