Números Inteiros e Criptografia, 2020.1

TRABALHO FINAL

Submeta as soluções das questões marcadas com * até 3 de março às 18:00 salvando um arquivo na sua pasta no Google Drive

Em todas as questões que envolverem codificação (incluindo a sua implementação do RSA), usaremos a tabela de correspondência entre números e símbolos dada na última página deste PDF.

Como sempre, justifique todas as questões.

Testes de Primalidade

- *Questão 1. Seja $n \in \mathbb{N}$ e considere o número $F_n = 2^{(2^n)} + 1$. Mostre que, se F_n é composto, então F_n é um pseudoprimo de Miller-Rabin para a base 2.
- *Questão 2. Mostre que se um número n é pseudoprimo de Miller-Rabin para a base b, então n é um pseudoprimo de Fermat para esta mesma base.

RSA: Questões teóricas

Questão 3. Considere n = 8989.

- * a. Construa o menor expoente público e possível para o RSA usando o valor de módulo n acima e determine o expoente secreto d correspondente.
- * b. Codifique a mensagem 12345 usando o expoente público que você encontrou na letra (a).
- *Questão 4. Sejam p e q primos ímpares distintos e digamos que estamos trabalhando com uma implementação do RSA com chave de codificação (n,e) (n é o módulo, e o expoente), onde n=pq. Pode acontecer que um bloco b de uma mensagem seja codificado como ele próprio nesta implementação. Um tal bloco será chamado de *invariante* pelo RSA com chave (n,e). Determine quantos são os blocos invariantes pelo RSA quando p=3,q>3 e e=3 (Dica: use o exercício 4 da Lista 8).
- *Questão 5. O expoente e=2 nunca deveria ser usado como expoente público. Por quê?

Teorema Chinês dos Restos

Questão 6.

* a (TCR, versão simplificada). Sejam p e q naturais coprimos e n = pq. Prove que, para quaisquer inteiros a e b, o sistema

$$\begin{cases} x \equiv a \mod p \\ x \equiv b \mod q \end{cases}$$

tem uma única solução em módulo n, e esta solução é dada por

$$x \equiv (a \cdot q \cdot q') + (b \cdot p \cdot p'),$$

onde p' é o inverso de p em módulo q e q' é o inverso de q módulo p.

* b (TCR, versão completa). Suponha que p_1,p_2,\ldots,p_k sejam primos entre si,

i.e.,
$$\operatorname{mdc}(p_i, p_j) = 1$$
 para todos $1 \le i < j \le k$, e seja $n = \prod_{i=1}^k p_i$.

Prove que, para quaisquer inteiros a_1, a_2, \dots, a_k , o sistema

$$\begin{cases} x \equiv a_1 \pmod{p_1} \\ x \equiv a_2 \pmod{p_2} \\ \vdots \\ x \equiv a_k \pmod{p_k} \end{cases}$$

possui uma única solução módulo n, e esta solução é dada por

$$x \equiv \sum_{i=1}^{k} (a_i \cdot q_i \cdot q_i'),$$

onde para cada i com $1 \le i \le k$ definimos

$$q_i = \frac{n}{p_i} = \prod_{\substack{j \in \{1, 2, \dots, k\} \\ j \neq i}} p_j$$

 q'_i = o inverso multiplicativo de q_i em módulo p_i .

- *Questão 7 (Aceleração de descriptação no RSA com o TCR). Uma das aplicações práticas do Teorema Chinês dos Restos é para acelerar a etapa de descriptação de mensagens. O procedimento é o seguinte: ao gerar seu módulo público n=pq, expoente público e e expoente privado e0, o usuário também calcula e guarda os seguintes valores:
 - $\bullet\,$ o inverso de pmódulo q
 - $\bullet\,$ o inverso de qmódulo p
 - a forma reduzida de d módulo p-1
 - a forma reduzida de d módulo q-1.

Lembrando que a tarefa básica na etapa de descriptação é, ao receber um bloco encriptado m, calcular a forma reduzida da potência modular $m^d \mod pq$, explique como usar o Teorema Chinês dos Restos (e o Pequeno Teorema de Fermat) e os dados calculados acima para tornar essa tarefa mais fácil.

Ataques ao RSA

*Questão 8. A mensagem 2823, 2688, 398, 4335, 2273 foi codificada pelo método RSA usando módulo n = 6319 e expoente e = 4107. Além disso, sabe-se que $\phi(n) = 6160$. Decodifique a mensagem.

*Questão 9. Mostre que se você conhece as chaves públicas n, e e a chave privada d (e temos e, d > 1), então você consegue encontrar os primos p e q tais que $n = p \cdot q$, sem precisar fatorar n explicitamente.

*Questão 10. Três pares (n, e) de chaves públicas,

(323334641051581231397618509539503, 3),

(375540174683800065068030299201351, 5),

e (422659682638742744115773545689701, 5)

foram geradas usando somente 5 números primos. Diga como é possível quebrar facilmente alguma das chaves, i.e., encontrar a fatoração de algum dos módulos.

Questão 11.

* a. Como vimos, a segurança do RSA está, em parte, baseada no fato de que é difícil calcular raízes modulares em geral: dados $a \mod n$ e um natural e, é dificil encontrarmos x tal que $x^e \equiv a \mod n$. Note que isso é diferente em aritmética comum, onde até mesmo calculadoras simples de bolso são capazes de encontrar x tal que $x^e = a$ (assuma esse fato como verdadeiro).

Mostre que, se alguma solução $x^e \equiv a \mod n$ satisfaz

$$0 < x^e < n$$
,

então é **fácil** encontrar x.

* b. Considere a situação em que k pessoas, P_1, P_2, \ldots, P_k , tenham, cada uma, sua própria chave pública para o módulo, mas a mesma chave pública e para o expoente. Seja n_i o módulo da chave pública da pessoa P_i e assuma que todos esses módulos são coprimos entre si. Agora suponha que Maria codifique a mesma mensagem m para cada pessoa: temos $0 \le m \le \min\{n_1, n_2, \ldots, n_k\}$ e Maria manda $c_i = m^e \mod n_i$ para pessoa P_i . Finalmente, suponha que $k \ge e$. Mostre que um invasor que escuta todos os textos codificados pode recuperar a mensagem m (Dica: use o Teorema Chinês dos Restos).

RSA: Implementação

Questão 12. Implemente o RSA em Python! Sua implementação deve ter (pelo menos) os seguintes componentes.

* a. Uma função para gerar números primos. Sua função deve receber como entrada um natural n e gerar um número (provavelmente) primo p satisfazendo $10^n , sorteando <math>p$ aleatoriamente no intervalo desejado e rodando 10 testes de Miller–Rabin com bases p aleatórias no intervalo p (Naturalmente, p só deve ser aceito como provavelmente primo se todos os testes forem inconclusivos.)

- * b. Uma função chamada gera_chaves (por favor use este nome) para gerar chaves do RSA. Sua função deve usar sua função da letra $\bf a$ para gerar primos p e q, sendo p com aproximadamente 50 algarismos e q com aproximadamente 100 algarismos, e retornar:
 - n = pq
 - algum número e inversível módulo $\phi(n) = (p-1)(q-1)$
 - o inverso d de e módulo $\phi(n)$

Para uma solução realmente *completa*, sua função deve retornar também:

- p
- q
- $\bullet\,$ o inverso de p módulo q
- \bullet o inverso de q módulo p
- ullet a forma reduzida de d módulo p-1
- a forma reduzida de d módulo q-1.
- * c. Uma função chamada encriptar (por favor use este nome) que recebe como entrada uma string texto e números n e e, e retorna uma lista de números que seja uma sequência válida dos blocos numéricos resultantes da encriptação do texto com chave pública de módulo n e expoente e.
- * d. Uma função chamada descriptar (por favor use este nome) que recebe como entrada uma lista blocos e números n e d, e retorna a string resultante da descriptação da sequência de blocos usando a chave privada de módulo n e expoente d.

Para uma solução realmente *completa*, implemente a versão rápida de descriptação, usando a Questão 7 e os valores adicionais retornados pela função gera_chaves.

Use a transformação de símbolos em números dados na tabela ao final deste documento; você encontra a tabela em versões de dicionários de Python, um para conversão de símbolos em números e outra na direção contrária, em

Como todos usaremos a mesma tabela de conversão, faremos uma troca de mensagens encriptadas ao vivo durante a aula teórica de 4 de março (começando às 9:00)! A participação é livre e não conta para a avaliação.

Teste suas funções!

Por exemplo, se você usou gera_chaves e obteve n, e, d como chaves pública e privada, então você deve obter, no interpretador do Python:

```
>>> descriptar(encriptar('slk daora',n,e),n,d)
'slk daora'
```

cód.	símb.	cód.	símb.	cód.	símb.	cód.	símb.
111	0	141	m	171	В	211	Â
112	1	142	n	172	С	212	Ã
113	2	143	О	173	D	213	É
114	3	144	р	174	Е	214	Ê
115	4	145	q	175	F	215	Í
116	5	146	r	176	G	216	Ó
117	6	147	s	177	Н	217	Ô
118	7	148	t	178	I	218	Õ
119	8	149	u	179	J	219	Ú
121	9	151	v	181	K	221	Ç
122	=	152	w	182	L	222	,
123	+	153	x	183	M	223	
124	_	154	у	184	N	224	!
125	/	155	Z	185	О	225	?
126	*	156	á	186	P	226	;
127	a	157	à	187	Q	227	:
128	b	158	â	188	R	228	_
129	c	159	ã	189	S	229	(
131	d	161	é	191	Т	231)
132	e	162	ê	192	U	232	"
133	f	163	í	193	V	233	#
134	g	164	ó	194	W	234	\$
135	h	165	ô	195	X	235	%
136	i	166	õ	196	Y	236	@
137	j	167	ú	197	Z	237	(espaço)
138	k	168	ç	198	Á	238	(nova linha)
139	1	169	A	199	À		