Two-way ANOVA

(이원분산분석)

숙명여자대학교 경영학부 오중산

? 이원분산분석 정의

P ONE WAY ANOVAE 52

- [?] 두 개 이상 집단간의 종속변수 모평균 차이가 또 다른 독립변수에 의해 영향을 받는지 확인하는 통계분석방법
- ? 두 개 독립변수 간에 상호작용효과 (interaction effect)가 존재하는지 확인하는 통계분석방법
- ? 이원(two-way)은 단순히 독립변수가 두 개라는 것이 아니라 , <mark>이들이 상호작용한다는 의미</mark>

IV, → DV : 発計 >

IV./DV -> One -way ANOVA Ha 汕町

IV₂ : 집단간 차이에 영향 주記나에 영향

┗> IV, 라 IV₂ 간의 상호작용

? 독립변수 간의 상호작용

= 집단별 종속변수의 모평균 차이 있음 => 독립변수가 종속변수에 영향 (= 주효과)

- ? 어떤 독립변수 (IV_1) 가 종속변수(DV)에 미치는 주효과(관계)에 또 다른 독립변수 (IV_2) 가 영향을 미칠 때 IV_1 와 IV_2 가 상호작용한다고 함
 - ? 상호작용은 IV_1 와 DV 간의 기존 '관계'에 IV_2 가 영향을 미치는 것을 의미함
 - $brack ! IV_1$ 에 따라 구분된 집단 간에 모평균 차이가 존재할 때, 이 차이가 IV_2 에 의해 영향을 받음
 - [] 집단 간의 모평균 차이가 더 벌어지거나, 좁혀질 수 있음

이원분산분석 예시

1=2

? 직무(IV_1 : 내근/외근)에 따른 하루 섭취 칼로리(DV) 모평균 차이에 경력(IV_2 : Low/Medium/High)

이 미치는 영향

PIVI-DV:HA 計町 Mel-Mul キ O

?] 일원분산분석 결과, 직무에 따른 섭취 칼로리 모평균 차이가 있어야 함

- ? 사전에 One-way ANOVA에서 Ha 채택이 Two-way ANOVA의 전제 조건 : Ho 채택 → two ANOVA X
- [] 예: 외근직의 섭취 칼로리 모평균이 내근직의 섭취 칼로리 모평균에 비해 큼
- [?] 경력에 따른 섭취 칼로리 모평균 차이 여부는 참고사항일뿐 , Two-way ANOVA 전제 조건이 아님

IV2→DV: 発記+

> 상관없음

- - ? 직무 (IV_1) 에 따라 하루 섭취 칼로리(DV) 모평균 차이에 경력 (IV_2) 이 미치는 영향
 - $brack ! IV_2$ 가 기존 관계를 강화하는 경우
 - [] 경력이 높아질수록 외근직과 내근직의 하루 섭취 칼로리 모평균 차이가 더 확대됨

	경력L	경력M	경력H	평균
내근직	2,000	2,200	2,300	2,167
외근직	2,500	2,900	3,200	2,867
차이	500	700	900	700

- ? 이원분산분석 예시
 - ? 직무 (IV_1) 에 따라 하루 섭취 칼로리(DV) 모평균 차이에 경력 (IV_2) 이 미치는 영향
 - ? IV_2 가 기존 관계를 약화하는 경우 : 나는 길에 비해서 있는 길이 혹속변수 만평균이 더 한테, 그 차이는 경력이 커링에 따라 점점 할어된다
 - [] 경력이 높아질수록 외근직과 내근직의 하루 섭취 칼로리 모평균 차이는 줄어듦

	경력L	경력M	경력H	평균
내근직	2,000	2,200	2,300	2,167
외근직	2,500	2,600	2,650	2,583
차이	500	400	350	417

이원분산분석 가설과 세 가지 전제조건

- ? 이원분산분석의 두 가지 가설
 - ? H_0 : 두 독립변수 간에 **상호작용효과가 없다.**
 - ? H_a : 두 독립변수 간에 **상호작용효과가 있다.**

) 강화할 수도 , 약화할 수도

- [] 세 가지 전제조건
 - ? 독립성은 기본적으로 만족해야 하며, 정규성/등분산성은 IV_1 을 기준으로 구분된 집단에 대해서만 확인

OFA 유의 : 전제소건

② Fac : 상호작용 효리나 있는지 없는지

이원분산분석 가설검정

- ? Two-way ANOVA Table과 가설검정
 - ? F_A 에 따른 p-value와 F_{AC} 에 따른 p-value가 모두 유의하면 대립가설 채택
 - ? 두 p-value 중에서 하나라도 유의하지 않으면 귀무가설 채택
 - ? F_A 와 F_C 는 두 독립변수 각각에 대한 One-way ANOVA 가설검정에 활용

[] SSTR(요인효과) = SSTR_A + SSTR_C + SSTR_{AC}

분산요인	제곱 합	자유도	평균자승	F-statistics
A(IV ₁) : A의 주효과	SSTRA	(k-1)	$MSTR_A = SSTR_A / (k-1)$	$F_A = MSTR_A / MSE$
C(IV ₂) : (ा निया	SSTR _c	(g-1)	$MSTR_{c} = SSTR_{c} / (g-1)$	$F_C = MSTR_C / MSE$
$A \times C(IV_1 \times IV_2)$	SSTR _{AC}	(k-1)(g-1)	$MSTR_{AC} = SSTR_{AC} / (k-1)(g-1)$	F _{AC} = MSTR _{AC} / MSE
오차분산 5상호작용 효리	- SSE	ਅਜ਼ੀਦ N−K×g	MSE = SSE / [N-k×g]	
총분산	SST	N -1		

이원분산분석 검정 절차

IV, : gender

IVz: OS

? 일원분산분석의 $1\sim5$ 단계 수행 One - way ANOVA

DN: 6xbeuse

- $[V_1]$ 에 따라 구분된 집단 간에 $[V_1]$ 모평균 차이가 유의함을 확인해야 함
- - ? IV_1 에 따른 일원분산분석도 목적이라면 수행
- [] 7단계: 가설검정 및 그래프 그리기
 - ? aov 함수를 이용한 이원분산분석 가설검정
 - 기본 명령문: $aov(DV\sim IV_1*IV_2, data = 이상치 제거된 전체 df)$
 - ? HH패키지에 있는 interaction2wt 함수 사용하여 그래프 그리기

이원분산분석 검정 절차

- LH. M 4.21 L·M.H ? 8단계: 추가 분석 IV2 IV. 67H
- H·L

- NOVA WAY ANOVA
- $[V_1]$ V_2 를 동시에 고려하여 집단을 세분화했을 때, 집단 간에 V_2 모평균의 차이가 존재할까?
 - [이원분산분석에서 대립가설이 채택되면 이런 추가적인 일원분산분석을 추가 수행할 수 있음
 - [주의사항! 이원분산분석에서 대립가설의 채택여부와 무관하게 추가 일원분산분석에서 집단 간에 종속변수 모평균 차이가 유의하게 추정될 수 있음 => 귀무가설 채택되어도 추가 분석에서는 대립가성 채택될 수 있음
- $[V_1]$ IV₁과 IV₂를 동시에 고려한 새로운 변수 (IV_3) 를 만들고 이에 따라 일원분산분석 $1\sim6$ 단계 시행
 - [P] IV₁에 따른 집단 개수 k와 IV₂에 따른 집단 개수 g를 고려하면 IV₃에 따른 집단 개수는 $k \times g$ 가 됨

이원분산분석 실습

? 다음과 같은 Two-way ANOVA를 실행하시오.

- ? 데이터: pttest
- ? IV₁: gender / IV₂: os
- ? DV: expense
- ? 유의수준(a) = 0.05

```
## STEP 1. 가설수립 ##
 # 사건작업
() table (is.na (two_anova $ expense) : 축도변수에 na 있는지 확인
 @ two_anova %>% group_by (gender) %>% summarise (mean (expense, na.rm =T))
 Ho: 두 독립변수 간에 상호작용 효괴가 없다. Ha: 두 독립변수 간에 상호작용효고나가 있다.
# 이상치 검토 및 제거
() library (psych)
                     @descr <- describe (two_anova $ expense)
                                                      (4) table (two_anova $ expense > descr $ UL)
3 descr <- descr %.7% mutate (UL = mean + 3 + sd,
                              LL = mean -3 * SL)
(b) two_anova_new <- two_anova %>% filter (expense <= descr $ UL)
 ## STEP2: 서브 데이터 프레임 만들기 ##
                                       → 이상치 제거된 df
0 two_anova_mak <- two_anova_new %> % filter (gender == "Make")
@ two_anova_female <- two_anova_new %>% filter (gender == "female")
## STEP3: 정규성 검토 ##
1) Summary (two_anova_male)
                                   @hist (two_anova_mak $ expense, breaks = seq (0, 2000, 40))
3 Shapiro test (two_anova_male & expense) \( \frac{1}{2} \) Th
## STEP 4. 등분산성 검토 ##
                                  YO 分野鋒
                                            독립변수 IV
                                                           이상치 제거된 전체 나

② leveneTest (expense ~ gender , data = two_anova_new )

Olibrary (car)
   leveneTest(expense ~ gender, data = two_anova_n
  ew)
  Levene's Test for Homogeneity of Variance (center
   = median)
       Df F value Pr(>F)
       1 10.491 <u>0.001238</u> ** 1
      1035
                    d=0.05 보다 작음 ⇒ Ha 채택 ⇒ 등분산성 만족 X
  Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
井井 STEP5: 이분난 가정 ONE-WAY ANOVA 시행 (welch test 시행)
 oneway test (expense ~ gender, data = two_anova_new)
                 골속 변수(DV)
                           됩(LV)
    oneway.test(expense~gender, data = two_anova_ne
                                                      two_anova_new %>% group_by(gender) %>% summaris
                                                      gender `mean(expense)
         One-way analysis of means (not assuming
                                                                    <dh1>
         equal variances)
                                                    1 Female
                                                      Male
                                                                          > m(female) > m(male)
  data: expense and gender
                                                                     303.
  F = 51.752, num df = 1.0, denom df =
  1004.8, p-value = 1.23e-12
                                               기준으로 집단 권분했을 때, 두 집단간의 종속변수 모평균의 차이 존재
                                                                 => H(female) > H (male)
## STEP 6 사후분석 생략
   O two - way ANOVA71 목적
   의 집단 27H (37H 이삿 사후분석)
```

```
## STEP 7: two - way AnovA 시해 및 그래프 그리기
  1 two_anova_result <- aov (expense ~ gender * os , data = two_anova_new)
                                                               IV2
                                                                               이상치 제거된 닭
 Summary (two_ anova_ result)
                                                                         ($\tag{S}\) two_anova_new \(\text{\text{.}}\), group_by (gender) \(\text{\text{.}}\), summarise
  summary(two_anova_result)
                                                       3 library (HH)
                                                                                                (mean(expense))
                nf
                      Sum Sq Mean Sq F value
                                                       (4) take (two_anova_new $ gender)
gender TV
                     9556293 9556293
                                         51.48
                     2041400 2041400
                                         11.00
OS TI
                                                      3 two_anova_new $ gender<- factor (two_anova_new $ gender)
                     2367490 2367490
                                         12.75
gender:os IV, X IV. 1
             1033 191746440 185621
Residuals
                                                        □ ONE-WAY ANOVAMIA 玉を間きり
                                                                                        levels = c("Male", "Female"))
             Pr(>F) > 0 전체한번 원간 TV, P-value 유의
1.38e-12 ***
                                                           작은 윤너로 집단을 먼저 출력하도록 함 (+WO
gender
             0.000944 *** > 권이 볼 필인 ( >) 유의 함
                                                                                          IV
                                                                                DV(3年)
OS
                                                      (6) interaction 2wt (expense or gender *0s,
gender:os 💑 0.000372 ***
Residuals
                                                                                      data = two_anova_new)
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                                                       baov 왕 똑같음
                                                                    expense: main effects and 2-way interactions
결측으로 인하여 7개의 관측치가 삭제되었습니다.
                                                                      expense ~ gender | os
                                                                                        expense ~ os l os
    IV2 확인안해도 됨 (ane way ANOVA)
                                                                    O OS 豻와 무만하게
                                                                                                     1500
                                                                    male ith female일 때
    만약 당간당면
                                                                    expense 모평균 커진다
                                                                                                     <sup>1000</sup>expense
                                                                     (IV, DV 기본 관계)
   two - anova-new %>% group_by (OS) %>%
                                                                                                     500
                                                     (기울기 차이)
    Summarise (mean (expense))
                                                  ② OS7F iOS면
                                      아드로이드면
                                      차이가 모탱코 차이 <- Male. female 모탱코
                                                                     expense ~ gender | gender
                                                                                     expense ~ os | gender
                                                     प्रभाग स भय
                                      병로 크지 않음
                                                                                                     1500
                                                         gender
Male
                                           OS 월 쓰냐에 따라
                                                                                                     1000 expense
                                          차이 더 벌어질 수도
                                             => 기존의 관계 강합
                                       Senderthi 따는 구분했을 때
                                                                             Female
                                                                                       Android
                                                                                               iOS
                                                                         gender
                                            뉴싱턴다 여성의 OKPENSE 인명균 더 크다 가는
                                            기본의 관계에 05가 영향 이침 ;05: 성별에 따곤 차이 더 귀장
                                                                 한드군이 드
                                                   Ho: 네 개 집단 간에 expense 모명권은 동일하다
   井井STEP 8: 집단을 네 개로 서분화 했을 때
                                                   Ha: 적어도 하나의 집단의 expense 모평균은 다른 집단과 다르다
  非 집단 너 가로 구분하는 변수 만들기
                                        (gender == "Male" & os == "Android", "MA", ifelse(gender == "Male" & os == "Android", "MA", ifelse(gender == "Male" & os == "Android", "Fa", "Fi"))))
 井 서브데이터 프레임 만들기
 two_anova_MA <- two_anova_new %>% filter(genderos=="MA")
 two_anova_Mi <- two_anova_new %>% filter (genderos == "Mi")
 two_anova_FA <- two_anova_new %>% filter (genderos == "FA")
 two_anova_Fi <- two_anova_new %>% filter(genderos=="Fi")
 # 청구성 검토오나 등분산성 검토
   Shapiro . test (two_anova_MA $ expense)
   levene Test (expense o genderos, data = two_anova_new)
```

P-Value: 2.376e-05 < & => 등본난성 만족 X

이분만 가정 One-Way ANOVA 시행

Oneway. test (expense a genderos, data = two_anova_new)

```
> oneway.test(expense~genderos, data = two_anova_new)

One-way analysis of means (not assuming equal variances)

data: expense and genderos

F = 22.5, num df = 3.00, denom df = 545.95, p-value =

9.516e-14
```

>d => Ha 채택 => 적H도 하나의 집단의 expense 오랫같은 다른 집단과 다른데, 어떻게 다른지 사후분석 하나함

사후분석 시행

★ 등분산 가정 ⇒ dun(un.test 진행)

(1) library (dunn.test)

이분산 가격 >> dunn. test

②dum.test (two_anova_new \$ expense, two_anova_new \$ genderos, method = "bonferroni")

DV(等時)

TV(等的中心)

Col Mean- Row Mean	FA	Fi	MA	
Fi	-3.722712 0.0006*	<0.025 (불)		
MA	3.374870 0.0022*	7.432891 0.0000*		
Mi	3.533885 0.0012*	7.249746 0.0000*	0.403644 1.0000	
alpha = 0.05 Reject Ho if p <= alpha/2				

L + 검정은 양측검정

각각 쌍을 지어서 보검정

뮤(FA) < 뮤(Fi): p-value 7: 0.0006 < 0.025 (알따/2) 교 ቲ 값이 -3.723 (마이너스)로 나왔으므로

유(FA) > 유(MA) , 유(FA) > 유(Mi) , 유(Fi)> 유(MA) 유(Fi) > 유(Mi) . 유(MA) = 유(Mi)

=> Fi> FA > MA = Mj