Lecture 1.2: Vector Spaces

Optimization and Computational Linear Algebra for Data Science

Contents

1. Introduction: vectors

Back to high-school

2. Vector spaces

Definition and examples

3. Subspaces

Vector spaces inside other vector spaces

Introduction

1/15

Introduction

Vectors

« Vectors = arrows »

Two fundamental operations:

1. Add two vectors \vec{u} and \vec{v} to obtain another vector $\vec{u} + \vec{v}$

2. Multiply a vector \vec{u} by a «scalar» (= a real number) λ to get another vector $\lambda \cdot \vec{u}$

ntroduction 2/15

Coordinate representation

- One often represents vectors using coordinates
- lacksquare 2D vectors in the plane $ec{u}=(u_1,u_2)\in\mathbb{R}^2$
- lacksquare 3D vectors in space $\vec{u}=(u_1,u_2,u_3)\in\mathbb{R}^3$
- $m{r}$ n-dimensional vectors $ec{u}=(u_1,u_2,\ldots,u_n)\in\mathbb{R}^n$

- $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$
- $\lambda \cdot \vec{u} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$

Introduction 3/15

General vectors

« The n-dimensional arrows are not the only 'objects' that we can add and multiply by scalars. »

For instance, one can add two functions together:

Introduction 4/15

General vectors

... or multiply a function by a scalar:

Introduction 5/15

Vector Spaces

Vector Spaces 6/15

Abstract definition

Definition (simplified)

A vector space consists of a set V (whose elements are called vectors) and two operations + and \cdot such that

- The sum of two vectors is a vector: for $\vec{x}, \vec{y} \in V$, the sum $\vec{x} + \vec{y}$ is a vector, i.e. $\vec{x} + \vec{y} \in V$.
- Multiplying a vector $\vec{x} \in V$ by a scalar $\lambda \in \mathbb{R}$ gives a vector $\lambda \cdot \vec{x} \in V$.
- The operations + and · are "nice and compatible".

Vector Spaces 7/

« Nice and compatible »?

1. The vector sum is commutative and associative. For all $\vec{x}, \vec{y}, \vec{z} \in V$:

$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
 and $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.

- 2. There exists a zero vector $\vec{0} \in V$ that verifies $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$.
- 3. For all $\vec{x} \in V$, there exists $\vec{y} \in V$ such that $\vec{x} + \vec{y} = \vec{0}$. Such \vec{y} is called the additive inverse of \vec{x} and is written $-\vec{x}$.
- 4. Identity element for scalar multiplication: $1 \cdot \vec{x} = \vec{x}$ for all $\vec{x} \in V$.
- 5. Distributivity: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,

$$(\alpha+\beta)\cdot\vec{x}=\alpha\cdot\vec{x}+\beta\cdot\vec{y}\qquad\text{and}\qquad\alpha\cdot(\vec{x}+\vec{y})=\alpha\cdot\vec{x}+\alpha\cdot\vec{y}.$$

6. Compatibility between scalar multiplication and the usual multiplication: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$, we have

$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}.$$

Vector Spaces 8/15

Example 1: \mathbb{R}^n

The set $V = \mathbb{R}^n$ endowed with the usual vector addition +

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and the usual scalar multiplication ·

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

is a vector space.

We will work in \mathbb{R}^n 99% ot the time!

Vector Spaces 9/15

Example 2: functions

The set $V=\mathcal{F}(\mathbb{R},\mathbb{R})\stackrel{\mathrm{def}}{=}\{f\,|\,f:\mathbb{R}\to\mathbb{R}\}$ of all functions from \mathbb{R} to itself endowed with the addition + and the scalar multiplication defined by

is a vector space.

Useful in signal processing.

Vector Spaces 10/15

Example 3: random variables

The set of random variables on a given probability space Ω is a vector space: if X and Y are two random variables and $\alpha \in \mathbb{R}$, X+Y and αX are also random variables.

Important to have this in mind when doing stats/probabilities!

In particular, we should see later that the notion of variance if deeply connected to the notion of length of a vector ...

Vector Spaces 11/1

Why do we need all this?

- Get geometric intuition.
- Save time. When we prove a theorem that applies to abstract vector space, it will in particular be true for all the examples we listed above.

Vector Spaces 12/15

Subspaces

Subspaces 13/15

Definition

Definition

We say that a non-empty subset S of a vector space V is a subspace if it is closed under addition and multiplication by a scalar, that is if

- 1. for all $x, y \in S$ we have $x + y \in S$,
- 2. for all $x \in S$ and all $\alpha \in \mathbb{R}$ we have $\alpha x \in S$.

Remark: a subspace is a also vector space.

Subspaces 14/15

Exercises

- 1. Show that every subspace S of a vector space V contains the zero vector 0.
- 2. Is \mathbb{R}^2 a subspace of \mathbb{R}^3 ?

Subspaces 15/15