R₂P CAPSTONE PROJECT Team 5 **Quantum Neural Networks**

Bilbao • May 2025

TEAM MEMBERS

Iñigo Vilaseco

Ignacio Fernández

Pedro Álvarez

Diego Mallada Conte

Adrián Gustavo del Pozo Martín

Arturo Juárez

AGENDA

- 1. PROBLEM STATEMENT
- 2. QUANTUM FEATURE MAP
- 3. PARAMETERIZED QUANTUM CIRCUITS
 - 4. TRAINING
 - 5. RESULTS
- 6. OTHER PROBLEM VARIANTS
 - 7. BIBLIOGRAPHY

1. PROBLEM STATEMENT

Problem Statement: Quantum Image Classification

What are we doing?

We train a variational quantum circuit to distinguish three types of 2×2 "images" (lines: horizontal, vertical, diagonal).

How do we encode the images?

- Vector representation (length 4): each of the 4 entries corresponds to one pixel/qubit.
- Line pixels: assigned angle value $\pi/2$
- Background pixels: uniform random noise in [0, 1)

The Dataset

2. QUANTUM FEATURE MAP

Quantum Feature Map: From Classical Data to Quantum States

Why a Feature Map?

• **Purpose:** Embed a real-valued vector ${\bf x}$ into a quantum state $|\psi({\bf x})\rangle$

Our Chosen Feature Map: ZFeature Map

- Input: Vector $\mathbf{x} = [x_0, x_1, x_2, x_3]$
- Construction:
 - 1. Start all qubits in $|0\rangle$
 - 2. Apply Hadamard H on each qubit to create superposition.
 - 3. For each qubit i, apply $R_Z(x_i)$
 - 4. Apply CZ gates between every pair of qubits (full entanglement).

3. PARAMETERIZED QUANTUM CIRCUITS

Parameterized Quantum Circuits: Theory Overview

A Parameterized Quantum Circuit (PQC) is a sequence of quantum gates that depend on continuous parameters $oldsymbol{ heta}$

It is usually expressed as:

$$U(oldsymbol{ heta}) = \prod_k U_k(heta_k)$$

Where each $U_k(\theta_k)$ is a parameterized single-qubit rotation or controlled gate.

Training: the parameters $\ m{ heta}$ are optimized by minimizing a cost function $C(m{ heta})$.

Our Chosen Ansatz Architecture

• Parameter vector:

$$\boldsymbol{\theta} = [\theta_0, \dots, \theta_7]$$
 (two angles per qubit, here 2 x 4 = 8).

- Layer 1:
 - \circ Single-qubit rotations $R_Y(heta_i)$ on each qubit i
- Entanglement:
 - CNOTs connecting neighboring qubits horizontally and vertically (in the 2×2 grid).
- Layer 2:
 - Single-qubit rotations $R_X(\theta_{4+i})$ on each qubit.

Our Chosen Ansatz Architecture

Merging both ansatz and feature map

We compose the feature map and ansatz into a single circuit, then define the measurement operator $O = Z^{\otimes n}$ (using SparsePauliOp.from_list([("Z"*n,1)])) whose expectation value $\langle O \rangle$ serves as the classifier output.

4. TRAINING

Quantum Forward Pass

What is the Forward Pass?

- **Definition:** The computation that maps input data and circuit parameters to measurement outcomes.
- **Purpose:** Produces predictions \hat{y} by executing the quantum circuit and measuring the chosen observable.

$$(\mathbf{x},oldsymbol{ heta})
ightarrow \langle Z^{\otimes n}
angle$$

• Analogy: Like the "forward propagation" in a classical neural net, but replacing matrix multiplications with quantum operations.

Loss functions

The **loss function** $C(m{ heta})$ quantifies the discrepancy between the measured expectation values and the true labels.

$$C(oldsymbol{ heta}) = rac{1}{N} \sum_{i=1}^N ig(\langle Z^{\otimes n}
angle_i - y_i ig)^2$$

where:

$$egin{aligned} \langle Z^{\otimes n}
angle_i &= \langle \psi(\mathbf{x}_i;oldsymbol{ heta})\,|\,Z^{\otimes n}\,|\,\psi(\mathbf{x}_i;oldsymbol{ heta})
angle \ & y_i \in \{-1,0,+1\} \end{aligned}$$

.

It drives the classical optimizer to update θ so that the quantum circuit's outputs match the target labels.

Training Process: Mini-Batch Optimization

1. Initialization

$$oldsymbol{ heta}^{(0)} \sim \mathcal{U}(0,2\pi)^{2n}$$

Random two-angle-per-qubit vector for the ansatz.

- 2. **Batch Loop** (for epoch $e = 0, \dots, E-1$)
 - o Partition $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$ into batches of size b.
 - \circ For each batch ${\cal B}$:

$$lacksquare egin{aligned} lacksquare & lacksquare eta & C_{\mathcal{B}}(m{ heta}) = rac{1}{b} \sum_{i \in \mathcal{B}} ig(\langle Z^{\otimes n}
angle_i(m{ heta}) - y_iig)^2 \end{aligned}$$

$$oldsymbol{ heta}$$
 Update $oldsymbol{ heta} = rgmin_{oldsymbol{ heta}} C_{\mathcal{B}}(oldsymbol{ heta})$

using the derivative-free COBYLA optimizer (maxiter = 100)

Training Process: Mini-Batch Optimization

3. **Output:**

- \circ Trained parameters $\boldsymbol{\theta}^*$
- \circ Recorded loss history $\{C_{\mathcal{B}}(oldsymbol{ heta})\}$

5. RESULTS

Results & Performance

Train accuracy: 84.14%

Test accuracy: 82.67%

Modest train–test gap (~1.5 pp) indicates good generalization.

- Spikes at ~0, 100, 200, ...: the very first evaluation in each new mini-batch—random weights on fresh data → high initial loss.
- Rapid decay after each spike: COBYLA quickly lowers the MSE within that batch.

6. Increasing the data size:3x3 images

The Dataset

- **Input dimension:** n = 9 qubits (3×3 image)
- Line length: 3 pixels

Category: 1

$$egin{bmatrix} n_{00} & rac{\pi}{2} & n_{02} \ n_{10} & rac{\pi}{2} & n_{12} \ n_{20} & rac{\pi}{2} & n_{22} \end{bmatrix}$$

Category: 0

$$egin{bmatrix} n_{00} & n_{01} & rac{\pi}{2} \ n_{10} & rac{\pi}{2} & n_{12} \ rac{\pi}{2} & n_{21} & n_{22} \end{bmatrix}$$

Category: -1

$$egin{bmatrix} n_{00} & n_{01} & n_{02} \ rac{\pi}{2} & rac{\pi}{2} & rac{\pi}{2} \ n_{20} & n_{21} & n_{22} \end{bmatrix}$$

Merging both ansatz and feature map

Results & Performance

Train accuracy: 72.57 %

Test accuracy: 73.33%

Train–test gap (~ -0.76 pp) indicates no overfitting.

Lower overall accuracy than the 2×2 case (~82.7% test)

- Spikes at ~0, 100, 200, ...: the very first evaluation in each new mini-batch—random weights on fresh data → high initial loss.
- 3×3 variant plateau around
 0.30 0.32
- 2×2 baseline plateau was around
 0.14

7. Testing the program

Prediction Accuracy

Training Images	2x2 images (len 2)	3x3 images (len 3)	3x3 images (len 2)
200	78%	64%	63%
300	75%	47%	75%
400	81%	69%	71%
500	82%	55%	73%
600	84%	56%	69%
700	84%	61%	74%
800	84%	65%	78%
900	75%	63%	69%
1000	84%	63%	72%

8. BIBLIOGRAPHY

Bibliography

- A review of Quantum Neural Networks: Methods, Models, Dilemma arXiv:2109.01840v1
- Training Quantum Embedding Kernels on Near-Term Quantum Computers arXiv:2105.02276
- Variational Quantum Classifier, Elies M. Gil Fuster & J.I. Latorre
- Quantum neural networks and variational circuits course (<u>link</u>)

GitHub Repository