

(9) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

[®] Offenlegungsschrift[®] DE 199 30 213 A 1

(1) Aktenzeichen:(2) Anmeldetag:

199 30 213.8 30. 6. 1999

(3) Offenlegungstag:

5. 4. 2001

(5) Int. Cl.⁷:

C 07 C 2/36 C 07 C 2/08 C 07 F 19/00 C 07 F 13/00 C 07 F 5/06 C 07 F 9/70

B 01 J 31/12 B 01 J 31/24

7) Anmelder:

Studiengesellschaft Kohle mbH, 45481 Mülheim, DE

(74) Vertreter:

Patentanwälte von Kreisler, Selting, Werner et col., 50667 Köln

(72) Erfinder:

Jolly, Peter Walther, 45470 Mülheim, DE; Döhring, Arno, 45470 Mülheim, DE; Weber, Jan Christoph, 45470 Mülheim, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

55 57 023 U1 US 55 50 305 U1 58 80 241 US US 58 11 618 56 89 028 US US 46 89 437 US 46 68 838 EΡ 06 22 347 A1 EP 05 37 609 A2 WO 96 23 010 A2 wo 94 15 940 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Donor-Ligand-Substituierte Cyclopentadienyl-Chrom-Verbindungen als Katalysatoren für die Oligomerisation von Alkenen
- Verfahren zur katalytischen Oligomerisierung von Alkenen, insbesondere von Ethylen, wobei als Katalysatoren Lewis-Säure-aktivierte Donor-Ligand-substituierte η⁵-Organyl-Chrom-Komplexe eingesetzt werden, insbesondere phosphino- oder arsino-substituierte Cyclopentadienyl-Komplexe.

Beschreibung

Die Erfindung beschreibt ein neues Verfahren zur katalytischen Oligomerisierung von Alkenen mit Hilfe von Lewis-Säuren-aktivierten Organochrom-Verbindungen.

Die Oligomerisierung von Alkenen, insbesondere von Ethylen, ist von großer technischer Bedeutung und die Produkte (Dimere, Trimere oder höhere Oligomere) werden großtechnisch hergestellt. Besondere Bedeutung haben Prozesse erlangt, die als Katalysatoren Alkylaluminium (Aufbaureaktion) und Nickel-Yliden (Shell Higher Olefin Process) verwenden: Für eine aktuelle Zusammenfassung des Standes der Technik siehe Cornils, B.; Herrmann, W. A., Eds. in 'Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, Chapter 2.3', VCH-Verlag, 1996. In der letzten Zeit sind auch Katalysatoren hekannt geworden, die durch Einwirken von Lewis-Säuren, insbesondere Alkylalumoxane, auf Nickel-Diimin-Komplexe (s. Killian, C. M.; Johnson, L. K.; Brokhart, M., Organometallics 1997, 16, 2005; Du Pont WO 96/23010, 1996; Du Pont US PS 5,880,241, 1999), Boratobenzol-Zirkonium-Komplexe (s. Barnhart, R. W.; Bazon, G.; Mourey, T., J. Am. Chem. Soc. 1998, 120, 1082) und Pyridinbisimin-Eisen und -Cobalt-Komplexe (s. Britovsek, G. J. P. et al. Chem Commun., 1998, 849; Small, B. L. Brookhart, M., J. Am. Chem. Soc., 1998, 120, 7143) hergestellt wurden. Organochromverbindungen, die Ethylen bevorzugt trimerisieren, sind auch bekannt und werden durch die Einwirkung von Lewis-Säuren auf Chromsalze in Gegenwart von Donor-Liganden gebildet, wobei die Verwendung von P-Donor-Liganden, wie C₃H₇P(C₂H₄PEt₂)₂ (Amoco Corp. US PS 5,811,618, 1998) N-Donor-Liganden, wie 2,5-Dimethylpyrrol (s. z. B. Phillips Petroleum US PS 5,689,028, 1997; Ethyl Corp. EP 0 537 609, 1993; Idemitsu Kosan WO 94/15,940, 1994) und O-Donor-Liganden, wie Monoglyme (s. Briggs, J. R., Chem. Commun. 1989, 674; Union Carbide US PS 4,668,838, 1987) beschrieben ist.

Es ist bekannt, daß Organo-Chrom-Verbindungen, aktiviert durch Lewis-Säuren, wie Methylalumoxan (MAO), zur Polymerisation von Alkenen, insbesondere von Ethylen eingesetzt werden können. (Studiengesellschaft Kohle mbH, PCT WO 97/03868)

Überraschenderweise haben wir jetzt festgestellt, daß die gleichen Lewis-Säureaktivierten Organochromverbindun-25 gen der allgemeinen Formel I auch zur Oligomerisation von Alkenen eingesetzt werden können,

Ι

wobei R^1 ein delokalisiertes η^5 -koordiniertes π -System wie z. B. Cyclopentadienyl, Indenyl oder Fluorenyl, enthält, wobei X ein elektronegatives Atom oder Gruppe, wie Halogenid oder Amid, oder eine Organylgruppe, wie Alkyl oder Aryl,

Y ein Donoratom der 15. Gruppe des Periodensystems,

Z ein Atom der 14. Gruppe (C, Si, Ge, Sn, Pb) des Periodensystems,

R'H, Alkyl oder Organylgruppen,

R"H, Alkyl oder Organylgruppen,

und $n \ge 1$ ist.

Insbesondere führt der Einsatz von phosphino- oder arsino-substituierten Cyclopentadienyl-Chrom-Komplexen (In I: Y = P, As) in Gegenwart kleinerer Substituenten, z. B. Methyl (Me) oder Ethyl (Et), am P- bzw. As-Atom zu Oligomeren als überwiegenden Reaktionsprodukten. Demgegenüber führen größere Substituenten, z. B. Cyclohexyl (Cy), wie in Verbindung II überwiegend oder ausschließlich zu Polymeren, z. B. zu Polyethylen, wenn als Alken Ethylen eingesetzt wird. (PCT WO 97/03868) Es besteht ein Zusammenhang zwischen den sterischen Ansprüchen der Substituenten am P- oder As-Atom und des Molekulargewichtes des entstandenen Oligomerengemisches: In Gegenwart kleinster Substituenten, wie z. B. Methyl, werden hauptsächlich niedrige Oligomere (Buten, Hexen) gebildet, während in Gegenwart größerer Substituenten, wie Ethyl, oder Phenyl, hauptsächlich höhere Oligomere (C_{14} - C_{40}) gebildet werden. Beispiele sind in Tabelle 1 aufgeführt.

Die Organochromverbindungen werden vorzugsweise mit Methylalumoxan als Lewissäure aktiviert. Das Molverhältnis von Al: Cr im Katalysator liegt hierbei bevorzugt zwischen 40: 1 und 10000: 1. Als bevorzugtes delokalisiertes η-Skoordininiertes π-System wird Cyclopentadienyl, substituiertes Cyclopentadienyl oder Indenyl eingesetzt. Das Verfahren dient auch zur Cooligomerisation von verschiedenen Alkenen, z. B. auch zur Cooligomerisation von Ethylen mit anderen, auch substituierten Alkenen.

Die entstandenen Oligomeren und Cooligomeren sind von erheblichem industriellen Interesse: das Buten/Hexen-Gemisch kann mit Ethylen zu Linear-Low-Density-Polyethylene (LLDPE) copolymensiert werden, während die langkettigen Olefingemische, im Sinne des Shell Higher Olefin Process (SHOP), zu langkettigen Alkoholen oder zu Aldehyden weiterverarbeitet werden können.

Beispiele

10

15

20

25

35

40

50

60

Die phosphino- und arsino-substituierten Cyclopentadienyl-Liganden wurden durch literaturbekannte Methoden hergestellt (siehe z. B. Bensley, D. M. et al J. Org. Chem 53, 4417, 1988; Kauffmann, T. et al Angew. Chem. 92, 321, 1980; Kettenbach, R. T. et al Chem. Ber 126, 1657, 1993; Kataoka, Y. et al Chem Letters 621, 1997) z. B. Gl 1-4.

$$\frac{\text{LiMR}_2}{(M=P,As)} \qquad \text{Li } \mathbb{R}_2 M$$

Cl PR_2 Cl PR_2 EiR_2 PR_2 PR_3 PR_4 PR_4 PR_4 PR_5 PR_5

$$\frac{\text{LiPR}_2}{}$$
 LiPR₂P (2)

Die Weiterreaktion der Alkali-Metall-Salze mit CrCl₃ führte zu den gewünschten CrCl₂-Verbindungen als dunkelblaue Nadeln, z. B. Gl. 5-7.

$$\frac{\text{Cr(THF)}_3\text{Cl}_3}{\text{- LiCl}} \qquad (\text{Ph}_2\text{PC}_2\text{H}_4\text{C}_5\text{H}_4)\text{CrCl}_2 \qquad (5)$$

$$\frac{\text{Cr(THF)}_{3}\text{Cl}_{3}}{-\text{LiCl}} \qquad (\text{Ph}_{2}\text{PC}_{3}\text{H}_{6}\text{C}_{5}\text{Me}_{4})\text{CrCl}_{2} \qquad (6)$$

$$\frac{\text{Cr(THF)}_3\text{Cl}_3}{\text{-LiCl}} \qquad (\text{Cy}_2\text{AsC}_2\text{H}_4\text{C}_5\text{H}_4)\text{CrCl}_2 \qquad (7)$$

VI

Kristallstrukturbestimmungen von N, V, und VI (Abb. 1) bestätigen, daß das Donor-Atom am Chrom gebunden ist. Reaktion der CrCl2-Verbindungen mit Organomagnesium- bzw. -Alkalimetal-Reagenzien führt zur Bildung der entsprechenden Alkyl- bzw. Aryl-Chrom-Derivate (z. B. Gl. 8).

$$(Et_2PC_2H_4C_5H_4)CrCl_2 = \frac{2 \text{ MeMgCl}}{-\text{MgCl}_2} \qquad (Et_2PC_2H_4C_5H_4)CrMe_2 \qquad (8)$$

10

Beispiel 1

Darstellung von (Et₂PC₂H₄C₅H₄)CrCl₂

Et₂PC₂H₄C₅H₄Li (dargestellt aus Spiro[2.4]]hepta-4,6-diene (1.27 g, 13.8 mmol) und LiPEt₂ (1.32 g, 13.8 mmol) in THF) wurde in THF (20 ml) gelöst und bei -78°C zu Cr(THF)3Cl3 (4.70 g, 12.6 mmol) in THF (100 ml) zugetropft. Die Lösung wurde weitere 4 h bei Raumtemperatur gerührt, die blaue Lösung eingeengt und der Rückstand mit siedendem Toluol (500 ml) extrahiert. Die Verbindung fiel bei Raumtemperatur aus der Lösung in Form von blauen Nadeln aus. Ausbeute: 1.54 g (40% Theorie).

Analytische Daten, Ber. für C₁₁H₁₈Cl₂CrP: C, 43.6; H, 6.1; Cl, 23.3; Cr, 17.2; P, 10.1% Gef.: C, 43.4; H, 6.0; Cl, 23.3; Cr, 17.1; P, 10.2%. MS (135°C): m/e 303 ([M-H]+, 27%), 268 (8%).

Folgende Verbindungen wurden auf ähnliche Weise hergestellt:

Beispiele 2-6

(Me₂PC₂H₄C₅H₄)CrCl₂

Ber. für C₉H₁₄Cl₂CrP: C, 39.2; H, 5.1; Cl, 25.7; Cr, 18.8; P, 11.2% Gef: C, 39.3; H, 5.0; Cl, 25.5; Cr, 18.7; P, 11.2%. MS (140°C): m/e 275 ([M-H]+, 41%), 240 (9.3%).

(Ph2PC2H4C5H4)CrCl2. Toluol (Ausbeute: 84%)

Ber. für C₁₉H₁₈Cl₂CrP. Toluol: C, 63.4; H, 5.3; Cl, 14.4; Cr, 10.6; P, 6.3% Gef.: C,

63.4; H, 5.4; Cl, 14.4; Cr, 10.5; P, 6.2%. MS (170°C): m/e 399 ([M-H]⁺, 30%), 364 (1.8%). Kristallstruktur: siehe Fig. 1. (Cy₂PC₂H₄C₅H₄)CrCl₂ (Ausbeute: 85%)

Ber. für C₁₉H₃₀Cl₂CrP: C, 55.4; H, 7.3; Cl, 17.2; Cr, 12.6; P, 7.5%. Gef.: C. 55.2; H, 7.3; Cl, 17.1; Cr, 12.7; P, 7.7%. MS(150°C): m/e 411 ([M-H]+, 27%), 367 (4.4%).

(Cy2PC2H4indenyl)CrCl2 (Ausbeute: 23%)

Ber. für C₂₃H₃₂Cl₂CrP: C, 59.8; H, 7.0; Cl, 15.3; Cr, 11.3; P, 6.7%. Gef.: C, 59.9; H, 7.1; Cl, 15.3; Cr, 11.2; P, 6.6%. MS (185°C): m/e 461 ([M-H]+, 39%) 425 (31%).

(Cy2AsC2H4C5H4)CrCl2 (Ausbeute: 73%)

Ber. für C₁₉H₃₀AsCl₂Cr: C, 50.0; H, 6.7; As, 16.4; Cl, 15.5; Cr, 11.4%. Gef: C, 50.1; H, 6.6; As, 16.4; Cl, 15.5; Cr, 11.5%. MS(160°C): m/e 455 ([M-H]+, 7.3%) 420 (6.4%). Kristallstruktur: siehe Abb. 1.

40

Beispiel 7

(Ph₂PC₃H₆C₅H₄)CrCl₂

Ph₂PC₃H₆C₅H₄Li (dargestellt aus ClC₃H₆PPh₂ (1.3 g, 4.9 mmol) und NaCp (4.3 g, 49 mmol) und nachfolgende Protonolyse und Behandlung mit BuLi) wurde mit Cr(THF)₃Cl₃ (1.84 g, 4.9 mmol) in THF (100 ml) bei Raumtemperatur umgesetzt. Die blaue Lösung wurde eingeengt und der Rückstand mit siedendem Toluol (100 ml) extrahiert, Die Verbindung kristallisiert bei Raumtemperatur in Form von blauen Nadeln. Ausbeute: 1.48 g (73% Theorie).

Analytische Daten, Ber. für C₂₀H₂₀Cl₂CrP: C, 58.1; H, 5.0; Cl, 17.1; Cr, 12.4; P, 7.3%. Gef.: C, 58.0; H, 4.9; Cl, 17.1; Cr, 12.6; P, 7.5%. MS (170°C): m/e 413 ([M-H]⁺, 18%), 378 (1.5%). Kristallstruktur: siehe **Abb.** 1.

Beispiel 8

(Ph2PC3H6C5Me4)CrCl2

55

Ph2PC₃H₆C5Me₄Li (1.64 g, 4.7 mmol; dargestellt aus Tosyl OC₃H₆C₅H₅ und KPPh₂ mit nachfolgender Protonolyse und Reaktion mit BuLi) wurde in THF (20 ml) gelöst und bei Raumtemperatur zu Cr(THF)₃Cl₃ (1.81 g, 4.7 mmol) in THF (20 ml) zugetropft. Die grüne Reaktionslösung wurde eingeengt und der Rückstand mit Toluol (300 ml) extrahiert und die Lösung durch eine Celite-Säule (20 × 2 cm) filtriert, um die grüne Verunreinigung zu entfernen. Die so erhaltene blaue Lösung wurde eingeengt und der Rückstand mit Toluol bei Raumtemperatur extrahiert. Die Verbindung wurde aus Toluol umkristallisiert. Ausbeute: 0.6 g (27% Theorie). Analytische Daten, Ber. für C₂₄H₂₈Cl₂CrP: C, 61.3; H, 6.0; Cl, 15.1; Cr, 11.1; P, 6.6%. Gef.: C, 61.1; H, 6.1; Cl, 15.0; Cr, 10.8; P, 6.4%. MS (140°C): m/e 469 ([M-H]+, 25%) 434 (5.5%). Kristallstruktur: siehe Abb. 1.

Beispiel 9

(Et₂PC₂H₄C₅H₄)CrMc₂

(Et₂PC₂H₄C₅H₄)CrCl₂ (0.9 g, 3 mmol) wurde in THF (20 ml) bei -30°C gelöst und mit MeMgCl (11 ml eine 2.70 mol Lösung in THF) umgesetzt. Die dunkelgrüne Lösung wurde bei Raumtemperatur eingeengt und der Rückstand mit Pentan (2 × 50 ml) extrahiert. Die Verbindung fiel in Form von dunkelblau-violetten Nadeln bei -78°C aus der Lösung aus. Ausbeute: ca. 10%.

Analytische Daten, Ber. für $C_{13}H_{24}CrP$: C, 59.3; H, 9.2; Cr, 19.8; P, 11.8%. Gef.: C, 59.4; H, 9.3; Cr, 19.6; P, 11.7%. MS(75°C): m/e 263 (M⁺, 3%), 249 (12%).

Katalytische Alken-Oligomerisation

Beispiel 10-18

Die folgenden Beispiele der Oligomerisation von Ethylen wurden bei isothermer Reaktionsführung, d. h. $\Delta T < 4$ °C, in einem Glasautoklav, ausgestattet mit einem Glasflügelrührer, bei 1200 U/min ausgeführt (Tabelle 1).

20

15

25

30

35

40

45

50

55

60

Tabelle 1: Die Oligomerisation / Polymerisation von Ethylen unter ∆T Bedingungen mit MAO-aktivierten, phosphino- und arsino- substituierten Cyclopentadienyl-Chrom-Katalysatoren

Produkt Zusammensetzung (%)	1-Buten(69),1-Hexen(24), PE(Spur)	1-Buten(16), 1-Hexen(30), 1-Octen(19), 1-Decen(12), 1-Dodecen(8), C ₁₄ - C ₄₀ (15), PE(Spur)	1-Buten(29), 1-Hexen(25), 1-Octen(17), 1-Decen(10), 1-Dodecen(6), C ₁₄ - C ₂₄ (8)	C4 - C12(21), C14 - C40(71), PE(8)
T/AT Produkt Aktivität (BC) (B) mol Cryh)	11700	3800	4300	1150
Produkt (g)	25.0	1.45	1.48	7.8
	21.0 / 12.2 b	21.0 / 3.3	21.0 / 2.7	21.0 / 1.1
Cr (µmol)	5.80	5.60	5.24	6.90
Verbindung	$(Me_2PC_2H_4C_5H_4)$ CrCl ₂ b 5.80 21.0/12.2 b $(I, R''_1 Y = Me_2P)$	$(Et_2PC_2H_4C_5H_4) CrCl_2$ 5.60 $(I, R'_2Y = Et_2P)$	$(Et_2PC_3H_4C_3H_4)$ CrMe ₂ $(I, R''_2 Y = Et_2P)$	(Ph ₂ PC ₂ H ₄ C ₃ H ₄) CrCl ₂ ⁴ (I, R'' ₂ Y = Ph ₂ P)
Beispiel	10	11	12	13

60

Tabelle 1: Fortsetzung

Beispiel	Verbindung	Cr (µmol)	T/AT (°C)	Produkt (g)	Aktivität (kg Prod./ mol Cr x h)	Produkt Zusammensetzung (%)
74	$(C_{y_2}PC_2H_4C_5H_4) CrCI_2$ $(I,R"_2Y=C_{y_2}P)$	6.15	21.0 / 1.2	0.6	1600	Oligomer(9), PE(91, mp 123 °C, Krist. 72 %, M _* 220,000)
15	(Ph ₁ PC ₃ H ₆ C ₅ H ₄) CrCl ₁ (I, R" ₁ Y = Ph ₂ P)	6.10	21.0 / 1.6	9.0	1500	Oligomer(12), PE(88, mp 116 °C)
16	(Ph ₂ PC ₃ H ₆ C ₅ Me ₄) CrCl ₂ (1, R" ₂ Y = Ph ₂ P)	3.08	21.0 / 2.6	1.0	5500	Oligomer(21), PE(79, mp 131 °C, Krist. 77 %, M., 760,000)
17	$(Cy_2PC_2H_4 \text{ indenyl}) CrCl_3$ $(I, R'_2Y = Cy_2P)$	3.65	21.0/3.7	.2.6	0006	Oligomer(3), PE(97 %, mp 130 °C, Krist, 71 %)
18	$CC_{J_2}AsC_{J_3}C_{J_4}C_{J_5}H_4) CrC_{J_2}$ $(I, R''_1Y = Cy_1As)$	9.94	21.0 / 3.8	3.7	3700	PE(mp 126 °C)

Standard Bedingungen: Lösungsmittel, Toluol(250 ml); PEahren 2 bar; Cr: MAO = 1: 100; t = 4 min, $\Delta T < 4$ °C

Cr - Komplex gelöst in CH₂Cl₂(2 ml) ; t = 22 min ; nicht isotherm ($\Delta T = 12$ °C) und nicht vergleichbar,

^c Cr - Komplex gelöst in CH₂Cl₂(1ml),

^d Cr - Komplex gelöst in CH₂Cl₂(2.5 ml); t = 62 min,

Beispiel 19

Obwohl ausgezeichnete Aktivitäten bereits bei einem Cr: Al-Verhältnis von 1:100 erzielt wurden sind, stieg die Aktivität noch erheblich bei der Anwendung von höheren Al-Konzentrationen (Tabelle 2).

Tabelle 2

 $(Ph_2PC_3H_6C_5Mc_4)CrCl_2/MAO$ -katalysierte Oligomerisierung von Ethylen (Lösungsmittel: Toluol; T=21°C; p(Ethylen) 2 bar) unter isothermischen Bedingungen ($\Delta T=\leq 3$ °C).

•		
	Cr : MAO	Aktivität (Kg-Produkt/mol-Cr · h)
	0	0
	100	5500
	500	21000
10 1000 5000 10000		27900
	5000	51800
	10000	74700

Die Ergebnisse in Tabelle 1 sind bei Raumtemperatur und 2 bar Ethylen in Toluol erzielt worden, jedoch kann die Katalyse auch bei höheren Temperaturen (z. B. 80°C, Beispiel 20) und in anderen Lösungsmitteln (z. B. Heptan, Beispiel 21) durchgeführt werden.

Beispiel 20

Katalysator: (Et₂PC₂H₄C₅H₄)CrCl2 (4.48 μ mol)/MAO (Cr : MAO = 1 : 500) in CH₂Cl₂ (1.2 ml). Oligomerisation: Lösungsmittel, 'Ioluol (250 ml); P(C2 W), 2 bar; 'I', 76.7–84.7°C; Zeit, 4 min; Produkt, 9.39 g (C₄-C₁₂ Alkene, GC); Aktivität, 3000 Kg Produkt/molCr · h.

Beispiel 21

Katalysator: (Et₂PC₂H₄C₅H₄)CrCl₂ (16.77 μ mol)/MAO (Cr : MAO = 1 : 100) in CH₂Cl₂ (2 ml). Oligomerisation: Lösungsmittel, Heptan (250 ml); P(C₂H₄), 2 bar; T, 21.0–27.2; Zeit, 4 min; Produkt, 6.73 g (C₄-C₂₀ Alkene, GC); Aktivität, 1,800 Kg Produkt/molCr · h.

Die gleichen Katalysatoren können auch bei der Cooligomerisation von Ethylen mit anderen Alkenen (z. B. Norbornen, Beispiel 22) verwendet werden.

Beispiel 22

35 Katalysator: (Et₂PC₂H₄C₅H₄)CrCl₂ (23,34 μmol)/MAO (Cr : MAO = 1 : 100) in CH₂Cl₂ (2 ml). Oligomerisation: Lösungsmittel Toluol (200 ml)/Norbornen (50 ml); P(C₂H₄), 2 bar, T 21.0; Zeit 52 min.; Produkt 34 g (Ethylen-Norbornen Cooligomer),

Patentansprüche

1. Verfahren zur katalytischen Oligomerisierung oder Cooligomerisierung von Alkenen, dadurch gekennzeichnet, daß der Katalysator mindestens eine Organochrom-Verbindung der allgemeinen Formel I enthält,

$$(ZR'_2)_n$$
 R''_2Y
 CrX_2

I

wobe

20

25

40

45

50

60

R¹ ein delokalisiertes η^5 -koordiniertes π -System enthält,

X ein elektronegatives Atom, Halogen, Amid oder Organylgruppe,

Y ein Donoratom der 15. Gruppe des Periodensystems,

Z ein Atom der 14. oder 16. Gruppe des Periodensystems ist,

R' und R" gleich oder verschieden sein können und H, Alkyl, Aryl, Organylgruppen, OR, oder NR₂ (R = Alkyl, Aryl) sind

und $n \ge 1$ ist.

- 2. Verfahren nach Anspruch 1, wobei Y = P oder As ist.
- 3. Verfahren nach Anspruch 1, wobei der Organochromverbindung eine Lewis-Säure zugesetzt ist.

4. Verfahren nach Anspruch 3, wobei die Lewis-Säure Methylalumoxan ist

- 5. Verfahren nach Anspruch 4, wobei das Molverhältnis von Al : Cr im Katalysator zwischen 40 : 1 und 10000 : 1
 - 6. Verfahren nach Ansprüchen 1-5, wobei das delokalisierte η^5 -koordinierte π -System Cyclopentadienyl, substituiertes Cyclopentadienyl oder Indenyl ist.

7. Verfahren nach Ansprüchen 1-6, wobei R" = H, Alkyl, Aryl, OR oder NR₂ und R = Alkyl oder Aryl ist.
8. Verfahren nach Ansprüchen 1-7, wobei über die Größe des Substituenten R" das Molekulargewicht des Oligomerisationsproduktes gesteuert wird, wobei größere Substituenten zu höherem Molekulargewicht führen.

Verfahren nach Ansprüchen 1-8, wobei als Alken Ethylen eingesetzt wird.
 Verfahren nach Ansprüchen 1-8, wobei Ethylen und ein substituiertes Alken cooligomerisiert werden.

Hierzu 1 Seite(n) Zeichnungen

Figur 1. Die Molekulstruktur von (a) (Ph₂PC₂H₄C₅H₄)CrCl₂, (b) (Ph₂PC₃H₆C₅Me₄)CrCl₂, und (c) (Cy₂AsC₂H₄C₅H₄)CrCl₂