Knowledge Representation Chapter 2. Propositional Representation and Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

February 14, 2021

1 Propositional Logic: Syntax and Semantics

Propositional Reasoning

Propositional Logic: Syntax

- Def. Propositional Signature Σ : set of propositions or atoms. E.g. $\Sigma = \{happy, rain, weekend\}$.
- Def. Propositional language \mathcal{L}_{Σ} , set of well formed formulas (wff).

where $p \in \Sigma$ and $\alpha, \beta \in \mathcal{L}_{\Sigma}$.

- Alternative notations:
 implication →, ⊃, ⇒; equivalence ≡, =, ↔, ⇔
- Precedence: \equiv , \rightarrow , \vee , \wedge , \neg . Binary ops. left associative.
- Def. literal = an atom p or its negation $\neg p$.
- Def. theory = set of formulas $\Gamma \subseteq \mathcal{L}_{\Sigma}$.

- Def. interpretation is a function $\mathcal{I}: \Sigma \longrightarrow \{1, 0\}$ Example: $\mathcal{I}(happy) = 1, \ \mathcal{I}(rain) = 0, \ \mathcal{I}(weekend) = 1$
- Alternative representation: set $\mathcal{I} \subseteq \Sigma$ of (true) atoms. Example: $I = \{happy, weekend\}$
- We extend its use to formulas $\mathcal{I}: \mathcal{L}_{\Sigma} \longrightarrow \{1, 0\}$. $\mathcal{I}(\alpha) = \text{replace each } p \in \Sigma \text{ in } \alpha \text{ by } \mathcal{I}(p) \text{ and apply:}$

4 / 20

• Example: $\mathcal{I}(\neg rain \to \neg weekend) \ \mathcal{I}(\neg 0 \to \neg 1) \ \mathcal{I}(1 \to 0) = 0$

- Def. \mathcal{I} satisfies α , written $\mathcal{I} \models \alpha$, iff $\mathcal{I}(\alpha) = 1$.
- Satisfaction can also be defined inductively as follows:
 - i) $\mathcal{I} \models \top$ and $\mathcal{I} \not\models \bot$.
 - ii) $\mathcal{I} \models \rho$ iff $\mathcal{I}(\rho) = 1$.
 - iii) $\mathcal{I} \models \neg \alpha$ iff $\mathcal{I} \not\models \alpha$.
 - iv) $\mathcal{I} \models \alpha \land \beta$ iff $\mathcal{I} \models \alpha$ and $\mathcal{I} \models \beta$.
 - v) $\mathcal{I} \models \alpha \vee \beta$ iff $\mathcal{I} \models \alpha$ or $\mathcal{I} \models \beta$ (or both).
 - vi) $\mathcal{I} \models \alpha \rightarrow \beta$ iff $\mathcal{I} \not\models \alpha$ or $\mathcal{I} \models \beta$ (or both).
 - vii) $\mathcal{I} \models \alpha \equiv \beta$ iff $(\mathcal{I} \models \alpha \text{ iff } \mathcal{I} \models \beta)$.
- \mathcal{I} is a *model* of Γ , written $\mathcal{I} \models \Gamma$, iff it satisfies all formulas in Γ .

- We can define $M(\Gamma)$ = the set of models of a theory (or formula) Γ . Example: $M(a \lor b) = \{\{a,b\},\{a\},\{b\}\}$
- The models of a formula can be inspected by structural induction:

$$M(\alpha \vee \beta) = M(\alpha) \cup M(\beta)$$

$$M(\alpha \wedge \beta) = M(\alpha) \cap M(\beta)$$

$$M(\neg \alpha) = 2^{\Sigma} \setminus M(\alpha)$$

• Two formulas α, β are equivalent if $M(\alpha) = M(\beta)$ (same models)

- From a set S of interpretations: do you know a method to get a formula α s.t. $M(\alpha) = S$?
- Example: find α to cover $M(\alpha) = \{\{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Does this formula α always exist?

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{happy, (rain \rightarrow \neg happy)\} \models \neg rain$
- If $M(\alpha) = \emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: $rain \land \neg rain, \perp, \ldots$
- If $M(\alpha) = 2^{\Sigma}$ (all interpretations are models), α , is valid or a tautology. Examples: $rain \lor \neg rain$, \top , $b \land c \land d \rightarrow (d \rightarrow b)$, ...
- We write $\models \alpha$ to mean that α is a tautology Note: this is $\emptyset \models \alpha$, so we require $M(\emptyset) = 2^{\Sigma} \subseteq M(\alpha)$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

Propositional Logic: Syntax and Semantics

Propositional Reasoning

Reasoning: $\{P_1, \dots, P_n\} \models C$ does conclusion C follow from premises $\{P_1, \dots, P_n\} = KB$ (the Knowledge Base)?

11/20

Example: *KB* = but we need formulas, not sentences?

P₁: On weekends, I don't watch tv

 P_2 : I'm happy when it rains, except in the weekend

 P_3 : I'm watching tv but I'm not happy

Can I conclude this?

C: it is not raining

From human to formal language ...

A o B	A implies B A is a sufficient condition for B B is a necessary condition for A if A then B B if A A only if B B given that A B provided that A	
$A \leftrightarrow B$	A is equivalent to B	
	A if and only if (iff) B	
$A \lor B$	A or B (inclusive or)	
	A unless B, A except B	
$-(\Lambda \cup P)$		
$\neg (A \leftrightarrow D)$	A or B (exclusive or)	

Del lenguaje humano al formal ...

A o B	A implica B A es suficiente para B B es necesario para A si A entonces B B si A A sólo si B B siempre que A
$A \leftrightarrow B$	A equivale a B
	A si y sólo si B
$A \vee B$	A ó B (inclusivo)
$\neg (A \leftrightarrow B)$	A a no ser que (a menos que) B A excepto si B A ó B (exclusivo)

Reasoning: $\{P_1, \dots, P_n\} \models C$ does conclusion C follow from premises $\{P_1, \dots, P_n\} = KB$ (the Knowledge Base)?

14 / 20

Example: KB =

 P_1 : On weekends, I don't watch $tv (w \rightarrow \neg tv)$

 P_2 : I'm happy when it rains, except in the weekend $(r \land \neg w \to h)$

 P_3 : I'm watching tv but I'm not happy $(tv \land \neg h)$

Can I conclude this?

C: it is not raining $(\neg r)$

Definition (Entailment)

A theory KB entails conclusion C, written $KB \models C$, when all models of KB are models of C. If so, C is called a semantic consequence of KB.

• In propositional logic, $\{P_1, P_2, P_3\} \models C$ is the same as checking that the formula $P_1 \land P_2 \land P_3 \rightarrow C$ is a tautology or, equivalently, that its negation $P_1 \land P_2 \land P_3 \land \neg C$ is inconsistent

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. (Time) complexity: **NP**-complete problem.

15/20

In other words:

$$\{P_1, P_2, P_3\} \models C \text{ iff } SAT(P1 \land P2 \land P3 \land \neg C) = no.$$

- First naive method: check all interpretations (2⁴ = 16) one by one (truth table) to obtain a 0 in all cases.
- $\mathcal{I}(P_1 \wedge P_2 \wedge P_3 \wedge \neg C) = 0$ when some conjunct is 0.

				<i>P</i> ₁	P_2	P_3	$\neg C$
h	tv	W	r	$(w \rightarrow \neg tv)$	$(r \wedge \neg w \rightarrow h)$	$tv \wedge \neg h$	r
0	0	0	0	1	1	0	0
		÷		:	<u>:</u>	÷	÷
0	1	0	0	1	1	1	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
		:					

- Computational cost is exponential = 2^n with $n = |\Sigma|$ number of atoms. Can we perform better?
- Not much hope for the worst case: NP-complete!
- However, enumeration of interpretations always forces worst case.
 We can do better in particular cases.
- In our example: $tv \land \neg h$ and r fix the truth of 3 atoms: $\mathcal{I}(h) = 0$, $\mathcal{I}(tv) = 1$ and $\mathcal{I}(r) = 1$. Only w needs to be checked

- SAT solvers: nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com
- SAT keypoint: instead of designing an ad hoc search algorithm, encode the problem into propositional logic and use SAT as a backend.
- SAT solvers represent the input (KB and conclusions) as a set (conjunction) of "clauses", where clause = disjunction of literals. This is called Conjunctive Normal Form (CNF).

Conjunctive Normal Form (CNF)

Getting the CNF. Example:

$$(p \leftrightarrow \neg q) \rightarrow \neg (r \land \neg s)(p \leftrightarrow \neg q) \rightarrow \neg (r \land \neg s)((p \land \neg q) \lor (\neg p \land q)) \rightarrow \neg (r \land \neg s)$$

- replace $\alpha \to \beta$ by $\neg \alpha \lor \beta$ and $\alpha \leftrightarrow \beta$ by $(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$
- Negation Normal Form (NNF): apply De Morgan laws until ¬ only applied to atoms
- $\ \ \, \ \ \,$ apply distributivity \wedge,\vee and associativity to get conjunction of disjunctions
 - Warning: distributivity may have an exponential cost. Example $(a \wedge b) \vee (c \wedge d) \vee (e \wedge f) \vee (h \wedge i)$
 - Some techniques [Tseitin68] allow generating a CNF in polynomial time but introducing new auxiliary atoms.

Conjunctive Normal Form (CNF)

- If KB is a set of facts and implications involving literals, it is (almost) in CNF!
- ullet Example: just change the sign of left literals in o

$$(w \to \neg tv)(w \to \neg tv)(w \to \neg tv) \land (r \land \neg w \to h)(r \land \neg w$$

we get five clauses: C_3 , C_4 , C_5 are unit clauses.

• We will call constraint to the negation of a CNF clause

$$\underbrace{(w \wedge tv)}_{\neg C_1} \quad \underbrace{(r \wedge \neg w \wedge \neg h)}_{\neg C_2} \quad \underbrace{\neg tv}_{\neg C_3} \quad \underbrace{h}_{\neg C_4} \quad \underbrace{\neg r}_{\neg C_5}$$

20 / 20

 \bullet Constraints can be easily obtained from implications of literals: change the sign of the right literals in \to .