Rafael Massahiro Yassue

Campinas, SP, Brazil

□ rafael.yassue@gmail.com

Website

RESEARCH INTERESTS

I am a Data Science Analyst at GDM with experience in plant breeding, field experimentation, quantitative genetics, statistical modeling, phenomics, and genomics. My work is to connect genomics, high-throughput phenotyping, and quantitative genetics to plant breeding. My goal is to solve challenges by applying multidisciplinary approaches. Furthermore, I continuously improve myself in communication, teamwork, and leadership.

EDUCATION

Virginia Tech	2022
Visiting scholar	Blacksburg, United States
Luiz de Queiroz College of Agriculture - University of São Paulo	2018 - 2022
Ph.D., Genetics and Plant Breeding	Piracicaba, Brazil
Luiz de Queiroz College of Agriculture - University of São Paulo	2016 - 2018
M.S., Genetics and Plant Breeding	Piracicaba, Brazil
Western Paraná State University - Unioeste	2011 - 2015
B.Sc. Agronomic Engineering	Mal. C. Rondon, Brazil

SKILLS

- Quantitative genetics • Statistical modeling • Phenomics • R, Python, and Julia
- Plant breeding • Image processing • Genomics • Markdown, GitHub, and LATEX

LANGUAGES

• Portuguese (native) • English (advanced) • Spanish (Basic)

EXPERIENCE

Data Science Analyst, GDM	2022-present
Develop algorithms for experimental design and genetic analysis for breeding programs	$Campinas,\ Brazil$
Coordinator of plant breeding study group, Gvenck	2019
Coordinated the group's activities	Piracicaba, Brazil
Member of plant breeding study group, Gvenck	2016 - 2019
Promote discussions on relevant plant breeding issues, and soft skills improvement	Piracicaba, Brazil
Academic internship, Soybean breeding, Esalq	2015
Field experimentation, scientific discussion, and data analysis	Piracicaba, Brazil
Intern, Soybean breeding, Coodetec	2013 - 2014
Hands-on experience in an industry breeding program	Cascavel, Brazil
Undergraduate Research, Plant breeding, Unioeste	2011 - 2015
Learning in methods of research and development of scientific thought	Mal. C. Rondon, Brazil

\mathbf{AI}

cademic internship, Soybean breeding, Esalq	2015
field experimentation, scientific discussion, and data analysis	Piracicaba, Brazil
ntern, Soybean breeding, Coodetec	2013-2014
lands-on experience in an industry breeding program	$Cascavel,\ Brazil$
Indergraduate Research, Plant breeding, Unioeste	2011 - 2015
earning in methods of research and development of scientific thought	Mal. C. Rondon, Brazil
DDITIONAL TRAINING	
• Introdução ao aprendizado de máquinas com Python	2021
• Workshop on Analysis of Breeding Experiments using ASReml-R	2020
• Workshop on Crop Growth Models Applied for Plant Breeding	2020
• Treinamento genotype to phenotype models in plant breeding	2019
• System biology and gene networks inference: application to livestock	2019
• IV Workshop on Longitudinal and Incomplete Data	2018
• Quantitative Genetics and Genomics	2018
• New methodologies for high-resolution mapping and development of molecular	2017

PRESENTATIONS

- An assessment of the predictive ability of plant growth-promoting bacteria inoculation status and shoot dry
 mass using hyperspectral images in tropical maize. ASA, CSSA, and SSSA International Annual Meetings.
 Virtual 2021
- A low-cost greenhouse-based high-throughput phenotyping platform for genetic studies in maize under inoculation with plant growth-promoting bacteria. NAPB Annual Meeting.

 Virtual 2021
- Melhoramento do Milho. Aula da disciplina: Introdução à Engenharia Agronômica. ESALQ. Virtual 2021
- Investigating the genetic architecture of the interaction between tropical maize and plant growth-promoting bacteria via high-throughput phenotyping. Translation Plant Science-Discussion Group (TPS-DG). Virginia Tech.
- Genetic architecture of the interaction between tropical maize and plant growth-promoting bacteria via high-throughput phenotyping. Genomics and machine learning discussion group. Virginia Tech. Virtual 2021

PUBLICATIONS

- Campos, G.R., et al. Construction and genetic characterization of an interspecific raspberry hybrids panel aiming resistance to late leaf rust and adaptation to tropical regions. Scientific Reports. 2023. doi
- Yassue RM, et al. Genome-wide association analysis of hyperspectral reflectance data to dissect the genetic
 architecture of growth-related traits in maize under plant growth-promoting bacteria inoculation. Plant direct,
 2023. doi
- Bi Ye, et al. Evaluating metabolic and genomic data for predicting grain traits under high night temperature stress in rice. G3: Genes, Genomes, Genetics, 2023. doi
- Rocha LM, et al. Quantitative trait loci related to growth and wood quality traits in Eucalyptus grandis W.
 Hill identified through single-and multi-trait genome-wide association studies. Tree Genetics & Genomes, 2022.
 doi
- Yassue RM, et al. Classification of plant growth-promoting bacteria inoculation status and prediction of growth-related traits in tropical maize using hyperspectral image and genomic data. Crop Science, 2022. doi
- Galli G, et al. Automated Machine Learning: a case study of genomic "image-based" prediction in maize hybrids. Frontiers in Plant Science, 2022. doi
- Yassue RM, et al. On the genetic architecture in a public tropical maize panel of the symbiosis between corn and plant growth-promoting bacteria aiming to improve plant resilience. Molecular Breeding, 2021. doi
- Yassue RM et al. A low-cost greenhouse-based high-throughput phenotyping platform for genetic studies: a case study in maize under inoculation with plant growth-promoting bacteria. The Plant Phenome Journal, 2021. doi
- Yassue RM, et al. CV-α: designing validations sets to increase the precision and enable multiple comparison tests in genomic prediction studies. Euphytica. 2021. doi
- Souza RS, et al. Combining ability for the improvement of vegetable soybean, Agronomy Journal. 2020. doi
- Espolador FG, et al. Assessing tolerance to Asian soybean rust in soybean inbred lines from exotic and adapted crosses. Euphytica, 2020. doi
- Yassue RM, et al. Uni and multivariate approaches for diallel analysis in early generation trials for soybean tolerance to rust. Bragantia. 2019. doi

REFERENCES

- Prof. Dr. Gota Morota Assistant Professor of quantitative genetics at Virginia Tech morota@vt.edu
- Prof. Dr. Roberto Fritsche-Neto Assistant Professor at LSU AgCenter rfneto@agcenter.lsu.edu
- Prof. Dr. James Chen Assistant Professor of Animal Data Sciences at Virginia Tech niche@vt.edu