

UNIUBE – CAMPUS VIA CENTRO – Uberlândia/MG Curso de Engenharia Elétrica e Engenharia de Computação Disciplina: Sistemas Digitais

Aula 01
Apresentação da disciplina.
Sistemas de numeração (binário, octal, decimal e hexadecimal). Conversão entre bases.

Revisão 3, de 13/02/2025

Prof. João Paulo Seno joao.seno@uniube.br

1

Objetivo geral da disciplina

 Proporcionar aos alunos o conhecimento teórico e prático dos sistemas digitais, incluindo técnicas de análise e projeto de circuitos lógicos combinacionais, sequenciais, aritméticos e blocos de memória, com enfoque em desenvolvimento de habilidades de utilização de software aplicativos e simulações, utilização de data-sheets, especificação de circuitos integrados e atividades práticas de montagem.

Objetivos específicos

- Compreensão dos conceitos teóricos dos sistemas digitais;
- Habilidade de análise e projeto de circuitos lógicos combinacionais e sequenciais;
- Conhecimento e habilidade na utilização de software aplicativos e simulações;
- Conhecimento de data-sheets para especificação de circuitos integrados;
- Habilidade na realização de atividades práticas de montagem de sistemas digitais.

3

WUniube

Ementa (conteúdo)

 Sistemas de Numeração e Códigos. Portas Lógicas e Álgebra Booleana. Circuitos Lógicos Combinacionais. Flip-Flops e Dispositivos Correlatos. Contadores e Registradores. Circuitos lógicos MSI. Conversão Analógica Digital e Digital Analógica. Procedimentos Práticos.

Conteúdo programático detalhado

- 1 Introdução ao Sistema de Numeração
 - 1.1 Sistemas binário, decimal, octal e hexadecimal
 - 1.2 Conversão entre sistemas de base diferentes
- 2 Funções Lógicas
 - 2.1 Introdução sobre sistema matemático de análise lógica (Álgebra de Boole)
 - 2.2 Função Lógica And (E), Or (OU), Not (Não), Nand (Não E), Nor (Não OU), XOR (Ou

exclusivo) e XNOR

- 2.3 Descrevendo circuitos lógicos
- 2.4 Portas lógicas equivantes
- 2.5 Circuitos integrados
- 3 Álgebra de Boole
 - 3.1 Variáveis e expressões
 - 3.2 Propriedades
 - 3.3 Teoremas de De Morgan
 - 3.4 Identidades Auxiliares
 - 3.5 Mapas de Karnaugh de 2, 3 e 4 variáveis

5

Conteúdo programático detalhado (cont.)

- 4 Circuitos Combinacionais
 - 4.1 Circuitos com duas, três ou quatro variáveis
 - 4.2 Circuitos aritméticos
- 5 Codificadores e decodificadores
 - 5.1 Códigos BCD, Excesso 3 e Gray
 - 5.2 Codificadores e Decodificadores
 - 5.3 Circuitos integrados codificadores e decodificadores
 - 5.4 Aplicações de codificadores e decodificadores
- 6 Flip-Flops
 - 6.1 Flip-Flop RS, JK, JK Mestre-Escravo
 - 6.2 Flip-Flop Tipo T e Tipo D
- 7 Contadores digitais
 - 7.1 Contadores assíncronos
 - 7.2 Contadores síncronos
 - 7.3 Circuitos integrados contadores
 - 7.4 Projetos de contadores
 - 7.5 Aplicações de contadores em sistemas digitais

ŝ

Conteúdo programático detalhado (cont.)

- 8 Registradores
 - 8.1 Registradores básicos com flip-flops
 - 8.2 Estruturas de entrada e de saída: tipos de registradores
 - 8.3 Circuitos integrados registradores
 - 8.4 Aplicações dos registradores
 - 8.5 Contadores com registradores
- 9 Multiplexadores e demultiplexadores
 - 9.1 Estrutura lógica, projeto e aplicações dos multiplexadores
 - 9.2 Estrutura lógica, projeto e aplicações dos demultiplexadores
- 10 Dispositivos de memória
 - 10.1 Registradores de três estados
 - 10.2 Barramento de dados
 - 10.3 Memórias semicondutoras, ROM, RAM e magnéticas
 - 10.4 Dispositivos lógicos programáveis
 - 10.5 Projeto de módulos de memória

Sistema de avaliação

• Distribuição das notas:

Para componentes curriculares com Uniube+						
Momento Avaliativo	Valor	Distrib	uição da Pont	uação		
	Semestral	Avaliação*	Atividade**	Uniube+		
N1	35	25	5	5		
N2	50	30	10	10		
Avaliação Institucional	15	15	-	90		
Total	100	70	15	15		

- Datas das provas:
 - Prova 1: 10/04/2025 (Qui)
 - Prova 2: 23/06/2025 (Seg) (Prova teórica, mas realizada no laboratório)
 - Simulado institucional: 17/06/2025

Metodologia

- Aulas teóricas (sala de aula) e práticas (laboratório);
- Projetos (2, um por momento), valendo nota para as atividades, em grupo, implementados em software simulador;
- Projetos e laboratório (relatório) dividem a nota das atividades;
- Software utilizado: Logisim Evolution v3.9.0 Digital logic design tool and simulator
 - · Open source;
 - Versão executável ou JAVA;
 - Disponível para download em: https://github.com/logisim-evolution/logisim-evolution/logisim-evolution/releases

9

Uniube

Bibliografia

- Básica:
 - HAUPT, A. G.; DACHI, Édison Pereira. Eletrônica digital. São Paulo: Blucher, 2018. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/158767. Acesso em: 14. jul. 2024.
 - LENZ, Maikon L.; MORAES, Marlon L. Eletrônica Digital. Porto Alegre: Sagah, 2019. Disponível em: https://viewer.bibliotecaa.binpar.com/viewer/9788595028579/capa. Acesso em: 14. jul. 2024.
 - WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12.ed. São Paulo: Pearson Education do Brasil, 2018. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/168497. Acesso em: 14. jul. 2024.
- Complementar:
 - FLOYD, Thomas. Sistemas Digitais: Fundamentos e Aplicações. 9.ed. Porto Alegre: Bookman, 2007. Disponível em: https://viewer.bibliotecaa.binpar.com/viewer/9788577801077/capa. Acesso em: 18. jul. 2024.
 - VAHID, Frank. Sistemas Digitais: Projeto, Otimização e HDLs. Porto Alegre: Bookman, 2008. Disponível em: https://viewer.bibliotecaa.binpar.com/viewer/9788577802371/capa. Acesso em: 18. jul. 2024.

Sistemas de numeração e conversão entre bases

Os sistemas de numeração na computação são essenciais para representar e manipular dados. O sistema binário (base 2), composto por 0 e 1, é a base para as operações dos computadores. Os sistemas octal (base 8) e hexadecimal (base 16) são usados para simplificar a representação de números binários. O sistema decimal (base 10) é usado para a interação humana com os computadores. Esses sistemas permitem que os computadores armazenem, processem e transmitam informações de forma eficiente. Eles são a base para a linguagem de máquina e para a execução de todos os programas e aplicativos.

11

Sistemas de Numeração Não Posicional

- O valor de cada símbolo é determinado de acordo com a sua posição no número.
- Exemplo: sistema de algarismos romanos.
- Símbolos e valores, entre parêntesis:
- I (1), V (5), X (10), L (50), C (100), D (500), M (1000).

Regras:

- · Cada símbolo colocado à direita de um maior é adicionado a este.
- Cada símbolo colocado à esquerda de um maior tem o seu valor subtraído do maior.
- Exemplo: 21, no sistema posicional decimal = XXI no sistema romano.

Sistemas de Numeração Posicional

- O valor de cada símbolo é determinado de acordo com a sua posição no número.
- Um sistema de numeração é determinado fundamentalmente pela **BASE**, que indica a quantidade de símbolos e o valor de cada símbolo.
- Do ponto de vista numérico, o homem lida com o Sistema Decimal.

Sistemas Decimal

- Base: 10 (quantidade de símbolos).
- Elementos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.
- Embora o Sistema Decimal possua somente dez símbolos, qualquer número acima disso pode ser expresso usando o sistema de peso por posicionamento, conforme o exemplo a seguir:

$$3 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 6 \times 10^0$$

 $3000 + 500 + 40 + 6 = 3546$

• Obs.: Dependendo do posicionamento, o digito terá peso. Quanto mais próximo da extrema esquerda do número estiver o digito, maior será a potência de dez que estará multiplicando o mesmo, ou seja, mais significativo será o digito.

Sistemas Binário

- É o sistema de numeração mais utilizado em processamento de dados digitais, pois utiliza apenas dos algarismos (0 e 1), sendo portanto mais fácil de ser representado por circuitos eletrônicos (os dígitos binários podem ser representados pela presença ou não de tensão).
- Base: 2 (quantidade de símbolos)
- Elementos: 0 e 1.
- Os dígitos binários chamam-se BITS (Binary Digit). Assim como no sistema decimal, dependendo do posicionamento, o algarismo ou bit terá um peso. O da extrema esquerda será o bit mais significativo e o da extrema direita será o bit menos significativo.
- O Conjunto de 8 bits é denominado Byte.

Sistemas Octal

- O Sistema Octal foi criado com o propósito de minimizar a representação de um número binário e facilitar a manipulação humana.
- Base: 8. (quantidade de símbolos)
- Elementos: 0, 1, 2, 3, 4, 5, 6 e 7.
- O Sistema Octal (base 8) é formado por oito símbolos ou dígitos, para representação de qualquer digito em octal, necessitamos de três dígitos binários.
- Os números octais têm, portanto, um terço do comprimento de um número binário e fornecem a mesma informação.

Sistemas Hexadecimal

- Base: 16 (quantidade de símbolos)
- Elementos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F.
- O Sistema Hexadecimal (base 16) fo criado com o mesmo propósito do Sistema Octal, o de minimizar a representação de um número binário.
- Se considerarmos quatro dígitos binários, ou seja, quatro bits, o maior número que se pode expressar com esses quatro bits é 1111, que é, em decimal 15. Como não existem símbolos dentro do sistema arábico, que possam representar os números decimais entre 10 e 15, sem repetir os símbolos anteriores, foram usados símbolos literais: A, B, C, D, E e F.

Uniube

Conversões Entre os Sistemas de Numeração

Teorema Fundamental da Numeração

Relaciona uma quantidade expressa em um sistema de numeração qualquer com a mesma quantidade no sistema decimal

$$N = d_{n-1} x \ b^{n-1} + \dots + d_1 x \ b^1 + d_0 x \ b^0 + d_{-1} x \ b^{-1} + d_{-2} x \ b^{-2} + \dots$$

Onde:

d é o dígito,n é a posição eb é a base.

Exemplos

$$128_{(base10)} = 1 \times 10^{2} + 2 \times 10^{1} + 8 \times 10^{0}$$

$$54347_{(base10)} = 5 \times 10^{4} + 4 \times 10^{3} + 3 \times 10^{2} + 4 \times 10_{1} + 7 \times 10_{0}$$

$$100_{(base2)} = 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} = 4$$

$$101_{(base2)} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 5$$

$$24_{(base8)} = 2 \times 8^{1} + 4 \times 8^{0} = 16 + 4 = 20$$

$$16_{(base8)} = 1 \times 8^{1} + 6 \times 8^{0} = 8 + 6 = 14$$

Tabela de conversão de números

Hexadecimal	Octal	Binário	Decimal
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	10	1000	8
9	11	1001	9
A	12	1010	10
В	13	1011	11
C	14	1100	12
D	15	1101	13
E	16	1110	14
F	17	1111	15

Conversão Decimal-Binário

- Dividir sucessivamente por 2 o número decimal e os quocientes que vão sendo obtidos, até que o quociente de uma das divisões seja 0.
- O resultado é a sequência de baixo para cima de todos os restos obtidos.

WUniube

Conversão Decimal-Binário

- Caso exista fração: a parte inteira não muda.
- Aplica-se multiplicações sucessivas na parte à direita da vírgula.

Conversão Binário-Decimal

• Aplica-se Teorema Fundamental da Numeração

```
101011_{2} = ?
1x2^{5} + 0x2^{4} + 1x2^{2} + 0x2^{2} + 1x2^{2} + 1x2^{2} = 32 + 8 + 2 + 1 = 43_{0}
101011_{2} = 43_{0}
```

WUniube

Conversão Decimal-Octal

- Divisões sucessivas por 8.
- Multiplicações sucessivas por 8 (parte fracionária).
- O resultado é a sequência de baixo para cima de todos os restos obtidos.

```
500<sub>10</sub> = ?<sub>8</sub>

500 \[ 8
(4) \ 62 \[ 8
(7) \]

500<sub>10</sub> = 764<sub>2</sub>
```


Conversão Octal-Decimal

• Aplica-se Teorema Fundamental da Numeração

$$764_{6} = ?_{10}$$

$$7x6^{2} + 6x6^{1} + 4x8^{0} = 500_{10}$$

$$764_{6} = 500_{10}$$

Uniube

Conversão Decimal-Hexa

- Divisões sucessivas por 16.
- Multiplicações sucessivas por 16 (parte fracionária).

Conversão Hexa-Decimal

• Aplica-se Teorema Fundamental da Numeração

$$3E8_{16} = ?_{10}$$

$$3x16^{2} + 14x16^{1} + 8x16^{1} = 1000_{10}$$

$$3E8_{16} = 1000_{10}$$

Uniube

Conversão Hexa-Binário

- Agrupamento de 4 bits.
- Usar a tabela.

Conversão Binário-Hexa

- Usar a tabela.
- Cada grupo de 4 bits equivale a um símbolo hexadecimal.

Uniube

Conversão Octal-Binário

- Agrupamento de 3 bits.
- Usar a tabela.

Conversão Binário-Octal

• Usar a tabela.

Uniube

Conversão Octal-Hexa

- Dois passos:
 - Converter octal para binário.
 - Converter binário para hexa.

Conversão Hexa-Octal

- Dois passos:
 - Converter hexa para binário.
 - Converter binário para octal.

Exercícios

- Converta:
 - $1255_{(d)}$ para as bases binária e hexadecimal;
 - \bullet 011011110111011 $_{(b)}$ para as bases hexadecimal e decimal;
 - ${\rm F15C_{(h)}}$ para as bases binária e decimal.

