Stationarity of Time Series - II

Time Series Analysis

Contents

- 1. Case Study
- 2. Creating and Plotting Time Series in R
- 3. Checking Stationarity in R
- 4. Dickey Fuller (DF) Test
 - i. DF Test
 - ii. Drawbacks
 - iii. Augmented DF Test

Case Study

Background

• Annual Sales for a specific company from year 1961 to 2017

Objective

• To assess stationarity of time series

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

turnover_annual data

Columns

Year

sales

Creating and Plotting Time Series in R

#Importing the Data turnover_annual <- read.csv("turnover_annual.csv", header=TRUE)</pre> #Creating and Plotting a Time Series Object salesseries<-ts(turnover annual\$sales,start=1961,end=2017)</pre> ts() converts a column from a data frame to a simple time series object. The **start=** and **end=** arguments start and end period.

1990

Time

2000

2010

1960

1970

1980

Interpretation:

The time-series clearly shows a positive trend.

Checking Stationarity - Correlogram

ACF Plot

acf(salesseries,col="blue") ←

Output

acf() returns correlogram with Xaxis indicating lag number andY axis autocorrelation value

Interpretation:

We can observe that there is a very slow decay which is a sign of Non-stationarity.

Plot of 1st Order Differenced Time Series

Creating and Plotting a Differenced Series

salesdiff<-diff(salesseries,difference=1)←

plot(salesdiff,main="Sales Differenced Time Series"

□

Output

- **diff()** returns suitably lagged differences.
- difference= an integer indicating the order of the difference. Here order is 1.

Interpretation:

 Even after first order differencing, the series looks non-stationary.

Correlogram for 1st Order Differenced Time Series

ACF Plot

acf(salesdiff,col="blue")

Output

Interpretation:

- Intuitive conclusion about the non-stationarity even after differencing is confirmed in this ACF plot as the decay is still slow.
- Stationarity is not achieved with first difference.

Determining Order of Differencing

Install & load package "forecast"

```
install.packages("forecast")
library(forecast)
ndiffs(salesseries)
[1] 2

salesdiff2<-diff(salesseries,diff
plot(salesdiff2,col="red")</pre>
```

ndiffs() by default uses a Unit Root test to estimate the number of differences required.

Interpretation:

 After 2nd order differencing, the series looks **stationary**.

Correlogram for 2nd Order Differenced Time Series

ACF Plot

acf(salesdiff2,col="blue")

Output

Interpretation:

- Intuitive conclusion about stationarity is confirmed in this ACF plot.
- Stationarity is achieved with 2nd order difference.

Analytical Method – Dickey Fuller (DF) Test

- A linear stochastic process has a unit root if "1" is the root of the process's characteristic equation. Such a process is non-stationary.
- Dickey and Fuller pioneered idea of testing for unit roots for stationarity checking.

Consider X_t (t=1,2,3,...) is a time series of the form

$$X_{t} = \rho X_{t-1} + U_{t}$$
(1)

If p=1 then X_t becomes a random walk

- We assume that $U_t \sim IID$ (0, σ^2), i.e U_t is a white noise
- Therefore, we are interested in testing for $\rho=1$

Dickey Fuller (DF) Unit Root Test

Objective

To test the **null hypothesis** that **time series is not stationary**

Null Hypothesis
$$H_0$$
: $\rho=1$

Alternate Hypothesis H_1 : $\rho < 1$

$$(X_{t}-X_{t-1}) = \Delta X_{t} = (\rho-1) X_{t-1} + U_{t}$$
.....from (1)

$$H_0$$
: ρ *=0 , H_1 : ρ *<0, ρ *=(ρ -1)

Test Statistic	(ρ*/SE(ρ*))
	Test statistic follows DF distribution under null
Decision Criteria	Reject the null hypothesis tcal < DF table value

Dickey Fuller Test

```
# Install & load package "urca" for executing Dickey Fuller Test
install.packages("urca")
library(urca)

df<-ur.df(salesseries, lag=0) 
ur.df() performs a Dickey Fuller unit
summary(df)
# Output</pre>
# Output
```

```
Augmented Dickey-Fuller Test Unit Root Test
Test regression none
Call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
         10 Median
  Min
                          Max
-73514 -19075 -8490
                   3412 76065
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.064334 0.003338 19.27 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 25950 on 55 degrees of freedom
Multiple R-squared: 0.871, Adjusted R-squared: 0.8687
F-statistic: 371.5 on 1 and 55 DF, p-value: < 2.2e-16
Value of test-statistic is: 19.2745
Critical values for test statistics:
    1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
```

Interpretation:

 Time series is non-stationary as value of test statistic is greater than 5% critical value.

Dickey Fuller Test

checking stationarity for series with difference of order 2

```
df2 <- ur.df(salesdiff2,lags = 0)
summary(df2)</pre>
```

Output

```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression none
Call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
  Min
          1Q Median
                            Max
-69843 -8676
             7079 22229 84580
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
z.lag.1 -1.4639 0.1229 -11.91 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 27740 on 53 degrees of freedom
Multiple R-squared: 0.7279, Adjusted R-squared: 0.7228
F-statistic: 141.8 on 1 and 53 DF, p-value: < 2.2e-16
Value of test-statistic is: -11.9083
Critical values for test statistics:
    1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
```

Interpretation:

 Time series is stationary as value of test statistic is less than 5% critical value.

Dickey Fuller Test – Drawbacks

- If a simple AR(1) model is used when in fact X_t follows an AR(p) process then the error term will be autocorrelated.
- Autocorrelated errors will invalidate the use of DF distributions, as it assumes errors is white noise.

Augmented Dickey-Fuller Test is a measure to fix this problem.

 The most widely offered criticism of the DF-test, however, is its tendency to over-reject the null hypothesis when its true and under-reject the null hypothesis when its false

Augmented Dickey Fuller Test

$$X_{t} = \alpha_{0} + \rho_{1}X_{t-1} + \rho_{2}X_{t-2} + \rho_{3}X_{t-3} + ... + \rho_{p}X_{t-p} + U_{t}.$$

$$\Delta X_{t} = \alpha_{0} + \alpha^{*}X_{t-1} + \mathbf{\phi}_{1} \Delta X_{t-1} + \mathbf{\phi}_{2} \Delta X_{t-2} + + \mathbf{\phi}_{p} \Delta X_{t-p+1} + U_{t}.$$

$$\mathbf{\phi}_{1} = -(\rho_{2} + \rho_{3} + + \rho_{p}), \ \alpha^{*} = (\alpha_{1} + \alpha_{2} + ... + \alpha_{p}) - 1$$

Null Hypothesis H_0 : ρ *=0 Alternate Hypothesis H_1 : ρ *<0 ρ *=(ρ -1)

Test Statistic	(ρ*/SE(ρ*)) Test statistic follows DF distribution under null
Decision Criteria	Reject the null hypothesis if tcal < DF table value

Quick Recap

Correlograms

• acf() and pacf() functions in base R generate Correlograms

Differencing a Time Series

- Simple numeric function **diff()** can be used to difference a time series
- **ndiffs()** function generates order of differencing by applying the Dickey Fuller test

Dickey Fuller Test

- ur.df() function from the package urca performs a Dickey Fuller test
- The output gives test statistic and critical values for the test statistic