Работу выполнил студент 1 курса магистратуры (группа M4130) ИТМО:

Меньщиков Михаил

Отчёт:

Лабораторная №2

Дисциплина:

Генетические алгоритмы

Содержание:

1 Постановка задания	3
2 Решение	
2.1 Bits Count.	
2.2 Travelling salesman problem	4
2.3 Mona Lisa.	
2.3 Выводы	
3 Заключение	6

1 Постановка задания

Целью данной лабораторной работы является получение представления о возможностях применения эволюционных алгоритмов для решения различных классов задач и программных инструментах для их разработки. Для достижения поставленной цели предлагается решить следующие задачи:

- Скачать Watchmaker-фреймворк.
- Разобрать пример "Bits Count".
- Разобрать пример "Travelling salesman problem".
- Разобрать пример "Mona Lisa".
- Ответить на следующие вопросы:
 - К какому типу по структуре решений относится каждая из рассмотренных задач?
 - Как закодированы решения в задаче коммивояжёра?
 - Что является генотипом, а что фенотипом в задаче воспроизведения картины?

2 Решение

2.1 Bits Count

Для задачи поиска битовой строки с максимальной суммой, применяя эволюционный алгоритм, была использована реализация возможного решения из примеров в Watchmaker-фреймворке. Результаты экспериментов по запуску эволюционного алгоритма для поиска битовой строки с максимальной суммой битов "1" представлены в Таблице 1.

Размерность битовой строки	Run 1	Run 2	Run 3	Run 4	Run 5	Среднее
20	20	24	25	15	47	~26
50	5433	2043	1852	2757	2738	~2965
100	7046005	25882364	9246394	3490605	36613886	~16455851

Таблица 1. Результаты экспериментов для примера "Bits Count"

В реализации от Watchmaker-фреймворка решения (особи) для данной задачи закодированы с помощью структуры данных *BitString* (документация: https://javabdd.sourceforge.net/apidocs/net/sf/javabdd/BitString.html) в виде массива, состоящего из нулей и единиц.

2.2 Travelling salesman problem

Для задачи коммивояжера была использована реализация возможного решения из примеров в Watchmaker-фреймворке. Перед запуском были выбраны все доступные города в интерфейсном окне. В результате было найдено следующее оптимальное решение: Dublin -> Lisbon -> Madrid -> Rome -> Athens -> Vienna -> Berlin -> Helsinki -> Stockholm -> Copenhagen -> Amsterdam -> Brussels -> Luxembourg -> Paris -> London -> Dublin. Дистанция найденного маршрута равна 10494.0 километрам.

2.3 Mona Lisa

Для задачи подбора множества разноцветных полигонов для наиболее точного воспроизведения некоторого изображения с помощью эволюционного алгоритма была использована реализация возможного решения из примеров в Watchmaker-фреймворке. В Таблице 2 представлены результаты оптимизации подбора полигонов для воспроизведения заданной картины.

N	Решение	Итерация	Фитнесс	Кол-во полигонов и углов	Рисунок
1	плохое	26603	~218803	38; 268	
2	среднее	84915	~194662	36; 242	
3	хорошее	60013	~198941	46; 366	

Таблица 2. Результаты экспериментов для примера "Travelling salesman problem"

2.3 Выводы

В результате выполнения данной лабораторной работы можно дать следующие ответы на поставленные вопросы:

- К какому типу по структуре решений относится каждая из рассмотренных задач? "Bits Count"-задача относится к бинарному типу; "Traveling salesman problem"-задача относится к целочисленному типу; "Mona Lisa"-задача относится к смешанному типу.
- Как закодированы решения в задаче коммивояжёра? решение (маршрут по графу) закодировано с помощью структуры данных *List<String> в виде списка именованных вершин, которые нужно последовательно посетить.*
- Что является генотипом, а что фенотипом в задаче воспроизведения картины? генотип решения (особи) реализован с помощью структуры данных List<ColouredPolygon> в виде списка цветных полигонов; фенотипом решения (особи) является список полигонов, отображённый на канвасе и представляющий из себя некоторое изображение.

3 Заключение

В результате выполнения данной лабораторной работы было получено представление о возможностях применения эволюционных алгоритмов для решения различных классов задач и программных инструментах для их разработки. Для достижения поставленной цели были решены следующие задачи:

- Установлен Watchmaker-фреймворк.
- Разобран пример "Bits Count".
- Разобран пример "Travelling salesman problem".
- Разобран пример "Mona Lisa".
- Даны ответы на следующие вопросы:
 - К какому типу по структуре решений относится каждая из рассмотренных задач?
 - Как закодированы решения в задаче коммивояжёра?
 - Что является генотипом, а что фенотипом в задаче воспроизведения картины?