Set Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today or, rigorous. Any result of the above is not the author's fault.

0 Notation

We commonly deal with the following concepts in Set Theory which I will abbreviate as follows for brevity:

Term	Notation
$\boxed{\{0,1,2,\ldots\}}$	N

Contents

0	Not	ation
1	The	Fundamentals
	1.1	Axiom of Extensionality
	1.2	Axiom of Pair Sets
	1.3	Axiom of the Powerset
	1.4	Axiom of the Empty Set
	1.5	Axiom of Subsets
	1.6	Axiom of Unions
	1.7	Classes
	1.8	The Set ω
	1.9	Russell's Theorem
	1.10	The Universe of Sets

1 The Fundamentals

1.1 Axiom of Extensionality

For two sets a and b, we have that a = b if and only if for all x we have that:

$$x \in a \iff x \in b$$
.

For two classes A and B, we have that A = B if and only if for all x we have that:

$$x \in a \iff x \in b$$
.

1.2 Axiom of Pair Sets

For any sets x and y, there is a set $z = \{x, y\}$. This is the (unordered) pair set of x and y.

1.3 Axiom of the Powerset

For each set x, there exists a set which is the collection of the subsets of x, the powerset $\mathcal{P}(x)$.

For some set x, we have the powerset defined as follows $\mathcal{P}(x) = \{z \mid z \subseteq x\}$.

1.4 Axiom of the Empty Set

There exists a set with no members, the empty set \varnothing .

We have the empty set defined as follows $\emptyset = \{x \mid x \neq x\}.$

1.5 Axiom of Subsets

For some set x, we have that $\{y \in x \mid \Phi(y)\}$ is a set for some well-defined property of sets Φ .

1.6 Axiom of Unions

We have the basic union of two sets x_1 and x_2 :

$$x_1 \cup x_2 = \{ y \mid y \in x_1 \text{ or } y \in x_2 \},$$

but for cases where we want to unify the members of the sets in a set X, we define:

$$\bigcup X = \{ y \mid \exists x \in X, y \in x \}.$$

This axiom states that for a set X, $\bigcup X$ is a set.

1.7 Classes

We have that classes are collection of objects, these could also be sets. Classes that are not sets are called proper classes.

1.8 The Set ω

We have the set of natural numbers, $\mathbb{N} = \{0, 1, 2, \ldots\}$, and from this, we define ω :

$$\omega = \{0, 1, 2, \ldots\},\$$

where for some n in ω ,

$$n = \{0, 1, 2, \dots, n-1\},\$$

with 0_{ω} being the empty set. We can go beyond this definition, defining:

$$\omega + 1 = \{0, 1, 2, \dots, \omega\},\$$

$$\omega + 2 = \{0, 1, 2, \dots, \omega, \omega + 1\},\$$

$$\dots$$

$$\omega + n = \{0, 1, 2, \dots, \omega, \omega + 1, \dots \omega + n - 1\}.$$

1.9 Russell's Theorem

We have that $R = \{x \mid x \notin x\}$ is not a set.

Proof. Suppose we have a set z such that z = R, is z in R? If we suppose z is in R, we have that z is not in z by the definition of R (as z = R) but z is R so z is not in R, a contradiction. Thus, we have that there is no set z equal to R, so R is not a set but a proper class.

1.10 The Universe of Sets

We define the universe of sets as $V = \{x \mid x = x\}$. We have that V is a proper class.

Proof. If we suppose V is a set, we apply the axiom of subsets with $\Phi(x) = x \notin x$ and reach a contradiction via Russell's theorem.