Trabalho Aula 7

Matheus S. Redecker¹, Thomas Vieira¹

¹Pontíficia Universidade Católica Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681. Prédio 32, CEP 90619-900. Porto Alegre, RS-Brasil

thvieira.rs@gmail.com, matheus.redecker@acad.pucrs.br

1. Descrição do experimento e modelagem

Um carro é um produto da industria automotiva. Um carro é usado para o transporte, e possui alguns componentes para atingir essa tarefa, alguns componentes são: Motor, sistema de freio, caixa de cambio, injeção eletrônica, painel multimídia, entre outros. Para unificar todos os componentes necessários para um carro funcionar, é utilizado uma serie de micro controladores. O intuito deste trabalho é realizar a modelagem do escalonamento de um carro, através da ferramenta Cheddar, que é uma ferramenta de simulação de escalonamento em tempo real.

Para modelar o carro iremos utilizar 6 processadores, que utilizam o escalonamento Rate Monotonic (RM) *preemptivo*, com os espaços de endereçamentos vazios (a utilidade de cada processador é descrita na próxima seção). Para representar as tarefas realizadas por cada processador serão criadas 31 tarefas (abreviando para tx, sendo x o número da tarefa). Na maioria dos sistemas os componentes não são isolados um dos outros, por isso é preciso utilizar mensagens para realizar uma comunicação entre componentes. A nossa modelagem contém 12 mensagens, mas com o intuito de reduzir a complexidade na descrição, as mensagens são representadas como tarefas, apenas para simular o comportamento de uma mensagem, mas sem a troca de informações.

2. Escalonamento e descrição dos processadores

Nesta seção iremos apresentar uma amostra do escalonamento de cada processador e a descrição de cada um.

2.1. Processador 1

O processador 1 é chamado de *Node 1*. Este processador é responsável pelo controle do motor. Nele são feitas as tarefas t1, t2, t3, t4, t5, t6, e t7. E são transmitidas as mensagens m1, m3, e m10. A ordem do escalonamento amostrada na Figura 1 é a seguinte:

(1) t3	(2) m10	(3) t6	(4) t7	(5) t2
(6) m3	(7) t4	(8) t5	(9) t1	(10) m1

Figura 1. Escalonamento do Node 1

2.2. Processador 2

O processador 2 é chamado de *Node* 2. Este processador é responsável pelo controle da caixa de marchas automática. Neste processador são feitas as tarefas t8, t9, t10, e t11. E são transmitidas as mensagens m4 e m11. A ordem do escalonamento amostrada na Figura 2 é a seguinte:

Figura 2. Escalonamento do Node 2

2.3. Processador 3

O processador 3 é chamado de *Node 3*. Este processador é responsável pelo anti bloqueio do sistema de freio e pelo controle dinâmico do veículo. Neste processador são feitas as tarefas t12, t13, t14, t15, t16, e t17. E são transmitidas as mensagens m5, m6, m7, e m12. A ordem do escalonamento amostrada na Figura 3 é a seguinte:

(1) m12	(2) m5	(3) m6	(4) m7	(5) t12	
(6) t13	(7) t14	(8) t15	(9) t16	(10) t17	

Figura 3. Escalonamento do Node 3

2.4. Processador 4

O processador 4 é chamado de *Node 4*. Este processador é responsável pelo controle do sensor do ângulo de roda e pelo corretor de farol dinâmico. Neste processador são feitas as tarefas t18 e t19. E é transmitida a mensagem m2. A ordem do escalonamento amostrada na Figura 4 é a seguinte:

Figura 4. Escalonamento do Node 4

2.5. Processador 5

O processador 5 é chamado de *Node 5*. Este processador é responsável pelo controle da suspensão. Neste processador são feitas as tarefas t20, t21, t22, t23, e t24. E é transmitida a mensagem m9. A ordem do escalonamento amostrada na Figura 5 é a seguinte:

Figura 5. Escalonamento do *Node 5*

2.6. Processador 6

O processador 6 é chamado de *Node* 6. Este processador é responsável pelo controle da suspensão. Neste processador são feitas as tarefas t25, t26, t27, t28, t29, t30, e t31. E é transmitida a mensagem m8. A ordem do escalonamento amostrada na Figura 6 é a seguinte:

Figura 6. Escalonamento do Node 6

3. Tabela

A Tabela 1 contém os valores de utilização (U), o *upper bound*, e o período de escalonamento para o conjunto em cada processador. Como as mensagens foram modeladas como tarefas, no calculo do *upper bound*, as mensagens foram incluídas no calculo e consequentemente no número de tarefas.

Tabela 1. Tabela com os parâmetros para cada processador					
	Node	U(%)	Upper bound	H(ms)	

Node	U(%)	Upper bound	H(ms)
1	0,84619	0,71773	4200
2	0,44286	0,73477	1050
3	0,48833	0,71773	600
4	0,55714	0,77976	140
5	0,52619	0,73477	420
6	0,49000	0,72406	200

4. Resultados e modificações

O sistema é escalonável, pois todas os processadores conseguem escalonar suas tarefas. Excluindo o *Node 1*, todos os outros processadores são confirmados escalonáveis pela *upper bound*. O *upper bound* consistem em analisar se o sistema é escalonável, se a soma da utilização de todas as tarefas ($\sum U_i$) são menores que $n(2^{\frac{1}{n}}-1)$. Mas essa regra não prova que o sistema não é escalonável, apenas se ele é, caso satisfaça a formula. Com isso, através dos experimentos foi possível mostrar que o *Node 1* é escalonável.