Stima & Filtraggio: Lab 2

Giacomo Baggio

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Padova

baggio@dei.unipd.it

baggio.dei.unipd.it/~teaching

April 19, 2017

Kalman Filtering & Applications

Recap on Systems Theory

Community
Kalman Filter & Predictor

- Recap on Systems Theory (in MATLAB®)
- (in MATLAB®)

- ② Kalman Filter & Predictor (⊘ **45 min**)

- Recap on Systems Theory
 - State space representation
 - Internal/external stability
 - Reachability/Stabilizability & Observability/Detectability

State Space systems (continuous-time)

State Space systems (continuous-time)

State Space systems (discrete-time)

$$\begin{cases} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} x(0) = x_0$$
output
output
condition

5

State Space systems (discrete-time)

5

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case >> sys_c = ss (mA, mB, mC, mD)

Discrete-time case >> sys_d = ss(mA, mB, mC, mD, dTs)

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case >> sys_c = ss (mA, mB, mC, mD)

Discrete-time case >> sys_d = ss(mA, mB, mC, mD, dTs)

sampling period dTs = −1: not specified

State Space systems in MATLAB®

(from Control System Toolbox)

Continuous-time case $>> sys_c = ss(mA, mB, mC, mD)$

Discrete-time case $>> sys_d = ss(mA, mB, mC, mD, dTs)$

Recover A. B. C. D >> [mA, mB, mC, mD] = ssdata(sys)

From SS to TF >> svs_tf = tf(svs_ss)

From SS to ZPK >> sys_zpk = zpk(sys_ss)

Stability

(continuous-time)

$$\Sigma: \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$W(s) = C(sI - A)^{-1}B + D \stackrel{\text{after zeros/poles cancellations}}{\longmapsto} \tilde{W}(s)$$

Stability

(discrete-time)

$$\Sigma: \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$W(z) = C(zI - A)^{-1}B + D \stackrel{\text{after zeros/poles cancellations}}{\longmapsto} \tilde{W}(z)$$

Stability in MATLAB®

Eigenvalues of $A \rightarrow \text{eig}(mA)$

Minimal realization >> sys_min = minreal(sys)

N.B. Minimal realization of $\Sigma=$ state space realization of Σ with smallest possible state dimension

Reachability & Observability

(continuous-time & discrete-time)

$$\Sigma : \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad \begin{array}{c} A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m} \end{array}$$

Reachability & Observability

(continuous-time & discrete-time)

$$\Sigma: \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad \begin{matrix} A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m} \end{matrix}$$

10

Reachability & Observability in MATLAB®

(Rank of a matrix
$$X \rightarrow \text{iRank} = \text{rank}(mX)$$
)

11

Stabilizability & Detectability (continuous-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$\bullet$$
 (A, B) stabilizable

→ rank
$$\begin{bmatrix} A-sI \mid B \end{bmatrix} = n$$
, $\forall s \in \lambda(A)$ s.t. $\boxed{\text{Re } s \geq 0}$

12

Stabilizability & Detectability (continuous-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

•
$$(A,C)$$
 detectable

rank $\left[\frac{A-sI}{C}\right]=n, \ \forall s \in \lambda(A) \ \text{s.t.} \ \text{Re } s \geq 0$

Stabilizability & Detectability (discrete-time)

$$\Sigma : \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

$$\bullet$$
 (A, B) stabilizable

13

Stabilizability & Detectability (discrete-time)

$$\Sigma : \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}$$

•
$$(A, C)$$
 detectable
• $\operatorname{rank}\left[\frac{A-zI}{C}\right] = n, \ \forall z \in \lambda(A) \ \text{s.t.} \ |z| \geq 1$

13

- Dynamical equation: $m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + u(t)$
- Measured output: Position x(t)

- Dynamical equation: $m\ddot{x}(t) = -kx(t) \mu\dot{x}(t) + u(t)$
- Measured output: Position x(t)

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\mu}{m} \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}
\end{cases}$$

In MATLAB®...

14

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
 \begin{bmatrix}
 \dot{x}(t) \\
 \ddot{x}(t)
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 -2 & -0.5
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + \begin{bmatrix}
 0 \\
 1
\end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix}$$

Is the system internally stable?

14

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases}
 \begin{bmatrix}
 \dot{x}(t) \\
 \ddot{x}(t)
 \end{bmatrix} &= \begin{bmatrix}
 0 & 1 \\
 -2 & -0.5
 \end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
 \end{bmatrix} + \begin{bmatrix}
 0 \\
 1
 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix}
 1 & 0 \\
 C
 \end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
 \end{bmatrix}$$

Is the system externally stable?

14

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Is the system reachable?

14

Pick
$$m = 1$$
, $\mu = 0.5$, $k = 2$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -0.5 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \end{cases}$$

Is the system observable?

14

Other useful functions from CST

Impulse response >> [CVY, CVT] = impulse(sys)

Step response >> [cvY,cvT] = step(sys)

Bode plot >> bode (sys)

Output response >> cvY = lsim(sys,cvU,cvT,cvX0)

15

Practice time 1!

Ex 1.1. Create a function

[bInt,bExt] = checkStability(mA,mB,mC,mD,strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mB} \in \mathbb{R}^{n \times m}$, $\mathtt{mC} \in \mathbb{R}^{p \times n}$, $\mathtt{mD} \in \mathbb{R}^{p \times m}$, and a string strSysType that can be set to either 'continuous' or 'discrete' depending on the type of system considered. The function returns

- boolean bInt = true if the system internally stable and bInt = false otherwise.
- boolean bExt = true if the system is externally stable and bExt = false otherwise.

Practice time 1!

Ex 1.2. Create a function

[bReach, bStab] = checkReachStab(mA, mB, strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mB} \in \mathbb{R}^{n \times m}$ and a string strSysType that can be set to either 'continuous' or 'discrete' depending on the type of system considered.

The function returns

- boolean bReach = true if (mA, mB) is reachable and bReach
 false otherwise.
- boolean bStab = true if (mA, mB) is stabilizable and bStab
 false otherwise.

Practice time 1!

Ex 1.3. Create a function

[bObs,bDetec] = checkObsDetec(mA,mC,strSysType)

that has as inputs matrices $\mathtt{mA} \in \mathbb{R}^{n \times n}$, $\mathtt{mC} \in \mathbb{R}^{p \times n}$ and a string strSysType that can be set to either 'continuous' or 'discrete' depending on the type of system considered.

The function returns

- boolean bObs = true if (mA, mC) is observable and bObs = false otherwise.
- boolean bDetec = true if (mA, mC) is detectable and bDetec = false otherwise.

- Kalman Filter & Predictor
 - Quick recap
 - Steady state behavior
 - MATLAB® tools

Setup

The model

Setup

The model

$$\begin{cases} x(t+1) &= Ax(t) + v(t) \\ y(t) &= Cx(t) + w(t) \end{cases} x(0) = x_0$$

Standing assumptions

•
$$\mathbb{E}\left\{\begin{bmatrix}v(t)\\w(t)\end{bmatrix}\begin{bmatrix}v^{\top}(s) & w^{\top}(s)\end{bmatrix}\right\} = \begin{bmatrix}Q & S\\S^{\top} & R\end{bmatrix}\delta(t-s), R>0$$

•
$$\mathbb{E}\left\{x_0\begin{bmatrix}v^\top(t) & w^\top(t)\end{bmatrix}\right\} = 0, \ \forall t \geq 0$$

•
$$\mathbb{E}\{x_0\} = \mu_0$$
, $\text{Var}\{x_0\} = P_0$

April 19, 2017

Setup

An equivalent model...

$$\begin{cases} x(t+1) &= Fx(t) + SR^{-1}y(t) + \tilde{v}(t) \\ y(t) &= Cx(t) + w(t) \end{cases} x(0) = x_0$$

- $F := A SR^{-1}C$
- $\tilde{v}(t) := v(t) \hat{\mathbb{E}}[v(t) | w(t)] = v(t) SR^{-1}(v(t) Cx(t))$
- $\tilde{v}(t) \perp w(t)$, $Var \tilde{v}(t) = \tilde{Q} := Q SR^{-1}S^{\top}$

18

Kalman Filtering equations

Initial definitions

$$P(t|t-1) := \operatorname{Var} \tilde{x}(t|t-1), \qquad P(t|t) := \operatorname{Var} \tilde{x}(t|t)$$
 (prediction error covariance) (estimation error covariance)

$$\Lambda(t) := CP(t|t-1)C^{\top} + R, \quad L(t) := P(t|t-1)C^{\top}\Lambda^{-1}(t)$$
 (innovation process covariance) (filter gain)

Initial conditions

$$\hat{x}(0|-1) := \mu_0, \quad P(0|-1) := P_0$$

19

Kalman Filtering equations

Estimation

$$\hat{x}(t|t) = \hat{x}(t|t-1) + L(t)(y(t) - C\hat{x}(t|t-1))$$

$$P(t|t) = P(t|t-1) - P(t|t-1)C^{\top}\Lambda(t)^{-1}CP(t|t-1)$$

= $(I - L(t)C)P(t|t-1)(I - L(t)C)^{\top} + L(t)RL^{\top}(t)$

Prediction

$$\hat{x}(t+1|t) = F\hat{x}(t|t) + SR^{-1}y(t)$$

$$P(t+1|t) = FP(t|t)F^{\top} + \tilde{Q}$$

19

Giacomo Baggio April 19, 2017

By decoupling the previous equations...

★
$$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + G(t)(y(t) - C\hat{x}(t|t-1))$$

★
$$P(t+1|t) = \Gamma(t)P(t|t-1)\Gamma^{\top}(t) + K(t)RK^{\top}(t) + \tilde{Q}$$

where...

- K(t) := FL(t)(Kalman gain)
- $G(t) := K(t) + SR^{-1}$ (predictor gain)
- $\Gamma(t) := A G(t)C = F K(t)C = F (I L(t)C)$

(closed-loop matrix)

Block diagram representation

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + K(t)(y(t) - C\hat{x}(t|t-1)) + SR^{-1}y(t)$$

20

Block diagram representation

$$\hat{x}(t+1|t) = A\hat{x}(t|t-1) + G(t)(y(t) - C\hat{x}(t|t-1))$$

$$G(t) = K(t) + SR^{-1}$$

20

Block diagram representation

$$\hat{x}(t+1|t) = \Gamma(t)\hat{x}(t|t-1) + G(t)y(t)$$
$$\Gamma(t) = A - G(t)C$$

N.B. The steady-state prediction error covariance satisfies

$$\bar{P} = F\bar{P}F^{\top} - F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}C\bar{P}F^{\top} + \tilde{Q}$$
 (DARE)

N.B. The steady-state prediction error covariance satisfies

$$\bar{P} = F\bar{P}F^{\top} - F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}C\bar{P}F^{\top} + \tilde{Q} \quad \text{(DARE)}$$

Fundamental Theorem of KF Theory:

(F,C) detectable & $(F, \tilde{Q}^{rac{1}{2}})$ stabilizable

- $\exists ! \, \bar{P} = \bar{P}^{\top} \text{ of (DARE)}$
- \bullet \bar{P} stabilizing
- $\bullet \quad \lim_{t \to \infty} P(t) = \bar{P}, \ \forall \ P_0 = P_0^\top \ge 0$

21

$$\hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

where...

- $\bar{K} := F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}$ (steady-state Kalman gain)
- $\bar{G} := \bar{K} + SR^{-1}$ (steady-state predictor gain)
- $\bar{\Gamma} := A \bar{G}C = F \bar{K}C$ (steady-state closed-loop matrix)

S&F: Lab 2 April 19, 2017

$$\hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

where...

- $\bar{K} := F\bar{P}C^{\top}(C\bar{P}C^{\top} + R)^{-1}$ (steady-state Kalman gain)
- $\bar{G} := \bar{K} + SR^{-1}$ (steady-state predictor gain)
- $\bar{\Gamma} := A \bar{G}C = F \bar{K}C$ (steady-state closed-loop matrix)

N.B. If
$$A$$
 stable, $ar{P}=ar{\Sigma}-\hat{\Sigma}_{\infty}$ with $\hat{\Sigma}_{\infty}:= {\sf Var}\,\hat{x}_{\infty}(t|t-1)$ and $ar{\Sigma}$ sol. of $ar{\Sigma}=Aar{\Sigma}A^{\top}+Q$ (DALE)

$$\hat{x}_{\infty}(t+1|t) = A\hat{x}_{\infty}(t|t-1) + \bar{G}(y(t) - C\hat{x}_{\infty}(t|t-1))$$

$$e_{\infty}(t)$$

21

MATLAB® tools for Kalman Filtering

DALE
$$\gg$$
 X = dlyap(A,Q)

>> help dlyap

dlyap Solve discrete Lyapunov equations.

X = dlyap(A,Q) solves the discrete Lyapunov matrix equation:

$$A \star X \star A' - X + Q = 0$$

MATLAB® tools for Kalman Filtering

DARE >> [mX,mL,mG] = dare(mA,mB,mQ,mR,mS,mE)

>> help dare

dare Solve discrete-time algebraic Riccati equations.

[X, L, G] = dare(A, B, Q, R, S, E) computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation

$$E'XE = A'XA - (A'XB + S)(B'XB + R)^{-1}(A'XB + S)' + Q$$

Dynamical equation:

$$m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + n(t)$$

 $\mathbb{E}\left\{n(t)n(s)\right\} = \sigma_n^2 \delta(t-s)$

Measured output:

Noisy position
$$x(t) + w(t)$$

 $\mathbb{E}\left\{w(t)w(s)\right\} = \sigma_R^2 \delta(t-s)$
 $v(t) \perp w(s), \ \forall t, s \geq 0$

Task: W.r.t. the sampled system (sampling period $T_s=1\,\mathrm{s}$), (i) write down the steady-state Kalman predictor equation for the position $\hat{x}_{\infty}(t|t-1)$, and (ii) compute the steady-state prediction error covariance \bar{P} .

Dynamical equation:

$$m\ddot{x}(t) = -kx(t) - \mu\dot{x}(t) + n(t)$$

 $\mathbb{E}\left\{n(t)n(s)\right\} = \sigma_n^2 \delta(t-s)$

Measured output:

Noisy position
$$x(t) + w(t)$$

 $\mathbb{E}\{w(t)w(s)\} = \sigma_R^2 \delta(t-s)$
 $v(t) \perp w(s), \ \forall t, s \geq 0$

Pick
$$m = 1$$
, $\mu = 1$, $k = 2$, $\sigma_n^2 = 1$, $\sigma_R^2 = 1$

$$\begin{cases}
 \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} n(t) \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\
C &= 1
\end{cases}$$

Pick
$$m = 1$$
, $\mu = 1$, $k = 2$, $\sigma_n^2 = 1$, $\sigma_R^2 = 1$

$$\begin{cases} \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} n(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\ C & v(t) = \int_0^{T_s} e^{\bar{A}\tau} B n(t + T_s - \tau) d\tau \\ \end{bmatrix} \\ \begin{cases} \begin{bmatrix} x(t+1) \\ \dot{x}(t+1) \end{bmatrix} &= \begin{bmatrix} 0.3711 & 0.4445 \\ -0.8890 & -0.0734 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \end{cases}$$

Giacomo Baggio

S&F: Lab 2

April 19, 2017

$$\begin{cases} \begin{bmatrix} x(t+1) \\ \dot{x}(t+1) \end{bmatrix} &= \begin{bmatrix} 0.3711 & 0.4445 \\ -0.8890 & -0.0734 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + w(t) \\ C & D = 1 \end{cases}$$

$$Q = \int_0^{T_s} \exp(\bar{A}\tau) B B^\top \exp(\bar{A}^\top \tau) \, d\tau = \begin{bmatrix} 0.1168 & 0.0988 \\ 0.0988 & 0.2997 \end{bmatrix}, \quad R = 1$$

N.B.
$$v(t) \perp w(s), \forall t, s \Rightarrow F = A \text{ and } \tilde{Q} = Q!$$

Giacomo Baggio S&F: Lab 2 April 19, 2017

23

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 woises cov's \\
 C
\end{bmatrix}$$
 $V(t)$ $V(t)$

Is (F, C) detectable?

S&F: Lab 2 April 19, 2017 23

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 woises cov's \\
 C
\end{bmatrix}$$
 $V(t)$ $V(t)$

Is $(F, \tilde{Q}^{\frac{1}{2}})$ stabilizable?

Yes!

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 C$$
 $Q = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix}$

$$\begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + v(t)$$

$$noises cov's$$

$$\tilde{O} = \begin{bmatrix} 0.1168 & 0.0988 \end{bmatrix}$$

$$R=1$$

Compute the prediction error state covariance

23

Giacomo Baggio S&F: Lab 2 April 19, 2017

0.0154 0.4553

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 woises cov's \\
 0.0988 & 0.2997
\end{bmatrix}$$

$$R = 1$$

And the steady-state Kalman predictor is...

$$\begin{bmatrix} \hat{x}_{\infty}(t+1|t) \\ \hat{x}_{\infty}(t+1|t) \end{bmatrix} = F \begin{bmatrix} \hat{x}_{\infty}(t+1|t) \\ \hat{x}_{\infty}(t+1|t) \end{bmatrix} + \bar{K} \left(y(t) - C \begin{bmatrix} \hat{x}_{\infty}(t+1|t) \\ \hat{x}_{\infty}(t+1|t) \end{bmatrix} \right)$$

the model
$$F$$
 $B = 1$

$$\begin{cases}
 \begin{bmatrix}
 x(t+1) \\
 \dot{x}(t+1)
\end{bmatrix} = \begin{bmatrix}
 0.3711 & 0.4445 \\
 -0.8890 & -0.0734
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + v(t) \\
 y(t) = \begin{bmatrix}
 1 & 0 \\
 \dot{x}(t)
\end{bmatrix} \begin{bmatrix}
 x(t) \\
 \dot{x}(t)
\end{bmatrix} + w(t) \\
 D = 1
\end{cases} \qquad \tilde{Q} = \begin{bmatrix}
 0.1168 & 0.0988 \\
 0.0988 & 0.2997
\end{bmatrix} \\
 R = 1$$

And the steady-state Kalman predictor is...

$$\hat{x}_{\infty}(t+1|t) = 0.4445\hat{x}_{\infty}(t+1|t) - 0.0767y(t) + 0.2944\hat{x}_{\infty}(t+1|t)$$

Practice time 2!

Ex 2.1. Create a function

that has as inputs a discrete-time state space system sys

$$\begin{cases} x(t+1) &= Ax(t) + Bv(t) \\ y(t) &= Cx(t) + Dw(t) \end{cases}$$

with v(t), w(t) unit variance uncorrelated white noises $(v(t) \perp w(s), \forall t, s)$, a measurement vector cvY0, a state vector cvX0, and an initial prediction error covariance matrix mP0.

The function returns

- the one-step Kalman prediction cvXhat,
- the prediction error covariance matrix mP.

Practice time 2!

Ex 2.2. Create a function

that has as inputs a discrete-time state space system sys

$$\begin{cases} x(t+1) &= Ax(t) + Bv(t) \\ y(t) &= Cx(t) + Dw(t) \end{cases}$$

with v(t), w(t) unit variance uncorrelated white noises ($v(t) \perp w(s)$, $\forall t, s$), a measurement vector cvYO, a state vector cvXO. The function returns

- the steady-state one-step Kalman prediction cvXhatSS,
- the steady-state prediction error covariance matrix mPSS,

whenever these quantities exist. If this is not the case cvXhatSS and mPSS are left empty.

Practice time 2!

Ex 2.3. Test the functions in Ex 2.1-2.2 with the system described by

$$A = \begin{bmatrix} -1 & 0.5 \\ 0 & 0.5 \end{bmatrix}, \ B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0.5 \end{bmatrix}, \ D = 1.$$

In particular:

- Generate a set of measurement vectors $\{y(t)\}$, t = 0, 1, ..., 30 using the previous system with $x(0) = [1, 0]^{\top}$, and uncorrelated noises $v(t) \sim \mathcal{N}(0, 0.1)$, $w(t) \sim \mathcal{N}(0, 0.1)$.
- Use as initial state prediction $\hat{x}(0|-1) \sim \mathcal{N}(\mathbf{0}, I)$ and initial prediction error covariance P(0|-1) = I.
- Plot the real trajectory y(t) together with the predicted trajectory $\hat{y}(t+1|t)$ and the steady-state predicted trajectory $\hat{y}_{\infty}(t+1|t)$ in the interval $t \in [0,30]$.

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

1. Getting Clinton/Trump polls data*

^{*}https://projects.fivethirtyeight.com/2016-election-forecast/national-polls

25

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

2. Massaging data (averaging/removing outliers)

25

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

3. Modelling polls dynamics

(simplest possible model)

$$\begin{cases} x(t+1) &= x(t) + v(t) \\ y(t) &= x(t) + w(t) \end{cases}$$

$$v(t) \sim \mathcal{N}(0, \sigma_Q), \ w(t) \sim \mathcal{N}(0, \sigma_R), \ v(t) \perp w(s), \ orall t, s$$
 "tuning" parameters $\longrightarrow \sigma_Q = 1, \ \sigma_R = 5$ (my choice)

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

4. Applying Kalman one-step predictor

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

4. Applying Kalman one-step predictor

Addendum: Kalman filtering on real data Predicting 2016 US election results

Procedure

Addendum: Kalman filtering on real data Predicting 2016 US election results

Some caveats

The predicted trajectories strongly depend on:

1. The choice of the model

2. The tuning of σ_Q and σ_R

Addendum: Kalman filtering on real data Predicting 2016 US election results

Some caveats

The predicted trajectories strongly depend on:

- 1. The choice of the model
- Ex Add.1. Try to use a different state space model*
 - **2.** The tuning of σ_Q and σ_R
 - **Ex Add.2.** Try to tune differently σ_Q and/or σ_R^*

*Massaged polls data and sample code available at baggio.dei.unipd.it/~teaching

25