9.1 Definition of $\arcsin x$, the Inverse Sine Function

Recall that a function has an inverse if it is 1-to-1 (e.g. it passes the horizontal line test).

Notice that x^2 and $\sin(x)$ are on restricted domains.

Without restriction on its domain, sin(x) is NOT 1-to-1:

The range of $\sin(x)$ is [-1,1] and all of these values are attained on a restricted domain of $[-\pi/2,\pi/2]$:

Definition. (Inverse Sine and Cosine)

 $y = \sin^{-1}(x)$ is the value of y such that $x = \sin(y)$, where $-\pi/2 \le y \le \pi/2$.

 $y = \cos^{-1}(x)$ is the value of y such that $x = \cos(y)$, where $0 \le y \le \pi$.

The domain of both $\sin^{-1}(x)$ and $\cos^{-1}(x)$ is $\{x \mid -1 \le x \le 1\}$.

Note: The inverse sine function can be denoted as $\arcsin(x)$ or $\sin^{-1}(x)$.

This means that $\sin^{-1}(x) \neq \frac{1}{\sin(x)}$.

Similarly, $\arccos(x)$ and $\cos^{-1}(x)$ denote the inverse cosine functions.

Example. Solve the following:

$$\sin^{-1}(0) = 0$$

$$\cos^{-1}(-1) = \boxed{77}$$

$$\cos(x) = -1$$

$$\arcsin(1) = \sqrt{2}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = 27$$

$$\cos(x) = -\frac{1}{2}$$

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$

$$\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

9.2 The Functions $\arctan x$ and $\operatorname{arcsec} x$

Similar to $\sin^{-1}(x)$, we also have inverse functions for the restricted $\tan(x)$ and $\sec(x)$ functions.

Definition. (Inverse Tangent and Secant)

 $y = \tan^{-1}(x)$ is the value of y such that $x = \tan(y)$, where $-\pi/2 < y < \pi/2$.

The domain of $\tan^{-1}(x)$ is $\{x \mid -\infty < x < \infty\}$.

 $y = \sec^{-1}(x)$ is the value of y such that $x = \sec(y)$, where $0 \le y \le \pi$, $y \ne \pi/2$.

The domain of $\sec^{-1}(x)$ is $(-\infty, -1] \cup [1, \infty)$

The Just In Time book does not include information on $\cos^{-1}(x)$, $\cot^{-1}(x)$ and $\csc^{-1}(x)$. Section 1.4 of Briggs provides a very nice reference:

Definition. (Other Inverse Trigonometric Functions)

 $y = \cot^{-1}(x)$ is the value of y such that $x = \cot(y)$, where $0 < y < \pi$.

The domain of $\cot^{-1}(x)$ is $\{x \mid -\infty < x < \infty\}$.

 $y = \csc^{-1}(x)$ is the value of y such that $x = \csc(y)$, where $-\pi/2 \le y \le \pi/2$, $y \ne 0$.

The domain of $\csc^{-1}(x)$ is $(-\infty, -1] \cup [1, \infty)$

Function	Restricted Domain	Range
$\sin(x)$	$[-\pi/2,\pi/2]$	[-1,1]
$\cos(x)$	$[0,\pi]$	[-1,1]
tan(x)	$(-\pi/2,\pi/2)$	$(-\infty,\infty)$
$\cot(x)$	$(0,\pi)$	$(-\infty,\infty)$
sec(x)	$[0,\pi/2)\cup(\pi/2,\pi]$	$(-\infty,-1]\cup[1,\infty)$
$\csc(x)$	$[^{-\pi\!/2},0)\cup(0,^{\pi\!/2}]$	$(-\infty,-1]\cup[1,\infty)$

Function	Domain	Range
$\sin^{-1}(x)$	[-1, 1]	$[-\pi/2,\pi/2]$
$\cos^{-1}(x)$	[-1,1]	$[0,\pi]$
$\tan^{-1}(x)$	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$
$\cot^{-1}(x)$	$(-\infty,\infty)$	$(0,\pi)$
$\sec^{-1}(x)$	$(-\infty,-1]\cup[1,\infty)$	$[0,\pi\!/2)\cup(\pi\!/2,\pi]$
$\csc^{-1}(x)$	$(-\infty,-1]\cup[1,\infty)$	$[-\pi/2,0) \cup (0,\pi/2]$

$$-\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

Example. Solve the following:

$$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \boxed{7}$$

$$\sec^{-1}(2) = \boxed{7}$$

$$\sec^{-1}(2) = \boxed{7}$$

$$\sec(x) = 2$$

$$\sec(x) = 2$$

$$\sec^{-1}(2) = \frac{\pi}{3}$$

$$\sec(x) = 2$$

$$\cos(x) = \frac{1}{2}$$

$$\cot^{-1}(-\sqrt{3}) = 5\frac{\pi}{6}$$

$$\cot^{-1}(-\sqrt{3}) = \frac{5\pi}{6}$$

$$\cot^{-1}(-\sqrt{3}) = \frac{5\pi}{6}$$

9.3 Inverse Trigonometric Identities

While $\sin(x)$ and $\sin^{-1}(x)$ are inverse functions, the inverse relationship only holds when working in the correct domains:

$$\sin^{-1}(\sin(\pi)) = \sin^{-1}(0) = 0 \neq \pi$$

$$\sin(\sin^{-1}(-1)) = \sin(-\pi/2) = -1$$

Example. Solve the following:

$$\tan(\tan^{-1}(5)) = 5$$

$$\therefore \quad \text{Domain of } \tan^{-1}(x)$$

$$is \quad (-\infty, \infty)$$

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(-1\right) = -\frac{\pi}{4}$$

Range of $\tan^{-1}(x)$

is $(-\frac{\pi}{2}, \frac{\pi}{2})$

$$\cos\left(\arcsin\frac{1}{2}\right) = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos^{-1}(\cos(5\pi)) = \cos^{-1}(-1) = T$$

$$\cos(x) \text{ is restricted}$$

$$\cos(x) \text{ is restricted}$$

$$\cos(x) \text{ is restricted}$$

$$\cos(x) \text{ and}$$

$$\cos(x) \text{ is restricted}$$

$$\cos(x) \text{ and}$$

$$\cos(x) \text{ and}$$

$$\cos(x) \text{ has a range}$$

$$\cos(x) \text{ has a range}$$

$$\sin^{-1}\left(\sin\left(\frac{7\pi}{3}\right)\right)$$

$$= \sin^{-1}\left(\sin\left(\frac{7\pi}{3}\right)\right)$$

$$= \sin^{-1}\left(\sin\left(\frac{7\pi}{3}\right)\right)$$

$$= \sin^{-1}\left(\frac{5\pi}{3}\right)$$

$$= \sqrt{12\pi}$$

$$\tan\left(\sec^{-1}(10)\right) = \sqrt{99}$$

$$\sin\left(2\sin^{-1}\left(\frac{3}{5}\right)\right)$$

$$Sin(20) = 2 Sin 0 cos 0$$

= $2(\frac{3}{5})(\frac{4}{5}) = \sqrt{\frac{24}{25}}$

Example. Simplify the following using triangles.

$$\cos\left(\tan^{-1}(x)\right) = \frac{1}{\sqrt{1+x^2}}$$

$$\sec\left(\underline{\sin^{-1}(x)}\right) = \sqrt{1-x^2}$$

$$\cos\left(2\sin^{-1}(x)\right)$$

$$= \cos^2 0 - \sin^2 0 = (1 - x^2)^2 - (x)^2 = [1 - 2x^2]$$

$$\sin\left(2\tan^{-1}(x)\right)$$

$$\sin\left(2\tan^{-1}(x)\right)$$

$$= \sin\left(2\cos\theta\right) = 2\sin\theta \cos\theta$$

$$= 2\frac{x}{\sqrt{1+x^2}}$$

$$= 2x$$

