## Problem Set II FYS3110

Sebastian G. Winther-Larsen (sebastwi)

September 7, 2016

## Problem 2.1

An operator  $\hat{H}$  is represented in a particular orthonormal basis as the matrix

$$\hat{H} \simeq \begin{pmatrix} 1 & \frac{i}{2} & 0 \\ -\frac{i}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \tag{1}$$

**a**)

 $\hat{H}$  is Hermitian if it is equal to its own transpose conjugate,  $\hat{H} = \hat{H}^{\dagger}$ .

$$\hat{H}^{\dagger} = (\hat{H}^*)^T = \begin{pmatrix} 1 & -\frac{i}{2} & 0\\ \frac{i}{2} & 1 & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix}^T = \begin{pmatrix} 1 & \frac{i}{2} & 0\\ -\frac{i}{2} & 1 & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix} = \hat{H}$$
 (2)

b)

Three ket vectors are given

$$|1\rangle \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} \tag{3}$$

$$|2\rangle \simeq \begin{pmatrix} 0\\0\\1 \end{pmatrix} \tag{4}$$

$$|3\rangle \simeq \frac{1}{\sqrt{3}} \begin{pmatrix} -i\\1\\-1 \end{pmatrix} \tag{5}$$

 $|1\rangle$  is and eigenvector of  $\hat{H}$  with eigenvalue  $\frac{3}{2}$ :

$$\hat{H}|1\rangle = \begin{pmatrix} 1 & \frac{i}{2} & 0\\ -\frac{i}{2} & 1 & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} i\\ 1\\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{3i}{2}\\ \frac{3}{2}\\ 0 \end{pmatrix} = \frac{3}{2}|1\rangle \tag{6}$$

 $|2\rangle$  is and eigenvector of  $\hat{H}$  with eigenvalue  $\frac{1}{2}$ :

$$\hat{H}|2\rangle = \begin{pmatrix} 1 & \frac{i}{2} & 0\\ -\frac{i}{2} & 1 & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ \frac{1}{2} \end{pmatrix} = \frac{1}{2}|2\rangle \tag{7}$$

 $|3\rangle$  is and eigenvector of  $\hat{H}$  with eigenvalue  $\frac{1}{2}$ :

$$\hat{H}|3\rangle = \begin{pmatrix} 1 & \frac{i}{2} & 0\\ -\frac{i}{2} & 1 & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} -i\\ 1\\ -1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} -\frac{i}{2}\\ \frac{1}{2}\\ -\frac{1}{2} \end{pmatrix} = \frac{1}{2}|3\rangle \tag{8}$$

**c**)

Computing the matrix elements of the linear operator

$$\langle 1|\hat{H}|1\rangle = \frac{3}{2}\langle 1|1\rangle = \frac{3}{2}\frac{1}{2}\begin{pmatrix} i & 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} = \frac{3}{2}\frac{1}{2}2 = \frac{3}{2}$$
 (9)

$$\langle 1|\hat{H}|2\rangle = \frac{1}{2}\langle 1|2\rangle = \frac{1}{2}\frac{1}{\sqrt{2}}\begin{pmatrix} -i & 1 & 0 \end{pmatrix}\begin{pmatrix} 0\\0\\1 \end{pmatrix} = 0 \tag{10}$$

$$\langle 1|\hat{H}|3\rangle = \frac{1}{2}\langle 1|3\rangle = \frac{1}{2}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{3}}\begin{pmatrix} i & 1 & 0 \end{pmatrix}\begin{pmatrix} -i\\1\\-1 \end{pmatrix} = \frac{1}{2}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{3}}2 = \frac{1}{\sqrt{6}}$$
 (11)

$$\langle 2|\hat{H}|1\rangle = \frac{3}{2}\langle 2|1\rangle = \frac{3}{2}\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i\\1\\0 \end{pmatrix} = 0 \tag{12}$$

$$\langle 2|\hat{H}|2\rangle = \frac{1}{2}\langle 2|2\rangle = \frac{1}{2}\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \frac{1}{2}$$
 (13)

$$\langle 2|\hat{H}|3\rangle = \frac{1}{2}\langle 2|3\rangle = \frac{1}{2}\frac{1}{\sqrt{3}}\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -i\\1\\-1 \end{pmatrix} = -\frac{1}{2\sqrt{3}}$$
(14)

$$\langle 3|\,\hat{H}\,|1\rangle = \frac{3}{2}\,\langle 3|1\rangle = \frac{3}{2}\,\frac{1}{\sqrt{2}}\,\frac{1}{\sqrt{3}}\,\left(-i \quad 1 \quad -1\right)\begin{pmatrix} i\\1\\0 \end{pmatrix} = \frac{3}{2}\,\frac{1}{\sqrt{2}}\,\frac{1}{\sqrt{3}}2 = \sqrt{\frac{3}{2}} \quad (15)$$

$$\langle 3|\hat{H}|2\rangle = \tag{16}$$

$$\langle 3|\hat{H}|3\rangle = \tag{17}$$