Reporte del Proyecto: Neural Style Transfer para Simular Siniestros

1. Introducción

En el mundo de los seguros, contar con imágenes representativas de **distintos tipos de siniestros** (choques, incendios, daños por granizo) es clave para entrenar modelos de evaluación de riesgos. Sin embargo, muchas veces **no existen suficientes imágenes reales** de todos los escenarios posibles, especialmente los más extremos.

Este proyecto propone una solución: **usar Neural Style Transfer (NST) para generar imágenes sintéticas** de siniestros.

- **Objetivo:** Crear imágenes alteradas con distintos niveles de daño (leve, moderado, severo) a partir de fotos originales de autos y propiedades.
- **Beneficio:** Ampliar datasets de aseguradoras para mejorar la precisión en modelos de evaluación y clasificación de riesgos.

Además, se aplicó **procesamiento de imágenes y transferencia de estilo** para visualizar distintos tipos de daño en **vehículos y edificios**.

Se utilizaron máscaras segmentadas que permiten **guiar la aplicación de efectos visuales**, asegurando una integración "realista" en la imagen original.

2. Metodología

¿Cómo funciona NST aplicado a siniestros?

- **Separación de contenido y estilo:** Una red neuronal convolucional (VGG19) analiza una imagen y extrae su **estructura (contenido)** y **textura (estilo)**.
- Optimización de pérdida: Al combinar contenido y estilo, se genera una imagen nueva que mantiene la forma original pero adopta la textura del daño.
- Aplicación guiada por máscara: Se define qué zonas deben recibir el efecto de daño, asegurando que las alteraciones sean coherentes con la imagen base.

Proceso detallado en el código:

- Generación de máscaras para identificar zonas afectadas.
- Aplicación de transferencia de estilo guiada por máscaras.
- Acumulación de daños progresivos para evaluar la severidad.

En resumen, el uso de máscaras permite personalizar la transferencia de estilo, simulando múltiples tipos de daño de forma controlada y realista.

2.1 Librerías Utilizadas

Se emplearon las siguientes librerías para manipulación de imágenes y aprendizaje profundo:

```
import os
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
```

2.2 Tipos de Daño Considerados

Para cada imagen, se asocian colores específicos con **diferentes efectos de daño**, como rayones, grietas y colisiones.

```
damage_classes = {
    (255, 102, 0): 'style_abolladura.jpg',
    (255, 0, 0): 'style_choque.jpg',
    (0, 255, 0): 'style_grieta.jpg',
    (255, 255, 0): 'style_incendio.jpg',
    (0, 153, 255): 'style_parabrisas.jpg',
    (255, 0, 255): 'style_rayon.jpg',
    (0, 255, 255): 'style_ventana_auto.jpg',
    (200, 200, 200): 'style_ventana_edificio.jpg'
}
```

2.3 Carga y Procesamiento de Máscaras

Las máscaras de daño se encuentran en dos carpetas principales, una para vehículos y otra para edificios.

```
valid_colors = [tuple(color) for color in unique_colors if tuple(color) in
damage_classes]

# Obtener nombre base sin la extensión
   base_name = os.path.splitext(os.path.basename(mask_path))[0] # Esto
elimina la extensión original

for color in valid_colors:
   damage_mask = (mask_original == color).all(axis=-1).astype(np.uint8) *

255 # Crear máscara binaria

# Suavizar bordes
   damage_mask = cv2.GaussianBlur(damage_mask, (15, 15), 0)

# Guarda la máscara en la misma carpeta que la imagen original
   # Limpiar el nombre del daño (quita '.jpg')
   damage_name = damage_classes[color]
   damage_name_clean = damage_name.replace(".jpg", "")
```

3. Generación de Máscaras Binarias

Cada máscara multiclase se procesa para extraer tipos de daño individuales presentes en la imagen:

```
mask_original = cv2.imread(mask_path)
mask_original = cv2.cvtColor(mask_original, cv2.COLOR_BGR2RGB)

unique_colors = np.unique(mask_original.reshape(-1, mask_original.shape[2]),
axis=0)
valid_colors = [tuple(color) for color in unique_colors if tuple(color) in
damage_classes]
```

Luego se generan máscaras binarias por tipo de daño:

```
damage_mask = (mask_original == color).all(axis=-1).astype(np.uint8) * 255
damage_mask = cv2.GaussianBlur(damage_mask, (15, 15), 0)
```

Estas se guardan en la misma carpeta del contenido original:

```
mask_path_output = os.path.join(mask_folder, f"
    {base_name}_{damage_name_clean}.png")
    cv2.imwrite(mask_path_output, damage_mask)
```

4. Transferencia de Estilo Guiada por Máscara

4.1 Modelo VGG19

Se emplea VGG19 para extraer las características de contenido y estilo de la imagen original y del patrón de daño:

```
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
```

4.2 Proceso de Optimización

La transferencia de estilo se realiza mediante un proceso iterativo:

```
for i in range(num_iterations):
    loss = train_step(init_image, model, loss_weights, style_features,
content_features, opt)

if loss < best_loss:
    best_loss = loss
    best_img = init_image.numpy()

if i % 50 == 0:
    print(f"Iteración {i}, pérdida: {loss.numpy():.2f}")</pre>
```

4.3 Fusión con Imagen Original

La imagen generada se mezcla con la original utilizando la máscara binaria como guía:

```
mask_rgb = np.concatenate([mask]*3, axis=-1)
final_blend = (content_img_np * (1 - mask_rgb) + stylized_img_np *
mask_rgb).astype('uint8')
```

5. Simulación de Daños en Vehículos y Edificios

Ejemplo de daño acumulado sobre un vehículo:

```
mask_global = None

# Aplicación acumulada de daños (simula escenarios con múltiples eventos)

mask_global = simular_siniestros(content_path, style_path, mask_path, output_base_path, name_image, mask_acumulada=mask_global)

mask_global = simular_siniestros(content_path2, style_path2, mask_path2, output_base_path, name_image2, mask_acumulada=mask_global)
```

```
mask_global = simular_siniestros(content_path3, style_path3, mask_path3,
output_base_path, name_image3, mask_acumulada=mask_global)
```

Evaluación de severidad del daño:

```
area_danada = np.sum(mask_global)
area_total = mask_global.shape[1] * mask_global.shape[2]
porcentaje_danio = (area_danada / area_total) * 100

if porcentaje_danio < 10:
    print("Nivel de daño: LEVE")
elif porcentaje_danio < 30:
    print("Nivel de daño: MODERADO")
else:
    print("Nivel de daño: SEVERO")</pre>
```

El mismo procedimiento se aplica para imágenes de edificios.

6. Conclusión

Este proyecto demuestra el potencial de Neural Style Transfer (NST) en seguros, generando imágenes sintéticas de siniestros para entrenar modelos de evaluación.

- Amplía datasets sin depender de imágenes reales.
- Cuantifica daños de manera objetiva y reproducible.
- Optimiza la toma de decisiones en aseguradoras.