Title of the Exercise: To operate two transformers in parallel and find their load sharing

Date: 9/11/2020

Aim: To operate two transformers in parallel and find their load sharing

Tool used: MATLAB

Electrical Circuit:

Parameters used for the study

Transformer rating = 50KVAV₁=2400V (primary voltage in Rms) V₂=240V (Secondary voltage in Rms) Frequency f=50 Hz

1st Transformer Parameters

 $R_1 = 0.7488$ ohm (Primary winding resistance)

 $X_{11} = 1.00224$ ohm (Primary winding reactance)

 R_2 = 0.007488 ohm (Secondary winding resistance)

 $X_{12} = 0.0100224$ ohm (Secondary winding reactance)

 $X_M = 5,008$ ohm (Magnetizing reactance)

 $R_c = 33,391$ ohm (Resistance for core losses)

2nd Transformer Parameters

 R_1 = 1.3 ohm (Primary winding resistance)

 X_{11} = 3 ohm (Primary winding reactance)

 R_2 = 0.002 ohm (Secondary winding resistance)

 $X_{12} = 0.03$ ohm (Secondary winding reactance)

 $X_M = 5,008$ ohm (Magnetizing reactance)

 $R_c = 33,391$ ohm (Resistance for core losses)

Theoretical Analysis

Calculate the values of IAC and IBC by given formulae

$$I_{AC} = \frac{Z_B}{Z_A + Z_B} I_{load}$$

$$I_{BC} = \frac{Z_A}{Z_A + Z_B} I_{load}$$

 $I_{AC}{\simeq}\ I_A\ \&\ I_{BC}{\simeq}\ I_B$ $Z_A=$ Equivalent impedence of Transformer 1 referred to secondary side.

 $Z_B =$ Equivalent impedence of Transformer 2 referred to secondary side.

Calculations:

1st Transformer(K=0.1)

R1=0.7880hm

 $R1' = 78.88 \text{ohm} (R1' = R1/K^2)$

Similarly

X11=1.0024ohm

X1'=100.224ohm

R2=0.00748ohm

X12=0.010028

2nd Transformer(K=1/10)

R1=1.3ohm

 $R1'=130ohm(R1' = R1/K^2)$

Similarly

X11=3 ohm

X1'=300 ohm

R2=0.002 ohm

X12=0.03

 $Za = \{(0.007488+74.88)^2 + (0.010024+100.224)^2\}^{1/2} = 125.12 \text{ ohm}$

Zb= $\{(130+0.02)^2 + (300+0.03)^2\}^{1/2} = 326.984$ ohm

Procedure for simulation study

- Write the coding for initializing the input parameters and as per requirement of plots in m file and save it.
- Open new Simulink file and make mathematical modelling as per circuit diagram and save it.
- Run the m file first, after that run Simulink file.
- View the result in Scope.
- Again, run m file and view the plots.
- Make various plots and write the results.

Simulation Diagram

Results and Discussions

S.No.	Vload	Iload	Ia	I _b	Iac	Ibc	ZL
							R _L L _L
1	127.3	121.4	88.29	33.82	87.80	33.597	1 0.001
2	209.8	41.88	30.47	11.65	30.29	11.59	5 0.001
3	233.1	7.426	5.402	2.07	5.371	2.055	20 0.1
4	239	0.7637	0.5562	0.2173	0.552	0.2113	5 1
5	240.1	0.2551	0.1872	0.0771	0.1845	0.0706	20 3

Comparisions

In case 2

$$I_{AC} = \frac{Z_B}{Z_A + Z_B} I_{load}$$

⇒ 41.88*326.984/(125.12+326.984)=30.29A

$$I_{AC} = \frac{Z_B}{Z_A + Z_B} I_{load}$$

⇒ 41.88*125.12/(125.12+326.984)=11.59A

Hence:

$$I_{AC} \simeq I_A \& I_{BC} \simeq I_B$$

Conclusion

Parallel operation of transformers and their load sharing is done successfully.

Inference

$$I_{AC} \simeq I_A \& I_{BC} \simeq I_B$$

Is achieved successfully.

References

NIL