Package 'ZIQSI'

November 6, 2024

Type Packa	age
Title ZIQS	I package
Version 0.	1.0
Author Zii	rui Wang and Tianying Wang
Maintaineı	r Zirui Wang <wzr23@mails.tsinghua.edu.cn></wzr23@mails.tsinghua.edu.cn>
index	This R document provides a novel zero-inflated semiparametric single- quantile regression algorithm to predict the personal quantile curve for zero- ed response with given samples.
License Gl	PL-2
Encoding	UTF-8
LazyData	true
MAS lme4 quant stats Suggests a	(>= 1.1-23), areg,
RoxygenNo	ote 7.3.2
A	S documented: QE
AQE	AQE Estimation

Description

This function estimates the average quantile difference for two different values of a covariate while controlling for other covariates.

AQE

Usage

```
AQE(y, Xl, Xq, index1, indexq, value1, value2, taus, delta = 0.499, m, u)
```

Arguments

у	A numeric vector of the response variable.
X1	A matrix of covariates for logistic regression.
Xq	A matrix of covariates for quantile regression.
indexl	An integer index indicating which covariate is being modified for logistic regression.
indexq	An integer index indicating which covariate is being modified for quantile regression.
value1	The first value of the covariate to be analyzed.
value2	The second value of the covariate to be analyzed.
taus	A numeric vector of quantiles to estimate.
delta	A numeric value for the delta parameter (default is 0.499).
m	An integer parameter, the order of B-spline in single-index quantile regression.
u	q*1 vector, usually using a vector where all values are equal and the norm is 1, the initial parameter for minimizing the profile likelihood function for quantile regression.

Value

A numeric vector of quantile estimates. Simulation Example

This script demonstrates the simulation of data and the usage of the AQE function.

Examples

```
# Set the random seed for reproducibility
set.seed(100002)
# Sample size
n = 500
# Generate the true model for simulation
## Probability of Y > 0 given covariate x
p = function(x1, x2, x3, x4, x5, gam0 = -0.4, gam1 = -0.480,
              gam2 = -0.022, gam3 = 0.021, gam4 = 0.015, gam5 = -0.009) {
  1c = gam0 + gam1 * x1 + gam2 * x2 + gam3 * x3 + gam4 * x4 + gam5 * x5
  exp(lc) / (1 + exp(lc))
## Define beta functions
bet1 = function(x) \{(0.3 * sqrt(x) - x) * 2\}
bet2 = function(x) \{x^2 * 2.2\}
bet3 = function(x) \{(x^2 - 0.5 * x + 0.6) * 2 / 3\}
bet4 = function(x) \{-\sin(x * 2 * pi) * 0.1\}
bet5 = function(x) \{-(0.3 * x^2 - x) * 2\}
bet0 = function(x) \{-147.7 * x - 50 * x^2 - 20\}
bet = function(x,tau){x*tau*20.4}
## G_tau function
```

```
func = function(x, tau) {
 return(bet(x %*% rbind(bet1(tau), bet2(tau), bet3(tau), bet4(tau), bet5(tau)) + bet0(tau), tau))
# Given samples
x1 = rbinom(n, 1, 0.5) # Medicament use
x2 = rnorm(n, 28, 2) # bmi
x3 = rnorm(n, 92.5, 13) # waist
x4 = rnorm(n, 80, 12) \# diastolic_bp
x5 = rnorm(n, 124, 18.5) # systolic_bp
x0 = rep(1, n)
# Covariates of each sample
X = cbind(x0, x1, x2, x3, x4, x5)
u = runif(n)
b = rbinom(n, 1, p(x1, x2, x3, x4, x5))
w = bet(bet1(u) * x1 + bet2(u) * x2 + bet3(u) * x3 + bet4(u) * x4 + bet5(u) * x5 + bet0(u), u)
# Simulated quantiles of each sample
y = b * w
P_{ZIQSI} = AQE(y, X[,-1], X, index1 = 2, indexq = 3, value1 = 23, value2 = 28, taus = 0.5, m = 3, u = rep(sqrt(1/6),6)
```

proposed.nonsmooth.spline

proposed.nonsmooth.spline

Description

This function estimates the quantiles for given sample(s) on a grid of quantile levels.

Usage

```
proposed.nonsmooth.spline(
    y,
    X1,
    Xq,
    x1,
    xq,
    taus = seq(0, 0.99, 0.01),
    delta = 0.499,
    m = 3,
    u
)
```

Arguments

```
y n*1 vector, the observed outcome

X1 n*p matrix, the observed covariates in logistic regression

Xq n*q matrix, the observed covariates in quantile regression

x1 m*p matrix, the new covariates in logistic regression, with which conditional quantile function are estimated
```

m*q matrix, the new covariates in quantile regression, with which conditional quantile function are estimated

k*1 vector, the grid of target tau's of y

delta constant, better to keep the default 0.499

m numeric variable, the order of B-spline function

u q*1 vector, usually using a vector where all values are equal and the norm is 1, the initial parameter for minimizing the profile likelihood function for quantile regression.

Value

quantiles of a m*k matrix, each row is the estimated quantiles for each new case

Examples

```
# Set the random seed for reproducibility
set.seed(10001)
# Sample size
n = 500
# Generate the true model for simulation
## Probability of Y > 0 given covariate x
p = function(x1, x2, x3, x4, x5, gam0 = -0.4, gam1 = -0.480,
              gam2 = -0.022, gam3 = 0.021, gam4 = 0.015, gam5 = -0.009) {
  1c = gam0 + gam1 * x1 + gam2 * x2 + gam3 * x3 + gam4 * x4 + gam5 * x5
  exp(lc) / (1 + exp(lc))
}
## Define beta functions
bet1 = function(x) \{(0.3 * sqrt(x) - x) * 2\}
bet2 = function(x) \{x^2 * 2.2\}
bet3 = function(x) \{(x^2 - 0.5 * x + 0.6) * 2 / 3\}
bet4 = function(x) \{-\sin(x * 2 * pi) * 0.1\}
bet5 = function(x) \{-(0.3 * x^2 - x) * 2\}
bet0 = function(x) \{-147.7 * x - 50 * x^2 - 20\}
bet = function(x,u)\{x^4*u*10^(-5)/6+x^2*u*0.2/3\}
## G_tau function
func = function(x, tau) {
 return(bet(x %*% rbind(bet1(tau), bet2(tau), bet3(tau), bet4(tau), bet5(tau)) + bet0(tau), tau))
# Given covariates for quantile estimation
X1 = c(0, 1) \# sex
X2 = qnorm(0.5, 28, 2) # bmi
X3 = qnorm(0.5, 92.5, 13) # waist
X4 = qnorm(0.5, 80, 12) \# diastolic_bp
X5 = qnorm(0.5, 124, 18.5) # systolic_bp
X0 = cbind(c(rep(X1[1], 1), rep(X1[2], 1)), rep(X2, 2), rep(X3, 2), rep(X4, 2), rep(X5, 2))
# Given samples
x1 = rbinom(n, 1, 0.5) # Medicament use
x2 = rnorm(n, 28, 2) \# bmi
x3 = rnorm(n, 92.5, 13) # waist
x4 = rnorm(n, 80, 12) # diastolic_bp
```

```
x5 = rnorm(n, 124, 18.5) # systolic_bp
x0 = rep(1, n)
# Covariates of each sample
X = cbind(x0, x1, x2, x3, x4, x5)
u = runif(n)
b = rbinom(n, 1, p(x1, x2, x3, x4, x5))
w = bet(bet1(u) * x1 + bet2(u) * x2 + bet3(u) * x3 + bet4(u) * x4 + bet5(u) * x5 + bet0(u), u)
# Simulated quantiles of each sample
y = b * w
\# Estimated quantile curves for the given covariate x
A = proposed.nonsmooth.spline(y = y, Xl = cbind(x1, x2, x3, x4, x5),
                                 Xq = cbind(x0, x1, x2, x3, x4, x5),
                                 x1 = X0,
                                 xq = cbind(1, X0),
                                 taus = seq(0, 0.99, by = 0.01),
                                 delta = 0.499,
                                 m = 4
                                 u = rep(1/sqrt(6), 6))
# plot the estimated quantile curve for the first sample
# plot(seq(0,0.99,0.01),A[1,])
# plot the estimated quantile curve for the second sample
# plot(seq(0,0.99,0.01),A[2,])
```

Index

AQE, 1

proposed.nonsmooth.spline, 3