DINAMICA

ESERCIZIO 1

La macchina di Atwood é composta da due corpi di massa m_1 e m_2 (con $m_2 > m_1$) sospesi verticalmente ad una puleggia liscia di massa trascurabile. Si calcolino l'accelerazione a del sistema, la tensione T della fune e la tensione T_g nel gancio che tiene appesa la puleggia. Si assuma che la fune sia ideale e che la puleggia abbia massa nulla.

$$[1. \ a = \frac{m_2 - m_1}{m_1 + m_2}g, \ T = \frac{2m_2m_1}{m_1 + m_2}g, \ T_g = \frac{4m_1m_2}{m_1 + m_2}g].$$

ESERCIZIO 2

Due corpi di massa m_1 ed m_2 sono fissati alle estremitá di una fune inestensibile che poggia su una carrucola di massa trascurabile. Alla carrucola é applicata una forza \vec{F} diretta verso l'alto. Calcolare il massimo valore di \vec{F} affinché la massa m_1 rimanga a terra mentre la puleggia viene sollevata.

$$[F = 2m_1g]$$

ESERCIZIO 3

Tre blocchi, rispettivamente di massa m_A , m_B ed m_C , sono collegati come in figura. Il blocco B puó scorrere senza attrito su un piano orizzontale. Calcolare l'accelerazione del blocco B, la tensione del filo che collega i blocchi A e B e la tensione del filo che collega i blocchi B e C. Si consideri la fune ideale e si ipotizzi che $m_C > m_A$.

$$[a = \frac{m_C - m_A}{m_A + m_B + m_C}, \, T_{AB} = m_A g \frac{2m_C + m_B}{m_A + m_B + m_C}, \, T_{BC} = m_C g \frac{2m_A + m_B}{m_A + m_B + m_C}]$$

ESERCIZIO 4

Due masse m_1 ed m_2 sono collegate mediante una fune che ha un estrema fissato al soffitto, come mostrato in figura. Calcolare le accelerazioni delle due masse trascurando l'attrito tra il corpo di massa m_1 ed il piano, e assumendo che le due carrucole abbiano massa trascurabile.

$$[a_1 = \frac{2m_2g}{4m_1 + m_2}, a_2 = \frac{1}{2}a_1];$$

ESERCIZIO 5

Una massa m_1 é posta su un piano orizzontale scabro con coefficiente d'attrito statico μ_s e coefficiente d'attrito dinamico μ_d . Una seconda massa m_2 é collegata alla prima tramite mediante una fune ideale ed é libera di muoversi in verticale mediante una carrucola liscia. Alla massa m_1 é inoltre applicata una forza costante \vec{F} con direzione formante un angolo θ con l'orizzontale.

- 1. Si discuta per quali valori di $F = |\vec{F}|$ il sistema si sposta per effetto di \vec{F} vincendo l'attrito statico.
- 2. Si determini l'accelerazione a con cui il sistema si muove nelle condizioni discusse al punto 1.
- 3. Si discuta per quali valori di $F = |\vec{F}|$ il sistema si sposta per effetto di m_2 vincendo l'attrito statico.
- 4. Si determini l'accelerazione a con cui il sistema si muove nelle condizioni discusse al punto 3.

$$[1. \ F > \frac{(m_2 + \mu_s m_1)g}{\cos(\vartheta) + \mu_s \sin(\vartheta)}]; [2. \ a = \frac{F(\cos(\vartheta) + \mu_d \sin(\vartheta)) - g(m_2 + m_1 \mu_d)}{m_1 + m_2}]; [3. \ F < \frac{(m_2 - \mu_s m_1)g}{\cos(\vartheta) - \mu_s \sin(\vartheta)}]; [4. \ a = \frac{F(\mu_d \sin(\vartheta) - \cos(\vartheta)) + g(m_2 - m_1 \mu_d)}{m_1 + m_2}]$$

ESERCIZIO 6

Un oggetto é posto su un piano scabro la cui inlinazione rispetto al piano orizzontale é pari all'angolo θ . Assumendo che il coefficiente di attrito statico tra l'oggetto ed il piano inclinato sia $\mu_s = 0.5$ e il coefficiente di attrito dinamico sia $\mu_d = 0.3$, determinare il valore dell'angolo critico θ_c oltre il quale il corpo si mette in moto. Tracciare inoltre il grafico della forza d'attrito in funzione dell'angolo θ , da 0^o a 90^o .

$$[\theta_c = 26.6^o]$$

ESERCIZIO 7

Due blocchi di massa $m_1 = 4kg$ e $m_2 = 3kg$ sono collegati da una fune ideale e si trovano in equilibrio su di un cuneo come in figura ($\theta = 30^{\circ}$).

- 1. Si determini il minimo valore del coefficiente di attrito statico μ_s affinché i due blocchi stiano in equilibrio.
- 2. Sia μ_s uguale al valore minimo determinato al punto precedente. Ad un dato istante la fune si spezza. Considerando le due masse inizialmente alla stessa altezza h=2m, si determinino i tempi impiegati dalle due masse per arrivare a terra sapendo che tra la massa m_1 ed il piano inclinato é presente un coefficiente di attrito dinamico $\mu_d = \frac{\sqrt{3}}{7}$.

[1.
$$\mu_s \ge \frac{m_2 - m_1 sin(\vartheta)}{m_1 cos(\vartheta)} = 0.29$$
];[2. $t_1 = 1.69s \ e \ t_2 = 0.64s$].

ESERCIZIO 8

Due corpi di massa m_A ed m_B sono posti sulle superfici di un piano inclinato come mostrato in figura. e sono collegati tra loro da un filo inestensibile e di massa trascurabile. tra i corpi ed il piano d'appoggio c'é attrito (μ_S, μ_D) . Determinare qual'é il valore minimo di μ_S affinché i due corpi restino in equilibrio. Se invece i due corpi si muovono, determinare il modulo dell'accelerazione.

$$\left[\mu_{S,min} = -\frac{m_A sin\alpha - m_B sin\beta}{m_A cos\alpha + m_B cos\beta}, \ a = \frac{1}{m_A + m_B} (m_B sin\beta - m_A sin\alpha - \mu_D m_A cos\alpha - \mu_D m_B cos\beta)\right]$$

ESERCIZIO 9

Due corpi A e B, uniti da una fune ideale, sono posti su un piano orizzontale. fra il corpo A e il piano non c'é attrito, mentre tra il corpo B e il piano c'é attrito. Il blocco A ha massa m_A , il blocco B ha massa m_B . La fune che collega A a B forma un angolo α con l'orizzontale. Al corpo A é applicata una forza orizzontale costante di modulo F. Sapendo che i due corpi si muovono con accelerazione costante a, si determinino:

- 1. il coefficiente di attrito dinamico fra il corpo B ed il piano;
- 2. la tensione della fune.

$$[1.\mu_d = \frac{-F + (m+M)a}{(F - Ma)tang(\alpha) - mg}]; [2. \ T = \frac{F - Ma}{cos(\alpha)}].$$

ESERCIZIO 10

Si calcoli il periodo di oscillazione di un corpo di massa m collegato a due molle, di costante elastica rispettivamente k_1 e k_2 , poste in serie (a) e in parallelo (b). Si consideri il piano liscio e la massa delle molle trascurabile.

$$[T_S = 2\pi\sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}, T_P = 2\pi\sqrt{\frac{m}{k_1 + k_2}}]$$

ESERCIZIO 11

Due blocchi A e B di massa m_A ed m_B sono collegati da una fune inestensibile e di massa trascurabile. Al blocco A, appoggiato su un piano inclinato di un angolo α rispetto all'orizzontale, é vincolata una molla di costante elastica k. Trascurando gli attriti si determini il periodo di oscillazione dei due corpi attorno alla posizione di equilibrio.

$$[T = 2\pi \sqrt{\frac{m_A + m_B}{k}}]$$