

UNIVERSIDAD DE GUADALAJARA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Reconfigurables.

Flip-Flops J-K, D y T Con Entradas Asíncronas.

Alumno: Meneses López Arisai Ricardo. Docente: María Patricia Ventura Núñez.

11 de octubre de 2019

${\rm \acute{I}ndice}$

1.	Objetivo Del Proyecto	1
2.	Marco Teórico	2
3.	Desarrollo	4
	3.1. Planteamiento Del Problema	4
	3.2. Métodos De Diseño	
	3.3. Obtención De Ecuaciones	
	3.4. Simulación	
	3.5. Protoboard	9
4.	Conclusiones	11
5.	Bibliografía	11

Materiales

Componentes.

- · Protoboard.
- \cdot Cable Para Proto.
- \cdot Pinzas De Corte/Agarre.
- \cdot Diodos LED
- · Fuente De Voltaje $(5\mathbf{V})$.
- · Resistencias 1k Ω y 220 Ω .

Circuitos Integrados.

- · LM555.
- · CD4027.

Software.

- \cdot Boole-Deusto.
- \cdot Proteus Design Suite.

1. Objetivo Del Proyecto

· Realizar el sistema correspondiente a cada tipo de flip-flop (J-K, D y T) de entradas asíncronas con el uso de un Clock Astable.

2. Marco Teórico

Figura 1: CD4027 - Configuración.

Figura 2: Flip-Flop Tipo J-K - Diagrama.

Figura 3: Flip-Flop Tipo D
 - Diagrama.

Figura 4: Flip-Flop Tipo T - Diagrama.

3. Desarrollo

3.1. Planteamiento Del Problema

Se tienen sistemas de Flip-Flops síncronos con entradas asíncronas.

Se tiene que comprobar el funcionamiento de cada sistema de acuerdo a su correspondiente tabla de verdad.

 Q^t respresenta el estado actual y Q^{t+1} representa el estado siguiente.

S se conoce como Set y pone en 1 a Q^t , \mathbf{R} es reset o clear y es inversamente a \mathbf{S} .

El circuito integrado CD4027 trabaja en nivel alto, cuando el nivel es bajo el valor actual se sostiene. Cada CD4027 contiene 2 flip-flops tipo J-K.

3.2. Métodos De Diseño

C_k	J	K	Q^t	Q^{t+1}
0	0	0	0	0
$0 \\ 0$	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Tabla 1: Flip-Flop J-K Activo En Nivel Alto.

D	Q^t	Q^{t+1}
0	0	0
0	1	0
1	0	1
1	1	1

Tabla 2: Flip-Flop tipo D $(Q^{t+1} = D)$.

T	Q^t	Q^{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

Tabla 3: Flip-Flop tipo T $(Q^{t+1} = T \oplus Q^t).$

Valor Actual	Valor Próximo		
Q^t	Q^{t+1}	J	K
0	0	0	X
1	0	X	1
0	1	1	X
1	1	X	0

Tabla 4: Tabla De Estados Del J-K.

3.3. Obtención De Ecuaciones

En el flip-flop tipo J-K, cuando J=1 y K=1 entonces se dice que se pasa a complementar Q^t , cuando ambos son cero entonces se mantiene el dato.

Los flip-flop tipo T tiene la habilidad de variar (toggle) o cambiar estado. Independientemente del presente estado del flip-flop, este asume el estado de complemento cuando ocurre el pulso de reloj mientras que la entrada T esté en lógica 1 $(Q^{t+1} = T \oplus Q^t)$.

El flip-flop tipo D, sigue a la entrada, haciendo transiciones que coinciden con las de la entrada. Almacena el valor que está en la línea de datos $(Q^{t+1} = D)$.

3.4. Simulación

Figura 5: Simulación Flip-Flops - Tipo J-K, D y T.

3.5. Protoboard

Figura 6: Protoboard - Flip-Flop J-K, D y T

Figura 7: Protoboard - Flip-Flop J-K, D y T

4. Conclusiones

· Se tomo en cuenta el posible ruido en el bus del clock así que se dió uso a una resistencia pull-down para descartar errores. Los flip-flops cambian de estado conforme a la subida (flanco de subida) que reciben.

Los flip-flops tipo D y T en realidad son variantes en configuración del tipo J-K ya que comparten similitudes en su diagrama eléctrico.

5. Bibliografía

[1] - M. Morris Mano, [12-03-1989], Lógica Digital y Diseño de Computadores, Prentice-Hall, México, available on: http://student.mohammed.mx/tutoriales/circuitoselectricos/t34.html