Chapitre 6

Fonctions affines

I. Caractérisation

1) <u>Définition</u>

Définition:

Une **fonction affine** est une fonction f définie pour tout nombre réel x par la relation :

$$f(x) = mx + p$$

où m et p sont deux nombres réels fixés.

La fonction f est **définie** sur \mathbb{R} .

Exemples:

- La fonction f définie sur \mathbb{R} par f(x) = 3x 5 est une fonction affine, avec m = 3 et p = -5.
- La fonction g définie sur \mathbb{R} par g(x) = -2x est une fonction linéaire (donc affine), avec m = -2 et p = 0.

Définitions:

• Si p = 0, alors la relation devient f(x) = mx.

La fonction f est une **fonction linéaire**.

• Si m = 0, alors la relation devient f(x) = p.

La fonction f est une **fonction constante**.

Propriété:

Soit f une fonction définie sur \mathbb{R} .

f est une fonction affine si, et seulement si, pour tout réel distincts a et b, le rapport $\frac{f(b)-f(a)}{b-a}$ est constant.

Remarque:

Le nombre $\frac{f(b)-f(a)}{b-a}$ est le **taux d'accroissement** entre a et b.

Propriété:

Soit f une fonction définie sur \mathbb{R} par f(x) = mx + p et a et b deux réels distincts, alors :

$$m = \frac{f(b)-f(a)}{b-a}$$
 et $p = f(a) - ma$

Exemple:

f est une fonction affine telle que f(0) = -5 et f(1) = -2.

Alors,
$$m = \frac{f(1) - f(0)}{1 - 0} = \frac{-2 - (-5)}{1} = -2 + 5 = 3$$
 et $p = f(0) = -5$.

f est donc définie sur \mathbb{R} par f(x) = 3x - 5.

2) Représentation graphique

Propriété:

La représentation graphique d'une fonction affine, f(x) = mx + p est une droite.

Remarques:

- Cette droite a pour **équation** y = mx + p.
- Pour représenter f, il suffit de placer deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ avec $y_A = mx_A + p$ et $y_B = mx_B + p$ puis de tracer la droite passant par ces deux points.
- Lorsque la fonction est linéaire, elle est représentée par une droite passant par l'origine du repère.
- Lorsque la fonction est constante, elle est représentée par une droite parallèle à l'axe des abscisses.

Exemple:

Représentation graphique de la fonction affine $x \mapsto 2x - 1$ dans un repère.

On prend $x_A = 0$ et $x_B = 3$, on a donc $y_A = -1$ et $y_B = 5$.

Définitions:

 $\operatorname{Si} f(x) = mx + p$, alors:

- Le nombre *m* est le **coefficient directeur** de la droite.
- Le nombre p est l'ordonnée à l'origine.

Exemple:

La fonction f définie sur \mathbb{R} par f(x) = 2x - 1 est une fonction affine représenté par une droite de coefficient directeur m = 2 et d'ordonnée à l'origine p = -1.

Propriétés:

Soient f une fonction affine définie par f(x) = mx + p et d la droite qui la représente dans un repère.

Soient A(x_A ; y_A) et B(x_B ; y_B) deux points quelconques de d.

•
$$m = \frac{f(x_B) - f(x_A)}{x_B - x_A} = \frac{y_B - y_A}{x_B - x_A} = \frac{y_A - y_B}{x_A - x_B}$$

Lorsque $x_B - x_A = 1$, alors $y_B - y_A = m$.

• p est l'image de 0 par la fonction f, c'est donc l'ordonnée du point d'intersection de la droite représentative de f avec l'axe des ordonnées.

Exemple:

Représentation graphique de la fonction affine $x \mapsto 2x - 1$ dans un repère.

On a donc p = -1 et m = 2.

II. Étude de fonction

1) Variations

Propriétés:

Soient f une fonction affine définie par f(x) = mx + p.

Le sens de variation de f ne dépend que du **signe de** m.

- Si m > 0, alors f est strictement croissante sur \mathbb{R} .
- Si m < 0, alors f est strictement décroissante sur \mathbb{R} .

Démonstration :

Soient deux réels distincts x_1 et x_2 tels que $x_1 < x_2$.

On doit comparer $f(x_1)$ et $f(x_2)$, c'est-à-dire étudier le signe de $f(x_2) - f(x_1)$.

Or
$$f(x_2) - f(x_1) = (mx_2 + p) - (mx_1 + p) = mx_2 - mx_1 = m(x_2 - x_1)$$
.

On sait de plus que $x_1 < x_2$ donc $x_2 - x_1 > 0$.

On en déduit que $f(x_2) - f(x_1)$ est du signe de m.

Exemples:

- Comme m = 2 > 0, la fonction $f: x \mapsto 2x 1$ est croissante sur \mathbb{R} .
- Comme m = -3 < 0, la fonction $g: x \mapsto -3x + 5$ est décroissante sur \mathbb{R} .

Propriétés:

- f est une fonction impaire si et seulement si, f est une fonction linéaire.
- f est une fonction paire si et seulement si, f est une fonction constante.

2) Signe

Définition:

Étudier le signe d'une fonction f(x) revient à déterminer les valeurs de x pour lesquelles f(x) est strictement positif, nul ou strictement négatif.

Le signe est souvent présenté sous la forme d'un tableau de signe.

Exemple:

f est la fonction définie sur [-3; 3] dont voici la courbe représentative dans un repère.

- f(x) > 0 si $x \in [-3; 2[\cup]1; 3]$
- $f(x) < 0 \text{ si } x \in]-2$; 1[
- f(x) = 0 si x = -2 ou x = 1.

On a donc

Propriété:

Soient m et p deux nombre réels avec $m \neq 0$.

La fonction affine f définie sur \mathbb{R} par f(x) = mx + p s'annule et change de signe une fois dans son ensemble de définition en $x = -\frac{p}{m}$.

5

Exemple:

Soit la fonction g définie sur \mathbb{R} par $g: x \mapsto -3x + 4$.

g(x) = mx + p avec m = -3, m est négatif, donc g est décroissante sur \mathbb{R} .

De plus,
$$g(x) = 0$$
 pour $-3x + 4 = 0$ soit $x = \frac{4}{3}$.

Donc

x		-∞		<u>4</u> 3		+∞
g	(x)		+	0	_	

Propriété:

Pour étudier le signe d'un produit ou d'un quotient de deux fonctions affines, on étudiera le signe de chacune des fonctions dans un même tableau de signes et on conclura à l'aide de la propriété des signes d'un produit ou d'un quotient.