COT4400

Homework 2

- 1. Suppose we have some arbitrary and positive integer n.
 - a. For the first loop:
 - i. Line 2: x = 1;
 - ii. Line 3: y = 0;
 - iii. Line 4: True, go into while loop
 - iv. Line 5: y = y + x; //y = 1
 - v. Line 6: x = 3x; //x = 3
 - vi. Current value of x, x = 3, y = 1, x = 2y + 1 = 2(1) + 1 = 3
 - 1. So after the first loop x = 2y + 1 is true
 - b. Suppose that for the k^{th} iteration x = 2y + 1
 - i. For the (k+1)th iteration
 - ii. Line 5: $y_{k+1} = y + x$; // $y_{k+1} = y + (2y + 1) = 3y + 1$
 - iii. Line 6: $x_{k+1} = 3x // x_{k+1} = 3(2y + 1) = 6y + 3$
 - iv. With these values we can use algebra to prove that x = 2y + 1 is correct
 - 1. $X_{k+1} = 6y + 3$
 - 2. $2y_{k+1} + 1 = 2(3y + 1) = 6y + 2 + 1 = 6y + 3$
 - 3. Thus $x_{k+1} = 2y_{k+1} + 1$ does hold true
 - c. Therefore, after every iteration of this loop, x will equal 2y + 1
- 2. Base Case, n = 11, F(n) = 89, $1.5^n = 86.498$
 - a. Assume that $F(k) >= c(1.5)^k$ for some k >= 11
 - i. F(k+1) = F(k) + F(k-1)
 - ii. = $c(1.5)^k + c(1.5)^k + c(1.5)$
 - iii. = $c(1.5 + 1)(1.5)^{(k-1)}$
 - iv. = $c(2.5)(1.5)^{(k-1)}$
 - v. $>= c(2.25)(1.5)^{(k-1)}$
 - vi. $>= c(1.5)^{(k+1)}$
 - vii. = Omega($c(1.5)^{(k+1)}$), for all n >= 11
 - viii. Therefore, there exists a constants greater than 0 c and n_0 , where c = 1 and $n_0 = 11$, such that $F(n) >= c1.5^n$, for all $n >= n_0$
- 3. h(n) = O(f(n)g(n)), f(n) = O(j(n)), g(n) = O(k(n))
 - a. h(n) = O(f(n))O(g(n)) Reverse envelopment
 - b. = O(j(n))O(k(n)) Transitive properties
 - c. = O(j(n)k(n)) Envelopment
 - d. Therefore, h(n) does equal O(j(n)k(n))