SS 2020 • Analysis IIa • Übungsaufgaben

Blatt 8

Abgabefrist: bis zum 18.06.2020 um 23:59:59 als PDF-Datei an den zuständigen Tutor

Aufgabe 1 (4+2 Punkte)

Seien (X, d_X) und (Y, d_Y) metrische Räume und $f: X \to Y$.

- 1. Zeigen Sie, dass die folgenden zwei Aussagen äquivalent sind: (a) f ist stetig, (b) für jede offene Menge $O \subset Y$ ist $f^{-1}(O)$ offen in X,
- 2. Zeigen Sie, dass die Aussage (b) genau dann gilt, wenn

für jede abgeschlossene Menge $A \subset Y$ die Menge $f^{-1}(A)$ in X abgeschlossen ist.

Aufgabe 2 (4 Punkte)

Sei K > 0. Für jedes $y_0 \in \mathbb{R}$ bestimmen Sie die maximale Lösung y von

$$y'(t) = y(t)(K - y(t)), \quad y(0) = y_0,$$

insbesondere beschreiben Sie ihren Definitionsbereich.

Hinweis: Nutzen Sie die Separation der Variablen und betrachten Sie die Fälle $y \in \{0, K\}$, $y_0 > K$, $y_0 \in (0, K)$, $y_0 < 0$.

Aufgabe 3 (1+1+2+1+2 Punkte)

Betrachte das Anfangswertproblem

$$y'(t) = -\frac{y(t)}{1 + e^{-t^2} + y(t)^2}, \quad y(t_0) = y_0.$$

- 1. Zeigen Sie, dass es eine eindeutig bestimmte auf \mathbb{R} definierte Lösung existiert.
- 2. Bestimmen Sie alle konstanten Lösungen der Differentialgleichung.
- 3. Sei y die maximale Lösung mit $y_0 > 0$.
 - (a) Zeigen Sie, dass y monoton fallend ist, und berechnen Sie $\lim_{t\to+\infty} y(t)$.
 - (b) Berechnen Sie $\lim_{t\to-\infty} y(t)$.
- 4. Zeigen Sie, dass die Funktion z(t) = -y(t) dieselbe Differentialgleichung erfüllt, und beschreiben Sie das Verhalten von y für $y_0 < 0$.

Aufgabe 4 (1+2 Punkte)

- 1. Zeigen Sie, dass die Funktion $y \mapsto y \ln y$ auf $(0, +\infty)$ nicht Lipschitzsch ist.
- 2. Betrachte die Differentialgleichung $y'(t) = y(t) \ln y(t)$, $(t, y(t)) \in \mathbb{R} \times (0, \infty)$. Zeigen Sie, dass zu jedem $(t_0, y_0) \in \mathbb{R} \times (0, \infty)$ das Anfangswertproblem $y(t_0) = y_0$ eindeutig lösbar ist und die zugehörige maximale Lösung auf \mathbb{R} definiert ist.

Präsenzaufgaben

- 1. Seien $M \subset \mathbb{R}^m$ abgeschlossen und beschränkt und $N \subset \mathbb{R}^n$ abgeschlossen. Betrachte die Menge $C^0(M,N) = \{f: M \to N \text{ stetig}\}$. Zeigen Sie, dass $d(f,g) = \sup_{x \in M} \|f(x) g(x)\|$ eine Metrik auf $C^0(M,N)$ ist und dass $C^0(M,N)$ bzgl. dieser Metrik vollständig ist.
- 2. Sei $\Omega \subset \mathbb{R}^{n+1}$ offen und $F: \Omega \to \mathbb{R}^n$ stetig und lokal Lipschitzsch bzgl. y. Seien y, \widetilde{y} zwei auf einem Interval I definierte Lösungen von y' = F(t, y) mit $y(t_0) = \widetilde{y}(t_0)$ für ein $t_0 \in I$.
 - (a) Sei $t_1 := \sup \{ t \in I : y(t) = \widetilde{y}(t) \}$. Zeigen Sie, dass $t_1 \notin \mathring{I}$.
 - (b) Leiten Sie her, dass $y(t) = \widetilde{y}(t)$ für alle $t \in I$.
- 3. Hier werden wir den Satz 134 aus der Vorlesung beweisen: Sei $\Omega \subset \mathbb{R}^{n+1}$ offen und $F: \Omega \to \mathbb{R}^n$ stetig und lokal Lipschitzsch bzgl. y. Dann gibt es zu jedem $(t_0, y_0) \in \Omega$ eine einzige maximale Lösung vom AWP y'(t) = F(t, y(t)) mit $y(t_0) = y_0$. Diese maximale Lösung ist auf einem offenen Intervall definert.

Wir werden zuerst die letzte Aussage beweisen:

- (a) Sei y die maximale Lösung, die auf einem Intervall I definiert ist. Sei t_1 der rechte Randpunkt von I und nehme an, dass $t_1 \in I$.
 - i. Zeigen Sie, dass es ein $\delta > 0$ existiert und eine Lösung z vom y' = F(t, y) auf $(t_1 \delta, t_1 + \delta)$ mit z(t) = y(t) für $t \in (t_1 \delta, t_1]$.
 - ii. Leiten Sie her, dass y nicht maximal ist.
 - iii. Leiten Sie her, dass I offen ist.
- (b) Sei $A := \{I' : I' \text{ offenes Intervall mit } t_0 \in I' \text{ und es gibt Lösung } y_{I'} \text{ vom AWP auf } I'\}$ und $I := \bigcup_{I' \in A} I'$. Für $t \in I$ setze $y(t) = y_{I'}(t)$ falls $t \in I'$.
 - i. Wir werden zuerst zeigen, dass y wohldefiniert ist, d.h. dass y(t) eindeutig bestimmt ist. Seien $I', I'' \in A$ mit $t \in I' \cap I''$. Zeigen Sie, dass $y_{I'}(t) = y_{I''}(t)$. Hinweis: nutzen Sie die PA 2.
 - ii. Zeigen Sie, dass y Lösung vom AWP auf I ist.
 - iii. Zeigen Sie, dass I offen ist und dass y die gesuchte maximale Lösung ist.
- 4. Sei $y:(a,+\infty)\to\mathbb{R}$ stetig differenzierbar mit $\lim_{t\to+\infty}y'(t)=b>0$. Zeigen Sie, dass $\lim_{t\to+\infty}y(t)=+\infty$.
- 5. Sei $f: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar. Betrachte das Anfangswertproblem y'(t) = f(y(t)), $y(0) = y_0 \in \mathbb{R}$.
 - (a) Zeigen Sie, dass es eine eindeutig bestimmte maximale Lösung y existiert.
 - (b) Sei $f(y_0) = 0$. Zeigen Sie, dass y konstant ist.
 - (c) Seien $a < b \text{ mit } f(a) = f(b) = 0 \text{ und } f(x) > 0 \text{ für alle } x \in (a, b).$ Sei $a < y_0 < b$. Zeigen Sie: die Lösung y ist auf \mathbb{R} definiert mit $\lim_{t \to -\infty} y(t) = a$ und $\lim_{t \to +\infty} y(t) = b$.
 - (d) Beschreiben sie den Definitionsbereich und mögliches Verhalten von y für den Fall $y_0 > a$, wobei f(a) = 0 und f(x) < 0 für alle x > a.
- 6. Betrachte die Differentialgleichung $y'(t) = \sqrt{1 + e^t y(t)^2} \sin^3 y(t)$.
 - (a) Finden Sie alle konstanten Lösungen.
 - (b) Sei $y_0 \in \mathbb{R}$ und y die maximale Lösung des Anfangswertproblems mit $y(0) = y_0$. Zeigen Sie, dass y auf \mathbb{R} definiert ist und untersuchen Sie $\lim_{t\to\pm\infty} y(t)$.