Beam propagation method in X-ray optics simulations

Jacek Krzywinski SLAC

Catch the Wave(front)

We are talking X-waves (not X-Rays)

Credits

- Jérôme Gaudin European XFEL GmbH
- Andrzej Andrejczuk University of Bialystok

Outline

- Introduction
- Paraxial approximation of Helmholtz Equation
- Propagation of coherent X-rays in vacuum and Fourier Optics
- Thin shifter approximation and propagation of coherent X-rays along beamlines
 - Example: simulation of LCLS SXR Instrument performance
- Modeling the interaction of X-rays with optical elements by solving time dependent, 2D Schrödinger equation
 - Examples: mirrors, gratings, and multilayer focusing optics
- Outlook

Introduction

- New X-rays sources produce powerful coherent X-rays (waves)
- Wave propagation, diffraction, and dynamical effects are important for understanding properties of the beam delivered for users
- There are many methods to tackle this problem.
 One of them is so called Beam Propagation
 Method (BPM)
- Numerical implementation of BPM is extremely simple, yet the method is very powerful!

Paraxial approximation of Helmholtz Equation in inhomogenous media

Helmholtz Equation for $e^{i\omega t}$ harmonic function

$$(\nabla^2 + k(n(x,y,z))^2) \cdot E(x,y,z) = 0$$

$$E(x,y,z) = \psi(x,y,z) \cdot e^{-ikz} \text{ , n - refractive index}$$

Paraxial approximation
$$k_x^2 + k_y^2 << k_z^2$$
 or $\left| \frac{\partial^2 \psi}{\partial z^2} \right| << \left| 2k \frac{\partial \psi}{\partial z} \right|$

Paraxial wave equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik(n(x, y, z)) \frac{\partial \psi}{\partial z} = 0$$

Paraxial approximation of Helmholtz equation in inhomogeneous media: Schrödinger equation

for *n*-1 <<1

$$\frac{\partial \psi(\mathbf{r}_{\perp}, z)}{\partial z} = \frac{i}{2} [\nabla_{\perp} \psi(\mathbf{r}_{\perp}, z) + \delta \varepsilon(\mathbf{r}_{\perp}, z) \psi(\mathbf{r}_{\perp}, z)]$$

Difference between dielectric constant of vacuum and the media

$$\frac{\partial \psi}{\partial z} = iH\psi$$

Length unit
$$k = \frac{2\pi}{\lambda} = 1$$
.

Identical to 2D, time dependent Schrödinger equation

$$H = \frac{1}{2}\nabla_{\perp}^{2} + \frac{1}{2}\delta\varepsilon(\mathbf{r}_{\perp}, z)$$

$$\psi(z) = \psi(0)e^{iHz}$$

Propagation in vacuum - Fourier Optics

$$\frac{\partial \psi}{\partial z} = iH\psi$$

$$H = \frac{1}{2}\nabla_{\perp}^{2} + \frac{1}{2}\delta \varepsilon(\mathbf{r}_{\perp}, z)$$

$$\psi(\mathbf{r}_{\perp}, z) = \psi(\mathbf{r}_{\perp}, 0)e^{iHz}$$

Fourier transform $\psi(\mathbf{p},\mathbf{0}) = \mathcal{F}\mathbf{t}[\psi(\mathbf{r}_{\perp},\mathbf{0})]$

$$\psi(\mathbf{p}, L) = \psi(\mathbf{p}, 0)e^{i\frac{\mathbf{p}^2}{2}L}$$

$$\psi(\mathbf{r}_{\perp}, L) = \mathcal{F}t^{-1}[\psi(\mathbf{p}, 0)e^{i\frac{\mathbf{p}^2}{2}L}]$$
Spectral method

Could be implemented using FFT!

Implementation of the spectral method in Matlab is extremely simple (8 lines of code)

```
function [psi r] =f free prop barcelona scpectr(dx, Z, psi0)
  Spectral/Fourier Wavefront Propagation Algorithm
% psi0 = Input field in the space domain
% dx, space step of the psiO matrix
 Z = propagation distance
%psi r = Output field in the space domain
% written by Jacek Krzywinski
[Mx,Mv] = size(ut0);
dkx=2*pi/(dx*Mx); dky=2*pi/(dy*My);
nx = ((1:Mx) - Mx/2); ny = ((1:My) - My/2);
[kx,ky] = meshgrid(nx*dkx,ny*dky);
k2=kx.^2+kv.^2;
% FFT of the input field and
$ shift - moving the zero-frequency component to the center of the array
                (fft(fftshift(psiO)));
% Shifted Inverse Fourier transform
psi r= :
                (ifft2(fftshift(psi k))));
```

Propagation in vacuum – Fourier Optics

$$\psi(\mathbf{p}, L) = \psi(\mathbf{p}, 0)e^{i\frac{\mathbf{p}^2}{2}L}$$

Convolution theorem

$$\psi(\mathbf{r}_{2\perp},L) = \frac{2\pi i}{L} \int \psi(\mathbf{r}_{\perp},0) e^{\frac{i}{2L}(\mathbf{r}_{2\perp}-\mathbf{r}_{\perp})^2} d(\mathbf{r}_{\perp})$$
 Freshel-Kirchhoff integral

Spectral method
$$\psi(\mathbf{r}_{\perp},L) = \mathcal{F}t^{-1}[\psi(\mathbf{p},0)e^{i\frac{\mathbf{p}^2}{2}L}]$$

Could be implemented using FFT (12 lines of code)!

Near zone

LCLS SXR Instrument

	Type	Coating and	Dimensions		Radius	Incidence	Grating period	
		blank	(mm)	Aperture (mr	(m)	angle(°)	order	from
		material						source (m)
Enstation								124
1								
M1	Spherical	B ₄ C-coated	250 x 50	185 x 10	1049	89.20	-	125.1
	mirror	silicon						
G1, G2	Plane VLS	B ₄ C -coated	220 x 50	180 x 34	8	88.56-89.03	1/100, 1/200	125.4
	grating	silicon					-1	
Detector/								132.9
Slit								
M2	Bent Elliptical	B ₄ C-coated	250 x 30	205 x 10	281.6	89.20	-	137.4
	mirror	silicon						
M3	Bent Elliptical	B ₄ C-coated	250 x 30	120 x 10	164.8	89.20	-	137.9
	mirror	silicon						
Endstation								139.4
2								

P. Heimann et. al., Rev. Sci. Instrum. 82, 093104 (2011)

Thin phase shifter approximation

$$\Delta \varphi(\vec{r}) = \frac{2\pi}{\lambda} \cdot OPD$$

$$\frac{\Delta \varphi(\vec{r}) = \frac{2\pi}{\lambda} \cdot OPD}{\psi'(\mathbf{r}_{\perp}, 0) = \psi(\mathbf{r}_{\perp}, 0) e^{i \Delta \varphi}(\mathbf{r}_{\perp})}$$

 $\mathbf{r}_{\perp} r = \mathbf{x}, \mathbf{y} + \boldsymbol{\varphi} \cdot \mathbf{w}_{t}, \mathbf{w}_{s}$

For the small WF curvature case

$$OPD \approx 2 \cdot \mathcal{G} \cdot h(w_t)$$

Thin phase shifter approximation

$$\psi'(\mathbf{r}_{\perp},0) = \psi(\mathbf{r}_{\perp},0)e^{i\Delta\varphi(\mathbf{r}_{\perp})}$$

$$\Delta \varphi(\vec{r}) = \frac{2\pi}{\lambda} \left\{ n(\vec{w}) + R_0 + L - \begin{bmatrix} \sqrt{(R_0 \cos(\alpha) - h(\vec{w}))^2 + (R_0 \sin(\alpha) + w)^2} + \\ \sqrt{(L\cos(\beta) - h(\vec{w}))^2 + (L\sin(\beta) + w)^2} \end{bmatrix} \right\}$$

 R_0 , L are the average radiuses of curvatures of incident and scattered wavefronts, β is derived from the grating equation

groove density function for the VLS grating w_t

$$n(w) = \frac{1}{\sigma_0} \left(v + n_2 w^2 + n_3 w_3^3 + \dots \right)$$
 groove density function for the

Model of surface roughness

Model for figure errors is based on mirror specification (height, slope error)

Fractal model for mid and high frequency errors, based on mirror specifications

At slit position, no surface errors

At slit position, 1 nm, 0.25 urad rms surface errors

At slit position, 2 nm, 0.25 urad rms surface errors

At slit position, 3 nm, 0.25 urad rms surface errors

At slit position, 4 nm, 0.25 urad rms surface errors

At end station position, no surface errors, pink beam, at the focus

At end station position, 1 nm, 0.25 urad rms surface errors, pink beam, at the focus

At end station position, 2 nm, 0.25 urad rms surface errors, pink beam, at the focus

At end station position, 3 nm, 0.25 urad rms surface errors, pink beam, at the focus

At end station position, 4 nm, 0.25 urad rms surface errors, pink beam, at the focus

At end station position, 0.25 urad rms surface errors, pink beam, 10 cm behind the focus

Figure error (rms):

Propagation in inhomogeneous media:

Flat mirror

$$\frac{\partial \psi}{\partial z} = iH\psi$$

$$H = \frac{1}{2}\nabla_{\perp} + \frac{1}{2}\delta\varepsilon(\mathbf{r}_{\perp}, z)$$

Split operator method (14 lines of code)

For operators which do not commute:

$$e^{(P+V)} \neq e^P e^V$$

but for sufficiently small dz this relation is nearly fulfilled

$$e^{(P+V)dz} \approx e^{Pdz} e^{Vdz}$$

and

$$\psi(x,z+dz) \approx e^{\frac{i}{2}\nabla^2 dz} e^{\frac{i}{2}\delta\varepsilon(x,z)dz} \psi(x,z)$$

Split operator method (14 lines of code)

```
function [U out] = f prop grat prof(conversion from SI units, ...
    M, X0, delta eps1, delta eps2, h C, x, kx, U in, dz, prof ext)
 %'kinetic' part of the Hamiltonian in momentum space
Hk = \exp(-i/2*kx.^2*dz);
 %Fourier transform of the field in the space domain
G=fftshift(fft(U in));
% the main loop begins here
for k = 1:M
G1=G.*Hk;
U out1=ifft(ifftshift(G1));
  %definition of the dielectric constant distribution
    X1 = -prof ext(k);
    log a1=x>X0+X1;
    log b1 = X0 + X1 > = x & x > = X0 + X1 - h C;
    delta eps=log a1*delta eps1+log b1*delta eps2;
% 'potential energy' part of the Hamiltonian
Hz=exp(i/2*(delta eps)*dz);
U out = U out1.*Dz;
G= fftshift(fft(U out));
end
```


50 nm a-C layer on Si substrate, Gaussian source, Photon Energy 290 eV

rows(mac2) = 217

Analogy in QM

- The same problem as inelastic electron scattering by a potential barrier
- Incident angle corresponds to electron's kinetic energy

Grating

Simulated field distribution

Rough surface - analogy in QM

- The same problem as electron and the potential barrier
- Incident angle corresponds to electron's kinetic energy
- Position of the barrier depends on time

Efficiency of the grating

Propagation to far field (FFT)

Diffraction orders

Benchmarking the BPM code v.s. REFLEC^{1,2} code

[1] VN Strocov et.al. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source.. http://arxiv.org/pdf/0911.2598

[2] REFLEC, a program to calculate VUV/X-ray optical elements and synchrotron radiation beamline, F. Schaefers, D. Abramsohn and M. Krumrey (BESSY, 2002). The code is based on the method described in M. Nevière, P. Vincent and D. Maystre, Appl. Optics 17 (1978) 843

Absorbed power density, 2 deg grazing incidence angle

The simulation shows that the specific field distribution at the surface leads to an enhancement of the absorbed energy at the edge of the laminar grating structure.

Interestingly, micro-roughness does not increase the maximum of absorbed energy by more than few percent

Damage experiment at FLASH

The model provides a good qualitative and quantitative description of the experimental results. The measured and simulated damage threshold is 3.5 times lower than obtained for the flat surface.

J. Gauden et.al., Optical Letters (2012), in press

Multilayer Laue lenses (MLL)

$$\frac{\partial \psi(\mathbf{r}_{\perp}, z)}{\partial z} = \frac{i}{2} [\nabla_{\perp} \psi(\mathbf{r}_{\perp}, z) + \boxed{\delta \varepsilon(\mathbf{r}_{\perp}, z)} \psi(\mathbf{r}_{\perp}, z)]$$

Thick Fresnel Zone Plate, outer zone 1.5 nm thick

Benchmarking w/r to eigenfunctions expansion method

$$\Psi(x,z) = e^{ikEz}\psi(x),\tag{6}$$

we obtain the time-independent Schrödinger equation

$$H\psi = E\psi. \tag{7}$$

Let $\{\psi_n\}$ be the eigenfunctions of H and $\{E_n\}$ the corresponding eigenvalues

$$H\psi_n = E_n\psi_n. \tag{8}$$

The incoming wavefield $\langle x|\Psi_{\rm in}\rangle \equiv \Psi_{\rm n}(x,z=-h/2)$ is decomposed in eigenfunctions

$$|\Psi_{\rm in}\rangle = \sum_{n} \langle \psi_n | \Psi_{\rm in} \rangle | \psi_n \rangle.$$
 (9)

After propagation within the zone plate over its thickness h the wave function has evolved to the exit wavefield $\langle x|\Psi_{\rm ex}\rangle \equiv \Psi_{\rm ex}(x,z=h/2)$, with

$$|\Psi_{\rm ex}\rangle = \sum_{n} \langle \psi_n | \Psi_{\rm in} \rangle e^{ikE_n h} | \psi_n \rangle. \tag{10}$$

MLL wedged lens, outer layer 1 nm thick, photon energy 19.5 keV

2.583

2.584

z [m]

2.585

x 10⁻³

microns

Electric field distribution inside MLL

Comparison with dynamical diffraction theory

a modeling method that is analogous to Takagi-Taupin equations in crystallography by realizing the similarities of X-ray diffraction between an MLL and a single crystal [18].

Hanfei Yan,^{1,2} Hyon Chol Kang,^{3,4} Ray Conley,^{2,5} Chian Liu,⁵ Albert T. Macrander,⁵ G. Brian Stephenson,^{1,3} and Jörg Maser^{1,4}

Multilayer Laue Lens: A Path Toward One Nanometer X-Ray Focusing

Hindawi Publishing Corporation X-Ray Optics and Instrumentation Volume 2010, Article ID 401854, 10 pages doi:10.1155/2010/401854

BPM simulation

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA

² National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

⁴ Department of Advanced Materials Engineering and BK21 Education Center of Mould Technology for Advanced Materials and Parts, Chosun University, Gwangju 501–759, Republic of Korea

⁵ Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

Focusing of thick FZP and wedged MLL, outer zone is 1 nm thick

Outlook

- I hope that I convinced you that:
- BPM can be applied successfully in the wide range or problems
- It is simple and computationally efficient
- It is especially convenient for simulating the influence of imperfections as they can be naturally included in the model