Exercise 10.3

Q1. In the figure, $\overline{AB} \cong \overline{DC}$, $\overline{AD} \cong \overline{BC}$.

Prove that $\angle A \cong \angle C$, $\angle ABC \cong \angle ADC$.

Given

 $\overline{AB} \cong \overline{DC}$

 $\overline{AD} \cong \overline{BC}$

To prove

 $\angle A \cong \angle C$

∠ABC ≅ ∠ADC

Proof

Statements		Reasons
In	$\triangle ABD \leftrightarrow \triangle CBD$	
	$\overline{AB} \cong \overline{DC}$	Given
	$\overline{AD} \cong \overline{BC}$	Given

	BD≅BD
·:	ΔABD ≅ ΔCBD
	$\angle A \cong \angle C$
	$\angle 1 \cong \angle 4 \dots (i)$
	$\angle 2 \cong \angle 3 \dots (ii)$
	$\angle 1 + \angle 2 = \angle 3 + \angle 4$
	∠ABC ≅ ∠ADC

Common

$$S.S.S \cong S.S.S$$

Corresponding angles of congruent triangles

Corresponding angles of congruent triangles

Adding (i) and (ii)

2. In the figure, $\overline{LN} \cong \overline{MP}$, $\overline{MN} \cong \overline{LP}$.

Prove that $\angle N \cong \angle P, \angle NML \cong \angle PLM$.

Given

 $\overline{LN} \cong \overline{MP}$

 $\overline{LP}\!\cong\!\overline{MN}$

To prove

 $\angle N \cong \angle P$. $\angle NML \cong \angle PLM$

	Statements	Reasons
In	$ \begin{array}{c} \Delta LMN \leftrightarrow \Delta LMP \\ LM \cong \overline{MP} \end{array} $	Given
	LP≅MN LM≅LM	Common
	Δ LMN \cong Δ LPM \angle N = \angle P \angle NML \cong \angle PLM	S.S.S ≅ S.S.S Corresponding angles of congruent triangles
		Corresponding angles of congruent triangles

Theorem

If in the correspondence of the two right-angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles are congruent. $(H.S \cong H.S)$

Proof

	Statements	Reasons
In	$m\angle DEF + m\angle DEM = 180^{\circ}(i)$	(Supplementary angles)
Now	$m\angle DEF = 90^{\circ}(ii)$	(Given)
∴	$m\angle DEM = 90^{\circ}$	{from (i) and (ii)}
In	$\triangle ABC \leftrightarrow \triangle DEM$	
!	BC≅EM	(construction)
:	∠ABC ≅ ∠DEM	(each ∠ equal to 90°)
	$\overline{AB} \cong \overline{DE}$	(given)
<i>:</i> .	ΔABC ≅ ΔDEM	S.A.S. postulate
And	$\angle C \cong \angle M$	(Corresponding angles of congruent
	$\overline{CA} \cong \overline{MD}$	triangles)
But	CA≅FD	(Corresponding sides of congruent triangles) (given)
:.	$\overline{MD} \cong \overline{FD}$	(B1, VII)
In	ΔDMF	Each is congruent to \overline{CA}
	$\angle F \cong \angle M$	$\overline{FD} \cong \overline{MD}$ (Proved)
But	$\angle C \cong \angle M$	(proved)
	$\angle C \cong \angle F$	(each is congruent to $\angle M$)
In	$\triangle ABC \leftrightarrow \triangle DEF$	
	AB≅DE	(given)
	∠ABC≅∠DEF	(given)
	$\angle C \cong \angle F$	(proved)
Hence	ΔABC ≅ ΔDEF	$(S.A.A \cong S.A.A)$

Example

If perpendiculars from two vertices of a triangle to the opposite sides are congruent, then the triangle is isosceles.

Given

In $\triangle ABC$, $\overrightarrow{BD} \perp \overrightarrow{AC}$, $\overrightarrow{CE} \perp \overrightarrow{AB}$ Such that $\overrightarrow{BD} \cong \overrightarrow{CE}$

 $\overline{AB} \cong \overline{AC}$

Proof

Statements		Reasons
În	$\Delta BCD \leftrightarrow \Delta CBE$	
	∠BDC ≡ ∠BEC	BD \(\text{AC, CE \(\text{LAB (given)} \)
		\Rightarrow each angle = 90°
	BC≅BC	Common hypotenuse
	BD≅CE	Given
	ΔBCD ≅ ΔCBE	H.S. ≅ H.S.
ł	∠BCD ≅ ∠CBE	Corresponding angles of $\cong \Delta s$.
Thus	∠BCA ≅ ∠CBA	
Henc	$e \overline{AB} \cong \overline{AC}$	In $\triangle ABC$, $\angle BCA \cong \angle CBA$