

COLÉGIO ESTADUAL 31 DE MARÇO

Atividade de Química - 2º bimestre

Aluno (a): 3ºSérie Turma: Turno: Matutino

Isomeria plana

Isômeros são compostos que têm a mesma fórmula molecular — ou seja, o mesmo número e tipo de átomos —, mas esses átomos estão organizados de forma diferente. Essa diferença na estrutura afeta diretamente as propriedades físicas e químicas da substância. Por que estruturas diferentes causam propriedades diferentes? A estrutura de uma molécula determina: como ela se liga com outras moléculas, como ela interage com solventes, calor, luz, etc.; como se comporta em reações químicas.

Mesmo que os átomos sejam os mesmos, a **forma como estão conectados** (ou posicionados no espaço) altera: ponto de fusão e ebulição, solubilidade, acidez ou basicidade, estabilidade e reatividade.

Isomeria de função: Etanol e Éter Dimetílico

Etanol (CH₃–CH₂–OH) é um **álcool**: forma ligações de hidrogênio, é solúvel em água, tem ponto de ebulição alto. **Éter dimetílico** (CH₃–O–CH₃) é um **éter**: não forma ligações de hidrogênio com a mesma intensidade, tem ponto de ebulição menor e menor solubilidade em água.

Ambos têm **fórmula molecular C₂H₀O**, mas **propriedades muito diferentes**.

A isomeria plana ocorre quando compostos apresentam a mesma fórmula molecular, mas possuem estruturas diferentes no plano. Esse tipo de isomeria é dividido em:

1. Isomeria de cadeia	2. Isomeria de posição
Os isômeros possuem o mesmo número e tipo de	A posição de um grupo funcional ou insaturação varia na
átomos, mas diferem no tipo ou na ramificação da cadeia	cadeia.
carbônica.	Exemplo:
Exemplo:	but-1-eno: CH ₂ =CH–CH ₂ –CH ₃
butano: CH ₃ -CH ₂ -CH ₂ -CH ₃	but-2-eno: CH ₃ -CH=CH-CH ₃
isobutano: CH₃–CH(CH₃)–CH₃	Fórmula molecular de ambos: C₄H ₈
Fórmula molecular de ambos: C ₄ H ₁₀	
3. Isomeria de função	4. Isomeria de metameria
Os compostos têm a mesma fórmula molecular, mas	A diferença está na posição do heteroátomo (como
pertencem a funções orgânicas diferentes.	oxigênio, nitrogênio, enxofre) na cadeia.
Exemplo:	Exemplo:
etanol (álcool): CH ₃ –CH ₂ –OH	etoxietano: CH ₃ -CH ₂ -O-CH ₂ -CH ₃
dimetil éter (éter): CH₃–O–CH₃	metil-propil éter: CH ₃ -O-CH ₂ -CH ₂ -CH ₃
Fórmula molecular de ambos: C₂H ₆ O	Fórmula molecular de ambos: C₄H₁₀O
E legerarie de tentemente	

5. Isomeria de tautomeria

É um **equilíbrio dinâmico** entre dois isômeros com deslocamento de hidrogênio e dupla ligação, comum em compostos que possuem carbonilas e hidroxilas.

Exemplo:

acetaldeído (forma aldeído): CH₃-CHO etenol (forma enólica): CH₂-CH-OH Fórmula molecular de ambos: C₂H₄O