Laboratorio di Basi di Dati Turni T3 e T4

a.a. 2018/2019 Ruggero Pensa - Fabiana Vernero

Argomenti

- Progettazione logica
 - > Ristrutturazione schema E-R (parte 2):
 - · Eliminazione delle generalizzazioni.
 - Partizionamento/accorpamento di entità e relazioni.
 - Scelta degli identificatori primari
 - > Traduzione nel modello logico

Progettazione logica

Ristrutturazione schema E-R - RIPASSO

- Motivazioni:
 - > Semplificare la traduzione.
 - > "Ottimizzare" le prestazioni.
- Uno schema E-R ristrutturato non è (più) uno schema concettuale nel senso stretto del termine.

Passi della ristrutturazione -RIPASSO

- Analisi delle ridondanze.
- Eliminazione delle generalizzazioni.
- Partizionamento/accorpamento di entità e relazioni.
- Scelta degli identificatori primari.

Eliminazione delle generalizzazioni - 1

- Il modello relazionale non può rappresentare direttamente le generalizzazioni:
 - > Entità e relazioni sono invece direttamente rappresentabili.
 - > Si eliminano perciò le gerarchie, sostituendole con entità e relazioni.

Eliminazione delle generalizzazioni - 2

- Per eliminare le generalizzazioni, ci sono tre possibilità:
 - 1. accorpamento delle entità figlie della generalizzazione nell'entità genitore.
 - 2. accorpamento dell'entità genitore della generalizzazione nelle entità figlie.
 - 3. sostituzione della generalizzazione con relazioni.

Esempio

Esempio – possibilità 1

Accorpamento delle figlie della generalizzazione nel genitore

Esempio – possibilità 2

Accorpamento del genitore nella generalizzazione nelle figlie

Esempio – possibilità 3

Sostituzione della generalizzazione con relazione

Eliminazione delle generalizzazioni: scelta

- La scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi).
 - La prima possibilità conviene se gli accessi al padre e alle figlie sono contestuali.
 - Spreco per valori nulli.
 - · Riduzione degli accessi.
 - > La seconda possibilità conviene se gli accessi alle figlie sono distinti. E' utilizzabile solo con generalizzazioni totali.
 - Minori valori nulli rispetto a 1.
 - Minori accessi rispetto a 3.
 - > La terza possibilità conviene se gli accessi alle entità figlie sono separati dagli accessi al padre. Si può utilizzare con generalizzazioni non totali.
 - Meno valori nulli.
 - Entità con pochi attributi.
 - Aumento degli accessi

Esempio Approccio misto

Partizionamento / accorpamento di entità e relazioni

- E' utile perché gli accessi si riducono:
 - > Separando attributi di uno stesso concetto ai quali si accede in operazioni diverse.
 - Accorpando attributi di concetti diversi a cui si accede con le stesse operazioni.

Partizionamento di entità

Eliminazione di attributi multivalore

Accorpamento entità

Accorpamento di entità

- Effetto collaterale: valori nulli (es. persone senza appartamenti).
- Si effettua su relazioni 1 a 1, raramente su relazioni uno a molti, mai su relazioni molti a molti.

Perché?

Partizionamento di una relazione

Scelta degli identificatori principali

- Si tratta di un'operazione indispensabile per la traduzione nel modello relazionale. Criteri:
 - > Assenza di opzionalità.
 - > Semplicità.
 - > Utilizzo nelle operazioni più frequenti o importanti.
- Cosa succede se nessuno degli identificatori soddisfa i requisiti visti?
 - Si introducono nuovi attributi (codici) contenenti valori speciali generati appositamente per questo scopo.

Traduzione nel modello logico

Traduzione verso il modello relazionale

• Idea di base:

- Le entità diventano relazioni sugli stessi attributi.
- Le associazioni diventano relazioni sugli identificatori delle entità coinvolte + gli attributi propri.

Per non fare confusione, ci riferiremo alle relazioni del modello concettuale come ad "associazioni"

Entità e associazioni molti a molti

Impiegato (<u>Matricola</u>, Cognome, Stipendio)
Progetto (<u>Codice</u>, Nome, Budget)
Partecipazione (<u>Matricola, Codice</u>, Data inizio)

Vincoli di integrità referenziale - 1

- Un vincolo di integrità referenziale tra:
 - > un insieme di attributi X di una relazione R1 e
 - > un'altra relazione R2
- impone ai valori su X di ciascuna ennupla dell'istanza di R1 di comparire come valori della chiave (primaria) dell'istanza di R2

Vincoli di integrità referenziale - 2

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(<u>Codice</u>, Nome, Budget)
Partecipazione(<u>Matricola</u>, <u>Codice</u>, Data Inizio)

- ... con vincoli di integrità referenziale fra:
 - Matricola in Partecipazione e (la chiave di) Impiegato.
 - Codice in Partecipazione e (la chiave di) Progetto.

Ridenominazione attributi

Impiegato (Matricola, Cognome, Stipendio)

Progetto (Codice, Nome, Budget)

Partecipazione (Matricola, Codice, Data Inizio)

Partecipazione (Impiegato, Progetto, Data Inizio)

Associazioni ricorsive

Prodotto (<u>Codice</u>, Nome, Costo)
Composizione (<u>Composto</u>, <u>Componente</u>, Quantità)

Associazioni n-arie

Fornitore (<u>PartitaIVA</u>, Nome)
Prodotto (<u>Codice</u>, Genere)
Dipartimento (<u>Nome</u>, Telefono)
Fornitura (<u>Fornitore</u>, <u>Prodotto</u>, <u>Dipartimento</u>, Quantità)

Associazioni uno a molti

Giocatore (Cognome, Data Nascita, Ruolo)

Contratto(<u>CognomeG</u>, <u>DataNascitaG</u>, <u>Squadra</u>, Ingaggio)

Squadra (Nome, Città, Colori Sociali)

Corretto?

Soluzione alternativa

Giocatore (<u>Cognome</u>, <u>DataNascita</u>, Ruolo) Contratto (<u>CognGiocatore</u>, <u>DataNascG</u>, Squadra, Ingaggio) Squadra (<u>Nome</u>, Città, ColoriSociali)

Giocatore (<u>Cognome, DataNascita</u>, Ruolo, Squadra, Ingaggio) Squadra (<u>Nome</u>, Città, ColoriSociali)

- ... con vincolo di integrità referenziale fra Squadra in Giocatore e la chiave di Squadra
- Se la cardinalità minima dell'associazione è zero, allora Squadra in Giocatore deve ammettere valore nullo.

Cardinalità

- La traduzione riesce a rappresentare efficacemente la cardinalità minima della partecipazione che ha 1 come cardinalità massima:
 - > 0: valore nullo ammesso
 - > 1: valore nullo non ammesso

Entità con identificazione esterna

Studente (<u>Matricola, Università</u>, Cognome, AnnoDiCorso)

Università (Nome, Città, Indirizzo)

• ... con vincolo...

Associazione uno a uno

Direttore (<u>Codice</u>, Cognome, Stipendio)
Dipartimento(<u>Nome</u>, Sede, Telefono, Direttore, Datalnizio)

oppure

Direttore (<u>Codice</u>, Cognome, Stipendio, Dipartimento, Datalnizio) Dipartimento (<u>Nome</u>, Sede, Telefono)

Un altro caso - 1

Impiegato(<u>Codice</u>, Cognome, Stipendio) Dipartimento(<u>Nome</u>, Sede, Telefono, Direttore, Datalnizio)

... con vincolo di integrità referenziale, senza valori nulli.

Un altro caso - 2

Impiegato (Codice, Cognome, Stipendio) Dipartimento (Nome, Sede, Telefono)

Direzione (Direttore, Dipartimento, Datalnizio Direzione)

Schema finale - 1

Schema finale - 2

Impiegato(<u>Codice</u>, Cognome, Dipartimento*, Sede*, Data*)

Dipartimento (<u>Nome</u>, <u>Città</u>, Telefono, Direttore)

Sede(Città, Via, CAP)

Progetto (Nome, Budget)

Partecipazione (Impiegato, Progetto)