

Module 02

Prof. Sukumai Nandi

Objectives Outline

Outline

CS 348: Module 02: Compilers

Lexical Analysis

Prof. Sukumar Nandi

Department of Computer Science and Engineering Indian Institute of Technology, Guwahati

sukumar@iitg.ac.in

February 10, 2025

Module Objectives

Module 02

Prof. Sukuma Nandi

Objectives & Outline

Lexical Analysi

- Understand Lexical Analysis
- Understand Flex Specification

Lexical Analysis Algorithm

Module 02

Prof. Sukuma Nandi

Objectives Outline

- RE¹ for every Token Class
- Convert Regular Expression to an NFA²
- Convert NFA to DFA³
- Lexical Action for every final state of DFA

 $[\]mathbf{1}_{\mathsf{Regular}\ \mathsf{E} \times \mathsf{pression}}$

²Non-deterministic Finite Automata

³ Deterministic Finite Automata

Lexical Analysis Algorithm

Module 02

Prof. Sukumai Nandi

Objectives Outline

Lexical Analysis Outline

NFA Recognizer for a language having keywords "float" and "for" and identifiers starting with 'float' or 'for' (restrictive). Note that transitions on 'others' are look-ahead

Lexical Analysis Algorithm

Module 02

Prof. Sukumar Nandi

Objectives Outline

Lexical Analysis Outline

DFA Recognizer for a language having keywords "float" and "for" and identifiers starting with 'float' or 'for' (restrictive). Note that transitions on 'others' are look-ahead

Lexical Analysis Rules

Module 02

Prof. Sukuma Nandi

Objectives (Outline

Lexical Analysis Outline number \rightarrow digits optFrac optExp digit \rightarrow 0 | 1 | 2 | ... | 9 digits \rightarrow digit digit* optFrac \rightarrow . digit | ϵ optExp \rightarrow (E (+ | - | ϵ) digit) | ϵ

integer and float constants

id \rightarrow letter (letter | digit)* letter \rightarrow A | B | C ... | Z | a | b | c ... | z digit \rightarrow 0 | 1 | 2 | ... | 9 Character class

FSM for Integer and Floating Point Constants

Module 02

Prof. Sukuma Nandi

Objectives Outline

Token Representation

Module 0

Prof. Sukuma Nandi

Objectives & Outline

Lexemes	Token Name	Attribute Value
Any ws	-	-
if	if	-
then	then	-
else	else	-
Any id	id	Pointer to ST
Any number	number	Pointer to ST
<	relop	LT
<=	relop	LE
==	relop	EQ
!=	relop	NE
>	relop	GT
C3 ³ 3 4 8	relop	P.G. Eukumar Nandi

FSM for Logical Operators

Module 02

