Descrição e visualização de dados multivariados utilizando a base Iris

Table of contents

1	Introdução	1			
2	Preparação e inspeção dos dados				
3	Vetor de médias	3			
4	Matrizes de covariância e correlação				
5	Variância generalizada e total				
6	Matrizes de distância				
	6.1 Distância Euclidiana	5			
	6.2 Distância de Karl Pearson	6			
	6.3 Distância de Mahalanobis	6			
7	Visualizações básicas	6			
	7.1 Gráfico de pares por espécie	6			
	7.2 Correlograma	7			
	7.3 Heatmap das correlações	8			
8	Referências Bibliográficas	9			

1 Introdução

A base *iris* (FISHER (1936)) é um dos conjuntos de dados mais clássicos e didáticos da estatística. Ela contém **150 observações** (flores) de **três espécies**, *setosa*, *versicolor* e *virginica*, medidas em **quatro** variáveis contínuas:

- Sepal.Length (cm)
- Sepal.Width (cm)
- Petal.Length (cm)
- Petal.Width (cm)

Nosso objetivo é revisar conceitos fundamentais de Estatística Multivariada:

- Vetor de médias
- Matrizes de covariância e correlação
- Variância total e generalizada
- Matrizes de distância (euclidiana e de Mahalanobis)
- Visualizações (pares, correlograma, heatmaps)

2 Preparação e inspeção dos dados

```
# Pacotes necessários
# install.packages(c("tidyverse", "GGally", "ggcorrplot", "pheatmap", "factoextra", "MatchIt"))
library(tidyverse)
library(gGally)
library(ggcorrplot)
library(pheatmap)
library(factoextra)
library(MatchIt)

# Carregar a base iris
dados <- iris
glimpse(dados)

Rows: 150
Columns: 5
$ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~
$ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~
```

\$ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~
\$ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~

summary(dados)

```
Sepal.Length
                 Sepal.Width
                                 Petal.Length
                                                 Petal.Width
Min.
       :4.300
                Min.
                       :2.000
                                Min.
                                       :1.000
                                                Min.
                                                       :0.100
1st Qu.:5.100
                1st Qu.:2.800
                                1st Qu.:1.600
                                                1st Qu.:0.300
Median :5.800
                Median :3.000
                                Median :4.350
                                                Median :1.300
     :5.843
Mean
                Mean
                      :3.057
                                Mean
                                      :3.758
                                                Mean
                                                      :1.199
3rd Qu.:6.400
                3rd Qu.:3.300
                                3rd Qu.:5.100
                                                3rd Qu.:1.800
Max.
       :7.900
                Max.
                       :4.400
                                Max.
                                       :6.900
                                                Max.
                                                       :2.500
      Species
setosa
          :50
versicolor:50
virginica:50
```

```
# Parte numérica e variável categórica
X <- as_tibble(dados[, 1:4])
y <- dados$Species</pre>
```

Interpretação: A base iris possui 150 observações e 5 variáveis, sendo quatro contínuas, Sepal.Length, Sepal.Width, Petal.Length e Petal.Width (em centímetros) e uma categórica, Species, com três espécies (setosa, versicolor e virginica). O resumo descritivo da base iris indica amostra balanceada por espécie (50 setosa, 50 versicolor, 50 virginica) e sugere padrões distintos entre sépalas e pétalas: Sepal.Length (4,3–7,9; Q1=5,1; mediana=5,8; média 5,84) e Sepal.Width (2,0–4,4; Q1=2,8; mediana=3,0; média 3,06) mostram variação moderada e distribuição quase simétrica (médias próximas às medianas), enquanto Petal.Length (1,0–6,9; Q1=1,6; mediana=4,35; média 3,76) e Petal.Width (0,1–2,5; Q1=0,3; mediana=1,3; média 1,20) exibem maior dispersão e assimetria à esquerda, refletindo a presença de muitas pétalas pequenas (típicas de setosa) e valores maiores nas demais espécies; isso cria um perfil "bimodal" nas pétalas, que costuma discriminar fortemente as espécies, ao passo que as medidas de sépala contribuem de forma mais moderada para a separação.

3 Vetor de médias

Species	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
setosa	5.006	3.428	1.462	0.246
versicolor	5.936	2.770	4.260	1.326
virginica	6.588	2.974	5.552	2.026

Interpretação: o vetor de médias representa o "centro" da nuvem de pontos. Comparar médias por espécie ajuda a perceber separações entre grupos (por exemplo, pétalas maiores em virginica). Os valores mostram o padrão clássico da iris: setosa tem pétalas bem menores (PL=1,462; PW=0,246) e sépalas relativamente mais largas (SW=3,428), além de menor comprimento de sépala (SL=5,006); virginica apresenta as maiores pétalas (PL=5,552; PW=2,026) e o maior comprimento de sépala (SL=6,588), com largura de sépala intermediária (SW=2,974); versicolor fica entre as duas em todas as medidas (PL=4,260; PW=1,326) e tem a menor largura de sépala (SW=2,770).

4 Matrizes de covariância e correlação

```
# Matriz de covariâncias
S <- cov(X)
S</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
                0.6856935
                           -0.0424340
                                          1.2743154
                                                       0.5162707
Sepal.Width
               -0.0424340
                                         -0.3296564
                             0.1899794
                                                      -0.1216394
Petal.Length
                1.2743154
                            -0.3296564
                                          3.1162779
                                                       1.2956094
Petal.Width
                0.5162707
                           -0.1216394
                                          1.2956094
                                                       0.5810063
```

Covariância: mede associação linear nas unidades originais. As variâncias (diagonal) indicam que a maior dispersão está em Petal.Length (3.1163), seguida de Sepal.Length (0.6857) e Petal.Width (0.5810), enquanto Sepal.Width varia menos (0.1900). Nos termos cruzados, há covariância positiva forte entre Petal.Length e Petal.Width (1.2956), e também entre Sepal.Length com Petal.Length (1.2743) e com Petal.Width (0.5163); já Sepal.Width apresenta covariâncias negativas com as demais (especialmente com Petal.Length: -0.3297).

```
# Matriz de correlações
R <- cor(X)
R</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                1.0000000
Sepal.Length
                           -0.1175698
                                          0.8717538
                                                       0.8179411
Sepal.Width
               -0.1175698
                             1.0000000
                                         -0.4284401
                                                     -0.3661259
Petal.Length
                0.8717538
                           -0.4284401
                                          1.0000000
                                                       0.9628654
Petal.Width
                0.8179411
                           -0.3661259
                                          0.9628654
                                                       1.0000000
```

Correlação: padroniza a covariância (-1 a 1), útil quando variáveis têm escalas diferentes. A matriz de correlações da iris mostra que as medidas de pétala são fortemente associadas: Petal.Length e Petal.Width têm correlação muito alta (0.963) e ambas se correlacionam bastante com Sepal.Length (0.872 e 0.818), indicando forte redundância informacional entre essas variáveis; já Sepal.Width se relaciona negativamente com as demais (-0.118 com Sepal.Length, -0.428 com Petal.Length e -0.366 com Petal.Width), sugerindo um padrão em direção oposta. Em síntese, as pétalas dominam a variação e separam melhor as espécies, enquanto Sepal.Width adiciona informação complementar (e contrária), com alerta para possível multicolinearidade entre as medidas de pétala.

5 Variância generalizada e total

```
# Variância generalizada (determinante de S)
eigen(S)
eigen() decomposition
$values
[1] 4.22824171 0.24267075 0.07820950 0.02383509
$vectors
            [,1]
                        [,2]
                                    [,3]
                                                [,4]
[1,]
    0.36138659 -0.65658877 0.58202985 0.3154872
[2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
     0.85667061
                  0.17337266 -0.07623608 -0.4798390
[4,] 0.35828920
                  0.07548102 -0.54583143 0.7536574
VG <- det(S)
VG
```

[1] 0.00191273

VG (determinante): A variância generalizada 0,00191273 é o determinante da matriz de covariâncias S e mede o "volume" da dispersão conjunta; um valor tão pequeno indica forte colinearidade/redundância entre as variáveis, especialmente entre Petal.Length e Petal.Width, de modo que a nuvem de pontos fica "achatada" em algumas direções (um ou mais autovalores de S são pequenos, e o produto deles, o determinante, cai). Em termos práticos, isso sugere que as medidas de pétala carregam informação muito semelhante.

```
# Variância total (traço de S)
VT <- sum(diag(S))
VT</pre>
```

[1] 4.572957

VT (traço): soma das variâncias marginais = dispersão total marginal. Ela mede a dispersão global do conjunto e é dependente de escala; padronizando as variáveis (z-scores), a variância total passaria a ser p=4. Pela decomposição: Petal.Length responde por aproximadamente 68,1% da variância total, Sepal.Length responde por 15,0%, Petal.Width por 12,7% e Sepal.Width por 4,2%, confirmando que as medidas de pétala dominam a variabilidade.

6 Matrizes de distância

6.1 Distância Euclidiana

Distância Euclidiana representa a distância geométrica entre dois pontos.

6.2 Distância de Karl Pearson

Distância de Karl Pearson leva em conta as diferenças de escala.

6.3 Distância de Mahalanobis

Distância de Mahalanobis leva em conta correlações entre variáveis e diferenças de escala.

7 Visualizações básicas

7.1 Gráfico de pares por espécie

Interpretação: O "pairs plot" da iris mostra que setosa tem pétalas muito pequenas e sépalas mais largas, enquanto versicolor e virginica apresentam pétalas maiores (com alguma sobreposição), e em Sepal.Width a espécie setosa desloca-se à direita, versicolor à esquerda e virginica fica intermediária. As correlações globais destacam Petal.Length vs. Petal.Width como fortíssima (0,96) e Sepal.Length bem associado às pétalas; já Sepal.Width aparece negativamente correlacionado no agregado. Contudo, por espécie as relações com Sepal.Width tendem a ser positivas, e os dispersogramas envolvendo medidas de pétala exibem a melhor separação entre espécies. Em síntese, as pétalas dominam a estrutura e a discriminação, com Sepal.Width fornecendo informação complementar.

7.2 Correlograma

Interpretação: O mapa de correlações da iris evidencia três padrões centrais: (1) forte associação positiva entre as medidas de pétala: Petal.Length vs. Petal.Width 0.96 e também de Sepal.Length com as pétalas (0.87 e 0.82), indicando redundância informacional e provável multicolinearidade; (2) Sepal.Width apresenta correlações negativas com as demais variáveis (-0.12 com Sepal.Length, -0.43 com Petal.Length e -0.37 com Petal.Width), sugerindo um eixo de variação em sentido oposto ao das pétalas; e (3) como consequência, em tarefas de PCA ou classificação, as pétalas tendem a dominar a separação entre espécies, enquanto Sepal.Width adiciona sinal complementar.

7.3 Heatmap das correlações

Interpretação: O heatmap das correlações da iris confirma dois blocos de variáveis: (i) Petal.Length e Petal.Width fortemente positivas entre si (vermelho intenso) e também bem alinhadas com Sepal.Length (vermelho), formando um grupo altamente correlacionado que indica redundância e tende a dominar a variação; (ii) Sepal.Width aparece em azul frente às demais, mostrando correlação negativa moderada, o que a isola no dendrograma e sugere um eixo complementar de informação. Em termos práticos, as pétalas são as melhores para discriminar espécies (e podem sofrer multicolinearidade), enquanto Sepal.Width acrescenta sinal em direção oposta.

8 Referências Bibliográficas

FISHER, R. A. 1936. "THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS." Annals of Eugenics 7 (2): 179–88. https://doi.org/https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.