Introduction to Large Language Models

Changho Suh

January 29, 2024

Natural language processing (NLP)

The demand for NLP is growing at a phenomenal rate.

Applications:

speech recognition, question answering, machine translation, grammar correction, text summarization, image captioning, etc.

One killer app that has received particular attention:

Machine translation

Performance measure for machine translation

BLEU score (BiLingual Evaluation Understudy):

A number between 0 and 1 that measures the similarity of the machine-translated text to a set of high quality reference translations.

A benchmark dataset:

WMT dataset (4M sentences)
(Workshop on Statistical Machine Translation)

Two breakthroughs

Source: https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

RNN Encoder-Decoder Attention

Sutskever, et al. Sequence to Sequence Learning with Neural Networks. NeurIPS 2014 Cho, et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014

Transformer

Turns out: Forms the basis of LLMs (e.g., ChatGPT).

Outline

1. Study the Transformer architecture.

Explore OpenAl's LLMs (GPT series) based on the Transformer decoder.

3. Explore Google's LLMs (**BERT** and **RoBERTa**) based on the Transformer **encoder**.

Transformer: A high-level architecture

Feature #1: Encoder-decoder attention

Feature #2: Recursion in decoders

Feature #2: Recursion in decoders

Feature #2: Recursion in decoders

Feature #3: Attention layer

Feature #3: Attention layer (visualization)

Feature #4: Dense & softmax layers in dec.

GPT: Machine translation (How it works)

GPT: Machine translation (training dataset)

Original:

I	am	а	student	<to-fr></to-fr>	je	suis	étudiant
let	them	eat	cake	<to-fr></to-fr>	Qu'ils	mangent	de
good	morning	<to-fr></to-fr>	Bonjour				

Manipulated:

I	am	а	student	<to-fr></to-fr>				→	je
I	am	а	student	<to-fr></to-fr>	je			→	suis
I	am	а	student	<to-fr></to-fr>	je	suis		\longrightarrow	étudiant
ı	am	а	student	<to-fr></to-fr>	je	suis	étudiant	→	<eos></eos>

GPT: Text summarization

GPT: Text summarization (training dataset)

Original:

Manipulated:

:

GPT series

GPT (2018): 110 M parameters

512 tokens

GPT-2 (2019): 117M ~ **1542M** parameters

768 ~ 1600 tokens

GPT-3 (2020): 125M ~ **175B** parameters

768 ~ 12288 tokens

GPT-3.5=ChatGPT (2022): Instructed GPT-3

GPT-4 (2023): ~1.8T parameters

~ 25000 tokens

BERT: Classification

BERT: Word prediction

BERT and RoBERTa

BERT (2018): 4.4M ~ 340M parameters 512 tokens

RoBERTa (2019): 125M ~ 355M parameters

512 tokens

Robustly optimized BERT approach

Turns out:

Forms the basis of Google's LLMs (e.g., BARD).