Предобработка и генерация признаков с учетом особенностей моделей

План

Главные темы:

- 1. Мотивация и введение
- 2. Числовые признаки
- 3. Категориальные признаки
- 4. Признаки с особенной структурой
- 5.Группы признаков
- 6.Отбор признаков??
- 7. Пропущенные значения признаков

Примеры признаков (данные из Титаника)

Целевая переменная

Числовая переменная

Переменные-счетчики

Категориальные переменные

id

Текстовая переменная

	Passengerid	Survived	Pclass	Name
0	1	0	3	Braund, Mr. Owen Harris
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th
2	3	1	3	Heikkinen, Miss. Laina
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)
4	5	0	3	Allen, Mr. William Henry
5	6	0	3	Moran, Mr. James
6	7	0	1	McCarthy, Mr. Timothy J
7	8	0	3	Palsson, Master. Gosta Leonard

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.000000	1	0	A/5 21171	7.2500	NaN	S
1	female	38.000000	1	0	PC 17599	71.2833	C85	С
2	female	26.000000	0	0	STON/O2. 3101282	7.9250	NaN	s
3	female	35.000000	1	0	113803	53.1000	C123	S
4	male	35.000000	0	0	373450	8.0500	NaN	S
5	male	29.699118	0	0	330877	8.4583	NaN	Q
6	male	54.000000	0	0	17463	51.8625	E46	S
7	male	2.000000	3	1	349909	21.0750	NaN	S

Мотивация и введение Предобработка признаков

Модели на деревьях

Input data Decision Tree Random Forest AdaBoost 95 93 78 82 82

Остальные модели

«Деревянные» модели, в отличие от остальных, инварианты относительно масштабирования признаков

Мотивация и введение Предобработка признаков

pclass	1	2	3
target	1	0	1

Предобработка признаков

pclass	1	2	3
target	1	0	1

pclass	pclass=	pclass= =2	pclass=
1	=1	=2	=3
2	1		
1		1	
3	1		
J			1

Предобработка признаков

Генерация признаков

Чем руководствоваться:

- Знание предметной области
- Исследование данных (EDA)

Генерация признаков

Площадь: 55 м2

Цена: 107000\$

Цена за 1м2: 107000\$/55 м2

Генерация признаков

Combined = (Horizontal** 2 + Vertical ** 2) **0.5

Неделя	Число яблок
1	42
2	46
3	52
4	58
5	64

	День	Неделя	Число яблок
	33	5	45
Train	34	5	72
	35	5	81
Tost	36	6	?
Test {	37	6	?

							День	Неделя	Число яблок
							33	5	45
42	46	52	58	64		Train	34	5	72
1	2	3	4	5	6	-	35	5	81
						Tost	36	6	?
						Test {	37	6	?

- В данном случае дерево решений не сможет учесть линейный тренд в зависимости целевой переменной от времени
- В то же время, можно сгенерировать признаки, которые окажутся полезным для дерева решений, но не для линейной модели

Мотивация и введение Выводы

- Предобработка признаков зачастую необходима
- Генерация признаков мощный метод
- Методы предобработки и генерации признаков зависят от типа модели

2. Числовые признаки

Числовые признаки План

- Масштабирование (нормализация)
- Работа с выбросами
- Немонотонные преобразования

Числовые признакиМасштабирование (нормализация)

1. К отрезку [0,1]

$$X = (X - X.min())/(X.max() - X.min())$$
 sklearn.preprocessing.MinMaxScaler

2. К распределению с мат.ожиданием = 0 и дисперсией = 1

$$X = (X - X.mean())/X.std() \label{eq:X-X-mean}$$
 sklearn.preprocessing.StandardScaler

Числовые признаки Работа с выбросами

• Винсоризация Ограничение значений признаков по некоторому правилу (например, по значению перцентилей)

Числовые признаки Немонотонные преобразования

1.Rank

```
rank([-100, 0, 1e5]) == [0,1,2]

rank([1000,1,10]) = [2,0,1]
```

- 2.Логарифмирование: np.log(1 + x)
- 3.Возведение в степень <1: np.sqrt(x + 2/3)

Числовые признаки Генерация признаков

Цена	Дробная часть
0.99	0.99
2.49	0.49
1.0	0.0
9.99	0.99

Числовые признаки Выводы

- 1. Обработка числовых признаков различна для моделей на деревьях и остальных моделей:
 - а. Модели на деревьях не зависят от масштабирования
 - Другие модели очень зависят от масштабирования

Числовые признаки Выводы

- 1. Предобработка числовых признаков различна для моделей на деревьях и остальных моделей:
 - а. «Деревянные» модели не зависят от масштабирования
 - b. Другие модели зависят от масштабирования
- 2. Часто используемые методы предобработки:
 - a. MinMaxScaler к отрезку [0,1]
 - b. StandardScaler κ mean==0, std==1
 - с. Ранг устанавливает одинаковые расстояния между отсортированными значениями
 - d. np.log(1+x) and np.sqrt(1+x)

Числовые признаки Выводы

- 3. Генерация признаков основана на:
 - а. Знания предметной области
 - b. Исследования данных (EDA)

3. Категориальные и порядковые признаки

Категориальные признаки Примеры кат. признаков (датасет «Титаник»)

C	1 . 1	כועקו	па	NOD	(датас		·	пап
	Passen	gerld Su	rvived	Pclass				Name
0		1	0	3		Braur	d, Mr. C	Owen Harris
1		2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th			
2		3	1	3	Heikkinen, Miss. Laina			
3		4	1	1	Futrelle, Mrs. J	acques He	eath (Lil	y May Peel)
4		5	0	3		Allen	, Mr. W	illiam Henry
5		6	0	3			Moran	, Mr. James
6		7	0	1		McCa	arthy, M	r. Timothy J
7		8	0	3	Palsson, Master. Gosta Leonard			
	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.000000	1	0	A/5 21171	7.2500	NaN	S
1								

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.000000	1	0	A/5 21171	7.2500	NaN	S
1	female	38.000000	1	0	PC 17599	71.2833	C85	С
2	female	26.000000	0	0	STON/O2. 3101282	7.9250	NaN	s
3	female	35.000000	1	0	113803	53.1000	C123	S
4	male	35.000000	0	0	373450	8.0500	NaN	S
5	male	29.699118	0	0	330877	8.4583	NaN	Q
6	male	54.000000	0	0	17463	51.8625	E46	S
7	male	2.000000	3	1	349909	21.0750	NaN	S

Категориальные признаки One-Hot Encoding

pclass	1	2	3
target	1	0	1

Категориальные признаки One-Hot Encoding

pclass		pclass=	
1	=1	=2	=3
2	1		
1		1	
3	1		
	1 7		1

pandas.get_dummies, sklearn.preprocessing.OneHotEncoder

Категориальные признаки Порядковые признаки

Класс билетов: 1,2,3

Категории водительский удостоверений: А, В,

C, D

Образование: детский сад, школа,

бакалавриат, магистратура, аспирантура

Категориальные признакиLabel Encoding

pclass	1	2	3
target	1	0	1

Категориальные признакиLabel Encoding

pclass	1	2	3
target	1	0	1

Категориальные признаки

Кодирование частотами

	K
E	embarked
S	j
(2
S)
S	;)
S)
C	Q
S)
S)
S)
C	-
S)
S)

```
[S,C,Q] \rightarrow [0.5, 0.3, 0.2]
```

```
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
titanic['enc'] = titanic.Embarked.map(encoding)
from scipy.stats import rankdata
```

Категориальные признаки

Комбинации признаков

pclass	sex	pclass_sex
3	male	3male
1	female	1female
3	female	3female
1	female	1female

Категориальные признаки

Генерация признаков

Места в самолете: 1A, 1B, ..., 1G, 2A, ..., 32F

seat	seat
1A	1
1C	3
19B	110
27F	162

Категориальные признаки Выводы

- 1. Значения в порядковых признаках отсортированы в некотором осмысленном порядке
- 2. Label encoding и кодирование частотами часто используется для деревьев:
 - Label encoding переводит категории в числа
 - Кодирование частотами переводит категории в их частоту
- 3. One-hot encoding часто используется для остальных моделей
- 4. Взаимодействия категориальных признаков могут быть полезны и для «деревьев», и для остальных

4. Признаки с особенной структурой

Признаки с особенной структурой Примеры

- Признаки с периодической структурой
 - Время
 - Датчики измерения с периодического процесса
- Признаки с пространственной структурой
 - Географические координаты
 - Координаты в признаковом пространстве (например, возраст/доход)

- 1.Периодичность
- 2.Сколько времени прошло/осталось
- 3. Разница между моментами времени

- 1.Периодичность Номер дня в неделе, месяц, сезон, год, секунда, минута, час.
- 2.Сколько времени прошло/осталось
- 3. Разница между моментами времени

- 1.Периодичность Номер дня в неделе, месяц, сезон, год, секунда, минута, час.
- 2.Сколько времени прошло/осталось
 - а. С одного момента для всех данных Например: с 00:00:00 UTC, 1 January 1970;
 - b. Момент зависит от выбора объекта Например: число оставшихся дней до выходных, число прошедших дней с последней поставки товара
- 3. Разница между моментами времени

- 1.Периодичность Номер дня в неделе, месяц, сезон, год, секунда, минута, час.
- 2.Сколько времени прошло/осталось
 - а. С одного момента для всех данных Например: с 00:00:00 UTC, 1 January 1970;
 - b. Момент зависит от выбора объекта Например: число оставшихся дней до выходных, число прошедших дней с последней поставки товара
- 3.Разница между моментами времени datetime_feature_1 datetime_feature_2

Признаки с особенной структурой Периодическая структура - «с тех пор»

Two Sigma: Using News to Predict Stock Movements, https://www.kaggle.com/c/two-sigma-financial-news

Признаки с особенной структурой Периодическая структура - «с тех пор»

Date	weekday	daynumber_sinc e_first_date	is_holiday*	days_till_ holidays	returns
20.11.2012	0	2119	False	2	-0.101
21.11.2012	1	2120	False	1**	-0.064
23.11.2012	2	2122	False	1	-0.103
26.11.2012	3	2125	False	1	-0.104
27.11.2012	4	2126	False	5	-0.093
28.11.2012	0	2127	False	4	-0.125

^{*} Торговля на бирже происходит по рабочим дням (признак приведен в качестве иллюстрации)

^{**} Один день до выходного в рамках рабочей недели — День Благодарения

Date	Volume, 10e6	close	open	returns
20.11.2012	23.0	560.91	571.56	-0.101
21.11.2012	13.3	561.70	564.25	-0.064
23.11.2012	9.7	571.50	567.39	-0.103
26.11.2012	22.5	589.53	575.90	-0.104
27.11.2012	19.0	584.78	589.60	-0.093

• Также в случае периодического вида признаков могут быть полезны статистики признаков и целевой переменной по скользящим окнам: mean, max, min, etc

Признаки с особенной структурой

Периодическая структура — разница между датами

Предсказание оттока клиентов

user_id	registration_date	last_purchase_date	last_call_date	date_diff	churn
14	10.02.2016	21.04.2016	26.04.2016	5	0
15	10.02.2016	03.06.2016	01.06.2016	-2	1
16	11.02.2016	11.01.2017	11.01.2017	1	1
20	12.02.2016	06.11.2016	08.02.2017	94	0

• В случае, когда наблюдаемые события происходят нерегулярно, бывают полезны величины временных промежутков между рассматриваемыми датами

Признаки с особенной структурой Периодическая структура — разница между датами

Для конкретного пользователя:

- 1.Соседние («интересные») объекты
 - из обучающей выборки
 - из дополнительных данных
- 2. Агрегаты и статистики
- 3.Преобразования базиса (повороты / растяжения)

Zillow Prize: Zillow's Home Value Prediction (Zestimate)

New York City Taxi Fare Prediction

Дополнительные данные

Другие объекты из выборки и центры кластеров

St. Petersburg

St. Petersburg

кластеров

- Повороты координатных осей могут увеличить качество деревьев решений
- Возможно, например,применить повороты на углы, кратные 45°/22.5°

Проекции рукописных цифр (MNIST)

Случайная:

t-SNE:

• В целом, могут быть полезны методы снижения размерности признакового пространства путем проекции выборки на линейные (РСА, ...) и нелинейные подпространства (Isomap, t-SNE, ...)

Признаки с особенной структурой Выводы

1.Время

- а. Периодичность
- b. Прошло/осталось с некоторого момента времени
- с. Разница между моментами времени

2.Координаты

- a. Интересные объекты из train/test или дополнительных данных
- b. Центры кластеров
- с. Агрегаты и статистики

Признаки с особенной структурой Ссылки

Прогнозирование тренда доходностей акций https://www.kaggle.com/c/two-sigma-financial-news

Прогнозирование цен на недвижимость https://www.kaggle.com/c/zillow-prize-1

Предсказание цен поездок на такси в Нью-Йорке https://www.kaggle.com/c/new-york-city-taxi-fare-prediction

5. Группы признаков

Группы признаков Примеры

- Статистики баскетбольного матча для обеих команд (победившая/проигравшая)
 - Количество ассистов
 - Количество подборов
 - Количество трехочковых бросков
 - Количество штрафных бросков
- Признаки текстовых блоков в документе
 - Содержимое блока
 - Тип переменной с содержимым блока
 - Пространственные признаки блока (позиция/размер)

Группы признаков Примеры

- 1.Внутри групп
 - Статистики (среднее, квантили)

- 2.Между группами
 - Суммы/разности/отношения между попарными элементами групп

7. Пропущенные значения признаков

Пропущенные значения признаков Как выглядят «пропуски» в данных

Пропущенные значения признаков Скрытые NaN-ы

Организаторы могли заменить пропущенные значения, например, на -1 (слева) или на среднее (справа)

Пропущенные значения признаков Заполнение пропусков

- 1. -999, -1, etc
- 2. Среднее, медиана
- 3. Реконструированные значения

Пропущенные значения признаков dummy-признак *isnull*

feature	isnull
0.1	False
0.95	False
NaN	True
-3	False
NaN	True

Пропущенные значения признаков Реконструкция пропущенных значений

Генерация признаков с учетом пропущенных значений

categorical_ feature	numeric_ feature	numeric_ feature_filled	categorical _encoded
Α	1	1	1.5
Α	4	4	1.5
Α	2	2	1.5
Α	-1	-1	1.5
В	9	9	-495
В	NaN	-999	-495

Категории, отсутствующие в обучающей выборке

Train:

categorical _feature	target
Α	0
Α	1
Α	1
Α	1
В	0
В	0
D	1

Test:

categorical _feature	target
Α	?
Α	?
В	?
С	?

Категории, отсутствующие в обучающей выборке

Train:

Test:

categorical _feature	categorical _encoded	target		categorical _encoded	target
Α	6	0	Α	6	?
Α	6	1	Α	6	?
Α	6	1	В	3	?
Α	6	1	С	1	?
В	3	0			
В	3	0			
D	1	1			

Выводы

- 1. Выбор метода заполнения пропусков зависит от ситуации
- 2. Обычно пропуски заполняются -999, средним или медианой
- 3. Пропущенные значения могут быть заранее заполненными организаторами
- 4. Бинарный признак «isnull» может быть полезным
- 5. Следует избегать заполнения «NaN»-ов до генерации признаков
- 6. Xgboost может учитывать NaN

Дополнительно

Категориальные признаки

Xэширование (n_features = 2)

feature	feature == a or	feature == b
a	feature == c	
b	1	
С		1
b	1	
		1

sklearn.feature extraction.FeatureHasher

Категориальные признаки

Используйте разделения по группам для добавления статистики

Country	Revenue
2	2000
2	20000
1	10000
3	12000
2	2000

Country	Revenue	Average Revenue by Country
2	2000	8000
2	20000	8000
1	10000	10000
3	12000	12000
2	2000	8000

groupby('feature1')['feature2'].mean()

Агрегация значений

Train

Customer_id target 1 1 2 0

Данные транзакций

Customer_id	datetime	amount
1	2016-09-01	4000
1	2016-09-02	7000
2	2016-09-01	2500

transactions.groupby('customer_id').amount.sum()