AY20xx/20xx SEMESTER ONE CLASS TEST (MOCK)

School of Computing (SOC) Diploma in Applied AI and Analytics (DAAA) 2^{nd} Year Full Time

MATHEMATICS FOR AI

Instructions:

- 1. The Singapore Polytechnic Examination rules are to be complied with.
- 2. This paper consists of $\underline{9}$ printed pages, inclusive of cover page.
- 3. All solutions are to be written in the space provided in this booklet.
- 4. Unless otherwise stated, all answers given should be correct to at least **three** significant figures.

Time allowed: 1 hour

5. Except for sketches, graphs and diagrams, no solutions are to be written in pencil. Failure to comply will result in loss of marks.

Student Name :		
Student ID :	Module Class :	DAAA/FT/2A/

Question Answered	Marks
A1–A5 (10 marks)	
B1 (10 marks)	
B2 (8 marks)	
B3 (14 marks)	
B4 (8 marks)	
TOTAL (50 marks)	

SECTION A (10 marks)

Answer ALL 5 questions. Each question carries 2 marks. No marks will be deducted for incorrect answers. Write your selected option for each question in the following table:

Question A1	Question A2	Question A3	Question A4	Question A5

1. Given the function $f(x) = \sin 2x$, for $n = 0, 1, \dots$, the (4n + 2)-th order derivative of f, $f^{(4n+2)}(x) = \underline{\hspace{1cm}}$.

(a) $2^{4n} \sin 2x$

(b) $2^{4n+1}\cos 2x$

(c) $-2^{4n+2}\sin 2x$

(d) $-2^{4n+3}\cos 2x$

2. What is the output of the given code from Jupyter Notebook?

import sympy as sp
x = sp.Symbol('x')
sp.diff(10*sp.log((2*x+2),2), x)

(a) $\frac{10}{2x+2}$

(b) $\frac{20}{2x+2}$

 $(c) \frac{20}{(2x+2)\ln(2)}$

 $(d) \frac{20}{(2x+2)\log(2)}$

3. Which of the following graphs best represents the function f(x), where f'(x) > 0 and f''(x) < 0 for all values of x?

(a)

(b)

(c)

(d)

4. The graph of the **derivative** of the function f(x) is shown below. Which of the following statements is true?

- (a) f is decreasing at x = 1.
- (b) f(3) is a local minimum.
- (c) f(4) is a local maximum.
- (d) f is decreasing at x = 5.
- 5. Which of the following is a good approximation of f''(c), where c is a constant, given $f(x) = \sin(2x+2)$?

(a)
$$\frac{\sin(2c+2.001)-\sin(2c+1.999)}{0.002}$$

(b)
$$\frac{\sin(2c+2.02)-\sin(2c+1.98)}{0.02}$$

(c)
$$\frac{\cos(2c+2.002)-\cos(2c+1.998)}{0.002}$$

(d)
$$\frac{\cos(2c+2.02)-\cos(2c+1.98)}{0.01}$$

SECTION B (40 marks)

Answer ALL questions.

1. Find $\frac{dy}{dx}$ for the following expressions, simplifying your answers wherever possible:

(a)
$$y = 3x^5 \cos(x^2 + 1)$$
 (b) $y = \frac{\ln x}{2x^3}$

(b)
$$y = \frac{\ln x}{2x^3}$$

(10 marks)

- 2. Consider the graph of the function $y = e^{ax}$, where a < 0 is a constant.
 - (a) Find the equation of the tangent line to this curve at any given point x = b.
 - (b) Consider the gradient of the tangent line. Is the gradient decreasing, increasing or stationary with respect to *b*?

(8 marks)

3. (a) Use the gradient descent algorithm to estimate the minimum point of the curve $f(x) = x^2 - 3x + 3$. Given that the initial x, $x_0 = 0$, the learning rate is 0.4 and stopping criterion is when the absolute difference between two x-values is less than 0.05. (6 marks)

3. (b) The volume of a cylindrical tank with base radius r is $1000 \, \text{m}^3$. The cost of making the cylindrical body is \$25 per square metre and the cost is thrice for the top and bottom of the tank. Show that the cost of making the tank is $C = \frac{50000}{r} + 150\pi r^2$. Find the radius r such that cost of making the tank is at a minimum.

(8 marks)

Given formula:

Surface area of a closed cylindrical tank of radius r and height h is $2\pi r^2 + 2\pi rh$ Volume of cylindrical tank of radius r and height h is $\pi r^2 h$

4. A car starts moving from the point (0,1) along the graph $y = x^2 + 1$. At the same time, another car starts moving from the point (0,-2) along the graph y = 3x - 2. The distances are measured in kilometres. Both cars are moving in a way that the speed to the right is 10 km/h. At what rate is the distance between the two cars changing at x = 5 km? (Hint: $x^2 + 1 > 3x - 2$ for all x)

(8 marks)

 $y = x^{2} + 1$ y = 3x - 2 y = 3x - 2 y = 3x - 2 0 $\frac{2}{3}$

Standard Derivatives

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Rules of Differentiation

Let $u \equiv u(x)$, $v \equiv v(x)$ and $y \equiv y(u)$

Constant Multiple Rule $\frac{d}{dx}(ku) = k \frac{du}{dx}$

 $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$ Sum Rule

 $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$ Product Rule

 $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{u \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ Quotient Rule

 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ Chain Rule

Numerical Differentiation

For a differentiable function f(x), f'(a) can be approximated by

Symmetric difference quotient: $f'(a) \approx \frac{f(a+\epsilon) - f(a-\epsilon)}{2\epsilon}$

Forward difference quotient: $f'(a) \approx \frac{f(a+\epsilon) - f(a)}{f'(a)}$

Backward difference quotient: $f'(a) \approx \frac{f(a) - f(a - \epsilon)}{\epsilon}$

where $\epsilon > 0$ is a very small number.

END OF PAPER