

DEEP LEARNING IN COMPUTER VISION

Slim FRIKHA

Lead Computer Vision AI Researcher - RIMINDER

DEEP LEARNING PRACTICAL COURSE ECOLE POLYTECHNIQUE, 12/04/2018

Program & Course Logistics

- **Course 1**: (05-04-18)
 - Introduction to Deep Learning Mouhidine SEIV (Riminder)
- Course 2 : (12-04-18)
 - Deep Learning in Computer Vision Slim FRIKHA (Riminder)
- **Course 3**: (19-04-18)
 - Deep Learning in NLP Paul COURSAUX (Riminder)
- **Course 4**: (26-04-18)
 - Efficient Methods and Compression for Deep Learning INVITED GUEST
- **Course 5:** (03-05-18)
 - Introduction to Deep Learning Frameworks INVITED GUEST
- **Course 6:** (10-05-18)
 - Deployment in Production and Parallel Computing INVITED GUEST

Talk outline

- I. Computer vision overview
- II. Deep learning for image classification
- III. Deep learning for object detection and semantic segmentation
- IV. Human versus Machine

Why computer vision is important

Google images search

Microsoft Kinect

Google Street View

Credit Card scanner

Self-driving cars

OCR in ATM check deposits

Smartphone face unlock

Number plate recognition

Vision Biometrics

3-D Printing

Computer vision overview

Tasks overview

Image classification

Object localization

Object detection

Semantic segmentation

"construction worker in orange safety vest is working on road."

Image captioning

Image classification problem

Deep learning for image classification

Why convolutions?

Classical machine learning: input format, features engineering

Dense layers: too many parameters

Recurrent neural networks: 1D sequences, loss of spatial information

Convolutional Neural Networks

Neurocognitron [Fukushima 1980]

LeNet-5 [Lecun 1998]

Alexnet [Krizhevsky, Sutskever, Hinton 2012]

What is a convolution layer?

An image is just a 3D array of numbers

Convolution operation

Convolution operation

Pooling operation

Pooling = downscaling spatial dimension

Different types: Max, Average, Sum etc.

Fully connected layer

Deep learning for image classification

Softmax activation

	Scoring Function	Unnormalized Probabilities	Normalized Probabilities
Dog	-3.44	0.0321	0.0006
Cat	1.16	3.1899	0.0596
Boat	-0.81	0.4449	0.0083
Airplane	3.91	49.8990	0.9315

CNN architecture

CNN =
Convolutions + pooling + fully connected

Training CNNs

Regularization: data augmentation

Horizontal / vertical flip

Color jitter

Random crops and scales

Translation

Rotation

Stretching ...

Generalization: transfer learning

AlexNet (2012) ZF Net (2013) VGG Net (2014) GoogLeNet (2015) Microsoft ResNet (2015)...

top 5 test error rate

Deep learning for object detection and semantic segmentation

Object localization

Deep learning for object detection and semantic segmentation

Objects detection

Objects detection: Faster R-CNN

Objects detection: YOLO

Input 448 x 448 x 3

Output $S \times S \times (B * 5 + C)$

YOLO architecture example: S=7, B=2, C=30

S × S grid

Each grid cell predicts B bounding boxes and confidence scores

for those boxes

Each grid cell predicts **one** set C conditional class probabilities

Faster than Faster R-CNN but not as accurate as

Objects detection: SSD

SSD architecture example

Combination of multiple ideas:

- anchor boxes
- single NN like YOLO
- multi scale support

Faster than Faster R-CNN but not as accurate

Slower than YOLO but more accurate

Semantic segmentation

Deep learning for object detection and semantic segmentation

Semantic segmentation

Multiple architecture and ideas too:

- FCN
- SegNet
- U-Net
- Dilated Convolutions
- DeepLab (v1 & v2)
- PSPNet
- DeepLab v3...

Semantic segmentation: encoder decoder

SegNet architecture

U-Net architecture

Semantic segmentation: atrous convolutions

Adversarial Attacks

Conclusion

NNs can be better than human for specific simple tasks (classification)

Machine learning is only "at the beginning of the S-Curve"

Machine learning S-Curve

One cool thing

Semantic segmentation to improve FIFA 18 graphics

POINT OF CONTACT

Slim Frikha Lead Computer Vision Al Researcher

slim.frikha@riminder.net

Sources

- https://medium.com/@alonbonder/ces-2018-computer-vision-takes-center-stage-9abca8a2546d
- http://cs231n.github.io/classification/
- http://cv-tricks.com/object-detection/faster-r-cnn-yolo-ssd/
- https://blog.goodaudience.com/using-convolutional-neural-networks-for-image-segmentation-a-guick-intro-75bd68779225
- https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
- http://cs231n.stanford.edu/syllabus.html
- https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
- https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
- https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8
- https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html#faster-r-cnn
- https://medium.com/diaryofawannapreneur/yolo-you-only-look-once-for-object-detection-explained-6f80ea7aaa1e
- https://medium.com/@ManishChablani/ssd-single-shot-multibox-detector-explained-38533c27f75f
- https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
- https://blog.openai.com/adversarial-example-research/
- https://www.semanticscholar.org/paper/Adversarial-Examples-that-Fool-Detectors-Lu-Sibai/dfa14959ae31c6c95ae508dd847dc 7d67f04fad9
- https://futureoflife.org/2017/05/01/machine-learning-security-iclr-2017/
- http://blog.enabled.com.au/artificial-general-intelligence/
- https://towardsdatascience.com/using-deep-learning-to-improve-fifa-18-graphics-529ec44ea37e