[4]

Q.6		Attempt any two:		
	i.	Write the advantages and disadvantages of centrifugal compress		
	ii.	 Draw and explain the velocity triangle at the inlet and exit fo axial flow compressor. 		
	iii.	Write short note on the following:		
		(a) Root blower	(b) Vane type compressor	
		(c) centrifugal compressor		

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

5

5

5

Faculty of Engineering

End Sem (Odd) Examination Dec-2019 ME3CO11 Energy Conversion-II

Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note:	of (Il questions are compulsory. Internal choices, if any, are indicated. Answ Q.1 (MCQs) should be written in full instead of only a, b, c or d. se of steal table permitted.				
Q.1	i.	A hydraulic c	oupling belong	gs to the categ	gory of	1
		(a) Power abs				
		(b) Power developing machines				
		(c) Energy generating machines				
		, ,	ansfer machine			
	ii. Which component of fluid velocity is				esponsible for transmission	1
		•	ugh rotodynan			
		(a) Radial	(b) Axial	` '	tial (d) All of these	
	iii.	=	ction for a par			1
		(a) 0	(b) 1	(c) 1/2	(d) 3/4	
	iv.		d ratio for 50%			1
		(a) $Cos^2\alpha$	(b) Cosα/2	` /	(d) $\cos^2 \alpha/2$	
	v.			vhich carry v	vater from reservoir to the	1
		turbines is kn				
		(a) Tail race	` '	` '	ck (d) Head stock	
	vi.				action turbine?	1
		(a) Pelton tur		(b) Kaplan		
		(c) Francis tu		(d) Propelle		
	vii.	_	al pump the lic	=		1
		(a) At the Top	-	(b) At the b	oottom	
		(c) At the cen	tre	(d) From si	des	
	viii.	-			np is proportional to	1
		(a) Speed (N)	(b) N^2	(c) N^3	(d) N^4	
					דת	\sim

P.T.O.

ix.	Rotary compressors are used where quantities of gas are needed at relatively pressure. (a) Large, high (b) Large, low (c) Small, high (d) Small, low	1
Χ.	In an axial flow compressor, the pressure rise occurs in (a) Fixed blades only (b) Moving blades only (c) Both fixed and moving blades (c) None of these	1
i.	Define Turbomachines with example.	2
11. iii.	State the major components of a turbomachine with their function State and derive Euler's Turbine equation and draw supporting diagram.	3 5
iv.	What is positive displacement machine? Compare it with a turbo machine.	5
i.	Define the following term for a turbine: (a) Blade speed ratio (b) Stage efficiency	2
ii.	Derive the expression for the maximum blade efficiency in terms of speed ratio and the necessary condition for Impulse turbine. Also write any three comparison between impulse and reaction turbine	8
iii. A stage of steam turbine with parsons bleeding delivers dr saturated steam at 2.7 bar from the fixed blade at 90 m/s havir specific volume 0.6686 m3/kg. The mean blade height is 40mm, the moving blades exit angle is 20°. The axial velocity of steam is three quarter of the blade velocity at the mean radius. The steam supplied to the stage at the rate of 9000 kg/hr. The effect of the		8
	i.ii.iii.iv.	needed at relatively pressure. (a) Large, high (b) Large, low (c) Small, high (d) Small, low x. In an axial flow compressor, the pressure rise occurs in (a) Fixed blades only (b) Moving blades only (c) Both fixed and moving blades (c) None of these i. Define Turbomachines with example. ii. State the major components of a turbomachine with their function iii. State and derive Euler's Turbine equation and draw supporting diagram. iv. What is positive displacement machine? Compare it with a turbo machine. i. Define the following term for a turbine: (a) Blade speed ratio (b) Stage efficiency ii. Derive the expression for the maximum blade efficiency in terms of speed ratio and the necessary condition for Impulse turbine. Also write any three comparison between impulse and reaction turbine

Q.4	i.	What is the purpose of draft tube? List any two type of draft tube			
	ii.	with neat sketch. A single Pelton wheel of runner diameter 2.4 m runs at 360 rpm under a net head of 500 m. The jet diameter is 20 cm and its deflection inside the bucket is 165°. The relative velocity at exit of bucket is reduced by 14% due to friction. Assuming coefficient of velocity of nozzle as 0.98, find: (a) Jet velocity	5		
		(b) Bucket velocity			
		(c) Speed ratio			
		(d) Water power			
		(e) Tangential force on buckets			
		(f) Power developed by wheel			
		(g) Overall efficiency			
ΩD		Assuming mechanical efficiency of 88%.	_		
OR	iii.	An inward flow reaction turbine develops 1200 kW power having the vane velocity at inlet as 30 m/s and the corresponding whirl velocity of 24 m/s. The ratio of outer to internal diameter is 2. The velocity of flow remains at 6 m/s throughout and discharge at exit is radial. The head available on wheel is 75 m, Find:	1		
		(a) Vane angle (b) Power developed by wheel			
		(c) Discharge in m ³ /s (d) Hydraulic efficiency			
Q.5	i.	With the help of neat sketch discuss the main parts of centrifugal pump.			
	ii.	Define the following term for centrifugal pump:	(
		(a) Slip factor			
		(b) Work factor pressure coefficient			
OR	iii.	Define the following term for centrifugal pump:			
		(a) Manometric head (b) Gross head			
		(c) Static head (d) Priming of pump			
		(e) Cavitation (f) Specific speed			

P.T.O.

Marking Scheme ME3CO11 Energy Conversion-II

Q.1	i.	A hydraulic coupling belongs to the category of		1		
		(d) Energy transfer machines				
	ii.	Which component of fluid velocity is responsible	for transmission	1		
		of power through rotodynamic machine?				
		(c) Tangential				
	iii.	Degree of reaction for a parson's reaction turbine		1		
		(c) 1/2				
	iv.	iv. Optimal speed ratio for 50% reaction turbine is				
		(c) Cosa				
	v.	Pipes of largest diameter which carry water from reservoir to the				
	turbines is known as					
		(c) Pen stock				
	viis an inward radial flow reaction turbine		oine?	1		
		(c) Francis turbine				
	vii.	In a centrifugal pump the liquid enters the pump		1		
		(c) At the centre				
	viii.	ortional to	1			
		(b) N^2				
	ix.	, i ==== 1				
		needed at relatively pressure.				
		(b) Large, low		1		
	х.	In an axial flow compressor, the pressure rise occurs in				
		(c) Both fixed and moving blades				
2.2	:	Definition Trubomoshines	1 o.ulr	2		
Q.2	i.	Definition Turbomachines	1 mark 1 mark	2		
	ii.	Example Components of a turbomachine with their function	1 IIIai K	3		
	11.	1 mark for each component	(1 mark * 3)	3		
	iii.	Euler's Turbine equation	(1 mark 3)	5		
	111.	Definition	1 mark	5		
		Derivation	3 marks			
		Diagram	1 mark			
OR	iv.	Definition of positive displacement machine	1 mark	5		
<i>)</i> 10	1 7 .	Difference with a turbo machine	1 IIIQIN	J		
		1 mark for each difference (1 mark * 4)	4 marks			
		1 mark for each difference (1 mark 7)	i iiiui Ko			

Q.3	i.	Define the following term for a turbine:		2
		(a) Blade speed ratio	1 mark	
		(b) Stage efficiency	1 mark	
	ii.	Derivation	4 marks	8
		Necessary condition for Impulse turbine	1 mark	
		Any three comparison between impulse and reacti	on turbine	
		1 mark for each comparison (1 mark * 3)	3 marks	
OR	iii.	Calculate: -		8
		(a) The rotational speed of the wheel	2 marks	
		(b) The diagram powers	2 marks	
		(c) The diagram efficiency	2 marks	
		(d) The enthalpy drop of the steam in this stage.	2 marks	
Q.4	i.	Purpose of draft tube	1 mark	3
		Any two type of draft tube with sketch		
		1 mark for each (1 mark * 2)	2 marks	
	ii.	Find:		7
		(a) Jet velocity	1 mark	
		(b) Bucket velocity	1 mark	
		(c) Speed ratio	1 mark	
		(d) Water power	1 mark	
		(e) Tangential force on buckets	1 mark	
		(f) Power developed by wheel	1 mark	
		(g) Overall efficiency	1 mark	
OR	iii.	Find:		7
		(a) Vane angle	1 mark	
		(b) Power developed by wheel	2 marks	
		(c) Discharge in m ³ /s	2 marks	
		(d) Hydraulic efficiency	2 marks	
Q.5	i.	Parts of centrifugal pump.		4
		1 mark for each part	(1 mark * 4)	
	ii.	Define the following term for centrifugal pump:		6
		(a) Slip factor	3 marks	
		(b) Work factor pressure coefficient	3 marks	
OR	iii.	Define the following term for centrifugal pump:		6
		1 mark for each	(1 mark * 6)	

Q.6		Attempt any two:		
	i.	Advantages and disadvantages of centrifugal compressor		5
		1 mark for each	(1 mark * 5)	
	ii.	Inlet velocity triangle	2.5 marks	5
		Exit velocity triangle	2.5 marks	
	iii.	Write short note on the following:		5

(a) Root blower1 mark(b) Vane type compressor2 marks(c) centrifugal compressor2 marks
