MTH113TC Tudorial 5

Q1) Given:
$$N=75$$
, $\bar{x}=50$, $\sigma^2=100$
 $\bar{X} \sim N(u, \frac{\sigma^2}{n})$ and $Z_{0.05}=1.645$
So 90% C.I. for μ is $\bar{x}\pm 1.645(\frac{\sigma^2}{n})^{\frac{1}{2}}$

90% C.I. for
$$\mu$$
 is $\bar{X} \pm 1.645 \left(\frac{6\pi}{n}\right)^2$
= 50 ± 1.89948

95% C.I. for
$$\mu$$
 is $\bar{\chi} \pm t_{0.025} = 0.025$

Assumptions: Random variables are i.i.d from a normal population with unknown mean and variance. Q3) Observations are not paired here.

Let population 1 be oat seedlings that received no fertilizer.

Let population 2 " "

Given: $N_1 = 10$ $t_{0.025} = 2.101$ with 18 degrees of freedom

 $\overline{\chi}_{i} = \frac{2 \chi_{ii}}{n_{i}} = 0.399$

 $\bar{\chi}_2 = \frac{2 \chi_2 i}{\Omega_2} = 0.565$

 $S_{i}^{2} = \frac{1}{n_{i}-1} \leq (x_{i}-\bar{x}_{i})^{2} = 5.2984 \times 10^{-3})^{5} p^{=0.14472}$

 $S_2^2 = \frac{1}{n_2 - 1} \mathcal{Z}_1 (x_{2i} - \bar{x}_2)^2 = 0.03487$

We are given $\sigma_1^2 = \sigma_2^2$, unknown.

95% C.I. for 1/2-11, is

(\(\bar{z}_2 - \bar{x}_1 \) \(\pm \tau_{0.025} \) Sp \(\frac{1}{10} + \frac{1}{10} \)

 $=(0.565-0.399)\pm(2.101)(0.14172)\sqrt{16+16}$

= 0.166 ± 0.133, giving

[You can consider M_1-M_2 , whose C.I. is (-0.299, -0.033)]

Q4) Given
$$8x = 15$$
 $7x = \frac{15}{5} = 3$
 $8x^2 = 48.26$ $8x = \frac{1}{5} = 3$
 $8x^2 = 48.26$ $8x = \frac{1}{5} = 3$
 $8x^2 = 48.26$ $8x = \frac{1}{5} = 3$
 $8x = \frac{1}{5} = 3$
 $8x = \frac{1}{5} = 3$
 $8x = \frac{1}{5} = 3$

Also, $\chi_{0.025}^2 = 11.143$ and $\chi_{0.975}^2 = 0.484$ With 4 degrees of freedom. So 95% C.I. for 5° is $\frac{(4)(0.815)}{11.143} < 6^2 < \frac{(4)(0.815)}{0.484}$

=) 0.293 < 6.736

Since this interval contains 1, it is reasonable to conclude using the observations that $6^2 = 1$ subject to statistical error.

Hence the manufacturer's claim seem Valid ** Q5) Observations are not paired here.

Given:
$$A = 15$$
 $n_8 = 15$
 $2x_A = 57.3$
 $2x_B = 74.1$
 $2x_A^2 = 227.39$
 $2x_B^2 = 374.01$

$$S_A^2 = \frac{1}{n_{A-1}} \left[z x_A^2 - \frac{(z x_A)^2}{n_A} \right]$$

= 0.6074

$$S_{\beta}^{2} = \frac{1}{N_{\beta}-1} \left[\leq \chi_{\beta}^{2} - \frac{\left(\leq \chi_{\beta} \right)^{2}}{N_{\beta}} \right]$$

= 0.5683

Also, $f_{0.025}$ (14, 14) = 2.98 & in our statistical table. You can obtain this value on Matlab using the command

finv (0.975, 14, 14)

$$\frac{S_{A}^{2}}{S_{B}^{2}} \frac{1}{f_{X}(N_{A}-1,N_{B}-1)} < \frac{S_{A}^{2}}{S_{B}^{2}} < \frac{S_{A}^{2}}{S_{B}^{2}} f_{X}(N_{B}-1,N_{A}-1)$$

$$\Rightarrow \frac{\left(\frac{0.6074}{0.5683}\right)}{2.98} < \frac{5^{2}}{5^{2}} < \frac{\left(\frac{0.6074}{0.5683}\right)}{2.98} < \frac{98}{5}$$

$$\Rightarrow$$
 0.359 $<\frac{G_A^2}{G_B^2}<3.186$

Since the interval contains l, it is reasonable to assume $G_A^2 = G_B^2$ based on our observations, subject to statistical

Q6) Given:
$$\frac{A}{N_A=12}$$
 $\frac{B}{N_B=12}$

$$\bar{\chi}_{A} = 36300$$
 $\bar{\chi}_{B} = 38100$

$$S_A = 5000$$
 $S_B = 6100$

$$V = \frac{\left(\frac{5000^{2}}{12} + \frac{6100^{2}}{12}\right)^{2}}{\left(\frac{5000^{2}}{12}\right)^{2} + \frac{(6100^{2}/12)^{2}}{11}} = 21.1839$$

$$\approx 21 \quad (round down)$$

with to.025 = 2.080 with 21 degrees of freedom.

$$(\overline{\chi}_A - \overline{\chi}_B) \pm t_{\frac{\alpha}{2}} \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}$$

$$= (36300 - 38100) \pm 2.080 \sqrt{\frac{5000^2}{12} + \frac{6100^2}{12}}$$

$$= -1800 \pm 4736$$

Q7) Observations are paired here.

N=9différence $d_i = x_{2i} - x_{1i}$ is given below

Variety		0. ~ ~	1 2
2	1	$di=x_{2i}-x_{1i}$	di
45	38	7	49
25	23	2	4
31	35	-4	16
38	41	-3	9
50	44	6	36
33	29	4	16
36	37	-1	1
40	31	9	81
43	38	5	25
		$2d_i = 25$ $\bar{d} = \frac{25}{9} = 2.778$	
+			= 20.94

 $t_{0.025} = 2.306$ with 8 degrees of freedom. 95% C.I. for N_D is

$$X_0 \pm t_{\frac{8}{2}} \sqrt{\frac{S^2}{n}} = 2.778 \pm (2.306) \sqrt{\frac{20.94}{9}}$$

= 2.778 \pm 3.518

Therefore -0.74< MD < 6.30

Pairing is necessary to factor out variability between the plots, e.g. locations, altitudes, climates and environmental conditions.

You may consider $d_i = x_{ii} - x_{2i}$, which gives (-6.30, 0.74)