Nome (maiúsculas):			
Número de aluno	,		

Sistemas Operativos

2013/14

DEIS – Engenharia Informática

Prova escrita Parte teórica

12/7/2014

Todas as perguntas valem o mesmo. Respostas erradas descontam 1/3. Respostas múltiplas são respostas erradas.

As repostas são dadas nestas folhas. Preencha já o cabecalho com o nome.

As repostas são dadas nestas folhas. Preencha já o cabeçalho com o nome.				
várias t	contexto dos sistemas estudados, quando o sistema é iniciado ("durante o arranque"), são desencadeadas carefas, as quais incluem necessariamente a interacção com periféricos (por exemplo, ler configurações do apresentar menus de arranque no ecrã, etc.). Como é feita essa interacção com periféricos? É feita com recurso a rotinas existentes na BIOS. É totalmente feita através de código existente no bootloader. É feita com recurso a rotinas existentes no sistema operativo (por exemplo, device drivers). É totalmente feita através de código existente no MBR.			
2 – Ond	de fica a informação acerca de qual é a partição de arranque? Na memória não volátil (vulgo "BIOS"). No menu que é apresentado ao utilizador para escolher qual o sistema que deseja iniciar. No sector MBR. No sector <i>boot</i> .			
3 – O fi	cheiro /etc/sudoers tem uma linha que que contém "matt groening=NOPASSWD: /sbin/*". Isto significa que: Os utilizadores matt e groening não precisam de <i>password</i> para entrar. Os utilizadores matt e groening podem usar os comandos do <i>root</i> em /sbin desde que estes não exijam <i>password</i> . O utilizador matt pode executar os comandos em /sbin como root na máquina groening e nem sequer lhe será pedida a <i>password</i> . O utilizador matt pode usar os comandos em /sbin como se fosse o utilizador groening desde que este último não tenha <i>password</i> definida.			
4 – O b	it setuid serve para: Permitir/não permitir a execução de programas. Permitir/não permitir aos utilizadores mudarem o seu ID. Permitir correr programas com um ID diferente do utilizador que o executa. Permitir a um processo modificar o seu PID.			

	rocesso A invocou a função biblioteca C <i>malloc</i> para alocar memória. Neste instante a função está a devolver sultado NULL porque não há memória para satisfazer pedido. Por isso, nesse instante, o processo:
	Passou para o estado "executável".
	Passou para o estado "executaver". Passou para o estado "bloqueado" (até voltar a haver memória).
	Termina.
	Mantém-se no estado "execução".
Ц	Manteni-se no estado "execução".
	contexto de um sistema como os usados durante as aulas (sistemas multiprogramados, com um processador, ória virtual), um processo A acaba de receber um sinal enviado pelo processo B. O processo B está neste nto:
	Necessariamente no estado "executável", até que o processo A termine o atendimento do sinal ou termine. No estado "bloqueado", à espera do processo A.
	Num estado qualquer: qualquer um é possível pois são processos independentes.
	Qualquer um menos execução, inclusivamente até pode ter já terminado.
colocad	ima arquitectura <i>micro-kernel</i> / cliente-servidor, qual dos seguintes componentes do sistema pode ser lo em espaço-utilizador?
	Apenas as aplicações.
	O escalonador de processos.
	O sistema de ficheiros.
	O gestor de dispositivo ("device driver") do disco rígido.
8 – Qua	ıl das seguintes afirmações é correcta?
	Os sistemas preemptivos surgiram para aproveitar os tempos em que um processo se encontra em operações de entrada/saída.
	Os sistemas multiprogramados surgiram para garantir que um processo não fica a ocupar o processador indefinidamente.
	Os sistemas preemptivos são muito bons para servidores, mas não para sistemas interactivos (usados de forma interactiva pelos utilizadores).
	Os sistemas de processamento em lote não conseguem aproveitar bem as operações de entrada/saída para executar outras tarefas.
9 – No	contexto dos algoritmos estudados, qual das seguintes afirmações é correcta?
	Os algoritmos mais justos introduzem o problema de starvation.
	O algoritmo <i>round robin</i> é genericamente bom, mas não é necessariamente o melhor em todos os aspectos.
	Os algoritmos SPN e SRT são mais adequados a ambientes de controlo.
	No algoritmo HRRN resolve o problema de starvation e, sendo preemptivo, é também muito estável.

Nome (maiúsculas): Número de aluno: 10 - Assumindo que não há erros de execução, qual poderá ser o resultado da execução do código à direita? int main() { if (fork!=0) { Apresenta no ecrã e no ficheiro temp.txt a lista de close(1); processos a correr. open("temp.txt", O_WRONLY | O_CREAT); Apresenta no ecrã a listagem dos processos a correr e não faz mais nada. execlp("ps", "ps", null); П Apresenta duas vezes no ecrã a listagem dos return 0; processos a correr. } Coloca no ficheiro temp.txt a listagem dos processos a correr e não faz mais nada. int conta = 0; 11 - Observe o código do programa "teste" à direita. int main() { Assumindo que não há erros nas chamas às funções int i; sistema, o que aparece ao se executar o programa? for (i=0; i < 3; i++) { fork(); Nada. conta++; "valor 1". execl("teste", "teste", NULL); "valor 1" oito vezes. printf("valor %d", conta); "valor 1" "valor 2" "valor 7" e "valor 8" return 0; 12 – Considere um sistema a correr num sistema cujo hardware tem as seguintes características: i) capacidade de endereçamento virtual; ii) um mecanismo de interrupções habitual; iii) um só modo de execução. Neste sistema: Não é possível implementar espaços de memória diferentes para cada processo. П Não é possível garantir a estabilidade (funcionamento correcto) do sistema. П Os periféricos não conseguem notificar o sistema acerca de acontecimentos (erros, etc.). П O sistema não tem limitação nenhuma face aos sistemas habituais. 13 – Considere o programa à direita. Assumindo que não há erros de int main() { execução, o que aparece no ecrã? printf("%d\n", getpid()); fork(); Duas vezes o mesmo número. printf("%d\n", getpid()); Dois números diferentes. return 0; Três números, dois deles iguais. }

Três vezes o mesmo número.

	um determinado sistema com o algoritmo de escalonamento SPN es 0,1,2,3, respectivamente. Estes processos têm a seguinte duraçã foi:		-	•			
	6 / 4.						
	11 / 4.						
	15 / 4.						
	16 / 4.						
15 – N	o contexto de sistemas de endereçamento virtual,						
	O endereçamento segmentado é mais eficiente e simples de gerir c	lo que o	ende	erecame	nto nagin	ado	
	Só se consegue isolar os espaços de endereçamento de processos uns dos outros com endereçamento						
_	segmentado (e não com endereçamento paginado): processos dife					•	
	Só é viável (prático) implementar memória virtual à custa do disco			-			nado.
	As tabelas de páginas são normalmente muito menores que as tabe	elas de se	egme	entos.	-		
16 - 1	Num sistema com memória paginada encontra-se a correr o	Índice	Р	Prot	Base	R	М
•	so A cuja tabela de páginas é a que se encontra à direita. O	0	1	RWX	32768	0	0
	a é de 32 bits, 12 dos quais usados para o deslocamento (ou seja,	1	1	RWX	8192	0	1
	s de 4096 bytes). Qual o endereço real manipulado quando é	2	1	RWX	16384	1	0
	ada uma instrução que pretende guardar o valor 123 no eço virtual 4098?	3	0	RWX	0	1	1
	Endereço 16386 (16384 + 2).						1
	Endereço 8194 (8192 + 2).						
	Endereço 12290 (8192 + 4098).						
	Nenhum porque 4098 é maior que o tamanho da página.						
_	For day a series day a commence of bability						