> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBRA

compleasm Solution

BRAKER3 & IsoSeq

StringTie Option

Data

Availability

Enhancing BRAKER3 for Eukaryotic Genome Annotation: Improved Transcript Selection with TSEBRA and a Step Towards Isoseq Integration

Plant and Animal Genome 31

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Contact: katharina.hoff@uni-greifswald.de Twitter: @katharina hoff

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBRA compleasm Solution

BRAKER3 & IsoSeq

StringTie Option
Data
Results

Availability

Contents

- 1 Gene Prediction
- 2 BRAKER
- 3 BUSCO Drop
 TSEBRA

compleasm Solution

4 BRAKER3 & IsoSeq

StringTie Option Data Results

5 Availability

Structural Genome Annotation Problem

Input

- genome assembly
- extrinsic evidence, e.g. from RNA-Seq & protein database

Output

protein-coding genes: exon-intron structures (.gff)

Example (from Chr I in *C. elegans*)

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

compleasm Solution

BRAKER3 & IsoSeq

StringTie Option Data

Results Availability

BRAKER: Using RNA-Seq and/or Protein Evidence with GeneMark-ET/EP/ETP, AUGUSTUS and TSEBRA

- BRAKER1: RNA-Seq 1316 citations
- BRAKER2: Proteins DB 728 citations
- BRAKER3: RNA-seq & Protein DB, 15 citations
- 5.3k docker pulls (since 2023)

GeneMark-ETP: **PO0709**Talk Tuesday, 10:50, Pacific A

GeneMark-ETP: Bruna et al. (2023) AUGUSTUS: Stanke et al. (2008) TSEBRA: Gabriel et al. (2021) BRAKER1: Hoff et al. (2016, 2019) BRAKER2: Bruna et al. (2021) BRAKER3: Gabriel et al. (2032)

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

TSERRA

compleasm

Solution

BRAKER3 & IsoSeq

StringTie Option
Data

Availability

Measuring Accuracy of Genome Annotation Developer Approach

Experiments

Accuracy assessment using genome-wide predictions:

Species	Genome Size (Mb)	# Genes in Annotation
Arabidopsis thaliana (thale cress)	119	27,444
Bombus terrestris (bumble bee)	249	10,581
Caenorhabditis elegans (nematode)	100	20,172
Danio rerio (zebrafish)	1,345	25,611
Drosophila melanogaster (fruit fly)	137	13,928
Gallus gallus (chicken)	1,040	17,279
Medicago truncatula (barrelclover)	420	44,464
Mus musculus (mouse)	2,650	22,378
Parasteatoda tepidariorium (house spider)	1,445	18,602
Populus trichocarpa (poppy)	389	34,488
Solanum lycopersicum (tomato)	772	33,562

Accuracy metrics

Precision: Percentage of correctly found genes/transcripts/exons in the **predicted gene set**.

Recall: Percentage of correctly found genes/transcripts/exons in the reference annotation.

F1-Score: 2 · Recall · Precision

Recall + Precision

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBRA compleasm

Solution

BRAKER3 & IsoSeq StringTie Option

Results Availability

Measuring Accuracy of Genome Annotation Developer Approach

Gabriel et al. (2023), adapted from Figure 2, https://doi.org/10.1101/2023.06.10.544449

Average accuracy for the genomes of 11 different species with short-read RNA-Seq libraries and protein databases (order excluded)

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster P00719

Gene Prediction

BRAKER

BUSCO Drop

TSEBBA

compleasm

Solution

BRAKER3 & IsoSeq StringTie Option Data Results

Availability

Measuring Accuracy of Genome Annotation User Approach

Example: Pycnopodia helianthoides, Schiebelhut et al. (2023)

BUSCO: Waterhouse et al. (2018)

Solution

BRAKER3 & IsoSeq

StringTie Option
Data
Results

Availability

Gabriel et al. BMC Bioinformatics (2021) 22:566 https://doi.org/10.1186/s12859-021-04482-0

BMC Bioinformatics

SOFTWARE

Open Access

TSEBRA: transcript selector for BRAKER

Lars Gabriel 1,2, Katharina J. Hoff 1,2, Tomáš Brůna 3, Mark Borodovsky 4,5 and Mario Stanke 1,2 o

- combine several gene sets
- increase accuracy
- 68 citations (Google Scholar)
- may discard BUSCOs

BUSCO: Benchmarking Universal Single Copy Orthologs

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBBA

compleasm

Solution

Solution

BRAKER3 & IsoSeq StringTie Option

String Lie Option

Results

Availability

compleasm

Bioinformatics, 2023, 39(10), btad595 https://doi.org/10.1093/bioinformatics/btad595 Advance Access Publication Date: 27 September 2023 Applications Note

Genome analysis

compleasm: a faster and more accurate reimplementation of BUSCO

Neng Huang (and Heng Li 1,2,*

- originally developed for BUSCO detection in genomes
- recently extended to BUSCO detection in proteins
- ⇒ This can solve our BRAKER-BUSCO problem

Improving BRAKER with Compleasm

Scenario 1: Good Evidence

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBRA

compleasm

BRAKER3 & IsoSeq StringTie Option

Results Availability

Improving BRAKER with Compleasm

Scenario 1: Good Evidence

Input data see Gabriel et al. (2023)

https://doi.org/10.1101/2023.06.10.544449

Improving BRAKER with Compleasm

Scenario 2: Poor Evidence

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop TSEBRA compleasm

BRAKER3 & IsoSeq StringTie Option Data

Availability

Improving BRAKER with Compleasm

Scenario 2: Poor Evidence

Input data see Schiebelhut et al. (2023)

https://doi.org/10.1093/jhered/esad054

	AUGUSTUS	BRAKER3 no compleasm	BRAKER3 with compleasm
#Genes	24,184	15,598	25,601
#Transcripts	26,581	16,473	30,626
Single:Mult ratio	0.29	0.2	0.32

Related seastar Asterias rubens has 19,938 genes

Neng Huang. Tomáš Brůna. Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop TSFBBA

compleasm

Solution

BRAKER3 & IsoSeq

StringTie Option

Data Regulte

Availability

BRAKER3 with IsoSeq Data

INPUT

GeneMark-ETF

PO0709

Tue 10:50 Pacific A

GeneMark-ETP:

et al. (2015

TSEBRA

AUGUSTUS

OUTPUI

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

DNAKEN

BUSCO Drop

TSEBRA compleasm

Solution

BRAKER3 & IsoSeq StringTie Option

Data

Results

Availability

Data for Experiment: Arabidopsis thaliana

Goal

Comparison of BRAKER3 with short reads (SR) & proteins against BRAKER3 with long reads (LR) & proteins

Genome, reference annotation, protein database (order excluded), & short read RNA-Seq data, see Gabriel *et al.* (2023), IsoSeq reads from

Zhang et al. Genome Biology (2022) 23:149 https://doi.org/10.1186/s13059-022-02711-0

Genome Biology

RESEARCH

Open Access

A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of lso-seq analysis

- 11 GB
- 7,604,981 reads
- 96% alignment rate to genome
- spliced alignment IsoSeq to genome with minimap2

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

Gene Fredictio

BRAKER

BUSCO Drop

compleasm Solution

BRAKER3 & IsoSeq

StringTie Option

Results

Availability

Accuracy Results

Arabidopsis thaliana

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster P00719

Gene Prediction

BRAKER

BUSCO Drop TSEBRA compleasm

BRAKER3 & IsoSeq StringTie Option Data

Results

Availability

GitHub

https://github.com/Gaius-Augustus/BRAKER

Docker/Singularity

```
singularity build braker.sif \
   docker://teambraker/braker:latest
```

singularity exec braker.sif braker.pl [OPTIONS]

→ Running BRAKER3 with IsoSeq instructions at PO0719

Licenses

- BRAKER: Artistic License
- most dependencies: open source software licenses
- GeneMark-ETP: CC BY-NC-SA

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop TSEBRA compleasm

BRAKER3 & IsoSeq StringTie Option

StringTie Option
Data

Availabilit

Summary

- BRAKER is a highly accurate & fully automatic pipeline
- new: maximizing BUSCOs with compleasm & TSEBRA
- new: IsoSeq as input

BRAKER is Available for Download at

• https://github.com/Gaius-Augustus

Neng Huang. Tomáš Brůna. Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop TSFBBA compleasm Solution

BRAKER3 & IsoSeq StringTie Option Data

Results

Acknowledgements

Tomas Bruna

Simone Lange Hannah Thierfeldt Anica Hoppe

Lars Gabriel

Alexandre Lomsadze

Mario Stanke

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

Gene i redic

BRAKER

BUSCO Drop TSEBRA compleasm

compleasm Solution

BRAKER3 & IsoSeq

StringTie Option Data Results

Availabilit

Thank you for your attention!

Talk on genome annotation pipeline GALBA on Tue 10:30 Pacific A, PO0711

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBRA compleasm Solution

BRAKER3 & IsoSeq

StringTie Option
Data
Results

Availabilit

References

- Gabriel et al. (2021) "TSEBRA: transcript selector for BRAKER"
- Bruna et al. (2021) "BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database"
- Hoff et al. (2016) "BRAKER1: unsupervised RNAseq-based genome annotation with GeneMark-ET and AUGUSTUS."
- Hoff et al. (2019) "Whole-genome annotation with BRAKER."
- Stanke et al. (2008) "Using native and syntenically mapped cDNA alignments to improve de novo gene finding."
- Bruna et al. (2023) "GeneMark-ETP: Automatic Gene Finding in Eukaryotic Genomes in Consistency with Extrinsic Data"
- Gabriel et al. (2023) "BRAKER3: Fully automated genome annotation using RNA-Seq and protein evidence with GeneMark-ETP. AUGUSTUS and TSEBRA"
- Schiebelhut et al. (2023) "A reference genome for ecological restoration of the sunflower sea star, Pycnopodia helianthoides"
- Waterhouse et al. (2018) "BUSCO applications from quality assessments to gene prediction and phylogenomics"
- Huang & Li (2023) "compleasm: a faster and more accurate reimplementation of BUSCO"
- Pertea et al. (2015) "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads"
- Tang et al. (2015) "Identification of protein coding regions in RNA transcripts"
- Zhang et al. (2022) "A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis".
- Li (2018) "Minimap2: pairwise alignment for nucleotide sequences"

Appendix Slides

Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop TSEBRA compleasm

Solution

BRAKER3 & IsoSeq

StringTie Option Data

Results

> Neng Huang, Tomáš Brůna, Katharina J. Hoff

Poster PO0719

Gene Prediction

BRAKER

BUSCO Drop

TSEBBA

compleasm

Solution

BRAKER3 & IsoSeq

StringTie Option
Data
Results

Availabil

BUSCO Scores

StringTie assessment with BUSCO, protein assessments with compleasm