1 6 JUN 2005

(12) NACH DEM VERTRAG DAER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 1. Juli 2004 (01.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/054827 A1

(51) Internationale Patentklassifikation7: F25B 5/04

B60H 1/00,

(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): HARM, Klaus [DE/DE]; Lustnauerstrasse 10, 70597 Stuttgart (DE).

(74) Anwälte: NÄRGER, Ulrike usw.; DaimlerChrysler AG,

Intellectual Property Management, IPM - c106, 70546

- (21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:
 - 8. November 2003 (08.11.2003)

PCT/EP2003/012487

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 102 58 618.7 16. Dezember 2002 (16.12.2002) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).
- (81) Bestimmungsstaaten (national): BR, JP, KR, MX, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

Stuttgart (DE).

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: AIR CONDITIONING INSTALLATION, ESPECIALLY FOR MOTOR VEHICLES

(54) Bezeichnung: KLIMAANLAGE, INSBESONDERE FÜR KRAFTFAHRZEUGE

- (57) Abstract: The invention relates to an air conditioning installation, especially for motor vehicles, comprising a compression cooling circuit for the AC operation, a high pressure region, a suction region, and an adjacent stationary air conditioning circuit, especially for operating the air conditioning when the vehicle is stationary and the compression cooling circuit switched off. Said stationary air conditioning circuit comprises a condenser (1), an expansion valve (4), an evaporator (5) which is used as a cooler for releasing cold into the surroundings, and a heat accumulator (6) containing a heat accumulating medium. When the air conditioning installation operates in the stationary mode, said heat accumulator is used as a cold accumulator and as a condenser. The coolant is used as a heat carrying medium for transferring the cold from the heat accumulator to the evaporator (5) in the stationary air conditioning circuit. The evaporator (5) and the heat accumulator (6) are mounted in series in the direction of the coolant flow.

 (57) Zusammenfassung: Die Erfindung betrifft eine Klimaanlage, insbesondere für Kraftfahrzeuge mit einem Kompressionskälterries Kälterrietels für den AC-Betrieb mit einem Hochdruckberrich, einem Saugherrich und einem angeschlossenen
 - tekreislauf eines Kältemittels für den AC-Betrieb mit einem Hochdruckbereich, einem Saugbereich und einem angeschlossenen Standklimatisierungskreislauf, insbesondere für den Standklimatisierungsbetrieb bei ausgeschaltetem Kompressionskältekreislauf

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

mit einem Verdichter (1), einem Expansionsventil (4), einem Verdampfer (5) als Kühler für die Abgabe von Kälte an die Umgebung und einem Thermospeicher (6) mit einem Wärmespeichermedium. Der Thermospeicher dient als Kältespeicher und als Kondensator beim Standklimatisierungsbetrieb. Das vorhandene Kältemittel dient als Wärmeträgermedium zur Übertragung der Kälte vom Thermospeicher zum Verdampfer (5) im Standklimatisierungskreislauf. Der Verdampfe (5)r und der Thermospeicher (6) sind im Kältemittelstrom in Serie geschaltet.

Klimaanlage, insbesondere für Kraftfahrzeuge

Die Erfindung betrifft eine Klimaanlage, insbesondere für Kraftfahrzeuge gemäß dem Oberbegriff von Anspruch 1.

Eine gattungsgemäße Klimaanlage ist aus der DE 37 04 182 Albekannt. Darin wird eine Kühlanlage in Verbindung mit einem Kältespeicher betrieben, wobei das Kältemittel als Wärmeträgermittel zur Übertragung der Kälte mit Hilfe einer Umwälzpumpe vom Kältespeicher zum Verdampfer genutzt wird. Verdampfer und Kältespeicher sind kältemittelseitig parallel geschaltet, was zu einem hohen Verschaltungs- und Komponentenaufwand und damit nachteilig zu hohen Fertigungskosten führt. Des weiteren verschlingt eine derartige Anlage selbstverständlich auch wertvollen Bauraum in einem Kraftfahrzeug, insbesondere in einem Personenkraftwagen.

Konventionelle Kälteanlagen in Fahrzeugen werden im Regelfall nur durch einen Kältemittelverdichter angetrieben, der über einen Riemenantrieb fest mit dem Fahrzeugmotor verbunden ist. Steht der Motor, steht damit auch die Klimaanlage. Im Sommer kann sich die Fahrgastzelle sehr aufheizen. Die Konsequenz daraus ist, dass Fahrer auch im Stau oder bei Wartezeiten den Motor laufen lassen, um die Klimaanlage in Betrieb zu halten. Dies ist eine Praxis die durch Schadstoff- und Geräuschemissionen die Umwelt stark belastet und zusätzlich Kraftstoff verbraucht.

Bei Fahrzeugen mit Start Stop-Funktion wird der Motor sobald das Fahrzeug steht automatisch ausgeschaltet (auch bei kürzeren Stopps, z.B. an einer roten Ampel), um den Kraftstoffverbrauch zu reduzieren. Demzufolge fällt ebenfalls die Kälteanlage aus, so dass keine komfort- und sicherheitsrelevanten Funktionen wie Kühlung und Trocknung der Zuluft für die Fahrgastzelle erfüllt werden können.

Im Bereich der Nutzfahrzeuge haben Standklimaanlagen in der Serienproduktion bereits Einzug gehalten. Dieser Standard ist in der PKW-Klimatisierung noch lange nicht erreicht. Für einen Einsatz in Personenkraftwagen sind die bestehenden Konzepte aufgrund der Verhältnisse von Leistung zu Bauraum und Gewicht noch nicht geeignet.

Aus der Praxis bekannt sind Standklimatisierungskonzepte mit in der Regel indirekt beladenen Speicherverdampfern, die eine schlechte Abkühldynamik aufweisen und nur eine Kühlung direkt nach dem Motorstop bewirken.

Des weiteren sind elektrisch angetriebene Verdichter bekannt, z.B. in Verbindung mit riemengetriebenem Startergenerator; integriertem Startergenerator oder als Hybridverdichter, d.h. als Verdichter mit integriertem Elektromotor. Hierfür sind jedoch in nachteilhafter Weise vergrößerte Batterien und Lichtmaschinen vonnöten. Im Standbetrieb hat das Fahrzeug dann einen hohen Energieverbrauch. Zudem ergibt sich aufgrund der sehr langen Wirkungsgradkette (Lichtmaschine - Batterie - Kältemittelverdichter) eine sehr schlechte Effizienz.

Ebenfalls bekannt sind Kälteanlagen mit sekundärem Kühlmittelkreislauf und einem Thermospeicher im Sekundärkreislauf mit den Kältemitteln R744/CO₂. Nachteilig ist hier der relativ hohe Hardware-, Platz- und Gewichtsaufwand. Zusätzlich lässt sich nur eine begrenzte geringe thermische Dynamik realisieren. Zudem ergibt sich aufgrund der Wärmeübergänge vom

Kältemittel zum Wärmeträgermedium und Wärmeträgermedium zur Nutzluft eine schlechte Effizienz.

Auch bekannt sind motorunabhängige Klimatisierungen für Fernverkehr-Nutzfahrzeuge. Hier erfolgt die Beladung eines Thermospeichers mit Kälte über einen Sekundärkreislauf mit den vorstehend erwähnten Nachteilen (Hardware-, Platz- und Gewichtsaufwand), wodurch diese Art der Standklimatisierung somit auch weniger für den Einsatz in Personenkraftwagen geeignet ist.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Klimaanlage der eingangs erwähnten Art zu schaffen, die die Nachteile des Standes der Technik löst, insbesondere eine Standklimatisierungsfunktion mit Kühlung und Entfeuchtung der Nutzluft bei geringem Platz-, Bauteil-, Verschaltungs- und elektrischem Energieaufwand, insbesondere für den Einsatz in Personenkraftwagen schafft, wobei zusätzlich eine gute Abkühldynamik erzielt werden soll.

Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil von Anspruch 1 gelöst.

Durch die erfindungsgemäßen Maßnahmen wird in einfacher und vorteilhafter Weise eine Klimaanlage mit Standklimatisierungsfunktion bei ausgeschaltetem Kompressionskältekreislauf geschaffen, bei der der Verschaltungs- und Komponentenaufwand – bedingt durch die strukturell einfache serielle Anordnung von Verdampfer und Thermospeicher kältemittelseitg bzw. im Kältemittelkreislauf – sehr gering ist. Demzufolge kann eine Klimatisierungsfunktion während der Stop-Phase des Fahrmotors mit geringem Packaging und Hardware-Aufwand realisiert werden. Des weiteren ist die erfindungsgemäße Klimaanlage auch zur Vor- und Standklimatisierung geeignet. Es wird eine bessere Abkühldynamik bei aufgeheiztem Fahrzeug und optional eine geringere Hochdruckspitze beim Anfahren der Kälteanlage bei geladenem Thermospeicher zur Verfügung gestellt. Des wei-

teren ist kein zusätzlicher Kühlkreislauf (Sekundärkühlkreislauf) erforderlich, was zusätzlichen Platz-, Bauteil- und elektrischen Energieaufwand vermeidet. Mit der erfindungsgemäßen Kreislaufschaltung, die im wesentlichen aus einer modifizierten Kälteanlage mit einem integriertem Thermospeicher besteht, kann auch bei ausgeschalteter Kälteanlage sehr gut klimatisiert werden. Im Kältemittelsammler vorhandenes Kältemittel dient als Wärmeträgermedium zur Übertragung der Kälte vom Thermospeicher zum Verdampfer. Da das Kältemittel die Energie latent überträgt und die Verdampfung und die Kondensation fast auf gleichem Druckniveau stattfindet, wird nur eine sehr geringe Pumpenleistung zur Aufrechterhaltung des Standklimatisierungskreislaufs benötigt. Durch eine optionale thermische Isolation des Thermospeichers und des Kältemittelsammlers kann auch nach längerem Motorstop eine Vorklimatisierung des Fahrzeugs bereitgestellt werden.

Die Erfindung eignet sich besonders für Kälteanlagen, bei denen sich der Kältemittelsammler im Saugbereich, d.h. vor oder nach dem Verdampfer befindet. Aus diesem Grund sind Kälteanlagen mit dem Kältemittel Kohlenstoffdioxid besonders geeignet; da sich der Kältemittelsammler hier in der Regel kältemittelhydraulisch hinter dem Verdampfer befindet.

Erfindungsgemäß kann ferner vorgesehen sein, dass der Kältemittelsammler im Standklimatisierungskreislauf bzw. nach dem Thermospeicher und vor der Umwälzpumpe bzw. dem Verdampfer angeordnet ist.

Dadurch wird eine Druckerhöhung im abgeschlossenen Standklimatisierungskreislauf minimiert, denn beim Umwälzen des Kältemittels im Standklimatisierungskreislauf tritt eine Druckerhöhung in der Anlage auf, sobald das flüssige Kältemittel
in den Verdampfer eintritt und dort teilweise oder komplett
verdampft. Diese Volumenerhöhung kann zu einer Druckerhöhung
in der Anlage führen. Bekanntlich bestimmt das Kältemitteldruckniveau die Verdampfungstemperatur und je höher dieses

Druckniveau ist, umso höher ist auch die Verdampfungstemperatur.

5

Darüber hinaus sorgt diese Position des Kältemittelsammlers dafür, dass die Umwälzpumpe im Standklimatisierungskreislauf somit nur zu 100% flüssiges Kältemittel aus dem Kältemittelsammler ansaugt und damit einwandfrei – ohne störende Geräusche durch Gasbläschen – arbeitet.

Vorteilhaft ist, wenn insbesondere bei mit Kälte beladenem Thermospeicher der Kompressionskältekreislauf und der Standklimatisierungskreislauf parallel betreibbar sind.

Dadurch kann bei beladenem Thermospeicher in vorteilhafter Weise eine hohe Abkühldynamik durch einfaches Zuschalten des Standklimatisierungskreislaufs bei laufendem Kompressionskältekreislauf erzielt werden.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den weiteren Unteransprüchen und aus den nachfolgend anhand der Zeichnung prinzipmäßig beschriebenen Ausführungsbeispielen.

Es zeigt:

- Fig. la eine prinzipmäßige Kreislaufschaltung einer ersten Ausführungsform der erfindungsgemäßen Klimaanlage im AC-Betrieb;
- Fig. 1b eine prinzipmäßige Kreislaufschaltung der erfindungsgemäßen Ausführungsform aus Fig. 1a im Standklimatisierungsbetrieb;
- Fig. 2 eine prinzipmäßige Kreislaufschaltung einer zweiten Ausführungsform der erfindungsgemäßen Klimaanlage im Standklimatisierungsbetrieb;

- Fig. 3 eine prinzipmäßige Kreislaufschaltung einer dritten Ausführungsform der erfindungsgemäßen Klimaanlage mit Bypass im AC-Betrieb;
- Fig. 4 eine prinzipmäßige Kreislaufschaltung einer vierten Ausführungsform der erfindungsgemäßen Klimaanlage mit einer separaten Anordnung eines Thermospeichers und eines Kältemittelsammlers im AC-Betrieb;
- Fig. 5a eine prinzipmäßige Kreislaufschaltung einer fünften Ausführungsform der erfindungsgemäßen Klimaanlage unter Ausnutzung des Thermosyphoneffekts im Standklimatisierungsbetrieb;
- Fig. 5b eine prinzipmäßige Kreislaufschaltung der fünften erfindungsgemäßen Ausführungsform gemäß Fig. 5a im ACBetrieb;
- Fig. 6 eine prinzipmäßige Kreislaufschaltung einer sechsten Ausführungsform der erfindungsgemäßen Klimaanlage; und
- Fig. 7 ein prinzipmäßiges Druck-Enthalpie-Diagramm.

In Fig. 1a ist eine als Ganzes mit der Bezugsziffer 101 bezeichnete Klimaanlage im AC-Betrieb dargestellt. Bei laufendem Kompressionskreislauf (Hochdruckbereich punkt-gestrichelt und Saugbereich mit durchgezogener Linie dargestellt) wird ein Kältemittel 11 in einem Verdichter 1 auf ein hohes Temperatur- und Druckniveau gebracht, im Umgebungswärmetauscher 2 gekühlt, bevor es über einen inneren Wärmetauscher 3 weiter abgekühlt wird. Danach passiert es ein Expansionsventil 4 und wird auf ein tieferes Druck- und Temperaturniveau (10°C bis 0°C je nach Temperaturanforderung) entspannt. In einem Verdampfer 5 nimmt das Kältemittel 11 Energie aus der Nutzluft, die zum Innenraum (Fahrgastzelle – nicht dargestellt) geleitet wird auf, kühlt und trocknet diese und verdampft dabei

teilweise oder komplett, bevor es zu einem Thermospeicher 6 gelangt. Im vorliegenden Ausführungsbeispiel befindet sich der Thermospeicher 6 kältemittelhydraulisch hinter dem Verdampfer 5 der Klimaanlage 101. Sofern das Kältemittel 11 kälter ist als das im Thermospeicher 6 befindliche Wärmespeichermedium 6', wird dieses mit Kälte beladen, bevor das Kältemittel 11 in einen Kältemittelsammler 7 gelangt. Vom Kältemittelsammler 7 strömt das Kältemittel 11 über die Niederdruckseite eines weiteren inneren Wärmetauschers 8, überhitzt dabei bevor es wieder zum Verdichter 1 gelangt.

Aus Platzgründen sollte das Wärmespeichermedium 6' im Thermospeicher 6 sinnvoller Weise eine Phasenumwandlung zwischen fester und flüssiger Phase erfahren, damit ein möglichst hohes volumetrisches Wärmespeichervermögen zustande kommt. Die Ein- und Auskopplung der Wärme erfolgt in diesem Fall vorwiegend latent, d.h. auf isothermem Niveau in Form von Schmelzwärme bei der Phasenumwandlung. In den auch nachfolgend beschriebenen Ausführungsbeispielen ist das Wärmespeichermedium als Parafin 6' ausgebildet. In anderen Ausführungsbeispielen könnten selbstverständlich auch unter anderem Alkohole oder Salzhydrate zum Einsatz kommen.

Im AC-Betrieb bzw. bei laufendem Kompressionskältekreislauf (Fig. 1a) wird der Thermospeicher 6 mit Kälte beladen.

In Fig. 1b läuft die Klimaanlage 101 im Standklimatisierungsbetrieb, d.h. der Kompressionskältekreislauf ist abgeschaltet (gestrichelte Linien), während der Standklimatisierungskreislauf (durchgezogene Linien) aktiv ist. Der Standklimatisierungskreislauf kann bei mit Kälte beladenem Thermospeicher 6 zur Erzielung einer besseren Abkühldynamik auch parallel zum Kompressionskältekreislauf betrieben werden.

Wird der Verdichter 1 ausgeschaltet, so verhindert ein Rückschlagventil 9 und das geschlossene Expansionsventil 4, dass Kältemittel 11 aus dem Hochdruckbereich (in Fig. 1b gestri-

8

chelt dargestellt) in den Leistungsabschnitt des Standklimatisierungskreislaufs mit dem Verdampfer 5 und dem Kältemittelsammler 7 eindringt und damit den Kältemitteldruck ansteilässt. Die Standklimatisierung erfolgt nun über Standklimatisierungskreislauf, in dem mit Hilfe einer Umwälzpumpe 13, flüssiges Kältemittel 11 aus dem Kältemittelsammler 7 über eine Kondensatleitung 14 zum Verdampfer 5 gefördert wird. Im Verdampfer 5 nimmt das Kältemittel 11 Energie aus der Nutzluft, kühlt und trocknet diese und verdampft dabei teilweise oder komplett, bevor es zum Thermospeicher 6 gelangt. Hier kondensiert das Kältemittel 11 und strömt in den Kältemittelsammler 7 hinein, von wo aus der Kreislauf von neuem beginnt. Der Thermospeicher 6 übernimmt demzufolge im Standklimatisierungskreislauf die Funktion eines Kondensators. Aufgrund der schlechten thermodynamischen Eigenschaften eines für den Verdichter 1 benötigten, im Kältemittelsammler 7 vorhandenen, Schmiermittels 12, sollte die Öffnung 14' der Kondensatleitung 14 nur so tief in den Kältemittelsammler 7 hineinragen, dass nur flüssiges Kältemittel 11 von der Umwälzpumpe 13 angesaugt wird. Dabei ist besonders auch auf den flüssigen Zustand des Kältemittels 11 zu achten, da beim Ansaugen von einem Gemisch aus gasförmigem und flüssigem Kältemittel 11 nicht die insgesamt verfügbare Enthalpiedifferenz des Kältemittels 11 (0 bis Überhitzung) ausgenutzt wird und Geräusche im Kreislauf aufgrund der Förderung von Gasblasen Im vorliegenden Ausführungsbeispiel entstehen könnten. der Kältemittelsammler 7 im Saugbereich, d.h. vor oder nach dem Verdampfer angeordnet, wodurch sich die beschriebene Klimaanlage 101 für einen Einsatz des umweltfreundlichen Kältemittels Kohlenstoffdioxid besonders eignet, da sich der Kältemittelsammler 7 in vorteilhafter Weise kältemittelhydraulisch nach dem Verdampfer 5 befindet. Dementsprechend wird auch in den vorliegenden Ausführungsbeispielen Kohlenstoffdioxid als Kältemittel 11 verwendet.

Da die Kondensation und Verdampfung sozusagen isobar abläuft und das Kältemittel die Wärme in der Regel fast ausschließlich latent überträgt, wird nur eine geringe Pumpenleistung der Umwälzpumpe 13 benötigt, um den Standklimatisierungskreislauf aufrecht zu erhalten. Durch eine thermische Isolation 10 des Thermospeichers 6 und des Kältemittelsammlers 7,
kann die Kälteenergie über einen längeren Zeitraum gespeichert werden und zu einem späteren Zeitpunkt zur Vorklimatisierung der Nutzluft genutzt werden. Ein weiterer Vorteil der
thermischen Isolation 10 ist ein wesentlich langsameres Verdampfen des flüssigen Kältemittels 11 bei ausgeschalteter,
stark aufgeheizter Klimaanlage 101. Dadurch baut sich der
Kältemitteldruck nicht so stark auf und es wird eine höhere
Kälteleistung und ein geringerer Kältemittelhochdruck beim
Anfahren der Klimaanlage 101 erzielt.

Zur Reduzierung der Verbindungs- und damit möglichen Leckagestellen im Kreislauf bietet es sich an, den Thermospeicher 6 und den Kältemittelsammler 7 gemäß den Figuren 1a, 1b und 2 zu integrieren. Des weiteren wäre es in einem anderen Ausführungsbeispiel ebenfalls denkbar die Umwälzpumpe 13 und/oder das Rückschlagventil 9 zur Reduzierung von Leckagestellen in den Thermospeicher 6 bzw. den Kältemittelsammler 7 aufzunehmen.

Fig. 2 zeigt eine Klimaanlage 102 mit einem Thermospeicher 6 mit großer Speicherkapazität, d.h. großem Volumen, der den Kältemittelsammler 7, der als Druckbehälter ausgeführt ist, umhüllt, um Material für den Behälter des Kältemittelsammlers 7 zu reduzieren.

Fig. 3 zeigt eine Klimaanlage 103 bei der eine schnelle Abkühlung bei aufgeheiztem Innenraum erfolgen kann. Bei aufgeheiztem, d.h. entladenem Thermospeicher 6 entnimmt dieser
beim Anfahren der Kälteanlage 103 einen Teil der Kälte und
verschlechtert damit die Abkühlleistung am Verdampfer 5.
Durch Einbinden eines Bypass-Ventils 15 mit einer BypassLeitung 16, kann der Thermospeicher 6 umgangen werden, wenn
die gesamte Kälteleistung am Verdampfer 5 übertragen werden

soll. Das Bypass-Ventil 15 kann wie vorliegend elektrisch oder aber auch thermostatisch angesteuert werden.

In Fig. 4 ist eine weitere Klimaanlage 104 dargestellt, bei der eine Verschaltung des Thermospeichers 6 räumlich getrennt vom Kältemittelsammler 7 erfolgt ist. Bei einer separaten Anordnung von Thermospeicher 6 und Kältemittelsammler 7 wird das Packaging der Anlage deutlich vereinfacht. Somit wird ein platzsparendes Design erreicht. Der Thermospeicher 6 kann des weiteren auch an einem thermisch unkritischen Einbauort, z.B. außerhalb des Motorraums, untergebracht werden, ohne dass die Kältemittelleitung der Klimaanlage 104 zwischen Verdampfer 5 und Kältemittelsammler 7 unnötig verlängert werden muss.

In den Figuren 5a, 5b und 6 sind Kreislaufschaltungen 105, 106 dargestellt, bei denen der Standklimatisierungskreislauf ohne eine Kältemittelumwälzpumpe (Ziffer 13 in den Figuren la bis 4) arbeitet. Bei einer derartigen Schaltungsanordnung befindet sich der Verdampfer 5 auf einem geodätisch tieferen Niveau als der Thermospeicher 6, so dass beim Standklimatisierungsbetrieb (Fig. 5a - Kompressionskältekreislauf gestrichelt angedeutet) ein schwerkraftunterstützter Kältemittelkreislauf ohne den Einsatz einer Umwälzpumpe lediglich durch den Thermosyphoneffekt entsteht. Die aus dem Thermospeicher 6 auskoppelbare Kälteleistung wird im wesentlichen durch das treibende Druckgefälle, den Leitungswiderstand im Standklimatisierungskreislauf und durch die Enthalpiedifferenz des Kältemittels 11 bestimmt. Ein großes treibendes Druckgefälle im Standklimatisierungskreislauf wird durch einen großen Höhenunterschied der beiden Kondensatspiegel 18, 19 im Verdampfer 5 und Thermospeicher 6 und einen großen Dichteunterschied zwischen Dampfstrom 20 und Kondensatstrom 21 des Kältemittels 11 erzielt. Um eine möglichst große Enthalpiedifferenz zu erzielen, ist der Verdampfer 5 in einer Kreuz-Gegenstrombauart ausgeführt, da das Kältemittel 11 quasi bis auf das Temperaturniveau der Luft am Verdampfereintritt überhitzt werden kann. Wie aus den Figuren 5a, 5b, 6 ersichtlich, wurde die

Kondensatleitung 14 hier ebenfalls mit einer thermischen Isolierung 10 versehen. Die Kondensatleitung 14 wird durch ein Schaltventil 17 geschlossen, das nur im Standklimatisierungsbetrieb geöffnet ist.

Bei der Kreislaufschaltung 106 in Fig. 6 ist der Thermospeicher 6 getrennt vom Kältemittelsammler 7 angeordnet (vgl. Fig. 4), wodurch der Thermospeicher 6 räumlich weit entfernt von der restlichen Kälteanlage angeordnet und mit einem großen Wärmespeichervermögen versehen werden kann. Bei einer separaten Anordnung von Thermospeicher 6 und Kältemittelsammler 7 wird das Packaging der Kälteanlage 106 wesentlich vereinfacht. Außerdem kann die Leitungslänge der restlichen Kälteanlage zwischen Verdampfer 5 und Kältemittelsammler 7 kurz gehalten werden um damit Kältemitteldruckverluste gering zu halten.

Die Kreislaufschaltungen 105, 106 gemäß den Figuren 5a, 5b und 6 eignen sich vor allem für Standklimasysteme, bei denen keine hohe Kälteleistung benötigt wird und eine große Differenz der Einbauhöhen zwischen Verdampfer 5 und Thermospeicher 6 realisiert werden kann, damit ein ausreichender Schwerkraft-Kreislauf zustande kommt. Ein mögliches Anwendungsgebiet dieser motorunabhängigen Klimatisierung wären Fernverkehr-Nutzfahrzeuge, bei denen das Fahrerhaus als Arbeits-, Aufenthalts- und Schlafplatz dient und Ruhepausen des Fahrers nach längerer Fahrt gesetzlich vorgeschrieben sind. Mit Hilfe dieser motorunabhängigen Klimatisierung könnte sich der Fahrer vor heißen und feuchten Klimabedingungen schützen. Insbesondere bei Nacht, wenn aufgrund der fehlenden Sonneneinstrahlung der Kältebedarf nicht so hoch ist, würde sich der Schwerkraft unterstützte Klimatisierungskreislauf zur Klimatisierung des Fahrerhauses anbieten. Bei großer erforderlicher Kälteleistung im Stand müsste der Kältemittelkondensatstrom durch eine Umwälzpumpe unterstützt werden.

Das in Fig. 7 dargestellte Druck- p/Enthalpie- h -diagramm zeigt exemplarisch die Zustände des Kältemittels CO2 in einem Kompressionskältekreislauf (A/C-Kreislauf - definiert durch die Bezugsziffern 1 (Verdichter), 2 (Umgebungswärmetauscher), 3 (innerer Wärmetauscher), 4 (Expansionsventil), 5 (Verdampfer) und 8 (innerer Wärmetauscher)) und einem Standklimatisierungskreislauf. Das Diagramm verdeutlicht, dass bei der Standkühlung das Kältemittel im Verdampfer 5 eine ca. 50 % größere Enthalpieänderung erfährt als im A/C-Betrieb. Kälteleistung errechnet sich bekanntlich aus dem Produkt von Kältemittelmassenstrom und Enthalpieänderung des Kältemittels. D.h. bei gleicher Kälteleistung am Verdampfer 5, wird bei der Standkühlung ein 50 % kleinerer Kältemittelmassenstrom benötigt. Der Leitungsquerschnitt im Nebenkreis (Kondensatleitung 14) und die Umwälzpumpe 13 können daher entsprechend klein gestaltet werden.

Patentansprüche

- 1. Klimaanlage, insbesondere für Kraftfahrzeuge mit einem Kompressionskältekreislauf eines Kältemittels für den A/C-Betrieb mit einem Hochdruckbereich, einem Saugbereich und einem angeschlossenen Standklimatisierungskreislauf, insbesondere für den Standklimatisierungsbetrieb bei ausgeschaltetem Kompressionskältekreislauf mit wenigstens:
 - einem Verdichter;
 - einem Expansionsventil;
 - einem Verdampfer als Kühler für die Abgabe von Kälte an die Umgebung; und
 - einem Thermospeicher mit einem Wärmespeichermedium, wobei der Thermospeicher als Kältespeicher und als Kondensator beim Standklimatisierungsbetrieb dient und wobei das vorhandene Kältemittel als Wärmeträgermedium zur Übertragung der Kälte vom Thermospeicher zum Verdampfer im Standklimatisierungskreislauf dient,

dadurch gekennzeichnet, dass der Verdampfer (5) und der Thermospeicher (6) im Kältemittelstrom in Serie geschaltet sind.

- 2. Klimaanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass ein Kältemittelsammler (7) im Saugbereich des Kältekreislaufs kältemittelseitig vor oder nach dem Verdampfer (5) angeordnet ist.
- 3. Klimaanlage nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass das Kältemittel (11) Kohlenstoffdioxid (CO₂) ist.

- 4. Klimaanlage nach Anspruch 2 oder 3,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Transport des Kältemittels (11) im Standklimatisierungskreislauf vom Thermospeicher (6) bzw. vom Kältemittelsammler (7) zum Verdampfer (5) durch eine Umwälzpumpe (13) über eine Kondensatleitung (14) erfolgt.
- 5. Klimaanlage nach Anspruch 2 oder 3,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Transport des Kältemittels (11) im Standklimatisierungskreislauf vom Thermospeicher (6) bzw. vom Kältemittelsammler (7) zum Verdampfer (5) durch den Thermosyphoneffekt über eine vorzugsweise mit einem Schaltventil (17) schließbare Kondensatleitung (14) erfolgt, wobei
 der Verdampfer (5) auf einem geodätisch tieferen Niveau
 als der Thermospeicher (6) bzw. der Kältemittelsammler
 (7) angeordnet ist.
- 6. Klimaanlage nach einem der Ansprüche 2 bis 5,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Kältemittelsammler (7) im Standklimatisierungskreislauf bzw. kältemittelseitig nach dem Thermospeicher
 (6) und vor der Umwälzpumpe (13) bzw. dem Verdampfer (5)
 angeordnet ist.
- 7. Klimaanlage nach Anspruch 4 oder 5,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Kältemittelsammler (7) und/oder der Thermospeicher (6) und/oder die Kondensatleitung (14) thermisch
 isoliert sind.
- 8. Klimaanlage nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass die Öffnung (14') der Kondensatleitung (14) nur so

tief in den Kältemittelsammler (17) hineinragt, dass die Umwälzpumpe (13) bzw. der Thermosyphoneffekt lediglich flüssiges Kältemittel (11) ansaugen.

- 9. Klimaanlage nach einem der Ansprüche 2 bis 8,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass im Standklimatisierungsbetrieb ein Rückschlagventil
 (9) verhindert, dass Kältemittel (11) aus dem Hochdruckbereich in den Leistungsabschnitt mit dem Verdampfer (5)
 und dem Kältemittelsammler (7) eindringt.
- 10. Klimaanlage nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass die Umwälzpumpe (13) und/oder das Rückschlagventil (9) in den Thermospeicher (6) bzw. den Kältemittelsammler (7) integriert sind.
- 11. Klimaanlage nach einem der Ansprüche 2 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass der Thermospeicher (6) und der Kältemittelsammler (7) integriert sind.
- 12. Klimaanlage nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass der Thermospeicher (6) den Kältemittelsammler (7) umhüllt.
- 13. Klimaanlage nach einem der Ansprüche 2 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass der Thermospeicher (6) und der Kältemittelsammler (7) separat angeordnet sind.
- 14. Klimaanlage nach einem der Ansprüche 1 bis 13, dad urch gekennzeich net, dass der Thermospeicher (6) und insbesondere die Beladung mit Kälte im A/C-Betrieb bei laufendem Kompressionskältekreislauf durch ein elektrisches oder thermodynamisches

Bypass-Ventil (15) mit einer Bypassleitung (16) umgehbar ist.

- 15. Klimaanlage nach einem der Ansprüche 1 bis 14, dadurch gekennzeich net, dass das Wärmespeichermedium (6') im Thermospeicher (6) eine Phasenumwandlung zwischen fester und flüssiger Phase erfährt.
- 16. Klimaanlage nach einem der Ansprüche 1 bis 15,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Verdampfer (5) in Kreuz-Gegenstrombauart ausgeführt ist.
- 17. Klimaanlage nach einem der Ansprüche 1 bis 16,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass insbesondere bei mit Kälte beladenem Thermospeicher
 (6) der Kompressionskältekreislauf und der Standklimatisierungskreislauf parallel betreibbar sind.

Fig. 7

INTERNATIONAL ATARCH REPORT

PCT/EP 2487

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B60H1/00 F25B5/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 B60H F25B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with indication, where appropriate, of the relevant passages P,X DE 101 40 630 A (BAYERISCHE MOTOREN WERKE 1,3,4,7, AG) 27 February 2003 (2003-02-27) 9.13 - 17paragraphs '0022!, '0047!-'0049!; figure 2 X,P DE 103 08 542 A (DENSO CORP) 1,2,4, 11 September 2003 (2003-09-11) 6-13,15,16 paragraphs '0084!-'0093!; figures 7-10 DE 37 04 182 A (FORSCHUNGSZENTRUM FUER Α 1 KAELTET) 25 August 1988 (1988-08-25) cited in the application the whole document Α US 2 185 022 A (CANDOR ROBERT R) 26 December 1939 (1939-12-26) Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to Involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled O' document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 March 2004 02/04/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Marangoni, G

INTERNATIONAL ARCH REPORT

1	International		
İ	PCT/EP	2487	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 10140630	Α	27-02-2003	DE	10140630 A1	27-02-2003
DE 10308542	A	11-09-2003	JP JP JP DE FR JP US	2003285633 A 2003285634 A 2004051077 A 10308542 A1 2836421 A1 2003320842 A 2003159455 A1	07-10-2003 07-10-2003 19-02-2004 11-09-2003 29-08-2003 11-11-2003 28-08-2003
DE 3704182	Α	25-08-1988	DE WO	3704182 A1 8806262 A1	25-08-1988 25-08-1988
US 2185022	A	26-12-1939	NONE		

INTERNATIONALER REPERCHENBERICHT

International Properties of the PCT/EP \$12487

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 B60H1/00 F25B5/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 B60H F25B Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. P,X DE 101 40 630 A (BAYERISCHE MOTOREN WERKE 1,3,4,7, AG) 27. Februar 2003 (2003-02-27) 9.13 - 17Absätze '0022!, '0047!-'0049!; Abbildung 2 X,P DE 103 08 542 A (DENSO CORP) 1,2,4, 11. September 2003 (2003-09-11) 6-13,15, 16 Absätze '0084!-'0093!; Abbildungen 7-10 A DE 37 04 182 A (FORSCHUNGSZENTRUM FUER 1 KAELTET) 25. August 1988 (1988-08-25) in der Anmeldung erwähnt das ganze Dokument A US 2 185 022 A (CANDOR ROBERT R) 26. Dezember 1939 (1939-12-26) Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu χ Siehe Anhang Patentfamilie entnehmen Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolitdiert, sondem nur zum Verständnie des der Besondere Kategorien von angegebenen Veröffentlichungen *A* Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifeihaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts 25. März 2004 02/04/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevolimächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Marangoni, G Fax: (+31-70) 340-3016

INTERNATIONALER PACHERCHENBERICHT

Internationales Prozeichen
PCT/EP 2487

lm Recherchenbericht ungeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
DE 10140630	Α	27-02-2003	DE	10140630 A1	27-02-2003	
DE 10308542	A	11-09-2003	JP JP JP DE FR JP US	2003285633 A 2003285634 A 2004051077 A 10308542 A1 2836421 A1 2003320842 A 2003159455 A1	07-10-2003 07-10-2003 19-02-2004 11-09-2003 29-08-2003 11-11-2003 28-08-2003	
DE 3704182	Α	25-08-1988	DE WO	3704182 A1 8806262 A1	25-08-1988 25-08-1988	
US 2185022	Α	26-12-1939	KEINE			