Компьютерная графика и визуализация в реальном времени

Текстурирование

Алексей Романов

The Quest for Visual Realism

Цель – реалистичная картинка

- ▶ 3D модель должна как можно ближе быть к оригиналу
- Поверхность модели сложная структура с большой детализацией
- Необходимо задавать/моделировать эти детали
 - ▶ Процедурный подход, е.g. фракталы на шейдере
 - Моделирование всех деталей

Текстурирование

Текстура

Виды текстур

- ▶ Двумерные 2D, Rect
- ▶ Одномерные 1D
- ▶ Трехмерные volume, 2d array, cube

2D текстуры

- > Задание свойств поверхности
 - ▶ Отражающая способность/цвет/albedo
 - ▶ Степень бликовости
 - Карта неровностей/карта нормалей
- Rect специальные тип текстур с адресацией вне диапазона [0;1]

1D текстуры

- ▶ LUT фильтрация
- ▶ Кодирование функций
- Высотная раскраска

3D/volume текстуры

Задание воксельных моделей

> Хранение покадровой анимации

Cubemap текстура

Используются для представления карты отражений

Ещё примеры использования текстур

Сферические карты отражений

Проективное текстурирование

Сэмплирование

- Вычисление значения текстуры по нецелым текстурным координатам
- Nearest ближайший
- ▶ Bilinear взвешенная сумма соседей

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Bilinear interpolation

Сэмплирование, nearest vs bilinear

Исходное изображение

Nearest фильтрация

Билинейная фильтрация

Сэмплирование минифицированного изображения

- Алиасинг, если пикселю на экране соответствует больше одного текселя из текстуры
- ► MIP(multum in parvo) фильтрация
 - Дополнительное хранение до log(n) слоев на текстуру, $Resolution(level) = \frac{Resolution(level-1)}{2}$
 - Уровень выбирается в зависимости от «размера» текселя в экране
 - Размер текселя аппроксимируется выражением:

$$\rho(x,y) = \max\left(\sqrt{\left(\frac{\partial s}{\partial x}\right)^2 + \left(\frac{\partial s}{\partial y}\right)^2}, \sqrt{\left(\frac{\partial t}{\partial x}\right)^2 + \left(\frac{\partial t}{\partial y}\right)^2}\right)$$

Дополнительные $\log(n)$ уровней

Размер МІР текстуры

- $S = S_0 = 2^a \times 2^a$ размер текстуры/размер нулевого уровня
- $S_i = \frac{S_{i-1}}{4}$ размер
- $S_{MIP} = \sum_{i=0}^{a} S_i = \frac{4}{3} S_0$

NB! Условное сэмплирование на шейдере

Недетерминированное поведение

```
vec3 color;

if (condition)
color = texture(sampler1, st);

else
color = texture(sampler2, st);
```

Некорректные расчет MIP уровня

```
vec3 color;

if (condition)
color = texture(sampler1, st1);

else
color = texture(sampler1, st2);
```

Trilinear фильтрация

- Разрывы между соседними уровнями
- Линейная фильтрация между билинейноинтерполированными значениями уровней

Анизотропная фильтрация

MIP фильтрация приводит к «замыливанию» изображения

Анизотропное сэмплирование

- Проекция пикселя в текстуру
- Аппроксимация по большему количество сэмплов

Сравнение трилинейной и анизотропной фильтрации

Бикубическая фильтрация

$$p(t) = (2t^3 - 3t^2 + 1)p_0 + (-2t^3 + 3t^2)p_1$$

Интерполяция сплайном Эрмита с нулевыми производными

Texture wrapping

Аппаратно-поддерживаемые режимы

Аппаратное сжатие текстур

- ▶ BC Block compression
- Используется факт однородности соседних текселей
- Каждый блок 4х4 кодируется меньшим кол-вом бит

BC1

2 Bytes

MSB LSB color 0 R[15:11] G[10:5] B[4:0] color_1

1 Byte

$$color_0 = 00$$

 $color_1 = 01$
 $color_2 = 10$
 $color_3 = 11$

Uncompressed

8 Байт на блок из 16 RGB пикселей вместо 48

 $color_{2} = \frac{2}{3}color_{0} + \frac{1}{3}color_{1}$ $color_{3} = \frac{1}{3}color_{0} + \frac{2}{3}color_{1}$

Текстура нормалей

8b x 8b z 8b x	8b - 8b - 8b y	8b x 8b z 8b x	8b y 8b - 8b y	8b x 8b z 8b x	8b y 8b - 8b y	8b x 8b z 8b x	8b y 8b - 8b y			X _{mi}	+	1011	+ 1. N. C. S.	- 1/16°	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Solly T X _{max}		
8b z	8b -	8b z	8b -	8b z														
8b x 8b z	8b y 8b -	8b x 8b z	8b y 8b	8b x 8b z	8b y 8b -	8b x 8b z	8b y 8b -		d	⊢ y _{mi}	-				 	y _{max}		
8b x 8b z	8b y 8b -	8b x 8b z	8b y 8b -	8b x 8b z	8b y 8b -	8b x 8b z	8b y 8b -	3b ×			3b 3	10.10.00	3b У	х	3b y	8b x _{min}	8b y _{min}	
					,			3b ×	S. com	seesa B	3b У	20000	¦ 3Ь ¦ У	342.92	3b . y	8b x _{max}	8b	
				X				3b X		2002	3b y	1.02.00	3b y	3b X	3b y			
		¥		3				3b X			3b 3		¦ 3b ¦ y		3b y			

Вопросы

