SUMMER-2019

UNIT-1

Q.1 a) Show that

$$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$
 (7)

- **b)** Explain with example.
- i. Tautology ii. Construction iii. Equivalent formulas (7)
- **Q.2** a) Obtain principal disjunctive normal form of the following.

$$P \vee (\neg P \to (Q \vee (\neg Q \to R))). \tag{7}$$

b) Given the truth values of P and Q as T, and those of R and S as F. Find the truth value of the following.

$$(\neg(P \land Q) \lor \neg R) \lor ((Q \leftrightarrow \neg P) \rightarrow (R \lor \neg S))$$
UNIT-2 (7)

- Q.3) Determine whether the conclusion C follows logically from the premises H_1 and H_2 . (13)

 - **1.** $H_1: P \to Q$ $H_2: P$ C: Q **2.** $H_1: P \to Q$ $H_2: \neg P$ C: Q
 - **3.** $H_1: P \rightarrow Q$ $H_2: \neg(P \land Q)$ $C: \neg P$

 - **4.** $H_1: \neg P$ $H_2: P \Rightarrow Q$ $C: \neg (P \land Q)$ **5.** $H_1: P \rightarrow Q$ $H_2: Q$ C: P **6.** $H_1: P \lor Q$ $H_2: P \rightarrow R$ $H_2: Q \rightarrow R$ C: R
 - **7.** $H_1: \neg P \lor Q \quad H_2: \neg (Q \land R) \quad H_3: \neg R \quad C: \neg P$
- **Q.4 a)** Show that $R \vee S$ follows logically from the premise

$$C \vee D$$
, $(C \vee D) \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$ and $(A \wedge \neg B) - (R \vee S)$. (7)

b) Show that

$$(x) (P(x) \rightarrow Q(x)) \land (x)(Q(x) \rightarrow (R(x)) \Rightarrow (x) P(x) \rightarrow R(x))$$
(6)

UNIT-3

Q.5 a) Let the compatibility relation on a set $\{x_1, x_2,x_6\}$ be given by the matrix.

Draw the graph and find the maximal compatibility blocks of the relation. (7)

b) Explain with examples:

(6)

i. Set

- ii. Subset iii.
 - iii. Equality of a set

- iv. Proper subset
- v. Empty set
- **Q.6 a)** What is poset? Draw the Hasse diagram for the (3, 9, 27, 54) under the partial ordering relation 'divides'. **(6)**
- **b)** Let X = (1, 2, 3, 4) and $R = \{(x, y)/ x > y\}$. Draw the graph of R and also give its matrix. (7)

UNIT-4

- **Q.7 a)** Write down the composition table for $(z_7, +_7)$ where $z_7^* = z_7 [0]$ (6)
- **b)** What is coset? Find the left coset of $\{[0], [4]\}$ in group $\{z_7, +_7\}$.
- **Q.8 a)** Let the language $L(G) = \{a^nb^nc^n / n \ge 1\}$ is generated by the grammar $\{\langle S,B,C \rangle\}, \langle a,b,c \rangle, S, \phi$ where ϕ consists of production
- $S \rightarrow aSBC S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab$
- $bB \to bb \to bcc C \to cc$ find the derivation for the sentence $a^2b^2c^2$ and $a^3b^3c^3$. (6)
- **b)** Show that the inverse element of $(a^{-1})^{-1} = a$ for $a \in G$ where G is a group. (7)

UNIT-5

- **Q.9)** Use k-map representation to find minimal sum of product expression of each of the following function.
- **i.** $f(a, b, c) = \sum (0, 1, 4, 6)$
- **ii.** $f(a, b, c, d) = \sum (0, 5, 7, 8, 12, 14)$
- iii. $f(a, b, c, d) = \sum (2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15)$
- **iv.** $f(a, b, c) = \sum (0, 2, 4, 6)$
- **v.** $f(a, b, c, d) = \sum (0, 5, 7, 8, 10, 12)$ (14)
- **Q.10 a)** What is Boolean algebra? State any four properties of Boolean algebra. **(7)**
- **b)** Draw the diagram of the lattices (S_n, D) for n = 4, 6, 8, 12, 15, 45, 60, 75 and 210. (7)

UNIT-6

- **Q.11 a)** Explain the WARSHALL algorithm which produces a path matric P or A⁺ from given adjacency matrix A. **(7)**
- **b)** Show that in a complete binary tree the total number of edges is given by $2(n_t 1)$ where n_t is the total number of terminal nodes. (6)
- **Q.12 a)** Show that the sum of indegrees of all the nodes of a simple diagraph is equal to the sum of outdegrees of all its nodes and that sum is equal to the number of edges of the graph. (7)
- **b)** Explain with example
- i. Adjacency matrix
- ii. Path matrix (6)