

Problema J

Uma Ligação Eletrizante

Arquivo fonte: energia.{ c | cpp | java | py }
Autor: Prof. Dr. Rodrigo Plotze (Fatec Ribeirão Preto)

Mr. Joules Watts é um recém formado Engenheiro Eletricista e está participando de um ambicioso projeto que será capaz de interligar diversas estações de energia espalhadas pelo país.

O principal problema enfrentado por *Mr. Joules* está relacionado ao impacto ambiental. Para isso, ele precisa otimizar a quantidade de cabeamento que será utilizado para conectar todas as estações e, com isso, minimizar o custo do projeto. Em outras palavras, ele precisa interligar todas as estações de energia utilizando a menor quantidade possível de cabeamento.

Na Figura 1 é possível observar o problema enfrentado por ele, em que é apresentado um conjunto de 5 (cinco) estações de energia identificadas pelos números inteiros 0,1,2,3,4, e as ligações entre elas. O peso das ligações está associado à distância, em quilômetros, entre cada estação de energia. Na Figura 2 é apresentado o resultado desejado, em que se destaca a maneira otimizada para minimizar a quantidade necessária de cabeamento para interligar todas as estações de energia. Neste exemplo, a quantidade total é de *14 quilômetros*.

Figura 2: A solução otimizada indica que é necessário um total de 14 quilômetros de cabos para interligar todas as estações de energia.

Dentro deste contexto, elabore um algoritmo capaz de auxiliar *Mr. Joules* a resolver o problema de interligar as estações de energia.

Entrada

A primeira linha contém um número inteiro $E(3 \le E \le 30)$ que indica a quantidade de estações de energia que precisam ser interligadas e um número inteiro L que representa a quantidade de ligações entre as estações $L(3 \le L \le 100)$. As próximas E linhas contém S inteiros S0, separados por espaço em

branco, em que, X e Y são números inteiros que indicam as estações de energia que podem ser interligadas e Z um número inteiro que representa a distância em quilômetros entre as estações.

Saída

Imprimir um número inteiro que representa o custo total mínimo, em quilômetros, para interligar todas as estações de energia.

Exemplo de Entrada 1 Exemplo de Saída 1 7 10 19 1 2 5 13 3

2 4 2 2 5 7 3 4 4

1 4 9

Exemplo de Entrada 2 Exemplo de Saída 2

•	•
5 8	10
1 2 4	
1 3 6	
1 4 7	
2 3 1	
2 4 5	
3 4 2	
3 5 8	
4 5 3	

Exemplo de Entrada 3

Exemplo de Saída 3

4 5	50
1 2 10	
1 3 15	
2 3 20	
2 4 25	
3 4 30	