ASD Laboratorio 04

Cristian Consonni/Alessio Guerrieri

UniTN

28/10/2016

CALENDARIO

30/09	Introduzione
07/10	Ad-Hoc
14/10	No laboratorio
21/10	Grafi 1
28/10	Grafi 2
04/11	No laboratorio
11/11	Progetto 1
18/11	Progetto 1
25/11	Dinamica 1
02/12	Dinamica 2
09/12	No laboratorio
16/12	Progetto 2
21/12	Progetto 2

Progetti:

- 11-18 novembre;
- 16-21 dicembre;

Iscrizione ai progetti entro il **07 novembre**:

http://bit.ly/ASDprog

- presentazione progetto alla fine della lezione del 10 novembre;
- scadenza del progetto 18 novembre;
- judge verrà piallato e preparato per il progetto il 9 novembre;

SOLUZIONI

VISITA

- Basta una qualunque visita (in ampiezza, in profondità, ecc...)
- Nell'archivio zip sul sito ci sono numerose soluzioni

DIAMETRO

- Per ogni nodo di partenza, trovare il nodo più lontano.
- Distanza in un grafo non pesato si può calcolare utilizzando una BFS

IMPLEMENTAZIONE DFS RICORSIVA

```
Con grafo variabile pubblica
void visit(int n) {
  grafo[n]. visited=true;
  count++;
  for(int v:grafo[n]. vic)
    if(!grafo[v]. visited)
       visit(v);
}
```

4/7

SOLUZIONE NUMERO DI CAMMINI MINIMI

IDEA

- Stiamo calcolando il numero di diversi cammini minimi da s a v
- Sia P(v) l'insieme di predecessori di v, ovvero tutti i w tali che $(w, v) \in E$ e d(s, v) = d(s, w) + 1
- $NUMPATH(v) = \sum_{w \in P(v)} NUMPATH(w)$

SOLUZIONE NUMERO DI CAMMINI MINIMI

```
for all Nodes n do
   dist(n) = -1; path(n) = 0
end for
dist(S) = 0; path(S) = 1
queue.push(S)
while queue not empty do
   n = queue.top; queue.pop
   for all Nodes v \in vicini(n) do
      if dist(v) = -1 then
          dist(v) = dist(n) + 1; queue.push(v)
      end if
      if dist(v) = dist(n) + 1 then
          path(v) = path(v) + path(n)
      end if
   end for
end while
```

6/7

PROBLEMI

MASSIMA COMPONENTE FORTEMENTE CONNESSA

Dato un grafo orientato trovare la dimensione della massima componente fortemente connessa.

ORDINAMENTO TOPOLOGICO

Dato un grafo diretto aciclico, trovare un suo ordinamento topologico.

CAMMINO PIÙ LUNGO

Dato un grafo diretto aciclico, trovare la lunghezza del suo cammino più lungo.

BATMAN SI ANNOIA

Primo progetto dell'a.a. 2014/2015

