Name: <u>Jerry Jiang</u>

1. List the subgroups of \mathbb{Z}_{18} .

ne subgroups of \mathbb{Z}_{18} .			95	Juy So	
subgroup	generator	order		1	
{0}	<0>	1		(0	
{0,9}	۷٩>	2			
{0,6,12}	< 6 >	3			
{0, 3, 6, 9, 12, 15}	<3>	Ь			
{0,2,4,6,8,10,12,14,16}	< 2 >	9			
\mathbb{Z}_{i}	< 1 >	18			

2. Suppose a cyclic group's only proper subgroup has order 7. What is the order of the group?

This indicates that the group's order n only has I and 7 as its divisors. Therefore n=49 and the cyclic group can be Z49 while the only proper subgroup generated by 7 is {0,7,14,21,38,35,42}

3. Suppose groups G and G' are isomorphic. Show that if G is Abelian then G' must also be Abelian.

since
$$(G, \star)$$
 and (G', \circ) are isomorphic, then there must be $f: G \to G'$ where $f(x \star y) = f(x) \circ f(y)$.

- Gis abelian

$$(x, f(x, x, y)) = f(y, x, y) = f(y) \circ f(x)$$

- x in G corresponds to fux) in G' and y in G corresponds to fuy, in 6', and fux) of cys = fuy) of (x)

2. Gi is also abelian.

- 4. Show that the series $\sum_{n=1}^{\infty} (-1)^n \cot^n(n)$ converges conditionally.
- (1) \(\sum_{n=1} \tan(\frac{1}{n})\). Linit Comparison Test: when n>1, tan(\frac{1}{n})>0; \frac{1}{n}>0.

$$\lim_{n\to\infty}\frac{\tan\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}\lim_{n\to\infty}\tanh\left(\frac{1}{n}\right)=0,\quad\lim_{n\to\infty}\frac{1}{n}=0.$$
 (use the L'Hôpital's Rule).

=
$$\lim_{n\to\infty} \frac{\sec^2 \frac{1}{n} - n^2}{-n^2}$$
 | Since L=1, $\frac{8}{n} + \tan(\frac{1}{n})$ and $\frac{8}{n} + \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{$

② we have $\tan(\frac{1}{n}) > \tan(\frac{1}{n+1})$ for all $n \ge 1$. So when $n \to \infty$, $0 < \tan(\frac{1}{n+1}) \cot(\frac{1}{n})$. Since $\lim_{n\to\infty} \tan\left(\frac{1}{n}\right) = \tan 0 = 0$, the alternating series converge.

 $\sum_{n=1}^{\infty} (-1)^n + converges conditionally.$

5. Let G be a simple graph with p vertices and q edges. Show that if $q > \frac{1}{2}(p-1)(p-2)$ then G is connected.

There're p vertices from a, az -- to ap.

Let out ap and connect all the edge available from a, to apt. Then number of edges = $\frac{1}{2}(p-1)[(p-1)-1] = \frac{1}{2}(p-1)(p-2)$.

Since $q > \frac{1}{2} (p-1)(p-2)$, there has to be an edge between ap and one of the p-1 remaining vertex. Thus, G is connected.

What if dividing of surper, was

Instead of
$$P^{-1}$$

Instead of P^{-1}
 $P^$