CSE 473 Pattern Recognition

Instructor:
Dr. Md. Monirul Islam

Classification Example 2

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- A married person with income 120K did not refund the loan previously
- Can we trust him?

- We have multiple attributes $(A_1, A_2, ..., A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C|A_1, A_2, ..., A_n)$
- Can we estimate $P(C|A_1, A_2, ..., A_n)$ directly from data?

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{_{1}}A_{_{2}}...A_{_{n}}) = \frac{P(A_{_{1}}A_{_{2}}...A_{_{n}} \mid C)P(C)}{P(A_{_{1}}A_{_{2}}...A_{_{n}})}$$

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes

$$P(C | A_1, A_2, ..., A_n)$$

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C | A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C | A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

• Assume independence among attributes A_i when class is given:

$$-P(A_1, A_2, ..., A_n | C_i) = P(A_1 | C_i) P(A_2 | C_i) ... P(A_n | C_i)$$

Naïve Bayes Classifier

• Assume independence among attributes A_i when class is given:

$$-P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$$

- can estimate $P(A_i | C_j)$ for all A_i and C_j from training data
- the new pattern is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximum

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- e.g., $P(No) = 7/10$,
 $P(Yes) = 3/10$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- e.g., $P(No) = 7/10$,
 $P(Yes) = 3/10$

• For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}|/N_c$$

- where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
- Examples:

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i, c_j) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110K
 - sample variance = 2975

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{-\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i, c_j) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110K
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
```

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
P(X|Class=No) = P(Refund=No|Class=No)
 \times P(Married|Class=No)
 \times P(Income=120K|Class=No)
 = 4/7 \times 4/7 \times 0.0072 = 0.0024
```

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
P(X|Class=No) = P(Refund=No|Class=No) \\ \times P(Married|Class=No) \\ \times P(Income=120K|Class=No) \\ = 4/7 \times 4/7 \times 0.0072 = 0.0024 P(X|Class=Yes) = P(Refund=No|Class=Yes) \\ \times P(Married|Class=Yes) \\ \times P(Income=120K|Class=Yes) \\ = 1 \times 0 \times 1.2 \times 10^{-9} = 0
```

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
P(X|Class=No) = P(Refund=No|Class=No)

\times P(Married| Class=No)

\times P(Income=120K| Class=No)

= 4/7 \times 4/7 \times 0.0072 = 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)

\times P(Married| Class=Yes)

\times P(Income=120K| Class=Yes)

= 1 \times 0 \times 1.2 \times 10^{-9} = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No
```

Example-2 of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Example-2 of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals
$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Sample Data for Sessional on Bayesian Classification

	Feature 1	Feature 2	Class
	1.7044	3.6651	1
	1.6726	4.6705	1
Sample Data	1.4597	4.194	1
_	1.9761	4.1965	1
for	1.9126	3.4987	1
Bayesian	1.5214	3.9072	1
Classification	2.6463	3.473	1
Classification	2.2205	3.9642	1
	6.8104	10.0517	2
	7.5809	9.8897	2
	8.1287	9.8605	2
	7.9081	9.6332	2
	7.9162	9.9677	2
	7.9415	9.278	2
	8.0842	10.3062	2
	7.7494	9.3382	2
	8.1146	9.9617	2

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Bayesian Belief Networks

- Let we have *l* random variables
- The joint probability is given by,

$$p(x_1, x_2, ..., x_\ell)$$

which is calculated as

$$p(x_{\ell} | x_{\ell-1},...,x_1) \cdot p(x_{\ell-1} | x_{\ell-2},...,x_1) \cdots p(x_2 | x_1) \cdot p(x_1)$$

Bayesian Belief Networks

The formula

$$p(x_1, x_2, ..., x_{\ell}) = p(x_{\ell} \mid x_{\ell-1}, ..., x_1) \cdot p(x_{\ell-1} \mid x_{\ell-2}, ..., x_1) \cdot ...$$
$$... \cdot p(x_2 \mid x_1) \cdot p(x_1)$$

can be verified as

$$p(x_{1}, x_{2},...,x_{\ell}) = p(x_{1}, x_{2},...,x_{\ell-1},x_{\ell})$$

$$= p(x_{1}, x_{2},...,x_{\ell-1}) \cdot p(x_{\ell} | x_{1}, x_{2},...,x_{\ell-1})$$

$$= p(x_{1}, x_{2},...,x_{\ell-1}) \cdot p(x_{\ell} | x_{\ell-1},...,x_{2},x_{1})$$

$$\vdots$$

Bayesian Belief Networks

The formula

$$p(x_1, x_2, ..., x_{\ell}) = p(x_{\ell} | x_{\ell-1}, ..., x_1) \cdot p(x_{\ell-1} | x_{\ell-2}, ..., x_1) \cdot ...$$
$$... \cdot p(x_2 | x_1) \cdot p(x_1)$$

can be written as

$$p(x_1, x_2, ..., x_\ell) = p(x_1) \cdot \prod_{i=2}^{\ell} p(x_i \mid A_i)$$

where

$$A_i \subseteq \{x_{i-1}, x_{i-2}, ..., x_1\}$$