Round Four:

- A. If $x \ne 3$, we have 2x 3 = 3x 6 + x 3 so 6 = 2x thus x = 3. No solution. B. $KE_q = CM_qV_q^2 = C(3M_d)(0.8V_d)^2 = 3(0.64)CM_dV_d^2 = 3.92(250) = 480 \text{ J}$

$$\frac{d+e}{ae-ec} = \frac{1}{a-c} \cdot \frac{d+e}{e} = \frac{1}{a-c} \cdot (1+\frac{d}{e}) = \frac{1}{a-c} \cdot (\frac{c}{c} + \frac{a+c}{c}) = \frac{a+2c}{(a-c)C}$$

Round Five:

- A. As exterior angles, 1>4 and 4>2. If AD>BC then surely AD>DC so 2>3
- B. Let x = half the smaller diagonal. Area is then $0.5(2x)(4x)=4x^2$ while perimeter is $4\sqrt{5}$ x so $x^2 = p^2/80$ and area is $p^2/20$.
- C. Let $x = \text{area } \triangle ABC$. $\triangle BDC$ has base DC = (4/5)AC and same ht as $\triangle ABC$ so area is (4/5)x. \triangle CED has base CE = (2/5)CB and same ht as \triangle BDC so area of \triangle CED is (2/5)(4/5)x Since x = 84 answer is (0.32)(84) = 26.88

Round Six:

- A. Prob (notF and notS)= (210-20-28+12)/210 = 174/210 = 29/35
- B. There are ${}_{8}C_{3} = 56$ triangles; there are ${}_{4}C_{3} = 4$ triangles with only vowels for vertices so the answer is 52/56 = 13/14
- C. The x³ term is $_{2005}C_{1004} \times \frac{1004}{1004!} (1/2x)^{1001}$; the x term is $_{2005}C_{1003} \times \frac{1003}{1004!} (1/2x)^{1002}$ so $\frac{2005!}{1004!(1001!)2^{1001}} \div \frac{2005!}{1003!(1002!)2^{1002}} = \frac{2(1002)}{1004} = \frac{501}{251}$

Team Round:

- A. $x 6 = 2x^2 + 3 2y = 6 y$ so y = 12 x and substituting in the first equality simplifies to $2x^{2} + x - 15 = 0$ so x = -3 or 2.5
- B. Expressing all as powers of 2 yields the following system: x+y = 2(w + y) = 3(x - w - 2) = 4(x + y - w - 1) which solves to x = 14, y = -2,
- C. $r^{2} + s^{2} + t^{2} = (r + s + t)^{2} 2(rs + rt + st)$; Since $x^{3} ax^{2} + bx c$ has roots whose sum is a, product is c, and sum of pair-wise products is b, we have r+s+t= 39/3=13 and (rs+rt+st) = 120/3 yielding 169-2(40)=89
- D. 150+60x = 0.8(350+45x) gives x = 65 / 12 while 0.8(150+60x) = 350+45x gives x = 230/3. Sum is 82 and 1/12 or 82 hrs 5 mins.
- E. Stewart's Thm: $(AB)^2(DC) + (AC)^2(BD) = (AD)^2(BC) + (BD)(DC)(BC)$ so if BD=x we have $64x+196x=49(2x)+2x^3$ so $2x^3-162x=0=2x(x+9)(x-9)$ so x=9 and BC=18 OR drop perpendicular from A to BD at E let AE=x BE=y ED=z so subtract $x^2+z^2=49$ from $x^2+(2z+y)^2=196$ to get (1) $y^2+4yz+3z^2=147$; From $x^2+y^2=64$ subtract $x^2+z^2=49$ to get $y^2-z^2=15$ added to (1) gives $2y^2+4yz+2z^2=162$ so $y^2+2yz+z^2=81$ whence y+z=9 and BC=18. F. $3^{1000}=9^{500}=(10-1)^{500}$ which when expanded influences the last two digits
- only in the last two terms as all other terms contain at least two factors of 10 so by Bin. Thm. we have ... + $_{500}$ C $_{499}$ (10)(-1) 499 + $_{500}$ C $_{500}$ (-1) 500 = -5000+1 so last two digits are 01.