Bias-Variance Tradeoff: KNN

Linear Regression (on board, live coding)

Plato's Allegory of the Cave

Statistical Inference

Goal: use *statistics* calculated from data to makes inferences about the nature of *parameters*.

In regression,

- statistics: $\hat{\beta}_0$, $\hat{\beta}_1$
- parameters: β_0 , β_1

Classical tools of inference:

- Confidence Intervals
- Hypothesis Tests

Quick Review (start the timer)

Confidence Intervals

A confidence interval expresses the amount of uncertainly we have in our estimate of a particular parameter. A general 1 - α confidence interval takes the form

$$\hat{ heta} \pm t^* * SE(\hat{ heta})$$

- α : is the confidence level, often .05
- $\hat{\theta}$: a statistic (point estimate)
- t^* is the 100(1-lpha/2) quantile of the sampling distribution of $\hat{ heta}$
- SE is the standard error of $\hat{\theta}$, i.e. the standard deviation of its sampling distribution.

Common Regression Assumptions

1. Y is related to x by a simple linear regression model.

$$E(Y|X) = \beta_0 + \beta_1 * x$$

- 2. The errors e_1, e_2, \ldots, e_n are independent of one another.
- 3. The errors have a common variance σ^2 .
- 4. The errors are normally distributed: $\epsilon \sim N(0, \sigma^2)$

Assume the following true model:

$$E(Y|X) = 12 + .7*x; \epsilon \sim N(0,4)$$

Assume the following true model:

$$E(Y|X) = 12 + .7*x; \epsilon \sim N(0,4)$$

Assume the following true model:

$$E(Y|X) = 12 + .7*x; \epsilon \sim N(0,4)$$

Characteristics:

1. Centered at β_1 , i.e. $E(\hat{\beta}_1) = \beta$.

2.
$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SXX}$$
.

$$\circ$$
 where $SXX = \sum_{i=1}^n (x_i - \bar{x})^2$

$$3.~\hat{eta}_1|X\sim N(eta_1,rac{\sigma^2}{SXX}).$$

Approximating the Sampling Dist. of \hat{eta}_1

Our best guess of β_1 is $\hat{\beta}_1$. And since we have to estimate σ with $\hat{\sigma}^2 = RSS/n - 2$, the distribution isn't normal, but...

T with n - 2 degrees of freedom.

And we summarize that approximate sampling distribution using a CI:

$$\hat{eta}_1 \pm t_{lpha/2,n-2} * SE(\hat{eta}_1)$$

where

$$SE(\hat{eta}_1) = s/\sqrt(SXX)$$

Interpreting a CI for \hat{eta}_1

We are 95% confident that the true slope between x and y lies between LB and UB.

Hypothesis test for \hat{eta}_1

Suppose we are interested in testing the claim that the slope is zero.

$$H_0: eta_1^0 = 0 \ H_A: eta_1^0
eq 0$$

We know that

$$T = rac{\hat{eta}_1 - eta_1^0}{SE(\hat{eta}_1)}$$

T will be t distributed with n-2 degrees of freedom and with $SE(\hat{\beta}_1)$ calculated the same as in the CI.

Inference for \hat{eta}_0

Often less interesting (but not always!). You use the t-distribution again but with a different SE.