4차시 - 파이썬 기반 공간분석 및 시각화

Jupyter Notebook에서 새 파이썬 코드 생성

- Jupyter Notebook을 실행하면 웹브라우저 상에 로컬 웹서비스로 접속됨 (크롬/파이어폭스 권장)
- 상단 오른쪽의 New 버튼을 눌러 Python3를 클릭하면 새 탭에 새로운 파이썬 코드를 입력할 수 있는 화면이 나타남

- Cell 단위로 파이썬 코드를 입력할 수 있는 구조로 되어 있어 여기에 일정 단락(단위 결과를 확인할 수 있는)별로 코드를 입력
- 먼저 Pandas, Geopandas 등 분석에 필요한 패키지(라이브러리)를 호출

import pandas as pd import geopandas as gpd # Import geopandas import fiona

CCTV 데이터 로딩 및 속성 추출

- 다운로드 받은 CCTV CSV 파일을 pandas 데이터프레임으로 로딩
- 필요한 컬럼만 적용하면 데이터량을 줄일 수 있음

Out[21]:

	admin	addr1	lat	lon
0	청도공영사업공사	경상북도 청도군 화양읍 남성현로 348	35.687293	128.724165
1	청도공영사업공사	경상북도 청도군 화양읍 남성현로 348	35.687293	128.724165
2	청도공영사업공사	경상북도 청도군 화양읍 남성현로 348	35.687293	128.724165
3	청도공영사업공사	경상북도 청도군 화양읍 남성현로 348	35.687293	128.724165
4	청도공영사업공사	경상북도 청도군 화양읍 남성현로 348	35.687293	128.724165

• 서울시 데이터만 추출하고, 기본정보 확인

```
# CCTV CSV 에서 서울시 데이터만 추출

df_cctv[['lat', 'lon']].dropna() #좌표값 없는 데이터 제거

df_cctv2 = df_cctv[df_cctv['addr1'].str.contains('서울특별시')==True]

df_cctv2.head()
```

Out[122]:

	admin	addr1	lat	lon
8089	서울특별시 송파구청	서울특별시 송파구 바람드리길 2	37.538288	127.115963
8090	서울특별시 송파구청	서울특별시 송파구 바람드리12길 14-1	37.536698	127.118098
8091	서울특별시 송파구청	서울특별시 송파구 천호대로 996	37.538177	127.122626
8092	서울특별시 송파구청	서울특별시 송파구 올림픽로57길 2	37.534559	127.121416
8093	서울특별시 송파구청	서울특별시 송파구 강동대로 76	37.526222	127.115766

```
# 추출한 CCTV의 기본정보 및 기초 통계 확인
df_cctv2.info()
#df_cctv2.describe()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24199 entries, 8089 to 160379
Data columns (total 4 columns):
admin     24199 non-null object
addr1     24199 non-null object
lat      24199 non-null float64
lon     24199 non-null float64
dtypes: float64(2), object(2)
memory usage: 945.3+ KB
```

CCTV 공간데이터화

• Geopandas를 이용하여 좌표를 포인트 공간데이터화

• 포인트 좌표를 EPSG 4326로 정의하여 공간 데이터프레임으로 생성

```
# 좌표계 정의/변환용 라이브러리

import pyproj

from fiona.crs import from_epsg

coulumns = ['admin', 'addr1']

gdf_cctv = gpd.GeoDataFrame(df_cctv2[coulumns], geometry=geom_cctv, crs=from_epsg(4326))

#df_cctv_gdf.info()

gdf_cctv.head()
```

Out[125]:

	admin	addr1	geometry
8089	서울특별시 송파구청	서울특별시 송파구 바람드리길 2	POINT (127.11596 37.53829)
8090	서울특별시 송파구청	서울특별시 송파구 바람드리12길 14-1	POINT (127.11810 37.53670)
8091	서울특별시 송파구청	서울특별시 송파구 천호대로 996	POINT (127.12263 37.53818)
8092	서울특별시 송파구청	서울특별시 송파구 올림픽로57길 2	POINT (127.12142 37.53456)
8093	서울특별시 송파구청	서울특별시 송파구 강동대로 76	POINT (127.11577 37.52622)

CCTV 좌표계 변환 및 geojson 저장

• EPSG 5179 좌표계로 변환하고, 차트로 확인

```
gdf_cctv2 = df_cctv_gdf.to_crs(epsg=5179) #좌표계를 5179로 변환
gdf_cctv2.plot(color='gray')
```

Out[126]:

<matplotlib.axes._subplots.AxesSubplot at 0x16336ed4348>

• 강남구만 재추출

```
#강남구 CCTV만 한번 더 추출
gdf_cctv3 = gdf_cctv2[gdf_cctv2['admin'].isin(['서울특별시 강남구청'])]
gdf_cctv3.head()
```

Out[145]:

	admin	addr1	geometry
77730	서울특별시 강남 구청	서울특별시 강남구 헌릉로622길 27	POINT (965231.546 1940473.890)

```
gdf_cctv3.plot()
```

Out[146]:

<matplotlib.axes._subplots.AxesSubplot at 0x163379d7588>

CCTV geojson 저장 및 확인

• Geojeson으로 저장

```
#CCTV 공간데이터를 geojson으로 저장
gdf_cctv2.to_file('./data/python/cctv.geojson', driver='GeoJSON')
gdf_cctv3.to_file('./data/python/cctv_gn.geojson', driver='GeoJSON')
```


- 텍스트 에디터로 확인
- Notepad++
- 대용량은 gVim 등

도서관 CSV 로딩

•도서관 CSV 로딩

	name	do	gu	lat	lon
0	옥과공공도서관	전라남도	곡성군	35.274540	127.13557
1	도봉어린이문화정보도서관(디지털자료실)	서울특별 시	서울특별시 도봉 구	37.659007	127.04947
2	도봉어린이문화정보센터(자료열람실, 잉글리시 아일 랜드)	서울특별 시	서울특별시 도봉 구	37.659007	127.04947
3	학마을도서관 (종합자료실)	서울특별 시	서울특별시 도봉 구	37.662108	127.02782
4	학마을도서관 (어린이 자료실)	서울특별 시	서울특별시 도봉 구	37.662110	127.02782

•도서관에서 서울시 데이터만 속성 추출

```
# 도서관 CSV 에서 서울시 데이터만 추출

df_library[['lat', 'lon']].dropna() #좌표값 없는 데이터 제거

df_library2 = df_library[df_library['do'] == '서울특별시'] #시도 항목 값이 서울인 것만 추출

df_library2.head()
```

Out[129]:

	name	do	gu	lat	lon
1	도봉어린이문화정보도서관(디지털자료실)	서울특별 시	서울특별시 도봉 구	37.659007	127.04947
2	도봉어린이문화정보센터(자료열람실, 잉글리시 아일 랜드)	서울특별 시	서울특별시 도봉 구	37.659007	127.04947
3	학마을도서관 (종합자료실)	서울특별 시	서울특별시 도봉 구	37.662108	127.02782
4	학마을도서관 (어린이 자료실)	서울특별 시	서울특별시 도봉 구	37.662110	127.02782
5	방학동영유아플라자	서울특별 시	서울특별시 도봉 구	37.663230	127.03033

도서관 공간데이터화

•도서관 - 좌표로 공간데이터화

	name	gu	geometry
1	도봉어린이문화정보도서관(디지털자료실)	서울특별시 도봉구	POINT (127.04947 37.65901)
2	도봉어린이문화정보센터(자료열람실, 잉글리시 아일랜 드)	서울특별시 도봉구	POINT (127.04947 37.65901)
3	학마을도서관 (종합자료실)	서울특별시 도봉구	POINT (127.02782 37.66211)
4	학마을도서관 (어린이 자료실)	서울특별시 도봉구	POINT (127.02782 37.66211)
5	방학동영유아플라자	서울특별시 도봉구	POINT (127.03033 37.66323)

도서관 공간데이터 좌표계 변환

• 5179로 좌표계 변환 – 이상치가 존재

```
gdf_library2 = df_library_gdf.to_crs(epsg=5179) #좌표계를 5179로 변환
 gdf library2.plot(color='blue')
Out[133]:
 <matplotlib.axes._subplots.AxesSubplot at 0x163370adf08>
  1950000 -
  1900000
  1850000
  1800000
  1750000
  1700000
  1650000
  1600000
          700000
                  800000
                          900000
```

행정구역 SHP 로딩 및 좌표계 정의

```
#좌표 범위를 벗어나는 데이터를 제외하기 위해 행정구역 공간데이터 로딩
gdf_admin_gu_pg = gpd.read_file('./data/org/SIG_201905/TL_SCCO_SIG.shp', encoding='euc-kr')
#euc-kr, euckr, utf-8, cp949 중 선택
gdf_admin_gu_pg.crs
Out[134]:
 {'proj': 'tmerc',
  'lat 0': 38,
  'lon_0': 127.5,
  'k': 0.9996,
  'x 0': 1000000,
  'y 0': 2000000,
  'ellps': 'GRS80',
  'units': 'm',
  'no defs': True}
                                               내용상으로는 epsg 5179이나 EPSG 좌표계로 정의되어 있지 않음. 정의 🗄
                                              In [135]:
                                             gdf_admin_gu_pg.crs = "epsg:5179"
                                               gdf admin gu pg.crs
                                              Out[135]:
                                               'epsg:5179'
```

서울시 구별 행정구역만 속성 추출

```
#서울지역 행정구역만 추출
gdf_admin_gu_pg['DO'] = gdf_admin_gu_pg['SIG_CD'].str.slice(start=0, stop=2)
gdf admin gu pg2 = gdf admin gu pg[gdf admin gu pg['DO'].str.contains('11')==True]
gdf admin gu pg2.info()
gdf admin gu pg2.head()
<class 'geopandas.geodataframe.GeoDataFrame'>
Int64Index: 25 entries, 0 to 24
Data columns (total 5 columns):
        25 non-null object
SIG CD
SIG_ENG_NM 25 non-null object
SIG KOR NM 25 non-null object
geometry
             25 non-null geometry
             25 non-null object
DO
dtypes: geometry(1), object(4)
memory usage: 1.2+ KB
```

Out[139]:

```
SIG_CD
         SIG_ENG_NM
                       SIG_KOR_NM
                                                                           geometry
                                                                                      DO
  11110
                              종로구
                                     POLYGON ((956615.453 1953567.199, 956621.579 1...
                                                                                      11
            Jongno-gu
  11140
                                     POLYGON ((957890.386 1952616.746, 957909.908 1...
                                                                                      11
              Jung-gu
  11170
           Yongsan-gu
                              용산구
                                      POLYGON ((953115.761 1950834.084, 953114.206 1...
                                                                                      11
```

gdf_admin_gu_pg2.plot(color='grey')
Out[140]:

<matplotlib.axes._subplots.AxesSubplot at 0x1632d15ce88>

서울시 행정구역 내의 도서관 포인트만 공간 추출

```
#서울시 안에 있는 도서관만 공간 선택
gdf_admin_gu_pg2['dummy'] = 'dummy' #서울시 구별 폴리곤에 더미 컬럼 추가
geom = gdf_admin_gu_pg2.dissolve(by='dummy').geometry[0] # '더미'값으로 디졸브한 서울시 영역
gdf_library3 = df_library_gdf2[df_library_gdf2.within(geom)] #서울시 영역 내 도서관 포인트 선택
gdf_library3.plot(color='grey')
```


gdf_library3.head()

Out[151]:

	name	gu	geometry
1	도봉어린이문화정보도서관(디지털자료실)	서울특별시 도봉 구	POINT (960262.103 1962262.693)
2	도봉어린이문화정보센터(자료열람실, 잉글리시 아일랜 드)	서울특별시 도봉 구	POINT (960262.103 1962262.693)
3	학마을도서관 (종합자료실)	서울특별시 도봉 구	POINT (958354.222 1962616.089)
4	학마을도서관 (어린이 자료실)	서울특별시 도봉 구	POINT (958354.249 1962616.333)
5	방학동영유아플라자	서울특별시 도봉 구	POINT (958576.252 1962739.481)

강남구 도서관만 속성 추출

```
#강남구 도서관만 한번 더 추출
gdf_library4 = gdf_library3[gdf_library3['gu'].str.contains('강남구')==True]
gdf_library4.head()
```

Out[152]:

	name	gu	geometry
1433	세곡도서관	강남구	POINT (965240.472 1941165.141)
1434	대치1작은도서관	강남구	POINT (960819.672 1943869.225)
1435	역삼2동작은도서관	강남구	POINT (959910.788 1944167.146)
1436	신사동작은도서관	강남구	POINT (957833.364 1947293.047)
1437	압구정동작은도서관	강남구	POINT (957981.364 1947604.146)

```
gdf_library4.plot(color='grey')
Out[153]:
<matplotlib.axes._subplots.AxesSubplot at 0x1633728ce48>
```



```
#도서관 공간데이터를 geojson으로 저장
gdf_library3.to_file('./data/python/library.geojson', driver='GeoJSON')
gdf_library4.to_file('./data/python/library_gn.geojson', driver='GeoJSON')
```

보안등 로딩 및 공간데이터화

Out[163]:

	slight_id	lat	lon	inst_year	offer
0	11-14-10	37.633862	127.042875	2007	서울특별시 도봉구
1	11-17-47	37.633861	127.041317	2013	서울특별시 도봉구
2	11-16-01	37.633853	127.040014	2013	서울특별시 도봉구
3	11-17-10	37.633847	127.039282	2007	서울특별시 도봉구
4	11-14-09	37.633821	127.042452	2008	서울특별시 도봉구

```
len(df slight)
```

Out[157]:

1590819

서울시 강남구 보안등만 속성 추출

```
# 보안등 CSV 에서 서울시 데이터만 추출

df_slight[['lat', 'lon']].dropna() #좌표값 없는 데이터 제거

df_slight2 = df_slight[df_slight['offer'].str.contains('서울특별시 강남구')==True] #서울인 것만 추출

df_slight2.head()
```

Out[164]:

	slight_id	lat	lon	inst_year	offer
35953	개포동660-37	37.480474	127.062079	NaN	서울특별시 강남구
35954	개포동660-37	37.480474	127.062079	NaN	서울특별시 강남구
35955	개포동660-37	37.480474	127.062079	NaN	서울특별시 강남구
35956	개포동660-37	37.480474	127.062079	NaN	서울특별시 강남구
35957	개포동660-37	37.480474	127.062079	NaN	서울특별시 강남구

len(df_slight2)

Out[160]:

11498

보안등 공간데이터화, 좌표계 변환 및 파일 저장

```
# 강남구 보안등 공간데이더화

geom_slight = gpd.points_from_xy(df_slight2.lon, df_slight2.lat)

coulumns = ['slight_id', 'inst_year']

gdf_slight = gpd.GeoDataFrame(df_slight2[coulumns], geometry=geom_slight, crs=from_epsg(4326))

gdf_slight.plot(color='grey')
```



```
gdf_slight2 = gdf_slight.to_crs(epsg=5179) #좌표계를 5179로 변환
# 강남구 보안등 공간데이터를 geojson으로 저장
gdf_slight2.to_file('./data/python/slight.geojson', driver='GeoJSON')
```

학령인구 로딩

Out[181]:

	year	gu	sum	year9_cnt	year9_ratio	year0_cnt	year0_ratio	spop_cnt	spop_ratio
0	2018	종로구	153065	24475	16.0	19179	12.5	20289	13.3
1	2018	중구	125725	16223	12.9	14145	11.3	13310	10.6
2	2018	용산구	228999	32494	14.2	29557	12.9	28164	12.3

```
df_spop.drop(['year', 'sum', 'year9_cnt', 'year9_ratio', 'year0_cnt', 'year0_ratio', 'spop_cnt'],
axis=1, inplace=True) #불필요한 컬럼 삭제
df_spop.head()
```

Out[187]:

	gu	spop_ratio
0	종로구	13.3
1	중구	10.6

범죄정보 로딩

Out[190]:

	year	gu	crime_sum	etc1	etc2	etc3	etc4	etc5	etc6	etc7	etc8	etc9	etc10	etc11
0	2018	종로구	3690	3913	6	7	3	7	236	1100	1483	969	1962	1830
1	2018	중구	4030	2679	2	2	11	11	207	115	1855	832	1955	1719
2	2018	용산구	3411	2543	1	1	3	2	331	285	1096	522	1980	1733

```
df_crime.drop(['year', 'etc1', 'etc2', 'etc3', 'etc4', 'etc5', 'etc6', 'etc7', 'etc8', 'etc9', 'etc10', 'etc11'], axis=1, inplace=True) #불필요한 컬럼 삭제
df_crime.head()
```

Out[191]:

	gu	crime_sum
0	종로구	3690
1	중구	4030
2	용산구	3411

학령인구를 행정구역에 속성 조인

```
# 시군구 행정구역에 학령인구 속성 조인
gdf_gu = pd.merge(gdf_admin_gu_pg2, df_spop, how='left', left_on='SIG_KOR_NM', right_on='gu')
gdf_gu.head()
```

Out[192]:

	SIG_CD	SIG_ENG_NM	SIG_KOR_NM	geometry	DO	dummy	gu	spop_ratio
0	11110	Jongno-gu	종로구	POLYGON ((956615.453 1953567.199, 956621.579 1	11	dummy	종 로 구	13.3
1	11140	Jung-gu	중구	POLYGON ((957890.386 1952616.746, 957909.908 1	11	dummy	중구	10.6
2	11170	Yongsan-gu	용산구	POLYGON ((953115.761 1950834.084, 953114.206 1	11	dummy	용 산 구	12.3
3	11200	Seongdong-gu	성동구	POLYGON ((959681.109 1952649.605, 959842.412 1	11	dummy	성 동 구	12.6
4	11215	Gwangjin-gu	광진구	POLYGON ((964825.082 1952633.250, 964875.590 1	11	dummy	광 진 구	13.5

범죄 정보를 행정구역에 속성 조인

```
# 시군구 행정구역에 범죄 통계 속성 조인
gdf_gu2 = pd.merge(gdf_gu, df_crime, how='left', left_on='SIG_KOR_NM', right_on='gu')
gdf_gu2.head()
```

Out[193]:

G_CD	SIG_ENG_NM	SIG_KOR_NM	geometry	DO	dummy	gu_x	spop_ratio	gu_y	crime_sum
11110	Jongno-gu	종로구	POLYGON ((956615.453 1953567.199, 956621.579 1	11	dummy	종로 구	13.3	종로 구	3690
11140	Jung-gu	중구	POLYGON ((957890.386 1952616.746, 957909.908 1	11	dummy	중구	10.6	중구	4030
11170	Yongsan-gu	용산구	POLYGON ((953115.761 1950834.084, 953114.206 1	11	dummy	용산 구	12.3	용산 구	3411

시군구 행정구역의 불필요 항목 정리 및 범죄율 항목 생성

```
columns2=['DO', 'SIG_CD', 'SIG_KOR_NM', 'spop_ratio', 'crime_sum']
gdf_gu3 = gpd.GeoDataFrame(gdf_gu2[columns2], geometry=gdf_gu2.geometry, crs=from_epsg(5179))

crime_sum2 = gdf_gu3['crime_sum'].sum(axis=0) #서울시 전체 범죄 발생건수 합계
print(crime_sum2)

gdf_gu3['crime_ratio'] = round(gdf_gu3['crime_sum'] / crime_sum2 * 100, 1) #소수 첫째자리 범죄을 산출
gdf_gu3.head()
```

101948

Out[234]:

	DO	SIG_CD	SIG_KOR_NM	spop_ratio	crime_sum	geometry	crime_ratio
0	11	11110	종로구	13.3	3690	POLYGON ((956615.453 1953567.199, 956621.579 1	3.6
1	11	11140	중구	10.6	4030	POLYGON ((957890.386 1952616.746, 957909.908 1	4.0
2	11	11170	용산구	12.3	3411	POLYGON ((953115.761 1950834.084, 953114.206 1	3.3
3	11	11200	성동구	12.6	2457	POLYGON ((959681.109 1952649.605, 959842.412 1	2.4
4	11	11215	광진구	13.5	3915	POLYGON ((964825.082 1952633.250, 964875.590 1	3.8

차트 패키지 호출 및 학령인구 단계구분도 시각화

```
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.axes_grid1 import make_axes_locatable
%matplotlib inline
mpl.rc('font', family='NanumGothic') # 查 골 돈 적용서
plt.rcParams["figure.figsize"] = (20,10)
```

```
# 서울시 시군구 학령인구 단계구분도(Chropleth Map) 시각화
fig, ax = plt.subplots(1, 1)
# 범례
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
# 시각화
column = 'spop_ratio'
gdf_gu3.plot(column, ax=ax, legend=True, cax=cax, cmap='OrRd')
ax.set_title("서울시 구별 학령인구 단계구분도")
ax.set_axis_off()
plt.show()
```


서울시 5대 범죄 구별 단계구분도 시각화

```
# 서울시 시군구 5대 범죄 발생률 단계구분도(Chropleth Map) 시각화
fig, ax = plt.subplots(1, 1)
# 범례
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
# 시각화
column = 'crime_ratio'
gdf_gu3.plot(column, ax=ax, legend=True, cax=cax, cmap='OrRd')
ax.set_title("서울시 5대 범죄 구별 단계구분도")
ax.set_axis_off()
plt.show()
```


참조 URL

http://geopandas.org/mapping.html

서울시 5대 범죄 구별 버블맵 시각화 (1)

서울시 5대 범죄 구별 버블맵 시각화 (2)

```
# 서울시 5대 범죄 버블맵 2
import geoplot as gplt #conda install -c conda-forge geoplot
import geoplot.crs as gcrs
import mapclassify as mc
scheme = mc.Quantiles(gdf_gu_pt['crime_ratio'], k=5)
extent = gdf gu4326.total bounds
ax = gplt.pointplot(gdf_gu_pt, projection=gcrs.WebMercator(),
    scale='crime_ratio', limits=(5, 50), hue='crime_ratio', scheme=scheme, cmap='Blues',
    legend=True, legend_var='hue', figsize=(12, 12))
gplt.webmap(gdf_gu4326, ax=ax, extent=extent, provider='ST_TONER_LITE')
https://github.com/darribas/contextily
```

https://github.com/darribas/contextily http://maps.stamen.com/

강남구 CCTV Geographic Heat Map

실폭도로 공간 데이터 로딩

```
# 실폭도로 데이터 로딩
 gdf_road = gpd.read_file('./data/org/Z_KAIS_TL_SPRD_RW_서울/Z_KAIS_TL_SPRD_RW_11000.shp',
                       encoding='euc-kr') #euc-kr, euckr, utf-8, cp949 중 선택
 gdf_road.crs
Out[409]:
 {}
# 실폭도로 좌표계를 지정하고 다시 확인
gdf_road.crs = "epsg:5181"
gdf_road.crs
ut[410]:
'epsg:5181'
 gdf_road3857 = gdf_road.to_crs(epsg=3857) #도로 좌표계를 3857로 변환
gdf_road3857.plot()
```


강남구 도로만 공간 추출

```
# 구별 행정구역 공간데이터프레임에서 강남구만 속성 추출
gdf_gu_gn = gdf_gu3[gdf_gu3['SIG_KOR_NM'].isin(['강남구'])]
# gdf_gu_gn.plot()
# 실폭도로에서 강남구 부분만 공간 추출
gdf_rd_gn = gpd.overlay(gdf_gu_gn, gdf_road3857, how='intersection')
gdf_rd_gn.plot()
                                                  4510000
                                                  4506000
                                                  4504000
                                                                   1,4142
```

도서관, CCTV, 보안등 Buffering

```
# 도서관, CCTV, 보안등 BUFFER
from shapely.geometry import Polygon
#from shapely.ops import cascaded_union
gdf lib buf = gpd.GeoDataFrame()
gdf cctv buf = gpd.GeoDataFrame()
gdf slight3 = gpd.GeoDataFrame()
gdf slight buf = gpd.GeoDataFrame()
#도서관은 버퍼하면서 명칭 속성을 붙여주기
gdf_lib_buf['geometry'] = gdf_library4.buffer(500) #500m
gdf lib buf = gpd.GeoDataFrame(gdf library4['name'], geometry=gdf lib buf.geometry,
crs=from_epsg(3857))
gdf cctv buf['geometry'] = gdf cctv3.buffer(50) #50m
gdf_slight3 = gdf_slight2[gdf_slight2.is_valid] #도형 오류 제거 polygon = polygon.buffer(0)
gdf slight buf['geometry'] = gdf slight3.buffer(20)
```

도서관 버퍼에서 실폭도로 부분만 공간 추출

```
# 도서관 버퍼에서 실폭도로 부분만 공간 추출
gdf_lib_rd = gpd.overlay(gdf_lib_buf, gdf_rd_gn, how='intersection')
gdf_lib_rd.plot()
```



```
#도서관 버퍼는 명칭으로 디졸브
gdf_lib_rd2 = gdf_lib_rd.dissolve(by='name')
gdf_lib_rd2.reset_index(level=['name'], inplace = True) #name을 column으로
gdf_lib_rd2.info()
gdf_lib_rd2.head(2)
```

CCTV 버퍼와 보안등 버퍼 UNION

```
# CCTV와 보안등 UNION

gdf_cclight = gpd.overlay(gdf_cctv_buf, gdf_slight_buf, how='union')

gdf_cclight.plot()
```


도서관 주변 실폭도로에서 CCTV-보안등 버퍼 영역 제거

```
# 도서관 주변 실목도로에서 CCTV-보안등 버퍼 UNION를 제거
gdf_becareful = gpd.overlay(gdf_lib_rd2, gdf_cclight, how='difference')
gdf_becareful.plot()
```


남은 도로의 도형 면적을 속성 항목에 저장하고 좌표계 변환

```
gdf_becareful['area'] = gdf_becareful['geometry'].area #도형 면적
gdf_becareful.head()
```

Out[74]:

	name	geometry	area
0	개포4동작은도서관	MULTIPOLYGON (((14143518.872 4506360.488, 1414	82540.350300
1	논현도서관	MULTIPOLYGON (((14141247.827 4511395.722, 1414	136204.683208
2	논현정보도서관	MULTIPOLYGON (((14141330.373 4510882.348, 1414	107900.380208
3	대치1작은도서관	MULTIPOLYGON (((14143819.391 4507832.098, 1414	58174.022332
4	대치도서관	MULTIPOLYGON (((14145324.439 4508848.413, 1414	125081.070969

```
gdf_becareful4326 = gdf_becareful.to_crs(epsg=4326) #EPSG 4326 좌표계로 좌표 변환
gdf_becareful4326.reindex(['idx'])
minx, miny, maxx, maxy = gdf_becareful4326.geometry.total_bounds #바운더리 좌표 받기
print((minx + (maxx - minx)) , (miny + (maxy - miny)) ) #레이어 중심좌표 확인
print(minx, miny)
```

127.10998111782676 37.530331667500334 127.01842500534462 37.46562700636925

최종 분석 결과 시각화 - geoplot

최종 분석 결과 시각화 - Folium

module-folium.map

```
bins = list(gdf_libb4326['area'].quantile([0, 0.25, 0.5, 0.75, 1]))
map = folium.Map(location=[37.500, 127.049], zoom_start=12, tiles='CartoDB positron')
                #, width=500, height=600) #CartoDB positron #Stamen Toner
map.choropleth(geo_data = geo_libb4326, #g_bcare_j
                                                                                                    Seongaong-gu
              name='choropleth',
                                                                                                                               117,239
                                                                                       41,983
                                                                                                          76,529 91,142
              data = gdf_libb4326,
               columns = ['name', 'area'],
                                                                                          도서관 주변 주의률
                                                                                                                                                           Gil-dong
               key_on = 'feature.properties.name',
                                                                                                                                       Pungnap-dong
                                                                        Yongsan-gu
              fill_color = 'Reds', #PuRd
              fill_opacity=0.7, line_opacity=0.2,
              legend name='도서관 주변 주의률',
              bins=bins, reset=True )
                                                             Bon-dong
map
                                                                                                                                           Songpa-gu
                                                                                                                                                   Ogeum-dong
                                                                                   Banpo dong
                                                           Dongjak-gu
                                                                                                          Gangna
                                                            76,529 91,142
                                                                         117,239
                                                   도서관 주변 주의률
                                                                                         Seocho-gu
                                                                                                                                             on-dong
                                                                                                   Yangjae-dong
 참조 URL
                                                                                                                       Naegok-dong
 https://python-
 visualization.github.io/folium/modules.html#
                                                                                                       Leaflet | © OpenStreetMap contributors © CartoDB, CartoDB attributions
```

기타 - 단계구분도 색상 선택

http://colorbrewer2.org/

i how to use | updates | downloads | credits Number of data classes: 3 ▼ Nature of your data: i sequential odiverging 정량 속성은 Sequential/ Diverging에서 선택 qualitative 정성 속성은 Qualitative 선택 Pick a color scheme: Single hue: Multi-hue: 원하는 색상 선택시 url의 sheme 파라미터 값을 활용 http://colorbrewer2.org/#type=sequential&scheme=**BuGn**&n=3 HEX • EXPORT colorblind safe print friendly photocopy safe #e5f5f9 Context: #99d8c9 roads #2ca25f cities ✓ borders Background: solid color ■ ▼ terrain color transparency © Cynthia Brewer, Mark Harrower and The Pennsylvania State University Osurce code and feedback **@ axis**maps Back to Flash version

Back to ColorBrewer 1.0