1. Ejercicio 1

Se procederá al análisis del circuito de la Figura 1. El mismo es un circuito destinado al análisis del disparo de un transistor MOSFET.

Figura 1: Circuito para análisis de disparo de transistor MOSFET

1.1. Circuito Driver

Los transistores Q_1 y Q_2 forman una configuración Totem-Pole, y se encuentran funcionando en saturación (push-pull output). Nótese que para prender el transistor, se requiere cargar las capacidades internas del MOSFET, por lo que se requiere un pico de corriente que un generador de señales no es capaz de proveer. Utilizando esta configuración, se puede activar y desactivar este circuito utilizando un generador de señales, mientras que la corriente es provista por la fuente de tensión. Idealmente, la salida de este circuito valdrá $V_{out} = V_1 - 0.7V$ cuando el circuito esté activado, y $V_{out} = 0.7V$ cuando se encuentre desactivado. Este circuito afectará la curva de control del Gate, pues la misma no es un escalón ideal. Se tendrá en cuenta el delay para la interpretación de los resultados obtenidos, pero no nos centraremos en el análisis de los delays de esta configuración.

1.2. Conmutación MOSFET

Durante la conmutación del MOSFET, circula corriente por el Gate. Esta corriente es debido a capacidades internas del transistor, que se cargan durante la conmutación. Dichas capacidades corresponden básicamente a las cargas de la capa de inversión e ionización que se forman en el

body del transistor para formar el canal N (Capacidad Gate-Source C_{GS} - recordar que el Gate y el Source se encuentran cortocircuitados internamente), y las cargas asociadas a la capa de acumulación o de deplexión que se forma en el Drain del transistor (Capacidad Gate-Drain C_{GS}), que ayudan a minimizar la resistencia del MOSFET cuando se encuentra activado. Cabe destacar que estas capacidades dependen del tamaño de la capa de acumulación / deplexión, y por lo tanto cambian durante la conmutación del MOSFET. Se buscará introducir las ecuaciones a utilizar, sin entrar en detalle sobre el funcionamiento del transistor.

1.2.1. Encendido del MOSFET

Considerando que, ante un escalón de tensión en provisto por el circuito Driver, dichas capacidades comienzan a cargarse, se puede modelar la primera etapa del prendido del MOSFET con un circuito RC, por lo que la tensión V_G en función del tiempo puede ser aproximada por

$$V_G(t) = V_1(1 - \exp(-t/\tau_1)). \tag{1}$$

donde $\tau_1 = R_1 \tilde{C}_{G,1}$ y $\tilde{C}_{G,1} = C_{GS} + C_{GD,1}$. Cuando la tensión en el Gate llega a $V_{GS,th}$ (en $t = t_{d,on}$), comienza a formarse la capa de inversión, por lo que la corriente del drain I_D comienza a aumentar hasta llegar al valor I_0 impuesto por la carga inductiva y que el diodo deje de conducir (en $t = t_1$). Esto ocurrirá cuando la tensión en el Gate llegue a un valor $V_G = V_{G,I_D=I_0}$. El tiempo entre que comienza a circular corriente hasta que se alcanza el valor I_0 se denomina t_{ri} . Se puede demostrar que

$$t_{d,on} = -\tau_1 \ln \left(1 - \frac{V_{G,th}}{V_1} \right) \tag{2}$$

$$t_1 = -\tau_1 \ln \left(1 - \frac{V_{G,I_D = I_0}}{V_1} \right) \tag{3}$$

$$t_{ri} = t_1 - t_{d,on}. (4)$$

Luego, cuando la corriente de drain llega al valor I_0 , el valor de la tensión en el gate se mantiene temporalmente en $V_G = V_{G,I_D=I_0}$, por lo que la capacidad C_{GS} deja de cargarse, mientras se sigue cargando C_{GD} a corriente constante. A medida se cargue C_{GD} se formará la capa de acumulación, bajando la resistencia R_{DS} , por lo que disminuye la tensión V_{DS} hasta alcanzar el valor $V_{DS,on}$. Dado que la capacidad C_{GD} varía durante este proceso, pues varían la longitud de la capa de acumulación, suele utilizarse el valor de la carga total ΔQ para estimar la duración de esta etapa. Con esto, el tiempo que transcurre desde que empieza a caer la tensión V_{DS} hasta que alcanza el valor $V_{DS,on}$ puede estimarse según:

$$t_{fv} = \Delta Q / I_{G,on} = \frac{\Delta Q R_1}{V_1 - V_{G,I_D} = I_0}$$
 (5)

A lo largo de esta etapa, cambia el valor de $C_{GD,1}$ a $C_{GD,2}$. Luego, la tensión en el Gate sigue creciendo hasta llegar al valor V_{GG} . El tiempo característico asociado está dado por:

$$\tau_2 = R_1 \tilde{C}_{G,2} \tag{6}$$

Donde $\tilde{C}_{G,2} = C_{GS} + C_{GD,2}$

1.2.2. Apagado del MOSFET

El apagado del MOSFET es similar al encendido, pero en orden contrario:

Primero, se comienzan a descargar las capacidades internas por el Gate, por lo que la tensión del Gate en la primera etapa está dada por:

$$V_G(t) = V_{GG} \exp(-t/\tau_2) \tag{7}$$

Esto ocurrirá hasta que la tensión V_G alcance el valor $V_{G,I_D=I_0}$ en $t=t_2$. Puede demostrarse que:

$$t_2 = -\tau_2 \ln \left(\frac{V_{G,I_D=I_0}}{V_{GG}} \right) \tag{8}$$

Luego, la tensión en el Gate permanecerá constante mientras se descarga $C_{GD,2}$ a corriente constante durante un tiempo t_{rv} . Analogo al caso de encendido, este tiempo está dado por

$$t_{rv} = \Delta Q / I_{G,off} = \frac{\Delta Q R_1}{V_{G,I_D=I_0}} \tag{9}$$

Notar que, al igual que durante el prendido, la capacidad C_{GD} cambia de valor durante este proceso. Finalmente, la tensión en el Gate baja según la ecuación

$$V_G = V_{G,I_D=I_0} \exp(-t/\tau_1). \tag{10}$$

A medida que la tensión cae, comienza a deshacerse el canal formado, por lo que baja el valor de I_D hasta hacerse nulo cuando $V_G = V_{G,th}$. Esto ocurre luego de un intervalo t_{fi} . El valor de t_{fi} está dado por

$$t_{fi} = -\tau_1 \ln \left(\frac{V_{G,th}}{V_{G,I_D} = I_0} \right). \tag{11}$$

1.3. Carga Inductiva

La carga está compuesta por un circuito RL. Los valores importantes a tener en cuenta para el análisis del circuito son la corriente nominal y su tiempo característico. La corriente nominal se obtiene considerando que el MOSFET se comporta como una llave cerrada. El valor de la corriente está dado por

$$I_0 = V_2 / R_2. (12)$$

El tiempo característico de este circuito está dado por

$$\tau_{RL} = L_1/R_2. \tag{13}$$

1.4. Diodo

1.5. Valores de los componentes y variables

Componente	Q_1	Q_2	R_1	R_2	R_3	M_1	L_1	D_1	V_2	V_1
Valor	BC337-25	BC557B	100 Ω	15Ω	$1 K\Omega$	IRF530	$220~\mu H$	MUR460	50 V	Vp=15 V

Tabla 1: Componentes

Reemplazando los valores de estos, obtenemos lo siguiente:

Variable	I_O	$V_{ds,max}$	$V_{G,th}$	$V_{G,I_D=I_0}$	$\tilde{C}_{G,1}$	$\tilde{C}_{GD,2}$	ΔQ
Valor	$\frac{10}{3}$ A	50 V	4 V	5,2 V	800 pF	650 pF	6,25 nC

Y los tiempos de conmutación son:

Variable	$t_{d,on}$	t_{ri}	t_{fv}	t_{rv}	t_{fi}
Valor	24,8124 nseg A	9,2410 nseg	63,7755 nseg	120,1923 nseg	20,9891 nseg

Finalmente, se obtienen las siguientes curvas: