Magic Number Tree

James has a tree with n nodes n-1 edges where the i^{th} edge has a length, w_i . He wants to play a game involving n moves. During each move, he performs the following steps:

- ullet Randomly chooses some node x_i from the tree. Each node has an equal probability of being chosen.
- ullet Calculates the distance from node x_i to each node reachable from x_i using one or more edges.
- Deletes node x_i .

For example, the diagram below shows what happens when we choose a random node and delete it from the tree:

After n moves, the tree is empty and the game ends.

James defines the magic number, m, as the sum of all numbers calculated in step 2 of each move. Let E_m be the expected value of m.

Give the tree's edges and their respective lengths, calculate and the print the value of $(E_m \times n!) \mod (10^9 + 9)$. It is guaranteed that $E_m \times n!$ is an integer.

Input Format

The first line contains an integer, n, denoting the number of nodes.

Each of the n-1 subsequent lines contains three space-separated integers describing the respective values of u_i , v_i , and w_i , meaning that there is an edge of length w_i connecting nodes u_i and v_i .

Constraints

- $1 \le n \le 5000$
- $1 \leq u_i, v_i \leq n$
- $1 < w_i < 10^9$

Subtasks

- \bullet For 30% of the max score $n \leq 10$
- \bullet For 60% of the max score $n \leq 400$

Output Format

Print a single integer denoting the value of $(E_m imes n!) mod (10^9 + 9)$.

Sample Input

3 212 323

Explanation

Let d(u,v) be the distance between node u and node v. Here are the ${\bf 6}$ different variants:

1.
$$(x_1, x_2, x_3) = (1, 2, 3)$$

2.
$$(x_1, x_2, x_3) = (2, 1, 3)$$

3.
$$(x_1,x_2,x_3)=(1,3,2)$$
. $m=7+3+0=10$

4.
$$(x_1, x_2, x_3) = (2, 3, 1)$$
. $m = 0 + 5 + 0 = 5$

5.
$$(x_1, x_2, x_3) = (3, 1, 2)$$
. $m = 2 + 0 + 8 = 10$

6.
$$(x_1,x_2,x_3)=(3,2,1)$$
. $m=0+2+8=10$

The expected value of the magic number is $E_m=\frac{50}{6}$. We then print the value of $(E_m imes n!) mod (10^9+9)=(rac{50}{6} imes 3!) mod (10^9+9)=50$.