1.1

设p个核的id分别是0..p-1,给0至(n mod p)-1号分配 $\left\lceil \frac{n}{p} \right\rceil$ 个,n mod p 至 p-1号分配 $\left\lfloor \frac{n}{p} \right\rfloor$ 个则

$$egin{aligned} my_first_i &= egin{cases} id * \lceil rac{n}{p}
ceil & id \leq n \mod p \ id * \lfloor rac{n}{p}
floor + n \mod p & id > n \mod p \end{cases} \ my_last_i &= egin{cases} (id+1) * \lceil rac{n}{p}
ceil & id < n \mod p \ (id+1) * \lfloor rac{n}{p}
floor + n \mod p & id \geq n \mod p \end{cases} \end{aligned}$$

此公式对 n mod p = 0 同样适用

1.6

a) p-1

b) $\lceil \log_2 p \rceil$

n	2	4	8	16	32
方法a	1	3	7	15	31
方法b	1	2	3	4	5

n	64	128	256	512	1024
方法a	63	127	255	511	1023
方法b	6	7	8	9	10

1.7

既是任务并行也是数据并行

对在树中深度相同的节点,可视为给每个核分配了一个子树执行树形累加,是数据并行但每个核所做的任务本质上又是全局求和例子里的累加,和它一样是任务并行

1.9

GPU是训练神经网络的利器。神经网络主要基于简单的矩阵运算,但运算量巨大,一般的CPU难以胜任。GPU最初是用在图形化界面的渲染上,里面有大量能同时进行简单运算的处理单元,用以支持逐像素的渲染。近年来,由于发现了神经网络训练与图形界面渲染运算的相似性,GPU被用到了神经网络领域,使深度学习的算力极大提升,直接导致了近年来深度学习的并喷。在神经网络训练过程中,使用到了各式的并行计算技术。GPU的多个处理单元可认为在执行数据并行。大多数情况下,训练集很大,无法一次性读入到内存中,因此会采用GPU执行训练,CPU读取新的数据的方法,此时CPU与GPU可看做任务并行。我近期在做的一个CV相关的项目,所优化的指标只能使用

matlab在CPU上计算,对一张图片进行指标计算要花费近6分钟。为了更快的获得指标的值,我们选择了只对极少量的图片进行指标计算,且使用多台机器同时进行,这是十分典型的数据并行。在进行指标计算的同时,还在GPU上继续进行模型的迭代,这时CPU与GPU之间又是一个任务并行。