

DIVISIBILIDAD

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 02) 07.JULI0.2023

Definición

Dados dos enteros $d, m \in \mathbb{Z}$ diremos que d **divide** a m o que m es **divisible** entre d, si existe $q \in \mathbb{Z}$ tal que m = qd, esto es $\frac{m}{d} \in \mathbb{Z}$ es un entero.

En ese caso, escribimos $d \mid m$, y diremos que m es un **múltiplo** de d, y que d es un **divisor** o **factor** de m.

Cuando d no divide a m escribimos d \nmid m.

Ejemplos: $5 \mid 10$, pero $10 \nmid 5$.

Como $o = o \cdot n$ se sigue que $n \mid o, \forall n \in \mathbb{Z}$. Por otro lado, si $o \mid n$, entonces existe $q \in \mathbb{Z}$ tal que $n = q \cdot o = o$, de modo que $o \nmid n$ para $n \neq o$. Para un entero fijo n, los múltiplos de n son $o, \pm n, \pm 2n, \ldots$ Luego, no es difícil ver que entre n enteros consecutivos, siempre hay uno divisible entre n.

Propiedades Para todo $x, y, z, w \in \mathbb{Z}$, valen

- a) $x \mid 0, 1 \mid x, 0 \nmid x$ para $x \neq 0; x \mid x$ (reflexividad).
- b) $x \mid 1$, si y sólo si, $x = \pm 1$.
- c) $x \mid y, y \mid z \Rightarrow x \mid z$ (transitividad).
- d) $x \mid y, x \mid z \Rightarrow x \mid ay + bz$, para todo $a, b \in \mathbb{Z}$ (linealidad).
- e) Si $x \mid y$, entonces $y = o \circ |x| \le |y|$ (limitación).
- f) $x \mid y, x \mid y \pm z \Rightarrow x \mid z$.
- g) $x \mid y, y \mid x \Rightarrow |x| = |y|$ (antisimetría, a menos de signo).
- h) Si $x \mid y \ y \ \neq o$, entonces $\frac{y}{x} \mid y$ (divisores vienen en pares).
- i) $x \mid y, z \mid w \Rightarrow xz \mid yw$.
- **j)** Si $z \neq 0$, entonces $x \mid y \Leftrightarrow xz \mid yz$.

<u>Prueba</u>: (a) Observe que $x = 1 \cdot x$, $0 = x \cdot 0$, $0 \mid x \Rightarrow x = q \cdot 0 = 0$; x = x1.

Para (b) $x \mid 1 \Leftrightarrow 1 = qx, \in \mathbb{Z} \Leftrightarrow q = \pm 1$, y portanto $x = \pm 1$.

En los ítems (c) a (h), la condición $x \mid y$ se da, de modo que y = kx, para algún $k \in \mathbb{Z}$.

En (c) $y \mid z \Rightarrow z = \ell y \Rightarrow z = \ell y = \ell(kx) = (k\ell)x$, con $k\ell \in \mathbb{Z} \Rightarrow x \mid z$.

En (d) $x \mid z \Rightarrow z = \ell x \Rightarrow ay + bz = a(kx) + b(\ell x) = (ak + b\ell)x \Rightarrow x \mid ay + bz$.

En (e), suponga $y \neq 0$. Entonces $k \neq 0 \Rightarrow |k| \geq 1 \Rightarrow |y| = |kx| = |k| \cdot |x| \geq |x|$.

En (f), por (c) tenemos que $x \mid y$, $x \mid y \pm z \Rightarrow x \mid y - (y \pm z) = \pm z$.

En (g), de (e) se tiene que $x \mid y, y \mid x \Rightarrow |y| \ge |x| \ge |y| \Rightarrow |y| = |x|$.

En (h), si $y \neq$ o, entonces $x \mid y \Rightarrow y = kx = (\frac{y}{x})x$. Como $\frac{y}{x} \in \mathbb{Z} \Rightarrow \frac{y}{x} \mid y$.

En (i), y = kx, $w = \ell z \Rightarrow yw = (kx)(\ell z) = (k\ell)xz \Rightarrow xz \mid yw$.

Finalmente (j), (\Rightarrow) de (i) con w=z, se tiene que $x\mid y,z\mid z\Rightarrow xz\mid yz$. Para la recíproca (\Leftarrow) $xz\mid yz,z\neq 0\Rightarrow xz=k(yz)=kxz,\ k\in\mathbb{Z}\Rightarrow x=ky\Rightarrow x\mid y$.

Comentarios:

- Las propiedades (a), (c) y (g), corresponden a la reflexividad, transitividad y antisimetría (a menos de signo) de la relación |.
 Restricta a los naturales N, la relación | es un orden parcial.
- La propiedad (d) de linealidad sólo funciona para coeficientes en \mathbb{Z} .
- La propiedad (j) indica que en una relación de divisibilidad, podemos "cancelar" factores comunes (excepto o).
- La (e), limitación, nos dice que el conjunto de divisores de un número entero n es finito. El número de divisores positivos de n es ≤ n.
- La propiedad (h) nos indica que los divisores de n vienen en pares $(d, \frac{n}{d})$. **Obs!** No dice que los divisores d y $\frac{n}{d}$ son distintos.

Ejemplo

Ejemplo: Hallar todos los enteros positivos n tales que $2n^2 + 1 \mid n^3 + 9n - 17$.

Solución: Usamos varias de las propiedades de divisibilidad anteriores. Primero, observe que $(2n^2 + 1)n$ es un múltiplo de $2n^2 + 1$, de modo que $2n^2 + 1 \mid (2n^2 + 1)n = 2n^3 + n$. Por otro lado, la hipótesis implica que $2n^2 + 1 \mid n^3 + 9n - 17$.

Combinando ambas relaciones de divisibilidad, obtenemos

$$2n^2 + 1 \mid (2n^3 + n) - 2(n^3 + 9n - 17) = 34 - 17n = 17(2 - n).$$
 (1)

Usando ahora la propiedad de que todo entero divide a o: $n \mid 0$, $\forall n \in \mathbb{Z}$, podemos obligar a que el lado derecho de esta divisibilidad sea o, haciendo n=2. En particular, si sustituimos n=2 en la relación del enunciado, obtenemos $9 \mid 8+18-17=9$, la cual es verdadera. De ahí que n=2 es una solución.

Ejemplo

Para hallar más soluciones, usamos ahora la ley de limitación en la relación de divisibilidad (1). Así

 $2n^2 + 1 \le |34 - 17n|$.

Tenemos dos casos, atendiendo al signo de la cantidad 34 - 17n.

- <u>Caso 1</u>: $34 17n \ge 0$. En este caso, tendríamos $2 \ge n$, de modo que sólo debemos verificar los casos n = 1 y n = 2. Ya vimos que n = 2 es solución. Basta verificar la divisibilidad en el enunciado para n = 1. En este caso, $3 \nmid 1 + 9 17 = -7$, de modo que n = 1 no cumple.
- Caso 2: $34 17n \le 0$. Este caso corresponde a $n \ge 2$. En este segundo caso, la ley de limitación arriba se reduce a

$$2n^2 + 1 \le |34 - 17n| = 17n - 34.$$

Escribiendo todo de un lado de la desigualdad, obtenemos

$$2n^2 - 17n + 35 \le 0.$$

Ejemplo

La ecuación asociada a la desigualdad anterior tiene raíces

$$2n^2-17n+35=0 \qquad n=\frac{17\pm\sqrt{289-4(2)(35)}}{2(2)}=\frac{17\pm\sqrt{289-280}}{4}=\frac{17\pm3}{4}=\frac{7}{2},5.$$

Para resolver la desigualdad, consideramos los intervalos entre estas raíces: Intervalo | Representante n | Signo de $2n^2 - 17n + 35$ | ; Fs $2n^2 - 17n + 35 < 0$?

Interval	o Representante n	Signo de $2n^2 - 17n + 35$	$ \ \ \ \ \ \ \ \ \ \ \ $
$(2, \frac{7}{2})$	3	+	no
$(\frac{7}{2}, 5)$	4	_	sí
$[\bar{5}, 5]$	5	О	sí
$(5,\infty)$	6	+	no

De allí, sólo los enteros positivos n=4 y n=5 cumplen la ley de limitación, y son los únicos que podrían cumplir con la divisibilidad del enunciado. Verificando para cada uno, 4 no cumple, mientras que n=5 satisface $51 \mid 153$. De allí que n=5 también es solución.

Así, las únicas soluciones enteras positivas son n= 2 y n= 5. \square

Otros ejercicios.

Ejemplo: Pruebe que para todo entero positivo n, la fracción $\frac{21n+4}{14n+3}$ es irreducible.

Ejemplo: Mostrar que para todo entero *n*:

- a) $n^5 5n^3 + 4n$ es divisible entre 120.
- b) $n^2 + 3n + 5$ no es divisible por 121.

Ejemplo: Encontrar todos los enteros positivos n para los cuales el número obtenido de n al borrar el último dígito, es un divisor de n.

Ejemplo: ¿Cuál es el mayor entero positivo x tal que $23^x \mid 2021!$?