Seminar 5

Recap of random variables

Consider probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A **random variable** is a measurable function $X: \Omega \to \mathbb{R}$ from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Measurable function $X:\Omega\to\mathbb{R}$ from (Ω,\mathcal{F}) to $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. It means that the preimage of any set A in $\mathcal{B}(\mathbb{R})$ belongs to \mathcal{F} :

$$orall A \in \mathcal{B}(\mathbb{R}) \Longrightarrow X^{-1}(A) \in \mathcal{F}$$

Recap of distributions

We will call the image μ of measure $\mathbb P$ through the mapping X the distribution of r.v. X and write $X\sim \mu$:

$$\mu(A) = \mathbb{P}(X^{-1}(A))$$

Any probabilistic measure (hence any probability distribution) can be decomposed into sum of three types of measures:

- Discrete
- Singular
- Absolutely continuous

Normally, the distributions fall into just one category and you never encounter singular distributions.

Functions describing distributions

- ullet For any distribution we have **cumulative distribution function** (CDF) $F_X(x) = \mathbb{P}(X < x)$
- ullet For discrete distributions we have **probability mass function** (PMF) $\mathbb{P}_X(x) = \mathbb{P}(X=x)$
- ullet For continuous distributions we have **probability density function** (PDF) $f_X(x) = F_X'(x)$

Functions of random variables

Random variables transform like functions, i.e. if $Y = \varphi(X)$, then $Y(\omega) = \varphi(X(\omega))$.

For a smooth φ , the density will be:

$$f_Y(y) = \sum_{arphi(x) = y} rac{f_X(x)}{|arphi'(x)|}$$

Mathematical expectation

Mathematical expectation generalizes the concept of mean. Consider probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variable $X: \Omega \to \mathbb{R}$. Then expected value of X is

$$\mathbb{E}\left[X
ight] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\mathbb{R}} x d\mu(x)$$

If X is discrete, then

$$\mathbb{E}\left[X
ight] = \sum_k x_k \mathbb{P}(X=x_k)$$

If X is continuous, then

$$\mathbb{E}\left[X
ight] = \int_{-\infty}^{+\infty} x f_X(x) dx$$

It may be the case that $\mathbb{E}\left[X
ight]=\pm\infty$ or even does not exist.

Example 1

We roll a die and r.v. X is the score of a roll. What is $\mathbb{E}\left[X
ight]$?

Solution 1

$$\mathbb{E}\left[X\right] = \sum_{k=1}^{6} k \cdot \mathbb{P}(X = k) = \frac{1}{6} \sum_{k=1}^{6} k = \frac{7}{2}$$

Example 2

We flip a non-symmetric coin and X is the r.v. for heads, $X \sim Be(p)$. What is $\mathbb{E}\left[X
ight]$?

Solution 2

$$\mathbb{E}\left[X
ight] = 0 \cdot \mathbb{P}(X=0) + 1 \cdot \mathbb{P}(X=1) = p$$

Example 3

Consider discrete r.v. X with distribution $\mathbb{P}(X=2^n)=2^{-n}$. What is $\mathbb{E}\left[X
ight]$?

Solution 3

$$\mathbb{E}\left[X
ight] = \sum_{n} 2^{n} 2^{-n} = \infty$$

Example 4

Consider discrete r.v. X with distribution $\mathbb{P}(X=2^n)=\mathbb{P}(X=-2^n)=2^{-n-1}$. What is $\mathbb{E}\left[X\right]$?

Solution 4

Expectation of r.v. X exists if and only if $\mathbb{E}\left[|X|
ight]<\infty$

Example 5

Consider X with **Poisson distribution** $X \sim Pois(\lambda)$:

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

What is $\mathbb{E}\left[X
ight]$?

Solution 5

$$\mathbb{E}\left[X\right] = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k-1)!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k-1)!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Properties of expectation

Consider r.v.s X and Y with finite expectations. Then,

- 1. For any constants a and b it holds $\mathbb{E}\left[aX+b
 ight]=a\mathbb{E}\left[X
 ight]+b$
- 2. $\mathbb{E}\left[X+Y\right]=\mathbb{E}\left[X\right]+\mathbb{E}\left[Y\right]$
- 3. If $X\leqslant Y$ a.s., then $\mathbb{E}\left[X
 ight]\leqslant\mathbb{E}\left[Y
 ight]$
- 4. If $X \perp Y$, then $\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$

Example 6

Consider X with binomial distribution $X \sim Bi(n,p)$. What is $\mathbb{E}\left[X
ight]$?

Solution 6

- ullet We know that $X=\sum_{k=1}^n X_k$, where $X_k\sim Be(p)$
- ullet We know that $\mathbb{E}\left[X_k
 ight]=p$
- ullet Then, $\mathbb{E}\left[X
 ight] = \sum_{k=1}^n \mathbb{E}\left[X_k
 ight] = np$

Expectation of a function of a random variable

Consider Y=arphi(X), then its expectation is

$$\mathbb{E}\left[Y
ight] = \int_{\Omega} arphi(X(\omega)) d\mathbb{P}_X(\omega) = \int_{-\infty}^{\infty} arphi(x) d\mu(x)$$

If additionally the following integral exists

$$\int_{-\infty}^{\infty} |arphi(x)| dF_X(x) < \infty$$

Then,

$$\mathbb{E}\left[Y
ight] = \int_{-\infty}^{\infty} arphi(x) f_X(x) dx$$

Variance

We call **variance** the following quantity of a r.v. X with finite expectation:

$$\mathbb{V}\mathrm{ar}(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]
ight)^2
ight]$$

Example 7

We flip a non-symmetric coin and X is the r.v. for heads, $X \sim Be(p)$. What is $\mathbb{V}\mathrm{ar}\,(X)$?

Solution 7

1. We know the formula

$$\mathbb{V}\mathrm{ar}\left(X
ight)=\mathbb{E}\left[\left(X-\mathbb{E}\left[X
ight]
ight)^{2}
ight]$$

2. We know $\mathbb{E}\left[X\right]$

$$\mathbb{V}\mathrm{ar}\left(X
ight)=\mathbb{E}\left[\left(X-p
ight)^{2}
ight]=\mathbb{E}\left[X^{2}-2pX+p^{2}
ight]$$

3. We know that expectation is linear

$$\mathbb{V}\mathrm{ar}\left(X
ight)=\mathbb{E}\left[X^{2}
ight]-2p\mathbb{E}\left[X
ight]+p^{2}=\mathbb{E}\left[X^{2}
ight]-p^{2}$$

4. For $Y=X^2$ we can compute

$$\mathbb{E}\left[Y
ight] = 0 \cdot \mathbb{P}(Y=0) + 1 \cdot \mathbb{P}(Y=1) = \mathbb{P}(Y=1) = \mathbb{P}(X^2=1) = \mathbb{P}(X=1) = p$$

5. Finally,

$$\mathbb{V}\mathrm{ar}\left(X\right) = p - p^2 = p(1 - p)$$

Properties of variance

- 1. $\mathbb{V}\mathrm{ar}\left(X\right)\geqslant0$ and $\mathbb{V}\mathrm{ar}\left(X\right)=0$ if and only if X=const a.s.
- 2. If holds

$$\mathbb{V}\mathrm{ar}\left(X
ight)=\mathbb{E}\left[X^{2}
ight]-\left(\mathbb{E}\left[X
ight]
ight)^{2}$$

3. It holds

$$\mathbb{V}$$
ar $(aX + b) = b^2 \mathbb{V}$ ar (X)

4. If $X \perp Y$, it holds

$$\mathbb{V}\mathrm{ar}\left(X+Y
ight)=\mathbb{V}\mathrm{ar}\left(X
ight)+\mathbb{V}\mathrm{ar}\left(Y
ight)$$

Example 8

Consider X with binomial distribution $X \sim Bi(n,p)$. What is $\mathbb{V}\mathrm{ar}\,(X)$?

Solution 8

- ullet We know that $X=\sum_{k=1}^n X_k$, where $X_k\sim Be(p)$
- We know that $\mathbb{V}\mathrm{ar}\left(X_{k}\right)=p(1-p)$
- ullet Then, $\mathbb{V}\mathrm{ar}\left(X
 ight)=\mathbb{V}\mathrm{ar}\left(\sum_{k=1}^{n}X_{k}
 ight)=\sum_{k=1}^{n}\mathbb{V}\mathrm{ar}\left(X_{k}
 ight)=np(1-p)$

Moments of distribution

 $\mathbb{E}\left[X^k
ight]$ is called k-th moment of r.v. X.

We say that k-th moment is finite if $\mathbb{E}\left[X^k\right]<\infty.$

If k-th moment is finite, then all moments m < k are finite as well.

Jensen's inequality

Consider r.v. X with $\mathbb{E}[X] < \infty$ and convex function $g(\cdot)$, then

$$\mathbb{E}\left[g(X)\right]\geqslant g\left(\mathbb{E}\left[X\right]\right)$$

Example 9

Prove Jensen's inequality for special case of $g(x)=x^2\,$

Cauchy-Schwarz inequality

Consider r.v. X with $\mathbb{E}\left[X^2
ight]<\infty$, then

$$\left|\mathbb{E}\left[XY
ight]
ight|\leqslant\sqrt{\mathbb{E}\left[X^{2}
ight]\mathbb{E}\left[Y^{2}
ight]}$$

Covariance

Covariance of two random variables X and Y is defined as

$$\operatorname{cov}(X,Y) = \mathbb{E}\left[\left(X - \mathbb{E}\left[X
ight]\right)\left(Y - \mathbb{E}\left[Y
ight]
ight)
ight] = \mathbb{E}\left[XY
ight] - \mathbb{E}\left[X
ight]\mathbb{E}\left[Y
ight]$$

From Cauchy-Schwarz inequality,

$$\operatorname{cov}(X,Y) \leqslant \sqrt{\operatorname{\mathbb{V}ar}(X)\operatorname{\mathbb{V}ar}(Y)}$$

Correlation

If $X \perp Y$, $\mathrm{cov}(X,Y) = 0$. The converse is not true. Regardless, covariance is often used to measure the dependency between random variables. It is not handy to use, so instead a **correlation coefficient** is proposed:

$$r_{XY} = rac{ ext{cov}(X,Y)}{\sqrt{\mathbb{V} ext{ar}\left(X
ight)\mathbb{V} ext{ar}\left(Y
ight)}}$$

Note that $-1 \leqslant r_{XY} \leqslant 1$.