$$\frac{\phi_{c_t}}{B_{\omega}} \frac{\partial \rho}{\partial t} + q_{s_c} = \frac{\partial}{\partial x} \left(\frac{k_x}{\mu B_{\omega}} \frac{\partial \rho}{\partial x} \right)$$

$$\frac{\phi c_{+}}{\beta c_{+}} \frac{\partial p}{\partial t} + g_{5c}^{2} = \frac{2}{2x} \left(\frac{k_{x}}{\mu B_{u}} \frac{\partial p}{\partial x} \right) + \frac{2}{\partial y} \left(\frac{k_{y}}{\mu B_{u}} \frac{\partial p}{\partial y} \right)$$

" Areal view"

$$\left(\frac{1}{T} + \frac{1}{A} \stackrel{?}{B}\right) \stackrel{?}{P}^{n+1} = \left(\frac{1}{A} \stackrel{?}{B} \stackrel{?}{P}^{n} + \stackrel{?}{Q}\right) \qquad j=2$$

1724 J=

0=10	Q=11	¢12
J= 7	Qz 8	129
J= 4	1=5	Q=6
Q=	9= 2	8=3
1=1	1=2 NX =3	1=3

) = (j-1) NX + i

Flux injount

$$\begin{aligned} &\mathcal{G}^{i-1/2,j} = \mathsf{TX}_{i-1/2,j}(P_{i-1,j} - P_{i,j}) = \mathsf{TX}_{i-1/2,j}(P_{q-1} - P_{q}) \\ &\mathcal{G}^{i+1/2,j} = \mathsf{TX}_{i-1/2,j}(P_{im,j} - P_{i,j}) = \mathsf{TX}_{i-1/2,j}(P_{q+1} - P_{q}) \\ &\mathcal{G}^{i,j-1/2} = \mathsf{TY}_{i,j-1/2}(P_{i,j-1} - P_{i,j}) = \mathsf{TY}_{i,j-1/2}(P_{q-1,x} - P_{q}) \end{aligned}$$

qi,j+k = TYi,j+k(Pi,j+1-Pi,j) = TYi,j-k (Pe+Nx-Pe)

Accumulation

Mass Balane on "i,j" or " " "