$$\dot{x} = Ax + Bu
 y = Cx$$
(1)

Let \mathcal{A} be the set of matrices with eigenvalues $l_i = \lambda_i$ and constants (determined by the transfer function) $k_j = c_j$. Define $\epsilon_i = |\lambda_i^* - \lambda_i|$ and $j = |k_j^* - k_j| : j > i$ Let \mathcal{L} be the set of matrices where $\sum_i^n \alpha_i \epsilon_i < \epsilon_0$

$$P \in \mathcal{P} \text{ if } PB = B \text{ and } CP^{-1} = C \text{ and } PAP^{-1} \in \mathcal{A}$$
 (2)

For
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, $P_p = \begin{bmatrix} 1 & 0 \\ p & 1 - p \end{bmatrix}$
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P_p A P_p^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} P_q A P_q^{-1} \notin \mathcal{L}$$

$$\lambda_{1,2} = \frac{1}{2} \left(\lambda_1 + \lambda_2 + x - \bar{x} \pm \left((\lambda_1 - \lambda_2)^2 - (x - \bar{x}) \left((x + 3\bar{x}) + 2(\lambda_1 + \lambda_2) + \frac{4(\lambda_1 - \bar{x})(\lambda_2 - \bar{x})}{k + \bar{x}} \right) \right)^{1/2} \right)$$