Johns Hopkins Engineering 625.464 Computational Statistics

Introduction to Bivariate Smoothers

Module 12 Lecture 12A

Introduction to Bivariate Smoothing

Bivariate Smoothing

Suppose ne have n bivariate data points (X_i, Y_i) $i = 1, \dots, n$ that are predictor-response data 11 Y is assumed to be a (studiastic) Then cond dist function of 1/X gozchor hows) depends Smorth function noise mean D on X=x and 15 a possible choice for smoother.

Why we use Predictor Response Dats

(x(t), f(t))= ((1-cost).cos(t), (1-cos(t)).sm(t))

Predictor Response Data

Suppose we have P-R Data (Xi, yi) and E[Y|X] = SCX) for a smooth function of S. The Goal: Estimate S(·) 5mosthor (2). La based on data (Xi,yi) and also a user specified smoothing parameter 7. $S_{\lambda}(X)$

Two Metrics for Predictor Response Data

for a given point x, let an estimate of S(x) by S(x). How do we know if $S_{\lambda}(x)$ is good?

consider a new point x* for which we predict $S_{\lambda}(x^{+})$

$$(2) MSPE_{\chi}(\hat{S}_{\chi}(X)) = E[(Y-\hat{S}_{\chi}(X^{*})^{2}|X=Y^{*}]$$

$$= \sqrt{\alpha}r[Y|X=X^{*}] + MSE_{\chi}(\hat{S}_{\chi}(X^{*})) P^{\delta}$$

How do we construct good smoothers?

Basic i ba: Want the smoother to
summarize the cond dist of Vi giren
Xi = Xi by some measure of location. Want 31x) to go through the Voenter. in general they rely on local averaging
·want 31x) to go through the 'center.
in general they rely on Tocal averaging
smooth of X - quie 10 whotherd
790000000000000000000000000000000000000
benerically of S ₂ (x) = ave) \ \(\text{XiEN(x)} \)

Comments on Lambda

benonic smoother

Significant Syil xien(x)

Significant Syil xien(x) A will represent the span of the pringhbor hood N(x)small & > local > higher vianiance lurge & - Polistant points -) introduce bias