МАТЕМАТИЧЕСКАЯ ЛОГИКА 2

Виктор Львович Селиванов v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic2-2023/tree/main

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., доп. М.: МЦНМО, 2012. 159 с.
- 3. Н. Катленд. Вычислимость. Введение в теорию рекурсивных функций. М: Мир, 1983, 255 с.
- 4. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.:

Наука, 2001. 256 с.

5. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528 с.

σ -ТЕРМЫ:

предметная переменная есть терм; константный символ из σ есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

выражения s = t и $P(t_1, \ldots, t_n)$, где s, t, t_1, \ldots, t_n — термы, а p - n-местный предикатный символ из σ , суть формулы; если φ и ψ — формулы, а x — предметная переменная, то выражения $(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \rightarrow \psi), \neg \varphi, \forall x \varphi, \exists x \varphi$ суть формулы.

 σ -СТРУКТУРА: пара $\mathbb{A} = (A; I)$, состоящая из непустого множества A и интерпретации I сигнатурных символов в A. Интерпретация I — отображение, сопоставляющее каждому n-местному предикатному символу $P \in \sigma$ некоторый n-местный предикат P^I на A, каждому n-местному функциональному символу $f \in \sigma - n$ -местную функцию f^I на A и каждому константному символу $c \in \sigma$ — элемент $c^I \in A$.

ЗНАЧЕНИЕ $t^{\mathbb{A}}(a_1, \dots, a_k)$ ТЕРМА $t = t(x_1, \dots, x_k)$ В СТРУКТУРЕ \mathbb{A} , при заданных значениях $x_i = a_i \in A$: Если $t = x_i$, то $t^{\mathbb{A}}(a_1, \dots, a_k) = a_i$; если $t = c \in \sigma$, то $t^{\mathbb{A}}(a_1, \dots, a_k) = c^{\mathbb{A}}$; если $t = f(t_1, \dots, t_n)$ и значения $b_j = t_j^{\mathbb{A}}(a_1, \dots, a_k)$ уже определены по предположению индукции, то $t^{\mathbb{A}}(a_1, \dots, a_k) = f^{\mathbb{A}}(b_1, \dots, b_n)$.

ЗНАЧЕНИЕ $\varphi^{\mathbb{A}}(a_1, \dots, a_k)$ ФОРМУЛЫ $\varphi = \varphi(x_1, \dots, x_k)$ В СТРУКТУРЕ \mathbb{A} при $x_i = a_i \in A$:

Если φ есть s=t, то $\varphi^{\mathbb{A}}(a_1,\ldots,a_k)=\mathbb{M}$ в точности тогда, когда совпадают $s^{\mathbb{A}}(a_1,\ldots,a_k)$ и $t^{\mathbb{A}}(a_1,\ldots,a_k)$;

если φ есть $P(t_1, \dots, t_n)$, то $\varphi^{\mathbb{A}}(a_1, \dots, a_k) = P^{\mathbb{A}}(t_1^{\mathbb{A}}(a_1, \dots, a_k), \dots, t_n^{\mathbb{A}}(a_1, \dots, a_k));$

если φ есть $(\psi \wedge \theta)$, то $\varphi^{\mathbb{A}}(a_1, \dots, a_k) = \psi^{\mathbb{A}}(a_1, \dots, a_k) \wedge \theta^{\mathbb{A}}(a_1, \dots, a_k)$, и аналогично для операций \vee , \rightarrow и \neg ;

если φ есть $\forall x \psi(x, x_1, \dots, x_k)$, то $\varphi^{\mathbb{A}}(a_1, \dots, a_k) = \mathbb{M}$ в точности тогда, когда $\psi^{\mathbb{A}}(b, a_1, \dots, a_k) = \mathbb{M}$ при любом $b \in A$;

если φ есть $\exists x \psi(x, x_1, \dots, x_k)$, то $\varphi^{\mathbb{A}}(a_1, \dots, a_k) = \mathbb{M}$ в точности тогда, когда $\psi^{\mathbb{A}}(b, a_1, \dots, a_k) = \mathbb{M}$ хотя бы при одном

 $b \in A$.

ОСНОВНЫЕ РАВНОСИЛЬНОСТИ

1.
$$(\varphi \to \psi) \equiv (\neg \varphi \lor \psi);$$

2.
$$\neg \neg \varphi \equiv \varphi$$
;

3.
$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi);$$

4.
$$\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi);$$

5.
$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi);$$

6.
$$(\varphi \lor \psi) \equiv (\psi \lor \varphi);$$

7.
$$\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$$
;

8.
$$\varphi \lor (\psi \lor \theta) \equiv (\varphi \lor \psi) \lor \theta$$
;

9.
$$\varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta);$$

10.
$$\varphi \vee (\psi \wedge \theta) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \theta)$$
.

11.
$$\neg(\forall x\varphi) \equiv \exists x(\neg\varphi);$$

12.
$$\neg(\exists x\varphi) \equiv \forall x(\neg\varphi);$$

13.
$$\psi \wedge \forall x \varphi \equiv \forall x (\psi \wedge \varphi);$$

14.
$$\psi \vee \exists x \varphi \equiv \exists x (\psi \vee \varphi);$$

15.
$$\psi \vee \forall x \varphi \equiv \forall x (\psi \vee \varphi);$$

16.
$$\psi \wedge \exists x \varphi \equiv \exists x (\psi \wedge \varphi);$$

(x не входит свободно в $\psi)$

17.
$$\forall x \varphi(x) \equiv \forall y \varphi(y);$$

18.
$$\exists x \varphi(x) \equiv \exists y \varphi(y)$$
.

$$(y$$
 не входит в $\varphi)$

ОСНОВНЫЕ ТАВТОЛОГИИ

1.
$$\varphi \to (\psi \to \varphi)$$
;

2.
$$(\varphi \to \psi) \to ((\varphi \to (\psi \to \theta)) \to (\varphi \to \theta));$$

3.
$$\varphi \to (\psi \to (\varphi \land \psi));$$

4.
$$(\varphi \wedge \psi) \rightarrow \varphi$$
;

5.
$$(\varphi \wedge \psi) \rightarrow \psi$$
;

6.
$$\varphi \to (\varphi \lor \psi)$$
;

7.
$$\psi \rightarrow (\varphi \vee \psi)$$
;

8.
$$(\varphi \to \theta) \to ((\psi \to \theta) \to ((\varphi \lor \psi) \to \theta));$$

9.
$$(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi);$$

10.
$$\neg \neg \varphi \rightarrow \varphi$$
.

ГИЛЬБЕРТОВСКОЕ ИП $_{\sigma}$ АКСИОМЫ:

Тавтологии сигнатуры σ ;

Кванторные аксиомы

$$\forall x \varphi(x) \to \varphi(t)$$
 и $\varphi(t) \to \exists x \varphi(x)$;

Аксиомы равенства

$$\forall x(x=x),$$

$$\forall x \forall y (x = y \rightarrow y = x),$$

$$\forall x \forall y \forall z (x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n (x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \rightarrow P(y_1, \dots, y_n)).$$

ПРАВИЛА ВЫВОДА:

$$\frac{\varphi, \varphi \to \psi}{\psi}, \quad \frac{\psi \to \varphi(y)}{\psi \to \forall x \varphi(x)}, \quad \frac{\varphi(y) \to \psi}{\exists x \varphi(x) \to \psi},$$

где y — переменная, не входящая свободно в нижнюю формулу.

Вариант Π_{σ}^* получается, если вместо всех тавтологий берутся только ОСНОВНЫЕ тавтологии.

ГЕНЦЕНОВСКОЕ ИП $_{\sigma}$ (без равенства) АКСИОМЫ:

 $\Gamma, \varphi \vdash \Delta, \varphi$ ПРАВИЛА ВЫВОДА:

$$\frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi; \ \Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \land \psi}, \\ \frac{\Gamma, \varphi \vdash \Delta; \ \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi, \psi}{\Gamma \vdash \Delta, \varphi, \psi}, \\ \frac{\Gamma \vdash \Delta, \varphi; \ \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \rightarrow \psi \vdash \Delta}, \qquad \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \rightarrow \psi}, \\ \frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \neg \varphi \vdash \Delta}, \qquad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi}, \\ \frac{\Gamma, \varphi(t) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi(y)}{\Gamma \vdash \Delta, \forall x \varphi(x)}, \\ \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma \vdash \Delta, \exists x \varphi(x)},$$

$$\frac{\Gamma \vdash \Delta, \varphi; \ \Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta}$$

МИНИМАЛЬНАЯ АРИФМЕТИКА МА:

1.
$$0 + 1 = 1$$
; 2. $\forall x \neg (x + 1 = 0)$;

3.
$$\forall x \forall y (x+1=y+1 \rightarrow x=y);$$

4.
$$\forall x(x+0=x);$$

5.
$$\forall x \forall y (x + (y+1) = (x+y) + 1);$$

6.
$$\forall x(x \cdot 0 = 0);$$

7.
$$\forall x \forall y (x \cdot (y+1) = (x \cdot y) + x);$$

8.
$$\forall x \neg (x < 0);$$

9.
$$\forall x \forall y (x < y \lor x = y \lor y < x);$$

10.
$$\forall x \forall y (x < y + 1 \leftrightarrow (x < y \lor x = y)).$$

Арифметика Пеано ПА получается из МА добавлением схемы аксиом индукции:

$$(\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))) \to \forall x\varphi(x),$$

где $\varphi(x)$ — любая формула сигнатуры MA.

АКСИОМЫ ZFC (сигнатура $\{=, \in\}$)

- $0. \ \exists x(x=x).$
- 1. $\forall u(u \in X \leftrightarrow u \in Y) \to X = Y$.
- 2. $\forall u \forall v \exists x \forall z (z \in x \leftrightarrow z = u \lor z = v)$.
- 3. $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \in X \land \varphi(u))$.
- 4. $\forall X \exists Y \forall u \forall z (u \in z \land z \in X \rightarrow u \in Y)$.
- 5. $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \subseteq X)$.
- 6. $\forall x \forall y \forall y' (\varphi(x, y) \land \varphi(x, y') \rightarrow y = y')$ $\rightarrow \forall X \exists Y \forall x \forall y (x \in X \land \varphi(x, y) \rightarrow y \in Y).$
- 7. $\exists Y (\emptyset \in Y \land \forall y (y \in Y \rightarrow y \cup \{y\} \in Y)).$
- 8. $\forall X(X \neq \emptyset \rightarrow \exists x(x \in X \land \forall u(u \in x \rightarrow u \notin X)))$.
- 9. $\forall X \exists f((f:(P(X) \setminus \{\emptyset\}) \to X) \land \forall Y(Y \subseteq X \land Y \neq \emptyset \to f(Y) \in Y)).$

СВОЙСТВА АКСИОМ И ПРАВИЛ

- 1. Все аксиомы тождественно истинны.
- 2. Если формула получена по некоторому правилу из формул, тождественно истинных в структуре A, то она тождественно истинна в A.
- 3. Если в любой аксиоме (любом правиле вывода) заменить все вхождения константного символа c на переменную z, не входящую в эту аксиому (это правило вывода), то получим аксиому (правило вывода).

Выводом формулы φ из множества формул T называют последовательность формул $\varphi_1, \ldots, \varphi_k$, в которой $\varphi_k = \varphi$ и каждый элемент либо аксиома, либо принадлежит T, либо выведен из предшествующих формул последовательности по одному из правил вывода.

Формулу φ называют выводимой из множества формул $T(T \vdash \varphi)$, если существует вывод формулы φ из T.

СВОЙСТВА ВЫВОДИМОСТИ

Теорема дедукции: Соотношения $T \vdash (\varphi \rightarrow \psi)$ и $T \cup \{\varphi\} \vdash \psi$ равносильны для всех предложений φ , формул ψ и множеств формул T.

- 1. Если $\varphi \in T$, то $T \vdash \varphi$.
- 2. Если $T \vdash \varphi$, то $T_0 \vdash \varphi$ для подходящего конечного множества $T_0 \subseteq T$.
- 3. Если $S \vdash \varphi$ и все формулы множества S выводимы из T, то $T \vdash \varphi$.
- 4. Если $T \cup \{\varphi\} \vdash \theta$ и $T \cup \{\psi\} \vdash \theta$, то $T \cup \{\varphi \lor \psi\} \vdash \theta(\varphi)$ и ψ предложения).
- 5. Если $T \cup \{\varphi\} \vdash \psi$ и $T \cup \{\varphi\} \vdash \neg \psi$, то $T \vdash \neg \varphi \ (\varphi предложение).$
- 6. $T \vdash \varphi \land \psi$ тогда и только тогда, когда $T \vdash \varphi$ и $T \vdash \psi$.

СВОЙСТВА НЕПРОТИВОРЕЧИВОСТИ

Множество формул противоречиво, если из него выводима любая формула.

- 1. T противоречиво тогда и только тогда, когда из него выводима хотя бы одна формула вида $\theta \land \neg \theta$.
- 2. Если $T_n (n \in \mathbb{N})$ непротиворечивы и $T_0 \subseteq \mathbf{T}_1 \subseteq \mathbf{T}_n$ то $\bigcup_n T_n$ непротиворечиво.
- 3. Если φ предложение, и $T \cup \{\varphi\}$ противоречиво, то $T \vdash \neg \varphi$.
- 4. Если T непротиворечиво, то для любого предложения φ непротиворечиво хотя бы одно из $T \cup \{\varphi\}$ и $T \cup \{\neg \varphi\}$.
- 5. Если множество предложений $S = T \cup \{\exists x \psi(x)\}$ непротиворечиво, то и множество $S \cup \{\psi(c)\}$ непротиворечиво для любого не входящего в формулы из S сигнатурного константного символа c.

СВОЙСТВА ТЕОРИЙ ХЕНКИНА

Пусть T — теория Хенкина, т.е. T непротиворечива, любое предложение или его отрицание выводимо из T, и для любого выводимого из T предложения вида $\exists x \psi(x)$ существует константный символ $c \in \sigma$ такой, что $T \vdash \psi(c)$.

- 1. $T \vdash \neg \varphi \iff T \not\vdash \varphi$.
- 2. $T \vdash (\varphi \lor \psi) \iff T \vdash \varphi$ или $T \vdash \psi$.
- 3. $T \vdash (\varphi \rightarrow \psi) \iff T \not\vdash \varphi$ или $T \vdash \psi$.
- 4. $T \vdash \exists x \theta(x) \iff T \vdash \theta(t)$ для некоторого терма t без переменных.
- 5. $T \vdash \forall x \theta(x) \iff T \vdash \theta(t)$ для любого терма t без переменных.
- 6. Любая непротиворечивая теория не более чем счетной сигнатуры σ может быть расширена до теории Хенкина сигнатуры σ_C , где C счетное множество новых константных символов.