Example 2

String1: ABRGQSE

String2: YBRGEQUS

Find the distance.

Tree Edit Distance

- Tree edit distance between two trees A and B (labeled ordered rooted trees) is the cost associated with the minimum set of operations needed to transform A into B.
- The set of operations used to define tree edit distance includes three operations:
 - node removal,
 - node insertion, and
 - node replacement.

A cost is assigned to each of the operations.

Simple Tree Matching (STM)

- Let A and B be two trees, and i ∈ A and j ∈ B be two nodes in A and B respectively.
- A matching between two trees is defined to be a mapping M such that, for every pair (i, j) ∈ M where i and j are non-root nodes, (parent(i), parent(j)) ∈ M.
- A maximum matching is a matching with the maximum number of pairs.

Let $A = R_A: \langle A_1, ..., A_k \rangle$ and $B = R_B: \langle B_1, ..., B_n \rangle$ be two trees, where R_A and R_B are the roots of A and B, and A_i and B_j are the ith and jth first-level subtrees of A and B respectively. Let W(A, B) be the number of pairs in the maximum matching of trees A and B. If R_A and R_B contain identical symbols, the maximum matching between A and B (i.e., W(A, B)) is $m(\langle A_1, ..., A_k \rangle, \langle B_1, ..., B_n \rangle) + 1$, where $m(\langle A_1, ..., A_k \rangle, \langle B_1, ..., B_n \rangle)$ is the number of pairs in the maximum matching of $\langle A_1, ..., A_k \rangle$ and $\langle B_1, ..., B_n \rangle$. If $R_A \neq R_B$, W(A, B) = 0. Formally, W(A, B) is defined as follows:

$$W(A,B) = \begin{cases} 0 & \text{if } R_A \neq R_B \\ m(\langle A_1, ..., A_k \rangle, \langle B_1, ..., B_n \rangle) + 1 & \text{otherwise} \end{cases};$$

$$m(\langle \rangle, \langle \rangle) = 0 & //\langle \rangle \text{ represents an empty sub-tree list.}$$

$$m(s, \langle \rangle) = m(\langle \rangle, s) = 0 & //\langle s \text{ matches any non-empty sub-tree list.}$$

$$m(\langle A_1, ..., A_k \rangle, \langle B_1, ..., B_n \rangle) = \max(m(\langle A_1, ..., A_{k-1} \rangle, \langle B_1, ..., B_{n-1} \rangle) + W(A_k, B_n),$$

$$m(\langle A_1, ..., A_k \rangle, \langle B_1, ..., B_n \rangle).$$

$$m(\langle A_1, ..., A_{k-1} \rangle, \langle B_1, ..., B_n \rangle).$$

- Let X be a tree and let X[i] be the ith node of tree X in a preorder walk of the tree.
- A mapping M between a tree A of size n₁ and a tree B of size n₂ is a set of ordered pairs (i, j), one from each matched node, satisfying the following conditions for all (i₁, j₁), (i₂, j₂),... ∈ M:
 - 1. $i_1 = i_2$ iff $j_1 = j_2$;
 - A[i_1] is on the left of A[i_2] iff B[j_1] is on the left B[j_2];
 - A[i₁] is an ancestor of A[i₂] iff B[j₁] is an ancestor of B[j₂].

A general tree mapping example

Simple tree matching

- In the general setting,
 - mapping can cross levels, e.g., node a in tree A and node a in tree B.
 - Replacements are also allowed, e.g., node b in A and node h in B.
- We describe a restricted matching algorithm, called simple tree matching (STM), which has been shown quite effective for Web data extraction.
 - STM is a top-down algorithm.
 - Instead of computing the edit distance of two trees, it evaluates their similarity by producing the maximum matching through dynamic programming.

Simple Tree Matching algo

```
Algorithm: STM(A, B)
     if the roots of the two trees A and B contain distinct symbols then
2.
         return (0)
     else k \leftarrow the number of first-level sub-trees of A;
4.
           n \leftarrow the number of first-level sub-trees of B;
5.
           Initialization: m[i, 0] \leftarrow 0 for i = 0, ..., k;
                               m[0, j] \leftarrow 0 \text{ for } j = 0, ..., n;
6.
           for i = 1 to k do
7.
               for j = 1 to n do
8.
                   m[i,j] \leftarrow \max(m[i,j-1], m[i-1,j], m[i-1,j-1] + W[i,j]),
                       where W[i, j] \leftarrow STM(A_i, B_i)
9.
               end-for
10.
           end-for
           return (m[k, n]+1)
11.
12. end-if
```


N15 p N16 b N17 c d e N18 N19 N20 N21 h N22

 $m_{1,15}$

4	0	1 (N16)	2 (N16-N17)
0	0	0	0
1 (N2)	0	3	3
2 (N2-N3)	0	3	5
3 (N2-N4)	0	3	5
4 (N2-N5)	0	3	6

 $W_{1,15}$

9 50	1 (N16)	2 (N17)
1 (N2)	3	0
2 (N3)	0	2
3 (N4)	2	0
4 (N5)	0	3

 $m_{5,17}$

	0	1 (N20)	2 (N20-N21)
0	0	0	0
1 (N11)	0	2	2

 $W_{5,17}$

	1(N20)	2(N21)
1 (N11)	2	0

 $m_{11,20}$

	0	1 (N22)
0	0	0
1 (N12)	0	1
2 (N12-N13)	0	1
3 (N12-N14)	0	1

 $W_{11,20}$

	1 (N22)
1 (N12)	1
2 (N13)	0
3 (N14)	0

Example

Find similarity between the following trees

Find similarities between the following trees

Time and Space Complexities

- Comparison of two strings
 - □ Time complexity: $O(|s_1||s_2|)$
 - □ Space complexity: $O(|s_1||s_2|)$
- Comparison of two trees
 - □ Time complexity: O(n₁n₂h₁h₂), where n₁ and n₂ are number of nodes of the trees and h₁ and h₂ are height of the trees.