Co-financing model code documentation

Itamar Megiddo 02/03/2020

Contents

Setup	2
Some useful functions (for later)	2
Donor-country (DC) model	3
Examples using the DC model	3
Data	5
Load data	5
Clean data	7
DC model with data	14
Figures	23
All Ghana figure	23
All cross country figure 1 x GDP	26
All cross country figure Ochalek (2018) x GDP $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	29
Ghana 1 x GDP 2012-2016 (most data for these years)	32
Ghana Ochalek (2018) x GDP 2012-2016 (most data for these years)	35
Country comparison 1 x GDP per capita	38
Gavi co-financing Ghana	40
Gavi co-financing All	42
Barplot DC model cost from CEA vs costs total from Gavi reports	44
Barplot DPT DC model cost from CEA vs costs total from Gavi reports	44
Scatterplot DPT Gavi financing vs GDP per capita	45
Scatterplot DPT Gavi financing vs GDP per capita vs Gavi report total	46
Reproduce figure from Morton et al 2018	47
Tables	50
Ghana Gavi co-financing table	50
Gavi CEA table	50

Setup

Loading packages.

Set some global values.

Capitalise first letter function (to be used later).

```
firstup <- function(x) {
  substr(x, 1, 1) <- toupper(substr(x, 1, 1))
  x
}</pre>
```

Round up nicely for plotting (to be used later).

```
roundUp <- function(x, nice_val=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) {
   if(length(x) != 1) stop("'x' can only take vectors of length 1")
   10^floor(log10(x)) * nice_val[[which(x <= 10^floor(log10(x)) * nice_val)[[1]]]]
}</pre>
```

Donor-country (DC) model

Load the DC model function.

```
source("R/DCmodel.R")
```

Examples using the DC model

```
# Input one vaccine and use the threshold input
DCmodel(cost = 10000,
       benefit = 15,
       intervention = "vaccine 1",
       threshold = 500)
## # A tibble: 1 x 7
    intervention cost benefit
                                 cer threshold domestic donor
##
    <chr>>
                 <dbl>
                         <dbl> <dbl>
                                         <dbl>
                                                 <dbl> <dbl>
## 1 vaccine 1
                 10000
                            15
                                 667
                                           500
                                                  7500 2500
# Input one vaccine and use gdp_per_capita and
# qdp_threshold_multiple
DCmodel(cost = 1000,
       benefit = 20,
       intervention = "vaccine 1",
       gdp per capita = 500,
       gdp_threshold_multiple = 1.5) %>%
 # Dropping gdp_threshold_multiple from output so see entire table
 # in RMarkdown document
 select(-gdp threshold multiple)
## # A tibble: 1 x 8
   intervention cost benefit
                                 cer gdp_per_capita threshold domestic donor
    <chr> <dbl> <dbl> <dbl>
                                             <dbl>
                                                       <dbl> <dbl> <dbl>
## 1 vaccine 1
                1000
                            20
                                 50
                                               500
                                                         750
                                                                 1000
# Input several vaccines
DCmodel(cost = c(1.5, 4, 0.8, 10) * 1000000,
       benefit = c(2000, 2500, 1500, 1000),
       intervention = c("v1", "v2", "v3", "v4"),
       gdp_per_capita = 500,
       gdp_threshold_multiple = 1.5) %>%
 # Dropping gdp_threshold_multiple and gdp_per_caita from output so see entire
 # table in RMarkdown document
 select(-gdp_threshold_multiple, -gdp_per_capita)
## # A tibble: 4 x 7
                                  cer threshold domestic
    intervention
                     cost benefit
                                                            donor
                    <dbl>
                                           <dbl>
##
    <chr>
                            <dbl> <dbl>
                                                    <dbl>
                                                            <dbl>
## 1 v1
                  1500000
                             2000
                                  750
                                             750 1500000
## 2 v2
                  4000000
                             2500 1600
                                             750 1875000 2125000
## 3 v3
                  800000
                            1500
                                  533
                                             750 800000
## 4 v4
                10000000
                             1000 10000
                                             750 750000 9250000
```

```
# Input one vaccine and several thresholds
DCmodel(cost = 10000,
        benefit = 15,
        intervention = "vaccine 1",
        gdp_per_capita = rep(500, 4), # rep repeats 500 four times,
        gdp_threshold_multiple = c(0.5, 1, 3, 4.5)) %>%
  \# Dropping gdp\_threshold\_multiple and gdp\_per\_caita from output so see entire
  # table in RMarkdown document
  select(-gdp_threshold_multiple, -gdp_per_capita)
## # A tibble: 4 x 7
##
     intervention cost benefit
                                   cer threshold domestic donor
                  <dbl>
                          <dbl> <dbl>
                                           <dbl>
                                                    <dbl> <dbl>
##
     <chr>>
## 1 vaccine 1
                  10000
                             15
                                   667
                                             250
                                                     3750 6250
## 2 vaccine 1
                  10000
                             15
                                   667
                                             500
                                                     7500
                                                           2500
## 3 vaccine 1
                  10000
                             15
                                   667
                                            1500
                                                    10000
                                                              0
                                                    10000
## 4 vaccine 1
                  10000
                             15
                                   667
                                            2250
                                                               0
# Input several vaccines and several thresholds
DCmodel(cost = c(1.5, 4, 0.8, 10) * 1000000,
        benefit = c(8000, 5000, 1500, 10000),
        intervention = c("v1", "v2", "v3", "v4"),
        gdp_per_capita = rep(500, 3),
        gdp_threshold_multiple = c(0.5, 1, 3)) %>%
  {\it\# Dropping gdp\_threshold\_multiple and gdp\_per\_caita from output so see entire}
  # table in RMarkdown document
  select(-gdp_threshold_multiple, -gdp_per_capita)
```

```
## # A tibble: 12 x 7
##
      intervention
                                      cer threshold domestic
                       cost benefit
                                                               donor
##
      <chr>
                      <dbl>
                              <dbl> <dbl>
                                              <dbl>
                                                       <dbl>
                                                               <dbl>
##
  1 v1
                    1500000
                               8000
                                      188
                                                250 1500000
                                                                   0
## 2 v2
                    4000000
                               5000
                                      800
                                                250 1250000 2750000
## 3 v3
                     800000
                               1500
                                      533
                                                250
                                                     375000 425000
## 4 v4
                   10000000
                              10000 1000
                                                250 2500000 7500000
                                                500 1500000
## 5 v1
                    1500000
                              8000
                                     188
## 6 v2
                    4000000
                               5000
                                      800
                                                500 2500000 1500000
## 7 v3
                     800000
                               1500
                                      533
                                                500
                                                      750000
                                                               50000
## 8 v4
                   10000000
                              10000 1000
                                                500 5000000 5000000
## 9 v1
                    1500000
                               8000
                                     188
                                               1500 1500000
                                                                   0
## 10 v2
                    4000000
                               5000
                                      800
                                               1500 4000000
                                                                   0
## 11 v3
                     800000
                               1500
                                      533
                                               1500
                                                      800000
                                                                   0
## 12 v4
                   10000000
                              10000 1000
                                               1500 10000000
                                                                   0
```

Data

Load data

```
gdp data <- read csv("data/data gdp per capita.csv")</pre>
## Parsed with column specification:
## cols(
##
     Country = col_character(),
##
     `2001` = col_double(),
     `2002` = col_double(),
##
     `2003` = col_double(),
##
##
     `2004` = col_number(),
##
     `2005` = col_number(),
##
     `2006` = col_number(),
##
     `2007` = col_number(),
##
     `2008` = col_number(),
     `2009` = col_number(),
##
     `2010` = col_number(),
##
##
     `2011` = col_number(),
##
     `2012` = col_number(),
     `2013` = col_number(),
     `2014` = col_number(),
##
##
     `2015` = col_number(),
##
     `2016` = col_number(),
     `2017` = col_number(),
##
     `2018` = col_number()
##
## )
cea_data <- read_csv("data/data_cea.csv")</pre>
## Warning: Missing column names filled in: 'X15' [15], 'X16' [16],
## 'X17' [17], 'X18' [18], 'X19' [19], 'X20' [20], 'X21' [21], 'X22' [22],
## 'X23' [23], 'X24' [24]
## Parsed with column specification:
## cols(
##
     .default = col_logical(),
##
     Country = col_character(),
##
     Vaccine = col_character(),
##
     `Indicator (e.g. deaths averted)` = col_character(),
     `Total cost for the period` = col_number(),
##
##
     `Costs per year` = col_number(),
     `Total benefit for the period` = col_number(),
##
##
     `Benefits per year` = col_number(),
##
     `Cost-effectiveness` = col_number(),
##
     `Start year` = col_double(),
##
     `End year` = col_double(),
     `Year of dollar rate used` = col_double(),
##
##
    Perspective = col_character(),
##
     Assumptions = col_character(),
```

```
`Author(s)` = col_character()
## )
## See spec(...) for full column specifications.
fund_data <- read_csv("data/data_vaccine_funding.csv")</pre>
## Warning: Missing column names filled in: 'X9' [9], 'X10' [10], 'X11' [11],
## 'X12' [12], 'X13' [13], 'X14' [14], 'X15' [15]
## Parsed with column specification:
## cols(
##
     Country = col_character(),
##
     Vaccine = col_character(),
   Year = col_double(),
##
     Total = col_double(),
     `Domestic contribution ($)` = col_double(),
##
     `Gavi contribution ($)` = col_double(),
##
     `Domestic (%)` = col_double(),
     `Gavi (%)` = col_double(),
     X9 = col_logical(),
##
    X10 = col_logical(),
##
##
    X11 = col_logical(),
##
    X12 = col_logical(),
##
    X13 = col_logical(),
##
    X14 = col_logical(),
##
     X15 = col_logical()
## )
gdp_deflator <- read_csv("data/gdp_deflator.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
     `Country Name` = col_character(),
     `Country Code` = col_character(),
##
##
     `Indicator Name` = col_character(),
     `Indicator Code` = col character(),
     `2019` = col_logical()
##
## )
## See spec(...) for full column specifications.
ex_rate <- read_csv("data/ex_rate.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     `Country Name` = col_character(),
     `Country Code` = col_character(),
##
     `Indicator Name` = col_character(),
     `Indicator Code` = col_character(),
```

```
`2019` = col_logical()
## )
## See spec(...) for full column specifications.
population_data <- read_csv("data/population_data.csv")</pre>
## Parsed with column specification:
## cols(
##
     `Country Name` = col_character(),
     `2012` = col_double(),
##
     `2013` = col_double(),
##
     `2014` = col_double(),
##
     `2015` = col_double(),
##
     `2016` = col_double(),
     `2017` = col_double(),
##
     `2018` = col_double()
##
## )
```

Clean data

Population data

```
# Change to long format data
population_data <-
   population_data %>%
   rename(country = `Country Name`) %>%
   gather(key = year, value = population, `2012`:`2018`) %>%
   mutate(year = as.numeric(year)) %>%
   filter(country %in% countries_model)
```

Gross domestic product deflator and exchange rate

Clean and combine Gross domestic product (GDP) deflator and exchange rate data.

```
select(country, `2000`: `2018`) %>%
  filter(country %in% countries_model) %>%
  gather(key = year, value = ex, `2000`: `2018`)
# Add exchange rate multiplier to get ex_2018/ex_year
# multiplying by both multipliers will give
# to local_currency = reported$$ * ex
# to 2018 local-currency = local currency * def 2018/def
# to 2018 $ = 2018 local currency / ex 2018
  i.e. (reported$$ * ex * def_2018/def) / ex_2018 =
# reported$$ * def_2018/def * ex/ex_2018
ex_rate <- left_join(ex_rate,</pre>
          ex_rate %>% filter(year == 2018) %>% select(-year) %>%
           rename(ex2018 = ex),
         by = "country") %>%
  mutate(ex_multiplier = ex/ex2018) %>%
  select(country, year, ex_multiplier)
# Create currency exchange deflating and exchanging
currency_conv <- left_join(gdp_deflator, ex_rate, by = c("country", "year")) %>%
  mutate(currency_mult = def_multiplier * ex_multiplier) %>%
  mutate(dollar_year = as.numeric(year)) %>%
  select(country, dollar_year, currency_mult)
```

Cost-effectiveness data and GDP per capita

Clean the cost-effectiveness analysis (CEA) data.

```
cea_data <- cea_data %>%
  # Rename to more data-friendly
 rename(country = Country, vaccine = Vaccine,
         indicator = Indicator (e.g. deaths averted),
         cost_for_horizon = `Total cost for the period`,
         cost = `Costs per year`,
         benefit_for_horizon = `Total benefit for the period`,
         benefit = `Benefits per year`, cea = `Cost-effectiveness`,
         s_year = `Start year`, e_year = `End year`,
         dollar_year = `Year of dollar rate used`,
         perspective = Perspective, assumptions = Assumptions,
         authors = `Author(s)`) %>%
  select(country:authors) %>%
  # Consistent naming of indicators
  mutate(indicator = firstup(indicator)) %>%
  mutate(indicator = gsub("DALY ", "DALYs ", indicator)) %>%
 mutate(indicator = gsub("Death ", "Deaths ", indicator)) %>%
mutate(indicator = gsub("Case ", "Cases ", indicator)) %>%
  mutate(indicator = gsub("YLL", "YLLs averted", indicator)) %>%
  # Some of the vaccine names differ between fund_data and cea_data
  mutate(vaccine = ifelse(grep1("DTP-Hep", vaccine, ignore.case = TRUE),
                           "DTP-hep B",
                           vaccine)) %>%
  mutate(vaccine = ifelse(grepl("Yellow Fever", vaccine),
```

```
"Yellow Fever",
                        vaccine)) %>%
mutate(vaccine = ifelse(grepl("Measles", vaccine),
                        "Measles",
                        vaccine)) %>%
mutate(vaccine = ifelse(grepl("Pneumococcal", vaccine),
                        "PCV",
                        vaccine)) %>%
mutate(vaccine = ifelse(grepl("Rota", vaccine),
                         "Rotavirus",
                        vaccine)) %>%
mutate(vaccine = ifelse(grepl("BCG", vaccine),
                        "BCG",
                        vaccine)) %>%
# Select only countries in the analysis
filter(country %in% countries_model)
```

Perform some checks on CEA data.

```
# Check diff between calculated and CEA reported in papers
# Small differences are likely due to rounding errors
cea_data %>% select(cost, benefit, cea) %>%
mutate(cea2 = round(cost/benefit,2)) %>%
mutate(diff = cea - cea2) %>%
arrange(desc(abs(diff))) %>%
filter(abs(diff) > 1e-09)
```

```
## # A tibble: 19 x 5
##
           cost benefit
                           cea
                                 cea2
                                          diff
##
                         <dbl>
                                <dbl>
                                         <dbl>
          <dbl>
                  <dbl>
                    303 12196. 12175. 20.1
##
   1
        3689149
##
   2
        1409658
                    303 4660. 4652. 7.69
##
   3
       6409006
                    634 10102. 10109. -6.37
                    888 13274. 13269.
##
   4
      11783120
                                       4.48
##
  5
      18747118
                   1303 14392. 14388.
                                      4.01
##
   6
       3721375
                    634
                       5866. 5870. -3.7
##
   7
        1505569
                    311
                        4844.
                                4841.
                                       3.11
##
   8
        7390364
                    888
                         8325.
                                8322.
                                       2.81
## 9
                    311 3486. 3484. 2.24
        1083447
## 10
         379910
                    311 1222. 1222. 0.780
                  10601 16621. 16621.
## 11 176198173
                                       0.470
## 12 176198173
                  10601 16621. 16621. 0.470
## 13
      34223066
                   9193
                         3723. 3723. -0.160
                         2544.
                                2544. 0.160
## 14
       7766946
                   3053
                   3053
                         2544.
                                2544. 0.160
## 15
       7766946
                                3130. -0.140
## 16
      28770592
                   9193
                         3129.
## 17
                   9228 2031.
                                2032. -0.1000
      18747118
## 18
        3200000
                  12570
                          255.
                                 255. 0.01
        3721375
                  33380
                                 111. -0.01000
## 19
                          111.
```

Transform GDP per capita data to long format, convert to \$2018, and add cost & benefit columns.

```
# Max cost +, to create a sequence for plotting
max_x \leftarrow max(cea_data$cost) + 50000000
seq x \leftarrow seq(0, max x, by = 100000)
# Convert GDP data to 2018 $
gdp data <- gdp data %>%
  gather(key = "year", value = "gdp_pc", -Country) %>%
 rename(country = Country) %>%
 mutate(year = as.numeric(year)) %>%
  # Convert currency
 left_join(currency_conv %>% rename(year = dollar_year),
            by = c("country", "year")) %>%
  mutate(gdp_pc = gdp_pc * currency_mult) %>%
  select(-currency_mult)
# Add cost and benefit columns to qdp_data to
# draw the CEA threshold
Ochalek threshold <- tibble(
  country = c("Ghana", "Kenya", "Senegal",
              "Nigeria", "India"),
  threshold_multiple = c(0.330, 0.415, 0.365, 0.095, 0.200)
gdp_data <- gdp_data %>%
  # Create rows for each analysis
  slice(rep(row_number(), length(seq_x))) %>%
  # Add a cost column, for plotting cost x-axis
  mutate(cost = unlist(sapply(seq_x, function(x) rep(x, nrow(gdp_data)), simplify = FALSE))) %>%
  # Add a number of benefit lines for plotting
  mutate(benefit_line = cost/gdp_pc,
         benefit_half_line = cost/gdp_pc/0.5,
         benefit_3_line = cost/gdp_pc/3,
         benefit_4_5_line = cost/gdp_pc/4.5) %>%
  left_join(Ochalek_threshold, by = "country") %>%
  mutate(benefit_ochalek_line = cost/gdp_pc/threshold_multiple)
# Convert to long data tibble
gdp_data <- gdp_data %>%
  gather(key = threshold, value = cea line,
         benefit line:benefit 4 5 line,
         benefit_ochalek_line) %>%
  # Write clear headings for different thresholds
  mutate(threshold = ifelse(threshold == "benefit_line",
                            "1 x GDP\nper capita",
                            threshold)) %>%
  mutate(threshold = ifelse(threshold == "benefit_half_line",
                            "0.5 x GDP\nper capita",
                            threshold)) %>%
  mutate(threshold = ifelse(threshold == "benefit_3_line",
                            "3 x GDP\nper capita",
                            threshold)) %>%
  mutate(threshold = ifelse(threshold == "benefit_4_5_line",
                            "4.5 x GDP\nper capita",
                            threshold)) %>%
```

Convert the CEA data into 2018 US Dollars using WB deflator.

Co-financing data

Clean co-financing data.

```
fund_data <-
  fund_data %>%
  # Rename columns so they are easier to work with.
 rename(country = Country, vaccine = Vaccine, year = Year,
        total = Total,
        domestic = `Domestic contribution ($)`,
         gavi = `Gavi contribution ($)`,
         domestic_p = `Domestic (%)`, gavi_p = `Gavi (%)`) %>%
  # Remove some columns that are unnecessary
  select(country:gavi_p) %>%
  # Remove rows with countries that are not part of the analysis (there are some
  # unnecessary rows in the data that explain the data)
  filter(country %in% countries_model) %>%
  # Convert numbers to numeric
  mutate(year = as.numeric(year),
        total = as.numeric(gsub("\\,", "", total)),
        domestic = as.numeric(gsub("\\,", "", domestic)),
         gavi = as.numeric(gsub("\\,", "", gavi)),
         domestic_p = as.numeric(domestic_p)/100,
         gavi_p = as.numeric(gavi_p)/100) %>%
  # Convert currency using currency conversion table
  left_join(currency_conv %>% rename(year = dollar_year),
            by = c("country", "year")) %>%
  mutate(total = total * currency mult,
        domestic = domestic * currency_mult,
         gavi = gavi * currency_mult) %>%
  select(-currency_mult) %>%
  # Some of the vaccine names differ between fund_data and cea_data;
```

```
# fix.
 mutate(vaccine = ifelse(grepl("DTP-Hep", vaccine),
                         "DTP-hep B",
                         vaccine)) %>%
 mutate(vaccine = ifelse(grepl("Yellow Fever", vaccine),
                         "Yellow Fever",
                         vaccine)) %>%
 mutate(vaccine = ifelse(grepl("Measles", vaccine),
                         "Measles",
                         vaccine)) %>%
 mutate(vaccine = ifelse(grepl("Pneumococcal", vaccine),
                         "PCV",
                         vaccine)) %>%
 mutate(vaccine = ifelse(grepl("Rota", vaccine),
                         "Rotavirus",
                         vaccine))
```

Combine CEA and funding data into a tibble

```
# Check what vaccines in CEA data are not in co-financing data
temp <- (cea_data %>% distinct(vaccine) %>% unlist) %in%
(fund data %>% distinct(vaccine) %>% unlist)
(cea_data %>% distinct(vaccine) %>% unlist)[!temp]
## vaccine3
      "BCG"
##
\# Check what vaccines in co-financing data are not in CEA data
temp <- (fund_data %>% distinct(vaccine) %>% unlist) %in%
(cea_data %>% distinct(vaccine) %>% unlist)
(fund_data %>% distinct(vaccine) %>% unlist)[!temp]
##
                                          vaccine7
                                                                  vaccine8
                  vaccine6
##
                    "MenA" "MR Follow up campaign"
                                                            "MenA Routine"
##
                  vaccine9
##
                     "IPV"
# Combine CEA and co-financing data by country and vaccine.
# Include all of the vaccines we have in the CEA analysis data,
  but not ones we have only in the co-financing data.
data <- full_join(cea_data,
                  fund_data %>% rename(year_gavi = year),
                  by = c("country", "vaccine"))
# Add BCG vaccine, not supported by Gavi for plotting
BCG_data <- data %>%
 # Get BCG data; at this point only includes Levin et al 2007
 filter(vaccine == "BCG") %>%
  # Copy rows years to create years 2006-2018
 slice(rep(row_number(), length(2006:2018))) %>%
```

```
arrange(indicator) %>%
mutate(year_gavi = rep(2006:2018, 3)) %>%
# Remove 2015 since do not have data
filter(year_gavi != 2015)

# Add the BCG data
data <- data %>%
# Remove the NA BCG data row
filter(vaccine != "BCG") %>%
# Add rest of BCG data
rbind(BCG_data)
```

Clean combined data.

```
# Remove non-base-case
data <- data %>%
  # Include only DALY or YLL
 filter(grepl("DALY|YLL", indicator)) %>%
  # Filter years that do not have any Gavi data or only for
  # a few countries and based on future projections
  # First add a year for BCG, so plot despite no Gavi
  # funding.
  mutate(year_gavi = ifelse(is.na(year_gavi) &
                              authors == "Levin et al. 2007" &
                              vaccine == "BCG",
                            2007.
                            year_gavi)) %>%
  filter(year_gavi < 2019) %>%
  # Only include base-case of Abbot et al. 2012
  # and use earliest year of Gavi funding (since intervention is 2003-08).
  filter(!(authors == "Abbott et al. 2012" &
             (assumptions != "$5 per dose"))) %>%# / year gavi != 2012))) %>%
  # Do not include the CEA with Gavi Subsidy accounted for
  # and focus on health system perspective.
  filter(!(authors == "Nonvignon et al. 2018" &
             (grepl("Ghana only", assumptions)
             !grepl("Health system", perspective)))) %>%
  # Use relevant Gavi data year for Krishnamoorthy et al. 2019
  # based on paper intervention years
  # filter(!(authors == "Krishnamoorthy et al. 2019" &
              year_gavi != 2018)) %>%
  # Use the analysis with the 90% intervention coverage and year 2018
  # for Gavi funding based on paper intervention years
  filter(!(authors == "Megiddo et al. 2018" &
             (grepl("Expanded coverage (90%)", assumptions)))) %>%
  # Do not include the CEA with Gavi subsidy accounted for
  filter(!(authors == "Debellut et al., 2019" &
             (assumptions == "Vaccine programme costs with Gavi subsidy"))) %>%
  # Remove rows with no co-financing data
  filter(!(is.na(total) & (!is.na(gavi) | !is.na(domestic)))) %>%
  # Add a column with vaccine and paper
  mutate(vaccine_cea_paper = paste0(vaccine, "\n", authors)) %>%
  # Remove columns that do not need for figures
```

```
select(-cost_for_horizon, -benefit_for_horizon, -currency_mult)
```

DC model with data

In the following code, we use the CEA study data for costs and benefits. We use the DC model to calculate the split between domestic and donor funding.

```
# Run DC model
DCmodel_out_cea <- mapply(function(c, y){</pre>
  # Get cea cost, benefit, vaccine, data for country and year
  x data <- data %>%
    filter(country == c & year_gavi == y) %>%
    distinct(vaccine, cost , benefit, authors)
  # If no data for country this year, skip
  if (nrow(x_data) == 0) return(tibble())
  # Get gdp and threshold data
  x_gdp <- gdp_data %>%
    filter(country == c & year == y) %>%
    distinct(gdp_pc)
  ochalek_p <- Ochalek_threshold %>% filter(country == c) %>%
    distinct(threshold_multiple) %>% unlist
 # Run model
  x <- DCmodel(
    cost = x_data$cost,
    benefit = x_data$benefit,
    intervention = x_data$vaccine,
    gdp_per_capita = rep(x_gdp$gdp_pc, 5),
    gdp threshold multiple = c(ochalek p, 0.5, 1, 3, 4.5)
  ) %>% mutate(country = c, year = y)
  return(x)
},
# Run for each country
c = sapply(countries model[countries model != "Angola"],
           function(c) sapply(2001:2018, function(y) c),
           simplify = F) %>% unlist,
# Run for each year
y = sapply(countries_model[countries_model != "Angola"],
           function(c) sapply(2001:2018, function(y) y),
           simplify = F) %>% unlist) %>%
  # Bind rows of list output
  bind_rows()
# Print output
DCmodel_out_cea %>%
  transmute(country, intervention, year, cer,
            thres mult = gdp threshold multiple,
            thres = round(threshold, 2),
            domestic, donor) %>%
  print(n = nrow(DCmodel_out_cea))
```

A tibble: 325 x 8

##		country	intervention	year	cer	thres_mult	thres	domestic	donor
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Ghana	DTP-hep B	2006	2665	0.33	449	16178817	79867035.
##	2	Ghana	Yellow Fever	2006	176	0.33	449	4719371.	0
##	3	Ghana	BCG	2006	154221	0.33	449	71840	24603502.
##	4	Ghana	DTP-hep B	2006	2665	0.5	680	24502440	71543412.
##	5	Ghana	Yellow Fever	2006	176	0.5	680	4719371.	0
##	6	Ghana	BCG	2006	154221	0.5	680	108800	24566542.
##	7	Ghana	DTP-hep B	2006	2665	1	1359	48968847	47077005.
##	8	Ghana	Yellow Fever	2006	176	1	1359	4719371.	0
##	9	Ghana	BCG	2006	154221	1	1359	217440	24457902.
##	10	Ghana	DTP-hep B	2006	2665	3	4078	96045852.	0
##	11	Ghana	Yellow Fever	2006	176	3	4078	4719371.	0
##	12	Ghana	BCG	2006	154221	3	4078	652480	24022862.
##	13	Ghana	DTP-hep B	2006	2665	4.5	6117	96045852.	0
##	14	Ghana	Yellow Fever	2006	176	4.5	6117	4719371.	0
##	15	Ghana	BCG	2006	154221	4.5	6117	978720	23696622.
##	16	Ghana	DTP-hep B	2007	2665	0.33	456	16431048	79614804.
##	17	Ghana	Yellow Fever	2007	176	0.33	456	4719371.	0
##	18	Ghana	BCG	2007	154221	0.33	456	72960	24602382.
##	19	Ghana	DTP-hep B	2007	2665	0.5	691	24898803	71147049.
##	20	Ghana	Yellow Fever	2007	176	0.5	691	4719371.	0
##		Ghana	BCG	2007	154221	0.5	691	110560	24564782.
##	22	Ghana	DTP-hep B	2007	2665	1	1382	49797606	46248246.
##		Ghana	Yellow Fever	2007	176	1	1382	4719371.	0
##	24	Ghana	BCG	2007	154221	1	1382	221120	24454222.
##	25	Ghana	DTP-hep B	2007	2665	3	4147	96045852.	0
##	26	Ghana	Yellow Fever	2007	176	3	4147	4719371.	0
##	27	Ghana	BCG	2007	154221	3	4147	663520	24011822.
##		Ghana	DTP-hep B	2007	2665	4.5	6221	96045852.	0
##		Ghana	Yellow Fever	2007	176	4.5	6221	4719371.	0
##	30	Ghana	BCG		154221	4.5	6221	995360	23679982.
##	31	Ghana	DTP-hep B	2008	2665	0.33	485	17476005	78569847.
##		Ghana	Yellow Fever	2008	176	0.33	485	4719371.	0
##		Ghana	BCG		154221	0.33	485	77600	24597742.
##		Ghana	DTP-hep B	2008	2665	0.5	735	26484255	69561597.
##	35	Ghana	Yellow Fever	2008	176	0.5	735	4719371.	0
##		Ghana	BCG		154221	0.5	735	117600	24557742.
##		Ghana	DTP-hep B	2008	2665	1	1470	52968510	43077342.
##		Ghana	Yellow Fever	2008	176	1	1470	4719371.	0
##		Ghana	BCG		154221	1	1470	235200	24440142.
##		Ghana	DTP-hep B	2008	2665	3	4411	96045852.	0
##		Ghana	Yellow Fever	2008	176	3	4411	4719371.	0
##		Ghana	BCG		154221	3	4411	705760	23969582.
##		Ghana	DTP-hep B	2008	2665	4.5	6617	96045852.	0
##		Ghana	Yellow Fever	2008	176	4.5	6617	4719371.	0
##		Ghana	BCG		154221	4.5	6617	1058720	23616622.
##		Ghana	DTP-hep B	2009	2665	0.33	496	17872368	78173484.
##		Ghana	Yellow Fever	2009	176	0.33	496	4719371.	0
##		Ghana	BCG		154221	0.33	496	79360	24595982.
##		Ghana	DTP-hep B	2009	2665	0.5	752 752	27096816	68949036.
##		Ghana	Yellow Fever	2009	176	0.5	752	4719371.	0
##		Ghana	BCG		154221	0.5	752	120320	24555022.
##	52	Ghana	DTP-hep B	2009	2665	1	1503	54157599	41888253.

##	E 2	Ghana	Yellow Fever	2009	176	1	1503	4719371.	0
##		Ghana	BCG		154221	1	1503	240480	24434862.
##		Ghana	DTP-hep B	2009	2665	3	4509	96045852.	0
##		Ghana	Yellow Fever	2009	176	3	4509	4719371.	0
##		Ghana	BCG		154221	3	4509	721440	23953902.
##		Ghana		2009	2665	4.5	6764	96045852.	23933902.
##		Ghana	DTP-hep B Yellow Fever	2009	176	4.5	6764	4719371.	0
		Ghana	BCG						
##					154221	4.5	6764	1082240	23593102.
##		Ghana	DTP-hep B	2010	2665	0.33	522	18809226	77236626.
##		Ghana	Yellow Fever	2010	176	0.33	522	4719371.	0
##		Ghana	BCG		154221	0.33	522	83520	24591822.
##		Ghana	DTP-hep B	2010	2665	0.5	791	28502103	67543749.
##		Ghana	Yellow Fever	2010	176	0.5	791	4719371.	0
##		Ghana	BCG		154221	0.5	791	126560	24548782.
##		Ghana	DTP-hep B	2010	2665	1	1582	57004206	39041646.
##		Ghana	Yellow Fever	2010	176	1	1582	4719371.	0
##		Ghana	BCG		154221	1	1582	253120	24422222.
##		Ghana	DTP-hep B	2010	2665	3	4746	96045852.	0
##		Ghana	Yellow Fever	2010	176	3	4746	4719371.	0
##		Ghana	BCG		154221	3	4746	759360	23915982.
##		Ghana	DTP-hep B	2010	2665	4.5	7119	96045852.	0
##	74	Ghana	Yellow Fever	2010	176	4.5	7119	4719371.	0
##	75	Ghana	BCG	2010	154221	4.5	7119	1139040	23536302.
##	76	Ghana	DTP-hep B	2011	2665	0.33	581	20935173	75110679.
##	77	Ghana	Yellow Fever	2011	176	0.33	581	4719371.	0
##	78	Ghana	BCG	2011	154221	0.33	581	92960	24582382.
##		Ghana	DTP-hep B	2011	2665	0.5	880	31709040	64336812.
##	80	Ghana	Yellow Fever	2011	176	0.5	880	4719371.	0
##	81	Ghana	BCG	2011	154221	0.5	880	140800	24534542.
##	82	Ghana	DTP-hep B	2011	2665	1	1761	63454113	32591739.
##	83	Ghana	Yellow Fever	2011	176	1	1761	4719371.	0
##	84	Ghana	BCG	2011	154221	1	1761	281760	24393582.
##	85	Ghana	DTP-hep B	2011	2665	3	5283	96045852.	0
##	86	Ghana	Yellow Fever	2011	176	3	5283	4719371.	0
##	87	Ghana	BCG	2011	154221	3	5283	845280	23830062.
##	88	Ghana	DTP-hep B	2011	2665	4.5	7924	96045852.	0
##	89	Ghana	Yellow Fever	2011	176	4.5	7924	4719371.	0
##	90	Ghana	BCG	2011	154221	4.5	7924	1267840	23407502.
##	91	Ghana	Rotavirus	2012	113	0.33	620	2105497.	0
##	92	Ghana	Rotavirus	2012	387	0.33	620	4931933.	0
##	93	Ghana	Measles	2012	3397	0.33	620	8432000	37761653.
##	94	Ghana	DTP-hep B	2012	2665	0.33	620	22340460	73705392.
##	95	Ghana	Yellow Fever	2012	176	0.33		4719371.	0
##		Ghana	Rotavirus	2012	215	0.33	620	7183815.	0
##	97	Ghana	BCG	2012	154221	0.33	620	99200	24576142.
##	98	Ghana	Rotavirus	2012	113	0.5	940	2105497.	0
##	99	Ghana	Rotavirus	2012	387	0.5	940	4931933.	0
##	100	Ghana	Measles	2012	3397	0.5	940	12784000	33409653.
##		Ghana	DTP-hep B	2012	2665	0.5	940	33871020	62174832.
##		Ghana	Yellow Fever	2012	176	0.5	940	4719371.	0
##		Ghana	Rotavirus	2012	215	0.5	940	7183815.	0
		Ghana	BCG		154221	0.5	940	150400	24524942.
		Ghana	Rotavirus	2012	113	1	1880	2105497.	0
		Ghana	Rotavirus	2012	387	1	1880	4931933.	0
						-	_000		•

##	107	Ghana	Measles	2012	3397	1	1880	25568000	20625653.
##		Ghana	DTP-hep B	2012	2665	1	1880	67742040	28303812.
##		Ghana	Yellow Fever	2012	176	1	1880	4719371.	0
##		Ghana	Rotavirus	2012	215	1	1880	7183815.	0
##	111	Ghana	BCG	2012	154221	1	1880	300800	24374542.
##	112	Ghana	Rotavirus	2012	113	3	5639	2105497.	0
##	113	Ghana	Rotavirus	2012	387	3	5639	4931933.	0
##	114	Ghana	Measles	2012	3397	3	5639	46193653.	0
##	115	Ghana	DTP-hep B	2012	2665	3	5639	96045852.	0
##	116	Ghana	Yellow Fever	2012	176	3	5639	4719371.	0
##	117	Ghana	Rotavirus	2012	215	3	5639	7183815.	0
##	118	Ghana	BCG	2012	154221	3	5639	902240	23773102.
##	119	Ghana	Rotavirus	2012	113	4.5	8458	2105497.	0
##	120	Ghana	Rotavirus	2012	387	4.5	8458	4931933.	0
##	121	Ghana	Measles	2012	3397	4.5	8458	46193653.	0
##	122	Ghana	DTP-hep B	2012	2665	4.5	8458	96045852.	0
##	123	Ghana	Yellow Fever	2012	176	4.5	8458	4719371.	0
		Ghana	Rotavirus	2012	215	4.5	8458	7183815.	0
		Ghana	BCG		154221	4.5	8458	1353280	23322062.
		Ghana	Rotavirus	2013	113	0.33	650	2105497.	0
##		Ghana	Rotavirus	2013	387	0.33	650	4931933.	0
##		Ghana	Measles	2013	3397	0.33	650	8840000	37353653.
##		Ghana	DTP-hep B	2013	2665	0.33	650	23421450	72624402.
		Ghana	Yellow Fever	2013	176	0.33	650	4719371.	0
		Ghana	Rotavirus	2013	215	0.33	650	7183815.	0
		Ghana	BCG		154221	0.33	650	104000	24571342.
		Ghana	Rotavirus	2013	113	0.5	985	2105497.	0
		Ghana	Rotavirus	2013	387	0.5	985	4931933.	0
		Ghana	Measles	2013	3397	0.5	985	13396000	32797653.
		Ghana	DTP-hep B	2013	2665	0.5	985	35492505	60553347.
		Ghana	Yellow Fever	2013	176	0.5	985	4719371.	0
		Ghana	Rotavirus	2013	215	0.5	985	7183815.	0
		Ghana Ghana	BCG		154221	0.5	985 1971	157600 2105497.	24517742. 0
		Ghana	Rotavirus Rotavirus	2013 2013	113 387	1 1	1971	4931933.	0
##		Ghana	Measles	2013	3397	1	1971	26805600	19388053.
		Ghana	DTP-hep B	2013	2665	1	1971	71021043	25024809.
		Ghana	Yellow Fever	2013	176	1	1971	4719371.	25024009.
		Ghana	Rotavirus	2013	215	1	1971	7183815.	0
		Ghana	BCG		154221	1	1971	315360	24359982.
		Ghana	Rotavirus	2013	113	3	5912	2105497.	0
		Ghana	Rotavirus	2013	387	3	5912	4931933.	0
		Ghana	Measles	2013	3397	3	5912	46193653.	0
		Ghana	DTP-hep B	2013	2665	3	5912	96045852.	0
		Ghana	Yellow Fever	2013	176	3	5912	4719371.	0
		Ghana	Rotavirus	2013	215	3	5912	7183815.	0
		Ghana	BCG		154221	3	5912	945920	23729422.
		Ghana	Rotavirus	2013	113	4.5	8867	2105497.	0
		Ghana	Rotavirus	2013	387	4.5	8867	4931933.	0
		Ghana	Measles	2013	3397	4.5	8867	46193653.	0
		Ghana	DTP-hep B	2013	2665	4.5	8867	96045852.	0
		Ghana	Yellow Fever	2013	176	4.5	8867	4719371.	0
##	159	Ghana	Rotavirus	2013	215	4.5	8867	7183815.	0
##	160	Ghana	BCG	2013	154221	4.5	8867	1418720	23256622.

##	161	Ghana	Rotavirus	2014	113	0.33	654	2105497.	0
##	162	Ghana	Rotavirus	2014	387	0.33	654	4931933.	0
##	163	Ghana	Measles	2014	3397	0.33	654	8894400	37299253.
##	164	Ghana	DTP-hep B	2014	2665	0.33	654	23565582	72480270.
##	165	Ghana	Yellow Fever	2014	176	0.33	654	4719371.	0
##	166	Ghana	Rotavirus	2014	215	0.33	654	7183815.	0
##	167	Ghana	BCG	2014	154221	0.33	654	104640	24570702.
##	168	Ghana	Rotavirus	2014	113	0.5	991	2105497.	0
##	169	Ghana	Rotavirus	2014	387	0.5	991	4931933.	0
##	170	Ghana	Measles	2014	3397	0.5	991	13477600	32716053.
##	171	Ghana	DTP-hep B	2014	2665	0.5	991	35708703	60337149.
##	172	Ghana	Yellow Fever	2014	176	0.5	991	4719371.	0
##	173	Ghana	Rotavirus	2014	215	0.5	991	7183815.	0
##	174	Ghana	BCG	2014	154221	0.5	991	158560	24516782.
##	175	Ghana	Rotavirus	2014	113	1	1982	2105497.	0
##	176	Ghana	Rotavirus	2014	387	1	1982	4931933.	0
##	177	Ghana	Measles	2014	3397	1	1982	26955200	19238453.
##	178	Ghana	DTP-hep B	2014	2665	1	1982	71417406	24628446.
##	179	Ghana	Yellow Fever	2014	176	1	1982	4719371.	0
##	180	Ghana	Rotavirus	2014	215	1	1982	7183815.	0
##		Ghana	BCG	2014	154221	1	1982	317120	24358222.
##		Ghana	Rotavirus	2014	113	3	5945	2105497.	0
##		Ghana	Rotavirus	2014	387	3	5945	4931933.	0
##		Ghana	Measles	2014	3397	3	5945	46193653.	0
##		Ghana	DTP-hep B	2014	2665	3	5945	96045852.	0
##		Ghana	Yellow Fever	2014	176	3	5945	4719371.	0
##		Ghana	Rotavirus	2014	215	3	5945	7183815.	0
##		Ghana	BCG		154221	3	5945	951200	23724142.
##		Ghana	Rotavirus	2014	113	4.5	8918	2105497.	0
##		Ghana	Rotavirus	2014	387	4.5	8918	4931933.	0
##		Ghana	Measles	2014	3397	4.5	8918	46193653.	0
##		Ghana	DTP-hep B	2014	2665	4.5	8918	96045852.	0
##		Ghana	Yellow Fever	2014	176	4.5	8918	4719371.	0
##		Ghana	Rotavirus	2014	215	4.5	8918	7183815.	0
##		Ghana	BCG		154221	4.5	8918	1426880	23248462.
##		Ghana	Rotavirus	2016	113	0.33	661	2105497.	0
		Ghana	Rotavirus	2016	387	0.33	661	4931933.	0
##		Ghana	DTP-hep B	2016	2665	0.33	661	23817813	72228039.
		Ghana	Yellow Fever	2016	176	0.33	661	4719371.	0
##		Ghana Ghana	Rotavirus BCG	2016	215	0.33	661 661	7183815.	0
##		Ghana	Rotavirus	2016	154221 113	0.33 0.5	1001	105760 2105497.	24569582. 0
##		Ghana	Rotavirus	2016	387	0.5	1001	4931933.	0
		Ghana	DTP-hep B	2016	2665	0.5	1001	36069033	59976819.
		Ghana	Yellow Fever	2016	176	0.5	1001	4719371.	0
##		Ghana	Rotavirus	2016	215	0.5	1001	7183815.	0
##		Ghana	BCG		154221	0.5	1001	160160	24515182.
##		Ghana	Rotavirus	2016	113	1	2002	2105497.	0
##		Ghana	Rotavirus	2016	387	1	2002	4931933.	0
##		Ghana	DTP-hep B	2016	2665	1	2002	72138066	23907786.
		Ghana	Yellow Fever	2016	176	1	2002	4719371.	0
		Ghana	Rotavirus	2016	215	1	2002	7183815.	0
		Ghana	BCG		154221	1	2002	320320	24355022.
		Ghana	Rotavirus	2016	113	3	6007	2105497.	0
"						-			•

		~-	.					4004000	•
		Ghana	Rotavirus	2016	387	3	6007	4931933.	0
		Ghana	DTP-hep B	2016	2665	3	6007	96045852.	0
		Ghana	Yellow Fever	2016	176	3	6007	4719371.	0
##		Ghana	Rotavirus	2016	215	3	6007	7183815.	0
##		Ghana	BCG		154221	3	6007	961120	23714222.
		Ghana	Rotavirus	2016	113	4.5	9010	2105497.	0
##		Ghana	Rotavirus	2016	387	4.5	9010	4931933.	0
##		Ghana	DTP-hep B	2016	2665	4.5	9010	96045852.	0
##		Ghana	Yellow Fever	2016	176	4.5	9010	4719371.	0
		Ghana	Rotavirus	2016	215	4.5	9010	7183815.	0
		Ghana	BCG		154221	4.5	9010	1441600	23233742.
		Ghana	Rotavirus	2017	113	0.33	699	2105497.	0
		Ghana	Rotavirus	2017	387	0.33	699	4931933.	0
##		Ghana	Rotavirus	2017	215	0.33	699	7183815.	0
		Ghana	BCG		154221	0.33	699	111840	24563502.
		Ghana	Rotavirus	2017	113	0.5	1059	2105497.	0
		Ghana	Rotavirus	2017	387	0.5	1059	4931933.	0
		Ghana	Rotavirus	2017	215	0.5	1059	7183815.	0
		Ghana	BCG		154221	0.5	1059	169440	24505902.
		Ghana	Rotavirus	2017	113	1	2118	2105497.	0
		Ghana	Rotavirus	2017	387	1	2118	4931933.	0
		Ghana	Rotavirus	2017	215	1	2118	7183815.	0
		Ghana	BCG		154221	1	2118	338880	24336462.
		Ghana	Rotavirus	2017	113	3	6353	2105497.	0
##	239	Ghana	Rotavirus	2017	387	3	6353	4931933.	0
		Ghana	Rotavirus	2017	215	3	6353	7183815.	0
		Ghana	BCG		154221	3	6353	1016480	23658862.
		Ghana	Rotavirus	2017	113	4.5	9530	2105497.	0
##	243	Ghana	Rotavirus	2017	387	4.5	9530	4931933.	0
		Ghana	Rotavirus	2017	215	4.5	9530	7183815.	0
##	245	Ghana	BCG		154221	4.5	9530	1524800	23150542.
		Ghana	BCG		154221	0.33	727	116320	24559022.
		Ghana	BCG		154221	0.5	1101	176160	24499182.
		Ghana	BCG		154221	1	2202	352320	24323022.
##		Ghana	BCG		154221	3	6607	1057120	23618222.
##		Ghana	BCG		154221	4.5	9910	1585600	23089742.
		India	PCV	2017	170	0.2		474964294.	0
##	252	India	PCV	2017	147	0.2		244206181.	0
##	253	India	PCV	2017	129	0.2		333748447.	0
##	254	India	Rotavirus	2017	615	0.2		117765201	66493392.
##	255	India	PCV	2017	170	0.5	982	474964294.	0
		India	PCV	2017	147	0.5	982	244206181.	0
		India	PCV	2017	129	0.5	982	333748447.	0
##	258	India	Rotavirus	2017	615	0.5	982	184258593.	0
		India	PCV	2017	170	1	1964	474964294.	0
		India	PCV	2017	147	1	1964	244206181.	0
		India	PCV	2017	129	1	1964	333748447.	0
		India	Rotavirus	2017	615	1	1964	184258593.	0
##	263	India	PCV	2017	170	3	5893	474964294.	0
		India	PCV	2017	147	3	5893	244206181.	0
		India	PCV	2017	129	3	5893	333748447.	0
##	266	India	Rotavirus	2017	615	3	5893	184258593.	0
##	267	India	PCV	2017	170	4.5	8839	474964294.	0
##	268	India	PCV	2017	147	4.5	8839	244206181.	0

шш	000	T 32 -	Day	0017	100	4 -	0000	222740447	0
		India	PCV	2017	129	4.5		333748447.	0
		India	Rotavirus	2017	615	4.5		184258593.	0
##		India	PCV	2018	170	0.2		474964294.	0
##		India	PCV	2018	147	0.2		244206181.	0
		India	PCV	2018	129	0.2		333748447.	0
		India	Rotavirus	2018	615	0.2		120462114	63796479.
##	275	India	PCV	2018	170	0.5		474964294.	0
##	276	India	PCV	2018	147	0.5		244206181.	0
##	277	India	PCV	2018	129	0.5	1005	333748447.	0
##	278	India	Rotavirus	2018	615	0.5	1005	184258593.	0
##	279	India	PCV	2018	170	1	2010	474964294.	0
##	280	India	PCV	2018	147	1	2010	244206181.	0
##	281	India	PCV	2018	129	1	2010	333748447.	0
##	282	India	Rotavirus	2018	615	1	2010	184258593.	0
##	283	India	PCV	2018	170	3	6030	474964294.	0
##	284	India	PCV	2018	147	3	6030	244206181.	0
##	285	India	PCV	2018	129	3	6030	333748447.	0
##	286	India	Rotavirus	2018	615	3	6030	184258593.	0
##	287	India	PCV	2018	170	4.5	9045	474964294.	0
##	288	India	PCV	2018	147	4.5	9045	244206181.	0
##	289	India	PCV	2018	129	4.5	9045	333748447.	0
##	290	India	Rotavirus	2018	615	4.5	9045	184258593.	0
##	291	Kenya	PCV	2012	407	0.415	591	21363898.	0
##	292	Kenya	PCV	2012	407	0.5	712	21363898.	0
##	293	Kenya	PCV	2012	407	1	1424	21363898.	0
##	294	Kenya	PCV	2012	407	3	4272	21363898.	0
##	295	Kenya	PCV	2012	407	4.5	6408	21363898.	0
##	296	Kenya	PCV	2013	407	0.415	610	21363898.	0
##	297	Kenya	PCV	2013	407	0.5	734	21363898.	0
##	298	Kenya	PCV	2013	407	1	1469	21363898.	0
##	299	Kenya	PCV	2013	407	3	4406	21363898.	0
##	300	Kenya	PCV	2013	407	4.5	6610	21363898.	0
##	301	Kenya	PCV	2014	407	0.415	626	21363898.	0
##		Kenya	Rotavirus	2014	329	0.415	626	13708930.	0
##	303	Kenya	PCV	2014	407	0.5	754	21363898.	0
##	304	Kenya	Rotavirus	2014	329	0.5	754	13708930.	0
##		Kenya	PCV	2014	407	1	1508	21363898.	0
		Kenya	Rotavirus	2014	329	1	1508	13708930.	0
##		Kenya	PCV	2014	407	3	4525	21363898.	0
##		Kenya	Rotavirus	2014	329	3	4525	13708930.	0
##		Kenya	PCV	2014	407	4.5	6788	21363898.	0
##		Kenya	Rotavirus	2014	329	4.5	6788	13708930.	0
##		Kenya	PCV	2015	407	0.415	645	21363898.	0
##		Kenya	PCV	2015	407	0.5	778	21363898.	0
##		Kenya	PCV	2015	407	1	1555	21363898.	0
##		Kenya	PCV	2015	407	3	4666	21363898.	0
##		Kenya	PCV	2015	407	4.5	6999	21363898.	0
##		Kenya	PCV	2016	407	0.415	667	21363898.	0
##		Kenya	PCV	2016	407	0.5	804	21363898.	0
##		Kenya	PCV	2016	407	1	1607	21363898.	0
		Kenya	PCV	2016	407	3	4822	21363898.	0
		Kenya	PCV	2016	407	4.5	7233	21363898.	0
		•	Rotavirus	2014	150	0.365	480	4120282.	0
		_	Rotavirus	2014	150	0.5	658	4120282.	0
							500		J

```
## 323 Senegal Rotavirus
                             2014
                                      150
                                                      1316
                                                             4120282.
                             2014
                                      150
                                                      3948
                                                             4120282.
                                                                              0
## 324 Senegal Rotavirus
                                               3
## 325 Senegal Rotavirus
                             2014
                                      150
                                               4.5
                                                      5923
                                                             4120282.
                                                                              0
```

In the following code, we use the CEA study benefits but use data from Gavi reports on costs (this does not include many of the costs that are in the CEA studies). We use the DC model to calculate the split between domestic and donor funding.

```
# Run DC model
DCmodel_out_reports <- mapply(function(c, y){</pre>
  # Get Gavi financed cost, and cea benefit, data for country and year
  x_data <- data %>%
   filter(country == c & year gavi == y) %>%
   distinct(vaccine , cost = total, benefit)
  # If no data for country this year, skip
  if (nrow(x_data) == 0) return(tibble())
  # Get gdp and threshold data
  x_gdp <- gdp_data %>%
   filter(country == c & year == y) %>%
   distinct(gdp_pc)
  ochalek_p <- Ochalek_threshold %>% filter(country == c) %>%
    distinct(threshold_multiple) %>% unlist
 # Run model
 x <- DCmodel(
    cost = x_data$cost,
   benefit = x_data$benefit,
   intervention = x_data$vaccine,
    gdp_per_capita = rep(x_gdp$gdp_pc, 5),
    gdp_threshold_multiple = c(ochalek_p, 0.5, 1, 3, 4.5)
  ) %>% mutate(country = c, year = y)
 return(x)
},
# Run for each country
c = sapply(countries_model[countries_model != "Angola"],
           function(c) sapply(2001:2018, function(y) c),
           simplify = F) %>% unlist,
# Run for each year
y = sapply(countries_model[countries_model != "Angola"],
           function(c) sapply(2001:2018, function(y) y),
           simplify = F) %>% unlist) %>%
  # Bind rows of list output
  bind_rows()
# Donor financing is 0 in all rows since the total amount
# is missing many costs included in CEAs.
DCmodel_out_reports %>%
  select(country, intervention, year, cer,
         gdp_threshold_multiple, threshold, domestic, donor) %>%
 filter(donor > 0)
## # A tibble: 0 x 8
## # ... with 8 variables: country <chr>, intervention <chr>, year <int>,
```

cer <dbl>, gdp_threshold_multiple <dbl>, threshold <dbl>,

domestic <dbl>, donor <dbl>

Figures

The figures in this document are optimised for a manuscript and project report. They may not appear optimally in this document.

All Ghana figure

```
# Add plotting themes.
library(ggthemes)
# Extract Ghana data
data_ghana <- data %>%
  rename(year = year_gavi) %>%
  filter(country == "Ghana" &
           grepl("DALY|YLL", indicator)) %>%
  select(vaccine_cea_paper, indicator, cost, benefit, cea, year, total,
         domestic, gavi, domestic_p, gavi_p, s_year, e_year, vaccine, perspective) %>%
  # Data for 2018 only on BCG which is not supported
  filter(year < 2018)</pre>
# Max axes
max ghana x <- data ghana %>%
  summarise(max(cost)) %>% unlist %>%
  roundUp + 10000000
max_ghana_y <- data_ghana %>%
  summarise(max(benefit)) %>% unlist %>%
  roundUp
# Select relevant GDP data (depending on which years have data
# for Ghana)
gdp_data_ghana <- left_join(data_ghana %>% select(year),
                            gdp_data %>% filter(country == "Ghana"),
                            by = "year") %>%
  # Data for 2018 only on BCG which is not supported
  filter(year < 2018)
# Plot legend lables
legend_lables <- data_ghana %>%
  distinct(vaccine_cea_paper) %>%
  unlist %>% sort
# Plot Ghana
p1 <- ggplot() +
  # Facet by year and threshold
 facet_grid(year~threshold, scales = "free") +
  # Threshold line
  geom_line(data = gdp_data_ghana %>%
              filter(country == "Ghana") %>%
              filter(cost < max_ghana_x),</pre>
            mapping = aes(x = cost/1000000, y = cea_line/1000), linetype = 2) +
```

```
# Costs and effectiveness point
  geom_point(data = data_ghana,
             mapping = aes(x = cost/1000000, y = benefit/1000,
                           color = vaccine cea paper,
                           shape = vaccine_cea_paper),
             size = 2.5) +
  # Arrow based on the proportion of Gavi support relative to domestic
  geom_segment(data = data_ghana,
               aes(x = cost/1000000, xend = (cost - gavi)/1000000,
                   y = benefit/1000, yend = benefit/1000),
               arrow = arrow(length = unit(0.1, "cm"))) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "Cost (in millions USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale_y_continuous(name ="DALYs averted (in thousdands)",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in two rows and remove shape legend
  # Set colors and shapes
  guides(color = guide legend(nrow = 2, byrow = TRUE)) +
  scale color manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(7)) +
  scale shape manual(name = "",
                    labels = legend_lables,
                     values = c(15, 16, 18, 17, 17, 17, 7)) +
  # Change theme of plot
  theme_fivethirtyeight() +
  theme(legend.position = "bottom",
        axis.title = element_text(),
        plot.caption = element_text(hjust = 0))
# Save figure
ggsave("figures/ghana_all.png", p1, dpi = 300,
       width = 9.1*2.5, height = 10*2.5, units = "cm")
## Warning: Removed 55 rows containing missing values (geom_segment).
# Create and save figure with appendix caption
p1 +
  # Add a caption
 labs(caption = paste(
   "Figure A1. Gavi contribution to vaccines in Ghana.",
    "Columns differ by cost-effectiveness thresholds, represented by the dashed black line;",
    "Rows differ by the year of Gavi funding (years missing are due to lack of data);",
   "Points represent costs and benefits are extracted from cost-effectiveness (CE) studies;",
   "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
   "such as distribution costs).",
   sep = "\n"))
```

Warning: Removed 55 rows containing missing values (geom_segment).


```
ggsave("figures/A1_ghana_all_appendix_caption.png", dpi = 300,
    width = 9.1*2.5, height = 10*2.5, units = "cm")
```

Warning: Removed 55 rows containing missing values (geom_segment).

All cross country figure 1 x GDP

```
# Get years that include non-Ghana countries
years_include <- data %>%
  filter(country != "Ghana") %>% distinct(year_gavi) %>% unlist
# All country data
data all countries <-
  data %>%
 rename(year = year gavi) %>%
  filter(grep1("DALY|YLL", indicator)) %>%
  filter(year %in% years include) %>%
  select(country, vaccine_cea_paper, indicator, cost, benefit, cea, year, total,
         domestic, gavi, domestic_p, gavi_p, s_year, e_year, vaccine, perspective) %>%
  # Data for 2018 only on BCG which is not supported
  # Also remove 2015 for which there is very limited data
  filter(year < 2018 & year != 2015) %>%
  # Add population data
  left_join(population_data, by = c("country", "year")) %>%
  # Convert values to per 100,000 population
  mutate(cost = cost/population*100000,
        benefit = benefit/population*100000,
         gavi = gavi/population*100000,
         domestic = domestic/population*100000)
# Max axes
max_all_countries_x <- data_all_countries %>%
  summarise(max(cost)) %>% unlist %>%
 roundUp + 10
max_all_countries_y <- data_all_countries %>%
  summarise(max(benefit)) %>% unlist %>%
  roundUp
# GDP data selct
gdp_data_all_countries <-
  left_join(data_all_countries %>% select(year, country),
            gdp_data,
            by = c("year", "country")) %>%
 filter(year %in% years_include) %>%
  # Data for 2018 only on BCG which is not supported
     Also remove 2015 for which there is very limited data
  filter(year < 2018 & year != 2015)
# Plot legend lables
legend_lables <- data_all_countries %>%
  distinct(vaccine cea paper) %>%
  unlist %>% sort
# Plot all countries using 1 X GDP per capita threshold
p2 <- ggplot() +
  # Facet by country and year
 facet_grid(year~country, scales = "free") +
# Threshold line
```

```
geom_line(data = gdp_data_all_countries %>%
              filter(threshold == "1 x GDP\nper capita") %>%
              filter(cost < max_all_countries_x),</pre>
            mapping = aes(x = cost/1000, y = cea_line), linetype = 2) +
  # Costs and effectiveness point
  geom_point(data = data_all_countries,
             mapping = aes(x = cost/1000, y = benefit,
                           color = vaccine cea paper,
                           shape = vaccine_cea_paper),
             size = 2.5) +
  # Arrow based on the proportion of Gavi support relative to domestic
  geom_segment(data = data_all_countries,
               aes(x = cost/1000, xend = (cost - gavi)/1000,
                   y = benefit, yend = benefit),
               arrow = arrow(length = unit(0.1, "cm"))) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "Cost per 100,000 people (in thousands USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale_y_continuous(name ="DALYs averted per 100,000 people",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in two rows and remove shape legend
  # Set colors and shapes
  guides(color = guide legend(nrow = 2, byrow = TRUE)) +
  scale color manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(10)) +
  scale_shape_manual(name = "",
                     labels = legend_lables,
                     values = c(15, 16, 18, 13, 13, 13, 17, 17, 17, 7)) +
  # Display color legend in 4 columns
  # Change theme of plot
  theme_fivethirtyeight() +
  theme(legend.position = "bottom",
        axis.title = element_text(),
        axis.text.x = element_text(angle = 45),
       plot.caption = element_text(hjust = 0))
# Save figure
ggsave("figures/all_country_compare_1GDP.png", p2, dpi = 300,
       width = 8*2.5, height = 10*2.5, units = "cm")
## Warning: Removed 5 rows containing missing values (geom_segment).
```

```
p2 + labs(
  caption = paste(
    "Figure A2. Gavi contribution to vaccines in Ghana, Angola, India, Kenya, and Senegal.",
    "The dashed black line is the 1 x GDP cost-effectiveness threshold;",
    "Points represent costs and benefits are extracted from cost-effectiveness (CE) studies;",
    "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
    "such as distribution costs).",
```

Warning: Removed 5 rows containing missing values (geom_segment).

Warning: Removed 5 rows containing missing values (geom_segment).

All cross country figure Ochalek (2018) x GDP

```
# Plot all countries using Ochalek 2018 X GDP per capita threshold
p3 <- ggplot() +
  # Facet by country and year
 facet_grid(year~country, scales = "free") +
  # Threshold line
  geom_line(data = gdp_data_all_countries %>%
              filter(grep1("Ochalek", threshold)) %>%
              filter(cost < max_all_countries_x),</pre>
            mapping = aes(x = cost/1000, y = cea line), linetype = 2) +
  # Costs and effectiveness point
  geom_point(data = data_all_countries,
             mapping = aes(x = cost/1000, y = benefit,
                           color = vaccine_cea_paper,
                           shape = vaccine_cea_paper),
             size = 3.5) +
  # Arrow based on the proportion of Gavi support relative to domestic
  geom_segment(data = data_all_countries,
               aes(x = cost/1000, xend = (cost - gavi)/1000,
                   y = benefit, yend = benefit),
               arrow = arrow(length = unit(0.2, "cm")),
               size = 1) +
  \# x-axis name and \$ formatting
  scale_x_continuous(name = "Cost per 100,000 people (in thousands USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale_y_continuous(name ="DALYs averted per 100,000 people",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in four rows and remove shape legend
  # Set colors and shapes
  guides(color = guide_legend(nrow = 3, byrow = TRUE)) +
  scale_color_manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(10)) +
  scale_shape_manual(name = "",
                     labels = legend_lables,
                     values = c(15, 16, 18, 13, 13, 13, 17, 17, 17, 7)) +
  # Display color legend in 4 columns
  # Change theme of plot
  theme fivethirtyeight() +
  theme(legend.position = "bottom",
       axis.title = element_text(),
```

```
axis.text.x = element_text(angle = 45),
    plot.caption = element_text(hjust = 0),
    text = element_text(size = 14))

# Save figure

ggsave("figures/all_country_compare_OchalekGDP.png", p3, dpi = 300,
    width = 12*2, height = 10*2, units = "cm")
```

Warning: Removed 5 rows containing missing values (geom_segment).

```
p3 + labs(
  caption = paste(
    "Figure A2. Gavi contribution to vaccines in Ghana, Angola, India, Kenya, and Senegal.",
    "The dashed black line is the 0.5 x GDP cost-effectiveness threshold;",
    "Points represent costs and benefits are extracted from cost-effectiveness (CE) studies;",
    "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
    "such as distribution costs).",
    sep = "\n"))
```

Warning: Removed 5 rows containing missing values (geom_segment).

Ghana 1 x GDP 2012-2016 (most data for these years)

```
# Plot legend lables
legend_lables <- data_ghana %>%
  distinct(vaccine_cea_paper) %>%
  unlist %>% sort
# Plot Ghana
p4 <- ggplot() +
  # Facet by year and threshold
  facet_wrap(year~., scales = "free", ncol = 2) +
  # Threshold line
  geom_line(data = gdp_data_ghana %>%
              filter(country == "Ghana") %>%
              filter(cost < max_ghana_x) %>%
              filter(threshold == "1 x GDP\nper capita") %>%
              filter(year %in% 2012:2016),
            mapping = aes(x = cost/1000000, y = cea_line/1000), linetype = 2) +
  # Costs and effectiveness point
  geom_point(data = data_ghana %>%
               filter(year %in% 2012:2016),
             mapping = aes(x = cost/1000000, y = benefit/1000,
                           color = vaccine_cea_paper,
                           shape = vaccine_cea_paper),
             size = 4.5) +
  # Arrow based on the proportion of Gavi support relative to domestic
  geom_segment(data = data_ghana %>%
                 filter(year %in% 2012:2016),
               aes(x = cost/1000000, xend = (cost - gavi)/1000000,
                   y = benefit/1000, yend = benefit/1000),
               arrow = arrow(length = unit(0.2, "cm")),
               size = 1) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "Cost (in millions USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale_y_continuous(name ="DALYs averted (in thousdands)",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in two rows and remove shape legend
  # Set colors and shapes
  guides(color = guide_legend(nrow = 2, byrow = TRUE)) +
  scale_color_manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(7)) +
  scale shape manual(name = "",
                     labels = legend_lables,
                     values = c(15, 16, 18, 17, 17, 17, 7)) +
  # Change theme of plot
  theme_fivethirtyeight() +
```

Warning: Removed 4 rows containing missing values (geom_segment).

```
# Create and save figure with appendix caption
p4 +

# Add a caption
labs(caption = paste(
    "Figure 1. Gavi contribution to vaccines in Ghana.",
    "The dashed black line is the 0.5 x GDP-based cost-effectiveness threshold;",
    "Each plot represents a different year of Gavi co-financing;",
    "Points represents costs and benefits extracted from cost-effectiveness (CE) studies;",
    "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
    "such as distribution costs).",
    sep = "\n"))
```

Warning: Removed 4 rows containing missing values (geom_segment).


```
ggsave("figures/A3_ghana_x1gdp_appendix_caption.png", dpi = 300,
    width = 8*2.5, height = 10*2.5, units = "cm")
```

Warning: Removed 4 rows containing missing values (geom_segment).

Ghana Ochalek (2018) x GDP 2012-2016 (most data for these years)

```
# Plot legend lables
legend_lables <- data_ghana %>%
  distinct(vaccine_cea_paper) %>%
  unlist %>% sort
# Plot Ghana
p4 <- ggplot() +
  # Facet by year and threshold
  facet_wrap(year~., scales = "free", ncol = 2) +
  # Threshold line
  geom_line(data = gdp_data_ghana %>%
              filter(country == "Ghana") %>%
              filter(cost < max_ghana_x) %>%
              filter(grep1("Ochalek", threshold)) %>%
              filter(year %in% 2012:2016),
            mapping = aes(x = cost/1000000, y = cea_line/1000), linetype = 2) +
  # Costs and effectiveness point
  geom_point(data = data_ghana %>%
               filter(year %in% 2012:2016),
             mapping = aes(x = cost/1000000, y = benefit/1000,
                           color = vaccine cea paper,
                           shape = vaccine_cea_paper),
             size = 4.5) +
  # Arrow based on the proportion of Gavi support relative to domestic
  geom_segment(data = data_ghana %>%
                 filter(year %in% 2012:2016),
               aes(x = cost/1000000, xend = (cost - gavi)/1000000,
                   y = benefit/1000, yend = benefit/1000),
               arrow = arrow(length = unit(0.2, "cm")),
               size = 1) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "Cost (in millions USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale y continuous(name ="DALYs averted (in thousdands)",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in two rows and remove shape legend
  # Set colors and shapes
  guides(color = guide_legend(nrow = 2, byrow = TRUE)) +
  scale_color_manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(7)) +
  scale shape_manual(name = "",
                     labels = legend_lables,
                     values = c(15, 16, 18, 17, 17, 17, 7)) +
  # Change theme of plot
  theme_fivethirtyeight() +
  theme(legend.position = "bottom",
        axis.title = element text(),
        plot.caption = element_text(hjust = 0),
```

Warning: Removed 4 rows containing missing values (geom_segment).

```
# Create and save figure with appendix caption
p4 +
    # Add a caption
labs(caption = paste(
    "Figure 1. Gavi contribution to vaccines in Ghana.",
    "The dashed black line is the 0.33 x GDP-based cost-effectiveness threshold (based on Ochalek et al
    "Each plot represents a different year of Gavi co-financing;",
    "Points represents costs and benefits extracted from cost-effectiveness (CE) studies;",
    "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
    "such as distribution costs).",
    sep = "\n"))
```

Warning: Removed 4 rows containing missing values (geom_segment).


```
ggsave("figures/A3_ghana_ochalekgdp_appendix_caption.png", dpi = 300,
    width = 8*2.5, height = 10*2.5, units = "cm")
```

Warning: Removed 4 rows containing missing values (geom_segment).

Country comparison 1 x GDP per capita

```
# Plot legend lables
legend_lables <- data_all_countries %>%
  distinct(vaccine_cea_paper) %>%
  unlist %>% sort
# Plot all countries using 1 X GDP per capita threshold
p5 <- ggplot() +
  # Facet by country and year
 facet_grid(year~country, scales = "free") +
  # Threshold line
  geom_line(data = gdp_data_all_countries %>%
              filter(threshold == "1 x GDP\nper capita") %>%
              filter(cost < max_all_countries_x) %>%
              filter(year %in% c(2014, 2017)),
            mapping = aes(x = cost/1000, y = cea_line), linetype = 2) +
  # Costs and effectiveness point
  geom_point(data = data_all_countries %>%
              filter(year %in% c(2014, 2017)),
             mapping = aes(x = cost/1000, y = benefit,
                           color = vaccine_cea_paper,
                           shape = vaccine_cea_paper),
             size = 4.5) +
  # Arrow based on proportion of Gavi support relative to deomestic
  geom_segment(data = data_all_countries %>%
              filter(year %in% c(2014, 2017)),
              aes(x = cost/1000, xend = (cost - gavi)/1000,
                   y = benefit, yend = benefit),
               arrow = arrow(length = unit(0.2, "cm"))) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "Cost per 100,000 people (in thousands USD 2018)",
                     labels = scales::dollar) +
  # y-axis name and formatting
  scale y continuous(name ="DALYs averted per 100,000 people",
                     labels = scales::comma) +
  # Remove color/shape legend name
  # Display color legend in four rows and remove shape legend
  # Set colors and shapes
  guides(color = guide_legend(nrow = 2, byrow = TRUE)) +
  scale_color_manual(name = "",
                     labels = legend_lables,
                     values = gdocs_pal()(10)) +
  scale_shape_manual(name = "",
                     labels = legend_lables,
                     values = c(15, 16, 18, 13, 13, 13, 17, 17, 17, 7)) +
  # Display color legend in 4 columns
  # Change theme of plot
  theme_fivethirtyeight() +
  theme(legend.position = "bottom",
        axis.title = element_text(),
        axis.text.x = element text(angle = 45),
        plot.caption = element_text(hjust = 0),
```

Warning: Removed 2 rows containing missing values (geom_segment).

```
p5 + labs(
  caption = paste(
    "Figure 2. Gavi contribution to vaccines in Ghana, Angola, India, Kenya, and Senegal.",
    "The dashed black line is the 1 x GDP cost-effectiveness threshold;",
    "Points represent costs and benefits are extracted from cost-effectiveness (CE) studies;",
    "Arrows represent financing by Gavi (CE studies typically include costs not covered by Gavi",
    "such as distribution costs).",
    sep = "\n"))
```

Warning: Removed 2 rows containing missing values (geom_segment).

Warning: Removed 2 rows containing missing values (geom_segment).

Gavi co-financing Ghana

```
financing_ghana_plot_data <-
  fund_data %>%
  filter(country == "Ghana" & !is.na(gavi)) %>%
  select(vaccine, year, domestic, gavi) %>%
  gather(key = source, value = amount, domestic:gavi) %>%
  mutate(source = gsub("gavi", "Gavi", source)) %>%
  mutate(source = gsub("domestic", "Domestic", source))
p6 <- ggplot(data = financing_ghana_plot_data,</pre>
       mapping = aes(x = factor(year), y = amount/1000000, fill = source)) +
  facet wrap(vaccine~.) +
  geom_bar(stat = "identity", position = "dodge") +
  # x-axis name and $ formatting
  scale_x_discrete(name = "Year") +
  # y-axis name and formatting
  scale_y_continuous(name ="Funding in 2018 US Dollars",
                     labels = scales::dollar_format(prefix = "$", suffix = "M")) +
  # Remove fill legend title
  # Display color legend in four rows and remove shape legend
  # Set colors and shapes
  scale_fill_discrete(name = "Source") +
  # Change theme of plot
  theme_fivethirtyeight() +
  theme(legend.position = "bottom",
        axis.title = element_text(),
        plot.caption = element_text(hjust = 0),
        axis.text.x = element_text(angle = 45))
# Save figure
ggsave("figures/ghana_gavi_cofinancing.png", p6, dpi = 300,
       width = 6*2.5, height = 6*2.5, units = "cm")
p6 + labs(
  caption = paste(
    "Figure 1. Gavi co-financing of vaccines in Ghana.",
    "Source of data: Gavi Alliance Annual Progress Reports.",
    "DTP-hep B: dephtheria, tetanus, pertusis, and hepatitus B vaccine.",
    "MenA: Meningococcal vaccine.",
    "PCV: Pneumocaloccal conjugage vaccine.",
    sep = "\n"))
```


Gavi co-financing All

```
financing_plot_data <-
  fund_data %>%
  filter(!is.na(gavi) & (year %in% 2012:2018)) %>%
  select(country, vaccine, year, domestic, gavi) %>%
  gather(key = source, value = amount, domestic:gavi) %>%
  mutate(source = gsub("gavi", "Gavi", source)) %>%
  mutate(source = gsub("domestic", "Domestic", source))
p7 <- ggplot(data = financing_plot_data,
       mapping = aes(x = factor(year), y = amount/1000000, fill = source)) +
  facet_wrap(vaccine~country, scales = "free") +
  geom_bar(stat = "identity", position = "dodge") +
  # x-axis name and $ formatting
  scale_x_discrete(name = "Year") +
  # y-axis name and formatting
  scale_y_continuous(name ="Funding in 2018 US Dollars",
                     labels = scales::dollar_format(prefix = "$", suffix = "M")) +
  # Remove fill legend title
  # Display color legend in four rows and remove shape legend
  # Set colors and shapes
  scale fill discrete(name = "Source") +
  # Change theme of plot
  theme fivethirtyeight() +
  theme(legend.position = "bottom",
       axis.title = element_text(),
       plot.caption = element_text(hjust = 0),
       axis.text.x = element text(angle = 45),
       text = element_text(size = 16))
# Save figure
ggsave("figures/all_gavi_cofinancing.png", p7, dpi = 300,
       width = 12*2.5, height = 12*2.5, units = "cm")
p6 + labs(
  caption = paste(
    "Figure 1. Gavi co-financing of vaccines",
    "Source of data: Gavi Alliance Annual Progress Reports.",
   "DTP-hep B: dephtheria, tetanus, pertusis, and hepatitus B vaccine.",
   "MenA: Meningococcal vaccine.",
    "PCV: Pneumocaloccal conjugage vaccine.",
   sep = "\n"))
```


Barplot DC model cost from CEA vs costs total from Gavi reports

```
DC_combined <- rbind(</pre>
  DCmodel_out_cea %>% mutate(cost_from = "CEA study"),
  DCmodel_out_reports %>% mutate(cost_from = "Gavi reports")
) %>%
  gather(key = source, value = value, domestic:donor) %>%
  mutate(source = ifelse(source == "domestic", "Country", "Donor")) %>%
  mutate(cost_from = paste("DC model:", cost_from, "costs"))
p <- ggplot(data = DC combined %>%
         filter(country == "Ghana" & gdp_threshold_multiple == 1) %>%
         left join(data %>% select(authors, cost, benefit),
            by = c("cost", "benefit")) %>%
         mutate(intervention = ifelse(is.na(authors),
                                      intervention,
                                      paste(intervention, authors))),
             mapping = aes(x = factor(year), y = value/1000000, fill = source)) +
  facet_wrap(cost_from~intervention, scales = "free") +
  geom_bar(stat = "identity", position = "dodge") +
  # x-axis name and $ formatting
  scale_x_discrete(name = "Year") +
  # y-axis name and formatting
  scale_y_continuous(name ="Funding in 2018 US Dollars",
                     labels = scales::dollar_format(prefix = "$", suffix = "M")) +
  # Change fill legend title
  scale_fill_discrete(name = "Source") +
  # Change theme of plot
  theme fivethirtyeight() +
  theme(legend.position = "bottom",
        plot.caption = element_text(hjust = 0),
        axis.text.x = element_text(angle = 45),
       text = element_text(size = 18))
# Save figure
ggsave("figures/ghana_DCmodel_1X_comparison.png", p, dpi = 300,
       width = 14*2.5, height = 10*2.5, units = "cm")
```

Warning: Removed 24 rows containing missing values (geom_bar).

Barplot DPT DC model cost from CEA vs costs total from Gavi reports

```
fund_data %>%
   filter(country == "Ghana" & grep1("DTP", vaccine) & year <= 2016) %>%
   mutate(Country = domestic, Donor = gavi, cost_from = "(C) Gavi reports") %>%
   select(year, cost from, Country, Donor) %>%
  gather(key = source, value = value, Country:Donor)
p <- ggplot(data = DC_combined_real_ghana_DTP,</pre>
             mapping = aes(x = factor(year), y = value/1000000, fill = source)) +
  facet_wrap(cost_from~., scales = "free", nrow = 3) +
  geom_bar(stat = "identity", position = "dodge") +
  # x-axis name and $ formatting
  scale x discrete(name = "Year") +
  # y-axis name and formatting
  scale_y_continuous(name ="Funding in 2018 US Dollars",
                     labels = scales::dollar_format(prefix = "$", suffix = "M")) +
  # Change fill legend title
  scale_fill_discrete(name = "Source") +
  # Change theme of plot
  theme fivethirtyeight() +
  theme(legend.position = "bottom",
        plot.caption = element_text(hjust = 0),
        axis.text.x = element_text(angle = 45))
# Save figure
ggsave("figures/ghana_DCmodel_1x_DTP_comparison.png", p, dpi = 300,
       width = 8*2.5, height = 8*2.5, units = "cm")
```

Scatterplot DPT Gavi financing vs GDP per capita

```
DPT_vs_GDP <- DC_combined_real_ghana_DTP %>%
 filter(grepl("\\(C", cost_from)) %>%
  spread(key = source, value = value) %>%
  mutate(p_donor = Donor/(Country + Donor)) %>%
 left_join(gdp_data %>%
              filter(country == "Ghana" &
                       grepl("1 x", threshold) &
                       cost == 0) \%
              select(year, gdp_pc),
            by = "year")
p <- ggplot(data = DPT_vs_GDP,</pre>
             mapping = aes(x = gdp_pc, y = p_donor)) +
  geom_point(size = 3) +
  geom_text(data = DPT_vs_GDP %>%
              mutate(x_text = ifelse(year %in% c(2014, 2007, 2009, 2011),
                                     gdp_pc + 40,
                                     gdp_pc - 38)),
   mapping = aes(x = x_text, y = p_donor+.015, label = year),
   size = 5.5) +
```

Scatterplot DPT Gavi financing vs GDP per capita vs Gavi report total

```
DPT_vs_GDP_vs_report <- DPT_vs_GDP %>% mutate(total = Country + Donor) %>%
  select(-Country, -Donor) %>%
  gather(key = panel_x, value = value, gdp_pc, total) %>%
  mutate(panel_x = ifelse(panel_x == "gdp_pc",
                          "(A) GDP per capita",
                          "(B) Gavi report total vaccine financing (in millions)"),
         panel_y = "Gavi contribution to funding vaccine") %>%
  mutate(value = ifelse(grep1("\\(B", panel_x), value/1000000, value))
p <- ggplot(data = DPT_vs_GDP_vs_report,</pre>
             mapping = aes(x = value, y = p_donor)) +
  facet_wrap(panel_x~., scales = "free", strip.position = "bottom") +
  geom_point(size = 2.5) +
  geom_text(
    data = DPT_vs_GDP_vs_report %>%
      mutate(
        x_text = ifelse(grepl("\\(A", panel_x),
                        ifelse(year %in% c(2014, 2007, 2009, 2011),
                               value + 50,
                               value -48),
                        ifelse(year %in% c(2013, 2009),
                               value - 1.1,
                               value + 1.2)
                        )),
    mapping = aes(x = x_text, y = p_donor + 0.02, label = year),
    size = 4) +
  # x-axis name and $ formatting
  scale_x_continuous(name = "",
                   labels = scales::dollar) +
  \# y-axis name and formatting
  scale_y_continuous(name = "Gavi contribution to funding vaccine",
                     labels = scales::percent) +
  # Change theme of plot
  theme_fivethirtyeight() +
```

Reproduce figure from Morton et al 2018

```
threshold_data <- tibble(</pre>
  cost = 0:90,
  benefit = 0:90,
)
interventions_data <- tibble(</pre>
  cost = c(40, 80, 70, 90,
           20, 10, 40, 55, 15),
  benefit = c(10, 40, 50, 70,
              30, 40, 50, 80, 75),
  country_funded = c(rep(FALSE, 4),
                      rep(TRUE, 5))
)
library(grid)
library(pBrackets)
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 3.6.3
## Loading required package: magrittr
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
       set_names
## The following object is masked from 'package:tidyr':
##
##
       extract
bracketsGrob <- function(...){</pre>
1 <- list(...)
e <- new.env()
e$1 <- 1
  grid:::recordGrob( {
    do.call(grid.brackets, 1)
```

```
}, e)
b1 <- bracketsGrob(0.79, 0.38, 0.41, 0.38, h=0.05, lwd=1, col="red")
ggplot() +
  geom_line(data = threshold_data,
            mapping = aes(x = cost, y = benefit),
            linetype = 2,
            size = 1) +
  geom_segment(data = interventions_data %>% filter(country_funded == FALSE),
               mapping = aes(x = cost, xend = benefit + 1, y = benefit, yend = benefit),
               arrow = arrow(length = unit(0.2, "cm")),
               size = 1) +
  annotation_custom(b1) +
  annotate("text", label = "Subsidy", x = 60, y = 30, color = "red", size = 6) +
  annotate("text", label = "Country funded\nprojects", x = 20, y = 60, hjust = 0,
           size = 6) +
  annotate("text", label = "Country rejected\nprojects", x = 60, y = 15, hjust = 0,
           size = 6) +
  annotate("text", label = "v[0]/c[0]", x = 95, y = 95, parse = TRUE, size = 6) +
  geom_point(data = interventions_data,
             mapping = aes(x = cost, y = benefit,
                           color = country_funded,
                           shape = country_funded),
             size = 4) +
  scale_color_manual(name = "", values = c("red", "darkgreen")) +
  scale_shape_manual(name = "", values = c("circle", "square")) +
  scale_x_continuous(name = "Costs", expand = c(0, 0), limits = c(0,100)) +
  scale_y_continuous(name = "Country Benefits", expand = c(0, 0), limits = c(0,100)) +
  theme_fivethirtyeight() +
  theme(legend.position = "none",
       axis.line = element_line(arrow = arrow(length = unit(0.4, "cm"))),
        axis.text = element_blank(),
       axis.ticks = element_blank(),
       panel.grid = element_blank(),
       text = element_text(size = 16))
```



```
ggsave("figures/donor_funding_reporduce_morton18.png", dpi = 300,
    width = 7*2.5, height = 6*2.5, units = "cm")
```

Tables

Ghana Gavi co-financing table

Gavi CEA table

```
table_out <-
  cea data %>%
  filter(grepl("DALY|YLL", indicator)) %>%
  # Only include base-case of Abbot et al. 2012
  # and use earliest year of Gavi funding (since intervention is 2003-08).
  filter(!(authors == "Abbott et al. 2012" &
             (assumptions != "$5 per dose"))) %>%# / year_gavi != 2012))) %>%
  # Do not include the CEA with Gavi Subsidy accounted for
  # and focus on health system perspective.
  filter(!(authors == "Nonvignon et al. 2018" &
             (grepl("Ghana only", assumptions) |
             !grepl("Health system", perspective)))) %>%
  # Use relevant Gavi data year for Krishnamoorthy et al. 2019
  # based on paper intervention years
  # filter(!(authors == "Krishnamoorthy et al. 2019" &
               year_gavi != 2018)) %>%
  # Use the analysis with the 90% intervention coverage and year 2018
     for Gavi funding based on paper intervention years
  filter(!(authors == "Megiddo et al. 2018" &
             (grepl("Expanded coverage (90%)", assumptions)))) %>%
  # Do not include the CEA with Gavi subsidy accounted for
  filter(!(authors == "Debellut et al., 2019" &
             (assumptions == "Vaccine programme costs with Gavi subsidy"))) %>%
  # Remove comma from authors column
  mutate(authors = gsub(",", "", authors)) %>%
  # Convert to dollars
  mutate(cost = scales::dollar(signif(cost, 3)),
         benefit = scales::comma(signif(benefit, 3)),
```

```
cea = scales::dollar(signif(cea, 3)),
    year = as.numeric(gsub(".*\\. ", "", authors))) %>%
arrange(country, vaccine, year) %>%
select(Country = country, Vaccine = vaccine, Indicator = indicator,
    Costs = cost, Benefits = benefit, CER = cea, Perspective = perspective,
    Source = authors)
write_csv(table_out, "tables/csv_format/cea_table.csv")
```