STANISLAS Exercices

Intégration sur un intervalle quelconque

PSI 2021-2022

Chapitre V

I. Intégration sur un segment

Indications pour l'exercice 1. Exprimer f(x) en fonction de x et de $\lfloor x \rfloor$ en utilisant la relation de Chasles.

Indications pour l'exercice 2. Effectuer une intégration par parties.

Indications pour l'exercice 3. Dans un premier temps, utiliser la formule de Chasles pour éliminer la fonction maximum.

La relation obtenue est ensuite vérifiée pour tout $x \in [0, 1]$. On pourra alors l'étudier comme une fonction de x.

Indications pour l'exercice 4. On pourra utiliser un encadrement classique de la fonction cosinus. \Box

Indications pour l'exercice 5. Commencer par tracer le tableau de variations de f' puis en déduire les variations de f.

Ensuite, on pourra introduire $g: x \mapsto f(x) - xf'(1/2)$.

Indications pour l'exercice 6.

- **1.** Appliquer le résultat sur les sommes de Riemann à $x \mapsto 4\tan(x)$ sur $[0, \pi/4]$.
- **2.** Commencer par encadrer $(n+p)^2 \le (n+p)(n+p+1) \le (n+p+1)^2$ puis appliquer le résultat sur les sommes de Riemann à $x \mapsto \frac{1}{1+x}$.
- 3. Utiliser la fonction logarithme puis le résultat sur les sommes de Riemann à $x\mapsto \ln(1+x^2)$ sur [0,1].

Le calcul de l'intégrale pourra s'effectuer en utilisant une intégration par parties. $\hfill \Box$

II. Convergence d'intégrales - Intégrabilité

Indications pour l'exercice 7.

- 1. Commencer par rechercher le domaine de définition de l'intégrande. Prolonger ensuite l'intégrande par continuité aux bornes de l'intervalle.
- **2.** Prolongement par continuité en 0, comparaison à une intégrale de Riemann en $+\infty$.
- **3.** Comparaison à une intégrale de Riemann en $+\infty$, à un logarithme en 0.
- **4.** Comparaison à $x \mapsto \frac{1}{x \ln^2(x)}$ dont on peut calculer une primtive.

Indications pour l'exercice 8.

- 1. Nul besoin de dériver pour étudier les variations.
- **2.** On pourra utiliser la stratégie du théorème de comparaison série / intégrale. La convergence de la suite est ensuite assurée en montrant la convergence de l'intégrale $\int_{1}^{+\infty} f(t) dt$.
- 3. L'encadrement obtenu à la question précédente permet de conclure que (nS_n) converge vers $\int_1^{+\infty} f(t) dt$.

Indications pour l'exercice 9. Pour $\int_0^{+\infty} \cos(t^2) dt$, une intégration par parties avec les fonctions $t \mapsto \sin(t^2)$ et $t \mapsto \frac{1}{t}$ permet de se ramener à une intégrale absolument convergente.

Pour $\int_0^{+\infty} \sin(t^2) dt$, on pourra effectuer une intégration par parties avec $t \mapsto 1 - \cos(t^2)$ et $t \mapsto \frac{1}{t}$.

Indications pour l'exercice 10.

- 1. On pourra minorer l'intégrande par une fonction positive dont l'intégrale diverge.
- **2.** On pourra commencer par effectuer le changement de variables φ : $u\mapsto \frac{1}{u}$, puis une intégration par parties avec les fonctions $u:t\mapsto \sin(t)$ et $v:t\mapsto \cos\frac{1}{t}$. On obtient ainsi une intégrable qui est absolument convergente sur]0,1].

Indications pour l'exercice 11. On pourra effectuer une intégration par parties en introduisant $F: x \mapsto \int_0^x f(t) dt$ puis montrer que F est bornée.

Chapitre 5 PSI

Indications pour l'exercice 12. On raisonne par l'absurde.

En effectuant une intégration par parties sur $\int_0^N ff''$, commencer par montrer que $\lim_{+\infty} ff' = +\infty$.

En déduire, en utilisant une primitive de ff', que $\lim_{+\infty} f^2 = +\infty$ puis conclure.

Pour l'inégalité, utiliser l'inégalité de Cauchy-Schwarz.

Indications pour l'exercice 13.

- 1. Utiliser une comparaison à une intégrale de Riemann.
- **2.** Pour l'étude en 0, on pourra majorer $|f(x) \ln(x)|$. Pour l'étude en $+\infty$, on pourra effectuer une intégration par parties.
- **3.** Effectuer une intégration par parties.

III. Calculs d'intégrales

Indications pour l'exercice 14. Pour montrer la convergence, utiliser un prolongement par continuité puis un changement de variables $u\mapsto 1-u$. Pour le calcul, on pourra effectuer le changement de variables $u\mapsto e^u$. L'intégrale pourra alors être considérée sur $[\varepsilon, +\infty[$, divisée en 2. On pourra alors montrer que

$$\lim_{\varepsilon \to 0} \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t} - 1}{t} dt = 0$$

Indications pour l'exercice 15. Pour l'existence, on pourra utiliser un prolongement par continuité en 0 puis une comparaison à une fonction exponentielle en $+\infty$.

Pour le calcul, on pourra diviser l'intégrale en 2 sur [0,M] puis montrer que

$$\lim_{M \to +\infty} \int_{M}^{3M} \frac{\tanh(x) - 1}{x} \, \mathrm{d}x = 0$$

Indications pour l'exercice 16.

1. Utiliser le changement de variable $u \mapsto a + b - u$.

2. On peut appliquer la question précédente à $f: t \mapsto \frac{1}{1+\cos^2(t)}$ sur $[0,\pi]$. On calcule ensuite $\int_0^\pi \frac{\mathrm{d}t}{1+\cos^2(t)}$, en découpant sur $[0,\pi/2]$ et $[\pi/2,\pi]$ puis en faisant apparaître la dérivée de arctan o tan.

Indications pour l'exercice 17.

1. En passant par les développements limités, on pourra calculer un équivalent en 0 de $\ln(\sin(t))$.

Le changement de variables $u \mapsto \pi/2 - u$ permet de relier I et J.

2. La linéarité de l'intégrale permet de retrouver l'intégrale de I. Finalement, $I=J=-\frac{\pi}{2}\ln(2)$.

Indications pour l'exercice 18.

- 1. Raisonner par récurrence.
- 2. On montre la définition des intégrales par comparaison à des intégrales de Riemann.

On effectue ensuite m des intégrations par parties avec les fonctions $t \mapsto f^{(n-1)}(t)$ et $t \mapsto P_m(t)$. On obtient $m!2^m\sqrt{\pi}$ si m=n et 0 sinon. \square

Indications pour l'exercice 19.

1. On compare à une intégrale de Riemann.

Pour le calcul, on pourra effectuer le changement de variable $u = e^t$, et uiliser la parité de cosh. Enfin, on pourra utiliser la dérivée de $t \mapsto \arctan(\sqrt{2}\sinh(t))$.

2. On prolonge par continuité et on compare à une intégrale de Riemann. Pour le calcul, on effectue le changement de variables $u\mapsto 1/u$ sur la partie $[1,+\infty[$ puis on utilise les propriétés du logarithme.

3. On effectue une intégration par parties avec les fonctions $u:t\mapsto \frac{1}{8}\left[1-\frac{1}{(1+t^4)^2}\right]$ et $v:t\mapsto \ln(t)$ sur [0,X]. Après calcul, on passe à la limite $X\to +\infty$.

Indications pour l'exercice 20.

1. Utiliser les inégalités usuelles de convexité.

2. On utilise les changements de variables $u \mapsto \sqrt{n}\sin(u)$ et $u \mapsto \sqrt{n}\tan(u)$. On montre ensuite, en utilisant une intégration par parties que, en posant $I_n = \int_0^{\pi/2} \cos^{2n+1}(t) dt$, alors $I_{n+1} \sim I_n$.

Indications pour l'exercice 21. Comparer à des intégrales de Riemann en 0 et $+\infty$.

On effectue ensuite une intégration par parties avec $u: t \mapsto \sqrt{t} \ln(t)$ et $v: t \mapsto -\frac{1}{1+t}$ sur [1/M, M]. On passe ensuite à la limite $M \to +\infty$ car les intégrales sont convertentes.

IV. Avec Python

Indications pour l'exercice 22.

- 1. a) L'intégrande est prolongeable par continuité.
- **b)** On pourra utiliser la méthode des trapèzes. L'intégrande est prolongeable par continuité.
 - c) On pourra utiliser la méthode des trapèzes.

On écrit
$$J_n - I_n = \frac{1}{n} \int_0^{\pi/2} g(x) \sin^2(nx) dx$$
.

On montre ensuite que g est de classe \mathscr{C}^1 .

Après avoir effectué une intégration par parties, on montre que $J_n - I_n \rightarrow 0$.

2. On effectue le changement de variables $u \mapsto u/n$.