MA2823: Introduction to Machine Learning

CentraleSupélec — Fall 2017

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Course material & contact

http://tinyurl.com/ma2823-2017

chloe-agathe.azencott@mines-paristech.fr

Slides thanks to Ethem Alpaydi, Matthew Blaschko, Trevor Hastie, Rob Tibshirani and Jean-Philippe Vert.

What is (Machine) Learning ?

Why Learn?

• Learning:

Modifying a behavior based on experience [F. Benureau]

- Machine learning: Programming computers to
 - Model phenomena
 - by means of optimizing an objective function
 - using example data.

Why Learn?

- There is no need to "learn" to calculate payroll.
- Learning is used when
 - Human expertise does not exist (bioinformatics);
 - Humans are unable to explain their expertise (speech recognition, computer vision);
 - Complex olutions change in time (routing computer networks).

What about AI?

Artificial Intelligence

ML is a subfield of Artificial Intelligence

- A system that lives in a changing environment must have the ability to learn in order to adapt.
- ML algorithms are building blocks that make computers behave more intelligently by generalizing rather than merely storing and retrieving data (like a database system would do).

Learning objectives

- Define machine learning
- Given a problem
 - Decide whether it can be solved with machine learning
 - Decide as what type of machine learning problem you can formalize it (unsupervised – clustering, dimension reduction, supervised – classification, regression?)
 - Describe it formally in terms of design matrix, features, samples, and possibly target.
- Define a loss function (supervised setting)
- Define generalization.

What is machine learning?

- Learning general models from particular examples (data)
 - Data is (mostly) cheap and abundant;
 - Knowledge is expensive and scarce.
- Example in retail:
 - From customer transactions to consumer behavior
 - People who bought "Game of Thrones" also bought "Lord of the Rings" [amazon.com]
- Goal: Build a model that is a good and useful approximation to the data.

What is machine learning?

- Optimizing a performance criterion using example data or past experience.
- Role of Statistics:

Build mathematical models to make inference from a sample.

- Role of Computer Science: Efficient algorithms to
 - Solve the optimization problem;
 - Represent and evaluate the model for inference.

Zoo of ML Problems

Unsupervised learning

Learn a new representation of the data

Dimensionality reduction

Find a lower-dimensional representation

Dimensionality reduction

Find a lower-dimensional representation

- Reduce storage space & computational time
- Remove redundances
- Visualization (in 2 or 3 dimensions) and interpretability.

Clustering

Group similar data points together

- Understand general characteristics of the data;
- Infer some properties of an object based on how it relates to other objects.

Clustering: applications

Customer segmentation

Find groups of customers with similar buying behaviors.

Topic modeling

Groups documents based on the words they contain to identify common topics.

Image compression

Find groups of similar pixels that can be easily summarized.

Disease subtyping (cancer, mental health)

Find groups of patients with similar pathologies (molecular or symptomes level).

Supervised learning

Make predictions

Make discrete predictions

Make discrete predictions

Make discrete predictions

Training set \mathcal{D}

$$\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,\dots,n}$$

$$y^i = \begin{cases} 1 & \text{if } \boldsymbol{x}^i \in \mathcal{P} \bullet \\ 0 & \text{if } \boldsymbol{x}^i \in \mathcal{N} \bullet \end{cases}$$

$$\boldsymbol{x}^i = \begin{pmatrix} x_1^i \\ x_2^i \end{pmatrix}$$

Given $\mathcal{D} = \{x^i, y^i\}_{i=1,...,n}$, find f such that $f(x) \approx y$.

Classification: Applications

Face recognition

Identify faces independently of pose, lighting, occlusion (glasses, beard), make-up, hair style.

Vehicle identification (self-driving cars)

Character recognition

Read letters or digits independently of different handwriting styles.

Sound recognition

Which language is spoken? Who wrote this music? What type of bird is this?

Spam detection

Precision medicine

Does this sample come from a sick or healthy person? Will this drug work on this patient?

23

Regression

Make continuous predictions

Regression

Regression

$$\mathcal{D} = \{ x^i, y^i \}_{i=1,...,n}$$

$$y^i \in \mathbb{R}$$

Given $\mathcal{D} = \{ \boldsymbol{x}^i, y^i \}_{i=1,...,n}$, find f such that $f(\boldsymbol{x}) \approx y$.

Regression: Applications

Click prediction

How many people will click on this ad? Comment on this post? Share this article on social media?

Load prediction

How many users will my service have at a given time?

Algorithmic trading

What will the price of this share be?

Drug development

What is the binding affinity between this drug candidate and its target? What is the sensibility of the tumor to this drug?

Supervised learning setting

Given $\mathcal{D} = \{x^i, y^i\}_{i=1,...,n}$, find f such that $f(x) \approx y$.

features variables descriptors p attributes

data matrix design matrix

observations samples **c** data points

 $x_j^i \in \mathbb{R}$

outcome target label

Y

Binary classification:

$$y^i \in \{0, 1\}$$

Multi-class classification:

$$y^i \in \{0, 1, \dots, k\}$$

Regression:

$$y^i \in \mathbb{R}$$

- Hypothesis class ${\cal F}$
 - The space of possible decision functions we are considering
 - Chosen based on our beliefs about the problem

- Hypothesis class ${\cal F}$
 - The space of possible decision functions we are considering
 - Chosen based on our beliefs about the problem

• Hypothesis class ${\cal F}$

What shape do you think the discriminant should take

31

- Hypothesis class ${\cal F}$
 - Belief: the decision function is a rectangle

$$(p_1 \le x_1 \le p_2) \text{ AND } (e_1 \le x_2 \le e_2)$$

Loss function

Loss function (or cost function, or risk):

$$\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $y, f(\boldsymbol{x}) \mapsto \mathcal{L}(y, f(\boldsymbol{x}))$

Quantifies how far the decision function is from the truth (= oracle).

• E.g.
$$- \quad \mathcal{Y} = \{0,1\} \quad \mathcal{L}(y,f(\boldsymbol{x})) = \begin{cases} 0 & \text{if } y = f(\boldsymbol{x}) \end{cases}$$
 otherwise

Loss function

Loss function (or cost function, or risk):

$$\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $y, f(\boldsymbol{x}) \mapsto \mathcal{L}(y, f(\boldsymbol{x}))$

Quantifies how far the decision function is from the truth (= oracle).

• E.g.

-
$$\mathcal{Y} = \mathbb{R}$$
 $\mathcal{L}(y, f(\boldsymbol{x})) = ||y - f(\boldsymbol{x})||^2$

Loss function

Loss function (or cost function, or risk):

$$\mathcal{L}: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$
 $y, f(\boldsymbol{x}) \mapsto \mathcal{L}(y, f(\boldsymbol{x}))$

Quantifies how far the decision function is from the truth (= oracle).

• Empirical risk on dataset \mathcal{D}

$$E_{\mathcal{D}} = \sum_{i=1}^{n} \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

Supervised learning: 3 ingredients

Given $\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,...,n}$, find f such that $f(\boldsymbol{x}) \approx y$.

A good and useful approximation

- Chose a hypothesis class \mathcal{F}
 - Parametric methods e.g. $f(x) = \sum_{j=1}^{r} \beta_j x_j$
 - Non-parametric methods e.g. f(x) is the label of the point closest to x.
- Chose a loss function \mathcal{L}_{n}

Empirical error:
$$E_{\mathcal{D}} = \sum_{i=1}^{\infty} \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

$$f^* = \arg\min_{f \in \mathcal{F}} E_{\mathcal{D}}$$

Generalization

A good and useful approximation

- It's easy to build a model that performs well on the training data
- But how well will it perform on new data?
- "Predictions are hard, especially about the future" Niels Bohr.
 - Learn models that generalize well.
 - Evaluate whether models generalize well.

Artificial intelligence

Electrical engineering

Signal processing

Pattern recognition

Engineering

Optimization

Knowledge discovery in databases

Computer science

Data mining

Big data

Business

Data science

Inference
Discriminant analysis

Statistics

Induction

Learning objectives

After this course, you should be able to

- Identify problems that can be solved by machine learning;
- Formulate your problem in machine learning terms
- Given such a problem, identify and apply the most appropriate classical algorithm(s);
- Implement some of these algorithms yourself;
- Evaluate and compare machine learning algorithms for a particular task.

Course Syllabus

- Sep 29
 - 1. Introduction
 - 2. Convex optimization
- Oct 2
 - 3. Dimensionality reduction

Lab: Principal component analysis + Jupyter, pandas, and scikit-learn.

- Oct 6
 - 4. Model selection

Lab: Convex optimization with scipy.optimize

- Oct 13
 - 5. Bayesian decision theory

Lab: Intro to Kaggle challenge

- Oct 20
 - 6. Linear regression

Lab: Linear regression

Nov 10

7. Regularized linear regression

Lab: Regularized linear regression

• Nov 17

8. Nearest-neighbor approaches

Lab: Nearest-neighbor approaches

Nov 24

9. Tree-based approaches

Lab: Tree-based approaches

• Dec 01

10. Support vector machines

Lab: Support vector machines

• Dec 08

11. Neural networks

Deep learning (Joseph Boyd) + Bioimage informatics applications (Peter Naylor)

• Dec 15

12. Clustering

Lab: Clustering

Labs

Bring your laptop!

There will be power plugs and wifi.

Instructions on how to set up your computer:

https://github.com/chagaz/ma2823_2017 and in the syllabus

• TAs:

- Josehp Boyd joseph.boyd@mines-paristech.fr
- Benoît Playe benoit.playe@mines-paristech.fr
- Mihir Sahasrabudhe mihir.sahasrabudhe@centralesupelec.fr

kaggle challenge project

How Many Shares? Challenge

https://www.kaggle.com/c/how-many-shares

- Predict the number of shares on social media for articles from the same media site
 - Regression
 - From article length, topics, subjectivity and much more.
- Evaluation on
 - Insights learned
 - Prediction performance.

Evaluation

Final exam (60 pts)

December 22, 2016

- Pen and paper
- Closed book
- Kaggle project (30 pts)

December 22, 2016

- Written report (25 pts)
- Position in the leaderboard (5pts)
- Introduction: October 13, 2017
- Homework (10 pts)

- 1 assignment each week
- To get the points: turn it in!

Homework

One assignment per week

- Similar to the questions you'll be asked at the exam
- Turn it in online
 http://tinyurl.com/ma2823-2017-hw
- Solution will be posted the day after the due date
- Worth 1pt if you turn it in.

Resources

Course website

```
http://tinyurl.com/ma2823-2017
```

- Syllabus
- 2 days before the lecture: printable lecture handout
- Shortly after the lecture:
 - HW Problem n+1
 - Lecture slides
 - HW Solution n.

https://github.com/chagaz/ma2823_2017

Textbooks

- A Course in Machine Learning
 Hal Daumé III
 http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf
- The Elements of Statistical Learning
 Trevor Hastie, Robert Tibshirani and Jerome Friedman http://web.stanford.edu/~hastie/ElemStatLearn/
- Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
 Bernhard Schölkopf and Alex Smola http://agbs.kyb.tuebingen.mpg.de/lwk/
- Convex Optimization
 Stephen Boyd and Lieven Vendenberghe
 https://web.stanford.edu/~boyd/cvxbook/

Resources: Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- KDnuggets Datasets: http://www.kdnuggets.com/datasets/index.html
- lmageNet: http://www.image-net.org/
- Enron Email Dataset: http://www.cs.cmu.edu/~enron/
- Million Song Dataset: http://labrosa.ee.columbia.edu/millionsong/
- IMDB Data: http://www.imdb.com/interfaces
- Données publiques françaises: https://www.data.gouv.fr/
- TunedIT: http://www.tunedit.org/
- Knoema: https://knoema.com/

Resources: Journals

- Journal of Machine Learning Research http://jmlr.csail.mit.edu/
- IEEE Transactions on Pattern Analysis and Machine Intelligence https://www.computer.org/portal/web/tpami
- Annals of Statistics http://imstat.org/aos/
- Journal of the American Statistical Association http://www.tandfonline.com/toc/uasa20/current
- Machine Learning http://link.springer.com/journal/10994
- Neural Computation http://www.mitpressjournals.org/loi/neco
- Neural Networks
 http://www.journals.elsevier.com/neural-networks
- IEEE Transactions on Neural Networks and Learning Systems
 http://cis.ieee.org/ieee-transactions-on-neural-networks-and-learning-systems.html

Resources: Conferences

- International Conference on Machine Learning (ICML) http://www.icml.cc/
- Neural Information Processing Systems (NIPS) http://www.nips.cc/
- International Conference on Learning Representations (ICLR) http://www.iclr.cc/
- European Conference on Machine Learning (ECML) http://www.ecmlpkdd.org/
- International Conference on AI & Statistics (AISTATS)
 http://www.aistats.org/
- Uncertainty in Artificial Intelligence (UAI) http://www.auai.org/
- Computational Learning Theory (COLT)
 http://www.learningtheory.org/past-conferences-2/
- Knowledge Discovery and Data Mining (KDD) http://www.kdd.org/
- International Conference on Pattern Recognition (ICPR) http://www.icpr2017.org/