

Periodic table - properties of elements types of Chemical Bonds

Chapters 8-9

Instructors of Chem3111 2022-2023

Electron Configurations of Cations and Anions Of Representative Elements

ISLAMIC UNIVERSITY OF MADINAH

Na [Ne]3s¹

Na⁺ [Ne]

Ca [Ar]4s²

Ca²⁺ [Ar]

AI [Ne] $3s^23p^1$ Al $^{3+}$ [Ne]

Atoms lose electrons so that cation has a noble-gas outer electron configuration.

Atoms gain electrons so that anion has a noble-gas outer electron configuration.

H 1s¹ H⁻ 1s² or [He]

 $F 1s^22s^22p^5 F^- 1s^22s^22p^6 or [Ne]$

O $1s^22s^22p^4$ O²⁻ $1s^22s^22p^6$ or [Ne]

N $1s^22s^22p^3$ N³⁻ $1s^22s^22p^6$ or [Ne]

Isoelectronic: have the same number of electrons, and hence the same groundstate electron configuration

Na⁺: [Ne] Al³⁺: [Ne] F⁻: 1s²2s²2p⁶ or [Ne]

O²: 1s²2s²2p⁶ or [Ne] N³: 1s²2s²2p⁶ or [Ne]

Na+, Al3+, F-, O2-, and N3- are all isoelectronic with Ne

What neutral atom is isoelectronic with H⁻?

H⁻: 1s² same electron configuration as He

The electron arrangement of an atom at its lowest possible energy state is known as the ground state electron configuration

Electron Configurations of Cations of Transition Metals

Transition Elements: elements with electron configuration of incompletely filled d subshells or readily give rise to cations that have incompletely filled d subshells. Elements in Groups 1B-to-7B

When a cation is formed from an atom of a transition metal, electrons are always removed first from the ns orbital and then from the (n-1)d orbitals.

Fe: [Ar]4s²3d⁶ Mn: [Ar]4s²3d⁵

Fe²⁺: [Ar]4s⁰3d⁶ or [Ar]3d⁶ Mn²⁺: [Ar]4s⁰3d⁵ or [Ar]3d⁵

Fe³⁺: [Ar]4s⁰3d⁵ or [Ar]3d⁵

lonization energy is the minimum energy (kJ/mol) required to remove an electron from a gaseous atom in its ground state.

$$I_1 + X_{(g)} \longrightarrow X^+_{(g)} + e^ I_1$$
 first ionization energy

$$I_2 + X^+_{(g)} \longrightarrow X^{2+}_{(g)} + e^ I_2$$
 second ionization energy

$$I_3 + X^{2+}_{(g)} \longrightarrow X^{3+}_{(g)} + e^- I_3$$
 third ionization energy

$$l_1 < l_2 < l_3$$

The electron arrangement of an atom at its lowest possible energy state is known as the ground state electron configuration

- •Electron affinity (EA) is the energy related to adding an electron to a gaseous atom
- •Represented as X(g) + e⁻ → X⁻(g)
- Whereas IE (Ionization Energy) is: X(g) → X+(g) + e⁻
- The trend for EA is the same as that for IE
- •Imagine an atom with a high IE. It is difficult to remove an electron; so, it will also be easy to add a new one
- Noble gases do not follow the trend in EA (a filled valence shell makes it energetically unfavorable to add an electron)

Bonding definition, types and properties

<u>Valence electrons</u> are the outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding.

bonding.	SERVICE TO
النفاعة المنافية المائية المنافقة	- Last
ISLAMIC UNIVERSITY OF MADINAH	

<u>Group</u>	e- configuration	# of valence e
1 A	ns¹	1
2A	ns²	2
3A	ns²np¹	3
4A	ns²np²	4
5A	ns²np³	5
6A	ns²np⁴	6
7 A	ns²np⁵	7

		Le	wis			-	ool	المالات SITY OF	r th		-		ent	ativ	⁄e		
					Ele	mei	nts	& N	lop	ie (jas	es					
1/																	18 8A
•н	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	не:
·L	· Be	• %										· · · · · · · · · · · · · · · · · · ·	٠ċ٠	·Ņ·	·	: <u>F</u> ·	:Ne:
• N:	a •Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	· Ål ·	· si ·				
•к	•Ca		10	30	I D	7,0		- ob		1.0	2.0	•Ga•	·Ge·		-	_	:Kr:
·R	·Sr											· In ·			·Ťe·	:ï·	:xe:
												·iı·			·Po·	: At ·	:Rn:

The Ionic Bond

lonic bond: the electrostatic force that holds ions together in an ionic compound.

Lewis structure of water

single covalent bonds

2e8e2e-

Double bond – two atoms share two pairs of electrons

or

Triple bond - two atoms share three pairs of electrons

triple bond

or

Polar covalent bond or polar bond is a covalent bond with greater electron density around one of the two atoms ISLAMIC UNIVERSITY OF MADINAH

e poor e rich

H—F:

Hydrofluoric acid

Electronegativity is the ability of an atom to attract toward itself the electrons in a chemical bond.

Electron Affinity - measurable, CI is highest

$$X_{(g)} + e^{--} X_{(g)}$$

Electronegativity - relative, F is highest

10 15	8A
1A H 2.1 2A 3A 4A 5A 6A 7. B C N 0 1	
H 2.1 2A 3A 4A 5A 6A 7. Li Be 10 15	
2.1 2A Li Be 10 15	A
10 15	5.5
	F
Na Mg	CI
0.9 1.2 3B 4B 5B 6B 7B 8B 1B 2B 1.5 1.8 2.1 2.5 3. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se B	3.0 Br Kr
0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.9 1.9 1.9 1.6 1.6 1.8 2.0 2.4 2.	2.8 3.0
	I Xe
Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po A	

Classification of bonds by difference in electronegativity

Difference

Bond Type

0.4

Covalent

0.4 < and <2 Polar Covalent

≥ 2

Ionic

Increasing difference in electronegativity

Polar Covalent Covalent

Ionic

share e-

partial transfer

transfer e

₂₁ of e⁻

Classify the following bonds as ionic, polar covalent, or covalent: The bond in CsCl; the bond in H₂S; and the NN bond in H₂NNH₂.

(The Electronegativities of Common Elements) sea previous table

$$3.0 - 0.7 = 2.3$$

$$S - 2.5$$

CI - 3.0

$$2.5 - 2.1 = 0.4$$

$$2.5 - 2.1 = 0.4$$
 Polar Covalent

$$N - 3.0$$

$$N - 3.0$$

$$3.0 - 3.0 = 0$$

9.5

- The valence electrons of metal atoms can drift freely from one part of the metal to another- this is sometimes called a "sea of electrons"
- Metallic bonds consist of the attraction between these free floating electrons and the positively charged metal ions (cations).

This attraction is the "bond" that holds metals together.

