#### **STSCI 5010**

# **Applied Statistical Computation**with SAS

(Fall 2018)

#### Module 1

## **Introduction to SAS Programming**

# Why SAS?

### What is SAS?

- Originally Statistical Analysis Software
- Conceived in 1966 by Anthony Barr
- In 1976, SAS Institute, Inc. was incorporated by Barr, Goodnight, Sall, and Helwig
- Is a collection of software products grouped and offered by SAS
- SAS is used in education, government, healthcare, business, financial companies, ...
- SAS can be used with different operating systems (Windows, Unix/Linux and z/OS but not Mac OS)

# What is SAS? (cont'd)

- SAS offers an array of tools to organize and analyze data (statistical discovery software)
- Among many functions you can perform:
  - Data management, data entry and retrieval
  - Statistical and mathematical analysis
  - Reporting
  - Business planning, forecasting and decision support
  - Data Mining
  - Graphing
  - Handling big data

## Overview of the SAS products

- BASE SAS data management and basic procedures
- SAS/**STAT** statistical analysis
- SAS/GRAPH presentation quality graphics
- SAS/OR operations research
- SAS/ETS econometrics and time series analysis
- SAS **Enterprise miner** data mining
- SAS/QC quality control
- SAS/IML a matrix programming language

Many other specialized products are available ...

#### How to learn?

- Read textbook/lecture notes carefully.
- Do quizzes at the end of each chapter.
- Practice, practice and practice...
- Some warnings.

## Chapter 1

## **Basic Concepts**

## **Topics**

Introduction to the SAS Environment

Overview of a SAS program

Introduction to SAS data library

Structure and components of SAS data sets

## A SAS 9.4 Screen



STSCI 5010 -- Base SAS

### **SAS Windows**

#### There are five main SAS windows:

- 1. Explorer: SAS libraries, file shortcuts
- 2. **Results**: a tree-like summary of your Output Window. This window is empty until you submit a SAS program that creates some output
- 3. **Program Editor**: enter, edit, submit SAS program lines (enhanced program editor)
- 4. Log: display notes and error messages
- 5. **Output**: output from SAS procedures

Other windows: Graph, Help

## What is a SAS Program?

A SAS program is a **set of SAS statements** that tells the software what to do (i.e., access, manage, analyze, or present your data) and provides all the needed information to execute it.

The SAS statements are presented in a sequence and are executed in order. For example:

```
data students2;
    set students;
run;
proc print data= students2;
run;
```

### **SAS Statements**

A SAS statement has two important characteristics:

- It usually begins with a SAS keyword.
- It always ends with a semicolon.

```
data students2;
    set students;
run;
proc print data= students2;
run;
```

## **SAS Statements**

- Statements are NOT case sensitive. Statements can be in upper or lower case. An exception is that text enclosed in quotation marks generally is case sensitive.
- Statements can continue on the next line (cannot split a word however).
- Several statements can be on the same line, separated by semicolon(s).
- Statements can start in any column.
- However, your SAS statements should be properly organized (for human readability).

## The Parts of a SAS Program

1. DATA step: DATA new;

weight=35;

2. PROC step: PROC print data=new;

3. A RUN statement: RUN;

These two types of steps, alone or combined, are often accompanied by a run statement, forming all SAS programs.



## **DATA Step**

**DATA** steps typically **create** or **modify** SAS data sets to produce custom-designed reports or do data analysis.

#### DATA steps are used to:

- put your data into a SAS data set
- compute values
- check for and correct errors in your data
- produce new SAS data sets by subsetting, merging, and updating existing data sets, etc.

## **PROC Step**

- PROC (procedure) steps invoke or call pre-written routines that enable you to analyze and process the data in a SAS data set.
- Starts with the PROC keyword followed by the name of the procedure.
- PROC steps are used, for example, to:
  - print a report
  - produce descriptive statistics
  - create a tabular report
  - produce plots and charts
  - run a statistical analysis

#### The RUN Statement

- A DATA or PROC step ends when the program encounters a new DATA or PROC step, a run statement, or reaches the end of the program.
- Run statements are not part of a DATA or PROC step and indicate to run all the preceding statements.
- Run statements are not required between SAS steps but make the program and SAS logs easier to read.

## **SAS Logs**

Each time a step is executed, SAS generates a log of the processing activities and the results of the processing, as well as any errors if they have occurred.

```
Log - (Untitled)
30
     data sasuser.admit2;
31
     set sasuser.admit;
     where age>39;
33
     run;
NOTE: There were 10 observations read from the data set SASUSER.ADMIT.
      WHERE age>39;
NOTE: The data set SASUSER.ADMIT2 has 10 observations and 9 variables.
NOTE: DATA statement used (Total process time):
                           0.00 seconds
      real time
                           0.00 seconds
      cpu time
```

It is important to check the SAS log after you have run a SAS program. Make sure there is no error message.

## **SAS Library**

- In the Windows and UNIX environments, a SAS library is a location where SAS files are stored (e.g., a folder on your computer drive)
- All SAS data files are stored in SAS libraries so that SAS knows the location(s) of your files.

### **Automatic SAS Libraries**

SAS assigns three libraries automatically each time you start SAS:

- 1. SASHELP: a permanent library that contains sample data
- 2. SASUSER: a permanent library that contains SAS files in your personal settings
- **3. WORK**: a temporary library for files that do not need to be saved from session to session.

Often you create additional libraries to store your files.

## Two types of SAS files

#### 1) Temporary files:

- are deleted when you end your SAS session.
- are stored in the work library and are referred to as work.filename or simply by the filename.

#### 2) Permanent files:

- stay on your computer after you end your SAS session.
- are always referred to with a 2-part name:
   libref.filename

## **Assigning a SAS Library**

To create a library: assign it a name and tell SAS what location it corresponds to.

There are two ways to assign a SAS library:

- 1. Use the *LIBNAME* Statement
- 2. Use the *New Library* option in the <u>Explorer window</u>

# How to Assign a SAS Library?

1. Use the **LIBNAME statement**, inside SAS programs, for example:

```
libname MPS "c:\MPS";
will associate the libref "MPS" with the library
"c:\MPS";
```

#### Naming rule: A libref can

- be 1 to 8 character long
- begin with a letter or underscore
- contain only letters, numbers, or underscores.

## How to Assign a SAS Library?

2. Use the **New Library** option by **right clicking** anywhere in the Explorer window, and then click on the New library icon. The New Library window opens. Follow

steps.



# Accessing a SAS dataset stored in a library

Double clicking in the explorer window on *Libraries* --> a specific library --> filename will allow you to open a SAS dataset in the VIEWTABLE window.



## Accessing a SAS dataset stored in a library

Accessing a file in a SAS program. For example:

```
libname MPS "c:\MPS";
data MPS.new;
  weight=35;
run;
```

- "MPS" is the name of the SAS library that contains the file
- "new" is the name of the file itself.

A **period** separates the library name from the filename. This program creates the SAS data set "**new**" stored in "**c:\MPS**". Using Windows explorer you will find a file called **new.sas7bdat**.

#### **Rules for SAS Data Set Names**

Rules for making SAS data set names:

- can be 1 to 32 characters long
- must begin with a letter (A–Z, either uppercase or lowercase) or an underscore (\_)
- can continue with any combination of numbers, letters, or underscores.

These are examples of valid data set names:

- Payroll
- LABDATA1995\_1997
- EstimatedTaxPayments3

#### **SAS Data Sets**

- A SAS data set is a file in a special format that consists of two parts:
  - a descriptor portion
  - a data portion
- Sometimes a SAS data set also has indexes to help locate records efficiently.



#### **SAS Data Sets**

- The descriptor portion gives general information about the file such as the name, date and time of creation, number of observations and variables.
- The descriptor portion also contains information about the attributes of each variable in the data set:
  - name the variable name (the same naming rules as SAS data set names)
  - type character or numeric
  - length number of bytes used to store it (default of 8 bytes for numeric; each character use one byte storage and a character variable can be up to 32,767 bytes long)
  - format affects the way a data value is written/displayed
  - informat affects the way data is read into a SAS data set
  - label can provide more descriptive info than is in the name

#### More about SAS Variable Attributes

 Formats are variable attributes that affect the way data values are written out.

For example, to display the value *5678* as 5,678.00 in a report, you can use the COMMA8.2 format, which specifies a total width of 8 including 2 decimal places.

 Informats determine how data values are read into a SAS data set.

For example, the value \$1,234.00 contains two special characters, a dollar sign (\$) and a comma (,). You can use an informat to read the value while removing the dollar sign and comma, and then store the resulting value as a standard numeric value.

#### **SAS Data Sets**

 The data portion is a table with observations (rows) and variables (columns) that SAS can process.

| Person | Age | Weight | Height |
|--------|-----|--------|--------|
| John   | 34  | 183    | 172    |
| Mary   | 4!  | 5 205  | 194    |
| Ann    | 60  | 165    | 158    |

## Missing Values in SAS Data Sets

 Missing numeric data values are represented by a "." and missing character data values by an empty cell.

| Person | Age | Weight | Height |
|--------|-----|--------|--------|
| John   | 34  | 183    | 172    |
|        | 45  | 205    | 194    |
| Ann    |     | 165    | 158    |