3.7 1) On doit avoir $12=x=2-5\,\lambda,$ d'où l'on déduit $\lambda=-2\,.$ Les coordonnées du point recherché sont donc :

$$\begin{cases} x = 2 - 5 \cdot (-2) = 12 \\ y = -1 + (-2) = -3 \\ z = 3 \cdot (-2) = -6 \end{cases}$$

2) On demande que $5=y=-1+\lambda,$ d'où suit $\lambda=6$. Le point recherché a ainsi pour coordonnées :

$$\begin{cases} x = 2 - 5 \cdot 6 = -28 \\ y = -1 + 6 = 5 \\ z = 3 \cdot 6 = 18 \end{cases}$$

3) On veut que $-2=z=3\,\lambda,$ si bien que $\lambda=-\frac{2}{3}\,.$ Par conséquent, les coordonnées du point recherché sont données par :

$$\begin{cases} x = 2 - 5 \cdot \left(-\frac{2}{3}\right) = \frac{16}{3} \\ y = -1 + \left(-\frac{2}{3}\right) = -\frac{5}{3} \\ z = 3 \cdot \left(-\frac{2}{3}\right) = -2 \end{cases}$$

4) On requiert que x=z, c'est-à-dire 2-5 $\lambda=3$ λ , ce qui implique $\lambda=\frac{1}{4}$. Les coordonnées du point recherchées valent donc :

$$\begin{cases} x = 2 - 5 \cdot \frac{1}{4} = \frac{3}{4} \\ y = -1 + \frac{1}{4} = -\frac{3}{4} \\ z = 3 \cdot \frac{1}{4} = \frac{3}{4} \end{cases}$$

5) On exige que $z=2\,y$, à savoir $3\,\lambda=2\,(-1+\lambda)$; on en tire $\lambda=-2$. Le point recherché possèdent dès lors les coordonnées suivantes :

$$\begin{cases} x = 2 - 5 \cdot (-2) = 12 \\ y = -1 + (-2) = -3 \\ z = 3 \cdot (-2) = -6 \end{cases}$$