1、考虑如下电路图:

字母标注的位置是一些节点,其正常工作的概率为: P(A1) = P(A2) = P(C1) = P(C2) = 0.9, P(B1) = P(B2) = 0.8, 各节点相互独立,求整个系统正常工作的概率。

- 2、有一种生物,产生的后代数 ξ 如从如下分布: $P(\xi = 0) = P(\xi = 2) = \frac{1}{4}$, $P(\xi = 1) = \frac{1}{2}$, 每个个体产生后代独立。用 Z_i 表示第i代个体的数量,其中 $Z_0 = 1$; (1) 求 $P(Z_2 = 0)$; (2) 求 $P(Z_2 = 4)$ 。
- 3、已知 X_i 服从分布如下: $P(X_i = k) = (1 p_i)p_i^{k-1}, k = 1,2,3..., i = 1,2,3$,求 $P(X_1 < X_2 < X_3)$ 。
- 4、设有独立同分布变量 ξ_1 , ξ_2 , ξ_3 服从参数为 1 的指数分布。令 $W_1 = \frac{\xi_1}{\xi_1 + \xi_2 + \xi_3}$, $W_2 = \frac{\xi_1 + \xi_2}{\xi_1 + \xi_2 + \xi_3}$;
 - (1) 求 W_1 , W_2 的联合分布; (2) 验证 W_1 , W_2 的独立性并说明理由。

5,

- (1) ξ , η 独立同分布,服从[-1,1]上的均匀分布; $U = 2\xi \eta$, $V = \xi 2\eta$ 。求D(U + V), $D(U^2 + V^2)$;
- (2) ξ , η 独立同分布,服从N(0,1); $U = 3\xi + 2\eta$, $V = 2\xi + 3\eta$ 。求 $r_{(U+V),(U^2+V^2)}$ 。
- 6、各 ξ_i 独立同分布,服从B(1,0.9), $S_n = \sum_{i=1}^n \xi_i$,求 $S_n > 0.9n$ 的最小n值。
- 7、各独立的 $\xi_i \sim P(\lambda_i)$,且 $\sum_{i=1}^n \lambda_i \to \infty$ 。证明: $\frac{\xi_1 + \xi_2 + \dots + \xi_n}{\lambda_1 + \lambda_2 + \dots + \lambda_n} \to 1(P)$