Lecture 2: Convolutional Neural Networks

Hong-Han Shuai ECE, NYCU

Why CNN for Image?

[Zeiler, M. D., *ECCV 2014*]

Can the network be simplified by considering the properties of images?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

Fully Connected Feedforward network

Can repeat many times

Property 1

Some patterns are much smaller than the whole

Property 2

➤ The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

Flatten

cat dog

Fully Connected Feedforward network

Can repeat many times

CNN - Convolution

6 x 6 image

Those are the network parameters to be

1	-1	-1
-1	1	-1
-1	-1	1

loarned

Filter 1
Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
Matrix

: :

Property 1 Each filter detects a small pattern (3 x 3).

CNN – Convol

1	-1	-1
-1	1 1	
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
	0	1	0	1	\cap

3 -1

6 x 6 image

CNN - Convol

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

We set stride=1 below

CNN – Convol

 1
 -1
 -1

 -1
 1
 -1

 -1
 -1
 1

Filter 1

stride=1

1	1	0	0	0	0	1
	0	4	0	0	1	0
	0	0	Ţ	1	0	0
	1	0	0	0	1	0
	0	1	0	0	1	0
	0	0	Ţ	0	1	0

6 x 6 image

Property 2

CNN - Convolu

	-1	1	-1
U	-1	1	-1
	-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

Animation

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

114		

CNN – Colorful image

Convolution v.s. Fully Connected

Fully-connected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0.
0	1	0	0	1	0:
0	0	1	0	1	0

Fully Connected Feedforward network

Flatten

Can repeat many times

CNN – Max Pooling

Filter 1

Filter 2

CNN – Max Pooling

Convolution **Max Pooling**

Smaller than the original image

The number of the channel is the number of filters

Convolution **Max Pooling**

Can repeat many times

cat dog

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{k=0}^{11} \sum_{k=0}^{11} a^{k}$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a^k_{ij}$ filter:

 $x^* = arg \max_{x} a^k$ (gradient ascent)

For each filter

Find an image maximizing the output of neuron: $x^* = arg \max_{i} a^j$

Each figure corresponds to a neuron

 $x^* = arg \max_{x} y^i$ Can we see digits?

Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2lebCN9Ht4

What does CNN learn? Over all pixel values

$$x^* = arg \max_{x} y^i$$

$$x^* = arg \max_{x} \left(y^i + \sum_{i,j} |x_{ij}| \right)$$

To learn more

- The methods of visualization in these slides
 - https://blog.keras.io/how-convolutional-neuralnetworks-see-the-world.html
- More about visualization
 - http://cs231n.github.io/understanding-cnn/
- Very cool CNN visualization toolkit
 - http://yosinski.com/deepvis
 - http://scs.ryerson.ca/~aharley/vis/conv/
- The 9 Deep Learning Papers You Need To Know About
 - https://adeshpande3.github.io/adeshpande3.github.i
 o/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html