Hunter Lybbert Student ID: 2426454 11-04-24 AMATH 567

## HOMEWORK 6

Collaborators\*: Nate Ward, Sophie, Peter

\*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: From A&F: 3.3.2 Given the function

$$f(z) = \frac{z}{a^2 - z^2}, \ a > 0,$$

expand f(z) in a Laurent series in powers of z in the regions

(a) |z| < a

Solution:

We begin with a little algebra

$$f(z) = \frac{z}{a^2 - z^2} = \frac{z}{a^2} \frac{1}{1 - \frac{z^2}{a^2}}.$$

In this case, since |z| < a, then  $\frac{z^2}{a^2} < 1$ . Therefore we can make use of the common geometric series

$$f(z) = \frac{z}{a^2} \frac{1}{1 - \frac{z^2}{a^2}} = \frac{z}{a^2} \sum_{n=0}^{\infty} \left(\frac{z^2}{a^2}\right)^n = \frac{z}{a^2} \sum_{n=0}^{\infty} \frac{z^{2n}}{a^{2n}} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{a^{2n+2}} = \sum_{n=0}^{\infty} \frac{1}{a^{2n+2}} z^{2n+1}.$$

(b) |z| > a

Solution:

We begin with a little algebra

$$f(z) = \frac{z}{a^2 - z^2} = -\frac{z}{z^2 - a^2} = -\frac{z}{z^2} \frac{1}{1 - \frac{a^2}{z^2}}.$$

In this case, since |z|>a, then  $\frac{a^2}{z^2}<1$ . Therefore we can make use of the common geometric series

$$\begin{split} f(z) &= -\frac{z}{z^2} \frac{1}{1 - \frac{a^2}{z^2}} \\ &= -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{a^2}{z^2}\right)^n \\ &= -\frac{1}{z} \sum_{n=0}^{\infty} \frac{a^{2n}}{z^{2n}} \\ &= -\sum_{n=0}^{\infty} \frac{a^{2n}}{z^{2n+1}} \\ &= -\sum_{n=0}^{\infty} a^{2n} \frac{1}{z^{2n+1}} \\ &= -\sum_{n=0}^{\infty} a^{2n} z^{-(2n+1)} \\ &= -\sum_{n=0}^{\infty} a^{2n} z^{-2n-1} \\ &= -\sum_{n=-\infty}^{0} a^{2n} z^{2n-1}. \end{split}$$

$$\exp\left(\frac{t}{2}\left(z-\frac{1}{z}\right)\right) = \sum_{n=-\infty}^{\infty} J_n(t)z^n.$$

Show from the definition of Laurent series and using properties of integration that

$$J_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta - t\sin\theta) d\theta.$$

The functions  $J_n(t)$  are called the Bessel function, which are well known special functions in mathematics and physics.

## Solution:

Let  $f(z) = \exp\left(\frac{t}{2}\left(\frac{z-1}{z}\right)\right)$ . We begin by looking at the general Laurent series centered at z=0, since our function is undefined at this point it is the only singularity we are concerned with. Therefore we have

$$f(z) = \sum_{n = -\infty}^{\infty} C_n (z - 0)^n = \sum_{n = -\infty}^{\infty} C_n z^n.$$

Where the  $C_n$  is given by

$$C_n = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi^{n+1}} d\xi = \frac{1}{2\pi i} \oint_C \frac{\exp\left(\frac{t}{2}\left(\xi - \frac{1}{\xi}\right)\right)}{\xi^{n+1}} d\xi.$$

This is really incomplete notationally since our  $C_n$ 's depend on t so reverting back to the provided notation we have

$$J_n(t) = \frac{1}{2\pi i} \oint_C \frac{\exp\left(\frac{t}{2}\left(\xi - \frac{1}{\xi}\right)\right)}{\xi^{n+1}} d\xi.$$

Additionally, I have yet to specify my contour C, but it needs to be within the annulus for which our Laurent series converges. Since, the original function f(z) only has a singularity at z=0 the Laurent series really converges uniformly throughout the complex plane except at the origin. Therefore we make the convenient choice for our contour C to be a counterclockwise traversal of the unit circle. Using the parameterization

 $\xi = e^{i\theta}$  with  $\theta \in [-\pi, \pi)$ , we have

$$J_{n}(t) = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp\left(\frac{t}{2}\left(e^{i\theta} - \frac{1}{e^{i\theta}}\right)\right)}{\left(e^{i\theta}\right)^{n+1}} i e^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\exp\left(\frac{t}{2}\left(e^{i\theta} - \frac{1}{e^{i\theta}}\right)\right)}{e^{in\theta}} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(\frac{t}{2}\left(e^{i\theta} - e^{-i\theta}\right) - in\theta\right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(\frac{t}{2}\left(e^{i\theta} - e^{-i\theta}\right) - in\theta\right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(\frac{t}{2}\left(e^{i\theta} - e^{-i\theta}\right) - in\theta\right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(ti\sin\theta - in\theta\right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(ti\sin\theta - in\theta\right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta.$$

Therefore

$$J_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta,$$

as desired. Furthermore,

$$J_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n\theta - t\sin\theta) - i\sin(n\theta - t\sin\theta) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} \cos(n\theta - t\sin\theta) - i\sin(n\theta - t\sin\theta) d\theta$$

$$+ \frac{1}{2\pi} \int_{0}^{\pi} \cos(n\theta - t\sin\theta) - i\sin(n\theta - t\sin\theta) d\theta$$

$$= -\frac{1}{2\pi} \int_{0}^{-\pi} \cos(n\theta - t\sin\theta) - i\sin(n\theta - t\sin\theta) d\theta$$

$$+ \frac{1}{2\pi} \int_{0}^{\pi} \cos(n\theta - t\sin\theta) - i\sin(n\theta - t\sin\theta) d\theta$$

Now we need to do a substitution for  $n\theta - t\sin\theta$  in each of these integrals. For the integral from 0 to  $-\pi$  let  $\theta = -\theta'$  and for the integral from 0 to  $\pi$  let  $\theta = \theta'$ . Continuing

where we left off we then have

$$\begin{split} &= -\frac{1}{2\pi} \int_0^\pi \cos \left( -n\theta' - t \sin(-\theta') \right) - \mathrm{i} \sin \left( -n\theta' - t \sin(-\theta') \right) (-\mathrm{d}\theta') \\ &\quad + \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin \theta' \right) - \mathrm{i} \sin \left( n\theta' - t \sin \theta' \right) \mathrm{d}\theta' \\ &= \frac{1}{2\pi} \int_0^\pi \cos \left( -\left( n\theta' - t \sin(\theta') \right) \right) - \mathrm{i} \sin \left( -\left( n\theta' - t \sin(\theta') \right) \right) \mathrm{d}\theta' \\ &\quad + \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin \theta' \right) - \mathrm{i} \sin \left( n\theta' - t \sin \theta' \right) \mathrm{d}\theta' \\ &= \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin(\theta') \right) + \mathrm{i} \sin \left( n\theta' - t \sin(\theta') \right) \mathrm{d}\theta' + \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin \theta' \right) - \mathrm{i} \sin \left( n\theta' - t \sin \theta' \right) \mathrm{d}\theta' \\ &= \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin(\theta') \right) + \mathrm{i} \sin \left( n\theta' - t \sin(\theta') \right) + \cos \left( n\theta' - t \sin \theta' \right) - \mathrm{i} \sin \left( n\theta' - t \sin \theta' \right) \mathrm{d}\theta' \\ &= \frac{1}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin(\theta') \right) + \cos \left( n\theta' - t \sin \theta' \right) \mathrm{d}\theta' \\ &= \frac{2}{2\pi} \int_0^\pi \cos \left( n\theta' - t \sin(\theta') \right) \mathrm{d}\theta' \\ &= \frac{1}{\pi} \int_0^\pi \cos \left( n\theta' - t \sin(\theta') \right) \mathrm{d}\theta'. \end{split}$$

Though we finished in terms of another variable  $\theta'$  this could easily be changed out with another substitution  $\theta' = \theta$ . And thus we see

$$J_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\theta - t\sin\theta)} d\theta = \frac{1}{\pi} \int_{0}^{\pi} \cos(n\theta - t\sin(\theta)) d\theta.$$

3: Bernoulli numbers: Consider the function

$$f(z) = \frac{z}{e^z - 1}.$$

(a) Show that f(z) has a removable singularity at z = 0. Assume from now on that the definition of f(z) has been extended to remove the singularity.

Solution:

We are going to site a lot of the same logic as we are using from problem 3 last week where we were talking about a removable singularity. In this case, however, notice we can calculate explicitly the limit of f(z) as  $z \to 0$  as follows:

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{z}{\mathrm{e}^z - 1} = \frac{0}{0} \quad \text{applying L'Hôpitals rule}$$
$$= \lim_{z \to 0} \frac{z}{\mathrm{e}^z - 1} = \lim_{z \to 0} \frac{1}{\mathrm{e}^z} = \frac{1}{1} = 1$$

Therefore, we need to choose f(0) = 1 in order for f(z) to be analytic in the region and therefore remove the singularity. **TODO: connect this with problem 3** from last weeks hw.

- (b) Suppose you were to find a Taylor series for f(z), centered at z = 0. What would be its radius of convergence?
- (c) Find the Taylor series in the form

$$f(z) = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n.$$

The numbers  $B_n$  are known as the Bernoulli numbers.

(d) Find a recursion formula for the Bernoulli numbers, and use it to find  $B_0, \ldots, B_{12}$ . Solution:

put things in terms of taylor series and move them over to the left side of the equation

- (e) Show that  $B_{2n+1} = 0$  for  $n \ge 1$ .
- (f) Use your result to find a Taylor series for  $z \coth z$ , in terms of the Bernoulli numbers. Where is this series valid? Using this result, find a Laurent series for  $\cot z$ . Where is this series valid?

- **4:** Consider g(z) = 1/f(z) where f(z) is as in the previous problem.
  - (a) Using the formula for g(z), use software that uses double precision floating point arithmetic to compute the errors  $e_n := |g(2^{-n}) g(0)|$  for n = 1, 2, ..., 52. Produce a plot of these errors.
  - (b) Derive an approximation G(z) to g(z), near z=0, that does not suffer from the instability you notice. Plot the new errors  $E_n:=|G(2^{-n})-g(0)|$  for  $n=1,2,\ldots,52$ . Ensure that these errors are less than  $10^{-10}$  for all n.

**5:** Analytic continuation:

(a) Consider

$$F(z) = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n.$$

Where is this function analytic?

(b) Use the above representation to induce a Taylor representation of F(z) centered at z = -1/2. Call this representation G(z). Your final result should be of the form

$$G(z) = \sum_{m=0}^{\infty} c_m \left( z + \frac{1}{2} \right)^m$$

Where is this series valid?

If you can answer this question without using that both F(z) and G(z) are representations of 1/(1-z), you will receive 2 bonus points.

Solution: expansion of the same function allows you justify things and compute the radius of convergence a certain way.

Use the ratio test for a tedious 2 bonus points.

6: This problem is from Whittaker and Watson's "A course of modern analysis": Shew<sup>1</sup> that

$$\sum_{n=1}^{\infty}\frac{z^{n-1}}{\left(1-z^{n}\right)\left(1-z^{n+1}\right)}=\begin{cases} \frac{1}{(1-z)^{2}}, & |z|<1\\ \frac{1}{z(1-z)^{2}}, & |z|>1. \end{cases}$$
 This might appear to contradict the idea of analytic continuation. Please comment.

Start from the right for the first case you can use the geometric series and multiply them with eachother.

 $<sup>^1\</sup>mathrm{Aka}$  "Show".

7: Suppose that f is a function satisfying

$$|f(x)| \le M, \quad x \in \mathbb{R}.$$

Show that

$$\hat{f}(z) := \int_0^\infty e^{izx} f(x) dx,$$

is an analytic function of z for  ${\rm Im}\, z>0$ . You may assume that f is continuous, but this is not a necessary assumption.

## 8: Use analytic continuation to show that

$$\sqrt{z-1}\sqrt{z+1}=(z-1)\sqrt{\frac{z+1}{z-1}},$$

where  $\sqrt{\cdot}$  denotes the principal branch with arg  $z \in [-\pi, \pi)$ . Solution:

Consider that they are both analytic everywhere in the same domain (use the form of analytic continuation which depends on the accumulation point)

Choose a contour for which the functions. agree on (positive real axis is a good choice).

Then show that

$$\sqrt{z-1}\sqrt{z+1} = z + b_0 + b_1 z^{-1} + b_2 z^{-2} + O(z^{-3}), \quad z \to \infty,$$

and find  $b_0, b_1, b_2$ .