Feuille d'exercices nº 4

QUELQUES CALCULS DE FOURIER & LAPLACE

Exercise 1. Théorème central limite. Soit (Ω, μ) un espace de probabilité et $X : \Omega \to \mathbf{R}$ une variable aléatoire réelle. On note μ_X la loi de X et F la transformée de Fourier ¹ de μ_X .

On considère $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi μ_X .

- 1. Pour tout $N \in \mathbf{N}^*$, on note F_N la transformée de Fourier de la loi de $(X_1 + \cdots + X_N)/\sqrt{N}$. Exprimer F_N en fonction de F.
- 2. On suppose que μ_X possède des moments juqu'à l'ordre 2 et que X est de moyenne nulle. Montrer que F_N converge uniformément sur tout compact lorsque $N \to \infty$.
- 3. Calculer la transformée de Fourier inverse de la limite précédente.

Exercise 2. Calcul de $\zeta(2)$.

- 1. Pour a > 0 calculer les transformées de Fourier de $e^{-a(\cdot)} \mathbf{1}_{\mathbf{R}_+}$ et de $e^{a(\cdot)} \mathbf{1}_{\mathbf{R}_-}$.
- 2. En déduire la transformée de Fourier inverse de $\mathbf{R} \to \mathbf{R}, \, \xi \mapsto (1+\xi^2)^{-1}$.
- 3. Déterminer une équation différentielle (au sens des distributions) vérifiée par cette transformée de Fourier inverse et en déduire un calcul alternatif.
- 4. Pour tout T > 0, calculer

$$\frac{1}{T} \sum_{k \in \mathbb{Z}} \frac{1}{1 + \left(\frac{2\pi k}{T}\right)^2}.$$

5. En déduire une expression plus explicite de

$$\zeta(2) := \sum_{n \in \mathbf{N}^*} \frac{1}{n^2} \,.$$

Exercise 3. Introduction à la transformée de Laplace.

Soit $d \in \mathbf{N}^*$ et $A \in \mathcal{M}_d(\mathbf{C})$. On notera $\|\cdot\|$ une norme d'algèbre unitaire sur $\mathcal{M}_d(\mathbf{C})$.

- 1. Montrer que pour tout $\lambda \in \mathbf{C}$ tel que $\operatorname{Re}(\lambda) > ||A||$, la fonction $\mathbf{R}_+ \to \mathcal{M}_d(\mathbf{C})$, $t \mapsto e^{-\lambda t} e^{tA}$ est intégrable et calculer son intégrale.
- 2. Montrer que $\mathbb{C} \setminus \sigma(A) \to \mathcal{M}_d(\mathbb{C}), \lambda \mapsto (\lambda I_d A)^{-1}$ est analytique.
- 3. Montrer que $(\lambda I_d A)^{-1}$ se développe en puissances de λ^{-1} quand $|\lambda| > ||A||$.
- 4. Montrer que si r > ||A||, et Γ_r note un paramétrage direct du cercle centré en 0 de rayon r, pour tout $t \in \mathbf{C}$

$$e^{tA} = \frac{1}{2i\pi} \int_{\Gamma_r} e^{t\lambda} (\lambda I_d - A)^{-1} d\lambda.$$

^{1.} On rappelle incidemment que les probabilistes appellent fonction caractéristique de X la fonction $t \mapsto F(-t)$.