Глава 4. Восходящий синтаксический анализ

4.6. *LR*-таблицы разбора

4.6.4. *LR*(1)-грамматики

Наиболее общей и мощной технологией построения таблиц разбора является LR(1)-метод. Он, по сути, тот же, что и рассмотренный выше LALR(1)-метод. Отличие заключается в том, что в LR(1)-методе состояния с идентичными ядрами, но с несовпадающими предпросмотрами пунктов считаются различными, т. е. их нельзя объединять, как это делалось в LALR(1)-методе. Это позволяет разрешать ряд конфликтов, с которыми не справляется *LALR*(1)-метод.

Рассмотрим грамматику с продукциями

- 1) $S \rightarrow aAd$ 4) $S \rightarrow bAe$
- 2) $S \rightarrow bBd$ 5) $A \rightarrow c$
- 3) $S \rightarrow aBe$ 6) $B \rightarrow c$

LR(1)-автомат представлен в табл. 4.12, а соответствующая LR(1)-таблица разбора в табл. 4.13.

Таблица 4.12 LR(1)-автомат

Состояние	Пункты	Символ	Состояние-	Свертка	
7	at at ()	перехода	преемник	•	
I_0	$S' \to \bullet S \perp, \{\varepsilon\}$	S	stop		
	$S \to \bullet aAd, \{\bot\}$	а	I_1		
	$S \to \bullet aBe, \{\bot\}$				
	$S \to \bullet bBd, \{\bot\}$	b	I_2		
	$S \rightarrow \bullet bAe, \{\bot\}$				
I_1	$S \to a \bullet Ad, \{\bot\}$	A	I_3		
	$S \to a \bullet Be, \{\bot\}$	В	I_4		
	$A \to \bullet c, \{d\}$	с	I_5		
	$B \to \bullet c, \{e\}$	-	15		
I_2	$S \to b \bullet Bd, \{\bot\}$	В	I_6		
	$S \rightarrow b \bullet Ae, \{\bot\}$	\boldsymbol{A}	I_7		
	$A \to \bullet c, \{e\}$	с	ı		
	$B \to \bullet c, \{d\}$	ι	I_8		
I_3	$S \to aA \bullet d, \{\bot\}$	d	I_9		
I_4	$S \to aB \bullet e, \{\bot\}$	e	I_{10}		
I_5	$A \to c \bullet, \{d\}$	d		R5	
	$B \to c \bullet, \{e\}$	e		<i>R</i> 6	
I_6	$S \to bB \bullet d, \{\bot\}$	d	I_{11}		
I_7	$S \to bA \bullet e, \{\bot\}$	e	I_{12}		
I_8	$A \to c \bullet, \{e\}$	e		R5	
	$B \to c \bullet, \{d\}$	d		<i>R</i> 6	
I_9	$S \to aAd\bullet, \{\bot\}$	Т		<i>R</i> 1	
I_{10}	$S \rightarrow aBe \bullet, \{\bot\}$	Τ		R3	
I_{11}	$S \rightarrow bBd \bullet, \{\bot\}$	Τ		R2	
I_{12}	$S \rightarrow bAe^{\bullet}, \{\bot\}$	Τ		R4	

- 1) $S \rightarrow aAd$
- 2) $S \rightarrow bBd$
- 3) $S \rightarrow aBe$
- 4) $S \rightarrow bAe$
- $5) A \rightarrow c$
- 6) $B \rightarrow c$

$$Follow(S) = \{\bot\},\$$

 $Follow(A) = \{d, e\},\$
 $Follow(B) = \{d, e\}.$

Таблица 4.13

LR(1)-таблица разбора

			/	<u> </u>					
Номер состояния	S	A	В	а	b	с	d	e	
0	stop			<i>S</i> 1	<i>S</i> 2				
1		<i>S</i> 3	<i>S</i> 4			<i>S</i> 5			
2		<i>S</i> 7	<i>S</i> 6			<i>S</i> 8			
3							<i>S</i> 9		
4								<i>S</i> 10	
5							<i>R</i> 5	<i>R</i> 6	
6							<i>S</i> 11		
7								<i>S</i> 12	
8							<i>R</i> 6	<i>R</i> 5	
9									<i>R</i> 1
10									<i>R</i> 3
11									<i>R</i> 2
12									<i>R</i> 4

Грамматика является LR(1)-грамматикой, поскольку все конфликты успешно разрешаются. Но она не относится к подклассу LALR(1), так как в соответствии с LALR(1)-методом состояния I_5 и I_8 , имеющие одно и то же ядро $\{[A \to c \bullet], [B \to c \bullet]\}$, должны объединяться в одно состояние с пунктами $[A \to c \bullet, \{d, e\}]$ и $[B \to c \bullet, \{d, e\}]$, что вызывает конфликт «сверка/сверка».

Рассмотренная выше грамматика специально усложнена для иллюстрации LR(1)-метода. Генерируемый ею язык включает в себя четыре строки и может быть представлен эквивалентной LR(0)-грамматикой с продукциями $S \to acd \mid bcd \mid ace \mid bce$.

Если для некоторой грамматики применить все рассмотренные методы построения таблиц разбора, то LR(0)-, SLR(1)- и LALR(1)-таблицы разбора будут иметь одинаковое число состояний, а LR(1)-таблица разбора — значительно больше. Таким образом, методы LR(0), SLR(1) и LALR(1) проще и экономичнее общего LR(1)-метода. Поскольку большинство конструкций языков программирования легко представляются с помощью SLR(1)- или LALR(1)-грамматик, лучше сначала опробовать SLR(1)-метод. При успешной попытке грамматика будет SLR(1)-грамматикой. В противном случае пробуется LALR(1)-метод, и если это разрешает все конфликты, то данная грамматика обладает признаком LALR(1). Если конфликты остаются, то используется наиболее общий LR(1)-метод, и если он не приводит к успеху, то либо необходимо преобразовать грамматику, либо язык не относится к классу LR(1)-языков и, следовательно, для него не может существовать LR(1)-грамматики.

Очевидно, что классификация LR(1)-грамматик включающая, т. е. все грамматики с признаками LR(0), SLR(1) и LALR(1) являются LR(1)-грамматиками, все грамматики с признаками LR(0) и SLR(1) являются LALR(1)-грамматиками и т. д.

Рассмотренные выше таблицы разбора обеспечивают быструю выборку и широкие диагностические возможности. Главный их недостаток — для хранения требуется большой объем памяти. Можно использовать известные методы хранения неплотных матриц, но обычно это достигается за счет увеличения времени разбора и более позднего обнаружения синтаксических ошибок.