Analysis and Design of Algorithms

Algorithms
C53230
C23330

Tutorial

Week 6

Question 5

Recall the **universal hashing** assumption discussed in class: for any two distinct keys x and y from universe U,

$$\Pr[h(x) = h(y)] \le \frac{1}{m}$$

where the probability is over the random choice of the hash function $h: U \to [m]$.

Suppose n elements are hashed using such a hash function h. For $j \in [m]$, let n_j be the number of elements hashing to slot j, and let $\alpha = n/m$ (load factor).

Show that:

$$E\left[\sum_{j\in[m]}n_j^2\right] \le n(1+\alpha)$$

Question 6

- Let A[1..n] be an array of n distinct names. Suppose m of them are male names. We hope to select q male names from A[1..n]. We propose the following algorithm to obtain q male names.
- Since personal data is sensitive, we hope to estimate the expected number of accesses to the array A.
- Please compute the expected number of access of Query(A, q).

```
Query(A, q)

Let S=\Phi;

for j = 1 to q

Repeat

Randomly select k from \{1, 2, ..., n\};

Set B = A[k];

Until B is a male and k \notin S;

S = \{k\} \cup S;

Report S;
```

