건축심화세미나 - 팀 커뮤니케이션에 동적 문서인 "주 피터노트북" 도입

: AISC360을 .ipynb 화

동적문서라는 말이 학술적으로 있는 건 아니고요. 제가 그냥 기존 pdf와 반대되는 개념으로 이름을 붙여봤습니다.

(동적페이지, 정적페이지 라는 말은 웹 개발에서 사용하는 말입니다.)

문서는 문서인데, 프로그램처럼 동작하는 문서라서

하나의 문서가 사용자가 의도한 결과값을 만들어주는 프로그램처럼 동작합니다.

요약: 주피터 노트북은 text document, code, 수식, 그래프, 코드 결과를 하나의 파일 (.ipynb)에 담을 수 있는 장점이 있습니다.

주피터 노트북

주피터노트북이란..

- "문서와 웹애플리케이션을 합친 형태" 의 문서이고,
- python, nodejs, clojure 등의 여러 언어를 지원합니다.
- 문서는 다수의 "셀" 이 모여서 이루어지며, 셀 하나는 그 자체로 코드를 실행할 수 있는 틀이기도 합니다.
- 마크다운 문법을 지원하며, 마크다운 셀과 코드 실행 셀을 번갈아 배치하는 것으로 써, 설명과 예제를 동시에 포함하는 문서로 동작합니다.

<u>참조링크</u>

주로 어디에 쓰나?

데이터 사이언스에서 주로 사용하는데, 점점 사용처가 늘어나고 있습니다. 엑셀을 통해 우리는 이미 기존 업무에서 간단한 코딩을 해왔기 때문에, 이 흐름을 주피터 노트북으로 옮기게 되면, 파이썬 기반으로 살아움직이는 문서를 만들고,

프로젝트마다 달라지는 인풋값만 변경하면서 쉽게 업무를 공유할 수 있습니다.

pdf, word 와 다른점

글자인가, 코드인가?

$$P_n = F_{cr} \, A_g$$

pdf에서 이 수식은 그냥 글자일 뿐이지만, 주피터노트북에서는 엑셀처럼 입력값에 따라 다른 결과물을 반환해주는 코드입니다.

```
In [18]:
##### 사용자 입력 1 #######
Fcr = 300
Ag = 0.84
In [21]:
##### 사용자 입력 2 #######
Fcr = 350
Ag = 1.07
In [23]:
##### 사용자 입력 3 #######
Fcr = 450
Ag = 1.12
In [24]:
##### 계산식 #######
Pn = Fcr * Ag
##### 결과 출력 #######
print(Pn)
```

504.00000000000006

slide로 보기도 편하다 (feat. RISE package)

지금 보고 계신 화면이, 주피터 노트북 파일을 별도의 변환없이 바로 슬라이드로 보고 계신겁니다. 별다른 설명은 필요없겠죠?

주피터 노트북에서 이 기능을 쓰려면, RISE 라는 패키지가 필요합니다. 설치가 엄청 간단한 데 비해서 장점이 좋습니다.

- 주피터 노트북 안에서 슬라이드 쇼 모드로 바로 변경 가능
- 슬라이드 쇼 내에서 코드 실행 가능

그래도 설치환경 구성이 자신이 없으신 분들이 당연히 계실 텐 데요. 도커를 활용해서 설치환경 자체를 컨테이너로 배포할 수 있습니다. 뒤에서 자세히 설명할게요.

excel 보다 편한점 (문서작성 예시)

"그냥 엑셀로 할래요..." 라는 질문이 왜인지 나올것 같아서 한가지 말씀드리자면, 엑셀을 버리자라는 의도는 아닙니다. 엑셀도 당연히 쓸건데요.

이제는 엑셀은 협업툴로써의 역할은 좀 축소되어야 한다고 생각합니다.(가 능한 만큼만 단계적으로요.)

엑셀과 같은 스프레드시트는 개인적인 스케치용도 나 혹은 데이터베이스 원본 용도로 사용하는 것이 적합 하다

라고 개인적으로는 생각하고 있습니다.

또한 수식입력도 "\$" 문자를 두번 사용하여 깔끔하게 입력됩니다.(LaTEX 지원)

예시) Fy < 2.4

 $rac{F_y}{F_e} \leq 2.25$

다음 슬라이드 부터는 주피터노트북으로 작성하는 문서의 예시입니다. 멀티엔지니어 압축부재 관련내용 정리하는 과제를 주피터 노트북으로 수 행한 것입니다.

E1. GENERAL PROVISIONS

The design compressive strength, φ cPn, and the allowable compressive strength, Pn/ Ω c, are determined as follows. The nominal compressive strength, Pn, shall be the lowest value obtained based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling

$$\varphi_c = 0.90(LRFD)$$

$$\Omega_c = 1.67(ASD)$$

TABLE USER NOTE E1.1 Selection Table for the Application of Chapter E Sections										
	Without Slender Elements With Slender Elements									
Cross Section	Sections in Chapter E	Limit States	Sections in Chapter E	Limit States						
\pm	E3 E4	FB TB	E7	LB FB TB						
EII	E3 E4	FB FTB	E7	LB FB FTB						
\Box	E3	FB	E7	LB FB						
\ominus	E3	FB	E7	LB FB						
- -	E3 E4	FB FTB	E7	LB FB FTB						
- -	E6 E3 E4	FB FTB	E6 E7	LB FB FTB						
L ~		E5								
• 1	E3	FB	N/A	N/A						
Unsymmetrical shapes other than single angles	E4	FTB	E7	LB FTB						
FB = flexural buckling, TB = torsional buckling, FTB = flexural-torsional buckling, LB = local buckling, N/A = not applicable										

E2. EFFECTIVE LENGTH

The effective length, L_c , for calculation of member slenderness, L_c/r , shall be determined in accordance with Chapter C or Appendix 7, where

K =effective length factor

 $L_c = KL = ext{effective length of member, in. (mm)}$

L= laterally unbraced length of the member, in. (mm)

r= radius of gyration, in. (mm)

User Note: For members designed on the basis of compression, the effective slenderness ratio, L c/r, preferably should not exceed 200.

User Note: The effective length, Lc, can be determined through methods other than those using the effective length factor, K.

E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to nonslender-element compression members, as defined in Section B4.1, for elements in axial compression.

User Note: When the torsional effective length is larger than the lateral effective length, Section E4 may control the design of wide-flange and similarly shaped columns. The nominal compressive strength, Pn, shall be determined based on the limit state of flexural buckling:

$$P_n = F_{cr} A_g \tag{E3-1}$$

The critical stress, F_{cr} , is determined as follows:

(a) When
$$\frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} \le 2.25$)

$$F_{cr} = \left(0.658 \frac{F_{y}}{F_{e}}\right) F_{y} \tag{E3-2}$$

(b) When
$$\frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} > 2.25$)

$$F_{cr} = 0.877 F_e$$
 (E3-3)

where

 A_g = gross cross-sectional area of member, in.² (mm²)

E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

 F_e = elastic buckling stress determined according to Equation E3-4, as specified in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as applicable, ksi (MPa)

$$=\frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2} \tag{E3-4}$$

 F_y = specified minimum yield stress of the type of steel being used, ksi (MPa) r = radius of gyration, in. (mm)

User Note: The two inequalities for calculating the limits of applicability of Sections E3(a) and E3(b), one based on L_c/r and one based on F_y/F_e , provide the same result for flexural buckling.

TABLE C-E3.1 Limiting values of L_c/r and F_e

-	I a	
F _y , ksl (MPa)	Limiting $\frac{L_c}{r}$	F _e , ksl (MPa)
36 (250)	134	16.0 (110)
50 (345)	113	22.2 (150)
65 (450)	99.5	28.9 (200)
70 (485)	95.9	31.1 (210)

In [7]:

```
def findFcr(E, Fy, sldns):
    Fe = pi**2 * E / (sldns ** 2)

if sldns <= 4.71*math.sqrt(E/Fy):
        For = math.pow(0.658, Fy/Fe) * Fy
else:
        For = 0.877 * Fe

return Fcr</pre>
```

In [8]:

```
result = lambda a: [findFcr(250000, a, x) for x in range(1,201)] ## 탄성계수 입력 res250 = result(250) res345 = result(345) res345
```

Out[8]:

- [344.9798101340706,
- 344.919247625235,
- 344.8183337362034,
- 344.6771038910017,
- 344.4956076542477,
- 344.2739087021612,
- 344.01208478533135,
- 343.7102276832731,
- 343.3684431508089,
- 342.98685085631945,
- 342.5655843119146,
- 342.1047907955812,
- 341.60463126537115,
- 341.0652802656998,
- 340.48692582583163,
- 339.86976935063456,
- 339.2140255036936,

- 338.5199220828768,
- 337.7876998884558,
- 337.0176125838878,
- 336.2099265493708,
- 335.36492072829117,
- 334.4828864666877,
- 333.56412734586,
- 332.6089590082581,
- 331.6177089767908,
- 330.5907164676992,
- 329.5283321971439,
- 328.43091818166147,
- 327.29884753264736,
- 326.1325042450302,
- 324.93228298030397,
- 323.69858884409007,
- 322.431837158404,
- 321.132453228807,

- 319.80087210662384,
- 318.4375383464139,
- 317.0429057588835,
- 315.6174371594327,
- 314.1616041125309,
- 312.6758866721174,
- 311.16077311822926,
- 309.6167596900559,
- 308.04435031562576,
- 306.4440563383299,
- 304.81639624049063,
- 303.1618953641828,
- 301.4810856295185,
- 299.7745052506051,
- 298.04269844938887,
- 296.2862151675959,
- 294.5056107769825,
- 292.70144578810863,

- 290.8742855578459,
- 289.02469999583354,
- 287.1532632700932,
- 285.26055351201444,
- 283.34715252092224,
- 281.4136454684341,
- 279.4606206028167,
- 277.4886689535483,
- 275.4983840362927,
- 273.490361558487,
- 271.46519912574723,
- 269.4234959492888,
- 267.365852554561,
- 265.2928704912893,
- 263.20515204511827,
- 261.10329995104433,
- 258.98791710882494,
- 256.85960630054785,

- 254.71896991054047,
- 252.5666096477965,
- 250.40312627109313,
- 248.22911931696868,
- 246.04518683072644,
- 243.85192510062723,
- 241.64992839542893,
- 239.43978870542614,
- 237.2220954871411,
- 234.99743541181022,
- 232.766392117808,
- 230.52954596714477,
- 228.2874738061698,
- 226.04074873060785,
- 223.78993985505116,
- 221.53561208702462,
- 219.27832590573732,
- 217.01863714562816,

- 214.75709678480845,
- 212.49425073849946,
- 210.23063965755796,
- 207.9667987321769,
- 205.70325750084424,
- 203.44053966463773,
- 201.17916290692676,
- 198.91963871854932,
- 196.6624722285259,
- 194.40816204036605,
- 192.15720007402055,
- 189.91007141352398,
- 187.6672541603699,
- 185.42921929265435,
- 183.1964305300182,
- 180.9693442044145,
- 178.74840913672168,
- 176.53406651921776,

- 174.32674980392719,
- 172.12688459684523,
- 169.93488855804156,
- 167.75117130763928,
- 165.5761343376603,
- 163.41017092972427,
- 161.2536660785834,
- 159.10699642147037,
- 156.97053017323313,
- 154.84462706722496,
- 152.72963830191472,
- 150.6259064931778,
- 148.53376563222375,
- 146.45354104911314,
- 144.38554938181244,
- 142.3300985507309,
- 140.28748773868085,
- 138.25800737619906,

- 136.24193913216214.
- 134.1627357516797,
- 132.07463164909922,
- 130.03489964177882,
- 128.04205709697285,
- 126.09467775414261,
- 124.19138917233938,
- 122.33087031142753,
- 120.51184923918697,
- 118.73310095686374,
- 116.99344533622629,
- 115.29174516164109,
- 113.62690427110068,
- 111.9978657905306,
- 110.40361045606335,
- 108.84315501930696,
- 107.3155507309483,
- 105.8198818983247,

- 104.35526451286852,
- 102.92084494358342,
- 101.51579869294622,
- 100.13932921184883,
- 98.7906667704,
- 97.4690673815973,
- 96.17381177505962,
- 94.90420441817646,
- 93.6595725821867,
- 92.43926545084547,
- 91.24265326947385,
- 90.0691265323139,
- 88.91809520623116,
- 87.78898798891807,
- 86.68125159985746,
- 85.59435010240266,
- 84.5277642554235,
- 83.48099089305357,

- 82.45354233115538,
- 81.44494579919612,
- 80.45474289629838,
- 79.4824890702972,
- 78.52775311869799,
- 77.5901167104895,
- 76.66917392782177,
- 75.76453082661118,
- 74.87580501518482,
- 74.00262525012282,
- 73.1446310485006,
- 72.30147231577538,
- 71.4728089885996,
- 70.65831069188054,
- 69.8576564094409,
- 69.07053416766706,
- 68.29664073156299,
- 67.53568131265696,

- 66.78736928823585,
- 66.05142593140751,
- 65.32758015151677,
- 64.6155682444636,
- 63.91513365249414,
- 63.226026733055996,
- 62.5480045363291,
- 61.88083059106184,
- 61.22427469836016,
- 60.57811273309375,
- 59.94212645259948,
- 59.31610331237745,
- 58.69983628848855,
- 58.09312370637712,
- 57.49576907585401,
- 56.907580931987944,
- 56.32837268166497,
- 55.75796245558611,

55.19617296548417, 54.642831366350386, 54.09776912347104]

In [25]:

```
plt.plot(range(1,201), res250, 'b--')
plt.plot(range(1,201), res345, 'r--')

plt.xlabel("Slenderness(Lc/r)")
plt.ylabel("Critical Stress, Fcr(MPa)")
plt.title("Result")
plt.show()
```


E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF SINGLE ANGLES AND MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to singly symmetric and unsymmetric members, certain doubly symmetric members, such as cruciform or built-up members, and doubly symmetric members when the torsional unbraced length exceeds the lateral unbraced length, all without slender elements. These provisions also apply to single angles with $b/t > 0.71\sqrt{E/F_y}$, where b is the width of the longest leg and t is the thickness.

The nominal compressive strength, P_n , shall be determined based on the limit states of torsional and flexural-torsional buckling:

$$P_n = F_{cr} A_g \tag{E4-1}$$

The critical stress, F_{cr} , shall be determined according to Equation E3-2 or E3-3, using the torsional or flexural-torsional elastic buckling stress, F_e , determined as follows:

(a) For doubly symmetric members twisting about the shear center

$$F_e = \left(\frac{\pi^2 E C_w}{L_{cz}^2} + G J\right) \frac{1}{I_x + I_y} \tag{E4-2}$$

(b) For singly symmetric members twisting about the shear center where y is the axis of symmetry

(For C, T, Double Angle)

$$F_{e} = \left(\frac{F_{ey} + F_{ez}}{2H}\right) \left[1 - \sqrt{1 - \frac{4F_{ey} F_{ez} H}{\left(F_{ey} + F_{ez}\right)^{2}}}\right]$$
(E4-3)

User Note: For singly symmetric members with the *x*-axis as the axis of symmetry, such as channels, Equation E4-3 is applicable with F_{ey} replaced by F_{ex} .

(c) For unsymmetric members twisting about the shear center, F_e is the lowest root of the cubic equation

$$(F_e - F_{ex})(F_e - F_{ey})(F_e - F_{ez}) - F_e^2(F_e - F_{ey}) \left(\frac{x_o}{\overline{r_o}}\right)^2 - F_e^2(F_e - F_{ex}) \left(\frac{y_o}{\overline{r_o}}\right)^2 = 0 \quad (E4-4)$$

where

$$C_w = \text{warping constant, in.}^6 \text{ (mm}^6)$$

$$F_{ex} = \frac{\pi^2 E}{\left(\frac{L_{cx}}{r_x}\right)^2} \tag{E4-5}$$

$$F_{ey} = \frac{\pi^2 E}{\left(\frac{L_{cy}}{r_y}\right)^2} \tag{E4-6}$$

$$F_{ez} = \left(\frac{\pi^2 E C_w}{L_{cz}^2} + G J\right) \frac{1}{A_g \overline{r_o}^2}$$
 (E4-7)

G = shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa)

H =flexural constant

$$=1-\frac{x_o^2+y_o^2}{\overline{r_o}^2}$$
 (E4-8)

= moment of inertia about the principal axes, in.⁴ (mm⁴) I_{χ}, I_{χ} = torsional constant, in.⁴ (mm⁴) K_{x} = effective length factor for flexural buckling about x-axis K_{y} = effective length factor for flexural buckling about y-axis K_{z} = effective length factor for torsional buckling about the longitudinal axis L_{cx} $= K_x L_x =$ effective length of member for buckling about x-axis, in. (mm) $= K_y L_y =$ effective length of member for buckling about y-axis, in. (mm) L_{cy} = $K_z L_z$ = effective length of member for buckling about longitudinal axis, L_{cz} in. (mm) L_x , L_y , L_z = laterally unbraced length of the member for each axis, in. (mm) = polar radius of gyration about the shear center, in. (mm) $\overline{r_o}^2 = x_o^2 + y_o^2 + \frac{I_x + I_y}{A_o}$ (E4-9)= radius of gyration about x-axis, in. (mm) r_x = radius of gyration about y-axis, in. (mm) $r_{\rm v}$ = coordinates of the shear center with respect to the centroid, in. (mm) x_o, y_o

User Note: For doubly symmetric I-shaped sections, C_w may be taken as $I_y h_o^2/4$, where h_o is the distance between flange centroids, in lieu of a more precise analysis. For tees and double angles, omit the term with C_w when computing F_{ez} and take x_o as 0.

(d) For members with lateral bracing offset from the shear center, the elastic buckling stress, F_e , shall be determined by analysis.

User Note: Members with lateral bracing offset from the shear center are susceptible to constrained-axis torsional buckling, which is discussed in the Commentary.

EXAMPLE E.1D W-SHAPE AVAILABLE STRENGTH CALCULATION

					8		8		참.	ī.		
표준 단면치수				단면적 단위	단면 2차 모멘트		단면 2차 반지름		단면계수			
mm		단위 무게	70000		ст		cm ³					
호칭 치수 (높이 X 변)	НХВ	t1	t2	r	cm ² kg/m	lx	ly	ix	ly	Zx	Zy	
100X50	100X50	5	7	8	11.85	9.30	187	14.8	3.98	1.12	37.5	5.91
100X100	100X100	6	8	10	21.90	17.2	383	134	4.18	2.47	76.5	26.7
125X60	125X60	6	8	9	16.84	13.2	413	29.2	4.95	1.32	66.1	9.73
125X125	125X125	6.5	9	10	30.31	23.8	847	293	5.29	3.11	136	47.0
150X75	150X75	5	7	8	17.85	14.0	666	49.5	6.11	1.66	88.8	13.2
150X100	148X100	6	9	11	26.84	21.1	1 020	151	6.17	2.37	138	30.1
150X150	150X150	7	10	11	40.14	31.5	1 640	563	6.39	3.75	219	75.1
175X90	175X90	5	8	9	23.04	18.1	1 210	97.5	7.26	2.06	139	21.7
175X175	175X175	7.5	11	12	51.21	40.2	2 880	984	7.50	4.38	330	112
2007100	198X99	4.5	7	11	23.18	18.2	1 580	114	8.26	2.21	160	23.0
200X100	200X100	5.5	8	11	27.16	21.3	1 840	134	8.24	2.22	184	26.8
200X150	194X150	6	9	13	39.01	30.6	2 690	507	8.30	3.61	277	67.6
	200X200	8	12	13	63.53	49.9	4 720	1 600	8.62	5.02	472	160
200X200	*200X204	12	12	13	71.53	56.2	4 980	1 700	8.35	4.88	498	167
	*208X202	10	16	13	83.69	65.7	6 350	2 200	8.83	5.13	628	218
2507125	248X124	5	8	12	32.68	25.7	3 540	255	10.4	2.79	285	41.1
250X125	250X125	6	9	12	37.66	29.6	4 050	294	10.4	2.79	324	47.0
250X175	244X175	7	11	16	56.24	44.1	6 120	984	10.4	4.18	502	113
10	*244X252	11	11	16	82.06	64.4	8 790	2 940	10.3	5.98	720	233
DEOVDEO	*248X249	8	13	16	84.70	66.5	9 930	3 350	10.8	6.29	801	269
250X250	250X250	9	14	16	92.18	72.4	10 800	3 650	10.8	6.29	867	292
	*250X255	14	14	16	104.7	82.2	11 500	3 880	10.5	6.09	919	304
300X150	298X149	5.5	8	13	40.80	32.0	6 320	442	12.4	3.29	424	59.3
200X120	300X150	6.5	9	13	46.78	36.7	7 210	508	12.4	3.29	481	67.7
2007200	294X200	8	12	18	72.38	56.8	11 300	1 600	12.5	4.71	771	160
300X200	*298X201	9	14	18	83.36	65.4	13 300	1 900	12.6	4.77	893	189

				Ť			참고						
표준 단면치수					단면적 단위 - 무게 -	단면 2차	모멘트	단면 2차	가 반지름	단면	계수		
mm			cn	cm ⁴		cm		cm ³					
호칭 치수 (높이 X 변)	НХВ	t1	t2	r	cm^2	kg/m	lx	ly	ix	iy	Zx	Zy	
	294X302	12	12	18	107.7	84.5	16 900	5 520	12.5	7.16	1 150	365	
	*298X299	9	14	18	110.8	87.0	18 800	6 240	13.0	7.50	1 270	417	
	300X300	10	15	18	119.8	94.0	20 400	6 750	13.1	7.51	1 360	450	
300X300	300X305	15	15	18	134.8	106	21 500	7 100	12.6	7.26	1 440	456	
	*304X301	11	17	18	134.8	106	23 400	7.730	13.2	7.57	1 540	514	
	*310X305	15	20	18	165.3	130	28 600	9 470	13.2	7.57	1 850	621	
	*310X310	20	20	18	180.8	142	29 900	10 000	12.9	7.44	1 930	645	
10	346X174	6	9	14	52.68	41.4	11 100	792	14.5	3.88	641	91.0	
350X175	350X175	7	11	14	63.14	49.6	13 600	984	14.7	3.95	775	112	
	*354X176	8	13	14	73.68	57.8	16 100	1 180	14.8	4.01	909	135	
350X250	*336X249	8	12	20	88.15	69.2	18 500	3 090	14.5	5.92	1 100	248	
	340X250	9	14	20	101.5	79.7	21 700	3 650	14.6	6.00	1 280	292	
	*338X351	13	13	20	135.3	106	28 200	9 380	14.4	8.33	1 670	534	
	344X348	10	16	20	146.0	115	33 300	11 200	15.1	8.78	1 940	646	
350X350	344X354	16	16	20	166.6	131	35 300	11 800	14.6	8.43	2 050	669	
	350X350	12	19	20	173.9	137	40 300	13 600	15.2	8.84	2 300	776	
	*350X357	19	19	20	198.4	156	42 800	14 400	14.7	8.53	2 450	809	
1000000	396X199	7	11	16	72.16	56.6	20 000	1 450	16.7	4.48	1 010	145	
400X200	400X200	8	13	16	84.12	66.0	23 700	1 740	16.8	4.54	1 190	174	
400X300	390X300	10	16	22	136.0	107	38 700	7 210	16.9	7.28	1 980	481	
	*388X402	15	15	22	178.5	140	49 000	16 300	16.6	9.54	2 520	809	
	*394X398	11	18	22	186.8	147	56 100	18 900	17.3	10.1	2 850	951	
400X400	*394X405	18	18	22	214.4	168	59 700	20 000	16.7	9.65	3 030	985	
	400X400	13	21	22	218.7	172	66 600	22 400	17.5	10.1	3 330	1 120	
	*400X408	21	21	22	250.7	197	70 900	23 800	16.8	9.75	3 540	1 170	
	*406X403	16	24	22	254.9	200	87 000	26 200	17.5	10.1	3 840	1 300	
	*414X405	18	28	22	295.4	232	92 800	31 000	17.7	10.2	4 480	1 530	
	*428X407	20	35	22	360.7	283	119 000		18.2	10.4	5 570	1 930	
-	*458X417	30	50	22	528.6	415	187 000	22,12	18.8	10.7	8 170	2 900	

Given:

상기 그림과 같이 작성된 도표를	시 6 시 시 시 급 그 건-	-1710-11	3 7 2/11 7	5	(Design E		
						Uı	nit- kN.n
부재 형상	kLx(S)	kLy(W)			ψPn	Pn/ψ	단위무:
H-248 x 249x 8 x 13	3000	3000					66kg/
H-248 x 249x 8 x 13	6000	3000					
H-248 x 249x 8 x 13	3000	6000					
H-248 x 249x 8 x 13	6000	6000					
H-400 x 200 x 8 x 13	3000	3000					66kg/
H-400 x 200 x 8 x 13	6000	3000					
H-400 x 200 x 8 x 13	3000	6000					
H-400 x 200 x 8 x 13	6000	6000					

In [10]:

```
mydata = {
    "size": [
        "H-248 x 249x 8 x 13",
        "H-400 x 200 x 8 x 13",
        "Lx": [
        3000,
```

```
6000,
    3000,
    6000,
    3000,
    6000,
    3000,
    6000,
],
"Ly": [
    3000,
    3000,
    6000,
    6000,
    3000,
    3000,
    6000,
    6000,
],
"Ag": [
    8470,
    8470,
    8470,
    8470,
    8412,
    8412,
    8412,
    8412,
],
"rx": [
    108,
    108,
    108,
    108,
    168,
    168,
    168,
    168,
],
"ry": [
```

```
62.9,
62.9,
62.9,
62.9,
45.4,
45.4,
45.4,
45.4,
```

Solution:

Fy = 250

```
In [11]:
```

```
Fy = 250

E = 200000

Ag = 84.7*10**2 ## (mm2)

K = 1

Lx = 3000

Ly = 3000

rx = 10.8 * 10 ## radius of gyration

ry = 6.29 * 10 ## radius of gyration
```

SLENDERNESS CHECK

```
In [12]:
```

```
def designStrength(_Fy, _E, _K, mydata, i):
    Fy = _Fy
   E = E
    size = mydata["size"][i]
   Ag = mydata["Ag"][i]
   K = K
   Lx = mydata["Lx"][i]
   Ly = mydata["Ly"][i]
   rx = mydata["rx"][i]
    ry = mydata["ry"][i]
    def govSldns(K, Lx, Ly, rx, ry):
        def chckSldns(K, L, r):
            return (K * L) / r
        SIdns_x = chckSIdns(K, Lx, rx)
        SIdns_v = chckSIdns(K, Lv, rv)
        gov = max(Sldns_x, Sldns_y)
       return gov
    sIdns = govSIdns(K, Lx, Ly, rx, ry)
    Fcr = findFcr(E, Fy, sldns)
    Pn = Fcr * Ag / 1000 ## kN
    \Phi c = 0.9
    \Omega c = 1.67
   LRFD = \phi c * Pn
   ASD = Pn / 1.67
    result = {
        "부재형상" : size,
        "kLx" : Lx.
       "kLy" : Ly,
        " ♦ Pn" ∶ LRFD,
        "Pn/\Omega" : ASD.
   return result
```

CRITICAL STRESS

Design Compressive Strength

CASE 1. FY = 250 MPA

```
In [13]:
```

```
result = [designStrength(250, 200000, 1, mydata, i) for i in range(len(mydata["size"]))]
data = pd.DataFrame(result)
```

In [14]:

data

Out[14]:

	부재형상	kLx	kLy	φPn	Pn/Ω
0	H-248 x 249x 8 x 13	3000	3000	1689.257346	1123.923717
1	H-248 x 249x 8 x 13	6000	3000	1618.119151	1076.592915
2	H-248 x 249x 8 x 13	3000	6000	1176.482522	782.756169
3	H-248 x 249x 8 x 13	6000	6000	1176.482522	782.756169
4	H-400 x 200 x 8 x 13	3000	3000	1501.609516	999.074861
5	H-400 x 200 x 8 x 13	6000	3000	1501.609516	999.074861

	부재형상	kLx	kLy	φPn	Pn/Ω
⁶ H-400 x 200 x 8	x 13	3000	6000	749.864339	498.911736
⁷ H-400 x 200 x 8	8 x 13	6000	6000	749.864339	498.911736

Case 2. Fy = 345 MPa

```
In [15]:
```

```
result = [designStrength(345, 200000, 1, mydata, i) for i in range(len(mydata["size"]))]
data = pd.DataFrame(result)
```

In [16]:

data

Out[16]:

	부재형상	kLx	kLy	φPn	Pn/Ω
0	H-248 x 249x 8 x 13	3000	3000	2226.764351	1481.546475
1	H-248 x 249x 8 x 13	6000	3000	2098.401174	1396.141832
2	H-248 x 249x 8 x 13	3000	6000	1351.642987	899.296731
3	H-248 x 249x 8 x 13	6000	6000	1351.642987	899.296731
4	H-400 x 200 x 8 x 13	3000	3000	1897.739886	1262.634654
5	H-400 x 200 x 8 x 13	6000	3000	1897.739886	1262.634654

	부재형상 k	Lx kLy	φPn	Pn/Ω
⁶ H-400 x 200 x 8 x	13 3000	6000	750.378380	499.253746
⁷ H-400 x 200 x 8 x	13 6000	6000	750.378380	499.253746

접근성

Anaconda

https://www.anaconda.com/

GroomIDE

https://ide.goorm.io/

Docker

https://www.docker.com/products/docker-desktop

수년 동안 애플리케이션과 종속물(종속성)을 분리해 체계화할 때 많이 사용한 방법 중 하나는 각 애플리케이션을 각각 가상 머신에 배치하는 방법이었다. 가상 머신을 이용하면, 동일한 물리적 하드웨어에서 여러 애플리케이션을 실행시키고, 소프트웨어 구성 요소 간 충돌과 하드웨어 리소스 경합을 최소한으로 유지할 수 있다. 그러나 가상 머신은 그 크기가 일반적으로 기가비이트급이다. 이식성(이동성), 소프트웨어 업데이트, 지속적인 통합과전달(Continuous Integration, CI/ Continuous Delivery, CD) 같은 문제 해결에도 도움을 주지 못한다.

여기에 도커(Docker) 컨테이너가 필요하다. 컨테이너를 활용하면, 운영체제커널을 공유하는 작고 가벼운 실행 환경으로 애플리케이션을 분리시킬 수있다. 통상 메가바이트급 크기인 컨테이너는 가상 머신 보다 리소스를 훨씬적게 사용하고, 그 즉시 시작할 수 있다. 동일한 하드웨어에서 훨씬 더 높은 밀도로 패키징할 수 있으며, 훨씬 적은 노력과 비용으로 대량 축소 및 확장할 수 있다는 장점이 있다.

결론: AISC360 to Jupyter Notebook

팀에서 주피터 노트북이 공유가 되려면 첫 스타트가 필요하다고 봅니다. 그래서 AISC360 코드 전문을 동적문서로 바꾸어서 팀에 공유하는 프로젝 트를 제안드립니다. 감사합니다.