CC1004 - Modelos de Computação Prática 5

Ana Paula Tomás

DCC FCUP

Março 2021

1a) $L_1 = \mathcal{L}(0 + (11)^*)$: Linguagem de alfabeto $\{0,1\}$ constituída pela palavra 0 e pelas que não têm 0's e têm comprimento par.

 $L_2 = \mathcal{L}((0+1)^*101)$: Linguagem de alfabeto $\{0,1\}$ constituída pelas palavras que terminam em 101

1b) para L_1

$$s_0 \not\equiv s_1 \text{ por } \varepsilon \in L_1 \text{ mas } 1 \notin L_1$$

 $s_0 \not\equiv s_3 \text{ por } 00 \notin L_1 \text{ mas } 0 \in L$

$$s_0 \not\equiv s_1$$
 por $\varepsilon \in L_1$ mas $1 \not\in L_1$ $s_0 \not\equiv s_2$ porque $110 \not\in L_1$ mas $0 \in L_1$ $s_0 \not\equiv s_3$ porque $011 \not\in L_1$ e $1111 \in L_1$

 s_4 tem de ser distinto de s_1 porque em s_1 se consome 1 passa a estado final e em s_4 a palavra é sempre rejeitada, qualquer que seja o símbolo que tiver depois.

- 1c) Construção do AFD mínimo que aceita $L_1 = \mathcal{L}(0 + (11)^*)$ usando a caracterização dada pelo corolário do Teorema de Myhill-Nerode
 - Estado inicial: $[\varepsilon]$. É estado final porque $\varepsilon \in L_1$.
 - $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [0]$ é um estado final porque $0 \in L_1$. É um estado novo porque $[0] \neq [\varepsilon]$ pois $(0, \varepsilon) \notin R_{L_1}$, uma vez que para z = 0 tem-se $0z = 00 \notin L_1$ mas $\varepsilon z = \varepsilon 0 \in L_1$. $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [1]$ é um estado não final porque $1 \notin L_1$. É um estado novo.
 - $\delta([0],0) \stackrel{\text{def}}{=} [00]$ é um estado **não final** porque $00 \notin L_1$. Não é [1] porque $(00,1) \notin R_{L_1}$, uma vez que para z=1 tem-se $00z=001 \notin L_1$ mas $1z=11 \in L_1$. $\delta([0],1) \stackrel{\text{def}}{=} [01] = [00]$ pois $00z \notin L_1$ e $01z \notin L_1$, para todo $z \in \Sigma^*$.
 - $\delta([00], 0) \stackrel{\text{def}}{=} [000] = [00] = [001] \stackrel{\text{def}}{=} \delta([00], 1)$
 - $\delta([1], 0) \stackrel{\text{def}}{=} [10] = [00]$ pois $10z \notin L_1$, para todo $z \in \Sigma^*$. $\delta([1], 1) \stackrel{\text{def}}{=} [11]$ é **final** porque $11 \in L_1$. É novo: $[11] \neq [\varepsilon]$ porque $(11, \varepsilon) \notin R_{L_1}$, pois se z = 0, tem-se $11z = 110 \notin L_1$ mas $\varepsilon z = \varepsilon 0 \in L_1$. E, $[11] \neq [0]$ porque $(11, 0) \notin R_{L_1}$, pois se z = 11, tem-se $11z = 1111 \in L_1$ mas $0z = 011 \notin L_1$. $\delta([11], 1) \stackrel{\text{def}}{=} [111] = [1]$ porque $1z \in L_1 \Leftrightarrow z \in \mathcal{L}(1(11)^*)$ e $11z \in L_1 \Leftrightarrow z \in \mathcal{L}(1(11)^*)$.

3 / 12

- 1c) Construção do AFD mínimo que aceita $L_2 = \mathcal{L}((0+1)^*101)$
 - $[\varepsilon]$ é o estado inicial. Não é final porque $\varepsilon \notin L_2$.
 - $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [0] = [\varepsilon]$ porque $0z \in L_2$ sse z termina em 101. E, analogamente, $\varepsilon z \in L_2$ sse z termina em 101. Portanto, $0R_{L_2}\varepsilon$.
 - $\delta([\varepsilon],1) \stackrel{\text{def}}{=} [1] \neq [\varepsilon]$ porque $(\varepsilon,1) \notin R_{L_2}$ porque existe um $z \in \Sigma^*$ tal que $1z \in L_2$ e $\varepsilon z \notin L_2$. Por exemplo, z = 01.
 - $\delta([1], 1) \stackrel{\text{def}}{=} [11] = [1]$ pois $\forall z \in \Sigma^*$ $1z \in L_2 \Leftrightarrow z = 01 \lor z \in L_2$ e $\forall z \in \Sigma^*$ $11z \in L_2 \Leftrightarrow z = 01 \lor z \in L_2$.
 - $\begin{array}{l} \delta([1],0)\stackrel{\mathsf{def}}{=}[10] \text{ novo estado n\~ao final: } (\varepsilon,10)\notin R_{L_2} \text{ pois, para } z=1\text{, tem-se} \\ \varepsilon z\notin L_2 \text{ e } 10z\in L_2\text{; e } (1,10)\notin R_{L_2} \text{ para } z=1\text{, dado que } 1z\notin L_2 \text{ e } 10z\in L_2. \end{array}$
 - $\delta([10],1) \stackrel{\text{def}}{=} [101]$ novo estado. É final pois $101 \in L_2$. Não pode ser igual a nenhum dos anteriores que são de palavras de $\Sigma^* \setminus L_2$. Bastaria tomar $z = \varepsilon$ para distinguir. $\delta([10],0) \stackrel{\text{def}}{=} [100] = [\varepsilon]$ pois $100z \in L_2$ se e só se $z \in L_2$.
 - $\delta([101], 0) \stackrel{\text{def}}{=} [1010] = [10]$ porque $10z \in L_2$ se e se z = 1 ou $z \in L_2$. $\delta([101], 1) \stackrel{\text{def}}{=} [1011] = [1]$ porque $1011z \in L_2$ se e se z = 01 ou $z \in L_2$.

2a) O AFD mínimo para $\mathcal{L}(\mathcal{A}) = \{aa\} \Sigma^*$, com $a \in \Sigma$ fixo e $\Sigma \setminus \{a\} \neq \emptyset$, tem **quatro estados**. No diagrama, b denota qualquer um símbolo de $\Sigma \setminus \{a\}$.

2b) O AFD mínimo para $\mathcal{L}(\mathcal{A}) = \Sigma^*\{aa\}$, com $a \in \Sigma$ fixo, tem **três estados**. Se $\Sigma = \{a\}$, os ramos etiquetados por $\Sigma \setminus \{a\}$ não existem.

3a)

A afirmação "Para todo o alfabeto Σ , o AFD mínimo que reconhece a linguagem \emptyset de Σ^* não tem estados finais" é **verdadeira** porque o conjunto de estados do AFD mínimo para L corresponde ao conjunto das classes de equivalência constituídas por palavras de L e, neste caso, $L=\emptyset$.

3b)

A afirmação "Existe uma linguagem L de alfabeto $\Sigma = \{a,b\}$ tal que o AFD mínimo que reconhece L não tem transições por b em nenhum estado" é falsa pois, pela definição de AFD dada, existem transições por todos os símbolos de Σ em todos os estados do AFD.

- 4) **Justificação** para "Qualquer que seja a linguagem regular $L \subseteq \Sigma^*$, o AFD mínimo para L e para \overline{L} têm o mesmo conjunto de estados e a mesma função de transição, diferindo apenas no conjunto de estados finais: se $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é o AFD mínimo que reconhece L então $\mathcal{A}' = (S, \Sigma, \delta, s_0, S \setminus F)$ é o AFD mínimo que reconhece a linguagem complementar de L."
 - As classes de equivalência de R_L e de $R_{\overline{L}}$ coincidem. xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. Ou seja, xR_Ly sse $\forall z \in \Sigma^*(xz \notin L \Leftrightarrow yz \notin L)$. Logo, se x e y são equivalentes segundo R_L , também
 - Qualquer que seja L regular, a função δ do AFD mínimo para L é definida por $\delta([x],a)=[xa]$. Portanto, δ fica perfeitamente determinada pelo conjunto de classes de R_L . Como as classes de R_L e $R_{\overline{L}}$ coincidem, as funções de transição coincidem.

são equivalentes segundo $R_{\overline{L}}$ pois $xz \notin L \Leftrightarrow yz \notin L$ equivale a $xz \in \overline{L} \Leftrightarrow yz \in \overline{L}$.

• O conjunto dos estados finais do AFD mínimo para L é definido por $F = \{[x] \mid x \in L\}$. Para \overline{L} , é $\{[x] \mid x \in \overline{L}\} = \{[x] \mid x \notin L\} = \frac{\sum^{\star}}{R_L} \setminus F$.

- 5) Aplicação do algoritmo de Moore:
 - Tabela inicial: qualquer estado é equivalente a si mesmo; os estados finais não são equivalentes a estados não finais.

q_0	=				
q 0 q 1 q 2		=			
q_2			=		
q ₃	X	X	X	=	
q_4	Χ	X	Χ		=
	q 0	q_1	q ₂	q ₃	q_4

Restantes entradas . . .

5) Aplicação do algoritmo de Moore (cont.):

Restantes entradas

• (q_0, q_1) : $\delta(q_0, 0) = q_1 = \delta(q_1, 0)$ não podem ser distinguidos por 0. $\delta(q_0,1)=q_2$ e $\delta(q_1,1)=q_1$ mas, como não se tem ainda a decisão para (q_2,q_1) , colocamos (q_0, q_1) na sua entrada e ? na de (q_0, q_1) .

q_0	≡					
q ₀ q ₁ q ₂	?					
q_2		(q_0,q_1)	≡			
q ₃	X	X	X	=		
q_4	X	X	Χ		=	
	q 0	q_1	q ₂	q ₃	q_4	

5) Aplicação do algoritmo de Moore (cont.):

Restantes entradas

• (q_0, q_2) : $\delta(q_0, 0) = q_1 \in \delta(q_2, 0) = q_3$. Logo, $q_0 \neq q_2$ pois $q_3 \neq q_1$.

7 0	=				
71	?	=			
7 2	X	(q_0,q_1)	≡		
7 3	X	X	X	=	
] 4	X	X	X		=
	q 0	q_1	q ₂	q ₃	q_4

Folha 5 - Questão 5 (cont.)

Restantes entradas (cont.)

• (q_1, q_2) : $\delta(q_1, 0) = q_1$ e $\delta(q_2, 0) = q_3$. Logo, $q_1 \not\equiv q_2$ pois $q_3 \not\equiv q_1$. Propagação: como $q_3 \not\equiv q_1$ então $q_0 \not\equiv q_1$. Substituimos ? por X na entrada de (q_0, q_1) .

70	=				
71	?X	=			
72	X	$(q_0,q_1)X$	=		
73	X	X	X]
74	X	X	X		=
	q_0	q_1	q ₂	q ₃	q_4
					_

• (q_3, q_4) : $\delta(q_3, 0) = q_1 = \delta(q_4, 0)$ e $\delta(q_3, 1) = q_2 = \delta(q_4, 1)$. Logo, $q_3 \equiv q_4$.

Folha 5 - Questão 5 (cont.)

• Tabela Final e AFD equivalente mínimo:

