

Control de documento

Nombre del proyecto	Green Nexus
Cierre de iteración	I6 31 Marzo 2023
Generador por	Gerardo Daniel Vázquez Zapata
Aprobado por	Gerardo Daniel Vázquez Zapata
Alcance de la distribución del documento	Control interno para todo el proyecto.

Índice

Sobre este documento	3
Resumen de la Iteración	4
Identificación	4
Historias	5
Hitos especiales	6
Evaluación de Calidad utilizando los factores de Mc Call (Sistema de Gestión de Cal	idad) 7
Artefactos y evaluación	8
Riesgos y problemas	9
Notas y observaciones	
Asignación de recursos	9
Anexos	10
Referencias a otros documentos	10
Glosario de términos	22
Significado de los elementos de la notación gráfica	22
Estereotipado UML utilizado	22
Significado de los elementos No UML	22

Sobre este documento

La calidad se logra por medio de la revisión constante de las actividades que conducen desde la idea al producto. Al momento del cierre de una iteración es buen momento para hacer un alto, y evaluar lo logrado, los problemas encontrados y los retos a enfrentar.

El presente documento marca el final de la iteración I6, y contiene una evaluación de los artefactos y actividades realizadas durante la misma.

Se recogen también las impresiones y observaciones hechas durante el desarrollo de la iteración, así como el esfuerzo invertido en cada una de las disciplinas involucradas.

Resumen de la Iteración

Identificación

Código de la iteración	Fase a la que pertenece	Fecha de inicio	Fecha de cierre	Comentarios
16	Inicio	27 / 03 / 2023	31 / 03 / 2023	Trabajo finalizado con
				éxito

Historias

Tema	Epic	Historias	Sprint	Actividades
	E1. Al ser parte del equipo de desarrollo, quiero conocer las herramientas con las que vamos a trabajar, así como aplicativos similares al nuestro	H1. Determinación preliminar de herramientas de software a utilizar	Sprint 1	Act 1. Investigación de aplicaciones reales de realidad aumentada Act 2. Investigación de plataformas y lenguajes que trabajen con realidad aumentada Act 3. Investigación de circuitos y sensores integrados para realidad aumentada en base al proyecto Act 4. Investigación de desarrollo de interfaz y aplicación para el usuario
T1. Preparación	E2. Como parte del equipo de desarrollo, necesito conocer sobre la utilidad de la app de RA y como puede ser aplicada	H2. Establecimiento de apps de RA aplicadas a proyectos	Sprint 2	Act 5. Creación de la página web Act 6. Investigación de temas relacionados con el cuidado y desarrollo de invernaderos caseros Act 7. Investigación de aplicación de la realidad aumentada para proyectos
	E3. Al ser un integrante del equipo de desarrollo, requiero saber lo que va a poder hacer la app y el nivel de desempeño deseable	H3. Determinación de las capacidades de la app, así como de su nivel de calidad y desempeño	Sprint 3	Act 8. Realizar análisis de requisitos funcionales Act 9. Realizar análisis de requisitos no funcionales Act 10. Realizar análisis de requisitos de la interfaz Act 11. Realizar análisis de requisitos de BD Act 12. Realizar análisis de requisitos de BD Act 12. Realizar análisis de requisitos de la interfaz
T2. Desarrollo	E4. Como líder del proyecto, necesito que se realice el diseño de los	H4. Creación del diseño de los distintos componentes del proyecto	Sprint 4	Act 13. Diseño de mini invernadero Act 14. Diseño de la BD a utilizar en la RA

componentes del proyecto, así como de su testeo para poder	Sprint 5	Act 15. Diseño de la interfaz de usuario para la RA
crear el mejor producto dentro de las limitaciones	Sprint 6	Act 16. Diseño del circuito y sensores para mini invernadero

Hitos especiales

Realizar el análisis de requisitos que serán indispensables para la realización del proyecto:

IN-16 Diseño del circuito y sensores para mini invernadero

Se busca realizar y probar los sensores que se utilizaran para la estructura y diseño del circuito del mini invernadero, con la finalidad de implementar los mismos de manera correspondiente para la recopilación de datos

Diseñar la estructura y el plan del circuito de los sensores correspondientes, esto con la finalidad de implementar los mismos para la recopilación de los datos del mini invernadero: **Cumplido**

Evaluación de Calidad utilizando los factores de Mc Call (Sistema de Gestión de Calidad)

Factor	Métrica	Calificación	Comentario	Total
Correlación	Trazabilidad	3	El circuito cuenta con una estrecha relación con los requisitos realizados para la función del proyecto	3
Confiabilidad	Consistencia	3	El diseño del circuito se relaciona con la documentación realizada y con referencias de apoyo	3
Usabilidad	Operatividad	2	Los circuitos se realizaron de fácil operación y diseño para su entendimiento, al igual que aplicación para el mini invernadero	2
Integridad o Seguridad	Instrumentación	enN	El circuito permite vigilar e identificar errores debido a su construcción, componentes y programación	4
Eficiencia o Performance	Concisión	3	El programa de funcionamiento de los sensores utilizados	3
Portabilidad	Modularidad	0	Los sensores son dependientes de los componentes utilizados en el circuito	0
Reusabilidad	Modularidad	2	La interfaz del usuario presenta una programacion y diseño que permite recopilar datos, y con la posibilidad para reutilizarse en proyectos futuros	2
Interoperabilidad	Estandarización de datos	4	En las practicas realizadas con los sensores correspondientes se uso el	4

Facilidad de Prueba.	expansión Simplicidad	2	componentes y su diseño mismo, de manera que permita mejorar e innovar El diseño del circuito permite entenderlo	2
Flexibilidad	Capacidad de	3	El diseño del circuito permite expandir sus	3
Facilidad Mantenimiento.	Consistencia	4	datos para comprobar la función de los sensores Las practicas realizadas permiten la visualización del código y circuito de manera que puede ser alterado o corregido	4

Artefactos y evaluación

Artefacto	Meta (%)	Comentarios
	Diseñar la estructura	
	y el plan de sensores	
IN-16 Diseño del	del circuito, esto con	En este diseño de circuito se busca recopilar las
circuito y sensores	la finalidad de	practicas y diseños de los sensores para un plan
para mini	implementarlos para	estructural del circuito futuro del mini
invernadero	la recopilación de los	invernadero
	datos del mini	
	invernadero	

Artefacto	Aspecto a evaluar	Evaluación	Comentarios
IN-16 Diseño del circuito y sensores para mini invernadero	Prácticas de funcionamiento de los sensores a usar en el circuito del mini invernadero	100%	El diseño debe cumplir con su correcto funcionamiento y su respectiva documentación

Riesgos y problemas

Ocurrido	ID_RIESGO	RIESGO	DESCRIPCIÓN	PLAN ANULACIÓN
Х	RIE-03	Falta de avance en el proyecto	Retraso significativo de las actividades	
Х	RIE-04	Conflictos entre el equipo de desarrollo	Diversos problemas entre los miembros, incluyendo conflictos de interés, comunicación inefectiva, agresión, etc.	
Х	RIE-19	Fallas en los servicios básicos importantes	Falla de luz o internet en la semana de trabajo del sprint a entregar	
X	RIE-25	Renuncia de personal	El equipo de trabajo sufra una renuncia de puesto laboral por parte de un empleado	
X	RIE-26	Ausencia del personal	El equipo de trabajo o personal no asista a laborar por razones o motivos	
Х	RIE-28	Bajo desempeño en el equipo de desarrollo	El equipo de desarrollo de software no cumple con los sprint en tiempo y forma	

Notas y observaciones

Asignación de recursos

Rol	Horas-Hombre	Desempeñado por	Observaciones
BDA – Full Stack	5:00 p.m. – 11:30 p.m.	Santiago Sotomayor Rodríguez	En tiempo y forma
Testing - Programador	5:00 p.m. – 11:30 p.m.	Francisco Torres Hernández	Eficiente y completo
Dir. General - Analista	5:00 p.m. – 11:30 p.m.	Gerardo Daniel Vázquez Zapata	Amplio y correcto

Anexos

Anexo A.

IN-16 Diseño del circuito y sensores para mini invernadero

Dentro de las practicas realizadas para conocimiento y aprendizaje de los sensores a utilizar para este proyecto, se logró implementar circuitos respectivos de manera que permitió hacer funcionar y probar los sensores que se piensas usar en el plan estructural del circuito completo para el mini invernadero

La estructura de la documentación se dividirá en:

- Componentes del circuito
- Prácticas realizadas de los sensores
- Conclusión
- Evidencias

Componentes del circuito

A continuación se muestra la tabla de los componentes seleccionados para la estructura del circuito a diseñar para el mini invernadero. Estos componentes fueron referenciados en base al Kit Arduino

Componentes	Imagen	Descripción
HW-080		El HW-080 es un sensor de temperatura y humedad relativa que se utiliza para medir la humedad y la temperatura en el aire. Este sensor utiliza un elemento capacitivo para medir la humedad relativa en el rango del 0 al 100% y un termistor para medir la temperatura en el rango de -40°C a 80°C. El HW-080 es un sensor de bajo costo y fácil de usar que se puede integrar en proyectos de electrónica y automatización para monitorear y controlar el ambiente en el que se encuentra el sensor. Este sensor es comúnmente utilizado en aplicaciones como el control de clima en invernaderos, sistemas de aire acondicionado y monitoreo ambiental en general.
DHT11		El DHT11 es un sensor de temperatura y humedad que se utiliza para medir la temperatura y la humedad en el aire.

Resistencias	Resistor 1/4W 10/6 1000-10 PCS 2200-300 PCS 330 0-10 PCS	utilizadas en proyectos de electrónica y robótica, en la enseñanza y aprendizaje de la electrónica, y en la reparación y mantenimiento de dispositivos electrónicos. La resistencia es un componente electrónico diseñado para causar una caída de tensión al flujo de electricidad en un punto dado, es decir. En otras palabras se opone al paso de la corriente en un circuito electrónico, su magnitud de resistencia depende de su cantidad de ohmio $[\Omega]$ La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω) , en honor al físico alemán Georg Simon Ohm, quien descubrió el principio que ahora lleva su nombre. La resistencia, al igual que otros componentes básicos tienen una simbología propia para identificarse en los distintos circuitos electrónicos
Cables de conexión Protoboard o Cable puente		Un cable puente para prototipos es un cable con un conector en cada punta (o a veces sin ellos), que se usa normalmente para interconectar entre sí los componentes en una placa de pruebas. P.E.: se utilizan de forma general para transferir señales eléctricas de cualquier parte de la placa de prototipos a los pines de entrada/salida de un microcontrolador. Los cables puente se fijan mediante la inserción de sus extremos en los agujeros previstos a tal efecto en las ranuras de la placa de pruebas, la cual debajo de su superficie tiene unas planchas interiores paralelas que conectan las ranuras en grupos de filas o columnas según la zona. Los conectores se insertan en la placa de prototipos, sin necesidad de soldar, en los agujeros que convengan para el conexionado del diseño.
Arduino Mega 256	Segue Maria Company Co	Arduino Mega 2560 es una tarjeta de desarrollo de Hardware libre construida con el microcontrolador Atmega 2560, que le da sentido a su nombre. Forma parte del proyecto Arduino que involucra una comunidad internacional dedicada al diseño y manufactura de placas de desarrollo de Hardware. La comunicación entre la tarjeta Arduino y la computadora se establece a traves del puerto serie, cuenta con un convertidor interno USB – SERIE de manera que no es necesario agregar ningún dispositivo externo para programar el microcontrolador.

Prácticas realizadas de los sensores

Practica HW-080 Humedad

METODOLOGIA

- 1) Conectamos el hw-080 a MEGA a 5 volts.
- 2) Conectamos el hw-080 a MEGA a GND
- 3) Insertamos el hw-080 a la planta para ver el % de humedad que tiene la planta

Componentes

Componentes	Imagen	Descripción
HW-080		El HW-080 es un sensor de temperatura y humedad relativa que se utiliza para medir la humedad y la temperatura en el aire. Este sensor utiliza un elemento capacitivo para medir la humedad relativa en el rango del 0 al 100% y un termistor para medir la temperatura en el rango de -40°C a 80°C. El HW-080 es un sensor de bajo costo y fácil de usar que se puede integrar en proyectos de electrónica y automatización para monitorear y controlar el ambiente en el que se encuentra el sensor. Este sensor es comúnmente utilizado en aplicaciones como el control de clima en invernaderos, sistemas de aire acondicionado y monitoreo ambiental en general.
Arduino Mega 256	S S S S S S S S S S S S S S S S S S S	Arduino Mega 2560 es una tarjeta de desarrollo de Hardware libre construida con el microcontrolador Atmega 2560, que le da sentido a su nombre. Forma parte del proyecto Arduino que involucra una comunidad internacional dedicada al diseño y manufactura de placas de desarrollo de Hardware. La comunicación entre la tarjeta Arduino y la computadora se establece a traves del puerto serie, cuenta con un convertidor interno USB – SERIE de manera que no es necesario agregar ningún dispositivo externo para programar el microcontrolador.

Código

```
#define sensor A0
void setup() {
   pinMode(sensor, INPUT);
```



```
Serial.begin(9600);

}

void loop(){
  //Se hace la lectura analoga del pin A0 (sensor) y se pasa
por la funcion map() para ajustar los valores leidos a los
porcentajes que queremos utilizar
int valorHumedad = map(analogRead(sensor), 0, 1023, 100, 0);
Serial.print("Humedad: ");
Serial.print(valorHumedad);
Serial.println("%");
delay(100);
}
```

Evidencias

Ilustración de evidencia Practica HW-080

Práctica DTH11 Temperatura

Metodología

Para empezar conectamos la protoboard con el Arduino con el voltaje de 5.5 V y con tierra en sus respectivas filas del protoboard. Después vamos a conectar el sensor de temperatura, el cual cuenta con su positivo y su negativo, pero aparte de este, cuenta con una tercera patilla que sirve para él envió de información que recibe del ambiente.

Como es un sensor análogo, este debe ser conectado a un pin análogo del Arduino, en nuestro caso fue el pin AO. Después conectamos 2 leds, uno de color azul y otro de color rojo, el azul fue conectado al pin 3 y el rojo al pin 5. Conectándolos mediante resistencias de 330 ohms a la tierra del protoboard

Componentes

Componentes	Imagen	Descripción
DHT11		El DHT11 es un sensor de temperatura y humedad que se utiliza para medir la temperatura y la humedad en el aire. Este sensor utiliza un elemento capacitivo para medir la humedad relativa en el rango del 20 al 90% y un termistor para medir la temperatura en el rango de 0°C a 50°C. El DHT11 es un sensor de bajo costo y fácil de usar que se puede integrar en proyectos de electrónica y automatización para monitorear y controlar el ambiente en el que se encuentra el sensor. Este sensor es comúnmente utilizado en aplicaciones como el control de clima en invernaderos, sistemas de aire acondicionado y monitoreo ambiental en general. El DHT11 es compatible con una amplia variedad de plataformas de desarrollo, como Arduino, Raspberry Pi y otros microcontroladores.
Arduino Mega 256	The state of the s	Arduino Mega 2560 es una tarjeta de desarrollo de Hardware libre construida con el microcontrolador Atmega 2560, que le da sentido a su nombre. Forma parte del proyecto Arduino que involucra una comunidad internacional dedicada al diseño y manufactura de placas de desarrollo de Hardware. La comunicación entre la tarjeta Arduino y la computadora se establece a traves del puerto serie, cuenta con un convertidor interno USB – SERIE de manera que no es necesario agregar ningún dispositivo externo para programar el microcontrolador.

Resistencias

La resistencia es un componente electrónico diseñado para causar una caída de tensión al flujo de electricidad en un punto dado, es decir. En otras palabras se opone al paso de la corriente en un circuito electrónico, su magnitud de resistencia depende de su cantidad de ohmio $[\Omega]$

La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω) , en honor al físico alemán Georg Simon Ohm, quien descubrió el principio que ahora lleva su nombre. La resistencia, al igual que otros componentes básicos tienen una simbología propia para identificarse en los distintos circuitos electrónicos

LED

Un LED (acrónimo del concepto inglés light-emitting diode) es un diodo emisor de luz. En su interior hay un semiconductor que, al ser atravesado por una tensión continua, emite luz, lo que se conoce como electroluminiscencia. Existen distintos tipos de led en función de las tecnologías usadas para su fabricación y montaje sobre circuitos electrónicos.

La tensión de cualquier diodo LED es de 2 voltios y, en el caso que se quiera conectar a otros aparatos con una tensión distinta, se debe crear una conexión de resistencia en serie que permita su correcto funcionamiento.

Código

```
const int sensor = 0;
const int ledRojo = 5;
const int ledAzul = 3;
long miliVolts;
long temperatura;
int brillo;
long calcularTemp(int datosSensor) {
   //calcular los mV en la entrada 5 V
   miliVolts = (analogRead(datosSensor) * 5000L) / 1023;
   // calculamos la temperatura
   temperatura = miliVolts / 10;
```



```
//regresamos el valor de la temperatura
return temperatura;
void setup()
{
Serial.begin(9600); //iniciamos la comunicacion serial
 //declaramos los leds como salida
pinMode(ledRojo, OUTPUT);
pinMode(ledAzul, OUTPUT);
}
void loop()
 //llamamos a la funcion para calcular temperatura y guardamos el
valor
 temperatura = calcularTemp(sensor);
 //ajustar la escala de la temperatura para poder usar el
analogWrite, mapear
manejar valor entre valores
brillo = map(temperatura, 0, 255, 0, 50);
 //restringimos el rango de brillo de enytrada desde 0 a 255
brillo = constrain(brillo,0,255);
 if(temperatura > 25){
 analogWrite(ledRojo, HIGH);
 analogWrite(ledAzul, LOW);
 }else{
 analogWrite(ledAzul, HIGH);
 analogWrite(ledRojo, LOW);
 //Ajustamos el calor de los leds
 //analogWrite(ledRojo, (250-brillo));
```



```
//analogWrite(ledAzul, brillo);
//mandamos el valor de la temperatura al monitor serial
//y agregamos un delay para no saturar el monitor
Serial.print("Temperatura: ");
Serial.print(temperatura);
Serial.println("Grados: ");
delay(200);
}
```

Evidencias

Ilustración de evidencia de sensor de temperatura

Práctica Sensor LDR

Metodología

- 1. Una vez colocada la Protoboard se coloca el sensor LED o fotorresistencia a la placa de pruebas.
- 2. Se conecta una resistencia a la terminal 1 del sensor por medio de la terminal 2 de la resistencia y se conecta la resistencia a positivo por medio de la terminal 1 con un cable, además se conecta un cable al puerto análogo 0 del arduino.
- 3. Por medio de la terminal 2 del sensor se conecta un cable a 5V y un puente de negativo a tierra(GND).

Componentes

Componentes	Imagen	Descripción
LDR		El módulo sensor de luz con fotorresistencia LDR es un dispositivo que se utiliza para medir la intensidad de la luz ambiental en un entorno determinado. Este módulo está compuesto por una fotorresistencia LDR (Light Dependent Resistor) y un circuito integrado de amplificación de señal. La fotorresistencia LDR cambia su resistencia eléctrica en función de la cantidad de luz que recibe, y esta variación es amplificada por el circuito integrado para generar una señal eléctrica proporcional a la intensidad de la luz. El módulo sensor de luz con fotorresistencia LDR es un componente popular en proyectos de electrónica y robótica, y se utiliza comúnmente para controlar el encendido y apagado de luces
Arduino Mega 256	THE PROPERTY OF THE PROPERTY O	Arduino Mega 2560 es una tarjeta de desarrollo de Hardware libre construida con el microcontrolador Atmega 2560, que le da sentido a su nombre. Forma parte del proyecto Arduino que involucra una comunidad internacional dedicada al diseño y manufactura de placas de desarrollo de Hardware. La comunicación entre la tarjeta Arduino y la computadora se establece a traves del puerto serie, cuenta con un convertidor interno USB – SERIE de manera que no es necesario agregar ningún dispositivo externo para programar el microcontrolador.

Código

```
Light (int RawADCO)
{
  double Vout=RawADCO*0.0048828125;
  int lux=500/(10*((5-Vout)/Vout));// use esta ecuación si el
  LDR está en la
  //parte superior del
  //divisor return
  lux;
} void setup() {
  Serial.begin(9600);
}
  void loop() {
    Serial.print("Light Intensity:");//imprime la intensidad de
  la luz marcada
  //por el sensor.
  Serial.print(int(Light(analogRead(0)))); //pin A0
  Serial.println(" Lux"); delay(1000);
}
```

Evidencia

Ilustración de evidencia sensor LDR

Ilustración 2 de evidencia sensor LDR

Conclusión:

Como conclusión al haber realizado las respectivas practica para la temperatura, luminosidad y humedad representaron una excelente manera de aprender sobre los fundamentos necesarios para estudiar y tener en mente el circuito a realizar del invernadero.

Estas prácticas nos dieron guía para manejar y hacer una conexión eficaz para el circuito a desarrollar

Estas prácticas nos ayudaron a explotar nuestras habilidades en manejo de los circuitos hechos en las prácticas, aprender sobre su respectiva programación y de igual manera, la experiencia para la estructura y realización del circuito del proyecto

Referencias a otros documentos

- [1] «irisFernandez,» iris Fernandez, 03 11 2019. [En línea]. Available: https://irisfernandez.com.ar/betaweblog/index.php/2019/11/03/sensor-de-humedad-para-tierra-hw-080/. [Último acceso: 30 03 2023].
- [2] Circuito.io, "Arduino Soil Moisture Sensor Guide", Circuito.io Blog, disponible en línea: https://www.circuito.io/blog/arduino-soil-moisture-sensor-guide/, consultado en marzo de 2023.
- [3] Electrónicos Caldas, "Módulo sensor de luz fotorresistencia LDR", disponible en línea: https://www.electronicoscaldas.com/detalle-producto.php?codigo=1864, consultado en marzo de 2023.

[4] Arduino, "Arduino Mega 2560 Rev3", disponible en línea: https://store.arduino.cc/arduino-mega-2560-rev3, consultado en marzo de 2023.

[5] Arduino, "Proto Shield Tutorial", disponible en línea: https://www.arduino.cc/en/Tutorial/ProtoShield, consultado en marzo de 2023.

[6] Electrónicos Caldas, "Módulo sensor de luz fotorresistencia LDR", disponible en línea: https://www.electronicoscaldas.com/detalle-producto.php?codigo=1864, consultado en marzo de 2023.

[7] Espressif, "ESP32 Overview", disponible en línea: https://www.espressif.com/en/products/socs/esp32/overview, consultado en marzo de 2023.

Glosario de términos

KIT: Conjunto de productos y utensilios suficientes para conseguir un determinado fin, que se comercializan como una unidad

LDR: Un LED (acrónimo del concepto inglés light-emitting diode) es un diodo emisor de luz

Ohmio: Es la unidad derivada de resistencia eléctrica en el Sistema Internacional de Unidades

Significado de los elementos de la notación gráfica

Estereotipado UML utilizado

Significado de los elementos No UML