Rozległe sieci komputerowe

Sprawozdanie z laboratorium

Data	Tytuł zajęć	Uczestnicy
16.04.2018 07:30	Podstawowa konfiguracja protokołów RIPv2 oraz RIPng	lwo Bujkiewicz (226203) Bartosz Rodziewicz (226105) Dominik Szymon Cecotka

Wyniki realizacji zadań

Część 2. Konfiguracja i weryfikacja routingu realizowanego przy użyciu protokołu RIPv2

Krok 2.

- Czy wynik polecenia ping wysłanego z komputera PC-A na komputer PC-B był pozytywny? Nie
- Dlaczego?

Ponieważ R1 nie posiadał informacji o trasie do sieci, w której znajdował się PC-B.

- Czy wynik polecenia ping wysłanego z komputera PC-A na komputer PC-C był pozytywny? Tak
- Dlaczego?

Ponieważ wszystkie routery pomiędzy PC-A i PC-C miały informacje o trasach do sieci, w których te hosty się znajdowały.

- Czy wynik polecenia ping wysłanego z komputera PC-C na komputer PC-B był pozytywny? Nie
- Dlaczego?

Ponieważ R3 nie posiadał informacji o trasie do sieci, w której znajdował się PC-B.

- Czy wynik polecenia ping wysłanego z komputera PC-C na komputer PC-A był pozytywny? Tak
- Dlaczego?

Ponieważ wszystkie routery pomiędzy PC-A i PC-C miały informacje o trasach do sieci, w których te hosty się znajdowały.

Po wydaniu komendy debug ip rip na R2, jakie informacje potwierdzają, że RIPv2 działa?

```
*Apr 16 06:33:42.927: RIP: received v2 update from 10.1.1.1 on Serial0/0/0
*Apr 16 06:33:47.563: RIP: received v2 update from 10.2.2.1 on Serial0/0/1
*Apr 16 06:33:48.327: RIP: sending v2 update to 224.0.0.9 via Serial0/0/0
(10.1.1.2)
*Apr 16 06:33:52.731: RIP: sending v2 update to 224.0.0.9 via Serial0/0/1
(10.2.2.2)
*Apr 16 06:33:52.731: RIP: build update entries
```

• Po wydaniu komendy show run na R2, jakie informacje potwierdzają, że RIPv2 działa?

```
router rip
version 2
network 10.0.0.0
```

• Użyj komendy debug ip rip na routerze R2 w celu określenia tras otrzymywanych w aktualizacjach od R3 i wypisz je poniżej.

```
172.30.0.0/16 via 0.0.0.0 in 1 hops
```

Krok 3.

• Jakie trasy znajdują się w aktualizacjach wysyłanych przez R3?

```
172.30.30.0/24 via 0.0.0.0 in 1 hops
```

• Czy maski podsieci są również zawarte w aktualizacjach RIP? Tak

Krok 5.

• W jaki sposób urządzenia z sieci LAN routerów R1 i R3 łączą się z zewnętrzną siecią Internet?

Poprzez przesłanie przez routery R1 i R3 pakietów kierowanych do sieci innych, niż lokalne, do routera R2, ze względu na konfigurację bramy ostatniej szansy.

Jak jest wyświetlona trasa do sieci Internet w tablicy routingu R2?

```
S* 0.0.0.0/0 [1/0] via 209.165.201.2
```

Krok 6.

- Czy wynik polecenia ping był pozytywny? Tak
- Czy wynik polecenia ping był pozytywny? Tak

Część 3. Konfiguracja IPv6 na urządzeniach

Krok 2.

 Użyj odpowiednich komend w celu weryfikacji adresacji IPv6 oraz statusu połączeń. Napisz użytą komendę poniżej.

```
# show ipv6 interface brief
```

Część 4. Konfiguracja i weryfikacja routingu realizowanego przy użyciu protokołu RIPng

Krok 1.

W jaki sposób wyświetlana jest informacja o protokole RIPng?

```
IPv6 Routing Protocol is "rip Test1"
```

- Jakie są podobieństwa RIPv2 i RIPng?
 - Rozsyłają informacje o trasach przy użyciu transmisji multicast.
 - Rozsyłają aktualizacje tras co określoną ilość sekund.
 - Unieważniają trasy po określonej ilości sekund od aktualizacji.
- Wyświetl tabelę routingu IPv6 na każdym routerze. Napisz poniżej użytą do tego celu komendę.

```
# show ipv6 route
```

- Ile tras RIPng jest obecnych na routerze R1? 2
- Ile tras RIPng jest obecnych na routerze R2? 2
- Ile tras RIPng jest obecnych na routerze R3? 2
- Czy jest możliwa komunikacja z PC-A do PC-B? Nie
- Czy jest możliwa komunikacja z PC-A do PC-C? Tak
- Czy jest możliwa komunikacja z PC-C do PC-B? Nie
- Czy jest możliwa komunikacja z PC-C do PC-A? Tak
- Dlaczego niektóre wyniki są pozytywne, a niektóre nie?

Ponieważ nie byłá rozsyłana żadna trasa, która pozwoliłaby na dotarcie pakietów do sieci, w której znajdował się PC-B.

Krok 2.

• Napisz poniżej użytą komendę.

```
# ipv6 route ::0/64 2001:db8:acad:b::b
```

Krok 3.

 Bazując na tablicy routingu R2 odpowiedz na pytanie, jakiej trasy używa router R2 łącząc się z Internetem?

```
S ::/64 [1/0]
via 2001:DB8:ACAD:B::B
```

Jakich tras używają routery R1 i R3 łącząc się z zewnętrzną siecią Internet?

```
R ::/0 [120/2]
via FE80::2, Serial0/0/0
```

```
R ::/0 [120/2]
via FE80::2, Serial0/0/1
```

Krok 4.

• Czy wyniki były pozytywne? Tak

Odpowiedzi na pytania

1. Dlaczego wyłącza się automatyczną sumaryzację dla routingu bazującego na protokole RIPv2?

Ponieważ dzięki temu można precyzyjniej rozdzielać pakiety pomiędzy trasami na podstawie ich adresu docelowego i unikać długiego krążenia pakietów między routerami oraz potencjalnie wyczerpania ich TTL.

2. Jak w obydwu przypadkach routery R1 i R3 nauczyły się trasy do Internetu?

Otrzymały od R2 informację o ustawionej tam bramie ostatniej szansy.

3. Czym różni się proces konfiguracji RIPv2 od konfiguracji RIPng?

W RIPng zamiast rozsyłania informacji o trasach do poszczególnych sieci, włączane jest rozsyłanie informacji o sieciach na posczególnych interfejsach.