

Submitted by

Bipropod Das Shubro 171-115-071 CSE 45th

Supervisor

Md. Mushtaq Shahriyar Rafee Lecturer Department of CSE

Contents

Introduction

Multiple Disease Prediction System is a technology capable of predicting diseases of a person from given data.

I've used machine learning algorithms for predicting diseases.

Stream-lit app used as Interface design.

Diabetes, Heart Disease, Parkinson's Disease, Breast Cancer can be detected by this project.

How Multiple Disease Prediction System Works

Machine Learning Classification

01 Supervised learning

Labeled datasets

Unsupervised learning

Unlabeled datasets

03 Semi-supervised learning

A combination of supervised and unsupervised learning.

04 Reinforcement learning

It is about taking suitable action to maximize reward in a particular situation.

05 Dimensionality reduction

The task of reducing the number of features in a dataset.

System Analysis

Machine Learning Algorithms

- Logistic Regression
- Decision Tree
- KNN
- SVM
- CNN
- XGBoost
- Naive Bayes

Framework

• Stream-lit

Machine Learning Algorithms

01

Logistic Regression

It is used to calculate or predict the probability of a binary (yes/no) event occurring.

05

XGBoost

XGBoost is used for supervised learning problems, where we use the training data (with multiple features) to predict a target variable 02

Decision Tree

A non-parametric supervised learning algorithm.

06

Support-Vector Machine

Supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. 03

Random Forest

The random forest is a classification algorithm consisting of many decisions trees.

04

KNN

Stores all the available data and classifies a new data point based on the similarity.

07

Naive Bayes

Simple and effective Classification algorithms help in building fast machine learning models that can make quick predictions. 08

CNN

Stores all the available data and classifies a new data point based on the similarity.

.

Diseases Prediction

Predicted Diseases

Diabetes

Heart Disease

Parkinson's Disease

Breast Cancer

System Design

Machine Learning Models

User Interface

Figure: Home Page

Figure: Diabetes Positive

Figure: Diabetes Negative

Figure: Heart Disease Positive

Figure: Heart Disease Negative

Figure: Parkinson's Disease Positive

Figure: Parkinson's Disease Negative

Figure: Breast Cancer Positive

Figure: Breast Cancer Negative

Accuracy of The Models

99%

Diabetes Accuracy

Using Random Forest

98%

Heart Disease Accuracy

Using Random Forest

94%

Parkinson's Disease Accuracy

Using CNN & KNN

97%

Breast Cancer Accuracy

Using Support Vector Machine

Advantages

Using this project anyone can know the prediction results of Diabetes, Heart disease, Parkinson's disease & Breast cancer.

Don't need often visit to the hospitals.

Cost effective.

Time saving.

Reduce pathological test.

Future Work

Add Multiple Feature

Chatbot System

Wish to work on other disease

Image Processing, Neural Network & Deep Learning.

