Indoor Localization: WiFi Fingerprinting

Amitangshu Pal

Indoor Localization

https://www.geospatialworld.net/blogs/indoor-positioning-indoors-gps-stops-working/

Indoor Localization

- Why GPS localization is not used in indoors?
 - GPS cannot work indoors
 - □ GPS power consumption is very high
- Why not use WiFi APs as satellites and use trilateration?
 - Heavy multipaths in indoor environment
 - WiFi APs/routers are not precisely clock synchronized

Indoor Localization: Deterministic Approach

RADAR: Offline Phase

- WiFi fingerprinting → Offline phase and Online phase
- For every location and for every orientation of these locations, measure:
 - $\propto x, y, z > < RSSI^A, RSSI^B, RSSI^c \gg$
- RSSI values are averaged over multiple measurements

RADAR: Online Phase

- At any target location, record all the RSSI values:
 - $RSSI^A$, $RSSI^B$, $RSSI^C = \langle A: 11, B: 20, C: 15 \rangle$
- Find the location $\langle x, y, z \rangle$ that has the closest fingerprint (or **nearest neighbor**) in the RSSI map
 - < x, y, z > then becomes the location of the user

RADAR: Experimental results

Floor layout:

- Black Dots: locations where empirical signal strength info was collected
- Large Stars: Access points

Median error: 2.94 meters 90% error: 10 meters

RADAR: Experimental results

RADAR: Experimental results

- Lets not limit to just nearest data point
- Find k-nearest neighbours:
 - Finding the right k is challenging

N₁, N₂, N₃: neighbors T: true location of user G: guess based on averaging

Median error with $k = 3 \rightarrow 2.13$ meters

RADAR: Limitations

- Long time to gather all the empirical data
 - □ 1 floor= (70 locations) · (4 directions) · (20 samples)
 - No one wants to collect all that data for a whole office building
- If the access point moves, have to recollect all the data

Indoor Localization: Probabilistic Approach

- Principle
 - □ If it walks like a duck, quacks like a duck, then it is probably a duck

Src: D. Samanta

Suppose, Y is a class variable and $X = \{X_1, X_2, \dots, X_n\}$ is a set of attributes, with instance of Y.

INPUT (X)	CLASS(Y)
x_1 , x_2 ,, x_n	у і

 The classification problem, then can be expressed as the classconditional probability

$$P(Y = y_i | (X_1 = x_1) \text{ AND } (X_2 = x_2) \text{ AND } \dots (X_n = x_n))$$

- Bayesian classifier calculate this posterior probability using Bayes' theorem, which is as follows.
- From Bayes' theorem on conditional probability, we have

$$P(Y|X) = \frac{P(X|Y) \cdot P(Y)}{P(X)}$$

Note:

- P(X) is called the evidence (also the total probability) and it is a constant.
- The probability P(Y|X) (also called class conditional probability) is therefore proportional to $P(X|Y) \cdot P(Y)$.
- Thus, P(Y|X) can be taken as a measure of Y given that X.

$$P(Y|X) \propto P(X|Y) \cdot P(Y)$$

- Suppose, for a given instance of X (say $x = (X_1 = x_1)$ and $(X_n = x_n)$).
- There are any two class conditional probabilities namely $P(Y=y_i|X=x)$ and $P(Y=y_i|X=x)$.
- If $P(Y=y_i | X=x) > P(Y=y_j | X=x)$, then we say that y_i is more stronger than y_i for the instance X=x.
- The strongest y_i is the classification for the instance X = x.

HORUS Localization: A Probabilistic Approach

HORUS: Offline Phase

- Stores distribution of RSSI at different locations:
 - □ For location L, store: $P(RSSI \mid L)$

HORUS: Online Phase

- Record the RSSI values from all APs (suppose there are k APs):
 - □ For all locations L_j , calculate:

$$P(L_j|RSSI) \propto P(RSSI|L_j) \cdot P(L_j) \propto P(RSSI|L_j) = \prod_{i=1}^k P(RSSI_i|L_j)$$

□ The location L_i with maximum $P(L_i|RSSI)$ is more likely the device location

HORUS: An Example

Observed RSSI: -53 dBm $P(L1|-53) \propto P(-53|L1) = 0.55$ $P(L2|-53) \propto P(-53|L2) = 0.08$ ∴ The user is more likely in L1

HORUS: Experimental results

90th percentile error: 1.5 meters

Indoor Localization: Unsupervised Learning Based

Src: R. Roy Choudhury, UIUC 2021

Path Estimation

Many Many Landmarks

Let the Patterns Emerge

- Of course, not looking for pre-determined patterns
 - Rather, let patterns emerge from sensor readings
 - E.g., through multi-dimensional clustering

Raw Sensor → Landmarks

Raw Sensor -> Landmarks

Performance

Experimentation on 8000 sq. meters

References

- P. Bahl and V. N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," IEEE INFOCOM 2000, pp. 775-784.
- Moustafa Youssef, Ashok K. Agrawala, "The Horus WLAN location determination system", MobiSys 2005, pp. 205-218.
- He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid, Moustafa Youssef, Romit Roy Choudhury, "No need to war-drive: unsupervised indoor localization", MobiSys 2012, pp. 197-210.