Mathematics Trial 2010

Solutions

Question 1

(a)
$$e^5 - 3\log_e 5 = 143.58...$$

= 140 (2 sig. fig.)

(b)
$$64 - x^3 = 4^3 - x^3$$

= $(4 - x)(16 + 4x + x^2)$

(c)
$$\int \left(\frac{1}{4x} + e^{2x}\right) dx = \frac{1}{4} \ln x + \frac{1}{2} e^{2x} + C$$

(d)
$$\frac{x}{x-2} - \frac{8}{x^2 - 4} = \frac{x}{x-2} - \frac{8}{(x-2)(x+2)}$$
$$= \frac{x(x+2) - 8}{(x-2)(x+2)}$$
$$= \frac{x^2 + 2x - 8}{(x-2)(x+2)}$$
$$= \frac{(x-2)(x+4)}{(x-2)(x+2)}$$
$$= \frac{x+4}{x+2}$$

(e)
$$|4+x| \le 7$$

 $\therefore |x-(-4)| \le 7$
 $-11 \quad -4 \quad 3 \quad x$
 $\therefore -11 \le x \le 3$

(f)
$$y = x^2 + 4x - 3$$
becomes $y = (x+2)^2 - 7$

$$\therefore \text{ vertex is } (-2, -7)$$

Alternatively:

Axis of symmetry is at
$$x = \frac{-4}{2} = -2$$

Then $y = (-2)^2 + 4(-2) - 3 = -7$
∴ vertex is $(-2, -7)$

Question 2

(a)
$$y = \log_e (2x-1)$$

 $y' = \frac{2}{2x-1}$
At $x = 1$: $y' = \frac{2}{2(1)-1} = 2$
and $y = \ln(2(1)-1)$
 $= \ln 1$
 $= 0$

$$\therefore \text{ tangent is } y-0=2(x-1)$$
$$y=2x-2$$

(b)
$$\frac{d}{dx}\sqrt{5 + \log_e x} = \frac{d}{dx} (5 + \log_e x)^{\frac{1}{2}}$$
$$= \frac{1}{2} (5 + \log_e x)^{-\frac{1}{2}} (\frac{1}{x})$$
$$= \frac{1}{2x\sqrt{5 + \log_e x}}$$

(c)
$$y = \frac{1+\sin x}{\cos x}$$
$$y' = \frac{\cos x(\cos x) - (1+\sin x)(-\sin x)}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1+\sin x}{1-\sin^2 x}$$
$$= \frac{1+\sin x}{(1-\sin x)(1+\sin x)}$$
$$= \frac{1}{1-\sin x}$$

(d) (i)
$$\int 6e^{\frac{x}{2}} dx = 12 \int \frac{1}{2} e^{\frac{x}{2}} dx$$
$$= 12e^{\frac{x}{2}} + C$$
(ii)
$$\int \frac{x}{1 - x^2} dx = -\frac{1}{2} \int \frac{-2x}{1 - x^2} dx$$
$$= -\frac{1}{2} \ln(1 - x^2) + C$$

(e)
$$\int_{0}^{\frac{\pi}{6}} \left(1 - \sec^{2} 2x\right) dx = \left[x - \frac{1}{2} \tan 2x\right]_{0}^{\frac{\pi}{6}}$$
$$= \frac{\pi}{6} - \frac{\tan \frac{\pi}{3}}{2} - \left(0 - \frac{\tan 0}{2}\right)$$
$$= \frac{\pi}{6} - \frac{\sqrt{3}}{2}$$

(f)
$$4\sin^2\theta - 3 = 0 \text{ for } -\pi \le \theta \le \pi$$
$$\sin^2\theta = \frac{3}{4}$$
$$\sin\theta = \pm \frac{\sqrt{3}}{2}$$
$$\theta = \frac{\pi}{3}, \pi - \frac{\pi}{3}, -\frac{\pi}{3}, -\pi + \frac{\pi}{3}$$
$$= \frac{\pi}{3}, \frac{2\pi}{3}, -\frac{\pi}{3}, -\frac{2\pi}{3}$$

(a)
$$\sum_{n=5}^{11} (2n-5) = 5+7+9+11+13+15+17$$
$$= 77$$

(i)
$$\cos \angle PQR = \frac{8^2 + 5^2 - 7^2}{2(8)(5)}$$
 (cos rule)
= $\frac{40}{80}$
= $\frac{1}{2}$

$$\therefore \angle PQR = 60^{\circ}$$

(ii)
$$A = \frac{1}{2} (8) (5) \sin 60^{\circ}$$
$$= 20 \times \frac{\sqrt{3}}{2}$$
$$= 10\sqrt{3}$$

 \therefore the area of $\triangle PQR$ is $10\sqrt{3}$ cm²

(i)
$$m_{AC} = \frac{2-0}{10-4}$$

= $\frac{1}{3}$

(ii)
$$D = (2,6)$$

(iii)
$$l: y-6 = \frac{1}{3}(x-2)$$
$$3y-18 = x-2$$
$$x-3y+16 = 0$$

(iv)
$$AC \parallel DM$$
 (same gradient)

$$\therefore \frac{AD}{DB} = \frac{CM}{MB}$$
 (parallel lines preserve ratios)

$$1 = \frac{CM}{MB}$$

$$CM = MB$$

 $\therefore M$ is the midpoint of CB

(v) Centre is
$$(5,7)$$

$$d_{MB} = \sqrt{5^2 + 5^2}$$

$$= \sqrt{50}$$

$$= 5\sqrt{2}$$

$$\therefore \text{ the circle is } (x-5)^2 + (y-7)^2 = 50$$

(vi) Substitute (4,0) into

$$(x-5)^2 + (y-7)^2 = 50$$

 $(4-5)^2 + (0-7)^2 = 1 + 49$
= 50
The point *A* does lie on the circle

(a)
$$x^{2} - 8x + 5 = 0$$

$$\therefore \alpha + \beta = 8 \text{ and } \alpha\beta = 5$$

$$(\alpha - \beta)^{2} = \alpha^{2} - 2\alpha\beta + \beta^{2}$$

$$= \alpha^{2} + \beta^{2} - 2\alpha\beta$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta - 2\alpha\beta$$

$$= (\alpha + \beta)^{2} - 4\alpha\beta$$

$$= 8^{2} - 4(5)$$

$$= 44$$

- (ii) In $\triangle ABC$ and $\triangle ADB$ 1. $\angle A$ is common 2. $\angle ACB = \angle ABD$ (given) $\therefore \triangle ABC \parallel \triangle ADB$ (equiangular)
- (iii) $\frac{AB}{AD} = \frac{BC}{DB} = \frac{AC}{AB}$ (matching sides of similar Δ 's) $\frac{12}{9} = \frac{AC}{12}$ $AC = \frac{12 \times 12}{9}$ = 16
- (c) (i) $P(2 \text{ symbols}) = \frac{3}{27} = \frac{1}{9}$

(β)(1)P(exactly 1 star)
= P(SC)+P(CS)+P(CB)+P(BC)
=
$$\frac{17}{27} \times \frac{7}{26} + \frac{7}{27} \times \frac{17}{26} + \frac{7}{27} \times \frac{3}{26} + \frac{3}{27} \times \frac{7}{26}$$

= $\frac{140}{351}$

(2) P(2stars)
= P(SS)+P(SB)+P(BS)+P(BB)
=
$$\frac{17}{27} \times \frac{16}{26} + \frac{17}{27} \times \frac{3}{26} + \frac{3}{27} \times \frac{17}{26} + \frac{3}{27} \times \frac{2}{26}$$

= $\frac{190}{351}$

Question 5

(a) (i) Each face has one less orange than in the row below. There are 4 faces. ∴ there are 4 fewer oranges than the row on which it rests.

(ii)
$$56 + 52 + 48 + \dots + 4$$

 $n = ?$ $T_n = a + (n-1)d$
 $a = 56$
 $T_n = 4$ $4 = 56 + (n-1)(-4)$
 $d = -4$ $4 = 56$
 $4 = 56$
 $4 = 56$
 $4 = 56$

: there are 14 rows

(iii)
$$S_n = \frac{n}{2} [a+l]+1$$
$$= \frac{14}{2} [56+4]+1$$
$$= 421$$

∴ he will use 421 oranges

(ii)
$$A = \frac{1}{2}bh - \frac{1}{2}r^2\theta \quad \text{where } \theta = \frac{\pi}{3}$$

$$A = \frac{1}{2}(6)(3\sqrt{3}) - \frac{1}{2}(3\sqrt{3})^2(\frac{\pi}{3})$$

$$= 9\sqrt{3} - \frac{9\pi}{2}$$

$$\therefore \text{ the area is } \left(9\sqrt{3} - \frac{9\pi}{2}\right) \text{ cm}^2$$

(c) (i) For
$$5x^2 - 2kx + k$$

$$\Delta = (-2k)^2 - 4(5)(k)$$

$$= 4k^2 - 20k$$

(ii) For real roots:
$$\Delta \ge 0$$

 $4k^2 - 20k \ge 0$
 $4k(k-5) \ge 0$
 $k \le 0$ or $k \ge 5$

(a)
$$2 \ln x = \ln (5+4x)$$
$$2 \ln x = \ln (5+4x)$$
$$\ln x^{2} = \ln (5+4x)$$
$$x^{2} = 5+4x$$
$$x^{2} - 4x - 5 = 0$$
$$(x-5)(x+1) = 0$$
$$x = -1, 5$$

But x > 0 and 4x + 5 > 0 for the logs to exist

 \therefore x = 5 is the only solution

(b)
$$A = \int_{-1}^{4} \left[x + 1 - \left(x^2 - 2x - 3 \right) \right] dx$$
$$= \int_{-1}^{4} \left(3x + 4 - x^2 \right) dx$$
$$= \left[\frac{3x^2}{2} - \frac{x^3}{3} + 4x \right]_{-1}^{4}$$
$$= 24 - \frac{64}{3} + 16 - \left(\frac{3}{2} + \frac{1}{3} - 4 \right)$$
$$= 20 \frac{5}{6}$$
$$\therefore \text{ the area is } 20 \frac{5}{6} \text{ unit}^2$$

(b) For
$$y = e^{3x}$$
, $y' = 3e^{3x}$
For $y = 6x$, $m = 6$
 $\therefore 3e^{3x} = 6$
 $e^{3x} = 2$
 $3x = \ln 2$
 $x = \frac{1}{3} \ln 2$

(c) (i) and (ii)

(iii) There are 5 solutions because the curves intersect in 5 different points.

(i)
$$\int_{0}^{5} f(x) dx = -\frac{1}{2} + 2 + 4$$
$$= 5\frac{1}{2}$$

(ii) If
$$\int_{a}^{5} f(x)dx = 4$$
 we need values of a for which the signed area gives a result of 4. This occurs when $a = 3$ or -2

(b) (i)
$$\frac{d(\sin^2 x - \cos 4x)}{dx}$$

$$= 2\sin x \cos x + 4\sin 4x$$
(ii)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x \cos x + 2\sin 4x) dx$$

$$= \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2\sin x \cos x + 4\sin 4x) dx$$

$$= \frac{1}{2} \left[\sin^2 x - \cos 4x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \left[\sin^2 \frac{\pi}{2} - \cos 2\pi - \left(\sin^2 \frac{\pi}{4} - \cos \pi \right) \right]$$

$$= \frac{1}{2} \left[1 - 1 - \left(\frac{1}{2} - (-1) \right) \right]$$

$$= -\frac{3}{4}$$

(c) (i) 8% pa = 2% every
$$\frac{1}{4}$$
 year;
investment periods = $4 \times 15 - 1 = 59$
(no interest for the 1^{st} 3 months)
$$A = 500(1 + 0.02)^{59}$$
$$= 1608.348426$$
$$\therefore \text{ The amount} = \$1608.35$$

(ii)(α) 1st payment grows to 500(1.02)³ 2nd payment grows to 500(1.02)² 3rd payment grows to 500(1.02)¹ Last payment remains as 500 \therefore Value on the day after 1st birthday is

$$A = 500(1.02)^{3} + 500(1.02)^{2} + 500(1.02)^{1} + 500$$
$$= 500[1 + 1.02 + 1.02^{2} + 1.02^{3}]$$

(β)
$$1^{st}$$
 payment now grows to $500(1.02)^{59}$
 $A = 500(1.02)^{59} + 500(1.02)^{58} + ... + 500$
 $= 500[1+1.02+...+1.02^{58}+1.02^{59}]$
 $= 500[\frac{a(r^n-1)}{r-1}]$ where $a = 1$; $r = 1.02$; $n = 60$
 $= 500[\frac{1((1.02)^{60}-1)}{1.02-1}]$
 $= 57025.769...$

:. Total in the account on Emily's 16th birthday is \$57025.77.

- (iii) During the year, interest is paid 4 times $A = 57025.76971 \times (1.02)^4$ = 61726.527...
 - \therefore Amount = \$61726.53 (to nearest cent)

If she withdraws \$4 000, the account will continue to grow.

If she withdraws \$5 000, the money will eventually run out.

(a) (i)
$$f(x) = x^3 - x^2 - 5x + 1$$

 $f'(x) = 3x^2 - 2x - 5$
 $f''(x) = 6x - 2$

Stat points if
$$f'(x) = 0$$

i.e.
$$3x^2 - 2x - 5 = 0$$

 $(3x-5)(x+1) = 0$

$$\therefore x = -1 \text{ or } \frac{5}{3}$$

If
$$x = -1$$
: $f''(-1) = 6(-1) - 2$
 < 0
 $f(-1) = (-1)^3 - (-1)^2 - 5(-1) + 1$
 $= 4$

 \therefore a maximum at (-1,4)

If
$$x = \frac{5}{3}$$
: $f''(\frac{5}{3}) = 6(\frac{5}{3}) - 2$
> 0
$$f(\frac{5}{3}) = (\frac{5}{3})^3 - (\frac{5}{3})^2 - 5(\frac{5}{3}) + 1$$
$$= -5\frac{13}{27}$$

 \therefore a minimum at $\left(1\frac{2}{3}, -5\frac{13}{27}\right)$

(ii) Points of inflexion when f''(x) = 0 and concavity changes i.e. 6x - 2 = 0

$$x = \frac{1}{3}$$

х	$\frac{1}{3}^{-}$	$\frac{1}{3}$	$\frac{1}{3}^{+}$
f''(x)	-	0	+

If
$$x = \frac{1}{3}$$
: $f(\frac{1}{3}) = (\frac{1}{3})^3 - (\frac{1}{3})^2 - 5(\frac{1}{3}) + 1$
= $-\frac{20}{27}$

 \therefore an inflection at $\left(\frac{1}{3}, -\frac{20}{27}\right)$

(iv) y = f(x) decreasing but concave up when $\frac{1}{3} < x < \frac{5}{3}$

(b) (i)
$$y = e^{1-x^2}$$

 $\log_e y = 1 - x^2$
 $\therefore x^2 = 1 - \log_e y$

(ii)
$$V = \pi \int_{1}^{e} (1 - \ln y) dy$$

(iii) $y \qquad 1 \qquad \frac{1+e}{2} \qquad e$ $1-\ln y \qquad 1-\ln 1 \qquad 1-\ln\left(\frac{1+e}{2}\right) \qquad 1-\ln e$ = 0

$$V = \pi \int_{1}^{e} (1 - \ln y) dy$$

$$\therefore \pi \frac{(e - 1)}{6} \left[1 + 4 \left(1 - \ln \left(\frac{1 + e}{2} \right) + 0 \right) \right]$$

$$= 2.2668...$$

 \therefore the volume is 2.3 unit³ (2 sig. fig.)

(a) (i)
$$1000\,000 + 1000\,000 (0.8) + 1000\,000 (0.8)^2 + ...$$
 to 7 prizes 7^{th} prize = $$1000\,000 (0.8)^6$ = $$262\,144$

(ii)
$$20^{th}$$
 prize = \$262144 - 13 × \$20000
= \$2144

(iii) Total =
$$\frac{a(1-r^n)}{\frac{1-r}{\text{for the first 7 terms}}} + \underbrace{\frac{N}{2}[A+L]}_{\text{For the next 13 terms}}$$
$$= \frac{\$1000000[1-(0.8)^7]}{1-0.8} + \frac{13}{2}[\$242144 + \$2144]$$
$$= \$5539296$$

(b) Let P(F second test when passed first test) = xand P(F second test when failed first test) = y

$$P(\text{at least one } P) = P(PP) + P(PF) + P(FP)$$

= $1 - P(FF)$
= 97%

$$\therefore P(FF) = 3\%$$

$$\therefore 15\% \times y = 3\%$$

$$y = \frac{3\%}{15\%}$$

$$= 20\%$$

$$P(P \text{ only one test}) = P(PF) + P(FP)$$

= $85\% \times x + 15\% \times 20\%$
= $0.85x + 0.03$
 $\therefore 17.1\% = 85\% \times x + 15\% \times 20\%$
 $0.171 = 0.85x + 0.03$
 $x = 0.06$
= 6%

$$P(\text{passes first and fails second}) = P(PF)$$

= 85%×6%
= 5.1%

(c)

(i) In $\triangle ADC : CD = b \sin A$ In $\triangle CDB : CD = a \sin B$ $\therefore b \sin A = a \sin B$

(ii) In $\triangle ADC$: $AD = b \cos A$ In $\triangle CDB$: $DB = a \cos B$ c = AB = AD + DB $= a \cos B + b \cos A$

(iii) $c = a \cos B + b \cos A \Rightarrow c^2 = (a \cos B + b \cos A)^2$ But $c^2 = a^2 \cos^2 B + 2ab \cos A \cos B + b^2 \cos^2 A$ $\therefore a^2 \cos^2 B + 2ab \cos A \cos B + b^2 \cos^2 A = 4ab \cos A \cos B$ $a^2 \cos^2 B + 2ab \cos A \cos B + b^2 \cos^2 A - 4ab \cos A \cos B = 0$ $a^2 \cos^2 B - 2ab \cos A \cos B + b^2 \cos^2 A = 0$ $(a \cos B - b \cos A)^2 = 0$ $\therefore a \cos B - b \cos A = 0$ $\therefore a \cos B = b \cos A$ * $\therefore AD = DB$ $\therefore \Delta ABC$ isosceles [CD perpendicular bisector of AB] $\therefore a = b$

Alternatively:

 $a\cos B = b\cos A$ from *

 $a \sin B = b \sin A$ from (i)

 $\therefore \frac{a \sin B}{a \cos B} = \frac{b \sin A}{b \cos A}$

 \therefore tan $B = \tan A$

but both angles are acute as they are in $\triangle ABC$

 $\therefore A = B$

 $\therefore a = b$ (opposite equal angles in $\triangle ABC$)

(a) The graph below represents y = f'(x). Specific x-values a, b, c, d and e are as indicated in the diagram.

- (i) The graph of y = f(x) have a stationary point when x = a or c.
- (ii) The graph of y = f(x) is increasing when x < a or x > c.
- (iii) The graph of y = f(x) is concave up when f''(x) > 0 i.e. when the gradient graph is increasing. This is when b < x < d.
- (iv) As $x \to \infty$ the graph of y = f(x) approaches a horizontal tangent.

(i) In $\triangle OBE : OB^2 = BE^2 + OE^2$ (Pythagoras)

$$\therefore 10^2 = BE^2 + \left(\frac{x}{2}\right)^2$$

$$BE^2 = 100 - \frac{x^2}{4}$$

$$= \frac{1}{4} \left(400 - x^2\right)$$

$$\therefore BE = \frac{1}{2} \sqrt{400 - x^2} \qquad \text{(length positive)}$$

(ii)
$$A = \frac{1}{2}h[a+b]$$
$$A = \frac{1}{2}(BE)[BC + AD]$$
$$= \frac{1}{2} \cdot \frac{1}{2} \sqrt{400 - x^2} [x+20]$$
$$= \frac{1}{4}(x+20)\sqrt{400 - x^2}$$

(iii)
$$A = \frac{1}{4}(x+20)\sqrt{400-x^2}$$

$$A = \frac{1}{4}(x+20)(400-x^2)^{\frac{1}{2}}$$

$$A' = \frac{1}{4}(x+20)\cdot\frac{1}{2}(400-x^2)^{-\frac{1}{2}}(-2x)+(400-x^2)^{\frac{1}{2}}\cdot\frac{1}{4}$$

$$= -\frac{x}{4}(x+20)(400-x^2)^{-\frac{1}{2}}+\frac{1}{4}(400-x^2)^{\frac{1}{2}}$$

Max/min occurs when A' = 0

i.e.
$$-\frac{x}{4}(x+20)(400-x^2)^{-\frac{1}{2}} + \frac{1}{4}(400-x^2)^{\frac{1}{2}} = 0$$

$$x(x+20)(400-x^{2})^{-\frac{1}{2}} - (400-x^{2})^{\frac{1}{2}} = 0$$

$$\frac{x(x+20)}{(400-x^{2})^{\frac{1}{2}}} - (400-x^{2})^{\frac{1}{2}} = 0$$

$$x(x+20) - (400-x^{2}) = 0$$

$$x^{2} + 20x - 400 + x^{2} = 0$$

$$2x^{2} + 20x - 400 = 0$$

$$x^{2} + 10x - 200 = 0$$

$$(x-10)(x+20) = 0$$

$$x = 10, -20$$
But $x > 0$ $\therefore x = 10$

х	10 ⁻	10	10+
A'	+	0	_

:. the maximum occurs when x = 10i.e. when BC = 10 cm

Alternatively:

$$A' = -\frac{x}{4}(x+20)(400-x^2)^{-\frac{1}{2}} + \frac{1}{4}(400-x^2)^{\frac{1}{2}}$$

$$= -\frac{1}{4}(400-x^2)^{-\frac{1}{2}} \left[x^2 + 20x + 400 - x^2\right]$$

$$= -\frac{1}{4}(400-x^2)^{-\frac{1}{2}} \left[20x + 400\right]$$

$$= -(400-x^2)^{-\frac{1}{2}} \left[5\right] + \left(5x + 100\right) \left[\frac{1}{2}(400-x^2)^{-\frac{3}{2}}(-2x)\right]$$

$$= -5\left(400-x^2\right)^{-\frac{1}{2}} - x\left(5x + 100\right)\left(400-x^2\right)^{-\frac{3}{2}}$$

If x = 10:

$$A'' = -5(400 - 10^{2})^{-\frac{1}{2}} - 10(50 + 100)(400 - 10^{2})^{-\frac{3}{2}}$$
<0

:. the maximum occurs when x = 10 i.e. when BC = 10 cm

End of solutions