LA DÉRIVATION M06

EXERCICE N°1 Comprendre graphiquement le lien entre une fonction et sa dérivée corridé Dans chaque cas, on donne deux courbes C_1 et C_2 qui représentent respectivement les fonctions f_1 et f_2 . Décider si f_2 peut être la fonction dérivée de f_1 .

LA DÉRIVATION M06C

EXERCICE N°1 Comprendre graphiquement le lien entre une fonction et sa dérivée

Dans chaque cas, on donne deux courbes C_1 et C_2 qui représentent respectivement les fonctions f_1 et f_2 . Décider si f_2 peut être la fonction dérivée de f_1 .

 C_{2}

 C_2

NON, C_1 représente une fonction affine et son coefficient directeur est -3 or C_2 a pour équation y = 3.

3)

 C_2

NON, C_1 représente une fonction affine et son coefficient directeur est 0.5 or C_2 a pour équation y = 3.

4)

 C_2

OUI, C_1 représente une fonction affine et son coefficient directeur est 2 et C_2 a bien pour équation y = 2.

5)

NON, C_1 représente une fonction qui est décroissante puis croissante. donc être négative puis positive.

6)

 C_2

OUI, C_1 représente une fonction qui est décroissante sur $]-\infty$; 0 puis croissante sur $[0; +\infty]$. C_2 est bien négative sur $]-\infty$; 0] puis positive sur $[0; +\infty[$.

Notez que cela reste une conjecture (pour la prouver, il faut identifier la fonction représentée par C_1 , la dériver puis vérifier que C_2 représente bien cette dérivée).

OUI, C_1 représente une fonction qui est croissante sur $]-\infty$; -1] puis décroissante sur $[-1; +\infty[$. C_2 est bien positive sur $]-\infty$; -1] puis négative sur $[-1; +\infty]$.

Notez que cela reste une conjecture.

NON. D'une part, la fonction représentée par C_1 est décroissante, puis croissante et enfin décroissante. Et d'autre part, la fonction représentée par C_2 est positive puis négative et enfin positive.

OUI, C_1 représente une fonction qui est décroissante sur $]-\infty$; 0] puis croissante sur $[0; +\infty[$. C_2 est bien négative sur $]-\infty$; 0] puis positive sur $[0; +\infty[$. Notez que cela reste une conjecture...

NON. D'une part, la fonction représentée par C_1 est décroissante, puis croissante et enfin décroissante. Et d'autre part, la fonction représentée par C_2 est positive puis négative et enfin positive mais pas sur les mêmes intervalles.

OUI, C_1 représente une fonction qui est décroissante sur $]-\infty$; 0] puis croissante sur $[0;+\infty[$. C_2 est bien négative sur $]-\infty$; 0] puis positive sur $[0;+\infty[$. En réalité, c'est bien la fonction représentée par C_2 qui est la dérivée de celle représentée par C_1 . Il y a un « point anguleux » sur C_1 et cela représente un problème de dérivabilité.