# M3 Low-Power Flash Layer (Version 3 Small) Documentation (FLPv3S)

Revision 1.0

Yejoong Kim<sup>\*1</sup>, Qing Dong<sup>†1</sup>, Inhee Lee<sup>‡1</sup>, and Xun Sun<sup>§1</sup>

<sup>1</sup>Michigan Integrated Circuits Laboratory, University of Michigan, Ann Arbor

March 15, 2019

<sup>\*</sup>yejoong@umich.edu

<sup>†</sup>qingdong@umich.edu

<sup>‡</sup>inhee@umich.edu

<sup>§</sup>xusun@umich.edu

# **Contents**

| 1 | Rev  | ision H | listory               | 10 |
|---|------|---------|-----------------------|----|
| 2 | Lay  | er Desc | cription              | 11 |
| 3 | Bloc | ck Diag | ıram                  | 14 |
| 4 | Men  | nory Sį | pace                  | 16 |
| 5 | МВ   | us Regi | ister File            | 17 |
|   | 5.1  | MBus    | Register File Mapping | 17 |
|   | 5.2  | MBus    | Register Descriptions | 20 |
|   |      | 5.2.1   | Register 0 (0x00)     | 20 |
|   |      |         | Tcyc_read             | 20 |
|   |      |         | T3us                  | 20 |
|   |      |         | T5us                  | 20 |
|   |      |         | T10us                 | 20 |
|   |      | 5.2.2   | Register 1 (0x01)     | 21 |
|   |      |         | Tcyc_prog             | 21 |
|   |      |         | Tprog                 | 21 |
|   |      | 5.2.3   | Register 2 (0x02)     | 21 |
|   |      |         | Terase                | 21 |
|   |      | 5.2.4   | Register 3 (0x03)     | 21 |
|   |      |         | Thvcp_en              | 21 |
|   |      |         | Tben                  | 21 |
|   |      | 5.2.5   | Register 4 (0x04)     | 21 |
|   |      |         | Tmvcp_en              | 21 |
|   |      |         | Tsc_en                | 21 |
|   |      | 5.2.6   | Register 5 (0x05)     | 21 |
|   |      |         | Тсар                  | 21 |
|   |      | 5.2.7   | Register 6 (0x06)     | 22 |

|        | Tvref                  | 22 |
|--------|------------------------|----|
| 5.2.8  | Register 7 (0x07)      | 22 |
|        | SRAM_START_ADDR        | 22 |
| 5.2.9  | Register 8 (0x08)      | 22 |
|        | FLSH_START_ADDR        | 22 |
| 5.2.10 | Register 9 (0x09)      | 22 |
|        | LENGTH                 | 22 |
|        | IRQ_EN                 | 22 |
|        | CMD                    | 23 |
|        | GO                     | 23 |
| 5.2.11 | Register 10 (0x0A)     | 23 |
|        | VREF_SLEEP             | 23 |
|        | COMP_SLEEP             | 23 |
|        | COMP_CLKENB            | 23 |
|        | COMP_ISOL              | 24 |
| 5.2.12 | Register 12 (0x0C)     | 24 |
|        | WRAP_EXT               | 24 |
|        | UPDATE_ADDR_EXT        | 24 |
|        | BIT_EN_EXT             | 24 |
| 5.2.13 | Register 13 (0x0D)     | 24 |
|        | TIMEOUT_EXT            | 24 |
| 5.2.14 | Register 14 (0x0E)     | 25 |
|        | SRAM_START_ADDR_EXT    | 25 |
| 5.2.15 | Register 15 (0x0F)     | 25 |
|        | INT_RPLY_SHORT_ADDR    | 25 |
|        | INT_RPLY_REG_ADDR      | 25 |
| 5.2.16 | Register 16 (0x10)     | 25 |
|        | BOOT_FLAG_SLEEP        | 25 |
|        | BOOT_FLAG_ECC_ERROR    | 25 |
|        | BOOT FLAG WRONG HEADER | 25 |

|        | BOOT_FLAG_PWDN          | 25 |
|--------|-------------------------|----|
|        | BOOT_FLAG_INVALID_CMND  | 25 |
|        | BOOT_FLAG_CHKSUM_ERROR  | 25 |
|        | BOOT_FLAG_SUCCESS       | 26 |
|        | BOOT_REG_PATTERN        | 26 |
| 5.2.17 | Register 17 (0x11)      | 26 |
|        | FLASH_POWER_DO_VREFCOMP | 26 |
|        | FLASH_POWER_DO_FLSH     | 26 |
|        | FLASH_POWER_IRQ_EN      | 26 |
|        | FLASH_POWER_SEL_ON      | 26 |
|        | FLASH_POWER_GO          | 26 |
| 5.2.18 | Register 18 (0x12)      | 27 |
|        | IRQ_PWR_ON_WUP          | 27 |
|        | SEL_PWR_ON_WUP          | 27 |
|        | FLASH_AUTO_USE_CUSTOM   | 27 |
|        | FLASH_AUTO_OFF          | 27 |
|        | FLASH_AUTO_ON           | 27 |
| 5.2.19 | Register 19 (0x13)      | 28 |
|        | PP_STR_LIMIT            | 28 |
|        | PP_STR_EN               | 28 |
| 5.2.20 | Register 20 (0x14)      | 28 |
|        | PP_NO_ERR_DETECTION     | 28 |
|        | PP_USE_FAST_PROG        | 28 |
|        | PP_WRAP                 | 28 |
|        | PP_BIT_EN_EXT           | 28 |
| 5.2.21 | Register 21 (0x15)      | 29 |
|        | PP_FLSH_ADDR            | 29 |
| 5.2.22 | Register 22 (0x16)      | 29 |
|        | PP_LENGTH_STREAMED      | 29 |
| 5.2.23 | Register 23 (0x17)      | 29 |

|        | PP_FLAG_END_OF_FLASH  | 29 |
|--------|-----------------------|----|
|        | PP_FLAG_STR_LIMIT     | 29 |
|        | PP_FLAG_COPY_LIMIT    | 29 |
|        | PP_LENGTH_COPIED      | 29 |
| 5.2.24 | Register 24 (0x18)    | 30 |
|        | CLK_RING_SEL          | 30 |
|        | CLK_DIV_SEL           | 30 |
| 5.2.25 | Register 25 (0x19)    | 30 |
|        | DISABLE_BYPASS_MIRROR | 30 |
|        | COMP_CTRL_I_1STG      | 30 |
|        | COMP_CTRL_I_2STG_BAR  | 30 |
|        | COMP_CTRL_VOUT        | 30 |
| 5.2.26 | Register 27 (0x1B)    | 30 |
|        | IRQ_PAYLOAD           | 30 |
| 5.2.27 | Register 30 (0x1E)    | 30 |
|        | FLS2LC_REG_WR_DATA    | 30 |
| 5.2.28 | Register 31 (0x1F)    | 31 |
|        | FORCE_RESETN          | 31 |
| 5.2.29 | Register 32 (0x20)    | 31 |
|        | FLSH_SET0             | 31 |
|        | FLSH_SET1             | 31 |
|        | FLSH_SNT              | 31 |
| 5.2.30 | Register 33 (0x21)    | 31 |
|        | FLSH_SPT0             | 31 |
|        | FLSH_SPT1             | 31 |
|        | FLSH_SPT2             | 31 |
| 5.2.31 | Register 34 (0x22)    | 31 |
|        | FLSH_SYT0             | 31 |
|        | FLSH_SYT1             | 32 |
| 5 2 32 | Register 35 (0x23)    | 32 |

|        | FLSH_SRT0             | 32 |
|--------|-----------------------|----|
|        | FLSH_SRT1             | 32 |
|        | FLSH_SRT2             | 32 |
|        | FLSH_SRT3             | 32 |
| 5.2.33 | Register 36 (0x24)    | 32 |
|        | FLSH_SRT4             | 32 |
|        | FLSH_SRT5             | 32 |
|        | FLSH_SRT6             | 32 |
| 5.2.34 | Register 38 (0x26)    | 32 |
|        | FLSH_SPIG             | 32 |
|        | FLSH_SRIG             | 33 |
|        | FLSH_SVR0             | 33 |
|        | FLSH_SVR1             | 33 |
|        | FLSH_SVR2             | 33 |
| 5.2.35 | Register 39 (0x27)    | 33 |
|        | FLSH_SHVE             | 33 |
|        | FLSH_SHVP             | 33 |
|        | FLSH_SHVCT            | 33 |
|        | FLSH_SMV              | 33 |
| 5.2.36 | Register 40 (0x28)    | 33 |
|        | FLSH_SMVCT0           | 33 |
|        | FLSH_SMVCT1           | 33 |
| 5.2.37 | Register 42 (0x2A)    | 34 |
|        | FLSH_SAB              | 34 |
| 5.2.38 | Register 48 (0x30)    | 34 |
|        | STR_WR_CH1_ALT_ADDR   | 34 |
| 5.2.39 | Register 49 (0x31)    | 34 |
|        | STR_WR_CH1_ALT_REG_WR | 34 |
| 5.2.40 | Register 50 (0x32)    | 34 |
|        | STR WR CH1 FN         | 34 |

|   |     |         | STR_WR_CH1_WRP                         | 34 |
|---|-----|---------|----------------------------------------|----|
|   |     |         | STR_WR_CH1_DBLB                        | 34 |
|   |     |         | STR_WR_CH1_BUF_LEN                     | 34 |
|   |     | 5.2.41  | Register 51 (0x33)                     | 35 |
|   |     |         | STR_WR_CH1_BUF_OFF                     | 35 |
|   |     | 5.2.42  | Register 52 (0x34)                     | 35 |
|   |     |         | STR_WR_CH0_ALT_ADDR                    | 35 |
|   |     | 5.2.43  | Register 53 (0x35)                     | 35 |
|   |     |         | STR_WR_CH0_ALT_REG_WR                  | 35 |
|   |     | 5.2.44  | Register 54 (0x36)                     | 35 |
|   |     |         | STR_WR_CH0_EN                          | 35 |
|   |     |         | STR_WR_CH0_WRP                         | 35 |
|   |     |         | STR_WR_CH0_DBLB                        | 35 |
|   |     |         | STR_WR_CH0_BUF_LEN                     | 36 |
|   |     | 5.2.45  | Register 55 (0x37)                     | 36 |
|   |     |         | STR_WR_CH0_BUF_OFF                     | 36 |
|   |     | 5.2.46  | Register 58 (0x3A)                     | 36 |
|   |     |         | BLK_WR_EN                              | 36 |
|   |     | 5.2.47  | Register 71 (0x47)                     | 36 |
|   |     |         | ACT_RST                                | 36 |
| c | Dow | or Un/F | Dours.                                 | 27 |
| 6 |     | er-Up/[ |                                        | 37 |
|   | 6.1 |         | ll Power-Up/Down                       | 38 |
|   | 6.2 | Semi-A  | Auto Power-Up/Down                     | 38 |
|   |     | 6.2.1   | Turn on Voltage Clamper and the Flash  | 39 |
|   |     | 6.2.2   | Turn on Voltage Clamper Only           | 39 |
|   |     | 6.2.3   | Turn on the Flash Only                 | 39 |
|   |     | 6.2.4   | Turn off Voltage Clamper and the Flash | 39 |
|   |     | 6.2.5   | Turn off Voltage Clamper Only          | 40 |
|   |     | 6.2.6   | Turn off the Flash Only                | 40 |

|    | 6.3  | Auto Power-Up/Down                         | 40 |
|----|------|--------------------------------------------|----|
|    | 6.4  | Auto Power-Up upon System Wakeup           | 41 |
| 7  | Сор  | y from Flash to SRAM                       | 43 |
| 8  | Сор  | y from SRAM to Flash                       | 44 |
|    | 8.1  | Normal Program                             | 44 |
|    | 8.2  | Fast Program                               | 44 |
| 9  | Eras | se Flash                                   | 46 |
|    | 9.1  | Page Erase                                 | 46 |
|    | 9.2  | Reference Array Erase                      | 47 |
| 10 | Exte | ernal Streaming                            | 48 |
| 11 | Ping | g-Pong Streaming                           | 50 |
|    | 11.1 | MBus Ping-Pong Streaming                   | 50 |
|    | 11.2 | External Ping-Pong Streaming               | 51 |
| 12 | Воо  | t-Up                                       | 53 |
|    | 12.1 | Boot-Up Operation                          | 53 |
|    |      | 12.1.1 Auto Boot-Up                        | 53 |
|    |      | 12.1.2 Manual Boot-Up                      | 54 |
|    | 12.2 | Boot-Up ISA (Instruction Set Architecture) | 54 |
|    |      | 12.2.1 Header                              | 54 |
|    |      | 12.2.2 Commands                            | 55 |
|    |      | REG_WRITE                                  | 55 |
|    |      | MEM_COPY                                   | 55 |
|    |      | ENUMERATION                                | 56 |
|    |      | NOP                                        | 56 |
|    |      | 12.2.3 Tails                               | 57 |
|    |      | TAIL_IDLE                                  | 57 |
|    |      | TAIL_PWDN                                  | 57 |

| TAIL_SLEEP                                    | . 57 |
|-----------------------------------------------|------|
| 12.2.4 Error Handling                         | . 58 |
| 12.2.5 Flag Registers                         | . 58 |
| 12.2.6 ECC                                    | . 59 |
| 12.2.7 Compiler and Examples                  | . 59 |
| 13 Clock Generator                            | 60   |
| 13.1 Power Domains                            | . 60 |
| 13.2 Operation and Tuning                     | . 60 |
| 14 Clock Frequency Measurement                | 61   |
| 15 List of Interrupt Payloads                 | 62   |
| 16 Voltage Clamper                            | 63   |
| 16.1 Description                              | . 63 |
| 16.2 Simulation Results                       | . 64 |
| 16.2.1 Voltage Clamp                          | . 64 |
| 16.2.2 Voltage Divider (w/ nwell-to-psub dio) | . 64 |
| 16.2.3 Current Generator                      | . 64 |
| 16.2.4 Current Reference                      | . 65 |
|                                               |      |

## 1 Revision History

#### • FLPv1L/FLPv1S

- First versions taped-out on September 16th 2015, by Yejoong Kim
- Die size: 2500um x 3000um (FLPv1L), 1050um x 2230um (FLPv1S)

#### • FLPv2L/FLPv2S/FLPv2LL/FLPv2SL

- Taped-out on May 18th 2016, by Yejoong Kim
- FLPv2S, FLPv2L are built with Regular Vth (nch/pch) digital logic
- FLPv2SL, FLPv2LL are built with Ultra-Low Leakage Vth (nch\_ull/pch\_ull) digital logic
- Removed decap filler cells due to the high leakage
- Updated the Clock Gen to fix the high current when CLKcomp is not running.
- Auto-tuning for Self-Boot-Up: adjust the clamper strength in case of header mismatch
- Self-Boot-Up flag: send out an MBus message containing information in case of Self-Boot-Up failure
- Clock-gating by Design Compiler
- Clock pad for external streaming is now built with Schmitt Trigger
- Flash macro has various bug fixes and improvements
- Die size: 2500um × 3000um (FLPv2L, FLPv2LL), 1050um × 2230um (FLPv2S, FLPv2SL)

#### • FLPv3L/FLPv3S

- Taped-out on September 11, 2017, by Yejoong Kim
- Designed and organized in the new m3\_hdk directory
- Removed VREF\_EXT pad
- Removed unnecessary bits in MBus Register File
- Introduced LC-type Register File (non-retentive) for power and area saving
- Default values of some MBus Register File have been changed.
- Die size: 2500um × 3000um (FLPv3L), 1050m × 2230um (FLPv3S)

## 2 Layer Description

The Low-Power Flash Layer (Version 3 Small) (FLPv3S) contains an 2Mb custom Flash newly designed by Qing Dong. It also includes a write buffer (8kB SRAM).

- MBus Full Prefix is 0x12203.
- Designed in TSMC 90nm (CMN90G rf3p7m5x1n0u2ff).
- Taped-out on September 11, 2017.
- Top-Level layout is located at: m3\_hdk/virtuoso/TSMC90/FLPv3S\_TOP/FLPv3S/layout
- Top-Level LVS netlist is located at: m3\_hdk/layer/FLP/FLPv3S/cd1/FLPv3S.cd1
- Top-Level Spice netlist is located at: m3\_hdk/layer/FLP/FLPv3S/ckt/FLPv3S.ckt
- C header file is located at: m3\_hdk/layer/FLP/FLPv3S/verilog/genRF/FLPv3S\_RF.h



Figure 1: Low-Power Flash Layer (Version 3 Small) (FLPv3S) (1050um  $\times$  2230um)



Figure 2: FLPv3S Wirebonding Diagram

## 3 Block Diagram

Figure 3 shows a simple block diagram of FLPv3S. For simplicity, MBus blocks/connections and Flash tuning bits are not shown.



Figure 3: FLPv3S Block Diagram

#### RF2VC Signals include the following:

- COMP\_SLEEP
- COMP\_ISOL
- DISABLE\_BYPASS\_MIRROR
- COMP\_CTRL\_VOUT
- COMP\_CTRL\_I\_1STG
- COMP\_CTRL\_I\_2STG\_BAR

#### CTRL2FLSH Signals include the following:

- SE (Read Clock), XE (Row Address Enable), YE (Column Address Enable)
- XADR (Row Address), YADR (Column Address), DIN (Data Input)
- PROG (Program Enable), NVSTR (High Voltage Enable), ERASE (Erase Enable)
- IREF\_ERASE\_EN (Reference Cell Erase Enable)
- ABUF\_EN (Vref Analog Buffer Enable), RESETB (Flash Reset)
- HVCP\_EN (HV-Pump Enable), MVCP\_EN (MV-Pump Enable)
- SC\_EN (Switch-Cap Enable), BEN (Bank Select)

## FLSH2CTRL Signals include the following:

• DOUT (Data Output)

## 4 Memory Space

Figure 4 shows the memory space in FLPv3S. SRAM consists of two sub-SRAMs, so actually it is an SRAM Bank. However, user shall treat it as a big one SRAM. Thus, whenever this document says 'SRAM', it actually means this SRAM Bank. The reason of having the two sub-SRAMs is to enable ping-pong streaming.

There are three kinds of memory address type as shown in the figures:

- **MBus Memory ADDR**: This is a 32-bit memory address and should be used in all MBus transactions. It is word-aligned, so its lowest 2-bits are always 0.
- **SRAM ADDR**: This is a 11-bit SRAM address. Each LSB indicates a word (32-bit). This address should be used to specify SRAM addresses in MBus Register File, such as SRAM\_START\_ADDR.
- Flash ADDR: This is an 15-bit Flash address. Each LSB indicates a word (32-bit). This address should be used to specify Flash addresses in MBus Register File, such as FLSH\_START\_ADDR.

Note that, internally, the Flash has 8-bit I/O. The controller (main FSM) automatically handles the 8-bit  $\leftrightarrow$  32-bit conversions, so user only sees the 32-bit I/O.



Figure 4: FLPv3S Memory Space

# 5 MBus Register File

## 5.1 MBus Register File Mapping

Table 1 shows MBus Register File mapping information. 'NR' indicates a non-retentive register.

| Reg Addr   | Bit Field          | Reg Name              | Property | Size & Reset | Remark |
|------------|--------------------|-----------------------|----------|--------------|--------|
| Register 0 | (0x00) Defa        | ault: 24'hF84209      |          |              |        |
|            | [23:19]            | Tcyc₋read             | W/R      | 5'h1F        |        |
| 0x00       | [18:13]            | T3us                  | W/R      | 6'h02        |        |
| 0,000      | [12:7]             | T5us                  | W/R      | 6'h04        |        |
|            | [6:0]              | T10us                 | W/R      | 7'h09        |        |
| Register 1 | (0x01) Defa        | ault: 24'h007F09      |          |              |        |
| 0x01       | [23:8]             | Tcyc_prog             | W/R      | 16'h007F     |        |
|            | [7:0]              | Tprog                 | W/R      | 8'h09        |        |
| Register 2 | (0x02) Defa        | ault: 24'h000100      |          |              |        |
| 0x02       | [15:0]             | Terase                | W/R      | 16'h0100     |        |
| Register 3 | (0x03) Defa        | ault: 24'h0FA031      |          |              |        |
| 0x03       | [23:10]            | Thvcp_en              | W/R      | 14'h03E8     |        |
|            | [9:0]              | Tben                  | W/R      | 10'h031      |        |
| Register 4 | (0x04) Defa        | ault: 24'h3E83E8      |          |              |        |
| 0x04       | [23:12]            | Tmvcp_en              | W/R      | 12'h3E8      |        |
| 0x04       | [11:0]             | Tsc₋en                | W/R      | 12'h3E8      |        |
| Register 5 | (0x05) Defa        | ault: 24'h0007CF      |          | 1            |        |
| 0x05       | [19:0]             | Tcap                  | W/R      | 20'h007CF    |        |
| Register 6 | (0x06) Defa        | ault: 24'h001F3F      |          | 1            |        |
| 0x06       | [16:0]             | Tvref                 | W/R      | 17'h01F3F    |        |
| Register 7 | (0x07) Defa        | ault: 24'h000000      |          | 1            |        |
| 0x07       | [10:0]             | SRAM_START_ADDR       | W/R (NR) | 11'h000      |        |
| Register 8 | (0x08) Defa        | ault: 24'h000000      |          |              |        |
| 0x08       | [14:0]             | FLSH_START_ADDR       | W/R (NR) | 15'h0000     |        |
| Register 9 | (0x09) Defa        | ault: 24'h000000      | ,        | ı            |        |
| _          | [16:6]             | LENGTH                | W/R (NR) | 11'h000      |        |
| 0x09       | [5]                | IRQ_EN                | W/R (NR) | 1'h0         |        |
| 0x09       | [4:1]              | CMD                   | W/R (NR) | 4'h0         |        |
|            | [0]                | GO                    | W/R (NR) | 1'h0         |        |
| Register 1 | <b>0 (0x0A)</b> De | efault: 24'h00001E    |          |              |        |
|            | [4]                | VREF_SLEEP            | W/R      | 1'h1         |        |
| 0x0A       | [3]                | COMP_SLEEP            | W/R      | 1'h1         |        |
| UXUA       | [2]                | COMP_CLKENB           | W/R      | 1'h1         |        |
|            | [1]                | COMP_ISOL             | W/R      | 1'h1         |        |
| Register 1 | 2 (0x0C) De        | efault: 24'h000001    |          |              |        |
|            | [3]                | WRAP_EXT              | W/R      | 1'h0         |        |
| 0x0C       | [2]                | UPDATE_ADDR_EXT       | W/R      | 1'h0         |        |
|            | [1:0]              | BIT_EN_EXT            | W/R      | 2'h1         |        |
|            | <b>3 (0x0D)</b> De | efault: 24'h0FFFFF    |          |              |        |
| 0x0D       | [19:0]             | TIMEOUT_EXT           | W/R      | 20'hFFFFF    |        |
|            | 4 (0x0E) De        | efault: 24'h000000    |          |              |        |
| 0x0E       | [10:0]             | SRAM_START_ADDR_EXT   | W/R      | 11'h000      |        |
|            |                    | Continued on next pag | ie       |              |        |

|             |                    | Continued from previous p |              |              |        |
|-------------|--------------------|---------------------------|--------------|--------------|--------|
| Reg Addr    | Bit Field          | Reg Name                  | Property     | Size & Reset | Remark |
| Register 1  |                    | efault: 24'h001000        |              |              |        |
| 0x0F        | [15:8]             | INT_RPLY_SHORT_ADDR       | W/R          | 8'h10        |        |
|             | [7:0]              | INT_RPLY_REG_ADDR         | W/R          | 8'h00        |        |
| Register 1  | •                  | efault: 24'h000000        |              |              |        |
|             | [22]               | BOOT_FLAG_SLEEP           | W/R          | 1'h0         |        |
|             | [21]               | BOOT_FLAG_ECC_ERROR       | W/R          | 1'h0         |        |
|             | [20]               | BOOT_FLAG_WRONG_HEADER    | W/R          | 1'h0         |        |
| 0x10        | [19]               | BOOT_FLAG_PWDN            | W/R          | 1'h0         |        |
| OXIO        | [18]               | BOOT_FLAG_INVALID_CMND    | W/R          | 1'h0         |        |
|             | [17]               | BOOT_FLAG_CHKSUM_ERROR    | W/R          | 1'h0         |        |
|             | [16]               | BOOT_FLAG_SUCCESS         | W/R          | 1'h0         |        |
|             | [1:0]              | BOOT_REG_PATTERN          | W/R          | 2'h0         |        |
| Register 1  | <b>7 (0x11)</b> De | efault: 24'h00002E        |              |              |        |
|             | [5]                | FLASH_POWER_DO_VREFCOMP   | W/R          | 1'h1         |        |
|             | [3]                | FLASH_POWER_DO_FLSH       | W/R          | 1'h1         |        |
| 0x11        | [2]                | FLASH_POWER_IRQ_EN        | W/R          | 1'h1         |        |
|             | [1]                | FLASH_POWER_SEL_ON        | W/R          | 1'h1         |        |
|             | [0]                | FLASH_POWER_GO            | W/R          | 1'h0         |        |
| Register 1  | 8 (0x12) De        | efault: 24'h000000        |              |              |        |
|             | [6]                | IRQ_PWR_ON_WUP            | W/R          | 1'h0         |        |
|             | [5:3]              | SEL_PWR_ON_WUP            | W/R          | 3'h0         |        |
| 0x12        | [2]                | FLASH_AUTO_USE_CUSTOM     | W/R          | 1'h0         |        |
|             | [1]                | FLASH_AUTO_OFF            | W/R          | 1'h0         |        |
|             | [0]                | FLASH_AUTO_ON             | W/R          | 1'h0         |        |
| Register 1  | 9 (0x13) De        | efault: 24'h000000        |              |              |        |
| 0x13        | [16:1]             | PP_STR_LIMIT              | W/R (NR)     | 16'h0000     |        |
|             | [0]                | PP_STR_EN                 | W/R (NR)     | 1'h0         |        |
| Register 2  | 0 (0x14) De        | efault: 24'h000001        |              |              |        |
|             | [4]                | PP_NO_ERR_DETECTION       | W/R          | 1'h0         |        |
| 0x14        | [3]                | PP_USE_FAST_PROG          | W/R          | 1'h0         |        |
| UX 14       | [2]                | PP_WRAP                   | W/R          | 1'h0         |        |
|             | [1:0]              | PP_BIT_EN_EXT             | W/R          | 2'h1         |        |
| Register 2  | 1 (0x15) De        | efault: 24'h000000        | 1            | 1            | L      |
| 0x15        | [14:0]             | PP_FLSH_ADDR              | W/R          | 15'h0000     |        |
| Register 2  |                    | efault: 24'h000000        | I.           | I .          |        |
| 0x16        | [15:0]             | PP_LENGTH_STREAMED        | W/R (NR)     | 16'h0000     |        |
|             |                    | efault: 24'h000000        |              |              |        |
|             | [23]               | PP_FLAG_END_OF_FLASH      | W/R (NR)     | 1'h0         |        |
|             | [22]               | PP_FLAG_STR_LIMIT         | W/R (NR)     | 1'h0         |        |
| 0x17        | [21]               | PP_FLAG_COPY_LIMIT        | W/R (NR)     | 1'h0         |        |
|             | [15:0]             | PP_LENGTH_COPIED          | W/R (NR)     | 16'h0000     |        |
| Register 2  |                    | efault: 24'h000031        | 77711 (1411) |              |        |
|             | [5:2]              | CLK_RING_SEL              | W/R          | 4'hC         |        |
| 0x18        | [1:0]              | CLK_DIV_SEL               | W/R          | 2'h1         |        |
| Register 2  |                    | efault: 24'h000C03        | V V / I L    | <u>- 111</u> |        |
| ricyisici Z | [11]               | DISABLE_BYPASS_MIRROR     | W/R          | 1'h1         |        |
|             | [10:7]             | COMP_CTRL_I_1STG          | W/R          | 4'h8         |        |
| 0x19        | [6:3]              | COMP_CTRL_I_STG_BAR       | W/R          | 4'h0         |        |
|             | [2:0]              | COMP_CTRL_YOUT            | W/R          | 3'h3         |        |
|             | [2.0]              |                           |              | 0110         |        |
|             |                    | Continued on next pag     | <u> </u>     |              |        |

|            |             | Continued from previous | us page  |              |        |
|------------|-------------|-------------------------|----------|--------------|--------|
| Reg Addr   | Bit Field   | Reg Name                | Property | Size & Reset | Remark |
|            | 7 (0x1B) De | efault: 24'h000000      |          |              |        |
| 0x1B       | [7:0]       | IRQ_PAYLOAD             | R        | 8'h00        |        |
| Register 3 | 0 (0x1E) De | efault: 24'h000000      |          |              |        |
| 0x1E       | [23:0]      | FLS2LC_REG_WR_DATA      | R        | 24'h000000   |        |
| Register 3 | 1 (0x1F) De | efault: 24'h000001      |          |              |        |
| 0x1F       | [0]         | FORCE_RESETN            | W/R      | 1'h1         |        |
| Register 3 |             | efault: 24'h001087      |          |              |        |
|            | [14:10]     | FLSH_SET0               | W/R      | 5'h04        |        |
| 0x20       | [9:5]       | FLSH_SET1               | W/R      | 5'h04        |        |
|            | [4:0]       | FLSH_SNT                | W/R      | 5'h07        |        |
| Register 3 |             | efault: 24'h001084      |          |              |        |
|            | [14:10]     | FLSH_SPT0               | W/R      | 5'h04        |        |
| 0x21       | [9:5]       | FLSH_SPT1               | W/R      | 5'h04        |        |
|            | [4:0]       | FLSH_SPT2               | W/R      | 5'h04        |        |
| Register 3 |             | efault: 24'h0000E7      |          | L            |        |
|            | [9:5]       | FLSH_SYT0               | W/R      | 5'h07        |        |
| 0x22       | [4:0]       | FLSH_SYT1               | W/R      | 5'h07        |        |
| Register 3 |             | efault: 24'h008C67      |          |              |        |
| J          | [19:15]     | FLSH_SRT0               | W/R      | 5'h01        |        |
| 0.00       | [14:10]     | FLSH_SRT1               | W/R      | 5'h03        |        |
| 0x23       | [9:5]       | FLSH_SRT2               | W/R      | 5'h03        |        |
|            | [4:0]       | FLSH_SRT3               | W/R      | 5'h07        |        |
| Register 3 | 6 (0x24) De | efault: 24'h001CE1      | ,        | ·            | l      |
|            | [14:10]     | FLSH_SRT4               | W/R      | 5'h07        |        |
| 0x24       | [9:5]       | FLSH_SRT5               | W/R      | 5'h07        |        |
|            | [4:0]       | FLSH_SRT6               | W/R      | 5'h01        |        |
| Register 3 | 8 (0x26) De | efault: 24'h0D7788      |          |              |        |
|            | [19:16]     | FLSH_SPIG               | W/R      | 4'hD         |        |
|            | [15:12]     | FLSH_SRIG               | W/R      | 4'h7         |        |
| 0x26       | [11:8]      | FLSH_SVR0               | W/R      | 4'h7         |        |
|            | [7:4]       | FLSH_SVR1               | W/R      | 4'h8         |        |
|            | [3:0]       | FLSH_SVR2               | W/R      | 4'h8         |        |
| Register 3 |             | efault: 24'h011BC8      |          |              |        |
|            | [20:16]     | FLSH_SHVE               | W/R      | 5'h01        |        |
| 0.07       | [15:11]     | FLSH_SHVP               | W/R      | 5'h03        |        |
| 0x27       | [10:6]      | FLSH_SHVCT              | W/R      | 5'h0F        |        |
|            | [5:0]       | FLSH_SMV                | W/R      | 6'h08        |        |
| Register 4 |             | efault: 24'h0000E7      |          | L            |        |
|            | [9:5]       | FLSH_SMVCT0             | W/R      | 5'h07        |        |
| 0x28       | [4:0]       | FLSH_SMVCT1             | W/R      | 5'h07        |        |
| Register 4 |             | efault: 24'h000002      |          | 1            |        |
| 0x2A       | [5:0]       | FLSH_SAB                | W/R      | 6'h02        |        |
| Register 4 |             | efault: 24'hF00000      |          | 1            | 1      |
| 0x30       | [23:16]     | STR_WR_CH1_ALT_ADDR     | W/R      | 8'hF0        |        |
|            |             | efault: 24'h000000      |          |              | I      |
| 0x31       | [23:16]     | STR_WR_CH1_ALT_REG_WR   | W/R      | 8'h00        |        |
|            |             | efault: 24'hC007FF      |          | l            |        |
| 3,2,2,     | [23]        | STR_WR_CH1_EN           | W/R      | 1'h1         |        |
| 0.00       | [22]        | STR_WR_CH1_WRP          | W/R      | 1'h1         |        |
| 0x32       |             | Continued on next       |          | I.           | l      |
|            |             |                         | <u> </u> |              |        |

|            | Continued from previous page |                       |          |              |        |  |  |
|------------|------------------------------|-----------------------|----------|--------------|--------|--|--|
| Reg Addr   | Bit Field                    | Reg Name              | Property | Size & Reset | Remark |  |  |
|            | [21]                         | STR_WR_CH1_DBLB       | W/R      | 1'h0         |        |  |  |
|            | [10:0]                       | STR_WR_CH1_BUF_LEN    | W/R      | 11'h7FF      |        |  |  |
| Register 5 | <b>1 (0x33)</b> De           | fault: 24'h000000     |          |              |        |  |  |
| 0x33       | [10:0]                       | STR_WR_CH1_BUF_OFF    | W/R      | 11'h000      |        |  |  |
| Register 5 | <b>2 (0x34)</b> De           | fault: 24'hF00000     |          |              |        |  |  |
| 0x34       | [23:16]                      | STR_WR_CH0_ALT_ADDR   | W/R      | 8'hF0        |        |  |  |
| Register 5 | <b>3 (0x35)</b> De           | fault: 24'h000000     |          |              |        |  |  |
| 0x35       | [23:16]                      | STR_WR_CH0_ALT_REG_WR | W/R      | 8'h00        |        |  |  |
| Register 5 | <b>4 (0x36)</b> De           | fault: 24'hC007FF     |          |              |        |  |  |
|            | [23]                         | STR_WR_CH0_EN         | W/R      | 1'h1         |        |  |  |
| 0x36       | [22]                         | STR_WR_CH0_WRP        | W/R      | 1'h1         |        |  |  |
| 0.00       | [21]                         | STR_WR_CH0_DBLB       | W/R      | 1'h0         |        |  |  |
|            | [10:0]                       | STR_WR_CH0_BUF_LEN    | W/R      | 11'h7FF      |        |  |  |
| Register 5 | <b>5 (0x37)</b> De           | fault: 24'h000000     |          |              |        |  |  |
| 0x37       | [10:0]                       | STR_WR_CH0_BUF_OFF    | W/R      | 11'h000      |        |  |  |
| Register 5 | 8 (0x3A) De                  | efault: 24'h800000    |          |              |        |  |  |
| 0x3A       | [23]                         | BLK_WR_EN             | W/R      | 1'h1         |        |  |  |
| Register 7 | <b>1 (0x47)</b> De           | fault: 24'h000000     |          |              |        |  |  |
| 0x47       | [23]                         | ACT_RST               | W/R      | 1'h0         |        |  |  |

Table 1: FLPv3S MBus Register File Mapping

## 5.2 MBus Register Descriptions

#### 5.2.1 Register 0 (0x00)

Tcyc\_read Reg 0x00, Bit Field: [23:19], Default: 5'h1F, W/R

Number of CLK<sub>main</sub> cycles to set Read cycle. The default value corresponds to  $\sim$ 32 $\mu$ s.

T3us Reg 0x00, Bit Field: [18:13], Default: 6'h02, W/R

Number of CLK<sub>main</sub> cycles to measure  $3\mu$ s. The default value corresponds to  $\sim 3\mu$ s.

**T5us** Reg 0x00, Bit Field: [12:7], Default: 6'h04, W/R

Number of CLK<sub>main</sub> cycles to measure  $5\mu$ s. The default value corresponds to  $\sim 5\mu$ s.

**T10us** Reg 0x00, Bit Field: [6:0], Default: 7'h09, W/R

Number of CLK<sub>main</sub> cycles to measure  $10\mu s$ . The default value corresponds to  $\sim 10\mu s$ .

#### 5.2.2 Register 1 (0x01)

Tcyc\_prog Reg 0x01, Bit Field: [23:8], Default: 16'h007F, W/R

Number of CLK<sub>main</sub> cycles to set Program cycle. The default value corresponds to  $\sim$ 128 $\mu$ s.

Tprog Reg 0x01, Bit Field: [7:0], Default: 8'h09, W/R

Number of CLK<sub>main</sub> cycles to set Program time. The default value corresponds to  $\sim 10 \mu s$ .

#### 5.2.3 Register 2 (0x02)

Terase Reg 0x02, Bit Field: [15:0], Default: 16'h0100, W/R

Number of CLK<sub>main</sub> cycles to set Erase time. The default value corresponds to  $\sim$ 256 $\mu$ s.

#### 5.2.4 Register 3 (0x03)

Thvcp\_en Reg 0x03, Bit Field: [23:10], Default: 14'h03E8, W/R

Number of CLK<sub>main</sub> cycles to set delay between HVCP\_EN and MVCP\_EN. The default value corresponds to  $\sim$ 1ms.

**Tben** Reg 0x03, Bit Field: [9:0], Default: 10'h031, W/R

Number of CLK<sub>main</sub> cycles to set flash initial setup time. The default value corresponds to  $\sim 50 \mu s$ .

#### 5.2.5 Register 4 (0x04)

Tmvcp\_en Reg 0x04, Bit Field: [23:12], Default: 12'h3E8, W/R

Number of CLK<sub>main</sub> cycles to set delay between MVCP\_EN and SC\_EN. The default value corresponds to  $\sim$ 1ms.

Tsc\_en Reg 0x04, Bit Field: [11:0], Default: 12'h3E8, W/R

Number of CLK<sub>main</sub> cycles to set delay after SC\_EN. The default value corresponds to  $\sim$ 1ms.

#### 5.2.6 Register 5 (0x05)

Tcap Reg 0x05, Bit Field: [19:0], Default: 20'h007CF, W/R

Number of  $CLK_{main}$  cycles to set capacitor-charging time. The default value corresponds to  $\sim$ 2ms.

#### 5.2.7 Register 6 (0x06)

**Tvref** Reg 0x06, Bit Field: [16:0], Default: 17'h01F3F, W/R

Number of  $CLK_{main}$  cycles to set Vref settling time. The default value corresponds to  $\sim$ 8ms.

Table 2: Summary of Timing Parameters

| Name      | Supposed Value     | Default Value |
|-----------|--------------------|---------------|
| T3us      | $3\mu$ s           | 6'h02         |
| T5us      | $5\mu$ s           | 6'h04         |
| T10us     | 10 $\mu$ s         | 7'h09         |
| Tprog     | 10 $\mu$ s         | 8'h09         |
| Terase    | 256 $\mu$ s        | 16'h0100      |
| Tcyc₋read | $32 \mu s$         | 5'h1F         |
| Tcyc₋prog | 128 $\mu$ s        | 16'h007F      |
| Thvcp₋en  | 1ms                | 14'h03E8      |
| Tmvcp₋en  | 1ms                | 12'h3E8       |
| Tsc₋en    | 1ms                | 12'h3E8       |
| Tben      | $50 \mu 	extsf{s}$ | 10'h031       |
| Tcap      | 2ms                | 20'h007CF     |
| Tvref     | 8ms                | 17'h01F3F     |

#### 5.2.8 Register 7 (0x07)

SRAM\_START\_ADDR Reg 0x07, Bit Field: [10:0], Default: 11'h000, W/R (NR)

If the operation specified in CMD need to access SRAM, it uses SRAM\_START\_ADDR as an initial value of the SRAM pointer and increments from there if needed. SRAM\_START\_ADDR's LSB indicates 1 word (32-bit).

#### 5.2.9 Register 8 (0x08)

FLSH\_START\_ADDR Reg 0x08, Bit Field: [14:0], Default: 15'h0000, W/R (NR)

If the operation specified in CMD need to access Flash, it uses FLSH\_START\_ADDR as an initial value of the Flash pointer and increments from there if needed. FLSH\_START\_ADDR's LSB indicates 1 word (32-bit).

#### 5.2.10 Register 9 (0x09)

**LENGTH** Reg 0x09, Bit Field: [16:6], Default: 11'h000, W/R (NR)

Sets the length (= Number of words - 1) to be used in CMD operation.

**IRQ\_EN** Reg 0x09, Bit Field: [5], Default: 1'h0, W/R (NR)

Enables/Disables MBus IRQ message.

If 1, Flash layer will send an MBus IRQ message at the end of CMD operation. The IRQ data indicates

PASS/FAIL status of the operation.

If 0, Flash layer will not send an MBus IRQ message at the end of CMD operation.

**CMD** Reg 0x09, Bit Field: [4:1], Default: 4'h0, W/R (NR)

Specifies the operation to be executed. See Table 3

Table 3: CMD

| CMD              | Description                            |             |
|------------------|----------------------------------------|-------------|
| 4'h0             | Invalid Command                        | -           |
| 4'h1             | Copy from Flash to SRAM                | Section 7   |
| 4'h2             | Copy from SRAM to Flash                | Section 8.1 |
| 4'h3             | Copy from SRAM to Flash (Fast Program) | Section 8.2 |
| 4'h4             | Erase Flash (Page Erase)               | Section 9.1 |
| 4'h5             | Reserved                               | -           |
| 4'h6             | External Input Stream Write to SRAM    | Section 10  |
| 4'h7             | Erase Reference Array in Flash         | Section 9.2 |
| 4'h8             | Start Boot-Up                          | Section 12  |
| 4'h9             | Measure Clock Frequency                | Section 14  |
| 4'hA $\sim$ 4'hF | Reserved                               | -           |

GO Reg 0x09, Bit Field: [0], Default: 1'h0, W/R (NR)

Writing 1 to this register initiates the operation specified in CMD. Once the operation is done, this register is automatically reset to 0. User does NOT have to manually reset this to 0. Writing 0 to this register is ignored.

#### 5.2.11 Register 10 (0x0A)

VREF\_SLEEP Reg 0x0A, Bit Field: [4], Default: 1'h1, W/R

Turns on/off Vref circuit inside the Flash.

If 1, Vref circuit is off.

If 0, Vref circuit is on.

COMP\_SLEEP Reg 0x0A, Bit Field: [3], Default: 1'h1, W/R

Turns on/off the comparator inside Voltage Clamper.

If 1, the comparator is off.

If 0, the comparator is on.

COMP\_CLKENB Reg 0x0A, Bit Field: [2], Default: 1'h1, W/R

Enables/Disables CLK<sub>comp</sub>.

If 1, CLK<sub>comp</sub> is disabled (CLK<sub>comp</sub> not running).

If 0, CLK<sub>comp</sub> is enabled (CLK<sub>comp</sub> running).

**COMP\_ISOL** Reg 0x0A, Bit Field: [1], Default: 1'h1, W/R

Enables/Disables isolation of Voltage Clamper.

If 1, Voltage Clamper becomes isolated.

If 0, Voltage Clamper becomes un-isolated.

#### 5.2.12 Register 12 (0x0C)

WRAP\_EXT Reg 0x0C, Bit Field: [3], Default: 1'h0, W/R

Enables/Disables wrapping during the External Streaming.

If 1, wrapping is enabled. Once the last address of SRAM is written, the next input streaming is written to the first address of SRAM.

If 0, wrapping is disabled. Once the last address of SRAM is written, following input streaming is ignored.

UPDATE\_ADDR\_EXT Reg 0x0C, Bit Field: [2], Default: 1'h0, W/R

Enables/Disables the update of SRAM\_START\_ADDR\_EXT. If 1, SRAM\_START\_ADDR\_EXT is updated to the next address. For example, if the current External Streaming ends with writing into ADDR[N], then SRAM\_START\_ADDR\_EXT will be updated to N+1, so that the next External Streaming can start writing from ADDR[N+1]. If 0, SRAM\_START\_ADDR\_EXT is not updated and will remain same.

BIT\_EN\_EXT Reg 0x0C, Bit Field: [1:0], Default: 2'h1, W/R

Enables/Disables DATA\_EXT[1:0] pads. See Table 4.

Table 4: BIT\_EN\_EXT Setting

| BIT_EN_EXT | DATA_EXT[1] | DATA_EXT[0] |
|------------|-------------|-------------|
| 2'h0       | Disabled    | Disabled    |
| 2'h1       | Disabled    | Enabled     |
| 2'h2       | Enabled     | Disabled    |
| 2'h3       | Enabled     | Enabled     |

If BIT\_EN\_EXT=2'h3, DATA\_EXT[1] becomes MSB, and DATA\_EXT[0] becomes LSB.

#### 5.2.13 Register 13 (0x0D)

TIMEOUT\_EXT Reg 0x0D, Bit Field: [19:0], Default: 20'hFFFFF, W/R

Number of CLK<sub>main</sub> cycles that will trigger the time-out error during External Streaming. TIMEOUT\_EXT=0 will NOT trigger the time-out error, and it will be in the streaming mode indefinitely until one of the following events occurs:

- The number of words streamed becomes equal to the value specified in LENGTH (plus one).
- User manually resets the controller (main FSM) by writing 0 to FORCE\_RESETN.

#### 5.2.14 Register 14 (0x0E)

**SRAM\_START\_ADDR\_EXT** Reg 0x0E, Bit Field: [10:0], Default: 11'h000, W/R SRAM Address that External Streaming starts from.

#### 5.2.15 Register 15 (0x0F)

**INT\_RPLY\_SHORT\_ADDR** Reg 0x0F, Bit Field: [15:8], Default: 8'h10, W/R Destination short address used for the controller (main FSM)'s IRQ.

**INT\_RPLY\_REG\_ADDR** Reg 0x0F, Bit Field: [7:0], Default: 8'h00, W/R Destination register index used for the controller (main FSM)'s IRQ.

#### 5.2.16 Register 16 (0x10)

**BOOT\_FLAG\_SLEEP** Reg 0x10, Bit Field: [22], Default: 1'h0, W/R Updated to 1 if a boot-up program finishes with TAIL\_SLEEP.

**BOOT\_FLAG\_ECC\_ERROR** Reg 0x10, Bit Field: [21], Default: 1'h0, W/R
Updated to 1 if a boot-up program gets aborted due to an ECC error (more than 2-bit error).

**BOOT\_FLAG\_WRONG\_HEADER** Reg 0x10, Bit Field: [20], Default: 1'h0, W/R Updated to 1 if a boot-up program gets aborted due to a wrong header.

**BOOT\_FLAG\_PWDN** Reg 0x10, Bit Field: [19], Default: 1'h0, W/R Updated to 1 if a boot-up program finishes with TAIL\_PWDN.

**BOOT\_FLAG\_INVALID\_CMND** Reg 0x10, Bit Field: [18], Default: 1'h0, W/R Updated to 1 if a boot-up program gets aborted due to an invalid command.

**BOOT\_FLAG\_CHKSUM\_ERROR** Reg 0x10, Bit Field: [17], Default: 1'h0, W/R Updated to 1 if a boot-up program gets aborted due to a checksum error.

#### **BOOT\_FLAG\_SUCCESS** Reg 0x10, Bit Field: [16], Default: 1'h0, W/R

Updated to 1 if a boot-up program finishes with TAIL\_IDLE or TAIL\_PWDN or TAIL\_SLEEP.

#### **BOOT\_REG\_PATTERN** Reg 0x10, Bit Field: [1:0], Default: 2'h0, W/R

2-bit pattern used for distinguishing the first reset release. At the first reset release after POR, only if BOOT\_DIS pad is floating or grounded, the controller (main FSM) updates this register to 2'h3. This is for triggering the auto boot-up sequence only at the first reset release.

#### 5.2.17 Register 17 (0x11)

#### FLASH\_POWER\_DO\_VREFCOMP Reg 0x11, Bit Field: [5], Default: 1'h1, W/R

Determines whether the auto power-up/down includes Voltage Clamper. This is effective only if the power-up/down is triggered by FLASH\_POWER\_GO, or if (FLASH\_AUTO\_ON=1 or FLASH\_AUTO\_OFF=1) and (FLASH\_AUTO\_USE\_CUSTOM=1).

- If 1, Voltage Clamper is included in the power-up/down sequence.
- If 0, Voltage Clamper is not included in the power-up/down sequence.

#### FLASH\_POWER\_DO\_FLSH Reg 0x11, Bit Field: [3], Default: 1'h1, W/R

Determines whether the auto power-up/down includes the Flash. This is effective only if the power-up/down is triggered by FLASH\_POWER\_GO, or if (FLASH\_AUTO\_ON=1 or FLASH\_AUTO\_OFF=1) and (FLASH\_AUTO\_USE\_CUSTOM=1).

- If 1, the Flash is included in the power-up/down sequence.
- If 0, the Flash is not included in the power-up/down sequence.

#### FLASH\_POWER\_IRQ\_EN Reg 0x11, Bit Field: [2], Default: 1'h1, W/R

Enables/Disables MBus IRQ message at the end of the power-up/down sequence triggered by FLASH\_POWER\_GO.

- If 1, Flash layer sends an MBus IRQ message at the end of the power-up/down sequence triggered by FLASH\_POWER\_GO.
- If 0, Flash layer does not send an MBus IRQ message at the end of the power-up/down sequence triggered by FLASH\_POWER\_GO.

#### FLASH\_POWER\_SEL\_ON Reg 0x11, Bit Field: [1], Default: 1'h1, W/R

Chooses whether it turns on or off the selected blocks in FLASH\_POWER\_DO\_VREFCOMP and FLASH\_POWER\_DO\_FLSH during the power-up/down sequence triggered by FLASH\_POWER\_GO.

- If 1, it turns on the selected blocks.
- If 0, it turns off the selected blocks.

#### FLASH\_POWER\_GO Reg 0x11, Bit Field: [0], Default: 1'h0, W/R

Writing 1 to this register will initiate the power-up/down sequence as specified in FLASH\_POWER\_SEL\_ON, FLASH\_POWER\_DO\_VREFCOMP, FLASH\_POWER\_DO\_FLSH. This register will be automatically reset to

0 at the end of the power-up/down sequence, so that user does not have to manually reset to 0. Writing 0 to this register is ignored.

#### 5.2.18 Register 18 (0x12)

#### IRQ\_PWR\_ON\_WUP Reg 0x12, Bit Field: [6], Default: 1'h0, W/R

Enables/Disables MBus IRQ message at the end of the auto-power-up/down sequence upon system wakeup.

- If 1, Flash layer sends an MBus IRQ message at the end of the auto-power-up/down sequence upon system wakeup.
- If 0, Flash layer does not send an MBus IRQ message at the end of the auto-power-up/down sequence upon system wakeup.

#### SEL\_PWR\_ON\_WUP Reg 0x12, Bit Field: [5:3], Default: 3'h0, W/R

Enables/Disables the auto-power-up/down sequence upon system wakeup. See Table 5.

SEL\_PWR\_ON\_WUPDescription3'h0Auto-power-up/down upon system wakeup is disabled3'h1Turn-on/off Voltage Clamper only3'h2Reserved3'h3Turn-on/off both Voltage Clamper and the Flash3'h4 ~ 3'h7Reserved

Table 5: SEL\_PWR\_ON\_WUP Setting

#### FLASH\_AUTO\_USE\_CUSTOM Reg 0x12, Bit Field: [2], Default: 1'h0, W/R

Sets whether the controller (main FSM) can automatically selects what to turn-on/off during the auto-power-up/down sequence.

If 1, auto-power-up/down sequence includes only the blocks specified in FLASH\_POWER\_DO\_VREFCOMP and FLASH\_POWER\_DO\_FLSH.

If 0, the controller (main FSM) will automatically choose what to turn-on/off depending on the operation.

#### FLASH\_AUTO\_OFF Reg 0x12, Bit Field: [1], Default: 1'h0, W/R

Sets whether to do auto-power-down sequence at the end of a GO operation.

If 1, auto-power-down sequence will be initiated at the end of a GO operation.

If 0, auto-power-down sequence will not be initiated at the end of a GO operation.

#### FLASH\_AUTO\_ON Reg 0x12, Bit Field: [0], Default: 1'h0, W/R

Sets whether to do auto-power-up sequence at the end of a GO operation.

If 1, auto-power-up sequence will be initiated at the end of a GO operation.

If 0, auto-power-up sequence will not be initiated at the end of a GO operation.

#### 5.2.19 Register 19 (0x13)

**PP\_STR\_LIMIT** Reg 0x13, Bit Field: [16:1], Default: 16'h0000, W/R (NR)

Sets the limit on the number of words to be ping-pong streamed. The unit is 'word (32-bit)'. PP\_STR\_LIMIT=0 means no limit.

PP\_STR\_EN Reg 0x13, Bit Field: [0], Default: 1'h0, W/R (NR)

Enables/Disables ping-pong streaming.

If 1, the ping-pong streaming will start upon one of the following events:

- There is no GO operation going on, and Flash layer starts receiving an MBus memory streaming message.
- GO operation starts with CMD=4'h6 (External Streaming).

If 0, the ping-pong streaming is disabled.

#### 5.2.20 Register 20 (0x14)

PP\_NO\_ERR\_DETECTION Reg 0x14, Bit Field: [4], Default: 1'h0, W/R

Enables/Disables the detection of buffer-overrun error during ping-pong streaming. Other errors can be still detected.

If 1, the detection of buffer-overrun error is disabled.

If 0, the detection of buffer-overrun error is enabled.

PP\_USE\_FAST\_PROG Reg 0x14, Bit Field: [3], Default: 1'h0, W/R

Enables/Disables the fast-program mode during ping-pong streaming. The fast-program holds PROG and NVSTR signals during the whole page program, resulting in higher power consumption with better throughout.

If 1, the fast-program is enabled.

If 0, the fast-program is disabled, and it uses the normal-program.

PP\_WRAP Reg 0x14, Bit Field: [2], Default: 1'h0, W/R

Enables/Disables the Flash address wrapping during ping-pong streaming.

If 1, PP\_FLSH\_ADDR becomes 0 after the last Flash address.

If 0, PP\_FLSH\_ADDR does not become 0 after the last Flash address. Instead, it will stay at the last Flash address.

PP\_BIT\_EN\_EXT Reg 0x14, Bit Field: [1:0], Default: 2'h1, W/R

Enables/Disables DATA\_EXT[1:0] pads during ping-pong streaming with CMD=4'h6 (External Streaming). See Table 6.

Table 6: PP\_BIT\_EN\_EXT Setting

| PP_BIT_EN_EXT | DATA_EXT[1] | DATA_EXT[0] |
|---------------|-------------|-------------|
| 2'h0          | Disabled    | Disabled    |
| 2'h1          | Disabled    | Enabled     |
| 2'h2          | Enabled     | Disabled    |
| 2'h3          | Enabled     | Enabled     |

If PP\_BIT\_EN\_EXT=2'h3, DATA\_EXT[1] becomes MSB, and DATA\_EXT[0] becomes LSB.

#### 5.2.21 Register 21 (0x15)

PP\_FLSH\_ADDR Reg 0x15, Bit Field: [14:0], Default: 15'h0000, W/R

Flash address pointer used during ping-pong streaming. LSB indicates a word (32-bit). It automatically increments during the ping-pong streaming. User may want to set this pointer before starting ping-pong streaming.

#### 5.2.22 Register 22 (0x16)

**PP\_LENGTH\_STREAMED** Reg 0x16, Bit Field: [15:0], Default: 16'h0000, W/R (NR)

Indicates the number of words streamed so far during ping-pong streaming (the number of words written into SRAM). User may want to reset this register before starting a new ping-pong streaming.

#### 5.2.23 Register 23 (0x17)

PP\_FLAG\_END\_OF\_FLASH Reg 0x17, Bit Field: [23], Default: 1'h0, W/R (NR)

Updated to 1 if the Flash reaches its last address during ping-pong streaming. User may want to reset this register before starting a new ping-pong streaming.

PP\_FLAG\_STR\_LIMIT Reg 0x17, Bit Field: [22], Default: 1'h0, W/R (NR)

Updated to 1 if PP\_LENGTH\_STREAMED becomes equal to PP\_STR\_LIMIT. User may want to reset this register before starting a new ping-pong streaming.

PP\_FLAG\_COPY\_LIMIT Reg 0x17, Bit Field: [21], Default: 1'h0, W/R (NR)

Updated to 1 if PP\_LENGTH\_COPIED becomes equal to PP\_STR\_LIMIT. User may want to reset this register before starting a new ping-pong streaming.

PP\_LENGTH\_COPIED Reg 0x17, Bit Field: [15:0], Default: 16'h0000, W/R (NR)

Indicates the number of words copied so far during ping-pong streaming (the number of words copied from SRAM to the Flash). User may want to reset this register before starting a new ping-pong streaming.

#### 5.2.24 Register 24 (0x18)

CLK\_RING\_SEL Reg 0x18, Bit Field: [5:2], Default: 4'hC, W/R

Clock generator ring configuration.

CLK\_DIV\_SEL Reg 0x18, Bit Field: [1:0], Default: 2'h1, W/R

Clock generator divider configuration.

#### 5.2.25 Register 25 (0x19)

DISABLE\_BYPASS\_MIRROR Reg 0x19, Bit Field: [11], Default: 1'h1, W/R

Enables/Disables a mirror circuit in Voltage Clamper.

If 1, the current to charge the output capacitor is determined by a current reference and two current mirrors. If 0, the output capacitor is charged through one PMOS transistor directly from 3.6V supply. However, the output will be still regulated by a comparator.

COMP\_CTRL\_I\_1STG Reg 0x19, Bit Field: [10:7], Default: 4'h8, W/R

It changes a current copy ratio of the NMOS current mirror (1x, 2x, 4x, 8x). The copied current is copied one more time through the PMOS mirror to charge the on-chip capacitor.

COMP\_CTRL\_I\_2STG\_BAR Reg 0x19, Bit Field: [6:3], Default: 4'h0, W/R

It changes a current copy ratio of the PMOS current mirror (1x, 2x, 4x, 8x). The control bits are inverted. This PMOS mirror copies current from the NMOS mirror to charge the on-chip capacitor.

COMP\_CTRL\_VOUT Reg 0x19, Bit Field: [2:0], Default: 3'h3, W/R

It controls the clamping voltage of the output capacitor. Higher tuning bit value gives higher output voltage.

#### 5.2.26 Register 27 (0x1B)

**IRQ\_PAYLOAD** Reg 0x1B, Bit Field: [7:0], Default: 8'h00, R

This register is internally used to hold the controller's last IRQ payload.

### 5.2.27 Register 30 (0x1E)

FLS2LC\_REG\_WR\_DATA Reg 0x1E, Bit Field: [23:0], Default: 24'h000000, R

This register is internally used in the controller.

#### 5.2.28 Register 31 (0x1F)

FORCE\_RESETN Reg 0x1F, Bit Field: [0], Default: 1'h1, W/R

Writing 0 in this register immediately (and asynchronously) resets the controller (FLPv3S \_CTRL). It does not automatically release the reset, thus the user must manually write 1 in this register to release the reset. It is intended to be used to terminate the indefinite listening mode (either in external streaming or in MBus streaming)

#### 5.2.29 Register 32 (0x20)

FLSH\_SET0 Reg 0x20, Bit Field: [14:10], Default: 5'h04, W/R

Flash ERASE Delay0 tuning

FLSH\_SET1 Reg 0x20, Bit Field: [9:5], Default: 5'h04, W/R

Flash ERASE Delay1 tuning

FLSH\_SNT Reg 0x20, Bit Field: [4:0], Default: 5'h07, W/R

Flash NVSTR Delay tuning

5.2.30 Register 33 (0x21)

**FLSH\_SPT0** Reg 0x21, Bit Field: [14:10], Default: 5'h04, W/R

Flash PROG Delay0 tuning

FLSH\_SPT1 Reg 0x21, Bit Field: [9:5], Default: 5'h04, W/R

Flash PROG Delay1 tuning

FLSH\_SPT2 Reg 0x21, Bit Field: [4:0], Default: 5'h04, W/R

Flash PROG Delay2 tuning

5.2.31 Register 34 (0x22)

FLSH\_SYT0 Reg 0x22, Bit Field: [9:5], Default: 5'h07, W/R

Flash YE Delay0 tuning

FLSH\_SYT1 Reg 0x22, Bit Field: [4:0], Default: 5'h07, W/R

Flash YE Delay1 tuning

5.2.32 Register 35 (0x23)

FLSH\_SRT0 Reg 0x23, Bit Field: [19:15], Default: 5'h01, W/R

Flash READ Delay0 tuning

FLSH\_SRT1 Reg 0x23, Bit Field: [14:10], Default: 5'h03, W/R

Flash READ Delay1 tuning

FLSH\_SRT2 Reg 0x23, Bit Field: [9:5], Default: 5'h03, W/R

Flash READ Delay2 tuning

FLSH\_SRT3 Reg 0x23, Bit Field: [4:0], Default: 5'h07, W/R

Flash READ Delay3 tuning

5.2.33 Register 36 (0x24)

FLSH\_SRT4 Reg 0x24, Bit Field: [14:10], Default: 5'h07, W/R

Flash READ Delay4 tuning

FLSH\_SRT5 Reg 0x24, Bit Field: [9:5], Default: 5'h07, W/R

Flash READ Delay5 tuning

FLSH\_SRT6 Reg 0x24, Bit Field: [4:0], Default: 5'h01, W/R

Flash READ Delay6 tuning

5.2.34 Register 38 (0x26)

FLSH\_SPIG Reg 0x26, Bit Field: [19:16], Default: 4'hD, W/R

Flash Program Iref Generation tuning

FLSH\_SRIG Reg 0x26, Bit Field: [15:12], Default: 4'h7, W/R

Flash Read Iref Generation tuning

FLSH\_SVR0 Reg 0x26, Bit Field: [11:8], Default: 4'h7, W/R

Flash Vref Generation tuning for Upper-Left PMOS

FLSH\_SVR1 Reg 0x26, Bit Field: [7:4], Default: 4'h8, W/R

Flash Vref Generation tuning for Bottom-Left PMOS

FLSH\_SVR2 Reg 0x26, Bit Field: [3:0], Default: 4'h8, W/R

Flash Vref Generation tuning for Bottom-Right PMOS

5.2.35 Register 39 (0x27)

FLSH\_SHVE Reg 0x27, Bit Field: [20:16], Default: 5'h01, W/R

Flash HV Pump Diode-Chain tuning for Erase

FLSH\_SHVP Reg 0x27, Bit Field: [15:11], Default: 5'h03, W/R

Flash HV Pump Diode-Chain tuning for Program

FLSH\_SHVCT Reg 0x27, Bit Field: [10:6], Default: 5'h0F, W/R

Flash HV Pump CEN Timing tuning for HV\_EN

FLSH\_SMV Reg 0x27, Bit Field: [5:0], Default: 6'h08, W/R

Flash MV Pump Diode-Chain tuning

5.2.36 Register 40 (0x28)

FLSH\_SMVCTO Reg 0x28, Bit Field: [9:5], Default: 5'h07, W/R

Flash MV Pump CEN Timing tuning for MV\_EN

FLSH\_SMVCT1 Reg 0x28, Bit Field: [4:0], Default: 5'h07, W/R

Flash MV Pump CEN Timing tuning for NVSTR2

#### 5.2.37 Register 42 (0x2A)

FLSH\_SAB Reg 0x2A, Bit Field: [5:0], Default: 6'h02, W/R

Flash Analog Buffer tuning

#### 5.2.38 Register 48 (0x30)

STR\_WR\_CH1\_ALT\_ADDR Reg 0x30, Bit Field: [23:16], Default: 8'hF0, W/R

Alert Address (8-bit) for MBus memory streaming (Channel 1). Alerts are sent whenever the end of the buffer is reached. If DBLB is active, an alert is also sent when the halfway point of the buffer is reached. See 'MBus Specification' document for more details.

#### 5.2.39 Register 49 (0x31)

STR\_WR\_CH1\_ALT\_REG\_WR Reg 0x31, Bit Field: [23:16], Default: 8'h00, W/R

When an alert message is sent for MBus memory streaming (Channel 1), STR\_WR\_CH1\_ALT\_REG\_WR populates [31:24] in the MBus Data. See 'MBus Specification' document for more details.

#### 5.2.40 Register 50 (0x32)

STR\_WR\_CH1\_EN Reg 0x32, Bit Field: [23], Default: 1'h1, W/R

Enables/Disables MBus memory streaming (Channel 1).

If 1, MBus memory streaming (Channel 1) is enabled.

If 0, MBus memory streaming (Channel 1) is disabled.

#### STR\_WR\_CH1\_WRP Reg 0x32, Bit Field: [22], Default: 1'h1, W/R

Enables/Disables memory wrapping during MBus memory streaming (Channel 1).

If 1, Enabled: Write Address Counter for MBus memory streaming (Channel 1) is reset to STR\_WR\_CH1\_BUF\_OFF when the end of the buffer is reached.

If 0, Disabled: Write Address Counter for MBus memory streaming (Channel 1) is unchanged when the end of the buffer is reached. Also, STR\_WR\_CH1\_EN is changed to 0 at this point.

#### STR\_WR\_CH1\_DBLB Reg 0x32, Bit Field: [21], Default: 1'h0, W/R

Double-buffering mode for MBus memory streaming (Channel 1).

If 1, it generates an alert message halfway through the buffer in addition to at the end of the buffer.

If 0, it generates only when the end of the buffer is reached.

#### STR\_WR\_CH1\_BUF\_LEN Reg 0x32, Bit Field: [10:0], Default: 11'h7FF, W/R

It defines the length of the buffer for MBus memory streaming (Channel 1). It is 'Buffer Length - 1', and the unit is 'word (32-bit)'. Hence FLPv3S's default value (11'h7FF) indicates 8kB (2048 words).

#### 5.2.41 Register 51 (0x33)

STR\_WR\_CH1\_BUF\_OFF Reg 0x33, Bit Field: [10:0], Default: 11'h000, W/R

It defines the buffer offset for MBus memory streaming (Channel 1). The unit is 'word (32-bit)'.

#### 5.2.42 Register 52 (0x34)

STR\_WR\_CH0\_ALT\_ADDR Reg 0x34, Bit Field: [23:16], Default: 8'hF0, W/R

Alert Address (8-bit) for MBus memory streaming (Channel 0). Alerts are sent whenever the end of the buffer is reached. If DBLB is active, an alert is also sent when the halfway point of the buffer is reached. See 'MBus Specification' document for more details.

#### 5.2.43 Register 53 (0x35)

STR\_WR\_CH0\_ALT\_REG\_WR Reg 0x35, Bit Field: [23:16], Default: 8'h00, W/R

When an alert message is sent for MBus memory streaming (Channel 0), STR\_WR\_CH0\_ALT\_REG\_WR populates [31:24] in the MBus Data. See 'MBus Specification' document for more details.

#### 5.2.44 Register 54 (0x36)

STR\_WR\_CH0\_EN Reg 0x36, Bit Field: [23], Default: 1'h1, W/R

Enables/Disables MBus memory streaming (Channel 0).

If 1, MBus memory streaming (Channel 0) is enabled.

If 0, MBus memory streaming (Channel 0) is disabled.

#### STR\_WR\_CH0\_WRP Reg 0x36, Bit Field: [22], Default: 1'h1, W/R

Enables/Disables memory wrapping during MBus memory streaming (Channel 0).

If 1, Enabled: Write Address Counter for MBus memory streaming (Channel 0) is reset to STR\_WR\_CH0\_BUF\_OFF when the end of the buffer is reached.

If 0, Disabled: Write Address Counter for MBus memory streaming (Channel 0) is unchanged when the end of the buffer is reached. Also, STR\_WR\_CH0\_EN is changed to 0 at this point.

#### STR\_WR\_CH0\_DBLB Reg 0x36, Bit Field: [21], Default: 1'h0, W/R

Double-buffering mode for MBus memory streaming (Channel 0).

If 1, it generates an alert message halfway through the buffer in addition to at the end of the buffer.

If 0, it generates only when the end of the buffer is reached.

#### STR\_WR\_CH0\_BUF\_LEN Reg 0x36, Bit Field: [10:0], Default: 11'h7FF, W/R

It defines the length of the buffer for MBus memory streaming (Channel 0). It is 'Buffer Length - 1', and the unit is 'word (32-bit)'. Hence FLPv3S's default value (11'h7FF) indicates 8kB (2048 words).

#### 5.2.45 Register 55 (0x37)

STR\_WR\_CH0\_BUF\_OFF Reg 0x37, Bit Field: [10:0], Default: 11'h000, W/R

It defines the buffer offset for MBus memory streaming (Channel 0). The unit is 'word (32-bit)'.

#### 5.2.46 Register 58 (0x3A)

BLK\_WR\_EN Reg 0x3A, Bit Field: [23], Default: 1'h1, W/R

Enables/Disables MBus memory bulk write. If 1, MBus memory bulk write is enabled. If 0, MBus memory bulk write is disabled.

#### 5.2.47 Register 71 (0x47)

ACT\_RST Reg 0x47, Bit Field: [23], Default: 1'h0, W/R

Action Register Reset. This is NOT implemented in the current version of Layer Ctrl.

## 6 Power-Up/Down

In order to do any operation that requires the Flash operation, the following blocks must be turned-on.

- · Voltage Clamper
- Flash

A correct power-up sequence should be followed to turn on those. Similarly, a correct power-down sequence should be followed to turn off those. User must make sure that they are turned off before the system goes into sleep.

If Auto Power-Up/Down is enabled (Section 6.3), the controller (main FSM) automatically handles the power-up/down sequence. Figure 5 shows internal waveforms used to turn-on/off Voltage Clamper.



Figure 5: Voltage Clamper Power-Up/Down Waveform

VREF\_SLEEP turns on/off a voltage reference circuit residing in the Flash. This voltage reference circuit provides the reference voltage to Voltage Clamper through an analog buffer.

ABUF\_EN turns on/off this analog buffer residing in the Flash. Once this analog buffer becomes enabled, the reference voltage output from the Flash becomes valid. ABUF\_EN is controlled by the controller (main FSM), so that user cannot manually control this signal.

COMP\_SLEEP turns on/off Voltage Clamper.

COMP\_CLKENB enables/disables the Voltage Clamper clock (CLK<sub>comp</sub>). CLK<sub>comp</sub> is generated from the Clock Generator (Section 13).

COMP\_ISOL controls the isolation of Voltage Clamper. This is required because of level converter circuits inside Voltage Clamper.

T<sub>R</sub> indicates a few CLKmain cycles required to update Register File (generally 10 20 CLK<sub>main</sub> cycles). Tvref, T10us, Tcap are all set by MBus Register File. Tvref is required to wait until the voltage reference output becomes stabilized. Tcap is required to charge up the on-chip decap (shown in Figure 3).

Figure 6 shows internal waveforms used to turn-on/off the Flash.

All signals shown in Figure 6 are controlled by the controller (main FSM), so that user cannot manually control these signals.



Figure 6: Flash Power-Up/Down Waveform

RESETB is a reset signal used in the Flash.

HVCP\_EN is a high-voltage charge-pump enable signal.

MVCP\_EN is a medium-voltage charge-pump enable signal.

SC\_EN is a switch-cap enable signal.

T3us, T5us, Thvcp\_en, Tmvcp\_en, Tsc\_en are all set by Register File.

Voltage Clamper must be fully on before the Flash becomes turned-on. Also, the Flash must be turned-off before Voltage Clamper becomes powered-down.

The Flash must be fully on before starting any Flash-related operation.

## 6.1 Manual Power-Up/Down

Signals that can be manually controlled is very limited. The only signals to which user has a direct access are:

- VREF\_SLEEP
- COMP\_SLEEP
- COMP\_CLKENB
- COMP\_ISOL

It is NOT recommended to manually control these signals. Since without using ABUF\_EN, which is solely controlled by the controller (main FSM), Voltage Clamper cannot be fully on, thus no Flash operation can be performed correctly.

## 6.2 Semi-Auto Power-Up/Down

User can turn-on/off Voltage Clamper and the Flash using FLASH\_POWER\_GO signal. Follow instructions below.

#### 6.2.1 Turn on Voltage Clamper and the Flash

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h1

FLASH\_POWER\_DO\_FLSH = 1'h1

FLASH\_POWER\_IRQ\_EN = 1'h1

FLASH\_POWER\_SEL\_ON = 1'h1

FLASH\_POWER\_GO = 1'h1

2. Once the power-up sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

#### 6.2.2 Turn on Voltage Clamper Only

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h1

FLASH\_POWER\_DO\_FLSH = 1'h0

FLASH\_POWER\_IRQ\_EN = 1'h1

FLASH\_POWER\_SEL\_ON = 1'h1

FLASH\_POWER\_GO = 1'h1

2. Once the power-up sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

#### 6.2.3 Turn on the Flash Only

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h0

FLASH\_POWER\_DO\_FLSH = 1'h1

FLASH\_POWER\_IRQ\_EN = 1'h1

FLASH\_POWER\_SEL\_ON = 1'h1

FLASH\_POWER\_GO = 1'h1

2. Once the power-up sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

#### 6.2.4 Turn off Voltage Clamper and the Flash

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h1

FLASH\_POWER\_DO\_FLSH = 1'h1

FLASH\_POWER\_IRQ\_EN = 1'h1

FLASH\_POWER\_SEL\_ON = 1'h0

FLASH\_POWER\_GO = 1'h1

2. Once the power-down sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

#### 6.2.5 Turn off Voltage Clamper Only

FLASH\_POWER\_GO = 1'h1

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h1
FLASH\_POWER\_DO\_FLSH = 1'h0
FLASH\_POWER\_IRQ\_EN = 1'h1
FLASH\_POWER\_SEL\_ON = 1'h0

2. Once the power-down sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

### 6.2.6 Turn off the Flash Only

1. Set Register 0x11 like below. This can be done using one MBus Register Write message.

FLASH\_POWER\_DO\_VREFCOMP = 1'h0
FLASH\_POWER\_DO\_FLSH = 1'h1
FLASH\_POWER\_IRQ\_EN = 1'h1
FLASH\_POWER\_SEL\_ON = 1'h0
FLASH\_POWER\_GO = 1'h1

2. Once the power-down sequence is done, Flash layer will send an MBus interrupt message. See Table 7 for details on the interrupt payload.

FLASH\_POWER\_GO will be reset to 0 automatically once the power-up/down sequence is complete only if FLASH\_POWER\_IRQ\_EN = 1'h1.

If user does not want to get the MBus interrupt message, set FLASH\_POWER\_IRQ\_EN = 1'h0. However, in this case, FLASH\_POWER\_GO will not be reset to 0 automatically.

Table 7: Interrupt Payloads for Semi-Auto Power-Up/Down

| Interrupt Payload | Description                   |
|-------------------|-------------------------------|
| 8'hB5             | Power-Up sequence completed   |
| 8'hBB             | Power-Down sequence completed |

## 6.3 Auto Power-Up/Down

The controller can handle the power-up/down sequence automatically if Auto Power-Up/Down is enabled. In order to enable or disable, follow the instructions below:

 To enable, set Register 0x12 like below. IRQ\_PWR\_ON\_WUP = 1'h0 SEL\_PWR\_ON\_WUP = 3'h0 FLASH\_AUTO\_USE\_CUSTOM = 1'h0 FLASH\_AUTO\_OFF = 1'h1 FLASH\_AUTO\_ON = 1'h1

 To disable, set Register 0x12 like below. IRQ\_PWR\_ON\_WUP = 1'h0 SEL\_PWR\_ON\_WUP = 3'h0 FLASH\_AUTO\_USE\_CUSTOM = 1'h0 FLASH\_AUTO\_OFF = 1'h0 FLASH\_AUTO\_ON = 1'h0

If enabled, the controller powers-up Voltage Clamper and the Flash before starting an operation, such as GO operations or ping-pong streaming. Once the operation is done, then the controller powers-down Voltage Clamper and the Flash.

User can separately enable/disable power-up and power-down sequences.

- If FLASH\_AUTO\_ON = 1'h1 and FLASH\_AUTO\_OFF = 1'h0, only auto power-up is enabled. The controller turns on Voltage Clamper and the Flash before starting an operation. However, the controller does NOT turn off Voltage Clamper and the Flash after the operation is done.
- If FLASH\_AUTO\_ON = 1'h0 and FLASH\_AUTO\_OFF = 1'h1, only auto power-down is enabled. The controller does NOT turn on Voltage Clamper and the Flash before starting an operation. Hence, the operation may not be performed correctly unless user does the correct power-up sequence beforehand. The controller turns off Voltage Clamper and the Flash after the operation is done.

User can also choose blocks to be included in the auto power-up/down sequence.

- If FLASH\_AUTO\_USE\_CUSTOM = 1'h1:
  - Auto power-up/down sequence turns-on/off Voltage Clamper only if FLASH\_POWER\_DO\_VREFCOMP = 1'h1.
  - Auto power-up/down sequence turns-on/off the Flash only if FLASH\_POWER\_DO\_FLSH = 1'h1.
- If FLASH\_AUTO\_USE\_CUSTOM = 1'h0:
  - Auto power-up/down sequence turns-on/off both Voltage Clamper and the Flash.

## 6.4 Auto Power-Up upon System Wakeup

User can configure Flash layer so that the controller automatically turns on Voltage Clamper and the Flash upon the system wakeup. In order to enable this feature, user shall set SEL\_PWR\_ON\_WUP (in Register 0x12) properly. See Table 8.

| Table 8: | Configuration | on for Auto | Power-U | Jp upon S | System Wakeup |
|----------|---------------|-------------|---------|-----------|---------------|
|          |               |             |         |           |               |

| SEL_PWR_ON_WUP                         | Description                                                       |
|----------------------------------------|-------------------------------------------------------------------|
| 3'h0                                   | Auto-power-up/down upon system wakeup is disabled                 |
| 3'h1                                   | Turn-on/off Voltage Clamper only upon system wakeup               |
| 3'h2                                   | Reserved                                                          |
| 3'h3                                   | Turn-on/off both Voltage Clamper and the Flash upon system wakeup |
| $3^{\prime}$ h4 $\sim$ $3^{\prime}$ h7 | Reserved                                                          |

If IRQ\_PWR\_ON\_WUP = 1'h1, then Flash layer sends an MBus interrupt message once the auto power-up upon system wakeup is complete.

Table 9: Interrupt Payloads for Auto Power-Up upon System Wakeup

| •                 | • • • •                              | -      |
|-------------------|--------------------------------------|--------|
| Interrupt Payload | Description                          |        |
| 8'hB5             | Auto Power-Up upon System Wakeup com | pleted |

## 7 Copy from Flash to SRAM

In order to copy data from the Flash to SRAM, make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6).

Then, follow instructions below:

- 1. Set SRAM\_START\_ADDR. This is the SRAM address at which the first 32-bit of the data will be stored.
- 2. Set FLSH\_START\_ADDR. This is the Flash address at which the first 32-bit of the data is stored.
- 3. Set LENGTH. This is the length of the data to be copied. Use 'number of words (32-bit) minus 1'
- 4. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 10 for details on the interrupt payloads.
- 5. Set CMD = 4'h1
- 6. Set GO = 1'h1

Step 3  $\sim$  6 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation. At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 10: Interrupt Payloads for Copy from Flash to SRAM

| Intermed Deviled  | Description                       |
|-------------------|-----------------------------------|
| Interrupt Payload | Description                       |
| 8'h2B             | Copy from Flash to SRAM completed |

Figure 7 shows internal waveforms during Flash Read operation.  $T_1$  indicates one  $CLK_{main}$  cycle, and the other timing parameters, such as Tben, are controlled through MBus Register File.

Each SE pulse reads out 8-bit data from the Flash. Thus, it needs four SE pulses for the controller (main FSM) to get a 32-bit data. This is done internally and automatically by the controller (main FSM).



Figure 7: Flash Read Waveform

## 8 Copy from SRAM to Flash

Copy from SRAM to the Flash requires programming operation. Flash layer provides two-types of programming: Normal Program and Fast Program. While Normal Program is energy-efficient, Fast Program provides a better throughput at the cost of higher power consumption.

## 8.1 Normal Program

In order to copy data from SRAM to the Flash using Normal Program, make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6).

Then, follow instructions below:

- 1. Set SRAM\_START\_ADDR. This is the SRAM address at which the first 32-bit of the data is stored.
- 2. Set FLSH\_START\_ADDR. This is the Flash address at which the first 32-bit of the data will be stored.
- 3. Set LENGTH. This is the length of the data to be copied. Use 'number of words (32-bit) minus 1'
- 4. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 11 for details on the interrupt payloads.
- 5. Set CMD =  $4^{\circ}h2$
- 6. Set GO = 1'h1

Step 3  $\sim$  6 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation. At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 11: Interrupt Payloads for Copy from SRAM to Flash (Normal Program)

| Interrupt Payload | Description                                        |
|-------------------|----------------------------------------------------|
| 8'h3F             | Copy from SRAM to Flash (Normal Program) completed |

Figure 8 shows internal waveforms during Flash Normal Program operation. T<sub>1</sub> indicates one CLKmain cycle, and the other timing parameters, such as Tben, T5us, T10us, Tprog, Tcyc\_prog are controlled through MBus Register File. Each PROG pulse writes 8-bit data to the Flash. Thus, it needs four PROG pulses for the controller (main FSM) to write a 32-bit data. This is done internally and automatically by the controller (main FSM).

## 8.2 Fast Program

In order to copy data from SRAM to the Flash using Fast Program, make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6). Then, follow instructions below:

- 1. Set SRAM\_START\_ADDR. This is the SRAM address at which the first 32-bit of the data is stored.
- 2. Set FLSH\_START\_ADDR. This is the Flash address at which the first 32-bit of the data will be stored.
- 3. Set LENGTH. This is the length of the data to be copied. Use 'number of words (32-bit) minus 1'



Figure 8: Flash Normal Program Waveform

- 4. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 12 for details on the interrupt payloads.
- 5. Set CMD = 4'h3
- 6. Set GO = 1'h1

Step 3  $\sim$  6 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation. At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 12: Interrupt Payloads for Copy from SRAM to Flash (Fast Program)

| Interrupt Payload | Description                                      |
|-------------------|--------------------------------------------------|
| 8'h5D             | Copy from SRAM to Flash (Fast Program) completed |

Figure 9 shows internal waveforms during Flash Fast Program operation. T<sub>1</sub> indicates one CLK<sub>main</sub> cycle, and the other timing parameters, such as Tben, T5us, T10us, Tprog, Tcyc\_prog are controlled through Register File. Each PROG pulse writes 8-bit data to the Flash. Thus, it needs four PROG pulses for the controller (main FSM) to write a 32-bit data. This is done internally and automatically by the controller (main FSM).



Figure 9: Flash Fast Program Waveform

## 9 Erase Flash

## 9.1 Page Erase

In order to erase a page (1kB) in the Flash, make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6). Then, follow instructions below:

- 1. Set FLSH\_START\_ADDR. This is the Flash address which corresponds to the first 32-bit of the page. See Figure 4 for the details on the addresses. For example, In FLPv3S, FLSH\_START\_ADDR shall be set to 0x0200 to erase Page#2.
- 2. LENGTH in Register 0x07 is not used and will be ignored.
- 3. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 13 for details on the interrupt payloads.
- 4. Set CMD = 4'h4
- 5. Set GO = 1'h1

Step 3  $\sim$  5 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation.

At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 13: Interrupt Payloads for Flash Page Erase

| Interrupt Payload | Description                |
|-------------------|----------------------------|
| 8'h4F             | Flash Page Erase completed |

Figure 10 shows internal waveforms during Flash Erase operation. T<sub>1</sub> indicates one CLK<sub>main</sub> cycle, and the other timing parameters, such as Tben, T5us, Terase are controlled through MBus Register File.



Figure 10: Flash Page Erase Waveform

## 9.2 Reference Array Erase

FLPv3S has two (2) internal banks and each bank has its reference cell array. These reference cell arrays are used to generate a reference voltage for the sense amplifier during Read operation. In order to erase a reference cell array in the Flash, make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6). Then, follow instructions below:

1. Set FLSH\_START\_ADDR. This is the Flash address which corresponds to the first 32-bit of the bank, and should be one of the followings.

Bank#0: 0x0000Bank#1: 0x4000

- 2. LENGTH in Register 0x07 is not used and will be ignored.
- 3. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 14 for details on the interrupt payloads.
- 4. Set CMD = 4'h7
- 5. Set GO = 1'h1

Step 3  $\sim$  5 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation.

At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 14: Interrupt Payloads for Flash Reference Array Erase

| Interrupt Payload | Description                           |
|-------------------|---------------------------------------|
| 8'h6F             | Flash Reference Array Erase completed |

Figure 11 shows internal waveforms during Flash Erase operation. Then and Terase are controlled through MBus Register File.



Figure 11: Flash Reference Array Erase Waveform

## 10 External Streaming

(Note that this section only explains about the standard (non-ping-pong) external streaming. For the external ping-pong streaming, see Section 11.2.

External streaming is a way to directly write into SRAM using CLK\_EXT, DATA\_EXT[1:0] pads. It does not use the Flash itself, so user does not have to turn on the Flash or Voltage Clamper. Obviously, the streamed data is only stored in SRAM. User has to use "Copy from SRAM to the Flash (Section 8)" to write into the Flash. In order to start the external streaming, follow instructions below:

- 1. Set Register 0x0C
  - WRAP\_EXT = 1'h0
  - UPDATE\_ADDR\_EXT = 1'h1
  - BIT\_EN\_EXT: Enable/Disable DATA\_EXT[1:0] pads. See Table 15. If both DATA\_EXT[1] and DATA\_EXT[0] are enabled, DATA\_EXT[1] becomes MSB.
- 2. Set SRAM\_START\_ADDR\_EXT. This is the SRAM address at which the first 32-bit will be stored.
- 3. Set TIMEOUT\_EXT. Number of CLKmain cycles that will trigger the time-out error during External Streaming.
- 4. Set LENGTH. This is the length of data to be streamed. Use 'number of words (32-bit) minus 1'
- 5. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 16 for details on the interrupt payloads.
- 6. Set CMD = 4'h6
- 7. Set GO = 1'h1

Step 4  $\sim$  7 can be done using one MBus Register Write Message. As soon as GO becomes 1'h1, it starts the operation. At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 15: BIT\_EN\_EXT Setting

| BIT_EN_EXT | DATA_EXT[1] | DATA_EXT[0] |
|------------|-------------|-------------|
| 2'h0       | Disabled    | Disabled    |
| 2'h1       | Disabled    | Enabled     |
| 2'h2       | Enabled     | Disabled    |
| 2'h3       | Enabled     | Enabled     |

TIMEOUT\_EXT=0 will NOT trigger the time-out error, and it will be in the streaming mode indefinitely until one of the following events occurs:

- The number of words streamed becomes equal to the value specified in LENGTH (plus one).
- User manually resets the controller (main FSM) by writing 0 to FORCE\_RESETN

If UPDATE\_ADDR\_EXT = 1'h1, SRAM\_START\_ADDR\_EXT is automatically updated at the end of the External Streaming. The next External Streaming (triggered by another GO command) starts writing from the successive SRAM address.

Table 16: Interrupt Payloads for External Streaming

| Interrupt Payload | Description                                                                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8'hF5             | External Streaming Time-Out Error                                                                                                                        |
| 8'hF7             | External Streaming Too-Fast Error                                                                                                                        |
| 8'hF9             | External Streaming Successful                                                                                                                            |
| 8'hFB             | Has not yet received the number of words specified in LENGTH, but the address reaches the last SRAM Address while WRAP_EXT = 1'h0                        |
| 8'hFD             | External Streaming Successful. Has received the number of words specified in LENGTH, and the address reaches the last SRAM Address while WRAP_EXT = 1'h0 |

## 11 Ping-Pong Streaming

Ping-pong streaming writes incoming data into SRAM, as well as the Flash, at the same time, utilizing the two sub-SRAMs shown in Figure 3. Thus, user has to make sure Voltage Clamper and the Flash are turned-on or it uses Auto Power-Up/Down (Section 6).

Due to the nature of the ping-pong streaming, SRAM data keeps being overwritten if the amount of the streamed data exceeds the SRAM capacity.

There are two types of ping-pong streaming: MBus ping-pong streaming and External ping-pong streaming.

## 11.1 MBus Ping-Pong Streaming

MBus ping-pong streaming writes data from MBus Memory Streaming messages into SRAM and the Flash. In order to do this, follow instructions below:

- 1. Set PP\_STR\_LIMIT. This is the limit on the number of words to be ping-pong streamed. The unit is 'word (32-bit)'. Once the number of streamed data reaches PP\_STR\_LIMIT, any other following data will be ignored and not be written into SRAM or the Flash.
- 2. Set PP\_STR\_EN = 1'h1
- 3. Set PP\_FLSH\_ADDR. This is the Flash address at which the first 32-bit data will be written. It must be a start address of a page.
- 4. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 17 for details on the interrupt payloads.
- 5. (Optional) Set PP\_NO\_ERR\_DETECTION = 1'h1. This will not detect Buffer Overrun error. The recommended value is 1'h0 (detect Buffer Overrun error).
- 6. (Optional) Set PP\_USE\_FAST\_PROG = 1'h1. This will use Fast Program shown in Section 8.2. Otherwise, it will use Normal Program shown in Section 8.1.
- 7. (Optional) Set PP\_WRAP = 1'h1. This will enable address wrapping in the Flash (i.e, the Flash address becomes 0 after writing into the last address of the Flash). If PP\_WRAP = 1'h0, it will stop writing into the Flash once it writes into the last address of the Flash, and any other following data will be ignored and not be written into the Flash.

With this configuration, it will start the ping-pong operation as soon as there is an incoming MBus Memory Streaming message.

The ping-pong operation stops when one of the following event occurs.

- The MBus Memory Streaming message ends, and the amount of data streamed is less than that specified in PP\_STR\_LIMIT. In this case, there is no MBus interrupt message even if IRQ\_EN = 1'h1.
- The MBus Memory Streaming message ends, and the amount of data streamed is equal to or greater than that specified in PP\_STR\_LIMIT.
- If there is any error. The interrupt payload should indicate the type of the error.

Once the ping-pong operation is done, it will update the following registers in MBus Register File.

- PP\_FLAG\_END\_OF\_FLASH: Updated to 1 if the Flash reaches its last address during ping-pong streaming.
- PP\_FLAG\_STR\_LIMIT: Updated to 1 if PP\_LENGTH\_STREAMED becomes equal to PP\_STR\_LIMIT.
- PP\_FLAG\_COPY\_LIMIT: Updated to 1 if PP\_LENGTH\_COPIED becomes equal to PP\_STR\_LIMIT.
- PP\_LENGTH\_STREAMED: Updated to the number of words streamed so far during ping-pong streaming (the number of words written into SRAM).
- PP\_LENGTH\_COPIED: Updated to the number of words copied so far during ping-pong streaming (the number of words copied from SRAM to the Flash).

Table 17: Interrupt Payloads for MBus Ping-Pong Streaming

| Interrupt Payload | Description                                                                   |
|-------------------|-------------------------------------------------------------------------------|
| 8'hE2             | Ping-Pong streaming successful and it reaches its given limit in PP_STR_LIMIT |
| 8'hE5             | Buffer Overrun Error                                                          |

## 11.2 External Ping-Pong Streaming

External ping-pong streaming writes data from CLK\_EXT, DATA\_EXT[1:0] pads into SRAM and the Flash. In order to do this, follow instructions below:

- 1. Set PP\_STR\_LIMIT. This is the limit on the number of words to be ping-pong streamed. The unit is 'word (32-bit)'. Once the number of streamed data reaches PP\_STR\_LIMIT, any other following data will be ignored and not be written into SRAM or the Flash.
- 2. Set PP\_STR\_EN = 1'h1
- 3. Set PP\_FLSH\_ADDR. This is the Flash address at which the first 32-bit data will be written. It must be a start address of a page.
- 4. PP\_BIT\_EN\_EXT: Enable/Disable DATA\_EXT[1:0] pads. See Table 18. If both DATA\_EXT[1] and DATA\_EXT[0] are enabled, DATA\_EXT[1] becomes MSB.
- 5. (Optional) Set PP\_NO\_ERR\_DETECTION = 1'h1. This will not detect Buffer Overrun error. The recommended value is 1'h0 (detect Buffer Overrun error).
- 6. (Optional) Set PP\_USE\_FAST\_PROG = 1'h1. This will use Fast Program shown in Section 8.2. Otherwise, it will use Normal Program shown in Section 8.1.
- 7. (Optional) Set PP\_WRAP = 1'h1. This will enable address wrapping in the Flash (i.e, the Flash address becomes 0 after writing into the last address of the Flash). If PP\_WRAP = 1'h0, it will stop writing into the Flash once it writes into the last address of the Flash, and any other following data will be ignored and not be written into the Flash.
- 8. LENGTH is not used and will be ignored.
- 9. Set IRQ\_EN. If this is set to 1'h1, it will send an MBus interrupt message once the operation is done. See Table 19 for details on the interrupt payloads.
- 10. Set CMD = 4'h6
- 11. Set GO = 1'h1

Step 8  $\sim$  11 can be done using one MBus Register Write Message. As soon as GO becomes 1h1, it starts the ping-pong operation, and any following External Streaming will be written into SRAM as well as the Flash.

The ping-pong operation stops when one of the following event occurs.

- The amount of data streamed becomes equal to that specified in PP\_STR\_LIMIT.
- User writes 0 to PP\_STR\_EN. This will immediately terminate the ping-pong streaming. PP\_STR\_EN will be set to 1 automatically by the controller (main FSM).
- If there is any error. The interrupt payload should indicate the type of the error.

At the end of the operation, GO is automatically reset to 0 by the controller (main FSM).

Table 18: PP\_BIT\_EN\_EXT Setting

| PP_BIT_EN_EXT | DATA_EXT[1] | DATA_EXT[0] |
|---------------|-------------|-------------|
| 2'h0          | Disabled    | Disabled    |
| 2'h1          | Disabled    | Enabled     |
| 2'h2          | Enabled     | Disabled    |
| 2'h3          | Enabled     | Enabled     |

Table 19: Interrupt Payloads for External Ping-Pong Streaming

| Interrupt Payload | Description                                                         |
|-------------------|---------------------------------------------------------------------|
| 8'hE2             | Ping-Pong streaming successful and it reaches its                   |
| OTIEZ             | given limit in PP_STR_LIMIT                                         |
| 8'hE4             | External Ping-Pong Streaming stopped by user                        |
| 8'hE5             | Buffer Overrun Error                                                |
| 8'hE6             | External Streaming Too-Fast during External Ping-<br>Pong Streaming |

Once the ping-pong operation is done, it will update the following registers in Register File.

- PP\_FLAG\_END\_OF\_FLASH: Updated to 1 if the Flash reaches its last address during ping-pong streaming.
- PP\_FLAG\_STR\_LIMIT: Updated to 1 if PP\_LENGTH\_STREAMED becomes equal to PP\_STR\_LIMIT.
- PP\_FLAG\_COPY\_LIMIT: Updated to 1 if PP\_LENGTH\_COPIED becomes equal to PP\_STR\_LIMIT.
- PP\_LENGTH\_STREAMED: Updated to the number of words streamed so far during ping-pong streaming (the number of words written into SRAM).
- PP\_LENGTH\_COPIED: Updated to the number of words copied so far during ping-pong streaming (the number of words copied from SRAM to the Flash).

## 12 Boot-Up

## 12.1 Boot-Up Operation

#### 12.1.1 Auto Boot-Up

Auto Boot-Up can be triggered only when the pad BOOT\_DIS is floating or grounded. Auto Boot-Up is disabled if the pad BOOT\_DIS is held high at 1.2V.

Auto Boot-Up automatically follows the below sequence.

- 1. Trigger the MBus interrupt controller (mbus\_int\_ctrl) upon POR to wake up the whole system.
- 2. Check BOOT\_REG\_PATTERN value. If it is 2'h3, it stops the boot-up sequence, and the controller (main FSM) goes into IDLE state. If it is not 2'h3, it proceeds to the next step.
- 3. Set BOOT\_REG\_PATTERN=2'h3.
- 4. Turn on Voltage Clamper and the Flash following the sequence described in Section 6.
- 5. Read out from the very first word (ADDR#0) in the Flash.
  - If the read-out data is matched with Header (=0x6AB0C3CB), proceed to the next step.
  - If the read-out data is NOT matched with Header (=0x6AB0C3CB), and if COMP\_CTRL\_I\_1STG is less than 4'hE, then turn off Voltage Clamper and the Flash, increment COMP\_CTRL\_I\_1STG by 1, then re-start from 4.
  - If the read-out data is NOT matched with Header (=0x6AB0C3CB), and if COMP\_CTRL\_I\_1STG is 4'hE or larger, then set BOOT\_FLAG\_WRONG\_HEADER=1, power-off Voltage Clamper and the Flash (Section 6), send out an MBus flag message, followed by the MBus sleep message.
- 6. Read out from the next address from the flash memory, and executes the code following the Boot-Up ISA (See Section 12.2). Repeat this until one of the following conditions is met.
  - If the read-out data is TAIL\_IDLE, it sets BOOT\_FLAG\_SUCCESS=1, and the controller (main FSM) will go into IDLE state.
  - If the read-out data is TAIL\_PWDN, it sets BOOT\_FLAG\_SUCCESS=1 and BOOT\_FLAG\_PWDN=1. It turns-off Voltage Clamper and the Flash, and the controller (main FSM) will go into IDLE state.
  - If the read-out data is TAIL\_SLEEP, it sets BOOT\_FLAG\_SUCCESS=1 and BOOT\_FLAG\_SLEEP=1. It turns-off Voltage Clamper the Flash and then sends out the MBus sleep message.
  - If there is a checksum error, it sets BOOT\_FLAG\_CHKSUM\_ERROR=1. It turns-off Voltage Clamper and the Flash and then sends out an MBus flag message, followed by the MBus sleep message.
  - If the read-out data is an invalid command (after **ECC** correction, if any), it sets BOOT\_FLAG\_INVALID\_CMND=1. It turns-off Voltage Clamper and the Flash and then sends out an MBus flag message, followed by the MBus sleep message.
  - If the read-out data is has more than 2-bit error, hence not correctable using the ECC, it sets BOOT\_FLAG\_ECC\_ERROR=1. It turns-off Voltage Clamper and the Flash and then sends out an MBus flag message, followed by the MBus sleep message.

#### 12.1.2 Manual Boot-Up

Manual Boot-Up can be triggered regardless of the pad BOOT\_DIS setting. In order to start the Manual Boot-Up, use the GO operation (CMD=4'h8). It will follow the sequence described in Section 12.1.1 with the following exceptions.

- It does not trigger the MBus interrupt controller. The assumption is that the whole system is already up and running.
- It does not check the BOOT\_REG\_PATTERN value, so the boot-up sequence is always executed regardless of the BOOT\_REG\_PATTERN value. However, if BOOT\_REG\_PATTERN is not 2'h3, then it will set BOOT\_REG\_PATTERN=2'h3.

## 12.2 Boot-Up ISA (Instruction Set Architecture)

This section describes how the Flash memory contents (i.e., boot-up code) are to be structured. Every header/command/tail/data described here is 32-bit. Since the flash memory in Flash layer has 8-bit I/O, the following conversions are made in the controller (main FSM).

- DATA[0][31:0] = {FLASH\_DATA[3][7:0], FLASH\_DATA[2][7:0], FLASH\_DATA[1][7:0], FLASH\_DATA[0][7:0]}
- DATA[1][31:0] = {FLASH\_DATA[7][7:0], FLASH\_DATA[6][7:0], FLASH\_DATA[5][7:0], FLASH\_DATA[4][7:0]}
- ...
- DATA[N][31:0] = {FLASH\_DATA[4N+3][7:0], FLASH\_DATA[4N+2][7:0], FLASH\_DATA[4N+1][7:0], FLASH\_DATA[4N][7:0]}

A boot-code has the following requirements.

- DATA[0][31:0] must be Header (=0x6AB0C3CB)
- DATA[1][31:0] must be either one of the Commands or one of the Tails.
- A valid Command or Tail must follow the Command structure described in Section 12.2.2 or Section 12.2.3.
- A boot-up code must be ended with one of the Tails.

If any of these requirements are not met, one of the error handling described in Section 12.2.4 is initiated.

#### 12.2.1 Header

DATA[0] must be Header (=0x6AB0C3CB).

#### 12.2.2 Commands

#### **REG\_WRITE**

#### **Syntax**

```
ADDR+0: {4'h1, 4'h1, N[17:11], ECC[5], N[10:4], ECC[4], N[3:1], ECC[3], N[0], ECC[2:0]}
```

ADDR+1: {28'h0, DEST\_SHORT\_PREFIX\_0[3:0]}

**ADDR+2**: {**REG\_IDX\_0**[7:0], **REG\_DATA\_0**[23:0]}

ADDR+3: REG\_CHKSUM\_0[31:0]

ADDR+4: {28'h0, DEST\_SHORT\_PREFIX\_1[3:0]}

**ADDR+5**: {**REG\_IDX\_1**[7:0], **REG\_DATA\_1**[23:0]}

ADDR+6: REG\_CHKSUM\_1[31:0]

. . .

ADDR+3N+1: {28'h0, DEST\_SHORT\_PREFIX\_N[3:0]}

**ADDR+3N+2**: {**REG\_IDX\_N**[7:0], **REG\_DATA\_N**[23:0]}

ADDR+3N+3 : REG\_CHKSUM\_N[31:0]

#### **Description**

- This command writes **REG\_DATA\_n** into **REG\_IDX\_n** register  $(0 \le n \le N)$  on the layer whose short-prefix is **DEST\_SHORT\_ADDR\_n**.
- If **DEST\_SHORT\_PREFIX\_n**=4'h0, it will write into the register on this layer (Flash layer). Otherwise, it will write into the register on the layer whose short-prefix is **DEST\_SHORT\_PREFIX\_n**.
- REG\_CHKSUM\_n[31:0] is the Checksum defined below: REG\_CHKSUM\_n[31:0]= $\{28'h0, DEST\_SHORT\_PREFIX\_n[3:0]\}$  +  $\{REG\_IDX\_n[7:0], REG\_DATA\_n[23:0]\}$
- **N**[19:0] cannot be 20'hFFFFF.
- For ECC[5:0], see Section 12.2.6 for details.

#### MEM\_COPY

### Syntax

**ADDR+0**: {4'h1, 4'h2, N[17:11], ECC[5], N[10:4], ECC[4], N[3:1], ECC[3], N[0], ECC[2:0]}

ADDR+1: {28'h0, DEST\_SHORT\_PREFIX[3:0]}

ADDR+2 : DEST\_MEM\_START\_ADDR[31:0]

ADDR+3 : DATA\_0[31:0] ADDR+4 : DATA\_1[31:0] ADDR+5 : DATA\_2[31:0]

. . .

**ADDR+N+3**: **DATA\_N**[31:0]

ADDR+N+4 : MEM\_CHKSUM[31:0]

#### Description

- This command will copy **DATA\_0 DATA\_N** into the SRAM in the layer whose short-prefix is **DEST\_SHORT\_PREFIX**
- The start prefix of the destination SRAM is given by **DEST\_MEM\_START\_ADDR**
- DEST\_SHORT\_PREFIX cannot be 0x0 or 0xF.
- "DEST\_SHORT\_PREFIX = 'Flash layer-short-prefix'" is not dened.
- For word-alignment, it is required that **DEST\_MEM\_START\_ADDR**[1:0] = 2b00
- MEM\_CHKSUM[31:0] is the Checksum defined below:
   MEM\_CHKSUM[31:0]={28'h0, DEST\_SHORT\_ADDR[3:0]} + DEST\_MEM\_START\_ADDR[31:0] + DATA\_0[31:0] + DATA\_1[31:0] + DATA\_1[31:0]
- N[19:0] cannot be 20'hFFFFF.
- For **ECC**[5:0], see Section 12.2.6 for details.

#### **ENUMERATION**

Syntax [ADDR+0]:  $\{4'h1, 4'hE, 7'h0, ECC[5], 7'h0, ECC[4], SHORT_PREFIX[3:1], ECC[3], SHORT_PREFIX[0], ECC[2:0]\}$ 

#### Description

- This command will send out an MBus enumeration message, trying to set the next layer's short-prefix to SHORT\_PREFIX.
- SHORT\_PREFIX[3:0] cannot be 0x0 or 0x1 or 0xF.
- It cannot enumerate Flash layer itself due to a limitation of the MBus implementation.
- It is recommended that the user use NOP command right after this ENUMERATION command, to provide some time for the MBus transaction.
- For ECC[5:0], see Section 12.2.6 for details.

#### NOP

Syntax [ADDR+0]: {4'h1, 4'hD, N[17:11], ECC[5], N[10:4], ECC[4], N[3:1], ECC[3], N[0], ECC[2:0]}

## **Description**

- This command will make the controller (main FSM) stay idle for (N+1) clock cycles.
- N[19:0] cannot be 20'hFFFFF.
- For **ECC**[5:0], see Section 12.2.6 for details.

#### 12.2.3 Tails

#### TAIL\_IDLE

Syntax [ADDR+0]: {4'hF, 4'h0, 7'h0, ECC[5], 7'h0, ECC[4], 3'h0, ECC[3], 1'h0, ECC[2:0]}

### **Description**

- This command will make the controller (main FSM) go into the IDLE state and stay there.
- Everything stays on, including Voltage Clamper and the Flash.
- For **ECC**[5:0], see Section 12.2.6 for details.

#### TAIL\_PWDN

Syntax [ADDR+0]: {4'hF, 4'hF, 7'h0, ECC[5], 7'h0, ECC[4], 3'h0, ECC[3], 1'h0, ECC[2:0]}

#### **Description**

- This command will turn-off Voltage Clamper and the Flash, and then make the controller (main FSM) go into the IDLE state and stay there.
- Everything except Voltage Clamper and the Flash memory will stay on. For example, the controller (main FSM) and the Layer Ctrl stay on.
- For ECC[5:0], see Section 12.2.6 for details.

#### TAIL\_SLEEP

Syntax [ADDR+0]: {4'hF, 4'hC, 7'h0, ECC[5], 7'h0, ECC[4], 3'h0, ECC[3], 1'h0, ECC[2:0]}

## **Description**

This command will turn-off Voltage Clamper and the Flash and then send out the MBus sleep message.

• For **ECC**[5:0], see Section 12.2.6 for details.

#### 12.2.4 Error Handling

If there is an error, it will do one of the followings depending on the error type.

• If the Header is wrong, it sets BOOT\_FLAG\_WRONG\_HEADER=1, turns-off Voltage Clamper and the Flash, and then sends out an MBus flag message, followed by the MBus sleep message.

• If there is a checksum error, it sets BOOT\_FLAG\_CHKSUM\_ERROR=1. It turns-off Voltage Clamper and the Flash and then sends out an MBus flag message, followed by the MBus sleep message.

• If the read-out data is an invalid command (after ECC correction, if any), it sets BOOT\_FLAG\_INVALID\_CMND=1. It turns-off Voltage Clamper and the Flash and then sends out an MBus flag message, followed by the MBus sleep message.

• If the read-out data has more than 2-bit error, hence not correctable using the ECC, it sets BOOT\_FLAG\_ECC\_ERROR=1. It turns-off the ash and then sends out an MBus flag message, followed by the MBus sleep message.

Note that, the 'invalid command error' and the 'ECC error' may be indistinguishable in some cases.

The MBus flag message has the following contents:

MBus Addr: 8'h10

MBus Data: {8'h07, Reg0x10[23:0]}

#### 12.2.5 Flag Registers

Upon the end of the booting program, the boot-flag register (Register 0x10) values will be updated. These registers are always-on, so they are reset by POR reset. These register values can be changed using Register Write functionality of the Layer Ctrl.

CASE 1: Successful Boot-Up ending with TAIL\_IDLE

- BOOT\_FLAG\_SUCCESS=1

• CASE 2: Successful Boot-Up ending with TAIL\_PWDN

- BOOT\_FLAG\_SUCCESS=1

- BOOT\_FLAG\_PWDN=1

CASE 3: Successful Boot-Up ending with TAIL\_SLEEP

- BOOT\_FLAG\_SUCCESS=1

- BOOT\_FLAG\_SLEEP=1
- · CASE 4: Checksum Error
  - BOOT\_FLAG\_CHKSUM\_ERROR=1
- CASE 5: Invalid Command/Tail (Wrong Syntax)
  - BOOT\_FLAG\_INVALID\_CMND=1
- · CASE 6: Wrong Header
  - BOOT\_FLAG\_WRONG\_HEADER=1
- CASE 7: ECC Error (More than 1-bit Error)
  - BOOT\_FLAG\_ECC\_ERROR=1

Note that, the 'invalid command error (CASE 5)' and the 'ECC error (CASE 7)' may be indistinguishable in some cases.

#### 12.2.6 ECC

All Commands and Tails are protected with ECC. ECC used here is Hamming (32, 26) and it is SEC-DED.

- **ECC**[0] = ∧Bit[31:1]
- **ECC**[1] = Bit[3]  $\land$  Bit[5]  $\land$  Bit[7]  $\land$  Bit[9]  $\land$  Bit[11]  $\land$  Bit[13]  $\land$  Bit[15]  $\land$  Bit[17]  $\land$  Bit[19]  $\land$  Bit[21]  $\land$  Bit[23]  $\land$  Bit[25]  $\land$  Bit[27]  $\land$  Bit[29]  $\land$  Bit[31]
- **ECC**[2] = Bit[3]  $\land$  Bit[6]  $\land$  Bit[7]  $\land$  Bit[10]  $\land$  Bit[11]  $\land$  Bit[14]  $\land$  Bit[15]  $\land$  Bit[18]  $\land$  Bit[19]  $\land$  Bit[22]  $\land$  Bit[23]  $\land$  Bit[26]  $\land$  Bit[30]  $\land$  Bit[31]
- **ECC**[3] = Bit[5]  $\land$  Bit[6]  $\land$  Bit[7]  $\land$  Bit[12]  $\land$  Bit[13]  $\land$  Bit[14]  $\land$  Bit[15]  $\land$  Bit[20]  $\land$  Bit[21]  $\land$  Bit[22]  $\land$  Bit[23]  $\land$  Bit[28]  $\land$  Bit[29]  $\land$  Bit[30]  $\land$  Bit[31]
- **ECC**[4] = Bit[9] ∧ Bit[10] ∧ Bit[11] ∧ Bit[12] ∧ Bit[13] ∧ Bit[14] ∧ Bit[15] ∧ Bit[24] ∧ Bit[25] ∧ Bit[26] ∧ Bit[27] ∧ Bit[28] ∧ Bit[29] ∧ Bit[30] ∧ Bit[31]
- **ECC**[5] = Bit[17]  $\land$  Bit[18]  $\land$  Bit[19]  $\land$  Bit[20]  $\land$  Bit[21]  $\land$  Bit[22]  $\land$  Bit[23]  $\land$  Bit[24]  $\land$  Bit[25]  $\land$  Bit[26]  $\land$  Bit[27]  $\land$  Bit[28]  $\land$  Bit[29]  $\land$  Bit[30]  $\land$  Bit[31]

#### 12.2.7 Compiler and Examples

In order to facilitate the programming, a simple compiler script has been made. It is located in m3\_hdk/scripts/compileBootFLX and the file name is compileBootFLX. A sample program is provided in the same directory, and the file name is prog. Details about how-to-use can be found in prog and compileBootFLX files.

## 13 Clock Generator

This is a clock generator that generates two clocks:  $CLK_{main}$  and  $CLK_{comp}$ .  $CLK_{main}$  is used in the Layer Ctrl and the controller (main FSM).  $CLK_{comp}$  is used in the voltage clamper. In order to provide robust operation,  $CLK_{comp}$  must be faster than  $CLK_{main}$ . More faster  $CLK_{comp}$  (compared to  $CLK_{main}$ ) provides more current regulation (hence more robust flash operation).

 $CLK_{main}$  and  $CLK_{comp}$  share the same clock ring.  $CLK_{main}$  can be further slowed down using the dividers, but there is no divider for  $CLK_{comp}$ .

Both  $CLK_{main}$  and  $CLK_{comp}$  are at 1.2V, and power-gated with the controller (main FSM) and the Layer Ctrl.

#### 13.1 Power Domains

VDD\_0P6 Power-Gated Domain: Used to operate the clock ring and dividers.

VDD\_1P2 Power-Gated Domain: Used to produce the clock outputs.

## 13.2 Operation and Tuning

It generates CLK<sub>main</sub> whenever the system is active (Layer Ctrl is running). There is no need to manually turn on and off the clock generator.

It generates CLK<sub>comp</sub> whenever the voltage clamper turns on. This is automatically handled by the controller (main FSM) depending on the flash operation. There is no need to manually turn on and off the clock generator.

The clock frequencies can be tuned using CLK\_RING\_SEL and CLK\_DIV\_SEL. Table 20 shows simulated clock frequencies depending on those tuning bits. Default values are shown in red & italic.

| CLK_RING_SEL | Power     | CLK <sub>comp</sub> | CLK <sub>main</sub> (MHz) |             |             |             |  |  |
|--------------|-----------|---------------------|---------------------------|-------------|-------------|-------------|--|--|
| OLK_HING_OLL | $(\mu W)$ | (MHz)               | CLK_DIV_SEL               | CLK_DIV_SEL | CLK_DIV_SEL | CLK_DIV_SEL |  |  |
|              | . ,       | , ,                 | =2'h0                     | =2'h1       | =2'h2       | =2'h3       |  |  |
| 4'h0         | 6.999     | 32.90               | 8.22                      | 4.11        | 2.06        | 1.03        |  |  |
| 4'h1         | 6.575     | 29.60               | 7.39                      | 3.70        | 1.85        | 0.92        |  |  |
| 4'h2         | 6.158     | 26.70               | 6.67                      | 3.34        | 1.67        | 0.83        |  |  |
| 4'h3         | 5.902     | 24.40               | 6.11                      | 3.06        | 1.53        | 0.76        |  |  |
| 4'h4         | 5.332     | 23.00               | 5.74                      | 2.87        | 1.44        | 0.72        |  |  |
| 4'h5         | 5.229     | 21.30               | 5.33                      | 2.67        | 1.33        | 0.67        |  |  |
| 4'h6         | 4.964     | 19.80               | 4.94                      | 2.47        | 1.24        | 0.62        |  |  |
| 4'h7         | 4.853     | 18.50               | 4.63                      | 2.32        | 1.16        | 0.58        |  |  |
| 4'h8         | 5.017     | 22.00               | 5.50                      | 2.75        | 1.38        | 0.69        |  |  |
| 4'h9         | 4.300     | 17.50               | 4.37                      | 2.19        | 1.09        | 0.55        |  |  |
| 4'hA         | 3.517     | 12.90               | 3.22                      | 1.61        | 0.81        | 0.40        |  |  |
| 4'hB         | 3.238     | 11.20               | 2.80                      | 1.40        | 0.70        | 0.35        |  |  |
| 4'hC         | 2.786     | 9.36                | 2.34                      | 1.17        | 0.59        | 0.29        |  |  |
| 4'hD         | 1.986     | 5.25                | 1.31                      | 0.66        | 0.33        | 0.16        |  |  |
| 4'hE         | 1.815     | 4.32                | 1.08                      | 0.54        | 0.27        | 0.14        |  |  |
| 4'hF         | 1.601     | 3.17                | 0.79                      | 0.40        | 0.20        | 0.10        |  |  |

Table 20: Clock Generator Frequencies

## 14 Clock Frequency Measurement

Flash layer provides a way to indirectly measure the frequency of CLK<sub>main</sub>. It is not an accurate method to measure the clock frequency but should be good enough to get a reasonable estimation.

In order to measure CLK<sub>main</sub> frequency, follow instructions below.

- 1. Set FLASH\_AUTO\_OFF = 0.
- 2. Write data shown below in Register 0x07. This can be done using one MBus Register Write Message.

LENGTH = 0 (not used) IRQ\_EN = 1'h1 CMD = 4'h9 GO = 1'h1

3. Wait until Flash layer sends out an MBus interrupt message. The interrupt payloads and their meanings are shown in Table 21.

User shall measure the time starting at the end of the MBus Register Write message (step 2) until the start of the MBus interrupt message.

T<sub>D</sub> = Time@(End of MBus Reg Write Msg in step 2) - Time@(Start of MBus Interrupt Msg in step 3)

And the CLK<sub>main</sub> period and frequency can be estimated as shown below.

Period = 
$$T_D / 1048576$$
  
Frequency = 1 / Period = 1048576 /  $T_D$ 

Table 21: Interrupt Payloads for Clock Frequency Measurement

| · .               | · · · · · · · · · · · · · · · · · · · |
|-------------------|---------------------------------------|
| Interrupt Payload | Description                           |
| 8'h08             | Clock Frequency Measurement Completed |

# 15 List of Interrupt Payloads

Table 22 shows a list of interrupt payloads and their meanings.

Table 22: List of Interrupt Payloads

| Interrupt Payload | Description                                                                                                                                                     | Related Sections             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 8'h08             | Clock Frequency Measurement Completed                                                                                                                           | Section 14                   |
| 8'h2B             | Copy from Flash to SRAM completed                                                                                                                               | Section 7                    |
| 8'h3F             | Copy from SRAM to the Flash (Normal Program) completed                                                                                                          | Section 8.1                  |
| 8'h4F             | Flash Page Erase completed                                                                                                                                      | Section 9.1                  |
| 8'h5D             | Copy from SRAM to the Flash (Fast Program) completed                                                                                                            | Section 8.2                  |
| 8'h6F             | Flash Reference Array Erase completed                                                                                                                           | Section 9.2                  |
| 8'hB5             | Power-Up sequence completed                                                                                                                                     | Section 6.2                  |
| OII DD            |                                                                                                                                                                 | Section 6.4                  |
| 8'hBB             | Power-Down sequence completed                                                                                                                                   | Section 6.2                  |
| 8'hE2             | Ping-Pong streaming successful and it reaches its given limit in PP_STR_LIMIT                                                                                   | Section 11.1<br>Section 11.2 |
| 8'hE4             | External Ping-Pong Streaming stopped by user                                                                                                                    | Section 11.2                 |
| 8'hE5             | Buffer Overrun Error during Ping-Pong Streaming                                                                                                                 | Section 11.1                 |
|                   |                                                                                                                                                                 | Section 11.2                 |
| 8'hE6             | External Streaming Too-Fast during Ping-Pong Streaming                                                                                                          | Section 11.2                 |
| 8'hF5             | External Streaming Time-Out Error                                                                                                                               | Section 10                   |
| 8'hF7             | External Streaming Too-Fast Error                                                                                                                               | Section 10                   |
| 8'hF9             | External Streaming Successful                                                                                                                                   | Section 10                   |
| 8'hFB             | During External Streaming, it has not yet received the number of words specified in LENGTH, but the address reaches the last SRAM Address while WRAP_EXT = 1'h0 | Section 10                   |
| 8'hFD             | External Streaming Successful. It has received the number of words specified in LENGTH, and the address reaches the last SRAM Address while WRAP_EXT = 1'h0     | Section 10                   |

## 16 Voltage Clamper

## 16.1 Description

The voltage clamper charges an output capacitor connected to VDD\_2P5\_FLS (also VCAP pad) with limited current. The capacitor is charged by the current determined by current reference and two current mirrors (NMOS and PMOS).

Charging current = Current multiplication of PMOS mirror  $\times$  Current multiplication of NMOS mirror  $\times$  VREF / 1.93M $\Omega$ 

As VCAP becomes higher than a threshold, the switch between to the PMOS mirror and VCAP is turned off, and the output capacitor will not be charged any more. VCAP is divided down to VDIV by a diode stack and CTRL\_VOUT<2:0> (=COMP\_CTRL\_VOUT), and VDIV is compared to VREF by a comparator to control the switch between the PMOS mirror and VCAP.



Figure 12: Schematic of Voltage Clamper

### 16.2 Simulation Results

### 16.2.1 Voltage Clamp

Phase 1:  $3\mu A$  @  $25\mu s$  Phase 2:  $50\mu A$  @  $5\mu s$ 

On-Chip Cap: 3nF

Comparator Clock: 2MHz (10 comparison @ Phase 2)

Temp=27 °C & VDD\_1P2=1.2V & VDD\_3P6=3.8V

VREF = 860mV

Table 23: Simulation Results of Voltage Clamp

|                               |            |            | _          | •          |            |
|-------------------------------|------------|------------|------------|------------|------------|
| Corner                        | TT         | FF         | SS         | FS         | SF         |
| Max. V <sub>CAP</sub> (V)     | 2.57       | 2.57       | 2.58       | 2.58       | 2.57       |
| Min. V <sub>CAP</sub> (V)     | 2.50       | 2.51       | 2.50       | 2.50       | 2.50       |
| Ripple V <sub>CAP</sub> (V)   | 68.7m      | 60.1m      | 73.8m      | 74.3m      | 64.1m      |
| Max. V <sub>MIRROR</sub> (V)  | 3.25       | 3.30       | 3.19       | 3.22       | 3.28       |
| Min. V <sub>MIRROR</sub> (V)  | 2.98       | 3.00       | 2.96       | 2.95       | 3.02       |
| Max. I <sub>VDD_3P6</sub> (A) | 17.6 $\mu$ | 22.8 $\mu$ | 14.3 $\mu$ | 17.7 $\mu$ | 17.5 $\mu$ |
| Power Overhead (W)            | $5.08\mu$  | $6.46\mu$  | $4.39\mu$  | $4.87\mu$  | $5.74\mu$  |
| Power Overhead (%)            | 10.7       | 13.6       | 9.25       | 10.3       | 12.1       |

### 16.2.2 Voltage Divider (w/ nwell-to-psub dio)

Temp=27 °C & VCAP=2.6V

Table 24: Simulation Results of Voltage Divider

| Corner      | TT                              | FF   | SS    | FS    | SF   |  |
|-------------|---------------------------------|------|-------|-------|------|--|
| Error (V)   | $\mu$ =0.294m & $\sigma$ =2.92m |      |       |       |      |  |
| Error (%)   | $\mu$ =0.034 & $\sigma$ =0.337  |      |       |       |      |  |
| Current (A) | 187n                            | 412n | 82.2n | 98.2n | 353n |  |

### 16.2.3 Current Generator

Temp=27°C & VDD\_1P2=1.2V & VDD\_3P6=3.8V

Table 25: Simulation Results of Current Generator

| Corner                   | TT                                                    | FF   | SS   | FS   | SF   |  |  |
|--------------------------|-------------------------------------------------------|------|------|------|------|--|--|
| Min. I <sub>UP</sub> (A) | 549n                                                  | 707n | 447n | 551n | 547n |  |  |
| Min. I <sub>UP</sub> (A) | $\mu$ =569n & $\sigma$ =100n                          |      |      |      |      |  |  |
| Max. I <sub>UP</sub> (A) | $117\mu$   $150\mu$   $94.9\mu$   $117\mu$   $116\mu$ |      |      |      |      |  |  |
| Max. I <sub>UP</sub> (A) | $\mu$ =120 $\mu$ & $\sigma$ =15.9 $\mu$               |      |      |      |      |  |  |

## 16.2.4 Current Reference

Temp=27 °C & VDD\_1P2=1.2V

Table 26: Simulation Results of Current Reference

| Corner                    | TT                              | FF     | SS     | FS     | SF     |
|---------------------------|---------------------------------|--------|--------|--------|--------|
| DC Gain (dB)              | 46.7                            | 45.6   | 47.8   | 47.6   | 45.8   |
| Unity-Gain Bandwidth (Hz) | 68.5k                           | 95.9k  | 49.2k  | 81.3k  | 57.2k  |
| Phase Margin (°)          | 74.2                            | 73.5   | 75.5   | 71.0   | 77.1   |
| Voltage Error (V)         | -6.14m                          | -6.70m | -5.84m | -5.39m | -6.99m |
| Voltage Error (V)         | $\mu$ =-6.22m & $\sigma$ =5.89m |        |        |        | ,      |
| Regulated Current (A)     | 442n                            | 560n   | 366n   | 442n   | 442n   |
| Power (W)                 | 530n                            | 672n   | 440n   | 531n   | 530n   |

## 16.2.5 Comparator

Temp=27 °C & VDD\_1P2=1.2V

Table 27: Simulation Results of Comparator

| Corner                   | TT                                 | FF   | SS    | FS    | SF    |
|--------------------------|------------------------------------|------|-------|-------|-------|
| Input Offset Voltage (V) | $\mu$ =545 $\mu$ & $\sigma$ =6.48m |      |       |       |       |
| Power @ 1MHz (W)         | 77.9n                              | 171n | 41.4n | 81.9n | 78.5n |
| Power @ 10MHz (W)        | 331n                               | 400n | 307n  | 340n  | 328n  |