

Security

Lars-Åke Nordén

Need for secure communication

- As old as communication through a third party
- Especially in
 - Warfare
 - Diplomacy

— ...

Classic historical ciphers

Caesar cipher (monoalphabetic)

Vigenere cipher (polyalphabetic)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z K L M N O P Q R YYZABCDEFGHIJKLMNOPQRSTUVWX ZZABCDEFGHIJKLMNOPQRSTUVWXY

WW cryptosystems

Enigma

Geheimschreiber (T52)

Foundation of modern cryptography

If a lot of smart people for a long time have failed to solve a specific problem, it is unlikely that a solution will appear soon

(hopefully)

Modern cryptography

- Encryption method is well-known
- Secret guarded by a n-bit key
 - Encryption and decryption in O(n) time
 - Key guessing in $O(2^n)$ time
- Key management is crucial
- CIA triad represent desirable properties
 - Confidentiality
 - Integrity
 - Availability

Problem: Public key exchange

Alice and Bob wants to communicate. They agree publically on p and g. After that, they do as follows:

Alice Bob

Create secret key S

Send T_A to Bob

Compute $K_1 = T_R^{S_A} \mod p$

Create secret key S_R

Compute $T_A = g^{S_A} \mod p$ Compute $T_B = g^{S_B} \mod p$

Send T_R to Alice

Compute $K_2 = T_A^{S_B} \mod p$

How Alice and Bob now use K_1 and K_2 to communicate securely?

Solution

•
$$K_1 == K_2$$

 $- T_B^{S_A} = (g^{S_B})^{S_A} = g^{S_BS_A} = g^{S_AS_B} = (g^{S_A})^{S_B} = T_A^{S_B} \mod p$

- Alice and Bob can communicate securely using symmetric key cryptography
- Method called Diffie-Hellman key exchange

Can Diffie-Hellman be extended to let 3 different users communicate securely?

idea-instructions.com/public-key/ v1.1, CC by-nc-sa 4.0

IDEA

PUBLIK KEY KRYPTO

PUBLIK KEY KRYPTO

Asymmetric (public-key) encryption

What are pros and cons of this scheme?

Public-key encryption (contd.)

- Key pairs
 - Private key S
 - Public key P

•
$$d_S(e_P(M)) = M$$
 (Encryption)

•
$$d_P(e_S(M)) = M$$
 (Signing)

•
$$d_{P_R}(d_{S_A}(e_{P_A}(e_{S_R}(M)))) = M$$
 (Both)

Where to find and how to trust public keys?

Certification Authority (CA)

- Issues digital certificates
 - Digitally signed with the private key of the CA
 - Authorize a public key

Chain of trust

End-entity Certificate Owner's name Owner's public key reference Issuer's (CA's) name **Intermediate Certificate** Issuer's signature Owner's (CA's) name sign Owner's public key reference Issuer's (root CA's) name Issuer's signature Root CA's name sign Root CA's public key Root CA's signature self-sign **Root Certificate**

How to trust the root CA?

Self-issued certificates

- Some sites present self-issued certificates
 - A little lite designing your own drivers license

KÖRKORT NORRLAND

- 1. NORDÈN
- 2. LARS-ÅKE FANTOMEN
- 3. 31.09.1970
- 4. 25.07.2099
- 5. 700931-1234

Cryptographic hashing

When is this useful?

Symmetric encryption

What are pros and cons of this scheme?

Usage of modern cryptography

- Symmetric cryptography in encrypted sessions
 - public-key cryptography not fast enough
- Asymmetric cryptography in certain situations
 - To establish a symmetric key
 - Digital signatures and verification
- Cryptographic hashing for verification of authentic data

Attacks on cryptosystems

- Known plaintext
- Known ciphertext
- Chosen plaintext
- Man-in-middle
- Denial-of-service
- Side-channel
- Brute-force
- Replay
- •

OpenAuth through trusted party

Authentication

- Two-factor authentication
 - Something you know
 - Something you have
 - Something you are
- Challenges
 - One-time codes

Security in the Internet stack

Application layer DNSSEC

Transport layer SSL/TLS

Network layer IPsec

Link layer WEP/WPA MAC filtering, ...

NAT boxes and security

- Primary goal
 - Avoid over-consumption of global IP addresses
- Side effects
 - Computers with local IP unreachable from outside
 - "Holes" can be opened for servers
 - Servers can be placed in a DMZ
- Often include simple packet filters