

Scientific Machine Learning

Lecture 9: Gaussian Process (2/2)

Dr. Daigo Maruyama

Prof. Dr. Ali Elham

Key Components

the three axes + Bayesian axis = four axes

Structures of the Techniques/Methods

Lecture content

- Further topics of Gaussian processes and introduction of Kriging
- Applications of Gaussian processes
- Advanced Methods/Topics

The lecture of this time partially follows the Section 6.4 of the book: Christopher M. Bishop "Pattern Recognition And Machine Learning" Springer-Verlag (2006) The name of this book is shown as "PRML" when it is referred in the slides.

The lecture slides contains many original contents in the context apart from the above sections in the book.

Lecture content

Further topics of Gaussian processes and introduction of Kriging

Example ($\widehat{\boldsymbol{\theta}}$ by MLE)

Examples (random *\theta* without learning from the data)

-0.5

Examples $(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}})$ by MLE)

Examples (random θ , σ without learning from the data)

Gaussian Process + adaptive sampling

Examples

Adding a new point at the location x where $\sigma_N^2(x)$ is max

Exactly the same concept as slides 44-60 in Lecture 6

$$\sigma_N^2(x) = k(x, x, \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}}) - k(x, \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}})^{\mathrm{T}} K(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}})^{-1} k(x, \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}})$$

Gaussian Process + adaptive sampling (for Optimization)

Examples

Adding a new point at the location x where a function $EI(x) = f(\mu(x), \sigma_N^2(x), current \ minimum \ sample \ point)$ is max

a suitable criterion to find optimum

 $\mathrm{EI}(\mathbf{x}) = f(\mu(\mathbf{x}), \sigma_N^2(\mathbf{x}), current\ minimum\ sample\ point) \qquad (\mu(\mathbf{x}) = \mathbf{k}(\mathbf{x})^\mathrm{T} \mathbf{K} \big(\widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\sigma}}\big)^{-1} \mathbf{T})$

Bayesian Linear Regression + adaptive sampling (for Opt.)

Examples

Adding a new point at the location x where a function $EI(x) = f(\mu(x), \sigma_N^2(x), current minimum sample point)$ is max

 $EI(x) = f(\mu(x), \sigma_N^2(x), current \ minimum \ sample \ point)$

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 9

The probabilistic model

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(x), \hat{\sigma}^2)$$

$$\phi(x) = \text{polynomials } (M = 9)$$

$$\hat{\sigma} = 1e - 3$$
 (fixed)

Bayesian Linear Regression

Examples

Adding a new point at the location x where $\sigma_N^{'2}(x)$ (or $\sigma_N^{2}(x)$) is max

The probabilistic model

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(x), \hat{\sigma}^2)$$

$$\phi(x) = \text{polynomials } (M = 9)$$

$$\hat{\sigma} = 0.2$$
 (fixed)

starting from N ($sample\ size$) = 1

Adaptive Sampling

called acquisition functions in general

1. Variance (Entropy)

$$x_{new} = \operatorname*{argmax}_{x} \sigma_{N}^{2}(x)$$

2. Expected Improvement (EI)

$$x_{new} = \underset{x}{\operatorname{argmax}} \operatorname{EI}(x)$$

The predictive distribution (a single input x)

the info
$$p(t|\mathbf{x}) = \mathcal{N}(t|\mu_N(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

$$\mathrm{EI}(x) = \left(t_{min} - \mu_N(x)\right) \mathrm{cdf}\left(p_{std}(x)\right) + \sigma_N(x) \mathrm{pdf}\left(p_{std}(x)\right) \qquad p_{std}(x) = \frac{t_{min} - \mu_N(x)}{\sigma_N(x)}$$
 standardized

If you are interested, you can follow the meaning of the equation and can understand it as a probability where min location is expected to be updated.

History of Gaussian Process and Kriging

Gaussian Process

"Gaussian process" have been modeled and developed to describe random motions in physics.

History of Gaussian Process and Kriging

Kriging

- Spatial statistics
- Geostatistics

to interpolate the value of a random field at an unobserved location from observations of its value at nearby locations

$$\tilde{\mathbf{t}}(\mathbf{x}) = \mathbf{w}(\mathbf{x})^{\mathrm{T}}\mathbf{T}$$

Example:

We want to predict the rent of an apartment.

using:

- The known rents of apartments around it
- Spatial data (in this case the location X)

Spatial autocorrelation: "closer to each other, closer the properties are."

$$\widehat{\mathbf{w}}(\mathbf{x}) = \min_{\mathbf{w}(\mathbf{x})} MSE \qquad MSE = E\left[\left(\mathbf{t}(\mathbf{x}) - \widetilde{\mathbf{t}}(\mathbf{x})\right)^2\right]$$

$$\tilde{\mathbf{t}}(x) = \hat{\mathbf{w}}(x)^{\mathrm{T}}\mathbf{T}$$

Prediction in Dual Representation

$$p(\mathbf{t}|\mathbf{x}, \mathcal{D}) = \mathcal{N}(\mathbf{t}|\mathbf{k}(\mathbf{x})^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{T}, \mathbf{K}(\mathbf{x}, \mathbf{x}) - \mathbf{k}(\mathbf{x})^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{k}(\mathbf{x}))$$

$$\chi(\mathbf{x})^{\mathrm{T}}$$

$$\chi(\mathbf{x})^{\mathrm{T}}$$

$$\chi(\mathbf{x})^{\mathrm{T}}$$

Gaussian Process $\tilde{\mathbf{t}}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} \mathbf{K}^{-1} \mathbf{T}$

Kriging

$$\tilde{\mathbf{t}}(\mathbf{x}) = \boldsymbol{\chi}(\mathbf{x})^{\mathrm{T}}\mathbf{T}$$

Prediction using the training data $\mathcal{D} = (X, T)$

$$p(\mathbf{t}|\mathbf{x}, \mathcal{D}) = \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \boldsymbol{\chi}(\mathbf{x})^{\mathrm{T}} \mathbf{T}$$
$$\boldsymbol{\Sigma} = \mathbf{K}(\mathbf{x}, \mathbf{x}) - \boldsymbol{\chi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{k}(\mathbf{x})$$

(Bayesian) linear regression

$$\tilde{\mathbf{t}}(x) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x)$$

$$\tilde{\mathbf{t}}(\mathbf{x}) = \mathbf{\Phi}(\mathbf{x})\mathbf{w}$$

Prediction using the learned parameters **w**

The training data $\mathcal{D} = (X, T)$ can be discarded in the prediction process.

Note: The covariance can be slightly different in Kriging.

Lecture content

Applications of Gaussian processes

Optimization in Engineering Problems

Optimization formulation:

$$\min_{x} y(x)$$

 \widehat{x}

 \widehat{x} and $\widehat{y} \equiv y(\widehat{x})$

 $\min_{\mathbf{x}} \tilde{y}(\mathbf{x})$

 \tilde{y} is approximation.

x: input

t: output •

Conditions:

y(x) for arbitrary x is <u>expensive</u> to obtain (e.g. experimental data).

Find \hat{x} accurately but using as small numbers of sample size N as possible

Surrogate-Based Optimization

DoE (see Lecture 4)

Surrogate-Based Optimization

DOE: Quasi Monte Carlo – Sobol sequence initial DoE sample

Sample points in input design variables x space

Wing loading ∈ [600, 650] _Thrust weight ratio ∈ [0.3, 0.34]

- initial DoE sample
- adaptive sample points
- the optimum point

Surrogate-Based Optimization

The corresponding **cost function values** y(x) on the sample points x, and **surrogate models** $\tilde{y}(x)$ (by Gaussian Processes)

Technical Issues

A multivariate Gaussian distribution

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{\Sigma})$$
†
covariance

covariance
$$\boldsymbol{\Sigma}(\mathbf{T},\mathbf{T}) = \begin{pmatrix} cov[t(\boldsymbol{x}_1),t(\boldsymbol{x}_1)] & \cdots & cov[t(\boldsymbol{x}_1),t(\boldsymbol{x}_N)] \\ \vdots & \ddots & \vdots \\ cov[t(\boldsymbol{x}_N),t(\boldsymbol{x}_1)] & \cdots & cov[t(\boldsymbol{x}_N),t(\boldsymbol{x}_N)] \end{pmatrix} \\ = \sigma_{\mathbf{T}}^2 \begin{pmatrix} cov[t(\boldsymbol{x}_1),t(\boldsymbol{x}_1)] & \cdots & cov[t(\boldsymbol{x}_1),t(\boldsymbol{x}_N)] \\ \vdots & \vdots & \vdots \\ cov[t(\boldsymbol{x}_N),t(\boldsymbol{x}_1)] & \cdots & cov[t(\boldsymbol{x}_N),t(\boldsymbol{x}_N)] \end{pmatrix} \\ = \sigma_{\mathbf{T}}^2 \begin{pmatrix} k(\boldsymbol{x}_1,\boldsymbol{x}_1) & \cdots & k(\boldsymbol{x}_1,\boldsymbol{x}_N) \\ \vdots & \ddots & \vdots \\ k(\boldsymbol{x}_N,\boldsymbol{x}_1) & \cdots & k(\boldsymbol{x}_N,\boldsymbol{x}_N) \end{pmatrix} = \sigma_{\mathbf{T}}^2 \mathbf{K} \\ & \text{Gram matrix } \mathbf{K}: \text{ correlation matrix}$$

represented by $x \longrightarrow$

x should be scaled (standardized).

Technical Issues

A multivariate Gaussian distribution

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{\Sigma})$$
†
covariance

$$\begin{split} \mathbf{\Sigma}(\mathbf{T},\mathbf{T}) &= \begin{pmatrix} cov[t(\mathbf{x}_1),t(\mathbf{x}_1)] & \cdots & cov[t(\mathbf{x}_1),t(\mathbf{x}_N)] \\ \vdots & \ddots & \vdots \\ cov[t(\mathbf{x}_N),t(\mathbf{x}_1)] & \cdots & cov[t(\mathbf{x}_N),t(\mathbf{x}_N)] \end{pmatrix} \\ &= \sigma_{\mathbf{T}}^2 \begin{pmatrix} cor[t(\mathbf{x}_1),t(\mathbf{x}_1)] & \cdots & cor[t(\mathbf{x}_1),t(\mathbf{x}_N)] \\ \vdots & \vdots & \vdots \\ cor[t(\mathbf{x}_N),t(\mathbf{x}_1)] & \cdots & cor[t(\mathbf{x}_N),t(\mathbf{x}_N)] \end{pmatrix} \quad 0 \leq cor[T,T'] \leq 1 \\ &= \sigma_{\mathbf{T}}^2 \begin{pmatrix} k(\mathbf{x}_1,\mathbf{x}_1,\boldsymbol{\theta}) & \cdots & k(\mathbf{x}_1,\mathbf{x}_N,\boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N,\mathbf{x}_1,\boldsymbol{\theta}) & \cdots & k(\mathbf{x}_N,\mathbf{x}_N,\boldsymbol{\theta}) \end{pmatrix} = \sigma_{\mathbf{T}}^2 \mathbf{K}(\boldsymbol{\theta}) \\ k(\mathbf{x}_N,\mathbf{x}_1,\boldsymbol{\theta}) & \cdots & k(\mathbf{x}_N,\mathbf{x}_N,\boldsymbol{\theta}) \end{pmatrix} \quad \text{Gram matrix } \mathbf{K}(\boldsymbol{\theta}) \text{: correlation matrix} \end{split}$$

represented by x

x should be scaled (standardized).

Technical Issues

A multivariate Gaussian distribution

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|\mathbf{0}, \sigma^2\mathbf{K}(\boldsymbol{\theta}))$$

Then, the **likelihood function** when data $\mathcal{D} = (X, T)$ is given,

$$p(\mathbf{T}|\mathbf{X}) = \mathcal{N}(\mathbf{t}|\mathbf{0}, \sigma^2 \mathbf{K}(\boldsymbol{\theta})) = \frac{1}{(2\pi\sigma)^{N/2} |\mathbf{K}(\boldsymbol{\theta})|^{1/2}} \exp\left(-\frac{\mathbf{T}^T \mathbf{K}(\boldsymbol{\theta})^{-1} \mathbf{T}}{2\sigma^2}\right)$$

negative log as usual \rightarrow Error function E

$$E(\boldsymbol{\sigma}, \boldsymbol{\theta}) = -\ln p(\mathbf{T}|\mathbf{X}) = \frac{N}{2}\ln 2\pi + \frac{N}{2}\ln \boldsymbol{\sigma}^2 + \frac{1}{2}\ln|\mathbf{K}(\boldsymbol{\theta})| + \frac{\mathbf{T}^T\mathbf{K}(\boldsymbol{\theta})^{-1}\mathbf{T}}{2\boldsymbol{\sigma}^2}$$

$$\frac{\partial E}{\partial \sigma} = 0, \frac{\partial E}{\partial \theta} = 0$$
 Please derive $E(\theta)$ by yourself.

cautions in computation!

$$\widehat{\boldsymbol{\theta}} = \min_{\boldsymbol{\theta}} E(\boldsymbol{\theta}) \qquad E(\boldsymbol{\theta}) = \frac{N}{2} \ln \widehat{\sigma}(\boldsymbol{\theta})^2 + \frac{1}{2} \ln |\mathbf{K}(\boldsymbol{\theta})| + C$$

Useful Kernel Functions

Gaussian kernel (RBF kernel)

$$k(x, x', \theta) = \exp(-\theta \|x - x'\|^2)$$
 or $k(x, x', \theta) = \exp\left(-\sum_{i=1}^{D} \theta_i \|x^{(i)} - x'^{(i)}\|^2\right)$

Linear kernel

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{x}'$$

Exponential kernel

$$k(\mathbf{x}, \mathbf{x}', \theta) = \exp(-\theta \|\mathbf{x} - \mathbf{x}'\|)$$

$$k(\mathbf{x}, \mathbf{x}', \theta, p) = \exp(-\theta \|\mathbf{x} - \mathbf{x}'\|^p)$$

Matérn kernel

$$k_{\nu}(\mathbf{x}, \mathbf{x}', \boldsymbol{\theta}) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\pi}r}{\boldsymbol{\theta}}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\pi}r}{\boldsymbol{\theta}}\right)$$
$$r = \|\mathbf{x} - \mathbf{x}'\|$$

when
$$\nu = \frac{1}{2}$$
, Exponential kernel
when $\nu = \frac{3}{2}$, Matérn3
when $\nu = \frac{5}{2}$, Matérn5
when $\nu = \infty$, Gaussian kernel

Lecture content

Advanced Methods/Topics

Sensitivity Analysis (Automatic Relevance Determination - ARD)

A kernel with hyperparameters at each component of the input

$$k(x, x', \theta) = \exp\left(-\sum_{i=1}^{2} \theta_i ||x^{(i)} - x'^{(i)}||^2\right)$$
 e.g. 2D case $x = (x_{(1)}, x_{(2)})$

Equally sensitive

Not that sensitive in $x_{(2)}$

t is correlated strongly in $x_{(2)}$ (even the distance $||x_i - x_i'||^2$ is large).

$$\mathbf{\theta} = (\theta_1, \theta_2)$$
$$= (1, 1)$$

 t_1, t_2, t_3, \cdots are very similar in $x_{(2)}$.

After MLE with obtaining $\widehat{\theta}$, the info of the sensitivity analysis can be obtained.

Other variations (from Kriging)

Note:

A little different explanation from that from Kriging in geostatistics

A multivariate Gaussian distribution

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}, \sigma^2 \mathbf{K}(\boldsymbol{\theta}))$$

We can model also the trend.

When μ is:

1.
$$\mu = 0$$
 (or \overline{T})
Simple Kriging

2. $\mu = 1\mu$: a constant value Ordinary Kriging

$$\hat{\boldsymbol{\mu}}(\boldsymbol{\theta}) = \left(\mathbf{1}^{\mathrm{T}}\mathbf{K}(\boldsymbol{\theta})^{-1}\mathbf{1}\right)^{-1}\mathbf{1}^{\mathrm{T}}\mathbf{K}(\boldsymbol{\theta})^{-1}\mathbf{T}$$

3. $\mu = \Phi w$: linear regression model Universal Kriging

$$\widehat{\boldsymbol{w}}(\boldsymbol{\theta}) = \left(\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{K}(\boldsymbol{\theta})^{-1}\boldsymbol{\Phi}\right)^{-1}\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{K}(\boldsymbol{\theta})^{-1}\mathbf{T}$$

the trend: μ

 $\hat{\mu}$ (by MLE) in general has the closed-form (analytically expressed by θ) as generalized least-squares (GLS).

$$\widehat{\mathbf{w}} = (\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{T}$$
$$\mathbf{\Sigma} = \sigma^{2} \mathbf{K}(\boldsymbol{\theta})$$

when,

$$\Sigma = \sigma^{2} \mathbf{I}$$
 (see Lecture 4)

$$\widehat{\mathbf{w}} = (\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \mathbf{T}$$
 Least-squares in linear regression

ordinary least-squares (OLS).

Other variations (from Kriging)

A multivariate Gaussian distribution

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}, \sigma^2 \mathbf{K}(\boldsymbol{\theta}))$$

Basically the same as Slide 25

Then, the likelihood function when data $\mathcal{D} = (X, T)$ is given,

$$p(\mathbf{T}|\mathbf{X}) = \mathcal{N}(\mathbf{t}|\boldsymbol{\mu}, \sigma^2 \mathbf{K}(\boldsymbol{\theta})) = \frac{1}{(2\pi\sigma)^{N/2} |\mathbf{K}(\boldsymbol{\theta})|^{1/2}} \exp\left(-\frac{(\mathbf{T} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{K}(\boldsymbol{\theta})^{-1} (\mathbf{T} - \boldsymbol{\mu})}{2\sigma^2}\right)$$

negative log as usual \rightarrow Error function E

$$E(\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\theta}) = -\ln p(\mathbf{T}|\mathbf{X}) = \frac{N}{2} \ln 2\pi + \frac{N}{2} \ln \sigma^2 + \frac{1}{2} \ln |\mathbf{K}(\boldsymbol{\theta})| + \frac{(\mathbf{T} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{K}(\boldsymbol{\theta})^{-1} (\mathbf{T} - \boldsymbol{\mu})}{2\sigma^2}$$

$$\frac{\partial E}{\partial \mu} = 0, \frac{\partial E}{\partial \sigma} = 0, \frac{\partial E}{\partial \theta} = 0$$

$$\widehat{\boldsymbol{\theta}} = \min_{\boldsymbol{\theta}} E(\boldsymbol{\theta}) \quad E(\boldsymbol{\theta}) = \frac{N}{2} \ln \widehat{\sigma}(\boldsymbol{\theta})^2 + \frac{1}{2} \ln |\mathbf{K}(\boldsymbol{\theta})| + C \\ \widehat{\sigma}(\boldsymbol{\theta})^2 = \frac{(\mathbf{T} - \widehat{\boldsymbol{\mu}})^T \mathbf{K}(\boldsymbol{\theta})^{-1} (\mathbf{T} - \widehat{\boldsymbol{\mu}})}{N}$$

Simple Kriging (Normal Gaussian Process)

Ordinary Kriging

Universal Kriging

$$\widehat{\mu} = \Phi \widehat{w}$$

$$\phi(x) \\
= (x^0, x^1)^{\mathrm{T}}$$

Trend: linear function

Universal Kriging

$$\widehat{\mu} = \Phi \widehat{w}$$

$$\phi(x) = (x^0, x^1, x^2)^{\mathrm{T}}$$

Trend: quadratic function

Universal Kriging

If you know the characteristic of the trend (it is a cubic function in this case), the universal Kriging works better (not always).

$$\hat{\mu} = \Phi \hat{w}$$

$$\phi(x)$$

= $(x^0, x^1, x^2, x^3)^T$

Trend: cubic function

Universal Kriging (3/3)

$$\widehat{\mu} = \Phi \widehat{w}$$

$$\phi(x)$$

= $(x^0, x^1, x^2, x^3)^{\text{T}}$

Trend: cubic function

Gradient Enhanced

Instead of adding new sample points, using the gradient information of the existing sample points

(based on Simple Kriging in this case)

Gradient Enhanced

when the kernel function is differentiable w.r.t. x

e.g.
$$k(x, x', \theta) = \exp\left(-\sum_{i=1}^{D} \theta_i ||x^{(i)} - x'^{(i)}||^2\right)$$

Instead of obtaining new sample points

$$\dot{\mathbf{K}} = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(j)}} & \frac{\partial^2 \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}} \end{pmatrix} i, j = 1, \dots, D \qquad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(j)}} & \frac{\partial^2 \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(j)}} & \frac{\partial^2 \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)} \partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial^2 \mathbf{K}}{\partial x^{(i)} \partial x^{(i)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)} \partial x^{(i)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)} \partial x^{(i)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \end{pmatrix} i, j = 1, \dots, D \quad N \quad = \begin{pmatrix} \mathbf{K} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac{\partial \mathbf{K}}{\partial x^{(i)}} & \frac{\partial \mathbf{K}}{\partial x^{(i)}} \\ \frac$$

 \mathbf{K} $\frac{\partial \mathbf{K}}{\partial x^{(i)}}$

the size of the matrix

 $\mathbf{K}: N \times N$

$$\dot{\mathbf{K}}$$
: $N(1+D) \times N(1+D)$

 $ND = \frac{\partial \mathbf{K}}{\partial x^{(j)}}$

N

$$\frac{\partial^2 \mathbf{K}}{\partial x^{(i)} \partial x^{(j)}}$$

ND

Computational time (during MLE): cubic proportional to the size of the matrix

Gradient Enhanced

Practical applications:

- When the computations of the gradients are relatively cheap:
 - Automatic differentiation (the <u>chain rule</u>)
 - Forward mode
 - Reverse mode
 - e.g. single output t, multiple input x

Topics of "calculus"

Note:

AD by the reverse mode is also used in neural networks for different purposes (Lecture 10).

Examples:

adjoint solvers in computational fluid dynamics (CFD)

If there are tools to efficiently compute the gradients, the gradient-enhanced model is very useful.

Pros and Cons (Gaussian Process / Kriging in General)

Pros

- Weak assumption on using Bayesian approach
 - The model uncertainty can be analytically obtained.

Due to this property, the Gaussian processes are powerful when data is expensive to obtain.

In contrast to Big Data

Cons

- Computational cost in large datasets $O(N^3)$
 - (topics of "linear algebra" and "computer science")

within 1 sec. to days!

Especially in the cases of high-dimensional input x, the sample size N tends to large.

Technical Issues on Implementation (1/2)

Computation of the likelihood function (error function)

$$E(\boldsymbol{\theta}) = \frac{N}{2} \ln \hat{\sigma}(\boldsymbol{\theta})^2 + \frac{1}{2} \ln \mathbf{K}(\boldsymbol{\theta}) + C$$

$$\hat{\sigma}(\boldsymbol{\theta})^2 = \frac{\mathbf{T}^{\mathrm{T}}\mathbf{K}(\boldsymbol{\theta})^{-1}\mathbf{T}}{N}$$

- Effectively use "LU decomposition" and it results
- Use double precision
- If numerically the above process is unstable, a fixed value can be added on the diagonal of $K(\theta)$.

<u>Theoretically</u> this is equivalent to avoid overfitting for noisy data.

See Lecture 8, slides 30-34

Technical Issues on Implementation (2/2)

- The hyperparameter θ should be searched in the **log-scale**.
- The likelihood function (error function) $E(\theta)$ is multimodal.
 - $\frac{\partial E(\theta)}{\partial \theta}$ can be analytically obtained but **global optimization methods** is useful.

• The input x should be standardized $(0 \le x \le 1)$.

A common kernel function can be used and ARD can be used.

Technical Issues on Implementation - Advanced

Advanced topics (research level):

- "Cholesky decomposition" (instead of LU decomposition) for further speed-up
- There are various techniques to reduce the computational costs in large datasets.
 - Basically approximation

Other Advanced Methods

Other advanced topics that were not shown here:

- Cokriging (many variations in different communities)
 - Variable-fidelity methods
- Non-stationary kernel
- Regression Kriging (essentially the same as Universal Kriging)
- Deep Gaussian process

Bayesian Approach – Generalized Perspective (Lecture 6)

Uncertainty (to obtain the predictive distribution)

Uncertainty (to obtain the predictive distribution)

