

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIa
Popis sady vzdělávacích materiálů:	Mechanika III – dynamika a hydrostatika, 3. ročník.
Sada číslo:	G-20
Pořadové číslo vzdělávacího materiálu:	10
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_G-20-10
Název vzdělávacího materiálu:	Momenty setrvačnosti k osám rovnoběžným s osou těžiště
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Momenty setrvačnosti k osám rovnoběžným s osou těžiště

Stejně jako u kvadratického momentu i zde platí Steinerova věta.

Momenty setrvačnosti jednoduchých těles

• Moment setrvačnosti tenkého věnce

$$\Delta I_1 = \Delta m_1 r_s^2$$

$$\Delta I_2 = \Delta m_2 r_s^2$$

$$I_0 = \sum \Delta I_i = \sum \Delta m_i \cdot r_s^2 = r_s^2$$

$$\sum \Delta m_1 = m \cdot r_s^2 = I_0$$

r_s – střední poloměr věnce;

m – hmotnost celého věnce.

Př.: Určete moment setrvačnosti ocelové trubky D = 420 mm, d = 380 mm, l = 100 mm, $\rho = 7850 kg/m^3$.

$$I_0 = m \cdot r_s^2$$

$$m = V \cdot \rho = \left(\frac{\pi \cdot D^2}{4} - \frac{\pi \cdot d^2}{4}\right) \cdot l \cdot \rho = \frac{\pi}{4} \cdot l \cdot \rho \cdot \left(D^2 - d^2\right) =$$
$$= \frac{\pi}{4} \cdot 0.1 \cdot 7850 \cdot \left(0.42^2 - 0.38^2\right) = 19.73kg$$

$$r_s = \frac{R+r}{2} = \frac{\frac{0,42}{2} + \frac{0,38}{2}}{2} = \frac{0,21+0,19}{2} = 0,2 \,\text{m}$$

$$I_0 = m \cdot r_s^2 = 19,73 \cdot 0,2^2 = 0,789kg \cdot m^2$$

• Moment setrvačnosti tyče k ose procházející koncovým bodem tyče

Předpoklad: stejnorodá tyč.

Postup řešení je stejný jako v předcházejícím případě. Tyč rozdělíme na jednotlivé elementy hmoty, určíme jejich moment setrvačnosti a celkový moment setrvačnosti je dán součtem jednotlivých elementárních momentů setrvačnosti.

Element tyče má hmotnost: $\Delta m = \frac{m}{l} \cdot \Delta l$

Moment setrvačnosti daného elementu:

$$\Delta I_i = \Delta m \cdot x_i^2 = \Delta m \cdot (l_i \cdot \sin \alpha)^2 = \underbrace{\frac{m}{l} \cdot \Delta l}_{\Delta m} \cdot l_i^2 \cdot \sin^2 \alpha$$

Moment setrvačnosti celé tyče:

$$I = \sum \Delta I_i = \frac{m}{l} \cdot \sin^2 \alpha \cdot \sum_{i=0}^{l} l_i^2 \cdot \Delta l$$

Hodnotu výrazu $\sum_{0}^{l} l_{i}^{2} \cdot \Delta l$ si můžeme určit následovně. U pravidelného čtyřbokého jehlanu s podstavou o straně l a výšce l v libovolné vzdálenosti od vrcholu je výsledkem řezu rovnoběžného s podstavou čtverce o straně l_{i} . Výraz $l_{i}^{2} \cdot \Delta l$ představuje element objemu tohoto jehlanu, proto výraz $\sum_{0}^{l} l_{i}^{2} \cdot \Delta l$ představuje objem celého jehlanu.

$$l_i^2 \cdot \Delta l_i = \Delta V_i$$

$$\sum_{i=0}^{l} l_i^2 \cdot \Delta l_i = \frac{l^3}{3} = V$$

Moment setrvačnosti tyče v obecné poloze: $I = \frac{m}{l} \cdot \frac{l^3}{3} \cdot \sin^2 \alpha = \frac{m \cdot l^2}{3} \cdot \sin^2 \alpha$

Pro tyč s osou souměrnosti kolmou na osu rotace:

Moment setrvačnosti:

(sin 90°=1)

$$I = \frac{m \cdot l^2}{3}$$

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.