МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Лабораторная работа №6 по численным методам

3 курс, группа ФН11-53Б Вариант 6

Преподаватель								
		B. A. Кутыркин						
«	»	2019 г.						

Задание 1

Задание.

На отрезке [0;1] задана равномерная сетка $A=\langle \tau_0,\tau_1,\ldots,\tau_k\rangle$, где k=40, с шагом $h=\frac{b-a}{k}=0.025=stp(A)$ и определена функция

$$f(\tau) = 2\sin(\pi\tau)\sqrt{55 - n + N\tau\sqrt{25 - N}},$$

где N – номер студента в журнале, n – номер группы. Для A-сеточной функции $y = \hat{A}(f) = [y_0, y_1, \ldots, y_k] \in R^{|A|}(A)$, где $y_i = f(\tau_i)$ для $i = 0, 1, \ldots, k$, решить задачу A—интерполяции сеточной функции y с помощью сплайна $spl_2(A;y)$ 2-ой степени дефекта 1. Затем сравнить в узлах интерполяции равномерной сетки $A = \langle \tau_0, \tau_1, \ldots, \tau_k \rangle$ отрезка [0;1] значения производный от функции $f(\tau)$ и сплайна $spl_2(A;y)$, т.е. значения функций $\frac{\mathrm{d}f}{\mathrm{d}\tau}$ и $\frac{\mathrm{d}spl_2(A;y)}{\mathrm{d}\tau}$

Исходные данные.

$$N = 6, n = 53$$

$$f(\tau) = 2\sin(\pi\tau)\sqrt{55 - n + N\tau\sqrt{25 - N}} = 2\sin(\pi\tau)\sqrt{2 + 6\tau\sqrt{19}}$$

Решение.

На отрезке [0;1] задана равномерная сетка $A=\langle \tau_0,\tau_1,\ldots,\tau_k\rangle$, где k=40, с шагом $h=\frac{b-a}{k}=0.025=stp(A)$. Получаем узлы:

Для A-сеточной функции $y = \hat{A}(f) = [y_0, y_1, \dots, y_k] \in R^{|A|}(A)$, где $y_i = f(\tau_i)$ для $i = 0, 1, \dots, k$, получаем:

$y_0 := 0$	
$y_1 := 0.2556290700$	$y_{21} := 7.907894078$
$y_2 := 0.5690147227$	$y_{22} := 7.995852058$
$y_3 := 0.9292772969$	$y_{23} := 8.027371915$
$y_4 := 1.327743488$	$y_{24} := 8.000649244$
•	$y_{25} := 7.914336467$
$y_5 := 1.756875292$	$y_{26} := 7.767554672$
$y_6 := 2.209774506$	$y_{27} := 7.559902314$
$y_7 := 2.679932552$	$y_{28} := 7.291460717$
$y_8 := 3.161099849$	$y_{29} := 6.962796298$
$y_9 := 3.647219192$	$y_{30} := 6.574959357$
$y_{10} := 4.132396017$	$y_{31} := 6.129479542$
$y_{11} := 4.610890917$	$y_{32} := 5.628357921$
$y_{12} := 5.077126161$	
$y_{13} := 5.525701119$	$y_{33} := 5.074055601$
$y_{14} := 5.951413441$	$y_{34} := 4.469479133$
$y_{15} := 6.349283729$	$y_{35} := 3.817962581$
$y_{16} := 6.714582258$	$y_{36} := 3.123246498$
$y_{17} := 7.042856556$	$y_{37} := 2.389453923$
$y_{18} := 7.329959091$	$y_{38} := 1.621063388$
$y_{19} := 7.572074303$	$y_{39} \coloneqq 0.8228793298$
$y_{20} := 7.765744480$	$y_{40} := -4.35309541910^{-9}$
720	

Если сетка $A=\langle a=\tau_0,\tau_1,\ldots,\tau_k=b\rangle$ является равномерной и ее шаг $h=\frac{b-a}{k}=0.025=stp(A)$, то для $i=1,2,\ldots,k$ на отрезке $[\tau_{i-1};\tau_i]$ находятся значения коэффициентов полинома $p_i(\tau)=a_i+b_i(\tau-\tau_{i-1})+c_i(tau-tau_{i-1})^2$:

$$a_1 = y_0, \quad b_1 = \frac{y_1 - y_0}{h}, \quad c_1 = 0$$

$$a_i=y_{i-1},\quad b_i=b_{i-1}+2c_{i-1}h,\quad c_i=rac{y_i-y_{i-1}-(b_{i-1}+2c_{i-1}h)h}{h^2},\quad i=2,3,\ldots,k$$
 Получаем:

$a_1 := 0$	$a_{11} := 4.132396017$	$a_{21} := 7.765744480$	$a_{31} := 6.574959357$
$b_1 := 10.22516280$	$b_{11} := 20.60871020$	$b_{21} := 8.023842280$	$b_{31} := -15.40535172$
$c_1 := 0$	$c_{11} := -58.75656800$	$c_{21} := -93.51433440$	$c_{31} := -96.55363520$
$a_2 := 0.2556290700$	$a_{12} := 4.610890917$	$a_{22} := 7.907894078$	$a_{32} := 6.129479542$
$b_2 := 10.22516280$	$b_{12} := 17.67088180$	$b_{22} := 3.348125560$	$b_{32} := -20.23303348$
$c_2 := 92.41053232$	$c_{12} := 39.14111840$	$c_{22} := 6.807745600$	$c_{32} \coloneqq 7.526745600$
$a_3 := 0.5690147227$	$a_{13} := 5.077126161$	$a_{23} := 7.995852058$	$a_{33} := 5.628357921$
$b_3 := 14.84568942$	$b_{13} := 19.62793772$	$b_{23} := 3.688512840$	$b_{33} := -19.85669620$
-	$c_{13} := -67.39757600$	$c_{23} := -97.10874240$	$c_{33} := -92.61586400$
$c_3 := -17.40745808$	$a_{14} := 5.525701119$	$a_{24} := 8.027371915$	$a_{34} := 5.074055601$
$a_4 := 0.9292772969$	$b_{14} := 16.25805892$	$b_{24} := -1.166924280$	$b_{34} := -24.48748940$
$b_4 := 13.97531652$	$c_{14} := 30.81735840$	$c_{24} := 3.920697600$	$c_{34} := 12.17722720$
$c_4 := 78.53324496$	$a_{15} := 5.951413441$	$a_{25} := 8.000649244$	$a_{35} := 4.469479133$
$a_5 := 1.327743488$	$b_{15} := 17.79892684$	$b_{25} \coloneqq -0.9708894000$	$b_{35} \coloneqq -23.87862804$
$b_5 := 17.90197877$	$c_{15} := -75.36461280$	$c_{25} := -99.26486720$	$c_{35} := -87.28136160$
$c_5 := -29.46826432$	$a_{16} := 6.349283729$	$a_{26} \coloneqq 7.914336467$	$a_{36} := 3.817962581$
$a_6 := 1.756875292$	$b_{16} := 14.03069620$	$b_{26} := -5.934132760$	$b_{36} := -28.24269612$
$b_6 := 16.42856555$	$c_{16} := 23.24979840$	$c_{26} := 2.514438400$	$c_{36} := 18.16211200$
$c_6 := 67.49612032$	$a_{17} \coloneqq 6.714582258$	$a_{27} \coloneqq 7.767554672$	$a_{37} := 3.123246498$
$a_7 := 2.209774506$	$b_{17} := 15.19318612$	$b_{27} := -5.808410840$	$b_{37} := -27.33459052$
$b_7 := 19.80337156$	$c_{17} := -82.48856800$	$c_{27} := -99.90733920$	$c_{37} := -80.68449920$
$c_7 := -39.88198880$	$a_{18} \coloneqq 7.042856556$	$a_{28} \coloneqq 7.559902314$	$a_{38} \coloneqq 2.389453923$
$a_8 := 2.679932552$	$b_{18} := 11.06875772$	$b_{28} := -10.80377780$	$b_{38} := -31.36881548$
$b_8 := 17.80927212$	$c_{18} := 16.61374720$	$c_{28} := 2.644556800$	$c_{38} := 25.32776320$
_	$a_{19} \coloneqq 7.329959091$	$a_{29} := 7.291460717$	$a_{39} \coloneqq 1.621063388$
$c_8 := 57.49679040$	$b_{19} := 11.89944508$	$b_{29} := -10.67154996$	$b_{39} \coloneqq -30.10242732$
$a_9 := 3.161099849$	$c_{19} := -88.59346400$	$c_{29} := -99.00107200$	$c_{39} := -72.99740032$
$b_9 := 20.68411164$	$a_{20} := 7.572074303$	$a_{30} \coloneqq 6.962796298$	$a_{40} := 0.8228793298$
$c_9 := -49.57351680$	$b_{20} := 7.469771880$	$b_{30} := -15.62160356$	$b_{40} \coloneqq -33.75229734$
$a_{10} := 3.647219192$	$c_{20} := 11.08140800$	$c_{30} := 4.325036800$	$c_{40} := 33.48495888$
$b_{10} := 18.20543580$			
$c_{10} := 48.06548800$			

Построим совмещенные графики функции $f(\tau)$ и $spl_2(A; {}^>y)$ интерполяционного сплайна 2-ой степени дефекта 1.

Как видим, полином ложится на нашу функцию.

В узлах интерполяции равномерной сетки $A = \langle \tau_0, \tau_1, \dots, \tau_k \rangle$ отрезка [0;1] найдём значения производный от функции $f(\tau)$ и сплайна $spl_2(A; {}^>y)$, т.е. значения функций $\frac{\mathrm{d}f}{\mathrm{d}\tau}$ и $\frac{\mathrm{d}spl_2(A; {}^>y)}{\mathrm{d}\tau}$:

$$2\pi \cos(\pi \tau) \sqrt{2 + 6\tau \sqrt{19}} + 6 \frac{\sin(\pi \tau) \sqrt{19}}{\sqrt{2 + 6\tau \sqrt{19}}}$$

Построим совмещенные графики функций $\frac{\mathrm{d}f}{\mathrm{d}\tau}$ (кривая) и $\frac{\mathrm{d}spl_2(A;>y)}{\mathrm{d}\tau}$ (точки, соединенные отрезками прямой):

Видим, что графики хорошо наложились

Выводы. В результате работы было графически проиллюстрировано, что интерполяционный сплайн $spl_2(A; {}^>y)$ 2-ой степени дефекта 1 для A- сеточной функции ${}^>y = \hat{A}(f) = [y_0, y_1, \ldots, y_k) \in {}^>R^{|A|}(A)$, где $y_i = f(\tau_i)$ для $i = 0, 1, \ldots, k$ хорошо накладывается на функцию $f(\tau)$. А в узлах равномерной сетки $A = \langle \tau_0, \tau_1, \ldots, \tau_k \rangle$ отрезка [0; 1] значения производных функции $f(\tau)$ и сплайна $spl_2(A; {}^>y)$, то есть значения функций $\frac{\mathrm{d}f}{\mathrm{d}\tau}$ и $\frac{\mathrm{d}spl_2(A; {}^>y)}{\mathrm{d}\tau}$ близки друг к другу.