# Determination of the magnetic field values cancelling $D_1$ line transitions of alkali-metal atoms

A. Aleksanyan<sup>1,2</sup>, R. Momier<sup>1,2</sup>, E. Gazazyan<sup>1</sup>, A. Papoyan<sup>1</sup>, C. Leroy<sup>2</sup>

 $^{1}$ Institute for Physical Research, NAS of Armenia, Ashtarak-2, 0203 Armenia  $^{2}$ Laboratoire ICB, UMR CNRS 6303, Université Bourgogne Franche-Comté, 21000 Dijon, France

June 2, 2022

### Generalities

For all alkali atoms, the  $D_1$  line  $\left(J_{g,e}=1/2\right)$  can be depicted as



where the quantum numbers are simply given by

$$\begin{split} F_{g,e}^{\pm} &= I \pm 1/2 \\ -F &\leq m \leq F \,. \end{split}$$

## Theory

The diagonal elements of the Hamiltonian depict the linear Zeeman shifts of the states (in low fields)

$$\langle F, m | H | F, m \rangle = E_0(F) - \mu_B g_F(F) m B$$
.

The non elements are given by

$$\langle F - 1, m | H | F, m \rangle = \langle F, m | H | F - 1, m \rangle \tag{1}$$

$$= -\frac{\mu_B}{2}(g_J - g_I)B\sqrt{1 - \left(\frac{2m}{1 + 2I}\right)^2}.$$
 (2)

This last expression is notably simpler than in [Tremblay  $et\ al.$ ], since many simplifications have been performed (only m and I are left as variables)

## Theory

We can then express quite simple Hamiltonian matrices for the ground and excited states (for a given m)

$$H_{g,e} = \begin{cases} \langle F_{g,e}^{-}, m_{g,e} \rangle & | F_{g,e}^{+}, m_{g,e} \rangle \\ -\mu_{B} \left( g_{I} + \frac{g_{g,e}}{1+2I} \right) m_{g,e} B & \frac{\mu_{B}}{2} g_{g,e} B \sqrt{1 - \left( \frac{2m_{g,e}}{1+2I} \right)^{2}} \\ \frac{\mu_{B}}{2} g_{g,e} B \sqrt{1 - \left( \frac{2m_{g,e}}{1+2I} \right)^{2}} & \varepsilon_{g,e} - \mu_{B} \frac{f_{g,e}}{1+2I} m_{g,e} B \end{cases}$$

with the following notations:

$$g_g = g_I - g_S$$
  
 $g_e = (3g_I - 4g_L + g_S)/3$   
 $f_g = g_S + 2g_I I$   
 $f_e = (4g_L - g_S + 6g_I I)/3$ .

## Energy shift



The eigenvalues (energy shifts) are given by:

$$\begin{split} \Lambda_{g,e}^{\pm} = & \frac{\varepsilon_{g,e} - 2\mu_B g_I m_{g,e} B}{2} \\ & \pm \frac{1}{2} \sqrt{\varepsilon_{g,e}^2 + \mu_B^2 g_{g,e}^2 B^2 + \frac{4\varepsilon_{g,e} \mu_B g_{g,e} m_{g,e} B}{1 + 2I}} \end{split}$$

and the general form of the eigenvectors is:

$$|\psi(F_{g,e}^{\pm}, m_{g,e})\rangle = \frac{1}{\sqrt{1 + \kappa_{g,e\pm}^2}} |F_{g,e}^+, m_{g,e}\rangle + \frac{\kappa_{g,e\pm}}{\sqrt{1 + \kappa_{g,e\pm}^2}} |F_{g,e}^-, m_{g,e}\rangle.$$

#### Zeeman transitions

After diagonalization, we find that the general expression of the transition probability between two Zeeman sublevels is:

$$\begin{split} &a[\left|\psi(F_{e}^{\pm},m)\right\rangle,\left|\Psi(F_{g}^{\pm},m)\right\rangle,0]\\ &=\frac{\kappa_{e\pm}}{\sqrt{1+\kappa_{e\pm}^{2}}}a_{m}^{F_{e}^{-}F_{g}^{-}}\frac{\kappa_{g\pm}}{\sqrt{1+\kappa_{g\pm}^{2}}}\\ &+\frac{\kappa_{e\pm}}{\sqrt{1+\kappa_{e\pm}^{2}}}a_{m}^{F_{e}^{-}F_{g}^{+}}\frac{1}{\sqrt{1+\kappa_{g\pm}^{2}}}\\ &+\frac{1}{\sqrt{1+\kappa_{e\pm}^{2}}}a_{m}^{F_{e}^{+}F_{g}^{-}}\frac{\kappa_{g\pm}}{\sqrt{1+\kappa_{g\pm}^{2}}}\\ &+\frac{1}{\sqrt{1+\kappa_{e\pm}^{2}}}a_{m}^{F_{e}^{+}F_{g}^{+}}\frac{1}{\sqrt{1+\kappa_{g\pm}^{2}}} \end{split}$$

With the unperturbed transfer coefficients (simplified 3j and 6j symbols):

$$a_m^{F_e^{\pm}F_g^{\pm}} = \pm \frac{1}{\sqrt{3}} \frac{2m}{1+2I}$$

$$a_m^{F_e^{\pm}F_g^{\mp}} = \pm \frac{1}{\sqrt{3}} \sqrt{1 - \left(\frac{2m}{1+2I}\right)^2}$$

and the eigenvector factor

$$\kappa_{g,e\pm} = \frac{2(1+2I)(\Lambda_{G,E}^{\pm} - \varepsilon_{g,e}) + 2\mu_B f_{g,e} m_{g,e} B}{\mu_B g_{g,e} B \sqrt{(1+2I)^2 - 4m_{g,e}^2}}$$

#### Zeeman transitions

For a single set of Hamiltonians  $H_{g,e}$  (ie. for a given  $m_g=m_e$ ), four  $\pi$  transitions are possible:

- 1:  $|F_q^-, m\rangle \rightarrow |F_e^-, m\rangle$
- 2:  $|F_g^-, m\rangle \to |F_e^+, m\rangle$
- 3:  $|F_g^+, m\rangle \rightarrow |F_e^-, m\rangle$
- 4:  $|F_g^+, m\rangle \rightarrow |F_e^+, m\rangle$



Here is an example with the m=-1  $\pi$  transitions of  $^{87}{\rm Rb}~D_1$  line:



1 and 4 ( $\Delta F=0$ ) are identical 2 and 3 ( $\Delta F=\pm 1$ ) are identical.

## Zeeman transitions - Vanishing and maximization



#### Pair-transitions

While 1-4 reach their maximum, 2-3 vanish. Due to their symmetrical behavior, we call them pair-transitions (ensured by the calculation of the respective derivatives).

Solving  $a[|\psi(F_e^{\pm},m)\rangle\,, |\Psi(F_g^{\pm},m)\rangle\,, 0]=0$  yields

$$B = -\frac{1}{\mu_B} \frac{2m}{1 + 2I} \frac{2\varepsilon_g \varepsilon_e}{(g_I - g_S)\varepsilon_e + \frac{3g_I - 4g_L + g_S}{3}\varepsilon_g}$$

with the condition

$$0 \le (-1)^{2I} m \le I - \frac{1}{2}.$$

## Results obtained

From the formula, which is valid for all alkali  $D_1$  lines, we exhibited the following results:

| Isotope           | $\boldsymbol{\mathit{F}}$ | m   | B (G)        |                  |     |                  |            |             |
|-------------------|---------------------------|-----|--------------|------------------|-----|------------------|------------|-------------|
| <sup>23</sup> Na  | 1                         | -1  | 153.2007(86) |                  |     |                  |            |             |
| <sup>23</sup> Na  | 2                         | -1  | 153.2007(86) |                  | (   | Cancella         | tion       |             |
| <sup>39</sup> K   | 1                         | -1  | 44.991(10)   |                  |     |                  |            |             |
| <sup>39</sup> K   | 2                         | -1  | 44.991(10)   | Isotope          | No. | $\boldsymbol{F}$ | m          | B (G)       |
| $^{40}$ K         | 9/2                       | 7/2 | 190.20(33)   | 85Rb             | 1   | 2                | -2         | 380.73(13)  |
| <sup>40</sup> K   | 7/2                       | 7/2 | 190.20(33)   | 85Rb             | 2   | 3                | $-2 \\ -2$ | 380.73(13)  |
| <sup>40</sup> K   | 9/2                       | 5/2 | 135.85(24)   | 85Rb             | 3   | 2                | -2<br>-1   | 190.368(66) |
| <sup>40</sup> K   | 7/2                       | 5/2 | 135.85(24)   | 85Rb             | 4   | 3                | -1<br>-1   | 190.368(66) |
| <sup>40</sup> K   | 9/2                       | 3/2 | 81.51(15)    | KU               | 4   |                  | -1         | 190.308(00) |
| <sup>40</sup> K   | 7/2                       | 3/2 | 81.51(15)    |                  |     |                  |            |             |
| <sup>40</sup> K   | 9/2                       | 1/2 | 27.171(48)   |                  | 1./ | [avimize         | tion       |             |
| <sup>40</sup> K   | 7/2                       | 1/2 | 27.171(48)   | Maximization     |     |                  |            |             |
| 41 K              | 1                         | -1  | 24.046(95)   | Isotope          | No. | $\boldsymbol{F}$ | m          | B (G)       |
| 41 K              | 2                         | -1  | 24.046(95)   |                  |     |                  |            |             |
| 87Rb              | 1                         | -1  |              | 85Rb             | 5   | -1               | -2         | 380.73(13)  |
| <sup>87</sup> Rb  | 2                         | -1  |              | <sup>85</sup> Rb | 6   | 1                | -2         | 380.73(13)  |
| <sup>133</sup> Cs | 3                         | -3  |              | <sup>85</sup> Rb | 7   | -1               | -1         | 190.368(66) |
| <sup>133</sup> Cs | 4                         | -3  | 1359.237(26) | <sup>85</sup> Rb | 8   | 1                | -1         | 190.368(66) |
| <sup>133</sup> Cs | 3                         | -2  | 906.158(17)  |                  |     |                  |            |             |
| <sup>133</sup> Cs | 4                         | -2  | 906.158(17)  |                  |     |                  |            |             |
| <sup>133</sup> Cs | 3                         | -1  | 453.0790(84) |                  |     |                  |            |             |
| <sup>133</sup> Cs | 4                         | -1  | 453.0790(84) |                  |     |                  |            |             |

#### Discussion - Conclusion

| Isotope          | I   | $g_L$                 | $g_I[3]$           | $\varepsilon_g$ (MHz)      | $\varepsilon_e$ (MHz) |
|------------------|-----|-----------------------|--------------------|----------------------------|-----------------------|
| <sup>23</sup> Na | 3/2 | 0.99997613 [19]       | -0.00080461080(80) | 1771.6261288(10) [3]       | 188.697(14) [20,21]   |
| $^{39}K$         | 3/2 | 0.99997905339670(14)* | -0.00014193489(12) | 461.73(14) [22]            | 57.696(10) [20]       |
| $^{40}$ K        | 4   | 0.99997974531640(14)* | 0.000176490(34)    | -1285.87(35) [22]          | -155.31(35) [22]      |
| <sup>41</sup> K  | 3/2 | 0.99998039390246(13)* | -0.00007790600(8)  | 253.99(12) [3,22,23]       | 30.50(16) [22]        |
| 85Rb             | 5/2 | 0.99999354 [24]       | -0.00029364000(60) | 3035.7324390(60) [3]       | 361.58(17) [25,26]    |
| <sup>87</sup> Rb | 3/2 | 0.99999369 [27]       | -0.0009951414(10)  | 6834.682610904290(90) [28] | 814.50(13) [3,25,26]  |
| 133Cs            | 7/2 | 0.99999587 [29]       | -0.00039885395(52) | 9192.631770 (exact) [29]   | 1167.680(30) [30,31]  |

- We have determined a unique formula depicting the maximization or vanishing of  $D_1$   $\pi$  transitions. None of the  $\sigma$  transitions vanish.
- The main cause of uncertainty is due to the values of  $\varepsilon$ . All other parameters are known very precisely (Landé factors).
- Experimental measurements will be extremely difficult to perform since the variation of the transition intensities around the maxima/minima is far from being sharp. It would still be easier to record maxima rather than minima.
- These magnetic field values do not depend on any external condition nor parameter: possibly a good standard for magnetometer calibration, provided precise experimental measurements are performed.

#### References



P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr. Absorption profiles of alkali-metal D lines in the presence of a static magnetic field *Phys. Rev. A* **42**(5), 2766 (1990).



A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan and C. Leroy Cancellation of  $D_1$  line transitions of alkali-metal atoms by magnetic-field values *Phys. Rev. A* **105**, 042810 (2022).