TASK 1.

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this

exercise (provide the inputs that you utilized)

,			
			o oggi in Piacenza a, 01 Dicembre 2019
	22:00	23:00	$T = 8^{\circ}C$
	δ δ δ δ pioggia	∆ ∆ LightRain	$\phi = 95\%$ $P = 101.7 \text{ KPa}$ $Aula A = 10m \times 5m \times 6$
Temperatura effettiva	8°C	8°C	Saturation pressure o
Temperatura percepita	7°C	7°C	= 1.079 KPa
Precipitazioni	1 mm	1 mm	
Umidità	95 %	95 %	
Pressione atmosferica	1017 hPa	1017 hPa	
Intensità del vento	6 km/h	5 km/h	
Direzione del vento	\	\hookrightarrow	
	NO	0	
Probabilità di nebbia	0 %	0 %	
Punto di rugiada	7°C	7°C	
Nuvole	100 %	100 %	
Nuvole basse	100 %	100 %	
Nuvole medie	100 %	100 %	
Nuvole alte	45 %	100 %	
			$h = h_a + \omega h_v$

1 Dicembre 2019

$$T = 8^{\circ}C$$
 $\phi = 95\%$
 $P = 101.7 \ KPa$
Aula $A = 10m \times 5m \times 4m$
Saturation pressure of water $8^{\circ}C$
 $= 1.079 \ KPa$

$$h = h_a + \omega h_v$$

 $h = 8.04 + 0.0063 \times 2515.86$
 $h = 23.88$

$$\begin{split} \phi &= \frac{m_v}{m_g} = \frac{P_v}{P_g} \\ \phi &= \frac{P_v}{P_g} \\ P_v &= P_g \times \phi \\ P_v &= 1.079 \times 0.95 \\ P_v &= 1.029kPa \\ P_a &= P_v \\ P_a &= 101.7 \ kPa - 1.029 \ kPa \\ P_a &= 100.671 \ kPa \\ P_a &= 100.671 \ kPa \\ \end{split} \qquad \begin{aligned} \omega &= 0.622 \frac{P_v}{P_a} \\ \omega &= 0.622 \frac{1.029}{100.671} \\ \omega &= 0.0063 \frac{Kg_{vapor}}{Kg_{dryair}} \\ m_a &= \frac{P_a V_a}{R_a T} \\ m_a &= \frac{100.671 \times (10 \times 5 \times 4)}{0.287 \times (273 + 8)} \\ \end{aligned} \qquad m_v &= \frac{1.029 \times (10 \times 5 \times 4)}{0.4615 \times (273 + 8)} \end{split}$$

 $m_v = 1.58 \, Kg$

 $m_a = 249.65 \, Kg$

TASK 2.

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

h = 2.5marea = 200 m2Wall area = 144 m2

Good quality construction Aul=1.4 cm2/m2

Location: Brindisi, Italy

Two occupants One bedroom

 $Q_{ig_{sensible}} = 136 + 2.2 \times A_{cf} + 22N_{oc}$

 $Q_{ig_{sensible}} = 136 + 2.2 \times 200 + 22 \times 2$

 $Q_{ig_{sensible}} = 620 \, W$

 $Q_{ig_{latent}} = 20 + 0.22 \times A_{cf} + 12N_{oc}$

 $Q_{ig_{latent}} = 20 + 0.22 \times 200 + 12 \times 2$

 $Q_{ig_{sensible}} = 88 W$

 $A_{es} = 200 + 144 = 344 \, m^2$

 $A_L = 344 \times 1.4 = 481.6 \ cm^2$

BRINDISI, Italy

WMO#: 163200

Lat: 40.65N

Long: 17.95E

StdP: 101.2

Time Zone: 1.00 (EUW)

Period: 86-10

(1)

Γ	Coldest	Heating	, DB		Hum	idification D	P/MCDB and	HR	(Coldest mon	MCWS/PCWD				
	Month	riedung DB		u	99.6%			99%		0.	4%	1	%	to 99.6% DB	
L	MOHUT	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250

Hottest Month	Hottest Hottest				Cooling	DB/MCWB						MCWS/PCWD				
		Month	th 0.4%			1%		2%		0.4%		1%		2%		% DB
	MOHUI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
,	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180

ı				Dehumidific	cation DP/M	CDB and HR	₹					Enthalp	y/MCDB										
[0.4%			1%			2%		0.	4%	1	%	2	5%	8 to 4 &							
[DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6							
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)							
)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)						

Γ	Evto	eme Annual	we	Extreme		Extreme	Annual DB	n-Year Return Period Values of Extreme DB									
- [Extreme Annual WS			Max	Me	ean	Standard deviation		n=5 years		n=10 years		n=20 years		n=50 years		
[1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-22	42.8	-3.2	44.9	

$$IDF_{heating} = 0.06369 \frac{L}{s \times cm^2}$$

$$IDF_{cooling} = 0.03188 \frac{L}{s \times cm^2}$$

 $V_{infiltration_{heating}} = A_L \times IDF = 481.6 \text{ cm}^2 \times 0.06369 \frac{L}{s \times cm^2} = 30.6731 \frac{L}{s}$

$$V_{infiltration_{cooling}} = A_L \times IDF = 481.6 \text{ cm}^2 \times 0.03188 \frac{L}{s \times cm^2} = 15.3534 \frac{L}{s}$$

$$V_{ventilation} = 0.05 A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 m^2 + 3.5 \times 2 = 17 \frac{L}{s}$$

$$V_{inf-ventilation_{heating}} = 30.67 \frac{L}{s} + 17 \frac{L}{s} = 47.67 \frac{L}{s}$$

$$V_{inf-ventilation_{cooling}} = 15.35 \frac{L}{s} + 17 \frac{L}{s} = 32.35 \frac{L}{s}$$

$$Qinf-ventilation_{cooling}{}_{sensible} = C_{sensible} V \Delta T_{cooling} = 1.23 \times 32.35 \frac{L}{s} \times 7.1 = 282.51 \, W$$

$$Qinf-ventilation_{cooling}{}_{latent} = C_{latent} V \Delta \omega_{cooling} = 3010 \times 32.35 \frac{L}{s} \times 0.0039 = 379.75 \, W$$

$$Qinf-ventilation_{heating}{}_{sensible} = C_{sensible} V \Delta T_{heating} = 1.23 \times 47.67 \frac{L}{s} \times 15.9 = 932.28 \, W$$

$$Qinf-ventilation_{heating} = C_{latent} V \Delta \omega_{heating} = 3010 \times 47.67 \frac{L}{s} \times 0.0065 = 932.66 \, W$$