

Model 632

HCMOS/TTL CLOCK OSCILLATOR

FEATURES

- Standard 3.2x2.5mm Surface Mount Footprint
- HCMOS/TTL Compatible
- Fundamental and 3RD Overtone Crystals
- Frequency Range 1.0 75 MHz
- Frequency Stability, ±50 ppm
- +1.8Vdc,+2.5Vdc,+2.8Vdc,+3.3Vdc Operation
- Operating Temperature to −10°C to +70°C
- Output Enable Standard
- Tape & Reel Packaging
- RoHS/Green Compliant (6/6)

DESCRIPTION

The Model 632 is a ceramic packaged Clock oscillator offering reduced size and enhanced stability. The small size means it is perfect for any application. The enhanced stability means it is the perfect choice for today's communications applications that require tight frequency control.

ORDERING INFORMATION

^{*} Contact factory for availability.

Example Part Number: 632L3C032M76800

Model 632 3.2x2.5mm Low Cost HCMOS/TTL Clock Oscillator

ELECTRICAL CHARACTERISTICS

	PARAMETER	MIN	TYP	MAX	UNIT			
	Maximum Supply Voltage	Voltage V _{CC} -				4.0	V	
Absolute Maximums	Storage Temperature	T_{STG}	-	-55	-	125	°C	
	Frequency Range (See Note 1)	f _O	-	1.0	-	75	MHz	
е Ма	Frequency Stability (See Note 2 and Ordering Information)	Δf/f _O	-	-	-	50	± ppm	
<u>t</u>	Aging	$\Delta f/f_{O}$	-	-	-	3	± ppm/yr	
Abso	Operating Temperature Commercial Industrial	nercial T _A -				70 85	°C	
m Parameters	Supply Voltage Model 632M Model 632N Model 632T Model 632L	V _{cc}	± 10 %	1.62 2.25 2.52 2.97	1.8 2.5 2.8 3.3	1.98 2.75 3.08 3.63	٧	
	Supply Current Model 632M		$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 1 1	1 1 1	6 7 10	mA	
	Model 632N / Model 632T	I _{CC}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 1 1	1 1 1	8 10 10		
	Model 632L		$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 1	1 1 1	10 15 15		
for	Output Load	C_L				15	pF	
Electrical and Waveform Parameters	Output Voltage Levels Logic '1' Level Logic '0' Level	CMOS Load CMOS Load	90%V _{CC}	1 1	- 10%V _{CC}	٧		
	Output Current Logic '1' Level Logic '0' Level	-		-2, -4, -8 +2, +4, +8	mA			
Elec	Output Duty Cycle	SYM	$V_{OL} = 10\%V_{CC}$ (1.8V, 2.5/2.8V, 3.3V) @ 50% Level	45	-	55	%	
	Rise and Fall Time	T_R , T_F	@ 10% - 90% Levels, $C_L = 15 \text{ pF}$			10	ns	
	Start Up Time	T_S	Application of V _{CC}	-	-	10	ms	
	Enable Function Enable Input Voltage Disable Input Voltage	V _{IH}	Pin 1 Logic '1', Output Enabled Pin 1 Logic '0', Output Disabled	0.7*V _{CC}	1 1	- 0.3*V _{cc}	٧	
	Enable Time	T _{PLZ}	Pin 1 Logic '1'	-	-	10	ms	
	Standby Current	I _{ST}	Pin 1 Logic '0', Output Disabled	-	-	10	uA	
	Period Jitter, Pk-Pk	-51	-	-	-	100	<u></u> .	
	Period Jitter, RMS	-		-	25	ps		
	Phase Jitter, RMS	-	Bandwidth 12 kHz - 20 MHz	-	< 2	-		

Notes:

^{1.} Contact factory for available frequencies.

^{2.} Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and aging.

Model 632 3.2x2.5mm Low Cost **HCMOS/TTL Clock Oscillator**

D.U.T.

Enable Input

 \bigcirc

Including probe

capacitance.

CMOS/TTL OUTPUT WAVEFORM

PIN 1	PIN 3
Logic '1'	Output
Open	Output
Logic '0'	High Imp.

ENABLE TRUTH TABLE

D.U.T. PIN ASSIGNMENTS

.01uF

TEST CIRCUIT, CMOS LOAD

VM

PIN	SYMBOL	DESCRIPTION							
1	EOH	Enable Input							
2	GND	Circuit & Package Ground							
3	Output	RF Output							
4	V_{CC}	Supply Voltage							

MECHANICAL SPECIFICATIONS

PACKAGE DRAWING

MARKING INFORMATION

- 1. XX.XX Frequency in MHz.
- 2. C CTS and Pin 1 identifier.
- 3. ** Manufacturing Site Code.
- 4. D Manufactured Date Code. See Table I for codes.

NOTES

- 1. Termination pads (e4), barrier-plating is nickel (Ni) with gold (Au) flash plate.
- 2. Reflow conditions per JEDEC J-STD-020.

SUGGESTED SOLDER PAD GEOMETRY

 C_{BYPASS} should be ≥ 0.01 uF.

Model 632 3.2x2.5mm Low Cost HCMOS/TTL Clock Oscillator

TABLE I

	MONTH				JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
YEAR				JAN	ILD	WAK	AFK	IVIA	3014	JUL	AUG	JLF	001	NOV	DEC	
2001	2005	2009	2013	2017	Α	В	С	D	E	F	G	Н	J	K	L	М
2002	2006	2010	2014	2018	N	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k	-	m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	٧	w	х	У	Z

TAPE AND REEL INFORMATION

Device quantity is 3,000 pieces per 178mm reel minimum.

ENVIRONMENTAL SPECIFICATIONS

Temperature Cycle: 400 cycles from -55°C to +125°C, 10 minute dwell at each temperature, 1 minute transfer time

between temperatures.

Mechanical Shock: 1,500g's, 0.5mS duration, 1/2 sinewave, 3 shocks each direction along 3 mutually perpendicular

planes (18 total shocks).

Sinusoidal Vibration: 0.06 inches double amplitude, 10 to 55 Hz and 20g's, 55 to 2,000 Hz, 3 cycles each in 3 mutually

perpendicular planes (9 times total).

Gross Leak: No leak shall appear while immersed in an FC40 or equivalent liquid at +125°C for 20 seconds.

Fine Leak: Mass spectrometer leak rates less than 2x10⁻⁸ ATM cc/sec air equivalent.

Resistance to Solder Heat: Product must survive 3 reflows of +260°C peak, 10 seconds maximum.

High Temperature Operating Bias: 2,000 hours at +125°C, maximum bias, disregarding frequency shift.

Frequency Aging: 1,000 hours at +85°C, full bias, less than ±5 ppm shift.

Moisture Sensitivity Level: Level 1 per JEDEC J-STD-020.

QUALITY AND RELIABILITY

Quality systems meet or exceed the requirements of ISO 9000:2000 standards.

Document No. 008-0328-0 Page 4 - 4 Rev. A