Computer Science & IT

Discrete Mathematics

Set Theory & Algebra

Lecture No. 17

Recap of Previous Lecture

Topic

Topic

Topic Function

Topic Range of a function

Injective (one-one) function

Surjective (onto) function

Topics to be Covered

Number of onto functions

Bijective function Topic

Identity function Topic

Constant function Topic

Topic

Inverse of a function

Topic: Number of one-one function

Topic: Number of onto functions

Number al Onto Punctions from A to B=2-2

No cel onto functions = No cel one-one function = n

Topic: Number of onto functions

Case 3:-
$$|A|=n \notin |B|=(n-1)$$
,
then number of onto functions
from A to B- $n \in \mathbb{R}$

(ase Given a Case:

if
$$|A|=m$$
 & $|B|=n$ 8.4. $(m \ge n)$,

then number of onto functions possible from

A to B

$$= \{ m - n_{C_1} \cdot (n-1) + n_{C_2} \cdot (n-2) - n_{C_3} \cdot (n-3) + \dots + (-1) - n_{C_1} \cdot (n-(n-1)) \}$$

$$= \sum_{i=0}^{n-1} (-i) \cdot n_{C_1} \cdot (n-i)^m$$
Poinciple of inclusion of Exclusion

Number of Onto functions from A to B 1A = m 41B = n Where $(m \ge n)$ no. of In. Exactlytwo Exactly (n-1) clements af In which elements of the exactly one Co-domain -Co-domain are not used Punctions element al are not (o-domain wad 18 not wed G_2

No. el onto Punctions from A to B $= \eta^{m} - \eta_{C_{1}}(\eta - 1) + \eta_{C_{2}}(\eta - 2) - \eta_{C_{3}}(\eta - 3) + \eta_{C_{4}}(\eta - 4) - \eta$ total no al Exactly Exactly Exactly Cleman

- The fastest computer gets the toughest job and the slowest computer gets the easiest job.
- Every computer gets at least one job. The number of ways in which this
 can be done is .

Topic: Bijective Function

A function if from set A to set B is called bijective function if if is one-one as well as onto.

f is one-one
$$|A| \leq |B|$$
 Both can be tone of is onto $|A| \geq |B|$ Only if $|A| = |B|$

Note: A bijection from set A to Set B is possible
Only if |A|=|B|

- * A bijective function is said to have One-to-one Correspondance.
- * If there exists a one-one Correspondance between set Af set B, then it means |A|=|B|.

* Let |A| - |B|= n, then how many bijection (i.e. bijective functions) are possible from A to B = ? Am = n!

if IAI=IBI, then all one-one functions are onto.
i.e. all one-one function are bijection

Note: - For a function "f", inverse cel function "f"
exists if and only if "f" is a bijective function.

Topic: Identity Function

A function f: A - A is called an identity function

Only if,
$$f(x) = x$$
, $\forall x \in A$

· Identity Dunction On set A is denoted by IA.

Note: Every identity Punction is a bijection, and inverse at identity function is the identity function itself

Topic: Constant Function

A Punction f: A -> B is Called a Constant function Only if every element af domain maps to the same element al Co-domain. ie. f(x) = f(x) = f(A)When f(x) = f(A)

f(x) is

function

Topic: Inverse of a Function

· SInverse af function 'f' exists if and only if function if is a bijective function.

Inverse function: let f: A-B is a relation from A to B such that f' is a bijection, then inverse relation a relation f' ie f' will be the inverse function al Dunction f.

Topic: Inverse of a Function

g: Let
$$f(x) = 2x + 3$$
 is a bijective Punction,
 Pind the inverse function $f(x)$.

$$f(a) = 1 \quad \text{let } y = f(x) \qquad y = f(x)$$

$$f'(1) = a \quad \text{i. } f'(y) = x$$

$$f(y) \text{ will be}$$

$$a \text{ function aly}$$

$$oo x \text{ must be}$$

$$y = f(x)$$
 $y = f(x)$
 $y = f(x)$
 $y = f(x)$
 $y = f(x)$
 $y = f(y) = x$
 $f(y) = x$
 $f(y)$

9:- Let R denote the set of seal numbers,
let
$$f: RXR \rightarrow RXR$$
 be a bijective function
defined by $f(x,y) = (x+y, x-y)$. The inverse of

defined by f(x,y) = function f(x,y) =

(a)
$$f(x,y) = \left(\frac{1}{x+y}, \frac{1}{x-y}\right)$$

(b)
$$f'(x,y) = (x-y, x+y)$$

(a)
$$f'(x,y) = (\frac{x+y}{2}, \frac{x-y}{2})$$

(b) $f'(x,y) = (2(x-y), 2(x+y))$

Let
$$f(x,y) = (a,b)$$

 $f^{-1}(a,b) = (x,y)$

be in terms of a 15

$$2x - 0 = c + b$$

$$x - a + b$$

$$G + 2y = a - b$$

$$\left(y = \frac{a - b}{2}\right)$$

2 mins Summary

Topic

Number of onto functions

Topic

Bijective function

Topic

Identity function

Topic

Constant function

Topic

Inverse of a function

THANK - YOU