

Test Element

- Consists of a number of CAM Operations
- With a prespecified address sequence ascending (↑), descending
 (↓)
 either way(↓)

CAM Operations

wD ullet Write an input Pattern D

rD $\,ullet$ read an expected data D

 cP_D^M

 given the mask pattern M, compare an input pattern
 D with all words in the
 CAM

E (Erase). invalidate the word

March - Like Test

 $\omega(i) = 2^W - 1 - 2^i$

$$MLT-1 = \{ \updownarrow (w\mathbf{1}); \uparrow (w\mathbf{0}, cP_{\mathbf{0}}; w\mathbf{1}); \uparrow (r\mathbf{1}, w\mathbf{0}); \\
 (cP_{\mathbf{1}}^{\omega(0)}, cP_{\mathbf{1}}^{\omega(1)}, \dots, cP_{\mathbf{1}}^{\omega(W-1)}); \Downarrow (w\mathbf{1}, cP_{\mathbf{1}}, w\mathbf{0}); \\
 \Downarrow (r\mathbf{0}, w\mathbf{1}); (cP_{\mathbf{0}}^{\omega(0)}, cP_{\mathbf{0}}^{\omega(1)}, \dots, cP_{\mathbf{0}}^{\omega(W-1)}) \}$$

1. Initializes the CAM array to the all – 1 solid background

Content (M_i)

Operation	$\overline{\mathbf{W}_0}$	addressed	W ₁ addressed	W ₂ addressed	
w1	W_0	111 (x)	111 (x)	111 (x)	
	\mathbf{W}_1	111 (x)	111 (x)	111 (x)	
	W_2	111 (x)	111 (x)	111 (x)	

$$MLT-1 = \{ \updownarrow (w1); \uparrow (w0, cP_0; w1); \uparrow (r1, w0); \\ (cP_1^{\omega(0)}, cP_1^{\omega(1)}, \dots, cP_1^{\omega(W-1)}); \downarrow (w1, cP_1, w0); \\ \downarrow (r0, w1); (cP_0^{\omega(0)}, cP_0^{\omega(1)}, \dots, cP_0^{\omega(W-1)}) \}$$

2. \uparrow (w**0**, cP_0 ; w**1**)

Table 2. Fault-free status when element \uparrow $(w\mathbf{0}, cP_{\mathbf{0}}, w\mathbf{1})$ is executed.

	Content (M_i)					
	W ₀ addressed	W ₁ addressed	W ₂ addressed			
W_0	000 (x)	111 (x)	111 (x)			
\mathbf{W}_1	111 (x)	000(x)	111 (x)			
W_2	111 (x)	111 (x)	000(x)			
\mathbf{W}_0	000(1)	111 (0)	111 (0)			
\mathbf{W}_1	111 (0)	000 (1)	111 (0)			
W_2	111 (0)	111 (0)	000(1)			
\mathbf{W}_0	111 (x)	111 (x)	111 (x)			
\mathbf{W}_1	111 (x)	111 (x)	111 (x)			
W_2	111 (x)	111 (x)	111 (x)			
	W_1 W_2 W_0 W_1 W_2 W_0 W_1	W ₀ 000 (x) W ₁ 111 (x) W ₂ 111 (x) W ₀ 000 (1) W ₁ 111 (0) W ₂ 111 (0) W ₀ 111 (x) W ₁ 111 (x)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

- don't-care (x) state during the Write or Read operation.
- The cP0 operation compares the all-0 pattern with the contents of all words
- (i.e., W0,W1, and W2) in the CAM concurrently
- fault free: M0 = 1, and Hit = 1.
- SAF, interword CFs,
- SMMF, PMF, EMMF, XMMF, and SIVF

$$MLT-1 = \{ (w1); \uparrow (w0, cP_0; w1); \uparrow (r1, w0); \\ (cP_1^{\omega(0)}, cP_1^{\omega(1)}, \dots, cP_1^{\omega(W-1)}); \downarrow (w1, cP_1, w0); \\ \downarrow (r0, w1); (cP_0^{\omega(0)}, cP_0^{\omega(1)}, \dots, cP_0^{\omega(W-1)}) \}$$

3. \uparrow $(r\mathbf{1}, w\mathbf{0})$

Table 3. Fault-free status when element \uparrow (r1, w0) is executed.

		Content (M_i)					
Operation		W ₀ addressed	W ₁ addressed	W ₂ addressed			
r1	\mathbf{W}_0	111 (x)	000 (x)	000 (x)			
	\mathbf{W}_1	111 (x)	111 (x)	000(x)			
	W_2	111 (x)	111 (x)	111 (x)			
w 0	\mathbf{W}_0	000(x)	000(x)	000(x)			
	\mathbf{W}_1	111 (x)	000(x)	000(x)			
	W_2	111 (x)	111 (x)	000(x)			

- w0 and w1: ↓ and ↑ transitions
- r1: inter-word CFid (Aggressors Higher)
- w0: ↓ transitions
- r1: inter-word CFid (Aggressors Lower)
- SAF(0)
- inter-word CFst where the aggressors are in state 0 and at lower addresses than the victims or in state 1 and at higher addresses

4. $(cP_1^{\omega(0)}, cP_1^{\omega(1)}, \dots, cP_1^{\omega(W-1)})$

Table 4. Fault-free status when element $(cP_1^{\omega(0)}, cP_1^{\omega(1)}, \dots, cP_1^{\omega(W-1)})$ is executed.

		Content (M_i)					
	cP_{1}^{6}	cP_{1}^{5}	cP_{1}^{3}				
$\overline{\mathbf{W}_0}$	000 (0)	000 (0)	000 (0)				
\mathbf{W}_1	000 (0)	000 (0)	000 (0)				
W_2	000 (0)	000 (0)	000 (0)				

- fault-free: Hit = 0, no 1 in that column
- SAF(0), SAF(1) and the CF aggressor is 0 or undergoes a ↓ transition to turn the victim into 1.
- SMF, CMF, and IMF

MLT-1 Shortcoming

- intra-word CFst and
- CFid are not fully
- covered by MLT-1,
- since only the solid (all-
- 0 and all-1)
- backgrounds are used

$$\begin{aligned} \text{MLT-2} &= \big\{ \updownarrow (wD); \updownarrow (w\bar{D}); \\ & \big(cP_D^{\omega(0)}, cP_D^{\omega(1)}, \ldots, cP_D^{\omega(W-1)} \big); \\ & \big(wD); \big(cP_{\bar{D}}^{\omega(0)}, cP_{\bar{D}}^{\omega(1)}, \ldots, cP_{\bar{D}}^{\omega(W-1)} \big) \big\} \end{aligned}$$

- supplied by different data backgrounds
- the faulty cell is changed after one of the Write operations
- 3 and 5 test element (observe)
- fault free: Hit = 0

 $3N \log_2 W$ Write operations

 $2W \log_2 W$ Compare operations

Diagonostic Algorithms

FLR-0 =
$$\{ \updownarrow(E); w\mathbf{0}; (cP_{\mathbf{0}}^{\omega(0)}, cP_{\mathbf{0}}^{\omega(1)}, \dots, cP_{\mathbf{0}}^{\omega(W-1)}) \}$$

FLR-1 = $\{ \updownarrow(E); w\mathbf{1}; (cP_{\mathbf{1}}^{\omega(0)}, cP_{\mathbf{1}}^{\omega(1)}, \dots, cP_{\mathbf{1}}^{\omega(W-1)}) \}$

faulty cells in a column

FLC-0 =
$$\{ \Leftrightarrow (E); \Leftrightarrow (w\mathbf{0}, cP_{\mathbf{1}}^{M}, E) \}$$

FLC-1 = $\{ \Leftrightarrow (E); \Leftrightarrow (w\mathbf{1}, cP_{\mathbf{0}}^{M}, E) \}$

$$\omega(i) = 2^W - 1 - 2^i$$

$$\uparrow (w\mathbf{0}, cP_{\mathbf{0}}; w\mathbf{1})$$

$$FLR-0 = \{ \updownarrow (E); w\mathbf{0}; (cP_{\mathbf{0}}^{\omega(0)}, cP_{\mathbf{0}}^{\omega(1)}, \dots, cP_{\mathbf{0}}^{\omega(W-1)}) \}$$

$$FLR-1 = \{ \updownarrow (E); w\mathbf{1}; (cP_{\mathbf{1}}^{\omega(0)}, cP_{\mathbf{1}}^{\omega(1)}, \dots, cP_{\mathbf{1}}^{\omega(W-1)}) \}$$

$$\downarrow (w\mathbf{1}, cP_{\mathbf{1}}, w\mathbf{0});$$

```
\begin{split} \text{MLT-1} &= \left\{ \mathop{(} w\mathbf{1}); \mathop{(} w\mathbf{0}, cP_{\mathbf{0}}; w\mathbf{1}); \mathop{(} r\mathbf{1}, w\mathbf{0}); \right. \\ &\left. \left( cP_{\mathbf{1}}^{\omega(0)}, cP_{\mathbf{1}}^{\omega(1)}, \ldots, cP_{\mathbf{1}}^{\omega(W-1)} \right); \mathop{\Downarrow} (w\mathbf{1}, cP_{\mathbf{1}}, w\mathbf{0}); \right. \\ &\left. \mathop{\Downarrow} (r\mathbf{0}, w\mathbf{1}); \left( cP_{\mathbf{0}}^{\omega(0)}, cP_{\mathbf{0}}^{\omega(1)}, \ldots, cP_{\mathbf{0}}^{\omega(W-1)} \right) \right\} \end{split}
```

- E: first resets all valid bits
- w0: sets its valid bit
- Note that the w0 operation does not change the state of the faulty cells (victims) since other words are not changed
- Fault free: Hit = 1

Fig. 3. An example for locating the faulty cells in W_2 .

$$(cP_{\mathbf{1}}^{\omega(0)}, cP_{\mathbf{1}}^{\omega(1)}, \dots, cP_{\mathbf{1}}^{\omega(W-1)})$$

$$FLC-0 = \{ \updownarrow (E); \updownarrow (w\mathbf{0}, cP_{\mathbf{1}}^{M}, E) \}$$

$$FLC-1 = \{ \updownarrow (E); \updownarrow (w\mathbf{1}, cP_{\mathbf{0}}^{M}, E) \}$$

$$(cP_{\mathbf{0}}^{\omega(0)}, cP_{\mathbf{0}}^{\omega(1)}, \dots, cP_{\mathbf{0}}^{\omega(W-1)})$$

$$MLT-1 = \{ \updownarrow (w1); \uparrow (w0, cP_0; w1); \uparrow (r1, w0); \\
(cP_1^{\omega(0)}, cP_1^{\omega(1)}, \dots, cP_1^{\omega(W-1)}); \Downarrow (w1, cP_1, w0); \\
\Downarrow (r0, w1); (cP_0^{\omega(0)}, cP_0^{\omega(1)}, \dots, cP_0^{\omega(W-1)}) \}$$

- E: first resets all valid bits
- w0: write an all-0 patterns words by words
- Note that the w0 operation does not change the state of the faulty cells (victims) since other words are not changed
- Fault free: Hit = 0

Fig. 4. An example for locating the faulty cells in column 0.

Table 5. Fault coverage comparison for three test algorithms.

	SMF	SMMF	CMF	PMF	EMMF	IMF	XMMF	XMF	SIVF	SVF	MSAF
T_{CAM}	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
NCDA	100%	100%	100%	100%	100%	100%	100%	0%	100%	0%	0%
MLT-1	100%	100%	100%	100%	100%	100%	100%	0%	100%	0%	0%
T_{CAM}^*	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
NCDA*	100%	1/N%	100%	100%	1/N%	100%	1/N%	0%	100%	0%	0%
MLT-1*	100%	100%	100%	100%	100%	100%	100%	0%	100%	0%	0%

Table 6. Fault coverage statistics for RAM faults.

	SAF	TF	CFst	CFid
T_{CAM}	100%	100%	90%	20%
NCDA	100%	100%	90%	90%
MLT-1	100%	100%	90%	90%
MLT-1 + MLT-2	100%	100%	100%	100%

Note that in this paper we do not provide algorithms for detecting XMF, XVF, and MSAF, since they are covered by the existing efficient test algorithms T_{XM} , T_{SV} , and T_{SU} , respectively [5].

Fig. 5. Block diagram of the proposed BIST design.

- high fault coverage and low time complexity
- observed only by the Hit output or the priority encoder output.
- diagnostic algorithms: positions of the faulty cells
- Future: diagnostic algorithms that can also distinguish between different fault types.