Logistic Regression Diagnostics

Fundamental Techniques in Data Science

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

Assumptions & Diagnostics

Statistical Assumptions Residuals Diagnostics

Computational Considerations

Influential Cases

Classification Performance

Confusion Matrix ROC Curve Alternative Performance Measures

Recap: Model Definition

We define the logistic regression model as:

$$Y \sim Bin(\pi, 1)$$

$$logit(\pi) = \beta_0 + \sum_{p=1}^{p} \beta_p X_p$$

We denote the untransformed linear predictor as η :

$$\eta = \beta_0 + \sum_{p=1}^{P} \beta_p X_p$$

The logit link represents the natural log of the odds of success:

$$logit(\pi) = ln\left(\frac{\pi}{1-\pi}\right)$$

Recap: Inverse Link Function

In logistic regression, the inverse link function, $g^{-1}(\cdot)$, is the *logistic function*:

logistic(
$$X$$
) = $\frac{e^X}{1 + e^X}$

So, we convert η to π by:

$$\pi = \frac{e^{\eta}}{1 + e^{\eta}} = \frac{\exp\left(\beta_0 + \sum_{p=1}^{p} \beta_p X_p\right)}{1 + \exp\left(\beta_0 + \sum_{p=1}^{p} \beta_p X_p\right)}$$

ASSUMPTIONS & DIAGNOSTICS

The first two assumptions of logistic regression are shared with linear regression.

- 1. The model is linear in the parameters.
 - This is OK: $logit(\pi) = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ + \beta_4 X^2 + \beta_5 X^3$
 - This is not: $logit(\pi) = \beta_0 X^{\beta_1}$
- 2. The predictor matrix is full rank.
 - \circ N > P
 - No X_p can be a linear combination of other predictors.

The distributional assumptions of logistic regression are not framed in terms of residuals.

• Linear regression

$$Y \sim N(\hat{Y}, \hat{\sigma}^2)$$
$$Y = \hat{Y} + \hat{\varepsilon}$$
$$\varepsilon \sim N(0, \sigma^2)$$

Logistic regression

$$Y \sim \text{Bin}(\hat{\pi}, \mathbf{1})$$

The variance of the binomial distribution is a function of it's mean.

· Linear regression

$$\bar{\mathbf{Y}} = \hat{\mathbf{Y}}, \ \mathbf{var}(\mathbf{Y}) = \hat{\sigma}^2$$

· Logistic regression

$$\bar{Y} = \hat{\pi}, \text{ var}(Y) = \hat{\pi} (1 - \hat{\pi})$$

So, we consider the entire outcome distribution in logistic regression.

 We can succinctly summarize the distributional assumptions of logistic regression as:

$$Y_i \stackrel{iid}{\sim} Bin (\hat{\pi}_i, 1)$$

We end up with three assumptions where the third assumption fills the role played by all residual-related assumptions in linear regression.

- 1. The model is linear in the parameters.
- 2. The predictor matrix is full rank.
- 3. The outcome is independently and identically binomially distributed.

$$Y_n \stackrel{iid}{\sim} \text{Bin}(\hat{\pi}_n, 1)$$

$$\hat{\pi}_n = \text{logistic}\left(\hat{\beta}_0 + \sum_{p=1}^P \hat{\beta}_p X_{np}\right)$$

Example

To demonstrate these ideas, we'll fit a logistic regression model that predicts the chances of Titanic passengers surviving based on their age, sex, and ticket price

Example

```
partSummary(glmFit, -1)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.837621 0.215121 3.894 9.87e-05
   -0.007404 0.006040 -1.226 0.22
age
sexmale -2.392422 0.171288 -13.967 < 2e-16
fare 0.011586 0.002338 4.955 7.23e-07
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1182.8 on 886 degrees of freedom
Residual deviance: 881.4 on 883 degrees of freedom
ATC: 889.4
Number of Fisher Scoring iterations: 5
```

Raw Residuals

In logistic regression the outcome is binary, $Y \in \{0,1\}$, but the parameter that we're trying to model is continuous, $\pi \in (0,1)$.

- Due to this mismatch in measurement levels, we don't have a natural definition of a "residual" in logistic regression.
- We have a few potential operationalizations.

The most basic residual is the raw residual, e_n .

 The difference between the observed outcome value and the predicted probability.

$$e_n = Y_n - \hat{\pi}_n$$

Raw Residuals

```
library(ggplot)
## Calculate the raw residuals:
titanic$e <-
  resid(glmFit, type = "response")
## Plot raw residuals vs. fitted
## linear predictor values:
ggplot(titanic, aes(etaHat, e)) +
  geom_point() +
  geom_smooth() +
  theme_classic() +
  xlab("Linear Predictor") +
  ylab("Raw Residual")
```


Pearson Residuals

Pearson residuals, r_n , are scaled raw residuals.

$$r_n = \frac{e_n}{\sqrt{\hat{\pi}_n(1-\hat{\pi}_n)}}$$

Calculate the Pearson residuals: titanic\$r <-resid(glmFit, type = "pearson")

Deviance Residuals

Deviance residuals, d_n , are derived directly from the objective function used to estimate the model.

$$d_n = \operatorname{sign}(e_n) \sqrt{-2 \left[Y_n \ln \left(\hat{\pi}_n \right) + (1 - Y_n) \ln \left(1 - \hat{\pi}_n \right) \right]}$$

The *residual deviance*, *D*, is the sum of squared deviance residuals.

$$D = \sum_{n=1}^{N} d_n^2$$

Deviance Residuals

```
## Calculate the deviance residuals:
titanic$d <-
   resid(glmFit, type = "deviance")

## Calculate the residual deviance:
titanic$d^2 %>% sum()

[1] 881.4048
summary(glmFit)$deviance

[1] 881.4048
```


Residual Deviance

The residual deviance quantifies how well the model fits the data.

```
## Estimate a null model.
nullFit <- glm(survived ~ 1, family = binomial, data = titanic)</pre>
## Test the fit of our example model:
anova(nullFit, glmFit, test = "Chisq")
Analysis of Deviance Table
Model 1: survived ~ 1
Model 2: survived ~ age + sex + fare
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      886 1182.8
   883 881.4 3 301.37 < 2.2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A1: Linearity

Assumption 1 implies a linear relation between continuous predictors and the *logit of the success probability*.

- We can basically evaluate the linearity assumption using the same methods we applied with linear regression.
- $\hat{\mathbf{Y}} \rightarrow \hat{\eta} = \mathbf{logit}(\hat{\pi})$

plot(glmFit, 1)

A1: Linearity

car::crPlots(glmFit, terms = ~ age + fare)

Component + Residual Plots

A2: Predictor Matrix Rank

Assumption 2 implies two conditions:

- 1. P > N
- 2. No severe (multi)collinearity among the predictors

We can quantify multicollinearity with the variance inflation factor (VIF).

```
car::vif(glmFit)

age sex fare
1.031829 1.007699 1.026373
```

VIF > 10 indicates severe multicollinearity.

A3: IID Binomial

Assumption 3 implies several conditions.

- 1. The outcome, Y, is binary.
- 2. The linear predictor, η , can explain all the systematic trends in π .
 - No residual clustering after accounting for X.
 - No important variables omitted from X.

We can easily check the first condition with summary statistics.

```
levels(titanic$survived)

[1] "no" "yes"

table(titanic$survived)

no yes
545 342
```

Alternative Modeling Schemes

If we have a non-binary, categorical outcome, we can use a different type of model.

- Multiclass nominal variables: Multinomial logistic regression
 - o nnet::multinom()
- Ordinal variables: Proportional odds logistic regression
 - o MASS::polr()
- Counts: Poisson regression
 - o glm() with family = "poisson"

The binomial distribution (and logistic regression) is also appropriate for modeling the proportion of successes in *N* trials.

A3: Clustering

We can check for residual clustering by calculating the ICC using deviance residuals.

```
## Check for residual dependence induced by 'class':
ICC::ICCbare(x = titanic$class, y = resid(glmFit, type = "deviance"))
[1] 0.1054665
```


Computational Considerations

In addition to the preceding statistical assumptions, we must satisfy three computational requirements that were not necessary in linear regression.

- The sample size is large enough to support the necessary numerical estimation.
- 2. The outcome classes are sufficiently balanced.
- **3**. There is no perfect prediction.

Sufficient Sample Size

Logistic regression models are estimated with numerical methods, so we need larger samples than we would for linear regression models.

• The sample size requirements increase with model complexity.

Some suggested rules of thumb:

- 10 cases for each predictor (Agresti, 2018)
- $N = 10P/\pi_0$ (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996)
 - P: Number of predictors
 - π_0 : Proportion of the minority class
- N = 100 + 50P (Bujang, Omar, & Baharum, 2018)

Balanced Outcomes

The logistic regression may not perform well when the outcome classes are severely imbalanced.

```
with(titanic, table(survived) / length(survived))
survived
    no    yes
0.6144307 0.3855693
```

We have a few possible solutions for problematic imbalance:

- Down-sampling the majority class
- Up-sampling the minority class
- Use weights when estimating the logistic regression model
 - o weights argument in glm()

Perfect Prediction

We don't actually want to perfectly predict class membership.

• The model cannot estimate with perfectly separable classes.

Model regularization (e.g., ridge or LASSO penalty) may help.

• glmnet::glmnet()

Influential Cases

As with linear regression, we need to deal with any overly influential cases.

- We can use the linear predictor values to calculate Cook's Distances.
- Any cases that exerts undue influence on the linear predictor will have the same effect of the predicted success probabilities.

Influential Cases

cooks.distance(glmFit) %>% plot()

plot(glmFit, 4)

CLASSIFICATION PERFORMANCE

One of the most direct ways to evaluate classification performance is the *confusion matrix*.

	True	
Predicted	no	yes
no	458	106
yes	87	236

Confusion Matrix of Predicted Survival

Each cell in the confusion matrix represents a certain classification result.

	True		
Predicted	Died	Survived	
Died	True Negative	False Negative	
Survived	False Positive	True Positive	

Confusion Matrix of Predicted Survival

• **TP**: Correctly predict survival

TN: Correctly predict death

• **FP**: Predict survival for dead people

• FN: Predict death for survivors


```
library(caret)
cMat <- titanic %$% confusionMatrix(data = yHat, reference = survived)</pre>
cMat$table
         Reference
Prediction no yes
      no 458 106
      ves 87 236
cMat$overall
     Accuracy
                       Kappa
                              AccuracyLower AccuracyUpper
  7.824126e-01 5.359709e-01
                               7.537802e-01
                                              8.091549e-01
  AccuracyNull AccuracyPValue McnemarPValue
  6.144307e-01 7.471405e-27
                               1.950898e-01
```

cMat\$byClass

Sensitivity Specificity 0.8403670 0.6900585 Pos Pred Value Neg Pred Value 0.8120567 0.7306502 Precision Recall 0.8120567 0.8403670 F1 Prevalence 0.8259693 0.6144307 Detection Rate Detection Prevalence 0.5163472 0.6358512 Balanced Accuracy 0.7652127

Summaries of the Confusion Matrix

$$Accuracy = (TP + TN) / (P + N)$$

- In our example, Accuracy = 0.78
- 78% are correctly classified

Error Rate =
$$(FP + FN) / (P + N) = 1 - Accuracy$$

- In our example, Error Rate = 0.22
- 22% are incorrectly classified

$$Sensitivity = TP / (TP + FN)$$

- In our example, Sensitivity = 0.84
- 84% of survivors are correctly classified

$$Specificity = TN / (TN + FP)$$

- In our example, Specificity = 0.69
- 69% of deaths are correctly classified

Summaries of the Confusion Matrix

False Positive Rate (FPR) = FP / (TN + FP) = 1 - Specificity

- In our example, FPR = 0.31
- 31% of deaths are incorrectly classified as survivors

Positive Predictive Value (PPV) = TP / (TP + FP)

- In our example, PPV = 0.81
- There is an 81% chance that a passenger classified as a survivor was classified correctly

Negative Predictive Value (NPV) = TN / (TN + FN)

- In our example, NPV = 0.73
- There is a 73% chance that a passenger classified as dying was classified correctly

ROC Curve

A receiver operating characteristic (ROC) curve illustrates the diagnostic ability of a binary classifier for all possible values of the classification threshold.

 The ROC curve plots sensitivity against specificity at different threshold values.

```
rocData <- titanic %$%
  pROC::roc(survived, piHat)
plot(rocData)</pre>
```


ROC Curve

The *area under the ROC curve* (AUC) is a one-number summary of the potential performance of the classifier.

• The AUC does not depend on the classification threshold.

```
pROC::auc(rocData)

Area under the curve: 0.8298
```

According to Mandrekar (2010):

- AUC value from 0.7 0.8: Acceptable
- AUC value from 0.8 0.9: Excellent
- AUC value over 0.9: Outstanding

Threshold Selection

We can use numerical methods to estimate an optimal threshold value.

Threshold Selection

```
partSummary(ocOut, -1)
Area under the ROC curve (AUC): 0.83 (0.802, 0.858)
CRITERION: ROCO1
Number of optimal cutoffs: 1
                     Estimate
cutoff
                    0.2360978
Se
                    0.7543860
Sp
                    0.7761468
PPV
                    0.6789474
NPV
                    0.8343195
DLR. Positive
                    3.3700029
DLR.Negative
                    0.3164531
FP
                  122.0000000
FN
                   84.0000000
Optimal criterion
                    0.1104365
```

Alternative Performance Measures

Measuring classification performance from a confusion matrix can be problematic.

Sometimes too coarse.

We can also base our error measure on the residual deviance with the *Cross-Entropy Error*:

$$CEE = -N^{-1} \sum_{n=1}^{N} Y_n \ln(\hat{\pi}_n) + (1 - Y_n) \ln(1 - \hat{\pi}_n)$$

- The CEE is sensitive to classification confidence.
- · Stronger predictions are more heavily weighted.

Benefits of CEE

The misclassification rate is a naïvely appealing option.

• The proportion of cases assigned to the wrong group

Consider two perfect classifiers:

1.
$$P(\hat{Y}_n = 1|Y_n = 1) = 0.90, P(\hat{Y}_n = 1|Y_n = 0) = 0.10, n = 1, 2, ..., N$$

2.
$$P(\hat{Y}_n = 1|Y_n = 1) = 0.55$$
, $P(\hat{Y}_n = 1|Y_n = 0) = 0.45$, $n = 1, 2, ..., N$

Both of these classifiers will have the same misclassification rate.

Neither model ever makes an incorrect group assignment.

The first model will have a lower CEE.

- The classifications are made with higher confidence.
- $CEE_1 = 0.105$, $CEE_2 = 0.598$

References

- Agresti, A. (2018). *An introduction to categorical data analysis*. Hoboken, NJ: John Wiley & Sons.
- Bujang, M. A., Omar, E. D., & Baharum, N. A. (2018). A review on sample size determination for cronbach's alpha test: a simple guide for researchers. *The Malaysian Journal of Medical Sciences*, *25*(6), 85.
- Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. *Journal of Thoracic Oncology*, *5*(9), 1315–1316.
- Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. *Journal of Clinical Epidemiology*, *49*(12), 1373–1379.