The Photogrammetric Process

http://www.3dcadbrowser.com/download.aspx?3dmodel=20756

University of Calgary

Camera Calibration

- ▶ How are these calibration parameters determined?
 - I. Calibrated Focal Length:

153.358 mm

II. Lens Distortion

Field angle:	7.5°	15°	22.7°	30°	35°	40°
Symmetric radial (µm)	-2	-3	-2	0	2 .	3
Decentering tangential (µm)	0	0	1	1	' 2	2

Symmetric radial distortion	Decentering distortion	Calibrated principal point
$K_0 = 0.8878E-04$ $K_1 = -0.1528E-07$ $K_2 = 0.5256E-12$ $K_3 = 0.0000$ $K_4 = 0.0000$	$\begin{array}{rcl} P_1 & = & 0.1346E\text{-}06 \\ P_2 & = & 0.1224E\text{-}07 \\ P_3 & = & 0.0000 \\ P_4 & = & 0.0000 \end{array}$	$x_p = -0.006 \text{ mm}$ $y_p = 0.006 \text{ mm}$

The values and parameters for Calibrated Focal Length (CFL), Symmetric Radial Distortion (K_0,K_1,K_2,K_3,K_4) , Decentering Distortion (P_1,P_2,P_3,P_4) , and Calibrated Principal Point [point of symmetry] (x_p,y_p) were determined through a least-squares Simultaneous Multiframe Analytical Calibration (SMAC) adjustment. The x and y-coordinate measurements utilized in the adjustment of the above parameters have a standard deviation (σ) of ± 3 microns.

Laboratory Calibration: Multi-Collimators

Laboratory Calibration (cont'd)

Laboratory Calibration (cont'd)

Laboratory Calibration (cont'd)

$$\tan \theta_i = \frac{r_i}{c}$$
 $r_{\text{meas}} - c \tan \theta_i = \Delta r = f(r)$

Calibration Test Fields

http://ir-ltd.net/my-digital-journey-prt2/

http://diydrones.com/profiles/blogs/geometric-camera-calibration-for-use-in-photogrammetry

http://www.vibrodynamics.net/Close_Range.htm

Scale Control

- The scale bar is designed for theodolite use in optical tooling, but can also be used in close-range photogrammetry
- The concentric circle target design lends itself to centroid-based (or other type) sub-pixel measurement in digital imagery

 $s = 899.954 \text{ mm} \pm 0.002 (I\sigma) \text{ mm at } 20.5 \text{ °C}$

Target Detail

Self-Calibration Procedure

Data collection:

- Acquisition of several images of a targeted calibration range
- Fixed focus camera
- A 3D target field is desirable but not required
- The target field need not be surveyed

Self-Calibration Procedure (cont'd)

Image format filled with targets

Convergent imagery

Self-Calibration Procedure (cont'd)

Portrait and landscape images (orthogonal κ angles)

Precise measurement of target centres

Weighted centroid

- Ellipse fit
- Choose a set of minimum datum constraints
- Determine approximate parameter values
- Perform simultaneous least-squares solution

Self-Calibration Network

Self-Calibration Example

Self-calibration of a Kodak DC 260

- 16 convergent images of a calibration field were acquired from 8 nominal locations
- > 2 images were captured at each location: one with κ =0° and one with κ =90°
- The object space calibration array comprised 85 points, all of which were estimated (inner constraints imposed)
- ▶ IO model:
 - The PD
 - The PP
 - → 3 radial lens distortion terms
 - ▶ 2 decentring distortion terms

Source: http://www.kodak.com/

Indoor Calibration Field

 DC 260 self-calibration network summary

Observations				
mage points 2 x 1141		2282		
Total observations (n)	2282			
Datum constraints (d)	7			
Unknowns				
EO parameters	6 x 16	96		
Object points	3 x 85	255		
IO parameters	1 x 8	8		
Total Unknowns (u)	359			
Redundancy (r=n+d-u)		1930		

 DC 260 self-calibration network normal-equations matrix

Selected results

- Estimated variance factor = 1.06
- Interior orientation parameters

v –	Est		
у —	σ		

<u>Parameter</u>	Estimate	σ	У
x _p (pixels)	28.35	±0.23	123.43
y _p (pixels)	3.67	±0.19	19.60
c (pixels)	1710.73	±0.18	9542
k ₁	-4.0084e-08	±5.4079e-10	74.12
k ₂	2.0081e-14	±1.5919e-15	12.61
k ₃	4.8771e-21	±1.4737e-21	3.31
p_1	1.6482e-06	±2.6442e-08	62.33
p_2	1.1843e-06	±2.0975e-08	56.46

Correlation matrix of IO parameters

хр	1							
ур	-0.07	1						
С	-0.08	0.02	1					
k1	0.02	0.03	-0.64	1				
k2	0.00	-0.04	0.51	-0.96	1			
k3	0.00	0.04	-0.44	0.90	-0.98	1		
p1	0.90	-0.07	-0.01	-0.02	0.01	-0.01	1	
p2	-0.01	0.82	-0.07	0.05	-0.03	0.02	-0.01	1

High correlation exists between

- Radial lens distortion coefficients
- PP and decentring distortion parameters

Summary of Equations

Observation equations

$$A_{e} \stackrel{\hat{\delta}_{e}}{\delta}_{e} + A_{o} \stackrel{\hat{\delta}_{o}}{\delta}_{o} + A_{i} \stackrel{\hat{\delta}_{i}}{\delta}_{i} + w = \hat{v}$$

Normal equations

$$\begin{bmatrix} \mathbf{A}_{e}^{T}\mathbf{P}\mathbf{A}_{e} + \mathbf{P}_{e} & \mathbf{A}_{e}^{T}\mathbf{P}\mathbf{A}_{o} & \mathbf{A}_{e}^{T}\mathbf{P}\mathbf{A}_{i} \\ & \mathbf{A}_{o}^{T}\mathbf{P}\mathbf{A}_{o} + \mathbf{P}_{o} & \mathbf{A}_{o}^{T}\mathbf{P}\mathbf{A}_{i} \\ sym. & \mathbf{A}_{i}^{T}\mathbf{P}\mathbf{A}_{i} + \mathbf{P}_{i} \end{bmatrix} \begin{bmatrix} \hat{\delta}_{e} \\ \hat{\delta}_{o} \\ \hat{\delta}_{i} \end{bmatrix} + \begin{bmatrix} \mathbf{A}_{e}^{T}\mathbf{P}\mathbf{w} + \mathbf{P}_{e}\mathbf{w}_{e} \\ \mathbf{A}_{o}^{T}\mathbf{P}\mathbf{w} + \mathbf{P}_{o}\mathbf{w}_{o} \\ \mathbf{A}_{i}^{T}\mathbf{P}\mathbf{w} + \mathbf{P}_{i}\mathbf{w}_{i} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$