MICRO-STEP TIME-SERIES REGRESSION

INSIGHTS FROM SYSTEM IDENTIFICATION USING SYMBOLIC REGRESSION

HENGZHE ZHANG, ALBERTO TONDA, QI CHEN, BING XUE, EVELYNE LUTTON, MENGJIE ZHANG

FEBRUARY 28, 2025

OUTLINE

- 1 Introduction
- 2 Motivation
- 3 Proposed Approach
- 4 Experimental Results
- 5 Conclusions

INTRODUCTION

- Time-series regression is fundamental for modeling real-world phenomena
- Standard approach: predict \hat{y}_{t+1} using past observations:

$$\hat{y}_{t+1} = f(\Phi(y_t, y_{t-1}, \dots, y_{t-p+1}))$$

■ Φ represents feature construction via genetic programming (GP)

GENETIC PROGRAMMING FOR TIME-SERIES

- GP evolves interpretable models capturing complex temporal dependencies
- Applications include:
 - Quality of service forecasting ¹
 - ► Streamflow prediction ²
 - ► Financial time-series analysis
- Key gap: Most approaches use fixed time steps determined by the problem

¹Fanjiang et al., "Time series QoS forecasting for Web services using multi-predictor-based genetic programming," *IEEE Trans. Serv. Comput.*, 2020.

²Mehr and Gandomi, "MSGP-LASSO: An improved multi-stage genetic programming model for streamflow prediction," *Inf. Sci.*, 2021.

DYNAMIC SYSTEMS AND ODES

■ Dynamic systems modeled by ODEs:

$$\frac{dy^{(i)}}{dt} = f_i(t, y^{(1)}, y^{(2)}, \dots, y^{(n)})$$

■ Euler method approximation:

$$y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

 Problem: First-order Euler method has limited accuracy for complex dynamics

Key Challenge: Large time steps inadequately capture continuous dynamics, leading to errors

MOTIVATION: EULER METHOD LIMITATIONS

- Even with known ground truth ODEs, direct prediction over large intervals causes significant errors
- Example: ODE $\frac{dy}{dt} = -2y$
- Traditional prediction: $y_{t+1} = y_t 2y_t$
- This large-step approximation diverges from the true solution

Our Solution: Decompose predictions into smaller intervals for better approximation

1. Analysis of step size impact:

- Demonstrated that large step sizes cause prediction errors
- Showed that even with known ground truth, accuracy suffers

2. Micro-step regression technique:

- ► Novel data augmentation using linear interpolation
- ► Enriches training data for GP feature construction
- Allows capture of finer temporal patterns

3. Empirical validation:

- ► Tested on 100 datasets from M4 forecasting benchmark
- Demonstrated significant improvements in accuracy
- Evolved more compact, interpretable models

MOTIVATION

Table: Impact of Reduced Discretization Interval on R^2 Performance

System Id	State	Trajectory	R^2 for $\Delta_t \approx 0.06$	R^2 for $\Delta_t \approx 0.03$	R^2 for $\Delta_t \approx 0.015$
11	<i>x</i> ₀	1	0.002478	0.769415	0.948090
"		2	0.957637	0.990291	0.997697
	<i>x</i> ₀	1	0.531413	0.896984	0.976729
26		2	0.838427	0.964003	0.991650
20	<i>x</i> ₁	1	0.670316	0.926977	0.983374
		2	0.884917	0.974147	0.993958

- Key insight: Even with known ground truth, large time steps lead to poor predictions
- Reducing the time step dramatically improves accuracy
- Limitation: In real applications, we can't simply collect data at finer intervals

PROPOSED APPROACH

MICRO-STEP TIME-SERIES REGRESSION

Key idea: Decompose predictions into smaller intervals

Data augmentation: Linear interpolation between points

$$y_{t+\frac{i}{k+1}} = y_t + \frac{i}{k+1} \cdot (y_{t+1} - y_t)$$

- Feature construction: GP evolves features on augmented data
- 3. Prediction: Aggregate micro-step predictions

$$\hat{y}_{T+h} = y_T + \sum_{i=1}^{h} \sum_{j=1}^{k+1} \hat{\Delta \hat{y}}_{T+i,j}$$

Value $y_{t+\frac{1}{3}}, y_{t+\frac{2}{3}}, y_{t+1}$ $y_{t} \leftarrow y_{t+\frac{1}{3}}, y_{t+\frac{1}{3}}, y_{t+1}$ $y_{t+\frac{1}{3}}, y_{t+\frac{1}{3}}, y_{t+\frac{1}{3}},$

EVOLUTIONARY FRAMEWORK

1. Population Initialization:

- ► Multi-tree GP individuals
- ► Ramped-half-and-half initialization
- ► Function set: Mathematical operators
- ► Terminal set: Lag features $y_{t-1}, ..., y_{t-p}$

2. Fitness Evaluation:

- ► Construct *m* features from each individual
- Train ARIMA model on constructed features
- Evaluate on augmented training data

3. Selection and Variation:

- \triangleright ϵ -Lexicase selection
- Subtree crossover and mutation

4. Archive Maintenance:

Store best individual for final predictions

EXPERIMENTAL RESULTS

EXPERIMENTAL SETTINGS

- Datasets: 100 time-series from M4 benchmark
- **■** Baseline Methods:
 - ► Raw GP (without micro-step)
 - ► ElasticNet, Decision Trees, Random Forests, XGBoost, SVR
 - ODEFormer (state-of-the-art for system identification)

■ Evaluation Protocol:

- Training/test splits from M4
- Subsampled to 6-hour intervals
- Forecast horizon: 8 steps (48 hours)
- 30 repeated runs with different random seeds

Parameters:

- ► Population size: 200
- ► Generations: 100
- ► Augmentation parameter k = 1

TRAINING PERFORMANCE: COMPARISON

- \blacksquare Micro-step regression significantly improves training R^2 across datasets
- The improvement demonstrates that data augmentation effectively decomposes the regression task
- By predicting smaller changes, the model better captures underlying patterns

TRAINING PERFORMANCE: STATISTICAL ANALYS

Table: Statistical comparison of training R^2 across 100 datasets

	GP	ElasticNet	DT	RF	XGB	SVR
Micro-GP GP	73(+)/25(=)/2(-) —	100(+)/0(=)/0(-) 100(+)/0(=)/0(-)	O(+)/O(=)/10O(-) O(+)/O(=)/10O(-)	- (// - (// (/	- (// - (// (/	(// - (// - (/

- Micro-GP significantly outperforms GP on 73% of datasets
- Both GP variants outperform ElasticNet and SVR on all datasets
- Tree-based models (DT, RF, XGB) achieve higher R^2 by memorizing training points
- Tree models can precisely memorize by partitioning the feature space until each region contains only one point

TEST PERFORMANCE: COMPARISON

- Micro-step regression improves generalization on unseen data
- Lower MAPE values indicate better forecasting accuracy across the prediction horizon
- The improvement is particularly notable on datasets with fine-grained temporal dynamics

TEST PERFORMANCE: STATISTICAL ANALYSIS

Table: Statistical comparison of test MAPE across 100 datasets

	GP	ElasticNet	DT	RF	XGB	SVR	ODEFormer
Micro-GP GP	21(+)/74(=)/5(-) —	0 (// // // // // //	51(+)/22(=)/27(-) 30(+)/48(=)/22(-)	001 // // // //	0 . (), 0 (), 0 / ()	2	2

- Micro-GP significantly outperforms GP on 21% of datasets
- Micro-GP dramatically outperforms ODEFormer (98%) and SVR (96%)
- Mixed results against other ML methods, suggesting dataset-specific performance
- ODEFormer struggles with real-world data despite being pretrained on synthetic systems

PREDICTION VISUALIZATION

Micro-Step Regression

Raw Regression

ODEFormer

- Micro-step regression maintains accuracy across prediction horizon
- Raw regression deteriorates quickly after first step
- ODEFormer fails to capture underlying patterns

EVOLVED MODELS

Micro-Step Features

Raw Features

- Features evolved from micro-step data are simpler
- Raw data requires more complex features to capture larger changes
- Simpler features generalize better to unseen data

MODEL SIZE AND TRAINING TIME

Model Size (Tree Nodes)

Training Time (seconds)

- Micro-step regression produces smaller trees
- Only modest increase in training time despite doubled data
- Simplicity of evolved models offsets computational costs

CONCLUSIONS

- **Key Insight**: Large time steps inadequately capture continuous dynamics
- Contribution: Micro-step time-series regression technique
 - Decomposes predictions into smaller intervals
 - Uses linear interpolation for data augmentation
 - Allows GP to evolve simpler, more effective features

■ Results:

- ► Improved accuracy on 21% of test datasets
- Evolved smaller, more interpretable models
- Outperformed specialized dynamics modeling approaches

■ Future Work:

- Automatic determination of optimal step size
- ► Extension to multivariate time-series
- Application to other domains with continuous dynamics

THANK YOU!

