§5. Геометрический смысл линейной зависимости векторов

Теорема 5.1. Для того чтобы два вектора \vec{e}_1 и \vec{e}_2 были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

▶Пусть векторы \vec{e}_1 и \vec{e}_2 линейно зависимы. В силу определения 4.3 имеем

$$\lambda_1\vec{e}_1+\lambda_2\vec{e}_2=\vec{0}, \quad \lambda_1^2+\lambda_2^2>0.$$

Считая для определенности $\lambda_1 \neq 0$, из последнего равенства получим $\vec{e}_1 = -\frac{\lambda_2}{\lambda_1} \vec{e}_2$.

Последнее соотношение согласно определению произведения вектора на число (определение 3.1) означает, что данные векторы коллинеарны.

Пусть векторы \vec{e}_1 и \vec{e}_2 коллинеарны. Если один из них нулевой, то они линейно зависимы по свойству 1 из §4. В случае, когда они оба ненулевые, то согласно теореме 3.1 имеем равенство

$$\vec{e}_1 = \lambda \vec{e}_2, \ \lambda \in \mathbf{R},$$

из которого следует линейная зависимость этих векторов (свойство 3 из §4). ◀

Следствие из теоремы **5.1.** Для того чтобы два вектора были неколлинеарны, необходимо и достаточно, чтобы они были линейно независимы. Доказательство – от противного.

Пример 5.1. \vec{a} и \vec{b} – неколлинеарные векторы. Доказать, что векторы $\vec{a}+2\vec{b}$ и $\vec{a}-3\vec{b}$ линейно независимы.

▶ Приравняем нуль-вектору линейную комбинацию данных векторов: $\lambda_I(\vec{a}+2\vec{b}\)+\lambda_2(\vec{a}-3\vec{b}\)=\vec{0}$. Перегруппируем члены в левой части этого равенства: $(\lambda_I+\lambda_2\)\vec{a}+(2\lambda_I-3\lambda_2)\vec{b}=\vec{0}$. Векторы \vec{a} и \vec{b} неколлинеарны и, следовательно, линейно независимы (следствие из теоремы 5.1), их линейная комбинация, равная нуль-вектору, может быть только тривиальной. Для λ_I и λ_2 получаем следующую систему уравнений: $\begin{cases} \lambda_1+\lambda_2=0, \\ 2\lambda_1-3\lambda_2=0. \end{cases}$ Так как главный определитель

 Δ этой системы отличен от нуля ($\Delta = -3-2 = -5 \neq 0$), то по теореме Крамера её нулевое решение $\lambda_1 = \lambda_2 = 0$ единственно. Итак, показано, что линейная комбинация данных векторов, равная нуль-вектору, может быть только тривиальной, поэтому эти векторы линейно независимы по определению 4.3. ◀

Теорема 5.2. Пусть даны два неколлинеарных вектора \vec{e}_1 и \vec{e}_2 . Любой компланарный с ними вектор \vec{a} можно представить в виде линейной комбинации этих векторов:

$$\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2, \tag{5.1}$$

причём числа λ_1, λ_2 в (5.1) определяются единственным образом. Равенство (5.1) называется разложением вектора \vec{a} по векторам \vec{e}_1 и \vec{e}_2 .

► Если вектор \vec{a} коллинеарен одному из векторов \vec{e}_1 и \vec{e}_2 , равенство (5.1) следует из свойства коллинеарных векторов (теорема 3.1), причём одно из чисел λ_1, λ_2 равно нулю. Если все три вектора \vec{e}_1 , \vec{e}_2 , \vec{a} попарно неколлинеарны, отнесём их к общему началу O (рис. 5.1) и из конца вектора \vec{a} проведём прямые, параллельные векторам \vec{e}_1 , \vec{e}_2 , до пересечения с прямыми, на которых расположены эти векторы. Получим точки P и Q. Тогда $\vec{a} = \overrightarrow{OP} + \overrightarrow{OQ}$. Векторы \overrightarrow{OP} и \overrightarrow{OQ} коллинеарны векторам \vec{e}_1 и \vec{e}_2 , поэтому найдутся

Рис. 5.1. Разложение вектора по двум неколлинеарным векторам

числа λ_1 и λ_2 такие, что $\overrightarrow{OP} = \lambda_1 \vec{e}_1$ и $\overrightarrow{OQ} = \lambda_2 \vec{e}_2$ и, следовательно, получим $\vec{a} = \lambda_1 \vec{e}_1$ + $\lambda_2 \vec{e}_2$. Итак, возможность представления вектора \vec{a} в виде разложения (5.1) доказана. Предположим теперь, что существует еще одно разложение:

$$\vec{a} = \mu_1 \vec{e}_1 + \mu_2 \vec{e}_2. \tag{5.2}$$

Вычтем почленно равенства (5.1) и (5.2), получим:

$$(\lambda_1 - \mu_1)\vec{e}_1 + (\lambda_2 - \mu_2)\vec{e}_2 = \vec{0}. \tag{5.3}$$

Векторы \vec{e}_1 и \vec{e}_2 линейно независимы как неколлинеарные векторы, следовательно, равенство (5.3) выполняется только при условии: $\lambda_1 - \mu_1 = 0$, $\lambda_2 - \mu_2 = 0$ или $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$.

Пример 5.2. Даны векторы $\vec{e}_1 = \overrightarrow{OA}$, $\vec{e}_2 = \overrightarrow{OB}$, $\vec{a} = \overrightarrow{OC}$, $|\vec{e}_1| = 2$, $|\vec{e}_2| = 3$, $|\vec{a}| = 4$, угол AOB – прямой, а угол COB равен $\pi/3$ (рис. 5.1). Разложить вектор \vec{a} по векторам \vec{e}_1 и \vec{e}_2 .

Рис. 5.2. К примеру 5.2

▶Из точки C опустим перпендикуляры на прямые OA, OB, получим точки A_1, B_1 (рис. 5.2). Тогда $\vec{a} = \overrightarrow{OC} = \overrightarrow{OA_1} + \overrightarrow{OB_1}$, при этом $|\overrightarrow{OA_1}| = |\vec{a}| \sin \frac{\pi}{3} = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$, $|\overrightarrow{OB_1}| = |\vec{a}| \cos \frac{\pi}{3} = 4 \cdot \frac{1}{2} = 2$. Так как $\overrightarrow{OA_1} \uparrow \uparrow \vec{e_1}$ и $\overrightarrow{OB_1} \uparrow \uparrow \vec{e_2}$, то в силу (3.1) имеем

$$\overrightarrow{OA_1} = \frac{|\overrightarrow{OA_1}|}{|\overrightarrow{e_1}|} \overrightarrow{e_1} = \frac{2\sqrt{3}}{2} \overrightarrow{e_1} = \sqrt{3} \overrightarrow{e_1}, \quad \overrightarrow{OB_1} = \frac{|\overrightarrow{OB_1}|}{|\overrightarrow{e_2}|} \overrightarrow{e_2} = \frac{2}{3} \overrightarrow{e_2}.$$

Для вектора \vec{a} получаем разложение $\vec{a} = \sqrt{3}\vec{e}_1 + \frac{2}{3}\vec{e}_2$.

Теорема 5.3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

▶ Пусть векторы \vec{e}_1 , \vec{e}_2 , \vec{e}_3 линейно зависимы. Тогда по свойству 3 из §4 хотя бы один из них линейно выражается через другие, например, $\vec{e}_3 = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2$, где $\lambda_1, \lambda_2 \in \mathbf{R}$. Из этого равенства следует компланарность векторов \vec{e}_1 , \vec{e}_2 , \vec{e}_3 .

Напротив, предположим, что векторы $\vec{e}_1, \vec{e}_2, \vec{e}_3$ компланарны. Если какая-то пара из них коллинеарна, то векторы, составляющие эту пару, линейно зависимы по теореме 5.1, и тогда вся система из трёх векторов линейно зависима (свойство 2, §4). Если все три вектора $\vec{e}_1, \vec{e}_2, \vec{e}_3$ попарно неколлинеарны, любой из них, согласно теореме 5.2, можно разложить по двум другим, после чего линейная зависимость системы векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3$ следует из свойства 3 §4.

Следствие из теоремы **5.3.** Для того, чтобы три вектора были некомпланарны, необходимо и достаточно, чтобы они были линейно независимы. Доказательство – от противного.

Теорема 5.4. Любой вектор \vec{a} можно разложить по трём некомпланарным векторам $\vec{e}_1, \vec{e}_2, \vec{e}_3$, т.е. представить в виде

$$\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3$$
, где $\lambda_1, \lambda_2, \lambda_3 \in \mathbf{R}$, (5.4)

причем разложение (5.2) единственно.

▶ Векторы \vec{e}_1 , \vec{e}_2 , \vec{e}_3 попарно неколлинеарны, иначе все эти векторы были бы компланарны. Если вектор \vec{a} компланарен с любыми двумя из этих векторов, то равенство (5.4) следует из теоремы 5.2, при этом один из коэффициентов $\lambda_1, \lambda_2, \lambda_3$ равен нулю. Если любая тройка из векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{a}$ некомпла-нарна, отнесём их к общему началу O (рис. 5.3) и из конца вектора \vec{a} проведём прямую, параллельную вектору \vec{e}_3 до пересечения с плоскостью, определяемой векторами \vec{e}_1 и \vec{e}_2 , в точке P. Очевидно, $\vec{a} = \overrightarrow{OP} + \overrightarrow{PA}$. Поскольку вектор \overrightarrow{PA} коллинеарен \vec{e}_3 , то существует число $\lambda_3 \in \mathbf{R}$: $\overrightarrow{PA} = \lambda_3 \vec{e}_3$. По теореме 5.2 найдутся числа $\lambda_1, \lambda_2 \in \mathbf{R}$ такие, что $\overrightarrow{OP} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2$, поэтому $\vec{a} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3$. Возможность представления вектора \vec{a} в виде (5.4) доказана. Единственность разложения (5.4) доказывается так же, как в теореме 5.2. \blacktriangleleft

Рис. 5.3. Разложение вектора по трём некомпланарным векторам

Рис. 5.4. К примеру 5.3

Пример 5.3. Векторы, $\vec{e}_1 = \overrightarrow{OA}$, $\vec{e}_2 = \overrightarrow{OB}$, $\vec{e}_3 = \overrightarrow{OC}$ попарно перпендикулярны, на них, как на рёбрах построена треугольная призма (рис. 5.4). Вектор $\vec{a} = \overrightarrow{OD}$, где точка D – середина отрезка C_1C_2 , при этом точки C_1, C_2 делят соответствующие рёбра призмы в отношении 1:3. Разложить вектор \vec{a} по векторам $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

▶ $\vec{a} = \overrightarrow{OC_1} + \overrightarrow{C_1D} = \overrightarrow{OA_1} + \overrightarrow{OB_1} + \overrightarrow{C_1D}$, где точки A_1, B_1 — основания перпендикуляров, опущенных из точки C_1 на прямые OA и OB (рис. 5.4). Поскольку

$$\overrightarrow{OA_1} = \frac{3}{4} \overrightarrow{OA} = \frac{3}{4} \vec{e}_1, \qquad \overrightarrow{OB_1} = \frac{1}{4} \overrightarrow{OB} = \frac{1}{4} \vec{e}_2,$$

$$\overrightarrow{C_1D} = \frac{1}{2} \overrightarrow{C_1C_2} = \frac{1}{2} \vec{e}_3,$$

то для вектора \vec{a} получаем разложение $\vec{a} = \frac{3}{4}\vec{e}_1 + \frac{1}{4}\vec{e}_2 + \frac{1}{2}\vec{e}_3$.

Теорема 5.5. Любые четыре вектора линейно зависимы.

▶ Если среди данных векторов есть два или три линейно зависимых, то вся система из четырёх векторов линейно зависима (свойство 2 из §4). Иначе среди данных четырёх векторов есть тройка линейно независимых векторов, состоящая из некомпланарных векторов (следствие из теоремы 5.3). Тогда четвёртый вектор, согласно теореме 5.4, можно представить в виде разложения по векторам этой тройки. Следовательно, и в этом случае система из четырёх векторов линейно зависима по свойству 3 из §3. ◀