Sequence models & Attention mechanism | Coursera

Sequence models & Attention mechanism

Graded Quiz • 30 min

Due Mar 30, 2:59 AM EDT

Sequence models & Attention mechanism

TOTAL POINTS 10

1.Question 1

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence *X*.

2.Question 2

In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

- Beam search will run more slowly.
- Beam search will use up more memory.

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)

Beam search will converge after fewer steps.

1 point

3.Question 3

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

4.Question 4

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$

On a dev set example, given an input audio clip, your algorithm outputs the transcript \hat{y} ="I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript y^* = "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 107$$

$P(y^* \mid x) = 7.21 * 108$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ icates the error should be attributed to the RNN rather than to the search algorithm.

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ icates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ icates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ icates the error should be attributed to the search algorithm rather than to the RNN.

1 point

5.Question 5

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$ is suggest you should focus your attention on improving the search algorithm.

6.Question 6

Consider the attention model for machine translation.

Further, here is the formula for $lpha^{\!<\!t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

$$\sum \alpha^{< t,t'>} = 1$$
 (Note the summation is over t .)

$$\sum_{\substack{1 \text{ point}}} \frac{\sum_{i'} \alpha^{\langle t,t'\rangle}}{1} = 1 \text{ (Note the summation is over } t'. \text{)}$$

7.Question 7

The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

8.Question 8

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length T_X is large.

The input sequence length T_X is small.

9.Question 9

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

Cook book
coookkbooooookkk
1 point
10.Question 10
In trigger word detection, $\mathbf{x}^{< t_{>}}$ is:
igorup Features of the audio (such as spectrogram features) at time t .
The \emph{t} -th input word, represented as either a one-hot vector or a word embedding.
igcup Whether the trigger word is being said at time t .
igcup Whether someone has just finished saying the trigger word at time t .
1 point
I, Zhuo Chen, understand that submitting work that isn't my own may result in
permanent failure of this course or deactivation of my Coursera account.