cdjx 杂题选讲

cdjx 初三 oier

2024.11.5

LCM Sum (hard version)

Describtion:

CF1712E2 LCM Sum (hard version)

给定正整数 l,r,求满足 $\operatorname{lcm}(i,j,k) \geq i+j+k$ 且 $l \leq i < j < k \leq r$ 三元组 (i,j,k) 的数量。

共有 $T(1 \le T \le 10^5)$ 组数据,每组数据满足 $1 \le l \le r \le 2 \times 10^5$

3.5s, 500MB

LCM Sum (hard version) CF1712E2

Hint 1: 计算 lcm(i, j, k) < i + j + k 这样的"坏"三元组的个数

LCM Sum (hard version) CF1712E2

Hint 1: 计算 lcm(i, j, k) < i + j + k 这样的"坏"三元组的个数

Hint 2: 如果出现 lcm(i,j,k) = k 或 $lcm(i,j,k) = 2k \land i + j > k$ 则这个三元组是坏的。 而 lcm(i,j,k) = x 意味着 i,j 和 k 都是 x 的整除。

LCM Sum (hard version) CF1712E2

Solution:

我们从前面的提示继续考虑。我们把计算"坏"三元组个数变为对每个 (i,k) 其中 i|2k 计算 $i < j \land j|2k$ 的个数。 我们可以对于k,考虑它的因子,枚举任意两个然后检查是否是"坏的",复杂度正确。

我们离线考虑上面的计算,然后查询可以使用单点加范围求和解决

Describtion:

Yuezheng Ling and Dynamic Tree

初始给定一个 n 个点的树,编号 $1 \sim n$,编号大于 1 的节点 i 的父节点为 a_i ,保证有 $a_i i$ 。

接下来 q 个操作,操作分两种:

- 1. 给定区间 [l,r] 和正整数 x,将所有编号位于区间 [l,r] 内的点 i 的父亲 a_i 赋值为 $\max(a_i-x,1)$,保证 $l\neq 1$ 。
- 2. 给定节点 u 和 v ,你需要求出它们的 LCA。

 $n, q \le 10^5$, 1.5, 256 MB

Hint1: 按编号分块, 总时间复杂度为 $\mathcal{O}(n\sqrt{n})$

Hint1: 按编号分块, 总时间复杂度为 $\mathcal{O}(n\sqrt{n})$

Hint2: 操作 2 时间复杂度为 $\mathcal{O}(\sqrt{n})$

Hint1: 按编号分块, 总时间复杂度为 $\mathcal{O}(n\sqrt{n})$

Hint2: 操作 2 时间复杂度为 $\mathcal{O}(\sqrt{n})$

Hint3: 操作 1 均摊后总复杂度为 $\mathcal{O}(n\sqrt{n})$

Solution:

接下来认为 n,q 同阶。

考虑对编号分块,块长为B。

维护 b_i 表示 i 向祖先跳,跳到的第一个块外的节点,借助数组 b 询问时每次将编号大的点向祖先跳,单次时间复杂度可以做到 $\mathcal{O}(B+\frac{n}{c})$ 。

考虑如何维护 b_i 。

散块直接暴力更改即可,不会对其它地方造成影响,这部分总时间复杂度 $\mathcal{O}(nB)$ 。

对于整块,直接重构,显然单次重构时间复杂度可以做到 $\mathcal{O}(B)$,似乎没有更好的维护方法。但是注意到整块在至多被整体减去 B-1 次后,每个点跳一步就可以跳出这个块,操作相 当于对这个块整体减,通过打懒标记就可以做到 $\mathcal{O}(1)$ 维护,于 是我们额外记录此块总共被减去过多少,在到达 B 后直接 $\mathcal{O}(1)$ 打标记,每一块总时间复杂度 $\mathcal{O}(B^2)$ 。

整个过程总时间复杂度 $\mathcal{O}(nB + n^2B + B^3)$, B 取 \sqrt{n} 时为 $\mathcal{O}(n\sqrt{n})$

CF933E

Describtion:

A Preponderant Reunion

给你一个序列 $p_1 \dots p_n$ 每次可以选择一个 i > 1 花 $\min\{p_i, p_{i-1}\}$ 的代价使 p_i 和 p_{i-1} 同时减小 $\min\{p_i, p_{i-1}\}$

现在要使不存在 i > 1 使得 $\min\{p_i, p_{i-1}\} > 0$

问最小代价并输出方案

CF933E

Hint1: 能否把原问题条件转化为更好 dp 的形式?

CF933E

Hint1: 能否把原问题条件转化为更好 dp 的形式?

Answer1: 使不存在 i > 1 使得 $\min\{p_i, p_{i-1}\} > 0$ 等价于选出若

干个区间(要求所有区间的间距均恰好唯一)消为 0

CF933E

Hint2:

如果问题变为 给你一个序列 $p_1 \dots p_n$ 每次可以选择一个 i>1 花 1 的代价使 p_i 和 p_{i-1} 同时减小 1 现在要使不存在 i>1 使得 $\min\{p_i,p_{i-1}\}>0$ 问最小代价

和原题有什么关系

CF933E

Hint2:

如果问题变为 给你一个序列 $p_1 \dots p_n$ 每次可以选择一个 i > 1 花 1 的代价使 p_i 和 p_{i-1} 同时减小 1 现在要使不存在 i > 1 使得 $\min\{p_i, p_{i-1}\} > 0$ 问最小代价

和原题有什么关系

Answer 2: 答案一定相等

CF933E

Hint3: 选出的区间是否有什么性质

CF933E

Answer3:

考虑求解 $f_{l,r}$ 表示将 $l \rightarrow r$ 消为 0 的最小代价 记 c_i 表示 $l \rightarrow i-1$ 均为 0 后将 i 变为 0 还需的最小代价

$$c_i = \begin{cases} p_i & \text{if } i = l\\ \max\{p_i - c_{i-1}, 0\} & \text{else} \end{cases}$$

CF933E

若
$$r-2 \ge l$$

$$f_{l,r} = \sum_{i=l}^{r} c_i$$

$$= \sum_{i=l}^{r-2} c_i + c_{r-1} + c_r$$

$$= f_{l,r-2} + c_{r-1} + \max\{p_r - c_{r-1}, 0\} \le f_{l,r-2} + p_r$$

$$= f_{l,r-2} + f_{r,r}$$

于是一定存在一种最优方案使得所有区间长度一定不超过2

CF933E

Describtion:

Cycles in product

给你大小为 n_1 和 n_2 的两棵树 T_1 和 T_2 ,构造一张新图,该图中每一个点的编号为 (u,v) 。如果在 T_1 中, u_1 和 u_2 之间有边,那么在该图上,对于任意 v , (u_1,v) 和 (u_2,v) 之间有边。同样,如果在 T_2 中, v_1 和 v_2 之间有边,那么在图上, (u,v_1) 和 (u,v_2) 之间有边。问你这个图上长度为 k 的环有多少个,定义环为从一个点出发,走k 步回到起点,可以经过重复点和重复边。

 $n_1, n_2 \le 4000, k \le 75$, 答案对 998244353 取模

Hint1:

考虑这个关于这个图的路径如何描述。

Cycles in product

Hint1:

对于点 (u,v), 你有两个操作:

- 1.换一个 u' 使得 $(u, u') \in E_1$ 。
- 2.换一个 v' 使得 $(v,v') \in E_2$ 。

注意到这个路径实际上就是两个树上路径合并。序列合并是经典的,使用 EGF 卷积的组合意义即可。由此可得一个环就是两个树的环合并。

Hint 2:

考虑如何做一个树的环计数。

为了方便描述,我们在 Hint2 中将不再考虑这有两棵树。 我们现在考虑子树内的计数,因为感觉这玩意儿好像很可以换根做。

Cycles in product

Hint2:

设状态 f(u,i) 表示以 u 为开头,只能在子树内乱走,环长为 i 的方案数。

令 En_u 表示 u 的最后一个儿子编号,没有则为 $0 \circ Bro_u$ 表示 u 的上一个兄弟的编号,没有则为 $0 \circ$

令 f'(v,u,i) 表示考虑到了 u 和以 v 结尾的兄弟森林。头为 u ,环长为 i 的环的个数。

转移:

$$f'(v, u, i) = f'(Bro_v, u, i) + \sum_{k+2 \le i} f(v, k) \times f'(v, u, i - k - 2)$$

Hint3:

考虑换根。

直接换显然不好做,我们考虑再记一个状态表示 u 只走它父亲那个子树的环。

Hint3:

记两个状态 g(u,i),h(u,i) ,与 f(u,i) 定义类似。但是 g(u,i),h(u,i) 的分别表示只走父亲那个子树和全树答案。 h 的计算类似与 f ,只用把当前节点的所有儿子都视为一个子树。

g 的计算也一样。其中 g 的计算稍微特殊点,但很容易想到,所以不作展开讨论。

Solution:

两个 Hint 结合即可。

Describtion:

Turtle and Three Sequences

给定长度为 n 的 3 个序列 a,b,c,你需要 $m \le 5$ 个下标 $p_1 \dots p_m$,满足如下条件:

$$p_i < p_i + 1$$

 $a_{pi} \le a_{pi} + 1$
 b_{pi} 两两不同

你需要求 $\sum_{r=1}^{n} c_{px}$ 的最大值

Hint1: 如果 $b_i \leq 5$, 可以怎么做?

Hint1: 如果 $b_i \leq 5$, 可以怎么做?

因为 b 的值域很小,所以我们可以状压 DP 把选了哪些 b 压到状态里.

Hint2:考虑将一个有不算低的概率给出正确答案的随机化算法跑多遍.

Hint3: 有没有办法将问题转化为 Hint1 并且具有可以接受的正确率?

Hint3: 有没有办法将问题转化为 Hint1 并且具有可以接受的正确率?

随机化映射

Turtle and Three Sequences

2003F

Solution:

我们将每种 b_i 分别映射到一个 [1, m] 中的整数,然后跑 Hint1 中的 DP. 这样单次的正确率为

$$\frac{m!}{m^m} \approx 0.384$$

跑个 T = 500 次怎么也过了. (P.S 实测 T = 120 可过)

XOR Tree

APC001F

Describtion:

APC001F XOR Tree

一颗 n 个节点的树, $1 \le n \le 10^5$,每条边上有边权 w(u,v),满足 $0 \le w(u,v) \le 15$

对这棵树进行操作,一次操作选中一条链和一个数 x,将这条链上所有边的边权亦或 x

问最小多少次能够将所有边变成 0

XOR Tree APC001F

Hint1:

将链上问题转换到点上

令 $d_u = \bigoplus_{(u,v)\in E} w(u,v)$,则原问题转化为给你一个序列,每次将两个数亦或 x,问最小多少次将数列变成 0

XOR Tree

Hint2

将一次操作视为两个点连边,则最终一定会形成森林

假设形成环,设环上点为 a_1, a_2, \ldots, a_k ,连接 a_i , a_{i+1} 的边权为 b_i ,特别的, b_0 为连接 a_1 , a_k 边的边权则有: $d_{a_i} = b_{i-1} \oplus b_{i \bmod k}$

XOR Tree

APC001F

考虑换一种构造:

每次操作 a_1 , a_i 一对点 (i > 1), 将它们亦或上 d_{a_i} , 则除了 a_1 其他点都会被变成 0 而 a_1 受到的亦或总和为

$$\bigoplus_{i=2}^{k} d_{a_i} = \bigoplus_{i=2}^{k} (b_{i-1} \oplus b_{i \bmod k}) = b_0 \oplus b_1 = d_{a_1}$$

因此 a_1 也被亦或成 0,故不会形成环 每个连通分量里的点点权亦或和为 0总操作数 = n — 连通分量个数。 要最小化总操作数,即最大化连通分量个数 问题转化为选出尽量多的集合,满足每个集合中元素亦或和为 0

XOR Tree APC001F

Solution:

如果 $d_i = 0$,则独立成为一个集合 如果有 $d_i = d_j \neq 0 (i \neq j)$,新建立一个集合 $\{i,j\}$ 将上述点删除后,只会有最多 15 个点 状压