Set Notation Help

Craig Kelly

April 20, 2014

Some set notation

Let Z be the set of integer ≥ 0 . Show $Z \times Z \times Z$ is countable by constructing the bijection $f: Z \times Z \times Z \to \mathbb{N}$ I am assuming that $0 \notin \mathbb{N}$, so $\mathbb{N} = (1, 2, 3, \cdots)$

Proof. First we show that there is a bijection $g: Z \times Z \to \mathbb{N}$.

blah, blah, blah

 $g: Z \times Z \to \mathbb{N}$ is a bijection and therefore $Z \times Z$ is countable.

We may now construct $f: Z \times Z \times Z \to \mathbb{N}$ via composition:

$$f(Z_1, Z_2, Z_3) = h(g(Z_1, Z_2), Z_3)$$

Proof. $L1 = \{ M \mid M \text{ accepts w if w contains the substring 10} \}$ is undecidable

Blah, blah, blah

If M(w) accepts, then $L(HWAMw) = \{ w \mid w \text{ contains the substring } 10 \}$

If M(w) rejects or fails to halt, then $L(HWAMw) = \emptyset$

Thus, we know $(M, w) \in A_{TM} \Leftrightarrow HWAMw \in L1$

```
Proof. L2 = \{ M \mid M \text{ accepts an odd number of strings} \} is undecidable
```

P(M) if |L(M)| is odd.

 $x \in \{\,000,111,101\,\}$

Blah, blah, blah

If M(w) accepts, then L(HWBMw) = $\{000, 111, 101\}$. Note that |L(HWBMw)| = 3, which is odd.

If M(w) rejects or fails to halt, then L(HWBMw) = \emptyset , so |L(HWBMw)| = 0

Thus, we know $(M, w) \in A_{TM} \Leftrightarrow HWBMw \in L2$