

TAYLORPOLYNOME UND POTENZREIHEN

- * Taylorpolynom Kosinus. Berechnen Sie das Taylorpolynom zweiten Grades mit Entwicklungspunkt $x_0 = 0$ von $\cos(x)$.
 - 1. Bestimmen Sie damit einen Näherungswert für $\cos(0,2)$.
 - 2. Geben Sie eine Fehlerabschätzung mit dem Restglied an und vergleichen Sie ihre Resultate mit dem Taschenrechner.

Taylorpolynom Sinus. Berechnen Sie das Taylorpolynom $T_n(x)$ vom Grad n=5 zur Funktion $\sin x$ an der Stelle $x_0=\frac{\pi}{2}$.

- 1. Geben Sie eine Abschätzung für den Fehler $|\sin(x)-T_5(x)|$ im Intervall $[\frac{\pi}{4},\frac{3}{4}\pi]$ an.
- 2. Wie groß ist der Fehler an den Stellen $x=\frac{\pi}{4}$ und $x=\frac{3}{4}\pi$ tatsächlich?

Taschenrechner. Berechnen Sie mit Hilfe geeigneter Taylorpolynome bis auf einen absoluten Fehler $\leq 0{,}001$:

* 1.
$$\sqrt{2}$$

$$3. \pi$$

 $\mathit{Hinweise}.$ zu 2): $e=e^1$ und e<3.zu 3): $\frac{\pi}{4}=\arctan(1)$ (siehe Homepage).

Potenzreihen. Berechnen Sie die Konvergenzradien:

- 1. Taylorreihe von $e^{\boldsymbol{x}}$ an der Stelle $x_0=0$
- $2. \ \sum_{k=0}^{\infty} x^k$
- $3. \sum_{n=0}^{\infty} \frac{n}{2^n} x^n$
- $4. \sum_{n=1}^{\infty} \frac{2^n}{n} x^n$