

> Конспект > 2 урок > Метрики в задаче ранжирования

> Оглавление

```
> Оглавление
> Что измерять в ранжировании?
> Оценка качества ранжирования
   Пример
> Precision, Recall, Fb-мера и PR-кривая
   Почему не ассигасу?
   Precision
   Recall
   Fb-мера
   PR-кривая
      Пример
> Average Precision
   Пример
   Mean Average Precision
> Переход к многоуровневой задаче, Gain
   Пример
   Normalized DCG
> PFound (Yandex)
> Исторические метрики
   MRR
      Пример
   Kendall rank correlation coefficient (Kendall's \tau)
> Резюме
```

> Что измерять в ранжировании?

Качество/точность — насколько аккуратна система ранжирования?

Измеряем возможности системы ранжировать релевантные документы выше нерелевантных.

Эффективность — насколько быстро выдается ответ? Какое количество ресурсов необходимо для формирования ответа?

Измеряем затраты на память и время формирования ответа.

Удобство использования — насколько полезна система для решения задач? Пользовательские ощущения, UX.

> Оценка качества ранжирования

Методология оценки Кранфилда (Cranfield Evaluation Methodology):

- Зафиксированный набор документов;
- Зафиксированный набор запросов;
- Оценки релевантности пар (в идеале оценки даются пользователями системы);
- Наборы должны быть репрезентативными.

Пример

Пусть у нас есть набор запросов $Q_1,Q_2,...Q_n$ и база документов $D_1,D_2,...D_m.$ Также у нас есть оценки релевантности каждого запроса с каждым документом.

- + плюс: документ соответствует запросу.
- минус: документ нерелевантен.

В модель 1 и модель 2 подаём документы и запросы (рассмотрим далее Q_1), а от них получаем предсказания по релевантным документам:

- Модель 1: три документа;
- Модель 2: шесть документов.

С помощью заранее заготовленной и размеченной таблицы релевантности мы можем посчитать, насколько много полезной информации в нашей выдаче.

Выбор модели зависит от решаемой задачи

> Precision, Recall, Fb-мера и PR-кривая

Метрики точности (*precision*) и полноты (*recall*) — это основные метрики в информационном поиске. Они применимы к задаче ранжирования, когда наша разметка содержит два класса: релевантно и нерелевантно.

Почему не ассигасу?

Доля правильных ответов (*accuracy*) является плохой метрикой, так как практически всегда у нас невероятно сильный дисбаланс классов. Можно сделать 99.9% ассигасу системой, которая практически ничего не выдает. Но что более важно — метрика получается очень нечувствительной, так как мы буквально находимся на её критическом значении, т.е. около единицы (максимума).

Метрики обычно рассчитываются по топу документов — например, по выдаче K документов. Тогда используется обозначение metric@K. Например, мы рассчитали точность для K=5 первых документов: Precision@5.

Precision

Precision — доля объектов, отнесённых классификатором к положительным и действительно являющимися положительными.

relevant documents — релевантные документы
$$precision = \frac{|\{relevant\ documents\}| \cap |\{retrieved\ documents\}|}{|\{retrieved\ documents\}|}$$

Recall

Recall показывает, какую долю объектов положительного класса из всех объектов положительного класса нашёл алгоритм.

$$recall = \frac{|\{relevant\ documents\}| \cap |\{retrieved\ documents\}|}{|\{relevant\ documents\}|}$$

Fb-мера

 F_{eta} -мера — агрегированный критерий качества precision и recall , где eta показывает вес точности в метрике.

$$F_1$$
 — среднее гармоническое precision

и
$$\operatorname{recall}$$
 при $\beta=1.$

$$F_{eta} = (1 + eta^2) \cdot rac{precision \cdot recall}{(eta^2 \cdot precision) + recall}$$

PR-кривая

Построение:

ID оффера ID модел		ID модели	Предсказание формулы	Правильный ответ	
	a01	1	6.4	1	
	a01	3	0.7	0	
	b02	2	0.6	1	
	c03	2	-0.8	0	

- 1. Сортируем предсказания по убыванию релевантности.
- 2. Считаем значение точности и полноты по первой паре.
- 3. Понижаем значение порога, чтобы выше порога было две пары.

- 4. Повторяем до тех пор, пока не добавим все элементы.
- 5. Опционально применить отсечение (Recall@Precision=N).

Метрикой будет площадь под PR-кривой (PR-AUC):

Пример

Рассмотрим несколько графиков <a> Р <a> Р <a> Р <a> Р <a> Ставим <a> Ставим

Фиолетовая и синяя модели работают практически идеально.

Красная — самая плохая.

Посмотрим на салатовую и бирюзовую линии:

Если мы будем сравнивать модели по PR-AUC, то выберем салатовую. Однако если смотреть на первую часть графика, голубая модель лучше при высоких значениях Precision.

Поэтому при решении конкретной задачи, возможно, лучше сделать выбор в пользу бирюзовой модели: при той же точности (например, 0.8), значение Recall будет выше (больше матчей).

> Average Precision

Average Precision (*AP*) показывает, насколько много релевантных объектов сконцентрировано среди самых высоко оценённых. Чувствительна к порядку ранжирования в топе.

$$AP = \sum_{K} (Recall@k - Recall@[k-1]) \cdot Precision@k$$

Пример

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Результаты запроса, отранжированные по предсказанной релевантности (Predicted Relevance)

Наша система нашла 4 релевантных документа — будем считать, что это все релевантные документы.

Теперь посчитаем точность (Precision) до k позиции:

					(Кол-во корректных предсказаний) / k
k	Document ID	Predicted Relevance	Actual Relevance	Всего релевантных нашли	Скользящая сумма
1	06	0.90	Relevant (1.0)	1	0 + 1/1 = 1
2	03	0.85	Not Relevant (0.0)	1	1
3	05	0.71	Relevant (1.0)	2	1 + <mark>2/3</mark> = 1.67
4	00	0.63	Relevant (1.0)	3	1.67 + <mark>3/4</mark> = 2.42
5	04	0.47	Not Relevant (0.0)	3	2.42
6	02	0.36	Relevant (1.0)	4	2.42 + <mark>4/6</mark> = 3.08
7	01	0.24	Not Relevant (0.0)	4	3.08 3.08 4 = 0.77
8	07	0.16	Not Relevant (0.0)	4	3.08

Mean Average Precision

MAP — среднее AP по всем запросам Q

$$MAP = \frac{\sum_{q=1}^{Q} AP(q)}{Q}$$

> Переход к многоуровневой задаче, Gain

Возьмем три уровня релевантности:

- 1. Нерелевантно;
- 2. В целом релевантно;
- 3. Очень релевантно, точное соответствие.

Пример

Есть запрос, для которого найдены 7 документов. Посчитаем функцию Gain, значения которой равны порядковым номерам уровней релевантности.

Потом посчитаем кумулятивную сумму до k объекта. В последней строке "пирамидки" — итоговый кумулятивный Gain (Cumulative Gain, CG).

	"Gain"	Cumulative Gain
D1	3	3
D2	2	3+2
D3	1	3+2+1
D4	1	3+2+1+1
D5	3	3+2+1+1+3
D6	1	3+2+1+1+3+1
D7	2	3+2+1+1+3+1+2

Минусы подхода: с нечувствительный к ранжированию внутри набора объектов.

	"Gain'	Discounted Cumulative Gain
D1	3	3
D2	2	3 + 2/log(<mark>3</mark>)
D3	1	$3 + 2/\log(3) + 1/\log(4)$
D4	1	$3 + 2/\log(3) + 1/\log(4) + 1/\log(5)$
D5	3	•••
D6	1	DCG@7 = $3 + 2/\log(3) + + 2/\log(8) \sim 7.38$
D7	2	DCG(W) = 3 + 2/10g(3) + + 2/10g(6) /
		IdealDCG@7 = $3 + 3/\log(3) + + 1/\log(8) \sim 7.83$

Для нашего топа DCG@7 = 7.38, а идеальный IdealDCG@7 = 7.83

При полностью правильном ранжировании в примере максимальный $_{
m DCG}$, который можно получить: IdealDCG@7=7.83.

Normalized DCG

Получаем ещё одну метрику, которая часто встречается в задачах ранжирования:

$$\begin{split} nDCG@k &= \frac{DCG@k}{IdealDCG@k} \\ nDCG &\in [0,1] \end{split}$$

> PFound (Yandex)

Значение метрики будет оценкой вероятности найти релевантный результат в выдаче модели:

$$pfound = \sum_{i=1}^{n} pLook[i] \cdot pRel[i]$$

pLook[i] — вероятность просмотреть i-й документ из списка pRel[i] — вероятность того, что i-й документ окажется релевантным (например, 0%, 50%, 100% для трёхуровневой шкалы).

Для расчёта pLook[i] используются два предположения:

- результаты ранжирования просматриваются сверху вниз
- процесс прекращается в случае нахождения релевантного результата либо без каких-то определённых причин (например, если "надоело")

$$pLook[i] = pLook[i-1] \cdot (1-pRel[i-1]) \cdot (1-pBreak)$$
 $pBreak$ — вероятность прекращения просмотра выдачи

> Исторические метрики

MRR

Среднеобратный ранг (Mean reciprocal rank, MRR) — среднее гармоническое между рангами.

$$MRR = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{rank_i}$$

Метрика подразумевает, что есть только один релевантный документ на запрос. Пытаемся оценить, насколько далеко от топа находится этот документ.

Похожа на 📭 с той лишь оговоркой, что релевантный документ один.

Пример

Запрос	Ответы	Правильный ответ	Ранг	Обратный ранг
кочерга	кочерг, кочергей, кочерёг	кочерёг	3	1/3
попадья	попадь, попадей, попадьёв	попадей	2	1/2
турок	турок, турков, турчан	турок	1	1

$$MRR = (1/3 + 1/2 + 1) / 3 = 11/18 \sim 0.61$$

Kendall rank correlation coefficient (Kendall's au)

$$\tau = \frac{(number\ of\ concordant\ pairs) - (number\ of\ concordant\ pairs)}{\binom{n}{2}}$$

$$au \in [-1,1]$$

number of concordant pairs — количество согласованных пар (верно упорядоченных)

number of discordant pairs — КОЛИЧЕСТВО СОГЛАСОВАННЫХ ПАР (НЕВЕРНО УПОРЯДОЧЕННЫХ)

$$inom{n}{2}=rac{n(n-1)}{2}$$
 — биномиальный коэффициент

Часто используется в статистике для оценки ранговых корреляций.

> Резюме

- Имеем привилегию отказаться от выдачи;
- Важны только самые-самые первые результаты (1-3);
- Огромный дисбаланс (от нуля до тысяч матчей);
- Финальное решение можно предоставить классификатору;

- Отдельные метрики для разных этапов пайплайна;
- Метрики могут агрегироваться на уровне одного SKU;
- Различие прокси-метрик и бизнес-метрик.