bit line 2 bit line 1 bit line 2 bit line 1 bit line 2 word word line 2 line 1 line 2

Semiconductor Memories

Figure 10.35. Circuit diagram of the CMOS dual-port SRAM cell.

writes data onto the same cell. In most cases, overlapping operations to the same memory location can be eliminated by a contention arbitration logic. It can either allow contention to be ignored and both operations to proceed, or it can arbitrate and delay one port until the operation on the other port is completed.

10.4. Dynamic Read-Write Memory (DRAM) Circuits

All of the static RAM cells examined in the previous section consist of a two-inverter latch circuit, which is accessed for "read" and "write" operations via two pass transistors. Consequently, the SRAM cells require four to six transistors per bit, and four to five lines connecting to each cell, including the power and ground connections. To satisfy these requirements, a substantial silicon area must be reserved for each memory cell. In addition, most SRAM cells have non-negligible standby (static) power dissipation, with the exception of the full CMOS SRAM cell.

As the trend for high-density RAM arrays forces the memory cell size to shrink, alternative data storage concepts must be considered to accommodate these demands. In a dynamic RAM cell, binary data is stored simply as charge in a capacitor, where the presence or absence of stored charge determines the value of the stored bit. Note that the data stored as charge in a capacitor cannot be retained indefinitely, because the leakage currents eventually remove or modify the stored charge. Thus, all dynamic memory cells require a periodic refreshing of the stored data, so that unwanted modifications due to leakage are prevented before they occur.

The use of a capacitor as the primary storage device generally enables the DRAM cell to be realized on a much smaller silicon area compared to the typical SRAM cell. Notice that even as the binary data is stored as charge in a capacitor, the DRAM cell must have access devices, or switches, which can be activated externally for "read" and "write" operations. But this requirement does not significantly affect the area advantage over the SRAM cell, since the cell access circuitry is usually very simple. Also, no static power is dissipated for storing charge on the capacitance. Consequently, dynamic RAM arrays can achieve higher integration densities than SRAM arrays. Note that a DRAM array also

requires additional peripheral circuitry for scheduling and performing the periodic data refresh operations. The hardware overhead of the refresh circuitry, however, does not overshadow the area advantages gained by the small cell size.

Figure 10.36 shows some of the steps in the historical evolution of the DRAM cell. The four-transistor cell shown in Fig. 10.36(a) is the simplest and one of the earliest dynamic memory cells. This cell is derived from the six-transistor static RAM cell by removing the load devices. The cell has in fact two storage nodes, i.e., the parasitic oxide

Figure 10.36. Various configurations of the dynamic RAM cell. (a) Four-transistor DRAM cell with two storage nodes. (b) Three-transistor DRAM cell with two bit lines and two word lines. (c) One-transistor DRAM cell with one bit line and one word line.

Semiconductor Memories

and diffusion capacitances of the nodes indicated in the circuit diagram. Since no current path is provided to the storage nodes for restoring the charge being lost to leakage, the cell must be refreshed periodically. It is obvious that the four-transistor dynamic RAM cell can have only a marginal area advantage over the six-transistor SRAM cell.

The three-transistor DRAM cell shown in Fig. 10.36(b) was the first widely used dynamic memory cell. It utilizes a single transistor as the storage device (where the transistor is turned on or off depending on the charge stored on its gate capacitance), and one transistor each for the "read" and "write" access switches. The cell has two control and two I/O lines. Its separate read and write select lines make it relatively fast, but the four lines with their additional contacts tend to increase the cell area.

The one-transistor DRAM cell shown in Fig. 10.36(c) has become the industry-standard dynamic RAM cell in high-density DRAM arrays. With only one transistor and one capacitor, it has the lowest component count and, hence, the smallest silicon area of all the dynamic memory cells. The cell has one read-write control line (word line) and one I/O line (bit line). We have to emphasize at this point that, unlike in the other dynamic memory cells shown in Figs. 10.36(a) and 10.36(b), the storage capacitance of the one-transistor DRAM cell is explicit. This means that a separate capacitor must be manufactured for each storage cell, instead of relying on the parasitic oxide and diffusion capacitances of the transistors for data storage. The word line of the one-transistor DRAM cell is controlled by the row address decoder. Once the selected transistor is turned on, the charge stored in the capacitor can be detected and/or modified through the bit line.

Before we examine the operation of the one-transistor DRAM cell, we will first investigate the three-transistor cell shown in Fig. 10.36(b), which has a very straightforward operation principle. This will help us to illuminate the basic issues involved in the design and operation of dynamic memory cells in general.

Three-Transistor DRAM Cell

The circuit diagram of a typical three-transistor dynamic RAM cell is shown in Fig. 10.37 as well as the column pull-up (precharge) transistors and the column read/write circuitry. Here, the binary information is stored in the form of charge in the parasitic node capacitance C_1 . The storage transistor M2 is turned on or off depending on the charge stored in C_1 , and the pass transistors M1 and M3 act as access switches for data read and write operations. The cell has two separate bit lines for "data read" and "data write," and two separate word lines to control the access transistors.

The operation of the three-transistor DRAM cell and its peripheral circuitry is based on a two-phase non-overlapping clock scheme. The precharge events are driven by ϕ_1 , whereas the "read" and "write" events are driven by ϕ_2 . Every "data read" and "data write" operation is preceded by a precharge cycle, which is initiated with the precharge signal PC going high. During the precharge cycle, the column pull-up transistors are activated, and the corresponding column capacitances C_2 and C_3 are charged up to logic-high level. With typical enhancement type nMOS pull-up transistors ($V_{70} \approx 1.0 \text{ V}$) and a power supply voltage of 5 V, the voltage level of both columns after the precharge is approximately equal to 3.5 V.

Figure 10.37. Three-transistor DRAM cell with the pull-up and read/write circuitry.

All "data read" and "data write" operations are performed during the active ϕ_2 phase, i.e., when PC is low. Figure 10.38 depicts the typical voltage waveforms associated with the 3-T DRAM cell during a sequence of four consecutive operations: write "1," read "1," write "0," and read "0." The four precharge cycles shown in Fig. 10.38 are numbered 1, 3,5, and 7, respectively. Figure 10.39 illustrates the transient currents charging up the two columns $(D_{in}$ and $D_{out})$ during a precharge cycle. The precharge cycle is effectively completed when both capacitance voltages reach their steady-state values. Note here that the two column capacitances C_2 and C_3 are at least one order of magnitude larger than the internal storage capacitance C_1 .

Semiconductor Memories

Figure 10.38. Typical voltage waveforms associated with the 3-T DRAM cell during four consecutive operations: write "1," read "1," write "0," and read "0."

Figure 10.39. Column capacitances C_2 and C_3 are being charged-up through MP1 and MP2 during the precharge cycle.

For the write "1" operation, the *inverse* data input is at the logic-low level, because the data to be written onto the DRAM cell is logic "1." Consequently, the "data write" transistor MD is turned off, and the voltage level on column D_{in} remains high. Now, the "write select" signal WS is pulled high during the active phase of ϕ_2 . As a result, the write access transistor M1 is turned on. With M1 conducting, the charge on C_2 is now shared

with C_1 (Fig. 10.40). Since the capacitance C_2 is very large compared to C_1 , the storage node capacitance C_1 attains approximately the same logic-high level as the column capacitance C_2 at the end of the charge-sharing process.

Figure 10.40. Charge sharing between C_2 and C_1 during the write "1" sequence.

After the write "1" operation is completed, the write access transistor M1 is turned off. With the storage capacitance C_1 charged-up to a logic-high level, transistor M2 is now conducting. In order to read this stored "1," the "read select" signal RS must be pulled high during the active phase of ϕ_2 , following a precharge cycle. As the read access transistor M3 turns on, M2 and M3 create a conducting path between the "data read" column capacitance C_3 and the ground. The capacitance C_3 discharges through M2 and M3, and the falling column voltage is interpreted by the "data read" circuitry as a stored logic "1." The active portion of the DRAM cell during the read "1" cycle is shown in Fig. 10.41. Note that the 3-T DRAM cell may be read repeatedly in this fashion without disturbing the charge stored in C_1 .

Figure 10.41. The column capacitance C_3 is discharged through the transistors M2 and M3 during the read "1" operation.

For the write "0" operation, the inverse data input is at the logic-high level, because the data to be written onto the DRAM cell is a logic "0." Consequently, the data write

transistor is turned on, and the voltage level on column D_{in} is pulled to logic "0." Now, the "write select" signal WS is pulled high during the active phase of ϕ_2 . As a result, the write access transistor M1 is turned on. The voltage level on C_2 , as well as that on the storage node C_1 , is pulled to logic "0" through M1 and the data write transistor, as shown in Fig. 10.42. Thus, at the end of the write "0" sequence, the storage capacitance C_1 contains a very low charge, and the transistor M2 is turned off since its gate voltage is approximately equal to zero.

Semiconductor Memories

Figure 10.42. Both C_1 and C_2 are discharged via M1 and the data write transistor during the write "0" sequence.

In order to read this stored "0," the "read select" signal RS must be pulled high during the active phase of ϕ_2 , following a precharge cycle. The read access transistor M3 turns on, but since M2 is off, there is no conducting path between the column capacitance C_3 and the ground (Fig. 10.43). Consequently, C_3 does not discharge, and the logic-high level on the D_{out} column is interpreted by the data read circuitry as a stored "0" bit.

As we already pointed out in the beginning of this section, the charge stored in C_1 cannot be held indefinitely, even though the "data read" operations do not significantly disturb the stored charge. The drain junction leakage current of the write access transistor M1 is the main reason for the gradual depletion of the stored charge on C_1 . In order to refresh the data stored in the DRAM cells before they are altered due to leakage, the data must be periodically read, inverted (since the data output level reflects the inverse of the stored data), and then written back into the same cell location. This refresh operation is performed for all storage cells in the DRAM array every 2 to 4 ms. Note that all bits in one row can be refreshed at once, which significantly simplifies the procedure.

It can be seen that the three-transistor dynamic RAM cell examined here does not dissipate any static power for data storage, since there is no continuous current flow in the circuit. Also, the use of periodic precharge cycles instead of static pull-up further reduces the dynamic power dissipation. The additional peripheral circuitry required for

scheduling the non-overlapping control signals and the refresh cycles does not significantly overshadow these advantages of the low-power dynamic memory.

Figure 10.43. The column capacitance C_3 cannot discharge during the read "0" cycle.

One-Transistor DRAM Cell

The circuit diagram of the one-transistor (1-T) DRAM cell consisting of one explicit storage capacitor and one access transistor is shown in Fig. 10.44. Here, C_1 represents the storage capacitor which typically has a value of 30 to 100 fF. Similar to the 3-T DRAM cell, binary data are stored as the presence or absence of charge in the storage capacitor. Capacitor C_2 represents the much larger parasitic column capacitance associated with the word line. Charge sharing between this large capacitance and the very small storage capacitance plays a very important role in the operation of the 1-T DRAM cell.

The "data write" operation on the 1-T cell is quite straightforward. For the write "1" operation, the bit line (D) is raised to logic "1" by the write circuitry, while the selected word line is pulled high by the row address decoder. The access transistor M1 turns on, allowing the storage capacitor C_1 to charge up to a logic-high level. For the write "0" operation, the bit line (D) is pulled to logic "0" and the word line is pulled high by the row address decoder. In this case, the storage capacitor C_1 discharges through the access transistor, resulting in a stored "0" bit.

In order to read stored data out of a 1-T DRAM cell, on the other hand, we have to build a fairly elaborate read-refresh circuit. The reason for this is the fact that the "data read" operation on the one-transistor DRAM cell is by necessity a "destructive readout." This means that the stored data must be destroyed or lost during the read operation. Typically, the read operation starts with precharging the column capacitance C_2 . Then, the word line is pulled high in order to activate the access transistor M1. Charge sharing between C_1 and C_2 occurs and, depending on the amount of stored charge on C_1 , the column voltage either increases or decreases slightly. Note that charge sharing inevitably destroys the stored charge on C_1 . Hence, we also have to refresh data every time we perform a "data read" operation.

Semiconductor Memories

Figure 10.44. (a) Typical one-transistor (1-T) DRAM cell with its access lines. (b) SEM photograph of a stacked-capacitor DRAM cell structure.

An example of the 256-cells-per-column DRAM read circuitry is shown in Fig. 10.45, along with typical control signal waveforms. A cross-coupled dynamic latch circuit is used to detect the small voltage differences and to restore the signal levels. The storage array is split in half so that equal capacitances are connected to each side of the cross-coupled latch. This means that half of the cells connected to one bit line (column) are arranged on one side of the latch, and the other half of the cells connected to the same column are arranged on the other side. As shown in Fig. 10.45, each half-column in the array also has a dummy cell which contains a capacitance half of the storage capacitance value. The capacitors C_D and $C_{\overline{D}}$ in Fig. 10.45 represent the relatively large parasitic column capacitances associated with the half-columns.

The "read-refresh" operation occurs in three stages. First, the precharge devices are turned on during the active phase of PC. Both column capacitances C_D and $C_{\overline{D}}$ are charged-up to the same logic-high level, whereas the dummy nodes X and Y are pulled to logic-low level. The devices involved in the precharge operation are highlighted in Fig. 10.46. Note that during this phase, all other signals are inactive.

Figure 10.45. (a) Data read-restore circuit example for 256 1-T DRAM cells per column. (b) Typical control signal waveforms for two consecutive data read operations, performed on alternate sides (half-columns) of the array.

Figure 10.46. The half-columns are being charged-up during the precharge phase.

Next, one of the 256 word lines is raised to logic "1" during the row selection phase. At the same time, the dummy cell on the other side is also selected by raising either DS or \overline{DS} . This situation is depicted in Fig. 10.47, where only the selected

Semiconductor Memories

Figure 10.47. Two complementary column voltages are determined through charge sharing, on the one side between the selected storage cell and the half-column capacitance, on the other side between the dummy cell and the other half-column capacitance.

DRAM cell (left) and the corresponding dummy cell (right) are highlighted. If a logic "1" is stored in the selected cell, the voltage on the half-column D will rise slightly, while the voltage on half-column \overline{D} drops, because the dummy cell is being charged up. If a logic "0" is stored in the selected cell, however, the voltage on the half-column D will also drop, and the drop in V_D will be larger than the drop in $V_{\overline{D}}$. Consequently, there will be a detectable difference between a stored "0" and a stored "1."

The final stage of the "read-refresh" operation is performed during the active phase of CS, the column-select signal. As soon as the cross-coupled latch is activated, the slight voltage difference between the two half-columns is amplified, and the latch forces the two half-columns into opposite states (Fig. 10.48). Thus, the stored data on the selected DRAM cell is refreshed while it is being read by the "read-refresh" circuitry.

Figure 10.48. The cross-coupled latch circuit is used for detection of the voltage difference between the half-columns and for restoring the voltage level on the accessed cell.

CHAPTER 10 Example 10.2.

The data read operation of the typical one-transistor DRAM cell is simulated with SPICE in the following. The sense-refresh circuit used in this simulation is shown in Fig. 10.45. Two different cases are being considered: a read "0" operation and a read "1" operation. Depending on the stored data bit, the cross-coupled sense amplifier circuit detects the small voltage difference between the two half-columns, and pulls down one of the column voltages to zero.

