Analízis I. Előadás

Tétel

Legyen $a, b : \mathbb{N} \to \mathbb{R}$. Tegyük fel, hogy $\exists \lim a = A \in \overline{\mathbb{R}}$ és $\lim b = B \in \overline{\mathbb{R}}$. Ekkor

- a) $\exists \lim(a+b)$, és $\lim(a+b) = A+B$, feltéve, hogy az A+B művelet értelmezve van
- **b)** $\exists \lim(a \cdot b)$, és $\lim(a \cdot b) = A \cdot B$, feltéve, hogy az $A \cdot B$ művelet értelmezve van
- c) $\exists \lim \frac{a}{h}$, és $\lim \frac{a}{h} = \frac{A}{B}$, feltéve, hogy $b_n \neq 0$ $n \in \mathbb{N}$) és az $\frac{A}{B}$ művelet értelmezve

Megjegyzés: A tétel a korábban, a konvergens sorozatokra vonatkozó megfelelő tétel általánosítáa. Csak az "új" eseteket kell igazolni.

Bizonyítás

- a) Összeadás: a múlt órán bizonyítottuk.
- b) *Szorzás.* Új esetek: $A = \pm \infty$, $B \in \mathbb{R} \setminus \{0\}$, illetve $A = \pm \infty$, $B = \pm \infty$.

Első eset. Tegyük fel, hogy $A = +\infty$, és $\mathbb{R} \ni B > 0$. Megmutatjuk, hogy ekkor $\lim(a\cdot b)=+\infty.$

Megjegyzés: A többi előjel változat az alábbi bizonyítás értelemszerű módosításával adódik: egyenlőtlenség, szorzás, előjelek. Leaven S > 0.

Mivel $\lim b = B > 0$, ezért $\exists \ N_1 \in \mathbb{N}$, hogy $\forall \ \mathbb{N} \ni n > N_1$ esetén $b_n > \frac{B}{2}$.

Másrészt $\lim a = +\infty$ miatt $\exists \ N_2 \in \mathbb{N}$, hogy $\forall \ \mathbb{N} \ni n > N_2$ esetén $a_n > \frac{2S}{B}$.

Következésképpen: $\forall \ \mathbb{N} \ni n > N := \max\{N_1, N_2\}$ esetén $a_n \cdot b_n > \frac{2S}{B} \cdot \frac{B}{2} = S$. Ezzel bebizonyítottuk, hogy $\lim a \cdot b = +\infty$.

Folytatás

Második eset. Tegyük fel, hogy $A=B=+\infty$. Előjelváltozatok hasonlóan, mint előbb. Legyen $\mathcal{S}>0$.

 $\lim a = +\infty \implies \exists \ N_1 \in \mathbb{N}, \text{ hogy } \forall \ \mathbb{N} \ni n > N_1 \text{ esetén } a_n > \sqrt{S}.$ $\lim B = +\infty \implies \exists \ N_2 \in \mathbb{N}, \text{ hogy } \forall \ \mathbb{N} \ni n > N_2 \text{ esetén } b_n > \sqrt{S}.$

Következésképpen $\forall \mathbb{N} \ni n > N := \max\{N_1, N_2\}$ esetén $a_n \cdot b_n > \sqrt{S} \cdot \sqrt{S} = S$. Ezzel bebizonyítottuk, hogy $\lim a \cdot b = +\infty$.

Példák a nem definiált esetek alátámasztására: $A=\pm\infty,\,B=0.$ Feltesszük: $n\geq1,\,c\in\mathbb{R}.$

Folytatás

c) Hányados. Új esetek: $A = \pm \infty$ és $B \in \mathbb{R} \setminus \{0\}$, $A \in \mathbb{R}$ és $B = \pm \infty$.

Az első eset visszavezethető a szorzásra: Az $\frac{a}{b} = a \cdot \frac{1}{b}$ átírásnak megfelelően pl.

$$A = +\infty$$
, $B > 0$ esetén $\frac{+\infty}{B} = +\infty \cdot \frac{1}{B} = +\infty$.

Második eset. $A \in \mathbb{R}$, azaz az a sorozat konvergens, tehát korlátos is. Eszerint $\exists K > 0$, amelyre $|a_n| < K \ \forall \ n \in \mathbb{N}$.

 $B=\pm\infty$ miatt $\forall \ \epsilon>0$ számhoz $\exists N\in\mathbb{N},\ \mathsf{hogy}\ \forall\ n>N$ esetén $|b_n|>rac{\mathcal{K}}{\epsilon},\ \mathsf{azaz}$

$$\frac{1}{|b_n|}<\frac{\epsilon}{K}.$$

Ha tehát n > N, akkor $\left| \frac{a_n}{b_n} \right| < K \cdot \frac{\epsilon}{K} = \epsilon$.

Következésképpen
$$\lim \frac{a}{b} = \frac{A}{+\infty} = 0.$$

Példák a nem definiált esetek alátámasztására: $A=\pm\infty, B=\pm\infty$. Feltesszük: $n\geq 1, c\in\mathbb{R}\setminus\{0\}$.

2	h	a /h	lim a/h
$ a_n $	Un	a_n/b_n	lim a/b
c · n	n	C	$c\in\mathbb{R}\setminus\{0\}$
n	n ²	1/n	0
$\pm n^2$	n	$\pm n$	$\pm \infty$
<i>n</i> ps. <i>n</i> , 2 <i>n</i> ptlan. <i>n</i>	n	1 ps. n, 2 ptlan. n	A

Új szereplők-új esetek, régi szereplők-új esetek

Eddig: az adott művelet bal oldalán megjelenő \pm esetek vizsgálata.

Fordított eset. Kérdés: Nem lehet, hogy $\lim b = 0$ esetén $\lim \frac{1}{b} = \pm \infty$?

Válasz: általában nem, pl.
$$b_n = \frac{(-1)^n}{n} \ (n \ge 1)$$
 esetén $\frac{1}{b_n} = (-1)^n$, $\not \exists \lim \frac{1}{b} \in \overline{\mathbb{R}}$.

Válasz: általában nem, pl.
$$b_n = \frac{(-1)}{n} \quad (n \ge 1)$$
 esetén $\frac{1}{b_n} = (-1)^n$, $\not \exists \lim \frac{1}{b} \in \overline{\mathbb{R}}$.
 $\acute{allitas}$: Ha $b_n > 0$, $\lim b = 0$ akkor $\lim \frac{1}{b} = +\infty$.

Bizonyítás: Legyen
$$S > 0$$
. Ekkor $\exists N \in \mathbb{N}$, hogy $\forall n > N$ esetén $0 < b_n < \frac{1}{S} \implies 1$

Distributions. Legger
$$S>0$$
. Example $N\in\mathbb{N}$, flogy $\forall n>N$ escient $0<\frac{1}{h}>S$.

A numerikus sor fogalma

Legyen $a : \mathbb{N} \to \mathbb{R}$. Minden $n \in \mathbb{N}$ esetén legyen $s_n := \sum_{k=0}^n a_k$.

Az (s_n) sorozatot az a sorozat által generált végtelen sornak (sornak) nevezzük.

Jelölés:
$$\sum a : \mathbb{N} \to \mathbb{R}, \ \ (\sum a)_n := s_n = \sum_{k=0}^n a_k.$$

Elnevezés: A végtelen sor n-edik tagját, azaz s_n -t a sor n-edik részletösszegének nevezzük.

Példák

a)
$$a_n = 1$$
, $s_n = n + 1$, $\sum a = (n + 1)$,

b)
$$a_n = (-1)^n$$
, $s_n = \begin{cases} 1, & n \text{ páros;} \\ 0, & n \text{ páratlan.} \end{cases}$

c)
$$a_n = \frac{1}{n+1}$$
, $s_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n+1}$,

d) Mértani sor:

$$a_n = q^n \ (q \in \mathbb{R}), \, s_n = 1 + q + \dots + q^n = \left\{ \begin{array}{ll} n+1, & q=1; \\ \frac{1-q^{n+1}}{1-q}, & q \neq 1. \end{array} \right.$$

Definíció

Azt mondjuk, hogy az $a: \mathbb{N} \to \mathbb{R}$ sorozat által generált végtelen sor konvergens, ha a $\sum a$ sorozat, azaz a részletösszegek sorozata konvergens.

Végtelen sor határártéke:
$$\sum_{k=0}^{+\infty} a_k := \lim \sum_{k=0}^{+\infty} a = \lim (s_n)$$
.

Elnevezés: a végtelen sor határértékét a sor összegének nevezzük.

Példák

- a) $a_n = 1$, $s_n = n + 1$, $\sum a = (n + 1)$, a $\sum a$ sor divergens, határértéke $\sum_{n=0}^{\infty} 1 = +\infty$.
- **b)** $a_n = (-1)^n$, $s_n = \begin{cases} 1, & n \text{ páros;} \\ 0, & n \text{ páratlan.} \end{cases}$

A $\sum ((-1)^n)$ sor divergens, nincs határértéke.

c)
$$a_n = \frac{1}{n+1}$$
, $s_n = 1 + \frac{1}{2} + \dots + \frac{1}{n+1}$,
Később megmutatjuk, hogy divergens, és $\sum_{k=0}^{\infty} \left(\frac{1}{n+1}\right) = +\infty$.

d) Mértani sor:

$$a_n = q^n \ (q \in \mathbb{R}), s_n = 1 + q + \cdots + q^n = \left\{ \begin{array}{l} n+1, & q=1; \\ \frac{1-q^{n+1}}{1-q}, & q \neq 1. \end{array} \right.$$

Ha q = 1, akkor ld. a) eset.

$$\sum_{k=1}^{\infty} q^{k} = \lim(s_{n}) = \begin{cases} \lim(n+1), & q=1; \\ \lim\left(\frac{1-q^{n+1}}{1-q}\right), & q \neq 1. \end{cases} = \begin{cases} +\infty, & q \geq 1; \\ \frac{1}{1-q}, & |q| < 1; \\ \beta, & q \leq -1. \end{cases}$$

Sorok: speciális módon generált sorozatok.

Sorok konvergenciája: az összes eddig tanultak alkalmazhatók a részletösszegek sorozatára.

Például a Cauchy-kritérium.

A Cauchy-féle konvergencia kritérium sorokra

A $\sum a$ sor akkor és csak akkor konvergens, ha $\forall \epsilon > 0$ számhoz $\exists N \in \mathbb{N}$ küszöbindex, hogy $\forall m, n > N$ (pl. m > n) esetén $|s_m - s_n| = |a_{n+1} + \cdots + a_m| < \epsilon$.

1. Következmény

Szükséges feltétel végtelen sor konvergenciájára.

Legyen $\sum a$ konvergens, és $\epsilon > 0$.

Ekkor a Cauchy-kritérium miatt, $\exists N \in \mathbb{N}$ küszöbindex, hogy $\forall m, n > N$ (pl. m > n) esetén $|s_m - s_n| = |a_{n+1} + \cdots + a_m| < \epsilon$.

Ha n > N, akkor n + 1 > N, tehát $|s_{n+1} - s_n| = |a_{n+1}| < \epsilon$.

Ez azt jelenti, hogy $\lim a = 0$, azaz a nullsorozat. Tehát: Ha $\sum a$ konvergens, akkor a sort generáló a sorozat nullsorozat.

2. Következmény Legyen $a, b : \mathbb{N} \to \mathbb{R}$. Ha $a_0 = b_0$ majdnem minden n-re, akkor a $\sum a$ és a $\sum b$ sor egyszerre konvergens vagy divergens.

A feltételből következik, hogy $\exists N_1 \in \mathbb{N}$, hogy $\forall n > N_1$ esetén $a_n = b_n$.

A részletősszegek jelölése: $s_n := \sum_{k=0}^n a_k$, $\sigma_n := \sum_{k=0}^n b_k$.

Tegyük fel, hogy valamelyik sor konvergens, például $\sum a$. Legyen $\epsilon > 0$.

A Cauchy-kritérium szerint $\exists N_2 \in \mathbb{N}$ küszöbindex, hogy $\forall m, n > N_2$ (pl. m > n) esetén $|s_m - s_n| = |a_{n+1} + \cdots + a_m| < \epsilon$.

Ha $n > N := \max\{N_1, N_2\}$, akkor

 $|\sigma_m - \sigma_n| = |b_{n+1} + \cdots + b_m| = |a_{n+1} + \cdots + a_m| = s_m - s_n| < \epsilon.$

Tehát a $\sum b$ sorra is teljesül a Cauchy-kritérium, azaz konvergens. Vigyázat: ez nem jelenti azt, hogy a sorösszegek is megegyeznek.

3. Következmény

Abszolút Konvergens sorok

Az abszolút konvergens sor definíciója.

Azt mondjuk, hogy az $a: \mathbb{N} \to \mathbb{R}$ sorozat által generált $\sum a$ sor abszolút konvergens, ha az $(|a_n|)$ sorozat által generált $\sum (|a_n|)$ sor konvergens.

Tegyük fel, hogy a $\sum a$ sor abszolút konvergens. Legyen $\epsilon > 0$.

A Cauchy-kritérium szerint $\exists N \in \mathbb{N}$ küszöbindex, hogy $\forall m, n > N$ (pl. m > n) esetén

 $|a_{n+1}| + \cdots + |a_m| < \epsilon$. Ekkor azonban $|s_m - s_n| = |a_{n+1} + \cdots + a_m| \le |a_{n+1}| + \cdots + |a_m| < \epsilon$.

Tehát a $\sum a$ sorra teljesül a Cauchy-kritérium, azaz konvergens.

Azt kaptuk, hogy minden abszolút konvergens sor konvergens.

Megjegyzés: Mutatunk majd példát, hogy ez az állítás fordítva nem igaz.

Pozitív tagú sorok

Ha $a_n \ge 0 \ \forall \ (n \in \mathbb{N})$, akkor a $\sum (a_n)$ sort pozitív tagú sornak nevezzük.

Tétel

Egy pozitív tagú sor akkor és csak akkor konvergens, ha korlátos.

Bizonyítás

Mivel $s_{n+1} - s_n = a_{n+1} \ge 0$, ezért $(s_n) \nearrow$. Korábban igazoltuk: hogy egy monoton növekedő sorozat akkor, és csak akkor konvergens, ha korlátos.

Tétel (Összehasonlító kritérium)

Legyen $0 \le a_n \le b_n \ (n \in \mathbb{N})$.

Ekkor

- a) ha $\sum (b_n)$ konvergens, akkor $\sum (a_n)$ is konvergens,
- **b)** ha $\sum (a_n)$ divergens, akkor $\sum (b_n)$ is divergens.

Bizonvítás

Az előző tételt fogjuk alkalmazni.

Jelölje a $\sum (b_n)$ sor n-edik részletösszegét σ_n , a $\sum (a_n)$ sorét pedig s_n .

- a) Mivel $\sum (b_n)$ konvergens, ezért $(\sigma_n) \nearrow$ korlátos. Nyilván $(s_n) \nearrow$, és $a_n \le b_n$ miatt $s_n \le \sigma_n$, tehát (s_n) is korlátos.
- A b) rész következik a)-ból. Ha ugyanis az állítással ellentétben $\sum (b_n)$ konvergens vona, akkor ugyanez állna fenn $\sum (a_n)$ -re is.

A harmonikus sor divergens

Megmutatjuk, hogy a $\sum \left(\frac{1}{n+1}\right)$ sor divergens.

Mivel a sor pozitív tagú, ezért a divergencia egyben azt is jelenti, hogy a részletösszegek \nearrow sorozatának határértéke $+\infty$, azaz $\sum_{k=0}^{\infty}\frac{1}{n+1}=+\infty$.

Legyen $n \in \mathbb{N}$, n > 1. Ekkor

$$s_{2n-1}-s_{n-1}=\frac{1}{n+1}+\cdots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2}$$
.

Következésképpen a $\sum \left(\frac{1}{n+1}\right)$ sorra $\epsilon=\frac{1}{2}$ választással nem teljesül a Cauchy-féle konvergencia kritérium.

A szuperharmonikus sor konvergens

Legyen $\alpha > 1$. Ekkor a $\sum \left(\frac{1}{(n+1)^{\alpha}}\right)$ sor konverges.

A sor pozitív tagú, ezért csak azt kell megmutatni, hogy a részletösszegek sorozata korlátos. Mivel az s_n részletösszegek sorozata monoton növekedő, ezért $2^n-1 \ge n$ (ld. Bernoulli egy.) miatt $s_n \le s_{2^n-1}$, tehát elég csak a 2^{n-1} indexű részletösszegekkel foglalkozni.

$$s_{2^{n}-1} = \sum_{k=0}^{2^{n}-1} \frac{1}{(k+1)^{\alpha}}$$

$$= 1 + \frac{1}{2^{\alpha}} + \left(\frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{5^{\alpha}} + \dots + \frac{1}{8^{\alpha}}\right) + \dots + \left(\frac{1}{(2^{n-1}+1)^{\alpha}} \dots + \frac{1}{(2^{n})^{\alpha}}\right)$$

$$= 1 + \sum_{i=0}^{n-1} \sum_{k=0}^{2^{i+1}} \frac{1}{k^{\alpha}}.$$

A
$$\sum_{k=0}^{2^{n}-1} \frac{1}{(k+1)^{\alpha}} = \sum_{k=1}^{2^{n}} \frac{1}{k^{\alpha}}$$
 összeget blokkokra bontottuk 2 hatványai szerint (diadikus blokkok).

blokkok). Felső becslést adunk az egyes blokkok értékeire:

$$\sum_{k=2^{j+1}}^{2^{j+1}} \frac{1}{k^{\alpha}} = \frac{1}{(2^{j}+1)^{\alpha}} + \dots + \frac{1}{(2^{j+1})^{\alpha}} \le 2^{j} \cdot \frac{1}{(2^{j})^{\alpha}}$$

$$= \frac{1}{(2^{j})^{\alpha-1}} = \frac{1}{(2^{\alpha-1})^{j}} = \left(\frac{1}{2^{\alpha-1}}\right)^{j} =: q^{j} \qquad (j=0,\dots,n-1),$$

ahol $q = \frac{1}{2^{\alpha - 1}}$.

Mivel $\alpha > 1$, ezért $2^{\alpha - 1} > 1$, azaz $q = \frac{1}{2^{\alpha - 1}} < 1$. A mértani sor összegére kapott

$$\sum_{k=0}^{2^n-1} \frac{1}{k^{\alpha}} \le 1 + \sum_{i=0}^{n-1} q^i = 1 + \frac{1-q^n}{1-q} < 1 + \frac{1}{1-q} = 1 + \frac{1}{1-\frac{1}{2\alpha-1}} =: C \in \mathbb{R}.$$

Azt kaptuk, hogy $\exists C > 0$, olyan hogy $\forall n \in \mathbb{N}$ esetén $s_n \leq C$.

Speciális eset $\sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$.

Következésképpen $\sum \left(\left(\frac{1}{k+1}\right)^{\alpha}\right)$ sor konvergens. Jel: $\sum_{k=1}^{\infty} \left(\frac{1}{k+1}\right)^{\alpha} < \infty$.