

Lineare Algebra - WS 19/20

Prof. Dr. Anne Frühbis-Krüger Dr. Bernd Schober

Präsenzaufgabenblatt – Zusatztutorium 1

keine Abgabe!

Der Termin für das erste klausurvorbereitenden Tutorium ist:

Dienstag 26.11.2019 um 18Uhr c.t. im Raum W01-0-015

In diesem Zusatztutorium werden die folgenden Themen behandelt:

Beweistechniken, injektive/surjektive/bijektive Abbildungen, Gruppen, Untergruppen, Ringe und Körper

Fragen zu aktuellen Themen, wie z.B. den Gauss-Algorithmus, werden hier nicht behandelt. Hierzu dienen die regulären Tutorien und die Sprechstunden. Später wird es weitere klausurvorbereitenden Tutorien zu den anderen Themen geben.

Präsenzaufgabe z.1. Zeigen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

 $5^{2n} - 3^{2n}$ ist durch 8 teilbar.

Präsenzaufgabe z.2. (a). Sei $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ x+y \end{pmatrix}$. Bestimmen Sie, ob f_1 injektiv, surjektiv oder bijektiv ist.

- (b). Sei $f_2: \mathbb{C} \to \mathbb{R}$, $x + iy \mapsto x^2 + y^2$, wobei $x, y \in \mathbb{R}$. Bestimmen Sie, ob f_2 injektiv, surjektiv oder bijektiv ist.
- (c). Zeigen Sie: Sind $f: X \to Y$ und $g: Y \to Z$ zwei injektive Abbildungen, so ist auch die Komposition $g \circ f: X \to Z$ injektiv.
- (d). Zeigen Sie: Sind $f: X \to Y$ und $g: Y \to Z$ zwei surjektive Abbildungen, so ist auch die Komposition $g \circ f: X \to Z$ surjektiv.

Präsenzaufgabe z.3. (a). Sei

$$G := \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) = ax + b, \text{ wobei } a, b \in \mathbb{R} \text{ und } a \neq 0 \}.$$

Zeigen Sie, dass (G, \circ) eine Gruppe ist, die nicht abelsch ist. Hierbei bezeichnet \circ die Verknüpfung zweier Abbildungen.

(**b**). Sei

$$H := \{ f \in G \mid f(x) = ax \} \subset G.$$

Zeigen Sie, dass (H, \circ) eine Untergruppe von (G, \circ) ist. Ist H abelsch?

(c). Sei $(\mathcal{G}, *)$ eine beliebige Gruppe und seien $(U_1, *)$ und $(U_2, *)$ Untergruppen davon. Ist $(U_1 \cap U_2, *)$ ebenfalls eine Untergruppe von $(\mathcal{G}, *)$?

Präsenzaufgabe z.4. Sei $(R, +, \cdot)$ ein kommutativer Ring mit Eins mit mehr als einem Element. Wir bezeichnen mit $0_R \in R$ das neutrale Element bezüglich der Addition und mit $1_R \in R$ das neutrale Element bezüglich der Multiplikation.

- Ein Element $a \in R$ heißt nilpotent, falls es ein $n \in \mathbb{N}$ gibt mit $a^n = \overbrace{a \cdot a \cdots a} = 0_R$.
- Sei $m \in \mathbb{N}$. Ein Element $b \in R$ heißt m-te Einheitswurzel, falls gilt $b^m = 1_R$.
- (a). Beweisen Sie: Ist $a \in R \setminus \{0_R\}$ nilpotent, so ist a ein Nullteiler.
- (b). Beweisen Sie: Ist $b \in R \setminus \{0_R\}$ eine m-te Einheitswurzel, so ist b eine Einheit.
- (c). Beweisen Sie, dass es kein Element in R gibt, das gleichzeitig niltpotent und m-te Einheitswurzel ist.