

## QUE ES SECUENCIAS ESTRATIGRAFICAS?

SECUENCIAS ESTRATIGRAFICAS ES UNA SUBDISCIPLINA DE LA ESTRATIGRAFIA, QUE TRATA DE DEFINIR LA HISTORIA GEOLOGICA DE LAS ROCAS ESTRATIFICADAS...

ES LA SUBDIVISION DE LAS CUENCAS SEDIMENTARIAS EN PAQUETES GENETICOS LIMITADOS POR DISCORDANCIAS Y CONCORDANCIAS...

SECUENCIAS ESTRATIGRAFICAS ES EL MARCO UTILIZADO PARA DEFINIR LA CRONOESTRATIGRAFIA POR CORRELA-CION Y MAPEAR LAS FACIES SEDIMENTARIAS Y REALIZAR PREDICCIONES ESTRATIGRAFICAS....



#### **DECLARACION - DISCLAIMER**

Los presentadores han utilizado numerosas ilustraciones propias, tomadas de internet y publicaciones de diferentes autores, con el único objetivo de apoyar la presentación. Estos recursos se utilizan sin menoscabo de los derechos de autor (autores) debidamente referenciados y serán utilizados estrictamente para fines académicos y de divulgación del conocimiento, sin que los presentadores reciba retribución económica alguna.

The presenters have used numerous illustrations of her own, taken from the internet and publications by various authors, for the sole purpose of supporting the presentation. These resources are used without prejudice to the copyrights of the authors, duly referenced, and will be used strictly for academic and knowledge dissemination purposes, without the presenters receiving any financial compensation.





## QUE DISCIPLINAS UTILIZAMOS?

NUMEROSAS DISCIPLINAS GEOLOGICAS CONTRIBUYEN A CREAR EL MARCO APROPIADO PARA DESARROLLAR UN ESTUDIO DE SECUENCIAS ESTRATIGRAFICAS.

LAS PRINCIPALES SON SISMICA, BIOESTRATIGRAFIA, CRO-NOESTRATIGRAFIA Y SEDIMENTOLOGIA.



# CUANDO SE COMIENZA A UTILIZAR?

ES UNA CIENCIA RELATIVAMENTE NUEVA QUE COMIENZA SU AUGE EN LOS AÑOS SETENTA, DEBIDO AL DESARROLLO DE LA DENO-MINADA ESTRATIGRAFIA SISMICA.













### JERARQUIAS DE LOS CICLOS ESTRATIGRAFICOS

Despues de DUVAL et. al., 1992





# ARQITECTURA DEPOSITACIONAL COMO UNA FUNCION PARA ACOMODAR EL VOLUMEN DE SEDIMENTOS

Despues de GALLOWAY, 1989

















#### WATER-DEPTH BARRIERS





#### MESOZOIC CYCLE CHART



| - 1     | ting.  | ess<br>ersaal | MICROFOSSIL,<br>HISTOGRAMS                 |                                             |                                        |                                    |                          | College                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |       | SEQUENCE<br>STRATIGRAPHY        |         |                                                    |                   |                   |                                       |
|---------|--------|---------------|--------------------------------------------|---------------------------------------------|----------------------------------------|------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|---------------------------------|---------|----------------------------------------------------|-------------------|-------------------|---------------------------------------|
| State . | 3383   | POSANGE.      | TOTAL MOTHER:<br>PORAMENERAL<br>ARCHIDANCE | TOTAL SENTING<br>PORCOSTRINGAL<br>DIVERSITY | PEANEYONE<br>PORAMONIPERAL<br>ANISONNE | HASEYONG<br>PERMITTERAL<br>ENGENTS | KARNOFOREE<br>ASTORDANCE | National Control of the Control of t | GOMMARAY             | Imego | 60600                           | 0001100 | DEPOSITIONAL<br>SYSTEMS                            | SYSTEMS<br>TRACKS | AGE<br>AGE        | MAXIMUM<br>PLOCOPIO<br>SURPACE<br>AGE |
| 3       | NK DS  |               |                                            |                                             |                                        |                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See Thousand The See |       | when your property with         |         | Prograding<br>Wedge<br>Slope Fan<br>BasinFloor Fan | TST HST LIST      | 66.0 my           | 69.5 my                               |
|         | NK 13s | 4 2 2         |                                            |                                             |                                        |                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       | And hand from the second second |         | Bain Roor Pas                                      | HST               | pod I se<br>ritid |                                       |





Table 6.1 Examples of the resolution of fossil groups by age and by geography

| Fossil group    | Age range                 | Geography        | Average<br>resolution<br>(million years) | References |
|-----------------|---------------------------|------------------|------------------------------------------|------------|
| Planktonic      | Neogene                   | Tropical         | 1.2                                      | 1          |
| Foraminifera    |                           |                  |                                          |            |
| Planktonic      | Neogene                   | Subtropical      | 1.4                                      | 1          |
| Foraminifera    |                           |                  |                                          |            |
| Planktonic      | Palaeogene                | Tropical         | 1.7                                      | 2, 3, 4    |
| Foraminifera    |                           |                  |                                          |            |
| Planktonic      | Palaeogene                | Southern         | 3.0                                      | 5          |
| Foraminifera    |                           | temperate        |                                          |            |
| Nannofossils    | Neogene                   | Undifferentiated | 1.0-1.3                                  | 6, 7       |
| Nannofossils    | Palaeogene                | Undifferentiated | 1.3-1.6                                  | 6, 7       |
| Radiolaria      | Neogene and<br>Palaeogene | Undifferentiated | 1.9-2.0                                  | 8          |
| Diatoms         | Neogene and<br>Palaeogene | Undifferentiated | 1.4-2.4                                  | 9, 10      |
| Dinoflagellates | Neogene and<br>Palaeogene | Undifferentiated | 5.7                                      | -11        |
| Dinoflagellates | Neogene                   | North Sea        | 3.3                                      |            |
| Dinoflagellates | Palaeogene                | North Sea        | 1.1                                      |            |
| Planktonic      | Cretaceous                | Tropical         | 2.5                                      | 12         |
| Foraminifera    |                           | 100000000        |                                          |            |
| Planktonic -    | Cretaceous                | Temperate        | 4.0                                      | 13         |
| Foraminifera    |                           |                  |                                          |            |
| Nannofossils    | Cretaceous                | Undifferentiated | 3.0                                      | 14         |
| Radiolaria      | Cretaceous                | Undifferentiated | 10.0                                     | 15         |
| Palynomorphs    | Cretaceous                | Undifferentiated | 6.5                                      | 11         |
| Palynomorphs    | Late Jurassic             | North Sea        | 1.0                                      |            |
| Palynomorphs    | Early-Middle<br>Jurassic  | North Sea        | 2.0-2.5                                  |            |







Barren or low diversity deep-water biotacles adapted to low oxygen conditions



| ENVIRONMENT        | HIGH<br>ENERGY/<br>OXIDIZING                   | Wind trans      | River transport Freshwater flora | Marine flora  Current transport                | ANAEROBIC<br>/ ANOXIC          |
|--------------------|------------------------------------------------|-----------------|----------------------------------|------------------------------------------------|--------------------------------|
| No.                | LITHOLOGY                                      | SWAMP           | FRESHWATER                       | BRACKISH NEARSHORE MARINE OFFSHOR              |                                |
|                    | SST/(LMST)                                     | COALS           | 3                                | MUDSTONES / SILTSTONES / (LIMESTONES)          | BLACK<br>SHALES                |
| KEROGEN COMPONENTS | BARREN /<br>BLACK<br>WOOD<br>CARBON<br>CONTENT |                 | Resin                            | Acanthon Prasinophycean algae Dinocysts Pollen | (ALGAE)<br>AMORPHOUS<br>MATTER |
|                    | NONE /<br>VERY LOW                             | MODERATE TO HIS | H 3                              | LOW TO MODERATE                                | STRUCTURED                     |

#### DECREASING DIVERSITY AND ABUNDANCE OF OCEANIC PLANKTON.

MARGINAL MARINE PLANKTONICS e.g. low diversity-more specific assemblages of coccolifications; diatoms; disoflagefates; and acritators

INNER SHELF PLANKTONICS e.g. moderate diversity of: Foraminifeca (small); diatoms; coccolithophores; dinoflagellates; acritarchs OPEN OCEAN PLANKTONICS e.g. high diversity of: Foraminifera. (small and large): Radiolaria; diatoms; coccolithophores; dinoflagellates; acritarchs



















- . Common, diverse planktonic and deep-water benthic fossils.
- . Numerous basinal index taxa with good correlative potential
- Indigenous, opportunistic benthic microfossils in hemipelagic drape between turbidites
- · Reworked fossils reflecting sediment provenance
- · Reworked slope fossil assemblages in rip-up clasts
- · Common, diverse planktonic and deep-water benthic fossils





Offshore marine







Coastal plain and nearshore

Submarine fan

Fig. 6.10 Generalized fossil signature in a lowstand fan



#### SCHEMATIC YRAY LOG





- Local shoreface reworking and abrupt change from nonmarine to marine tossils in proximal locations
- · Alternation of shallow marine and terrestrial environments
- Upward transition from marine to non-marine tossils in proximal locations
- · Diachronous biofacies boundaries
- Gradual upward increase in land-derived tossils
- Gradual upward reduction in open ocean planktonic fossils
- · Benthic fossils indicate gradual shallowing-up
- Common planktonic and deep-water benthic fossits
- Numerous basinal index taxa with good correlative potential
- . Reworked fossils

#### Facies





Offshore marine







Coastal plain and nearshore

Submarine





#### STRIKE-SLIP COMPRESSIONAL (FORELAND) EXTENSIONAL (RIFT) McKenzie (1978)-uniform stretching The second second (i) Initial stratigraphy (need not be layer cake) Crust (ii) Load applied, crust (1) No lithosphere downwarped, margins involvement Lithosphere Crust uplifted Lithosphere (iii) Load increases, erosion of thrust belt provides Crust (2) Lithosphere sediments for foreland involved basin Lithosphere (a) Tectonic model (iv) Thrusting stops, erosion Asthenosphere continues - load reduced Isostatic rebound of foothills (a) Tectonic models and basin - erosion of 80 foreland basin Heat flow (m.Mm) (a) Tectonic model Heat flow 80 100 my 0 Possible short-lived heat pulse 80 OWm) Heat flow (mWm<sup>-2</sup>) 0 100 my 40 Subsidence Subsidence Basement depth (m) Ritt margin ent depth (m) Possible Subsidence bulge Post-ritt ND Timescale phase 1000 for information only thermal est depth (m) 1000 subsidence 100 200 0 Syn-rift subsidence Basen 2000 uplit 1000 Pitt axis Post-progenic erosion and 3000 2000 Syn-orogenic Transfension Transpression rebound basin destruction bisin formation subsidence Possible thermal subsidence (b) Heat flow and subsidence (single point, rift axis) (b) Heat flow and subsidence (b) Heat flow and subsidence





| STRATAL<br>UNITS        | DEFINITIONS                                                                                                                                                                     | RANGE OF<br>THICKNESSES (FEET) | RANGE OF LATERAL<br>EXTENTS (SQ MILES) | RANGE OF TIMES FOR<br>FORMATION (YEARS) | TOOL RESOLUTION                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|
| SEQUENCE                | A RELATIVELY CONFORMABLE SUCCESSION<br>OF GENETICALLY RELATED STRATA<br>BOUNDED BY UNCONFORMITIES AND THEIR<br>CORRELATIVE CONFORMITIES (MITCHUM<br>AND OTHERS, 1977)           | 1000 100 10 1 INCHE            | 10 000 1000 100 10 1                   | 106 105106105 103 10 1                  |                                         |
| PARA<br>SEGUENCE<br>SET | A SUCCESSION OF GENETICALLY RELATED PARASEQUENCES FORMING A DISTINCTIVE STACKING PATTERN AND COMMONLY BOUNDED BY MAJOR MARINE FLOODING SURFACES AND THEIR CORRELATIVE SUR FACES | SECOND ONDER                   | 181-01                                 |                                         | EXPLORATION SEISM                       |
| PARA<br>SEQUENCE        | A RELATIVELY CONFORMABLE SUCCESSION OF GENETICALLY RELATED BEDS OR BEDSETS BOUNDED BY MARINE FLOODING SURFACES AND THEIR CORRELATIVE SUR- FACES                                 |                                |                                        |                                         |                                         |
| BEDSET                  | DECONOMI                                                                                                                                                                        |                                |                                        |                                         | 901                                     |
| BED                     | HEADER -1                                                                                                                                                                       |                                |                                        |                                         | THE |
| LAMINA<br>SET           | LOSSE DOSSE                                                                                                                                                                     |                                |                                        |                                         | OTCROP                                  |
| LAMINA                  | THE TOTAL STREET                                                                                                                                                                |                                |                                        |                                         | COME AND                                |





#### PATTERNS OF SEDIMENT ACCUMULATION

| BIOFACIES                             | STACKING<br>PATTERN                      | CYCLE<br>SHAPE       | LOG-PROFILE | PARA-<br>SEQUENCE                           | SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|---------------------------------------|------------------------------------------|----------------------|-------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| MIDDLE<br>NERETIC<br>INNER<br>NERETIC | BACK<br>STEPPING<br>THICKENING<br>UPWARD | FUNNELS              |             | PS PSS PSS PS                               | тѕт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "bw"     |
| INNER<br>NERETIC<br>MIDDLE<br>NERETIC | FORE<br>STEPPING<br>THINNING<br>UPWARD   | FUNNELS              |             | PS PSS                                      | нѕт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "tw"     |
| INNER<br>NERETIC<br>MIDDLE<br>NERETIC | BACK<br>STEPPING<br>THICKENING<br>UPWARD | FUNNELS              |             | PS PSS PS                                   | TST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "bw"     |
| MIDDLE<br>NERETIC<br>OUTER<br>NERETIC | FORE<br>STEPPING<br>THINNING<br>UPWARD   | FUNNELS              |             | PS<br>PS<br>PS<br>PS                        | LST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pc       |
| UPPER<br>BATHYAL                      | CRESCENTIC                               | SPIKYBLOCKY<br>SPIKY |             | D IN SLOPE AND<br>LES OF LOWSTAND<br>TRACTS | LST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sft      |
| UPPER<br>BATHYAL                      |                                          | SPIKY                |             | RECOGNIZE<br>1.00R FACI<br>SYSTEMS          | LST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sft      |
| BATHYAL                               |                                          | BLOCKY               |             | BASIN F                                     | The second secon | bft<br>B |
|                                       |                                          | 4 1 1 20 1           | 1           | SALVALE IN                                  | нѕт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

SB = SEQUENCE BOUNDARY
HST = HIGHSTAND SYSTEMS TRACT
TST = TRANSGRESSIVE SYSTEMS TRACT
LST = LOWSTAND SYSTEMS TRACT
CDS = CONDENSED SECTION
PS = PARASEQUENCE
PSS = PARASEQUENCE
TS = TRANSGRESSIVE SURFACE

"bw"= back-stepping wedge
"fw"= fore-stepping wedge
sft = slope-front thick
bft = basin-floor thick
ci = condensed interval
mfs = maximum flooding surface
pc = prograding complex



# REFLECTION TERMINATIONS



## LAPOUT:

BASELAP:

ONLAP:

DOWNLAP:

TOPLAP:

## TRUNCATION:

**EROSIONAL:** 

STRUCTURAL

CONCORDANCE:

NO TERMINATION



(mfs) = maximum flooding surface (TS) TRANSGRESSIVE SURFACE (First flooding surface above maximum progradation)

TST = TRANSGRESSIVE SYSTEMS TRACT ivf = incised valley fill

LST = LOWSTAND SYSTEMS TRACT

ivf = incised valley fill

Isw = lowstand wedge-prograding complex

st = lowstand slope fan

bf = lowstand basin floor fan

SMST = SHELF MARGIN SYSTEMS TRACT

#### QUALITATIVE/SYMBOLIC/QUANTITATIVE OCCURRENCE CHART QUALITATIVE SYMBOLIC QUANTITATIVE BENTHONICS **AREANCEOUS** PLANKTONICS BENTHONICS PREAKCEOUS PLANKTONICS BENTHONICS **AREANCEOUS** PLANKTONICS. 930 INTERVAL CU. 60 65 OU. (0 to to CU. m BUG 306 BUG BUG BUG BUG 908 BUG BUG BUG BUG BUG BUG BUG BUG BUG 4000 4 m Б 8 4 4868 9 (B) (B) 5 7 6 4898 5 1 4 2 6 4128-41201 7 1 3 5 1 4158-(LOC) 7 2 5 5 4188-1 2 4218-1 3 1 4 1 4248 5 3 4 8 | 9 | 11 1 9 4278-18 1 1 9 5. 8 8 8 18 4388-**7B** 12 3 3 6 1 4 4338-5 2 2 2 2 1 2 4369 1 7 1 X 4 1 4 4398-5 1 2 2 1 3 4428-4 1 3 3 4458-44581 4 2 2 3 4488 (LOG) 5 6 9 1 1 4518 3 8 1 E 1 3 1 4548 1 1 9 1 1 1 4578 1 4 1 1 4600 228187 2 21 47 4 3 24 77 2 24 4698 0/0 57 34 2 18 88 5 3 38 7 4668 43 14 3 2 2 10 2 1 3 9 4698 2 31112 98 17 4 2 19 超團 4 4728 92 13 8 91 63 1 17 3 | 3 4818-32 4 18 4 97 8 16 O 4848-49481 168 31 128 45 28 2 15 37 1 2 4 4878 (LOC) 90 54 2 3 58 37 17 2 8 33 5 4898-115 19 2 65 | 22 | 14 | 1 5 19 14 2 4915 报 ... 23 21 27 6 | 5 3 1 11 3 1 4939-16 18 22 13 4 9 18 4945 E 32 14 28 2 21 4 5 7 5 4969 50 E $\times$ DD 6 24 27 9 5 1 11 7 2 4975 DICX 6 9 13 9 1 5 3 3 4998 49981 **13 13** 17 22 33 5 3 3 1 4 3 2 5885 (LOG) 4 9 100 16 4 2 4 3 5030-KP20 5 14 1 85 5 1 1 7 4 2 5050-1 1 35 35 **園園**×× 32 8 4 1 2 113 6 5886 34 42 2 1 83 9 7 3

| Physio-<br>graphic<br>Area<br>Seismic<br>Reflection<br>Character | Basin                        | Slope<br>High       | Intraslope<br>Basin                 | m Grams                | pe/Shelf<br>Break<br>© | Shelf<br>B (A)<br>Fault |
|------------------------------------------------------------------|------------------------------|---------------------|-------------------------------------|------------------------|------------------------|-------------------------|
| External<br>Form                                                 | € Mound                      | © Sheet Drape       | © Chaotic<br>Basin                  | © Slope-<br>Front Fill | ® Wedge                | (A) Tabular             |
| Internal<br>Configuration                                        | Hummocky                     | Concordant          | Chaotic to<br>Hummocky              | Clinoform              | Divergent              | Concordant              |
| Reflection<br>Continuity                                         | Discon-<br>tinuous           | Continuous          | Discon-<br>tinuous                  | Continuous             | Continuous             | Continuous              |
| Reflection<br>Amplitude                                          | Variable                     | Moderate<br>to High | Variable                            | Moderate<br>to High    | Moderate               | Moderate<br>to High     |
| Upper<br>Reflection<br>Terminations                              | Onlap of<br>Upper<br>Surface | Concordant          | Apparent<br>Truncations<br>& Onlaps | Toplap                 | Toplap<br>&Truncation  | Local<br>Toplap         |
| Lower<br>Reflection<br>Terminations                              | Bidrirectional<br>Downlap    | Some<br>Onlap       | Random<br>Downlap                   | Downlap                | Downlap                | Local<br>Downlap        |

#### SEQUENCE STRATIGRAPHY DEPOSITIONAL MODEL SHOWING SURFACES AND SYSTEMS TRACTS



#### LEGEND

# (SB) SEQUENCE BOUNDARIES (SB 1) = TYPE 1 (SB 2) = TYPE 2 (DLS) DOWNLAP SURFACES (infs) = maximum fooding surface (tfs) = top fan surface (tfs) = top fan surface (timf / co) = top mass flow / channel overbank (TS) TRANSGRESSIVE SURFACE (First flooding surface above maximum regression)

SURFACES

#### SYSTEMS TRACTS HST = HIGHSTAND SYSTEMS TRACT TRANSGRESSIVE SYSTEMS TRACT ivf = incised valley fill LOWSTAND SYSTEMS TRACT ivf = incised valley fill Isw = lowstand wedge pac = prograding complex mf / co = mass flow / channel overbank deposits = lowstand fan to = fan channels fl = fan lobes SMW = SHELF MARGIN WEDGE SYSTEMS TRACT

DEPOSITIONAL CYCLES: (from Mitchum, 1977): FIRST-ORDER CYCLE: 100 to 200 million year duration.

SECOND-ORDER CYCLE: 10 to 80 million year duration.

THIRD-ORDER CYCLE: 1 to 10 million year duration.

Forth-Order Cycle: 100,000 to 1 million year duration.

Informally Defined: Forth-Order Cycle: 100,000 to 1 million year duration. Fifth-Order Cycle: 10,000 to 100,000 year duration.





# Correlation Of Local Cycles With Global Cycle Curves







# G

# HACIA DONDE VAP

EL FUTURO DE LA DIRECCION A TOMAR EN EL DESARROLLO DEL ESTUDIO DE SECUENCIAS ESTRATIGRAFICAS ES DIFICIL DE PREDECIR, DEBIDO A LA TURBULENTA HISTORIA DE LOS CAMBIOS DEL NIVEL DEL MAR.

POR LO PRONTO SE SABE, QUE LOS SISTEMAS CARNONATICOS REQUIEREN ESTUDIOS ESPECIALES PARA DEMOSTRAR LA IMPORTANCIA DE OTROS CONTROLES ADEMAS DE LOS CAMBIOS DEL NIVEL DEL MAR.

SE DEBE CONTINUAR EL ESTUDIO Y DESARROLLO DE METODO-LOGIAS PARA LOS AMBIENTES NO MARINOS

# Sequence Stratigraphy

