(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 8. Juli 2004 (08.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer

(51) Internationale Patentklassifikation7:

C25B 1/12

WO 2004/057058 A2

- - PCT/EP2003/014205
- (21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:
- - 13. Dezember 2003 (13.12.2003)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

19. Dezember 2002 (19.12.2002) DE 102 59 386.8

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GESELLSCHAFT FÜR HOCHLEISTUNGSE-LEKTRO LYSEURE ZUR WASSERSTOFFERZEU-GUNG MBH [DE/DE]; Ludwig-Bölkow-Allee, Tor 2, 85521 Ottobrunn (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): RÄMISCH, Marko [DE/DE]; Theodor Körner Strasse 2, 85521 Ottobrunn (DE). D'ERASMO, Pietro [NO/NO]; Stivimovegen 18, N-3670 Notodden (NO).
- (74) Anwalt: WINTER, Josef; MTU Friedrichshafen GmbH, Abt. ZJ-P, Maybachplatz 1, 88045 Friedrichshafen (DE).
- (81) Bestimmungsstaaten (national): CA, CN, IN, JP, NO, RU, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

- (54) Title: PRESSURE ELECTROLYSER AND CELL FRAME FOR SAID ELECTROLYSER
- (54) Bezeichnung: DRUCKELEKTROLYSEUR UND ZELLRAHMEN FÜR EINEN SOLCHEN

(57) Abstract: The invention relates to a pressure electrolyser and a cell frame for said electrolyser. pressure electrolyser (1) comprises a pressurised container (2) and an electrolysis cell block (3), which is located in the pressurised container (2) and comprises a number of electrolysis cells (4) that are combined to form a stack. According to the invention, each electrolysis cell (4) contains an anode (11) and a cathode (12) and the electrolysis cell block (3) comprises a sealed housing (5). The invention is characterised in that the housing (5) of the electrolysis cell block (3) is configured by a number of stacked cell frames (15, 16; 25, 26) of the electrolysis cells (4), that the cell frames (15, 16; 25, 26) at least partly consist of a material (15a, 15a; 25b, 26b), which is elastic at least in the longitudinal direction of the electrolysis cell block (3) and seals neighbouring cell frames (15, 16; 25, 26) in relation to one another and that the electrolysis cell block (3) is braced between the end plates (21, 22) by the compression of said elastic material (15a, 16a; 25b, 26b).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Es werden ein Druckelektrolyseur und ein Zellrahmen für einen solchen beschrieben. Der Druckelektrolyseur (1) umfasst einen Druckbehälter (2) und einen eine Anzahl von in Form eines Stapels zusammengefassten Elektrolysezellen (4) enthaltenden, in dem Druckbehälter (2) angeordneten Elektrolysezellenblock (3), wobei die Elektrolysezellen (4) jeweilige Anoden (11) und Kathoden (12) enthalten und wobei der Elektrolysezellenblock (3) ein abgedichtetes Gehäuse (5) umfasst. Erfindungsgemäss ist es vorgesehen, dass das Gehäuse (5) des Elektrolysezellenblocks (3) durch eine Anzahl von aufeinandergestapelten Zellrahmen (15, 16; 25, 26) der Elektrolysezellen (4) gebildet ist, dass die Zellrahmen (15, 16; 25, 26) zumindest teilweise aus einem zumindest in Längsrichtung des Elektrolysezellenblocks (3) elastischen Material (15a, 15a; 25b, 26b) bestehen, welches benachbarte Zellrahmen (15, 16; 25, 26) gegeneinander abdichtet, und dass der Elektrolysezellenblock (3) unter Kompression des elastischen Materials (15a, 16a; 25b, 26b) zwischen den Endplatten (21, 22) eingespannt ist.

Rasa 770 20 Jun 2005

5

15

Druckelektrolyseur und Zellrahmen für einen solchen

Die Erfindung betrifft einen Druckelektrolyseur nach dem O-10 berbegriff des Anspruchs 1 und einen Zellrahmen für einen solchen nach dem Oberbegriff des Anspruchs 11.

Zur elektrolytischen Aufspaltung von Wasser in Wasserstoff und Sauerstoff sind Druckelektrolyseure bekannt, die einen Druckbehälter und einen eine Anzahl von in Form eines Stapels zusammengefassten Elektrolysezellen enthaltenden, in dem Druckbehälter angeordneten Elektrolysezellenblock umfassen. Die Elektrolysezellen enthalten jeweilige Anoden und Kathoden. Ein Laugen- oder Elektrolytkreislaufsystem dient der Zuführung eines Anolyten zu den Anoden und zur Zuführung eines Katholyten zu den Kathoden. Der Elektrolysezellenblock verfügt über ein abgedichtetes Gehäuse, durch welches er gegen das Innere des Druckbehälters abgedichtet ist. Ein Druckelektrolyseur dieser Art ist aus der DE 25 48 699 C3 bekannt.

25

30

20

Herkömmlicherweise sind aufwendige Einrichtungen notwendig, um die einzelnen Zellen des Elektrolysezellenblocks gegeneinander zu verspannen und abzudichten, welche Federelemente, ein Tragegestell und ähnliche Bestandteile enthalten. Die Stromzuführung zum Elektrolysezellenblock besteht bisher aus einer Vielzahl von Teilen, darunter einem Druckrohr, Dichtungen, etc.

Die Aufgabe der Erfindung ist es einen verbesserten Druckelektrolyseur zu schaffen. Insbesondere soll ein Druckelektrolyseur geschaffen werden, der einfacher und mit einer geringeren Anzahl von Bauteilen aufgebaut und damit zu günstigen Kosten herstellbar ist. Weiterhin soll ein Zellrahmen zum Aufbau des Elektrolysezellenblocks geschaffen werden.

Die gestellte Aufgabe wird einerseits durch einen Druckelektrolyseur mit den Merkmalen des Anspruchs 1 und andererseits durch einen Zellrahmen für einen Druckelektrolyseur mit den Merkmalen des Anspruchs 11 gelöst.

Vorteilhafte Weiterbildungen sind in den jeweiligen Unteransprüchen angegeben.

15 Durch die Erfindung wird ein Druckelektrolyseur mit einem eine Anzahl von in Form eines Stapels zusammengefassten Elektrolysezellen enthaltenden Elektrolysezellenblock geschaffen. Die Elektrolysezellen enthalten jeweilige Anoden und Kathoden. Der Elektrolysezellenblock hat ein abgedichtetes Gehäu-20 se. An den Enden des Elektrolysezellenblocks sind Endplatten vorgesehen. Erfindungsgemäß ist das Gehäuse des Elektrolysezellenblocks durch eine Anzahl von aufeinandergestapelten Zellrahmen gebildet. Die Zellrahmen bestehen zumindest teilweise aus einem zumindest in Längsrichtung und Querrichtung 25 des Elektrolysezellenblocks elastischen Material, welches benachbarte Zellrahmen gegeneinander abdichtet. Der Elektrolysezellenblock ist unter Kompression des elastischen Materials in Längsrichtung zwischen den Endplatten eingespannt. Ein Vorteil des erfindungsgemäßen Druckelektrolyseurs ist es, 30 dass durch das in den Zellrahmen vorgesehene elastische Material Wärmeausdehnungen der einzelnen Elektrolysezellen und damit des gesamten Elektrolysezellenblocks ausgeglichen werden. Dadurch können einerseits die Endplatten in vereinfachWO 2004/057058

20

ter Weise feststehend, beispielsweise in Form von Kesseldeckeln eines den Elektrolysezellenblocks umgebenden Druckbehälters vorgesehen sein, andererseits können zusätzliche Einrichtungen entfallen, um den Elektrolysezellenblock in allen
Temperaturbereichen unter einer definierten Vorspannung zu
halten. Weiterhin können auch größere Fertigungstolleranzen
der Elektrolysezellen bzw. der Zellrahmen von dem elastischen
Material kompensiert werden.

- 10 Vorzugsweise können die Zellrahmen ein in Umfangsrichtung des Rahmens verlaufendes festes Element zur mechanischen Stabilisierung der Zellrahmen aufweisen, mit dem das elastische Material verbunden ist.
- 15 Gemäß einer Ausführungsform der Erfindung kann das feste Element eine schalenartige Rahmenstruktur bilden, die das elastische Material teilweise umfasst und aus der das elastische Material unter Bildung eines kompressiblen Bereichs in Längsrichtung des Elektrolysezellenblocks teilweise hervorsteht.
 - Gemäß einer anderen Ausführungsform der Erfindung kann das feste Element eine rahmenartige Einlage bilden, die in das elastische Material ganz oder teilweise eingebettet ist.
- 25 Gemäß einer Weiterbildung der Erfindung können benachbarte Zellrahmen jeweilige ineinander passende Vorsprünge und Ausnehmungen zur gegenseitigen Fixierung und/oder Abdichtung der benachbarten Zellrahmen aufweisen.
- 30 Gemäß einer bevorzugten Ausführungsform der Erfindung kann jeweils jede Anode einen eigenen Anodenzellrahmen und jeweils jede Kathode einen eigenen Kathodenzellrahmen aufweisen.

Das elastische Material kann aus einem Elastomer oder einem elastischen Weichthermoplast gebildet sein.

Das feste Element kann aus einem formstabilen Material, ins-5 besondere Metall oder Kunststoff bestehen.

Das die schalenartige Rahmenstruktur bildende feste Element kann aus einem elektrisch isolierenden Material, insbesondere Kunststoff bestehen.

Weiterhin wird durch die Erfindung ein Zellrahmen für einen Druckelektrolyseur mit den vorher genannten Merkmalen geschaffen.

15 Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert.

Es zeigt:

Figur 1 eine schematisierte geschnittene Draufsicht auf einen Druckelektrolyseur gemäß einem Ausführungsbeispiel der Erfindung;

Figur 2 eine vergrößerte geschnittene Darstellung eines Teils von Zellrahmen der Elektrolysezellen, welche gleichzeitig ein abdichtendes Gehäuse des Elektrolysezellenblocks bilden gemäß einem Ausführungsbeispiel der Erfindung;

Figur 3 eine geschnittene Darstellung ähnlich Figur 2 von ei-30 nem anderen Ausführungsbeispiel der Erfindung;

Figur 4 eine Detailansicht eines Zellrahmens gemäß einem weiteren Ausführungsbeispiel der Erfindung.

In Figur 1 ist ein insgesamt mit dem Bezugszeichen 1 bezeichneter Druckelektrolyseur dargestellt, bei dem ein Elektrolysezellenblock 3 in einem Druckbehälter 2 angeordnet ist. Der Elektrolysezellenblock 3 besteht aus einer Anzahl von in Form eines Stapels angeordneten Elektrolysezellen 4. Jede Elektrolysezelle 4 umfasst eine Anode 11 und eine Kathode 12, welche durch ein dazwischen angeordnetes Diaphragma 13 voneinander getrennt sind. Zwischen zwei benachbarten Elektrolysezellen 4 befindet sich jeweils ein Bipolarblech 14, durch welches der anodenseitige Zellraum der einen Elektrolysezelle 4 vom ka-10 thodenseitigen Zellraum der benachbarten Elektrolysezelle 4 getrennt, dabei gleichzeitig aber miteinander elektrisch in Kontakt gehalten sind. An den Enden des Elektrolysezellenblocks 3 sind Endplatten 21, 22 vorgesehen, nämlich eine anodenseitige Endplatte 21 und eine kathodenseitige Endplatte 15 22. Durch die Endplatten 21, 22 wird der Elektrolysezellenblock 3 in seiner Längsrichtung unter gegenseitiger Abdichtung der einzelnen Elektrolysezellen 4 unter mechanischer Vorspannung gehalten. Weiterhin bilden die Endplatten 21, 22 den endseitigen Abschluss des Druckbehälters 2. Schließlich 20 dienen die Endplatten 21, 22 dem elektrischen Stromanschluss des Elektrolysezellenblocks 3, welcher über eine anodenseitige Stromanschlussleitung 23 und eine kathodenseitige Stromanschlussleitung 24 erfolgt. An den Endplatten 21, 22 und an der Innenseite des Druckbehälters 2 sind jeweilige elektri-25 sche Isolierungen 31, 32, 33 angeordnet. Das Gehäuse 5 des Elektrolysezellenblocks 3 ist durch eine Anzahl von aufeinandergestapelten Zellrahmen 15, 16; 25, 26 der Elektrolysezellen 4 gebildet. Bei dem in Figur 1 dargestellten Ausführungsbeispiel ist jeweils jeder Anode 11 benachbart ein eigener A-30 nodenzellrahmen 15; 25 und jeweils jeder Kathode 12 benachbart ein eigener Kathodenzellrahmen 16; 26 vorgesehen.

Wie die Figuren 2 und 3 zeigen, welche zwei verschiedene Ausführungsbeispiele der Zellrahmen 15, 16 bzw. 25, 26 darstellen, bestehen die Zellrahmen 15, 16; 25, 26 zumindest teilweise aus einem elastischen Material 15a, 16a bzw. 25a, 26a, das zumindest in Längsrichtung und Querrichtung des Elektro-5 lysezellenblocks 3 elastisch ist. Dieses elastische Material 15a, 16a bzw. 25a, 26a dichtet benachbarte Zellrahmen 15, 16 bzw. 25, 26 gegeneinander ab, wobei das elastische Material 15a, 16a bzw. 25a, 26a in Längsrichtung des Elektrolysezellenblocks 3 komprimiert wird, dadurch bewirkt, dass der E-10 lektrolysezellenblock 3 zwischen den Endplatten 21, 22 eingespannt ist, wie der Figur 1 zu entnehmen ist. Neben der gegenseitigen Abdichtung benachbarter Zellrahmen 15, 16 bzw. 25, 26 bewirkt die Kompressibilität des elastischen Materials 15a, 16a bzw. 25a, 26a eine Kompensation von Wärmeausdehnun-15 gen bzw. Schrumpfungen bei Inbetriebnahme, Betrieb und Außerbetriebnahme des Druckelektrolyseurs und außerdem eine Kompensation von Maßtolleranzen der einzelnen Zellrahmen 15, 16 bzw. 25, 26. Die Zellrahmen 15, 16 bzw. 25, 26 umfassen weiterhin ein in Umfangsrichtung des Rahmens verlaufendes festes 20 Element 15b, 16b bzw. 25b, 26b, welches der mechanischen Stabilisierung der Zellrahmen 15, 16 bzw. 25, 26 dient und mit dem das elastische Material 15a, 16a bzw. 25a, 26a verbunden ist.

Bei dem in Figur 2 dargestellten Ausführungsbeispiel bildet das feste Element 15b, 16b eine schalenartige Rahmenstruktur, die das elastische Material 15a, 16a teilweise umfasst und aus der das elastische Material 15a, 16a unter Bildung eines kompressiblen Bereichs 15c, 16c in Längsrichtung des Elektrolysezellenblocks 3 teilweise hervorsteht. Somit kann das elastische Material 15a, 16a jeweils zwischen dem festen Element 15b, 16b, in welchem es eingebettet ist, und dem festen Element 15b, 16b des benachbarten Zellrahmens 15, 16 unter

WO 2004/057058

eingreift.

Kompression gesetzt werden, so dass es die oben geschilderten Funktionen des Abdichtens benachbarter Zellrahmen 15, 16 und der Kompensation von Wärmeausdehnungen erfüllen kann.

- 5 Bei dem in Figur 3 dargestellten Ausführungsbeispiel bildet das feste Element 25b, 26b eine rahmenartige Einlage, die in das elastische Material 25a, 26a des jeweiligen Zellrahmens 25 bzw. 26 eingebettet ist.
- Wie in Figur 2 gezeigt ist, weisen die benachbarten Zellrah-10 men 15, 16 jeweilige ineinanderpassende Vorsprünge 15d, 16d und Ausnehmungen 15e, 16e auf, welche der gegenseitigen Fixierung und/oder Abdichtung der benachbarten Zellrahmen 15, 16 dienen. So ist am Zellrahmen 15, nämlich an dessen schalenartig ausgebildeten festen Element 15b, ein Vorsprung 15d 15 vorgesehen, der in eine Ausnehmung 16e des benachbarten Zellrahmens 16, nämlich in dessen elastischem Material 16a ineinanderpassend eingreift. Ebenso ist im Zellrahmen 16, nämlich in dessen schalenartig ausgebildetem festen Element 16b ein Vorsprung 16d ausgebildet, der in eine Ausnehmung 15e des 20 folgenden benachbarten Zellrahmens 15, nämlich in dessen elastischem Material 15a vorgesehen ist, ineinanderpassend
 - Bei beiden in den Figuren 2 und 3 dargestellten Ausführungsbeispielen ist jeweils jeder Anode 11 ein eigener Anodenzellrahmen 15 bzw. 25 und jeweils jeder Kathode 12 ein eigener Kathodenzellrahmen 16 bzw. 26 zugeordnet.
 - Bei dem Ausführungsbeispiel von Figur 2 sind in dem elastischen Material 16a des Zellrahmens 16, der hier als Kathodenzellrahmen bezeichnet werden soll, umlaufende Schlitzungen 111, 112 vorgesehen, welche die Anode 11 bzw. die Kathode 12 aufnehmen. In dem elastischen Material 15a des Zellrahmens

15, der hier als Anodenzellrahmen bezeichnet werden soll, ist eine umlaufende Schlitzung 114 vorgesehen, welche das Bipolarblech 14 aufnimmt. Obwohl somit in dem elastischen Material 16a des Kathodenzellrahmens 16 die Schlitzungen 111, 112 für sowohl die Anode 11 als auch die Kathode 12 vorgesehen sind, soll der Zellrahmen 15 als der Anode zugeordnet und der Zellrahmen 16 als der Kathode zugeordnet angesehen werden, was sich jeweils für jede Elektrolysezelle 4 wiederholt. Die umlaufenden Schlitzungen 111, 112, 114 in dem elastischen Material 15a bzw. 16a gestatten eine formstabile, dichte und 10 positionshaltige Aufnahme von Anode 11, Kathode 12 bzw. Bipolarblech 14 ohne weitere Maßnahme. Entsprechendes gilt auch für ein in den Elektrolysezellen 4 enthaltenes Diaphragma, welches in Figur 2 der Einfachheit halber jedoch nicht dargestellt ist. 15

Bei dem in Figur 3 dargestellten Ausführungsbeispiel sind in dem elastischen Material 25a des Zellrahmens 25, der als Anodenzellrahmen bezeichnet werden soll, wiederum umlaufende Schlitzungen 211 und 213 vorgesehen, welche der Aufnahme der 20 Anode 11 bzw. des Diaphragmas 13 dienen, welch letzteres hier im Gegensatz zu Figur 2 eigens dargestellt ist, sowie eine umlaufende Aussparung 212 an der dem elastischen Material 26a des benachbarten Zellrahmens 26 zugewandten Seite, in welcher die Kathode 12 aufgenommen ist. Das elastische Material 26a 25 des benachbarten Zellrahmens 26, der als Kathodenzellrahmen bezeichnet werden soll, enthält seinerseits an der dem Zellrahmen 25 der folgenden Elektrolysezelle 4 zugewandten Seite eine Aussparung 214, welche der Aufnahme des Bipolarblechs 14 dient. Auch hier ist jeweils der Anode 11 und der Kathode 12 ein eigener Zellrahmen, nämlich der Anodenzellrahmen 25 bzw. der Kathodenzellrahmen 26 zugeordnet, was sich für jede Elektrolysezelle 4 wiederholt. Durch die umlaufenden Schlitzungen 211, 213 bzw. die umlaufenden Aussparungen 212, 214

sind wiederum die jeweiligen Elemente, nämlich die Anode 11, die Kathode 12, das Diaphragma 13 und das Bipolarblech 14 formstabil, dicht und positionshaltig in den Zellrahmen 25, 26 aufgenommen, so dass keine zusätzlichen Maßnahmen hierfür erforderlich sind.

Das elastische Material 15a, 16a bzw. 25a, 26a der jeweiligen Zellrahmen 15, 16 bzw. 25, 26 kann aus einem Elastomer oder einem elastischen Weichthermoplast gebildet sein.

10

5

Das feste Element 15b, 16b bzw. 25b, 26b der Zellrahmen 15, 16 bzw. 25, 26 kann aus einem formstabilen Material, insbesondere aus Metall, einem anderen geeigneten Metall oder aus Kunststoff bestehen.

15

Bei dem in Figur 2 dargestellten Ausführungsbeispiel besteht das die schalenartige Rahmenstruktur bildende feste Element 15b, 16b insbesondere aus einem elektrisch isolierendem Material, insbesondere aus Kunststoff.

. 20

25

30

Als zusätzlicher Schutz und zur Verbesserung gegen Entflammbarkeit lassen sich die von den im Druckelektrolyseur 1 vorhandenen gashaltigen Medien ständig beaufschlagten Flächen der Bestandteile der Zellrahmen 15, 16 bzw. 25, 26 mit einer geeigneten Beschichtung, z.B. PTFE abschirmen.

Die Form der Zellrahmen 15, 16 bzw. 25, 26 kann dem Inneren des Druckbehälters 2 so angepasst sein, dass diese, neben ihrer Funktion zur Bildung des Gehäuses 5 des Elektrolysezellenblocks 3 gleichzeitig auch als Tragestruktur für denselben

dienen.

Wie Figur 4 zeigt, können an der Oberseite der oberen Rahmenschenkel der Zellrahmen 15, 16 bzw. 25, 26 durch Auszahnungen

310 gebildete Strömungsschikanen 300 vorgesehen sein, welche einer Verbesserung der Gasabscheidewirkung dienen.

Bezugszeichenliste

	1	Druckelektrolyseur
5	2	Druckbehälter
	3	${ t Elektrolysezellenblock}$
	4	Elektrolysezellen
	5	Gehäuse
	11	Anode
10	12	Kathode
	13	Diaphragma
	14	Bipolarblech
	15; 25	Anodenzellrahmen
	15a; 25a	elastisches Material
15	15b; 25b	
	15c	kompressibler Bereich
	15d	Vorsprung
	15e	Ausnehmung
	16; 26	Kathodenzellrahmen
20	16a; 26a	elastisches Material
	16b; 26b	
	16c	kompressibler Bereich
	16d	Vorsprung
	16e	Ausnehmung
25	21, 22	Endplatte
	23, 24	Stromanschlussleitung
	31	elektrische Isolierung
	32	elektrische Isolierung
	33	elektrische Isolierung
30	111	Schlitzung
	112	Schlitzung
	114	Schlitzung
	211	Schlitzung
	212	Aussparung

213	Schlitzung
214	Aussparung
300	Strömungsschikane
310	Auszahnung
5	

Patentansprüche

- Druckelektrolyseur mit einem eine Anzahl von in Form eines Stapels zusammengefassten Elektrolysezellen (4) enthaltenden Elektrolysezellenblock (3), wobei die Elektrolysezellen (4) jeweilige Anoden (11) und Kathoden (12) enthalten und 10 wobei der Elektrolysezellenblock (3) ein abgedichtetes Gehäuse (5) aufweist, dadurch gekennzeichnet, dass das Gehäuse (5) des Elektrolysezellenblocks (3) durch eine Anzahl von aufeinandergestapelten Zellrahmen (15, 16; 25, 26) der Elektrolyse-15 zellen (4) gebildet ist, dass die Zellrahmen (15, 16; 25, 26) zumindest teilweise aus einem zumindest in Längsrichtung des Elektrolysezellenblocks (3) elastischen Material (15a, 16a; 25a, 26a) bestehen, welches benachbarte Zellrahmen (15, 16; 25, 26) gegeneinander abdichtet, und dass der Elektrolysezel-20 lenblock (3) unter Kompression des elastischen Materials (15a, 16a; 25a, 26a) zwischen Endplatten (21, 22) eingespannt ist.
 - Druckelektrolyseur nach Anspruch 1, dadurch gekennzeichnet, dass die Zellrahmen (15, 16; 25, 26) ein in Umfangsrichtung des Rahmens verlaufendes festes Element (15b, 16b; 25b, 26b) zur mechanischen Stabilisierung der Zellrahmen (15, 16; 25, 26) aufweisen, mit dem das elastische Material (15a, 16a; 30 25a, 26a) verbunden ist.
 - 3. Druckelektrolyseur nach Anspruch 2, dadurch gekennzeichnet, dass das feste Element (15b, 16b) eine schalenartige Rahmenstruktur bildet, die das elastische Material (15a, 16a)

teilweise umfasst und aus der das elastische Material (15a, 16a) unter Bildung eines kompressiblen Bereichs (15c, 16c) in Längsrichtung des Elektrolysezellenblocks (3) teilweise hervorsteht.

5

Druckelektrolyseur nach Anspruch 2, dadurch gekennzeich-4. net, dass das feste Element (25b, 26b) eine rahmenartige Einlage bildet, die in das elastische Material (25a, 26a) ganz oder teilweise eingebettet ist.

10

20

25

- Druckelektrolyseur nach Anspruch 3 oder 4, dadurch ge-5. kennzeichnet, dass benachbarte Zellrahmen (15, 16; 25, 26) jeweilige ineinanderpassende Vorsprünge (15d, 16d) und Ausnehmungen (15e, 16e) zur gegenseitigen Fixierung und/oder Abdichtung der benachbarten Zellrahmen (15, 16; 25, 26) aufwei-15 sen.
 - Druckelektrolyseur nach einem der Ansprüche 1 bis 5, da-6. durch gekennzeichnet, dass jeweils jede Anode (11) einen eigenen Anodenzellrahmen (15; 25) und jeweils jede Kathode (12) einen eigenen Kathodenzellrahmen (16; 26) hat.
 - Druckelektrolyseur nach einem der Ansprüche 1 bis 6, da-7. durch gekennzeichnet, dass das elastische Material (15a, 16a; 25a, 26a) aus einem Elastomer oder einem elastischen Weichthermoplast gebildet ist.
 - Druckelektrolyseur nach einem der Ansprüche 2 bis 7, da-8. durch gekennzeichnet, dass das feste Element (15b, 16b; 25b, 26b) aus einem formstabilen Material, insbesondere Metall oder Kunststoff besteht.
 - Druckelektrolyseur nach einem der Ansprüche 3 bis 8, da-9. durch gekennzeichnet, dass das die schalenartige Rahmenstruk-

tur bildende feste Element (15b, 16b) aus einem elektrisch isolierenden Material, insbesondere Kunststoff besteht.

- 10. Druckelektrolyseur nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Endplatten (21, 22) die Stromzuführung zu den Enden des Elektrolysezellenblocks (3) bilden.
- Zellrahmen für einen Druckelektrolyseur, welcher einen eine Anzahl von in Form eines Stapels zusammengefassten E-10 lektrolysezellen (4) enthaltenden Elektrolysezellenblock (3) umfasst, wobei die Elektrolysezellen (4) jeweilige Anoden (11) und Kathoden (12) enthalten und wobei der Elektrolysezellenblock (3) ein abgedichtetes Gehäuse (5) aufweist, dadurch gekennzeichnet, dass eine Anzahl der Zellrahmen (15, 15 16; 25, 26) aufeinandergestapelt das Gehäuse (5) des Elektrolysezellenblocks (3) bilden, und dass der Zellrahmen (15, 16; 25, 26) zumindest teilweise aus einem zumindest in Längsrichtung des Elektrolysezellenblocks (3) elastischen Material (15a, 16a; 25a, 26a) besteht, welches zur gegenseitigen Ab-20 dichtung von benachbarten Zellrahmen (15, 16; 25, 26) vorgesehen ist.
- 12. Zellrahmen nach Anspruch 11, dadurch gekennzeichnet,
 25 dass der Zellrahmen (15, 16) ein in Umfangsrichtung des Rahmens verlaufendes festes Element (15b, 16b; 25b, 26b) zur mechanischen Stabilisierung des Zellrahmens (15, 16; 25, 26) aufweist, mit dem das elastische Material (15a, 16a; 25a, 26a) verbunden ist.
 - 13. Zellrahmen nach Anspruch 12, dadurch gekennzeichnet, dass das feste Element (15b, 16b) eine schalenartige Rahmenstruktur bildet, die das elastische Material (15a, 16a) teilweise umfasst und aus der das elastische Material (15a, 16a)

25

30

unter Bildung eines kompressiblen Bereichs (15c, 16c) in Längsrichtung des Elektrolysezellenblocks (3) teilweise hervorsteht.

- 5 14. Zellrahmen nach Anspruch 12, dadurch gekennzeichnet, dass das feste Element (25b, 26b) eine rahmenartige Einlage bildet, die in das elastische Material (25a, 26a) ganz oder teilweise eingebettet ist.
- 10 15. Zellrahmen nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Zellrahmen jeweilige ineinanderpassende
 Vorsprünge (15d, 16d) und Ausnehmungen (15e, 16e) zur gegenseitigen Fixierung und/oder Abdichtung benachbarter Zellrahmen (15, 16; 25, 26) aufweist.
- 16. Zellrahmen nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass ein eigener Anodenzellrahmen (15; 25) für jede Anode (11) und ein eigener Kathodenzellrahmen (16; 26) für jeweils jede Kathode (12) vorgesehen ist.
- 17. Zellrahmen nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass das elastische Material (15a, 16a; 25a, 26a) aus einem Elastomer oder einem elastischem Weichthermoplast gebildet ist.
 - 18. Zellrahmen nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass das feste Element (15b, 16b; 25b, 26b) aus einem formstabilen Material, insbesondere Metall oder Kunststoff besteht.
 - 19. Zellrahmen nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass das die schalenartige Rahmenstruktur bildende feste Element (15b, 16b) aus einem elektrisch isolierenden Material, insbesondere Kunststoff besteht.

Fig.1

Fig.2

Fig.3

Fig.4