The Chinese Remainder Theorem (CRT) is used to solve a set of different congruent equations with one variable but different moduli which are relatively prime as shown below:

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_2 \pmod{m_2}$$

. . .

$$X \equiv a_n \pmod{m_n}$$

CRT states that the above equations have a unique solution of the moduli are relatively prime.

$$X = (a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} + \ldots + a_n M_n M_n^{-1}) \mod M$$

 \bigoplus

Example 1: Solve the following equations using CRT

 $X \equiv 2 \pmod{3}$

 $X \equiv 3 \pmod{5}$

 $X \equiv 2 \pmod{7}$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

^{Follow} @nesoacademy

 \bigoplus

$$X \equiv a_1 \pmod{m_1}$$
 $X \equiv 2 \pmod{3}$
 $X \equiv a_2 \pmod{m_2}$ $X \equiv 3 \pmod{5}$
 $X \equiv a_3 \pmod{m_3}$ $X \equiv 2 \pmod{7}$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

Given		To Find		
$a_1 = 2$	$m_1 = 3$	M ₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	М
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	

nesoacademy.org

Given			To Find	aindeindeindeindeind
$a_1 = 2$	$m_1 = 3$	M ₁	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂	M ₂ -1	M=105
a ₃ = 2	$m_3 = 7$	M ₃	M ₃ -1	
				el Batistististististististististist

Solution:

 $M = m_1 x m_2 x m_3$

 $M = 3 \times 5 \times 7$

M = 105

Given		To Find		
$a_1 = 2$	$m_1 = 3$	M ₁ =	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂ =	M ₂ -1	M=105
$a_3 = 2$	m ₃ = 7	M ₃ =	M ₃ -1	

$$M_1 = \frac{M}{m_1}$$

$$M_1 = \frac{105}{3}$$

$$M_1 = 35$$

$$M_2 = \frac{M}{m_2}$$

$$M_2 = \frac{105}{5}$$

$$M_2 = 21$$

$$M_3 = \frac{M}{m_3}$$

$$M_3 = \frac{105}{7}$$

$$M_3 = 15$$

Given		To Find		
a ₁ = 2	$m_1 = 3$	$M_1 = 35$	M ₁ -1	
$a_2 = 3$	$m_2 = 5$	M ₂ = 21	M ₂ -1	M=105
a ₃ = 2	$m_3 = 7$	M ₃ = 15	M ₃ -1	

$$M_1 \times M_1^{-1} = 1 \mod m_1$$

 $35 \times M_1^{-1} = 1 \mod 3$
 $35 \times 2 = 1 \mod 3$
 $M_1^{-1} = 2$

$$M_2 \times M_2^{-1} = 1 \mod m_2$$

 $21 \times M_2^{-1} = 1 \mod 5$
 $21 \times 1 = 1 \mod 5$
 $M_2^{-1} = 1$

$$M_3 \times M_3^{-1} = 1 \mod m_3$$

 $15 \times M_3^{-1} = 1 \mod 7$
 $15 \times 1 = 1 \mod 7$
 $M_3^{-1} = 1$

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

a ₁ = 2	$m_1 = 3$	$M_1 = 35$	$M_1^{-1} = 2$	
a ₂ = 3	$m_2 = 5$	M ₂ = 21	M ₂ -1= 1	M=105
a ₃ = 2	$m_3 = 7$	$M_3 = 15$	$M_3^{-1}=1$	

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$= (2x35x2 + 3x21x1 + 2x15x1) \mod 105$$

$$= 233 \mod 105$$

$$X = 23$$

Example 1: Solve the following equations using CRT:

```
4X ≡ 5 (mod 9)
2X ≡ 6 (mod 20)
```

.

35 when divided by 3, the remainder is 2

35x2 when divided by 3, the remainder is 1

Example 1: Solve the following equations using CRT:

 $4X \equiv 5 \pmod{9}$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

$$4X \equiv 5 \pmod{9}$$

Multiply by 4-1 on both sides

$$4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$$

$$X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$$

$$X \equiv 7 \times 5 \pmod{9}$$

 $2X \equiv 6 \pmod{20}$

+

Example 1: Solve the following equations using CRT:

 $4X \equiv 5 \pmod{9}$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

$$4X \equiv 5 \pmod{9}$$

Multiply by 4-1 on both sides

$$4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$$

 $X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$

$$X \equiv 7 \times 5 \pmod{9}$$

 $7x4 \mod 9 = 1$ remainder

 $2X \equiv 6 \pmod{20}$

 \bigoplus

Example 1: Solve the following equations using CRT:

 $4X \equiv 5 \pmod{9}$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

$$4X \equiv 5 \pmod{9}$$

Multiply by 4-1 on both sides

$$4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$$

$$X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$$

$$X \equiv 7 \times 5 \pmod{9}$$

$$X \equiv 35 \pmod{9}$$

nesokacader(mod 9)

$$2X \equiv 6 \pmod{20}$$

Example 1: Solve the following equations using CRT:

 $4X \equiv 5 \pmod{9}$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

$$4X \equiv 5 \pmod{9}$$

Multiply by 4-1 on both sides

$$4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$$

 $X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$

 $X \equiv 7 \times 5 \pmod{9}$

 $X \equiv 35 \pmod{9}$

35/9 gives remainder 8

 $2X \equiv 6 \pmod{20}$

nes Xaca der (mod 9)

Example 1: Solve the following equations using CRT:

 $4X \equiv 5 \pmod{9}$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

 $4X \equiv 5 \pmod{9}$

Multiply by 4-1 on both sides

 $4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$

 $X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$

 $X \equiv 7 \times 5 \pmod{9}$

 $X \equiv 35 \pmod{9}$

nesakacacer(mod 9)

 $2X \equiv 6 \pmod{20}$

 $2X \equiv 2x3 \pmod{20}$

 $X \equiv 3 \pmod{20}$

Example 1: Solve the following equations using CRT:

$$X \equiv 8 \pmod{9}$$

$$X \equiv 3 \pmod{20}$$

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_2 \pmod{m_2}$$

$$X \equiv 8 \pmod{9}$$

$$X \equiv 3 \pmod{20}$$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1}) \mod M$$

Given		To Find		
a ₁ = 8	m ₁ = 9	M ₁	M ₁ -1	М
$a_2 = 3$	m ₂ = 20	M ₂	M ₂ -1	1*1

			To Find	giratariningiratariningirat
a ₁ = 8	m ₁ = 9	M ₁	M ₁ -1	M-180
$a_2 = 3$	m ₂ = 20	M ₂	M ₂ -1	M=180

Solution:

 $M = m_1 x m_2$

 $M = 9 \times 20$

M = 180

Given		To Find		
$m_1 = 9$	M ₁	M ₁ -1	M-190	
m ₂ = 20	M ₂	M ₂ -1	M=180	
	m ₁ = 9	$m_1 = 9$ M_1	$m_1 = 9 \qquad M_1 \qquad M_1^{-1}$	

$$M_1 = \frac{M}{m_1}$$

$$M_1 = \frac{180}{9}$$

$$M_1 = 20$$

$$M_2 = \frac{M}{m_2}$$

$$M_2 = \frac{180}{20}$$

$$M_2 = 9$$

Given		To Find		
a ₁ = 8	m ₁ = 9	M ₁ = 20	M ₁ -1	M=180
$a_2 = 3$	m ₂ = 20	M ₂ = 9	M ₂ -1	M=180

$$M_1 \times M_1^{-1} = 1 \mod m_1$$

$$20 \times M_1^{-1} = 1 \mod 9$$

$$20 \times 5 = 1 \mod 9$$

$$M_1^{-1} = 5$$

$$M_2 \times M_2^{-1} = 1 \mod m_2$$

$$9 \times M_2^{-1} = 1 \mod 20$$

$$9 \times 9 = 1 \mod 20$$

$$M_2^{-1} = 9$$

Example 1: Solve the following equations using CRT:

 $X \equiv 8 \pmod{9}$

 $X \equiv 3 \pmod{20}$

Given		To Find		
a ₁ = 8	m ₁ = 9	$M_1 = 20$	$M_1^{-1} = 5$	M=180
$a_2 = 3$	m ₂ = 20	$M_2 = 9$	$M_2^{-1} = 9$	M=160

Solution:

$$X = (a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1}) \mod M$$

$$= (8x20x5 + 3x9x9) \mod 180$$

$$= (800 + 243) \mod 180$$

$$= 1043 \mod 180$$

$$X = 143$$

nesoacademy.org

@achugh52 • 7 mo ago

In equation 2, we need to replace 2x = 6 mod 20 by x = 3 mod 10 for getting correct answer. (please note that 6 cannot be directly divided by 2. there will be change in mod part as well)