Multi-Armed Bandits

Evaluative feedback

Not soperised learning We've not given labels

Reading	B
Writing	C-
Mathematics	D
Science	C-
History	B+
Art	B-
P.E.	В

MAB - reward - retion space Applications

- Online Advertising and Recommendation
- Clinical Trials
- Robotics
- Dynamic Pricing
- Search Engine Optimization
- Education and Learning Platforms

Problem formalism

Actions

- Arms $\mathcal{A} = \{a_1, \dots, a_k\}$
 - Each arm is associated with an unknown reward distribution
- Rewards $r_t(a_i)$
- Possible Goals
 - Maximize cumulative reward (Minimize regret)
 - Best arm identification
- Standard Assumptions
 - Independence: Rewards from each arm are independent
 - Stationarity: Reward distributions don't change over time

Stocke Shity is allowed

predone Der 1-step interaction How should we solve this problem?

initial exploration of citions median std full dist.

- figure out which has highest mean revard and
take that action "Smar" explorador Exploitation Balance exploration & exploitation

Random maybe good at first pur explication

bed exploitation

Greedy

$$a_{1}$$
 a_{2} a_{3}
 $t=1$ 0 $t=2$ 0 $t=3$
 $t=4$
 $A_{1}=0$ $A_{2}=0$
 $A_{3}=0$

Exploration

SE[0,1] determines the prob of taking a rand action ϵ -Greedy pick E randonly generate XE[0,1] if $X \leq E$ take rand action uniformly take greely action

*Ameal 2: start 2=1 then 2-70 as t->00

Sutton/Barto figure

- 10 arms
- Each arm has stochastic reward

$$r \sim N(Q^*(a), 1)$$

• Averaged over 2000 bandit problems where each problem starts with $Q^*(a) \sim N(0,1)$ for all a

Plays

Problems?

never stops exploring explores random

Boltzmann (Softmax) Exploration

$$Q(a) = \frac{1}{n} \sum_{i=1}^{n} r_i$$
 Sample average
$$P(a_i) = \frac{\exp(\beta Q(a_i))}{\sum_{i=1}^{n} \exp(\beta Q(a_i))}$$

$$\beta = 0$$

$$= 0$$

$$\Rightarrow 0$$

Chernoff-Hoeffding Inequality

- Let X be a random variable in the range [0,1] and $x_1, x_2, ..., x_n$ be n independent and identically distributed samples of X.
- Let $\bar{X} = \frac{1}{n} \sum_{i} x_{i}$ (the empirical average)
- Then we have $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$

Some fun math

- $P(\bar{X} \ge \mathbb{E}[X] + c) \le e^{-2nc^2}$
- Typically, we want to pick some kind of high confidence $1-\delta$ such that we are very confident about our sample mean being close to the true expectation.
- If we want

$$P(\overline{X} \ge \mathbb{E}[X] + c) \le \delta$$

What is c in terms of δ ?

More math

- ullet We can pick δ to be whatever we want, so let's pick
- If we select $\delta = \frac{1}{t^2}$

What is c?

UCB1 (UCB = Upper Confidence Bound)

Key Idea: Optimism in the face of uncertainty

- Play each action once to get initial averages of arm values
- Keep track of counts of pulls for each arm n_i
- At each step t, select $\arg\max \overline{X_i} + c(i,t)$
 - Where $c(i, t) = \sqrt{\frac{log(t)}{n_i}}$

Regret

- Define μ^* as the maximum expected payoff over all k arms
- Regret(T) = $T\mu^* \sum_{t=1}^T r_t$
- Epsilon-Greedy Regret
 - O(T)
- UCB1 Regret
 - $O(\sqrt{kT \log(T)})$
- A **No-Regret** algorithm is such that Regret(T)/T $\rightarrow 0$ as $T \rightarrow \infty$
 - Average regret goes to zero

Regret Bound vs. Turn

k (number of arms): 2 \checkmark T (number of steps): 1000 \checkmark

https://cse442-17f.github.io/LinUCB/

Regret Bound vs. Turn

k (number of arms): 100 \checkmark T (number of steps): 1000 \checkmark

https://cse442-17f.github.io/LinUCB/

Other Bandit Topics

- Thompson Sampling
- Best Arm Identification
- Adversarial Bandits
- Contextual Bandits
 - State information, s_t
 - Reward depends on state, and action
- Linear Bandits
 - Type of contextual bandit
 - · Reward is a linear combination of state features.