EE263 Autumn 2015 S. Boyd and S. Lall

Example: Input Design

Examples (ideas only, no details)

▶ let's consider a specific system

$$\dot{x} = Ax, \qquad y = Cx$$

with $x(t) \in \mathbb{R}^{16}$, $y(t) \in \mathbb{R}$ (a '16-state single-output system')

▶ model of a lightly damped mechanical system, but it doesn't matter

Typical output

▶ output waveform is very complicated; looks almost random and unpredictable

Modal components

we'll see that such a solution can be decomposed into much simpler (modal) components

(idea probably familiar from 'poles')

Input design

add two inputs, two outputs to system:

$$\dot{x} = Ax + Bu$$
, $y = Cx$, $x(0) = 0$

where $B \in \mathbb{R}^{16 \times 2}$, $C \in \mathbb{R}^{2 \times 16}$ (same A as before)

problem: find appropriate $u: \mathbb{R}_+ \to \mathbb{R}^2$ so that $y(t) \to y_{\text{des}} = (1, -2)$

simple approach: consider static conditions (u, x, y constant):

$$\dot{x} = 0 = Ax + Bu_{\text{static}}, \quad y = y_{\text{des}} = Cx$$

solve for u to get:

$$u_{\text{static}} = (-CA^{-1}B)^{-1} y_{\text{des}} = \begin{bmatrix} -0.63 \\ 0.36 \end{bmatrix}$$

Simple approach

let's apply $u=u_{\mathrm{static}}$ and just wait for things to settle:

...takes about 1500 sec for y(t) to converge to y_{des}

Faster convergence

using very clever input waveforms (EE263) we can do much better, e.g.

... here y converges exactly in 50 sec

Still faster

in fact by using larger inputs we do still better, e.g.

 \dots here we have (exact) convergence in 20 sec

in this course we'll study

- ▶ how to synthesize or design such inputs
- ightharpoonup the tradeoff between size of u and convergence time