CSC Alignment with beam-halo muons

- Select tracks that pass through overlap of two chambers
- Determine relative position by requiring consistency between the two track segments:
 - roposition (most important for momentum resolution)
 - φz: rotation in layer's plane (second most important)
 - φ_y: rotation around alignment pin axis

Solve system of 18-36 relative corrections

 Cross-check against photogrammetry

Accuracy determined from photogrammetry (PG)

- Photogrammetry is alignment from a literal photograph of the detector: completely independent from tracks, 210 μ m r ϕ and 0.23 mrad ϕ z resolution
- Chamber-by-chamber difference with respect to PG before (gray) and after (yellow) alignment with tracks shows improvement (35 chambers below)
- Track-based alignment accuracy: 270 μ m r ϕ and 0.35 mrad ϕ z (from RMS of difference minus PG resolution in quadrature; no PG data for ϕ y)

Achieved alignment resolution goal in 9 minutes of LHC beam-halo data!

Simulation of procedure in beam-halo Monte Carlo

Roughly the same statistics, observe roughly the same resolutions

Consistency of residuals

- Sum of residuals around ring must be zero (must form a consistent circle)
 - always zero in MC (for $r\phi$, ϕ_z , and ϕ_y)
 - offset of r ϕ residuals in data led to quantitative prediction and discovery of 10 μ m chamber description error

