

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Построение множества достижимости нелинейной системы»

Студент 315 группы А. А. Пилюшенок

Руководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

1	Постановка задачи	3
2	Решение задачи	4
	2.1 Принцип максимума для задачи достижимости	4
	2.2 Применение принципа максимума	5
	2.3 Исследование стационарных точек	9
3	Алгоритм численного решения	11
4	Результаты работы алгоритма	12
	4.1 Эволюция множества достижимости в зависимости от α	12
	4.2 Эволюция множества достижимости в зависимости от времени	13
5	Список литературы	14

1 Постановка задачи

Дано ОДУ

$$\ddot{x} + f(x, \dot{x}) = u, \quad f(x, \dot{x}) = \beta x \cos(\dot{x}) - x\dot{x},\tag{1}$$

где $x \in \mathbb{R}, u \in [-\alpha, \alpha], \alpha > 0, \beta \in \mathbb{R}.$

Задан начальный момент времени $t_0=0$, начальная позиция $x(t_0)=0, \dot{x}(t_0)=0$. Необходимо построить множество достижимости $\mathcal{X}(t,t_0,(x(t_0),\dot{x}(t_0)))$ — множество пар $(x(t),\dot{x}(t))$, удовлетворяющих начальному условию $(x(t_0),\dot{x}(t_0))$, в классе программных управлений в заданный момент времени $t\geqslant t_0$, а также исследовать его свойства.

Необходимо написать в среде MatLab функцию

которая по заданным параметрам $\alpha > 0, \beta \in \mathbb{R}, t \geqslant t_0$ рассчитывает приближенно множество достижимости управляемой системы $\mathcal{X}(t,t_0,(x(t_0),\dot{x}(t_0)))$. На выходе функции — шесть массивов точек:

- Х, У содержат упорядоченные координаты точек многоугольника, образующего границу искомого множества;
- X1,Y1 содержат упорядоченные координаты линий переключений оптимального управления;
- \bullet X2 содержит координаты x стационарных точек замкнутой системы;
- Т2 содержит номера подсистем (1 или 2), для которых были найдены стационарные точки.

2 Решение задачи

Центральным объектом отчёта является следующий объект.

Определение. Дана нелинейная система ОДУ $\dot{x} = f(t,x,u), x(t_0) = x^0, t \in [t_0,t_1],$ где $x \in \mathbb{R}^n, u \in \mathbb{R}^m$, функции f и $\frac{\partial f}{\partial x}$ являются непрерывными в \mathbb{R}^{1+n+m} . Пусть U — некоторое подмножество множества всех измеримых вектор-функций на отрезке $[t_0,t_1]$, для каждой из которых существует решение x(t).

Множесством достижимости $\mathcal{X}(t) = \mathcal{X}(t, t_0, x^0)$ для каждого момента времени $t \in [t_0, t_1]$ назовём множесство концов всех траекторий x(t), соответствующих всем управлениям из U.

2.1 Принцип максимума для задачи достижимости

Дальнейшие выкладки опираются на следующее необходимое условие, доказанное в [3].

Теорема 1. Имеем автономную систему

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)), t \in [t_0, t_1], \\ x(t_0) = x^0. \end{cases}$$

где $x \in \mathbb{R}^n, u \in \Omega \subset \mathbb{R}^m, f(x,u) \in C^1(\mathbb{R}^{n+m})$ и Ω — некоторое ограниченное замкнутое множество в \mathbb{R}^m .

Пусть далее U — множество всех измеримых управлений u(t), удовлетворяющих ограничению $u(t) \in \Omega$ и имеющих ограниченные решения, исходящие из точки x^0 , для всех $t \in [t_0, t_1]$.

Пусть некоторому управлению $\widetilde{u}(t) \in U$ соответствует решение $\widetilde{x}(t)$ с концом $\widetilde{x}(t_1)$, лежащим на границе множества достижимости, т.е. $\widetilde{x}(t_1) \in \partial \mathcal{X}(t_1, t_0, x^0)$.

Тогда $\exists \widetilde{\psi}(t) : [t_0, t_1] \to \mathbb{R}^n$, $\widetilde{\psi} \not\equiv 0$ ($\widetilde{\psi} \not\equiv 0$), непрерывно дифференцируемая u, кроме того, имеют место следующие соотношения:

1) (сопряженная система)

$$\dot{\widetilde{\psi}} = -\frac{\partial \mathcal{H}(\widetilde{\psi}, \widetilde{x}, \widetilde{u})}{\partial x}, \quad \mathcal{H}(\psi, x, u) = \langle \psi, f(x, u) \rangle.$$
 (2)

2) (условие максимума)

$$\max_{u \in \Omega} \mathcal{H}(\widetilde{\psi}(t), \widetilde{x}(t), u) \equiv \mathcal{M}(\widetilde{\psi}(t), \widetilde{x}(t)) = \mathcal{H}(\widetilde{\psi}(t), \widetilde{x}(t), \widetilde{u}(t)), \ \dot{\forall} t \in [t_0, t_1].$$
(3)

3) (постоянство гамильтониана)

если управление
$$\widetilde{u}(t)$$
 — ограничено, то $\mathcal{M}(\widetilde{\psi}(t),\widetilde{x}(t)) \equiv \text{const } \dot{\forall} t \in [t_0,t_1].$ (4)

2.2 Применение принципа максимума

Рассмотрим систему 1. Сделаем замену $x_1 = x, \ x_2 = \dot{x}$. Получим

$$\begin{cases} \dot{x}_1(t) = x_2(t), \\ \dot{x}_2(t) = -f(x_1(t), x_2(t)) + u(t). \end{cases}$$
 (5)

где $u(\cdot) \in [-\alpha, \alpha]$ и $f(x_1, x_2) = \beta x_1 \cos x_2 - x_1 x_2$.

Для системы 5 требуется построить множество достижимости $\mathcal{X}(t) = \mathcal{X}(t,0,(0,0))$ — множество пар (x_1,x_2) таких, что $t_0=0,x_1(0)=0,x_2(0)=0$, в классе программных управлений $(u\in\mathbb{R})$ в заданный момент времени $t\geqslant 0$.

Сформулируем ряд утверждений, характерных для поставленной задачи.

Применим принцип максимума 1 на отрезке $[0, t_1]$, где t_1 — фиксированное число.

Рассмотрим функцию Гамильтона-Понтрягина

$$\mathcal{H} = \psi_1 x_2 + \psi_2 (-f + u).$$

Сопряженная система 2 имеет вид

$$\begin{cases}
\dot{\psi}_1 = \psi_2 \frac{\partial f}{\partial x_1}, \\
\dot{\psi}_2 = -\psi_1 + \psi_2 \frac{\partial f}{\partial x_2}.
\end{cases}$$
(6)

Найдем управление u(t) из условия максимума 3:

$$u(t) = \begin{cases} \alpha \operatorname{sgn} \psi_2(t), & \psi_2(t) \neq 0, \\ [-\alpha, \alpha], & \psi_2(t) = 0. \end{cases}$$

Рассмотрим $\psi_2(t) = 0$ на некотором отрезке времени. Тогда

$$\dot{\psi}_2 = 0 = -\psi_1, \quad \dot{\psi}_1 = 0.$$

Получили $\psi = 0$. Это противоречит принципу максимума. Значит, особый режим при $\psi_2(t) = 0$ невозможен, управление $u(t) = \alpha \operatorname{sgn} \psi_2(t)$.

Таким образом, имеем следующую систему

$$\begin{cases} \dot{x}_{1} = x_{2}, \\ \dot{x}_{2} = -\beta x_{1} \cos x_{2} + x_{1} x_{2} + \alpha \operatorname{sgn} \psi_{2}, \\ \dot{\psi}_{1} = \psi_{2} (\beta \cos x_{2} - x_{2}), \\ \dot{\psi}_{2} = -\psi_{1} + \psi_{2} (-\beta x_{1} \sin x_{2} - x_{1}). \end{cases}$$

$$(7)$$

причём $u(t) = \alpha \operatorname{sgn} \psi_2(t)$ — ограничено, тогда в силу 4

$$\mathcal{M} = \psi_1 x_2 + \psi_2 (-\beta x_1 \cos x_2 + x_1 x_2) + \alpha |\psi_2| = \text{const}.$$

Теорема 2 (о нулях x_2 и ψ_2). Пусть $\tau_1 < \tau_2$ и $[\tau_1, \tau_2] \subseteq [0, t_1]$. Для системы 7 рассмотрим 4 случая.

1. Пусть

$$\begin{cases} \psi_2(\tau_1) = \psi_2(\tau_2) = 0, \\ x_2(\tau_1) = 0. \end{cases}$$

 $Tor \partial a \ x_2(\tau_2) = 0.$

2. Пусть

$$\begin{cases} \psi_2(\tau_1) = \psi_2(\tau_2) = 0, \\ x_2(\tau_1) \neq 0. \end{cases}$$

Тогда $x_2(\tau_2) \neq 0$ и $\exists \tau : (\tau_1, \tau_2) : x_2(\tau) = 0$.

3. Пусть

$$\begin{cases} x_2(\tau_1) = x_2(\tau_2) = 0, \\ \psi_2(\tau_1) = 0. \end{cases}$$

 $Tor \partial a \ \psi_2(\tau_2) = 0.$

4. Пусть

$$\begin{cases} x_2(\tau_1) = x_2(\tau_2) = 0, \\ \psi_2(\tau_1) \neq 0. \end{cases}$$

Тогда $\psi_2(\tau_2) \neq 0$ и $\exists \tau : (\tau_1, \tau_2) : \ \psi_2(\tau) = 0$.

Доказательство. Поочередно разберем случаи.

1. Рассмотрим $\mathcal{M} \stackrel{4}{=} \mathrm{const}$ в моменты времени τ_1 и τ_2 .

$$\mathcal{M} = \psi_1(\tau_1) \underbrace{x_2(\tau_1)}_{=0} - \underbrace{\psi_2(\tau_1)}_{=0} f(x_1(\tau_1), x_2(\tau_1)) + \underbrace{\alpha |\psi_2(\tau_1)|}_{=0} \equiv 0.$$

$$\mathcal{M} = \psi_1(\tau_2) x_2(\tau_2) - \underbrace{\psi_2(\tau_2)}_{=0} f(x_1(\tau_2), x_2(\tau_2)) + \underbrace{\alpha |\psi_2(\tau_2)|}_{=0}.$$

Имеем $x_2(\tau_2)=0$, ведь $\psi_1(\tau_1)\neq 0$ (иначе получим противоречие с принципом максимума).

2. Без ограничения общности положим $\psi_2(\tau) \neq 0 \ \forall \tau \in (\tau_1, \tau_2)$. Аналогично прошлому пункту $\psi_1(\tau_1) \neq 0, \ \psi_1(\tau_2) \neq 0$ и

$$\mathcal{M} = \psi_1(\tau_1) \underbrace{x_2(\tau_1)}_{\neq 0} - \underbrace{\psi_2(\tau_1)}_{=0} f(x_1(\tau_1), x_2(\tau_1)) + \underbrace{\alpha |\psi_2(\tau_1)|}_{=0} \equiv \text{const} \neq 0.$$

$$\mathcal{M} = \psi_1(\tau_2) x_2(\tau_2) - \underbrace{\psi_2(\tau_2)}_{=0} f(x_1(\tau_2), x_2(\tau_2)) + \underbrace{\alpha |\psi_2(\tau_2)|}_{=0} = \psi_1(\tau_2) x_2(\tau_2).$$

Получили, что $x_2(\tau_2) \neq 0$. Так как $\psi_2(t)$ — непрерывная функция, принимающая на концах отрезка $[\tau_1, \tau_2]$ нулевые значения, имеем

$$\dot{\psi}_2(\tau_1) \cdot \dot{\psi}_2(\tau_2) < 0.$$

Подставим $\psi_2(\tau_1)$ в 6.

$$\dot{\psi}_2(\tau_1) = -\psi_1(\tau_1) + \underbrace{\psi_2(\tau_1)}_{=0} \cdot \frac{\partial f(x_1(\tau_1), x_2(\tau_2))}{\partial x_2}.$$

$$\dot{\psi}_2(\tau_2) = -\psi_1(\tau_2) + \underbrace{\psi_2(\tau_2)}_{=0} \cdot \frac{\partial f(x_1(\tau_1), x_2(\tau_2))}{\partial x_2}.$$

Получим

$$\psi_1(\tau_1) \cdot \psi_1(\tau_2) < 0. \tag{8}$$

Из постоянства гамильтониана имеем

$$\mathcal{M} = \psi_1(\tau_1)x_2(\tau_1) = \psi_1(\tau_2)x_2(\tau_2) \neq 0.$$

В силу 8 получим $x_2(\tau_1) \cdot x_2(\tau_2) < 0$. Так как $x_2(t)$ — непрерывная, по теореме Вейерштрасса о промежуточных значениях $\exists \tau \in (\tau_1, \tau_2): x(\tau) = 0$.

3. Рассмотрим функцию z(t):

$$z(t) = \psi_1(t)x_2(t) + \psi_2(t)\frac{dx_2(t)}{dt}.$$

Она является кусочно-непрерывной, ведь dx_2/dt претерпевает разрыв в момент переключения управления. Рассмотрим dz(t)/dt в точках непрерывности z(t).

$$\begin{split} \frac{dz}{dt} &= \dot{\psi}_1 x_2 + \psi_1 \dot{x}_2 + \dot{\psi}_2 \dot{x}_2 + \psi_2 \ddot{x}_2 = \\ &= \left(\psi_2 \frac{\partial f}{\partial x_1} \right) x_2 + \psi_1 (-f + u) + \left(-\psi_1 + \psi_2 \frac{\partial f}{\partial x_2} \right) \left(-f + u \right) + \psi_2 \frac{d}{dt} \left(-f + u \right). \end{split}$$

Производная du/dt = 0, ведь u(t) — кусочно-постоянное. Вычислим

$$\frac{df}{dt} = \frac{\partial f}{\partial x_1} \dot{x}_1 + \frac{\partial f}{\partial x_2} \dot{x}_2 = \frac{\partial f}{\partial x_1} x_2 + \frac{\partial f}{\partial x_2} (-f + u).$$

Имеем

$$\frac{dz}{dt} = \psi_2 x_2 \frac{\partial f}{\partial x_1} + \psi_1(-f + u) - \frac{\partial f}{\partial x_2} - \psi_2 x_2 \frac{\partial f}{\partial x_1} - \psi_2(f - u) \frac{\partial f}{\partial x_2} = 0.$$

Тогда z(t) является кусочно-постоянной функцией.

Т.к. в моменты разрыва $\psi_2(t) = 0$, то z(t) является просто постоянной функцией.

Рассмотрим z(t) в моменты времени τ_1, τ_2 .

$$z(\tau_1) = \psi_1(\tau_1) \underbrace{x_2(\tau_1)}_{=0} + \underbrace{\psi_2(\tau_1)}_{=0} \frac{dx_2(\tau_1)}{dt}.$$
$$z(\tau_2) = \psi_1(\tau_2) \underbrace{x_2(\tau_2)}_{0} + \psi_2(\tau_2) \frac{dx_2(\tau_2)}{dt}.$$

Из равенства $z(\tau_1)=z(\tau_2)$ получим $\psi_2(\tau_2)\dot{x}_2(\tau_2)=0$. Т.к. нули x_2 изолированы, то $\dot{x}_2(\tau_2)\neq 0$. Следовательно, $\psi_2(\tau_2)=0$.

4. Рассмотрим ту же функцию z(t). Т.к. нули x_2 изолированы, то $\dot{x}_2(\tau_1) \neq 0, \dot{x}_2(\tau_2) \neq 0.$

$$z(\tau_{1}) = \psi_{1}(\tau_{1}) \underbrace{x_{2}(\tau_{1})}_{=0} + \underbrace{\psi_{2}(\tau_{1})}_{\neq 0} \frac{dx_{2}(\tau_{1})}{dt}.$$

$$z(\tau_{2}) = \psi_{1}(\tau_{2}) \underbrace{x_{2}(\tau_{2})}_{=0} + \psi_{2}(\tau_{2}) \frac{dx_{2}(\tau_{2})}{dt}.$$

$$\implies \psi_{2}(\tau_{1})\dot{x}_{2}(\tau_{1}) = \psi_{2}(\tau_{2})\dot{x}_{2}(\tau_{2}).$$

Т.к. $x_2(t)$ — непрерывная, $x(\tau_1) = x(\tau_2) = 0$, то $\dot{x}_2(\tau_1)\dot{x}_2(\tau_2) < 0$. Окончательно, имеем $\psi_2(\tau_1)\psi_2(\tau_2) < 0$. Т.к. $\psi_2(t)$ — непрерывная, то по теореме Вейерштрасса о промежуточных значениях $\exists \tau \in (\tau_1, \tau_2): \psi_2(\tau) = 0$.

Таким образом, было доказано, что нули x_2, ψ_2 либо совпадают, либо чередуются. \square

Утверждение 1. Множество достижимости обладает свойством монотонности:

$$\forall \tau_1 \leqslant \tau_2 : [\tau_1, \tau_2] \subset [0, t_1] \Rightarrow \mathcal{X}(\tau_1) \subset \mathcal{X}(\tau_2).$$

Доказательство. Рассмотрим произвольную точку из $\mathcal{X}(\tau_1)$. Пусть $\overline{u}(t)$ — соответствующее ей управление. Положим

$$\widetilde{u}(t) = \begin{cases} 0, & t \in [0, \tau_2 - \tau_1), \\ \overline{u}(t), & t \in [\tau_2 - \tau_1, \tau_2]. \end{cases}$$

Система 5 содержит неподвижную точку (0,0). Тогда управление $\widetilde{u}(t)$ соответствует некоторой точке из $\mathcal{X}(\tau_2)$. Конечная точка, полученная управлением $\widetilde{u}(t)$ на отрезке $[0,\tau_2]$, совпадёт с исходной рассматриваемой точкой из $\mathcal{X}(\tau_1)$.

Разобьём 5 на две системы относительно $u^*(t) = \alpha \operatorname{sgn} \psi_2(t)$. Систему при $u^* \equiv \alpha$

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\beta x_1 \cos x_2 + x_1 x_2 + \alpha. \end{cases}$$
 (9)

обозначим как S^+ . Систему при $u^* \equiv -\alpha$

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\beta x_1 \cos x_2 + x_1 x_2 - \alpha. \end{cases}$$
 (10)

обозначим как S^- .

Причём сопряженная система имеет вид

$$\begin{cases} \dot{\psi}_1 = \psi_2(\beta \cos x_2 - x_2), \\ \dot{\psi}_2 = -\psi_1 + \psi_2(-\beta x_1 \sin x_2 - x_1). \end{cases}$$
 (11)

Исследуем поведение $\psi_1(t), \psi_2(t)$ при достаточно малом времени $t \in (0, \delta)$.

Зафиксируем $\psi_2(0)=0$. При этом $\psi_1(0)\neq 0$, ведь иначе получим противоречие с принципом максимума. Достаточно рассмотреть $\psi_1(0)=\pm 1$ (сопряженная система является линейно-однородной). Так как $\psi_2(0)=0, x_2(0)=0$, то по теореме о нулях из $x_2(\tau)=0$ следует $\psi_2(\tau)=0$, т.е. в нулях x_2 происходит переключение управления.

Пусть $\psi_1(0) = 1$. Тогда можем выбрать δ настолько малым, что

$$\dot{\psi}_2 = \underbrace{-\psi_1}_{\approx -1} + \underbrace{\psi_2(-\beta x_1 \sin x_2 - x_1)}_{\approx 0} < 0.$$

Следовательно $u^*(t) = -\alpha$ на $(0, \delta)$ и траектория эволюционирует согласно S^- . В какойто момент времени x_2 зануляется. Обозначим участок траектории до пересечения x_2 с нулём за W^- .

Пусть $\psi_1(0) = -1$. Тогда можем выбрать δ настолько малым, что

$$\dot{\psi}_2 = \underbrace{-\psi_1}_{\approx 1} + \underbrace{\psi_2(-\beta x_1 \sin x_2 - x_1)}_{\approx 0} > 0.$$

Следовательно $u^*(t) = \alpha$ на $(0, \delta)$ и траектория эволюционирует согласно S^+ . В какой-то момент времени x_2 зануляется. Обозначим участок траектории до пересечения x_2 с нулём за W^+ .

Зафиксируем $\psi_2(0) \neq 0$. Так как $\psi_2(0) \neq 0, x_2(0) = 0$ то по теореме о нулях из $x_2(\tau) = 0$ следует $\exists \tilde{\tau} \in [0, \tau] : \psi_2(\tilde{\tau}) = 0$. При этом $\tilde{\tau}$ является моментом переключения.

Таким образом, на непрерывной кривой $W^+(W^-)$ плоскости (x_1,x_2) имеется точка с координатой $x_2=x_2(\widetilde{\tau}): x(\widetilde{\tau})\in W^+\cup W^-$, в которой происходит переключение управления, траектория начинает эволюционировать согласно $S^-(S^+)$ с начальными значениями равными конечным значениям x_1,x_2,ψ_1,ψ_2 . Обозначим соответствующую непрерывную кривую за $W_1^+(W_1^-)$.

Далее, перебрав все такие моменты переключений $\widetilde{\tau}$ (когда обнуляется ψ_2), можем построить

$$W = (W^+ \cup W_1^+ \cup W_2^+ \cup \dots) \cup (W^- \cup W_1^- \cup W_2^- \cup \dots).$$

Построили картину синтеза.

2.3 Исследование стационарных точек

Рассмотрим систему

$$\begin{cases} \dot{x_1} = x_2, \\ \dot{x_2} = -\beta x_1 \cos x_2 + x_1 x_2 + u. \end{cases}$$

Найдем все точки (x_1, x_2) , удовлетворяющие

$$\begin{cases} 0 = x_2, \\ 0 = -\beta x_1 \cos x_2 + x_1 x_2 + u. \end{cases}$$

При $\beta \neq 0$ получим точки $(u/\beta,0)$. При $\beta = 0$ стационарных точек нет. Далее рассматриваем $\beta \in \mathbb{R} \setminus \{0\}$.

Как было показано ранее, $u = \alpha$ либо $u = -\alpha$, $\alpha > 0$. Имеем две точки $v_{1,2} = (\pm \alpha/\beta, 0)$. Рассмотрим матрицу Якоби рассматриваемой системы.

$$J = \begin{pmatrix} 0 & 1 \\ -\beta \cos x_2 + x_2 & \beta x_2 \sin x_2 + x_1 \end{pmatrix}.$$

$$J|_{v_1} = \begin{pmatrix} 0 & 1 \\ -\beta & \frac{\alpha}{\beta} \end{pmatrix}, \quad J|_{v_2} = \begin{pmatrix} 0 & 1 \\ -\beta & -\frac{\alpha}{\beta} \end{pmatrix}.$$

Исследуем собственные значения $J|_{v_1}$.

$$\det(J|_{v_1} - \lambda E) = \lambda^2 - \frac{\alpha}{\beta}\lambda + \beta = 0 \implies \lambda_{1,2} = \frac{\alpha}{2\beta} \pm \frac{\sqrt{\alpha^2 - 4\beta^3}}{2|\beta|}.$$

Пусть $\beta \leqslant (\alpha/2)^{2/3}$. Тогда при $\beta \in (0, (\alpha/2)^{2/3}]$

$$\lambda_1 = \frac{\alpha}{2\beta} + \frac{\sqrt{\alpha^2 - 4\beta^3}}{2\beta} > 0, \quad \lambda_2 = \frac{\alpha}{2\beta} - \frac{\sqrt{\alpha^2 - 4\beta^3}}{2\beta} > 0.$$

Точка v_1 — неустойчивый узел.

При $\beta \in (-\infty, 0)$ имеем $\lambda_1 > 0, \lambda_2 < 0$. Тогда v_1 — седло.

Пусть $\beta > (\alpha/2)^{2/3}$. Тогда

$$\lambda_{1,2} = \frac{\alpha}{2\beta} \pm i \frac{\sqrt{4\beta^3 - \alpha^2}}{2\beta}.$$

Точка v_1 — неустойчивый фокус.

Исследуем собственные значения $J|_{v_2}$.

$$\det(J|_{v_2} - \lambda E) = \lambda^2 + \frac{\alpha}{\beta}\lambda + \beta = 0 \implies \lambda_{1,2} = -\frac{\alpha}{2\beta} \pm \frac{\sqrt{\alpha^2 - 4\beta^3}}{2|\beta|}.$$

Пусть $\beta \leqslant (\alpha/2)^{2/3}$. Тогда при $\beta \in (0, (\alpha/2)^{2/3}]$

$$\lambda_1 = -\frac{\alpha}{2\beta} + \frac{\sqrt{\alpha^2 - 4\beta^3}}{2\beta} < 0, \quad \lambda_2 = -\frac{\alpha}{2\beta} - \frac{\sqrt{\alpha^2 - 4\beta^3}}{2\beta} < 0.$$

Точка v_2 — устойчивый узел.

При $\beta \in (-\infty, 0)$ имеем $\lambda_1 < 0, \lambda_2 > 0$. Тогда v_2 — седло.

Пусть $\beta > (\alpha/2)^{2/3}$. Тогда

$$\lambda_{1,2} = -\frac{\alpha}{2\beta} \pm i \frac{\sqrt{4\beta^3 - \alpha^2}}{2\beta}.$$

Точка v_2 — устойчивый фокус.

Утверждение 2. Система 5 при фиксированном параметре $\alpha > 0$ и $\beta \neq 0$ имеет неподвижные точки $v_{1,2} = (\pm \alpha/\beta, 0)$, причём

- v_1 неустойчивый фокус, v_2 устойчивый фокус при $\beta > (\alpha/2)^{2/3}$.
- ullet v_1 неустойчивый узел, v_2 устойчивый узел при $eta \in (0,(lpha/2)^{2/3}].$
- $v_1 ce\partial no$, $v_2 ce\partial no$ $npu \beta < 0$.

3 Алгоритм численного решения

Согласно исследованию системы 1 в пункте 2.2 сформулируем алгоритм приближенного построения множества достижимости $\mathcal{X}(t)$ на плоскости $(x, \dot{x}) = (x_1, x_2)$.

- 1. Из точки (0,0) выпускаем две траектории согласно S^+, S^- при $\psi_2(0)=0$ и $\psi_1(0)=-1, \psi_1(0)=1$ соответственно до моментов времени $\tau^+, \tau^-: x_2(\tau^\pm)=0$. Построили кривую $W^+\cup W^-$.
- 2. Перебираем $\tau_1 \in [0, \tau^+], \tau_2 \in [0, \tau^-]$ по сетке. Считаем, что $\psi_2(\tau_1) = \psi_2(\tau_2) = 0$ (происходит переключение).
- 3. Из точки с абсциссой $x_2(\tau_1)$ выпускаем траекторию системы S^- при $\psi_1(\tau_1)=-1, \psi_2(\tau_1)=0$ до момента $\tilde{\tau}^+: \psi_2(\tilde{\tau}^+)=0$. Далее аналогично выпускаем траекторию системы S^+ . Повторяем до окончания времени.
- 4. Из точки с абсциссой $x_2(\tau_2)$ выпускаем траекторию системы S^+ при $\psi_1(\tau_2)=1, \psi_2(\tau_2)=0$ до момента $\tilde{\tau}^-:\psi_2(\tilde{\tau}^-)=0$. Далее аналогично выпускаем траекторию системы S^- . Повторяем до окончания времени.
- 5. Собираем конечные точки построенных траекторий в массивы **X**, **Y**. В массивы **X1**, **Y**1 собираем точки, которые соответствуют кривой $W^+ \cup W^-$.
- 6. Удаляем самопересечения. Вариант 1: проводим внешнюю нормаль в точке множества достижимости, пускаем луч в направлении нормали, считаем число пересечений с отрезками границы множества достижимости. Если пересечений чётное число, то нормаль направлена вовнутрь, имеется участок самопересечения (петля), удаляем точку. Вариант 2: последовательно перебираем отрезки границы множества достижимости, проверяем их на пересечение. Если пересекаются, то идём по петле, удаляем все точки, образующие петлю.
- 7. Сохраняем в массив X2 точки $\pm \alpha/\beta$, T2=[1,2].

4 Результаты работы алгоритма

4.1 Эволюция множества достижимости в зависимости от α

Зафиксируем $\beta=T=1$ и рассмотрим $\mathcal{X}(T)$ при $\alpha\in[1.2,7.2]$. На рисунке 1 продемонстрировано монотонное расширение множества достижимости в зависимости от параметра α . Отметим, что при дальнейшем увеличении параметра часть кривой переключения, находящаяся в правой полуплоскости, бесконечно возрастает, что влечет за собой трудоёмкость вычисления систем дифференциальных уравнений при помощи ode45. В данном примере неподвижные точки не входят во внутренность множества достижимости, программа не выводит их на экран.

Рис. 1: Зависимость множества достижимости от параметра α .

4.2 Эволюция множества достижимости в зависимости от времени

Зафиксируем $\alpha=1,\beta=5$. В данном случае $\beta>\alpha$, в исходной системе 5 наибольший вклад вносит часть при косинусе. Рассмотрим $t\in[0.2,2]$. На рисунке 2 зелёная точка $(\alpha/\beta,0)$ является устойчивым фокусом, а синяя $(-\alpha/\beta,0)$ — неустойчивым фокусом.

Рис. 2: Зависимость множества достижимости от времени с отображением неподвижных точек.

5 Список литературы

- [1] Чистяков И. А. Лекции по оптимальному управлению. 2023-2024.
- [2] Понтрягин Л. С., Болтянский В. Г., Гамерклидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов.—4-е изд.—М.: «Наука», 1983.
- [3] $\mathcal{J}u$ Э. Б., Mapkyc $\mathcal{J}.$ Основы теории оптимального управления.—М.: «Наука», 1972.