3යලු ම හිමිකම් ඇවිරිණි / ආගුට පුනිට්ටුහිතාවටුනෙ way / All Rights Reserved]

| 100   | ලුලු ම හිමිකම් ඇවරිණි / (ආඥාර් යනිර්යුහිකාගයුතා යනු / All Rights Reserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncමන්තුව<br>     |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| 多多口物品 | இ குடை நிலக දෙපාර්තමේන්තුව இ குடை நிலகைக்களம் இலங்கைப் பந்ட்சைத் திணைக்களம்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |  |  |  |  |
| 1111  | නටානයන් ලුපය සහතික පත (උසස් ලපළ) විභාගය, All / අපයාධාව                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |  |
| HH    | TOOL OF THE STREET HOST 12 LINE OF THE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |  |  |
| =     | General Certificate of Education (Adv. Level) Examination, August 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ===              |  |  |  |  |
| ŀ     | හෞතික විදනව I<br>බ u හ නි හි වි<br>ව හ හ හි වි<br>ව හ හ හි වි<br>ව හ හ හි ව ව ව ව ව ව ව ව ව ව ව ව ව ව ව ව                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ாலம்             |  |  |  |  |
| U     | Physics 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |  |  |  |  |
| 0     | උපදෙස් :<br>* මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 11 ක අඩංගු වේ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |  |  |  |  |
| 1     | * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |
|       | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)              |  |  |  |  |
| 1     | * පිළිතුරු පතුයේ නියමත සිටානයේ සංඛේ පත්ත අංශය ලක්වන්න                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1              |  |  |  |  |
| ŀ     | * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත් ව කියවන්න.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | හෝ               |  |  |  |  |
| 1     | * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් <b>නිවැරදි</b> අ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | කින්             |  |  |  |  |
| ł     | ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, <b>පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරය</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |  |  |  |  |
| 1     | (×) ලකුණු කරන්න.<br>ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i l              |  |  |  |  |
| 1     | (ගුරුත්වජ ත්වරණය, $g=10{ m Nkg^{-1}}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J                |  |  |  |  |
| Ţ     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |  |  |  |
|       | ධාරා ඝනත්වයේ ඒකකය වනුයේ, $(1) \ A \ m^2 \qquad (2) \ A \ m^{-2} \qquad (3) \ A \ m^{-3} \qquad (4) \ A \ m^{-1} \qquad (5) \ A \ m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                |  |  |  |  |
|       | a,b,c හා $d$ යනු <b>වෙනස්</b> මාන සහිත භෞතික රාශීන් වන අතර $k$ මාන රහිත නියතයකි.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                |  |  |  |  |
| ۷.    | a,b,c හා $a$ යනු <b>වෙනය</b> මාන සහත හොඩායා වයේ වන අය $a$ වෙන අය $a$ වන අය $a$ වන අය $a$ වන අය $a$ වන $a$ |                  |  |  |  |  |
|       | (A) $ka^3 = b$ (B) $d = ac$ (C) $a = kb$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |  |  |  |  |
|       | (A)  ka = b  (b)  a = ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Į.               |  |  |  |  |
|       | ඉහත සම්බන්ධතා අතුරෙන්<br>(1) B පමණක් මාන ලෙස වලංගු වේ. (2) C පමණක් මාන ලෙස වලංගු වේ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |  |  |  |
|       | (1) B පමණක් මාන ලෙස වලංගු වේ. (2) A සහ C පමණක් මාන ලෙස වලංගු වේ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |  |  |  |  |
|       | (3) I Was B 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                |  |  |  |  |
|       | (5) A, B සහ C සියල්ල ම මාන ලෙස වලංගු වේ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |  |  |  |  |
| 3.    | X සහ Y දෙකෙළවරවල් විවෘතව තිබෙන සේ කම්බි රාමුවක් ලෙස නමා ඇති ඒකාකාර                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                |  |  |  |  |
|       | සිහින් කම්බියක් රූපයේ පෙන්වා ඇත. කම්බි රාමුවෙහි ගුරුන්ව කේන්දුය පිහිටමට                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ.               |  |  |  |  |
|       | වඩාත් ම ඉඩ ඇති ලක්ෂාය වනුයේ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y                |  |  |  |  |
|       | (1) $A$ $C$ $D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |  |  |  |  |
|       | (2) B<br>(A) B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |  |  |  |  |
|       | (3) $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |  |  |  |
|       | (4) D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |  |  |  |  |
|       | (5) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ැති කෙළවර        |  |  |  |  |
| 4.    | සංඛාහතය $f$ වන සරසුලක් සමග, එක් කෙළවරක් වැසූ නළයක් එහි මූලික සංඛාහතයෙන් අනුනාද වේ. වසා අ<br>වීවෘත කළ විට නළයේ එම දිග ම එහි මූලික සංඛාහතයෙන් අනුනාද වන සරසුලෙහි සංඛාහතය ආසන්න වශා                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | යෙන් සමාන        |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |  |  |  |
|       | වනුයේ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                |  |  |  |  |
|       | (1) $\frac{f}{4}$ (2) $\frac{f}{2}$ (3) $f$ (4) $2f$ (5) $4f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |  |  |
|       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                |  |  |  |  |
| 5.    | විභවමානයක් භාවිත <b>නො කරනුයේ.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |  |  |  |
|       | (1) පුතිරෝධ සංසන්දනය කිරීම සඳහා ය.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·              |  |  |  |  |
|       | (2) වි.ගා.බ. යන් සංසන්දනය කිරීම සඳහා ය.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                |  |  |  |  |
|       | (3) කෝෂයක අභාාන්තර පුතිරෝධය මැනීම සඳහා ය.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ì                |  |  |  |  |
|       | (4) ඉතා කුඩා වි.ගා.බ. යන් මැනීම සඳහා ය.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |  |  |  |  |
|       | (ජී) විචලනය වන චෝල්ටීයකාවන් මැනීම සඳහා ය.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ 1              |  |  |  |  |
| 6     | . $A$ සහ $B$ යන දඬු දෙකක් කෙළවරින් කෙළවරට සම්බන්ධ කර ඇත. $A$ දණ්ඩ තුළ ගමන් කරන ධ්වනි තරංගයක                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ට $v$ චේගයක්     |  |  |  |  |
| •     | ඇත. යං මාපාංකය $A$ හි එම අගය මෙන් හතර ගුණයක් වූ ද එනමුත් $A$ හි ඝනත්වයම ඇති $B$ දණ්ඩ තුළට ත                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | රංගය ඇතුළු       |  |  |  |  |
|       | වේ නම්, <i>B</i> දණ්ඩ තුළ දී ධිවති තරංගයේ වේගය වනුයේ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |  |  |
|       | v (4) $2v$ (5) $4v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |
|       | (1) $\frac{4}{4}$ (2) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |  |  |  |
|       | [oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | වැනි පිටුව බලන්න |  |  |  |  |

7. අයිස්වලින් සාදන ලද තුනී පාරදෘශා උත්තල කාචයක් 0 °C හි පවතින ජලයෙහි ගිල්වා ඇති අතර සමාන්තර ආලෝක කිරණ රූපයේ පෙන්වා ඇති පරිදි කාචය මත පතනය වීමට සලස්වනු ලැබේ. වාතයට සාපේක්ෂව අයිස් සහ ජලයෙහි වර්තන අංක පිළිවෙළින් 1.31 සහ 1.33 වේ. පහත පුකාශ සලකා බලන්න.



- (A) සමාන්තර ආලෝක කිරණ කාචයේ සිට දකුණු පස ඇතින් පිහිටි ලක්ෂායකට අභිසාරි වේ.
- (B) මෙම තත්ත්වය යටතේ අයිස් කාචය අපසාරි කාචයක් ලෙස හැසිරේ.
- (C) මෙම තත්ත්වය යටතේ තාත්වික පුතිබිම්බ නිරීක්ෂණය කළ නොහැකි වේ. ඉහත පුකාශ අතුරෙන්,
- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) C පමණක් සතා වේ.
- (4) A සහ C පමණක් සතා වේ.
- (5) B සහ C පමණක් සතා වේ.
- 8. පෙන්වා ඇති පරිපථයේ බැටරියෙන් ඇද ගන්නා ධාරාව වනුයේ,
  - $(1) \quad \frac{V}{6R}$
- $(2) \quad \frac{20V}{27R}$
- $(3) \quad \frac{V}{21R}$

- $(4) \quad \frac{27V}{182R}$
- (5)  $\frac{137V}{882R}$



- 9. සාමානා සීරුමාරුවේ ඇති සංයුක්ත අණ්වීක්ෂයක,
  - (1) වස්තු දුර අවනෙතෙහි නාභීය දුරට වඩා අඩු ය.
  - (2) අවනෙත මගින් ඇති කරනු ලබන පුකිබිම්බය අතාත්වික ය.
  - (3) අවනෙත මගින් ඇති කරනු ලබන පුතිබිම්බය උපනෙතෙනි නාභීය දුර තුළ පිහිටයි.
  - (4) අවසාන පුතිබිම්බය තාත්වික වේ.
  - (5) වඩා විශාල නාභීය දුරක් සහිත අවනෙතක් භාවිත කිරීමෙන් සමස්ත කෝණික විශාලනය වැඩි කළ හැකි ය.
- $oxed{10}.$  වස්තුවක් x අක්ෂය ඔස්සේ O ලක්ෂාය වටා සරල අනුවර්තී චලිතයක් ඇති කරයි. O සිට වස්තුවේ විස්ථාපනය (x) සමග ත්වරණය (a) හි විචලනය නිවැරදි ව පෙන්නුම් කරනුයේ,



- 11. ඇදි තන්තුවක පුගමන තීර්යක් තරංග පිළිබඳ පහත පුකාශ අතුරෙන් කුමක් සතා **නොවේ** ද?
  - (1) තත්තුවේ අංශූත්වල චලිත දිශාව තරංගය පුචාරණය වන දිශාවට ලම්බක වේ.
  - (2) තන්තුවේ ආතතිය නියත විට තරංගයේ වේගය තන්තුවේ ඒකක දිගක ස්කන්ධයෙහි වර්ග මූලයට පුතිලෝමව සමානුපාතික වේ.
  - (3) තරංගය මගින් රැගෙන යන ශක්තිය තරංගයේ විස්තාරය මත රඳා පවතී.
  - (4) තත්තුවෙහි ඇති වන තරංග පරාවර්තනය කළ නොහැකි ය.
  - (5) දෙන ලද මොහොතක දී තන්තුවේ අනුයාත අංශු දෙකක් එක ම වේගයෙන් ගමන් නොකරයි.
- 12. පරිමා පුසාරණතාව  $\gamma_s$  වූ  $\theta$ °C හි පවතින ඝන ගෝලයක්  $\theta$ °C හි පවතින දුවයක රූපයේ දක්වා ඇති පරිදි සම්පූර්ණයෙන් ගිලී පාවෙමින් පවතී. දුවයේ පරිමා පුසාරණතාව  $\gamma_f(>\gamma_s)$  වේ. **ගමස්ත** ගෝලය සමග දුවය කිසියම් උෂ්ණත්වයකට සිසිල් කරනු ලැබේ.

පහත පුකාශ සලකා බලන්න.

- (A) සිසිල් කිරීමෙන් පසු ගෝලයෙන් කොටසක් දුව පෘෂ්ඨයට ඉහළින් පිහිටයි.
- (B) ගෝලය මත ඇති වන උඩුකුරු තෙරපුමෙහි විශාලත්වය වෙනස් නොවේ.
- (C) සිසිල් කිරීමෙන් පසු ගෝලයේ ඝනත්වය දුවයේ ඝනත්වයට වඩා වැඩි වේ. ඉහත පුකාශ අතුරෙන්,
- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.



13. පරිමාව  $1~{
m m}^3$  සහ ඝනක්වය  $8 imes 10^3~{
m kg}~{
m m}^{-3}$  වූ ඝන ලෝහ කුට්ටියක් වැවක පතුලෙහි නිශ්චලව පවතී. කුට්ටිය වැවෙහි පතුලේ යම්කම්න් පාකිරීමට රූපයේ පෙන්වා ඇති පරිදි එයට සවි කළ යුතු හීලියම් පුරවන ලද බැලුනයක පරිමාව කොපමණ ද? හිලියම් සමග බැලුනයේ ස්කන්ධය නොසලකා හරින්න. (ජලයේ ඝනත්වය =  $1 \times 10^3 \,\mathrm{kg}\,\mathrm{m}^{-3}$ )



- (1)  $7 \,\mathrm{m}^3$
- $(2) 8 \text{ m}^3$
- $(3) 70 \,\mathrm{m}^3$

- $(4) 80 \,\mathrm{m}^3$
- (5)  $700 \,\mathrm{m}^3$
- 14. වර්තන අංකය 1.5 වූ වීදුරු පිුස්මයක එක් පෘෂ්ඨයක රූපයේ පෙන්වා ඇති පරිදි රිදී ආලේප කර ඇත. AB මුහුණත මත heta පතන කෝණයක් සහිත ව පතිත වන ආලෝක කිරණයක් රිදී පෘෂ්ඨයෙන්  $^{--}$  පරාවර්තනය වී ආපසු එම මාර්ගය ඔස්සේ ම ගමන් කරයි. පහත සඳහන් කුමන අගය heta වලට වඩාත් ම ආසන්න වේ ද?



- (1) 37°
- (2) 41°
- (3) 49°

- (4) 51°
- (5) 56°
- $oldsymbol{15}$ . S ගවුසීය පෘෂ්ඨයකින් වට වූ ස්ථිති විදාුුත් ආරෝපණ වනාප්තියක් රූපයේ දැක්වේ. X යනු නොදන්නා ආරෝපණයකි. S පෘෂ්ඨය හරහා පිටත දිශාවට සඵල විදයුත් සුාවය



 $\epsilon_0$ (1) -3q

(2) -2q

 $\frac{-q}{}$  නම්, X ආරෝපණය වනුයේ,

(3) - q

- (4) + q
- (5) + 2q
- 16. සර්වසම ඒකාකාර ලෝහ තැටි තුනක (A),(B) සහ (C) රූප සටහන්වල පෙන්වා ඇති පරිදි එක් තැටියක සිදුරු දොළහ බැගින් වන සේ එකිනෙකට වෙනස් අරයයන් තුනකින් යුත් සිදුරු විද ඇත. තැටියේ ංක්න්දුය හරහා යන තැටියට ලම්බක අක්ෂයක් වටා තැටි තුනෙහි අවස්ථිති සූර්ණ ආරෝහණ පිළිවෙළට සිටින සේ A,B සහ C කැටි තුන සැකසූ විට,



- (1) B, C, A වේ.
- (2) A, B, C වේ.
- (3) C, B, A වේ.

- (4) A, C, B වේ.
- (5) B, A, C වේ.
- 17. ශරීරයේ මතුපිට උෂ්ණත්වය  $30\,^{\circ}\mathrm{C}$  වූ පුද්ගලයෙක් උෂ්ණත්වය  $20\,^{\circ}\mathrm{C}$  වූ පරිසරයක සිටියි. සිරුරෙන් විකිරණ මගින් තාපය හානිවීමේ සඵල ශීඝුතාව සමානුපාතික වනුයේ, (කෘෂ්ණ වස්තු විකිරණ තත්ත්ව යෙදිය හැකි බව උපකල්පනය කරන්න.)



- (2)  $293^4$
- $(3) 10^4$
- (4)  $303^4 + 293^4$
- (5)  $30^4 20^4$
- 18. පෙන්වා ඇති පරිපථයේ ටුාන්සිස්ටරය කිුයාකාරී ආකාරයේ නැඹුරු කර ඇති විට සංගුාහක ධාරාව වනුයේ,



- (2) 0.80 mA
- (3) 1.25 mA

(4) 1.40 mA

(5) 2.50 mA



- 19. පෙන්වා ඇති පරිපථයේ S ස්වීච්චිය වැසූ විට,
  - A පමණක් දැල්වේ.
  - (2) B සහ C පමණක් දැල්වේ.
  - (3) B සහ D පමණක් දැල්වේ.
  - (4) B, C සහ D පමණක් දැල්වේ.
  - (5) A,B,C සහ D සියල්ල ම දැල්වේ.



More Past Papers at

tamilguru.lk

**20**. පෙන්වා ඇති A හා B සංඛාහාංක චෝල්ටීයතා තරංග ආකෘති දෙක පෙන්වා ඇති ද්වාරයේ පුදානයන් දෙකට සම්බන්ධ කර ඇත.



F හි දී නිවැරදි පුතිදාන චෝල්ටීයතා තරංග ආකෘතිය වනුයේ,







- 21. පුකාශ ඉලෙක්ටෝන නිපදවීමට හැකියාව ඇති ලෝහ පෘෂ්ඨයක් මත ඒකවර්ණ ආලෝක කදම්බයක් පතිත වේ. ආලෝකයේ සංඛාාතය මෙම ලෝහය සඳහා කපා හරින සංඛාාතයට වඩා වැඩි නම්, ලෝහ පෘෂ්ඨයෙන් විමෝචනය වන පුකාශ ඉලෙක්ටුෝන සංඛාාව සමානුපාතික වනුයේ,
  - (1) පුකාශ ඉලෙක්ටුෝනයක චාලක ශක්තියෙහි පරස්පරයට ය.
  - (2) ලෝහයේ කාර්ය ශිුතයට ය.
  - (3) පතිත ආලෝකයේ සංඛාානයට ය.
  - (4) මලා්හ පෘෂ්ඨය මත වදින ලෝටෝන සංඛ්‍යාවට ය.
  - (5) එක් ෆෝටෝනයක ශක්තියට ය.
- 22. මාර්ගයක සෘජු සමාන්තර මංතීරු තුනක ගමන් කරන  $\mathbbm{Q}$ , $\mathbbm{Q}$  සහ  $\mathbbm{Q}$  නම් මෝටර් රථ තුනක, කාලය t=0 දී සහ  $t=t_0$ දී පිහිටීම් (a) රූපයේ පෙන්වා ඇති අතර ඒවායේ අනුරූප පුවේග (v)-කාල (t) පුස්තාර (b) රූපයේ පෙන්වා ඇත.





- (a) රූපයේ පෙන්වා ඇති අවස්ථාව සිදු වී තිබිය හැක්කේ පුස්තාරවල ඇති වර්ගඵලයන් පහත සඳහන් කුමන තත්ත්ව සපුරා ඇත්නම් පමණි ද?
- (1) ABD = DEF සහ ABD = DEG
- (2) BCD = DEF සහ ABD = DFG
- (3) CDB = DEG සහ ABD = DEF
- (4) BCD = ABD සහ DEF = DFG
- (5) ACD = DFG සහ BCD = DFG
- 23. වඳුරෙක් යම් සිරස් උසක් ඒකාකාර වේගයෙන් සිරස් ලණුවක් දිගේ තත්පර 30 ක දී නැංගේ ය. (රූපය බලන්න.) පසු ව මෙම වඳුරා එම සිරස් උස ම, පථයෙහි දිග 75 m වූ සර්පිලාකාර පථයක් ඔස්සේ වෙනත් ඒකාකාර වේගයකින් ඉහළට නැංගේ ය. වඳුරා අවස්ථා දෙකේ දී ම මුළු චලිතය පුරාම එක ම ජවය යෙදුවේ නම්, වඳුරා සර්පිලාකාර පථය නැගි වේගය වනුයේ,



- (2)  $2.5 \text{ m s}^{-1}$
- (3)  $5 \text{ m s}^{-1}$

- (4)  $7.5 \,\mathrm{m \, s^{-1}}$
- $(5) 10 \text{ m s}^{-1}$



 ${f 24}$ . පෙන්වා ඇති රූපයේ  $F_1, F_2$  සහ  $F_3$  මගින් O ලක්ෂායෙන් කිුයා කරන x-y තලයේ පිහිටි බල තුනක අචල දෛශික නිරූපණය කෙරේ.  $F_4$ යනු Oලක්ෂාය වටා එම x-y තලයේ ම භුමණය වන බලයක් නිරූපණය කරන ලෛශිකයකි.  $F_4$  ලෛශිකය  $heta=0^\circ, 90^\circ$  සහ  $180^\circ$  යන කෝණවල ඇති විට පහත කුමක් මගින් සම්පුයුක්ත දෛශිකයේ **දිශාව** වඩාත් හොදින් නිරූපණය කෙරේ ද?

|     | 0° | 90° | 180°     |
|-----|----|-----|----------|
| (1) | 1  | 4   | ->       |
| (2) | 1  | 4   | <b>←</b> |
| (3) | ļ  | 7   | ->       |
| (4) | -> | 4   | 4-       |
| (5) | 4  | ~   | 4-       |



පීඩන පොම්පය/දුවය ඇතුළු වීම

පීඩනයට ලක් කරන

ලද වැංකිය

මඩ ජලය

ඉහළින් තබා ඇති, පීඩනයට ලක්කරන ලද විශාල ටැංකියක සිට ඝනත්වය d වූ දුවයක්, ති්රස් ව එලන ලද නළයක් දිගේ නියත v වේගයකින් ගමන් කරයි. නළය නොගැඹුරු මඩ ජලය සහිත පුදේශයක් හරහා රූපයේ පෙනෙන පරිදි ගමන් කරයි. ටැංකියේ දුව පෘෂ්ඨයට ඉහළ පීඩනය P වන අතර වායුගෝලීය පීඩනය  $P_0$  වේ. නළයේ X හි කුඩා පැල්මක් ඇති වූයේ යැයි සිතමු. මඩ ජලය නළය තුළට කාන්දු වීමට අවශා තත්ත්වය වනුයේ, (ටැංකියේ දුව මට්ටම පොළොවේ සිට නියත hඋසක පවත්වාගෙන යන බවත් මඩ ජලය කාන්දු වීමෙන්  $\, 
u$  වේගය වෙනස් නොවන බවත් උපකල්පනය කරන්න.)



(2) 
$$hdg - \frac{1}{2}dv^2 < P_0$$

(3) 
$$P + hdg - \frac{1}{2}dv^2 < P_0$$
 (4)  $P + \frac{1}{2}dv^2 + hdg < P_0$ 

(4) 
$$P + \frac{1}{2} dv^2 + hdg < P_0$$

$$(5) \quad P + hdg < P_0$$

26. පෙන්වා ඇති පරිපථයෙහි එක් එක් කෝෂයෙහි වී.ගා.බ. E ද අභාන්තර පුතිරෝධය r ද වේ. I ධාරාව දෙනු ලබන්නේ

(1) 
$$\frac{2E}{R+r}$$

$$(2) \quad \frac{2E}{4R+r}$$

(1) 
$$\frac{2E}{R+r}$$
 (2)  $\frac{2E}{4R+r}$  (3)  $\frac{E}{2(R+r)}$ 

$$(4) \quad \frac{E}{R+r}$$





$$(2)$$
  $\frac{2T}{B}$  ,  $G \longrightarrow D$  දිශාවට

(3) 
$$\frac{2T}{B}$$
,  $D \longrightarrow G$  දිශාවට (4)  $\frac{4T}{B}$ ,  $G \longrightarrow D$  දිශාවට

(4) 
$$\frac{4T}{R}$$
 ,  $G \longrightarrow D$  දිශාවට

(5) 
$$\frac{4T}{B}$$
,  $D \longrightarrow G$  දිශාවට



- 28. ආකූලතා තත්ත්ව ළඟා නොවන පරිදි සෑම තරලයකම දුස්සුාවිතා සංගුණකය පවතින අගයට වඩා අඩු කළ විට පහත සඳහන් කුමක් සතා නොවේ ද?
  - (1) පටු නළ තුළ දුව ගලන ශීඝුතා වඩා විශාල වේ.
  - (2) රුධිරය පොම්ප කිරීම සඳහා හෘදය මගින් සිදු කළ යුත්තේ වඩා අඩු කාර්යයකි.
  - (3) බටයකින් සිසිල් බීම උරා බීම වඩා පහසු වේ.
  - (4) ගමන් කරන මෝටර් රථ මත කිුිිියා කරන වාත රෝධය නිසා ඇති වන පුතිරෝධය අඩු වේ.
  - (5) වැහි බිංදු ලබා ගන්නා ආන්ත වේගයන් වඩා කුඩා වේ.

එක එකෙහි ආරෝපණය +q වන ආරෝපණ හතරක් රූපයේ පෙන්වා ඇති පරිදි ABCDසමචතුරසුයේ ශීර්ෂයන්හි සවිකර ඇත. චලිත විය හැකි -q ආරෝපණයක් සහිත අංශුවක් සමචතුරසුයේ O කේන්දයේ තබා ඇත. A සහ B හි ඇති ආරෝපණ දෙක එකවර ම අතුරුදහන් වුවහොත්, -q ආරෝපණය සහිත අංශුවේ චලිතය පිළිබඳ ව පහත සඳහන් කුමක් **අසත** ද? (අංශුව මත ඇති වන ගුරුත්වාකර්ෂණ බලපෑම් හා වාතයේ පුතිරෝධය නොසලකා හරින්න.)



- (1) එය *OP* දිශාවට ත්වරණය වීමට පටන් ගනී.
- (2) P හි දී අංශුවේ වේගය උපරිම වේ.
- (3) O සිට P ට ළඟා වූ පසු එය OP විශාලත්වය ඇති තවත් දූරක් OP දිශාව ඔස්සේ ගමන් කරයි.
- (4) සෑම විට ම P හි දී එයට උපරිම ත්වරණය ඇත.
- (5) එය නැවතත් O ට ආපසු පැමිණේ.
- **30**. (b) රූපයේ පෙන්වා ඇති පරිදි පරිණාමකයෙහි පුාථමික පරිපථයට (a) රූපයේ පෙන්වා ඇති චෝල්ටීයතා තරංග ආකෘතිය නිපදවන v, පුත>>වර්ත වෝල්ටීයතා පුභවයක් සම්බන්ධ කර ඇත. පුාථමික පරිපථය දැන්  $5\,\mathrm{kV}$  සරල ධාරා විභවයකට (c) රූපයේ පෙනෙන පරිදි සම්බන්ධ කරනු ලැබේ. පුාථමික දඟරය විද<sub>්</sub>පුත් ලෙස ද්විතීයික දඟරයෙන් හොඳින් පරිවරණය කර ඇතැයි උපකල්පනය කරන්න.



පහත රූප අතුරෙන් කුමක් (c) රූපයෙහි ද්විතීයික පරිපථයේ v වෝල්ටීයතා තරංග ආකෘතිය නිවැරදි ව නිරූපණය කරයි ද?



31. විශාල වගුරු බිමක් මත මිනිසා විසින් ඇති කරන ලද විශාල කුණු කන්දක කොටසක් ක්ෂණිකව කඩා වැටී ගිලී යාම නිසා ඒ ආසන්නයේ වගුරු බිම මත ගොඩනගන ලද **නිවාස ඉහළට එසවීමක්** සිදු විය.



නිවාස ඉහළට එසවීම තේරුම් ගැනීමට ඔබ විසින් අධායනය කළ පහත දී ඇති භෞතික විදාා මූලධර්ම අතුරෙන් කුමක් වඩාත් ම සුදුසු ද?

(1) ඉපිලුම් මූලධර්මය

- (2) ගමාතා සංස්ථිති මූලධර්මය
- (3) ආකිමිඩිස් මූලධර්මය
- (4) පැස්කල් මූලධර්මය

- (5) සුර්ණ මූලධර්මය
- $oldsymbol{32}$ .  $P ext{-}V$  සටහනෝ පෙන්වා ඇති ආකාරයට පරිපූර්ණ වායුවක එක්තරා ස්කන්ධයක් A සිට ABCDA චකි්ය කියාවලිය හරහා ගෙන යනු ලැබේ. පහත සඳහන් කුමක් **අසත**ෳ ද?
  - (1) ABC පථ කොටස හරහා වායුව මගින් කරන ලද කාර්යය ABCLKA ක්ෂේතුඵලයට සමාන වේ.
  - (2) චකුය සම්පූර්ණ කළ පසු වායුව මගින් අවශෝෂණය කර ඇති සඵල තාපය ශුනා
  - (3) චකුය සම්පූර්ණ කළ පසු වායුව මගින් කරන ලද සඵල කාර්යය ABCDA ක්ෂේතුඵලයට
  - (4) චකුය සම්පූර්ණ කළ පසු වායුවේ අභාන්තර ශක්තියේ සඵල වෙනස් වීම ශුනා වේ.
  - (5) චකුය සම්පූර්ණ කළ පසු වායුවේ සඵල උෂ්ණත්ව වෙනස් වීම ශූනා වේ.



- 33. වාතුයේ ධීවති වේගය  $330\,\mathrm{m\,s^{-1}}$  වන ස්ථානයක දී බටනළා සාදන්නෙක් බටනළාවක් නිෂ්පාදනය කරන්නේ A ස්වරය වාදනය කළ විට එය නිශ්චිතවම 440 Hz හි ඇති වන ආකාරයට ය. බටනළා වාදකයෙක් වාතයේ ධ්වනි වේගය  $333~
  m m\,s^{-1}$  වන වෙනත් ස්ථානයක දී මෙම බටනළාවෙන් A ස්වරය වාදනය කරයි. මෙම බටනළාවෙහි A ස්වරය 440 Hz අගයක් ඇති සරසුලක් සමග මෙම නව ස්ථානයේ දී එකවර නාද කළහොත් බටනලා වාදකයාට තත්පර එකක දී නුගැසුම් කීයක් ඇමේ ද?
  - (1) 2
- (2) 4
- (3) 8
- (4) 10
- (5) 12
- ${f 34}$ . රූපයේ දක්වා ඇති පරිදි වුම්බකවලට ආකර්ෂණය නොවන දුවාඃයකින් සාදන ලද  ${f A}$  හා  ${f B}$ නම් සන්නායක පුඩු දෙකක් ඝර්ෂණය රහිත පරිවාරක පීල්ලක් මත තබා ඇත. පුඩුවලට පීල්ල දිගේ නිදහසේ චලනය විය හැකි අතර පුඩුවල තලයන් පීල්ලට ලම්බක වේ. පුඩු දෙක සහ පුඩු අතර තබා ඇති දණ්ඩ චුම්බකය ආරම්භයේ දී නිශ්චලව පවතී. ඉන් පසු දණ්ඩ චුම්බකය ක්ෂණිකව දකුණු දිශාවට රූපයේ පෙනෙන පරිදි චලනය කෙරේ. මෙහි පුතිඵලයක් ලෙස,



- (1) A සහ B පුඩු දෙක ම දකුණු දිශාවට ගමන් කරයි.
- (2) A සහ B පුඩු දෙක ම වම් දිශාවට ගමන් කරයි.
- (3) A සහ B පුඩු එකිනෙක දෙසට ගමන් කරයි.
- (4) A සහ B පුඩු එකිනෙකින් ඉවතට ගමන් කරයි.
- (5) A සහ B පුඩු දෙක නිශ්චලතාවයේ ම පවතී.
- ${f 35}$ . රුපයෙන් පෙන්වනු ලබන්නේ  ${f X}$ ,  ${f B}$ ,  ${f C}$ ,  ${f D}$  සහ  ${f E}$  නම් පරිවරණය කර ඇති තාප කටාර ජාලයක් වන අතර එහි C ,D සහ E සර්වසම වේ.  $100\,^{\circ}\mathrm{C}$  හි කිුයාත්මක වන Xකටාරය මගින් තාපය සපයමින් B,C,D සහ E කටාර හතර පෙන්වා ඇති උෂ්ණක්වවල පවත්වාගෙන යයි. තාපය සපයනු ලබන්නේ එක ම දුවාෘයකින් සාදන ලද සර්වසම හරස්කඩ ක්ෂේතුඵල සහිත පරිවරණය කර ඇති තාප සන්නායක දඬු මගින් කටාර $\sqrt[3]{100\,^\circ}$ ි $\mathbb{C}^{1000}$ දණ්ඩේ දිග L නම්, B සහ D සම්බන්ධ කර ඇති සන්නායක දණ්ඩේ දිග වන්නේ,



- (4)  $\frac{2L}{3}$  (5)  $\frac{L}{2}$



- (A) පරීක්ෂණය කරමින් සිටින අතර කැලරිමීටරයේ බාහිර පෘෂ්ඨය මත තුෂාර තැන්පත්වීමක් නිසා විය හැකි ය.
- (B) කැලරිමීටරයට දැමීමට පෙර අයිස් කැබලි මත ඇති ජලය නිසි පරිදි පිසදා ඉවත් කර නොමැති නිසා විය හැකි ය.
- (C) භාවිත කළ අයිස්වල උෂ්ණත්වය  $0~^{\circ}$ C ව වඩා අඩු අගයක පැවතීම නිසා විය හැකි ය. ඉහත පුකාශ අතුරෙන්,
- (1) A පමණක් පිළිගත හැකි ය.
- (2) B පමණක් පිළිගත හැකි ය.
- (3) A සහ B පමණක් පිළිගත හැකි ය.
- (4) B සහ C පමණක් පිළිගත හැකි ය.
- (5) A, B සහ C සියල්ල ම පිළිගත හැකි ය.
- 37. උෂ්ණත්වය 35 °C හි පවතින දහඩිය සහිත ඇඳුම් ඇඳගත් පුද්ගලයකු පිළිවෙළින් 40 °C,35 °C සහ 20 °C හි පවතින X, Y සහ Zනම් වූ වසන ලද විශාල කාමර තුනකින් එකකට ඇතුළු වීමට නියමිතව ඇත. සියලු ම කාමර ජල වාෂ්පවලින් සංකෘප්තව ඇති බව උපකල්පනය කරන්න.

පහත පුකාශ සලකා බලන්න.

- (A) මෙම පුද්ගලයා X කාමරයට ඇතුළු වූවහොත්, ආරම්භයේ දී දහඩියෙන් යම් පුමාණයක් වාෂ්ප වීමට පටන් ගනු ඇත.
- (B) මෙම පුද්ගලයා Y කාමරයට ඇතුළු වූවහොත්, දහඩිය වාෂ්ප නොවේ.
- (C) මෙම පුද්ගලයා Z කාමරයට ඇතුළු වුවහොත්, ආරම්භයේ දී දහඩියෙන් යම් පුමාණයක් වාෂ්ප වීමට පටන් ගනු ඇත.

ඉහත පුකාශ අතුරෙන්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.

38. සිරස් ඒකාකාර දණ්ඩක එක් කෙළවරක් (a) රූපයේ පෙන්වා ඇති පරිදි වාතයේ දී තිරස් පෘෂ්ඨයකට දෘඪ ලෙස සවි කර ඇති විට එහි උස L වේ. ඉන් පසු ව  $(\mathbf{b})$  රූපයේ පෙන්වා ඇති පරිදි, දණ්ඩේ අනෙක් කෙළවර වහලේ එල්ලා ඇති රික්ත කුටීරයක් තුළ තබා ඇත. කුටීරය දණ්ඩ සමග ස්පර්ශ වන ලක්ෂාවල දී කුටීරය මගින් කිසි ම බලයක් ඇති නොකරන බව උපකල්පනය කරන්න. දණ්ඩ සාදා ඇති දුවාගේ යං මාපාංකය Y වන අතර වායුගෝලීය පීඩනය  $P_0$  වේ. (b) රූපයේ දණ්ඩේ උස  $L_0$ නම්,  $\frac{L}{L_0}$  අනුපාතය දෙනු



(1)  $1 - \frac{P_0}{Y}$  (2)  $\left(1 - \frac{P_0}{Y}\right)^{-1}$  (3)  $\frac{P_0}{Y} - 1$ 

(5)  $1 - \frac{Y}{P_0}$ 

 ${f 39}.~~({
m A}),({
m B})$  සහ  $({
m C})$  යන රූපවලින් පෙන්වා ඇත්තේ වෙනස් අවස්ථා තුනක දී  $f_1,f_2$  හා  $f_3$  වෙනස් සංඛ්යාත නිපදවමින් චලනය වන S ධ්වනි පුභවයකි. O යනු ධ්වනි සංඛාාත අනාවරකයක් රැගත් නිරීක්ෂකයෙකි. එක් එක් අවස්ථාවේ දී පුභවය සහ නිරීක්ෂකයා චලනය වන වේගය සහ දිශාව රූප සටහන්වලින් පෙන්වා ඇත. අවස්ථා තුනේ දී ම අනාවරකය සංඛ්යාතය සඳහා එක ම අගය අනාවරණය කරයි නම්,



ධ්වනි පුභවය නිපදවූ සංඛාාතයන් ආරෝහණ පිළිවෙළට සකස් කළ විට එය වනුයේ,

(1)  $f_1, f_2, f_3$  (2)  $f_3, f_2, f_1$  (3)  $f_1, f_3, f_2$ 

(5)  $f_2, f_1, f_3$ 

 $oldsymbol{40}$ . කාලය t=0 දී පරිපථයෙහි S ස්විච්චිය වැසූ විට ජව සැපයුමෙහි V වෝල්ටීයතාව, කාලය (t) සමග  $V=Kt^2$  සමීකරණයේ ආකාරයට වෙනස් වන අතර, මෙහි K හි විශාලත්වය 2 වේ. 4  $\Omega$ පුතිරෝධකයේ ක්ෂමතා භානිය (P), කාලය (t) සමග වෙනස් වන ආකාරය හොඳින් ම නිරූපණය වන්නේ,



P(W)(1)









 $oldsymbol{41}$ . පෙන්වා ඇති පරිපථයෙහි  $V_{oldsymbol{1}}$  යනු බැටරියක් මගින් ලබා දෙන විචලාා චෝල්ථියතාවකි.  $V_{oldsymbol{1}}$  සමග පෘථිවියට සාපේක්ෂව A ලක්ෂායෙහි විභවය වන  $V_A$  වෙනස් වන ආකාරය වඩාත් භෞඳින් නිරූපණය කරනු ලබන්නේ, (ජව පුභව දෙකේ ම අභාන්තර පුතිරෝධ නොසලකා හරින්න.)













[නවවැනි පිටුව බලන්න.

42. නියත උෂ්ණත්වයක දී V පරිමාවක් තුළ ඇති පරිපූර්ණ වායු මිශුණයක A වායුවේ මවුල  $n_A$  සහ B වායුවේ මවුල  $n_B(< n_A)$  අඩංගු වේ. ඉහත නියත උෂ්ණත්වයේ දී  $\frac{1}{V}$  සමග, A සහ B වායුවල ආංශික පීඩන පිළිවෙළින්  $P_A$  සහ  $P_B$  ද මිශුණයේ සමස්ත පීඩනය  $P_M$  ද වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,



43. ගඟක් නියත v පුවේගයකින් අනවරතව ගලා යයි. ජලයට වඩා අඩු ඝනත්වයක් සහිත සෘජුකෝණාසාකාර ලී කුට්ටියක් පළමුවෙන් ගං ඉවුරට සාපේක්ෂව නිශ්චල ලෙස ජල පෘෂ්ඨයට ඉහළින් තබා පසු ව රූපයේ පෙන්වා ඇති පරිදි පාවෙන තත්ත්වය ලබා ගන්නා තෙක් ජලයට v සෙමෙන් පහත් කර නිදහස් කරන ලදී. v හි දිශාවට ලී කුට්ටියේ ආරම්භක වේගය ශුනා යැයි උපකල්පනය කරන්න. ඉනික්බිතිව කුට්ටියේ චලිතය සිදු වන කාලයේ දී කුට්ටිය මත කිුයා කරන ආවේගී බලයෙහි, ජලය මගින් කුට්ටිය මත ඇති වන දුස්සුාවී බලයෙහි සහ කුට්ටියෙහි ගමාතාවයෙහි විශාලත්වයන් සඳහා පහත කුමක් සතා වේ ද? (වාත රෝධය නිසා ඇති වන බලපෑම නොසලකා හරින්න.)

|     | ආවේගී බලය                        | දුස්සුාවි බලය                    | ගම්පතාවය                            |
|-----|----------------------------------|----------------------------------|-------------------------------------|
| (1) | වැඩි අගයක සිට ශුනා දක්වා අඩු වේ. | වැඩි වී නියත වේ.                 | වැඩි අගයක සිට ශුනා<br>දක්වා අඩු වේ. |
| (2) | වැඩි වී නියත වේ.                 | වැඩි අගයක සිට ශුනා දක්වා අඩු වේ. | වැඩි වී නියත වේ.                    |
| (3) | වැඩි අගයක සිට ශුනා දක්වා අඩු වේ. | වැඩි වී නියත වේ.                 | වැඩි වී නියත වේ.                    |
| (4) | වැඩි වී නියක වේ.                 | වැඩි වී නියත වේ.                 | වැඩි අගයක සිට ශුනා<br>දක්වා අඩු වේ. |
| (5) | වැඩි අගයක සිට ශුනා දක්වා අඩු වේ. | වැඩි අගයක සිට ශුනා දක්වා අඩු වේ. | වැඩි වී නියත වේ.                    |

44. රූපයේ පෙන්වා ඇති පරිදි ඒකාකාර ඝන රෝදයක් ඒකාකාර v පුවේගයකින් සමතල පෘෂ්ඨයක් මත ලිස්සීමකින් තොරව පෙරළෙමින් පවතී. P යනු රෝදයේ පරිධිය මත පිහිටි ලක්ෂායකි. t=0 දී P ලක්ෂාය පවතින ස්ථානය ද රූපයේ පෙන්වා ඇත. පෘෂ්ඨයට සාපේක්ෂව P ලක්ෂායේ පුවේගයේ තිරස් සංරචකය  $(v_x)$  කාලය (t) සමග විචලනය වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,









More Past Papers at

tamilguru.lk

45. අවස්ථා තුනක දී ධන Q ආරෝපණයක වහාප්ති (A), (B) සහ (C) රූපවලින් දැක්වේ. (A) රූපයෙහි දී Q ආරෝපණය P ලක්ෂාගේ සිට R දුරකින් තබා ඇති ලක්ෂාාකාර ආරෝපණයක් ලෙස පවතී. (B) රූපයෙහි දී Q ආරෝපණය, කේන්දුය P හි පිහිටන අරය R වන තුනී වෘත්තාකාර චාපයක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත. (C) රූපයෙහි දී Q ආරෝපණය කේන්දුය P හි පිහිටන අරය R වූ තුනී වළල්ලක ආකාරයට ඒකාකාරව වහාප්ත වී ඇත.  $V_A$ ,  $V_B$ ,  $V_C$  සහ  $E_A$ ,  $E_B$ ,  $E_C$  යනු පිළිවෙළින් (A), (B) සහ (C) අවස්ථාවල දී P ලක්ෂාවල විභව සහ විදුහුත් ක්ෂේතු තීවුතාවයන්හි විශාලත්ව නම්, දී ඇති පිළිතුරුවලින් කුමක් සතා වේ ද?

|     | P ලක්ෂාවල විභව    | P ලක්ෂාවල විද <sub>්</sub> යුත් ක්ෂේතු<br>තීවුතාවයන්හි විශාලත්ව |
|-----|-------------------|-----------------------------------------------------------------|
| (1) | $V_A > V_B > V_C$ | $E_A > E_B > E_C$                                               |
| (2) | $V_A > V_B > V_C$ | $E_C > E_B > E_A$                                               |
| (3) | $V_A = V_B = V_C$ | $E_A = E_B = E_C$                                               |
| (4) | $V_A = V_B = V_C$ | $E_A = E_C > E_B$                                               |
| (5) | $V_A = V_B = V_C$ | $E_A > E_B > E_C$                                               |



46. (a) රූපයේ පෙනෙන පරිදි ආනත තලයක් මත සෘජුකෝණාස්‍රාකාර කුට්ටියක් නිශ්චලතාවයේ පවතී. ආනත තලය මත කුට්ටිය මගින් යෙදෙන F සම්ප්‍රයුක්ත බලයේ දිශාව වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,











47. අනාරෝපිත සමාන්තර තහඩු ධාරිතුකයක එක් තහඩුවකට සම්බන්ධ කර ඇති පුතාවර්ත වෝල්ටීයතා ජනකයක පුතිදාන විභවය (V), කාලය (t) සමග වෙනස් වන ආකාරය රූප සටහනේ පෙන්වා ඇත. ධාරිතුකයේ X අනෙක් තහඩුව සම්බන්ධ නොකර තබා ඇත. X තහඩුවේ විභවය  $(V_X)$  කාලය (t), සමග වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,





48. AB සහ CD මගින් නිරූපණය වන්නේ තිරස් තලයක් මත සවිකර ඇති එක එකෙහි I ධාරාවන් ගෙන යන සමාන්තර සෘජු දිග සන්නායක කම්බි දෙකකි. L යනු රුපයේ පෙන්වා ඇති පරිදි එම තිරස් තලයේ ම තබන ලද සම්චතුරසුාකාර සන්නායක පුඩුවකි. XY යනු AB සහ CD අතර මධා රේඛාව වේ. L පුඩුව CD දෙසට නියත වේගයකින් එම තලයේ ම ගමන් කරන විට කර ඇති පහත පුකාශ සලකා බලන්න.



- (A) පුඩුව XY දෙසට ගමන් කරන විට එහි ජේරිත ධාරාව කුමයෙන් වැඩි වේ.
- (B) පුඩුව තුළ පේරිත ධාරාවේ දිශාව සෑම විට ම දක්ෂිණාවර්ත වේ
- C I D
- (C) පුඩුවේ PQ මධා රේඛාව XY රේඛාව හරහා ගමන් කරන විට එම මොහොතේ පුඩුව තුළ ජේරිත ධාරාව ශුනා වේ.

ඉහත පුකාශ අතුරෙන්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) A සහ B පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.

(5)

49. චුම්බකයක උත්තර ධුැවය සහ දක්ෂිණ ධුැවය අතර රූපයේ පෙන්වා ඇති පරිදි ලෝහ තැටියක් දක්ෂිණාවර්තව භුමණය වේ. කඩ ඉරිවලින් පෙන්වා ඇති කුඩා පුදේශයකට සීමා වූ චුම්බක සුාවයක් චුම්බකය මගින් ඇති කරයි. නිපදවන චුම්බක ක්ෂේතුය තැටියේ තලයට ලම්බක වේ. මෙම අවස්ථාවේ දී ඇති වන සුළි ධාරා පුඩුවල ධාරාවේ දිශාව නිවැරදි ව පෙන්වා ඇක්ලක් පහත කුමනු රූප සටහන මගින් ද?





 ${f 50}$ . රූපයේ පෙන්වා ඇති පරිදි කේන්දුය O ද අරය r ද වූ වෘත්තාකාර පථයකින් හතරෙන් එකක් වන අචල ලෙස සම්බන්ධ කරන ලද ඝර්ෂණයෙන් තොර පථයක A ලක්ෂායේ සිට කුඩා ගෝලයක් නිශ්චලතාවයේ සිට නිදහස් කරනු ලැබේ. B ලක්ෂායේ දී ගෝලය තිරස් ව පථයෙන් පිටවන අතර ගුරුත්වය යටතේ වැටී එය C නම් කිසියම් ලක්ෂායක දී පොළොව මත ගැටේ (C පෙන්වා නැත). ගෝලය A සිට B දක්වා සහ B සිට C දක්වා ගමන් කිරීමට ගත් කාලයන් සහ ගමන් කළ දුරවල් පිළිවෙළින්  $t_{AB}\,,\,t_{BC}\,$ සහ  $S_{AB}\,,\,S_{BC}\,$ නම්, පහත ඒවායින් කුමක් නිවැරදි ද?



$$(1)$$
  $t_{AB} > t_{BC}$  සහ  $S_{AB} < S_{BC}$ 

(1) 
$$t_{AB} > t_{BC}$$
 සහ  $S_{AB} < S_{BC}$  (2)  $t_{AB} > t_{BC}$  සහ  $S_{AB} > S_{BC}$ 

$$(3) \quad t_{AB} = t_{BC} \quad \text{eso} \quad S_{AB} < S_{BC}$$

(3) 
$$t_{AB} = t_{BC}$$
 the  $S_{AB} < S_{BC}$  (4)  $t_{AB} < t_{BC}$  the  $S_{AB} = S_{BC}$ 

$$(5)$$
  $t_{AB}=t_{BC}$  සහ  $S_{AB}=S_{BC}$ 

ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්ත**ල් අඩුන්නු වේදාදාහ දෙපාම් පාලිම් නි**ම්බාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கைப்** Sri Lanka Department of Examinations, Sri Lanka G ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල්ලා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව ල්ලා විභාග විභාග දෙපාර්තමේන්තුව ල්ලා විභාග විභාග දෙපාර්තමේන්තුව ල්ලා විභාග වෙන් ලේක් විභාග විභාග වෙන් ලේක් විභාග විභාග විභාග වෙන් ලේක් විභාග විභාග වෙන් ලේක් විභාග විභාග විභාග වෙන් ලේක් විභාග වෙන් ලේක් ලේක් විභාග වෙන් ලේක් විභාග විභාග විභාග විභාග විභාග විභාග විභාග විභාග වෙන් ලේක් විභාග විභාග විභාග වෙන් ලේක් විභාග විභාග වෙන් ලේක් විභාග විභාග විභාග වෙන් ලේක් විභාග වෙන් විභාග විභා

> අබනයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்று General Certificate of Education (Adv. Level) Examination, August 2017

<mark>භෞතික විදනව II</mark> ධයාණුසිභෝධන II Physics II



**පැය තුනයි** மூன்று மணித்தியாலம் Three hours

### වැදගත් :

- 🔆 මෙම පුශ්න පතුය පිටු 13 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය  ${f A}$  සහ  ${f B}$  යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට ම** නියමිත කාලය **පැය** තුනකි.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු **නො ලැබේ.**

## A කොටස - වපුහගත රචනා (පිටු 2 - 7)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පකුයේ ම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පකුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

# B කොටස - රචනා (පිටු 8 - 13)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- \* සම්පූර්ණ පුශ්න පනුයට නියමිත කාලය අවසන් වූ පසු A සහ B කොටස් එක් පිළිතුරු පතුයක් චන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- \* පුශ්ත පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

## පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

|       | දෙවැනි පතුය සද | දුහා       |
|-------|----------------|------------|
| කොටස  | පුශ්න අංක      | ලැබූ ලකුණු |
|       | 1              | -          |
| A     | 2              |            |
|       | 3              |            |
|       | 4              |            |
|       | 5              |            |
|       | 6              |            |
|       | 7 .            |            |
| В     | . 8            |            |
|       | 9 (A)          |            |
|       | 9 (B)          |            |
|       | 10 (A)         |            |
|       | 10 (B)         |            |
| එකතුව |                |            |

අවසාන ලකුණු

| ඉලක්කමෙන් |  |
|-----------|--|
| අකුරෙන්   |  |

ළාඛන අංක

උත්තර පතු පරීක්ෂක 1

උත්තර පතු පරීක්ෂක 2

ලකුණු පරීක්ෂා කළේ

අධීක්ෂණය කළේ

#### A කොටස- වපුහගත රචනා

පුශ්න **හතරට ම** පිළිකුරු **මෙම පතුගේ ම** සපයන්න.

(ගුරුක්වජ ක්වරණය,  $g = 10 \,\mathrm{N\,kg}^{-1}$ )

මෙම තීරයේ කිසිවක් නො ලියන්න

- 1. සූර්ණ මූලධර්මය භාවිත කරන පරීක්ෂණය සිදු කිරීම මගින්, අකුමවත් හැඩයක් සහිත ස්කන්ධය 60 g පුමාණයේ ඇති ගල් කැබැල්ලක ස්කන්ධය *M* සෙවීමට ඔබට පවසා ඇත. පරීක්ෂණය සිදු කිරීම සඳහා ඔබට පහත සඳහන් අයිතම **පමණක්** සපයා ඇත.
  - $m = 50 \ {
    m g}$ ) ස්කන්ධය ඇති පඩියක්
  - මීටර කෝදුවක්
  - පිහිදාරයක් සහ සුදුසු ලී කුට්ටියක්
  - නූල් කැබැලි
  - (a) මෙම පරීක්ෂණයේ පළමු පියවර ලෙස, පිහිදාරය මත මීටර කෝදුව සංතුලනය කිරීමට ඔබට පවසා ඇත. මෙම පියවරෙහි අරමුණ කුමක් ද?
  - (b) ඔබ පාඨාංකයක් ගැනීමට මොහොතකට පෙර, සංතුලන අවස්ථාව සඳහා සකසන ලද පරීක්ෂණාත්මක ඇටවුමෙහි රූප සටහනක් පහත පෙන්වා ඇති මේසය මත අඳින්න. සංතුලන ලක්ෂායේ සිට මනින ලද  $l_1$  සහ  $l_2$  (වඩා විශාල සංතුලන දිග  $l_1$  ලෙස ගන්න.) සංතුලන දිගවල් රූප සටහනේ නිවැරදි ව ලකුණු කරන්න. අයිතම නම් කරන්න.

ලම්සය

(c) පද්ධතිය සංතුලනය වී ඇති විට  $l_2$  සඳහා පුකාශනයක්  $m,\,M$  සහ  $l_1$  ඇසුරෙන් ලියා දක්වන්න.

(d) මෙම පරීක්ෂණයේ දී ඔබ පුස්තාරයක් ඇඳිය යුතු යැයි සිතන්න.  $l_1$  සහ  $l_2$  සඳහා වෙනස් පාඨාංක යුගලයක් ගැනීමේ දී සෑම විට ම මීටර කෝදුවේ කුමන ස්ථානය ඔබ පිහිදාරය මත තබන්නේ ද?

(e) M ස්කත්ධය සෙවීම සඳහා ඔබ විසින් (1) රූපයේ පෙන්වා ඇති ආකාරයේ පුස්තාරයක් අඳිනු ලැබුවේ යැයි සිතන්න.

10 10 20 30 40 l<sub>1</sub>(× 10<sup>-2</sup> m)

| A 10 | 1004 | = 10.4 |      | T / A S |
|------|------|--------|------|---------|
| AL   | /ZUI | 7/01   | -S-I | I(A)    |

| - 3 - විභාග අංකය: |  |
|-------------------|--|
|-------------------|--|

| (i)                                                                                               | මෙම පරීක්ෂණයේ දී $l_1$ සහ $l_2$ හි කුඩා අගයන් සඳහා පාඨාංක <b>නොගන්නා</b> ලෙස ඔබට පවසා ඇත.<br>මෙයට හේතුව කුමක් ද?                                                                                                                                                                                                                                                                                                                                                               | මෙම<br>තීරයේ<br>කිසිවක්<br>නො ලියන්න |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| (ii)                                                                                              | පුස්තාරය මත වූ <b>වඩාත් ම යෝගස</b> ලක්ෂා දෙක තෝරාගනිමින් (1) රූපයේ දී ඇති පුස්තාරයේ<br>අනුකුමණය ගණනය කරන්න. තෝරාගත් ලක්ෂා <b>දෙක</b> ඊතල මගින් පුස්තාරය මත පැහැදිලි ව ලකුණු<br>කළ යුතු ය.                                                                                                                                                                                                                                                                                      |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| (iii)                                                                                             | ගල් කැබැල්ලේ ස්කන්ධය $M$ , කිලෝග්රෑම් වලින් ගණනය කරන්න.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|                                                                                                   | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| සෙවී<br>රූප                                                                                       | කැබැල්ල <b>හැර</b> ඉහත දී ඇති අනෙක් අයිතම පමණක් භාවිත කර මීටර කෝදුවෙහි $m_0$ ස්කන්ධය<br>මට ද ඔබට පවසා ඇත. මෙම අවස්ථාව සඳහා භාවිත කළ හැකි පරීක්ෂණාත්මක ඇටවුමක සුදුසු<br>සටහනක් පහත දී ඇති ඉඩෙහි අදින්න. මීටර කෝදුවෙහි ගුරුත්ව කේන්දුය $G$ ලෙස පැහැදිලි ව<br>ණු කළ යුතු ය.                                                                                                                                                                                                       |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| <br>ධාරිතාව ද<br>ඇත. එහි<br>කරන ලද<br>ආධාරකය<br>තබා සම්ද<br>කිුිියාපිළිසේ<br>සෙමින් ඒ<br>පරීක්ෂණය | සිලන නියමය සතාාපනය කිරීමට සහ දී ඇති දුවයක විශිෂ්ට තාප<br>සෙවීමට භාවිත කළ හැකි පරීක්ෂණාත්මක ඇටවුමක් රූපයේ පෙන්වා<br>තඹවලින් සෑදූ පියනක් සහිත කැලරිමීටරයක් සහ මන්ථයක්, රත්<br>ජලය, උෂ්ණත්වමානයක් සහ කැලරිමීටර ඇටවුම එල්ලීම සඳහා<br>ක් අඩංගු වේ. මෙම ඇටවුම විදාාගාරයේ විවෘත ජනේලයක් අසල<br>වත පරීක්ෂණයේ දී භාවිත කරන කුමයට සමාන පරීක්ෂණාත්මක<br>වළක් අනුගමනය කරනු ලැබේ.<br>කාකාරව හමන සුළඟක් ලැබෙන විවෘත ජනේලයක් අසල මෙම<br>කිරීමේ වාසිය වනුයේ, ඉහළ උෂ්ණත්ව අන්තරයන් සඳහා නිව්ටන් | *:                                   |
| ;                                                                                                 | නිව්ටන් සිසිලන නියමය සතාහපනය කිරීම සඳහා මෙම පරීක්ෂණයේ දී ඔබ ලබා ගන්නා පාඨාංක මොනවා ද?                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| •                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                                                   | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| •                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |

| (ii)  | උෂ්ණත්වමානයේ පාඨාංකය සහ කැලරිමීටරයේ බාහිර පෘෂ්ඨයේ උෂ්ණත්වය එක ම බව<br>විශ්වසනීයත්වයෙන් ඔබට උපකල්පනය කර ගැනීමට ඉඩ ලබා දෙන ඔබ විසින් ඉටු කළ යුතු                                                             | මෙම<br>තීරයේ<br>කිසිවක්<br>නො ලියන් |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|       | පරීක්ෂණාත්මක කිුිිියාපිළිවෙළ කුමක් ද?                                                                                                                                                                      |                                     |
|       | .,                                                                                                                                                                                                         |                                     |
| (iii) | නිව්ටන් සිසිලන නියමය සතාහපනය කිරීම සඳහා ඔබ විසින් අඳිනු ලබන පුස්තාර දෙකෙහි දළ රූප<br>සටහන් ඇඳ දක්වන්න. අදාළ ඒකක සහිත ව අක්ෂ නියම ආකාරයට නම් කරන්න.                                                         |                                     |
|       | <b>A</b>                                                                                                                                                                                                   |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       | <b>———</b>                                                                                                                                                                                                 |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       | යට අදාළ පාඨාංක ගැනීමෙන් පසු, දෙන ලද දුවයක විශිෂ්ට තාප ධාරිතාව සෙවීමට දුවය සඳහා ද<br>ත (a) හි භාවිත කළ කිුියාපිළිවෙළ ම නැවත සිදු කරනු ලැබේ.                                                                 |                                     |
| (i)   | මෙම පරීක්ෂණය සඳහා $(a)$ කොටසේ භාවිත කළ කැලරිමීටරය ම භාවිත කිරීමට හේතුව කුමක් ද $?$                                                                                                                         |                                     |
|       |                                                                                                                                                                                                            |                                     |
| (ii)  | එක ම කැලරිමීටරය භාවිත කිරීමට අමතරව මෙම පරීක්ෂණයේ දී සමාන ජල සහ දුව පරිමාවක් භාවිත<br>කිරීමට හේතුව කුමක් ද?                                                                                                 |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
| (iii) | මන්ථය සහ පියන සහිත කැලරිමීටරයේ ස්කන්ධය සහ විශිෂ්ට තාප ධාරිතාව පිළිවෙළින් $m$ හා $s$ වේ.                                                                                                                    |                                     |
| ()    | දුවයේ ස්කන්ධය සහ විශිෂ්ට නාප ධාරිතාව පිළිවෙළින් $m_l$ හා $s_l$ වේ. දී ඇති උෂ්ණත්ව පරාසයක දී                                                                                                                |                                     |
|       | දුවය සමග කැලරිමීටරයේ තාපය හානිවීමේ මධාෘක <b>ශිසුතාව</b> සහ උෂ්ණත්වය පහළ බැසීමේ මධාෘක                                                                                                                       |                                     |
|       | <b>ශිෂිතාව</b> පිළිවෙළින් $H_m$ සහ $	heta_m$ වේ. මෙම රාශි ඇසුරෙන්, $H_m$ සහ $	heta_m$ අතර සම්බන්ධතාව ලියා දක්වන්න.                                                                                         |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
| (iv)  | $m=0.15~{ m kg}, s=400~{ m J~kg^{-1}~K^{-1}}$ සහ $m_l=0.25~{ m kg}$ වේ. කිසියම් උෂ්ණත්ව අන්තරයක දී <b>ජලය</b> සහිත කැලරිමීටරයේ තාපය හානිවීමේ මධාක ශීසුතාව $90~{ m J~s^{-1}}$ බව සොයා ගන්නා ලදී. එම උෂ්ණත්ව |                                     |
|       | අන්තරයේ දී ම <b>දුවය</b> සහිත කැලරිමීටරයේ උෂ්ණත්වය පහළ බැසීමේ මධාන ශීඝුතාව $0.125~{ m K~s}^{-1}$ බව සොයා ගන්නා ලදී. දුවයේ විශිෂ්ට තාප ධාරිතාව $s_i$ සොයන්න.                                                |                                     |
|       | ,                                                                                                                                                                                                          |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            |                                     |
|       |                                                                                                                                                                                                            | / `                                 |
|       |                                                                                                                                                                                                            | .                                   |

මෙම තීරයේ කිසිවත් තො ලියන්න

3. ධ්වනිමානයක් සහ සරසුලක් භාවිතයෙන් එක් මිනුමක් පමණක් ලබා ගෙන දී ඇති කම්බියක ඒකක දිගක ස්කන්ධය සෙවීමට ඔබට පවසා ඇත. **දී ඇති කම්බිය** සවිකර ඇති, පාසල් විදහාගාරයේ භාවිත කරන සම්මත ධ්වනිමාන ඇටවුමක් රූපයේ දැක්වේ. කම්බිය T ආතතියක් යටතේ A හා B සේතු දෙක අතර ඇද ඇත. මෙම ඇටවුමේ A සේතුව අවල වන අතර B සේතුව චලනය කළ හැකි ය. M භාර ස්කන්ධය විචලනය කරමින් කම්බියේ ආතතිය වෙනස් කළ හැකි ය. දන්නා f සංඛාාතයක් සහිත සරසුලක් ඔබට සපයා ඇත.



- (a) මෙම පරීක්ෂණයේ දී සරසුලක් කම්පනය කිරීම නිසා අවට වාතයේ ඇති වන්නේ කුමන ආකාරයේ කම්පන ද?
- (b) ආතතිය T වන ලෙස ඇදි කම්බියේ ඒකක දිගක ස්කන්ධය m නම්, කම්බියේ ඇති වන තීර්යක් තරංගවල වේගය v සඳහා පුකාශනයක් T හා m ඇසුරෙන් ලියා දක්වන්න.
- (c) මෙම පරීක්ෂණයේ දී දෙන ලද සරසුල සමග මූලික ස්වරයෙන් අනුනාද වන කම්බියේ අනුනාද දිග (l) මැනීමට ඔබට නියමිතව ඇත. අනුනාද අවස්ථාව ලබා ගැනීමට රූපයේ පෙන්වා ඇති පරිදි කම්පනය කරන ලද සරසුලක් තැබීමට (A), (B) සහ (C) නම් කුම තුනක් තිබිය හැකි බව ශිෂායෙක් යෝජනා කළේ ය.



XY ධ්වතිමාන පෙට්ටියේ පෘෂ්ඨයෙන් කොටසක් නිරූපණය කරයි.

- (A) සරසුල XY ට ලම්බකව සහ XY සමග ස්පර්ශව තැබීම
- (B) සරසුල XY ට ලම්බකව XY සමග ස්පර්ශ නොවන සේ අල්ලා සිටීම
- (C) සරසුල ඇදි කම්බියට ඉහළින් අල්ලා සිටීම

අනුනාදය සඳහා උපරිම විස්තාරයක් ලබා ගැනීමට කම්පනය කරන ලද සරසුල තැබීමට ඔබ ඉහත කුම තුන අතුරෙන් කිනම් කුමය තෝරා ගන්නේ ද? [(A) හෝ (B) හෝ (C)]. ඔබේ තේරීමට හේතුව දෙන්න.

(d) අනුනාද අවස්ථාව පරීක්ෂණාත්මක ව අනාවරණය කර ගැනීමට මෙම පරීක්ෂණයේ දී ඔබ සාමානාඃයෙන්

- (a) අනුනාද අවස්ථාව පිටක්ෂණාත්මක් ව අනාවටණය කර ගැනමට මෙම පිටක්ෂණයේ ද ඔබ සාමානායයෙන් භාවිත කරන අනෙක් අයිතමය ලියා දක්වන්න.
- (e) **පශස්තම** අනුනාද අවස්ථාව අනාචරණය කර ගැනීමට ඔබ අනුගමනය කරන පුධාන පරීක්ෂණාත්මක පියවරවල් ලියා දක්වන්න.

| _ |                         |                                                                                                                                                                                                               |                                    |
|---|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|   | (f)                     | m සඳහා පුකාශනයක් $f, l$ හා $T$ ඇසුරෙන් ලබා ගන්න.                                                                                                                                                              | යමම<br>නීරයේ<br>නිසිවක්<br>නො ලියා |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   | (g)                     | මෙම පරීක්ෂණයේ දී ඔබට ලැබුණු අනුනාද දිග කුඩා නම්, දී ඇති සරසුල සඳහා සැලකිය යුතු තරම්<br>විශාල අනුනාද දිගක් ලබා ගැනීමට, ඔබ ඉහත ධ්වනිමාන ඇටවුම යෝගා ලෙස සකස් කර ගන්නේ<br>කෙසේ ද?                                 |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   | (h)                     | $M=3.2~{ m kg}$ සහ $f=320~{ m Hz}$ වන විට අනුනාද දිග $25.0~{ m cm}$ බව සොයා ගන්නා ලදී. කම්බියේ ඒකක දිගක ස්කන්ධය ${ m kg}~{ m m}^{-1}$ වලින් සොයන්න.                                                           |                                    |
|   |                         |                                                                                                                                                                                                               | _                                  |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         | ත්වා ඇති $(1)$ රූපයේ ඇටවුම භාවිත කර $V$ වෝල්ට්මීටරයක අභාෘත්තර<br>රෝධය $r_0$ සෙවීම සඳහා පරීක්ෂණයක් සැලසුම් කළ හැකි ය.                                                                                          |                                    |
|   | $R_0^{\circ}$ ය<br>පුති | පතු, කිසියම් අභාන්තර පුතිරෝධයක් සහිත කෝෂයක වී.ගා.බ. වේ.<br>පතු අවල පුතිරෝධයක් ද $R$ යනු $X$ සහ $Y$ හරහා සම්බන්ධ කර ඇති<br>රෝධයක් ද වේ. $A$ ඇමීටරයේ අභාන්තර පුතිරෝධය නොගිණිය හැකි<br>ම කුඩා බව උපකල්පනය කරන්න. |                                    |
|   | (a)                     | ඉහත (1) රූපයේ පෙන්වා ඇති පරිදි චෝල්ට්මීටරය XY අතර සම්බන්ධ<br>කළ විට,                                                                                                                                          |                                    |
|   |                         | (i) $R$ සහ $r_0$ පුතිරෝධ $X$ සහ $Y$ ලක්ෂා අතර පිහිටන්නේ කෙසේ දැයි පෙන්වීමට පරිපථ සංකේත භාවිත කර අදාළ පරිපථ කොටස පහත අඳින්න.                                                                                   |                                    |
|   |                         | X Y                                                                                                                                                                                                           |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         | (ii) $X$ සහ $Y$ අතර සමක පුතිරෝධය, $R_{XY}$ සඳහා පුකාශනයක් $r_0$ සහ $R$ ඇසුරෙන් ලියා දක්වන්න.                                                                                                                  |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   | (b)                     | චෝල්ට්මීටරය දැන් $R_{\chi\gamma}$ පුතිරෝධය හරහා සම්බන්ධ කර ඇති ලෙස පෙනේ. මෙම තත්ත්වය යටතේ දී චෝල්ට්මීටරයේ පාඨාංකය, $R_{\chi\gamma}$ හරහා සම්බන්ධ කරන ලද පරිපූර්ණ චෝල්ට්මීටරයක් මගින් දක්වන                    | !                                  |
|   |                         | අගයට සමාන ද? (ඔව්/නැත) ඔබේ පිළිතුර සාධාරණීකරණය කරන්න.                                                                                                                                                         |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               |                                    |
|   |                         |                                                                                                                                                                                                               | i .                                |

| (c) | ) වෝල්ට්මීටරයේ පාඨාංකය $V$ ද ඇමීටරය හරහා ධාරාව $I$ ද නම්, $I$ සඳහා පුකාශනයක් $V$ , $r_0$ සහ $R$ ඇසුරෙන් ලියා දක්වන්න.                                                                                                                                                       | තීරයේ<br>කිසිවක්<br>නො ලියන්න |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|     |                                                                                                                                                                                                                                                                             |                               |
|     | 4                                                                                                                                                                                                                                                                           |                               |
| (d) | $\frac{1}{V}$ -අක්ෂයෙහි $rac{I}{V}$ සහ $x$ -අක්ෂයෙහි $rac{1}{R}$ අතර පුස්තාරයක් ඇඳීම සඳහා $(c)$ හි පුකාශනය නැවත සකසන්න.                                                                                                                                                   |                               |
|     |                                                                                                                                                                                                                                                                             |                               |
|     | ······································                                                                                                                                                                                                                                      |                               |
| (e) | ඉහත (d) හි දී බලාපොරොත්තු වන පුස්තාරයෙහි හැඩය පහත දී ඇති අක්ෂ පද්ධතිය මත අඳින්න.                                                                                                                                                                                            |                               |
| `,  | $\frac{I}{V}$                                                                                                                                                                                                                                                               |                               |
|     | $0 \longrightarrow \frac{1}{R}$                                                                                                                                                                                                                                             |                               |
| (f) | පුස්තාරයෙන් උකහා ගත් අදාළ තොරතුර සහ $r_0$ අතර සම්බන්ධතාව දැක්වෙන පුකාශනයක් ලියා<br>දක්වන්න.                                                                                                                                                                                 |                               |
|     |                                                                                                                                                                                                                                                                             |                               |
|     |                                                                                                                                                                                                                                                                             |                               |
| (g) | ඔබට විදාහගාරයේ දී පරීක්ෂණයක් සිදු කර ඉහත ( $\epsilon$ ) හි සඳහන් කළ පුස්තාරය ඇඳීමට පවසා ඇත්නම්, $R$ සඳහා ඔබ භාවිත කරන අයිතමය නම් කරන්න.                                                                                                                                     |                               |
|     |                                                                                                                                                                                                                                                                             |                               |
| (h) | $R_0$ පුතිරෝධය දැන් $(1)$ රූපයේ දැක්වෙන පරිපථයෙන් ඉවත් කරන ලදැයි සිතන්න. $r_0=1000~\Omega$ ලෙස උපකල්පනය කරන්න. පහත සඳහන් <b>වෝල්ටියතාවල</b> විශාලත්වයන් සලකන්න.                                                                                                             |                               |
|     | • වෝල්ට්මීටරයේ කියවීම ( $V_1$ යැයි කියමු)<br>• වෝල්ට්මීටරය පරිපථයෙන් ඉවත් කළ විට $XY$ හරහා ඇති වන වෝල්ටීයතාව ( $V_2$ යැයි කියමු)<br>• අභාන්තර පුතිරෝධය $10~\mathrm{M}\Omega$ වන සංඛාහංක බහුමීටරයක් දැන් $XY$ හරහා සම්බන්ධ කළහොත්<br>බහුමීටරයෙහි පාඨාංකය ( $V_3$ යැයි කියමු) |                               |
|     | $E_0, V_1, V_2$ සහ $V_3$ , ඒවායේ විශාලත්වයන් ආරෝහණ ආකාරයට සිටින සේ ලියා දක්වන්න.                                                                                                                                                                                            |                               |
|     |                                                                                                                                                                                                                                                                             |                               |

සියලු ම හිමිකම් ඇවිරිම් / (ආගුට பதிப்புரிமையுடையது /All Rights Reserved]

මු ලේකා වන්න අදහැරයෙන්ව මු ලේකා වෙන අවසුන් පැවැතිවෙන් මු ලේකා විය අවසුන් ප්රධානය අවසුන් සහ අවසුන් අවසුන් අවසුන් இலங்கைப் பரீட்சைக் திணைக்களம் இலங்கை 'மாட்சைத் திணைக்களம்' இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Departme **මා නියෝ**ස්ටාය්ව් පැවැතිම පැවැතිමේ පැවැතිවේ සහ අවසුන් අවසුන්

අධනයන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු <del>கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற்</del> General Certificate of Education (Adv. Level) Examination, August 2017

භෞතික විදනව П பௌதிகவியல் II **Physics** II



#### B කොටස – රචනා

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න.

(ගුරුත්වජ ත්වරණය,  $g = 10 \,\mathrm{N\,kg}^{-1}$ )

- 5. 'ජම්බාරයක්' යනු ගොඩනැගිලි සහ වෙනත් වනුහයන්ගේ අත්තිවාරම් සඳහා ටැම් ලෙස හඳුන්වන කණු පොළොව තුළට ගිල්වීමට යොදා ගන්නා අධික භාරයකි. (1) රූපයේ පෙන්වා ඇති පරිදි, කේබලයක් මගින් ජම්බාරය ඉහළට ඔසවා අතහැරිය විට එය ගුරුත්වය යටතේ නිදහසේ වැටී කණුවේ මුදුනේ ගැටේ. කණුව යෝගා ගැඹුරක් පොළොව තුළට තල්ලු වන තෙක් මෙම කිුියාවලිය නැවත නැවත සිදු කෙරේ.
  - (a) ස්කන්ධය  $M=800~{
    m kg}$  වූ ජම්බාරයක් ඉහළට ඔසවා ඉන් පසු ස්කන්ධය  $m=2400~{
    m kg}$ වූ සිලින්ඩරාකාර සිරස් කණුවක් මතට  $h=5~\mathrm{m}$  උසක සිට නිශ්චලතාවයෙන් වැටෙන අවස්ථාවක් සලකන්න.
    - (i) ජම්බාරය **වැටෙමින්** පවතින විට සිදු වන ශක්ති පරිවර්තනය සඳහන් කරන්න.
    - (ii) ගැටුමට මොහොතකට පෙර ජම්බාරයේ වේගය ගණනය කරන්න.
    - (iii) ගැටුමට මොහොතකට පෙර ජම්බාරයේ ගමාාතාවයේ විශාලත්වය ගණනය කරන්න.
  - (1) රූපය (b) කණුවේ මුදුන සමග ගැටීමෙන් පසු ජම්බාරය පොළා නොපනින අතර ඒ වෙනුවට එය තවදුරටත් කණුව සමග ස්පර්ශව කණුව පොළොව තුළට සිරස් ව එළවේ යැයි උපකල්පනය කරන්න. ගැටුම සිදු වී මොහොතකට පසු පද්ධතියේ ගමාතාව පමණක් සංස්ථිතික වේ යැයි ද උපකල්පනය කරන්න. පහත සඳහන් දෑ ගණනය කරන්න.
    - .(i) ගැටුමෙන් මොහොතකට පසු ජම්බාරය සමග කණුවේ වේගය
    - (ii) ගැටුමෙන් මොහොතකට පසු ජම්බාරය සමග කණුවේ චාලක ශක්තිය
    - (iii) එක් එක් ගැටුමේ දී (b) (ii) හි ගණනය කරන ලද ශක්තියෙන් 40% ක් කණුව පොළොව තුළට යැවීම සඳහා පුයෝජනවත් ලෙස භාවිත කරයි. කිසියම් එක් ගැටුමකට පසු කණුව  $0.2~\mathrm{m}$  ක් පොළොව තුළට ගමන් කරයි නම්, කණුව මත කිුිිියා කරන පුතිරෝධ බලයෙහි සාමානාය ගණනය කරන්න.
  - (c) (2) රූපයේ පෙන්වා ඇති ආකාරයට උස 10 m සහ අරය 0.3 m වූ ඒකාකාර සිලින්ඩරාකාර ලී කණුවක් සම්පූර්ණයෙන් ම වැලි පසක් තුළට තල්ලු කර ඇති අවස්ථාවක් සලකන්න. කුණුව (2) රූපයේ පෙන්වා ඇති අවස්ථාවේ තබා ගැනීමේ දී එයට දැරිය හැකි උපරිම භාරය F.

 $F = A_{_S}f_{_S} + A_{_D}f_{_D} - W$ ලෙස ලිවිය හැකි ය. මෙහි W යනු කණුවේ බර ද  $A_{_S}$  යනු පස සමග ස්පර්ශ වී ඇති කණුවේ වකු පෘෂ්ඨයේ වර්ගඵලය ද f යනු කණුවේ වකු පෘෂ්ඨයේ ඒකක වර්ගඵලයකට ඇති පුතිරෝධ බලයෙහි සාමානාඃය ද  $A_{m h}$  යනු කණුවේ පාදමේ හරස්කඩ වර්ගඵලය ද  $f_{
m h}$ යනු පොළොවෙන් කණුවේ පාදමෙහි ඒකක වර්ගඵලයක් මත ඇති කරන පුතිරෝධ බලයෙහි සාමානාය ද වේ.



(d) එක එකක් (c) හි භාවිත කළ කණුවට සමාන එහෙත් (c) හි භාවිත කළ කණුවෙ අරයෙන් අර්ධයකට සමාන අරය ඇති කණු හතරක පද්ධතියක් වැලි පසක් තුළට සම්පූර්ණයෙන් ම තල්ලු කර ඇත. මෙය ඉහළින් බැලූ විට පෙනෙන ආකාරය (3) රූපයේ පෙන්වා ඇත.



10 m

- (i) ඉහත (c) හි දී ඇති පරිදි  $F riangle A_s f_s$  ,  $A_h f_h$  සහ W වශයෙන් සංරචක තුනක් ඇත. මෙම කණු හතරේ පද්ධතිය, ඉදිකිරීමකට යොදා ගත් විට, ඉහත (c) හි අවස්ථාව සමග සැසඳීමේ දී කණු හතරේ පද්ධතිය සඳහා F හි කුමන සංරචකය එහි අගය වැඩි කිරීමට දායකත්වය දක්වයි ද?
- (ii) කණු හතරේ පද්ධතිය සඳහා F හි අගය ගණනය කරන්න.





 $A_b f_b$ (2) රූපය

- $m{6}$ . (a) (i) නාභීය දුර fවූ තුනී උත්තල කාචයක් සරල අණ්වීක්ෂයක් ලෙස භාවිත කරයි. විශද දෘෂ්ටීයේ අවම දුර D වූ පුද්ගලයකු විසින් සරල අණ්වීක්ෂය භාවිතයෙන් පැහැදිලි පුතිබිම්බයක් දකින අවස්ථාව සඳහා කිරණ සටහනක් අඳින්න. ඇස, f හා D හි පිහිටීම්, පැහැදිලි ව ලකුණු කරන්න.
  - (ii) සරල අණ්වීක්ෂයක රේඛීය විශාලනය සඳහා පුකාශනයක් f හා D ඇසුරෙන් වසුත්පන්න කරන්න.
  - (iii) ඉහත (i) හි සඳහන් පුද්ගලයා විසින් ඉතා කුඩා අකුරු කියවීම සඳහා නාභීය දුර  $10 \, \mathrm{cm}$  ක් වූ තුනී උත්තල කාචයක් සරල අණ්වීක්ෂයක් ලෙස භාවිත කරයි. අකුරක පැහැදිලි පුතිබිම්බයක් පෙනීමට කාචයේ සිට අකුරට ඇති දුර කුමක් විය යුතු ද? සරල අණ්වීක්ෂයේ රේඛීය විශාලනය ගණනය කරන්න. D හි අගය  $25 \, \mathrm{cm}$  ලෙස ගන්න.
  - (iv) කෞතුකාගාරයක තබා ඇති පෞරාණික ලේඛනයක් ආරක්ෂා කර ගැනීම සඳහා ඝනකම 2 cm වූ පාරදෘශා වීදුරු තහඩුවක් භාවිතයෙන් එය රාමු කර ඇත. එම ලේඛනය වීදුරු තහඩුවේ ඇතුල් මුහුණත සමග ස්පර්ශව ඇතැයි උපකල්පනය කරන්න. වීදුරුවල වර්තන අංකය 1.6 ලෙස ගන්න. වීදුරු තහඩුවේ ඉදිරි පෘෂ්ඨයේ සිට මෙම ලේඛනයේ දෘශා පිහිටීමට ඇති දූර සොයන්න.
  - (v) ඉහත (i) හි සඳහන් පුද්ගලයාම (iii) හි සඳහන් කළ සරල අණ්වීක්ෂය භාවිතයෙන් මෙම ලේඛනය කියවන්නේ යැයි සලකන්න.
    - (1) එම පුද්ගලයාට අකුරු පැහැදිලි ව පෙනෙන විට කාචය මගින් ඇති කළ, ලේඛනයේ පුතිබිම්බයට කාචයේ සිට ඇති දුර කුමක් ද?
    - (2) ලේඛනයේ අකුරු පැහැදිලි ව පෙනෙන විට කාචයේ සිට ලේඛනයට ඇති දුර කුමක් ද?
  - (b) (i) උපනෙත හා අවනෙත පැහැදිලි ව නම් කරමින් නක්ෂතු දුරේක්ෂයක සාමානා සීරුමාරුව සඳහා **සම්පූර්ණ** කි්රණ සටහනක් අදාළ සියලු ම දිගවල් දක්වමින් අඳින්න.  $f_{o}$  හා  $f_{e}$  පිළිවෙළින් අවනෙතේ හා උපනෙතේ නාභීය දුරවල් ලෙස ගන්න.
    - (ii) ඉහත (b) (i) හි අඳින ලද කිරණ සටහන උපයෝගි කර ගනිමින් දුරේක්ෂය සාමානාෳ සීරුමාරුවේ ඇති විට කෝණික විශාලනය සඳහා පුකාශනයක් වසුත්පන්න කරන්න.
    - (iii) නාභීය දුරවල් 100 cm හා 10 cm වූ තුනී උත්තල කාච දෙකක් භාවිත කරමින් නක්ෂතු දුරේක්ෂයක් සාදා ඇත. දුරේක්ෂය සාමානය සීරුමාරුවේ ඇති විට කෝණික විශාලනය ගණනය කරන්න.
    - (iv) නක්ෂතු දූරේක්ෂයක අවනෙත ලෙස විවර වර්ගඵලය විශාල වූ උත්තල කාචයක් භාවිත කිරීමේ පුායෝගික වාසිය කුමක් ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- 7. පහත සඳහන් ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

නිසි අධායනයකින් තොරව කඳුකර පුදේශවල සිදුවන මාර්ග ඉදිකිරීම් වැනි යටිතල පහසුකම් වැඩි දියුණු කිරීම නිසා පසෙහි ඇති වන අස්ථායිතාව, මාර්ග ගිලා බැසීම් සහ නායයෑම් වැනි අභිතකර තත්ත්වයන් ඇති කළ හැකි ය. වර්ෂා කාලවල දී නායයෑම් රටේ බොහෝ පුදේශවල පොදු වෘසනයක් බවට දැන් පත් ව ඇත. පසෙහි එක් සංඝටකයක් වන වැලිවල ස්ථායිතාව වැලිවල ඇති ජලය පුමාණය මත මහත් සේ රදා පවතී. තෙත වැලි උපයෝගි කර 'වැලි මාලිගා' වැනි වුහුහයන් ගොඩනගා ඇති ඕනෑම අයෙක් තෙත සහ වියළි වැලිවල ආසක්ති ගුණ විශාල ලෙස වෙනස් බව දනී. තෙත වැලි, සියුම් අංග සහිත වැලි මාලිගා ගොඩනැගීම සඳහා යොදා ගත හැකි නමුත් මෙම කියාවලියේ දී වියළි වැලි යොදා ගත් විට සම්පූර්ණයෙන් ම ගරාවැටීමකට ලක් වේ. ගුරුත්වය, ඝර්ෂණය සහ පෘෂ්ඨික ආතතිය වැනි භෞතික වීදහාවේ මූලික සංකල්ප මගින් පසෙහි හෝ වැලිවල ස්ථායිතාව හා සම්බන්ධ සංසිද්ධීන්වල සමහර අංග පැහැදිලි කළ හැකි ය.

පස සාමානෳයෙන් මැටි, රොන්මඩ සහ වැලි වැනි විවිධ විශාලත්වයන්ගෙන් යුත් බනිජමය අංශුන් සහ හිඩැස්වලින්

යුක්ත මිශුණයක් සහිත සවිවර මාධායක් වේ. 1 (a) රූපයේ පෙන්වා ඇති පරිදි හිඩැස්, ජලය හෝ වාතයෙන් පිරී පවතී. පසෙහි සවිවර ස්වභාවය පොළොව මත ඇති බර වාුුහයන් ගිලී යාම වැනි පුායෝගික ගැටලු ඇති කළ හැකි ය. මෙය ඇති වන්නේ පොළොව මත ඇති අධික භාරයන් මගින් පසෙහි හිඩැස් සම්පීඩනය කරන නිසා ය. පීසා කුලුනෙහි ඇලවීම සහ මීතොටමුල්ලේ කුණු කන්ද සහ උමා ඔය උමග සමීපයේ පොළොව ගිලා බැසීම මේ සඳහා උදාහරණ කිහිපයකි. ශයන කෝණය (repose angle) පසෙහි (හෝ වැලිවල) ස්ථායිතාව කී්රණය කරන 1 තවත් වැදගත් පරාමිතියක් වේ. වියළි පස් බාල්දියක් දෘඪ සමතල බිමකට හිස් කළ විට පස් අංශු පහසුවෙන් ලිස්සා ඒවායේ එකිනෙක අතර ඝර්ෂණය නිසා (2) රූපයේ දැක්වෙන පරිදි කේතුක ආකාරයේ පස්ගොඩක් සාදයි. lpha කෝණය, ගොඩෙහි ශයන කෝණය ලෙස හඳුන්වන අතර එය යම් දුවායකට සැදිය හැකි ශීඝුතම ස්ථායි බෑවුම වේ. ශයන කෝණය වැඩි කරමින් බෑවුමක පතුලේ පවතින පස් ඉවත් කිරීම බෑවුමෙහි අස්ථාවර ස්වභාවයක් ඇති කළ හැකි ය.



පසෙහි ඇති වැලි සවීවර මාධායක් ලෙස සැලකිය හැකි ය. එය 1 (a) රූපයෙහි පෙන්වා ඇති වාූහයට සමාන අාකාරයේ අහමු ලෙස දිශානතව ඇති විවිධ විශාලත්වයන්ගෙන් යුක්ත සංකීර්ණ කේශික නළ පද්ධතියකින් සමන්විත වේ. වැලි මාධායයේ භෞතික ගුණ වෙනස් කරමින් කේශාකර්ෂණ බල, වැලි තුළට ජලය ඇදගනියි. තෙත වැලි, ඒවායේ කැට අතර කේශික ජල සේකු (capillary water bridges) ඇති කරයි (1 (a) රූපය බලන්න). මිලිමීටර පරිමාණයේ වැලි කැට අතර පවතින නැතෝමීටර පරිමාණයේ ජල සේතු වැලි කැට අතර ආකර්ෂණය අති විශාල ලෙස වැඩි කරයි. එය සිදු චන්නේ වැලි කැට අතර ජල සේතු හා බැඳුණු ආසක්ති බල නිසා ය. වියළි වැලි කැට ඝර්ෂණ බල නිසා ස්ථායිතාව පවත්වා ගන්නා අතර ඊට අමතර ව තෙත වැලි කැට ආසක්ති බල නිසා ද එකිනෙක ආකර්ෂණය කරයි. මෙම කේශික බල නිසා වැළි කැට අතර ආකර්ෂණ බලයේ වැඩි වීම, ශයන කෝණය වැඩි කිරීමට තුඩු දෙමින් වැලි කැටිති (sand clumps) සාදයි. කේශික සේතුවක ජල පෘෂ්ඨය අපසාරී වන අතර (රූපය 1 (b)) පෘෂ්ඨික ආතතිය නිසා ඇති වන 'කේශාකර්ෂණ කිුයාවලිය' වැලි කැටීති එකිනෙකට තදින් බද්ධව පවත්වා ගැනීමට උපකාරී වේ.

වර්ෂා කාලයේ දී ජලයෙන් සංතෘප්ත පස, හිඩැස් සහ කැට මත අධික පීඩනයක් ඇති කරයි. හිඩැස් තුළ කුමයෙන් පීඩනය වැඩි වන විට, කැට අතර කේශික බල අඩු කරමින් ජල සේතුවල පෘෂ්ඨයේ වකුතාව වැඩි කරයි. පසට වැඩිපුර ජලය එකතු කිරීම මගින් කැට අතර ඝර්ෂණය සහ සවිශක්තිය අඩු විය හැකි අතර පසෙහි බර වැඩි වනුයේ නායයැම්වලට සුදුසු ම තත්ත්වයන් ඇති කරවමින් ය. කැට අතර පෘෂ්ඨික ආතති බල අඩු කරන ආකාරයට අධික ලෙස කෘමිනාශක හා වල්නාශක භාවිතය නිසා පොළොවෙහි පස් තට්ටුවට සිදු කරන හානිය ද නායයැමේ පුවණතාව විශාල ලෙස වැඩි කළ හැකි ය.

- (a) පසෙහි සහ වැලිවල ස්ථායිතාවට අදාළ සමහර අංග පැහැදිලි කිරීමට භාවිත කළ හැකි භෞතික විදපාවේ මූලික සංකල්ප **තුනක්** නම් කරන්න.
- (b) පසෙහි පුධාන ඛනිජ සංඝටක **තූන** ලියන්න.
- (c) මහාමාර්ගයක් ඉදිකිරීමක දී, (3) රූපයේ පෙන්වා ඇති පරිදි ස්වාභාවික බැවුම වෙනස් කරමින් බැවුමේ එක්තරා කොටසකින් පස් ඉවත් කර ඇත. මෙය නායයෑම් අවදානම් සහිත ස්ථානයකි. ඡේදයේ දී ඇති තොරතුරු භාවිත කර මෙය පැහැදිලි කරන්න.
- (d) වියළි වැලිවලට ජලය එකතු කිරීමෙන් වැලිවල ස්ථායිතාව විශාල ලෙස වැඩි කරයි. මේ සඳහා පුධානතම හේතුව පැහැදිලි





- සහ r ූ වන වැලි කැට දෙකකින් ඇති වූ ජල සේතුවක් සලකන්න. ඉහළ සහ පහළ වාත-ජල මාවක හරහා පීඩන අන්තරයන්හි පුකාශන භාවිතයෙන්,  $1(\mathbf{b})$  රූපයේ ඇති අවස්ථාවෙහි ජල කඳේ උස h සඳහා පුකාශනයක් ව<u>ා</u>ුත්පන්න කරන්න. ජලයේ පෘෂ්ඨික ආතතිය සහ ඝනත්වය පිළිවෙළින් T සහ d ලෙස ගන්න. රූපයේ පෙන්වා ඇති A සහ B ලක්ෂාවල පීඩනයන් **සමාන** බව උපකල්පනය කරන්න.
- (g) ඉහත (f) හි සඳහන් කළ අවස්ථාව සඳහා h උස ගණනය කරන්න.  $r_1 = 0.8 \; \mathrm{mm}$ ,  $r_2 = 1.0 \; \mathrm{mm}$ ,  $T = 7.2 \times 10^{-2} \; \mathrm{N \; m}^{-1}$  සහ  $d = 1.0 \times 10^3 \text{ kg m}^{-3}$  ලෙස ගන්න.
- (h) 1(b) රුපයේ පෙන්වා ඇති අවස්ථාවට වඩා A සහ B ලක්ෂාවල පීඩනයන් **වැඩි** අවස්ථාවක් සලකන්න. **මාවකයන් දෙකත් සහිත ව** 1(b) රූපය ඔබේ පිළිතුරු පතුයට පිටපත් කර නව මාවකයන්වල හැඩයන් ඇඳ ඒවා X සහ Y ලෙස **පැහැදිලි ව** නම් කරන්න.
- (i) 1(b) රූපයේ පෙන්වා ඇති A සහ B ලක්ෂාවල පීඩනයන් කුමයෙන් වැඩි වේ නම්, මාවකයන්වල අරයයන්ට, ස්පර්ශ කෝණයට සහ පෘෂ්ඨික ආතති බලයන් නිසා කැට අතර ඇති වන සම්පුයුක්ත පුතිකිුයා බලයන්ට කුමක් සිදු වේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
- (j) නායයැම් ඇති වීමේ පුවණතාව වැඩි කිරීමට තුඩු දෙන, ඡේදයේ සඳහන් කර ඇති මිනිස් කි්යාකාරකම් **දෙකක්** ලියා දක්වන්න.

More Past Papers at

tamilguru.lk



8. අපගේ චකුාවාටය වන ක්ෂීරපථයේ ඇති අනෙකුත් ගුහ පද්ධතිවල වාසයට සුදුසු ගුහලෝක පවතින්නේ දැයි සොයා බැලීම නාසා (NASA) කෙප්ලර් ගවේෂණයේ පුධාන අරමුණ වේ. ගවේෂණය මගින් තරු වටා කක්ෂගත ගුහලෝක විශාල සංඛ්‍යාවක් අනාවරණය කරගෙන ඇත. කක්ෂීය කාලාවර්තයන් පිළිවෙළින්  $T_A = පෘථිවි දින 300 සහ <math>T_R =$  පෘථිවි දින 50 ක් වූ A සහ B නම් ගුහලෝක



දෙකකින් සමන්විත ගුහ පද්ධතියක් එවැනි එක් නිරීක්ෂණයකි. ගුහලෝක ඒකාකාර ගෝල බව සහ රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය M වූ S නම් තරුවක් වටා වෘත්තාකාර කක්ෂවල ගමන් කරන බව උපකල්පනය කරන්න. ගුහලෝක අතර ආකර්ෂණය නොසලකා හරින්න.

- (a) (i) B ගුහලෝකයේ කක්ෂීය වේගය  $(v_B)$  සඳහා පුකාශනයක් M,B ගුහලෝකයේ කක්ෂයේ අරය  $R_B$  සහ සර්වතු ගුරුත්වාකර්ෂණ නියතය G ඇසුරෙන් වූහුත්පන්න කරන්න.
  - (ii) B ගුහලෝකයේ කාලාවර්තය  $T_B$  සඳහා පුකාශනයක්,  $R_B$  සහ  $v_B$  ඇසුරෙන් ලියා දක්වන්න.
  - (iii) මධායේ ඇති තරුවෙහි ස්කන්ධය M සඳහා පුකාශනයක්  $T_B$ ,  $R_B$  සහ G ඇසුරෙන් වාුක්පන්න කරන්න.
  - (iv)  $R_B = 0.3~{
    m AU}~(1~{
    m AU} = 1.5 imes 10^{11}~{
    m m})$  නම්, තරුවේ ස්කන්ධය M ගණනය කරන්න.  $G = 6.7 imes 10^{-11}~{
    m m}^3~{
    m kg}^{-1}~{
    m s}^{-2}$ සහ  $\pi^2 = 10$  ලෙස ගන්න.
- (b) (i) ඉහත (a) (iii) හි ලබා ගත් පුකාශනය භාවිත කර A සහ B ගුහලෝකවල කක්ෂයන්ගේ අරයයන්  $R_A, R_B$  සහ කාලාවර්ත  $T_A, T_B$  සම්බන්ධ කරමින් පුකාශනයක් වුනුත්පන්න කරන්න.
  - (ii) දී ඇති අගයයන් භාවිත කර A ගුහලෝකයේ කක්ෂයේ අරය  $R_{_A}$  ගණනය කරන්න.
- (c) පිටතින් පිහිටි A ගුහලෝකයේ ස්කන්ධය සහ අරය පිළිවෙළින් 23  $m_E$  සහ  $4.6\ r_E$  බව සොයා ගෙන ඇත. මෙහි  $m_E$  සහ  $r_E$  යනු පිළිවෙළින් පෘථිවියේ ස්කන්ධය සහ අරය වේ.
  - (i) A ගුහලෝකයේ පෘෂ්ඨය මත වූ ලක්ෂායක ගුරුන්වජ ත්වරණය  $g_A$  සඳහා පුකාශනයක්,  $m_E, r_E$  සහ G ඇසුරෙන් වයුත්පන්න කරන්න.
  - (ii)  $g_A$  සඳහා පුකාශනයක් පෘථිවි පෘෂ්ඨය මත වූ ලක්ෂායක ගුරුත්වජ ත්වරණය  $g_E$  ඇසුරෙන් ලබා ගන්න.
  - (iii) ස්කත්ධය  $100~{
    m kg}$  වූ අභාාවකාශ යානයක් A ගුහලෝකය මත ගොඩබැස්සවූයේ නම්, ගොඩබැස්සවීමෙන් පසු යානයේ බර ගුණනය කරන්න.
  - (iv) අපගේ සූර්යගුහ මණ්ඩලය හා සැසඳීමේ දී පිටතින් පිහිටි A ගුහලෝකය වාසයට සුදුසු කලාපයේ පවතී. A ගුහලෝකයේ ඝනත්වයේ සාමානායය  $d_A$  සඳහා පුකාශනයක් පෘථිවියේ ඝනත්වයේ සාමානායය  $d_E$  ඇසුරෙන් ලබා ගන්න.

### 9. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) (a) සරල ධාරා මෝටරයක පුති විදාුුත්ගාමක බලය (වි.ගා.බ.) ඇති වන්නේ කෙසේ දැයි කෙටියෙන් පැහැදිලි කරන්න. පුති වි.ගා.බ. හි (i) විශාලත්වය සහ (ii) දිශාව තීරණය කෙරෙන භෞතික විදාහවේ නියම පිළිවෙළින් නම් කරන්න
  - (b) සරල ධාරා මෝටරයක්, බැටරියකින් I ධාරාවක් ඇද ගන්නා විට ඇති කරන E පුති වී.ගා.බ. සඳහා පුකාශනයක් ලියන්න. මෝටර දඟරයේ අභාාන්තර පුතිරෝධය r සහ බැටරියේ අගු අතර වෝල්ටීයතාව V වේ.
  - (c)  $V=80~{
    m V}$  සහ  $r=1.5~{
    m \Omega}$  නම්, මෝටරය  $4.0~{
    m A}$  ධාරාවක් ඇද ගනිමින් සම්පූර්ණ භාරයක් සහිත ව කිුියාත්මක වන විට පහත රාශීන් ගණනය කරන්න.
    - (i) මෝටරය මගින් නිපදවන පුති වී.ගා.බ ය. (E)
    - (ii) මෝටරයට ලබා දෙන ක්ෂමතාව
    - (iii) මෝටරයේ පුතිදාන යාන්තික ක්ෂමතාව සහ කාර්යක්ෂමතාව (ඝර්ෂණය නිසා වන ශක්ති හානි නොසලකා හරින්න.)
  - (d) ඉහත (c) හි කියාත්මක වන මෝටරයේ r සහ ධාරාව  $(4.0\,\mathrm{A})$  සඳහා දී ඇති අගයයන් දඟරය කාමර උෂ්ණත්වය වන  $30\,^\circ\mathrm{C}$  හි පවතින විට ඇති අගයයන් බව උපකල්පනය කරන්න. මෝටරය පැය කිහිපයක් කියාත්මක කළ පසු V වෝල්ටීයතාව  $80\,\mathrm{V}$  හි ම වෙනස් නොවී පැවතෙමින් දඟරයේ ධාරාව  $3.6\,\mathrm{A}$  දක්වා අඩු වී ඇති බව සොයා ගන්නා ලදී. දඟරයේ නව උෂ්ණත්වය ගණනය කරන්න. දඟරය සාදා ඇති දුවායෙහි පුතිරෝධයේ උෂ්ණත්ව සංගුණකය  $0\,^\circ\mathrm{C}$  හි දී  $0.004\,^\circ\mathrm{C}^{-1}$  බව සලකන්න.
  - (e) විදසුත් මෝටර් රථවල, බැටරි මගින් එළවෙන සරල ධාරා මෝටර, රථයේ රෝද කරකැවීම සඳහා භාවිත කෙරේ. එවැනි වාහනවල තිරිංග යොදන කාලය තුළ දී එම මෝටරයම සරල ධාරා ජනකයක් ලෙස කියාත්මක වන පරිදි සාදා ඇති අතර වාහනයේ චාලක ශක්තියෙන් කොටසක් ජනකය එළවීම සඳහා භාවිත කරනු ලැබේ.

ඉන් පසු ජනකයේ පුතිදානය එම වාහනයේම බැටරිය නැවත ආරෝපණය කිරීමට භාවිත කෙරේ.

- (i) ඔබ සරල ධාරා මෝටරයක් සරල ධාරා ජනකයක් ලෙස කිුියාත්මක කරන්නේ කෙසේ ද?
- (ii) දී ඇති රූප සටහන් දෙක ඔබේ පිළිතුරු පකෙහි පිටපත් කර ගෙන සරල ධාරා ජනකයේ පුතිදානය, බැටරිය ආරෝපණය කිරීම සඳහා සම්බන්ධ කරන්නේ කෙසේ දැයි පෙන්වන්න.

- $(\mathbf{B})$  (a) npn ටුාන්සිස්ටරයක් සඳහා  $I_C,I_E$  සහ  $I_B$  අතර සම්බන්ධතාව දක්වන පුකාශනය ලියා දක්වන්න. සෑම සංකේතයකටම සුපුරුදු තේරුම ඇත.
  - (b) (1) රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කර ඇති npn ටුාන්සිස්ටරය කි්යාකාරී විධියේ කි්යාත්මක වේ. ටුාන්සිස්ටරයේ ධාරා ලාභය 100 සහ එය ඉදිරි නැඹුරු වූ විට පාදම සහ විමෝචකය හරහා චෝල්ටීයකාව  $V_{RE}=0.7~{
    m V}$  බව උපකල්පනය කරන්න.
    - $I_{R}$  ගණනය කරන්න.
    - (ii)  $R_1$  =  $12~{\rm k}\Omega$  නම්  $R_2$ හි අගය ගණනය කරන්න. (මෙම ගණනය සඳහා  $I_B$ හි අගය නොගිණිය හැකි යැයි උපකල්පනය කරන්න.)



- (iii)  $-10\,\mathrm{V}$  ක සෘණ ජව සැපයුම් වෝල්ටීයතාවක් සමග කිුයා කළ හැකි වන පරිදි (1) රූපයේ දී ඇති පරිපථය විකරණය කරන්න. ලක්ෂා සඳහා දී ඇති A සහ B නම් කිරීම් සහ  $R_1,R_2,\,10\,\mathrm{k}\Omega$  භාවිත කර, විකරණය කරන ලද පරිපථය **අනුරූප ව** නිවැරදි ලෙස නැවත නම් කරන්න. සංගුාහක ධාරාවේ දිශාව, සහ  $R_1$  සහ  $R_2$  හරහා ධාරාවේ දිශාව ඊතල මගින් දක්වන්න.
- (c) ඔබ (b) (iii) යටතේ අඳින ලද **විකරණය කරන ලද පරිපථයේ** ටුාන්සිස්ටරයෙහි පාදම සහ විමෝචකය හරහා පුකාශ දියෝඩයක් සම්බන්ධ කළ යුතුව ඇත.
  - (i) පුකාශ දියෝඩයක් පරිපථයකට සම්බන්ධ කරන විට එය කරනු ලබන්නේ පුකාශ දියෝඩය පසු නැඹුරු වන ආකාරයට ය. පුකාශ දියෝඩයෙහි පරිපථ සංකේතය භාවිත කරමින් ඔබ විකරණය කරන ලද පරිපථයේ ටුාන්සිස්ටරයෙහි පාදම සහ විමෝචකය හරහා එය නිවැරදි ව සම්බන්ධ කරන ආකාරය පෙන්වන්න.
  - (ii) පුකාශ දියෝඩය විකරණය කරන ලද පරිපථයට නිවැරදි ව සම්බන්ධ කළ වීට එය පාදම සහ වීමෝචකය අතර පුතිරෝධය සැලකිය යුතු ලෙස වෙනස් කරන්නේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
  - (iii) කෙටි කාලයක් සහිත ඍජුකෝණාසුාකාර ආලෝක ස්පන්දයක් පුකාශ දියෝඩය මත පතිත වූ විට
    - (1) පරිපථයෙහි පුකාශ දියෝඩය හරහා ධාරාවේ දිශාව ඊතලයක් මගින් පෙන්වන්න.
    - (2) ආලෝක ස්පන්දය නිසා විමෝචකයට සාපේක්ෂව පාදමෙහි ඇති වන **වෝල්ටියතා** ස්පන්දයේ තරංග ආකෘතිය සහ පොළොවට සාපේක්ෂව සංගුාහකයෙහි ඇති වන **වෝල්ටියතා** ස්පන්දයේ තරංග ආකෘතිය ද පරිපථයේ අදාළ ස්ථානවල ඇඳ පෙන්වන්න.

## ${f 10.}\ \ ({f A})$ කොටසට හෝ ${f (B)}$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

- (A) එක්තරා නිවසක් සිය මුළුතැන් ගෙයහි සහ නාන කාමරවල සිදු කෙරෙන සේදීමේ කටයුතු සඳහා 50 °C හි පවතින උණු ජලය පැයකට 100 kg ක් පරිභෝජනය කරයි. විදුලි බොයිලේරුවක් මගින් ජනනය කෙරෙන 70 °C හි ඇති උණු ජලය බොයිලේරුවෙන් පිටත 30 °C හි ඇති ජලය සමග මිශු කර 50 °C හි ඇති ජලය නිපදවනු ලැබේ. ජලයේ විශිෂ්ට තාප ධාරිතාව සහ ඝනත්වය පිළිවෙළින් 4200 J kg<sup>-1</sup> K<sup>-1</sup> සහ 1000 kg m<sup>-3</sup> ලෙස ගන්න. සියලු ම ගණනය කිරීම් සඳහා බාහිර පරිසරයට සිදු වන තාප හානිය හා බොයිලේරුවේ තාප ධාරිතාව නොගිණිය හැකි යැයි උපකල්පනය කරන්න.
  - (a)  $50~^\circ\mathrm{C}$  හි ඇති ජලය  $100~\mathrm{kg}$  ක් නිපදවීමට බොයිලේරුවෙන් අවශා වන  $70~^\circ\mathrm{C}$  හි පවතින උණු ජලය ස්කන්ධය ගණනය කරන්න.
  - (b) බොයිලේරුව සැලසුම් කර ඇත්තේ ඉහත (a) හි ගණනය කළ 70 °C හි පවතින උණු ජල පුමාණය බොයිලේරුවෙන් ඉවතට ගෙන එම පුමාණයම 30 °C හි ඇති ජලයෙන් නැවත පිරවූ විට, බොයිලේරුව තුළ ජලයේ උෂ්ණත්වය 66 °C ට වඩා පහළට නොයන පරිදි ය. මෙම තත්ත්වය සපුරාලීම සඳහා බොයිලේරුවට තිබිය යුතු අවම ජල ධාරිතාව (i) කිලෝග්රැම්වලින් සහ (ii) ලීටරවලින් ගණනය කරන්න.
  - (c) දවස ආරම්භයේ දී ධාරිතාව ලෙස (b) හි ගණනය කළ ජල ස්කන්ධයට සමාන ස්කන්ධයක් ඇති ජල පුමාණයකින් බොයිලේරුව පුරවා විදයුත් තාපකයක් මගින්  $30~^{\circ}$ C සිට  $70~^{\circ}$ C දක්වා නියත ශීසුතාවකින් රත් කරනු ලැබේ. රත් කිරීම පැයක දී සම්පූර්ණ කළ යුතු නම්, මෙම කාර්යය සඳහා තාපකයේ තිබිය යුතු ක්ෂමතාව ගණනය කරන්න.
  - (d) ඉහත (c) හි සඳහන් ආකාරයට ම ආරම්භක රත් කිරීම සිදු කිරීමෙන් පසු ඉහත (a) හි අවශාතාවට අනුව බොයිලේරුවෙන් ඉවතට ගත් උණු ජලයට හිලව් වන පරිදි 30 °C හි ඇති ජලයෙන් නැවත පිරවීම අඛණ්ඩව සිදු කෙරේ. බොයිලේරුව සැලසුම් කර ඇත්තේ පැයක කාලයක් තුළ බොයිලේරුවේ මධානා උෂ්ණත්වය 70 °C හි පවත්වා ගැනීම සඳහා වෙනත් කුඩා තාපකයකින් තාපය සපයන ආකාරයට ය. අවශා වන, කුඩා තාපකයේ ක්ෂමතාව ගණනය කරන්න.

- (B) (a) (i) (1) රූපයේ දී ඇත්තේ, X —කිරණ නළයක දළ සටහනකි. A සහ B ලෙස ලකුණු කර ඇති කොටස් නම් කරන්න.
  - (ii) රූපයේ සලකුණු කර ඇති D කොටස නම්  $\frac{D|}{L}$  කර එය භාවිත කිරීමේ අරමුණ පහදන්න.
  - (iii) රූපයේ සලකුණු කර ඇති C කොටස නම කර එය භාවිත කිරීමේ අරමුණ පහදන්න.
  - (iv) X –කිරණ නිපදවෙන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
  - (v) රික්තනය කරන ලද නළයක් භාවිත කිරීමට හේතුවක් දෙන්න.



- (b) X -කිරණ නළයක සැපයුම් වෝල්ටීයතාව  $100\ 000\ {
  m V}$  වේ.
  - (i) A වෙත ළඟා වන ඉලෙක්ටුෝනයක උපරිම චාලක ශක්තිය  ${
    m keV}$  ඒකකවලින් ගණනය කරන්න.
  - (ii) ඉහත (b) (i) හි ගණනය කළ උපරිම ශක්තිය රැගත් ඉලෙක්ටෝනයක් එහි ශක්තියෙන් අර්ධයක් වැය කොට X –කිරණ ෆෝටෝනයක් නිපදවන අතර ඉතිරි ශක්තිය සම්පූර්ණයෙන් ම අවශෝෂණය කර ගනී. අවශෝෂණය කරන ශක්තියට කුමක් සිදු වේ දැයි පැහැදිලි කරන්න.
  - (iii) ඉහත (b) (ii) කොටසේ නිපදවන  ${
    m X}$  –කිරණ ෆෝටෝනයේ තරංග ආයාමය ගණනය කරන්න. [  $h=6.6 imes 10^{-34} \, {
    m J} \, {
    m s}$  ,  $c=3 imes 10^8 \, {
    m m s}^{-1}$  සහ  $1 {
    m eV} = 1.6 imes 10^{-19} \, {
    m J}$  ]
- (c) යම් දුවායක් හරහා Y-කිරණ ගමන් කිරීමේ දී එම දුවාය මගින් Y-කිරණ ෆෝටෝනයන්ගෙන් එක්තරා භාගයක් අවශෝෂණය කර ගනී. (2) රූපයේ දැක්වෙන පරිදි යම් දුවායක ඝනකම t වූ තහඩුවක් මතට ලම්බකව පතනය වන, තීවුතාව  $I_0$  වන Y-කිරණ කදම්බයක් සලකන්න. අවශෝෂණය වීමේ පුතිඵලයක් ලෙස සම්පේෂණය වූ Y-කිරණවල තීවුතාව අඩු වන අතර, එය I මගින් දැක්වේ.



 $I_0$  හා I අතර සම්බන්ධතාව  $\log\left(rac{I_0}{I}
ight)=0.434~\mu t$  මගින් දෙනු ලබන අතර, මෙහි  $\mu$  යන්න, දී ඇති ශක්තියේ දී අදාළ  $\gamma$  –කිරණ සඳහා දී ඇති දුවායට නියතයක් වේ. පහත දී ඇති සියලු ම දුන්න 2 MeV  $\gamma$  –කිරණ

සඳහා වේ.  $2~{
m MeV}$  7-කිරණවලට ඊයම් සඳහා  $\mu$  හි අගය  $51.8~{
m m}^{-1}$  ලෙස ගන්න.

- (i) ඉහත 7 –කිරණවල තීවුතාව අර්ධයකින් අඩු කිරීම සඳහා අවශා වන ඊයම්වල ඝනකම ගණනය කරන්න.
- (ii) විකිරණ සේවකයකු සඳහා උපරිම අනුදත් මාතුාව (permissible dose) වසරකට  $20~{\rm mSv}$  වේ. පුද්ගලයකු තීවුතාව  $10^{10}~{\rm m}^{-2}\,{\rm s}^{-1}$  වන ඉහත  $\gamma$  කිරණ කදම්බයකට නිරාවරණය වූ විට ලැබෙන මාතුාව වසරකට  $2.5\times 10^6~{\rm mSv}$  වේ. උපරිම අනුදත් මාතුාව ඉක්මවා නොයන පරිදි විකිරණ සේවකයකුට නිරාවරණය විය හැකි, ඉහත  $\gamma$  කිරණ කදම්බයේ උපරිම තීවුතාව නීර්ණය කරන්න.
- (iii) රෝහලක රෝගීන්ට පුතිකාර කිරීම සඳහා  $2~{\rm MeV}$   $\gamma$  කිරණ පුහවයක් ස්ථාපිත කර ඇති විකිරණ චිකිත්සක කාමරයක් සලකන්න. විකිරණ සේවකයෝ යාබද කාමරයේ වැඩ කටයුතු කරති. කාමර දෙක ඊයම් බිත්තියකින් වෙන් කර ඇත. යම් හෙයකින් පුභවයෙහි විකිරණ කාන්දුවීමක් ඇති වුවහොත් ඊයම් බිත්තියට ලම්බකව පතනය වන  $\gamma$  කිරණවල උපරිම තීවුතාව  $2.56 \times 10^6~{\rm m}^{-2}~{\rm s}^{-1}$  වේ. විකිරණ සේවකයන්ට කාමරය තුළ ආරක්ෂිත ව වැඩ කිරීම සඳහා ඊයම් බිත්තියට තිබීය යුතු අවම ඝනකම නීර්ණය කරන්න.

\* \* \*

More Past Papers at tamilguru.lk