2022-2023 学年 《固体化学》期末作业

学号	姓名	
一、凝炼一个感兴趣	的科学研究问题(题材与领域不阿	艮),结合材料结构与性质在科学问题
中的作用,写一篇文	献综述。(总分50分)	
【写作要求】中文,	按"标题、摘要、关键词、引言、正	三文、结论、参考文献"等部分撰写,
引用的内容需明确列	出文献出处,不少于 2000 字。	
【评分标准】格式整	齐 20%、引文规范 20%、逻辑完整 2	20%、内容丰富 20%、紧贴前沿 20%。
		、限于课程感受、建议、未来研究想法
等内容,不少于 400		- according to the Albert according
【评分标准】具情实	感 30%、逻辑有道 30%、切实可行	行 20%、趣味创新 20%。
三、结构因子是打开	材料结构奥秘的金钥匙,已知的各	种衍射实验均是为了能够得到材料的
结构因子, 进而阐明	材料合成与处理方法对材料结构与	5性质的影响机制与作用机理。请完成
以下作业,可手写也	可打印,手写作业请转成 PDF。(总分 30 分)
(一)推导由 A 原子	占据(0, 0, 0)、B 原子按(1/4, 1/4,	1/4)和(1/4, 1/4, 3/4)套构而成的面心立
方 AB ₂ 复式晶胞 (Ca	F_2 型结构)的结构因子 F_{HKL} (计 4	4 分), 计算 <i>x</i> 射线衍射峰的 <i>2θ</i> 值 (计
2分)和相对强度值	I _{相对} (计4分)。(本题共计10分)	
(二)为了提升 AB ₂	材料的综合性能,开展了 C 原子	按 1/8 比例取代 B 原子的掺杂改性实
验研究,合成了成分	为 A(B _{7/8} C _{1/8}) ₂ (即 A ₄ B ₇ C)的新化	公合物。文献调研发现, C 原子在常规
反应条件下呈现随机	取代 B 原子的趋势,即 AB ₂ 结构	中所有 B 位置有 7/8 概率被 B 原子占
据、1/8 概率被 C 原-	子占据。请推导此随机掺杂型 A(B	$B_{7/8}C_{1/8}$) ₂ 的结构因子 F_{HKL} (计 4 分),
计算 x 射线衍射峰的	2θ值(计2分)和相对强度值 Ι,	_{組対} (计 4 分)。(本题共计 10 分)

(三)深入研究发现 $A(B_{7/8}C_{1/8})_2$ 化合物可通过大幅改变反应压力控制 C 原子的占位方式,

实现了 C 原子仅完全取代(1/4, 1/4, 3/4)处 B 原子的 $A(B_{7/8}C_{1/8})_2$ (即 A_4B_7C)结构,该结构表现了卓越的综合性能。请推导此有序掺杂型 $A(B_{7/8}C_{1/8})_2$ 的结构因子 F_{HKL} (计 4 分),计算 x 射线衍射峰的 2θ 值和相对强度值 I_{HM} (计 4 分)。在此基础上,讨论有序掺杂型结构区别于 AB_2 (题一)和随机掺杂型结构(题二)的晶体衍射特征,总结如何利用 x 射线衍射数据直观快速地判断掺杂原子是否发生有序化占位的方法(计 2 分)。(本题共计 10 分)

题(一) AB_2 题(二) 随机掺杂型 $A(B_{7/8}C_{1/8})_2$ 题(三) 有序掺杂型 $A(B_{7/8}C_{1/8})_2$ 已知与提示:

- 1. AB_2 、随机掺杂型 $A(B_{7/8}C_{1/8})_2$ 、有序掺杂型 $A(B_{7/8}C_{1/8})_2$ 均为立方结构。 AB_2 的晶胞参数 a=4.13 Å。由于 B、C 原子半径相近,可忽略 C 原子取代 B 原子后对晶胞参数的影响,即掺杂型 $A(B_{7/8}C_{1/8})_2$ 的晶胞参数 a 不变,仍等于 4.13 Å。
- 2. 立方晶系晶面间距公式: $d_{HKL} = \alpha/(H^2 + K^2 + L^2)^{1/2}$
- 3. 布拉格衍射方程2 $d_{HKL}\sin\theta_{HKL}=\lambda,d_{HKL}$ 为晶面间距, θ_{HKL} 为 HKL 衍射的布拉格衍射角, λ 为衍射的 x 射线波长 λ ,等于 1.54 Å。
- 4. 本题 $\underline{Q$ 计算 $\underline{2\theta}$ 在 $\underline{20}$ ° 至 $\underline{80}$ ° 范围的衍射峰, $\underline{2\theta}$ 值的有效数字 \underline{Q} 假留至小数点后第二位,相对强度值 I_{HM} 的有效数字 \underline{Q} 保留至个位。
- 5. 晶胞结构因子: $F_{HKL} = \frac{A_b}{A_e} = \sum_{j=1}^n f_j e^{i\varphi_j}$,相位差 $\varphi_j = 2\pi (HX_j + KY_j + LZ_j)$ 因此 $F_{HKL} = \sum_{j=1}^n f_j e^{2\pi i (HX_j + KY_j + LZ_j)}$

欧拉公式展开: $F_{HKL} = \sum_{j=1}^{n} f_j \cos 2\pi (HX_j + KY_j + LZ_j) + i \sum_{j=1}^{n} f_j \sin 2\pi (HX_j + KY_j + LZ_j)$ 结构因子的模:

$$|F_{HKL}| = \sqrt{\left[\sum_{j=1}^{n} f_{j} \cos 2\pi (HX_{j} + KY_{j} + LZ_{j})\right]^{2} + \left[\sum_{j=1}^{n} f_{j} \sin 2\pi (HX_{j} + KY_{j} + LZ_{j})\right]^{2}}$$

6. 解本题的重要公式变形处理(注意):

$$e^{\frac{\pi}{2}i(H+K+3L)} = e^{\frac{\pi}{2}i(H+K+L+2L)} = e^{\frac{\pi}{2}i(H+K+L)}e^{\frac{\pi}{2}i(2L)} = e^{\frac{\pi}{2}i(H+K+L)}e^{\pi iL}$$

7. $A \times B \times C$ 原子的散射因子 f 可由下表查出:

散射因子f	$\lambda^{-1}sin\theta$ (Å-1)								
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
A 原子	13.0	11.0	8.95	7.75	6.6	5.5	4.5	3.7	3.1
B 原子	27.0	24.1	19.8	16.4	14.0	12.1	10.7	9.3	8.3
C 原子	30.0	26.8	22.4	18.6	15.8	13.9	12.2	10.7	9.6

8. <u>计算衍射峰相对强度时,仅需考虑结构因子 F_{HKL}、多重因子 P、角因子的影响</u>,无需考

虑温度因子和吸收因子的影响,即 $I_{HXL} = |F_{HKL}|^2 P \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$

- 9. 温馨提示:
- (1) 列表计算,不易发生混乱。
- (2) 按步计分,分步作答有利于得分。
- (3) 在解题 1 时,可以直接用面心立方点阵的 F_{HKL} ,无需推导。
- (4) 在解题 2 和 3 时,直接利用题 1 的部分结果将极大简化解题过程,提升效率,"利用已知理想晶体结构研究相似未知复杂结构"的思路也广泛应用在真实晶体的结构研究中。