

SYSTEMVERILOG VERIFICATION ENVIRONMENT

A router:

16 x 16 crosspoint switch

- The router has 16 input and 16 output ports
 - Each input and output port consists of 3 singles: data, frame, valid
 - □ These signals are represented in a bit-vector format (din[15:0], dout[15:0], ...)
- To driver or sample an individual port, the specific bit position corresponding to the port number must be specified
 - □ For example, if input port 3 is to be driven, then the corresponding signals shall be din[3], frame_n[3] and valid_n[3]
 - □ For example, if output port 7 is to be sampled, then the corresponding signals shall be dout[7], frameo_n[7] and valid_n[7]

DESCRIPTION (2)

- Single positive-edge clock
- Input and output data are serial (1 bit / clock)
- Packets are sent through in variable length:
 - Each packet is composed of two parts
 - Header
 - ◆ Payload
- Packets can be routed from any input port to any output port on a packet-by-packet basis
- No internal buffering or broadcasting (1-to-N)

Input packet structure

frame_n:

- Falling edge indicates first bit of packet
- Rising edge indicates last bit of packet

din:

Header (destination address & padding bits) and payload

valid_n:

valid n is low if payload bit is valid, high otherwise

Output packet structure

- Output activity is indicated by: frameo_n, valido_n, and dout
- Data is valid only when:
 - frameo_n output is low (except for last bit)
 - valido_n output is low
- Header field is stripped

- While asserting reset_n, frame_n and valid_n must be de-asserted
- reset_n is asserted for at least one clock cycle
- After de-asserting reset_n, wait for 15 clocks before sending a packet through the router

