Terceira Lista de Preparação para a LI IMO e XXV Olimpíada Iberoamericana de Matemática

Nível III

▶ PROBLEMA 1

Sejam P(x) e Q(x) polinômios não constantes com coeficientes inteiros. Sabe-se que o polinômio $P(x) \cdot Q(x) - 2009$ tem pelo menos 25 raízes inteiras distintas.

Prove que os graus de ambos P(x) e Q(x) são maiores do que 2.

▶PROBLEMA 2

Sejam a_1, a_2, \ldots, a_n reais positivos cuja soma é 1. Prove que

$$a_1 \cdot a_2^{2/3} + a_2 \cdot a_3^{2/3} + \dots + a_{n-1} \cdot a_n^{2/3} < \frac{3}{7}$$

▶ PROBLEMA 3

Em cada vértice A_k de um n-ágono regular $A_1A_2...A_n$ são colocadas k moedas. O movimento permitido é escolher duas moedas de um vértice, tirá-las e colocar uma em cada um dos vértices vizinhos.

Para que valores de k é possível, após uma quantidade finita de movimentos permitidos, deixar cada vértice A_k com n+1-k moedas, $k=1,2,\ldots,n$?

▶ PROBLEMA 4

Seja P(x) um polinômio não constante de coeficientes inteiros que não tem raízes múltiplas. Para cada inteiro positivo k, seja A_k o conjunto dos primos p para os quais existe x inteiro cujo menor expoente t tal que $(P(x))^t \equiv 1 \pmod{p}$ é k. Prove que A_k é infinito para todo k inteiro positivo.

▶PROBLEMA 5

Mostre que não existem x, y inteiros tais que

$$x^3 = y^{16} + y^{15} + \cdots + y + 9.$$

▶PROBLEMA 6

Seja Q um ponto no interior do polígono convexo P₁P₂...P_n. Prove que

$$\sum_{k=1}^{n} (\operatorname{cotg} \angle Q P_{k-1} P_k + \operatorname{cotg} \angle Q P_{k+1} P_k) \cdot \overrightarrow{QP_k} = \overrightarrow{0}$$

Os índices são tomados módulo n, ou seja, $P_0 = P_n$ e $P_{n+1} = P_1$.

▶PROBLEMA 7

Dado um conjunto A, definimos $A + A = \{a + b, a, b \in A\}$ e $A - A = \{a - b, a, b \in A\}$. Prove que existem constantes n_0 e c tais que para todo conjunto finito A, com $|A| = n \ge n_0$,

$$|A - A| - |A + A| \le n^2 - c \cdot n^{8/5}$$

▶PROBLEMA 8

Considere dois triângulos, um deles de lados a, b, c e área t, e o outro de lados A, B, C e área T. Prove que

$$-a^{2}A^{2} + a^{2}B^{2} + a^{2}C^{2} + b^{2}A^{2} - b^{2}B^{2} + b^{2}C^{2} + c^{2}A^{2} + c^{2}B^{2} - c^{2}C^{2} \ge 16tT$$