SFA Test 1

91)

- Pegular Expression: Patterns formed only using symbols $\mathcal{E}, \phi, +, *, *$ and elements of \mathcal{E} are known as regular expression $\mathcal{E}, \phi, +, *, *$ \mathcal{E} :

 Let $\mathcal{E} = \{a, b\}$ $\alpha^* + (bb)^* \longrightarrow \text{regular expression}$
- a) DFA: Deterministic Finite Automata is a structure

 M=(Q, E, S, S, F) for where Q is the set of states possible,

 E is the alphabet of possible inputs, s is the start state,

 F is the Final states and S = is a Function

 from QX & to Q which moves from one State

 to other in response to any input.

G:
$$\frac{a}{5}$$
 $\frac{b}{1}$ $\frac{a}{5}$ $\frac{b}{1}$ $\frac{b}{2}$ $\frac{a}{5}$ $\frac{b}{1}$ $\frac{b}{2}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ $\frac{b}{3}$ $\frac{b}{3}$ $\frac{b}{3}$ $\frac{a}{3}$ \frac

 $s \rightarrow 0 \qquad 0 \qquad 1$ $0 \qquad 1$ $0 \qquad 0 \qquad 1$ $1 \qquad 1 \qquad 1$

SFA TEUL 1

- e) CFL:- content pre language is the language generaled by context free grammar or and is denoted by
 - Eg:- {anb^1 n≥0}
- a) NPDA: Non Deterministic Push Down Automata (NPDA) is a type of NFA which is associated with stack NPDA 11 a structure of the form N= (9, 2, (, 8, 5, 5) where g is the set of all possible states, & is the alphabet of inputs, Sis the start state, Fis the Final state,

 I is the starting stace, T is the alphabet of stace. It and 6 is the transition function

which the poly winds of some winds

Brown to be with the same of the same of the

Complete and the second of the

Was a way of the same of the same of

the state of the s

San Company of the Co

The control of the same

(32)a) Pumping Lemma

Let A be a regular language of $k \ge 0$ such that for string $xyz \in A$, $1y1 \ge k$, there exists u,v,w such that $v \ne \xi, y = uvw$ $\forall i \ge 0$, $xuv^iwz \in A$ s

Pumping Lemma is a necessary condition and not Sufficient condition. Hence non-regular Cauguages can also satisfy pumping lemma

We can only prove that it a language does not Satisfy pumping lemma, it is non regular

I we pump v even à times ruvi w z still stays in

Pumping Lemma For CFL

Let A be any CFL, I k 20 sum that for all $z \in A$, $|z| \ge k$ Then we can write z = uvwny, $st vz \notin \varepsilon$ and $|vwx| \le k$. Also, $\forall i \ge 0$ $uv^iwn^iy \in A$

Proving a b c in not CFL using pumping Lemma let us assume A is a CFL i.e. A satisfies pumping lemma let $z = a^n b^n c^n$, As $|z| \ge n$ and $z \in L$, there exist $z = uvwyy \Rightarrow vwx v$ has to be $\le n \le 1$.

y izo, uvi w ziy € A

let us take the case where uvw consists of only "a" when i=0, uviwriy&A

This is a contradiction. Hence, it is not a CFL (proved using pumping lemme)

S is a regular language and as a CFL too. if L 03)a) is a regular language & mod non deterministic FICFL
20061.

L is a regular language and let M be the altomata that accepts the strings of L. consider automata N vonien acepts the start states of M and stath with accept states of M. The transition b/w states of N is opp. to that of M. I'M accept the reverse strings of L. Inus Sis regular.

We know that L= L(CO) where Gric CFG. (et U = (V, T, P, S). Construct H = (V,T,P,S) Then S= S(+) Thus S'4 a CFL

here P' is heverse & P for each production. i.e A - a = production & s $A \rightarrow a' \Rightarrow production of H$ a' is reverse of a