Retour

Chaîne de masse

$$L = \frac{1}{2}\mu \sum_{r=1}^{N} \left\{ \dot{u}_{r}^{2} - \Omega^{2} u_{r}^{2} - \Gamma^{2} \left(u_{r} - u_{r+1} \right)^{2} \right\}$$

$$U_i = Ae^{i(qr-\omega t)}$$

$$\omega_q = \sqrt{\Omega^2 + 2\Gamma^2 \left(1 - \cos q\right)} = \sqrt{\Omega^2 + 4\Gamma^2 \sin^2 \frac{q}{2}}$$

Limite continue

$$ra \to x, u_r \to u(x), u_{r+1} - u_r \to a\partial_x u, \sum_r \to \int dx/a, \phi(x) = \sqrt{\frac{mu}{\omega}} u(x)$$

On a donc

$$L = \frac{1}{2}\mu \int_{0}^{\ell} dx \frac{1}{a} \left[\dot{u}^{2} - \Omega^{2}u^{2} - \Gamma^{2}a^{2} \left(\partial_{x}u \right)^{2} \right]$$

$$L = \frac{1}{2} \int_0^t \mathrm{d}x \left[\dot{\phi}^2 - \Omega^2 \phi^2 - c^2 (\partial_x \phi)^2 \right]$$

On définir la densité lagrangienne telle que

$$L = \int \mathrm{d}x \mathscr{L}$$

$$\mathcal{L} = \frac{1}{2} \left(\dot{\phi}^2 - \Omega^2 \phi^2 - c^2 (x\phi)^2 \right)$$

Équations de Lagrange :

$$\frac{\partial^2 u}{\partial t^2} + \Omega^2 u - a^2 \Gamma^2 \frac{\partial^2 u}{\partial x^2} = 0$$

$$\implies \sqrt{m^2c^4+c^2p^2} \quad p:=\frac{q}{a} \quad m:=\frac{\Omega}{c^2}$$

Hamiltonien

$$H = \sum_{r} p_r \dot{u}_r - L$$

Dans le cas quasi-continu on a

$$L = \sum_{r} a\mathcal{L}(\phi(x_r), \dot{\phi}(x_r))$$

Le moment conjugé est alors

$$\frac{\partial L}{\partial \dot{\phi}} = a\pi(x_r) \quad \text{où} \quad p_r = \frac{\partial L}{\partial \dot{u}_r}$$

$$[\phi(x_r), \pi(x_s)]_p = \frac{1}{a} \delta_{rs}$$

donc, pour un système continue

$$[(x), \pi(x')]_p = \delta(x - x')$$

donc

$$H = \sum_{r} a\pi(x_r)\dot{\phi}(x_r) - L = \int dc \left(\pi(x)\dot{\phi}(x) - \mathcal{L}\right)$$

On peut donc le représenter comme

$$H = \int \mathrm{d}x \mathcal{H}$$
 où $\mathcal{H} = \pi(x)\dot{\phi}(x) - \mathcal{L}$

Généralisation à trois dimensions

$$L = \frac{1}{2} \int d^3r \left\{ \dot{\phi}^2 - \Omega^2 \phi^2 - c^2 (\nabla \phi)^2 \right\}$$

L'équation de Lagrange deviens alors

$$\frac{\partial^2 \phi}{\partial t^2} + \Omega^2 \phi - c^2 \nabla^2 \phi = 0$$

$$H = \int \mathrm{d}^3 x \mathscr{H}$$

$$H = \pi(\mathbf{r})\dot{\phi}(\mathbf{r}) - \mathcal{L}$$

$$\boxed{ [\phi(\mathbf{r}), \pi(\mathbf{r}')]_p = \delta(\mathbf{r} - \mathbf{r}')}$$

Action

$$S = \int d^4x \left(\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2 \right)$$

Équation de continuité

$$\frac{\partial P}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{J} = 0$$

shro

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}^2\psi$$

$$P = |\psi|^2$$

$$\mathbf{J} = \frac{1}{2m} \left(\psi * \nabla \psi - \psi \nabla \psi^* \right)$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \psi^* \dot{\psi} - \dot{\psi}^* \psi$$

$$\nabla \mathbf{J} = \frac{1}{2m} \left\{ \cdots \right\}$$

$$\frac{1}{2}\psi^*(0) + (0)\psi$$

L'équation de Klein-Gordon n'as pas cette propriété

Cette dernière conserve bien le quadri-courrant mais $J^2=p \not > 0$