Large scale Finite Element solvers for the large eddy simulation of incompressible turbulent flows

author:
ORIOL COLOMÉS GENÉ
supervisor:

Santiago Badia

Departament d'Enginyeria Civil i Ambiental

February 18, 2016

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta
- 5. Segregated VMS
- 6. Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- Segregated Runge-Kutta
- Segregated VMS
- Conclusions

Motivation

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

Thesis motivation

Residual-based VMS

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

Variational MultiScale (VMS) methods as LES models.

Motivation

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

- Variational MultiScale (VMS) methods as LES models.
- 2. Time integration schemes with velocity-pressure segregation.

Thesis motivation

Highly scalable Finite Element (FE) framework for Large Eddy Simulations (LES) of incompressible turbulent flows

How to get there?

- Variational MultiScale (VMS) methods as LES models.
- 2. Time integration schemes with velocity-pressure segregation.
- Highly scalable algorithms based on Domain Decomposition (DD) and block preconditioners.

Step by step...

Residual-based VMS as LES models.

- Residual-based VMS as LES models.
- Mixed FE formulations LES.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.

Motivation

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.

Step by step...

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.

Residual-based VMS

- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.
- Application.

- Residual-based VMS as LES models.
- Mixed FE formulations LES.
- High-order FE methods.
- High-order time integration schemes.
- Adaptive time stepping techniques.
- Velocity-pressure segregation.
- Scalable solvers.
- Application.

Motivation

2. Residual-based VMS Formulation **Energy statements** Numerical experiments Conclusions

Motivation

3. Mixed FE VMS Formulation Block-preconditioning Numerical experiments Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta Formulation Numerical experiments Conclusions
- Segregated VMS
- 6. Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- Segregated Runge-Kutta
- 5. Segregated VMS
 Formulation
 Block-preconditioning
 Numerical experiments
 Conclusions

6. Conclusions

- 1. Motivation
- 2. Residual-based VMS
- 3. Mixed FE VMS
- 4. Segregated Runge-Kutta
- 5. Segregated VMS
- 6. Conclusions

Residual-based VMS

Outline

Line 1.

- Line 1.
- Line 2. Less formal

Outline

- Line 1.
- Line 2.Less formal
- Line 3.
 Less formal, different color.

Blocks

Standard Block

This is a standard block.

Example Block

This is an example block.

Alert Block

This is an alert block.

