MISE EN ROUTE

Exercice 1 – Famille de cubiques

Soit la fonction $f_k : \mathbb{R} \to \mathbb{R}$, qui dépend d'un paramètre $k \in \mathbb{R}$, définie par :

$$f_k(x) = x^3 + x^2 - kx + 1$$

- 1. Calculer la dérivée de f_k et résoudre $f_k'(x) = 0$.
- 2. En déduire les variations de f_k en fonction du paramètre k. En particulier déterminer où sont atteints les minimums et maximums locaux de f_k . Représenter les différents types de graphes de f_k que l'on peut obtenir.
- 3. Calculer l'équation de la tangente au graphe de f_k en x=1.

Indications 1 -

Discuter selon les valeurs de k par rapport à $-\frac{1}{3}$.

Correction 1 – 1. $f'_k(x) = 3x^2 + 2x - k$. Pour k fixé, résolvons l'équation $3x^2 + 2x - k = 0$, d'inconnue x. C'est une équation du second degré de discriminant $\Delta = 4(3k+1)$.

- Si $k < -\frac{1}{3}$, $\Delta < 0$ et alors f_k' ne s'annule pas sur \mathbb{R} .
- Si $k = -\frac{1}{3}$, $\Delta = 0$ et alors $f_k'(x) = 0$ admet une solution (double) $x_0 = -\frac{1}{3}$.
- Si $k > -\frac{1}{3}$, $\Delta > 0$, alors $f_k'(x) = 0$ admet deux solutions :

$$x_1 = \frac{-1 - \sqrt{3k+1}}{2} \qquad x_2 = \frac{-1 + \sqrt{3k+1}}{2}.$$

- 2. Remarquons déjà que, quel que soit $k \in \mathbb{R}$, $\lim_{-\infty} f_k = -\infty$ et $\lim_{+\infty} f_k = +\infty$.
 - Si $k < -\frac{1}{3}$, alors en fait $f_k'(x) > 0$ pour tout $x \in \mathbb{R}$. Ainsi f_k est une fonction strictement croissante sur \mathbb{R} .

— Si $k = -\frac{1}{3}$, $\Delta = 0$ et alors $f_k'(x) = 0$ admet une solution (double) $x_0 = -\frac{1}{3}$. Alors f_k est aussi strictement croissante sur \mathbb{R} , mais avec un point d'inflexion en $x_0 = 0$, où le graphe de f admet une tangente horizontale. La valeur x_0 n'est ni un maximum local, ni un minimum local.

Cas $k = -\frac{1}{3}$.	•				
x	$-\infty$		x_0		+∞
$f_k'(x)$		+	0	+	
$f_k(x)$	-∞		$f_k(x_0)$, +∞

— Si $k > -\frac{1}{3}$, $\Delta > 0$, alors $f_k'(x) = 0$ admet deux solutions :

$$x_1 = \frac{-1 - \sqrt{3k+1}}{2}$$
 $x_2 = \frac{-1 + \sqrt{3k+1}}{2}$.

 $f_k'(x)$ s'annule est x_1 et x_2 ; elle est positive sur $]-\infty,x_1]$ et $[x_2,+\infty[$; elle est négative sur $[x_1,x_2]$. Elle est donc croissante, puis décroissante, puis de nouveau croissante. Elle admet un maximum local en x_1 (de valeur $f_k(x_1)$) et un minimum local en x_2 (de valeur $f_k(x_2)$).

3. La formule générale d'une tangente au graphe de f au point $(x_0, f(x_0))$ est :

$$y = (x - x_0)f'(x_0) + f(x_0).$$

Avec $x_0 = 1$, on a ici $f_k(1) = 3 - k$ et $f'_k(1) = 5 - k$ et on obtient ainsi l'équation :

$$y = (5 - k)x - 2.$$

Exercice 2 - Dérivées

Soient $f,g:\mathbb{R}\to\mathbb{R}$ deux fonctions dérivables. Soient $a,b\in\mathbb{R}$ et $k\in\mathbb{N}$ des constantes. Calculer les dérivées par rapport à la variable x des expressions suivantes.

- 1. $\ln(f(x)/g(x))$ (on suppose f > 0 et g > 0).
- 2. $f(x^2)$, f(ax + b), $f^k(x)$, $f^2(e^x)$.
- 3. $f(g^2(x))$, $f^2(g(x))$.

Indications 2 -

Il s'agit d'appliquer la formule de la dérivée d'une composition $f \circ g$:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Correction 2 -

Rappelons la formule de la dérivée d'une composition $f \circ g$:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

1. Notons $F_1(x) = \ln(f(x)/g(x))$. On rappelle que la dérivée de $\ln(u(x))$ est $\frac{u'(x)}{u(x)}$. Il est plus simple ici de commencer par utiliser l'identité $\ln(a/b) = \ln(a) - \ln(b)$, donc $F_1(x) = \ln(f(x)) - \ln(g(x))$ et ainsi :

$$F'_1(x) = \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)}.$$

- 2. Soit $F_2(x) = f(x^2)$. Il s'agit de la composition $f \circ g(x)$ où $g(x) = x^2$ (et donc g'(x) = 2x). Ainsi, $F'_2(x) = 2xf'(x^2)$.
 - Soit $F_3(x) = f(ax + b)$. Il s'agit de de la composition $f \circ g(x)$ où g(x) = ax + b (et donc g'(x) = a). Ainsi $F_3(x) = af'(ax + b)$.
 - Soit $F_4(x) = f^k(x) = (f(x))^k$. Il s'agit de de la composition $u \circ v(x)$ où $u(x) = x^k$ (et donc $u'(x) = kx^{k-1}$) et v(x) = f(x). Ainsi $F_4'(x) = kf'(x)f^{k-1}(x)$.
 - Soit $F_5(x) = f^2(e^x)$. Il s'agit de de la composition $u \circ v \circ w$ où $u(x) = x^2$ (et donc u'(x) = 2x) et v(x) = f(x) et $w(x) = e^x$. On dérive d'abord $v \circ w : (f(e^x))' = e^x f'(e^x)$, puis $u \circ (v \circ w)$. Ainsi $F_5'(x) = 2e^x f'(e^x) f(e^x)$.
- 3. On procède de même pour $F_6(x) = f(g^2(x)) : F_6'(x) = 2 \cdot g'(x) \cdot g(x) \cdot f'(g^2(x))$. Et pour $F_7(x) = f^2(g(x)) : F_7'(x) = 2 \cdot g'(x) \cdot f'(g(x)) \cdot f(g(x))$.

Exercice 3 – Trigonométrie hyperbolique

Le cosinus, sinus et tangente hyperboliques sont les fonctions définies par :

$$ch x = \frac{e^x + e^{-x}}{2} \qquad sh x = \frac{e^x - e^{-x}}{2} \qquad th x = \frac{sh x}{ch x}$$

- 1. Montrer la relation $ch^2 x sh^2 x = 1$.
- 2. Prouver les formules d'addition :

$$ch(a+b) = ch(a) ch(b) + sh(a) sh(b)$$

$$sh(a+b) = sh(a) ch(b) + ch(a) sh(b)$$

$$th(a+b) = \frac{th(a) + th(b)}{1 + th(a) th(b)}$$

- 3. Calculer les dérivées des trois fonctions ; étudier-les et tracer leur graphe.
- 4. Montrer que $x \mapsto \operatorname{sh} x$ définie une bijection de \mathbb{R} dans \mathbb{R} . On note $\operatorname{argsh}(x)$ sa bijection réciproque. En dérivant la relation $\operatorname{sh}(\operatorname{argsh}(x)) = x$, calculer la dérivée de $\operatorname{argsh}(x)$.
- 5. Calculer la dérivée de $f(x) = \ln(x + \sqrt{x^2 + 1})$. En déduire une expression pour argsh x.

Correction 3 -

1.

$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = \frac{1}{4} \left((e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2} \right) = \frac{1}{4} \left((e^{2x} + 2 + e^{-2x}) - (e^{2x} - 2 + e^{-2x}) \right) = 1.$$

2.

$$4(\cosh(a)\cosh(b)+\sinh(a)\sinh(b)) = (e^a+e^{-a})(e^b+e^{-b})+(e^a-e^{-a})(e^b-e^{-b}) = 2(e^{a+b}+e^{-a-b}) = 4\cosh(a+b)$$

On procède de même pour sh(a + b).

$$\frac{\operatorname{th}(a) + \operatorname{th}(b)}{1 + \operatorname{th}(a) \operatorname{th}(b)} = \frac{\frac{\sinh a}{\cosh a} + \frac{\sinh b}{\cosh b}}{1 + \frac{\sinh a}{\cosh a} \frac{\sinh b}{\cosh a}} = \frac{\frac{\sinh a}{\cosh a} + \frac{\sinh b}{\cosh b}}{1 + \frac{\sinh a}{\cosh a} \frac{\sinh b}{\cosh b}} \times \frac{\cosh a \cosh b}{\cosh a \cosh b} = \frac{\sinh a \cosh b + \sinh b \cosh a}{\cosh a \cosh b + \sinh a \sinh b} = \frac{\sinh (a+b)}{\cosh (a+b)} = \operatorname{th}(a+b)$$

3. On a:

$$ch'(x) = sh(x)$$
 $sh'(x) = ch(x)$ $th'(x) = \frac{1}{ch^2(x)} = 1 - th^2(x)$.

L'étude de ces fonctions ne posent pas de problèmes particuliers. Voici leurs graphes :

4. La fonction $x \mapsto \operatorname{sh}(x)$ est continue, $\lim_{-\infty} \operatorname{sh}(x) = -\infty$ et $\lim_{+\infty} \operatorname{sh}(x) = +\infty$. Comme $\operatorname{sh}'(x) = \operatorname{ch}(x) > 0$ alors la fonction sinus hyperbolique est strictement croissante. Ainsi elle réalise une bijection de $]-\infty, +\infty[$ vers $]-\infty, +\infty[$.

Par définition d'une bijection réciproque on a sh(argsh x) = x quel que soit $x \in \mathbb{R}$. On souhaite dériver cette identité : à droite on obtient 1 (la dérivée de x), alors qu'à gauche on applique la formule de la dérivée d'une composition. Ainsi :

$$\operatorname{argsh}'(x) \cdot \operatorname{sh}'(\operatorname{argsh} x) = 1,$$

donc

$$\operatorname{argsh}'(x) \cdot \operatorname{ch}(\operatorname{argsh} x) = 1.$$

Par ailleurs on sait que $\operatorname{ch}^2 u - \operatorname{sh}^2 u = 1$, donc $\operatorname{ch} u = +\sqrt{1+\operatorname{sh}^2 u}$. On applique cette égalité avec $u = \operatorname{argsh} x$ et on utilise que $\operatorname{sh}(\operatorname{argsh} x) = x$ pour obtenir :

$$\operatorname{argsh}'(x) \cdot \sqrt{1 + \operatorname{sh}^2(\operatorname{argsh} x)} = 1.$$

Donc

$$\operatorname{argsh}'(x) \cdot \sqrt{1 + x^2} = 1$$

et ainsi

$$\operatorname{argsh}'(x) = \frac{1}{\sqrt{1+x^2}}.$$

5. La dérivée de $f(x) = \ln(x + \sqrt{x^2 + 1})$ est $f'(x) = \frac{1}{\sqrt{1 + x^2}}$. Ainsi $x \mapsto f(x)$ et $x \mapsto \operatorname{argsh}(x)$ ont la même dérivée. En plus ces deux fonctions prennent la même valeur en x = 0: f(0) = 0 et comme $\operatorname{sh}(0) = 0$ alors on a aussi $\operatorname{argsh}(0) = 0$. Ainsi $f(x) = \operatorname{argsh}(x)$ pour tout $x \in \mathbb{R}$:

$$\operatorname{argsh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right).$$

4

Exercice 4 - Encadrements

- 1. Montrer que $\forall t > 0$, $\left(1 + \frac{1}{t}\right)^t < e$. En déduire $\forall x, y > 0$, $\left(1 + \frac{x}{y}\right)^y < e^x$.
- 2. Montrer que : $\forall t > 1$, $e < \left(1 + \frac{1}{t-1}\right)^t$. En déduire $\forall x, y > 0$, $e^x < \left(1 + \frac{x}{y}\right)^{x+y}$.

Indications 4 -

Passer au logarithme et étudier une fonction quitte à dériver deux fois.

Correction 4 – 1. Par la croissance du logarithme, l'inégalité $\left(1+\frac{1}{t}\right)^t < e$ est équivalente à $t \ln\left(1+\frac{1}{t}\right) < 1$. Étudions la fonction $f(t) = t \ln\left(1+\frac{1}{t}\right)$ sur $]0,+\infty[$. Sa dérivée est $f'(t) = \ln\left(1+\frac{1}{t}\right)-\frac{1}{t+1}$. Il n'est pas clair de déterminer directement le signe de f'(t), on dérive donc une seconde fois : $f''(t) = -\frac{1}{t(t+1)^2}$. Ainsi f''(t) < 0, donc f' est strictement décroissante sur $]0,+\infty[$.

Calculons la limite de f'(t) en $+\infty$. On effectue un développement limité (avec $1/t \to 0$) : $f'(t) \sim \frac{1}{t} - \frac{1}{t+1} = \frac{1}{t(t+1)} \to 0$. Comme f' est strictement décroissante et tend vers 0, alors f'(t) > 0 pour tout $t \in]0, +\infty[$. Ainsi f est strictement croissante.

Calculons la limite de f en $+\infty$. $f(t) = t \ln \left(1 + \frac{1}{t}\right) \sim t \cdot \frac{1}{t} \to 1$. Comme f est strictement croissante et tend vers 1 alors f(t) < 1 pour tout $t \in]0, +\infty[$. Ce qui prouve l'inégalité cherchée. En posant $t = \frac{y}{x}$, on obtient la seconde inégalité.

t	0	+∞
f"(t)	_	
f'(t)		→ 0
f(t)		→ 1

2. Il s'agit en fait de prouver l'inégalité $t \ln \left(1 + \frac{1}{t-1}\right) > 1$. On étudie cette fois la fonction $g(t) = t \ln \left(1 + \frac{1}{t-1}\right)$. L'étude est similaire : $g'(t) = \ln \left(1 + \frac{1}{t-1}\right) - \frac{1}{t-1}$, $g''(t) = \frac{1}{t(t-1)^2}$. Par l'étude des variations et des limites, on prouve g(t) > 1 pour tout t > 0 et l'inégalité voulue. En posant $t = \frac{x+y}{x}$, on obtient la seconde inégalité.

Exercice 5 - Fonction expansive

Soit $f : [0,1] \to [0,1]$ telle que $\forall (x,y) \in [0,1]^2$, $|f(y)-f(x)| \ge |x-y|$. Montrer que f = id ou f = 1-id.

Indications 5 -

Commencer par déterminer quelles sont les valeurs possibles pour f(0) et f(1).

Correction 5 — On a $0 \le f(0) \le 1$ et $0 \le f(1) \le 1$. Donc $|f(1) - f(0)| \le 1$. Mais, par hypothèse, $|f(1) - f(0)| \ge 1$. Par suite, |f(1) - f(0)| = 1 et nécessairement, (f(0), f(1)) = (0, 1) ou (f(0), f(1)) = (1, 0).

- Supposons que f(0) = 0 et f(1) = 1 et montrons que $\forall x \in [0,1]$, f(x) = x. Soit $x \in [0,1]$. On a $|f(x) f(0)| \ge |x 0|$ ce qui fournit $f(x) \ge x$. On a aussi $|f(x) f(1)| \ge |x 1|$ ce qui fournit $1 f(x) \ge 1 x$ et donc $f(x) \le x$. Finalement, $\forall x \in [0,1]$, f(x) = x et f = id.
- Si f(0) = 1 et f(1) = 0, posons pour $x \in [0, 1]$, g(x) = 1 f(x). Alors, g(0) = 0, g(1) = 1 puis, pour $x \in [0, 1]$, $g(x) \in [0, 1]$. Enfin,

$$\forall (x, y) \in [0, 1]^2, |g(y) - g(x)| = |f(y) - f(x)| \ge |y - x|.$$

D'après l'étude du premier cas, g = id et donc f = 1 - id.

— Réciproquement, id et 1 – id sont bien solutions du problème.

Exercice 6 - Loi de réfraction

Soient dans \mathbb{R}^2 : A = (0, a), B = (b, -c) et M = (x, 0) (a, b, c > 0). Un rayon lumineux parcourt la ligne brisée AMB à la vitesse v_1 de A à M et v_2 de M à B. On note $\theta_1 = \text{angle}(\vec{j}, \vec{MA})$ et $\theta_2 = \text{angle}(-\vec{j}, \vec{MB})$.

- 1. Faire une figure.
- 2. Montrer que le temps de parcours est minimal lorsque $\frac{\sin\theta_1}{\nu_1} = \frac{\sin\theta_2}{\nu_2}$.

Indications 6 -

Le lien entre temps, distance et vitesse est $v = \frac{d}{t}$. Étudier ensuite la fonction $x \mapsto t(x)$ qui calcule le temps du trajet de A à B en passant par M.

Correction 6 -

Le temps parcouru est

$$t(x) = \frac{MA}{v_1} + \frac{MB}{v_2} = \frac{\sqrt{x^2 + a^2}}{v_1} + \frac{\sqrt{(b-x)^2 + c^2}}{v_2}.$$

On calcule:

$$t'(x) = \frac{x}{v_1 \sqrt{x^2 + a^2}} - \frac{b - x}{v_2 \sqrt{(b - x)^2 + c^2}}$$

Et on remarque que $\sin \theta_1 = x/MA$, $\sin \theta_2 = (b-x)/MB$, donc

$$t'(x) = \frac{\sin \theta_1}{\nu_1} - \frac{\sin \theta_2}{\nu_2}.$$

D'un point de vue de la physique, on sait qu'il existe un plus court chemin pour le trajet de la lumière. Pour x_0 associé à ce temps minimal, on a $t'(x_0) = 0$, c'est-à-dire

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}.$$

D'un point de vue mathématique nous allons étudier la fonction $x \mapsto t(x)$ et montrer que le minimum existe et est unique. Calculons la dérivée seconde :

$$t''(x) = \frac{a^2}{v_1(x^2 + a^2)^{3/2}} + \frac{c^2}{v_2((b-x)^2 + c^2)^{3/2}}$$

Ainsi t''(x) > 0 quel que soit $x \ge 0$ donc $x \mapsto t'(x)$ est une fonction strictement croissante. Mais on a vu que la dérivée s'annule en x_0 , qui est donc l'unique solution de t'(x) = 0. Ainsi t'(x) est négatif avant x_0 et positif après. On détermine alors les variations de $x \mapsto t(x)$ (voir ci-dessous) : la fonction est décroissante avant x_0 , puis croissante, elle admet donc un minimum en x_0 .

x	$0 x_0 +\infty$
t"(x)	+
t'(x)	
t(x)	t_{\min} $+\infty$

Corrections: Arnaud Bodin. Relecture: Axel Renard.