BeiDou Navigation Satellite System Signal In Space Interface Control Document

Open Service Signals B1C and B2a (Test Version)

China Satellite Navigation Office
August, 2017

Table of Contents

1	State	ement	I
2	Scop	oe	1
3	BeiI	Oou System Overview	2
	3.1	Space Constellation	2
	3.2	Coordinate System	2
	3.3	Time System	3
4	Sign	al Characteristics	4
	4.1	Signal Structure	4
	4.2	Signal Modulation	5
		4.2.1 B1C Signal	5
		4.2.2 B2a Signal	8
	4.3	Logic Levels	9
	4.4	Signal Polarization	.10
	4.5	Carrier Phase Noise	.10
	4.6	Spurious	.10
	4.7	Correlation Loss	.10
	4.8	Data/Code Coherence	.10
	4.9	Signal Coherence	.10
	4.10	Received Power Levels on Ground	.11
5	Rang	ging Code Characteristics	.11
	5.1	Ranging Code Structure	.11
	5.2	B1C Ranging Codes	.13
		5.2.1 B1C Primary Codes	.13

		5.2.2	B1C Secondary Codes	17
	5.3	B2a Ra	anging Codes	19
		5.3.1	B2a Primary Codes	19
		5.3.2	B2a Secondary Codes	25
	5.4	Non-sta	andard Codes	27
6	Nav	rigation l	Message Structure	27
	6.1	Naviga	tion Message Overview	27
		6.1.1	Navigation Message Types	27
		6.1.2	Cyclic Redundancy Check	27
	6.2	B-CNA	AV1 Navigation Message	28
		6.2.1	Brief Description	28
		6.2.2	Coding Methods	30
		6.2.3	Data Format	36
	6.3	B-CNA	AV2 Navigation Message	42
		6.3.1	Brief Description	42
		6.3.2	Coding Methods	43
		6.3.3	Data Format	45
7	Nav	rigation l	Message Parameters and Algorithms	48
	7.1	Rangin	g Code Number	48
	7.2	Page T	ypes	48
	7.3	Messag	ge Types	49
	7.4	System	Time Parameters	49
	7.5	Issue C	Of Data	50
		7.5.1	Issue Of Data, Ephemeris	50

	7.5.2	Issue Of Data, Clock	51
	7.5.3	IODE and IODC Usage Constraints	52
7.6	Clock C	Correction Parameters	53
	7.6.1	Parameters Description	53
	7.6.2	User Algorithm	54
7.7	Group I	Delay Correction Parameters	55
	7.7.1	Parameters Description	55
	7.7.2	User Algorithm	56
7.8	Epheme	eris Parameters	57
	7.8.1	Parameters Description	57
	7.8.2	User Algorithm	58
7.9	Ionosph	neric Delay Correction Model Parameters	60
	7.9.1	Parameters Description	60
	7.9.2	Single Frequency Algorithm	61
	7.9.3	Dual Frequency Algorithm	67
7.10) Midi Al	manac Parameters	69
	7.10.1	Parameters Description	69
	7.10.2	User Algorithm	71
7.11	Reduce	d Almanac parameters	72
	7.11.1	Parameters Description	72
	7.11.2	User Algorithm	73
7.12	2 Earth O	Prientation Parameters	74
	7.12.1	Parameters Description	74
	7 12 2	User Algorithm	75

7.13 BDT/UTC Time Offset Parameters75
7.13.1 Parameters Description75
7.13.2 User Algorithm
7.14 BDT/GNSS Time Offset Parameters77
7.14.1 Parameters Description77
7.14.2 User Algorithm79
7.15 Satellite Health Status79
7.16 Satellite Integrity Status80
7.17 Signal In Space Accuracy Index81
7.18 Signal In Space Monitoring Accuracy Index81
Acronyms83
Annex: Non-binary LDPC Encoding and Decoding Methods85

1 Statement

BeiDou Navigation Satellite System Signal In Space Interface Control Document (hereinafter referred to as ICD) is issued by the China Satellite Navigation Office, which reserves the right for final explanation.

2 Scope

BeiDou Navigation Satellite System is called BeiDou System for short, with the abbreviation as BDS. The construction and development of BDS is divided into three phases: BDS-1, BDS-2, and BDS-3 in sequence.

This document defines the characteristics of the open service signals B1C and B2a transmitted from the BDS space segment to the BDS user segment. Furthermore, the B1C and B2a signals are transmitted by the Medium Earth Orbit (MEO) satellites and the Inclined Geosynchronous Satellite Orbit (IGSO) satellites of BDS-3, and provide open services.

Note: The B1C and B2a signals are new signals while the B2a signal will replace the B2I signal. The B1I signal is transmitted by all satellites of BDS-3 and provides open services. For more information about the B1I signal, please refer to *BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.1)*. The BDS-3 Geostationary Earth Orbit (GEO) satellites will transmit the satellite-based augmented signals to provide satellite-based augmentation system (SBAS) services.

3 BeiDou System Overview

3.1 Space Constellation

The basic space constellation of BDS consists of 3 GEO satellites, 3 IGSO satellites, and 24 MEO satellites. According to actual situation, the spare satellites may be deployed in orbit. The GEO satellites operate in orbit at an altitude of 35,786 kilometers and are located at 80 E, 110.5 E, and 140 E respectively. The IGSO satellites operate in orbit at an altitude of 35,786 kilometers and an inclination of the orbital planes of 55 ° with reference to the equatorial plane. The MEO satellites operate in orbit at an altitude of 21,528 kilometers and an inclination of the orbital planes of 55 ° with reference to the equatorial plane.

3.2 Coordinate System

The BeiDou Coordinate System is adopted by BDS, with the abbreviation as BDCS. The definition of BDCS is in accordance with the specifications of the International Earth Rotation and Reference System Service (IERS), and it is consistent with the definition of the China Geodetic Coordinate System 2000 (CGCS2000). The BDCS and CGCS2000 have the same ellipsoid parameters. The details of BDCS are as follows:

(1) Definition of origin, axis and scale

The origin is located at the Earth's center of mass. The Z-Axis is the direction of the IERS Reference Pole (IRP). The X-Axis is the intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin

and normal to the Z-Axis. The Y-Axis, together with Z-Axis and X-Axis, constitutes a right-handed orthogonal coordinate system.

The length unit is the international system of units (SI) meter, which is consistent with the time coordinate of the Geocentric Coordinate Time (TCG) of the geocentric local frame. The initial orientation at 1984.0 is consistent with the orientation at 1984.0 of the Bureau International de l'Heure (BIH). The evolution of orientation over time causes no overall rotation of the horizontal tectonic movement of the Earth.

(2) Definition of the BDCS Ellipsoid

The geometric center of the BDCS Ellipsoid coincides with the Earth's center of mass, and the rotation axis of the BDCS Ellipsoid is the Z-Axis. The parameters of the BDCS Ellipsoid are shown in Table 3-1.

No.ParameterDefinition1Semi-major axisa=6378137.0 m2Geocentric gravitational constant $\mu=3.986004418\times10^{14} \text{ m}^3/\text{s}^2$ 3Flatteningf=1/298.2572221014Earth's rotation rate $\dot{\Omega}_e=7.2921150\times10^{-5} \text{ rad/s}$

Table 3-1 Parameters of the BDCS Ellipsoid

3.3 Time System

The BeiDou navigation satellite system Time (BDT) is adopted by the BDS as time reference. BDT adopts the international system of units (SI) second as the base unit, and accumulates continuously without leap seconds.

The start epoch of BDT is 00:00:00 on January 1, 2006 of Coordinated Universal Time (UTC). BDT connects with UTC via UTC (NTSC), and the deviation of BDT to UTC is maintained within 50 nanoseconds (modulo 1 second). The leap second parameters are broadcast in the navigation message.

4 Signal Characteristics

The signal characteristics described in this chapter pertain to the B1C signal contained within the 32.736MHz bandwidth with a center frequency of 1575.42MHz and the B2a signal contained within the 20.46MHz bandwidth with a center frequency of 1176.45 MHz.

4.1 Signal Structure

The carrier frequencies, modulations, symbol rates and service types of the B1C and B2a signals are shown in Table 4-1.

Table 4-1 Structures of the B1C and B2a signals

Signal	Signal component	Carrier frequency (MHz)	Modulation	Symbol rate (sps)	Service type
DIC	Data component B1C_data	1575.42	BOC(1, 1)	100	RNSS
B1C	Pilot component B1C_pilot	13/3.42	QMBOC(6, 1, 4/33)	0	RNSS
Da	Data component B2a_data	115 - 15	BPSK(10)	200	RNSS
B2a	Pilot component B2a_pilot	1176.45	BPSK(10)	0	RNSS

4.2 Signal Modulation

In the following sections, a power normalized complex envelope is used to describe a modulated signal.

Assume that the complex envelope expression of a modulated signal is

$$s_X(t) = s_{X1}(t) + j s_{X2}(t)$$
 (4-1)

where, j is an imaginary unit, $s_{x_1}(t)$ is the real part of the complex envelope, and $s_{x_2}(t)$ is the imaginary part of complex envelope. In the corresponding bandpass signal, $s_{x_1}(t)$ represents the in-phase component of the signal, and $s_{x_2}(t)$ represents the quadrature component of the signal.

The expression of the corresponding bandpass signal is described as

$$S_X(t) = \sqrt{2P_X} \left[s_{X1}(t) \cos(2\pi f_X t) - s_{X2}(t) \sin(2\pi f_X t) \right]$$
 (4-2)

where, f_x is the carrier frequency of the bandpass signal, and P_x is the power of the bandpass signal.

 $S_X(t)$ completely expresses a carrier-modulated bandpass signal. $S_X(t)$ is the baseband form of the bandpass signal, which describes the structure and content of the bandpass signal before carrier modulation.

4.2.1 B1C Signal

The complex envelope of the B1C signal is expressed as

$$s_{\text{B1C}}(t) = s_{\text{B1C_data}}(t) + j s_{\text{B1C_pilot}}(t)$$
(4-3)

where, $s_{\rm BIC_data}(t)$ is the data component, which is generated with the sine-phased BOC(1, 1) modulation of the subcarrier $sc_{\rm BIC_data}(t)$, the navigation

message data $D_{\text{BIC_data}}(t)$, and the ranging code $C_{\text{BIC_data}}(t)$. $s_{\text{BIC_pilot}}(t)$ is the pilot component, which is generated with the QMBOC(6, 1, 4/33) modulation of the ranging code $C_{\text{BIC_pilot}}(t)$ and the subcarrier $sc_{\text{BIC_pilot}}(t)$. The power ratio of the data component to the pilot component is 1:3. The expressions of the two components are as follows:

$$s_{\text{BIC_data}}(t) = \frac{1}{2} D_{\text{BIC_data}}(t) \cdot C_{\text{BIC_data}}(t) \cdot sc_{\text{BIC_data}}(t)$$
(4-4)

$$s_{\text{B1C_pilot}}(t) = \frac{\sqrt{3}}{2} C_{\text{B1C_pilot}}(t) \cdot sc_{\text{B1C_pilot}}(t)$$
 (4-5)

The expression of $D_{\rm BIC_data}(t)$ in the data component $s_{\rm BIC_data}(t)$ is as follows:

$$D_{\text{B1C_data}}(t) = \sum_{k=-\infty}^{\infty} d_{\text{B1C_data}}[k] p_{T_{\text{B1C_data}}}(t - kT_{\text{B1C_data}})$$
(4-6)

where, $d_{\text{BIC_data}}$ is the navigation message data of the B1C signal, and $T_{\text{BIC_data}}$ is the chip width of the corresponding data. $p_T(t) = \begin{cases} 1, & 0 \le t < T \\ 0, & else \end{cases}$, is a rectangular pulse function of width T.

The expressions of ranging codes $C_{\rm B1C_data}(t)$ and $C_{\rm B1C_pilot}(t)$ are as follows:

$$C_{\text{B1C_data}}(t) = \sum_{n = -\infty}^{\infty} \sum_{k=0}^{N_{\text{B1C_data}} - 1} c_{\text{B1C_data}}[k] p_{T_{\text{c_B1C}}}(t - (N_{\text{B1C_data}}n + k)T_{\text{c_B1C}})$$
(4-7)

$$C_{\text{B1C_pilot}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B1C_pilot}}-1} c_{\text{B1C_pilot}}[k] p_{T_{\text{c_B1C}}}(t - (N_{\text{B1C_pilot}}n + k)T_{\text{c_B1C}})$$

$$(4-8)$$

where, $c_{\rm BIC_data}$ and $c_{\rm BIC_pilot}$ are the ranging code sequences of the data component and the pilot component respectively. $N_{\rm BIC_data}$ and $N_{\rm BIC_pilot}$ are the spread spectrum sequence periods of the corresponding components.

 $T_{\text{c_BIC}} = 1/f_{\text{c_BIC}}$ is the ranging code chip width of the B1C signal. $f_{\text{c_BIC}} = 1.023$ Mbps is the ranging code rate of the B1C signal.

The B1C data component subcarrier $sc_{B1C_data}(t)$ is expressed as

$$sc_{\text{BIC_data}}(t) = \text{sign}\left(\sin\left(2\pi f_{\text{sc_BIC_a}}t\right)\right)$$
 (4-9)

where, $f_{\text{sc_B1C_a}}$ is 1.023 MHz.

The B1C pilot component subcarrier $sc_{\text{B1C_pilot}}(t)$ is the QMBOC(6, 1, 4/33) composite subcarrier. It is composed of a BOC(1, 1) subcarrier and a BOC(6, 1) subcarrier, which are in phase quadrature with each other and have a power ratio of 29:4. The expression of $sc_{\text{B1C_pilot}}(t)$ is defined as follows:

$$sc_{\text{B1C_pilot}}(t) = \sqrt{\frac{29}{33}} \operatorname{sign}\left(\sin\left(2\pi f_{\text{sc_B1C_a}}t\right)\right) - j\sqrt{\frac{4}{33}} \operatorname{sign}\left(\sin\left(2\pi f_{\text{sc_B1C_b}}t\right)\right)$$
(4-10)

where, $f_{sc_BIC_b}$ is 6.138 MHz_o

Since $sc_{\text{B1C_pilot}}(t)$ is a complex waveform, the B1C signal contains three components as shown in the following equation:

$$s_{\text{BIC}}(t) = \underbrace{\frac{1}{2} D_{\text{BIC_data}}(t) \cdot C_{\text{BIC_data}}(t) \cdot \text{sign}\left(\sin\left(2\pi f_{\text{sc_BIC_a}}t\right)\right)}_{s_{\text{BIC_data}}(t)} + \underbrace{\sqrt{\frac{1}{11}} C_{\text{BIC_pilot}}(t) \cdot \text{sign}\left(\sin\left(2\pi f_{\text{sc_BIC_b}}t\right)\right)}_{s_{\text{BIC_pilot_b}}(t)} + j\underbrace{\sqrt{\frac{29}{44}} C_{\text{BIC_pilot}}(t) \cdot \text{sign}\left(\sin\left(2\pi f_{\text{sc_BIC_a}}t\right)\right)}_{s_{\text{BIC_pilot_b}}(t)}$$

$$(4-11)$$

Table 4-2 shows the components of the B1C signal as well as the modulation, phase relationship and power ratio of each component.

Table 4-2 Modulation characteristics of the B1C signal

Component	Modulation		Phase relationship	Power ratio
$S_{ m B1C_data}\left(t ight)$	Sine BOC(1, 1)		0	1/4
$s_{ ext{B1C_pilot_a}}\left(t ight)$	OMBOC(6 1 4/22)	Sine BOC(1, 1)	90	29/44
$s_{ ext{B1C_pilot_b}}(t)$	QMBOC(6, 1, 4/33)	Sine BOC(6, 1)	0	1/11

4.2.2 B2a Signal

The complex envelope of the B2a signal is expressed as

$$s_{\text{B2a}}(t) = s_{\text{B2a_data}}(t) + j s_{\text{B2a_pilot}}(t)$$

$$(4-12)$$

where, the data component $s_{\text{B2a_data}}(t)$ is generated with the modulation of the navigation message data $D_{\text{B2a_data}}(t)$ and the ranging code $C_{\text{B2a_data}}(t)$, while the pilot component $s_{\text{B2a_pilot}}(t)$ contains the ranging code $C_{\text{B2a_pilot}}(t)$ only. They both adopt BPSK(10) modulation. The power ratio of the data component to the pilot component is 1:1. The expressions of these two components are shown below, respectively:

$$s_{\text{B2a_data}}(t) = \frac{1}{\sqrt{2}} D_{\text{B2a_data}}(t) \cdot C_{\text{B2a_data}}(t)$$
 (4-13)

$$s_{\text{B2a_pilot}}(t) = \frac{1}{\sqrt{2}} C_{\text{B2a_pilot}}(t)$$
 (4-14)

where, the definition of $D_{\rm B2a_data}(t)$ is as follows:

$$D_{\text{B2a_data}}(t) = \sum_{k=-\infty}^{\infty} d_{\text{B2a_data}}[k] p_{T_{\text{B2a_data}}}(t - kT_{\text{B2a_data}})$$

$$(4-15)$$

where, $d_{\rm B2a_data}$ is the navigation message data of the B2a signal, and $T_{\rm B2a_data}$ is the chip width of the corresponding data.

The expressions of $C_{\text{B2a_data}}(t)$ and $C_{\text{B2a_pilot}}(t)$ are as follows:

$$C_{\text{B2a_data}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2a_data}}-1} c_{\text{B2a_data}}[k] p_{T_{\text{c.B2a}}}(t - (N_{\text{B2a_data}}n + k)T_{\text{c_B2a}})$$
(4-16)

$$C_{\text{B2a_pilot}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2a_pilot}}^{-1}} c_{\text{B2a_pilot}}[k] p_{T_{\text{c_B2a}}}(t - (N_{\text{B2a_pilot}}n + k)T_{\text{c_B2a}})$$
(4-17)

where, $c_{\rm B2a_data}$ and $c_{\rm B2a_pilot}$ are the ranging code sequences of the data component and the pilot component respectively. $N_{\rm B2a_data}$ and $N_{\rm B2a_pilot}$ are the spread spectrum sequence periods of the corresponding components. $T_{\rm c_B2a} = 1/f_{\rm c_B2a}$ is the ranging code chip width of the B2a signal. $f_{\rm c_B2a} = 10.23$ Mbps is the ranging code rate of the B2a signal.

Table 4-3 shows the components of the B2a signal as well as the modulation, phase relationship and power ratio of each component.

 Component
 Modulation
 Phase relationship
 Power ratio

 $s_{\text{B2a_data}}(t)$ BPSK(10)
 0
 1/2

 $s_{\text{B2a_pilot}}(t)$ BPSK(10)
 90
 1/2

Table 4-3 Modulation characteristics of the B2a signal

4.3 Logic Levels

The correspondence between the logic level code bits used to modulate the signal and the signal level is shown in Table 4-4.

Table 4-4 Logic to signal level assignment

Logic level	Signal level
1	-1.0
0	+1.0

4.4 Signal Polarization

The transmitted signals are Right-Hand Circularly Polarized (RHCP).

4.5 Carrier Phase Noise

The phase noise spectral density of the un-modulated carrier will allow a third-order phase locked loop with 10 Hz one-sided noise bandwidth to track the carrier to an accuracy of 0.1 radians RMS.

4.6 Spurious

The transmitted spurious signal shall not exceed -50dBc.

4.7 Correlation Loss

The correlation loss due to payload distortions on the B1C signal shall not exceed 0.3dB, and that on the B2a signal shall not exceed 0.6dB.

4.8 Data/Code Coherence

The edge of each data symbol is aligned with the edge of the corresponding ranging code chip. The start of the first chip of the periodic ranging codes is aligned with the start of a data symbol.

The edge of each secondary chip is aligned with the edge of a primary code chip. The start of the first chip of the primary codes is aligned with the start of a secondary code chip.

4.9 Signal Coherence

The average time difference between the ranging code phases of all signal

components shall not exceed 10 nanoseconds.

4.10 Received Power Levels on Ground

The minimum received power levels on ground are shown in Table 4-5. They are measured at the output of a 0 dBi RHCP user receiving antenna (or 3 dBi linearly polarized user receiving antenna) when the satellite is above a 5-degree elevation angle.

No.SignalSatellite typeMinimum received power $(dBW)^*$ 1B1CMEO satellite-158.5IGSO satellite-160.32B2aMEO satellite-155.5

Table 4-5 Minimum received power levels on ground

-157.3

IGSO satellite

The BDS satellites shall provide the B1C and B2a signals with the following characteristics: the off-axis relative power shall not decrease by more than 2dB from the edge of the Earth to nadir.

5 Ranging Code Characteristics

5.1 Ranging Code Structure

Both the B1C and B2a ranging codes are the tiered codes which are generated by XORing the primary codes with secondary codes. The chip width of the secondary code has the same length as one period of a primary code, and

^{*}For the signal that contains a data component and a pilot component, the minimum received power is the combined power of the data component and the pilot component. The power distribution between the data component and the pilot component is defined by the modulation method. The effective power ratio offset between the components shall be less than 0.5 dB.

the start of a secondary code chip is strictly aligned with the start of the first chip of a primary code. The timing relationships are shown in Figure 5-1.

Figure 5-1 Timing relationships of the primary code and secondary code

The characteristics of the B1C ranging codes are shown in Table 5-1.

Primary Primary code Primary code **Secondary code** Signal component code type length (chip) period (ms) length (chip) 10 B1C data component Weil 10230 1 10 B1C pilot component 10230 1800 Weil

Table 5-1 Characteristics of the B1C ranging codes

The characteristics of the B2a ranging codes are shown in Table 5-2.

Signal component	Primary code type	Primary code length (chip)	Primary code period (ms)	Secondary code length (chip)
B2a data component	Gold	10230	1	5
B2a pilot component	Gold	10230	1	100

Table 5-2 Characteristics of the B2a ranging codes

For a given MEO/IGSO satellite, a unique pseudo-random noise (PRN) ranging code number is assigned to all operational signals. Furthermore, the B1C and B2a signals transmitted by one satellite have the same PRN number.

5.2 B1C Ranging Codes

5.2.1 B1C Primary Codes

The chip rate of the B1C primary codes (for both data and pilot components) is 1.023Mcps, and the length of the B1C primary codes is 10230 chips. Each primary code is generated by truncating a Weil code which has a length of 10243 chips.

In general, a Weil code sequence of length N is defined as follows:

$$W(k; w) = L(k) \oplus L(k+w), k = 0,..., N-1$$
 (5-1)

where, L(k) is a legendre sequence of length N, and w represents the phase difference between two legendre sequences. The value range of w is 1 to 5121.

A legendre sequence L(k) ($k=0,1,2,\ldots,N-1$) of length N is define as follows:

$$L(k) = \begin{cases} 0, & k = 0 \\ 1, & k \neq 0, \text{ and if there exists an integer } x \text{ which makes } k = (x^2 \mod N) \\ 0, & else \end{cases}$$
 (5-2)

where, mod is a modulo division operation.

Finally, a B1C primary code is obtained by cyclically truncating the Weil code W(k; w) from Equation (5.1), i.e.:

$$c(k; w; p) = W((k+p-1) \mod 10243; w), k = 0,...,10229$$
 (5-3)

where, p is the truncation point. It means truncating from the pth bit of the Weil code, with the value ranging from 1 to 10243.

There are a total of 126 B1C primary codes, of which 63 codes are for the data components and the other 63 codes for the pilot components. The detailed

parameters are shown in Table 5-3 and Table 5-4, in which, the values of both the first 24 chips and the last 24 chips are expressed in an octal form. For example, the first 24 chips of the B1C data component primary code of PRN 1 are 101011111111011001001110 in binary, or equivalently, 53773116 in octal. The Most Significant Bit (MSB), i.e., the first binary number 1 in this example, corresponds to the first chip of the ranging code. The MSB is transmitted first.

Table 5-3 Primary code parameters of the B1C data components

Tuble 2 2 111mary code parameters of the B10 data components					
PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)	
1	2678	699	53773116	42711657	
2	4802	694	32235341	17306122	
3	958	7318	17633713	01145221	
4	859	2127	41551514	05307430	
5	3843	715	17205134	46341377	
6	2232	6682	04254545	60604443	
7	124	7850	70663435	50500234	
8	4352	5495	16701045	27476454	
9	1816	1162	32132263	70555612	
10	1126	7682	25432015	43004057	
11	1860	6792	31711760	07100551	
12	4800	9973	25604267	15703521	
13	2267	6596	65705054	12615632	
14	424	2092	24700370	14267226	
15	4192	19	72405456	25330122	
16	4333	10151	02621063	15741134	
17	2656	6297	00506754	62665617	
18	4148	5766	44317266	07251312	
19	243	2359	14463723	26526763	
20	1330	7136	70234110	33737311	
21	1593	1706	62002462	34564677	
22	1470	2128	52312612	30142557	
23	882	6827	34500023	52015335	
24	3202	693	77312776	56550366	
25	5095	9729	03712305	04531416	
26	2546	1620	02501573	00717773	
27	1733	6805	66632544	65070030	

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
28	4795	534	00447425	65742570
29	4577	712	50643132	47674377
30	1627	1929	75652754	45534064
31	3638	5355	40610704	03636755
32	2553	6139	60523643	52040645
33	3646	6339	30522043	36645510
34	1087	1470	06337743	54551553
35	1843	6867	41375664	26065254
36	216	7851	20200053	03373656
37	2245	1162	22017103	15754234
38	726	7659	67327102	36032344
39	1966	1156	07154144	00456573
40	670	2672	45367715	20772116
41	4130	6043	46775773	04657766
42	53	2862	37123271	11652043
43	4830	180	34054132	63673657
44	182	2663	36632600	06140620
45	2181	6940	43776172	42103455
46	2006	1645	13675272	71143561
47	1080	1582	53755564	07122624
48	2288	951	60621674	32065524
49	2027	6878	22415634	47205733
50	271	7701	37363473	71732000
51	915	1823	77262176	11057010
52	497	2391	57132462	60447016
53	139	2606	13314107	77551540
54	3693	822	54474504	54256322
55	2054	6403	76023074	61777241
56	4342	239	60652454	37175533
57	3342	442	31371623	00254400
58	2592	6769	52134040	51277171
59	1007	2560	41013755	57767521
60	310	2502	20323763	60063316
61	4203	5072	52445270	12771226
62	455	7268	50735662	51142373
63	4318	341	27571255	47160627

Table 5-4 Primary code parameters of the B1C pilot components

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
1	796	7575	71676756	13053205
2	156	2369	60334021	46604773
3	4198	5688	24562714	60007065
4	3941	539	61011650	23616424
5	1374	2270	67337730	66243127
6	1338	7306	23762642	33630334
7	1833	6457	25365366	43456307
8	2521	6254	57226722	76521063
9	3175	5644	72643175	52465264
10	168	7119	00236125	76142064
11	2715	1402	12071371	60232627
12	4408	5557	61136116	05607727
13	3160	5764	36261215	77737367
14	2796	1073	13607013	16031533
15	459	7001	31010541	55416670
16	3594	5910	73163062	33076260
17	4813	10060	30250537	73355574
18	586	2710	56226421	42437243
19	1428	1546	26205736	66470710
20	2371	6887	02450570	54366756
21	2285	1883	66511327	23666556
22	3377	5613	06323465	74622250
23	4965	5062	10633350	16402734
24	3779	1038	10544206	54230354
25	4547	10170	43714115	37167223
26	1646	6484	55641056	56136734
27	1430	1718	26572456	62211315
28	607	2535	75123401	40615033
29	2118	1158	70041254	63213062
30	4709	526	53034467	03066540
31	1149	7331	50733517	30062510
32	3283	5844	73077145	34360276
33	2473	6423	55454316	45431517
34	1006	6968	37137206	47647044
35	3670	1280	45724432	33773217
36	1817	1838	55560467	77620561
37	771	1989	13467065	17327352
38	2173	6468	24245150	62223375
39	740	2091	22265044	67665257

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
40	1433	1581	10003471	27515010
41	2458	1453	36537736	37705710
42	3459	6252	57706617	76736116
43	2155	7122	76411007	77202566
44	1205	7711	61643153	25334277
45	413	7216	50125760	70220333
46	874	2113	66657234	22376763
47	2463	1095	01350500	31043217
48	1106	1628	43621551	20166102
49	1590	1713	42435620	16423062
50	3873	6102	74327566	31245527
51	4026	6123	44553226	37160613
52	4272	6070	52231514	03414402
53	3556	1115	46576047	04003162
54	128	8047	46312270	54703562
55	1200	6795	04717127	25225202
56	130	2575	50407031	31643432
57	4494	53	10044104	27063234
58	1871	1729	36610123	40756155
59	3073	6388	73470741	24774305
60	4386	682	24072445	51507057
61	4098	5565	07765425	12225744
62	1923	7160	32242545	62104320
63	1176	2277	03210227	56250500

5.2.2 B1C Secondary Codes

The secondary code length of the B1C pilot components is 1800 chips. The secondary codes are generated in the same way as the primary codes. They are generated by truncating the Weil codes which have a length of 3607 chips. The value range of w is 1 to 1803.

The specific parameters of the secondary codes of the B1C pilot components are shown in Table 5-5. In this table, the first 24 chips and the last 24 chips are expressed in an octal form. The MSB is transmitted first.

Table 5-5 Secondary code parameters of the B1C pilot components

PRN	Phase	Truncation	The first 24 chips	The last 24 chips
1 1/1/1	difference (w)	point (p)	(octal)	(octal)
1	269	1889	27516364	67377026
2	1448	1268	56523173	22276405
3	1028	1593	13575116	64256064
4	1324	1186	46450720	22541050
5	822	1239	12131561	65326055
6	5	1930	17464233	72132153
7	155	176	65053061	04514276
8	458	1696	71707375	63530655
9	310	26	34213032	35460510
10	959	1344	46160454	71144703
11	1238	1271	42153002	45741561
12	1180	1182	23004216	34642255
13	1288	1381	75723150	24051066
14	334	1604	31622150	02232734
15	885	1333	77044051	16722614
16	1362	1185	57236013	04521371
17	181	31	63564466	62033045
18	1648	704	70454263	21634063
19	838	1190	14276724	64030307
20	313	1646	34631517	36355573
21	750	1385	66647441	22662277
22	225	113	56655305	07135537
23	1477	860	44120321	13737416
24	309	1656	01401156	77676406
25	108	1921	71446113	33352240
26	1457	1173	65511011	24006552
27	149	1928	23206551	20557017
28	322	57	77770161	14726030
29	271	150	74540673	17203546
30	576	1214	71611373	23731232
31	1103	1148	37057206	37773355
32	450	1458	23025164	41547173
33	399	1519	41327640	70714166
34	241	1635	61120023	46232706
35	1045	1257	06234040	37305130
36	164	1687	74425523	00744320
37	513	1382	30506176	07273204
38	687	1514	42154245	43674256
39	422	1	11240471	71100451
40	303	1583	32430440	02111760
41	324	1806	45423343	17414124
42	495	1664	04254573	55250612
43	725	1338	00100444	43330066
44	780	1111	10223615	50630424

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
45	367	1706	47340430	06777411
46	882	1543	65721741	51654600
47	631	1813	56006024	65061571
48	37	228	42262216	27652771
49	647	2871	02226642	74310663
50	1043	2884	30472126	75564321
51	24	1823	44032145	72312644
52	120	75	54551571	06432203
53	134	11	40710042	74277066
54	136	63	01560736	51754340
55	158	1937	11725354	54647123
56	214	22	47676432	11456125
57	335	1768	25530310	66634346
58	340	1526	34717545	61553336
59	661	1402	51512234	40357216
60	889	1445	01645770	63375367
61	929	1680	05363453	73263151
62	1002	1290	76720135	37304627
63	1149	1245	24724407	27051216

5.3 B2a Ranging Codes

5.3.1 B2a Primary Codes

The chip rate of the B2a primary codes (for both data and pilot components) is 10.23Mcps, and the length of the B2a primary codes is 10230 chips. Each primary code is obtained by expanding the Gold code that is generated by shifting and modulo-2 addition based on two 13-stage linear feedback shift registers. The generator polynomials for the B2a data component primary codes are

$$g_1(x) = 1 + x + x^5 + x^{11} + x^{13}$$

$$g_2(x) = 1 + x^3 + x^5 + x^9 + x^{11} + x^{12} + x^{13}$$
(5-4)

And, the generator polynomials for the B2a pilot component primary codes are

$$g_1(x) = 1 + x^3 + x^6 + x^7 + x^{13}$$

$$g_2(x) = 1 + x + x^5 + x^7 + x^8 + x^{12} + x^{13}$$
(5-5)

The implementations of the primary code generators for the B2a data and pilot components are shown in Figure 5-2 and Figure 5-3, respectively.

Figure 5-2 Primary code generator of the B2a data components

Figure 5-3 Primary code generator of the B2a pilot components

On the same satellite, the primary code generators for the B2a data and pilot components use different polynomials, but they start with the same initial bit values. In a code generator whether for a data component or for a pilot

component, the initial bit values of register 1 are all "1", and the initial bit values of register 2 are given in Table 5-6 and Table 5-7, arranged as $[s_{2,1}, s_{2,2}, s_{2,3}, ..., s_{2,13}]$. At the start of every primary code period, both register 1 and register 2 are simultaneously reset to their corresponding initial bit values. Furthermore, register 1 is reset at the end of the 8190th chip in each period of a primary code. Repeat the above procedure and then finally get a primary code with the length of 10230 chips.

There are a total of 126 B2a signal primary codes, of which 63 codes are for the data components and the other 63 codes for the pilot components. The detailed parameters are shown in Table 5-6 and Table 5-7, in which, the values of both the first 24 chips and the last 24 chips are expressed in an octal form. The MSB, i.e., the first chip of the primary codes is transmitted first.

Table 5-6 Primary code parameters of the B2a data components

PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)
1	1000000100101	26771056	42646672
2	1000000110100	64771737	43261240
3	1000010101101	22570544	22122147
4	1000101001111	03270060	37130044
5	1000101010101	25270173	62604441
6	1000110101110	42473731	32223757
7	1000111101110	42073211	75444074
8	1000111111011	10070275	72155517
9	1001100101001	32630236	23340625
10	1001111011010	51032336	70730557
11	1010000110101	24751346	12470110
12	1010001000100	67350347	43367447
13	1010001010101	25350426	42740075
14	1010001011011	11351730	26275034
15	1010001011100	61353105	77007136
16	1010010100011	16553042	21516371

PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)
17	1010011110111	04152767	57170016
18	1010100000001	37653046	73363551
19	1010100111110	40653671	01726764
20	1010110101011	12450445	65504556
21	1010110110001	34450556	30230153
22	1011001010011	15311110	06600771
23	1011001100010	56310431	10770505
24	1011010011000	71511012	76447734
25	1011010110110	44511144	05425133
26	1011011110010	54112361	44374741
27	1011011111111	00112147	77505753
28	1011100010010	55611514	30732736
29	1011100111100	60611442	43750131
30	1011110100001	36413134	24525367
31	1011111001000	73011377	41152341
32	1011111010100	65011630	73304761
33	1011111101011	12011007	01741554
34	1011111110011	14012245	35421025
35	1100001010001	35360637	50337664
36	1100010010100	65561423	44445660
37	1100010110111	04561753	04256075
38	1100100010001	35662052	50515704
39	1100100011001	31663710	53542760
40	1100110101011	12463151	71045216
41	1100110110001	34463042	24771613
42	1100111010010	55063612	23705725
43	1101001010101	25322050	75623014
44	1101001110100	64321071	54464775
45	1101011001011	13121416	45712211
46	1101101010111	05223044	53232723
47	1110000110100	64742223	57720500
48	111001000011	17543106	45401000
49	1110010001011	13542644	46456064
50	1110010100011	16542346	52156646
51	1110010101000	72542534	06245671
52	1110100111011	10643011	42540225
53	1110110010111	05440046	33645207
54	1111001001000	73302166	16264764
55	1111010010100	65502351	00166336
56	1111010011001	31502177	33717324

PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)
57	1111011011010	51103567	23234454
58	1111011111000	70101476	55337366
59	1111011111111	00103243	04145264
60	1111110110101	24403035	66364214
61	0010000000010	57754771	16642116
62	1101111110101	24021305	46402740
63	0001111010010	55037136	06147764

Table 5-7 Primary code parameters of the B2a pilot components

Table 5-7 11 mary code parameters of the B2a phot components				
PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)	
1	1000000100101	26772435	05133452	
2	1000000110100	64771100	32506731	
3	1000010101101	22573033	46030461	
4	1000101001111	03272567	46247217	
5	1000101010101	25270312	25242712	
6	1000110101110	42471450	30604612	
7	1000111101110	42073477	46162133	
8	1000111111011	10071171	01037517	
9	1001100101001	32631672	70661477	
10	1001111011010	51030525	11057614	
11	1010000110101	24752054	60410454	
12	1010001000100	67350376	57214270	
13	1010001010101	25353643	60621113	
14	1010001011011	11350203	05270220	
15	1010001011100	61350565	55150062	
16	1010010100011	16550214	30076625	
17	1010011110111	04153006	40344732	
18	1010100000001	37653767	46567772	
19	1010100111110	40650022	62054544	
20	1010110101011	12453537	12272230	
21	1010110110001	34451342	71277735	
22	1011001010011	15311341	56036234	
23	1011001100010	56311044	17154331	
24	1011010011000	71513035	43013023	
25	1011010110110	44513245	50115176	
26	1011011110010	54110251	56313110	
27	1011011111111	00112144	13102726	

PRN	Initial bit values of register 2 (binary)	The first 24 chips (octal)	The last 24 chips (octal)
28	1011100010010	55613763	37225071
29	1011100111100	60613513	24323124
30	1011110100001	36410413	20375533
31	1011111001000	73012122	15635105
32	1011111010100	65013702	67011450
33	1011111101011	12010047	43522666
34	1011111110011	14010654	41666474
35	1 1 0 0 0 0 1 0 1 0 0 0 1	35362324	06151354
36	1100010010100	65563410	76525270
37	1100010110111	04561575	20632513
38	1 1 0 0 1 0 0 0 1 0 0 0 1	35663035	26643303
39	1100100011001	31663420	52433060
40	1 1 0 0 1 1 0 1 0 1 0 1 1	12463063	04062730
41	1 1 0 0 1 1 0 1 1 0 0 0 1	34461616	67067235
42	1100111010010	55061754	47416277
43	1101001010101	25322640	51407764
44	1101001110100	64322743	66451710
45	1101011001011	13120015	75211676
46	1101101010111	05223510	66732705
47	1110000110100	64741454	24716231
48	1110010000011	17543717	43326034
49	1110010001011	13543302	37156357
50	1110010100011	16540127	35671252
51	1110010101000	72541267	61241434
52	1110100111011	10642411	56632466
53	1110110010111	05441614	13706174
54	1111001001000	73300134	71335154
55	1111010010100	65502720	42104070
56	1111010011001	31500435	07315646
57	1111011011010	51103347	51233462
58	1111011111000	70102511	46425113
59	1111011111111	00102277	16705351
60	1111110110101	24401515	23126772
61	1010010000110	47551324	77540116
62	0010111111000	70057625	31062540
63	0001101010101	25236023	01076040

5.3.2 B2a Secondary Codes

For different satellites, the secondary codes of the B2a data components are the same, while the secondary codes of the B2a pilot components are different.

The secondary codes of the B2a data components are the fixed 5-bit sequences with the bit values of 00010 in binary. The MSB is transmitted first.

The secondary code length of the B2a pilot components is 100 chips. The secondary codes are generated in the same way as the B1C primary codes. They are obtained by truncating the Weil codes which have a length of 1021 chips. The value range of w is 1 to 510.

Specific parameters of the secondary codes of the B2a pilot components are shown in Table 5-8. In this table, the first 24 chips and the last 24 chips are expressed in an octal form. The MSB is transmitted first.

Table 5-8 Secondary code parameters of the B2a pilot components

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
1	123	138	32063050	65322167
2	55	570	51032554	16507723
3	40	351	26031355	03244075
4	139	77	00016672	51467525
5	31	885	43414712	46604555
6	175	247	03313653	56202042
7	350	413	41103653	71007450
8	450	180	42370454	34256747
9	478	3	06231051	40430077
10	8	26	37047570	06442617
11	73	17	36242432	16314440
12	97	172	62600563	05321123
13	213	30	77411542	56573352

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
14	407	1008	41654772	55730776
15	476	646	63255352	01324146
16	4	158	16034451	17500531
17	15	170	56753432	66634453
18	47	99	62660722	37240150
19	163	53	11300714	32673101
20	280	179	46564670	76643076
21	322	925	51453710	41236437
22	353	114	75520773	47126073
23	375	10	55105576	24605443
24	510	584	31050323	07347067
25	332	60	76030274	41470462
26	7	3	61576715	07552423
27	13	684	21353627	15306360
28	16	263	11326621	43507041
29	18	545	77304426	12537651
30	25	22	26565352	32362347
31	50	546	34135261	14550406
32	81	190	30407566	60014143
33	118	303	52113374	61116102
34	127	234	54145235	20702236
35	132	38	63100104	23455231
36	134	822	35317452	17352571
37	164	57	10714032	07417741
38	177	668	43602423	47415564
39	208	697	13700511	36550046
40	249	93	67442654	41615230
41	276	18	42621301	70270411
42	349	66	25413532	73527103
43	439	318	73475715	20344205
44	477	133	60600610	33470052
45	498	98	22362271	73213175
46	88	70	73341370	21175624
47	155	132	76412463	71174640
48	330	26	10475522	77336306
49	3	354	31662361	52645772
50	21	58	72164341	10166636
51	84	41	03600703	62442252
52	111	182	12734207	47205776
53	128	944	66744236	67053707
54	153	205	66354613	12103375

PRN	Phase difference (w)	Truncation point (p)	The first 24 chips (octal)	The last 24 chips (octal)
55	197	23	42710457	01304276
56	199	1	72744364	62223707
57	214	792	76720625	03111453
58	256	641	46643276	34250037
59	265	83	53525215	71514224
60	291	7	42453402	36620001
61	324	111	26604754	70502406
62	326	96	35027021	07344636
63	340	92	12073317	30264212

5.4 Non-standard Codes

The non-standard codes are used to protect the user from tracking the anomalous navigation signals, which are not for utilization by the user. Therefore, they are not defined in this document.

6 Navigation Message Structure

6.1 Navigation Message Overview

6.1.1 Navigation Message Types

The B1C signal broadcasts the B-CNAV1 navigation message, and the B2a signal broadcasts the B-CNAV2 navigation message.

6.1.2 Cyclic Redundancy Check

Both the B-CNAV1 and B-CNAV2 navigation messages use a cyclic redundancy check (CRC), and more specifically, CRC-24Q. The generator polynomial of CRC-24Q is

$$g(x) = \sum_{i=0}^{24} g_i x^i$$
 (6-1)

where, $g_i = \begin{cases} 1, & i = 0, 1, 3, 4, 5, 6, 7, 10, 11, 14, 17, 18, 23, 24 \\ 0, & else \end{cases}$

Furthermore, g(x) can be expressed as follows:

$$g(x) = (1+x)p(x)$$
 (6-2)

where, $p(x) = x^{23} + x^{17} + x^{13} + x^{12} + x^{11} + x^9 + x^8 + x^7 + x^5 + x^3 + 1$.

Let a message sequence $(m_i, i=1 \sim k)$ of length k be expressed as a polynomial below:

$$m(x) = m_k + m_{k-1}x + m_{k-2}x^2 + \dots + m_1x^{k-1}$$
(6-3)

Divide polynomial $m(x)x^{24}$ with the generator polynomial g(x), and its residue is supposed to be the following polynomial:

$$R(x) = p_{24} + p_{23}x + p_{22}x^2 + \dots + p_1x^{23}$$
(6-4)

where, p_1 p_2 p_{24} is the corresponding output sequence, and regarded as CRC check sequence.

During the implementation, the initial bit values of the register are set to all "0".

6.2 B-CNAV1 Navigation Message

6.2.1 Brief Description

The B-CNAV1 navigation message is broadcast on the B1C signal, and the associated message data are modulated on the B1C data component. The basic frame structure of B-CNAV1 is defined in Figure 6-1. The length of each frame

is 1800 symbols, and its symbol rate is 100sps, so the transmission of one frame lasts for 18 seconds.

Figure 6-1 B-CNAV1 frame structure

Each frame consists of three subframes, and each subframe is described below:

Subframe 1 before error correction encoding has a length of 14 bits, containing PRN and Seconds Of Hour (SOH). As a result of BCH (21, 6) + BCH (51, 8) encoding, its length becomes 72 symbols. The detailed coding method will be explained in Section 6.2.2.1.

The length of Subframe 2 before error correction encoding is 600 bits, containing information such as system time parameters, Issue Of Data, ephemeris parameters, clock correction parameters, group delay correction parameters, and so on. As a result of 64-ary LDPC(200, 100) encoding, its length becomes 1200 symbols. The detailed coding method will be explained in Section 6.2.2.2.

The length of Subframe 3 before error correction encoding is 264 bits. Subframe 3 is divided into multiple pages, containing information such as ionospheric delay correction model parameters, Earth Orientation Parameters (EOP), BDT/UTC time offset parameters, BDT/GNSS time offset parameters, midi almanac, reduced almanac, satellite health status, satellite integrity status, signal in space accuracy index, signal in space monitoring accuracy index, and so on. As a result of 64-ary LDPC(88, 44) encoding, its length becomes 528 symbols. The detailed coding method will be explained in Section 6.2.2.3.

Subframe 2 and Subframe 3 are separately encoded by using the LDPC codes and then interleaved. The interleaving method will be described in Section 6.2.2.4.

6.2.2 Coding Methods

6.2.2.1 BCH(21,6) + BCH(51,8)

Subframe 1 is encoded with BCH(21, 6) + BCH(51, 8). More specifically, the 6 MSBs are encoded with BCH(21, 6), and the 8 LSBs are encoded with BCH(51, 8). After encoding, the length of Subframe 1 becomes 72 symbols. The generator polynomials of this BCH encoder are shown in Table 6-1.

Table 6-1 Generator polynomials of BCH encoder

BCH code	Encoding characteristics		eteristics	Optional generator polynomials g(x)
Doll code	n	k	t	optional generator polynomials g(w)
(21,6)	21	6	3	$x^6 + x^4 + x^2 + x + 1$
(51,8)	51	8	11	$x^{8} + x^{7} + x^{4} + x^{3} + x^{2} + x^{1} + 1$

The BCH encoder mentioned above is implemented by using a k-stage register as shown in Figure 6-2. Where, the gate 1 is closed during the first k clock periods and then disconnected; the gate 2 is disconnected during the first k periods and then closed.

Figure 6-2 Diagram of the BCH encoder circuit

6.2.2.2 64-ary LDPC(200,100)

Subframe 2 is encoded by using 64-ary LDPC(200, 100) code. Each codeword is composed of 6 bits and defined in $GF(2^6)$ domain with a primitive polynomial of $p(x)=1+x+x^6$. The mapping between non-binary symbols and binary bits adopts a vector representation (MSB first). For example, the symbol 0 corresponds to the binary vector [000000], and the symbol 1 corresponds to the binary vector [000001]. The message length k is equal to 100 codewords, or 600 bits. The check matrix is a sparse matrix $\mathbf{H}_{100, 200}$ of 100 rows and 200 columns defined in $GF(2^6)$ domain with the primitive polynomial of $p(x)=1+x+x^6$, of which the first 100×100 part corresponds to the information

symbols and the last 100×100 part corresponds to the check symbols. The locations of its non-zero elements are defined as follows:

H_{100}	, 200, iı	ndex=[
11	62	102	150	9	60	100	148	0	51	142	197	22	80	116	154
4	90	131	177	47	95	138	191	51	79	146	195	44	75	142	190
13	57	135	198	24	65	120	173	6	88	129	179	7	89	130	176
6	58	106	158	8	60	108	160	44	92	139	188	4	56	104	156
10	61	101	149	39	87	123	168	15	67	105	167	50	78	145	194
17	98	151	187	46	94	137	190	14	66	104	166	7	59	107	159
21	83	119	153	31	87	114	167	2	49	140	199	12	64	106	164
40	53	132	159	19	96	149	185	16	68	112	168	14	58	132	199
34	69	125	162	23	75	119	175	42	96	144	192	8	63	103	151
23	81	117	155	24	93	111	182	20	72	116	172	17	69	113	169
34	82	130	182	1	53	101	153	46	73	140	188	13	65	107	165
2	54	102	154	18	70	114	170	26	67	122	175	29	77	125	177
36	84	120	169	25	94	108	183	39	89	137	185	21	73	117	173
28	76	124	176	36	90	138	186	33	68	124	161	12	56	134	197
29	85	112	165	45	93	136	189	27	64	123	172	28	84	115	164
25	66	121	174	37	85	121	170	3	50	141	196	48	76	147	192
35	70	126	163	32	80	128	180	0	52	100	152	43	52	135	158
35	83	131	183	10	62	110	162	19	71	115	171	15	59	133	196
33	81	129	181	41	54	133	156	20	82	118	152	38	86	122	171
30	78	126	178	9	61	109	161	26	95	109	180	45	72	143	191
1	48	143	198	40	98	146	194	18	99	148	184	5	57	105	157
41	99	147	195	31	79	127	179	3	55	103	155	22	74	118	174
37	91	139	187	5	91	128	178	30	86	113	166	43	97	145	193
16	97	150	186	11	63	111	163	32	71	127	160	42	55	134	157
38	88	136	184	47	74	141	189	49	77	144	193	27	92	110	181
]															

where, each element is a non-binary symbol in $GF(2^6)$ domain. The elements are described by a vector representation as follows:

	200, ele														
35	13	51	60	1	44	53	24	1	45	15	6	45	15	6	1
1	44	53	24	1	45	15	6	35	46	56	15	6	1	45	15
15	6	1	45	44	53	24	1	24	1	44	30	1	45	15	6
30	24	1	44	24	1	44	30	45	15	6	1	17	38	49	11
24	1	44	30	24	1	44	53	24	1	44	53	30	24	1	44
33	42	14	24	33	42	14	24	45	15	6	1	1	45	15	6
30	24	1	44	24	1	44	53	1	44	30	24	57	25	9	41
1	45	15	6	1	45	15	6	42	36	12	57	6	1	45	15

24	1	44	53	24	1	44	30	1	45	15	6	1	45	15	6
44	53	24	1	30	24	1	44	1	44	30	24	53	24	1	44
1	44	53	24	27	28	30	31	53	24	1	44	24	1	44	30
45	15	6	1	30	24	1	44	1	45	15	6	26	22	14	2
35	13	18	60	45	15	6	1	30	1	44	7	6	1	45	15
6	1	45	15	53	24	1	44	24	1	44	53	30	24	1	44
1	44	30	24	44	53	24	1	53	24	1	44	44	30	24	1
30	24	1	44	1	44	30	24	1	44	30	24	41	16	29	51
1	44	30	24	38	23	22	7	44	53	24	1	1	45	15	6
30	24	1	44	53	24	1	44	6	1	45	15	24	1	44	53
35	46	56	15	5	33	42	14	54	7	38	23	1	45	15	6
44	30	24	1	6	1	45	15	53	24	1	44	44	53	24	1
1	44	53	24	1	44	30	24	44	30	24	1	1	44	53	24
45	15	6	1	6	1	45	15	1	44	53	24	42	47	37	32
51	60	35	13	29	28	30	31	6	1	45	15	24	1	44	53
44	53	24	1	44	30	24	1	38	49	11	17	44	30	24	1
24	1	44	30	24	1	44	30	1	44	53	24	53	24	1	44
]															

Read the above matrix from top to bottom in the same column, and from left to right column after column. In the same column, the four numbers of each row correspond to four non-zero elements in the matrix. The reading rules for $H_{100,\,200}$ are shown in Figure 6-3.

Figure 6-3. $H_{100, 200}$ reading flow chart

For more information about the encoding and decoding methods, please refer to Annex.

6.2.2.3 64-ary LDPC(88, 44)

Subframe 3 is encoded by using 64-ary LDPC(88, 44) code. Each codeword is composed of 6 bits and defined in $GF(2^6)$ domain with the primitive polynomial of $p(x)=1+x+x^6$. The mapping between non-binary symbols and binary bits adopts a vector representation (MSB first). The message length k is equal to 44 codewords, or 264 bits. The check matrix is a sparse matrix $\mathbf{H}_{44, 88}$ of 44 rows and 88 columns defined in $GF(2^6)$ domain with the primitive polynomial of $p(x)=1+x+x^6$, of which the first 44×44 part corresponds to the information symbols and the last 44×44 part corresponds to the check symbols. The locations of its non-zero elements are defined as follows:

```
\mathbf{H}_{44, 88, \text{ index}} = [
                           29
                                 55
                                      73
                                           13
                                                 39
                                                           69
                                                                 15
 14
      35
           56
                70
                      11
                                                      53
                                                                      34
                                                                           57
                                                                                 71
      27
                 54
                                                           68
           45
                      23
                                 63
                                      87
                                           2
                                                 20
                                                      46
                                                                 6
                                                                           50
 1
                           41
                                                                      24
                                                                                 61
 2
      26
                 79
                      9
                           33
                                 59
                                      77
                                           4
                                                 30
                                                      48
                                                           74
                                                                 22
                                                                      42
                                                                           59
           61
                                                                                 76
 12
      38
           52
                 68
                      23
                           43
                                 58
                                      77
                                           19
                                                 21
                                                      63
                                                           64
                                                                 11
                                                                      25
                                                                           65
                                                                                 82
 17
      39
           44
                 75
                      9
                           35
                                49
                                      72
                                           19
                                                 29
                                                           84
                                                                 13
                                                                      36
                                                                           56
                                                                                 82
                                                      66
                      22
 17
      43
           67
                 81
                           40
                                62
                                      86
                                           3
                                                 21
                                                      47
                                                           69
                                                                 10
                                                                      24
                                                                           64
                                                                                 83
                                                                 5
0
      37
           70
                 86
                           31
                                 49
                                      75
                                           4
                                                 40
                                                      53
                                                           84
                                                                      41
                                                                           52
                                                                                 85
      28
                                           10
                                                 28
                                                           72
 18
           67
                 85
                      0
                           26
                                44
                                      55
                                                      54
                                                                 7
                                                                      30
                                                                           50
                                                                                 81
                                45
                                                           73
 1
      36
           71
                 87
                      16
                           38
                                      74
                                           8
                                                 34
                                                      48
                                                                      32
                                                                           58
                                                                                 76
                                                           79
12
      37
           57
                 83
                           31
                                 51
                                      80
                                           15
                                                 33
                                                      47
                                                                 16
                                                                      42
                                                                           66
                                                                                 80
                      6
7
      25
           51
                 60
                     3
                           27
                                      78
                                           14
                                                 32
                                                           78
                                                                18
                                                                      20
                                 60
                                                      46
                                                                           62
                                                                                 65
```

where, each element is a non-binary symbol in $GF(2^6)$ domain. The elements are described by a vector representation as follows:

$\mathbf{H}_{44,}$	88, elem	ent=[_			
30	24	1	44	24	1	44	30	40	32	61	18	53	24	1	44
51	60	35	13	18	15	32	61	15	6	1	45	30	24	1	44
6	1	45	15	45	15	6	1	1	45	15	6	1	44	53	24
24	1	44	53	44	30	24	1	34	33	45	36	55	9	34	3
1	44	53	24	61	47	20	8	53	24	1	44	15	6	1	45
13	18	60	35	45	15	6	1	24	1	44	53	37	32	52	47
44	53	24	1	39	36	34	33	44	35	31	50	12	25	36	14
15	35	46	56	53	24	1	44	1	44	53	24	24	1	44	30
44	30	24	1	15	6	1	45	30	24	1	44	2	50	22	14
33	42	14	5	34	3	55	9	44	35	61	50	15	6	1	45
45	15	6	1	1	44	30	24	6	1	45	15	1	44	53	24
]															

The reading rules for $\mathbf{H}_{44, 88}$ are the same as that for $\mathbf{H}_{100, 200}$. For more information about the encoding and decoding methods, please refer to Annex.

6.2.2.4 Interleaving

The LDPC encoded symbols of Subframe 2 and Subframe 3 are combined and interleaved by using a block interleaver. The block interleaver is conceptually described by using a two-dimensional array of N=48 columns and M=36 rows, which is shown in Figure 6-4.

The 1200 encoded Subframe 2 symbols and the 528 encoded Subframe 3 symbols are written into the block interleaver with a staggered writing method. The Subframe 2 symbols are written first (MSB first) into the array from left to right starting at Row 1, and Row 2 is also filled with Subframe 2 symbols from left to right. After Row 2 is filled, Row 3 is filled with Subframe 3 symbols from left to right. One row of Subframe 3 symbols are written following the two rows of Subframe 3 symbols, and this process continues until the 528th symbol of Subframe 3 (i.e., LSB of Subframe 3) is written into the last cell of the 33th

row in Column 48. Finally, the last 3 rows are filled with the remaining 144 symbols of Subframe 2.

Once all 1728 symbols are written into the array, the symbols are sequentially read out of the array from top to bottom starting at Column 1. After reading out of the last symbol of the 36th row in Column 1, Column 2 symbols are read out from top to bottom and this process continues until the last symbol of the 36th row in Column 48 is read out.

Figure 6-4 Diagram of a block interleaving process

6.2.3 Data Format

6.2.3.1 Subframe 1

Subframe 1 has a length of 14 bits, containing a 6-bit PRN and an 8-bit SOH. The bit allocation of Subframe 1 is shown in Figure 6-5.

Figure 6-5 Bit allocation for B-CNAV1 Subframe 1

For more information about PRN and SOH, please refer to Section 7.1 and Section 7.4 respectively.

6.2.3.2 Subframe 2

Subframe 2 has a length of 600 bits, containing system time parameters, Issue Of Data, ephemeris parameters, clock correction parameters, group delay correction parameters, and so on. The bit allocation of Subframe 2 is shown in Figure 6-6. Among them, "ephemeris I", "ephemeris II", and "clock correction parameters" are data blocks further constituted by a set of parameters, and "ephemeris I" and "ephemeris II" together constitute a complete set of ephemeris parameters. The detailed bit allocation of each data block is described in Section 6.2.3.4.

The 576 MSBs of Subframe 2 participate in the CRC calculation, and the 24 LSBs are the corresponding CRC check bits.

Figure 6-6 Bit allocation for B-CNAV1 Subframe 2

The message parameters in Subframe 2 will be described in the corresponding sections listed in Table 6-2.

Table 6-2 Descriptions of parameters in Subframe ${\bf 2}$

No.	Message parameter	Parameter description
1	WN	See Section 7.4 for details
2	HOW	See Section 7.4 for details
3	IODE	See Section 7.5.1 for details
4	IODC	See Section 7.5.2 for details
5	Clock correction parameters	See Section 7.6 for details
6	${ m T_{GDB2ap}}$	See Section 7.7 for details
7	ISC _{B1Cd}	See Section 7.7 for details
8	T_{GDB1Cp}	See Section 7.7 for details
9	Ephemeris parameters (Ephemeris I, Ephemeris II)	See Section 7.8 for details
10	CRC	See Section 6.1.2 for details

6.2.3.3 Subframe 3

The frame structure of Subframe 3 is shown in Figure 6-7. Subframe 3 has a length of 264 bits, of which the 6 MSBs are page type (PageID), the 24 LSBs are CRC bits, and the remaining 234 bits are message data. PageID and message data participate in the CRC calculation.

Figure 6-7 Frame structure for B-CNAV1 Subframe 3

At most 63 page types can be defined for Subframe 3. Currently, four valid page types have been defined, i.e., Page Type 1, 2, 3, and 4. Their bit allocation formats are shown in Figure 6-8 \sim Figure 6-11. Among them, "SISAI_{oc}",

"ionospheric delay correction model parameters", "BDT/UTC time offset parameters", "reduced almanac", "midi almanac", "EOP parameters", and "BGTO parameters" are data blocks further constituted by a set of parameters. The detailed bit allocation of each data block is described in Section 6.2.3.4.

The broadcast order of the Subframe 3 pages may be dynamically adjusted.

The user should recognize its PageID every time when Subframe 3 is received.

Figure 6-8 Bit allocation for Page Type 1 of B-CNAV1 Subframe 3

Figure 6-9 Bit allocation for Page Type 2 of B-CNAV1 Subframe 3

(Note: Each Page Type 2 broadcasts reduced almanac parameters for four satellites, while WN_a and t_{oa} in this page are the reference time of the reduced almanac)

Figure 6-10 Bit allocation for Page Type 3 of B-CNAV1 Subframe 3

Figure. 6-11 Bit allocation for Page Type 4 of B-CNAV1 Subframe 3

The message parameters in Subframe 3 will be described in the corresponding sections listed in Table 6-3.

Table 6-3 Descriptions of parameters in Subframe 3

No.	Message parameter	Parameter description
1	PageID	See Section 7.2 for details
2	Ionospheric delay correction model parameters	See Section 7.9 for details
3	Midi almanac parameters	See Section 7.10 for details
4	WN _a	See Section 7.11 for details
5	$t_{ m oa}$	See Section 7.11 for details
6	Reduced almanac parameters	See Section 7.11 for details
7	EOP parameters	See Section 7.12 for details
8	BDT/UTC time offset parameters	See Section 7.13 for details
9	BGTO parameters	See Section 7.14 for details
10	HS	See Section 7.15 for details
11	DIF	See Section 7.16 for details
12	SIF	See Section 7.16 for details
13	AIF	See Section 7.16 for details
14	SISAI _{oe}	See Section 7.17 for details
15	$\mathrm{SISAI}_{\mathrm{oc}}$	See Section 7.17 for details
16	SISMAI	See Section 7.18 for details
17	CRC	See Section 6.1.2 for details

6.2.3.4 Data Blocks

The detailed bit allocations of 10 data blocks, i.e., "ephemeris I", "ephemeris II", "clock correction parameters", "SISAI $_{oc}$ ", "ionospheric delay correction model parameters", "BDT/UTC time offset parameters", "reduced almanac", "EOP parameters", "BGTO parameters", and "midi almanac", are shown in Figure 6-12 ~ Figure 6-21.

N	ISB								LS	SB
	$t_{ m oe}$	SatType	ΔΑ	À	Δn_0	$\Delta \dot{n}_0$	M_0	e	ω	
	11 bits	2 bits	26 bits	25 bits	17 bits	23 bits	33 bits	33 bits	33 bits	

Figure 6-12 Bit allocation for ephemeris I (203bits)

M	MSB L										
	$\Omega_{\scriptscriptstyle 0}$	i_0	$\dot{\Omega}$	$\dot{i}_{\scriptscriptstyle 0}$	$C_{ m is}$	$C_{ m ic}$	$C_{ m rs}$	$C_{ m rc}$	$C_{ m us}$	$C_{ m uc}$	
	33 bits	33 bits	19 bits	15 bits	16 bits	16 bits	24 bits	24 bits	21 bits	21 bits	

Figure 6-13 Bit allocation for ephemeris II (222 bits)

M	SB			LS	B
	$t_{\rm oc}$	a_0	a_1	a_2	
	11 bits	25 bits	22 bits	11 bits	

Figure 6-14 Bit allocation for clock correction parameters (69 bits)

M	SB			LS	В
	$t_{ m op}$	SISAI _{ocb}	SISAI _{oc1}	SISAI _{oc2}	
	11 bits	5 bits	3 bits	3 bits	

Figure 6-15 Bit allocation for $SISAI_{oc}$ (22 bits)

M	SB								LS	SB
	$\alpha_{_1}$	$\alpha_{_2}$	α_3	$lpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 5}$	$lpha_{_6}$	α_{7}	$\alpha_{_8}$	$lpha_{\scriptscriptstyle 9}$	
	10 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	

Figure 6-16 Bit allocation for ionospheric delay correction model parameters (74 bits)

Figure 6-17 Bit allocation for BDT/UTC time offset parameters (97 bits)

M	MSB LSB									
	PRN _a	SatType	$\delta_{_{A}}$	Ω_0	Φ_0	Health				
	6 bits	2 bits	8 bits	7 bits	7 bits	8 bits				

Figure 6-18 Bit allocation for reduced almanac parameters (38 bits)

Figure 6-19 Bit allocation for EOP parameters (138 bits)

Figure 6-20 Bit allocation for BGTO parameters (68 bits)

Figure 6-21 Bit allocation for midi almanac parameters (156 bits)

6.3 B-CNAV2 Navigation Message

6.3.1 Brief Description

The B-CNAV2 navigation message is broadcast on the B2a signal. More specifically, the B-CNAV2 message data are modulated on the B2a data component. The basic frame structure of B-CNAV2 is defined in Figure 6-22. Each frame has a length of 600 symbols, and its symbol rate is 200sps, so the transmission of one frame lasts for 3 seconds.

Figure 6-22 B-CNAV2 frame structure

The first 24 symbols of each frame is preamble (Pre) with the value of 0xE24DE8 in hexadecimal (i.e., 111000100100110111101000 in binary). The MSB is transmitted first.

Each frame before error correction encoding has a length of 288 bits, containing PRN (6 bits), Message Type (Mestype, 6 bits), Seconds Of Week (SOW, 18 bits), message data (234 bits), and CRC check bits (24 bits). PRN, MesType, SOW, and message data participate in the CRC calculation. As a result of 64-ary LDPC(96, 48) encoding, the frame length becomes 576 symbols.

6.3.2 Coding Methods

The B-CNAV2 navigation messages are encoded with 64-ary LDPC(96, 48) code. Each codeword is composed of 6 bits and defined in $GF(2^6)$ domain with a primitive polynomial of $p(x)=1+x+x^6$. The mapping between non-binary symbols and binary bits adopts a vector representation (MSB first). The

message length k is equal to 48 codewords, or 288 bits. The check matrix is a sparse matrix $H_{48,96}$ of 48 rows and 96 columns defined in $GF(2^6)$ domain with the primitive polynomial of $p(x)=1+x+x^6$, of which the first 48×48 part corresponds to the information symbols and the last 48×48 part corresponds to the check symbols. The locations of its non-zero elements are defined as follows:

$H_{48,9}$	96, inde	_ [
19	46	49	76	5	29	53	71	17	30	64	72	22	36	59	82
22	41	68	94	20	44	54	75	9	41	61	86	6	47	60	89
8	40	60	87	15	26	66	81	19	24	67	95	2	26	50	72
5	38	70	89	16	34	64	92	21	45	55	74	0	24	48	78
23	37	58	83	15	43	56	91	18	47	48	77	14	42	57	90
6	30	54	76	14	27	67	80	17	35	65	93	7	46	61	88
1	25	49	79	12	45	69	79	18	25	66	94	23	40	69	95
8	36	51	84	3	38	56	86	0	29	62	85	2	39	57	87
11	33	59	81	20	43	74	93	13	32	63	91	11	35	52	83
16	31	65	73	4	28	52	70	1	28	63	84	12	33	62	90
21	42	75	92	7	31	55	77	9	37	50	85	10	34	53	82
4	39	71	88	13	44	68	78	3	27	51	73	10	32	58	80
]															

where, each element is a non-binary symbol in $GF(2^6)$ domain. The elements are described by a vector representation as follows:

```
\mathbf{H}_{48, 96, \text{ element}} = [
                      1
                            44
                                 53
                                      24
                                            45
                                                 15
                                                       6
                                                            1
                                                                 30
      45
           15
                 6
                                                                       24
                                                                            1
                                                                                 44
      15
           32
                 61
                      3
                            55
                                 9
                                      34
                                            35
                                                 31
                                                       50
                                                            44
                                                                 45
                                                                       15
 18
                                                                            6
                                                                                  1
                 53
24
      1
           44
                      30
                           24
                                 1
                                      44
                                            32
                                                 42
                                                      47
                                                            37
                                                                 6
                                                                       1
                                                                            45
                                                                                  15
44
      53
                                                                 44
           24
                 1
                      39
                           36
                                 34
                                      33
                                            44
                                                 53
                                                       24
                                                            1
                                                                       53
                                                                            24
                                                                                  1
45
      15
           6
                 1
                      6
                            1
                                 45
                                      15
                                            24
                                                 1
                                                       44
                                                            53
                                                                 9
                                                                       41
                                                                            57
                                                                                 58
32
      61
           18
                 40
                      1
                           45
                                 15
                                            22
                                                 14
                                                       2
                                                            50
                                                                 24
                                                                       1
                                                                            44
                                                                                  30
                                      6
      24
                                 45
30
           1
                 44
                      15
                           46
                                      44
                                            45
                                                 15
                                                      6
                                                            1
                                                                 1
                                                                       44
                                                                            30
                                                                                 24
                                                                 7
24
      1
           44
                 53
                      15
                                 1
                                      45
                                            53
                                                       1
                                                            44
                                                                       38
                                                                            23
                                                                                 54
                            6
                                                 24
      45
                      44
                            53
                                 24
                                            57
                                                 25
                                                       9
                                                            41
                                                                 35
                                                                            51
 1
           15
                 6
                                      1
                                                                       13
                                                                                 60
33
      45
                                 45
                                                      45
           36
                 34
                      6
                            1
                                      15
                                            6
                                                 1
                                                            15
                                                                 6
                                                                       1
                                                                            45
                                                                                  15
44
      35
           31
                 50
                      26
                            27
                                 37
                                      5
                                            24
                                                 1
                                                       44
                                                            30
                                                                 33
                                                                       42
                                                                            14
                                                                                 5
24
      1
           44
                 30
                      24
                            1
                                 44
                                      30
                                          1
                                                 44
                                                      53
                                                            24
                                                                1
                                                                       44
                                                                            30
                                                                                 24
```

The reading rules for $\mathbf{H}_{48, 96}$ are the same as that for $\mathbf{H}_{100, 200}$. For more information about the encoding and decoding methods, please refer to Annex.

6.3.3 Data Format

At most 63 message types can be defined for the B-CNAV2 navigation message. Currently, seven valid message types have been defined, i.e., Message Type 10, 11, 30, 31, 32, 33, 34, and 40. Their bit allocation formats are shown in Figure 6-23 ~ Figure 6-30. Among the parameters in these message types, "ephemeris I", "ephemeris II", "clock correction parameters", "ionospheric delay correction model parameters", "reduced almanac", "EOP parameters", "BGTO parameters", "SISAI_{oc}", "BDT/UTC time offset parameters", and "midi almanac" are data blocks further constituted by a set of parameters. Data blocks "ephemeris I" and "ephemeris II" together constitute a complete set of ephemeris parameters. The detailed bit allocation of each data block is described in Section 6.2.3.4.

The broadcast order of the B-CNAV2 message types may be dynamically adjusted, however Message Types 10 and 11 shall be broadcast continuously together. The user should recognize its MesType every time when a B-CNAV2 navigation message is received.

Figure 6-23 Bit allocation for B-CNAV2 Message Type 10

Figure 6-24 Bit allocation for B-CNAV2 Message Type 11

Figure 6-25 Bit allocation for B-CNAV2 Message Type 30

Figure 6-26 Bit allocation for B-CNAV2 Message Type 31

(Note: Each Message Type 31 broadcasts reduced almanac parameters for three satellites, while WN_a and t_{oa} in this frame are the reference time of the reduced almanac)

Figure 6-27 Bit allocation for B-CNAV2 Message Type 32

Figure 6-28 Bit allocation for B-CNAV2 Message Type 33

Figure 6-29 Bit allocation for B-CNAV2 Message Type 34

Figure 6-30 Bit allocation for B-CNAV2 Message Type 40

The message parameters in the B-CNAV2 navigation message will be described in the corresponding sections listed in Table 6-4.

Table 6-4 Descriptions of parameters in the B-CNAV2 navigation message

No.	Message parameter	Parameter description
1	PRN	See Section 7.1 for details
2	MesType	See Section 7.3 for details
3	SOW	See Section 7.4 for details
4	IODE	See Section 7.5.1 for details
5	IODC	See Section 7.5.2 for details
6	Clock correction parameters	See Section 7.6 for details
7	${ m T_{GDB2ap}}$	See Section 7.7 for details
8	ISC_{B2ad}	See Section 7.7 for details
9	$T_{ m GDB1Cp}$	See Section 7.7 for details
10	Ephemeris parameters (Ephemeris I, Ephemeris II)	See Section 7.8 for details
11	Ionospheric delay correction model parameters	See Section 7.9 for details
12	Midi almanac parameters	See Section 7.10 for details
13	WNa	See Section 7.11 for details
14	t_{oa}	See Section 7.11 for details
15	Reduced almanac parameters	See Section 7.11 for details
16	EOP parameters	See Section 7.12 for details
17	BDT/UTC time offset parameter	See Section 7.13 for details

No.	Message parameter	Parameter description
18	BGTO parameters	See Section 7.14 for details
19	HS	See Section 7.15 for details
20	DIF	See Section 7.16 for details
21	SIF	See Section 7.16 for details
22	AIF	See Section 7.16 for details
23	$\mathrm{SISAI}_{\mathrm{oe}}$	See Section 7.17 for details
24	$\mathrm{SISAI}_{\mathrm{oc}}$	See Section 7.17 for details
25	SISMAI	See Section 7.18 for details
26	CRC	See Section 6.1.2 for details

7 Navigation Message Parameters and Algorithms

7.1 Ranging Code Number

PRN which is broadcast in the navigation messages is an unsigned integer with a length of 6 bits. Its effective value is in a range of $1\sim63$.

7.2 Page Types

PageID is used to identify the page types of Subframe 3 in B-CNAV1. It is an unsigned integer with a length of 6 bits. Its definition is shown in Table 7-1.

Table 7-1 Page type definition

PageID (Binary)	Page type
000000	Invalid
000001	Page Type 1
000010	Page Type 2
000011	Page Type 3
000100	Page Type 4
Others	Reserved

7.3 Message Types

MesType is used to identify the message types of the B-CNAV2 frames. It is an unsigned integer with a length of 6 bits. Its definition is shown in Table 7-2.

MesType (Binary) Message type 000000 Invalid 001010 Message Type 10 001011 Message Type 11 011110 Message Type 30 011111 Message Type 31 Message Type 32 100000 Message Type 33 100001 Message Type 34 100010 Message Type 40 101000

Table 7-2 Message type definition

7.4 System Time Parameters

Others

The system time parameters contain Seconds Of Hour (SOH), Hours Of Week (HOW), Seconds Of Week (SOW), and Week Number (WN). The definitions of the system time parameters are shown in Table 7-3.

Reserved

			•	_		
Parameter	Definition	No. of bits	Scale factor	Effective range	Unit	Description
SOH	Seconds of hour	8	18	0~3582	S	In B-CNAV1
HOW	Hours of week	8	1	0~167	hour	In B-CNAV1
SOW	Seconds of week	18	3	0~604797	S	In B-CNAV2
WN	Week number	13	1	0~8191	week	In B-CNAV1 & B-CNAV2

Table 7-3 Definitions of the system time parameters

SOH is broadcast in Subframe 1 of B-CNAV1. The epoch denoted by SOH

corresponds to the rising edge of the first chip at the beginning of the current Subframe 1. SOH counts from zero at the origin of each hour of BDT and is reset to zero at the end of each hour (i.e., the origin of the next hour).

HOW is broadcast in Subframe 2 of B-CNAV1, and represents the number of hours in the current week. HOW counts from zero at 00:00:00 each Sunday in BDT and is reset to zero at the end of each week.

SOW is broadcast in all message types of B-CNAV2. The epoch denoted by SOW corresponds to the rising edge of the first chip of the current frame preamble. SOW counts from zero at 00:00:00 each Sunday in BDT and is reset to zero at the end of each week.

WN is the week number of BDT and is broadcast in B-CNAV1 Subframe 2 and B-CNAV2 Message Type 10. WN counts from zero at the origin of BDT (i.e., 00:00:00, January 1, 2006 UTC).

7.5 Issue Of Data

7.5.1 Issue Of Data, Ephemeris

Issue Of Data, Ephemeris (IODE) has a length of 8 bits. It has the following two meanings:

(1) IODE indicates the issue number of a set of ephemeris parameters. The IODE value will be updated when any ephemeris parameter is updated. The user can recognize whether any ephemeris parameter has changed by checking any change in IODE.

(2) The IODE values indicate the range of the ephemeris data age. The relationship between the IODE values and the ephemeris data age is shown in Table 7-4.

Table 7-4 Relationship between the IODE values and the ephemeris data age

IODE value	Ephemeris data age [*]
0~59	Less than 12 hours
60~119	12 hours ~ 24 hours
120~179	1day ~ 7days
180~239	Reserved
240~255	More than 7 days

^{*} The ephemeris data age is the extrapolated time interval of the ephemeris parameters. It is defined as the offset between the ephemeris parameters reference time (t_{oe}) and the last measured time for generating the ephemeris parameters.

7.5.2 Issue Of Data, Clock

Issue Of Data, Clock (IODC) has a length of 10 bits. It has the following two meanings:

- (1) IODC indicates the issue number of a set of clock correction parameters. The IODC value will be updated when any clock correction parameter is updated. The user can recognize whether any clock correction parameter has changed by checking any change in IODC.
- (2) The IODC values indicate the range of the clock correction data age.

 The range of the clock correction data age is defined by the 2 MSBs of IODC together with the 8 LSBs of IODC. The relationship between the IODC values

and the clock correction data age is shown in Table 7-5.

Table 7-5 Relationship between the IODC values and the clock correction data age

2 MSBs of IODC	8 LSBs of IODC	Clock correction data age*
	0~59	Less than 12 hours
	60~119	12 hours ~ 24 hours
0	120~179	1day ~ 7days
	180~239	Reserved
	240~255	More than 7 days
	0~59	Less than 12 tours
	60~119	Less than 12 hours
1	120~179	Less than 1 day
	180~239	Reserved
	240~255	No more than 7 days
	0~59	More than 12 hours
	60~119	More than 24 hours
2	120~179	More than 7 days
	180~239	Reserved
	240~255	More than 7 days
3	Reserved	Reserved

^{*} The clock correction data age is the extrapolated time interval of the clock correction parameters. It is defined as the offset between the clock correction parameters reference time (t_{oc}) and the last measured time for generating the clock correction parameters.

7.5.3 IODE and IODC Usage Constraints

For a matched pair of ephemeris data and clock correction data, IODE and the 8 LSBs of IODC keep consistent with each other and are updated synchronously.

When the IODE value received by the user is the same as the 8 LSBs of IODC, i.e., the ephemeris data match with the clock correction data in the current navigation message, the user can use this matched pair of ephemeris data and clock correction data whose issue number can be identified by the

IODE.

The IODE value received by the user may be different from the 8 LSBs of IODC during the update of the ephemeris and clock correction data, due to the the time delay of message transmission. The user shall use the preceding matched pair of ephemeris data and clock correction data until the updated IODE and the 8 LSBs of IODC are the same. The values of IODE and IODC will not be repeated within one day, except that the data age is more than seven days.

7.6 Clock Correction Parameters

7.6.1 Parameters Description

A set of clock correction parameters identified by an IODC contains four parameters: $t_{\rm oc}$, $a_{\rm 0}$, $a_{\rm 1}$, and $a_{\rm 2}$. The definitions and characteristics of the clock correction parameters are shown in Table 7-6.

Table 7-6 Definitions of the clock correction parameters

No.	Parameter	Definition	No. of bits	Scale factor	Effective range**	Unit
1	$t_{ m oc}$	Clock correction parameters reference time	11	300	0~604500	S
2	a_0	Satellite clock time bias correction coefficient	25*	2-34		S
3	a_1	Satellite clock time drift correction coefficient	22*	2 ⁻⁵⁰		s/s
4	a_2	Satellite clock time drift rate correction coefficient	11*	2 ⁻⁶⁶		s/s ²

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB.

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

7.6.2 User Algorithm

The user shall compute the BDT time of signal transmission as

$$t = t_{\rm sv} - \Delta t_{\rm sv} \tag{7-1}$$

where, t is the BDT time of signal transmission (in seconds), t_{sv} is the effective satellite ranging code phase time at time of signal transmission (in seconds), Δt_{sv} is the satellite ranging code phase time offset which is computed by the equation (in seconds):

$$\Delta t_{sy} = a_0 + a_1 (t - t_{oc}) + a_2 (t - t_{oc})^2 + \Delta t_r$$
 (7-2)

where, the sensitivity of t_{sv} to t is negligible, which will allow the user to approximate t by t_{sv} . Δt_r is the relativistic correction term (in seconds) which is defined as follows:

$$\Delta t_r = \mathbf{F} \cdot e \cdot \sqrt{A} \cdot \sin E_k \tag{7-3}$$

where, e is the eccentricity of the satellite orbit, which is given in the ephemeris parameters;

 \sqrt{A} is the square root of semi-major axis of the satellite orbit, which is given in the ephemeris parameters;

 E_k is the eccentric anomaly of the satellite orbit, which is computed from the ephemeris parameters;

$$F = -2\mu^{1/2}/C^2$$
;

 $\mu \!\!=\!\! 3.986004418 \! \times \! 10^{14} \, m^3/s^2$, is the geocentric gravitational constant;

 $C = 2.99792458 \times 10^8 \text{ m/s}$, is the speed of light.

7.7 Group Delay Correction Parameters

7.7.1 Parameters Description

The satellite equipment group delay differential parameters (T_{GDB1Cp} and T_{GDB2ap}) are broadcast in the B-CNAV1 and B-CNAV2 messages. T_{GDB1Cp} and T_{GDB2ap} are used to compensate for the group delay differential of the B1C pilot component and the B2a pilot component respectively.

 ISC_{B1Cd} is broadcast in the B-CNAV1 message to compensate for the group delay differential between the B1C data component and the B1C pilot component.

 ISC_{B2ad} is broadcast in the B-CNAV2 message to compensate for the group delay differential between the B2a data component and the B2a pilot component.

The definition and characteristics of the group delay correction parameters are shown in Table 7-7.

Table 7-7 Definitions of the group delay correction parameters

No.	Parameter	Definition	No. of bits	Scale factor	Effective range**	Unit
1	T_{GDB1Cp}	Group delay differential of the B1C pilot component	12*	2 ⁻³⁴		S
2	T_{GDB2ap}	Group delay differential of the B2a pilot component	12*	2 ⁻³⁴		S
3	ISC _{B1Cd}	Group delay differential between the B1C data and pilot components	12*	2 ⁻³⁴		S
4	ISC _{B2ad}	Group delay differential between the B2a data and pilot components	12*	2 ⁻³⁴		S

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -)occupying the MSB.

** Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

7.7.2 User Algorithm

The single frequency user processing pseudorange from the B1C pilot component shall further correct the ranging code phase with the equation as follows:

$$\left(\Delta t_{\rm SV}\right)_{\rm B1Cp} = \Delta t_{\rm SV} - T_{\rm GDB1Cp} \tag{7-4}$$

The single frequency user processing pseudorange from the B1C data component shall further correct the ranging code phase with the equation as follows:

$$\left(\Delta t_{\rm SV}\right)_{\rm B1Cd} = \Delta t_{\rm SV} - T_{\rm GDB1Cp} - ISC_{\rm B1Cd} \tag{7-5}$$

The single frequency user processing pseudorange from the B2a pilot component shall further correct the ranging code phase with the equation as follows:

$$\left(\Delta t_{\rm SV}\right)_{\rm B2ap} = \Delta t_{\rm SV} - T_{\rm GDB2ap} \tag{7-6}$$

The single frequency user processing pseudorange from the B2a data component shall further correct the ranging code phase with the equation as follows:

$$\left(\Delta t_{\rm SV}\right)_{\rm B2ad} = \Delta t_{\rm SV} - T_{\rm GDB2ap} - ISC_{\rm B2ad} \tag{7-7}$$

where, Δt_{sv} is the satellite ranging code phase offset which is defined in Section 7.6.

7.8 Ephemeris Parameters

7.8.1 Parameters Description

A set of satellite ephemeris parameters identified by an IODE consists of a satellite orbit type parameter and 18 quasi-Keplerian orbital parameters.

The descriptions of the ephemeris parameters are shown in Table 7-8.

Table 7-8 Descriptions of the ephemeris parameters

No.	Parameter	Definition
1	$t_{ m oe}$	Ephemeris reference time
2	SatType	Satellite orbit type
3	ΔA	Semi-major axis difference at reference time
4	À	Change rate in semi-major axis
5	Δn_0	Mean motion difference from computed value
6	$\Delta \dot{n}_0$	Rate of mean motion difference from computed value
7	M_{0}	Mean anomaly at reference time
8	e	Eccentricity
9	ω	Argument of perigee
10	Ω_0	Longitude of ascending node of orbital plane at weekly epoch
11	i_0	Inclination angle at reference time
12	$\dot{\Omega}$	Rate of right ascension
13	\dot{i}_0	Rate of inclination angle
14	$C_{ m is}$	Amplitude of sine harmonic correction term to the angle of inclination
15	$C_{\rm ic}$	Amplitude of cosine harmonic correction term to the angle of inclination
16	$C_{\rm rs}$	Amplitude of sine harmonic correction term to the orbit radius
17	Amplitude of cosine harmo	
18	$C_{\rm us}$ Amplitude of sine harmonic correction to argument of latitude	
19	$C_{ m uc}$	Amplitude of cosine harmonic correction to the argument of latitude

The Definitions of the ephemeris parameters are shown in Table 7-9.

Table 7-9 Definitions of the ephemeris parameters

No.	Parameter	No. of bits	Scale factor	Effective range**	Unit
1	$t_{ m oe}$	11	300	0~604500	S
2	SatType****	2			
3	ΔA ***	26*	2-9		m
4	À	25*	2 ⁻²¹		m/s
5	Δn_0	17*	2^{-44}		π/s
6	$\Delta \dot{n}_0$	23*	2 ⁻⁵⁷		π/s^2
7	M_{0}	33*	2 ⁻³²		π
8	e	33	2 ⁻³⁴		dimensionless
9	ω	33*	2 ⁻³²		π
10	$\Omega_{\!\scriptscriptstyle 0}$	33*	2 ⁻³²		π
11	i_0	33*	2 ⁻³²		π
12	Ω	19*	2 ⁻⁴⁴		π/s
13	\dot{i}_0	15*	2 ⁻⁴⁴		π/s
14	$C_{ m is}$	16*	2^{-30}		rad
15	$C_{ m ic}$	16*	2^{-30}		rad
16	$C_{ m rs}$	24*	2-8		m
17	$C_{ m rc}$	24*	2-8		m
18	$C_{ m us}$	21*	2^{-30}		rad
19	$C_{ m uc}$	21*	2^{-30}		rad

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -)occupying the MSB.

 $A_{\rm ref} = 27906100~{\rm m}~({\rm MEO})$, $A_{\rm ref} = 42162200~{\rm m}~({\rm IGSO/GEO})$.

**** Meaning of SatType (in binary): 01 indicates the GEO satellite, 10 indicates the IGSO satellite, 11 indicates the MEO satellite, and 00 is reserved.

7.8.2 User Algorithm

The user shall compute the corresponding coordinate of the satellite

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{***} Semi-major axis reference value:

antenna phase center in BDCS, according to the ephemeris parameters. The related algorithms are shown in Table 7-10.

Table 7-10. User algorithms for the ephemeris parameters

Formula	Description
μ =3.986004418×10 ¹⁴ m ³ /s ²	Geocentric gravitational constant of BDCS
$\dot{\Omega}_e = 7.2921150 \times 10^{-5} \text{rad/s}$	Earth's rotation rate of BDCS
$\pi = 3.1415926535898$	Ratio of a circle's circumference to its diameter
$A_0 = A_{\text{ref}} + \Delta A *$	Semi-major axis at reference time
$A_k = A_0 + (\dot{A})t_k$	Semi-major axis at measured time
$n_0 = \sqrt{\frac{\mu}{A_0^3}}$	Computed mean motion (rad/s)
$t_k = t - t_{\text{oe}} **$	Time from ephemeris reference time
$\Delta n_A = \Delta n_0 + 1/2 \Delta \dot{n}_0 t_k$	Mean motion difference from computed value
$n_{_{A}}=n_{_{0}}+\Delta n_{_{A}}$	Corrected mean motion
$M_k = M_0 + n_A t_k$	Mean anomaly
$M_k = E_k - e \sin E_k$	Kepler's equation for eccentric anomaly (may be solved by iteration)
$\begin{cases} \sin \nu_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos \nu_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	True anomaly
$\phi_k = \nu_k + \omega$	Argument of latitude
$\begin{cases} \delta u_k = C_{\text{us}} \sin(2\phi_k) + C_{\text{uc}} \cos(2\phi_k) \\ \delta r_k = C_{\text{rs}} \sin(2\phi_k) + C_{\text{rc}} \cos(2\phi_k) \\ \delta i_k = C_{\text{is}} \sin(2\phi_k) + C_{\text{ic}} \cos(2\phi_k) \end{cases}$	Argument of latitude correction Radius correction Inclination correction
$u_k = \phi_k + \delta u_k$	Corrected argument of latitude

$r_k = A_k \left(1 - e \cos E_k \right) + \delta r_k$	Corrected radius
$i_k = i_0 + \dot{i}_0 \cdot t_k + \delta i_k$	Corrected inclination
$\begin{cases} x_k = r_k \cos u_k \\ y_k = r_k \sin u_k \end{cases}$	Position in orbital plane
$\Omega_k = \Omega_0 + \left(\dot{\Omega} - \dot{\Omega}_{ m e} ight) t_k - \dot{\Omega}_{ m e} t_{oe}$	Corrected longitude of ascending node
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ Z_k = y_k \sin i_k \end{cases}$	Coordinates of satellite antenna phase center in BDCS

^{*} Semi-major axis reference value: $A_{\text{ref}} = 27906100 \text{m} \text{ (MEO)}$ $A_{\text{ref}} = 42162200 \text{m} \text{ (IGSO/GEO)}$.

7.9 Ionospheric Delay Correction Model Parameters

7.9.1 Parameters Description

Nine parameters related to the ionospheric delay correction model are broadcast in the navigation message. Descriptions of these parameters are shown in Table 7-11.

Table 7-11 Descriptions of the ionospheric delay correction model parameters

Parameter	No. of bits	Scale factor	Effective range**	Unit
$\alpha_{_1}$	10	2 ⁻³		TECu
α_2	8*	2 ⁻³		TECu
α_3	8	2 ⁻³		TECu
$lpha_{\scriptscriptstyle 4}$	8	2 ⁻³		TECu
$\alpha_{\scriptscriptstyle 5}$	8	-2 ⁻³		TECu

^{**} In the equation, t is the BDT time of signal transmission, i.e., the BDT time corrected for transit time; t_k is the total time difference between t and the ephemeris reference time $t_{\rm oe}$ after taking account of the beginning or end of week crossovers, that is, if $t_k > 302400$, subtract 604800 seconds from t_k , else if $t_k < -302400$, add 604800 seconds to t_k .

$\alpha_{\scriptscriptstyle 6}$	8*	2 ⁻³	 TECu
α_7	8*	2 ⁻³	 TECu
$lpha_{_8}$	8*	2 ⁻³	 TECu
α_{9}	8*	2 ⁻³	 TECu

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB.

7.9.2 Single Frequency Algorithm

The BeiDou Global Ionospheric Model (BDGIM) is based on the modified spherical harmonics method. According to BDGIM, the user shall compute the ionospheric delay correction by using the equation as follows:

$$T_{ion} = M_{F} \cdot \frac{40.28 \times 10^{16}}{f^{2}} \cdot \left[A_{0} + \sum_{i=1}^{9} \alpha_{i} A_{i} \right]$$
 (7-8)

Where, T_{ion} is the line-of-sight (LOS) ionospheric delay along the signal propagation path from satellite to receiver (in meters). $M_{\rm F}$ is the ionospheric mapping function for the conversion between vertical and slant electron contents, which is referred to Equation (7-19); f is the carrier frequency of the current signal (in Hertz); $\alpha_i(i=1\sim9)$ are the BDGIM parameters (in TECu) which are defined in Table 7-11; $A_i(i=1\sim9)$ are calculated by Equation (7-13); A_0 is the predicted ionospheric delay (in TECu) which is calculated by Equation (7-16).

According to BDGIM, the specific steps for the user to calculate the LOS ionospheric delay along the signal propagation path from satellite to receiver are

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

listed as follows:

(1) Calculation of the ionospheric pierce point (IPP) position

 ψ indicates the Earth's central angle between the user position and IPP (in radians), which is given by

$$\psi = \frac{\pi}{2} - E - \arcsin\left(\frac{\text{Re}}{\text{Re} + \text{H}_{\text{ion}}} \cdot \cos E\right)$$
 (7-9)

where, E is the elevation angle between the user and satellite (in radians); H_{ion} is the altitude of the ionospheric single-layer shell; Re is the mean radius of the Earth.

The geographic latitude φ_g and longitude λ_g of the Earth projection of IPP are calculated as

$$\begin{cases} \varphi_g = \arcsin(\sin\varphi_u \cdot \cos\psi + \cos\varphi_u \cdot \sin\psi \cdot \cos A) \\ \lambda_g = \lambda_u + \arctan\left(\frac{\sin\psi \cdot \sin A \cdot \cos\varphi_u}{\cos\psi - \sin\varphi_u \cdot \sin\varphi_g}\right) \end{cases}$$
(7-10)

where, φ_u and λ_u are the user geographic latitude and longitude, respectively; A is the azimuth angle between the user and satellite (in radians).

In the Earth-fixed reference frame, the geomagnetic latitude φ_m and longitude λ_m of the Earth projection of IPP are calculated as follows:

$$\begin{cases} \varphi_{m} = \arcsin\left(\sin\varphi_{M} \cdot \sin\varphi_{g} + \cos\varphi_{M} \cdot \cos\varphi_{g} \cdot \cos(\lambda_{g} - \lambda_{M})\right) \\ \lambda_{m} = \arctan\left(\frac{\cos\varphi_{g} \cdot \sin(\lambda_{g} - \lambda_{M}) \cdot \cos\varphi_{M}}{\sin\varphi_{M} \cdot \sin\varphi_{m} - \sin\varphi_{g}}\right) \end{cases}$$
(7-11)

where $\varphi_{\rm M}$ and $\lambda_{\rm M}$ are the geographic latitude and longitude of the north magnetic pole (both in radians), respectively.

In the solar-fixed reference frame, the geomagnetic latitude φ' and

longitude λ' of IPP are calculated as

$$\begin{cases} \varphi' = \varphi_m \\ \lambda' = \lambda_m - \arctan\left(\frac{\sin(S_{lon} - \lambda_M)}{\sin \varphi_M \cdot \cos(S_{lon} - \lambda_M)}\right) \end{cases}$$
 (7-12)

where, S_{lon} is the mean geographic longitude of the sun (in radians), which is calculated as $S_{lon} = \pi \cdot (1 - 2 \cdot (t - \text{int}(t)))$, t is the time of calculation epoch expressed by Modified Julian Date (MJD), and $\text{int}(\cdot)$ means rounding down.

(2) Calculation of $A_i (i=1 \sim 9)$

 A_i is calculated as follows:

$$A_{i} = \begin{cases} \tilde{P}_{|n_{i}|,|m_{i}|}(\sin \varphi') \cdot \cos(m_{i} \cdot \lambda') & m_{i} \geq 0\\ \tilde{P}_{|n_{i}|,|m_{i}|}(\sin \varphi') \cdot \sin(-m_{i} \cdot \lambda') & m_{i} < 0 \end{cases}$$
(7-13)

where, the values of n_i and m_i are shown in Table 7-12.

Table 7-12 Values of n_i and m_i

i	1	2	3	4	5	6	7	8	9
n_i/m_i	0/0	1/0	1/1	1/-1	2/0	2/1	2/-1	2/2	2/-2

 φ' and λ' are calculated by Equation (7-12); $\tilde{P}_{n,m}$ is the normalized Legendre function with degree n and order m, which is calculated as $\tilde{P}_{n,m} = N_{n,m} \cdot P_{n,m}$ (both n and m are taken the absolute values); $N_{n,m}$ the normalization function, which is calculated as

$$\begin{cases}
N_{n,m} = \sqrt{\frac{(n-m)! (2n+1) \cdot (2-\delta_{0,m})}{(n+m)!}} \\
\delta_{0,m} = \begin{cases}
1, & m=0 \\
0, & m>0
\end{cases}
\end{cases}$$
(7-14)

 $P_{n,m}$ is the classic, un-normalized Legendre function, which is calculated

as

$$\begin{cases} P_{n,n}(\sin\varphi') = (2n-1)!! \left(1 - (\sin\varphi')^{2}\right)^{n/2}, & n = m \\ P_{n,m}(\sin\varphi') = \sin\varphi' \cdot (2m+1) \cdot P_{m,m}(\sin\varphi'), & n = m+1 \\ P_{n,m}(\sin\varphi') = \frac{(2n-1) \cdot \sin\varphi' \cdot P_{n-1,m}(\sin\varphi') - (n+m-1) \cdot P_{n-2,m}(\sin\varphi')}{n-m}, & else \end{cases}$$
(7-15)

where, $(2n-1)!! = (2n-1)\cdot(2n-3)\cdots 1$, and $P_{0,0}(\sin\varphi') = 1$.

(3) Calculation of the predicted ionospheric delay A_0

 A_0 is calculated as follows:

$$\begin{cases}
A_0 = \sum_{j=1}^{17} \beta_j \cdot B_j, \\
B_j = \begin{cases}
\tilde{P}_{|n_j|,|m_j|}(\sin \varphi') \cdot \cos(m_j \cdot \lambda') & m_j \ge 0 \\
\tilde{P}_{|n_j|,|m_j|}(\sin \varphi') \cdot \sin(-m_j \cdot \lambda') & m_j < 0
\end{cases}$$
(7-16)

where, the values of n_j and m_j are shown in Table 7-13; $\tilde{P}_{|n_j|,|m_j|}(\sin \varphi')$ is calculated by Equation (7-14) and (7-15); $\beta_j(j=1\sim 17)$ are calculated as follows:

$$\begin{cases} \beta_{j} = a_{0,j} + \sum_{k=1}^{12} \left(a_{k,j} \cdot \cos\left(\omega_{k} \cdot t_{p}\right) + b_{k,j} \cdot \sin\left(\omega_{k} \cdot t_{p}\right) \right) \\ \omega_{k} = \frac{2\pi}{T_{k}} \end{cases}$$
(7-17)

where, $a_{k,j}$ and $b_{k,j}$ are the non-broadcast coefficients of BDGIM as shown in Table 7-13 (in TECu); T_k is the period corresponding to the individual non-broadcast coefficients as shown in Table 7-13; t_p is an odd hour of the corresponding day (01:00:00, 03:00:00, 05:00:00..., or 23:00:00 in MJD), while the user should choose a t_p which is nearest to the time of the calculation epoch.

(4) Calculation of the vertical ionospheric delay of IPP

The vertical ionospheric delay (in TECu) of IPP is calculated as

$$VTEC = A_0 + \sum_{i=1}^{9} \alpha_i A_i$$
 (7-18)

(5) Calculation of the ionospheric mapping function $M_{\rm F}$ of IPP

The ionospheric mapping function M_F of IPP is calculated as follows:

$$M_{\rm F} = \frac{1}{\sqrt{1 - \left(\frac{\text{Re}}{\text{Re} + \text{H}_{\rm ion}} \cdot \cos(E)\right)^2}}$$
 (7-19)

where, Re, H_{ion} , and E have been defined in Equation (7-9).

(6) Calculation of the LOS ionospheric delay along the signal propagation path

According to the calculated VTEC and M_F , the LOS ionospheric delay along the signal propagation path from satellite to receiver can be calculated by Equation (7-8).

In the above equations, the related parameter values are suggested as

Altitude of the ionospheric single-layer shell: $H_{ion} = 400 \text{ km}$;

Mean radius of the Earth: Re = 6378 km;

Geographic longitude of the north magnetic pole: $\lambda_{\rm M} = \frac{-72.58^{\circ}}{180^{\circ}} \cdot \pi \text{ rad};$

Geographic latitude of the north magnetic pole: $\varphi_{\rm M} = \frac{80.27^{\circ}}{180^{\circ}} \cdot \pi$ rad.

Table 7-13 Non-broadcast coefficients of BDGIM (in TECu)

Parameter	No.j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Period
No. k	n_j/m_j	3/0	3/1	3/-1	3/2	3/-2	3/3	3/-3	4/0	4/1	4/-1	4/2	4/-2	5/0	5/1	5/-1	5/2	5/-2	T_k/day
0	$a_{0,j}$	-0.61	-1.31	-2.00	-0.03	0.15	-0.48	-0.40	2.28	-0.16	-0.21	-0.10	-0.13	0.21	0.68	1.06	0	-0.12	-
	$a_{k,j}$	-0.51	-0.43	0.34	-0.01	0.17	0.02	-0.06	0.30	0.44	-0.28	-0.31	-0.17	0.04	0.39	-0.12	0.12	0	1
1	$b_{\scriptscriptstyle k,j}$	0.23	-0.20	-0.31	0.16	-0.03	0.02	0.04	0.18	0.34	0.45	0.19	-0.25	-0.12	0.18	0.40	-0.09	0.21	1
2	$a_{k,j}$	-0.06	-0.05	0.06	0.17	0.15	0	0.11	-0.05	-0.16	0.02	0.11	0.04	0.12	0.07	0.02	-0.14	-0.14	0.5
2	$b_{k,j}$	0.02	-0.08	-0.06	-0.11	0.15	-0.14	0.01	0.01	0.04	-0.14	-0.05	0.08	0.08	-0.01	0.01	0.11	-0.12	0.5
3	$a_{k,j}$	0.01	-0.03	0.01	-0.01	0.05	-0.03	0.05	-0.03	-0.01	0	-0.08	-0.04	0	-0.02	-0.03	0	-0.03	0.33
<u> </u>	$b_{\scriptscriptstyle k,j}$	0	-0.02	-0.03	-0.05	-0.01	-0.07	-0.03	-0.01	0.02	-0.01	0.03	-0.10	0.01	0.05	-0.01	0.04	0.00	0.55
4	$a_{k,j}$	-0.01	0	0.01	0	0.01	0	-0.01	-0.01	0	0	0	0	0	0	0	0	0	14.6
-	$b_{\scriptscriptstyle k,j}$	0	-0.02	0.01	0	-0.01	0.01	0	-0.02	0	0	0	0	0	0	0	0	0	14.0
5	$a_{k,j}$	0	0	0.03	0.01	0.02	0.01	0	-0.02	0	0	0	0	0	0	0	0	0	27.0
<u>.</u>	$b_{\scriptscriptstyle k,j}$	0.01	0	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	27.0
6	$a_{k,j}$	-0.19	-0.02	0.12	-0.10	0.06	0	-0.02	-0.08	-0.02	-0.07	0.01	0.03	0.15	0.06	-0.05	-0.03	-0.10	121.6
	$b_{k,j}$	-0.09	0.07	0.03	0.06	0.09	0.01	0.02	0	-0.04	-0.02	-0.01	0.01	-0.10	0	-0.01	0.02	0.05	121.0
7	$a_{k,j}$	-0.18	0.06	-0.55	-0.02	0.09	-0.08	0	0.86	-0.18	-0.05	-0.07	0.04	0.14	-0.03	0.37	-0.11	-0.12	182.51
	$b_{\scriptscriptstyle k,j}$	0.15	-0.31	0.13	0.05	-0.09	-0.03	0.06	-0.36	0.08	0.05	0.06	-0.02	-0.05	0.06	-0.20	0.04	0.07	
8	$a_{k,j}$	1.09	-0.14	-0.21	0.52	0.27	0	0.11	0.17	0.23	0.35	-0.05	0.02	-0.60	0.02	0.01	0.27	0.32	365.25
	$b_{k,j}$	0.50	-0.08	-0.38	0.36	0.14	0.04	0	0.25	0.17	0.27	-0.03	-0.03	-0.32	-0.10	0.20	0.10	0.30	
9	$a_{k,j}$	-0.34	-0.09	-1.22	0.05	0.15	-0.29	-0.17	1.58	-0.06	-0.15	0.00	0.13	0.28	-0.08	0.62	-0.01	-0.04	4028.71
	$b_{k,j}$	0	-0.11	-0.22	0.01	0.02	-0.03	-0.01	0.49	-0.03	-0.02	0.01	0.02	0.04	-0.04	0.16	-0.02	-0.01	
10	$a_{k,j}$	-0.13	0.07	-0.37	0.05	0.06	-0.11	-0.07	0.46	0.00	-0.04	0.01	0.07	0.09	-0.05	0.15	-0.01	0.01	2014.35
	$b_{k,j}$	0.05	0.03	0.07	0.02	-0.01	0.03	0.02	-0.04	-0.01	-0.01	0.02	0.03	0.02	-0.04	-0.04	-0.01	0	
11	$a_{k,j}$	-0.06	0.13	-0.07	0.03	0.02	-0.05	-0.05	0.01	0	0	0	0	0	0	0	0	0	1342.90
	$b_{k,j}$	0.03	-0.02	0.04	-0.01	-0.03	0.02	0.01	0.04	0	0	0	0	0	0	0	0	0	
12	$a_{k,j}$	-0.03	0.08	-0.01	0.04	0.01	-0.02	-0.02	-0.04	0	0	0	0	0	0	0	0	0	1007.18
	$b_{\scriptscriptstyle k,j}$	0.04	-0.02	-0.04	0.00	-0.01	0	0.01	0.07	0	0	0	0	0	0	0	0	0	

7.9.3 Dual Frequency Algorithm

For the dual frequency user applying the B1C and B2a signals, the effect of the ionospheric delay shall be corrected by using the dual frequency ionosphere-free pseudorange.

The dual frequency user processing pseudorange from the B1C pilot component and B2a pilot component shall correct the ionospheric delay with the equation as follows:

$$PR_{\text{B1Cp-B2ap}} = \frac{PR_{\text{B2ap}} - k_{12} \cdot PR_{\text{B1Cp}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} - k_{12} \cdot T_{\text{GDB1Cp}})}{1 - k_{12}}$$
(7-20)

The dual frequency user processing pseudorange from the B1C pilot component and B2a data component shall correct the ionospheric delay with the equation as follows:

$$PR_{\text{B1Cp-B2ad}} = \frac{PR_{\text{B2ad}} - k_{12} \cdot PR_{\text{B1Cp}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} + \text{ISC}_{\text{B2ad}} - k_{12} \cdot T_{\text{GDB1Cp}})}{1 - k_{12}}$$
(7-21)

The dual frequency user processing pseudorange from the B1C data component and B2a pilot component shall correct the ionospheric delay with the equation as follows:

$$PR_{\text{B1Cd-B2ap}} = \frac{PR_{\text{B2ap}} - k_{12} \cdot PR_{\text{B1Cd}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} - k_{12} \cdot T_{\text{GDB1Cp}} - k_{12} \cdot \text{ISC}_{\text{B1Cd}})}{1 - k_{12}} (7-22)$$

The dual frequency user processing pseudorange from the B1C data component and B2a data component shall correct the ionospheric delay with the equation as follows:

$$PR_{\text{B1Cd-B2ad}} = \frac{PR_{\text{B2ad}} - k_{12} \cdot PR_{\text{B1Cd}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} + \text{ISC}_{\text{B2ad}} - k_{12} \cdot T_{\text{GDB1Cp}} - k_{12} \cdot \text{ISC}_{\text{B1Cd}})}{1 - k_{12}}$$
(7-23)

where, $k_{12} = \left(\frac{1575.42}{1176.45}\right)^2$, is the factor associated with frequency;

 $PR_{\rm B1Cp-B2ap}$ is the dual frequency ionosphere-free pseudorange between the B1C pilot component and the B2a pilot component;

 $PR_{\rm B1Cp-B2ad}$ is the dual frequency ionosphere-free pseudorange between the B1C pilot component and the B2a data component;

 $PR_{\rm B1Cd-B2ap}$ is the dual frequency ionosphere-free pseudorange between the B1C data component and the B2a pilot component;

 $PR_{\rm B1Cd-B2ad}$ is the dual frequency ionosphere-free pseudorange between the B1C data component and the B2a data component;

 $PR_{\rm B1Cp}$ is the measured pseudorange of the B1C pilot component (corrected by the clock correction but not corrected by $T_{\rm GDB1Cp}$);

 $PR_{\rm B1Cd}$ is the measured pseudorange of the B1C data component (corrected by the clock correction but not corrected by $T_{\rm GDB1Cp}$ and $ISC_{\rm B1Cd}$);

 $PR_{\rm B2ap}$ is the measured pseudorange of the B2a pilot component (corrected by the clock correction but not corrected by $T_{\rm GDB2ap}$);

 PR_{B2ad} is the measured pseudorange of the B2a data component (corrected by the clock correction but not corrected by T_{GDB2ap} and ISC_{B2ad});

T_{GDB1Cp} is the group delay differential of the B1C pilot component;

 T_{GDB2ap} is the group delay differential of the B2a pilot component;

 ${\rm ISC}_{\rm\scriptscriptstyle BICd}$ is the group delay differential between the B1C data component and the B1C pilot component;

 ISC_{B2ad} is the group delay differential between the B2a data component and the B2a pilot component;

 $C = 2.99792458 \times 10^8 \text{ m/s}$ is the speed of light.

7.10 Midi Almanac Parameters

7.10.1 Parameters Description

The midi almanac contains 14 parameters. The definitions of the midi almanac parameters are described in Table 7-14.

Table 7-14 Definitions of the midi almanac parameters

No.	Parameter	Definition	No. of bits	Scale factor	Effective range**	Unit
1	PRN _a	PRN number of the corresponding almanac data		1	1~63	
2	SatType***	Satellite orbit type	2			
3	WN _a	Almanac reference week number	13	1		week
4	t_{oa}	Almanac reference time	8	2^{12}	0~602112	S
5	e	Eccentricity	11	2^{-16}		
6	δ_i	Correction of inclination angle at reference time	11*	2-14		π
7	\sqrt{A}	\sqrt{A} Square root of semi-major axis		2^{-4}		m ^{1/2}
8	$\Omega_{\!\scriptscriptstyle 0}$	Longitude of ascending node of orbital plane at weekly epoch	16*	2^{-15}		π

9	$\dot{\Omega}$	Rate of right ascension	11*	2 ⁻³³	 π/s
10	ω	Argument of perigee	16 [*]	2^{-15}	 π
11	M_{0}	Mean anomaly at reference time	16*	2^{-15}	 π
12	a_{f0}	Satellite clock time bias correction coefficient	11*	2^{-20}	 S
13	a_{f1}	Satellite clock time drift correction coefficient	10*	2 ⁻³⁷	 s/s
14	Health	Satellite health information	8	_	

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB.

The parameter Health indicates the satellite health status with a length of 8 bits. The definitions of the satellite health information are described in Table 7-15.

Table 7-15 Definitions of the satellite health information

Information bit	Value	Definition
The 8 th bit (MSB)	0	Satellite clock healthy
The o bit (MSD)	1	*
The 7 th bit	0	B1C signal normal
The / bit	1	B1C signal abnormal**
The 6 th bit	0	B2a signal normal
The o bit	1	B2a signal abnormal **
The $5^{th} \sim 1^{st}$ bit	0	Reserved
The 3 ~ 1 bit	1	Reserved

^{*} When the 8th bit is 1, that the last 7 bits are "0000000" represents the satellite clock is not available and that the last 7 bits are "1111111" represents the satellite is abnormal or permanent shutdown.

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{***} Meaning of SatType (in binary): 01 indicates the GEO satellite, 10 indicates the IGSO satellite, 11 indicates the MEO satellite, and 00 is reserved.

^{**} Signal abnormal indicates that the signal power is over 10dB lower than the rated value.

7.10.2 User Algorithm

The user shall compute the BDT time of signal transmission as

$$t = t_{\rm sv} - \Delta t_{\rm sv} \tag{7-24}$$

where, t is the BDT time of signal transmission (in seconds), t_{sv} is the effective satellite ranging code phase time at time of signal transmission (in seconds), Δt_{sv} is the satellite ranging code phase time offset which is computed by the equation (in seconds):

$$\Delta t_{\rm sv} = a_{f0} + a_{f1} (t - t_{\rm oa}) \tag{7-25}$$

where, the almanac reference time t_{oa} counts from the start of the almanac reference week number (WN_a).

The user calculates the satellite position by using the midi almanac parameters. The related algorithms are shown in Table 7-16.

Table 7-16 User algorithms for the midi almanac parameters

Formula	Description	
μ =3.986004418×10 ¹⁴ m ³ /s ²	Geocentric gravitational constant of BDCS	
$\dot{\Omega}_e = 7.2921150 \times 10^{-5} \text{ rad/s}$	Earth's rotation rate of BDCS	
$\pi = 3.1415926535898$	Ratio of a circle's circumference to its diameter	
$A = \left(\sqrt{A}\right)^2$	Semi-major axis	
$n_0 = \sqrt{\frac{\mu}{A^3}}$	Computed mean motion (rad/s)	
$t_k = t - t_{\text{oa}} *$	Time from ephemeris reference time	
$\boldsymbol{M}_{k} = \boldsymbol{M}_{0} + \boldsymbol{n}_{0} \boldsymbol{t}_{k}$	Mean anomaly	

$M_k = E_k - e \sin E_k$	Kepler's equation for eccentric anomaly (may be solved by iteration)
$\begin{cases} \sin v_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos v_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	True anomaly
$\phi_k = \nu_k + \omega$	Argument of latitude
$r_k = A(1 - e\cos E_k)$	Corrected radius
$\begin{cases} x_k = r_k \cos \phi_k \\ y_k = r_k \sin \phi_k \end{cases}$	Position in orbital plane
$\Omega_{k} = \Omega_{0} + \left(\dot{\Omega} - \dot{\Omega}_{e}\right)t_{k} - \dot{\Omega}_{e}t_{oe}$	Corrected longitude of ascending node
$i = i_0 + \delta_i **$	Inclination at reference time
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ Z_k = y_k \sin i_k \end{cases}$	Coordinates of satellite antenna phase center in BDCS

^{*} In the equation, t is the BDT time of signal transmission, i.e., the BDT time corrected for transit time; t_k is the total time difference between t and the ephemeris reference time t_{∞} after taking account of the beginning or end of week crossovers, that is, if $t_k > 302400$, subtract 604800 seconds from t_k , else if $t_k < -302400$, add 604800 seconds to t_k .

7.11 Reduced Almanac parameters

7.11.1 Parameters Description

The definitions and characteristics of the reduced almanac parameters are shown in Table 7-17.

^{**} For the MEO/IGSO satellites, $i_0 = 0.30\pi$; for the GEO satellites, $i_0 = 0.00$.

Table 7-17 Definitions of the reduced almanac parameters

No.	Parameter	Definition	No. of Scale bits factor		Effective range**	Unit
1	PRN _a	PRN number of the corresponding almanac data		1	1~63	1
2	SatType***** Satellite orbit type		2			
3	$\delta_{\!\scriptscriptstyle A}^{***}$	δ_A^{***} Correction of semi-major axis at reference time		29		m
4	Ω_0	Ω_0 Longitude of ascending node of orbital plane at weekly epoch 7^*		2 ⁻⁶		π
5	$\Phi_0^{\ ****}$	Argument of latitude at reference time				π
6	Health	Satellite health information	8		_	

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB.

$$A_{\text{ref}} = 27906100 \text{m} \text{ (MEO)}$$
 $A_{\text{ref}} = 42162200 \text{m} \text{ (IGSO/GEO)}$.

**** $\Phi_0 = M_0 + \omega$, related reference value:

e = 0

 $\delta_i = 0$

i = 55 degree (MEO/IGSO), i = 0 degree (GEO).

**** Meaning of SatType (in binary): 01 indicates the GEO satellite, 10 indicates the IGSO satellite, 11 indicates the MEO satellite, and 00 is reserved.

7.11.2 User Algorithm

The user algorithm of the reduced almanac parameters is the same as the user algorithm used for computing the midi almanac as specified in Table 7-16. Other parameters appearing in the equations of Table 7-16, but not provided by the reduced almanac with the reference values, are set to zero for satellite position determination.

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{***} Semi-major axis reference value:

The definitions of the almanac reference week number WN_a and the almanac reference time t_{oa} corresponding to the reduced almanac are shown in Table 7-18.

Table 7-18 Definitions of the almanac reference time parameters

No.	Parameter	Definition	No. of bits	Scale factor	Effective range	Unit
1	WN _a	Almanac reference week number	13	1	0~8191	week
2	t_{oa}	Almanac reference time	8	2 ¹²	0~602112	S

7.12 Earth Orientation Parameters

7.12.1 Parameters Description

The definitions of the Earth Orientation Parameters are shown in Table 7-19.

Table 7-19 Definitions of the Earth Orientation Parameters

Parameter	Definition	No. of bits	Scale factor	Effective range**	Unit
$t_{\scriptscriptstyle m EOP}$	EOP data reference time	16	2^4	0~604784	S
PM _ X	X-Axis polar motion value at reference time	21*	2-20		arc-seconds
PM _ X	X-Axis polar motion drift at reference time	15*	2 ⁻²¹		arc-seconds / day
<i>PM</i> _ <i>Y</i>	Y-Axis polar motion value at reference time	21*	2 ⁻²⁰		arc-seconds
PM _Y	Y-Axis polar motion drift at reference time	15*	2 ⁻²¹		arc-seconds / day
$\Delta UT1$	UT1-UTC difference at reference time		2 ⁻²⁴		S
$\Delta UT1$	Rate of UT1-UTC difference at reference time	19*	2 ⁻²⁵		s / day

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB. ** Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

7.12.2 User Algorithm

The coordinate of the satellite antenna phase center in BDCS is calculated by using the ephemeris parameters. If the user needs to convert it to the corresponding Earth Centered Inertial (ECI) coordinate, the related transformation matrix shall be calculated by the algorithms which are shown in Table 7-20.

The full coordinate transformation algorithms can be accomplished in accordance with the IERS specifications.

Table 7-20 User algorithms for the EOP parameters

Formula	Description
$UT1 - UTC = \Delta UT1 + \Delta \dot{U}T1(t - t_{EOP})$	UT1-UTC difference at time t
$x_{p} = PM _X + PM _X (t - t_{EOP})$ $y_{p} = PM _Y + PM _Y (t - t_{EOP})$	Polar motion in the X-Axis at time t Polar motion in the Y-Axis at time t

Note: t is the BDT time of signal transmission.

7.13 BDT/UTC Time Offset Parameters

7.13.1 Parameters Description

The BDT/UTC time offset parameters represent the relationship between BDT and UTC time. The definitions and characteristics of the BDT/UTC time offset parameters are shown in Table 7-21.

No. of Scale **Effective Parameter** No. **Definition** Unit range* bits factor Bias coefficient of BDT 2^{-35} 16* 1 time scale relative to UTC $A_{0\mathrm{UTC}}$ S time scale Drift coefficient of BDT 2^{-51} 13^{*} 2 time scale relative to UTC $A_{\rm lUTC}$ s/stime scale Drift rate coefficient of 2^{-68} s/s^2 7^* BDT time scale relative to 3 $A_{\rm 2UTC}$ UTC time scale Current or past leap 8^* 4 $\Delta t_{\rm LS}$ 1 S second count 2^4 5 Reference time of week 0~604784 $t_{\rm ot}$ 16 S WN_{ot} 6 Reference week number 13 1 week Leap second reference WN_{LSF} 7 13 1 week week number Leap second reference day DN 3 1 8 0~6 day number

Table 7-21 Definitions of the BDT/UTC time offset parameters

 8^*

1

S

Current or future leap

second count

7.13.2 User Algorithm

 $\Delta t_{\rm LSF}$

9

Three different cases of calculating BDT/UTC time offset are listed as follows:

(1) Whenever the leap second time indicated by WN_{LSF} and DN is not in the past (relative to the user's present time) and the user's present time does not fall in the time span which starts six hours prior to the leap second time and ends six hours after the leap second time, $t_{\rm UTC}$ is calculated according to the following equations:

$$t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm UTC}) \bmod 86400$$
 (7-26)

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB. ** Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

$$\Delta t_{\text{UTC}} = \Delta t_{\text{LS}} + A_{\text{0UTC}} + A_{\text{IUTC}} \left(t_{\text{E}} - t_{\text{ot}} + 604800 \left(\text{WN} - \text{WN}_{\text{ot}} \right) \right) + A_{\text{2UTC}} \left(t_{\text{E}} - t_{\text{ot}} + 604800 \left(\text{WN} - \text{WN}_{\text{ot}} \right) \right)^{2}$$
(7-27)

where, $t_{\rm E}$ is the BDT time as estimated by the user.

(2) Whenever the user's present time falls within the time span which starts six hours prior to the leap second time and ends six hours after the leap second time, $t_{\rm UTC}$ is calculated according to the following equations:

$$t_{\rm UTC} = W \mod (86400 + \Delta t_{\rm LSF} - \Delta t_{\rm LS})$$
 (7-28)

$$W = ((t_E - \Delta t_{UTC} - 43200) \mod 86400) + 43200$$
 (7-29)

where, the calculation method of $\Delta t_{\rm UTC}$ is shown in Equation (7-27).

(3) Whenever the leap second time indicated by WN_{LSF} and DN is in the past (relative to the user's present time) and the user's present time does not fall in the time span which starts six hours prior to the leap second time and ends six hours after the leap second time, $t_{\rm UTC}$ is calculated according to the following equations:

$$t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm UTC}) \bmod 86400$$
 (7-30)

$$\Delta t_{\text{UTC}} = \Delta t_{\text{LSF}} + A_{\text{0UTC}} + A_{\text{IUTC}} \left(t_{\text{E}} - t_{\text{ot}} + 604800 \left(\text{WN - WN}_{\text{ot}} \right) \right) + A_{\text{2UTC}} \left(t_{\text{E}} - t_{\text{ot}} + 604800 \left(\text{WN - WN}_{\text{ot}} \right) \right)^{2}$$
(7-31)

7.14 BDT/GNSS Time Offset Parameters

7.14.1 Parameters Description

The BDT/GNSS Time Offset (BGTO) parameters are used to

calculate the time offsets between BDT and other GNSS time. The definitions and characteristics of the BGTO parameters are shown in Table 7-22.

Table 7-22 Definitions of the BGTO parameters

No.	Parameter	Definition	No. of bits Scale factor		Effective range**	Unit
1	GNSS ID	GNSS type identification	3			dimensionless
2	$\mathrm{WN}_{\mathrm{0BGTO}}$	Reference week number	13 1		week	
3	$t_{ m 0BGTO}$	Reference time of week	16	16 2 ⁴ 0~60478		S
4	$A_{ m 0BGTO}$	Bias coefficient of BDT time scale relative to GNSS time scale	OT time scale ative to GNSS 16^* 2^{-35}		1	S
5	$A_{ m lBGTO}$	Drift coefficient of BDT time scale relative to GNSS time scale	13* 2 ⁻⁵¹			s/s
6	$A_{ m 2BGTO}$	Drift rate coefficient of BDT time scale relative to GNSS time scale	7*	2 ⁻⁶⁸		s/s ²

^{*} Parameters so indicated are two's complement, with the sign bit (+ or -)occupying the MSB.

GNSS ID is used to identify different navigation satellite systems, and its definition is as follows:

000 indicates that the present BGTO parameters are not available;

001 indicates GPS;

010 indicates Galileo;

011 indicates GLONASS;

100 to 111 are reserved.

^{**} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

The WN_{0BGTO}, t_{0BGTO} , A_{0BGTO} , A_{1BGTO} , and A_{2BGTO} broadcasted in the same frame correspond to the system identified by GNSS ID. The BGTO parameters broadcasted in different frames may be different, and the user should recognize GNSS ID every time when the BGTO parameters are received.

7.14.2 User Algorithm

The relationship between BDT and other GNSS time is given by the equation as follows:

$$\Delta t_{\text{Systems}} = t_{\text{BD}} - t_{\text{GNSS}} = A_{0\text{BGTO}} + A_{1\text{BGTO}} \left[t_{\text{BD}} - t_{0\text{BGTO}} + 604800 \left(\text{WN} - \text{WN}_{\text{BGTO}} \right) \right] + A_{2\text{BGTO}} \left[t_{\text{BD}} - t_{0\text{BGTO}} + 604800 \left(\text{WN} - \text{WN}_{\text{BGTO}} \right) \right]^{2}$$
(7-32)

where, $\Delta t_{\text{Systems}}$ is in seconds; t_{BD} and t_{GNSS} are the BDT time and other GNSS time, respectively.

7.15 Satellite Health Status

Satellite Health Status (HS) is an unsigned integer with a length of 2 bits, which indicates the health status of the transmitting satellite. The definitions of the satellite health status parameter are shown in Table 7-23.

Table 7-23 Definitions of the satellite health status parameter

HS value	Definition	Description
0	The satellite is healthy	The satellite provides services
1	The satellite is unhealthy or in the test	The satellite does not provide services
2	Reserved	Reserved
3	Reserved	Reserved

7.16 Satellite Integrity Status

The satellite integrity status contains three parameters: data integrity flag (DIF), signal integrity flag (SIF), and accuracy integrity flag (AIF). Each of them has a length of 1 bit, and their definitions are shown in Table 7-24.

Table 7-24. Definitions of the satellite integrity status parameters

Parameter	Value	Definition		
	0	The error of message parameters broadcasted in		
DIF	0	this signal does not exceed the prediction accuracy		
DIF	1	The error of message parameters broadcasted in		
	1	this signal exceeds the prediction accuracy		
SIF	0	This signal is normal		
Sil	1	This signal is abnormal		
AIF	0	SISMAI* value of this signal is valid		
7.111	1	SISMAI value of this signal is invalid		
* The definitions of SISMAI will be shown in Section 7.18.				

The B1C integrity status parameters (DIF_(B1C), SIF_(B1C), AIF_(B1C)) are broadcast in Subframe 3 of B-CNAV1, as well as in B-CNAV2. The B2a integrity status parameters (DIF_(B2a), SIF_(B2a), AIF_(B2a)) are only broadcast in B-CNAV2.

Because of the higher update rate of the B-CNAV2 message, it is recommended that the dual frequency user, using the B1C and B2a signals, applies the integrity status parameters which are broadcast by the B2a signal preferentially.

The specific definitions of the signal integrity status parameters will be published in a future update of this ICD.

7.17 Signal In Space Accuracy Index

The signal in space accuracy describes the prediction accuracy of the orbital parameters and clock correction parameters broadcasted in the navigation message. It contains the along-track and cross-track accuracy of the satellite orbit (SISA $_{oe}$) and the satellite orbital radial and satellite clock correction accuracy (SISA $_{oe}$).

The signal in space accuracy index parameters broadcasted in the navigation message are used to calculate $SISA_{oe}$ and $SISA_{oc}$, which contain five parameters as follows:

- (1) SISAI_{oe}: satellite orbit along-track and cross-track accuracy (SISA_{oe}) index;
 - (2) SISAI_{ocb}: satellite orbit radial and fixed satellite clock bias accuracy (SISA_{ocb}) index;
 - (3) SISAI_{oc1}: satellite clock bias accuracy (SISA_{oc1}) index;
 - (4) SISAI_{oc2}: satellite clock drift accuracy (SISA_{oc2}) index;
 - (5) t_{op} : data prediction time of week.

The specific definitions of the signal in space accuracy index parameters will be published in a future update of this ICD.

7.18 Signal In Space Monitoring Accuracy Index

The estimated error of the signal in space accuracy is described by the zero-mean Gaussian distribution model. The signal in space monitoring accuracy (SISMA) is the variance of the Gaussian distribution, which is indicated by the signal in space monitoring accuracy index (SISMAI).

The specific definitions of the signal in space monitoring accuracy index parameters will be published in a future update of this ICD.

Acronyms

BDCS BeiDou Coordinate System

BDGIM BeiDou Global Ionospheric Model

BDS BeiDou Navigation Satellite System

BDT BeiDou Time

BGTO BDT/GNSS Time Offset

BIH Bureau International de l'Heure

BOC Binary Offset Carrier

bps bits per second

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

CGCS2000 China Geodetic Coordinate System 2000

CRC Cyclic Redundancy Check

ECI Earth Centered Inertial

EOP Earth Orientation Parameters

GEO Geostationary Earth Orbit

GF Galois Field

GLONASS GLObal NAvigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HOW Hours Of Week

ICD Interface Control Document

IERS International Earth Rotation and Reference

Systems Service

IGSO Inclined Geosynchronous Satellite Orbit

IODC Issue Of Data, Clock

IODE Issue Of Data, Ephemeris

IPP Ionoshperic Pierce Point

IRM IERS Reference Meridian

IRP IERS Reference Pole

LDPC Low Density Parity Check

LOS Line Of Sight

LSB Least Significant Bit

Mcps Mega chips per second

MEO Medium Earth Orbit

MJD Modified Julian Date

MSB Most Significant Bit

NTSC National Time Service Center

PRN Pseudo-Random Noise

QMBOC Quadrature Multiplexed Binary Offset Carrier

QPSK Quadrature Phase Shift Keying

RHCP Right-Hand Circularly Polarized

RMS Root Mean Square

RNSS Radio Navigation Satellite Service

SOH Seconds Of Hour

SOW Seconds Of Week

sps symbols per second

TCG Geocentric Coordinate Time

TEC Total Electron Content

TECu Total Electron Content unit

UT Universal Time

UTC Universal Time Coordinated

WN Week Number

Annex: Non-binary LDPC Encoding and Decoding Methods

1. Non-binary LDPC Encoding

The generator matrix **G** is obtained from the parity-check matrix $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$ of the non-binary LDPC(n, k) code. And then, the codeword **c** can be generated by encoding the input information sequence **m** of length k with the generator matrix **G**. The codeword **c** is computed by $\mathbf{c} = \mathbf{m} \cdot \mathbf{G} = [\mathbf{m}, \mathbf{p}]$, where $\mathbf{p} = \mathbf{m} \cdot (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^{\mathrm{T}}$ is the check sequence.

The method for generating the generator matrix G is given as follows:

Step 1: The matrix \mathbf{H} of size $(n-k) \times n$ is expressed as: $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$, where the size of \mathbf{H}_1 is $(n-k) \times k$, and the size of \mathbf{H}_2 is $(n-k) \times (n-k)$.

Step 2: Convert the matrix **H** into the systematic form, i.e., multiply **H** with \mathbf{H}_2^{-1} from the left to generate a parity-check matrix $\hat{\mathbf{H}} = [\mathbf{H}_2^{-1} \cdot \mathbf{H}_1, \mathbf{I}_{n-k}]$, where \mathbf{I}_{n-k} is a unit matrix of size $(n-k) \times (n-k)$.

Step 3: The generator matrix is computed as $\mathbf{G} = [\mathbf{I}_k, (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^T]$, where \mathbf{I}_k is a unit matrix of size $k \times k$.

(1) Encoding Examples

The B-CNAV1 Subframe 2 is encoded by one 64-ary(200,100) code.

Assume that the input information is

011110 100000 011101 011011 110110 111100 111100 001101 001000 101111]

110001 101001 011111 100010 010000 010111 101011 111101 000011 010110

The B-CNAV1 Subframe 3 is encoded by one 64-ary(88, 44) code.

Assume that the input information is

after encoding, the output codeword is

The B-CNAV2 message data are encoded by one 64-ary(96, 48) code. Assume that the input information is

after encoding, the output codeword is

(2) Mapping Relationship

Each codeword sequence of the 64-ary LDPC code is composed of 6 bits, which is defined over $GF(2^6)$ domain with the primitive polynomial of $p(x)=1+x+x^6$. Each element in Galois field can be described by the vector representation and power representation.

The mapping from the vector representation of 64 field elements to the power representation is shown as follows:

$$[\infty]$$
 0 1 6 2 12 7 26 3 32 13 35 8 48 27 18
4 24 33 16 14 52 36 54 9 45 49 38 28 41 19 56
5 62 25 11 34 31 17 47 15 23 53 51 37 44 55 40
10 61 46 30 50 22 39 43 29 60 42 21 20 59 57 58]

The mapping from the power representation of 63 non-zero elements to the vector representation is shown as follows:

2. Non-binary LDPC Decoding

One codeword sequence $\mathbf{c} = (\mathbf{c_0}, \mathbf{c_1}, ..., \mathbf{c_{n-1}})$ of a non-binary LDPC code generated by the encoder is transmitted over a channel with the

modulation. On the receiving side, a corresponding sequence $\mathbf{y} = (\mathbf{y_0}, \mathbf{y_1}, ..., \mathbf{y_{n-1}})$ is received, where $\mathbf{y_j} = (y_{j,0}, y_{j,1}, ..., y_{j,r-1})$ is the received information vector corresponding to the j^{th} codeword sequence \mathbf{c}_j , $\mathbf{c}_j \in \mathrm{GF}(q)$, $q = 2^r$ and $0 \le j < n$. For the parity-check matrix \mathbf{H} of size $m \times n$, each element $h_{i,j}$ is an element in $\mathrm{GF}(q)$, while each row corresponds to a check node CN and each column corresponds to a variable node VN.

Two index sets are given as follows:

$$M_{i} = \{i : 0 \le i < m, h_{i,j} \ne 0\}, 0 \le j < n$$

$$N_i = \{ j : 0 \le j < n, h_{i,j} \ne 0 \}, 0 \le i < m$$

If $h_{i,j} \neq 0$, the check node CN_i is connected to the variable node VN_j . The information vector transmitted from the variable node VN_j to the connected check node CN_i ($i \in M_j$) is denoted as $V2C_{j \to i}$, and the information vector transmitted from the check node CN_i to the connected variable node VN_j ($j \in N_i$) is denoted as $C2V_{i \to j}$.

The parity-check matrix \mathbf{H} of the non-binary LDPC code can be used to check the correctness of the received sequence \mathbf{y} . A hard decision codeword sequence $\hat{\mathbf{c}} = (\hat{c}_0, \hat{c}_1,, \hat{c}_{n-1})$ is obtained by making hard decision on the received sequence \mathbf{y} bit by bit. The check sum is calculated as $\mathbf{s} = \hat{\mathbf{c}} \mathbf{H}^T$. If $\mathbf{s} = \mathbf{0}$ (for any i, $0 \le i < m$, $\sum_{j \in N_i} \hat{c}_j h_{i,j} = 0$, in the Galois field), $\hat{\mathbf{c}}$ is the correct output, otherwise $\hat{\mathbf{c}}$ is erroneous.

(1) Extended Min-Sum Method

Set the mean noise value of the additive white Gaussian noise channel as zero and the variance as σ^2 . The reliability vector $\mathbf{L_j}$ is calculated according to the received symbol vector $\mathbf{y_j}$ corresponding to each codeword sequence $\mathbf{c_j}$. Each element of the vector $\mathbf{L_j}$ consists of a combination of all q Galois field elements $x \in GF(q)$ and their LLR values (x, LLR(x)). The logarithmic likelihood ratio of the Galois field element x in the vector $\mathbf{L_j}$ is

LLR(x) = log(
$$\frac{P(\mathbf{y}_{j} | \hat{x})}{P(\mathbf{y}_{i} | x)}$$
) = $\frac{2\sum_{b=0}^{r-1} |y_{j,b}| \Delta_{j,b}}{\sigma^{2}}$

where \hat{x} is the element in GF(q) which maximizes the probability $P(\mathbf{y}_j \mid x)$, i.e., the hard decision symbol of \mathbf{y}_j . The bit sequences of the Galois field elements x and \hat{x} are $x = (x_0, x_1,, x_{r-1})$ and $\hat{x} = (\hat{x}_0, \hat{x}_1,, \hat{x}_{r-1})$, respectively. $\Delta_{j,b} = x_b \operatorname{XOR} \hat{x}_b$, where XOR is exclusive-OR operation, that is, if x_b and \hat{x}_b are the same, $\Delta_{j,b} = 0$, otherwise, $\Delta_{j,b} = 1$.

In the extended Min-Sum decoding algorithm, the length of each reliability vector $\mathbf{L}_{\mathbf{j}}$ is reduced from q to n_m ($n_m \ll q$), i.e., truncating the n_m most reliable field elements (i.e., the smallest LLR values) from the information vector. The extended Min-Sum decoding algorithm is shown as follows:

Initialization: Set the maximum number of iterations as $\operatorname{itr}_{\max}$ and the current iteration number itr. as zero. The reliability vector $\mathbf{L}_{\mathbf{j}}$ ($0 \le j < n$) is calculated from the received vector $\mathbf{y}_{\mathbf{j}}$. Initialize all $\operatorname{V2C}_{j \to i}$ vectors of each variable node VN_{j} with $\mathbf{L}_{\mathbf{j}}$.

- Step 1: For each variable node VN_j $(0 \le j < n)$, the decision symbol \hat{c}_j and the information vector $V2C_{j \to i}$ are calculated according to the variable node updating rule.
- Step 2: Calculate the check sum $\mathbf{s} = \hat{\mathbf{c}}\mathbf{H}^T$. If $\mathbf{s} = \mathbf{0}$, output the decision sequence and exit the decoding, otherwise, go into Step 3.
- Step 3: For each check node CN_i ($0 \le i < m$), the information vector $C2V_{i \to j}$ is calculated according to the check node updating rule.
- Step 4: Let itr=itr+1. If $itr=itr_{max}$, exit decoding and declare a decoding failure, otherwise, go into Step 1.

1) Updating Rules of Variable Nodes

If the current iteration number itr=0, the reliability vector $\mathbf{L_j}$ of each codeword sequence is arranged in ascending order according to its LLR values of the q field elements. The first n_m elements in the sorted $\mathbf{L_j}$ constitute the truncated reliability vector $\mathbf{L_{j,n_m}} = (\mathbf{x_{n_m}}, \text{LLR}(\mathbf{x_{n_m}}))$. Initialize $\text{V2C}_{j \to i}$ as $\mathbf{L'_{j,n_m}}$:

$$\text{V2C}_{j \rightarrow i} = \mathbf{L}_{j,\mathbf{n_m}}^{'} = \mathbf{L}_{j,\mathbf{n_m}}^{'}.~h_{i,j} = (\mathbf{x}_{\mathbf{n_m}}.~h_{i,j}, \text{LLR}(\mathbf{x}_{\mathbf{n_m}}))$$

where \mathbf{x}_{n_m} is the vector containing the n_m truncated Galois field elements, and $\mathbf{x}_{n_m} \cdot h_{i,j}$ is the Galois field multiplication of $h_{i,j}$ and n_m Galois field elements in \mathbf{x}_{n_m} .

If the current iteration number itr $\neq 0$, for each variable node VN_j , the information vector $V2C_{j\rightarrow i}$ is calculated by using the vector $C2V_{i\rightarrow j}$ of length n_m transmitted from all the check nodes which is connected with VN_j :

$$\operatorname{V2C}_{j \to i} = h_{i,j}. \left(\sum_{f \in M_j, f \neq i} \operatorname{C2V}_{f \to j}. h_{f,j}^{-1} + \mathbf{L}_j \right)_{n_m}$$

where the Galois field element $h_{f,j}^{-1}$ is the inverse element of $h_{f,j}$, that is, $h_{f,j}^{-1}.h_{f,j}=1$. In the above equation, the sum operation adds the reliability of the same field element in each information vector $C2V_{i\to j}$. $(\bullet)_{n_m}$ operation indicates that the field elements in the information vector are sorted by ascending order and the first n_m different Galois field elements with their reliability values are truncated. The LLR of the $q-n_m$ Galois field elements discarded from the information vector $C2V_{i\to j}$ is set as the sum of the maximum LLR value in $C2V_{i\to j}$ and a fixed offset. After each information vector $V2C_{j\to i}$ is calculated, the LLR value of each element in the information vector subtracts LLR_{min} which is the minimum LLR value in this vector.

In addition, a decision should be made on each variable node in each iteration. The Galois field element corresponding to LLR_{min} in the information vector $\{\sum_{f\in M_j} C2V_{f\rightarrow j}. h_{f,j}^{-1} + \mathbf{L}_j\}$ of length q is selected as a decision value. The related decision formula is

$$\hat{c}_{j} = \arg\min_{x \in GF(q)} \{ \sum_{f \in M_{i}} \text{C2V}_{f \to j}. \ h_{f,j}^{-1} + \mathbf{L}_{j} \}, 0 \le j < n$$

The decision symbol \hat{c}_j is transmitted together with the

information vector $V2C_{j\rightarrow i}$ to the corresponding check node. It is checked whether the current iteration decoding vector $\hat{\mathbf{c}} = (\hat{c}_0, \hat{c}_1,, \hat{c}_{n-1})$ satisfies that $\mathbf{s} = \hat{\mathbf{c}}\mathbf{H}^T$ is a zero vector.

2) Updating Rules of Check Nodes

For each check node CN_i ($0 \le i < m$), all information vectors $V2C_{j \to i}$ from the connected variable nodes are received. The information vector $C2V_{i \to j}$ is calculated by

$$C2V_{i\to j} = \sum_{\gamma\in N_i, \gamma\neq j} V2C_{\gamma\to i}$$

where, each sum operation is defined as the basic calculation of the check node, i.e., when two information vectors of length n_m are inputted, the corresponding output is the information vector generated by truncating the first n_m elements from the sorted calculation result.

The two input information vectors of the check nodes is given as $(\mathbf{U}_s, \mathbf{U})$ and $(\mathbf{Q}_s, \mathbf{Q})$, and the output information vector is given as $(\mathbf{V}_s, \mathbf{V})$, where \mathbf{U} , \mathbf{Q} , \mathbf{V} are the reliability vectors arranged in ascending order, and \mathbf{U}_s , \mathbf{Q}_s , \mathbf{V}_s are the corresponding Galois field element vectors. According to the input information vectors, the reliability matrix \mathbf{M} of size $n_m \times n_m$ and the Galois field element matrix \mathbf{M}_s are constructed as follows:

$$M_s = U_s[d] \oplus Q_s[\rho]$$
$$M = U[d] + Q[\rho]$$

where, $d, \rho \in \{0,1,...,n_m-1\}$ and \oplus is the Galois field addition operation.

The basic formula for the check node is

$$V[\varepsilon] = \min_{d,\rho \in [0,1,\dots,n_m-1]} \{M[d,\rho]\}_{V_s[\varepsilon] = M_s[d,\rho]}, 0 \le \varepsilon < n_m$$

The implementation of the above equation can be completed by operating the register S of size n_m as follows:

Initialize: Store the first column of **M** into **S**, and let $S[\zeta] = M[\zeta, 0]$, $\zeta \in \{0, 1, ..., n_m - 1\}$. Let $\varepsilon = 0$.

- **Step 1:** Find the minimum value in **S**. (Suppose $M[d, \rho]$ is the element of the matrix **M** which corresponds to the smallest value of **S**.)
- Step 2: If the Galois field element corresponding to the found minimum value does not exist in V_s , then fill $V[\varepsilon]$ with the minimum value in S, fill $V_s[\varepsilon]$ with the corresponding Galois field element, and $\varepsilon = \varepsilon + 1$. Otherwise, no action.
- **Step 3:** Replace the minimum value in **S** by $M[d, \rho+1]$, i.e., the element on the right of the corresponding element in **M**.

Step 4: Go to Step 1 until $\varepsilon = n_m$.

(2) Fixed Path Decoding Method

The fixed path decoding method is an efficient decoding algorithm, and its algorithm procedure is consistent with that of the extended Min-Sum method, except that the check node updating rules is different. Take check nodes with row weight d_c=4 (i.e., each check node receives four input information vectors) as an example, the check node updating rules of the fixed path decoding method are described as follows:

For each check node CN_i $(0 \le i < m)$, the fixed path deviation value vector $\mathbf{E_i} = (\mathbf{Rs_i}, \mathbf{R_i})$ of length $8 + 2n_m$ is calculated by using the received information vectors $V2C_{j \to i}$ transmitted from the four connected variable

nodes. In order to compute each fixed path deviation value, it is necessary to input all the received information vectors $V2C_{j\rightarrow i}$, and sort the indices of all the input vectors in ascending order according to the reliability value of the second symbol in each vector. The sorted input vector is defined as $(\mathbf{Rs}_{i,i}, \mathbf{R}_{i,i})$, where $0 \le i < 4$. $\mathbf{Rs}_{i,i}$ is the Galois field element vector of length n_m arranged in ascending order, and $\mathbf{R}_{i,i}$ is the LLR value of each element in $\mathbf{Rs}_{i,i}$. Then, the fixed path deviation value vector $\mathbf{E}_i = (\mathbf{Rs}_i, \mathbf{R}_i)$ of length $8+2n_m$ is computed according to $\mathbf{R}_{i,i}$ and $\mathbf{Rs}_{i,i}$ which are calculated by the equations as follows:

$$R_{i}[e] = \begin{cases} 0, & e = 0 \\ R_{e-1,c}[1], & 1 \le e \le 4 \\ R_{0,c}[1] + R_{e-4,c}[1], & 5 \le e \le 7 \end{cases}$$

$$R_{i,c}[1] + R_{e-6,c}[1], & 8 \le e \le 9 \\ R_{e-10,c}[2], & 10 \le e < 14 \\ R_{\theta,c}[e-11], & 14 \le e < 11 + n_{m} \\ R_{\beta,c}[e-8 - n_{m}], & 11 + n_{m} \le e < 8 + 2n_{m} \end{cases}$$

$$\begin{cases} \sum_{0 \le i < 4} Rs_{e,c}[0], & e = 0 \\ Rs_{e-1,c}[1] \oplus \sum_{0 \le i < 4, i \ne e-1} Rs_{i,c}[0], & 1 \le e \le 4 \end{cases}$$

$$Rs_{i}[e] = \begin{cases} Rs_{i,c}[1] \oplus Rs_{e-4,c}[1] \oplus \sum_{0 \le i < 4, i \ne e-4} Rs_{i,c}[0], & 5 \le e \le 7 \end{cases}$$

$$Rs_{i}[e] = \begin{cases} Rs_{i,c}[1] \oplus Rs_{e-6,c}[1] \oplus \sum_{0 \le i < 4, i \ne e-4} Rs_{i,c}[0], & 10 \le e < 14 \end{cases}$$

$$Rs_{i,c}[e-11] \oplus \sum_{0 \le i < 4, i \ne e-1} Rs_{i,c}[0], & 10 \le e < 14 \end{cases}$$

$$Rs_{i,c}[e-11] \oplus \sum_{0 \le i < 4, i \ne e-1} Rs_{i,c}[0], & 11 + n_{m} \le e < 8 + 2n_{m} \end{cases}$$

$$Rs_{i,c}[e-8 - n_{m}] \oplus \sum_{0 \le i < 4, i \ne e} Rs_{i,c}[0], & 11 + n_{m} \le e < 8 + 2n_{m} \end{cases}$$

Where, θ and β represent the subscripts of the sorted input vectors corresponding to the minimum and second smallest values of the

 $\lfloor n_m/2 \rfloor + 1^{\text{th}}$ reliability values in all the sorted input vectors, respectively. The sum operation and \oplus in the above equation are the Galois field addition operation.

Set two flag vectors \mathbf{T} and $\mathbf{\bar{T}}$ of length $8+2n_m$ and initialize them to all "1" vectors. The updating rules for the first $0 \le k_R < 11 + n_m$ values of the flag vectors \mathbf{T} and $\mathbf{\bar{T}}$ is defined by the following equations:

$$T[k_R] = \begin{cases} 1, & R_i[k_R] \le R_{\theta,c} \lfloor \lfloor n_m / 2 \rfloor \\ 0, & R_i[k_R] > R_{\theta,c} \lfloor \lfloor n_m / 2 \rfloor \end{cases}$$

$$\overline{T}[k_R] = \begin{cases} 1, & R_i[k_R] \le R_{\beta,c} \left[\lfloor n_m / 2 \rfloor \right] \\ 0, & R_i[k_R] > R_{\beta,c} \left[\lfloor n_m / 2 \rfloor \right] \end{cases}$$

According to the fixed path deviation vector and the flag vectors, Four output information vectors $(\mathbf{U}\mathbf{s}_{i,\iota},\mathbf{U}_{i,\iota})$ of length n_m are updated by the following equations:

$$Us_{i,i}[z] = Rs_i[w] \oplus Rs_{i,i}[0]$$
$$U_{i,i}[z] = R_i[w]$$

where, $0 \le t < 4, 0 \le z < n_m$, and the value range of w is determined by the different cases.

In the case of t = 0, if $\theta \neq 0$, the value range of w is

$$\{w \mid T[w] = 1\} \cap \{w = 0 \text{ or } 1 < w \le 4 \text{ or } 8 \le w < 10 \text{ or } w > 10\}$$

otherwise, the value range of w is

$$\{w \mid \overline{T}[w] = 1\} \cap \{w = 0 \text{ or } 1 < w \le 4 \text{ or } 8 \le w < 10 \text{ or } 10 < w < 14 \text{ or } w \ge 11 + n_m\}$$

In the case of $1 \le \iota < 4$, if $\iota \ne \beta$, the value range of w is

$$\{w \mid T[w] = 1\} \cap \{0 \le w \le 7 \text{ or } w \ge 10\} \cap \{w \ne t + 1 \& w \ne 4 + t \& w \ne 10 + t\}$$

otherwise, the value range of w is:

$$\{w \mid \bar{T}[w] = 1\} \bigcap \{0 \le w \le 7 \text{ or } 10 \le w < 14 \text{ or } w \ge 11 + n_m\} \bigcap \{w \ne t + 1 \& w \ne 4 + t \& w \ne 10 + t\}$$

The order of the four information vectors $(\mathbf{Us_{i,i}}, \mathbf{U_{i,i}})$ is aligned with the four sorted input vectors $(\mathbf{Rs_{i,i}}, \mathbf{R_{i,i}})$. Each input vector $(\mathbf{Rs_{i,i}}, \mathbf{R_{i,i}})$ corresponds to a $C2V_{i \to j}$ vector and a $V2C_{j \to i}$ vector, thus each information vector $C2V_{i \to j}$ can be updated as

$$C2V_{i\rightarrow j} = (Us_{i,i}, U_{i,i})$$