

Фреймворк для автоматического анализа структуры многозначных логик

Студент: Е. Д. Шевляков ИУ9-82Б Руководитель: А. Н. Непейвода

Содержание

- 1. Идея
- 2. Реализация
- 3. Тестирование

Идея: логики

Под логикой будем понимать функциональную систему $\langle F,\,V,\,D
angle$, где

F – множество функций,

V – множество значений, на которых определены функции из F

D - множество выделенных значений

Классическая логика — функции над $\{0,1\}$

В многозначной логике $V\supset\{0,1\}$

Идея: постановка задачи

Требуется построить **инструмент,** позволяющий **определять** функциональное **вложение** пространств конечнозначных функций, которые мы также называем **логик**ами.

Идея: применение

- Проверка схожести функциональных структур логик
- Выявление минимального или альтернативных базисов
- Выявление возможных промежуточных логик (задача супремума)

Реализация: входные данные

```
Name = L2
Values = [0, 1]
and {
 1 1 = 1;
 s.x s.y = 0;
or {
0 \ 0 = 0;
 s.x s.y = 1;
```

```
imply {
   1 \ 0 = 0;
   s.x s.y = 1;
not {
   1 = 0;
   0 = 1;
```

Реализация: выходные данные

LM(1,2) LM(2,2) : embedded

LM(1,2) LM(1,4) : non-comparable

LM(1,2) LM(2,1) : equivalent

LM(1,1) LM(4,3) : embeds

Реализация: алгоритмы перебора

Первый

Второй

Реализация: оптимизации

- Коммутативность
- Транзитивность $L_1 \subseteq L_2 \wedge L_2 \subseteq L_3 \Rightarrow L_1 \subseteq L_3$
- Неразличимость значений $\exists v_1, v_2 \in V : \langle v_1, v_2 \rangle \in R_{L_1} \land \langle v_1, v_2 \rangle \notin R_{L_2} \Longrightarrow L_2 \not\subseteq L_1$
- ullet Вложение области отображения $\operatorname{rng}\left(L_{1}\right)\subset\operatorname{rng}\left(L_{2}\right)\Rightarrow L_{1}
 ot\supseteq L_{2}$
- ullet Анализ области значений $\exists W\subseteq V: orall x_1,\ldots,x_n\in W, \ orall f\in L_1: f(x_1,\ldots,x_n)\in W$ V множество значений $\exists g\in L_2: \exists x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U: \forall x_1,\ldots,x_n\in W$ $\exists g\in L_2: \exists x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U: \forall x_1,\ldots,x_n\in W$ $\exists g\in L_2: \exists x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U: \forall x_1,\ldots,x_n\in W$ $\exists g\in L_2: \exists x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U: \forall x_1,\ldots,x_n\in W$ $\exists g\in L_2: \exists x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U: \forall x_1,\ldots,x_n\in W: g(x_1,\ldots,x_n)
 otin W = U$
- Интерпретатор РуРу

Тестирование: логики Левина-Микенберг

$\vee_1 \mid 1 \mid T \mid \perp \mid 0$	$\Lambda_1 \mid 1 \mid T \mid \perp \mid 0$	$\rightarrow_1 \mid 1 \mid T \mid \perp \mid 0$
1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
T 1 0 0 0	T 0 0 0 0	T 1 1 1 1
\perp 1 0 0 0	$\perp 0 0 0 0$	\perp 1 1 1 1
$0 \mid 1 0 0 0$	$0 \mid 0 0 0 0$	$0 \mid 1 \mid 1 \mid 1 \mid 1$
$\vee_2 \mid 1 \mid T \mid \perp \mid 0$	$\Lambda_2 \mid 1 \mid T \mid \perp \mid 0$	$\rightarrow_2 \mid 1 \mid T \mid \perp \mid 0$
1 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0 0 0
T 1 0 0 0	T 0 0 0 0	T 1 1 1 1
$\perp \mid 1 \mid 0 \mid 0 \mid 0$	$\perp 0 0 0 0$	\perp 1 1 1 1
$0 \mid 1 0 0 0$	$0 \mid 0 0 0 0$	$0 \mid 1 \mid 1 \mid 1 \mid 1$
$\vee_3 \mid 1 \mid T \mid \perp \mid 0$	$\Lambda_3 \mid 1 \mid T \mid \perp \mid 0$	\rightarrow_3 1 T \perp 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 1 1 1 1	1 1 0 0 0	1 1 0 0 0
1 1 1 1 1 T 1 0 0 0	1 1 0 0 0 T 0 0 0 0	1 1 0 0 0 T 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	1	Т	\perp	0
¬1	0	1	1	1
$\neg 2$	0	0	0	1
$\neg 3$	0	0	1	1
¬4	0	1	0	1
$\neg 5$	0	\perp	Т	1
¬6	0	Т	\perp	1
¬ 7	0	Т	1	1
¬8	0	0	Т	1
¬9	0	Т	1	1
$\neg 10$	0	Т	0	1
$\neg 11$	0	1	\perp	1
¬12	0	0	\perp	1
¬13	0	Т	Т	1
¬14	0	\perp	\perp	1
$\neg 15$	0	\perp	0	1
¬16	0	1	Т	1

Тестирование: 64 логики

2016 сравнений

2^16 < возможных функций < 2^32

108 полных переборов

Тестирование: альтернативные 64 базиса

Тестирование: супремумы

```
LM(3,5) LM(1,5)+LM(3,4) : equivalent
LM(2,7) LM(1,7)+LM(3,4) : equivalent
LM(2,9) LM(1,9)+LM(3,4) : equivalent
LM(2,11) LM(1,11)+LM(3,4) : equivalent
LM(1,16) LM(4,16)+LM(1,4) : equivalent
LM(2,8) LM(3,8)+LM(2,3) : equivalent
LM(2,15) LM(4,15)+LM(2,4) : equivalent
LM(1,7) LM(3,7)+LM(1,3) : equivalent
```

```
LM(3,13) LM(1,13)+LM(3,4) : equivalent LM(1,12) LM(2,12)+LM(3,4) : equivalent LM(1,8) LM(2,8)+LM(3,4) : equivalent LM(3,14) LM(1,14)+LM(3,4) : equivalent LM(1,15) LM(2,15)+LM(3,4) : equivalent LM(2,16) LM(1,16)+LM(3,4) : equivalent LM(1,10) LM(2,10)+LM(3,4) : equivalent
```

github.com/KoshiNoLimit/Logics