贸

题号	_	=	Ξ	四	五	六	七	八	九	+	总分	阅卷人
得分												

得分	阅卷人

一、填空题(每小题 4 分, 共 28 分)

1.
$$\exists A = \frac{1}{2} \begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \emptyset A^{-1} = \underline{\qquad}$$

- 2. 设A为4阶方阵,且|A|=1,则|3A|=_____.
- 3. 己知 $\alpha_1 = (2,3,4,5)^T$, $\alpha_2 = (3,4,5,6)^T$, $\alpha_3 = (4,5,6,7)^T$, $\alpha_4 = (5,6,7,8)^T$,则矩阵 $A = [\alpha_1 \alpha_2 \alpha_3 \alpha_4]$ 的秩为______.
- 4. 设A是n阶方阵,且满足 $A^2 + A 5I = 0$,则 $(A + 2I)^{-1} =$ _____.
- 5. 已知方程组 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ 无解,则实数 $a = \underline{\qquad}$
- 6. 设向量 $\alpha = (2,3,4,1), \beta = (1,-3,2,x)$,且 α 与 β 正交,则 $x = \underline{\hspace{1cm}}$
- 7. 若 4 阶矩阵 A = B 相似,矩阵 A 的特征值为 $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$,则 B^{-1} 的特征值为_

阅卷人 二、选择题 (每小题 3 分,共 12 分)

- 1. 设A为 5 阶方阵,且R(A)=4, β_1,β_2 是Ax=0的两个不同的解向
- (A) $k\beta_1$ (B) $k\beta_2$ (C) $k(\beta_1 + \beta_2)$ (D) $k(\beta_1 \beta_2)$
- 2. 下列命题中与命题"n阶方阵A可逆"不等价的是
- - (A) $|A| \neq 0$ (B) A 的列向量组线性无关
 - (C) 方程组 Ax = 0 有非零解
- (D) A的行向量组线性无关
- $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ 3. 已知 $Q = \begin{bmatrix} 2 & 4 & t \end{bmatrix}$, P为 3 阶非零矩阵, 且满足 $PQ = \mathbf{0}$,则 3 6 9
 - (A) t=6时P的秩必为1
- (B) t=6时P的秩必为2
- (C) *t* ≠ 6 时 *P* 的秩必为 1
- (D) t≠6时P的秩必为2
- 4. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组不是线性无关的是

 - (A) $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3$ (B) $\alpha_1, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3$

(C)
$$\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3$$

(C)
$$\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3$$
 (D) $\alpha_1 + \alpha_2, \alpha_1 + \alpha_3, \alpha_3 - \alpha_1$

得分	阅卷人	
		三、讠

三、计算题 (本题 10 分) 求
$$n$$
 阶行列式 $D_n = \begin{bmatrix} 2 & 1 & L & 1 \\ 1 & 2 & L & 1 \\ M & M & M & M \\ 1 & 1 & L & 2 \end{bmatrix}$ 的值.

得分 阅卷人

四、计算题(本题 15 分)设线性方程组
$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (1+\lambda)x_2 + x_3 = \lambda \end{cases},$$
 $x_1 + x_2 + (1+\lambda)x_3 = -\lambda^2$

求み等于何值时,方程组 (1) 有惟一解; (2) 无解; (3) 有无穷多解.

姓名

錣

专业

阅卷人	五、证明题(每小题5分,共1
	1. 证明不含零向量的正交向量组

- 10分)
- 组一定是线性无关组。
- 2. 证明同一矩阵不同特征值对应的特征向量必定线性无关。

得分	阅卷人

七、计算题(本题15分)

已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0) 通过正

交变换化成标准型 $f = y_1^2 + 2y_2^2 + 5y_3^2$, 求参数 a 及所用的正交变换矩阵.

得分	阅卷人

六、证明题(本题 10 分) 若n阶方阵A满足 $A^2-4A+3I=0$,则A的 特征值只能是1或3.