МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка характеристик надежности программ по структурным схемам надежности»

Студент гр. 8304	тудент гр. 8304			
Преподаватель		Ефремов М. А.		

Санкт-Петербург

Цель работы.

Выполнить расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.

Ход работы.

По списку был выбран варианта № 2(22) (см Таблица 1).

Таблица 1 – Исходные данные.

	N_1				N_2		N_3	
комбинат.	λ_1	λ_2	λ_3	λ_4	комб. соедин.	λ	комб. соедин.	λ
соединения								
C(3)	4.0	2.85	3.8	-	(2, 2)	3.8	(1,1)	2.0

Был построен граф программы, результат работы представлен на рисунке 1.

Рисунок 1 – Граф программы

Структура графа:

 N_1 — блок из 3 последовательных элементов

 N_2- блок, состоящий из двух параллельных ветвей (по 2 элемента на ветви)

 N_3 – блок, состоящий из двух параллельных ветвей (по 1 элементу на ветви)

2 доп. вершины: связь между N_2 и N_3 , вторая — конченая вершина.

Ручной расчет вероятностей для блоков и целого графа представлен ниже

$$(t = 2, \lambda_5 = 3.8, \lambda_6 = 2.0)$$

• Первый блок:

$$R_{N_1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3)t} = e^{-(4.0 + 2.85 + 3.8) \cdot 2 \cdot 10^{-5}} \approx 0.9997870227$$

Второй блок:

$$R_{N_2} = 1 - \left(1 - e^{-2\lambda_5 t}\right) \left(1 - e^{-2\lambda_5 t}\right) = 1 - \left(1 - e^{-2*3.8*2*10^{-5}}\right) \left(1 - e^{-2*3.8*2*10^{-5}}\right) \approx 0.9999999768995$$

• Третий блок:

$$R_{N_3} = 1 - \left(1 - e^{-\lambda_6 t}\right) \left(1 - e^{-\lambda_6 t}\right) =$$

$$1 - \left(1 - e^{-2*2*10^{-5}}\right) \left(1 - e^{-2*2*10^{-5}}\right) \approx 0.999999999840006$$

$$R_S = R_{N_1} * R_{N_2} * R_{N_3} \approx 0.9997869980048$$

$$MTTF = \int_0^\infty R_S(t) dt = \int_0^\infty e^{-(\lambda_1 + \lambda_2 + \lambda_3)t} * \left(1 - \left(1 - e^{-2\lambda_5 t}\right) \left(1 - e^{-2\lambda_5 t}\right)\right) *$$

$$\left(1 - \left(1 - e^{-\lambda_6 t}\right) \left(1 - e^{-\lambda_6 t}\right)\right) dt = 6933.08$$

Вероятность безотказной работы системы в заданный момент времени: 0.9997869980048, среднее время до отказа системы: 6933.08 часа.

Программный расчёт.

Граф построен в программе:

Рисунок 2 – Схема в программе

Программный расчёт представлен на рисунке 3.

t	R	Т
2.0	0.9997869979877256	6927.973699763332

Рисунок 3 – Программный расчёт

Выводы.

В ходе выполнения лабораторной работы был выполнен расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.