

BÁO CÁO BÀI THỰC HÀNH SỐ 2 Queuing

Môn học: Đánh giá hiệu năng mạng máy tính Lớp: NT531.P11.MMCL.1

Giảng viên hướng dẫn	ThS. Đặng Lê Bảo Chương	
Sinh viên thực hiện	21520202 – Hồ Hải Dương	
Mức độ hoàn thành	12/12 câu	
Thời gian thực hiện	23/10/2024	
Tự chấm điểm	10	

Phần bên dưới của báo cáo này là bài làm chi tiết của sinh viên thực hiện.

MỤC LỤC

Câu 1	2
Câu 2	2
Câu 3	2
Câu 4	3
Câu 5	4
Câu 6	5
Câu 7	6
Câu 8	7
Câu 9	7
Câu 10	7
Câu 11	8
Câu 12	8
Hình ảnh ayaal hài làm:	10

Câu 1.

$Tinh \lambda = A/t_m$

Để có được λ (tỷ lệ đến trung bình) áp dụng công thức lấy A/t_m (với A là số lượng sự kiện đến, và t_m là thời gian trung bình giữa các lần đến) tại ô B8 = B3/B5

Khởi tạo:	
Α	5
n	6
tm (arrival time)	4
K	15
N (No. of custume	18
λ	1.25

Câu 2.

Tính q

Công thức tính q (kích thước hàng đợi) dựa theo x (số lượng khách hàng trong hệ thống) và n (số lượng tài nguyên phục vụ):

- Nếu x < n: q = 0
- Nếu x ≥ n: q = x n

Sử dụng công thức tại ô B11 = IF(A11<\$B\$4, 0, A11-\$B\$4)

В	B12 \vee : $\times \vee f_x \vee$ =IF(A12<\$B\$4,0,A12-\$B\$4)						
A	A	В	С	D			
3	Α	5			P{im se		
4	n	6			P{del.}		
5	tm (arrival time)	4			P{loss}		
6	K	15					
7	N (No. of custume				E{q all		
8	λ	1.25			E{x}		
9				sum of Tx			
10	X Y	q 🔻	λ_x ⁻	μ_x *			
11	0	0					
12	1	0					
13	2	0					
14	3	0					
15	4	0					
16	5	0					
17	6	0					
18	7	1					
19	8	2					
20	9	3					
21	10	4					

Câu 3.

Tính λ_{x}

Có 2 trường hợp tính λ_x (tỷ lệ đến tại trạng thái x):

- Với N=0 (số nguồn khách là vô hạn): $\lambda_x = \lambda$
- Với N>0 (số nguồn khách là hữu hạn, N là số khách ban đầu):
 - O Nếu số lượng khách hàng trong hệ thống x nhỏ hơn hoặc bằng K (dung lượng hệ thống), thì: $\lambda_x = \lambda * (N x)$
 - \circ Nếu x vượt quá K, λ x bằng 0, vì không thể có thêm khách hàng nào vào hệ thống: $\lambda_x = 0$ (nếu x > K)

Tại ô C11 áp dụng công thức: = IF(A11<=\$B\$6,\$B\$8*(\$B\$7-A11),0)

C	C11 \vee : $\times \checkmark f_x \lor$ =IF(A11<=\$B\$6,\$B\$8*(\$B\$7-A11),0)					
A	А	В	С	D	E	
1	Hàng đợi M/M/n/	K/N				
2	Khởi tạo:				Output:	
3	Α	5			P{im ser.}	
4	n	6			P{del.}	
5	tm (arrival time)	4			P{loss}	
6	K	1 5				
7	N (No. of custume	18			E{q all state}	
8	λ	1.25			E{x}	
9				sum of Tx		
10	X T	q v	<u>λ_</u> x 🔻	μ_x *	T_x ▼	
11	0	0	22.5			
12	1	0	21.25	□		
13	2	0	20			
14	3	0	18.75			
15	4	0	17.5			
16	5	0	16.25			
17	6	0	15			
18	7	1	13.75			
19	8	2	12.5			

Câu 4.

Tính μ_x

Công thức tính μ_x (tỷ lê phục vụ tại trang thái x) phụ thuộc vào x và n, có 2 trường hợp:

- Nếu x > K (số lượng khách hàng vượt quá dung lượng hệ thống): μ x = 0
- Nếu $x \le K$, có 2 trường hợp:
 - \circ Nếu x > n (số lượng khách hàng lớn hơn số lượng server): $\mu_x = n\mu = n/t_m$
 - Nếu $x \le n$ (số lượng khách hàng nhỏ hơn hoặc bằng số lượng server): $\mu_x = x\mu = x/t_m$

Tại ô D11 áp dụng công thức: =IF(A11 > \$B\$6, 0, IF(A11 > \$B\$4, \$B\$4 / \$B\$5, A11 / \$B\$5))

Câu 5.

Tính T_x

Để tính T_x (Non-normalized term) có 2 trường hợp:

- Nếu x > K (số lượng khách hàng lớn hơn dung lượng hệ thống), thì $T_x = 0$
- Nếu x \leq K, công thức tính là $T_x = T_{x-1} * \lambda_{x-1}/\mu_x$

Tại ô E11 nhập giá trị 1 (do T_0 = 1), tại ô E12 áp dụng công thức: =IF(A12 > \$B\$6, 0, IF(D12 <> 0, E11 * (C11 / D12), 0))

Câu 6.

$Tinh P_x = T_x/(sum of T_x)$

Để tính được P_x (Xác suất ở trạng thái x):

- Đầu tiên tính tổng bao gồm giá trị T_x từ E11 đến E111 (hàng cuối tương ứng với trạng thái K).
- Tiếp theo, sau khi đã có tổng T_i thì tính P_x bằng cách chia T_x cho tổng này.

Tại ô E9 áp dụng công thức: =SUM(E\$11:E\$111)

Tại ô F11 áp dụng công thức: =E11/\$E\$9

Câu 7.

$T(nh \lambda(x) * P(x)$

Áp dụng công thức λ_x * P_x để tính tỷ lệ đến kết với xác suất tại trạng thái x. Tại ô G11 áp dụng công thức: = C11*F11

Câu 8.

Tính λ_T

Với giá trị λ_x * P_x đã tính được ở cột G, sử dụng nó để tính tổng tất cả các giá trị của λ_x * P_x từ trạng thái x=0 đến x=K=15.

Tại ô G9 áp dụng công thức: =SUMIF(A11:A111,"<="&B6,G11:G111)

Câu 9.

Tính P{immediate service}

Với n=6 mà theo công thức thì n-1 tức là x đi từ 1 đến 5. Để tính xác suất được phục vụ ngay lập tức, tại ô F3 áp dụng công thức: =SUMIF(A11:A111,"<"&B4,G11:G111)/G9

Câu 10.

Tính P{delayed service}

Với K=15 và x=n=6 mà theo công thức thì K-1 tức là x sẽ đi từ 6 đến 14. Để tính xác suất bị trì hoãn dịch vụ, tại ô F4 áp dụng công thức: =SUM(G17:G25)/G9

Câu 11.

Tính P{loss}

Với K=15 thì suy ra $(\lambda_{15}*P_{15})/\lambda_T$.

Để tính xác suất mất (xảy ra khi số lượng khách hàng trong hệ thống đã đạt đến mức tối đa K và không thể tiếp nhận thêm), tại ô F4 áp dụng công thức: =C26*F26/G9

Câu 12.

Tính E{q}

Đầu tiên phải tính (x-n)*P(x) ở cột H, áp dụng công thức tại ô H11: =(A11-\$B\$4)*F11

Tiếp theo, để tính E{q|all state} dùng hàm SUM để tính tổng các giá trị cột H từ H18 cho đến H26 (x=n+1 đến x = K), tại ô F7 áp dụng công thức: =SUM(H18:H26) Để tính E{q|queue exist} lấy giá trị tính được ở ô F7 chia cho tổng của giá trị từ F18 đến F26 (x=n+1 đến x=K), tại ô I7 áp dụng công thức: =F7/SUM(F18:F26)

Hình ảnh excel bài làm:

HẾT.