תרגיל בית 10

שאלה 1 בתרגיל זה נעסוק בקיומו של פתרון למערכת משוואות ריבועית מהצורה

$$a_2 x^2 + a_1 x + a_0 = 0$$

$$b_2 x^2 + b_1 x + b_0 = 0$$

א. הוכיחו שאם לפולינום a_1, a_2 יש שורשים $a_2x^2+a_1x+a_0$ ולפולינום א. β_1, β_1 יש שורשים $b_2x^2+b_1x+b_0$

$$\det \begin{pmatrix} a_2 & a_1 & a_0 & 0 \\ 0 & a_2 & a_1 & a_0 \\ b_2 & b_1 & b_0 & 0 \\ 0 & b_2 & b_1 & b_0 \end{pmatrix} = a_2^2 \cdot b_2^2 \cdot (\alpha_1 - \beta_1)(\alpha_1 - \beta_2)(\alpha_2 - \beta_1)(\alpha_2 - \beta_2)$$

. b_2, β_1, β_2 באמצעות את a_2, α_1, α_2 ואת a_2, α_1, α_2 באמצעות באמצעות : הביעו את רמז

ב. הסיקו שלמערכת המשוואות

$$a_2 x^2 + a_1 x + a_0 = 0$$

$$b_2 x^2 + b_1 x + b_0 = 0$$

קיים פתרון אמ"מ מתקיים ש

$$\det \begin{pmatrix} a_2 & a_1 & a_0 & 0 \\ 0 & a_2 & a_1 & a_0 \\ b_2 & b_1 & b_0 & 0 \\ 0 & b_2 & b_1 & b_0 \end{pmatrix} = 0$$

ג. הוכיחו שלמערכת המשוואות הבאה קיים פתרון

$$2x^2 + 3.66x + 1.66 = 0$$

$$3x^2 + 8.49x + 5.49 = 0$$

תרגיל בית 10

2

- **שאלה 2** מטריצת ונדרמונד

א. הוכיחו שמתקיים

$$\det\begin{pmatrix} 1 & a & a^2 & a^3 \\ 1 & b & b^2 & b^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{pmatrix} = (d-c)(d-b)(d-a)(c-b)(c-a)(b-a)$$

ב. חשבו את

$$\det\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 3 & 9 & 27 \\ 1 & 7 & 49 & 343 \end{pmatrix}$$

שאלה 3

יהי rank(A)=n-1 ומתקיים ש $A\in M_n(\mathbb{R})$ יהי rank(adj(A))=1

שאלה 4 יהי $A\in M_n(\mathbb{R})$ יהי 4 משולשית עליונה משולשית עליונה $A\in M_n(\mathbb{R})$ יהי גם משולשית עליונה.

שאלה 5 יהי ($M_{n+1}(\mathbb{R})$ שכל הערכים שלה שווים ל1 או 1-. הוכיחו שאלה 5 יהי שלה מתחלקת ב 2^n

רמז: השתמשו בנוסחה לדטרמיננטה המשתמשת בתמורות שראינו בתרגול.

$$A=egin{pmatrix} 1&0&3\4&2&1\2&1&1 \end{pmatrix}$$
 עבור $adj(A)$ אלה 6 חשבו את

שאלה 7 נגדיר את הפרמננטה של מטריצה $a_{i,j}$ עם ערכים להיות שאלה 7 להיות

$$perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

כלומר, זה אותו ביטוי כמו הדטרמיננטה (בעזרת תמורות) אבל ללא הסימנים של התמורות. 3 תרגיל בית 10

- $.perm(A) = perm(A^T)$ א. הראו ש
- ב. הראו שאם E המטריצה האלמנטרית שמתאימה לפעולת השורה ב. הראו שאם אם להכפיל את השורה i בקבוע i של להכפיל את אז רוב i אז עוד i i בער המטריצה i המטריצה i בער המטריצה אז עוד להכפיל את השורה האלמנטרים המטריצה המטריצה
- $perm(A) \ = \ \prod_{i=1}^n a_{i,i}$ ג. הראו שם A משולשית עליונה או תחתונה אז A כלומר שווה למכפלת איברי האלכסון.