AMENDMENTS TO THE CLAIMS

1. (Original) An electrode for an energy storage device comprising a polyaminoquinoxaline compound of the following formula (1a) as an electrode active material,

[Chemical Formula 1]

$$\begin{array}{c|cccc}
R^1 & R^2 \\
N & N \\
\hline
 & N \\
R^3 & R^4 \\
\end{array}$$
(1a)

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

 R^3 and R^4 independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a

furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents –NH-R⁵-NH- or –NH-R⁶- wherein R⁵ and R⁶ independently represent a C₁- C_{10} alkylene group, a $-C(O)CH_2$ -, $-CH_2C(O)$ -, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y, in which Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a

pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

2. (Original) The electrode according to claim 1, wherein R¹ and R² independently represent a group of the following formula (2)

[Chemical Formula 2]

$$\begin{array}{c}
R^7 \\
R^{11} \\
R^{10}
\end{array}$$

$$\begin{array}{c}
R^8 \\
R^9
\end{array}$$
(2)

wherein R⁷-R¹¹ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₄ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₄ cyanoalkyl group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

3. (Original) The electrode according to claim 1, wherein R¹ and R² independently represent a group of the following formula (3)

[Chemical Formula 3]

$$R^{16} \stackrel{\text{II}}{=} R^{18} \qquad (3)$$

$$R^{16} \stackrel{\text{II}}{=} R^{14} \qquad R^{13}$$

wherein R¹²-R¹⁸ independently represent, each substituted at an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

4. (Original) The electrode according to claim 1, wherein R^1 and R^2 independently represent a group of the following formula (4)

[Chemical Formula 4]

$$R^{20} \xrightarrow{I} A^{1}$$

$$R^{19}$$

$$(4)$$

wherein R¹⁹-R²¹ independently represent, each substituted at an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

A¹ represents NH, O or S.

5. (Original) The electrode according to claim 1, wherein R¹ and R² independently represent a group of the following formula (5)

[Chemical Formula 5]

$$R^{26}$$
 CH_2R^{22}
 R^{25}
 R^{24}
 CH_2R^{22}
 R^{23}

wherein R²² represents a halogen atom or a cyano group, and R²³-R²⁶ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which

may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

6. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁵ represents a group of the following formula (6)

[Chemical Formula 6]

$$R^{30} = \frac{1}{11} R^{27}$$

$$R^{29} = R^{28}$$
(6)

wherein R²⁷-R³⁰ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

7. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁵ represents a group of the following formula (7)

[Chemical Formula 7]

$$\begin{array}{c|c}
R^{31} \\
\hline
R^{32} \\
\hline
W^{1}
\end{array}$$
(7)

wherein R^{31} - R^{32} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

W¹ represents NH, O or S.

8. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁵ represents a group of the following formula (8)

[Chemical Formula 8]

$$R^{33} \qquad R^{34}$$

$$N \qquad N$$

$$O^{1}$$

$$(8)$$

wherein R^{33} - R^{34} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

Q¹ represents NH, O or S.

9. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁵ represents a group of the following formula (9)

[Chemical Formula 9]

$$R^{39} = R^{40}$$

$$R^{38} = R^{37} = R^{36}$$

$$R^{38} = R^{37} = R^{36}$$

$$R^{36} = R^{36}$$

$$R^{36} = R^{36}$$

wherein R³⁵-R⁴⁰ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

10. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁶ represents a group of the following formula (10)

[Chemical Formula 10]

$$R^{44} = \frac{1}{11} R^{41}$$

$$R^{43} = R^{42}$$
(10)

wherein R⁴¹-R⁴⁴ independently represent, each substituted on an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl

group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

11. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁶ represents a group of the following formula (11)

[Chemical Formula 11]

$$R^{45}$$
 R^{46}
 W^2
(11)

wherein R^{45} - R^{46} independently represent, each substituted on an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

W² represents NH, O or S.

12. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁶ represents a group of the following formula (12)

[Chemical Formula 12]

$$R^{47} \qquad R^{48} \qquad (12)$$

wherein R⁴⁷-R⁴⁸ independently represent, each substituted on an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

Q² represents NH, O or S.

13. (Currently Amended) The electrode according to any one of claims 1 to 5 claim 1, wherein R⁶ represents a group of the following formula (13)

[Chemical Formula 13]

$$R^{53} = R^{54} = R^{51} = R^{50}$$
(13)

wherein R^{49} - R^{54} independently represent, each substituted on an arbitrary position of the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

14. (Original) The electrode according to claim 1, wherein the group formed by bonding R^1 and R^2 through a singe bond is represented by the formula (14)

[Chemical Formula 14]

wherein A^2 's are each C or N, R^{55} - R^{62} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl

group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that when A² represents N, R⁵⁸ and R⁵⁹ are both non-existent.

15. (Original) An electrode for an energy storage device comprising a polyaminoquinoxaline compound of the following formula (1b) as an electrode active material

[Chemical Formula 15]

wherein $R^{1^{\prime}}$ and $R^{2^{\prime}}$ join together to form -CH2CH2CH2-, -CH2CH2O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

 $-CH_{2}CH_{2}N(R')-,\ -N(R')CH_{2}CH_{2}-,\ -CH_{2}N(R')CH_{2}-,\ -CH_{2}CH_{2}CH_{2}CH_{2}-,$

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂OCH₂-, -CH₂OCH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond; and

X¹ represents –NH-R⁵-NH- or –NH-R⁶- wherein R⁵ and R⁶ independently represent a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

16. (Original) An electrode for an energy storage device comprising a polyaminoquinoxaline compound of the following formula (1c) as an electrode active material

[Chemical Formula 16]

$$\begin{array}{c|cccc}
R^1 & R^2 \\
N & N \\
\hline
 & N \\
R^{3'} & R^{4'} \\
\end{array}$$
(1c)

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X¹ represents –NH-R⁵-NH- or –NH-R⁶- wherein R⁵ and R⁶ independently represent a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group

which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

17. (Original) An electrode for an energy storage device comprising a polyaminoquinoxaline compound of the following formula (1d) as an electrode active material

[Chemical Formula 17]

$$\begin{array}{c|cccc}
R^{1'} & R^{2'} \\
\hline
N & N \\
\hline
N & N
\end{array}$$

$$\begin{array}{c|cccc}
X^1 & & & \\
\hline
R^{3'} & & R^{4'} & & \\
\hline
\end{array}$$
(1d)

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

 $-CH_2CH_2N(R')-$, $-N(R')CH_2CH_2-$, $-CH_2N(R')CH_2-$, $-CH_2CH_2CH_2CH_2-$,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X¹ represents –NH-R⁵-NH- or –NH-R⁶- wherein R⁵ and R⁶ independently represent a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a naphthyl

group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

18. (Currently Amended) The electrode according to claim 15-or-17, wherein the group formed by joining R^{1'} and R^{2'} together is of the formula (15)

[Chemical Formula 18]

wherein A^3 represents O or S, and R^{63} - R^{66} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy

group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

19. (Currently Amended) The electrode according to claim 16 or 17, wherein the group formed by joining R^{3'} and R^{4'} together is of the formula (16)

[Chemical Formula 19]

$$\begin{array}{c|c}
A^{4} & A^{4} \\
R^{67} & R^{70} \\
R^{68} & R^{69}
\end{array} (16)$$

wherein A^4 represents O or S, and R^{67} - R^{70} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

20. (Currently Amended) The electrode according to claim 16-or 17, wherein the group formed by joining R^{3'} and R^{4'} is of the formula (17)

[Chemical Formula 20]

$$\begin{array}{c|c}
N & N \\
N & N \\
R^{71} & R^{72}
\end{array}$$
(17)

wherein R^{71} and R^{72} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, in which Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

- 21. (Currently Amended) An energy storage device comprising an electrode for an energy storage device according to any one of claims 1 to 20 claim 1.
- 22. (Original) A method for making an electrode for an energy storage device according to claim 1, which method comprising applying and building up, on a current collector electrode, an electrode active material made of a polyaminoquinoxaline compound represented by the afore-indicated formula (1a).
- 23. (Original) A method for making an electrode for an energy storage device according to claim 15, which method comprising applying and building up, on a current collector electrode, an

electrode active material made of a polyaminoquinoxaline compound represented by the aforeindicated formula (1b).

- 24. (Original) A method for making an electrode for an energy storage device according to claim 16, which method comprising applying and building up, on a current collector electrode, an electrode active material made of a polyaminoquinoxaline compound represented by the afore-indicated formula (1c).
- 25. (Original) A method for making an electrode for an energy storage device according to claim 17, which method comprising applying and building up, on a current collector electrode, an electrode active material made of a polyaminoquinoxaline compound represented by the afore-indicated formula (1d).
- 26. (Original) A method for making an electrode for an energy storage device as recited in claim 1 above, which method comprising electrolytically polymerizing an aminoquinoxaline compound represented by the formula (18a) on a current collector electrode,

[Chemical Formula 21]

$$R^1$$
 R^2
 N
 N
 N
 X^2
 R^3
 R^4
 $(18a)$

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

 X^2 represents $-NH-R^{73}-NH_2$ or $-NH-R^{74}$, in which R^{73} represents a C_1-C_{10} alkylene group, a $-C(O)CH_2-$, $-CH_2C(O)-$, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be

substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y, and R^{74} a C_1 - C_{10} alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

27. (Original) A method for making an electrode for an energy storage device according to claim 15, which method comprising electrolytically polymerizing an aminoquinoxaline compound represented by the formula (18b) on a current collector electrode,

[Chemical Formula 22]

$$\begin{array}{cccc}
R^{1'} & R^{2'} \\
N & N \\
N & X^2 \\
R^3 & R^4
\end{array}$$
(18b)

wherein R1' and R2' join together to form -CH2CH2CH2-, -CH2CH2O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

 $-CH_{2}CH_{2}N(R')-,\ -N(R')CH_{2}CH_{2}-,\ -CH_{2}N(R')CH_{2}-,\ -CH_{2}CH_{2}CH_{2}CH_{2}-,$

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z,

a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X² represents –NH-R⁷³-NH₂ or –NH-R⁷⁴, in which R⁷³ represents a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent maphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y, and R⁷⁴ a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a

thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

28. (Original) A method for making an electrode for an energy storage device according to claim 16, which method comprising electrolytically polymerizing an aminoquinoxaline compound represented by the formula (18c) on a current collector electrode,

[Chemical Formula 23]

$$R^1$$
 R^2
 N
 N
 N
 X^2
 $R^{3'}$
 $R^{4'}$
 $R^{4'}$

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

 $-CH_{2}CH_{2}N(R')-,\ -N(R')CH_{2}CH_{2}-,\ -CH_{2}N(R')CH_{2}-,\ -CH_{2}CH_{2}CH_{2}CH_{2}-,$

 $- CH_{2}CH_{2}CH_{2}O-, - OCH_{2}CH_{2}CH_{2}-, - CH_{2}CCH_{2}OCH_{2}-, - CH_{2}OCH_{2}CH_{2}-, - CH_{2}OCH_{2}O-, - CH_{2}OCH_{2}CH_{2}-, - CH_{2}OCH_{2}-, -$

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X² represents –NH-R⁷³-NH₂ or –NH-R⁷⁴, in which R⁷³ represents a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent map that thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y, and R⁷⁴ a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a

 C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hiphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

29. (Original) A method for making an electrode for an energy storage device according to claim 17, which method comprising electrolytically polymerizing an aminoquinoxaline compound represented by the formula (18d) on a current collector electrode,

[Chemical Formula 24]

wherein $R^{1'}$ and $R^{2'}$ join together to form -CH2CH2CH2-, -CH2CH2O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂OCH₂-, -CH₂OCH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

 $-CH_{2}CH_{2}N(R')-,\ -N(R')CH_{2}CH_{2}-,\ -CH_{2}N(R')CH_{2}-,\ -CH_{2}CH_{2}CH_{2}CH_{2}-,$

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH2CH=CH-, -CH=CHCH2O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X² represents –NH-R⁷³-NH₂ or –NH-R⁷⁴, in which R⁷³ represents a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent maphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y, and R⁷⁴ a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a pyrrolyl group which may be substituted with

Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.