

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

عنوان:

پروژه درس سیستمهای عامل

نگارش

پوریا محمودخان شیرازی امیرحسین ملکمحمدی عسل مسکین سید علیرضا میررکنی بنادکی

بهمن ۱۴۰۳

۱ مقدمه

در دنیای امروز با افزایش سرعت و حجم دادههای تولیدشده، نیاز به زیرساختهای ذخیرهسازی کارآمد بیش از پیش احساس میشود. یکی از تکنولوژیهای مهم در این زمینه، حافظه نهان است که با هدف افزایش سرعت پردازش و کاهش تأخیر در دسترسی به دادهها به کار گرفته میشود. ما با استفاده از حافظه نهان می توانیم دادههای پرکاربرد را به صورت موقت ذخیره کنیم و با دسترسی سریع تر به این دادهها، عملکرد سامانههای ذخیرهسازی را بهبود بخشیم. با این حال، چالش اصلی انتخاب سیاست مناسب مدیریت حافظه نهان است که تأثیر مستقیمی بر کارایی سیستم دارد.

در این پروژه، به بررسی و شبیه سازی سیاستهای مختلف مدیریت حافظه نهان خواهیم پرداخت. هدف ما این است که با استفاده از داده های واقعی و متنباز شرکت Alibaba، عملکرد این سیاستها را تحلیل و مقایسه کنیم. با پیاده سازی چند سیاست پرکاربرد و مقایسه آنها با سیاست ایده آل Belady/Oracle، تلاش خواهیم کرد تا بینشی دقیق تر در مورد رفتار حافظه نهان به دست آوریم و روش بهینه را برای استفاده در سامانه های ذخیره سازی شناسایی کنیم.

۱-۱ تعریف مسئله

در این پروژه، قصد داریم یکی از عوامل کلیدی مؤثر بر عملکرد سامانههای ذخیرهسازی، یعنی سیاست مدیریت حافظه نهان را بررسی کنیم. ما خواهیم دید که چگونه انتخاب یک سیاست مناسب می تواند نرخ Cache Hit را افزایش داده و زمان پاسخدهی سیستم را بهبود بخشد. در مقابل، یک سیاست نامناسب می تواند منجر به افزایش Cache Miss شود و عملکرد کلی سیستم را کاهش دهد.

ما در این پروژه سیاستهای مختلفی همچون (Larc (Least Recently Used) را LARC (Learning Adaptive Replacement Cache) و (Adaptive Replacement Cache) بیادهسازی خواهیم کرد. سیاست LARC یک نسخه توسعهیافته از ARC است که تلاش میکند با یادگیری رفتار درخواستها و پیش بینی دسترسیهای آینده، عملکرد بهتری ارائه دهد.

همچنین، سیاست ایدهآل Belady/Oracle را مرجع برای مقایسه عملکرد سایر سیاستها در نظر خواهیم گرفت. این سیاست با پیشبینی دقیق درخواستهای آینده بهترین تصمیمات ممکن را میگیرد، اما به دلیل نیاز به اطلاعات آینده، در محیط واقعی قابل پیادهسازی نیست و صرفاً مبنایی برای تحلیل الگوریتمهاست.

هدف ما این است که با شبیهسازی این سیاستها و تحلیل معیارهای عملکردی همچون نرخ

Cache Hit و Cache Miss، زمان و حافظه استفاده شده، نقاط قوت و ضعف هر سیاست را بررسی و مقایسه کنیم.

۲ سیاست ۲

الگوریتم LRU (Least Recently Used) لکی از سیاستهای جایگزینی در حافظه نهان است که برای مدیریت کارآمد دادهها طراحی شده است. این الگوریتم بر اساس میزان استفاده اخیر از دادهها عمل میکند. زمانی که حافظه نهان پر شود، دادهای که کمترین استفاده را در بازه اخیر داشته است، حذف می شود تا فضای لازم برای داده جدید فراهم گردد.

در این روش، هر بار که یک داده در حافظه نهان مورد دسترسی قرار میگیرد، اولویت آن افزایش می یابد، به این معنا که در مکان جلوتری در لیست داده های پرکاربرد قرار میگیرد. اگر داده ای برای مدت طولانی بدون استفاده باقی بماند، اولویت آن کاهش یافته و در صورت نیاز به فضای جدید، این داده حذف خواهد شد.

۱-۲ توضیح برنامه شبیهسازی

کد مربوط به این سیاست را به کمک زبان پایتون شبیه سازی کرده ایم که در فایل LRU.py موجود است. حال به توضیح بخشهای مهم آن می پردازیم:

۱-۱-۲ ساختار کد و اجزای اصلی

این کد از یک کلاس به نام LRUCache و یک تابع LRUCache تشکیل شده است. متغیر اصلی در این کد ظرفیت حافظه نهان است که آن را به صورت max_capacity نمایش داده ایم همچنین حافظه نهان را به کمک داده ساختار OrderedDict پیاده سازی کرده ایم. در واقع به این صورت عمل میکند که داده ای که جدیدتر استفاده شده را به انتهای آن می بریم.

۲-۱-۲ توابع اصلی کد

ابتدا توابع مربوط به كلاس LRUCache را توضيح ميدهيم.

• در تابع load_and_filter_data فایل csv فایل

• در تابع access_or_update_cache در صورتی که داده جدید از قبل در حافظه نهان وجود داشت آن را به انتهای دیکشنری میبریم تا دیرتر حذف شود. همچنین از آن جا که hit رخ دادهاست true را خروجی میدهیم.

در غیر این صورت اگر حافظه نهان پر بود دادهای که اخیرا استفاده نشده را pop میکنیم. سپس داده جدید را در حافظه نهان قرار میدهیم. همچنین از آنجا که miss اتفاق افتادهاست مقدار false را خروجی میدهیم.

- در تابع simulate_lru_policy به ازای دادههای موجود تابع simulate_lru_policy به ازای دادههای فراخوانی کرده و مقادیر مربوط را اپدیت میکنیم.
- در دو تابع collect_statistics و display_reuslt نتایج به دست آمده را ذخیره و نمایش میدهیم.

در نهایت به کمک تابع cache_simulator یک حافظه نهان با سیاست LRU میسازیم و داده ها را روی آن شبیهسازی میکنیم.

۲-۲ نتایج عملکرد

در این قسمت نتایج عملکرد حافظه پنهان با سیاست LRU روی سه اندازه مختلف حافظه نهان نشان میدهیم:

جدول ۱: نتیجه شبیه سازی مجموعه داده A669 با سیاست LRU و اندازه حافظه نهان A669

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	7.747700	۸۰,۳۱%
Read Misses	۵۱۰۹۱۰۱	19/89%
Write Requests	179727	
Write Hits	۵۹۶۹۹۸	45/11%
Write Misses	۶۹۵۸۷۸	۵۳۸۲%
Total Requests	77744747	
Total Hits	71449794	YA/89%
Total Misses	۵۸۰49٧٩	۲۱٬۳۱٪

مجموعهداده A129 با سیاست N-hit و اندازه حافظه نهان هموعهداده A129

Metric	Count	Ratio
Read Requests	4757171	
Read Hits	140777	۲,۸۹%
Read Misses	4777494	94/11%
Write Requests	17,444.	
Write Hits	۲9 ٣٢٨٨۶	14/94%
Write Misses	1.041444	۸۲/۰۷%
Total Requests	177717497	
Total Hits	7444554	١٣٨٠٪
Total Misses	1075111	18/20%

جدول ۳: نتیجه شبیه سازی مجموعه داده A108 با سیاست N-hit و اندازه حافظه نهان

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	۵۹۳۶۷۳	۵٬۵۸%
Read Misses	10048499	94/44%
Write Requests	9040140	
Write Hits	١٧٢٢٨٣١	14/99%
Write Misses	VA67414	۸۲/۰۱%
Total Requests	7.7.0717	
Total Hits	77180.4	11/45%
Total Misses	1744441	۸۸٬۵۴%

جدول ۴: نتیجه شبیه سازی مجموعه داده A42 با سیاست N-hit و اندازه حافظه نهان

Metric	Count	Ratio
Read Requests	T0 9.0744	
Read Hits	٧ ۴ ۰۶۱	7/ ٣٩%
Read Misses	T0 745VT	94/81%
Write Requests	1919194	
Write Hits	107514	44/11%
Write Misses	1171017	۵۶,۸۸%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	981780	١٨,٣١٪
Total Misses	4105115	٨١/۶٩%

جدول ۵: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	۲۳۹۷۸۵۰۷	97/40%
Read Misses	197449	V/9°%
Write Requests	179727	
Write Hits	۵۰۳۰۵۳	۳۸/۹۱%
Write Misses	YX9XY T	۶۱/۰۹%
Total Requests	77744747	
Total Hits	7441080	ለ ዓ /አ <i>ዮ</i> %
Total Misses	7754777	10/14%

جدول ۶: نتیجه شبیهسازی مجموعهداده A129 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	4757171	
Read Hits	181849	٣/٣٢%
Read Misses	44.5044	٩۶/۶٨%
Write Requests	177444.	
Write Hits	7007907	۱٩ۥ٨٨%
Write Misses	10790888	۸۰/۱۲%
Total Requests	177717497	
Total Hits	7710775	10,74%
Total Misses	14997708	14/84%

جدول ۷: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	F° ४१८४	۵/۶۷%
Read Misses	1007711	94/44%
Write Requests	9040140	
Write Hits	1775419	۱۸/۰۳%
Write Misses	VA44475	۸١/٩٧%
Total Requests	70700717	
Total Hits	7479404	11/04%
Total Misses	14148014	۸۸٬۴۷%

جدول ۸: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T0 9.0744	
Read Hits	180101	۵/۱۷%
Read Misses	79W10V9	94/14%
Write Requests	1919194	
Write Hits	۸۷۷۵۴۲	44/17%
Write Misses	1111800	۵۵٫۸۸%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	1.477	Y0/40%
Total Misses	4.0.771	٧٩ <i>/۶</i> ٠%

جدول ۹: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	72474957	٩٧/٧٨%
Read Misses	۵۷۶۹۹۴	۲/۲۲%
Write Requests	179717	
Write Hits	9110	٧۵,٨٢%
Write Misses	۳۱۲۶۵۷	Y4/11/%
Total Requests	77744747	
Total Hits	75400171	98/44%
Total Misses	۸۸۹۶۵۱	٣/٢٧%

جدول ۱۰: نتیجه شبیهسازی مجموعهداده A129 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	4757171	
Read Hits	۱۱۷۵۲۲۰	74/14%
Read Misses	4597907	٧۵/ <i>٨۶</i> %
Write Requests	17,744470	
Write Hits	٧٣۵۵٣۶۵	۵۷/۲۷%
Write Misses	۵۴۸۸۹۵۵	47/47%
Total Requests	177717497	
Total Hits	۸۵۳۰۵۸۵	41/18%
Total Misses	9111907	۵۱٬۸۴%

جدول ۱۱: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	1440400	14/80%
Read Misses	9114477	18/40%
Write Requests	9040140	
Write Hits	T° TX 9 T 1	T1/Y4%
Write Misses	5045114	8A/Y8%
Total Requests	T. T. DTIV	
Total Hits	4414541	۲۲/۲۰ <i>%</i>
Total Misses	۱۵۷۲۰۶۸۶	YY / A ° '/.

جدول ۱۲: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	T0 9.0744	
Read Hits	1107910	۳٧/٢١٪
Read Misses	194014	۶۲/۷۹%
Write Requests	1919194	
Write Hits	980040	41/15%
Write Misses	1079177	۵۱٬۷۴%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	71179A°	41/04%
Total Misses	7974901	۵۸/۴۷%

نمودارهای مربوط به این قسمت نیز در اینجا آورده شده است:

N-hit سیاست

الگوریتم N-hit یکی از سیاستهای مدیریت حافظه نهان است که با هدف بهرهوری بیشتر از دادههای پرتکرار طراحی شده است. این سیاست به این صورت عمل میکند که تعداد درخواستهای هر بلوک داده را دنبال میکند و زمانی که تعداد این درخواستها به یک مقدار آستانه مشخص N برسد، آن بلوک به حافظه نهان منتقل میشود. در صورت پر بودن حافظه نهان، بلوکی که کمترین تعداد درخواست را داشته باشد، حذف میشود تا فضای لازم برای داده جدید فراهم شود. هدف اصلی این سیاست، کاهش نرخ Cache Miss از طریق ذخیره دادههایی است که بیشترین استفاده را دارند.

این روش با تمرکز بر دادههای پرتکرار، عملکرد کلی سیستم را بهبود میبخشد اما به دلیل نیاز به نگهداری شمارندههای مرتبط با تعداد درخواستها، ممکن است سربار محاسباتی و حافظهای به همراه داشته باشد. علاوه بر این، شناسایی بلوک قربانی ممکن است به دلیل نیاز به بررسی و مقایسه شمارندههای بلوکها، زمانبر باشد.

۱-۱ توضیح برنامه شبیهسازی

۳-۱-۱ ساختار کد و اجزای اصلی

این کد از یک کلاس به نام NHitCache و یک تابع simulate_nhit و یک تابع NHitCache این کد از یک کلاس به نام در التنجی این کد شامل ظرفیت حافظه نهان (capacity)، آستانهی فعالسازی رهگیری (trigger_threshold) کلیدی این کد شامل ظرفیت حافظه نهان (insertion_threshold) می باشند. حافظه نهان و حداقل تعداد دسترسی برای و رود به حافظه نهان (SortedList برای مرتبسازی آیتم ها پیاده سازی شده است.

۳-۱-۳ توابع اصلی کد

ابتدا توابع مربوط به كلاس NHitCache را توضيح ميدهيم.

- در تابع evict_ آیتمی که کمترین مقدار NHit را دارد (و در صورت تساوی، قدیمیتر است) از حافظه نهان حذف می شود.
- در تابع access هر بار که آیتمی درخواست شود، تعداد دفعات دسترسی آن در ساختار رهگیری افزایش مییابد.
- در تابع promote در صورتی که آیتم معیارهای لازم را داشته باشد، به حافظه نهان اضافه می شود.
- در تابع should_promote بررسی میشود که آیا آیتم بر اساس تعداد دفعات دسترسی و وضعیت اشغال حافظه نهان واجد شرایط ورود به حافظه نهان هست یا خیر.

در ادامه به توابع مربوط به شبیهسازی میپردازیم:

- در تابع simulate_nhit دادههای ورودی از یک فایل CSV خوانده شده و پردازش می شوند. برای هر درخواست، ابتدا بررسی می شود که آیا در حافظه نهان قرار دارد یا خیر. در صورت وجود، آمار hit و در غیر این صورت، miss بهروز می شود. سپس اگر داده قبلاً دیده نشده باشد، به عنوان cold miss علامت گذاری می شود و در صورت داشتن شرایط مناسب، به حافظه نهان اضافه می شود.
 - در تابع collect_statistics آمار مربوط به میزان hit و collect_statistics

• در تابع display_results نتایج حاصل از شبیه سازی به صورت جدولی نمایش داده می شوند.

در نهایت، تابع main چندین فایل ورودی را پردازش کرده و برای هر یک از آنها شبیهسازی سیاست NHit را انجام میدهد.

۳-۲ نتایج عملکرد

در این قسمت نتایج عملکرد حافظه پنهان با سیاست N-hit روی سه اندازه مختلف حافظه نهان نشان میدهیم:

جدول ۱۳: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	T • 90884X	۸۰/۷۵%
Read Misses	4990417	19/70%
Write Requests	179727	
Write Hits	TV \$V\V	T9/14%
Write Misses	918109	٧°,٨۶%
Total Requests	77744747	
Total Hits	71777700	٧٨ <i>,</i> ٣٠%
Total Misses	۵۹۱۱۴۷۷	۲۱/۷°%

جدول ۱۴: نتیجه شبیه سازی مجموعه داده A129 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	4757177	
Read Hits	YYY <u>0</u> YY	10/94%
Read Misses	4.9.090	۸۴/۰۳%
Write Requests	17,444.	
Write Hits	۳ ۴۶۸۴۹۸	۲٧/۰ ۰ ½
Write Misses	٩٣٧۵٨٢٧	۷۳/° ۰ %
Total Requests	177717497	
Total Hits	4745.10	TT/97%
Total Misses	18455477	٧۶/٥ ٣%

جدول ۱۵: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	۸۹۹۴۵۰	1,45%
Read Misses	9749777	91/04%
Write Requests	9040140	
Write Hits	77.5597	۲۳/۰۵%
Write Misses	7751407	٧۶/٩۵%
Total Requests	T. T. DTIV	
Total Hits	7108147	۱۵/۳۷%
Total Misses	14.99110	14/84%

جدول ۱۶: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	T0 9.074	
Read Hits	V 9 <i>9</i>	°/° ٣ %
Read Misses	T° 9 V 9 T A	99/97%
Write Requests	1919194	
Write Hits		40/14%
Write Misses	1019404	۵۴/۷۶%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	900890	\ \/\/\° %
Total Misses	4177741	۸۲٫۳۰٪

جدول ۱۷: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	74424714	٩٣,٨۴%
Read Misses	1297122	8/\8½
Write Requests	179717	
Write Hits	۶۳۳۱۸۳	41/91%
Write Misses	۶۵۹۶۹۳	۵۱/۰۳%
Total Requests	77744747	
Total Hits	Y * 9 <i>A</i> \$99\$	91/41%
Total Misses	7707179	٨/٢٩%

جدول ۱۸: نتیجه شبیهسازی مجموعهداده A129 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	4757171	
Read Hits	٨٨٤١١١	١٨/١۶%
Read Misses	٣٩ ٨ ۴۰۶١	۸۱,۸۴%
Write Requests	17,744470	
Write Hits	T AOTTA9	٣٠/٠٠٪
Write Misses	۸۹۹۱۰۳۴	V°/°°%
Total Requests	177717497	
Total Hits	474744	7 <i>5/</i> Y۵%
Total Misses	17970090	۷۳/۲۵%

جدول ۱۹: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	1०४११८४	٩,٧٨%
Read Misses	9090190	90/77%
Write Requests	9070140	
Write Hits	7477190	TD/TS%
Write Misses	V145100	V4/54%
Total Requests	T. T. DT1V	
Total Hits	٣ 45.\\\	14/14%
Total Misses	15444.40	۸۲٬۸۳%

جدول ۲۰: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T0 9.074	
Read Hits	١٨٠٣	°/° 5%
Read Misses	7098979	99/94%
Write Requests	1919194	
Write Hits	941414	۴ ٧/٣٢%
Write Misses	1 . 47774	۵۲/۶۸%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	944114	11/04%
Total Misses	4144714	11/84%

جدول ۲۱: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	70TA • 9 • •	٩٧/٨٠%
Read Misses	۵۷۱۰۵۶	۲/۲ ° %
Write Requests	179717	
Write Hits	951014	V4/TV%
Write Misses	441484	۲۵/۶۳%
Total Requests	77744747	
Total Hits	75447414	98/89%
Total Misses	9.7419	۳/۳۱%

جدول ۲۲: نتیجه شبیهسازی مجموعهداده A129 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	4757177	
Read Hits	1048104	YY/\\%
Read Misses	۳۷۹۲۰۱۵	YY /\ 9 %
Write Requests	17,444.	
Write Hits	V19707V	۵۶/۰۰%
Write Misses	۵۶۵۱۷۹۳	** /° ° %
Total Requests	177717497	
Total Hits	ለተ۶ለ۶ለ۴	48/81%
Total Misses	۹۴۴۳۸۰۸	۵۳٬۳۲٪

جدول ۲۳: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	1821109	17/47%
Read Misses	9778084	۸٧/۲۸%
Write Requests	9070140	
Write Hits	۳۰۸۹۳۸۱	٣ ٢/٢۶%
Write Misses	5410154	۶Y/Y4%
Total Requests	T. T. DT1V	
Total Hits	4441440	Y 1/9A%
Total Misses	1075471	YA/° Y%

جدول ۲۴: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit با سیاست مجموعهداده داده و که نهان

Metric	Count	Ratio
Read Requests	T0 9.0744	
Read Hits	۵۲۱۴۳۳	18/14%
Read Misses	7077701	۸٣/۱٧%
Write Requests	1919194	
Write Hits	1040770	۵۲٫۳۰٪
Write Misses	947917	* V/V°%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	1051717	٣٠/۶٩%
Total Misses	727971 A	۶۹٬۳۱%

نمودارهای مربوط به این قسمت نیز در اینجا آورده شده است:

همچنین نمودار مجزا برای هر یک از مجموعههای داده به شکل زیر است:

N-hit و LRU و سیاست ترکیبی

در این قسمت یک کد ترکیبی از دو سیاست قبل پیاده سازی کرده ایم.

۱-۴ توضیح برنامه شبیهسازی

در این کد، ترکیبی از دو سیاست جایگزینی حافظه نهان، یعنی Least Recently Used) LRU) و N-Hit برای مدیریت داده ها استفاده شده است. در ادامه ساختار کد و اجزای اصلی آن را توضیح میدهیم.

۱-۱-۴ ساختار کد و اجزای اصلی

این کد شامل دو کلاس اصلی LRUCache و NHitPolicy است که مسئول مدیریت حافظه نهان و سیاست ارتقای داده ها هستند. تابع simulate_nhit_lru داده ها را پردازش کرده و رفتار حافظه نهان را شبیه سازی میکند.

۴-۱-۲ توابع اصلی کد

ابتدا توابع مربوط به كلاس LRUCache را توضيح ميدهيم.

- تابع is_present بررسی میکند که آیا یک داده در حافظه نهان موجود است یا نه.
- تابع access اگر داده در حافظه نهان باشد، آن را به انتهای OrderedDict منتقل میکند تا به عنوان اخیراً استفاده شده در نظر گرفته شود.
- تابع insert داده جدید را به حافظه نهان اضافه میکند و در صورت پر شدن ظرفیت، دادهای که کمترین استفاده را داشته است، حذف می شود.
 - تابع occupancy تعداد آیتمهای موجود در حافظه نهان را برمی گرداند.

در ادامه، توابع مربوط به كلاس NHitPolicy را بررسي ميكنيم.

- تابع should_promote مشخص میکند که آیا یک داده باید به حافظه نهان منتقل شود یا خیر، با توجه به میزان دسترسیهای قبلی به آن.
- تابع record_access تعداد دفعات دسترسی به هر داده را ذخیره کرده و یک صف برای پیگیری داده های تحت نظارت نگه می دارد.
- تابع remove_from_tracking دادههایی را که به حافظه نهان منتقل شدهاند، از فهرست نظارت حذف میکند.

تابع اصلی simulate_nhit_lru وظیفه اجرای شبیهسازی را بر عهده دارد.

- دادههای فایل csv ورودی را میخواند.
- به ازای هر داده، بررسی میکند که آیا در حافظه نهان موجود است یا خیر.
- در صورت وجود، داده را در LRU بهروزرسانی میکند و در غیر این صورت، بسته به سیاست N-Hit تصمیم میگیرد که آیا باید در حافظه نهان قرار بگیرد یا خیر.
 - در نهایت، آمار مربوط به تعداد hit و miss را محاسبه کرده و نتایج را نمایش میدهد.

با استفاده از تابع main، این شبیهسازی برای چندین فایل مختلف اجرا میشود.

۲-۴ نتایج عملکرد

جدول ۲۵: نتیجه شبیهسازی مجموعهداده A669 با سیاست N-hit / LRU و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	74441.054	94/11%
Write Requests	179727	
Write Hits	۶۹۵۰۲۵	۵۳٬۵۳٪
Total Requests	77744747	
Total Hits	70140019	97/77%
Total Misses	7104744	٧,٧٣%

جدول ۲۶: نتیجه شبیهسازی مجموعهداده A129 با سیاست N-hit / LRU و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	4757171	
Read Hits	۷۱۰۰۲۵	14/09%
Write Requests	177444.	
Write Hits	4° 14.0 V	٣١,٧٢%
Total Requests	177717497	
Total Hits	۴٧٨٣٧٣٣	۲۷/۰ ۱ <i>%</i>
Total Misses	١٢٩٢٨٧۵٩	VY/99%

جدول ۲۷: نتیجه شبیهسازی مجموعهداده A108 با سیاست N-hit / LRU و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	1084017	
Read Hits	٧١٩٢٨٨	9 _/ YY'/.
Write Requests	9040140	
Write Hits	77V۶1°1	۲۳/۷۷ %
Total Requests	70700717	
Total Hits	7990779	14/14
Total Misses	17709977	۸۵/۱۸%

جدول ۲۸: نتیجه شبیهسازی مجموعهداده A42 با سیاست N-hit / LRU و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T- 9.8.774	
Read Hits	TV 007 F	11/95%
Write Requests	1919194	
Write Hits	1047947	۵۱/۹۳%
Total Requests	۵۰۸۷۹۳۱	
Total Hits	14.7408	۲٧,۵٨%
Total Misses	35×440	YY/¥Y%

(Belady/Oracle) سیاست جایگزینی بهینه

سیاست جایگزینی Belady/Oracle، یکی از الگوریتمهای مرجع در مدیریت حافظه نهان است که در آن تصمیمگیری برای جایگزینی بلوکهای حافظه به گونهای انجام می شود که عملکرد بهینه تضمین شود. این سیاست به این صورت عمل می کند که در هر لحظه، بلوکی را که دیرتر از بقیه در آینده استفاده خواهد شد، از حافظه نهان حذف می کند. هدف اصلی این سیاست، به حداقل رساندن تعداد شوند. این Cache Miss از طریق انتخاب هوشمندانه صفحاتی است که باید از حافظه نهان حذف شوند. این روش به دلیل استفاده از اطلاعات کامل درخواستهای آینده، تضمین می کند که نرخ کامل درخواستهای آینده، تضمین می کند که نرخ باشد.

با این حال، این سیاست به دلیل ماهیت پیشبینانهاش (نیاز به دانستن تمامی درخواستهای آن در آینده)، تنها در تحلیلهای برونخط (offline) قابل استفاده است و امکان پیادهسازی عملی آن در محیطهای واقعی وجود ندارد. در این پروژه، ما از این الگوریتم به عنوان مبنایی برای مقایسه عملکرد سیاستها بهره خواهیم گرفت.

۱-۵ شرح برنامه

کد ارائه شده، شبیه سازی سیاست Belady/Oracle را با استفاده از توابع و ساختارهای مناسب پیاده سازی کرده است. مراحل کلیدی در کد عبارتند از:

۱. پیش پردازش رخدادهای آینده: تابع preprocess_future_occurrences برای هر صفحه در توالی درخواستها، فهرست زمانهای استفاده بعدی را ایجاد میکند. این اطلاعات برای تصمیمگیری در مورد حذف صفحات استفاده می شود.

۲. استفاده از ساختار multiset: الگوریتم از یک multiset برای نگهداری صفحات در حافظه نهان استفاده می کند. این ساختار داده به گونهای پیاده سازی شده که صفحات بر اساس زمان استفاده بعدی مرتب باشند. این ویژگی امکان حذف سریع صفحه ای که دیرتر از بقیه استفاده می شود را فراهم می کند.

٣. مديريت حافظه نهان:

هنگام ورود صفحه جدید، اگر حافظه نهان پر باشد، صفحه ای که در آینده دیرتر استفاده می شود حذف میگردد. اما در صورت وجود فضای خالی، صفحه جدید مستقیماً به حافظه نهان اضافه می شود.

۵-۲ نتایج عملکرد

مدول ۲۹: نتیجه شبیه سازی مجموعه داده A669 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	70901908	
Read Hits	7747779	٩٠/٢٨%
Read Misses	7077177	9,77%
Write Requests	179727	
Write Hits	\444\4	۵۷/۵۱%
Write Misses	۵۴۹۴۰۳	47/49%
Total Requests	7774474	
Total Hits	T. V. L. V. L. V. V.	۸۸ _/ ۷۲%
Total Misses	179.77	۱۱/۲۸%

جدول ۳۰: نتیجه شبیهسازی مجموعهداده A129 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	4757174	
Read Hits	۹۷۷۷۷۵	۲۰/۰ ۹ %
Read Misses	7 0.000	V9/91%
Write Requests	17744470	
Write Hits	۵۱۴۲۰۰۳	۴۰/۰۳%
Write Misses	٧٧° ٢٣١٧	۵٩/٩٧%
Total Requests	177717498	
Total Hits	8119YYA	۳۴٬۵۵%
Total Misses	7999197	۶۵/۴۵%

جدول ۳۱: نتیجه شبیهسازی مجموعهداده A108 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	10840144	
Read Hits	1410471	17/77%
Read Misses	A719V°7	18/18%
Write Requests	9040140	
Write Hits	71.7.1	۳۲/۴۵%
Write Misses	5451144	۶۷٬۵۵٪
Total Requests	T. T. DTIA	
Total Hits	4017474	۲۲ <i>/</i> ۳۶%
Total Misses	10814140	YY/84%

جدول ۳۲: نتیجه شبیهسازی مجموعهداده A42 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	۲۴۸۲۵۱	11/74%
Read Misses	7700414	۸۸ _/ ۷۴%
Write Requests	1919194	
Write Hits	1089710	۵۲/۲۷%
Write Misses	949417	۴ ٧/٧٣%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1771.079	۲٧/۲۸%
Total Misses	7 599195	Y Y/ Y Y%

جدول ٣٣: نتيجه شبيهسازي مجموعهداده A669 با سياست Belady و اندازه حافظه نهان ١٠٠٠٠

Metric	Count	Ratio
Read Requests	70901908	
Read Hits	74974517	95/77%
Read Misses	٩٧٧٧٣٨	٣/٧٧%
Write Requests	179727	
Write Hits	۸۰۰۹۵۴	۶۱/۹۵%
Write Misses	491974	۳۸/۰۵%
Total Requests	7774474	
Total Hits	7000000	94/81%
Total Misses	1459751	۵/۳۹٪

جدول ۳۴: نتیجه شبیهسازی مجموعهداده A129 با سیاست Belady و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	412117	
Read Hits	104441	T 1/44%
Read Misses	474401	٧٨,۵٧%
Write Requests	17,44470	
Write Hits	5441114	۵۰/۰٧%
Write Misses	54175°V	49/94%
Total Requests	177717498	
Total Hits	7470174	47/7 0 %
Total Misses	١٠٢٣٧٣۵٩	۵٧/٨٠%

جدول ۳۵: نتیجه شبیهسازی مجموعهداده A108 با سیاست Belady و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	10840144	
Read Hits	1840848	10/29%
Read Misses	1994491	14/81%
Write Requests	9040140	
Write Hits	4214821	٣۶/٨٠%
Write Misses	8.01494	۶۳/۲۰%
Total Requests	T. T. DTIA	
Total Hits	۵۱۵۹۳۲۷	۲۵٬۵۳%
Total Misses	1801000	Y4/4V%

جدول ۳۶: نتیجه شبیهسازی مجموعهداده A42 با سیاست Belady و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	۶۷۲۰۱۲	T1/89%
Read Misses	7475777	٧٨,٣١%
Write Requests	1919194	
Write Hits	1045459	۵۲/۶۱%
Write Misses	94777	۴ ٧/٣٩%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	141441	٣٣/٧ ٨%
Total Misses	7759401	<i>99</i> /۲۲%

جدول ۳۷: نتیجه شبیهسازی مجموعهداده A669 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	70901908	
Read Hits	70477741	٩٨/١٨%
Read Misses	474110	١,٨٢%
Write Requests	179727	
Write Hits	1127897	٩١/٤٨%
Write Misses	۱۱۰۱۸۵	۸٬۵۳٪
Total Requests	7774474	
Total Hits	78881000	٩٧,٨۶%
Total Misses	179.71	7/14%

جدول ۳۸: نتیجه شبیه سازی مجموعه داده A129 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	412117	
Read Hits	1424512	45/° 4%
Read Misses	T11T00A	84/A8%
Write Requests	17,44470	
Write Hits	۸۷۶۷۴۳۱	9A/79%
Write Misses	4075119	T1/Y4%
Total Requests	177717498	
Total Hits	1.077.45	۵٩/۴۰%
Total Misses	799919	40/90%

جدول ۳۹: نتیجه شبیهسازی مجموعهداده A108 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	10840144	
Read Hits	7277251	Y9/9°%
Read Misses	YA • 7 5 1 7	VT/4°%
Write Requests	9040140	
Write Hits	4109919	۵۰/۷۶%
Write Misses	4710779	49,74%
Total Requests	T. T. DTIA	
Total Hits	Y8AY * YY	۳۸/۰۵%
Total Misses	17017741	۶۱/۹۵%

جدول ۴۰: نتیجه شبیهسازی مجموعهداده A42 با سیاست Belady و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	7 7 55 7 7.	V8/TV%
Read Misses	٧٣٢٣۵۵	TT/84%
Write Requests	1919194	
Write Hits	1174775	۵۷/۰۵%
Write Misses	124401	47/90%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	70.1109	۶۸,۸۱%
Total Misses	1018448	۳۱/۱۹%

نمودارهای مربوط به این قسمت نیز در اینجا آورده شده است:

۶ سیاست ARC

الگوریتم (Adaptive Replacement Cache) یکی از سیاستهای جایگزینی پیشرفته برای مدیریت حافظه نهان است که به صورت پویا میان دادههای پرتکرار و دادههایی که اخیراً دسترسی

یافته اند تعادل برقرار می کند. این الگوریتم از دو لیست اصلی برای مدیریت بلوکها استفاده می کند: یکی برای داده هایی که در حافظه نهان قرار دارند (T) و دیگری برای داده هایی که اخیراً از حافظه نهان حذف شده اند (B). هر یک از این لیستها خود به دو بخش تقسیم می شوند: T1 و B1 مربوط به داده هایی که اخیراً به آنها دسترسی پیدا کرده ایم، و T2 و T2 مربوط به داده های که به دفعات بیشتری دسترسی داشته اند. این ساختار به الگوریتم اجازه می دهد تا به طور خود کار بین داده های پرتکرار و داده های اخیراً استفاده شده تعادل برقرار کند.

زمانی که یک بلوک داده درخواست می شود، ابتدا بررسی می شود که آیا در یکی از بخش های T2 یا T2 قرار دارد. در صورت وجود (Cache Hit)، این بلوک به ابتدای بخش مربوطه منتقل می شود تا نشان دهنده دسترسی مجدد به آن باشد. اگر بلوک در بخش های B1 یا B2 قرار داشته باشد (یعنی در گذشته حذف شده اما همچنان به صورت شبح ذخیره شده است)، بلوک به حافظه نهان بازگردانده شده و به یکی از بخش های T1 یا T2 منتقل می شود. در این حالت، متغیر T3 که نشان دهنده اندازه ایده آل بخش T3 است، به روزرسانی می شود. اگر بلوک درخواست شده در هیچ یک از بخش های T3 ایده T3 یا T3 اضافه می شود. در صورتی که مجموع اندازه بخش های T3 و T3 از ظرفیت حافظه نهان بیشتر شود، الگوریتم با توجه به مقدار T3 تصمیم می گیرد که کدام بلوک باید حذف شود.

T1 رویژگیهای برجسته الگوریتم ARC میتوان به توانایی آن در تنظیم پویا اندازه بخشهای T1 و T2 برای انطباق با تغییرات بارکاری اشاره کرد. این قابلیت به الگوریتم اجازه می دهد که به طور همزمان داده های پرتکرار و داده های با دسترسی اخیر را به صورت بهینه مدیریت کند. با این حال، مدیریت چهار بخش و به روزرسانی مداوم آن ها ممکن است باعث افزایش سربار محاسباتی شود.

توضیح برنامه شبیهسازی ARC

کد شبیه سازی سیاست (Adaptive Replacement Cache) را به زبان پایتون نوشتیم. این کد در فایل ARC (به زبان پایتون نوشتیم. این کد در فایل ARC.py در پیوستها قرار گرفته است. در ادامه بخشهای این کد را توضیح می دهیم.

ساختار کد و اجزای اصلی

کد شبیه سازی از چندین تابع و متغیر برای پیاده سازی الگوریتم ARC استفاده میکند که توضیح آنها در ادامه آمده:

۱. متغیرهای اصلی

T1 و T2: این دو لیست OrderedDict نماینده حافظه نهان (cache) هستند. T1 شامل دادههایی است که اخیراً به آنها دسترسی پیدا شده و T2 دادههایی را ذخیره میکند که به دفعات بیشتری مورد دسترسی قرار گرفتهاند.

B1 و B2: این دو لیست شامل دادههایی هستند که قبلاً از حافظه نهان حذف شدهاند اما به عنوان شبح (ghost entries) نگهداری می شوند.

p: متغیری که نشان دهنده اندازه ایدهآل T1 است و به طور پویا با توجه به رفتار الگوریتم تنظیم می شود.

run_arc_python تابع. ۲

این تابع هسته اصلی شبیهسازی ARC است و از مراحل زیر تشکیل شده است:

بررسی Cache Hit: اگر صفحه موردنظر در T1 یا T2 باشد، به عنوان Cache Hit محسوب شده و صفحه به ابتدای بخش مربوطه منتقل می شود.

بررسی Cache Miss: اگر صفحه در B1 باشد، مقدار p افزایش یافته و صفحه به T2 منتقل می شود. اگر صفحه می شود. اگر صفحه در B2 باشد، مقدار p کاهش یافته و صفحه به T2 منتقل می شود. اگر صفحه در هیچ یک از لیست ها نباشد، به T1 اضافه می شود.

حذف صفحات اضافی: در صورتی که تعداد صفحات T1 و T2 از ظرفیت حافظه نهان بیشتر شود، صفحهای که در آینده دیرتر مورد استفاده قرار میگیرد حذف و به B1 یا B2 منتقل می شود.

٣. ساير توابع

read_csv_first_column: این تابع دادهها را از فایل CSV خوانده و بر اساس بازه زمانی مشخص فیلتر میکند. دادههای استخراج شده به عنوان توالی صفحات به الگوریتم ARC ارسال می شوند.

run_all_policies: این تابع سیاستهای مختلف مدیریت حافظه نهان (از جمله ARC) را روی مجموعه داده ورودی اجرا کرده و نتایج را جمعآوری میکند.

نتايج عملكرد

در آخر خروجی برنامه مقادیر Cache Misses Cache Hits و است.

همچنین اندازه نهایی B_1 ، T_7 ، T_1 و B_2 را چاپ میکنیم.

خروجي برنامه

نتایج شبیه سازی برای اندازه حافظه نهان ۵۰۰۰، برای هر مجموعه داده مختلف در زیر آمده. جدول ۴۱: نتیجه شبیه سازی مجموعه داده ۶۶۹A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	70901908	
Read Hits	71170777	۸١/۵٩%
Read Misses	4775744	11/41%
Write Requests	179777	
Write Hits	909994	۵۰/۲۹%
Write Misses	54214	49/11%
Total Requests	7774474	
Total Hits	711711118	۸۰/۱۳٪
Total Misses	2417940	19,47%

جدول ۴۲: نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	4151174	
Read Hits	772798	10/94%
Read Misses	۴۰ ۹۲۳۸ ۰	۸۴/۰۶%
Write Requests	17,744470	
Write Hits	۳۸۵۴۲۱۰	٣٠/٥ ١٪
Write Misses	۸۹۹۰۱۱۰	89/99%
Total Requests	17717497	
Total Hits	4540004	78/14%
Total Misses	17027490	VY/A5%

جدول ۴۳: نتیجه شبیهسازی مجموعهداده ۱۰۸A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	10840144	
Read Hits	941884	ለ /እ۶%
Read Misses	٩۶٨٨۵۰۶	91/14%
Write Requests	9040140	
Write Hits	74.5455	۲۵/۱۳%
Write Misses	V15A5Y9	Y4\/\/;
Total Requests	T. T. DTIA	
Total Hits	774X 177	18/04%
Total Misses	18101110	۸٣/۴٣٪

جدول ۴۴: نتیجه شبیهسازی مجموعهداده ۴۲A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	T° 9.000	
Read Hits	1771.09	4/17%
Read Misses	79 79	٩۵/٨٨%
Write Requests	1919194	
Write Hits	1.44.40	۵۱/۶۳%
Write Misses	987177	۴ ٨,٣٧%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1104771	۲۲/۷° %
Total Misses	٣٩٣٣ 0 ۵1	۷۷ /٣°%

نتایج شبیهسازی برای اندازه حافظه نهان ۱۰۰۰۰، برای هر مجموعهداده مختلف در زیر آمده.

جدول ۴۵: نتیجه شبیهسازی مجموعهداده ۶۶۹A با سیاست ARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	74450111	٩٣/٨٩%
Read Misses	1018129	۶/۱۱%
Write Requests	179727	
Write Hits	۶۸۳۷۲۷	۵۲٬۸۸%
Write Misses	۶۰۹۱۵۰	47/17%
Total Requests	7774474	
Total Hits	70.49044	91/94%
Total Misses	7190719	٨,08%

جدول ۴۶: نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست ARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	4757174	
Read Hits	940410	19/11%
Read Misses	٣٩٣٧٧ ۴٨	٨٠,٨٩%
Write Requests	177444.	
Write Hits	4710454	٣ ٢/ ٧ ٨%
Write Misses	1544905	۶٧/۲۲%
Total Requests	177717497	
Total Hits	۵۱۴۰۷۸۹	79/° 7%
Total Misses	17071704	٧٠/٩٨%

جدول ۴۷: نتیجه شبیهسازی مجموعهداده ۱۰۸A با سیاست ARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	10840174	
Read Hits	1179018	10/84%
Read Misses	9001180	ለ ٩/٣٨%
Write Requests	9040140	
Write Hits	707077	۲۶/۲۸%
Write Misses	V° 49477	VY/87%
Total Requests	T. T. DTIA	
Total Hits	7524775	۱۸/۰۹%
Total Misses	1800-047	۸١/٩١%

جدول ۴۸: نتیجه شبیهسازی مجموعهداده ۴۲A با سیاست ARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	774109	V/Y8%
Read Misses	7.777.79	97/٧4%
Write Requests	1919194	
Write Hits	1089870	۵۳/۷۶%
Write Misses	919477	45/14%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1794111	TD/44%
Total Misses	۳۷۹۳۷۵۱	V4/08%

نتایج شبیهسازی برای اندازه حافظه نهان ۵۰۰۰۰، برای هر مجموعهداده مختلف در زیر آمده.

جدول ۴۹: نتیجه شبیهسازی مجموعهداده ۶۶۹A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	70901908	
Read Hits	70471491	٩٧/٨٠%
Read Misses	۵۷۰4۶۵	۲/۲ ° %
Write Requests	179727	
Write Hits	١٠٣٨٧٠٩٨	۸۰/۲۲%
Write Misses	700779	۱٩/٧٨%
Total Requests	77744744	
Total Hits	75412029	98/94%
Total Misses	175744	٣/٥ ٣٪

جدول ۵۰: نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	4151174	
Read Hits	114944	۲۳/۴۱ <i>%</i>
Read Misses	TYTAYT	٧۶/۵٩%
Write Requests	17,744470	
Write Hits	۸۱۵۷۱۱۰	۶۳٬۵۱٪
Write Misses	451710	7 5/49%
Total Requests	17717498	
Total Hits	9795047	۵۲/۴۹%
Total Misses	1410940	۴٧/۵۱%

جدول ۵۱: نتیجه شبیهسازی مجموعهداده ۱۰۸A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	10840184	
Read Hits	1049404	۱۴/۴۸%
Read Misses	9090719	۸۵/۵۲%
Write Requests	9040140	
Write Hits	TDS94% 。	۳٧/٢٨%
Write Misses	۶۰۰۵۶۶۵	8Y/YY%
Total Requests	T. T. DTIA	
Total Hits	۵۱۰۸۹۳۴	۲۵/۲۹%
Total Misses	10-95474	Y4/Y1%

جدول ۵۲: نتیجه شبیه سازی مجموعه داده ۴۲A با سیاست ARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	T° 9.000	
Read Hits	900420	T°/\T%
Read Misses	71477°	۶۹/۱۷%
Write Requests	1919194	
Write Hits	1047109	۵۲/۱۹%
Write Misses	90101	۴٧,٨١%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1994044	٣٩/١٨%
Total Misses	T-9479A	۶۰/۱۲%

نمودارهای مربوط به این قسمت نیز در اینجا آورده شده است:

LARC سیاست ۷

الگوریتم (LARC (Lazy Adaptive Replacement Cache) نسخه ای بهینه از ARC است که با هدف کاهش سربار محاسباتی و جلوگیری از آلودگی حافظه نهان طراحی شده است. در این الگوریتم،

برخلاف ARC، داده ها به محض یک Cache Miss وارد حافظه نهان نمی شوند. به جای آن، از یک حافظه شبح (Ghost Cache) به نام Qr استفاده می شود که تنها مشخصات بلوکهای داده (و نه محتوای آنها) را ذخیره می کند. اگر یک بلوک در دسترسی های بعدی دوباره درخواست شود و در Qr موجود باشد، این بلوک به حافظه نهان اصلی (Q) منتقل می شود و جایگاه آن در Q به روزرسانی می شود. در غیر این صورت، مشخصات بلوک به Qr اضافه شده و در صورت پر بودن Qr قدیمی ترین بلوک از آن حذف می شود.

ویژگی مهم LARC در مقایسه با ARC این است که داده هایی که تنها یک بار درخواست شدهاند، وارد حافظه نهان نمی شوند و تنها پس از دسترسی مجدد، بلوک داده به Q منتقل می شود. این روش نه تنها از آلودگی حافظه نهان جلوگیری می کند، بلکه به کاهش هزینه های محاسباتی کمک می کند. علاوه بر این، با استفاده از متغیر cr که اندازه ایده آل حافظه شبح را تنظیم می کند، الگوریتم به صورت پویا خود را با تغییرات بارکاری تطبیق می دهد. به این ترتیب، LARC با حفظ عملکرد مشابه می کند، مدیریت حافظه نهان ارائه می دهد و برای سناریوهایی با تغییرات سریع در الگوی دسترسی به داده ها مناسب تر است.

توضيح برنامه شبيهسازى LARC

کد شبیه سازی سیاست LARC به زبان پایتون نوشته شده و در فایل LARC.py قرار دارد. در ادامه اجزای این کد و عملکرد آنها توضیح داده می شود.

ساختار کد و اجزای اصلی

کد شبیه سازی از چندین تابع و متغیر اصلی تشکیل شده که عبارتند از:

- Q و Qr: این دو لیست OrderedDict هستند که به ترتیب حافظه نهان و حافظه نهان و حافظه نهان میدهند.
 - Q: شامل دادههایی است که مستقیماً در حافظه نهان نگهداری میشوند.
 - Qr: شامل دادههایی است که به صورت شبح (ghost entries) ذخیره شدهاند.
- cr: متغیری که نشاندهنده ظرفیت حافظه نهان ثانویه (Qr) است و به صورت پویا بر اساس رفتار الگوریتم تنظیم می شود. مقدار اولیه cr برابر با ۱۰% ظرفیت کل حافظه نهان در نظر گرفته می شود.

• cache_misses و cache_misses: این متغیرها تعداد دفعات Cache Miss و Cache Miss را ثبت می کنند.

توابع اصلی کد

- read_csv_first_column .۱: این تابع فایل CSV را خوانده و داده ها را بر اساس محدوده زمانی مشخص فیلتر میکند. داده های خروجی به عنوان توالی صفحات به الگوریتم ارسال می شوند.
 - run_larc_python .۲ این تابع اصلی شبیه سازی LARC است که شامل مراحل زیر است:
- بررسی Cache Hit: اگر صفحه موردنظر در Q وجود داشته باشد، به ابتدای لیست منتقل شده و مقدار cache_hits افزایش می یابد. همچنین مقدار cr کاهش می یابد تا حافظه نهان ثانویه کوچکتر شود.
- بررسی Cache Miss: اگر صفحه در Qr باشد، به Q منتقل شده و مقدار cr افزایش می یابد. در غیر این صورت، صفحه به Qr اضافه می شود.
- حذف صفحات اضافی: در صورتی که تعداد صفحات در Qr از مقدار cr بیشتر شود، قدیمی ترین صفحه حذف می شود.
- ۳. run_all_policies: این تابع سیاستهای مختلف مدیریت حافظه نهان، از جمله LARC را روی مجموعه داده ورودی اجرا کرده و نتایج را گزارش میکند.

نتايج عملكرد

در آخر خروجی برنامه مقادیر Cache Misses Cache Hits و است.

همچنین اندازه نهایی Q و Qr و cr را چاپ میکنیم.

خروجي برنامه

نتایج شبیه سازی برای اندازه حافظه نهان ۵۰۰۰، برای هر مجموعه داده مختلف در زیر آمده.

جدول ۵۰۰۰ نتیجه شبیهسازی مجموعهداده ۶۶۹A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	771°A597	۸۵/۱۹%
Read Misses	47.44.24	14/11/
Write Requests	179727	
Write Hits	۸۰۲۸۹۵	49/11%
Write Misses	<i>५</i> ९ ४ <i>५</i> ९	۵۳/۷۳%
Total Requests	7774474	
Total Hits	77V° <i>5</i> 9°°	ለ ፕ /ፕ۴%
Total Misses	4247944	18/88%

جدول ۵۰۰ نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	412112	
Read Hits	838814	۱۳/۰۸%
Read Misses	4771008	1891%
Write Requests	17,444.	
Write Hits	W1 0 TT FX	74/18%
Write Misses	9740977	٧۵,٨٤%
Total Requests	177717497	
Total Hits	٣٧٣٩٩۶۵	Y1/11%
Total Misses	١٣٩٧٢۵٢٨	YA,A9%

جدول ۵۵: نتیجه شبیهسازی مجموعهداده ۱۰۸A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	10840144	
Read Hits	۶۸۳۲۴۲	5/ 4 4%
Read Misses	9945941	۹۳/۵۷%
Write Requests	9040140	
Write Hits	Y000V98	Y0/90%
Write Misses	V0V444	V 9/1 ° %
Total Requests	T. T. DTIA	
Total Hits	7 <i>5</i>	۱۳/۲۸%
Total Misses	۱۷۵۲۱۱۲۸۰	18/14%

جدول ۵۶: نتیجه شبیهسازی مجموعهداده ۴۲A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	171197	4/14%
Read Misses	79V054	۹۵ <i>/</i> ۸۶%
Write Requests	1919194	
Write Hits	901841	41/19%
Write Misses	1000019	۵۱/۸۱٪
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1018440	T1/T5%
Total Misses	4001087	YA,84%

نتایج شبیهسازی برای اندازه حافظه نهان ۱۰۰۰۰، برای هر مجموعهداده مختلف در زیر آمده.

جدول ۵۷: نتیجه شبیهسازی مجموعهداده ۶۶۹A با سیاست LARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	7409744	94/VA%
Read Misses	۱۳۵۳۷۰۷	۵٫۲۲%
Write Requests	17977	
Write Hits	840489	49/10%
Write Misses	80 7 4°A	۵۰/۸۵%
Total Requests	77744744	
Total Hits	70777710	97/87%
Total Misses	۲۰۱۱۱۱۵	٧,٣٨%

جدول ۵۸: نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	4757174	
Read Hits	۶۸۹۸۰۲	14/14%
Read Misses	4177471	۸۵,۸۳%
Write Requests	17,444.	
Write Hits	۸۲۵۲۳۳	T8/VT%
Write Misses	9411797	٧٣/٢٨%
Total Requests	177717497	
Total Hits	*17777°	۲۳/۲۷ %
Total Misses	1809 • 188	V8/VT%

جدول ۵۹: نتیجه شبیهسازی مجموعهداده ۱۰۸A با سیاست LARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	10840174	
Read Hits	V4°°V8	8/A8%
Read Misses	9890098	97/04%
Write Requests	9070140	
Write Hits	7770140	۲۳/۱۹%
Write Misses	۷۳۵۵· ۰۵	٧۶,٨١%
Total Requests	۲۰۲۰۵۳۱۸	
Total Hits	۲95.715	14,80%
Total Misses	17740107	۸۵/۳۵%

جدول ۶۰: نتیجه شبیهسازی مجموعهداده ۴۲A با سیاست LARC و اندازه حافظه نهان ۱۰۰۰۰

Metric	Count	Ratio
Read Requests	T° 91170	
Read Hits	100981	۵/۰ ۳%
Read Misses	۲9477 57	94/94%
Write Requests	1919194	
Write Hits	1079781	۵۱٬۷۷%
Write Misses	909418	۴ ٨/٢٣%
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1110749	77/T1%
Total Misses	79.71 0	V9/99%

نتایج شبیهسازی برای اندازه حافظه نهان ۵۰۰۰۰، برای هر مجموعهداده مختلف در زیر آمده.

جدول ۶۱: نتیجه شبیهسازی مجموعهداده ۶۶۹A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	709091908	
Read Hits	7544444	٩٨/٥ ٤٪
Read Misses	۵۰۷۵۶۳	1/98%
Write Requests	179727	
Write Hits	۶۸۷۳۵۷	۵۳/۱۶%
Write Misses	۶۰۵۵۵۲۰	48/14%
Total Requests	7774474	
Total Hits	75171700	90/91%
Total Misses	۱۱۱۳۰۸۳	% 0 9 %

جدول ۶۲: نتیجه شبیهسازی مجموعهداده ۱۲۹A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	412112	
Read Hits	975479	Y°/° 8%
Read Misses	441144	V9/94%
Write Requests	17844470	
Write Hits	Y079419	۵۸/۶۲%
Write Misses	۵۳۱۴۹۰۱	۴١,٣٨%
Total Requests	177717498	
Total Hits	۸۵۰۵۷۴۸	۴۸/۰۲%
Total Misses	9708740	۵۱/۹۸%

جدول ۶۳: نتیجه شبیه سازی مجموعه داده ۱۰۸A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	10840174	
Read Hits	180847	۱۵/۵۸%
Read Misses	۸۹۷۳۷۸۶	۸۴/۴۲%
Write Requests	9040140	
Write Hits	772427	۲۹ _{/°} ۷%
Write Misses	8491819	۷۰/۹۳%
Total Requests	T. T. DTIA	
Total Hits	4449914	Y 1/9 V%
Total Misses	10480400	٧٨/٠٣%

جدول ۶۴: نتیجه شبیهسازی مجموعهداده ۴۲A با سیاست LARC و اندازه حافظه نهان ۵۰۰۰۰

Metric	Count	Ratio
Read Requests	T- 91	
Read Hits	19.749	8/14%
Read Misses	۲9 0 ۸ ٣9 <i>۶</i>	٩٣٨۶%
Write Requests	1919194	
Write Hits	1.040.4	۵۲/۹۶%
Write Misses	980590	* V/° * %
Total Requests	۵۰۸۷۹۳۲	
Total Hits	1744745	74,40%
Total Misses	7144°18	٧۵/۵۵%

نمودارهای مربوط به این قسمت نیز در اینجا آورده شده است:

۸ مقایسه و جمع بندی در نمودارهای زیر تمام الگوریتمها را روی مجموعهدادههای متفاوت مقایسه کردهایم.

نتایج نشان می دهد که سیاست Belady به طور قابل توجهی عملکرد بهتری نسبت به سایر الگوریتم ها دارد و با افزایش اندازه حافظه نهان، میزان برخورد آن نیز افزایش می یابد. این نتیجه قابل انتظار است، زیرا Belady یک الگوریتم بهینه است. در مقابل، سیاست N-hit در بیشتر اندازه حافظه و مجموعه داده ها، کمترین میزان برخورد را نشان می دهد که نشان دهنده عملکرد ضعیف تر آن نسبت به سایر روش های جایگزینی است. البته این سیاست عملکرد خوبی را روی مجموعه داده A42 داشت.

سیاست ARC عملکرد قابل قبولی دارد و از LRU بهتر عمل میکند، اما همچنان به میزان برخورد Belady نمیرسد.

سیاست LARC در اکثر مقایسه ها بدتر از ARC عمل کرد و تنها در یکی از مجموعه داده ها (مجموعه داده A669) بهتر عمل کرد.

در مجموع، اگرچه Belady به عنوان یک معیار ایده آل بالاترین میزان ضربه را دارد، اما در عمل نمی توان از آن استفاده کرد. الگوریتم ARC گزینه بهتری نسبت به LRU است و عملکرد مناسبی در مقایسه با سایر روشها ارائه می دهد.

اما یک درس دیگری که میتوان از این شبیهسازیها گرفت این است که سیاستهای مختلف در مجموعهدادههای متفاوت، عملکرد یکسانی ندارند و سیاستی که روی یک مجموعهداده خاص

خوب عمل میکند ممکن است روی مجموعه داده ی دیگری، از بقیه سیاست ها بدتر باشد.