Contents

1	$\overline{\text{Vec}}$	Vector Spaces		
	1.1	Mappings	٠	
	1.2	Dual Space	:	

Chapter 1

Vector Spaces

The concept of a vector space leads naturally to that of a tensor. Tensors generalize vectors.

A vector U is simply an element of a set V called a (linear) vector space. A vector space is a specific type of set along with two operations

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$

and

$$\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V}$$

which satisfies certain axioms:

- $U + V \in \mathcal{V}$ for all $U, V \in \mathcal{V}$.
- $aU \in \mathcal{V}$ for all $c \in \mathbb{R}, U \in \mathcal{V}$.
- There is some $0 \in \mathcal{V}$ such that $0 + U = U + 0 = U \in \mathcal{V}$.
- For any $U \in \mathcal{V}$, there exists $-U \in \mathcal{V}$ such that U + (-U) = (-U) + U = 0.
- (U+V)+W=U+(V+W) for all $U,V,W\in\mathcal{V}.$

Since vector spaces are dominated by the concept of linearity, we often like to express vectors as linear combinations of other vectors:

$$q = aw + bp + cv + \cdots$$

From linear algebra, we know that the number of basis vectors for a particular vector space is unique (well-defined) and is called the dimension of that space.

Picking a basis is often required for computations, but it is not necessary always. Things can be done in a basis-free way.

Two vector spaces are isomorphic if we can establish a bijective linear map between the two.

Vector spaces are a very elementary concept. Many things in mathematics and physics are vector spaces with additional structures on top.

We will write basis vectors as

$$e_0, e_1, e_2, \dots$$

and write arbitrary vector A as

$$A = A^0 e_0 + A^1 e_1 + A^2 e_2 + A^3 e_3 = A^\mu e_\mu$$

1.1 Mappings

Consider two vector spaces \mathcal{V} and \mathcal{W} with bases $\{e_{\mu}\}$ and $\{f_{\mu}\}$, respectively. A map between the vector spaces can be written

$$\Lambda: \mathcal{V} \to \mathcal{W}$$

or in bracket notation as

$$\langle \Lambda, \cdot \rangle : \mathcal{V} \to \mathcal{W}$$

When we restrict ourselves to linear maps, we have

$$\langle \Lambda, A \rangle = \langle \Lambda, A^{\mu} e_{\mu} \rangle$$
$$= A^{\mu} \langle \Lambda, e_{\mu} \rangle$$

which only depends on the action of Λ on the basis vectors of \mathcal{V} . Thus, Λ is completely defined if we know how it operates on all basis vectors.

1.2 Dual Space

Consider real vector space \mathcal{V} with basis $\{e_{\mu}\}$. We can map \mathcal{V} to any other vector space \mathcal{W} with basis $\{f_{\mu}\}$. One particular choice for \mathcal{W} is the underlying set of scalars, \mathcal{R} (which is, itself, a vector space).

The dual space to real vector space \mathcal{V} is the vector space \mathcal{V}^* consisting of linear maps $\Lambda: \mathcal{V} \to \mathbb{R}$. It is a vector space when we define addition and scalar multiplication in the obvious way. As a vector space, it has its own basis, which we will write as $\{e^{\mu}\}$.

Note that we automatically obtain the dual space from only the original vector space; no additional structure is needed to obtain this.

There is no immediate relation between the bases of the vector space and the dual space; there is no canonical mapping from a basis vector to a dual basis vector. However, we make the convenient choice of dual basis which satisfies

$$\langle e^{\mu}, e_{\nu} \rangle = \delta^{\mu}_{\nu}$$

Prop 1.1. Let V be a finite-dimensional vector space with basis $\{e_1, \ldots, e_n\}$. Then the set $\{e^1, \ldots, e^n\}$ of covectors defined by

$$\langle e^\mu,e_\nu\rangle$$
 = δ^μ_ν

forms a basis for the dual space to V, V^* . In particular,

$$\dim \mathcal{V} = \dim \mathcal{V}^*$$

Proof. Existence of this basis is guaranteed, since given a basis for \mathcal{V} , we are defining the linear functionals $\{e_{\nu}\}$.

Linear independence is easy to prove. Assume

$$A_{\mu}e^{\mu}=0$$

is a trivial covector and let it operate on the basis for V:

$$0 = \langle A_{\mu}e^{\mu}, e_{\nu} \rangle = A_{\mu} \langle e^{\mu}, e_{\nu} \rangle = A_{\mu} \delta^{\mu}_{\nu} = A_{\nu}$$

so that every component of the trivial covector is 0. Hence, the dual basis vectors $\{e^{\nu}\}$ are a linearly independent set.

To prove that the dual basis spans the dual space, first note that, if so, we could write arbitrary dual vector $A \in \mathcal{V}^*$ as $A_{\mu}e^{\mu}$ and operate on basis vector e_{ν} to obtain $\langle A_{\mu}e^{\mu}, e_{\nu} \rangle = A_{\nu}$ so that

$$A_{\mu}e^{\mu} = \langle A_{\nu}e^{\nu}, e_{\mu} \rangle e^{\mu} = A(e_{\mu}) e^{\mu}$$

That is, the coefficients of the dual vector in the dual basis would be just the result of the dual vector applied to the basis vectors of \mathcal{V} . To show that this expansion is correct, we must show that

$$A(V) = A(e_{\mu}) \langle e^{\mu}, V \rangle$$

for arbitrary vector $V = V^{\lambda} e_{\lambda} \in \mathcal{V}$. Then

$$A(V) = A(V^{\lambda}e_{\lambda}) = V^{\lambda}A(e_{\lambda})$$

by linearity of A. The right-hand side gives

$$A(e_{\mu})\langle e^{\mu}, V \rangle = V^{\lambda}A(e_{\mu})\delta^{\mu}_{\lambda} = V^{\lambda}A(e_{\lambda})$$

and so we have $A = A_{\mu}e^{\mu}$ where $A_{\mu} = A(e_{\mu})$, thus the dual basis spans \mathcal{V}^* . This choice of dual basis is arbitrary, yet convenient.

As a linearly independent spanning set for \mathcal{V}^* , the dual basis is truly a basis for this vector space. There are the same number of basis vectors in the dual basis as in the original basis for \mathcal{V} , and so the spaces have equal dimension.

Since the dual space is itself a vector space, we can imagine maps which send the dual space vectors to the real numbers: this is the "double-dual" space \mathcal{V}^{**} . Though it seems that we could repeat this construct to obtain infinitely many such spaces, an observation simplifies the situation. Note that if Λ is a dual vector and $A^{\mu}e_{\mu}$ is a vector, then we write the linear transformation as

$$\langle \Lambda, A^{\mu} e_{\mu} \rangle$$

and we think of this as the operation of the linear function

$$\langle \Lambda, \cdot \rangle : \mathcal{V} \to \mathbb{R}$$

However, notice that we can alternatively think of this as the operation of the function

$$\langle \cdot, A^{\mu} e_{\mu} \rangle : \mathcal{V}^* \to \mathbb{R}$$

which is a linear function. Thus, we have $\mathcal{V} \subset \mathcal{V}^* *$.

Theorem 1.2. A finite-dimensional vector space V and its double-dual space V^{**} are isomorphic.

Proof. Let $V \in \mathcal{V}$ be an arbitrary vector and define the map $\phi_V : \mathcal{V}^* \to \mathbb{R}$ as

$$\phi_V(\Lambda) = \langle \Lambda, V \rangle$$

We claim that the mapping $V \mapsto \phi_V$ is a vector space isomorphism, i.e., a linear bijection, between \mathcal{V} and \mathcal{V}^{**} . First, note that $\phi_V \in \mathcal{V}^{**}$.

Next, assume $\phi_V = \phi_W$ for some $V, W \in \mathcal{V}$. That is, for arbitrary dual vector Λ we have

$$\phi_V(\Lambda) = \langle \Lambda, V \rangle = \langle \Lambda, W \rangle = \phi_W(\Lambda)$$

In particular, let Λ be the projection onto the *i*-th basis vector, π_i (certainly a linear mapping from \mathcal{V} to \mathbb{R}). Then

$$V^i = \langle \pi_i, V \rangle = \langle \pi_i, W \rangle = W^i$$

We can do this for every basis vector, and conclude that V = W. Hence, our mapping is injective.

Last, let $\Psi \in \mathcal{V}^{**}$ be an arbitrary double-dual vector. We must show that $\Psi = \Phi_V$ for some $V \in \mathcal{V}$. This is the direct approach....

Instead, note that since a vector space and its dual space have equal dimension, it follows that \mathcal{V} and \mathcal{V}^{**} have equal dimension.

Chapter 2

Tensor Spaces

Given a vector space \mathcal{V} , we automatically obtain a dual vector space \mathcal{V}^* . We can naturally start taking Cartesian products:

$$\mathcal{V} \times \mathcal{V} = \{ (V, W) \mid V, W \in \mathcal{V} \}$$