Linear supervised regression

0. Import library

Import library

```
In [75]:
         # Import libraries
         # math library
         import numpy as np
         # visualization library
         %matplotlib inline
         from IPython.display import set_matplotlib_formats
         set_matplotlib_formats('png2x','pdf')
         import matplotlib.pyplot as plt
         # machine learning library
         from sklearn.linear_model import LinearRegression
         # 3d visualization
         from mpl_toolkits.mplot3d import axes3d
         # computational time
         import time
```

1. Load dataset

Load a set of data pairs $\{x_i, y_i\}_{i=1}^n$ where x represents label and y represents target.

```
In [76]: # import data with numpy
```

data = np.loadtxt('/content/drive/My Drive/Colab Notebooks/MachineLearningProject/02/|

2. Explore the dataset distribution

Plot the training data points.

<matplotlib.collections.PathCollection at 0x7fc2e2604208>

3. Define the linear prediction function

$$f_w(x) = w_0 + w_1 x$$

Vectorized implementation:

$$f_w(x) = Xw$$

with

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{bmatrix} \quad \text{and} \quad w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \Rightarrow \quad f_w(x) = Xw = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix}$$

Implement the vectorized version of the linear predictive function.

```
In [78]:  # construct data matrix
    X = np.array([[1,x] for x in x_train])

# parameters vector
    w = np.array([[1],[1]])

# predictive function definition
    def f_pred(X,w):

    f = np.dot(X,w)

    return f

# Test predicitive function
    y_pred = f_pred(X,w)
```

4. Define the linear regression loss

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(f_w(x_i) - y_i \right)^2$$

Vectorized implementation:

$$L(w) = \frac{1}{n}(Xw - y)^{T}(Xw - y)$$

with

$$Xw = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Implement the vectorized version of the linear regression loss function.

```
In [79]: # loss function definition
    def loss_mse(y_pred,y):
        loss = (np.dot((y_pred - y).T, (y_pred - y))) / len(y)
        return loss

# Test loss function
    y = np.array([y_train]).T # label
    y_pred = f_pred(X,w) # prediction

loss = loss_mse(y_pred,y)
```

5. Define the gradient of the linear regression loss

Vectorized implementation: Given the loss

$$L(w) = \frac{1}{n}(Xw - y)^{T}(Xw - y)$$

The gradient is given by

$$\frac{\partial}{\partial w}L(w) = \frac{2}{n}X^{T}(Xw - y)$$

Implement the vectorized version of the gradient of the linear regression loss function.

```
In [80]:
```

```
# gradient function definition
def grad_loss(y_pred,y,X):

    grad = (2 * np.dot(X.T, (y_pred-y))) / len(y)

    return grad

# Test grad function
y_pred = f_pred(X,w)
grad = grad_loss(y_pred,y,X)
```

6. Implement the gradient descent algorithm

Vectorized implementation:

$$w^{k+1} = w^k - \tau \frac{2}{n} X^T (X w^k - y)$$

Implement the vectorized version of the gradient descent function.

Plot the loss values $L(w^k)$ with respect to iteration k the number of iterations.

```
In [87]:
         # gradient descent function definition
         def grad_desc(X, y, w_init, tau, max_iter):
             L_iters = ∏# record the loss values
             w_iters = \( \textstyle # \) record the parameter values
             w = w_init # initialization
             for i in range(max_iter): # loop over the iterations
                 y_pred = f_pred(X,w) # linear predicition function
                 grad_f = grad_loss(y_pred, y, X) # gradient of the loss
                 w = w - tau*grad_f # update rule of gradient descent
                 L_iters.append(loss_mse(y_pred, y)[0,0]) # save the current loss value
                 w_iters.append(w) # save the current w value
             return w, L_iters, w_iters
         # run gradient descent algorithm
         start = time.time()
         w_{init} = np.array([[1],[1]])
         tau = 0.00005
         max_iter = 400
         w, L_iters, w_iters = grad_desc(X,y,w_init,tau,max_iter)
         print('Time=',time.time() - start) # plot the computational cost
         print(L_iters[max_iter-1]) # plot the last value of the loss
         print(w_iters[max_iter-1]) # plot the last value of the parameter w
         # plot
         plt.figure(2)
         plt.plot([op for op in range(max_iter)], L_iters, c='blue') # plot the loss curve
         plt.xlabel('Iterations')
         plt.ylabel('Loss')
         plt.show()
         Time= 0.008520364761352539
         13.213734995339383
         [[0.93641516]
          [0.71857986]]
```


7. Plot the linear prediction function

$$f_w(x) = w_0 + w_1 x$$

No handles with labels found to put in legend.

8. Comparison with Scikit-learn linear regression algorithm

```
In [104]: # run linear regression with scikit-learn
                                            start = time.time()
                                           lin_reg_sklearn = LinearRegression()
                                           \lim_{x\to \infty} \frac{1}{x} = \lim_{x\to \infty} \frac{
                                           print('Time=',time.time() - start)
                                           # compute loss value
                                           w_{sklearn} = np.zeros([2,1])
                                           w_sklearn[0,0] = lin_reg_sklearn.intercept_
                                           w_sklearn[1,0] = lin_reg_sklearn.coef_
                                           print(w_sklearn)
                                           loss_sklearn = loss_mse(lin_reg_sklearn.predict(x_train.reshape(-1,1)), y) # compute
                                           print('loss sklearn=',loss_sklearn)
                                           print('loss gradient descent=',L_iters[-1])
                                           # plot
                                           y_pred_sklearn = lin_reg_sklearn.predict(x_pred.reshape(-1,1)) # prediction obtained
                                           plt.figure(3)
                                           plt.scatter(x_train, y_train, c='Black')
                                           plt.plot(x_pred, y_pred)
                                           plt.plot(x_pred, y_pred_sklearn)
                                           plt.legend(loc='best')
                                           plt.title('Training data')
                                           plt.xlabel('Population size (x 10k)')
                                           plt.ylabel('Profit $(x 10k)')
                                           plt.show()
                                           No handles with labels found to put in legend.
                                           Time= 0.0011620521545410156
                                            [[-3.89578088]
                                              [ 1.19303364]]
                                            loss sklearn= [[8.95394275]]
                                            loss gradient descent= 13.213734995339383
```


9. Plot the loss surface, the contours of the loss and the gradient descent steps

```
In [128]:
          # plot gradient descent
          def plot_gradient_descent(X,y,w_init,tau,max_iter):
              def f_pred(X,w):
                  f = np.dot(X, w)
                  return f
              def loss_mse(y_pred,y):
                  loss = (np.dot((y_pred - y).T, (y_pred - y))) / len(y)
                  return loss
              # gradient descent function definition
              def grad_desc(X, y, w_init, tau, max_iter):
                  L_iters = [] # record the loss values
                  w_iters = []# record the parameter values
                  w = w_init # initialization
                  for i in range(max_iter): # loop over the iterations
                      y_pred = f_pred(X,w) # linear predicition function
                      grad_f = grad_loss(y_pred, y, X) # gradient of the loss
                      w = w - tau*grad_f # update rule of gradient descent
                      L_iters.append(loss_mse(y_pred, y)[0,0]) # save the current loss value
                      w_iters.append(w) # save the current w value
                  return w, L_iters, w_iters
              # run gradient descent
              w, L_iters, w_iters = grad_desc(X, y, w_init, tau, max_iter)
              # Create grid coordinates for plotting a range of L(w0,w1)-values
              B0 = np.linspace(-10, 10, 50)
              B1 = np.linspace(-1, 4, 50)
              xx, yy = np.meshgrid(B0, B1, indexing='xy')
              Z = np.zeros((B0.size,B1.size))
              # Calculate loss values based on L(w0,w1)-values
              for (i,j),v in np.ndenumerate(Z):
                  Z[i,j] = loss_mse(f_pred(X, [[i],[j]]), y)
              # 3D visualization
              fig = plt.figure(figsize=(15,6))
              ax1 = fig.add_subplot(121)
```

```
ax2 = fig.add_subplot(122, projection='3d')
# Left plot
CS = ax1.contour(xx, yy, Z, np.logspace(-2, 3, 20), cmap=plt.cm.jet)
#ax1.scatter( )
#ax1.plot( )
# Right plot
ax2.plot_surface(xx, yy, Z, rstride=1, cstride=1, alpha=0.6, cmap=plt.cm.jet)
ax2.set_zlabel('Loss $L(w_0,w_1)$')
ax2.set_zlim(Z.min(),Z.max())
# plot gradient descent
Z2 = np.zeros([max_iter])
for i in range(max_iter):
   w0 = w_{iters[i][0]}
   w1 = w_iters[i][1]
    Z2[i] = L_iters[i]
w_iters = np.array(w_iters)
ax2.plot(w_iters[:,0], w_iters[:,1], Z2)
ax2.scatter(w_iters[:,0], w_iters[:,1], Z2)
# settings common to both plots
for ax in fig.axes:
    ax.set_xlabel(r'$w_0$', fontsize=17)
    ax.set_ylabel(r'$w_1$', fontsize=17)
```

```
In [129]:
          # run plot_gradient_descent function
          w_init = np.array([[1],[1]])
          tau = 0.00005
          max_iter = 400
          plot_gradient_descent(X,y,w_init,tau,max_iter)
          W_1
                              -2.5
                                         2.5
                                    0.0
                                                          10.0
                                    W_0
            Output results
```

1. Plot the training data (1pt)

2. Plot the loss curve in the course of gradient descent (2pt)

```
In [70]:
          plt.figure(2)
          plt.figure(figsize=(12,8))
          plt.plot([op for op in range(max_iter)], L_iters, c='blue') # plot the loss curve
          plt.xlabel('Iterations')
          plt.ylabel('Loss')
          plt.show()
          <Figure size 432x288 with 0 Axes>
            20
            19
            18
          ss 17
            16
            15
            14
            13
                                    100
                                                                                            400
                                             150
                                                                250
                                                                         300
                                                                                   350
                                                       200
                                                     Iterations
```

3. Plot the prediction function superimposed on the training data (2pt)

```
In [91]: # plot
    plt.figure(3)
    plt.figure(figsize=(12,8))
    plt.scatter(x_train, y_train, c='Black')
    plt.plot(x_pred, y_pred)
    plt.legend(loc='best')
    plt.title('Training data')
    plt.xlabel('Population size (x 10k)')
    plt.ylabel('Profit $(x 10k)')
    plt.show()
```

No handles with labels found to put in legend.

<Figure size 432x288 with 0 Axes>

4. Plot the prediction functions obtained by both the Scikit-learn linear regression solution and the gradient descent superimposed on the training data (2pt)

5. Plot the loss surface (right) and the path of the gradient descent (2pt)

6. Plot the contour of the loss surface (left) and the path of the gradient descent (2pt)

In [130]: plot_gradient_descent(X,y,w_init,tau,max_iter)

