COT 6405 ANALYSIS OF ALGORITHMS

Extensions to the Maximum-Flow Problem

Computer & Electrical Engineering and Computer Science Department Florida Atlantic University

Outline

- Circulations with demands
- Circulations with demands and lower bounds

Reference: *Algorithm Design*, J. Kleinberg and E. Tardos, Addison-Wesley Publishing Company, 2006. Chapter 7.

In this problem:

- Sources have fixed supply values
- Sinks have fixed demands value

Goal:

- Not to maximize the flow!
- Find a solution to satisfy all the demands using the available supply (e.g. circulate flow from the nodes with supply to the nodes with demands)

This is a *feasibility problem*

Flow network G:

- Has capacities on the edges
- Each node v ∈ V has a demand d_v
 - if d_v > 0, then the node is a sink: node v has a demand of d_v for flow, meaning it has to receive d_v more units of flow than it sends out
 - if d_v < 0, then the node is a source: node v has a supply of -d_v for flow, meaning it wishes to send out -d_v units more flow than it receives
 - if $d_v = 0$, then node v is neither a source nor a sink
- All capacities and demands are integers

- A *circulation* with demands {d_v} is a function f that assigns a nonnegative number to each edge such that:
- (i) capacity condition: for each $e \in E$, $0 \le f(e) \le c_e$
- (ii) demand conditions: for each $v \in V$, $f^{in}(v) f^{out}(v) = d_v$
- We have a *feasibility problem*: find whether there exists a circulation that meets conditions (i) and (ii).

Example:

flow shows a feasible circulation

If there exists a feasible circulation with demands $\{d_v\}$, then $\Sigma_v d_v = 0$

Proof:

- suppose there is a feasible circulation f

$$\Sigma_{v} d_{v} = \Sigma_{v} (f^{in}(v) - f^{out}(v))$$

- for each edge e = (u,v), f(e) is counted twice, as $f^{out}(u)$ and $f^{in}(v) \Rightarrow$ these two terms cancel out
- it follows that $\Sigma_v d_v = 0$

We can also write as:

$$\sum_{v:d_{v}>0} d_{v} = \sum_{v:d_{v}<0} -d_{v} = D$$

Algorithm for circulations

- Reduce the feasible circulation problem to a max-flow problem
- Let S set with all the source nodes, T set with all the sink nodes
- Create a graph G' from G:
 - add a "super-source" s*
 - add a "super-sink" t*
 - for each node v ∈ T, add an edge (v, t*) with capacity d_v
 - for each node u ∈ S, add an edge (s*,u) with capacity –d_u
- Find a max-flow in G'
- If the max-flow s*-t* in G' equals D, then G has a feasible demand circulation, given by the flow. Otherwise G does not have a feasible circulation that meets the demands.

Example

- the flow in G' cannot be larger than D
- take a cut (A,B) with $A = \{s^*\}$, then c(A,B) = D

Analysis

There is a feasible circulation with demands {d_v} in G iff the maxflow s*-t* in G' is D. If all capacities and demands in G are integers, and there is a feasible-circulation, then the feasible circulation is integer-valued.

Proof:

- If there is a feasible circulation with demands $\{d_v\}$ in G, by sending a flow $-d_v$ on each edge (s^*,v) and a flow d_v on each edge (v,t^*) we get a flow in G' of value D \Rightarrow max-flow
- If G' has a max-flow with value D, then every edge out of s*, into t* must be saturated with flow. If we remove these edges \Rightarrow circulation f in G with $f^{in}(v) f^{out}(v) = d_v$ for each node v

Circulations with demands and lower bounds

 to force flow to make use of certain edges, we can place lower bounds on edges

Problem Definition Given:

- a flow network G = (V,E) with capacity c_e and lower bound I_e on each edge, $0 \le I_e \le c_e$ for each $e \in E$
- each node v has a demand d_v (positive or negative)
- all demands, capacities and lower bounds are integers A *circulation* f must satisfy the conditions:
- (i) capacity condition: for each $e \in E$, $l_e \le f(e) \le c_e$
- (ii) demand conditions: for each $v \in V$, $f^{in}(v)$ - $f^{out}(v) = d_v$

Find whether there is a feasible circulation.

Strategy

- reduce this problem to the problem of finding a circulation with demands but no lower bounds (which can be then reduced to the max-flow problem)
- start with an initial circulation f_0 , such that $f_0(e) = \ell_e$
 - Capacity condition is satisfied
 - Demand condition may not be satisfied
- for any node v: $L_{v} = f_{0}^{in}(v) f_{0}^{out}(v) = \sum_{e = \text{int } o = v} \ell_{e} \sum_{e = out = of = v} \ell_{e}$
- if $L_v = d_v$, then the demand condition at v is satisfied
- otherwise, add a flow f' on top of f_0 to make the demand condition true: $(f')^{in}(v) (f')^{out}(v) = d_v L_v$
- capacity left is $c_e \ell_e$

Construct a graph G'

- G' is a graph with capacities and demands, but without lower bounds
- G' has same nodes and edges as G
- for any edge e, capacity is $c_e \ell_e$
- demand of a node v is d_v L_v

graph G

graph G'

Algorithm & Analysis

- The problem of finding a feasible circulation with demands & lower bounds in G reduces to the problem of finding a feasible circulation with demands (and without lower bounds) in G'.
- Can be solved using Ford-Fulkerson in RT = O(|f*|E) = O(DE)

Analysis

There is a feasible circulation in G iff there is a feasible circulation in G'. If all demands, capacities, and lower bounds are integers, and there is a feasible circulation, then there is a feasible circulation that is integer-valued.

Proof:

- Let f' be a circulation in G'
 Define a circulation f in G by f(e) = f'(e) + I_e
 fⁱⁿ(v) f^{out}(v) = Σ_{e into v}(I_e + f'(e)) Σ_{e out of v}(I_e + f'(e)) = L_v + (d_v L_v) = d_v, thus it satisfies the demand condition
- Conversely, let f be a circulation in G
 Let f' in G' be defined by f'(e) = f(e) I_e
 f' satisfies the capacity condition in G'
 f' satisfies the demand condition:

$$(f')^{in}(v) - (f')^{out}(v) = \sum_{e \text{ into } v} (f(e) - I_e) - \sum_{e \text{ out of } v} (f(e) - I_e) = d_v - L_v$$

14

Discussion on the previous example

- Graph G' does not have a feasible circulation
 - a node with supply of 5 and only 4 units of capacity on its outgoing edges
- Therefore G does not have a feasible circulation as well