Unbiased Learning to Rank with Biased Feedback

CS7792 Counterfactual Machine Learning – Fall 2018

Thorsten Joachims

Departments of Computer Science and Information Science

Cornell University

• T. Joachims, A. Swaminathan, T. Schnabel, Unbiased Learning-to-Rank with Biased Feedback, International Conference on Web Search and Data Mining (WSDM), 2017.

Learning-to-Rank from Clicks

Evaluating Rankings

Evaluation with Missing Judgments

- Loss: $\Delta(y|r)$
 - Relevance labels $r_i \in \{0,1\}$
 - This talk: rank of relevant documents

$$\Delta(y|r) = \sum_{i} rank(i|y) \cdot r_{i}$$

- Assume:
 - Click implies observed and relevant:

$$(c_i = 1) \leftrightarrow (o_i = 1) \land (r_i = 1)$$

- Problem:
 - No click can mean not relevant OR not observed

$$(c_i = 0) \leftrightarrow (o_i = 0) \lor (r_i = 0)$$

→ Understand observation mechanism

Inverse Propensity Score Estimator

- Observation Propensities $Q(o_i = 1 | x, \overline{y}, r)$
 - Random variable $o_i \in \{0,1\}$ indicates whether relevance label r_i for is observed
- Inverse Propensity Score (IPS) Estimator:

$$\widehat{\Delta}(y|r,o) = \sum_{i:o_i=1} \frac{rank(i|y) \cdot r_i}{Q(o_i = 1|\overline{y}, r)}$$

New Ranking

Need to know the propensities only for relevant/clicked docs.

$$=\sum_{i:o_i=1\land r_i=1}\frac{rank(i|y)}{Q(o_i=1|\overline{y},r)}$$

$$\sum_{i:c_i=1} \frac{rank(i|y)}{Q(o_i=1|\overline{y},r)}$$

• Unbiasedness:
$$E_o[\widehat{\Delta}(y \mid r, o)] = \Delta(y \mid r)$$

Presented \overline{y}	\overline{Q}
А	1.0
В	0.8
С	0.5
D	0.2
Е	0.2
F	0.2
G	0.1

ERM for Partial-Information LTR

Unbiased Empirical Risk:

$$\widehat{R}_{IPS}(\pi) = \frac{1}{N} \sum_{(x,\overline{y},c) \in S} \sum_{i:c_i=1} \frac{rank(i|\pi(x))}{Q(o_i=1|\overline{y},r)}$$

Consistent
Estimator of
True
Performance

ERM Learning:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{argmin}} [\widehat{R}_{IPS}(\pi)]$$

Consistent ERM Learning

- Questions:
 - How do we optimize this empirical risk in a practical learning algorithm?
 - How do we define and estimate the propensity model $Q(o_i = 1|\bar{y}, r)$? \rightarrow Next week by Aman

BLBF vs. LTR

Batch Learning from Bandit Feedback

- Atomic actions
- Action y chosen by π_0 influences feedback
- Observe loss $\delta(x, y)$ for action y chosen by π_0 .
- Interventional → Logged propensities

Learning to Rank from Implicit Feedback

- Combinatorial actions
- Action y chosen by π_0 influences feedback
- Observe partial information about loss $\delta(x, y)$ for multiple y
- Interventional + Observational (user)

Propensity-Weighted SVM Rank

Others

Data:

$$S = (x_j, d_j, D_j, q_j)^n$$

Clicked

Query

Optimizes convex upper bound on unbiased IPS risk estimate!

Training QP:

$$w^* = \underset{w,\xi \ge 0}{\operatorname{argmin}} \frac{1}{2} w \cdot w + \frac{C}{n} \sum_{j} \frac{1}{q_j} \sum_{i} \xi_j^i$$

$$\forall \bar{d}^i \in D_1: w \cdot \left[\phi(x_1, d_1) - \phi(x_1, \bar{d}^i) \right] \ge 1 - \xi_1^i$$

$$\vdots$$

$$\forall \bar{d}^i \in D_n: w \cdot \left[\phi(x_n, d_n) - \phi(x_n, \bar{d}^i) \right] \ge 1 - \xi_n^i$$

Propensity

Loss Bound:

$$\forall w : rank(d, sort(w \cdot \phi(x, d)) \leq \sum_{i}^{j} \xi^{i} + 1$$

Position-Based Propensity Model

Model:

$$P(c_{i} = 1 | r_{i}, rank(i | \overline{y})) =$$

$$P(o_{i} = 1 | rank(i | \overline{y}))$$

$$P(c_{i} = 1 | r_{i}, o_{i} = 1)$$

Propensity $Q(o_i = 1|x, \bar{y}, r)$

- Assumptions
 - Examination only depends on rank $\rightarrow Q(o_i = 1|rank(i|\bar{y})) = q_r$
 - Clicks reveal relevance if examined $P(c_i = 1 | r_i = 1, o_i = 1) = 1$ and $P(c_i = 1 | r_i, o_i) = 0$ otherwise

Estimating the Propensities

- Experiment:
 - Click rate at rank 1:

$$q_1 \cdot E(r_i = 1|rank(i|\bar{y}) = 1)$$

- Intervention:
 - swap results at rank 1 and rank k
 - Click rate at rank k:

$$q_k \cdot E(r_i = 1|rank(i|\bar{y}) = 1)$$

$$\Rightarrow \frac{q_1}{q_k} = \frac{Click \ rate \ at \ rank \ 1}{Click \ rate \ at \ rank \ k \ after \ swap}$$

Experiments

- Yahoo Web Search Dataset
 - Full-information dataset
 - Binarized relevance labels
- Generate synthetic click data based on
 - Position-based propensity model with $q_r = \left(\frac{1}{r}\right)^\eta$
 - Baseline "deployed" ranker to generate \bar{y}
 - 33% noisy clicks on irrelevant docs

Presented \overline{y}	Q
Α	q_1
В	q_2
Click	q_3
D	q_4
Е	q_5
F	q_6
Click	q_7

Scaling with Training Set Size

Clipping

Severity of Presentation Bias

Increasing Click Noise

Misspecified Propensities

 $q_r = \left(\frac{1}{r}\right)^{\eta}$

Real-World Experiment

- Arxiv Full-Text Search
 - Run intervention experiment to estimate q_r
 - Collect training clicks using production ranker
 - Train naïve / propensitySVM-Rank (1000 features)
 - A/B tests via interleaving

	Propensity SVM-Rank		
Interleaving Experiment	wins	loses	ties
against Prod	87	48	83
against Naive SVM-Rank	95	60	102

Conclusions

- Partial-Information Learning to Rank
 - Selection bias is both interventional (π_0) and observational (user)
 - Combinatorial actions
- Approach
 - Decompose loss function into components
 - Get partial information about multiple losses
 - Unbiased estimate of each decomposed loss → ERM
- Open Questions
 - Propensity estimation beyond PBM and disruptive interventions
 - Other learning algorithms beyond Ranking SVM
 - Other counterfactual estimators beyond clipped IPS