Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждения высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «MACTEP ШЕСТЕРЁНОК» ДЛЯ «AutoCAD» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

по дисциплине

«Основы разработки САПР» (ОРСАПР)

		Выполнил:
		студент гр. 580-2
		Лубов Г.П.
<u> </u>		2023 г.
		Руководитель:
	к.т.н.,	доцент каф. КСУП
		Калентьев А.А.
//	\\	2023 г

Лабораторная 3. Проект системы.

Оглавление

1 Описание САПР	3
1.1 Информация о выбранной САПР	
1.2 Описание АРІ	3
1.3 Обзор аналогов плагина	6
2 Описание предмета проектирования	10
3 Проект системы	11
3.1 Диаграмма классов	11
3.2 Макеты пользовательского интерфейса	13
4 Список используемых источников	14

1 Описание САПР

1.1 Информация о выбранной САПР

Аutodesk AutoCAD — система автоматизированного проектирования (САПР) для создания трёх- и двухмерных моделей. Позволяет выполнять построение 3D-моделей деталей, объединять их в сборки, а также выполнять чертежи и инженерные расчёты физических характеристик. AutoCAD и специализированные приложения на его основе применяются в области машиностроения, строительства, архитектуры и т.д. Программа имеет русскую локализацию.

Прямым аналогом разрабатываемого плагина является инструмент "Цилиндрическая зубчатое зацепление" в Autodesk Inventor.

Косвенными аналогами разрабатываемого плагина являются САПР Autodesk Fusion 360 и Kompas-3D.

1.2 Описание АРІ

API (Application Program Interface) — программный интерфейс приложения, набор функций, позволяющий взаимодействовать с программой через другие программы. Для AutoCAD есть API на двух языка программирования: C#/.NET и Python. Для разработки плагина, рассматриваемого в данной работе, будет использоваться API для языка C#/.NET.

Основные библиотеки АРІ представлены ниже:

- 1. AcDbMgd.dll. Используется для работы с объектами файла чертежа;
- 2. AcMgd.dll. Используется для работы с самим приложением AutoCAD;
- 3. AcCui.dll. Используется для работы с файлами пользовательских настроек;

4.

Таблица 2.1 – Некоторые используемые классы АРІ

Название	Тип данных	Описа ние
DocumentManager	DocumentManager	Класс, хранящий коллекцию открытых документов AutoCAD
Database	Database	Класс, хранящий все графические и большинство неграфических объектов AutoCAD
TransactionManager	TransactionManager	Класс, обрабатывающий все транзакции и работающий с реестром операционной системы
Line	Line	Класс, определяющий прямую линию
Point3d	Point3d	Класс, определяющий точку в трёхмерном пространстве
Circle	Circle	Класс, определяющий окружность
Solid3d	Solid3d	Класс, позволяющий создавать тело

Таблица 2.2 – Некоторые используемые методы АРІ

Название	Входные	Тип возвращаемых	Описание
	параметры	данных	
Line()	Point3d, Point3d	Line	Создаёт линию через
			2 точки в трёхмерном
			пространстве
Circle.Center()	Point3d	void	Устанавливает центр
			окружности
Circle.Radius()	double	void	Устанавливает
			радиус окружности
Solid3d()	Array <point3d></point3d>	Solid3d	Создаёт твёрдое тело
			по точкам в
			пространстве
Object.	NumberOfObjects,	Array <object></object>	Создаёт полярный
ArrayPolar()	AngleToFill,		массив из элементов
	CenterPoint		

Таблица 4.3 – Основные методы интерфейса DocumentManager

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
MdiActiveDocume nt()	-	Document	Возвращает созданный документ чертежа
MdiActiveDocume nt()	-	Editor	Возвращает редактор чертежа

Таблица 4.4 – Основные методы интерфейса TransactionManager

Название	Входные	Тип	Описание
	параметры	возвращаемых	
	1 1	данных	
StartManager()	-	Transaction	Реализует работу с
			примитивами
Transaction.Commi	-	Editor	Завершает работу с
t()			примитивами

Таблица 4.5 – Основные методы класса BlockTableRecord

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
AppendEntity()	object	void	Реализует работу с
			примитивами

Таблица 4.6 – Основные методы класса Solid3d

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
CreateWedge()	Double, double	void	Создаёт объект по
			заданной длине,
			ширине, высоте
Extrude()	Int, double,	void	Выполняет
	double		выдавливание области
			на заданную длину

1.3 Обзор аналогов плагина

"Цилиндрическое зубчатое зацепление" – инструмент в программе Autodesk Inventor, позволяющий создавать зубчатые передачи ременного, цепного, червячного, цилиндрического и конического зацепления косозубого и прямозубого типов по заданным параметрам [1]. С помощью данного инструмента можно в автоматизированном режиме получить готовый узел зубчатой передачи по заданным параметрам. В данный момент данный программный продукт на территории РФ не распространяется. Пользовательский интерфейс инструмента представлен на рисунке 1.1.

Рисунок 1.1 – Пользовательский интерфейс инструмента "Цилиндрическое зубчатое зацепление" в программе Autodesk Inventor

Аutodesk Fusion 360 – система автоматизированного проектирования, включающая в себя модули автоматизированного геометрического моделирования, инженерных расчётов, производства, проектирования печатных плат и автоматизации формирования конструкторской документации. Преимуществом данного программного продукта является простой пользовательский интерфейс и возможность работы в облаке с конструкторской документацией [2]. С помощью данного программного продукта можно вручную создать модель шестерни. В данный момент этот программный продукт на территории РФ не распространяется. Пользовательский интерфейс программы представлен на рисунке 1.2.

Рисунок 1.2 – пользовательский интерфейс Autodesk Fusion 360

Котраз-3D — система автоматизированного проектирования отечественной разработки, включающая в себя модули автоматизированного геометрического моделирования, инженерных расчётов, производства, проектирования печатных плат, автоматизации и формирования конструкторской документации [3]. Изначально система была ориентирована на создание конструкторской документации в соответствии с ЕСКД, ЕСТД, СПДС и международными стандартами. Преимуществом данного программного обеспечения является его доступность в РФ, в отличие от импортных САПР. С помощью данного программного продукта можно вручную создать модель шестерни. Пользовательский интерфейс программы представлен на рисунке 1.3.

Рисунок 1.3 – пользовательский интерфейс Kompas-3D

2 Описание предмета проектирования

Зубчатое колесо (шестерня) — основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса [4]. Чертёж шестерни представлен на рисунке 2.1.

Рисунок 2.1 – чертёж шестерни

Шестерня имеет следующие параметры:

- внешний диаметр шестерни D (1 1000 мм, но не менее d);
- диаметр посадочного отверстия d (1 999 мм, но не более, чем 9D/10);
- толщина шестерни S (1 1000 мм)
- количество зубов N (3 1000 шт.);
- высота зуба h (0,1 999 мм, но не более, чем диаметр посадочного отверстия d);

3 Проект системы

3.1 Диаграмма классов

UML-диаграмма классов - тип статической структурной диаграммы, описывающей структуру системы посредством обозначения классов, их атрибутов, методов, связей на диаграмме [5].

На рисунке 4.6 отображена диаграмма классов приложения.

Рисунок 4.6 – Пример UML-диаграммы классов

Архитектура приложения реализована по паттерну MVVM.

Класс МаinVM представляет собой объект, через который будет осуществляться обработка пользовательского ввода и передача его в модель. Класс ParameterVM является представлением параметра, который отвечает за первичную валидацию параметра и дальнейшую отправку этого параметра на уровень модели.

Класс Project является главным классом модели. Через него происходит взаимодействие с САПР, выполняется подключение, отключение, выбор целевой САПР и выполняется построение модели.

Класс CadBuilderFactory предоставляет конкретный экземпляр ICadBuilder

классу Project. Данное решение применено для упрощения модификации плагина в будущем на тот случай, если потребуется подключить этот плагин к другой САПР.

Перечисление CadName отображает названия САПР, с которыми в настоящий момент времени может работать плагин.

Интерфейс ICadBuilder абстрагирует Project от конкретной реализации построителя.

Класс AutoCadBuilder предоставляет конкретную реализацию построителя для САПР AutoCAD. Данный класс отвечает за валидацию зависимых параметров и выполнение построения модели.

Класс Parameter представляет собой один из параметров, предоставляет базовую валидацию по минимальному и максимальному значению.

Библиотека CommunityToolkit.Guard предоставляет реализацию методов валидации без необходимости реализовывать их самостоятельно.

Запуск плагина предполагается выполнять из САПР через командную строку.

3.2 Макеты пользовательского интерфейса

Пример макета пользовательского интерфейса представлен на рисунке 4.9.

Рисунок 4.9 — Пользовательский интерфейс

Валидация некорректных данных представлена на рисунке 4.10.

Рисунок 4.10 — Интерфейс с неправильно введенными значениями параметров

4 Список используемых источников

- 1. Обучающая статья "Autodesk Inventor. Построение зубчатой передачи". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.pointcad.ru/novosti/autodesk-inventor.-postroenie-zubchatoj-peredachi
- 2. Официальный сайт САПР Autodesk Fusion 360. [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.autodesk.com/products/fusion-360/overview?term=1&tab=subscription
- 3. Официальный сайт САПР Коmpas-3D. [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://kompas.ru/kompas-3d/about/
- 4. Энциклопедия "Академик". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://dic.academic.ru/dic.nsf/ruwiki/1200290
- 5. Руководство "What is Class Diagram". [Электронный ресурс]. Режим доступа: свободный (дата обращения 09.10.23), https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-class-diagram/
- 6. UML. Основы. Краткое руководство по стандартному языку объектного моделирования. Изд: Символ-Плюс, 2011, с.192 (3-е издание)
- 7. Язык UML. Руководство пользователя. Изд: ДМК Пресс, 2015, с.496 Работы студенческие по направлениям подготовки и специальностям технического профиля. Общие требования и правила оформления, Томск 2021 г., 52 с.
- 8. Применение UML 2.0 и шаблонов проектирования. Введение в объектноориентированный анализ, проектирование и итеративную разработку. Изд:

Вильямс, 2013, с.739 (3-е издание)