### Statistics for the Sciences

**Probability Distributions** 

Xuemao Zhang East Stroudsburg University

January 18, 2025

## **Outline**

- Probability
- Discrete Probability Distributions
  - Mean and Variance
  - Binomial Distributions
  - Poisson Distributions
  - Hypergeometric Distribution
- Continuous Probability Distributions
  - Mean and Variance
  - Uniform Distribution
  - Exponential Distribution
  - Normal Distribution
  - Chi-Square Distribution
  - t-Distribution
  - F-Distribution
- Lab: Calculating Probabilities

# **Probability**

- Probability can be considered as relative frequency for population data (numerical), discrete or continuous.
- A random variable is a variable whose possible values are numerical outcomes of a random phenomenon.
  - A random phenomenon is generally random selection from a population
  - A random variable can take on different values, each associated with a certain probability
- Example: Define a random variable X as the outcome of rolling a balanced die. X can take on any of the values  $\{1, 2, 3, 4, 5, 6\}$ .

## **Probability**

- The probability of **independent** events *A* and *B* happening is found by multiplying their probabilities.
- Example: You roll a pair of dice; one red and the other green. What is the probability of rolling a five on the red die and an even number on the green die?

## **Probability**

- A compound event means that multiple single events are happening at the same time or one after another: like rolling two dice
- Sometimes, probability problems involving compound events will need counting.
  - We usually want to focus on the probability of a single case, then add the probabilities of all different cases.
- Example: Flip a balance coin 4 times, what is the probability of obtaining exactly two heads.

• Binomial Coefficent: The number of distinct combinations of n distinct objects that can be formed, taking them r at a time, denoted by  $\binom{n}{r}$  or  $\binom{n}{r}$  is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

# **Discrete Probability Distributions**

- Discrete Random Variables: These take on a finite or countably infinite number of values.
- Discrete probability distribution lists all possible values of a discrete random variable *X* and the probability associated with each value *x*.
- The probability mass function (PMF)

$$P(x) = P(X = x)$$

must satisfy two conditions:

- ▶  $0 \le P(x) \le 1$  for any x
- - ★  $\sum_{x}$  means sum over all x values

#### Mean and Variance

• Let X be a discrete random variable with pmf P(x). Then the expected value of X, denoted by E(X) or  $\mu$ , is defined to be

$$\mu = E(X) = \sum_{x} x P(x).$$

• Let X be a discrete random variable with pmf p(x). If g is a function, then

$$E[g(X)] = \sum_{x} g(x)p(x)$$

## Mean and Variance

• Especially, if  $g(x) = (x - \mu)^2$ , it defines the **variance** of X,

$$\sigma^2 = Var(X) = E[(X - EX)^2] = \sum_{x} (x - \mu)^2 p(x)$$

- ▶ Short cut formula  $\sigma^2 = E(X^2) (EX)^2 = \sum_x x^2 p(x) \mu^2$ .
- $\sigma = \sqrt{\sigma^2}$  is called the standard deviation of X.

## **Binomial Distribution**

- Bernoulli Trials
  - ► Each trial results in one of two outcomes: success, S, or failure, F.
  - ► The trials are independent. (The outcome of any individual trial does not affect the probabilities in the other trials.)
  - ▶ The probability of a success *p* remains the same in all trials.
- The binomial random variable is defined as the number of successes out of n independent Bernoulli trials.

#### **Binomial distribution**

The probability mass function of the binomial random variable Y is given by

$$p(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \qquad x = 0, 1, 2, \dots, n, 0 \le p \le 1.$$

**Note.**  $\binom{n}{x}$  is the number of outcomes with exactly x successes among n trials.

### **Binomial Distribution**

#### Binomial Mean and variance

Let Y be a binomial random variable based on n trials and success probability p. Then

$$\mu = E(Y) = np$$
 and  $\sigma^2 = Var(Y) = np(1-p)$ .

## **Poisson Distribution**

#### Poisson experiment

- (1) Consists of an **infinite** number of identical trials.
- (2) Each trial results in one of two outcomes: success, S, or failure, F.
- (3) The trials are independent.
- (4) The probability of a success (p) is the same for all trials.
  - Note Conditions 2 to 4 are Bernoulli trials.
  - A Poisson random variabl is the number of successes (X) observed in a Poisson experiment.

## **Poisson Distribution**

• Poisson random variables describe the number of events, that occur over a specified interval (a period of time or, space, distance, area, volume or some similar unit) during which an average of  $\lambda$  such events can be expected to occur.

## pmf

A random variable X is said to have a Poisson probability distribution if and only if its probability mass function is given by

$$p(x) = \frac{\lambda^x}{x!}e^{-\lambda}, x = 0, 1, 2, \dots, \lambda > 0,$$

where  $e \approx 2.71828$  is a constant.

#### Poisson Mean and variance

If Y is a Poisson random variable with parameter  $\lambda$ , then

$$\mu = E(Y) = \lambda$$
 and  $\sigma^2 = Var(Y) = \lambda$ .

# **Hypergeometric Distribution**

- Suppose that a population contains a finite number of elements N that posses one of two characteristics, say red and white. Thus r of the elements might be red and N-r is white.
  - ▶ A sample of *n* elements is randomly selected from the population and define *Y* to be the number of red elements in the sample.
  - ▶ This random variables Y is said to have a {hypergeometric distribution}.

#### Hypergeometric experiment

- (1) Sample Space (polulation) is finite.
- (2) Each trial results in one of two outcomes: success, S, or failure, F.
- (3) The trials are dependent.
- (4) The probability of a success for each trial is different.
- (5) We are interested in the number of successes in sample size n.

# **Hypergeometric Distribution**

#### Hypergeometric pmf

A random variable Y is said to have a hypergeometric probability distribution if and only if its probability mass function is given by

$$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}},$$

where y is an integer 0, 1, 2, ..., n, subject to the restrictions  $y \le r$  and  $n - y \le N - r$ .

#### Hypergeometric Mean and variance

If Y is a hypergeometric random variable, then

$$\mu = E(Y) = \frac{nr}{N}$$
 and  $\sigma^2 = Var(Y) = n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-r}{N-1}\right)$ .

# **Hypergeometric Distribution**

**Example** The size of animal populations are often estimated by using a capture-recapture method. In this method, k animals are captured, tagged, and then released into the population. Some time later n animals are captured, and Y, the number of tagged animals among the n, is noted. The probabilities associated with Y are a function of N, the number of animals in the population, so the observed value Y contains information on this unknown N. Suppose that k=10 animals are tagged and then released. A sample of n=6 animals is then selected at random from the same population. Find P(Y=1) as function of N. What value of N will maximize P(Y=1).

## **Continuous Probability Distributions**

- Continuous Random Variables: These take on an all possible values on a real line interval.
- Probability density function (PDF)  $f(x) \ge 0$  describes the probability distribution of a continuous random variable.
- The PDF f(x) must satisfy the following properties
  - ▶  $f(x) \ge 0$  for any  $x \in R$
  - $\int_{-\infty}^{\infty} f(x) dx = 1$ 
    - ★ Total area under the density curve is 1.

# **Continuous Probability Distributions**



- $P(a \le x \le b)$  = area under the curve between a and b.
- There is no probability attached to any single value of x. That is, P(x=a)=0.

#### Mean and Variance

• Let X be a continuous random variable with pdf f(x). Then the expected value of X, denoted by E(X) or  $\mu$ , is defined to be

$$\mu = E(X) = \int_{-\infty}^{\infty} tf(t)dt.$$

• Let X be a continuous random variable with pdf f(x). If g is a function, then

$$E[g(X)] = \int_{-\infty}^{\infty} g(t)f(t)dt.$$

 Let X be a continuous random variable. The variability is characterized by its variance.

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (t - \mu)^2 f(t) dt = E(X^2) - \mu^2.$$

• Again,  $\sigma$  is called the standard deviation of X.

## **Uniform Distribution**

 Uniform distribution: an even probability for all data values. It is not common for real data.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & otherwise \end{cases}$$



## **Exponential Distribution**

The pdf of an exponential distribution is given by

$$f(x) = \begin{cases} \beta e^{-\beta x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$



• If  $Y \sim exponential(\beta)$ , then

$$E(Y) = \frac{1}{\beta}$$
 and  $Var(Y) = \frac{1}{\beta^2}$ .

## **Exponential Distribution**

- The exponential distribution is often used to model the time between events in a Poisson process.
- Let T be the waiting time until the next event of a Poisson process. The waiting time T has an exponential distribution. That is, if

$$X \sim Poisson(\lambda)$$

and let T be the time to the first occurrence (waiting time), then

$$T \sim Exponential(\lambda)$$

## **Normal Distribution**

A random variable Y is said to have a normal probability distribution if and only if, for  $\sigma>0$  and  $-\infty<\mu<\infty$ , the pdf of Y is

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}, -\infty < y < \infty.$$

ullet If Y is a normally distributed random variable with parameters  $\mu$  and  $\sigma$ , then

$$E(Y) = \mu$$
 and  $Var(Y) = \sigma^2$ .

• Let  $Y \sim N(\mu, \sigma^2)$ . Then

$$Z = rac{Y - \mu}{\sigma} \sim N(0, 1).$$

## **Normal Distribution**



- **1** Mean =  $\mu$ ; Standard deviation =  $\sigma$ .
- 2 Symmetric about  $x = \mu$ .
- 1 Total area under the curve is 1.

# **Chi-square Distribution**

• Let  $Y_1, \ldots, Y_n$  be a random sample of size n from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . Then  $Z_i = (Y_i - \mu)/\sigma$  are independent, standard normal random variables,  $i = 1, 2, \ldots, n$ , and

$$\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} \left( \frac{Y_i - \mu}{\sigma} \right)^2$$

has a  $\chi^2$  distribution with *n* degrees of freedom (df).

• Let  $Y_1,\ldots,Y_n$  be a random sample of size n from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . Let  $S^2=\frac{\sum_{i=1}^n(Y_i-\overline{Y})^2}{n-1}$  be the sample variance. Then

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{\sigma^2}$$

has a  $\chi^2$  distribution with n-1 degrees of freedom (df). Also,  $\overline{Y}$  and  $S^2$  are independent random variables.

## **Chi-square Distribution**



- The values of chi-square can be zero or positive, but it cannot be negative.
- ② The chi-square distribution is not symmetric, unlike the Normal distributions. As the number of degrees of freedom increases, the distribution approaches a Normal distribution and thus becomes more symmetric.

## Student's t-distribution

- t-distribution is proposed by W.S. Gosset in 1908. Due to Gosset's pseudonym "Student", it is known as "Student's t-distribution".
- Let Z be a standard normal random variable and let W be a  $\chi^2$ -distributed variable with  $\nu$  df. If Z and W are independent, then

$$T = \frac{Z}{\sqrt{W/v}}$$

is said to have a t-distribution with v df.

• Let  $Y_1, \ldots, Y_n$  be a random sample of size n from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . Then

$$\frac{\overline{Y} - \mu}{S/\sqrt{n}}$$

has Student's t-distribution with n-1 degrees of freedom.

## Student's t-distribution



- The density curves of the t-distribution look quite similar to the standard normal curve.
- The spread of the t-distributions is a bit bigger than that of the standard normal curve.
- **3** As df gets bigger, the t(df) density curve gets closer to the standard normal density curve.

#### F-Distribution

• Let  $W_1$  and  $W_2$  be independent  $\chi^2$ -distributed random variables with  $v_1$  and  $v_2$  df, respectively. Then,

$$F = \frac{W_1/v_1}{W_2/v_2}$$

is said to have an F distribution with  $v_1$  numerator degrees of freedom and  $v_2$  denominator degrees of freedom.

• Let  $X_1, \ldots, X_n$  be a random sample from a  $N(\mu_X, \sigma_X^2)$  population, and let  $Y_1, \ldots, Y_m$  be a random sample from an independent  $N(\mu_Y, \sigma_Y^2)$  population. Then

$$F = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2}$$

has an F-distribution with n-1 numerator degrees of freedom and m-1 denominator degrees of freedom.

## **F-Distribution**



- The F distribution is not symmetric.
- Values of the F distribution cannot be negative.
- The exact shape of the F distribution depends on the two different dfs: Numerator df and Denominator df.

## Lab

ullet We click Transform o Compute Variable... to calculate probabilities of various distributions. We may need to understand the concept of CDF.

#### cumulative distribution function

The cumulative distribution function or CDF of a random variable X, denoted by  $F_X(x)$ , is defined by

$$F_X(x) = P(X \le x)$$
 for all  $x$ .

## Lah

• Example 1. Suppose the height of this plant species is normally distributed with a mean  $(\mu)$  of 150 cm and a standard deviation  $(\sigma)$  of 20 cm. We want to find the probability that a randomly selected plant has a height between 140 cm and 160 cm.

### Lab

- Example 2. Assume that the average number of mutations in the gene of interest is 3 mutations per 1000 bacteria. You want to find the probability of observing exactly 5 mutations in a sample of 1000 bacteria.
  - ► Hint: use Poisson distribution

#### License



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.