# МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

# Лабораторная работа №2 по курсу «Программирование графических процессоров»

Обработка изображений на GPU. Фильтры.

Выполнил: Р.С. Лисин

Группа: 8О-406Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

#### Условие

**Цель работы**: Научиться использовать GPU для обработки изображений. Использование текстурной памяти и двухмерной сетки потоков.

#### Вариант 7. Выделение контуров. Метод Собеля.:

**Входные данные**. На первой строке задается путь к исходному изображению, на второй, путь к конечному изображению.

#### Программное и аппаратное обеспечение

В качестве графического процессора использую видеокарту NVIDIA Tesla T4.

```
Compute capability: 7.5
Name: Tesla T4
Total Global Memory: 15835398144
Shared memory per block: 49152
Registers per block: 65536
Warp size: 32
Max threads per block: (1024, 1024, 64)
Max block: (2147483647, 65535, 65535)
Total constant memory: 65536
Multiprocessors count: 40
```

В качестве редактора кода использовался Jupyter Notebook в Google Colab.

# Метод решения

На GPU реализуем метод Собеля, который заключается в проходе фильтра  $3\times 3$  по всему изображению и вычисления нового значения в каждой точке в зависимости от яркости.

## Описание программы

Создаётся один динамический двумерный массив data. В программе применяется интерфейс работы с данными - текстурная ссылка, которая привязывается к определённой области памяти. Далее настраиваем её с помощью различных политик, и связываем интерфейс с данными. Он копируется на GPU. В функции ядра kernel в функции девайса rgb\_to\_luma выполняется преобразование rgb в параметр яркости (luma) и реализуется метод Собеля выделения контуров. Результат записывается в out\_arr.

## Результаты

Рассмотрим время работы программы на различных тестах при различных размерах сетки и на СРU. Будем замерять непосредственно время работы алгоритма. В качестве тестов используется одна картинка с видом на море. Для разных тестов меняются её размеры. Результаты приведены в таблице ниже.

| Размер сетки ядра        | 500x500 px, | 1000x1000  | 5000х5000 рх, мс |
|--------------------------|-------------|------------|------------------|
|                          | МС          | рх, мс     |                  |
| CPU                      | 44.245000   | 190.048000 | 5530.973000      |
| <<<(1, 1), (32, 32)>>>   | 18.299232   | 73.058434  | 818.964783       |
| <<<(8, 8), (8, 8)>>>     | 0.633056    | 2.323936   | 56.674946        |
| <<<(8, 8), (16, 16)>>>   | 0.624128    | 2.376096   | 57.311039        |
| <<<(16, 16), (32, 32)>>> | 0.535264    | 1.991584   | 48.960224        |
| <<<(32, 32), (32, 32)>>> | 0.537216    | 1.932384   | 45.457890        |

Алгоритм на CPU справляется гораздо медленнее чем на GPU. Это безусловно связано с тем, что в данном случае распараллеливание в разы ускоряет работу алгоритма.

# Примеры картинок.













#### Выводы

Во второй лабораторной работе я познакомился с текстурами, методом Собеля выделения контуров изображения. GPU позволяет очень быстро обрабатывать изображения, собственно поэтому он и называется графическим процессором. Но с другой стороны программы на CPU отлаживать проще и удобнее. Получились красивые картинки, которые можно использовать в качестве иллюстраций к какойнибудь книге или статье.