МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3

По дисциплине	
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ	

Студент

Группа	ФИО	Подпись	Дата
2ДМ22	Лукьянов Д.М.	Ly	03.12.2023

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент ОХИ ИШПР	Чузлов В.А.	к.т.н.		04.12.2023

ЗАДАНИЕ 1

Дана зависимость давления паров вещества от температуры:

T,°C	р, атм
40	0,2453
50	0,5459
60	1,2151
70	2,7042
80	6,0184
90	13,3943
100	29,8096

Определить значения давления паров при $T \in [40; 100]$ с шагом 5 °C, используя

- Кубический сплайн;
- Одну из аппроксимируюющих функций: проверить линейную, степенную и экспоненциальную аппроксимирующие функции, выбрать наиболее подходящу. (по значению суммарной ошибки) и провести расчеты с использованиеи данной функции.

РЕШЕНИЕ 1

Программная реализация:

```
import numpy as np
import scipy as sp
from scipy.optimize import least_squares
from scipy.interpolate import interp1d
from scipy.integrate import solve_ivp
from scipy.integrate import quad
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
Cell 2
```

```
t = np.array([40, 50, 60, 70, 80, 90, 100])
p = np.array([0.2453, 0.5459, 1.2151, 2.7042, 6.0184, 13.3943, 29.8096])
x_eval = np.arange(40, 101, 5)
```

```
cubic = interp1d(t, p, kind='cubic')
def linear model(x, params):
  k, b = params
  return k * x + b
def residuals(params, x, y, func):
  return y - func(x, params)
x0 = 0.1, 0.1
def power_model(x, params):
  a, b = params
  return a * x**b
def exp model(x, params):
  a, b = params
  return a * np.exp(b * x)
line = least_squares(residuals, x0=x0, args=(t, p, linear_model))
linear params, linear cost = line.x, line.cost
print(f'Линейная аппроксимация:\
\nk = {linear_params[0]:.3f}, b = {linear_params[1]:.3f}, \
суммарная ошибка = {linear_cost:.4f}')
power = least_squares(residuals, x0=x0, args=(t, p, power_model))
power_params, power_cost = power.x, power.cost
print(f'Степенная аппроксимация:\
na = \{power\_params[0]:.3e\}, b = \{power\_params[1]:.3f\}, \
суммарная ошибка = {power_cost:.4f}')
exp = least_squares(residuals, x0=x0, args=(t, p, exp_model))
exp_params, exp_cost = exp.x, exp.cost
print(f'Экспоненциальная аппроксимация:\
na = {exp\_params[0]:.3e}, b = {exp\_params[1]:.3f}, \
суммарная ошибка = {exp cost:.3e}')
cubic_spline_eval = cubic(x_eval)
line_eval = linear_params[0] * x_eval + linear_params[1]
power eval = power params[0] * x eval**power params[1]
exp_eval = exp_params[0] * np.exp(exp_params[1] * x_eval)
Cell 3
```

```
'line_eval': line_eval,
'power_eval': power_eval,
'exp_eval': exp_eval})
```

df_res Cell 4

```
t_space = np.linspace(40, 100, 100)
xlim = [t_space[0], t_space[-1]]
ylim = [0, 30]
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=xlim, ylim=ylim)
ax.plot(t_space, cubic(t_space), '.-k', label='Кубический сплайн')
ax.plot(t_space, linear_params[0] * t_space + linear_params[1], c='orange',
        label='Линейная аппрокисимация')
ax.plot(t_space, power_params[0] * t_space**power_params[1], '-g',
        label='Степенная аппрокисимация')
ax.plot(t_space, exp_params[0] * np.exp(t_space*exp_params[1]), '--b',
        label='Экспоненциальная аппрокисимация')
ax.scatter(t, p, c='r', label='Эксперимент')
ax.legend()
ax.set_ylabel('Давление, атм')
ax.set_xlabel('Температура, °С');
```

Ответ:

Линейная аппроксимация:

k = 0.426, b = -22.094, суммарная ошибка = 95.2305

Степенная аппроксимация:

a = 1.031e-12, b = 6.724, суммарная ошибка = 0.9686

Экспоненциальная аппроксимация:

a = 1.000e-02, b = 0.080, суммарная ошибка = 4.009e-09

Можно видеть, что экспоненциальная аппроксимация характеризуется наименьшей суммарной ошибкой, т.е. явяляется наиболее удочной из рассмотренных для данного набора точек.

Значениия в интервале $T \in [40; 100]$ °С представлены в таблице:

T, °C	Cubic_spline_eval	line_eval	power_eval	exp_eval
40	0,2453	-5,0660	0,0609	0,2453
45	0,3709	-2,9375	0,1345	0,3660
50	0,5459	-0,8091	0,2731	0,5460
55	0,8131	1,3193	0,5184	0,8145
60	1,2151	3,4478	0,9305	1,2151
65	1,8085	5,5762	1,5939	1,8127
70	2,7042	7,7047	2,6233	2,7042
75	4,0417	9,8331	4,1717	4,0342
80	6,0184	11,9616	6,4383	6,0184
85	8,9285	14,0900	9,6783	8,9784
90	13,3943	16,2185	14,2136	13,3943
95	20,1199	18,3469	20,4447	19,9819
100	29,8096	20,4754	28,8642	29,8096

Можно видеть, что кубический сплайн и экспоненциальная аппроксимция позволяют получить похожие результаты.

График:

Рисунок 1 — Графической сравненний интерполяции кубическим сплайном и аппроксимаций линейной, степенной и экспоненциальной функциями

ЗАДАНИЕ 2

Дана схема химических превращений:

$$A \overset{k_1}{\leftarrow} B \overset{k_2}{\leftrightarrow} C$$
 k_3
 $C_{A_0} = 0.8 \left(\frac{\text{МОЛЬ}}{\pi}\right) \qquad k_1 = 0.8 \text{ (c}^{-1})$
 $C_{B_0} = 0.2 \left(\frac{\text{МОЛЬ}}{\pi}\right) \qquad k_1 = 0.96 \text{ (c}^{-1})$
 $C_{C_0} = 0.0 \left(\frac{\text{МОЛЬ}}{\pi}\right) \qquad k_1 = 0.1 \text{ (c}^{-1})$

Решите систему дифферинциалных уравнений изменения концентраций веществ во времени при помощи функции scipy.integrate.solve_ivp() на отрезке [0; 5] с шагом h = 0,1. По результатам расчетов постройте зависимость $\mathcal{C}(t)$ для каждого компонента при помощи библиотеки matplotlib.

РЕШЕНИЕ 2

Программная реализация:

ax.set_ylabel('Концентрация, моль/л')

ax.set_xlabel('Время, c');

```
Cell 5
t_start, t_end, t_step = 0, 5, 0.1
t_eval = np.arange(t_start, t_end+t_step, t_step)
start_conc = [0.8, 0.2, 0]
rate_constants = (0.8, 0.96, 0.1)
def derivatives(t, y, *rate_constants):
  c_a, c_b, c_c = y
  k1, k2, k3 = rate_constants
  dca_dt = k1 * c_b
  dcb_dt = -k1 * c_b - k2 * c_b + k3 * c_c
  dcc_dt = k2 * c_b - k3 * c_c
  return dca_dt, dcb_dt, dcc_dt
solution = solve_ivp(derivatives, (t_start, t_end), start_conc,
                     t_eval=t_eval, args=rate_constants)
c_a, c_b, c_c = solution.y[0], solution.y[1], solution.y[2]
Cell 6
xlim = [t eval[0], t eval[-1]]
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=xlim)
ax.plot(t_eval, c_a, 's-b', label='$C_a$')
ax.plot(t_eval, c_b, '*-r', label='$C_b$')
ax.plot(t_eval, c_c, 'o-g', label='$C_c$')
ax.legend()
```

Ответ:

Рисунок 2 – Зависимость концентраций веществ от времени

ЗАДАНИЕ 3

Используйте функцию scipy.integrate.quad() для вычисления значения энтропии воды при ее нагревании от 400 до 500 К по формуле:

$$\Delta S = \eta \int_{400}^{500} \frac{C_v(T)dT}{T}$$

$$C_v(T) = R \sum_{j=1}^{12} A_j \tau^{j-1}$$

$$\tau = 1 - \frac{T}{T_c}$$

где T — температура, K; $\eta = 3 - \text{количество молей;}$ C_v — темпоемкость, Дж/(моль·K);

R – универсальная газовая постоянная;

 $T_c = 647,126$ – критическая температура, К.

Коэффициенты полинома A(1) - A(12):

Коэффициент	Значение
A_1	7,7305055
A_2	-24,93618016
A_3	195,5654567
A_4	1986,485797
A_5	-53305,43411
A_6	505697,1723
A_7	-2724774,677
A_8	9167737,673
A_9	-19622033,78
A_{10}	25984725,33
A_{11}	-19419431,35
A_{12}	6263206,554

РЕШЕНИЕ 2

Программная реализация:

```
Cell 7
tc = 647.126
eta = 3
a_arr = [7.4305055,
         -24.93618016,
         195.5654567,
         1986.485797,
         -53305.43411,
         505697.1723,
         -2724774.677,
         9167737.673,
         -19622033.78,
         25984725.33,
         -19419431.35,
         6263206.554]
def func(t, tc, eta, a_arr):
  R = 8.314
```

```
tau = 1 - t / tc
  a_arr_len = len(a_arr)
  cv = 0
  for i in range(a_arr_len):
   cv += R * a_arr[i] * tau**(i)
  return eta * cv / t
t_space = np.arange(350, 551, 1)
der = func(t_space, tc, eta, a_arr)
t_space_window = t_space[50:151]
der_window = der[50:151]
area = quad(func, t_space_window[0], t_space_window[-1], args=(tc, eta, a_arr))
Cell 8
xlim = [350, 550]
ylim = [0, 0.7]
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=xlim, ylim=ylim)
ax.plot(t_space, der, 'r')
verts = [(400, 0), *zip(t_space_window, der_window), (500, 0)]
poly = Polygon(verts, facecolor='0.8', edgecolor='0')
ax.add_patch(poly)
ax.text(410, 0.2, '$\Delta S = \eta \\int_{400}^{500}
\\frac{C_v(T)}{T}dT$ =' + f'{area[0]:.1f} Дж', fontsize=14)
ax.set_ylabel('\\frac{C_v(T)}{T}, \\frac{Дx}{K}$', fontsize=14)
ax.set_xlabel('T, K');
```

Ответ:

Рисунок 3 — Изменение энтропиии 3 молей воды при их нагреве от $400~{\rm K}$ до $500~{\rm K}$