Synthetic Diff-in-Diff

Professor Song YaoOlin Business School

Customer Analytics

Limitations of Diff-in-Diff and Synthetic Control

- One key limitation of diff-in-diff
 - ▶ The parallel trends assumption does not always hold
- One key limitation of synthetic control method (SCM)
 - A single treated unit
- Solution? Synthetic Diff-in-Diff
 - ▶ Combine SCM and Diff-in-Diff
 - ▶ Improve causal inference with *panel data (aka longitudinal data)*

A Real-World Application

The tabacco tax

- Setting
 - Multiple units and multiple periods
 - ▶ At a given time, some treated and some untreated
 - ▶ Treatment may not happen at the same time
 - AKA, staggered treatment
- Let's focus on California first
 - ▶ Treatment started in 1989
 - ▶ 38 donor states

3

Diff-in-Diff Result

```
### Diff-in-diff
 # Exclude states with large tax hikes soon after 1988
 # This is based on some additional Google search during which
 # we found out these states raised their tabacco tax significantly
 # soon after California's Proposition 99
 # Create list of states to exclude
 excluded_states = ['Arizona', 'Michigan', 'Massachusetts']
 # Create diff-in-diff dataframe excluding those states
 df_did = df[~df['state'].isin(excluded_states)].copy()
 # Create after_tax indicator for years >= 1989
 df_did['after_tax'] = (df_did['year'] >= 1989).astype(int)
 # Create treatment indicator for California
 df_did['treated'] = (df_did['state'] == 'California').astype(int)
 # Run DiD regression with state and year fixed effects
 did_model = smf.ols('cigsale ~ treated * after_tax + C(state) + C(year)', data=df_did).fit()
 print(did_model.summary())
 # Calculate percentage change use average control sales as baseline (donor units after 1989)
 sales_baseline_did = \
     df_did[(df_did['treated'] == 0) & (df_did['after_tax'] == 1)]['cigsale'].mean()
 did_percent_change = (did_model.params['treated:after_tax'] / sales_baseline_did) * 100
 print(f"Percent Change: {round(did_percent_change, 1)}%")
                                                                                                        1.234
treated
                                   -2.1502
                                                  1.725
                                                              -1.246
                                                                            0.213
                                                                                        -5.535
                                  -17.0483
after_tax
                                                  1.819
                                                              -9.372
                                                                            0.000
                                                                                       -20.617
                                                                                                      -13.479
treated:after_tax
                                  -27.3491
                                                  4.409
                                                              -6.202
                                                                            0.000
                                                                                       -36.001
                                                                                                      -18.698
Percent Change: -26.8%
```

Diff-in-Diff Reformulation

California $Y_{it} = \beta_0 + \beta_1 Post_t + \beta_2 Treated_i + \beta_3 Treated_i Post_t + e_{it}$

- Data structure

$$D = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$Y = egin{bmatrix} oldsymbol{Y}_{pre,co} & oldsymbol{Y}_{pre,tr} \ oldsymbol{Y}_{post,co} & oldsymbol{Y}_{post,tr} \end{bmatrix}$$

- Diff-in-diff reformulation

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - (\mu + \alpha_i + \beta_t + \tau D_{it})^2)$$

5

SCM Revisited

```
# The synthetic California's per capita consumption is the weighted sum of
# the donor states' per capita consumptions
synthetic_california_new = np.dot(wide_data[donor_states].values, calif_weights)

# Calculate treatment effect (difference between actual and synthetic)
diff_cigsale = wide_data['California'] - synthetic_california_new

# Calculate average treatment effect on the treated after implementation (post-1989)
att_post = diff_cigsale[wide_data.index >= 1989].mean()
print("\nATT after 1989:", round(att_post, 2), "packs per capita")

# Calculate percentage change
baseline = synthetic_california_new[wide_data.index >= 1989].mean()
percent_change = (att_post / baseline) * 100
print(f"Percent Change: {round(percent_change, 1)}%")

ATT after 1989: -19.51 packs per capita
Percent Change: -24.4%
```

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \beta_t - \tau D_{it})^2 \hat{w}_i^{sc}$$

Reasons behind the different effect size estimates?

Assumptions of Diff-in-Diff

- Parallel trends (key assumption)
 - ▶ California and other donor states are too different
- No spillovers (SUTVA)

Synthetic Diff-in-Diff

Overview of the intuition

- Construct unit weights w as we did in SCM
- Construct time weights k
- Apply weighted DiD regression to estimate the treatment effect

Formulation of SDID

Combine SCM and DiD

- SCM

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \beta_t - \tau D_{it})^2 \hat{w}_i^{sc}$$

- DiD

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - (\mu + \alpha_i + \beta_t + \tau D_{it})^2)$$

- SDiD

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - (\mu + \alpha_i + \beta_t + \tau D_{it})^2 \hat{w}_i^{sdid} \hat{k}_t^{sdid})$$

q

What does the time weights k do?

Weights that minimize the effect of noisy pre-treatment periods

- Some pre-treatment periods are noisy
 - ▶ E.g., control units' outcomes have much larger deviations from the post-treatment average
- Weight those stable/close pre-treatment periods more
- Weight those volatile/distant pre-treatment periods less

$$\hat{k}^{sdid} = \underset{k}{\operatorname{argmin}} ||\bar{\boldsymbol{y}}_{post,co} - (\boldsymbol{k}_{pre}\boldsymbol{Y}_{pre,co} + k_0)||_2^2$$
s.t $\sum k_t = 1$ and $k_t > 0 \ \forall \ t$

Very Similar to how we get the W in SCM

11

Very Similar to how we get the W in SCM

Implementation

Very similar to how we get the W in SCM

- Focusing on control (donor) states
- Compute the average outcome of post-treatment of each state (i.e., average cigsale across all control states and all post-treatment years)
- Regress
 - ► Each state's post-treatment average ~ Each state's pre-treatment yearly cigsale * k
 - ▶ sum(k) = 1 and k is bounded between 0 and 1

13

Estimating the Time Weights

More details during demo

```
import cvxpy as cp # convex optimization library
def fit_time_weights(data, outcome_col, year_col, state_col, treat_col, post_col):
        control = data.query(f"~{treat_col}")
        # pivot the data to the (T_pre, N_co) matrix representation
        y_pre = (control
                 .query(f"~{post_col}")
                 .pivot(index=year_col, columns=state_col, values=outcome_col))
        # group post-treatment time period by units to have a (1, N_co) vector.
        y post mean = (control
                        .query(f"{post_col}")
                        groupby(state_col)
                        [outcome_col]
                        .mean()
                        .values)
        # add a (1, N_co) vector of 1 to the top of the matrix, to serve as the intercept.
        X = np.concatenate([np.ones((1, y_pre.shape[1])), y_pre.values], axis=0)
        # estimate time weights
        w = cp.Variable(X.shape[0])
        objective = cp.Minimize(cp.sum\_squares(w@X - y\_post\_mean))
        constraints = [cp.sum(w[1:]) == 1, w[1:] >= 0]
problem = cp.Problem(objective, constraints)
        problem.solve(verbose=False)
        # print("Intercept: ", w.value[0])
        return pd.Series(w.value[1:], # remove intercept
                          name="time_weights",
                          index=y_pre.index)
```

Noisy Pre-treatment Periods Have Little Weight

15

Diff-in-Diff with Unit and Time Weights (w,k)

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - (\mu + \alpha_i + \beta_t + \tau D_{it})^2 \hat{w}_i^{sdid} \hat{k}_t^{sdid})$$

sdid_data.head()

	year	state	cigsale	Inincome	beer	age15to24	retprice	treated	after_tax	time_weights	unit_weights	weights
0	1970	Rhode Island	123.900000	NaN	NaN	0.183158	39.299999	0	0	-4.600031e-14	1.290447e-03	-0.0
1	1970	Tennessee	99.800003	NaN	NaN	0.178044	39.900002	0	0	-4.600031e-14	-1.322115e-16	0.0
2	1970	Indiana	134.600010	NaN	NaN	0.176516	30.600000	0	0	-4.600031e-14	1.031292e-02	-0.0
3	1970	Nevada	189.500000	NaN	NaN	0.161554	38.900002	0	0	-4.600031e-14	1.241939e-01	-0.0
4	1970	Louisiana	115.900000	NaN	NaN	0.185185	34.299999	0	0	-4.600031e-14	-8.281903e-17	0.0

Weighted Least Squared

	coef	std err	t	P> t	[0.025	0.975]
Intercept	120.4060	1.272	94.665	0.000	117.911	122.901
after_tax	-19.1905	1.799	-10.669	0.000	-22.720	-15.661
treated	-25.2601	1.799	-14.043	0.000	-28.789	-21.731
after_tax:treated	-15.6054	2.544	-6.135	0.000	-20.596	-10.615

17

Treatment Effects Overtime—SDiD for Each Period

Note: Only CA treated in our data—But the intuition carries.

How Do We Deal with Multiple Treated Units?

"Staggered Treatment"

- First, we can run the SDiD for each post-treatment period
 - ▶ Run SDiD for 1989, 1990, ..., 2000 iteratively
 - ▶ The average effect across years gives the ATT
- If there California was treated in 1989, Massachusetts in 1993, Arizona and Michigan in 1994
 - ▶ SDiD for 1989-1992, Treated==1 for CA
 - ▶ SDiD for 1993, Treated==1 for CA, MA
 - ▶ SDiD for 1994-2000, Treated==1 for CA, MA, AZ, and MI
 - ▶ The average effect across years gives the ATT