AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

CREDIT HOURS ENGINEERING PROGRAMS
CESS and COMM PROGRAMS

Major Task

Total: 30 marks

PHM 114: Numerical Analysis

Name: ..O. mor. Aloon. Elmohoss. ID .: 21. Po. 19.7 Section: 4....

System of Linear Equations

(7) Apply Gauss Elimination method to find the approximate solution of the system:

$$2 x_1 + 10 x_2 + 3 x_3 = 15$$

 $10 x_1 + x_2 + 2 x_3 = 13$
 $5 x_1 - 3 x_2 + 10 x_3 = 12$

$$\begin{array}{c} \chi_{1} & \chi_{2} & \chi_{3} \\ 2 & 10 & 3 & 15 \\ 10 & 1 & 2 & 13 \\ 5 & -3 & 10 & 12 \end{array} \right) \begin{array}{c} -5 \times R_{1} + R_{2}, & -\frac{5}{2} \times R_{1} + R_{3} \\ 2 & 10 & 3 & 15 \\ 0 & -49 & -13 & -62 \\ 0 & -28 & 5/2 & -51/2 \end{array}$$

$$\begin{array}{c} -4 \times R_{2} + R_{3} \\ 0 & -49 & -13 & -62 \\ 0 & -28 & 5/2 & -51/2 \end{array} \right) \begin{array}{c} -28 & 5/2 & -51/2 \\ 0 & -49 & -13 & -62 \\ 0 & -49 & -13 & -62 \\ 0 & 0 & \frac{139}{14} & \frac{139}{14} \end{array} \right) \begin{array}{c} -62 \\ -62 \\ 0 & -49 & -13 \\ 0 & 0 & \frac{139}{14} & \frac{139}{14} \end{array} \right) \begin{array}{c} -28 & 5/2 & -51/2 \\ 0 & -28 & 5/2 & -51/2 \end{array}$$

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

CREDIT HOURS ENGINEERING PROGRAMS
CESS and COMM PROGRAMS

Maj	or	T	a	s	k
	•		u	•	

Total: 30 marks

8

PHM 114: Numerical Analysis

Name: Omor Alan Elnaha 13 ID.: 2180197 Section: 4

System of Linear Equations

(8) Apply Jacobi method to find the approximate solution of the system:

$$2 x_1 + 10 x_2 + 3 x_3 = 15$$

 $10 x_1 + x_2 + 2 x_3 = 13$

 $5 x_1 - 3 x_2 + 10 x_3 = 12$ to within an accuracy of 0.01.

I nitial values: x1=0 / x2=0 , x3=0

$$x_1 = \frac{13 - x_2 - 2x_3}{10}$$
, $x_2 = \frac{15 - 3x_3 - 2x_4}{10}$, $x_3 = \frac{12 + 3x_2 - 5x_3}{10}$

		115	_ / _ /		10
	0	20,	22	0	
		1-3	1.5	1. Ze	
	0	0.91	0.83	1	
-	3	1.012	1-018	1.009	X1=1.00063
	G	0.9964	0.9949	0.9994	$X_2 = 1.00090$ $X_3 = 1.00027$
	5	6	3 1.0009	1.00027	
) E = 4.23 x	103 E= 6x10-3	E=8.7 X10-4	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

CREDIT HOURS ENGINEERING PROGRAMS
CESS and COMM PROGRAMS

Major Task

Total: 30 marks

PHM 114: Numerical Analysis

Name: . D. Mar Alore Elmoho F.J. ID .: 2180.197 Section: L.

System of Linear Equations

(9) Apply Gauss Seidel method to find the approximate solution of the system:

$$2 x_1 + 10 x_2 + 3 x_3 = 15$$

 $10 x_1 + x_2 + 2 x_3 = 13$
 $5 x_1 - 3 x_2 + 10 x_3 = 12$ to within an accuracy of 0.01

	$3x_1 - 3x_2 + 10x_3 - 12$ to within an accuracy of 0.01.						
X' =	· 0 , x2=	$x' = \frac{10}{13 - x^5 - 5x^3}$					
0	1.3	1.5	73	$3C_2 = \frac{15 - 2x_1 - 3x_3}{10}$			
0	0.93	0.954	1.0212	$\mathcal{X}_{3} = \frac{12 - 5x_{1} + 3x_{2}}{10}$			
3	1.00036	0.993568	0.9978904				
4	1		0.999593				
	E=7.05X12	E= 6.852x10-3	E=1.7026×103 L				

Answer:
$$X_1 = 1.00011$$

$$X_2 = 1.0004$$

$$X_3 = 0.9996$$