T.D. VIII - Intégration

I - Calculs d'intégrales

Exercice 1. (28) Déterminer une primitive des fonctions suivantes :

1.
$$f_1(x) = \frac{x^3 + 5x^2 - 4}{x^2}$$
.

2.
$$f_2(x) = \frac{8x^2}{(x^3+2)^3}$$
.
3. $f_3(x) = x\sqrt{1-2x^2}$.
4. $f_4(x) = (e^x + 1)^3 e^x$.
6. $f_6(x) = \frac{x^2}{\sqrt{5+x^3}}$.
7. $f_7(x) = \frac{\ln(x)}{x}$.
8. $f_8(x) = \frac{\ln^{27}(x)}{x}$.

3.
$$f_3(x) = x\sqrt{1-2x^2}$$
.

4.
$$f_4(x) = (e^x + 1)^3 e^x$$
.

5.
$$f_5(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

6.
$$f_6(x) = \frac{x^2}{\sqrt{5+x^3}}$$

7.
$$f_7(x) = \frac{\ln(x)}{x}$$

8.
$$f_8(x) = \frac{\ln^{27}(x)}{x}$$

Exercice 2. (Changements de variables, $\mathfrak{A}_{\mathfrak{S}}^{\mathfrak{S}}$) Déterminer une primitive des fonctions suivantes :

1.
$$f_1(x) = \frac{1}{e^x + 1}$$
.
 $\varphi : u \mapsto \ln(u), \frac{1}{u(u+1)} = \frac{a}{u} + \frac{b}{u+1}$.
2. $f_2(x) = \frac{1 - \sqrt{x}}{\sqrt{x}}$.
3. $f_3(x) = \frac{1}{2x \ln(x) + x}$.
 $\varphi : u \mapsto e^u$.
4. $f_4(x) = \frac{x^3}{\sqrt{x^2 + 2}}$.

2.
$$f_2(x) = \frac{1-\sqrt{x}}{\sqrt{x}}$$
. $\varphi: u \mapsto u^2$.

3.
$$f_3(x) = \frac{1}{2x \ln(x) + x}$$
. $\varphi : u \mapsto e^u$.

4.
$$f_4(x) = \frac{x^3}{\sqrt{x^2+2}}$$
. $\varphi: u \mapsto \sqrt{u-2}$.

Exercice 3. (Intégrations par parties, 🚓) Déterminer une primitive des fonctions suivantes:

1.
$$f_1(x) = x e^x$$
.

3.
$$f_3(x) = x^2 \ln(x)$$
.

2.
$$f_2(x) = x^2 e^x$$
.

Exercice 4. (\$\omega\$)

1. Montrer qu'il existe a, b réels tels que

$$\forall x \in [0,1], \frac{x}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$$

2. En déduire la valeur de $\int_0^1 \frac{x}{(x+1)(x+2)} dx$.

Exercice 5. (Fonction bêta) Pour tout $(p,q) \in \mathbb{N}^2$, on note $I_{p,q} = \int_{0}^{1} x^{p} (1-x)^{q} dx.$

1. Pour q non nul, déterminer une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.

2. Exprimer la valeur de $I_{p,q}$ à l'aide de factorielles.

II - Inégalités

Exercice 6. (\mathfrak{S}) Montrer que $\frac{1}{3} \leqslant \int_{0}^{1} \frac{\mathrm{d}t}{1+t+t^{2}} \leqslant 1$.

Exercice 7. (**)

1. Montrer que, pour tout $k \ge 2$,

$$\int_{k-1}^{k} \ln(t) \, \mathrm{d}t \leqslant \ln(k) \leqslant \int_{k}^{k+1} \ln(t) \, \mathrm{d}t.$$

2. En déduire que, pour tout $n \ge 1$,

$$\int_{1}^{n} \ln(t) dt \leqslant \ln(n!) \leqslant \int_{1}^{n} \ln(t) dt + \ln(n).$$

3. En utilisant une primitive de ln, en déduire la limite de la suite de terme général $\frac{\ln(n!)}{n \ln(n)}$.

Exercice 8. (\mathscr{P}) Pour tout $x \in [0,1]$, on pose $f(x) = \int_{-\infty}^{x^2} \frac{\mathrm{d}t}{\ln(t)}$.

1. En utilisant la croissance du logarithme, montrer que la fonction φ est prolongeable par continuité en 0.

2. En utilisant la concavité du logarithme, montrer que

$$\forall x \in]0,1[, \forall t \in]x^2,1[, \frac{2\ln(x)}{x^2-1}(t-1) \le \ln(t) \le t-1.$$

3. Montrer que f est prolongeable par continuité en 1.

4. Montrer que f est dérivable sur]0,1[et calculer sa dérivée.

Exercice 9. Pour tout *n* entier naturel, on pose $I_n = \int_0^1 \ln(1+x^n) dx$.

- **1.** Montrer que, pour tout n entier naturel non nul, $0 \le I_n \le \ln(2)$.
- **2.** Étudier les variations de la suite (I_n) .
- **3.** En déduire que la suite (I_n) converge.
- **4.** Montrer que : $\forall x \ge 0, 0 \le \ln(1+x) \le x$.
- 5. En déduire que $\lim_{n\to+\infty}I_n=0$.

Exercice 10. Pour tout n entier naturel non nul, on pose $I_n = \int_0^1 x^n \ln(1+x^2) dx$ et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- **1. a)** Calculer J_1 .
 - **b)** Montrer que, pour tout n entier naturel non nul, $0 \le J_n \le \frac{1}{n+1}$.
 - c) En déduire que (J_n) converge et déterminer sa limite.
- 2. a) À l'aide d'une intégration par parties, montrer que :

$$\forall n \ge 1, I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

- **b)** Montrer que la suite (I_n) converge.
- c) Montrer que la suite (nI_n) converge et déterminer sa limite.

III - Intégrales généralisées

Exercice 11. (En comparant l'intégrande avec une fonction de référence, montrer que les intégrales suivantes convergent :

1.
$$\int_{-\infty}^{+\infty} e^{-t^2} dt$$
.

$$\mathbf{3.} \ \int_{1}^{+\infty} \frac{\ln t}{1+t^4} \, \mathrm{d}t.$$

$$2. \int_0^{+\infty} \sqrt{t} e^{-t} dt.$$

4.
$$\int_0^1 \frac{\ln t}{1 + t^4} \, \mathrm{d}t.$$

Exercice 12. (Étudier la convergence et, le cas échéant, calculer les intégrales suivantes :

1.
$$\int_0^1 x \ln^2(x) dx$$
.

1.
$$\int_0^1 x \ln(x) dx$$
.
2. $\int_0^1 \ln^2(t) dt$.

3.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)(x+2)}.$$
$$\frac{1}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$$

IV - Intégrales classiques

Exercice 13. (Expression intégrale de la factorielle, $\overset{\bullet}{\sim}$) Pour tout n entier naturel, on pose $I_n = \int_0^{+\infty} t^n e^{-t} dt$. Soit $n \in \mathbb{N}$.

- **1.** Calculer I_0 .
- **2.** Montrer que l'intégrale I_n converge.
- **3.** Montrer que $I_{n+1} = (n+1)I_n$.
- **4.** En déduire, pour tout n entier naturel, une expression simple de I_n .

Exercice 14. (Fonction Gamma d'Euler, \mathscr{F}) Pour tout réel x strictement positif, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- **1.** Soit x > 0.
 - a) Pour tout $t \in]0,1]$, rappeler la définition de t^{x-1} .
 - **b)** Déterminer un équivalent, lorsque $t \to 0$ de $t^{x-1} e^{-t}$.
 - c) En déduire que $\int_0^1 t^{x-1} e^{-t} dt$ converge.
 - **d)** Montrer qu'il existe un réel a tel que

$$\forall t \ge a, t^{x-1} e^{-t} \le e^{-t/2}.$$

- e) En déduire que $\int_a^{+\infty} t^{x-1} e^{-t} dt$ converge.
- **f**) En déduire que la fonction Γ est bien définie.
- **2.** En utilisant une intégration par parties sur le segment $[\varepsilon, M]$ puis en faisant tendre ε vers 0 et M vers $+\infty$, montrer que $\Gamma(x+1) = x\Gamma(x)$.
- **3.** En déduire, pour tout n entier naturel, la valeur de $\Gamma(n+1)$.

T.D. IX - Variables aléatoires à densité

I - Lois usuelles

Exercice 1. Soit $U \hookrightarrow \mathcal{U}([0,1])$. Déterminer la fonction de répartition, une densité, puis identifier, lorsque c'est possible, la loi des variables aléatoires suivantes :

1.
$$X = 3U$$
.

2.
$$Y = U + 1$$
.

3.
$$Z = \frac{1}{2}U + 1$$
.

4. $W = U^2$. **5.** $H = \ln(U)$. **6.** $E = -\ln(U)$.

Exercice 2. Un archer lance deux flèches en direction d'une cible de rayon d'un mètre. On suppose qu'il atteint systématiquement la cible et que ses lancers sont indépendants. Pour tout $i \in \{1, 2\}$, on note R_i la variable aléatoire égale à la distance (en mètres) de la flèche numéro i au centre de la cible et on suppose que $R_i \hookrightarrow \mathcal{U}([0,1])$. On note également $R = \min\{R_1, R_2\}.$

- **1.** Soit $x \in \mathbb{R}$. Justifier que $\mathbf{P}([R > x]) = \mathbf{P}([R_1 > x] \cap [R_2 > x])$.
- **2.** En déduire, pour tout x réel, la fonction de répartition F de R.
- 3. Calculer la probabilité que la flèche la mieux lancée par l'archer soit située à moins de 50cm de la cible.

Exercice 3. Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$. Pour tout x réel, on note |x| sa partie entière, i.e. le plus grand réel inférieur ou égal à x.

- **1.** On pose Y = |X| + 1. Déterminer la loi de Y.
- 2. On pose $Z = \sqrt{X}$. Déterminer la loi de Z, son espérance et sa variance.
- 3. On pose $W=X^2$. Déterminer la fonction de répartition et l'espérance de W.

Exercice 4. On note Φ la fonction définie pour tout x réel par

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

1. Montrer que Φ réalise une bijection de \mathbb{R} sur]0,1[.

2. Soit X une variable aléatoire qui suit une loi normale centrée réduite. Montrer qu'il existe un unique réel t_0 strictement positif tel que $\mathbf{P}(-t_0 < X < t_0) = 0.95.$

3. Soit $X \hookrightarrow \mathcal{N}(8,4)$. En utilisant la table de la loi normale, déterminer des valeurs approchées de :

a)
$$P(X < 7,5)$$
.

c) $\mathbf{P}(6,5 < X < 10)$. d) $\mathbf{P}_{[X>5]}(X < 6)$.

b)
$$P(X > 8,5)$$
.

d)
$$\mathbf{P}_{[X>5]}(X<6)$$
.

II - Densités

Exercice 5. On définit la fonction f pour tout t réel positif par

$$f(t) = \begin{cases} 1 - |t| & \text{si } t \in [-1, 1] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est une densité de probabilité.
- 2. Soit X une variable aléatoire de densité f. Montrer que X admet une espérance et une variance et les déterminer.

Exercice 6. Soit f la fonction définie pour tout x réel par $f(x) = \frac{e^{-x}}{(1+e^{-x})^2}$.

1. Montrer que f est une densité de probabilité.

Soit X une variable aléatoire de densité f.

2. Déterminer la fonction de répartition F de X.

Soit φ la fonction définie pour tout x réel par $\varphi(x) = \frac{e^x - 1}{e^x + 1}$.

- **3.** Montrer que φ réalise une bijection de \mathbb{R} sur]-1,1[.
- **4.** Déterminer l'expression de φ^{-1} .
- 5. On pose $Y = \varphi(X)$. Montrer que Y est une variable aléatoire dont on précisera la fonction de répartition G et une densité g.

Exercice 7. (Lois de Pareto) Soient $\alpha > 0$ et f_{α} la fonction définie pour tout t réel par

$$f_{\alpha}(t) = \begin{cases} \frac{C}{t^{\alpha+1}} & \text{si } t \geqslant 1\\ 0 & \text{sinon} \end{cases}$$

1. Déterminer la constante C telle que f soit une densité de probabilité. Soit X une variable aléatoire de densité f_{α} .

2. Déterminer la fonction de répartition F de X.

3. Déterminer l'espérance et la variance de X en discutant selon les valeurs de α .

4. Soit $Y = X^2$. Déterminer une densité puis l'espérance (si elle existe) de Y.

5. Soit $T = \sqrt{X}$. Déterminer une densité puis l'espérance (si elle existe) de Y.

III - Estimation

Exercice 8. Soient $\theta > 0$ et X une variable aléatoire suivant une loi uniforme sur l'intervalle $[0,2\theta]$. Pour estimer θ , on considère un 4-échantillon (X_1,X_2,X_3,X_4) de X et on propose les estimateurs suivants :

$$T_1 = \frac{X_1 + X_2 + X_3 + X_4}{4}$$
 et $T_2 = \frac{X_1 + 2X_2 + 3X_3 + 4X_4}{10}$.

- 1. Calculer l'espérance de chacun de ces estimateurs.
- 2. Calculer le risque quadratique de chacun de ces estimateurs.
- 3. Lequel de ces deux estimateurs vous semble préférable?

Exercice 9. Soient $\theta > 0$ et X une variable aléatoire de loi uniforme sur $[0, 2\theta]$. Soient $n \ge 1$ et (X_1, \ldots, X_n) un n-échantillon de X. On pose $M_n = \max\{X_1, \ldots, X_n\}$.

D 2

- 1. Déterminer la loi de M_n , calculer son espérance et sa variance.
- **2.** En déduire que $U_n = \frac{n+1}{2n} M_n$ est un estimateur sans biais de θ .
- **3.** On pose $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. Montrer que \overline{X}_n est un estimateur sans biais de θ .
- **4.** Quel estimateur choisir entre U_n et \overline{X}_n ?

Exercice 10. Soient θ un réel strictement positif et f la fonction définie par $f(t) = e^{-(t-\theta)}$ lorsque $\theta \le t$ et f(t) = 0 sinon.

1. Vérifier que f est une densité de probabilité.

Soient T une variable aléatoire de densité $f, n \ge 2$ et (T_1, \ldots, T_n) un n-échantillon de T.

2. Calculer l'espérance et la variance de T.

On pose
$$Y_n = \frac{1}{n} \sum_{i=1}^n T_i$$
.

- **3.** Montrer que Y_n admet une espérance et une variance et les déterminer.
- **4.** Montrer que $\widehat{Y}_n = Y_n 1$ est un estimateur sans biais de θ .
- **5.** Déterminer le risque quadratique de \widehat{Y}_n .

On pose
$$Z_n = \min_{1 \le i \le n} T_i$$
.

- **6.** Exprimer la fonction de répartition F_n de Z_n en fonction de celle, notée F, de T.
- 7. En déduire que Z_n est une variable à densité.
- **8.** Déterminer l'espérance et la variance de Z_n .
- **9.** En déduire que $\widehat{Z}_n = Z_n \frac{1}{n}$ est un estimateur sans biais de θ .
- 10. Déterminer le risque quadratique de \widehat{Z}_n .
- 11. Comparer les risques quadratiques de \widehat{Y}_n et \widehat{Z}_n .

T.D. X - Réduction

I - Diagonalisation

Exercice 1. Sans effectuer de calcul, déterminer si les matrices suivantes sont diagonalisables:

$$\mathbf{1.} \ A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

1.
$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.
2. $A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 0 \end{pmatrix}$.
3. $A_3 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -5 \\ 0 & 0 & 3 \end{pmatrix}$.
4. $A_4 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

2.
$$A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 0 \end{pmatrix}$$
.

4.
$$A_4 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$.

- 1. Déterminer les réels λ tels que $A \lambda I_2$ ne soit pas inversible.
- **2.** La matrice A est-elle diagonalisable?
- 3. Déterminer une matrice P inversible et une D diagonale telles que $A = PDP^{-1}$.

Exercice 3. Soit $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

- 1. Déterminer les réels λ tels que $A \lambda I_2$ ne soit pas inversible.
- **2.** La matrice A est-elle diagonalisable?

Exercice 4. Soit $\lambda_0 \in \mathbb{R}$. Déterminer l'ensemble des matrices diagonalisables qui ont pour unique valeur propre λ_0 .

Exercice 5. Soient
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ et

$$X_3 = \begin{pmatrix} -2\\2\\-1 \end{pmatrix}.$$

1. Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A.

2. Montrer que A est diagonalisable puis déterminer une matrice Pinversible et une matrice D diagonale telles que $A = PDP^{-1}$.

Exercice 6. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Montrer sans calculs que A est diagonalisable.
- **2.** Diagonaliser la matrice A.

II - Réduction & Application

Exercice 7. Soit $A = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

- 1. Montrer que A admet une unique valeur propre. La matrice A est-elle diagonalisable?
- 2. Déterminer une base du sous-espace propre de A associé à son unique valeur propre.

On note f l'endomorphisme canoniquement associé à A ainsi que

$$T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 3. Recherche d'une base adaptée.
- a) Déterminer un vecteur non nul e_1 tel que $f(e_1) = 2e_1$.
- **b)** Déterminer un vecteur $e_2 = (a, b, -1)$ tel que $f(e_2) = e_1 + 2e_2$.
- c) Déterminer un vecteur $e_3 = (c, d, 2)$ tel que $f(e_3) = e_2 + 2e_3$.
- **d)** Montrer que $\mathscr{B} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 puis déterminer $Mat_{\mathscr{B}}(f)$.

On note P la matrice de passage de la base canonique à la base \mathscr{B} .

4. Déterminer P^{-1} .

5. En utilisant la formule du binôme de Newton, pour tout n entier naturel, déterminer \mathbb{T}^n .

6. En déduire les coefficients de A^n .

Exercice 8. Soient (u_n) , (v_n) et (w_n) trois suites définies par $u_0 = 1$, $v_0 = -1$, $w_0 = 2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} &= -3u_n + 4v_n - w_n \\ v_{n+1} &= 2v_n \\ w_{n+1} &= -4v_n - 2w_n \end{cases}.$$

1. Pour tout n entier naturel, exprimer v_n en fonction de n.

On pose
$$A = \begin{pmatrix} -3 & 4 & -1 \\ 0 & 2 & 0 \\ 0 & -4 & -2 \end{pmatrix}$$
.

2. Déterminer les réels λ tels que $A - \lambda I_3$ ne soit pas inversible.

3. Montrer que A est diagonalisable et déterminer une matrice inversible P et une matrice diagonale D telle que $A = PDP^{-1}$. Soit $n \in \mathbb{N}$.

4. En déduire par récurrence que, une expression de A^n en fonction de D^n , P^{-1} et P.

5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout n entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- **6.** Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.
- 7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.
- **8.** En déduire les expressions de u_n , v_n et w_n .

Exercice 9. Soient $A = \begin{pmatrix} -5 & 1 & -8 \\ 0 & 2 & 0 \\ 4 & -1 & 7 \end{pmatrix}$ et $R(X) = X^3 - 4X^2 + X + 6$.

- **1.** Montrer que $A^3 4A^2 + A + 6I_3 = 0_3$.
- **2.** En déduire que A est inversible et déterminer A^{-1} .
- **3.** Calculer R(2) puis déteminer un polynôme Q tel que R(X) = (X-2)Q(X).

- **4.** En déduire les valeurs propres possibles de la matrice A.
- ${f 5.}$ Déterminer les valeurs propres de A ainsi que les sous-espaces propres associés.
- **6.** En déduire que A est diagonalisable.

T.D. XI - Fonctions de plusieurs variables

I - Extremums libres

Exercice 1. (Extrema libres, dimension 2) Pour chacune des fonctions suivantes, déterminer les points critiques ainsi que leur nature (extremum local, extremum global) :

- 1. $(x,y) \mapsto x^2 xy + y^2$.
- **2.** $(x,y) \mapsto 4x^2y + 2x^3 4xy + 2x + 1$.
- **3.** $(x,y) \mapsto x^3 y^3 + 3x^2 3y^2$.

Exercice 2. (Extrema libres, dimension 3) Pour chacune des fonctions suivantes, déterminer les points critiques ainsi que leur nature :

- 1. $(x, y, z) \mapsto 1 + 2y 3y^2 + 2xz 3z^2$.
- **2.** $(x, y, z) \mapsto xy + yz + zx xyz$.

Exercice 3. On considère la fonction :

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \mapsto x^2 + y^2 - 6x - 14y + 58$$

- **1. a)** Montrer que f admet un unique point critique M.
 - **b)** Montrer que f admet en M un minimum local.
- **2. a)** La fonction f est-elle convexe?
 - **b)** Que peut-on en déduire?
- **3. a)** Vérifier que, pour tout $(x, y) \in \mathbb{R}^2$, $f(x, y) = ||(x, y) (x_M, y_M)||^2$.
 - b) En déduire une seconde démonstration du résultat établi en 2.

Exercice 4. Soit $f:(x,y)\mapsto x^4+y^2$.

- 1. Déterminer les points critiques de f.
- ${\bf 2.}\,$ Déterminer la matrice hessienne de f. Que nous apporte le théorème de Monge ?
- 3. Montrer que l'unique minimum global de f est atteint en (0,0).

II - Extremums sous contraintes

Exercice 5. (Extrema liés simples) Optimiser les fonctions suivantes sous la contrainte indiquée :

- **1.** $(x,y) \mapsto (x+1)\ln(y)$ sous x-y+1=0.
- **2.** $(x, y) \mapsto x e^y + y e^x \text{ sous } x y = 0.$
- 3. $(x,y) \mapsto x^2y \text{ sous } 2x^2 + y^2 = 3.$

26

Exercice 6. (Extremas liés avec lagrangien) Optimiser les fonctions sous la contrainte indiquée :

1.
$$(x, y, z, t) \mapsto x^2 + y^2 + z^2 + t^2$$
 sous
$$\begin{cases} x + y + z - t &= 3\\ 2x - y + z + t &= -6 \end{cases}$$
.

2. $(x,y) \mapsto \ln(x-y)$ sous $x^2 + y^2 - 2 = 0$.

Exercice 7. (Optimisation de production) Une entreprise de jouets fabrique x voitures et y camions. La voiture est vendue 1 euro alors que le camion est vendu 3 euros. Le coût de fabrication est estimé par $C(x,y) = 5x^2 + 5y^2 - 2xy - 2x - 1000$.

- 1. Établir le profit P(x,y) réalisé par l'entreprise et étudier sa convexité.
- 2. L'entreprise peut fabriquer 20 jouets par jour. Déterminer la répartition optimale de sa production entre les voitures et les camions.

Exercice 8. Trois cabinets d'étude sont chargés d'évaluer, de manière indépendante, le coût moyen c de fabrication de la production d'une entreprise. L'entreprise 1 (resp. 2, 3) propose une estimation sans biais de ce coût moyen à partir d'un estimateur noté U_1 (resp. U_2 , U_3). L'écart-type de U_1 est la moitié de celui de U_2 et un tiers de celui de U_3 . En fin de contrat, les trois cabinets se réunissent et proposent comme estimateur global l'une des combinaisons suivantes :

$$T_1 = \frac{U_1 + U_2 + U_3}{3}, T_2 = U_1, T_3 = \frac{3U_1 + U_2 + U_3}{5}.$$

- 1. Parmi ces estimateurs, lesquels sont sans biais?
- 2. Calculer la variance de chacun de ces estimateurs.
- **3.** Quel est le meilleur de ces estimateurs?

On impose que l'estimateur global soit une combinaison linéaire de U_1 , U_2 et U_3 i.e. il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $T = \alpha U_1 + \beta U_2 + \gamma U_3$.

4. Déterminer les réels α , β et γ donnant l'estimateur sans biais d'efficacité maximale.

Exercice 9. Soient $n \in \mathbb{N}^*$ et f définie pour tout $(x_1, \dots, x_n) \in \mathbb{R}^n$ par $f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$.

1. Déterminer les extremums de f sous la contrainte $\sum_{i=1}^{n} x_i = 1$.

Soit (X_1, \ldots, X_n) un *n*-échantillon d'une loi de Poisson de paramètre λ .

2. Montrer que, parmi les combinaisons linéaires de (X_1, \ldots, X_n) , il existe un unique estimateur sans biais de λ dont la variance est minimale.

Exercice 10. (Importance de la qualification) Soit $f:(x,y)\mapsto x$ sous la contrainte $x^3-y^2=0$.

- 1. Déterminer le minimum de f.
- 2. Écrire les conditions du premier ordre.
- **3.** En déduire que la stratégie utilisant le lagrangien ne fonctionne pas et expliquer pourquoi.

T.D. XII - Statistiques descriptives

I - Séries statistiques à un caractère

Exercice 1. Au sein d'une classe de 27 élèves, les notes obtenues lors du premier devoir de mathématiques sont les suivantes : 12,3,7,6,4, 8,9,7,10,12,11,10,7,9,10,5,12,11,9,13,16,9,13,5,14,8,17.

- 1. Présenter la série statistique des notes sous forme de tableau.
- 2. Représenter la série statistiques des notes avec un diagramme en bâtons.
- **3.** Quel est l'effectif de la modalité 4? de la classe [10, 14[?]] de la classe [0, 5]?
- **4.** Donner le tableau des effectifs cumulés. Dessiner la courbe des effectifs cumulés.
- **5.** Donner le tableau présentant la série des fréquences et des fréquences cumulées de ces notes.
- 6. Déterminer la ou les valeur(s) modale(s) de la série.
- 7. Déterminer la médiane de la série.
- 8. Déterminer la moyenne, la variance et l'écart-type de la série.

Exercice 2. Le tableau suivant donne la distribution de 40 téléviseurs d'un certain type selon le nombre de pannes observées au cours des 5 premières années d'utilisation.

Nombre de pannes	Nombre d'appareils
0	5
1	11
2	11
3	8
4	4
5	1

1. Préciser la population étudiée et le caractère considéré. Ce caractère est-il quantitatif ou qualitatif?

- 2. Représenter graphiquement la distribution de la série par un diagramme en bâtons.
- 3. Préciser la ou les valeur(s) modale(s).
- 4. Calculer la moyenne et l'écart-type du nombre de pannes.
- 5. Déterminer les effectifs cumulés et les fréquences cumulées de la série.
- 6. Déterminer la médiane de la série.
- 7. Quel pourcentage de téléviseurs a eu...
 - a) ... entre 1 et 3 pannes?
 - **b)** ... au moins 1 panne?

II - Séries statistiques à deux caractères

Exercice 3. Le responsable de la maintenance d'une grande surface veut connaître le coût de maintenance Y (en euros) des 14 caisses enregistreuses de son magasin en fonction de l'âge X (en années) de celles-ci. Ses relevés lui permettent d'établir le tableau suivant :

Maintenance	6	3.7	17.7	16.2	7.7	13.2	10.3	13.8	21.5	15.7	10.8	22.5	6.6	19.4
Âge	3	1	5	8	1	4	2	6	9	3	5	7	2	6

- 1. Déterminer l'équation de la droite d'ajutement des moindres carrés de Y en X. Donner une interprétation de ce résultat.
- 2. Calculer le coefficient de corrélation linéaire entre X et Y.

Exercice 4. L'évolution du nombre Y de nuités (en milliers) passées en gîte rural dans une région donnée entre 1988 et 1997 a été la suivante :

A	nnée	1988	1989	1990	1991	1992	193	194	1995	1996	1997
	t	1	2	3	4	5	6	7	8	9	10
Nι	uitées	25.4	26.8	31.1	28	33.2	32	32.2	37.2	39.3	45.7

- 1. Déterminer l'équation de la droite d'ajustement des moindres carrés exprimant l'évolution de Y en fonction du temps t.
- **2.** Calculer le coefficient de corrélation linéaire entre Y et t.

T.D. XIII - Relations binaires

T.D. XIV - Nombres complexes

I - Écritures

Exercice 1. Écrire sous forme algébrique les nombres complexes suivants:

1.
$$(2+6i)(6+i)$$
.

2.
$$(4-3i)^2$$

2.
$$(4-3i)^2$$
.
3. $(1-2i)(1+2i)$.

4.
$$(2-3i)^4$$
.

5.
$$\frac{1}{3-i}$$
.

6.
$$\frac{1-\sqrt{3}i}{-1-\sqrt{3}i}$$

7.
$$\frac{1-i}{1+\sqrt{3}i}$$
.

Exercice 2. Déterminer le module et un argument des nombres complexes suivants:

2.
$$\frac{3}{2}$$
 i.

4.
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}$$
 i.

5.
$$-2 i$$
.

6.
$$\frac{1+i}{1-i}$$
.

7.
$$\left(\frac{i}{1+i}\right)^4$$
.

8.
$$-3(\cos(\theta) + \sin(\theta)i)$$
.

9.
$$2(\cos(2\theta) - \sin(2\theta) i)$$
.

10.
$$\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)(1-i)$$

11.
$$\frac{\sqrt{2}-\sqrt{2}i}{1-\sqrt{3}i}$$

12.
$$\sin(\theta) + \cos(\theta) i$$
).

Exercice 3. Soit $z = \frac{1+\sqrt{2}+i}{1+\sqrt{2}-i}$.

1. Calculer
$$|z|$$
.

2. Mettre
$$z$$
 sous forme algébrique.

3. Calculer
$$z^{2021}$$
.

Exercice 4. (Angle moitié) Soit $a, b \in \mathbb{C}$ de modules 1 tels que $a \neq b$. Montrer que $\frac{a+b}{a-b}$ est un nombre imaginaire pur.

On pourra écrire $a=\mathrm{e}^{\theta\,\mathrm{i}}$ et $b=\mathrm{e}^{\varphi\,\mathrm{i}}$ sous forme trigonométrique puis factoriser $par e^{\frac{\theta+\varphi}{2}i}$.

Exercice 5. Soit $x \in \mathbb{R} \setminus \pi \mathbb{Z}$ et $n \in \mathbb{N}$.

1. Calculer
$$\sum_{k=0}^{n} e^{kx i}$$
.

2. En déduire
$$\sum_{k=0}^{n} \cos(kx)$$
 et $\sum_{k=0}^{n} \sin(kx)$.

II - Résolution d'équations

Exercice 6. Déterminer les nombres complexes z solutions des équations suivantes:

1.
$$z^2 + 9 = 0$$

2.
$$z^2 - z + 1 = 0$$

3.
$$z^2 + z + 1 = 0$$

4.
$$3z^2 - 6z + 6 = 0$$
.

5.
$$z^4 + z^2 + 1 = 0$$

1.
$$z^2 + 9 = 0$$
4. $3z^2 - 6z + 6 = 0$.2. $z^2 - z + 1 = 0$.5. $z^4 + z^2 + 1 = 0$.3. $z^2 + z + 1 = 0$.6. $z^2 - 2\cos(\theta)z + 1 = 0$.

Exercice 7. Soit $n \ge 2$ un entier naturel. Soit z un nombre complexe tel que $z^n = 1$.

- **1.** Montrer que |z| = 1. On pose dans la suite $z = e^{\theta i}$.
- 2. Déterminer les valeurs possibles pour θ .
- 3. Représenter graphiquement les solutions des équations :

a)
$$z^2 = 1$$
.

c)
$$z^4 = 1$$

b)
$$z^3 = 1$$
.

d)
$$z^5 = 1$$

III - Géométrie

Exercice 8. Soit z un nombre complexe de module 1.

a) Calculer
$$|1+z|^2 + |1-z|^2$$
.

b) Représenter géométriquement les points d'affixes 1, z, 1-z et 1+zpuis interprétez le résultat obtenu.

Exercice 9. Décrire les transformations du plan complexe définies par :

- 1. $z \mapsto e^{\frac{\pi}{4}i}(z (1+i)) + 1 + i$.
- **2.** $z \mapsto z + 12 + 16 i$.
- **3.** $z \mapsto i z + 1$.

Exercice 10. Déterminer l'ensemble des nombres complexes $z\in\mathbb{C}\backslash\{1\}$ tels que $\left(\frac{z+1}{z-1}\right)^2$ soit réel.