3000788 Intro to Comp Molec Biol

Lecture 10: Transcriptomics

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Technology for measuring gene expression
 - Oligonucleotide microarray
 - Nanostring
 - RNA sequencing
- Log-normal model for gene expression data

Why is transcriptomics so popular?

- Easy to quantify
- Explain broad cellular functions and phenotypes
- Proteins are difficult to study
 - DNA sequencing not applicable

Oligonucleotide microarray

Microarray technology overview

Microarray fabrication

Microarray fabrication

Probe design for microarray

Unwanted probe interactions

Probe design principles

Sensitivity

- Complementary to each target genomic region
- Multiple probes for each target

Specificity

- Reduced cross-hybridization
 - Check with BLAST
- Negative control and mismatch probes

Technical issues

- Prevent secondary structure formation
- Control hybridization energy
- Redundant probes across array
 - Position-specific bias

Malutan, R. and Vilda, P.G. Thermodynamics of Microarray Hybridization (2011)

https://en.wikipedia.org/wiki/Complement arity_%28molecular_biology%29

Position-specific bias in microarray

Steger, D. et al. PLoS ONE 6:e23727 (2011)

Impact of probe length

Chou, C.-C. NAR 32:e99 (2004)

Probe set = multiple probes per gene

Chou, C.-C. NAR 32:e99 (2004)

Jaksik, R. et al. Biology Direct 10:46 (2015)

Perfect match (PM) and mismatch (MM)

Malutan, R. and Vilda, P.G. Thermodynamics of Microarray Hybridization (2011)

- Compare signals between PM and MM probes
 - Expect more binding with PM probes
 - Equal signals = potentially non-specific match

Multi-channel microarray

- Two samples are labeled with different dyes
- Mix and hybridize to microarray
- Relative fluorescence signal (ratio) directly indicates fold difference in gene expression
- Minimize technical variance

Miller, M.B. and Tang, Y.-W. Clin Microbiol Rev 611-633 (2009)

Other applications of microarrays

Comparative genome hybridization (CGH)

- Design probes across genomic regions
- Compare to reference
- Loss of signal = deletion
- Gain of signal = DNA duplication

SNP genotyping array

- Design probes for alternative
 SNPs at each position
 - Relative hybridization
- Single-nucleotide sequencing
 - Probe acts as primer
 - Match to the position right before the SNP
 - Sequence the SNP location

LaFramboise, T. NAR 37:4181-93 (2009)

Methylation array with bisulfite conversion

Microarray versus sequencing assays

- Microarray and DNA sequencing can be interchangeable
 - Genome tiling array
 - Fusion gene
 - ChIP-chip
- Microarray can be designed once for each task and reused cheaply
- But microarray lack the ability to detect novel molecules

Microarray data processing

Microarray metadata

Positive and negative controls

ControlType	ProbeName	SystematicName	PositionX	PositionY
1	GE_BrightCorner	GE_BrightCorner	584.922	4464.27
1	DarkCorner	DarkCorner	606.433	4464.3
1	DarkCorner	DarkCorner	626.841	4464.18
0	A_23_P326296	NM_144987	648.069	4464.19
0	A_24_P287941	NM_013290	669.667	4464.39
0	A_24_P325046	BC022434	691	4464.5
0	A_23_P200404	NM_001625	712	4464.5
0	A_19_P00800513	lincRNA:chr7:226042-232442_R	733.224	4464.48
0	A_23_P15619	NM_032391	754.4	4464.41
0	A_33_P3402354	L40403	775.5	4464.32
0	A_33_P3338798	NM_001145251 Genes	798.041	4464.16
0	A_32_P98683	NM_005937	817.068	4464.27
0	A_23_P137543	NM_152493	838.533	4464.4
0	A_19_P00803040	lincRNA:chr8:104254399-104295074_F	859.965	4464.37
0	A_23_P117852	NM_014736	881	4464.3
0	A_33_P3285585	AK127191	902.5	4464.5
0	A_24_P328231	NM_017871	923.214	4464.57
0	A_33_P3415668	NR_028328	944.776	4464.52
0	A_23_P73609	NM_000266	966	4464.5
0	A_24_P186124	NM_182501	986.871	4464.53

Position on array

Key data processing steps

- Mapping probes to genes
 - BLAST to latest genome annotation
 - Already provided for commercial arrays
- Intensity correction
 - Position and sequence bias
 - Perfect match (PM) vs mismatch (MM)
- Outlier removal
- Probe set aggregation for each gene / transcript
- Log-transformation

Log-normal distribution

Limpert, Stahel, and Abbt. BioScience 2001.

- Data whose log-transformed values are normally distributed
 - Light and fluorescence intensity, ion count

Microarray data are log-normally distributed

Position-specific noise correction sketch

- Null Hypothesis:

- Noise is normally distributed, and its mean and variance are independent of the position on array
 - Mean noise = μ (same across positions)
 - Variance = σ^2 (same across positions)

Alternative Hypothesis:

- Noise is normally distributed, its mean depend on the position on array, with a common variance
 - Mean noise at $(x, y) = ax + by + \mu$
 - Variance = σ^2 (same across positions)

Fitting data to a normal distribution (finding μ and σ^2)

- Consider negative control probe intensities: n_1 , n_2 , ..., n_k
 - Assume Normal distribution (μ, σ^2)
 - Likelihood P(data $| \mu, \sigma^2$) = $\prod_i P(n_i | \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^k e^{-\frac{1}{2}\sum_i \left(\frac{n_i \mu}{\sigma}\right)^2}$
 - Maximum likelihood: Take the partial derivatives w.r.t. μ and σ^2 and set to 0

Linear effect model

- Negative probe i with intensity n_i is located at position (x_i, y_i)
- Hypothesis: $\mu(x_i, y_i) = ax_i + by_i + \mu$
 - Solve for a, b, c that minimize squared difference $\sum_{i} (n_i (ax_i + by_i + \mu))^2$
- With calculus:

$$-0 = \frac{\delta MSE}{\delta a} = \sum_{i} 2(n_i - (ax_i + by_i + \mu))(-x_i)$$

$$-0 = \frac{\delta MSE}{\delta h} = \sum_{i} 2(n_i - (ax_i + by_i + \mu))(-y_i)$$

$$- 0 = \frac{\delta MSE}{\delta u} = \sum_{i} 2(n_i - (ax_i + by_i + \mu))(-1)$$

The algebra is not as bad as it looks

- Three linear equations with three variables!
 - $-0 = \sum_{i} 2(n_{i} (ax_{i} + by_{i} + \mu))(-x_{i})$
 - $0 = \sum_{i} 2(n_{i} (ax_{i} + by_{i} + \mu))(-y_{i})$
 - $-0 = \sum_{i} 2(n_i (ax_i + by_i + \mu))(-1)$
- Or equivalently
 - $a \sum_{i} x_i^2 + b \sum_{i} x_i y_i + \mu \sum_{i} x_i = \sum_{i} n_i x_i$
 - $a \sum_{i} x_i y_i + b \sum_{i} y_i^2 + \mu \sum_{i} y_i = \sum_{i} n_i y_i$
 - $a \sum_{i} x_i + b \sum_{i} y_i + k\mu = \sum_{i} n_i$
- Most of the terms are numbers from your data

Hypothesis testing for likelihoods

- Likelihood for Null Hypothesis (2 parameters, μ , σ^2)
- Likelihood for Alternate Hypothesis (4 parameters, a, b, μ, σ^2)

Information criterion

- Akaike: AIC = $2k 2 \log(\text{likelihood})$
- **Bayesian**: BIC = log(n) k 2 log(likelihood)
- Favor model with low number of parameters (k) and high likelihood

Nested model / likelihood ratio test

- Score = 2 x delta log(likelihood)
- Chi-square difference test of score with delta degree of freedom = 4 2

Nanostring

Transcript-specific probes & fluorescence barcodes

solution phase hybridization

Counting number of molecules

Barcode

Counts

Identity

XLSA

FOX5

INSULIN

Prebuilt gene set (up to ~800 targets)

PanCancer IO 360

Human 🔁 Mouse 🛨

750 cancer-related genes involved in the complex interplay between the tumor, microenvironment and immune response including 20 internal reference controls.

Application:

Species:

Genes in panel:

% Match:

Panel type:

Platform:

Oncology

Human, Mouse

770, 770 100%, 100%

Inventoried

nCounter Analysis System

Canine IO

Canine 🛨

The nCounter® Canine IO Panel includes 780 genes covering 47 annotated pathways involved in canine immune response to IO treatments, and 20 internal reference genes for show more

Application:

...

Species: Genes in panel:

% Match:

Panel type:

Platform:

Oncology

Canine

800

100%

Inventoried

nCounter Analysis System

Nanostring's built-in quality control

- Imaging QC
 - % of successful imaging field of view > 75%
- Binding QC
 - 0.1-2 molecules per square micron
- Positive control
 - Six synthetic DNA ranging from 0.125-128 fM
- Negative control
 - Eight synthetic DNA that do not bind to probe

Nanostring data processing

Through nCounter / nSolver software

Using negative and positive controls to normalize

Positive control probes added with known concentrations

Raw Data					
			Sample 1	Sample 2	Sample 3
Positive	POS_A	ERCC_00117.1	24573	21007	21856
Positive	POS_B	ERCC_00112.1	6948	6414	6589
Positive	POS_C	ERCC_00002.1	2123	1826	1932
Positive	POS_D	ERCC_00092.1	432	363	425
Positive	POS_E	ERCC_00035.1	52	68	53
Positive	POS_F	ERCC_00034.1	49	38	52
		Geomean of POS:	858.01	783.19	829.55
Arithmetic mean of geomeans:			823.58		
POS control normalization factors:			0.96	1.05	0.99

- **Negative**: Subtraction or Filtering
- Positive: Scale data by geometric mean of ratios between observed / expected

Housekeeping genes as control

- Housekeeping genes are essential genes with basic cellular functions that should be stable across conditions
- Assume similar abundance across all samples
 - Coefficient of Variation:CV = S.D. / mean

Arithmetic versus geometric mean and logarithm

$$- M = \frac{x_1 + \dots + x_n}{n}$$

- GM =
$$\sqrt[n]{x_1 \dots x_n}$$

- Two data points: 1 and 10000
 - AM = 5000.5
 - GM = 100 (leaning toward smaller values)
- Three data points: 1, 10, and 100
 - AM = 37
 - GM = 10 (leaning toward smaller values)

Arithmetic versus geometric mean and logarithm

Limpert, Stahel, and Abbt. BioScience 2001.

$$\frac{\log(x_1) + \dots + \log(x_n)}{n} = \log\left(\sqrt[n]{x_1 \dots x_n}\right) \rightarrow \text{AM of log data} = \text{GM of original data}$$

Arithmetic mean for background noises

- Background noises are assumed to be
 Normally distributed
- Arithmetic mean is used

Geometric mean for molecular counts

Raw Data								
			Sample 1	Sample 2	Sample 3			
Positive	POS_A	ERCC_00117.1	24573	21007	21856			
Positive	POS_B	ERCC_00112.1	6948	6414	6589			
Positive	POS_C	ERCC_00002.1	2123	1826	1932			
Positive	POS_D	ERCC_00092.1	432	363	425			
Positive	POS_E	ERCC_00035.1	52	68	53			
Positive	POS_F	ERCC 00034.1	49	38	52			
		Geomean of POS:	858.01	783.19	829.55			
Arithmetic mean of geomeans:			823.58					
POS control normalization factors:			0.96	1.05	0.99			

- Real expression data are assumed to be log-normally distributed
- **Geometric mean** is used
- Equivalent to log-transforming the data first and then use arithmetic mean

RNA sequencing

Reminder: There are non-coding RNAs

Amin, N. et al. Nature Machine Intelligence 1:246-256 (2019)

Total RNA sequencing = removal of rRNA

Source: New England BioLabs

Enrichments of mRNA and miRNA

Selection by polyT probe or size fractionation

Some IncRNA also have polyA

Transcript isoform and splice junction detection

- One gene can express multiple RNA transcript isoforms
- Due to splicing
- Different isoforms can have different functions and tissue specificities
- Only some reads can detect

Sakarya, O. et al. PLoS Comp Biol 8:e1002464 (2012)

Paired-end sequencing with longer read length

Chhangawala et al. Genome Biology 16:131 (2015)

Complete isoform details with long-read data

https://www.genengnews.com/resources/tutorial/full-length-transcript-sequencing-no-assembly-required/

RNA-seq data processing

RNA-seq analysis pipelines

Conesa et al. Genome Biology 17:13 (2016)

De novo transcript assembly

- For non-model organisms with no reference genome nor transcriptome
- Detect new isoforms
- Used as transcript database for realignment and quantification
- Trinity

Alignment to reference genome or transcriptome

- Reference transcriptome
 - Fast, cannot discover new isoform
 - Ungapped, k-mer-based alignment
 - salmon / kallisto

- Reference genome
 - **Slow**, but can detect new isoforms
 - **Gapped alignment**, allow for intron
 - Can be guided by exon annotations
 - STAR, HISAT2

GTF/GFF genome annotation format

Sample GTF output from Ensembl data dump:

```
1 transcribed_unprocessed_pseudogene gene 11869 14409 . + . gene_id "ENSG00000223972"; gene_name "DDX11L1"; gene_source "havana"; 1 processed_transcript transcript 11869 14409 . + . gene_id "ENSG00000223972"; transcript_id "ENST00000456328"; gene_name
```

Sample GFF output from Ensembl export:

```
X Ensembl Repeat 2419108 2419128 42 . . . hid=trf; hstart=1; hend=21
X Ensembl Repeat 2419108 2419410 2502 - . hid=AluSx; hstart=1; hend=303
X Ensembl Repeat 2419108 2419128 0 . . hid=dust; hstart=2419108; hend=2419128
X Ensembl Pred.trans. 2416676 2418760 450.19 - 2 genscan=GENSCAN00000019335
X Ensembl Variation 2413425 2413425 . + .
X Ensembl Variation 2413805 2413805 . + .
```

- Tab-separated text file
- Chromosome ID, object name, base pair positions, strand, and other annotation details

Transcriptomics technique summary

- RNA-seq can detect broad RNA molecules
- Nanostring provides the most accurate quantification
- Microarray is the cheapest platform

Next lecture's agenda

- Rapid RNA-seq alignment with k-mer
- Gene expression units
- Negative binomial model for gene expression data
- Differential expression analysis

Any question?

See you next time