

Интернет вещей (IoT) - это концепция, согласно которой различные физические устройства (вещи) соединены между собой и с интернетом. Эти устройства могут взаимодействовать, обмениваться данными и выполнять определенные задачи без прямого участия человека.

Примеры устройств IoT могут включать умные термостаты, умные холодильники, датчики влажности, носимые устройства (например, умные часы) и другие предметы, которые могут быть подключены к сети и обмениваться информацией для повышения эффективности, удобства и автоматизации задач.

Цель проекта — разработка аппаратно-программного решения для цифровых средств радиотелеметрии, которое обеспечит энергоэффективный, помехоустойчивый обмен данными между портативными IoT устройствами с батарейным питанием.

Задача проекта — выполнить анализ концепции IoT и возможностей современных технологий технических беспроводной связи, на основе результатов которого выбрать разработки технологию ДЛЯ аппаратнопрограммного решения по критериям оптимального баланса между энергопотреблением, скоростью обмена, используемым спектром частот, бюджетом канала связи и доступностью элементной базы, реализующей аппаратную часть.

Типы современных беспроводных сетей:

- WPAN (Wireless Personal Area Network) беспроводные персональные сети;
- WLAN (Wireless Local Area Network) беспроводные локальные сети;
- WNAN (Wireless Neighborhood Area Network) беспроводные сети районов;
- WWAN (Wireless Wide Area Network) беспроводные глобальные сети.

LPWAN (Low Power Wide Area Network) - это тип сетей связи, предназначенных для передачи данных на большие расстояния с минимальным энергопотреблением.

Эти сети предоставляют большой радиус действия, что позволяет устройствам передавать данные на большие расстояния, например, в несколько километров или даже десятков километров, используя небольшое количество энергии.

SIGFOX - это компания и стандарт беспроводной связи, предназначенный для передачи данных от устройств в Интернете вещей (IoT).

В основе SIGFOX лежит идея предоставления простой и недорогой возможности для устройств loT передавать небольшие объемы данных на большие расстояния.

SIGFOX применяется для отслеживания и мониторинга различных объектов, таких как датчики, устройства безопасности и другие IoT устройства, которые требуют связи в удаленных или труднодоступных местах.

Характеристика	Описание
Частотный диапазон	868 МГц в Европе, 902 МГц в США
Ширина полосы	100 Гц
Тип модуляции	UNB (Ultra Narrow Band)
Максимальная скорость передачи	100 бит/сек
Разрешение в передаче данных	12 битов (может варьироваться в зависимости от сообщения)
Дальность связи	В зависимости от условий окружающей среды: от 10 до 50 км
Энергопотребление	Низкое (благодаря ограниченной скорости передачи данных)
Спектральная эффективность	Высокая
Стандарт	Собственный SIGFOX
Максимальное количество сообщений от устройства в день	140 сообщений
Топология сети	Звездообразная
Сфера применения	IoT: мониторинг окружающей среды, умные города, медицинская техника, логистика и другие
Преимущества	Низкое энергопотребление, долгий срок службы, широкий радиус действия, низкая стоимость
Недостатки	Низкая скорость передачи данных, ограниченные возможности передачи данных

LoRa (Long Range) представляет собой беспроводную технологию связи, разработанную для передачи данных на длинные расстояния с низким энергопотреблением.

LoRa основывается на технологии модуляции с расширенным спектром и вариации линейной частотной модуляции (Chirp Spread Spectrum, CSS) с интегрированной прямой коррекцией ошибок (Forward Error Correction, FEC).

Технология LoRa значительно повышает чувствительность приемника и, аналогично другим методам модуляции с расширенным спектром, использует всю ширину полосы пропускания канала для передачи сигнала, что делает его устойчивым к канальным шумам и нечувствительным к смещениям, вызванным неточностями в настройке частот при использовании недорогих опорных кварцевых резонаторов.

Характеристика	Описание
Диапазон частот	868 МГц (в Европе), 915 МГц (в Северной Америке), 433 МГц (в некоторых странах)
Ширина полосы	125 кГц, 250 кГц или 500 кГц
Режим модуляции	LoRa
Дальность связи	До 15 км в открытом пространстве, в зависимости от условий и используемой конфигурации
Скорость передачи данных	От нескольких бит в секунду до нескольких килобит в секунду
Энергопотребление	Очень низкое, что делает LoRa подходящей для устройств с ограниченным источником питания
Режимы работы	Передача данных, прием данных, ожидание
Тип сети	Структура сети с узлами, в которой узлы могут отправлять данные друг другу или через шлюз
Стек протоколов	Обычно используется в сочетании с протоколами верхнего уровня, такими как MQTT или CoAP

До нескольких десятков километров

Дальность связи

SIGFOX подходит для простых сценариев с низкой пропускной способностью, в то время как LoRa может быть более гибким для более сложных приложений, требующих высокой пропускной способности и гибкости в выборе частоты.

