

CUSTOMER SENTIMENT ANALYSIS

Al-Based Speech Emotion Recognition

"Companies worldwide spend
>\$1.3 Trillion
for
256 Billion
customer care calls per annum"
~ Analytics Insights

Post Call IVR Survey

- Easy to Execute
- Low Cost
- Easy to Get Agent Level Scores
- Low Response Rates
- Low Volumes of Qualitative Feedback
- Fail to Depict the Sentiments of Customers
- Difficult to Assess True Feedback

Leaving Ratio of Customers

https://www.pwc.com/future-of-cx

HOW. tollo

it?

CODANIANS

BENEFITS

Customer Satisfaction

Customer Rentention

METHODOLOGY

02

Data Sets

RAVDESS, SAVEE, CREMA-D, TESS, Speech Accent Archieve

Features Extraction

Zero Crossing Rate, Chroma_stft, MFCC, RMS value, MelSpectogram

Model Evaluation

Confusion Matrix, Classification Report 05

Emotion Prediction

Predicted Emotions from Speech Accent Archive Dataset

DATA SETS

CODANIANS

Surrey Audio-Visual Expressed Emotion

Speech Accent Archive

Crowd-sourced Emotional Mutimodal Actors Dataset

DATA AUGMENTATION

The process to augment or enhance the data with some modification in the given data

FEATURE EXTRACTION

The process of retrieving information from audio signal is called features extraction.

Chroma Short Time Fourier Transform

MFCC (Mel-Frequency Cepstral Coefficients)

MODEL TRAINING

Model: "sequential 7"		
model: Sequential_/		
	Output Shape	Param #
conv1d_35 (Conv1D)	(None, 162, 256)	1536
max_pooling1d_35 (MaxPoolin g1D)	(None, 81, 256)	0
conv1d_36 (Conv1D)	(None, 81, 256)	327936
max_pooling1d_36 (MaxPoolin g1D)	(None, 41, 256)	0
conv1d_37 (Conv1D)	(None, 41, 128)	163968
max_pooling1d_37 (MaxPoolin g1D)	(None, 21, 128)	0
dropout_21 (Dropout)	(None, 21, 128)	0
conv1d_38 (Conv1D)	(None, 21, 128)	82048
max_pooling1d_38 (MaxPoolin g1D)	(None, 11, 128)	0
dropout_22 (Dropout)	(None, 11, 128)	0
conv1d_39 (Conv1D)	(None, 11, 64)	41024
max_pooling1d_39 (MaxPoolin g1D)	(None, 6, 64)	0
flatten_7 (Flatten)	(None, 384)	0
dense_14 (Dense)	(None, 32)	12320
dropout_23 (Dropout)	(None, 32)	0
dense_15 (Dense)	(None, 8)	264

Total params: 629,096 Trainable params: 629,096 Non-trainable params: 0

LOSS AND ACCURACY

MODEL EVALUATION

Classification Report

	precision	recall	f1-score	support
angry calm disgust fear	0.79 0.57 0.55 0.65	0.71 0.82 0.53 0.51	0.75 0.67 0.54 0.57	1441 152 1416 1442
happy neutral sad	0.57 0.55 0.61	0.62 0.61 0.66	0.59 0.58 0.63	1442 1485 1287 1421
surprise accuracy	0.84	0.88	0.86 0.63	477 9121
macro avg weighted avg	0.64 0.63	0.67 0.63	0.65 0.63	9121 9121

Confusion Matrix

PROTOTYPE

FUTURE PROSPECTS

Combined with Conversational AI, SER is a perfect model for Voice Chat bots

Speech Emotion Recognition

Model can be trained on local languages in Pakistan

SER IN LOCAL LANGUAGES

TARGETED MARKETING

Customized offers based on customers' speech emotions

SER IN HEALTH CARE

In psychiatry wards Emotion Recognition can be used to assess patients mental status

