「実験のガイダンス」

2020.10.16 田島・堀内

1. 実験の目的

これまで、「プログラミング」「データ構造と アルゴリズム」「数値計算」等で修得した知識 を再確認し、これらを応用したより大規模で実 用的なプログラムの作成能力を養成する.

2. 実験の予定

本年度のスケジュールは表1のとおりである.変更時には事前に連絡する.今年は研修旅行などがないが,新型コロナウイルス感染症の広がりによっては,スケジュール変更の恐れがある.アナウンスに注意すること.なお11/27は中間試験のため実験は実施しない.中間試験分は補講で補う予定である.

3. 実験の注意点

- 実験は原則として個人単位で行うが、課題に よってチームを作ることがある.
- プログラム開発型の実験ではあるが、最初の 1時間は個人作業とし、2時間目は他人と相 談して課題を解決すればよい.
- 情報工学実験室で作業すること. ただしパソ コンの持ち込みも可能である.
- 演習室は18時まで開放する. 演習室内では静粛にし、離れて座ること.
- 実験中の無関係なインターネットページを閲覧を禁止する.
 対ーム等で遊んでいるなども含め、違反した場合は授業点を減点する.

表 1 実験のスケジュール				
口	実施日	題目	レポート	レポート提出日
1	10/16	ガイダンス・IDE の導入・リスト構造	_	なし
2	10/23	キューとスタック	1	11/1(日) 20:00
3	10/30	GUI とイベント処理	_	なし
4	11/6	ファイルの入出力と正規表現	2	11/15(日) 20:00
5	11/13	Java による Socket 通信	3	11/22(日) 20:00
6	11/20	Raspberry Pi を用いたサーバ構築1	_	なし
	11/27	休講 (中間試験週間)	_	_
7	12/4	数値微分,数値積分の応用	4	12/13(日) 20:00
8	12/11	コンピュータグラフィックス	5	12/20(日) 20:00
9	12/18	Raspberry Pi を用いたサーバ構築 2	_	_
10	12/25	サーバサイドプログラム	6	1/17(日) 20:00
11	1/15	サーバ・クライアント型プログラム/	_	_
12	1/22	サーバセキュリティに関する実験/		_
13	1/29	(遠隔授業になった場合は別途検討)	7	2/7(日) 20:00
14	2/5	仮想環境におけるサーバ構築	_	_
15	補講日	実験の総まとめ		

● 「プログラミング」「データ構造とアルゴリズム」「数値計算」等の教科書やノートを実験 テーマに合わせて用意すること.

4. 実験の流れ

- 実験内容と当日の課題を実験開始前に提示し 簡単な説明を行う.
- 各自でプログラムを作り、課題を解決する.
- 経過報告は15:00から行う.
 - ▶ 報告結果により授業点を決定する.
 - ▶ 報告順は当日ランダムに決定する.
 - ▶ 取り組み方法・それまでに得た結果や問題 点を2分程度にまとめて報告すること。
 - ▶ あらかじめ報告内容を考えておくこと.
 - ▶ 経過報告の後は解散してかまわない.

- レポートは個人単位で作成する
 - ▶ レポートは PDF 形式の電子ファイルで作成 し、電子投函で提出する.
 - ▶ レポートの表紙は電子投函システムから取得したものを利用する.
 - ▶ 提出期限は表1の通りする.システムトラブルで投稿できない場合は、締め切りの前日までに、連絡すること.
 - ▶ レポートにはアルゴリズムのフローチャー トを載せること. フォーマットは厳密でなくても良いが、処理内容、手順を明解に表し、かつ、複雑になりすぎないよう、バランスに注意すること.
 - ▶ ソースコードは 1 つの zip ファイルにアーカイブした状態で電子投函すること.
 - ▶ ソースコードにはフローチャートのどの部 分の処理か分かるようにコメントをつける こと.
 - プログラムは読みやすく書くこと.他人の プログラムをコピーしたと判明した場合は, その回の実験の評定を0点とする.
 - ▶ 実験内容に関しては独自に調べ、自分の言

葉でまとめること。他人の文章をコピーしたと判明した場合は、その回の実験の評価を0点とする。

- プログラム・レポートを作成する際に参考 にした文献名を明記すること。
- ▶ 文献を参考にしなかった場合は『参考文献なし』とせよ。
- ▶ レポートの内容は「実験の目的・課題」「実装方法・アルゴリズムなど」「結果と考察」「参考文献」「フローチャート」とすること、必要に応じてソースコードの一部を貼り付けてもよい。

5. 評価方法について

前半の評価はレポート90%,報告10%とする. レポートの評価項目は、「締め切り、体裁、実験内容の説明と結果の提示方法、考察の内容、フローチャート」とし、考察に最も重みを置く. ただし、可読性以外のプログラムの良し悪し(実行速度、サイズ、頑健さ等)は評価の対象としない.