Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Герра Гарсия Паола Валентина

Содержание

Цель работы	1
ь Выполнение лабораторной работы	
Постановка задачи	
Построение модели	
Оптимизация модели двух стратегий обслуживания	
Выводы	

Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Выполнение лабораторной работы

Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на

интервале [a, b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu = 1$, 75 мин, a = 1 мин, b = 7 мин.

Построение модели

Целью моделирования является определение:

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [-@fig:001]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [-@fig:002]).

<pre>lab16_1.1.1</pre>	- KEPOR	1									
	START	TIME	E	ND TIME	BLOCK	S FA	CILITIES	s s:	TORAG	ES	
	0.000						2		0		
	NAM				VALUE						
	OBSL_1				5.000						
	OBSL_2				11.000						
	OTHER1				000.000						
	OTHER2				001.000						
	PUNKT1				003.000						
	PUNKT2			10	002.000						
LABEL		LOC	BLOCK TY	PE			CURRENT	COU	NT RE	TRY	
			GENERATE		5853			•		•	
		_	TEST		5853			0		•	
			TEST		4162			0		0	
		4	TRANSFER		2431			0		0	
OBSL_1			QUEUE		2928		38			•	
		_	SEIZE		2541			0		0	
			DEPART		2541			0		0	
			ADVANCE		2541			0		0	
			RELEASE		2540					0	
			TERMINAT	E.	2540			0		0	
OBSL_2			QUEUE SEIZE		2925 2537		38	0		0	
			DEPART		2537			0		0	
			ADVANCE		2537			1		0	
			RELEASE		2537			0		0	
			TERMINAT		2536			0		0	
			GENERATE		2536			0		0	
			TERMINAT		1			0		0	
		10	IERMINAI.	E	1			0		0	
FACILITY		PNTDTEC	1177.7.7	AUD T	TME 3173	TT 0	שת תשוש	יד חוי	משחוו	nernv	עגזסח
PUNKT2			0.996								
PUNKT1			0.997				5078				
FONKII		2341	0.337		. 555 1		3079			•	307
QUEUE		MAX CO	ONT. ENTR	Y ENTRY	(O) AVF	. CONT	. AVE.T	TME	AVF	. (-0)	RETRY
OTHER1			387 292							6.758	
OTHER2			388 292							7.479	
							0.11				ŭ
FEC XN	PRI	BDT	ASS	EM CUR	RENT N	EXT	PARAMETI	ER	VAL	UE	
5855	0	10081.	102 585	5	0	1					

Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [-@fig:003], [-@fig:004]).

Модель второй стратегии обслуживания

	START 1	TIME		END	TIME	BLOC	KS I	FACILITIES	STORAGES	
	0.	.000		10080	0.000	9	1	0	1	
	NAME	Ξ				VALUE				
	OTHER				10	001.00	0			
	PUNKT				10	000.00	0			
LABEL		LOC	BLOG	CK TYPE		ENTRY	COUNT	CURRENT (COUNT RETRY	
		1	GENE	ERATE		571	9	(0 0	
		2	QUE	JE		571	9	668	В 0	
		3	ENTE	ER		505	1	(0 0	
		4	DEPA	ART		505	1	(0 0	
		5	ADV	ANCE		505	1		2 0	
		6	LEAV	/E		504	9	(0 0	
		7	TERN	1INATE		504	-		0 0	
		8	GENE	ERATE			1	(0 0	
		9	TERM	MINATE			1	(0 0	
QUEUE		MAX C	ONT.	ENTRY E	ENTRY	VA (0)	E.CON	NT. AVE.TI	ME AVE.(-0)	RET
OTHER		668	668	5719		4 34	4.466	607.1	38 607.562	0
STORAGE		CAP.	REM.	MIN. M	AX.	ENTRIE	S AVI	L. AVE.C.	UTIL. RETRY	DELA
PUNKT		2	0	0	2	5051	1	2.000	1.000 0	668
FEC XN	PRI	BDT		ASSEM	CUR	RENT	NEXT	PARAMETE	R VALUE	
5721	0	10080.	466	5721		0	1			
5051	0	10081.	269	5051		5	6			
5052	0	10083.	431	5052		5	6			
5722	0	20160.	000	5722		0	8			

Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [-@tbl:strategy]).

Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [-@fig:005]).

Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [-@fig:005]).

lab16_2.6.	.1 - REPOR	Т							
			END I					ES	
		0.000	10080.	000	9	1	0		
ı									
	NA	ME		VALU	E				
	OTHER			10000.0	00				
	PUNKT			10001.0	00				
LABEL		LOC	BLOCK TYPE	ENTRY	COUN	CURRENT	COUNT RE	TRY	
		1	GENERATE	57	44		0	0	
		2	QUEUE	57	44	323	3	0	
		3	SEIZE	25	11		0	0	
		4	DEPART	25	11		0	0	
		5	ADVANCE	25	11		1	0	
		6	RELEASE	25	10		0	0	
		7	TERMINATE	25	10		0	0	
		8	GENERATE		1		0	0	
		9	TERMINATE		1		0	0	
FACILITY		ENTRIES	UTIL. AVE	. TIME A	VAIL.	OWNER PEN	D INTER	RETRY	
PUNKT		2511	1.000	4.014	1	2512	0 0	0	3233
PUNKT									
PUNKT		MAX C	1.000 DNT. ENTRY EN 233 5744	TRY(0) A	VE.CO	NT. AVE.TI	ME AVE	. (-0)	RETRY
PUNKT QUEUE OTHER		MAX C	ONT. ENTRY EN	TRY(0) A	VE.CO	NT. AVE.TI 6 2838.8	ME AVE 19 283	. (-0) 9.313	RETRY
PUNKT QUEUE OTHER	PRI	MAX C0 3234 33 BDT	DNT. ENTRY EN	TRY(0) A	VE.CO	NT. AVE.TI 6 2838.8	ME AVE 19 283	. (-0) 9.313	RETRY
PUNKT QUEUE OTHER	PRI 0	MAX C0 3234 33 BDT 10080.3	DNT. ENTRY EN 233 5744 ASSEM	TRY(0) A 1 16 CURRENT 5	VE.COI	NT. AVE.TI 6 2838.8	ME AVE 19 283	. (-0) 9.313	RETRY

Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:007], [-@fig:008]).

Модель первой стратегии обслуживания с 3 пропускными пунктами

Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [-@fig:009], [-@fig:010]).

Модель первой стратегии обслуживания с 4 пропускными пунктами

	27 REI 28 TEF 29 GEN	VANCE LEASE RMINATE RERATE RMINATE	14: 14: 14:	12		0 0 0 0		0 0 0	
FACILITY	ENTRIES UT	IL. AVE	. TIME AV	/AIL. C	WNER :	PEND	INTER	RETRY	DELAY
PUNKT4	1413 0	.557	3.971	1	5623	0	0	0	0
PUNKT3	1378 0	.545	3.989	1	0	0	0	0	0
PUNKT2	1366 0	.541	3.993	1	0	0	0	0	0
PUNKT1	1465 0	.584	4.018	1	5621	0	0	0	0
QUEUE OTHER4 OTHER3 OTHER2 OTHER1	6 0		628 655 625	0.415 0.345 0.363		2.958 2.527 2.676		5.325	0 0
FEC XN PRI 5624 0 5621 0 5623 0 5625 0	BDT 10080.041 10080.398 10082.255 20160.000	5624 5621 5623	0 8 26	NEXT 1 9 27 29	PARAM	ETER	VAI	LUE	

Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:011], [-@fig:012]).

```
[6] Tab16_3.gps
punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта 1
QUEUE Other ; присоединение к очереди 1
 ENTER punkt ; занятие пункта 1
DEPART Other ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT	10001.000 10000.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 5683 0 0 2 QUEUE 5683 0 0 3 ENTER 5683 0 0 4 DEPART 5683 0 0 5 ADVANCE 5683 3 0 6 LEAVE 5680 0 0 7 TERMINATE 5680 0 0 8 GENERATE 1 0 0 9 TERMINATE 1 0 0
QUEUE OTHER		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 12 0 5683 2521 1.063 1.885 3.388 0
STORAGE PUNKT		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
5683 5685 5684	0 0 0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 10080.434 5680 5 6 10080.631 5683 5 6 10082.068 5685 0 1 10085.592 5684 5 6 20160.000 5686 0 8

Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [-@fig:011], [-@fig:012]).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней к 24 часа к 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Модель второй стратегии обслуживания с 4 пропускными пунктами

```
LABEL

LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY

1 GENERATE 5719 0 0
2 QUEUE 5719 0 0
3 ENTER 5719 0 0
4 DEPART 5719 0 0
5 ADVANCE 5719 4 0
6 LEAVE 5715 0 0
7 TERMINATE 5715 0 0
8 GENERATE 1 0 0 0
9 TERMINATE 1 0 0 0

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OTHER 7 0 5719 4356 0.194 0.341 1.431 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
PUNKT 4 0 0 4 5719 1 2.253 0.563 0 0

FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE
5718 0 10082.346 5718 5 6
5717 0 10082.412 5717 5 6
5719 0 10082.393 5721 0 1
5720 0 10084.393 5721 0 1
5720 0 10085.162 5720 5 6
5722 0 20160.000 5722 0 8
```

Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;

•	изменить модели, чтобы определить оптимальное число пропускных пунктов.