A Bird's Eye View over Discrete Logarithm Problems in Finite Fields

Xiao'ou He

December 14, 2017

Key Laboratory of Mathematics Mechanization, AMSS

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

Motivation

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

Diffie-Hellman, 1976

- The basis of public key cryptography.
- One-way function.
- An example: discrete logarithm problem

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

Case in General

- Cyclic group: $(G, \cdot) = \langle g \rangle$.
- Exponential v. Logarithm
- Generic Algorithms:
 Pohlig-Hellman, Baby-step giant-step, Pollard's rho Method etc.

Case in Finite Fields

- Given: finite filed \mathbb{F}_Q where Q is power of prime p, a generator g of \mathbb{F}_Q^{\times} and arbitrary element $h \in \mathbb{F}_Q^{\times}$.
- Find: $\log_q h$.

Previous Work

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

The \mathcal{L} Notation

$$\mathcal{L}_Q(\beta, c) = \exp((c + o(1))(\log Q)^{\beta}(\log\log Q)^{1-\beta})$$

- c > 0 and $0 \le \beta \le 1$
- $\mathcal{L}_Q(0,c) = (\log Q)^{c+o(1)} = \text{poly}(\log Q),$ $\mathcal{L}_Q(1,c) = (\exp(\log Q))^{c+o(1)} = \exp(\log Q).$
- When $0 < \beta < 1$, $\mathcal{L}_Q(\beta, c)$ is sub-exponential.

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

Overview

- Index Calculus Method
 - 1st sub-exp algorithm, complexity $\mathcal{L}_Q(\frac{1}{2},\cdot)$
 - Adleman, 1979 and Pohlig 1977 independently
- Coppersmith's Method
 - 1st algorithm of complexity $\mathcal{L}_Q(\frac{1}{3},\cdot)$
 - Originally for Q power of 2
 - Generalized to prime powers easily

Overview: Until 2013

All cases solved in $\mathcal{L}_Q(\frac{1}{3},\cdot)$

- Small char: function field sieve (FFS)
- Medium and large char: number field sieve (NFS)

Overview: Small Char

- 1st algorithm of complexity $\mathcal{L}_Q(\frac{1}{4},\cdot)$: Frobenius representation, Joux 2013
- 1st algorithm of complexity quasi-poly: Barbulescu, 2014

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

Overview

Index Calculus Method

Coppersmith's Method

NFS

Joux 13 and Barbulescu 14

Research Plan