Extending the Iris Proof Mode with Inductive Predicates using Elpi

Luko van der Maas

Computing Science Radboud University

Program verification

- Verify programs by specifying pre and post conditions
- Specification happens in separation logic

Separation logic with Hoare triples

Representation predicate

[isD
$$d$$
 y] op d x [isD d $(f x y)$]

Imperative Functional program program

[isList $hd \overrightarrow{v}$] delete hd i[isList hd (remove $i \overrightarrow{v}$)]

Representation predicates

$$\begin{array}{ll} \mathsf{isMLL}\,\mathit{hd}\,\vec{\mathit{v}} = & (\mathit{hd} = \mathsf{none} * \vec{\mathit{v}} = []) \lor \\ & (\exists \ell, \, \forall, \, \mathit{tl.}\, \mathit{hd} = \mathsf{some}\,\mathit{l} * \mathit{l} \mapsto (\forall, \mathsf{true}, \mathit{tl}) * \mathsf{isMLL}\,\mathit{tl}\,\vec{\mathit{v}}) \lor \\ & \left(\exists \ell, \, \forall, \, \vec{\mathit{v}}'', \, \mathit{tl.}\, \mathit{hd} = \mathsf{some}\,\mathit{l} * \mathit{l} \mapsto (\forall, \mathsf{false}, \mathit{tl}) * \\ & \vec{\mathit{v}} = \forall :: \, \vec{\mathit{v}}'' * \mathsf{isMLL}\,\mathit{tl}\,\vec{\mathit{v}}'' \end{array} \right) \end{array}$$

Outline of our solution

```
eiInd

Inductive is_MLL : val → list val → iProp :=

| empty_is_MLL : is_MLL NONEV []

| mark_is_MLL v vs l tl :
| weight is_MLL v vs l tl :
| cons_is_MLL (SOMEV #l) vs |
| cons_is_MLL v vs tl l :
| weight is_MLL v vs l tl :
| weight is_MLL v vs l l :
| cons_is_MLL v vs tl l :
| weight is_MLL v vs -*
| is_MLL (SOMEV #l) (v :: vs).
```

Approach

Contributions

- Created system for defining and using inductive predicates in the IPM
- Strategy for modular tactics in Elpi
- Generating monotonicity proof of pre fixpoint function
- Evaluation of Elpi as meta-programming language for the IPM

Demo

Conclusion

Future work