

Prédiction quantitative et spatiale de la nature des fonds marins

Personnes impliquées dans l'étude

Bermell Sylvain

02 98 22 42 45 (4245) Sylvain.Bermell@ifremer.fr

Simplet Laure

02 98 22 46 25 (4625) Laure.Simplet@ifremer.fr

Johan Saout

Technicien Océanographe Monaco | Génie civil

Poste actuel Hydroconsult SARL

IFREMER, DCNS ENERGIES, CREOCEAN

Formation CNAM-INTECMER

Marie ECHAZAR

Perpignan, Languedoc-Roussillon, France Études/recherche

Formation Université de Perpignan Via Domitia

Prédiction quantitative et spatiale de la nature des fonds marins

Produire des modèles prédictifs, ici de classes granulométriques de type folk, en % de sable/vase/gravier

Besoins:

- géosciences marines : brique de base pour comprendre les systèmes sédimentaires
- biologie marine : base pour définir les typologies d'habitats
- océanographie physique : contraintes des modèles
- porteurs de projets liés au développement d'activités ou d'infrastructures en mer : information nécessaire à l'état de référence.

Etat de l'art sur le plateau continental de métropole

La directive-cadre stratégie pour le milieu marin (**DCSMM**) 2008 Nature des fonds marins - Etat de référence fourni par le SHOM

Connaissances insuffisantes

Etat de l'art sur le plateau continental de métropole

Cartes de nature des fonds issues des travaux d'interprétation menés à ifremer/GM

Approche classique:

Classification supervisée humaine : Prélèvements + données acoustiques

Comment automatiser?

Comment prendre en compte d'autres paramètres (courant, houle, etc.)? Comment garantir la reproductibilité?

Méthode explorée :

Prédiction supervisée :

Random forest

Données d'apprentissage :

- Echantillons sédimentaires
- Bathymétrie (+ dérivées)
- Réflectivité acoustique (+ dérivées)
- Modèle océanographie physique (courant, houle, etc.)

C5818

EMODnet-Geology Phase II

Case study: Quantitative spatial prediction of seabed sediment composition

Markus Diesing 7th October 2015

Grandes étapes de la méthode

Données d'entrée

- \rightarrow Trait de côte
- → Energie cinétique
- → Courants
- \rightarrow Houle

- ALRm (mud) - ALRs (sand)

- n (mud)
- ightarrow Roughness ightarrow Aspect

Slope

- → Curvature
- → Bathymetric Position Index (BPI)
- → Vector Ruggedness Measure (VRM)

- → Lee filtered backscater
- → Hue-Saturation-Intensity (HSI)
- → Band ratios

- → Euclidean distance to the coastline
- → Average current speed
- → Peak wave orbital velocity at the seabed

Variables dérivées

Jeu de données constitué = valeurs des données d'entrée et des variables dérivées pour chaque position d'échantillon sédimentaire

Calcul des relations possibles entre la variable d'intérêt **ALRm** et les variables d'entrée et leurs dérivées

Modèle prédictif pour la variable **ALRm**

Modèle prédictif pour la variable ALRs

Conversion des variables

ALRm et ALRs en un raster
final avec les fractions de
vase, sable et gravier

Random Forest Calcul des relations possibles entre la variable d'intérêt **ALRs** et les variables d'entrée et leurs dérivées

Random forest

Random Forest (Breiman 2001) : agrégation d'arbres de décision pour produire le modèle prédictif le plus précis possible.

Arbre de décision, analogie médicale : Les variables explicatives sont "Fièvre", "Douleur" et "Toux".

La variable à prédire est "Maladie"

Règles de classification :

Fievre	Douleur	Toux	Maladie
oui	Abdomen	non	Appendicite
non	Abdomen	oui	Appendicite
oui	gorge	non	rhume
oui	gorge	oui	rhume
non	gorge	oui	mal de gorge
oui	non	non	aucune
oui	non	oui	rhume
non	non	oui	refroidissement
non	non	non	aucune

Random forest

Random Forest (Breiman 2001) : agrégation d'arbres de décision pour produire le modèle prédictif le plus précis possible.

Arbre de décision, notre cas d'étude :

Les variables explicatives sont « Réflectivité », « Bathylmétrie », etc... La variable à prédire est « % vase »

Random forest

Ifremer

Random Forest (Breiman 2001) : agrégation d'arbres de décision pour produire le modèle prédictif le plus précis possible.

Principe = l'union fait la force

- apprendre grand nombre T (~ qlq 10aines ou 100aines) d'arbres simples
- utilisation par vote des arbres (classe majoritaire, voire probabilités des classes par % des votes) si classification, ou moyenne des arbres si régression

- chaque arbre appris sur un sous-ensemble (~2/3) aléatoire différent des exemples d'apprentissage
- chaque nœud de chaque arbre choisi comme « split » optimal parmi k variables tirées aléatoirement dans les entrées (avec k<<d la dim des entrées)

Outils:

SIG

ArcGIS 10.3

- Données géoréférencées
- Production des variables dérivées
- Prédiction basée sur des rasters

Marine Geospatial Ecology Tools

Toolbox MGET

- 🛓 🦠 Generalized Additive Models
- 🕁 🦠 Generalized Linear Models
- 🛓 🥾 Linear Mixed Models
- 🚉 🦠 Random Forest Models
 - 🎳 Fit Random Forest Model
 - 📲 Predict Random Forest From Rasters
- 🗓 🦠 Tree Models
 - 🐧 Randomly Split Table Into Training and Test Records

http://mgel.env.duke.edu/mget

R randomForest package (Liaw and Wiener, 2002) Breiman's classic algorithm

Equivalent python (non testé)

sklearn.ensemble.RandomForestClassifier

Examples

```
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
                               n informative=2, n redundant=0,
                               random state=0, shuffle=False)
   clf = RandomForestClassifier(n estimators=100, max depth=2,
                                 random state=0)
>>> clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
            max depth=2, max features='auto', max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min_samples_leaf=1, min_samples split=2,
            min weight fraction leaf=0.0, n_estimators=100, n_jobs=None,
            oob score=False, random state=0, verbose=0, warm start=False)
>>> print(clf.feature importances )
[0.14205973 0.76664038 0.0282433 0.06305659]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]
```

Zone d'apprentissage:

RECOSOM 2 RECUP

Type Campagne océanographique

Propriétaire Ifremer

Navire

navire

ates 02/04/2013 - 14/04/2013

Chef(s) de missionSIMPLET Laure

GM-GEOSCIENCES MARINES IFREMER Centre de Bretagne

ZI Pointe du diable CS 10070 29280 PLOUZANE \$ +33(0)2 98.22.42.24

geosciences.marines@ifremer.fr
http://wwz.ifremer.fr/gm

10.17600/13070060

Objectif Levé bathymétrique (SMF EM2040) d'une zone précédemment reconnue lors de la

mission RECOSOM 2. Le projet de rattachement est "Systèmes et évolutions

sédimentaires".

Citer cette campagne

SIMPLET Laure (2013)
RECOSOM 2 RECUP cruise, RV

Thalia, https://doi.org /10.17600/13070060

https://doi.org/10.17600/13070060

Variables dérivées de la bathymétrie :

Table 5: Predictor variables derived from bathymetry data (MBFP).

Variable	Description	Unit	Name	Reference	
Slope	The maximum slope gradient	degree	slope	Wilson et al. (2007)	
Roughness	The difference between minimum and maximum of cell	m	rgh	Wilson et al. (2007)	
	and its 8 neighbours.				
Aspect	Direction of steepest slope, expressed as eastness (sine of aspect) and northness (cosine of aspect)		eastness northness	Wilson et al. (2007)	
Curvature	Rate of change of slope. Profile curvature (curvPR) is measured parallel to maximum slope; plan curvature (curvPL) is measured perpendicular to slope.		curvPL curvPR curv	Wilson et al. (2007)	
Bathymetric Position Index (BPI)	Vertical position of cell relative to neighbourhood (identifies topographic peaks and troughs). Radii of 3, 5, 10, 25, 30, 40, 50, 60, 70, 80, 90 and 100 pixels were used.	m	BPI3, BPI5, BPI10, BPI25, BPI30, BPI40, BPI50, BPI60, BPI70, BPI80, BPI90, BPI100	Lundblad et al. (2006)	
Vector ruggedness measure (VRM)	Based on a geomorphological method for measuring vector dispersion.		VRM3, VRM5, VRM7, VRM9, VRM11	Sappington et al. (2005)	

Variables dérivées de la bathymétrie :

Variables dérivées de la réflectivité :

Table 6: Predictor variables derived from backscatter data (BSFP).

Variable	Description	Unit	Name	Reference
Lee-filtered	Reduces the speckle noise by applying a	dB	BSFP_Lee5	
backscatter	spatial filter to each pixel in an image, which			
	filters the data based on local statistics			
	calculated within a square window. The			
	value of the centre pixel is replaced by a			
	value calculated using the neighbouring			
	pixels. A neighbourhood size of 5 pixels was			
	chosen here after trials.			
HSI	A synthetic colour image derived by applying		HSI_R	Daily (1983)
	high and low pass filters in order to separate		HSI_G	
	high and low frequency information. High		HSI_B	
	and low frequency information is then			
	mapped to hue (chromatic) and intensity			
	(achromatic) respectively with a fixed			
	saturation value. These HSI values are then			
	transformed to red, green, blue (RGB) colour			
	space.			
Band ratios	Band ratios of the three HSI layers were		Ratio_RG	
	derived by simple division:		Ratio_RB	
	Ratio_RG = HSI_R/HSI_G		Ratio_GB	
	Ratio_RB = HSI_R/HSI_B			
	Ratio_GB = HSI_G/HSI_B			

Variables dérivées de la réflectivité :

Autres données:

Table 7	7 ∙ Other	predictor	variables

Variable	Description	Unit	Name	Reference
Euclidean	The straight-line distance to the nearest	m	EucDist	
distance to	coastline.			
coastline				
Average current	Depth mean tidal and wind-driven currents	m/s	Av_current	Aldridge et al.
speed	calculated using the POLCOMS model (Holt			(2015)
	& James, 2001) with a grid resolution of			
	approximately 11 km.			
Peak wave	The WAM spectral wave model was used to	m/s	PkOrbVelMx	Aldridge et al.
orbital velocity	provide significant wave height and zero-		PkOrbVelMn	(2015)
at the seabed	crossing wave period with a grid resolution of		PkOrbVelSD	
	approximately 11 km over the period 2000 to			
	2008. These were used in conjunction with a			
	bathymetric model at a resolution of 200 m to			
	derive statistics of wave orbital velocity at the			
	seabed. These included the maximum (Mx),			
	mean (Mn) and standard deviation (SD).			

Energie cinétique sur le fond N/m²

Données de faible résolution

Résultats

Réflectivité

Bathy

Océano

SAND (ALRs)

MUD (ALRm)

Nbre d'arbres: 500

Résultats:

Résultats : sans réflectivité

Perspectives

- 1. Stabiliser l'algorithmie statistique du modèle de Diesing
- 2. Proposer des démarches interprétatives répétables et transférables, d'un jeu de données à un autre, d'un utilisateur à un autre
- 3. Rejouer les données historiques d'échantillons granulométriques au regard des nouvelles variables « modernes »
- 4. Produire des données utiles à d'autres thématiques (études hydrodynamiques)
- 5. Utiliser les SIG à des fins de modélisation