Natural Language Processing Project 3

Joel, Janet, Clement

Problem statement Can reddit to become an aggregator of conversations

Reddit now want to display organic conversations from its members, but also any publicly available conversation on the internet, and classified it under one of its existing subreddits.

They have hired us to run a "stage 0 testing" to evaluate whether such an algorithm would even be effective based sources from reddit itself, let alone importing from other sources.

Getting the data

Using Reddit API

Size: each subreddit got scrapped 200 post x 30 iterations = **6000 posts**

Data pre-EDA cleansing

- Transform to lower
- **Remove** empty posts
- **Handle** emojis

EDA

1. Most common words in each df

- Tokenizing
- Lemmatizing & Stemming (9498 columns vs 7381 columns)
- Removing stop words
- Checking similarity: Unigrams vs Bi-grams

2. Counting words

- Check for min, max and mean word count on the individual datasets
- Dropping the rows that contains no words in titles (Users include an emoji or punctuation in place of a word in title)

 | Station in Manual Classes | Station | Stat

327

506

1218

1333

2318

starbucks

starbucks

starbucks

starbucks

starbucks

0

- Plotting in WordClouds

3. **Posts length** in each df Is there a pattern in length that may influence the model?

Visualization on unigram

Visualization on Bigrams

WordCloud on raw title text

Preprocessing

- Converting text in title to lowercase
- Removing numbers
- Removing URLs
- Removing punctuation
- Applying stemming
- Remove stop words, including brand names and other miscellaneous words like 'tall', 'grande', 'venti' all of which describes the cup size of Starbucks

Visualization on unigram (After preprocessing)

Visualization on Bigrams (After preprocessing)

WordClouds post-stop words removal

Classification model metrics

- Choices: Accuracy, Recall, Precision, F1
- Chosen: Accuracy
 - Target variable is balanced (0.50 each)
 - Consequences of False Positive and False Negative is more or less the same
 - No prioritizing of True Positive/ Negative or False Positive/ Negative required in this case

Modeling

- Baseline model = Null model = 0.50
- Compare all models in PyCaret Library
- Top models:
 - Logistic Regression
 - Gradient Boosting Classifier
 - Extra Trees Classifier
- Tune the hyperparameter

	Model	Accuracy	AUC	Recall	Prec.	F1
Ir	Logistic Regression	0.7722	0.8535	0.7553	0.7808	0.7672
gbc	Gradient Boosting Classifier	0.7580	0.8542	0.6851	0.8025	0.7379
et	Extra Trees Classifier	0.7576	0.8314	0.7487	0.7619	0.7548
ridge	Ridge Classifier	0.7547	0.0000	0.7479	0.7571	0.7519
rf	Random Forest Classifier	0.7447	0.8351	0.7521	0.7406	0.7457
svm	SVM - Linear Kernel	0.7376	0.0000	0.7227	0.7442	0.7325

Models EDA

Final model and Evaluation

- Logistics Regression gives best accuracy of 0.78.
 - Well-fitted
 - o Interpretable
 - Computational cheaper
 - Suitable for binary classification problem

Score Summary									
Model	Logistic Regression	Random Forest Classifier	Support Vector Machine	Gradient Boosting Classifier					
CV score	0.7722	0.7447	0.7378	0.7580					
Train score	0.7763	0.7607	0.7529	0.7510					
Test score	0.7808	0.7726	0.7502	0.7611					

Sentiment Analysis - on Hot Topics

- Dunkin':
 - o Cold brew
 - lced coffee
 - o Dunkin donuts
- Starbucks:
 - Cold brew
 - Pumpkin spice
 - Dress code
- Both:
 - Reward
 - Service

Sentiments

Majority posts seem neutral - Questions, Discussions

Well-received topics: Rewards (free drinks, free beverages, points)

Negative topics: Services (mobile order, app, staffs)

Project conclusion

We have obtained a reliable classifier to differentiate between 2 posts on reddit;

Recommendation:

We can use Logistic Regression as our model to allocate subreddits with satisfying accuracy.

We can add on Sentiment Analysis feature to ease the navigation inside a subreddit for HR | marketing business development teams

However

To accurately classify a post coming from anywhere on the internet will prove way more difficult

Future works

Gathering more data - fine tune model and enable time-series analysis

Text-pre-processing steps

Improving on our models training (Gridsearch/vectorizers etc...)

Stacking models to make predictions that have better performance than any single model in the ensemble