

IoT Celular (CIoT) NB-IoT

Agenda

- 3GPP: procesos normalización, releases...
- Celular IoT (CloT): tecnologías
- Arquitectura
- Mejoras para IoT (MTC, machine type comm.)
 - Device power savings (PSM, eDRx)
 - Coverage enhcement
- Módulo LTE/NB-IoT

Bibliografía

- Cellular Internet of Things Technologies, Standards, and Performance
 - Olof Liberg
 - Mårten Sundberg
 - Y.-P. Eric Wang
 - Johan Bergman
 - Joachim Sachs2018

Nota: En la presentación si no se especifica la fuente, la figura fue extraída del libro.

Liberg, Olof, et al. Cellular Internet of things: technologies, standards, and performance. Academic Press, 2017.

Bibliografía

- 5G LTE Narrowband Internet of Things (NB-IoT)
 - Hossam Fattah
 (c) 2018 3GPP ™

Normas

- 3GPP: Third Generation Partnership Project
 - global standardization forum behind the evolution and maintenance of GSM, UMTS, LTE
 - GSM (2G): Global System for Mobile Communications
 - UMTS (3G): Universal Mobile Telecomm. System
 - LTE (4G): Long-Term Evolution

Redes de comunicación móvil Evolución

Figure 1.1: Emergence of wireless and cellular networks.

3GPP: release cycle

https://www.3gpp.org/specifications/releases https://www.icode9.com/content-4-142122.html

3GPP

release cycle:

- set of work items where each typically delivers a feature
- organized as **Technical Specifications** (TSs)
- at the end: a release is frozen and published
- **feature**: specified in four stages
 - Stage 1: contains the service requirements
 - Stage 2: high-level feature description
 - Stage 3: detailed description that is needed to implement
 - Stage 4: development of the *performance requirements* and *conformance testing procedures* for ensuring proper implementation of the feature.

Evolución histórica

Figure 1-2: IoT in 3GPP

Application Note NB-IoT Measurements — 1MA296_2e (Rohde & Schwarz) www.rohde-schwarz.com/appnote/1MA296

Evolución histórica

3GPP: organiz. structure

Organizational structure of 3GPP.

- Technical Specifications Groups (TSGs)
 - GSM/EDGE Radio Access Network (GERAN) [closed]
 - Radio Access Network (RAN)
 - Service and system Aspects (SA)
 - Core network and Terminals (CT)

3GPP release 13

- EC-GSM-IoT (Cap. 3 y 4) (*)
 - Extended Coverage GSM Internet of Things
 - fully backgward compatiblity w/GSM
- LTE-M (Cap. 5 y 6)^(*)
 - LTE for Machine-Type Communications flexible system bandwidth of 1.4 MHz or +
 - capable of serving higher-end applications (+ req. on throughput and latency)
- NB-IoT (Cap. 7 y 8) (*)
 - new radio access technology
 - reuses technical components from LTE
 - narrow spectrum

EC-GSM-loT

Backwards compatible design based on GPRS/EGPRS with added features such as improved coverage and energy efficient operation.

LTE-M

Reduced device complexity and coverage enhancements makes LTE competitive in the MTC market. Designed for low latency and high data rates.

NB-IoT

Features high deployment flexibility due to its low system bandwidth in combination with low device complexity, energy efficient operation and ubiquities coverage.

https://www.3gpp.org/news-events/3gpp-news/1906-c iot

(*) Liberg, Olof, et al. Cellular Internet of things: technologies, standards, and performance. Academic Press, 2017.

Cat (category)

- Cat (user equipment o device):
 - capability and performance
 - EC-GSM-IoT (Release 13)
 - LTE-M
 - LTE Cat 0 (Release 12)
 - LTE Cat M1 (Release 13)
 - LTE Cat M2 (Release 14)
 - NB-IoT
 - LTE Cat NB1 (Release 13)
 - LTE Cat NB2 (Release 14)

Categorías

	LTE Cat 1	LTE Cat 1 bis	LTE-M				NB-IoT		EC-GSM-IoT
V·T·E [12][13]			LC-LTE/MTCe eMTC						
			LTE Cat 0	LTE Cat M1	LTE Cat M2	non-BL	LTE Cat NB1	LTE Cat NB2	
3GPP Release	Release 8	Release 13	Release 12	Release 13	Release 14	Release 14	Release 13	Release 14	Release 13
Downlink Peak Rate	10 Mbit/s	10 Mbit/s	1 Mbit/s	1 Mbit/s	~4 Mbit/s	~4 Mbit/s	26 kbit/s	127 kbit/s	474 kbit/s (EDGE) 2 Mbit/s (EGPRS2B)
Uplink Peak Rate	5 Mbit/s	5 Mbit/s	1 Mbit/s	1 Mbit/s	~7 Mbit/s	~7 Mbit/s	66 kbit/s (multi- tone) 16.9 kbit/s (single-tone)	159 kbit/s	474 kbit/s (EDGE) 2 Mbit/s (EGPRS2B)
Latency	50–100 ms		not deployed	10-15 ms			1.6-10 s		700 ms – 2 s
Number of Antennas	2	1	1	1	1	1	1	1	1-2
Duplex Mode	Full Duplex		Full or Half Duplex	Full or Half Duplex	Full or Half Duplex	Full or Half Duplex	Half Duplex	Half Duplex	Half Duplex
Device Receive Bandwidth	1.4-20 MHz		1.4-20 MHz	1.4 MHz	5 MHz	5 MHz	180 kHz	180 kHz	200 kHz
Receiver Chains	2 (MIMO)		1 (SISO)	1 (SISO)	1-2				
Device Transmit Power	23 dBm	23 dBm	23 dBm	20 / 23 dBm	20 / 23 dBm	20 / 23 dBm	20 / 23 dBm	14 / 20 / 23 dBm	23 / 33 dBm

https://en.wikipedia.org/wiki/Narrowband_IoT

3GPP release 13

Summary for eMTC, NB-IOT and EC-GSM-IoT

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-loT	
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM	
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class	
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx	
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)	
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]	
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~50 kbps UL: ~50 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)	
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD	
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX	
Power class	23 dBm, 20 dBm	23 dBm, others TBD	33 dBm, 23 dBm	

^{*} In terms of MCL target. Targets for different technologies are based on somewhat different link budget assumptions (see TR 36.888/45.820 for more information).

https://www.3gpp.org/news-events/3gpp-news/1805-iot_r14

3GPP release 13

Criterion	Cat. 1 (Rel. 8+)	Cat. M1 (Rel. 13)	Cat. NB1 (Rel. 13)	FeMTC (Rel. 14)	eNB-IOT (Rel. 14)	
Bandwidth	20 MHz	1.4 MHz	180 kHz	Up to 5 MHz (CE Mode A and B for PDSCH and A only for PUSCH)	180 kHz	
Deployments/ HD-FDD	LTE channel / No HD-FDD	Standalone, in LTE channel / HD-FDD preferred	Standalone, in LTE channel, LTE guard bands, HD-FDD	Standalone, in LTE channel / HD-FDD, FD-FDD, TDD	Standalone, in LTE channel, LTE guard bands, HD-FDD preferred	
МОР	23dBm	23dBm/20dBm	23dBm/ 20dBm	23dBm / 20dBm	23dBm/ 20dBm/ 14dBm	
Rx ant / layers	2/1/	1/1	1/1	1/1	1/1	
Coverage, MCL	145.4dB DL, 140.7dB UL (20 Kbps, FDD)	155.7dB	Deep coverage: 164dB +3	155.7dB (at 23dBm)	Deep coverage: 164dB	
Data rates (peak)	DL: 10 Mbps, UL: 5 Mbps	~800 Kbps (FD-FDD) 300/375 Kbps DL/UL (HD-FDD)	30kbps (HD-FDD)	DL/ UL: 4 Mbps FD-FDD@5MHz	TBS in 80/ 105Kbps 1352/ 1800 peak rates t.b.d.	
Latency	Legacy LTE: < 1s	~ 5s at 155dB	<10s at 164 dB	At least the same as Cat. M1 Legacy LTE (normal MCL)	At least the same as Cat. NB1, some improvements are FFS	
Mobility	Legacy support	Legacy support	Cell selection, re-selection only	Legacy support	More mobility compared to Cat. NB1	
Positioning	Legacy support	Partial support	Partial support	OTDA with legacy PRS and Frequency hopping	50m H target, new PRS introduced. details FSS. UTDOA under study	
Voice	Yes (possible)	No	No	Yes	No	
Optimizations	n/a MPDCCH structure, Fre hopping, repetition		NPDCCH, NPSS/NSSS, NPDSCH, NPUSCH, NPRACH etc, frequency hopping, repetitions, MCO	Higher bandwidth will be DCI or RRC configured, Multi-cast e.g. SC-PTM	Multi-cast e.g. SC-PTM	
Power saving	DRX eDRX, PSM		eDRX, PSM	eDRX, PSM	[eDRX, PSM]	
UE complexity BB	100% ~45%		< 25% [~55%]		[~25%]	

https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Documents/Events/2018/IoT-BDG/7. tandards Part II - Sami Tabbane.pdf

Arquitectura

Figure 1.2: Internet of Things applications in smart building and meters.

Arquitectura

https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Documents/Events/2018/IoT-BDG/7. IoT Standards Part II - Sami Tabbane.pdf

Arquitectura

PCRF: Policy and Charging Rules Function

E-UTRAN: Evolved Universal Terrestrial Radio Access Network

X2: Control Plane and User Plane **S1**: interface connects the eNB to the EPC

https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Documents/Events/2018/IoT-BDG/7. IoT Standards Part II - Sami Tabbane.pdf

Protocol stack

Figure 2.11: 3GPP LTE NB-IoT protocol stack for both UE and eNodeB.

Protocol stack

NAS: Non-Access Stratum

RRC: Radio Resource Control

PDCP: Packet Data Convergence Protocol

■ 3GPP LTE protocol stack

RLC: Radio Link Control

S1-MME: delivering signaling protocols Data-plane | Control-plane UE loT eNodeB **EPC MME**: Mobile Management Entity UE admission and traffic scheduling NAS MME S1-MME TCP/IP RRC RRC HSS NAS **PDCP PDCP** S1-U SGW PGW Internet RLC RLC MAC MAC PHY PHY **S1-U**: transport user data packets Uu

Uu: the Radio interface between UTRAN and the User Equipment

Figure 2.11: 3GPP LTE NB-IoT protocol stack for both UE and eNodeB.

NB-loT: modos operación

Figure 2.12: NB-IoT modes of operation.

Table 7.3 Channel Frequency Band

	Dow	Downlink		link		
Band	F_{DL}^{low}	F_{DL}^{high}	F_{UL}^{low}	F_{UL}^{high}	Region	
	(MHz)	(MHz)	(MHz)	(MHz)		
1	2110	2170	1920	1980	Europe, Asia	
2	1930	1990	1850	1910	Americas, Asia	
3	1805	1880	1710	1785	Europe, Ásia, Americas, Africa	
4	2110	2155	1710	1755	Americas	
5	869	894	824	849	Americas, Asia	
8	925	960	880	915	Europe, Ásia, Africa	
11	1844.9	1879.9	1749.9	1784.9	Japan	
12	729	746	699	716	United States	
13	746	756	777	787	United States	
14	758	768	788	798	United States	
17	734	746	704	716	United States	
18	860	875	815	830	Japan	
19	875	890	830	845	Japan	
20	791	821	832	862	Europe, Africa	
21	1495.9	1510.9	1447.9	1462.9	Europe	
25	1930	1995	1850	1915	Americas	
26	859	894	814	849	Americas, Japan	
28	758	803	703	748	Americas, Asia Pacific	
31	462.5	467.5	452.5	457.5	Americas	
66	2110	2200	1710	1780	Americas	
70	1995	2020	1695	1710	Americas	
71	461	466	451	456	United States	
72	460	465	450	455	Europe, Middle East,	
					Africa	
73	1475	1518	1427	1470	Asia and Pacific	

Power savings: but...

- Data transmision
 - Mobile Originated (MO)

Figure 2.4: Different reports transmitted by CIoT.

RRC mode operation

- IDLE Mode:
 - Selection and (Re)selection of eNodeB.
- CONNECTED Mode:
 - Transfer and exchange of UE unicast data with the eNodeB

RRC: Radio Resource Control

Figure 3.1: RRC modes of operation.

Figure 3.3: UE behavior in IDLE mode.

Mobile Originated (MO)

FIGURE 2.2

LTE message transfer associated with the transmission a single UL and single DL data packet. Messages indicated with dashed arrows are eliminated in the *RRC Resume procedure* solution [9].

Power savings (device)

- PSM (Power Saving Mode)
 - more efficient than Idle Mode
 - becomes unreacheble for MT (not monitor paging)
- eDRX (Extended Discontinous Reception)
 - extend the DRX cycles
 - remain longer in a power saving state between Paging Occasions
 - periodically available for MT services

Device power savings

PSM

- becomes unreacheble for MT
- device leaves PSM when triggers MO
 - UL data transfer or
 - periodic Tracking Area Update/Routing Area Update (TAU/RAU). After the MO access and the corresponding

eDRX

 paging cycles can range from seconds to several hours, depending on Radio Access Technology.

Power Saving Mode

Tracking Area Update/Routing Area Update (TAU/RAU)

FIGURE 2.3

Illustration of operation in PSM including periodic RAUs.

PSM

RRC: Radio Resource Control

BE AHEAD IN CONNECTING EVERYTHING - NARROWBAND IOT (NB-IOT) (www.rohde-schwarz.com/IoT)

eDRX

BE AHEAD IN CONNECTING EVERYTHING - NARROWBAND IOT (NB-IOT) (www.rohde-schwarz.com/IoT)

Battery life (eDRX, PSM)

FIGURE 2.4

Estimated power consumption for a GSM/EDGE device configured to use PSM or eDRX. [16].

CE (coverage enhancement)

Coverage enhancement

Introduction of coverage enhancement (CE) levels CE0, 1 and 2 specifying:

- Number of repetitions of physical access channels
- Number of allowed attempts (NPRACH)
- Time window size for
 - Random Access Response (RAR)
 - Contention Resolution (CR)

Initial CE level defined based on signal measurements can be changed in case that the access failed

LTE IOT 2 CLICK

PID: MIKROE-3144

Weight: 31 g

LTE IoT 2 click is a Click board™ that allows connection to the LTE networks, featuring Quectel BG96 LTE module, which offers two LTE technologies aimed at Machine to Machine communication (M2M) and Internet of Things (IoT). This module is an embedded IoT communication solution which supports the LTE Cat M1 and NB1 technologies, offering an alternative to similar Low Power Wide Area Network (LPWAN) solutions, such as the ones provided by Sigfox and LoRa. The LTE CAT1 and NB1 technologies are designed with specific requirements of the IoT network in mind. LTE IoT 2 click also offers various other features, allowing simple and reliable connection to these new 3GPP IoT technologies.

https://www.mikroe.com/lte-iot-2-click

Two SMA connectors on board for the main and the secondary (GNSS) antennas, network and status indicators, familiar 3GPP standard AT commands set, as well as the Quectel enhanced AT commands over the UART interface, USB connector for interfacing it with the software application from Quectel, are just some of the features available on the LTE IoT 2 click. A rich set

Referencias

3GPP

- https://www.3gpp.org
- https://www.3gpp.org/technologies/keywords-acronyms/98-lte
- "Vocabulary for 3GPP Specifications" https://www.3gpp.org/ftp/Specs/html-info/21905.htm
- Liberg, Olof, et al. Cellular Internet of things: technologies, standards, and performance. Academic Press, 2017.
- Fattah, Hossam. 5G LTE Narrowband Internet of Things (NB-IoT). CRC Press, 2018.

Gracias!

equivalencia PSM eDRX y clase A y B de Lora

