x/Y	0	1	
0	540	240	90
1	10	330	450
	100	340	1

$$E(x) = 0.83$$
 $E(r) = 0.67$

$$D(x) = 0.44$$
 $D(Y) = 0.224$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$= 0.0559 \longrightarrow X i Y \text{ su banchiren}$$

$$v(X,Y) - \frac{cov(Y,Y)}{\sqrt{D(X)D(Y)}} - 0.305$$

$$E(XY) = \sum Xi Yi Pij - 0.69$$

bena se kocka =>
$$X = \{2 \cdot brojina bocki\}$$
 $Y = \{1 paran$

$$\mathbb{D}(z) = \mathbb{E}(z_1) - \mathbb{E}(z_1) = \frac{3}{44}$$

$$\mathbb{E}(z) = \frac{3}{44}$$

x/3	-1	1	
-1	+	1	10
0	16	1	3
1	1	16	4
	13	11/24	1

b) ispites measuranst

consist for open
$$\frac{1}{4} \neq \frac{13}{24} \cdot \frac{10}{24}$$

a)
$$P(Y=1|X\geq 0) = \frac{P(Y=1,X\geq 0)}{P(X\geq 0)} = \frac{\frac{1}{8} + \frac{1}{6}}{\frac{1}{6} + \frac{1}{3} + \frac{1}{6} + \frac{1}{3}} = \frac{1}{2}$$

$$y = \frac{\lambda}{\lambda}$$
 odreg rasgiogn $(5, m) = 5$

W/5	-1	0	1	
0	0	0	10	14
1	0	2 4	0	3,7
2	一击	0	0	111
	古	+	10	1

2: W favior for you to the # 24

$$2=1: X=0 Y-1 \longrightarrow w=0$$

 $X=0 Y=1 \longrightarrow w=0$

Z=0 : X=-1 4=-1 -> W=1

- dvestont integral Puntage Pixy)

1 - July Serry dy - Sdy Serry dx

Pr)
$$\Omega = \{(x,y): x \leq y \leq \overline{x}\}$$

j dx J f(x,x) dy Logo britalje smednji gar, a toja dole

= Sdy flay)dx

$$y = 3 - x$$

$$y = 3 - x$$

4=1

$$\int_{0}^{1} dx \int_{1}^{1+x} f(x,y) dy + \int_{1}^{2} dx \int_{1}^{3-x} f(x,y) dy = \int_{1}^{2} dy \int_{1}^{3-y} f(x,y) dx$$

Rounanje

$$\int_{0}^{2} dx \int_{0}^{2} (2x + x^{2}y) dy = \int_{0}^{1} dx \left[2xy \int_{x}^{2} + x^{2} \frac{y^{2}}{2} \int_{x}^{2} \right] = \int_{0}^{2} \left[4x - 2x^{2} + 2x^{2} - \frac{1}{2}x^{4} \right] dx$$

$$= 4 \frac{x^{2}}{2} \Big|_{0}^{1} - 2 \frac{x^{3}}{3} \Big|_{0}^{1} + 2 \frac{x^{3}}{3} \Big|_{0}^{1} - \frac{1}{2} \cdot \frac{x^{5}}{5} \Big|_{0}^{1} =$$

$$= 2 - \frac{24}{3} + \frac{24}{3} - \frac{1}{10} = \frac{19}{10}$$