UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA DIFERENCIAL III (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0248**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10
9/00	Ŭ	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Geometría Diferencial II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Introducir el formalismo de los tensores y las formas en \mathbb{R}^n para utilizarlo en el estudio de las variedades diferenciables.

NUM. HORAS	UNIDADES TEMÁTICAS	
25	1. Tensores y formas en \mathbb{R}^n	
	1.1 Tensores en \mathbb{R}^n . Operaciones, dimensión, bases, tensores alter-	
	nantes.	
	1.2 Formas diferenciales en \mathbb{R}^n . Definición, operaciones básicas (suma,	
	producto, pull-back), derivada exterior.	
	1.3 Teorema de Stokes en \mathbb{R}^n .	
30	2. Variedades diferenciales	
	2.1 Definiciones y propiedades básicas.	
	2.2 Campos vectoriales. Distribuciones y Teorema de Frobenius.	
	2.3 Tensores y formas en variedades. Ideales diferenciales.	
	2.4 Ecuaciones de Estructura.	
25	3. Integración en variedades	
	3.1 Teorema de Stokes y Lema de Poincaré.	
	3.2 Teorema de Gauss-Bonnet	

BIBLIOGRAFÍA BÁSICA:

- 1. Do Carmo, M. P., *Differential Forms and Applications*, New York: Springer-Verlag, 1994.
- 2. Guillemin, V. W., Pollack, A., Differential Topology, New Jersey: Prentice-Hall, 1974.
- 3. Spivak, M. A., A Comprehensive Introduction to Differential Geometry, Vols. I-V, Houston, Texas: Publish or Perish, 1999.
- 4. Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups, New York: Springer-Verlag, 1983.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Arnold, V. I., *Mathematical Methods of Classical Mechanics*, New York: Springer-Verlag, 1989.
- 2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vols. I, New York: Wiley, 1963.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.