

Dezentralisierte asymmetrische Verschlüsselung über Tor

Die Lösung für sicheres Messaging?

Hendrik Lind

Facharbeit
Windthorst-Gymnasium Meppen
Seminarfach Informatik

18. Januar 2024

Inhaltsverzeichnis

1	Einleitung		1
2	Asymmetrische Verschlüsselung		2
	2.1	Grundlagen	2
	2.2	Schlüsselpaargenerierung	3
	2.3	Vergleich zur symmetrischen Verschlüsselung	4
	2.4	Sicherheit	4
3	Anonymität mit dem Tor-Netzwerk		4
	3.1	Sicherheit	4
4	Dezentralisierung		4
	4.1	Sicherheit	4
5	Vor- und Nachteile		4
	5.1	Kriminalität	4
	5.2	freie Meinungsäußerung	4
6	programmatische Umsetzung		4
7	Fazi	t	4

über Tor – Die Lösung für sicheres Messaging?

1 Einleitung

terbindet.

Russland, China, Iran. In all diesen totalitären Staaten herrscht eine starke Zensur [vgl. Am23]. Rund 1,7 Milliarden Menschen sind nur in diesen drei Staaten von der Einschränkung der Meinungsfreiheit betroffen [vgl. Un22]. Wie können Bürger die-

- ser Staaten ihre Meinung also verbreiten und andere Staaten auf jetzige Probleme aufmerksam machen ohne sich selber in Gefahr zu bringen?
- Bei herkömmlichen Messengern, wie Whatsapp, Signal und co. braucht die Außenwelt, die Telefonnummern der im totalitären Staat wohnenden Bürgern und Reportern um diese zu kontaktieren. Allerdings könnte ein Staat, welcher die Meinungsfreiheit beschränkt und folglich Maßnahmen gegen den Bürger ergreift, sich als dieser Empfänger ausgeben, sodass Bürger/Reporter ihre private Nummer an den Staat überreichen und somit dieser die Nummer rückverfolgen kann [vgl. Fä23]. Und genau hier liegt das Problem: Bürger und Reporter können nicht durch alltägliche Messenger mit der Außenwelt kommunizieren, da der Staat deren Nummer zurückverfolgen kann und somit weiter die Meinungsfreiheit einschränkt und un-
 - Durch die zentrale Infrastruktur, welche die meisten Messenger, wie zum Beispiel WhatsApp und Signal verwenden, ist es für totalitäre Staaten, wie China, möglich, die IP-Adressen jener Server zu blockieren und somit für Bürger und Reporter unzugänglich zu machen [vgl. Wu+23].
 - Ein dezentralisierter Messenger, welcher Ende-zu-Ende verschlüsselt ist und über das Tor-Netzwerk kommuniziert, könnte bei diesen Problemen eine Lösung sein. Die Frage, ob ein solcher Messenger die Lösung für Bürger eines totalitären Staates ist, soll in dieser Arbeit geklärt werden.
- Um diese Frage beantworten zu können, beschäftigt sich diese Arbeit in dem zweiten Kapitel mit der asymmetrischen Verschlüsselung, welche benötigt wird um die Ende-zu-Ende-Verschlüsselung (E2EE) umzusetzen und die Definition der E2EE und asymmetrischen Verschlüsselung [vgl. LB21]. Das dritte Kapitel beinhaltet eine mögliche Lösung, um eine Anonymität über das Internet zu gewährleisten, wobei das
 Tor-Netzwerk eine wichtige Rolle spielt. Das vierte Kapitel befasst sich mit einer Dezentralisierung der Infrastruktur, um eine weitere Sicherheitsebene zu schaffen.
 - Zuletzt werden im fünften Kapitel die Vor- und Nachteile eines solchen Messengers

betrachtet, im sechsten Kapitel wird eine mögliche Umsetzung des Messengers beschrieben und im siebten Kapitel wird ein Fazit gezogen.

2 Asymmetrische Verschlüsselung

Um einen sicheren Nachrichtenaustausch zu gewährleisten, wird in dieser Arbeit die E2EE implementiert. Bei der E2EE wird von dem Sender die Nachricht, bevor sie an den Empfänger geschickt wird, verschlüsselt [vgl. Gr14]. Dazwischenliegende Akteure, wie zum Beispiel Server oder mögliche Angreifer, können demzufolge die Nachricht nicht lesen. **Nur** der Empfänger der Nachricht kann diese auch entschlüsseln. Als Ent- und Verschlüsselungsverfahren der Nachrichten wird die asymmetrische Verschlüsselung verwendet. Für diese Arbeit werde ich die gängigste asymmetrische Verschlüsselung, das RSA-Verfahren, verwenden.

2.1 Grundlagen

Grundsätzlich gibt es bei der asymmetrischen Verschlüsselung ein Schlüsselpaar (Keypair), welches aus einem privaten Schlüssel (private key) und einem öffentlichen Schlüssel (public key) besteht [vgl. BSW15b]. Diese beiden Schlüssel hängen mathematisch zusammen, sodass der öffentliche Schlüssel Nachrichten nur verschlüsseln und nicht entschlüsseln kann. Nur der zum Schlüsselpaar dazugehörige
 private Schlüssel ist in der Lage, die verschlüsselte Nachricht wieder zu entschlüsseln. Die asymmetrische Verschlüsselung lässt sich gut als Briefkasten visualisieren:

Abbildung 1: Jeder Sender kann mit dem öffentlichen Schlüssel die Nachricht "verschlüsseln" (also in den Briefkasten eine Nachricht werfen), aber nur der Empfänger kann den Briefkasten mit seinem privaten Schlüssel öffnen [vgl. BSW15a]

2.2 Schlüsselpaargenerierung

Wie bereits erwähnt, besteht das Schlüsselpaar aus einem privaten und einem öffentlichen Schlüssel. Der private Schlüssel besteht dabei aus den Variablen (n,d) und der öffentliche Schlüssel aus (n,e).

$$P,Q=\text{zuf\"{a}llige Primzahl, wobei }P\neq Q$$

$$n=P\cdot Q$$

$$\phi(P)=P-1 \qquad \qquad \phi(Q)=Q-1$$

$$\phi(n)=\phi(P)\cdot \phi(Q)$$

$$\phi(n)=(P-1)\cdot (Q-1)$$

$$e=\begin{cases} 1< e<\phi(n)\\ e\in \mathbb{N}\\ e \text{ kein Teiler von }\phi(n) \end{cases}$$

Ganzzahlige Zahl e, darf kein Faktor von $\phi(n)$ sein und $1 < e < \phi(n)$ PublicKey besteht aus n und e privater Schlüssel:

$$\phi(n) = (P-1)(Q-1)$$

$$d = (k \cdot \phi(n) + 1) \qquad \text{mit k als ganzzahlige Zahl}$$

- 2.3 Vergleich zur symmetrischen Verschlüsselung
- 60 2.4 Sicherheit
 - 3 Anonymität mit dem Tor-Netzwerk
 - 3.1 Sicherheit
 - 4 Dezentralisierung
 - 4.1 Sicherheit
- ₆₅ 5 Vor- und Nachteile
 - 5.1 Kriminalität
 - 5.2 freie Meinungsäußerung
 - 6 programmatische Umsetzung
 - 7 Fazit

Literatur

- [Gr14] Andy Greenberg. "Hacker Lexicon: What Is End-to-End Encryption?"
 In: WIRED (Nov. 2014). URL: https://www.wired.com/2014/11/
 hacker-lexicon-end-to-end-encryption(besuchtam 16.01.2024).
- [BSW15a] Albrecht Beutelspacher, Jörg Schwenk und Klaus-Dieter Wolfenstetter. "Kryptologische Grundlagen". In: *Moderne Verfahren der Kryptographie: Von RSA zu Zero-Knowledge*. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, S. 9–30. ISBN: 978-3-8348-2322-9. DOI: 10.1007/978-3-8348-2322-9_2. URL: https://doi.org/10.1007/978-3-8348-2322-9_2.
- [BSW15b] Albrecht Beutelspacher, Jörg Schwenk und Klaus-Dieter Wolfenstetter. "Ziele der Kryptographie". In: *Moderne Verfahren der Kryptographie: Von RSA zu Zero-Knowledge*. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, S. 1–7. ISBN: 978-3-8348-2322-9. DOI: 10.1007/978-3-8348-2322-9_1. URL: https://doi.org/10.1007/978-3-8348-2322-9_1.
- [LB21] Ben Lutkevich und Madelyn Bacon. "end-to-end encryption (E2EE)". In:

 Security (Juni 2021). URL: https://www.techtarget.com/searchsecurity/

 definition/end-to-end-encryption-E2EE (besucht am 16.01.2024).
- [Un22] United Nations. World Population Prospects Population Division. Jan.
 2022. URL: https://population.un.org/wpp/Download/Files/
 1_Indicators%20(Standard)/EXCEL_FILES/1_General/WPP2022_
 GEN_F01_DEMOGRAPHIC_INDICATORS_COMPACT_REV1.xlsx (besucht am 13.01.2024).
- [Am23] Amnesty International. Amnesty International Report 2022/23. London WC1X ODW, United Kingdom: International Amnesty Ltd, 2023, S. 307–312, 122–128, 196–201. ISBN: 978-0-86210-502-0. URL: https://www.amnesty.org/en/wp-content/uploads/2023/04/WEBPOL1056702023ENGLISH-2.pdf (besucht am 13.01.2024).
- [Fä23] Jan Fährmann. "Rechtliche Rahmenbedingungen der Nutzung von Positionsdaten durch die Polizei und deren mögliche Umsetzung in die

Praxis—zwischen Strafverfolgung und Hilfe zur Wiedererlangung des Diebesguts". In: *Private Positionsdaten und polizeiliche Aufklärung von Diebstählen*. Nomos Verlagsgesellschaft mbH & Co. KG. 2023, S. 141–176. ISBN: 978-3-8487-5905-7.

[Wu+23] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson, Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin und Eric Wustrow. "How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic". In: 32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023, S. 2653–2670. ISBN: 978-1-939133-37-3. URL: https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi (besucht am 14.01.2024).