Network Properties with Apache Spark: Using pySpark and GraphFrames

- Node degree distribution
- Node centrality
- Articulation points

Network Properties with Apache Spark with GraphFrames

- Step 1. Read edgelist from file and creating GraphFrame
 - Extract pairs from input file and convert to data frame matching schema for graphframe edges
 - Extract all endpoints from input file to convert to dataframe matching scheme for graphFrame Vertices
- Step 2. Calculate degree distribution of vertices
 - Measure the frequency of nodes that have a certain degree value.
- Step 3. Measure centrality of vertices
 - Finding the distance between a vertex and all the other vertices
- Step 4. Find articulation points
 - Finding Cut Vertices

Step 2: Calculate Degree Distribution

• Degree:

- The number of edges incident to the vertex
- Example
 - a,c=2; b= 3; d=1

Output:

++	
degree count	
+	++
1	31
2	142
3	206
4	466
j 5	600
6	294
7	201
[8	133

Step 3: Measure Node Centrality

- Closeness Centrality :
 - Distance of a node to all other nodes

$$CC(v) = 1/\sum_{u \in V} d(u, v)$$

- d(u,v): Shortest path distance between u and v
- Measure of how long it takes for information in that node to spread to the other nodes
- Example:

•
$$a = 1/(1 + 1 + 2) = 1/4$$
, $b = 1/3$, $c = 1/4$, $d = 1/5$

Step 4: Find Articulation Points (Cut Vertices)

 Vertices that when removed create more disconnected components than there were originally in the network

- Example:
 - Removing b creates two components

- So, b is an articulation point
- Critical to Communication
 - Airline hubs
 - Traffic Routers
 - Power Energy Infrastructure

