

Lab Report: 04

Course Code: CSE 430

Topic: Control Logic

Submitted By:

<u>Name</u>	<u>ID</u>
Farhana Binte Hakim Rimi	011182072
Sumaiya Binte Sadiq	011182117
Arafat Mohammad Haque	011182118
Mst. Tanzina Hasan	011162015

Submitted to:

Mohammad Mirazur Rahman

Lecturer, Department of CSE

United International University

Date of Submission: 07/11/22

Assignment Name: Addition Subtraction of Signed Numbers

Step 1: ALU Sub-circuit

Step 2: Accumulator Sub-circuit

We will be using a universal shift register (74194).

The shift register operates as follows-

 $S_1S_0 = 00 \rightarrow Hold value$

 $S_1S_0 = 11 \rightarrow Parallel Load$

Step 3: State transition

• Derivation of algorithm:

if
$$A \ge B$$
 ($C_{out} = 1$) if $A < B$ ($C_{out} = 0$)
$$(+A) + (+B) = + (A+B)$$

$$(+A) + (-B) = + (A-B) - (B-A)$$

$$(-A) + (+B) = - (A-B) + (B-A)$$

• Algorithm:

(-A) + (-B) = -(A+B)

- 1. If subtraction, complement the sign of B
- 2. If the sign of A and B are equal- A = A + B, E = C_{out}, end of process
- 3. Else -

I.
$$A = A - B$$
, $E = C_{out}$

- II. Check if the result (A) is positive, if so set E = 0 and end
- III. Otherwise change A to –A by performing 2's complement. Also complement the sign of A, and end process.

• Flowchart:

• State Diagram:

• Control Signal:

	X	S2	S1	S0	Cin	L	У	Z	W
TO:Ininitial state x=1	1	0	0	0	0	0	0	0	0
T1: $B_s = B_s'$	0	0	0	0	0	0	1	0	0
T2: nothing	0	0	0	0	0	0	0	0	0
T3: $A = A + B$ $E = C_{out}$	0	0	1	1	0	1	0	0	0
T4: A+B'+1 E=C _{out}	0	0	1	0	1	1	0	0	0
T5: E=0	0	0	0	0	0	0	0	0	1
T6: A=A'	0	1	0	1	0	1	0	0	0
T7:A=A+1 $A_s=A_s'$	0	0	0	0	1	1	0	1	0

Flip-flop input functions Output control functions $DT_0 = q_a'q_s'T_0 + T_3 + ET_5 + T_7$ $x = T_0$ $DT_1 = q_sT_0$ $s_2 = T_6$ $DT_2 = q_aT_0 + T_1$ $s_1 = T_3 + T_4$ $DT_3 = S'T_2$ $s_0 = T_3 + T_6$ $DT_4 = ST_2$ $L = T_3 + T_4 + T_6 + T_7$ $DT_5 = T_4$ $y = T_1$. 2 . 3	
$\begin{array}{lll} DT_0 = q_a'q_s'T_0 + T_3 + ET_5 + T_7 & x = T_0 \\ \\ DT_1 = q_sT_0 & s_2 = T_6 \\ \\ DT_2 = q_aT_0 + T_1 & s_1 = T_3 + T_4 \\ \\ DT_3 = S'T_2 & s_0 = T_3 + T_6 \\ \\ DT_4 = ST_2 & L = T_3 + T_4 + T_6 + T_7 \\ \\ DT_5 = T_4 & y = T_1 \\ \end{array}$	5	T È
$\begin{array}{lll} DT_1 = q_s T_0 & s_2 = T_6 \\ \\ DT_2 = q_a T_0 + T_1 & s_1 = T_3 + T_4 \\ \\ DT_3 = S' T_2 & s_0 = T_3 + T_6 \\ \\ DT_4 = ST_2 & L = T_3 + T_4 + T_6 + T_7 \\ \\ DT_5 = T_4 & y = T_1 \end{array}$	Flip-flop input functions	Output control functions
$DT_2 = q_a T_0 + T_1 \qquad s_1 = T_3 + T_4$ $DT_3 = S'T_2 \qquad s_0 = T_3 + T_6$ $DT_4 = ST_2 \qquad L = T_3 + T_4 + T_6 + T_7$ $DT_5 = T_4 \qquad y = T_1$	$DT_0 = q_a'q_s'T_0 + T_3 + ET_5 + T_7$	$x = T_0$
$DT_3 = S'T_2$ $s_0 = T_3 + T_6$ $DT_4 = ST_2$ $L = T_3 + T_4 + T_6 + T_7$ $DT_5 = T_4$ $y = T_1$	$DT_1 = q_sT_0$	$s_2 = T_6$
$DT_4 = ST_2$ $L = T_3 + T_4 + T_6 + T_7$ $DT_5 = T_4$ $y = T_1$	$DT_2 = q_a T_0 + T_1$	$s_1 = T_3 + T_4$
$DT_5 = T_4 y = T_1$	$DT_3 = S'T_2$	$s_0 = T_3 + T_6$
	$DT_4 = ST_2$	$L = T_3 + T_4 + T_6 + T_7$
DT 5/T	$DT_5 = T_4$	$y = T_1$
$DI_6 = E'I_5$ $Z = I_7$	$DT_6 = E'T_5$	$z = T_7$
$DT_7 = T_6$ $w = T_5$	$DT_7 = T_6$	$W = T_5$

Step 4: Implement transition logic:

Fig: Transition Logic Parent Sheet

Fig: Transition Logic Child Sheet

Step 5: Implement the control logic:

Step 6: Implement As, Bs and E:

Signal	JA _s	KA _s			
x = 1	Input	Input'			
z = 1	1	1			
JA _s = xInput + z KA _s = xInput' + z					
Signal	JB _s	ΚΒ _s			
x = 1	Input	Input'			
y = 1	1	1			
JB _s = xInput + y KB _s = xInput' + y					
Signal	JE	KE			
L = 1	C _{out}	C _{out} '			
w = 1	0	1			
$JE = LC_{out}$ $KE = LC_{out}' + w$					

Fig: A_s , B_s and E Parent Sheet

Fig: A_s Child Sheet

Fig: B_s Child Sheet

Fig: E Child Sheet

Step 8: Final Step

