Step 1: Launch Spectral-FLIM GUI

• Type *sFLIM* in MATLAB command line window

Step 2: Select a .ptu file for processing

From Raw data folder choose file

"Figure 5_Raw_data.ptu"

Step 3: Launch sFLIM pattern-matching based data analysis

Push button – Pattern Analysis

Step 4: Load reference patterns

- Load reference patterns from folder -<u>Figure 5 Reference Patterns and Results</u>
- Select patterns one-by-one
 - A488-TOM20
 - A546-golgin
 - FRET-panCytokeratin

Step 5: Launch Pattern-matching analysis*

Push button – Find amplitudes

^{*}Results for Figure 5 are already available and can be visualized directly – goto step 9

Step 5: Select all information channels

 Click twice (not a double click) on the red marked buttons in Set_PatternOptions gui

Step 6: Wait for analysis to be finished

- Once the unmixing is done, sFLIM Results message will pop up.
- Press ok and proceed to results visualization

Step 8: Make composite image

- After unmixing we get three unmixed image corresponding to 3 reference patterns
- Press Show Results button to generate a composite image

Step 9: Results for Figure 5 are already available and can be visualized directly

- After unmixing we get three unmixed image corresponding to 3 reference patterns
- Press Show Results button to generate a composite image
- Select file Figure 5_Raw_data_results.mat

