Sommersemester 2016

Grundlagen der Funktionalanalysis

Im Zweifel immer das Richtige nehmen. Prof. Dr. B. Jacob

Inhaltsverzeichnis

Vo	orwort	5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21

Vorwort

Übungszettel:

- Immer Mittwochs, Abgabe: In der Vorlesung
- Keine Abgabepflicht, aber Bonussystem: 50% der Punkte⇒ 0.3 Bonus, 75% der Punkte⇒ 2 Notenschritte Bonus
- Mündliche Prüfung

Literatur: Werner - Funktionalanalysis, Springer Verlag, ISBN 3-540-43586-7

Motivation: Die Funktionalanalysis beschäftigt sich mit unendlichdimensionalen Vektorräumen (über \mathbb{R} oder \mathbb{C}), in denen der Konvergenzbegriff gegeben ist (Topologie), sowie den stetigen linearen Abbildungen (Operatoren) zwischen ihnen.

- Funktionen werden als Punkte bzw. als Elemente in Funktionenräumen betrachtet ($C([0,1]), \mathcal{L}_1(\mathbb{R})$).
- Es gibt vielfältige Anwendungen innerhalb der Analysis (Integralgleichungen, partielle Differentialgleichungen), sowie der Optimierung, Numerik, Quantenmechanik.
- Die historischen Wurzeln liegen in der Fouriertransformation sowie ähnlichen Transformationen.

Funktionale $\hat{=}$ stetige lineare Abbildungen von Funktionenräumen nach \mathbb{R} oder \mathbb{C} , d.h. Funktion von Funktion (\leadsto Variationsrechnung).

In unendlichdimensionalen Vektorräumen gibt es viele im Vergleich zur Analysis im \mathbb{R}^n ungewohnte Effekte, z.B.:

i) Surjektive lineare Selbstabbildungen sind im Allgemein nicht injektiv. Sei $V = \{(x_n)_n \mid x_n \in \mathbb{R}\}$ und $A: V \to V$ sei gegeben durch

$$A(x_n)_n = A(x_1, x_2, x_3, ...) := (x_2, x_3, x_4, ...)$$

AV = V (A ist surjektiv), aber $A(x_1, 0, 0, ...) = 0$ (A ist nicht injektiv.

ii) Injektive lineare Selbstabbildungen sind im Allgemeinen nicht surjektiv. V wie oben.

$$A(x_n)_n = (0, x_1, x_2, x_3, ...)$$

iii) Lineare Selbstabbildungen müssen keine Eigenwerte haben.

 $C([a,b]) = \{f : [a,b] \to \mathbb{C} \mid f \text{ stetig}\}, A : C([a,b]) \to C([a,b]) \text{ sei gegeben durch } (f \in C([a,b]), x \in [a,b]):$

$$(Af)(x) = (\sin x)f(x)$$

A ist der Multiplikationsoperator mit $\sin x$. A hat keine Eigenwerte. Andernfalls gäbe es $f \in C([a,b]), f \neq 0$ und $\lambda \in \mathbb{C}$ mit

$$(\sin x)f(x) = \lambda f(x) \forall x \in [a, b]$$

Da $f \neq 0$ existiert ein $x_0 \in [a,b]$ und ein $\varepsilon > 0$, so dass:

$$f(x) \neq 0 \forall]x_0 - \varepsilon, x_0 + \varepsilon[$$

Also:

$$\forall x \in]x_0 - \varepsilon, x_0 + \varepsilon[: \sin x = \lambda = \text{konstant}$$

In der Funktionalanalysis untersucht man verschiedene Abschwächungen des Begriffs 'Eigenwert'.

iv) Lineare Abbildungen sind im Allgemeinen nicht stetig.

 $V = \{p : [-2,2] \to \mathbb{C} \mid p \text{ Polynom}\}, \text{ versehen mit der gleichmässigen Konvergenz, d.h.}$

$$(p_j)_j \to p \text{ in } V \Leftrightarrow \|p_j - p\|_{\infty} \to 0 \text{ für } j \to \infty$$

Sei $A: V \to V$ definiert durch $Ax^n = 3^n x^n$ und sei $p_j(x) = \frac{1}{(2.5)^j} x^j$. Dann $\|p_j\|_{\infty} \to 0$ für $j \to \infty$, d.h. $p_j \to 0$ in V für $j \to \infty$, aber

$$||Ap_{j}||_{\infty} = \sup_{x \in [-2,2]} \left| \frac{3^{j}}{2.5^{j}} x^{j} \right| = \frac{3^{j} 2^{j}}{2.5^{j}} = \left(\frac{6}{2.5} \right)^{j} \to \infty$$

für $j \to \infty$, d.h. $Ap_j \neq 0 = A0$, d.h. A ist insbesondere nicht stetig.

1

Beispiele normierter Räume

Vektorräume über $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Den trivialen Vektorraum $\{0\}$ schließen wir aus.

{def1.1}

Definition 1.1

Sei X ein \mathbb{K} -Vektorraum. Eine Abbildung $p: X \to [0, \infty[$ heißt Halbnorm, falls

- a) $p(\lambda x) = |\lambda| p(x) \forall \lambda \in \mathbb{K} \forall x \in X$
- b) $p(x + y) \le p(x) + p(y) \forall x, y \in X$ (Dreiecksungleichung)

Gilt zusätzlich c) $p(x) = 0 \Rightarrow x = 0$, so heißt p eine Norm. Das Paar (X, p) heißt (halb-)normierter Raum.

Ist p bekannt, so heißt X (halb-)normierter Raum. Normen werden mit $\|\cdot\|$ (statt p) bezeichnet.

Bemerkung

- i) Aus a) folgt p(0) = 0 (wähle $\lambda = 0$).
- ii) Sei $(X, \|\cdot\|)$ ein normierter Raum. Dann ist $d(x, y) := \|x y\| \ \forall x, y \in X$ eine Metrik auf X.

{def1.2}

Definition 1.2

Sei X ein normierter Raum.

a) $(x_n)_{n\in\mathbb{N}}$) $\subseteq X$ ist eine Cauchyfolge, falls:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, m \ge N : \|x_n - x_m\| < \varepsilon$$

b) $(x_n)_{n\in\mathbb{N}}$ konvergiert gegen $x\in X$, falls:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \ge N \colon \|x_n - x\| < \varepsilon$$

c) X ist ein Banachraum, wenn jede Cauchyfolge in X konvergiert.

Bemerkung

In normierten Räumen ist jede konvergente Folge eine Cauchyfolge.

Beispiel

 \mathbb{K}^n ist ein Banachraum mit jeder der folgenden Normen ($x = (x_1, ..., x_n)$):

$$||x||_1 = \sum_{j=1}^n |x_j|$$

$$\|x\|_2 = \sqrt{\sum_{j=1}^n |x_j|^2}$$

$$||x||_{\infty} = \max_{j=1,\dots,n} |x_j|$$

//

{prop1.3}

$\textbf{Proposition} \ 1.3$

In einem endlichdimensionalen Vektorraum X sind alle Normen äquivalent, d.h. zu je zwei Normen $\|\cdot\|$, $\|\cdot\|$ auf X gibt es eine Konstante c > 0, so dass

$$\frac{1}{c} \|x\| \le \|x\| \le c \|x\| \,\forall x \in X$$

Beweis: O.B.d.A. $X = \mathbb{K}^n$.

$$\|(x_1,...,x_n)\|_1 = \sum_{j=1}^n |x_j|$$

ist eine Norm auf X. Sei $\|\cdot\|$ eine weitere Norm auf X und $e_j := (0,...,0,1_j,0,...,0), 1 \le j \le n$.

$$\|x\| = \left\| \sum_{j=1}^{n} x_{j} e_{j} \right\| \leq \sum_{j=1}^{n} |x_{j}| \left\| e_{j} \right\| \leq \underbrace{\left(\max_{j=1,\dots,n} \left\| e_{j} \right\| \right)}_{=:c} \sum_{j=1}^{n} |x_{j}| = c \|x\|_{1}$$

Also: $\|x\| \le c \|x\|_1$ für ein c > 0 und alle $x \in X$ und $\|\cdot\| : (X, \|\cdot\|_1) \to [0, \infty]$ ist stetig. $S = \{x \in X \mid \|x\|_1 = 1\}$ kompakt (\Leftrightarrow beschränkt und abgeschlossen). Dann folgt: $\min_{x \in S} \|x\| = \delta > 0$ mit $\delta = \|\tilde{x}\|$ mit $\|\tilde{x}\|_1 = 1$.

$$\|x\|_1 = \frac{1}{\delta} \min_{\tilde{x} \in S} \|\tilde{x}\| \, \|x\|_1 \leq \frac{1}{\delta} \, \left\| \frac{x}{\|x\|_1} \right\| \, \|x\|_1 = \frac{1}{\delta} \, \|x\|_1$$

{satz1.4}

Satz 1.4 Minkowskische Ungleichung, Version für Folgen

Für $x, y \in \ell^p$, $1 \le p < \infty$, gilt $||x + y|| \le ||x||_p + ||y||_p$.

Beweis: $p = 1.\sqrt{\text{Sei also } p > 1}$. Wir zeigen die äquivalente Ungleichung

$$||x + y||_p^p \le (||x||_p + ||y||_p) ||x + y||_p^{p-1}$$

Sei $x=(x_n)_n$ und $y=(y_n)_n$. Dann mit $\frac{1}{p}+\frac{1}{q}=1$ nach der Hölderschen Ungleichung:

$$\begin{aligned} \|x+y\|_{p}^{p} &= \sum_{n \in \mathbb{N}} |x_{n} + y_{n}|^{p} \\ &= \sum_{n \in \mathbb{N}} |x_{n} + y_{n}| |x_{n} + y_{n}|^{p-1} \\ &\leq \sum_{n \in \mathbb{N}} |x_{n}| |x_{n} + y_{n}|^{p-1} + \sum_{n \in \mathbb{N}} |y_{n}| |x_{n} + y_{n}|^{p-1} \\ &\leq \left(\sum_{n \in \mathbb{N}} |x_{n}|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} (|x_{n} + y_{n}|^{p-1})^{q}\right)^{\frac{1}{q}} + \left(\sum_{n \in \mathbb{N}} |y_{n}|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} (|x_{n} + y_{n}|^{p-1})^{q}\right)^{\frac{1}{q}} \\ &= \|x\|_{p} \|x + y\|_{p}^{\frac{p}{q}} + \|y\|_{p} \|x + y\|_{p}^{\frac{p}{q}} \\ &= (\|x\|_{p} + \|y\|_{p}) \|x + y\|_{p}^{p-1} \end{aligned}$$

Da außerdem gilt: $\|\lambda x\|_p = |\lambda| \|x\|_p$ für $\lambda \in \mathbb{K}$ und $x \in \ell^p$ und $\|x\|_p = 0 \Leftrightarrow x = 0$, ist $(\ell^p, \|\cdot\|_p)$ ein normierter Raum.

Behauptung: $(\ell^p, \|\cdot\|_p)$ für $1 \le p < \infty$ ist vollständig, d.h. ein Banachraum.

Beweis: Sei (x_n) eine Cauchyfolge in ℓ^p . Wir schreiben $(x_n) = (x_m^{(n)})_{m \in \mathbb{N}}$, $x_m^{(n)} \in \mathbb{K}$. Für alle $y = (y_m)_{m \in \mathbb{N}}$ und alle $m \in \mathbb{N}$ gilt: $|y_m| \le ||y||_p$.

$$(x_n)_n$$
 Cauchyfolge $\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, k \geq N : ||x_n - x_k||_p < \varepsilon$

Aus

$$|x_m^{(n)} - x_m^{(k)}| \le ||x_n - x_k||_p$$

folgt: Für beliebige $m \in \mathbb{N}$ ist $(x_m^{(n)})_{n \in \mathbb{N}}$ eine Cauchyfolge in \mathbb{K} (\mathbb{K} ist vollständig). Sei $x_m := \lim_{n \to \infty} x_m^{(n)}$ und $x = (x_m)_{m \in \mathbb{N}}$. Es bleibt zu zeigen: $x \in \ell^p$ und $\|x_n - x\|_p \xrightarrow{n \to \infty} 0$. Sei $\varepsilon > 0$ beliebig. Dann existiert $N \in \mathbb{N}$: $\|x_n - x_k\|_p < \varepsilon \forall n, k \ge N$. Insbesondere gilt für $M \in \mathbb{N}$:

$$\left(\sum_{m=1}^{M} |x_m^{(n)} - x_m^{(k)}|^p\right)^{\frac{1}{p}} \le \|x_n - x_k\|_p < \varepsilon \,\forall n, k \ge N$$

Mit $k \to \infty$ gilt $\forall M \in \mathbb{N} \forall n \geq N$:

$$\left(\sum_{m=1}^{M} |x_m^{(n)} - x_m|^p\right)^{\frac{1}{p}} \le \varepsilon$$

M war beliebig und somit folgt:

$$\left(\sum_{m=1}^{\infty} |x_m^{(n)} - x_m|^p\right)^{\frac{1}{p}} \le \varepsilon \,\forall \, n \ge N$$

Somit ist $x_N - x \in \ell^p$ und $x = x - x_N + x_N \in \ell^p$ und $||x_n - x||_p \xrightarrow{n \to \infty} 0$.

{satz1.5}

Satz 1.5

Sei $(X, \|\cdot\|^*)$ ein halbnormierter Raum.

- a) $N := \{x \in X \mid ||x||^* = 0\}$ ist ein Untervektorraum von X.
- b) $||[x]|| := ||x||^*$ definiert eine Norm auf X/N.
- c) Ist X vollständig, d.h. in X konvergiert jede Cauchyfolge, so ist X/N ein Banachraum.

Beweis:

a) √

b) $\|\cdot\|$ ist wohldefiniert, d.h. unabhängig vom Repräsentanten der Äquivalenzklasse: Seien $x, y \in X$ mit [x] = [y]. Zu zeigen: $\|x\|^* = \|y\|^*$.

$$[x] = [y] \Leftrightarrow x \sim y \Leftrightarrow x - y \in N \Leftrightarrow ||x - y||^* = 0$$

Die umgekehrte Dreiecksungleichung

$$|\|x\|^* - \|y\|^*| \le \|x - y\|^*$$

zeigt $||x||^* = ||y||^*$. Homogenität und Dreiecksungleichung folgen nun direkt aus den entsprechenden Eigenschaften von $||\cdot||^*$.

$$\|[x]\| = 0 \Leftrightarrow \|x\|^* = 0 \Leftrightarrow x \in \mathbb{N} \Leftrightarrow x \sim 0 \Leftrightarrow [x] = [0]$$

c) Folgt aus:

 $([x_n])_{n\in\mathbb{N}}$ Cauchyfolge in $X/N\Leftrightarrow ([x_n])_{n\in\mathbb{N}}$ Cauchyfolge in X

Beispiel Die L^p -Räume

Sei I ein Intervall, dann ist $(I, B(I), \lambda_1)$ ein Maßraum (gleiche Überlegungen für einen Maßraum (X, \mathcal{A}, μ)). Sei $\mathcal{L}^{\infty}(I) \coloneqq \{f : I \to \mathbb{K} \mid f \text{ messbar}, \exists N \in B(I) \text{ mit } \lambda_1(N) = 0, f|_{I \setminus N} \text{ ist beschränkt}\}.$

$$\|f\|_{L^{\infty}}^*\coloneqq\inf_{\substack{N\in B(I)\\\lambda_1(N)=0}}\sup_{t\in I\setminus N}|f(t)|=\inf_{\substack{N\in B(I)\\\lambda_1(N)=0}}\|f|_{I\setminus N}\|_{\infty}$$

Es gilt:

- i) $f \in \mathcal{L}^{\infty}(I) \Rightarrow ||f||_{L^{\infty}}^* < \infty$
- ii) Zu $f \in \mathscr{L}^{\infty}(I)$ gibt es eine messbare Nullmenge N mit $\|f\|_{L^{\infty}}^* \coloneqq \|f|_{I \setminus N}\|_{\infty}$.

Beweis: Zu $r \in \mathbb{N}$ wählen wir eine messbare Nullmenge N_r mit $||f|_{I \setminus N_r}||_{\infty} \le ||f||_{L^{\infty}}^* + \frac{1}{r}$. Dann ist $N := \bigcup_{r \in \mathbb{N}} N_r$ auch eine messbare Nullmenge und es gilt:

$$\|f\|_{L^{\infty}}^* \le \|f|_{I \setminus N}\|_{\infty} \le \|f|_{I \setminus N_r}\|_{\infty} \le \|f\|_{L^{\infty}}^* + \frac{1}{r} \forall r \in \mathbb{N}$$

Da *r* beliebig ist, folgt die Behauptung.

iii) $(\mathscr{L}^{\infty}(I), \|\cdot\|_{L^{\infty}}^*)$ ist ein halbnormierter Vektorraum.

Beweis: Wir zeigen nur die Dreiecksungleichung, alle weiteren Eigenschaften folgen direkt. Seien $f_1, f_2 \in \mathcal{L}^{\infty}(I)$ und N_1, N_2 messbare Nullmengen gemäß ii).

$$\begin{split} \|f_1 + f_2\|_{L^{\infty}}^* &= \inf_{\substack{N \in B(I) \\ \lambda_1(N) = 0}} \|(f_1 + f_2)_{I \setminus N}\|_{\infty} \\ &\leq \left\|(f_1 + f_2)|_{I \setminus (N_1 \cup N_2)}\right\|_{\infty} \\ &\leq \left\|f_1|_{I \setminus (N_1 \cup N_2)}\right\|_{\infty} + \left\|f_2|_{I \setminus (N_1 \cup N_2)}\right\|_{\infty} \\ &\leq \left\|f_1|_{I \setminus N_1}\right\|_{\infty} + \left\|f_2|_{I \setminus N_2}\right\|_{\infty} \\ &= \|f_1\|_{L^{\infty}}^* + \|f_2\|_{L^{\infty}}^* \end{split}$$

iv) $(\mathscr{L}^{\infty}(I), \|\cdot\|_{L^{\infty}}^*)$ ist vollständig, d.h. jede Cauchyfolge ist konvergent.

Beweis: Sei $(f_n)_n$ eine Cauchyfolge in $\mathcal{L}^{\infty}(I)$. Nach ii) existieren messbare Nullmengen $N_{n,m}$ mit

$$||f_n - f_m||_{L^{\infty}}^* = ||(f_n - f_m)|_{I \setminus N_{n,m}}||_{\infty}$$

Sei $N = \bigcup_{n,m \in \mathbb{N}} N_{n,m}$ (abzählbare Vereinigung). Dies ist auch eine messbare Nullmenge und es gilt:

$$||f_n - f_m||_{L^{\infty}}^* = ||(f_n - f_m)|_{I \setminus N}||_{\infty}$$

Also ist $(f_n|_{I\setminus N})_{n\in\mathbb{N}}$ eine Cauchyfolge im Banachraum $(\ell^\infty(I\setminus N),\|\cdot\|_\infty)$. Daher existiert $g\in\ell^\infty(I\setminus N)$ und $f_n|_{I\setminus N}\xrightarrow{n\to\infty}g$ in $\ell^\infty(I\setminus N)$. Setze $f(t)=\begin{cases}g(t)&t\in I\setminus N\\0&t\in N\end{cases}$. Dann ist

f beschränkt und als punktweiser Limes der messbaren Funktionenfolge $(f_n\chi_{I\setminus N})_{n\in\mathbb{N}}$ wieder messbar. Daraus folgt:

$$||f_n - f||_{L^{\infty}}^* \le ||(f_n - f)_{I \setminus N}||_{\infty} \xrightarrow{n \to \infty} 0$$

 $/\!\!/$

Sei $N_p \coloneqq \{f \in \mathcal{L}^p(I) \mid \|f\|_p^a \, st = 0\} = \{f : I \to \mathbb{K} \mid f \text{ messbar und } f = 0 \text{ fast überall}\}, L^p(I) = \mathcal{L}^p(I)/N_p, \|f\|_p = \|f\|_p^*.$ Dann ist $(L^p(I), \|\cdot\|_p)$ ein Banachraum.

Bemerkung

Ein nicht vollständiger Raum X kann stets in einen Banachraum 'eingebettet' werden. Sei $CF(X) := \{(x_n)_n \subset X \mid (x_n)_n \text{ ist eine Cauchyfolge}\}$. Auf CF(X) definieren wir die Äquivalenzrelation

$$(x_n)_n \sim (y_n)_n \Leftrightarrow \lim_{n \to \infty} ||x_n - y_n|| = 0$$

Sei $\hat{X} := \{[(x_n)] \mid (x_n)_n \subseteq CF(X)\}$ mit $\|[(x_n)_n]\| = \lim_{n \to \infty} \|x_n\|$. Dann gilt: $(\hat{X}, \|\cdot\|)$ ist ein Banachraum und indem man X mit den konstanten Folgen in \hat{X} identifiziert, wird X in natürlicher Weise in \hat{X} dicht eingebettet (d.h. $X \subset \hat{X}$ und $\bar{X} = \hat{X}$).

 \hat{X} nennt man auch die Vervollständigung von X.

{satz1.6}

Satz 1.6

Sei X ein normierter Raum.

- i) Aus $x_n \to x$ in X und $y_n \to y$ in X folgt $x_n + y_n \to x + y$.
- ii) Aus $\lambda_n \to \lambda$ in \mathbb{K} und $x_n \to x$ in X folgt $\lambda_n x_n \to \lambda x$.
- iii) Aus $x_n \to x$ folgt $||x_n|| \to ||x||$.

Bemerkung

Aus iii) folgt: Konvergente Folgen in X sind beschränkt.

Beweis:

i) folgt aus

$$\|x_n + y_n - (x+y)\| \le \|x_n - x\| + \|y_n - y\| \to 0$$

ii)

$$\|\lambda_n x_n - \lambda x\| = \|\lambda_n (x_n - x) + (\lambda_n - \lambda)x\| \le |\lambda_n| \|x_n - x\| + |\lambda_n - \lambda| \|x\|$$

iii) folgt aus

$$0 \le |\|x_n\| - \|x\|| \le \|x_n - x\| \to 0$$

{satz1.7}

Satz 1.7

Ist U ein Untervektorraum des normierten Raumes X, so ist sein Abschluss \bar{U} ebenfalls ein Untervektorraum.

Beweis: Seien $x, y \in \overline{U}$. Dann existieren Folgen $(x_n)_n$, (y_n) in U mit $x_n \to x$ und $y_n \to y$. Also:

$$x_n + y_n \to x + y \Rightarrow x + y \in \bar{U}$$

Sei $\lambda \in \mathbb{K}$ und $x \in \overline{U}$. Dann existiert eine Folge $(x_n)_n$ in U mit $x_n \to x$. Es folgt:

$$\lambda x_n \to \lambda x \Rightarrow \lambda x \in \bar{U}$$

Bemerkung

Ist $\dim U < \infty$, dann ist U abgeschlossen. Im Allgemeinen ist ein Untervektorraum nicht abgeschlossen.

{satz1.8}

Satz 1.8

Seien $\|\cdot\|$ und $\|\cdot\|$ zwei Normen auf X. Dann sind äquivalent:

- i) $\|\cdot\|$ und $\|\cdot\|$ sind äquivalent, d.h. $\exists c_1, c_2 > 0 : c_1 \|x\| \le \|x\| \le c_2 \|x\| \ \forall x \in X$.
- ii) Eine Folge ist bezüglich ∥⋅∥ konvergent genau dann, wenn sie bezüglich ∥⋅∥ konvergent ist.
- iii) Eine Folge ist eine ∥⋅∥ –Nullfolge genau dann, wenn sie eine ∥⋅∥ –Nullfolge ist.

Beweis: i)⇒ii)⇒iii) klar. Es bleibt zu zeigen: iii)⇒i).

Angenommen es gibt kein $c_2 > 0$, so dass die Ungleichung $||x|| \le c_2 ||x|| \forall x \in X$. Dann gilt für alle $n \in \mathbb{N}$: $\exists x_n \in X : ||x_n|| > n ||x_n||$. Setze $y_n := \frac{1}{n} \frac{x_n}{||x_n||}$. Dann folgt:

$$||y_n|| = \left\| \frac{1}{n} \frac{x_n}{||x_n||} \right\| = \frac{1}{n} \to 0$$

Also ist $(y_n)_n$ eine $\|\cdot\|$ –Nullfolge und mit iii) somit auch eine $\|\cdot\|$ –Nullfolge. Aber

$$|||y_n||| = \left| \left| \left| \frac{1}{n} \frac{x_n}{||x_n||} \right| \right| = \frac{1}{n ||x_n||} |||x_n||| > \frac{n ||x_n||}{n ||x_n||} = 1 / 2$$

Die Existenz von $c_1 > 0$: $c_1 ||x|| \le ||x|| \forall x \in X$ lässt sich analog zeigen.

Bemerkung

Zusätzliche Äquivalenz:

iv) $(X, \|\cdot\|)$ und $(X, \|\cdot\|)$ besitzen die selben Cauchyfolgen. Somit: $(X, \|\cdot\|)$ ist vollständig $\Leftrightarrow (X, \|\cdot\|)$ ist vollständig.

Beispiel

Aufgabe 3 zeigt, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|$ auf $C^1[a,b]$ nicht äquivalent sind. $/\!\!/$

{lemma1.9}

Lemma 1.9 Rieszsches Lemma

Sei U ein abgeschlossener Unterraum des normierten Raums X mit $U \neq X$. Ferner sei $0 < \delta < 1$. Dann existiert ein $x_{\delta} \in X$ mit $||x_{\delta}|| = 1$ und

$$\forall u \in U : ||x_{\delta} - u|| \ge 1 - \delta$$

Beweis: Sei $x \in X \setminus U$.

$$d := \inf\{\|x - u\| \mid u \in U\} > 0$$

Denn andernfalls gäbe es eine Folge $(u_n)_n \in U$ mit $u_n \to x$ und x läge dann in $\bar{U} = U$ (da U abgeschlossen). Es gilt: $d < \frac{d}{1-\delta}$. Dann existiert ein $u_\delta \in U$, für das gilt: $\|x - u_\delta\| < \frac{d}{1-\delta}$. Setze $x_\delta \coloneqq \frac{x - u_\delta}{\|x - u_\delta\|}$. Dann ist $\|x_\delta\| = 1$ und es gilt für $u \in U$ beliebig:

$$\|x_{\delta} - u\| = \left\| \frac{x - u_{\delta}}{\|x - u_{\delta}\|} - u \right\| = \frac{1}{\|x - u_{\delta}\|} \|x - (u_{\delta} + \|x - u_{\delta}\| u)\| \ge \frac{1}{\|x - u_{\delta}\|} d > 1 - \delta$$

Bemerkung

Das Rieszsche Lemma gilt nicht für $\delta = 0$.

Beispiel

Sei $X = \{x \in C[0,1] \mid x(1) = 0\}$. $(X, \|\cdot\|_{\infty})$ ist ein normierter Raum. $U = \{x \in X \mid \int_0^1 x(t) dt = 0\}$ ist ein abgeschlossener Untervektorraum.

Angenommen es gibt ein Element $x \in X$ mit $\|x - u\|_{\infty} \ge 1 = \|x\|_{\infty} \, \forall u \in U$. Setze $x_n(t) = 1 - t^n$. Dann sind $x_n \in X$, $\|x_n\|_{\infty} = 1$ und $\int_0^1 x_n(t) dt = 1 - \frac{1}{n+1}$. Setze

$$\lambda_n = \frac{\int_0^1 x(t) dt}{1 - \frac{1}{n+1}}, \qquad u_n = x - \lambda_n x_n \in U$$

Daraus folgt: $\|x-u_n\|_{\infty} \ge 1$ und $\|x-u_n\|_{\infty} = \|\lambda_n x_n\|_{\infty} = |\lambda_n| \ge 1$.

$$\left| \int_0^1 x(t) dt \right| = |\lambda_n| \left| 1 - \frac{1}{n+1} \right| \ge \left| 1 - \frac{1}{n+1} \right| \ge 1n \, \forall \in \mathbb{N}$$

Aber $x: [0,1] \to \mathbb{K}$ stetig, $||x||_{\infty} \le 1$ und x(1) = 0. //

Beweis: [a,b] = [0,1]. Sei $f \in C[0,1]$.

$$P_n(s) = B_n(s, f) := \sum_{i=0}^n \binom{n}{i} s^i (1-s)^{n-i} f\left(\frac{i}{n}\right)$$

Zu zeigen: $||P_n - f||_{\infty} \to 0$. Da f gleichmässig stetig ist, existiert zu $\varepsilon > 0$ ein $\delta > 0$ mit $|s - t| \le \sqrt{\delta}$ und es folgt $|f(s) - f(t)| \le \varepsilon$.

Es gilt für $|s-t| > \delta$ mit $\alpha = \frac{2\|f\|_{\infty}}{\delta}$:

$$|f(s) - f(t)| \le |f(s)| + |f(t)| \le 2 ||f||_{\infty} = \alpha \delta \le \alpha (s - t)^2$$

Somit gilt für beliebige $s, t \in [0, 1]$:

$$|f(s) - f(t)| \le \alpha (s - t)^2 + \varepsilon$$

Setze $y_t(s) := (t - s)^2$. Dann folgt:

$$-\varepsilon - \alpha y_t(s) < f(s) - f(t) < \alpha y_t(s) + \varepsilon \forall s, t \in [0, 1]$$

Wir bestimmen nun die Bernstein-Polynome zu $f_j(s) = s^j$ für j = 0, 1, 2:

$$B_{n}(s, f_{0}) = \sum_{i=0}^{n} {n \choose i} s^{i} (1-s)^{n-i} = (s+(1-s))^{n} = 1$$

$$B_{n}(s, f_{1}) = \sum_{i=1}^{n} {n \choose i} s^{i} (1-s)^{n-i} \frac{i}{n} = 1 \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} = s(s-(1-s))^{n-1} = s$$

$$B_{n}(s, f_{2}) = \sum_{i=0}^{n} {n \choose i} s^{i} (1-s)^{n-1} \left(\frac{i}{n}\right)^{2}$$

$$= \sum_{i=1}^{n} {n-1 \choose i-1} s^{i} (1-s)^{n-i} \frac{i}{n}$$

$$= \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} \frac{i+1}{n}$$

$$= \frac{s}{n} + \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} \frac{i}{n}$$

$$= \frac{s}{n} + s \frac{n-1}{n} \sum_{i=0}^{n-1} {n-1 \choose s} s^{i} (1-s)^{(n-1)-i} \frac{i}{n-1}$$

$$= \frac{s}{n} + s^{2} \frac{n-1}{n}$$

$$= s^{2} + \frac{s}{n} - \frac{s^{2}}{n}$$

$$= s^{2} + \frac{s(1-s)}{n}$$

 $^{1 \}binom{n}{i} \frac{i}{n} = \binom{n-1}{i-1}$

Es folgt:

$$-B_n(s,\varepsilon+\alpha y_t) = B_n(s,-\varepsilon-\alpha y_t) \leq B_n(s,f-f(t)) \leq B_n(s,\alpha y_t+\varepsilon)$$

Für alle $s, t \in [0, 1]$ gilt dann:

$$\begin{split} |P_n(s) - f(t)| &= |B_n(s,f) - f(t)B_n(s,f_0)| \\ &= |B_n(s,f) - B_n(s,f(t))| \\ &= |B_n(s,f - f(t))| \le B_n(s,\alpha y - t + \varepsilon) \\ &= B_n(s,\varepsilon + \alpha(t^2 - 2st + t^2)) = B_n(s,\varepsilon) + \alpha B_n(s,t^2) - 2\alpha B_n(s,st) + \alpha B_n(s,s^2) \\ &= \varepsilon + \alpha t^2 - 2\alpha t s + \alpha \left(s^2 + \frac{s(1-s)}{n} \right) \end{split}$$

Mit s = t folgt dann:

$$|P_n(t) - f(t)| \le \varepsilon + \alpha t^2 - 2\alpha t^2 + \alpha \left(t^2 + \frac{t(i-1)}{n} \right) \le \varepsilon \frac{\alpha}{n}$$

Also:

$$\|P_n - f\|_{\infty} \le \varepsilon + \frac{\alpha}{n}$$

Hieraus folgt die gleichmässige Konvergenz.

{kor1.10}

Korollar 1.10

C[a,b] ist separabel.

Beweis: Aus dem Approximationssatz folgt: $C[a,b] = \overline{\lim\{x_n \mid n \in \mathbb{N}_0\}}$ mit $x_n(t) = t^n$.

{satz1.11}

Satz 1.11

Sei $1 \le p < \infty$. C[a, b] ist dicht in $L^p[a, b]$.

Beweis: Zu zeigen: $\overline{C[a,b]} = L^p[a,b]$ (Abschluss bezüglich $\|\cdot\|_p$) Sei B([a,b]) die σ -Algebra der Borelmengen auf [a,b]. Aus der Definition des Lebesgueintegrals folgt: $\lim\{\chi_A\mid A\in B([a,b])\}$, der Raum der Stufenfunktionen, liegt dicht in $L^p[a,b]$. Das Lebesgzemaß ist regulär, d.h.:

$$\lambda(A) = \inf{\{\lambda(O) \mid A \subseteq O, O \text{ offen}\}}$$

Daraus folgt für alle $A \in B([a,b])$, dass für alle $\varepsilon > 0$ eine offene Menge O mit $A \subseteq O$ existiert so dass:

$$\|\chi_A - \chi_O\|_p = \|\chi_{O \setminus A}\|_p = \lambda(O \setminus A)^{\frac{1}{p}} < \varepsilon$$

Somit:

$$\{\chi_A \mid A \in B([a,b])\} \subseteq \overline{\{\chi_O \mid O \text{ offen}\}}$$

$$L^p[a,b] = \overline{\lim\{\chi_A \mid A \in B([a,b])\}} = \overline{\lim\{\chi_O \mid O \text{ offen}\}}$$

Jede offene Menge O ist eine abzählbare Vereinigung von paarweise disjunkten Intervallen I_j . Aus $\lambda(O) = \sum_{j=1}^{\infty} \lambda(I_j)$ folgt: $\chi_O \in \overline{\ln{\{\chi_I \mid I \text{ offenes Intervall}\}}}$. Hieraus folgt nun:

$$L^p[a,b] = \overline{\lim \{\chi_I \mid I \text{ offenes Intervall}\}}$$

Es genügt zu zeigen: Zu jedem offenen Intervall $I \subset [a,b]$ und jedem $\varepsilon > 0$ existiert eine stetige Funktioen f mit $\|f - \chi_I\|_p < \varepsilon$. Sei $\varepsilon > 0$ und $a \le a' < b' \le b$. Wähle f(x) geeignet. Dann folgt, dass C[a,b] dicht in $L^p[a,b]$ liegt.

{kor1.12}

Korollar 1.12

 $1 \le p < \infty$. L^p ist separabel.

Beweis: Es genügt zu zeigen, dass die Polynome dicht in $L^p[a,b]$ liegen. Sei $f \in L^p[a,b]$. Nach ?? existiert eine Folge $(f_n)_n$ stetiger Funktionen mit $\|f_n - f\|_p \to 0$. Nach dem Weierstraßschen Approximationssatz existieren Polynome P_n mit $\|f_n - P_n\|_{\infty} \le \frac{1}{n}$. Wegen

$$\|g\|_{p} = \left(\int_{a}^{b} |g|^{p} d\lambda\right)^{\frac{1}{p}} \le (b-a)^{\frac{1}{p}} \|g\|_{\infty}$$

für $g \in C[a,b]$ folgt $\|f_n - P_n\|_p \to 0$ für $n \to \infty$. Also folgt:

$$\|P_n-f\|_p\leq \|P_n-f_n\|_p+\|f_n-f\|_p\to 0$$

Bemerkung

Ohne Beweis sei noch erwähnt:

- i) T kompakter Raum \Rightarrow $(C(T), ||\cdot||_{\infty})$ ist separabel.
- ii) Ω offene Menge (z.B. \mathbb{R}). $L^p(\Omega)$ ist separabel, $1 \le p < \infty$.

{def1.13}

Definition 1.13

Sei X ein normierter Raum und $A \subseteq X$. Der Abstand von $x \in X$ zu A ist gegeben durch:

$$d(x,A) := \inf\{||x-a|| \mid a \in A\}$$

Bemerkung

Es gilt:

$$d(x,A) = 0 \Leftrightarrow x \in \bar{A}$$

{satz1.14}

Satz 1.14

Sei X ein normierter Raum und $U \subseteq X$ ein Untervektorraum. X/U bezeichnet die Menge der Äquivalenzklassen bezüglich der Äquivalenzrelation $x \sim y \Leftrightarrow x - y \in U$. Für $x \in X$ sei $[x] = x + U \in X/U$ die zugehörige Äquivalenzklasse. Es gilt:

- i) ||x|| = d(x, U) definiert eine Halbnorm auf X/U.
- ii) Ist U abgeschlossen, so ist $\|\cdot\|$ eine Norm auf X/U.
- iii) Ist X vollständig und U abgeschlossen, so ist X/U ein Banachraum.

Beweis:

i) $\|\cdot\|$ ist wohldefiniert, denn: $[x_1] = [x_2]$ impliziert $x_1 = x_2 + u$ für ein $u \in U$, also $d(x_1, U) = d(x_2, U)$.

$$\|\lambda[x]\| = \|[\lambda x]\|$$

$$= d(\lambda x, U)$$

$$= \inf\{\|\lambda x - u\| \mid u \in U\}$$

$$= \inf\{\|\lambda x - \lambda u\| \mid u \in U\}$$

$$= \inf\{|\lambda| \|x - u\| \mid u \in U\}$$

$$= |\lambda| d(x, U)$$

$$= |\lambda| \|x\|$$

Seien $x_1, x_2 \in X$, sei $\varepsilon > 0$. Es existieren $u_1, u_2 \in U$ mit

$$||x_i - u_i|| \le ||[x_i]|| + \varepsilon, i = 1, 2$$

 $\|[x_1] + [x_2]\| = \inf\{\|x_1 + x_2 - u\| \mid u \in U\} \le \|x_1 + x_2 - (u_1 + u_2)\| \le \|x_i - u_i\| + \|x_2 - u_2\| \le \|[x_1]\| + \|[x_2]\| + 2\varepsilon$

Da $\varepsilon > 0$ beliebig, gilt:

$$||[x_1] + [x_2]|| \le ||[x_1]|| + ||[x_2]||$$

||[0]|| = d(0,U) = 0, da $0 \in U$.

ii)

$$\|[0]\| = 0 \Leftrightarrow d(x, U) = 0 \Leftrightarrow x \in \overline{U} = U \Leftrightarrow [x] = [0]$$

iii) Wir benutzen ??. Sei also $(x_k)_k$ eine Folge in X mit $\sum_{k=1}^{\infty} ||[x_k]|| < \infty$. Zu zeigen: $\sum_{k=1}^{\infty} [x_k]$ konvergiert in X/U.

O.B.d.A.: $||x_k|| \le ||[x_k]|| + 2^{-k}$.

$$\sum_{k=1}^{\infty} \|x_k\| \le \sum_{k=1}^{\infty} \|[x_k]\| + \sum_{k=1}^{\infty} 2^{-k} < \infty$$

Nun folgt, da X vollständig ist, mit ??lemma1.11]:

$$\exists x = \sum_{k=1}^{\infty} x_k \in X$$

$$\left\| [x] - \sum_{k=1}^n [x_k] \right\| = \left\| \left[x - \sum_{k=1}^n x_k \right] \right\| \le \left\| x - \sum_{k=1}^n x_k \right\| \xrightarrow{n \to \infty} 0$$

Also: $[x] = \sum_{k=1}^{\infty} [x_k]$

Beispiel

Sei $D \subseteq [0,1]$ abgeschlossen. Wir betrachten den Quotienten C[0,1]/U mit $U := \{x \in C[0,1] \mid x \mid_D = 0\}$. Die Quotientenabbildung $(x \in C[0,1] \mapsto [x] \in C[0,1]/U)$ identifiziert Funktionenm die auf D übereinstimmen. Die Elemente von C[0,1]/U können als Funktionen auf D angesehen werden. //U

2

Funktionale und Operatoren

{def2.1}

Definition 2.1

Eine stetige lineare Abbildung zwischen normierten Räumen heißt stetiger Operator. Ist der Bildraum der Skalarenkörper K, so sagen wir Funktional statt Operator

Im Folgenden schreiben wir Tx statt T(X), wenn $T: X \to Y$ ein stetiger Operator und $x \in X$.

{satz2.2}

Satz 2.2

Seien X und Y normierte Räume und sei $T: X \to Y$ linear. Dann sind äquivalent:

- i) T ist stetig.
- ii) T ist stetig in 0.
- iii) $\exists M \geq 0 : ||Tx|| \leq M ||x|| \forall x \in X$.
- iv) T ist gleichmäßig stetig.

Beweis:

iii)⇒iv) Ist klar, da aus iii) Lipschitz-Stetigkeit folgt.

 $iv) \Rightarrow i) \Rightarrow \text{Klar.}$

 $ii)\Rightarrow iii)$ Angenommen, iii) ist falsch, d.h. $\forall n\in\mathbb{N}\exists x_n\in X:\|Tx_n\|>n\,\|x_n\|$. Setze $y_n\coloneqq\frac{x_n}{n\|x_n\|}$. Hieraus folgt: $\|y_n\|=\frac{1}{n}$, aber

$$||Ty_n|| = \left\| \frac{1}{n ||x_n|| Tx_n} \right\| = \frac{1}{n ||x_n||} ||Tx_n|| > 1$$

Somit ist $(y_n)_n$ eine Nullfolge, aber Ty_n konvergiert nicht gegen 0, was ii) widerspricht.

{def2.3}

Definition 2.3

Die kleinste in iii) vorkommende Zahl M wird mit ||T|| bezeichhnet, d.h.

$$||T|| = \inf\{M \ge 0 \mid ||Tx|| \le M \, ||x|| \, \forall x \in X\}$$

{satz2.4}

Satz 2.4

Sei $T: X \to Y$ ein stetiger Operator. Dann gilt:

$$\|T\| = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} = \sup_{\|x\| = 1} \|Tx\| = \sup_{\|x\| \leq 1} \|Tx\|$$

sowie

$$||Tx|| \le ||T|| \, ||x|| \, \forall x \in X$$

Beweis: Klar:

$$\sup_{\|x\| \leq 1} \|Tx\| \geq \sup_{\|x\| = 1} = \sup_{x \neq 0} \left\| T \frac{x}{\|x\|} \right\| = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$$

und

$$\sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1 \atop \alpha \in]0,1]} \|T(\alpha x)\| = \sup_{\|x\| = 1 \atop \alpha \in]0,1]} |\alpha| \|Tx\| = \sup_{\|x\| = 1} \|Tx\|$$

Setze $M_0 = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$. Zeige: $\|T\| = M_0$.

Aus $||Tx|| \le M_0 ||x|| \forall x \in X$ folgt schon $||T|| \le M_0$.

Zu $\varepsilon > 0$ wählen wir $x_{\varepsilon} \neq 0$, $x_{\varepsilon} \in X$ mit

$$\frac{\|Tx_{\varepsilon}\|}{\|x_{\varepsilon}\|} \ge M_0(1-\varepsilon) \Leftrightarrow \|Tx_{\varepsilon}\| \ge M_0(1-\varepsilon) \|x_{\varepsilon}\|$$

. Daraus folgt: $||T|| \ge M_0(1-\varepsilon)$, also insgesamt $||T|| = M_0$. Aus dieser Gleichheit folgt dann auch $||Tx|| \le ||T|| \, ||x|| \, \forall x \in X$.

Bemerkung

Da stetige Operatoren die Einheitskugel $\{x \in X \mid ||x|| \le 1\}$ auf eine beschränkte Menge abbildet, spricht man auch von beschränkten Operatoren.

Sei $L(X,Y) := \{T : X \to Y \mid T \text{ ist linear unabhängig und stetig}\}$. L(X,Y) ist bezüglich der algebraischen Operationen (S+T)x = Sx + Tx und $S(\alpha x) = \alpha Sx$ ein Vektorraum. Weiter ist $L(X,Y) \neq \emptyset$, da der Nulloperator $x \mapsto 0$ in L(X,Y) liegt. Sei L(X) := L(X,X).

{satz2.5}

Satz 2.5

- i) $||T|| = \sup_{||x|| \le 1} ||Tx||$ definiert eine Norm aus L(X,Y), die Operatornorm.
- ii) Ist Y vollständig, so ist auch L(X,Y) vollständig.

Beispiel

 $T: \ell^{2} \to \mathbb{R}, \ T(x_{n})_{n} = x_{1}$, ist sicherlich linear. T ist stetig, da: Zu zeigen: $\exists M \geq 0: |T(x_{n})_{n}| \leq M \|(x_{n})\|_{\ell^{2}} \ \forall (x_{n}) \in \ell^{2}$. Sei $(x_{n})_{n} \in \ell^{2}$ beliebig.

$$|T(x_n)_n| = |x_1| \le \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}} = \|(x_n)_n\|_{\ell^2}$$

Also ist T stetig und $||T|| \le 1$.

 $x = e_1 \in \ell^2$. $|Te_1^-| = 1 = ||e_1||_{\ell^2}$. Hieraus folgt ||T|| = 1. //

Beweis:

i) $\|\lambda T\| = |\lambda| \|T\|$ klar. $\|T\| = 0 \Leftrightarrow T = 0$ klar. Zur Dreiecksungleichung: Sei $\|x\| \le 1$.

$$\|(S+T)(x)\| = \|Sx+Tx\| \le \|Sx\| + \|Tx\| \le \|S\| + \|T\|$$

$$\|S+T\|=\sup_{\|x\|\leq 1}\|(S+T)(x)\|\leq \|S\|+\|T\|$$