O PyTorch

过拟合&欠拟合

主讲人: 龙良曲

Scenario1: house price

Scenario2: GPA

The ground-truth distribution?

That's perfect if known

However

Another factor: noise

$$y = w * x + b + \epsilon$$

•
$$\epsilon \sim N(0.01,1)$$

$$\bullet$$
 3.043 = w * 2 + b + eps

•
$$4.519 = w * 3 + b + eps$$

• ...

$$loss = (WX + b - y)^2$$

Let's assume

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \cdots + \beta_n x^n + \varepsilon.$$

Graphs of Polynomial Functions:

Constant Function (degree = 0)

Cubic Function (deg. = 3)

Linear Function (degree = 1)

Quartic Function (deg. = 4)

Quadratic Function (degree = 2)

Quintic Function (deg. = 5)

Mismatch: ground-truth VS estimated

model capacity

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots + \beta_n x^n + \varepsilon.$$

Model Capacity

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015)

Case1: Estimated < Ground-truth

For example: WGAN

8 Gaussians 25 Gaussians

Swiss Roll

Underfitting

• train acc. is bad

• test acc. is bad as well

Case2: Ground-truth < Estimated

Overfitting

train loss and acc. is much better

test acc. is worse

=> Generalization Performance

Overfitting!

how to detect

how to reduce

下一课时

train-val-test 划分

Thank You.