4G & 5G Mobile Technology

LTE Introduction

LTE Introduction

- **❖** LTE Requirements
 - High data rates
 - Downlink ≥ 100 Mbps
 - Uplink ≥ 50 Mbps
 - Low latency
 - Less than 5 ms
 - High spectral efficiency
 - Spectrum flexibility

LTE-Advanced 4G Requirements

- Higher data rates
 - Downlink ≥ 3 Gbps
 - Uplink ≥ 1.5 Gbps
- Higher spectral efficiency
 - 16 bps/Hz in Release 8
 - 30 bps/Hz in Release 10
- Increased number of simultaneously active subscribers
- Improved performance at cell edges
 - At least 2.4 bps/Hz/cell

LTE Introduction

❖ 3GPP Specifications

	LTE (ReI-8)	LTE-A (LTE-Advanced) (Rel-10 and beyond)
Downlink Data Rate	300 Mbps	3 Gbps
Uplink Data Rate	75 Mbps	1.5 Gbps
Downlink Spectral Efficiency	16 bps/Hz	30 bps/Hz
Uplink Spectral Efficiency	4.32 bps/Hz	15 bps/Hz
Bandwidth	1.4, 3, 5, 10, 15, 20 MHz	Continuous Spectrum

❖ LTE Architecture

- UE: User Equipment
 - Smartphone
 - SmartWatch
 - SmartCar
 - Tablet, Pad
 - Laptop, PC
 - IoT, Drone
- User Data Flow
- ITS, CPS
- ····· Control Data Flow etc.

EPS: Evolved Packet System EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

RAN: Radio Access Network

LTE Introduction

❖ LTE Architecture

 EPS network is comprised of the EPC and the E-UTRAN

❖ LTE Architecture

 EPS network is comprised of the EPC and the E-UTRAN

User Data Flow

····· Control Data Flow

EPS: Evolved Packet System

EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

LTE Introduction

❖ LTE Architecture

- EPC controls the network services and connectivity of the UE (User Equipment)
 - Seamless connectivity during Handover

Minimizes packet delay

and packet loss

User Data Flow
Control Data Flow

EPS: Evolved Packet System EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

❖ LTE Architecture

- E-UTRAN controls all radio functions
 - · Controls the RAN, Wireless Channels, and eNBs
 - 4G: eNB = eNodeB = evolved Node B
 - 3G: NB = Node B
 - 2G: GSM BTS (Base Transceiver Station)
 - 1G: BS (Base Station)

EPS: Evolved Packet System EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

LTE Introduction

EPC Elements

- P-GW (Packet Data Network Gateway)
 - · IP address allocation for the UE
 - · Mobility anchor for non-3GPP handover
 - Policy enforcement and QoS enforcement

· Packet filtering

P-GW = PDN-GW = PDN GW

User Data Flow

Control Data Flow

EPS: Evolved Packet System EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

❖ EPC Elements

- S-GW (Serving Gateway)
 - · Packet routing and forwarding
 - Mobility anchor for inter-eNB handover
 - Collects information for charging

User Data Flow
Control Data Flow
EPS: Evolved Packet System
EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

LTE Introduction

& EPC Elements

- MME (Mobility Management Entity)
 - User authentication
 - Roaming
 - Controls and Processes the signaling between the UE and the EPC

❖ EPC Elements

- HSS (Home Subscriber Server)
 - · Database containing the user's subscription
 - Compared to 3G, HSS is a combination of the HLR (Home Location Register) and the AuC (Authentication Center)

3G systems

User Data FlowControl Data Flow

EPS: Evolved Packet System

EPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

LTE Introduction

& EPC Elements

- LTE HSS (Home Subscriber Server)
 - 3G HLR (Home Location Register) stores all user subscription information
 - User ID, mobile phone number, address, etc.
 - 3G AuC (Authentication Center) controls the security information based on user identity keys
 - Mutual network-terminal authentication
 - Radio path ciphering & integrity protection
 - etc.

- **&** EPC Elements
- PCRF (Policy Control & Charging Rules Function)
 - QoS (Quality of Service) and charging policy control
 - User based Service plan

User Data FlowControl Data FlowEPS: Evolved Packet SystemEPC: Evolved Packet Core

E-UTRAN: Evolved Universal Terrestrial RAN

4G & 5G Mobile Technology
References

References

- 3GPP TS 36.300 v12.5.0, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2," Mar. 2015.
- 3GPP TS 36.331 v12.5.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification," Mar. 2015.
- 3GPP TR 36.814 v9.0.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects," Mar. 2010.
- 3GPP TR 36.913 v12.0.0, "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)," Sep. 2014.