The Homological Conjectures

Introduction

In this note we write about the homological conjectures in commutative algebra.

The Zerodivisor Theorem

Let R be a local noetherian ring, let $r \in R$, and let M be a nonzero finitely generated R-module of finite projective dimension. The zerodivisor theorem states that if r is M-regular, then r is R-regular. To see why one might expect this result to be true, recall that the Auslander-Buchsbaum theorem states that if $\delta_R = \operatorname{depth} R$, $\delta_M = \operatorname{depth} M$, and $p_M = \operatorname{pd} M$, then $p_M < \infty$ implies

$$p_M + \delta_M = \delta_R$$
.

In particular, if $\delta_M > 0$ then $\delta_R > 0$. The zerodivisor theorem refines this result by stating that if r realizes M has positive depth, then r also realizes R has positive depth too. In other words, if r is M-regular, then the Auslander-Buchsbaum theorem implies there exists an $r' \in \mathfrak{m}$ such that r' is R-regular (and we can even choose r' such that it is both R-regular and M-regular by the noetherian hypothesis together with prime avoidance). The zerodivisor theorem states that we can already choose r' = r.

To see how one could potentially prove this, we use induction on the projective dimension p of M. The base case p=0 is trivial since in this case M is free. Assume that we have proven the theorem for some p>0 and we wish to prove it in the case where $\operatorname{pd}_R M=p+1$. To prove it in this case, we assume for a contradiction that that r is M-regular but that r is not R-regular. Thus there is an associated prime $\mathfrak{p}=0$: a of R where $a\in R\setminus\{0\}$ such that $r\in\mathfrak{p}$ (and we choose \mathfrak{p} to be minimal among the set of all associate primes which contain r). By localizing at \mathfrak{p} if necessary, we may assume that $\mathfrak{p}=\mathfrak{m}$. In particular, this means that $\mathfrak{m}\notin A$ ss M, thus M doesn't contain a copy of $\mathbb{k}=R/\mathfrak{m}$ but R does contain a copy of \mathbb{k} . Note that necessarily a is also not R-regular since ar=0 where $r\neq 0$. Furthermore note that necessarily we have depth R=0 (as every element in \mathfrak{m} is a zerodivisor). From the Auslander-Buchsbaum formula we see that $p+1=\operatorname{depth} M$. Let's assume for a moment that a is M-regular and see how we might arrive at a contradiction

At some point we need to use the hypothesis that M has finite projective dimension as well as use the induction hypothesis. The idea is that if we can find an R-module N of projective dimension $\leq p$ such that r is N-regular, then r will be R-regular as well by induction. In particular, let M_1, \ldots, M_p be the syzygies of M. These have projective dimension $\leq p$, thus r is not M_i -regular for each $1 \leq i \leq p$. From the short exact sequence,

$$0 \rightarrow M_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

where F_0 is a finite free R-module, we see that

$$\mathfrak{m} \in \operatorname{Ass} R \subset \operatorname{Ass} M_1 \cup \operatorname{Ass} M_2$$

and since $\mathfrak{m} \notin \operatorname{Ass} M$, we see that $\mathfrak{m} \in \operatorname{Ass} M_1$. Let $I = \operatorname{Ann} M$ and note that

Remark 1. If we can find an *R*-module *N* of projective dimension $\leq p$ such that *r* is *N*-regular, then *r* will be *R*-regular as well by induction. In particular, let M_1, \ldots, M_p be the syzygies of *M*. These have projective dimension $\leq p$, thus *r* is

Remark 2. Here's a potential generalization: let X be a finite R-complex and suppose r is H(X)-regular. Then r is R-regular.

The Canonical Element Conjecture

Let $(R, \mathfrak{m}, \mathbb{k})$ be a local noetherian ring, let $t = t_1, \ldots, t_d$ be a system of parameters for R, let F be a free resolution of \mathbb{k} over R such that $F_0 = R$, and let $E = \mathbb{K}^R(t)$ be the Koszul complex with respect to t and R. Then the canonical map $R/t \to \mathbb{k}$ can be lifted to a map $\varphi \colon E \to F$ which is unique up to homotopy. The canonical element conjecture states that no matter which choice of system of parameters we use or which lift we choose, the last map $\varphi_d \colon E_d \to F_d$ is not zero. One idea we can use to prove this is to find some R-module R and show that the induced map

$$\operatorname{Ext}_R^d(\Bbbk, N) = \operatorname{H}^d(\operatorname{Hom}_R^{\star}(F, N)) \xrightarrow{\operatorname{H}^d(\varphi^{\star})} \operatorname{H}^d(\operatorname{Hom}_R^{\star}(E, N)) = \operatorname{Ext}_R^d(R/t, N)$$

is not zero. Indeed, this would imply $\varphi_d \neq 0$, and it would also imply that if φ' were another homotopic lift of $R/t \to \mathbb{k}$, then $\varphi'_d \neq 0$. We could do this if we could show $\operatorname{Ext}^d_R(\mathbb{k},N) \neq 0$ and $\operatorname{Ext}^{d-1}_R(\mathfrak{m}/t,N) = 0$ (or more generally $\operatorname{Ext}^{d-1}_R(\mathfrak{m}/t,N) \to \operatorname{Ext}^d_R(\mathbb{k},N)$ is the zero map). We will this is a consequence of the

Example 0.1. Let R = K[x, y, z, w], let $I = \langle x^2, w^2, zw, xy, y^2z^2 \rangle$, and let $t = t_1, t_2, t_3, t_4$ where

$$t_1 = x^2 + w^2$$

$$t_2 = w^2 + zw$$

$$t_3 = zw + xy$$

$$t_4 = x^3 + w^3$$

Now when we apply $\operatorname{Hom}_R(-,R)$ to the following short exact sequence of R-modules

$$0 \longrightarrow I/t \longrightarrow R/t \longrightarrow R/I \longrightarrow 0 \tag{1}$$

and we obtain an induced map in Ext:

$$\cdots \longrightarrow \operatorname{Ext}_{R}^{3}(I/t,R) \longrightarrow \operatorname{Ext}_{R}^{4}(R/I,R) \longrightarrow \operatorname{Ext}_{R}^{4}(R/t,R) \longrightarrow \cdots$$
 (2)

Note that t is an R-sequence contained in $\langle t \rangle \subseteq I$ of length 4. It follows that from Ext characterization of depth that $\operatorname{Ext}^3_R(I/t,R) = 0$ and $\operatorname{Ext}^4_R(R/I,R) \neq 0$. Thus the map

$$\operatorname{Ext}^4_R(R/I,R) \to \operatorname{Ext}^4_R(R/t,R)$$

is not zero.

Existence of Balanced Big Cohen-Macaulay Modules Conjecture

Definition o.1. Let $(R, \mathfrak{m}, \mathbb{k})$ be a local noetherian ring and let M be an R-module. We say M is **big Cohen-Macaulay module** if some system of parameters of R is a regular sequence on M. We say M is a **balanced big Cohen Macaulay module** if every system of parameters of R is a regular sequence on M.