Concepts and Formulas

Conic Section

Vertical Parabola

Positive Coefficient

At
$$(0,0)$$
: $y = ax^2$
$$y = a(x-h)^2 + k \text{ or } y - k = a(x-h)^2$$

$$y = \frac{1}{4p}(x-h)^2 + k \text{ or } y - k = \frac{1}{4p}(x-h)^2$$

$$4p(y-k) = (x-h)^2$$

Vertex: (h, k) Axis of Symmetry: x = h

Horizontal Parabola

Positive Coefficient

At
$$(0,0)$$
: $x = ay^2$

$$x = a(y-k)^2 + h \text{ or } x - h = a(y-k)^2$$

$$x = \frac{1}{4p}(y-k)^2 + h \text{ or } x - h = \frac{1}{4p}(y-k)^2$$
or

 $4p(x-h) = (y-k)^2$

Vertex:
$$(h, k)$$
 Axis of Symmetry: $y = k$

Negative Coefficient

$$-4p(y-k) = (x-h)^2$$

Vertex: (h, k) **Axis of Symmetry**: x = h

Negative Coefficient

At
$$(0,0)$$
: $x = -ay^2$

$$x = -a(y-k)^2 + h \text{ or } x - h = -a(y-k)^2$$

$$x = -\frac{1}{4p}(y-k)^2 + h \text{ or } x - h = -\frac{1}{4p}(y-k)^2$$
or
$$-4p(x-h) = (y-k)^2$$

Vertex: (h, k) Axis of Symmetry: y = k

