

PRML

Major Project Early Diabetes Classification

Introduction

Diabetes is one of the fastest growing chronic life threatening diseases that have already affected **422 million people worldwide** according to the report of World Health Organization (WHO), in 2018. Due to the presence of a relatively long asymptomatic

phase, early detection of diabetes is always desired for a clinically meaningful outcome. Around 50% of all people suffering from diabetes are undiagnosed because of its long-term asymptomatic phase.

About this dataset.

This dataset contains 520 observations with 17 characteristics, collected using direct questionnaires and diagnosis results from the patients in the Sylhet Diabetes Hospital in Sylhet, Bangladesh.

Data Features

This Dataset consists of 520 observations with 17 characteristics which are:-

- Age Given dataset is between 16 to 80.
- Gender Male and Female only.
- Polyuria Whether the patient experienced excessive urination or not.
- Polydipsia Whether the patient experienced excessive thirst/excess drinking or not.
- Sudden weight loss Whether the patient had an episode of sudden weight loss or not.
- Weakness Whether the patient had an episode of feeling weak.
- Polyphagia Whether the patient had an episode of excessive/extreme hunger or not.
- **Genital thrush** Whether the patient had a yeast infection or not.
- Visual blurring Whether the patient had an episode of blurred vision.
- Itching Whether a patient had an episode of itch.
- Irritability Whether a patient had an episode of irritability.

- Delayed_healing Whether a patient had any noticed delayed healing when wounded.
- Partial_paresis Whether a patient had an episode of weakening of a muscle/group of muscles or not.
- Muscle_stiffness Whether the patient had an episode of muscle stiffness.
- Alopecia Whether the patient experienced hair loss or not.
- Obesity Whether a patient can be considered obese or not using his body mass index.
- Class Presence of Diabetes.

Data PreProcessing

Data Info:- After encoding column 'Gender', we get our Data info as

RangeIndex: 520 entries, 0 to 519 Data columns (total 17 columns): # Column Non-Null Count Dtype _ _ _ _ _ _____ _ _ _ _ 0 age 520 non-null int64 1 gender 520 non-null int64 2 polyuria 520 non-null int64 3 polydipsia 520 non-null int64 4 sudden_weight_loss 520 non-null int64 5 weakness 520 non-null int64 polyphagia 6 520 non-null int64 7 genital_thrush 520 non-null int64 visual blurring 8 520 non-null int64 9 itching 520 non-null int64 10 irritability 520 non-null int64 delayed healing 520 non-null int64 int64 12 partial_paresis 520 non-null muscle stiffness 13 520 non-null int64 alopecia 520 non-null int64 15 obesity 520 non-null int64 16 class 520 non-null int64 dtypes: int64(17)

Now, we split the data into train and test with test_size = 0.2

For making the application more easy, we apply MinMaxScaler to X_train and X_test set which transforms features by scaling each feature in a given range(Here, it is 0 to 1).

The plot between count and age is

Data Prediction Models

Logistic Regression

We apply Logistic Regression to our dataset and find the test score = 95.19%.

Five-Fold Cross Validation

Taking n_splits = 5, we apply the Five-Fold Cross Validation and find that score = 91.11%.

Test Accuracy

The Test Accuracy is equal to 0.95.

F1-Score

The F1-Score between y_test and ypred_logistic(as described in the code) is 0.9612.

Recall

The Recall is 0.96.

Neural Network

Preparing data for Neural Network:-

Now, we define a PyTorch 'Dataset' class called 'ddata' that reads in a CSV file and converts it into tensors to be used for training a machine learning model.

The constructor (__init__) takes a file_name argument, reads in the CSV file using pandas read_csv function, and then converts the gender column from string labels (i.e., "Male" and "Female") to numerical labels (i.e., 0 and 1) using the replace method. It then selects the first 16 columns as input features and the last column as the target variable, and stores them as torch.tensor objects.

The __len__ method returns the number of samples in the dataset, which is the length of the target variable y_train.

The __getitem__ method takes an index idx and returns a tuple containing the input features and target variable for the corresponding sample at that index. Specifically, it returns the idx-th row of x_train and y_train tensors as (self.x_train[idx], self.y_train[idx]).

Then we load the diabetes data using 'ddata'. Now, we load the data with batch size for train_loader = 30 and the same for test_loader = 10.

Neural Network Making:-

Here, we form a 'diabetes_classifier' named Neural Network with '**sigmoid**' as the activation function and some inputs:-

The neural network has 4 layers with 3 hidden layers.

No of neuron in each layer:-

1st layer = 32 neurons.

2nd layer = 16 neurons.

3rd layer = 8 neurons.

We use 'Cross Entropy Loss' as the criterion and 'Adam Optimiser' as the optimiser.

Train Model:-

Here, we train the model and also calculate the loss with each epoch.

The graph below shows the plot for the same.

Testing the Neural Network:-

We here first create a function 'check_accuracy' to check the accuracy of test_loader and train_loader.

The accuracy of test_loader is 97.5%.

The accuracy of the train_loader is 95.75%.

Test Accuracy

This is equal to 0.97.

F1-Score

This is equal to 0.97.

Recall

This is equal to 0.98.

SVM

Here, we train the svm_classifier model and then find various measures for it.

Five-Fold Cross Validation

With n_splits = 5,the cross_val_score for svm_classifier is 0.935.

Test Accuracy

This is equal to 0.99 for the svm_classifier.

F1-Score

This is equal to 0.99 for the svm_classifier.

Recall

The Recall is 1.0.

Decision Tree Classifier

Here, we train the dtc(decision_tree_classifier) model for the dataset and then find various measures for it.

Five-Fold Cross Validation

With n_splits = 5,the cross_val_score for dtc_classifier is 0.961.

Test Accuracy

The test accuracy for the dtc() model is 97.11%.

F1-Score

The F1-Score for the dtc() model is 0.976.

Recall

The Recall is 0.96.

Random Forest Classifier

We here train the Random Classifier model.

Five-Fold Cross Validation

With n_splits = 5,the cross_val_score for RandomForestClassifier is 0.968.

Test Accuracy

This is equal to 99.03% for the RandomForestClassifier model.

F1-Score

This is equal to 0.992 for the RandomForestClassifier model.

Recall

The Recall is 0.98.

Bernoulli Naive Bayes

We here train the Bernoulli Naive Bayes model.

Five-Fold Cross Validation

With n_splits = 5,the cross_val_score for Bernoulli Naive Bayes is 0.865.

Test Accuracy

This is equal to 90.38% for the Bernoulli Naive Bayes model.

F1-Score

This is equal to 0.921 for the Bernoulli Naive Bayes model.

Recall

The Recall is 0.92.

Scores Table

	Logistic Regression	Neural Network	SVM	DTC	Random Forest	Bernoulli Naive Bayes
Cross Validation Score	0.91	-	0.93	0.96	0.96	0.86
Test Accuracy	0.95	0.97	0.99	0.97	0.99	0.90
F1-Score	0.96	0.97	0.99	0.97	0.99	0.92
Recall	0.96	0.98	1.0	0.96	0.98	0.92

Conclusion

This was a Diabetes Classification problem and we know that **Recall** is always the most important measure score in any disease classification problem since we want to keep a **minimum number of False Negatives**. Observing the table above, we can see that recall for SVM classifiers is equal to **1.0** and also the other parameters of SVM classification perform better than any of the other classification approaches. Thus, if we prioritize, <u>we keep SVM above the other methods</u>.

Presented By:-

- Lokesh Tanwar (B21EE035)
- Mohit Sharma (B21EE037)
- Mridul Gupta (B21EE038)