

Publication Bias in Cochrane Meta-Analyses

Giuachin Kreiliger

Publication Bias

- Preference of journal editors to publish significant study results
- ightarrow non-significant results remain in file-drawer

Systematic Reviews

- Summarize all evidence with regard to treatment with meta-analysis
- Biased if non-significant results are not available and included

Funnel Plot

Look for funnel plot asymmetry:

Funnel Plot

Effects with large standard errors have larger effect sizes (because they are only published if significant)

Detect Publication Bias

- Small study effect tests (funnel plot asymmetry)
- Excess significance tests

Excess Significance Test

Calculate power of each study, given that true effect size is fixed effects meta-analysis estimate.

Calculate:

$$p = \sum_{i=0}^{n} \left(\binom{n}{i} p^{i} (1-p)^{n-i} \right)$$

O = observed no. of significant results, E expected based on power of studies, p = E/n.

Analysis

- Use meta-analyses from Cochrane.
- "The single most reliable source of evidence in clinical science

Analyse meta-analyses with publication bias tests.

The Cochrane Dataset

Inital dataset: 6,354 reviews, 70,662 studies, 744,720 results

exclusion of unsuitable meta-analyses

exclusion of unsultable meta-analyses

Analysis dataset: 738 reviews, 14,320 studies, 22,937 results

The Analysis dataset

Small Study Effect Tests

Weighted linear regression with std. error x_i and effect size y_i :

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$
 $\epsilon_i \sim N(0, x_i \sigma^2)$

Test for $H0: \beta_1 = 0$, no funnel plot asymmetry

Adjustments for Binary Data

As recommended by Sterne et al. (2001)

- Log odds ratio and risk ratio θ and standard error se_{θ} are not independent
- Use score of binomial likelihood at log odds ratio $\theta_{H0}= \text{0 instead of log odds ratio, and the inverse Fisher information instead of } \text{se}_{\theta}$

Small Study Effect Tests

Excess Significance Test

Excess Significance rest

Adjustment

Calculate unbiased estimates by

- Sensitivity analysis
- Regression approach

Selection Model

Copas and Shi (2000)

$$\theta_i \sim N(\mu_i, \sigma_i^2)$$
 $\mu_i \sim N(\theta, \tau^2)$

So we have $\theta_i = \mu_i + \sigma_i \epsilon_i$. Introduce

- Baseline study retention rate a
- Std. error dependent retention rate b
- introduces correlation between ϵ_i and selection probability

Sensitivity analysis

To test a pair a,b, include β :

$$\theta_i = \theta + \beta \operatorname{se}_i + \sigma_i \epsilon_i$$

- $-\theta_i$ is the effect size of study *i* and right-hand side is the fitted value of the model.
- Repeatedly test for $\beta_{\rm H0}=0$

Regression

Correct for small study effect (Rücker et al., 2011):

- Use global mean of regression β_0 from $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\epsilon_i \sim N(0, x_i \sigma^2)$
- Add minimal bias term $\beta_1 \cdot \tau$

$$\theta_{\text{Adj.}} = \beta_0 + \beta_1 \tau$$

Adjustment Methods

Differences:

- Regression: uncertainty of bias parameter retained
- Sensitivity analysis: Bias itself is not estimated, but most parsimonious scenario is chosen
- Sensitivity analysis: No adjustment if no evidence for bias

Regression adjustment leads to higher uncertainty of $\theta_{\mathrm{Adj.}}$

Effect Measure Transformation

$$d= heta rac{\sqrt{3}}{\pi}$$
 $ext{se}_d^2= ext{se}^2rac{\sqrt{3}}{\pi}$ $r=rac{d}{\sqrt{d^2+a}}$ $a=(n_c+n_t)^2/n_cn_t$ $z=0.5\ln\left(rac{1+r}{1-r}
ight)$ $ext{se}_z^2=rac{1}{n-3}$

Results

Regression 600 400 count 200 0 0.0 0.4 -0.8-0.4

Random effects \hat{Z} – adjusted \hat{Z}

Selection Model

Random effects \hat{Z} – adjusted \hat{Z}

Results

Missing Study Number

Missing study number according to selection model parameters: 2,618, 11.4%

	= 0	5%	25%	50%	75%	95%	mean
Missing number	226	0	0	1.5	5.9	20.1	4.7
Overall fraction	226	0	0	0.1	0.4	1.0	0.3

Table: Fraction of missing studies and estimates of missing studies with their zero counts ("= 0"), quantiles and means.

Additional Results

Linear mixed model with random effects for meta-analyses and reviews:

$$\mathbf{y}_i \mid U_j, U_k, \epsilon_i = \beta_0 + x_i \beta_1 + U_j + U_k + \epsilon_i$$

 \rightarrow Increased power to estimate β

Mixed Linear Model

AIC improvement to null fit: 1820 to 1306. Bias parameter $\beta_1 = 0.52$ (95%CI: 0.44,0.59)

Limitations

Small study effect \neq publication bias. Also:

- True heterogeneity
- Selective outcome reporting
- Delayed publication

- ..

Small study effect tests do not take into account significance directly.

Limitations

- Unknown amount of secondary outcomes
- Small amount of adverse outcomes
- Publication bias unknown for excluded data
- Exploratory Analysis!

Implications

- Results are largely in line with previous research
- Underline the need for examination of publication and other biases in meta-analyses
- Otherwise, validity of meta-analyses can be contested

References

- Copas, J. and Shi, J. Q. (2000). Meta-analysis, funnel plots and sensitivity analysis. *Biostatistics*, 1(3):247–262.
- Rücker, G., Carpenter, J. R., and Schwarzer, G. (2011). Detecting and adjusting for small-study effects in meta-analysis. *Biometrical Journal*, 53(2):351–368.
- Sterne, J. A. C., Egger, M., and Smith, G. D. (2001). Investigating and dealing with publication and other biases in meta-analysis. *BMJ*, 323(7304):101–105.

Backup slides:

Transformation

Standardised Mean Differenc Fisher's z transformed correlati

Standardised Mean Differenc Fisher's z transformed correlati