

Fundamentals of Accelerated Data Science

NVIDIA

Workshop Overview

An introduction to data science with a focus on speed and efficiency

Learning objectives:

- Understand the fundamental concepts of data science and parallel computing
- Explore practical examples of accelerated data science pipelines
- Examine the methods used to achieve acceleration in data science and discuss their broader implications

This workshop will not cover statistical analysis, neural networks, and distributed computing

	Workshop Outline
Task 1	Data science overview Data manipulation
Task 2	Graph analytics
Task 3	Machine Learning
Coding Assessment	Biodefense

Section 1 Agenda

- Data Science Fundamentals
- GPU Computing & RAPIDS
- Accelerating and Scaling Data Manipulation
- Data Visualization
- Interoperability
- Hands-On Lab

Data Science Is the Key to Unlocking the Future of Modern Business

Enables data-driven decision making

Retail

Supply Chain & Inventory Management
Price Management / Markdown Optimization
Promotion Prioritization And Ad Targeting

Financial Services

Claim Fraud
Customer Service Chatbots/Routing
Risk Evaluation

Telecom

Detect Network/Security Anomalies Forecasting Network Performance Network Resource Optimization (SON)

Consumer Internet

Ad Personalization
Click Through Rate Optimization
Churn Reduction

Healthcare

Improve Clinical Care
Drive Operational Efficiency
Speed Up Drug Discovery

Oil & Gas

Sensor Data Tag Mapping
Anomaly Detection
Robust Fault Prediction

Manufacturing

Remaining Useful Life Estimation Failure Prediction Demand Forecasting

Automotive

Personalization & Intelligent Customer Interactions Connected Vehicle Predictive Maintenance Forecasting, Demand, & Capacity Planning

Data Science Overview

The study of data to extract meaningful insights

• Data science is a multidisciplinary field that combines principles and practices from the fields of mathematics,

statistics, artificial intelligence, and computer engineering to analyze large amounts of data.

- Helps to ask and answer questions like:
 - Descriptive Analysis (what happened)
 - Diagnostic Analysis (why it happened)
 - Predictive Analysis (what will happen)
 - Prescriptive Analysis (what can be done with the results)

Data
Science

Math & Computer
Statistics Science

• More than just quantitative analysis - it combines knowledge of tools, methods, and technologies to generate meaning from data

Data Science Is More Than Machine Learning and Analytics

Non-analytical tasks related to data science are equally important

Analytical tasks include:

- Machine learning model development
- Measuring key metrics
- Statistical analysis
- Data visualizations

Non-analytical tasks (upstream) include:

- Extract, transform, and load (ETL)
 - Data collection
 - Data cleaning and preprocessing
 - Data modeling
- Data engineering

Data Science Is More Than Machine Learning and Analytics

Non-analytical tasks related to data science are equally important

Analytical tasks include:

- Machine learning model development
- Measuring key metrics
- Statistical analysis
- Data visualizations

Non-analytical tasks (upstream) include:

- Extract, transform, and load (ETL)
 - Data collection
 - Data cleaning and preprocessing
 - Data modeling
- Data engineering

Challenges in Data Science Today

What needs to be solved to empower data scientists

INCREASING BIG DATA USE CASES

Data sets are continuing to dramatically increase in size

Multitude of sources

Different data formats with varying quality

SLOW CPU PROCESSING

End of Moore's law, CPUs aren't getting faster

Many popular data science tools are CPU-only

CPUs are not designed to parallelize process well

COMPLEX SOFTWARE MANAGEMENT

Time consuming to install software

Nearly impossible to manage all version conflicts

Updates often break other software

Less Waiting. More Building.

The right solution enables data scientists to focus on delivering value

ACCELERATED COMPUTING WORKFLOW

Less Waiting. More Building.

The right solution enables data scientists to focus on delivering value

Modern Applications Need Accelerated Computing

Petabyte scale data | Massive models | Real-time performance

CPU and GPU Comparison

GPUs leverage parallel processing to handle large datasets

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

DataFrame

Two-dimensional labeled data structure with columns of potentially different types

Structured (predefined format/schema):

- Tables
- Spreadsheets
- CSVs
- Relational databases

Semi-structured:

- Graph
- JSONs

Unstructured (doesn't follow a specific data model or schema):

- Texts
- Images
- Audios
- Genes

DataFrame

Two-dimensional labeled data structure with columns of potentially different types

Structured (predefined format/schema):

- Tables
- Spreadsheets
- CSVs
- Relational databases

Semi-structured:

- Graph
- JSONs

Unstructured (doesn't follow a specific data model or schema):

- Texts
- Images
- Audios
- Genes

	Column 1	Column 2	Column 3
Row 1	7	2	3
Row 2	2	3	4
Row 3	3	4	5

DataFrame

Two-dimensional labeled data structure with columns of potentially different types

Structured (predefined format/schema):

- Tables
- Spreadsheets
- CSVs
- Relational databases

Semi-structured:

- Graph
- JSONs

Unstructured (doesn't follow a specific data model or schema):

- Texts
- Images
- Audios
- Genes

	Column 1	Column 2	Column 3
Row 1	1	2	3
Row 2	2	3	4
Row 3	3	4	5

Basic Idea

Vectorized operations are typically much faster than equivalent loops or iterations

Problem: (Column 1 - Column 2) x Column 3:

Sequential:

$$1.(1-2) \times 3 = -3$$

$$2.(2-3) \times 4 = -4$$

$$2.(2 - 3) \times 4 = -4$$

 $3.(3 - 4) \times 5 = -5$

	Column 1	Column 2	Column 3
Row 1	7	2	3
Row 2	2	3	4
Row 3	3	4	5

Parallel (able to leverage vector operations):

$$\begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 3 & 45 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \\ -5 \end{bmatrix}$$

Basic Idea

Total performance scales with both vector width and number of cores

Problem: (Column 1 - Column 2) x Column 3:

Sequential:

1.
$$(1 - 2) \times 3 = -3$$

2. $(2 - 3) \times 4 = -4$
3. $(3 - 4) \times 5 = -5$

	Column 1	Column 2	Column 3
Row 1	1	2	3
Row 2	2	3	4
Row 3	3	4	5

Parallel (able to leverage vector operations):

Accelerated Computing Swim Lanes

RAPIDS makes GPU-acceleration more seamless while enabling specialization for maximum performance

Easier to Use Zero Code Change: Acceleration Plugins (no-code change) cudf.pandas: Accelerated Pandas, Accelerated NetworkX nx-cugraph, RAPIDS Spark Accelerator, Array-API backed Scikit-learn... Hybrid CPU/GPU libraries (minimal change) Pytorch, FAISS, Tensoflow, XGBoost, cuML-CPU ... Dask, pySpark... GPU Python Libraries (GPU Python code) RAPIDS core libraries (cuDF, cuML, cuGraph, cuVS), RMM, CuPy, Numba, OpenAl Triton ... Python/CUDA libraries (Hybrid Python / CUDA code) CuPy RawKernels, Numba CUDA, Cython wrappers for CUDA ... C++/CUDA high level (High-level C++/CUDA code) RAFT, CCCL: Thrust, CUB ... CUDA Toolkit (C++/CUDA code and kernels) cuBLAS, cuDNN, cuSolver, cuSPARSE, ...

How Data Science Uses cuDF

GPU DataFrame library accelerates ETL, analytical, and data processing for machine learning workflows

Python interface to CUDA C++ libraries for loading, joining, aggregating, filtering, and otherwise manipulating data using a DataFrame style API

- Accelerated file readers for prevalent formats in data science
- Uses Apache Arrow columnar memory format as its internal data format for efficient processing of tabular data
- Powerful aggregation functions using GroupBy
- Various string and list manipulation
- Ability to write user-defined functions (UDFs), without needing to write CUDA code
 - JIT compilation of User-Defined Functions (UDFs) using Numba

Resulting in:

- Faster statistical analysis
- Quicker response from interactive visualization
- Data preparation for downstream ML tasks
- Remove feature engineering bottlenecks

Apache Arrow

Open-source, cross-language development platform for in-memory data processing and analytics

- Columnar Format
 - Data is stored column-by-column instead of row-by-row
 - Efficient compression by grouping similar data types together
 - Leverages GPU strengths for vectorized processes using SIMD (single instruction, multiple data) operations
- In-memory data structure specification
- De-facto standard

Advantages:

- Fast access for operations like aggregation, filtering, and vectorized computations
- Zero-copy data transfer can be shared across tools without being serialized, deserialized, or duplicated
- Reduced memory requirements enables efficient handling of large datasets
- Integrates well with columnar file formats such as Parquet, allowing for efficient reading of data from disk
- Interoperability

GroupBy Operations

Split-apply-combine

GroupBy operations allow users to separate data into groups based on common characteristics or a defined criteria

- .agg/.aggregate compute a summary statistic (or statistics) for each group
- .transform perform some group-specific computations and return a like-indexed object
- apply apply function group-wise and combine the results together

GroupBy Operations

Design for vector operations and minimize iterations

GroupBy Operations

Design for vector operations and minimize iterations

RAPIDS cuDF

Enabler for popular DataFrame libraries

Several ways to use cuDF:

- Zero code change acceleration:
 - cudf.pandas
 - Write code with the full flexibility of pandas, then load cudf.pandas to accelerate on the GPU, with automatic CPU fallback if needed
 - Third-party library compatible and accelerates the entire pandas ecosystem
 - o cuDF provides an in-memory, GPU-accelerated execution engine for Python users of the Polars Lazy API
- Write cuDF code using DataFrame style API
- Dask-cuDF extends Dask & RAPIDS Accelerator for Apache Spark

Announcing RAPIDS cuDF Accelerates pandas with Zero Code Change

World's fastest data analytics with pandas

- Most powerful and flexible open-source data analysis / manipulation tool
 - Over 9.5M pandas users
- Accelerated by cuDF
 - 150x Faster than CPU-only

CPU

- Unified workflow on CPUs and GPUs across laptops, workstation & datacenter
- Compatible with third-party libraries built on pandas

Meeting Data Scientists Where They Are pandas pandas with RAPIDS

import pandas as pd
df = pd.read_csv("filepath")
df.groupby("col").mean()
df.rolling(window=3).sum()

Moad_ext cudf.pandas
import pandas as pd
df = pd.read_csv("filepath")
df.groupby("col").mean()
df.groupby("col").mean()

Load cudf.pandas Module spoofing the pandas import Third-party Library Your Code Using Pandas Call Pandas Function/Method Use Equivalent cuDF Function/Method If operation unsupported Copy to CPU Fallback to pandas Copy to GPU Result

Polars + RAPIDS cuDF

Polars is the fastest growing data analytics library

- High Performance DataFrame Library written in Rust
 - Build on Apache Arrow columnar memory format
 - Lazy Execution & Query Optimizer
- Gaining rapid adoption in data science community as a Pandas alternative

Polars is Accelerated with RAPIDS cuDF

- NVIDIA RAPIDS accelerates Polars through a GPU engine built into the lazy API
- The GPU Engine object can be passed to query execution for automatic acceleration (collect() function)

Execution Process

- Polars builds and optimizes the query plan
- cuDF inspects the plan, replacing supported operations with GPU-accelerated versions
- Unsupported operations fallback to CPU execution with minimal overhead

Lazy Execution and Query Optimization

How does it work?

Lazy Execution

- Polars uses lazy evaluation by default, but has eager execution available
- Queries are not executed immediately, but built into an execution plan

SORT BY [col("Company")]

Csv SCAN [./data/Taxi_Trips_-_2020.csv] $\pi */23;$ $\sigma [(col("Tips")) > (0.0)]$

Unoptimized Query

Optimized Query

Lazy Execution and Query Optimization

How does it work?

Lazy Execution

- Polars uses lazy evaluation by default, but has eager execution available
- Queries are not executed immediately, but built into an execution plan

Benefits of lazy evaluation:

- Allows global query optimization
- Minimizes unnecessary computations and memory usage
- Enables out-of-core processing for datasets larger than RAM

Query optimizer:

- Analyzes full query plan to determine most efficient execution
- Applies optimizations like predicate pushdown and projection pushdown
- Parallelizes operations across GPU/CPU cores automatically

RAPIDS + Dask

Distributed parallel computing on multi-GPU systems

- Dask is a parallel computing library built to scale Python workloads from single machines to supercomputer clusters
- Executes operations on chunks of data and aggregates results, thus enabling working with datasets that are larger than memory
- Scheduler coordinates the actions of several dask-worker processes spread across computing nodes
- Lazy execution operations on a Dask DataFrame build a task graph, which is optimized prior to execution

Accelerating Data Processing

Choosing tools based on use case, data size, performance requirements, and existing infrastructure

Accelerating Data Processing

Choosing tools based on use case, data size, performance requirements, and existing infrastructure

Complexity

Dask | Spark

ACCELERATED BY RAPIDS cuDF

pandas

Performance

- operates in-memory
- eager execution
- suited for smaller datasets (up to 1GB)

- handles larger-thanmemory data
- lazy execution
- suited for medium to large datasets (1GB - low hundreds GB)

- distributed computing
- lazy execution
- suited for massive datasets across cluster of machines
- requires more setup, overhead, and resources

RAPIDS Data Visualization

Popular libraries offer direct cuDF support or easy integration

- Scatter, line, bar charts, and more
- Interactive dashboards
 - Disruption due to slow processing speed creates
 friction in the analysis process
- cuxfilter
 - Built on a host of pyViz ecosystem tools
- Cross-filtering apply interactions from one chart as filters to other charts in the dashboard
- Efficient GPU-backed in-browser visualization
 - hvPlot + Datashader + cuxfilter + Plotly Dash

Datashader

Disruption due to slow processing speed creates friction in the analysis process

Datashader - a graphics pipeline system for creating meaningful representations of large datasets quickly and flexibly

- Work by rasterizing or aggregating large datasets into regular grids that can be viewed as images
- Can be GPU-accelerated by leveraging cuDF or other CPU-accelerated tools for the data aggregation step

Traditional Model

Too much data movement and too many makeshift data formats require transformation

RAPIDS Model

Shared, standard data structures are essential to building an efficient workflow

One Format for Interoperability and Efficiency

Standardized, language-agnostic in-memory columnar format for structured data

Interoperability with CuPy

Interoperability of the GPU PyData Ecosystem

Using DLPack and __cuda_array_interface__ – the CUDA array interface is a standard format that describes a GPU array to allow sharing GPU arrays between different libraries without needing to copy or convert data

RAPIDS Transforms Data Science

An optimized hardware-to-software stack for the entire data science pipeline

Accelerating End-to-End Data Science Workflows

NVIDIA Data Science aims to provide seamless integration of NV libraries and SDKs for data scientists

Tips:

- Memory management
 - Some vectorized operations may create temporary copies of data, which can be problematic for very large datasets
- Leverage parallel processing when possible (GPU)
 - Design operations to use vector operations (groupby.apply is iterative and slow)
- Keep data on the GPU as much as possible
 - Minimize copy/convert operations
- Diagnose and remove bottlenecks

