Particle spectrograph

Wave operator and propagator

Source constraints	straints	
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}==0$	1
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	8
$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == \partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}\alpha\beta==0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha}$	
$\sigma_{1}^{\#2}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
$\sigma_1^{\#1}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	3
$\sigma_{2^-}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta}{}_{\delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha \delta}{}_{\delta} == 3 \partial_{\varepsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} +$	
	$3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}_{\delta} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\alpha \delta \varepsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\beta \delta}$	
$\sigma_{2}^{\#1}{}^{\alpha\beta} == 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta} = =$	5
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi \delta}_{\chi} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha})$	
Total constr	Total constraints/gauge generators:	34

ξ αt Lee	$\mathcal{A}_{1}^{\#1}$	Quadratic (free) action	$\iiint (f^{\alpha\beta} \ \iota_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \frac{1}{2} \ \lambda (-4 \ \mathcal{A}_{\alpha \ \theta}^{\ \theta} \ \partial_{i} f^{\alpha \prime} + 4 \ \partial_{i} \mathcal{A}^{\alpha \prime}_{\ \alpha} + 4 \ \mathcal{A}_{i \ \theta}^{\ \theta} \ \partial^{\prime} f^{\alpha}_{\ \alpha} -$	$2 \partial_i f^{\theta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$4\ f^{lpha\prime}\ (\partial_{ert}\mathcal{R}_{lpha}^{\ heta}-\partial_{ heta}\mathcal{R}_{lpha}^{\ heta})$ - $4\ f^{lpha}_{\ lpha}\ \partial_{ heta}\mathcal{R}^{ert heta}_{\ ert}+4\ \mathcal{R}_{lpha heta}$	$\partial^{\theta}f^{\alpha\prime}$ - $2\partial_{\alpha}f_{\ \prime \theta}\partial^{\theta}f^{\alpha\prime}$ - $\partial_{\alpha}f_{\ \theta\prime}\partial^{\theta}f^{\alpha\prime}$ + $\partial_{\prime}f_{\ \alpha\theta}\partial^{\theta}f^{\alpha\prime}$ +	$\partial_{\theta}f_{\alpha_{l}}\partial^{\theta}f^{\alpha_{l}}+\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{l}}))[t,x,y,z]dzdydxdt$	$\mathcal{A}_{1}^{\#1}{}_{\alpha\beta}\mathcal{A}_{1}^{\#2}{}_{\alpha\beta}f_{1}^{\#1}{}_{\alpha\beta}\mathcal{A}_{1}^{\#1}{}_{\alpha}\mathcal{A}_{1}^{\#2}{}_{\alpha}f_{1}^{\#1}{}_{\alpha}f_{1}^{\#2}{}_{\alpha}f_{1}^{\#2}{}_{\alpha}\mathcal{A}_{1}^{\#2}\mathcal{A}_{1}^{\#2}$	0 0 0 0 0 0	
	Quadratic (fre $S ==$ $\iiint (f^{\alpha\beta} \ r_{\alpha i})$ $\mathcal{A}_{1}^{\#1} + r^{\alpha\beta}$ $\mathcal{A}_{1}^{\#1} + r^{\alpha\beta}$	e) actio	$_3+\mathcal{A}^{\alpha\beta\chi}$					$\mathcal{A}_{1}^{\#2}_{+}{}_{lphaeta}$ f		

0

0

0

0

0

 $-2k^2\lambda$

0

0

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

 $k^2 \lambda$

 $\mathcal{A}_{0}^{\#1}$ †

 $\mathcal{R}_0^{\sharp 1}$

0

0

0

0

0

Massive and massless spectra

Unitarity conditions