Aufgabe 1. (2 Punkte) Es sei $t \in \mathbb{R}$ und

$$V_t = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid tx_1 + 2tx_2 + 3tx_3 = 0\}.$$

Man finde eine Basis von dem \mathbb{R} -Vektorraum V_t .

Aufgabe 2. (2 Punkte) Es sei $t \in \mathbb{R}$ und

$$U_t = \langle (t, 1, 1 - t), (1 - t, 1, t) \rangle \subset \mathbb{R}^3.$$

Man berechne $\dim_{\mathbb{R}} U_t$ und finde eine Basis eines Komplementes zu U_t in \mathbb{R}^3 .

Aufgabe 3. (3 Punkte) Man betrachte eine direkte Summenzerlegung $V = \bigoplus_{i=1}^{n} V_i$ eines k-Vektorraumes V in Unterräume $V_i \subset V$, sowie für jedes $i \in \{1, \ldots, n\}$ eine Familie $(x_{ij})_{j \in J_i}$ von Elementen $x_{ij} \in V_i$. Man zeige:

- (i) Die Elemente x_{ij} , $i \in \{1, ..., n\}$, $j \in J_i$, bilden genau dann ein Erzeugendensystem von V, wenn für jedes $1 \in \{1, ..., n\}$ die Elemente x_{ij} , $j \in J_i$, ein Erzeugendensystem von V_i bilden.
- (ii) Die Elemente x_{ij} , $i \in \{1, ..., n\}$, $j \in J_i$, sind genau dann linear unabhängig in V, wenn für jedes $i \in \{1, ..., n\}$ die Elemente x_{ij} , $j \in J_i$, linear unabhängig in V_i sind.

Aufgabe 4. (3 Punkte) Es seien V_1, \ldots, V_n endlich-dimensionale k-Vektorräume, sodass V_i ein Unterraum von V_{i+1} für jedes $i \in \{1, \ldots, n-1\}$ ist.

Man zeige: es gibt Mengen $J_1 \subset J_2 \subset \cdots \subset J_n$ und Vektoren $v_j \in V_n$, $j \in J_n$, sodass für jedes $i \in \{1, \ldots, n\}$ das System $(v_j)_{j \in J_i}$ eine Basis von V_i ist.