Oraux : Topologie, calcul différentiel

- 1. Banque CCINP 2024: 36,37,38 topologie
- 2. Banque CCINP 2024: 41,56 max et min
- **3. Banque CCINP 2024 : 33,52,57** des fonctions C^1 ?
- 4. [CCP] fonction coercive, descente de gradient Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$, $B \in \mathbb{R}^n$ et $f: X \in \mathbb{R}^n \to XAX - 2^tBX$.
 - (a) Calculer $\nabla_X f$, le gradient de f en X.
 - (b) Montrer que f possède un minimum global et préciser en quel point il est atteint.
 - (c) (trop difficile)

Soit $(X_n)_{n\in\mathbb{N}}$ définie par $X_0\in\mathbb{R}^n$ et, pour tout $n\in\mathbb{N}$, $X_{n+1}=X_n-\alpha_n\nabla_{X_n}f$ avec $\alpha_n=\frac{\|\nabla_{X_n}f\|}{t_{X_n}A_{X_n}}$. Trouver la limite éventuelle de la suite (X_n) .

5. [CCP]

- (a) Montrer que $U = \mathbb{R}_+^* \times \mathbb{R}$ est un ouvert.
- (b) Résoudre sur U l'équation $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \frac{y}{x}$. indication: penser aux coordonnées polaires.
- **6.** [Mines Ponts] laplacien, fonctions harmoniques

Soient $f \in \mathcal{C}^2(\mathbb{R},\mathbb{R})$ et $F:(x_1,\ldots,x_n)\in\mathbb{R}^n\setminus\{(0,\ldots,0)\}\mapsto f(\sqrt{x_1^2+\cdots+x_n^2})$. Donner une condition nécessaire et suffisante sur f pour que $\Delta F = 0$.

7. [ENS] opérateur d'interpolation de Lagrange

Soient $E = \mathcal{C}^0([a,b],\mathbb{R}), E_n$ l'ensemble des fonctions polynomiales sur [a,b] de degré $\leqslant n, (x_0,\ldots,x_n) \in$ $[a,b]^{n+1}$ avec $x_0 < x_1 < \cdots < x_n$. Si $f \in E$, on note P_f l'unique élément de E_n tel que $\forall i \in \{0,1,\ldots,n\}, P_f(x_i) = \{0,1,\ldots,n\}$ $f(x_i)$. Soit $\Phi \colon f \in E \mapsto P_f \in E_n$.

- (a) Montrer que Φ est linéaire et que c'est un projecteur.
- (b) Montrer qu'il existe $C \in \mathbb{R}_+$ tel que $\forall f \in E, \|\Phi(f)\|_{\infty} \leqslant C\|f\|_{\infty}$.
- (c) Si $f \in E$, montrer qu'il existe $Q \in E_n$ tel que $||f Q||_{\infty} = d(f, e_n)$, où $d(f, e_n) = \inf\{||f P||_{\infty}, P \in E_n\}$.
- (d) Si $f \in E$, montrer que $||f \Phi(f)||_{\infty} \leq (C+1)d(f, e_n)$.

8. [Mines, Centrale]

Soit un entier $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique inversible $(A \in S_n(\mathbb{R}))$.

On définit $\Phi: \mathcal{M}_n(\mathbb{R}) \to S_n(\mathbb{R})$ par $\Phi(M) = M^T A M$.

$$n(n+1)$$

- (a) Montrer que Φ , vue comme une application de \mathbb{R}^{n^2} dans $\mathbb{R}^{\frac{n(n+1)}{2}}$, est de classe C^1 .
- (b) Rappeler la définition de la différentielle.
- (c) soit $H \in \mathcal{M}_n(\mathbb{R})$, on note $d_{I_n}\Phi$ la différentielle de Φ en I_n .
 - Montrer que $\Phi(I_n + H) \Phi(I_n) = H^T A + AH + H^T AH$.
 - En déduire que $d_{I_n}\Phi(H) = H^T A + A H$.
 - Déterminer le noyau et l'image de $d_{I_n}\Phi$.
- (d) Montrer que $F = \{M \in \mathcal{M}_n(\mathbb{R}) \mid AM \in S_n(\mathbb{R})\}$ et $\ker(d_{I_n}\Phi)$ sont supplémentaires.
- (e) Montrer qu'il existe un ouvert U contenant I_n tel que $U \subset GL_n(\mathbb{R})$.