

Análisis de Series Temporales con Python

Diplomatura en Data Science con R y Python Curso complementario

¿Qué son las Series Temporales?

- Son una colección ordenada de registros de cierta magnitud asociada a un fenómeno natural o social, separados por un intervalo de tiempo dado.
- La magnitud medida está afectada por procesos deterministas y aleatorios, por lo tanto, las series temporales son procesos estocásticos y sus valores refieren a una variable aleatoria X.

¿Qué son las Series Temporales?

- Modelos para analizar series temporales:
 - ARMA
 - ARIMA
 - SARIMA
 - VAR
 - ARCH
 - REGARMA
 - TBATS
 - Redes neuronales
 - Etc.

Componentes de una Serie Temporal

- Tendencia (T_t)
- Estacionalidad (*S*_t)
- Variación aleatoria o residuo (R_t)
- Ciclicidad (*C_t*)

Componentes de una Serie Temporal

- Se puede descomponer a una serie temporal bajo dos modelos:
 - Aditivo: $X_t = T_t + S_t + R_t$
 - Multiplicativo: $X_t = T_t S_t R_t$
- Puede aplicarse también un modelo mixto.

Funciones momento

- Al ser las series temporales una colección de valores de una variable aleatoria, se pueden definir las siguientes funciones momento (sobre la muestra):
 - Media
 - Varianza
 - Autocovarianza
 - Autocorrelación simple

$$MM_C = \frac{X_{t-d} + X_{t-d+1} + \dots + X_{t+d-1} + X_{t+d}}{2d+1}$$

$$MM_A = \frac{X_{t-d+1} + X_{t-d+2} + \dots + X_t}{d}$$

Estacionariedad

- Es una propiedad que permite aplicar algunos modelos de análisis. Si una serie temporal tiene esta propiedad, entonces se dice que ésta se encuentra en equilibrio estadístico.
- A pesar de que existe una definición matemática de esto, podemos notar si una serie temporal es estacionaria cuando se cumplen estas características:
 - Media y varianza constante
 - No cuenta con efectos de estacionalidad
 - Sus valores no están autocorrelacionados (la fas es cercana a 0 para k>0)
- Existen también pruebas estadísticas para comprobar si una serie es estacionaria: los tests ADF y KPSS son tests de hipótesis complementarios y se recomienda efectuarlos en conjunto para probar o descartar que una serie temporal sea estacionaria.

Estacionariedad

- Si una serie no es estacionaria, se pueden aplicar transformaciones para convertirla en estacionaria.
- La más común de estas transformaciones es la diferenciación y consiste en construir una nueva serie temporal a partir de la diferencia entre valores de la serie original. Existen varias formas de hacerlo:
 - Diferenciación de retraso 1: $Y_t = X_t X_{t-1}$
 - Diferenciación de retraso k: $Y_t = X_t X_{t-k}$
 - Diferenciación estacional: si s es el periodo estacional de la serie, se toma k=s.

Análisis exploratorio

- Explorar la serie temporal con el objetivo de determinar si los intervalos temporales tienen huecos y si hay valores nulos. En caso de que así sea, completar la serie por medio de la interpolación.
- Gráfico de la serie temporal para evaluar la existencia de tendencia o patrón estacional.
- Gráfico de medias móviles y desviación estándar, y cómputo de tests ADF y KPSS para evaluar la estacionariedad de la serie.
- Gráfico de las funciones de autocorrelación, para examinar la estacionariedad de la serie y los patrones estacionales. Además ayudarán en el proceso de construcción del modelo de análisis y predicción de la serie temporal.
- Descomposición de la serie temporal para entender su naturaleza y comportamiento.

Modelo de Medias Móviles MA(q)

 Dada una serie temporal estacionaria, es posible representarla por medio de un modelo de medias móviles de orden q:

$$X_{t} = \mu + \varepsilon_{t} + \theta_{1} \varepsilon_{t-1} + \theta_{2} \varepsilon_{t-2} + \dots + \theta_{q} \varepsilon_{t-q}$$

Donde ε es una función de ruido blanco y μ y θ_i son los coeficientes a determinar.

Modelo Autorregresivo AR(p)

 Dada una serie temporal estacionaria, es posible representarla por medio de un modelo autorregresivo de orden p:

$$X_{t} = \varphi_{0} + \varphi_{1} X_{t-1} + \varphi_{2} X_{t-2} + \dots + \varphi_{p} X_{t-p} + \varepsilon_{t}$$

Donde ε es una función de ruido blanco y φ_i son los coeficientes a determinar.

 Notar que este modelo es una regresión lineal, donde las variables regresoras son los propios p valores anteriores de la serie temporal.

Modelo Autorregresivo de Medias Móviles ARMA(p,q)

 Dada una serie temporal estacionaria, es posible representarla por medio de un modelo autorregresivo de medias móviles de órdenes p q:

$$X_{t} = \varphi_{0} + \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

Donde ε es una función de ruido blanco y φ_i θ_i son los coeficientes a determinar.

- Para construir este modelo, se debe primero determinar si la serie es estacionaria, y segundo seleccionar los órdenes p y q.
- Los órdenes se elijen por medio de las funciones de autocorrelación. El retraso para el cual la fap es casi nula determina *p*; el retraso para el cual la fas es casi nula, determina *q*. Otra manera es elegir el modelo que minimice algún criterio estadístico para el error (AIC, BIC, HQIC).

Modelo Autorregresivo de Medias Móviles Integrado ARIMA(p,d,q)

- Se aplica en los casos donde la serie temporal no sea estacionaria.
- Se debe determinar la cantidad *d* de diferenciaciones (de retraso 1) necesarias para hacer que la serie sea estacionaria.
- Una vez fijado el valor de d, el proceso para construir el modelo es análogo al del modelo ARMA(p,q), aplicado a la serie estacionaria.

Modelo Autorregresivo de Medias Móviles Integrado Estacional SARIMA(p,d,q)(P,D,Q)s

- Aplica a casos donde la serie no sea estacionaria y tenga componente estacional, con periodo s.
- Es equivalente a realizar una descomposición multiplicativa, en una parte estacional y otra no estacional, donde a cada una se le aplica un modelo ARIMA. Es decir: SARIMA(p,d,q)(P,D,Q)s = ARIMA(p,d,q)ARIMA(P,D,Q).
- Se deben determinar la cantidad *d* de diferenciaciones de retraso 1, y la cantidad *D* de diferenciaciones estacionales con las que se logra convertir a la serie temporal en estacionaria.
- Luego, la determinación de los órdenes p,q,P,Q viene dada por las funciones de autocorrelación y por la minimización de algún criterio estadístico.

Modelo TBATS

- Es un modelo diferente, que se aplica a aquellas series temporales que tengan patrones estacionales complejos, como lo son aquellas que contienen múltiples periodos.
- Sus siglas se corresponden a las estrategias matemáticas utilizadas:
 - Trigonometric seasonality
 - Box-Cox transformation
 - ARMA errors
 - Trend components
 - Seasonal components
- El algoritmo evalúa varias opciones de modelos, con y sin las anteriores estrategias y devuelve el que minimice el criterio estadístico AIC.

Predicción y Evaluación

- División de datos en conjuntos de entrenamiento y prueba (particionar la serie temporal en dos).
- Entrenamiento del modelo elegido con el conjunto de entrenamiento.
- Predicción de valores de entrenamiento ("on-sample prediction").
- Predicción de valores de prueba ("future prediction").
- Evaluación de errores: no debe haber tendencias y deben tener baja desviación estándar. Deben tener una distribución normal.
- Predicción a futuro: si se considera que el modelo es satisfactorio, se puede utilizar para predecir información futura, de la que no se tienen referencias actualmente.

Bibliografía

Huang C., Petukhina, A. *Applied Time Series Analysis and Forecasting with Python.* Springer, 2022.

https://www.kaggle.com/code/prashant111/complete-guide-on-time-series-analysis-in-python/notebook

https://www.statsmodels.org/dev/examples/notebooks/generated/stationarity_detrending_adf_kpss.html

https://medium.com/analytics-vidhya/time-series-forecasting-using-tbats-model-ce8c429442a9

Alysha M. De Livera, Rob J. Hyndman and Ralph D. Snyder (2011): *Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing*, Journal of the American Statistical Association, 106:496, 1513-1527. http://dx.doi.org/10.1198/jasa.2011.tm09771