# Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir<sup>1</sup> Under supervision of Prof. Maria Andrea Mroginski<sup>2</sup>

> <sup>1</sup>Freie Universität Berlin <sup>2</sup>Techniche Universität Berlin

February 18, 2018

#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

# Hydrophol

Potential

Potential

Conoral fo

Force Constants

Distance function

urface

Solvent accesib

Evenly distributed points Integration

#### Prograi

Vhat are we interested in? Program Specifications

#### Result

Validation via Known log p

An Example Systen

## Outline Introduction

Hydrophobicity and log P Partition Coefficient

# Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

Distance function

## Surface

Solvent accesible surface

Evenly distributed points

Integration

## Program

What are we interested in?

**Program Specifications** 

## Results

Validation via Known log p Values

An Example System

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### troduction

Partition Coefficient

### lolecular

ydrophobicity otential

## hat is it?

Potential

#### General forn

Force Constants

#### urface

Evenly distributed points Integration

#### rogram

at are we interested in? ogram Specifications

#### Result

4 ロ ト 4 倒 ト 4 重 ト 1 重 ・ 9 9 (や

Values

An Example Syste

# Hydrophobicity and log P



Molecular Hydrophobicity Potential

Pelg Bar Sapir

Hydrophobicity and log P

# Partition Coefficient

$$\log P_{\text{octanol/water}} = \log \left( \frac{[\text{solute}]_{\text{water}}}{[\text{solute}]_{\text{octanol}}} \right)$$

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

## Partition Coefficient



$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[ f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### violecular Hydrophobici Potential

What is it?

#### General form

Force Constants

Distance function

#### Surface

Solvent accesible surface Evenly distributed points Integration

#### Progra

What are we interested in? Program Specifications

#### Resul

Validation via Known log p Values

An Example System



$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[ f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Summing over all atoms

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log F Partition Coefficient

#### Molecular Hydrophobi

Potential

#### Potentiai

General form

#### orce Constants

Distance function

#### Surface

Solvent accesible surfaction

Evenly distributed points

Integration

#### Prograi

vnat are we interested in? Program Specifications

#### Resul

Validation via Known log Values

An Example Syster





#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log F Partition Coefficient

#### Molecular Hydrophol

Otential
What is it?

#### Potential

General form

#### oroo Constanta

Distance function

#### Surface

Solvent accesible surfaction

Evenly distributed points

Integration

#### Prograi

rogram Specifications

#### Resul

Validation via Known log Values

An Example Syste





#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### iolecular lydrophobi

What is it?

## General form

area Constanta

#### - Olde Constants

Distance function

#### urface

Evenly distributed points Integration

#### rogram

rogram Specifications

#### Results

Validation via Known log | Values

An Example System

# Force Constants - Carbon

Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

# olecular

Irophobici ential <sub>it is it?</sub>

## Seneral form

Force Constants
Distance function

## Surface

Solvent accesible surfa Evenly distributed point Integration

#### rogram

hat are we interested in ogram Specifications

### Result

/alidation via Known log p /alues

# **Carbon** atom contribution to hydrophobicity<sup>1</sup>

| Type | Description        | $f_i$ value |
|------|--------------------|-------------|
|      | Carbon in:         |             |
| 1    | $\mathrm{CH_{3}R}$ | -1.5603     |
| 3    | $CHR_3$            | -0.6681     |
| 7    | $CH_2X_2$          | -1.0305     |
| 13   | $RCX_3$            | 0.7894      |
| 17   | $=CR_2$            | 0.0383      |
| 24   | RCHR               | -0.3251     |
| 25   | RCRR               | 0.1492      |
| 26   | RCXR               | 0.1539      |

<sup>&</sup>lt;sup>1</sup>Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

# Force Constants - Hydrogen

**Hydrogen** atom contribution to hydrophobicity<sup>2</sup>

| Type | Description                                               | $f_i$ value |
|------|-----------------------------------------------------------|-------------|
|      | Hydrogen attached to:                                     |             |
| 46   | $\overline{\mathrm{C_{sp^3}}$ , no $\mathrm{X}$ in $lpha$ | 0.7341      |
| 47   | $ m C_{sp}^2$                                             | 0.6301      |
| 50   | X                                                         | -0.1036     |
| 52   | $\mathrm{C}_{\mathrm{sp}^3}$ , 1 X in $lpha$              | 0.6666      |
| 54   | $C_{cm^3}$ . 3 X in $\alpha$                              | 0.6338      |

#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

## olecular

rophobicity ential

## otential

eneral form

## Force Constants

urface

Solvent accesible surface Evenly distributed points Integration

### rogram

at are we interested in?

#### Result

Validation via Known log p

An Example Systen

<sup>&</sup>lt;sup>2</sup>Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

# Force Constants - Oxygen

# Oxygen atom contribution to hydrophobicity<sup>3</sup>

| Type | Description               | $f_i$ value |
|------|---------------------------|-------------|
|      | Oxygen in:                |             |
| 56   | Alcohol                   | -0.3567     |
| 57   | Phenol, enol, carboxyl OH | -0.0127     |
| 58   | Ketone                    | -0.0233     |
| 61   | Nitro, N-oxides           | 1.0520      |
| 62   | O-                        | -0.7941     |

#### Molecular Hydrophobicity Potential

#### Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

#### olecular ydrophobio

hat is it?

## otential

General form Force Constants

## Constants

rface

Solvent accesible surface Evenly distributed points Integration

#### rogram

/hat are we interested in: rogram Specifications

#### Result

Validation via Known log p

n Example Systen

<sup>&</sup>lt;sup>3</sup>Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772



# Force Constants - Various

# Various atom contribution to hydrophobicity4

| Type | Description                                           | $f_i$ value |
|------|-------------------------------------------------------|-------------|
| 66   | Primary amine                                         | -0.5427     |
| 67   | Secondary amine                                       | -0.3168     |
| 81   | $\mathrm{F}$ attached to $\mathrm{C}_{\mathrm{sp^3}}$ | 0.4797      |
| 106  | S  in  R-SH  (thiol)                                  | 1.0520      |
| 119  | $P \text{ in } PR_3 \text{ (phosphine)}$              | -0.7941     |

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

# drophobicity

What is it? Potential

## eneral form

Force Constants
Distance function

## Surface

Solvent accesible surface Evenly distributed points Integration

#### rogram

hat are we interested in

#### Result

Validation via Known log p Values

ın Example Syster

<sup>&</sup>lt;sup>4</sup>Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772



# Audry form

# Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$



#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log P Partition Coefficient

#### olecular ydrophobicit

otential /hat is it?

otential

Force Constants

#### Distance function

Surface

Solvent accesible surface Evenly distributed points

### Progran

/hat are we interested in's rogram Specifications

### Result

Validation via Known log p Values

An Example Syste

# Solvent accesible surface

The surface around a molecule accesible to solvent molecules

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### Molecular Hvdrophobi

Aydrophor Potential

What is it?

General form

orce Constants

Distance func

Solvent accesible surface

Evenly distributed points

#### .....

What are we interested in?

#### Results

Validation via Known log Values

An Example Systen

# Solvent accesible surface

The surface around a molecule accesible to solvent molecules



#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Solvent accesible surface

# Solvent accesible surface

 The surface around a molecule accesible to solvent molecules



For water molecules usually  $r=1.4~{
m [\AA]}$ 

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> lolecular vdrophobicity

Otential
What is it?

Potential

General form
Force Constants

Distance function

Solvent accesible surface

Evenly distributed points Integration

Drogram

What are we interested in?
Program Specifications

Resul

Validation via Known log Values

An Example System



Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### Molecular Hydrophobicity Potential

What is it?

Potentia

General for

Force Constants

Surface

#### Solvent accesible surface

Evenly distributed points

#### Progran

What are we interested in? Program Specifications

#### Results

Validation via Known log Values

An Example Syste



Take all atoms with their vdW-radii

#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### Molecular Hydrophobicity

What is it?

## Potentia

General forr

#### Earna Canatant

Distance functio

## Solvent accesible surface

Evenly distributed points

#### Progra

What are we interested in?

#### Result

Validation via Known log p Values

An Example System



1. Take all atoms with their vdW-radii

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log F Partition Coefficient

#### olecular ydrophobicity

otential Vhat is it?

Potential

General for

Force Constants

Surface

#### Solvent accesible surface

Evenly distributed points

#### Program

What are we interested in: Program Specifications

#### Resul

Validation via Known log p Values

An Example Syster



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with  $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

### olecular ydrophobicity

otential Vhat is it?

Potential

General form

Force Constants

Surface

#### Solvent accesible surface

Evenly distributed points Integration

#### Progra

What are we interested in Program Specifications

#### Resul

Validation via Known log p Values

An Example System



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with  $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular ydrophobicity

What is it?

Potential

General form

Distance function

Solvent accesible surface

Evenly distributed points

Integration

Program

What are we intere

hat are we interested in rogram Specifications

Resul

Validation via Known log p Values

An Example Syster



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with

$$R^i = R^i_{\text{vdw}} + R_{\text{probe}}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

## olecular odrophobicity

hat is it?

Potential

General form

Force Constants

#### Surface

### Solvent accesible surface

## Evenly distributed points

Integration

#### Progra

hat are we interested in?

#### Resul

Validation via Known log p Values

n Example System



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with  $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### olecular ydrophobicity otential

What is it?

Potential

General form

Force Constants

Distance function

Surface

#### Solvent accesible surface

Evenly distributed points Integration

#### Integration

hat are we interested in

#### Resul

Validation via Known log p Values

An Example Syster



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with  $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e.  $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$ )

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log F Partition Coefficient

# drophobicity

/hat is it?

Potential

General form Force Constan

Distance function

#### Solvent accesible surface

Evenly distributed points Integration

#### Prograi

What are we interested in Program Specifications

#### Result

Validation via Known log p Values

n Example System



- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with  $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e.  $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$ )
- 4. The remaining surface is the solvent-accesible surface of the molecule

Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

## olecular odrophobicity

Vhat is it?

Potential

Force Constants
Distance function

Solvent accesible surface

#### Evenly distributed points

Evenly distributed points Integration

#### Prograi

What are we interested in Program Specifications

#### Result

Validation via Known log p Values

ın Example Syster

How to distribute *N* points on a surface of a sphere?



#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

How to distribute N points on a surface of a sphere?



$$\varphi_i = i \cdot \frac{2\pi}{N}$$
 
$$\theta_j = j \cdot \frac{\pi}{N}$$

#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### troduction

Hydrophobicity and log P Partition Coefficient

#### Molecular Hydrophob

Potential What is it?

Potential

General for

Force Constants

Distance f

Surface

Solvent accesible surface Evenly distributed points

## Progra

hat are we interested in:

#### Result

Validation via Known log p Values

711 Example Oyote

## How to distribute N points on a surface of a sphere?







$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Pelg Bar Sapir

## troduction

Hydrophobicity and log F Partition Coefficient

#### lolecular lydrophobicity otential

What is it? Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points

# Integration

## Progra

What are we interested in Program Specifications

## Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?



$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$





Points are not evenly distributed Pelg Bar Sapir

troduction

Hydrophobicity and log F Partition Coefficient

Molecular lydrophobicity

What is it? Potential

otential General form

Force Constants

urface

olvent accesible sur

Evenly distributed points Integration

Progran

What are we interested in? Program Specifications

Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?



$$i\cdot\frac{2\pi}{N}$$

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$







evenly distributed

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

#### Molecular Hydrophobicity Potential

Pelg Bar Sapir

#### Introduction

Hydrophobicity and log F Partition Coefficient

#### Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

0...-

Solvent accesible surface

Evenly distributed points

#### Progran

What are we interested in Program Specifications

#### Results

Validation via Known log | Values

An Example Syste

Solution: Vogel's method

## In 2 dimensions:

▶ Distances:  $r_i = \sqrt{\frac{i}{N}}$ 

• Angle:  $\theta_i = \varphi i$ 

( $\varphi$  is the golden ratio!)

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### ntroduction

Hydrophobicity and log F Partition Coefficient

### Molecular Hydrophobicity

Otentia
What is it?

### Potential

General form

#### ---- 0-----

Distance func

#### Surface

Solvent accesible surface

### Prograi

What are we interested in

#### Results

Validation via Known log

An Example System

Solution: Vogel's method

## In 2 dimensions:

▶ Distances: 
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle:  $\theta_i = \varphi i$ ( $\varphi$  is the golden ratio!)

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

# Evenly distributed points

Solution: Vogel's method

## In 2 dimensions:

▶ Distances:  $r_i = \sqrt{\frac{i}{N}}$ 

• Angle:  $\theta_i = \varphi i$ ( $\varphi$  is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

Evenly distributed points

## In 2 dimensions:

- ▶ Distances:  $r_i = \sqrt{\frac{i}{N}}$
- Angle:  $\theta_i = \varphi i$ ( $\varphi$  is the golden ratio!)

# In 3 dimensions (cylindrical coordinates):

- ▶ Distances:  $z_i = \left(1 \frac{1}{N}\right) \left(1 \frac{2i}{N-1}\right)$
- Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

#### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

#### Introduction

Hydrophobicity and log P Partition Coefficient

#### lolecular ydrophobicity

otential

Potential

Ganaral form

Force Constants

Distance

urface

Solvent accesible surface Evenly distributed points

#### Program

at are we interested in gram Specifications

#### Result

Validation via Known log | Values

An Example Syste

Solution: Vogel's method

## In 2 dimensions:

- ▶ Distances:  $r_i = \sqrt{\frac{i}{N}}$
- Angle:  $\theta_i = \varphi i$  ( $\varphi$  is the golden ratio!)

# In 3 dimensions (cylindrical coordinates):

- ▶ Distances:  $z_i = \left(1 \frac{1}{N}\right) \left(1 \frac{2i}{N-1}\right)$
- ▶ Angles:  $\theta_i = \varphi i, \ \rho_i = \sqrt{1 z_i^2}$





Hydrophobicity and log P Partition Coefficient

Molecular

Hydrophobicity Potential

Pelg Bar Sapir

lolecular ydrophobicity otential

Potential General form

Force Constants

Surface

Solvent accesible surface Evenly distributed points Integration

## Progran

What are we interested in? Program Specifications

#### Results

Validation via Known log p Values

An Example Syste

► Each atom's total surface area:  $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$ 

$$V^a = 4\pi \left( R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

► Each atom's total surface area:  $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$ 

$$V^a = 4\pi \left( R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

▶ The surface is represented by *N* points

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

► Each atom's total surface area:  $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$ 

$$V^a = 4\pi \left( R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has  $V_j^a = \frac{4\pi}{N} \left( R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

► Each atom's total surface area:  $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$ 

$$V^a = 4\pi \left( R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has  $V_j^a = \frac{4\pi}{N} \left( R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- ▶ In addition, each point has: MHP<sup>a</sup><sub>i</sub>

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

► Each atom's total surface area:  $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$ 

$$V^a = 4\pi \left( R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by *N* points
- ▶ Meaning: each point has  $V_j^a = \frac{4\pi}{N} \left( R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- In addition, each point has: MHP<sup>a</sup><sub>i</sub>

Therefore, each atom has a total MHP of:

$$\mathsf{MHP}^a = \frac{4\pi}{N} \sum_{j=0}^M \mathsf{MHP}^a_j$$

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

Written in Python3, utylizing ProDy

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log P Partition Coefficient

## Molecular Hydrophobicity

Vhat is it?

## Potential

General form

Force Constants

Distance function

### urface

Solvent accesible surface Evenly distributed points Integration

## rogram

hat are we interested

### Program Specifications

### Results

Validation via Known log | Values

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log P Partition Coefficient

## lolecular lydrophobic

Potentia

## Potential

General form

### Force Constants

Distance functio

### urface

Solvent accesible surface Evenly distributed points

## rogran

hat are we interested in

### Program Specifications

### Results

Validation via Known log

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log P Partition Coefficient

## Molecular lydrophobicity

otentia Vhat is it?

Potential

General form

Force Constants

ırface

Solvent accesible surfac Evenly distributed points

Evenly distributed point ntegration

### fograffi /hat are we interested

hat are we interested in

## Program Specifications

### Results

Validation via Known log

An Example System

All Example Gyster



- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

## **Program Specifications**

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files
- Generates a PDB output, MHP values in beta column

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log P Partition Coefficient

> olecular ydrophobicity

otential hat is it?

Potential Conoral form

General form

Distance fun

ırface

Solvent accesible surfac Evenly distributed points Integration

## ogram

hat are we interested i

## Program Specifications

## Resul

Validation via Known log p

values An Example System

► Input: PSF + PDB or DCD

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log F Partition Coefficient

### Molecular Hydrophobicity Potential

What is it?

Conoral for

aerierai iorini

Distance function

Surface

Solvent accesible surfac Evenly distributed points

## rogram

Vhat are we interested in

Program Specifications

### Result

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log F Partition Coefficient

## olecular ydrophobicity

tential

Potential

General form

Force Constants

urface

Solvent accesible surface Evenly distributed points Integration

## rogram

/hat are we interested in?

## Program Specifications

## Result

Validation via Known log | Values



- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log F Partition Coefficient

## olecular ydrophobicity

Vhat is it?

## Potential

General form

## Force Constants

Distance fun

## urface Solvent accesible surfa

Evenly distributed pointegration

## rogram What are we interested

What are we interested in Program Specifications

### riogram opecincan

## Resul

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)

### Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log F Partition Coefficient

## olecular ydrophobicity

tential

## Potential

General form

## Force Constants

Distance f

## Surface

Solvent accesible surface Evenly distributed points

## rogran

What are we interested in

### Program Specifications

## i rogiam opecin

## Result

Validation via Known log p Values



- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Hydrophobicity and log F Partition Coefficient

## olecular drophobicity

What is it?

Potential

Force Constants

Surface

Solvent accesible surface Evenly distributed point

Integration

## Program

What are we interested in Program Specifications

## rogram Specification

## Resul

Validation via Known log p Values



- Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- Solvent probe radius (defalt: 1.4Å)
- Cutoff distance for distance function (default: 4Å)
- Frame range (if DCD)

### Molecular Hydrophobicity Potential

Pelg Bar Sapir

**Program Specifications** 

# Validation via Known $\log P$ Values

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir

### Introduction

Partition Coefficient

### Molecular Hydrophobicity Potential

What is it

Potential

General form

Force Constant

Zurfana

Surface

Evenly distributed point

## Progra

What are we interested in? Program Specifications

## Result

Validation via Known log p Values

# An Example System

## Molecular Hydrophobicity Potential

## Pelg Bar Sapir