# Лабораторная работа № 3.3.4 Эффект Холла в полупроводниках.

Никита Москвитин, Б04-204

2023

### 1 Аннотация

В данной работе измерялись основные параметры полупроводника. Были получены значения концетрации носителей заряда, их подвижности. Был определен тип полупроводника.

# 2 Введение

## Эффект Холла

Во внешнем магнитном поле  $\vec{B}$  на заряды действует сила Лоренца:

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}.$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с  $\vec{E}$ . Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лорнеца. Возникновение попречного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

#### Мостик Холла



Рис. 1: Схема мостика Холла

Для исследования завиисимости проводимости среды от магнитного поля используют т.н. мостик Холла. В данной схеме (Рис. 1) ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, "прибивает"носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно  $U_{\perp} = E_y a$ , где

$$E_y = \frac{j_x B}{nq}.$$

Плотность тока, текущего через образец, равна  $j_x = \frac{I}{ah}$ , где I – полный ток, ah – поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{naa}I = R_H \frac{B}{a}I,$$

где константу

$$R_H = \frac{1}{nq}$$

называют  $nocmoshhoй\ Xonna$ . Знак постоянной Xonna определяется знаком заряда носителей.

Продольная напряжённость электрического поля равна

$$E_x = \frac{j_x}{\sigma_0},$$

и падение напряжения  $U_{\parallel}=E_x l\ в donb$  пластинки определяется омическим сопротивлением образца  $R_0=rac{l}{\sigma_0 ah}$ :

$$U_{\parallel} = IR_0.$$

Интересно отметить, что немотря на то, что тензор проводимости явно зависит от B, продольное сопротивление образца в данной геометрии от магнитного поля ne зависит.

# 3 Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на Рис. 2.



Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметров источника питания  $A_1$ . Разъём  $K_1$  позволяет менять направление тока в обмотках электромагнита.

Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к батарее ( $\approx 1,5$  В). При замыкании ключа  $K_2$  вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром  $A_2$ .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов  $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом – их разности. В этом случае ЭДС Холла  $\varepsilon_{\rm X}$  может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:  $\varepsilon_{\rm X} = U_{34} \pm U_0$ . При таком способе измерения нет неообходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку  $\varepsilon_{\rm X}$  можно определить характер проводимости – электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля. Измерив ток I в образце и напряжение  $U_{35}$  между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al},$$

где  $L_{35}$  – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

# 4 Измерения

Таблица 1: Измерения для ВАХа

| І, мА | 0,29  | 0,41  | 0,5   | 0,61  | 0,7   | 0,8   | 0,9   | 1     | 0,2  | 0,15 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| U, мВ | 1,135 | 1,602 | 1,965 | 2,389 | 2,746 | 3,145 | 3,526 | 3,916 | 0,78 | 0,58 |

Таблица 2: Значения ЭДС Холла при токе I=1 мА

| _ |        |       |       |           |       |       |
|---|--------|-------|-------|-----------|-------|-------|
|   | U, мВ  | 0,388 | 0,544 | $0,\!656$ | 0,735 | 0,794 |
|   | В, мТл | 484,2 | 668,7 | 803,2     | 894,2 | 958,7 |

Таблица 3: Значений ЭДС Холла при токе I=0.8 мA

| U, MB  | 0,323 | 0,429 | 0,52  | 0,582 | 0,633 |
|--------|-------|-------|-------|-------|-------|
| В, мТл | 484,2 | 668,7 | 803,2 | 894,2 | 958,7 |

# 5 Обработка результатов

Из первого графика (Рис.3) мы получаем сопротивление образца  $R=\frac{1}{k}=(3,91982\pm0,00265)$  Ом. Посчитаем проводимость  $\sigma=\frac{l}{SR}=(3,1889\pm0,0022)$  Ом\*см.

Таблица 4: Значений ЭДС Холла при токе  $I=0.5~\mathrm{mA}$ 

| 1      |       | 7 1   |       | 1     | , ,   |
|--------|-------|-------|-------|-------|-------|
| U, мВ  | 0,2   | 0,269 | 0,326 | 0,367 | 0,397 |
| В, мТл | 484,2 | 668,7 | 803,2 | 894,2 | 958,7 |

Приведем значения коэффицентов налона в зависимости от тока для графиков ЭДС Холла в зависимости от тока(Рис. 4- 6) в Таблице 5. И построим график коэффицентов наклона от тока, для усредения значений (Рис.7)

Таблица 5: Значения коэффицентов наклона графиков в зависимости от тока

| І, мА   | 0,5        | 0,8        | 1         |
|---------|------------|------------|-----------|
| k, В/Тл | 4,15274E-4 | 6,51287E-4 | 8,5191E-4 |

Коэффицента наклона нового графика  $K=\frac{1}{nae}=(8,36\pm0,13)*10^{-4}~\mathrm{B/T\pi^*mA}$ , тогда концетрация  $n=(7,47\pm0,12)*10^{15}~\mathrm{cm^3}$ . Посчтиаем постоянную Холла  $R_H=K*a=(8,36\pm0,13)*10^{-4}~\mathrm{m^3/K\pi}$ . А подвижность  $\mu=\frac{\sigma}{en}=(2670\pm50)\frac{\mathrm{cm^2}}{\mathrm{B^*c}}$ . Получается проводимость n-типа.

# 6 Вывод

Мы получили для нашего образца такие значения:

проводимость  $\sigma = (3, 1889 \pm 0, 0022)$  Ом\*см концетрация  $n = (7, 47 \pm 0, 12) * 10^{15}$  см<sup>3</sup> постоянная Холла  $R_H = (8, 36 \pm 0, 13) * 10^{-4}$  м<sup>3</sup>/Кл подвижность  $\mu = (2670 \pm 50) \frac{\text{см}^2}{\text{R*}_c}$ 

Как мы можем понять из подвижности, это не просто обычный проводник n-типа, так как табличное значение подвижности  $\mu=3800\frac{{\rm cm}^2}{{\rm B}^*{\rm c}}$ , скорее всего это лигированный германий – с примесями, здесь имеет смысл быть электронно-дырочная проводимость. ПРи этом все цели были выполнены, а так же результаты коррелирует с реальностью.



Рис. 3: ВАХ



Рис. 4: График зависимости ЭДС Холла от индукции магнитного поля при токе I=1 мА



Рис. 5: График зависимости ЭДС Холла от индукции магнитного поля при токе I=0.8 мА



Рис. 6: График зависимости ЭДС Холла от индукции магнитного поля при токе  $I=0.5\,$  мА



Рис. 7: График зависимости коэффицентов наклона от тока