Introduction

Exercises

- 1. Exercise 1:
 - (a) We have $2^{15} 1 = 32767 = 1057 \cdot 31 = 4681 \cdot 7$.
 - (b) We know that $32767 = 1057 \cdot 31$, we have $2^{32767} 1$ divisible by $2^{31} 1$ (since $2^{32767} 1 = (2^{31} 1)(1 + 2^{31} + 2^{2 \cdot 31} + \dots + 2^{1056 \cdot 31})$) and $1 < 2^{31} 1 < 2^{32767} 1$.

2. Exercise 2:

\overline{n}	is n prime?	$3^{n} - 1$	is $3^n - 1$ prime?	$3^{n}-2^{n}$	is $3^n - 2^n$ prime?
2	yes	8	no	5	yes
3	yes	26	no	19	yes
4	no	80	no	65	no
5	yes	242	no	211	yes
6	no	720	no	665	no
7	yes	2186	no	2059	no?

Conjecture 1. Suppose n is an integer, if n > 0 then $3^n - 1$ is not prime.

- 3. Exercice 3:
 - (a) Let $m = 2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211$, by theorem 3 m is prime.
 - (b) Let $m = 2 \cdot 5 \cdot 11 + 1 = 111$ is not prime since $111 = 3 \cdot 37$, thus it yields two primes.
- 4. **Exercice 4:** Let x = (5+1)! + 2 = 6! + 2, Hence by theorem 4, we gave 722, 723, 724, 725, 726 are not primes.
- 5. **Exercice 5:** We have $2^5 1 = 31$, Hence according to Euclid $2^{5-1}(2^5 1) = 496$ is perfect.
- 6. Exercice 6: Let's suppose that there exist such "triplet primes": (n, n+2, n+4) where $n \geq 5$, n could be written as follows, either n = 3k+1 or n = 3k+2. If n = 3k+1 then n+2 = 3k+3 = 3(k+1) which is divisible by 3, thus contradicting the fact that n+2 is prime and our supposition. If n = 3k+2 then n+4=3k+6=3(k+2) which is divisible by 3, thus contradicting the fact that n+4 is prime. Hence in all cases of n we end up with a contradiction, we can then conclude that there are no "triplet primes" for all $n \geq 5$.