Monday, April 16, 2018 14:13

$$A_{cre} = \frac{\alpha b}{4} \pi$$

$$A_{max} = \frac{1}{2} \left(\frac{\alpha + b}{2}\right)^2 \pi - \frac{1}{2} \left(\frac{\alpha}{2}\right)^2 \pi - \frac{1}{2} \left(\frac{\pi}{2}\right)^2 \pi = \frac{\alpha b}{4} \pi$$

Egus 9-5 can be rewritten as

$$R_{ijk}^{l} = L_{ik}L_{j}^{l} - L_{ij}L_{k}^{l}$$
 (6 avss's eqns, 1827).

Although the L's are not intrinsic, the R's are.

The functions R_{ijk}^l are called the components of the Riemann Curvanture tensor (of type (1,3)).

The finetions $R_{imik} = \sum_{l} R_{ijk}^{l} g_{em}$ are called the components of the Riemann curvature tensor (of type (0,41)).

Morem 9.2 (Gauss's Theorema Egregium):

The Coursian Curvature K of a C3 surface M in R3 is intrinsic.

Pf By Gauss's equations, Rilik = Liklj-Lijlk, 50, Lowering the index 1, we get

On particular, when i=k=1 and j=m=2 we get $R_{1221} = L_{11} L_{22} - L_{12} L_{21} = \det(L_{ij}) = \det((g_{ik})(L_{ij}^{k})) = \det(g_{ik}) \det(L_{ij}^{k})$ $= g K_{i} K_{i} = g K_{i}.$

$$S_6 \quad K = \frac{R_{1221}}{g}$$
 is intrinsic.

Remark It can be show that $R_{injk} = -R_{mijk}$, $R_{imjk} = R_{jklm}$.

Hence if i = m or if j = k then $R_{imjk} = 0$.

Thus for a surface the only possibly nonzero components of (R_{imjk}) are $R_{1221} = -R_{2121} = R_{2112} = -R_{1212} = gK$.

Remark (about the curvature tensor for higher dimensional manifolds)

Since K is intrinsic, it can be defined for surfaces in \mathbb{R}^n where $n \ni 2$.

det M be a \mathbb{C}^3 manifold of dimension $\ni 2$ in \mathbb{R}^n (this muso $n \ni 2$ a mall).

Let $p \in M$. Let V be a 2 dimensional linear subspace of T_pM but X, Y be an orthonormal basis for V, $X = \sum_i x_i$ and $Y = \sum_i Y^i x_i$.

The collection of constant speed geodesics Y in M with Y(0) = P aw $Y'(0) \in V$ fills out a surface $S \subseteq M$.

The Gaussian Curvature of S at P is given by $K_{p}(s) = R(X, Y, Y, X)(p) \stackrel{\text{det}}{=} \frac{1}{\sum_{(i,m,j,k)}} R_{i,m,j,k}(p) X^{i} Y^{m} Y^{i} X^{k}$

Special case: suppose Mis a surface in R3. Then

 $\sum_{i,m,j,k} R_{i,m,j,k} \times^{i} y^{m} y^{j} \times^{k} = g K \left(X^{i} y^{2} y^{2} X^{i} - X^{2} y^{i} y^{2} X^{i} + X^{2} y^{i} y^{i} X^{2} - X^{i} y^{2} y^{i} X^{2} \right) \\
= g K \left((X^{i})^{2} (y^{2})^{2} - 2 \times^{i} X^{2} y^{i} y^{2} + (x^{2})^{2} (y^{i})^{2} \right) \\
= g K \left(X^{i} y^{2} - X^{2} y^{i} \right)^{2} \\
= K$

The sum of the angles in a Spherical triangle.

Unit sphere K=1 everywhere. in the pictur, $\beta=\gamma=\frac{T}{2}$ and $0<\alpha<2\pi$,

The indicated triangle has area $A=\alpha_s$, so som of angles is $\pi+A$.

If sphere has radius R, $K=\frac{1}{R^2}$, and $A=\alpha R^2$ so som of angles is $\pi+AK$ If turns out that for any geodesic triangle on the sphere, the formula $d+\beta+\gamma=\pi+KA$ still holds.

Actually, (*) holds for a qualesic triangle on any surface of constant Gaussian Curvature K.

On fact, Causs (1827) showed that on any (smooth enough) surface, the sum of the interior angles β_1 , β_2 , β_3 in a geodesic triangle Δ is $\beta_1+\beta_2+\beta_3=\pi+\int K\,dA\,.$

Bonnet (1848) extended this result to non-geodesia belongers by adding on " Jkgols" term to account for the geodesic curretures of the sides (generalized turning tangents theorem or local Course-Bonnet theorem).

Regular tetra hedron M

4 faces, each is in equilatent triangle.
6 edges, 4 vertices. $\chi = V - E + F = 4 - 6 + 4 = 2.$

 $\Delta +$ each corner, the sum of the angles is $\pi/s + \pi/s + \pi/s = \pi = 2\pi - \pi$. $4\pi = 2\pi \times = \int_{M} K dA = \pi + \pi + \pi + \pi$

Cube M

 $\chi = V - E + F = 8 - 12 + 6 = 2$.

at each corner, the sum of the angles is $\frac{3\pi}{2}=2\pi-\frac{\pi}{2}$.

 $\int_{M} K dA = \frac{\pi}{2} \cdot 8 = 4\pi = 2\pi \chi.$

Rectangular Torus M

Wts since we reavix

F=10, E=9+9+4+4=26, V=16, X=V-E+F=0

at each "outside" vertex, the sum of the angles is $2\pi - \frac{\pi}{2}$.

at each "inside" vertex, the sum of the angles is $\frac{\pi}{2} + \frac{\pi}{2} + \frac{3\pi}{2} = 2\pi + \frac{\pi}{2}$ So $\int K dA = 0$.