

Sumário

1. Definição e Propriedades

Definição e Propriedades

AVISO

Nesta aula, todas os entes geométricos estão situados num mesmo plano α .

Semirretas

Definição 1

Um ponto O de uma reta r divide-a em duas partes, cada uma delas denominada semirreta.

O ponto *O* é denominado a **origem** dessas semirretas e as mesmas são denominadas semirretas **opostas**.

Semirretas

Denotaremos as semirretas com letras minúsculas (como as retas) ou através de dois dos seu pontos, sendo um deles a origem.

Acima, temos as semirretas opostas \overrightarrow{OA} e \overrightarrow{OB} .

Ângulos

Definição 2

Chamamos de **ângulo** a figura formada por duas semirretas que têm a mesma origem.

As semirretas \overrightarrow{OA} e \overrightarrow{OB} são chamados **lados** do ângulo e a origem comum O é o seu vértice.

Notações

Para denotar este ângulo, escrevemos:

- ► Ô
- ► AÔB
- ► BÔA
- ightharpoonup uma letra grega: $\alpha, \beta, \gamma, \eta, ...$

Ângulos

Definição 3

Denominamos de ângulo **raso** ao ângulo cujos lados são semirretas opostas (estão sobre a mesma reta, em sentidos opostos).

Figura 1: Ô é um ângulo raso

Medida de Ângulos

Definição 4

O número de graus de um ângulo chama-se a sua medida.

Figura 2: A área em verde representa o ângulo AÔB

8º Postulado

▶ Postulado 8: Todo ângulo tem sua medida, em graus, compreendida entre 0 e 180. A medida de um ângulo é zero se, e somente se, seus lados são semirretas coincidentes. Se seus lados são semirretas opostas, sua medida é 180°.

Figura 3: Transferidor: a 'régua' para medir ângulos

Ângulos Congruentes

Definição 5

Dois ângulos são ditos **congruentes** se têm a mesma medida.

Interior

Definição 6

Diz-se que um ponto P pertence ao interior de um ângulo AÔB, se

- ► P e A estão num mesmo semiplano definido pela reta \overrightarrow{OB} ;
- ▶ P e B estão num mesmo semiplano definido pela reta 🛱 .

Figura 4: *P* pertence ao interior do ângulo *AÔB*

Exterior

Definição 7

O **exterior** de um ângulo AÔB é o conjunto de todos os pontos do plano que o contém, tais que:

- não pertencem aos lados do ângulo;
- não pertencem ao interior do ângulo dado.

Figura 5: *Q* pertence ao exterior do ângulo *AÔB*

9º Postulado

Postulado 9 (Da adição de Ângulos): Se P é um ponto de interior de um ângulo $A\hat{O}B$, então $A\hat{O}B = A\hat{O}P + P\hat{O}B$.

10° Postulado

Postulado 10: Qualquer que seja o número real ζ , com $0 < \zeta < 180$, podemos construir um único ângulo de ζ graus, a partir de uma semirreta dada num semiplano.

Tipos de Ângulos

Definição 8

Um ângulo AÔB é dito:

- ► reto, se sua medida for de 90°;
- **agudo**, se sua medida for menor que 90°;
- **b** obtuso, se sua medida for maior que 90°.

Perpendicularidade

Definição 9

Se duas retas \overrightarrow{AB} e \overrightarrow{AC} formam um ângulo reto, diz-se que elas são **perpendiculares** e escrevemos $\overrightarrow{AB} \perp \overrightarrow{AC}$.

Perpendicularidade

Empregamos o mesmo termo e a mesma notação para semirretas e segmentos. Assim, se $B\hat{A}C = 90$, escrevemos:

- $ightharpoonup \overrightarrow{AB} \perp \overrightarrow{AC};$
- ightharpoonup $AB \perp \overline{AC}$.

Ângulos Complementares

Definição 10

Dois ângulos são ditos **complementares**, se a soma de suas medidas é 90°. Cada um deles é denominado o **complemento** do outro.

Figura 6: Temos que $\eta + \zeta = 90^{\circ}$, logo são ângulos complementares.

Ângulos Suplementares

Definição 11

Dois ângulos são ditos **suplementares**, se a soma de suas medidas é 180°. Cada um deles é denominado o **suplemento** do outro.

Figura 7: Temos que $\tau + \theta = 180^\circ$, logo são ângulos suplementares.

Ângulos Consecutivos

Definição 12

Dois ângulos são ditos **consecutivos**, se têm o mesmo vértice, um lado em comum e os outros dois lados situados em semiplanos opostos determinados pelo lado comum.

Figura 8: Os ângulos *AÔB* e *BÔC* são consecutivos.

Ângulos Adjacentes

Definição 13

Dois ângulos consecutivos, cujos lados não comuns são semirretas opostas, são denominados **adjacentes**.

Figura 9: Os ângulos $\tau + \theta = 180^\circ$ são adjacentes.

Ângulos Opostos pelo Vértice

Definição 14

Dois ângulos são ditos **opostos pelo vértice**, se os lados de um deles são as semirretas opostas dos lados do outro.

Figura 10: Os ângulos μ e θ são opostos pelo vértice.

Teorema

Teorema 1

Dois ângulos opostos pelo vértice são congruentes.

Figura 11: Os ângulos μ e θ são opostos pelo vértice.

- **Hipótese:** μ e θ são opostos pelo vértice .
- ▶ Tese: $\mu = \theta$.

Usaremos a prova direta (partimos da hipótese).

Seja τ o ângulo simultaneamente adjacente aos ângulos μ e θ .

Figura 12: Os ângulos μ e θ são adjacentes ao mesmo ângulo τ .

Com isso,

$$\mu + au = 180^{\circ}$$
 e $\theta + au = 180^{\circ}$.

Daí, obtemos

$$\mu + \tau = \theta + \tau \Rightarrow \mu + \tau - \tau = \theta + \tau - \tau$$
$$\Rightarrow \mu = \theta.$$

Bissetriz

Definição 15

Seja P um ponto interior do ângulo AÔB. A **bissetriz** do ângulo AÔB, é a semirreta \overrightarrow{OP} , tal que $A\widehat{OP} = P\widehat{OB}$.

Figura 13: Os ângulos $A\hat{O}P$ e $P\hat{O}B$ possuem a mesma medida.

Teorema

Teorema 2

Por um ponto de uma reta pode-se traçar uma única reta perpendicular a reta dada.

- ightharpoonup Hipótese: A é um ponto da reta r.
- ▶ **Tese:** Existe uma única reta perpendicular a reta *r*, passando por *A*.

Sejam r uma reta e A um ponto da mesma. Seja r_1 uma das semirretas de r, com origem em A. Escolha também um dos semiplanos delimitado pela reta r.

Pelo Postulado 10, existe um único ângulo de 90° que pode ser construído a partir de uma semirreta dada. Seja s_1 a semirreta que forma com r_1 este ângulo de 90° .

A reta s que contém s_1 é perpendicular a r no ponto A. Pela unicidade de s_1 (Postulado 10), segue que a perpendicular s é única.

