Attribute-Controlled Traffic Data Augmentation Using Conditional Generative Models

Elective in Al Final Project Federico Vergallo (1815521) Michal Ostyk-Narbutt (1854051)

December 18, 2019

Presentation outline

- Introduction
 - Autonomous vehicles
- Attribute Interpolation with Conditional Generative Models
 - Architecture
 - Dataset and tools
 - Preprocessing and Training
- Results
- Conclusions

Outline

- Introduction
 - Autonomous vehicles
- 2 Attribute Interpolation with Conditional Generative Models
 - Architecture
 - Dataset and tools
 - Preprocessing and Training
- Results
- 4 Conclusions

Introduction

Autonomous vehicular systems

Use case in self-driving cars

- Require real-world data to train perception systems
- RGB images collected and further manually annotated
- Imbalanced data-sets

Motivation and goals

- Balanced dataset
- Present day solutions:
 - 3D simulations → not realstic and models are susceptible to synthetic artifacts.

Outline

- Introduction
 - Autonomous vehicles
- Attribute Interpolation with Conditional Generative Models
 - Architecture
 - Dataset and tools
 - Preprocessing and Training
- Results
- 4 Conclusions

Formulation

Binary attributes editing

- Two subnetworks:
 - Encoder G_{enc} and Decoder G_{dec}
 - Discriminator D and Attribute Classifier C
 - $a = [a_1 \dots a_n]$ (original) and $b = [b_1 \dots b_n]$ (desired).

Desired testing scenario

- $z = G_{enc}(x^a)$ latent representation
- $x^{\hat{b}} = G_{dec}(z, b)$ decoding
- $x^{\hat{b}} = G_{dec}(G_{enc}(x^a), b)$ whole editing process o unsupervised

Overview

Figure: Architecture from the original Att-GAN paper [1]

Formulation

Training Roles

- Attribute classifier: contrain images $x^{\hat{b}}$ to desired attributes
- **2** Adverserial learning: visual reality of $x^{\hat{b}}$
- Reconstruction learning:
 - make z conserve enough information for attribute-excluding details recovery
 - Enable G_{dec} to restore attribute-excluding details. $x^{\hat{a}} = G_{dec}(z, a)$ should approximate itself.

Losses

Losses

- Attribute Classification Constraint (cls):
 - $\min_{G_{enc},G_{elec}} \mathcal{L}_{cls_a} = cross-entropy(b, \hat{b})$
 - $\min_{\mathcal{C}} \mathcal{L}_{cls_{-}} = cross-entropy(a, \hat{a})$
- Reconstruction (rec): $\min_{G_{enc}, G_{dec}} \mathcal{L}_{rec} = ||x^a, x^{\hat{a}}|| (I_1 \text{ loss})$
- Adversarial (adv) (WGAN-GP style):
 - $\min_{|D| \le 1} \mathcal{L}_{adv_d} = -\mathbb{E}_{x^a \sim p_{data}} D(x^a) + \mathbb{E}_{x^a \sim p_{data}, b \sim p_{att}} D(x^b)$
 - $\min_{G_{anc},G_{dec}} \mathcal{L}_{adV_a} = \mathbb{E}_{x^a \sim p_{data},b \sim p_{aux}} [D(x^b])$

Overall objective

- Generator: $\min_{G_{enc.}G_{dec}} = \lambda_1 \mathcal{L}_{rec} + \lambda_2 \mathcal{L}_{cls_{\sigma}} + \mathcal{L}_{adv_{\sigma}}$
- Discriminator: $\min_{D,C} = \lambda_1 \mathcal{L}_{cls_c} + \mathcal{L}_{adv_d}$

network

Encoder (G_{enc})	Decoder (G_{dec})	Discriminator (D)	Classifier (C)	
Conv(64,4,2), BN, Leaky ReLU	DeConv(1024,4,2), BN, ReLU	Conv(64,4,2), LN/IN, Leaky ReLU		
Conv(128,4,2), BN, Leaky ReLU	DeConv(512,4,2), BN, ReLU	Conv(128,4,2), LN/IN, Leaky ReLU		
Conv(256,4,2), BN, Leaky ReLU	DeConv(256,4,2), BN, ReLU	Conv(256,4,2), LN/IN, Leaky ReLU		
Conv(512,4,2), BN, Leaky ReLU	DeConv(128,4,2), BN, ReLU	Conv(512,4,2), LN/IN, Leaky ReLU		
Conv(1024,4,2), BN, Leaky ReLU	DeConv(3,4,2), Tanh	Conv(1024,4,2), LN/IN, Leaky ReLU		
		FC(1024), LN/IN, Leaky ReLU		
		FC(1)	FC(2), Sigmoid	

Figure: Network details [1]

Dataset and tools

description

Datasets

 BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling [3]

Tools

Python 3.6 with Tensorflow 1.14 GPU

Preprocessing

Data storage

TF-records

- very useful tool for storing large data efficiently for training
- reintializable iterator
- optimizing performance through parallel data transformation

Figure: pipeline source: http://www.adeveloperdiary.com/

Outline

- Introduction
 - Autonomous vehicles
- 2 Attribute Interpolation with Conditional Generative Models
 - Architecture
 - Dataset and tools
 - Preprocessing and Training
- Results
- 4 Conclusions

from the paper

Figure: Results from the re-implemented paper [2]

Our implementation

Epoch: 114 G Loss: 11.9943 D Loss: -0.3141 x_a daytime x3 reconstruction xô output x_a daytime $x_{\hat{a}}$ reconstruction xô output x_a night $x_{\hat{a}}$ reconstruction x_b output

Discriminator Losses

Generator Losses

Training

hyperparemeters

- Adam optimizer with a decaying learning rate
- batch size 64, 128, 100+ epochs

Overcoming issues

- Balancing Generator and Discriminator weight updates
- Minibatch discrimination
- Adding noise
- ullet Two Time-Scale Update Rule (different learning rates for G and D)

Outline

- Introduction
 - Autonomous vehicles
- 2 Attribute Interpolation with Conditional Generative Models
 - Architecture
 - Dataset and tools
 - Preprocessing and Training
- Results
- Conclusions

Conclusions

Conclusions and possible improvements

- Use cropped images
- Very unstable training phase, needs multiple overhauls to see results
- Oata Augmentation idea is a success.

Attributes	Day		Night	
Туре	Original	Generated	Original	Generated
Count	54563	19178	19178	54563

References

- Original Paper: Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin Chen. Attgan: Facial attribute editing by only changing what you want. arxiv preprint, 2017.
- Re-implemented paper: Mukherjee, Amitangshu et al.

 "Attribute-Controlled Traffic Data Augmentation Using
 Conditional Generative Models." CVPR Workshops (2019).
- Dataset: Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, Trevor Darrell. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling arXiv, 2018
- Dataset link: https://bdd-data.berkeley.edu/
- Code: https://github.com/Ostyk/self-driving-AttGAN

How training GANs looks like from reading papers vs how it actually is

