208 Espaces vectoriels normés, applications linéaires continues. Exemples.

Dans toute la suite, \mathbb{K} désignera le corps \mathbb{R} ou \mathbb{C} et E un espace vectoriel sur \mathbb{K} .

I - Généralités

1. Normes sur un espace vectoriel

Définition 1. Une **norme** sur *E* est une application $||.||:E \to \mathbb{R}^+$ telle que :

[GOU20] p. 7

- (i) $||x|| = 0 \iff x = 0$ (séparabilité).
- (ii) $\forall \lambda \in \mathbb{K}, \forall x \in E, ||\lambda x|| = |\lambda| ||x||$ (homogénéité).
- (iii) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Exemple 2. $-x \mapsto |x|$ est une norme sur \mathbb{R} , $z \mapsto |z|$ est une norme sur \mathbb{C} .

— $\forall \alpha \geq 1, \|.\|_{\alpha} : (x_1, \dots, x_n) \mapsto \left(\sum_{i=1}^n |x_i|^{\alpha}\right)^{\frac{1}{\alpha}}$ est une norme sur \mathbb{R}^n .

Définition 3. E est dit **normé** s'il est muni d'une norme $\|.\|$.

p. 47

Dans toute la suite, E désignera un espace vectoriel normé muni d'une norme $\|.\|$.

Définition 4. Deux normes $\|.\|_1$ et $\|.\|_2$ sur E sont dites **équivalentes** si

$$\exists a, b > 0 \text{ tels que } \forall x \in E, a \|x\|_1 \le \|x\|_2 \le b \|x\|_1$$

Remarque 5. Deux normes équivalentes définissent des distances équivalentes. Sur un plan topologique et lorsqu'on travaille avec des suites de Cauchy, il est indifférent de prendre l'une ou l'autre de ces normes.

2. Quelques exemples

Exemple 6. Comme mentionné précédemment, \mathbb{R}^n et \mathbb{C}^n sont des espaces vectoriels normés (munis de $\|.\|_{\alpha}$ définie à l'Exemple 2).

Exemple 7. L'ensemble $\mathscr{B}(X,E)$ des applications bornées d'un ensemble X dans E est un espace vectoriel normé muni de la norme $\|.\|_{\infty}: f \mapsto \sup_{x \in X} |f(x)|$.

p. 8

Exemple 8. — $\ell_1(\mathbb{R}) = \{(u_n) \in \mathbb{R}^n \mid \sum_{n=0}^{+\infty} |u_n| < +\infty \}$ est un espace vectoriel normé muni de la norme $\|(u_n)\|_1 = \sum_{n=0}^{+\infty} |u_n|$.

— $\ell_{\infty}(\mathbb{R}) = \{(u_n) \in \mathbb{R}^n \mid (u_n) \text{ est born\'ee}\}$ est un espace vectoriel normé muni de la norme $\|(u_n)\|_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$.

3. Applications linéaires continues

Soit $(F, \|.\|_F)$ un espace vectoriel normé sur \mathbb{K} . $\|.\|_E$ désigne la norme sur E.

p. 48

Notation 9. On note L(E,F) l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E,F)$ l'ensemble des applications linéaires continues de E dans F. Si E=F, on note L(E,F)=L(E) et $\mathcal{L}(E,F)=\mathcal{L}(E)$.

Théorème 10. Soit $f \in L(E, F)$. Les assertions suivantes sont équivalentes.

- (i) $f \in \mathcal{L}(E, F)$.
- (ii) f est continue en 0.
- (iii) f est bornée sur $\overline{B}(0,1) \subseteq E$.
- (iv) f est bornée sur $S(0,1) \subseteq E$.
- (v) Il existe $M \ge 0$ tel que $||f(x)||_F \le M ||x||_E$.
- (vi) *f* est lipschitzienne.
- (vii) f est uniformément continue sur E.

Corollaire 11. L'application $\| \|.\| : f \mapsto \sup_{\|x\|_E = 1} \|f(x)\|_F = \sup_{x \neq 0} \frac{\|f(x)\|_F}{\|x\|_E}$ est correctement définie sur $\mathcal{L}(E,F)$ et définit une norme sur cet espace.

Remarque 12. Le réel ||f|| du corollaire précédent est le plus petit réel positif M tel que $||f(x)||_F \le M ||x||_E$ pour tout $x \in E$. En particulier,

$$\forall x \in E, \|f(x)\|_F \le \|\|f\| \|x\|_F$$

Proposition 13. Soient $(G, \|.\|_G)$ un espace vectoriel normé, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors, $\|\|g \circ f\|\| \le \|\|g\|\|\|f\|\|$.

Proposition 14. Si $f \in \mathcal{L}(E,F)$ est inversible, $|||f|||^{-1} \le |||f^{-1}|||$.

Proposition 15. Une forme linéaire sur E (ie. un élément de $L(E, \mathbb{K}) = E^*$) est continue (ie. est un élément de $\mathcal{L}(E, \mathbb{K}) = E'$) si et seulement si son noyau est fermé.

Exemple 16. L'application

$$\delta_0: \begin{array}{ccc} \mathscr{C}([0,1],\mathbb{K}) & \to & \mathbb{K} \\ f & \mapsto & f(0) \end{array}$$

est continue pour $\|.\|_{\infty}$ mais pas pour $\|.\|_{1}$ (où $\|.\|_{1} = \int_{[0,1]} |.| d\mu$ et $\|.\|_{\infty} = \sup_{[0,1]} |.$

II - Étude en dimension finie

On se place ici dans le cas où *E* est de dimension finie.

[DEV]

Théorème 17. Dans un espace vectoriel normé de dimension finie, toutes les normes sont équivalentes.

Corollaire 18. Toute application linéaire d'un espace vectoriel normé de dimension finie dans un espace vectoriel normé (quelconque) est continue.

Corollaire 19. Tout sous-espace vectoriel d'un espace vectoriel normé de dimension finie est fermé.

Corollaire 20. Les parties compactes d'un espace vectoriel normé de dimension finie sont les parties fermées et bornées.

Contre-exemple 21. Munir $\mathbb{R}[X]$ de la norme $\|.\|_{\infty} \mapsto \sum_i a_i X^i \mapsto \sup_i |a_i|$ rend l'opérateur de dérivation $P \mapsto P'$ non continu.

Théorème 22 (Riesz). La boule unité fermée d'un espace vectoriel normé est compacte si et seulement s'il est dimension finie.

p. 56

[LI]

p. 19

III - Complétude

1. Espaces de Banach

Définition 23. Un espace vectoriel normé complet (ie. dans lequel toute suite de Cauchy converge) est un **espace de Banach**.

[**LI**] p. 20 **Exemple 24.** Tout espace vectoriel normé de dimension finie est complet.

Exemple 25. Soit F un espace de Banach. Alors $\mathcal{L}(E,F)$ est un espace de Banach.

Exemple 26. Soient X un ensemble. On suppose que E un espace de Banach. Alors $\mathscr{B}(X,E)$ est un espace de Banach.

p. 21

Exemple 27. Pour tout compact K de \mathbb{R} , $(\mathscr{C}(K,\mathbb{K}),\|.\|_{\infty})$ est complet. Mais pas $(\mathscr{C}(K,\mathbb{K}),\|.\|_{1})$.

p. 10

Théorème 28 (Riesz-Fischer). Pour tout $p \in [1, +\infty]$, L_p est complet pour la norme $\|.\|_p$.

Proposition 29. *E* est de Banach si et seulement si toute série de *E* absolument convergente est convergente.

[GOU20] p. 52

Théorème 30 (Baire). On suppose E complet. Alors toute intersection d'ouvert denses est encore dense dans E.

[**LI**] p. 111

Application 31. Un espace vectoriel normé à base dénombrable n'est pas complet.

[**GOU20**] p. 419

Application 32 (Théorème de Banach-Steinhaus). Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces de Banach et $(T_i)_{i \in I}$ des applications linéaires continues telles que

[LI] p. 112

$$\forall x \in E, \sup_{i \in I} \|T_i(x)\|_F < +\infty$$

alors,

$$\sup_{i\in I}|||T_i|||<+\infty$$

Application 33 (Théorème du graphe fermé). Soient E et F deux espaces de Banach et $T \in L(E, F)$. Si le graphe de T:

$$\{(x, T(x)) \mid x \in E\} \subseteq E \times F$$

est fermé dans $E \times F$, alors T est continue.

Application 34 (Théorème de l'application ouverte). Soient *E* et *F* deux espaces de Banach

et $T \in \mathcal{L}(E, F)$ surjective. Alors,

$$\exists c > 0, T(B_E(0,1)) \supseteq B_F(0,c)$$

Corollaire 35 (Théorème des isomorphismes de Banach). Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ bijective. Alors T^{-1} est continue.

Corollaire 36. On suppose que E est de Banach. Soient E_1 et E_2 deux supplémentaires algébriques fermés dans E. Alors les projections associées sur E_1 et E_2 sont continues.

2. Espaces de Hilbert

a. Généralités

Définition 37. Un espace vectoriel H sur le corps \mathbb{K} est un **espace de Hilbert** s'il est muni d'un produit scalaire $\langle .,. \rangle$ et est complet pour la norme associée $\|.\| = \sqrt{\langle .,. \rangle}$.

[LI] p. 31

Exemple 38. Tout espace euclidien ou hermitien est un espace de Hilbert.

Exemple 39. $L_2(\mu)$ muni de $\langle .,. \rangle$: $(f,g) \mapsto \int f\overline{g} \, d\mu$ est un espace de Hilbert.

Pour toute la suite, on fixe H un espace de Hilbert de norme $\|.\|$ et on note $\langle .,. \rangle$ le produit scalaire associé.

Lemme 40 (Identité du parallélogramme).

$$\forall x, y \in H, \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 \|y\|^2)$$

et cette identité caractérise les normes issues d'un produit scalaire.

[DEV]

Théorème 41 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide. Alors :

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x, C) = \inf_{z \in C} ||x - z|| = d(x, y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \, \langle x - P_C(x), z - P_C(x) \rangle \leq 0$$

Théorème 42. Si F est un sous espace vectoriel fermé dans H, alors P_F est une application linéaire continue. De plus, pour tout $x \in H$, $P_F(x)$ est l'unique point $y \in F$ tel que $x - y \in F^{\perp}$.

Corollaire 43. Soit *F* un sous-espace vectoriel de *H*. Alors,

$$\overline{F} = H \iff F^{\perp} = 0$$

Théorème 44 (de représentation de Riesz).

$$\forall \varphi \in H', \exists ! y \in H, \text{ tel que } \forall x \in H, \varphi(x) = \langle x, y \rangle$$

et de plus, $|||\varphi||| = ||y||$.

Corollaire 45.

$$\forall T \in H', \exists ! U \in H' \text{ tel que } \forall x, y \in H, \langle T(x), y \rangle = \langle x, U(y) \rangle$$

On note alors $U = T^*$: c'est **l'adjoint** de T. On a alors $|||T||| = |||T^*|||$.

Exemple 46 (Opérateur de Voltera). On définit $T \operatorname{sur} H = L_2([0,1])$ par :

$$T: \begin{array}{ccc} H & \to & H \\ f & \mapsto & x \mapsto \int_0^x f(t) \, \mathrm{d}t \end{array}$$

T est une application linéaire continue et son adjoint T^* est défini par :

$$T^*: g \mapsto \left(x \mapsto \int_x^1 g(t) dt\right)$$

Application 47. L'application

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g : f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

p. 65

b. Bases hilbertiennes

Définition 48. On dit que $(e_n) \in H^{\mathbb{N}}$ est une base hilbertienne de H si

[LI] p. 43

p. 272

- (e_n) est orthonormale.
- (e_n) est totale.

Exemple 49. $(t \mapsto e^{2\pi i n t})_{n \in \mathbb{Z}}$ est une base hilbertienne de $L_2([0,1])$.

Théorème 50. Soit $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H. Alors :

$$\forall x \in H, \ x = \sum_{n=0}^{+\infty} \langle x, e_n \rangle e_n$$

On a de plus, pour tout $x, y \in H$, les formules de Parseval :

—
$$\|x\|^2 = \sum_{n=0}^{+\infty} |\langle x, e_n \rangle|^2$$
.

—
$$\langle x, y \rangle = \sum_{n=0}^{+\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}.$$

Application 51. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

$$\frac{\pi^4}{90} = \|f\|_2 = \sum_{n=0}^{+\infty} \frac{1}{n^4}$$

[LI] p. 32

Annexes

FIGURE 1 – Illustration du théorème de projection sur un convexe fermé.

Bibliographie

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$