mas540 exercises

Jaemin Oh

May 15, 2021

Exercise (4.4).

First, let's show the completeness. Let $\{f_n\} \subset l^2(\mathbb{Z})$ be a Cauchy sequence. Choose n_k such that $||f_{n_{k+1}} - f_{n_k}|| < 2^{-k+1}$. Define $f = f_{n_1} + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k})$ and $g = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|$. Note that $||g|| \le ||f_{n_1}|| + \sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| \le ||f_{n_1}|| + 2 < \infty$. Because, for each $i \in \mathbb{Z}$, $|f(i)| \le g(i) \le ||g|| < \infty$, we can observe that f(i) is absolutely converges. Thus f is well defined function, also in l^2 (: $||f|| \le ||g|| < \infty$). Now let's show that $f_{n_k} \to f$.

$$||f - f_{n_k}|| \le \sum_{m=k}^{\infty} ||f_{n_{m+1}} - f_{n_m}|| \le 2^{-k}.$$

So $f_{n_k} \to f$ as $k \to \infty$ in l^2 . Therefore $l^2(\mathbb{Z})$ is complete.

Now let's show the separability. Let \mathcal{B} be the set of all rational sequence in $l^2(\mathbb{Z})$. Clearly, it is nonempty since the zero sequence is in \mathcal{B} . Let $f \in l^2$. Fix $\varepsilon > 0$. For each $i \in \mathbb{Z}$, choose q_i such that

$$|f(i) - q_i|^2 < \frac{\varepsilon^2}{2^{|i|}}.$$

Let $q: i \mapsto q_i$. Then $||q|| \le ||q - f|| + ||f||$, where

$$||q - f|| = \left(\sum_{-\infty}^{\infty} |q_i - f(i)|^2\right)^{1/2}$$

$$\leq \left(\sum_{-\infty}^{\infty} \frac{\varepsilon^2}{2^{|i|}}\right)^{1/2}$$

$$= \sqrt{3}\varepsilon.$$

Since $||f|| < \infty$, we can see that $q \in l^2$ and $||f - q|| \le \sqrt{3}\varepsilon$. Note that $q \in l^2$ implies $q \in \mathcal{B}$. So \mathcal{B} is dense in l^2 , and clearly \mathcal{B} is countable set.

Exercise (4.15).

Let $\{e_1, e_2, \dots, e_n\}$ be an orthonormal basis of \mathcal{H}_1 . Let $f \in \mathcal{H}_1$, ||f|| = 1. Then $f = \sum_{i=1}^n c_i e_i$, where $\sqrt{\sum |c_i|^2} = 1$. Then

$$||Tf|| = ||c_1Te_1 + \cdots + c_nTe_n||$$

$$\leq |c_1|||Te_1|| + \cdots + |c_n|||Te_n||$$

$$\leq \sum_{i=1}^n |c_i|M$$

$$\leq M \left(\sum_{i=1}^n |c_i|^2\right)^{1/2} \left(\sum_{i=1}^n 1\right)^{1/2}$$

$$= \sqrt{n}M < \infty$$

10

where $M = \max_{1 \le i \le n} ||Te_i||$. Since n is fixed, the above says that T is bounded operator.

Exercise (4.22).

(a) Polarization identity:

$$(f,g) = \frac{1}{4} \left[\|f + g\|^2 - \|f - g\|^2 + i\|f + ig\|^2 - i\|f - ig\|^2 \right].$$

This can be shown by using the hint. (Actually, we have seen it in the lecture.)

Put Tf, Tg in the place of f, g respectively. Since T is linear and ||Tf|| = ||f||, we can easily see that (f, g) = (Tf, Tg).

Now fix $g \in \mathcal{H}$. Then $(f, T^*Tg) = (Tf, Tg)$ by the definition of adjoint, and (Tf, Tg) = (f, g) by isometric property of T. Thus

$$(f, T^*Tg - g) = 0$$

for all $f \in \mathcal{H}$. Therefore $T^*T = I$ by taking $f = T^*Tg - g$.

(b) Let's show the injectivity. Let Tf = Tg. Then

$$0 = ||Tf - Tg|| = ||f - g|| \Rightarrow f = g.$$

Thus T is bijective isometry. Therefore it is an unitary operator.

Now fix $g \in \mathcal{H}$. For each $f \in \mathcal{H}$, there is h such that f = Th because of the surjectivity. Then

$$(f, TT^*g) = (Th, TT^*g)$$

= (h, T^*TT^*g)
= (h, T^*g)
= (Th, g)
= (f, g)

by the definition of the adjoint and $T^*T=I$ because T is an isometry. Therefore

$$(f, TT^*g - g) = 0$$

for all $f \in \mathcal{H}$. By taking $f = TT^*g - g$, we can conclude that $TT^* = I$.

(c) Let $\mathcal{H} = l^2(\mathbb{N})$. Let $f = (f(1), f(2), \dots) \in \mathcal{H}$. Define $T : (f(1), f(2), \dots) \mapsto (0, f(1), f(2), \dots)$. Clearly T is a linear operator, but non-surjective. If we show that T is isometry, then we are done.

$$||Tf||^2 = 0 + \sum_{i=1}^{\infty} |f(i)|^2 = ||f||^2.$$

SoT is an isometry, which is not unitary.

(d) Note that unitary operator is isometry. So, by (a) and Cauchy Schwartz inequality,

$$(Tf, Tf) = (f, T^*Tf) \le ||f|| ||T^*Tf|| = ||f||^2.$$

Thus $||Tf|| \le ||f||$.

For the other direction,

$$(f, f) = (T^*Tf, T^*Tf)$$

= (Tf, TT^*Tf)
 $\leq ||Tf||||TT^*Tf||.$

But $||TT^*Tf||^2 = (TT^*Tf, TT^*Tf) = (Tf, TT^*TT^*Tf) = (Tf, Tf) = ||Tf||^2$ since $(T^*T)^*(T^*T) = T^*TT^*T = I$ by (a). Therefore $(f, f) \leq (Tf, Tf)$, which completes the proof.

Exercise (4.32).

(a) T(cf+dg)(t)=t(cf+dg)(t)=ctf(t)+dtg(t)=cT(f)(t)+dT(g)(t) so T is linear. Note that $t^2\leq 1$ on [0,1]. So

$$||Tf||^2 = \int_0^1 t^2 |f(t)|^2 dt \le \int_0^1 |f(t)|^2 dt = ||f||^2$$

which says that $||T|| \leq 1$.

Also,

$$(Tf,g) = \int_0^1 tf(t)\overline{g(t)}dt$$
$$= \int_0^1 f(t)\overline{tg(t)}dt = (f,Tg)$$

hence $Tg = T^*g$ for all $g \in L^2[0,1]$ by same argument used in exercise 22. Thus T is a bounded linear operator with $T = T^*$.

Let $f_n(t) = \sqrt{2n+1}t^n$. Then $||f_n||^2 = \int_0^1 (2n+1)t^{2n}dt = 1$ for all n. Thus $f_n \in$ the unit ball of $L^2[0,1]$. For any subsequence f_{n_k} ,

$$||Tf_{n_k} - Tf_{n_l}||^2$$

$$= \int_0^1 (2n_k + 1)t^{2n_k + 2} + (2n_l + 1)t^{2n_l + 2} - 2\sqrt{(n_k + 1)(n_l + 1)}t^{(n_k + 1)(n_l + 1)}dt$$

$$= \frac{2n_k + 1}{2n_k + 3} + \frac{2n_l + 1}{2n_l + 3} - \frac{2\sqrt{(n_k + 1)(n_l + 1)}}{(n_k + 1)(n_l + 1) + 1}.$$

As $n_k, n_l \to \infty$, the first two terms go to 1 respectively, but the last term go to 0. So the sequence does not converge. Hence T is non-compact.

(b) Suppose $T\varphi = \lambda \varphi$. Then $t\varphi(t) = \lambda \varphi(t)$ for all $t \in [0,1]$. Then $t\varphi(t)1_{\varphi \neq 0}(t) = \lambda \varphi(t)1_{\varphi \neq 0}(t)$, so $1_{\varphi \neq 0}(t) = 0$, which means $\varphi = 0$. But the zero vector cannot be an eigenvector, hence there is no eigenvector.

Problem (4.1).

Let X be a collection of linearly independent subsets of \mathcal{H} . Impose partial order by the inclusion. Note that X is nonempty since the empty set is in X.

We'll use Zorn's lemma which is equivalent to the AC. Let Y be any totally ordered subset of X. $L_Y = \bigcup_{w \in Y} w$. Then every finite subset of L_Y is in Y, since Y is totally ordered. Hence L_Y is linearly independent, so $L_Y \in X$. But, note that L_Y is an upperbound of Y in X. So Zorn's lemma gives L_m which is maximal element of X.

Now assert that L_m is an algebraic basis of \mathcal{H} . Since $L_m \in X$, L_m is linearly independent. If L_m does not span \mathcal{H} , then there is $f \in \mathcal{H}$ outside of span L_m . Define $L_f = L_m \cup \{f\}$. Then L_f is strictly larger than L_m . But, L_f is linearly independent, since f is outside of span of L_m . Thus $L_f \in X$, which contradicts to the maximality of L_m . Hence L_m spans \mathcal{H} algebraically, so L_m is an algebraic basis.

Now $L_m = \{a_\alpha : \alpha \in I\}$. Let $B = \{e_\alpha = \frac{a_\alpha}{\|a_\alpha\|} : \alpha \in I\}$. Then B is an algebraic basis, consists of unit vectors.

Choose $\{e_i\}_{i\in\mathbb{N}}$. For $f\in\mathcal{H}$,

$$f = \sum_{\alpha \in F} c_{\alpha} e_{\alpha} = \sum_{\alpha \in F \setminus \mathbb{N}} c_{\alpha} e_{\alpha} + \sum_{i=1}^{N} c_{i} e_{i}$$

where F is finite set. Define $l(f) = \sum_{i=1}^{N} ic_i$. Note that N depends on f. Clearly, l is linear: $l(cf+dg) = c \sum_{i=1}^{N} ic_i + d \sum_{i=1}^{N} id_i = cl(f) + dl(g)$. Also $l(e_i) = i$. But, $|l(e_i)| = i \to \infty$ as $i \to \infty$, even though $||e_i|| = 1$. This says l is unbounded linear functional.

13