Partial Regularization of First-Order Resolution **Proofs**

J. Gorzny¹ B. Woltzenlogel Paleo^{2,3}

¹University of Waterloo

²Australian National University

³Vienna University of Technology

23 November 2016

The Quest for Simple Proofs

"The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory of the method of proof in mathematics in general. Under a given set of conditions there can be but one simplest proof. Quite generally, if there are two proofs for a theorem, you must keep going until you have derived each from the other, or until it becomes quite evident what variant conditions (and aids) have been used in the two proofs. "

—David Hilbert [Thi03]

The 'Real World'

nature.com : Sitemap

NATURE | NEWS

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

(See [HKM16])

First-Order Proof Compression Motivation

 The best, most efficient provers, do not generate the best, least redundant proofs.

 Many compression algorithms for propositional proofs; few for first-order proofs.

 Finding a minimal proof is NP-hard, so use heuristics to find smaller proofs (see [FMP11])

Our Goal

Lifting propositional proof compression algorithms to first-order logic.

This work: LowerUnits [FMP11] and

 ${\tt RecyclePivotWithIntersection} \ [FMP11,BIFH^+08]$

(Propositional) Proofs

Definition (Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals
- Γ (the proof clause) is inductively constructible using axiom and resolution nodes

Definition (Axiom)

A proof with a single node (so $E = \emptyset$)

(Propositional) Resolution

Definition (Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $\overline{I} \in \Gamma_L$ and $I \in \Gamma_R$, the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with \bar{I}
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I
- ψ 's conclusion is $(\Gamma_L \setminus \{\bar{I}\}) \cup (\Gamma_R \setminus \{I\})$

A Propositional Proof

23 November 2016

Deletion

Deletion of an edge

- The resolvent is replaced by the other premise
- Some subsequent resolutions may have to be deleted too

Deletion of a subproof ψ

- Deletion of every edge coming to $\rho(\psi)$
- The operation is commutative and associative

First-Order Proofs

Definition (First-Order Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals and substitutions
- Γ (the proof clause) is inductively constructible using axiom, (first-order) resolution, and contraction nodes

Axioms are unchanged

Substitutions and Unifiers

Definition (Substitution)

A mapping $\{X_1 \setminus t_1, X_2 \setminus t_2, \ldots\}$ from variables X_1, X_2, \ldots to terms t_1, t_2, \ldots

Definition (Unifier)

A substitution that makes two terms equal when applied to them.

First-Order (Unifying) Resolution

Definition (First-Order Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $I_L \in \Gamma_L$ and $I_R \in \Gamma_R$, and σ_L and σ_R are substitutions usch that $I_L \sigma_L = \overline{I_R} \sigma_R$, and the variables in $(\Gamma_L \setminus I_L) \sigma_L$ and $(\Gamma_R \setminus I_R) \sigma_R$ are disjoint, then the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with I_L and σ_L
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I_R and σ_R
- ψ 's conclusion is $(\Gamma_L \setminus I_L)\sigma_L \cup (\Gamma_R \setminus I_R)\sigma_R$

Unifying Resolution Example

$$\eta_1 \colon p(a) \vdash \quad \eta_2 \colon q(Y,X) \vdash p(Y)$$

$$\psi \colon q(a,X) \vdash$$

$$\sigma = \{ \textit{Y} \rightarrow \textit{a} \}$$
 Refutation when $\psi = \bot$

Contraction

Definition (Contraction)

If ψ' is a proof and σ is a unifier of $\{I_1,\ldots,I_n\}\subset\Gamma'$, then a contraction ψ is a proof where

- ψ 's nodes are the union of the nodes of ψ' and a new node v
- There is an edge from $\rho(\psi')$ to ν labeled with $\{l_1, \ldots, l_n\}$ and σ
- The conclusion is $(\Gamma' \setminus \{I_1, \dots, I_n\})\sigma \cup \{I\}$, where $I = I_k\sigma$ for $k \in \{1, \dots, n\}$

Contraction Example

$$\sigma = \{X \to a, Y \to f(b), Z \to f(b)\}$$

Contraction Example

$$\eta_1$$
: $p(X, Y), p(X, Z), p(U, V) \vdash q(Z)$

$$\uparrow \qquad \qquad \qquad \downarrow \\ \psi \colon p(X, Z) \vdash q(Z)$$

$$\sigma = \{ Y \to Z, U \to Z, V \to Z \}$$

Contraction Example

$$\eta_1$$
: $p(X, Y), p(a, Z), p(a, f(b)) \vdash q(Z)$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \psi$$
: $p(X, Y), p(a, f(b)) \vdash q(f(b))$

 $\sigma = \{Z \to f(b)\}$

Lowering Units

Definition (Unit)

A unit clause is a subproof with a conclusion clause (final clause) having exactly 1 literal

Theorem ([FMP11])

A unit clause can always be lowered

Compression is achieved by delaying resolution with unit clause subproofs.

LowerUnits

Two Traversals of the proof

- † Collect units with more than one resolvent
- \ Delete units and reintroduce them at the bottom of the proof

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{b}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b} a, b a, \bar{b} a, \bar{b} a, \bar{b} a, \bar{c}

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c

$$a, \bar{b}$$
 a, b

$$a \quad \bar{a}$$

$$a \quad \bar{a}$$

23 November 2016

23 November 2016

$$\eta_5'$$
: $q(Y) \vdash p(a) \quad \eta_3'$: $\vdash p(b), q(Y)$

$$\eta \colon \vdash p(a), p(b)$$

$$\uparrow$$

$$\downarrow \eta \uparrow$$

Definition (Pre-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *pre-deletion unifiability* property in ψ if I_1, \ldots, I_n and \bar{I} are unifiable.

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_3: r(V), p(U, q(V, b)) \vdash$

$$\downarrow$$
 \downarrow

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_3: r(V), p(U, q(V, b)) \vdash$

$$\downarrow$$
 \downarrow

$$\eta_4'$$
: $\vdash r(W) \qquad \eta_1'$: $r(Y), p(X, q(Y, b)), p(X, Y) \vdash \eta_5'$: $p(X, q(W, b)), p(X, W) \vdash$

$$\eta_1$$
: $r(Y)$, $p(X, q(Y, b))$, $p(X, Y) \vdash \eta_2$: $\vdash p(U, V)$
 η_4 : $\vdash r(W) \qquad \eta_3$: $r(V)$, $p(U, q(V, b)) \vdash \eta_5$: $p(U, q(W, b)) \vdash \chi$

$$\eta_{4}'$$
: $\vdash r(W)$
 η_{5}' : $r(Y), p(X, q(Y, b)), p(X, Y) \vdash$
 η_{5}' : $p(X, q(W, b)), p(X, W) \vdash$
 η_{5}'

$$\eta_1: r(Y), p(X, q(Y, b)), p(X, Y) \vdash$$
 $\eta_2: \vdash p(U, V)$
 $\eta_4: \vdash r(W)$
 $\eta_3: r(V), p(U, q(V, b)) \vdash$

$$\downarrow$$

Definition (Post-Deletion Property)

 η unit, $I \in \eta$, such that I is resolved with literals I_1, \ldots, I_n in a proof ψ . η satisfies the *post-deletion unifiability* property in ψ if $I_1^{\dagger\downarrow}, \ldots, I_n^{\dagger\downarrow}$ and $\overline{I^{\dagger}}$ are unifiable, where I^{\dagger} is the literal in $\psi' = \psi \setminus \{\eta\}$ corresponding to I in ψ , and $I^{\dagger\downarrow}$ is the descendant of I^{\dagger} in the roof of ψ' .

First-Order Lower Units Challenges

- Deletion changes literals
- Unit collection depends on whether contraction is possible after propagation down the proof

Deletion of units require knowledge of proof after deletion, and deletion depends on what will be lowered.

- $O(n^2)$ solution to have full knowledge
- Difficult bookkeeping required for implementation

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal) Easier to implement

Greedy First-Order Lower Units - A Quicker Alternative

- Ignore post-deletion satisfaction
- Focus on pre-deletion satisfaction
- Greedy contraction

Faster run-time (linear; one traversal)
Easier to implement

Doesn't always compress (returns original proof sometimes)

$$\eta_1$$
: $\vdash p(a)$

$$\eta_4$$
: $r(X)$, $p(V) \vdash q(Y)$, $t(Z)$ η_3 : $p(a) \vdash q(X)$, $r(Y)$, $t(Z)$
 \uparrow
 η'_6 : $p(a)$, $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_7 : $q(X)$, $p(a) \vdash t(Z)$ $\downarrow \eta'_6 \rfloor$: $p(a) \vdash q(X)$, $t(Z)$
 \uparrow
 η_9 : $t(Z) \vdash \eta_8$: $p(a) \vdash t(Z)$

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $S(\eta)$ literals for each node η
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $S(\eta)$ literals for each node η
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $S(\eta)$ literals for each node η
- If there are multiple paths, take intersection of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

Regularization Can Be Bad

Resolution without irregularities is still complete. But:

Theorem ([Tse70])

There are unsatisfiable formulas whose shortest regular resolution refutations are exponentially longer than their shortest unrestricted resolution refutations.

Pre-Regularization Checks I

$$\eta_{1} : \vdash p(W,X) \qquad \eta_{2} : p(W,X) \vdash q(c) \\
\{\vdash q(c), p(a,X)\} \qquad \qquad \{p(W,X) \vdash q(c), p(a,X)\} \\
\eta_{3} : \vdash q(c) \qquad \qquad \eta_{4} : q(c) \vdash p(a,X) \\
\{\vdash q(c), p(a,X)\} \qquad \qquad \qquad \{q(c) \vdash p(a,X)\} \\
\eta_{6} : p(Y,b) \vdash \qquad \qquad \qquad \qquad \qquad \{p(Y,b) \vdash \} \qquad \qquad \qquad \qquad \{\vdash p(a,X)\} \\
\sigma = \{W \to a\} \implies \sigma \eta_{1} \in \mathcal{S}(\eta_{1})$$

Pre-Regularization Checks I

$$\eta_{6}: p(Y,b) \vdash \eta_{1}: \vdash p(W,X)$$

$$\sigma = \{W \to Y, X \to b\}$$

Pre-Regularization Checks II

$$\eta_{1} : \vdash p(W, c) \qquad \eta_{2} : p(W, X) \vdash q(c) \\
\{\vdash q(c), p(a, X)\} \qquad \qquad \{p(W, X) \vdash q(c), p(a, X)\} \\
\eta_{3} : \vdash q(c) \qquad \qquad \eta_{4} : q(c) \vdash p(a, X) \\
\{\vdash q(c), p(a, X)\} \qquad \qquad \qquad \{q(c) \vdash p(a, X)\} \\
\eta_{6} : p(Y, b) \vdash \qquad \qquad \qquad \downarrow \qquad \{\vdash p(a, X)\} \\
\{p(Y, b) \vdash \} \qquad \qquad \downarrow \qquad \qquad \{\vdash p(a, X)\} \\
\sigma = \{W \to a, X \to c\} \implies \sigma \eta_{1} \in \mathcal{S}(\eta_{1})$$
but...

Pre-Regularization Checks II

$$\eta_6$$
: $p(Y,b) \vdash \eta_1$: $\vdash p(c,a)$

no $\sigma!$

23 November 2016

Pre-Regularization Unifiability

Definition

Let η be a node with pivot ℓ' unifiable with safe literal ℓ which is resolved against literals ℓ_1, \ldots, ℓ_n in a proof ψ . η is said to satisfy the *pre-regularization unifiability property* in ψ if ℓ_1, \ldots, ℓ_n , and $\bar{\ell}'$ are unifiable.

Post-Regularization Checks

$$\eta_1 \colon p(U,V) \vdash q(f(a,V),U)$$
 $\eta_2 \colon q(f(a,X),Y), q(T,X) \vdash q(f(a,Z),Y)$

$$\eta_4 \colon \vdash q(R,S)$$

$$\eta_5 \colon p(U,V) \vdash q(f(a,Z),U)$$

$$\eta_6 \colon \vdash p(c,d)$$

$$\eta_7 \colon \vdash q(f(a,Z),c)$$

$$\mathcal{S}(\eta_3) = \{q(T,V), p(c,d) \vdash q(f(a,e),c)\}$$

Post-Regularization Checks

Regularization Unifiability

Definition

Let η be a node with safe literals $S(\eta) = \phi$ that is marked for regularization with parents η_1 and η_2 , where η_2 is marked as a deletedNode in a proof ψ . η is said to satisfy the regularization *unifiability property* in ψ if there exists a substitution σ such that $\eta_1 \sigma \subseteq \phi$.

First-Order RPI

- Traverse bottom up, collect safe literals (apply unifiers to pivots), check pre-regularization property
- Traverse top-down, check regularization property

Experiment Setup

- Greedy First-Order Lower Units, Recycle Pivots With Intersection implemented as part of Skeptik (in Scala)
- > 2400 randomly generated resolution proofs
- minutes to generate, seconds to compress

Results

Results

Results I

Percent of proofs compressed:

• LU(p): 36%

• RPI(p): 9%

• RPI(LU(p)): 43%

• LU(RPI(p)): 42%

Results II

Successful cumulative compression ratio:

• LU(p): 0.95

• RPI(p): 0.72

RPI(LU(p)): 0.85

• LU(RPI(p)): 0.89

Conclusion

- Two simple, quick algorithms lifted from propositional to first-order logic for proof compression
 - LowerUnits compresses more often
 - RPI compresses more
- Future work:
 - Explore other proof compression algorithms?
 - Explore ways of dealing with the post-deletion property quickly

Thank you for your attention. Any questions?

- Source code: https://github.com/jgorzny/Skeptik
- Data: https://cs.uwaterloo.ca/~jgorzny/data/

References I

- Omer Bar-Ilan, Oded Fuhrmann, Shlomo Hoory, Ohad Shacham, and Ofer Strichman, *Linear-time reductions of resolution proofs*, Haifa Verification Conference, Springer, 2008, pp. 114–128.
- Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo, Compression of propositional resolution proofs via partial regularization, International Conference on Automated Deduction, Springer, 2011, pp. 237–251.
- Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek, Solving and verifying the boolean pythagorean triples problem via cube-and-conquer, CoRR abs/1605.00723 (2016).
- Rüdger Thiele, *Hilbert's twenty-fourth problem*, The American mathematical monthly **110** (2003), no. 1, 1–24.
- Gregory Tseitin, *On the complexity of proofs in propositional logics*, Seminars in Mathematics, vol. 8, 1970, pp. 466–483.

40 / 41

To-do

