Let's explore the Victoria Fire History dataset produced by DECCA and available on the Vic Data website

In [1]:

```
# Setup
%matplotlib inline
import folium
import geopandas as gpd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
```

In [2]:

```
# Load the data and view first 5 rows
fire_history = gpd.read_file("ll_gda94/esrishape/whole_of_dataset/victoria/FIRE/
FIRE_HISTORY.shp")
fire_history.head()
```

Out[2]:

FIRETYPE SEASON FIRE_NO NAME START_DATE STRTDATIT TREAT_TYPE	
0 Burn 2021 GP-TBO- Calulu - Coxes 2020-10-13 20201013 FUEL Road REDUCTION	BURN
GP-TBO- Kalimna - 1 Burn 2021 NOW- GLaWAC 2021-03-31 20210331 NaN 0294 1	BURN
Clifton FIRE - NOT A PLANNED Bushfire 2021 Tambo 9 Creek - Woods Rd 2020-10-03 20201003 BURN ACTIVITY	BURN
FIRE - NOT A 3 Bushfire 2007 12 NaN 2006-12-01 20061201 BURN ACTIVITY	
4 Bushfire 2021 TAMBO Omeo – Butchers 2021-02-20 20210220 FIRE - NOT A PLANNED BURN ACTIVITY	BURN
4	•

In [3]:

```
# How many fires are there of each type?
fire_history['FIRETYPE'].value_counts()
```

Out[3]:

Bushfire 624820 Burn 82670 Unknown 279 Other 159

Name: FIRETYPE, dtype: int64

In [5]:

```
# There are many more bushfires than planned burns, but what about their recent
 frequency? Let's plot
# these over the last 20 years
burn history = fire history[fire history['FIRETYPE'] == 'Burn']
bushfire history = fire history[fire history['FIRETYPE'] == 'Bushfire']
fig ,(ax1,ax2) = plt.subplots(1,2,figsize=(12,6))
ax1.set title('Burn Fires')
sns.histplot(burn history['SEASON'],label='Burn',ax=ax1,binwidth=0.5)
ax1.set xlim(2002,2023)
ax1.set_xticks(np.arange(2002,2023,2))
ax2.set title('Bushfires')
sns.histplot(bushfire history['SEASON'],label='Fuel',ax=ax2,binwidth=0.5,color=
'coral')
ax2.set xlim(2002,2023)
ax2.set ylim(0,10000)
ax2.set xticks(np.arange(2002,2023,2))
plt.show()
```


So there are many bushfires recorded in bad fire season but few

in other years while the number of recorded burns has been increasing

recently

In [6]:

```
# Let's map some of our data. What are all the regions present?
fire_history['DISTRICTID'].value_counts()
```

Out[6]:

Hume - Ovens	34173
Hume - Upper Murray	25700
Loddon Mallee - Mallee	15209
Gippsland - Macalister	7825
Gippsland - Snowy	7472
Gippsland - Tambo	6679
Gippsland - Latrobe	3694
Barwon South West - Otways	2935
Hume - Goulburn	2505
Barwon South West - Far South West	2304
Port Phillip - Yarra	1648
Grampians - Midlands	1414
Grampians - Wimmera	676
Hume - Murrindindi	540
Loddon Mallee - Murray Goldfields	440
Port Phillip - Metropolitan	270
Name: DISTRICTID, dtype: int64	

In [12]:

```
# Let's choose the Wimmera region of the Grampians and map the location of the d
ifferent fire types in the 2022
# season

grampians_fires_2022 = fire_history.query('(DISTRICTID == \'Grampians - Wimmera
\') and (SEASON == 2022)')

grampians_fires_2022.explore('FIRETYPE')
```

Out[12]:

Make this Notebook Trusted to load map: File -> Trust Notebook

19 eaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

In []: