Apellidos, Nombre: Alemany Ibor, Sergio Apellidos, Nombre: Galindo Jiménez, Carlos

1. Formular el modelo matemático

Variables: M1, M2 y M3 → unidades producidas de cada máquina de precisión

Función objetivo: MAX Z = 50 M1 + 25 M2 + 20 M3

Restricciones:

- 4 M1 + M2 + 2 M3 <= 160
- 6 M1 + M2 + 2 M3 <= 180
- M1, M2, M3 >= 0

Restricciones en forma estándar: (X1 y X2 son variables de holgura)

- 4 M1 + M2 + 2 M3 + X1 = 160
- 6 M1 + M2 + 2 M3 + X2 = 180
- M1, M2, M3, X1, X2 >= 0

n es el número de variables, en este caso n = 5

m es el número de restricciones, en este caso m = 2

2. Obtener la solución óptima aplicando el algoritmo SIMPLEX Revisado

 $c = [50\ 25\ 20\ 0\ 0]$

x = [M1 M2 M3 X1 X2]

A = [41210;

61201]

b = [160; 180]

 SB_0

$$B = I(2x2) = B^{-1}$$

$$x_B = B^{-1} * b$$

Variables básicas iniciales: variables de holgura (X1 y X2)

$$c_B = [0 \ 0]$$

$$Z = c_B^{t} * x_B$$

v.básicas	B ⁻¹		Χ _B
X1	1	0	160
X2	0	1	180
c _B ^t B ⁻¹	0	0	Z=0

Iteración 1

JE (la variable que entra) es la variable con mayor diferencia c_j - z_j para todo j en el conjunto de las variables no básicas. $Z_j = (c_B^t * B^{-1}) * a_j$

	, , ,	· ,	
Variable	C _j	$Z_{\rm j}$	C_{j} - Z_{j}
M1	50	0	50 (MAX)
M2	25	0	25
M3	20	0	20

JE = M1 Para escoger la variable que sale (IS), debemos escoger el mínimo mayor que 0 en la última columna de la siguiente tabla. $Y_{xJE} = B^{-1} * a_{JE}$

	v.básicas	Е	B ⁻¹	X _B	Y _{xJE}	X _B /Y _{xJE}
Γ	X1	1	0	160	4	40
Ī	X2	0	1	180	6	30
Γ	c _B t B ⁻¹	0	0	Z=0		

A continuación sustituimos IS por JE y recalculamos B⁻¹, x_B, c_B y Z:

v.básicas	B ⁻¹		Χ _B
X1	1 -2/3		40
M1	0	1/6	30
C _B ^t B ⁻¹	0	25/3	Z ₁ =1500

 $C_B = [0;50]$

Iteración 2

JE (la variable que entra) es la variable con mayor diferencia c_j - z_j para todo j en el conjunto de las variables no básicas. $Z_j = (c_B^t * B^{-1}) * a_j$

	· · · · · · · · · · · · · · · · · · ·		
Variable	C_{i}	Z_{j}	C _j -Z _j
M2	25	8.33	16.67 (MAX)
M3	20	16.67	3.33
X2	0	8.33	-8.33

JE = M2

Para escoger la variable que sale (IS), debemos escoger el mínimo mayor que 0 en la última columna de la siguiente tabla. $Y_{xJE}=B^{-1}*a_{JE}$

v.básicas	В	B ⁻¹	Χ _B	Y_{xJE}	X _B /Y _{xJE}
X1	1	-2/3	40	1/3	120
M1	0	1/6	30	1/6	180
c _B t B ⁻¹	0	25/3	Z=1500		

A continuación sustituimos IS por JE y recalculamos B⁻¹, x_B, c_B y Z:

v.básicas	Е	Χ _B	
M2	3 -2		120
M1	-1/2 1/2		10
C _B ^t B ⁻¹	50	-25	Z ₂ =3500

 $C_B = [25;50]$

Iteración 3

JE (la variable que entra) es la variable con mayor diferencia c_j - z_j para todo j en el conjunto de las variables no básicas. Z_j = (c_B^t * B^{-1}) * a_j

Variable	C _j	Z _j	C _j -Z _j

M3	20	50	-30
X1	0	50	-50
X2	0	-25	25 (MAX)

JE = X2

Para escoger la variable que sale (IS), debemos escoger el mínimo mayor que 0 en la última columna de la siguiente tabla. $Y_{xJE} = B^{-1} * a_{JE}$

v.básicas	В	B ⁻¹	X _B	Y _{xJE}	X _B /Y _{xJE}
M2	3	-2	120	-2	-60
M1	-1/2	1/2	10	1/2	20
c _B ^t B ⁻¹	50	-25	Z ₁ =3500		

A continuación sustituimos IS por JE y recalculamos B⁻¹, x_B, c_B y Z:

v.básicas	B ⁻¹		Χ _B
M2	1 0		160
X2	-1	1	20
C _B ^t B ⁻¹	25	0	Z ₃ =4000

$$C_B = [25;0]$$

Iteración 4

JE (la variable que entra) es la variable con mayor diferencia c_j - z_j para todo j en el conjunto de las variables no básicas. Z_j = ($c_B^t * B^{-1}$) * a_j

	, , ,		
Variable	C_{j}	Z_{j}	C_j - Z_j
M1	50	100	-50
M3	20	50	-30
X1	0	25	-25

Puesto que todos las diferencias son negativas, la solución es óptima:

v.básicas	B ⁻¹		Χ _B
M2	1	0	160
X2	-1	1	20
c _B ^t B ⁻¹	25	0	Z ₂ =4000

La solución tal y como la mostraría LINGO sería

Valor de la función objetivo: 4000

Variable	Valor	Coste Reducido
M1	0	50
M2	160	0
М3	0	30
Restr.	Holgura	C. Oportunidad
Mecaniz	0	25

Montaje 20	0
------------	---

3. Solución LINGO

El modelo es el siguiente y la solución coincide con el apartado anterior

Global optimal solution found.

Objective value: 4000.000
Infeasibilities: 0.000000
Total solver iterations: 1
Elapsed runtime seconds: 0.14

Model Class: LP

Total variables: 3
Nonlinear variables: 0
Integer variables: 0

Total constraints: 6
Nonlinear constraints: 0

Total nonzeros: 12 Nonlinear nonzeros: 0

Variable	Value	Reduced Cost
M1	0.000000	50.00000
M2	160.0000	0.000000
M3	0.000000	30.00000
Row	Slack or Surplus	Dual Price
1	4000.000	1.000000
MECANIZADO	0.000000	25.00000
MONTAJE	20.00000	0.000000
4	0.000000	0.000000
5	160.0000	0.000000
6	0.00000	0.000000