	CustomerID	TransactionDate	ProductID	ProductCategor			
0	C0098	2021-01-29	P006	Electronic			
1	C0085	2021-03-06	P019	Home Deco			
2	C0082	2020-02-11	P016	Clothir			
3	C0060	2020-09-22	P003	Clothir			
4	C0018	2021-06-07	P012	Home Dec			
995	C0033	2021-03-25	P010	Clothir			
996	C0074	2020-07-28	P005	Electronic			
997	C0080	2021-08-23	P006	Book			
998	C0019	2021-12-28	P018	Book			
999	C0073	2020-02-20	P010	Clothir			
1000 rows × 7 columns							

Next steps: Generate code with df View recommended plots

Check if any null is available or not in date set

```
df.isnull().sum()

CustomerID 0
TransactionDate 0
ProductID 0
ProductCategory 0
Quantity 0
UnitPrice 0
TotalPrice 0
dtype: int64
```

from google.colab import files

This define that how many unique customer are there in the data set

```
df['CustomerID'].unique()
                                                    'C0018',
     arrav(['C0098', 'C0085',
                                'C0082'.
                                          'C0060'.
                                                              'C0011'.
                                                                        'C0010'.
             'C0063',
                      'C0058', 'C0026',
                                          'C0042'.
                                                    'C0005',
                                                              'C0008',
                                                                        'C0083'
                      'C0035', 'C0041',
             'C0046'.
                                          'C0091'.
                                                    'C0099',
                                                              'C0066',
                                                                        'C0022'
                      'C0073', 'C0025',
                                          'C0053',
                                                              'C0055',
             'C0009',
                                                    'C0002',
                                                                        'C0013'
             'C0034',
                                          'C0039',
                                                   'C0021',
                                                             'C0065',
                      'C0057', 'C0054',
                                                                        'C0027'
             'C0081',
                      'C0078', 'C0015',
                                                   'C0097',
                                          'C0003',
                                                             'C0045',
                                                                        'C0064'
                                                   'C0084',
             'C0052', 'C0047', 'C0075',
                                                             'C0071',
                                                                        'C0089',
                                         'C0020',
             'C0061', 'C0088', 'C0070',
                                                   'C0033',
                                                             'C0094',
                                          'C0044',
                                                                        'C0036'
             'C0048', 'C0043', 'C0037', 'C0068', 'C0030', 'C0028',
                                                   'C0086',
                                          'C0014',
                                                              'C0049',
                                                                        'C0040'
                                          'C0067',
                                                    'C0001',
                                                             'C0051',
                                                                       'C0031',
                                                   'C0017',
             'C0029',
                      'C0007', 'C0093',
                                                             'C0038',
                                          'C0012',
                                                                       'C0077',
             'C0023',
                                         'C0024', 'C0032',
                                                             'C0050',
                                                                       'C0090',
                      'C0019', 'C0095',
             'C0080',
                      'C0056', 'C0062',
                                          'C0072', 'C0092',
                                                             'C0079',
                                                                        'C0059',
             'C0096', 'C0069', 'C0100', 'C0016', 'C0074', 'C0004',
             'C0087', 'C0006'], dtype=object)
```

Check all data types

df.dtypes

```
CustomerID object
TransactionDate datetime64[ns]
ProductID object
ProductCategory object
Quantity int64
UnitPrice float64
TotalPrice float64
dtype: object
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999

Conver Data type to datetime for better analisis

```
df['TransactionDate'] = pd.to_datetime(df['TransactionDate'])

df['TransactionDate'].dtype
    dtype('<M8[ns]')

df.shape
    (1000, 7)

df.info()</pre>
```

```
Data columns (total 7 columns):
# Column
                 Non-Null Count Dtype
--- -----
   CustomerID 1000 non-null object
1 TransactionDate 1000 non-null datetime64[ns]
2 ProductID 1000 non-null object
3 ProductCategory 1000 non-null
                                 object
4 Quantity 1000 non-null int64
                   1000 non-null float64
    UnitPrice
   TotalPrice
                  1000 non-null float64
dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
memory usage: 54.8+ KB
```

This specify that how many quantity that Customer purchase on different Category of product

ProductCategory	Books	Clothing	Electronics	Home Decor
CustomerID				
C0001	6.0	9.0	8.0	11.0
C0002	14.0	NaN	3.0	10.0
C0003	7.0	6.0	8.0	9.0
C0004	3.0	4.0	5.0	7.0
C0005	3.0	13.0	NaN	10.0

C0096	8.0	2.0	8.0	7.0
C0097	5.0	NaN	8.0	24.0
C0098	7.0	15.0	7.0	NaN
C0099	8.0	20.0	10.0	13.0
C0100	9.0	4.0	12.0	1.0

100 rows × 4 columns

*This specify that how much amount Customer spend on different Category of product *

```
ProductCategory
                       Books
                                Clothing Electronics
                                                               De
     CustomerID
     C0001
                   372.465430
                               450.140194
                                              278.888286
                                                           475.209
     C0002
                   603.992737
                                      NaN
                                              103.826635
                                                           319.130
     C0003
                   327.394379
                               256.562822
                                              599.558798
                                                           377.139
     C0004
                   97.226784
                                182.114063
                                              347.579551
                                                           407.055
     C0005
                   235.016467 1038.304271
                                                    NaN
                                                           384.650
     C0096
                   266.861212
                                 76.744642
                                              379.405203
                                                           586.373
     C0097
                   228.093947
                                      NaN
                                              435.539516 1227.766
     C0098
                   569.825846
                               626.285320
                                              234.017439
     C0099
                   206.239940
                               963.684857
                                              510.840306
                                                           931.784
     C0100
                   545.646717
                               277.696405
                                              738.469511
                                                            68.810
```

```
Next steps: Generate code with pivot_table View recommended plots
```

```
import datetime
df['Date_month'] = df['TransactionDate'].dt.month
```

```
0
         1
         3
1
2
         2
3
         9
4
         6
995
         3
         7
996
997
         8
998
        12
999
         2
```

df['Date month']

Name: Date_month, Length: 1000, dtype: int32

import matplotlib.pyplot as plt

This define that which category have how much sales in different months

```
grouped_data = df.groupby(['Date_month', 'ProductCategory'])['Quantity'].sum().unstack()

fig, ax = plt.subplots(figsize=(12, 8))
grouped_data.plot.bar(ax=ax)

ax.set_xlabel('Month')
ax.set_ylabel('Quantity')
ax.set_title('Quantity of Products Sold by Month and Category')

plt.xticks(rotation=45)

plt.show()
```


this define that how a customer spend total amount on different category

CustomerID	C0001	C0002	C0003	C0004
ProductCategory				
Books	372.465430	603.992737	327.394379	97.226784
Clothing	450.140194	NaN	256.562822	182.114063
Electronics	278.888286	103.826635	599.558798	347.579551
Home Decor	475.209927	319.130542	377.139363	407.055247

⁴ rows × 100 columns

Explain About Which month they spent high with data of product categorty

Date_month	-	_	,	
ProductCategory				
Books	2913.648824	3987.538709	3874.569293	3750.814
Clothing	3656.426753	3115.263090	3636.942081	2607.491
Electronics	4304.237628	3834.474992	3349.767684	3718.340
Home Decor	4319.701047	3869.547553	4459.128765	3897.005
4				•

Next steps: Generate code with pivot_table_Customer

this define that how a customer spend total amount on different category in easy visual format

```
labels = pivot_table_Customer.index.to_list()
colors = ['lightgreen', 'gold', 'lightcoral', 'yellowgreen', 'lightskyblue']

plt.pie(pivot_table_Customer.sum(axis=1), explode=[0.1] * len(labels), labels=labels, autopct='9
plt.title("Total Amount Spent by Customers on Different Categories")
plt.show()
```

Total Amount Spent by Customers on Different Categories

this define that how a customer spend total amount on different Months in Visual format

```
labels = grouped_data.index.to_list()
colors = ['lightgreen', 'gold', 'lightcoral', 'yellowgreen', 'lightskyblue']
plt.pie(grouped_data.sum(axis=1), explode=[0.1] * len(labels), labels=labels, autopct='%1.1f%',
plt.title("Total Amount Spent by Customers on Different Months")
plt.show()
```

Total Amount Spent by Customers on Different Months

Customer By Details That How Many Quantity Of product that they Purchase

```
grouped_data_quantity = df.groupby(['CustomerID', 'ProductCategory'])['Quantity'].sum()
grouped_data_quantity
```

Custom	erID	Pro	ductCate	gory		
C0001		Bool	KS		6	
		Clo	thing		9	
		Ele	ctronics		8	
		Home	e Decor		11	
C0002		Bool	KS		14	
C0099		Home	e Decor		13	
C0100		Bool	KS		9	
		Clo.	thing		4	
		Ele	ctronics		12	
		Home	e Decor		1	
Name:	Quanti	ity,	Length:	361,	dtype:	int64

brief summary of findings and recommendations:

- · Here we can see the data of customer that have a higher purchase on Home Decore products
- We find that a Customer spend a more amount in March and December
- By the Visual Data of Bar char we find that our Home Decore Product Are less sales in Summer Seasion
- · Our home Decore Product are sells good in 11Th and 12Th month than summer time
- Our marketing team need to focus more on Electronic and clothing market for better result