Kapittel 7: Konsumentteori: Konsumentens økonomiske adferd Konsumentens valg

Oppdatert: 2022-02-17

Innledning

- Vi skal i det følgende forsøke å illustrere hvordan en konsument/husholdning tilpasser seg i et godemarked.
- Husholdning: gruppe av individer med samme preferanser.
- Selvbergingsøkonomi ⇒ bytteøkonomi ⇒ pengeøkonomi
- Vi skal anta at konsumenten tilpasser seg slik at nytten ved å forbruke de ulike godene blir størst mulig.
- Men: konsumenten står ovenfor noen restriksjoner (betingelser).

Nytteteori

- Vi kan dele nytteteori i to:
 - Kardinal nytte:
 - Nytten kan måles.
 - Ordinal nytte:
 - Ikke målbar nytte. Her forutsetter vi at konsumenten kan ordne eller rangere de ulike godekombinasjonene.

Konsumentens optimale tilpasning

Vi tar utgangspunkt i følgende spørsmål: Hvilke forhold vil være av størst betydning for en konsuments etterspørsel etter et gode?

- Sentrale faktorer:
 - Konsumentens behovstruktur
 - Konsumentens inntekt
 - Prisen på godet
 - Prisen på andre goder

Konsumentens preferanser og behovsstruktur

- Vi forenkler ved å anta at konsumenten kan velge mellom kun to goder: x_1 og x_2 .
- Ved å konsumere de to godene oppnår konsumenten en nytte: U.
- For å behandle dette formelt, må vi gjøre noen antagelser om konsumentens preferanser:
 - 1. Determinerthetsaksiomet
 - 2. Ikkemetningsaksiomet
 - 3. Transitivitetsaksiomet

• Når disse forutsetningene er oppfylt vil det i prinsippet være mulig å uttrykke hvilken nytte konsumenten får av å konsumere de to godene med en nyttefunksjon:

$$\circ \ U=u(x_1,x_2)$$

- En nyttefunksjon viser for enhver godekombinasjon den samlede nytte konsumenten oppnår ved å konsumere denne godekombinasjonen.
- For analytiske formål antas denne funksjonen å være kontinuerlig og to ganger deriverbar.

Grensenytte

- - \circ Videre skal vi anta at nytteøkningen er avtagende: $u_{x_1}''(x_1,x_2) < 0$ og $u_{x_1}''(x_1,x_2) < 0$
- Altså: konsumenten har positive, men avtagende grensenytter.

Indifferenskurve

- Nyttefunksjonen kan representeres grafisk med indifferenskurver.
- OBS: Merk at nyttefunksjonen har tre ukjente. Vi må derfor operere med et tre-dimensjonalt diagram. Dette vil vi unngå. Ved å sette de uavhengige variablene (x_1, x_2) på aksene i et to-dim. diagram, kan funksjonen illustreres grafisk for gitte verdier på den tredje variabelen, U. Vi får da en nivåkurve.
- Grafisk illustrasjon på tavla...
- Indiff.kurven viser altså alle kombinasjoner av de to godene som gir konsumenten samme totale nytte.

- Forklaring på indifferenskurvens form og marginal substitusjonsbrøk (MSB)
- Kurven heller nedover pga. ikkemetningsaksiomet. Videre ser vi at kurven er konveks mot origo. Det skyldes følgende antagelse:
- Jo mer du har av x_1 , jo mindre vil du gi opp av x_2 for å få mer av x_1 .
 - Loven om fallende MSB.
- MSB viser altså antall enheter som en konsument er villig til å gi opp, for å få en ekstra enhet av det andre godet.
 - Bytteforholdet mellom to goder, gitt et konstant nyttenivå.
 - o For å få frem ulike nyttenivåer må vi således tegne et indifferenskart.

Matematisk utledning

$$U = u(x_1, x_2)$$
 Gitt nyttenivå $\overline{U} = u(x_1, x_2)$ $d\overline{U} = d(u(x_1, x_2))$ $0 = u'(x_1)\Delta x_1 + u'(x_2)\Delta x_2 - u'(x_2)\Delta x_2 = u'(x_1)\Delta x_1 - \Delta x_2/\Delta x_1 = u'(x_1)/u'(x_2)$ $MSB \equiv -\frac{\Delta x_2}{\Delta x_1} = \frac{u'(x_1)}{u'(x_2)}$

Budsjettlinjen

- Vi har nå sett at konsumenten stadig vil trekke mot indifferenskurver som gir høyere nyttenivå.
- MEN: Konsumenten står ovenfor noen restriksjoner:
 - \circ Fast inntekt: m
 - $\circ \,$ Pris på gode $x_1:p_1$
 - \circ Pris på gode $x_2:p_2$
- Vi antar at konsumenten bruker hele sin inntekt på
- kjøp av de to godene:
 - $\circ \ p_1x_1+p_2x_2=m$

- Grafisk illustrasjon av budsjettlinja
 Budsjettlinja viser alle kombinasjoner av x_1 og x_2 som konsumenten kan kjøpe, når hele inntekten brukes.
 Skjæringspunkter og helning.
 Skift i budsjettlinja, på tavla...

Matematisk utledning

Helningen på kurven er gitt ved

$$d(p_1x_1 + p_2x_2) = d(m) = 0$$
 (8)
 $p_1\Delta x_1 + p_2\Delta x_2 = 0$
 $p_2\Delta x_2 = -p_1\Delta x_1$
 $\Delta x_2/\Delta x_1 = -p_1/p_2$

Dersom vi kun velger $x_1 \Rightarrow x_2 = 0$

$$p_1 x_1 = m$$

$$x_1 = m/p_1$$

$$(9)$$

Øvelse: Hva skjer dersom vi kun velger x_2 ?

Konsumentens valg av godekombinasjon/konsumentens optimale tilpasning

- Mål: tilpasse seg på høyest mulig nyttenivå for en gitt budsjettrestriksjon.
- Altså: nyttemaksimering.
- Grafisk og matematisk løsning på tavla.
- Resultat:
- Gossen's lov: Verdien av den siste krona brukt på det ene godet, skal være lik verdien av den siste krona brukt på det andre godet.
- ullet Eksempel med $U(x_1,x_2)=10x_1x_2$

Løsning av nyttemaksimeringsproblemet ved bruk av Lagrange-metode

Maks

$$U=u(x_1,x_2)$$

Gitt at

$$p_1x_1+p_2x_2=m$$

Lagrangefunksjonen vil derfor være gitt ved

$$L = u(x_1, x_2) - \lambda (p_1 x_1 + p_2 x_2 - m)$$

Første ordens betingelsene

$$egin{aligned} L'_{x1} &= u'(x_1) - \lambda p_1 = 0 \ L'_{x2} &= u'(x_2) - \lambda p_2 = 0 \ p_1 x_1 + p_2 x_2 = m \end{aligned}$$

Som gir oss (indre løsning) følgende førsteordensbetingelser

$$MSB = u'(x_1)/u'(x_2) = p_1/p_2 \ p_1x_1 + p_2x_2 = m$$

Som kan omskrives som (Gossens lov)

$$u'(x_1)/p_1 = u'(x_2)/p_2$$

Den rasjonelle konsument vil fordele utgiftene slik at den siste krone gir den samme nyttendring uansett hvilket av de to godene den brukes til innkjøp av.

Øvelse

Anta at du har en inntekt på 40 NOK som brukes på to goder. Gode 1 koster 10per enhet, og gode 2 koster 5 per enhet.

Anta at du har en inntekt på 40 NOK som brukes på to goder. Gode 1 koster 10per enhet, og gode 2 koster 5 per enhet.

• (a) Skriv ned budsjettbetingelsen.

$$10x_1 + 5x_2 = 40$$

• (b) Hvor mye kan du kjøpe dersom du bruker all inntekten på gode 1?

$$x_1 = 40/10 = 4$$

• (c) Hvor mye kan du kjøpe dersom du bruker all inntekten på gode 2?

$$x_2 = 40/5 = 8$$

- (d) Tegn budsjettlinja. Se diagramark
- (e) Anta at prisen på gode 1 faller til 5 NOK. Skriv ned ny budsjettbetingelse. Tegn inn denne i diagrammet du brukte i forrige spørsmål

$$5x_1 + 5x_2 = 40$$

Appendiks (diagramark benyttet under forelesning)

