Regular Expressions and DFAs

COP 3402

Regular Expression

Notation to specify a set of strings

Operation	Regular Expression	Yes	No
Concatenation	aabaab	aabaab	every other string
Logical Or	aa baab	aa baab	every other string
Replication	ab*a	aa aba abbba	ε ab ababa
Cuarrina	a(a b)aab	aaaab abaab	every other string
Grouping	(ab) *a	a aba ababa	ε aa abbba

Examples

Regular Expression	Yes	No
a* (a*ba*ba*ba*) multiple of three b's	8 aaa abbbaaa bbbaababbaa	b bb abbaaaa baabbbaa
a a(a b)*a begins and ends with a	a aba aa abbaabba	ε ab ba
(a b) * abba (a b) * contains the substring abba	abba bbabbabb abbaabba	ε abb bbaaba

Exercise 1

- Let ∑ be a finite set of symbols
- $\sum = \{10, 11\}, \sum^* = ?$

Answer

■ Answer: $\sum^* = \{\varepsilon, 10, 11, 1010, 1011, 1110, 1111, ...\}$

Exercises 2

- Let ∑={0,1} be a finite set of symbols and let L1 and L2 be sets of strings from ∑*. L1L2 is the set {xy | x is in L1, and y is in L2}
- L1 = {10, 1}, L2 = {011, 11}, L1L2 = ?

Answer

L1L2 = {10011, 1011, 111}

Exercises 3

Write RE for

- 1. All strings of 0's and 1's
- All strings of 0's and 1's with at least 2 consecutive 0's
- All strings of 0's and 1's beginning with1 and not having two consecutive 0's

Answer

- 1. (0|1)*
- All strings of 0's and 1's
- (0|1)*00(0|1)*

All strings of 0's and 1's with at least 2 consecutive 0's

3. (1|10)+

All strings of 0's and 1's beginning with 1 and not having two consecutive 0's

More Exercises

- 1) (0|1)*011
- **2)** 0*1*2*
- **3)** 00*11*22*

More Exercises (Answers)

- 1) (0|1)*011
- Answer: all strings of 0's and 1's ending in 011 2) 0*1*2*
- Answer: any number of 0's followed by any number of 1's followed by any number of 2's
- **3**) 00*11*22*

Answer: strings in 0*1*2 with at least one of each symbol

Using Regular Expressions

- Regular expressions are a standard programmer's tool.
- Built in to Java, Perl, Unix, Python,

Deterministic Finite Automata (DFA)

- Simple machine with N states.
- Begin in start state.
- Read first input symbol.
- Move to new state, depending on current state and input symbol.
- Repeat until last input symbol read.
- Accept or reject string depending on label of last state.

DFA

Theory of DFAs and REs

- RE. Concise way to describe a set of strings.
- DFA. Machine to recognize whether a given string is in a given set.
- Duality: for any DFA, there exists a regular expression to describe the same set of strings; for any regular expression, there exists a DFA that recognizes the same set.

Duality Example

DFA for multiple of 3 b's:

RE for multiple of 3 b's:

Duality...

 Practical consequence of duality proof: to match regular expression patterns, (i) build DFA and (ii) simulate DFA on input string.

Fundamental Questions

- Which languages CANNOT be described by any RE?
- Set of all bit strings with equal number of 0s and 1s.
- Set of all decimal strings that represent prime numbers.
- Many more....

Problem 1

Make a DFA that accepts the strings in the language denoted by regular expression ab*a

Solution

• ab*a:

Problem 2

Write the RE for the following automata:

Solution

a(a|b)*aa*

DFA to RE: State Elimination

- Eliminates states of the automaton and replaces the edges with regular expressions that includes the behavior of the eliminated states.
- Eventually we get down to the situation with just a start and final node, and this is easy to express as a RE

State Elimination

- Consider the figure below, which shows a generic state s about to be eliminated.
- The labels on all edges are regular expressions.
- To remove s, we must make labels from each qi to p1 up to pm that include the paths we could have made through s.

DFA to RE via State Elimination (1)

- Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
- The result will be a one or two state automaton with a start state and accepting state.

DFA to RE State Elimination (2)

If the start state is not an accepting state, we will have an automaton that looks like the following:

We can describe this automaton as: (R | SU*T)*SU*

DFA to RE State Elimination (3)

If the start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the start state. This leaves the following:

We can describe this automaton as simply R*

DFA to RE State Elimination (4)

- If there are n accepting states, we must repeat the above steps for each accepting states to get n different regular expressions, R1, R2, ... Rn.
- For each repeat we turn any other accepting state to non-accepting.
- The desired regular expression for the automaton is then the union of each of the n regular expressions: R1 U R2... U RN

DFA->RE Example

Convert the following to a RE:

First convert the edges to RE's:

DFA -> RE Example (2)

Eliminate State 1:

Note edge from 3->3

Answer: (0|10)*11(0|1)*

Second Example

Automata that accepts even number of 1's

Eliminate state 2:

Second Example (2)

Two accepting states, turn off state 3 first

This is just 0*; we can ignore going to state 3 since we would "die" (can't come back to an accepting state).

Second Example (3)

Turn off state 1 second:

- This is just 0*10*1(0|10*1)*
- Combine from previous slide to get 0* | 0*10*1(0|10*1)*

RE -> Automata

- We can do this easiest by converting a RE to an NFA (Non-deterministic Finite Automata).
- Beyond the scope of this course...

Questions