UNIVERSITE DE LOME FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES B.P 1515 LOME

Parcours: N° de carte:

<u>UE MATH 102: DEVOIR</u> <u>SEMESTRE MOUSSON 2017-2018</u> DURÉE: 2 heures

EXERCICE 1 (8 pts)

Soit σ une permutation de \mathcal{S}_{10} définie par: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ & & & & & & & \\ 3 & 5 & 2 & 10 & 8 & 9 & 7 & 4 & 6 & 1 \end{pmatrix}$.

- 1. Décomposer σ en produit de cycles disjoints puis en produit de transpositions.
- 2. Calculer $I(\sigma)$ le nombre d'inversions de σ puis sa signature $\varepsilon(\sigma)$.

4. Déterminer la permutation μ telle que $\sigma\mu = (1357)$.

- 3. Déterminer σ^{-1} puis σ^{2018} .

$\underline{EXERCICE\ 2}\ (7\ pts)$

1. Soit G un ensemble non vide, muni d'une loi de composition notée multiplicativement. À quelles conditions $(G,.)$ est un groupe?
2. Soit E un ensemble non vide fini muni d'une loi de composition interne , associative notée multiplicativement dont tout élément est régulier.
(a) En utilisant les translations à gauche γ_x et à droite δ_x , $x\in E$, montrer que $(E,.)$ admet un élément neutre e .
(b) Montrer que tout élément de E est symétrisable.
(c) Conclure.

EVEDCICE 2 (5 mts)
EXERCICE 3 (5 pts)
L'opération binaire multiplicatif modulo 14, notée \cdot , est définie sur l'ensemble $S=\{\bar{2},\bar{4},\bar{6},\bar{8},\bar{10},\bar{12}\}.$ On admet que (S,\cdot) est un groupe.
1. Quel est le symétrique de 6 ?
2. Donner l'ordre de chaque élément de S .
3. Résoudre dans S les équations suivantes:
(a) $x^2 - \bar{6}x + \bar{7} = 0$. (b) $x^2 + \bar{4}x = \bar{4}$.