

Multitrack Music Transformer

Hao-Wen Dong Ke Chen Shlomo Dubnov Julian McAuley Taylor Berg-Kirkpatrick University of California San Diego

UC San Diego

Overview

Generate orchestral music

- of diverse instruments
- using a new compact representation
- with a multi-dimensional transformer

(Source: Vienna Mozart Orchestra)

Related Work (Transformers for Music Generation)

Model	Multitrack	Instrument control	Compound tokens	Generative modeling
REMI [5]				√
MMM [10]	\checkmark			\checkmark
CP [6]			\checkmark	\checkmark
MusicBERT [15]	\checkmark		\checkmark	
FIGARO [11]	\checkmark			✓
MMT (ours)	√	√	√	✓

Huang and Yang, "Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions," *Proc. MM*, 2020. Ens and Pasquier, "MMM: Exploring Conditional Multi-Track Music Generation with the Transformer," *arXiv preprint arXiv:2008.06048*, 2020. Hsiao et al., "Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs," *Proc. AAAI*, 2023. Zeng et al., "MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training," *Proc. Findings of ACL*, 2021. von Rütte et al., "FIGARO: Controllable Music Generation using Learned and Expert Features," *Proc. ICLR*, 2023.

Representation

We represent a music piece as a sequence of events

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

• Each event x_i is encoded as

Representation (An Example)

Structural events

```
Start of song
                  15)
                        Instrument: accordion
                  36)
                        Instrument: trombone
                                               Instrument events
                  39)
                        Instrument: brasses
                        Start of notes
                                                   pitch=E2, duration=48, instrument=trombone
                        Note: beat=1, position=1,
                        Note: beat=1, position=1,
                                                   pitch=E4, duration=12, instrument=brasses
                        Note: beat=1, position=1,
                                                   pitch=E4, duration=72, instrument=accordion
                        Note: beat=1, position=1,
                                                   pitch=G4, duration=12, instrument=brasses
                                                  pitch=G4, duration=72, instrument=accordion
          68, 17, 15)
                        Note: beat=1, position=1,
                                                   pitch=C5, duration=72, instrument=accordion
                        Note: beat=1, position=1,
       1, 73, 17, 15)
                        Note: beat=1, position=13, pitch=G4, duration=12, instrument=brasses
                        Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
(3, 2, 1, 73, 12, 39)
                        Note: beat=2, position=1,
                                                  pitch=C5, duration=36, instrument=brasses
                        Note: beat=2, position=1,
                                                  pitch=E5, duration=36, instrument=brasses
(3, 2, 1, 77, 12, 39)
(4, 0,
       0, 0,
                        End of song
```

Note events

Multitrack Music Transformer

- A multi-dimensional decoder-only transformer model
 - Predict six fields at the same time
- Trained autoregressively
 - Predict the next event given past events
- At inference time, illegal values are assigned zero probabilities
 - Violate the ordering of structural events
 - Violate the hierarchical sorting of events

Three Sampling Modes

Unconditional generation

Input

Only need to train ONE model!

Instrument-informed generation

I End of song

N-beat continuation

```
Start of song
           0, 0, 15)
                       Instrument: accordion
                       Instrument: trombone
                       Instrument: brasses
                       Start of notes
                       Note: beat=1, position=1, pitch=E2, duration=48, instrument=trombone
                                                  pitch=E4, duration=12, instrument=brasses
                        Note: beat=1, position=1,
                       Note: beat=1, position=1, pitch=E4, duration=72, instrument=accordion
                       Note: beat=1, position=1,
                                                  pitch=G4, duration=12, instrument=brasses
(3, 1, 1, 68, 17, 15)
                       Note: beat=1, position=1, pitch=G4, duration=72, instrument=accordion
                       Note: beat=1, position=1, pitch=C5, duration=72, instrument=accordion
(3, 1, 13, 68, 4, 39) Note: beat=1, position=13, pitch=64, duration=12, instrument=brasses
                       Note: beat=1, position=13, pitch=C5, duration=12, instrument=brasses
```

Experimental Setup

Data

- Symbolic Orchestral Database (SOD) (Crestel et al., 2017)
 - 5,743 songs, 357 hours
- Temporal resolution: 12 time steps per quarter note
- 80% training, 10% validation, 10% test
- Data augmentation
 - Randomly shift for -5~6 semitones
 - Randomly select a starting beat

Model & Training

- 6 transformer decoder blocks
- 8 attention heads
- Model dimension: 512
- Sequence length: 1024
- Maximum number of beats: 256
- Maximum training steps: 200,000

Example Results

Unconditional generation

Instrument-informed generation

church-organ, viola, contrabass, strings, voices, horn, oboe 4-beat continuation

Wolfgang Amadeus Mozart's Eine kleine Nachtmusik

More audio samples

salu133445.github.io/mmt/

Subjective Listening Test Results

	Number of	Average sample length (sec)	Inference speed (notes per second)	Subjective listening test results			
	parameters			Coherence	Richness	Arrangement	Overall
MMM [10]	19.81 M	38.69	5.66	3.48 ± 0.35	3.05 ± 0.38	3.28 ± 0.37	3.17 ± 0.43
REMI+ [11]	20.72 M	28.69	3.58	$\textbf{3.90} \pm \textbf{0.52}$	$\textbf{3.74} \pm \textbf{0.21}$	$\textbf{3.74} \pm \textbf{0.44}$	$\textbf{3.77} \pm \textbf{0.41}$
MMT (ours)	19.94 M	100.42	11.79	3.55 ± 0.46	3.53 ± 0.35	3.40 ± 0.44	3.33 ± 0.47
		/	\			1	

2.6x/3.5x longer generated samples (within the same sequence length)

2.1x/3.3x faster inference speed

Higher quality than MMM Lower quality than REMI+

Analyzing Self-attention

• *Mean relative attention* for a field *d*:

Analyzing Self-attention

• *Mean relative attention* for a field *d*:

$$\gamma_k^{(d)} = \frac{\sum_{\mathbf{x} \in \mathcal{D}} \sum_{s>t} a_{s,t}(\mathbf{x}) \mathbf{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{\mathbf{x} \in \mathcal{D}} \sum_{s>t} a_{s,t}(\mathbf{x})}$$

Biased towards difference that occurred more frequently!

• *Mean relative attention gain* for a field *d*:

$$\tilde{\gamma}_k^{(d)} = \gamma_k^{(d)} - \frac{\sum_{x \in \mathcal{D}} \sum_{s > t} \mathbf{1}_{x_t^{(d)} - x_s^{(d)} = k}}{\sum_{x \in \mathcal{D}} \sum_{s > t} \mathbf{1}}$$

Assuming a uniform attention matrix

Musical Self-attention

The MMT model attends more to notes

- that are 4N beats away in the past
- that have the same position as the current note (A note on beat attends more to a note on beat; a note off beat attends more to a note off beat.)
- that has a pitch in an octave above which forms a consonant interval
- → MMT learns a relative self-attention for certain aspects of music, specifically, beat, position and pitch.

Positive and negative mean relative attention gain

Summary

Multitrack Music Transformer

Proposed an efficient representation and model for multitrack music generation

Musical Self-attention

Presented the first systematic analysis of musical self-attention

Acknowledgements

- Hao-Wen thanks J. Yang and Family Foundation and Taiwan Ministry of Education for supporting his PhD study.
- This project has received funding from the European Research Council (ERC REACH) under the European Union's Horizon 2020 research and innovation programme (Grant agreement #883313).

Thank you!

Multitrack Music Transformer

Musical Self-attention

Paper: arxiv.org/abs/2207.06983 Demo: salu133445.github.io/mmt/ Code: github.com/salu133445/mmt/