LAB1 Report

Pin-Jing, Li (111511015 ouo.ee11@nycu.edu.tw) Jing-Kai, Huang Duan-Kai, Wu

September 14, 2025

In lab 1 We explored the basic configuration of e^2 studio, ultrasound module and the basic signal processing flow of the wireless transmitted signal.

1 Hardware configuration

2 Error Source Analysis

Figure 1: Comparing robust and non-robust design for linear precoder

We inspect the relative distance

Pair (cm)	$n_{ m theory}^*$	$n_{ m meas}$	$\Delta n_{\mathrm{theory}}^*$	$\Delta n_{ m meas}$	$\frac{\Delta n_{\text{meas}}}{\Delta n_{\text{theory}}^*}$	Relative Error (%)
$20 \to 40$	$185.97 \rightarrow 373.94$	$232 \rightarrow 416$	187.97	184	0.979	-2.1
$40\rightarrow60$	$373.94 \rightarrow 558.91$	$416 \rightarrow 602$	184.97	186	1.006	+0.6
$60 \to 80$	$558.91 \rightarrow 748.88$	$602 \rightarrow 782$	189.97	180	0.947	-5.3
$80 \rightarrow 100$	$748.88 \rightarrow 928.86$	$782 \rightarrow 957$	179.98	175	0.972	-2.8

Table 1: Relative Distance Comparison (Measured vs. Theoretical)

Figure 2: bpf

Figure 3: demod

Figure 4: block diagram: signal \rightarrow BPF \rightarrow demod (mixer) \rightarrow LPF \rightarrow envelope.

3 Signal Processing

```
Algorithm 1: Proposed MM technique for solving (\ref{eq:condition}).

Result: \mathbf{y}^{\star}, \boldsymbol{\delta}_{H}^{\star}
Initialization: Set \boldsymbol{\delta}_{H}^{(0)} to a feasible solution, \lambda \geq 0, k = 0

1 do

2 | Update \mathbf{y}^{(k+1)\star} \leftarrow \sigma_{w}^{-2}(\phi_{E}^{T} \otimes \mathbf{I}_{N_{R}})(\widehat{\mathbf{h}} + \boldsymbol{\delta}_{H}^{(k)});

3 | Update \boldsymbol{\delta}^{(k+1)\star} = -\frac{1}{\lambda_{k}}\mathbf{B}^{-1}\nabla f_{k}(\boldsymbol{\delta}_{k}^{(k),\mathbf{y}^{(k)\star}}) \in \mathbb{C}^{N_{T}N_{R}};

4 | k = k + 1;

5 | \boldsymbol{\delta}_{H}^{(k)} = \boldsymbol{\delta}_{H}^{\star};

6 until \mathcal{L}_{2}(\boldsymbol{\delta}_{H}^{\star}, \lambda) converges in (\ref{eq:condition});
```


Figure 5: Time domain signal before and after filtering & demodulation

A Gradient of f

References

- [1] C.-Y. Chang and C.C. Fung, "Sparsity enhanced mismatch model for robust spatial intercell interference cancelation in heterogeneous networks," *IEEE Trans. on Communications*, vol. 63(1), pp. 125-139, Jan. 2015.
- [2] I. P. Roberts, Y. Zhang, T. Osman, and A. Alkhateeb, "Real-world evaluation of full-duplex millimeter wave communication systems," *IEEE Trans. Wireless Commun.*, early access, Mar. 2024.
- [3] K. Shen and W. Yu, "Fractional Programming for Communication Systems—Part I: Power Control and Beamforming," *IEEE Transactions on Signal Processing*, vol. 66, no. 10, pp. 2616-2630, May 15, 2018, doi: 10.1109/TSP.2018.2812733.
- [4] J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models," *Advances in Neural Information Processing Systems*, vol. 33, pp. 6840–6851, 2020.
- [5] T. O'Shea and J. Hoydis, "An introduction to deep learning for the physical layer," *IEEE Transactions on Cognitive Communications and Networking*, vol. 3, no. 4, pp. 563–575, 2017.
- [6] M. Servetnyk and C. C. Fung, "Distributed fronthaul-constrained joint transmission design and selection using augmented consensus-based dual decomposition," *Journal of Communications and Networks*, vol. 24, no. 4, pp. 419–437, Aug. 2022, doi: 10.23919/JCN.2022.000030.