

Endomorphismes remarquables des espaces euclidiens

Cours		2
1	Adjoi	int d'un endomorphisme d'un espace euclidien
	1.1	Définition, matrice de l'adjoint en base orthonormée
	1.2	Propriétés
2	Endo	morphismes autoadjoints d'un espace euclidien
	2.1	Définition, matrice en base orthonormée
	2.2	Porjecteurs orthogonaux
	2.3	Le théorème spectral
	2.4	Endomorphismes autoadjoints positifs, définis positifs
3	Isomé	étries d'un espace euclidien
	3.1	Définition
	3.2	Caractérisations
	3.3	Propriétés
	3.4	Le groupe $O(E)$
4		ices orthogonales
	4.1	Définition
	4.2	Caractérisations
	4.3	Propriétés
	4.4	Le groupe $\mathrm{O}_n(\mathbb{R})$
5		tation
	5.1	Orientation d'un espace vectoriel réel
	5.2	Orientation d'un hyperplan
	5.3	Espace euclidien orienté, produit mixte
6		e des isométries vectorielles
Ü	6.1	Isométries vectorielles en dimension 2
	6.2	Réduction des isométries en dimension n
	6.3	Cas particulier de la dimension 3
7		xes
•	7.1	Annexe: l'adjoint est un endomorphisme
	7.2	Annexe: démonstration du théorème spectral
	7.3	Annexe: une autre démonstration du théorème spectral
	7.4	Complément : une autre démonstration du théorème spectral
	7.5	Annexe: normes subordonnées et rayons spectraux
	1.0	Timexe : normes subordonnees et rayons spectraux :
Exercic		13
Ex€		et résultats classiques à connaître
		ctérisation des symétries orthogonales, des projecteurs orthogonaux
		ne carrée d'une matrice symétrique positive
		mposition polaire d'une matrice inversible
		ice de Householder
		ice de Hilbert
		formule variationnelle
		du CCINP
Pet	its prob	blèmes d'entrainement

Dans tout le chapitre, sauf mention contraire, E est un espace euclidien et $\langle \cdot, \cdot \rangle$ est son produit scalaire.

1 Adjoint d'un endomorphisme d'un espace euclidien

1.1 Définition, matrice de l'adjoint en base orthonormée

Définition. Soit $u \in \mathcal{L}(E)$. Il existe un unique endomorphisme $u^* \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

L'endomorphisme u^* s'appelle l'**adjoint** de u.

Proposition. Soit \mathcal{B} une base orthonormée de E, et $u \in \mathcal{L}(E)$. Alors :

$$\operatorname{Mat}(u^*, \mathcal{B}) = \operatorname{Mat}(u, \mathcal{B})^{\top}$$

Remarque. L'hypothèse base orthonormée est essentielle ici.

Corollaire. u et u^* ont même trace, même déterminant, même polynôme caractéristique, même spectre.

Remarque. En revanche, ils n'ont pas pas les mêmes vecteurs propres.

1.2 Propriétés

Proposition. Pour $u, v \in \mathcal{L}(E), \lambda, \mu \in \mathbb{R}$:

- $(\lambda u + \mu v)^* = \lambda u^* + \mu v^*$
- $(u^*)^* = u$
- $(u \circ v)^* = v^* \circ u^*$
- Si u est bijectif, u^* aussi et $(u^*)^{-1} = (u^{-1})^*$

Proposition. Soit $u \in \mathcal{L}(E)$ et F un sous-espace de E. Si F est stable par u, alors F^{\perp} est stable par u^* .

2 Endomorphismes autoadjoints d'un espace euclidien

2.1 Définition, matrice en base orthonormée

Définition. Soit E un espace euclidien et $u \in \mathcal{L}(E)$. On dit que u est autoadjoint lorsque $u^* = u$, i.e.:

$$\forall x, y \in E, \langle u(x), y \rangle = \langle x, u(y) \rangle$$

On note S(E) l'ensemble des endomorphismes autoadjoints de E.

Remarque. On qualifie parfois les endomorphismes autoadjoints (i.e. $u^* = u$) de symétriques, mais on évitera cette terminologie, car il n'y a aucune raison que ça soit une symétrie (i.e. $u \circ u = \mathrm{Id}_E$).

<u>Proposition.</u> Soit u endomorphisme autoadjoint de E et F un sous-espace vectoriel de E. Si F est stable par u, alors F^{\perp} est aussi stable par u.

Proposition. Soit E espace euclidien de dimension n, et $u \in \mathcal{L}(E)$. Fixons \mathcal{B} une base orthonormée de E.

$$u \in \mathcal{S}(E) \iff \operatorname{Mat}(u, \mathcal{B}) \in \mathcal{S}_n(\mathbb{R})$$

c'est-à-dire que u est autoadjoint si et seulement si sa matrice en base orthonormée est symétrique.

Remarque. L'hypothèse base orthonormée est essentielle ici.

Corollaire. La dimension de S(E) est $\frac{n(n+1)}{2}$.

2.2 Porjecteurs orthogonaux

<u>Proposition.</u> Soit p un projecteur (i.e. $p \circ p = p$). Alors p est un projecteur orthogonal (i.e. $\operatorname{Ker} p \perp \operatorname{Im} p$) si et seulement si p est autoadjoint.

2.3 Le théorème spectral

Théorème spectral - version endomorphisme.

Soit E espace euclidien et $u \in \mathcal{L}(E)$. Alors :

$$u \in \mathcal{S}(E) \iff E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} E_{\lambda}(u)$$

 $\iff \exists \mathcal{B} \text{ base orthonorm\'ee } \text{t.q. } \operatorname{Mat}(u,\mathcal{B}) \text{ diagonale}$

Remarque.

- On dit parfois que tout endomorphisme autoadjoint d'une espace euclidien est orthodiagonalisable.
- On note bien que les espaces propres des endomorphismes autoadjoints sont orthogonaux.

Théorème spectral matriciel.

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors :

 $A \in \mathcal{S}_n(\mathbb{R}) \iff A \text{ est orthogonalement diagonalisable}$

c'est-à-dire que l'on peut écrire :

$$A = PDP^{\top}$$

où D est une matrice diagonale et P une matrice orthogonale, c'est-à-dire une matrice dont les colonnes forment une base orthonormée de $\mathcal{M}_{n1}(\mathbb{R})$.

Remarque. L'étude des matrices orthogonale est menée au § 4. On y montre que les matrices orthogonales sont les matrices de passage entre bases orthonormées, et qu'on les inverse en transposant.

2.4 Endomorphismes autoadjoints positifs, définis positifs

Définition. Soit $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint. On dit qu'il est **positif** lorsque :

$$\forall x \in E, \langle x, u(x) \rangle \geqslant 0$$

On dit qu'il est $\operatorname{\mathbf{d\acute{e}fini}}$ $\operatorname{\mathbf{positif}}$ lorsque :

$$\forall x \in E \setminus \{0_E\}, \langle x, u(x) \rangle > 0$$

On note $S^+(E)$ (resp. $S^{++}(E)$) l'ensemble des endomorphismes autoadjoints positifs (resp. définis positifs).

Remarque.

• Pour montrer que u est défini positif, on peut aussi montrer :

$$\forall x \in E, \begin{cases} \langle x, u(x) \rangle \geqslant 0 \\ \langle x, u(x) \rangle = 0 \implies x = 0 \end{cases}$$

- On ne qualifie un endomorphisme de positif que s'il est déjà autoadjoint.
- $S^+(E)$ et $S^{++}(E)$ sont stables par l'addition (mais ce ne sont pas des espaces vectoriels).

Définition. Soit $A \in \mathcal{S}_n(\mathbb{R})$ une matrice symétrique. On dit qu'elle est **positive** lorsque :

$$\forall X \in \mathcal{M}_{n1}(\mathbb{R}), \ X^{\top}AX \geqslant 0$$

On dit qu'elle est **définie positive** lorsque :

$$\forall X \in \mathcal{M}_{n1}(\mathbb{R}) \setminus \{0\}, \ X^{\top}AX > 0$$

On note $\mathcal{S}_n^+(\mathbb{R})$ (resp. $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (resp. définies positives).

Remarque.

• Pour montrer que A est définie positive, on peut aussi montrer :

$$\forall X \in \mathcal{M}_{n1}(\mathbb{R}), \begin{cases} X^{\top} A X \geqslant 0 \\ X^{\top} A X = 0 \implies X = 0 \end{cases}$$

- On ne qualifie une matrice de positive que si elle est déjà symétrique.
- $S_n^+(\mathbb{R})$ et $S_n^{++}(\mathbb{R})$ sont stables par l'addition (mais ce ne sont pas des espaces vectoriels).

Caractérisation spectrale - version endomorphisme.

Soit $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint. Alors :

$$u \in \mathcal{S}^+(E) \iff \operatorname{Sp}(u) \subset \mathbb{R}_+ \quad \text{et} \quad u \in \mathcal{S}^{++}(E) \iff \operatorname{Sp}(u) \subset \mathbb{R}_+^*$$

Caractérisation spectrale - version matricielle.

Soit $A \in \mathcal{S}_n(\mathbb{R})$ une matrice symétrique. Alors :

$$A \in \mathcal{S}_n^+(\mathbb{R}) \iff \operatorname{Sp}(A) \subset \mathbb{R}_+ \quad \text{et} \quad A \in \mathcal{S}_n^{++}(\mathbb{R}) \iff \operatorname{Sp}(A) \subset \mathbb{R}_+^*$$

3 Isométries d'un espace euclidien

3.1 Définition

Définition. Soit u un endomorphisme de E. On l'appelle **isométrie vectorielle** lorsqu'elle conserve les normes :

$$\forall x \in E, \ \|u(x)\| = \|x\|$$

On note O(E) l'ensemble des isométries vectorielles.

Remarque. On trouve aussi, dans la littérature, la terminologie automorphisme orthogonal.

Exemple. Les symétries orthogonales sont des isométries vectorielles.

Les projecteurs orthogonaux ne sont pas, en général, des isométries vectorielles.

3.2 Caractérisations

Proposition. l'endomorphisme u est une isométrie vectorielle si et seulement s'il conserve le produit scalaire, c'est-à-dire :

$$\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle$$

<u>Proposition.</u> L'endomorphisme u est une isométrie vectorielle si et seulement si l'image d'une base orthonormée de E par u est une base orthonormée de E.

Proposition. L'endomorphisme u est une isométrie vectorielle si et seulement si :

$$u \circ u^* = \mathrm{Id}_E$$

ou encore, c'est équivalent, $u^* \circ u = \mathrm{Id}_E$. Ainsi, les éléments de $\mathrm{O}(E)$ sont les automorphismes de E dont l'inverse est l'adjoint.

3.3 Propriétés

Proposition. Toute isométrie vectorielle est bijective : c'est un automorphisme de E.

Proposition. Soit $u \in O(E)$. Alors $det(u) = \pm 1$

Remarque. Attention! la réciproque est bien-sûr fausse.

3.4 Le groupe O(E)

Proposition. O(E) est un sous-groupe de $(GL(E), \circ)$. On appelle O(E) le **groupe orthogonal de** E.

<u>Définition.</u> On note $SO(E) = \{u \in O(E), det(u) = 1\}$. C'est un sous-groupe de O(E), appelé le **groupe** spécial orthogonal.

Ses éléments sont les isométries vectorielles directes.

Les éléments de $\mathcal{O}(E) \setminus \mathcal{SO}(E)$ sont les isométries vectorielles **indirectes**.

4 Matrices orthogonales

4.1 Définition

Définition. On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice orthogonale si et seulement si :

$$AA^{\top} = I_n$$

On note $O_n(\mathbb{R})$ (ou parfois O(n)) l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

4.2 Caractérisations

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Sont équivalentes :

- (i) A est une matrice orthogonale;
- (ii) $A^{\top}A = I_n$, i.e. les colonnes de A forment une base orthonormée de $\mathcal{M}_{n1}(\mathbb{R})$;
- (iii) A est inversible et $A^{-1} = M^{\top}$;
- (iv) $AA^{\top} = I_n$, i.e. les lignes de A forment une base orthonormée de $\mathcal{M}_{1n}(\mathbb{R})$;

Proposition. Soit $u \in \mathcal{L}(E)$ et \mathcal{B} une base orthonormée de E. Alors :

$$u \in \mathcal{O}(E) \iff \operatorname{Mat}(u, \mathcal{B}) \in \mathcal{O}_n(\mathbb{R})$$

Remarque. L'hypothèse base orthonormée est essentielle ici.

Proposition. Soit \mathcal{B} une base orthonormée de E, et \mathcal{B}' une famille de n vecteurs de E. Alors :

$$\mathcal{B}'$$
 est une base orthonormée $\iff \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}') \in \mathcal{O}_n(\mathbb{R})$

et $Mat_{\mathcal{B}}(\mathcal{B}')$ est la matrice de passage de \mathcal{B} à \mathcal{B}' .

4.3 Propriétés

Proposition. Soit $A \in \mathcal{O}_n(\mathbb{R})$. Alors :

- A est inversible, et $A^{-1} = A^{\top}$
- $\det A = \pm 1$

4.4 Le groupe $O_n(\mathbb{R})$

Proposition. $O_n(\mathbb{R})$ est un sous-groupe de $(GL_n(\mathbb{R}), \times)$. On appelle $O_n(\mathbb{R})$ le **groupe orthogonal d'ordre** n.

<u>Définition.</u> On note $SO_n(\mathbb{R}) = \{A \in O_n(\mathbb{R}), \ \det(A) = 1\}$ (parfois aussi noté $O_n^+(\mathbb{R})$). C'est un sous-groupe de $O_n(\mathbb{R})$, appelé le groupe spécial orthogonal d'ordre n.

Ses éléments sont les matrices orthogonales directes (ou positives).

Les éléments de $O_n(\mathbb{R}) \setminus SO_n(\mathbb{R})$ sont les matrices orthogonales **indirectes** (ou **négatives**).

5 Orientation

5.1 Orientation d'un espace vectoriel réel

Fixons E un espace vectoriel réel de dimension finie.

Remarque. Si \mathcal{B} et \mathcal{B}' sont deux bases de E, on sait que $\det_{\mathcal{B}}(\mathcal{B}')$ est un réel non nul.

 $\det_{\mathcal{B}}(\mathcal{B}')$ désigne le déterminant de la famille des vecteurs de \mathcal{B}' , exprimés en coordonnées dans la base \mathcal{B} , c'est-à-dire le déterminant de la matrice de passage de \mathcal{B} vers \mathcal{B}' .

Définition. On dit que \mathcal{B} a la même orientation que \mathcal{B}' lorsque $\det_{\mathcal{B}}(\mathcal{B}') > 0$.

<u>Proposition.</u> « a la même orientation » est une relation d'équivalence sur l'ensemble des bases de E. Il y a exactement deux classes d'équivalences.

<u>Définition</u>. Orienter E, c'est faire le choix de l'une des deux classes d'équivalence pour la relation « a la même orientation ». On fait en général ce choix à travers le choix d'une base particulière, un représentant de la classe choisie. Les bases de cette classe sont dites **directes**, les autres **indirectes**.

Exemple. En général, on oriente \mathbb{R}^n en choisisant la base canonique directe.

5.2 Orientation d'un hyperplan

Définition. Soit E un espace euclidien orienté, et H un hyperplan de E. On oriente H par le choix d'un vecteur normal a: une base orthonormale (e_1, \ldots, e_{n-1}) de H est **directe** lorsque $(e_1, \ldots, e_{n-1}, \frac{a}{\|a\|})$ est une base directe de E.

5.3 Espace euclidien orienté, produit mixte

Proposition. Soit E un espace euclidien orienté et $x_1, \ldots, x_n \in E$.

Le déterminant de la famille (x_1, \ldots, x_n) est le même dans toutes les bases orthonormales directes de E. On peut donc noter :

$$\det(x_1,\ldots,x_n)$$

pour désigner $\det_{\mathcal{B}}(x_1,\ldots,x_n)$, où \mathcal{B} est une base orthonormée quelconque de E.

Remarque. On trouve aussi la notation $[x_1, \ldots, x_n]$, et l'appelation produit mixte.

Remarque. On peut reformuler le résultat précédent en disant que, pour \mathcal{B} et \mathcal{B}' deux bases orthonormées directes $de\ E$:

$$\det_{\mathcal{B}} = \det_{\mathcal{B}'}$$

Proposition. Dans le même contexte, si $u \in \mathcal{L}(E)$ et $x_1, x_2, \ldots, x_n \in E$:

$$[u(x_1), u(x_2), \dots, u(x_n)] = \det(u) \times [x_1, x_2, \dots, x_n]$$

6 Étude des isométries vectorielles

6.1 <u>Isométries vectorielles en dimension</u> 2

6.1.1 Étude des isométries vectorielles directes

Théorème.

Soit
$$M \in SO_2(\mathbb{R})$$
. Il existe $\theta \in \mathbb{R}$ tel que $M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Corollaire.

- L'application : $R: \mathbb{R} \to \mathrm{SO}_2(\mathbb{R})$ est un morphisme surjectif de groupes de $(\mathbb{R}, +)$ $\theta \mapsto R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et un morphisme surjectif de groupes de $(\mathbb{R}, +)$ dans $(\mathrm{SO}_2(\mathbb{R}), \times)$. Son noyau est $2\pi\mathbb{Z}$.
- L'application : $\mathbb{U} \to SO_2(\mathbb{R})$ est correctement définie, et est un isomorphisme de groupes $e^{i\theta} \mapsto \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ de (\mathbb{U}, \times) dans $(SO_2(\mathbb{R}), \times)$.

Corollaire. $(SO_2(\mathbb{R}), +)$ est un groupe commutatif.

Remarque. C'est une propriété tout à fait spécifique à la dimension 2.

Proposition. Soit E un espace euclidien orienté de dimension 2. Si $u \in SO(E)$, il existe $\theta \in \mathbb{R}$, unique modulo 2π , tel que la matrice de u soit, dans n'importe quelle base orthonormée directe de E:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Définition. On dit que u est la rotation vectorielle d'angle orienté θ .

6.1.2 Mesure d'un angle orienté entre deux vecteurs non nuls

<u>Définition.</u> Si x, y sont deux vecteurs unitaires de E un espace euclidien orienté de dimension 2, alors il existe une unique rotation $u \in SO(E)$ telle que y = u(x).

Si x, y deux vecteurs non nuls, on peut alors appeler **mesure de l'angle orienté** (x, y) tout réel θ tel que la rotation d'angle θ envoie $\frac{x}{\|x\|}$ sur $\frac{y}{\|y\|}$.

On a les relations :

$$\langle x, y \rangle = \|x\| \|y\| \cos \theta$$
 et $[x, y] = \|x\| \|y\| \sin \theta$

6.1.3 Étude des isométries vectorielles indirectes

Proposition. Soit E un espace euclidien orienté de dimension 2. Soit $u \in O(E) \setminus SO(E)$ et \mathcal{B} une base orthonormée directe de E.

- u est une réflexion, c'est-à-dire une symétrie orthogonale par rapport à une droite.
- il existe $\theta \in \mathbb{R}$ tel que :

$$Mat(u, \mathcal{B})) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

et u est la réflexion par rapport à la droite dirigée par $\begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{pmatrix}$.

6.2 Réduction des isométries en dimension n

Lemme. Soit $u \in O(E)$

- Si F un sous-espace stable par u, alors F^{\perp} est stable par u.
- Il y a au moins un plan ou une droite stable par u.
- Les seules valeurs propres (réelles) possibles pour u sont 1 et -1.

Théorème.

Soit E un espace euclidien, $u \in \mathcal{O}(E)$. Il existe une base orthonormée \mathcal{B} de E, des entiers m, p, q et des réels $\theta_1, \ldots, \theta_m$ tels que, par blocs :

$$\operatorname{Mat}(u,\mathcal{B}) = \begin{pmatrix} R_{\theta_1} & & & \\ & \ddots & & \\ & & R_{\theta_m} & \\ & & & -I_p & \\ & & & I_q \end{pmatrix}$$

Remarque. Si $u \in SO(E)$, alors l'entier p est pair.

Version matricielle. Soit $M \in \mathcal{O}_n(\mathbb{R})$. Alors il existe $P \in \mathcal{O}_n(\mathbb{R})$ et Q de la forme ci-dessus telles que :

$$M = PQP^{-1} = PQP^{\top}$$

6.3 Cas particulier de la dimension 3

Proposition. Soit E un espace euclidien de dimension $3, u \in SO(E)$. Il existe une base orthonormée \mathcal{B} de E et $\theta \in \mathbb{R}$ tels que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Remarque.

- \bullet Contrairement au cas de la dimension 2, la forme de la matrice de u dépend fortement de la base choisie.
- Si l'on écarte le cas où u = Id_E, on constate que Vect(e₃) est la droite des vecteurs invariants par u. F = Vect(e₃)[⊥], orienté par e₃, est stable par u, et l'endomorphisme induit u_F est une rotation vectorielle d'angle θ.
 On dit que u est la rotation d'axe dirigé et orienté par e₃ et d'angle θ.
- Le programme officiel indique que « la pratique du calcul des éléments géométriques d'un élément de $SO_3(\mathbb{R})$ n'est pas un attendu du programme ».
- On doit néanmoins savoir trouver l'axe d'une rotation (c'est $E_1(u) = \text{Ker}(u \text{Id}_E)$), et dire que l'angle vérifie $2\cos\theta + 1 = \text{tr}(u)$, ce qui donne l'angle au signe près.

7 Annexes

7.1 Annexe: l'adjoint est un endomorphisme

<u>Définition</u>. Soit $u \in \mathcal{L}(E)$. Il existe un unique endomorphisme $u^* \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

L'endomorphisme u^* s'appelle l'**adjoint** de u.

Preuve.

 Tout d'abord, pour tout y ∈ E fixé, par bilinéarité du produit scalaire et linéarité de u, x → ⟨u(x), y⟩ est une forme linéaire. Alors, par le théorème de représentation des formes linéaires, il existe un unique vecteur a tel que :

$$\forall x \in E, \ \langle u(x), y \rangle = \langle x, a \rangle$$

et on peut noter $u^*(y)$ ce vecteur a.

On a montré que u^* est bien défini, et à valeurs dans E.

- Montrons maintenant la linéarité de u^* .

Soit $y_1, y_2 \in E$, $\alpha_1, \alpha_2 \in \mathbb{R}$. Pour tout $x \in E$, on a :

$$\langle x, u^*(\alpha_1 y_1 + \alpha_2 y_2) - \alpha_1 u^*(y_1) - \alpha_2 u^*(y_2) \rangle$$

= $\langle x, u^*(\alpha_1 y_1 + \alpha_2 y_2) \rangle - \alpha_1 \langle x, u^*(y_1) \rangle - \alpha_2 \langle x, u^*(y_2) \rangle$

par bilinéarité
$$=\langle u(x),\alpha_1y_1+\alpha_2y_2\rangle-\alpha_1\langle u(x),y_1\rangle-\alpha_2\langle u(x),y_2\rangle$$

par définition de
$$u^*$$

$$= \langle u(x), \alpha_1 y_1 + \alpha_2 y_2 - \alpha_1 y_1 - \alpha_2 y_2 \rangle$$
 par bilinéarité

$$=\langle u(x),0\rangle$$

= 0

Donc $u^*(\alpha_1y_1 + \alpha_2y_2) - \alpha_1u^*(y_1) - \alpha_2u^*(y_2)$ est orthogonal à tout vecteur de E, c'est donc le vecteur nul :

$$u^*(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 u^*(y_1) + \alpha_2 u^*(y_2)$$

7.2 Annexe : démonstration du théorème spectral

Lemme 1. Soit E espace euclidien de dimension $\geqslant 1$, et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Alors $\mathrm{Sp}(u) \neq \varnothing$.

Remarque. Il s'agit bien du spectre de u en tant qu'endomorphisme de E, donc des valeurs propres réelles de u.

Preuve.

• Notons \mathcal{B} une base orthonormée de E et $S=\mathrm{Mat}(u,\mathcal{B})$ la matrice (symétrique réelle) de u dans \mathcal{B} . Le polynôme caractéristique χ_S est scindé dans \mathbb{C} . Il existe donc $\lambda \in \mathbb{C}$ valeur propre de S vue comme matrice dans $\mathcal{M}_n(\mathbb{C})$,

donc il existe
$$Z=\begin{pmatrix} z_1\\ \vdots\\ z_n \end{pmatrix}\in \mathcal{M}_{n1}(\mathbb{C})$$
 non nulle telle que :

$$SZ = \lambda Z$$

$$\overline{Z}^{\top}SZ = \overline{Z}^{\top}\lambda Z$$

$$= \lambda \overline{Z}^{\top}Z$$

$$= \lambda(\overline{z_1}z_1 + \dots + \overline{z_n}z_n)$$

$$= \lambda(|z_1|^2 + \dots + |z_n|^2)$$

et d'autre part :

$$\overline{Z}^{\top} S Z = \overline{Z}^{\top} \overline{S} Z \text{ car } S \text{ est r\'eelle}$$

$$= \overline{S} \overline{Z}^{\top} Z$$

$$= \overline{\lambda} \overline{Z}^{\top} Z$$

$$= \overline{\lambda} (|z_1|^2 + \dots + |z_n|^2)$$

Comme $Z \neq 0$, on a $|z_1|^2 + \cdots + |z_n|^2 \neq 0$ et donc $\lambda = \overline{\lambda}$: $\lambda \in \mathbb{R}$.

Remarque. On a même montré que toutes les valeurs propres de S sont réelles.

Lemme 2. Soit E espace euclidien de dimension $\geqslant 1$, et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Alors u est diagonalisable.

 $Preuve.\$ On raisonne par récurrence forte sur la dimension de E.

- Si E est de dimension 1, u est bien-sûr diagonalisable.
- Soit $n \ge 2$, on suppose que le résultat est vrai dans tout espace euclidien de dimension $\le n-1$. Soit E un espace euclidien de dimension n et $u \in \mathcal{S}(E)$.

D'après le lemme 1, il existe $\lambda \in \mathbb{R}$ valeur propre de u. L'espace propre $E_{\lambda}(u)$ est stable par u et u est autoadjoint, donc l'orthogonal $F = E_{\lambda}(u)^{\perp}$ est aussi stable par u.

Eétant de dimension finie, $\dim(F)=n-\dim(E_{\lambda}(u))\leqslant n-1.$ On applique l'hypothèse de récurrence à l'endomorphisme induit $u_F,$ qui est bien autoadjoint puisque u l'est. Ainsi u_F est diagonalisable.

Mais $u_{E_{\lambda}(u)} = \lambda \operatorname{Id}_{E_{\lambda}(u)}$ est aussi diagonalisable et $E = F \oplus E_{\lambda}(u)$ donc u est diagonalisable.

• On a montré le résultat, par récurrence.

Lemme 3. Soit E espace euclidien, et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Soit λ, μ deux valeurs propres (réelles) distinctes de u. Alors $E_{\lambda}(u) \perp E_{\mu}(u)$.

Preuve. Soit $x \in E_{\lambda}(u)$ et $y \in E_{\mu}(u)$. On calcule d'une part :

$$\langle u(x), y \rangle = \langle \lambda x, y \rangle$$

= $\lambda \langle x, y \rangle$

et d'autre part :

$$\begin{split} \langle u(x),y\rangle &= \langle x,u(y)\rangle \text{ car } u \text{ autoadjoint} \\ &= \langle x,\mu y\rangle \\ &= \mu \langle x,y\rangle \end{split}$$

Comme $\lambda \neq \mu$, c'est que $\langle x, y \rangle = 0$.

Théorème.

Soit E espace euclidien et $u \in \mathcal{L}(E)$. Alors :

$$u \in \mathcal{S}(E) \iff E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} E_{\lambda}(u)$$

 $\iff \exists \mathcal{B} \text{ base orthonormée}$ t.q. $\operatorname{Mat}(u,\mathcal{B})$ diagonale

Preuve. Notons (i), (ii) et (iii) ces trois propriétés.

2024-2025 http://mpi.lamartin.fr **9/17**

$$(i) \implies (ii)$$

Par le lemme 2, on a déjà $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$.

Par le lemme 3, les espaces propres sont deux à deux orthogonaux. Le résultat est donc acquis.

$$(ii) \implies (iii)$$

Notons $\lambda_1, \ldots, \lambda_p$ les valeurs propres deux à deux distinctes de u. On considère, pour tout $i \in \{1, \ldots, p\}$, \mathcal{B}_i une base orthonormée de $E_{\lambda_i}(u)$. Notons alors \mathcal{B} la concaténation $(\mathcal{B}_1, \ldots, \mathcal{B}_p)$. Comme $E = \bigcup_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$,

 ${\mathcal B}$ est une base orthonormée de E et on a, par blocs :

$$\operatorname{Mat}(u,\mathcal{B}) = \begin{pmatrix} \lambda_1 I_{n_1} & & 0 \\ & \ddots & \\ 0 & & \lambda_p I_{n_p} \end{pmatrix}$$

qui est bien diagonale.

$$(iii) \implies (i)$$

Notant $S = Mat(u, \mathcal{B})$, on a $S^{\top} = S$ car S est diagonale, et donc $u^* = u$ car \mathcal{B} est orthonormée.

7.3 Annexe : une autre démonstration du théorème spectral

<u>Lemme 1.</u> Soit E espace euclidien de dimension $\geqslant 1$, et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Alors $\mathrm{Sp}(u) \neq \varnothing$.

Preuve. On note ϕ : $x \mapsto \langle u(x), x \rangle$.

• Comme u est linéaire en dimension finie, elle est continue. Le produit scalaire étant continu, ϕ est continue. Sur la sphère unité S=S(0,1), fermée bornée en dimension finie, donc compacte, ϕ admet donc un maximum atteint en x_0 :

$$\exists x_0 \in S, \ \forall x \in S, \ \phi(x) \leqslant \phi(x_0)$$

Notons $H = \text{Vect}(x_0)^{\perp}$, et fixons $y \in H$.

• Pour $t \in \mathbb{R}$, on note :

$$\psi(t) = \phi((\cos t)x_0 + (\sin t)y)$$

Pour tout $t \in \mathbb{R}$:

$$\psi(t) = \phi((\cos t)x_0 + (\sin t)y)$$

$$\leq \phi(x_0) \text{ par définition du max}$$

$$= \psi(0)$$

donc la fonction réelle de variable réelle ψ admet un maximum en 0.

• On calcule :

$$\psi(t) = \langle u((\cos t)x_0 + (\sin t)y), (\cos t)x_0 + (\sin t)y \rangle$$

$$= (\cos^2 t)\phi(x_0) + (\sin t)^2\phi(y) + (\cos t \sin t)\langle u(x_0), y \rangle$$

$$+ (\cos t \sin t)\langle u(y), x_0 \rangle$$
par linéarité de u et bilinéarité du p.s.
$$= (\cos^2 t)\phi(x_0) + (\sin t)^2\phi(y) + (\sin 2t)\langle u(x_0), y \rangle$$

puis:

$$\psi'(t) = (-2\sin t \cos t)\phi(x_0) + (2\cos t \sin t)\phi(y) + (2\cos 2t)\langle u(x_0), y \rangle$$

Comme ψ admet un maximum en t=0, c'est que :

 $\operatorname{car} u$ autoadjoint

$$\langle u(x_0), y \rangle = 0$$

• On a montré que, pour tout $y \in H$, $\langle u(x_0), y \rangle = 0$. Ainsi $u(x_0) \in H^{\perp}$. Mais $H = \text{Vect}(x_0)$, donc :

$$u(x_0) \in \operatorname{Vect}(x_0)$$

Ainsi, il existe $\lambda \in \mathbb{R}$ tel que $u(x_0) = \lambda x_0$. On a montré que x_0 est vecteur propre de u, et trouvé λ une valeur propre de u.

7.4 Complément : une autre démonstration du théorème spectral

Lemme 0. Soit F un espace euclidien, $v \in \mathcal{S}(F)$ un endomorphisme autoadjoint de F. Soit

$$Q = (X - \alpha)^2 + \beta \in \mathbb{R}[X]$$

où $\beta > 0$, un polynôme irréductible, écrit sous sa forme canonique.

Alors Q(v) est autoadjoint, défini-positif.

Preuve.

• Le polynôme d'endomorphisme est :

$$Q(v) = (v - \alpha \mathrm{Id}_F)^2 + \beta \mathrm{Id}_F$$

donc

$$\begin{split} \left(Q(v)\right)^* &= \left((v - \alpha \mathrm{Id}_F)^2 + \beta \mathrm{Id}_F\right)^* \\ &= (v^* - \alpha \mathrm{Id}_F^*)^2 + \beta \mathrm{Id}_F^* \\ &= (v - \alpha \mathrm{Id}_F)^2 + \beta \mathrm{Id}_F \\ &\quad \text{car } v \text{ et } \mathrm{Id}_F \text{ autoadjoints} \\ &= Q(v) \end{split}$$

Ainsi Q(v) est autoadjoint.

• Pour $x \in E$, on calcule :

$$\langle Q(v)(x), x \rangle$$

$$= \langle ((v - \alpha \operatorname{Id}_F)^2 + \beta \operatorname{Id}_F)(x), x \rangle$$

$$= \langle ((v - \alpha \operatorname{Id}_F) \circ (v - \alpha \operatorname{Id}_F))(x), x \rangle + \beta \langle x, x \rangle$$

$$= \langle (v - \alpha \operatorname{Id}_F)(x), (v - \alpha \operatorname{Id}_F)(x) \rangle + \beta \langle x, x \rangle$$

$$\operatorname{car} v - \alpha \operatorname{Id}_F \text{ autoadjoint}$$

$$= \|(v - \alpha \operatorname{Id}_F)(x)\|^2 + \beta \|x\|^2$$

$$\geqslant 0$$

Ainsi Q(v) est autoadjoint positif.

• Soit $x \in E$ tel que $\langle Q(v)(x), x \rangle = 0$. C'est donc que $\|(v - \alpha \mathrm{Id}_F)(x)\|^2 + \beta \|x\|^2 = 0$ par le calcul précédent. Il s'agit d'une somme nulle de termes positifs, donc $\beta \|x\|^2 = 0$ et donc $\|x\| = 0$ car $\beta > 0$. Ainsi x = 0. Finalement, on a montré que Q(v) est autoadjoint défini positif.

Lemme 1. Soit E espace euclidien de dimension $\geqslant 1$, et $u \in \mathcal{S}(E)$ un endomorphisme autoadjoint de E. Alors $\mathrm{Sp}(u) \neq \varnothing$.

 $Preuve. \;\;$ Intéressons-nous à la décomposition en produit de polynômes irréductibles du polynôme minimal π_u de u. Supposons que cette décomposition comprenne un termes irréductibles de degré 2, c'est-à-dire qu'il existe Q et P tels que :

$$\pi_u = QP$$

où $Q = (X - \alpha)^2 + \beta$ avec $\beta > 0$. On a donc :

$$0_{\mathcal{L}(E)} = \pi_u(u)$$
$$= Q(u) \circ P(u)$$

Notons $F=\operatorname{Im}(P(u))$. Comme u et P(u) commutent, F est stable par u. On note $v=u_F$ l'endomorphisme induit par u sur F. L'égalité précédente s'écrit :

$$\forall x \in E, \ Q(u)(P(u)(x)) = 0$$

et donc, comme chaque $y \in F$ s'écrit P(u)(x) ,

$$\forall y \in F, \ Q(v)(y) = 0$$

Mais le lemme 0 indique que Q(v) est autoadjoint défini positif, donc pour tout $y \in F$, si $y \neq 0$, alors $\langle \underline{Q(v)(y)}, y \rangle > 0$.

C'est donc que tout $y \in F = \text{Im}(P(u))$ est nul, et donc que $P(u) = 0_{\mathcal{L}(E)}$.

Ceci contredit la minimalité de π_u . C'est donc que π_u n'a pas de facteur irréductible de degré 2, donc est scindé dans $\mathbb{R}[X]$, ce qui justifie la propriété annoncée.

7.5 Annexe : normes subordonnées et rayons spectraux

On considère E un espace euclidien, on note $\|\cdot\|$ la norme euclidienne, et $\|\cdot\|$ la norme d'opérateur sur $\mathcal{L}(E)$, subordonnée à $\|\cdot\|$.

Lemme. Pour tout $x \in E$,

$$||x|| = \sup_{\|y\| \le 1} \langle x, y \rangle$$

Preuve.

• Pour tout y tel que $||y|| \le 1$, on a :

$$\langle x,y \rangle \leqslant \|x\| \|y\|$$
 Cauchy-Schwarz
$$\leqslant \|x\| \qquad \text{indépendant de } y$$
 Sup $\langle x,y \rangle \leqslant \|x\|$.

 $\mathrm{donc}\ \sup_{\parallel y\parallel\leqslant 1}\langle x,y\rangle\leqslant \|x\|.$

• Le cas où $y=\frac{x}{\|x\|}$ fournit un cas d'égalité dans l'inégalité précédente, donc :

$$\sup_{\|y\| \leqslant 1} \langle x, y \rangle = \|x\|$$

Proposition. Pour $u \in \mathcal{L}(E)$, $||u^*|| = ||u||$.

 $Preuve. \ \ {\rm Si} \ u=0_{\mathcal{L}(E)},$ alors $u^*=0_{\mathcal{L}(E)}$ et l'égalité est triviale. On suppose dorénavant $u\neq 0_{\mathcal{L}(E)}.$

• Pour tout $x \in E$:

$$\begin{split} \|u(x)\|^2 &= \langle u(x), u(x) \rangle \\ &= \langle u^*(u(x)), x \rangle \text{ par d\'efinition de l'adjoint} \\ &\leqslant \|u^* \circ u(x)\| \; \|x\| \text{ par Cauchy-Schwarz} \\ &\leqslant \|u^* \circ u\| \; \|x\| \; \|x\| \text{ par d\'ef. de } \|\cdot\| \\ &\leqslant \|u^*\| \; \|u\| \; \|x\|^2 \text{ par sous-multiplicativit\'e} \end{split}$$

que l'on peut réécrire :

$$\|u(x)\|\leqslant \sqrt{\|u^*\|\;\|u\|}\;\|x\|$$

On a donc, par définition de la norme d'opérateur :

$$||u|| \leqslant \sqrt{||u^*|| \, ||u||}$$

et donc, comme $||u|| \neq 0$:

$$\sqrt{\|u\|} \leqslant \sqrt{\|u^*\|}$$

c'est-à-dire, en élevant au carré :

$$||u|| \leq ||u^*||$$

• En appliquant ce qui précède à u^* , on a aussi :

$$|||u^*||| \le |||u^{**}|||$$

= $|||u||| \operatorname{car} u^{**} = u$

On a montré que $||u|| = ||u^*||$.

<u>Définition.</u> Pour $u \in \mathcal{L}(E)$, on définit le rayon spectral :

$$\rho(u) = \text{Max}\{|\lambda|, \ \lambda \in \text{Sp}(u)\}$$

Proposition. On dispose des résultat suivants :

1. Soit $u \in \mathcal{S}(E)$. Alors:

$$\operatorname{Max}\left(\operatorname{Sp}(u)\right) = \sup_{x \neq 0_E} \frac{\langle x, u(x) \rangle}{\|x\|^2}$$

2. Si de plus $u \in \mathcal{S}^+(E)$,

$$\operatorname{Max} (\operatorname{Sp}(u)) = \rho(u) = ||u||$$

3. Pour $u \in \mathcal{L}(E)$:

$$||u||^2 = ||u^* \circ u|| = \rho(u^* \circ u)$$

Preuve.

1. Notons $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ les valeurs propres de u, classées par ordre croissant, répétées selon leurs mulitiplicités. Comme u est autoadjoint, il existe une base orthonormée $\mathcal{B}=(e_1,\ldots,e_n)$ de vecteurs propres, associés aux valeurs propres $\lambda_1,\ldots,\lambda_n$.

Rappelons qu'en base orthonormée, les coordonnées de x sont $(\langle x, e_1 \rangle, \dots, \langle x, e_n \rangle)$.

MPI

• Pour tout $x \in E$ non nul :

$$\begin{split} \frac{\langle x, u(x) \rangle}{\|x\|^2} &= \frac{1}{\|x\|^2} \langle \sum_{i=1}^n \langle x, e_i \rangle e_i, u \big(\sum_{j=1}^n \langle x, e_j \rangle e_j \big) \rangle \\ &= \frac{1}{\|x\|^2} \sum_{i=1}^n \sum_{j=1}^n \langle x, e_i \rangle \langle x, e_j \rangle \langle e_i, u(e_j) \rangle \\ &\quad \text{par lin\'earit\'e de } u \\ &\quad \text{et bilin\'earit\'e du p.s.} \\ &= \frac{1}{\|x\|^2} \sum_{i=1}^n \sum_{j=1}^n \langle x, e_i \rangle \langle x, e_j \rangle \langle e_i, \lambda_j e_j \rangle \\ &= \frac{1}{\|x\|^2} \sum_{i=1}^n \langle x, e_i \rangle^2 \lambda_i \quad \text{car } \langle e_i, e_j \rangle = \delta_{ij} \\ &\leqslant \frac{1}{\|x\|^2} \lambda_n \sum_{i=1}^n \langle x, e_i \rangle^2 \\ &= \lambda_n \text{ ind\'ependant de } x \end{split}$$

donc
$$\sup_{x \neq 0_E} \frac{\langle x, u(x) \rangle}{\|x\|^2} \leqslant \lambda_n = \operatorname{Max} \operatorname{Sp}(u).$$

• Pour $x = e_n$, on a:

$$\frac{\langle x, u(x) \rangle}{\|x\|^2} = \frac{\langle e_n, u(e_n) \rangle}{\|e_n\|^2}$$
$$= \frac{\langle e_n, \lambda_n e_n \rangle}{\|e_n\|^2}$$
$$= \lambda_n$$
$$= \operatorname{Max} \operatorname{Sp}(u)$$

Ce qui montre que le Sup étudié est un max, et qu'il vaut $\operatorname{Max} \operatorname{Sp}(u)$.

- 2. On suppose maintenant u autoadjoint positif. Par caractérisation spectrale, on a $\mathrm{Sp}(u) \subset \mathbb{R}_+$ et donc $\mathrm{Max}\,\mathrm{Sp}(u) = \rho(u)$.
 - Pour tout $x \in E$ non nul :

$$0\leqslant \frac{\langle x,u(x)\rangle}{\|x\|^2}\leqslant \frac{1}{\|x\|^2}\|x\|\ \|u(x)\|\ \text{Cauchy-Schwarz}$$

$$\frac{1}{\|x\|}\ \|u\|\ \|x\|$$

par déf. de norme d'opérateur $= \| \| u \| \quad \text{indépendant de } x$

donc
$$\sup_{x\neq 0_E} \frac{\langle x, u(x) \rangle}{\|x\|^2} \leqslant \|\|u\|,$$
 c'est-à-dire :

$$\operatorname{Max}\operatorname{Sp}(u) \leqslant ||u||$$

par le point précédent.

• Pour tout $x \in E$ non nul, comme (e_1, \ldots, e_n) est

orthonormée:

$$\begin{aligned} \|u(x)\|^2 &= \langle \sum_{i=1}^n \langle u(x), e_i \rangle e_i, \sum_{j=1}^n \langle u(x), e_j \rangle e_j \rangle \\ &= \langle \sum_{i=1}^n \langle x, u(e_i) \rangle e_i, \sum_{j=1}^n \langle x, u(e_j) \rangle e_j \rangle \\ &\quad \text{car } u \text{ autoadjoint} \\ &= \langle \sum_{i=1}^n \lambda_i \langle x, e_i \rangle e_i, \sum_{j=1}^n \lambda_j \langle x, e_j \rangle e_j \rangle \\ &\quad \text{car } u(e_i) &= \lambda_i e_i \\ &= \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \langle x, e_i \rangle \langle x, e_j \rangle \langle e_i, e_j \rangle \\ &\quad \text{par bilinéarit\'e} \\ &= \langle \sum_{i=1}^n \lambda_i^2 \langle x, e_i \rangle^2 \\ &\quad \text{car } \mathcal{B} \text{ orthonorm\'ee} \\ &\leq \lambda_n^2 \sum_{i=1}^n \langle x, e_i \rangle^2 \\ &= \lambda_n^2 \|x\|^2 \end{aligned}$$

Ainsi, par positivité de λ_n , $\|u(x)\| \le \lambda_n \|x\|$, ce qui signifie, par définition de la norme d'opérateur :

$$||u|| \leqslant \lambda_n$$

c'est-à-dire :

$$||u|| \leq \operatorname{Max} \operatorname{Sp}(u)$$

On a montré que :

$$\operatorname{Max} (\operatorname{Sp}(u)) = \rho(u) = ||u||$$

- 3. Cette fois-ci, l'endomorphisme \boldsymbol{u} est quelconque.
 - Remarquons tout d'abord que $u^* \circ u$ est autoadjoint positif :

$$(u^{\star} \circ u)^{\star} = u^{\star} \circ u^{\star \star}$$

et, pour tout $x \in E$:

$$\langle u^* \circ u(x), x \rangle = \langle u(x), u(x) \rangle$$

= $\|u(x)\|^2$
 $\geqslant 0$

• Par les deux points précédents, on a donc :

$$\begin{aligned} \|u^{\star} \circ u\| &= \rho(u^{\star} \circ u) \text{ par le point 2} \\ &= \operatorname{Max} \operatorname{Sp}(u^{\star} \circ u) \text{ par le point 2} \\ &= \sup_{x \neq 0} \frac{\langle x, u^{\star} \circ u(x) \\ \|x\|^2} \text{ par le point 1} \\ &= \sup_{x \neq 0} \frac{\langle u(x), u(x) \\ \|x\|^2} \\ &= \sup_{x \neq 0} \frac{\|u(x)\|^2}{\|x\|^2} \\ &= \|u\|^2 \end{aligned}$$

par déf. de norme d'opérateur

Exercices et résultats classiques à connaître

Caractérisation des symétries orthogonales, des projecteurs orthogonaux

32.1

Soit E espace euclidien.

Montrer que les projections orthogonales de E sont les projections qui sont des endomorphismes autoadjoints.

32.2

Soit E espace euclidien.

Montrer que les symétries orthogonales de E sont les isométries vectorielles qui sont des endomorphismes autoadjoints.

Racine carrée d'une matrice symétrique positive

32.3

- (a) Montrer que, pour toute matrice $S \in \mathcal{S}_n^+(\mathbb{R})$, il existe $R \in \mathcal{S}_n^+(\mathbb{R})$ telle que : $S = \mathbb{R}^2$
- (b) Montrer l'unicité de cette matrice R.

Décomposition polaire d'une matrice inversible

32.4

Montrer que toute matrice $A \in \mathrm{GL}_n(\mathbb{R})$ admet une **décomposition polaire** : $A = \Omega S$ où $\Omega \in \mathrm{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

Matrice de Householder

32.5

Si $V \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$, on appelle **matrice de Householder** de V la matrice : $H_V = I_n - \frac{2}{\|V\|^2} V V^{\top}$ Montrer que H_V est symétrique et orthogonale, et reconnaître l'endomorphisme qu'elle représente.

Matrice de Hilbert

32.6

On s'intéresse à la matrice de Hilbert $H = \left(\frac{1}{i+j-1}\right)_{1 \le i,j \le n}$.

- (a) Pour $X = (x_i)_{1 \leq i \leq n} \in \mathcal{M}_{n1}(\mathbb{R})$, exprimer $X^\top H X$.
- (b) Montrer que H est une matrice symétrique, définie positive. On écrira $\frac{1}{i+j-1}$ comme l'intégrale sur [0,1] d'un polynôme simple.

Une formule variationnelle

32.7

Soit u un endomorphisme autoadjoint d'un espace euclidien. Montrer que :

$$\sup_{x \neq 0_E} \frac{\langle x, u(x) \rangle}{\|x\|^2} = \operatorname{Max} \operatorname{Sp}(u)$$

32.8

Soit E un espace euclidien muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

Pour tout endomorphisme u de E, on note u^* l'adjoint de u.

- 1. Un endomorphisme u de E vérifiant $\forall x \in E$, (u(x)|x) = 0 est-il nécessairement l'endomorphisme nul?
- 2. Soit $u \in \mathcal{L}(E)$.

Prouver que les trois assertions suivantes sont équivalentes :

i.
$$u \circ u^* = u^* \circ u$$
.

ii.
$$\forall (x,y) \in E^2$$
, $(u(x)|u(y)) = (u^*(x)|u^*(y))$.

iii.
$$\forall x \in E, ||u(x)|| = ||u^*(x)||.$$

32.9

- 1. Soit $A \in S_n(\mathbb{R})$. Prouver que $A \in S_n^+(\mathbb{R}) \iff \operatorname{sp}(A) \subset [0, +\infty[$.
- 2. Prouver que $\forall A \in S_n(\mathbb{R}), A^2 \in S_n^+(\mathbb{R}).$
- 3. Prouver que $\forall A \in S_n(\mathbb{R}), \forall B \in S_n^+(\mathbb{R}), AB = BA \Longrightarrow A^2B \in S_n^+(\mathbb{R})$
- 4. Soit $A \in S_n^+(\mathbb{R})$. Prouver qu'il existe $B \in S_n^+(\mathbb{R})$ telle que $A = B^2$.

 $\fbox{32.10}$

Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Démontrer que A est diagonalisable de quatre manières :
 - (a) sans calcul,

2. On suppose que A est la matrice d'un endomorphisme u d'un espace euclidien dans une base orthonormée.

Trouver une base orthonormée dans la quelle la matrice de \boldsymbol{u} est diagonale.

32.11

2025 **MPI**

32. Endomorphismes remarquables des espaces euclidiens

Soit E un espace euclidien de dimension n et u un endomorphisme de E. On note (x|y) le produit scalaire de x et de y et ||.|| la norme euclidienne associée.

- 1. Soit u un endomorphisme de E, tel que : $\forall x \in E, ||u(x)|| = ||x||$.
 - (a) Démontrer que : $\forall (x,y) \in E^2 (u(x)|u(y)) = (x|y)$.
 - (b) Démontrer que u est bijectif.
- 2. On note $\mathcal{O}(E)$ l'ensemble des isométries vectorielles de E, c'est-à-dire $\mathcal{O}(E) = \{u \in \mathcal{L}(E), \ \forall x \in E, \ \|u(x)\| = \|x\|\}$. Démontrer que $\mathcal{O}(E)$, muni de la loi \circ , est un groupe.
- 3. Soit $u \in \mathcal{L}(E)$. Soit $e = (e_1, e_2, ..., e_n)$ une base orthonormée de E. Prouver que : $u \in \mathcal{O}(E) \iff (u(e_1), u(e_2), ..., u(e_n))$ est une base orthonormée de E.

32.12

GNP 101.22

- 2. On considère la matrice $A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$.
 - (a) Justifier, sans calcul, que la matrice A est diagonalisable.
 - (b) Prouver que $-\frac{1}{2}$ est valeur propre de A et déterminer le sous-espace propre associé.
 - (c) Déterminer une matrice P inversible orthogonale et une matrice D diagonale de $\mathcal{M}_3(\mathbb{R})$ telles que $D = P^{-1}AP$ $A = PDP^{\top}$.

32. Endomorphismes remarquables des espaces euclidiens

- (a) $\operatorname{Ker}(u^*) = (\operatorname{Im} u)^{\perp}$
- (b) $\operatorname{Im}(u^*) = (\operatorname{Ker} u)^{\perp}$

32.14

Dans E espace euclidien non nul et $u \in \mathcal{S}(E)$. Montrer que :

$$\sup_{\|x\|=1}\|u(x)\|=\max_{\lambda\in\mathrm{Sp}(u)}|\lambda|$$

32.15

Soit E espace euclidien de dimension $n \geqslant 2$, a un vecteur unitaire et $\lambda \in \mathbb{R}$. Pour $x \in E$, on pose :

$$f(x) = x + \lambda \langle x, a \rangle a$$

- (a) Montrer que f est autoadjoint.
- (b) Déterminer les éléments propres de f.

32.16

Montrer que $O_n(\mathbb{R})$ est compact.

32.17

Soit E un espace euclidien et $u \in \mathcal{L}(E)$. Montrer que :

- (a) $\operatorname{Ker}(u^*) = (\operatorname{Im} u)^{\perp}$
- (b) $\operatorname{Im}(u^*) = (\operatorname{Ker} u)^{\perp}$

32.18

On travaille dans un espace euclidien de dimension 3 muni d'une base orthonormée directe. Décrire les endomorphismes représentés par les matrices :

(b)
$$B = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{2} & 1\\ \sqrt{2} & 0 & -\sqrt{2}\\ 1 & \sqrt{2} & 1 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

(d)
$$D = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1\\ 4 & 7 & 4\\ 1 & 4 & -8 \end{pmatrix}$$

32.19

Orthodiagonaliser:

$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

32.20

Étudier la transformation géométrique associée à :

$$M = \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{pmatrix}$$

32.21

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice relativement à la base canonique est $A = -\frac{1}{3}\begin{pmatrix} -2 & -2 & -1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix}$. Reconnaître u.

32.22

On considère $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique. Soit A, B deux matrices orthgonales. Montrer que les applications :

$$M \mapsto AM$$
, $M \mapsto MB$, $M \mapsto AMB$

MPI

Endomorphismes remarquables des espaces euclidiens

Petits problèmes d'entrainement

32.23

Soit f une isométrie d'un espace euclidien E. On note Id l'application identique de E, F = Ker(f - Id) et G le sous-espace supplémentaire orthogonal de F.

- (a) Montrer que, pour tout $x, y \in E$, $\langle f(x), f(y) \rangle = \langle x, y \rangle$.
- (b) Montrer que G est stable par f, et que la restriction de $\mathrm{Id} f$ à G, notée g, est un automorphisme de G.
- (c) On note $g_n = \frac{1}{n} (\operatorname{Id} + f + f^2 + \dots + f^{n-1})$. Exprimer l'application $g_n \circ (\operatorname{Id} f)$ en fonction de Id, f^n et n. En déduire que, pour tout $x \in G$, $g_n(x) \xrightarrow[n \to +\infty]{} 0_E$.
- (d) Soit $x \in E$. Montrer que $g_n(x) \xrightarrow[n \to +\infty]{} p(x)$, où p est la projection orthogonale sur F.
- (e) On pose $A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer la limite, pour $n \to +\infty$, de: $\frac{1}{n}(I_3 + A + \dots + A^{n-1})$

32.24

Soit $n \ge 3$, $E = \mathcal{M}_{n1}(\mathbb{R})$, A et B deux colonnes non colinéaires dans E et :

$$M = AB^{\top} + BA^{\top}$$

- (a) Justifier que M est diagonalisable.
- (b) Déterminer rg(M) en fonction de A et B.
- (c) Déterminer le spectre de M et décrire les sous-espaces propres associés. On pourra commencer par le cas où (A, B) est une famille orthonormée.

32.25

Soit E un espace euclidien de dimension $n\geqslant 3,\ a,b$ deux vecteurs unitaires de E, non colinéaires. Pour $x\in E$, on pose :

$$f(x) = \langle a, x \rangle a + \langle b, x \rangle b$$

- (a) Montrer que f est un endomorphisme autoadjoint de E.
- (b) Déterminer noyau et image de f.
- (c) Déterminer les éléments propres de f.

32.26

Soit $E = \mathbb{R}_n[X]$ muni du produit scalaire défini par :

$$\langle P, Q \rangle = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2} dt$$

- (a) Montrer qu'il s'agit bien d'un produit scalaire.
- (b) Montrer que $f: P \mapsto 2XP' P''$ est un endomorphisme autoadjoint de E.
- (c) Montrer que les valeurs propres de f sont positives, et les déterminer.

32.27

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. On note α (resp. β) la plus grande valeur propre de $A^{\top}A$ (resp. $B^{\top}B$). Montrer que :

$$\forall \lambda \in \operatorname{Sp}(AB), \ \lambda^2 \leqslant \alpha \beta$$

32.28

Soit n un entier ≥ 2 et $M \in \mathcal{M}_n(\mathbb{R})$ définie par :

$$M = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 1 \\ 1 & \dots & 1 & 1 \end{pmatrix}$$

(a) Justifier que M est diagonalisable et donner dim $\operatorname{Ker} M$.

- (b) Donner une base de $\mathrm{Ker}(M)^{\perp},$ et préciser la matrice de l'endomorphisme induit par M sur $Ker(M)^{\perp}$ dans cette base.
- (c) En déduire le spectre de M.

32.29

Soit $A = (a_{ij})_{ij} \in \mathcal{S}_n(\mathbb{R})$ une matrice symétrique satisfaisant :

$$A^{17} = A^{19}$$

Montrer que :

$$\sum_{1 \leqslant i, j \leqslant n} a_{ij}^2 = \operatorname{rg}(A)$$

32.30

Soit
$$A = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n-1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Montrer que $A \in \mathcal{S}_n(\mathbb{R})$, $\operatorname{Sp}(A) \subset \mathbb{R}_+$ et calculer $\operatorname{rg}(A)$.

32.31

Soit $E = \mathbb{R}_n[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$.

- (a) Soit $u: P \mapsto \int_0^1 (X+t)^n P(t) dt$: montrer que u est un endomorphisme autoadjoint de E.
- (b) En déduire qu'il existe une base orthonormée (P_0, \ldots, P_n) de E formée de vecteurs propres de u. On note $\lambda_0, \ldots, \lambda_n$ les vp associées.
- (c) Montrer que:

$$\forall (x,y) \in \mathbb{R}^2, \ (x+y)^n = \sum_{k=0}^n \lambda_k P_k(x) P_k(y)$$

En déduire tr(u).