Differentiable Neural Computers (LSTM 2.0)

Itamar Ben-Ari Intel, Advanced Analytics

Family tree example

Differentiable Neural Computer Family tree inference task (artistic rendering)

bAbI 20 tasks

Task 1: Single Supporting Fact

Mary went to the bathroom.

John moved to the hallway.

Mary travelled to the office.

Where is Mary?

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen?

Task 5: Three Argument Relations

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred?

Who did Fred give the cake to?

Task 2: Two Supporting Facts

John is in the playground.

John picked up the football.

Bob went to the kitchen. Where is the football?

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom?

What is the bedroom north of?

Task 6: Yes/No Questions

John moved to the playground.

Daniel went to the bathroom.

John went back to the hallway.

Is John in the playground?

Is Daniel in the bathroom?

Task	LSTM	DNC
	(Joint)	(Joint)
1: 1 supporting fact 2: 2 supporting facts 3: 3 supporting facts 4: 2 argument rels. 5: 3 argument rels.	24.5	0.0
2: 2 supporting facts	53.2	0.4
3: 3 supporting facts	48.3	1.8
4: 2 argument rels.	0.4	0.0
5: 3 argument rels.	3.5	0.8
6: yes/no questions	11.5	0.0
7: counting	15.0	0.6
8: lists/sets	16.5	0.3
9: simple negation	10.5	0.2
indefinite knowl.	22.9	0.2
 basic coreference 	6.1	0.0
12: conjunction	3.8	0.0
13: compound coref. 14: time reasoning 15: basic deduction	0.5	0.1
14: time reasoning	55.3	0.4
15: basic deduction	44.7	0.0
16: basic induction	52.6	55.1
17: positional reas. 18: size reasoning	39.2	12.0
18: size reasoning	4.8	0.8
19: path finding	89.5	3.9
20: agent motiv.	1.3	0.0
Mean Err. (%)	25.2	3.8
Failed (err. > 5%)	15	2

Overview of

DNN, RNN and LSTM

input

output

 σ : sigmoid function

Fully connected function:

$$y_t = f(g(x)) = \sigma(W \cdot x + b)$$

Basic RNN

$$h_t = \sigma(W \cdot \left[h_{t-1,} x_t\right] + b)$$

Memory addressing – reads and writes the entire memory at once .

LSTM – Full-fledged memory controller

LSTM

LSTM

1. Erase memory

erase most of block 1 and part of block 5

2. Write new data

$$C_t = C_t' + i_t * \tilde{C}_t$$

3. Read memory

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

Differentiable Neural Computer

DNC vs LSTM $[h_{t-1}, x_t]$ $\xi_{t} = [e_{t}, \nu_{t}, k_{t}^{w}, \beta_{t}^{w}, f_{t}, g_{t}^{u}, g_{t}^{w}, k_{t}^{T}, \beta_{t}^{T}, \pi_{t}]$ $Control([h_{t-1},x_t])$ write erase new content $w_t^r = MAB(k_t^r, g_t^r, \pi_t)$ v_t $w_t^w = MAU(k_t^w, \beta_t^w, f_t, g_t^a, g_t^w)$ control $h_t = M_t^{\mathsf{T}} w_t^{\mathsf{T}}$ $M_t' = M_{t-1}(1 - w_t^w e_t^{\dagger})$ $M_t = M_t' + w_t^w v_t^{\dagger}$ Erase old content Read operation Write new content DNC $w_t^w e_t^\intercal$ softmax address e_t^{\intercal} 0.9 0.7 0.9

 v_t^{I}

 $w_t^w v_t^{\dagger}$

 w_t^w

DNC vs LSTM

DNC - Drill Down

Associative memory

I enduo't byleiee taht I culod aulaelty uesdtannrd waht I was rdnaieg.

Oxford Circus > ?

Line:

Central
Victoria
Piccadilly
Bakerloo

Memory

Oxford Circus>Tottenham Court Rd Tottenham Court Rd>Oxford Circus Green Park>Oxford Circus Victoria>Green Park Oxford Circus>Green Park Green Park>Victoria Green Park>Piccadilly Circus Piccadilly Circus>Leicester Sq. Piccadilly Circus>Green Park Leicester Sq>Piccadilly Circus Piccadilly Circus>Oxford Circus Charing Cross>Piccadilly Circus Piccadilly Circus>Charing Cross Oxford Circus>Piccadilly Circus Leicester Sq>Tottenham Court Rd Charing Cross>Leicester Sq. Leicester Sq>Charing Cross Tottenham Court Rd>Leicester Sq.

DNC - Drill Down

Associative memory

cosine similarity

$$w'_{t,i} = \frac{k_t \cdot M_{t,i \to}}{\|k_t\| \|M_{t,i \to}\|}$$

				ta .		
0.7	0.9	0.5	0.3	0.5	0.9	0.7
0.7	0.3	0.9	0.3	0.7	0.9	0.7
0.5	0.9	0.5	0.9	0.5	0.9	0.7
0.7	0	0.5	0.5	0.9	0.3	0

 M_{r}

Weighted soft max - Sharp and normalize

$$w_{t,i}^{assoc} = \frac{\exp(w_{t,i}'\beta_t)}{\sum_{j} \exp(w_{t,j}'\beta_t)} \qquad \text{s.t } \beta_t \in [1,\infty]$$

large beta = using a single block

DNC - Drill Down

$$\xi_t = [e_t, k_t^w, \beta_t^w, f_t, g_t^\alpha, g_t^w, k_t^r, \beta_t^r, \pi_t, \nu_t]$$

read mode

0	0.1	0.1	0.8
0.2	0	0.2	0.1
0.3	0.4	0	0.1
0.5	0.5	0.7	0

block 1 was written to after block 4 with degree 0.8

 $L_t[i,j]$ represents the degree to which memory block i was **the** location written to after block j

Computing final read address: $w_t^r = MAU(k_t^r, \beta_t^r, \pi_t)$

 $\hat{f}_t = L_t w_{t-1}^r$ next memory block

 $b_t = L_t^{\mathsf{T}} w_{t-1}^r$ previous memory block

 $w_t^{assoc_k_t^r}$ memory blocks similarity weight for read key k_t^r

switch between Associative and Sequentail addressing mechanism

read weights:

 $\pi_t \epsilon S_3$

$$w_t^r = \pi_t[1]b_t + \pi_t[2]w_t^{assoc_k_t^r} + \pi_t[3]\hat{f}_t$$

DNC – Reading from memory

location j was written to in the current step

degree to which block j was the last one written to:

$$P_{t-1}[j] = w_{t-1}^w[j] + (1 - \sum_k w_{t-1}^w[k]) P_{t-2}[j]$$

degree to which block i was written to after block j:

$$L_{t}[i, j] = w_{t}^{w}[i]P_{t-1}[j] + (1 - w_{t}^{w}[i] - w_{t}^{w}[j])L_{t-1}[i, j]$$

block j was the last block written to and block i is the current block written to

block i was written to after block j until the current step and both blocks were not writtent to in the current step

DNC – Writing to memory

write key

erase vector / write strength

$$\xi_t = [\hat{e}_t, k_t^w, \beta_t^w, f_t, g_t^a, g_t^w, k_t^r, \beta_t^r, \pi_t, \nu_t]$$

Address allocation

 u_t memory blocks usage weights $u_t = (1 - f_t w_{t-1}^r) * (u_{t-1} + w_{t-1}^w - u_{t-1} w_{t-1}^w)$

 $\dot{a}_t = 1 - u_t$ memory blocks availability for allocation

 $a_t = a$ sharper version of a_t which requiers sorting (we used weighted softmax instead)

Address Association

 $w_t^{assoc_k_t^w}$ memory blocks similarity weights for write key (associative addressing)

 g_t^a switch between allocatio vector and write key similarity vector

Final write address

write weights:
$$\dot{w}_t^w = g_t^a a_t + (1 - g_t^a) w_t^{assoc_k_t^w}$$

$$w_t^w = g_t^w \dot{w}_t^w$$

erase:
$$M'_t = M_{t-1}(1 - w_t^w e_t^\intercal)$$
write: $M_t = M'_t + w_t^w v_t^\intercal$

$$M_t = M_t' + w_t^w v_t^{\mathsf{T}}$$

$Copy\ task$

London under ground

Underground input:

(OxfordCircus, TottenhamCtRd, Central)

(TottenhamCtRd, OxfordCircus, Central) (BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerloo)

(BakerSt, OxfordCircus, Bakerloo)

(LelcesterSq, CharingCross, Northern) (TottenhamCtRd, LeicesterSq, Northern) (OxfordCircus, PiccadillyCircus, Bakerloo) (OxfordCircus, NottingHillGate, Central)

(OxfordCircus, Euston, Victoria)

84 edges in total

Traversal

Traversal question:

(BondSt, _ Central),

(. , Circle), (, , Circle),

(_, _, Circle), (_, _, Circle),

(_, _, Jubilee), (_, _, Jubilee),

Answer:

(BondSt, NottingHillGate, Central) (NottingHillGate, GloucesterRd, Circle)

(Westminster, GreenPark, Jubilee) (GreenPark, BondSt, Jubilee)

Shortest-path question:

(Moorgate, PiccadillyCircus, _)

Answer:

(Moorgate, Bank, Northern)

(Bank, Holborn, Central)

(Holborn, LeicesterSq, Piccadilly)

(LeicesterSq, PiccadillyCircus, Piccadilly)

London underground

Associetive memory in action: Oxford Circus>Tottenham Court Rd

Matching Networks

Pointer networks

