The Performance of Deferred-Acceptance Auctions

EC'14, June 8–12, 2014, Stanford, CA, USA.

PAUL DÜTTING, Stanford University VASILIS GKATZELIS, Stanford University TIM ROUGHGARDEN, Stanford University

Outline

- Briefly define the deferred-acceptance auction.
- How good are the DA auctions?
- Formally define the DA auctions.
- Locally highest bid (LHB) mechanism
- DA auction implementation of LHB mechanism
- Conclusion

Brief Description of Deferredacceptance Auction (DA Auction)

- Traditional greedy algorithms [Lehmann et al. 2002] accept the most promising candidate.
- By analogy, the deferred-acceptance auctions use the "backward greedy algorithms", which reject the least promising candidate.
- It is iterated, rejecting the candidates one by one.
- Use the "scoring functions" to decide which candidate should be rejected.

How Good Are the DA Auctions?

- Milgrom and Segal [2014] prove these properties:
 - Incentive compatible
 - Weakly group-strategyproof
 - The dominant-strategy outcome of a DA auction is the same as the unique Nash equilibrium.

(Example) Group-strategy (in VCG mechanism)

- A = { item1, item2 }
- B = { item1 }
- C = { item2 }
- $b_A = 1$
- $b_B, b_C = \epsilon$
- (ε: a very small value)
- $b'_A = 1$
- $b'_B, b'_C = 1 + \epsilon$

Formal Definition of DA Auctions (1/2)

- A DA auction operates in stage $t \geq 1$. In each stage t, a set of bidders $A_t \subseteq N$.
- Initially, the $A_1 = N$.
- Scoring rules $\sigma_i^{A_t}(b_i,b_{N\setminus A_t})$

that are non-decreasing in the first argument.

Formal Definition of DA Auctions (2/2)

- Stage t proceeds as follows
- If A_t is feasible, accept the bidders in A_t , and charge each bidder in A_t its threshold price $p_i(b_i) = \inf\{b_i'|i\in A(b_i',b_{-i})\}$ ($A(b_i',b_{-i})$ denotes the set of bidders that have been accepted when bid b'.
- Otherwise, set $A_{t+1}=A_t\setminus\{i\}$ where bidder $i\in \arg\min_{i\in A_t}\{\sigma_i^{A_t}(b_i,b_{N\setminus A_t})\}$

Problem Model (Single-minded Combinatorial Auctions)

- M denotes the set of m heterogeneous items.
- N denotes the set of n bidders.
- Each bidder bids for its required bundle (e.g. multiple items).
- Bidders are single-minded.

Two useful concepts

- Bundle graph G_b
 - an edge-weighted hypergraph whose vertices correspond to the set of items and whose hyperedges correspond to the \$n\$ bundles of the single-minded bidders.
- Conflict graph G_c
 - a vertex-weighted graph whose vertices correspond to the set of bidders, and an edge (i,j) exists iff the bundles of bidder i and j are in conflict.

Locally Highest Bid (LHB) Mechanism – (Brief Description)

First Phase

- Prunes the bundle graph by greedily rejecting all but the local highest bid.
- (one bid should only be considered once.)

Second Phase

 Translate the resulting hypergraph into a bipartite graph, and compute a maximum weight matching in this graph

 (NB: d represents the maximum number of items which a bundle includes)

Properties of LHB Mechanism

• **Lemma.** The conflict graph (in Phase 2) is a forest of path graphs.

• **Theorem.** The LHB mechanism guarantees a 2(d-1)-approximation.

LHB Mechanism – (Detailed Algorithm)

Algorithm 2: LHB mechanism

- 1 Let all the bids be initially unmarked, and let \underline{u} be a pointer to an arbitrary item.
- 2 if item u is not contained in any candidate bids then
- 3 Point u to any other item that has not been pointed to before.
- 4 Reject all candidate bids that contain item *u* except the one with the highest value.
- 5 The bid b that was not rejected contains $q \leq d-1$ new items.
- **6** if q > 0 then
- 7 Contract the q original items into one item and point u to this item⁹.
- 8 Mark bid b and continue with Step 2.
- 9 else if there exists some item that has not been pointed to then
- 10 | Point u to that item and continue with Step 2.
- 11 Let G_p be the partition graph induced by the first phase of the mechanism.
- 12 Accept the bids that correspond to the maximum weight matching of G_p .

Locally Highest Bid (LHB) Mechanism – (Toy Example)

bundle₁ =
$$\{a, b, c\}, b_1 = 6$$

bundle₂ = $\{b, d, e\}, b_2 = 7$
bundle₃ = $\{d, g, h\}, b_3 = 5$
bundle₄ = $\{c, e, f\}, b_4 = 3$
bundle₅ = $\{f, i, j\}, b_5 = 2$

A DA Auction implementation of LHB Mechanism (1/2)

Algorithm 3: DA auction implementation of the first phase of the LHB mechanism

- 1 Let all the bids be initially unmarked, and let u be a pointer to an arbitrary item.
- 2 if item u is not contained in any candidate bids then
- 3 Point u to any other item that has not been pointed to before.
- 4 while there exist more than one candidate bids containing item u do
- 5 The score of any candidate bid that does not contain u is equal to infinity.
- The score of any candidate bid that contains u is equal to the value of its bid.
- Reject the bid with the lowest score value.
- 8 The bid b that was not rejected contains $q \leq d-1$ new items.
- 9 **if** q > 0 **then**
- 10 Contract the q original items into one item and point u to this item.
- 11 Mark bid b and continue with Step 2.
- 12 **else if** there exists some item that has not been pointed to **then**
- Point u to that item and continue with Step 2.

The DA auction implementation and the LHB mechanism provide the exactly the same outcomes in Phase 1.

A DA Auction implementation of LHB Mechanism (2/2)

- Solve the maximum weight matching problem by scoring functions.
- The score of bidder i is the ratio $b_i/[c_i(c_i+1)]$.
- (C_i represents the number of other active bids that it is conflict with)

 C_i is at most two in the conflict graph, and hence yield a 2-approximation of the maximum weight matching in Phase 2 [Sakai et al. 2003].

Properties of DA Auction for Combinatorial Models

- Incentive compatibility
- Weakly group-strategyproof
- 4(d-1)-approximation guarantee in social welfare

Conclusion