Lista 5 de Cálculo I **Data da entrega: 24/10/2019**

Exercício 1: Nos exercícios abaixo, x e y são funções de uma terceira variável t.

1. Se
$$2x + 3y = 8 e^{\frac{dy}{dt}} = 2$$
, ache $\frac{dx}{dt}$.

3. Se
$$xy = 20$$
 e $\frac{dy}{dt} = 10$, ache $\frac{dx}{dt}$ quando $x = 2$.

5. Se sen²
$$x + \cos^2 y = \frac{5}{4} e^{\frac{dx}{dt}} = -1$$
, ache $\frac{dy}{dt}$ em $(\frac{2}{3}\pi, \frac{3}{4}\pi)$.

7. Se
$$\sqrt{x} + \sqrt{y} = 5$$
 e $\frac{dy}{dt} = 3$, ache $\frac{dx}{dt}$ quando $x = 1$.

Respostas:

1. -3 3. -2 5.
$$-\frac{\sqrt{3}}{2}$$
 7. $-\frac{3}{4}$

Exercício 2: Determine a derivada.

a)
$$y = x$$
 arc tg x

b)
$$f(x) = \arcsin 3x$$

c)
$$g(x) = \arcsin x^3$$

d)
$$y = arc tg x^2$$

g)
$$y = e^{3x} \arcsin 2x$$

$$f$$
) $y = arc sen e^x$

Respostas:

a) arc tg
$$x + \frac{x}{1+x^2}$$
 b) $\frac{3}{\sqrt{1-9x^2}}$ c) $\frac{3x^2}{\sqrt{1-x^6}}$ d) $\frac{2x}{1+x^4}$

$$b) \ \frac{3}{\sqrt{1-9x^2}}$$

$$c) \ \frac{3x^2}{\sqrt{1-x^6}}$$

$$d) \; \frac{2x}{1+x^4}$$

$$e) \; \frac{6}{1 + (2x+3)^2}$$

$$f) \frac{e^x}{\sqrt{1 - e^{2x}}}$$

e)
$$\frac{6}{1+(2x+3)^2}$$
 f) $\frac{e^x}{\sqrt{1-e^{2x}}}$ g) $e^{3x} \left[3 \arcsin 2x + \frac{2}{\sqrt{1-4x^2}} \right]$

Exercício 3:

- 21. Um tanque com a forma de um cone invertido está sendo esvaziado a uma taxa de 6 m³/min. A altura do cone é de 24 m e o raio da base é de 12 m. Ache a velocidade com que o nível de água está abaixando, quando a água tiver uma profundidade de 10 m.
- 23. A lei de Boyle para a expansão de um gás é PV = C, onde P é o número de quilos por unidade quadrada de pressão. V é o número de unidades cúbicas do volume do gás e C é uma constante. Num certo instante, a pressão é de 150 kg/m², o volume é 1,5 m³ e está crescendo a uma taxa de 1 m³/min. Ache a taxa de variação da pressão nesse instante.
- 25. Uma pedra cai livremente num lago parado. Ondas circulares se espalham e o raio da região afetada aumenta a uma taxa de 16 cm/s. Qual a taxa segundo a qual a região está aumentando quando o raio for de 4 cm?

27. Um automóvel aproxima-se de um cruzamento a uma velocidade de 30 m/s. Quando o automóvel está a 120 m do cruzamento, um caminhão a uma velocidade de 40 m/s atravessa o cruzamento. O automóvel e o caminhão estão em ruas que se cruzam em ângulo reto. Com que velocidade o automóvel e o caminhão estarão se afastando um do outro, 2 s após o caminhão ter passado pelo cruzamento?

Respostas:

21. $\frac{6}{25\pi}$ m/min 23. 100 kg/m² por minuto. 25. 128 π cm²/s 27. 14 m/s

Exercício 4:

- (1) Um avião voa horizontalmente a uma altitude de 1 mi, a 500 mi/h, e passa diretamente sobre uma estação de radar. Encontre a taxa segundo a qual a distância do avião até a estação está crescendo quando ele está a 2 mi além da estação.
- Dois carros iniciam o movimento de um mesmo ponto. Um viaja para o sul a 60 mi/h, e o outro para o oeste a 25 mi/h. A que taxa está crescendo a distância entre os carros duas horas depois?
- 19. Está vazando água de um tanque cônico invertido a uma taxa d 10.000 cm³/min. Ao mesmo tempo está sendo bombeada a água par dentro do tanque a uma taxa constante. O tanque tem 6 m de altura, o diâmetro no topo é de 4 m. Se o nível da água estiver subindo uma taxa de 20 cm/min quando a altura da água for 2 m, encontre taxa segundo a qual a água está sendo bombeada dentro do tanque
- **29.** Se dois resistores com resistência R_1 e R_2 estão concetados em paralelo, como na figura, então a resistência total R, medida em ohms (Ω) , é dada por

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Se R_1 e R_2 estão crescendo a taxas de 0.3 Ω/s e 0.2 Ω/s , respectivamente, quão rápido está variando R quando $R_1 = 80 \Omega$ e $R_2 = 100 \Omega$?

37. Um velocista corre em uma pista circular de raio 100 m a uma velocidade constante de 7 m/s. Seu amigo está em pé a uma distância de 200 m do centro da pista. Quão rápido estará variando a distância entre os amigos quando estiverem a uma distância de 200 m?

Respostas:

7. $250\sqrt{3}$ mi/h 11. 65 mi/h 19. $(10.000 + 800.000\pi/9) \approx 2.89 \times 10^5$ cm³/min 29. $\frac{107}{810}$ 0.132 Ω/s 37. $7\sqrt{15}/4 \approx 6.78$ m/s