

Physics 2. Electrical Engineering Week 8.2 Impedance

nvoboriz

Kirill Poletkin and Igor Gaponov

Institute of Robotics and Computer Vision

Objectives

The main objectives of today's lecture are:

- Become familiar with the concept of impedance
- Practice finding impedance of complex circuits
- Apply phasors and impedance concepts to analyze dynamic circuits

Impedance

What is Impedance?

Impedance is a **frequency-dependent resistance**.

Finding Impedance

Let the source voltage be defined by

$$v_S(t) = A\cos\omega t = Ae^{j0^\circ}$$

Let us examine the frequency-dependent properties of the

- resistor,
- inductor, and
- capacitor.

Resistor Impedance

According to Ohm's law, the current flowing through the resistor is

$$i(t) = \frac{v_S(t)}{R} = \frac{A}{R}\cos\omega t$$

In phasor notation,

$$V_Z(j\omega) = A \angle 0$$

$$I_Z(j\omega) = \frac{A}{R} \angle 0$$

• Therefore, the impedance Z of a resistor is $Z_R(j\omega) = -\frac{1}{2}$

$$Z_R(j\omega) = \frac{V_Z(j\omega)}{I_Z(j\omega)} = R$$

$$v_S(t) = A\cos\omega \, t = Ae^{j0^{\circ}}$$

Inductor Impedance (1)

Recall the current-voltage relationships for the ideal inductor:

In phasor notation,

$$V_Z(j\omega) = A \perp 0$$

$$I(j\omega) = \frac{A}{\omega L} \angle -\frac{\pi}{2}$$

Thus, the impedance of the inductor is

$$Z_{L}(j\omega) = \frac{V_{Z}(j\omega)}{I(j\omega)} = \omega L \angle \frac{\pi}{2} = j\omega L$$

$$i_L(t) = i(t) = \frac{1}{L} \int v_S(t') dt'$$

$$i_L(t) = \frac{1}{L} \int A \cos \omega t' dt'$$

$$= \frac{A}{\omega L} \sin \omega t \neq \frac{A}{\omega L} \cos \left(\omega t - \frac{\pi}{2}\right)$$

Inductor Impedance (2)

Hence, the inductor behaves as a complex frequency-dependent resistor, and the magnitude of this complex resistor ωL is proportional to the signal frequency ω .

This means that

- At low frequencies, an inductor acts as a short circuit,
- At high frequencies, an inductor acts as an open circuit.

$$Z_L(j\omega) = \omega L \angle \frac{\pi}{2} = j\omega L$$

Capacitor Impedance (1)

INNOBOLIZATION

Recall the current-voltage relationships for the ideal capacitor:

In phasor notation,

$$V_Z(j\omega) = A \angle 0$$

$$I(j\omega) = \omega CA \angle \frac{\pi}{2}$$

Thus, the impedance of the capacitor is

$$Z_{C}(j\omega) = \frac{V_{Z}(j\omega)}{I(j\omega)} = \frac{1}{\omega C} \angle -\frac{\pi}{2}$$
$$= \frac{-j}{\omega C} = \frac{1}{j\omega C}$$

$$v_{S}(t) = A\cos\omega t = Ae^{j0^{\circ}}$$

$$v_{S}(t) = i(t)$$

$$C \quad v_{C}(t)$$

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$

$$i_{C}(t) = C \frac{d}{dt} (A \cos \omega t)$$

$$= -CA\omega \sin \omega t$$

$$= \omega CA \cos \left(\omega t + \frac{\pi}{2}\right)$$

Capacitor Impedance (2)

Thus, the impedance of a capacitor is also a frequency-dependent complex quantity, with the **impedance of the capacitor** varying as an **inverse function of frequency**.

Hence,

- At low frequencies, a capacitor acts as an open circuit,
- At high frequencies, a capacitor acts as a short circuit.

$$Z_C(j\omega) = \frac{-j}{\omega C} = \frac{1}{j\omega C}$$

Impedance

In its most general form, the **impedance** of a circuit element is defined

as the sum of a real part and an imaginary part:

$$Z(j\omega) = R(j\omega) + X(j\omega)$$

where the components are

R: resistance and

• X: reactance.

Impedance of Complex Circuits

Impedance of Complex Circuits (1)

13

We can find impedance of rather complex-looking circuits, which may come in extremely handy in their analysis later. Have a look at this example.

Problem: Find the **equivalent impedance** of the circuit shown here.

Known quantities: $\omega = 10^4$ rad/s, $R_1 = 100 \Omega$, L = 10 mH, $R_2 = 50 \Omega$, $C = 10 \mu$ F.

Just like we did when finding equivalent resistance, we can find Z_{RC} first as

Impedance of Complex Circuits (2)

Computation yields
$$Z_{RC} = \frac{50}{1+j5} = 1.92 - j9.62 = 9.81 \angle (-1.3734) \Omega$$

Next, we determine the equivalent impedance Z_{eq} :

$$Z_{eq} = R_1 + j\omega L + Z_{RC} = 100 + j10^4 \times 10^{-2} + 1.92 - j9.62$$
$$= 101.92 + j90.38 = 136.2 \times 0.723 \Omega$$

Q: Is this impedance **inductive or capacitive**?

Impedance of Complex Circuits (3)

Let us repeat the previous calculations for

1.
$$\omega$$
 = 0 rad/s (DC voltage): $Z_{eq} = 150 \Omega$

2.
$$\omega = 1000 \text{ rad/s}$$
: $Z_{eq} = 140 - j100$

3.
$$\omega = 2450 \text{ rad/s}$$
: $Z_{eq} = 120 \Omega$

Q1: Are impedance values **inductive or capacitive**?

Q2: What is the equivalent circuit for the last case?

Impedance of Complex Circuits (4)

We can conduct a small investigation and plot the reactance of this circuit as a function of frequency as follows:

AC Circuit Analysis with Phasors and Impedance

AC Circuit Analysis

INVOPOLIS

18

Just like we did so in case of DC circuits, we often need to **analyze AC circuits** with energy storage elements.

One way of doing so is as follows:

- 1. Represent a sine wave **power source by a phasor**, and each **circuit element by an impedance**.
- 2. Obtain **solution in the phasor form** by applying the circuit analysis method studied previously (KVL/KCL, node voltage method, network current method, etc.)
- **3. Convert the solution** from phasor (frequency) domain into time domain.

AC Circuit Analysis: Exercise (1)

Given the circuit below, find the source current $i_s(t)$ at $\omega = 100$ rad/sec.

Using the Ohm's law, one can write

$$i_S(t) = \frac{v_S(t) - v(t)}{R_1}$$

Now, let us convert the voltage source into phasor form and find all the impedance values

$$v_S(t) = 10 \cos \omega t$$
, $\omega = 377$ rad/s
 $V_S(j\omega) = 10 \angle 0$ V

$$Z_{R_1} = R_1, \quad Z_{R_2} = R_2, \quad Z_C = \frac{1}{j\omega C}.$$

AC Circuit Analysis: Exercise (2)

The resulting circuit is then

Finally, using KCL, we write

 $\begin{array}{c|c}
V_S & V \\
\hline
Z_{R_1} & \overline{Z_{R_2} \| Z_C}
\end{array}$

Solving yields

$$\frac{V_S}{Z_{R_1}} = V\left(\frac{1}{Z_{R_2}||Z_C} + \frac{1}{Z_{R_1}}\right) = V\left(\frac{1}{\frac{R_2(1/j\omega C)}{R_2 + (1/j\omega C)}} + \frac{1}{R_1}\right)$$

$$= V\left(\frac{j\omega CR_2 + 1}{R_2} + \frac{1}{R_1}\right) = V\left(\frac{j\omega CR_2R_1 + R_1 + R_2}{R_1R_2}\right)$$

AC Circuit Analysis: Exercise (3)

Substituting all the values yields

$$V = \left(\frac{j\omega C R_2 R_1 + R_1 + R_2}{R_1 R_2}\right)^{-1} \frac{V_S}{R_1} = \left(\frac{R_1 R_2}{j\omega C R_2 R_1 + R_1 + R_2}\right) \frac{V_S}{R_1}$$

$$= \frac{50 \times 200}{j377 \times 10^{-4} \times 50 \times 200 + 50 + 200} \cdot \frac{V_S}{50}$$

$$= 0.4221 \angle (-0.9852) V_S = 4.421 \angle (-0.9852).$$
Thus,
$$I_S = \frac{V_S - V}{Z_{R_1}} = \frac{10 \angle 0 - 4.421 \angle (-0.9852)}{50} = 0.1681 \angle (0.4537)$$

Thank you for your attention!

Igor Gaponov

i.gaponov@innopolis.ru