Gandhar Kulkarni (mmat2304)

1

To prove the result, we will decompose an arbitrary permutation $\sigma \in S_n$ into transpositions. We will then show that each transposition can be written as a product of transpositions of the form (ii+1). We have $\sigma = \tau_1 \dots \tau_r$, where τ_i is some transposition of the form $(k_1k+1+k_2)_i$. Note that we can assume the first element of τ_i is strictly lesser than the second since if it weren't we could just invert the order without any loss of generality. We state that $(k_1k_1+k_2)$ can written as a product of finite transpositions of the form (tt+1). See that $(k_1k_1+k_2-1)=(k_1+k_2-1k_1+k_2)(k_1k_1+k_2)(k_1+k_2-1k_1+k_2)$. Since we have $(k_1k_1+k_2-1)$, we have lowered the second entry of the transposition by one. In k_2-1 steps, we will get $(k_1k_1+1)=(k_1+1k_1+2)(k_1k_1+2)(k_1+1k_1+2)$, which means that we can stop. We have τ_i as a product of $2(k_2-1)+1$ transpositions of the desired type. We can do this for all transpositions to get our result. Thus we can generate any permutation in S_n by exchanging adjacent elements. The bubble sort algorithm works this way too, which accepts a permutation then returns the list of n numbers. This is essentially the same problem.

$\mathbf{2}$

3

- 1. For some $1 \leq i \leq n$, $G)i = \{\sigma \in S_n : \sigma(i) = i\} \cong S_{n-1}$. Consider G_i acting on $\{1, 2, \ldots, i-1, i+1, \ldots, n\}$. If n=2, this set will be a singleton, hence trivially transitive. For $n \geq 3$, the set $\{1, 2, \ldots, n\} \setminus \{i\}$ has at least two elements. Then $k, \ell \in \{1, 2, \ldots, i-1, i+1, \ldots, n\}$ such that they are distinct (If $k = \ell$, then $i \in G_i$ works). See that $(k\ell) \in G_i$, as it does not affect i. Then we have $(k\ell)k = \ell$, which means that G_i is transitive.
- 2. For a doubly transitive action of G on X, see that if we choose a proper subset then since

4

Let us denote all elements of Q_8 thus: 1, i, j, k, -1, -i, -j, -k are assigned the numbers from 1 to 8. Then see that left multiplication by 1 is the identity permutation on S_8 . Left multiplication by i is (1256)(3478), by j is (1357)(2864), and by k is (1458)(2367). Their negatives also have a left regular representation. Now see that i, j can generate Q_8 as a group, then it must stand to reason that their corresponding left regular representations will behave in the same way! Thus, see that $G = \langle (1256)(3478), (1357)(2864) \rangle \cong Q_8$.

5

We know that |[G:H]| = n. Consider the group action of left multiplication on left cosets of H. This group action has a permutation representation, let us denote that by π_H . Take $K = \ker \pi_H$, and |[H:K]| = k. Then we have |[G:K]| = |[G:H]||H:K| = nk. Since H has n many cosets, we must have $\frac{G}{K}$ is isomorphic to some subgroup of S_n . Clearly $K \leq H$, and $K \subseteq G$, and since nk|n!, we have

6

We shall prove a result that for |G| = n and p the smallest prime that divides n, then a subgroup of order p must be normal. Let some $H \leq G$, with |[G:H]| = p. Consider the group action of left multiplication on left cosets of H. This group action has a permutation representation, let us denote that by π_H . Take

 $K=\ker \pi_H$, and |[H:K]|=k. Then we have |[G:K]|=|[G:H]||H:K|=pk. We know that H has p many left cosets, hence $\frac{G}{K}$ is isomorphic to some subgroup of S_p which is the image of G under π_H . Thus we must have $pk|p! \implies k|(p-1)!$. But since k can only have prime factors greater than or equal to p and (p-1)! has no prime factors greater than p, we must have k=1. Thus $H=K \leq G$ is normal.

Let p be the smallest prime dividing n. We know that p < n, since n is composite. Then see that there must exist a subgroup of order $\frac{n}{p}$ as given in the problem, hence this subgroup has index $\frac{n}{\frac{n}{p}} = p$, hence this is a normal subgroup. Thus G cannot be simple.

7

We know that |[G:Z(G)]| = n. We see that in the class equation we have

$$|G|=|Z(G)|+\sum_{x\notin Z(G)}|[G:C(x)]|.$$

Dividing on both sides by |Z(G)| we have

$$n = 1 + \sum_{x \notin Z(G)} \frac{n}{|C(x)|}.$$

Thus

$$\frac{1}{n} + \sum_{x \notin Z(G)} \frac{1}{|C(x)|} = 1.$$

8

9

10