Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет

${f y}$ равнения математической физики Курсовая работа

Тема: Решение двумерной гармонической задачи при помощи четрырёхслойной неявной схемы. Базисные функции билинейные

Факультет: ФПМИ Группа: ПМ-63

Студент: Кожекин М.В.

Вариант: 70

1. Цель работы

Разработать программу решения двумерной гармонической задачи методом конечных элементов. Сравнить прямой и итерационные методы решения получаемой в результате конечноэлементной аппроксимации СЛАУ.

2. Задание

- 1. Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы ${\bf A}$ и вектора правой части ${\bf b}$.
- 2. Реализовать программу решения гармонической задачи с учетом следующих требований:
 - язык программирования С++ или Фортран;
 - предусмотреть возможность задания неравномерной сетки по пространству, разрывность параметров уравнения по подобластям, учет краевых условий;
 - матрицу хранить в разреженном строчно-столбцовом формате с возможностью перегенерации ее в профильный формат;
 - реализовать (или воспользоваться реализованными в курсе «Численные методы») методы решения СЛАУ: итерационный локально-оптимальную схему или метод сопряженных градиентов для несимметричных матриц с предобусловливанием и прямой LU-разложение или его модификации [2, с. 871; 3].
 - 3. Протестировать разработанную программу на полиномах первой степени.
- 4. Исследовать реализованные методы для сеток с небольшим количеством узлов 500 1000 и большим количеством узлов примерно 20 000 50 000 для различных значений параметров $10^{-4} \le \omega \le 10^9, \ 10^2 \le \lambda \le 8 \cdot 10^5, \ 0 \le \sigma \le 10^8, \ 8.81 \cdot 10^{-12} \le \chi \le 10^{-10}$. Для всех решенных задач сравнить вычислительные затраты, требуемые для решения СЛАУ итерационным и прямым методом.

Вариант 70: Решить одномерную гармоническую задачу в декартовых координатах, базисные функции - линейные.

3. Анализ

3.1. Постановка задачи

Дано гиперболическое уравнение в декартовой системе координат:

$$div(\lambda gradu) + \gamma u + \sigma \frac{du}{dt} + \chi \frac{d^2u}{dt^2} = f$$

3.2. Дискретизация по времени

3.3. Вариационная подстановка

3.4. Конечноэлементная дискретизация

Представим искомое решение и на интервале
$$(t_{j-3},t_j)$$
: $\mathbf{u}(\mathbf{x},\mathbf{y},\mathbf{t})=\mathbf{u}^{j-3}\eta_3^j(t)+u^{j-2}\eta_2^j(t)+u^{j-1}\eta_1^j(t)+u^{j-0}\eta_0^j(t)$

где функции $\eta^j_
u(t)$ являются базисными кубическими полиномами Лагранжа и имеют следующий вид

$$\eta_3^j(t) = \frac{(t - t_{j-2})(t - t_{j-1})(t - t_j)}{(t_{j-3} - t_{j-2})(t_{j-3} - t_{j-1})(t_{j-3} - t_j)}
\eta_2^j(t) = \frac{(t - t_{j-3})(t - t_{j-1})(t - t_j)}{(t_{j-2} - t_{j-3})(t_{j-2} - t_{j-1})(t_{j-2} - t_j)}
\eta_1^j(t) = \frac{(t - t_{j-2})(t - t_{j-2})(t - t_j)}{(t_{j-1} - t_{j-3})(t_{j-1} - t_{j-2})(t_{j-1} - t_j)}
\eta_0^j(t) = \frac{(t - t_{j-3})(t - t_{j-2})(t - t_{j-1})}{(t_j - t_{j-3})(t_j - t_{j-2})(t_j - t_{j-1})}$$

Возьмём первые и вторые производные от полиномов Лагранжа в точке $t=t_j$ (т.к. схема неявная)

	полином Лагранжа	1ая производная	2ая производная
$\eta_3^j(t)$	$t_{02}t_{01}t_{00}$	$-\frac{t_{01}t_{02}}{}$	$-2 \cdot \frac{t_{01} + t_{02}}{}$
7/3(0)	$t_{23}t_{13}t_{03}$	$t_{23}t_{13}t_{03}$	$t_{23}t_{13}t_{03}$
$\mid \eta_2^j(t) \mid$	$\underline{t_{03}t_{01}t_{00}}$	$t_{01}t_{03}$	$2 \cdot \frac{t_{01} + t_{03}}{}$
$ \eta_2(\iota) $	$t_{23}t_{12}t_{02}$	$t_{23}t_{12}t_{02}$	$t_{23}t_{12}t_{02}$
$\eta_1^j(t)$	$t_{03}t_{02}t_{00}$	$t_{02}t_{03}$	$-2 \cdot \frac{t_{02} + t_{03}}{}$
$\eta_1(\iota)$	$\overline{t_{13}t_{12}t_{01}}$	$-\frac{1}{t_{13}t_{12}t_{01}}$	$-2\cdot {t_{13}t_{12}t_{01}}$
$\eta_0^j(t)$	$t_{03}t_{02}t_{01}$	$t_{01}t_{02} + t_{01}t_{03} + t_{02}t_{03}$	$2 \cdot \frac{t_{01} + t_{02} + t_{03}}{}$
1/0(t)	$\overline{t_{03}t_{02}t_{01}}$	$t_{03}t_{02}t_{01}$	$t_{03}t_{02}t_{01}$

где:

$$t_{01} = t_0 - t_1, t_0 = t_j, t_1 = t_{j-1},$$

 $t_{02} = t_0 - t_2, t_0 = t_j, t_2 = t_{j-2},$
...

Подставим их в исходное уравнение, а затем выведем из него 4-х слойную неявную схему:

$$\left(\left[2\chi \frac{t_{01} + t_{02} + t_{03}}{t_{03}t_{02}t_{01}} + \sigma \frac{t_{01}t_{02} + t_{01}t_{03} + t_{02}t_{03}}{t_{03}t_{02}t_{01}} + \gamma \right] M + G \right) q^{j} = b^{j}
+ \left[2\chi \frac{t_{01} + t_{02}}{t_{03}t_{13}t_{23}} + \sigma \frac{t_{01}t_{02}}{t_{03}t_{13}t_{23}} \right] Mq^{j-3}
- \left[2\chi \frac{t_{01} + t_{t03}}{t_{02}t_{12}t_{23}} + \sigma \frac{t_{01}t_{t03}}{t_{02}t_{12}t_{23}} \right] Mq^{j-2}
+ \left[2\chi \frac{t_{02} + t_{03}}{t_{01}t_{12}t_{13}} + \sigma \frac{t_{02} + t_{03}}{t_{01}t_{12}t_{13}} \right] Mq^{j-1}$$

3.5. Локальные матрицы и вектора

Аналитические выражения для вычисления элементов локальных матриц:

$$G_{ij} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \lambda \left(\frac{\psi_i}{x} \frac{\psi_j}{x} + \frac{\psi_i}{y} \frac{\psi_j}{y} \right) dxdy$$

$$M_{ij}^{\gamma} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \gamma \psi_i \psi_j dxdy$$

$$b_i = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} f \psi_i x dy$$

$$G = \frac{\lambda}{6} \frac{h_y}{h_x} \begin{pmatrix} 2 & -2 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{pmatrix} + \frac{\lambda}{6} \frac{h_x}{h_y} \begin{pmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ -1 & 2 & 1 & 2 \end{pmatrix}$$

$$M = \frac{h_x h_y}{36} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

$$b = \frac{h_x h_y}{36} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_1 \end{pmatrix}$$

3.6. Решатели

Для решения полученных СЛАУ использовались следующие методы:

- LU-разложение
- локально-оптимальная схема
- метод бисопряжённых градиентов

4. Исследования

Проверим сходимость метода на разных функциях Равномерная сетка по пространству

Равномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	1.44e-16	2.13e-13	9.85e-13	1.39e-13	1.19e-03	3.34e-03	2.59e-05	8.82e-05
x+y	7.32e-13	2.93e-13	6.65e-13	5.71e-13	1.19e-03	3.34e-03	2.59e-05	8.82e-05
$x^2 + y^2$	1.01e-12	3.74e-13	1.68e-13	1.69e-13	1.19e-03	3.34e-03	2.59e-05	8.82e-05
$x^3 + y^3$	2.51e-13	1.56e-13	1.42e-13	2.25e-13	1.19e-03	3.34e-03	2.59e-05	8.82e-05
$x^4 + y^4$	2.10e-04	2.10e-04	2.10e-04	2.10e-04	9.76e-04	3.13e-03	1.84e-04	1.22e-04
$x^5 + y^5$	5.27e-04	5.27e-04	5.27e-04	5.27e-04	6.63e-04	2.82e-03	5.01e-04	4.39e-04
sin(x) + sin(y)	4.11e-06	4.11e-06	4.11e-06	4.11e-06	1.18e-03	3.34e-03	2.19e-05	8.41e-05
$e^x + e^y$	1.48e-05	1.48e-05	1.48e-05	1.48e-05	1.17e-03	3.33e-03	1.12e-05	7.35e-05

Равномерная сетка по пространству Неравномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	4.08e-16	7.57e-13	1.57e-13	3.06e-13	2.10e-03	6.28e-03	4.85e-05	1.62e-04
x + y	7.37e-13	2.23e-13	4.24e-13	5.25e-13	2.10e-03	6.28e-03	4.85e-05	1.62e-04
$x^2 + y^2$	1.02e-12	3.91e-13	3.04e-13	1.46e-13	2.10e-03	6.28e-03	4.85e-05	1.62e-04
$x^{3} + y^{3}$	2.46e-13	1.84e-13	1.09e-13	1.29e-13	2.10e-03	6.28e-03	4.85e-05	1.62e-04
$x^4 + y^4$	2.14e-04	2.14e-04	2.14e-04	2.14e-04	1.88e-03	6.07e-03	1.66e-04	5.52e-05
$x^5 + y^5$	5.37e-04	5.37e-04	5.37e-04	5.37e-04	1.56e-03	5.75e-03	4.89e-04	3.77e-04
sin(x) + sin(y)	4.19e-06	4.19e-06	4.19e-06	4.19e-06	2.09e-03	6.28e-03	4.43e-05	1.58e-04
$e^x + e^y$	1.51e-05	1.51e-05	1.51e-05	1.51e-05	2.08e-03	6.27e-03	3.35e-05	1.47e-04

Неравномерная сетка по пространству Равномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	2.48e-16	1.86e-13	8.64e-13	1.25e-13	1.03e-03	2.93e-03	2.27e-05	7.70e-05
x + y	1.13e-12	1.87e-13	2.48e-13	4.90e-13	1.03e-03	2.93e-03	2.27e-05	7.70e-05
$x^2 + y^2$	2.99e-13	7.30e-14	2.06e-13	1.93e-13	1.03e-03	2.93e-03	2.27e-05	7.70e-05
$x^3 + y^3$	1.49e-13	8.45e-14	2.30e-13	2.13e-13	1.03e-03	2.93e-03	2.27e-05	7.70e-05
$x^4 + y^4$	3.08e-04	3.08e-04	3.08e-04	3.08e-04	7.25e-04	2.62e-03	2.85e-04	2.32e-04
$x^5 + y^5$	9.57e-04	9.57e-04	9.57e-04	9.57e-04	1.98e-04	2.00e-03	9.35e-04	8.81e-04
sin(x) + sin(y)	7.32e-06	7.32e-06	7.32e-06	7.32e-06	1.02e-03	2.92e-03	1.56e-05	6.98e-05
$e^x + e^y$	2.43e-05	2.43e-05	2.43e-05	2.43e-05	1.01e-03	2.90e-03	4.48e-06	5.32e-05

Неравномерная сетка по пространству Неравномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	4.61e-16	6.48e-13	1.41e-13	2.72e-13	1.84e-03	5.56e-03	4.28e-05	1.43e-04
x+y	1.15e-12	1.25e-13	2.30e-13	1.64e-13	1.84e-03	5.56e-03	4.28e-05	1.43e-04
$x^2 + y^2$	3.03e-13	2.17e-13	1.38e-13	1.00e-13	1.84e-03	5.56e-03	4.28e-05	1.43e-04
$x^3 + y^3$	1.32e-13	1.18e-13	1.67e-13	2.19e-13	1.84e-03	5.56e-03	4.28e-05	1.43e-04
$x^4 + y^4$	3.15e-04	3.15e-04	3.15e-04	3.15e-04	1.53e-03	5.24e-03	2.73e-04	1.76e-04
$x^5 + y^5$	9.82e-04	9.82e-04	9.82e-04	9.82e-04	8.94e-04	4.60e-03	9.40e-04	8.43e-04
sin(x) + sin(y)	7.52e-06	7.52e-06	7.52e-06	7.52e-06	1.84e-03	5.55e-03	3.55e-05	1.35e-04
$e^x + e^y$	2.50e-05	2.50e-05	2.50 e-05	2.50e-05	1.82e-03	5.53e-03	1.89e-05	1.18e-04

4.1. Вывод

Если порядок полинома по пространству не превышает порядка используемых базисных функций, а порядок полинома по времени не соответсвует порядку точности используемой временной схемы, то получаемое численное решение должно полностью совпадать с точным решением задачи.

5. Исходный код программы