Autorzy

Mateusz Ostaszewski 325203 Michał Sadowski 325221

Zadanie

Połączenie lasu losowego z SVM w zadaniu klasyfikacji. Postępujemy tak jak przy tworzeniu lasu losowego, tylko co drugi klasyfikator w lesie to SVM. Jeden z klasyfikatorów (SVM lub drzewo ID3) może pochodzić z istniejącej implementacji.

Interpretacja i doprecyzowanie treści zadania

Celem zadania jest stworzenie hybrydowego modelu klasyfikatora, który łączy drzewa ID3 i maszyny wektorów nośnych (SVM).

Algorytmy

- 1. Drzewo decyzyjne (ID3): Zaimplementujemy algorytm ID3 do budowy drzew decyzyjnych, który wybiera podział w węźle na podstawie maksymalizacji zysku informacyjnego (information gain).
- 2. SVM (Support Vector Machine): Będziemy korzystać z dostepnej implemenacji SVM z biblioteki scikit-learn.

Integracja w modelu hybrydowym:

- Dla każdego klasyfikatora generujemy losowy podzbiór danych treningowych.
- Co drugi klasyfikator jest zastępowany SVM. Wynik końcowy jest określany na podstawie głosowania większościowego.

Metryki

 $\mathrm{Dokładność} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$

 $\mathrm{F1} = 2 \cdot \frac{\mathrm{Precyzja} \cdot \mathrm{Czułoś\acute{c}}}{\mathrm{Precyzja} + \mathrm{Czułoś\acute{c}}}$

 $Precyzja = \frac{TP}{TP + FP}$

$$Czułość = \frac{TP}{TP + FN}$$

• Macierz pomyłek

Eksperymenty

Zbiory danych

1. Iris

• Liczba przykładów: 150

• Liczba klas: 3 - sprowadzone do 2(dla SVM)

• Liczba cech: 4 (długość/szerokość kielicha i płatka)

2. Wine Quality

• Liczba przykładów: 4898 (wino białe), 1599 (wino czerwone)

• Liczba klas: od 0 do 10 – oceny jakości wina (przyjmujemy od 0 do 5 za wina słabe, a powyżej za wina dobre)

• Liczba cech: 11 (chemiczne właściwości)

3. Telecom Churn

• Liczba przykładów: 3150

• Liczba klas: 2 (churn lub nie churn)

• Liczba cech: 21 (informacje o klientach, użycie usług).

OPISAĆ CO ZOSTAŁO ZMIENIONE !!!!!!!!!!!

Walidacja modeli zostanie przeprowadzona za pomocą walidacji krzyżowej z podziałem na 5 podzbiorów.

Eksperymenty numeryczne

Wpływ parametrów modelu na skuteczność

TODO

Skuteczność hybrydowego modelu

Przeprowadziliśmy eksperyment, w którym porównaliśmy nasz hybrydowy las (nazywany dalej HybridRandomForest) z bazowym lasem losowym oraz modelem SVM z biblioteki scikit-learn (RandomForest). Modele z scikit-learn zostały stworzone z domyślnymi parametrami, natomiast nasz hybrydowy las został stworzony z hiperparametrami wyznaczonymi w poprzednim eksperymencie. Warto zaznaczyć, że trenowaliśmy oraz walidowaliśmy modele przy użyciu walidacji krzyżowej o stopniu 5, co oznacza, że wyniki sa uśrednione.

Wyniki dla Telecom Churn

Figure 1: Telecom Churn

Porównanie metryk F1, Precyzja, Czułość i Dokładność

Figure 2: Telecom Churn

Wykres przedstawia wyniki dla czterech metryk dla trzech modeli.

Obserwacje

• SVC:

- F1: ~ 0.63 (niskie).
- Precyzja: ~0,79.
- Czułość: ~0,52 (bardzo niskie).
- Dokładność: ~ 0.90 .
- Pomimo przyzwoitej dokładności, niska czułość sugerują, że model ma problem z poprawnym rozpoznaniem klasy 1.

• RandomForestClassifier:

- F1: ~ 0.85 (dobre).
- Precyzja i Czułość: ~0,89 i ~0,82 (dobry balans).
- Dokładność: ~0,96.
- Wyniki wskazują na stabilny model o dobrej wydajności.

• HybridRandomForest:

- F1: ~ 0.90 (najwyższe).
- Precyzja i Czułość: ~0,89 i ~0,88 (bardzo dobry balans).
- − Dokładność: ~0,96.
- Model osiąga najlepsze wyniki we wszystkich metrykach (oprócz minimalnie wyższej Precyzji dla RandomForestClassifier), co czyni go liderem na tym zbiorze.

Macierze pomyłek

Wizualizacja macierzy pomyłek potwierdza wcześniejsze wnioski. Liderem pozostaje HybridRandomForest, który popełnia bardzo mało błędów.

Wnioski

W kontekście analizy churn (utrata klientów), **Czułość** jest szczególnie istotną metryką, ponieważ pozwala wykrywać jak najwięcej przypadków pozytywnych (np. klientów, którzy mogą odejść). HybridRandomForest osiągnął najlepszy wynik, co czyni go szczególnie użytecznym w tym zastosowaniu.

Wyniki dla Wine Quality

Run Name	Created	Duration	accuracy	f1 ₹↓	precision	recall	classifier_class	dataset_name
✓ ● Group: load_iris 3	-		1 (average)	1 (average)	1 (average)	1 (average)	-	-
luxuriant-auk-762	 2 minutes ago 	0.6s	1	1	1	1	SVC	load_iris
resilient-hare-879	22 hours ago	0.8s	1	1	1	1	RandomFor	load_iris
languid-yak-687		1.7s	1	1	1	1	HybridRand	load_iris

Figure 3: Wine Quality

Porównanie metryk F1, Precyzja, Czułość i Dokładność

${\bf Obserwacje}$

- SVC:
 - **F1**: ~ 0.82 .
 - − Precyzja: ~0,76.

Figure 4: Wykres przedstawia wyniki dla czterech metryk dla trzech modeli.

- Czułość: ~0,87.
- − Dokładność: ~0,78.
- Model charakteryzuje się wysokim poziomem czułości i niskimi innymi metrykami, co może sugerować, że model zazwyczaj przewiduje klasę 1.

$\bullet \ \ Random Forest Classifier:$

- **F1**: ~0,87.
- **Precyzja**: ~0,86.
- − Czułość: ~0,89.
- − Dokładność: ~0,84.
- Model prezentuje bardzo dobre wyniki we wszystkich metrykach, zwłaszcza dokładność.

• HybridRandomForest:

- **F1**: ~ 0.85 .
- **Precyzja**: ~0,80.
- − Czułość: ~0,90.
- **Accuracy**: ~0,80.

Macierze pomyłek

Wizualizacja macierzy pomyłek potwierdza wcześniejsze wnioski. Bazowy RandomForestClassifier zdecydowanie lepiej radzi sobie z klasą, której jest mniej.

Wnioski

Random Forest Classifier okazał się liderem na zbiorze Wine Quality. Hybrid Random Forest charakteryzuje się sensownymi wynikami, lecz ma tendencję do przewidywania klasy z większą ilością próbek.

Wyniki dla Iris

Figure 5: Iris

Wszystkie modele uzyskały perfekcyjne wyniki na tym zbiorze danych. Zbiór ten okazał się "zbyt prosty" dla wszystkich porównywanych modeli.

Wnioski z eksperymentu Podsumowując, HybridRandomForest okazał się najbardziej efektywnym modelem w analizie churn, natomiast RandomForest-Classifier był liderem na zbiorze Wine Quality. SVM nie sprawdził się dobrze w

 żadnym z zadań. Istotną uwagą jest to że nasz autorski Hybrid Random
Forest jest wielokrotnie wolnijeszy od modeli z scikit-learn.

Wnioski

TODO