II.Python Tuple 활용

1. Python 튜플 활용법

1] 튜플 개념

- 순서있는 임의의 객체 모음 (시퀀스형)

t3, (1, 2, 3) --> ({1: 'abc', 2: 'def'}, (1, 2, 3))

- 튜플은 변경 불가능(Immutable)하므로 , 메소드를 가지지 않음
- 시퀀스형이 가지는 다음 연산 모두 지원(인덱싱, 슬라이싱, 연결, 반복, 멤버쉽 테스트)
- 자료가 한 개일 때는 반드시 콤마가 있어야 함(괄호가 없어도 콤마 있으면 튜플로 인식)
- 튜플 내부 원소로 다른 튜플(리스트/사전)을 가질 수 있음
- 튜플을 사용하는 경우 1: 함수가 하나 이상의 값을 리턴하는 경우

1. Python 튜플 활용법

2] 패킹과 언패킹

- 패킹 (Packing): 하나의 튜플 안에 여러 개의 데이터를 넣는 작업
- 언패킹 (Unpacking): 하나의 튜플에서 여러 개의 데이터를 한꺼번에 꺼내와 각각 변수에 할당하는 작업

3] Tuple 사용 용도

- 함수가 하나 이상의 값을 리턴하는 경우
 - ① 리턴을 할 때 2개의 원소 같이 리턴 → 튜플 괄호 숨어있음
- ② 리턴한 결과가 튜플한 뒤 언패킹 진행
- ③ 튜플은 동시에 여러 개의 값 리턴 가능
- 고정된 값을 쌍으로 표현하는 경우
 - ① 사전의 원소 기준 → 콤마(,)
 - ② 원소: item
 - ③ 결과는 리스트, 원소는 튜플

2. Python 집합 자료형

1] 집합 자료형

- set 내장 함수를 사용한 집합 자료 생성(인자->리스트, 튜플, 사전 가능)
- 변경 가능(Mutable)한 객체이다.
- 각 원소간에 순서는 없다.
- 각 원소는 중복될 수 없다.
- -시퀀스 자료형이 아니다(인뎩싱, 슬라이싱 안됨)
- set 안에 튜플이 들어가도 출력은 리스트로 됨

2] set의 주요 메소드

set 연산	동일 연산자	내용
S issubset(t)	s <= t	s가 t의 부분집합인가?
S issuperset(t)	s >= t	s가 t의 슈퍼집합인가?
s union(t)	s t	새로운 s와 t의 합집합
s intersection(t)	s & t	새로운 s와 t의 교집합
s difference(t)	s-t	새로운 s와 t의 차집합
s symmetric_difference(t)	s*t	새로운 s와 t의 배타집합
s copy()		집합 s의 shallow 복사

set 연산	동일 연산자	ив	
s.update(t)	s = t	s와 t의 합집합을 s에 저장	
s.intersection_update(t)	s &= t	s와 t의 교집합을 s에 저장	
s.difference_update(t)	s -= t	s와 t의 차집합을 s에 저장	
s.symmetric_difference_update(t)	s ^= t	s와 t의 배타집합을 s에 저장	
s.add(x)		원소 x를 집합 s에 추가	
s.remove(x)		원소 x를 집합 s에서 제거, 원소 x가 집합 s에 없으면 예외 발생	
s.discard(x)		원소 x를 집합 s에서 제거	
s.pop()		임의의 원소를 집합 s에서 제거, 집합 s가 공집합이면 예외 발생	
s.clear()		집합 S의 모든 원소 제거	