2023년 1학기 알고리즘 과제1

- 과제의 프로그램 소스와 보고서를 작성하여 e-campus에 업로드
 - 프로그램 소스: 알고리즘 A,B를 한 번에 수행될 수 있도록 하나의 파이썬 프로그램 으로 만들어 이름+학번+hw1.py 저장. 저장된 프로그램 소스는 n=5,000, 10,000 에 대 해 수행되도록 작성
 - 보고서: 이름+학번+hw1.pdf 로 저장
- 보고서에는 과제 내용의 알고리즘A,B 및 (2) ~ (6)의 답변을 작성. 시간 및 문제 크기의 추정 근거를 서술
- 두 파일 (.py, .pdf)을 e-campus에 기한 내에 업로드
- 동일한 과제를 제출한 모든 학생들에게 페널티 부과
- 1일 지연 시 만점의 20% 감점

n개의 데이타 (키값은 $1\sim1,000$ 사이의 자연수를 random으로 생성)를 비내림차순으로 정렬하는 문제에 대해

- (1) $O(n^2)$ 알고리즘인 bubble sort(알고리즘 A)와 평균적으로 $O(n\log_2 n)$ 알고리즘 quick sort(알고리즘 B)를 python으로 구현한다. bubble sort의 시간복잡도 분석, quick sort의 시간복잡도 분석은 본 강의 12주차 4차시, 4주차 1차시에 각각 설명되어 있다.
- (2) 다음의 문제 크기 n에 대해 알고리즘 A, B가 종료될 때까지의 시간을 측정하여 다음 테이블에 작성하라.

n	알고리즘 A	알고리즘 B
5,000		
10,000		
15,000		
20,000		
30,000		
40,000		
80,000		

(3) n개의 데이터에 대해 알고리즘 A의 수행시간을 $f_A(n)$, 알고리즘 B의 수행시간을 $f_B(n)$ 로 표현한다. (2)항의 테이블 값을 이용해서 $\frac{n'}{n}$ =2, 3, 4 일 때 $f_A(n')/f_A(n)$, $f_B(n')/f_B(n)$ 의 평균값을 계산하라. 즉, 데이터의 크기가 2배, 3배, 4배 될 때 수행시간의 비율을 구하는 것이다.

n'/n	평균 $f_A(n')/f_A(n)$	평균 $f_B(n')/f_B(n)$
2		
3		
4		

- (4) (3)의 결과에서 관찰한 내용과 n=40,000일 때의 결과를 이용하여 n=50,000,000 일 때의 알고리즘 A의 수행시간을 추정한다. 추정 결과를 year 단위로 표시하라. 추정 방법에 대해 설명한다.
- (5) (2)의 결과를 이용하여 가로축이 n, 세로축이 시간인 그래프에 $f_B(n)$ 를 표시하라. 이 그 래프를 $an\log_2 n$ 함수로 표시할 때 a값을 추정하라. 추정 방법을 설명한다.
- (6) (5)의 결과를 이용하여 알고리즘 B를 컴퓨터로 1분간 수행할 때 해결할 수 있는 문제의 크기 n'를 추정하라. 추정 방법을 설명한다.