MAC 420/5744 – Introdução à Computação Gráfica

Prof. Marcel Parolin Jackowski
BCC - IME/USP – Primeiro Semestre de 2014
Primeiro Exercício-Programa
Data de entrega: até 2/maio/2014

Xadrez 3D em WebGL

Neste exercício-programa você colocará em prática os seguintes conhecimentos adquiridos em CG até o momento: representação geométrica e modelagem, transformações lineares e projeções. Você desenvolverá um programa (possivelmente contendo vários módulos) em HTML5, Javascript e WebGL que simulará uma partida de Xadrez em 3D utilizando uma sequência de movimentos pré-definidos. O objetivo é reproduzir um tabuleiro de xadrez com todas as peças, e de acordo com um arquivo descritivo de uma partida, efetuar a animação das jogadas até o fim da partida.

1. Tabuleiro e peças

Você deverá modelar um tabuleiro de xadrez, criando uma superfície com quadrados claros e escuros (fica seu critério o uso das cores exatas, a sugestão é bege e preto, fundo da cena em cinza claro ou branco), e ela deve ter uma aparência sólida (ou seja, não só um plano, sem espessura). As peças de xadrez, ou seja seus vértices e conectividade 1he serão fornecidas em arquivos no formato (http://en.wikipedia.org/wiki/Wavefront .obj file), popularmente conhecido pela comunidade de Computação Gráfica, disponível no site da disciplina. Você precisará fazer um parser para ler este arquivo, e carregar a estrutura de cada peça. Ao final da leitura, você deverá apresentar o tabuleiro com todas as peças nas suas respectivas posições iniciais de jogo. Neste passo você já deverá terá feito todas as transformações de instância para cada peca. Fica a seu critério escolher a cor das peças para cada jogador.

2. Dinâmica de jogo

Você deverá permitir ao usuário carregar um arquivo no formato PGN (portable game notation), que contém as informações das jogadas de uma partida, e em seguida simular cada jogada descrita neste arquivo. A descrição do formato do arquivo pode ser obtida em http://en.wikipedia.org/wiki/Portable_Game_Notation. Você deverá animar a movimentação de cada peça, ou seja fazer com que ela percorra a distância entre posição origem e posição destino de forma gradativa. Uma peça que foi conquistada deve sair do jogo. Você deverá prover meios para pausar ou reiniciar a simulação. Partidas em PNG podem ser encontradas em vários sites na web (e.g. http://www.pgnmentor.com/files.html).

3. Visualização

O usuário deverá ser capaz de visualizar o tabuleiro a partir de qualquer ponto de vista ao redor do tabuleiro. Para isso, você deverá implementar um trackball virtual (detalhes no livro-texto e slides do curso), no qual com o movimento do mouse e botão esquerdo pressionado, movimentará a câmera para a esquerda ou direita, cima ou baixo, de forma a circundar o tabuleiro (como na superfície de uma esfera). Se o

botão direito for pressionado e o mouse movimentado verticalmente, a cena deverá ser aproximada ou distanciada, como em uma operação de zoom). O usuário deverá poder trocar entre as projeções paralela ou perspectiva a qualquer momento, portanto você poderá associar um item de interface (e.g. botão, radio-box, etc) para alterá-la em tempo real. Note que o seu canvas deve ser redimensionado de acordo com redimensionamentos da janela do browser.

4. Avaliação

#	Item	% Nota
1	Peças em OBJ carregadas corretamente	10
2	PGN carregado e interpretado corretamente	10
3	Tabuleiro exibido corretamente (espessura, cores e quadrados)	5
4	Peças instanciadas e posicionadas (inicialmente) corretamente	10
5	Perspectiva e viewport atualizados ao redimensionar a janela	5
6	Troca de Projeções oferecida e executada corretamente	10
7	Cena centralizada no viewport	5
8	Movimentação da câmera executado corretamente	10
9	Movimentação das peças gradual e correta.	7
10	Peças desaparecem corretamente	5
11	Zoom In/Out executado corretamente	5
12	Pausar/Continuar o jogo desenvolvido e executado corretamente	5
13	Reiniciar o jogo desenvolvido e executado corretamente	5
14	Arquivo LEIAME.TXT criado com conteúdo satisfatório e correto	3
15	Projeto entregue corretamente no PACA e compactado	5
	Total	100%

Observações gerais

- Sempre mantenha a razão de aspecto dos objetos da sua cena, mesmo durante o redimensionamento da janela.
- Sempre mantenha a sua cena centralizada na viewport.
- O seu programa deverá permitir a troca entre projeções (perspectiva e ortográfica) a qualquer instante durante a simulação.
- O usuário deve ser capaz de pausar ou reiniciar a simulação a qualquer instante.
- Documente em um arquivo LEIAME.TXT instruções de como instalar e utilizar o seu software.
- É recomendado que este EP seja feito em dupla. Somente um dos participantes deverá entregar o código fonte e quaisquer arquivos auxiliares. Entregue um único arquivo através do PACA, compactado (.tgz, .zip), e com os nomes dos participantes. Ex: Marcel-Miguel.tgz.