ساختمان و اصول ترانسفورمر تكفاز:

اگر دو سیم پیچ در مجاورت یکدیگر قرار گرفته و به یکی ولتاژ اعمال شود ، بر طبق قانون فاراده در آن شار به وجود می آید و این شار در سیم پیچ مجاور القای الکترومغتاطیسی ایجاد می کند و مجدداً بر طبق قانون فاراده ایجاد ولتاژ می کند . N_1

: اگر شرایطی به وجود آید که $\phi_{ extsf{l}}=\phi_{ extsf{l}}$ باشد

$$V_1 = N_1 \frac{d\phi_1}{dt} \qquad V_2 = N_2 \frac{d\phi_2}{dt}$$

$$\frac{d\phi_1}{dt} = \frac{d\phi_2}{dt} \Rightarrow \frac{V_1}{V_2} = \frac{N_1}{N_2}$$

با این نسبت ولتاژ تلفات انتقال توان الکتریکی به دلیل کاهش سطح جریان (در توان ثابت) به شدت کاهش می یابد . به علاوه با استفاده از ایزوله بودن در سیم پیچ ، مسائل ایمنی و تداخل تا حد زیادی حل می شود . دو سیم پیچ باید روی مواد فرومغناطیسی پیچیده شوند .

شار با استفاده از ۷۱ بدست می آید و مستقل از جنس هسته است

.اگر سیم پیچ دوم مدار باز باشد ، در یک ترانسفورمر واقعی میـزان جـریان i₁ حـدود یک الی دو درصد

جريان نامي آن است.

 $N_{1}i_{1}=R_{Fe}\phi_{1}$. در ادامه به ثانویه یک بار متصل می کنیم

$$R_{Fe}$$
 \emptyset
 N_1i_1
 N_2i_2

$$i_2=0\Rightarrow \phi=rac{N_1i_1}{R_{Fe}}$$
 : در بی باری :
$$i_2=rac{V_2}{R_L}\Rightarrow \phi^{'}=rac{N_1i_1^{'}-N_2i_2}{R_{Fe}}$$
 : در حالت وجود بار :
$$\gg N_1i_1^{'}-N_2i_2=N_1i_1$$

توجه : رابطه ی فوق بر اساس قانون آمپر بدست آمده است .

$$N_1 i_1^{'} = N_2 i_2 \Rightarrow \frac{i_1^{'}}{i_2} = \frac{V_1}{V_2} \Rightarrow i_1^{'} V_1 = i_2 V_2$$
 اگر i_1 ناچيز باشد:

مسئله ی دیگر در ترانسفورمر تکفاز بحث اشباع هسته است . تنها به دلیل اشباع هسته ، ترانسفورمر نمی تواند

ولتاژ DC را عبور دهد.

 $\frac{V_1}{V_2} = \frac{i_2}{i} = \frac{N_1}{N_2}$: ادامه به کمّی کردن بیشتر ترانسفورمر و مدل مداری آن می پردازیم . در حالت ایده آل برای واقعی کردن ترانسفورمر باید اثرات زیر را در نظر بگیریم:

اشباع ، تلفات اهمی سیپ پیچ ها ، پراکندگی شار (یعنی بخشی از شار که توسط سیم پیچ اول تولید می شود ولى سيم پيچ دوم را دور نمى زند) ، تلفات هسته و μ_r محدود

هدف بدست آوردن یک مدار معادل الکتریکی برای سیستم الکترومغناطیسی ترانسفورمر است.

بحث را با سیم پیچ اولیه که مولد شار است و به منبع ولتاژ متصل می شود آغاز می کنیم.

مدار پیشنهادی با استفاده از المان های فشرده ساخته شده است ، اما رفتار دقیق سیستم به صورت فشرده نیست ، به عبارت دیگر المان های مشخص شده روی مدار معادل هیچ ما به ازای فیزیکی مشخصی در ترانسفورمر ندارند.

شار تولید شده توسط N_1 دور سیم پیچ اولیه را به دو بخش تقسیم می کنیم :

(ا مغناطیسی) شاری که سیم پیچ دوم را دور می زند (ϕ_m) (مغناطیسی)

نشتی) (ϕ_t) شاری که سیم پیچ دوم را دور نمی زند (ϕ_t) $\phi_1 = \phi_m + \phi_l$: z = 0

$$\phi_1 = L_1 i_1$$

$$\phi_m = L_m i_1 = \frac{1}{N_1} \int V_m dt$$

$$\phi_l = L_l i_1$$

فقط برای سهولت در محاسبات می توان ثانویه ترانسفورمر ایده آل را حذف نمود و کل مدار ثانویه را به اولیه منعکس نمود.

مقاومت R_{C} برای مدل کردن تلفات هیسترزیس و جریان های گردابی به مدل اضافه می شود .

چون عمدتاً ترانسفورمر زیر زانوی اشباع طرح می شود ، پس می توان Lm را خطی فرض نمود

بدست آوردن پارامتر های مدل :اگر بدانیم R_{C} و R_{C} خیلی بزرگ هستند .

(مقادیر در سمت اولیه اندازه گیری می شوند) P_{OC} , I_{OC} , V_{OC} (زمایش مدار باز) الف : ثانویه مدار باز : $P_{OC} \simeq \frac{V_{OC}^2}{R_C} \Rightarrow R_C$ \checkmark $Q_{OC} = \sqrt{\left(V_{OC}I_{OC}\right)^2 - P_{OC}^2} \Rightarrow Q_{OC} = \frac{V_{OC}^2}{X_m} \; , X_m = L_m \omega \Rightarrow L_m \; \checkmark$ (مقادیر در سمت اولیه اندازه گیری می شوند) $P_{SC} = \left(R_1 + R_2^{'}\right)I_{SC}^2 \Rightarrow R_1 + R_2^{'} \; \checkmark$ $Q_{SC} = \sqrt{\left(V_{SC}I_{SC}\right)^2 - P_{SC}^2} = \left(X_{I1} + X_{I2}^{'}\right)I_{SC}^2 \Rightarrow L_{I1} + L_{I2}^{'} \; \checkmark$

از آنجا که مشخصه ی B-H غیر خطی می باشد ، بنابراین مقدار Rc و Xm تابعی از نقطه ی کار مغناطیسی می

باشد. ضمناً آزمایش مدار باز به علت غیر خطی بودن مشخصه ی B-H باید در نقطه ی کارنامی صورت گیرد، یعنی این آزمایش باید در ولتاژ نامی انجام شود.

به دلایل فوق انجام آزمایش $^{'}$ OC در سمت $^{'}$ LV انجام می شود .

در مورد آزمایش اتصال کوتاه (C^3) نیز توجه کنید ، چون امپدانس ثانویه خیلی کم شده است ، انجام آزمایش در مورد آزمایش نه در ولتاژ نامی بلکه در جریان در ولتاژ نامی منجر به افزایش جریان شدید خواهد شد . بنابراین این آزمایش نه در ولتاژ نامی بلکه در جریان نامی انجام می شود . مشابه با دلیل آزمایش قبلی این آزمایش در سمت V HV انجام می شود.

از آزمایش اتصال کوتاه مقادیر تفکیک شده ی شاخه های سری بدست نمی آید . $R_1 + R_2$ و $R_1 + X_{l+1}$ اما در یک ترانسفورمر خوب طراحی شده برای هر طرف قطر سیم مناسب جریان نامی همان سمت بکار می رود در نتیجه :

² Low Voltage

³ Short Circuit

⁴ High Voltage

¹ Open Circuit

$$R_{1} = \rho \frac{l_{1}}{A_{1}} = \rho \frac{l_{2} \left(\frac{N_{1}}{N_{2}}\right)}{A_{2} \left(\frac{N_{2}}{N_{1}}\right)} = \rho \frac{l_{2}}{A_{2}} \left(\frac{N_{1}}{N_{2}}\right)^{2} = R_{2} \left(\frac{N_{1}}{N_{2}}\right)^{2} = R_{2}^{'} \Rightarrow R_{1} = R_{2}^{'}$$

 $X_{l | 1} = X_{l | 2}^{'}$: به طور مشابه