第一题. 一学生接连参加同一课程的两次考试. 第一次及格的概率为 p, 若第一次及格则 第二次及格的概率为 p: 若第一次不及格则第二次及格的概率为 p.

- (1) 求他至少有一次及格的概率;
- (2) 若已知他第二次已经及格, 求他第一次及格的概率.

第二题. 设 a > 1, X 的概率密度函数为 $f_X(x) = ae^{-ax} \mathbf{1}_{x>0}$. 令 $Y = e^X$.

(1) 求 Y 的数学期望; (2) 在什么条件下, Y 的方差存在? (3) 设 a = 3, 求 Y 的方差.

第三题. 设 A 为实常数, 随机向量 (X,Y) 的概率密度函数为 $f(x,y) = Ax \mathbf{1}_{0 < y < x < 1}$.

(1) 求 A;

- (2) 求 (X,Y) 关于 X,Y 的边缘概率密度;
- (3) 说明 X 与 Y 是否相互独立; (4) 对 0 < x < 1, 求 $f_{Y|X}(y|x)$; 求 $P(Y \le \frac{1}{2}|X = \frac{2}{3})$.

第四题. 已知随机变量 X 与 Y 相互独立, 且均服从参数为 1 的指数分布. 令

$$U = X + Y$$
, $V = \max(X, Y)$.

- (1) 求 U 的概率密度;
- (2) 求 V 的概率密度;
- (3) 求 (U,V) 的联合分布函数. (4) 判断 U 和 V 是否相互独立.

第五题. 用中心极限定理求解下列问题.

- (1) 一复杂的系统由 100 个相互独立起作用的部件所组成, 在整个运行期间每个部件 损坏的概率为 0.1, 为了使整个系统起作用, 至少需要 85 个部件正常工作, 求整个系统起 作用的概率.
- (2) 一复杂的系统由 n 个相互独立起作用的部件所组成, 每个部件的可靠性 (p) 即部件正 常工作的概率) 为 0.9, 且必须至少有 80% 的部件工作才能使整个系统工作, 问 n 至少为 多大才能使系统的可靠性不低于 0.95.

附标准正态分布表:

x	1.65	1.67
$\Phi(x)$	0.95	0.9525

第六题, 考虑无限次扔一枚均匀硬币问题,设 N₁ 为第一次扔得正面所用的总次数, N₂ 为第二次扔得正面所用的总次数.

- (1) \bar{x} N_1 的分布律 $P(N_1 = j), j = 1, 2, \dots; \bar{x}$ N_1 的数学期望和方差.
- (2) 求 N_2 的分布律 $P(N_2 = k)$, $k = 2, 3, \cdots$
- (3) 求 (N_1, N_2) 的联合分布律.
- (4) 求条件分布律 $P(N_1 = i | N_2 = k)$ 及 $P(N_2 = k | N_1 = i)$.
- (5) 证明 N_1 和 $N_2 N_1$ 相互独立, 并求 $N_2 N_1$ 的分布律.
- (6) 求 $N_2 N_1$ 的数学期望和方差, 并求 N_2 的数学期望和方差.
- (7) 求 N_1 和 N_2 的协方差.