Homework-Truncation Error

PB18010496 杨乐园

2021年3月15日

1 Introduction

通过对Hamming级数

$$\varphi(x) = \sum_{k=1}^{\infty} \frac{1}{k(k+x)}$$

在x不同取值位置的有限项计算,估计级数的精确值,并给出在截断误差 $< 10^{-6}$ 时,所需有限项k的上界。

2 Method

通过Mathematica编程,从1项逐渐累加直到截断误差符合要求,记录相应的k值,并输出相应列表。

另一方面,从分析学角度可以看到,为求N使得

$$\sum_{k=N+1}^{\infty} \frac{1}{k(k+x)} < 10^{-6}$$

而对 $\forall x \neq 0$ 有

$$\sum_{k=N+1}^{\infty} \frac{1}{k(k+x)} < \int_{N}^{\infty} \frac{1}{k(k+x)} dk = \frac{1}{x} \ln(\frac{N+x}{N})$$

故只需

$$\frac{1}{x}\ln(\frac{N+x}{N}) < 10^{-6}$$

解得

$$N > \frac{x}{e^{10^{-6}x} - 1}$$

从而只需取

$$N = \lfloor \frac{x}{e^{10^{-6}x} - 1} \rfloor + 1$$

即可。

同理,对x = 0时,只需取

$$N > e^{10^6}$$

即可

3 RESULTS 2

3 Results

输出结果见下页:

4 Discussion

通过对数据的观察我们发现,在 $0 \le x < 1$ 时,k取值均为1000000,其他x下k的取值也都十分接近1000000,并且随着x的增大,k以5的步长递减。

对比分析估计所得与实际计算累加所得,可以看出分析估计十分接近实际累加精确的k上界,故分级估计良好。

5 Computer Code

代码部分请参见附件。

x	φ (x)	k
0.	1.644934066848	1000001
0.1	1.53461	
		1000000
0.2	1.44088	1000000
0.3	1.36008	1000000
0.4	1.28958	1000000
0.5	1.22741	1000000
0.6	1.17211	1000000
0.7	1.12252	1000000
0.8	1.07776	1000000
0.9	1.03711	1000000
1.	1.	1000000
10	0.2928968253968	999 996
20	0.1798869828572	999 991
30	0.1331662376973	999 986
40	0.1069635759734	999 981
50	0.08998410676659	999 976
60	0.07799784021586	999 971
70	0.06904052510912	999 966
80	0.06206849098682	999 961
90	0.05647300669832	999 956
100	0.05187377517640	999 951
110	0.04802031452949	999 946
120	0.04474056906128	999 941
130	0.04191224106358	999 936
140	0.03944589474574	999931
150	0.03727453725763	999 926
160	0.03534694515587	999 921
170	0.03362324938192	999916
180	0.03207193178645	999911
190	0.03066773161902	999 906
200	0.02939015474061	999 901
210	0.02822239170647	999 896
220	0.02715051916712	999 891
230	0.02616290135466	999 886
240	0.02524973531175	999 881
250	0.02440270099773	999 876
260	0.02361468900039	999 871
270	0.02287958641717	999 866
280	0.02219210685512	999 861
290	0.02154765425838	999 856
300	0.02094221293433	999 851

x	φ (x)	k
0.	1.644934066848	1000000
0.1	1.53461	1000000
0.2	1.44088	1000000
0.3	1.36008	1000000
0.4	1.28958	1000000
0.5	1.22741	1000000
0.6	1.17211	1000000
0.7	1.12252	1000000
0.8	1.07776	1000000
0.9	1.03711	1000000
1.	1.	999 999
10	0.2928968253968	999 995
20	0.1798869828572	999 990
30	0.1331662376973	999 985
40	0.1069635759734	999 980
50	0.08998410676659	999 975
60	0.07799784021586	999 970
70	0.06904052510912	999 965
80	0.06206849098682	999 960
90	0.05647300669832	999 955
100	0.05187377517640	999 950
110	0.04802031452949	999 945
120	0.04474056906128	999 940
130	0.04191224106358	999 935
140	0.03944589474574	999930
150	0.03727453725763	999 925
160	0.03534694515587	999 920
170	0.03362324938192	999915
180	0.03207193178645	999910
190	0.03066773161902	999 905
	0.02939015474061	999 900
210	0.02822239170647	999 895
220	0.02715051916712	999 890
230	0.02616290135466	999 885
240	0.02524973531175	999 880
250	0.02440270099773	999 875
260	0.02361468900039	999 870
270	0.02287958641717	999 865
280	0.02219210685512	999 860
290	0.02154765425838	999 855
300	0.02094221293433	999 850

图 1: 分析估计

图 2: 实际累加