ORDER and CHAOS Assignment

|Harmanjot Singh Grewal | 16PH20015

All Plots have been made in Matlab

6.1.9

Dipole Fixed Point Plot. All vectors have been normalized for better clarity

6.1.10 Two eyed monster

6.3.9 and 6.8.5

X dot and y dot have same value and they point along the same direction. Hence x=y is an invariant line. All vectors lie along the line itself

This indicates a decaying trajectory for any value of Z. to Starting of point we will demy

>>> = 0 => n(t) >> y(t)

from only stanting

pt. any point we will decay to the origin 6.8.5 inden of fined pts To find fined pt - (o,0) For Along the circle, the vectors first more clockwise then anticlockwise, => [Inden = 0]

Homework on Glycolytic Oscillator a=0.08 b = 0.6

In the plot below the blue circles indicate starting points and boxed indicate end points

Time evolution of Volume in Phase Space and stability of origin in Lorenz equations

Fig 9.3.1

Plots on the Logistic maps for various values of r as indicated in plots

Homework on Cobweb construction Fig 10.2.6 and 10.2.7

$$\frac{f_{n-10\cdot3\cdot1-1}}{(1-x)^{n-10\cdot3\cdot1-1}} = \frac{f_{n-1}}{f_{n-1}} = \frac$$

Factoring out y $\sqrt{3}y^{2} + y\left(3x^{2} - x^{3}\right) + 3x - x^{2} = 0$ $r^{3}\left[\left(\left(-\frac{1}{r}\right)-n\right)^{2}+\left(\frac{3rrr^{2}}{r}\right)=0$ => ~3 \(\left(1 - \frac{1}{\pi} \right)^2 + \pi^2 - 2 \(\left(1 - \frac{1}{\pi} \right) \right) \) + [(1-2-1) + 1] (3~-~2) =0 $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{$ $= \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{(1-x)^{2}}} \left[\frac{3x - x^{2}}{3x - x^{2}} \right] = 0$ $+ \left[\frac{1}{\sqrt{(1-x)^{2}}} \left(\frac{3x - x^{2}}{3x - x^{2}} \right) - \frac{3x^{2}x}{x + x^{2}x + x^{2}} \right] = 0$ $+ \left[\frac{3x^{2} - x^{2}}{3x^{2}} - \frac{3x^{2}x}{x + x^{2}x + x^{2}} \right] = 0$ $+ \left[\frac{3x^{2} - x^{2}}{3x^{2}} + x - \frac{3x^{2}x}{x + x^{2}x + x^{2}} \right] = 0$ $+ \left[\frac{3x^{2} - x^{2}}{3x^{2}} + x - \frac{3x^{2}x}{x + x^{2}x + x^{2}} \right] = 0$ $+ \left[\frac{3x^{2} - x^{2}}{3x^{2}} + x - \frac{3x^{2}x}{x + x^{2}x + x^{2}} \right] = 0$ >> ~2 - n (~+~) + ~+ l $= \left(\sqrt{2} + x \right) \pm \sqrt{\left(\sqrt{2} + x \right)^2 - 4 \sqrt{2} \left(\sqrt{2} + 1 \right)}$ = / (1+2) + 2 (1+2) - 4 (1+2) $n = (p/2) = 1 + \sqrt{+ \sqrt{(x-3)(x+1)}}$ Thus logistic my has 2-cycle da ~>3

Homework on 3 period window

The point of tangential bifurcation lies somewhere between r = 3.8 and 3.8.5 as indicated in plots

Homework on Liapunov exponent for Tent map

$$\int_{0}^{\infty} \left(\frac{1}{N} \right) dx = \int_{0}^{\infty} \left(\frac$$

Show
$$f(m) = \int_{-\infty}^{\infty} \int_{-\infty}^{$$

Homework on Liapunov exponent for Logistic Map

R lies between 3 and 4

