Lecture 8: Model-Free RL Part II

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

April 23, 2025

Outline

- Introduction
- 2 On-Policy Monte-Carlo Control
- 3 On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- Summary
- References

Outline

- Introduction
- 2 On-Policy Monte-Carlo Contro
- On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- **6** Summary
- References

Model-Free Reinforcement Learning

- Last lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- This lecture:
 - Model-free control
 - Optimize the value function of an unknown MDP

Uses of Model-Free Control

Some example problems that can be modeled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactor
- Helicopter
- Aeroplane Logistics

- Robocup Soccer
- Quake
- Portfolio management
- Protein Folding
- Robot walking
- Game of Go

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

On & Off-Policy Learning

- Behavior-policy: determines which action to take, from which we determine the next state to visit (also called "sampling policy")
- Target-policy: determines the action that appears to be best (also called "learning policy")
- Goal in reinforcement learning:
 - improve the target policy
 - while using a behavior policy to ensure that we visit states often enough (exploration schemes such as ϵ -greedy)
- On-policy learning: when the learning policy and the sampling policy are the same
- Off-policy learning: when the learning policy and the sampling policy are different

On & Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn the value of the target policy π from experience sampled from behavior policy π
 - May not ensure the enough exploration of state space
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn the value of the target policy π from experience sampled from behavior policy μ
 - ▶ Learning is from experience(data) "off" the target policy
 - Compared to on-policy learning, off-policy learning is
 - ★ more powerful & general
 - ⋆ often of greater variance & slower to converge

Outline

- Introduction
- 2 On-Policy Monte-Carlo Control
- On-Policy Temporal-Difference Learning
- 4 Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- **6** Summary
- References

Generalized Policy Iteration (Refresher)

Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ e.g. Greedy policy improvement

Generalized Policy Iteration With Monte-Carlo Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Model-Free Policy Iteration Using Action-Value Function

ullet Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = rg \max_{s \in \mathcal{A}} \left\{ \mathcal{R}_s^s + \mathcal{P}_{ss'}^s V(s') \right\}$$

• Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \ Q(s, a)$$

Generalized Policy Iteration with Action-Value Function

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Monte-Carlo Control

- MC policy iteration: policy evaluation using MC methods followed by policy improvement
- Policy improvement: greedify with respect to value (or action-value) function

Example of Greedy Action Selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you.
- You open the left door and get reward 0 V(left) = 0
- You open the right door and get reward +1V(right) = +1
- You open the right door and get reward +3V(right) = +3
- You open the right door and get reward +2V(right) = +2

:

• Are you sure you've chosen the best door?

ϵ -Greedy Exploration

- Tradeoff between exploitation and exploration
- All m actions are tried with non-zero probability
- ullet With probability $1-\epsilon$ choose the greedy action
- ullet With probability ϵ choose an action at random

$$\pi(a|s) = egin{cases} \epsilon/m + 1 - \epsilon & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s,a) \ \epsilon/m & ext{otherwise} \end{cases}$$

ϵ-Greedy Policy Improvement

Theorem

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$egin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s,a) \ &= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a) \ &\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} rac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a) \ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a) = v_{\pi}(s) \end{aligned}$$

Therefore from policy improvement theorem, $v_{\pi'}(s) \geq v_{\pi}(s)$

Remark

Monte-Carlo Policy Iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement ϵ -greedy policy improvement

Monte-Carlo Control

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty}N_k(s,a)=\infty$$

The policy converges on a greedy policy,

$$\lim_{k o \infty} \pi_k(a|s) = \mathbf{1}(a = rg \max_{a' \in \mathcal{A}} Q_k(s,a'))$$

GLIE

- ullet For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k=rac{1}{k}$
- Keep a declining exploration probability at a sufficiently slow rate that try all actions infinitely ofen
- In practice, $\epsilon_k = \frac{1}{k^{\beta}}$ with $\beta \in (0.5, 1]$

GLIE Monte-Carlo Control

- Sample kth episode using π : $\{S_1, A_1, R_2, \dots, S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$egin{aligned} \mathcal{N}(S_t,A_t) &\leftarrow \mathcal{N}(S_t,A_t) + 1 \ Q(S_t,A_t) &\leftarrow \mathcal{Q}(S_t,A_t) + rac{1}{\mathcal{N}(S_t,A_t)} (G_t - \mathcal{Q}(S_t,A_t)) \end{aligned}$$

• Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$
 $\pi \leftarrow \epsilon$ -greedy(Q)

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

On-Policy First-Visit MC Control

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$ Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow$ an arbitrary ε -soft policy $Q(s,a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Repeat forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ (with ties broken arbitrarily) For all $a \in \mathcal{A}(S_t)$: $\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$

Partial Summary of MC

- MC has several advantages over DP
 - can learn directly from interaction with environment
 - No need for full models
 - No need to learn about ALL states (no bootstrapping)
 - Less harmed by violating Markov property
- MC methods provide an alternate policy evaluation process
- One issue to watch for: maintaining sufficient exploration
 - exploring starts, soft policies

Boltzmann Exploration

- ullet A limitation of ϵ -greedy: when we explore, we choose actions at random without regard to their estimated values
- For larger action spaces, this can mean that we are spending a lot of time evaluating actions that are quite poor
- Boltzmann Exploration (also known as "Gibbs sampling" & "soft-max"): choosing an action based on its estimated value.

$$\pi(a|s) = rac{e^{eta\hat{Q}(s,a)}}{\sum_{a'}e^{eta\hat{Q}(s,a')}}$$

- $\hat{Q}(s, a)$ is an estimate of the value of being in state s and taking action a.
- \bullet β is a tunable parameter
 - $\beta = 0$ produces a pure exploration policy
 - $\beta \to \infty$ produces a greedy policy

Outline

- Introduction
- 2 On-Policy Monte-Carlo Contro
- 3 On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- Summary
- References

MC vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S, A)
 - Use ε-greedy policy improvement
 - Update every time-step

Learning An Action-Value Function

Estimate q_{π} for the current policy π

After every transition from a nonterminal state, S_t , do this:

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t}) \Big]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$

Updating Action-Value Functions with Sarsa

$$Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A))$$

On-Policy Control With Sarsa

Every time-step:

Policy evaluation Sarsa, $Q pprox q_\pi$

Policy improvement ϵ -greedy policy improvement

Sarsa Algorithm for On-Policy Control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$$

$$S \leftarrow S'; A \leftarrow A';$$

until S is terminal

Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- ullet Robbins-Monro sequence of step-sizes $lpha_{t}$

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 \leq 20$$

Windy Gridworld Example

- ullet Reward = -1 per time-step until reaching goal
- Undiscounted

Sarsa on the Windy Gridworld

n-Step Sarsa

• Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$\begin{array}{ll} \textit{n} = 1 & \textit{(Sarsa)} & q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}) \\ \textit{n} = 2 & q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}) \\ \vdots & \vdots & \vdots \\ \textit{n} = \infty & \textit{(MC)} & q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T \end{array}$$

• Define the *n*-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

• n-step Sarsa updates Q(s, a) towards the n-step Q-return

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Forward View Sarsa(λ)

• Forward-view Sarsa(λ)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{\lambda} - Q(S_t, A_t)\right)$$

- The q^{λ} return combines all n-step Q-returns $q_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$q_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1}q_t^{(n)}$$

Outline

- Introduction
- 2 On-Policy Monte-Carlo Contro
- On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- Summary
- References

Off-Policy Learning

- \bullet Learn the value of the target policy π from experience due to behavior policy μ
- In this sense, learning is from experience(data) "off" the target policy, and the overall process is termed off-policy learning.
- For example, π is the greedy policy (and ultimately the optimal policy) while μ is exploratory (e.g., ϵ -soft)
- In general, we only require coverage, i.e., that μ generates behavior that covers, or includes, π

$$\mu(a|s)>0$$
 for every s,a at which $\pi(a|s)>0$

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1, A_1, R_2, \ldots, S_T\} \sim \mu$$

- Why is this important?
 - Learn from observing humans or other agents
 - ▶ Re-use experience generated from old policies $\pi_1, \pi_2, \dots, \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - Learn about multiple policies while following one policy

Importance Sampling

• Estimate the expectation of a function

$$\mathbb{E}_{X \sim \pi}[g(X)] = \sum_{k=1}^{n} \pi(x) f(x) \approx \frac{1}{n} \sum_{k=1}^{n} g(x_k), x_k \sim \pi$$

• But sometimes it is difficult to sample x from π , then we can sample x from another distribution μ , then correct the weight

$$\mathbb{E}_{X \sim \pi}[g(X)] = \sum_{n} \pi(x)g(x) = \sum_{n} \mu(x)\frac{\pi(x)}{\mu(x)}g(x)$$
$$= \mathbb{E}_{X \sim \mu}\left[\frac{\pi(X)}{\mu(X)}g(X)\right] \approx \frac{1}{n}\sum_{k=1}^{n} \frac{\pi(x_k)}{\mu(X_k)}g(x_k), x_k \sim \mu$$

• For off-policy learning: weight each return by the ratio of the probabilities of the trajectory under the two policies

Importance Sampling for Off-Policy Monte-Carlo

- ullet Use returns generated from μ to evaluate π
- ullet Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = rac{\pi(A_t|S_t)}{\mu(A_t|S_t)} rac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots rac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

Update value towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t^{\pi/\mu}}{t} - V(S_t) \right)$$

- ullet Cannot use if μ is zero when π is non-zero
- Importance sampling can dramatically increase variance

Importance Sampling Ratio

• Probability of the rest of the trajectory, after S_t , under π

$$\begin{aligned} & \text{Pr} \left\{ A_{t}, S_{t+1}, A_{t+1}, \dots, S_{T} | S_{t}, A_{t:T-1} \sim \pi \right\} \\ & = \pi \left(A_{t} | S_{t} \right) p \left(S_{t+1} | S_{t}, A_{t} \right) \pi \left(A_{t+1} | S_{t+1} \right) \cdots p \left(S_{T} | S_{T-1}, A_{T-1} \right) \\ & = \prod_{k=t}^{T-1} \pi \left(A_{k} | S_{k} \right) p \left(S_{k+1} | S_{k}, A_{k} \right), \end{aligned}$$

 In importance sampling, each arm is weighted by the relative probability of the trajectory under the two policies

$$\rho_t^T = \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

- This is called the *importance sampling ratio*
- All importance sampling ratios have expected value 1

$$\mathbb{E}_{A_k \sim \mu} \left[\frac{\pi \left(A_k | S_k \right)}{\mu \left(A_k | S_k \right)} \right] = \sum_{a} \mu \left(a | S_k \right) \frac{\pi \left(a | S_k \right)}{\mu \left(a | S_k \right)} = \sum_{a} \pi \left(a | S_k \right) = 1.$$

Off-Policy MC Policy Evaluation

Incremental off-policy every-visit MC policy evaluation (returns $Q \approx q_{\pi}$

```
Input: an arbitrary target policy \pi
Initialize, for all s \in S, a \in A(s):
     Q(s, a) \leftarrow \text{arbitrary}
     C(s,a) \leftarrow 0
Repeat forever:
     \mu \leftarrow any policy with coverage of \pi
     Generate an episode using \mu:
          S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T
     G \leftarrow 0
     W \leftarrow 1
     For t = T - 1, T - 2, ... downto 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)}
          If W = 0 then ExitForLoop
```

Off-Policy MC Control

Off-policy every-visit MC control (returns $\pi \approx \pi_*$)

Initialize, for all $s \in S$, $a \in A(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $C(s,a) \leftarrow 0$ $\pi(s) \leftarrow \operatorname{arg\,max}_{s} Q(S_{t}, a)$ (with ties broken consistently)

Repeat forever:

 $\mu \leftarrow \text{any soft policy}$

Generate an episode using μ :

$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T$$

$$G \leftarrow 0$$

$$W \leftarrow 1$$

For t = T - 1, T - 2, ... downto 0:

$$G \leftarrow \gamma G + R_{t+1}$$

$$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$$

 $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ (with ties broken consistently)

If $A_t \neq \pi(S_t)$ then ExitForLoop

$$W \leftarrow W \frac{1}{\mu(A_t|S_t)}$$

Target policy is greedy and deterministic

Behavior policy is soft, typically ε -greedy

Importance Sampling for Off-Policy TD

- ullet Use TD targets generated from μ to evaluate π
- Weight TD target $R + \gamma V(S')$ by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

- Much lower variance than Monte-Carlo importance sampling
- Policies only need to be similar over a single step

Outline

- Introduction
- 2 On-Policy Monte-Carlo Contro
- On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- 6 Summary
- References

Q-Learning

- We now consider off-policy learning of action-values Q(s, a)
- No importance sampling is required
- Next action to evaluate is chosen using behavior policy $A_{t+1} \sim \mu(\cdot|S_t)$
- ullet But we consider alternative successor action $A' \sim \pi(\cdot|S_t)$
- Which means a separate policy is used to choose the alternative action in the future
- And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t))$$

Off-Policy Control with Q-Learning

- We now allow both behaviour and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \operatorname*{arg\,max}_{a'} Q(S_{t+1}, a')$$

- The behaviour policy μ is e.g. ϵ -greedy w.r.t. Q(s,a)
- The Q-learning target then simplifies:

$$\begin{aligned} &R_{t+1} + \gamma Q(S_{t+1}, A') \\ = &R_{t+1} + \gamma Q(S_{t+1}, \arg\max_{a'} Q(S_{t+1}, a')) \\ = &R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a') \end{aligned}$$

Q-Learning Control Algorithm

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

Theorem

Q-learning control converges to the optimal action-value function, $Q(s,a) o q_*(s,a)$

Q-Learning Algorithm for Off-Policy Control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Q-Learning Demo

https://www.cs.ubc.ca/~poole/demos/rl/q.html

Cliff Walking Example

Outline

- Introduction
- 2 On-Policy Monte-Carlo Contro
- On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- **6** Summary
- References

Relationship Between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\sigma}(s) \leftrightarrow s$ $v_{\sigma}(s') \leftrightarrow s'$	
Equation for $v_\pi(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \leftrightarrow s,a$ r s' $q_{\pi}(s',a') \leftrightarrow a'$	S.A R S'
Equation for $q_{\pi}(s,a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_{r}(s,a) \leftrightarrow s,a$ $q_{r}(s',a') \leftrightarrow a'$ $q_{r}(s',a') \leftrightarrow a'$ $q_{r}(s',a') \leftrightarrow a'$ $q_{r}(s',a') \leftrightarrow a'$	Q-Learning

Relationship Between DP and TD

Full Backup (DP)	Sample Backup (TD)	
Iterative Policy Evaluation	TD Learning	
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$	
Q-Policy Iteration	Sarsa	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$	
Q-Value Iteration	Q-Learning	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a ight]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$	

Unified View of Reinforcement Learning

Outline

- Introduction
- 2 On-Policy Monte-Carlo Control
- On-Policy Temporal-Difference Learning
- Off-Policy Learning: Importance Sampling
- Off-policy Learning: Q-learning
- **6** Summary
- References

Main References

- Reinforcement Learning: An Introduction (second edition), R. Sutton & A. Barto, 2018.
- RL course slides from Richard Sutton, University of Alberta.
- RL course slides from David Silver, University College London.