SY09 Printemps 2013 TP 0

1. Manipulation de nombres

Pour vous familiariser avec R, taper les instructions suivantes :

```
8*5/(2*2)
x<-4
y<-5
z<-x*y
sin(pi*x)
ls()
```

2. Manipulation de vecteurs et de matrices

Taper les instructions suivantes et observer le résultat :

```
A=matrix(1:9,nrow=3,byrow=T)
B=matrix(c(5,3,7,4,6,3,1,6,3,2,8,5),nrow=4,byrow=T)
В
v=1:3
        # ou v=c(1,2,3)
C=cbind(A,v)
D=rbind(A,B)
С
D
D[3,3]
D[,2]
D[5,]
D[2:4,2:3]
diag(3)
diag(v)
diag(A)
matrix(1,3,2)
t(A)
A[,2]=v
n=dim(D)[1]
p=dim(D)[2]
B%*%A
A%*%A
A*A
A+A
```

Exercice : écrire une fonction nommée prodtrans qui, à partir d'une matrice X, calcule le produit de X par sa transposée.

3. Opérations de base pour l'analyse des données

Exemples : taper les instructions suivantes et observer le résultat :

```
x < -c(2,4,3,7,1)
A < -matrix(c(1,2,5,3,0,9), nrow=3, byrow=T)
max(x)
max(A)
apply(A,1,max)
apply(A,2,max)
mean(x)
mean(A)
apply(A,2,mean)
sd(x)
sd(A)
x=c(2,2,2,1,3,4,1,1)
hist(x)
x=c(1,2,3,4,5)
y=c(1,4,9,16,25)
plot(x,y)
plot(x,y,pch=22) # faire ?points pour avoir des informations sur les codes associés à pch
plot(x,y,pch=19,col='blue')
plot(x,y,type='1',col='blue')
```

Exercice : écrire une fonction nommée centre qui, à partir d'une matrice X, calcule la matrice centrée en colonne.

4. Structure de données et analyse exploratoire

Cette partie nécessite le fichier iris.txt qui est situé sur la page Web de l'UV. Taper les instructions suivantes et observer le résultat :

```
iris<-read.table("iris.txt")</pre>
class(iris)
class(iris$Espèce)
class(iris[,1])
class(iris$LoSe)
class(iris[,2])
summary(iris)
mean(iris[,2:5])
cor(iris[,2:5])
print(cor(iris[,2:5]),digits=3)
plot(iris)
boxplot(iris)
attach(iris)
def.par <- par(no.readonly=T)</pre>
par(mfrow=c(2,2))
for(i in 2:5) hist(iris[,i])
par(def.par)
pie(summary(iris$Espèce))
barplot(summary(iris$Espèce))
# Graphe matriciel avec les espèces
pairs(iris[2:5],main="Les Iris",pch=21,bg=c("red","green3","blue")[iris$Espèce])
# Histogrammes avec les espèces
inter=seq(min(LoPe),max(LoPe),by=(max(LoPe)-min(LoPe))/10)
h1=hist(plot=F,LoPe[Espèce=='Setosa'],breaks=inter)
h2=hist(plot=F,LoPe[Espèce=='Versicolor'],breaks=inter)
h3=hist(plot=F,LoPe[Espèce=='Virginica'],breaks=inter)
barplot(rbind(h1$counts,h2$counts,h3$counts),space=0,
legend=levels(Espèce),main="LoPe",col=c('blue','red','yellow'))
```

```
# Graphique sur un fichier Postscript
postscript('exemple.eps',horizontal=F,width=12/2.5,height=12/2.5)
pairs(iris[2:5],main="Les Iris",pch=21,bg=c("red","green3","blue")[Espèce])
dev.off()
detach(iris)
```

Écrire une fonction nommée hist.factor qui, à partir d'une variable quantitative et d'une variable qualitative affiche un histogramme visualisant les effectifs des modalités dans chaque « bin »