2019-2020 学年夏春季 学期《大学物理甲 1》期末考试试卷参考答案 A

- 一、填空题: (每题 4 分, 2 个空格的题每个空格给 2 分, 共 48 分)
- 1. $\int_{v_0}^{v} dv = \int_{0}^{t} a dt = \int_{0}^{t} (A + Bt^2) dt, \quad v = v_0 + At + \frac{1}{3}Bt^3,$ $\int_{x_0}^{x} dx = \int_{0}^{t} v dt = \int_{0}^{t} (v_0 + At + \frac{1}{3}Bt^3) dt, \quad x = x_0 + v_0 t + \frac{1}{2}At^2 + \frac{1}{12}Bt^4$
- 2. $\int_0^t F dt = \int_0^5 5m(5-2t)dt = mv 0$, $v = \int_0^5 (25-10t)dt = 25t 5 \times t^2 \Big|_0^5 = 0$ (m/s)
- 3. $\Delta E_p = -G \frac{mM}{R_2} (-G \frac{mM}{R_1}) = GmM \frac{(R_2 R_1)}{R_2 R_1}$, $\Delta E_k = -\Delta E_p = GMm \frac{(R_1 R_2)}{R_1 R_2}$
- 4. $mvr m(v_0 v)r = 0$, $v = \frac{v_0}{2}$
- 5. $\Delta t' = \frac{\Delta t}{\sqrt{1 u^2/c^2}}$, $u = c\sqrt{1 (\frac{\Delta t}{\Delta t'})^2} = \frac{\sqrt{3}}{2}c$, $\Delta x' = \frac{\Delta x u\Delta t}{\sqrt{1 u^2/c^2}} = -\sqrt{3}c$
- 6. $E = mc^2 = \frac{m_0}{\sqrt{1 u^2/c^2}}c^2 = Km_0c^2$, $u = \frac{c}{K}\sqrt{K^2 1}$
- 7. $x_2 = 2 \times 10^{-2} \cos(5t \frac{\pi}{2})$ (SI), $\Delta \varphi = \pi$, $A = A_1 A_2 = 4 \times 10^{-2}$ m, $\pm \pm A_1 > A_2$, $\varphi = \varphi_1 = \frac{\pi}{2}$
- 8. $x = 0.04\cos(\frac{2\pi}{T}t + \varphi)$, $0.02 = 0.04\cos\varphi$, $v_0 > 0$, $\varphi = -\frac{\pi}{3}$ $0 = 0.04\cos(\frac{2\pi}{T}t - \frac{\pi}{3})$, $\frac{2\pi}{T} \times 1 - \frac{\pi}{3} = \frac{\pi}{2}$, $T = \frac{12}{5}$ (s) = 2.4 s
- 9. $v_1 = \frac{u}{u v_s} v$, $v_2 = \frac{u}{u + v_s} v$, $\frac{v_1}{v_2} = \frac{u + v_s}{u v_s}$, $v_s = \frac{v_1 v_2}{v_1 + v_2} u = 30 \text{ (m/s)}$
- 10. $\eta = 1 \frac{T_2}{T_1} = 1 \frac{300}{400} = 25\%$, $e = \frac{Q}{A} = \frac{T_2}{T_1 T_2} = \frac{300}{400 300}$, $A = \frac{Q}{3} = 400 \text{ J}$
- 11. $E = v \frac{i}{2}RT = 6.23 \times 10^3 \text{ J}$, $\overline{\varepsilon}_t = \frac{3}{2}kT = 6.21 \times 10^{-21} \text{ J}$, $\overline{\varepsilon} = \frac{5}{2}kT = 1.035 \times 10^{-20} \text{ J}$
- 12. $E_A = -\frac{\sigma}{2\varepsilon_0} \frac{\sigma}{2\varepsilon_0} \frac{\sigma}{2\varepsilon_0} = -\frac{3\sigma}{2\varepsilon_0}$, $E_B = \frac{\sigma}{2\varepsilon_0} \frac{\sigma}{2\varepsilon_0} \frac{\sigma}{2\varepsilon_0} = -\frac{\sigma}{2\varepsilon_0}$ $E_C = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{2\varepsilon_0}$, $E_D = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{3\sigma}{2\varepsilon_0}$
- 二、计算题: (6题, 共52分)
- 1. 解: $TR = \frac{1}{2}MR^2\alpha$, $Mg T = Ma_c$, $TR = \frac{1}{2}MR^2\alpha'$, $a_c = \alpha R + \alpha' R$ 得: $\alpha = \frac{2g}{5R}$; $a_c = \frac{4}{5R}g$; $\alpha' = \frac{2g}{5R}$; $T = \frac{1}{5}Mg$

2. 解: 角动量守恒:
$$mvl = m\frac{v}{2}l + J\omega_0$$
, $J = \frac{1}{3}Ml^2 + Ml^2 = \frac{4}{3}Ml^2$ 得: $\omega_0 = \frac{3mv}{8Ml}$ 机械能守恒: $\frac{1}{2}J\omega_0^2 = Mg \cdot 2l + Mgl + \frac{1}{2}J\omega^2$, $\omega \ge 0$, 得: $v \ge \frac{4M}{m}\sqrt{2gl}$

3. 解: (1) 设反射波方程为:
$$y_2 = A\cos(\omega t - \frac{2\pi}{\lambda}x + \varphi)$$
 固定端, $(\omega t - \frac{2\pi}{\lambda}x + \varphi) - (\omega t + \frac{2\pi}{\lambda}x) = \varphi - \frac{4\pi}{\lambda}x = \varphi - \frac{4\pi}{\lambda}\frac{\lambda}{8} = (2k+1)\pi$ $\varphi = 2k\pi + \frac{3\pi}{2}$, $y_2 = A\cos(\omega t - \frac{2\pi}{\lambda}x - \frac{\pi}{2})$

(2)
$$y = y_1 + y_2 = 2A\cos(\frac{2\pi}{\lambda}x + \frac{\pi}{4})\cos(\omega t - \frac{\pi}{4})$$

(3) 波节
$$\cos(\frac{2\pi}{\lambda}x + \frac{\pi}{4}) = 0$$
 (0 < x < 2 λ); $x = k \cdot \frac{\lambda}{2} + \frac{\lambda}{8}$, $k = 0,1,2,3$; $x = \frac{\lambda}{8}, \frac{5\lambda}{8}, \frac{9\lambda}{8}, \frac{13\lambda}{8}$

$$4. \quad \text{M: (1)} \quad f(v) = \begin{cases} av/v_0 & 0 \le v < v_0 \\ a & v_0 \le v \le 2v_0 \\ 0 & v > 2v_0 \end{cases}, \quad \int_0^{v_0} \frac{a}{v_0} v \mathrm{d}v + \int_{v_0}^{2v_0} a \mathrm{d}v = \frac{3}{2} av_0 = 1; \quad a = \frac{2}{3v_0}$$

(2)
$$f(v) = \begin{cases} 2v/(3v_0^2) & 0 \le v < v_0 \\ 2/(3v_0) & v_0 \le v \le 2v_0 \\ 0 & v > 2v_0 \end{cases}$$

(3)
$$\Delta N = N \int_{0.5v_0}^{1.2v_0} f(v) dv = N \int_{0.5v_0}^{v_0} \frac{a}{v_0} v dv + N \int_{v_0}^{1.2v_0} a dv = \frac{23}{60} N$$

(4)
$$\overline{v} = \int_0^\infty v f(v) dv = \int_0^{v_0} \frac{a}{v_0} v^2 dv + \int_{v_0}^{2v_0} av dv = \frac{11}{9} v_0$$

5.
$$Matherapsites:
-A = -A_p = p_0(4V_0 - V_0) = 3p_0V_0$$

$$Q = vC_p(T_2 - T_1) + vC_V(T_3 - T_2) = \frac{5}{2}p_0(4V_0 - V_0) + \frac{3}{2}(0.5p_04V_0 - p_04V_0) = \frac{9}{2}p_0V_0$$

$$\Delta E = vC_V(T_3 - T_1) = \frac{3}{2}(0.5p_04V_0 - p_0V_0) = \frac{3}{2}p_0V_0$$

$$\Delta S = vC_p \ln \frac{T_2}{T_1} + vC_V \ln \frac{T_3}{T_2} = vC_p \ln \frac{V_3}{V_1} + vC_V \ln \frac{p_3}{p_1} = R(\frac{5}{2}\ln 4 + \frac{3}{2}\ln \frac{1}{2}) = \frac{7}{2}R\ln 2$$

6. 解:
$$\mathrm{d}q = \lambda \mathrm{d}l = \lambda R \mathrm{d}\phi = \lambda_0 R \sin\phi \mathrm{d}\phi$$
, $\mathrm{d}E = \frac{\mathrm{d}q}{4\pi\varepsilon_0 R^2} = \frac{\lambda_0 \sin\phi \mathrm{d}\phi}{4\pi\varepsilon_0 R}$
$$E_x = 0 \quad , \quad \mathrm{d}E_y = -\mathrm{d}E\sin\phi = -\frac{\lambda_0}{4\pi\varepsilon_0 R} \sin^2\phi \mathrm{d}\phi \, ,$$

$$E_y = -\frac{\lambda_0}{4\pi\varepsilon_0 R} \int_0^\pi \sin^2\phi \mathrm{d}\phi = -\frac{\lambda_0}{8\varepsilon_0 R} \quad \dot{\mathcal{D}} \cap \mathbb{E} \dot{\mathbb{E}} \dot{\mathbb{$$