	MESSA Lab 5 DATE:
	Experiment 5: Pressure destribution for flow around a ascular afinder
	Name & Manay Doshie Roll number - 200100094
	Afin: To study the pressure distribution for flow around a Accular cylinder and compare 96 with the theoretical predictions
*	Wosking and Calculations Last two digits - 94 Using 88 no - (94-76) = [18] Orangetes of cylindes = 8 mm
Charles Land	For Rough the Cyllader, using so no 18 = General Angular Possision(0) = 85° lyth = -16.6 cm
	Using $\theta=0$ to find $V_{00} = \sqrt{\frac{2(P_{0}-P_{00})}{S_{0}96}} = \sqrt{\frac{2Sq(h_{0}-h_{1})}{S_{0}96}} = \frac{9\times1000\times(.16)\times9.8}{1.9} = \frac{51.19077903m/s}{1.9}$ $R_{0} = 3VD = SVD = 51.18077903\times0.008 = 95560.38609$
	P 8v 0.000016
	We know experimental Cp = Po-85-Po = 2880(ho-hy) = 2x1000x9.8x-16.6 = [-1.0375] Sva 1.2x (51.12077208) 2
	CP/theavetical= 1-429020= 1-4280285= [-2.96962]
→	For smooth cylinder using so no 18- Given: Angular President (1)= 85° hgh; = -16.7 cm
	Voo (Pa-o-Ao) = 2/ 2x Sq(hgchi) = 2x1000x9.8x (15.3) = [49.989999] m/s Sais Sais (02x100

	Lunia.	
		_
	19405	_
	Re= SVD = VD = 49.889999 × 0.008 = [34995] SeV V 0.000016	_
	Ser 0.000016	_
		_
	We know Colexpt = Po-Poo - 28g(hgh) = 2x1000x9.8x(-16.7) = [-1.091503268]	
	We know Colent = Po-Poo - 25g(hgh) = 2x1000x9.8x(-16.7) = [-1.091503268] 8va Sya 1.2x(49.989999)2 2	
	CP(theoretical= 1-489n20= 1-489n2(85) = -2.96962	
	The state of the s	
*	Sourcel of essors	
	Human error while setting angle of the cylinder during the experiment	
2)	Pasallax esses while reading the heights h, and he from the manameter	
	we assume that als flow from the blowes is unform and there are no fluctuations	
	We assume the are flow to be invesced (for theoretical Cp), while there are always viscous	
/	forces.	
*	Questions and answess	
	When these is flow separalfon, we observe a favourable pressure for $0 \in (0,98)$ and then -	
3)	a recovery adverse pressure from 90° 20 < 180°. These neuses of drag force. Due to the flow -	
ti se	separation, the body experiences a secovery pressure only till the point of reparation. The	
	smaller as the angular position of the point of separation, less as the recovery and	
	mose the door force	
	Towns to the second sec	-
0,9	In laminos flow (low Re):	
	The boundary layer 98 lampas and mestful forces are lower compared to viscous baces.	
	Adverse poessure balances mestral forces and point of separation comes early. The seduces	
	possesure recovery and causes more doag.	
-		
1		

		PAGE NO.: DATE:							
- (In Turbulent flow (High Re) :								
	The boundary layer & turbulent, and mostfal torces are more than vercous forces hence								
	epossation to occur at a larger angular position. The increases power drag.	10 toxices. This causes 11000							
	hough surfaces cause the boundary layer to turn turbulent he point of separation would have a larger angular position.	and hence seduces dsag.							
9)	Roughess causes fluid flow to turn turbulent which results in the have a larger angular position. This results in more process	the point of separation se secovery and drag soducer							
94)	Brode have feathery bodies so as to orduce doug dusting flight bodies rough and make the boundary layer trobulent.	Be feathers make these							
95)	Bett Reading the lower mentions of water and sexult in essos. a contact angle of 90" and a low density so that we get a	we should use a liquid with a better resolution.							
	The point of separation exocurs lates in the rough cylinder that we observed from the experimental data. This matches our theory	n en the smooth cylinder as settical results as well.							
-	Coloxpesimental) ve Coltheopettral) data shows a huge difference full flow is vierous in nature, contradicting out or our norgan	e. We can comment that al assumption.							

Denisty of air Diameter of cylinder Kinematic Viscosity of air Density of Water 1.2 kg/m3 0.008 m 1.60E-05 m2/s 1000 kg/m3

Smooth Cylinder (Fully Open)

C. N.	•	la de Partira de 1907 de 1908	-1	h2 h4 ()	Ar . C. (/ .)	or (runy open)	D .	C	C. The
Sr. No.	Angu	iar Position n2 (ups	stream) (cm) h1 (cylinder) (cm)	h2-h1 (cm)	Vinfi (m/s)	1 1 1	Re	Cp_expt	Cp_Theo
			7.0				needs to be calculation only by once		_
	0	0	7.9	-7.4	15.3	49.989999	24995.00	1	1
	1	5	7.7	-7.2	14.9	49.989999	24995.00	0.973856209	0.969615506
	2	10	7.3	-6.8	14.1	49.989999	24995.00	0.921568627	0.879385242
	3	15	6.3	-5.9	12.2	49.989999	24995.00	0.797385621	0.732050808
	4	20	5.3	-4.9	10.2	49.989999	24995.00	0.666666667	0.532088886
	5	25	3.9	-3.5	7.4	49.989999	24995.00	0.483660131	0.285575219
	6	30	2.9	-2.7	5.6	49.989999	24995.00	0.366013072	0
	7	35	1.2	-1.1	2.3	49.989999	24995.00	0.150326797	-0.315959713
	8	38.5	0	0	0	49.989999	24995.00	0	-0.550097891
	9	40	-0.4	0.4	-0.8	49.989999	24995.00	-0.052287582	-0.652703645
	10	45	-1.9	1.8	-3.7	49.989999			-1
	11	50	-3.4	3.1	-6.5	49.989999	24995.00	-0.424836601	-1.347296355
	12	55	-5.5	5.1	-10.6	49.989999	24995.00	-0.692810458	-1.684040287
	13	60	-7	6.5	-13.5	49.989999	24995.00	-0.882352941	-2
	14	65	-8.3	7.7	-16	49.989999	24995.00	-1.045751634	-2.285575219
	15	70	-9.4	8.7	-18.1	49.989999	24995.00	-1.183006536	-2.532088886
	16	75	-9.8	9.2	-19	49.989999	24995.00	-1.241830065	-2.732050808
	17	80	-9.2	8.6	-17.8	49.989999	24995.00	-1.163398693	-2.879385242
	18	85	-8.6	8.1	-16.7	49.989999	24995.00	-1.091503268	-2.969615506
	19	90	-8.4	7.8	-16.2	49.989999	24995.00	-1.058823529	-3
	20	95	-8.2	7.6	-15.8	49.989999	24995.00	-1.032679739	-2.969615506
	21	100	-8	7.4	-15.4	49.989999	24995.00	-1.006535948	-2.879385242
	22	105	-7.9	7.3	-15.2	49.989999			-2.732050808
	23	110	-7.9	7.4	-15.3	49.989999			-2.532088886
	24	115	-7.9	7.3	-15.2	49.989999			-2.285575219
	25	120	-7.9	7.3	-15.2	49.989999			-2
	26	125	-7.9	7.4	-15.3	49.989999			-1.684040287
	27	130	-8	7.5	-15.5	49.989999			-1.347296355
	28	135	-8.1	7.6	-15.7	49.989999			-1
	29	140	-8.1	7.6	-15.7	49.989999			-0.652703645
	30	145	-8.1	7.6	-15.7	49.989999			-0.315959713
	31	150	-8.1	7.6	-15.7	49.989999			0
	32	155	-8.2	7.7	-15.9	49.989999	24995.00	-1.039215686	0.285575219
	33	160	-8.1	7.7	-15.8	49.989999			0.532088886
	34	165	-8.2	7.7	-15.9	49.989999			0.732050808
	35	170	-8.3	7.7	-16	49.989999			0.879385242
	36	175	-8.2	7.6	-15.8	49.989999			0.969615506
	37	180	-8.2	7.6	-15.8	49.989999	24995.00	-1.032679739	1

Denisty of air 1.2 kg/m3
Diameter of cylinder 0.008 m
Kinematic Viscosity of air 1.60E-05 m2/s
Density of Water 1000 kg/m3

Rough Cylinder (Fully Open)

Rough Cylinder (Fully Open)								
Sr. No.	Angular Position	h2 (upstream) (cm)	h1 (cylinder) (cm)			Re	Cp_expt	Cp_Theo
					calculation is needed only once	calculation is needed only once		
0	0	8.2	-7.8	16	51.12077203	25560.39	1	1
1	5	8.2	-7.8	16	51.12077203	25560.39	1	0.969616
2	10	8.1	-7.7	15.8	51.12077203	25560.39	0.9875	0.879385
3	15	7.9	-7.5	15.4	51.12077203	25560.39	0.9625	0.732051
4		7.2	-6.8	14	51.12077203	25560.39	0.875	0.532089
5	25	6	-5.8	11.8	51.12077203		0.7375	0.285575
6	30	4.8	-4.6	9.4	51.12077203		0.5875	0
7		2.8			51.12077203		0.34375	
8		0.9			51.12077203		0.11875	
9		0			51.12077203		0	-0.89533
10	45	-0.9			51.12077203		-0.10625	-1
11		-2.8			51.12077203		-0.3375	
12		-4.7			51.12077203		-0.5625	
13		-6.3			51.12077203		-0.75	-2
14		-7.6	6.9		51.12077203			
15		-8.5			51.12077203		-1.01875	
16		-9.1			51.12077203			-2.73205
17		-9.1			51.12077203		-1.0875	
18		-8.7			51.12077203		-1.0375	-2.96962
19		-8.4			51.12077203		-1.00625	-3
20		-8.3			51.12077203			-2.96962
21		-8.1			51.12077203		-0.9625	
22		-7.9			51.12077203			
23		-7.9			51.12077203		-0.95	
24		-7.8			51.12077203		-0.95	
25		-7.8			51.12077203		-0.95	-2
26		-7.8			51.12077203		-0.95	
27		-7.8			51.12077203		-0.95	-1.3473
28		-7.8			51.12077203		-0.95	-1
29		-7.8			51.12077203		-0.95	
30		-7.8			51.12077203		-0.95	
31		-7.8			51.12077203			0
32		-7.8			51.12077203			0.285575
33		-7.7			51.12077203			0.532089
34		-7.7			51.12077203			0.732051
35		-7.7			51.12077203			0.879385
36		-7.7			51.12077203			0.969616
37	180	-7.7	7	-14.7	51.12077203	25560.39	-0.91875	1

