PROVABLY CORRECT IMPLEMENTATION

Verifica del Software

A.A. 2019-2020

Niccolo' Vettorello 1237291

INTRODUCTION

KEY IDEA

A formal specification of the semantics allows us to argue about the correctness of the implementation

INTRODUCTION

• **Abstract Machine (AM):** we'll give a formal specification of its set of instructions

Translation Functions: replace statements in While with AM code sequences

INTRODUCTION

OUR STRATEGY

- 1) Define a formal semantics for AM
- 2) Define translation functions
- 3) Prove that if we translate a statement in While and execute it on AM, then the original meaning is preserved

CONFIGURATIONS

 $< c,e,s > \in \mathbf{Code} \times \mathbf{Stack} \times \mathbf{State}$

- Code: c is a sequence of instructions
- **Stack:** e ∈ Stack = (**Z** ∪ **T**)*
- Storage: we can imagine it as a state, i.e. $s \in State$

SYNTAX

```
inst ::= PUSH-n | ADD | MULT | SUB |

TRUE | FALSE | EQ | LE | AND | NEG |

FETCH-x | STORE-x |

NOOP | BRANCH(c_1, c_2) | LOOP(c_1, c_2)
```

c ::= ε | inst:c

OPERATIONAL SEMANTICS

$$ADD:c, z_1:z_2:e, s> > < c, (z_1+z_2):e, s>$$

$$<$$
SUB:c, z_1 : z_2 :e, $s> > <$ c, $(z_1$ - z_2):e, $s>$

$$<$$
MULT:c, z_1 : z_2 :e, $s> > <$ c, (z_1*z_2) :e, $s>$

$$z_1, z_2 \in \mathbf{Z}$$

OPERATIONAL SEMANTICS

z_1:z_2:e, s>
$$\Rightarrow$$
 (z_1=z_2):e, s>
z_1:z_2:e, s> \Rightarrow (z_1<=z_2):e, s>

$$z, z_1, z_2 \in \mathbf{Z}$$

$$\Rightarrow$$
 \Rightarrow \mapstoz]>

$$t, t_1, t_2 \in \mathbf{T}$$

OPERATIONAL SEMANTICS

c_1, c_2):c, e, s>
$$\triangleright$$
< c_1 :BRANCH(c_2 :LOOP(c_1, c_2), NOOP):c, e, s>

$$c_1, c_2 \in Code$$

$$t \in T$$

Finite computation sequence

$$\gamma_0, \gamma_1, ..., \gamma_k$$

- $K \in N$
- $\gamma_0 = < c, \epsilon, s >$
- $\gamma_i \triangleright \gamma_{i+1} \ \forall \ i \in 0, ..., k-1$
- $\neg \exists \ \gamma \mid \gamma_k \rhd \gamma$

Infinite computation sequence

$$\gamma_0, \gamma_1, \dots$$

- $\gamma_0 = \langle c, \varepsilon, s \rangle$
- $\gamma_i \rhd \gamma_{i+1} \ \forall \ i \in N$

 γ_k can be stuck or in final form, i.e. $\langle \epsilon, e, s \rangle$

Finite computation sequence: example

<PUSH-1:STORE-x, ε, s> ⊳

<STORE-x, 1, s> ⊳

<ε, ε, s[x→1]>

Infinite computation sequence: example

<LOOP(TRUE,NOOP), ε, s> ⊳

<TRUE:BRANCH(NOOP:LOOP(TRUE, NOOP), NOOP), ε, s> ▷

<BRANCH(NOOP:LOOP(TRUE, NOOP), NOOP), tt, s> ▷

. . .

PROPERTIES

Composition Lemma

$$b^k < c', e', s'> \Rightarrow b^k < c':c_2, e':e_2, s'>$$

Decomposition Lemma

$$< c_1: c_2, e, s > \triangleright^k < \epsilon, e'', s'' > \Rightarrow$$

 $\exists \ \gamma = < \epsilon, e', s' >, \ \exists \ k_1, k_2 \in \mathbf{N}$ such that

 $< c_1, e, s > b_1^k < \epsilon, e', s' > \Lambda < c_2, e', s' > b_2^k < \epsilon, e'', s'' >$, with $k = k_1 + k_2$

Proved by structural

induction on the length of

the computation

sequence

PROPERTIES

Determinism

The operational semantics given for AM is deterministic, i.e.

$$\forall \, \gamma, \gamma', \gamma'' \\ \gamma \rhd \gamma' \wedge \gamma \rhd \gamma'' \, \Rightarrow \, \gamma' = \gamma''$$

EXECUTION FUNCTION M

M: Code \rightarrow (State State)

- The determinism of the semantics for AM entails the fact that M is well-defined
- 2) M is the meaning of a piece of code for AM

ARITHMETIC EXPRESSIONS

CA: Aexp \rightarrow Code

$$CA|[n]| = PUSH-n$$

$$CA|[x]| = FETCH-x$$

$$CA|[a_1 + a_2]| = CA|[a_2]|:CA|[a_1]|:ADD$$

$$CA|[a_1 - a_2]| = CA|[a_2]|:CA|[a_1]|:SUB$$

$$CA|[a_1 * a_2]| = CA|[a_2]|:CA|[a_1]|:MULT$$

BOOLEAN EXPRESSIONS

CB: Bexp \rightarrow Code

$$CB|[a_1 = a_2]| = CA|[a_2]|:CA|[a_1]|:EQ$$

$$CB | [a_1 <= a_2] | = CA | [a_2] | : CA | [a_1] | : LE$$

$$CB|[\neg b]| = CB|[b]|$$
:NEG

$$CB | [b_1 \land b_2] | = CB | [b_2] | : CB | [b_1] | : AND$$

PROPERTIES OF CA AND CB

- 1) CA and CB definition is compositional
- 2) CA and CB definition preserves the order of operands

STATEMENTS

 $CS: Stm \rightarrow Code$

$$CS|[x:=a]| = CA|[a]|:STORE-x$$

$$CS$$
[skip]| = NOOP

$$CS[[S_1;S_2]] = CS[[S_1]]:CS[[S_2]]$$

This definition is compositional

CS[if b then S_1 else S_2] = CB[[b]]:BRANCH(CS[[S_1]],|[S_2]])

$$CS$$
[while b do S]] = LOOP(CB [b]], CS [S]])

SEMANTIC FUNCTION S_{AM}

We can now express the meaning of a statement in While by means of the semantic function S_{AM} defined as:

$$S_{AM}$$
: Stm \rightarrow (State \hookrightarrow State)

$$S_{AM} = M \circ CS$$

Represents the meaning of the AM code

Translates the statement Into AM code

ARITHMETIC EXPRESSIONS

We want to show that:

$$\forall a \in Aexp < CA|[a]|, \epsilon, s > \triangleright^* < \epsilon, A|[a]|s, s >$$

Furthermore, every intermediate configuration will have a non-empty stack.

The proof is based on structural induction on a

ARITHMETIC EXPRESSIONS: PROOF

Case: n

1)
$$CA[[n]] = PUSH-n$$

2) \varepsilon, s>
$$\triangleright$$
 < ε , $M[n]$, s>

3)
$$A[[n][s = M[[n]]]$$

by definition of *CA* semantics of AM by definition of *A*

It's easily observed that every configuration has a non-empty stack

Case: x

1)
$$CA[x] = FETCH-x$$

2) \varepsilon, s>
$$\triangleright$$
 < ε , (s x), s>

3)
$$A[x]s = s x$$

by definition of *CA* semantics of AM by definition of *A*

ARITHMETIC EXPRESSIONS: PROOF

Case: $a_1 + a_2$

1) $CA|[a_1 + a_2]| = CA|[a_2]|:CA|[a_1]|:ADD$ by definition of CA

2) $\langle CA|[a_1]|$, ε , $s > \triangleright^* \langle \varepsilon$, $A|[a_1]|s$, s > by inductive hypothesis

3) $\langle CA|[a_2]|, \varepsilon, s > \triangleright^* \langle \varepsilon, A|[a_2]|s, s > by inductive hypothesis$

Note that in 2) and 3) every intermediate configuration has a non-empty stack

ARITHMETIC EXPRESSIONS: PROOF

- 4) < CA $|[a_2]|:CA|[a_1]|:ADD, <math>\epsilon$, ϵ $> \triangleright^* <$ CA $|[a_1]|:ADD, <math>A$ |[a_2]| ϵ , ϵ by Composition Lemma
- 5) < CA $[[a_1]$ $[:ADD, A][[a_2]]$ [s, s> <math>> *< ADD, A $[[a_1]]$ $[s:A][[a_2]]$ [s, s> by Composition Lemma
- 6) <ADD, $A|[a_1]|s:A|[a_2]|s$, $s> > < \epsilon, A|[a_1]|s+A|[a_2]|s$, s> > by semantics of AM
- 7) $A[a_1]s + A[a_2]s = A[a_1 + a_2]s$ by definition of A

ARITHMETIC EXPRESSIONS: PROOF

Case: $a_1 - a_2$

Analogous

Case: $a_1 * a_2$

Analogous

BOOLEAN EXPRESSIONS

In a similar way, we can prove that

$$\forall b \in Bexp < CB|[b]|, \epsilon, s > \triangleright^* < \epsilon, B|[B]|s, s >$$

And every intermediate configuration will have a non-empty stack.

STATEMENTS

We want to prove that

$$\forall S \in Stm$$
 $S_{AM}[S] = S_{ns}[S]$

That is:

- If the execution of S terminates in the context of natural semantics then it terminates on AM too, and vice versa;
- If the execution of S loops in the context of natural semantics then it loops on AM too, and vice versa.

STATEMENTS

Lemma A: \forall S \in Stm, \forall s, s' \in State

$$\langle S, S \rangle \rightarrow S' \Rightarrow \langle CS|[S]|, \epsilon, S \rangle \triangleright^* \langle \epsilon, \epsilon, S' \rangle$$

Lemma B: \forall S \in Stm, \forall s, s' \in State

$$\langle CS|[S]|, \epsilon, s \rangle \triangleright^k \langle \epsilon, e, s' \rangle \Rightarrow (\langle S, s \rangle \rightarrow s' \land e=\epsilon)$$

$$[ass_{ns}] \qquad \langle x := a, s \rangle \rightarrow s[x \mapsto \mathcal{A}[\![a]\!] s]$$

$$[skip_{ns}] \qquad \langle skip, s \rangle \rightarrow s$$

$$[comp_{ns}] \qquad \frac{\langle S_1, s \rangle \rightarrow s', \langle S_2, s' \rangle \rightarrow s''}{\langle S_1; S_2, s \rangle \rightarrow s''}$$

$$[if_{ns}^{tt}] \qquad \frac{\langle S_1, s \rangle \rightarrow s'}{\langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \rightarrow s'} \ \ if \ \mathcal{B}[\![b]\!] s = \mathbf{tt}$$

$$[if_{ns}^{ff}] \qquad \frac{\langle S_2, s \rangle \rightarrow s'}{\langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \rightarrow s'} \ \ if \ \mathcal{B}[\![b]\!] s = \mathbf{ff}$$

$$[while_{ns}^{tt}] \qquad \frac{\langle S, s \rangle \rightarrow s', \langle while \ b \ do \ S, s' \rangle \rightarrow s''}{\langle while \ b \ do \ S, s \rangle \rightarrow s''} \ \ if \ \mathcal{B}[\![b]\!] s = \mathbf{tt}$$

$$[while_{ns}^{ff}] \qquad \langle while \ b \ do \ S, s \rangle \rightarrow s \ \ if \ \mathcal{B}[\![b]\!] s = \mathbf{ff}$$

Table 2.1 Natural semantics for While

LEMMA A: PROOF

The proof proceeds by induction on the shape of the derivation tree for $\langle S, s \rangle \rightarrow s'$

Case: [ass_{ns}]

We have $\langle x := a, s \rangle \rightarrow s[x \mapsto A|[a]|s]$ as hypothesis;

1) CS[[x:=a]] = CA[[a]]:STORE-x

by definition of CS

2) < CA|[a]|, ϵ , $s > \triangleright^* < \epsilon$, A|[a]|s, s >

by the correctness of *CA*

3) < CA|[a]|:STORE-x, ϵ , s> \triangleright *<STORE-x, A|[a]|s, s> by Composition Lemma

4) < STORE-x, $A|[a]|s,s> > < \epsilon, \epsilon, s[x \mapsto A|[a]|s] >$

by semantics of AM

LEMMA A: PROOF

Case: [skip_{ns}]

We have $\langle skip, s \rangle \rightarrow s$ as hypothesis;

1) *CS* |[skip]| = NOOP

by definition of CS

2) <NOOP, ε, s> ▷ <ε, ε, s>

by semantics of AM

LEMMA A: PROOF

Case: [comp_{ns}]

We have $(S_1; S_2, s) \rightarrow s''$ as hypothesis. By induction hypothesis we get:

I.
$$\langle CS|[S_1]|, \epsilon, s > \triangleright^* \langle \epsilon, \epsilon, s' \rangle$$

II.
$$\langle CS|[S_2]|$$
, ϵ , $s' > \triangleright^* \langle \epsilon$, ϵ , $s'' >$

It follows that:

1)
$$CS[[S_1;S_2]] = CS[[S_1]]:CS[[S_2]]$$

2)
$$<$$
 CS $[S_1]$ $:$ CS $[S_2]$ $[S_2]$ $[S_3]$ $[S_3]$ $[S_3]$ $[S_3]$ $[S_3]$ $[S_3]$

3)
$$<$$
 CS $[S_2]$ $[S_2]$ $[S_3]$ $[S_4]$ $[S_5]$ $[S_5]$ $[S_5]$

LEMMA A: PROOF

Case: [if_{ns}]tt

We assume (if b then S_1 else S_2 , s) \rightarrow s' and B[[b][s = tt]. By induction hypothesis we get:

$$\langle CS|[S_1]|, \, \varepsilon, \, s > \triangleright^* \langle \varepsilon, \, \varepsilon, \, s' \rangle$$

It follows that:

- 1) $CS[[if b then S_1 else S_2]] = CB[[b]]:BRANCH(CS[[S_1]], CS[[S_2]])$ by definition of CS
- 2) < CB $|[b]|:BRANCH(CS|[S_1]|, CS|[S_2]|), <math>\epsilon$, ϵ $> >^* < BRANCH(CS|[S_1]|, CS|[S_2]|), <math>\epsilon$ by Composition Lemma and correctness of ϵ
- 3) $\langle BRANCH(CS|[S_1]|, CS|[S_2]| \rangle$, $B|[b]|s, s \rangle \triangleright \langle CS|[S_1]|, \epsilon, s \rangle \triangleright^* \langle \epsilon, \epsilon, s' \rangle$ by semantics of AM, B|[b]|s = tt and IH

LEMMA A: PROOF

Case: [if_{ns}]ff

Analogous.

LEMMA A: PROOF

Case: [while_{ns}]tt

We assume (while b do S, s) \rightarrow s" and B|[b]|s = tt. By induction hypothesis we get:

I.
$$\langle CS|[S]|$$
, ε , $s > \rhd^* < \varepsilon$, ε , $s' >$
II. $\langle LOOP(CB|[b]|$, $CS|[S]|$), ε , $s' > \rhd^* < \varepsilon$, ε , $s'' >$

It follows that:

- 1) CS[[while b do S]] = LOOP(CB[[b]], CS[[S]])
- 2) <LOOP(*CB*|[b]|, *CS*|[S]|), ε, s> ▷ <*CB*|[b]|:BRANCH(*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|),NOOP), ε, s>
- 3) < CB [b] $|:BRANCH(CS|[s]|:LOOP(CB|[b]|, CS|[S]|),NOOP), <math>\epsilon$, ϵ $> \epsilon$ $> \epsilon$ >

by definition of CS

by semantics of AM

by Composition Lemma and correctness of *CB*

LEMMA A: PROOF

- 4) <BRANCH(*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|),NOOP), *B*|[b]|s, s> ▷ <*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|), ε, s> by semantics of AM, B|[b]|s = tt
- 5) <*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|), ε, s> ▷* <LOOP(*CB*|[b]|, *CS*|[S]|), ε, s'> ▷* <ε, ε, ε"> by IH 1, Composition Lemma, IH 2

LEMMA A: PROOF

Case: [while_{ns}]^{ff}

We assume (while b do S, s) \rightarrow s and B|[b]|s = ff. We have:

- 1) CS|[while b do S]| = LOOP(CB|[b]|, CS|[S]|) by definition of CS
- 2) <LOOP(*CB*|[b]|, *CS*|[S]|), ε, s> ▷ <*CB*|[b]|:BRANCH(*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|),NOOP), ε, s> by semantics of AM

LEMMA A: PROOF

3) $\langle CB|[b]|:BRANCH(CS|[s]|:LOOP(CB|[b]|, CS|[S]|),NOOP), \epsilon, s > \triangleright^*$

 $\langle BRANCH(CS|[s]|:LOOP(CB|[b]|, CS|[S]|),NOOP), B|[b]|s, s \rangle \triangleright$

<NOOP, ε, s> ⊳

<ε, ε, s>

by correctness of CB, Composition Lemma, B|[b]|s = ff, semantics of AM

LEMMA B: PROOF

The proof proceeds by induction on the length k of the computation sequence: for k = 0 the result holds vacuously, since $CS[S] = \epsilon$ is not possible.

We assume it holds for $k \le k_0$ and prove that it holds for $k = k_0 + 1$.

Case: skip

1) *CS*|[skip]| = NOOP

- by definition of CS
- 2) <NOOP, ε , s> \triangleright < ε , ε , s>
- by semantics of AM

LEMMA B: PROOF

Case: *x:=a*

We assume $\langle CA|[a]|$:STORE-x, ε , s> $\triangleright^k_0^{+1} < \varepsilon$, e, s'>. By Decomposition Lemma exists $< \varepsilon$, e", s"> such that:

I. $\langle CA|[a]|, \epsilon, s > \triangleright^k_1 \langle \epsilon, e'', s'' \rangle$

II. $\langle STORE-x, e'', s'' \rangle \triangleright_{k_2} \langle \epsilon, e, s' \rangle$

And $k_1 + k_2 = k_0 + 1$.

We have that:

1) e'' = A|[a]|s and s = s'' by correctness of CA and determinism

2) $s' = s[x \mapsto A|[a]|s] \land e = \varepsilon$ by semantics of AM

LEMMA B: PROOF

Case: S_1 ; S_2

We assume $\langle CS|[S_1]|:CS|[S_2]|$, ϵ , $s > \triangleright^k_0^{+1} < \epsilon$, ϵ , ϵ , ϵ . By Decomposition Lemma exists $<\epsilon$, ϵ '', s'' > such that:

I.
$$\langle CS|[S_1]|$$
, ϵ , $s > \triangleright^k_1 \langle \epsilon$, e'' , $s'' >$

II.
$$\langle CS|[S_2]|$$
, e", s"> $\triangleright^k_2 \langle \epsilon$, e, s'>

And
$$k_1 + k_2 = k_0 + 1$$
.

IH tells us that

a)
$$\langle S_1, s \rangle \rightarrow s'' \wedge e'' = \epsilon$$

b)
$$\langle S_2, S'' \rangle \rightarrow S' \wedge e = \epsilon$$

The rule $[comp_{ns}]$ gives the desired result.

LEMMA B: PROOF

Case: if b then S_1 else S_2

We assume $\langle CB|[b]|$:BRANCH($CS|[S_1]|,CS|[S_2]|$), ϵ , $s > \triangleright^k_0 + 1 < \epsilon$, e, s'>. By Decomposition Lemma exists $<\epsilon$, e", s"> such that:

I.
$$\langle CB|[b]|$$
, ϵ , $s > \triangleright^k_1 \langle \epsilon$, e'' , $s'' >$

II. $\langle BRANCH(CS|[S_1]|, CS|[S_2]|), e'', s'' \rangle \triangleright_{k_2} \langle \epsilon, e, s' \rangle$

And $k_1 + k_2 = k_0 + 1$.

We note that, by the correctness of CB and determinism, e" = B[b][s and s" = s.

LEMMA B: PROOF

Now:

a)
$$B/[b]/s = tt$$

$$<$$
CS $[S_1]$ $[S_1]$ $[S_1]$ $[S_1]$ $[S_2]$ $[S_3]$ $[S_3]$ $[S_3]$ $[S_3]$ $[S_4]$ $[S_3]$ $[S_4]$ $[S_5]$ $[S_5]$ $[S_5]$ $[S_6]$ $[S_7]$ $[S_7]$

b)
$$B/[b]/s = tt$$

Analogous.

LEMMA B: PROOF

Case: while b do S

We assume $\langle LOOP(CB|[b]|, CS|[S]|)$, ϵ , $s > \triangleright_0^{k-1} \langle \epsilon$, ϵ , ϵ , ϵ .

By the semantics of AM, we have

```
<LOOP(CB|[b]|, CS|[S]|), ε, s> ▷ 
<CB|[b]|:BRANCH(CS|[s]|:LOOP(CB|[b]|, CS|[S]|),NOOP), ε, s> ▷<sup>k</sup><sub>0</sub> 
<ε, e, s'>
```

LEMMA B: PROOF

By Decomposition Lemma exists $\langle \epsilon, e'', s'' \rangle$ such that:

1.
$$< CB | [b] |, \epsilon, s > \triangleright_{1}^{k} < \epsilon, e'', s'' >$$

2. <BRANCH(CS[s]]:LOOP(CB[[b]], CS[[S]]),NOOP), e", s"> \triangleright^k_2 < ϵ , e, s'>

And
$$k_1 + k_2 = k_0 + 1$$
.

We note that, by the correctness of CB and determinism, e" = B[b][s and s" = s.

LEMMA B: PROOF

1)
$$B/[b]/s = tt$$

$$<$$
CS $|[S]|:LOOP(CB|[b]|, CS|[S]|), ϵ , s> \triangleright_2^{k-1} by the semantics of AM $<\epsilon$, e, s'>$

Again by Decomposition Lemma, there exists $\langle \epsilon, e''', s''' \rangle$ such that:

a)
$$<$$
 CS[S]|, ϵ , $s > \triangleright_{3}^{k} < \epsilon$, e''' , $s''' >$

And
$$k3 + k4 = k2 - 1$$

LEMMA B: PROOF

We can apply IH on a) to obtain:

$$\langle S, s \rangle \rightarrow s''' \wedge e''' = \varepsilon$$

Again by IH on b) we get:

$$f$$
 while b do S, s'''> → s Λ e = ε

Then we conclude by using the rule $[while_{ns}]^{tt}$

LEMMA B: PROOF

2)
$$B/[b]/s = ff$$

We get:

<NOOP, ε , s> \triangleright < ε , ε , s> by semantics of AM

It's easy to see that $e = \varepsilon$ and s = s'. We conclude using the rule $[while_{ns}]^{ff}$

We want to prove that s.o.s. semantics and AM semantics are equivalent, i.e.

$$\forall S \in Stm$$

$$S_{AM}[S] = S_{sos}[S]$$

The proof for this theorem is based on the idea that the two semantics proceed in *lockstep*: one is able to find corresponding sequences that produce similar changes in configurations.

The concept of similarity between configurations is captured by the bisimulation relation, defined as:

$$\forall S \in Stm$$

$$S \approx \langle \epsilon, \epsilon, s \rangle$$

 $\langle S, s \rangle \approx \langle CS | [S] |, \epsilon, s \rangle$

$$[ass_{sos}] \qquad \langle x := a, s \rangle \Rightarrow s[x \mapsto \mathcal{A}[\![a]\!]s]$$

$$[skip_{sos}] \qquad \langle skip, s \rangle \Rightarrow s$$

$$[comp_{sos}^1] \qquad \frac{\langle S_1, s \rangle \Rightarrow \langle S_1', s' \rangle}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s' \rangle}$$

$$[comp_{sos}^2] \qquad \frac{\langle S_1, s \rangle \Rightarrow s'}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle}$$

$$[if_{sos}^{tt}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_1, s \rangle \ if \ \mathcal{B}[\![b]\!]s = tt$$

$$[if_{sos}^{ff}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_2, s \rangle \ if \ \mathcal{B}[\![b]\!]s = ff$$

$$[while_{sos}] \qquad \langle while \ b \ do \ S, s \rangle \Rightarrow$$

$$\langle if \ b \ then \ (S; \ while \ b \ do \ S) \ else \ skip, s \rangle$$

Table 2.2 Structural operational semantics for While

Lemma A:

$$\gamma_{sos} \approx \gamma_{am} \wedge \gamma_{sos} \Rightarrow \gamma'_{sos}$$
then

⊳⁺ is defined as ⊳ ◊ ⊳*

$$\exists \gamma'_{am} \text{ such that } \gamma_{am} \triangleright^+ \gamma'_{am} \wedge \gamma'_{sos} \approx \gamma'_{am}$$

Furthermore, if $\langle S, s \rangle \Rightarrow * s'$ then $\langle CS|[S]|, \epsilon, s \rangle \triangleright^* \langle \epsilon, \epsilon, s' \rangle$.

Lemma A states that whenever one step of structural operational semantics changes the configuration, there exists a sequence of steps in AM semantics that will produce a similar change.

Lemma B:

$$\gamma_{sos} \approx \gamma_{am}^{1} \Lambda$$

 $\gamma_{am}^1 > \gamma_{am}^2 > \dots > \gamma_{am}^k$ with k>1and only γ_{am}^k and γ_{am}^1 have empty stack

then

 $\exists \gamma'_{sos}$ such that $\gamma_{sos} \Rightarrow \gamma'_{sos} \wedge \gamma'_{sos} \approx \gamma^{k}_{am}$

Furthermore, if $\langle CS|[S]|$, ϵ , $s > \triangleright^* \langle \epsilon$, ϵ , $s' > then <math>\langle S, s \rangle \Rightarrow^* s'$.

Lemma B states that whenever AM makes a sequence of steps from one configuration with empty stack to another configuration with empty stack, the structural operational semantics can make a similar change.

LEMMA A: PROOF

The proof proceeds by *induction on the shape of the derivation* tree for the single s.o.s. step.

By hypothesis we know that s.o.s. makes a step. This rules out the possibility that $\gamma_{sos} = s$. In fact γ_{sos} must be in the form $\langle S, s \rangle$, so we prove the validity of the Lemma for every type of statement.

Case: skip

- 1) $\langle skip, s \rangle \approx \langle NOOP, \epsilon, s \rangle \wedge \langle skip, s \rangle \Rightarrow s$ our hypothesis
- 2) <NOOP, ε , s> \triangleright < ε , ε , s> \approx s by semantics of AM

LEMMA A: PROOF

Case: *x:=a*

- 1) $\langle x:=a,s \rangle \approx \langle CA|[a]|:STORE-x, \varepsilon, s \rangle \wedge \langle x:=a,s \rangle \Rightarrow s[x \mapsto A|[a]|s]$ our hypothesis
- 2) < CA [a] |, ϵ , s > > * < ϵ , A [a] |s, s > by correctness of CA
- 3) < CA[[a]]:STORE-x, ϵ , ϵ , ϵ >>> < < STORE-x, A[[a]]s, ϵ >> ϵ , ϵ , ϵ , ϵ , ϵ , ϵ , ϵ (a)]s] by Composition Lemma and semantics of AM

LEMMA A: PROOF

Case: S_1 ; S_2

$$\langle S_1; S_2, s \rangle \approx \langle CS|[S_1]|:CS|[S_2]|, \epsilon, s \rangle$$
 our hypothesis

1) The rule used is $[comp_{sos}]$, i.e. our hypothesis

$$\langle S_1; S_2, s \rangle \Rightarrow \langle S'_1; S_2, s' \rangle$$

because

$$\langle S_1, S \rangle \Rightarrow \langle S'_1, S' \rangle$$

- a) IH tells us that $\langle CS|[S_1]|, \epsilon, s \rangle \rightarrow \langle CS|[S_1]|, \epsilon, s' \rangle$
- b) $\langle CS|[S_1]|:CS|[S_2]|$, ε , $s > \rhd^+ \langle CS|[S'_1]|:CS|[S_2]|$, ε , $s' > \approx \langle S'_1; S_2, s' \rangle$ by Composition Lemma

LEMMA A: PROOF

2) The rule used is $[comp_{sos}^2]$, i.e. our hypothesis

$$\langle S_1; S_2, S \rangle \Rightarrow \langle S_2, S' \rangle$$

because

$$\langle S_1, S \rangle \Rightarrow S'$$

- a) IH tells us that $\langle CS|[S_1]|$, ϵ , $s > \triangleright^+ < \epsilon$, ϵ , s' >
- b) $\langle CS|[S_1]|:CS|[S_2]|$, ϵ , $s > \rhd^+ \langle CS|[S_2]|$, ϵ , $s' > \approx \langle S_2, s' \rangle$

by Composition Lemma

LEMMA A: PROOF

Case: if b then S_1 else S_2

 $\langle \text{if b then S}_1 \text{ else S}_2, s \rangle \approx \langle CB|[b]|:BRANCH(CS|[S_1]|, CS|[S_2]|), \epsilon, s \rangle$

our hypothesis

We note that:

<CB $|[b]|:BRANCH(CS|[S_1]|,CS|[S_2]|)$, ϵ , ϵ $>>*<BRANCH(CS|[S_1]|,CS|[S_2]|)$, B|[b]|s, ϵ >>*
by correctness of CB and Composition Lemma

1) The rule used is $[if_{sos}]^{tt}$: we have B|[b]|s = tt and $\langle if b then S_1 else S_2, s \rangle \Rightarrow \langle S_1, s \rangle$ $\langle BRANCH(CS|[S_1]|, CS|[S_2]|), B|[b]|s, s \rangle \triangleright \langle CS|[S_1]|, \epsilon, s \rangle \approx \langle S_1, s \rangle$ by semantics of AM

LEMMA A: PROOF

2) The rule used is $[if_{sos}]^{ff}$ and we have B|[b]|s = ff and $\langle if b \text{ then } S_1 \text{ else } S_2, s \rangle \Rightarrow \langle S_2, s \rangle$

Analogous.

LEMMA A: PROOF

Case: while b do S

while b do S, s> \approx <LOOP(CB|[b]|, CS|[S]|), ϵ , s> Λ while b do S, s> \Rightarrow vif b then (S; while b do S) else skip,s>

It's easy to see that:

<LOOP(CB[[b]],CS[[S]]), ϵ , s> \triangleright by semantics of AM

<*CB*|[b]|:BRANCH(*CS*|[s]|:LOOP(*CB*|[b]|, *CS*|[S]|),NOOP), ε, s>

which is in bisimulation relation with:

<if b then (S; while b do S) else skip,s>

LEMMA A: PROOF

if
$$\langle S, s \rangle \Rightarrow * s'$$

then
 $\langle CS|[S]|, \epsilon, s \rangle \triangleright^* \langle \epsilon, \epsilon, s' \rangle$

We proceed by induction on the length k of $\langle S, s \rangle \Rightarrow^k s'$

Case: k = 0

This means that $\langle S, s \rangle \Rightarrow^{0} s'$, so the thesis is vacuously true.

LEMMA A: PROOF

Case: $k = k_0 + 1$

- 1) $\langle S, s \rangle \Rightarrow \gamma'_{sos} \Rightarrow^k_0 s'$ by hypothesis
- 2) $\exists \gamma'_{am} \text{ such that } < CS[S][, \epsilon, s> \triangleright * \gamma'_{am} \land \gamma'_{sos} \approx \gamma'_{am}$ by the first part of Lemma A
- 3) $\exists \gamma''_{am}$ such that $\gamma'_{sos} \approx \gamma''_{am}$ and $\gamma''_{am} > * < \epsilon, \epsilon, s' > by IH$
- 4) $\gamma'_{am} = \gamma''_{am}$ by definition of bisimulation