

CQI **REPORT**

CLASS: BSE - 6 C

Project Title

Smart Home Energy Management System

Group Members

Student Name	Enrollment#
Ahmed Younas	02-131222-115
Azhar Rasool	02-131222-118
Sarim Zia	02-131222-065
Hunain Nasir	02-131222-041

Table of Contents

1. Project Definition	3
Problem:	3
2. Vision Statement	3
3. Vision Scope Document	3
1. Business Requirements	3
2. Scope and Limitations	4
3. Business Context	4
4. SRS Document (Software Requirements Specification)	5
A. Introduction	5
B. Document Conventions	5
C. References	5
D. Overall Description	5
E. Specific Requirements	6
5. UML Diagrams	6
A. Use Case Diagram	6
B. Class Diagram	7
C. Sequence Diagram	7
D. Activity Diagram	8
6. Low-Fidelity Prototypes	8
Prototype 1	8
Prototype 2	8
7. High-Fidelity Prototypes	9
Prototype 1	9
Prototype 2	. 10
8. References	. 10

1. Project Definition

Problem: Homeowners lack centralized control over energy-consuming devices, leading to high electricity bills and inefficient usage.

Solution: Develop a mobile app that enables real-time monitoring, control, and automation of smart home appliances to reduce energy consumption and costs.

2. Vision Statement

To empower homeowners with intelligent control and insights into their energy consumption through a unified mobile application, enhancing convenience, efficiency, and sustainability in their living environment.

3. Vision Scope Document

1. Business Requirements

- 1.1 Background: Energy consumption in homes is rising due to multiple smart appliances being used inefficiently.
- 1.2 Business Opportunity: The system will save energy costs, reduce environmental impact, and improve user convenience.
- 1.3 Business Objectives:
 - Reduce energy consumption by 20%
 - o Enable automation for routine energy usage
 - o Increase user engagement with smart devices

1.4 Success Metrics:

- o 5,000 active users in 6 months
- o 95% app uptime
- o 20% drop in average energy use

• 1.5 Vision Statement:

 To empower homeowners with intelligent control and insights into their energy consumption through a unified mobile application, enhancing convenience, efficiency, and sustainability in their living environment.

- 1.6 Business Risks:
 - o Integration issues with diverse IoT devices
 - Security vulnerabilities
- 1.7 Assumptions/Dependencies:
 - Users have Wi-Fi-connected smart devices
 - Third-party APIs for smart devices

2. Scope and Limitations

- 2.1 Major Features:
 - Dashboard of energy usage
 - o Device control and scheduling
 - Automation rules (if/then logic)
- 2.2 Scope of Initial Release:
 - o Lights, air conditioners, heaters
 - Manual control and automation
- 2.3 Scope of Future Releases:
 - Solar panel monitoring
 - Energy billing analysis
- 2.4 Limitations:
 - No third-party security system integration
 - No support for offline devices

3. Business Context

- 3.1 Stakeholders:
 - o Homeowners
 - Developers
 - Utility providers

- 3.2 Priorities:
 - User-friendliness > Features
 - Security > Performance
- 3.3 Deployment:
 - Android/iOS app
 - Cloud backend

4. SRS Document (Software Requirements Specification)

A. Introduction

- **Purpose:** Provide functional specs for a smart home energy management app.
- **Scope:** Control and monitor home appliances and automate routines.
- Overview: Modular app with dashboard, control panel, and automation engine.

B. Document Conventions

- FR = Functional Requirement
- NFR = Non-Functional Requirement

C. References

- IEEE SRS Guidelines
- Google Smart Home API

D. Overall Description

- **Product Perspective:** Standalone app integrated with IoT platforms
- **Product Functions:** Monitor, control, automate smart devices
- User Classes: Admin (homeowner), Guest
- Operating Environment: Android, iOS, Web (optional)
- Constraints: Real-time updates, mobile-first design
- Assumptions: Smart devices are compatible with API

E. Specific Requirements

Functional Requirements (FR)

- FR1: User login and authentication
- FR2: View real-time device status
- FR3: Switch devices on/off
- FR4: Create and edit schedules
- FR5: View energy usage reports
- FR6: Configure automation (e.g., "Turn off heater if temp > 26°C")

Non-Functional Requirements (NFR)

- NFR1: System shall respond to commands within 2 seconds
- NFR2: Data encryption (AES 256) for all communications
- NFR3: 99% uptime per month
- NFR4: App should work on Android 10+ and iOS 13+
- NFR5: Scalability for 10,000 users

5. UML Diagrams

A. Use Case Diagram

B. Class Diagram

C. Sequence Diagram

D. Activity Diagram

6. Low-Fidelity Prototypes

• Prototype 1: Home Dashboard

• Prototype 2: Automation Screen

7. High-Fidelity Prototypes

• Prototype 1: Interactive energy usage dashboard with charts and toggles

Prototype 2: Automation rule builder with a drag-and-drop interface

8. References

- [1] I. Sommerville, Software Engineering, 10th ed., Pearson Education, 2016.
- [2] R. S. Pressman and B. R. Maxim, *Software Engineering: A Practitioner's Approach*, 8th ed., McGraw-Hill Education, 2014.
- [3] IEEE, *IEEE Recommended Practice for Software Requirements Specifications (IEEE Std 830-1998)*, 1998. [Online]. Available: https://ieeexplore.ieee.org/document/720574 [Accessed: Aug. 7, 2025].
- [4] S. W. Ambler, *The Elements of UML 2.0 Style*, Cambridge University Press, 2005.
- [5] J. Tidwell, *Designing Interfaces: Patterns for Effective Interaction Design*, 2nd ed., O'Reilly Media, 2010.
- [6] Figma, *Prototyping in Figma*. [Online]. Available: https://www.figma.com/prototyping [Accessed: Aug. 7, 2025].
- [7] Nielsen Norman Group, *Low-fidelity vs. High-fidelity Prototyping*. [Online]. Available: https://www.nngroup.com/articles/low-vs-high-fidelity-prototypes/ [Accessed: Aug. 7, 2025].