Complexity: lost in abstraction?

PAC 2024

December 17, 2024

Baptiste Chanus

A really concrete motivation

From : what computations can we $\underline{\text{effectively}}$ carry ?

To: What problems can we effectively solve?

1. Complexity theory: a pile of

abstractions

Definition of RAM

Definition (RAM machine)

A RAM machine is a list of I of N+1 instructions, two registers r and w containing positive integers, an input list of values $\vec{i}=(i_0,\ldots,i_m)$ and a list of registers $\vec{x}=(x_0,\ldots,x_n,\ldots)$ containing infinitely many zeros.

An instruction can be:

- An operation : a substitution $x_0 := x_0 * x_1$ where $* \in \{\land, \lor\}$ or $x_0 := \neg x_0$.
- A <u>branch(l)</u>: if $x_0 = 0$ then goto instruction l; else goto next instruction.
- A $\underline{\operatorname{copy}(x_r, x_w)}$: the content of the register x_r is updated with the value of x_w .

3

Example of a run

Input Tape

$$egin{array}{c|c} i_0 & i_1 \\ \hline 1 & 1 \end{array}$$

Run

	x_0	x_1	x_2	x_3	x_4	x_5
in it	0	0	1	1	0	0
copy	1	0	1	1	0	0
copy	1	1	1	1	0	0
\wedge	1	1	1	1	0	0
copy	1	1	1	1	1	0
copy	1	1	1	1	1	0
\vee	1	1	1	1	1	0
copy	1	1	1	1	1	1
copy	1	1	1	1	1	1
\neg	0	1	1	1	1	1
copy	0	1	1	1	1	1
\wedge	0	1	1	1	1	1
copy	0	0	1	1	1	1
copy	1	0	1	1	1	1

Complexity: first intuition

Time

Complexity: first level of abstraction

Complexity: abstraction again

Definition (Decision Problem)

A decision problem L (on string) is a set of strings on an alphabet Σ . We write $L\subseteq \Sigma$.

Definition (Complexity of a Problem)

The complexity of a problem is the complexity that uses the least amount of (a given) ressources to solve the problem.

Remark (Complexity Class)

A **complexity class** is a set of problems that are solvable in *bounded* ressources (time, space...) in a given model of computations (Turing Machines, RAM).

2. Descriptive complexity:

diving deeper

Descriptive complexity: abstraction's final boss?

Remark (Machine-less complexity)

Could we find a way to define complexity independantly of any model of computation ?

Descriptive complexity: languages and computations

Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

Decision algorithm

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

Descriptive complexity: languages and computations

Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

Decision algorithm

- Models of computations (Turing machines, circuits)
- Computational ressources (Time, space)

Descriptive complexity

$$x \models F \iff x \in L$$

Descriptive complexity: languages and computations

Logical description

- Finite structures over finite signatures
- Logical ressources for expressivity (higher order quantifiers, operators)

Decision algorithm

- Models of computations (Turing machines, circuits)
 - Computational ressources (Time, space)

Boolean Theories

Definition

A Boolean theory $\ensuremath{\mathbb{T}}$ is a triple

$$(\operatorname{Sort}(\mathbb{T}), \operatorname{Rel}(\mathbb{T}), \operatorname{Ax}(\mathbb{T}))$$

A Boolean theory $\mathbb T$ is **finite** if $Sort(\mathbb T),\,Rel(\mathbb T)$ and $Ax(\mathbb T)$ are all finite.

Example: $\mathbb{S}\mathrm{tr}$

Definition

$$Sort(Str) = \{N\}$$

$$Rel(Str) = \{ \le \rightarrowtail N \times N, X \rightarrowtail N \}$$

$$Ax(Str) = \{ \text{``} \le \text{ is a total order''} \}$$

Other example : $\mathbb{G}rph$

Definition

$$Sort(\mathbb{G}rph) = \{V\}$$

$$Rel(\mathbb{G}rph) = \{E \rightarrowtail V \times V\}$$

$$Ax(\mathbb{G}rph) = \emptyset$$

Extension of a theory

Definition

\mathbb{T} extends \mathbb{T}' iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

Definition

\mathbb{T} is a relational extension of \mathbb{T}' iff :

- lacksquare \mathbb{T}' is an extension of \mathbb{T}
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

Extension of a theory

Definition

\mathbb{T} extends \mathbb{T}' iff :

- $\operatorname{Sort}(\mathbb{T}') \subseteq \operatorname{Sort}(\mathbb{T})$
- $\operatorname{Rel}(\mathbb{T}') \subseteq \operatorname{Rel}(\mathbb{T})$
- $Ax(\mathbb{T}') \subseteq Ax(\mathbb{T})$

Definition

\mathbb{T} is a relational extension of \mathbb{T}' iff :

- \mathbb{T}' is an extension of \mathbb{T}
- $\operatorname{Sort}(\mathbb{T}') = \operatorname{Sort}(\mathbb{T})$

Note that there is a natural notion of projection from the extension to the base theory. (i.e. the one that forgets the extra information)

Fagin's Theorem (our version)

Theorem (Fagin (Boolean sauce))

NP is equal to the relational extensions of Str.

3. Abstracting again ?

Why not after all?

Definition (RAM machine)

A RAM machine on real numbers is a list of I of N+1 instructions, two registers r and w containing positive integers, an input list of values $\vec{i}=(i_0,\ldots,i_m)$ and a list of registers $\vec{x}=(x_0,\ldots,x_n,\ldots)$ containing infinitely many zeros.

An instruction can be:

- An operation : a substitution $x_0 := x_0 * x_1$ where $* \in \{+, -, \times, /\}$.
- A <u>branch(l)</u>: if $x_0 = 0$ then goto instruction l; else goto next instruction.
- A $\underline{\operatorname{copy}(x_r, x_w)}$: the content of the register x_r is updated with the value of x_w .

Why not after all?

17

Trust me...

Theorem

The Fagin's theorem still holds over $\mathbb{S}\mathrm{tr}_{\mathbb{R}}.$

Is this loss?

Our computers cannot manipulate real numbers. We were supposed to talk about $\underline{\mathsf{effective}}$ computations!

The twist!

Remark

Could we use the concept of computation outside the scope of engineering ?

Examples in physics

The Second Law of Quantum Complexity. Brown, Adam R., et Leonard Susskind. (2018).

Example

A relation between the volume of a black hole and quantum circuit complexity.

Examples in physics

*MIP**=*RE.* Ji, Zhengfeng, Anand Natarajan, Thomas Vidick, John Wright, et Henry Yuen (2022).

Example

Explicit constructions of counter-examples to Connes' Embedding Conjecture using a computability result.

Examples in physics

MIP=RE.* Ji, Zhengfeng, Anand Natarajan, Thomas Vidick, John Wright, et Henry Yuen (2022).

Example

Explicit constructions of counter-examples to Connes' Embedding Conjecture using a computability result.

Remark

Computability is complexity with infinite ressources...

The end.

Could complexity be used in other disciplines?