The exponential Distribution and Poisson Process

2009-04-14 The Exponential Distribution (1) Definition: X~ Exp() The density of the exponential distribution with parameter 2 >0 $f(x) = \int_{0}^{\infty} \lambda e^{-\lambda x}, \quad x > 0$ And the distribution function F is given by F(x1=P(X < x) = [2e - x dx = 1-e - x Note P(X > x) = 1-F(x) = e-xx = F(x) moments $E(x) = \int_{-\infty}^{\infty} x f(x) dx \qquad \text{if } u = x \cdot dv = \lambda e^{-\lambda x}$ $= \int_{0}^{\infty} \lambda x e^{-\lambda x} dx \qquad \int u dv = uv - \int v du$ = - xe-xx = 5 e-xx $= -\frac{1}{\lambda}e^{-\lambda}$ = ¹/_{\lambda} E(x2)= 2/22 1(x = Ex, -(EX) = 1/Y The moment generating function $\phi(t)$ is φ(t) = E(etx) = (etx λe-λx λx $= \lambda \left(\frac{e}{e^{(4-\lambda)}} \right) \times dx$ $= \lambda \frac{1}{1-\lambda} e^{(t-\lambda) \kappa} \Big|_{b}^{\infty}$ $=\frac{\lambda}{t-\lambda}$ when $t<\lambda$

3 Properties
(a) memoryless (unique)
P(X>s++ X>+) = P(X>s) s. + >0
Note
= P(K>S++)/P(X>+)
= e-x(s++)/e-x+
= e-\s
= p(x>s) = F(s)
Ex: lifetime of some instrument
The probability that the instrument lives for
at the least set hours given that it has
surviced thours is the same as the
initial probability PCX>5)
,
(b) failure rate
The failure rate r(t) (hazard, risk,)
r(t) = f(t) / (- F(t))
where f(t) is a density and F(t) is
a distribution function
Note
P{ X e (t, t + d+) X > t}
= P(K ∈ (+,++d+) and X>+}
P(K>+)
= P(Xe(t, ++dt)) / P(X>+)
$\frac{f(+)d+}{1-F(+)} = r(+)d+$
=> conditional probability that t-years old item fail.

	耳 X ~ Expc入),
	$r(t) = \frac{\int (t)}{\int F(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$
	→ failure rate is "constant"
(ع)	Poisson Process
	O Countiny process
	A stochastic process { N(+), + >07 is counting process
	if N(t) represents the total number of events up to
	time t
	⇒ (i) N(+)>0
	(ii) N(t) is integer valued
	(iii) If s < t , then N(s) ≤ N(t)
	(iv) For s<+ , N(t)-N(s) (s the number of
	events that have occured in the interval (5
	@ Independent Increment
	N(H) is independent increment process if
	the numbers of events which occur in disjoint time
	intervals are independent
	\Rightarrow for sct, $N(t)-N(s)$ and $N(s)$ are independent
	3 Stationary Increments
	N(t) is stationary increment process if
	the distribution of the number of events which
	occur in any interval of time depends only on
	the Length of interval
	For t. (t., 5 >0,
	Distribution of N(tx) - N(tr) =
	Distribution of N(t2+5) - N(t1+5)

@ First Definition of Poisson Process
The countrie process {N(t), t > 0 } is said to be
Poisson Process with rate A. Azo if
(i) H(0) = 0
(ii) The process has independent increment.
Uni) The number of events in any interval of length
t is poisson distributed with mean lt
⇔ for all s, t> a
$P(N(s+t)-N(s)=n)=e^{-\lambda t}(\lambda t)^{n} = 0,1,2$
Notel
(iii) implies "stationary inchement".
and $P(N(t)=n) = \frac{e^{-\lambda t}(\lambda t)^n}{n!}$ ((et s=0) so that
E(N(H) = >t
Note 2 Pefinition of och) (small "o")
The function f(t) is said to be o(h) if
$\frac{l}{h+2} \xrightarrow{f(h)} \rightarrow 0$
N→ 0 h
ef) $f(x) = x^2 \Rightarrow o(h)$ $\frac{0}{n+0} \frac{h^2}{n} = 0$
$f(x)=x \Rightarrow not o(h)$ $\lim_{n\to 0} \frac{h}{n}=1 \neq 0$
"fch) goes to 0 faster than h zoes to 0"
Also if f(t) and g(t) are both dh), then, for any c,, c,
c, f(t) + c, g(t) is o(h)

(3) Second Definition of Poisson Process
(i) N (+) = 0
(ii) The process has stationary and independent
in arment
(iii) P{N(h)=1}= 入七 + o(h)
$(V) P\{N(h) \gg 2 \} = o(h)$
Note 1
(iii) implies underlying rate is "\"
(iv) implies "No" two points can occurs at same time.
Note2 The first and second definitions are equivalent!
(proof)
Let $P_n(t) = P\{N(t) = n\}$
@ Po(++h) = P{ N(++h) = 0}
= P{ N(t)=0, N(t+h)-N(t) =0}) independent
$= P \{ N(t) = 0, N(t+h) - N(t) = 0 \} $ independent $= P \{ N(t) = 0 \} P \{ N(t+h) - N(t) = 0 \} $ increment
= Po(+). P[N(h) =0] stationary
= Po(t) [1- P(N(h)=1) - P(N(h)≥2)]
= Po(+) [1- \lambda h - dh)]
Hence, $\frac{P_o(t+h) - P_o(h)}{h} = -\lambda P_o(t) + \frac{o(h)}{R}$
By letting $h \rightarrow 0$, we have
$P_{o}'(x) = -\lambda P_{o}(x)$
$\stackrel{P'_{\circ}(t)}{\rightleftharpoons} = -\lambda$
Po(t) = -/(
⇒ P.(+)= K-e-\t
Since P.(0) = P(N(0) = 0) = 1, Po(t) = e-xt

b for n. 20
$P_n(+th) = P(N(+th) = n)$
= P(N(+) =n, N(++h)-N(t)=0)
+ P(N(t)=n-1, N(+th)-N(t)=1)
+ \(\sum_{k\infty}^{n}\) P(\(N(t) = n - \lambda\), \(\(N(t+h) - N(t) = k\)\)
= P(N(t)=n) · P(N(++h)-N(t)=0)
+ P(N(H=n-1) P(N(++h)-N(H=1)
t och)
$= P_n(t) P_o(h) + P_{n-1}(t) P_i(h) + o(h)$
= (1- hh - och) 7 Pn(t) + hh Pn+(t) + och)
= (1-2h) Pn(+) + 2h Pn-(+) + o(h)
Thus
$\frac{P_n(t+h) - P_n(t)}{h} = -\lambda P_n(t) + \lambda P_{n-1}(t) + \frac{o(h)}{h}$
h By letting h→0,
$P_n'(t) = -\lambda P_n(t) + \lambda P_{n-1}(t)$
$\Leftrightarrow e^{\lambda t} \left[P_n'(t) + \lambda P_n(t) \right] = \lambda e^{\lambda t} P_{n-t}(t)$
€ delt Pn(t)= Lelt Pn-(t)
Now n=1
$\frac{\partial}{\partial t} e^{\lambda t} P_{i}(t) = \lambda e^{\lambda t} P_{i}(t) = \lambda e^{\lambda t} e^{-\lambda t} = \lambda$
\Rightarrow P(t) = $(\lambda t + c)e^{-\lambda t}$
Since $P_{\alpha}(0) = 0 \Rightarrow P_{\alpha}(0) = 0 = 0$,
$P_{i}(t) = \lambda t e^{-\lambda t}$
To show $P_n(t) = e^{-\lambda t} (\lambda t)^n / n!$, use mathematical induction
Assume first for n-1, them
$\frac{\partial}{\partial t} e^{\lambda t} P_n(t) = \frac{\lambda^n t^{n-1}}{(n-1)!}$
$\Rightarrow e^{\chi + \beta \nu(t)} = \frac{\nu!}{(\gamma t)^{3}} + c$
use Pn(0)=0

1	
	Proposition If T., T., In are independent
	exponential vandom variable with λ ,
	S=Ti+Te++Th has a gamma distributem with n and \
	$\Leftrightarrow f_{s_n}(t) = \frac{\lambda e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!}$
	(n-1) į
	Note {N(t) >n}
	N(t)
	≤n n+n
	event