CSP-S 2019 模拟赛

Vexoben

2019年10月31日

题目名称	shot	hope	expr
题目类型	传统型	传统型	传统型
目录	shot	hope	expr
可执行文件名	shot	hope	expr
输入文件名	shot.in	hope.in	expr.in
输出文件名	shot.out	hope.out	expr.out
每个测试点时限	1秒	1 秒	1 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	10	20	10
测试点是否等分	是	是	是

评测环境: Linux

编译选项: -std=c++11 -02 题目与子任务顺序和难度无关。

时限都在标算三倍以上。如果你的代码运行时间过长,请更多地从复杂度上进行优化。

保证至少有一道一(三道)一送温暖题。

CSP-S 2019 模拟赛 1 SHOT

1 shot

1.1 Background

要怎样才能将我的心 映在镜中让你看清 即使是场终成奢望的爱恋 是否也有映在镜中的一天

1.2 Description

在马群中,大马的久久注视着小马.

那快乐的神态, 曼妙的身材和矫健的步伐已经深深印在大马的心里.

在长久的犹豫之后,大马决定用自己优秀的射击技巧得到小马的注目.

射击场上有 n 只气球排成一排, 大马会进行 m 次射击.

为了展现自己的射击技巧,大马每次会请小马选定一个气球 x_i ,如果第 x_i 个气球没有被打破,就会打破第 x_i 个气球,否则,大马会随机选择左边或右边第一个没有被打破的气球进行射击 (如果一边已经没有气球了,大马一定会射击另一边的气球).

但是, 小马的目光并没有投向大马. 它在思考: 如果大马每次射击都保证击中, 最后气球有多少种可能的被打破的状态呢?

大马的心在滴血. 它决定请你帮它回答这个问题.

两种状态不同, 当且仅当一个气球在一个状态中被打破, 在另一个状态中没有被打破. 答案模 998244353 输出.

1.3 Input Format

第一行两个整数 n, m.

第二行, m 个整数, 第 i 个整数为 x_i .

1.4 Output Format

一行一个整数,表示最终可能的状态数模 998244353.

1.5 Input1

6 4

 $2\ 3\ 4\ 4$

CSP-S 2019 模拟赛 1 SHOT

1.6 Output1

2

1.7 Input2 / Output2

见选手文件下的 shot2.in 和 shot2.ans.

1.8 Subtasks

设 a_i 为第 i 个气球被选中的次数.

对于 20% 的数据, $n, m \le 20$

对于 40% 的数据, $n, m \leq 300$

对于 60% 的数据, $n, m \leq 5000$

对于另 10% 的数据, 只存在最多一个整数 i 满足 $a_i > 1$

对于 100% 的数据, $1 \le m \le n \le 1000000, 1 \le x_i \le n$

CSP-S 2019 模拟赛 2 HOPE

2 hope

2.1 Background

Lover lover

Lover

Milo obichash li me oshte

点歌人: Bartholomew

(熟练的 OI 选手应该能在一秒钟内脑补出画面)

2.2 Description

熟悉而悠扬的旋律使大马重新燃起了 hope.

它意识到,强健的体魄,高超的射击技巧都不是帮助它驰骋的利器.为了获得小马的欢心,它开始学习数学.最近它在研究这样一个问题:

给定一棵 n 个节点的树,一开始树上所有节点都是黑色. 它需要依次完成小马的 q 次操作,操作都是以下两者之一.

1. 小马选择一个节点 x,以 p的概率将点 x和所有相邻节点同时染成白色,以 1-p的概率将点 x和所有相邻节点同时染成黑色

2. 小马询问大马, 当前白色节点个数的方差是多少答案模 998244353 输出.

2.3 Input Format

第一行三个整数 n,q,p,分别表示树的节点个数,操作次数和将节点染为白色的概率. 接下来 n-1 行,每行两个整数 x_i,y_i ,表示一条树边.

之后 q 行, 每行第一个整数 op_i 表示操作类型. 如果 $op_i = 1$, 后面还接着一个整数 x_i , 表示将 x_i 及其相邻节点染色; 如果 $op_i = 2$, 表示一次询问.

2.4 Output Format

对于每个 $op_i = 2$,输出一行一个整数表示白色节点个数的方差模 998244353 的结果.

2.5 Input1

 $4\ 5\ 499122177$

1 2

CSP-S 2019 模拟赛 2 HOPE

13

1 4

1 4

2

1 2

13

2

2.6 Output1

1

499122178

2.7 Input2 / Output2

见选手文件下的 hope2.in 和 hope2.ans

2.8 Subtasks

对于 5% 的数据, $n,q \leq 3$

对于 20% 的数据, $n, m \le 20$

对于 40% 的数据, $n, m \le 5000$

对于 60% 的数据, $n, m \le 100000$

对于另 10% 的数据, $n \le 10, q \le 500000$

对于另 10% 的数据, 保证节点 x_i 的度为 1

对于 100% 的数据, $1 \le n, m \le 500000, 1 \le x_i \le n, p \in [0, 998244353), op_i \in \{1, 2\}$, 保证读入的图形成一棵树

CSP-S 2019 模拟赛 3 EXPR

3 expr

3.1 Background

如果过去还值得眷恋 别太快冰释前嫌 谁甘心就这样 彼此无挂也无牵

3.2 Description

凭借大马超凡的天赋, 它很快就 **稳操胜券**, 成为远近闻名的马学大师.

作为马学大师,大马常常和小马进行学术讨论.讨论的内容往往能够突破马识的边界,特别是令众马闻风丧胆的微元问题和表达式问题.他们现在在表达式问题上产生了分歧.为了验证彼此的猜想,他们要对大量的表达式进行检验,具体可以抽象为:

给定只含有加、减、乘、除和数字 (没有括号) 的表达式, q 组询问, 每次询问如果将表达式中出现的第 x_i 个数字改为 y_i , 表达式的值是多少. 如果表达式计算时会出现除 0 的情况, 输出"Invalid"(不含引号).

答案模 998244353 输出.

3.3 Input Format

第一行两个整数 n,q, 表示表达式中出现数字的个数和询问次数.

第二行,一个字符串 S, 为题目描述中的表达式.

接下来 q 行, 每行两个整数 x_i, y_i , 表示一次询问.

3.4 Output Format

对于每次询问,输出一行一个整数表示答案. 如果表达式不合法,输出"*Invalid*"(不含引号).

请注意,输出的字母严格区分大小写.

3.5 Input1

5 3

1+1/0-2*3

 $2\ 1000$

3 1

4 0

CSP-S 2019 模拟赛 3 EXPR

3.6 Output1

Invalid

998244349

Invalid

3.7 Input2 / Output2

见选手文件下的 expr2.in 和 expr2.ans

3.8 Subtasks

对于 20% 的数据, $n,q \le 10$

对于 40% 的数据, $n,q \le 2000$

对于另 20% 的数据, 原表达式中不出现除法和 0.

对于另 30% 的数据, 原表达式中不出现除法.

对于 100% 的数据 $|S| \le 1000000, q \le 300000, y_i$ 和原表达式中出现的数字 $\in [0,998244353)$

在不考虑除 0 的情况下, 保证原表达式和询问的表达式合法. 原表达式一定以数字开

头. 除数字 0 外, 所有读人的数字不会有前导零. 表达式中间没有空格.