Sommaire du Cours : MATH2310P

Cours assuré par Sébastien GODILLON

Rédigé par Corentin 邱天意

Semestre 2024-2025-2

Table des matières

Ι	Équations différentielles ordinaires	3
1	Cours 21 févr : Généralités	3
II	Courbes et Surfaces	6

Première partie

Équations différentielles ordinaires

1 Cours 21 févr : Généralités

Définition 1.1

Une Équation différentielle linéaire (EDO) est une équation de la forme :

$$\forall t \in I, F(t, X(t), X'(t)...X^{(k)}(t)) = 0$$

Plus spécifiquement sur les notations :

- X est une fonction inconnue, d'une seule variable réelle, et à valeurs réelles ou vectorielles $(X : \mathbb{R} \to \mathbb{R}^n, n \in \mathbb{N}^*)$. Elle est supposée k-fois dérivable sur I/.
- t est la variable da la fonction X.
- $I \subset \mathbb{R}$, c'est l'intervalle de définition de l'équation différentielle.
- F est une fonction de plusieurs variables, elle est fixée.
- $k \in \mathbb{N}^*$, on l'appelle l'ordre de l'EDO.

Exemple 1.1

Chercher les primitives

Soit f une fonction réelle qui est continue sur l'intervalle $I \in \mathbb{R}$.

D'après the théorème fondamental de l'analyse (TFA), on sait que f admet des primitives sur I.

Alors, trouver des primitives de f revient à résoudre l'EDO :

$$\forall t \in I, X'(t) = f(t)$$

ici on a F(t, X(t), X'(t)) = X'(t) - f(t), une EDO d'ordre 1.

Exemple 1.2

L'oscillateur harmonique

Le mouvement d'un oscillateur harmonique est modélisé par l'EDO :

$$\forall t \in I, X''(t) + \frac{k}{m}X(t) = 0$$

Elle est d'ordre 2. En considérant le problème physique on trouve que : $I = \mathbb{R}_+$, et que X(0) est une condition initiale à déterminer. k et m désignent respectivement le raideur du ressort et la masse.

La forme générale s'écrit : $F(t, X(t), X'(t), X''(t)) = X''(t) + \frac{k}{m}X(t)$.

Exemple 1.3

Le pendule simple

Il est modélisé par l'équation :

$$\theta''(t) + \frac{g}{l}\sin\theta(t) = 0$$

Où l est la longeur de la corde, g le module de l'accélération gravitationelle, et θ l'angle aigu entre la corde et la verticale. Attention, elle n'est pas linéaire car la fonction sin ne l'est pas.

Exemple 1.4

Dynamique d'une population : Lotka-Volterra

On se place dans le monde où il n'y a que les proies et les prédateurs.

Notons : X(t) la population des proies et Y(t) celle des prédateurs à l'instant t.

On a:

$$\begin{cases} X'(t) = X(t)(\alpha - \beta Y(t)) \\ Y'(t) = Y(t)(\gamma X(t) - \eta) \end{cases}$$

Il y a deux équations donc posons la fonction vectorielle Z(t) = (X(t), Y(t)). La forme générale de notre EDO s'écrit : F(t, X(t), X'(t)) = Z(t). Elle est d'ordre 1.

Rappel 1.1

Équations différentielles linéaires homogènes d'ordre 1

Une équation de la forme :

$$(E_1): X'(t) + a(t)X(t) = 0$$

Où a est une fonction fixée et continue.

Théorème 1.1

Les solutions de (E_1) sont toutes de la forme : $t \mapsto \lambda e^{-A(t)}$. λ est une constante quelconque, et A est une primitive de a.

On peut prendre n'importe quelle primitive car la différence entre deux primitives est une constante.

Preuve:

Posons deux ensembles :

Deuxième partie

Courbes et Surfaces