

Recherche opérationnelle pour l'optimisation des flux de brancardiers à l'hôpital

Projet tuteuré de 5ème année 2022/2023

Sommaire

Contexte et Objectif du projet

Contexte - Entreprise cliente

Contexte - Brancardage

Un des systèmes de transport les plus importants, impact direct sur les soins des patients. Composé de plusieurs étapes qui doivent être exécutées rapidement et soigneusement.

Contexte - VRP

Vehicle Routing Problem

- « Problème de tournées de véhicules ».
- C'est une version étendue du problème du voyageur de commerce (TSP, Travel Salesman Problem).
- Classe de problèmes de recherche opérationnelle et d'optimisation combinatoire.
- Le but, déterminer les tournées d'une flotte de véhicules pour visiter des clients.
- Il vise à minimiser le coût, le temps, ou la distance d'une livraison afin de définir des plannings.

Exemple de VRP classique

Objectif

Grands Principes à Respecter

Brancardier

- Respecter les horaires des brancardiers.
- Respecter la charge de travail journalière maximale des brancardiers.
- Homogénéiser
 l'affectation de missions.

03

Mission

- Caractéristiques des missions (Heure de départ et d'arrivée, durée, etc).
- Plusieurs types de missions.
- Priorité

Système

- Synchroniser les missions à deux brancardiers.
- Limiter les retards des brancardiers et leurs déplacements inutiles.
- Imposer une exécution chronologique des missions.

Méthode Heuristique Traitement des Affectation de la Récupération des Affectation des temps Tri des missions sur priorisation des données de trajet la priorité missions Appel de la Fin de la récupération fonction globale des missions **Affectations des** brancardiers

Méthode exacte

Changements apportés - Fonction Objective

C'est la fonction d'optimisation que l'on veut atteindre pour notre modèle.

$$Z = \min\left(\sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{B} D_{moyen_{ij}} * x_{ij}^{k} + \sum_{i=0}^{N} \sum_{k=1}^{B} \left(late_{i}^{k}\right) + \sum_{k=1}^{B} (t_{k}^{-} + t_{k}^{+})\right)$$

- Minimiser le temps de trajet à vide.
- Minimiser le retard accumulé sur la journée.
- Diminuer l'écart du nombre de missions affectées aux brancardiers.

^{[1].} Bouabdallah, M.N., Rached, M., Fondrevelle, J., Bahroun, Z., (2013). "Organization and management of hospital patient transportation system".

Changements - Nouvelles Contraintes

$$\left(Tdep_i^k \geq Trdv_i - D_i\right) \& \& (Tdep_i^k \leq Trdv_i + R_i + D_i)$$

Création de la fenêtre de temps et variation du départ en mission en fonction de cette dernière.

$$\forall i \in N, \forall k \in B$$

$$Tdep_{i\neq 0}^{k} \le Tdep_{i\neq 0}^{l} + M * (1 - x_{ij}^{k})^{n}$$

$$\forall i, j \in \mathbb{N}^2$$
, $ij > 0, \forall k, l \in \mathbb{B}^2$

Synchronisation de l'heure de départ des brancardiers pour les missions nécessitant d' être deux.

Méthode métaheuristique

Méthode métaheuristique

Choix du modèle VRP

→ Problème de minimisation :

Jeux de données

2 jeux fictifs

2 jeux réels

13 missions

- → 5 brancardiers
- → Échelle de temps de 0 à 100
- → 6 missionsà 1 brancardier
- → 7 missions à 2 brancardiers

25 missions

- → 5 brancardiers
- → Échelle de temps de 0 à 100
- → 16 missions à 1 brancardier
- → 9 missions à 2 brancardiers

50 missions

- → 20 brancardiers
- → Échelle de temps de 8h00-17h15
- → 35 missions à 1 brancardier
- → 15 missions à 2 brancardiers

80 missions

- → 20 brancardiers
- → Échelle de temps de 8h00-17h15
- → 57 missions à 1 brancardier
- → 23 missions à 2 brancardiers

Indicateurs

$$\left(\sum_{x=1}^{N_1} x + 2 * \sum_{y=1}^{N_2} y\right) / B \le 5,15$$

Avec N_y = nb de mission à x brancardiers, B = nombre total de brancardiers.

$$\left(\sum_{x=1}^{N_1} tpsMiss_x + 2 * \sum_{y=1}^{N_2} tpsMiss_y\right) / B < \sum_{k=1}^{B} Tra_{\max}^k / B$$

 $(\sum_{x=1}^{N_1} tpsMiss_x + 2 * \sum_{x=1}^{N_2} tpsMiss_y) / B < \sum_{k=1}^{B} Tra_{\max}^k / B$ Avec B = nombre total de brancardiers,

Avec B = nombre total de brancardiers,

Tra = durée maximale de travail autorisé en une journée pour Avec B = nombre total de brancardiers, Tra_{max} = durée maximale de travail autorisé en une journée pour un brancardier.

$$\max{(\sum_{y=1}^{N}\sum_{i=1}^{N}\frac{\max{(\min{(d_y,d_i)}-\max{(Hrdv_y,Hrdv_i)},0)}}{\min{(d_y,d_i)}-\max{(Hrdv_y,Hrdv_i)}})} < B$$

Avec d_v =Hrdv_v+tpsMoy_v l'heure de fin de la mission x, Hrdv, = heure de début de la mission x, tpsMoy, = durée moyenne de la mission x, B = nombre total de brancardiers.

Indicateurs

- Évaluation de la charge de travail par rapport au nombre de brancardiers
- Comparaison durée totale des missions sur une journée par brancardier-durée de travail maximale autorisée par brancardier par jour
- Comparaison chevauchement maximum de missions en simultanée-nombre de brancardiers

Indicateurs

1	Α	В	С	D
1	Indicateurs	N°1	N°2	N°3
2		4	20	3
3	Seuil	5,15	300	5

1	А	В	C	D
1	Indicateurs	N°1	N°2	N°3
2		6,8	25	3
3	Seuil	5,15	300	5

1	А	В	C	D	
1	Indicateurs	N°1	N°2	N°3	
2		5,15	4494	8	
3	Seuil	5,15	25200	20	

Récupération des résultats

Résultats - Méthode exacte

Nombre de mission	1B	2B	Nombre de brancardier	Temps d'exécution (seconde)	Répartition (nb de mission)	Retard cumulé (seconde)
13	6	7	4	7	4,4,5,3	25
13	6	7	5	6	3,3,3,3,3	39
13	6	7	6	10	1,2,5,2,1,2	47
25	13	12	4	38	6,8,9,7	175
25	13	12	5	45	7,1,7,8,6	187
25	13	12	6	71	12,8,0,1,4,3	171
50	35	15	4	590	14,13,13,17	12260
50	35	15	5	185	13,14, 9,13, 8	5808
50	35	15	6	150	8,10,12, 8,11, 8	7260
80	57	23	4	Erreur de calcul		
80	57	23	5			
80	57	23	6			
80	57	23	7			
80	57	23	8	3243	11,11,14,12,12,11,13,8	15540

- Implémenté dans l'IDE CPLEX ILOG Studio.
- Résultat cohérent avec la méthode utilisée.
- Un temps d'exécution beaucoup trop long.
- Une répartition des missions plutôt bonne.
- Un retard cumulé cohérents mais qui reste à comparer.

Résultats - Méthode heuristique

Nombre de mission	1B	2B	Nombre de brancardier	Temps d'exécution (seconde)	Répartition (nb de missions)	Retard cumulé (seconde)
50	35	15	4	0.07	17,13,15,13	24000
50	35	15	5	0.12	17,11,15, 5, 9	16800
50	35	15	6	0.11	11,13,10, 7, 9,11	12600
80	57	23	4	0.14	30,24,21,23	51900
80	57	23	5	0.13	28,19,23,15,11	38400
80	57	23	6	0.12	22,20,13,18,13, 8	35700
80	57	23	7	0.13	21,11,20,13,11,10,13	25200
80	57	23	8	0.15	21,11,20,13,11,10,13,4	25200

- Implémenté avec Python.
- Testé seulement sur les données réelles.
- Un temps d'exécution très rapide.
- Une répartition des missions moins partiale.
- Un retard cumulé très élevé.

Comparaison des résultats

Temps d'exécution

- L'heuristique bien plus performante
- Résultats de la méthode exacte assez performants pour un jeu de données moyen.

Cumul du retard

 Méthode heuristique moins performante que l'exacte.

Répartition du travail

 Plutôt efficace dans les deux cas, mais dépend du jeu de données et du nombre de brancardiers impliqués.

Solution optimale : La méthode heuristique

Pour les grands jeux de données

Vitesse d'exécution

Pas de frais et pas de grandes puissances de calcul nécessaire

Ressources nécessaires

De 15h à 5h de retard pour 80 missions

Pseudooptimisation du retard

Gestion de projet

Conclusion

Ce qui est fait

- → Méthode heuristique fonctionnelle
- Méthode exacte sur des jeux de données de petites tailles
- → Documentation Optaplanner

Problèmes rencontrés

- → Retard au départ
- → Sujet complexe
- → Prise en main d'OptaPlanner

Ce qui reste à faire

- Décomplexifier le problème de la méthode exacte
- → Terminer la formulation mathématique des indicateurs
- → Poursuivre Optaplanner

Merci pour votre attention

