Advanced Computer-Aided VLSI System Design

Homework 1: Run-length Encoder with Low Power Design

Graduate Institute of Electronics Engineering, National Taiwan University

Goal

- In this homework, you will learn
 - The flow of the low-power solution
 - Write UPF file to control power domain
 - Implement a low-power design constraint through power reduction methods
 - Simulation commands with VCS NLP
 - Use primetime to estimate power

Introduction

 In this homework, you are going to design a simplified Runlength Encoder and implement it with low-power design constraint through UPF flow

Block Diagram

Input/Output

Signal Name	I/O	Width	Simple Description
i_clk	I	1	Clock signal in the system
i_rst_n	I	1	Active low asynchronous reset
i_valid	I	1	The signal is high if input data is ready
i_data_r	l	8	
i_data_g	I	8	Unsigned integer input data which represent the red, green, blue value of each pixel from 0 to 255
i_data_b	I	8	g. c c , a . a . c . c . a
o_valid	0	1	Set high if ready to output result
o_data	0	18	Unsigned output data after run-length encoding 1. For o_data[17:10], output the pixel value of each run 2. For o_data[9:0], output the length of the value

Specification (1/2)

- Active low asynchronous reset is used only once
- All inputs are synchronized with the negative clock edge
- All outputs should be synchronized with the positive clock edge
- New pattern (i_data_r, i_data_g and i_data_b) is ready only when i_valid is high
- o_valid should be high for only one cycle for each o_data
- The testbench will sample o_data at negative clock edge if o_valid is high
- You can raise o_valid at any moment but only once

Specification (2/2)

Run-length Encoding (1/2)

- Runs of data (consecutive occurrences of the same data value) are stored as a single occurrence
 - Includes data value and a count of its consecutive occurrences

Run-length Encoding (2/2)

- Lossy run-length encoding
 - One value is first picked as the values reference value
 - Pixels between a certain range, instead of the exact same one, are stored in one run

Requirements for UPF

- Power top should be set in the UPF file
- At least two power domains (including top domain) are used in your design
- At least one power switch is used in your design

```
create_power_domain PD_RLE -elements {u_rle}

create_power_switch psw_rle \
   -domain PD_RLE \
   -input_supply_port {TVDD VDD} \
   -output_supply_port {VDD VVDD_RLE} \
   -control_port {NSLEEPIN PSW_NSLEEPIN_RLE} \
   -ack_port {NSLEEPOUT PSW_ACK_RLE} \
   -on_state {state_on TVDD {NSLEEPIN}} \
   -off_state {state_off {!NSLEEPIN}}
}
```

Reference for Low Power Strategy

Other Requirements

- The range threshold value is set to 10
- The sizes of all input images are 64x64x3 pixels
- You are NOT allowed to use DesignWare

top.v


```
nodule top #(
   parameter IN DATA WIDTH = 8,
   parameter OUT_DATA_WIDTH = 18
   input i rst n,
   input i_clk,
   input i_valid,
   input [IN_DATA_WIDTH-1:0] i_data_r,
   input [IN_DATA_WIDTH-1:0] i_data_g,
   input [IN_DATA_WIDTH-1:0] i_data_b,
   output [OUT_DATA_WIDTH-1:0] o_data,
   output o valid
```

```
// Parameters
    // Wires and Regs
    // Continuous Assignments
    // Sequential Blocks
    // SRAM
    // Combinational Blocks
endmodule
```

N16 ADFP Memory

- No memory compiler in N16 ADFP
- Can only use the provided SRAM

TS1 (single port)	TS6 (two port)
TS1N16ADFPCLLLVTA16X88M2SWSHOD	TS6N16ADFPCLLLVTA16X32M2FWSHOD
TS1N16ADFPCLLLVTA16X96M2SWSHOD	TS6N16ADFPCLLLVTA16X72M2FWSHOD
TS1N16ADFPCLLLVTA128X64M4SWSHOD	TS6N16ADFPCLLLVTA16X120M2FWSHOD
TS1N16ADFPCLLLVTA512X45M4SWSHOD	TS6N16ADFPCLLLVTA32X32M2FWSHOD
	TS6N16ADFPCLLLVTA128X32M4FWSHOD
	TS6N16ADFPCLLLVTA128X64M4FWSHOD

Single Port Memory IO

CEB: active low chip enable

WEB: write: 1'b0, read: 1'b1

DSLP/SLP: (Deep) Sleep

SD: Shut Down

```
module TS1N16ADFPCLLLVTA128X64M4SWSHOD(
            (address),
    . A
            (cen), // active low
    .CEB
    .CLK (clk),
            (wen), // write: low, read: high
    .WEB
       (datain),
    .D
        (dataout),
    Q.
    .BWEB (\{64\{1'b0\}\}),
    .RTSEL (2'b01),
    .WTSEL
            (2'b01),
            (1'b0),
    .SLP
    .DSLP
            (1<sup>,</sup>b0),
            (1'b0),
    .SD
    .PUDELAY ()
);
```


Two Port Memory IO

REB: active low read enable

WEB: active low write enable

```
module TS6N16ADFPCLLLVTA128X32M4FWSHOD(
             (read address),
    . AB
             (read en), // active low
    .REB
           (read clk),
    .CLKR
    .Q
            (dataout),
             (write address),
    .AA
    .WEB (write en), // active low
    .D
           (datain),
    .CLKW (write clk),
    .BWEB ({32{1'b0}}),
    .RCT
           (2'b01),
             (2'b01),
    . WCT
             (3'b011),
    .KP
             (1<sup>,</sup>b0),
    .SLP
    .DSLP
             (1'b0),
    .SD
             (1'b0),
    .PUDELAY ()
);
```


Two Port Memory

Pattern (Input Data)

i_data_r i_data_g i_data_b 100100111001110010111101 1001010110011110101111111 100101101001110010111110 100100001001011010111000 100011011001001110110011 100100001001011010110110 10010110<mark>10011011</mark>10111001 100110001001110110111011 100111011010000110111110

Pattern (Golden Output)

value	length
10011111	0000001000
10010100	0000000011
10001001	0000000100
10011010	0000000100
10100110	0000000100
10110100	0000000111
10100101	0000000110
10010101	0000000010

Submission

 Create a folder named studentID_hw1 and follow the hierarchy below (*.sv is allowed if you use SystemVerilog)

```
r13943000 hw1
   01 RTL
     xxx.v (other verilog files)
     rtl 01.f
  02 GATE
     top_syn.v
    top_syn.sdf
     rt1_02.f
  03 SYN
     top syn.area
     top_syn.timing
     top_syn.ddc
     top syn.tcl
   04 UPF
     top.rtl.upf
      top.syn.upf
   05 POWER
      p0.power
   report.txt
```

Submission - Workstation

- Pack the folder studentID_hw1 into a tar.gz file named acvsdxxx-hw1.tar.gz
 - tar -zcvf acvsdxxx-hw1.tar.gz [path to studentID_hw1]
 - Use lowercase for all the letters (e.g. acvsd000-hw1.tar.gz)
 - Pack the folder on ADFP server to avoid OS related problems
 - Place the tar.gz file at the root of your ADFP account
- TA will only check the last version after the homework deadline
- Reminder
 - Files uploaded to ADFP workstation must be kept as a copy in your local folder or computer

Submission - NTU COOL

- For design files and UPF scripts (01_RTL, 04_UPF, report)
- Pack the folder studentID_hw1 into a tar file named acvsdxxxhw1-vk.tar.gz (k is the number of version, k =1,2,...)
 - tar -zcvf acvsdxxx-hw1-vk.tar.gz [path to studentID_hw1]
 - Use lowercase for all the letters. (e.g. acvsd000-hw1-v1.tar.gz)
 - Pack the folder on IC Design LAB server to avoid OS related problems
- Submit to NTU Cool

Grading Policy (1/3)

- Grading command for RTL
 - vcs -full64 -R -f rtl_01.f +v2k -sverilog -debug_access+all +define+\$1
 - vcs -full64 -R -f rtl_01.f -upf [path to UPF file] +v2k sverilog -debug_access+all +define+\$1+UPF
- Simulation: 70%
 - Need to pass all of 5 public and 5 private test cases

	Score
RTL simulation	15%
RTL with UPF	15%
Gate-level simulation	20%
Gate-level with UPF	20%

Grading Policy (2/3)

- Grading command for gate-level
 - vcs -full64 -R -f rtl_02.f +v2k-sverilog -v2005 debug_access+all +maxdelays -negdelay +neg_tchk +define+\$1+SDF
 - vcs -full64 -R -f rtl_02.f -upf [path to UPF file] +v2k sverilog -v2005 -debug_access+all +maxdelays -negdelay
 +neg_tchk +define+\$1+SDF+UPF
- Performance: 30%
 - Use public test cases (But need to pass hidden pattern)
 - Performance = $\sum (P^2 \times T) \times A$
 - P: Power (mW), T: Simulation time (ns), A: Area (um²)
 - Baseline = 3×10^6

	Score
Baseline	10%
Ranking (Need to pass baseline)	20%

Grading Policy (3/3)

- Lose 5 points for any incorrect naming or format
- Violations of any spec incur point penalties
 - Negative slack/Design without SRAM
 - 0 point for gate-level simulations and performance
 - Violate other rules but pass all simulations
 - Performance score * 0.7
- No late submission
 - 0 point for this homework
- No plagiarism
 - Plagiarism in any form, including copying from online sources, is strictly prohibited

Time

Time: Processing time from simulation (ex. 12583.50ns below)

```
../00_TESTBED/p0/pat0.dat

- START -

- ALL PASS! -

$finish called from file "../00_TESTBED/testbench.v", line 221.

$finish at simulation time 12583500

VCS Simulation Report

Time: 12583500 ps
```

Area

Number of ports: 905 Number of nets: 4541 Number of cells: 2951

Number of combinational cells: 2178 Number of sequential cells: 634

Number of macros/black boxes: 12

Number of buf/inv: 291

Number of references: 88

Combinational area: 804.816020

Buf/Inv area: 46.344962

Noncombinational area: 856.448612 Macro/Black Box area: 44442.873047

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 46104.137679

Total area: undefined

Number of macros/black boxes should not be 0

Power

Use Primetime to calculate power

ъ а	Internal Switching Leakage Total	
Power Group	Power Power Power (%) Attrs	
clock_network register	0.0000 0.0000 0.0000 (0.00%) i 0.0000 0.0000 0.0000 (0.00%)	
combinational	7.862e-05 6.337e-05 1.721e-07 1.422e-04 (0.62%)	
sequential memory	3.591e-04 4.984e-05 3.060e-08 4.090e-04 (1.78%) 0.0224 1.831e-06 5.554e-06 0.0224 (97.60%)	
io_pad	0.0000 0.0000 0.0000 0.0000 (0.00%)	
black_box	0,0000 0,0000 0,0000 (0,00%)	
Cell Internal P	Power = 1.150e-04 (0.50%) ower = 0.0228 (99.47%) ower = 5.757e-06 (0.03%)	

Total Power = 0.0230 (100.00%)

Power = 0.0230 mW

X Transition Power = 4.286e-07 Glitching Power = 4.507e-07

Report

Discussion

NTU Cool Discussion Forum

- For any questions not related to assignment answers or privacy concerns, please use the NTU Cool discussion forum.
- TAs will prioritize answering questions on the NTU Cool discussion forum
- **Email:** r12943125@ntu.edu.tw
 - Title should start with [ACVSD 2025 Spring HW1]
 - Email with wrong title will be moved to trash automatically

Discussion

ПЖ	
課程內容課程資訊	[HW1]Discussion 所有班別
公告	HW1相關問題在此討論·並請以下列格式發問·方便助教按照每個問題回答
作業	1. 問題一
討論	2. 問題
Gradescope	
成績	另外,若需要截圖,請勿把自己的code截圖或code文字上傳,變成大家的參考答案,若違反將扣本次作業總分10分。
設定	祝同學們學習順心
	by TA
	[提醒]
	1
	2
	3

References

- [1] Reference for run-length encoding
 - Run-length Encoding
- [2] Reference for UPF
 - Synopsys [®] Multivoltage Flow User Guide