HOMEWORK 4

SAI SIVAKUMAR

Let, for $n \in \mathbb{N}$,

$$b_n = \frac{2n^2 + 1}{n^2 - n - 3}.$$

Show (b_n) converges arguing directly from the definition of convergence.

Proof. Let $(b_n)_{n=1}^{\infty}$ be a sequence given by $b_n = (2n^2+1)/(n^2-n-3)$, for $n \in \mathbb{N}$. Observe that

$$n^{2} - n - 3 - \frac{1}{3}n^{2} = \frac{2}{3}n^{2} - n - 3 = \frac{1}{3}(n - 3)(2n + 3) \ge 0$$

as long as $n \ge 3$. This implies that for $n \ge 3$, $n^2 - n - 3 \ge \frac{1}{3}n^2$.

Then for every $\varepsilon > 0$, choose, from an Archimedean property and the previous observation, $N \in \mathbb{N}$ such that $N > \max\left\{3, \frac{27}{\varepsilon}\right\}$. Then for all n > N,

$$|b_{n}-2| = \left|\frac{2n^{2}+1}{n^{2}-n-3}-2\right| = \frac{2n+7}{n^{2}-n-3}$$
 (positive, since $n > 3$)
$$< \frac{2n+7n}{n^{2}-n-3}$$
 ($9n > 2n+7$, since $n > 3$)
$$< \frac{3 \cdot 9n}{n^{2}}$$
 ($n^{2}-n-3 > \frac{1}{3}n^{2}$ for $n > 3$)
$$= \frac{27}{n}$$
 ($n > N$)
$$< \varepsilon$$

Hence (b_n) converges, and its limit is 2.