Project Information

Project Title: Analyzing Key Factors Influencing US Home Prices Over the Last 20 Years

Project Overview: The objective of this project is to build a data science model that explains the impact of key factors on US home prices over the last two decades. The project involves finding publicly available data for these influencing factors and using the S&P Case-Schiller Home Price Index (CSUSHPIS) as a proxy for home prices.

Name: Sachin Boora

Contact: sachnboora@gmail.com, +91-9996292765

Project Plan

We will cover this entire project by dividing it in 4 sections :

- 1. **Data Collection**: I will collect data from various sources including US Govt offical websites and from different publicly available data. I will share links for each data source as and when required.
- 2. Data Preparation: After collecting data, i will consolidate all the data into a csv file and access the file.
- 3. **EDA**: I will analyse the prepared data using various plotting methods and how different factors are correlated to each other.
- $4. \ \textbf{Modeling}: With the \ help \ of \ all \ the \ above \ information \ , i \ will \ build \ a \ suitable \ model \ which \ will \ predict \ index \ prices \ in \ US \ real \ estate.$

Data Collection

I have collected data mainly from https://fred.stlouisfed.org/

The website "https://fred.stlouisfed.org/" is an official website of the Federal Reserve Economic Data (FRED), which is maintained by the Federal Reserve Bank of St. Louis. FRED is an extensive online database of economic data and financial indicators

I have downloaded data from 2001-01 to 2023-07 in csv format. Here are the files details and source from where I have fetched data:

S&P/Case-Shiller U.S. National Home Price Index: https://fred.stlouisfed.org/series/CSUSHPISA

GDP: https://fred.stlouisfed.org/series/GDP

New Privately-Owned Housing Units Started: Total Units: https://fred.stlouisfed.org/series/HOUST

30-Year Fixed Rate Mortgage Average in the United States: https://fred.stlouisfed.org/series/MORTGAGE30US

Monthly Supply of New Houses in the United States: https://fred.stlouisfed.org/series/MSACSR

Personal Income : https://fred.stlouisfed.org/series/PI
Population : https://fred.stlouisfed.org/series/POPTHM

Personal Saving Rate: https://fred.stlouisfed.org/series/PSAVERT
Unemployment Rate: https://fred.stlouisfed.org/series/UNRATE

Target Data: S&P/Case-Shiller U.S. National Home Price Index

Feature Data: All other Data

Data Preparation

Let's clean our data now by changing column names, setting date as Index

```
import pandas as pd
target_data = pd.read_csv("/content/Project Data/ S&P:Case-Shiller U.S. National Home Price Index.csv")
target_data.head()
              DATE CSUSHPISA
      0 2000-01-01
                        100.551
      1 2000-02-01
                        101.339
      2 2000-03-01
                        102.127
                        102.922
      3 2000-04-01
      4 2000-05-01
                        103.678
target_data.set_index('DATE', inplace=True)
target_data.rename(columns={'CSUSHPISA': 'target'}, inplace=True)
target_data.index = pd.to_datetime(target_data.index)
target_data.head()
                  target
           DATE
      2000-01-01 100.551
      2000-02-01 101.339
      2000-03-01 102.127
      2000-04-01 102.922
      2000-05-01 103.678
target_data.to_csv("Cleaned Data/target.csv")
```

Lets follow the same process to rename columns and set date column as index for all other feature data

Personal Income

Personal Income is one of the key factors that influence US real estate prices as increase in personal income also led to increase in purchasing power which ultimately increases demand and prices of real estate

2000-02-01 8408.8
 2000-03-01 8468.3
 2000-04-01 8506.8

4 2000-05-01 8544.5

```
personal_income.set_index('DATE', inplace=True)
personal_income.rename(columns={'PI': 'Personal Income'}, inplace=True)
personal_income.index = pd.to_datetime(personal_income.index)
personal_income.head()
```

	Personal Income	
DATE		ıl.
2000-01-01	8348.0	
2000-02-01	8408.8	
2000-03-01	8468.3	
2000-04-01	8506.8	
2000-05-01	8544.5	

personal_income.to_csv("Cleaned Data/Personal_Income.csv")

Population

As population increases, also grows the demand of houses to live which will fuel the demand and prices of real estate

population = pd.read_csv("/content/Project Data/Population.csv")
population.head()

population.set_index('DATE', inplace=True)
population.rename(columns={'POPTHM': 'Population'}, inplace=True)
population.index = pd.to_datetime(population.index)
population.head()

population.to_csv("Cleaned Data/Population.csv")

Unemployment Rate

Unemployment rate is one of the direct factor that impacts the prices of real estate as the more the unemployment, less the buying capacity, hence less demand led to less prices

```
unemployment_rate = pd.read_csv("/content/Project Data/Unemployment Rate.csv")
unemployment_rate.head()
```


✓ GDP

GDP is the criteria which shows the development of a nation. The more the GDP is, the more developed nation is, which also directly impacts the prices of real estate

```
gdp_data = pd.read_csv("/content/Project Data/GDP.csv")
gdp_data.head()
            DATE
                        GDP
     0 2000-01-01 10002.179
     1 2000-04-01 10247.720
     2 2000-07-01 10318.165
     3 2000-10-01 10435.744
     4 2001-01-01 10470.231
gdp_data.set_index('DATE', inplace=True)
gdp_data.index = pd.to_datetime(gdp_data.index)
# Resampling
gdp_data = gdp_data.resample('M').ffill() #this will resample the index to monthly and then fill extra created rows with la
\# Set the day of the index to 1
gdp_data.index = gdp_data.index.map(lambda x: x.replace(day=1))
gdp_data = gdp_data["2000-01-01":"2023-07-01"]
gdp_data.head()
                     GDP
                           \blacksquare
          DATE
```


gdp_data.to_csv("/content/Cleaned Data/GDP.csv")

Mortgage Rate

A mortgage rate is the interest rate charged for a home loan. If mortgage rate is high, people will be less interested to take a loan for home, which will negatively impact the prices

 $\label{local_monthly} \verb| mortgage_rate_monthly = pd.read_csv("/content/Project Data/Mortgage_monthly.csv") \\ mortgage_rate_monthly.head()$

	DATE	MORTGAGE30US	\blacksquare
0	2000-01-01	8.2100	ılı
1	2000-02-01	8.3250	
2	2000-03-01	8.2400	
3	2000-04-01	8.1525	
4	2000-05-01	8.5150	

```
mortgage_rate_monthly.set_index('DATE', inplace=True)
mortgage_rate_monthly.rename(columns={'MORTGAGE30US': 'Mortgage Rate Monthly'}, inplace=True)
mortgage_rate_monthly.index = pd.to_datetime(mortgage_rate_monthly.index)
mortgage_rate_monthly.head()
```

	Mortgage Rate	Monthly
DATE		
2000-01-01		8.2100
2000-02-01		8.3250
2000-03-01		8.2400
2000-04-01		8.1525
2000-05-01		8.5150

 $mortgage_rate_monthly.to_csv("/content/Cleaned Data/Mortgage_Rate_monthly.csv")$

Personal Saving Rate

The personal saving rate is a measure that reflects the portion of disposable income that households save rather than spend. As savings increases, it means people are spending less on investments such as real estate which slows the demand for buying new houses

personal_saving_rate = pd.read_csv("/content/Project Data/Personal Saving Rate.csv")
personal_saving_rate.head()

	DATE	PSAVERT	
0	2000-01-01	4.5	ılı
1	2000-02-01	4.0	
2	2000-03-01	3.8	
3	2000-04-01	4.3	
4	2000-05-01	4.3	

```
personal_saving_rate.set_index('DATE', inplace=True)
personal_saving_rate.rename(columns={'PSAVERT': 'Personal Saving Rate'}, inplace=True)
personal_saving_rate.index = pd.to_datetime(personal_saving_rate.index)
personal_saving_rate.head()
```

	Personal Saving Rate	
DATE		ıl.
2000-01-01	4.5	
2000-02-01	4.0	
2000-03-01	3.8	
2000-04-01	4.3	
2000-05-01	4.3	

personal_saving_rate.to_csv("Cleaned Data/Personal_Saving_Rate.csv")

Inventory Level Impact

The balance between housing supply and demand in a particular market can influence home prices. Limited supply relative to demand tends to drive prices up. Lets clean our data related to Houses construction completed, under construction, monthly supply of new houses

```
# Monthly supply of new houses in US
monthly_supply_houses = pd.read_csv("/content/Project Data/Monthly Supply of New Houses in the United States.csv")
monthly_supply_houses.head()
```

	DATE	MSACSR	
0	2000-01-01	4.3	ılı
1	2000-02-01	4.3	
2	2000-03-01	4.3	
3	2000-04-01	4.4	
4	2000-05-01	4.4	

monthly_supply_houses.set_index('DATE', inplace=True)
monthly_supply_houses.rename(columns={'MSACSR': 'ratio of new houses for sale to new houses sold'}, inplace=True)
monthly_supply_houses.index = pd.to_datetime(monthly_supply_houses.index)
monthly_supply_houses.head()

	ratio d	of new	houses	for	sale	to ne	ew ho	ouses	sold
DATE									
2000-01-01									4.3
2000-02-01									4.3
2000-03-01									4.3
2000-04-01									4.4
2000-05-01									4.4

monthly_supply_houses.to_csv("Cleaned Data/Monthly_Supply_Houses.csv")

New Housing Project started

new_housing_project_started = pd.read_csv("/content/Project Data/ New Privately-Owned Housing Units Started- Total Units.cs new_housing_project_started.head()

	DATE	HOUST	
0	2000-01-01	1636.0	ıl.
1	2000-02-01	1737.0	
2	2000-03-01	1604.0	
3	2000-04-01	1626.0	
4	2000-05-01	1575.0	

new_housing_project_started.set_index('DATE', inplace=True)
new_housing_project_started.rename(columns={'HOUST': 'Housing unit started'}, inplace=True)
new_housing_project_started.index = pd.to_datetime(new_housing_project_started.index)
new_housing_project_started.head()

	Housing unit	started	
DATE			ılı
2000-01-01		1636.0	
2000-02-01		1737.0	
2000-03-01		1604.0	
2000-04-01		1626.0	
2000-05-01		1575.0	

new_housing_project_started.to_csv("Cleaned Data/New_Housing_Unit_Started.csv")

~ EDA

In this section, we will explore the data we have cleaned in last section and try to fetch meaningful comparison and correlation

```
import numpy as np #for feature engineering
import matplotlib.pyplot as plt #for various plotting
import seaborn as sns #for various plotting
import os
```

Lets join all our csv files into 1 csv file

```
path = '/content/Cleaned Data'

csv_files = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.csv')]

dfs = [pd.read_csv(f) for f in csv_files]

# Merging the dataframes on the 'DATE' column
final_df = pd.concat(dfs, ignore_index=False).groupby('DATE').sum()
```

Lets save this new final df to a new csv file final_df.to_csv("/content/Final Data/final_data.csv")

final_data = pd.read_csv("/content/Final Data/final_data.csv")

final_data.set_index('DATE', inplace=True)
final_data.index = pd.to_datetime(final_data.index)

final_data.head(15)

	Population	ratio of new houses for sale to new houses sold	Mortgage Rate Monthly	target	Housing unit started	Personal Saving Rate	Unemployment Rate	GDP	Personal Income	11.
DATE										
2000- 01-01	281083.0	4.3	8.2100	100.551	1636.0	4.5	4.0	10002.179	8348.0	
2000- 02-01	281299.0	4.3	8.3250	101.339	1737.0	4.0	4.1	10002.179	8408.8	
2000- 03-01	281531.0	4.3	8.2400	102.127	1604.0	3.8	4.0	10002.179	8468.3	
2000- 04-01	281763.0	4.4	8.1525	102.922	1626.0	4.3	3.8	10247.720	8506.8	
2000- 05-01	281996.0	4.4	8.5150	103.678	1575.0	4.3	4.0	10247.720	8544.5	
2000- 06-01	282247.0	4.8	8.2880	104.424	1559.0	4.3	4.0	10247.720	8597.8	
2000- 07-01	282504.0	4.1	8.1475	105.054	1463.0	4.7	4.0	10318.165	8665.3	
2000- 08-01	282769.0	4.4	8.0275	105.768	1541.0	4.8	4.1	10318.165	8712.2	
2000- 09-01	283033.0	4.0	7.9120	106.538	1507.0	4.1	3.9	10318.165	8757.7	
2000- 10-01	283285.0	4.0	7.7950	107.382	1549.0	4.3	3.9	10435.744	8792.1	
2000- 11-01	283523.0	4.2	7.7450	108.302	1551.0	4.3	3.9	10435.744	8809.9	
2000- 12-01	283748.0	3.6	7.3820	109.140	1532.0	4.1	3.9	10435.744	8844.0	
2001- 01-01	283960.0	3.8	7.0325	109.846	1600.0	4.5	4.2	10470.231	8940.9	
2001- 02-01	284166.0	3.7	7.0500	110.500	1625.0	4.6	4.2	10470.231	8975.8	
2001-	004200 O	20	6 0500	111 100	1500 0	4.0	4 9	10470 001	0000 4	

final_data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 283 entries, 2000-01-01 to 2023-07-01

```
Data columns (total 9 columns):
                                                      Non-Null Count Dtype
    Column
#
 0
     Population
                                                      283 non-null
                                                                      float64
 1
     ratio of new houses for sale to new houses sold
                                                      283 non-null
                                                                      float64
     Mortgage Rate Monthly
                                                      283 non-null
                                                                      float64
 3
                                                      283 non-null
                                                                      float64
     Housing unit started
                                                      283 non-null
                                                                      float64
     Personal Saving Rate
                                                      283 non-null
                                                                      float64
     Unemployment Rate
                                                      283 non-null
                                                                      float64
     GDP
                                                      283 non-null
                                                                      float64
 8
     Personal Income
                                                      283 non-null
                                                                      float64
dtypes: float64(9)
memory usage: 22.1 KB
```

final_data.describe()

		ratio of new houses								
	Population	for sale to new houses sold	Mortgage Rate Monthly	target	Housing unit started	Personal Saving Rate	Unemployment Rate	GDP	Personal Income	11.
count	283.000000	283.000000	283.000000	283.000000	283.000000	283.000000	283.000000	283.000000	283.000000	
mean	311546.162544	5.920141	5.046721	175.080618	1301.286219	5.758304	5.800353	16652.775551	14130.734276	
std	16478.919037	1.943360	1.363965	48.539426	444.109060	3.302067	1.968664	4471.798668	4051.141788	
min	281083.000000	3.300000	2.684000	100.551000	478.000000	1.400000	3.400000	10002.179000	8348.000000	
25%	297200.000000	4.400000	3.907500	142.405000	980.000000	4.300000	4.400000	13324.204000	10834.250000	
50%	313060.000000	5.400000	4.857500	167.335000	1288.000000	5.400000	5.300000	15842.259000	13406.400000	
75%	327241.000000	7.000000	6.168000	193.212000	1627.500000	6.300000	6.700000	19692.595000	16787.800000	
tissing values										

M print(final_data.isnull().sum())

```
Population
                                                    0
ratio of new houses for sale to new houses sold
Mortgage Rate Monthly
                                                    0
                                                    0
target
Housing unit started
                                                    0
Personal Saving Rate
                                                    0
Unemployment Rate
                                                    0
                                                    0
Personal Income
                                                    0
dtype: int64
```

As we can see , there is no missing data in our dataset so we are good to proceed with next step

```
# Correlation matrix
correlation_matrix = final_data.corr()
# Heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
```


The heatmap shows that the target variable (housing price) is strongly correlated with several other variables, including:

Population (0.78)

Personal income (0.9)

GDP (0.91)

Mortgage rate monthly (-0.35)

This means that these variables are likely to have a significant impact on housing prices. For example, if personal income or GDP increases, housing prices are also likely to increase. Conversely, if mortgage rates increase, housing prices are likely to decrease.

```
# Lets plot density plot

plt.figure(figsize=(12, 6))
for col in final_data.columns.tolist():
    plt.figure(figsize=(6, 4))
    sns.displot(data=final_data, x=col, kde =True)
    plt.xlabel(f"{col}")
    plt.ylabel("Count")
    plt.title(f'Distribution Plot for {col}')
    plt.show()
```

<Figure size 1200x600 with 0 Axes>
<Figure size 600x400 with 0 Axes>

<Figure size 600x400 with 0 Axes>

Distribution Plot for ratio of new houses for sale to new houses sold

<Figure size 600x400 with 0 Axes>

Distribution Plot for Mortgage Rate Monthly

<Figure size 600x400 with 0 Axes>

<Figure size 600x400 with 0 Axes>

Distribution Plot for Housing unit started

<Figure size 600x400 with 0 Axes>

Distribution Plot for Personal Saving Rate

<Figure size 600x400 with 0 Axes>

Distribution Plot for Unemployment Rate

<Figure size 600x400 with 0 Axes>

Distribution Plot for GDP


```
# Time series plot
plt.figure(figsize=(12, 8))
for col in final_data.columns.tolist():
   plt.plot(final_data[col])
   plt.ylabel(f"{col}")
   plt.xlabel('DATE')
   plt.title('Time Series Plot of Home Prices')
   plt.show()
```

Time Series Plot of Home Prices

DATE


```
# lets plot boxplot for checking outliers in our data
plt.figure(figsize=(12, 6))
for col in final_data.columns.tolist():
    plt.figure(figsize=(6, 4))
    sns.boxplot(data=final_data, x=col)
    plt.xlabel(f"{col}")
    plt.title(f'Box Plot for {col}')
    plt.show()
```

<Figure size 1200x600 with 0 Axes>

Box Plot for ratio of new houses for sale to new houses sold

Box Plot for Mortgage Rate Monthly

Box Plot for target

target

Box Plot for Personal Saving Rate

Box Plot for Unemployment Rate

Box Plot for GDP

As we can see, there are outlier in our data mainly in :

- · Unemployment Rate
- · Personal Saving Rate
- · ratio of new houses for sale to new houses sold

Lets treat skewness and outliers
final_data['Personal Saving Rate'].skew()

3.881970962649685

As we can see, Personal Saving Rate is highly right skewed.

final_data['Personal Saving Rate'].skew()

3.881970962649685

rersonal income

final_data['boxcox_personal_saving_rate'].skew()

-0.0359416881912632

final_data['boxcox_personal_saving_rate'].hist()
plt.title("Distribution of Personal Saving rate after handling outliers")
plt.xlabel("boxcox_personal_saving_rate")
plt.ylabel("Count")
plt.show()

final_data['Unemployment Rate'].skew()

1.1831150909985555

final_data['boxcox_Unemployment Rate'], _ = boxcox(final_data['Unemployment Rate'])

final_data['boxcox_Unemployment Rate'].skew()

0.08383545873152397

final_data['boxcox_Unemployment Rate'].hist()
plt.title("Distribution of unemployment rate after handling outliers")
plt.xlabel("boxcox_unemployment rate")
plt.ylabel("Count")
plt.show()

Lets understand the correlation between the data

corr_matrix= final_data.corr()
corr_matrix['target'].sort_values(ascending=False)

target	1.000000
GDP	0.910526
Personal Income	0.897721
Population	0.779723
ratio of new houses for sale to new houses sold	0.306087
Personal Saving Rate	0.174630
Housing unit started	0.144211
boxcox_personal_saving_rate	0.067577
Mortgage Rate Monthly	-0.350813
Unemployment Rate	-0.352774
boxcox_Unemployment Rate	-0.469225
Name: target, dtype: float64	

final_data.to_csv("/content/Final Data/final_data.csv")

Modeling

Lets start with reading and spliting the data

final_data.drop(columns={'Personal Saving Rate', 'Unemployment Rate'}, inplace=True)

final_data.head(15)

```
ratio
                        of new
                        houses
                                                 Housina
                               Mortgage
                                                                                                           boxcox_Unemployment
                          for
                                                                    Personal
            Population
                                   Rate target
                                                    unit
                                                               GDP
                                                                              boxcox_personal_saving_rate
                          sale
                                                                      Income
                                Monthly
                                                 started
                        to new
                        houses
                          sold
      DATE
     2000-
               281083.0
                           4.3
                                  8.2100 100.551
                                                   1636.0 10002.179
                                                                       8348.0
                                                                                                   1.332745
                                                                                                                        0.810307
     01-01
     2000-
                                  8.3250 101.339
               281299.0
                           4.3
                                                   1737.0 10002.179
                                                                       8408.8
                                                                                                   1.239841
                                                                                                                        0.817734
     02-01
from sklearn.model_selection import train_test_split
X = final_data[['Population', 'ratio of new houses for sale to new houses sold', 'Mortgage Rate Monthly', 'Housing unit sta
y = final_data['target']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from sklearn.linear_model import LinearRegression
# Initialize the linear regression model
model = LinearRegression()
model.fit(X_train, y_train) #fitting the model to training data
     ▼ LinearRegression
     LinearRegression()
               ۷.00 ک
                                  1.1700 100.002
                                                                                                   1.201000
     11-01
predictions = model.predict(X_test)
      12-01
# Lets evaluate our model using MSE and R-squared
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print("Mean Squared Error:", mse)
print("R-squared:", r2)
     Mean Squared Error: 43.16023470526665
     R-squared: 0.9825452740643759
# Coefficients and intercept
coefficients = model.coef_
intercept = model.intercept_
print("Coefficients:", coefficients)
print("Intercept:", intercept)
     Coefficients: [-8.14261830e-04 5.43326200e+00 -1.60905934e-01 4.27921037e-02
       9.79650060e-03 4.41873751e-03 -1.93114283e+01 1.09073569e+02]
     Intercept: 46.77739455592156
#Lets visualise our model prediction
plt.scatter(y_test, predictions)
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Actual vs. Predicted Values")
x = np.linspace(min(y_test), max(y_test), 100)
plt.plot(x, x, color='red', linestyle='--
plt.show()
```

