Proyecto de ML para Pregrado: Clasificación de Ritmo Cardíaco

Objetivo general

Desarrollar un modelo de Machine Learning simple capaz de clasificar segmentos de señales ECG como ritmo normal o fibrilación auricular (AFib), utilizando características estadísticas derivadas del intervalo entre latidos (RR intervals). El objetivo es aplicar un pipeline completo de análisis: carga de datos, extracción de características, entrenamiento de un modelo y evaluación de desempeño.

Contexto

La fibrilación auricular es una condición en la que el corazón late de forma irregular. Detectarla a tiempo es clave para prevenir complicaciones. En este proyecto, trabajarás con señales reales de electrocardiograma (ECG) y desarrollarás un clasificador automático para distinguir entre ritmos normales y fibrilación auricular, apoyándote en herramientas básicas de análisis de datos.

Datos

Utilizarás un subconjunto curado de 30 señales del dataset del PhysioNet Challenge 2017. El archivo CSV contiene las siguientes características por segmento de señal:

- mean_rr: promedio de los intervalos RR (milisegundos)
- std_rr: desviación estándar
- skew_rr: asimetríakurt_rr: curtosis
- label: clase (Normal o AFib)

Archivo: ecg_rr_features_curado.csv

Actividades principales

- 1. Explorar las señales ECG a partir de las características entregadas.
- 2. Visualizar y analizar la distribución de las variables por clase.
- 3. Entrenar un modelo simple (Logistic Regression o Random Forest).
- 4. Evaluar el desempeño con accuracy y matriz de confusión.
- 5. (Opcional) Visualizar errores y proponer ideas de mejora.

Duración estimada

3 semanas.

III Evaluación sugerida

Criterio	Ponderación
Exploración inicial del dataset	20%
Extracción y análisis de características	20%
Modelado y evaluación	30%
Claridad del informe y visualizaciones	30%