ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

ФИЗИКА И АСТРОНОМИЯ

22 май 2015 г. – Вариант 1

Отговорите на задачите от 1. до 40. вкл. отбелязвайте в листа за отговори!

1. Какви са по посока силовите линии, които описват електростатичното поле на положителен точков и на отрицателен точков заряд?

	Силови линии на	Силови линии на	
	положителен точков заряд	отрицателен точков заряд	
A)	Радиално към заряда	Радиално навън от заряда	
Б)	Радиално навън от заряда	Радиално навън от заряда	
B)	Радиално към заряда	Радиално към заряда	
Γ)	Радиално навън от заряда	Радиално към заряда	

- **2**. Два точкови заряда q_1 и $q_2 = 2q_1$ взаимодействат помежду си. На чертежа е означена големината и посоката на силата F_2 , действаща на заряда q_2 . Каква е големината и посоката на силата F_1 , действаща на заряда q_1 ?
- **A)** $F_1 = F_2$, насочена наляво
- **Б)** $F_1 = F_2$, насочена надясно
- **В)** $F_1 < F_2$, насочена надясно
- Γ) $F_1 < F_2$, насочена наляво

- **3**. Положително заредена частица се движи в еднородно (хомогенно) електростатично поле под действие на електрична сила. Как се променя енергията на частицата при преместване от M към т N.
- А) потенциалната ѝ електрична енергия намалява
- Б) потенциалната ѝ електрична енергия нараства
- В) пълната ѝ енергия намалява
- Г) пълната ѝ енергия нараства

- **4.** При поставяне на метална кутия в еднородно (хомогенно) електростатично поле се наблюдава преразпределение на свободните заряди в нея. Некомпенсираните заряди се разпределят:
- А) по външната повърхност
- **Б)** по вътрешната повърхност
- В) в центъра на кутията
- Г) равномерно в целия обем

5. Кой кондензатор има най-голям капацитет?

- А) кондензатор 1
- **Б)** кондензатор 2
- **B)** кондензатор 3
- Γ) капацитетите на трите кондензатора са равни

6. Коя е вярната мерна единица за електричен ток?

- $\mathbf{A})\frac{1\,\mathrm{C}}{1\,\mathrm{s}}$
- **Б)** 1 С.1 s
- **B)** 1Ω.1 V
- Γ) $\frac{1\Omega}{1V}$

7. Коя схема съдържа част от електрическа верига с най-малко еквивалентно съпротивление? Всеки от резисторите има съпротивление $R=2~\Omega$.

- **A)** cxema 1
- **Б)** схеми 1 и 2
- **В)** схеми 2 и 3
- **Г**) схема 3

8. На графиката е представена зависимостта на тока I от напрежението U за два резистора със съпротивления съответно R_1 и R_2 . Кои са верните стойности на съпротивленията на резисторите?

	R_1, Ω	R_2, Ω
A)	100	300
Б)	10	30
B)	1	3
Γ)	0.01	0.003

9. При протичане на ток през проводник се отделя топлина. Ако се увеличи токът през проводника два пъти, как ще се промени отделеното количество топлина за време 1 s?

- А) няма да се промени
- Б) ще се намали 4 пъти
- В) ще се увеличи 4 пъти
- Г) ще се намали 2 пъти

10. Два резистора са свързани в електрическа верига. Кои са измервателните уреди с номера 1, 2 и 3 в схемата?

- **Б)** 1 волтметър; 2 волтметър; 3 амперметър
- **В)** 1 волтметър; 2 волтметър; 3 волтметър
- Γ) 1 амперметър; 2 амперметър; 3 амперметър

11. Коя зависимост НЕ е вярна?

$$\mathbf{A)} \ R = \rho \frac{l}{S}$$

b)
$$\rho = R \frac{S}{l}$$

B)
$$l = R \frac{S}{\rho}$$

$$\Gamma) R = \rho \frac{S}{l}$$

12. При посребряването на даден детайл се използва явлението:

- А) йонизация
- Б) газов разряд
- В) електролиза
- Г) свръхпроводимост

13. Елементите на показаните електрически вериги са еднакви. В коя електрическа верига лампата HЯМА да свети?

Г) и в двете няма да свети

14. Правилната схема за магнитната сила, която действа на движеща се заредена частица в магнитно поле, е:

B)

 Γ)

- 15. Праволинеен проводник е поставен успоредно над магнитна стрелка. Ако по проводника протича ток, то магнитната стрелка:
- А) не променя положението си
- Б) се наклонява спрямо хоризонта
- **В)** се обръща на 180°
- Г) се стреми да застане перпендикулярно на проводника
- 16. С движението на заредени частици в магнитно поле се обяснява:
- А) светенето на газоразрядна лампа
- Б) искровият разряд
- В) йонизацията на газовете
- Г) полярното сияние
- 17. Постоянен прав магнит се намира до намотка. В намотката НЕ се индуцира ток когато:
- А) магнитът се приближава или отдалечава спрямо намотката
- Б) намотката се приближава или отдалечава спрямо магнита
- В) намотката и магнитът се приближават един към друг
- Г) магнитът е неподвижен в намотката

18. С кой уред се измерва ефективната стойност на променливия ток и с кой — ефективната стойност на променливото напрежение?

	Уред за измерване на ефективната стойност на променлив ток	Уред за измерване на ефективната стойност на променливо напрежение
A)	Омметър	Амперметър
Б)	Амперметър	Омметър
B)	Волтметър	Омметър
Γ)	Амперметър	Волтметър

19. На информационната табелка на тостер са посочени следните данни:

220 V 750 W

Определете какъв ток трябва да пропуска бушонът (предпазителят) на уреда, без да изгори?

- **A)** 0,29 A
- **Б)** 3,4 A
- **B)** 16500 A
- **Γ**) 165000 A

20. От кои характеристики, предложени в таблицата, зависи периодът на математично махало?

- **A)** само от 1
- **Б)** само от 3
- В) от 1 и 2
- Г) от 1, 2 и 3

	Характеристики	
1	Дължина на нишката l	
2	Земно ускорение д	
3	Маса на тялото т	

21. За две минути математично махало извършва 60 трептения. Колко е периодът на трептене на това махало?

- **A)** 60 s
- **Б)** 20 s
- **B)** 2 s
- Γ) 0,2 s

22. За явлението резонанс е характерно:

А) намаляване на амплитудата на трептене поради действието на силите на триене и съпротивление

Б) запазване на амплитудата на трептене без действието на външна сила

В) увеличаване на амплитудата на трептене под действие на периодично променяща се външна сила

 Γ) намаляване на амплитудата на трептене под действие на периодично променяща се външна сила

23. По данните от графиката за разпространението на механична вълна определете колко е амплитудата на вълната?

- **A)** 0,3 m
- **b**) 0,6 m
- **B)** 4 m
- **Γ)** 8 m

24. Разлагането на бялата светлина може да се наблюдава при пропускането ѝ през стъклена призма. Поредността на четири от цветовете в спектъра е:

- А) червен, син, жълт, зелен
- Б) червен, син, зелен, жълт
- В) червен, зелен, жълт, син
- Г) червен, жълт, зелен, син

25. Ученик направил експеримент с оптичен кръг и лъч светлина, падаща на границата въздух-стъкло, но при разглеждане на снимката от експеримента не се виждал източникът на светлина. Определете в кой от следните редове правилно са определени падащият, отразеният и пречупеният лъч?

	Падащ лъч	Отразен лъч	Пречупен лъч
A)	1	2	3
Б)	1	3	2
B)	2	3	1
Γ)	3	2	1

- 26. В коя среда от посочените в таблицата светлината има най-малка скорост?
- **A)** среда 1
- **Б)** среда 2
- **В)** среда 3
- **Г)** среда 4

Среда №	Показател на	
	пречупване п	
1	1,0	
2	1,3	
3	1,5	
4	2,4	

- 27. Какво е необходимо, за да се наблюдава явлението дисперсия?
 - 1. източник на монохроматична светлина
 - 2. източник на бяла светлина
 - 3. плоско огледало
 - 4. призма
- А) 1. и 3.
- **Б)** 1. и 4.
- В) 2. и 3.
- **Г)** 2. и 4.
- **28**. На фигурите са показани светлинни лъчи, разпространяващи се в две среди. Кой от посочените ъгли на падане α_1 , α_2 или α_3 , е равен на граничния ъгъл?

- A) α_1
- **Б**) α₂
- **B**) α_3
- Г) нито един от трите

- 29. Кой цвят светлина има най-голяма дължина на вълната?
- А) виолетов
- Б) зелен
- В) жълт
- Г) червен
- **30.** При нагряване на парче желязо то започва да свети първо в червено, а при по-нататъшно повишаване на температурата в жълто. Как се променят мощността на излъчване (енергията излъчена за $1\ s$) и дължината на вълната с максимален интензитет λ_{max} с повишаване на температурата?

	Мощност на	$\lambda_{ ext{max}}$
	излъчване	
A)	Нараства	Нараства
Б)	Нараства	Намалява
B)	Намалява	Нараства
Γ)	Намалява	Намалява

- 31. Над 90% от излъчените от лампа с нажежаема жичка вълни са:
- А) рентгенови
- Б) ултравиолетови
- В) видими
- Г) инфрачервени
- 32. Макс Планк пръв изказва предположението, че излъчването на електромагнитна енергия става не непрекъснато, а на отделни порции, наречени:
- А) електрони
- Б) кванти
- В) атоми
- Г) молекули
- **33**. Електронът във водороден атом преминава от основно състояние с n=1 и енергия $E_1=-13,6$ eV в състояние с n=2 и енергия $E_2=-3,4$ eV, при което атомът:
- **A)** поглъща фотон с енергия E = 13.6 eV
- **Б)** поглъща фотон с енергия E = 10.2 eV
- **В)** излъчва фотон с енергия E = 13.6 eV
- Γ) излъчва фотон с енергия $E=17.0~{\rm eV}$
- **34**. Енергията на връзката на атомното ядро се изразява с формулата (Δm масов дефект, m маса на ядрото):
- A) $\Delta E = \Delta mc^2$
- **b**) $\Delta E = mc^2$
- **B)** E = hv
- $\Gamma) E = h \frac{c}{\lambda}$
- **35**. Изотопът радий-226 има период на полуразпадане приблизително $T_{1/2} = 1600$ години. След колко години ядрата на този изотоп ще намалеят 8 пъти?
- **А)** 200 години
- **Б)** 1600 години
- В) 3200 години
- Г) 4800 години

- 36. Как се изменя броят на протоните в атомно ядро, претърпяло α-разпадане?
- А) нараства с един протон
- Б) нараства с два протона
- В) намалява с два протона
- Г) намалява с един протон
- 37. Ако предположим, че разходите за постигане на стабилна реакция и суровини са еднакви, кой от посочените процеси би бил най-изгоден заради отделената голяма енергия?
- А) горене на нефт
- Б) горене на дърва
- В) делене на уран-235
- Г) термоядрен синтез на водород
- **38**. Учени открили две нови звезди. При сравнение на масите им с тази на Слънцето (M_{\odot}) било установено, че едната има маса $M_1 = M_{\odot}$, а втората $-M_2 = 80 M_{\odot}$. Какви ще са крайните стадии от еволюцията им?

	За звезда с маса $M_1 = M_{\odot}$	3 а звезда с маса $M_2 = 80 M_{\odot}$
A)	Черна дупка	Бяло джудже
Б)	Черна дупка	Неутронна звезда
B)	Бяло джудже	Черна дупка
Γ)	Неутронна звезда	Бяло джудже

- 39. Какви обекти НЕ са изобразени на диаграмата "спектър-светимост"?
- А) бели джуджета
- **Б)** червени гиганти
- В) червени свръхгиганти
- Г) черни дупки
- **40.** Ученик решава задача по астрономия, в която е известна скоростта v на отдалечаване на една галактика от нашата галактика. Като използва закона на Хъбл, какво може да определи той за отлалечаващата се галактика?
- А) температурата ѝ
- Б) масата ѝ
- В) броя звезди в нея
- Г) разстоянието до нея

<u>Решенията на задачите от 41. до 50. вкл. запишете на предвиденото за това място в</u> свитъка за свободните отговори срещу съответния номер на задачата!

- **41.** Два неподвижни точкови заряда с големина $q_1 = q_2 = 1$ С се намират на разстояние r = 1 m във вакуум.
- А) Представете на чертеж силите, които действат на всеки заряд, ако те са разноименни.
- Б) Представете на чертеж силите, които действат на всеки заряд, ако те са едноименни.
- **B**) Напишете формулата на закона на Кулон и определете големината на електростатичната сила, с която си взаимодействат зарядите. ($k = 9.10^9 \text{ N.m}^2/\text{C}^2$)

- **42.** Положителен точков заряд Q създава електростатично поле, което в т. M действа на пробен заряд $q_0 = 1.10^{-9}$ C със сила $F = 1.10^{-3}$ N.
- **A)** Определете големината на интензитета на полето в т. M.
- **Б)** Зависи ли големината на интензитета на полето от поставения в т. M пробен заряд? ($\partial a/he$)
- **B)** Избираме т. N, която е на по-голямо разстояние от източника на полето Q спрямо т. M. Сравнете големината на интензитета $E_{\rm M}$ на полето в т. M с големината на интензитета $E_{\rm N}$ на полето в т. N. (използвайте знаците: >, <, =)
- 43. Допълнете изреченията, като използвате предложените термини от таблицата:
- А) При нормални условия диелектриците са
- **Б**) Поставени във външно електростатично поле, молекулите на диелектрика се Поради тази причина полето в диелектрика е от външното поле във вакуум.
- В) Пример за диелектрик е

проводници
изолатори
поляризират
наелектризират
по-силно
по-слабо
стъкло
алуминий

44. Три резистора са свързани в електрическа верига.

- А) Определете еквивалентното съпротивление на веригата, при отворен ключ К.
- Б) Определете еквивалентното съпротивление на веригата, при затворен ключ К.
- **45.** Батерия с електродвижещо напрежение \mathcal{E} и вътрешно съпротивление r е свързана към резистор със съпротивление R.

- **А)** Определете при какво положение на ключа К отворен или затворен, волтметърът измерва ЕДН на батерията?
- **Б**) Сравнете показанието на волтметъра U_1 при затворен ключ K с показанието на волтметъра U_2 при отворен ключ K. (*използвайте знаците*: >, <, =)
- В) По коя формула ще определите тока във веригата, при затворен ключ К?
- Γ) Напишете формулата, с която се определя токът при късо съединение (I_{max}).

- 46. На фигурите са показани схеми на опити, които демонстрират следните явления:
 - 1. Фотоефект
 - 2. Магнитно действие на електричния ток
 - 3. Електростатично взаимодействие
 - 4. Електромагнитна индукция

Свържете явление с фигура, като срещу буквата на съответната фигура запишете номера на явлението, което се илюстрира.

- **47.** Махалото на механичен часовник музеен експонат, може да се приеме за математично махало. За време t=1 s махалото се премества от крайно ляво до крайно дясно положение.
- А) Определете периода на махалото.
- **Б)** Колко е дължината на часовниковото махало? ($g = 9.8 \frac{\text{m}}{\text{s}^2}$, $\pi^2 \approx 9.8$)
- **B)** Може ли да се регулира периодът на трептене на часовника, като се промени масата на махалото? ($\partial a/he$)
- **48.** Явлението *пълно вътрешно отражение* се използва за пренос на информация по оптични влакна (например за оптичен интернет или телевизия).
- **A)** Какъв е показателят на пречупване на първата среда n_1 спрямо този на втората среда n_2 при пълно вътрешно отражение? (*по-голям/по-малък*)
- Б) Дефинирайте понятието граничен ъгъл на пълно вътрешно отражение?
- **B**) Запишете формулата за граничния ъгъл ($\sin \alpha_{rp} = ?$), като използвате закона на Снелиус за пречупване на светлината.
- **49.** Уравнението на Айнщайн за фотоелектричния ефект може да се представи в следния вид $h_{\rm V}=A_{_{\!
 ho}}+E_{_{\rm k,max}}$.
- **А)** Коя е частицата, чиято енергия се представя с "hv"?
- **Б)** Коя е частицата, чиято енергия се представя с " $E_{\rm k,max}$ "?
- **B)** Запишете наименованията на следните величини/константи: h, v, $A_{\rm e}$ и $E_{\rm k,max}$.
- 50. Подредете стадиите в еволюцията на Слънцето, като започнете от начален стадий.
 - ✓ червен гигант
 - ✓ бяло джудже
 - ✓ звезда от главната последователност
 - ✓ протозвезда

МИНИСТЕРСТВОНАОБРАЗОВАНИЕТОИНАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Физика и астрономия – 22 май 2015 г.

ВАРИАНТ № 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос	Верен отговор	Брой
		точки
1.	Γ	1,5
2.	Б	1,5
2.	A	1,5
4.	A	1,5
5.	В	1,5
6.	A	1,5
7.	Γ	1,5
8.	A	1,5
9.	В	1,5
10.	A	1,5
11.	Γ	1,5
12.	В	1,5
13.	Б	1,5
14.	A	1,5
15.	Γ	1,5
16.	Γ	1,5
17.	Γ	1,5
18.	Γ	1,5
19.	Б	1,5
20.	В	1,5

Въпрос	Верен отговор	Брой
		точки
21.	В	1,5
22.	В	1,5
23.	A	1,5
24.	Γ	1,5
25.	Б	1,5
26.	Γ	1,5
27.	Γ	1,5
28.	Б	1,5
29.	Γ	1,5
30.	Б	1,5
31.	Γ	1,5
32.	Б	1,5
33.	Б	1,5
34.	A	1,5
35.	Γ	1,5
36.	В	1,5
37.	Γ	1,5
38.	В	1,5
39.	Γ	1,5
40.	Γ	1,5

Въпроси със свободен отговор

43.	
А) изолатори	1 точка
Б) поляризират	1 точка
по-слабо	1 точка
В) стъкло	1 точка
,	
44.	
A) $R_{\text{expl}} = 2 \Omega + 2 \Omega = 4 \Omega$	2 точки
b) $R_{\text{ekb2}} = \frac{(2 \Omega + 2 \Omega) \cdot 4 \Omega}{(2 \Omega + 2 \Omega) + 4 \Omega} = 2 \Omega$	2 точки
45.	1 точка
A) отворен F) <i>U</i> < <i>U</i>	1 точка 1 точка
b) $U_1 < U_2$	1 104ка
$\mathbf{B)}\ I = \frac{\varepsilon}{R+r}$	1 точка
R+r	
Γ) $I_{\text{max}} = \frac{\varepsilon}{r}$	1 точка
r	1 10 IKu
46.	
А) 3. (Електростатично взаимодействие)	1 точка
Б) 1. (Фотоефект)	1 точка
В) 4. (Електромагнитна индукция)	1 точка
Г) 2. (Магнитно действие на електричния ток)	1 точка
47.	
A) T = 2 s	1 точка
b) $T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow l = \frac{T^2 g}{4\pi^2} = 1 \text{ m}$	2 точки
$\int \int I - 2\pi \sqrt{\frac{g}{g}} = I - \frac{1}{4\pi^2}$	2 104KH
В) не	1 точка
48.	
\mathbf{A}) $n_1 > n_2$, по-голям	1 точка
Б) при определен ъгъл на падане α_{rp} , ъгълът на пречупване става $\beta = 90^{\circ}$	1 точка
P) $\sin \alpha = n_2$	2 точки
$\mathbf{B)} \sin \alpha_{\rm rp} = \frac{n_2}{n_1}$	2 ТОЧКИ
•	
49.	
А) фотон	1 точка
Б) електрон	1 точка
B)	
h – константа на Планк	0,5 точки
v – честота на фотона (светлината)	0,5 точки
$A_{\rm e}$ — отделителна работа на метала	0,5 точки
$E_{ m k\;max}$ – максимална кинетична енергия на електрона	0,5 точки
70	
50.	1
протозвезда	1 точка 1 жазууса
звезда от главната последователност	1 точка 1 жания
червен гигант	1 точка 1 точка
бяло джудже	1 точка