INSERTION SORT

VS

MERGE SORT

Tamaño 💌	mergesort tiempo 💌	insertionsort tiempo 💌
1000	1	0
101000	23	2
201000	47	1
301000	72	1
401000	94	2
501000	118	3
601000	148	4
701000	173	6
801000	199	4
901000	231	7
1001000	243	6
1101000	279	5
1201000	301	7
1301000	323	7
1401000	346	8
1501000	374	7
1601000	415	9
1701000	427	10
1801000	444	8
1901000	478	9,

3.3 Notablemente Insertion Sort es mucho mejor que Merge Sort para resolver problemas de altos volúmenes de datos, debido a su corto tiempo de ejecución.

Insertion Sort requiere menos memoria que el Merge Sort, al momento de crear variables.

Complejidad:

Merge: n log(n)

 $\mathsf{V}\mathsf{s}$

Insertion: n^{2}