Visión de Alto Nivel

Dr. Luis Enrique Sucar

INAOE

esucar@inaoep.mx ccc.inaoep.mx/~esucar

Sesión 2 Bajo Nivel

Visión de Bajo Nivel

Extracción de Características

Orillas

- Las variaciones de intensidad, orillas o bordes son muy importantes en visión.
- Muchas veces podemos reconocer un objeto sólo en base a su silueta
- Las orillas son una de las características más importantes y útiles para etapas posterior de visión como la segmentación y el reconocimiento de objetos.

Ejemplo de reconocimiento en base sólo a orillas o silueta

Contornos "subjetivos"

- De estudios en animales, se sabe que los sistemas de visión biológicos tienen "celdas" especializadas para detectar orillas
- Un ejemplo de esto, es que "vemos" contornos aún donde no los hay, completando bordes ocluidos o implícitos, como en los contornos subjetivos

Contornos subjetivos de Kanizsa

¿Qué es una orilla?

 Parte de la imagen en que hay un cambio brusco o discontinuidad en la intensidad de la imagen- derivada "alta"

Orillas locales

 Las orillas de una imagen normalmente se detectan como pequeños segmentos o secciones de un borde que se integran en etapas posteriores

Técnicas

- Técnicas de detección de orillas:
 - operadores de gradiente (primera derivada),
 - operadores de segunda derivada,
 - múltiples respuestas a diferentes orientaciones.

- Técnicas de post-procesamiento:
 - operador Canny
 - relajación.

Operadores de gradiente

 Se basan en diferenciar la imagen, es decir, encontrar el gradiente:

$$\Delta f = (df/dx, df/dy)$$

Magnitud del gradiente:

$$|\Delta f| = [(df/dx)^2 + (df/dy)^2]^{1/2}$$

Aproximación al gradiente

- Se puede aproximar el gradiente tomando la diferencia de valores contiguos en la imagen.
- Para una sección de 2 x 2:

$$df/dx = I_{1,2} - I_{1,1}$$

 $df/dy = I_{2,1} - I_{1,1}$

4	1,1	1,2
	2,1	2,2

Aproximación al gradiente

 Otra opción es considerar las diferencias cruzadas:

$$df/dx = I_{1,1} - I_{2,2}$$

 $df/dy = I_{1,2} - I_{2,1}$

Aproximación al gradiente

 Podemos también considerar una sección de 3 x 3 y aproximar el gradiente de la siguiente forma:

$$df/dx = (I_{1,3} + I_{2,3} + I_{3,3}) - (I_{1,1} + I_{2,1} + I_{3,1})$$

$$df/dy = (I_{3,1} + I_{3,2} + I_{3,3}) - (I_{1,1} + I_{1,2} + I_{1,3})$$

1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

Las aproximaciones anteriores se pueden implementar como filtros espaciales (máscaras)

Operadores como el de Roberts, Prewitt y Sobel, se implementan con dos máscaras: una para dx y otra para dy

Operadores de Roberts

Corresponden a las diferencias cruzadas de 2 x 2

1	0
0	-1

0	1
-1	0

Operadores de Prewitt

Corresponden a las diferencias en secciones de 3 x 3

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Ejemplos con los operadores de Roberts y Prewitt

Operadores de Sobel

- Los detectores de orillas como Roberts y Prewitt tienden a amplificar el ruido en la imagen
- Los operadores de Sobel reducen este efecto, al combinar en la misma máscara, la diferenciación con suavizamiento.

Operadores de Sobel

 El detector de Sobel se puede ver como la combinación de un filtro de suavizamiento con un operador de gradiente:

Sobel =
$$D G^T$$

Donde:

$$D = [-1 \ 0 \ 1]$$

 $G = [1 \ 2 \ 1]$

Operadores de Sobel

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Ejemplos con operadores de Sobel

Operadores de segunda derivada

- Una ventaja de usar operadores de segunda derivada es que se puede estimar mejor la localización de la orilla - donde la segunda derivada cruza cero
- Ejemplos de estos detectores de orillas son:
 - Laplaciano
 - Laplaciano de una gaussiana (LOG)

Cruces por cero

Laplaciano

Laplaciano de una función de 2 variables:

$$\Delta^2 f = (d^2 f/dx^2, d^2 f/dy^2)$$

 El cual se puede aproximar en forma discreta como:

$$\Delta^2 f = 4 * I_{2,2} - I_{1,2} - I_{2,1} - I_{2,3} - I_{3,2}$$

Máscara para el operador Laplaciano

0	-1	0
-1	4	-1
0	-1	0

Laplaciano de una Gaussiana

- En forma análoga al operador de Sobel, combina el efecto de una suavizamiento gaussiano con el Laplaciano en una sola máscara.
- El Laplaciano de una Gaussiana (LOG) es:

$$\Delta^2$$
G= (d²G/dx², d²G/dy²)

 El cual también se puede aproximar con una máscara.

Máscara para el operador Laplaciano de una Gaussiana

1	-2	1
-2	4	-2
1	-2	1

Ejemplos con operador LOG

Otros ejemplos con operador LOG:

implementación como diferencia de 2 gaussianas

original

0.5, 0.8

supresión dobles

2.5, 4.0 y supresión

Operadores direccionales

 En general es útil conocer no sólo la magnitud de las orillas sino también su dirección:

$$\phi f = \tan^{-1} \frac{df/dy}{df/dx}$$

 Esto se puede obtener con los operadores de de Prewitt y Sobel, así como con otros operadores direccionales más sofisticados

Operadores de Kirsch

- Detectan la máxima respuesta en direcciones espaciadas 45°, es decir en orientaciones de 0, 45, 90 y 135 grados - 4 máscaras
- Se pueden definir a diferentes tamaños: 2x2, 3x3, 5x5

Máscaras para operadores de Kirsch de 3x3

-1	-1	-1
0	0	0
1	1	1

-1	-1	0
-1	0	1
0	1	1

-1	0	1
-1	0	1
-1	0	1

0	1	1
-1	0	1
-1	-1	0

Ejemplo de aplicación de operadores de Kirsch

Color

- El color es importante porque:
 - ayuda a la extracción de características,
 - apoya los niveles superiores como segmentación y reconocimiento.
- El ojo humano distingue miles de colores y en cambio sólo aprox. 20 niveles de gris - el color es importante en el reconocimiento visual.

Espectro

 El color tiene que ver con la longitud de onda dentro de la luz visible del espectro electromagnético

color: longitud de onda (nm) violeta azul verde amarillo naranja rojo 400 700

Percepción del Color

 Un objeto se ve de cierto color si refleja las longitudes de onda de dicho color (por ejemplo, verde: 500-570 nm) y absorbe el resto, al ser iluminado por luz "blanca"

Atributos básicos del color

- Croma o longitud de onda dominante (Hue)
- Pureza o saturación
- Brillantez o intensidad

Percepción humana del color

• Percibimos el color mediante sensores (conos) que son de diferentes tipos - mayor sensibilidad a diferentes longitudes de onda: α (azul), β (verde), γ (rojo)

Combinación de colores

- La identificación del color se hace mediante la combinación de los 3 tipos de sensores combinación de colores "primarios" (RGB)
- Combinación aditiva luz (a) y substractiva pigmentos (b)

Componentes de una imagen a color

(a)

(b)

(c)

(d)

(e)

Sistema CIE

- Generación de colores a partir de combinación de los 3 primarios
- "Color matching" persona compara luz de cierto color vs. combinación de luces en colores primarios (psicofisiológico)

- Se realizó para todos los colores del espectro visible
- Ciertos colores no se lograban igualar!

Diagrama Cromático CIE

azul - 435.8 nm verde - 541.6 nm rojo - 700 nm

Coordenadas Cromáticas

 Se normalizan los valores de R,G,B de forma de que sumen 1:

$$r = R/(R + G + B)$$

 $g = G/(R + G + B)$
 $b = B/(R + G + B)$

 De esta forma el espacio de colores lo podemos representar en dos dimensiones (por ejemplo, r - g)

Modelos de Color

- Diferentes formas de representar el color:
 - modelos sensoriales orientados a los equipos
 - RGB, CMY, YIQ
 - modelos perceptuales se asemejan a la percepción humana y se orientan al procesamiento de imágenes y visión
 - · HSV, HLS, HSI

Modelo RGB

- Se basa en los componentes primarios: RGB
- Se puede representar como un "cubo" con un primario en cada eje

Modelo CMY

- Se basa en los componentes secundarios: Cian, Magenta y Amarillo (Y)
- Se puede obtener del RGB (normalizado) como:

$$C$$
 1 R M = 1 - G Y 1 B

 En la práctica se agrega el negro (CMYK) para facilitar la impresión de negro

Modelo YIQ

- Separa la información de intensidad (Y) de la información de color (I,Q)
- Se obtiene mediante la siguiente transformación a partir del RGB:

```
Y 0.299 0.587 0.114 R

I = 0.596 -0.275 -0.231 G

O 0.212 -0.523 0.311 B
```

Modelo HSV

- Modelo perceptual en que el color se representa en base a croma (H), saturación e intensidad o valor (V)
- Se obtiene "deformando" el cubo RGB de forma que se convierte en una pirámide hexagonal invertida

Conversión RGB a HSV

V = M

Si m=M S=0 sino S=(M-m)/M

Si m=B H=120 (G-m)/(R+G-2m)

Si m=R H=120 (B-m)/(B+G-2m)

Si m=G H=120 (R-m)/(R+B-2m)

m = min(R,G,B)

M = max(R,G,B)

V, S: [0, 1] H: [0 360]

Modelo HLS

- Modelo perceptual: Hue, Level, Saturation
- Se basa en coordenadas polares en 3-D, obteniéndose un espacio en forma de 2 conos unidos en la base

Conversión RGB a HLS

$$L = (M + m)/2$$

$$S = (M + m)/(M - m)$$
, si L < 0.5
 $S = (M - m)/(2 - M - m)$, si L > 0.5

Si m=B H=120 (G-m)/(R+G-2m)

Si m=R H=120 (B-m)/(B+G-2m)

Si m=G H=120 (R-m)/(R+B-2m)

m = min(R,G,B), M = max(R,G,B)

Modelo HSI

- Transformación del espacio RGB al espacio perceptual
- Forma de 2
 pirámides
 triangulares
 unidas en su base

Conversión RGB a HSI

$$I = 1/3 (R + G + B)$$

$$S = 1 - 3 \, \text{m} / (R + G + B)$$

$$m = min(R,G,B)$$

Ejemplo de Imagen en HSI

Textura

Muchos objetos no son uniformes, tienen cierta "textura"

Textura:

"compuesta de pequeños elementos indistinguibles y entrelazados"

- La textura depende de la resolución
- La información de textura se puede usar para segmentación, reconocimiento de objetos y obtención de forma

Ejemplos de texturas

Descripción de texturas

- Existen diferentes formas de describir una textura:
 - Modelos estructurales
 - Modelos estadísticos
 - Modelos espectrales

Texels

- Elementos básicos o primitivas de textura
- Texel: "primitiva visual con propiedades invariantes que ocurre a diferentes posiciones, deformaciones y orientaciones en un área"
- Propiedades invariantes: forma, tamaño, nivel de gris, color.

Ejemplos de texels

Tipos de texturas

- Jerárquicas (ladrillos) vs. fractales (arbustos)
- Bidimensionales vs. tridimensionales
- Regulares vs. estadísticas

 Dependiendo del tipo de textura se aplican diferentes modelos para su descripción

Modelos Estructurales

- Se aplican a texturas altamente regulares
- Se pueden describir en base a formas básicas que se repiten uniformemente
- Texturas básicas:
 - regulares
 - semi-regulares

Texturas Regulares

Texturas Semi-regulares

Descripción

- Código: secuencia de números donde c/u corresponde a el número de lados de los polígonos adyacentes a un vértice
- Ejemplos:
 - regular cuadrada: (4,4,4,4)
 - regular hexagonal: (6,6,6)
 - semi-regular triangular-hexagonal (3,6,3,6)

Códigos de texturas

Códigos de texturas

Modelos Estadísticos

- Texturas no-regulares
- Su descripción se basa en parámetros estadísticos como:
 - momentos
 - energía en el dominio espacial
 - matrices de dependencia espacial
 - transformada de Fourier (modelos espectrales)

Ejemplos de texturas no regulares

Momentos

- Un forma de caracterizar una textura es obteniendo el histograma de niveles de gris
- Del histograma se pueden calcular ciertos parámetros que lo caracterizan - una posibilidad es calcular sus momentos

Ejemplos de Histogramas

Momentos

- primero (promedio): $m(z) = \sum_{i=1}^{n} z_i P(z_i)$
- segundo (desviación): $\sigma^2(z) = \sum_{i=1}^{\infty} (z_i m)^2 P(z_i)$
- tercero (desplazamiento): $u_3(z) = \sum (z_i m)^3$ $P(z_i)$
- cuarto (uniformidad): $u_4(z) = \sum_{i=1}^{n} (z_i m)^4 P(z_i)$

- "n-ésimo": $u_n(z) = \sum_i (z_i - m)^n P(z_i)$

Medida de uniformidad

$$R = 1 - [1/(1 + \sigma^2(z))]$$

- $R = 0 \rightarrow uniforme$
- R \rightarrow 1 \rightarrow alta varianza

Histograma

Momentos

Vector de Características

 Los "n" momentos se pueden agrupar en un vector de características (feature vector):

$$V = (v1, v2, ..., vn)$$

 Este vector da una representación compacta de la textura correspondiente

Otras formas de obtener características:

- Energía en el dominio espacial
- Matrices de dependencia espacial
- Modelos Espectrales

Energía en el dominio espacial

- Se hace una transformación de la imagen mediante diferentes máscaras
- Se calculan características de cada pixel que dependen de la textura en una región local
- Se clasifica cada pixel de acuerdo a su tipo de textura

Energía en el dominio espacial

- Procedimiento:
 - Ecualización por histograma
 - Convolución con 12 máscaras diferentes (funciones base)
 - Obtención del promedio absoluto de una ventana de 15 x 15
 - Clasificación de cada pixel de acuerdo al vecino más cercano

Matrices de dependencia espacial

- Consiste en obtener unas matrices intermedias a partir de la imagen
- Se obtienen características (similares a los momentos) de dichas matrices
- Estas características se utilizan para clasificar a las texturas

Matrices de dependencia espacial

- Procedimiento:
 - Obtener las matrices S(d,t) para diferentes distancias (d) y orientaciones (t)
 - Cada elemento s(i,j) de las matriz es el número de veces que un pixel de valor i tiene una relación (d,t) con otro pixel de valor j
 - Normalizar cada matriz S

Matrices de dependencia espacial

- Obtener características de cada matriz:
 - energía: $\Sigma_i \Sigma_j P_{ij}^2$
 - entropía: $\Sigma_i \Sigma_j P_{ij} \log P_{ij}$
 - correlación: $\Sigma_i \Sigma_j$ (1-mx)(1-my) P_{ij}
 - inercia: $\Sigma_i \Sigma_j$ (i j)² P_{ij}
 - homogeneidad local: $\Sigma_i \Sigma_j$ (1/[1+ (i j)²]) P_{ij}

Modelos Espectrales

- Muchas texturas presentan patrones periódicos - por ello la transformada de Fourier es adecuada para describirlas
- Estos modelos consisten en obtener la transformada en frecuencia de la imagen y a partir de esta obtener ciertas características
- Dichas características sirven de base para la clasificación

Modelos Espectrales

- Características:
 - magnitud de "picos" prominentes en frecuencia
 - localización de los "picos"
 - aplicar técnicas estadísticas a partes aperiódicas
- Estas características son más fáciles de obtener del espectro en coordenadas polares

Ejemplos de espectros

Referencias

- Sucar & Gómez: Cap. 3, 4, 5
- Forsyth & Ponce: Cap. 6, 8, 9