Chapter 6 - Exercise 3: NBA Players

Cho dữ liệu nba_2013.csv

Sử dụng thuật toán Decision Tree để dự đoán số điểm (points) mà các cầu thủ NBA ghi được trong mùa giải 2013-2014.

Mỗi hàng trong dữ liệu chứa thông tin về player thực hiện trong mùa giải 2013-2014 NBA. (với player -- tên player/ pos -- vị trí của player/ g -- số trận mà player đã tham gia/ gs -- số trận mà player đã bắt đầu/ pts -- tổng số point mà player đã ghi được)

- Đọc dữ liệu và gán cho biến data. Xem thông tin data: shape, type, head(), tail(), info. Tiền xử lý dữ liệu (nếu cần)
- 2. Tạo inputs data với các cột không có giá trị null trừ cột 'player', 'bref_team_id', 'season', 'season_end', 'pts', và outputs data với 1 cột là 'pts' => Vẽ biểu đồ quan sát mối liên hệ giữa inputs và outputs data
- 3. Từ inputs data và outputs data => Tạo X_train, X_test, y_train, y_test với tỷ lệ 80:20
- 4. Thực hiện Decision Tree với X_train, y_train
- 5. Dự đoán y từ X test => so sánh với y test
- 6. Xem kết quả => Nhận xét model
- 7. Ghi model nếu model phù hợp

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split

In [2]: # import some data to play with
   data = pd.read_csv("nba_2013.csv", sep=",")
   #data.info()

In [3]: data.shape

Out[3]: (481, 31)

In [4]: # HV tự tìm cách fill dữ liệu thiếu/drop dựa trên các kiến thức đã học
   data = data.dropna()

In [5]: data.shape

Out[5]: (403, 31)
```

In [6]: data.head()

Out[6]:

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl	blk
0	Quincy Acy	SF	23	тот	63	0	847	66	141	0.468	 144	216	28	23	26
3	Arron Afflalo	SG	28	ORL	73	73	2552	464	1011	0.459	 230	262	248	35	3
4	Alexis Ajinca	С	25	NOP	56	30	951	136	249	0.546	 183	277	40	23	46
6	LaMarcus Aldridge	PF	28	POR	69	69	2498	652	1423	0.458	 599	765	178	63	68
7	Lavoy Allen	PF	24	тот	65	2	1072	134	300	0.447	 192	311	71	24	33

5 rows × 31 columns

In [7]: data.tail()

Out[7]:

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl
476	Tony Wroten	SG	20	PHI	72	16	1765	345	808	0.427	 159	228	217	78
477	Nick Young	SG	28	LAL	64	9	1810	387	889	0.435	 137	166	95	46
478	Thaddeus Young	PF	25	PHI	79	78	2718	582	1283	0.454	 310	476	182	167
479	Cody Zeller	С	21	СНА	82	3	1416	172	404	0.426	 235	353	92	40
480	Tyler Zeller	С	24	CLE	70	9	1049	156	290	0.538	 179	282	36	18

5 rows × 31 columns

In [8]: # The columns that we will be making predictions with.
 inputs = data.drop(["player", "bref_team_id", "season", "season_end"], axis=1)
 inputs.shape

Out[8]: (403, 27)

```
In [9]: inputs.head()
```

Out[9]:

	pos	age	g	gs	mp	fg	fga	fg.	х3р	х3ра	 ft.	orb	drb	trb	ast	stl	blk
0	SF	23	63	0	847	66	141	0.468	4	15	 0.660	72	144	216	28	23	26
3	SG	28	73	73	2552	464	1011	0.459	128	300	 0.815	32	230	262	248	35	3
4	С	25	56	30	951	136	249	0.546	0	1	 0.836	94	183	277	40	23	46
6	PF	28	69	69	2498	652	1423	0.458	3	15	 0.822	166	599	765	178	63	68
7	PF	24	65	2	1072	134	300	0.447	2	13	 0.660	119	192	311	71	24	33

5 rows × 27 columns

```
In [10]: inputs = pd.get_dummies(inputs)
inputs.head()
```

Out[10]:

	age	g	gs	mp	fg	fga	fg.	х3р	х3ра	х3р.	 blk	tov	pf	pts	pos_C	pα
0	23	63	0	847	66	141	0.468	4	15	0.266667	 26	30	122	171	0	
3	28	73	73	2552	464	1011	0.459	128	300	0.426667	 3	146	136	1330	0	
4	25	56	30	951	136	249	0.546	0	1	0.000000	 46	63	187	328	1	
6	28	69	69	2498	652	1423	0.458	3	15	0.200000	 68	123	147	1603	0	
7	24	65	2	1072	134	300	0.447	2	13	0.153846	 33	44	126	303	0	

5 rows × 32 columns

```
In [11]: #inputs.info()
```

```
In [12]: # The column that we want to predict.
    outputs = data["pts"]
    outputs = np.array(outputs)
    outputs.shape
```

Out[12]: (403,)

```
In [14]: from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import accuracy_score
```

```
In [15]: # Create decision tree regressor object
    model = DecisionTreeRegressor()
    # Train model
    model.fit(X_train, y_train)
```

```
In [16]: # Kiểm tra độ chính xác
print("The Train/ Score is: ", model.score(X_train,y_train)*100,"%")
print("The Test/ Score accuracy is: ", model.score(X_test,y_test)*100,"%")
```

The Train/ Score is: 100.0 %
The Test/ Score accuracy is: 99.74514106739079 %

```
In [17]: # Tinh MSE
    from sklearn import metrics
    y_pred = model.predict(X_test)
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
```

Mean Squared Error: 570.0

Nhận xét:

- Training và Testing cùng có R^2 cao và gần bằng nhau
- Mô hình trên cho R^2 cao ~ 0.99, cho thấy nó fit 99% dữ liệu
- MSE vừa phải => mô hình phù hợp

Out[18]:

	Actual	Prediction
0	490	490.0
1	548	544.0
2	820	821.0
3	217	224.0
4	491	490.0
5	47	54.0
6	1737	1851.0
7	202	201.0
8	520	530.0
9	18	22.0