ields												
	٠٠١٠.	1	U			Suc	h llan	L .C		c IE		
det 1.1) a field IF is a set (of scalars)	10gerne	r Will	in open	CHOICN	*, *	Juc	n triu	1 (5	۵, ۵, ۵	-11		
· a+b= b+a e F												
• (a+b)+C = a+(b+c)	Note		not ne									
There is a 0 st 0+a=0												
ab=ba												
(ab)c = a(bc)												
0·a=0												
There is a 1 st 1 a=a												
+ distribution												
For every a \$0, there is an a st	a.a"=	1										
Slogan: a field is a set where mul												
PINTON ATMINISTRACING TO TO THE MINISTRA MATERIAL	Inalicani	16 0	nd ada	dition	ave v	not u	MIN	٥ (K) 81 FL (6	MAN	lh nlica	110h
						vot u	אוענ	٥ (Nnere	MM	lti plica	130h
can be undone (where division						Jot n	30,10	٥ (Miere	Mu	lti plica	150h
						<u>n</u> ot u	JATA	8 (Unere	Mu	lti plica	150h
						<u>1</u> 0+ u	30,10	8 (Direct	Mu	lti plica	150h
can be undone (where divisio						<u>n</u> ot u	JUITO	8 (Where	MV	Hi plica	tion .
can be undone (where division						<u>n</u> ot u	JOSTO	8 (Where	Mu	lti plica	tion
can be undone (where division examples and nonexamples R - this is a field						<u>n</u> ot u	JOSTO	& (Where	Mu	lti plica	\$0h
can be undone (where division examples and nonexamples R - this is a field C - this is a field Z - not a field	M WOVE					<u>n</u> ot u	30,10	& (Whier6	Mu	lti plica	\$0h
can be undone (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{C} - this is a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$	m work	s` v	• exclu	iding C							lti plica	\$oh
can be undone (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field \mathbb{Z} - not a field \mathbb{Q} = $\left\{\frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0\right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$	m work	s` v	• exclu	iding C							lti plica	\$oh
can be unclose (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$ and multiplication is mod p	m work	s` v	• exclu	iding C							lti plica	\$oh
can be unclose (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$ and multiplication is mod p ex $\mathbb{F}_s = \{0,1,\lambda,3,4\}$	m work	s` v	• exclu	iding C							lti plica	\$oh
can be undone (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$ and multiplication is mod p ex $\mathbb{F}_s = \{0,1,2,3,4\}$	m work	s` v	• exclu	iding C							lti plica	\$oh
can be undone (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$ and multiplication is mod p ex $\mathbb{F}_s = \{0,1,a,3,4\}$ $+ 0 \mid a \mid$	m work	s` v	• exclu	iding C							lti plica	Boh
can be undone (where division examples and nonexamples \mathbb{R} - this is a field \mathbb{Z} - not a field \mathbb{Z} - not a field $\mathbb{Q} = \left\{ \frac{a}{b} \mid a_1b\in\mathbb{Z}, b\neq 0 \right\}$ this is a field \mathbb{F}_p - for p a prime number is $\{0\}$ and multiplication is mod p ex $\mathbb{F}_s = \{0,1,2,3,4\}$	m work	s` v	• exclu	iding C							lti plica	\$oh

łi 💮	there is a	number	n 5+	in a	field	F,									
	1+ +1														
	n times														
the	n we say	the	શાન મ	las a	chara	ctcv i s	hc v								
if	there Is n	o such	numb	er, t	he sield	d has	chava	ctevisti	ic O						
2 - Ve	ctor Spi	ace													
f 1.5	Vector space	e over o	field												
	Given a S			vector	spare	V is	a set	t with	h an	opera	tion -	· "vecto	r addit	ion''	
															م ا ۱۱ م ۱۱
	combining													ELIMBILIA	03 V 3T.
	(closure)												n V		
	(identity)	there	is a O	v in 1	such	that	For (every	161	, 0	v + V	= V			
	Cinverses	For ev	ery ve	V, the	ere is c	w e	V s	f 4+6	u=0v.	This	i W i	s some	times o	lenoted	by -v
	Clineavity	For	every λ	ME FF	and .	v,we	۷,	λ·(v	(w+	= λυ	+ λw	and	(λ +	. W)•v=	2v+ mv
	(associative														
	(commutat	_													
								(
	(associat	ו כציוועו	or even	J u, v, u	n E V	(((+1))	+W =	u + (ν+ω)					
1.6/a	The plane	IR" is	an I	R-vecto	N 2borce	2.									
The plai	ne IRª is no	ot a co	nplete v	utor sp	oace w	ith th	e nat	ural	desin	ition	of so	caling.			
The com	plex number	s C a	re an l	R-vecto	r space	e. Prov	e this.								
he cont	inuous fun	ctions	from R	→R S	CONVO QVO	IR-v	ector	21002	c.(R	\					
	O(x) = 0						00101	Space	J,						
Manhatt	an is not	a vecto	r space	over an	ny field	of C	haract	eristic C	٥.						

1.3 Linear Subspaces def 1.7 Linear subspace Let U be contained in an F-vector space V (as a set). Then U is a subspace of V (or a linear subspace or vector subspace) if U is itself an 1F-vector space, inheriting operations and identity from V. note; quicker to check if something is a vector space when it already lives inside a known vector space since V4-V7 hold if a subspace is nonempty and 11 holds, V2 and V3 hold. lemma 1.8 if U is a subset of an 1F-vector space V, then U is a subspace of V if it is nonempty, and closed under addition and scaling ex 1.9 . The plane IR2 contains a copy of IR, as a subspace for example the x-axis. The y-axis is also a subspace. Any line thru the origin is a subspace For every vector space V, V is a subspace of V, and EO3 is a subspace of V m The R-vector space of functions R→R has a subspace of functions with finite support: these are the functions fire that are zero everywhere except finitely many points 1.4 Bases def 1.10 in an IF-vector space V, the span (or linear span or IF-span) of a Sinite subset [v,,v2,...vn]ev is given by span $(v_1, v_2, ..., v_n) = \{\lambda, v_1 + \lambda_2 v_2 + ... + \lambda_n v_n \mid \lambda_1, \lambda_2, ... \lambda_n \in \mathbb{F} \}$ remark 1.11 for an infinite set S= { u; I ie I } the span is the set of linear combinations of any finite number of the vi Span (S)= {λ, νιι + λν 2 i + ... + ληνίη) λ, λ2,..., λη Ε Ε, ι, ... in ε Ι 3. def 1-12 linear independence - Let V be an IF-vector space and let v, va,..., vn & V. Then {v, va, ..., vn } is linearly independent over F if, whenever there are scalars $\lambda, \lambda_2, ... \lambda_n \in F$ such that $\lambda_1 V_1 + \lambda_2 V_2 + ... + \lambda_N V_N = 0$, we must have $\lambda_1 = \lambda_2 = ... = \lambda_N = 0$

emavk	2 1.13	an	initni	te se	t is	linear	ly ind	epend	lent i	f eve	ıy fii	nite :	Subset	of	it is	linear	ly in	depen	den+	
ef I.									subse B) = V		Ξ V,	B is	a IF	-basi:	s for	V if	В	is lime	arly	