Geometry Unit 9: Dilation and similarity Bronx Early College Academy

Christopher J. Huson PhD

13 March 2023 - 31 March 2023

9.1 Dilation introduction

9.2 Solving for k, similarity

9.4 Composition

O.E. Commonition

9.3 Overlapping triangle practice

15 March

16 March

17 March

01 Mauri

Outline

9.5 Composition	21 March
9.6 Midline and medians	22 March
9.7 Midline and medians	24 March

9.1 Dilation introduction

Learning Target: I can dilate a triangle

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.1 Monday 13 March

Do Now

1.
$$12 \times \frac{1}{3} =$$

2.
$$10 \times \frac{7}{5} =$$

3. Find x if
$$9 \cdot x = 15$$

Lesson: Dilation, transformations, fraction operations Test results, check Jumprope

A dilation centered at the origin with scale factor k = 2

$$\triangle ABC \rightarrow \triangle A'B'C'$$

$$A(0,0) \rightarrow A'(0,0)$$

$$B(2,1) \to B'(4,2)$$

$$C(1,-1) \to C'(2,-2)$$

Dilation A transformation stretching objects on the plane by a scale factor away from a point

Center Dilation stretches figures away from a stationary point, the "center of dilation"

Scale factor The ratio *k* of the lengths of the corresponding sides of dilated figures

Learning Target: I can identify and explain similarity

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.2 Wednesday 15 March

Do Now: A triangle with side lengths 3, 4, and 5 is dilated by a factor of k=2 centered at one of its vertices. Find the lengths of the image's sides.

Lesson: Similar objects, solving for scale factor k

Similarity, corresponding parts, and scaled proportions

Similarity Objects with the same shape, but not necessarily the same size, are similar. Their corresponding angles are congruent and their corresponding sides are proportional.

Notation This is the symbol for similar triangles: $\triangle ABC \sim \triangle DEF$

Definition Two figures are similar if one or more rigid motions and a dilation will carry one figure onto the other.

Learning Target: I can solve overlapping similar triangles

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.3 Thursday 16 March

Do Now: Given $\triangle ABC \sim \triangle DEF$, k=2 If BC=4, find EF If $m\angle B=80^{\circ}$, find $m\angle E$

Lesson: Flexibly applying similarity to situations

"Solve" a triangle by finding all of is sides' and angles' measures

Given $\triangle ABC \sim \triangle DEF$

$$BC = 4$$
, $EF = 6$, $AB = 3$

$$m\angle B=55^{\circ}, \ m\angle D=70^{\circ}$$

Apply a dilation centered at the origin with scale factor $k=\frac{1}{2}$

$$\triangle ABC \rightarrow \triangle A'B'C'$$

$$A(-2,0) \rightarrow$$

$$B(4,2) \rightarrow$$

$$C(2,-4) \rightarrow$$

Apply a dilation centered at the origin with scale factor $k = \frac{1}{2}$

$$\triangle ABC \rightarrow \triangle A'B'C'$$

$$A(-2,0) \to A'(-1,0)$$

$$B(4,2) \to B'(2,1)$$

$$C(2,-4) \rightarrow C'(1,-2)$$

Note:

Slope is invariant under dilation

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.4 Friday 17 March

Do Now:

First reflect $\triangle ABC$ over the *y*-axis Then slide it up one and the right 3

Lesson: Applying dilation and rigid motions in compositions

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.4 Friday 17 March

Do Now:

First reflect $\triangle ABC$ over the *y*-axis Then slide it up one and the right 3

Lesson: Applying dilation and rigid motions in compositions

Find the area of the large and small rectangles

(use the areas of the small triangles)

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.5 Tuesday 21 March

Do Now:

First reflect $\triangle ABC$ over the *y*-axis Then slide it up one and the right 3

Lesson: Applying dilation and rigid motions in compositions

 $HSG.SRT.B.5 \ Use \ similarity \ criteria \ for \ triangles \ to \ solve \ problems$

9.5 Tuesday 21 March

Do Now:

First reflect $\triangle ABC$ over the *y*-axis Then slide it up one and the right 3

Lesson: Applying dilation and rigid motions in compositions

Learning Target: I can plot triangle midlines and medians

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.6 Wednesday 22 March

Do Now:

Rotating the triangle around its longer leg will make what 3-dimensional shape?

Lesson: Regents pointers. Be on time tomorrow.

Learning Target: I can plot triangle midlines and medians

HSG.SRT.B.5 Use similarity criteria for triangles to solve problems

9.7 Friday 24 March

Do Now:

What sequence of transformations map similar triangles $\triangle ABP \rightarrow \triangle JKP$?

Lesson: Midlines and triangle medians

Triangle midline and medians create similar triangles

Midpoint The point on a segment that divides the segment into two equal parts.

Midline The line segment that connects the midpoints of two sides of a triangle.

Triangle midline and medians create similar triangles

Midpoint The point on a segment that divides the segment into two equal parts.

Midline The line segment that connects the midpoints of two sides of a triangle.

Medians Segments connecting a vertex to the midpoint of the opposite side.

Centroid The point where the three medians intersect.

Notebook check scoring

Start quickly at the beginning of class: notebook, pencil, folder, calculator; get to work

Jumprope mastery score

- 1. I have a notebook ightarrow 1
- 2. I have class notes \rightarrow 2
- 3. I have stars indicating I quickly sit down and write the learning target ightarrow 3
- 4. I have stars and I complete the Do Now right away \rightarrow 4

24 March