O problema do Subset-Sum e uma solução em tempo polinomial

Allan Cordeiro Rocha de Araújo.

¹Centro de ciência e tecnologia— Universidade Federal de Roraima (UFRR) Boa Vista— RR — Brasil

allanps32008@gmail.com

Resumo. Será explicado o problema do subset-sum, assim como mostrando códigos da versão exata e da sua versão aproximada.

1. Introdução

O objetivo neste artigo é, de forma clara, explicar o problema da soma de subconjuntos (subset-sum), assim como mostra os pseudocódigos das versões exata e aproximada.

2. Subset-Sum (Soma de subconjuntos)

O subset-sum é um caso especial do problema da mochila booleana, os dois são NP-Completos.

A definição formal do problema é: Dado um conjunto $\{p1,...,pn\}$ pertencente aos números naturais e c, decidir se existe um subconjunto X de $\{1,...,n\}$ tal que p(X) = c. Falando com palavras claras, será visto se, existe alguma soma de valores (no subconjunto) que resulte em c, se existe retorna verdadeiro, se não retorna falso.

3. Pseudocódigo versão exata

Como o problema é NP-Completo, sua complexidade de tempo é $O(2^n)$, sendo n o tamanho do vetor de entrada, no caso o conjunto $\{p1,...,pn\}$.

```
Subset-Sum-Rec (p, n, c)

se n = 0

então se c = 0

então devolva 1

senão devolva 0

senão s \leftarrow Subset-Sum-Rec (p, n-1, c)

se s = 0 e pn \le c

então s \leftarrow Subset-Sum-Rec (p, n-1, c-pn)

devolva s
```

4. Pseudocódigo versão aproximada

Como o tempo para versão exata é extremamente grande, existe uma versão aproximada, ela usa programação dinâmica para armazenar o resultado de algumas instancias do problema. A complexidade de tempo dele é O(nc), onde 'n' é o numero de linhas e 'c' é o número de colunas da tabela que será armazenado os resultados das instancias.

```
Subset-Sum-Prog-Din (p, n, c)  para \ i \ crescendo \ de \ 0 \ até \ n \ faça \\ t[i,0] \leftarrow 1   para \ b \ crescendo \ de \ 1 \ até \ c \ faça   t[0,b] \leftarrow 0   para \ i \ crescendo \ de \ 1 \ até \ n \ faça   s \leftarrow t[i-1,b]   se \ s = 0 \ e \ pi \le b   então \ s \leftarrow t[i-1,b-pi]   t[i,b] \leftarrow s   devolva \ t[n,c]
```

Referências

"O problema subset-sum"; IME. Disponível em https://www.ime.usp.br/~pf/analise_de_algoritmos/aulas/mochila-subsetsum.html >. Acesso em 12 de julho de 2018.