· Fragen 2

· "Element" ode "Teilmenge"

Sei M= {1, {2,3}}.

12 M

2 ? M

EJE Z M

{2} 7 M

{2,3}? M

3 2 M

Ø 2 M

· Potenzmenge

 $\begin{array}{c} \text{\it Min-bs-lagorator} \\ \textbf{1.1.3} \ \text{Wie ist die Potenzmenge} \ \text{einer Menge} \ M \ \text{definiert?} \end{array}$

 $\begin{array}{c} \text{(M_n, T_2)-logarization} \\ \textbf{1.2.3 Seien} \ M_1 = \{1,2\}, \ M_2 = \{3,4\}. \ \text{Berechnen Sie} \ \mathcal{P}(M_1), \ \mathcal{P}(M_2), \ \mathcal{P}(M_1^2), \ \mathcal{P}(M_1 \times M_2). \end{array}$

P(M)=

3(M2) =

3(M2) =

(Mini-Test-Aufgabensammlung)

1.1.4 Wie ist die Mächtigkeit einer Menge M definiert?

(Mini-Test-Antigobensonmlung)

- 1.1.5 Welche zwei unterschiedlichen Typen von unendlichen Mengen haben Sie kennen gelernt (bezogen auf die Mächtigkeit)?
- 1.1.6 Wie ist eine höchstens abzählbare Menge M definiert?

 $\begin{array}{c} \text{(Minimizer)} \ \text{Adjabes consump)} \\ \textbf{1.2.4 Seien} \ M_1 = \{0,1,2\}, \ M_2 \\ |M_1 \times M_2|, \ |M_1^2 \times M_2^2|. \end{array}$ = {2,3}. Berechnen Sie |M_1|, |M_2|, |M_1 \cup M_2|, |M_1 \cap M_2|,

|M|=

M2 =

|MUM2 =

1MnM21=

|Mx Mz | =

|M2 x M2 =

 Definition 1.29 Es seien M und N zwei Mengen, dann heißen diese **gleichmächtig**, falls eine bijektive Abbildung $f:M\to N$ (oder äquivalent $f: N \to M$) existiert.

- 1. Wenn M und $\{1,\dots,n\}$ für ein $n\in\mathbb{N}$ gleichmächtig sind, dann heißt Mendliche Menge und man sagt, dass M die Kardinalität nhat (gleichbe deutend |M| = n).
- 2. Wenn M und $\mathbb N$ gleichmächtig sind, dann heißt M abzählbar unendlich oder kurz abzählbar.
- 3. Wenn M endlich oder abzählbar unendlich ist, dann sagt man auch M ist höchstens abzählbar.
- 4. Wenn M nicht höchstens abzählbar ist, dann heißt M **überabzählbar**.

(Augustannlung / Krigh Kapik D./) ${\bf Aufgabe~32~Es~sei~M~die~Menge~aller~Bilder~mit~10000~Pixeln,~wobei~jedes~Pixel}$ durch drei Farbkanäle (RGB) dargestellt wird, und die Intensität eines jeden Farbkanals durch ganzzahlige Werte von 0 bis 255 kodiert ist. Stellen Sie M als kartesisches Produkt geeigneter Mengen dar und geben Sie eine Formel zur Berechnung von |M|

(Augabersannlung / Skrift Kapikl D./)
Aufgabe 30 Zeigen Sie, dass folgende Mengen abzählbar sind:

a) die Menge der geraden natürlichen Zahlen

$$M:=\left\{n\in\mathbb{N}:\frac{n}{2}\in\mathbb{N}\right\},$$

b) die Menge der ganzen Zahlen Z.

1.3.2Skizzieren Sie den Beweis für die Überabzählbarkeit der Menge \mathbb{R} .

· Minimum, Maximum, Supremum und Infinimum

1.1.9 Wie sind (a) Maximum und (b) Minimum einer Menge $M \subset \mathbb{R}$ definiert? (c) Gibt es diese immer? (d) Warum ist es für die Definition relevant, dass $M \subset \mathbb{R}$?

1.1.10 Wie sind (a) **Supremum** und (b) **Infimum** einer Menge $M \subset \mathbb{R}$ definiert? (c) Gibt es diese immer? (d) Wie ist der Zusammenhang mit dem Maximum und Minimum?

(Skript Kapitel 1: Mengen und Abbildungen)

Definition 1.36 Es sei $M \subset \mathbb{R}$.

Gibt es ein $y\in M$ mit $y\geq x$ für alle $x\in M,$ dann heißt y das Maximum von M, Schreibweise:

$$y = \max M$$

Gibt es ein $y\in M$ mit $y\leq x$ für alle $x\in M,$ dann heißt ydas **Minimum** von M, Schreibweise:

$$y = \min M$$

Gibt es ein kleinstes $y\in\mathbb{R}$ mit $y\geq x$ für alle $x\in M,$ dann heißt y das Supremum von M, Schreibweise:

$$y = \sup M$$

Gibt es ein **größtes** $y\in\mathbb{R}$ mit $y\leq x$ für alle $x\in M,$ dann heißt y das **Infimum** von M, Schreibweise:

$$y = \inf M$$

(HowTo: Definitionen lesen, v3)

- Der Hauptkel :

 1 Der Hauptkel :

 1 der zum Rechnen oder Anwenden inberessente Tell. Hier stehten häufig itgenduclike Symbole
 und Fruhldung de beroehs dettimert wurden. (Diese Definitionen kann man im Doeifühsfall
 auch nochmal deten)
- □ Die Bedingungen "

 ist der Teil, in deren verwendele Symbole geneum fertgelegt werden. Falls hier so etwas wie XER" steht wissen wir, dass Xein Vektor mit n-komponenten im reelwertigen. Bereich ist
- Die definieten Begriffe*
 in diesen Bereich werden Selligselwörter eingeführt, die später in anderen Definitionen wieder auflanchen können.

 $\begin{array}{lll} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$ gen. Geben Sie für alle $M_i, i \in \{1, 2, 3, 4, 5\}$ jeweils das (a) Maximum und (b) Minimum der Menge an, sofern es existiert. Geben Sie weiter für alle Mengen das (c) Supremum und (d) Infimum an.

М	ma×(M)	min(M)	sup(M)	inf(M)	Mebenrechnung
M					
Mz					
W3					
Ma					
Ms-					

· Abbildungen

(Mini-Test-Aufgabensammlung)

2.1.1 Wie ist eine **Abbildung** f definiert?

2.1.2 Wie ist der **Graph** einer Abbildung $f: X \to Y$ definiert?

2.1.3 Wann sind zwei Abbildungen f(x) und g(x) gleich?

2.1.4 Wie ist eine **Urbildmenge** einer Abbildung $f: X \to Y$ definiert?

2.1.5 Wie ist eine **Bildmenge** einer Abbildung $f: X \to Y$ definiert?

2.1.6 Was ist der Wertebereich einer Abbildung $f: X \to Y$?

(Augabersammlung / Skript Kapilel D.1) Aufgabe 21 Es sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$f((x_1, x_2)) = x_1^2 + x_2^2.$$

Bestimmen und skizzieren Sie $f^{-1}(\{1\})$ und $f^{-1}(\{2\})$.

West-Schwerzenwiger 2.2.1 Sei $f:[0,2] \to [-1,1]$, f(x)=-x+1 eine Abbildung. Bestimmen Sie die Bildmengen der Mengen $M_1=[0,1]$ und $M_2=[1,2]$, also f([0,1]) bzw. f([1,2]).

- **2.2.2** Sei $f:[-2,0] \rightarrow [-1,1], f(x)=-\frac{x}{2}$ eine Abbildung. Bestimmen Sie die Urbildmengen der Mengen $M_1=\{\frac{1}{2}\},\ M_2=[\frac{1}{4},\frac{3}{4}]$ und $M_3=(0,-1],$ also $f^{-1}(\{\frac{1}{2}\}),\ f^{-1}([\frac{1}{4},\frac{3}{4}])$ bzw. $f^{-1}((0,-1]).$
- **2.2.3** Sei $f: \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \rightarrow [0, 25], f(x) = x^2$ eine Abbildung. Bestimmen Sie die Menge Y so, dass die folgende Gleichung korrekt ist: $f^{-1}(Y) = \{-5, -3, 3, 5\}$.
- **2.2.5** Sei $f_{a,b}: \{-3, -2, -1, 0, 1, 2, 3\} \rightarrow \{-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\},$

$$f_{a,b}(x) = \begin{cases} a \cdot x & \text{, falls } x \ge 0 \\ b \cdot x & \text{, falls } x < 0 \end{cases}$$

eine Funktion. Skizzieren sie jeweils den Graphen der Funktionen:

• $f_{-1,1}$ f_{1,2} f_{2,-1} • f_{-1,-2} • $f_{2,-2}$

Abbildungen: Komposition/Verkellung

2.1.10 (a) Wie müssen die beiden Funktionen f und g definiert sein, damit die Komposition $(g \circ f)(x)$ möglich ist, aber $(f \circ g)(x)$ nicht? (b) Wie kann $(g \circ f)(x)$ noch geschrieben werden?

(b)

Ungabersammung / Skript kapitel D.// $\text{Aufgabe 20 Es seien } f: \mathbb{R} \to \mathbb{R} \text{ und } g: \mathbb{R} \to \mathbb{R} \text{ definiert durch}$

Aufgabe 20 Es seien $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \frac{1}{x^2 + 1}, \ g(x) = 5x^2 + x.$$

Bestimmen Sie $f \circ f, g \circ g, g \circ f$ und $f \circ g$.

(Mini-Test-Aufgabensammlung)

2.2.6 Gegeben seien die Funktionen

- $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 1$
- $g: \mathbb{R} \to \mathbb{R}, g(x) = \sin(2x)$
- $h: \mathbb{R} \to \mathbb{R}, h(x) = \frac{x+1}{2}$

Berechnen Sie:

- $(f \circ g)(x)$
- $(g \circ f)(x)$
- (f ∘ f)(x)

- $\bullet \ (f \circ h)(x)$
- $(h \circ g)(x)$

- $(g \circ h)(x)$
- $(h \circ g)(x)$
- $\bullet \ (g \circ g)(x)$ • $(h \circ h)(x)$

· Abildungen: Surjektivität, Injektivität und Bijektivität

(Mini-test-Ausgabensammlung)

- **2.1.7** Was muss eine Abbildung $f: X \to Y$ erfüllen, damit sie **surjektiv** ist?
- ${\bf 2.1.8}\,$ Was muss eine Abbildung $f:X\to Y$ erfüllen, damit sie **injektiv** ist?
- **2.1.9** Was muss eine Abbildung $f: X \to Y$ erfüllen, damit sie **bijektiv** ist?

- bijektiv:

(Mini-Test-Aufgabensammlung)

2.2.4 Sei $f: \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\} \rightarrow X, f(x) = \begin{cases} 2 \cdot x & \text{, falls } x \leq 0 \\ 4 \cdot x & \text{, falls } 0 < x \end{cases}$. Bestimmen Sie $X \subset \mathbb{R}$ so, dass f bijektiv ist.

(Aufgabensammlung / Skript Kapitel D.1)

Aufgabe 17 a) Finden Sie eine Abbildung $f: \mathbb{N} \to \mathbb{N}$, die injektiv, aber nicht surjektiv ist.

b) Finden Sie einen injektive Abbildung $g: \{0,2\}^2 \to \mathbb{R}$.

 α

b)

(Ausgabensammlung / Skript Kapitel D.1)

Aufgabe 18 Es seien

$$f:\mathbb{R}\to\mathbb{R},\ x\mapsto -2x+4$$

und

$$g: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2.$$

- a) Zeigen Sie, dass f bijektiv ist.
- b) Zeigen Sie, dass g nicht injektiv und nicht surjektiv ist.
- c) Bestimmen Sie $g \circ f$ und $f \circ g$.

(Aufgabersammlung / Skript Kapitel D./)
Aufgabe 27 Finden Sie ein Beispiel, das zeigt, dass die Aussage in Satz 1.24(1) auch richtig sein kann, wenn gnicht injektiv ist.

Satz 1.24 Es seien X,Y,Z Mengen und $f:X\to Y$ und $g:Y\to Z$ Abbildungen.

- 1. Sind f, g injektiv, dann ist auch die Komposition $g \circ f: X \to Z$ injektiv.
- 2. Sind f, g surjektiv, dann ist auch die Komposition $g \circ f : X \to Z$ surjektiv.

(Aufgabersammlung / Skript Kapitel D.1)

Aufgabe 22 Ist die folgende Abbildung injektiv?

$$\varphi: \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \to \mathbb{Q}, \ \varphi((p,q)) = \frac{p}{q}.$$

Begründen Sie Ihre Antwort.

· Abbildungen: identische Abbildung und Umtehrabbildung

2.1.11 (a) Wie ist die identische Abbildung auf einer Menge X definiert? (b) Welche zusätzliche Bedingung wird an die Menge X gestellt?

2.1.12 (a) Wie ist die **Umkehrabbildung** für eine Abbildung $f:X\to Y$ definiert? (b) Welchen anderen Namen für die Umkehrabbildung haben Sie kennen gelernt?

 ${\bf 2.1.13}$ Existiert zu jeder Abbildung $f:X\to Y$ eine Umkehrabbildung? Begründen Sie ihre Antwort!

(b)

M. (a)

B.

Mini-Test-Angabensammung 2.2.7 Gegeben seien die Funktionen:

- (a) $f: \mathbb{R} \to \mathbb{R}$ mit f(x) := x 7
- (b) $g: \mathbb{R} \to \mathbb{R}$ mit g(x) := 2x + 3
- (c) $h:[0,\infty)\to [0,\infty]$ mit $h:=\frac{3}{x^2}$

Bestimmen Sie jeweils die Umkehrfunktionen (Zeigen Sie auch, dass Ihre Umkehrfunktion die Umkehrfunktion ist).

 $\begin{array}{ll} \textbf{Definition 1.25} \ \ \text{F\"{u}r} \ \ \text{eine nichtleere Menge} \ X \ \ \text{heißt} \ \ \text{id}_X : X \to X, \ \text{definiert} \\ \text{durch id}(x) := \text{id}_X(x) := x \ (x \in X), \ \text{die identische Abbildung auf} \ X. \end{array}$

 $\begin{array}{ll} \textbf{Definition 1.26} \ \text{Es seien} \ X,Y \ \text{Mengen und es sei} \ f:X\to Y \ \text{eine Abbildung} \\ \textbf{Die Abbildung} \ f^{-1}:Y\to X \ \text{heißt} \ \textbf{Umkehrabbildung} \ \text{von} \ f \ \text{oder inverse} \\ \textbf{Abbildung} \ (\text{bez
 } \text{glich} \ \circ) \ \text{von} \ f \ , \text{falls} \\ \end{array}$

$$f^{-1}\circ f=\mathrm{id}_X, \text{ und } f\circ f^{-1}=\mathrm{id}_Y$$