Cycle Gan

투빅스 18기 김성우

Abstract

Image to Image Translation 은 보통 pair-image 학습.

Image to Image 란?

이미지 인풋을 받고 이미지 아웃풋을 내는 알고리즘을 말한다. 뭐 색깔을 입힌다던지, 낮을 밤으로 바꾼다던지 이런 알고리즘. Paired 또는 unpaired 데이터셋이 있는데 각각 pix2pix 와 cyclegan 이 대표한다.

하지만 이런 piar image 데이터가 많지 않아서 우리는 X 도메인과 Y 도메인데이터셋 자체를 이용한 cycle gan 을 냈다.

Translation 을 진행하기 위해 loss 을 정방향과 역방향으로 정했다. Cycle consistency loss 을 정의했고 이래서 cycle gan 이라 불렀다.

즉, cyclegan 은 특징이 다른 두 도메인의 데이터만 가지고 온전하게 변환하는 법을 배운다.

이때 y_{hat} 이 Y 에 속하게끔만 만들게 하면 mode collapse 가 일어날 것이다. 하긴 그렇긴 하지. 이거를 해결하기 위해 주기적 일관성을 도입. 주기적 일관성이란 x 를 겨울 이미지 y_{hat} 으로 변환했다면, 그 y_{hat} 을 역변환할 경우 여름 이미지 x 가 되게끔 하는 것. 이렇게 해야 일방적인 mode collapse, Y 만을 만족하는 easy model 이 되지 않는다.

- 1. G: x o y 의 적대적 학습(Adversarial loss)
- 일반 GAN과 동일.
- 2. $F:y \to x$ 의 적대적 학습(Adversarial loss)
- 역방향 학습도 추가
- 3. xpprox F(G(x)) 의 주기적 일관성 학습(Cycle consistence loss)

정방향 역방향 모두 일반적인 GAN loss 적용한다.

Cycle consistency loss 은 아래와 같은 function 을 쓴다.

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

그래서 총 loss function 은 아래와 같다.

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cvc}(G, F),$$

오 이거 아래 2 번이 특히 괜찮다.

또한 이전 GAN 모델들과 다르게 안전적인 모델 학습을 위해 아래의 2 가지 변경을 가미했다. 먼저 loss function 은 negative loss likelihood 대신에 leastsquared loss 으로 변경을 했고 또한 Discriminator 에 mini-batch 의 개념을 이용해 50 개를 한꺼번에 분류하게 만들었다.

평가 지표로는 3 가지가 있으며 각각 Human study 정성적, FCN Score 정량적, per pixel accuracy 이었다. 결과는 아래와 같다.

	$\mathbf{Map} \to \mathbf{Photo}$	Photo $ ightarrow$ Map
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [32]	$0.6\% \pm 0.5\%$	$0.9\% \pm 0.5\%$
BiGAN/ALI [9, 7]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$
SimGAN [46]	$0.7\% \pm 0.5\%$	$2.6\% \pm 1.1\%$
Feature loss + GAN	$1.2\% \pm 0.6\%$	$0.3\% \pm 0.2\%$
CycleGAN (ours)	$26.8\% \pm 2.8\%$	$23.2\% \pm 3.4\%$

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos at 256×256 resolution.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.45	0.11	0.08
BiGAN/ALI [9, 7]	0.41	0.13	0.07
SimGAN [46]	0.47	0.11	0.07
Feature loss + GAN	0.50	0.10	0.06
CycleGAN (ours)	0.58	0.22	0.16
pix2pix [22]	0.85	0.40	0.32

Table 3: Classification performance of photo→labels for different methods on cityscapes.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

Table 4: Ablation study: FCN-scores for different variants of our method, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Table 5: Ablation study: classification performance of photo→labels for different losses, evaluated on Cityscapes.

이러한 Cycle Gan 의 한계점으로는 제한적인 변경만 가능하다는 점과 Y 에 대한 이미지가 부족하면 학습이 안된다는 점으로 들었다.

요약.

Cycle Gan 은 cycle consistency loss 에서 이름을 따왔다. 이 GAN 모델은 image to image 을 paired image 활용하지 않고 오직 독립적인 집단 X 와 Y 의특징을 이용해 학습을 한다. X 에서 Y 로 변환하는 GAN 을 기본으로다가 Y에서 X 로 변환하는 GAN 을 활용해 mode collapse 을 방지해 이름하여 cycle circulation 만들었다.