Analysis Übungen

Hausaufgaben für 18. März (Gruppe 1), bzw.

für 19. März (Gruppe 2, 3)

Vollständige Induktion

Beweise die folgenden Aussagen durch vollständige Induktion.

1.
$$1+3+5+7+...+(2n-1)=n^2$$
 für alle $n \in \mathbb{N}$

$$2. \quad 1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6} \quad \text{ für alle } n\in\mathbb{N}$$

3. $2^n \le n!$ für alle $n \ge n_0$

(Finde den Startwert n_0 , dann beweise die Ungleichung durch vollständige Induktion.)

 $4. \quad (n+1)! \le n^n \quad \text{ für alle } n \ge n_0$

(Finde den Startwert n_0 , dann beweise die Ungleichung durch vollständige Induktion.)

Hinweis: Zeige für den Induktionsschritt zunächst die Ungleichungen $\frac{n+2}{n+1} \leq \left(\frac{n+1}{n}\right)^2$ sowie $1 \leq \left(\frac{n+1}{n}\right)^{n-2}$ und kombiniere diese geeignet.

Die Äquivalenz der $H \leq G$ und $G \leq A$ Ungleichungen

5. Zeige: die Ungleichung $\frac{n}{\frac{1}{a_1} + \ldots + \frac{1}{a_n}} \leq \sqrt[n]{a_1 \cdot \ldots \cdot a_n}$ gilt für alle $a_1, \ldots, a_n \in \mathbb{R}^+$ dann und nur dann, wenn die Ungleichung $\sqrt[n]{a_1 \cdot \ldots \cdot a_n} \leq \frac{a_1 + \ldots + a_n}{n}$ für alle $a_1, \ldots, a_n \in \mathbb{R}^+$ gilt. (Anmerkung: Es ist mit der obigen Äquivalenz noch nicht bewiesen, dass eine der beiden Ungleichungen gelten würde. Wir werden das später mit Hilfe der Jensenschen Ungleichung beweisen.)

Anwendungen der Ungleichung vom geometrischen und arithmetischen Mittel

6. Die folgende Aussage ist trivial: $n! \leq n^n$ für alle $n \in \mathbb{N}$.

(Überlege, warum sie trivial ist.)

Betrachten wir nun eine bessere (d.h. eine kleinere) obere Schranke für n!:

$$n! \le \left(\frac{n+1}{2}\right)^n$$
 für alle $n \in \mathbb{N}$.

Beweise diese Ungleichung durch die Anwendung der Ungleichung vom geometrischen und arithmetischen Mittel.

- 7. Zeige durch die Anwendung der Ungleichung vom geometrischen und arithmetischen Mittel, dass $\sqrt[n]{n} \le 1 + \frac{2}{\sqrt{n}}$ für alle $n \in \mathbb{N}$ gilt.
- 8. $\left(1+\frac{1}{n}\right)^n \le \left(1+\frac{1}{n+1}\right)^{n+1}$ für alle $n \in \mathbb{N}$

Hinweis: Verwende die Ungleichung vom geometrischen und arithmetischen Mittel.

Mengenoperationen

- 9. (a) Markieren Sie die Menge $A_1 \Delta A_2 \Delta A_3$ (die symmetrische Differenz dreier Mengen) in einem Venn-Diagramm.
 - (b)* Ergänzen Sie den Satz, und beweisen Sie ihn durch vollständige Induktion: $A_1 \Delta \dots \Delta A_n$ (die symmetrische Differenz von n Mengen) besteht aus diejenigen Elementen, die