# Část I Optimalizace

# Kapitola 1

# Základní geometrické pojmy

### 1.1 Přímky a úsečky

Mějme dva body  $x_1, x_2 \in \mathbb{R}^n$  takové, že  $x_1 \neq x_2$  a parametr  $\theta \in \mathbb{R}^n$ . Potom výraz

$$y = \theta x_1 + (1 - \theta)x_2 \tag{1.1}$$

popisuje **přímku** procházející body  $x_1$  a  $x_2$ . Pro  $\theta = 0$  dostáváme bod  $x_2$  a pro  $\theta = 1$  bod  $x_1$ . Omezíme-li  $\theta$  na interval  $\langle 0, 1 \rangle$ , dostaneme **úsečku** s koncovými body  $x_1$  a  $x_2$ . Výraz [I.1] lze přepsat do tvaru

$$y = x_2 + \theta(x_1 - x_2),$$

který můžeme interpretovat jako součet počátečního bodu  $x_2$  a nějakého násobku směrového vektoru  $x_1 - x_2$ .

### 1.2 Afinní prostory

Říkáme, že  $C \subseteq \mathbb{R}^n$  je **afinní prostor**, jestliže přímka procházející libovolnými dvěma různými body z C leží v C. Tedy C obsahuje lineární kombinace libovolných dvou bodů z C, jestliže součet koeficientů lineární kombinace je roven jedné. To lze zobecnit i pro více než dva body. Lineární kombinace  $\theta_1x_1+\cdots+\theta_kx_k$  bodů  $x_1,\ldots,x_k$  taková, že  $\theta_1+\cdots+\theta_k=1$ , se nazývá **afinní kombinace** bodů  $x_1,\ldots,x_k$ . Indukcí z definice afinního prostoru lze snadno ukázat, že pokud C je afinní množina,  $x_1,\ldots,x_k\in C$  a  $\theta_1+\cdots+\theta_k=1$ , potom bod  $\theta_1x_1+\cdots+\theta_kx_k\in C$ .

Nechť C je afinní prostor a  $x_0 \in C$ , potom množina

$$V = C - x_0 = \{x - x_0 \mid c \in C\}$$

je **vektorový prostor**, tj. množina, která je uzavřená na sčítání a násobení skalárem.

Afinní prostor C lze vyjádřit jako

$$C = V + x_0 = \{v + x_0 \mid v \in V\},\$$

kde V je vektorový prostor a  $x_0$  je počátek. Poznamenejme, že vektorový prostor V asociovaný s afinním prostorem C nezávisí na volbě počátku  $x_0$ . **Dimenze** afinního prostoru  $C = V + x_0$  je definována jako dimenze vektorového prostoru  $V = C - x_0$ , kde  $x_0$  je libovolný prvek z C. Množina všech afinních kombinací bodů množiny  $C \subseteq \mathbb{R}^n$  se nazývá **afinní obal** množiny C. Afinní obal množiny C budeme značit

**aff** 
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}$$
.

Afinní obal je nejmenší afinní prostor, který obsahuje množinu C. Tedy, jestliže S je afinní prostor takový, že  $C \subseteq S$ , potom **aff**  $C \subseteq S$ .

### 1.3 Konvexní množiny

Říkáme, že množina C je **konvexní**, jestliže úsečka mezi libovolnými dvěma body z C leží také v C. Jinak řečeno, jestliže pro libovolné dva body  $x_1, x_2 \in C$  a libovolné  $\theta \in \langle 0, 1 \rangle$  platí, že  $\theta x_1 + (1-\theta)x_2 \in C$ . Poznamenejme, že každý afinní prostor je zároveň konvexní množinou. Podobně jako afinní kombinaci definujeme **konvexní kombinaci** bodů  $x_1, \ldots, x_k$  jako  $\theta_1 x_1 + \cdots + \theta_k x_k$ , kde  $\theta_1 + \cdots + \theta_k = 1, \theta_i \geq 0$  pro  $i = 1, \ldots, k$ . **Konvexní obal** množiny C je množina všech konvexních kombinací bodů z množiny C, značíme

**conv** 
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_i \ge 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}.$$

Analogicky, konvexní obal množiny C je nejmenší konvexní množina, která obsahuje množinu C. Pro představu viz obrázek  $\boxed{1.1}$ 

# 1.4 Kužely

Množina C se nazývá **kužel**, jestliže pro každé  $x \in C$  a  $\theta \geq 0$  platí, že  $\theta x \in C$ . Je-li C navíc konvexní, pak se C nazývá **konvexní kužel**. Tedy C je konvexní kužel, jestliže pro libovolné  $x_1, x_2 \in C$  a  $\theta_1, \theta_2 \geq 0$  platí, že  $\theta_1 x_1 + \theta_2 x_2 \in C$ . Říkáme, že bod ve tvaru  $\theta_1 x_1 + \cdots + \theta_k x_k$ , kde  $\theta_1, \ldots, \theta_k \geq 0$  je **kuželovou kombinací** bodů  $x_1, \ldots, x_k$ . Dále, pokud  $x_i$  leží v konvexním kuželu množiny C, potom libovolná kuželová kombinace bodu  $x_i$  leží rovněž



(a) Množina bodů C



Obrázek 1.1: Konvexní obal množiny

v konvexním kuželu množiny C. Platí, že množina C je konvexní kužel právě tehdy, když C obsahuje všechny kuželové kombinace svých bodů. **Kuželový obal** množiny C je množina, která obsahuje všechny kuželové kombinace množiny C, tj.

**cone** 
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_i > 0, i = 1, \dots, k\}$$
.

Kuželový obal množiny C je zároveň nejmenší konvexní kužel, který obsahuje množinu C. Pro představu viz obrázek  $\boxed{1.2}$ .

### 1.5 Nadroviny a poloprostory

Nadrovina je množina ve tvaru

$$\left\{x \mid a^T x = b\right\},\,$$

kde  $a \in \mathbb{R}^n$ ,  $a \neq 0$  a  $b \in \mathbb{R}$ . Analyticky se na nadrovinu koukáme jako na množinu všech řešení netriviální lineární rovnice. Geometricky zase jako na množinu všech bodů takových, že mají konstantní skalární součin s normálovým vektorem a. Konstanta b značí posunutí nadroviny od počátku. Nadrovinu také můžeme vyjádřit jako

$$\{x \mid a^T(x - x_0) = 0\} = x_0 + \{v \mid a^Tv = 0\},\$$



#### (a) Množina bodů C



(b) cone C

Obrázek 1.2: Kuželový obal množiny

kde  $x_0$  je libovolný bod této nadroviny a  $\{v \mid a^Tv=0\}$  je množina všech vektorů, které jsou kolmé k normálovému vektoru a. Nadrovina je tedy množina, která obsahuje bod  $x_0$  a libovolný bod ve tvaru  $x_0+v$ , kde v je vektor, který je kolmý k normálovému vektoru a. Pro ilustraci v  $\mathbb{R}^2$  viz obrázek 1.3a.

Nadrovina dělí  $\mathbb{R}^n$  na dva poloprostory. Množina

$$\{x \mid a^T x \le b\}$$
, resp.  $\{x \mid a^T x < b\}$ ,

kde  $a \neq 0$  se nazývá (uzavřený) **poloprostor**, resp. **otevřený poloprostor**. Je to tedy množina všech řešení netriviální lineární nerovnice. Podobně jako

nadrovinu, můžeme poloprostor vyjádřit ve tvaru

$$\{x \mid a^T(x - x_0) \le 0\}, \text{ resp. } \{x \mid a^T(x - x_0) < 0\},$$

kde  $a \neq 0$  a  $x_0$  je libovolný bod z nadroviny  $\{x \mid a^Tx = b\}$ . Poloprostor tedy obsahuje bod  $x_0$  a libovolný bod  $x_0 + v$ , kde v je vektor, který s vnějším normálovým vektorem svírá tupý nebo pravý úhel. Tato interpretace je v  $\mathbb{R}^2$  ilustrována na obrázku 1.3b. Ještě poznamenejme, že poloprostory jsou konvexní množiny, ale samozřejmě nejsou afinní.



(a) Nadrovina



(b) Poloprostor

Obrázek 1.3: Nadrovina a poloprostor v  $\mathbb{R}^2$ .

# 1.6 Polyedry a polytopy

Polytopy jsou zobecněním konvexních mnohoúhelníků v rovině do více dimenzí. Polytop v  $\mathbb{R}^3$  je konvexní množina, která je ohraničena konečně mnoha konvexními mnohoúhelníky (příkladem polytopů v  $\mathbb{R}^3$  jsou např. Platónská tělesa). Na takovou množinu je možné nahlížet dvěma způsoby. **H-polyedr** je průnik konečně mnoha uzavřených poloprostorů v  $\mathbb{R}^n$ , kde **H-polytop** je omezený H-polyedr. **V-polytop** je konvexní obal konečně mnoha bodů v  $\mathbb{R}^n$ . Následující věta říká, že H-polytop a V-polytop jsou matematicky ekvivalentní množiny.

Věta 1. Každý V-polytop je H-polytop. Každý H-polytop je V-polytop.

Poznamenejme, že V-polytop a H-polytop jsou sice ekvivalentní množiny, ale z algoritmického hlediska je velký rozdíl, zda pracujeme s bodovou množinou, nebo s uzavřenými poloprostory. Pro ilustraci: mějme lineární funkci, kterou chceme minimalizovat na daném polytopu. Pro V-polytop se jedná o triviální problém, protože stačí pro každý bod z množiny V určit hodnotu dané funkce a vybrat minimum. Na druhou stranu pro H-polytop se jedná o netriviální problém, kterým se zabývá lineární programování. Dále budeme mluvit jen o **polyedrech** a **polytopech**.

Důležitý fakt, že každý polyedr je konečně generovaný, říká Minkowského-Weylova věta.

**Věta 2** (Minkowski-Weyl).  $P \subseteq \mathbb{R}^n$ . Potom  $P = conv(u_1, \ldots, u_r) + cone(v_1, \ldots, v_s)$ ,  $kde\ u_i, v_i\ jsou\ extremální\ vrcholy\ P\ právě\ tehdy,\ když\ P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ .

# Kapitola 2

# Konvexní optimalizace

### 2.1 Obecná podmíněná úloha

min 
$$f(x)$$
  
 $g_i(x) \le 0, i = 1, ..., m$   
 $h_i(x) = 0, i = 1, ..., p$  (2.1)

Hledáme  $x \in \mathbb{R}^n$ , které minimalizuje f(x), vzhledem k omezením  $g_i(x)$  a  $h_i(x)$ . Proměnné x říkáme **optimalizační proměnná**, funkci f(x) říkáme **cenová** nebo **účelová funkce**. Výrazy  $g_i(x) \leq 0$  jsou **omezení typu nerovnosti** a  $h_i(x) = 0$  jsou **omezení typu rovnosti**. Pokud m = p = 0 problém 2.1 je **neomezený**, jinak je **omezený**.

**Definiční obor**  $\mathcal{D}$  úlohy 2.1 je

$$\mathcal{D} = \bigcap_{i=1}^m \mathbf{dom} \ g_i \cap \bigcap_{i=1}^p \mathbf{dom} \ h_i.$$

Říkáme, že bod  $x \in \mathcal{D}$  je **přípustný**, jestliže splňuje všechna omezení  $g_i(x) \leq 0$  a  $h_i(x) = 0$ . Úloha 2.1 je **přípustná**, jestliže existuje alespoň jeden bod  $x \in \mathcal{D}$ , který je přípustný. Množina všech přípustných bodů  $x \in \mathcal{D}$  se nazývá **přípustná množina**.

**Optimální hodnota**  $x^*$  úlohy 2.1 je definována jako

$$x^* = \{f(x) \mid g_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}.$$

### 2.2 Konvexní podmíněná úloha

min 
$$f(x)$$
  
 $g_i(x) \le 0, i = 1, ..., m$  (2.2)  
 $a_i^T x = b_i, i = 1, ..., p$ 

Oproti obecné úloze 2.1 jsou funkce  $f(x), g_i(x)$  konvexní a funkce  $h_i(x) = a_i^T x - b_i$  jsou afinní. Přípustná množina takové úlohy je konvexní množinou.

### 2.3 Lagrangeova dualita

Mějme úlohu 2.1 s  $\mathcal{D} \neq 0$ . Zobrazení  $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$  takové, že

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$
 (2.3)

se nazývá **Lagrangeova funkce**. Definiční obor **dom**  $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ . Vektory  $\lambda$  a  $\mu$  nazýváme **duální proměnné** a prvkům těchto vektorů říkáme **Lagrangeovy multiplikátory**. Dále definujeme **duální funkci**  $d : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$  jako infimum Lagrangeovy funkce L přes všechna  $x \in \mathcal{D}$ . Tedy

$$d(\lambda, \mu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) = \inf_{x \in \mathcal{D}} \left( f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \right). \tag{2.4}$$

Poznamenejme, že duální funkce je konkávní bez ohledu na to, zda je úloha konvexní a je-li L zdola neomezená v proměnné x, potom duální funkce nabývá hodnoty  $-\infty$ .

#### 2.3.1 Dolní odhad na $x^*$

Nechť  $\tilde{x}$  je přípustný bod. Pro  $\lambda \geq 0$  je

$$\sum_{i=1}^{m} \lambda_i g_i(\tilde{x}) + \sum_{i=1}^{p} \mu_i h_i(\tilde{x}) \le 0.$$

Potom pro Lagrangeovu funkci můžeme psát

$$L(\tilde{x}, \lambda, \mu) = f(\tilde{x}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{x}) + \sum_{i=1}^{p} \mu_i h_i(\tilde{x}) \le f(\tilde{x}).$$

A tedy pro duální funkci platí

$$d(\lambda, \mu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) \le L(\tilde{x}, \lambda, \mu) \le f(\tilde{x}).$$

#### 2.3.2 Duální úloha

V části 2.3.1 jsme si ukázali, že duální funkce dává dolní odhad na optimální hodnotu  $x^*$  úlohy 2.1 Stále jsme si ale neřekli, jaký je nejlepší dolní odhad, který pomocí duální funkce jsme schopni dostat. To nás dostává k následující optimalizační úloze.

$$\max_{\lambda > 0} d(\lambda, \mu) \tag{2.5}$$

Úloze 2.5 se říká **Lagrangeova duální úloha** příslušná k úloze 2.1 kterou nazýváme **primární úlohou**.

#### 2.3.3 Slabá dualita

Optimální řešení Lagrangeovy duální úlohy označíme  $d^*$ , které je už z definice nejlepší dolní odhad na optimální řešení primární úlohy  $p^*$ . Tato nerovnost platí i pokud primární úloha není konvexní. Této nerovnosti říkáme **slabá dualita**. Rozdíl optimálních řešení  $p^* - d^*$  označujeme jako **optimální dualitní rozdíl** primární úlohy. Poznamenejme, že optimální dualitní rozdíl je vždy nezáporný.

#### 2.3.4 Silná dualita a Slaterova podmínka

Pokud je optimální dualitní rozdíl  $p^* - d^* = 0$ , pak říkáme, že platí silná dualita. Silná dualita obecně neplatí, ale pro primární úlohu, která splňuje nějaké další podmínky to možné je. Těmto podmínkám se říká **podmínky** kvalifikace omezení. Jednou takovou je Slaterova podmínka:

$$\exists x \in \mathbf{relint} \ \mathcal{D}: \ f_i(x) < 0, i = 1, \dots, m, Ax = b.$$

Bodu  $x \in \mathcal{D}$ , který splňuje Slaterovu podmínku, říkáme, že je **striktně přípustný**, protože omezení typu nerovnosti jsou ostré. Pokud jsou některé funkce  $f_i$  afinní, můžeme Slaterovu podmínku modifikovat. Nechť tedy  $f_1, \ldots, f_k, k \leq m$ , jsou afinní funkce. Potom **modifikovaná Slaterova podmínka** má tvar:

$$\exists x \in \mathbf{relint} \ \mathcal{D}: \ f_i(x) \le 0, i = 1, \dots, k, f_i(x) < 0, i = k + 1, \dots, m, Ax = b.$$

Pro úlohu 2.2 platí následující věta.

**Věta 3** (Slaterova). Nechť primární úloha je konvexní a platí (modifikovaná) Slaterova podmínka, potom  $p^* = d^*$ .

# TODO

**Použití duální úlohy:** obecnou primární úlohu je těžké vyřešit, ale duální úloha je vždy konvexní, tak vyřeším tu a mám alespoň dolní odhad na primární úlohu

# Kapitola 3

# Lineární programování

#### 3.1 Primární úloha

Úlohou lineárního programování rozumíme minimalizaci nebo maximalizaci lineární **účelové funkce** vzhledem k lineárním **omezením**, kde tato omezení jsou dána soustavou lineární rovnic a nerovnic. Úlohu lineárního programování lze formulovat v několika ekvivalentních tvarech, které se liší zadáním omezení. Úloha v **kanonickém tvaru** má svá omezení dána soustavou lineárních nerovnic  $Ax \leq b$ . Tedy:

$$\max \left\{ c^T x \mid Ax \le b, x \ge 0 \right\}, \tag{LP-P}$$

kde  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^n$ ,  $x \in \mathbb{R}^n$  a  $c \in \mathbb{R}^n$ . **Přípustná množina řešení** je průnikem poloprostorů, které jsou definovány soustavou nerovnic  $Ax \leq b$  a **nezáporného ortantu**, tj. množiny  $\{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$ . Obě tyto množiny jsou konvexní a tedy i jejich průnik je rovněž konvexní množina. Dále, protože přípustnou množinu máme popsanou soustavou konečně mnoha lineárních nerovnic, geometricky se na úlohu LP-P můžeme koukat jako na maximalizaci lineární funkce přes polyedr, který je definován touto soustavou.

Příklad. Mějme následující úlohu:

$$\max x_1 + x_2 - x_1 + 3x_2 \le 4 4x_1 - x_2 \le 6 x > 0.$$
 (P1)

Přípustná množina řešení je zobrazena na obrázku 3.1. Řešením úlohy je vektor  $x^* = (2,2)$  s cenou 4. Implementace v softwaru MOSEK: https://github.com/c0n73x7/D1PL0MK4/blob/master/mosek/ex1.py.



Obrázek 3.1: Přípustná množina řešení k úloze P1.

# 3.2 Dualita

Pomocí Lagrangeovy duality odvodíme duální úlohu k primární úloze LP-P. Máme tedy optimalizační úlohu

$$\min\left\{-c^Tx\mid Ax\leq b, x\geq 0\right\}.$$

Pro ní vytvoříme Lagrangeovu funkci

$$L(x,\lambda) = -c^T x + \lambda^T (Ax - b) - \lambda^T x$$
  
=  $-b^T \lambda + (A^T \lambda - c - \lambda)^T x$ .

Z Lagrangeovo funkce přejdeme k duální funkci

$$\begin{split} d(\lambda) &= \inf_{x} L(x,\lambda) \\ &= \inf_{x} -b^T \lambda + \left(A^T \lambda - c - \lambda\right)^T x \\ &= \begin{cases} -b^T \lambda & \text{pokud } A^T \lambda - c - \lambda = 0, \\ -\infty & \text{jinak.} \end{cases} \end{split}$$

Tu nakonec použijeme v duální úloze:

$$\max \left\{ -b^T \lambda \mid A^T \lambda - c - \lambda = 0 \right\}$$

$$\max\left\{-b^T\lambda\mid A^T\lambda\geq c, \lambda\geq 0\right\}$$

$$\min \left\{ b^T \lambda \mid A^T \lambda \ge c, \lambda \ge 0 \right\}$$
 (LP-D)

Dostáváme tedy duální úlohu LP-D k primární úloze LP-P.

**Příklad.** Duální úloha k úloze P1 je ve tvaru:

$$\min 4y_1 + 6y_2 
-y_1 + 4y_2 \ge 1 
3y_1 - y_2 \ge 1 
y \ge 0.$$
(P2)

Přípustná množina řešení je zobrazena na obrázku 3.2. Řešením úlohy je vektor  $y^* \approx (0.4546, 0.3636)$  s cenou 4. Implementace v softwaru MOSEK: https://github.com/c0n73x7/D1PL0MK4/blob/master/mosek/ex2.py.



Obrázek 3.2: Přípustná množina řešení k úloze P2

Všimněme si, že v příkladech P1 a P2 mají řešení  $x^*$  i  $y^*$  stejnou cenu. To není náhoda a tento fakt je obsahem silné věty o dualitě lineárního programování, kterou dokázala skupina kolem Alberta W. Tuckera v roce 1948. Začneme slabou větou o dualitě lineárního programování.

**Věta 4** (Slabá o dualitě). Nechť  $\tilde{x}$  je přípustné řešení LP-P a  $\tilde{y}$  je přípustné řešení LP-D. Potom  $c^T\tilde{x} \leq b^T\tilde{y}$ .

Tedy každé přípustné řešení  $\tilde{y}$  duální úlohy LP-D nám dává horní odhad na maximum účelové funkce primární úlohy LP-P. Graficky můžeme slabou

větu o dualitě interpretovat jako na obrázku 3.3. Zatím tedy nevíme, zda vždy existují přípustná (optimální) řešení  $x^*$  pro úlohu LP-P a  $y^*$  pro úlohu LP-D, pro která platí  $c^Tx^* = b^Ty^*$ . Kladnou odpověď dostaneme z již zmíněné silné věty od dualitě.



Obrázek 3.3: Slabá věta o dualitě.

**Věta 5** (Silná o dualitě). *Jestliže úlohy LP-P* a *LP-D* mají přípustná řešení. *Potom* 

$$\max \{c^T x \mid Ax \le b, x \ge 0\} = \min \{b^T y \mid A^T y \ge c, y \ge 0\}.$$

Se znalostí silné věty o dualitě můžeme obrázek 3.3 upravit na obrázek 3.4



Obrázek 3.4: Ceny přípustných řešení primární a příslušné duální úlohy.

### 3.3 Komplementární skluzovost

Pro odvození tzv. podmínky komplementární skluzovosti nejprve převedeme úlohy LP-P a LP-D do jiných tvarů. V primární úloze povolíme  $x \in \mathbb{R}^n$ . Tedy primární úloha je ve tvaru:

$$\max\left\{c^{T}x \mid Ax \le b\right\}. \tag{LP-P2}$$

A příslušná duální úloha je ve tvaru:

$$\min \left\{ b^T y \mid A^T y = c, y \ge 0 \right\}. \tag{LP-D2}$$

Nechť  $\tilde{x}$  je připustné řešení a  $x^*$  je optimální řešení úlohy LP-P2,  $\tilde{y}$  je přípustné řešení a  $y^*$  je optimální řešení úlohy LP-D2. **Dualitní rozdíl**  $\tilde{x}$  a  $\tilde{y}$  je číslo  $b^T\tilde{y}-c^T\tilde{x}\geq 0$ . Ze silné věty o dualitě samozřejmě plyne, že pro optimální řešení  $x^*$  a  $y^*$  je dualitní rozdíl roven 0. Vyjdeme z dualitního rozdílu optimálních řešení:

$$b^{T}y^{*} - c^{T}x^{*} = y^{*T}b - y^{*T}Ax^{*} = y^{*T}(b - Ax^{*}) = 0.$$

Poslední rovnost přepíšeme maticově:

$$\begin{bmatrix} y_1^*, \dots, y_m^* \end{bmatrix} \begin{pmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} - \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1^* \\ \vdots \\ x_n^* \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Dostáváme tedy soustavu rovnic  $y_i^* (b_i - a_i x^*) = 0$ , kde i = 1, ..., m. Tedy buď  $y_i^* = 0$  nebo  $b_i - a_i x^* = 0$ . **Podmínka komplementární skluzovosti** je splněna, jestliže pro přípustná řešení  $\tilde{x}, \tilde{y}$  platí buď  $\tilde{y}_i = 0$  nebo  $b_i - a_i \tilde{x} = 0$ , i = 1, ..., m. Pokud nastane  $b_i - a_i \tilde{x} = 0$ , potom říkáme, že **vazba**  $a_i \tilde{x} \leq b_i$  **je aktivní**.

**Věta 6.** Nechť  $\tilde{x}$  je přípustné řešení LP-P2 a  $\tilde{y}$  je přípustné řešení LP-D2. Potom  $\tilde{x}, \tilde{y}$  jsou optimální právě tehdy, když platí podmínka komplementární skluzovosti.

# Kapitola 4

# Semidefinitní programování

Na semidefinitní programování se můžeme koukat jako na zobecnění lineárního programování, kde proměnné jsou symetrické matice. Jedná se tedy o optimalizaci lineární funkce vzhledem k tzv. lineárním maticovým nerovnostem.

## 4.1 Vsuvka z lineární algebry

#### Pozitivně definitní matice

Pracujeme s reálnými symetrickými maticemi  $S=S^T$ . Ty mají všechna vlastní čísla reálná a některé z nich mají zajímavou vlastnost, že všechna jejich vlastní čísla jsou kladná. Takovým maticím říkáme, že jsou pozitivně definitní. Alternativní definicí je, že matice S je pozitivně definitní, jestliže  $x^TSx>0$  pro všechny nenulové vektory x.

#### Příklad.

$$x^{T}Sx = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 + 8x_1x_2 + 9x_2^2$$

Je pro všechny x nenulové  $x^TSx > 0$ ? Ano, protože můžeme výraz přepsat na součet čtverců:

$$x^{T}Sx = 2x_1^2 + 8x_1x_2 + 9x_2^2 = 2(x_1 + 2x_2)^2 + x_2^2.$$

TODO: obrázek kyblíčku

Ukážeme si několik kritérií, jak otestovat pozitivní definitnost dané matice.

**Věta 7.**  $S = S^T$  je pozitivně definitní, jestliže lze napsat jako  $S = A^T A$  pro nějakou matici A, která má lineárně nezávislé sloupečky.

Důkaz.

$$x^{T}Sx = x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||^{2} \ge 0$$
(4.1)

 $\|Ax\|^2>0,$ jestliže sloupečky matice Ajsou lineárně nezávislé  $\hfill\Box$ 

Příklad.

$$S = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 5 & 7 \\ 4 & 7 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} = AA^{T}$$

A má lineárně závislé sloupečky, tj. S není pozitivně definitní

Dalším testem je tzv. Sylvesterovo kritérium.

**Věta 8.**  $S = S^T$  je pozitivně definitní, jestliže všechny hlavní minory S jsou kladné.

Příklad.

$$S = \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix}, D_1 = 3, D_2 = 3 \cdot 6 - 4 \cdot 4 = 2$$

hlavní minory  $D_1, D_2 > 0$ ; matice S je pozitivně definitní

A poslední, které si uvedeme souvisí s Gaussovou eliminací.

**Věta 9.**  $S = S^T$  je pozitivně definitní, jestliže jsou všechny pivoty při Gaussově eliminaci kladné.

Příklad.

$$S = \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 3 & 4 \\ 0 & \frac{2}{3} \end{bmatrix}, p_1 = 3, p_2 = \frac{2}{3}$$

pivoty  $p_1, p_2 > 0$ ; matice S je pozitivně definitní

#### Pozitivně semidefinitní matice

Pro pozitivní semidefinitnost modifikujeme předcházejí definice a tvrzení pro pozitivně definitní matice následovně:

- 1.  $S = S^T$  je pozitivně semidefinitní, jestliže všechna její čísla jsou nezáporná.
- 2.  $S = S^T$  je pozitivně semidefinitní, jestliže  $x^T S x \geq 0$  pro všechny nenulové vektory x.
- 3.  $S=S^T$ je pozitivně semidefinitní, jestliže lze napsat jako  $S=A^TA$  pro nějakou matici A.
- 4.  $S = S^T$  je pozitivně semidefinitní, jestliže všechny hlavní minory S jsou nezáporné.
- 5.  $S=S^T$  je pozitivně semidefinitní, jestliže jsou všechny pivoty při eliminaci nezáporné.

21

#### Pozitivně semidefinitní kužel

Množinu všech symetrických matic značíme  $S^n$ , množinu všech pozitivně semidefinitních matic značíme  $S^n_+$  a množinu všech pozitivně definitních matic značíme  $S^n_{++}$ .

Lemma 1.  $Množina S_n^+$  je uzavřená

**Lemma 2.** Množina  $S^n_+$  tvoří konvexní kužel.

 $D\mathring{u}kaz. \ \Theta_1, \Theta_2 \ge 0, \ A, B \in S^n_+$ 

$$x^T (\Theta_1 A + \Theta_2 B) x = x^T \Theta_1 A x + x^T \Theta_2 B x \ge 0.$$

**Lemma 3.** Kužel  $S^n_+$  je pointed.

**Lemma 4.** Kužel  $S^n_+$  je samoduální.

Shrneme předchozí lemmata do následující věty.

**Věta 10.** Množina  $S^n_+$  tvoří konvexní, pointed a uzavřený kužel, který je samoduální.

Říkáme, že  $S^n_+$  je **pozitivně semidefinitní kužel**.

#### Spektraedry

Definujeme tzv. Löwnerovo částečné uspořádání:

$$A \succeq B \iff A - B \in S_+^n$$

tj. matice A-B je pozitivně semidefinitní. **Lineární maticová nerovnost** (LMI) je ve tvaru

$$A_0 + \sum_{i=1}^n A_i x_i \succeq 0,$$

kde  $A_i \in S^n$ .

Množina  $S \subset \mathbb{R}^n$ , která je definována pomocí konečně mnoha LMI, se nazývá **spektraedr**. Tedy:

$$S = \left\{ (x_1, \dots, x_m) \in \mathbb{R}^m \mid A_0 + \sum_{i=1}^m A_i x_i \succeq 0 \right\}$$

pro nějaké symetrické matice  $A_0, \ldots, A_m \in S^n$ .

Můžeme si všimnout analogie s definicí polyedru, který je přípustnou množinu pro lineární program. Podobně spektraedr je přípustnou množinou pro semidefinitní program.

Geometricky je spektraedr definován jako průnik pozitivně semidefinitního kuželu  $S_+^n$  a afinního podprostoru **span**  $\{A_1, \ldots, A_m\}$  posunutého do  $A_0$ .

Spektraedry jsou uzavřené množiny, neboť LMI je ekvivalentní nekonečně mnoha skalárním nerovnostem ve tvaru  $v^T(A_0 + \sum_{i=1}^m A_i x_i)v \geq 0$ , jednu pro každou hodnotu  $v \in \mathbb{R}^n$ .

Vždy můžeme několik LMI "scucnout" do jedné. Stačí zvolit matice  $A_i$  blokově diagonální. Odtud snadno vídíme, že polyedr je speciálním případem spektraedru. Polyedr bude mít všechny matice  $A_i$  diagonální.

#### Příklad.

$$\left\{ (x,y) \in \mathbb{R}^2 \mid A(x,y) = \begin{bmatrix} x+1 & 0 & y \\ 0 & 2 & -x-1 \\ y & -x-1 & 2 \end{bmatrix} \succeq 0 \right\}$$

### 4.2 Primární úloha

Semidefinitní program je lineární optimalizační problém přes spektraedr. Primární úlohu ve standardním tvaru můžeme napsat jako:

$$\inf \{ \langle C, X \rangle \mid \langle A_i, X \rangle = b_i, i = 1, \dots, m; X \succeq 0 \}, \qquad (SDP-P)$$

kde  $C,A_i\in S^n,$   $\langle X,Y\rangle={\bf Tr}(X^TY)=\sum_{ij}X_{ij}Y_{ij}$  a  $X\in S^n$  je proměnná, nad kterou provádíme minimalizaci.

#### Příklad.

$$\inf \left\{ \left\langle \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix} \right\rangle \middle| \left\langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix} \right\rangle = 1, \begin{bmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix} \succeq 0 \right\}$$
(P3)

Po úpravě:

$$\inf \left\{ 2x_{11} + 2x_{12} \middle| x_{11} + x_{22} = 1, \begin{bmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{bmatrix} \succeq 0 \right\}.$$

Jak vypadá přípustná množina? Použijeme Sylvesterovo kritérium, tj.

$$x_{11} \ge 0, x_{11}x_{22} - x_{12}^2 \ge 0.$$

Z LMI vyjádříme  $x_{22}$ , tj.

$$x_{22} = 1 - x_{11}$$

Dosadíme do přechozího a dostaneme

$$x_{11} \ge 0, x_{11} (1 - x_{11}) - x_{12}^2 \ge 0$$

Po úpravě

$$x_{11} \ge 0, \left(x_{11} - \frac{1}{2}\right)^2 + x_{12}^2 \le \frac{1}{4}$$

Vidíme tedy, že přípustná množina (zobrazena na obrázku 4.1) je kruh s poloměrem  $\frac{1}{2}$  a se středem v bodě  $(x_{11}, x_{12}) = (\frac{1}{2}, 0)$ . Řešením úlohy je matice

$$X^* \approx \begin{bmatrix} 0.1464 & -0.3536 \\ -0.3536 & 0.8536 \end{bmatrix}$$

s cenou  $\approx -0.4142$ . Implementace v softwaru MOSEK: https://github.com/c0n73x7/D1PL0MK4/blob/master/mosek/ex3.py.



Obrázek 4.1: Přípustná množina řešení k úloze P3.

#### 4.3 Dualita

#### Duální úloha

Podobně jako u lineárního programování použijeme Lagrangeovu dualitu k odvození duální úlohy k úloze SDP-P. Lagrangeova funkce je ve tvaru:

$$L(X, \lambda, Z) = \langle C, X \rangle - \sum_{i=1}^{m} \lambda_i \left( \langle A_i, X \rangle - b_i \right) - \langle Z, X \rangle.$$

K ní duální funkce:

$$d(\lambda, Z) = \inf_{X \in S^n} L(X, \lambda, Z) = \begin{cases} \lambda^T b & \dots C - \sum_{i=1}^m \lambda_i A_i - Z = 0, \\ -\infty & \dots \text{ jinak.} \end{cases}$$

Duální funkci použijeme v duální úloze:

$$\sup \left\{ \lambda^T b \mid C - \sum_{i=1}^m \lambda_i A_i \succeq 0 \right\}, \tag{SDP-D}$$

kde  $\lambda = (\lambda_1, \dots, \lambda_m)$  je duální proměnná. Dostali jsme duální úlohu SDP-D k úloze SDP-P

#### Slabá dualita semidefinitního programování

Vztah mezi primární a duální úlohou je stejně jako u lineárního programování takový, že řešení jedné úlohy lze použít jako odhad na úlohu druhou. Nechť X je libovolné přípustné řešení primární úlohy a y je libovolné přípustné řešení duální úlohy. Potom

$$\langle C, X \rangle - b^T y = \langle C, X \rangle - \sum_{i=1}^m y_i \langle A_i, X \rangle = \left\langle C - \sum_{i=1}^m A_i y_i, X \right\rangle \ge 0.$$
 (4.2)

Za pozornost stojí poslední nerovnost, která plyne z toho, že skalární součin dvou pozitivně semidefinitních matic je nezáporný. Odvození je následující: mějme dvě matice  $S, T \succeq 0$ . Matici S můžeme napsat jako součet "rank one" matic. Označme  $r_S = rank(S)$ , tj.

$$S = \sum_{i=1}^{r_S} \lambda_i s_i s_i^T,$$

kde  $s_i$  je i-tý sloupeček matice S. Dále se podíváme na součin  $T \cdot S_i$ . Tedy pro  $i = 1, \ldots, r_S$  platí

$$T \cdot S_i = \lambda_i s_i^T T s_i \ge 0,$$

kde nerovnost plyne z toho, že matice T je pozitivně semidefinitní.

O nerovnosti 4.2 se mluví jako o slabé dualitě semidefinitního programování.

#### Silná dualita semidefinitního programování

**Věta 11** (podmínka optimality). Nechť X je přípustné řešení úlohy <u>SDP-P</u> a y je přípustné řešení úlohy <u>SDP-D</u> taková, že splňují podmínku (komplementární skluzovosti)

$$\left(C - \sum_{i=1}^{m} A_i y_i\right) X = 0.$$

Potom X je optimální řešení úlohy SDP-P a y je optimální řešení úlohy SDP-D.

Obracená implikace sama o sobe neplatí, což znamená, že obecně dualitní rozdíl u semidefinitního programování není nulový. Musíme přidat podmínku kvalifikace omezení, kterou je například již zmíněná Slaterova podmínka. Ta je pro úlohu SDP-P ve tvaru  $X \succ 0$  a pro úlohu SDP-D ve tvaru  $C - \sum_i A_i y_i \succ 0$ .

Věta 12 (silná dualita semidefinitního programování). Nechť úloha SDP-P a úloha SDP-D jsou striktně přípustné. Potom dualitní rozdíl jejich optimálních řešení je nulový.

### **BACKLOG**

Stopa matice  $A \in \mathbb{R}^{n \times n}$  je  $\mathbf{Tr}(A) = \sum_{i=1}^{n} A_{ii}$ .

Věta 13. S, T jsou pozitivně definitní  $\implies S + T$  je pozitivně definitní

$$D\mathring{u}kaz. \ x^{T}(S+T)x = x^{T}Sx + x^{T}Tx > 0$$

Úlohy s racionálními daty nemusí mít racionální optimální řešení. příklad Jen 3 kužely s vlastnostmi jako PSD cone. Zmrzlina, a ještě jeden. Vnitřek  $S^n_+$  je  $S^n_{++}$ .

Fejérova věta