MOOC Statistique pour ingénieur Thème 0 : statistique descriptive

Vidéo 1 : Généralités, variables statistiques, grandeurs usuelles

F. Delacroix M. Lecomte

Institut Mines-Télécom École Nationale Supérieure des Mines de Douai

Sommaire

Généralités

- 2 Loi d'une variable quantitative
- ③ Grandeurs statistiques usuelles

Notion de variable

Un exemple

$$n = \operatorname{Card}\Omega = 30$$

Xi	0	1	2	3	
Effectif n _i	10	5	8	7	
Fréquence f _i	$\frac{10}{30}$	$\frac{5}{30}$	$\frac{8}{30}$	$\frac{7}{30}$	
Fréquence (%) f_i	33,3%	16,7%	26,7%	23,3%	

Un exemple : diagramme à barres

Un exemple : diagramme circulaire

• Caractères qualitatifs

- Caractères qualitatifs
- Caractères quantifatifs

- Caractères qualitatifs
- Caractères quantifatifs
- Discrets

- Caractères qualitatifs
- Caractères quantifatifs
- Discrets
- Continus

Sommaire

1 Généralités

- 2 Loi d'une variable quantitative
- ③ Grandeurs statistiques usuelles

Loi empirique d'une variable

$$\{X = x_i\} = \{\omega \in \Omega, X(\omega) = x_i\}$$

Xi	0	1	2	3
Fréquence f _i	$\frac{10}{30}$	$\frac{5}{30}$	$\frac{8}{30}$	$\frac{7}{30}$

$$\{X \in C_i\} = \{\omega \in \Omega, X(\omega) \in C_i\}$$

Diamètres des axes de roues

Fonction de répartition empirique

Définition

La fonction de répartition empirique d'une variable X est définie par :

$$F_X: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto \frac{\operatorname{Card} \{\omega \in \Omega, X(\omega) \leqslant x\}}{\operatorname{Card} \Omega}$
 $= \operatorname{Freq}(X \leqslant x)$

Sommaire

1 Généralités

- 2 Loi d'une variable quantitative
- Grandeurs statistiques usuelles

Paramètres de position

1	2	3	7	11	12	13	15	16	17
---	---	---	---	----	----	----	----	----	----

- Moyenne : $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 9.7$
- Médiane

Quantiles d'ordre p

Paramètres de dispersion

• L'étendue $w = x_{max} - x_{min} = 16$

Paramètres de dispersion

- L'étendue $w = x_{max} x_{min} = 16$
- La variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} = 32,61$$

- L'écart-type $s \simeq 5.71$
- La distance interquartile $IQ = q_3 q_1 = 12$.

Boîtes à moustaches

MOOC Statistique pour ingénieur

Boîtes à moustaches

