

POINT GNN

CS6450:VISUAL COMPUTING

Presented by- Kaushiki Dwivedi (M.Tech, Artificial Intelligence -AI21MTECH14003)

AUTHORS-

Shi,Weijing Rajkumar,Ragunathan (Raj) **TEACHING ASSISTANT:**

Romi Srivastava Ph.D Research Scholar **GUIDED BY:**

Prof. C Krishna Mohan Dept. of CSE, IIT Hyderabad

"Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud"

Weijing Shi and Ragunathan (Raj) Rajkumar Carnegie Mellon University Pittsburgh, PA 15213 (weijings, rajkumar)@cmu.edu "The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2020

Table of Contents:

- Recap of 1st presentation
- Motivation
- Challenges
- Contributions of the paper
- Datasets
- Implementation
- Results
- Novel Work Contribution
- Conclusion
- References

RECAP: POINT CLOUD

MOTIVATION:

- Application areas:
 - Self driving cars.
 - ☐ 3D CAD models
 - ☐ Industrial Metrology
 - Quality inspection
 - ☐ Speech recognition
- New approach for 3D object detection

CHALLENGES

- ❖ A high-density LiDAR usually leads to a high cost, expensive tech.
- Robustness on LiDAR sparsity.
- Enormous amount of data ,few seconds of data even on a low level 32 channel gets into GB of data.
- Scenarios like fog,rain etc that blocks light can affect the working of LiDAR.

GRAPH NEURAL NETWORKS

VISUALIZING GNN:

A RECIPE FOR **GRAPH** NEURAL NETWORKS, VISUALISED

Contributions of the paper:

- Propose a new object detection approach using graph neural network on the point cloud.
- The paper designs Point-GNN, a graph neural network with an auto-registration mechanism that detects multiple objects in a single shot.
- Able to achieve state-of-the-art 3D object detection accuracy in the KITTI benchmark and analyze the effectiveness of each component in depth.

MODEL ARCHITECTURE:

Figure 2. The architecture of the proposed approach. It has three main components: (a) graph construction from a point cloud, (b) a graph neural network for object detection, and (c) bounding box merging and scoring.

INTERSECTION OF UNION: EVALUATION METRIC

NMS ALGORITHM & MODIFIED USING BOX MERGING AND SCORING

```
\mathcal{M} \leftarrow \{\}, \mathcal{Z} \leftarrow \{\}
while \mathcal{B} \neq empty do
        i\leftarrow argmax\ D
        \mathcal{L} \leftarrow \{\}
        for b_i in \mathcal{B} do
                 if iou(b_i, b_j) > T_h then
                 egin{array}{c} \mathcal{L} \leftarrow \mathcal{L} \cup b_j \ \mathcal{B} \leftarrow \mathcal{B} - b_j, \, \mathcal{D} \leftarrow \mathcal{D} - d_j \end{array}
                 end
        end
        m \leftarrow median(\mathcal{L})
        o \leftarrow occlusion(m)
        z \leftarrow (o+1) \sum_{b_k \in \mathcal{L}} IoU(m, b_k) d_k
        \mathcal{M} \leftarrow \mathcal{M} \cup m, \mathcal{Z} \leftarrow \mathcal{Z} \cup z
end
return \mathcal{M}. \mathcal{Z}
```

Loss Function:

Classification loss:

$$l_{cls} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{c_j}^i log(p_{c_j}^i)$$

Localisation loss:

$$l_{loc} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(v_i \in b_{interest}) \sum_{\delta \in \delta_{b_i}} l_{huber}(\delta - \delta^{gt})$$

DATASETS:

- The KITTI dataset contains 7481 training samples and 7518 testing samples.
- Train the proposed GNN end-to-end with a batch size of 4.
- Each sample provides both the point cloud and the camera image.
- The KITTI benchmark evaluates the average precision (AP) of three types of objects:

Car, Pedestrian and Cyclist.

- Conda environments: fusion_env_3.6,keras_env,open3d_39,pytorch_p37
- GTX 1070 GPU and Xeon E5-1630 CPU.

Implementation:

Used three iterations (**T** = **3**) in our GNN. During training, we limit the maximum number of input edges per vertex to **256**.

- ☐ Car:-
 - -Treat front view and side-view objects as two different classes.
 - -We use an initial learning rate of 0.125 and a decay rate of 0.1 every 400K steps.
 - -Trained it for 1400K steps.

- Pedestrian and Cyclist:
 - -We use an initial learning rate of 0.32 and a decay rate of 0.25 every 400K steps.
 - Trained it for 1000K steps.

POINT-GNN CODE: run.py

Results obtained by paper implementation:

Results:

Results(Contd):

Results:

• 3D object detection on the KITTI test dataset.

Madad	Modality	Car			Pedestrian			Cyclist		
Method		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
UberATG-ContFuse[12]	LiDAR + Image	82.54	66.22	64.04	N/A	N/A	N/A	N/A	N/A	N/A
AVOD-FPN[8]	LiDAR + Image	81.94	71.88	66.38	50.80	42.81	40.88	64.00	52.18	46.61
F-PointNet[13]	LiDAR + Image	81.20	70.39	62.19	51.21	44.89	40.23	71.96	56.77	50.39
UberATG-MMF[11]	LiDAR + Image	86.81	76.75	68.41	N/A	N/A	N/A	N/A	N/A	N/A
VoxelNet[23]	LiDAR	81.97	65.46	62.85	57.86	53.42	48.87	67.17	47.65	45.11
SECOND[19]	LiDAR	83.13	73.66	66.20	51.07	42.56	37.29	70.51	53.85	53.85
PointPillars[10]	LiDAR	79.05	74.99	68.30	52.08	43.53	41.49	75.78	59.07	52.92
PointRCNN[16]	LiDAR	85.94	75.76	68.32	49.43	41.78	38.63	73.93	59.60	53.59
STD[21]	LiDAR	86.61	77.63	76.06	53.08	44.24	41.97	78.89	62.53	55.77
Our Point-GNN	LiDAR	88.33	79.47	72.29	51.92	43.77	40.14	78.60	63.48	57.08

Illustration:

Ablation study Results:

Comparing the Object detection accuracy with and without box merging and scoring:

	Box	Box	Auto	H	BEV AP (Car	r)	3D AP (Car)			
	Merge	Score	Reg.	Easy	Moderate	Hard	Easy	Moderate	Hard	
1	2	Ų.	-	89.11	87.14	86.18	85.46	76.80	74.89	
2	2		1	89.03	87.43	86.39	85.58	76.98	75.69	
3	1		1	89.33	87.83	86.63	86.59	77.49	76.35	
4	-	1	1	89.60	88.02	86.97	87.40	77.90	76.75	
5	1	1	-	90.03	88.27	87.12	88.16	78.40	77.49	
6	1	✓	1	89.82	88.31	87.16	87.89	78.34	77.38	

Novel Work Contribution:

- Propose the learned sampling network (LSNet), a single-stage 3D object detection network containing an LS module that can sample important points through deep learning.
- A novel deep learning based sampling approach i.e. differentiable and task related.

Conclusion:

- Using a graph representation, encoding the point cloud compactly without mapping to a grid and grouping repeatedly.
- Point-GNN achieves the leading accuracy in both the 3D and Bird's Eye View object detection of the KITTI benchmark.
- Experiments show the proposed auto-registration mechanism reduces transition variance, and the box merging and scoring operation improves the detection accuracy.

References

- B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from point clouds.
 In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7652–7660, June 2018.
- Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task, multi-sensor fusion for 3d object detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
- X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d graph neural networks for rgbd semantic segmentation. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5209–5218, Oct 2017.
- J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d proposal generation and object detection from view aggregation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–8, Oct 2018.
- Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
 Sensors, 18(10), 2018.

THANKYOU