Prerequisites Survey/Test ME 460/660: Mechanical Vibrations Instructor – Dr. Joseph C. Slater

Students Name:		Score:		points	out	of	_10_	points
----------------	--	--------	--	--------	-----	----	------	--------

The purpose of this survey/test is to assess how prepared you are for this course and to see how well the prerequisite courses are covering the material required for this course. Please fill out the general information on each course, check the appropriate box that best describes the level of understanding that you feel you have for the topic, and then work out the test question. This test will constitute 5% of your grade for this quarter. Note that no test points are given or deducted for how you respond to the student assessment portion of the form.

	General Info	ormation on Prereq	uisite Course	
Course	Where Taken	Term/Year	Instructor	Grade (4.0 scale)
ME 213: Dynamics				
Student Asses	ssment of Their Kno	wledge of Prerequis	site Topic for Cou	rse Listed Above
			ox below applicab	
Topic	ABET Topic Let- ters	Can Explain or Ap- ply Concept	Heard of Topic	Never Heard of Topic
Free Body Dia- grams	A			
T	est Question Assessi	ment of Student's P	rerequisite Knowl	edge
Question: Derive	the equation of m	notion of the follow	wing system:	
	1		g ej etem.	
	\wedge	m	F(t)	
	- V	111	1(1)	
	K			
		x(t)		
Answer:				
(1,5%) (1,40)4 (1,55%) (1,600) (1,500)				
	KY 1			
	KX	-> F	=(+)	
	2 F = m)			
	mx + KX =	F(F)		
Grade:out of	2 points			

	General Inf	formation on Prereq	uisite Course		
Course	Where Taken	Term/Year	Instructor	Grade (4.0 scale)	
ME 213: Dynamics					
Student Asses	sment of Their Kn	owledge of Prerequis	site Topic for Cou ox below applicab	rse Listed Above	
Topic	ABET Topic Let- ters	Can Explain or Apply Concept	Heard of Topic	Never Heard of Topic	
Kinematics and Ki- netics	A				

Test Question Assessment of Student's Prerequisite Knowledge

Question: Derive the equation of motion of the following system:

y = 2x y = QR, (Rolling lipping) Without = lipping)

Answer:

$$\sum_{i=1}^{2T} \sum_{i=1}^{2T} \sum_{$$

Fr $= m_2 \dot{g} = T - F_F \odot$ $= T - F_F \odot$

5ub (3) mt. (1) $m_1 g = m_1 \dot{x} + 2(m_2 + \overline{R}^2) \dot{y}$ $m_1 g = (m_1 + m_3 + \overline{R}^2) \dot{x}$

We know there is rolling without slipping because the problem statement asked for a single equation OR yxOR, and we substitute @ into O for the First equ, and 3) is the second equation. Fr: NKM+9

Grade: ____ out of 4 points

	G	General Info	ormation on Prereq	uisite Course	
Course	Where T		Term/Year	Instructor	Grade (4.0 scale)
EE 321: Linear Sys-					
tems I					
ocilis i					
Student Asses	sment of	Their Kno	wledge of Prerequis	site Topic for Cours	e Listed Above
Student Assessment of Their Knowledge of Prerequisite Topic for Course Listed Ab Check box below applicable response					
Topic	ABET 7	Topic Let-	Can Explain or Ap-		Never Heard o
	ters		ply Concept		Topic
Laplace transform		A			
of differential equa-		Α			
tion					
	st Quest	ion Assess	ment of Student's P	rerequisite Knowle	dae
Question: Find th	ne <i>Lapla</i>	ce domair	a solution of $x(t)$,	X(s), given the g	overning equation
$\ddot{x} + 0.1$	$\dot{x} + 4x =$	$=\sin(3t)$ a	and $\mathcal{L}(\sin(at)) = \frac{1}{2}$	<u>a</u>	
Answer:			() / /	s^2+a^2	
1			1)
		a		/	
V/<	5)-	-2+ 112	s2+./s	+4	
^(-		Su	3 112	/	
					+0

	Genera	Information on Pres	requisite Course				
Course	Where Taken	Term/Year	Instructor	Grade (4.0 scale)			
EE 321: Linear Sys-				(4.0 0000)			
tems I							
Student Asses	sment of Their	Knowledge of Prered	quisite Topic for Cou	urse Listed Above			
		Chec	Check box below applicable response				
Topic	ABET Topic l	Let- Can Explain or A ply Concept	p- Heard of Topic	Never Heard of Topic			
Fourier series	A						
Te	est Question As	sessment of Student'	s Prerequisite Know	rledge			
Question: Find t	he first three	term of the Fourie	er series of the ren	peating function for			
				om $t = 1$ to $t = 2$,			
	ing every 2 sec			$0111 \ 0 - 1 \ 00 \ 0 - 2,$			
Hint:	118 0 001 2 500	olius.					
	a_0 , ∇^{∞} (() 1	(())	0 /50			
F(t) =	$\frac{1}{2} + \sum_{n=1}^{\infty} (0)^n$	$a_n \cos(n\omega_T t) + b_n \sin^2 t$	$n(n\omega_T t)$) where ω_T	$T = 2\pi/T$, and T is			

the period of the function

$$a_0 = \frac{2}{T} \int_0^T F(t) dt,$$

$$a_n = \frac{2}{T} \int_0^T F(t) \cos(n\omega_T t) dt, \text{ and}$$

$$b_n = \frac{2}{T} \int_0^T F(t) \sin(n\omega_T t) dt$$

you're welcome to do the math, but an = 0, n:0, ... of

bn = Som 2 Trnt dt + S-sin T dt Answer: = 25 sm Trnt dt = = 10 cos Trnt/o = -3 (-1+(-1)) = STTN nodel neven

F(t) = 4 SINTT + 4 SIN SINST + 5TT SINST + ...

out of 2 points