

Note de l'enseignant:

/20

SMA2-SMI2 - Session normale- 30 juin 2021

N° d'examen :	Nom et Prénom :
CNE:	Filière :

Epreuve d'optique géométrique Durée : 1h 30min

Problème

On considère un système centré Σ . formé de l'association d'un dioptre sphérique convexe D_1 (air-verre) et d'un dioptre sphérique concave D_2 (verre-air) respectivement de centres C_1 et C_2 de sommets S_1 et S_2 et de rayons de courbures $R_1 = \overline{S_1C_1}$ et $R_2 = \overline{S_2C_2}$ tels que $R_1 = -R_2 = R$ avec R > 0.

Les indices des milieux extrêmes de systèmes centré Σ sont notés n et n'et sont identiques et égaux à 1 et les deux surfaces sphériques sont séparées par un milieu transparent d'indice N=1,5. Les deux dioptres ont un même axe principal dont le sens positif est celui de la propagation de la lumière qui se propage de gauche à droite. Les sommets de ces dioptres sont séparés par une distance $e=\overline{S_1S_2}=8R$.

On désignera par (F_1, F'_1) et (F_2, F'_2) les foyers principaux objet et image respectivement pour les dioptres sphériques D_1 et D_2 et on supposera que les conditions de l'approximation de Gauss sont satisfaites

A- (10 points)

1)- a- Exprimer les distances focales objet f_1 et image f'_1 du dioptre sphérique D_1 en fonction de n, N et R puis donner leurs valeurs en fonction de R.

et
$$R$$
 puis donner leurs valeurs en fonction de R .

La distance focale objet $f_1 = \frac{-nR_1}{N-n} = -2R$ et la distance focale image $f'_1 = \frac{NR_1}{N-n} = 3R$

b- Donner les deux expressions de la vergence V_1 du dioptre sphérique D_1 et donner sa valeur en fonction de R. En déduire la valeur de $\frac{f_1}{f_1'}$.

en fonction de
$$R$$
. En déduire la valeur de $\frac{f_1}{f'_1}$.
$$V_1 = -\frac{n}{f_1} = \frac{N}{f'_1} = \frac{1}{2R} \implies \frac{f_1}{f'_1} = \frac{-n}{N} = \frac{-2}{3}$$

2)- a- Exprimer les distances focales objet f_2 et image f'_2 du dioptre sphérique D_2 en fonction de n', N et R puis donner leurs valeurs en fonction de R.

Distance focale objet
$$f_2 = \frac{-NR_2}{n'-N} = -3R$$
 Distance focale image $f'_2 = \frac{n'R_2}{n'-N} = 2R$

b- Donner les deux expressions de la vergence V_2 du dioptre sphérique D_2 et donner sa valeur en fonction de **R**. En déduire la valeur de $\frac{f_2}{f_2}$

$$V_2 = -\frac{N}{f_2} = \frac{n'}{f_2'} = \frac{1}{2R} \implies \frac{f_2}{f_2'} = \frac{-N}{n'} = \frac{-3}{2}$$

3)- Exprimer l'intervalle optique $\Delta = \overline{F_1'F_2}$ en fonction de f_1' , e et f_2 et donner sa valeur en fonction de **R**.

$$\Delta = \overline{F_1'F_2} = \overline{F_1'S_1} + \overline{S_1S_2} + \overline{S_2F_2} = -f_1' + e + f_2 \quad \Delta = -3R + 8R - 3R = 2R$$

4)- On désigne par F le foyer principal objet du système centré Σ , établir alors en fonction Rsa position algébrique par rapport à F_1 : F_1F .

D'après ce schéma synoptique ci-dessous F et F_2 sont deux points conjugués par rapport à D_1 $A \equiv F \xrightarrow{D_1} A_1 \equiv F_2 \xrightarrow{D_2} A' \equiv \infty$ n

En appliquant la relation de Newton à ce couple de points conjugués on aura :

$$\overline{F_1F} \times \overline{F_1'F_2} = f_1 \times f_1' \implies \overline{F_1F} = \frac{f_1 \times f_1'}{\Delta} \Longrightarrow \overline{F_1F} = \frac{(-2R) \times (3R)}{2R} = -3R$$

5)- On désigne par F' le foyer principal image du système centré Σ , établir alors en fonction Rsa position algébrique par rapport à $F'_2:F'_2F'$.

D'après ce schéma synoptique ci-dessous F_1' et F'et .sont deux points conjugués par rapport

à
$$D_2$$

$$A \equiv \infty \xrightarrow{D_1} A_1 \equiv F'_1 \xrightarrow{D_2} A' \equiv F'$$
En appliquant la relation de Newton à ce couple de points conjugués on aura :

$$\overline{F_2F_1'} \times \overline{F_2'F'} = f_2 \times f_2' \implies \overline{F_2'F'} = -\frac{f_2 \times f_2'}{\Delta} \implies \overline{F_2'F'} = -\frac{(-3R) \times (2R)}{2R} = 3R$$
6)- On désigne par f et f' les distances focales objet et image du système centré Σ et par V sa

vergence. Donner alors les deux expressions de V et en déduire la valeur de $\frac{f}{f'}$. Conclusion.

$$V = -\frac{n}{f} = \frac{n'}{f'} \stackrel{\text{\scriptsize (0,25)}}{\Rightarrow} \frac{f}{f'} = -\frac{n}{n'} = -1 \Rightarrow f' = -f$$

7)- a- Ecrire pour l'association de ces deux dioptres sphériques D_1 et D_2 la formule de Gullstrand. En déduire l'expression de la distance focale objet f en fonction de f_1 , f_2 et Δ puis donner

sa valeur en fonction de
$$R$$
.

$$V = V_1 + V_2 - \frac{e}{N} V_1 V_2$$
Avec: $V_1 = -\frac{n}{f_1}$, $V_2 = -\frac{N}{f_2}$ et $n = 1 \Rightarrow V = -\frac{1}{f_1} - \frac{N}{f_2} - \frac{e}{N} \cdot \frac{1}{f_1} \cdot \frac{N}{f_2} = \frac{-f_2 - N f_1 - e}{f_1 f_2} = \frac{-\Delta}{f_1 f_2}$

$$= -\frac{1}{f}$$

$$\Rightarrow f = \frac{f_1 f_2}{\Delta} \quad \text{0.25} \Rightarrow f = \frac{(-2R) \times [-3R]}{2R} = 3R$$

b- Déduire de cette formule de Gullstrand l'expression de la distance focale image f'en fonction de f'_1 ,

$$\frac{f'_{2} \text{ et } \Delta \text{ puis donner sa valeur en fonction de } R.}{V = V_{1} + V_{2} - \frac{e}{N} V_{1} V_{2}}$$

$$\text{Avec}: V_{1} = \frac{N}{f'_{1}}, V_{2} = \frac{n'}{f'_{2}} \text{ et } \mathbf{n}' = 1 \Rightarrow V = \frac{N}{f'_{1}} + \frac{n'}{f'_{2}} - \frac{e}{N} \cdot \frac{N}{f'_{1}} \cdot \frac{n'}{f'_{2}} = \frac{N f'_{2} - f'_{1} - e}{f'_{1} f'_{2}} = \frac{-\Delta}{f'_{1} f'_{2}} = \frac{1}{f'_{1}} \Rightarrow f' = -\frac{f'_{1} f'_{2}}{\Delta} \Rightarrow f' = -\frac{(2R) \times [3R]}{2R} = -3R$$

8)- Calculer alors en fonction de R la vergence V. Conclusion.

$$V = \frac{1}{f'} = -\frac{1}{3R}$$
 $\Rightarrow V < 0$ \Rightarrow Le système centré Σ est donc divergent.

9)- Si l'on désigne par H et H' les points principaux objet et image du système centré Σ . exprimer alors en fonction de R:

 $\mathbf{a} - \overline{F_1 H}$ puis $\overline{S_1 H}$ donnant les distances algébriques du point principal objet H par rapport

On a:
$$\overline{F_1H} = \overline{F_1F} + \overline{FH} = \overline{F_1F} - \overline{HF} = \overline{F_1F} - f$$

Avec $\overline{F_1F} = -3R$ et $f = 3R$ \Rightarrow $\overline{F_1H} = -6R$
On a: $\overline{S_1H} = \overline{S_1F_1} + \overline{F_1H} = f_1 + \overline{F_1H}$
Or $\overline{S_1F_1} = f_1 = -2R$ et $\overline{F_1H} = -6R$ \Rightarrow $\overline{S_1H} = -2R - 6R = -8R$

b- $F_2'\overline{H'}$ puis $\overline{S_2H'}$ donnant les distances algébriques du point principal image H' par rapport

$$F_2' \text{ et } S_2.$$

$$\boxed{\begin{array}{l} \text{On a: } \overline{F_2'H'} = \overline{F_2'F'} + \overline{F'H'} = \overline{F_2'F'} - \overline{H'F'} = \overline{F_2'F'} - f' \\ \text{Avec } \overline{F_2'F'} = 3R \text{ et } f' = -3R \Rightarrow \overline{F_2'H'} = (3R) - (-3R) = 6R \\ \overline{S_2H'} = \overline{S_2F_2'} + \overline{F_2'H'} = f_2' + \overline{F_2'H'} \\ \text{Or } \overline{S_2F_2'} = f_2' = 2R \text{ et } \overline{F_2'H'} = 6R \Rightarrow \overline{S_2H'} = 2R + 6R = 8R \end{array}}$$

10)- Si l'on désigne par N et N' les points nodaux objet et image du système centré Σ , Calculer alors les valeurs de \overline{HN} et de $\overline{H'N'}$. Conclusion.

$$\overline{HN} = f + f' = 0 \implies H \equiv N$$
 C'est-à-dire H et N sont confondus $\overline{H'N'} = f + f' = 0 \implies H' \equiv N'$ C'est-à-dire H' et N' sont confondus

B- (6 points)

On considère un objet AB qui donne à travers le dioptre sphérique D_1 une image intermédiaire A_1B_1 qui sert de l'objet pour le dioptre sphérique D_2 pour en donner une image définitive AB'et dont les points A, A_I et A' sont sur l'axe principal. On suppose que le point objet A est situé à gauche du dioptre sphérique D_1 telle que sa position est donnée par $p_1 = \overline{S_1 A} = -R$.

1)- Calculer en fonction de R, la position $p_1' = \overline{S_1 A_1}$ de l'image intermédiaire par rapport au sommet S_1 du dioptre sphérique D_1 . En déduire en fonction de R, la position $p_2 = \overline{S_2 A_1}$ de cette image

intermédiaire par rapport au sommet
$$S_2$$
 du dioptre sphérique D_2 .
$$\frac{n}{p_1} - \frac{N}{p_1'} = \frac{n-N}{R_1} \Rightarrow p_1' = \overline{S_1 A_1} = \frac{N \times p_1 \times R_1}{n \times R_1 - (n-N) \times p_1} \Rightarrow p_1' = \overline{S_1 A_1} = -3R$$

$$p_2 = \overline{S_2 A_1} = \overline{S_2 S_1} + \overline{S_1 A_1} \Rightarrow p_2 = -8R - 3R = -11R$$

2)- Calculer en fonction de R, la position $p_2' = \overline{S_2 A'}$ de l'image définitive A' par rapport au sommet S_2 du dioptre sphérique D_2 .

$$\frac{\frac{N}{p_2} - \frac{n'}{p_2'} = \frac{N - n'}{R_2} \Rightarrow p_2' = \overline{S_2 A'} = \frac{n' \times p_2 \times R_2}{N \times R_2 - (N - n') \times p_2} \stackrel{\text{\scriptsize (0,5)}}{\Longrightarrow} \Rightarrow p_2' = \overline{S_2 A'} = \frac{11}{4} R$$

3)- Quelles sont les natures de l'objet AB, de l'image intermédiaire A_1B_1 et de l'image définitive A B'.

- -L'objet AB est réel car $p_1 < 0$
- -L'image intermédiaire A_1B_1 est virtuelle car $p'_1 < 0$
- -L'image définitive A'B' est réelle car $p'_2 > 0$
- 4)- Calculer les grandissements linéaires γ_1 et γ_2 respectivement pour les dioptres sphériques ${\it D}_1$ et ${\it D}_2$. En déduire la valeur du grandissement linéaire γ du système centré Σ . Conclusion.

$$\gamma_{1} = \frac{\overline{A_{1}B_{1}}}{\overline{AB}} = \frac{n}{N} \times \frac{p'_{1}}{p_{1}} \qquad \Rightarrow \qquad \gamma_{1} = \frac{2}{3} \times \frac{(-3R)}{(-R)} = 2$$

$$\gamma_{2} = \frac{\overline{A'B'}}{\overline{A_{1}B_{1}}} = \frac{N}{n'} \times \frac{p'_{2}}{p_{2}} \qquad \Rightarrow \qquad \gamma_{2} = \frac{3}{2} \times \frac{\left(\frac{11R}{4}\right)}{(-11R)} = -\frac{3}{8}$$

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A_{1}B_{1}}}{\overline{AB}} \times \frac{\overline{A'B'}}{\overline{A_{1}B_{1}}} = \gamma_{1} \times \gamma_{2}$$

$$\gamma = 2 \times \left(\frac{-3}{8}\right) = -\frac{3}{4} \qquad \Rightarrow \qquad \gamma < 0 \text{ L'mage A'B'} \text{ est renversée}$$

5)- Calculer en fonction de R, la position $p = \overline{HA}$ de l'objet A par rapport au point principal objet H du système centré Σ .. On utilisera la relation de Shales et le résultat trouvé en A-9)-a. $p = \overline{HA} = \overline{HS_1} + \overline{S_1A} = -\overline{S_1H} + \overline{S_1A} \implies p = -(-8R) + (-R) = 7R$

$$p = \overline{HA} = \overline{HS_1} + \overline{S_1A} = -\overline{S_1H} + \overline{S_1A}$$
 $\Rightarrow p = -(-8R) + (-R) = 7R$

6)- Si l'on désigne par $p' = \overline{H'A'}$ la position de l'mage définitive A' par rapport au point principal image H' du système centré Σ , donner l'expression du grandissement linéaire γ en fonction de n, n', p et p'. En déduire la valeur de p' en fonction R.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n}{n'} \times \frac{p'}{p} = \frac{p'}{p} \implies p' = \frac{n'}{n} \times \gamma \times p \implies p' = \left(\frac{-3}{4}\right) \times (7R) = -5,25R$$

C- (4 points)

On peut représenter les deux dioptres sphériques D_1 et D_2 par leurs systèmes centrés équivalants Σ_1 et Σ_2 de foyers principaux objet et image (F_1, F'_1) et (F_2, F'_2) respectivement et de distances focales objet et image (f_1, f'_1) et (f_2, f'_2) respectivement.

- 1)- Quelles sont les positions des plans principaux objet (H_1) image (H'_1) et des points principaux objet et image (H_1, H'_1) du système centré $\sum_{i=1}^{n}$ et de ses points nodaux objet et image (N_1, H'_1) N'_{1}).
- Les plans principaux objet (H_1) image (H'_1) sont confondus et passe par le sommet S_1 du dioptre sphérique D_I et perpendiculairement à l'axe principal.

Les points principaux objet et image H_1 et H'_1 du système centré Σ_1 équivalant au dioptre sphérique D_1 sont confondus avec son sommet S_1 .

Les points nodaux objet et image N_1 et N'_1 du système centré Σ_1 équivalant au dioptre sphérique D_1 sont confondus avec son centre C_1 .

2)- Quelles sont les positions des plans principaux objet (H_2) image (H'_2) et des points principaux objet et image (H_2, H'_2) du système centré Σ_2 et de ses points nodaux objet et image $(N_2,N'_2).$

Les plans principaux objet (H_2) image (H'_2) sont confondus et passe par le sommet S_2 du dioptre sphérique D_2 et perpendiculairement à l'axe principal.

Les points principaux objet et image H_2 et H'_2 du système centré Σ_2 équivalant au dioptre sphérique D_2 sont confondus avec son sommet S_2 .

Les points nodaux objet et image N_2 et N'_2 du système centré Σ_2 équivalant au dioptre sphérique D_1 sont confondus avec son centre C_2 .

N° d'examen :	Nom et Prénom :
CNE:	Filière :

3)-Le système centré Σ . précédent est le système centré équivalant à l'association de ces deux centrés Σ_1 et Σ_2 . En prenant comme échelle la longueur d'une maille équivalant à 1R, déterminer graphiquement :

a- Les positions de son foyer principal objet F et de son plan principal objet (H) ainsi que celle de son point principal objet H.

b- Les positions de son foyer principal image F'et de son plan principal image (H') ainsi que celle de son point principal image H'.

