Lecture III

Key issues:

- Eigenvalues, eigenvectors and the characteristic polynomial of a square matrix
- Similarity

Eigenvalue and Eigenvector

Definition:

Given a square $n \times n$ matrix A, the set of eigenvalues

 $\lambda \in \mathbb{C}$ are such that the characteristic equation

$$Ac = \lambda c$$

has a nonzero solution $c \neq 0$.

Such a vector $c \in \mathbb{C}^n$ is called an eigenvector associated with eigenvalue λ .

Characteristic Polynomial

The eigenvalues λ of a matrix $A \in \mathbb{R}^{n \times n}$ are the roots of its characteristic polynomial:

$$\rho(\lambda) = \det(\lambda I - A)$$

$$= \lambda^{n} + \alpha_{1}\lambda^{n-1} + \dots + \alpha_{n-1}\lambda + \alpha_{n}.$$

So, there are n eigenvalues (possibly complex-valued & possibly repeated) for any $n \times n$ matrix.

Characteristic Polynomial (cont'd)

Indeed, the eigenvalues λ of a matrix $A \in \mathbb{R}^{n \times n}$ are such that $(\lambda I - A)c = 0$ has a nonzero solution $c \neq 0$.

Therefore, $det(\lambda I - A) = 0$. By means of permutation based definition of determinants, it holds:

$$\det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_{n-1} \lambda + \alpha_n = 0.$$

Comment 1

For any given eigenvalue λ, the eigenvectors are nonzero solutions to the homogeneous equation:

$$(\lambda I - A)c = 0.$$

Clearly, any vector of the form $\mu \times c$ for a nonzero scalar μ is still an eigenvector.

Comment 2

For any given eigenvalue λ, the eigenvectors are nonzero solutions to the homogeneous equation:

$$(\lambda I - A)c = 0.$$

$$c \in Null(\lambda I - A), c \neq 0.$$

So, the maximum number of linearly independent eigenvectors is equal to:

$$n - rank(\lambda I - A)$$
.

An Example

For the identity matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, the eigenvalues

are $\lambda_1 = \lambda_2 = 1$, for which two linearly independent eigenvectors are:

$$c^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad c^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Other choices of independent eigenvectors are:

$$c^1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad c^2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

A Useful Observation

A square matrix A of dimension n is singular if and only if it has a zero eigenvalue.

Proof

Necessity:

Assume that A is singular. Then, there is a nonzero solution $x \neq 0$ to the equation

(*) Ax = 0, or equivalently, $Ax = 0 \cdot x$.

So, $\lambda = 0$ is an eigenvalue.

Sufficiency:

If $\lambda = 0$ is an eigenvalue, then there is an eigenvector $x \neq 0$, which is a solution to (*).

Thus, A must be a singular matrix.

Exercise

Find the eigenvalues and the associated eigenvectors of the following matrix

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

More about Eigenvalues

• A real square matrix can have complex eigenvalues.

For example, the eigenvalues of

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

are
$$\lambda_1 = -j$$
, $\lambda_2 = j$.

More about Eigenvalues

• A real square matrix can have multiple eigenvalues.

For example, the eigenvalues of

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

are $\lambda_1 = \lambda_2 = 1$ for any $a \in \mathbb{R}$.

We say that $\lambda_1 = 1$ is an eigenvalue of multiplicity 2.

In this case, the characteristic polynomial is

$$\det(\lambda I - A) = (\lambda - 1)^2.$$

More about Eigenvalues

• More generally, the characteristic polynomial of a matrix $A \in \mathbb{R}^{n \times n}$ takes the form

$$\det(\lambda I - A) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_r)^{m_r}$$

where $\lambda_1, \ldots, \lambda_r$ are different, with $\sum_i m_i = n$,

 λ_i an eigenvalue of (algebraic) multiplicity m_i .

When r = n and $m_1 = \cdots = m_n = 1$, the matrix A is said to have distinct eigenvalues $\{\lambda_i\}_{i=1}^n$.

More about Eigenvectors

• Back to the example of $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. It has an eigenvalue

 $\lambda_1 = 1$ of (algebraic!) multiplicity 2, for any $a \in \mathbb{R}$.

Case 1: For a = 0, the associated eigenvectors are distinct:

$$c^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad c^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

More about Eigenvectors

• Back to $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. It has an eigenvalue $\lambda_1 = 1$ of multiplicity 2, for any $a \in \mathbb{R}$.

Case 2: For $a \neq 0$, there is only one distinct

eigenvector:
$$c^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 Its "geometric" multiplicity is 1

i.e., all other eigenvectors take the form $r \times c^1$, for some scalar $r \neq 0$.

Exercise

Do you know the eigenvalues of the following matrix

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}?$$

Can you try to find the eigenvectors for each eigenvalue?

A General Result

Assume $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues $\lambda_1, ..., \lambda_n$. Then,

- (1) A must have n linearly independent eigenvectors c^1, \ldots, c^n .
- (2) In addition, each eigenvector c^j associated with λ_j is unique apart from a nonzero scalar multiplier.

Proof of Statement 1

Let $c^1 \neq 0, \ldots, c^n \neq 0$ be eigenvectors satisfying

$$Ac^i = \lambda_i c^i$$
, for $i = 1, 2, \dots, n$.

We prove the statement by contradiction.

Assume that $\{c^i\}_{i=1}^n$ are linearly dependent. Let $k \le n$

be the least positive integer such that k of the c's are

dependent. Without loss of generality, assume that

$$\left\{c^{i}\right\}_{i=1}^{k}$$
 are dependent, that is, $\exists \alpha_{i}$ not all zero,

$$\alpha_1 c^1 + \alpha_2 c^2 + \dots + \alpha_k c^k = 0.$$

Proof of Statement 1 (cont'd)

 $\exists \alpha_i \text{ not all zero}, \ \alpha_1 c^1 + \alpha_2 c^2 + \dots + \alpha_k c^k = 0.$

Thus, $k \ge 2$ and all $\alpha_i \ne 0$ (otherwise, contradiction with k being the least).

Now, multiply the eq. by $(A - \lambda_k I)$ leads to:

$$\alpha_1 (\lambda_1 - \lambda_k) c^1 + \dots + \alpha_{k-1} (\lambda_{k-1} - \lambda_k) c^{k-1} = 0$$

which, in turn, implies that $\{c^i\}_{i=1}^{k-1}$ are dependent.

A contradiction.

Proof of Statement 2

We must show the "uniqueness" of c^i :

$$Ac = \lambda_i c$$
, $c \neq 0 \implies c = \mu c^i$, with $\mu \neq 0$.

As it was proved in statement (1), $\{c^i\}_{i=1}^n$ are

linearly independent and thus form a basis. So,

$$c = \beta_1 c^1 + \dots + \beta_i c^i + \dots + \beta_n c^n.$$

Multiplying the above eq. by $(A - \lambda_i I)$ gives:

$$0 = \beta_1 (\lambda_1 - \lambda_i) c^1 + \dots + 0 + \dots + \beta_n (\lambda_n - \lambda_i) c^n$$

Therefore: $\beta_k = 0, \ \forall k \neq i.$

In other words, $c = \beta_i c^i$, as wished.

Corollary

Under the above conditions, define matrix

$$P = \begin{bmatrix} c^1 & c^2 & \cdots & c^n \end{bmatrix}$$

which is nonsingular & implies

$$P^{-1}AP = diag(\lambda_i).$$

In this case, we say that A is similar to $diag(\lambda_i)$, while P is a similarity matrix.

Denote $A \sim diag(\lambda_i)$. A is called "diagonalizable"

Remark 1

As we will see in Lecture IV, $diag(\lambda_i)$ is a canonical form for matrices, which have distinct eigenvalues, and for symmetric matrices, which may have repeated eigenvalues.

Remark 2

Any two similar matrices *A* and *B* must have the same eigenvalues.

Indeed, $A \sim B \Leftrightarrow \exists P$, such that $B = P^{-1}AP$.

It then follows that

$$\det(B - \lambda I) = \det(P^{-1}AP - \lambda I)$$

$$= \det P^{-1} (A - \lambda I) P = \det P^{-1} \det (A - \lambda I) \det P$$

$$= \det(A - \lambda I),$$

because $\det P^{-1} \det P = \det P^{-1}P = 1$.

Questions

Are you ready for some tricky questions?

136

Question 1

If the set of all eigenvalues of $A \in \mathbb{R}^{3\times 3}$, or the spectrum $\sigma(A) = \{1, 2, -3\}$, what is $\sigma(A + A^3)$?

A General Result

For any polynomial $p(t) = \sum_{i=0}^{\kappa} a_i t^i$, and any $n \times n$

matrix A, denote $p(A) = \sum_{i=0}^{\kappa} a_i A^i$, with $A^0 \triangleq I$.

If (λ, x) is a pair of eigenvalue and eigenvector of A, then $(p(\lambda), x)$ is a pair of eigenvalue and eigenvector of p(A).

"Matrix Polynomial"

Question 2

For any idempotent matrix A, that is, $A^2 = A$, what are the possible eigenvalues?

Idempotent Matrix: 2x2 case

If
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 is idempotent, then

$$\begin{cases} a = a^2 + bc, \\ b = ab + bd, \text{ implying } b = 0, \text{ or } d = 1 - a \\ c = ca + cd, \text{ implying } c = 0, \text{ or } d = 1 - a \\ d = bc + d^2. \end{cases}$$

Examples: Idempotent Matrix

(1)
$$A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$
 is idempotent, if $a, d = 0, 1$.

(2)
$$A = \frac{1}{2} \begin{pmatrix} 1 - \cos \theta & \sin \theta \\ \sin \theta & 1 + \cos \theta \end{pmatrix}$$
.

Answer

An idempotent matrix can only have 0 or 1 as its eigenvalues.

Question 3

A nilpotent matrix A is such that $A^q = 0$ for a positive integer q. Such a smallest q is called the index of nilpotency.

What are the eigenvalues of a nilpotent matrix A?

Answer

All eigenvalues of a nilpotent matrix are 0.

Indeed, if $Ax = \lambda x$, $x \neq 0$, then, using $A^q = 0$, we obtain $\lambda^q x = 0$ which, in turn, implies $\lambda = 0$.

Examples: Nilpotent Matrix

$$(1) M = \begin{pmatrix} 0 & * & \cdots & * \\ \vdots & & \ddots & \vdots \\ 0 & & * \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$(2) M = \begin{pmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{pmatrix}$$

Equivalence Relation: Nilpotent Matrix

The following statements are equivalent:

- (1) $M \in \mathbb{R}^{n \times n}$ is nilpotent.
- (2) The minimal polynomial of M is s^q , for some $q \le n$.
- (3) The characteristic polynomial of M is s^n .
- (4) The only eigenvalue of M is 0.

Question 4

Compute the algebraic and geometric multiplicities of the eigenvalue $\lambda = 2$ for the matrix

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Useful Identities about Matrix Eigenvalues

For any $n \times n$ matrix A, we have

$$trace(A) = \sum_{i=1}^{n} \lambda_i,$$

$$\det(A) = \prod_{i=1}^{n} \lambda_{i}.$$

See p.42 of (Horn-Johnson, 1st ed., 1985), or p. 50 of (Horn-Johnson, 2nd ed., 2013).

Similarity

Two matrices A and B are said to be similar, if

 $B = P^{-1}AP$, for some invertible matrix P.

Notation: $A \sim B$

The set of all similar matrices to a given square matrix A:

$$S = \left\{ P^{-1}AP : P \text{ is invertible} \right\}$$

Note:

Similar matrices are just different basis representations of a single linear mapping.

Similarity: Physical meaning

Let $T:V \to V$ be a linear transformation, and

$$B_1 = \{v_1, \dots, v_n\}, B_2 = \{w_1, \dots, w_n\}$$
 be two bases for V .

Denote

$$[x]_{B_1} = col(\alpha_1,...,\alpha_n), \text{ with } x = \alpha_1 v_1 + ... + \alpha_n v_n.$$

Then, by linearity,

$$Tx = \alpha_1 T v_1 + \ldots + \alpha_n T v_n$$

For any basis B_2 of V,

$$\left[Tv_{j}\right]_{B_{2}}\triangleq col(t_{1j},...,t_{nj}),$$

$$[Tx]_{B_2} = \sum_{j=1}^n \alpha_j [Tv_j]_{B_2} = (t_{ij})_{nxn} col(\alpha_1, ..., \alpha_n).$$

Similarity: Physical meaning

$$[Tx]_{B_2} = \sum_{j=1}^n \alpha_j [Tv_j]_{B_2} = (t_{ij})_{nxn} col(\alpha_1, ..., \alpha_n).$$

It is important to note that the matrix $(t_{ij})_{nxn}$ depends on T and the choice of the bases B_1 and B_2 , but not x.

Define the B_1 - B_2 basis representation of T as:

$$_{B_2} \left[T \right]_{B_1} \triangleq \left(t_{ij} \right)_{nxn} = \left[\left[Tv_1 \right]_{B_2}, ..., \left[Tv_n \right]_{B_2} \right]$$

$$So, [Tx]_{B_2} = [T]_{B_1} [x]_{B_1}, \forall x \in V.$$

For the special case when $B_1 = B_2$,

$$_{B_1}[T]_{B_1}$$
 is called the B_1 representation of T .

Similarity: Identities

For the identity linear transformation Ix = x, $\forall x \in V$, it can be shown that

$$_{B_{2}}[I]_{B_{1}B_{1}}[I]_{B_{2}}=I_{n}, \ _{B_{1}}[I]_{B_{2}B_{2}}[I]_{B_{1}}=I_{n},$$

and

$$_{B_2}\left[T\right]_{B_2}=_{B_2}\left[I\right]_{B_1-B_1}\left[T\right]_{B_1-B_1}\left[I\right]_{B_2}.$$

In other words,

$$B = P^{-1}AP$$
, where $P =_{B_1} [I]_{B_2}$, $A =_{B_1} [T]_{B_1}$, $B =_{B_2} [T]_{B_2}$.

 B_2 - B_1 change of basis matrix

For a proof, see (Horn & Johnson, 2nd ed, 2013, page 40).

Exercise

Find an invertible matrix P such that

$$P^{-1}egin{pmatrix} 1 & 1 & 1 \ 0 & 2 & 2 \ 0 & 0 & 3 \end{pmatrix} P$$

is diagonal.

Homework #3

1. Give all the solutions of the system

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} x = \begin{pmatrix} 10 & 13 \\ 11 & 14 \\ 12 & 15 \end{pmatrix}.$$

2. Prove that the following eq. has no solution:

$$\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Homework #3

3. Find a least-squares fit

$$b = x_0 + x_1 a^1 + x_2 a^2$$

for the data:

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad a^{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad a^{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Homework #3

4. Find independent eigenvectors for

$$A = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}.$$

Can you express
$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 as a linear combination

of these eigenvectors of A?