16 de setembro de 2013

F 429: Experimento III

Sumário

1	Introdução
	Instrumentos e Componentes
	2.1 Medidas
	2.1.1 Resistências
	2.1.2 Capacitância
	2.1.3 Resistência em série do indutor (R_L)
	2.1.4 Indutâncias

Lista de Figuras

Lista de Tabelas

1 Introdução

Neste experimento estudamos os conceitos de um transformador. Este é um dispositivo de corrente alternada que opera baseado nos princípios eletromagnéticos da Lei de Faraday^I e da Lei de Lenz^{II}. Ele transmite energia ou potência elétrica de um circuito a outro. Apesar de poder ter diferentes configurações, neste experimento foi estudado apenas um transformador composto de duas bobinas (primária e secundária) e um núcleo férrico para acoplá-las.

2 Instrumentos e Componentes

Os instrumentos e componentes utilizados estão listados abaixo com seus respectivos valores nominais.

- Gerador de Funções Tektronix CFG 253.
- Osciloscópio digital Tektronix TDS1000.
- Resistências nominais de 150Ω , 4, 7Ω , $1k\Omega$, $5k\Omega$ e $100k\Omega$.
- Indutores de 50mH e 3mH.
- Capacitores de $0.22\mu F$ e $24\mu F$.
- Multímetro

2.1 Medidas

2.1.1 Resistências

Para cada resistor utilizado medimos, utilizando o multímetro, as respectivas resistencias.

- $R_{4,7} \approx 5.1\Omega \pm 0.15\Omega$
- $R_{150} \approx 149.3\Omega \pm 1.59\Omega$
- $R_{1k} \approx 1001\Omega \pm 10.11\Omega$
- $R_{5k} \approx 5.07k\Omega \pm 57.1\Omega$
- $R_{100k} \approx 98.3k\Omega \pm 983.1\Omega$

2.1.2 Capacitância

: Esta foi medida previamente em experimentos anteriores $C_{022}=0.2236\mu F\pm0.0191\mu$

2.1.3 Resistência em série do indutor (R_L)

O cálculo das resistências internas dos indutores de 50mH e 3mH são, $R_{L50}=46.5\Omega R_{L3}=3.3\Omega$, respectivamente. Para estas medidas, também, foi utilizado o multímetro.

^ILei que se entende a produção de corrente elétrica em um circuito colocado sob efeito de um campo magnético variável ou por um circuito em movimento em um campo magnético constante

^{II}O sentido da corrente é o oposto da variação do campo magnético que lhe deu origem

2.1.4 Indutâncias

Nas medidas de indutâncias utilizamos o método da figura de Lissajous. Montamos um circuito RLC em série com o capacitor de $0.22\mu F[2.1.2]$ e um resistor qualquer ^{III}. Dado que ^{IV},

$$I L = \frac{1}{(2\pi f_0)^2 C}$$

II
$$\Delta L = L \cdot \sqrt{\left(\frac{2\Delta f_0}{f_0}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} \approx L \frac{\Delta C}{C}$$

Obtivemos, $f_{0_{50}}\approx 1.5554kHz$ e $f_{0_3}\approx 6.2411kHz$, então, $L_{50}\approx 46.82mH\pm 3.99mH$ para o indutor de valor nominal 50mH e $L_3\approx 2.91mH\pm 0.25mH$ para o de 3mH.

 $^{^{\}rm III}$ Bons resultados são obtivos com $R<1k\Omega$

 $^{^{\}rm IV}{\rm http://www.ifi.unicamp.br/~gustavo/disciplinas/f429/sobre_erros_hugo_fragnito.pdf1}$