Math 440 – Real Analysis II Homework 10

Amandeep Gill

May 4, 2015

Problem 58 Let f and g be nonnegative, real-valued functions defined on a measurable set A with $n \in \mathbb{N}$, then for all $x \in A$

$$\min\{f(x)+g(x),n\}\leqslant\min\{f(x),n\}+\min\{g(x),n\}\leqslant\min\{f(x)+g(x),2n\}$$

Proof: Let $f, g: A \to \mathbb{R}^{0+}$

Therefore:

case let f(x) > n and g(x) > n:

Then the inequality holds trivially.

case wolog let f(x) > n and $g(x) \le n$:

Then $n < n + g(x) \le f(x) + g(x)$ and 2n, so the inequality holds.

case let $f(x) \le n$, $g(x) \le n$, and f(x) + g(x) > n:

Then $f(x) + g(x) \leq 2n$, so the inequality holds.

case let $f(x) + g(x) \le n$:

Then the inequality holds trivially.

Problem 59 If $f:(0,\infty)\to\mathbb{R}$ such that for each $n\in\mathbb{N},\ f(x)=(-1/2)^n$ for $n-1\leqslant x< n$, then f is Lebesgue integrable and $\int\limits_{(0,\infty)}fd\lambda=-\frac{1}{3}.$

Proof: If $\lfloor x \rfloor$ is even then $f(x) \leq 0$, and if $\lfloor x \rfloor$ is odd then f(x) < 0. So let $f^-(x) = (1/2)^{2n-1}$ for $2n-2 \leq x < 2n-1$ and let $f^+(x) = (1/2)^{2n}$ for $2n-1 \leq x < 2n$. Thus f^+ and f^- are nonnegative and bounded, with $f(x) = f^+(x) - f^-(x)$. Additionally, both functions are continuous on a countable union of disjoint intervals, so by Theorems 10.5.5 and 10.4.5 the functions f^- and f^+ are measurable. Hence, by Theorem 10.7.1, f^- and f^+ are Lebesgue integrable, and by 10.7.4 f is as well.

Therefore.
$$\int_{(0,\infty)}^{\infty} f d\lambda = \int_{(0,\infty)}^{\infty} f^+ d\lambda - \int_{(0,\infty)}^{\infty} f^- d\lambda$$

$$= \lim_{n \to \infty} \int_{(0,n]}^{\infty} f^+ d\lambda - \lim_{n \to \infty} \int_{(0,n]}^{\infty} f^- d\lambda$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} (\frac{1}{2^{2k}}) \lambda [2k - 2, 2k - 1) - \lim_{n \to \infty} \sum_{k=1}^{n} (\frac{1}{2^{2k-1}}) \lambda [2k - 1, 2k)$$

$$= \sum_{k=1}^{\infty} (\frac{1}{2^{2k}}) - \sum_{k=1}^{\infty} (\frac{1}{2^{2k-1}}) = -\frac{1}{3}$$

1

Problem 60 Let $f, g: A \to \mathbb{R}^{0+}$ be measurable

(b) If A_1, A_2 are measurable, disjoint subsets of A, then

$$\int_{A_1 \cup A_2} f d\lambda = \int_{A_1} f d\lambda + \int_{A_2} f d\lambda$$

Proof: Let $f_1 = f\chi_{A_1}$ and $f_2 = f\chi_{A_2}$. Then $\int_{A_1} f d\lambda = \int_{A_1} f_1 d\lambda$ and $\int_{A_2} f d\lambda = \int_{A_2} f_2 d\lambda$, and since $f_1(x) = 0$ for all $x \notin A_1$ and $f_2(x) = 0$ for all $x \notin A_2$, $\int_{A_2} f d\lambda = \int_{A_1 \cup A_2} f_1 d\lambda \text{ and } \int_{A_2} f d\lambda = \int_{A_1 \cup A_2} f_2 d\lambda. \text{ As } A_1, A_2 \text{ are disjoint,}$ $(f_1 + f_2)(x) = f(x), \forall x \in A_1 \cup A_2, \text{ thus}$

$$\int_{A_1} f d\lambda + \int_{A_2} f d\lambda = \int_{A_1 \cup A_2} f_1 d\lambda + \int_{A_1 \cup A_2} f_2 d\lambda$$

$$= \int_{A_1 \cup A_2} (f_1 + f_2) d\lambda \quad \text{By Thm } 10.7.4(a)$$

$$= \int_{A_1 \cup A_2} f d\lambda$$

(c) If $f \leq g$ a.e. on A, then $\int_A f d\lambda \leq \int_A g d\lambda$ with equality if f = g a.e.

Proof: Let $E = \{x \in A : f(x) > g(x)\}$, $E_1 = \{x \in A : f(x) = g(x)\}$, and $E_2 = \{x \in A : f(x) < g(x)\}$. Because $\lambda(E) = 0$ by assumption, $\int_A f d\lambda = \int_{E_1 \cup E_2} f d\lambda$ by Theorem 10.7.4(b), and similarly for g. Let h(x) = (g - f)(x) for all $x \in E_1 \cup E_2$. As h is nonnegative,

$$\int_{A} gd\lambda = \int_{E_{1} \cup E_{2}} gd\lambda$$

$$= \int_{E_{1} \cup E_{2}} (f+h)d\lambda$$

$$= \int_{E_{1} \cup E_{2}} fd\lambda + \int_{E_{1} \cup E_{2}} hd\lambda \qquad \text{By Thm 10.7.4(a)}$$

$$= \int_{A} fd\lambda + \int_{E_{1}} hd\lambda + \int_{E_{2}} hd\lambda \qquad \text{By Thm 10.7.4(b)}$$

$$= \int_{A} fd\lambda + \int_{E_{1}} hd\lambda \qquad \text{As } h(x) = 0, \ \forall x \in E_{1}$$

Therefore if g=f a.e., then $\int\limits_A f d\lambda = \int\limits_A g d\lambda$, otherwise $\int\limits_A f d\lambda < \int\limits_A g d\lambda$.

Problem 61 Let f be a nonnegative integrable function on [a, b]. For each $n \ge 0$, if $E_n = \{x : n \le f(x) < n + 1\}$ then $\sum_{n=0}^{\infty} n\lambda(E_n) < \infty$.

Proof: Let f_k be defined such that $f_k(x) = f(x)$ if f(x) < k + 1 and 0 otherwise, then $f_k(x) = f(x)$ for all $x \in E_k$ and $f_k(x) = 0$ for all $x \in E_k^c$ where $A_k = \bigcup_{n=0}^k E_n$ and $A_k^c = [a,b] \backslash A_k$. By Theorem 10.7.4, $\int_{[a,b]} f d\lambda = \int_{A_k} f d\lambda + \int_{A_k^c} f d\lambda$, and because f is integrable, $\int_{A_k^c} f d\lambda \ge 0$, and $f_k(x) = f(x)$ for all $x \in A_k$, $\int_{A_k} f_k d\lambda \le \int_{[a,b]} f d\lambda < \infty$ for all $k \ge 0$. Since f_k is bounded on [a,b] and $\mathcal{P}_k = \{A_k^c, E_0, E_1, \dots, E_k\}$ partitions [a,b], $\mathcal{L}_L(\mathcal{P}_k, f_k) \le \int_{[a,b]} f_k d\lambda$ by Definition 10.6.3 for all k, and so $\mathcal{L}_L(\mathcal{P}_k, f_k) = 0\lambda(A_k^c) + \sum_{n=0}^k m_n\lambda(E_n)$. Because for all $n \le k$, $n \le m_n = \inf\{f_k(x) \text{ for all } x \in E_n\}$, $\sum_{n=0}^k m_n\lambda(E_n) \le \mathcal{L}_L(\mathcal{P}_k, f_k)$. Therefore $\sum_{n=0}^k m_n\lambda(E_n) \le \int_{[a,b]} f d\lambda < \infty$ for all $k \ge 0$, so $\sum_{n=0}^\infty m_n\lambda(E_n) < \infty$.

- **Problem 62** Let f be a nonnegative measurable function on a measurable set A. If $\int_A f d\lambda = 0$ then f = 0 almost everywhere on A.
 - **Proof:** (a) For each $n \in \mathbb{N}$ let $f_n : A \to [0, \infty)$ be defined as $f_n(x) = \min\{f(x), n\}$, then $f_n(x) \leqslant f(x)$ for all $n \in \mathbb{N}$ and $x \in A$ since $\min\{f(x), n\} \leqslant f(x)$.
 - (b) Let $n, m \in \mathbb{N}$ be given and $A_m = A \cap [-m, m]$ so that, by Theorem 10.7.4(b), $\int\limits_A f d\lambda = \int\limits_{A \cap A_M} f d\lambda + \int\limits_{A \setminus A_M} f d\lambda$. As the Lebesgue integral is nonnegative and $A \cap A_m = A_m$, $\int\limits_{A_m} f d\lambda = 0$. Hence $\int\limits_{A_m} f_n d\lambda = 0$ given that $f_n(x) \leqslant f(x)$ for all $x \in A_m$.
 - (c) Let $E_{m,n} = \{x \in A_m : f_n(x) \neq 0\}$ such that $\int_{A_m} f_n d\lambda = \int_{E_{m,n}} f_n d\lambda + \int_{A_m \setminus E_{m,n}} f_n d\lambda$. By previous argument $\int_{E_{m,n}} f_n d\lambda = 0$, and by Definition 10.6.3 $\int_{E_{m,n}} f_n d\lambda \geqslant i\lambda(E_m)$, where $i = \inf\{f_n(x) : x \in E_m\}$. Therefore $i\lambda(E_{m,n}) = 0$, so $\lambda(E_{m,n}) = 0$ as $i \geqslant 0$. Because n, m are arbitrary, $\lambda(E_{m,n}) = 0$ for all $m, n \in \mathbb{N}$
 - (d) Let $E = \{x \in A : f(x) \neq 0\}$. Then since n > 0 for all $n \in \mathbb{N}$ and f(x) > 0 for all $x \in E$, this gives $f_n(x) \neq 0$ for all $x \in E$ and all $n \in \mathbb{N}$. Additionally, for all fixed $x \in E$ there exists an $m \in \mathbb{N}$ such that x < m. Therefore, for every $x \in E$, $x \in E_{m,n}$ for some $m, n \in \mathbb{N}$ and thus $E \subset \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} E_{m,n}$.
 - (e) By Theorem 10.4.5, $\lambda(E) \leqslant \lambda\left(\bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} E_{m,n}\right) \leqslant \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} \lambda(E_{m,n})$. Since $\lambda(E_{m,n}) = 0$ for all $m, n \in \mathbb{N}$, $\lambda(E) = 0$, so f = 0 almost everywhere.

4