University of Toronto

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, DECEMBER 2001

First Year - Programs 1.2.3,4.6,7.8.9

MAT 198F Linear Algebra

SURNAME	 Instructors E. Davison
GIVEN NAME	 R. Luus A. Del Junco
STUDENT NO.	 S. Homayoun
INSTRUCTOR	

INSTRUCTIONS:

- Closed Book Examination.
- Only approved non-programmable calculators are permitted.
- · Please answer all questions.
- Present your solutions in the space provided; use the back of the preceding pages if more space is required.

TOTAL MARKS: 100

The value for each question is shown in parentheses after the question number.

MARKE	R'S REPORT
1	
2	i
3	1
4	
5	
6	
TOTAL	

 [20 marks: 2 marks for each part] Indicate whether each of the following statements is tr (T) or false (F), and give a brief justification for your choice: 	ue
(a) If E and F are any 3×3 elementary matrices, then $EF = FE$.	
(b) If 3 is an eigenvalue of the square mutrix A, then 27 is an eigenvalue of the matrix A	3.
(c) If the 6 × 6 matrix B is obtained from the 6 × 6 matrix A by replacing the third colur of A with the sum of the second and fourth columns of A, then det B = det A.	าก
(d) If λ is an eigenvalue of the $n \times n$ matrix A , then $\lambda^2 + 1$ is an eigenvalue of $A^2 + I$, when I is the $n \times n$ identity matrix.	ге
(e) The set of all $n \times n$ symmetric matrices is a subspace of $M^{n,n}$.	

(f) Suppose $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ is an orthogonal basis of \mathbf{R}^m , with respect to the usual dot product, and A is the $m \times m$ matrix with $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_m$ as its columns. Then the rows of $(14A)^T$ form an orthogonal basis of \mathbf{R}^m .

(g) If A and B are two 2×3 matrices such that $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution spaces, then A = B.

(h) (3,2,-4) is the coordinate vector of $-3+x-4x^2$, relative to the ordered basis $\{x+1,x+1,1+x+x^2\}$ of P_2 .

(i) The value of y in the solution for the system of equations

$$2x + 4y + z = 6$$
$$x + y + 3z = 3$$
$$-x + y + 4z = -3$$

is y = 0.

(j)
$$\dim(P_n) = n + 1$$

2.(a) [5 marks] Find a real scalar "a" so that :

$$\dim[\mathrm{span}\{ax + 2x^2, a + x, a + x^2\}] = 2$$

2.(b) [5 marks] Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$, let the inner product $\langle A, B \rangle = \operatorname{trace}(A^T B)$; in this case, what is the length of A if $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 3 \end{pmatrix}$?

2.(c) [5 marks] Find the least squares straight line fit to the three points (0.0), (1.2), and (2.7).

- 3. [10 marks: 5 marks for each part] Find the following:
 - (a) parametric equations of the line of intersection of the two planes with equations x+y-z=6 and 3x-y+3z=4.

(b)
$$\det \left(\begin{array}{cccc} 1 & 1 & 2 & -5 \\ -1 & 0 & 1 & 0 \\ 5 & -1 & 0 & -2 \\ 0 & 1 & -1 & 4 \end{array} \right)$$

4.(a) [10 marks] Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

- (a) Show that for any value of θ the matrix A is orthogonal.
- (b) Show that for any vector \mathbf{v} in \mathbf{R}^2 , $\| A\mathbf{v} \| = \| \mathbf{v} \|$.
- (c) Let P be any 2×2 orthogonal matrix with determinant equal to 1. Show that P=A, for some value of θ .

4.(b) [10 marks] For which values of k does the following system of equations

$$2x + ky - z = 2$$
$$y + kz = 2$$
$$kx + y = 2$$

have

- (a) no solutions?
- (b) a unique solution?
- (c) infinitely many solutions?

5.(a) [10 marks] Let $A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.

5.(b) [5 marks] Consider the differential equation
$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} x$$
. Find a solution to this differential equation given that $x(10) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and thence find the value of $x(0)$.

6.(a) [10 marks] For this question let the inner product on ${\bf R}^3$ be defined by

$$(\mathbf{u}, \mathbf{v}) = 2u_1v_1 + 4u_2v_2 + u_3v_3.$$

Let S be the subset of vectors in \mathbb{R}^3 which are orthogonal to (1,-1,2), with respect to the above inner product.

(i) Show that S is a subspace of \mathbb{R}^3 .

(ii) Find an orthonormal basis of S.

6.(b) [10 marks] Let S be the subspace of \mathbf{R}^4 consisting of all vectors of the form (a-c,a-b,c,2a+b+c), where a,b, and c are in \mathbf{R} . Find an orthogonal basis of S, relative to the usual dot product in \mathbf{R}^4 .