Recap for Tutorial 7

MH1101

March 20, 2025

1 Limits of Sequences

A sequence $(a_n)_{n\geq 1}$ is said to converge to a limit L (or has a limit L) if and only if

$$\lim_{n \to \infty} a_n = L.$$

Formal definition for limit of sequence:

$$\lim_{n\to\infty} a_n = L \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ such that } |a_n - L| < \varepsilon, \text{ whenever } n > N.$$

If $\lim_{n\to\infty} a_n$ exists, we say that $(a_n)_{n\geq 1}$ converges, otherwise the sequence diverges.

Definition 1. Given a sequence $(a_n)_{n\geq 1}$, a subsequence of (a_n) is of the form

$$a_{n_1}, a_{n_2}, \ldots, a_{n_k}, \ldots,$$

where $1 \le n_1 < n_2 < \dots$ We can also write this subsequence as $(a_{n_k})_{k \ge 1}$

Theorem 1 (Subsequence Test). If a sequence $(a_n)_{n\geq 1}$ converges to L, then every subsequence of (a_n) converges to L.

Theorem 2 (Limit Laws of Sequences). Suppose $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are convergent sequences and c is a constant, then

•

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n.$$

•

$$\lim_{n \to \infty} c \cdot a_n = c \lim_{n \to \infty} a_n.$$

•

$$\lim_{n\to\infty}(a_nb_n)=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n.$$

•

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \text{ if } \lim_{n \to \infty} b_n \neq 0.$$

•

$$\lim_{n \to \infty} (a_n)^p = \left(\lim_{n \to \infty} a_n\right)^p, \text{ if } p > 0, a_n > 0.$$

Theorem 3. If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ for $n \in \mathbb{Z}$, then

$$\lim_{n \to \infty} a_n = L.$$

Theorem 4. If $a_n \leq b_n \leq c_n$ for all $n > N_1$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then

$$\lim_{n \to \infty} b_n = L$$

Proof. Let $\varepsilon > 0$ be given, then there exists $N_2 \in \mathbb{N}$, such that for $n > N_2$, we have

$$-\varepsilon < a_n - L < \varepsilon$$
 and $-\varepsilon < c_n - L < \varepsilon$

Choose $N = \max\{N_1, N_2\}$, for all n > N, we have

$$-\varepsilon < a_n - L \le b_n - L \le c_n - L < \varepsilon \implies |b_n - L| < \varepsilon.$$

Theorem 5. If $\lim_{n\to\infty} a_n = L$ and f(x) is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(L)$$

Proof. Let $\varepsilon > 0$ be given. Since f is continuous at L, there exists $\delta > 0$, such that

$$|x - L| < \delta \implies |f(x) - f(L)| < \varepsilon.$$

Since $a_n \to L$, for the δ chosen above, there exists $N \in \mathbb{N}$, such that for n > N, $|a_n - L| < \delta$. By continuity, this exactly implies

$$|f(a_n) - f(L)| < \varepsilon.$$

2 Extra Exercises

Problem 1. Determine whether the sequence converges or diverges. If it converges, find the limit.

- $\{0, 1, 0, 0, 1, 0, 0, 0, 1, \ldots\}$.
- $\bullet \ a_n = \ln(n+1) \ln n.$
- $\bullet \ a_n = \frac{(-3)^n}{n!}.$
- $\bullet \ a_n = \frac{e^n + e^{-n}}{e^{2n} 1}.$

Problem 2. Show that, if a sequence converges to a limit, then this limit is unique.

(Hint: Prove by contradiction, suppose two different limits.)

Problem 3. Suppose a sequence $(a_n)_{n\geq 1}$ converges to a, and for each n, $a_n\geq 0$. Prove that $a\geq 0$. (Hint: Prove by contradiction, choose $\varepsilon=-a/2$.)