Problem Sheet 10

November 1, 2020

- 1. Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution with parameter θ . Find MLE of θ .
- 2. Let X_1, \ldots, X_n be a random sample from a Geometric distribution with parameter θ . Find MLE of θ .
- 3. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter θ . Find MLE of θ .
- 4. Let X_1, \ldots, X_n be a random sample from a Normal distribution with parameter $\mu = 1$ and σ^2 . Find MLE of σ^2 . Is the estimator unbiased?
- 5. Let X_1, \ldots, X_n be a random sample from a Normal distribution with parameter μ and σ^2 (both μ and σ^2 unknown).
 - (a) Find MLE of μ . Is it unbiased? Is it consistent? What the MSE of this estimator?
 - (b) Find MLE $\widehat{\sigma_{ML}^2}$ of σ^2 . Show that $\widehat{\sigma_{ML}^2}$ is a biased estimator of σ^2 . Show that $s^2 = \frac{n}{n-1} \widehat{\sigma_{ML}^2}$ is an unbiased estimator of σ^2 . Show that $s = \sqrt{\frac{n}{n-1} \widehat{\sigma_{ML}^2}}$ is a biased estimator of σ . We call s^2 (resp. s) the sample variance (resp. sample standard deviation).
- 6. Let X_1, \ldots, X_n be a random sample from the interval $[0, \theta]$ with $\theta > 0$, that is,

$$f_X(x;\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that $\widehat{\Theta}_n = \max\{X_1, \dots, X_n\}$ is MLE of θ .
- (b) Is $\widehat{\Theta}_n$ an unbiased estimator of θ ?
- (c) Is $\widehat{\Theta}_n$ consistent?
- (d) Compute MSE of $\widehat{\Theta}_n$.

7. Let X_1, \ldots, X_n be a random sample from the interval $(0, \theta)$ with $\theta > 0$, that is,

$$f_X(x;\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 < x < \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Show that MLE of θ does not exist.

8. Let X_1, \ldots, X_n be a random sample from the interval $[\theta, \theta + 1]$, that is,

$$f_X(x;\theta) = \begin{cases} 1 & \text{if } \theta \le x \le \theta + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that MLE of θ is not unique.

- 9. Let X_1, \ldots, X_{1600} be random sample from a Normal distribution with mean μ and variance 25. Find the 95% confidence interval of μ .
- 10. Let X_1, \ldots, X_n be random sample from a Normal distribution with mean μ and variance 25. How large must the sample size be so that the 95% confidence interval of μ has length 0.98?
- 11. Let X_1, \ldots, X_{1600} be random sample from a distribution with mean μ and variance 25. Find approximate 95% confidence interval of μ .
- 12. Let X_1, \ldots, X_{1600} be random sample from a Bernoulli distribution with parameter θ . Find approximate 95% confidence interval of θ .
- 13. Let X_1, \ldots, X_{1600} be random sample from a distribution with mean μ and unknown variance $\sigma^2 < \infty$. If the sample mean is 76 and sample variance is 12, find approximate 95% confidence interval of μ .