SpatialNet: A Declarative Resource for Spatial Relations

Morgan Ulinski and Bob Coyne and Julia Hirschberg

Department of Computer Science

Columbia University

New York, NY, USA

{mulinski, coyne, julia}@cs.columbia.edu

Main Work

- This paper introduces SpatialNet, a novel resource which links linguistic expressions to actual spatial configurations.
- SpatialNet is based on FrameNet and VigNet, two resources which use frame semantics to encode lexical
- In this paper, we describe the structureof SpatialNet, with examples from English and German. We also show how SpatialNet can be combined with other existing NLP tools to create a text-to-scene system for a language.

In our first example, English *on* is correctly translated to German *an*:¹

- (1) a. The painting **on** the wall is abstract.
 - b. Correct translation: Das Gemälde an der Mauer/Wand ist abstrakt.
 - Google Translate/Bing Translator (correct): Das Gemälde an der Wand ist abstrakt.

However, the correct translation changes if we are relating a cat to a wall:

- (2) a. The cat **on** the wall is grey.
 - b. Correct translation: Die Katze auf der Mauer ist grau.
 - Google Translate/Bing Translator (incorrect): Die Katze an der Wand ist grau.

The problem here is that the English preposition on describes two different spatial configurations: 'affixed to', in the case of the painting, and 'on top of', in the case of the cat.²

Figure 2: Examples of spatio-graphic primitives: (a) ON-TOP-SURFACE, (b) ON-FRONT-SURFACE, and (c) NEXT-TO and English/German descriptions.

SpatialNet

Spatio graphic primitives (SGPs)

Represent possible graphical (spatial) relations.

Ontology

Represents physical objects and their classification into semantic categories.

Figure 5: Pipeline for text-to-scene generation with SpatialNet

AAAI2020

Self-Attention Enhanced Selective Gate with Entity-Aware Embedding for Distantly Supervised Relation Extraction

```
Yang Li<sup>1</sup>, Guodong Long *1, Tao Shen<sup>1</sup>, Tianyi Zhou<sup>2</sup>, Lina Yao<sup>3</sup>, Huan Huo<sup>1</sup>, Jing Jiang<sup>1</sup>

Centre of Artificial Intelligence, FEIT, University of Technology Sydney

Paul G. Allen School of Computer Science & Engineering, University of Washington

School of Computer Science and Engineering, University of New South Wales

{yang.li-17, tao.shen}@student.uts.edu.au

tianyizh@uw.edu, lina.yao@unsw.edu.au

{guodong.long, huan.huo, jing.jiang}@uts.edu.au
```

Motivation

- Distantly supervised relation extraction intrinsically suffers from noisy labels due to the strong assumption of distant supervision
- Most prior works adopt a selective attention mechanism over sentences in a bag to denoise from wrongly labeled data, which however could be incompetent when there is only one sentence in a bag
- we propose a brand-new light-weight neural framework to address the distantly supervised relation extraction problem and alleviate the defects in previous selective attention framework

Bag consisting of one sentence	Label	Correct
After moving back to <i>New York</i> , <i>Miriam</i> was the victim of a seemingly racially motivated attack	place_lived	True
he faced, walking <i>Bill Mueller</i> and giving up singles to Mark Bellhorn and <i>Johnny Damon</i> .	place_lived	False

Table 1: Two examples of one-sentence bag, which are correctly and wrongly labeled by distant supervision respectively.

NYT dataset

• For NYT dataset (Riedel, Yao, and McCallum2010), up to 80% of its training examples (i.e., bags) are **one-sentence** bags

• From our data inspection, we randomly sample 100 one-sentence bags and find 35% of them is incorrectly labeled

 These results indicate that, in training phrase the selective attention module is enforced to output a single-valued scalar for 80% examples, leading to an illtrained attention module and thus hurting the performance

Model

Entity-Aware Embedding

$$\begin{split} \boldsymbol{\alpha} &= \operatorname{sigmoid}(\lambda \cdot (\boldsymbol{W}^{(g1)}\boldsymbol{X}^{(e)} + \boldsymbol{b}^{(g1)})), \\ \tilde{\boldsymbol{X}}^{(p)} &= \operatorname{tanh}(\boldsymbol{W}^{(g2)}\boldsymbol{X}^{(p)} + \boldsymbol{b}^{(g2)}), \\ \boldsymbol{X} &= \boldsymbol{\alpha} \cdot \boldsymbol{X}^{(e)} + (1 - \boldsymbol{\alpha}) \cdot \tilde{\boldsymbol{X}}^{(p)}, \\ \text{where, } \boldsymbol{X}^{(e)} &= [\boldsymbol{x}_i^{(e)}]_{i=1}^n, \ \forall \boldsymbol{x}_i^{(e)} = [\boldsymbol{v}_i; \boldsymbol{v}^{(h)}; \boldsymbol{v}^{(t)}], \\ &\text{in which } \boldsymbol{x}_i^{(p)} = [\boldsymbol{v}_i; \boldsymbol{r}_i^{e_h}; \boldsymbol{r}_i^{e_t}] \end{split}$$

Self-Attention Mechanism

$$A = W^{(a2)}\sigma(W^{(a1)}X + b^{(a1)}) + b^{(a2)},$$

 $P^{(A)} = \operatorname{softmax}(A),$

$$oldsymbol{u} = \sum oldsymbol{P}^{(A)} \odot oldsymbol{X}$$

PCNN

$$\boldsymbol{H} = 1\text{D-CNN}(\boldsymbol{X}; \boldsymbol{W}^{(c)}, \boldsymbol{b}^{(c)}) \in \mathbb{R}^{d_c \times n}$$

$$s = \tanh([\operatorname{Pool}(\boldsymbol{H}^{(1)}); \operatorname{Pool}(\boldsymbol{H}^{(2)}); \operatorname{Pool}(\boldsymbol{H}^{(3)})]).$$

Selective Gate and Output

$$S = [s_1, \dots, s_m]$$
 $U = [u_1, \dots, u_m]$
$$g_j = \operatorname{sigmoid}(\boldsymbol{W}^{(g1)}\sigma(\boldsymbol{W}^{(g2)}\boldsymbol{u}_j + \boldsymbol{b}^{(g2)}) + \boldsymbol{b}^{(g1)}),$$
 $\forall j = 1, \dots, m,$
$$c = \frac{1}{m} \sum_{j=1}^m g_j \cdot s_j$$
 $p = \operatorname{softmax}(\operatorname{MLP}(\boldsymbol{c})) \in \mathbb{R}^{|C|}.$

Result

Approach		C	ne			T	wo			A	All	
P@N (%)	100	200	300	Mean	100	200	300	Mean	100	200	300	Mean
Comparative Approaches												
CNN+ATT (Lin et al. 2016)	72.0	67.0	59.5	66.2	75.5	69.0	63.3	69.3	74.3	71.5	64.5	70.1
PCNN+ATT (Lin et al. 2016)	73.3	69.2	60.8	67.8	77.2	71.6	66.1	71.6	76.2	73.1	67.4	72.2
PCNN+ATT+SL (Liu et al. 2017)	84.0	75.5	68.3	75.9	86.0	77.0	73.3	78.8	87.0	84.5	77.0	82.8
PCNN+HATT (Han et al. 2018)	84.0	76.0	69.7	76.6	85.0	76.0	72.7	77.9	88.0	79.5	75.3	80.9
PCNN+BAG-ATT (Ye and Ling 2019)	86.8	77.6	73.9	79.4	91.2	79.2	75.4	81.9	91.8	84.0	78.7	84.8
SeG (ours)	94.0	89.0	85.0	89.3	91.0	89.0	87.0	89.0	93.0	90.0	86.0	89.3
Ablations												
SeG w/o Ent	85.0	75.0	67.0	75.6	87.0	79.0	70.0	78.6	85.0	80.0	72.0	79.0
SeG w/o Gate	87.0	85.5	82.7	85.1	89.0	87.0	84.0	86.7	90.0	88.0	85.3	87.7
SeG w/o Gate w/o Self-Attn	86.0	85.0	82.0	84.3	88.0	86.0	83.0	85.7	90.0	86.5	86.0	87.5
SeG w/o ALL	81.0	73.5	67.3	74.0	82.0	75.0	72.3	76.4	81.0	75.0	72.0	76.0
SeG+ATT w/o Gate	89.0	83.5	75.7	82.7	90.0	83.5	77.0	83.5	92.0	82.0	76.7	83.6
SeG+ATT	88.0	81.0	75.0	81.3	87.0	82.5	77.0	82.2	90.0	86.5	81.0	85.8
SeG w/ stack	91.0	88.0	85.0	88.0	91.0	87.0	85.0	87.7	92.0	89.5	86.0	89.1

Result

Approach	AUC
PCNN+HATT	0.42
PCNN+ATT-RA+BAG-ATT	0.42
SeG (ours)	0.51

Table 3: Model comparison regarding the AUC value. The comparative results are reported by Han et al. (2018) and Ye and Ling (2019) respectively.

Approach	AUC	Acc.		
PCNN	0.36	83%		
PCNN+ATT	0.35	78%		
SeG(ours)	0.48	90%		

Table 4: Model that is trained and tested on extracted one sentence bags from NYT dataset comparison regarding the AUC value and Acc., where Acc. is accuracy on non-NA sentences.

Result

Approach	AUC
PCNN+HATT	0.42
PCNN+ATT-RA+BAG-ATT	0.42
SeG (ours)	0.51

Table 3: Model comparison regarding the AUC value. The comparative results are reported by Han et al. (2018) and Ye and Ling (2019) respectively.

Approach	AUC	Acc.		
PCNN	0.36	83%		
PCNN+ATT	0.35	78%		
SeG(ours)	0.48	90%		

Table 4: Model that is trained and tested on extracted one sentence bags from NYT dataset comparison regarding the AUC value and Acc., where Acc. is accuracy on non-NA sentences.

SRL-TASK

- BiLSTM + Target self-attention+Pointer-network
- BiLSTM + Local target attention+Pointer-network