半导体器件、基本电路知识结构系

分析方法:图解法、等效电路法(建模)、解析法 二极管电路:限幅、稳压电路

从图解法看三极管放大电路的记识技巧不

失真	产生原因	固定偏置共射放大电路	自偏压共源放大电路
截止	Q点偏低	$U_{_{0\mathbf{m}}}=I_{_{\mathrm{CQ}}}R'_{\mathrm{L}}$	$U_{ m om} = I_{ m DQ} R_{ m L}'$
饱和	Q点偏高	$U_{\rm om} = U_{\rm CEQ} - U_{\rm CES}$	$U_{\rm om} = U_{\rm DSQ} - U_{\rm DSS}$

从动态指标看三极管放大电路的记识技巧

技巧: β 、 $(1+\beta) \rightarrow g_{\rm m}$ $r_{\rm be} \rightarrow 1$; $R_{\rm c} \rightarrow R_{\rm d}$; $R_{\rm e} \rightarrow R_{\rm s}$

晶体管放大电路		场效应管放大电路	
共射	$\dot{A}_{\rm u} = -\frac{\beta (R_{\rm c} //R_{\rm L})}{r_{\rm be} + (1 + \beta)R_{\rm e}}$	共源	$\dot{A}_{\rm u} = -\frac{g_{\rm m} (R_{\rm d}//R_{\rm L})}{1 + g_{\rm m} R_{\rm s}}$
六剂	$R_{\rm o} \approx R_{\rm c}$	六师	$R_{ m o} pprox R_{ m d}$
共集	$\dot{A}_{\rm u} = \frac{(1+\beta)(R_{\rm e}/\!/R_{\rm L})}{r_{\rm be} + (1+\beta)(R_{\rm e}/\!/R_{\rm L})}$	共漏	$\dot{A}_{\rm u} = \frac{g_{\rm m}(R_{\rm s}//R_{\rm L})}{1 + g_{\rm m}(R_{\rm s}//R_{\rm L})}$
	$R_{\rm o} = R_{\rm e} / \frac{r_{\rm be} + R_{\rm sb}}{1 + \beta}$		$R_{\rm o} = R_{\rm s} / / \frac{1}{g_{\rm m}}$

[注] ① 共基→共栅; ② 场效应管 R_i = R_g + R_{g1}//R_{g2}或 R_i = R_g

差分放大、负反馈、功率放大知识结构。

(反馈组态 {组态的判断 反馈组态 {反馈对放大电路的影响 放大电路中的反馈 深度负反馈放大电路的估算 反馈放大电路的稳定性

功率放大电路· 指标的估算

放大电路中的反馈

(1) 会看: 反馈组态的判断 取样对象 局部电路

从输出端看

放大电路中的反馈

(1) 会看: 反馈组态的判断 反馈方式 局部电路

从输入端看

放大电路中的反馈

- (1) 会看: 反馈组态的判断
- (2) 会引:直流负反馈稳定静态工作点,交流负反馈改善放大电路的性能

(3) 会算: 深度负反馈条件下
$$\left\{ egin{align*} \begin{align*} \begin{align*}$$

 $\{AF\} = 1, \varphi_{AF} = (2n+1)\pi$ (4) 稳定 $\{PAF\} = 1, \varphi_{AF} = (2n+1)\pi$ (4) 稳定 $\{PAF\} = 1, \varphi_{AF} = (2n+1)\pi$ 消除自激(减少级数、相位补偿)

功率放大电路

(1) **电**路形式: OCL、OTL ^{甲乙类} 局部电路

功率放大电路

(1) 电路形式: OCL、OTL 甲乙类 局部电路

(2) 性能指标:
$$P_{\text{o}} \setminus P_{\text{VCC}} \setminus P_{\text{T}} \setminus \eta$$
 | 字记 $I_{\text{C(AV)}} = \frac{2}{\pi} I_{\text{om}}$, $U_{\text{om}} = \frac{2}{\pi} V_{\text{CC}}$, $P_{\text{T1m}} = 0.2 P_{\text{om}}$

$$P_{0} = U_{0}I_{0} = \frac{U_{0m}I_{0m}}{2} = \frac{U_{0m}^{2}}{2R_{L}}$$

$$P_{\text{VCC}} = V_{\text{CC}} \cdot I_{\text{C(AV)}} = V_{\text{CC}} \cdot \frac{2}{\pi} \cdot \frac{U_{\text{om}}}{R_{\text{r}}}$$

$$P_{\rm T} = P_{\rm VCC} - P_{\rm o}$$

$$\eta = \frac{P_{_{0}}}{P_{_{VCC}}}$$

$$I_{\text{CM}} > \frac{V_{\text{CC}}}{R_{\text{r}}}$$
, $U_{\text{(BR)CEO}} > 2V_{\text{CC}}$, $P_{\text{CM}} > 0.2P_{\text{om}}$ 对于OTL功效: $V_{\text{CC}} \to \frac{V_{\text{CC}}}{2}$

任意:
$$U_{\text{om}} \approx U_{\text{im}}$$

极限:
$$U_{\text{om}} = V_{\text{CC}} - U_{\text{CES}}$$

最大功耗:
$$U_{\text{om}} = \frac{2}{\pi} V_{\text{co}}$$

任意:
$$U_{\text{om}} \approx U_{\text{im}}$$
 极限: $U_{\text{om}} = V_{\text{CC}} - U_{\text{CES}}$ 理想: $U_{\text{om}} \approx V_{\text{CC}}$ 最大功耗: $U_{\text{om}} = \frac{2}{\pi} V_{\text{CC}}$ 带射极电阻: $U_{\text{RLm}} = \frac{R_{\text{L}}}{R_{\text{e}} + R_{\text{L}}} U_{\text{om}}$

集成运算放大电路

- (1) 电流源电路: 镜像电流源、微电流源、多路电流源
- (2) 差动放大电路

集成运放、信号发生、直流电源(知识结构),

集成运放 {线性应用 {识别方法:引入负反馈 }分析方法:"虚断"和"虚短" 基本应用 {识别方法:无反馈或引入正反馈 非线性应用 {分析方法:"虚断"和"输出电压发生跳变的临界条件"

至流电路: 半波、全波、桥式 直流电源 {總波电路: 电容滤波、电感滤波、π型滤波 稳压电路: 并联型、串联型、三端集成稳压器、开关型

(1)信号运算电路——引入深度负反馈,列三个方程求解运算关系

$$u_{\rm o} = \left(1 + \frac{R_{\rm f}}{R_{\rm i}}\right) u_{\rm I}$$

$$u_{\rm O} = R_{\rm f} \left(\frac{u_{\rm I3}}{R_{\rm 3}} + \frac{u_{\rm I4}}{R_{\rm 4}} - \frac{u_{\rm I1}}{R_{\rm 1}} - \frac{u_{\rm I2}}{R_{\rm 2}} \right)$$

(1) 信号运算电路——引入深度负反馈,列三个方程求解运算关系

- (1) 信号运算电路——引入深度负反馈,列三个方程求解运算关系
- (2) 有源滤波电路——以负反馈为主,列三个方程和KCL方程求解传递函数

- (1) 信号运算电路——引入深度负反馈,列三个方程求解运算关系
- (2) 有源滤波电路——以负反馈为主,列三个方程和KCL方程求解传递函数
- (3) 电压比较器——开环或引入正反馈,列三个方程求解阈值电压

$$U_{\rm TH} = u_{\rm I} = \frac{1}{R_{\rm I} + R_{\rm 2}} (R_{\rm 2}U_{\rm R} + R_{\rm I}u_{\rm O})$$

信号发生电路

- (1) 正弦波振荡电路
- ① RC正弦波振荡电路

文氏电桥振荡电路:

$$\Re R_1 = R_2 = R$$
, $C_1 = C_2 = C$

当
$$\omega = \omega_0$$
时
$$\left\{ \begin{vmatrix} \varphi_F = 0^\circ, & \varphi_A = 0^\circ, & \varphi_{AF} = 0^\circ \\ |\dot{F}| = \frac{1}{3}, & \dot{\Xi} |\dot{A}\dot{F}| > 1 得 1 + \frac{R_f}{R_3} > 3 \right\}$$

$$f_{\scriptscriptstyle 0} = \frac{\omega_{\scriptscriptstyle 0}}{2\pi} = \frac{1}{2\pi RC}$$

RC移相式正弦波振荡电路:

$$\frac{\varphi_{\rm A} = -180^{\circ}}{\varphi_{\rm E} = 0 \sim 270^{\circ}} \right\} \varphi_{\rm AF} = -180^{\circ} \sim 90^{\circ} \ \ \ f_{\circ} \approx \frac{1}{2\pi\sqrt{6}RC}$$

- (1) 正弦波振荡电路
- RC正弦波振荡电路 ② LC正弦波振荡电路 变压器反馈式振荡电路

只有同名端接线正确,才能满足相位平衡条件。 $f_{0}=rac{1}{2\pi\sqrt{LC}}$

信号发生电路

- (1) 正弦波振荡电路
- ① RC正弦波振荡电路 ② LC正弦波振荡电路 三点式振荡电路

$$f_{0} = \frac{1}{2\pi\sqrt{(L_{1} + L_{2} + 2M)C}}$$

- (1) 正弦波振荡电路
- ① RC正弦波振荡电路 ② LC正弦波振荡电路

改进型三点式振荡电路

克拉泼振荡电路

$$f_{\rm o} pprox rac{1}{2\pi \sqrt{LC_3}}$$

西勒振荡电路

$$f_{\rm o} \approx \frac{1}{2\pi\sqrt{L(C_3 + C_4)}}$$

振荡频率不仅可调, 而且稳定

- (1) 正弦波振荡电路
- ① RC正弦渡振荡电路 ② LC正弦波振荡电路 ③ 石英晶体振荡电路

并联型晶体振荡电路

串联型晶体振荡电路

- (1) 正弦波振荡电路
- (2) 非正弦波发生电路
- ① 方波和矩形波发生电路

方波发生电路
$$\begin{cases} \text{峰值 } U_{\text{Op} \sim p} = 2U_{\text{Z}} \\ \text{振荡周期 } T = 2RC\ln\left(1 + \frac{2R_{1}}{R_{2}}\right) \end{cases}$$

- (1) 正弦波振荡电路
- (2) 非正弦波发生电路
- ① 方波和矩形波发生电路
- ② 三角波和锯齿波发生电路

直流电源

(1) 单相整流与滤波电路

三种单相整流电容滤波电路的比较

电路	輸出电压平均值U _{O(AV)}			每个整流管的		每个整流管的
名称	整流	电容测	急波	最大反向	电压 U_{RM}	平均电流 $I_{D(AV)}$
	电路	$R_{\!\scriptscriptstyle L}$ 开路	帶有 $R_{\!\scriptscriptstyle m L}$	整流电路	电容滤波	2(41)
半波	0.45U ₂	$\sqrt{2}U_2$	U_2	$\sqrt{2}U_2$	$2\sqrt{2}U_2$	$I_{\scriptscriptstyle \mathrm{O(AV)}}$
全波	$0.9U_2$	$\sqrt{2}U_2$	1.2 <i>U</i> ₂	$2\sqrt{2}U_2$	$2\sqrt{2}U_{2}$	$I_{\mathrm{O(AV)}}$ /2
桥式	0.9U ₂	$\sqrt{2}U_2$	1.2 <i>U</i> ₂	$\sqrt{2}U_2$	$\sqrt{2}U_2$	$I_{ m O(AV)}$ /2

稳压管并联型、串联型稳压电路

- (1) 单相整流与滤波电路
- (2) 稳压电路
 - ① 并联型稳压电路

由稳压二极管和限流电阻组成。电路的稳压是由 I_Z 的调节作用和限流电阻电压 U_R 的补偿作用实现的。

② 串联型稳压电路

仍由采样电路、基准电路、比较放大电路和调整环节组成,属于电压串联负反馈。输出电压的稳定是依靠调节调整管的管压降 U_{CE} 来实现的。

三端稳压直流电源

- (1) 单相整流与滤波电路
- (2) 稳压电路
 - ③ 三端集成稳压器

三端集成稳压器的对比

功能	输出正、负电压	特点	
田亭之	78系列輸出正电压	±5V, ±6V, ±9V, ±12V,	
固定式	79系列輸出负电压	± 15 V、 ± 18 V、 ± 24 V	
-C 301 33	W117、W217、W317输出正电压	输出端与可调端之间	
	W137、W237、W337輸出负电压	存在1.25V的电压	

④ 串联开关型稳压电路 调整管工作在开关状态。它是通过控制调整管导通和截止的时间来稳压的。

