I CLAIM:

1. Method of depositing a crystalline α -Al₂O₃-layer onto a cutting tool insert by chemical vapor deposition comprising the following steps:

depositing a from about 0.1 to about 1.5 μ m layer of TiC_XN_yO_Z where x+y+z>=1 and z>0;

treating said layer at from about 625 to about 1000 °C in a gas mixture containing from about 0.5 to about 3 vol-% O₂ for a short period of time from about 0.5 to about 4 min; and

depositing said Al₂O₃-layer by bringing said treated layer into contact with a gas mixture containing from about 2 to about 10 vol-% of AlCl₃, from about 16 to about 40 vol-% of CO₂, in H₂ and from about 0.8 to about 2 vol-% of a sulphur-containing agent at a process pressure of from about 40 to about 300 mbar and a temperature of from about 625 to about 800 °C.

2. The method of claim 1 wherein

in said depositing a from about 0.1 to about 1.5 μ m layer of TiC_XN_yO_Z, x+y+z>=1 and z>0.2;

in said treating said layer at from about 625 to about 1000 °C in a gas mixture containing O_2 , said O_2 is present as $CO_2 + H_2$ or $O_2 + H_2$ and said treating occurs for a short period of time from about 0.5 to about 4 min; and

in said depositing said Al $_2$ O $_3$ -layer, the temperature is from about 625 to 700 °C.

- 3. The method of claim 2 wherein the depositing temperature is from about 650 to 695 °C.
 - 4. The method of claim 1 wherein said treating step is also carried out in the presence of from about 0.5 to about 6 vol-% HCl.

- 5. Cutting tool comprising a body of sintered cemented carbide, cermet, ceramic, high speed steel or the superhard materials and with at least on the functioning parts of the surface of the body, a hard and wear resistant coating comprising at least one layer consisting essentially of crystalline α -Al₂O₃ with a thickness of from about 0.5 to about 10 μ m, said crystalline α -Al₂O₃ having columnar grains with an average grain width of from about 0.1 to about 1.1 μ m and being deposited by chemical vapor deposition at a temperature of from about 625 to about 800 °C.
- 6. The cutting tool of claim 5 wherein said body comprises a body of cubic boron nitride or diamond.
- 7. The cutting tool of claim 5 wherein said coating comprises at least one layer consisting of Ti(C,N) with a thickness of from about 0.5 to about 10 μ m deposited between the body and said α -Al₂O₃-layer by the MTCVD technique at a temperature less than 885 °C.
- 8. The cutting tool according to claim 7 wherein said coating further comprises an intermediate layer of from about 0.5 to about 1.5 μ m of TiC_XN_yO_Z where x+y+z>=1 and z>0 between the α -Al₂O₃-layer and the MTCVD-TiCN-layer.
- 9. The cutting tool according to claim 8 wherein in said intermediate layer z>0.2.
- 10. The cutting tool according to claim 9 wherein in said coating intermediate layer z>0.2, y=0 and x>=0.
- 11. The cutting tool of claim 5 wherein said coating comprises at least one layer adjacent to the tool body deposited by PVD or PACVD.

- 12. The cutting tool of claim 11 wherein said coating comprises an intermediate layer of from about 0.1 to about 1.5 μ m TiC_XN_yO_Z between the α -Al₂O₃ and the PVD or PACVD-layer(s,) where x+y+z>=1 and z>0.
 - 13. The cutting tool of claim 12 wherein in said intermediate layer z>0.2.
- 14. The cutting tool of claim 13 wherein in said intermediate layer z>0.2, y>=0 and x<0.1.
- 15. The cutting tool of claim 11 wherein said coating has a pronounced columnar grain structure with a grain width of <0.5 μm.
- 16. The cutting tool of claim 5 wherein one such α -Al₂O₃ layer is the top visible layer at least along the cutting edge line.
- 17. The cutting tool of claim 5 wherein the coating on the rake face and along the edge line has been smoothed by brushing or by blasting to a surface roughness, R_a of less than 0.2 μm over a measured length of 5 μm .
- 18. The cutting tool of claim 5 wherein said tool is a cutting insert, a solid carbide drill or a carbide end-mill.