Dynamic Programming

- Sequence Alignment
- Longest Common Subsequence
- Longest Increasing Subsequence

Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

O mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- . Gap penalty δ ; mismatch penalty $\alpha_{pq}.$
- Cost = sum of gap and mismatch penalties.

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$$

$$2\delta + \alpha_{CA}$$

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: CTACCG VS. TACATG.

Sol: $M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_j$.

- Case 1: OPT matches x_i-y_j .
 - pay mismatch for x_i - y_j + min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_j$
- Case 2b: OPT leaves y_i unmatched.
 - pay gap for y and min cost of aligning $x_1\,x_2\ldots x_i$ and $y_1\,y_2\ldots y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT(i-1, j-1) & \text{otherwise} \\ \delta + OPT(i, j-1) & \text{otherwise} \end{cases}$$

$$i\delta & \text{if } j = 0$$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
       M[i, 0] = i\delta
   for j = 0 to n
       M[0, j] = j\delta
   for i = 1 to m
       for j = 1 to n
          M[i, j] = min(\alpha[x_i, y_i] + M[i-1, j-1],
                            \delta + M[i-1, j],
                            \delta + M[i, j-1]
   return M[m, n]
```

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000.10 billions ops OK, but 10GB array?

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

- Compute OPT(i, •) from OPT(i-1, •).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of (0,0) and (m,n)

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j).

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

$$T(m,n) \leq 2T(m, n/2) + O(mn) \Rightarrow T(m,n) = O(mn \log n)$$

Remark. Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that:

$$T(m, 2) \le cm$$

 $T(2, n) \le cn$
 $T(m, n) \le cmn + T(q, n/2) + T(m-q, n/2)$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \le 2cmn$.

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$

Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

LCS problem. Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a longest common subsequence (LCS) of X and Y Ex.

Subsequences of $X=\langle A, B, C, B, D, A, B \rangle$

• A subset of elements in the sequence taken in order $\langle A, B, D \rangle$, $\langle B, C, D, B \rangle$, etc.

LCS(X,Y).

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

 $\langle B, C, B, A \rangle$ and $\langle B, D, A, B \rangle$ are longest common subsequences of X and Y (length = 4)

 $\langle B, C, A \rangle$, however is not a LCS of X and Y

Notation

The i-th prefix. Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the i-th prefix of X, for i = 0, 1, 2, ..., m to be $X_i = \langle x_1, x_2, ..., x_i \rangle$

c[i, j] = the length of a LCS of the sequences X_i = $\langle x_1, x_2, ..., x_i \rangle$ and Y_j = $\langle y_1, y_2, ..., y_j \rangle$

Recursive Solution

Case 1:
$$x_i = y_j$$

Ex. $X_i = \langle A, B, D, E \rangle$
 $Y_j = \langle Z, B, E \rangle$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}
- \blacksquare Must find a LCS of $X_{i\text{--}1}$ and $Y_{j\text{--}1}$

Case 2:
$$x_i \neq y_j$$

Ex. $X_i = \langle A, B, D, G \rangle$
 $Y_j = \langle Z, B, D \rangle$

- Must solve two problems
 - find a LCS of X_{i-1} and Y_j : $X_{i-1} = \langle A, B, D \rangle$ and $Y_j = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{j-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_j = \langle Z, B \rangle$

Computing the length of the LCS

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

Additional Information

$$c[i, j] = \begin{cases} 0 & \text{if } i, j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

b & c:		Ο Υ _{j:}	1 A	2 <i>C</i>	3 3		n F
0	×i	0	0	0	0	0	0
1	Α	0					
2	В	0			c[i-1,j]		
3	С	0		▼ c[i,j-1]	↑		
		0					
m	D	0					

A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If $x_i = y_j$ b[i, j] = "\"
- Else, if c[i 1, j] ≥ c[i, j-1] b[i, j] = " \uparrow "

 else

 b[i, j] = " \leftarrow "

$$b[i, j] = " \leftarrow '$$

LCS: Algorithm

```
LCS (m, n, x_1x_2...x_m, y_1y_2...y_n) {
   for i = 0 to m do
      c[i, 0] = 0,
   for j = 0 to n do
       c[0, j] = 0
   for i = 1 to m do
       for j = 1 to n do
         if x<sub>i</sub>=y<sub>i</sub> then
             c[i,j] = c[i-1, j-1]+1
             b[I,j]= \
         else if c[i-1,j] \ge c[i,j-1] then
             c[i,j] = c[i-1, j]
             b[i,j] = \uparrow
         else
            c[i,j] = c[i, j-1]
           b[i,i] = \leftarrow
return c[m, n]
```

Analysis. $\Theta(mn)$ time and space.

Example

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

		0	1	2	3	4	5	6
		$\mathbf{y}_{\mathbf{j}}$	В	D	С	Α	В	Α
0	×i	0	0	0	0	0	0	0
1	Α	0	↑ 0	← 0	← 0	1	←1	1
2	В	0	1	←1	←1	↑ 1	2	←2
3	С	0	1	<u> </u>	2	←2	1 2	^ 2
4	В	0	1	↑ 1	↑ 2	† 2	* 3	←3
5	D	0	1	~ 2	↑ 2	† 2	↑ 3	← 3
6	Α	0	1 1	← 2	↑ 2	× 3	(~თ	× 4
7	В	0	1	† 2	↑ 2	↑ 3	4	↑ 4

Constructing a LCS

Start at b[m, n] and follow the arrows When we encounter a " $\$ " in b[i, j] \Rightarrow x_i = y_j is an element of the LCS

		0	1	2	3	4	5	6
	_	Υj	В	D	С	Α	В	Α
0	×i	0	0	0	0	0	0	0
1	Α	0	$O\!\to\!$	$O\!\to\!$	0→	1	←1	1
2	В	0	1	(1)	←1	<u> </u>	2	←2
3	С	0	<u> </u>	1 1	(2)	€(2)	† 2	1 2
4	В	0	1	<u>†</u>	2		3	←3
5	D	0	<u>^</u> 1	× 2	← 2	← 2	(3)	↑ 3
6	Α	0	1	↑ 2	↑ 2	× 3)←3	4
7	В	0	1	↑ 2	↑ 2	/ 3	4	4

Improving the Code

If we only need the length of the LCS

- LCS-LENGTH works only on two rows of c at a time
 - The row being computed and the previous row
- We can reduce the asymptotic space requirements by storing only these two rows. So the space can be reduced to $O(\min(m,n))$.

Reduction to Sequence Alignment

In the sequence alignment problem:

- See sequences as strings
- Set gap penalty δ to be 0
- Set α_{pq} to be -1 if p=q. otherwise set to be 0.

Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

LIS problem. Given a sequence of numbers

$$X = \langle x_1, x_2, ..., x_n \rangle$$

find a longest increasing subsequence (LIS) of X

Reduction to LCS

LIS can be reduced to LCS as follows:

- $X = \langle x_1, x_2, ..., x_n \rangle$
- Y = sort of X

Then LCS(X,Y)=LIS(X)

- X=(7, 2, 5, 1, 13, 12, 19)
- $Y = \langle 1, 2, 5, 7, 12, 13, 19 \rangle$

Then LCS(X, Y)= $\langle 2, 5, 13, 19 \rangle$ =LIS(X)

Running time: O(n2)

Remark. There is an <u>efficient DP</u> running in O(n log n) time.

References

References

- Sections 6.6, and 6.7 of the text book "algorithm design" by Jon Kleinberg and Eva Tardos
- Section 15.4 of the text book "introduction to algorithms" by CLRS,
 3rd edition.
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.
- The LCS part is from the <u>slides</u> prepared by George Bebbis.